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To all our hard-working robotics students...



Preface

From an engineering standpoint, the increasing complexity of robotic systems
and the increasing demand for more autonomous robots result in a surge of
interest about learning methods.

This book is largely based on the successful workshop “From motor to in-
teraction learning in robots” held at the IEEE/RSJ International Conference
on Intelligent Robot Systems. The major aim of the book is to give students
a chance to get started faster and researchers a helpful compandium for the
study of learning in robotics.

Paris, August 2009 Olivier Sigaud
Tübingen, August 2009 Jan Peters
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From Motor Learning to Interaction Learning
in Robots

Olivier Sigaud and Jan Peters

Abstract. The number of advanced robot systems has been increasing in recent
years yielding a large variety of versatile designs with many degrees of freedom.
These robots have the potential of being applicable in uncertain tasks outside well-
structured industrial settings. However, the complexity of both systems and tasks is
often beyond the reach of classical robot programming methods. As a result, a more
autonomous solution for robot task acquisition is needed where robots adaptively
adjust their behaviour to the encountered situations and required tasks.

Learning approaches pose one of the most appealing ways to achieve this goal.
However, while learning approaches are of high importance for robotics, we cannot
simply use off-the-shelf methods from the machine learning community as these
usually do not scale into the domains of robotics due to excessive computational cost
as well as a lack of scalability. Instead, domain appropriate approaches are needed.
In this book, we focus on several core domains of robot learning. For accurate task
execution, we need motor learning capabilities. For fast learning of the motor tasks,
imitation learning offers the most promising approach. Self improvement requires
reinforcement learning approaches that scale into the domain of complex robots.
Finally, for efficient interaction of humans with robot systems, we will need a form
of interaction learning. This chapter provides a general introduction to these issues
and briefly presents the contributions of the subsequent chapters to the correspond-
ing research topics.

Keywords: motor learning, interaction learning, imitation learning, reinforcement
learning, robotics.
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1 Introduction

Robot learning has reached an unprecedented amount of interest in recent years.
However, as the robotics domain is of particular complexity for learning approaches,
it has become quite demanding for students and young researchers to get started in
this area. Furthermore, due to the current high speed of development it is often hard
for scientists from other areas to follow the developments. For this reason, the need
for an easy entrance into this field has become strong while it is not yet time for a
robot learning textbook. The idea of this book arose from these considerations.

This chapter serves two purposes: firstly, it allows us to quickly familiarize the
reader with the background. In Section 1.1, we give an overview on the importance
of robot learning approaches at this moment. In Section 1.2, we discuss essential
background on motor, imitation and interaction learning and recommend the reader
to briefly survey this part before diving into the respective chapters. Secondly, we
give in Section 2 a brief overview on the chapters included in this book, before
concluding in Section 3 on the necessity of a more integrated effort.

1.1 The Need for Robot Learning Approaches

At the beginning of the 21st century, robotics research is experiencing large changes
in its aims and objectives. In most of the previous century, the majority of all op-
erational robot were performing the same manufacturing task again and again in
extremely structured environments such as automobile factories. Often it was eas-
ier and cheaper to build a new factory with new robots to accommodate a new car
model than to reprogram an existing one. By contrast, robots are now “leaving”
factory floors and start becoming part of the everyday life of average citizens. Vac-
uum cleaning robots have become the most sold robots to date with 4-5 million
units shipped up to 2008, and programmable entertainment robots such as the Ro-
boSapiens have become many children’s favorite toy. This evolution raises the major
challenge of “personalizing” the programming of our robots and making them com-
patible with human-inhabited environments. As a result, a variety of new issues arise
that we will discuss below.

First, robots will often be in physical contact with people that are not specially
trained to interact with them, thus they must be less dangerous. This concern first
implies some mechanical requirements: robots must become lighter and their ac-
tuators must have inherent compliance properties as human muscles have. But in
turn, these changes result in the necessity to think differently about their control
loops. Either we stay with the same kind of actuator technology and we must use
extremely low gains while yielding sufficient accuracy, or we come to completely
new actuators like artificial muscles where the classical control knowledge is miss-
ing and learning techniques will play an important role. Finally, in any case they
must never become unsafe in unforeseen situations. All these considerations result
in the necessity to move from the previous standard way of thinking about robot
control to new approaches that rely more on on-line, adaptive model identification
and autonomous action selection properties.
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Second, future robots need to be more versatile and more flexible when encoun-
tering some of the infinitely many potential situations that are part of our daily life.
Despite the impressive results of human manual plan design and robot program-
ming, these hand-crafted solutions are not likely to transfer to that large variety of
different tasks and environmental states. Hence, it is becoming increasingly clear
that a new approach is essential. To interact better with their environment, robots
will need more and more sensing capabilities but also algorithms that can make
use of this richer sensory information. Due to this increase of complexity both on
the perception and action side, robots will need to learn the appropriate behavior
in many situations. This challenge is becoming recognized in the general robotics
community. It has resulted in supportive statements by well-known roboticists such
as “I have always said there would come a time for robot learning — and that time
is now” by O. Khatib (at Stanford, October 2006) and “robot learning has become
the most important challenge for robotics” by J. Hollerbach (at the NIPS Workshop
on Robotics Challenges for Machine Learning, December 2007).

Third, apart from the security aspects of human robot interaction that we have
already outlined, the fact that robots will be in interaction with people must also
be taken into account in their control and learning architecture. Thinking of a robot
as interacting with people has a lot of consequences in the design of their control
architecture, as will be investigated in subsequent parts of this book. As we will
see, robots can be instructed from their human user how to perform a new task by
imitation, or by physical or language-based interaction during task execution, etc.

All these changes on the way to consider robots and their control comes along
with another major evolution about the hardware platforms available. In the last
twenty years, a huge technological effort has resulted in the design of more com-
plex, more efficient and more flexible platforms with the challenges above in mind.
In particular, these last years have seen the emergence of humanoid robots of di-
verse size, capabilities and price as well as a variety of bimanual mobile robotics
platforms. In these platforms, all the challenges listed above are essential problems
that always need to be addressed.

This large shift in robotics objectives has resulted in an increasing visibility of
the corresponding lines of research. In the last few years, we have seen an increasing
amount of robot learning publications both at top machine learning (such as NIPS,
ICML and ECML) conferences and mainstream robotics conferences (particularly
at R:SS, ICRA and IROS). The number of learning tracks has been increasing the
IEEE multi-track conferences ICRA and IROS and there have been at least 12 work-
shops on robot learning in 2007–2009. This development has resulted in numerous
special issues in excellent robotics international journals such as the International
Journal of Robotics Research, Autonomous Robots, the International Journal of Hu-
manoid Robots and the IEEE Robotics & Automation Magazine. Recently, it even
gave rise to the creation of an IEEE Technical Committee on Robot Learning.

All these considerations led us to consider that this is the good time to publish
a book about Motor learning, Imitation and Interaction Learning in Robots. In the
next section, we will highlight the relationships between the corresponding different
subfields before giving an overview of the contributions to the book.
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1.2 Motor Learning, Imitation Learning and Interaction
Learning

Making humanoid robots perform movements of the same agility as human move-
ments is an aim difficult to achieve even for the simplest tasks. Although a lot of
impressive results have been obtained based on pure hand-coding of the behaviour,
this approach seems too costly and, probably, even too difficult if we ever want hu-
manoid robots and mobile manipulators to leave research labs or factories and enter
human homes.

The most immediate alternative to this manual programming is imitation learn-
ing, also known as learning from demonstration or programming by showing. This
approach is relatively well-developed and has resulted in a variety of excellent re-
sults in previous work. It includes several different teaching approaches. Some re-
searchers record human motion in the context of a task with motion capture tools and
transfer the motion on the robot, which implies solving the correspondence problem
resulting from the differences between the mechanics of a human being and a robot
system (e.g., already mapping the human arm kinematics on a non-anthropomorphic
robot arm is a difficult problem). Hence, it is often easier to employ teleoperating in-
terfaces for teaching, or even use the robot by itself as a haptic device. Furthermore,
different approaches are employed in order to recover a policy; while the approaches
discussed in this book directly mimic the observed behaviors, there is an alternative
stream of research that employs an inverse reinforcement learning approach which
rather attempts to recover the intent of the teacher by modeling his cost function
and, subsequently, derives the policy that is optimal with respect to the cost-to-go
(Abbeel and Ng, 2004; Coates et al, 2008; Ratliff et al, 2009). While several chap-
ters in this book are dedicated to imitation learning and should yield a good start in
this area, we want to point out to the reader that several important groups in imita-
tion learning are not covered and we urge the reader to study (Atkeson and Schaal,
1997; Schaal, 1999; Ijspeert et al, 2003; Abbeel and Ng, 2004; Calinon et al, 2007;
Coates et al, 2008; Ratliff et al, 2009).

Nevertheless, learning from demonstration does not suffice as the behavior of
the robot will be restricted to the behaviors that have been demonstrated, even if
some generalization mechanisms can slightly remediate that situation, allowing for
instance adaptation to slightly changing contexts. To go beyond an initial imitation,
we need the robots to adapt online so that they can react to new situations. There
exist a few situations where such an adaptation can be achieved purely by super-
vised learning, e.g., when the functional relationship can be directly observed as in
inverse dynamics model learning and a relearning after a change of the dynamics
due to an external load or a failure is straightforward. However, the majority of all
problems require some kind of self-improvement, e.g., we need to adapt elementary
movements to an unforeseen situation, improve a policy learned from a demonstra-
tion for better performance, learn new combinations of movements or even simply
learn an inverse model of a redundant system. Addressing these problems is often
formalized in the reinforcement learning framework, which mimics the way animals
and humans improve their behaviour by trial-and-error in unforeseen situations. A
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key issue in reinforcement learning is exploration: since we do not know in advance
which behaviour will give rise to high outcome and which will not, we have to try
various different actions in order to come up with an efficient strategy.

Taken as a whole, learning of general motor capabilities, at the control level or at
the behavioral strategy level, is a very hard problem. This involves the exploration
of a huge space of possibilities where a lot of standard algorithmic steps boil down
to hard optimization problems in a continuous domain. Given the difficulty of the
exploration problem in that domain, the combination of reinforcement learning with
imitation learning has been shown to be fruitful. Here, imitation provides an efficient
way to initialize policies so that the explorative policy can focus on the behaviors or
strategies that have a high probability of being efficient.

Finally, the third robot learning topic that we cover in this book is interaction
learning. Interaction learning allows the robot to discover strategies for actively
using the contact with human in its proximity. It often shares tools and methods
with imitation learning, since both approaches have to take the presence of the hu-
man around the robot into account. In fact, imitation learning is a particular case
of interaction learning in the sense that imitation is a particular type of interaction.
However, interaction learning is not restricted to reproduce the observed behavior
of a human. Instead, interacting means getting jointly involved in a common activ-
ity both taking the behavior of the respective other into account. Thus, interaction
can be physical, when the human user actually exerts some force onto the robot
or, conversely, when the robot does so to the human user. It can also be commu-
nicative, either through diverse modalities of language or through communicative
gestures. It can finally be purely implicit, when the robot and the user try to adapt
their behaviour to the other without any direct communication, just through observ-
ing. Interaction learning provides a challenging context for motor learning in gen-
eral. Human motor behavior is often difficult to predict and, thus, interaction may
require learning non-stationary models of the dynamics of the coupling between
humans and robots.

Last, but not least, the study of human motor behavior requires a deep under-
standing of the connections between motor, imitation and interaction learning. For
example, neurophysiological studies of human subjects suggest that motor learning
processes and more cognitive learning and developmental processes have much in
common, particularly when it comes to interaction with other beings. After the much
celebrated discovery of the so called ”mirror neurons” relating motor learning to im-
itation and language acquisition, several neurophysiological studies have revealed
that brain areas generally considered as motor, such as the cerebellum, or dedicated
to action selection, like the basal ganglia, are in fact employed in more general cog-
nitive functions such as learning tool use, imitation, language and so forth (Doya,
1999). Taken together, these facts advocate for a hierarchical understanding of the
brain architecture where motor learning and interaction learning are tightly cou-
pled processes at the root of cognition (Wolpert et al, 2003; Demiris and Khadhouri,
2006). These topics are highly relevant for robot learning as the human motor system
is still the best prototype for us to study in order to obtain new and better algorithms.
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2 Overview of the Book

From the previous section, it has become apparent that Motor, Imitation and Interac-
tion Learning are highly dependent on each other and complementary. The purpose
of the book is to provide a state-of-the-art view of these different subfields within
the same volume so as to cast the basis for an improved dialog between them. We
have divided the book into three parts, but there is a strong overlap between the
topics covered by these parts.

2.1 Biologically Inspired Models for Learning in Robots

A common view in most learning approaches to robotics is that humans exhibit all
the properties we want from a robot system in terms of adaptivity, learning capa-
bilities, compliance, versatility, imitation and interaction capabilities etc. Hence, it
might be a good idea to be inspired by their functionality and, as a result, a lot
of robot learning approaches are bio-inspired in some sense. More precisely, in this
book we can distinguish three different sources of inspiration in this line of thinking.

The first one has to do with trying to implement robot controllers on a represen-
tation that is as similar as possible to the neural substrate that one can find in the
human motor system. The complexity of the computational models resulting from
this line of thinking raises the problem of their validation. Here, robotics plays a
prominent role as a tool to evaluate the capability of these wide scope models to ac-
count for the phenomena they address. In this book, two chapters, (Duff et al, 2010)
and (Lagarde et al, 2010), are following this line of thinking. The first one proposes
a biologically based cognitive architecture called Distributed Adaptive Control to
explain the neuronal organization of adaptive goal oriented behavior. The second
one, based on neural field models, is interested in low level, basic imitation mecha-
nisms present early in the newborn babies, showing how the different proprioceptive
signals used in the examples can be seen as bootstrap mechanisms for more complex
interactions.

A second line of inspiration consists in trying to reproduce the learning prop-
erties of the human motor system as observed from outside, building models that
rely on computational principles that may explain these observed properties. The
work of Mitrovic et al (2010) illustrates this approach. It proposes an efficient im-
plementation of a model of motor adaptation based on well accepted computational
principles of human motor learning, using optimal feedback control methods that
require a model of the dynamics of the plant in a context where this model is
learned. The work of Herbort et al (2010) shares similar goals, but the authors ad-
dress slightly different motor learning phenomena, with a particular focus on motor
preparation. The authors propose an implementation of their system based on artifi-
cial neural networks on a simulated complex robot, perfectly illustrating the highly
cross-disciplinary nature of this domain.

Finally, a third line of inspiration takes its sources in developmental psychol-
ogy, giving rise to the so called developmental robotics or epigenetic robotics
(Lungarella et al, 2004). In some sense, the work already discussed by Lagarde et al
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(2010) can also fall into this category. Moreover, the work in (Oudeyer et al, 2010)
is a prominent example of this line of thinking, investigating how a model of activity
selection based on curiosity can give rise to the capability to tackle more and more
difficult tasks within a life-long learning paradigm.

2.2 Learning Models and Policies for Motor Control

The differences between papers about biologically inspired models for learning in
robots and the one that fall into this technical part is often small. A lot of work
about learning models and policies for motor control is also inspired by biolog-
ical considerations but does not attempt to provide an explanation for biological
behavior. As there are important differences between the mechanics of the human
musculo-skeletal system and the mechanical design of robots, severe limitations are
imposed on the degree of similarity between natural and artificial controllers. In-
deed, for instance, the human musculo-skeletal system has the amazing ability to
control both stiffness and position of each joint independently from each other due
to co-contraction. By contrast, nearly all humanoid robots to date are having a sin-
gle motor per joint and, thus, offer either position access (e.g., cheap RoboSapiens
designs), setting desired velocities (e.g., the Fujitsu Hoap, iCub and many others)
or are torque controlled (e.g., the SARCOS humanoids). This makes robots con-
trollers unable to make profit of the nice properties of the muscles that human peo-
ple use in practice and this drives robotics control towards control principles that
may differ a lot from those observed in human movement. In such a context when
the standard engineering knowledge is not well developed, the contribution from
(Fumagalli et al, 2010) compares two learning techniques, namely Least Squares
Support Vector Machines and Neural Networks, on their capability to estimate the
forces and torques measured by a single six-axis force/torque sensor placed along
the kinematic chain of a humanoid robot arm.

Beyond these considerations, the chapters regrouped in this part fall in two cat-
egories. The first category is about learning models of the plant, either direct or in-
verse, at the kinematics, velocity kinematics and dynamics level. This kind of work,
giving rise to motor adaptation capabilities, is one of the main mechanisms to obtain
compliance and versatility in robots. The contribution from Salaün et al (2010) pro-
vides an overview of how learned kinematics and velocity kinematics models can be
used within a feedback control loop in the Operational Space Control framework.
Learning these models is a difficult self-supervised learning problem in large contin-
uous state and action spaces, thus having an efficient learning method is crucial. A
few learning techniques have emerged in the last years as particularly competitive to
address this task. In particular, the most recent Locally Weighted Regression meth-
ods give rise to very fast implementations that scale well and are able to tackle large
problems but suffer from the necessity to tune a lot of parameters, whereas meth-
ods based on Gaussian Processes, are computationally more intensive as the size
of the problems grows but require less tuning. The chapter by Nguyen-Tuong et al
(2010) proposes a local method based on Gaussian Processes that combines the good
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properties of both families of approaches. They are able to show that the model
works well in the context of learning inverse dynamics.

The second category of contributions in this part is about finding the good com-
putational framework to derive efficient controllers from learning principles. In that
domain, an important approach is about the automatic tuning of motor primitives,
that already provided convincing results (e.g., as Ijspeert et al (2003)). But whereas
in these previous approaches primitives were based on open-loop control, the chap-
ter by Kober et al (2010) provides an extension to the case where primitives incor-
porate perceptual coupling to external variables, giving rise to closed-loop policies.

Taking a very different view, the chapter by Toussaint and Goerick (2010)
presents a bayesian formulation of classical control techniques based on task space
to joint space mapping, that results in the possibility to consider motor execution and
motor planning as a unified bayesian inference mechanism. The chapter highlights
the interesting robustness properties of the resulting framework and highlights deep
relationships with the optimal control framework that provides convincing com-
putational principles for motor control (Todorov and Jordan, 2002; Todorov, 2004;
Todorov and Li, 2005). Still in the same category but based on different principles,
(Howard et al, 2010) is focused on learning from trajectories a controller able to re-
alize a set of tasks subject to a set of unknown constraints. Finally, the contribution
from Roberts et al (2010) describes a nice application of a model-free reinforcement
learning-based control methodology, based on an optimized policy gradient algo-
rithm, to the control of an experimental system dedicated to the study of flapping
wing flight.

2.3 Imitation and Interaction Learning

This part starts with a chapter by Lopes et al (2010) which provides an overview
of imitation learning methods in robots. It provides a presentation of some recent
developments about imitation in biological systems, as well as a focus on robotics
work that consider self-modelling and self-exploration as a fundamental part of the
cognitive processes required for higher-level imitation.

The contribution (Chalodhorn and Rao, 2010) describes an approach based purely
on human motion capture to achieve stable gait acquisition in a humanoid robot de-
spite its complex mechanical structure. The chapter gives a good example of the
theoretical difficulties and technical intricacies that must be faced in such kind of
imitation learning approaches given the “correspondence problem” that must be
solved between the human musculo-skeletal system with its many redundant de-
grees of freedom and robot systems with their different & well-defined kinematic
structures. The chapter insists on dimensionality reduction techniques that can be
used to simplify the resolution of the correspondence problem.

After a chapter focused on learning one particular motor primitive from imita-
tion, the chapter by Kulić and Nakamura (2010) proposes a broader approach for
autonomous and incremental organization of a set of such primitives learned by ob-
servation of human motion, within a life-long learning framework. The hierarchical



From Motor Learning to Interaction Learning in Robots 9

organization makes it easier to recognize known primitives and to determine when
adding a new primitive in the repertoire is necessary. The different motor primitives
are represented by Hidden Markov Models or by Factorial Hidden Markov Models.

The contribution of Grollman and Jenkins (2010) is focused on the case where
some task is decomposed into a set of subtasks. With a more critical standpoint than
previous chapters, it examines the limits of a regression-based approach for learning
a Finite State Machine controller from demonstration of a basic robot soccer goal-
scoring task, based on an Aibo robot.

We already discussed in the first section of this chapter that there is a lot of
potential in the combination of imitation learning (or learning from demonstration)
and automatic improvement of control policies. The chapter from Argall (2010) falls
into this category. It presents an approach for the refinement of mobile robot control
policies, that incorporates human teacher feedback.

The chapter (Detry et al, 2010) describes a method that combines imitation learn-
ing with actual interaction with object to learn grasp affordances. More precisely,
the work is about learning to grasp objects described by learned visual models from
different sources of data. The focus is on the organization of the whole knowledge
that an agent has about the grasping of an object, in order to facilitate reasoning on
grasping solutions and their likelihood of success.

The last two chapters are more focused on interaction learning. First, the chap-
ter from Hörnstein et al (2010) is about language acquisition in humanoid robots,
based on interaction with a caregiver and using as few built in a priori knowledge or
primitives as possible. The importance of motor learning in the language acquisition
process is underlined. Second, the contribution from Lallee et al (2010) presents an
outstanding integration effort towards language based interaction between a robot
and a non-expert user in the context of a cooperation between them. The focus
is put on the use of the Spoken Language Programming approach to facilitate the
interaction.

3 Conclusion and Perspectives

Robot learning is a young, fruitful and exciting field. It addresses problems that
will become increasingly important for robotics as the platforms get more and more
complex and the environment get less and less prepared or structured. The reader
will find in this book research works stemming from different areas – statistical
learning of models, reinforcement learning, imitation and interaction learning – that
all contribute to the global endeavour of having more adaptive robots able to deal
with more challenging settings, in particular those where interaction with humans is
involved. In Section 1.2, we highlighted some ways in which diverse research efforts
could be combined given the complementary subproblems they address. However,
when closing this book, the reader will probably have the feeling that the different
contributors are working within isolated frameworks and that a global coordination
effort is still missing. Our view as editors is that finding frameworks giving rise to
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the possibility of such coordination is the next step in the field, and we hope this
book will play its role towards this next step.
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Abstract. In behavioral motor coordination and interaction it is a fundamental chal-
lenge how an agent can learn to perceive and act in unknown and dynamic en-
vironments. At present, it is not clear how an agent can – without any explicitly
predefined knowledge – acquire internal representations of the world while inter-
acting with the environment. To meet this challenge, we propose a biologically
based cognitive architecture called Distributed Adaptive Control (DAC). DAC is
organized in three different, tightly coupled, layers of control: reactive, adaptive
and contextual. DAC based systems are self-contained and fully grounded, mean-
ing that they autonomously generate representations of their primary sensory inputs,
hence bootstrapping their behavior form simple to advance interactions. Following
this approach, we have previously identified a novel environmentally mediated feed-
back loop in the organization of perception and behavior, i.e. behavioral feedback.
Additionally, we could demonstrated that the dynamics of the memory structure of
DAC, acquired during a foraging task, are equivalent to a Bayesian description of
foraging. In this chapter we present DAC in a concise form and show how it is al-
lowing us to extend the different subsystems to more biophysical detailed models.
These further developments of the DAC architecture, not only allow to better under-
stand the biological systems, but moreover advance DACs behavioral capabilities
and generality.
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1 Introduction

One of the main challenges we face in the development of novel real-world cognitive
systems and robotics technologies is to construct systems with perceptual, cognitive
and behavioral capabilities that allow autonomous coordination of complex sen-
sory and effector systems under varying task conditions. Successful solutions to this
challenge must account for the rapidly changing demands from the behaving system
itself and its environment. Furthermore, all this is to be achieved under severe con-
straints placed upon available computing resources and time, and upon the basis of
incomplete and only partly reliable information. Humans, and animals in general,
excel in this challenge making optimal use of their acquired knowledge [20, 69].
For instance, many animals, from bees to mammals, show optimal performance in
foraging by adapting their behavioral strategies to the particular reward contingen-
cies and risks that the real world offers [20, 14, 38, 55]. For instance, rats placed in
a radial arm maze, where different arms contain a varying amount of food pellets,
develop an optimal foraging strategy in terms of travel time [55]. Foraging can be
described as a goal-oriented exploration for resources normally motivated by food
deprivation. Foraging is an advanced goal oriented behavior where prior knowledge
of an environment and acquired behavioral strategies must be matched to the novelty
and hazards presented by an unpredictable world. These constraints are defined at
varying spatial and temporal scales where a successful forager must simultaneously
satisfy local and global constraints such as performing obstacle avoidance while
staying on course to reach a known feeding site whilst also allocating resources
consistent with its allostatic needs. The continuous decision making by the animal
on global tasks can be further decomposed into sub-tasks each serving specific goals
and sub-goals, e.g. during spatial navigation a target site is found by moving from
landmark to landmark in a specific order. Given natural selection and the dynam-
ics of internal and external constraints, the information processing and behavioral
strategies of a forager must be performed in a near-optimal fashion. Hence, foraging
provides a suitable and challenging test case for artificial controls systems.

Behavior control is thought to depend on three distinct components: sense, think,
and act. Although this view has been challenged [51, 70] and the three compo-
nents are tightly interlinked [49, 6], this distinction segregates the basic components
involved in foraging: sensory processing, action selection and cognition. Sensory
processing is a key component of successful foraging. In a real world environment
a forager is exposed to a wealth of sensory inputs. Only a subset of these inputs
will provide behaviorally relevant information. In order to cope with this overload
of information, the forager has to extract the behaviorally relevant information and
ignore irrelevant or noisy sensory signals. In a changing environment, and under
changing task conditions, these internal representations have to be adapted con-
stantly. This process of forming and adapting internal representations of the sensory
inputs is termed perceptual learning [23]. In order to reach its goals a forager has
to select a set of actions depending on its internal states. In classical conditioning,
for example, one distinguishes reactive actions (unconditioned response UR), which
are innate and elicited independently of prior learning given a certain sensory input
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(unconditioned stimulus US) and conditioned actions (conditioned response CR)
elicited by sensory stimulus (conditioned stimulus CS) that is associated through
learning to a specific action [39, 50]. In operant conditioning such a direct asso-
ciation is not always possible since a series of actions is needed to reach the goal
[66]. However, reaching a goal is often associated with a certain value (reward or
avoidance of punishment) and as a result, action selection requires as the association
of value to different actions. The assessment and assignment of values to internal
representations and possible actions is a critical step for an optimal foraging agent.
The utility of a reward is influenced by different factors: probability of the reward,
time delay and internal state of the agent [59]. This process of action evaluation
and selection is termed behavioral learning. Together with the formation of internal
sensory representation and the direct assignment of values and actions to these rep-
resentations, foraging does also require planning and rule learning. Different forms
of memory allow the forager to extend direct perception-action associations to sen-
sory states that are not detectable at the moment of decision or that are ambiguous
without the actual context.

Several models have been proposed to describe the process of sensory process-
ing, action selection and cognition. In the field of Artificial Intelligence (AI) one
distinguishes traditional AI and new AI. Traditional AI explains intelligent behav-
ior at the knowledge level [44]. The knowledge level describes intelligent behavior
in terms of knowledge, goals and actions and intelligent behavior emerges from the
principle of rationality.

. . . if the system wants to attain goal G and knows that to do act A will lead to attaining
G, then it will do A. This law is a simple form of rationality that an agent will operate
in its own best interest according to what it knows [44, p. 49].

The implicit assumption of the knowledge level description of intelligent behavior is
that, general intelligent behavior is based on the manipulation of symbols. This view
leads to a series of fundamental problems such as the frame problem [41], ground-
ing problem [24] and the frame of reference problem [13] all deriving from the “a
priori” definition of the internal representations and rules [73]. The New AI coun-
teracts this problem by putting forward the importance of situatedness, embodiment
and grounding of the artificial intelligent systems through the use of real-world sys-
tems [12]. New AI aims at minimizing the “a priori” definitions of internal represen-
tations and rules and relies on iterative methods to generate internal representations
while interacting with the environment [52, 12, 11]. Where traditional AI is mainly
concerned with the cognitive part new AI has aimed to solve problems embedded in
the real world [52]. These different perspectives in AI raise the question if these two
views on intelligence are incompatible or can be combined [76]. One motivation for
trying to unify these views is that they all provide a complementary solution to the
foraging problem. Where traditional AI found effective descriptions of higher-level
cognitive processes such as problem solving and planning, the new AI provides
solutions to real world problems. However, where traditional AI fails to ground
its solutions in the real world, the new AI faces the challenge to scale up to non-
trivial processes. Combining these views requires on the one hand the generation of
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symbol like representation in a fully embedded and grounded process and on the
other hand an approximation of a logic formalism to manipulate the generated
symbols.

In biological systems the generation of internal representation of the environ-
ment is ascribed to perceptual learning. Perceptual learning has been studied in a
variety of tasks (for a review see [16, 45]) showing that it is optimally adapted to
statistical structure of the available sensory input [60] but also that it regards the be-
havioral relevance of the sensory input [7, 57, 81]. This suggests that behavioral
and perceptual learning are tightly interlinked. In theoretical studies, perceptual
and behavioral learning are mostly studied in separation [48, 47, 65]. The major-
ity of perceptual learning models are based on statistical methods [29, 56, 5, 53].
In these models perception is defined by the need of reducing the dimensional-
ity of the input signal while preserving as much relevant information as possible.
Commonly, an artificial neural network is trained to compress the input while opti-
mizing a certain statistical property. A variety of possible optimization criteria have
been proposed including explained variance [46], independence [32], sparseness
[48, 30, 33], temporal stability [31, 26, 86, 19, 15] and efficiency [37, 61]. This ap-
proach allows the formation of optimal representations similar to these found in bio-
logical system such as the simple and complex cells of the visual cortex [48, 31, 35]
up to place cell representations as found in hippocampus [86, 19]. All these sta-
tistical learning algorithms are solely driven by the statistics of the input and the
inter-dependence of perceptual learning and behavioral learning is not taken into
account.

Likewise, in most of the models of behavioral learning, perceptual learning is
practically ignored. Behavioral learning is reduced to associating actions to prede-
fined states or sequences of states that describe the task domain. The acquisition of
these states and the adaptation of the action association to a changing state space
are generally ignored. A prominent theory for behavioral learning is reinforcement
learning [65]. Going back to the law of effect proposed by Thorndike [66], rein-
forcement learning algorithms are based on the notion of trial and error learning.
A numerical reward signal encodes the success of an executed action and learning
consists in assigning different reward values to states and actions. These acquired
values will guide future action selection. The values are however always assigned to
predefined state spaces and suffer from the same grounding problem as traditional
AI. Although the isolated investigation of the different components leads to valuable
insights, the apparent interaction between the two is not regarded. In an embedded
system that generates the internal representations while acting in the environment,
perceptual and behavioral learning can however not be treated separately.

To breach the apparent gap between the traditional and new AI and integrate the
to views that unifies perceptual and behavioral learning we have proposed a cog-
nitive architecture called Distributed Adaptive Control (DAC) [76, 73, 79, 74, 78].
DAC proposes that the core of perceptual, cognitive and behavioral systems of the
brain, including their adaptive properties, is probed through the paradigm of classi-
cal and operant conditioning. Classical conditioning is a form of associative learning
where an initially neutral stimulus (conditioned stimulus CS) is over time associated
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to a conditioned response (CR) through its contiguous representation with motiva-
tional stimulus (unconditioned stimulus US) [50]. The presentation of a US alone
leads to an innate automatic response (unconditioned response UR). In a typical
classical conditioning experiment in animals (such as rodents), a tone (CS) is pre-
sented together with a foot shock (US) leading to a freezing response (UR). Initially
the CS is neutral and does not induce any response. After several presentations how-
ever the CS alone will induce freezing (CR). As opposed to stimulus response as-
sociations of classical conditioning, in operant conditioning, the animal is actively
learning and has to perform a series of actions to reach a goal state, i.e. reward [66].
Following the law of effect [66] the animal associates particular actions to different
states of the environment. In this case the US resulting from an action (CR) given a
certain state (CS) act as a reinforcement. In a Skinner-Box experiment for example
an animal learns to push a lever (CR) in order to receive a food reward (US).

The two paradigms of classical and operant conditioning that have been defined
more than a century ago have stimulated an enormous amount of studies at both
the behavioral aspects of learning and its neuronal substrate. In essence the former
type of learning allows the animal to approximate the causal fabric of its environ-
ment where CSs cause USs while the latter form of learning allows the agent to
infer the causal relationship between its own actions and its environment. Predic-
tion is central to these two forms of learning. This is well captured in the, so-called,
Rescorla and Wagner laws of conditioning or stimulus competition that prescribe
that animals only learn when events violate their expectations [54]. Also the forag-
ing paradigm can be described in terms of these two elementary forms of learning.
Automated reflexes (US→UR) generate a basic exploratory behavior approaching
rewarded sides and avoiding negatively rewarded sides. Based on this exploratory
behavior the agent associates approach and avoidance actions (CR) to previously
neutral stimuli (CS). This actions form again the basis to learn sequences of sensory
action responses as in operant conditioning.

DAC is based on the fundamental assumption that foraging can be explained on
the basis of the interaction of three layers of control; reactive, adaptive and con-
textual (see Fig. 1). The reactive control layer provides a behaving system with a
pre-wired repertoire of reflexes, which enables the behaving system to interact with
its environment and to accomplish simple automatic behaviors (US→UR). The ac-
tivation of any reflex, however, also provides cues for learning that are used by the
adaptive layer. The adaptive layer provides the mechanisms for the adaptive clas-
sification of sensory events (CS) and the reshaping of responses (CR) supporting
the acquisition of simple tasks as in classical conditioning. The sensory and motor
representations formed at the level of the adaptive layer also provide the inputs to
the contextual layer, which acquires, retains, and expresses sequential representa-
tions using systems for short-term (or working) and long-term memory, providing a
model of operant conditioning. Thus DAC proposes that the adaptive layer is both
acquiring adaptive responses and a representational substrate for the planning sys-
tem of the contextual layer.

DAC has been investigated using formal approaches [75, 74] and robots [76,
78, 74, 79]. The prototypical robot test case for DAC is an open arena foraging
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Fig. 1 The DAC architecture: The reactive layer receives inputs from the robot’s proximal
sensors (e.g. distance and light sensors). The adaptive layer receives inputs from the robot’s
distal sensors (e.g. camera). The contextual layer receives sensory motor information from
the adaptive layer. All the three layers contribute to the action controlling the robot.

task. In this task, the robot, equipped with proximal and distal sensors, explores the
arena in search for light sources while avoiding collisions with the surrounding wall.
Colored patches scattered on the floor serve as landmarks for the navigation. In the
framework of classical conditioning the proximal (e.g. distance and light) sensors
serve as aversive and appetitive US. Close to the light or at a collision an UR is
triggered approaching the light or turning away form the wall. The colored patches
serve as CS.

In this chapter we describe how the DAC architecture provides a unification of
perceptual and behavioral learning in a single behaving system that can account for
a successful and structured behavior in a foraging task. We show how perception and
behavior can interact synergetically via the environment, i.e. behavioral feedback,
and how the knowledge level description of the foraging task can be mapped to the
memory structures of the contextual layer. Further, we describe how the proposed
integration serves as starting point for the investigation of more biologically detailed
models of key structures of perceptual and behavioral learning.

2 Formal Description of DAC

2.1 Reactive and Adaptive Layer

The adaptive and the reactive layer comprise four neuronal groups: the uncondi-
tioned stimulus US, the conditioned stimulus CS, the internal state IS and the motor
map cell group MM (see Fig. 2). The neuronal groups are modeled as mean firing
rate neurons. Both the US and the CS are linked with a synaptic weight matrix to
the IS. The connections V of the US to the IS are pre-wired and static. They define
the reactive layer. The connections W from the CS to the IS represent the adaptive
substrate of the conditioning process and are subject to learning. The IS cell group
is connected to a motor map MM in a predefined way over the weight matrix U . If
the activity in the IS cell group is higher than a defined threshold θ A the motor map
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Fig. 2 Adaptive and the reactive layer: Squared boxes stand for neuronal groups. Arrows
stand for static (solid line) and adaptive (dashed line) synaptic transitions between the groups.
See text for further explanations.

(MM) is activated. A winner take-all mechanism in the MM cell selects the action
to be executed. If the adaptive layer activates no action the reactive layer performs
a default action, i.e. translate forward.

We define the following abbreviations for the activities in the different cell
groups:

s = Activity of the US cell group∈ R
M

x = Activity of the CS cell group∈ R
N

z = Activity of the IS cell group∈ R
K

V = weight matrix from US to IS cell group∈ R
M×K

W = weight matrix from CS to IS cell group ∈R
N×K

r = Contribution of the US to IS ∈ R
K

y = Contribution of the CS to IS ∈R
K

m = Activity in the MM cell group∈ R
L

U = weight matrix from the IS to the MM cell group∈ R
K×L

Usually the dimensionality N of the CS is higher than the dimensionality K of the
IS. The dimensionality M of the US is in general but not necessary similar or equal
to the dimensionality K of the IS cell group. In the general case the activity of the
US and the CS cell can be a nonlinear function of the sensor readings. Usually the
function is however the unity function. With these definitions the forward dynamics
of the adaptive and reactive layer can be written as:

r = VTs

y = WTx

z = y + r

m = UTzH(z−θ A)

(1)

The US cell group can comprise neurons for different values of USs such as appet-
itive and aversive stimuli. To simplify the notation they are all represented in the
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vector s. The predefined weight matrix V determines what actions are triggered by
the different states of US. It connects the elements of US to specific elements of IS
and thus via the motor map MM sets specific actions. W describes the association
of CS to IS and is subject to learning. The activity of the IS is the sum of the two
contributions from the US and the CS. The activity m of the motor population MM,
is determined by the predefined weight matrix U and the thresholded activity of the
IS cell group where θ A is the threshold and H(.) is the Heaviside function. H(x) is
1 if x≥ 0 and 0 if x < 0.

The weight matrix W is subject to learning and changes following a learning rule
called predictive Hebbian learning where the changes in associations depend on the
difference between actual CS x and the estimated CS e, defined as e = Wz where
z = y + r [77]. e is the recurrent estimate calculated by the backwards projection of
z to the CS cell group. e will be referred to as CS prototype and can be seen as a
generalized estimation of the CS activity given the IS activity. With these definitions
W changes as:

ΔW = η(x− γe)zT (2)

The predictive Hebbian learning rule of DAC directly captures the central role of
prediction in the acquisition of stimulus-stimulus and stimulus-response associa-
tions that was identified by Rescorla and Wagner [54]. Learning is driven by the
correlative term xzT that contains both the auto-correlation of the CS i.e. xxT and
the correlation between the CS and the US, i.e. xrT. The auto-correlation term xxT

relates to perceptual learning as it maximizes the explained variance [46]. The cor-
relation term xrT relates to behavioral learning and drives the associative learning
between the CS and the US. In this way predictive Hebbian learning unifies percep-
tual and behavioral learning in a single neuronal network. ΔW is small when x and
e are similar, i.e. when the estimate e of the CS approximates the activity x in the
CS. The parameter η is the learning rate. The parameter γ is a gain factor determin-
ing the influence of the prediction term on learning. γ allows to control the norm
of the weight matrix and ultimately the amplitude of the activity y in the IS cell
group. In this way, the adaptive layer fulfills its twofold task of learning the sensory
motor associations and forming internal representations, i.e. the prototypes e for the
planning system of the contextual layer.

2.2 Contextual Layer

The contextual layer provides mechanisms for memorizing and recall of behavioral
sequences. It comprises two memory structures: a short-term memory (STM), and
a long-term memory (LTM) for the permanent storage of information (see Fig. 3).
They allow the system to acquire, retain and express sequences of the sensory-motor
contingencies the adaptive layer generates. The interaction of the two memory struc-
tures is a double process of storing and recall based on the following assumptions
[74]:
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• Memorize

– Salient sensory-motor events generated by the adaptive layer are stored in
STM

– The content of the STM is stored in LTM when a goal state is reached

• Recall

– The content of the LTM is matched against ongoing estimations of sensory
events based on their similarity and biased by chaining rules in the memory

– Matching LTM elements bias action selection in the motor population MM

The STM is implemented as a ring buffer and has a fixed size NS. An element in
the memory is called a segment and contains representations of sensory-motor con-
tingencies. A series of consecutive segments is called a sequence. At each moment
the generated CS prototype e and the action m executed by the agent is stored in the
STM. When the agent reaches a goal state, e.g. collision or target, the full content of
the STM is retained in the LTM as a sequence and the STM is reset. The LTM con-
tains a maximal number of sequences NL. The different sequences are value labeled
by the different goal states.

Reactive / Adaptive
Control

STM

LTM

Contextual Control

Sensors Effectors

4

1

2

3

5

m1NSe1NSe11 m11 e12 m12 e13 m13

mNLNSeNLNSeNL1 mNL1 eNL2 mNL2 eNL3 mNL3

e m

mNSeNSe1 m1 e2 m2

1

Fig. 3 Contextual layer of DAC: (1) The CS prototype e and the MM activity m are acquired
in the STM buffer and stored as a segment if the discrepancy D falls bellow a defined thresh-
old. (2) If a goal state occurs, the content of STM is retained in LTM as a sequence. (3) The
MM population receives input from the IS populations according to the rules of the adaptive
control structure. (4) If the input of the IS population to the MM is sub-threshold, the values
of the current CS prototypes are matched against those stored in LTM. (5) The MM popula-
tion receives the motor response calculated as a weighted sum over the memory segments as
input.
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The contextual layer relies on the representations formed at the level of the adap-
tive layer and is activated only when on average the CS prototype e approximates the
CS x. This transition is controlled by an internally generated discrepancy measure D
that is a running average of the actual difference between the CS x and the prototype
e defined as:

d(x,e) =
1
N

N

∑
j=1

∣
∣
∣
∣

x j

max(x)
− e j

max(e)

∣
∣
∣
∣

(3)

Initially, DAC operates only with the reactive and adaptive layer. The contextual
layer is enabled when the discrepancy measure D falls bellow a certain confidence
interval.

During recall the generated prototypes are matched against those stored in LTM.
For every segment the so-called collector value c is calculated. c determines the con-
tribution of the different segments to the action of the contextual layer. The collector
value is determined by the distance d(.) of the current prototype to the prototype
stored in the segment and by a trigger value t. The trigger enables chaining through
a sequence and depends on the past activation of neighboring segments earlier in the
sequence. For segment l of sequence q the collector value is defined by:

clq = (1−d(e,elq)tlq) (4)

The default value for the trigger is 1, and does not bias the collector value. If the
previous segment l−1 of sequence q, is activated, the value of the trigger tlq is set
to a value lower than 1 and relaxes asymptotically to 1 with a defined time constant.
This biasing of the distance measure of the collector value allows to chain through
the sequence.

The actual action of the contextual layer is a weighted sum over all the segments
whose collector value clq surpasses a certain threshold θC and is calculated as:

m = ∑
l,q∈LTM

±clqH(clq−θC)
δlq

mlq (5)

where δlq is the distance measured in segments, between segment l to the end of
its sequence, i.e. the distance to the goal state. By dividing the output of segment
with the distance to the goal state, the segments closer to the goal state have a higher
impact on the contextual response. The sign is plus if the segment belongs to a target
sequence and a minus when it belongs to a collision sequence. After updating their
input, the motor units compete in a WTA fashion. The winning unit will induce
its corresponding motor action. The trigger value of the segments following the
segments contributing to this action will be set to a low value enabling chaining. In
case that the motor population does not receive any input the robot falls back into
exploratory behavior.
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3 Results

We investigate the DAC architecture following two complementary approaches. On
the one hand we analyze the behavioral performance as well as the analytical pre-
dictions of the proposed system (see Sects. 3.1 and 3.2). On the other hand we inves-
tigate the neuronal substrates of different sub-components of DAC in biophysically
detailed models. In particular we investigate the neuronal substrates underlying the
reactive and adaptive layer (see Sects. 3.3, 3.4 and 3.5).

3.1 Behavioral Feedback

In the theoretical analysis of behavioral control, perception and behavior are usu-
ally seen as two separated processes. The perceptual learning process constructs
compact representations of sensory events while the behavioral learning process is
making the association between perceptual representations and actions and orga-
nizing them through reinforcement. In this view, the interaction between these two
processes is assumed to take place internal to the agent through its neural substrate
[63]. However, as already described above, perceptual and behavioral learning are
tightly interlinked [84]. In order to associate the correct actions to different per-
cepts, an agent has to perceive and analyze the current situation it is in. The way
it perceives a situation does however depend on its past experience [78]. The pre-
cise mechanism of this interaction is not clear, mainly because it requires a detailed
analysis of both the behavior and the corresponding neuronal substrate. The use
of mobile robots allowed us to bypass this restriction as all the internal states are
accessible. Here we show how in a robot foraging task, perceptual and behavioral
learning interact synergetically via the environment [78].

We simulated a robot foraging task in an environment comprising lights as tar-
gets, walls as obstacles and colored patches on the floor. The task of the robot is to
maximize the number of targets reached while minimizing the number of collisions.
To investigate the influence of the contextual layer we compared two experimen-
tal conditions: one where the contextual layer is activated when the discrepancy
D falls bellow the defined threshold (see Sect. 2.2) and one where the contextual
layer is disabled. We distinguish two different phases in the experiment, a stimula-
tion phase where the lights (US) are turned on (2000 time steps) and a recall phase
(5000 time steps) where the lights are turned off and the robot has to rely on the
conditioned stimulus (CS) alone in order to reach the targets (Fig. 4 A). We found
that the adaptive layer improved the performance of the robot through a learning-
dependent avoidance of collisions, observable in the increase of the target/collision
ratio (Fig. 4 B). We also observed that at the onset of the second stimulation period,
the performance of the two conditions diverges: in the enabled condition, perfor-
mance is strongly enhanced compared with the disabled condition. This difference
is due to the activation of the contextual control layer in the enabled condition, as
can be deduced from the evolution of the discrepancy measure D (Fig. 4 C) shortly
after the onset of the second stimulation period, D falls below the transition thresh-
old. During the second stimulation and recall periods, the D value of the enabled
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Fig. 4 Performance and input variability for the simulated robot experiment. A The exper-
iment consisted in two cycles with one stimulation period (light on) and one recall period
(light off) each. B Targets/collisions ratio in time windows of 100 time steps for the condi-
tions where the contextual layer was disabled and enabled. C Discrepancy value for disabled
and enabled condition. The transition threshold is 0.2 (from [78]).

condition is markedly below that of the disabled condition. This reduction is ac-
companied by a significantly lower value of the average absolute change in synaptic
efficacies of the connectionsW between the CS and IS population. Hence, the transi-
tion to contextual control leads to a reduction of the discrepancy between predicted
and actual CS events and to a stabilization of the synaptic weights of the adaptive
control layer. However, our model has no internal feedback from the contextual to
the adaptive control layer. Therefore, this difference must be due to the difference
in the overt behavior generated in the two conditions and the systematic bias in
the sampling of CS events that this difference causes, that is, behavioral feedback.
The behavior is less variable when the contextual layer is enabled, thereby reduc-
ing the variability of the sampled sensory inputs [78]. We tested this hypothesis by
comparing the entropies of behavior and sampled stimuli and found that both the
behavioral entropy (positions visited by the robot) and the perceptual entropy (sam-
pled CS events) are significantly lower for the condition where the contextual layer
is activated. This shows that the structuring of the behavior due to behavioral con-
trol leads to a smaller set of input states. These results were also reproduced with a
robot in a real world environment, demonstrating the effect of behavioral feedback
on perceptual learning [78].

To evaluate how behavioral feedback affects performance, we run a control ex-
periment where we compared an enabled condition with a “static” condition. In
the static condition the synaptic efficacies W of the adaptive layer was switched
off after the activation of the contextual layer. The performance of the robot was
lower for the static condition showing that behavioral feedback directly enhances
performance [78].
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Theses results show that learning-dependent changes in behavior can establish
a macroscopic feedback loop. The activation of the contextual layer leads to a
more structured and planned behavior and the resulting restricted trajectories, con-
sequently, reduce perceptual variability, stabilizing the behavioral patterns. Hence,
this non-neuronal, environmentally mediated feedback organizes the behavior and
perception through a synergistic interaction. This suggests that changes in the affer-
ent input to sensory areas, due to behavioral feedback, can systematically change
perceptual learning. This is supported by the observation that, during development,
the organization and response properties of primary sensory areas can be strongly
influenced by their afferent inputs [64].

3.2 DAC as an Approximation of an Optimal Bayesian Decision
Making System

To unify the different views of traditional and new AI we build on the assumption
that a knowledge level description of intelligence, including the principle of ratio-
nality, can be captured in the perspective of Bayesian decision making [4]. Here
we summarize the argument that DAC is equivalent to an optimal decision making
system in a Bayesian sense. Most importantly we show that our solution is self-
contained in the sense that DAC acquires and updates its own set of prior hypothe-
ses. This is relevant since, as traditional AI, also a Bayesian framework does not
automatically solve the symbol grounding problem: It also assumes that the knowl-
edge of a decision making system is defined “a priori”. In the Bayesian case knowl-
edge is defined by a set of prior hypotheses h and the theorem of inverse probability
defines the probability that hypothesis h is true given observation o:

p(h|o) =
p(o|h)p(h)

p(o)

where p(o) is the probability of making observation o, p(h) the prior probability of
h being true, and p(o|h) the prior probability that making observation o given h is
true. The optimal action, m, can be calculated using a score function Gg(hn,m) that
defines the expected gain, 〈g〉m, of performing action m given hypothesis hn. Bayes
principle states that optimal decision making requires that the action m∗ is selected,
which maximizes the expectancy 〈g〉:

〈g〉m∗ = ∑
hn∈H

p(hn|o)Gg(hn,m∗) = max
mk∈M

[ ∑
hn∈H

p(hn|o)Gg(hn,mk)]

Now we phrase the foraging tasks performed with the DAC architecture in these
Bayesian terms. By doing so we prove that the DAC architecture will execute exactly
those actions that are optimal in a Bayesian sense (for details on this prove see [74]).

We start by identifying analogs of the inverse probability formula to the corre-
sponding values in the DAC contextual layer. p(h) is the probability of the hypoth-
esis of the agent (its prior knowledge) about a target being reachable (or a collision
suffered) when executing an action at a certain time step. This probability in DAC
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will be non-zero if we actually have experienced that and have stored it in LTM.
p(o|h) adds the probability of observing o at a certain time step. This probability is
non-zero if there is a sequence in LTM containing the action that h specifies. Each
LTM segment also contains an observation, so this probability will be equivalent to
a measure of similarity of prototypes of observation and the corresponding obser-
vations stored in the segment. The activity collector unit can play this role. p(o) is
a normalization factor so we can discard it. With these two analogs of the probabil-
ity distributions to DAC memory structures, we have reformulated the expression
〈g〉m∗ , referring to the maximum expectation of an action in Bayesian terms (see
[74] for details). We are only missing the gain/score function G(hn,mk), which in-
dicates the profit of the hypothesis hn being true and action mk executed. This profit
can be defined inversely proportional to the time steps necessary to reach the goal
state that hn specifies. This reformulation in Bayesian terms proves that DAC will
select the same action as optimal Bayesian decision making. Thus the action selec-
tion follows Bayesian rationality based on representations and priors formed while
interacting in the environment.

3.3 The Reactive Layer and the Construction of a Synthetic Insect

The current reactive layer implements approach and avoidance responses. This lim-
ited set of behaviors might be sufficient and the right choice for an open arena for-
aging task. In the general case the set of behaviors provided by the reactive layer
has to be matched to a specific task (see also [42, 25]). This is especially impor-
tant as the basic behaviors provided by the reactive layer generate the sensory and
motor inputs for the adaptive and contextual layer. To investigate how a set of more
advanced stereotyped behaviors can lead to purposeful behavior we have investi-
gated insect navigation, in particular exploration and homing. Leaving the dwelling,
moving about in the environment, and finding home is a basic requirement for any
agent living in the real world, a task that needs to be solved by man and bug. To
be able to find the way back, two strategies are used: The animal can memorize its
path based on external cues such as visual, auditory, or olfactory landmarks or by
integrate over the distance and direction traveled. Commonly the former is referred
to as “landmark navigation” (LMN), and the latter is called “path integration” (PI)
or “Dead reckoning”.

We believe that behavioral models have to be set in a behavioral context, prefer-
ably in the real world. In keeping with this paradigm, we embedded our path in-
tegration model in a behavioral task, thus expanding the conceptual model of the
reactive layer to a synthetic insect system. The task of the synthetic insect system is
to explore the environment, while searching for the target stimulus, and to return to
the point of departure. The switching from exploratory to return behavior happens
if either the duration of the exploration exceeds a given threshold or the target stim-
ulus was found. Hence, as a behavioral model, the synthetic insect system spawns
the complete nexus of information processing from the input stage, to the perceptive
and integrative components, to the generation of behaviors, to the output stage.
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Fig. 5 Grand overview over the components and the flow of information in the synthetic
insect system. Light gray boxes demarcate subsystems, whereas diamond shapes represent
the input stage, ellipses indicate perceptive and integrative components, and boxes stand for
actions. DRA = dorsal rim area.

Although the task outlined might seem simple, in moving from a conceptual path
integration model to a synthetic insect system that is behaving in the real world, the
number of components that need to be incorporated increases markedly. The system
is organized in a number of subsystems (Fig. 5).

The core of the synthetic insect system is the path integration sub-system. To
integrate the path of a journey, information about the heading direction, and dis-
tance traveled must be stored in a path memory. Evidently, also a mechanism for the
readout of the path memory must be available. Path memory and readout are both
implemented based on the concept of population code regarding the neurophysio-
logical constraints [22, 9]. The heading direction assessment is based on a model
of the solar compass of insects. In insects this solar compass receives input from a
specialized area of the eye, referred to as the dorsal rim area (DRA) [28], capable of
detecting the polarization pattern of the sky.

The goal in developing the Exploratory behavior subsystem was to devise a
biologically plausible target search behavior. We realized this by combining a ran-
dom walk behavior with a visual target detection circuit, and a Braitenberg vehicle
inspired target orientation mechanism [10]. The Return behavior subsystem is the
main “consumer” of the path memory information, and responsible for generating
the behavior that effectively makes the agent return to the point of departure. The
system is complemented by a subsystem for the detection and avoidance of colli-
sions, and stabilization of the course (see [8] for a more detailed description).

For the system to fulfill its behavioral task, the behaviors and information origi-
nating from the subsystems must be orchestrated. When looking at the integration,
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Fig. 6 Behavior regulation in the path integration model. (see text for further explanation).

it is important to realize that a subsystem can be on a purely perceptive and inte-
grative level, or can be implemented as a complete nexus from perception to action,
i.e. generate a motor output signal. The former is true for the Solar compass and
the Path memory subsystems, the latter for the exploratory behavior and the re-
turn behavior subsystems. If a subsystem implements the complete nexus, it may
stand for the behavior itself. We devised a hierarchical architecture comprising on
the one hand a tier of lateral activity exchange, on the other hand of tiers of be-
havioral reflexes, and motivational “volition” serving to prioritize the actions of the
agent. Our action selection circuits employed several generic mechanisms such as
gating, cascaded inhibition and convergence, which we predict are commonly found
in neuronal systems [62].

The behavioral elements of the synthetic insect system are organized in a nested
hierarchy: The exploratory behavior comprises the aggregated behaviors random
walk, and Braitenberg, which in turn consist of the atomic behaviors go straight,
orientate, and turn random angle. The return behavior comprises the atomic
actions go straight, and orientate (Fig. 6). An evasive action is part of the course
stabilization and collision subsystem [2].

The task of the action selection on the one hand covers the lateral management of
the atomic behaviors, i.e. a prioritization and resolution of conflicts between actions
into a coherent overall behavior. On the other hand, action selection controls the
top-down switching between the complex behaviors. The lateral interaction between
behaviors corresponds to reflexes, e.g. ensuring that the collision avoidance reaction
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has precedence, whereas the top-down control can be understood as the level of
“volition”.

Outside the action selection process, early lateral exchange of information be-
tween the subsystems is required. One of these interactions is the so-called “sac-
cadic” suppression: the input to the course stabilization system is suppressed when
the atomic orientate action is causing a “voluntary” rotational movement. If this
suppression were absent, the course stabilization system reacts to the visual input
caused by the rotation and counteracts to the movement. The top-down action se-
lection realizes the “volitional” aspect of switching between exploratory and return
behavior. It is “volitional” in that, as opposed to the autonomous lateral control, the
switching is flexible and managed explicitly. Top-down action selection manages
the external criterion of whether the target stimulus is within the desired distance,
and the internal criterion of time spent exploring the environment. The first criterion
is represented by the group Target Found, and stems from the exploratory behavior
subsystem, whereas the second criterion is represented by the group Exploration
timeout, and is implemented within the action selection process itself.

The synthetic insect system presented here is probably one of the most compre-
hensive models of an insect built to date. Yet the model is not complete as it lacks
components such as circadian rhythms and navigation by the aid of landmarks. In
the context of the reactive layer we have used the synthetic insect system as an
example of how a set of basic behaviors can be orchestrated to yield advanced be-
haviors such as exploring and homing. Key to achieving a coherent overall behavior
are lateral management of basic behaviors, i.e. a prioritization and resolution of con-
flicts, and top-down, “volitional”, switching between the more complex behaviors.
The integration of a such a rich behavioral set of behaviors in the DAC reactive layer
will allow not only to deal with more advanced reactive behaviors but will also im-
prove learning at the level of the adaptive and contextual layer as the reactive layer
generates the inputs for learning in these layers. In the context of insect navigation
the adaptive and contextual layer can serve for landmark navigation and as such
complete the synthetic insect model.

3.4 The ‘Two–Stage’ Theory of Classical Conditioning

Conditioning as described in the adaptive layer of DAC involves both a perceptual
and a behavioral learning component. The adaptive layer forms internal represen-
tations of the CS biased by the behavioral relevance represented by the US. This
can be seen as an abstract model of two-phase conditioning [34]. According to the
two–stage theory of classical conditioning, the association between the CS and the
aversive stimulus (US) is formed within the first few conditioning trials, representing
the initial first stage of conditioning, and results in the acquisition of emotional CRs.
This means that before a CR of the skeletal-motor system can be observed, rapidly–
developing CRs concerning the heart rate, respiration, blood pressure, pupillary size
or skin conductance have already been acquired. As these CRs all develop regard-
less of the locus or type of US, they have been called non–specific. After the context
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Fig. 7 Illustration of the two-phase theory of classical conditioning.

between the CS and US has been formed through stimulus–stimulus associations, the
second stage, namely stimulus–response associations (S-R), is responsible for form-
ing the specific somatic motor response that are directed to a specific US. Within the
DAC adaptive layer the two phases are interwoven in a single system and the interac-
tion between the two is regulated through the predictive Hebbian learning rule (Eq.
2). To understand more explicitly the interaction between the two stages we have
developed a biophysically detailed model of both the first and the second stage of
classical conditioning i.e. auditory cortex and cerebellum. After reviewing the two
separate models we suggest how this to connect those two stages together providing
the first complete account of the two phase theory of conditioning (see Fig. 7).

We have successfully modeled the roles of the amygdala, basal forebrain and
auditory cortex (AC) as an example of the non-specific learning system and the
cerebellum (CE) as a model of the specific learning system [58, 72, 27]. Here we
provide a complete account of Konorski’s proposal by integrating these two systems
and thus provide the first complete biologically-grounded computational model of
the two-phase theory of conditioning.

In our previous work [58] we chose the AC as a model of the non-specific learn-
ing system. In particular, it has been shown that classical fear conditioning specif-
ically retunes the receptive fields (RFs) in the primary auditory cortex to favor the
processing of the frequency which was used as the CS. Specifically, [3] observed a
shift of the characteristic frequency of the auditory neurons towards the frequency of
the CS. These receptive field changes rapidly appear [17] and the AC neurons con-
tinue to increase their responses to the frequency of the CS even in the absence of
further training [21]. In summary, the RFs in the primary auditory cortex of normal,
adult animals are not fixed but are modified by learning. This plasticity is sufficient
to change frequency tuning to favor the processing of the conditioned stimulus. The
acquired behavioral importance of the CS–frequency is represented by an increase
in tuning and can be seen through a clear expansion of the region of the cortex that
represents frequencies similar to the conditioned stimulus [82].

AC learning has been simulated using a biophysically realistic learning rule,
where neurons plasticity is controlled locally by a spike-time dependent learning
rule (STDP). The occurrence of an unconditioned stimulus (US), signaled by a
burst of activity in the model amygdala/nucleus basalis, switches a bigger fraction of
synapses in the A1 into a plastic mode. As a result CS representations are enlarged,
thus resulting in a higher global response to a CS stimulus [58]. The simulation
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protocol consists in the repeated presentation of five tones to train the learning AC
model. Once the training is over, different portions of the AC represent the different
frequencies of the presented tones. Afterwards, the tones are repeated again, but the
fourth tone is followed by an aversive stimulus. Indeed, after few trials, the portion
of AC representing the fourth tone considerably increases.

For the specific leaning we investigated an eye-blink conditioning paradigm. Our
cerebellar model [72, 27] is able to associate a CS to a CR that reduces the impact of
the aversive stimulus. Moreover, the CRs that are produced are well-timed, correctly
anticipating the aversive US. The neural mechanism responsible for the association
between CS and US is the plasticity at the parallel fibers (carrying the CS signal)
to purkinje cells. Such plasticity is controlled by the learning modulatory effect of
the climbing fiber action (carrying the US signal). The modulation of the synaptic
strength at the parallel fibers prukinje cell synapse allows to control whether a given
CS will produce a CR and the time separating the CS to the CR. The adaptive timing
of the response, i.e. the fact that the CR correctly anticipates the US, is controlled
by a negative feedback mechanism that inhibits the climbing fiber signal whenever
a well-timed conditioned response is generated. For a detailed explanation see [72].

The next step is to combine the two models in a single behaving system. The non-
specific learning stage is able to filter out non relevant stimuli by enhancing the stim-
uli that are related to the CS. A gating mechanism should be sufficient to separate
CS–related from unrelated neural activity. Once this activity has been relayed to the
cerebellum, other activity not related to the CS should be silenced as much as pos-
sible in order to facilitate stable learning in the cerebellum. Such a system provides
on the one hand a complete computational account of Konorsky’s two-phase theory
of classical conditioning, and on the other hand, demonstrates that the interplay be-
tween enhanced perception and adaptation is fundamental. The integration of these
detailed biophysical models in the DAC architecture will allow us to test how they
perform in a more complex foraging task and how the representations formed in the
first phase can be utilized in the contextual layer for sequence learning and planning.

3.5 General Principals for Perceptual Learning

The perceptual learning component of the adaptive layer provides behaviorally bi-
ased feature extraction of the states of the distal sensors. However, the linear nature
of the learning rule (Eq. 2) will only allow the extraction of features based on second
order statistics. As a means to support complex behavior in a real-world scenario it
is necessary to consider the complexity and the richness of natural stimuli in the
sensory representation involving higher order statistics. As an example, visual stim-
uli can range from blinking monochromatic lights to three-dimensional objects and
human faces while sounds can range from a sinusoidal tone to a human voice. Each
of these inputs requires specialized processing with different degrees of complexity.
The human brain has evolved to be highly adapted to these high order properties.
For this reason we explored brain based higher order statistical optimization to un-
derstand and advance the feature extraction capabilities of the adaptive layer.
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Objective functions optimization is a general approach for higher order statis-
tical learning. By means of unsupervised learning methods, a statistically defined
objective is used to optimize a neural network response to express a desired firing
profile. Using this approach, it has been shown that optimally sparse representations
resembling so-called simple cells [48, 37] and optimally stable representations giv-
ing rise to complex cells [80, 18, 83] can be learned from visual stimulus consistent
with physiology of the primary visual cortex V1. With this procedure it has been pos-
sible to generate artificial neural structures with similar receptive fields of visual V1
cells [48] and auditory nerve cells [15]. The theory of general computational princi-
ples is not only functionally coherent with the brain but it is also in agreement with
cortical organization. Given the relative uniform structure of the neuronal substrate
underlying perception, cognition and behavior one can assume that also the number
of computational principles should be fairly restricted. For instance, this would sug-
gest that all proprieties of the visual system of the cerebral cortex from the restricted
local tunings in V1 to the invariant representation of space found in the place cells of
the hippocampus can emerge from very few principles. Indeed, many physiological
features of the cerebral cortex have been modeled following this approach.

We have investigated how an objective function approach can help for feature ex-
traction and the formation of internal representations in a foraging robot. A mobile
robot performing a Braitenberg like behavior with a CCD camera mounted on its top
was embedded in a rectangular arena (Fig. 8 A). The output of the camera was its
unique input connected to a neural model (Fig. 8 B). The processing hierarchy was
composed of five-layers of leaky integrator units, providing them with a local tran-
sient memory, with both inhibitory intra-area and excitatory feed-forward inter-area
connections. The convergence of the feed-forward connectivity and the temporal in-
tegration constant increase while moving up in the hierarchy. The objective function
is evaluated autonomously at each layer. The weights of the feed-forward connec-
tions are updated by an online unsupervised learning algorithm (gradient descent)
guided by the objective function.

In this model the three computational principles used are: temporal stability,
decorrelation and activity regulation. Temporal stability refers to the variation of
the activity in time. The main concept behind this principle is that high-level repre-
sentations are invariant to fast-varying features. Therefore the profile of the activity
must follow a behavioral time scale, this is usually slower than a neural time scale,
i.e., hundreds of milliseconds compared to milliseconds. Decorrelation refers to the
relation of the activity of different units in one network. Different cells are expected
to respond to different stimuli to minimize redundancy and to avoid the conver-
gence of all units to a single salient feature of the input. The last principle seeks the
regulation of activity to have the most energy saving representation.

After a training period the network converged to express stable values for the
objective functions. The higher layers converged only after earlier layers had con-
verged showing the bootstrapping nature of the model. This indicates that to ob-
tain high-level representations a stable pre-processing of the input is needed. In
addition, the model showed that the first layer had strong spatial frequency tun-
ing, as observed in V1. Moreover, the output response of the highest layer when
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Fig. 8 The Micro-Robot Khepera and the Neural Network Structure Used for Sensory Pro-
cessing. A camera mounted on top of the cylindrical body provides the visual input. The
infra-red (IR) sensors are used for obstacle avoidance during exploration of a real-world
office environment. B Diagram showing the hierarchical network comprising five levels of
identical computational units. Units are arranged uniformly within a two-dimensional square
lattice, and their number per level decreases with a constant factor of 0.5 moving up the hier-
archy. Each efferent unit receives input from a topographically aligned square region within
the afferent level and connects laterally to all the units in the same level with which it shares
feed-forward input. The average relative size of a units feed-forward arbor within the affer-
ent level (as given in percentages), and consequently also the lateral degree of connectivity,
increases with the hierarchical level and reaches 100% for the units at the highest level. The
input to the network has a resolution of 16x16 pixels. [86]

plotted over the robot position (obtained by a tracking system) revealed place fields
as observed in the hippocampal place cells. This indicates that as its biological coun-
terpart this layer was representing the position of the robot. The results also showed
that this position representation is invariant on agent orientation. These experiments
show that very few computational principles can drive perceptual learning to emerge
high-level representations from complex stimuli.

The objective function approach shows how perceptual structures can be ac-
quired. However, another problem faced by a real-world perceptual system is speed.
Humans, for example are able to detect an animal in a previously unseen image
within as little as 150 ms [67]. To address this issue we investigated a temporal cod-
ing scheme in the form of the so-called Temporal Population Code (TPC) [85]. TPC
relies on a recurrent connected network to generate temporal codes for the invariant
identification of perceptual inputs [85]. The network consists of a two dimensional
array of conductance-based leaky integrate-and-fire neurons (Fig. 9). Each neuron
is connected to a circular neighborhood with synapses of equal strength, modeled
as instantaneous excitatory connections, whereas transmission delays are related
to the Euclidean distance between the positions of the pre-and postsynaptic neu-
rons. The stimuli are presented continuously to the network first passing through an
edge-detection stage. The resulting contours are projected topographically onto the
array of neurons [87]. The spatially integrated activity of all cells are projected, as
a sum of their action potentials, onto the readout circuit resulting on the so called
Temporal Population Code or TPC. This representation is position- and rotation-
invariant and robust to stimulus variability with an encoding speed consistent to
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Fig. 9 The stimuli are composed by two solid bars of same length intersecting at different
points for each of the individual classes. After passing over an edge-detection stage, the re-
sulting contour is projected topographically onto a map of cortical neurons. Because of the
lateral intra-cortical interactions, the stimulus becomes encoded in the networks activity trace.

physiological data [68]. We tested TPC on handwritten digits of a standard bench-
mark set in the domain of character recognition. The model was capable of classify-
ing 94.8 % of the stimuli correctly, showing the potential of the temporal population
coding in clustering different classes of objects with a realistic degree of variability.

Objective functions and TPC are complementary approaches to perception. Inte-
grated within the DAC architecture, they allow the extraction of high order statistical
features and the invariant identification of features. The generality of these methods
and the independence from the input modality allows a wide range of applications.

4 Discussion

In this chapter we have shown how perceptual and behavioral learning is integrated
in the DAC architecture, a self-contained cognitive system. This integration not only
generates structured and successful behavior in different foraging tasks but does also
allow to investigate the complex nature of the interaction between perceptual and
behavioral learning. In addition we have shown how key parts of DAC have been
mapped to the neuronal substrates underlying the reactive and adaptive layer. The
integration of theses detailed models in the DAC architecture do not only enrich the
behavioral capabilities of DAC but also allow to study the interaction between the
different systems.

DAC is a proposal on the neuronal organization of adaptive goal oriented behavior.
Different cognitive architectures have been proposed (see [71] for a review). DAC is
unique by providing a self-contained learning system that demonstrates how percep-
tion, problem solving and behavioral control can be understood in strictly bottom-
up terms. A reactive control layer which uses only prewired reflexes is equipped
with a minimal behavioral competence to deal with its environment. The adaptive
control layer associates this reactive behavior to distal sensory inputs and forms in-
ternal representations of the environment. At the level of contextual control these
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representations are used to form more complex representations in order to express
relationships of sensory and motor events over time. It has been shown that the con-
textual control structure uses these representations in an optimal Bayesian way to
achieve its goals in simulated and real foraging tasks. The learning model is self-
contained in the sense that the prior and conditional probabilities are acquired through
interaction with the world and are continuously updated in relation to the experience
of the agent, by changes in the classification of sensory events at the adaptive layer
or the formation of new sequences by the contextual layer. A key difference between
DAC and traditional rational systems is that the former becomes rational due to its
continuous interaction with the world while the latter are rational as a result of prior
specification. The symbols DAC is integrating in its optimal decision making are
acquired and not predefined. An important consequence of this is that where the ra-
tionality of traditional systems is bounded by the logical closure of their predefined
world models that of the DAC architecture is bounded by the complexity of the real
world in which it operates and the direct interfaces it possesses.

How to acquire these representations is a key problem in the unification of tradi-
tional and new AI. Note, that the internal representations formed at the level of the
adaptive layer could also serve as a basis for more traditional AI reasoning systems
[1, 36] or for localization and mapping methods in autonomous robots [43, 40].
The adaptive layer combines perceptual and behavioral learning in a single system.
This facilitates the formation of internal representations that do not only capture the
statistical properties of the perceptual input but are also behaviorally relevant. The
learning rule presented in equation 2 only captures linear relationships. To over-
come this limitation we have investigated objective function optimization methods.
We showed that such an approach yields invariant and stable representations of the
environment. Complementary to the firing rate coding of the objective functions we
have proposed a temporal population code (TPC). With the TPC we were able to
identify entities independent on position and rotation. However these two methods
are only driven by the statistics of the inputs. The behavioral relevance is not taken
into account. In the two-phase model of conditioning we investigate how behavioral
learning influences perceptual learning. As a result we find that the two-phase model
of conditioning can be exploited as a behavioral relevance filter enhancing the be-
havioral relevant and suppress irrelevant features. In combination this two methods
allow the adaptive layer to form stable and rich internal representations that can be
manipulated in the contextual layer. In such a system, combining perceptual, cog-
nitive and behavioral learning behavioral feedback is inevitable. The use of robots
allowed us to show how behavioral feedback synergetically structures perception
and behavior. This accentuates the necessity to study artificial intelligent systems in
an embodied and grounded context.
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Proprioception and Imitation: On the
Road to Agent Individuation

M. Lagarde, P. Andry, P. Gaussier, S. Boucenna, and L. Hafemeister

Abstract. In this paper, we will show that different kinds of interactive be-
haviors can emerge according to the kind of proprioceptive function available
in a given sensori-motor system. We will study three different examples. In
the first one, an internal proprioceptive signal is available for the learning of
the visuo-motor coordination between an arm and a camera. An imitation
behavior can emerge when the robot’s eye focuses on the hand of the experi-
menter instead of its own hand. The imitative behavior results from the error
minimization between the visual signal and the proprioceptive signal. In the
second example, we will show that similar modifications of the robot’s initial
dynamics allows to learn some of the space-time properties of more com-
plex behaviors under the form of a sequence of sensori-motor associations.
In the third example, a robot head has to recognize the facial expression of
the human caregiver. Yet, the robot has no visual feedback of its own facial
expression. The human expressive resonance will allow the robot to select the
visual features relevant for a particular facial expression. As a result, after
few minutes of interactions, the robot can imitates the facial expression of
the human partner. We will show that the different proprioceptive signals
used in the examples can be seen as bootstrap mechanisms for more complex
interactions. Applied as a crude model of the human, we will propose that
these mechanisms play an important role in the process of individuation.

1 Introduction

Our motivation is to understand the key processes of cognitive systems. To
do so, we adopt a bottom-up approach : we design perception-action control
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architectures with on-line learning and categorization abilities, and we study
how the combination of low-level mechanisms allows the emergence of higher
level abilities. In other words, we are studying how simple sensori-motor loops
allow situated and embedded robots to adapt to their physical and social
environment.

If in the last few decades studies have shown how simple and elegant
architectures allow the emergence of behaviors adapted to the physical envi-
ronment (Braitenberg’s Vehicles [1], the role of the embodiment in adapted
dynamics [2], the use of multi-agent dynamics in problem solving [3], or the
role of vision in navigation), it seem less clear how emergent behaviors can
serve the adaptation of robots to the social environment, especially in the
frame of one to one Human-Robot Interaction (HRI). With the recent devel-
opment of robotics, an important effort has been made to build robots able
to interact easily with humans. This effort mainly result in (1) researches
trying to enhance the robot’s control architecture in order to detect and
take into account the other (from speech recognition, to the addition of spe-
cial primitives processing face/body detection and framing and/or emotion
recognition [4]) and (2) technics used to enhance the expressiveness and the
aspect of the robot [5, 6]. (1) is dedicated to enhance the robot’s ability to
interact and (2) is dedicated to enhance the human acceptation of the robot,
and both approaches intend to facilitate the exchanges between humans and
robots. Putted together, (1) and (2) are used to frame the interaction, by
giving appropriate but also a priori information explicitly defining for the
robot what another “agent" is (processing speech, seeking for a given model
of face, detecting a given skin tone or a pre-defined emotional pattern), and
how the human can accept the robot as an interactive agent. Nevertheless, as
underlined by decades of studies in developmental psychology, understand-
ing the roots of communication is still a major issue [7, 8, 9], and we still
not know what are the right “properties" that a system must embed in or-
der to detect, exchange, take turn easily as the young infants do, even at a
pre-verbal stage [10, 11, 12]. For our research, the question turns to be : how
can adaptive systems build autonomously the notion of what an “agent" and
what “self" are? Is it possible, starting from minimal mechanisms but without
notion of self or of the other, to obtain systems where these notion can emerge
with a progressive individuation from the social and physical environment?
Of course, it is not here question of consciousness nor any complex notion
of agency, but rather to be able to design a minimalist system allowing to
explain how collaborative functions can emerge from simple non-verbal inter-
actions. On the other hand this issue is also close to the following question:
If we build a system that have no notion of self or of the other, how far can
we go in the learning of complex tasks, or complex interactions?

In this study, our starting point is always a simple perception-action system
initially designed as a homeostatic machine, without embedding pre-defined
“interactive functions". Such systems have a very poor dynamics, which con-
sist to satisfy the homeostatic principle : to maintain an equilibrium between



Proprioception and Imitation: On the Road to Agent Individuation 45

the different modalities (vision, proprioception, etc...). They try to regulate
(using their actions and their learning properties) the sensori-motor informa-
tion. Interestingly, if the human is introduced in the robot’s environment (and
therefore modifies by his/her action the robot’s perceptions) it will simply
induce in some cases, the emergence of new behaviors adapted to interactive
situations.

To explain our approach, we will give three examples, where the architec-
tures are initially not designed to interact with others. They are only designed
to learn new sensory-motor associations when detecting changes in self dy-
namics (imbalances). As an introduction, we will briefly explain the two first
examples : (1) how a low-level imitative behavior can emerge when a human
is acting in front of a simple eye-arm system controlled by an homeostatic
controller, thanks to the perception ambiguity. Imitation is here a side ef-
fect of the human moves, actively modifying the behavioral dynamics of the
robot. Then, (2) how the modifications of the initial dynamics of a robot
can be used to learn sensori-motor associations. Here, the role of the human
imitative behavior allow the learning and recognition of human expressions
by the robot without any a priori or pre-defined model of the other.

From theses two first examples, we wish to underline the fact that just by
modifying the interaction dynamics of the hemostat, we can get for free low
level imitation or expression recognition: what would have been the prereq-
uisite of classical HRI studies appear here to be the emergent result of an
unconstrained interaction with an adaptive system.

In the third part of this chapter (3), we will describe more precisely a third
interactive situation, in order to tackle the issue of task learning with an
autonomous robot. Here, we wish to investigate the role of the richness of the
initial dynamics of the robot to see if sequences of sensori-motor associations
can be anchored and synchronized with self dynamics, and learned as one new
behavior. This study is applied in the frame of a mobile robot, associating
place recognition with movements, and then these place-movement “units"
in a more complex path of moves (see also [13] for a similar issue with top
down analysis). The learning is triggered when the robot detects change in
self dynamics provoked by the human pulling on a leash attached to the
robot.

2 From Visuo-motor Learning to Low Level Imitation

Our model is a perception-action architecture designed to equilibrate 2 kinds
of information : Visual information (V), about the external environment and
Proprioception information (Prop), i.e information about the self movements
that are being done (angle of joints φ1,φ2,...,φn, speed of the joints d

dφ , etc..
of the devices). In order to compute basic behaviors, like tracking, pointing,
reaching objects, the architecture is designed like an homeostatic machine
(Figure 1 a.). It tries to minimize the differences between the inputs V and
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Fig. 1 a. The homeostatic controller trying to equilibrate visual and propriocep-
tive information. The motor command is computed by the neural field and the
readout groups whose activities are illustrated in b. (example in 1 dimension). In
this case Visual and proprioceptive information are different. This unbalance will
trigger the learning of a new association on the visuo-motor map.

Prop, and the imbalances generate the movements of the system in order
to reduce the corresponding error. To do so, V excites a Neural Field (NF)
that compute a dynamical attractor centered on the input stimuli [14]. If
Prop can be expressed in the same referential as the NF, then it is easy to
extract the command to give to the joints of the arm in order to move this
latter (and therefore the value of Prop) toward the maximum of the attractor
(Figure 1 b.). This read-out [15] mechanism is the value of the derivative of
the attractor at the position of Prop. Hence, behaviors of the robot are NF
attractors triggered by V information (representing sensory-motor “target”).
Obviously, the read-out mechanism is only possible if V and Prop can be
computed in the same space. In previous work, we have shown that all infor-
mation can be computed in a simple 2D space (corresponding to the vision
produced by a sole CDD camera). To do so, we used a visuo-motor map of
neurons, that associate multi-dimensional and redundant information about
the joints into a simple 2D “visual” response. The associations are formed
during a learning phase: the system produces initial random arm movements
in order to learn to equilibrate input V and Prop information projected on
the Visuo-motor map. The result is a system that is able to transform mo-
tor information (φ1,φ2,...,φn) into a simpler 2D space corresponding to the
visual one. Then, the movements to reach visual goals are computed in the vi-
sual space thanks to the read-out mechanism . The association of an adaptive
visuo-motor map with two 1D neural fields can be seen as a simple and global
dynamical representation of the working space controlling an arbitrary num-
ber of degrees of freedom according to 2D information coming from the visual
system [16]. Moreover, having a system that is not able to discriminate visual
information about self movements with the movements of others can be, for
example, useful to trigger an imitative behavior [17]. Based on movement
detection, the system can’t differentiate its extremity from another moving
target. As a consequence, moving in front of the robot induces visual changes
(movement detection) that the robot interprets as an unforeseen self move-
ment. The robot acts as an homeostat, it tends to correct by producing the
opposite movements, inducing the follow-up of the demonstrator gesture (nu-
merous psychological works show comparable human behaviors when visual
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Fig. 2 The low-level imitation principle applied to a robotic setup.

perception is ambiguous [18, 19, 20]). Applied to an eye-arm robotic system,
the generated error will induce movements of the robotic arm reproducing
the moving path of the human hand: an imitative behavior emerges . Using
this setup, we showed that our robot can imitate several kind of movements
(square or circle trajectories, up and down movements [21]. Hence, the im-
itative behavior emerges as a side effect of the perception ambiguity (and
limitations).

Thanks to this ambiguity (i.e. confusing its grip and the hand of the other),
we are able to modify the sensori-motor dynamic of the robot.

3 Robot Response to an Expressive Human

This second work is motivated by the question of how a robotic system
(Figure 3, right), able to exhibit a set of emotional expressions can learn
autonomously to a associate theses expressions with those of others. Here,
“autonomously" refers to the ability to learn without the use of any external
supervision. A robot with this property could therefore be able to associate
its expressions with those of others, linking intuitively its behaviors with the
responses of the others. This question is close to the understanding of how ba-
bies learn to recognize the facial expressions of their caregivers without having
any explicit teaching signal allowing to associate for instance an “happy face”
with their own internal emotional state of happiness. Using the cognitive
system algebra [22], we showed that a simple sensori-motor architecture (see
Figure 3, left) using a classical conditioning paradigm could solve the task
if and only if we suppose that the baby produces first facial expressions ac-
cording to his/her internal emotional state and that next the parents imitate
the facial expression of their baby allowing in return the baby to associate
these expressions with his/her internal state [23]. If the adult facial expres-
sions are not synchronized with the baby facial expression, the task cannot
be learned. Moreover, recent psychological experiments [24] have shown that
humans ”reproduce” involuntary a facial expression when observing and try-
ing to recognize it. Interestingly, this facial response has also been observed
in presence of our robotic head. This low level resonance to the facial ex-
pression of the other can be considered as a natural bootstrap for the baby
learning (“empathy" from the parents). Because the agent representing the
baby must not be explicitly supervised, a simple solution is to suppose the
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Fig. 3 The architecture used to associate a collection of feature points extracted
from the visual flow with the emotion expressed by the robot. The R layer is
categorizing the output of the Visual processing system (competition between the
visual feature points). The S layer is the internal stimulus provoking the expression
(happy, sad, surprise, etc...). The expression is executed (rotation of the head’s
motors) according to the activity of F, equivalent to S (one to one links). The E
layer is learning to associate a category of R with an internal expression of S. If
a human come in front of the robot and starts to imitate the expression, (s)he
will close the loop between vision and expression and allow the system to learn to
recognize emotions of others.

agent representing the parent is nothing more than a mirror. We obtain an
architecture allowing the robot to learn the “internal state”-”facial expression”
associations.

We showed that from our departure control architecture, learning is only
possible if the parent agent (supposed to be the teacher) imitates the baby
agent. The roles are switched according to the classical point of view of AI
and learning theory. This advocates that taking account of the interaction
dynamics between two agents can change our way of thinking learning and
more generally cognition problems. To go further, we will show in the next
section that modification of the dynamics of the robot can also be used to
learn sensori-motor associations that can be used, in turn, to build a novel
and more complex behavior. We illustrate it in the context of learning by
correction/demonstration where a mobile robot learns path in concatenating
place-movement associations.

4 Learning a Path as a Sequence of Sensori-Motor
Associations

In the same manner as an eye-arm robot can learn the associations between
vision of its end point and motor information about self arm configuration, we
have developed a controller for mobile robots which is able to associate visual
information (a panorama of the environment) with self orientation (using a
compass representing the direction of the actual movement). This controller
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Fig. 4 Up : the robot produces a facial expression (reflex behavior) and the human
imitates the robot. By doing this, the human is closing the loop of the interaction
and returns to the robot an equivalent of its own facial expression. A categorization
of the visual scene is then possible with an unconstrained vision system that just
learn the properties of the features points of all the scene (no notion of what is a
face or an agent). Bottom : once the salient features of the scene are extracted and
associated with the corresponding internal emotion, the robot is able to respond to
the human with the same emotional expression. The role are reversed and he robot
is now able to recognize and imitate the facial expression of the human. The robot
is able to display 4 facial expressions plus neutral face.

is designed as a sensori-motor loop based on a neurobiological model testing
some of the spatial properties of the hippocampus [25]. Numerous studies
[26, 27] show and discuss the spatial selectivity of rat hippocampal neurons.
These specific neurons are the so-called “place cells", because of their activity
firing for specific parts of the environment [28] . Our model allows the robot
to learn and recognize some regions of the environment (places). It also allows
to associate the response of the place cells with a movement (a direction) and
therefore to obtain a mobile robot able to recognize and reach learned places
(attractor of the sensori-motor space).

Fewer researches highlight the temporal properties of the hippocampal
loop and the fact that populations of cells can also learn the timing of the
transitions between input events [29, 30]. From theses studies we have come
to design control architectures allowing a robot to learn sequences of sensori-
motor transitions [31, 32]. Previous studies have suggested that successive
sensori-motor “units" could be chained and glued one after the other under
the form of a sequence of predictions of the sensori-motor transitions [33]. We
are now interested in the properties that can allow a robot to learn complex
sequences (i.e sequences containing many occurrences of the same “unit") and
how a whole sequence can be learned and synchronized [34].

Indeed, it is important to distinguish how a “behavior" can be learned :
on one side you can choose to anchor the different steps in the environment.
You will obtain a coding linked to the environment, where each step, each
association is dependent of the environment (and the recognition of this en-
vironment). For example our associative robot is able to recognize different
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Fig. 5 Model of 2 sensori-motor loops (i) place-movement associations learning
and (ii) temporal complex sequence learning.

places that can be associated to a particular move (recognizing place 1 can be
associated with the move of going in a particular direction leading the robot
to arrive to place 2, an so on..). In this case no synchronization is required as
the changes of the external environment (due to the robot actions) naturally
elect the new association. On the other side, you can choose to learn this
behavior independently of the external environment, “blindly", for example
by anchoring the proprioceptive changes according to an internal timeline
. Of course, it is interesting to notice that both solution seem to complete
each other, and the goal of this section is to present a model (figure 5) where
both dynamics (temporal and spatial) are learned by the same model in two
sensori-motor loops.

The subsection 1.3.1 will present the “place-movement" mechanism, em-
phasizing how orientation changes can be robustly associated with place
recognition. The subsection 1.3.2 will present the “temporal sequence" mech-
anism, emphasizing how orientation changes can be associated to an internal
dynamics composed of batteries of continuous time recurrent networks. We
will present the result of a simple experiment showing how both mechanism
can replace and complete each other allowing to group the sensori-motor as-
sociations in one, more complex path. To drive the robot , the human teacher
use a leash to correct the robot’s behavior. When the robot senses the leash,
it follows the direction desired by the teacher (direct pathway).

4.1 Place-Movement Associations

A place is defined by a constellation of visual features (couple landmark-
azimuth) extracted from a panorama (figure 8) compressed in a place code.
The place code results of the merging of “what” information provided by the
visual system that extracts local view centered on point of interest (landmark
recognition), and a “where” information provided by a magnetic compass
acting as proprioceptive information (spatial localization in the visual field).
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Fig. 6 Example of setup allowing to a human to learn paths to a mobile robot. The
control architecture is designed to detect and learn changes in the robot self motor
dynamics (strong differences in the proprioceptive flow of the wheels). Thanks to a
leash, the human can pull on a sensing device provoking orientation changes of the
robot (direct pathway). The robotic arms are not used in this study.

Fig. 7 Model of place-movement associations learning. “what” and “where” infor-
mation are extracted from vision and proprioception. They are merged and com-
pressed in place code allowing place recognition. These place codes are associated
to proprioceptive information.

The merging of the “what” and “where” information is performed in a product
space (i.e. a second-order tensor compressed into a vector of product neurons
mk(t) called merging neurons, but see [35] for more classical sigma-pi units)
defining a tensorial place code M(t). The multiplicative merging realizes an
analogical “AND" operation. The recruited merging neurons characterize a
point (or a region) in the landmark-azimuth space. A new merging neuron is
learned as follow :

ΔωLM
ak = Γ1(ll(t)) · RM

k (t) (1)

ΔωAM
lk = Γ1(θa(t)) ·RM

k (t) (2)
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Fig. 8 Example of visual features extraction on half visual panorama. The sys-
tem computes a gradient on each view. 4 visual features are extracted from each
gradient.

with Γ1(x) = 1 if x ≥ 1 otherwise 0 (Heaviside function). ll and θa respec-
tively the lth landmark and the ath azimuth neuron. RM

k is the recruitment
signal of the kth neuron : RM

k = 1 if the neuron k is the new recruited neuron,
otherwise 0.

Once the learning is done, a mk(t) activity is the place code of one
panorama. Each component of the places codes responds proportionally to
the learned couple landmark-azimuth :

Lk(t) =
nL∑

l=1

ωLM
lk (t).ll(t)

Ak(t) =
nΘ∑

a=1

ωAM
ak (t).θa(t)

with ωLM
lk (t) and ωAM

ak (t) respectively the weights of the synapses of the kth

merging neuron coming from the lth landmark and ath azimuth neuron (ωLM
lk

and ωAM
ak are initially null). nL and nΘ are the number of recruited landmarks

and azimuth neurons.
At last, the response of each place-code mk depends on the short term

memory (STM) and of the new inputs from Lk and Ak. The STM property
is used to maintain the mk activity during all the process of the panorama.

mk(t) = max
(

Lk(t) · Ak(t),
[

λM (t).mk(t− dt)− rk(t)
]+
)

(3)

with rk(t) a signal reseting the activity of the neuron k at the beginning of
the visual exploration of a panoramic image. A forgetting term λM (t) applied
on the activity of the kth merging neuron is also used to act as STM.

Once a visual panorama is encoded, a new place cell is learned. A place
cell p follows the one-shot learning rule :

ΔωP
kp = Γ1 (mk(t)) · RP

p (t) (4)
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a. b.

Fig. 9 a. Room with regular markers where the robot learns each place. b. 25
places are regularly learned and tested in the room. A competition between all
place cells leads to paving the environment.

with ωP
kp (initially null and taking binary values 0, 1) the connections between

the kth merging neuron and the recruited neuron p coding the place. The
recruitment algorithm is the same as the one used in eq 1 and 2.

The activity of a place cell results from the computation of the distance
between the learned place code and the current place code (at the end of
each visual exploration). Thus, the activity Pp(t) of the pth place cell can be
expressed as follows:

Pp(t) =
1
Wp

(
nM∑

k=1

ωP
kp(t)mk(t)

)

(5)

where ωP
kp(t) expresses the fact that the couple k (i.e. the kth merging neuron

which activity is mk(t)) has been used to encode the place-cell p. The number
of couples used by the pth place-cell is given by Wp =

∑nM

k=1 ω
P
kp, and with

nM the number of recruited neurons in the what and where tensor.
In order to illustrate the response of the place cells, we have placed a mobile

robot on 25 markers positioned as we can see in figure 9.a. It is important to
understand that the robot does not see the markers. After the learning of the
25 places, we let the robot go straight on each line of markers. The figure 9.b
shows the activity of each place cell at different region of the environment.
A place cell learned in the place A responds maximally in A and creates a
large decreasing place field around A.

Such a system is able to learn several regions of the environment. Con-
sequently, it can be visually located thanks to place cells which react at
particular regions of the environment. When the teacher draws the leash,
it modifies the robot’s dynamics. Leash information can be seen as an in-
put that automatically override the motor command of the wheels (figure
5). The resulting change in the proprioception (orientation change) triggers
the learning of an associations between this new orientation of self and the
winning place cell.
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Fig. 10 Learning of a path by correction of the dynamic of the robot. The robot
has its own initial dynamics (it goes straight) and the teacher corrects it by mod-
ifying the orientation of the robot. For this, the teacher uses either a leash or a
joystick. Each arrow represents a correction applied by the teacher. Hence, the
robot learn the association between the place and the movement. a. The system
learns a round precisely and one time after 1 round of correction by the teacher
(light arrows) and reproduces the trajectory autonomously (dark arrows). b. After
3 rounds of learning (arrows show where the robot has associated the corresponding
movement), the teacher does not have to correct the robot anymore.

From this simple interaction, the robot learns the new movement given by
the teacher and associates it at the place where the robot is. Step by step,
by associating the movements with the different places, the system shapes
progressively a sensori-motor attractor corresponding to the trajectory of
the path (figure 10). Such a system does not learn the path like such, but
only different parts of the path without connections between them: putted all
together, the iterative constraints (pulls of the leash) have shaped the sensori-
motor attractor representing the path, but there is no unified representation
of this path in the neural memory of the architecture. Of course, such a
coding also have the following limitations : the robot can not learn complex
behaviors. For instance, only one movement can be associated to a place.
Moreover, the coding being based on the visual sensations, the system is
dependent of visual quality of the environment: in the dark, the robot can
not recognizes the places and therefore not execute the appropriate movement
in order to continue the sequence.

4.2 The Role of Internal Dynamic for More Complex
Behavior Learning

To allow the robot to learn a path as a sequence of movements (proactive nav-
igation) and not only as a movement anchored in a particular place (reactive
navigation), we test a second sensori-motor loop (Figure 11) based on a neuro-
biological model [30] inspired from the temporal properties of the cerebellum
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and the hippocampus. In the scope of learning a sequence, neural networks
based solutions are interesting. Among the models, chaotic neural networks
are based on recurrent network (RN). In [36], a fully connected RN learns a
sequence thanks to a single layer of neurons. The dynamics generated by the
network helps to learn a short sequence but after a few iterations, the learned
sequence is progressively lost. In [37], a random RN (RRN) learns a sequence
thanks to a combination of two layers of neurons. The first layer generates an
internal dynamic by means of a RRN. The second layer generates a resonance
phenomenon. The network learns short sequences of 7 or 8 states. But this
model is highly sensitive to noises on the stimuli and does not learn long se-
quences. A similar model is the Echo States Network (ESN) based on RRN for
their short term memory property [38] (STM). Under certain conditions (de-
tailed in [39]), the activation of each neuron in the hidden layer is a function
of the input history presented to the network; this is the echo function. Once
again, the idea is to use a “reservoir” of dynamics from which the desired output
is learned in conjunction with the effect of the input activity.

In the context of robotics, many models concern gesture learning (see for
example [40] and [41] in this book for learning by imitation). By means of
nonlinear dynamical systems, [42] develops control policies to approximate
the recorded movements and to learn them with a fitting of mixture model
using a recursive least square regression technique. In [43], the trajectories of
gestures are acquired by the construction of motor skills with a probabilistic
representation of the movement. Trajectories can be learnt through via points
[44] with parallel vector-integration-to-endpoint models [45]. In our work, we
wish to be able to re-use and detect sub-sequences and possibly, combine
them. Thus, we need to learn some of the important components of the
sequence and not only to approximate the trajectory of the robot.

In a first approach [46], we proposed a neural network for learning on-line
the timing between the events of one simple sequences (with non ambiguous
states like “A B C”). Now we propose an extension of this model to the learning
of complex sensori-motor sequences (with ambiguous states like A and B in
“A B A C B”). In order to remove the ambiguous states, we use batteries of
oscillators as a reservoir of diversity allowing to separate the inputs appearing
repeatedly in the sequence. This model uses an associative learning rules
linking the past inputs (STM) with the actual inputs. This internal states
are coded and based on different and un-ambiguous patterns of activities. As
a result, our architecture manages to learn/predict and reproduce complex
temporal sequences.

The dynamics are generated by a set of oscillators based on CTRNN [47]
(figure 12). An oscillator is 2 coupled neurons computed following :

τe.
dx

dt
= −x+ S((wii ∗ x)− (wji ∗ y) + weconst) (6)

τi.
dy

dt
= −y + S((wjj ∗ y) + (wij ∗ x) + wiconst) (7)
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Fig. 11 Model of temporal sequence learning. Inputs are associated at the internal
dynamic generated by 3 CTRNN oscillators to create an internal state. The system
learns transitions of movements in associating the past movements in TS and the
present movement.

a. b.

Fig. 12 The internal dynamics are generated by a set of oscillators based of
CTRNN. a. Model of an oscillator composed of coupled neurons (1 excitatory,
1 inhibitory) fully connected. b. Model of the neural network used to associate an
input state with internal dynamics. Only few links are represented for the legibility.
Dashed links are modifiable connections. Solid links are fixed connections.

with τe a time constant for the excitatory neuron and τi for the inhibitory
neuron. x and y are the activities of the excitatory and the inhibitory neurons
respectively. wii is the weight of the recurrent link of the excitatory neuron,
wjj the weight of the recurrent link of the inhibitory neuron. wij is the weight
of the link from the excitatory neuron to inhibitory neuron. wji is the weight
of the link from the inhibitory neuron to excitatory neuron. weconst and wiconst

are the weights of the links from the constant inputs. And S is the identity
function of each neuron. In our model, we use three oscillators with τe = τi.

In order to use repeatedly the same input in given sequence, each input
is associated with the internal dynamics generated by the oscillators. The
learning process of an association is :

US = wi ∗ xi (8)

with wi the weight of the link from input state i, and xi activity of the input
state i. If US > threshold, we compute the potential and the activity of the
neuron as follow :
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Potj =
Mosci∑

j=0

|(wj − ej)| Actj =
1

1 + Potj
(9)

with Mosci the number of oscillators, wj the weight of the link from oscillator
j, and ej the activity of the oscillator j. The neuron that has the minimum
activity is recruited : Win = Argminj(Actj). Initial weights of connections
have high values. The internal dynamics is learnt according to the error of
distance Δwj = ε(ej − wj) with ε a learning rate, wj weight of link from
oscillator j, and ej activity of oscillator j.

Fig. 13 Activity time spectrum memorizing past inputs.

As said, the model uses an associative learning rules between past inputs
memorized as TS (figure 13) and present inputs in order to learn the timing
of sequences. The TS is computed following :

ActTS
j,l (t) =

1
mj
· exp− (t−mj)

2

2 · σj
(10)

with ActTS
j,l the activity of the cell at index l on the line j, t the time, mj

a time constant and σj the standard deviation. Neurons on one line share
their activities in the time and represent a temporal trace of the internal
states. Learning of an association is on the weights of links between movement
prediction group and the TS. The normalization of the activity coming from
neurons of TS is performed due to the normalization of the weights.

W
TS(j,l)
prediction(i,j) =

⎧

⎨

⎩

ActTS
j,l

∑

j,l(ActTS
j,l )2 if ActTS

j �= 0

unchanged otherwise
cx (11)

Moreover, this model has the property to work when the same input comes
several times consecutively. Thanks to a derivative input group, only the first
occurrence of an input is detected, and two successive occurrences of the same
state are not considered to be ambiguous for the detector (“A A” = “A”).
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Fig. 14 I.a - The operator guides the robot to different places of the room. The
robot learns each visual place and it associates its current movement - an orienta-
tion/linear speed couple (go down at place “A”, go right at place “B”, stop down at
place “C” and go up at place “D”). I.b - The activities of the recognition of learnt
visual places (“A”, “B”, “C” and “D”.)

II.a - The robot is taken back to place “D” in the state stop up by the operator.
Thanks to the place recognition, the robot predicts the associated movement go
up. During the reconstruction of the trajectory, the system learns the temporal se-
quence of its orientations/linear speed couple. II.b - The activities of visual places
recognized.

III.a - The robot is taken back at the beginning of the temporal sequence in
the state stop up by the operator. The operator hides the vision of the robot,
consequently the system can not recognize the visual places. Thanks to temporal
sequence, the robot predicts the next movement and it reproduces the trajectory.
III.b - Activities of the temporal predictions.



Proprioception and Imitation: On the Road to Agent Individuation 59

Recent experiments shows that this architecture can be transposed to
learning by demonstration [34], and also to the learning of complex sequences
of displacements with a navigating robot [48]. In this case, the coupling be-
tween the teacher and the robot can also be performed via the visual envi-
ronment (see also [49] for a similar dynamical coupling) but it is important to
mention that the architecture always learns the changes of its own dynamics,
whatever the media of the perturbation is (pulling a leash, using a joystick,
moving in front of the visual field, etc...). With such a model, we also have
the opportunity to test the complementarity of these two sensori-motor loops
known to be involved in the learning of tasks (place-movement learning vs
temporal learning). In an on going experiment, we are testing the benefits and
limitation of using these two learning at the same time. Figure 14 illustrate
how, one learning procedure (via interaction with the teacher) can be the
support of a first encoding (place-movement) which demonstration supports
in turn an internal re-encoding of the sequence (learning of the timing of the
transitions). The experiment is conducted as follow : (I) The robot learns
different places in interaction with the teacher giving the movement to exe-
cute at each places (figure 14.I). At this moment, the robot does not learn a
path, but several independent movements associated with the different places.
(II) Next, the robot is kidnapped and then navigate autonomously, but re-
actively (figure 14.II): it rapidly converge toward the spatial attractor of the
path built previously. During the reproduction of the path, the system learns
the timing of ruptures of its own movements (orientations and/or linear speed
changes). Hence, the robot learns solely the path as a succession of temporal
movements in addition to the spatial attractor. (III) Finally, we kidnapped
the robot to the same place that previously. At this moment, the robot is
able to navigate autonomously reactively (spatial attractor) and proactively
(temporal prediction). Finally if we switch off the vision of the robot (figure
14.III), it is not able to recognize the places, but still able to reproduce the
path thanks to the proactive navigation and the temporal sequence learned
by itself in (II).

5 Discussion

These examples show the importance of the interaction with a partner for the
robot development and learning. Imitation appears as an important mecha-
nism both for learning and communication. Interestingly, in our developmen-
tal procedure there is no need at first to suppose that the robot is able to
recognize the human partner as a model. At the opposite, the robot develop-
ment is based on the perception ambiguity. The robot considers the human
partner as a part of itself. The interaction and the associated correlations
extend the proprioception of the robot to the human partner. They become
a single dynamical system able to learn things that the robot could not learn
by itself. Hence imitative behaviors would be the result at first of the agent
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inability to perceive something as being different from itself. We can imagine
the capability to predict the feedback signal can be used to verify if there
is some novelty in the sensory feedback related to the current robot action.
Bounded novelty may result from the interaction with a partner hence allow-
ing to recognize him/her as such. Hence we can propose a scheme in which
the individuation comes after a phase of fusion/merging with the environ-
ment. The proprioceptive signal is necessary to close the loop and to build a
global system composed of the agent and his/her caregivers allowing simple
learning mechanisms to be sufficient for the learning of more and more com-
plex behaviors (autopoietic loop). First correlations detections allow to build
new predictive signals allowing then to differentiate the agent “inner part"
from the outside and latter the other agents. We have shown for instance
that the capability to discriminate faces from non faces could be the result
of the emotional interaction and not one of its prerequisites as usually sup-
posed in classical image processing works. In the same vein, joint attention
to a given object could be the result of the emotional association between
the facial expression of the experimenter and an object (social referencing)
and not the opposite as it is classically supposed. Social interactions can be
seen in the first periods of the development as a way to increase the potential
of the proprioceptive function allowing to maintain more complex and stable
dynamics that can be used for the learning of more complex tasks. Hence,
in an epigenetic approach, the sensori-motor control appears as an essential
element to avoid the symbol grounding problem and to build autonomous
robots able to develop more and more cognitive capabilities thanks to the
social interactions.
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Adaptive Optimal Feedback Control with
Learned Internal Dynamics Models

Djordje Mitrovic, Stefan Klanke, and Sethu Vijayakumar

Abstract. Optimal Feedback Control (OFC) has been proposed as an attractive
movement generation strategy in goal reaching tasks for anthropomorphic manip-
ulator systems. Recent developments, such as the Iterative Linear Quadratic Gaus-
sian (ILQG) algorithm, have focused on the case of non-linear, but still analytically
available, dynamics. For realistic control systems, however, the dynamics may of-
ten be unknown, difficult to estimate, or subject to frequent systematic changes. In
this chapter, we combine the ILQG framework with learning the forward dynam-
ics for simulated arms, which exhibit large redundancies, both, in kinematics and
in the actuation. We demonstrate how our approach can compensate for complex
dynamic perturbations in an online fashion. The specific adaptive framework intro-
duced lends itself to a computationally more efficient implementation of the ILQG
optimisation without sacrificing control accuracy – allowing the method to scale to
large DoF systems.

1 Introduction

The human motion apparatus is by nature a highly redundant system and modern
humanoid robots, designed to mimic human behaviour and performance, typically
exhibit large degrees of freedom (DoF) in the kinematics domain (joints) and in the
dynamics domain (actuation). Many recent humanoid system designs are extending
the classic joint torque operated designs (i.e., one motor per joint) by redundantly
actuated systems based on antagonistic or pseudo-antagonistic architectures (e.g.,
[11, 32]). Therefore producing even the simplest movement, such as reaching to-
wards a particular position, involves an enormous amount of information processing
and a controller has to make a choice from a very large space of possible movements
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to achieve a task. An important question to answer therefore is how to resolve this
redundancy?

Optimal control theory [23] answers this question by establishing a certain cost
function, and selecting the solution with minimal cost (e.g., minimum jerk [10],
minimum torque change [29]). Quite often these control schemes are only concerned
with trajectory planning and an open loop optimisation of the control commands,
while the correction of errors during execution is left to simple PID controllers. As
an alternative, closed loop optimisation models are aimed at providing a control law
which is explicitly based on feedback from the system. In the ideal case, the system
state is directly mapped to control signals during execution, and the form of this
mapping is again governed by a cost function [25].

Another characteristic property of anthropomorphic systems, besides the high re-
dundancies, is a lightweight and flexible-joint construction which is a key ingredient
for achieving compliant human-like motion. However such a morphology compli-
cates analytic dynamics calculations, which usually are based on unrealistic rigid
body assumptions. Moreover, even if the different links of a manipulator could be
modelled as a rigid body, the required parameters such as mass and inertia may be
unknown or hard to estimate. Finally, unforeseen changes in the plant dynamics are
hard to model based purely on analytic dynamics. In order to overcome these short-
comings we can employ online supervised learning methods to extract dynamics
models driven by data from the movement system itself. This enables the controller
to adapt on the fly to changes in dynamics conditions due to wear and tear or external
perturbations. Applying such methods has previously been studied in robot control
[8, 6, 18, 31] but has not found much attention in the perspective of the optimal
control framework. Indeed the ability to adapt to perturbations is a key feature of
biological motion systems and enabling optimal control to be adaptive is a valuable
theoretical test-bed for human adaptation experiments.

By combining optimal control with dynamics learning we can create a powerful
framework for the realisation of efficient control for high dimensional systems. This
will provide a viable and principled control strategy for the biomorphic based highly
redundant actuation systems that are currently being developed. Furthermore, we
would like to exploit this framework for understanding optimal control and its link
to biological motor control.

2 Optimal Feedback Control

In the past, although many control problems have been described within the frame-
work of optimality, most optimal motor control models have focused on open loop
(feed-forward) optimisation [10, 29]. Assuming deterministic dynamics (i.e., no
perturbations or noise), open-loop control will produce a sequence of optimal mo-
tor signals or limb states. However if the system leaves the optimal path due to
inevitable modelling imperfections, it must be corrected for example with a hand-
tuned PID controller. This will often lead to suboptimal behaviour, because the error
feedback has not been incorporated into the optimisation process.
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Stable optimal performance can only be achieved by constructing an optimal feed-
back law that produces a mapping from states to actions by making use of all avail-
able sensory data. In such a scheme, which is referred to as optimal feedback control
(OFC) [26], there is no separation anymore between trajectory planning and trajec-
tory execution for the completion of a given task. Rather, one directly seeks to obtain
the gains of a feedback controller which produce an optimal mapping from state to
control signals (control law). A key property of OFC is that errors are only corrected
by the controller if they adversely affect the task performance, otherwise they are
neglected (minimum intervention principle [27]). This is an important property es-
pecially in systems that suffer from control dependent noise, since task-irrelevant
correction could destabilise the system beside expending additional control effort.

In this work, we focus on the investigation of OFC in limb reaching movements
for highly nonlinear and redundant systems. Let x(t) denote the state of a plant and
u(t) the applied control signal at time t. The state consists of the joint angles q and
velocities q̇ of a robot, and the actuator control signals u. If the system would be
deterministic, we could express its dynamics as ẋ = f(x,u), whereas in the presence
of noise we write the dynamics as a stochastic differential equation

dx = f(x,u)dt + F(x,u)dωωω. (1)

Here, dωωω is assumed to be Brownian motion noise, which is transformed by a pos-
sibly state- and control-dependent matrix F(x,u). We formally specify the problem
of carrying out a (reaching) movement as follows: Given an initial state x0 at time
t = 0, we seek a control sequence u(t) such that the system’s state is x∗ at time
t = T . Stochastic optimal control theory approaches the problem by first specifying
a cost function which is composed of (i) some evaluation h(x(T )) of the final state,
usually penalising deviations from the desired state x∗, and (ii) the accumulated cost
c(t,x,u) of sending a control signal u at time t in state x, typically penalising large
motor commands. Introducing a policy πππ(t,x) for selecting u(t), we can write the
expected cost of following that policy from time t as [28]

vπππ(t,x(t)) =
〈

h(x(T ))+
∫ T

t
c(s,x(s),πππ(s,x(s)))ds

〉

. (2)

In OFC one then aims to find the policy πππ that minimises the total expected cost
vπππ(0,x0). Thus, in contrast to classical control, calculation of the trajectory (plan-
ning) and the control signal (execution) is handled in one go. Notably, optimal
control provides a principled approach to resolve redundancy: Whereas redundant
degrees of freedom are often a nuisance for kinematic path planning, in OFC redun-
dancy can actually be exploited in order to decrease the cost.

If the dynamics f is linear in x and u, the cost is quadratic, and the noise is Gaus-
sian, the resulting so-called LQG or LQR1 problem is convex and can be solved

1 LQR stands for linear quadratic regulator and describes the optimal controller for linear
systems and quadratic costs. LQG also includes an optimal state estimator (under the as-
sumption of Gaussian noise), but because for linear systems estimation and control are
independent of each other, LQR and LQG essentially compute the same control law.
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analytically [23]. Finding an optimal control policy for nonlinear systems, in con-
trast, is a much harder challenge. Global solutions could be found in theory by
applying dynamic programming methods [5] that are based on the Hamilton-Jacobi-
Bellman equations. However, in their basic form these methods rely on a discreti-
sation of the state and action space, an approach that is not viable for large DoF
systems. Some research has been carried out on random sampling in a continuous
state and action space [24], and it has been suggested that sampling can avoid the
curse of dimensionality if the underlying problem is simple enough [2], as is the
case if the dynamics and cost functions are very smooth.

A promising alternative to global OFC methods are approaches that compromise
between open loop and closed loop optimisation and iteratively compute an opti-
mal trajectory together with a locally valid feedback law. These trajectory-based
methods are not directly subject to the curse of dimensionality but still yield lo-
cally optimal controllers. Differential dynamic programming (DDP) [9, 12] is a
well-known successive approximation technique for solving nonlinear dynamic op-
timisation problems. This method uses second order approximations of the system
dynamics and cost function to perform dynamic programming in the neighbourhood
of a nominal trajectory. A more recent algorithm is the Iterative Linear Quadratic
Regulator (ILQR) [16]. This algorithm uses iterative linearisation of the nonlinear
dynamics around the nominal trajectory, and solves a locally valid LQR problem
to iteratively improve the trajectory. However, ILQR is still deterministic and can-
not deal with control constraints. A recent extension to ILQR, the Iterative Linear
Quadratic Gaussian (ILQG) framework [28], allows to model nondeterministic dy-
namics by incorporating a Gaussian noise model. Furthermore it supports control
constraints like non-negative muscle activations or upper control boundaries and
therefore is well suited for the investigation of biologically inspired systems. The
ILQG framework has been shown to be computationally significantly more effi-
cient than DDP [16] and also has been previously tested on biologically inspired
movement systems and therefore is the favourite approach for us to investigate
further.

The ILQG algorithm starts with a time-discretised initial guess of an optimal
control sequence and then iteratively improves it w.r.t. the performance criteria in v
(eq. 2). From the initial control sequence ūi at the i-iteration, the corresponding state
sequence x̄i is retrieved using the deterministic forward dynamics f with a standard
Euler integration x̄i

k+1 = x̄i
k + Δt f(x̄i

k, ū
i
k). In a next step the discretised dynamics

(eq. 1) are linearly approximated around x̄i
k and ūi

k.:

δxk+1 =
(

I+Δt
∂f
∂x

∣
∣
∣
x̄k

)

δxk + Δt
∂f
∂u

∣
∣
∣
ūk

δuk +
√

Δt

(

F(uk)+
∂F
∂u

∣
∣
∣
ūk

δuk

)

ξξξk. (3)

Similarly to the linearised dynamics in (3) one can derive an approximate cost func-
tion which is quadratic in δu and δx (for details please see [28]). Both approxima-
tions are formulated as deviations of the current optimal trajectory δxi

k = xi
k− x̄i

k
and δui

k = ui
k− ūi

k and therefore form a local LQG problem. This linear quadratic
problem can be solved efficiently via a modified Ricatti-like set of equations. The
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optimisation supports constraints for the control variable u, such as lower and up-
per bounds. After the optimal control signal correction δūi has been obtained, it
can be used to improve the current optimal control sequence for the next iteration
using ūi+1

k = ūi
k + δūi. At last ūi+1

k is applied to the system dynamics (eq. 1) and
the new total cost along the trajectory is computed. The algorithm stops once the
cost v cannot be significantly decreased anymore. After convergence, ILQG returns
an optimal control sequence ū and a corresponding optimal state sequence x̄ (i.e.,
trajectory). Along with the optimal open loop parameters x̄ and ū, ILQG produces a
feedback matrix L which may serve as optimal feedback gains for correcting local
deviations from the optimal trajectory on the plant.

Since the focus of this work is on utilising dynamics learning within ILQG, and
its implications to adaptivity, we do not utilise an explicit noise model F for the
sake of clarity of results. In fact it has been shown that a matching feedback control
law is only marginally superior to one that is optimised for a deterministic system
[28]. We also do not include any model for estimating the state, that is, we assume
that noise-free measurements of the system are available (full observability). How-
ever an ILQG implementation for systems with partial observability has been been
developed recently [17].

3 Adaptive Optimal Feedback Control

As mentioned earlier a major shortcoming of ILQG (and other OFC methods) is
the dependence on an analytic form of the system dynamics, which often may be
unknown or subject to change. We overcome this limitation by learning an adaptive
internal model of the system dynamics using an online, supervised learning method.
We consequently use the learned model to derive an ILQG formulation that is com-
putationally efficient, reacts optimally to transient perturbations, and most notably
adapts to systematic changes in plant dynamics. We name this algorithm ILQG with
learned dynamics (ILQG–LD).

The idea of learning the system dynamics in combination with iterative optimi-
sations of trajectory or policy has been explored previously in the literature, e.g., for
learning to swing up a pendulum [4] using some prior knowledge about the form
of the dynamics. Similarly, Abeel et al. [1] proposed a hybrid reinforcement learn-
ing algorithm, where a policy and an internal model get subsequently updated from
“real life” trials. In contrast to their method, however, we employ a second-order
optimisation method, and we refine the control law solely from the internal model.
To our knowledge, learning dynamics in conjunction with control optimisation has
not been studied in the light of adaptability to changing plant dynamics.

From a biological point of view, enabling OFC to be adaptive would allow us
to investigate the role of optimal control in human adaptation scenarios. Indeed,
adaptation in humans, for example towards external perturbations, is a key property
of human motion and is a very active area of research since nearly two decades
[21, 22].
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3.1 ILQG with Learned Dynamics (ILQG–LD)

In order to eliminate the need for an analytic dynamics model and to make ILQG
adaptive, we wish to learn an approximation f̃ of the real plant forward dynam-
ics ẋ = f(x,u). Assuming our model f̃ has been coarsely pre-trained, for exam-
ple by motor babbling, we can refine that model in an online fashion as shown in
Fig. 1. For optimising and carrying out a movement, we have to define a cost func-
tion (where also the desired final state is encoded), the start state, and the number of
discrete time steps because the ILQG algorithm in its current form requires a speci-
fied final time. Given an initial torque sequence ū0

k , the ILQG iterations can be car-
ried out as described in the Section 2, but utilising the learned model f̃. This yields a
locally optimal control sequence ūk, a corresponding desired state sequence x̄k, and
feedback correction gain matrices Lk. Denoting the plant’s true state by x, at each
time step k, the feedback controller calculates the required correction to the control
signal as δuk = Lk(xk − x̄k). We then use the final control signal uk = ūk + δuk,
the plant’s state xk and its change dxk to update our internal forward model f̃. As
we show in Section 4, we can thus account for (systematic) perturbations and also
bootstrap a dynamics model from scratch.

ILQG u plantlearned
dynamics model +

feedback
controller

x, dx

L, x

u

u

perturbationsxcost function
(incl. target)

δ

-

- u +- uδ

Fig. 1. Illustration of our ILQG–LD learning and control scheme.

3.2 Learning the Dynamics

Various machine learning algorithms could be applied to the robot control learning
problem just mentioned. Global learning methods like sigmoid neural networks of-
ten suffer from the problem of negative interference, i.e., interference between learn-
ing in different parts of the input space when input data distributions are not uniform
[20]. Local learning methods, in contrast, represent a function by using small sim-
plistic patches - e.g. first order polynomials. The range of these local patches is
determined by weighting kernels, and the number and parameters of the local ker-
nels are adapted during learning to represent the non-linear function. Because any
given training sample activates only a few patches, local learning algorithms are ro-
bust against global negative interference. This ensures the flexibility of the learned
model towards changes in the dynamics properties of the arm (e.g. load, material
wear, and different motion). Furthermore the domain of real-time robot control de-
mands certain properties of a learning algorithm, namely fast learning rates and
high computational efficiency for predictions and updates if the model is trained
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incrementally. Locally Weighted Projection Regression (LWPR) has been shown to
exhibit these properties, and to be very efficient for incremental learning of non-
linear models in high dimensions [30].

During LWPR training, the parameters of the local models (locality and fit) are
updated using incremental Partial Least Squares, and local models can be pruned
or added on an as-need basis, for example, when training data is generated in pre-
viously unexplored regions. Usually the areas of validity (also termed its receptive
field) of each local model are modelled by Gaussian kernels, so their activation or
response to a query vector z = (xT ,uT )T (combining the state and control inputs of
the forward dynamics f) is given by

wk(z) = exp

(

−1
2
(z− ck)T Dk(z− ck)

)

, (4)

where ck is the centre of the kth linear model and Dk is its distance metric. Treat-
ing each output dimension2 separately for notational convenience, and ignoring the
details about the underlying PLS computations [14], the regression function can be
written as

f̃ (z) =
1

W

K

∑
k=1

wk(z)ψk(z), W =
K

∑
k=1

wk(z), (5)

ψk(z) = b0
k + bT

k (z− ck), (6)

where b0
k and bk denote the offset and slope of the k-th model, respectively.

LWPR learning has the desirable property that it can be carried out online, and
moreover, the learned model can be adapted to changes in the dynamics in real-time.
A forgetting factor λ [30], which balances the trade-off between preserving what
has been learned and quickly adapting to the non-stationarity, can be tuned to the
expected rate of external changes. In order to provide some insight, LWPR internally
uses update rules within each receptive field of the form Enew = λ ·Eold +w ·ecur. In
this example, E is the sufficient statistics for the squared prediction error, and ecur

is the error from the current training sample alone, but the same principle applies
for other quantities such as the correlation between input and output data. In this
way, after N updates to a receptive field, the original value of the sufficient statistics
has been down-weighted (or forgotten) by a factor of λN . As we will see later, the
factor λ can be used to model biologically realistic adaptive behaviour to external
force-fields.

3.3 Reducing the Computational Cost

So far, we have shown how the problem of unknown or changing system dynam-
ics can be addressed within ILQG–LD. Another important issue to discuss is the

2 In the case of learning forward dynamics, the target values are the joint accelerations. We
effectively learn a separate model for each joint.
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computational complexity. The ILQG framework has been shown to be the most
effective locally optimal control method in terms of convergence speed and accu-
racy [15]. Nevertheless the computational cost of ILQG remains daunting even for
simple movement systems, preventing their application to real-time optimal motion
planning for large DoF systems. A large part of the computational cost arises from
the linearisation of the system dynamics, which involves repetitive calculation of the
system dynamics’ derivatives ∂f/∂x and ∂f/∂u. When the analytical form of these
derivatives is not available, they must be approximated using finite differences. The
computational cost of such an approximation scales linearly with the sum of the di-
mensionalities of x = (q; q̇) and u = τττ (i.e., 3N for an N DoF joint torque controlled
robot). In simulations, our analysis show that for the 2 DoF manipulator, 60% of the
total ILQG computations can be attributed to finite differences calculations. For a 6
DoF arm, this rises to 80%.

Within our ILQG–LD scheme, we can avoid finite difference calculations and
rather use the analytic derivatives of the learned model, as has similarly been pro-
posed in [3]. Differentiating the LWPR predictions (5) with respect to z = (x;u)
yields terms

∂ f̃ (z)
∂z

=
1

W ∑
k

(
∂wk

∂z
ψk(z)+ wk

∂ψk

∂z

)

− 1
W 2 ∑

k

wk(z)ψk(z)∑
l

∂wl

∂z
(7)

=
1

W ∑
k

(−ψkwkDk(z− ck)+ wkbk)+
f̃ (z)
W ∑

k

wkDk(z− ck) (8)

for the different rows of the Jacobian matrix

(
∂f̃/∂x
∂f̃/∂u

)

= ∂
∂z ( f̃1, f̃2, . . . f̃N)T .

Table 1 illustrates the computational gain (mean CPU time per ILQG iteration)
across 3 test manipulators – highlighting added benefits for more complex systems.
On a notebook running at 1.6 GHz, the average CPU times for a complete ILQG
trajectory using the analytic method are 0.8 sec (2 DoF), 1.9 sec (6 DoF), and 9.8
sec (12 DoF), respectively. Note that LWPR is a highly parallelisable algorithm:
Since the local models learn independently of each other, the respective computa-
tions can be distributed across multiple processors or processor cores, which can
yield a further significant performance gain [14].

Table 1. CPU time for one ILQG–LD iteration (sec).

finite differences analytic Jacobian improvement factor

2 DoF 0.438 0.193 2.269
6 DoF 4.511 0.469 9.618
12 DoF 29.726 1.569 18.946
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4 Evaluation

In this section we evaluate ILQG–LD in several setups with increasing complexity.
We start with joint torque controlled manipulators setups first, which will be anal-
ysed under stationary and non-stationary conditions. We then present ILQG–LD
results from an antagonistic humanoid arm model which embodies the challenge of
large redundancies in the dynamics domain.

All simulations are performed with the Matlab Robotics Toolbox [7]. This sim-
ulation model computes the non-linear plant dynamics using standard equations of
motion. For an N-DoF manipulator the joint torques τττ are given by

τττ = M(q)q̈ + C(q, q̇)q̇+ b(q̇)+ g(q), (9)

where q and q̇ are the joint angles and joint velocities respectively; M(q) is the N-
dimensional symmetric joint space inertia matrix, C(q, q̇) accounts for Coriolis and
centripetal effects, b(q̇) describes the viscous and Coulomb friction in the joints, and
g(q) defines the gravity loading depending on the joint angles q of the manipulator.

We study movements for a fixed motion duration of one second, which we dis-
cretise into K = 100 steps (Δt = 0.01s). The manipulator starts at an initial position
q0 and reaches towards a target qtar. During movement we wish to minimise the
energy consumption of the system. We therefore use the cost function

v = wp |qK−qtar |2 + wv | q̇K |2 + we

K

∑
k=0

|uk |2Δt, (10)

where the factors for the target position accuracy (wp), for the zero end-point veloc-
ity (wv), and for the energy term (we) weight the importance of each component. We
compare the control results of ILQG–LD and ILQG with respect to the number of
iterations, the end point accuracy and the generated costs. In this paper we will refer
to cost as total cost defined in (10) and to running cost to the energy consumption
only, i.e., the summation term in (10).

−40
−20

0
20

0

20

40

60

0   

X (cm)
Y (cm)

Z
 (

cm
)

-100
-50

0
50

-50
0

50
100

0

50

X (cm)Y (cm)

Z
 (

cm
)

Fig. 2. Two different joint-torque controlled manipulator models with selected targets (cir-
cles) and ILQG generated trajectories as benchmark data. All models are simulated using
the Matlab Robotics Toolbox. Left: 2 DoF planar manipulator model; Middle: picture of the
Kuka Light-Weight Robot arm (LWR); Right: Simulated 6 DoF LWR model (without hand).
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4.1 Planar Arm with 2 Torque-Controlled Joints

The first setup (Fig. 2 left) is a horizontally planar 2 DoF manipulator similar to the
one used in [28]. The arm is controlled by directly commanding joint torques. This
low DoF system is ideal for performing extensive (quantitative) comparison studies
and to test the manipulator under controlled perturbations and force fields during
planar motion.

4.1.1 Stationary Dynamics

First, we compared the characteristics of ILQG–LD and ILQG (both operated in
open loop mode) in the case of stationary dynamics without any noise in the 2
DoF plant. Fig. 3 shows three trajectories generated by learned models of different
predictive quality, which is reflected by the different normalised means square errors
(nMSE) on test data. The nMSE is defined as nmse(y, ỹ) = 1

nσ2
y

∑n
i=1 (yi− ỹi)2 where

y is the desired output data set of size n and ỹ represents the LWPR predictions.
The nMSE takes into account the output distribution of the data (variance σ2

y in the
data) and therefore produces a “dimensionless” error measure. As one would expect,
the quality of the model plays an important role for the final cost, the number of
ILQG–LD iterations, and the final target distances (cf. the table within Fig. 3). For
the final learned model, we observe a striking resemblance with the analytic ILQG
performance.

Next, we carried out a reaching task to 5 reference targets covering a wide oper-
ating area of the planar arm. To simulate control dependent noise, we contaminated
the commands u just before feeding them into the plant, using Gaussian noise with
50% of the variance of the signal u. We then generated motor commands to move
the system towards the targets, both with and without the feedback controller. As
expected, closed loop control (utilising gain matrices Lk) is superior to open loop
operation regarding reaching accuracy. Fig. 4 depicts the performance of ILQG–LD
and ILQG under both control schemes. Averaged over all trials, both methods show
similar endpoint variances and behaviour which is statistically indistinguishable.

ILQG–LD (L) (M) (H) ILQG
No. of training points 111 146 276 –
Prediction error (nMSE) 0.80 0.50 0.001 –
Iterations 19 17 5 4
Cost 2777.36 1810.20 191.91 192.07
Eucl. target distance (cm) 19.50 7.20 0.40 0.01

0 10 20 30 40 cm
-20

-10

0

cm

(L)

(M)
(H)

Fig. 3. Behaviour of ILQG–LD for learned models of different quality: (L)-Low, (M)-
Medium, (H)-High. Right: Trajectories in task space produced by ILQG–LD (black lines)
and ILQG (grey line).
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Fig. 4. Illustration of the target reaching performances for the planar 2 DoF in the presence
of strong control dependent noise, where d represents the average Euclidean distance to the
five reference targets.

4.1.2 Non-stationary Dynamics

A major advantage of ILQG–LD is that it does not rely on an accurate analytic
dynamics model; consequently, it can adapt on the fly to external perturbations and
to changes in the plant dynamics that may result from altered morphology or wear
and tear. We carried out adaptive reaching experiments in our simulation similar
to the human manipulandum experiments in [21]. First, we generated a constant
unidirectional force field (FF) acting perpendicular to the reaching movement (see
Fig. 5). Using the ILQG–LD models from the previous experiments, the manipulator
gets strongly deflected when reaching for the target because the learned dynamics
model cannot account for the spurious forces. However, using the resultant deflected
trajectory (100 data points) as training data, updating the dynamics model online
brings the manipulator nearer to the target with each new trial. We repeated this
procedure until the ILQG–LD performance converged successfully. At that point,
the internal model successfully accounts for the change in dynamics caused by the
FF. Then, removing the FF results in the manipulator overshooting to the other side,
compensating for a non-existing FF. Just as before, we re-adapted the dynamics
online over repeated trials.

Fig. 5 summarises the results of the sequential adaptation process just described.
The closed loop control scheme clearly converges faster than the open loop scheme,
which is mainly due to the OFC’s desirable property of always correcting the system
towards the target. Therefore, it produces more relevant dynamics training data.
Furthermore, we can accelerate the adaptation process significantly by tuning the
forgetting factor λ, allowing the learner to weight the importance of new data more
strongly [30]. A value of λ = 0.95 produces significantly faster adaptation results
than the default of λ = 0.999. As a follow-up experiment, we made the force field
dependent on the velocity v of the end-effector, i.e. we applied a force

F = Bv, with B =
(

0 50
−50 0

)

Nm−1s (11)
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Fig. 5. Illustration of adaptation experiments for open loop (rows 1,2) and closed loop (rows
3,4) ILQG–LD. Arrows depict the presence of a (constant) force field; n represents the num-
ber of training points required to successfully update the internal LWPR dynamics model.
Darker lines indicate better trained models, corresponding to later trials in the adaption
process.
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Fig. 6. Adaptation to a velocity-dependent force field (as indicated by the bent arrow) and
re-adaptation after the force field is switched off (right column). Top: open loop. Bottom:
closed loop.
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to the end-effector. The results are illustrated in Fig. 6: For the more complex FF,
more iterations are needed in order to adapt the model, but otherwise ILQG–LD
shows a similar behaviour as for the constant FF. Interestingly, the overshoot be-
haviour depicted in Fig. 5 and 6 has been observed similarly in human adaptation
experiments where it was referred to as “after effects” [21]. We believe this to be
an interesting insight for future investigation of ILQG–LD and its role in model-
ing sensorimotor adaptation data in the (now extensive) human reach experimental
paradigm [22].

4.2 Anthropomorphic 6 DoF Robot Arm

Our next experimental setup is a 6 DoF manipulator (Fig. 2, right), the physical
parameters (i.e., link inertia, mass, etc.) of which are a faithful model of the first 6
links of the Kuka Light-Weight Robot (LWR).

Using this arm, we studied reaching targets specified in Cartesian coordinates
r ∈ IR3 in order to highlight the redundancy resolution capability and trial-to-trial
variability in large DoF systems. We set up the cost function (cf. eq. 10) as

v = wp |r(qK)− rtar |2 + wv | q̇K |2 + we

K

∑
k=0

|uk |2Δt, (12)

where r(q) denotes the end-effector position as calculated from forward kinemat-
ics. It should be noted that for the specific kinematic structure of this arm, this 3D
position depends only on the first 4 joint angles. Joints 5 and 6 only change the ori-
entation of the end-effector3, which does not play a role in our reaching task and
correspondingly in the cost function. In summary, our arm has one redundant and
further two irrelevant degrees of freedom for this task.

Table 2. Comparison of the performance of ILQG–LD and ILQG for controlling a 6 DoF
robot arm. We report the number of iterations required to compute the control law, the average
running cost, and the average Euclidean distance d to the three reference targets.

ILQG ILQG–LD
Targets Iter. Run. cost d (cm) Iter. Run. cost d (cm)

(a) 51 18.50± 0.13 2.63± 1.63 51 18.32± 0.55 1.92± 1.03
(b) 61 18.77± 0.25 1.32± 0.69 99 18.65± 1.61 0.53± 0.20
(c) 132 12.92± 0.04 1.75± 1.30 153 12.18± 0.03 2.00± 1.02

Similar to the 2 DoF experiments, we bootstrapped a forward dynamics model
through extensive data collection (i.e., motor babbling). Next, we used ILQG–LD
(closed loop, with noise) to train our dynamics model online until it converged to
stable reaching behaviour. Fig. 7 depicts reaching trials, 20 for each reference target,

3 The same holds true for the 7th joint of the original LWR arm.
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Fig. 7. Illustration of the trial-to-trial variability of the 6-DoF arm when reaching towards
target (a,b,c). Left: top-view, right: side-view.

using ILQG–LD with the final learned model. Table 2 quantifies the performance.
The targets are reached reliably and no statistically significant differences can be
spotted between ILQG–LD and ILQG. An investigation of the trials in joint angle
space also shows similarities. Fig. 8 depicts the 6 joint angle trajectories for the 20
reaching trials towards target (c). Please note the high variance of the joint angles
especially for the irrelevant joints 5 and 6, which nicely show that task irrelevant
errors are not corrected unless they adversely affect the task (minimum interven-
tion principle of OFC). Moreover, the joint angle variances (trial-to-trial variability)
between the ILQG–LD and ILQG trials are in a similar range, indicating an equiv-
alent corrective behaviour – the shift of the absolute variances can be explained by
the slight mismatch between the learned and analytical dynamics. We can conclude
from our results that ILQG–LD scales up very well to 6 DoF, not suffering from
any losses in terms of accuracy, cost or convergence behaviour. Furthermore, its
computational cost is significantly lower than the one of ILQG.

(1)

(2) (3)

iLQG
iLQG-LD

(4) (5) (6)

Fig. 8. Illustration of the trial-to-trial variability in the joint angles (1–6) over time when
reaching towards target (c). Grey lines indicate ILQG, black lines stem from ILQG–LD.

4.3 Antagonistic Planar Arm

In order to analyse ILQG–LD in a dynamically redundant scenario, we studied
a two DoF planar human arm model, which is actuated by four single-joint and
two double-joint antagonistic muscles (Fig. 9 left). The arm model described in
this section is based on [13]. Although kinematically simple, the system is over-
actuated and therefore an interesting testbed for our control scheme, because large
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Fig. 9. Left: Human arm model with 6 muscles (adapted from [13]). Right: Same arm
model with selected targets (circles) and ILQG generated trajectories as benchmark data.
The physics of the model is simulated using the Matlab Robotics Toolbox [7].

redundancies in the dynamics have to be resolved. The dimensionality of the control
signals makes adaptation processes (e.g., to external force fields) quite demanding.
Indeed this arm poses a harder learning problem than the 6-DoF manipulator of
the previous section, because the muscle-based actuation makes the dynamics less
linear.

As before the dynamics of the arm is in part based on standard equations of
motion, given by

τττ = M(q)q̈ + C(q, q̇)q̇. (13)

Given the antagonistic muscle-based actuation, we cannot command joint torques
directly, but rather we have to calculate effective torques from the muscle activations
u. For the present model the corresponding transfer function is given by

τττ(q, q̇,u) =−A(q)TT(l, l̇,u), (14)

where A represents the moment arm. For simplicity, we assume A to be constant
and independent of the joint angles q:

A(q) = A =
(

a1 a2 0 0 a5 a6

0 0 a3 a4 a7 a8

)T

. (15)

The muscle lengths l depend on the joint angles q through the affine relationship
l = lm−Aq, which also implies l̇ = −Aq̇. The term T(l, l̇,u) in (14) denotes the
muscle tension, for which we follow the Kelvin-Voight model [19] and define:

T(l, l̇,u) = K(u)
(

lr(u)− l
)−B(u)l̇. (16)

Here, K(u), B(u), and lr(u) denote the muscle stiffness, the muscle viscosity and
the muscle rest length, respectively. Each of these terms depends linearly on the
motor commands u, as given by

K(u) = diag(k0 + ku), B(u) = diag(b0 + bu), lr(u) = l0 + ru. (17)
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The elasticity coefficient k, the viscosity coefficient b, and the constant r are given
from the muscle model. The same holds true for k0, b0, and l0, which are the in-
trinsic elasticity, viscosity and rest length for u = 0, respectively. For the exact val-
ues of these coefficients please refer to [13]. ILQG has been applied previously
to similar antagonistic arm models, that are slightly more complex. Most notably,
non-constant moment arms A(q), stochastic control signals, and a muscle activa-
tion dynamics which increase the dimensionality of the state space have been used
[15].

Please note that in contrast to standard torque-controlled robots, in our arm model
the dynamics (13) is not linear in the control signals, since u enters (16) quadrati-
cally. We follow the same cost function as before (eq. 10) and the same fixed motion
duration of one second. Here we discretise the time into K = 50 steps (Δt = 0.02s).

4.3.1 Stationary Dynamics

In order to make ILQG–LD converge for our three reference targets we coarsely pre-
trained our LWPR model with a focus on a wide coverage of the workspace. The
training data are given as tuples consisting of (q, q̇,u) as inputs (10 dimensions in
total), and the observed joint accelerations q̈ as the desired two-dimensional output.
We stopped training once the normalised mean squared error (nMSE) in the predic-
tions reached ≤ 0.005. At this point LWPR had seen 1.2 · 106 training data points
and had acquired 852 receptive fields, which is in accordance with the previously
discussed high non-linearity of the plant dynamics.

We carried out a reaching task to the 3 reference targets (Fig. 9, right) using
the feedback controller (feedback gain matrix L) that falls out of ILQG(-LD). To
compare the stability of the control solution, we simulated control dependent noise
by contaminating the muscle commands u just before feeding them into the plant.
We applied Gaussian noise with 50% of the variance of the signal u.

Fig. 10 depicts the generated control signals and the resulting performance of
ILQG–LD and ILQG over 20 reaching trials per target. Both methods show similar
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Fig. 10. Illustration of an optimised control sequence (left) and resulting trajectories (right)
when using a) the known analytic dynamics model and b) the LWPR model learned from
data. The control sequences (left target only) for each muscle (1–6) are drawn from bottom
to top, with darker grey levels indicating stronger muscle activation.
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Table 3. Comparison of the performance of ILQG–LD and ILQG with respect to the number
of iterations required to compute the control law, the average running cost, and the average
Euclidean distance to the three reference targets (left, center, right).

ILQG ILQG–LD
Targets Iter. Run. cost d (cm) Iter. Run. cost d (cm)

Center 19 0.0345± 0.0060 0.11± 0.07 14 0.0427± 0.0069 0.38± 0.22
Left 40 0.1873± 0.0204 0.10± 0.06 36 0.1670± 0.0136 0.21± 0.16
Right 41 0.1858± 0.0202 0.57± 0.49 36 0.1534± 0.0273 0.19± 0.12

endpoint variances and trajectories which are in close match. As can be seen from
the visualisation of the control sequences, antagonistic muscles (i.e., muscle pairs
1/2, 3/4, and 5/6 in Fig. 9, left) are never activated at the same time. This is a direct
consequence of the cost function, which penalises co-contraction as a waste of en-
ergy. Table 3 quantifies the control results of ILQG–LD and ILQG for each target
with respect to the number of iterations, the generated running costs and the end
point accuracy.

4.3.2 Adaptation Results

As before we carried out adaptive reaching experiments (towards the center target)
and we generated a constant unidirectional force field (FF) acting perpendicular to
the reaching movement (see Fig. 11). Using the ILQG–LD model from the previ-
ous experiment, the manipulator gets strongly deflected when reaching for the target
because the learned dynamics model cannot yet account for the “spurious” forces.
However, using the resultant deflected trajectory as training data, updating the dy-
namics model online brings the manipulator nearer to the target with each new trial.
In order to produce enough training data, as is required for a successful adaptation,
we generated 20 slightly jittered versions of the optimised control sequences, ran
these on the plant, and trained the LWPR model with the resulting 50 samples each.
We repeated this procedure until the ILQG–LD performance converged success-
fully, which was the case after 27000 training samples. At that point, the internal
model successfully accounted for the change in dynamics caused by the FF. Then,
we switched off the FF while continuing to use the adapted LWPR model. This re-
sulted in an overshooting of the manipulator to the other side, trying to compensate
for non-existing forces. Just as before, we re-adapted the dynamics online over re-
peated trials. The arm reached the target again after 7000 training points. One should
note that compared to the initial global motor babbling, where we required 1.2 ·106

training data points, for the local (re-)adaptation we need only a fraction of the data
points.

Fig. 11 summarises the results of the sequential adaptation process just de-
scribed. Please note how the optimised adapted control sequence contains consider-
ably stronger activations of the extensor muscles responsible for pulling the arm to
the right (denoted by “2” and “6” in Fig. 9), while still exhibiting practically no
co-contraction.
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Fig. 11. Left: Adaptation to a unidirectional constant force field (indicated by the arrows).
Darker lines indicate better trained models. In particular, the left-most trajectory corresponds
to the “initial” control sequence, which was calculated using the LWPR model (from motor
babbling) before the adaptation process. The fully “adapted” control sequence results in a
nearly straight line reaching movement. Right: Resulting trajectories during re-adaptation
after the force field has been switched off (i.e., after effects).

5 Discussion

In this work we introduced ILQG–LD, a method that realises adaptive optimal
feedback control by incorporating a learned dynamics model into the ILQG frame-
work. Most importantly, we carried over the favourable properties of ILQG to more
realistic control problems where the analytic dynamics model is often unknown,
difficult to estimate accurately or subject to changes. As with ILQG control, redun-
dancies are implicitly resolved by the OFC framework through a cost function, elim-
inating the need for a separate trajectory planner and inverse kinematics/dynamics
computation.

Utilising the derivatives (8) of the learned dynamics model f̃ avoids expensive
finite difference calculations during the dynamics linearisation step of ILQG. This
significantly reduces the computational complexity, allowing the framework to scale
to larger DoF systems. We empirically showed that ILQG–LD performs reliably in
the presence of noise and that it is adaptive with respect to systematic changes in the
dynamics; hence, the framework has the potential to provide a unifying tool for mod-
elling (and informing) non-linear sensorimotor adaptation experiments even under
complex dynamic perturbations. As with ILQG control, redundancies are implicitly
resolved by the OFC framework through a cost function, eliminating the need for a
separate trajectory planner and inverse kinematics/dynamics computation.

Our future work will concentrate on implementing the ILQG–LD framework on
an anthropomorphic hardware – this will not only explore an alternative control
paradigm, but will also provide the only viable and principled control strategy for
the biomorphic variable stiffness based highly redundant actuation system that we
are currently developing. Indeed, exploiting this framework for understanding OFC
and its link to biological motor control is another very important strand.
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The SURE REACH Model for Motor Learning
and Control of a Redundant Arm: From
Modeling Human Behavior to Applications in
Robotics

Oliver Herbort, Martin V. Butz, and Gerulf Pedersen

Abstract. The recently introduced neural network SURE REACH (sensorimo-
tor unsupervised redundancy resolving control architecture) models motor cortical
learning and control of human reaching movements. The model learns redundant,
internal body models that are highly suitable to flexibly invoke effective motor com-
mands. The encoded redundancy is used to adapt behavior flexible to situational
constraints without the need for further learning. These adaptations to specific tasks
or situations are realized by a neurally generated movement plan that adheres to
various end-state or trajectory-related constraints. The movement plan can be imple-
mented by proprioceptive or visual closed-loop control. This chapter briefly reviews
the literature on computational models of motor learning and control and gives a
description of SURE REACH and its neural network implementation. Furthermore,
we relate the model to human motor learning and performance and discuss its neural
foundations. Finally, we apply the model to the control of a dynamic robot platform.
In sum, SURE REACH grounds highly flexible task-dependent behavior on a neural
network framework for unsupervised learning. It accounts for the neural processes
that underlie fundamental aspects of human behavior and is well applicable to the
control of robots.

Oliver Herbort
Universität Würzburg, Department of Psychology, Röntgenring 11,
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1 Introduction

Virtually all of the brain’s capabilities, from the simplest automatic mechanisms to
the most complex cognitive operations, are mediated by the human motor system.
Only movements of our bodies can cause consistent manipulation of the environ-
ment. Thus, understanding the human motor system is of paramount importance to
understand human behavioral control and the involved cognitive processes. How-
ever, many open questions remain in our understanding of how the brain translates
our will into actual body movements.

Despite this lack of explicit knowledge, our brains transform goals into move-
ments exceedingly well and with astonishing ease. For example, movements are
generally executed in a fast, accurate, and energy conserving way [23, 71]. Multi-
ple sources of information are integrated when forming goals or during the control
of ongoing movements [18, 47]. If obstacles block the way or our own mobility
is restricted, the motor system adapts to these task-dependent constraints from one
moment to the other and it even aligns the way we carry out current movements to
facilitate future actions [17, 22, 61]. On top of these facts, it needs to be remem-
bered that all these capabilities are acquired by unsupervised motor learning. In the
CNS, cortical motor areas have been associated with the unsupervised acquisition
of motor behavior and new motor skills [19, 25, 32].

The computational principles underlying motor learning and control are not yet
very well understood. A review of existing computational models reveals that most
models fall in either of two groups. Some models scrutinize how the fully developed
motor system might work offering an account for the flexibility of human behavior,
but these models do not account for motor learning (e.g. [14, 63, 64]). Other models
focus mainly on the acquisition of motor control structures but they cannot explain
the flexibility of human behavioral control (e.g. [3, 4, 7, 9, 40, 43, 49]).

The SURE REACH neural network model of the cortical control of human reach-
ing aims at integrating these aspects [10, 28, 30, 31]: It offers an account for unsu-
pervised motor learning; It explains how humans can flexibly adapt to changing task
constraints; And finally, it is based on plausible mechanisms and structures on the
neural as well as functional level.

This is achieved by providing neural learning and control mechanisms that
extracts as much information as possible about the relationship between motor com-
mands and changes in sensory input. The abundance of information enables to flexi-
bly generate novel movement pattern and thus adjust quickly to changing situations
(c.f. [73] in this volume). This approach offers unprecedented flexibility in move-
ment control and offers new perspectives on understanding motor learning, in both
humans and robots (c.f. [60]; [66] in this volume).

In the remainder of this article, we first review related models of motor learn-
ing and control. Next, SURE REACH is described, including the mathematical for-
mulations of spatial representations, learning mechanisms, and the motor control
networks. After that, several examples show that the model is well able to account
for motor learning and flexible behavior. Additionally, the biological and theoreti-
cal foundations of the model are discussed. Finally, we review an application of the
underlying framework to the flexible control of a robot arm.
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2 Theories of Motor Learning, Movement Preparation, and
Control

To enable goal-directed action, the brain has to convert the representation of a goal
into a sequence of efferent motor commands, which result in muscle activations
and finally in overt body movements. A neural structure that encodes such a map-
ping from a desired goal location into motor commands is termed inverse model
[42].1 Inverse models are at the heart of any theory of goal-directed movement and
closely relate to the “memory trace” in Adams’ closed-loop theory [1] or the “recall
schema” in Schmidt’s schema theory [67] (for older accounts see: [6, 27, 52]). Each
body reacts differently to different motor commands and thus, an inverse model
for controlling movements needs to be acquired by body-dependent motor learn-
ing. Even more so, the learning mechanisms need to operate unsupervised from the
beginning and without the help of an internal or external teacher. Finally, each pos-
sible goal might be reached by an abundance of different motor command patterns
(due to motor redundancy). Thus, there is no easy way to directly acquire an inverse
model as each goal may be reached with various, alternative movement patterns and
the involved learning needs to be unsupervised.

Several theories address how such inverse models might be acquired (e.g.
[3, 4, 9, 40, 41, 43, 49, 58]). These theories differ broadly regarding representations,
controlled parameters, and learning mechanisms. However, they all have one aspect
in common: All these theories assume that an optimal inverse model is acquired,
which stores for each goal a specific movement that optimizes additional criteria.
For example, it might encode those motor commands that would reach a goal lo-
cation with the smoothest possible trajectory [74]. Some of these theories rely on
learning mechanisms that require a one-to-one mapping between goals and motor
commands (e.g. [3, 49, 58]). They fail to account for the acquisition of inverse mod-
els for more complex, redundant bodies the control of which requires the resolution
of a one-to-many mapping. Other theories that are mostly addressing the acquisition
of cerebellar control structures (e.g. [43, 41] but see [40]) require at least a coarse
inverse model that serves as the teacher. Thus, these models fail to account for un-
supervised learning. However, under certain conditions, it is possible to acquire an
inverse model unsupervised [7, 9].

The very notion that inverse models directly map goals onto optimal (but fixed)
sequences of motor commands is problematic. Such a model only encodes one pos-
sible way to reach a goal and neglects alternatives—particularly those that yielded
worse performance at the time of motor learning but may actually prove advanta-
geous later on. Since the environment, the controlled body, and tasks change all
the time, goals need to be reachable in different ways, depending on the current
circumstances—sometimes we only need to reach a certain point in space, some-
times we also need to fulfill proprioceptive constraints, for example, when aligning
hand and forearm to a pointing gesture. Likewise, we carry out one action in a way

1 Please note, the term “model” may refer to a scientific theory or the above-mentioned
mapping in this text.
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that facilitates the next one [22, 78] or we bypass obstacles with ease [17]. If only
one way was represented to attain a certain goal, it is impossible to model the flex-
ibility with which we adjust our movements to novel situations so rapidly. Thus,
inverse models cannot implement a direct mapping from goals to (optimal) actions,
but have to provide a set of useful action alternatives. A selection amongst those
alternatives is then necessary to generate actual behavior.

Furthermore, from a computational point of view, a direct mapping from goals
to motor commands implies that the process of mapping goals onto actions is rather
simple and somewhat akin to the read-out of a neural look-up table. However, move-
ment preparation in the brain seems to be a rather involved process. This is evident as
the time to prepare a movement depends on many features of the goal, the response,
and the context of the movement [45, 48, 56, 62]. Hence, theories that predicate a
direct mapping from goals to motor commands fail to assign a meaningful role to
the obvious complexity of movement preparation.

On the other hand, theory of task-dependent movement preparation exist. Most
notably, the posture-based motion planning theory [63, 64, 65] details how differ-
ent movement alternatives may be evaluated, selected, and refined according to the
constraints of the situation. The theory accounts for a wide range of behaviors, in-
cluding reaching, grasping, and the avoidance of obstacles. It presumes that neu-
ral mechanisms link sensory (goal) representations and motor commands but it is
mute regarding their neural structure and their acquisition. Besides such abstract
approaches, also neural network models for flexible motor behavior have not yet
offered an explanation for motor learning [14, 15].

SURE REACH integrates theories of motor learning and theories of task-depen-
dent movement preparation into a biologically plausible neural network framework.
It thereby extents related approaches by accounting for the unsupervised acquisition
of internal sensorimotor models and flexible movement planning (e.g. [55]). The
next section outlines the general approach of the model and details its structure.

3 Description of the Model

Before the model is formulated in detail, an overview over the principles underly-
ing the model is given. The discussion of the literature revealed that many concep-
tual problems of recent neural network models arise because the proposed learning
mechanisms strive to only encode optimal motor commands. This causes some net-
work approaches to fail at controlling a redundant body, others require supervised
teaching mechanisms, and again others are left with a highly restrained behavioral
repertoire. In contrast, SURE REACH encodes all motor commands relevant for
behavioral control. This can be quite easily achieved by ideomotor learning mecha-
nisms. Such mechanisms encode contingent sensorimotor relationships, that is, they
store which sensory effects result from which motor commands, depending on the
initial state [21, 33, 34, 37]. Together, these sensorimotor contingencies represent
how the body may be controlled and thus constitute a task-independent internal
body model. However, they may not be directly used to generate movements. On
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the one side, for certain goals no sensorimotor contingencies may be stored that
provide a single motor command to move from the initial state to the goal. This
problem is solved by the combination of multiple sensorimotor contingencies. On
the other side, many sensorimotor contingencies may provide useful motor com-
mands in the current context, but, of course, only one motor command can be ex-
ecuted at a time. Thus, specific motor commands have to be selected. According
to the model, these processes of combining and task-dependently selecting the en-
coded sensorimotor information is what happens during movement preparation: A
task-independent, general body model is used to tailor a task-specific inverse model
to the unique demands and constraints of the current situation. Thus, the model links
behavioral flexibility, movement preparation processes, and the way humans learn
to control their bodies in a meaningful, interdependent manner.

3.1 Neural Network Implementation

In the following, a more detailed account for the specific computational stages and
processes is given. First, the simulated controlled body is briefly described. The
neural networks have to control a planar kinematic arm with three joints. Each joint
is attached to two “muscles” which rotate the joint proportional to the excitation
level of the innervating motor neuron. Each muscle is activated by motor commands
ranging between 0.0≤ mci ≤ 1.0. To compute the final movement of a joint φi, ac-
tivations of antagonistic motor commands are subtracted and the result is multiplied
by a gain factor g which scales movement velocity (see appendix for parameter
values):

φi(t + 1) = φi(t)+ g(mc2i−1−mc2i), i = 1,2,3

This body is surely rather simple but it incorporates two important features. First, in
most cases a sequence of motor commands is necessary to reach a goal. Second, the
arm is redundant on the kinematic (multiple postures may realize a hand position)
and sensorimotor (multiple trajectories may realize transitions between postures)
level.

Figure 1 shows the staged structure of the model, which reflects the common
notion that goals, such as specific hand locations, are transformed stepwise into a
sequence of motor commands [12, 26, 35, 39]. By including multiple layers of rep-
resentations and different nested transformation processes, it is possible to account
for the flexible incorporation of constraints of different modalities during movement
preparation.

In the current implementation, SURE REACH transforms a desired hand loca-
tion into a sequence of motor commands, given certain constraints.2 The individual
transformations are realized by interacting, adaptive neural network modules. First,
the posture memory module encodes a mapping from visual hand space to pro-
prioceptive posture space. Second, the sensorimotor module encodes sensorimotor

2 The origin of these goals or constraints is not part of the model.



90 O. Herbort, M.V. Butz, and G. Pedersen

x

Posture Memory

Sensorimotor Model (W , ..., W )1 6

Movement Plan (A , ..., A )1 6

(visual) hand target

(H )goal

visual feedback:

directional error

proprioceptive constraintproprioceptively encoded

hand target (P )Goal

combined

proprioceptive

target

proprioceptive

feedback (P)

motor commands

 mc , ..., mc1 6

Visual Feedback Networks

initial target

specification

Motor Controller

Fig. 1 The cartoon of the model reflects multiple stages of processing from the goal to mo-
tor commands. Intermediate representation and transformation processes may be adjusted to
incorporate task-demands into the movement preparation process.

contingencies in posture space. Based on the sensorimotor model, movements are
prepared and controlled in posture space.

3.1.1 Body Spaces Representation, Internal models, and Motor Learning

Before movements can be executed, the neural networks have to be learned. The
posture memory has to encode the relationship between visually encoded hand po-
sitions and proprioceptively encoded arm postures. It stores the kinematic relation-
ship between the two sensory modalities. The sensorimotor model has to encode the
relationship between issued motor commands and state transitions in proprioceptive
posture space. It stores the relationship between action and perception. To simulate
early infant movements, random motor commands are executed and related to the
consequent sensory input.3 Throughout the model, goals, sensory input, and motor
output are represented by populations of neurons (population codes), in which each

3 This does not imply that infant movements are merely random, as is clearly not the case
[76]. However, the neural networks are learned sufficiently well based on simple random
movements. Learning speed and accuracy might be further improved if more structured
exploratory movements were employed.
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neuron represents a certain stimulus, such as a hand position or joint configuration
[8, 13, 24, 69]. Hand coordinates are encoded by a population of neurons H. Each
neuron hi of H fires, if the hand coordinates (x,y) are close enough to the neuron’s
preferred hand location (hx

i ,hy
i )

hi = max(1.0− |x−hx
i |

dhand
;0) ·max(1.0− |y−hy

i |
dhand

;0),

where dhand is the distance between the preferred values of neurons with adjacent
receptive fields. The preferred hand locations are arranged in a grid and cover the
arm’s workspace. Arm postures are coded in a population of neurons P, where each
neuron pi is activated according to the equation

pi =
3

∏
j=1

max(1.0− |φ j− p
φ j
i |

dposture, j
;0),

where p
φ j
i are the preferred joint angles of each neuron pi and dposture, j is the dis-

tance in the j-th dimension of joint space between the preferred values of neurons
with adjacent receptive fields. During the initial learning movements, hand positions
and postures are represented by different populations of neurons that constitute neu-
ral hand space and posture space. An associative learning rule strengthens the con-
nections between simultaneously activated neurons in hand and posture space, thus
creating a mapping between both representations. This mapping is termed posture
memory. In each time step of the simulation the current hand (H) and arm state (P)
are associated by Hebbian learning:

WPM(t) = WPM(t−1)+ εPHT ,

where ε is the learning rate and WPM is the weight matrix that constitutes the posture
memory.

The sensorimotor model consists of several neural representations of the posture
space, each of which is associated to a specific motor neuron. If the motor neuron
associated to an individual neural network is active, connections between the neuron
representing the current posture and the neurons representing just visited postures
are formed in the respective network. Together, these connections encode sensori-
motor contingencies: They represent which transitions in posture space may occur,
if the associated motor neuron is activated.

As the simulated arm is controlled by six different motor commands (two for
each joint), there are six recurrent neural networks Ai each of which consists of a
layer of mutually interconnected neurons. The neural layers Ai have the same size
as the posture representation P and their interconnections are encoded by weight
matrices Wi. During learning, the neural layers Ai have the following dynamics.

Ai(t) = ρAi(t−1)+ mci(t−1)P(t−1),
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where P is a representation of the current arm posture, ρ is a decay coefficient
that enables the learning of temporally extended posture transitions by maintaining
a trace of past posture representations, and mci is the activation of the i-th motor
command during learning. Neural network weights are updated according to the
following associative learning rule:

wjk
i (t) = wjk

i (t−1)+ δa j
i (t)pk(t)(θ −wjk

i (t−1)),

where wjk
i , a j

i , and pk are single values of the weight matrices, neuron layers, and
the representation of the current posture, respectively, δ is the learning rate, and
θ = 0.1 is a ceiling value that prevent weights from increasing indefinitely.

3.1.2 Movement Preparation

The previous paragraphs revealed the model’s space representations, internal mod-
els, and learning mechanisms. The following paragraphs answer how the acquired
internal models may be used to plan movements. SURE REACH accounts for
movements to desired hand locations. The input to the model is thus a population
encoded hand position. The desired hand position (Hgoal) is transformed by the pos-
ture memory into a likewise encoded representation of all those arm postures that
realize the respective hand location (Pgoal; proprioceptively encoded hand target in
Figure 1). It thus transforms the goal from a visual, hand-based into a propriocep-
tive, posture-based frame of reference. This is modeled by the equation

Pgoal = WPM×Hgoal.

The redundant representations of postures may be further constrained, for ex-
ample, by inhibiting neurons which represent undesired final joint angles (see pro-
prioceptive constraint in Fig 1). Movement planning is based on this redundant
representation. The neural representation of acceptable end-postures is fed into the
different neural networks of the motor controller whose connections constitute the
sensorimotor model. The activity is propagated through these connections, the dy-
namics of which are modeled by the following equation:

A∗i ←max{β (γ
∑ j �=i

j A j

n−1
+(1− γ)Ai),Pgoal}

Ai← A∗i +Wi×A∗i ,

where n is the number of neural networks, max returns the entry-wise maximum of
two vectors, β reduces neural activity, γ specifies the intensity of crosstalk between
networks, and Pgoal is the representation of suitable goal postures normalized so that
single values add up to 1.0.

Due to the learning scheme, activity is propagated to neurons that represent
postures from which the goal can be reached by executing the motor command
associated with the neuron’s network. In each network, activity is propagated some-
what differently due to differing synaptic connectivity after learning. Thus, different
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A neural network activation maps

B sensory-to-motor mapping

C arm trajectory

D arm trajectory in posture space
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Fig. 2 A) The maps display the activation pattern of neurons of the sensorimotor model
networks, which are associated to different motor neurons (rows), at various time points
(columns, cw = clockwise, ccw = counterclockwise). White areas are not activated at all,
dark areas are highly activated. The activation pattern constitute the neural basis of the move-
ment plan or sensory-to-motor mapping. Please note, for illustration purposes, only those
parts of the networks that are necessary to control shoulder and elbow are shown. The net-
works for control of a three joint arm are more complex. B) Motor commands may be derived
from weighting the activations of neurons representing the same arm posture but in different
networks (associated to different motor neurons). The arrows show the effects that the mo-
tor commands generated by the motor controller would have, depending on the actual arm
posture. C) The chart shows the resulting arm movement, which starts from the left (light
Grey) and terminates at the rightmost posture (black). D) The trajectory in posture space
leads quickly from the start posture to the target.

patterns of activity emerge in the different networks. When the activities of neurons
representing identical postures between the individual networks are compared, neu-
rons of those networks are activated strongest whose associated motor neuron is
most suitable to reach the goal. Thus, the relationship between the activities of neu-
rons in the different networks defines the movement plan.

Figure 2A illustrates the movement preparation process. The network in the first
row is associated to the motor neuron that causes counterclockwise shoulder rota-
tions, the network in the second row is associated to the antagonistic motor neuron. In
the first row, activity, which originates from the goal posture, is propagated stronger
to the right, that is, to neurons that represent postures from which the goal can be
reached by a counterclockwise shoulder rotation. In the second row, activity is prop-
agated mostly to the left and hence to neurons that represent postures from which the
goal can be reached by a clockwise shoulder rotation. Thus, after movement prepa-
ration, the neural activity pattern of the networks constitute the sensorimotor model
for the neural representation of the movement plan (or sensory-to-motor mapping)
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because they encode which motor neurons should be activated to reach the goal given
any possible posture. Note that both movement plan and sensorimotor model are rep-
resented in the same networks: the current movement plan is encoded in the activity
of the neurons whereas the sensorimotor model is encoded in the neural connections.

The movement plan can be considered as an inverse model that is generated on-
line for the forthcoming target. Furthermore, the movement preparation process can
be adapted to different situational constraints. For example, neurons representing
postures that would collide with an obstacle can be inhibited, resulting in different
activation pattern and consequently a movement that bypasses the obstacle. Like-
wise, the contribution of connections that are associated with motor commands that
cause undesirable movements can be limited and thus, for example, decrease or even
prevent movements of certain joints.

3.1.3 Movement Execution

To execute the movement, the movement plan is read out in a closed-loop fashion.
This is realized by generating motor neuron activations dependent on the relative ac-
tivations of those neurons in the different sensorimotor model networks (that is, the
movement plan) that represent the current arm posture. The read-out of the move-
ment plan is modeled by the equation

mc∗i = PT Ai

mci =
max(mc∗i −mc∗anta(i);0)

∑i=1...6 max(mc∗i −mc∗anta(i);0)
,

where P is the current posture, and mcanta(i) is the antagonistic motor command to
mci. The equation computes a normalized (1-norm) set of motor commands that
moves the arm towards the goal. Figure 2B shows the movements in joint space
that would result from reading out the movement plan at different postures and
at different time points during movement preparation. Figure 2C and D show an
exemplar movement which implements the prepared movement plan. The exemplar
movement starts in an area of posture space (light Grey dots in Figure 2D), where
the activation of the network that is associated with the clockwise shoulder rotation
is higher than the activations in other networks. Thus, a movement that is mostly
based on a clockwise shoulder rotation is generated (Figure 2D). However, also
the somewhat higher activation of networks associated to a counterclockwise elbow
rotation contribute to the movement.

4 Simulation of Reaching Movements

The previous section describes the basic components and connectivity of the model.
In this section, we review how the model accounts for highly flexible behavior.
However, before any goal directed movements can be performed, the neural net-
works need to learn the relationships between hand positions and arm postures and
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the relationship between arm movements and motor commands. Figure 3A–G shows
how the neural network controller performs when trying to execute goal directed
movements after an increasing number of unsupervised learning iterations. Initially,
the controller is not yet able to reach the target (Fig 3A–B). However, as more and
more experience with the simulated arm is gathered, movements get increasingly
accurate and efficient (Fig 3C–I). Finally, the arm can be moved accurately to all
goals within the arm’s reach (Fig 3H,J).
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Fig. 3 A–G) The charts show the hand trajectory, initial and final arm posture of movements
to an exemplar target (dotted circle) after different durations of motor learning. Movement
accuracy and efficiency increases during learning. H) The chart shows the hand trajectories
of movements to a number of targets after motor learning. I) The chart shows the distance
between hand and target over the duration of the movements that are charted in C, D, F, G.
With increasing durations of motor learning, movements get more efficient (faster) and more
accurate. J) After learning, movements to reachable targets are quite accurate. Dots display
targets, lines point to the actually reached hand position. If lines are not visible, the final hand
position is within the respective dot. For the shown target, the average distance between hand
and target is 1.80 cm (SD 1.31cm).

The evaluation of the model’s learning performance shows not only that move-
ment accuracy increases but also that movement preparation time (time needed un-
til the movement plan is sufficiently prepared to generate movements) decreases.
This reproduces a salient aspect of the interaction between movement preparation
and motor learning [51, 53]. A detailed analysis of the general performance of
the model during learning can be found elsewhere [10]. To summarize, the pro-
posed neural networks and learning mechanisms are well able to learn to control a
redundant arm.
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4.1 Posture and Trajectory Redundancy

Next, we review how SURE REACH can account for highly adaptive, flexible be-
havior. First the representation of redundant goal postures allows SURE REACH
to terminate a movement to a single hand target with different arm postures. Fig-
ure 4A–B show that that the final posture partially depends on the starting posture.
A systematic analysis of such movements reveals that SURE REACH exploits arm
posture redundancy, as do humans [71], to reduce the overall trajectory length. Sec-
ond, by simply inhibiting certain areas of the posture-based goal representations,
movements to hand goals may be constrained to finally acquire a specific angle in
a certain joint, for example, when aligning wrist and forearm to make a pointing
movement (Fig 4C). Thus, it is possible to integrate visual (hand target) and propri-
oceptive constraints in the goal representation (Figure 1 exemplifies this process).
Third, representing postural redundancy not only enables to adhere to constraints
posed by the past (as the starting posture of a movement) or by the present (as con-
straints on a final joint configuration as in pointing) but also to constraints posed by
future actions. This is especially important as movements are usually embedded in
a larger sequence of actions and most movements can be carried out in ways that
facilitate subsequent movements. Indeed, several experimental studies reveal how
future goals of humans influence their present movements [46, 22, 38, 57, 70, 78].
In SURE REACH, the representation of the redundant postures can be overlaid with
a movement plan to a future goal to select those postures among the possible ones
for an immediate movement that are also good starting postures for the subsequently
planned movement, minimizing subsequent movement paths (Fig 5, see [28] for de-
tails). The resulting movements are then aligned to the overarching goals of a move-
ment sequence. Recently, supporting evidence for this mode of movement planning
has been provided [29]. Thus, representing redundant postures enables the antic-
ipatory adjustment of movements to the demands of future goals (see [22] for a
comparable account).

To summarize, the representation of posture redundancies enables the model to
account for behavior in which the final state of the arm is not only defined by a
desired hand location and a fixed optimality criterion, but also by other implicitly or
explicitly defined constraints.

Behavior may get more adaptive by not only making use of the end-posture
redundancy but also by adjusting the movement trajectory. As mentioned above,
during movement preparation, small pieces of sensorimotor information are put to-
gether. Until now, no motor or trajectory constraints were imposed and the shortest
movement from start to goal was prepared. This is not always desirable and thus it
is possible to adjust the movement preparation process in different ways. To bypass
an obstacle, for example, it is sufficient to simply inhibit neurons in the movement
plan that represent postures that collide with an obstacle. Another example is re-
duced joint mobility. In some situations we might want to reduce the motion of an
arthralgic joint or a joint that is immobilized by a cast. Movement preparation may
be adapted to such inconveniences by trying to prepare a movement plan that relies
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Fig. 4 The top charts show hand trajectories, initial and final arm postures. The dotted circles
show the target of the hand. The bottom charts show the trajectory of the angle of shoulder,
elbow, and wrist during those movements. A–B) Movements to identical hand targets may
end in different arm postures, depending on the starting position. C) Targets can be reached
while adhering to postural constraints, e.g. aligning forearm and wrist to make a pointing
gesture. D–E) Movement planning may be adjusted to avoid moving specific joints, e.g. if in
a cast or arthralgic. The bottom charts show how such constraints influence the trajectories of
individual joints.
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Fig. 5 The hand had to move sequentially from a start position (S) to a first target (Via)
and then to one of two possible second targets (T1 or T2). The movements in A and B start
from identical start postures and proceed to identical first targets (Via) but the second target
differs (T1 in A and T2 in B). SURE REACH can anticipate requirements of upcoming goals
and thus choose different postures at the first target (compare black posture in A and B),
dependent on the subsequent targets. The assumed posture at the first target facilitated the
movement to the second target. Charts C and D show another example.

mainly on executable motor commands and thus minimizes the motion of impaired
joints (Figure 4D–E).

4.2 Multimodal Feedback Control

The described neural networks are able to use a visual goal representation to plan a
movement, but so far visual feedback of the relationship between a goal and and the
hand is not used during movement execution. However, human movement accuracy
depends considerably on visual feedback [20, 44, 54, 79]. Due to the hierarchical
structure of SURE REACH, visual feedback can be integrated into the model with-
out compromising its ability to account for flexible behavior [30]. In this case, visual
feedback networks (Fig 1) decouple the hand-based goal representation from direct
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visual input and adjust an internal hand target according to a visual error signal
(Fig 6A). For example, if the hand is currently slightly left of the target, the internal
hand target may be shifted to the right. The hand-based internal target is then trans-
formed into a posture-based representation that can be combined with kinematic
constraints as described above. This enables a higher final goal reaching accuracy
while keeping behavior flexible. Moreover, on the behavioral side this model of vi-
sual feedback generates human-like corrective movements. Figure 6 shows that the
model reproduces movements with a fast initial approach component and slow final
corrective movements, mimicking human reaching movements even closer [20, 79].
On the neurophysiological side, the model reflects the notion that movements are
controlled by a cascade of nested control loops [12, 35].
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Fig. 6 A) The left chart shows the x- (top three lines) and y-coordinates (lower three lines)
of the actual target (dashed), the internal target (black), and the hand location (dotted) of an
exemplar movement. B) The right chart displays the hand trajectory, the actual target (circle),
and the final position of the internal target (cross). The internal target shifts considerably to
compensate for the initial overshoot. The charted location of the internal target is the mean
of the preferred values of the dynamic target representation weighted by their activations.

5 Theoretical, Biological and Psychological Implications

The various simulation experiments have demonstrated three important claims.
First, SURE REACH is able to learn and control a redundant body with an unsuper-
vised learning scheme. Its functionality thus exceeds other neural network models
of unsupervised motor learning. Second, the encoded motor redundancy enables to
account for behavioral flexibility to a high degree. Third, the simulation of specific
features of human movement preparation and execution show that the implemented
system has strong correlations with actual psychological processes.

More specifically, SURE REACH contributes to the debate of the computational
bases of movement control in several ways (for an overview see [11]). Neural net-
work theories of motor learning typically assume that an inverse model that encodes
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one single “best” way to reach a goal is acquired during motor learning and in-
variably used later on. In contrast, SURE REACH learns a task-independent body
model, which encodes very general properties of the relationships between motor
commands and body movements. These general properties may be easily acquired
unsupervised and may encode redundant motor control patterns. However, to make
use of the body model, movement preparation processes are needed that extract
a task-specific inverse model from the task-independent body model. Thus, while
movement preparation is necessary to be able to use representations that can be
learned unsupervised, the same movement preparation also enables the adjustment
of motor plans to the demands and constraints of the current situation. Considering
abstract theories of movement preparation, SURE REACH offers a way to link such
models to neural representations and sensorimotor learning mechanisms. In fact, as
discussed elsewhere [10], many aspects of the posture-based motion planning theory
[64] are realized with the proposed neural network architecture.

The model does not only offer an interesting computational account but it is also
supported by neurophysiological and psychological findings. In SURE REACH,
sensory information or goals are represented by populations of many neurons in
population codes. This property lays the foundation for unsupervised learning and
the representation of motor redundancy but also reflects properties of cortical repre-
sentations. Single-cell recording studies revealed that sensory, motor, and sensori-
motor representations are shaped likewise in the motor cortex and parietal cortex of
monkeys [13, 24, 69] and encoded in different coordinate systems, including posture
based ones [2, 68].

SURE REACH also fits in macroscopic theories of the brain, which consider the
cerebral motor cortex — which is the site the model relates to — an area in which
learning is unsupervised (as opposed to, e.g. the basal ganglia or the cerebellum, see
e.g. [19, 36]). One of the key aspects of the model is its ability to account for the
representation of redundant goal representations (that is, more than a single possi-
ble goal state). While corresponding representations have been recorded from motor
areas during movement preparation [5, 13], behavioral studies and theoretical argu-
ments suggest redundant goal representations during movement control [16, 50, 72].
Finally, as in humans or monkeys, movement preparation and movement control is
more or less decoupled [5, 75], which enables the adjustment of ongoing movements
or the preplanning but withholding of an upcoming movement. In conclusion, the
model offers a comprehensive account of how humans learn to control their bodies
and how their motor control mechanisms adapt flexibly to ever-changing situational
requirements and constraints.

6 Application in Robotics

While the previous sections have focused on SURE REACH as a model for hu-
man behavior, this section addresses how the derived principles may be used to
make robots more flexible. To this aim, the general idea of SURE REACH needs
to be extended. To control a dynamic robot arm dynamic control components need
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to be added and need to efficiently interact with the SURE REACH-based control
components.

A simulation of the KUKA KR16 arm was controlled by SURE REACH en-
hanced with adaptive PD-control mechanisms [59]. Several modifications were
necessary to make the application to the actual physical robot arm possible in the fu-
ture. First, the learning mechanisms of SURE REACH were replaced by hard-coded
connections. This is possible due to the exact knowledge of the kinematics of the
KUKA KR16 arm. Thus, while SURE REACH shows that unsupervised learning of
the neural network structures is possible, the KUKA KR16 arm application shows
that it is not necessary given perfect prior knowledge of the targeted arm. Second,
the muscle-based sensorimotor models were collapsed into one joint-motor-based
sensorimotor model. This allows a more compact representation and thus a speed-
up of the activity propagation in posture space—an important step to make real-
time control possible. Third, an adaptive PD controller was added to translate the

Fig. 7 The figures show the simulated KUKA KR 16 arm that is controlled by a dynamic
SURE REACH system with adaptive PD controller. A shows the straight transition from a
start posture to a goal posture in an unconstrained environment, B shows that a more complex
movement is exerted if the presence of a ”ceiling” obstacle is suggested to the controller.
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movement commands from SURE REACH into actual motor control commands.
Adding adaptivity to the controller helped to counteract increasing momentum in
the KUKA KR16 arm. Fourth, the activity propagation signal was used to estimate
the distance to the goal in order to provide the PD controller with movement direc-
tion and distance estimates. In effect, the resulting system was able to control the
KUKA KR16 arm in simulation, which was realized with the commercially avail-
able simulation platform Webots [77].

Figure 7 shows two typical control sequences of the KUKA KR16 arm. In the
upper panel, the arm has to move from a fully right-extended posture to a fully
left-extended posture. Since the easiest way to achieve this is to only rotate the
base joint, the main movements are observable in this joint. In the lower panel, the
presence of a “ceiling” obstacle was suggested to the system. Thus, in order to reach
the goal posture form the same starting posture, the arm flexes its upper two joints
much more to avoid the obstacle and finally re-extends those joints to reach the goal
posture.

To conclude, while the adapted SURE REACH takes care of the kinematics en-
abling flexible movement planning and behavioral adjustments, the adaptive PD
controller invokes suitable motor commands to maintain dynamic system stability
while executing the suggested movement plan. Further evaluations of the system
confirm the general robustness of the approach within other dynamic arm and with
other added constraints and start-goal location or posture combinations [59].

7 Conclusion

To conclude, the described model offers an interesting perspective on the inter-
play between movement planning, unsupervised motor learning, and flexible task-
dependent motor control in humans. Furthermore, the model’s underlying principles
are well-suited to control robots in a dynamic environment. In turn, the application
of the model (and computational models in general) to real-world robots may hint
at critical aspects that have yet to be considered in the models and contribute to a
deeper understanding of neural processes. Thus, the application of biological the-
ories to robotics may result in more flexible, robust, and adaptive machines. On
the other hand, these applications can be expected to also enhance our knowledge
about the intricate neural mechanisms that enable animals and humans to move their
bodies seemingly effortlessly and with unmatched sophistication.

Appendix

The parameter settings for the simulations depicted in Figures 2 can be found in
[10]. The parameter settings for the simulations depicted in Figures 5 can be found
in [28]. The simulation results depicted in Figures 3, 4, and 6 are as follows. The
lengths of the upper arm, forearm, and hand are l1 = 32cm, l2 = 25cm and l3 = 18cm,
respectively; The shoulder, elbow and wrist joints can assume any angle within
−60◦ ≤ φ1 ≤ 115◦, −160◦ ≤ φ2 ≤ 0◦, and −75◦ ≤ φ3 ≤ 50◦, respectively; The
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gain factor was set to g = 0.9◦; The preferred hand locations are distributed in a
fixed 31× 25 grid with dhand = 5cm distance. The grid covers a 150cm× 120cm
rectangle, which covers the the arm’s work space. Posture neurons are arranged in
a 8× 7× 6 grid covering the entire posture space. The distance between two adja-
cent neurons is approximately dposture,1 = dposture,3 = 25◦ and dposture,2 = 26.7◦. The
neural networks are trained by moving the arm randomly for 1.000.000 time steps.
During learning, new sets of motor command are randomly generated and executed
for a random duration between 1 to 8 time steps. Sets of motor commands are gen-
erated by setting each individual motor neuron to 1.0 with a probability of p = 0.3
and to zero otherwise. The learning rate of the posture memory is set to ε = 0.001.
The learning rate for the motor controller decays exponentially from δ0 = 0.1 to
δ1,000,000 = 0.01 during learning. The upper weight threshold is set to θ = 0.1. The
parameters of the equations modeling movement preparation are set to β = 0.17 and
γ = 0.43. In the charts, the duration unit included 50 time steps. That is, each joint
can move 45◦ in each duration unit.
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Abstract. Intrinsic motivation is a central mechanism that guides spontaneous ex-
ploration and learning in humans. It fosters incremental and progressive sensori-
motor and cognitive development by pushing exploration of activities of interme-
diate complexity given the current state of capabilities. This chapter presents and 
studies two computational intrinsic motivation systems that share similarities with 
human intrinsic motivation systems, IAC and R-IAC, that aim at self-organizing 
and efficiently guiding exploration for sensorimotor learning in robots. IAC was 
initially introduced to model the qualitative formation of developmental motor 
stages of increasing complexity, as shown in the Playground Experiment which 
we will outline. In this chapter, we argue that IAC and other intrinsically moti-
vated learning heuristics could also be viewed as active learning algorithms that 
are particularly suited for learning forward models in unprepared sensorimotor 
spaces with large unlearnable subspaces. Then, we introduce a novel formulation 
of IAC, called R-IAC, and show that its performances as an intrinsically motivated 
active learning algorithm are far superior to IAC in a complex sensorimotor space 
where only a small subspace is “interesting”, i.e. neither unlearnable nor trivial. 
We also show results in which the learnt forward model is reused in a control 
scheme. Finally, an open-source accompanying software containing these algo-
rithms as well as tools to reproduce all the experiments in simulation presented in 
this paper is made publicly available. 

 

Index Terms: active learning, intrinsically motivated learning, exploration, deve-
lopmental robotics, artificial curiosity, sensorimotor learning. 

1   Intrinsically Motivated Exploration and Learning 

Developmental robotics approaches are studying mechanisms that may allow a ro-
bot to continuously discover and learn new skills in unknown environments and in 
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a life-long time scale [1], [2]. A main aspect is the fact that the set of these skills 
and their functions are at least partially unknown to the engineer who conceive the 
robot initially, and are also task-independent. Indeed, a desirable feature is that ro-
bots should be capable of exploring and developing various kinds of skills that 
they may re-use later on for tasks that they did not foresee. This is what happens 
in human children, and this is also why developmental robotics shall import con-
cepts and mechanisms from human developmental psychology.  

1.1   The Problem of Exploration in Open-Ended Learning 

Like children, the “freedom” that is given to developmental robots to learn an 
open set of skills also poses a very important problem: as soon as the set of motors 
and sensors is rich enough, the set of potential skills become extremely large and 
complicated. This means that on the one hand, it is impossible to try to learn all 
skills that may potentially be learnt because there is not enough time to physically 
practice all of them.  Furthermore, there are many skills or goals that the 
child/robot could imagine but never be actually learnable, because they are either 
too difficult or just not possible (for example, trying to learn to control the weather 
by producing gestures is hopeless). This kind of problem is not at all typical of the 
existing work in machine learning, where usually the “space” and the associated 
“skills” to be learnt and explored are well-prepared by a human engineer. For ex-
ample, when learning hand-eye coordination in robots, the right input and output 
spaces (e.g. arm joint parameters and visual position of the hand) are typically 
provided as well as the fact that hand-eye coordination is an interesting skill to 
learn. But a developmental robot is not supposed to be provided with the right 
subspaces of its rich sensorimotor space and with their association with appropri-
ate skills: it would for example have to discover that arm joint parameters and vis-
ual position of the hand are related in the context of a certain skill (which we call 
hand-eye coordination but which it has to conceptualize by itself) and in the mid-
dle of a complex flow of values in a richer set of sensations and actions.  

1.1.2   Intrinsic Motivations  

Developmental robots, like humans, have a sharp need for mechanisms that may 
drive and self-organize the exploration of new skills, as well as identify and organize 
useful sub-spaces in its complex sensorimotor experiences. Psychologists have identi-
fied two broad families of guidance mechanisms which drive exploration in children:  

1) Social learning, which exists in different forms such as stimulus enhance-
ment, emulation, imitation or demonstration, and which many groups try to 
implement in robots [e.g. 3,4,5,6,7,8,9,10,11,12,13,14]; 

2) Internal guiding mechanisms, also studied by many robotics research 
groups (e.g. see [15,16,17,18,19,20]) and in particular intrinsic motivation, 
responsible of spontaneous exploration and curiosity in humans, which is 
the mechanisms underlying the algorithms presented in this paper.  

Intrinsic motivations are mechanisms that guide curiosity-driven exploration, that 
were initially studied in psychology [21]-[23] and are now also being approached in 
neuroscience [24]-[26]. Machine learning and robotics researchers have proposed 



Intrinsically Motivated Exploration for Developmental 109
 

that such mechanism might be crucial for self-organizing developmental trajectories 
as well as for guiding the learning of general and reusable skills in machines and ro-
bots [27,28]. A large diversity or approaches for operationalizing intrinsic motiva-
tion have been presented in the literature [e.g. 29,30,31,32,33,34,28,27,35], and see 
[27] for a general overview. Several experiments have been conducted in real-world 
robotic setups, such as in [27,36,34] where an intrinsic motivation system was 
shown to allow for the progressive discovery of skills of increasing complexity, such 
as in the Playground Experiment that we will present in section 4. In these experi-
ments, the focus was on the study of how developmental stages could self-organize 
into a developmental trajectory of increasing complexity without a direct pre-
specification of these stages and their number. As we will explain in section 4, this 
can lead to stimulating models of the self-organization of structured developmental 
trajectories with both universal tendencies and diversity as observed in humans [60]. 
Furthermore, in this chapter, we argue that such intrinsic motivation systems can  
be used as efficient active learning algorithms. With this view, we present a novel 
system, called R-IAC, which improves IAC over a number of features. Through 
several experiments, we will show that it can be used as an efficient active learning 
algorithm to learn forward and inverse models in complex unprepared sensorimotor 
spaces with unlearnable subspaces. 

2   IAC and R-IAC for Intrinsically Motivated Active Learning 

2.1   Developmental Active Learning 

In IAC, intrinsic motivation is implemented as a heuristics which pushes a robot 
to explore sensorimotor activities for which learning progress is maximal, i.e. sub-
regions of the sensorimotor space where the predictions of the learnt forward 
model improve fastest [27]. Thus, this mechanism regulates actively the growth of 
complexity in sensorimotor exploration, and can be conceptualized as a develop-
mental active learning algorithm. This heuristics shares properties with statistical 
techniques in optimal experiment design (e.g. [37]) where exploration is driven by 
expected information gain, as well as with attention and motivation mechanisms 
proposed in the developmental psychology literature (e.g. [22], [38], or see [23] 
for a review) where it has been proposed that exploration is preferentially focused 
on activities of intermediate difficulty or novelty [39,40], but differs significantly 
from many active learning heuristics in machine learning in which exploration is 
directed towards regions where the learnt model is maximally uncertain or where 
predictions are maximally wrong (e.g. [41, 42], see [27] for a review). As argued 
in [27], developmental robots are typically faced with large sensorimotor spaces 
which cannot be entirely learnt (because of time limits among other reasons) 
and/or in which subregions are not learnable (potentially because it is too compli-
cated for the learner, or because there are no correlations between the input and 
output variables, see examples in the experiment section and in [27]). In these sen-
sorimotor spaces, exploring zones of maximal uncertainty or unpredictability is 
bound to be an inefficient strategy since it would direct exploration towards sub-
spaces in which there are no learnable correlations, while a heuristics based on 
learning progress allows to avoid unlearnable parts as well as to focus exploration 
on zones of gradually increasing complexity. 
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In [27, 34], experiments such as the Playground Experiment described in sec-

tion 4 showed how IAC can allow an AIBO robot, equipped with a set of parame-
terized motor primitives (in a 5 DOF motor space), as well as a set of perceptual 
primitives (in a 3 DOF perceptual space), to self-organize a developmental trajec-
tory in which a variety of affordances uses of the motor primitives where learnt in 
spite of not having been specified initially. In [36], a slightly modified version of 
IAC allowed an AIBO robot, equipped with parameterized central pattern genera-
tors (CPG’s) in a 24 DOF motor space and 3 DOF perceptual space, to learn a  
variety of locomotion skills. Yet, these previous results focused on qualitative 
properties of the self-organized developmental trajectories, and IAC was not  
optimized for efficient active learning per se. 

Here, we present a novel formulation of IAC, called Robust-IAC (R-IAC), 
and show that it can efficiently allow a robot to learn actively, fast and correctly 
forward and inverse kinematic models in an unprepared sensorimotor space. As 
we will explain, R-IAC introduces four main advances compared to IAC: 

• Probabilistic action selection: instead of choosing actions to explore 
the zone of maximal learning progress at a given moment in time (ex-
cept in the random action selection mode), R-IAC explores actions on 
sensorimotor subregions probabilistically chosen based on their indivi-
dual learning progress; 

• Multi-resolution monitoring of learning progress: in R-IAC, when 
sensorimotor regions are split into subregions, parent regions are kept 
and one continues to monitor learning progress in them, and they conti-
nue to be eligible regions for action selection. As a consequence, lear-
ning progress is monitored simultaneously at various regions scales, as 
opposed to IAC where it was monitored only in child regions and thus 
at increasing small scales; 

• A new region splitting mechanism that is based on the direct optimi-
zation of learning progress dissimilarity among regions; 

• The introduction of a third exploration mode hybridizing learning 
progress heuristics with more classic heuristics based on the exploration 
of zones of maximal unpredictability;   

2.2   Prediction Machine and Analysis of Error Rate 

We consider a robot as a system with motor/actions channels M and sensory/state 
channels S. M and S can be low-level such as torque motor values or touch sensor 
values, or higher level such as a “go forward one meter” motor command or “face 
detected” visual sensor”. Furthermore, S can correspond to internal sensors mea-
suring the internal state of the robot or encoding past values of the sensors. Real 
valued action/motor parameters are represented as a vector , and sensors, as 

, at a time t.  represents a sensorimotor context, i.e. the concatenation of 
both motors and sensors vectors.  

We also consider a Prediction Machine PM (Fig. 1), as a system based on  
a learning algorithm (neural networks, KNN, etc.), which is able to create a for-
ward model of a sensorimotor space based on learning examples collected through 
self-determined sensorimotor experiments. Experiments are defined as series of  
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actions, and consideration of sensations detected after actions are performed. An 
experiment is represented by the set , , and denotes the sen-
sory/state consequence S(t+1)  that is observed when actions encoded in M(t) are 
performed in the sensory/state context S(t). This set is called a “learning exem-
plar”. After each trial, the prediction machine PM gets this data and incrementally 
updates the forward model that it is encoding, i.e. the robot incrementally increas-
es its knowledge of the sensorimotor space. In this update process, PM is able to 
compare, for a given context  , differences between predicted sensations 

 (estimated using the created model), and real consequences S . It 
is then able to produce a measure of error , which represents the quality 
of the model for sensorimotor context . This is summarized in figure 1.  

 

 
 

Fig. 1 The prediction learning machine (e.g. a neural network, an SVM, or Gaussian 
process regression based algorithm). 

 
Then, we consider a module able to analyze learning evolutions over time, called 

Prediction Analysis Machine PAM, Fig. 2. In a given subregion  of the senso-
rimotor space (which we will define below), this system monitors the evolution of 
errors in predictions made my PM by computing its derivative, i.e. the learning 
progress,   in this particular region over a sliding time window (see 
Fig. 2).  is then used as a measure of interestingness used in the action selec-
tion scheme outlined below. The more a region is characterized by learning 
progress, the more it is interesting, and the more the system will perform experi-
ments and collect learning exemplars that fall into this region. Of course, as explo-
ration goes on, the learnt forward model becomes better in this region and learning 
progress might decrease, leading to a decrease in the interestingness of this region. 

To precisely represent the learning behavior inside the whole sensorimotor 
space and differentiate its various evolutions in various subspaces/subregions, dif-
ferent PAM modules, each associated to a different subregion  of the sensori-
motor space, need to be built. Therefore, the learning progress  provided as the 
output values of each PAM becomes representative of the interestingness of the 
associated region  . Initially, the whole space is considered as one single 
gion , associated to one PAM, which will be progressively split into subregions 
with their own PAM as we will now describe.  
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2.3   The Split Machine 

The Split Machine SpM (Fig. 3) possesses the capacity to memorize all the expe-
rimented learning exemplars , , and the corresponding errors val-
ues . It is both responsible for identifying the region and PAM  
 

 

 
 

Fig. 2 Internal mechanism of the Prediction Analysis Machine  associated to a given 
subregion  of the sensorimotor space. This module considers errors detected in predic-
tion by the Prediction Machine PM, and returns a value representative of the learning 
progress in the region. Learning progress is the derivative of errors analyzed between a far 
and a near past  in a fixed length sliding window. 

 

 
 

Fig. 3 General architecture of IAC and R-IAC. The prediction Machine is used to create a 
forward model of the world, and measures the quality of its predictions (errors values). 
Then, a split machine cuts the sensorimotor space into different regions, whose quality of 
learning over time is examined by Prediction Analysis Machines. Then, an Action Selection 
system, is used to choose experiments to perform. 
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corresponding to a given SM(t), but also responsible of splitting (or creating in R-
IAC where parent regions are kept in use) sub-regions from existing regions. 

1) Region Implementation 

We use a tree representation to store the list of regions as shown in Fig. 4. The 
main node represents the whole space, and leafs are subspaces.  and  are 
here normalized into [0;1]n. The main region (first node), called , represents the 
whole sensorimotor space. Each region stores all collected exemplars that it cov-
ers. When a region contains more than a fixed number Tsplit of exemplars, we split 
it into two ones in IAC, or create two new regions in R-IAC. Splitting is done 
with hyperplanes perpendicular to one dimension. An example of split execution 
is shown in Fig. 4, using a two dimensions input space. 

 

 
Fig. 4 The sensorimotor space is iteratively and recursively split into sub-spaces, called 
“regions”. Each region  is responsible for monitoring the evolution of the error rate in the 
anticipation of consequences of the robot’s actions, if the associated contexts are covered 
by this region. 

2) IAC Split Algorithm 

In the IAC algorithm, the idea was to find a split such that the two sets of exem-
plars into the two subregions would minimize the sum of the variances of  

 components of exemplars of each set, weighted by the number of exem-
plars of each set. Hence, the split takes place in the middle of zones of maximal 
change in the function   . Mathematically, we consider  ,   as the set of exemplars possessed by region . Let us de-
note  a cutting dimension and , an associated cutting value. Then, the split 
of into   and   is done by choosing  and   such that: 

 
(1) All the exemplars ,  of   have a component of 

         their  smaller than   
(2) All the exemplars ,  of   have a component of 

        their  greater than   
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(3) The quantity : ,  | |. | ,            | |. | ,      
      is minimal, where 

S ∑  ∑|S||S|  

 

where S is a set of vectors, and |S|, its cardinal. Finding the exact optimal split 
would be computationally too expensive. For this reason, we use the following 
heuristics for optimization: for each dimension , we evaluate  cutting values  equally spaced between the extrema values of  , thus we evaluate . | | 
splits in total, and the one with minimal ,  is finally chosen. This compu-
tationally cheap heuristics has produced acceptable results in all the experiments 
we ran so far. It could potentially be improved by allowing region splits cutting 
multiple dimensions at the same time in conjunction with a Monte-Carlo based 
sampling of the space of possible splits.    

 
3) R-IAC Split Algorithm 

In R-IAC, the splitting mechanism is based on comparisons between the learning 
progress in the two potential child regions. The principal idea is to perform the se-
paration which maximizes the dissimilarity of learning progress comparing 
the two created regions. This leads to the direct detection of areas where the learn-
ing progress is maximal, and to separate them from others (see Fig. 5). This con-
trasts with IAC where regions where built independently of the notion of learning 
progress. 

Reusing the notations of the previous section, in R-IAC the split of into   and   is done by choosing  and   such that: ,  | ,     | ,    

is maximal, where 

∑| | ∑| || || |  

 
Where  is a set of errors values  with errors indexed by their relative order 
i of encounter (e.g. error e(9) corresponds to a prediction made by the robot before  
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another prediction which resulted in e(10): this implies that the order of exemplars 
collected and associated prediction errors are stored in the system), and is 
the learning progress of region . The heuristics used to find an approximate 
maximal split is the same as the one described above for IAC.  

 
 

 
Fig. 5 Evolution of the sensorimotor regions over time. The whole space is progressively 
subdivided in such a way that the dissimilarity of each sub-region in terms of learning 
progress is maximal. 

2.4   Action Selection Machine 

We present here an implementation of Action Selection Machine ASM. The ASM 
decides of actions  to perform, given a sensory context . (See Fig. 3.). 
The ASM heuristics is based on a mixture of several modes, which differ between 
IAC and R-IAC. Both IAC and R-IAC algorithms share the same global loop in 
which modes are chosen probabilistically: 

 
Outline of the global loop of IAC and R-IAC algorithms: 

• Action Selection Machine ASM: given S(t), execute an action  using the 
mode (  with probability and based on data stored in the region tree, with ,  for IAC and , ,  for R-IAC; 

• Prediction Machine PM: Estimate the predicted consequence  using the 
prediction machine PM ; 

• External Environment: Measure the real consequence  
• Prediction Machine PM: Compute the error    ; 
• Update the prediction machine PM with ,  
• Split Machine SpM: update the region tree with ,  and 

; 
• Prediction Analysis Machine PAM: update evaluation of learning progress in 

the regions that cover ,  
We now present the different exploration modes used by the Action Selection Ma-
chine, in IAC and R-IAC algorithm: 
 
1) Mode 1: Random Babbling Exploration 

The random babbling mode corresponds to a totally random exploration (random 
choice of  with a uniform distribution), which does not consider previous  
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actions and context. This mode appears in both IAC and R-IAC algorithm, with a 
probability  typically equal to 30%.  
 

2) Mode 2: Learning Progress Maximization Exploration 

This mode, chosen with a probability  typically equal to 70%, aims to maxim-
ize learning progress, but with two different heuristics in IAC and R-IAC:  

IAC: In the IAC algorithm, mode 2 action selection is straightforward: among the 
leaf regions that cover the current state  (i.e. for which there exists a  such that  is in the region - there are typically many), the leaf region 
which learning progress is maximal is found, and then a random action within this 
region is chosen; 

 
R-IAC: In the R-IAC algorithm, we take into account the fact that many regions 
may have close learning progress values, and thus should be selected roughly 
equally often, by taking a probabilistic approach to region selection. This avoids 
the problems of a winner take-all strategy when the region splits do not reflect 
well the underlying learnability structure of the sensorimotor space. Furthermore, 
instead of focusing on the leaf regions like in IAC, R-IAC continues to monitor 
learning progress in node regions and select them if they have more learning 
progress: thus learning progress is monitored simultaneously at several scales in 
the sensorimotor space. Let us give more details: 

 

i) Probabilistic approach to region selection 
 

A region  is chosen among all eligible regions  (i.e. for which  
there exists a  such that  is in the region) with a probability   proportional to its learning progress , stored in the associated  :  

  | |∑ | || |  

 
j) Multi-resolution monitoring of learning progress 

 

In the IAC algorithm, the estimation of learning progress only happens in leaf 
regions, which are the only eligible regions for action selection. In R-IAC, 
learning progress is monitored in all regions created during the system’s life 
time, which allows us to track learning progress at multiple resolution in the 
sensorimotor space. This implies that when a new exemplar is available, R-
IAC updates the evaluation of learning progress in all regions that cover this 
exemplar (but only if the exemplar was chosen randomly, i.e. not with mode 3 
as described below). Because regions are created in a top-down manner and 
stored in a tree structure which was already used for fast access in IAC, this 
new heuristics does not bring computational overload and can be implemented 
efficiently.  
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In R-IAC mode 2, when a region has been chosen with the probabilistic ap-
proach and the multi-resolution scheme, a random action is chosen within this  
region with a probability  typically equal to 60%, (which means this is the do-
minant mode. 

 
 

3) Mode 3: Error Maximization Exploration 

Mode 3 combines a traditional active learning heuristics with the concept of learn-
ing progress: in mode 3, a region is first chosen with the same scheme as in  
R-IAC mode 2. But once this region has been chosen, an action in this region is 
selected such that the expected error in prediction will be maximal. This is cur-
rently implemented through a k-nearest neighbor regression of the function   1  which allows finding the point of maximal error, to which is 
added small random noise (to avoid to query several times exactly the same point). 
Mode 3 is typically chosen with a probability  10% in R-IAC (and does not 
appear in IAC).  

2.5   Pseudo-code of R-IAC 

RIAC( , ,  ,  , , , η, , ,  

 
Init 

• Let  be the whole space of mathematically possible values of the sen-
sorimotor context SM(t) (typically a hypercube in ; 

• Let  be the learning progress associated to  ; 
• Let  } (later on in the algorithm,  will be the set  , , ,  where the set of ,

 components is the set of learning examplars collected in  , the set 
of  components is the set of associated prediction errors, and  
is an indice whose value indicates the relative order in which each partic-
ular learning examplar was collected within   ); 

• Init the prediction/learning machine PM with an empty set of learning 
exemplars; 

Loop 
 
Let S(t) be the current state; 
Let  ,  , … ,   be the set of subregions  of the sensorimotor space 

    such that there exists a M(t) such that SM(t)  ; 
For all n, let  be the learning progress associated to  ; 
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Action Selection 
 

• Select action selection mode mode among mode 1, mode 2 and mode 3 with 
probabilities  ,  ,  ; 

• If mode = mode 1 
o Let M(t) be a random vector (uniform distribution) 

• If mode = mode 2 
o For 0 … , 
 let ∑| |   

o Let  be a subregion in  chosen with probability  ,  0, … ,  in 
a roulette wheel manner ; 

o Let M(t) be a random vector such that   (uniform distribu-
tion); 

• If mode = mode 3 
o For 0 … , 
 let ∑| |  

o Let  be a subregion in  chosen with probability  ,  0, … , in 
a roulette-wheel manner ; 

o Let  be a model of the errors made in prediction in  in the past, 
built with a  -nearest neighbor algorithm on the last η learning examplars 
collected in  , belonging to  ; 

o Let Mmax(t) =   obtained by sampling un-
iformly randomly  candidates M(t) ; 

o Let M(t) = Mmax(t) +  with  a small random number between 0 and σ 
along a uniform distribution. 

• Execute M(t) ; 
 

 
 
Prediction and measurement of the consequences of action 
 

• Estimate the predicted consequence  of executing  in the environ-
ment with state S(t) using the prediction machine PM ; 

• Measure the real consequence  after execution of  in the environ-
ment with state S(t); 

• Compute the error   ; 

• Update the prediction machine PM with the new learning 
plar , ; 
 
 



Intrinsically Motivated Exploration for Developmental 119
 

Update of region models 
 

• Let Ex , ,  
• Let  be the total number of regions created by the system so far; 
• For all regions  such that SM(t)   

o Let  be the maximum   index in  ; 
o    +  , , ,  where  is an indice used to keep track of the order in which this learning exam-

plar was stored in relation to others (see below); 
o If card(    
Create two new regions  and  as subregions of   with , a 

cutting dimension and , an associated cutting value optimized through 
random uniform sampling of  possible candidates and such that: 
1.    is initialized with all the elements in  that have a 

component of their  smaller than  ;  
2.   is initialized with all the elements in  that have a 

component of their  greater than  ; 
3. The difference between learning progresses   and  measured in both subregions is maximal, i.e. 

 | , , ,     | , , ,  
  

is maximal, where errors are indexed by their relative order of measure-
ment   calculated from  values where ∑ ∑

 

 
where  defines the time window used to compute learning progress 

achieved through the acquisition of most recent learning examplars in 
each region; 

o Store the learning progresses   and  of the two newly created regions; 
o γ  γ + 1 

• For all regions  such that SM(t)   (except  and   if a split was 
performed), recompute  and store the value; 

  
EndLoop 
 

2.6   Software 
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2.6   Software 

An open-source Matlab-based software library containing the source code of the 
IAC and R-IAC algorithms, as well as tools and a tutorial that allow to reproduce 
all experiments presented in sections IV and V below is made publicly available 
at: http://flowers.inria.fr/riac-software.zip 

2.7   Remarks  

Regulation of the growth of complexity. As argumented in detail in [28], the 
heuristics consisting in preferentially exploring subregions of the sensorimotor 
space where learning progress is maximal has the practical consequence to lead 
the robot to explore zones of intermediate complexity/difficulty/contingency, 
which has been advocated by developmental psychologists (e.g. [22,23,38]) as be-
ing the key property of spontaneous exploration in humans. Indeed, subregions 
which are trivial to learn are quickly characterized by a low plateau in prediction 
errors, and thus become uninteresting. On the other end of the complexity spec-
trum, subregions which are unlearnable are characterized with a high plateau in 
prediction errors and thus are also quickly identified as uninteresting. In between, 
exploration first focuses on subregions where prediction errors decrease fastest, 
which typically correspond to lower complexity situations, and when these regions 
are mastered and a plateau is reached, exploration continues in more complicated 
subregions where large learning progress is detected.  

Key advances of R-IAC over IAC and robustness to potential inaccurate and 
large number of region splits. Among the various differences between IAC and 
R-IAC, the two most crucial ones are 1) the probabilistic choice of regions in R-
IAC as opposed to the winner take all strategy in IAC, and 2) the multiresolution 
monitoring of learning progress in R-IAC as opposed to the only lowest scale 
monitoring of IAC. The combination of these two innovations allows the system 
to cope with potentially inaccurate and supernumerary region splits. Indeed, a 
problem in IAC was that if for example one homogeneous region with high learn-
ing progress was split, the winner-take-all strategy typically biased the system to 
explore later on only one of the two subregions, which was very inefficient. Fur-
thermore, the more regions were split, which happened continuously given the 
splitting mechanism, the smaller they became, and because only child regions 
were monitored, exploration was becoming increasingly focused on smaller and 
smaller subregions of the sensorimotor space, which was also often quite ineffi-
cient. While the new splitting mechanism introduced in this paper allows the sys-
tem to minimize inaccurate splits, the best strategy to go around these problems 
was to find a global method whose efficiency depends only loosely on the particu-
lar region split mechanism. The probabilistic choice of actions makes the system 
robust to the potentially unnecessary split of homogeneous regions, and the multi-
resolution scheme allows the system to be rather insensitive to the creation of an 
increasing number of small regions.  
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3   The Prediction Machine: Incremental Regression Algorithms 
for Learning Forward and Inverse Models 

The IAC and R-IAC system presented above are mostly agnostic regarding the 
kind of learning algorithm used to implement the prediction machine, i.e. used to 
learn forward models. The only property that is assumed is that learning must be 
incremental, since exploration is driven by measures of the improvement of the 
learnt forward models as new learning examplars are collected. But among incre-
mental algorithm, methods based on neural networks, memory-based learning al-
gorithms, or incremental statistical learning techniques could be used [43]. This 
agnosticity is an interesting feature of the system since it constitutes a single me-
thod to achieve active learning with multiple learning algorithms, i.e. with mul-
tiple kinds of learning biases that can be peculiar to each application domain, as 
opposed to a number of statistical active learning algorithms designed specifically 
for particular learning methods such as support vector machines, Gaussian mixture 
regression, or locally weighted regression [41]. Nevertheless, what the robot will 
learn eventually will obviously depend both on IAC or R-IAC and on the capabil-
ities of the prediction machine/regression algorithm for which IAC/R-IAC drives 
the collection of learning exemplars.  

In robot learning, a particular important problem is to learn the forward and in-
verse kinematics as well as the forward and inverse dynamics of the body 
[44,45,46,47]. A number of regression algorithms have been designed and  
experimented in this context in the robot learning literature, and because a particu-
larly interesting use of IAC/R-IAC is for driving exploration for the discovery of 
the robot’s body, as it will be illustrated in the experiments in the next section (and 
was already illustrated for IAC in [27,36]), it is useful to look at state-of-the-art  
statistical regression methods for this kind of space. An important family of such 
algorithms is locally weighted regression [45], among which Locally Weighted 
Projection Regression (LWPR) has recently showed a strong ability to learn incre-
mentally and efficiently forward and inverse models in high-dimensional sensori-
motor spaces [46,45]. Gaussian process regression has also proven to allow for 
very high generalization performances [48]. Another approach, based on Gaussian 
mixture regression [49,3], is based on the learning of the joint probability distribu-
tion of the sensorimotor variables, instead of learning a forward or an inverse  
model, and can be used online for inferring specific forward or inverse models by 
well-chosen projections of the joint density. Gaussian mixture regression (GMR) 
has recently shown a number of good properties for robot motor learning in a series 
of real-world robotic experiments [3]. It is interesting to note that these techniques 
come from advances in statistical learning theory, and seem to allow significantly 
higher performances than for example approaches based on neural-networks [50]. 

Because it is incremental and powerful, LWPR might be a good basic predic-
tion algorithm to be used in the R-IAC framework for conducting robot experi-
ments. Yet, LWPR is also characterized by a high number of parameters which 
tuning is not straightforward and thus makes its use not optimal for repeated expe-
riments about IAC/R-IAC in various sensorimotor spaces. On the other hand, 
Gaussian processes and Gaussian mixture regression have much less parameters 
(only one parameter for GMR, i.e. the number of Gaussians) and are much easier 
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to tune. Unfortunately, they are batch methods which can be computationally very 
demanding as the dataset grows. Thus, they cannot be used directly as prediction 
machines in the IAC/R-IAC framework.  

This is why we have developed a regression algorithm, called ILO-GMR (In-
cremental Local Online Gaussian Mixture Regression) which mixes the ease of use 
of GMR with the incremental memory-based approach of local learning approach-
es. The general idea is to compute online local few-components GMM/GMR mod-
els based on the datapoints in memory whose values in the input point dimensions 
are in the vicinity of this input point. This local approach allows directly to take in-
to account any novel single datapoint/learning exemplar added to the database since 
regression is done locally and online. It can be done computationally efficiently 
thanks to the use of few GMM components, and crucially thanks to the use of an 
incremental approximate nearest neighbor algorithm derived from recent batch-
mode approximate nearest neighbor algorithms [51,52,53]. ILO-GMR has only two 
parameters: the number of components for local models, and a parameter that de-
fines the notion of local vicinity. Another feature of ILO-GMR is that given its  
incremental and online nature, with a single set of parameters it can in principle ap-
proximate and adapt efficiently to a high variety of mapping to be learnt that may 
differ significantly in their length scale and might require differ. The technical de-
tails and comparison of performances of the ILO-GMR algorithm will be presented 
in a future paper. Initial experiments to learn the forward kinematics of 6 to 10 
DOF’s robotic arms have shown that ILO-GMR (tuned with the optimal number of 
components and vicinity) allows to reach prediction performances in generalization 
slightly worse than GMR (tuned with the optimal number of components) but  sim-
ilar to LWPR (tuned with the experimentally optimal parameters), the difference 
between LWPR and ILO-GMR being that ILO-GMR is much easier to tune but 
slower in prediction due to its only computational of local joint density models. 
Yet, for the 10 DOF systems of our experiments, these prediction times  appear to 
be compatible with real-time control.  

Learning forward motor models is mainly useful if it can be re-used for robot 
control, hence for inferring inverse motor models [46,48]. This brings up difficult 
challenges since most robotic systems are highly redundant, which means that the 
mapping from motor targets in the task space to motor commands in the 
joint/articulatory space is not a function: one target may correspond to many mo-
tor articulatory commands. This is why learning directly inverse models with 
standards regression algorithm is bound to fail in redundant robots, since when 
asked to find an articulatory configuration that yields a given target configuration, 
it will typically output the mean of accurate solutions which is itself not an accu-
rate solutions. Fortunately, there are various approaches to go around this problem 
[46,48], and one of them is specific to the GMM/GMR approach [50], called the 
single component least square estimate (SLSE): because this approach encodes 
joint distributions rather than functions, redundancies are encoded in the GMM 
and inverse models can be computed by projecting the joint distribution on the 
corresponding output dimensions and then doing regression based only a the sin-
gle Gaussian component that gives the highest posterior probability at the given 
input point. This approach is readily applicable in ILO-GMR, which we have done 
for the hand-eye-clouds experiment described below.  
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4   Self-organizing Developmental Trajectories with IAC and 
Motor Primitives in the Playground Experiment 

In this section, we will present the Playground Experiment in which it is shown 
how the IAC system can drive the exploration and learning of motor primitives by 
an AIBO robot, and focus on the self-organization of behavioural developmental 
trajectories of increasing complexity. An extended presentation of these results is 
available in [27]. Further sections will then present experiments focused on the 
compared efficiency of IAC and R-IAC for active learning. 

The Playground Experiment setup involves a physical robot as well as a com-
plex sensorimotor system and environment. We use a Sony AIBO robot which is 
put on a baby play mat with various toys that can be bitten, bashed or simply vi-
sually detected (see figure 6). The environment is very similar to the ones in 
which two or three month old children learn their first sensorimotor skills, al-
though the sensorimotor apparatus of the robot is here much more limited. We 
have developed a web site which presents pictures and videos of this set-up: 
http://playground.csl.sony.fr/.  

4.1   Motor Primitives 

The robot is equipped initially with several parameterizable motor primitives that 
control its fore arms and its head. Its back legs are frozen such that it cannot walk 
around. There are three motor primitives: turning the head, bashing and crouch 
biting. Each of them is controlled by a number of real number parameters, which 
are the action parameters that the robot controls. The “turning head'' primitive is 
controlled with the pan and tilt parameters of the robot's head. The “bashing'' pri-
mitive is controlled with the strength and the angle of a whole leg movement (a 
lower-level automatic mechanism takes care of setting the individual motors con-
trolling the leg and takes care of choosing which leg –left or right- is used depend-
ing on the angle parameter). The “crouch biting'' primitive is a complex movement 
consisting in sequencing a crouching with the robot chest while opening the 
mouth, and then closing the mouth. It is controlled by the depth of crouching (and 
the robot crouches in the direction in which it is looking at, which is determined 
by the pan and tilt parameters). To summarize, choosing an action consists in set-
ting the parameters of the 5-dimensional continuous vector M(t): 

M(t)}  = (p, t, bs, ba, d) 

where p is the pan of the head, t the tilt of the head, bs  the strength of the bashing 
primitive, ba the angle of the bashing primitive, and d the depth of the crouching 
of the robot for the biting motor primitive. All values are real numbers between 0 
and 1, plus the value -1 which is a convention used for not using a motor primi-
tive: for example, M(t) =(0.3, 0.95, -1, -1, 0.29) corresponds to the combination of 
turning the head with parameters p=0.3 and t=0.95 with the biting primitive with 
the parameter d=0.29 but with no bashing movement. 

 



124 P.-Y. Oudeyer, A. Baranes, and F. Kaplan
 

 

Fig. 6. The Playground Experiment setup. 

4.2   Perceptual Primitives 

The robot is equipped with three high-level sensors/perceptual primitives based on 
lower-level sensors. The sensory vector S(t) is thus 3-dimensional: 

S(t)  = (Ov, Bi, Os) 

where: 

• Ov is the binary value of an object visual detection  sensor: It takes the 
value 1 when the robot sees an object, and 0 in the other case. In the 
playground, we use simple visual tags that we stick on the toys and are 
easy to detect from the image processing point of view;  

• Bi is the binary value of a biting sensor: It takes the  value 1 when the ro-
bot has something in its mouth and 0 otherwise. We use the cheek sensor 
of the AIBO; 

• Os is the binary value of an oscillation sensor: It takes the value 1 when 
the robot detects that there is something oscillating in front of it, and 0 
otherwise. We use the infra-red distance sensor of the AIBO to imple-
ment this high-level sensor. This sensor can detect for example when 
there is an object  that has been bashed in the direction of the robot's 
gaze, but can also  detect events due to human walking around the play-
ground (we do not control the environment). 

 



Intrinsically Motivated Exploration for Developmental 125
 

It is crucial to note that initially the robot knows nothing about sensorimotor af-
fordances. For example, it does not know that the values of the object visual detec-
tion sensor are correlated with the values of its pan and tilt. It does not know that 
the values of the biting or object oscillation sensors can become 1 only when bit-
ing or bashing actions are performed towards an object. It does not know that 
some objects are more prone to provoke changes in the values of the Bi and Os 
sensors when only certain kinds of actions are performed in their direction. It does 
not know for example that to get a change in the value of the oscillation sensor, 
bashing in the correct direction is not enough, because it also needs to look in the 
right direction (since its oscillation sensors are on the front of its head). These re-
marks allow us to understand easily that a random strategy will not be efficient in 
this environment. If the robot would do random action selection, in a vast majority 
of cases nothing would happen (especially for the Bi and Os sensors). 

4.3   The Sensorimotor Loop 

The mapping that the robot has to learn is: 

SM(t) = (p, t, bs, ba, d)  S(t+1) =(Ov’, Bi’,Os’) 

The robot is equipped with the IAC system. In this experiment, the sensorimotor 
loop is rather long: when the robot chooses and executes an action, it waits that all 
its motor primitives have finished their execution, which lasts approximately one 
second, before choosing the next action. This is how the internal clock for the IAC 
system is implemented in this experiment. On the one hand, this allows the robot 
to make all the measures  necessary for determining adequate values of (Ov, Bi, 
Os). On the other hand and most importantly, this allows the environment to come 
back to its ``resting state''. This means that environment has no memory: after an 
action has been executed by the robot, all the objects are back in the same state. 
For example, if the object that can be bashed has actually been bashed, then it has 
stopped oscillating before the robots tries a new action. This is a deliberate choice 
to have an environment with no memory: while keeping all the advantages, the 
constraints and the complexity of a physical embodiment, this makes that mapping 
from actions to perception learnable in a reasonable time. This is crucial if one 
wants to do many experiments (already in this case, each experiment lasts for 
nearly one day). Furthermore, introducing an environment with memory frames 
the problem of the maximization of internal reward within delayed reward rein-
forcement problems, for which there exists powerful and sophisticated techniques 
whose biases would certainly make the results more advanced but would make it 
more difficult to understand the specific impact and properties of the intrinsic  
motivation system. 

4.4   Results 

During an experiment we continuously measure a number of features which help 
us characterize the dynamics of the robot's development. First, we measure the 
frequency of the different kinds of actions that the robot performs in a given time 
window. More precisely: 
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• The percentage of actions which do not involve the biting and the bas-
hing motor primitive in the last 100 actions (i.e. the robot's action boils 
down to ``just looking'' in a given direction). 

• The percentage of actions which involve the biting motor primitive in the 
last 100 actions. 

• The percentage of actions which involve the bashing motor primitive; 

Then, we track the gaze of the robot and at each action measure if it is looking 
towards 1) the bitable object, or 2) the bashable object, or 3) no object. This is 
possible since from an external point of view we know where the objects are and 
so it is easy to derive the information from the head position.  

Third, we measure the evolution of the frequency of successful biting actions 
and the evolution of successful bashing actions. A successful biting action is de-
fined as an action which provokes a ``1'' value on the Bi sensor (an object has  
actually be bitten). A successful bashing action is defined as an action which pro-
vokes an oscillation in the Os sensor. 

 
Fig. 7 Curves describing a run of the Playground Experiment.  

Top 3: Frequencies for certain action types on windows 100 time steps  wide. 
Mid 3: Frequencies of gaze direction towards certain objects in windows 200 time steps 

wide: “object 1'' refers to the bitable object, and “object 2'' refers to  the bashable object.  
Bottom 3: Frequencies of successful bite ans successful bash in windows 200 time steps 

wide. 
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Figure 7 shows an example of result, showing the evolution of the three kinds 
of measures on three different levels. A striking feature of these curves is the for-
mation of sequences of peaks. Each of these peaks means basically that at the 
moment it occurs the robot is focusing its activity and its attention on a small sub-
set of the sensorimotor space. So it is qualitatively different from random action 
performance in which the curves would be stationary and rather flat. By looking in 
details at these peaks and at their co-occurence (or not) within the different kinds 
of measures, we can make a description of the evolution of the robot's behaviour. 
On figure 7, we have marked a number of such peaks with letters from A to G. We 
can see that before the first peak, there is an initial phase during which all actions 
are produced equally often, that most often no object is seen, and that a successful 
bite or bash only happens extremely rarely. This corresponds to a phase of random 
action selection. Indeed, initially the robot categorizes the sensorimotor space us-
ing only one big region (and so there is only one category), and so all actions in 
any contexts are equally interesting. Then we observe a peak (A) in the “just 
looking'' curve: this means that for a while, the robot stops biting and bashing, and 
focuses on just moving its head around. This means that at this point the robot has 
split the space into several regions, and that a region corresponding to the senso-
rimotor loop of ``just looking around'' is associated to the highest learning 
progress from the robot's point of view. Then, the next peak (B) corresponds to a 
focus on the biting action primitive (with various continuous parameters), but it 
does not co-occur with the looking towards the bitable object. This means that the 
robot is trying to bite basically in all directions around him : it did not discover yet 
the affordances of the biting actions with particular objects. The next peak (C) cor-
responds to a focus on the bashing action primitive (with various continuous pa-
rameters) but again the robot does not look towards a particular direction. As the 
only way to discover that a bashing action can make an object move is by looking 
in the direction of this object (because the IR sensor is on the cheek), this means 
that the robot does not use at this point the bashing primitive with the right affor-
dances. The next peak (D) corresponds to a period within which the robot stops 
again biting and bashing and concentrates on moving the head, but this times we 
observe that the robot focuses these ``looking'' movement in a narrow part of the 
visual field : it is basically looking around one of the objects, learning how it dis-
appears/reappears in its field of view. Then, there is a peak (E) corresponding to a 
focus on the biting action, which is this time coupled with a peak in the curve 
monitoring the looking direction towards the bitable object, and a peak in the 
curve monitoring the success in biting. It means that during this period the robot 
uses the action primitive with the right affordances, and manages to bite the bita-
ble object quite often. This peak is then repeated a little bit later (F). Then finally a 
co-occurrence of peaks (G) appears that corresponds to a period during which the 
robot concentrates on using the bashing primitve with the right affordances, man-
aging to actually bash the bashable object quite often.  

This example shows that several interesting phenomena have appeared in this 
run of the experiment. First of all, the presence and co-occurrence of peaks of var-
ious kinds shows a self-organization of the behavior of the robot, which focuses 
on particular sensorimotor loops at different periods in time. Second, when we  
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observe these peaks, we see that they are not random peaks, but show a progres-
sive increase in the complexity of the behaviour to which they correspond. Indeed, 
one has to remind that the intrinsic dimensionality of the “just looking'' behaviour 
(pan and tilt) is lower than the “biting'' behaviour (which adds the depth of the 
crouching movement), which is itself lower than the “bashing'' behaviour (which 
adds the angle and the strength dimensions). The order of appearance of the pe-
riods within which the robot focuses on one of these activities is precisely the 
same. If we look in more details, we also see that the biting behaviour appears first 
in a non-affordant version (the robot tries to bite things which cannot be bitten), 
and then only later in the affordant version (where it tries to bite the biteable ob-
ject). The same observation holds for the bashing behaviour: first it appears  
without the right affordances, and then it appears with the right affordances. The 
formation of focused activities whose properties evolve and are refined with time 
can be used to describe the developmental trajectories that are generated in terms  
 

 
Fig. 8 Various runs of the simulated experiments. In the top squares, we observe two typi-
cal developmental trajectories corresponding to the ``complete scenario'' described by 
measure 1. In the bottom curve, we observe rare but existing developmental trajectories. 
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of stages: indeed, one can define that a new stage begins when a co-occurence of 
peaks that never occured before happens (and so which denotes a novel kind of 
focused activity). 

We ran several times the experiment with the real robots, and whereas each 
particular experiment produced curves which were different in the details, it 
seemed that some regularities in the patterns of peak formation, and so in terms of 
stage sequences, were present.  We then proceeded to more experiments in order 
to assess precisely the statistical properties of these self-organized developmental 
trajectories. Because each experiment with the real robot lasts several hour, an in 
order to be able to run many experiments (200), we developed a model of the ex-
perimental set-up. Thanks to the fact that the physical environment was memory-
less after each action of the robot, it was possible to make an accurate model of it 
using the following procedure: we let the robot perform several thousands actions 
and we recorded each time SM(t) and S(t+1). Then, from this database of exam-
ples we trained a prediction machine based on locally weighted regression. This 
machine was then used as a model of the physical environment and the IAC algo-
rithm of the robot was directly plugged into it.  

Using this simulated world set-up, we ran 200 experiments, each time monitor-
ing the evolution using the same measures as above. We then constructed higher-
level measures about each of the runs, and based on the structure of the peak  
sequence. Peaks where here defined using a threshold on the height and width  
of the bumps in the curves. These measures correspond to the answer to these  
following questions: 

• (Measure 1) Number of peaks?: How many peaks are there in the action 
curves (top curves) ?   

• (Measure 2) Complete scenario?: Is the following developmental scena-
rio matched:  first there is a “just looking'' peak, then there is a peak cor-
responding to “biting'' with the wrong affordances which appears before 
a peak corresponding to “biting'' with the right affordances, and there is a 
peak corresponding to “bashing'' with the wrong affordances which ap-
pears before a peak corresponding to “bashing'' with the right affordance 
(and the relative order between “biting''-related peaks and “bashing''-
related peaks is ignored). Biting with the right affordance is here defined  
as the co-occurence between a peak in the “biting'' curve and a peak in 
the “seeing the biteable object'' curve, and biting with the wrong affor-
dances is defined as all other situations. The corresponding definition ap-
plies to “bashing''. 

• (Measure 3) Nearly complete scenario?: Is the following less constrai-
ned developmental scenario matched:  there is a peak corresponding to 
“biting'' with the wrong affordances which appears before a peak corres-
ponding to “biting'' with the right affordances, and there is a peak corres-
ponding to “bashing'' with the wrong affordances which appears before a 
peak corresponding to “bashing'' with the right affordances (and the rela-
tive order between “biting''-related peaks and “bashing''-related peaks is 
ignored).  
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• (Measure 4) Non-affordant bite before affordant bite?: Is there is a 
peak corresponding to “biting'' with the wrong affordances which  ap-
pears before a peak corresponding to “biting'' with the right affordances? 

• (Measure 5) Non-affordant bash before affordant bash?:  there is a 
peak corresponding to “bashing'' with the wrong affordances which ap-
pears before a peak corresponding to “bashing'' with the right affor-
dances? 

• (Measure 6) Period of systematic successful bite?: Does the robot suc-
ceeds systematically in biting often at some point  (= is there a peak in 
the “successful bite'' curve)? 

• (Measure 7) Period of systematic successful bash?: Does the robot suc-
ceeds systematically in bashing often at some point  (= is there a peak in 
the “successful bash'' curve? 

• (Measure 8) Bite before bash?: Is there a focus on biting which appears 
before a focus on bashing (independantly of affordance) ? 

• (Measure 9) Successful bite before successful bash?: Is there a focus on 
successfully biting which appear before a focus on successfully bashing ? 

 
Table 1 Statistical measures on the 200 simulation-based experiments. 

 

 
 
The numerical results of these measures are summarized in table 1. This table 

shows that indeed some structural and statistical regularities arise in the self-
organized developmental trajectories. First of all, one has to note that the complex 
and structured trajectory described by Measure 2 appears in 34 percent of the cas-
es, which is high given the number of possible co-occurences of peaks which  
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define a combinatorics of various trajectories. Furthermore, if we remove the test 
on “just looking'', we see that in the majority of experiments, there is a systematic 
sequencing from non-affordant to affordant actions for both biting and bashing. 
This shows an organized and progressive increase in the complexity of the beha-
viour. Another measure confirms this increase of complexity from another point of 
view: if we compare the relative order of appearance of periods of focused bite or 
bash, then we find that “focused bite'' appears in the large majority of the cases be-
fore  the “focused bash'', which corresponds to their relative intrinsic dimension (3 
for biting and 4 for bashing). Finally, one can note that the robot reaches in 100 
percent of the experiments a period during which it repeatedly manages to bite the 
biteable object, and in 78 percent  of the experiments it reaches a period during 
which it repeatedly manages to bash the bashable object. This last point is interest-
ing since the robot was not pre-programmed to achieve this particular task.  

These experiments show how the intrinsic motivation system which is imple-
mented (IAC) drives the robot into a self-organized developmental trajectory in 
which periods of focused sensorimotor activities of progressively increasing com-
plexity arise. We have seen that a number of structural regularities arose in the 
system, such as the tendency of non-affordant behaviour to be explored before af-
fordant behaviour, or the tendency to explore a certain kind of behaviour (bite) be-
fore another kind (bash). Yet, one has also to stress that these regularities are only 
statistical: two developmental trajectories are never exactly the same, and more  
importantly it happens that some particular trajectories observed in some experi-
ments differ qualitatively from the mean. Figure 8 illustrate this point. The figures 
on the top-left and top-right corners presents runs which are very typical and cor-
responds to the “complete scenario''  described by Measure 1. On the contrary, the 
runs presented on the bottom-left and bottom-right corners corresponds to atypical 
results. The experiment of which curves are presented in the  bottom-left corner 
shows a case where the focused exploration of  bashing was performed before the 
focused exploration of biting. Nevertheless, in this case the regularity “non-
affordant before affordant'' is preserved. On the bottom-right corner, we observe a 
run in which the affordant bashing activity appears very early and before any other 
focused activity. This balance between statistical regularities and diversity has 
parallels in infant sensorimotor development [60]: there are some strong structural 
regularities but from individual to individual there can be some substantial differ-
ences (for e.g. some infants learn how to crawl before they can sit and other do the 
reverse). 

5   Experimenting and Comparing R-IAC and IAC with a 
Simple Simulated Robot 

In this section, we describe the behavior of the IAC and R-IAC algorithms in a 
simple sensorimotor environment that allows us to show visually significant  
qualitative and quantitative differences, as well as compare them with random  
exploration.   
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5.1   Robotics Configuration 

We designed a simulated mechanical system, using the Matlab robotics toolbox 
[54]. It consists of a robotic arm using two degrees of freedom, represented by the 
two rotational axes  ,  as shown on figure 6.  The upper part of the arm has 
been conceived as a bow, which creates a redundancy in the system: for each posi-
tion and orientation of the tip of the arm, there are two corresponding possible ar-
ticulatory/joint angle configurations.   

This system’s sensory system consists in a one-pixel camera, returning an inten-
sity value , set on its extremity as shown on figure 8. The arm is put in a cubic 
painted environment , whose wallpapers are visible to the one-pixel camera, ac-
cording to articulatory configurations. 

Intensity values measured by the cameras are consequences of both environment 
 and rotational axes  , . So, we can  describe the system input/output map-

ping with two input dimensions, and one output as: ,  

Thus, in this system the mapping to be learnt is state independent since here tra-
jectories are not considered (only end positions are measured) and the perceptual 
result of applying motor joint angle commands does not depend on the starting 
configuration.  

5.2   Environment Configuration 

The front wall consists of an increasing precision checker (Fig. 10), conceived with 
a black and white pattern. The designed ceiling contains animated wallpaper with 
white noise, returning a random value to the camera when this one is watching up-
ward bound. Finally, other walls and ground are just painted in white (Fig. 9). 

The set up of the system is such that we can sort three kinds of subregions in 
the sensorimotor space: 

• The arm is positioned such that the camera is watching the front wall: for most 
learning algorithm, this subregion is rather difficult to learn with an increasing 
level of complexity from left to right (on fig. 7). This feature makes it particu-
larly interesting to study whether IAC or R-IAC are able to spot these proper-
ties and control the complexity of explored sub-subregions accordingly. 

• The arm is positioned such that the camera is watching the ceiling: the meas-
ured intensity values are random, and thus there are no correlations between 
motor configurations and sensory measures. Hence, once a few statistical prop-
erties of the sensory measures have potentially been learnt (such as the mean), 
nothing more can be learnt and thus no learning progress can happen. 

• The arm is positioned such that a white wall is in front of the camera: the meas-
ured intensity value is always 0, so the input/output correlation is trivial. Thus, 
after it has been learnt that intensity values are constant in this area, nothing can 
be further learnt.  
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Fig. 9 Representation of a 2 axes arm, with a one pixel camera mounted on its extremity. 
This arm is put in the center of a cubic room, with different painted walls of different  
complexities. 

 

 
 

Fig. 10 Wallpaper disposed in the front wall. For many learning algorithms, the complexity 
increases from left to right. 

 
Because the system has just two motor dimensions and one sensory dimension, 

it can be visualized using a 2D projection on a plane such as in figure 11. This 
projection shows a central vertical zone corresponding to the dynamic noise pro-
jected on the ceiling. Then, we can easily distinguish the front wall, represented on 
both sides of the noisy area, because of the redundancy of the arm. The remaining 
white parts correspond to other walls and the floor.  
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Fig. 11 2D visualization of the sensorimotor space of the robot, with two motor dimensions 
one sensory dimension. 

5.3   Results: Exploration Areas 

First, it is interesting to perform qualitative comparisons of the exploration beha-
vior generated by random exploration, IAC exploration and R-IAC exploration 
methods. 

For each exploration method, the system is allowed to explore its sensorimotor 
space through 20000 sensorimotor experiments, i.e. it is allowed to collect 20000 
learning exemplars. During each run of a given method, every 2000 sensorimotor 
experiments made by the system one computes a 2D smoothed histogram 
representing the distribution of explored sensorimotor configurations in the last 
500 sensorimotor experiments. This allows us to visualize the evolution of the ex-
ploration focus, over time, for each system.  

Random exploration obviously leads to a flat histogram.  
Fig. 12 presents typical results obtained with R-IAC (on the left) and IAC (on 

the right), on a grey scale histogram where darker intensities denote low explora-
tion focus and lighter intensities denote higher exploration focus. First, we observe 
that R-IAC is focalizing on the front wall, containing the image of the checker, 
using its two possible redundant exploration positions. It avoids the region which 
contains the white noise, and also the regions just containing a white color. In con-
trast, we cannot observe the same accuracy to concentrate sensorimotor experi-
ments over interesting areas with the IAC exploration method. Here, the algorithm  
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Fig. 12 Evolution of the exploration focus when using R-IAC as an exploration heuristics 
(left) or IAC (right). Each square represents the smoothed distribution of explored motor 
configurations at different times in a given run and over a sliding time window.  Darker in-
tensities denote low exploration focus and lighter intensities denote higher exploration fo-
cus. We observe that R-IAC leads the system to explore preferentially motor configurations 
such that the camera is looking at the checkerboard, while avoiding zones that are trivial to 
learn or unlearnable zones. On the contrary, IAC is unable to organize exploration properly 
and “interesting” zones are much less explored. 
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is indeed avoiding the noise, but we cannot observe precisely some interest toward 
the front wall, and the system seems to find some things to learn in the back wall, 
as we can see, watching the bottom-right part of the two last images. 

The histograms in figure 12 were smoothed with a large spatial frequency filter 
to allow us to visualize well the global exploratory behavior. Nevertheless, it is al-
so interesting to use a smaller spatial frequency smoother in order to zoom in and 
visualize the details of the exploration behavior in the front wall region. Fig. 13 
shows a typical result obtained with R-IAC, just considering exemplars performed 
watching the front wall in the bottom-left side of the 2D projection. This sequence 
shows very explicitly that the system first focuses exploration on zones of lower 
complexity and progressively shifts its exploration focus towards zones of higher 
complexity. The system used is thus here able to evaluate accurately the different 
complexities of small parts of the world, and to drive the exploration based on this 
evaluation.   

5.4   Results: Active Learning 

We can now compare the performances of random exploration, IAC exploration 
and R-IAC exploration in terms of their efficiency for learning as fast as possible 
the forward model of the system. For the R-IAC method, we included here a ver-
sion of R-IAC without the multi-resolution scheme to assess the specific contribu-
tion of multi-resolution learning progress monitoring in the results.  

For each exploration method, 30 experiments were run in order to be able to 
measure means and standard deviations of the evolution of performances in gene-
ralization. In each given experiment, every 5000 sensorimotor experiment 
achieved by the robot, we freezed the system and tested its performances in gene-
ralization for predicting  from ,  on a test database generated beforehand  
 

 
 

Fig. 13 A zoom into the evolution of the distribution of explored sensorimotor experiments 
in one of the two subregions where the camera is looking at the checkerboard when R-IAC 
is used. We observe that exploration is first focused on zones of the checkerboard that have 
a low complexity (for the given learning algorithm), and progressively shifts towards zones 
of increasing complexity.  
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Fig. 14 Comparison of performances of the first and two new implementation of IAC, 
compared with the random exploration approach. 

and independently consisting of random uniform queries in the sensorimotor sub-
space where there are learnable input/output correlations (i.e. excluding the zone 
with white noise). Results are provided on figure 14. As we can easily observe, 
and as already shown in [27], using IAC leads to learning performances that are 
statistically significantly higher than with RANDOM exploration. Yet, as figure 
14 shows, results of R-IAC are statistically significantly much higher than IAC, 
and the difference between IAC and R-IAC is larger than between IAC and ran-
dom exploration. Finally, we observe that including the multi-resolution scheme 
into R-IAC provides a clear improvement over R-IAC without multi-resolution, 
especially in the first half of the exploration trajectory where inappropriate or too 
early region splits can slow down the efficiency of exploration if only leaf regions 
are taken into account for region selection.    

6   The Hand-Eye-Clouds Experiment 

We will now compare the performances of IAC and R-IAC as active learning al-
gorithms to learn a forward model in a more complex 6-dimensional robotic sen-
sorimotor space that includes large unlearnable zones. Both algorithms will also 
be compared with baseline random exploration. 

6.1   Robotics Configuration 

In this experiment, a simulated robot has two 2-D arms, each with two links and two 
revolute joints whose angles are controlled by motor inputs  ,  ,  ,   
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Fig. 15 Experimental setup. The 2D robot has two arms, each with two links and two revo-
lute joints. At the tip of the right arm is rigidly attached a square camera/eye which can 
sense either the position of the tip of the other arm in its own referential X, Y  if it is above 
it, but which can also sense the position of randomly moving clouds when the right arm 
motor configuration is such that the camera is looking over the top grey area (the « win-
dow »). When the camera senses something, the robot does not know initially whether this 
corresponds to the tip of its left arm or to a cloud. In subregions corresponding to the first 
alternative, the motor/sensor mapping is correlated and a lot can be learnt. In subregions 
corresponding to the second alternative, there are no correlations between motors and sen-
sors and nothing can be learnt except some basic statistical properties of the random 
movement of clouds. There is a third alternative, which actually happens most of the time if 
the joint space is sampled randomly: the camera looks below the window but does not see 
its left arm tip. In this very large subregion, the motor to sensor mapping is trivial. 

 

(see figure 15). On the tip of one of the two arms is attached a square camera ca-
pable to detect the sensory position ( ,  of point-blobs relative to the square. 
These point-blobs can be either the tip of the other arm or clouds in the sky (see 
figure 15). This means that when the right arm is positioned such that the camera 
is over the clouds, which move randomly, the relation between motor configura-
tions and perception is quasi-random. If on the contrary the arms are such that the 
camera is on top of the tip of the other arm, then there is an interesting sensorimo-
tor relationship to learn. Formally, the system has the relation: , ,  ,  ,  
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where ( ,  is computed as follows:   

(1) The camera is placed over the white wall: nothing has been detected: ,  (-10, -10); 
(2) The camera is on top of the left hand: the value ,  of the relative posi-

tion of the hand in the camera referential  is taken. According to the 
camera size, the x and y values are in the interval [0; 6]; 

(3) The camera is looking at the window: Two random values ,  playing 
the role of random clouds displacement are chosen for output. The inter-
val of outputs corresponds to camera size. 

(4) The camera is looking at the window and sees both hand and cloud: the 
output value ,  is random, like if just a cloud had been detected. 

 

This setup can be thought to be similar to the problems encountered by infants 
discovering their body: they do not know initially that among the blobs moving in 
their field of view, some of them are part of their “self” and can be controlled, 
such as the hand, and some other are independent of the self and cannot be con-
trolled (e.g. cars passing in the street or clouds in the sky). 

Thus, in this sensorimotor space, the “interesting” potentially learnable sub-
space is next to a large unlearnable subspace, and also next to a large very simple 
subspace (when the camera is looking neither to the clouds not to the tip of the 
other arm).  

6.2   Results 

In these experiments, the parameters of IAC and R-IAC are 250, the 
learning progress window is 50,   = 0.3,  0.6,  0.1. Experiments span 
a duration of  100000 sensorimotor experiments. The incremental learning algo-
rithm that is used to learn the forward model is the ILO-GMR system described in 
section 3.  

A first study of what happens consists in monitoring the distance between the 
center of the eye (camera), and the hand (tip of the other arm). A small distance 
means that the eye is looking the hand, and a high, that it is focusing on clouds 
(noisy part) or on the white wall. Fig. 16 shows histograms of these distances. We 
first observe the behavior of the Random exploration algorithm. The curve shows 
that the system is, in majority, describing actions with a distance of 22, corres-
ponding to the camera looking at clouds or at the white wall. Interestingly, the 
curve of the IAC algorithm is similar but slightly displaced towards shorter dis-
tance: this shows that IAC pushed the system to explore the “interesting” zone a 
little more.  We finally observe that RIAC shows a large difference with both 
IAC and random exploration: the system spends three times more time in a dis-
tance inferior to 8, i.e. exploring sensorimotor configurations in which the camera 
is looking at the other arm’s tip. Thus, the difference between R-IAC and IAC is 
more important than the difference between IAC and random exploration. 

Then, we evaluated the quality of the learnt forward model using the three 
exploration algorithms. We considered this quality in two respects: 1) the 
capability of the model to predict the position of the hand in the camera given 
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Fig. 16 Mean distributions of hand-center of eye distances when exploration is random, 
guided by IAC, or guided by R-IAC. We observe that while IAC pushes the system to ex-
plore slightly more than random exploration the zones of the sensorimotor space where the 
tip of the left arm is perceived by the camera or near the camera, R-IAC is significantly 
more efficient than IAC for driving exploration in the “interesting” area.  

 
 

motor configurations for which the hand is within the field of view of the robot; 2) 
the capacity to use the forward model to control the arm: given a right arm 
configuration and a visual objective, we tested how far the forward model could 
be used to drive the left arm to reach this visual objective with the left hand.The 
first kind of evaluation was realized by first building independantly a test database 
of 1000 random motor configurations for which the hand is within the field of 
view, and then  using it for testing the learnt models built by each algorithm at 
various stages of their lifetime (the test consisted in predicting the position of the 
hand in the camera given joint configurations). Thirty simulations were run, and 
the evolution of mean prediction errors is shown on the right of figure 17. The 
second evaluation consisted in generating a set of , ,  , |0  0  values that are possible given the morphology of the robot, and then 
use the learnt forward models to try to move the left arm, i.e. find  ,  to 
reach the ,  objectives corresponding to particular  ,  values. Control 
was realized through inferring an inverse models using ILO-GMR as presented in 
section 3. The distance between the reached point and the objective point was each 
time measured, and results, averaged over 30 simulations, are reported in the left 
graph of figure 17. 
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Fig. 17 Left: evolution of performances in control based on the forward model learnt 
through Random, IAC, and R-IAC exploration heuristics, averaged over 30 simulations. 
Right : evolution of the generalization capabilities of the learnt forward model with 
Random, IAC, and R-IAC explo., av. over 30 simulations.  

 

 
 
Fig. 18 Examples of performances obtained in control. The first row corresponds to goals 
fixed. Here, values fixed are the joints of the right hand, and the position in the referential 
of its eye. The challenge consists of reaching the target (position fixed in the eye) with the 
left arm. 
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Both curves on figure 17 confirm clearly the qualitative results of the previous 
figure: R-IAC outperforms significantly IAC, which is only slighlty better than 
random exploration. We have thus shown that R-IAC is much more efficient in 
such an example of complex inhomogeneous sensorimotor space. We also illus-
trate on figure 18 configurations obtained, considering fixed goals , ,  , , and estimated positioning of the left hand.  

7   Conclusion 

In this chapter, we have presented two computational intrinsic motivation systems, 
IAC and R-IAC, that share substantial properties with human intrinsic motivation 
systems. As for humans, we have shown that they can be successfully used to self-
organize complex sensorimotor developmental trajectories in learning robots, with 
the formation of stages of increasing complexity. This opens in return new 
modelling insigths to understand better developmental dynamics in humans [27]. 
Furthermore, thanks to their capacity to actively regulate the growth of complexity 
in the exploration process, we have shown that these systems can also be very 
efficient to drive the motor learning of forward and inverse models in spaces 
which contain large subregions that are either trivial or unlearnable. For this kind 
of sensorimotor spaces, typically encountered by developmental robots, we have 
explained why these intrinsic motivation systems, which we may call 
developmental active learning systems, will be much more efficient than more 
traditional active learning heuristics based on the maximization of uncertainty or 
unpredictability.  

Furthermore, we have introduced a novel formulation of IAC, called R-IAC, 
and shown that its performances as an intrinsically motivated active learning 
algorithm were far superior to IAC in a complex sensorimotor space where only a 
small subspace was interesting. We have also shown results in which the learnt 
forward model was reused in a control scheme.  

Further work will study extensions of the current results in several directions. 
First, experiments with R-IAC presented in this chapter were achieved in simulated 
robots. In spite of the fact that IAC was already evaluated in high-dimensional real 
robotic systems [27,36,34], these experiments were focusing on the self-
organization of patterns in developmental trajectories. Evaluating IAC and R-IAC 
as active learning methods in high-dimensional real sensorimotor robotic spaces 
remains to be achieved. Second, both IAC and R-IAC heuristics could also be 
conceptualized as mechanisms for generating internal immediate rewards that could 
serve as a reward system in a reinforcement learning framework, such as for 
example in intrinsically motivated reinforcement learning [28,33,35]. Leveraging 
the capabilities of advanced reinforcement learning techniques for sequential action 
selection to optimize cumulated rewards might allow IAC and R-IAC to be 
successfully applied in robotic sensorimotor spaces where dynamical information 
is crucial, such as for example for learning the forward and inverse models of a 
force controlled high-dimensional robot, for which guided exploration has been 
identified as a key research target for the future [47,48].  
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Also, as argued in [55], it is possible to devise “competence-based” intrinsic 
motivation systems in which the measure of interestingness characterizes goals in 
the task space rather than motor configurations in the motor/joint space such as in 
knowledge-based intrinsic motivation systems like IAC or R-IAC. We believe 
that a competence based version of R-IAC would allow us to increase signifi-
cantly exploration efficiency in massively redundant sensorimotor spaces. Finally, 
an issue of central importance to be studied in the future is how intrinsically moti-
vated exploration and learning mechanisms can be fruitfully coupled with social 
learning mechanisms, which would be relevant not only for motor learning 
[56,57,58], but also for developmental language learning grounded in sensorimo-
tor interactions [59].  
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Learning to Exploit Proximal Force
Sensing: A Comparison Approach

Matteo Fumagalli, Arjan Gijsberts, Serena Ivaldi, Lorenzo Jamone,
Giorgio Metta, Lorenzo Natale, Francesco Nori, and Giulio Sandini

Abstract. We present an evaluation of different techniques for the estimation
of forces and torques measured by a single six-axis force/torque sensor placed
along the kinematic chain of a humanoid robot arm. In order to retrieve the
external forces and detect possible contact situations, the internal forces must
be estimated. The prediction performance of an analytically derived dynamic
model as well as two supervised machine learning techniques, namely Least
Squares Support Vector Machines and Neural Networks, are investigated on
this problem. The performance are evaluated on the normalized mean square
error (NMSE) and the comparison is made with respect to the dimension of
the training set, the information contained in the input space and, finally,
using a Euclidean subsampling strategy.

Keywords: Force sensing, machine learning, humanoid robotics.

1 Introduction

Emerging applications require robots to act safely in dynamic, unstructured
environments. In order to avoid damaging the robot and the surrounding
environment (physical objects and/or interacting agents), special sensors are
usually applied to detect contact situations [21, 1]. Classical approaches to
manipulation exploit a force/torque (FT) sensor placed on the end-effector,
where most of the interactions occur. External forces acting on the other
parts of the arm, however, cannot be measured with this configuration. Fur-
thermore, it may not be feasible to put the sensor on the end-effector, due to
its size or weight. An alternative solution is to place the sensor at the base of
the manipulator or along the kinematic chain (e.g. after the shoulder) [19, 6].
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In this case, the FT sensor measures both external and internal forces, the
latter being the ones depending on gravitational, Coriolis and inertial forces.
This solution allows the robot to detect interaction with the environment
not only on the end-effector (e.g. voluntarily touching or grasping an object),
but on the whole arm (e.g. hitting unexpected obstacles, being stopped by
a human agent during motion). In order to accurately detect the external
contribution of the forces, the manipulator dynamics must be compensated,
i.e. the internal forces must be known, modeled or estimated.

Multiple approaches can be used for the estimation of these internal forces.
Firstly, the functional estimation can be done using an analytical model de-
scribing the physics of the system, or at least its most significant properties.
Model-based estimation strongly relies on the availability of a (mathemati-
cal) model of the robot [20], and is recommended only if the kinematic and
dynamic parameters are known or identifiable with high accuracy. To this
purpose, rigid multi-body dynamic modeling is generally used and some or
all the parameters are identified [24] in order to improve the model accuracy.
Within this context, the overall model accuracy is primarily limited by the
(potentially nonlinear) effects which the model does not explicitly take into
account (e.g. gearbox backlash). Alternatively, supervised machine learning
approaches can be used to approximate the internal dynamic model from a set
of training examples. This approach may be preferred when explicitly mod-
eling all possible nonlinear effects is cumbersome [25]. The main drawback of
supervised learning methods is the need for collecting a rich and significant
training set. Furthermore, it may be necessary to perform the training phase
offline, due to the high computational requirements of these learning meth-
ods. In contrast, the model-based approach only needs to identify a small set
of significant parameters; this identification technique requires much fewer
data and computational resources and therefore can typically be performed
efficiently online.

In this chapter, we investigate an analytical model and two supervised ma-
chine learning methods (Least Squares Support Vector Machines and Feed-
forward Neural Networks) for the estimation of internal forces in a robotic
arm, which is equipped with a six-axis FT sensor inside the kinematic chain.
It seems reasonable to assume, however, that the results can be generalized
to similar problems in robotics (i.e. problems related to the estimation of the
dynamical parameters of a kinematic chain).

Firstly, we focus our attention on the amount of training data necessary to
obtain accurate predictions. The qualitative measure for the prediction is the
average Normalized Mean Square Error (NMSE) for the forces and torques
in three dimensions. In our framework, the minimum amount of external
forces that the robot can detect is proportional to the magnitude of this
estimation error; this value is critical in order to have safe interaction with the
environment. We expect machine learning methods to benefit from larger data
sets; on the other hand, model based techniques should be more insensitive
to the size of the training set.
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Fig. 1 The humanoid robot James.

Secondly, we pose our interest in understanding how the type of supplied
data influences the estimation error. In particular, we verify empirically the
usefulness of velocity and acceleration measurements when estimating (rela-
tively complex) dynamical models. This issue is particularly important in the
field of humanoid robotics, where smooth motions are usually preferred. As a
consequence, velocities and accelerations need to satisfy some smoothness re-
quirements, which prevent data from being completely random1. Therefore,
successfully exploiting velocity and acceleration data is difficult, especially
without specific sensors dedicated to their measurement.

At last, we analyze the effect of sampling distribution on the generaliza-
tion performance. This analysis can give information about the way training
data should be gathered or subsampled to practical dimensions from a larger
training set.

The chapter is organized as follows. In Section 2 the robotic platform
and the estimation problem are described. Section 3 describes three different
approaches for internal forces estimation: an analytical model with identified
parameters and the two machine learning methods. Experimental results are
reported and discussed in Section 4. Section 5 contains the conclusions.
1 Typical identification techniques make strong assumptions on the supplied data

set. Machine learning techniques assume sufficiently distributed samples that
cover the variability of the underlying function. Model based approaches assume
persistently exciting conditions (see [10] for a definition).
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2 Robot Setup and Problem Formulation

This work has been carried out on the humanoid robot James [8]. James is a
humanoid torso, consisting of a 7 DOF head, a 7 DOF left arm and a 8 DOF
left hand, with the overall size of a 10 years old boy (cf. Fig. 1). Among the 7
degrees of freedom of the arm (3 for the shoulder, 1 for the elbow and 3 for the
wrist), only 4 (the shoulder and elbow) have been considered in this work2.

At the top of the upper arm, just below the shoulder, a single 6-axis FT
sensor (ATI mini45 [15]) is placed (see Fig. 2(a)). This solution has been
chosen because most of the space in the upper and forearm is occupied by
the motors actuating the wrist, elbow and fingers, and by the DSP boards
used to control them. Furthermore, this placement enables the robot to detect
both internal forces due to arm motion and external forces due to contacts
between the arm/hand and the environment.

As explained before, the FT sensor measures both internal and external
forces, the latter being the ones to be determined for interaction control
purpose (e.g. obstacle detection and avoidance). The whole arm surface is
taken into account for possible contact points (so the contact may happen
in any point on the arm, not only on the end-effector). In the following we
will discuss the retrieval of the external forces and the consequent need to
estimate the internal ones.

Let us consider an open kinematic chain with n degrees of freedom. Let
q ∈ R

n be the generalized coordinates describing the pose of the kinematic
chain. The FT sensor measurement will be denoted x = [f�, τ�]� ∈ R

6.
As previously said, this quantity contains both external and internal forces
f ∈ R

3 and torques τ ∈ R
3. Specifically we have:

x = xI + xE , (1)

where xI and xE refer to the internal and external forces/torques, respec-
tively. More precisely, neglecting the effect of the elasticity of the transmis-
sions and defining fE , τE as the external forces and torques applied at the
contact point, equation (1) can be expanded as follows (see [20] for details
on the derivations):

[

f
τ

]

= M(q)q̈ + C(q, q̇)q̇ +G(q)
︸ ︷︷ ︸

xI

+T (q,d)
[

fE

τE

]

︸ ︷︷ ︸

xE

, (2)

where M , C and G are the inertial, Coriolis and gravity matrices of the
dynamic system equations, and T is a roto-translation matrix describing the
transformation of the external forces from the contact point reference frame
2 The justification for this simplification is that state of the wrist (position, veloc-

ity and acceleration) only has a minor effect on the internal forces, due to the
relatively negligible amount of mass after the wrist (i.e. the hand mass) with
respect to the whole arm.
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(b)

Fig. 2 (a) The reference frames for James’ arm. Of the five joints, only four are
independently actuated, θ3 and θ4 being mechanically coupled. (b) Detail of James’
upper-arm, showing the FT sensor and its placement (red square).

to the sensor reference frame, with d being the distance vector from the
contact point to the sensor.

Whenever the robot interacts with an external object, a non-null external
force componentxE arises: in order to detect a collision or a contact,xE must be
identified fromthe sensormeasurementsx. Practically, the identification canbe
performed by subtracting the internal forces (xI) from the measured ones (x):

xE = x− xI , (3)

which yields an indirect measurement of the external forces and torques3.
Then, the vector xI must be computed from the model, or derived from
experimental data. When the robot moves freely in its workspace, the sensor
only perceives the internal components of forces and torques (i.e. xI = x).
These components only depend on position, velocity and acceleration of the
joints. The problem of retrieving xE is therefore reduced to the estimation
of the internal forces and torques, i.e. the mapping from q, q̇, q̈ to f , τ :

xI = f(q, q̇, q̈). (4)

3 Notice that xE does not correspond to the real external forces fE and torques
τ E , but to their projection on the sensor, i.e. xE = T (q, d)[f�E , τ�

E ]�. To retrieve
the real external forces and torques, we must also know the distance d from the
contact point to the sensor. In the future, we plan to mount a full body sensing
skin [5], which will provide the necessary feedback to detect the contact location.
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3 Proposed Approaches

Two distinct ways to identify f(·) in equation (4) are: (1) deriving it analyti-
cally, (2) approximating it using a set of examples (i.e. machine learning). In
the latter case, the learning algorithm is agnostic to the underlying dynamics
model that is used to produce the examples. One advantage of this approach
is that nonlinear effects do not need to be explicitly modeled, as these are
learned implicitly by the algorithm. In this section, we will detail the model-
based approach and two machine learning algorithms, namely Least Squares
Support Vector Machines and Neural Networks.

Remark 1. It is worth discussing some issues related to the noise effecting the
measurement equation (4) which is at the base of all the proposed identifica-
tion methods. Among the different contributions, the F/T sensor itself is a
primary source of noise (see the specifications in [15]) but it is not the only
one. As a matter of fact, also the velocity and acceleration measurements
are subject to numerical inaccuracies, as these are computed using first and
second order numerical differentiation of the position measurements. These
derivatives are estimated based on the difference between the samples at time
t and t−W , i.e.

q̇t =
qt − qt−W

WΔT
, q̈t =

q̇t − q̇t−W

WΔT
for t = W, . . . ,∞ . (1)

This computation is performed on the DSP boards embedded in the robot
arm at 1 kHz rate, i.e. ΔT = 1 ms. The window length W has been set
to 35, i.e. WΔT = 35ms4. Other sources of noise include communication
delays effecting the synchronization of sensory measurements and reliability
of the position measurements in presence of elasticity in the actuation design
(elastic tendons and rubber transmission belts). The complex interaction of
these various sources of noise makes it very difficult to characterize the overall
system noise and therefore a complete analysis will be left outside the scope
of the current paper.

3.1 Model-Based Approach

Let us consider a robotic manipulator with n degrees of freedom and links,
and a force/torque sensor located in the middle of the kinematic chain, imme-
diately after one of the joints. As already pointed out, the sensor will measure
both internal (xI) and external (xE) force/torque component acting on the
following links. In this section, we assume that the FT sensor measures only
the internal forces, i.e. xE ≡ 0. Therefore, (2) can be written as:

4 This window length has been chosen specifically to low-pass filter the posi-
tion measurements and the computed velocities, whilst maintaining sufficient
accuracy.
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[
f
τ

]

= M(q)q̈ + C(q, q̇)q̇ +G(q) . (2)

Starting from this formulation, we derive a model based approach for esti-
mating the parameters in (2). In order to tune this model, a set of parameters
that best fits the force/torque acquisition, given a certain data set of joint
positions q, velocities q̇ and accelerations q̈, needs to be found. Equation (2)
is written as the linear product of a matrix D(q, q̇, q̈) and a vector η (see
[10] for details). The matrix D(q, q̇, q̈) depends solely on the joint positions,
velocities and accelerations, whereas η contains the dynamical parameters
that we would like to estimate. Practically:

x =
[

f
τ

]

= D(q, q̇, q̈)η , (3)

where η has a complex structure that can be formalized as follows:

η = [ψ, Ψ ]� .

The row vectors ψ and Ψ depend only on the system dynamical parameters
and have the following structure:

ψ =
[

m1ϕ · · · mnϕ
] ∈ R

nψ (4)

Ψ =
[
r1 · · · rn

] ∈ R
nΨ , (5)

where

ϕ =
[

l�1 · · · l�n , c�1 · · · c�n
] ∈ R

nϕ (6)

ri =
[
si,1 · · · si,n, I

1
i · · · I6

i

]

(7)

si,j =
[
miϕ

2
j miϕjϕj+1 · · · miϕjϕnϕ

]

. (8)

For each link i = 1, . . . , n, li ∈ R
3 is the vector representing the lengths

of the link in the x, y and z directions with respect to the previous joint’s
reference frame, ci ∈ R

3 is the vector of the center of mass of each link,
with respect to the same reference frame5. Further, mi ∈ R and Ik

i ∈ R are
the mass and inertial parameters of each link for k = 1, . . . , 6. Interestingly,
equation (3) can be further simplified to the form x = D̂(q, q̇, q̈)φ, where
φ is the minimum set of identifiable parameters, i.e. a linear combination of
the elements of vector η (see [10] for details).

The vector φ of the system dynamical parameters can be often retrieved
from an accurate model of the robot (e.g. CAD drawings), but this procedure

5 Each kinematic chain link has an associated reference frame, defined by the
Denavit-Hartenberg convention [3] . All the dynamic and kinematic quantities of
each link (center of mass, inertia, lengths, etc.) refer to the associated reference
frame.
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is typically neither feasible nor accurate. Different ways for identifying the
dynamic parameters can be found in the literature, but their discussion is out
of the scope of this work (the interested reader should refer to [6, 10]). Here
we focus on a technique based on a weighted linear least squares solution.
Let us define a weighting diagonal matrix ω containing the variances of each
component of force (fx, fy, fz) and torque (τx, τy, τz):

ω =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
σ2
fx

0 · · · 0

0 1
σ2
fy

· · · 0
...

...
. . .

...
0 0 · · · 1

σ2
τz

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (9)

At the ith time instant, we measure the system position (qi), velocity (q̇i)
and acceleration (q̈i) and the associated force sensor output xi. After � time
samples, a possible estimation for the vector φ of dynamical parameters is
given by the vector φ◦ which minimizes the (weighted) norm of the error
vectors (xi − D̂iφ), i.e.:

φ◦ = arg min
φ

�∑

i=1

(xi − D̂iφ)�ω(xi − D̂iφ) . (10)

where we defined D̂i = D̂(qi, q̇i, q̈i). The explicit solution is given by:

φ◦ = Δ†
ΩY =

[

Δ�ΩΔ
]−1

Δ�ΩY , (11)

where Ω = diag(ω) and

Δ =

⎡

⎢
⎢
⎢
⎣

D̂1

D̂2

...
D̂�

⎤

⎥
⎥
⎥
⎦

Y =

⎡

⎢
⎢
⎢
⎣

y1

y2

...
y�

⎤

⎥
⎥
⎥
⎦

. (12)

Remark 2. Given the discussion above, learning the optimal parameters value
φ◦ consists in a matrix inversion. With simple algebraic simplifications, it can
be proved that the dimension of the matrix to be inverted does not depend
on the number of acquired data but only on the dimension of the vector φ.
Similarly, once the model has been trained, the model prediction (the predic-
tion of x given q, q̇ and q̈) consists in evaluating D̂(q, q̇, q̈) and the product
D̂(q, q̇, q̈)φ◦. Therefore, the computational complexity of the prediction de-
pends mainly on the evaluation of the matrix D̂ (in our example represented
by ∼ 1700 multiplications, ∼ 700 sums and 8 sine/cosine evaluations).
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3.2 Least Squares Support Vector Machines for
Regression

Least Squares Support Vector Machines (LS-SVMs) belong to the class of
kernel methods, which use a positive definite kernel function to estimate a
linear approximator in a (usually) high-dimensional feature space [23]. Its
formulation shares similarities with the Support Vector Machine for Regres-
sion (SVR) [22]. Let us define the data set S = {xi, yi}�i=1, where inputs
xi ∈ R

n and corresponding outputs yi ∈ R for i = 1, . . . , �. LS-SVM es-
timates a linear decision function of the form f(x) = 〈w, φ(x)〉 + b, where
b is a bias term and φ(·) : R

n �→ R
f maps samples from the input space

into a (usually) high-dimensional feature space. The weight vector w and
bias b are chosen such that both the squared norm of w and the sum of
the squared errors εi = yi − f(xi) are minimized. This is described by the
following optimization problem:

minimize
1
2
‖w‖2 +

1
2
C

�∑

i=1

ε2i (13)

subject to yi = 〈xi,w〉+ b+ εi for 1 ≤ i ≤ � ,

where C is a regularization constant. Standard application of the Lagrange
method yields the dual optimization problem [23]:

maximize
1
2
‖w‖2 +

1
2
C

�∑

i=1

ε2i −
�∑

i=1

αi (〈xi,w〉+ b+ εi − yi) . (14)

Here αi ∈ R are the Lagrange multipliers associated with each sample. Us-
ing this dual formulation, the decision function can be rewritten as f(x) =
∑�

i=1 αi 〈φ(xi), φ(x)〉+ b. One particular advantage of this expansion is that
the solution is described in terms of inner products with respect to the train-
ing samples xi. Hence, a kernel function k(xi,xj) = 〈φ(xi), φ(xj)〉 can be
used to implicitly map the data into the feature space. Given a kernel ma-
trix K = {k(xi,xj)}�i,j=1, the solution to the optimization problem in (14) is
given by a system of linear equations:

[
α
b

]

=
[
K + C−1I 1

1T 0

]−1 [y
0

]

. (15)

Note that solving the LS-SVM optimization problem reduces to a (�+1)×(�+
1) matrix inversion, which in return can be solved efficiently using Cholesky
decomposition [2]. Another advantage of LS-SVM over other kernel meth-
ods (e.g. SVR), is that the Leave-One-Out (LOO) error can be computed
exactly using a single training run on the complete data set [2]. It is im-
portant to note that the final generalization performance of the LS-SVM
is strongly dependent on the selection of both C and the kernel function.
For our experiments, we consider the commonly used Radial Base Function
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(RBF) kernel k(xi,xj) = exp(−γ‖xi − xj‖2), where parameter γ tunes the
radius of the Gaussian. A grid search on the range C ∈ [20, 21, . . . , 216

]

and
γ ∈ [2−11, 2−10, . . . , 21

]

is used to select “optimal” hyperparameters, where
the generalization performance of each configuration is estimated using the
LOO error on the training set. Furthermore, we considered the cases that
x = {q, [q, q̇], [q, q̇, q̈], [q, q̈]}. As the output y is limited to scalar values,
a distinct machine has to be trained for each output dimension, such that
y = {fx, fy, fz, τx, τy, τz}.
Remark 3. Though LS-SVM has several advantageous properties with respect
to SVM, one apparent disadvantage is that it does not produce sparse mod-
els. Input samples xi can only be removed from the kernel expansion when
αi = 0, which in return is only the case if εi = 0. As a result, on practical
problems all input samples will be included in the model. This reflects neg-
atively on the prediction time. For m output dimensions and assuming the
RBF kernel function, the prediction of an n dimensional input vector requires
m (�(n+ 1) + 1) sums, m�(n+ 2) products, and m� exponentials; where � is
the size of the data set the m distinct machines has been trained on.

Remark 4. The scope of this work is limited to batch learning on small to
medium sized data sets. Nguyen-Tuong et al. (cf. [18] in this volume) have
shown that – on a similar learning problem – Gaussian Processes Regression
(GPR) commonly outperforms other methods in this particular context. It is
worth noting that the performance of LS-SVM can be expected to be similar to
GPR, as both methods share some similarities in the approximation function6.

3.3 Neural Networks

Lastly, a multiple input - multiple output one-hidden-layer (OHL) feed-
forward neural network (NN) is chosen as the second machine learning
method, for its generalization and approximation capabilities [9], and de-
noising property when dealing with experimental data. More specifically, we
constrain the approximation function to take on a fixed, parameterized struc-
ture, that is a ν “neurons”, n inputs, m outputs neural network, μ̂(·,w), with
sigmoidal activation functions σ in both hidden and output layer7:

μ̂(x̃,w) = col

(

σ̃j

[
ν∑

h=1

chjσ(x̃,κh) + bj

]

, j = 1, . . . ,m

)

(16)

6 The main differences between both methods are that LS-SVM includes a bias term
and requires less assumptions on the distribution of the data.

7 We chose a sigmoidal output layer (instead of a classical linear output layer)
since it naturally generates bounded values within a specific range, which are
consistent with the output ranges after data normalization. This choice allows to
remove signal constraints and not to take care of the possibility that the network
generates inconsistent values.
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where μ̂(·,w) : R
n × R

W �→ R
m, chj , bj ∈ R,κh ∈ R

n+1, j = 1, . . . ,m,
being ν the number of neurons constituting the network. The vector w ∈
R

W ,W = (n + 1)ν + (ν + 1)2m collects all the parameters to be op-
timized. The notations σ̃ and x̃ account for the output and input nor-
malization.8 Furthermore, we trained four different type of networks, with
x = {q, [q, q̇], [q, q̇, q̈], [q, q̈]} and n = {4, 8, 12} respectively, for different
number of neurons ν = 5, 20, 50, 100, 150 and different training sets. The
number of outputs was always fixed to 6 (forces and torques). The training
algorithm is based on the well known Levenberg-Marquardt (LM) algorithm
[12, 13]. The criterion for training the network (that is to find the optimal
parameters w◦) is to minimize the mean square error between the estimated
and the measured data:

minimize Φ(w) =
1
2

�∑

i=1

ε�i (w)εi(w) , (17)

where εi(w) = yi − μ̂(x̃i,w) is the error between the measured and the
predicted data. Once all the partial derivatives of the error function Φ are
back-propagated, the weights update equation is applied:

wk+1 = wk − [J�(wk)J(wk) + μI]−1J�(wk)ε(wk) , (18)

where ε(wk) = [ε0(wk), . . . , εN−1(wk)], and J(wk) ∈ R
N×W is the Jacobian

matrix of the errors with respect to the parameters of the NN:

J(w) =

⎡

⎢
⎢
⎣

∂ε0
∂w0

∂ε0
∂w1

. . . ∂ε0
∂wW−1

...
...

. . .
...

∂εN−1
∂w0

∂εN−1
∂w1

. . . ∂εN−1
∂wW−1

⎤

⎥
⎥
⎦
. (19)

The parameter μ, adjusted iteratively, balances the LM between a steepest
descent and a Gauss-Newton algorithm. To improve the training performance
we used the Nguyen-Widrow (NW) method [17] to initialize the network (see
also [7, 14]).

Remark 5. The proposed neural network training is designed for batch learn-
ing, and generically the estimate improves with the growth of both training
set and number of parameters9. Since the training is performed offline, in
the prediction phase the computation is quite fast, consisting only of a single
8 The input variables are normalized from their original range to [−1, 1], while

the network outputs are scaled from [−1, 1] (the output range of a sigmoidal
tanh-based neural network) to the forces and torques real ranges.

9 The number of parameters usually depend on three factors: the complexity of the
function to be approximated (i.e. a very smooth function requires fewer neurons
than a highly varying one, as more basis function are necessary to approximate
the irregular changes of the latter), the dimension of the training set and the
quality of the training set (i.e. to which extent the training set is representative
for the variable space).
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Table 1 Value ranges of the arm joint positions, velocities and accelerations.

q[◦] q̇[◦/s] q̈[◦/s2]
joint # 0 1 2 3 0 1 2 3 0 1 2 3

max 150 60 30 70 18 15 20 15 103 76 248 34
min 50 -100 -60 10 -39 -49 -34 -23 -135 -85 -158 -38

forward pass of the network. More precisely, given the number of neurons
ν for a OHL neural network with n inputs, m outputs, sigmoidal activa-
tion functions (hyperbolic tangent tanh(x) = (ex − e−x)/(ex + e−x)) in the
hidden and output layer, the necessary operations are ν(n + m) products,
ν(n+m+1)+m+2(ν+m) sums, 2(ν+m) exponentials and ν+m divisions,
and the flops count is linear with ν. As an example, for 20 neurons, 4 inputs,
6 outputs and both layers with the usual hyperbolic tangent, the flops count
(computed with the Lightspeed Matlab toolbox v.2.2. [16] ) is 2766.

4 Results and Discussion

The three previously discussed methods have been evaluated experimentally
on a common data set that has been gathered during a sequence of random
arm movements, performed in joint space. Every movement brings the arm
from a starting position qs ∈ R

4 to a final position qf ∈ R
4, which subse-

quently becomes the starting position for the next movement. Each of these
positions is defined by a vector of joint angles, which are chosen randomly
using a uniform distribution within the admissible range of the respective
joint. Joint velocity profiles during motion are bell-shaped with a predefined
maximum velocity, which causes the absolute velocities to vary from zero to
the maximum value during any movement. Trivially, the sign of the velocity
depends on the direction of the motion. The joint accelerations (i.e. actual
slope of the velocity profiles) depend on the distance between qs and qf, since
the time duration of the movement is kept constant. Joint positions, velocities
and accelerations were retrieved from the DSP boards at 50 Hz. Velocities
and accelerations were computed via numerical differentiation on the DSP
boards at a higher frequency (1 kHz). A simple collision avoidance strategy
was used during the experimental data acquisition, in order to ensure that
the arm would not collide with the body or the environment.

The complete data set of 40000 samples has been shuffled and split in two
equal parts. The set of the first 20000 samples is used for training and is
subsequently subsampled to obtain smaller sized training sets, whereas the
second half is used as a common test set. The reported performance measure
on the test set is the average Normalized Mean Squared Error (NMSE) over
all 6 output dimensions, where the NMSE is defined as the mean squared
error divided by the variance of the respective output dimension. For the two
machine learning approaches, the input dimensions have been rescaled (see
original ranges Table 1) to be approximately within the range [−1,+1], based
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Fig. 3 Comparison of the three methods on random training subsets of increasing
dimension and three different input spaces. P denotes the input space containing
only joint positions (q ∈ R

4), PV contains both joint positions and velocities (q, q̇ ∈
R

8), and PVA contains joint positions, velocities and accelerations (q, q̇, q̈ ∈ R
12).

on the maximum and minimum values found in each input dimension in the
training set.

4.1 Number of Training Samples

In this initial experiment we measured the performance of each method when
increasing the number of training samples. The results in Fig. 3 show clearly
that the two learning methods have a strong dependency on the size of the
training set. As more samples become available, they consistently continue
to improve performance, eventually outperforming the model-based approach
by an order of magnitude.

Interestingly, the model-based approach appears to perform at a constant
level, regardless of the number of samples. This is confirmed by further anal-
ysis on even smaller data sets, as demonstrated in Fig. 4. When considering
only the joint positions, it shows the remarkable capability of achieving ac-
ceptable performance using only 5 training samples. This means that the
model-based approach is the preferred approach when only very few samples
are available. The machine learning methods require many more samples
to achieve similar performance. This is not surprising considering that the
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Fig. 4 Performance of the model-based method on very small training sets.

model based approach takes advantage of additional information implicit in
the structure of the model.

4.2 Contribution of Velocity and Acceleration on the
Estimation

Another observation (Fig. 5) is that inclusion of joint velocities and accelera-
tions does not always improve the generalization performance when training
is done on a small number of samples. Intuitively, one might expect that
adding relevant information could only improve the estimation. However,
learning methods require an increasing amount of training samples to make
effective use of this additional information (i.e. the curse of dimensional-
ity [4]). This affects particularly the learning methods, since these need to
construct their model based solely on training data. Fig. 5 shows that both
LS-SVM and NN eventually use joint velocities to improve their predictions,
given a sufficiently large training set.

Joint accelerations, however, do not improve prediction performance in any
of the cases (cf. Fig. 6). This is probably due to the low signal to noise ratio
for the acceleration and, in first place, to the robotic setup used to obtain the
data set. In particular, the joint accelerations were not measured directly but
were derived from positions. This causes the acceleration measurements to
be much less precise and reliable than those for joint velocities and positions.
Furthermore, the range of accelerations is relatively small10 and within this
range we observed that the contribution ofM(q)q̈ in equation (2) is relatively
small compared to the contribution of the other terms (C(q, q̇)q̇ and G(q)).

10 The chosen motors produce limited torques, which reflects into relatively low
accelerations.
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Fig. 5 Comparison of the performance for all methods with increasing input spaces
(i.e. P, PV and PVA; defined as in Fig. 3). Note that both axes are in logarithmic
scale to accentuate differences in final performance.
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Fig. 6 Performance after inclusion of joint accelerations. The figures on the left
hand side compare the performance on P and PA (defined analogously to P , PV
and PV A in Fig. 3), while those the right hand side compare PV and PV A.
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4.3 Selective Subsampling

The data set we acquired is characterized by the fact that there is an abun-
dance of training samples. Thus far, we have used a uniform random sub-
sampling strategy, as to ensure that the qualitative properties of the subset
approximate those of the original data set. However, with such an abundance
of samples it is likely that the original data set is oversampled (i.e. addi-
tional samples do not further increase the generalization performance) and
contains samples that are (nearly) identical to each other. This similarity
of input samples particularly affects LS-SVM, as this method describes the
prediction function in terms of inner products with respect to all training
samples.

We can guarantee a certain “sparsity” of the training set by taking a subset,
such that the inter-sample distance is at least a threshold t. Let us define a
distance measure D(xi,xj) =

√

(xi − xj)Σ−1(xi − xj), where xi,xj ∈ R
n

and Σ is an n × n matrix containing the variances of all input dimensions
on its diagonal. This measure coincides with the Euclidean distance in the
standardized input space. In order to construct a Euclidean subset Et, we
iterate over a permutation of the original data set S using index i = 1, . . . , �
and append only those samples to Et, for which minD(xi,x) ≥ t ∀x ∈ Et.

Fig. 7 shows the prediction performance of LS-SVM with random and Eu-
clidean subsampling. The Euclidean subsets were generated by varying the
threshold t, such that the size of the subsets were nearly identical to each
of the random subsets. Whether selective subsampling based on Euclidean
distance outperforms random subsampling depends on the input space that
is used to determine the inter-sample distance, and the size of the training
set. When this distance is determined solely based on the joint positions,
then Euclidean subsampling results in a significant improvement for small
data sets. In contrast, random subsampling performs better than Euclidean
subsampling based on joint positions, velocities and accelerations. It is our
belief that this difference is due to the Euclidean strategy attempting to
create a uniform sampling distribution in all dimensions under considera-
tion, effectively forming subsets that contain a wide range of velocities and
accelerations (besides positions). Given the relatively low velocities and ac-
celerations of the robot, the force and torques are primarily caused by gravity.
In return, gravity is only dependent on the joint positions of the robot. It
is therefore beneficial, for limited training sets, to select those samples that
help LS-SVM to model this gravity component.

Further, we can note that the different subsampling strategies perform
nearly identically for large training sets. This can easily explained by the fact
that the size of Et is inversely proportional to the chosen distance threshold
t and, by definition, Et becomes a random permutation of S as t approaches
zero. In short, for large data sets, and thus a small inter-sample threshold,
the Euclidean and random subsets have very similar sample distributions and
therefore similar performance.
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Fig. 7 Comparison of random and selective subsampling based on standardized
Euclidean distance. Euclidean P and Euclidean PVA denote subsampling based
on Euclidean distance thresholds t = {1.35, 1.15, 0.88, 0.65, 0.5, 0.35, 0.18} using
position inputs and thresholds t = {6.0, 5.3, 4.5, 3.7, 3.1, 2.5, 1.8} using position-
velocity-acceleration inputs, respectively.

5 Conclusions

In this paper, we presented and compared different approaches to force/torque
estimation from a FT sensor. Experimental data-driven learning methods are
proposed and compared with respect to the classical model-based technique,
and advantages and disadvantages of both types of approaches are discussed.
Learning algorithms outperform the rigid body dynamic model in terms of
prediction accuracy, given that a sufficient amount of training data is avail-
able. The generalization performance of these methods improves steadily as
more training samples become available. LS-SVM converges slightly faster
than Neural Networks, but their final performance on large data sets is nearly
identical. The model-based method, on the other hand, requires very few
samples (in order of ten) to achieve acceptable predictions, and in practice
requires very few samples if the estimate relies only on joint positions. Fur-
thermore, we tested the relevance of velocity and acceleration information
when learning the dynamic equation which describes the FT measurement.
It was observed that machine learning methods improve their prediction when
including velocity data at the cost of requiring larger training sets. On the
contrary, acceleration does not significantly improve performance and the
reason for this incongruence has to be found in the low signal to noise ratio
(positions are double differentiated to obtain accelerations). We also evalu-
ated the impact of training set pre-processing by defining a suitable selective
subsampling strategy: a Euclidean distance metric was introduced and the
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resulting training set was compared with a random sampling one. For LS-
SVM, the resulting spatial distribution of the training samples improves the
estimation for small data sets, while its beneficial effect disappear with in-
creasing the size of the training set.
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Learning Forward Models for the
Operational Space Control of
Redundant Robots

Camille Salaün, Vincent Padois, and Olivier Sigaud

Abstract. We present an adaptive control approach combining model learn-
ing methods with the operational space control approach. We learn the for-
ward kinematics model of a robot and use standard algebraic methods to
extract pseudo-inverses and projectors from it. This combination endows the
robot with the ability to realize hierarchically organised learned tasks in par-
allel, using tasks null space projectors built upon the learned models. We
illustrate the proposed method on a simulated 3 degrees of freedom planar
robot. This system is used as a benchmark to compare our method to an al-
ternative approach based on learning an inverse of the extended Jacobian. We
show the better versatility of the retained approach with respect to the latter.

Keywords: learning, redundancy, robotics, inverse velocity kinematics.

1 Introduction

Real-world Robotics applications are evolving from the industrial domain
(well-defined tasks in structured environment) to the service domain where
it is much harder to model all the aspects of the mission. Service Robotics
induces complexity both in terms of the tasks that have to be achieved and in
terms of the nature of the environment where robots are supposed to evolve.
Part of the answer to the problems raised by this growing complexity lies in
the increasing number of sensors with which robots are now equipped as well
as in the increasing number of degrees of freedom of the robots themselves
(e.g., Mobile manipulators such as the humanoid robot iCub (Metta et al,
2008) or the wheeled assistant PR2 (Willow Garage, 2009)).
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As a matter of fact, the motion controllers developed for such robots have
to be either highly robust to uncertainties in the model of the robot and
its environment or adaptive, i.e., able to build their own model on-line. The
former gets more and more difficult as the complexity of the context grows.
When the structure of the model is known, the latter can be acheived with
classical parametric identification methods (Ljung, 1986). When this struc-
ture is more difficult to obtain, due to different physical phenomena such
as friction, internal delays, unmodeled nonlinearities, etc., machine learning
methods can be more versatile: they learn a model based only on the inputs
and outputs of the real system without making assumptions on their physical
relationship.

In this context, learning the model of the robot is achieved using spe-
cific representations such as Neural Networks (Van der Smagt, 1994) or Ra-
dial Basis Function Networks (Sun and Scassellati, 2004), Gaussian Processes
(Shon et al, 2005) or (Nguyen-Tuong et al, 2010) in this issue, Gaussian Mix-
ture Models (Calinon et al, 2007), Locally Weighted Projection Regression
(lwpr) (D’Souza et al, 2001; Natale et al, 2007; Peters and Schaal, 2008),
but the control methods used in the corresponding work do not always take
advantage of the state-of-the-art techniques developed in recent Robotics
research.

Among these techniques, operational space control Khatib (1983) is a
model-based approach which provides a mathematical framework giving rise
to an easy definition of the tasks and constraints characterising a robotic mis-
sion in a hierarchical manner (Liégeois (1977), Nakamura (1991). Readers can
refer to Sentis and Khatib (2005) for a more recent work and Nakanishi et al
(2008) for a survey. In order to take advantage of this framework, one must
develop learning methods and associated representations which fit the needs
of the corresponding control techniques.

Actuators of a robot generally act on joints, but the tasks or constraints as-
sociated to a mission cannot often be described in the joint space in a natural
way. The operational space (also called task space) provides an alternative,
more natural space, for such a definition.

The robot being controlled at the level of joints, the operational or task
space control approach requires the knowledge of the mapping between the
joint space and the task space. More specifically, it is the inverse mapping
which is often of interest: given a task, what are the actions required in the
joint space to achieve it. Considering minimum representations for the joint
and task spaces, it is important to notice that when the dimension of the joint
space is larger than the one of the task space, there is an infinite number of
inverse mappings and the robot is said redundant with respect to the task.
That is the case we are focusing on in this chapter.

More precisely, we examine how one can combine learning techniques and
operational space control in such a way that we can hierarchically deal with sev-
eral tasks and constraints when the robot is redundant with respect to the task.
Our method learns a forward kinematics model using lwpr, a state-of-the-art
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methodalreadyused in the context of learning robotmodels (Vijayakumar et al,
2005). We show how we can both carefully derive the forward and inverse map-
pings at the velocity level and the projectors which are necessary to combine
several tasks. We compare this approach to an alternative approach presented
in the literature where the inversion problem that arises in the redundant case
is solved in less generic manner (D’Souza et al, 2001).

The chapter is organised as follows. In section 2, we give some background
on operational space control and the different levels of forward and inverse
mappings which can be used to relate the joint space to the task space and
vice versa. We also present different contexts in which several tasks can be
combined depending on their compatibility. In section 3, we give an overview
of the learning methods that have been applied to learn these forward and
inverse mappings, before focusing on our approach. In section 4, we introduce
our experimental apparatus and protocol, as well as the series of simulated
experiments that we perform. The corresponding results are presented in
section 5. Finally, section 6 highlights the properties of our approach before
concluding on the potential extensions that are unique to the perspectives
raised by our work.

2 Background in Operational Space Control

In this section, we give some background information on joint to task space
mappings with a focus on the velocity level. We recall the general expression
of minimum norm solutions in the redundant case and give an overview of
redundancy resolution schemes.

2.1 Joint Space to Task Space Mappings

The joint space is the space of the configuration parameters q of size n, where
n is the number of parameters chosen to describe the robot configuration. In
the holonomic, fully actuated, minimum representation case, n is also the
number of degrees of freedom of the robot as well as the dimension of the
actuation torque vector Γ.

As stated in the introduction, the tasks or constraints associated to a
mission can rarely be described in the joint space in a natural way. The
task space is often associated to the end-effector(s) of the robot but can
actually be any point of the robot and more generally any set of parameters
of interest which can be described as a function of the robot configuration.
This is the case for external collision avoidance where the constraint point
can evolve along the robot body. Joint limits avoidance is also a particular
case of constraint where the task space is a subset of the joint space itself.
Independently from their physical meanings, task spaces can be described
by task space parameters ξ of size m where m is, in the case of a minimum
representation, the number of degrees of freedom required to achieve the task.
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The joint space to task space mapping can be described at three different
levels. At the geometric level, the forward kinematics model can be described
as a non-linear function f such as:

ξ = f (q) . (1)

As stated before, if the robot is redundant, there is an infinite number of
possible inverses for f . However, there is no simple method to span the set of
possible solutions at the geometric level and the mapping is often described
at the velocity level by the Jacobian matrix J (q) = ∂f (q) /∂q such that:

ξ̇ = J (q) q̇. (2)

J (q) is a m×n matrix and thus can be inverted using linear algebra tech-
niques. Once again, there is an infinity of inverse mappings corresponding to
the infinity of possible generalised inverses of J (q) (Ben Israel and Greville,
2003).

The last mapping of interest is the dynamic one. It relates forces applied
to the system, among which the control input Γ, to the resulting acceleration
q̈. It can be written:

Γ = A (q) q̈ + b (q, q̇) + g (q) + ε (q, q̇)− Γext, (3)

where A (q), b (q, q̇), g (q), ε (q, q̇) and Γext are respectively the n×n inertia
matrix of the system, the vector of Coriolis and centrifugal effects, the vector
of gravity effects, the vector of unmodeled effects and the torque resulting
from external forces applied to the system.

This equation represents a joint space to joint space mapping at the dy-
namics level with only one solution. It is of course of interest to learn this
mapping since it captures a lot of properties of the system among which
effects such as friction which cannot always be easily identified using para-
metric identification techniques. However, the learning of this mapping is
out of the scope of the work presented here (interested readers can refer to
Peters and Schaal (2008) and Nguyen-Tuong et al (2008)) and it is supposed
to be known in the experiments presented here. We rather focus on the ve-
locity kinematics mapping which is sufficient to capture and characterise the
redundancy of the system1.

2.2 Model-Based Control at the Velocity Level

In the redundant and non singular case, i.e., rank (J (q)) = m and m < n,
there is an infinite number of generalised inverses of J (q). Among these

1 A velocity kinematics and dynamic combined mapping known as the Operational
Space Formulation is proposed by Khatib (1987). It is of interest if one wants to
obtain the dynamic model of the system expressed in the task space.
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inverses, weighted pseudoinverses provide minimum norm solutions (Doty et al,
1993) and can be written as

J (q)� = W−1
q J (q)T [J (q)W−1

q J (q)T ]−1, (4)

where Wq is a symmetric and positive definite matrix of dimension n× n.
Given a desired task velocity ξ̇

�
, the inverse mapping of Equation (2) which

minimises the Euclidean Wq-weighted norm2 of the solution is given by

q̇ = J (q)�
ξ̇

�
. (5)

The Moore-Penrose inverse or pseudoinverse J (q)+ of J (q) corresponds to
the case where Wq = In.

The system being redundant with respect to the task, Equation (5) is
not the unique solution to the inverse mapping problem and other solutions
of interest are those giving rise to internal motions that do not induce any
perturbation on the task. This particular subset of solutions corresponds to
the nullspace of J (q) and the general form of the minimum norm solutions
to Equation (2) can be written

q̇ = J (q)�
ξ̇

�
+ PJ (q) q̇0, (6)

where PJ (q) is a projector on the nullspace of J (q) and q̇0 is any vector
of dimension n. Equation (6) is the minimum norm solution that minimises
||q̇− q̇0||Wq

. A commonly used expression for PJ (q) is

PJ (q) =
(

In − J (q)�
J (q)

)

. (7)

Efficient computation of J (q)� and PJ (q) can be done using the SVD
(Golub and Van Loan, 1996) of J (q). The SVD of J (q) is given by J =
UDV T where U and V are orthogonal matrices with dimensions m×m and
n× n respectively. D is a m× n diagonal matrix with a diagonal composed
of the m singular values of J in decreasing order. Given this decomposition,
the pseudoinverse of J can be computed as follows

J+ = V D+UT , (8)

where the computation of D+ is straightforward given its diagonal nature.
Regarding PJ (q), it can be computed using the m + 1 to n columns of V
which form a basis for the nullspace of J (q)

PJ (q) = [vm+1 . . .vn]
[

vT
m+1 . . .v

T
n

]T
, (9)

where vi is the ith column of V .

2
√

q̇T Wqq̇, also noted ||q̇||Wq
.
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A weighted extension of the SVD can be used in the case where Wq �= In.
Details about this extension can be found in Ben Israel and Greville (2003).

2.3 Redundancy Resolution Schemes

Different possible redundancy resolution schemes can be applied, depending
on the compatibility of the tasks or constraints which have to be solved.

Let us consider two tasks of respective dimensions m1 and m2 and with
associated Jacobian matrices J1 and J2 such as rank (J1 (q)) = m1 and
m1 ≤ n and rank (J2 (q)) = m2 and m2 ≤ n. These two tasks are said to be
compatible if Jext =

[

JT
1 JT

2

]T is full row rank. This condition is equivalent to
saying that the mext parameters of the augmented task space are in minimum
number and that rank (Jext) ≤ n.

Given this definition, one has to consider the underconstrained (compat-
ible, infinity of solutions), fully-constrained (compatible, one solution) and
over-constrained (incompatible, no exact solution) cases. In these three cases,
one can write the solution to the inverse velocity kinematics problem using
the solution proposed initially by Maciejewski and Klein (1985)

q̇ = J�
1ξ̇

�

1 + (J2PJ1)
�
(

ξ̇
�

2 − J2J
�
1ξ̇

�

1

)

. (10)

In the compatible case, tasks 1 and 2 will be achieved perfectly. In the
incompatible case task 1 will also be perfectly achieved whereas the error on
the achievement of task 2 will be minimised. This solution can present sin-
gularities when tasks are highly incompatible, i.e., mext is much greater than
n, but this can be compensated for using a proper damped-least square regu-
larisation (Chiaverini, 1997). This task projection scheme can be extended to
several tasks, interested readers can refer to Mansard and Chaumette (2007).

Another method, originally proposed in Baillieul (1985), consists in writ-
ing an extended Jacobian Jext in order to reach the fully constrained case
(mext = n and rank(Jext) = mext) and thus to simplify the inversion prob-
lem to a square, regular matrix inversion. In the fully constrained case, this is
achieved automatically. However, in the under constrained case, this requires
to artificially add tasks whereas in the over constrained one, some projec-
tions have to be done in order to ensure both a square Jacobian matrix and
priorities between tasks.

Similarly to what is shown in the non learning case literature, we will
show hereafter that in the case of complex missions where the tasks and
constraints constantly evolve, one cannot ensure compatibility at all time.
Thus, the solution provided by Equation (10) is more general and should be
preferred.

Finally, in the case of constraints such as joints limits, a possibility consists
in choosing q̇0 in Equation (6) as the opposite of the gradient of a cost
function Q (q). The resulting solution leads to the local maximisation of
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the cost function as long as this secondary constraint does not induce any
perturbation on the first task. The general form of this solution is written

q̇ = J (q)�
ξ̇

� − αPJ∇Q (q) , (11)

where α is a positive scalar used to tune the steepness of the gradient descent
Snyman (2005). This method is often used in the incompatible case, i.e., when
it is known in advance that the task will not be perfectly achieved, or when
only a global trend has to be followed: minimise the kinetic energy of the
system, avoid joint limits or collisions, etc.

3 Learning Forward and Inverse Velocity Kinematics
Models

Machine learning researchers have developed several families of methods ca-
pable of approximating linear and non-linear functions: perceptrons, multi-
layer perceptrons, radial basis function networks, gaussian processes, support-
vector regression, gaussian process regression, learning classifiers systems and
locally weighted regression methods such as lwpr Vijayakumar and Schaal
(2000). In this section, we briefly explain basic concepts of some of these
methods focusing on lwpr which we use and then mention how they are
used to learn forward or inverse kinematics model. Then we expose the ad-
vantages of learning forward (instead of inverse) velocity kinematics mappings
in redundant cases.

3.1 An Overview of Neural Networks Function
Approximation

Neural networks Rojas (1996) are a wide class of general function approxi-
mators. They are declined under different forms. The general neural network
algorithm may be split into three steps. First, compute an excitation level for
each neuron depending on the inputs. Second, apply an activation function
on this excitation level to determine if the neuron is active or not. Third,
compute an error of the global network output to update all weighted con-
nections. A commonly used feedforward neural network is the Multi-Layer
Perceptron (MLP) where the activation level of each neuron i is calculated
as zi(x) =

∑N
i=1 wixi where N is the number of neurons, xi is an input of

the neuron and wi is the associated weight. Classical activation functions
are y(zi) = tanh(zi) or y(zi) = (1 + e−zi)−1. The weights are updated
through a backpropagation error method based on the error ej between
the desired value and the real output of each neuron. This method con-
sists in computing an energy function, such as E(k) = 1/2

∑

j e
2
j(k), which

is minimised to update each weighted connection with a gradient descent:
δwl(k) = −γ∂E(k)/∂wl(k). γ is the learning rate which updates the weights
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w1..l of a layer in the opposite direction with respect to the energy gradi-
ent. For a general review on learning non-linear models, readers can refer to
Jordan and Rumelhart (1992).

Radial basis function networks are another type of neural networks where
weighted sum and activation functions are temporally inverted compared to
multi-layer perceptrons. The algorithm consists in calculating the function
activation φ(r) = exp(−βr2), β > 0 of the norm r = ‖x − ci‖ which is then
weighted and summed: y(x) =

∑N
i=1 wiφ(r).

A fundamental problem with those approaches is that neural networks
are always considered as black boxes and tuning is usually empirical. Radial
basis function networks tend to avoid this limitation and could be treated as
grey boxes. They have the advantage of generating differentiable continuous
approximations (Sun and Scassellati, 2004).

An extension of radial basis function networks are the locally weighted re-
gression methods (Atkeson, 1991) which combine gaussian and linear models.
Some of those methods, such as lwpr, make a projection on the relevant sub-
space to decrease the dimension of the input space. We focus on this method
below since it is the one we use.

3.2 Locally Weighted Projection Regression

Locally weighted regressions were first used by Atkeson (1991) to realise su-
pervised learning on robots. As described in Schaal et al (2002), lots of mod-
els have followed, such as lwpls which include partial least square to reduce
input dimensionality or rfwr (Schaal and Atkeson, 1997) which transform
the algorithm into an incremental regression method, avoiding to store data.

Locally Weighted Projection Regression (lwpr) is an algorithm which per-
form both incremental regression and inputs projection. It is a function ap-
proximator which provides accurate approximation in very large spaces in
O(k), where k is the number of data points used to perform this estimation.
lwpr uses a combination of linear models that are valid on a zone of the input
space. This space, delimited by a gaussian, may change during the training to
match the trained data. Each model is called a receptive field. The prediction
of an entire lwpr model on an input vector is the weighted sum of the results
of all the active surrounding receptive fields. Receptive fields are created or
pruned in order to keep an optimal repartition.

Each receptive field first projects the input vector on the most relevant
dimensions to estimate the output vector. This is done by using the covari-
ance matrix of the input/output vectors. At each modification, the projector
is updated and the algorithm checks if increasing the complexity, by adding
another dimension to the input projection, significantly improves the recep-
tive field results and modifies the projector accordingly. The projected vector
is then used in the m dimension linear model (m being the output dimen-
sion) to give the output of the receptive field. During prediction, only the
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significant receptive fields are activated. The algorithm may also computes
the gradient of the output with respect to the input.

Different methods listed above have been used to learn various models
among the ones listed in Section 2. Before presenting our own approach, we
provide an overview of these different works.

3.3 Learning Inverse Kinematics

Some authors learn the inverse kinematics with a neural network which re-
alise the mapping between operational and joint velocities, solving an uncon-
strained optimisation problem formulated as an energy function. This energy
function is minimised during the gradient descent and weights are conse-
quently updated. It is thus possible to obtain a desired articular velocity
which correspond to a minimum energy function as

q̇∗ = arg min
q̇

(E (q̇))

where E is an energy function which is based on different errors. Pourboghrat
(1989) minimises an energy which leads to learn the Moore-Penrose inverse
minimising the weighted norm (as seen in Equation 5). Barhen et al (1989)
resolve redundancy in minimising different Lyapunov function with goal at-
tractors. Guez and Ahmad (1988) and Ahmad and Guez (1990) optimise the
manipulability criterion: H =

√‖JJT ‖ in each configurations. Lee and Kil
(1990) minimise an energy function composed of two types of constraints:
one is minimising the angle difference of the first joint and another is lo-
cating the joints in the middle of joint-limits. They consider the forward
kinematics as known. Brüwer and Cruse (1990) keep the system away from
joint limits and compare their results to planar human motion. Finally,
DeMers and Kreutz-Delgado (1997) includes the topology to bring flexibili-
ties in his redundant kinematic inverse model.

Based on self-organising maps (Kohonen, 2001), Martinetz et al (1990b,a);
Walter and Schulten (1993) learn a mapping between end effector position
measured by two cameras and joint positions on a three degrees of freedom
robot. The mapping is made by a three dimensional self-organising map.
They automatically resolve redundancy minimising the variation of the joint
angles during the learning process, using motor babbling or just learning
along target trajectories.

Closer to our approach, D’Souza et al (2001) et al. learn an inverse kine-
matic model with lwpr. The learned inverse model is an inverse of the ex-
tended Jacobian learned on the task with the input

(

q, ξ̇
)

and the output (q̇)

M = LWPRlearn

([

q, ξ̇
]

, q̇
)

.

Doing so, no inversion is involved and singularity problems are avoided.
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3.4 Learning Forward Kinematics

As forward models of serial robots can easily be computed analytically, there
are few papers treating this subject.

A few authors have used multi-layer perceptrons networks or self-organising
maps to learn the forward kinematics model of various simple systems
(Nguyen et al, 1990; Wang and Zilouchian, 1997; Sadjadian and Taghirad,
2004), but in general the evaluation is based on the accuracy of the model
itself rather than on its control capabilities. Boudreau et al (1998) and
Sang and Han (1999) learn in a more convenient way the forward models of
parallel robots which involves highly coupled nonlinear equations and which
are difficult to model analytically.

More related to our work, Sun and Scassellati (2004, 2005) learn a for-
ward geometric model with a radial basis function network. They derive each
function to obtain a Jacobian, using classical operational space control tech-
niques similarly to what we propose. They specifically use the two cameras of
a humanoid robot to obtain the operational position used in their controller.
Their approach is very similar to the one we present hereafter, provided that
they use radial basis function networks whereas we use lwpr. On a similar
line, Butz and Herbort (2008) learn a forward kinematics model and inverse
it, using the learning classifier system xcsf as a model learning tool.

In fact, learning forward models for a redundant robot does not raise par-
ticular problems. By contrast, as explained in section 2, there exists an infinity
of possible inverse mappings, thus, unless one always wants to use the same
inverse mapping, it does not really make sense to directly learn kinematics or
velocity kinematics inverse mappings since this leads to a loss of information
regarding the redundant nature of the system. Instead, one can learn the for-
ward mappings and invert them with the methods described in section 2.2,
keeping the infinity possibilities for the inversion. One may argue that invert-
ing a learned mapping will lead to the amplification of learning errors. This
is true. However, the results we present in this chapter demonstrate that this
approach actually provides very good results when combined with a closed-
loop controller as well as when keeping the learning active while controlling
the robot.

Taking into account these considerations and in order to compare the two
approaches, in this paper we propose to learn the forward kinematics model
in Equation (1) of a 3 degrees of freedom robot, giving as input the joint
parameters q adjusted in [0, 2π[ and the task space parameters ξ as output

M = LWPRlearn (q, ξ) .

lwpr does not return directly the global model, but only the predicted
output for a particular input. However, the Jacobian matrix is the first
order derivative of the forward kinematics model relatively to joint space
parameters q, thus this matrix is provided “for free” while learning the
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forward kinematics model. This calculation is made easier by the fact that
the learned model is a simple sum of multiple linear functions which are easily
differentiated.

4 Experimental Study

In this section, we present simulation based experiments designed to compare
the under, fully and over-constrained cases using both the projection and the
extended Jacobian approaches. When using the latter, we do not learn the
inverse mapping as in D’Souza et al (2001) but rather the forward mapping
which we inverse.

4.1 Control Architecture

We have chosen to evaluate the compared approaches on a 3 degrees of free-
dom planar system, shown in Figure 1. Sticks lengths are 0.50m, 0.40m
and 0.20m. To simulate this system, we use Arboris, a dynamic simu-
lator based on Newton-Euler equations which is implemented in matlab
(Barthelemy and Bidaud, 2008). The integration step time of the simulator
is chosen to be 10 milliseconds.

Fig. 1 Schematic view of our simulated system.

Our control scheme uses the resolved motion rate control principle, i.e.,
the desired task space velocity is computed using the task space parameters
error

ξ̇
�

= Kp (ξ� − ξ) , (12)

when ξ� denotes the desired value of the task space parameters and Kp is
a symmetric positive definite matrix. The actual task space parameters are
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obtained from the simulator model and, in the case of a real robot, they
would be measured from exteroceptive sensors. One could think about using
lwpr forward kinematics prediction however this would lead to a drift with
respect to the real target since no external reference would then be used to
close the control loop.

Regarding the projection method, the inverse velocity kinematics is done
using solution (10) and the estimated Jacobian matrices and projector which
can be written as

q̇ = Ĵ+
1 ξ̇

�

1 +
(

Ĵ2PĴ1

)+ (

ξ̇
�

2 − Ĵ2Ĵ
+
1 ξ̇

�

1

)

. (13)

Ĵ1 and Ĵ2 are respectively obtained from lwpr predictions
[

ξ̂1, Ĵ1

]

= LWPRpredict (q,M1)

and [

ξ̂2, Ĵ2

]

= LWPRpredict (q,M2) .

The extended Jacobian method leads to a solution that can be written:

q̇ =
[
Ĵ1

Ĵ2

]−1
[

ξ̇
�

1

ξ̇
�

2

]

. (14)

PĴ1
and pseudoinverses of Ĵ1 and Ĵ2PJ1 are obtained using their SVD as

presented in Section 2.2.
q̇ obtained from Equations (13) or (14) is then differentiated and the re-

sulting joints acceleration vector is used to compute the actuation torque
based on the dynamics model in Equation (3) which we suppose to know and
is obtained from Arboris (see above). A short version of this control scheme
is presented on Figure 2.

Fig. 2 Our control scheme including a Forward Velocity Kinematics Model learned
with lwpr and an Inverse Dynamics Model. The dashed line is executed only during
the learning process.
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4.2 Choice of Parameters for the lwpr Algorithm

Before performing our experiments, we start with an initial exploration
phase that can be seen as motor babbling, to initialise the model, as sug-
gested in Klanke et al (2008). We generate random configurations taking
qi ∈ [0, 2π[. Depending on the corresponding configurations, we measure
task parameters and feed the lwpr model with the corresponding (q, ξ)
pairs.

Then lwpr comes with some parameters that need to be initialised. We
initialise lwpr as proposed by Klanke et al (2008). The initD coefficient cor-
responds to the initial size of all receptive fields. This coefficient significantly
affects the convergence time of lwpr. initD is tuned experimentally from
comparing the performance of a set of motor babbling phases to find the best
value corresponding to the minimal prediction error.

Two important parameters for our simulations are wgen and penalty. The
first one is a threshold responsible for the creation of a new local model if no
model responds high enough. The penalty coefficient is critical to the evolu-
tion of the size of receptive fields. A small penalty term increases precision
but decreases the smoothness of the model. We have chosen wgen = 0.5 and
penalty = 1e−6 to have the best precision while avoiding ”overlearning”.
Finally, from our experiments, updating D is not so important once the ini-
tialisation is well done but we still keep this option. We set initα to 10000
and activate meta learning (see Klanke et al (2008)).

4.3 Experiments

In this Section, we detail three different constrained cases and associated
tasks in order to study the robustness of our control scheme.

4.3.1 Under-Constrained Case

The first studied task is a reaching task. From an initial end-effector position
ξi

1 = [0.10 1.00]T m, the end-effector (E1) of the robot has to reach a target
ξ�

1 = [0.20 0.50]T m with a specified precision of 0.01 meters. Once the task
is achieved, the end-effector is sent back to its initial position with the same
controller and the same required precision. This point to point movement is
repeated until the end of the simulation.

For this simple reaching task, the task space dimension is 2, thus the
Jacobian is redundant and there is an infinity of ways to reach the goal.
We compare the projection approach presented in Section 2.3 without any
secondary task to the extended Jacobian approach, where the extension is
realised by adding a one dimension constraint on point (E2):

ξ�
2x = 0.40 m.
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4.3.2 Fully Constrained Case

The second experiment consists in reaching ξ�
1 = [0.20 0.50]T m and keeping

the end effector in this position while realising a second task. This second
task alternatively requires the parameter ξ2x to reach the values 0.10 m and
0.30 m which are accessible. The first task is a two dimensional task whereas
the second one is a one dimensional task. The system is thus fully constrained.

For these two tasks, the same redundancy resolution schemes are tested.
In the case of the projection method, the second task is projected in the
nullspace of the first one accordingly to Equation (13). In the case of the
extended Jacobian method, Jext is chosen as in the previous experiment.

4.3.3 Over-Constrained Case

The last experiment is very similar to the previous one. The first task is
identical whereas the second one is a two dimensional task for point (E2)
which has to reach ξ�

2 = [0.45 0.25]T m. This second task is not compatible
with the first one. The system is over constrained.

Regarding this experiment, the projection method is the only one to be
tested since the extended Jacobian method would require the same projection
in order to obtain a square Jacobian matrix Jext.

5 Results

In this section, results from the babbling phase and the experiments described
in Section 4.3 are presented and analysed. Except for the babbling phase
where the presented results are an average over 40 trials, the results presented
below correspond to representative trials.

5.1 Babbling Phase

To evaluate the effectiveness of the forward velocity kinematics model pre-
diction, we use the Normalised Mean Square Error (NMSE) computed as:

NMSE =
1
σ2

1
N

N∑

i

(yi − ŷi)
2

where N is the number of points used to compute this error. yi is the ith

value of the data obtained by the real model of the robot, ŷi is the ith

predicted value by the learned model and σ2 is the sample variance of y:
σ2 = 1

N

∑N
k=1 (yk − yk)2.

To actually compute this error, we fixed the velocity of each joint to
1.00 rad.s−1. As can be seen on Figure 3, the NMSE of the predicted veloc-
ity decreases during motor babbling. A babbling phase with 5000 samples is,
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Fig. 3 Evolution of the Normalised Mean Square Error of the LWPR task space
velocity prediction (blue, scale left) and of the number of receptive fields for one
output (red, scale right) for a 50000 samples babbling phase (average over 40 trials).

in this case, sufficient for LWPR to cover roughly the joint space, having an
output, even bad, in each configurations, and to predict an accurate enough
Jacobian matrix.

Regarding the number of receptive fields, in the end of each experiment,
it varies between 2000 and 8000 for each output depending on the length of
the babbling phase. For babbling phases with a large number of samples, this
number is almost reached at the end of the babbling phase.

The relatively large number of receptive fields required in these experi-
ments is due to two factors. The first one is the precision of the prediction
which is asked for and that can be related to our choice of parameters for
the LWPR algorithm. The second factor is more specific to the redundancy
of the robot which we wish to exploit. This redundancy induces possible in-
ternal motions from secondary tasks which cannot be predicted a priori and
thus require a good coverage of the joint space in complement to specific
trajectory learning.

5.2 Under-Constrained Case

In this experiment, in order to highlight the model adaptation during the con-
trol phase, we only realise motor babbling using 2000 samples. Figure 4(a) rep-
resents the two first seconds of simulation. The model of the robot is still quite
approximative and the resolved motion rate controller is not sufficiently robust
to compensate for inaccuracies in the learned model. Figures 4(b) (between 2s
and 4s) and 4(c) (between 6s and 8s) show the evolution of the trajectories.
It can be noticed that the learned model is being adapted during the control
phase. Also, the precision requirements (errors smaller than 0.01m) in terms of
the point that has to be reached are met. After 20s (see Figure 4(d)), the pre-
cision is improved and the trajectory of the robot trajectory is almost linear as
one would expect when using a resolved motion rate controller.
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(a) (b)

(c) (d)

Fig. 4 Evolution of operational trajectories while learning. Each graphic represents
two seconds of simulation.(a): 0s to 2s.(b): 2s to 4s.(c): 6s to 8s.(d): 20s to 22s.

This is not illustrated here but, as expected, the results obtained using the
projection and the extended Jacobian methods are equivalent in the under
constrained case.

5.3 Fully Constrained Case

In the fully constrained case, the precision requirements (0.01m) are also met
for the two tasks which respectively constrain the position of the end-effector
(point (E1)) and the position along the x0 axis (see Figure 1) of the wrist
of the robot (point (E2)). This is illustrated on Figure 5 for the first task.
It is shown, that there is no major difference in the precision obtained when
controlling redundancy using an extended Jacobian or using the projector
approach. From 0 to 1s, the reference task point is not reached yet, which
explains the large error (the initial error, not shown on the figure, is 0.65m).
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Fig. 5 Norm of the end-effector error induced by a second compatible task for two
different controllers.

After 1s, the required precision is obtained and errors are due to the cyclic
change of reference point for the second task. These errors decrease with time
thanks to the on-line improvement of the learned model.

These errors are due to the fact that a learned model is used as well as
to the fact that learning errors are propagated when computing the inverse
velocity kinematics mapping from the forward one. Using the extended Jaco-
bian approach or ours, if the Jacobian matrices are not accurately predicted,
errors disturbs the tasks. Similarly, when specifically using the projection
method, an error in the prediction of the first task Jacobian induces an er-
ror in the computation of the associated projector leading to disturbances
induced by the second task on the first one.

Despite these error propagation effects, the achieved performances are
satisfactory.

5.4 Over-Constrained Case

The results obtained from the last experiment illustrate the effectiveness of
the projection method. The controller maintains the distance between the
end effector point (E1) and the desired reference point (A) under 0.01m.
In the same time, the second task is partially achieved as expected from
the redundancy resolution scheme which was chosen. It is achieved with the
minimum possible error and without inducing any disturbance on the first
task: the task hierarchy is respected.

These results are illustrated on Figure 6 where the final configuration of
the system is shown as well as intermediate configuration, illustrating the
convergence of the second task to the best possible result.
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Fig. 6 Stroboscopic view of the robot realising two prioritised tasks in the incom-
patible case. The task hierarchy is respected as the end effector E1 reach point A
while the distance between point E2 and point B is minimum.

Fig. 7 Reaching errors for the first (blue, plain line) and second task (red, dotted
line) in the incompatible case.

Figure 7 gives a view of the positioning errors for both tasks. Similarly to
the last experiment, error propagation effects are present but once again the
end effector error in position is very low.

6 Discussion

First, our results demonstrate the necessity of a babbling phase in the redun-
dant case. The number of receptive fields associated to the learned model is
quite important but this is explained by the required precision as well as by
the necessity to cover the joint space appropriately (see Section 5.1).
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The results of the experiments for the under constrained case shows that
after some initialisation with motor babbling, our method is able to im-
prove the model of the system while controlling it so that a reaching task is
achieved with a prescribed precision. The end-effector trajectory converges
to what would be expected in the case of resolved motion rate control. A
similar result has already been obtained by D’Souza et al (2001), using the
extended Jacobian approach and learning directly the inverse velocity kine-
matics mapping.

The second series of experiments (fully constrained case) convey more orig-
inal results. To our knowledge, our approach is original in the sense that the
forward velocity kinematics mapping is learned (through the learning of the
forward kinematics model) and the obtained Jacobian matrix is used to de-
rive the required inverse and projector allowing to combine several learned
tasks. We show that this method induces error propagations but the perfor-
mance of the controller remains satisfactory. This is mostly due to the fact
that learning is still active while performing the task, inducing on-line model
adaptation. Also, closing the control loop at the task level using exterocep-
tive sensor information results in the possibility to compensate for model
uncertainties.

The last series of experiments (over constrained case) reinforces the results
of the fully constrained case by showing that several learned tasks can be
combined in a hierarchical manner in the case where those tasks are not
compatible. This has been a state-of-the-art result for a while in model-
based control in Robotics (Nakamura, 1991). However, to the best of our
knowledge, this is the first time that such results are achieved in the case of
learned models.

The retained redundancy resolution scheme in that last case is the projec-
tion method which leads to the optimal solution for both tasks. In fact, in
the over constrained case, the only effective redundancy resolution scheme is
the projection method. The extended Jacobian approach can be applied in
that case but in a way that requires projections similarly to our approach.

Taking these considerations into account, we draw two conclusions. The
first one is that the extended Jacobian approach is not satisfactory in the
case where models have to be learned. Combining two tasks in a single one in
order to simplify inversion leads to unnecessary constraints on the learning
problem to be solved whereas it is simpler to learn elementary tasks sepa-
rately. Furthermore, tasks combination is easier when the tasks are learned
separately. In the extended Jacobian method, the learned inverse velocity
kinematics model depends on the supplementary task. The whole model has
to be learned again if this task changes whereas learning separately different
Jacobian matrices leave them independent and changing one of them does
not impact the others.

Our second conclusion is that in the redundant case, learning forward
models does not lead to a loss of information about the system. In our method,
one can choose to add any secondary task independently from the first one
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and any weighting matrix Wq can be used3 when performing the inverse of
the Jacobian (see Equation (4)). That is not the case when inverse models
are learned directly since this corresponds to a specific choice of inverse. Also,
learning the nullspace of a given mapping at the velocity level would require
a complex learning process and thus it sounds more appropriate to compute
them from the learned forward velocity kinematics mapping.

7 Conclusion

In the work presented in this paper, we have used a state-of-the-art function
approximation technique, LWPR, to learn the forward kinematics and, by
extension, forward velocity kinematics models of a simple robotic system.
We have shown that this model learning process could be combined with
state-of-the-art operational space control techniques to control a robot. In
particular, we demonstrated that we can benefit from the hierarchical com-
bination capabilities of the operational space control framework to achieve
several learned tasks in parallel even when those tasks are not fully com-
patible. This is made possible by learning the unique forward mapping for
each task and then inversing it instead of directly learning an inverse map-
ping. Two methods were tested: the extended Jacobian approach and the
projection method. The latter is shown to be more versatile than the former.

There are several possible extensions to this work. The most immediate
one consists in dealing with the case of trajectory tracking instead of reach-
ing tasks using resolved motion rate control. This may require faster on-line
learning capabilities during the control phase and we will have to demonstrate
that benefiting from redundancy and combining tasks is still possible in that
more complex case. More generally, we should study the performance of our
approach in a wider variety of tasks and combinations (joint limits avoidance,
external collision avoidance) as well as in the case of using different types of
inversion.

A second extension consists in learning the dynamics of the system and
studying the behaviour of our approach under perturbations to validate its
on-line adaptation capabilities to external forces, that will make it possible
to interact with unknown objects and human users.

Longer term perspectives include an extension of our framework to sys-
tems with a larger number of degrees of freedom. Even though our example
is complex enough to present our approach to learning for the control of re-
dundant systems, model learning is of interest for complex systems. Increas-
ing the number of dimensions leads to more complex learning problems. In
that context, replacing LWPR by the Local Gaussian Process approach de-
scribed in this volume (Nguyen-Tuong et al, 2010) seems a natural choice. Fi-
nally, the control framework presented in this paper considers the system as
3 The use of a proper weighting matrix (different from the Identity) can be crucial

in the dynamic case (Khatib, 1987).
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deterministic, whereas in a model learning context, regarding it as stochastic
seems more adequate. As a consequence, we will examine the option of mov-
ing from our deterministic framework to its stochastic equivalent described in
(Toussaint and Goerick, 2010) in this volume.
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Real-Time Local GP Model Learning

Duy Nguyen-Tuong, Matthias Seeger, and Jan Peters

Abstract. For many applications in robotics, accurate dynamics models are essen-
tial. However, in some applications, e.g., in model-based tracking control, precise
dynamics models cannot be obtained analytically for sufficiently complex robot sys-
tems. In such cases, machine learning offers a promising alternative for approximat-
ing the robot dynamics using measured data. However, standard regression methods
such as Gaussian process regression (GPR) suffer from high computational com-
plexity which prevents their usage for large numbers of samples or online learning
to date. In this paper, we propose an approximation to the standard GPR using lo-
cal Gaussian processes models inspired by [Vijayakumar et al(2005)Vijayakumar,
D’Souza, and Schaal, Snelson and Ghahramani(2007)]. Due to reduced compu-
tational cost, local Gaussian processes (LGP) can be applied for larger sample-
sizes and online learning. Comparisons with other nonparametric regressions, e.g.,
standard GPR, support vector regression (SVR) and locally weighted projection
regression (LWPR), show that LGP has high approximation accuracy while being
sufficiently fast for real-time online learning.

1 Introduction

Precise models of technical systems can be crucial in technical applications [Roberts
et al(2010)Roberts, Moret, Zhang, and Tedrake,Fumagalli et al(2010)Fumagalli, Gi-
jsberts, Ivaldi, Jamone, Metta, Natale, Nori, and Sandini]. In robot tracking control,
only well-estimated inverse dynamics models allow both high accuracy and compli-
ant, low-gain control. For complex robots such as humanoids or light-weight arms,
it is often hard to analytically model the system sufficiently well and, thus, modern
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regression methods can offer a viable alternative [Schaal et al(2002)Schaal, Atke-
son, and Vijayakumar,Vijayakumar et al(2005)Vijayakumar, D’Souza, and Schaal].
However, highly accurate regression methods such as Gaussian process regression
(GPR) suffer from high computational cost, while fast real-time learning algorithms
such as locally weighted projection regression (LWPR) are not straightforward to
use, as they require manual adjustment of many data dependent parameters.

In this paper, we attempt to combine the strengths of both approaches, i.e., the
high accuracy and comfortable use of GPR with the fast learning speed of LWPR.
We will proceed as follows: firstly, we briefly review both model-based control as
well as standard Gaussian process regression. We will discuss the necessity of esti-
mating the inverse dynamics model for compliant, low-gain control. Subsequently,
we describe our local Gaussian process models (LGP) approach.

In Section 3, the learning accuracy and performance of the presented LGP
approach will be compared with several relevant regression methods, e.g., stan-
dard GPR [Rasmussen and Williams(2006)], ν-support vector regression (ν-SVR)
[Schölkopf and Smola (2002)], sparse online GP (OGP) [Csato and Opper(2002)]
and LWPR [Vijayakumar et al(2005)Vijayakumar, D’Souza, and Schaal, Schaal
et al(2002)Schaal, Atkeson, and Vijayakumar]. The applicability of the LGP for
low-gain model-based tracking control and real-time learning is demonstrated on a
Barrett whole arm manipulator (WAM). We can show that its tracking performance
exceeds analytical models [Craig(2004)] while remaining fully compliant.

1.1 Model-Based Control

Model-based control, e.g., computed torque control [Spong et al(2006)Spong,
Hutchinson, and Vidyasagar], enables high speed and compliant robot control while
achieving accurate control with small tracking errors for sufficiently precise robot
models. The controller is supposed to move the robot that is governed by the system
dynamics [Spong et al(2006)Spong, Hutchinson, and Vidyasagar]

M(q) q̈+ C(q, q̇)+ G(q)+ ε (q, q̇, q̈) = u , (1)

where q, q̇, q̈ are joint angles, velocities and accelerations of the robot, respectively,
u denotes the applied torques, M(q) the inertia matrix of the robot and C(q, q̇)
Coriolis and centripetal forces, G(q) gravity forces and ε (q, q̇, q̈) represents non-
linearities of the robot which are not part of the rigid-body dynamics.

The model-based tracking control law determines the joint torques u necessary
for following a desired trajectory qd , q̇d , q̈d using a dynamics model while em-
ploying feedback in order to stabilize the system. For example, the inverse dynam-
ics model of the robot can be used as a feed-forward model that predicts the joint
torques uFF required to perform the desired trajectory [Spong et al(2006)Spong,
Hutchinson, and Vidyasagar, Craig(2004)], while a feedback term uFB ensures the
stability of the tracking control with a resulting control law of u= uFF + uFB. The
feedback term can be a linear control law such as uFB =Kpe+Kvė, where e=qd−q
denotes the tracking error and Kp,Kv position-gain and velocity-gain, respectively.
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If an accurate model in the form of Equation (1) can be obtained for the feed-forward
model, e.g., for negligible unknown nonlinearities ε , the resulting feed-forward term
uFF will largely cancel the robots nonlinearities [Spong et al(2006)Spong, Hutchin-
son, and Vidyasagar].

For complex robots such as humanoids or light-weight arms, it is often hard to
model the system sufficiently well using the rigid body dynamics. Unknown non-
linearities ε (q, q̇, q̈) such as flexible hydraulic tubes, complex friction, gear boxes,
etc, couple several degrees of freedom together and result in highly altered dynam-
ics. Such unknown nonlinearities can dominate the system dynamics and deteri-
orate the analytical model [Nakanishi et al(2005)Nakanishi, Farrell, and Schaal].
The resulting tracking error needs to be compensated using large gains [Spong
et al(2006)Spong, Hutchinson, and Vidyasagar]. However, high feedback gains pro-
hibit compliant control and, thus, make the robot less safe for the environment while
causing many practical problems such as actuator saturation, excitation of unmod-
eled dynamics, may result in large tracking errors in presence of noise, increase
energy consumption, etc. To avoid high-gain feedback, it is essential to improve
the accuracy of the dynamics model for predicting uFF. Since uFF is a function
of qd , q̇d , q̈d , it can be obtained with supervised learning using measured data.
The resulting problem is a regression problem that can be solved by learning the
mapping q, q̇, q̈→u on sampled data [Schaal et al(2000)Schaal, Atkeson, and Vi-
jayakumar,Nguyen-Tuong et al(2008)Nguyen-Tuong, Peters, and Seeger] and, sub-
sequently, using the resulting mapping for determining the feed-forward motor com-
mands. As trajectories and corresponding joint torques are sampled directly from the
real robot, learning the mapping will include all nonlinearities and not only the ones
described in the rigid-body model.

1.2 Regression with Standard GPR

As any realistic inverse dynamics is a well-defined functional mapping of contin-
uous, high-dimensional inputs to outputs of the same kind, we can view it as a
regression problem. Given the input x ∈ R

n and the target y ∈ R
n, the task of re-

gression algorithms is to learn the mapping describing the relationship from input
to target using samples. A powerful method for accurate function approximation
in high-dimensional space is Gaussian process regression (GPR) [Rasmussen and
Williams(2006)]. Given a set of n training data points {xi,yi}n

i=1, we would like
to learn a function f (xi) transforming the input vector xi into the target value yi

given a model yi = f (xi)+εi , where εi is Gaussian noise with zero mean and vari-
ance σ2

n [Rasmussen and Williams(2006)]. As a result, the observed targets can
also be described by a Gaussian distribution y∼N

(

0,K(X,X)+ σ2
n I

)

, where X
denotes the set containing all input points xi and K(X,X) the covariance matrix
computed using a given covariance function. Gaussian kernels are probably the most
frequently used covariance functions [Rasmussen and Williams(2006)] and are
given by

k (xp,xq)=σ2
s exp

(

−1
2
(xp−xq)T W(xp−xq)

)

, (2)
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where σ2
s denotes the signal variance and W represents the widths of the Gaussian

kernel. Other choices for possible kernels can be found in [Schölkopf and Smola
(2002), Rasmussen and Williams(2006)]. The joint distribution of the observed tar-
get values and predicted value f (x∗) for a query point x∗ is given by

[
y

f (x∗)

]

∼N

(

0,

[

K(X,X)+ σ2
n I k(X,x∗)

k(x∗,X) k(x∗,x∗)

])

. (3)

Conditioning the joint distribution yields the predicted mean value f (x∗) with the
corresponding variance V (x∗)

f (x∗) = kT
∗
(

K + σ2
n I

)−1 y = kT
∗α ,

V (x∗) = k(x∗,x∗)− kT
∗
(

K + σ2
n I

)−1
k∗ ,

(4)

with k∗ = k(X,x∗), K = K(X,X) and α denotes the so-called prediction vector.
The hyperparameters of a Gaussian process with Gaussian kernel are given by
θ = [σ2

n ,σ2
f ,W] and remain the only open parameters. Their optimal value for a

particular data set can be automatically estimated by maximizing the log marginal
likelihood using standard optimization methods such as Quasi-Newton methods
[Rasmussen and Williams(2006)].

2 Local Gaussian Process Regression

Due to high computational complexity of nonlinear regression techniques, inverse
dynamics models are frequently only learned offline for pre-sampled desired trajec-
tories [Nguyen-Tuong et al(2008)Nguyen-Tuong, Peters, and Seeger]. In order to
take full advantage of a learning approach, online learning is an absolute necessity
as it allows the adaption to changes in the robot dynamics, load or the actuators. Fur-
thermore, a training data set will never suffice for most robots with a large number
of degrees of freedom and, thus, fast online learning is necessary if the trajectory
leads to new parts of the state-space. However, for most real-time applications on-
line model learning poses a difficult regression problem due to three constraints, i.e.,
firstly, the learning and prediction process should be very fast (e.g., learning needs
to take place at a speed of 20-200Hz and prediction may take place at 200Hz up
to 5kHz). Secondly, the learning system needs to be capable of dealing with large
amounts of data (i.e., with data arriving at 200Hz, less than ten minutes of runtime
will result in more than a million sampled data points). And, thirdly, the data ar-
rives as a continuous stream, thus, the model has to be continuously adapted to new
training examples over time.

Model learning with GPR suffers from the expensive computation of the inverse
matrix (K + σ2

n I)−1 which yields a cost of O(n3), see Equation (4). Inspired by lo-
cally weighted regression [Schaal et al(2002)Schaal, Atkeson, and Vijayakumar,Vi-
jayakumar et al(2005)Vijayakumar, D’Souza, and Schaal], we propose a method
for speed-up the training and prediction process by partitioning the training data
in local regions and learning an independent Gaussian process model (as given
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in Section 1.2) for each region. The number of data points in the local models is
limited, where insertion and removal of data points can be treated in a principled
manner. The prediction for a query point is performed by weighted average similar
to LWPR [Vijayakumar et al(2005)Vijayakumar, D’Souza, and Schaal]. For parti-
tioning and weighted prediction we use a kernel as similarity measure. Thus, our
algorithm consists out of three stages: (i) clustering of data, i.e., insertion of new
data points into the local models, (ii) learning of corresponding local models and
(iii) prediction for a query point.

2.1 Partitioning of Training Data

Clustering input data can be performed efficiently using a similarity measure be-
tween the input point x and the centers of the respective local models. From a
machine learning point of view, the similarity or proximity of data points can be
defined in terms of a kernel. Kernel functions represent the dot product between two
vectors in the feature space and, hence, naturally incorporate the similarity measure
between data points. The clustering step described in this section results from the
basic assumption that nearby input points are likely to have similar target values.
Thus, training points that belong to the same local region (represented by a center)
are informative about the prediction for query points next to this local region.

A specific characteristic in this framework is that we take the kernel for learning
the Gaussian process model as similarity measure wk for the clustering process. If
a Gaussian kernel is employed for learning the model, the corresponding measure
will be

wk (x,ck) = exp

(

−1
2

(x− ck)
T W(x− ck)

)

, (5)

where ck denotes the center of the k-th local model and W a diagonal matrix rep-
resented the kernel width. It should be emphasized that for learning the Gaussian
process model any admissible kernel can be used. Thus, the similarity measure for
the clustering process can be varied in many ways, and, for example, the commonly
used Matern kernel [Seeger(2004)] could be used instead of the Gaussian one. For
the hyperparameters of the measure, such as W for Gaussian kernel, we use the
same training approach as introduced in Section 1.2. Since the hyperparameters of
a Gaussian process model can be achieved by likelihood optimization, it is straight-
forward to adjust the open parameters for the similarity measure. For example, we
can subsample the available training data and, subsequently, perform the standard
optimization procedure.

After computing the proximity between the new data point xnew and all available
centers, the data point will be included to the nearest local model, i.e., the one with
the maximal value of wk. As the data arrives incrementally over time, a new model
with center ck+1 is created if all similarity measures wk fall below a threshold wgen.
The new data point is then used as new center ck+1 and, thus, the number of local
models will increase if previously unknown parts of the state space are visited. When
a new data point is assigned to a particular k-th model, i.e., maxk wk(x) > wgen the
center ck will be updated to the mean of corresponding local data points.
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Algorithm 1: Partitioning the training data with incremental model learning.
Input: new data point {xnew, ynew}.
for k=1 to number of local models do

Compute proximity to the k-th local model:
wk = k (xnew,ck)

end for
Take the nearest local model:

v = maxk wk
if v > wgen then

Insert {xnew, ynew} into the nearest local model:
Xnew =[X,xnew], ynew =[y,ynew]

Update the corresponding center:
cnew = mean(Xnew)

Update the Cholesky matrix and the
prediction vector of local model:

Compute l and l∗
Compute Lnew
If the maximum number of data points is reached
delete another point by permutation.
Compute αnew by back-substitution

else
Create new model:

ck+1 =xnew, Xk+1 =[xnew], yk+1 =[ynew]
Initialize of new Cholesky matrix L and
new prediction vector α .

end if

Algorithm 2: Prediction for a query point.
Input: query data point x, M .
Determine M local models closest to x.
for k = 1 to M do

Compute proximity to the k-th local model:
wk = k (x,ck)

Compute local prediction using the k-th local model:
ȳk = kT

k αk
end for
Compute weighted prediction using M local models:

ŷ=∑M
k=1 wkȳk/∑M

k=1 wk .

2.2 Incremental Update of Local Models

During online learning, we have to deal with an endless stream of data (e.g., at a
500 Hz sampling rate we get a new data point every 2 ms and have to treat 30 000
data points per minute). In order to cope with the real-time requirements, the maxi-
mal number of training examples needs to be limited so that the local models do not
end up with the same complexity as a standard GPR regression. Since the number
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of acquired data points increases continuously over time, we can enforce this limit
by incrementally deleting old data points when newer and better ones are included.
Insertion and deletion of data points can be achieved using first order principles, for
example, maximizing the information gain while staying within a budget (e.g., the
budget can be a limit on the number of data points). Nevertheless, while the update of
the target vector y and input matrix X can be done straightforwardly, the update of the
covariance matrix (and implicitly the update of the prediction vector α , see Equation
(4)) is more complicated to derive and requires thorough analysis given here.

The prediction vector α can be updated incrementally by directly adjusting the
Cholesky decomposition of the Gram matrix (K + σ2

n I) as suggested in
[M.Seeger(2007)]. For doing so, the prediction vector can be rewritten as y=LLT α ,
where the lower triangular matrix L is a Cholesky decomposition of the Gram ma-
trix. Incremental insertion of a new point is achieved by adding an additional row to
the matrix L.

Proposition 1. If L is the Cholesky decomposition of the Gram matrix K while Lnew

and Knew are obtained by adding additional row and column, such that

Lnew =
[

L 0
lT l∗

]

, Knew =
[

K kT
new

knew knew

]

, (6)

with knew = k(X,xnew) and knew = k(xnew,xnew), then l and l∗ can be computed by
solving

Ll = knew (7)

l∗ =
√

knew−‖l‖2 (8)

Proof. Multiply out the equation LnewLT
new = Knew and solve for l and l∗. ��

Since L is a triangular matrix, l can be determined from Equation (7) by substituting it
back in after computing the kernel vector knew. Subsequently, l∗ and the new predic-
tion vector αnew can be determined from Equation (8), where αnew can be achieved by
twice back-substituting while solving ynew =LnewLT

newαnew. If the maximal number
of training examples is reached, an old data point has to be deleted every time when
a new point is being included. The deletion of the m-th data point can be performed
efficiently using a permutation matrix R and solving ynew = R LnewLT

newR αnew,
where R = I− (δ m− δ n)(δ m− δ n)T and δ i is a zero vector whose i-th element is
one [M.Seeger(2007)]. In practice, the new data point is inserted as a first step to the
last row (n-th row) according to Equation (6) and, subsequently, the m-th data point
is removed by adjusting R. The partitioning and learning process is summarized in
Algorithm 1. The incremental Cholesky update is very efficient and can be performed
in a numerically stable manner as discussed in detail in [M.Seeger(2007)].

Due to the Cholesky update formulation, the amount of computation for training
can be limited due to the incremental insertion and deletion of data points. The main
computational cost for learning the local models is dominated by the incremental
update of the Cholesky matrix which yields O(N2

l ), where Nl presents the number
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of data points in a local model. Importantly, Nl can be set in accordance with the
computational power of the available real-time computer system.

2.3 Prediction Using Local Models

The prediction for a mean value ŷ is performed using weighted averaging over
M local GP predictions ȳk for a query point x similar to LWPR
[Vijayakumar et al(2005)Vijayakumar, D’Souza, and Schaal]. The weighted predic-
tion ŷ is then given by ŷ=E{ȳk|x}=∑M

k=1 ȳk p(k|x). According to the Bayesian the-
orem, the probability of the model k given query point x can be expressed as

p(k|x)=
p(k,x)
p(x)

=
p(k,x)

∑M
k=1 p(k,x)

=
wk

∑M
k=1 wk

. (9)

Hence, we have
ŷ = ∑M

k=1 wkȳk

∑M
k=1 wk

, (10)

Thus, each local GP prediction ȳk=k(Xk,x)T αk is additionally weighted by the simi-
larity wk (x,ck) between the corresponding center ck and the query point x. The search
for M local models can be quickly done by evaluating the proximity between the
query point x and all model centers ck. The prediction procedure is summarized in
Algorithm 2.

3 Learning Inverse Dynamics for Model-Based Control

Learning models for control of high-dimensional systems in real-time is a difficult en-
deavor and requires extensive evaluation. For this reason, we evaluate our

(a) SARCOS arm (b) Barrett WAM

Fig. 1. Robot arms used for data generation and
experiments

algorithm (LGP) using high-dimensional
data taken from two real robots, e.g.,
the 7 degree-of-freedom (DoF) anthro-
pomorphic SARCOS master arm and
7-DoF Barrett WAM both shown in
Figure 1. Subsequently, we apply LGP
for online learning of inverse dynamics
models for robot tracking control. The
tracking control task with model on-
line learning is performed on the Barrett
WAM in real-time. Finally, we highlight
the advantages of online-learned mod-
els versus offline approximation and
analytical model in a more complex
experiment for learning of character
writing.
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3.1 Learning Accuracy Comparison

In this section, we compare the learning performance of LGP with the state-of-the-
art in nonparametric regression, e.g., LWPR, ν-SVR [Schölkopf and Smola (2002)],
standard GPR and online Gaussian Process Regression (OGP) [Schölkopf and Smola
(2002)] in the context of approximating inverse robot dynamics. For evaluating ν-
SVR and GPR, we have employed the libraries [Chang and Lin(2001)] and
[Seeger(2007)], respectively. The code for LGP contained also parts of the library
[Seeger(2007)].

For comparing the prediction accuracy of our proposed method in the setting of
learning inverse dynamics, we use three data sets, (i) SL simulation data
(SARCOS model) as described in [Nguyen-Tuong et al(2008)Nguyen-Tuong, Pe-
ters, and Seeger] (14094 training points and 5560 test points), (ii) data from the
SARCOS master arm (13622 training points and 5500 test points)
[Vijayakumar et al(2005)Vijayakumar, D’Souza, and Schaal] as well as (iii) a data
set generated from our Barrett arm (13572 training points, 5000 test points). Given
samples x=[q, q̇, q̈] as input, where q, q̇, q̈ denote the joint angles, velocity and ac-
celeration, respectively, and using the corresponding joint torques y=[u] as targets,
we have a well-defined, proper regression problem. The considered seven degrees
of freedom (DoF) robot arms result in 21 input dimensions (i.e., for each joint, we
have an angle, a velocity and an acceleration) and seven target or output dimensions
(i.e., a single torque for each joint). The robot inverse dynamics model can be es-
timated separately for each DoF employing LWPR, ν-SVR, GPR, OGP and LGP,
respectively.

1 2 3 4 5 6 7
0

0.01

0.02

0.03

0.04

0.05

Degree of Freedom

n
M

S
E

LWPR
OGP
ν−SVR
GPR
LGP

(a) Approximation Error
on SL data (SARCOS
model)
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on SARCOS data
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(c) Approximation Error
on Barrett WAM data

Fig. 2. The approximation error is represented by the normalized mean squared error (nMSE)
for each DoF (1–7) and shown for (a) simulated data from physically realistic SL simulation,
(b) real robot data from an anthropomorphic SARCOS master arm and (c) measurements from
a Barrett WAM. In all cases, LGP outperforms LWPR and OGP in learning accuracy while
being competitive to ν-SVR and standard GPR. The small variances of the output targets in
the Barrett data results in a nMSE that is a larger scale compared to SARCOS; however, this
increase has no practical meaning and only depends on the training data.
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The training examples for LGP can be partitioned either in the same input space
where the local models are learned or in a subspace that has to be physically consistent
with the approximated function. In the following, we localize the data depending on
the position of the robot. Thus, the partitioning of training data is performed in a seven
dimensional space (i.e., consisting of the seven joint angles). After determining the
similarity metric wk for all k local models in the partitioning space, the input point will
be assigned to the nearest local model, i.e., the local model with the maximal value of
distance measure wk. For computing the localization, we will use the Gaussian kernel
as given in Equation (2) and the corresponding hyperparameters are optimized using
a subset of the training set.

Note that the choice of the limit value wgen during the partitioning step is crucial for
the performance of LGP and, unfortunately, is an open parameter requiring manual
tuning. If wgen is too small, a large number of local models will be generated with
small number of training points. As these small models receive too little data for a
stable GPR, they do not generalize well to unknown neighboring regions of the state
space. If wgen is large, the local models will include too many data points which either
results in over-generalization or, if the number of admitted data points is enlarged as
well, it will increase the computational complexity. Here, the training data is clustered
in about 30 local regions ensuring that each local model has a sufficient amount of
data points for high accuracy (in practice, roughly a hundred data points for each local
model suffice) while having sufficiently few that the solution remains feasible in real-
time (e.g., on the test hardware, an Intel Core Duo at 2GHz, that implies the usage
of up to a 1000 data points per local model). On average, each local model includes
approximately 500 training examples, i.e., some models will not fill up while others
actively discard data. This small number of training data points enables a fast training
for each local model using the previously described fast Cholesky matrix updates.

Figure 2 shows the normalized mean squared error (nMSE) of the evaluation on the
test set for each of the three evaluated scenarios, i.e., a physically realistic simulation
of the SARCOS arm in Figure 2 (a), the real anthropomorphic SARCOS master arm
in Figure 2 (b) and the Barrett WAM arm in Figure 2 (c). Here, the normalized mean
squared error is defined by nMSE = Mean squared error/Variance of target. During
the prediction on the test set using LGP, we take the most activated local models, i.e.,
the ones which are next to the query point.

When observing the approximation error on the test set shown in Figure 2(a-c),
it can be seen that LGP generalizes well to the test data during prediction. In all
cases, LGP outperforms LWPR and OGP while being close in learning accuracy to
the offline-methods GPR and ν-SVR. The mean prediction for GPR is determined ac-
cording to Equation (4) where we pre-computed the prediction vector α from training
data. When a query point appears, the kernel vector kT∗ is evaluated for this particular
point.

3.2 Online Learning for Model-Based Control

In this section, we apply the inverse dynamics models for a model-based tracking
control task [Craig(2004)]. Here, the model is used for predicting the feedforward
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torques uFF necessary to execute a given the desired trajectory [qd , q̇d , q̈d ]. First, we
compare standard rigid-body dynamics (RBD) models with several models learned
offline on training data sets. The RBD-parameters are estimated from the correspond-
ing CAD model. During the control task, the offline-learned models are used for an
online torque prediction. For this comparison, we use LWPR, ν-SVR, standard GPR
as well as our LGP as compared learning methods. We show that our LGP is com-
petitive when compared with its alternatives. Second, we demonstrate that LGP is
capable of online adaptation while being used for predicting the required torques.
During online learning, the local GP models are updated in real-time, and the online
improvement during a tracking task outperforms the fixed offline model in compari-
son. Our goal is to achieve compliant tracking in robots without exception handling or
force sensing but purely based on using low control gains. Our control gains are three
orders of magnitude smaller than the manufacturers in the experiments and we can
show that using good, learned inverse dynamics models we can still achieve compli-
ant control. Due to the low feedback gains, the accuracy of the model has a stronger
effect on the tracking performance in this setting and, hence, a more precisely learned
model will also results in a significantly lower tracking error.

For comparison with offline-learned models, we also compute the feedforward
torque using rigid-body (RB) formulation which is a common approach in robot con-
trol [Craig(2004)]. The control task is performed in real-time on the Barrett WAM, as
shown in Figure 1. As desired trajectory, we generate a test trajectory which is simi-
lar to the one used for learning the inverse dynamics models. Figure 3 (a) shows the
tracking errors on test trajectory for 7 DoFs using offline-learned models. The error
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GPR vs. offline and online-learned
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Fig. 3. (a) and (b) show the tracking errors (RMSE) on the Barrett WAM. For offline-learned
models, LGP is competitive with full GPR and ν-SVR while being better than LWPR and
rigid-body model. When employing online-updates, LGP can largely improve the tracking
results outperforming the offline-learned models using full GPR. The reported results are
computed for a test trajectory executed on the robot.
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is computed as root mean square error (RMSE) which is a frequently used measure in
time series prediction and tracking control. Here, LGP provides a competitive control
performance compared to GPR while being superior to LWPR and the state-of-the
art rigid-body model.

Figure 3 (b) shows the tracking error after online learning with LGP in comparison
with offline learned models. It can be seen that the errors are significantly reduced for
LGP with online updates when compared to both standard GPR and LGP with offline
learned models. During online-learning, the local GP models are adapted as new data
points arrive. Since the number of training examples in each local model is limited,
the update procedure is sufficiently fast for real-time application. For doing so, we
employ the joint torques u and the resulting robot trajectories [q, q̇, q̈] as samples
which are added to the LGP models online as described in Section 2.2. New data
points are added to the local models until these fill up and, once full, new points
replace previously existing data points. The insertion of new data point is performed
with information gain [M.Seeger(2005)] while for the deletion we randomly take an
old point from the corresponding local model. A new data point is inserted to the
local model, if its information gain is larger than a given threshold value. In practice,
this value is set such that the model update procedure can be maintained in real-time
(the larger the information gain threshold, the more updates will be performed).

3.3 Performance on a Complex Test Setting

In this section, we create a more complex test case for tracking with inverse dy-
namics models where the trajectories are acquired by kinesthetic teach-in, i.e., we
take the Barrett WAM by the end-effector and guide it along several trajectories

Fig. 4. The figure illustrates the data generation
for the learning task.

which are subsequently used both in
learning and control experiments. In or-
der to make these trajectories straight-
forward to understand for humans, we
draw all 26 characters of the alphabet
in an imaginary plane in task space.
An illustration for this data generation
process is shown in Figure 4. During
the imagined writing, the joint trajecto-
ries are sampled from the robot. After-
wards, it will attempt to reproduce that
trajectory, and the reproductions can be
used to generate training data. Subse-
quently, we used several characters as
training examples (e.g., characters from
D to O) and others, e.g., A, as test exam-
ples. This setup results in a data set with
10845 samples for training and 1599 for
testing.
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Fig. 5. Compliant tracking performance on Barrett WAM for the test character A, where the
controlled trajectory lies in joint-space while our visualization is in task space for improved
comprehensibility. We compare the corresponding rigid body model, an offline trained GP
model and an online learning LGP. The thick, blue line denotes the desired trajectory, while
the dashed, red line represents the robot trajectory during the compliant tracking task. The
results indicate that online learning with LGP outperforms the offline-learned model using
full GPR as well as the rigid-body dynamics.

Similar as in Section 3.1, we learn the inverse dynamics models using joint trajec-
tories as input and joint torques as targets. The robot arm is then controlled to per-
form the joint-space trajectories corresponding to the test characters using the learned
models. For LGP, we additionally show that the test characters can be learned online
by updating the local models, as described in Section 3.2. The Figure 5 shows the
tracking results using online-learning with LGP in comparison to the offline trained
model with standard GPR and a traditional rigid body model.

It can be observed that the offline trained models (using standard GPR) can gener-
alize well to unknown characters often having a better tracking performance than the
rigid-body model. However, the results can be improved even further if the dynamics
model is updated online – as done by LGP. The LGP results are shown in Figure 5
and are achieved after three trials on the test character.

4 Conclusion

The local Gaussian process regression LGP combines the strength of fast computa-
tion as in local regression with the potentially more accurate kernel regression meth-
ods. As a result, we obtain a real-time capable regression method which is relatively
easy to tune and works well in robot application. When compared to locally linear
methods such as LWPR, the LGP achieves higher learning accuracy while having
less computational cost compared to state of the art kernel regression methods such
as GPR and ν-SVR. The reduced complexity allows the application of the LGP for
online model learning which is necessary for realtime adaptation of model errors
or changes in the system. Model-based tracking control using online learned LGP
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models achieves a superior control performance for low gain control in comparison
to rigid body models as well as to offline learned models.

Future research will focus on several important extensions such as finding kernels
which are most appropriate for clustering and prediction, and how the choice of a
similarity can affect the LGP performance. Partitioning in higher dimension space is
still a challenging problem, a possible solution is to perform dimensionality reduc-
tion during the partitioning step. Furthermore, alternative criteria for insertion and
deletion of data points need to be examined more closely. This operation is crucial for
online learning as not every new data point is informative for the current prediction
task, and on the other hand deleting an old but informative data point may degrade
the performance. It also interesting to investigate further applications of the LGP in
humanoid robotics with 35 of more DoFs and learning other types of the control such
as operational space control.
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Imitation and Reinforcement Learning for
Motor Primitives with Perceptual Coupling

Jens Kober, Betty Mohler, and Jan Peters

Abstract. Traditional motor primitive approaches deal largely with open-loop poli-
cies which can only deal with small perturbations. In this paper, we present a
new type of motor primitive policies which serve as closed-loop policies together
with an appropriate learning algorithm. Our new motor primitives are an aug-
mented version version of the dynamical system-based motor primitives [Ijspeert
et al(2002)Ijspeert, Nakanishi, and Schaal] that incorporates perceptual coupling to
external variables. We show that these motor primitives can perform complex tasks
such as Ball-in-a-Cup or Kendama task even with large variances in the initial con-
ditions where a skilled human player would be challenged. We initialize the open-
loop policies by imitation learning and the perceptual coupling with a handcrafted
solution. We first improve the open-loop policies and subsequently the perceptual
coupling using a novel reinforcement learning method which is particularly well-
suited for dynamical system-based motor primitives.

1 Introduction

The recent introduction of motor primitives based on dynamical systems [Ijspeert
et al(2002)Ijspeert, Nakanishi, and Schaal, Ijspeert et al(2003)Ijspeert, Nakanishi,
and Schaal, Schaal et al(2003)Schaal, Peters, Nakanishi, and Ijspeert, Schaal et al
(2007)Schaal, Mohajerian, and Ijspeert] have allowed both imitation learning and
Reinforcement Learning to acquire new behaviors fast and reliably. Resulting suc-
cesses have shown that it is possible to rapidly learn motor primitives for com-
plex behaviors such as tennis swings [Ijspeert et al(2002)Ijspeert, Nakanishi, and
Schaal,Ijspeert et al(2003)Ijspeert,Nakanishi, and Schaal], T-ball batting [Peters and
Schaal(2006)], drumming [Pongas et al(2005)Pongas, Billard, and Schaal], biped
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locomotion [Schaal et al(2003)Schaal, Peters, Nakanishi, and Ijspeert, Nakanishi
et al(2004b)Nakanishi, Morimoto, Endo, Cheng, Schaal, and Kawato] and even
in tasks with potential industrial application [Urbanek et al(2004)Urbanek, Albu-
Schäffer, and van der Smagt]. However, in their current form these motor primi-
tives are generated in such a way that they are either only coupled to internal vari-
ables [Ijspeert et al(2002)Ijspeert, Nakanishi, and Schaal,Ijspeert et al(2003)Ijspeert,
Nakanishi, and Schaal] or only include manually tuned phase-locking, e.g., with an
external beat [Pongas et al(2005)Pongas, Billard, and Schaal] or between the gait-
generating primitive and the contact time of the feet [Schaal et al(2003)Schaal, Peters,
Nakanishi, and Ijspeert,Nakanishi et al(2004b)Nakanishi, Morimoto, Endo, Cheng,
Schaal, and Kawato]. Furthermore, they incorporate the possibility to update param-
eters of a movement in real-time thus enabling perceptual coupling. E.g., changing
the the goal of a movement can couple it to a target, i.e., an external variable. How-
ever, this perceptual coupling only is effective for the end of the movement and the
rest of the movement is not coupled to the external variable. In many human mo-
tor control tasks, more complex perceptual coupling is needed in order to perform
the task. Using handcrafted coupling based on human insight will in most cases no
longer suffice. If changes of the internal variables constantly influences the behavior
of the external variable more complex perceptual coupling is required as the cou-
pling needs to incorporate knowledge of the behavior of the external variable. In
this paper, it is our goal to augment the Ijspeert-Nakanishi-Schaal approach [Ijspeert
et al(2002)Ijspeert, Nakanishi, and Schaal, Ijspeert et al(2003)Ijspeert, Nakanishi,
and Schaal] of using dynamical systems as motor primitives in such a way that it in-
cludes perceptual coupling with external variables. Similar to the biokinesiological
literature on motor learning (see e.g., [Wulf(2007)]), we assume that there is an ob-
ject of internal focus described by a state x and one of external focus y. The coupling
between both foci usually depends on the phase of the movement and, sometimes,
the coupling only exists in short phases, e.g., in a catching movement, this could be at
initiation of the movement (which is largely predictive) and during the last moment
when the object is close to the hand (which is largely prospective or reactive and in-
cludes movement correction). Often, it is also important that the internal focus is in a
different space than the external one. Fast movements, such as a Tennis-swing, always
follow a similar pattern in joint-space of the arm while the external focus is clearly
on an object in Cartesian space or fovea-space. As a result, we have augmented the
motor primitive framework in such a way that the coupling to the external, perceptual
focus is phase-variant and both foci y and x can be in completely different spaces.

Integrating the perceptual coupling requires additional function approximation,
and, as a result, the number of parameters of the motor primitives grows signifi-
cantly. It becomes increasingly harder to manually tune these parameters to high
performance and a learning approach for perceptual coupling is needed. The need
for learning perceptual coupling in motor primitives has long been recognized in the
motor primitive community [Schaal et al (2007)Schaal, Mohajerian, and Ijspeert].
However, learning perceptual coupling to an external variable is not as straightfor-
ward. It requires many trials in order to properly determine the connections from
external to internal focus. It is straightforward to grasp a general movement by
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imitation and a human can produce a Ball-in-a-Cup movement or a Tennis-swing
after a single or few observed trials of a teacher but he will never have a robust cou-
pling to the ball. Furthermore, small differences between the kinematics of teacher
and student amplify in the perceptual coupling. This part is the reason why perceptu-
ally driven motor primitives can be initialized by imitation learning but will usually
require self-improvement by reinforcement learning. This is analogous to the case
of a human learning tennis: a teacher can show a forehand but a lot of self-practice
is needed for a proper tennis game.

2 Augmented Motor Primitives with Perceptual Coupling

There are several frameworks for motor primitives used in robotics (e.g., [Kulic and
Nakamura(2010)]). In this section, we first introduce the general idea behind dy-
namic system motor primitives as suggested in [Ijspeert et al(2002)Ijspeert, Nakan-
ishi, and Schaal, Ijspeert et al(2003)Ijspeert, Nakanishi, and Schaal] and, subse-
quently, show how perceptual coupling can be introduced. Subsequently, we show
how the perceptual coupling can be realized by augmenting the acceleration-based
framework from [Schaal et al (2007)Schaal, Mohajerian, and Ijspeert].

Fig. 1 Illustration of the behavior of the motor primitives (i) and the augmented motor prim-
itives (ii).

2.1 Perceptual Coupling for Motor Primitives

The basic idea in the original work of Ijspeert, Nakanishi and Schaal [Ijspeert
et al(2002)Ijspeert, Nakanishi, and Schaal, Ijspeert et al(2003)Ijspeert, Nakanishi,
and Schaal] is that motor primitives can be parted into two components, i.e., a canon-
ical system h which drives transformed systems gk for every considered degree of
freedom k. As a result, we have a system of differential equations given by

ż = h(z), (1)

ẋ = g(x,z,w), (2)

which determines the variables of internal focus x (e.g., Cartesian or joint posi-
tions). Here, z denotes the state of the canonical system, which is indicates the
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current phase of the movement, and w the internal parameters for transforming the
output of the canonical system. The schematic in Figure 2 illustrates this traditional
setup in black. In Section 2.2, we will discuss good choices for these dynamical sys-
tems as well as their coupling based on the most current formulation [Schaal et al
(2007)Schaal, Mohajerian, and Ijspeert].

When taking an external variable y into account, there are three different ways
how this variable influences the motor primitive system which one can consider,
i.e., (i) it could only influence Eq.(1) which would be appropriate for synchroniza-
tion problems and phase-locking (similar as in [Pongas et al(2005)Pongas, Billard,
and Schaal, Nakanishi et al(2004a)Nakanishi, Morimoto, Endo, Cheng, Schaal, and
Kawato]), (ii) only affect Eq.(2) which allows the continuous modification of the
current state of the system by another variable and (iii) the combination of (i) and
(ii). While (i) and (iii) are the right solution if phase-locking or synchronization are
needed, the coupling in the canonical system will destroy many of the nice proper-
ties of the system and make it prohibitively hard to learn in practice. Furthermore,
as we focus on discrete movements in this paper, we focus on the case (ii) which
has not been used to date. In this case, we have a modified dynamical system

ż = h(z), (3)

ẋ = ĝ(x,y, ȳ,z,v), (4)
˙̄y = g(ȳ,z,w), (5)

where y denotes the state of the external variable, ȳ the expected state of the ex-
ternal variable and ˙̄y its derivative. This architecture inherits most positive proper-
ties from the original work while allowing the incorporation of external feedback.
We will show that we can incorporate previous work with ease and that the result-
ing framework resembles the one in [Schaal et al (2007)Schaal, Mohajerian, and
Ijspeert] while allowing to couple the external variables into the system.

2.2 Realization for Discrete Movements

The original formulation in [Ijspeert et al(2002)Ijspeert, Nakanishi, and Schaal,
Ijspeert et al(2003)Ijspeert, Nakanishi, and Schaal] was a major breakthrough as
the right choice of the dynamical systems in Equations (1, 2) allows determining
the stability of the movement, choosing between a rhythmic and a discrete move-
ment and is invariant under rescaling in both time and movement amplitude. With
the right choice of function approximator (in our case locally-weighted regression),
fast learning from a teachers presentation is possible. In this section, we first discuss
how the most current formulation from the motor primitives as discussed in [Schaal
et al (2007)Schaal, Mohajerian, and Ijspeert] is instantiated from Section 2.1. Sub-
sequently, we show how it can be augmented in order to incorporate perceptual
coupling.

While the original formulation in [Ijspeert et al(2002)Ijspeert, Nakanishi, and
Schaal, Ijspeert et al(2003)Ijspeert, Nakanishi, and Schaal] used a second-order
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Fig. 2 General schematic illustrating both the original motor primitive framework by
[Ijspeert et al(2003)Ijspeert, Nakanishi, and Schaal, Schaal et al (2007)Schaal, Mohajerian,
and Ijspeert] in black and the augmentation for perceptual coupling in red.

canonical system, it has since then been shown that a single first order system suf-
fices [Schaal et al (2007)Schaal, Mohajerian, and Ijspeert], i.e., we have

ż = h(z) =−ταhz,

which represents the phase of the trajectory. It has a time constant τ = 1
T (where T

is the movement duration) and a parameter αh which is chosen such that z ≈ 0 at
T thus ensuring that the influence of the transformation function (8) vanishes. We
can now choose our internal state such that position of degree of freedom k is given
by qk = x2k, i.e., the 2k-th component of x, the velocity by q̇k = τx2k+1 = ẋ2k and
the acceleration by q̈k = τ ẋ2k+1. Upon these assumptions, we can express the motor
primitives function g in the following form

ẋ2k+1 = ταg (βg (tk− x2k)− x2k+1)+ τ
((

tk− x0
2k

)

+ ak
)

fk, (6)

ẋ2k = τx2k+1. (7)

This function has the same time constant τ as the canonical system, parameters αg,
βg set such that the system is critically damped, a goal parameter tk corresponding
to the final position of x2k, the initial position x0

2k, an amplitude modifier ak which
can be set arbitrarily, and a transformation function fk. This transformation function
transforms the output of the canonical system so that the transformed system can
represent complex nonlinear patterns and is given by

fk (z) =
N

∑
i=1

ψi(z)wiz, (8)

where w are adjustable parameters and uses normalized Gaussian kernels without
scaling such as

ψi =
exp

(

−hi (z− ci)
2
)

∑N
j=1 exp

(

−h j (z− c j)
2
) (9)

for localizing the interaction in phase space where we have centers ci and width hi.
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In order to learn a motor primitive with perceptual coupling, we need two com-
ponents. First, we need to learn the normal or average behavior ȳ of the variable of
external focus y (e.g., the relative positions of an object) which can be represented
by a single motor primitive ḡ, i.e., we can use the same type of function from Equa-
tions (2, 5) for ḡ which are learned based on the same z and given by Equations (6,
7). Additionally, we have the system ĝ for the variable of internal focus x which
determines our actual movements which incorporates the inputs of the normal be-
havior ȳ as well as the current state y of the external variable. We obtain the system
ĝ by inserting a modified coupling function f̂(z,y, ȳ) instead of the original f(z) in
g. Function f(z) is modified in order to include perceptual coupling to y and we
obtain

f̂k (z,y, ȳ) =
N

∑
i=1

ψi(z)ŵiz+
M

∑
j=1

ψ̂ j(z)
(

κT
jk(y− ȳ)+ δT

jk(ẏ− ˙̄y)
)

, (10)

where ψ̂ j(z) denote Gaussian kernels as in Equation (9) with centers ĉ j and width
ĥ j. Note, that it can be useful to set N > M for reducing the number of parameters.
All parameters are given by v = [ŵ,κ ,δ ]. Here, ŵ are just the standard transfor-
mation parameters while κ jk and δ jk are the local coupling factors which can be
interpreted as gains acting on the difference between the desired behavior of the ex-
ternal variable and its actual behavior. Note that for noise-free behavior and perfect
initial positions, such coupling would never play a role; thus, the approach would
simplify to the original approach. However, in the noisy, imperfect case, this per-
ceptual coupling can ensure success even in extreme cases.

3 Learning for Perceptually Coupled Motor Primitives

While the transformation function fk(z) (8) can be learned from few or even just a
single trial, this simplicity no longer transfers to learning the new function f̂k(z,y, ȳ)
(10) as perceptual coupling requires that the coupling to an uncertain external vari-
able is learned. While imitation learning approaches are feasible, they require larger
numbers of presentations of a teacher with very similar kinematics for learning
the behavior sufficiently well. As an alternative, we could follow “Nature as our
teacher”, and create a concerted approach of imitation and self-improvement by
trial-and-error. For doing so, we first have a teacher who presents several trials and,
subsequently, we improve our behavior by reinforcement learning.

3.1 Imitation Learning with Perceptual Coupling

Imitation learning is applied to a large number of problems in robotics (e.g.,
[Howard et al(2009b)Howard, Klanke, Gienger, Goerick, and Vijayakumar,
Howard et al (2010) Howard, Klanke, Gienger, Goerick, and Vijayakumar, Ratliff
et al(2009)Ratliff, Silver, and Bagnell]). Here we can largely follow the original work
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Fig. 3 This figure shows schematic drawings of the Ball-in-a-Cup motion, the final learned
robot motion as well as a motion-captured human motion. The green arrows show the di-
rections of the momentary movements. The human cup motion was taught to the robot by
imitation learning with 91 parameters for 1.5 seconds. Please also refer to the video on the
first author’s website.

in [Ijspeert et al(2002)Ijspeert, Nakanishi, and Schaal, Ijspeert et al(2003)Ijspeert,
Nakanishi, and Schaal, Schaal et al (2007)Schaal, Mohajerian, and Ijspeert] and
only need minor modifications. We also make use of locally-weighted regression
in order to determine the optimal motor primitives, use the same weighting and
compute the targets based on the dynamical systems. However, unlike in [Ijspeert
et al(2002)Ijspeert, Nakanishi, and Schaal, Ijspeert et al(2003)Ijspeert, Nakanishi,
and Schaal], we need a bootstrapping step as we determine first the parameters for
the system described by Equation (5) and, subsequently, use the learned results in
the learning of the system in Equation (4). These steps can be performed efficiently
in the context of dynamical systems motor primitives as the transformation functions
(8) of Equations (4) and (5) are linear in parameters. As a result, we can choose the
weighted squared error

ε2
m = ∑n

i=1ψm
i

(

f ref
i − zT

i wm
)2

(11)

as cost function and minimize it for all parameter vectors wm with m∈ {1,2, . . . ,M}.
Here, the corresponding weighting function are denoted by ψm

i and the basis func-
tions by zT

i . The reference or target signal f ref
i is the desired transformation function

and i ∈ {1,2, . . . ,n} indicates the number of the sample. The error in Equation (11)
can be rewritten as

ε2
m =

(

fref−Zwm
)T

Ψ
(

fref−Zwm
)

(12)
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with fref giving the value of f ref
i for all samples i, Ψ = diag(ψm

i , . . . ,ψm
n ) and Zi = zT

i .
As a result, we have a standard locally-weighted linear regression problem that can
be solved straightforwardly and yields the unbiased estimator

wm =
(

ZTΨZ
)−1

ZTΨfref. (13)

This general approach has originally been suggested in [Ijspeert et al(2003)Ijspeert,
Nakanishi, and Schaal]. Estimating the parameters of the dynamical system is
slightly more daunting, i.e., the movement duration is extracted using motion de-
tection (velocities are zero at the start and at the end) and the time-constant is set
accordingly.

This local regression yields good values for the parameters of fk(z). Subse-
quently, we can perform the exact same step for f̂k(z,y, ȳ) where only the number of
variables has increased but the resulting regression follows analogously. However,
note that while a single demonstration suffices for the parameter vector w and ŵ, the
parameters κ and δ cannot be learned by imitation as these require deviation from
the nominal behavior for the external variable.

However, as discussed before, pure imitation for perceptual coupling can be dif-
ficult for learning the coupling parameters as well as the best nominal behavior for
a robot with kinematics different from the human, many different initial conditions
and in the presence of significant noise. Thus, we suggest to improve the policy by
trial-and-error using reinforcement learning upon an initial imitation.

3.2 Reinforcement Learning for Perceptually Coupled Motor
Primitives

Reinforcement learning [Sutton and Barto(1998)] is widely used in robotics (e.g.,
[Riedmiller et al(2009)Riedmiller, Gabel, Hafner, and Lange]) but reinforcement
learning of discrete motor primitives is a very specific type of learning problem
where it is hard to apply generic reinforcement learning algorithms [Peters and
Schaal(2006), Peters and Schaal(2007)]. For this reason, the focus of this paper is
largely on domain-appropriate reinforcement learning algorithms which operate on
parametrized policies for episodic control problems.

3.2.1 Reinforcement Learning Setup

When modeling our problem as a reinforcement learning problem, we always
have a state s = [z,y, ȳ,x] with high dimensions (as a result, standard RL meth-
ods which discretize the state-space can no longer be applied), and the action
a = [f(z)+ ε, f̂(z,y, ȳ)+ ε̂] is the output of our motor primitives. Here, the explo-
ration is denoted by ε and ε̂ , and we can give a stochastic policy a ∼ π(s) as dis-
tribution over the states with parameters θ = [w,v] ∈ R

n. After a next time-step δ t,
the actor transfers to a state st+1 and receives a reward rt . As we are interested in
learning complex motor tasks consisting of a single stroke [Wulf(2007),Schaal et al
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(2007)Schaal, Mohajerian, and Ijspeert], we focus on finite horizons of length T
with episodic restarts [Sutton and Barto(1998)] and learn the optimal parametrized
policy for such problems. The general goal in reinforcement learning is to optimize
the expected return of the policy with parameters θ defined by

J(θ ) =
∫

T

p(τ)R(τ)dτ , (14)

where τ = [s1:T+1,a1:T ] denotes a sequence of states s1:T+1 = [s1, s2, . . ., sT+1]
and actions a1:T = [a1, a2, . . ., aT ], the probability of an episode τ is denoted by
p(τ) and R(τ) refers to the return of an episode τ . Using Markov assumption, we
can write the path distribution as p(τ) = p(x1)∏T+1

t=1 p(st+1|st ,at)π(at |st ,t) where
p(s1) denotes the initial state distribution and p(st+1|st ,at) is the next state distribu-
tion conditioned on last state and action. Similarly, if we assume additive, accumu-
lated rewards, the return of a path is given by R(τ) = 1

T ∑T
t=1 r(st ,at ,st+1, t), where

r(st ,at ,st+1,t) denotes the immediate reward.
While episodic Reinforcement Learning (RL) problems with finite horizons are

common in motor control, few methods exist in the RL literature (c.f., model-free
method such as Episodic REINFORCE [Williams(1992)] and the Episodic Natural
Actor-Critic eNAC [Peters and Schaal(2006)] as well as model-based methods, e.g.,
using differential-dynamic programming [Atkeson(1994)]). In order to avoid learn-
ing of complex models, we focus on model-free methods and, to reduce the number
of open parameters, we rather use a novel Reinforcement Learning algorithm which
is based on expectation-maximization. Our new algorithm is called Policy learn-
ing by Weighting Exploration with the Returns (PoWER) and can be derived from
the same higher principle as previous policy gradient approaches, see [Kober and
Peters(2008)] for details.

3.2.2 Policy Learning by Weighting Exploration with the Returns (PoWER)

When learning motor primitives, we intend to learn a deterministic mean policy
ā = θ Tμ(s) = f(z) which is linear in parameters θ and augmented by additive ex-
ploration ε(s, t) in order to make model-free reinforcement learning possible. As a
result, the explorative policy can be given in the form a = θ Tμ(s, t)+ε(μ(s, t)). Pre-
vious work in [Peters and Schaal(2006), Peters and Schaal(2007)], with the notable
exception of [Rückstieß et al(2008)Rückstieß, Felder, and Schmidhuber], has fo-
cused on state-independent, white Gaussian exploration, i.e., ε(μ(s, t))∼N (0,Σ),
and has resulted into applications such as T-Ball batting [Peters and Schaal(2006)]
and constrained movement [Guenter et al(2007)Guenter, Hersch, Calinon, and Bil-
lard]. However, from our experience, such unstructured exploration at every step has
several disadvantages, i.e., (i) it causes a large variance in parameter updates which
grows with the number of time-steps, (ii) it perturbs actions too frequently, as the
system acts as a low pass filter the perturbations average out and thus, their effects
are ‘washed’ out and (iii) can damage the system executing the trajectory.
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Alternatively, as introduced by [Rückstieß et al(2008)Rückstieß, Felder, and
Schmidhuber], one could generate a form of structured, state-dependent exploration
ε(μ(s,t)) = εT

t μ(s, t) with [εt ]i j ∼N (0,σ2
i j), where σ2

i j are meta-parameters of the
exploration that can be optimized in a similar manner. Each σ2

i j corresponds to one

θi j. This argument results into the policy a∼ π(at |st ,t) = N (a|μ(s, t), Σ̂(s, t)). This
form of policies improves upon the shortcomings of directly perturbed policies men-
tioned above. Based on the EM updates for Reinforcement Learning as suggested
in [Peters and Schaal(2007),Kober and Peters(2008)], we can derive the update rule

θ ′ = θ +
Eτ

{

∑T
t=1 ε tQπ(st ,at , t)

}

Eτ
{

∑T
t=1 Qπ(st ,at ,t)

} , (15)

where

Qπ (s,a,t) = E
{

∑T
t̃=t r (st̃ ,at̃ ,st̃+1, t̃) |st = s,at = a

}

is the state-action value function. Note that this algorithm does not need the learning
rate as a meta-parameter.

In order to reduce the number of trials in this on-policy scenario, we reuse the
trials through importance sampling [Andrieu et al(2003)Andrieu, de Freitas, Doucet,
and Jordan,Sutton and Barto(1998)]. To avoid the fragility sometimes resulting from
importance sampling in reinforcement learning, samples with very small importance
weights are discarded.

The more shape parameters w are used the more details can be captured in a mo-
tor primitive and it can ease the imitation learning process. However, if the motor
primitives need to be refined by RL, each additional parameter slows down the learn-
ing process The parameters σ2

i j determine the exploration behavior where larger
values lead to greater changes in the mean policy and, thus, may lead to faster con-
vergence but can also drive the robot in unsafe regimes. The optimization of the
parameters decreases the exploration during convergence.

4 Evaluation and Application

In this section, we demonstrate the effectiveness of the augmented framework for
perceptually coupled motor primitives as presented in Section 2 and show that our
concerted approach of using imitation for initialization and reinforcement learn-
ing for improvement works well in practice, particularly with our novel PoWER
algorithm from Section 3. We show that this method can be used in learning a com-
plex, real-life motor learning problem Ball-in-a-Cup in a physically realistic sim-
ulation of an anthropomorphic robot arm. This problem is a good benchmark for
testing the motor learning performance and we show that we can learn the problem
roughly at the efficiency of a young child. This algorithm successfully creates a per-
ceptual coupling even to perturbations that are very challenging for a skilled adult
player.
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Fig. 4 This figure shows the expected return for one specific perturbation of the learned pol-
icy in the Ball-in-a-Cup scenario (averaged over 3 runs with different random seeds and the
standard deviation indicated by the error bars). Convergence is not uniform as the algorithm
is optimizing the returns for a whole range of perturbations and not for this test case. Thus,
the variance in the return as the improved policy might get worse for the test case but improve
over all cases. Our algorithm rapidly improves, regularly beating a hand-tuned solution after
less than fifty trials and converging after approximately 600 trials. Note that this plot is a
double logarithmic plot and, thus, single unit changes are significant as they correspond to
orders of magnitude.

4.1 Robot Application: Ball-in-a-Cup

We have applied the presented algorithm in order to teach a physically-realistic
simulation of an anthropomorphic SARCOS robot arm how to perform the
traditional American children’s game Ball-in-a-Cup, also known as Balero, Bilbo-
quet or Kendama [Wikipedia(2008)]. The toy has a small cup which is held in one
hand (or, in our case, is attached to the end-effector of the robot) and the cup has a
small ball hanging down on a string (the string has a length of 40cm for our toy).
Initially, the ball is hanging down vertically in a rest position. The player needs
to move fast in order to induce a motion in the ball through the string, toss it up
and catch it with the cup, a possible movement is illustrated in Figure 3 in the top
row.

Note that learning Ball-in-a-Cup and Kendama have previously been studied
in robotics and we are going to contrast a few of the approaches here. While we
learn directly in the joint space of the robot, Takenaka et al. [Takenaka(1984)]
recorded planar human cup movements and determined the required joint move-
ments for a planar, three degree of freedom (DoF) robot so that it could follow
the trajectories while visual feedback was used for error compensation. Both Sato
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et al. [Sato et al(1993)Sato, Sakaguchi, Masutani, and Miyazaki] and Shone [Shone
et al(2000)Shone, Krudysz, and Brown] used motion planning approaches which
relied on very accurate models of the ball while employing only one DoF in [Shone
et al(2000)Shone, Krudysz, and Brown] or two DoF in [Sato et al(1993)Sato,
Sakaguchi, Masutani, and Miyazaki] so that the complete state-space could be
searched exhaustively. Interestingly, exploratory robot moves were used in [Sato
et al(1993)Sato, Sakaguchi, Masutani, and Miyazaki] to estimate the parameters
of the employed model. The probably most advanced preceding work on learning
Kendama was done by Miyamoto [Miyamoto et al(1996)Miyamoto, Schaal, Gan-
dolfo, Gomi, Koike, Osu, Nakano, Wada, and Kawato] who used a seven DoF an-
thropomorphic arm and recorded human motions to train a neural network to re-
construct via-points. Employing full kinematic knowledge, the authors optimize a
desired trajectory. We previously learned a policy without perceptual coupling on a
real seven DoF anthropomorphic Barrett WAMTM [Kober and Peters(2008)] devel-
oping the method used below to get the initial success.

Fig. 5 This figure illustrates how the reward is calculated. The plane represents the level of
the upper rim of the cup. For a successful rollout the ball has to be moved above the cup first.
The reward is then calculated as the distance of the center of the cup and the center of the ball
on the plane at the moment the ball is passing the plane in a downward direction.

The state of the system is described in Cartesian coordinates of the cup (i.e., the
operational space) and the Cartesian coordinates of the ball. The actions are the cup
accelerations in Cartesian coordinates with each direction represented by a motor
primitive. An operational space control law [Nakanishi et al(2007)Nakanishi, Mis-
try, Peters, and Schaal] is used in order to transform accelerations in the operational
space of the cup into joint-space torques. All motor primitives are perturbed sepa-
rately but employ the same joint reward which is rt = exp(−α(xc− xb)2−α(yc−
yb)2) the moment where the ball passes the rim of the cup with a downward di-
rection and rt = 0 all other times (see Figure 5). The cup position is denoted by
[xc,yc,zc]∈R

3, the ball position [xb,yb,zb]∈R
3 and a scaling parameter α = 10000.

The task is quite complex as the reward is not modified solely by the movements of
the cup but foremost by the movements of the ball and the movements of the ball are
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very sensitive to perturbations. A small perturbation of the initial condition or the
trajectory will drastically change the movement of the ball and hence the outcome
of the trial if we do not use any form of perceptual coupling to the external variable
“ball”.

Due to the complexity of the task, Ball-in-a-Cup is even a hard motor task for
children who only succeed at it by observing another person playing or deducing
from similar previously learned tasks how to maneuver the ball above the cup in
such a way that it can be caught. Subsequently, a lot of improvement by trial-and-
error is required until the desired solution can be achieved in practice. The child
will have an initial success as the initial conditions and executed cup trajectory fit
together by chance, afterwards the child still has to practice a lot until it is able
to get the ball in the cup (almost) every time and so cancel various perturbations.
Learning the necessary perceptual coupling to get the ball in the cup on a consistent
basis is even a hard task for adults, as our whole lab can testify. In contrast to a
tennis swing, where a human just needs to learn a goal function for the one moment
the racket hits the ball, in Ball-in-a-Cup we need a complete dynamical system as
cup and ball constantly interact. Mimicking how children learn to play Ball-in-a-
Cup, we first initialize the motor primitives by imitation and, subsequently, improve
them by reinforcement learning in order to get an initial success. Afterwards we also
acquire the perceptual coupling by reinforcement learning.

We recorded the motions of a human player using a VICONTM motion-capture
setup in order to obtain an example for imitation as shown in Figure 3(c). The ex-
tracted cup-trajectories were used to initialize the motor primitives using locally-
weighted regression for imitation learning. The simulation of the Ball-in-a-Cup
behavior was verified using the tracked movements. We used one of the recorded
trajectories for which, when played back in simulation, the ball goes in but does not
pass the center of the opening of the cup and thus does not optimize the reward.
This movement is then used for initializing the motor primitives and determining
their parametric structure where cross-validation indicates that 91 parameters per
motor primitive are optimal from a bias-variance point of view. The trajectories are
optimized by reinforcement learning using the PoWER algorithm on the parameters
w for non perturbed initial conditions. The robot constantly succeeds at bringing
the ball into the cup after approximately 60-80 iterations given no noise and perfect
initial conditions.

One set of the found trajectories is then used to calculate the baseline ȳ = (h−b)
and ˙̄y = (ḣ− ḃ), where h and b are the hand and ball trajectories. This set is also
used to set the standard cup trajectories.

Without perceptual coupling the robot misses for even tiny perturbations of the
initial conditions. Hand tuned coupling factors work quite well for small perturba-
tions. In order to make them more robust we use reinforcement learning using the
same joint reward as before. The initial conditions (positions and velocities) of the
ball are perturbed completely randomly (no PEGASUS Trick) using Gaussian ran-
dom values with variances set according to the desired stability region. The PoWER
algorithm converges after approximately 600-800 iterations. This is roughly com-
parable to the learning speed of a 10 year old child (Figure 4). For the training we
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Fig. 6 This figure compares cup and ball trajectories with and without perceptual coupling.
The trajectories and different initial conditions are clearly distinguishable. The perceptual
coupling cancels the swinging motion of the string and ball “pendulum” out. The successful
trial is marked by black arrows at the point where the ball enters the cup.

used concurrently standard deviations of 0.01m for x and y and of 0.1 m/s for ẋ and
ẏ. The learned perceptual coupling gets the ball in the cup for all tested cases where
the hand-tuned coupling was also successful. The learned coupling pushes the lim-
its of the canceled perturbations significantly further and still performs consistently
well for double the standard deviations seen in the reinforcement learning process.
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Figure 6 shows an example of how the visual coupling adapts the hand trajectories
in order to cancel perturbations and to get the ball in the cup.

The coupling factors represent the actions to be taken in order to get back to the
desired relative positions and velocities of the ball with respect to the hand. This
corresponds to an implicit model of how cup movements affect the ball movements.
The factors at the beginning of the motion are small as there is enough time to
correct the errors later on. At the very end the hand is simply pulled directly under
the ball so it can fall into the cup. The perceptual coupling is robust to small changes
of the parameters of the toy (string length, ball weight). We also learned the cou-
pling directly in joint-space in order to show, that the augmented motor primitives
can handle perception and action in different spaces (perception in task space and
action in joint space, for our evaluation). For each of the seven degrees of freedom
a separate motor primitive is used, ȳ and ˙̄y remain the same as before. Here we
were not able to find good coupling factors by hand-tuning. Reinforcement learning
finds working parameters but they do not perform as well as the Cartesian version.
These effects can be explained by two factors: the learning task is harder as we
have a higher dimensionality. Furthermore, we are learning the inverse kinematics
of the robot implicitly. If the perturbations are large, the perceptual coupling has
to do large corrections. These large corrections tend to move the robot in regions
where the inverse kinematics differ from the ones for the mean motion and, thus,
the learned implicit inverse kinematics no longer perform well. This behavior leads
to even larger deviations and the effects accumulate.

5 Conclusion

Perceptual coupling for motor primitives is an important topic as it results in more
general and more reliable solutions while it allows the application of the dynami-
cal systems motor primitive framework to many other motor control problems. As
manual tuning can only work in limited setups, an automatic acquisition of this per-
ceptual coupling is essential.

In this paper, we have contributed an augmented version of the motor primi-
tive framework originally suggested by [Ijspeert et al(2002)Ijspeert, Nakanishi, and
Schaal,Ijspeert et al(2003)Ijspeert, Nakanishi, and Schaal,Schaal et al (2007)Schaal,
Mohajerian, and Ijspeert] such that it incorporates perceptual coupling while keep-
ing a distinctively similar structure to the original approach and, thus, preserving
most of the important properties. We present a concerted learning approach which
relies on an initialization by imitation learning and, subsequent, self-improvement
by reinforcement learning. We introduce a particularly well-suited algorithm for
this reinforcement learning problem called PoWER. The resulting framework works
well for learning Ball-in-a-Cup on a simulated anthropomorphic SARCOS arm in
setups where the original motor primitive framework would not suffice to fulfill the
task.
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A Bayesian View on Motor Control and
Planning

Marc Toussaint and Christian Goerick

Abstract. The problem of motion control and planning can be formulated as an
optimization problem. In this paper we discuss an alternative view that casts the
problem as one of probabilistic inference. In simple cases where the optimization
problem can be solved analytically the inference view leads to equivalent solutions.
However, when approximate methods are necessary to tackle the problem, the tight
relation between optimization and probabilistic inference has fruitfully lead to a
transfer of methods between both fields. Here we show that such a transfer is also
possible in the realm of robotics. The general idea is that motion can be generated by
fusing motion objectives (task constraints, goals, motion priors) by using probabilis-
tic inference techniques. In realistic scenarios exact inference is infeasible (as is the
analytic solution of the corresponding optimization problem) and the use of efficient
approximate inference methods is a promising alternative to classical motion opti-
mization methods. In this paper we first derive Bayesian control methods that are
directly analogous to classical redundant motion rate control and optimal dynamic
control (including operational space control). Then, by extending the probabilistic
models to be Markovian models of the whole trajectory, we show that approximate
probabilistic inference methods (message passing) efficiently compute solutions to
trajectory optimization problems. Using Gaussian belief approximations and local
linearization the algorithm becomes related to Differential Dynamic Programming
(DDP) (aka. iterative Linear Quadratic Gaussian (iLQG)).

1 Introduction

Bayesian Networks and inference methods like message passing algorithms are
a basic computational paradigm for information processing on coupled random
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variables. Inference methods compute the posterior distribution over random vari-
ables when all couplings are taken into account (we will be more formal later). In
this view, it is not surprising that there are strong relations between the fields of
optimization and probabilistic inference: In the context of optimization, the cou-
pling of variables is typically described by additive decomposable functions; which
is in analogy to the factorization of a joint distribution as described by a Bayesian
network or factor graph (with the typical identification of cost with neg-log prob-
ability). Consequently methods that originated in optimization can be translated to
solve inference problems and vice versa: Message passing algorithms can be used
to address satisfiability problems [3]; graph cut algorithms are used to address in-
ference problems (MAP estimation) in Markov-Random-Fields [15]. The key of
efficient methods is that local computations (e.g., local message passing equations)
are used to achieve global coherence.1

Motion control and optimization are fundamental and very interesting problems
in robotics. The problem can be formalized as an optimization problem: devising an
appropriate cost function we can derive classical solutions (e.g., motion rate control,
stochastic optimal control) which provide the basis of modern robot control [13].
Complementary to the optimization view on robot control, we can also address the
problem from the point of view of probabilistic inference. The classical cost func-
tion is replaced by a joint distribution over coupled random variables (e.g., via a
neg-log transform), and the classical solution methods are replaced by methods of
probabilistic inference. In simple cases, in particular those where an exact solution
can efficiently be computed in the optimization framework, the inference approach
will only reproduce the same solution. As in the field of optimization, the transfer
of methods becomes interesting when the optimization problem becomes hard and
exact algorithms are computationally expensive. Inference methods like message
passing algorithms are promising candidates to yield (approximate) solutions to the
optimization problem.

The problem of motion control and planning typically involves “solving” a sys-
tem of many coupled variables: transition or control costs couple the state variable
in two consecutive time steps, task constraints couple a task variable with the state
variable within a time slice. Classically, these couplings are implicit in the cost func-
tion. In the inference view, these couplings are explicitly formulated as conditional
dependencies in a joint distribution. This view naturally extends to more complex
and structured robotic systems where the state of the system is represented by a
number of state variables instead of a single state variable. An example is hierarchi-
cal control, or decoupled (or weakly coupled) control problems, where we maintain
separate state variables for the left and the right effector of a robot and their control
and plans (posterior distributions) are only weakly coupled. In such cases we can
use probabilistic inference methods that exploit structured (factored) representations
of the problem. Generally, while Bayesian methods have become a standard tool for
sensor processing and fusion, we investigate them to solve a fusion problem on the

1 More formally, “coherence” could denote the marginal consistency in the context of infer-
ence, or the consistency with constraints in the context of optimization.
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motor level, namely the problem of fusing motion objectives like task constraints,
goals and motion priors into a posterior distribution over trajectories.

In this chapter we give an introduction to Bayesian motor control and planning,
i.e., methods to compute motions given a (probabilistic) model. Although our focus
is not directly on learning such models, the methods are interesting also from the
point of view of “motor and interaction learning”: For instance, in [22] we show
how inference methods for model-based planning can be translated to model-free
Reinforcement Learning algorithms using stochastic sampling methods. [2] show
how probabilistic motion inference is useful in the context of imitation learning.
Generally, in a model-based learning approach (where the behavior learning prob-
lem is decomposed in a first stage of learning a model and a second stage of using
the model to generate behavior) one should always expect the learned model to be
uncertain (see other chapters of this book, such as [14, 4]). The Bayesian methods
we propose here naturally address such uncertainty. The Bayesian framework also
motivates new interesting learning problems in the context of motion, for instance,
learning motion priors from data.

This chapter is organized as follows. In the next section we first address the kine-
matic and dynamic control problem, derive Bayesian control equations and high-
light the close relation to classical control equations. Section 3 introduces analogous
probabilistic models that represent the motion planning problem. Approximate in-
ference methods in these models yield new algorithms. When we approximate the
system locally these new equations are related to the Ricatti equation of the Linear
Quadratic Gaussian (LQG) case. In the general non-LQG case we need approxi-
mate inference methods to solve the planning problem, for which we derive local
message update equations. Section 4 presents experiments that illustrate the meth-
ods. Additionally, we discuss hierarchical planning (where one alternates between
planning in the task space and planning in the q-space, see also [7, 16]). This paper
is an extension of the work presented earlier in [20]; see also the more theoretical
discussion [18] of the relation between iLQG and inference in general stochastic
optimal control scenarios.

2 A Bayesian View on Classical Control

2.1 Kinematic Case

We first address the case of kinematic control, i.e., the problem of deciding on the
control signal given a desired constraint at the next time step. Throughout the deriva-
tion we will make use of identities for Gaussians which are summarized in the ap-
pendix. Let qt ∈ R

n be a random variable referring to the robot’s joint state at time
t. And let xt be a random variable referring to a task space of the robot (e.g. an
endeffector state) at time t. Consider the joint probability distribution

P(xt ,qt ,qt-1) = P(xt |qt) P(qt |qt-1) P(qt-1) (1)
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ẋt

q̇t-1

Fig. 1 Graphical models of Bayesian kinematic control, (a) for motion rate control, (b) under
multiple task constraints, (c) for Bayesian dynamic control.

as also illustrated by the graphical model in Figure 1(a). Here, we call P(qt |qt-1) the
motion prior and assume

P(qt |qt-1) = N (qt |qt-1 + h,W -1) , (2)

where h ∈ R
n is a vector that induces an asymmetry in the motion prior and W is

the motion metric which enters this prior in terms of its covariance W -1. Further, we
call P(xt |qt) the task coupling and assume

P(xt |qt) = N (xt |φ(qt),C) . (3)

Here, φ is a non-linear function (the task kinematics) with Jacobian J = ∂φ
∂q and

C denotes the covariance in this coupling (inversely, C-1 denotes the precision or
tolerance of this coupling).

Given this model we can compute the posterior motion conditioned on a desired
task constraint. That is, given xt and qt-1 we compute P(qt |xt ,qt-1). We can derive
the following result.

Theorem 1. Given equations (1-3), the posterior motion is

P(qt |xt ,qt-1)≈N (qt |qMAP
t ,(JTC-1J +W)-1) (4)

with the MAP motion

qMAP
t = qt-1 +(JTC-1J +W )-1[JTC-1(xt −φ(qt-1))+Wh] (5)

= qt-1 + J�WC(xt −φ(qt-1))+ (In− J�WCJ) h , (6)

J�WC := W -1JT (JW -1JT +C)-1 .

The approximation refers to the linearization of φ(qt)≈ φ(qt-1)+ J(qt−qt-1).
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Proof. We have

P(qt |xt ,qt-1) ∝ P(xt |qt) P(qt |qt-1) = N (xt |φ(qt ),C) N (qt |qt-1 + h,W -1)

Using the linearization φ(qt)≈ φ(qt-1)+ J(qt−qt-1) we get

P(qt |xt ,qt-1)≈N (xt |φ(qt-1)+ J(qt−qt-1),C) N (qt |qt-1 + h,W -1)

Applying the Gaussian identities given in the appendix we have

P(qt |xt ,qt-1)

= N (Jqt |Jqt-1 + xt−φ(qt-1),C) N (qt |qt-1 + h,W -1)

∝ N [qt |JTC-1Jqt-1 + JTC-1(xt −φ(qt-1)),JTC-1J]N [qt |Wqt-1 +Wh,W ]

∝ N [qt |(JTC-1J +W )qt-1 + JTC-1(xt −φ(qt-1))−Wh,JTC-1J +W ]

= N (qt |qMAP
t ,A)

A = (JTC-1J +W)-1

qMAP
t = qt-1 + A[JTC-1(xt −φ(qt-1))+Wh]

To rewrite qMAP
t we can use the Woodbury identity

(JTC-1J +W )-1JTC-1 = W -1JT (JW -1JT +C)-1 (7)

and get

qMAP
t = qt-1 + J�WC(xt −φ(qt-1))+ (JTC-1J +W)-1W h .

Further, using the identity

In = (JTC-1J +W)-1(JTC-1J +W )

⇒ (JTC-1J +W )-1W = In− (JTC-1J +W)-1JTC-1J = In− J�WCJ (8)

we get

qMAP
t = qt-1 + J�WC(xt −φ(qt-1))+ (In− J�WCJ) h .

The theorem gives two expressions (5) and (6) to compute qMAP
t , related by the

Woodbury identity. Note that the second expression (6) includes only d-dimensional
matrix inversions rather than n-dimensional (neglecting W -1, which can be precom-
puted). Thus, in practice the second expression will be more efficient to
implement.

The second expression (6) also shows that the MAP motion qMAP
t is very similar

to classical kinematic motion rate control using the pseudo-inverse Jacobian [11] –
in the tight constraint limit C→ 0, J�WC coincides with the standard pseudo inverse

J�W = W -1JT (JW -1JT )-1 and the two are equivalent. For non-zero covariance C (i.e.,
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Table 1 Correspondences between the classical and Bayesian view.

classical view Bayesian view

metric W of the pseudo-inverse J�W =
W-1JT (JW-1JT )-1

covariance W-1 of the motion prior
N (qt+1 |qt +h,W-1)

nullspace motion (I−J�W J) h asymmetry h of the motion prior
N (qt+1 |qt +h,W-1)

regularizer in the singularity-robust
˜

J�W =
W-1JT (JW-1JT +kId)-1

covariance C of the task coupling
N (xt |φ(qt ),C)

when loosening the task constraint) the MAP motion qMAP
t corresponds to classical

control with regularization in the computation of the pseudo-inverse Jacobian. In
fact, a standard approach to deal with singularities (where JJT is not invertible) is to
consider the so-called singularity-robust inverse [11] J̃�W = W -1JT (JW -1JT + kId)-1,

which directly corresponds to the regularized pseudo-inverse J�WC as defined in (6).
The regularizer can be interpreted as measuring the tolerance of the task constraint.
The asymmetry h of the motion prior N (qt+1 |qt +h,W -1) is the Bayesian counter-
part of nullspace motion. Table 1 summarizes the relations between classical quan-
tities and their Bayesian counterparts.

2.2 Multiple Task Variables

Theorem 1 directly extends to the case when we have multiple task variables
x1, ..,xm, with xi di-dimensional, corresponding to different task mappings φi : R

n→
R

di . The full joint (see Figure 1(b)) then reads

P(xt ,qt ,qt-1) =
[ m

∏
i=1

P(xi,t |qt)
]

P(qt |qt-1) P(qt-1) (9)

where the motion prior is as before and for each task coupling

P(xi,t |qt) = N (xi,t |φi(qt),Ci) (10)

we have a different task covariance Ci.
The extension can be subsumed in the previous derivation by introducing the

joint random variable x = (x1, ..,xm) (d-dimensional with d = ∑i di) and defining
the covariance matrix C = diag(C1, ..,Cm) to be the block matrix with sub-matrices
Ci. Nevertheless, the explicit derivation allows us to establish interesting relations
to classical prioritized inverse kinematics [12, 1].

Corollary 1. In the case of multiple task variables, as given by equations (9,10,2),
the motion posterior is

P(qt |xt ,qt-1)≈N (qt |qMAP
t ,(

m

∑
i=1

JT
i C-1

i Ji +W)-1) (11)
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with the MAP motion

qMAP
t = qt-1 +

[ m

∑
i=1

JT
i C-1

i Ji +W
]-1[ m

∑
i=1

JT
i C-1

i (xi,t −φi(qt-1))+Wh
]

(12)

The corollary follows directly from equation (5). The question of the classical limit
is particularly interesting in the case of multiple variables. Let us investigate the case
when we hierarchically require tightness in the task constraints. More specifically,
one can iteratively take the limit Ci → 0 starting with i = 1 up to i = m; in other
terms this limit can be generated when defining Ci = εm−iIdi and simultaneously
taking the limit ε → 0. It turns out that this limit is exactly equivalent to prioritized
inverse kinematics [12, 1].

For m = 2 task variables one can prove the equivalence between prioritized in-
verse kinematics and the hierarchical classical limit of the MAP motion exactly (by
directly applying the Woodbury identity). For m > 2 we could not find an elegant
proof but we numerically confirmed this limit for up to m = 4.

Non-zero task variances can again be interpreted as regularizers. Note that with-
out regularizers the standard prioritized inverse kinematics is numerically brittle.
Handling many control signals (e.g., the over-determined case ∑di>n) is problem-
atic since the nullspace-projected Jacobians will become singular (with rank < di).
For non-zero Ci the computations in equation (12) are rather different to iterative
nullspace projections and numerically robust.

2.3 Dynamic Case

We address the case of dynamic motion control by moving to velocity space and
considering the random variables q̇t ∈ R

n and ẋt ∈ R
d , which refer to the joint ve-

locities and task velocities, respectively. In addition to these variables, let ut ∈R
n be

a random variable that refers to a (torque) control signal we apply to the actuators.
Consider the joint probability distribution

P(ẋt , q̇t ,ut , q̇t-1) = P(ẋt | q̇t) P(q̇t |ut , q̇t-1) P(ut) P(qt-1) (13)

as also illustrated by the graphical model in Figure 1(c). Here, we call P(ut) the
control prior and assume

P(ut) = N (ut |h,H-1) , (14)

where h ∈ R
n is a vector that induces an asymmetry in the control prior and H

is a control metric which enters this prior in terms of its covariance H-1. Further,
P(q̇t |ut , q̇t-1) is the system dynamics and we assume

P(q̇t | q̇t-1,ut) = N (q̇t | q̇t-1 + M-1(ut + F),Q) , (15)
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where M is the generalized mass matrix, F ∈ R
n the generalized force, and Q de-

scribes the control stochasticity. Finally, for the task coupling we assume

P(ẋt | q̇t) = N (ẋt |Jq̇t ,C) , (16)

where the Jacobian J = ∂φ
∂q relates the task and joint space velocities and, as before,

C denotes the covariance in this coupling.
Bayesian dynamic control now computes the posterior control P(ut | ẋt , q̇t-1) con-

ditioned on the desired task velocity ẋt . We can derive the following result

Theorem 2. Given equations (13-16), the posterior control is

P(ut | ẋt , q̇t-1) = N (ut |uMAP
t ,(T T A-1T + H)-1) (17)

T := JM-1 , A := JQJT +C ,

and the MAP control

uMAP
t = (T T A-1T + H)-1[T T A-1(ẋt − Jq̇t-1−TF)+ Hh] (18)

= T �
HA(ẋt − Jq̇t-1−TF)+ (In−T �

HAT ) h , (19)

T �
HA := H-1T T (T H-1T T + A)-1 . (20)

Proof. We have

P(ut | ẋt , q̇t-1) ∝
∫

q̇t
dq̇t P(ẋt | q̇t) P(q̇t | q̇t-1,ut) P(ut)

=
∫

q̇t
dq̇t N (ẋt |Jq̇t ,C) N (q̇t | q̇t-1 + M-1(ut + F),Q) N (ut |h,H-1)

=
∫

q̇t
dq̇t N [q̇t |JTC-1ẋt ,JTC-1J]N [q̇t |Q-1q̇t-1+Q-1M-1(ut + F),Q-1] N (ut |h,H-1).

Applying the product rule (37) produces a Gaussian over q̇t which integrates to 1.
Using the short hand A := JQJT +C we get

P(ut | ẋt , q̇t-1)

= N
[

q̇t-1 + M-1(ut + F) | JT A-1ẋt , JT A-1J
]

N [ut |Hh,H]

∝ N
[

ut | M-�JT A-1(ẋt − Jq̇t-1− JM-1F), M-�JT A-1JM-1
]

N [ut |Hh,H] .

Again applying the product rule (37) and using the short hand T := JM-1 we get

P(ut | ẋt , q̇t-1) ∝ N
[

ut | T T A-1(ẋt − Jq̇t-1−TF)+ Hh, T T A-1T + H
]

= N (ut |uMAP
t ,B)

B = (T T A-1T + H)-1

uMAP
t = B[T T A-1(ẋt − Jq̇t-1−TF)+ Hh]
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Fig. 2 The same graphical model as for redundant motion control (Figure 1(a)) but for
multiple time slices.

Using the Woodbury identity as in (7) and (8) we can rewrite this expression as

uMAP
t = T �

HA(ẋt − Jq̇t-1−TF)+ (In−T �
HAT ) h .

Again, the theorem provides two expressions (18) and (19) for uMAP
t . In the clas-

sical limit C→ 0 and Q→ 0 (tight task constraint and zero control noise) the sec-
ond expression directly retrieves the general optimal dynamic control law presented
in [13],

uMAP
t

Q→0
C→0= T �

W (ẋt − Jq̇t-1−TF)+ (In−T �
W T ) h . (21)

Again, C can be understood as a regularizer for a singularity-robust matrix inver-
sion. As discussed in [13], special choices of the control metric H in the dynamic
control, e.g., H = M-1, H = M2, or H = In correspond to special classical control
strategies. For instance, Khatib’s operational space control follows from choosing
H = M-1.

3 A Bayesian View on Motion Planning

From the last two theorems we may conclude that the Bayesian approach applied
to control in a single time-slice largely reproduces regularized classical solutions
in a different interpretation. In particular, in these ‘single time slice’ models one
is typically only interested in the MAP solutions. The additional covariances we
derived do not seem of much practical relevance.

The situation changes when we move from single time slice models of the im-
mediate control to time extended models of the whole trajectory. The probabilistic
inference approach naturally extends to inference over time and will become a plan-
ning method. For instance, we will consider inference in the model of Figure 2 as
the direct temporal extension to Figure 1(a). The resulting posterior over q1:4 will
describe the set of likely trajectories starting in q0 that are consistent with the con-
straint x4.

The inference techniques in such temporal models typically have the flavor of
forward-backward algorithms, similar to inference in HMMs or Kalman smooth-
ing in state-space models. A flexible description of such inference techniques is in
terms of message passing algorithms. These algorithms also extend to more struc-
tured temporal models with many random variables in one time slice, as we will
investigate them later. In most realistic cases exact inference is infeasible because
the shape of the exact probability distributions would be very complex (not part of
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a simple parametric family of distributions). Again, message passing is a conve-
nient framework to handle approximations systematically by maintaining approxi-
mate belief representations in the spirit of assumed density filtering or Expectation
Propagation [9].

A more detailed description of message passing in general factor graphs is given
in [17], see also [23, 10, 8]. Here we only give the message equations in pair-wise
coupled networks: Given two random variables Xi and Xj coupled via a potential
fi j(Xi,Xj), the message passing equations are

μ j→i(Xi) = ∑
Xj

fC(Xi,Xj) ∏
k:k �=i

μk→ j(Xj) , (22)

where k indicates variables coupled to j other than i and, roughly speaking, the
message μ j→i(Xi) is a distribution over the random variable Xi which encodes the
information over Xi that results from its coupling to Xj. Given all incoming messages
to a variable, the posterior marginal belief is given as the product of these,

bi(Xi) := ∏
j

μ j→i(Xi) . (23)

In the continuous case (as in the following) summations are replaced by integrals.

3.1 Kinematic Case

We can now derive the messages for inference in the motion planning scenario. As
before, let qt ∈ R

n be a random variable referring to the robot’s joint state at time
t. And let xt be a random variable referring to a task space of the robot (e.g. an
endeffector state) at time t. We consider the joint probability distribution

P(x1:T ,q0:T ) =
[ T

∏
t=1

P(xt |qt) P(qt |qt-1)
]

P(q0) (24)

as also illustrated by the graphical model in Figure 2. We choose the motion prior
and the task coupling exactly as before

P(qt |qt-1) = N (qt |qt-1 + ht,W
-1) , (25)

P(xt |qt) = N (xt |φ(qt),Ct ) . (26)

Please note that we have indexed the task covariance Ct with time – this means
we can choose for each time t separately how tight we want to follow a given task
constraint. In particular, in the typical planning case we might be interested only
in the final endeffector position xT ; in this formalism this corresponds to choosing
CT → 0 very tight while choosing all other covariances C1:T-1→ ∞ very large (they
will drop out of the messages). The messages take the following form
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Theorem 3. Given equations (24 - 26) and using a local linearization of φ at q̂t in
time slice t, the message update equations read

μqt-1→qt (qt) = N (qt |st ,St) ,

st = ht +(S-1
t-1 + Rt-1)-1(S-1

t-1st-1 + rt-1)

St = W -1 +(S-1
t-1 + Rt-1)-1 (27)

μqt+1→qt (qt) = N (qt |vt ,Vt) ,

vt =−ht +(V -1
t+1 + Rt+1)-1(V -1

t+1vt+1 + rt+1)

Vt = W -1 +(V -1
t+1 + Rt+1)-1 (28)

μxt→qt (qt)≈N [qt |rt ,Rt ] ,

rt = JTC-1
t (xt −φ(q̂)+ Jq̂)

Rt = JTC-1
t J (29)

Further, given these messages, the belief bt(qt) over the posture at time t reads

bt(qt) = N [qt |bt ,Bt ] ,

bt = S-1
t st +V -1

t vt + rt , Bt = S-1
t +V -1

t + Rt (30)

Proof. Since all factors are pairwise we can use the expression (22) for the mes-
sages. We have

μqt-1→qt (qt) =
∫

qt-1
dqt-1 P(qt |qt-1) μqt-2→qt-1(qt-1) μxt-1→qt-1(qt-1)

=
∫

qt-1
dqt-1 N (qt |qt-1 + ht ,W -1) N (qt-1 |st-1,St-1) N [qt-1 |rt-1,Rt-1]

Using the product rule (38) on the last two terms gives a Gaussian N (st-1 |R-1
t-1rt-1,

St-1 + R-1
t-1) independent of qt which we can subsume in the normalization. What

remains is

μqt-1→qt (qt) ∝
∫

qt-1
dqt-1 N [qt-1 |W (qt −ht),W ] N [qt-1 |S-1

t-1st-1 + rt-1,S-1
t-1 + Rt-1]

Using the product rule (37) and integrating over qt-1 we finally get

μqt-1→qt (qt) = N
(

qt −ht | [S-1
t-1 + Rt-1]-1[S-1

t-1st-1 + rt-1], W -1 +[S-1
t-1 + Rt-1]-1

)

.

The message μqt+1→qt (qt) can be derived in exactly the same way. Concerning
μxt→qt (qt) equation (22) simplifies to

μxt→qt (qt) = P(xt |qt) = N (xt |φ(qt ),Ct)

Linearizing the task coupling at q̂t we have

μxt→qt (qt)≈N (xt |φ(q̂t)+ J(qt− q̂t),Ct )

=
1
|J|N [qt |JTC-1

t (xt −φ(q̂t)+ Jq̂t),JTC-1
t J)
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Fig. 3 Factor graph for Bayesian kinematic motion planning under multiple constraints.

Concerning the belief bt(qt), by definition (23) we have

bt(qt) = μqt-1→qt μqt+1→qt μxt→qt

= N [qt |S-1
t st ,S

-1
t ] N [qt |V -1

t vt ,V
-1
t ] N [qt |rt ,RT ]

Applying the product rule (37) twice and neglecting normalization terms we have

bt(qt) ∝ N [qt |S-1
t st +V -1

t vt + rt ,S
-1
t +V -1

t + Rt ] .

The theorem provides two recursive equations for the forward messages (27) and the
backward messages (28). A standard algorithm would resolve the recursive equa-
tions by first iterating forward over time to compute the forward messages, and then
iterate backward over time to compute the backward messages. However, an extra
complication in our case is that in (29) we used a linearization of φ at q̂t in each time
slice. We will choose this point of linearization as follows: in the first forward iter-
ation we use the previous time step’s MAP belief q̂ = bt-1(qt-1) while in subsequent
backward and forward iterations we linearize at the old MAP belief q̂t = bold

t (qt).
Since the messages depend on the point of linearization we have to iterate the for-
ward and backward sweeps until convergence. The algorithm is analogous to ex-
tended Kalman smoothing where observations are replaced by task constraints. The
pseudo code is given in table 1.

As in the kinematic control case it is straightforward to extend these equations to
the case of multiple task variables. The task coupling message then reads

rt = Rt q̂+∑
i

JT
i C-1

i,t(xi,t −φi(q̂)) , Rt = ∑
i

JT
i C-1

i,t Ji .

In this case we can choose different task variances Ci,t for each task variables and
in each time slot. This flexibility allows one to determine when and which task
constraint has to be fulfilled by which precision. One can also follow the cascaded
limit approach we mentioned in section 2.1 which in effect leads to a prioritization
of the tasks, which might vary over time.

Finally, we note that the Bayesian motion planning scheme can be extended to the
dynamic case in the same way as we extended the Bayesian control to the dynamic
case. Due to the limited space we omit this derivation here; a general derivation can
be found in [18].
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Algorithm 1. Bayesian kinematic motion planning.
1: Input: start posture q0, metric W , motion prior ht , task targets x0:T , kinematic and Jaco-

bian functions φ , J
2: Output: trajectory q0:T
3: initialize s0 = q0, S-1

0 = 1010, v0:T = 0, V -1
0:T = 0, r0:T = 0, R0:T = 0, k = 0

4: repeat
5: for t = 1 : T do // forward sweep
6: update st and St using (27)
7: update vt and Vt using (28)
8: if k = 0 then
9: q̂t ← st

10: else
11: q̂t ← (1−α)q̂t +αbt

12: end if
13: update rt and Rt using (29)
14: update bt and Bt using (30)
15: if |q̂t −bt |2 > θ then
16: t← t−1 // repeat this time slice
17: end if
18: end for
19: for t = T −1 : 0 do // backward sweep
20: ..same updates as above...
21: end for
22: k← k +1
23: until convergence

4 Experiments

4.1 Kinematic Control

Concerning motion control, we showed theoretically that Bayesian motion con-
trol is equivalent to regularized classical pseudo-inverse control. Our experiments
confirm the close similarity to classical control. For illustration, we give examples
on the simple snake benchmark proposed by [1] and specifically focus on “criti-
cal” situations where the regularization implicit in the Bayesian equations becomes
apparent in comparison to non-regularized hierarchical control. The problem is to
control a simulated planar snake configuration composed of 20 segments under four
constraints: (1) the center of gravity should always remain vertically aligned with
the foot, (2) the goal for the first segment (foot) is to be oriented with 30◦ from
the ground, (3) the positional goal for the last segment (finger) is at (.5,0,1), (4)
the orientational goal for the last segment (finger) is to be oriented parallel to the
ground. Figure 4(a) shows the snake in a valid target configuration. In [1] the prob-
lem is solved using prioritized inverse kinematics (pIK) with priority as listed above.
We solve the problem by defining four variables x1, ..,x4 according to the con-
straints above. For all task variables xi we define that we want to follow a target that
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Fig. 4 Snake benchmark with four concurrent constraints. (b) Accumulative trajectory length
L = ∑t |qt −qt-1| in q-space over time using prioritized inverse kinematic (pIK, dashed) and
a soft Bayesian motion control (BMC, solid). (c) Total error ∑i ei during the movement. (d)
Errors during a movement towards an unreachable target.

linearly interpolates from the start position x0
i (straight upward posture) to the goal

position x∗i ,

xi,t =
t
T

x0
i +

T − t
T

x∗i .

In the first experiment we assumed rather tight and prioritized precisions C-1
i = νiI

with ν1:4 = (106,105,104,103). As a result, the joint trajectories generated with
BMC and the classical prioritized inverse kinematics are virtually indistinguishable:
the max norm ||q1:T −q′1:T ||∞ between the two trajectories is < 0.01.

In the second experiment we assume that we require high task precision only
at the final time step T . An efficient way to realize this with BMC is to start with
rather soft precisions ν2:4 = 1 at t = 0 and then slowly increasing them to the desired
precision ν2:4 = (105,104,103) at t = T . As an exception we always keep the pre-
cision of the balance constraint high, ν1 = 106. The trajectory generated by BMC
is now quite different from the previous one: it is much smoother. We can measure
the quality of the trajectory in terms of the integrated length of the joint trajectory
L = ∑t |qt − qt-1|. Figure 4(b) shows pIK and BMC behavior very differently w.r.t.
this measure. Nevertheless, all target variables meet the final goal constraint with
high precision. This can be seen in Figure 4(b) which shows the errors ei = |xi− x∗i |
in the control variables and the total error E = ∑i ei during the movement for both
approaches. In effect, the BMC tolerates larger errors during the movement (where
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Fig. 5 Reaching test scenarios. The two images display the goal posture, the start posture is
upright.

we have only required loose task coupling) in favor of a shorter trajectory – but the
final task constraints at time t = T are met precisely.

As a final illustration we address conflicting and infeasible constraints. Assume
we want to generate trajectories where the snake curvature is minimal, as measured
by a fifth variable x5 = ∑n

i=1 q2
i and a target x∗5 = 0. This curvature constraint is

in conflict with most other constraints. As a result, the prioritized IK numerically
breaks down when adding this fifth variable without further regularization. In con-
trast, BMC (with constant ν1:5 = (106,101,101,101,100)) yields a smooth move-
ment which eventually fulfills the targets for x1:4 but additionally realizes a final
curvature e5 = 1.57494 much lower than without this additional constraint (e5 =
3.11297). In another case, assume we set a target (1,0, .5) for the last segment (fin-
ger) which is actually out of reach. BMC (with constant ν1:4 = (106,101,101,101))
yields smooth and balanced postures where necessarily the error e2 increases. As
can be seen in Figure 4(d), classical pIK drastically diverges as soon as the hard
constraint in finger position becomes infeasible (at t = 75).

4.2 Kinematic Motion Planning

We first investigate the kinematic motion planning algorithm on a reaching problem
with a simulated humanoid figure (39 DoFs) as illustrated in Figure 5. We consider a

Table 2 Trajectory length and control errors for Bayesian motion planning.

fwd-bwd iterations k
∫ |q̇| dt E =

∫

∑i ei,t dt

½ (reactive controller) 13.0124 0.0873

1 7.73616 0.1366

1½ 7.70018 0.0071

2 7.68302 0.0027

5 7.65795 0.0013

10 7.62888 0.0012



242 M. Toussaint and C. Goerick

trajectory of length T = 200. Starting from an upright posture (right image) the goal
is to reach a target point (black dot) with the right finger while avoiding collisions
and keeping balance on the one foot rigidly anchored to the ground. We introduce
three control variables for the finger tip (endeffector) position, the center of gravity,
and a global collision cost. The desired motion is defined by trajectories xi,1:T for
each control variable xi. We defined these to be linear interpolations from the start
state to the target with T = 100, while keeping the precisions ν1:3 = (103,103,106)
constant over time. Table 2 displays the trajectory length and control errors after dif-
ferent numbers of forward-backward iterations of belief propagation for Bayesian
motion planning. k = ½ means a single forward pass and corresponds to the reactive
application of the single time-slice Bayesian motion control. k = 1 additionally in-
cludes a single backward smoothing. For instance, if we fix the total computational
cost to 3 times that of the Bayesian forward controller (k = 1½ iterations) we find
an improvement of 40.8% w.r.t. the trajectory length and 91.9% w.r.t. control er-
rors as compared to the forward controller. These improvements are due to the fact
that the forward controller chooses a non-efficient path which first moves straight
towards the obstacle and then needs a longer path to circumvent the obstacle. In con-
trast, the probabilistic smoothing of extended BMC leads to early nullspace move-
ments (leaning to the right) which make the later circumvention of the obstacle more
efficient.

4.3 Planning in More Structured Models

Consider the model in Figure 6 with factors

f1(qt+1,qt) = N (qt+1 |qt ,W
-1) (31)

f2(qt) = N (qt |0,1.0)
f3(xt+1,xt) = N (xt+1 |xt ,0.1)
f4(xt ,qt) = N (xt |φ(qt ),0.001)
f5(xT ) = N (xT |x∗T ,0.001)

The first factor is the usual motion prior in the joint state. The second factor places
a prior P(qt) which limits the joint range – for simplicity we use again a Gaussian
potential (q = 0 indicates the joint centers). The third factor expresses a prior about
the endeffector movements – since we do not have a strong prior about endeffec-
tor movements we assume a weak potential with standard deviation of endeffector
movements of 0.1. The fourth factor is the usual coupling between joint state and
endeffector. Generally, in factor graphs conditioning a variable can be expressed as
including a Kronecker factor. Hence, the fifth factor represents the goal constraint,
conditioning the target of the endeffector to be close to x∗T .

This model is different to the one of the previous section in two respects: We
condition only on the final task state xT , and we included a motion prior also within
the task space. We investigate this graph because it allows for a qualitative new
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μt q→
x

μ t
x→x′

μ t
q→q′

x3

q1

x1

q2

x2

q3

Fig. 6 The factor graph for the decomposed planning scenario.

approach to decompose planning. In [7, 16] an algorithm was proposed for hierar-
chical planning. In the first stage it first computes an optimal trajectory only in the
task space. In the second stage, constrained on this task space trajectory, it com-
putes an optimal trajectory in joint space. Clearly, this approach is limited since the
task space trajectory was computed without any concern whether this task space
trajectory might lead to high costs when realized in joint space.

In the factor graph 6 we can follow a very similar approach to hierarchically
decompose planning – but fully account for the mutual coupling of task and joint
variables. Given the explicit model we can derive all necessary messages for belief
propagation from equation (23). The algorithm we propose is given by the following
message passing scheme:

1. Initialize all beliefs uniformly, except for q0, x0 and xT .
2. Update the task space beliefs

b(xt) = μxt-1→xt μ t
xt+1→xt

μ t
qt→xt

,

first iterating forward for t = 1, ..,T , then iterating backward for t = T-1, ..,1.
This will yield a preliminary belief over possible trajectories in task space.

3. Update the q-space beliefs

b(qt) = μqt-1→qt μqt+1→qt μ t
xt→qt

,

first iterating forward for t = 1, ..,T , then iterating backward for t = T-1, ..,1.
This procedure is exactly as described in the previous section, using local lin-
earizations of the kinematics at q̂t = 〈b(qt)〉. This generates a belief over possible
trajectories in q-space.

4. Iterate steps (ii) and (iii).

Conceptually, the most interesting aspect is that in step (ii) we do not compute a
single task space trajectory, but rather represent the whole variety of possible task
space trajectories by the beliefs. The coupling to the q-space then narrows down
this variety according to the prior in q-space. Iterating steps (ii) and (iii) means
to propagate up (μ t

qt→xt
) and down (μ t

xt→qt
) messages between the x-level and the

q-level until coherence between both levels is achieved.



244 M. Toussaint and C. Goerick

4.3.1 Illustration on a Planar Arm

We would first like to illustrate the approach on a simple 3-link planar arm described
by the joint state q∈R

3 and the endeffector position x ∈R
2. We are given the initial

configuration q0 = (.5, .5, .5), the endeffector target x∗T = (−1.5, .5) and T = 20.
Figure 7(a) displays the preliminary belief over endeffector states after the first

stage of inference (step (ii)). We find that at this stage, the belief over the endef-
fector trajectory is simply a straight line with quite a large standard deviation asso-
ciated with each via-point. This “Gaussian worm” can be interpreted as the range
of possible endeffector trajectories neglecting the coupling to any other variables or
constraints. All subsequent inference steps will further refine and narrow down this
initial belief by fusing it with messages from the q-space. Figure 7(b) displays the
belief over endeffector trajectories after a cycle of inference steps (ii), (iii), (ii), i.e.,
the coupling to the joint state has been accounted for. Also the MAP joint config-
uration is displayed at each time step. As expected from the discussion above, the
MAP endeffector trajectory is not anymore a straight line. The reason is that the
constraints we induced via the prior joint transition probability (31) favors small
steps in joint space.

(a)

(b)

Fig. 7 (a) The belief over the endeffector trajectory after the first stage of inference – neglect-
ing the coupling to the joint state. (b) The belief over the endeffector trajectory after coupling
to the joint state; also the MAP joint configurations for each time step are displayed.

4.3.2 Illustration with a Humanoid Upper Body

As another illustration, consider the n = 13 joint humanoid upper body displayed
in Figure 8. We take the right hand as the endeffector and plan a target reaching
trajectory (of length T = 50) to a goal in the upper left working domain of the robot.

Figures 9(a&b) display the result after 2 iterations of the inference steps (1-4),
which provided sufficient convergence. The figures display the maximum a posteri-
ori joint configuration (MAP, the maximum of the posterior joint state distribution)
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and the standard deviations of the endeffector distribution at different time steps.
The MAP endeffector trajectory is not a straight line. To give a quantitative mea-
sure of the quality of the trajectory we compare the MAP joint trajectory computed
via probabilistic inference with the joint trajectory that results from a standard re-
dundant control approach. More precisely, the redundant control approach first pre-
sumes a straight endeffector line equally divided in T = 50 segments and then uses
standard motion rate control.

We define a global trajectory cost using the q-space metric W ,

C(q1,..,T ) =
t-1

∑
t=1
||qt+1−qt||W .

Table 3 displays the trajectory costs for the trajectories computed via the forward
controller and the MAP trajectory computed via probabilistic inference. The MAP
trajectory is clearly more efficient in terms of this cost. This stems from the fact that
equation (31) imposes a prior transition likelihood f1(qt+1,qt) ∝ N (q,W -1) which

Fig. 8 A humanoid upper body with n = 13 hinge joints. The hip is fixed, the right hand
serves as endeffector.

(a)

(b)

Fig. 9 Results of probabilistic inference planning with an humanoid upper body. Reaching to
a target without obstacles, displayed from two different perspectives. We see the MAP joint
configuration and the Gaussian endeffector distribution (indicated as ellipsoid) at different
intermediate time steps. The optimal trajectory in joint space leads to a curve trajectory in
endeffector space.
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Table 3 Global cost of joint space trajectories.

trajectory cost C(q1,..,T )

forward controller 11.19

MAP trajectory 8.14

reflects exactly this metric in joint space. The curve of the endeffector trajectory is
a result of this efficiency.

4.4 Coupling with Collision Constraints

In [7, 16] the idea of hierarchical decomposition of planning was considered, where
a planning problem is first solved on a reduced task. This results is then coupled
into a second-stage planning problem on the q-space level. This strict two-stage
procedure neglects that constraints (or priors) on the q-space level should eventu-
ally also influence the optimal task space plan. Intuitively one might come up with
an algorithm that reiterates planning on both levels until their mutual interaction
leads to a coherent plan on both levels. This is exactly what belief propagation does
automatically in our framework.

c1

x3

q3

x4

q4

x2

c3 c4

q1

x1

q1

x1

c2

q2

Fig. 10 Model for decomposed planning under collision constraints.

Let qt and xt be as before. In addition, let ct be a binary random variable that
indicates collision of the endeffector with an obstacle (a table in the following ex-
periment). Consider the model

P(c1:T ,x0:T ,q0:T ) = P(x0) P(q0)

[ T

∏
t=1

P(ct |xt ,xt-1) P(xt |qt ,xt-1) P(qt |qt-1)
]

(32)

as illustrated in Figure 10. We assume the motion prior P(qt |qt-1) as before and

P(ct |xt ,xt-1) = N (ct |φ c(xt ,xt-1),D) , (33)

P(xt |qt ,xt-1) ∝ N (xt+1 |xt ,C
xx) N (xt |φ(qt),Cxq) . (34)

Here, φ c is a function that determines the maximal penetration depth with the ob-
stacle when the endeffector moves from xt-1 to xt . We compute gradients for this as
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in [19]. Further, note that we have now included a task motion prior N (xt+1 |xt ,Cxx)
as an additional factor in the model, even though this might be a rather week prior
(we will choose Cxx = .1 in the experiments).

In the specific experiment we condition on the final endeffector position xT = x∗
and we condition on each collision variable ct = 0 being zero. We perform infer-
ence in this model by a message passing scheme that effectively alternates between
forward-backward inference on the task level and on the q-space level until a coher-
ent posterior over both is found. We apply the following message passing scheme:

1. propagate forward & backward on x: first compute the messages μxt-1→xt for t =
1, ..,T , then the messages μxt+1→xt for t = T-1, ..,1

2. compute all the messages μc→(xt-1xt ) using local linearizations of φ c at the current
MAP task belief bt(xt)

3. propagate down: compute all the messages μxt→qt

4. propagate forward & backward on q: first compute the messages μqt-1→qt for
t = 1, ..,T , then the messages μqt+1→qt for t = T-1, ..,1

5. propagate up: compute all the messages μqt→xt

6. iterate steps (i)-(v)

In the first iteration, step (i) will compute a preliminary task space belief neglecting
the collision constraint. In step (ii) the collision constraint is then coupled into the
task space belief which is then in step (iii) propagated to the q-space belief, et cetera.

(a)

(b)

Fig. 11 Reaching to a target above (a) the table and below (b) the table whilst avoiding
collision.
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Figures 11(a&b) display the result after two iterations of this message passing
scheme for T = 30. In the first case (Figure (a)) the target endeffector position is
slightly above the table and the generated movement avoids the obstacle. In the
second case, the target is only slightly displaced but now below the table. Here,
the result is a rather straight trajectory. A standard forward controller that follows a
gradient of a superimposed target potential and obstacle avoidance potential would
typically get trapped under the table in the first case. Also, the local target potential
of a reactive controller would hardly distinguish between the first and the second
case.

The experiments ran on a laptop with a 1.1GHz Centrino Mobile processor. The
first experiment (T = 50, without constraints, k = 2 inference sweeps) takes 3.56
seconds, the second experiment (T = 50, with constraints, k = 2 sweeps) takes 3.97
seconds.

5 Discussion

Let us discuss here specific aspects in relation to the derived algorithms and the
Bayesian approach in general.

Local vs. Global Planning

An important aspect often discussed in the context of robotic planning is locality.
Many classical approaches like RRTs [6, 5] try to tackle global planning problems,
for instance where one first has to move away from a goal before moving towards
the goal becomes possible. Theoretically, planning based on exact inference would
also generate globally correct posterior distributions about all possible trajectories
and thereby perform global planning. For discrete MDPs this is feasible and has
been demonstrated [21]. However, in almost any realistic robotics scenario exact
inference is infeasible since this would require to represent very complex distribu-
tions (beliefs) which are not part of a feasible parametric family of distributions.
In the algorithms we derived we assumed Gaussian belief representations and used
local linearizations to stay in this family of belief representations. If we tried exact
inference in domains with collision constraints, the exact beliefs had very complex,
discontinuous forms. The Gaussian belief approximations effectively introduce a
kind of “locality” since the set of likely trajectories is assumed close to a mean
trajectory. Other kinds of belief representations would give a more global charac-
ter to planning, e.g. sample based representations (particle filters) or mixture of
Gaussians. In conclusion, it is very much a matter of which approximations and
belief representations are chosen which determine how global the inference
approach is.

Computational Complexity

The complexity of inference is linear in the number of message computations
needed; each message computation requires operations on symmetric matrices that
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approximately with n2. A single forward-backward pass along one variable is linear
in T . If the number of neighbors to each variable is bounded, then the total number
of edges in the factor graph is O(T K), i.e., linear in the number K of variables. For
complex (e.g., hierarchically deep) DBNs it is however an open question how many
iterations of inference sweeps one needs until convergence.

Handling Delayed Feedback in Control

In realistic cases the sensor feedback on the precise robot configuration (qt and q̇t)
is delayed. Thus, for instance in the case of torque control, the direct Bayesian dy-
namic control law (19) is not applicable. However, it is straight-forward to explicitly
include the delay in the probabilistic model and then apply Bayesian inference as we
discussed it in the planning case. Figure 12 is an example for representing delayed
feedback in the model – here the feedback is delayed for 2 time steps. The Bayesian
control law is then given by computing P(ut | q̄t3,ut1,ut2, ẋt). In a sense, this ap-
proach naturally combines a probabilistic state estimation of q̄t1 with the ordinary
Bayesian dynamic control.

q̄t-3

ut

q̄tq̄t-2

ut-2 ut-1

q̄t-1

ẋt

Fig. 12 Bayesian dynamic control in the case of delayed feedback. Here, q̄t = (qt , q̇t) sub-
sumes positions and velocities.

6 Conclusion

Bayesian motion control and planning is based on the idea of fusing motion objec-
tives (task constraints, goals, motion priors, etc) in a way similar to Bayesian sensor
fusing. We formulate probabilistic models which represent these objectives, condi-
tion on constraints and goals, and use probabilistic inference to compute a posterior
distribution over the possible trajectories and control signals. This distribution is
a representation of the variety of likely trajectories and the corresponding control
signals given that constraints and goals must be met.

The main contribution of this paper are derivations of explicit Bayesian control
and planning algorithms. In the case of control we have addressed the problems
of kinematic and dynamic task control by deriving a posterior distribution over the
posture qt and the control ut , respectively. A straight-forward way to apply these
results is to choose the MAP posture qMAP

t as the next kinematic control point, or
the MAP control uMAP

t as the current control signal. We have shown that these MAP
control laws are closely related to the classical control laws. More specifically, qMAP

t
corresponds to classical motion rate control including nullspace movement and a
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regularized pseudo-inverse Jacobian – where the regularizer is now interpreted as
the tightness of the task constraint and the nullspace motion as the asymmetry of
the motion prior. And uMAP

t correspond to the classical dynamic control (as given,
e.g., in [13]) generalized to include also a non-zero task variance C and a stochastic
control variance Q.

To solve planning problems we extended the approach to multiple time slices, i.e.
we proposed to use Bayesian inference to compute posterior trajectories conditioned
on (future) constraints and goals. We derived explicit message passing algorithms
for the basic cases of kinematic and dynamic planning. However, the general ap-
proach of inference and message passing algorithms can also be applied to more
structured representations. Structure means that either the state qt is factored into
multiple variables (e.g., when we need to include variables describing objects or
other properties of the environment) or that the task xt is factored in multiple vari-
ables (the multi task variable scenario we mentioned is an example). In particular
when the dependencies between such variables are sparse inference and message
passing algorithms can exploit this structure to increase computational efficiency.
This leads us away from the classical bottleneck of planning: the need to represent
state in one big state space. Rather than deriving more explicit message passing al-
gorithms for specific cases of structured models, the theorems showed how message
equations can systematically be derived for specific graphical models. Our last ex-
perimental scenario addressed such an alternative model structure which is related
to hierarchical planning where one alternates between planning in the task space
and planning in the q-space. In section 5 we have also discussed in what sense exact
inference would correspond to optimal global planning, whereas the more realistic
case of approximate inference corresponds to more local planning. Future research
on Bayesian motion planning should focus on exactly these two points: (1) exploit-
ing the benefits of message passing algorithms in more structured models and (2) ex-
ploring different belief representation techniques (such as particle representations)
for better approximations during inference.
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Used Gaussian Identities

We define a Gaussian over x with mean a and covariance matrix A as the function

N (x |a,A) =
1

|2πA|1/2
exp{−1

2
(x−a)T A-1 (x−a)} (35)

with property N(x |a,A) = N(a| x,A). We also define the canonical representation

N [x |a,A] =
exp{− 1

2 aT A-1a}
|2πA-1|1/2

exp{−1
2

xT A x+xT a} (36)
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with properties

N [x |a,A] = N (x |A-1a,A-1) , N (x |a,A) = N [x |A-1a,A-1] .

The product of two Gaussians can be expressed as

N [x |a,A] N [x |b,B] = N [x |a+b,A+B] N (A-1a |B-1b,A-1 +B-1) , (37)

N (x |a,A) N (x |b,B) = N [x |A-1a+B-1b,A-1 +B-1] N (a |b,A+B) , (38)

N (x |a,A) N [x |b,B] = N [x |A-1a+b,A-1 +B] N (a |B-1b,A+B-1) . (39)

Linear transformations in x imply the following identities,

N (Fx+ f |a,A) =
1
|F | N (x | F-1(a− f ), F-1AF-�) , (40)

=
1
|F | N [x | FT A-1(a− f ), FT A-1F ] , (41)

N [Fx+ f |a,A] =
1
|F | N [x | FT (a−A f ), FT AF] . (42)

The joint Gaussian of two linearly dependent Gaussian variables reads

N (x |a,A) N (y |b+Fx,B) = N
((x

y

)∣
∣

(
a

b+Fa

)

,
(

A AT FT

FA B+FAT FT

))

(43)
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Methods for Learning Control Policies
from Variable-Constraint
Demonstrations

Matthew Howard, Stefan Klanke, Michael Gienger, Christian Goerick,
and Sethu Vijayakumar

Abstract. Many everyday human skills can be framed in terms of performing
some task subject to constraints imposed by the task or the environment. Con-
straints are usually not observable and frequently change between contexts.
In this chapter, we explore the problem of learning control policies from data
containing variable, dynamic and non-linear constraints on motion. We discuss
how an effective approach for doing this is to learn the unconstrained policy in
a way that is consistent with the constraints. We then go on to discuss several
recent algorithms for extracting policies from movement data, where observa-
tions are recorded under variable, unknown constraints. We review a number
of experiments testing the performance of these algorithms and demonstrating
how the resultant policy models generalise over constraints allowing prediction
of behaviour under unseen settings where new constraints apply.

1 Introduction

A wide variety of everyday human skills can be framed in terms of performing
some task subject to a set of constraints. Constraints may be imposed either
by the environment [37], the task [6] or, more commonly, both. For example,
when opening a door, the door acts as an environmental constraint that
restricts the movement of ones hand along the opening arc of the door. When
stirring soup in a saucepan, the sides of the pan prevent the spoon moving
beyond their radius. Many tasks require self-imposed task constraints to be
fulfilled in order to achieve adequate performance. For example when pouring
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Fig. 1 ASIMO humanoid robot (left) and kinematic model used for whole body
motion control (right) [15]. In our experiments 22 upper body degrees of freedom
were used (2× 7 DOF arms, 2 DOF head, 6 DOF torso), with the heel frame fixed.

water from a bottle to a cup, the orientation of the bottle must be constrained
so that the stream of water falls within the mouth of the cup. When wiping
a window, ones hand should be constrained to maintain contact with the
wiping surface [38] and when climbing a ladder constraints may be applied
to the centre of mass or the tilt of the torso of the climber to prevent over-
balancing [27]. When manipulating or grasping solid objects the motion of
ones fingers is constrained by the presence of the object [43]. Consider the task
of running or walking on uneven terrain: the cyclic movement of the runner’s
legs is constrained by the impact of the feet on the ground in a dynamic,
discontinuous and unpredictable way. In short, constraints that may be non-
linear, spatially or temporally varying, or even discontinuous are ubiquitous
in our everyday behaviour [50, 49, 15, 44, 48].

A promising approach to providing robots with abilities such as the above
is to take examples of motion from existing skilled demonstrators (e.g. hu-
mans) and attempt to learn a control policy that somehow captures the de-
sired behaviour [3, 4, 47]. Such techniques offer (i) a simple, intuitive interface
for programming robots [4], (ii) effective methods for motion recognition and
classification [26], and; (iii) accelerated optimisation of movements by using
demonstration data to seed the solution [45]. However, while a wide variety of
approaches for learning and representing movements have been proposed in
recent years [3, 4, 47, 14], relatively few have explicitly considered the problem
of dealing with constraints on motion in learning. An important component of
this is the ability to deal with the apparent variability in movements induced
by varying constraints. For example, one wishes to learn a policy that allows
one not only to open a specific door of a particular size (e.g. constraining the
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hand to a curve of a particular radius), but rather to open many doors of
varying sizes (radii).

In this chapter we will review recent works that deal precisely with this
problem, that is learning from movement data that implicitly contains dy-
namic and uncertain constraints. We will primarily focus on two methods
recently proposed [22, 19], that allow the effect of constraints to be dealt
with in an appropriate way during learning. We will compare and contrast
the two methods, consider their relative strengths, and in particular assess
their suitability for improving existing policy learning methods that currently
rely on traditional supervised learning techniques.

The novel techniques we consider are aimed at learning from demonstrated
movements that are subject to variable, dynamic constraints with the goal
of finding policies that can generalise over constraints. The two approaches
both use a similar strategy to do this; namely they both attempt to consoli-
date movement observations under different constraints in order to model the
underlying unconstrained policy common to all. Learning the latter enables
generalisation since we can apply new constraints to predict behaviour in
novel scenarios. This is inspired by work in analytical dynamics (e.g. see [55])
where an effective and intuitive strategy for analytically solving constrained
motion problems is to consider the effect constraints have in modifying the
fundamental equations of motion of the unconstrained system. The difference
here is that we attempt to do this in an automated, data-driven way.

In general, we will see that learning (unconstrained) policies from con-
strained motion data is a formidable task. This is due to several problems,
such as (i) unobservability of constraints (ii) non-convexity of observations
under different constraints, and; (iii) degeneracy in the set of possible policies
that could have produced the observed movement under the constraint [19].
We will discuss at length how these problems arise when learning in the con-
strained setting, and then look at how the two methods overcome them, first
for the special case of potential-based policies, and later for learning generic,
arbitrary policies. Using these constraint-consistent approaches to learning it
has been shown [22, 19] that given observations (i) under a sufficiently rich
set of constraints it is possible to reconstruct the fully unconstrained policy;
(ii) under an impoverished set of constraints we can learn a policy that gen-
eralises well to constraints of a similar class, and; (iii) under ‘pathological’
constraints (e.g. those that constrain the same part of the policy in all obser-
vations, effectively rendering it unobservable) we can learn a policy that at
least reproduces behaviour subject to those same constraints. Furthermore,
achieving these is possible without the need for explicit knowledge of the
constraints in force at the time of observation.

An extensive set of experiments are have been reported [22, 19] in or-
der to validate the methods and to assess their performance. Here, we will
compare and review some of these for learning on data from several policies
on complex, high-dimensional movement systems, subject to various realistic
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constraints, with a view to illustrating the utility of the approaches for trans-
ferring behaviour to robots such as the ASIMO humanoid (Fig. 1).

2 Effect of Variable Dynamic Constraints on Learning

In this section, we characterise the general problem of learning control policies
from data, and discuss the problems encountered when variable constraints
are applied to motion.

2.1 Learning Control Policies from Data

Following Schaal et al. [47], we consider the direct learning of autonomous
policies

u(t) = π(x(t)) , π : IRn �→ IRd, (1)

from data, where x ∈ IRn and u ∈ IRd are appropriately1 chosen state- and
action-spaces, respectively. The goal of learning is to approximate the policy
(1) as closely as possible [47] using a supervised learning approach, that is, we
are given observations of u(t), x(t) (often in the form of trajectories) and from
these we wish to learn the mapping π. In previous work this has been done by
fitting parametrised models in the form of dynamical systems [25, 24], non-
parametric modelling [40, 6, 12], probabilistic Bayesian approaches [17, 16]
and hidden Markov models [53, 26].

An implicit assumption found in policy learning approaches to date is
that the data used for training comes from behavioural observations of some
unconstrained or consistently constrained policy. By this it is meant that
the policy is observed either under no constraint (e.g. movements in free
space such as gestures or figure drawing), or under constraints consistent over
observations (e.g. interacting with the same objects or obstacles in each case).
However, in many everyday behaviours, there is variability in the constraints,
such as when opening doors of varying sizes or walking on uneven terrain. This
variability in the constraints cannot be accounted for by standard learning
approaches.
1 It should be noted that, as with all policy-based learning approaches, the choice

of state- and action-space is problem specific [47] and, when used for imitation
learning, depends on the correspondence between demonstrator and imitator.
For example if we wish to learn the policy a human demonstrator uses to wash a
window, and transfer that behaviour to an imitator robot, an appropriate choice
of x would be the Cartesian coordinates of the hand, which would correspond
to the end-effector coordinates of the robot. Transfer of behaviour across non-
isomorphic state- and action-spaces, for example if the demonstrator and imitator
have different embodiments, is also possible by defining an appropriate state-
action metric [1].
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Example: Finger Extension with Contact Constraints

As an example, consider the learning of a simple policy to extend a jointed
finger. In Fig. 2(a) the finger is unconstrained and the policy simply moves
the joints towards the zero (outstretched) position. On the other hand, in
Fig. 2(b), an obstacle lies in the path of the finger, so that the finger movement
is constrained – it is not able to penetrate the obstacle, so moves along the
surface. The vector field representation of the two behaviours is shown in
Fig. 2(c).

Given the task of learning in this scenario, applying traditional learning
approaches would result in one of two possibilities. The first is that if the
observations are labelled with respect to the constraint (here, the orientation,
position and shape of the obstacle) one could learn a separate policy model
for the behaviour in each of the settings. However this is clearly unsatisfac-
tory, since each model would only be valid for the specific setting, and we
would need increasing numbers of models as we observed the policy under
new constraints (for example different shaped obstacles at different positions
and orientations). The second possibility is that the data is unlabelled with
respect to the constraint. In this case, one might try to perform regression
directly on the observations, that is observations from both vector fields (cf.
Fig. 2(c), black and red vectors). However, this presents the problem that
model averaging would occur across observations under different constraints,
resulting in a poor representation of the movement in terms of the magnitude
and direction of the predictions (see Sec. 2.3).

We can avoid the need for multiple policy models if we relax our assump-
tions on the form (1) of the observed commands, and allow for an additional
transformation of π(x). We thus model both the red and black observations
as stemming from the same policy (‘extend the finger’), and attribute its dif-
ferent appearance to the transformations as induced by the constraints. With
a restriction on the class of possible transformations, as will be detailed in
the next section, we can model the unconstrained policy even if we only ob-
served constrained movements, and we can apply new constraints to adapt
the policy to novel scenarios.

2.2 Formal Constraint Model

In the remainder of this chapter we will focus on constraints which act as hard
restrictions on the actions available to the policy. Specifically, we consider
policies subject to a set of k-dimensional (k ≤ n) Pfaffian constraints [55]

A(x, t)u = 0. (2)

Under these constraints, the policy is projected into the nullspace of A(x, t):

u(x, t) = N(x, t)π(x(t)) (3)
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(a) (b)

(c)

Fig. 2 Illustration of two apparently different behaviours from the same policy: (a)
unconstrained movement (b) movement constrained by an obstacle (black box) (c)
vector field visualisation of the unconstrained (red) and constrained (black) policy
for two of the finger joints as a function of their angles.

where N(x, t) ≡ (I − A†A) ∈ IRd×d is a projection matrix that in general
will have a non-linear dependence on state and time2, A(x, t) ∈ IRk×d is
some matrix describing the constraint and I ∈ IRd×d is the identity matrix.
Constraints of the form (2) commonly appear in scenarios where manipula-
tors interact with solid objects, for example when grasping a tool or turning
a crank or a pedal, that is, contact constraint scenarios [38, 35, 34]. Such
constraints are also common in the control of redundant degrees of free-
dom in high-dimensional manipulators [33, 30, 39], where policies such as (3)
are used, for example, to aid joint stabilisation [39], or to avoid joint limits
[9], kinematic singularities [59] or obstacles [10, 29] under task constraints.
As an example: Setting A to the Jacobian that maps from joint-space to
end-effector position increments would allow any motion in the joint space
provided that the end-effector remained stationary. The same formalism ap-
plies equally to policies controlling dynamic quantities such as forces and
momentum, for example see [39] and [27] respectively for constrained control
schemes where the formalism applies directly. It has also found more exotic
2 Here, A† denotes the (unweighted) Moore-Penrose pseudoinverse of the matrix A.
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(a) (b)

(c)

Fig. 3 Illustration of the effect of constraints on the unconstrained policy, the av-
eraging effect of direct regression and the degeneracy problem. (a) Two constraints
applied to the policy π result in projected observations u1,u2. (b) Direct regres-
sion results in averaging of the two movements ū in a way that cannot explain the
observations. (c) Two policies π, π′ that both may be constrained in such a way as
to produce the observation u2.

applications; for example Antonelli et al. [2] apply it to team coordination in
mobile robots.

In general the effect of constraints (2)-(3) is to disallow commands in
some sub-space of the system, specifically the space orthogonal to the image
of N(x, t). In essence these components of motion are projected out of the
observed movement. For example, as illustrated in Fig. 3(a), a policy π is
constrained in two different ways corresponding to two different projections
of the unconstrained movement. In the first observation u1, the constraint
prevents movement in the direction normal to the vertical plane3. For the
second observation u2, the constraint only allows movement in the horizontal
plane.
3 Note that if the constraint has a non-linear dependence on time or state position

the orientation of the constraint plane onto which the policy is projected will
vary according to that dependence.
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2.3 Learning from Constrained Motion Data

From the viewpoint of learning, constraints as described in the previous sec-
tion present problems for traditional policy learning approaches. Specifically,
there are two issues in particular that must be dealt with; that of non-
convexity of observations and degeneracy between policies [20].

The non-convexity problem comes from the fact that between observations,
or even during the course of a single observation, constraints may change.
For example consider Fig. 3(b). There, the two policy observations under the
different constraints, u1 and u2, appear different depending on the constraint.
To the learner, this means that the data from the two scenarios will appear
non-convex, in the sense that for any given point in the input (x) space
multiple outputs (u) may exist. This causes problems for supervised learning
algorithms, for example directly training on these observations may result in
model-averaging. Here, averaging of u1,u2 results in the prediction ū that
clearly does not match the unconstrained policy π, either in direction or
magnitude (ref. Fig. 3(b)).

The degeneracy problem stems from the fact that for any given set of pro-
jected (constrained) policy observations, there exist multiple candidate poli-
cies that could have produced that movement. This is due to the projection
eliminating components of the unconstrained policy that are orthogonal to
the image of N(x, t) so that the component of π in this direction is undeter-
mined by the observation. For example consider the constrained observation
u2 in Fig. 3(c). There motion in the y direction is restricted, meaning that
that component of π is not seen in this observation. Given only u2 we cannot
determine if the policy π or an alternative, such as π′ (ref. Fig. 3(c)) pro-
duced the observation. In effect we are not given sufficient information about
the unconstrained policy to guarantee that it is fully reconstructed.

Despite these restrictions, we wish to do the best we can with the data
available. We adopt a strategy whereby we look for policies that are, as a min-
imum, consistent with the constrained observations u. For example, returning
to Fig. 3, if we only observe u2, (that is the policy under a single, specific
constraint) the simplest (and safest) strategy would be to use that same
vector as our prediction. In this way we can at least accurately predict the
policy under that constraint (albeit only under that particular constraint).
If we are given further observations under new constraints we can recover
more information about the unconstrained policy π. For instance, observing
u1 eliminates the possibility that π′ underlies the movements since it cannot
project onto both u1 and u2. Applying this strategy for increasing numbers
of observations, our model will not only generalise over the constraints seen,
but also come closer to the unconstrained policy π.

Finally, it should be noted that, if in all observations, certain components
of the policy are constrained, then we can never hope to uncover those com-
ponents. However, in such cases it is reasonable to assume that, if these
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components are always eliminated by the constraints, then they are not rel-
evant for the scenarios in which movements were recorded.

Despite the problems that such constraints cause, in recent studies two ap-
proaches have been proposed that make considerable progress in learning in a
constraint-consistent way [22, 19]. The first of these provided a solution to the
problem for the important special class of potential-based policies4 [19]. Using
this approach it was shown that learning consistent policies can be efficiently
learnt from variable-constraint data using an indirect learning approach that
models the policy’s underlying potential function as its representation.

Following this, a second approach was proposed, aimed at removing some
of the restrictive assumptions used by the earlier potential-based approach.
The key to the second method was to use a small but significant modification
to the empirical risk function used by standard regression techniques. It was
found that using this approach policies of arbitrary complexity, including
rotational policies (i.e. policies that cannot be described by a potential) can
also be efficiently learnt [22]. In the next two sections we describe the details
of the two approaches.

3 Constraint-Consistent Learning of Potential-Based
Policies

In this section we discuss constraint-consistent learning for the special case
that the policy is potential-based. We first give a precise definition of such
policies and describe the kinds of behaviour that they can be used to repre-
sent. We then go on to discuss how such policies are particularly amenable to
constraint-consistent learning and describe a method recently proposed for
doing this [19].

3.1 Potential-Based Policies

A potential-based policy is a policy defined through the gradient of a scalar
potential function φ(x)

π(x) = −∇xφ(x). (4)

Such policies can be thought of as greedily optimising the potential func-
tion at every time step [36] and thus encode attractor landscapes where the
minima of the potential correspond to stable attractor points. An example is
given in Fig. 4 where a potential function with three maxima (repellors) and
two minima (attractors) is shown and the corresponding policy is overlaid
(black vectors).

A wide variety of behaviours may be represented as potential-based. For
example, reaching behaviours may be represented by a potential defined in
hand space, with a single minimum at the target. Furthermore decision-based
4 We precisely define this class of policies in the next section.
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Fig. 4 Potential function with three maxima (repellors) and two minima (attrac-
tors). Overlaid are the corresponding unconstrained policy vectors (black) and a
set of constrained policy vectors (red).

behaviours may be encoded as potentials [32, 31, 7, 8]. For example when
reaching for an object, a potential may be defined with two minima, one
corresponding to reaching with the right hand, the other reaching with the
left. The decision of which hand to use for reaching would thus be determined
by the start state (e.g. reach with the closest hand) and the relative offset of
the two minima (e.g. right-handedness would imply a lower minimum for that
hand). Potential-based policies are also extensively used as nullspace policies
in control of redundant manipulators [15, 13, 9, 10, 36, 59], and for navigation
and obstacle avoidance problems in mobile robotics [41, 11, 42]. Furthermore,
in reinforcement learning and optimal control [52, 54], policies that are greedy
with respect to the value function can be thought of as potential-based, in
the sense that the policy does a gradient descent on the value function.

3.2 Learning from Constrained Potential-Based
Policies

If the policy under observation is potential-based, an elegant solution to solv-
ing the non-convexity and degeneracy problems is to model the policy’s po-
tential function [20, 23] rather than modelling it directly. This is due to a
special property of constrained potential-based policies, namely that obser-
vations of the constrained movements give us information about the shape of
the underlying potential, up to a translation in φ corresponding to constants
of integration for the observations.

In Fig. 4 this is shown for a potential function defined over a two-
dimensional state-space (top and 3-D perspective views). The potential func-
tion (colours) and unconstrained policy (black vectors) is shown, along with
the policy subject to a constraint (red vectors). For the case of potential-based
policies the policy vectors are given by the gradient vector of the potential (as
expressed in (4)). This means that the (unconstrained) policy vectors point
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in the direction of steepest descent, with magnitude equal to the slope in that
direction (Fig. 4, black vectors).

Now, if a constraint is applied, the direction and magnitude of the vectors
change. In the example in Fig. 4 the constraint prevents movement in one
dimension (x dimension in Fig. 4, left) so that only motion corresponding the
the second dimension (y dimension in Fig. 4, left) is observed. The vectors
now point in the direction of steepest descent subject to the constraint, with
magnitude equal to the slope of the potential in that direction, as can be
seen from Fig. 4, right. In other words the projected vectors correspond to
the directional derivatives of the potential, in the direction parallel to the
observations.

This lends us the opportunity of modelling the unconstrained policy, by
piecing together information about the slope of the potential in different di-
rections. For each observation (e.g. u1 in Fig. 3) we get information about the
directional derivative in that direction (i.e. the direction parallel to u1). This
means we transform the problem of combining these n-dimensional vector
observations (ref. Fig. 3) to one of ‘piecing together’ local estimates of the
slope of the potential.

A convenient method for doing this in the case of constrained kinematic
policies is to use line integration to accurately estimate the form of the
potential along trajectories [20, 23] and then use these local estimates to
build a global model of the potential. We outline this approach in the next
section.

3.3 Learning the Potential through Local Model
Alignment

In the following we describe a method for modelling the potential from con-
strained motion data. Given observations of constrained trajectories, we first
model the potential on a trajectory-wise basis using numerical line integra-
tion. We then consolidate these trajectory-wise models using results from
recent work in dimensionality reduction [56, 57] to ensure consistency. Fi-
nally, we use these consistent models to learn a global model of the potential
function, and thus the policy, for use in control.

Estimating the Potential Along Single Trajectories

As has been described in [20, 23], it is possible to model the potential along
sampled trajectories from a constrained kinematic policy (u ≡ ẋ) using a
form of line integration. Specifically, combining (3) and (4), the (continuous
time) state evolution of the system under such policies is given by

ẋ = N(x, t)π(x) = −N(x, t)∇xφ(x) (5)
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Let x̄(t) be the solution of (5). If we line-integrate along x̄(t) we have

∫

x̄

(∇xφ)T dx =
∫ tf

t0

(∇xφ)T ẋ dt = −
∫ tf

t0

(∇xφ)T N(x, t)∇xφ(x) dt, (6)

where t0 and tf are the start and finishing instants of x̄(t). We assume that we
have recorded trajectories x(t), ẋ(t) of length T sampled at some sampling
rate 1/δt Hz so that for each trajectory we have a tuple of points Xk =
xk,1, . . . ,xk,Tδt. Now, assuming the sampling rate to be sufficiently high, we
can make a linear approximation to (5)

xi+1 ≈ xi + δtNiπi = xi − δtNi∇xφ(xi) (7)

and (6) can be approximated using an appropriate numerical integration
scheme. An example of such a scheme is Euler integration, which involves
the first order approximation

φ(xi+1) ≈ φ(xi) +
1
δt

(xi+1 − xi)T Ni∇xφ(xi). (8)

Since the effect of the time constant δt is simply to scale the discretised
policy vectors, we can neglect it by scaling time units such that δt=1. This
comes with the proviso that for implementation on the imitator robot, the
learnt policy may need to be scaled back to ensure that the correct time
correspondence is kept. For steps xi → xi+1 that follow the projected policy
(3) we can rearrange (7) with the scaled time coordinates, and substitute into
(8) to yield

φ(xi+1) ≈ φ(xi)− ‖xi+1 − xi‖2, (9)

where the negative sign reflects our assumption (as expressed in (4)) that
attractors are minima of the potential. We use this approximation to gener-
ate estimates φ̂(xi) of the potential along any given trajectory x1,x2 . . .xN

in the following way: We set φ̂1 = φ̂(x1) to an arbitrary value and then it-
eratively assign φ̂i+1 := φ̂i − ‖xi+1 − xi‖2 for the remaining points in the
trajectory.

Note that an arbitrary constant can be added to the potential function
without changing the policy. Therefore, ‘local’ potentials that we estimate
along different trajectories need to be aligned in a way that their function
value matches in intersecting regions. We’ll turn to this problem in the next
section.

Constructing the Global Potential Function

Let us assume we are given K trajectories Xk = (xk1,xk2 . . .xkNk
) and

corresponding point-wise estimates Φ̂k = (φ̂k1, φ̂k2 . . . φ̂kNk
) of the poten-

tial, as provided from the Euler integration just described. In a first step,
we fit a function model fk(x) of the potential to each tuple (Xk, Φ̂k), such
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that fk(xi) ≈ φ̂ki. Although in principle any regression method could be ap-
plied here, our options are somewhat limited by the fact that these possibly
non-linear models have to be acquired from the few data points available in
each trajectory. To avoid unnecessary complications, we choose a nearest-
neighbour (NN) regression model, i.e.,

fk(x) = Φki∗ , i∗ = argmin
i
‖x− xki‖2. (10)

Since we wish to combine the models to a global potential function, we need
to define some function for weighting the outputs of the different models. For
the NN algorithm, we choose to use a Gaussian kernel

wk(x) = exp
[

− 1
2σ2

min
i
‖x− xki‖2

]

. (11)

From these weights we can calculate responsibilities

qk(x) =
wk(x)

∑K
i=1 wi(x)

(12)

and a (naive) global prediction f(x) =
∑K

k=1 qk(x)fk(x) of the potential at
x. However, as already stated, the potential is only defined up to an additive
constant, and most importantly this constant can vary from one local model
to another. This means that we first have to shift the models by adding some
offset to their estimates of the potential, such that all local models are in
good agreement about the global potential at any number of states x.

Fortunately, a similar problem has already been tackled in the literature: In
the field of non-linear dimensionality reduction, Verbeek et al. [57] have shown
how to align multiple local PCA models into a common low-dimensional
space. In particular, they endowed each local PCA model with an additional
affine mapping gk(z) = Akz + bk, which transformed the coordinates zk of
a data point within the k-th PCA model into the desired global coordinate
system. Verbeek et al. [57] retrieved the parameters of the optimal mappings
gk by minimising the objective function

E =
1
2

M∑

m=1

K∑

k=1

K∑

j=1

qkmqjm‖gkm − gjm‖2, (13)

where gkm denotes the coordinate of the m-th data vector, as mapped
through the k-th PCA model, and qkm is the corresponding responsibility
of that model. The objective can easily be interpreted as the ‘disagreement’
between any two models, summed up over all data points, and weighted by
the responsibilities of two models each. That is, the disagreement for any
combination of m, k and j only really counts, if the responsibility of both the
k-th and the j-th model is sufficiently high for the particular query point.
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Notably, E is convex and can be minimised by solving a generalised eigen-
value problem of moderate dimensions, that is, there are no local minima,
and the solution can be found efficiently.

In analogy to the PCA-alignment method [57], we augment our local poten-
tial models fk(·) by a scalar offset bk and define the corresponding objective
function as

E(b1 . . . bK) =
1
2

M∑

m=1

K∑

k=1

K∑

j=1

qk(xm)qj(xm)×

((fk(xm) + bk)− (fj(xm) + bj))
2
, (14)

or, in a slightly shorter form,

E(b) =
1
2

∑

m,k,j

qkmqjm (fkm + bk − fjm − bj)2 . (15)

Here,
∑

m denotes a summation over the complete data set, that is, over
all points from all trajectories (M =

∑K
k=1Nk). Using the symmetry in

j ↔ k and
∑

k qkn = 1, we split (15) into terms that are constant, linear, or
quadratic in bk, yielding

E(b) =
∑

m,k

qkmf
2
km −

∑

m,j,k

qkmqjmfkmfjm

+2
∑

m,k

qkmfkmbk − 2
∑

m,k

qkmqjmfjmbk

+
∑

m,k

qkmb
2
k −

∑

m,k,j

qkmqjmbkbj

= E0 + 2aT b + bTHb. (16)

Here, we introduced E0 as a shortcut for the terms independent of b, the
vector a ∈ IRK with elements ak =

∑

m qkmfkm −
∑

m,j qkmqjmfjm, and the
Hessian matrix H ∈ IRK×K with elements hij = δij

∑

m qjm −
∑

m qimqjm.
The objective function is quadratic in b, so we retrieve the optimal solution
by setting the derivatives to zero, which yields the equation Hb = −a.

However, note that a common shift of all offsets bk does not change the ob-
jective (14), which corresponds to the shift-invariance of the global potential.
Therefore, the vector (1, 1, . . . , 1)T spans the nullspace of H, and we need to
use the pseudo-inverse of H to calculate the optimal offset vector

bopt = −H†a. (17)

Compared to aligning PCA models, the case we handle here is simpler in
the sense that we only need to optimise for scalar offsets bk instead of affine
mappings. On the other hand, our local potential models are non-linear, have
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to be estimated from relatively little data, and therefore do not extrapolate
well, as will be discussed in the following section.

Smoothing Parameter Selection

Since we restrict ourselves to using simple NN regression for the local poten-
tial models, the only open parameter of the algorithm is σ2, i.e., the kernel
parameter used for calculating the responsibilities (11). A too large choice
of this parameter will over-smooth the potential, because the NN regression
model basically predicts a locally constant potential, but at the same time
trajectories will have relatively high responsibilities even for far apart points
x in state space.

On the other hand, a too small value of σ2 might lead to weakly connected
trajectories : If a particular trajectory does not make any close approach to
other trajectories in the set, the quick drop-off of its responsibility implies
that it will not contribute to the alignment error (based on pairs of significant
responsibility), which in turn implies that its own alignment – the value of
its offset – does not matter much. The same reasoning applies to groups of
trajectories that are close to each other, but have little connection to the rest
of the set.

Such trajectories can cause problems when attempting to learn a global
model of the potential using the output of the optimisation (17), since if
their influence on the overall alignment is negligible, their own alignment
can be poor. Fortunately, this situation can be detected automatically by
looking for small eigenvalues of H: In the same way as adding the same offset
to all trajectories leads to a zero eigenvalue, further very small eigenvalues
and the corresponding eigenvectors indicate indifference towards a shift of
some subset of trajectories versus the rest of the set. In practice, we look for
eigenvalues λ < 10−8, and use a recursive bi-partitioning algorithm in a way
that is very similar to spectral clustering [28] (please refer to [19] for details
on this step). We can then either discard all trajectories apart from those in
the largest ‘connected’ group (treating the weakly connected trajectories as
outliers) or recursively repeat the alignment process on the larger groups of
aligned trajectories.

Finally, with these considerations in mind, we select the smoothing pa-
rameter σ2 to match the scale of typical distances in the data sets. In the
experiments presented in [19] this parameter was selected heuristically by
first calculating the distances between any two trajectories k, j ∈ {1 . . .K}
in the set as the distances between their closest points

dkj = min
{‖xkn − xjm‖2 | n,m ∈ {1 . . .N}

}

, (18)

and also the distances to the closest trajectory

dmin
k = min {dkj | j �= k} . (19)
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Fig. 5 The alignment algorithm at work for a set of K = 40 trajectories of
length N = 40 sampled from a parabolic potential (φ(x) = xT Wx, W = 0.05I)
with randomly switching constraints (A(x, t) = (α1, α2) ≡ α, αi = N(0, 1)). (a)
Raw data (constrained trajectories through the two-dimensional state space) and
contour of the potential. (b) Local potential models estimated by Euler integration
prior to alignment. (c) Local potential models after alignment, already revealing the
structure of the parabola. (d) Global model f(x) trained on the aligned trajectories
(here, trained with LWPR [58]). (e) True parabolic potential shown for comparison.
The weakly connected ‘outlier’ trajectories (here, discarded prior to learning the
global model) are shown in red.

Then three choices for σ2, were considered, referred to as ‘narrow’, ‘wide’ and
‘medium’:

σ2
nar = median

{

dmin
k | k ∈ {1 . . .K}} (20)

σ2
wid = median

{

djk | j, k ∈ {1 . . .K}, j �= k
}

(21)

σ2
med =

√

σ2
narσ

2
wid. (22)

As shown by experiment [19, 20], the choice σ2
med usually represents a rea-

sonable balance between smoothing and alignment performance.
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Algorithm 1. PolicyAlign
1: Estimate Xk, Φ̂k, {k = 1 . . . K} using Euler integration. Calculate σ2.

2: Alignment:

• Calculate prediction and responsibility of each local model fk on each data
point xm, m = 1 . . . M :

fkm = fk(xm); qkm = wk(xm)/
∑

i wi(xm)

• Construct H,a with elements
hij = δij

∑

m qjm −∑m qimqjm; ak =
∑

m qkmfkm −∑m,j qkmqjmfjm

• Find optimal offsets bopt = −H†a

3: Discard outliers (H eigenvalues, λ < 10−8).

4: Train global model on data tuples (xkn, φ̂kn + bopt
k )

Learning the Global Model

After calculating optimal offsets bopt and cleaning the data set from out-
liers, we can learn a global model f(x) of the potential using any regres-
sion algorithm. For example, in the experiments presented in Sec. 5, we will
use Gaussian Radial Basis Function (RBF) models, and in [19, 20] Locally
Weighted Projection Regression (LWPR) [58] was used. As the training data
for these models, we use all non-outlier trajectories and their estimated po-
tentials as given by the Euler integration plus their optimal offset, that is,
the input-output tuples

{

(xkn, φ̂kn + bopt
k ) | k ∈ K, n ∈ {1 . . .Nk}

}

, (23)

where K denotes the set of indices of non-outlier trajectories. Once we have
learnt the model f(x) of the potential, we can take derivatives to estimate
the unconstrained policy π̂(x) = −∇xf(x). For convenience, the complete
procedure is summarised in Algorithm 1 and illustrated pictorially in Fig. 5
for an example parabolic potential with randomly switching constraints.

4 Constraint-Consistent Learning of Generic Policies

In the previous section we outlined a method for learning in a constraint-
consistent manner based on indirect modelling of the policy through its
potential. As discussed in Sec. 3.2, potential-based policies are particularly
amenable to learning in the constrained setting since observations under dif-
ferent constraints correspond to the directional derivatives of the potential in
the different (unconstrained) directions. This allows us to model the shape
of the potential to find a policy that is consistent with the observations.
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While this approach has been shown to greatly outperform direct learn-
ing approaches in an number of experiments on constrained systems [19], it
still suffers from some restrictions due to the assumption of a potential-based
policy. While this is not a problem when learning from systems such as those
described in Sec. 3.1, it can cause difficulties when the policy under observa-
tion encodes periodic or rotational behaviour (precisely speaking, when the
curl of the observed policy is non-zero).

In order to avoid this restriction an alternative approach to learning must
be taken. In [22], a new method was proposed that enables learning of generic
policies from variable constraint data. This method was based on a small but
significant modification of the empirical risk function used for learning. In the
following we consider several candidate risk functions that could be used for
learning and assess their suitability with respect to the data we are assumed
given. We will then discuss the novel risk function proposed in [22] that both
satisfies our original assumptions, and has been shown to be effective for
learning from variable constraint data [22].

4.1 Optimisation of the Standard Risk, UPE and
CPE

As already outlined in Sec. 2.3, throughout this chapter we are targeting
problems where we are given data in the form of tuples (xn,un) of observed
states and constrained actions, where we assume that all commands u are
generated from some underlying policy π(x), which for a particular obser-
vation might have been constrained. For constrained systems (2)-(3), this
means that we observe un = Nnπ(xn) for some projection matrix Nn. We
assume that the projection matrix for any given observation is not explicitly
known, i.e. our data is unlabelled with respect to the constraints in force at
the time of observation.

Given this data, the first possibility that springs to mind is to perform di-
rect least-squares regression for learning. In this approach one would attempt
to estimate the policy π̃(·) by minimising the standard risk

Edirect[π̃] =
N∑

n=1

‖un − π̃(xn)‖2. (24)

As already mentioned in Sec. 2 this is an effective approach for learning
from unconstrained data or data where the same constraint appears in all
observations (i.e. the constraint matrix A(x, t) is the same static function of
state for all observations). In the former case, one would obtain the best fit
to the unconstrained policy, and in the latter one would find the best fit to
the constrained policy under that particular set of constraints. For example if
one had several observations of an system opening some particular door and
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in every observation the door was the same, then optimisation of (24) would
be effective for learning the policy for that particular door.

The problem with this approach, however, is that it cannot handle data
where commands are observed under variable constraints. As discussed in
Sec. 2.3, if we consider an example where multiple observations are given
under different constraints, optimisation of (24) would result in a naive aver-
aging of commands from different circumstances (cf. Fig. 3(b)). In terms of
our door-opening example, if we observed the agent opening a new door and
attempted to incorporate that into our policy model, we would either get the
average door opening action, or have to start a new policy model for the new
door. We can therefore rule out (24) for learning in this setting, since it does
not meet our requirements for accuracy and generalisation.

An alternative approach then, might be to target error measures that di-
rectly measure performance in terms of our objectives. For example, we could
attempt to optimise our model with respect either to the unconstrained policy
error (UPE)

Eupe[π̃] =
N∑

n=1

‖πn − π̃(xn)‖2 (25)

or the constrained policy error (CPE)

Ecpe[π̃] =
N∑

n=1

‖un −Nnπ̃(xn)‖2. (26)

Optimising the former would directly give us the best fit to the policy, while
optimising the latter would give the best fit that is consistent with the con-
strained observations. The optimal model with respect to either of these
would satisfy our accuracy and generalisation requirements. For example in
the former case we could apply any projection (constraint) to the model and
still achieve a good CPE under the new constraint.

However, the problem here is that by assumption we do not have access to
samples of either (i) the (unconstrained) policy πn = π(xn), or (ii) the pro-
jection matrices Nn needed for calculating these quantities. This is because
in most problems of interest, constraints are not directly observable and there
is ambiguity in what features of motion are due to constraints and what are
implicit in the policy itself.

For example consider a contact control scenario such as wiping a window.
There, we can identify the surface of the window as an environmental con-
straint5 preventing the wiping hand from penetrating the surface. We may
also identify a task constraint preventing the hand from lifting from the
surface, since contact must be maintained for successful wiping. However,
while this is one reasonable analysis of the system, there also exist other
5 Note that would in fact be an inequality constraint since only movement into the

surface is restricted, while movement away is unconstrained.
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possibilities. For example, it may be that the unconstrained policy itself ex-
actly encodes a wiping movement parallel to the surface, so that the presence
of the surface is incidental. Alternatively, there could be an additional task
constraint applied that prevents the hand from pressing hard against the
surface. Note that we cannot directly determine which is the correct analysis
simply by observing the given movement: If the window surface (environ-
mental constraint) was removed in both of these cases the wiping would still
appear to go on exactly as before. In this example then, there is ambiguity
in what features of movement are due to the policy, what are due to the
constraints, and exactly what constraints (if any) are in force. Since none of
these can be resolved by the given observations, we cannot in general use
either of these functionals for learning.

4.2 Learning Generic Policies by Minimising
Inconsistency

Having ruled out the use of (24)-(26) for learning in this setting we must look
for alternative approaches. Our aim is to try to estimate a policy π̃(·) that
is consistent with our observed un, only using quantities that we can derive
from the data. That is, we wish to reconstruct the policy, knowing that it may
be projected in some way by the constraints. At this point a key observation
can be made: in order to uncover the unconstrained policy we must find a
policy model that can be projected in such a way that the observed commands
are recovered. In other words, we require

u(x) := Pπ(x)

for an appropriate projection matrix P, that either projects onto the same
space as the (unknown) N(x) (i.e. the image of N), or an (even smaller)
subspace of that. One such projection, which we know to lie within this
subspace, is the 1-D projection onto the observed command itself, that is
P = ûûT , with û = u/‖u‖ (ref. Fig. 6). Furthermore, since u is given, we
have all the information we need to calculate this projection and use it for
learning, neatly side-stepping the need to explicitly model the full constraint
matrix N.

With this as motivation, we propose to replace Nn in (26) by a projection
onto un and minimise the inconsistency which we define as the functional

Ei[π̃] =
N∑

n=1

‖un − ûnûT
n π̃(xn)‖2 =

N∑

n=1

(

rn − ûT
n π̃(xn)

)2
(27)

with rn = ‖un‖, ûn = un

rn
. Since un = Nnπn we can write ‖un −

Nnπ̃(xn)‖2 = ‖Nn(πn − π̃(xn))‖2 and recognise that the CPE is always
less than or equal to the UPE, because the projections Nn can only decrease
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Fig. 6 Illustration of our learning scheme. The projection of the correct policy π
onto the observations matches those observations.

the norm of the difference between true and predicted policy. The same ar-
gument holds for the inconsistency error (27) where the projection onto the
1-D subspace spanned by ûn, possibly takes away even more of the error. So
we can establish the inequality

Ei[π̃] ≤ Ecpe[π̃] ≤ Eupe[π̃].

Naturally, for estimating the correct policy, we would rather like to minimise
an upper bound of Eupe, but it is unclear how such a bound could be de-
rived from the data we are assumed given. However, note that by framing
our learning problem as a risk minimisation task, we can apply standard
regularisation techniques such as adding suitable penalty terms to prevent
over-fitting due to noise.

The proposed risk functional (27) can be used in conjunction with many
standard regression techniques. In the following we derive training rules for
two classes of function approximator for learning the (unconstrained) policy
to demonstrate how the risk functional can be used. The example function
approximators we use are (i) simple parametric models with fixed basis func-
tions (Sec. 4.3), and (ii) locally linear models (Sec. 4.4). We turn to this in
the next section.

4.3 Parametric Policy Models

A particularly convenient model of the policy is given by π̃(x) = Wb(x),
where W∈IRd×M is a matrix of weights, and b(x)∈IRM is a vector of fixed
basis functions. This notably includes the case of (globally) linear models
where we set b(x) = x̄ = (xT , 1)T , or the case of normalised radial basis
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functions (RBFs) bi(x)= K(x−ci)
∑M

j=1 K(x−cj)
calculated from Gaussian kernels K(·)

around M pre-determined centres ci, i = 1 . . .M . With this model, the
inconsistency error from (27) becomes

Ei(W) =
N∑

n=1

(

rn − ûT
nWb(xn)

)2

=
N∑

n=1

(

rn − vT
n w
)2

= Ei(w),

where we defined w ≡ vec(W) and vn ≡ vec(ûnb(xn)T ) = b(xn) ⊗ ûn in
order to retrieve a simpler functional form. Since our objective function is
quadratic in w, we can solve for the optimal weight vector easily:

Ei(w) =
∑

n

r2n − 2
∑

n

rnvT
n w + wT

∑

n

vnvT
n w

= E0 − 2gTw + wTHw

yielding
wopt = arg minEi(w) = H−1g (28)

with H =
∑

n vnvT
n and g =

∑

n rnvn. For regularisation, we use a simple
weight-decay penalty term, that is, we select wopt

reg = argmin(Ei(w)+λ‖w‖2).
This only requires modifying the Hessian to Hreg =

∑

n vnvT
n + λI.

Please note that the projection onto u introduces a coupling between the
different components of π̃, which prevents us from learning those indepen-
dently as is common in normal regression tasks. For the same reason, the size
of the Hessian scales with O(d2M2).

4.4 Locally Linear Policy Models

The basis function approach quickly becomes non-viable in high-dimensional
input spaces. Alternatively, we can fit multiple locally weighted linear models
π̃m(x) = Bmx̄ = Bm(xT , 1)T to the data, learning each local model inde-
pendently [46]. For a linear model centred at cm with an isotropic Gaussian
receptive field with variance σ2, we would minimise

Ei(Bm) =
N∑

n=1

wnm

(

rn − ûT
nBmx̄n

)2

=
N∑

n=1

wnm

(

rn − vT
n bm

)2
= Ei(bm),

where we defined bm = vec(Bm) and vn ≡ vec(ûnx̄T
n ) similarly to the para-

metric case. The factors
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wnm = exp(− 1
2σ2
‖xn − cm‖2)

weight the importance of each observation (xn,un), giving more weight to
nearby samples. The optimal slopes Bm in vector form are retrieved by

bopt
m = arg minEi(bm) = H−1

m gm (29)

with Hm =
∑

n wnmvnvT
n and gm =

∑

n wnmrnvn.
For predicting the global policy, we combine the local linear models using

the convex combination

π̃(x) =
∑M

m=1 wmBmx̄
∑M

m=1 wm

where wm = exp
(− 1

2σ2 ‖x− cm‖2
)

. For extensive experiments assessing the
performance of learning with parametric and local linear models using the
novel risk function, we refer the reader to the original experiments reported
in [22, 21].

5 Constraint-Consistent Learning Performance

To explore the performance of the two approaches, a number of experiments
have been performed, learning on data from autonomous kinematic control
policies from different plants, including learning from human demonstration
data to enable the ASIMO humanoid robot to learn a realistic car washing
task [22, 19]. In this section, we briefly review some of these results to provide
the reader with a view of the comparative performance the two approaches.
For this, we first discuss learning on data from a simple, two-dimensional
system controlled according to the framework outlined in Sec. 2. We then
discuss an example scenario in which the algorithm is used to enable ASIMO
to learn a realistic bi-manual grasping task from observations from a con-
strained demonstrator. We then give a brief discussion on how constraint-
consistent learning has been applied for learning from human demonstration
data for transferring skills to the ASIMO humanoid.

5.1 Two-Dimensional Constrained System

In this section we compare the performance of the constraint-consistent learn-
ing approaches described in Sec. 3 and Sec. 4 on a simple two-dimensional
system (x,u ≡ ẋ ∈ IR2 with policies subject to discontinuously switching
constraints. Specifically, the constraints are given by

A(x, t) = (α1, α2) ≡ α (30)



276 M. Howard et al.

where the α1,2 are drawn from a normal distribution, αi = N(0, 1). Here,
the constraints mean that motion is constrained in the direction orthogonal
to the vector α in state space. To increase the complexity of the problem,
the constraints are randomly switched during trajectories by re-sampling α
twice at regular intervals during the trajectory. This switches the direction
in which motion is constrained, causing sharp turns in the trajectories (for
example, see Fig. 5(a)).

To compare the methods, we investigate learning on data from three poli-
cies of differing complexity. These were (i) a policy defined by a quadratic
potential function

π(x) = −∇xφ(x); φq(x) = (x− xc)T W(x− xc) (31)

where we chose xc = 0 and W = αI; (ii) a sinusoidal potential

π(x) = −∇xφ(x); φs(x) = α sin(x1) cos(x2), (32)

where we set α = 0.1 and (iii) a limit cycle policy

ṙ = r(ρ − r2), θ̇ = ω. (33)

where r, θ are the polar representation of the Cartesian state space coordi-
nates (i.e. x1 = r sin θ, x2 = r cos θ), ρ is the radius of the attractor and θ̇ is
the angular velocity. For the experiments, the latter two parameters were set
to ρ=0.5 m and ω=1 rad s−1. Here, the two potential-based policies act as
attractor landscapes with, for example, a single point attractor at xc for the
quadratic potential and multiple point attractors for the sinusoidal potential.
Note that the limit cycle policy is a rotational policy and therefore cannot
be defined by a potential.

Data was collected by sampling K = 40 trajectories at a rate of 50 Hz
from the policies, starting from random states. This resulted in N = 40 data
points per trajectory. We then attempted to learn on this data using (i)
the alignment approach (ref. Sec. 3), (ii) optimisation of the inconsistency
(ref. Sec. 4), and (iii) direct regression (i.e. training directly on the tuples
(xi,ui), i = 1, . . .K × N and optimising the risk function (24)). For each
of the methods we learnt models consisting of a set of normalised Gaussian
RBFs with centres arranged on a 6×6 grid, and with the kernel widths fixed to
yield suitable overlap. For the latter two approaches the model represented
the mapping π̃ : x → u ∈ IR2 �→ IR2 and for the alignment approach it
represented the mapping π̃ : x→ φ ∈ IR2 �→ IR. For a thorough comparison,
we learnt models of each of the three policies using the three different learning
approaches. We repeated this experiment on 100 data sets and evaluated the
normalised UPE and CPE, that is, the functionals from (25) and (26) divided
by the number of data points and the variance of the policy πn on a subset
held out for testing.
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Table 1 Normalised UPE and CPE for learning the three policies from the toy
example using (i) direct regression, (ii) the alignment approach and (iii) the incon-
sistency approach. All errors are (mean±s.d.)×10−2 over 100 data sets.

Policy Alg. nUPE nCPE

Quad. Pot. direct 54.727± 6.218 10.732± 2.010

align. 1.158± 1.561 0.443± 0.588

incon. 0.001± 0.001 0.001± 0.001

Sin. Pot direct 40.478± 4.789 12.354± 1.097

align. 5.020± 5.395 2.162± 2.536

incon. 0.003± 0.003 0.001± 0.004

Lim. Cyc. direct 43.225± 6.599 10.034± 1.678

align. 291.233± 156.180 126.902± 80.364

incon. 0.024± 0.040 0.003± 0.002

Table 1 summarises the results. Firstly, looking at the results for using
direct regression to learning the three policies, we see uniformly poor perfor-
mance both in terms of the normalised UPE and CPE. Because the direct
approach to learning is naive to the effect of the constraints, model averaging
results. This causes the predictions for each of the three polices to be poor,
even under the training constraints.

In contrast to this, looking at the results for the potential-based policies,
the alignment approach performs approximately an order of magnitude better
both in terms of the UPE and the CPE. Comparing errors for the quadratic
and sinusoidal potential-based policies we also see that the latter, more com-
plex potential (with multiple sinks) is more difficult to learn with a data set of
this size. However, as expected, the alignment approach performs very badly
when training on the limit cycle data: The potential-based representation is
not appropriate in this case since the policy is rotational.

Looking at the errors for the inconsistency approach, however, we see im-
proved performance on all three policies, including the rotational limit cycle
data. Comparing results for the three policies we see that the sinusoidal
potential-based policy and the limit-cycle policy are more difficult to learn
due to their increased complexity. However, despite this, the increase in error
for this approach is still relatively small.

Finally, in all of the results, the nCPE is always much lower than the
nUPE, which follows naturally from the fact that the projection induced by
the constraints projects out some of the error in the models, as discussed
in Sec. 4. Still, the results show that with a reasonable amount of data, the
unconstrained policy can be modelled with remarkable accuracy using the
two constraint-consistent approaches.
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Fig. 7 Learning performance on the quadratic potential (31) with varying data
set sizes for the alignment approach (left) and the inconsistency approach (right).
Normalised CPE and UPE versus data set size as a percentage of the full K = 40
trajectories of length N =40 are shown. For the alignment approach the normalised
error in the potential is also plotted.
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Fig. 8 Learning performance on the quadratic potential (31) with varying noise
levels for the alignment approach (left) and the inconsistency approach (right).
Normalised CPE and UPE versus noise in the observed (xn,un) as a percentage
of the variance of the data are shown. For the alignment approach the normalised
error in the potential is also plotted.

As a further test, we can also look at the performance in terms of the
amount of data required to find a good approximation. In Fig. 7 we show
the error curves for the two constraint-consistent learning approaches when
learning on different-sized subsets of the data from the quadratic potential
(31). As can be seen (ref. Fig. 7), the performance of the two approaches im-
proves with increasing quantities of data in terms of UPE and CPE, with the
inconsistency approach generally achieving a lower error than the alignment
approach for this data set.

Finally, in Fig. 8 we characterise the noise robustness of the two constraint-
consistent approaches when learning, again using the same data, but this time
with the the observed states xn and actions un contaminated with Gaussian
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Fig. 9 Example constrained trajectory used as training data in the ball-reaching
experiment. Starting with hands at the sides, the demonstrator robot reaches be-
tween the barriers to get the ball. Note that the width of the gap in the barriers
was randomly altered for each trajectory recorded.

noise, the scale of which was varied to match up to 20% of the scale of the
data. We see that the performance of the two approaches approximately fol-
lows the noise levels in the data (ref. Fig. 8), although there is slightly more
variance in the performance of the alignment approach. This latter effect can
be explained by the fact that the alignment uses the nearest neighbour tra-
jectories for the alignment, the measurement of which becomes increasingly
unreliable as the noise in xn increases. However, despite this, the performance
of the two approaches can be seen to decline smoothly as the amount of noise
increases.

5.2 Reaching for a Ball

In this section we characterise (i) how well the two approaches scale to more
complex, realistic constraints and policies and (ii) how well the policies learnt
with these approaches generalise over different constraints. For this, we use
data from an example scenario, in which a set of observations of a demon-
strator performing the task of reaching for a ball on a table are given, and
the student is expected to learn a policy to enable it to reproduce this task
[22, 19]. The learning problem is complicated however, by the presence of dif-
ferent obstacles on the table for each of the example trajectories, constraining
the possible motions of the hands. The goal is to uncover a policy that accu-
rately predicts the demonstrator’s (unconstrained) behaviour and generalises
to predict the behaviour under novel constraints.

The example scenario was implemented [22, 19] using the whole body
motion (WBM) controller of the 27-DOF humanoid robot ASIMO (for details
on the controller see [15]). For this, data was recorded from a ‘demonstrator’
robot that followed a policy defined by an inverted Gaussian potential

π(x) = −∇xφ(x); φ(x) = α
(

1− e‖x−xc‖2/2σ2
)

, (34)
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where x ∈ IR6 corresponds to the Cartesian position of the two hands (here-
after, the ‘task space’) and the actions u = ẋ = π(x) correspond to the hand
velocities. We chose σ2 = 2, α = 0.25 and the target point xc ∈ IR6 to cor-
respond to a reaching position, with the two hands positioned on either side
of the ball. Following the policy (34) with this set of parameters, the demon-
strator was able to reach the ball under each of the constraints considered
in this experiment (see below). Inverse kinematics via the WBM controller
was used to map the desired task space policy motion into the appropriate
joint-space velocity commands for sending to the robot.

The demonstrator’s movements were constrained by the presence of a bar-
rier on the table with a gap in it, placed so that the demonstrator robot
had to reach through the gap to get the ball (ref. Fig. 9). The barriers acted
as inequality constraints on each of the hands so that motion in the direc-
tion normal to the barrier surface was prevented if a hand came too close.
Specifically, the constraints took the form

A(x, t) =

⎛

⎜
⎜
⎝

A[1,1] 0
A[1,2] 0

0 A[2,1]

0 A[2,2]

⎞

⎟
⎟
⎠

(35)

where

A[i,j](x, t) = n̂T
j ; di,j ≤ dmin and ûT

[i]n̂j > 0
A[i,j](x, t) = 0 ; otherwise.

Here, di,j is the distance of the ith hand (where i ∈ {1, 2}, i.e. left and right
hands respectively) to the closest point on the jth barrier (where j ∈ {1, 2},
i.e. left and right barriers respectively), n̂j ∈ IR3 is the normal to the barrier
surface6 at that point and û[i] ∈ IR3 is the normalised command for the ith
hand (i.e. the ith 3-vector block of the command vector u corresponding to
that hand; for example for the right hand (i = 2) this was u[2] ≡ (u4, u5, u6)T

with û[2] = u[2]/‖u[2]‖). Here, the full constraint matrix A(x, t) ∈ IR4×6 was
constructed by assigning 3-vectors to the appropriate matrix blocks A[i,j],
according to the system state. For example, if the left hand (i = 1) ap-
proached the left barrier (j = 1) to a distance of d1,1 < dmin, and if the
next commanded movement would bring the hand toward that barrier (i.e.
ûT

[1]n̂1 > 0), then the elements of the constraint matrix corresponding to that
hand/barrier pair were updated (in this example the first row of the matrix
would be updated, A1,: = (n̂T

1 , 0, 0, 0), constraining the left hand). Note that
under this setup the constraints are highly nonlinear (due to the complex
dependence on state) and have discontinuously switching dimensionality (i.e.

6 Note that in order to ensure smooth, natural-looking trajectories the barriers
were modelled as planes with smooth ‘swept-sphere’ edges, similar to those de-
scribed in [51].
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the rank of A(x, t) switches) when either of the hands approaches or recedes
from the barrier.

Data was collected by recording K = 100 trajectories of length 2s at 50
Hz, (i.e. N = 100 points per trajectory) from the demonstrator following
the policy (34) under the constraints (35). Start states were sampled from
a Gaussian distribution over joint configurations q∼N(q0, 0.1I) (where q0

corresponds to the default standing position) and using forward kinematics
to calculate the corresponding hand positions. The joint vector q was clipped
where necessary to avoid joint limits and self collisions, and to ensure the start
postures looked natural. For each trajectory the constraints were varied by
randomly changing the width of the gap in the barriers. The gap widths were
sampled from a Gaussian distribution dgap ∼ N(μgap, σgap) where μgap =
0.25m, σgap = 0.1m and the diameter of the ball was 0.15m. The hand-barrier
distance at which the constraints came into force was fixed at dmin = 0.05m.
Fig. 9 shows an example trajectory under this set-up.

We used the three algorithms (the direct, alignment and inconsistency ap-
proaches) to perform learning on 50 such data sets using 150 Gaussian RBF
models, with centres placed using k-means. For comparison, we repeated the
experiment on the same data with the same model (i.e. same number and
placement of centres) with the three approaches. Please note that (similar
to the experiments in the preceding section) the model for the direct and
inconsistency approaches corresponded to the π̃ : x → u ∈ IR6 �→ IR6

mapping, whereas for the alignment approach it represented the mapping
π̃ : x→ φ ∈ IR6 �→ IR.

To assess the performance for the methods we evaluated the errors in
predicting the policy subject to (i) the training data constraints (nCPE), (ii)
no constraints (nUPE), and (iii) a novel constraint, unseen in the training
data, on a set of test data. For the latter, a barrier was placed centrally
between the robot and the ball, so that the robot had to reach around the
barrier to reach the ball (see Fig. 11). Specifically, the constraint took a form
similar to (35) but this time with only one barrier present (i.e. j ≡ 1), so
that the constraint matrix A(x, t) ∈ IR2×6 had attained a maximum rank of
k = 2 when both hands approached the barrier. The width of the new barrier
was fixed at 0.5m.

Comparing the numerical errors (ref. Table 2) for the two constraint-
consistent learning methods (i.e. the alignment and inconsistency approaches)
with those of the direct approach we see that the former perform several or-
ders of magnitude better under each of the constraint settings considered,
with the inconsistency approach performing marginally better. However, the
real difference between the constraint-consistent learning methods and the
direct approach is best highlighted if we compare trajectories generated by
the policies under different constraint settings.

Firstly, Fig. 10 shows example trajectories for the unconstrained reach-
ing movements produced by the demonstrator (‘expert’), and the policies
learnt by (i) the direct approach, (ii) the alignment approach, and (iii) the
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Fig. 10 Unconstrained reaching movement for the policies learnt with (a) direct
regression (green) (b) the alignment approach (red), and (c) the inconsistency ap-
proach (blue). In each figure the demonstrator’s movement is overlaid in black.

Table 2 Normalised errors for policies learnt by the three methods, evaluated on
(i) training constraints, (ii) no constraints, and (iii) an unseen test constraint on
the ball-reaching task. Values are mean±s.d. over 50 data sets.

Constraint Direct Align. Incon.

Training 0.0531 ± 0.0068 0.0092 ± 0.0021 0.0052 ± 0.0022

Unseen Barrier 0.4630 ± 0.0350 0.0101 ± 0.0023 0.0052 ± 0.0022

Unconstrained 0.9216 ± 0.0625 0.0106 ± 0.0024 0.0052 ± 0.0022

inconsistency approach. In the former the hands always take a curved path to
the ball (Fig. 10(a)), reproducing the average behaviour of the (constrained)
demonstrated trajectories. The direct approach, being naive to the effect of
the constraints is unable to extract the underlying task (policy) from the
observed paths around the obstacles. In contrast, the policies learnt with the
constraint-consistent approaches better predict the unconstrained policy, en-
abling them to take a direct route to the ball that closely matches that of
the demonstrator (Fig. 10(b),(c)).
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Secondly, Fig. 11 shows example trajectories when the policies are again
constrained. Figure 11 (top) shows the movement from the policy learnt by
the inconsistency approach under a similar constraint as in the training data.
Under this constraint the policies learnt by the three methods all take a
similar path to that of the demonstrator: The hands move in first, then
forward to the ball. Note that under this constraint the movement of the
directly learnt policy is noticeably slower due to averaging of the constrained
observations.

Finally, under the unseen barrier constraint, there is a marked difference in
behaviour. Under this constraint, the demonstrator (still following the policy
(34)) reaches around the barrier to get the ball. This behaviour is reproduced
by the policy learnt with the two constraint-consistent approaches (Fig. 11,
middle row, shows the movement for the policy learnt by the inconsistency
approach). In contrast however, the directly learnt policy does not gener-
alise to the new constraint and gets trapped behind the barrier, eventually
dislodging it7 (Fig. 11, bottom).

5.3 Washing a Car

In this section we discuss an application of constraint-consistent learning to
the the problem of learning to wash a car from human demonstration data
[22]. This is an example of a task which can be intuitively described in terms of
a simple movement policy (‘wiping’) subject to contact constraints that vary
depending on the different surfaces of the car to be wiped. Due to the different
shapes and orientations of these surfaces, complex, non-linear constraints are
imposed on the motion. While the resultant trajectories remain periodic,
they are perturbed in different ways by the constraints. The goal of this
experiment then, was to learn a policy that captured the periodic nature of
the movements, while eliminating artifacts induced by the constraints.

In [22] an experiment was performed to evaluate the performance of
constraint-consistent learning on data from human demonstrations of wiping.
In this experiment a set of demonstrations of wiping on different surfaces (i.e.
on surfaces with different tilts and orientations, see Fig. 12) were presented
to the ASIMO humanoid robot by a human demonstrator. The robot used
on-board stereo cameras to track the three-dimensional coordinates of the
sponge (for details on the ASIMO vision system please see [5]) and the resul-
tant data was used for constraint-consistent learning. The resultant data was
used to train a policy model representing the IR3 �→ IR3 mapping from hand
7 Note that the collision of the hands with the barrier in fact violates the constraint.

The reason for this is that on the real robot, under this constraint, the directly
learnt policy forces the robot into a self-collision (of the robot’s arms with the
torso). To prevent damage to the robot, an on-board safety mechanism then kicks
in and pushes the hands away from the body, causing collision with the barrier.
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Fig. 11 Reaching movements produced by the learnt policies under different con-
straints. Shown are trajectories from (i) the policy learnt by the inconsistency ap-
proach under a similar constraint as in the training data (top row); (ii) the same
policy under a new, unseen barrier constraint (middle row), and; (iii) the policy
learnt with direct regression under the new constraint.

Fig. 12 Human wiping demonstrations on surfaces of varying tilt and rotations.
The ASIMO stereo vision system was used to track the 3-D coordinates of the
sponge (coloured rectangles show the estimated position). Tilts of ±16o and +27o

about the x-axis are shown.

(sponge) positions to velocities, consisting of a set of 300 Gaussian RBFs
with centres placed by k-means.

Since the ground truth (i.e. the true unconstrained policy and the ex-
act constraints in force) is not known for the human data, performance was
evaluated on a behavioural level. For this, the policies were implemented
on the ASIMO humanoid robot and an approximation of the human’s con-
straints based on an analysis of the hand-sponge system (for full details on the
constraints used to approximate the human constraints, please refer to [22])
were applied to the robot during movement reproduction. Under this set-up,
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Fig. 13 Learning from human wiping demonstrations. Left: Trajectories of the
sponge when wiping on the surface when flat (black), tilted +16◦ and +27◦ about
the x-axis (red), −16◦ and −27◦ about the x-axis (blue), and ±16◦ about the y-axis
(grey). Centre and right: Reproduced trajectories using the policies (black arrows)
learnt with the inconsistency and direct approaches, respectively. In each case the
same example trajectory is highlighted (thick black). The top and front views are
shown (top and bottom rows).

constraint-consistent learning with the inconsistency approach was compared
to that of direct regression (since in this case the task is clearly periodic,
the inconsistency approach is the appropriate choice of constraint-consistent
method.)

The results are shown in Fig. 13, where we show the demonstrated trajec-
tories (left), those produced by the constraint-consistent policy (centre) and
those learnt by direct regression (right) under the different constraints (tilts
of the surface). Looking at the learnt policies, we see that the constraint-
consistent approach learns a smooth policy and the trajectories under each
of the constraints are smooth periodic movements, similar to those of the
human. On the ASIMO robot these produced smooth, natural wiping move-
ments (see Fig. 14).

Fig. 14 Reproduced movements on the ASIMO robot for the surface tilted 0◦,
+16◦, −27◦ about the x-axis, and +16◦ about the y-axis.
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The policy learnt with direct regression also captured the periodicity to
some extent. However, it appears highly irregular in several regions and the
trajectories are unstable, with some spiralling in to the centre, and others
diverging to other parts of the state space. By attempting to learn all of
the artifacts induced by the constraints, the direct approach, naive to the
constraints, learns an unstable policy that cannot be safely used for movement
reproduction on the robot.

6 Discussion

In this chapter, we reviewed recent work in the area of policy-based learning of
demonstrated movements, where those movements are subject to variable, dy-
namic, non-linear constraints. We discussed the problems encountered when
learning in this setting and showed, through analysis and experimentation,
how approaches based on standard supervised learning techniques come into
difficulties when presented with data containing variable constraints. We then
went on to describe two new learning methods for learning in a constraint-
consistent manner. The first, earlier approach solved the learning problem
for constrained potential-based policies. The second approach, based on a
modification in the calculation of an empirical risk, was shown to be effective
for arbitrary policies, including those with a rotational component. It was
seen that both methods were capable of recovering the unconstrained pol-
icy from arbitrarily constrained observations, without the need for explicit
knowledge of the constraints. This allows us to learn policies that generalise
over constraints, including novel constraints, unseen in the training data.
Furthermore, the comparative performance of the methods was reviewed for
learning policies on systems of varying size and complexity.

How far do the policies generalise?

The results presented here and in [22, 19] clearly show the efficacy of learning
from constrained demonstrations using the two approaches, and then apply-
ing the resultant policies to new constraint scenarios. However, in terms of
lessons learnt from these studies there are also some bigger issues raised. One
such issue is the question of when, faced with a new constraint, the learnt
policy will fail at the desired task. For example, in the ball grasping experi-
ment, under certain configurations of the constraints (e.g. if the barriers were
placed exactly on either side of the ball, or a much larger barrier was placed
between the robot and the ball) the learnt policy would fail at the task of
grasping. This may be due to several factors, for instance if the control vector
happens to be orthogonal to the nullspace of the constraint, deadlock would
occur (this is similar to the problem of local minima in many gradient-based
controllers, e.g. see [11]). While problems such as these are in general unavoid-
able when dealing with constrained systems, one of the nice properties of the
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constraint-consistent approaches is that they learn policies that are successful
under the same constraints that the demonstrator is successful. So, although
the learnt policy for the grasping task is not guaranteed to successfully get
the ball in the presence of any arbitrary barrier (constraint), it successfully
reaches the ball whenever (i.e. with whatever barriers) the demonstrator does.
In some sense we can say the robustness of the demonstrator’s policy against
different constraints was transferred to the learner.

Adaptation to constraints: Re-planning vs. re-using policies?

A second, related issue concerns the role of adaptation of policies in response
to constraints. Clearly there are circumstances in which it is desirable to
re-plan the policy to cope with certain sets of constraints, especially if the
learner’s existing policy (here, learnt from demonstration) fails under those
constraints (and in some cases the learner may even take advantage of certain
types of constraint to improve performance). However, here a balance must
be struck. On the one hand re-planning the policy will likely improve perfor-
mance under any given set of constraints; but on the other hand the adapted
policy will also become more specialised to that particular set of constraints
(and may even lead to degraded performance for other constraints). In other
words we lose the generalisation to other constraints that here we attempt
to extract from the demonstrator. Furthermore, due to the inherent uncer-
tainty in the constraints in most real world problems, it may not be feasible
to explicitly incorporate all of the constraints when re-planning. For example
consider planning a policy for walking on uneven terrain; to explicitly incor-
porate the constraints involved here would require a detailed model of the
terrain, which is rarely available. The constraint-consistent approaches, how-
ever, allow us to sidestep this, providing a shortcut to uncovering the policy
used by the demonstrator8 (who, if observed to use the same policy under a
number of constraint settings, presumably finds it sufficiently successful for
those and similar settings). Therefore in this sense, with these approaches,
we may now envisage a move away from the traditional approach of plan-
ning explicitly with respect to all possible constraints that is typically only
possible in highly controlled, structured environments.
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Motor Learning at Intermediate Reynolds
Number: Experiments with Policy Gradient on
the Flapping Flight of a Rigid Wing

John W. Roberts, Lionel Moret, Jun Zhang, and Russ Tedrake

Abstract. This work describes the development of a model-free reinforcement
learning-based control methodology for the heaving plate, a laboratory experimental
fluid system that serves as a model of flapping flight. Through an optimized policy
gradient algorithm, we were able to demonstrate rapid convergence (requiring less
than 10 minutes of experiments) to a stroke form which maximized the propulsive
efficiency of this very complicated fluid-dynamical system. This success was due
in part to an improved sampling distribution and carefully selected policy parame-
terization, both motivated by a formal analysis of the signal-to-noise ratio of policy
gradient algorithms. The resulting optimal policy provides insight into the behavior
of the fluid system, and the effectiveness of the learning strategy suggests a number
of exciting opportunities for machine learning control of fluid dynamics.

1 Introduction

The possible applications of robots that swim and fly are myriad, and include ag-
ile UAVs, high-maneuverability AUVs and biomimetic craft such as ornithopters
and robotic fish. However, controlling robots whose behavior is heavily dependent
upon their interaction with a fluid can be particularly challenging. Whereas in many
regimes robots are able to make use of either accurate dynamical models or easy-
to-stabilize dynamics, in the case of flapping and swimming robots neither of these
conditions apply. The models available to swimming and flying robots tend to be
very limited in their region of validity (such as quasi-steady models of fixed-wing
aircraft), very expensive to evaluate (such as direct numerical simulation of the gov-
erning equations) or almost completely unavailable (as is the case with interactions
between a complex flow and a compliant body).

Here we investigate the problem of designing a controller for a specific experi-
mental system: the heaving plate (see Figure 1). This setup is a model of forward
flapping flight developed by the Applied Math Lab (AML) of the Courant Institute
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Fig. 1 (A) Schematic of experimental flapping system. The white arrow shows the driven
vertical motion determined by the controller, while the black arrow shows the passive rota-
tional motion resulting from the fluid forces. Figure from (Vandenberghe et al., 2006), with
slight modifications. (B) Original experimental flapping system. The wing shown is an earlier
design used to study the fluid system, while the wing used for this work was a simple rigid
rectangle.

of Mathematical Sciences at New York University (Vandenberghe et al., 2004; Van-
denberghe et al., 2006). This system consists of a symmetric rigid horizontal plate
that is driven up and down along its vertical axis and is free to rotate in the horizontal
plane. Previous work demonstrated that driving the vertical motion with a sinusoidal
waveform caused the system to begin rotating in a stable “forward flight” (Vanden-
berghe et al., 2004). Here we will investigate a richer class of waveforms in an
attempt to optimize the efficiency of that forward flight. This system is an excellent
candidate for control experiments as it is perhaps the simplest experimental model
of flapping flight, is experimentally convenient for learning experiments1, and cap-
tures the essential qualities of the rich fluid dynamics in fluid-body interactions at
intermediate Reynolds numbers. While accurate Navier-Stokes simulations of this
system do exist for the case of a rigid wing (Alben & Shelley, 2005), they require
a dramatic amount of computation2. As such, model-based design of an effective
controller for this system is a daunting task.

Model-free reinforcement learning algorithms, however, offer an avenue by
which controllers can be designed for this system despite the paucity of the avail-
able models by evaluating the effectiveness of a controller directly on the phys-
ical system (Peters et al., 2003; Tedrake et al., 2004). In fact, learning through

1 Particularly when compared to a flapping machine that falls out of the sky repeatedly
during control design experiments.

2 At the time, this simulation required approximately 36 hours to simulate 30 flaps on spe-
cialized hardware (Shelley, 2007).
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experimentally collected data can be far more efficient than learning via simulation
in these systems, as high-fidelity simulations can take orders of magnitude longer
than an experiment to obtain the same data. One of the limitations of this experimen-
tal
approach, however, is the potential difficulty in directly measuring the state of
the fluid, which, naively, is infinite-dimensional (a continuum model). Therefore,
the problem is best formulated as a partially-observable Markov decision process
(POMDP) (Kaelbling et al., 1998). In the experiment described here, we solve the
POMDP with a pure policy gradient approach, choosing not to attempt to approxi-
mate a value function due to our poor understanding of even the dimensionality of
the fluid state.

The difficulty in applying policy gradient techniques to physical systems stems
from the fact that model-free algorithms often suffer from high variance and rel-
atively slow convergence rates (Greensmith et al., 2004), resulting in the need for
many evaluations. As the same systems on which one wishes to use these algorithms
tend to have a high cost of policy evaluation, much work has been done on maximiz-
ing the policy improvement from any individual evaluation (Meuleau et al., 2000;
Williams et al., 2006). Techniques such as Natural Gradient (Amari, 1998; Peters
et al., 2003) and GPOMDP (Baxter & Bartlett, 2001) have become popular through
their ability to converge on locally optimal policies using fewer policy evaluations.

During our experiments with policy gradient algorithms on this system, we devel-
oped a number of optimizations to the vanilla policy gradient algorithm which pro-
vided significant benefits to learning performance. The most significant of these is
the use of non-Gaussian sampling distributions on the parameters, a technique which
is appropriate for systems with parameter-independent additive noise (a common
model for sensor-driven observation noise). We make these observations concrete by
formulating a signal-to-noise ratio (SNR) analysis of the policy gradient algorithms,
and demonstrate that our modified sampling distributions improve the SNR.

With careful experiments and improvements to the policy gradient algorithms, we
were able to reliably optimize the stroke form (i.e., the periodic vertical trajectory
of the plate through time) of the heaving plate for propulsive efficiency to the same
optima from different initial conditions (in policy space) in less than ten minutes
of trial-and-error experiments on the system. The remainder of this chapter details
these experiments and the theory behind them.

2 Experimental Setup

The heaving plate is an ideal physical system to use as a testbed for developing
control methodologies for the broader class of problems involving fluid-robot in-
teractions. The system consists of a symmetric rigid titanium plate pinned in the
horizontal plane. It is free to rotate about the point at which it is pinned with very
little non-fluid related friction. The control input is the vertical position of the plate
z (note that the input is the kinematic position, not the force on the plate). This ver-
tical driven flapping motion is coupled through the fluid with the passive angular
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Fig. 2 Comparison of fluid and bearing friction for large rigid wing. The foil (not undergoing
a heaving motion) was spun by hand in both air and water, with the angular velocity measured
as a function of time. Five curves for both cases were truncated to begin at the same speed
then averaged and filtered with a zero-phase low-pass filter to generate these plots. The quick
deceleration of the wing in water as compared to air indicates that fluid viscous losses are
much greater than bearing losses. At the speeds achieved at the convergence of the learning,
the frictional forces in water were over six times that seen in air.

rotation such that once the system begins to flap, fluid forces cause it to spin. To
ensure that the rotational dynamics are dominated by fluid forces, and not friction
due to the slip ring and bearings used to mount the wing, the decay in angular speed
was measured for both a submerged and non-submerged wing. Figure 2 shows the
result of this experiment, demonstrating that the fluid forces are far more significant
than the bearing friction in the regime of operation.

The only measurements taken were the vertical position of the plate (z) and angu-
lar position of the plate (x) by optical encoders and the axial force applied to the plate
(Fz), obtained by an analog tension-compression load cell. While these measure-
ments were sufficient for formulating interesting optimization problems, note that
the fluid was never measured directly. Indeed, the hidden state of the fluid, including
highly transient dynamic events such as the vortex pairs created on every flapping
cycle, provide the primary mechanism of thrust generation in this regime (Vanden-
berghe et al., 2004). Sensing the state of the flow is possible using local flow sensors
or even real-time far-field optical flow measurement (Bennis et al., 2008), but ex-
perimentally more complex. However, this work demonstrates such sensing is not
necessary for the purpose of learning to move effectively in the fluid, despite the
critical role the fluid state plays in the relevant dynamics.

The setup was originally used to study the fluid dynamics of forward flapping
flight, and possess a Reynolds number of approximately 16,000, putting it in the
same regime as dragonflies and other small biological flapping fliers3. The plate
is unalloyed titanium (chosen for its corrosion resistance), 72 cm long, 5 cm wide

3 This Reynolds number is determined using the forward flapping motion of the wing, rather
than the vertical heaving motion. The vertical heaving motion possesses a Re of approxi-
mately 3,000.
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and .3175 cm thick. The vertical motion was produced by a scotch yoke, which
converted the rotational motion of the motor into the desired linear driven motion
of the plate. Due to the high gear ratio between the motor and the scotch yoke, the
system was not back-drivable, and thus the plate was controlled be specifying a de-
sired kinematic trajectory which was followed closely using tuned high-gain linear
feedback. While the trajectories were not followed perfectly (e.g., there is some lag
in tracking the more violent motions), the errors between specified trajectory and
followed trajectory were small (on the order of 5% of the waveform’s amplitude).

3 Optimal Control Formulation

We formulate the goal of control as maximizing the propulsive efficiency of forward
flight by altering the plate’s stroke form. We attempt to maximize this efficiency
within the class of strokeforms that can be described by a given parameterization. In
this section we discuss both the reward function used to measure performance, and
the parameterization used to represent policies (i.e., stroke forms).

3.1 Reward Function

We desire our reward function to capture the efficiency of the forward motion pro-
duced by the stroke form. To this end, we define the (mechanical) cost-of-transport
over one period T as:

cmt =
∫

T |Fz(t)ż(t)|dt
mg

∫

T ẋ(t)dt
. (1)

where x is the angular position, z is the vertical position, Fz is the vertical force, m is
the mass of the body and g is gravitational acceleration. The numerator of this quan-
tity is the energy used, while the denominator is the weight times distance traveled.
It was computed on our system experimentally by filtering and integrating the force
measured by the load cell and dividing by the measured angular displacement, all
over one period. This expression is the standard means of measuring transport cost
for walking and running creatures (Collins et al., 2005), and thus seems a sensible
place to start when measuring the performance of a swimming system.

This cost has the advantage of being dimensionless, and thus invariant to the
units used. The non-dimensionalization is achieved by dividing by a simple scalar
(in this case mg), and thus does not change as the policy changes. While alternatives
to the mass such as using the difference in mass between the plate and the displaced
fluid were debated (to take into account the importance of the fluid to the motion
of the plate), changes such as these would affect the magnitude of the cost, but
not the optima and learning behavior, as these are invariant to a scaling. Therefore,
implementing this change would not effect the found optimal policy.

Another possibility would be non-dimensionalizing by dividing by expected en-
ergy to travel through the fluid (as opposed to weight times distance), but this would
depend upon the speed of travel as drag is velocity dependent, and thus would have
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a more complicated form. While this could obviously still be implemented, and
new behavior and optima may be found, rewarding very fast flapping gaits strongly
(as this would tend to do) was undesirable simply because the experimental setup
struggled mechanically with the violent motions found when attempting to max-
imize speed. The cost function selected often produced relatively gentle motions,
and as such put less strain on the setup.

Finally, note that our learning algorithm attempts to maximize the cost of trans-
port’s inverse (turning it from a cost into a reward), which is equivalent to minimiz-
ing the energy cost of traveling a given distance. This was done for purely practical
considerations, as occasionally when very poor policies were tried the system would
not move significantly despite flapping, which resulted in an infinite or near-infinite
cost of transport. The inverse, however, remained well-behaved.

3.2 Policy Parameterization

The parameterization chosen took the following form: the vertical heaving motion
of the wing was represented by a 13-point periodic cubic spline with fixed amplitude
and frequency, giving height z as a function of time t (see Figure 3). There were five
independent parameters, as the half-strokes up and down were constrained to be
symmetric about the t axis (i.e., the first, seventh and last points were fixed at zero,
while points 2 and 8, 3 and 9 etc. were set to such that they were equal in absolute
value but opposite in sign which were determined by the control parameters).

Fig. 3 A schematic of the parameterization of policies used in this work. Note the symmetry
of the up and down strokes, and the fact that five independent parameters are used to encode
the shape of the waveform.

This parameterization represented an interesting class of waveforms, had a rela-
tively small number of parameters, and was both smooth and periodic. We will also
see that many of the properties are desirable when viewed through the SNR (these
advantages are discussed in greater detail in Section 6.1).

4 The Learning Algorithm

In light of the challenges faced by learning on a system with such dynamic com-
plexity and partial observability, we made use of the weight-perturbation (WP)
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algorithm: a model-free policy gradient method that has been shown empirically
to be well-suited to these sorts of problems due to its robustness to noise and insen-
sitivity to the complexity of the system dynamics.

4.1 The Weight Perturbation Update

Consider minimizing a scalar function J(w) with respect to the parameters w (note
that it is possible that J(w) is a long-term cost and results from running a system
with the parameters w until conclusion). The weight perturbation algorithm (Jabri
& Flower, 1992) performs this minimization with the update:

Δw =−η (J(w+ z)− J(w))z, (2)

where the components of the “perturbation”, z, are drawn independently from a
mean-zero distribution, and η is a positive scalar controlling the magnitude of the
update (the “learning rate”). Performing a first-order Taylor expansion of J(w + z)
yields:

Δw =−η

(

J(w)+∑
i

∂J
∂w i

zi− J(w)

)

z =−η ∑
i

∂J
∂w i

zi · z. (3)

In expectation, this becomes the gradient times a (diagonal) covariance matrix, and
reduces to

E[Δw] =−ησ2 ∂J
∂w

, (4)

an unbiased estimate of the gradient, scaled by the learning rate and σ2, the variance
of the perturbation. However, this unbiasedness comes with a very high variance, as
the direction of an update is uniformly distributed. It is only the fact that updates
near the direction of the true gradient have a larger magnitude than do those nearly
perpendicular to the gradient that allows for the true gradient to be achieved in
expectation. Note also that all samples parallel to the gradient are equally useful,
whether they be in the same or opposite direction, as the sign of the change in cost
does not affect the resulting update.

The WP algorithm is one of the simplest examples of a policy gradient rein-
forcement learning algorithm, and in the special case when z is drawn from a
Gaussian distribution, weight perturbation can be interpreted as a REINFORCE
update (Williams, 1992).

4.2 The Shell Distribution

Rather than the Gaussian noise which is most commonly used for sampling, in our
work we used a distribution in which z (the perturbation) is uniformly distributed in
direction, but always has a fixed magnitude. We call this the shell distribution. This
style of sampling was originally motivated by the intuitive realization that when a
Gaussian distribution produced a small noise magnitude, the inherent noise in the



300 J.W. Roberts et al.

system effectively swamped out the change in cost due to the policy perturbation,
preventing any useful update from taking place. When the SNR was studied in this
domain (noisy policy evaluations and possibly poor baselines), it was found to sup-
port these conclusions (as discussed in Section 5.4). For these reasons, the shell
distribution was used throughout this work, and as Section 5.5 demonstrates, tangi-
ble benefits were obtained.

5 Signal-to-Noise Ratio Analysis

Our experiments with sampling distributions quickly revealed that significant per-
formance benefits could be realized through a better understanding of the effect
of sampling distributions and measurement noise on learning performance. In this
section we formulate a signal-to-noise ration (SNR) analysis of the policy gradient
algorithms. This analysis formalized a number of our empirical observations about
WP’s performance, and gave insight in several improvements that offered real ben-
efits to the speed of convergence.

5.1 Definition of the Signal-to-Noise Ratio

The SNR is the expected power of the signal (update in the direction of the true
gradient) divided by the expected power of the noise (update perpendicular to the
true gradient). Taking care to ensure that the magnitude of the true gradient does not
effect the SNR, we have:

SNR =
E

[

ΔwT
‖ Δw‖

]

E
[

ΔwT
⊥Δw⊥

] , (5)

Δw‖ =
(

ΔwT Jw

‖Jw‖
)

Jw

‖Jw‖ , Δw⊥ = Δw−w‖, (6)

and using Jw(w0) = ∂J(w)
∂w

∣
∣
∣
(w=w0)

for convenience.

Intuitively, this expression measures how large a proportion of the update is “use-
ful”. If the update is purely in the direction of the gradient the SNR would be infinite,
while if the update moved perpendicular to the true gradient, it would be zero. As
such, all else being equal, a higher SNR should generally perform as well or better
than a lower SNR, and result in less violent swings in cost and policy for the same
improvement in performance. For a more in depth study of the SNR’s relationship
to learning performance, see (Roberts & Tedrake, 2009).

5.2 Weight Perturbation with Gaussian Distributions

Evaluating the SNR for the WP update in Equation 2 with a deterministic J(w) and
z drawn from a Gaussian distribution yields a surprisingly simple result. If one first
considers the numerator:
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E
[

ΔwT
‖ Δw‖

]

= E

[

η2

‖Jw‖4

(

∑
i, j

JwiJw j ziz j

)

Jw
T ·

(

∑
k,p

Jwk Jwpzkzp

)

Jw

]

= E

[

η2

‖Jw‖2 ∑
i, j,k,p

JwiJw j Jwk Jwpziz jzkzp

]

= Q, (7)

where we have named this term Q for convenience as it occurs several times in the
expansion of the SNR. We now expand the denominator as follows:

E
[

ΔwT
⊥Δw⊥

]

= E
[

ΔwT Δw−2ΔwT
‖ (Δw‖+Δw⊥)+ΔwT

‖ Δw‖
]

= E
[

ΔwT Δw
]

−2Q+Q

(8)
Substituting Equation (2) into Equation (8) and simplifying results in:

E
[

ΔwT
⊥Δw⊥

]

=
η2

‖Jw‖2 E

[

∑
i, j,k

JwiJw j ziz jz
2
k

]

−Q. (9)

We now assume that each component zi is drawn from a Gaussian distribution with
variance σ2. Taking the expected value, it may be further simplified to:

Q =
η2

‖Jw‖4

(

3σ4 ∑
i

Jwi
4 + 3σ4 ∑

i

Jwi
2 ∑

j �=i

Jw j
2

)

=
3σ4

‖Jw‖4 ∑
i, j

Jwi
2Jw j

2 = 3σ4,

(10)

E
[

ΔwT
⊥Δw⊥

]

=
η2σ4

‖Jw‖2

(

2∑
i

Jwi
2 +∑

i, j
Jwi

2

)

−Q = σ4(2+N)−3σ4 = σ4(N−1),

(11)
where N is the number of parameters. Canceling σ results in:

SNR =
3

N−1
. (12)

Thus, for small noises and constant σ the SNR and the parameter number have a
simple inverse relationship. This is a particularly concise model for performance
scaling in PG algorithms.

5.3 SNR with Parameter-Independent Additive Noise

In many real world systems, the evaluation of the cost J(w) is not deterministic,
a property which can significantly affect learning performance. In this section we
investigate how additive noise in the function evaluation affects the analytical ex-
pression for the SNR. We demonstrate that for very high noise WP begins to behave
like a random walk, and we find in the SNR the motivation for the shell distribution;
an improvement in the WP algorithm that will be examined in Section 5.4.
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Consider modifying the update seen in Equation (2) to allow for a parameter-
independent additive noise term v and a more general baseline b(w), and again per-
form the Taylor expansion. Writing the update with these terms gives:

Δw =−η

(

J(w)+∑
i

Jwizi−b(w)+ v

)

z =−η

(

∑
i

Jwizi + ξ (w)

)

z. (13)

where we have combined the terms J(w), b(w) and v into a single random variable
ξ (w). The new variable ξ (w) has two important properties: its mean can be con-
trolled through the value of b(w), and its distribution is independent of parameters
w, thus ξ (w) is independent of all the zi.

We now essentially repeat the calculation seen in Section 5.2, with the small
modification of including the noise term. When we again assume independent zi,
each drawn from identical Gaussian distributions with standard deviation σ , we
obtain the expression:

SNR =
φ + 3

(N−1)(φ + 1)
, φ =

(J(w)−b(w))2 + σ2
v

σ2‖Jw‖2 (14)

where σv is the standard deviation of the noise v and we have termed the error
component φ . This expression depends upon the fact that the noise v is mean-zero
and independent of the parameters, although the assumption that v is mean-zero is
not limiting. It is clear that in the limit of small φ the expression reduces to that seen
in Equation (12), while in the limit of very large φ it becomes the expression for the
SNR of a random walk (see (Roberts & Tedrake, 2009)). This expression makes it
clear that minimizing φ is desirable, a result that suggests two things: (1) the optimal
baseline (from the perspective of the SNR) is the value function (i.e., b∗(w) = J(w))
and (2) higher values of σ are desirable as they reduce φ by increasing the size of
its denominator. However, there is clearly a limit on the size of σ due to higher-
order terms in the Taylor expansion; very large σ will result in samples which do
not represent the local gradient. Thus, in the case of noisy measurements, there is
some optimal sampling distance that is as large as possible without resulting in poor
sampling of the local gradient. This is explored in the next section.

5.4 Non-Gaussian Distributions

The analysis in Section 5.3 suggests that for a function with noisy measurements
there is an optimal sampling distance which depends upon the local noise and gradi-
ent as well as the strength of higher-order terms in that region. For a two-dimensional
cost function that takes the form of a quadratic bowl in parameter space, Figure 4
shows the SNR’s dependence upon the radius of the shell distribution (i.e., the mag-
nitude of the sampling). For various levels of additive mean-zero noise the SNR was
computed for a distribution uniform in angle and fixed in its distance from the mean
(this distance is the “sampling magnitude”). The fact that there is a unique maximum
for each case suggests the possibility of sampling only at that maximal magnitude,



Motor Learning at Intermediate Reynolds Number 303

Fig. 4 SNR vs. update magnitude for a 2D quadratic cost function. Mean-zero measurement
noise is included with variances from 0 to .65 (the value function’s Hessian was diagonal
with all entries equal to 2). As the noise is increased, the sampling magnitude producing the
maximum SNR is larger and the SNR achieved is lower. Note that the highest SNR achieved
is for the smallest sampling magnitude with no noise where it approaches the theoretical
value (for 2D) of 3. Also note that for small sampling magnitudes and large noises the SNR
approaches the random walk value of 1/N−1 (see (Roberts & Tedrake, 2009)).

rather than over all magnitudes as is done with a Gaussian, and thus improving SNR
and performance. While determining the exact magnitude of maximum SNR may
be impractical, by choosing a distribution with uniformly distributed direction and
a constant magnitude close to this optimal value, performance can be improved.

5.5 Experimental Evaluation of Shell Distributions

To provide compelling evidence that the shell distribution could improve conver-
gence in problems of interest, the shell distribution was implemented directly on the

(a)

Fig. 5 Five averaged runs on the heaving plate using Gaussian or Shell distributions for sam-
pling. The error bars represent one standard deviation in the performance of different runs at
that trial.
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heaving plate, and the resulting learning curves were compared to those obtained
using Gaussian sampling. For the purposes of this comparison, policy evaluations
were run for long enough to reach steady state (to eliminate any issues relating to
the coupling between consecutive evaluations). As can be seen in Figure 5, the shell
distribution provided a real advantage in convergence rate on this system of inter-
est, when dealing with the full dynamical complexity of a laboratory experimental
system.

5.6 Implications for Learning at Intermediate Reynolds Numbers

The SNR demonstrates many of the properties of WP that make it so well suited
to learning on partially observable and dynamically complicated system, such as
fluid systems in the intermediate Reynolds number regime. The SNR shows that the
system’s dynamical complexity does not (locally) effect the difficulty of learning,
as the dynamics appear nowhere in the expression. Instead, learning performance is
locally effected by the number of parameters in the policy (N), the level of stochas-
ticity in policy evaluations (σv), the quality of the baseline and the steepness of local
gradients.

The SNR does not take into account the effects of higher-order behavior such as
the roughness of the value function in policy space, which is in general a function of
the system, the choice of parameterization and the choice of the cost function. These
properties can be extremely important to the performance of WP, affecting both
number and depth of local minima and the rate of learning, but are not analytically
tractable in general.

6 Learning Results

6.1 Policy Representation Viewed through SNR

Due to the importance of the policy parameterization to the performance of the
learning, it is important to pick the policy class carefully. Now armed with knowl-
edge of the SNR, some basic guidelines for choosing the parameterization, previ-
ously justified heuristically, become more precise. Finding a rich representation with
a small number of parameters can greatly improve convergence rates. Furthermore,
certain parameterizations can be found with fewer local minima and smoother gra-
dients than others, although determining these properties a priori is often imprac-
tical. A parameterization in which all parameters are reasonably well-coupled to
the cost function is beneficial, as this will result in less anisotropy in the magni-
tude of the gradients, and thus larger sampling magnitudes and greater robustness
to noise can be achieved. Prior to the periodic cubic spline, several parameteriza-
tions were tried, with all taking the form of encoding the z height of the wing
as a function of time t over one period T , with the ends of the waveform con-
strained to be periodic (i.e., the beginning and end have identical values and first
derivatives).
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Parameterizing the policy in the seemingly natural fashion of a finite Fourier
series was ruled out due to the difficulty in representing many intuitively useful
waveforms (e.g., square waves) with a reasonable number of parameters. A param-
eterization using the sum of base waveforms (i.e., a smoothed square wave, a sine
wave and a smoothed triangle wave) was used and shown to learn well, but was
deemed a too restrictive class which predetermined many features of the waveform.
Learning the base period T and the amplitude A of the waveform was also tried, and
shown to perform well without significant difficulty. However, it was discovered that
periods as long as possible and amplitudes as small as possible were selected, and
thus these extra parameters were determined to not be of interest to the learning (this
result was useful in determining how the system’s dynamics related to the reward
function, and is discussed in detail in Section 7).

6.2 Reward Function Viewed through SNR

The SNR also gives some greater insight into the formulation of the reward function.
The form of the reward was discussed in Section 3.1, and justified by its connection
to previous work in locomotive efficiency. We may now, however, understand more
of what makes it advantageous from the perspective of learning performance and
SNR. Its integral form performs smoothing on the collected data, which effectively
reduces the noise level for a given trial, and intuitively it should differentiate mean-
ingfully between different policies (e.g., a reward function that has no gradient with
respect to the parameters in some region of policy space will find it very difficult to
learn in that region).

6.3 Implementation of Online Learning

The SNR analysis presented here is concerned with episodic trials (i.e., a series of
distinct runs), but this does not preclude online operation, in which trials follow one
another immediately and the system runs continuously. While at first we ran longer
policy evaluations (on the order of 40 or more flaps, averaged together) to reduce
noise, and gave the system plenty of time (20 or more flaps) between trials to reach
steady state and avoid inter-trial coupling, as we became more proficient at dealing
with the high noise levels of the system we began to attempt to learn more aggres-
sively. Through techniques such as sampling from the shell distribution, we were
able to reduce trial length to a single flap (requiring just 1 second), and by reducing
noise levels (ultimately choosing a shell distribution with a radius of approximately
4% of the parameter value) were able to eliminate the inter-trial settling time. Inter-
trial correlation was explored, and while present, we found it did not significantly
hamper learning performance, and that including eligibility traces did not greatly
improve the rate of convergence.
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6.4 Performance of Learning

In its final form, the SNR-optimized WP update was able to learn extremely effi-
ciently. Using the policy parameterization described above, along with shell sam-
pling and one-flap trials, the optimal policy was found within 7 minutes (around
400 flaps) even when starting far away in state space (see Figure 6). This quick con-
vergence in the face of inter-trial coupling and high variance in policy evaluations
(resulting from running them for such a short period of time) demonstrates the WP
algorithm’s robustness to these complex but very common difficulties.

Fig. 6 The average of five learning curves using online learning (an update every second, after
each full flapping cycle), with markers for +/- one standard deviation. The high variance is the
result of large inter-trial variance in the cost, rather than large differences between different
learning curves.

7 Interpretation of Optimal Solution

Once the learning had been successfully implemented, and repeatable convergence
to the same optimum was achieved, it is interesting to investigate what the form of
the solution suggests about the physical system. Figure 7 shows an example of an
initial, intermediate and final waveform from a learning trial, starting at a smoothed
out square wave and ending at the triangle wave which was found to be optimal.

The result is actually quite satisfying from a fluid dynamics point of view, as
it is consistent with our theoretical understanding of the system, and indeed was
the predicted solution given our reward function by experts in the field of flapping
flight. If one considers the reward function used in this work (see 3.1), the basis of
this behavior’s optimality becomes clear.

Consider the cost of transport cmt . As drag force is approximately quadratic with
speed in this regime, the numerator behaves approximately as:

∫

T
|Fz(t)ż(t)|dt ∼ 1

2
ρCd〈V 2〉T, (15)
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Fig. 7 A series of waveforms (initial, intermediate and final) seen during learning on the rigid
plate.

Fig. 8 Linear growth of forward speed with flapping frequency. The axes of this curve
have been non-dimensionalized as shown, and the data was taken for a sine wave. Figure
from (Vandenberghe et al., 2004).

where Cd is the coefficient of drag and 〈V 2〉 is the mean squared heaving speed.
However, forward rotational speed was found to grow linearly with flapping fre-
quency (see (Vandenberghe et al., 2004) and Figure 8), thus the denominator can be
written approximately as:

mg
∫

T
ẋ(t)dt ∼Cf 〈V 〉T, (16)

where Cf is a constant relating vertical speed to forward speed, and 〈V 〉 is the mean
vertical speed. Therefore, higher speeds result in quadratic growth of the numerator
of the cost and linear growth of the cost’s denominator. This can be seen as the
reward r (the inverse of cmt ) having the approximate form:

r ∼C
〈V 〉
〈V 2〉 , (17)
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with C a constant. This results in lower speeds being more efficient, causing lower
frequencies and amplitudes to be preferred. If period and amplitude are fixed, how-
ever, the average speed is fixed (assuming no new extrema of the stroke form are
produced during learning, a valid assumption in practice). A triangle wave, then,
is the means of achieving this average speed with the minimum average squared
speed.

The utility of this control development method now becomes more clear. For sys-
tems that, despite having complicated dynamics, can be reasonably described with
lumped-parameter or quasi-steady models, learning the controller directly serves
dual purposes: it suggests lines of reasoning that inform the creation of relatively
simple models, and it gives confidence that the modeling captures the aspects of the
system relevant to the optimization. Furthermore, on systems for which tractable
models are unavailable, the learning methodology can be applied just as easily while
model-centric techniques will begin to fail.

8 Conclusion

This work has presented a case study in how to produce efficient, online learning on
a complicated fluid system. The techniques used here were shown to be effective,
with convergence being achieved on the heaving plate in approximately seven min-
utes. The algorithmic improvements presented have additional applications to many
other systems, and by succeeding on a problem possessing great dynamic complex-
ity, a reasonably large dimensionality, partial observability and noisy evaluations,
they have been shown to be robust and useful. We believe the complexity of flow
control systems is an excellent match for the capabilities of learning control, and
expect to see many more applications for this domain in the future.
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Abstract. This chapter reviews several approaches to the problem of learning by
imitation in robotics. We start by describing several cognitive processes identified
in the literature as necessary for imitation. We then proceed by surveying different
approaches to this problem, placing particular emphasys on methods whereby an
agent first learns about its own body dynamics by means of self-exploration and then
uses this knowledge about its own body to recognize the actions being performed by
other agents. This general approach is related to the motor theory of perception, par-
ticularly to the mirror neurons found in primates. We distinguish three fundamental
classes of methods, corresponding to three abstraction levels at which imitation can
be addressed. As such, the methods surveyed herein exhibit behaviors that range
from raw sensory-motor trajectory matching to high-level abstract task replication.
We also discuss the impact that knowledge about the world and/or the demonstrator
can have on the particular behaviors exhibited.
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Fig. 1 Approaches to imitation at the three levels of abstraction discussed in this chapter.

1 Introduction

In this chapter we study several approaches to the problem of imitation in robots.
This type of skill transfer is only possible if the robots have several cognitive ca-
pabilities that, in turn, pose multiple challenges in terms of modeling, perception,
estimation and generalization. Throughout the chapter, we survey several methods
that allow robots to learn from a demonstration. Several other surveys cover differ-
ent aspects of imitation, including [6, 11, 16, 128].

Rather than providing another extensive survey of learning from demonstration,
in this chapter we review some recent developments in imitation in biological sys-
tems and focus on robotics works that consider self-modeling as a fundamental part
of the cognitive processes involved in and required for imitation. Self-modeling, in
this context, refers to the learning processes that allow the robot to understand its
own body and its interaction with the environment.

In this survey, we distinguish three fundamental classes of methods, each ad-
dressing the problem of learning by imitation at different levels of abstraction. Each
of these levels of abstraction focuses on a particular aspect of the demonstration,
giving rise to different imitative behaviors ranging from motor resonance to a more
abstract imitation of inferred goals. This hierarchy of behaviors is summarized in
the diagram of Fig. 1. It is interesting to note that the approaches at these different
levels of abstraction, rather than being mutually exclusive, actually provide a natural
hierarchical decomposition, in which approaches at the more abstracted levels can
build on the outcome of methods in less abstract levels (see, for example, [80, 84]
for an example of such integration).

Why Learn by Imitation?

The impressive research advances in robotics and autonomous systems in the past
years have led to the development of robotic platforms of increasingly complex mo-
tor, perceptual and cognitive capabilities. These achievements open the way for new
applications that require these systems to interact with other robots and/or human
users during extended periods of time. Traditional programming methodologies and
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robot interfaces will no longer suffice, as these systems need to learn to execute new
complex tasks and improve their performance throughout its lifetime.

Learning by imitation is likely to become one primary form of teaching such
complex robots [9, 127]. Paralleling the ability of human infants to learn through
(extensive) imitation, an artificial system can retrieve a large amount of task related
information simply by observing other individuals, humans or robots, perform that
same task. Such a system would ideally be able to observe humans and learn how
to solve similar tasks by imitation only. To be able to achieve such capability there
are several other skills that must be developed first [84].

The ability to imitate has also been used in combination with other learning
mechanisms. For instance, it can speed up learning either by providing an initial
solution for the intended task that can then be improved by trial-and-error [109]
or by guiding exploration [112, 114]. It also provides more intuitive and acceptable
human-machine interactions due to its inherent social component [20, 79]. Learning
by imitation has been applied before the advent of humanoid robots and in several
different applications, including robotics [75], teleoperation [153], assembly tasks
[149], game characters [139], multiagent systems [113], computer programming
[49] and others.

What Is Imitation?

In biological literature, many behaviors have been identified under the general label
of “social learning”. Two such social learning mechanisms have raised particular
interest among the research community, these being imitation and emulation [148].
In both the agent tries to replicate the effects achieved by the demonstrator but in
imitation the agent also replicates the motor behavior used to achieve such goal,
while in emulation only the effects are replicated (the agent achieves the effect by
its own means).

In robotic research the word imitation is also used to represent many different be-
haviors and methodologies. Some works seek to clarify and distinguish several such
approaches, either from a purely computational point-of-view [84, 89, 104, 127] or
taking inspiration in the biological counterparts [25, 79, 140, 143, 146, 148, 154].
The taxonomy depicted in Fig. 2 provides one possible classification of different
social learning mechanisms that takes into account three sources of information,
namely goals, actions and effects.

In this paper, we define imitation in its daily use meaning and use the designations
imitation and learning/programming by demonstration interchangeably. Taking into
account the previous taxonomy the works presented may be classified under other
labels. Roughly speaking we can consider the three levels as going from mimicking,
through (goal) emulation and finally imitation. This division is clear if we consider
methods that make an explicit inference about the goal as imitation, but not that
clear in the cases where the trajectory generalization is performed using an implicit
goal inference.
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Fig. 2 Behavior classification in terms of goals, actions and effects (reproduced from [25]).

Organization of the Chapter

In the continuation, and before entering into the different computational approaches
to imitation, Section 2 briefly outlines relevant aspects from psychology and neuro-
physiology on the topic of imitation in biological systems. Section 3 then discusses
imitation in artificial systems, by pointing out the main scientific challenges that
have been identified and addressed in the literature on imitation learning.

The remainder of the chapter is divided into three main sections, each addressing
imitation from a specific perspective:

• Section 4 addresses imitation from a motor resonance perspective, namely tra-
jectory matching and generalization. It discusses approaches that work at the
trajectory level (either joint or task space). These approaches can be interpreted
as performing regression (at the trajectory level) using the observed demonstra-
tion, and including additional steps to allow the learner to generalize from it.
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• Section 5 discusses imitation by replication of observed (world) events. In this
section, the learner focuses on replicating observed effects in the world, mainly
effects on objects.

• Goal inference is finally presented in Section 6. We survey approaches in which
the learner explicitly tries to infer the goal of the demonstrator and then uses this
goal to guide its action-choice.

We note that such division is not strict and some of the approaches share ideas
across several of the perspectives above. Also, depending on the application and
context, one particular perspective might be more appropriate for imitation than the
others. We conclude the paper in Sections 7 and 8 by discussing other approaches
to imitation and providing some concluding remarks.

2 Imitation in Natural Systems

The idea of learning by imitation has a clear inspiration in the way humans and other
animals learn. Therefore, results from neurophysiology and psychology on imitation
in humans, chimpanzees and other primates are a valuable source of information to
better understand, develop and implement artificial systems able to learn and imi-
tate. Section 2.1 details information from neurophysiology and Section 2.2 presents
evidence from psychology and biology. Such results illustrate the highly complex
task that imitation is. The brief literature review in this section identifies some of
the the problems that must be addressed before robots can learn (efficiently) by im-
itation and some works in the robotic literature that seek to model/test cognitive
hypothesis.

2.1 Neurophysiology

Neurophysiology identified several processes involved in action understanding that,
in turn, contributed differently to the development of learning approaches in robotics.
For example, mirror neurons [51, 106] provided an significant motivation for using
motor simulation theories in robotics. Similar ideas were suggested in speech recog-
nition [50, 77]. Also the existence of forward and backward models in the cerebellum
gave further evidence that the production system is involved in the perception, al-
though it is not clear if it is necessary [152]. Most of these methods consider already
known actions and not the way such knowledge can be acquired (we refer to [106]
for further discussion). For the case of novel actions there is evidence that the mirror
system is not sufficient to explain action understanding and a reasoning mechanism
must be involved [19]. We now discuss several of these views in more detail.

Motor Theories of Perception

Several theories already claimed that the motor system is involved in perception.
An example is the motor theory of speech perception [77]. The three main claims in
this theory are: “(a) speech processing is special, (b) perceiving speech is perceiving
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gestures, and (c) the motor system is recruited for perceiving speech”. In [50], the
authors revisit such theory taking into account the results from the last 50 years. The
authors argue that although claim (a) is likely false, claims (b) and (c) are still likely
to be true, although they admit that most of the findings supporting such claims may
be explained by alternative accounts.

One evidence in favor of the theory that the motor system is involved in percep-
tion is the existence of several mechanisms in the brain involved in motor prediction
and reconstruction. One such mechanism depends on the existence of several pairs
of forward and backward models in the brain [152]. The forward model codes the
perceptual effects of motor actions, while the backward model represents the inverse
relation, i.e., the motor actions that might cause a given percept. These models pro-
vide the agent with “simulation capabilities” for its own body dynamics, and are
thus able to adapt to perturbations. They are also general enough to take into ac-
count task restrictions.

Mirror and Canonical Neurons

The discovery of mirror neurons [51, 96, 106] fostered a significant interest on
the brain mechanisms involved in action understanding. These neurons are lo-
cated in the F5 area of the macaque’s brain and discharge during the execution
of hand/mouth movements. In spite of their localization in a pre-motor area of the
brain, mirror neurons fire both when the animal performs a specific goal-oriented
grasping action and when it sees that same action being performed by another in-
dividual. This observation suggests that the motor system responsible for triggering
an action is also involved in the recognition of the action. In other words, recog-
nition may also involve motor information, rather than purely visual information.
Furthermore, by establishing a direct connection between gestures performed by a
subject and similar gestures performed by others, mirror neurons may be related to
the ability to imitate found in some species [117], establishing an implicit level of
communication between individuals.

Canonical neurons [96] have the intriguing characteristic of responding when
objects that afford a specific type of grasp are present in the scene, even if the grasp
action is not performed or observed. Thus, canonical neurons may encode object
affordances, as introduced in [55], and may help distinguishing ambiguous gestures
during the process of recognition. In fact, many objects are grasped in very precise
ways that allow the object to be used for specific purposes. A pen is usually grasped
in a way that affords writing and a glass is held in such a way that we can use it to
drink. Hence, by recognizing an object that is being manipulated, it is also possible
to attain information about the most likely grasping possibilities (expectations) and
hand motor programs, simplifying the task of gesture recognition.

Reasoning Processes

Even if there is strong evidence that the motor system is involved in perception, it is
not clear how fundamental it is and many claims on the mirror system are unlikely to
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hold [56]. For instance, mirror neurons are not strictly necessary for action produc-
tion as their temporal deactivation does not impair grasping control but only slows
it down [47, 106]. On the other hand, more complex mechanisms than mirroring are
necessary to understand unexpected behaviors of an agent. In [19] an experiment
is presented where a person turns a light on using its knee. Similar demonstrations
are shown where the person has the arms occupied with a folder, many folders or
none. Results from an fMRI scan showed that the mirror mechanism is active during
the empty arms situation (expected behavior) but it is not active during the other
situation (unexpected behaviour). This and other similar results suggest that action
understanding in unexpected situations is achieved by an inference-based mecha-
nism taking the contextual constraints into account. In turn, this indicates that there
may exist a reasoning mechanism to understand/interpret the observed behaviors.

2.2 Psychology

Studies in behavioral psychology have evidenced the ability of both children and
chimpanzees to use different “imitative” behaviors. Individuals of both species also
seem to switch between different such behaviors depending on perceived cues about
the world [54, 62]. These cues include, for example, the inferred purpose of the ob-
served actions [13, 14, 67] even when the action fails [67, 91, 145]. Other social
learning mechanisms are analyzed in [154] under the more general designation of
social influence/learning. In the continuation, we discuss some examples of behav-
ior switching identified in the literature.

Imitation Capabilities and Behaviour Switching

Imitation and emulation are two classes of social learning mechanisms observed in
both children and apes [138, 146, 148].1 In imitation, the learning individual adheres
to the inferred goal of the demonstrator, eventually adopting the same action choice.
In emulation, on the other hand, the individual focuses on the observed effects of the
actions of the demonstrator, possibly reaching these using a different action choice.
The predisposition of an individual to imitate or emulate can thus be confirmed in
tasks where the same effect can be achieved using different actions/motor patterns.
For example, both chimpanzees and children are able to copy the choice of a push
or twist movement in opening a box [147].

Children, in particular, can be selective about which parts of a demonstration to
imitate [54, 150], but are generally more prone to imitate than to emulate. For ex-
ample, children can replicate parts of a demonstration that are clearly not necessary
to achieve the most obvious goal – a phenomenon known as over-imitation [62].
Over-imitation can be diminished by reducing the social cues or by increasing the
urgency of task completion [21, 85, 88]. It has also been argued that over-imitation

1 Other species, such as dogs, have also been shown to switch strategies after having ob-
served a demonstration, as seen in [118].



320 M. Lopes et al.

can occur for a variety of social reasons [103] or because the individuals interpret
the actions in the demonstration as causally meaningful [85].

Sensitivity to Task Constraints

Social animals also exhibit some sensitivity to the context surrounding the task
execution, particularly task constraints. For example, in [90] 14-month-olds were
shown a box with a panel that lit up when the demonstrator touched it with his fore-
head.The results showed that most infants reproduced the use of the forehead rather
than using their hand when presented with the object a week later. This experiment
was further extended in [54] by including a condition in which the demonstrator
was restricted and could not use her hands. It was observed that only 21% of the in-
fants copied the use of the forehead, against the 69% observed in a control condition
replicating the [90] study. It was argued that, in the latter condition, infants recog-
nize no constraints upon the demonstrator and thus encode the use of the forehead as
a specific part of the intention. In the restricted case, they recognize the constraint
as a extraneous reason for the use of the forehead and do not encode the specific
action as part of the intention.

We return to this particular experiment in Section 6, in the context of computa-
tional models for social learning.

Imperfect Knowledge

Several experiments were conducted to investigate how the knowledge about the
world dynamics influences social learning mechanisms. In one archetypical exper-
iment, an individual observes a sequence of actions, not all of which are actually
necessary to achieve the outcome. For example, in [62], preschoolers and chim-
panzees were presented with two identical boxes, one opaque and one transparent.
A demonstrator then inserted a stick into a hole on the top of the box and then into
another hole on the front of the box. It was then able to retrieve of a reward from the
box. In this experiment, the insertion of the stick into the top hole was unnecessary
in order to obtain the reward, but this was only perceivable in the transparent box.
The results showed that 3 and 4-year-old children tended to always imitate both
actions. On the contrary, chimpanzees were able to switch between emulation and
imitation if causal information was available: after having observed demonstrations
in a transparent box, the chimpanzees were much less prone to insert the stick into
the upper (useless) hole.

Goal Inference

Finally, it has been showed that some species exhibit imitative behavior beyond
simple motion mimicry. For example, primates tend to interpret and actually repro-
duce observed actions in a teleological manner – that is, in terms of the inferred
goals of the action [33]. In an experiment designed to test this hypothesis, 3 to 6-
year-old children observed a demonstrator reaching across her body to touch a dot
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painted on a table to one side of her, using the hand on her other side [13]. When
prompted to reproduce the observed demonstration, children tended to copy the dot-
touching action, but not the use of the contra-lateral hand. However, when the same
demonstration was performed without a dot, children tended to imitate the use of
the contra-lateral hand. It was argued that, in the first case, children interpreted the
dot touching as the intention, choosing their own (easier) way to achieve it, while
in the second case there was no clear target of the action but the action itself. As
such, children interpreted the use of the contra-lateral hand as the intention and imi-
tated it more faithfully. Results in experiments adapted for older children infants are
similar [28].

2.3 Remarks

The experiments described above show that imitation behaviors result from several
complex cognitive skills such as action understanding, reasoning and planning. Each
of them depends on the physical and social context and also the knowledge of the
agent. Partial world knowledge and contextual restrictions all influence the way an
action is understood and replicated. A robot that is able to imitate in a flexible way
should thus be able to consider all of such aspects.

3 Imitation in Artificial Systems

Imitation learning brings the promise of making the task of programming robots
much easier [127]. However, to be able to imitate, robots need to have several com-
plex skills that must be previously implemented or developed [84].

In Section 2 we discussed some of the complexities involved in the process of
learning by imitation in natural systems, as well as all the contextual information
taken into account when interpreting actions. Now, we replicate this discussion for
artificial systems, outlining some of the issues that must be dealt with when devel-
oping an artificial system (e.g., a robot) that can learn by imitation.

In [151], the authors identified three subproblems (or classes thereof) to be ad-
dressed in developing one such system:

• Mapping the perceptual variables (e.g., visual and auditory input) into corre-
sponding motor variables;

• Compensating for the difference in the physical properties and control capabili-
ties of the demonstrator and the imitator; and

• Understanding the intention/purpose/reason behind an action (e.g., the cost func-
tion to be minimized in optimal control that determines the action to be taken in
each situation) from the observation of the resulting movements.

If we further take into account that the perceptual variables from the demonstra-
tor must also be mapped from an allo- to an ego- frame of reference, the first of
the above subproblems further subdivides into two other sub-problems: view-point
transformation and sensory-motor matching [8, 22, 82, 83, 123]. The second of
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the problems referred above is usually known as the body correspondence problem
[4, 99, 100] and is, in a sense, closely related and dependent on the first problem of
mapping between perception and action.

Data Acquisition

The way to address the issues discussed above will largely depend on the context
in which imitation takes place. When used for robot programming, it is possible to
use data acquisition systems that simplify the interpretation and processing of the
input data, thus reducing partial observability issues. The latter is important since
the learner will seldom be able to unambiguously observe all the relevant aspects of
the demonstration. In particular, this can allow more robust and efficient algorithms
to tackle the allo-ego transformation, the perception-to-action mapping and the body
correspondence. Examples of such systems include exoskeletons, optical trackers or
kinesthetic demonstrations [16].

Other applications of imitation occur in less controlled environments, for exam-
ple as a result of the natural interaction between a robot and a human. In such con-
texts, perceptual problems must be explicitly addressed. Some authors address this
problem adopting a computer vision perspective [82], modeling partial observability
[40] or being robust to noise in the demonstration [26, 80, 116].

Mapping of Perceptual Variables and Body Correspondence

Many approaches do not consider a clear separation between data acquisition and
learning by demonstration. One way to deal with the lack of information/data is to
use prior knowledge to interpret the demonstration. Action interpretation strongly
depends on the knowledge about how the world evolves as well as on the capabil-
ities of both the learner and the demonstrator to interact with it [54, 62, 79]. This
process is closely related with the two first issues pointed out in [151], since it pro-
vides a way to map external inputs to internal motor representations (e.g., to robot
actions). Therefore, imitation learning algorithms will typically benefit from prior
knowledge about the environment, specially when data acquisition cannot provide a
full description of the demonstration.

Knowledge about the agent’s own body and its interaction with the world simpli-
fies some of the difficulties found in imitation. On one hand, for the perception-to-
action mapping, the recognition of others’ actions can rely on the learner’s model of
the world dynamics, e.g., by inferring the most probable state-action sequence given
this model. This idea draws inspiration from psychological and neurophysiologi-
cal theories of motor perception, where recognition and interpretation of behavior
are performed using an internal simulation mechanism [5, 51, 83]. As seen in Sec-
tion 2, mirror neurons are one of such mechanisms [51], and a significant amount of
research in imitation learning in robotics flourished from this particular discovery.

On the other hand, this type of knowledge also allows action recognition and
matching to occur with an implicit body correspondence, even if the bodies of the
learner and demonstrator are different. Several works have explored this idea. For
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example, in [82, 83, 99, 100, 130, 132], action matching is addressed at a trajectory
level. In these works, the demonstration is interpreted taking into account the differ-
ent dynamics of the learner and the demonstrator. In [71, 93, 94], the same problem
is addressed at a higher level of abstraction that considers the effects on objects.

Goal/Intention Inference

Understanding actions and inferring intentions generally requires a more explicit
reasoning process than just a mirror-like mechanism [19]. As discussed in Section 2,
by further abstracting the process of learning by imitation to task level it is possible
to additionally include contextual cues [10, 64, 79]. At this level of abstraction the
third issue identified in [151] becomes particularly relevant.

Identifying the goal driving a demonstration is a particularly complex inference
process, indeed an ill-defined one. What to imitate depends on several physical, so-
cial and psychological factors (see Section 2.2). One possible way to answer this
question relies on the concept of imitation metrics. These metrics evaluate “how
good” imitation is. Imitation metrics were first explicitly introduced in [101] in
order to quantify the quality of imitation, to guide learning and also to evaluate
learned behavior. However, it is far from clear what “good imitation” is and, per-
haps more important, how variable/well-defined the learned behavior can be. Some
studies along this direction have characterized the quality of imitation in humans. In
[111], subjects were asked to perform imitation tasks and quantitative results were
obtained to assess the effect of rehearsal during observation and repetition of the
task.

In any case, it is often not clear whether imitation concerns the motor intention
or the underlying goal of that motor intention [17, 23, 79, 127]. In other words, it is
often the case that the agent cannot unambiguously identify whether it should imi-
tate the action, its outcome, or the reason driving the demonstrator to do it. In each
of the following sections we we discuss in detail each of these three approaches to
imitation learning. In particular, we refer to Section 6 for a more detailed discussion
on the problem of inferring the goal behind a demonstration. In that section we sur-
vey several recent works in which a learner does infer the goal of the demonstrator
and adopts this goal as its own [2, 10, 64, 80, 119].

The Role of Self-Observation

It is interesting to note that most of the necessary information about the robot’s body
and the world dynamics can be gathered by self-observation [36, 84]. Although slow
in many situations, it often allows a greater adaptation to changing scenarios.

Many different techniques can be used by the robot to learn about its own body
[41, 84, 108, 129, 144]. For example, several works adopt an initial phase of motor
babbling [57, 76, 83, 84]. By performing random motions, a great amount of data
becomes available, allowing the robot to infer useful relations about causes and
consequences of actions. These relations can then be used to learn a body schema
useful in different application scenarios. The specific methods used to learn body
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models vary, and range from parametric methods [27, 61], neural network methods
[76, 82, 83] to non-parametric regression [41, 84, 144] and graphical models [57,
135]. As for learning about the world dynamics, this is closely related to the concept
of learning affordances. Repeated interaction with the world allows the robot to
understand how the environment behaves under its actions [46, 94, 95, 122]. As seen
in the previous section, the knowledge about the world dynamics and the capabilities
of others strongly influences how actions are understood.

♦
So far in this chapter we presented insights from neurophysiology, psychology and
robotics research on the problems involved in learning by demonstration. The next
sections will provide an overview of methods that handle such problems. We divide
those methods according to the different formalisms or sources of information used,
namely (a) trajectory matching and generalization, where sample trajectories are the
main source of information from which the learner generalizes; (b) object mediated
imitation, where effects occurring on objects are the relevant features of a demon-
stration; and (c) imitation of inferred goals, where there is an explicit estimation of
the demonstrator’s goal/intention.

4 Imitating by Motor Resonance

This section presents several methods that learn by demonstration by first mapping
state-action trajectories to the learner’s own body and then generalizing them.

Following what is proposed in [83, 151], the imitation process consists of the
steps enumerated below and illustrated in Fig. 3:

(i) The learner observes the demonstrator’s movements;
(ii) A viewpoint transformation (VPT) is used to map a description in the demon-

strator’s frame allo-image to the imitator’s frame ego-image;
(iii) Action recognition is used (if necessary) to abstract the observed motion; and
(iv) A sensory-motor map (SMM) is used to generate the motor commands that

have the higher probability of generating the observed features.

In this section we survey several methods that adopt this general approach. In these
methods not all steps enumerated above are explicitly dealt with, but are still im-
plicitly ensured by considering different simplifying assumptions.

4.1 Visual Transformations

The same motor action can have very distinctive perceptual results if one considers
different points-of-view. For example when a person gestures goodbye, she can see
the back of her hand, while when someone else is doing the same she will see the
palm of the other’s hand. This poses a problem when mapping actions from the
demonstrator to the learner, as already identified in [22] and depicted in Fig. 4.
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Metric

SMM1

SMM𝑁

VPT

Recognition

Fig. 3 Imitation architecture. Observed actions are first transformed to a ego frame of ref-
erence (VPT), where segmentation and recognition take place. After deciding on how to
imitate, a correspondence between the two different bodies must be done by selecting the
corresponding SMM. Finally, imitation is enacted.

Fig. 4 Perceptual difference between the same gesture having an ego- or an allo- perspective.

The typical solutions for this problem is to perform a complete three-dimensional
reconstruction. However, several works proposed alternative approaches that con-
sider simplifications to such problem. In [8, 12, 52, 82, 83] several transformations
are discussed, ranging from a simple image transformation (e.g., mirroring the im-
age) to a partial reconstruction assuming an affine camera and the full three di-
mensional reconstruction. These works also point out that such transformations can
be seen as imitation metrics, because the depth information in some gestures can
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indeed change the meaning of the action. Such transformations can also be done
using neural networks [123].

4.2 Mimicking Behaviors and Automatic Imitation

Several works on imitation seek to transfer behaviors by a simple motor reso-
nance process. The observation of perceptual consequences of simple motor actions
can elicit an automatic mimicking behavior, and several initial works on imitation
adopted this approach [34, 35, 53, 59]. In these works, the relation between changes
in perceptual channels caused by a demonstrator are directly mapped into motor
actions of the learner. Particularly in [34], the orientation of a mobile robot is con-
trolled according to the observed position and orientation of a human head.

In these approaches the model about the own body is not explicit, the relations
between action and perception is learned without concern about the true geometry
and dynamics of the body.

Using the visual transformations introduced earlier it is possible to generate more
complex behaviors. In [82, 83], the learner starts by acquiring a correspondence
between its own perceptions and actions. The mimicking behavior results from
mapping the perception of the demonstrator to its own using a view-point trans-
formation, and then activating an inverse sensory-motor map. Different visual trans-
formations result in different types of behavior.

Examples of other methods posing imitation within this visuo-somatic perspec-
tive include [7, 53]. An interesting approach is proposed in [18] where facial expres-
sion are learned by interacting with a person and creating a resonance of expressions.

4.3 Imitation through Motor Primitives

All previous approaches consider a simple perception-action loop in imitation.
However, when considering a learner equipped with several motor primitives, it is
possible to achieve more complex interactions. The “recognition” block in Fig. 3
represents the translation of observed trajectories in terms of such motor primitives.
A motor sequence is perceived, maybe after some visual processing, and recognized
as a specific motor primitive [86, 87]. This general approach can be used to perform
human-machine interaction [20] or to learn how to sequence such primitives [23].

In [23] a string parsing mechanism is proposed to explain how apes are able to
learn by imitation to process food. The string parsing mechanism is initialized with
several sequences of primitives. Learning and generalization are performed by ex-
tracting regularities and sub-sequences. This approach can be seen as a grammatical
inference process.

Other approaches use hidden Markov models to extract such regularities and filter
behavior, usually in the context of tele-operation. The main goal of such approaches
is to eliminate sluggish motion of the user and correct errors. We refer to [153] for an
application of one such approach to the control of an Orbit Replaceable Unit. In this
work, a robot observes an operator performing a task and builds a hidden Markov
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model that describes that same task. In [63], a similar approach is used in assembly
tasks. Such models can also be used to detect regularities in human motion [24].

Regularities of human motion can be represented in low-dimensions using prin-
cipal component analysis [29], clustering [74] or other non-linear manifold learning
techniques [65].

Some authors rely on completely separated methods to recognize and to generate
motor primitives. Others combine both processes, thus exploring the self-modeling
phase [37, 38, 66, 83]. As seen in Section 2.1, this process can be explained by the
use of motor simulations of some kind. For example in both [38] and [151], ac-
tion recognition is performed using the idea of coupled forward/backward models
discussed in [152]. The former decouples each of the action primitives and is thus
able to deal with a larger variety of tasks, while the latter is able to combine several
primitives and deal with complex motor skills in a robust way. In [43, 44] dynamic
neural networks are used to recognize actions goals taking into account task restric-
tions. A single neural network able to encode several behaviors was introduced in
[137] and performs similar computations.

4.4 Learning of New Task Solutions

In some cases the learner has an explicit goal. However, it might be very difficult to
plan how to reach such goal. This is specially important in complex environments
or in situations involving highly redundant robots (e.g., humanoid robots). One of
the main motivations behind imitation learning is that it provides an easy way to
program robots. Therefore, most approaches to imitation consider the learning of
new actions. In such approaches two main trends have been adopted: one considers
many demonstrations of the same task and tries to find invariants in the observed
motions [17, 119]. The other uses only the observed trajectories as an initialization
and then improves and generalizes further (e.g., using reinforcement learning) [109].

In [112], imitation is used to speed up learning and several metrics were defined
for evaluating the improvement in learning when using imitation. Imitation is used
in [129] to learn dynamic motor primitives. As argued in this work, “Movement
primitives are parameterized policies that can achieve a complete movement behav-
ior”. From this perspective, motor primitives can be seen as dynamical systems that
generate different complex motions by changing a set of parameters. The authors
also suggest the use of data from a demonstration to initialize such parameters. The
parameters can then be optimized using, for example, policy gradient [109]. We
point out that these methods consider classes of parameterized policies, namely the
parameters of the dynamical system.

One of the few approaches taking uncertainty into account is proposed in [57].
The approach in this work starts by learning a Gaussian mixture model as a forward
model, using self-observation [130]. The demonstration is taken as observation of a
probabilistic process and the goal is to find a sequence of actions that maximizes the
likelihood of such evidence. The work focuses on copying motions taking into ac-
count the dynamics of the robot and, as such, uses as observations the estimated state
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trajectory and ignores the dynamic information. It achieves body correspondence by
inferring the most probable trajectory using the imitator’s body. Extra task restric-
tions can also be included. In [29] walking patterns are transferred from humans to
robots after adapting it for different kinematics using low level representations.

Finally, several other methods are agnostic as to what is exactly the goal of the
demonstrated task and aim only at learning the observed course of action. For exam-
ple, in [31], learning from demonstration is formulated as a classification problem
and solved using support-vector machines. These methods, in a sense, disregard the
effects and social context of the demonstration, and focus only on replicating in each
situation the demonstrated course of action (see Section 6 for a more detailed discus-
sion on this). One disadvantage of this general approach is that it places excessive
confidence on the demonstrator. Furthermore, the course of action learned is spe-
cific to the context and environment of the learner and, as such, is not generalizable
to different environments.

5 Object Mediated Imitation

In the previous section, we have discussed imitation from a motor perspective. From
this perspective, context is mainly provided by the body parts and corresponding
motion. In this section we discuss a more abstract approach to imitation, where
the context is enlarged to accommodate objects. In other words, the learner is now
aware of the interaction with objects and, consequently, takes this information into
account during learning. The most representative example of this type of behavior is
emulation (see Fig. 2). In contrast with the motor resonance mechanisms discussed
previously, which could perhaps be best described as mimicry, emulation focuses
on copying (replicating) the results/effects of actions.

This abstraction from low-level control to higher-level representations of actions
also facilitates reasoning about causality of actions, i.e., how to induce specific
changes to the environment. Consider the simple case of piling two objects. To learn
this task, motor resonance alone does not suffice, as the learner must take into ac-
count which object can be placed on top of which depending on their sizes, shapes
and other features. Another illustrative example is opening a door, where the shape
of the handle provides meaningful information about how to perform the action. In
the motor-resonance-based approaches, body correspondence addressed problems
such as different number of degrees of freedom, or different kinematics and dynam-
ics. In this section we discuss correspondence in terms of the usage that different
objects have to different agents.

A biologically inspired concept related to the previous discussion is that of affor-
dances [55]. Developed in the field of psychology, the theory of affordances states
that the relation between an individual and the environment is strongly shaped by
the individual’s perceptual-motor skills. Back in the 70s, this theory established
a new paradigm where action and perception are coupled at every level. Biolog-
ical evidence of this type of coupling is now common in neuroscience [51] and
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several experiments have shown the presence of affordance knowledge based on the
perception of heaviness [141] or traversability [69].

Affordances have also been widely studied in robotics. In this section we discuss
this concept of affordances in the context of imitation learning in robots, as well as
the inclusion of object information and properties in the learning process. A thor-
ough review on these topics can be found in [122], with special emphasis placed in
affordance-based control.

We generally define affordances as mappings that relate actions, objects and con-
sequences (effects). This very general concept can be modeled using different for-
malisms including dynamical systems [131], self-organizing maps [32], relational
learning [58] and algebraic formulations [100].

However, independently of the selected representation or formalism, there are
two core challenges to achieve affordance-based imitation: acquiring the model of
affordances and exploiting this model. The latter depends heavily on the representa-
tion, but usually resorts to some type of action selection. For instance, if a dynamical
system is used to encode a forward model, then the agent emulates by selecting the
action that best matches the desired effect. It is worth mentioning that the approaches
in this section are strongly dependent on a self-modeling phase as the concept of af-
fordances is strictly a self-modeling idea.

The required data to infer the affordances model may be acquired either by ob-
servation or by experimentation. In the case of self-experimentation there is no body
correspondence or visual transformation required, but such capability is important
when interacting with other agents. When learning by observation such problem is
immediately present. An advantage of object mediated imitation is that the match
only occurs in the effects on object and so the specific body kinematics and action
dynamics are not considers, thus simplifying several problems in imitation.

Affordances as Perception-Action Maps

A simple way of describing effects is to learn mappings from a set of predefined
object features to changes in these features. This approach was used in a manipula-
tion task to learn by experimentation the resulting motion directions as a function of
the object shape and the poking direction [46]. Once the mapping has been learned,
emulating an observed motion direction can be achieved by simply selecting the ap-
propriate poking direction for the object. A similar approach was proposed in [71],
where the imitation is also driven by the effects. In this case, the demonstrator’s
and imitator’s actions are grouped according to the effect they produce in an object,
irrespectively of their motor programs. Given an observed object and effect pair,
the appropriate action (or sequence of actions) can then be easily retrieved. Another
example is the use of invariant information [32, 48, 133]. In this case, the system
learns invariant descriptions across several trials of the same action upon an object.
Depending on the parameterization, the learned invariant descriptors may represent
object characteristics or effects. Although this type of information has been usually
applied in robot control, it is possible to use the invariants for emulation under the
assumption that they are invariant to the viewpoint and that they capture the effects.
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Grasping is a paradigmatic example of affordance knowledge that has been
widely studied in the literature. Perception-action maps have appeared in sev-
eral forms such as the Q-function of a reinforcement learning algorithm [155]; a
pure regression map from object features to image points based labelled examples
[125, 126] and self-experimentation [39, 92]; or as the correct position of a mobile
robot to trigger a particular grasping policy [134].

Affordances as Dynamical Models

An alternative approach consists in modeling the dynamical system composed by
the agent (demonstrator or imitator) and the environment. In [131], a hidden Markov
model is used to encode the state of the agent and objects. In order to train the for-
ward model, reflective markers were placed on the demonstrator and on the objects
and tracked by a capture system. Viewpoint transformation then uses linear trans-
formations between the demonstrator’s and the imitator’s body poses. Emulation is
casted as a Bayesian decision problem over the Markov model, i.e., selecting the
maximum a posteriori action for each transition of the Markov chain. Interestingly,
the model is able to modify the selected behavior with its own experience and refine
the model previously learned solely by observation. Again, this is due to the fact
that emphasis is placed on achieving the same effects instead of copying the action.

Dynamical systems have also been used for goal directed imitation in [43, 44].
The proposed architecture contains three interconnected layers corresponding to dif-
ferent brain areas responsible for the observed action, the action primitives and the
goal. Each layer is implemented using a dynamic field that evolves with experience
and its able to incorporate new representations using a correlation learning rule be-
tween adjacent neurons.

5.1 Bayesian Networks as Models for Affordances

Affordances can be seen as statistical relations between actions, objects and effects,
modeled for example using Bayesian networks. One such approach was proposed
in [94], in which the nodes in the network represent actions, object features or mea-
sured effects. As in standard Bayesian networks, the absence of a vertex between
two nodes indicates conditional independence. Self-experimentation provides most
of the data necessary to learn such relations. If a robot exerts its actions upon dif-
ferent objects, it can measure the effects of such actions. Even in the presence of
noise the robot is able to infer that some actions have certain effects that depend on
some of the object features. Also, the existence of irrelevant and redundant features
is automatically detected.

Based on such prior experience, structure learning [60] can be used to distinguish
all such relations. Once these dependencies are known, one can query the network
to provide valuable information for several imitation behaviors. Table 1 summarizes
the different input-output combinations. In particular, for emulation purposes, the
ability to predict the effect conditioned on a set of available objects and the possible
actions directly provides the robot with a way to select the appropriate action in a
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Table 1 Affordances as relations between actions (A), objects (O) and effects (E) that can be
used for different purposes: predict the outcome of an action, plan actions to achieve a goal
or recognize objects or actions.

Inputs Outputs Function

(O,A) E Predict effect
(O,E) A Action recognition and planning
(A,E) O Object recognition and selection

single-step Bayesian decision problem. It is interesting to note that at this abstraction
level the same mechanism is used for prediction and control, giving a mirror-like
behavior.

This approach is halfway between learning specific maps and a full dynamical
system description. If specific maps are learned, it is not easy to consider demon-
strators with different dynamics nor to explicitly consider task restrictions. This
approach is not as applicable as learning a full dynamical system description, be-
cause it is does not easily allow encoding long-term plans. It provides predictions
for incremental state changes. For a more detailed discussion, we refer to [80].

5.2 Experiments

In this section we provide several experimental results obtained with a Bayesian
network model for affordances. In particular, we describe both how the model of
affordances can be learned by the robot and then used to attain affordance-based
emulation behaviors.

For all experiments we used BALTAZAR [78], a robotic platform consisting of a
humanoid torso with one anthropomorphic arm and hand and a binocular head (see
Fig. 5). The robot is able to perform a set of different parameterized actions, namely
A = {a1 = grasp(λ ),a2 = tap(λ ),a3 = touch(λ )}, where λ represents the height
of the hand in the 3D workspace when reaching an object in the image. It also has
implemented an object detector that extracts a set of features related to the object
properties and the effects of the action.

Affordance Learning

We now describe the process by which the robot learned the affordance network
used in the emulation behaviors. We recorded a total of 300 trials following the
protocol depicted in Fig. 6. At each trial, the robot was presented with a random
object of one of two possible shapes (round and square), four possible colors and
three possible sizes (see Fig. 5 for an illustration of the objects used). BALTAZAR

then randomly selects an action and moves its hand toward the object using pre-
learned action primitives [84, 94]. When the reaching phase is completed, the robot
then performs the selected action (grasp(λ ), tap(λ ) or touch(λ )) and finally returns
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Fig. 5 Robot playground used in the experiments.
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Fig. 6 Protocol used in the experiments. The object used in each trial is selected manually and
the robot then randomly selects an action to interact with it. Object properties are recorded
from the Init to the Approach states, when the hand is not occluding the object. The effects
are recorded in the Observe state. Init moves the hand to a predefined position in open-loop.

the hand to the initial position. During the action, object features and effects are
recorded.

Visual information is automatically clustered using the X-means algorithm [107].
The resulting classes constitute the input for the affordance learning algorithm. The
features and their discretization are shown in Table 2. Summarizing, shape descrip-
tors (e.g., compactness and roundness) provided two different classes, size was dis-
cretized in 3 different classes and color in four. Based on this data, the robot adjusted
the parameter λ for each action and then learned an affordance model as described
above.

The learned model is shown in Fig. 7. The network was learned using Monte
Carlo sampling with BDeu priors for the graph structure and a random network ini-
tialization. The dependencies basically state that color is irrelevant for the behavior
of the objects under the available actions. In addition to this, a successful grasp re-
quires the appropriate object size, while the velocity of the object depends on its



Abstraction Levels for Robotic Imitation 333

Table 2 Random variables in the network and possible values.

Symbol Description Values

A Action grasp, tap, touch
C Color green1 ,green2, yellow, blue
Sh Shape ball, box
S Size small, medium, large

OV Object velocity small, medium, large
HV Hand velocity small, medium, large
Di Object-hand velocity small, medium, large
Ct Contact duration none, short, long

A C Sh S

OV HV Di Ct

Fig. 7 Affordance network representing relations between actions, object features and the
corresponding effects. Node labels are shown in Table 2.

shape and the action. We refer the reader to [94] for further details on the affordance
learning.

Emulation

We now present the results obtained in several basic interaction games using the af-
fordance network. The games proceed as follow. The robot observes a demonstrator
performing an action on a given object. Then, given a specific imitation metric, it
selects an action and an object to interact with so as to imitate (emulate) the demon-
strator. Figure 8 depicts the demonstration, the different objects presented to the
robot and the selected actions and objects for different metrics.

In the experiments we used two different demonstrations, a tap on a small ball
(resulting in high velocity and medium hand-object distance) and a grasp on a small
square (resulting in small velocity and small hand-object distance). Notice that con-
tact information is not available when observing others.

The goal of the robot is to replicate the observed effects. The first situation
(Fig. 8a) is trivial, as only tapping has a non-zero probability of producing high
velocity. Hence, the emulation function selected a tap on the single object available.
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Fig. 8 Different emulation behaviors. Top row: Demonstration; Middle row: Set of potential
objects; Bottom row: Emulation. Situations (a) through (d) represent: (a) emulation of ob-
served action, (b) replication of observed effect, (c) replication of observed effect, and (d)
replication of observed effect considering the shape of the object.

Table 3 Probability of achieving the desired effect for each action and the objects of Fig. 8b.

Obj \ Action Grasp Tap Touch

Large blue ball 0.00 0.20 0.00
Small yellow box 0.00 0.06 0.00

In Fig. 8b the demonstrator performed the same action, but the robot now has to
decide between two different objects. Table 3 shows the probabilities for the de-
sired effects given the six possible combinations of actions and objects. The robot
selected the one with highest probability and performed a tap on the ball.

Figures 8c and 8d illustrate how including the object features in the metric func-
tion produce different behaviors. After observing the grasp demonstration, the robot
has to select among three objects: large yellow ball, small yellow ball and small blue
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box. In the first case the objective was to obtain the same effects. The probability of
grasping for each of the objects is 0.88, 0.92 and 0.52, respectively, and the robot
grasped the small yellow ball even if the same object is also on the table (Fig. 8c).
Notice that this is not a failure, since it maximizes the probability of a successful
grasp which is the only requirement of the metric function.

We conclude by noting that other criteria can include more complex information,
such as similarly shaped objects. When also taking this new criterion into account,
the robot selected the blue box instead (see Fig. 8d).

6 Imitating by Inferring the Goal

So far in this chapter we have discussed learning by imitation at the motor level
and at the effect level. The former focuses on replicating the exact movement ob-
served, in a sense disregarding the effect on the environment and the social context
in which the movement is executed. The latter addresses imitation at a higher level
of abstraction, focusing on replicating the effects produced by the observed action
in the environment, ignoring to some extent the exact motor trajectory executed. As
seen in Section 2, knowledge about the world, the demonstrator and the learner’s
own body all influence the way a goal is inferred.

In this section we discuss imitation learning at a yet higher level of abstraction,
approaching the concept of “imitation” according to the taxonomy in Fig. 2. Con-
cretely, we discuss the fundamental process by which a learner can infer the task
to be learned after observing the demonstration by another individual (e.g., a hu-
man). We discuss several approaches from the literature that address the problem
of inferring the goal of a demonstration at different levels. We then discuss in de-
tail a recent approach to this problem that provides a close relation and potentially
interesting insights into imitation in biological contexts.

6.1 Goal Inference from Demonstration

Inferring the goal behind a demonstration is, in general, a hard problem, as it re-
quires some form of common background for the learner and the demonstrator. In
social animals, this common background greatly depends on the social relation be-
tween the demonstrator and the learner. For example, social cues were found im-
portant in promoting imitation in infants [21, 91]. Several other studies address the
general problem of understanding the process of inferring the goal/intention behind
a demonstration [14, 67, 91]. Most such studies also address the related problem of
understanding the process of perceiving unfulfilled intentions.

Translating this complex social learning mechanism into artificial systems usually
requires the common background to be provided by the designer, who “imprints” in
the system whatever of her own background knowledge it determines to be relevant
for the particular environmental context of the system. As such, it is hardly surprising
that different researchers address the problem of “goal inference” from perspectives
as distinct as their own backgrounds and lines of work. For example, in [17] goal



336 M. Lopes et al.

inference is cast as an optimization problem. Motor theories of perception are used
in [38] to build better imitation systems. These works essentially seek to determine
which specific elements of the demonstration are relevant, seeking a hard answer to
the fundamental problem of “What to imitate” discussed in Section 3.

Other recent works have adopted a fundamentally different approach, in which
the learning agent chooses among a library of possible goals the one most likely to
lead to the observed demonstration. For example, in [64] the problem of imitation
is tackled within a planning approach. In this setting, the learner chooses between
a pool of possible goals by assessing the optimality of the demonstration (viewed
as a plan). Evaluative feedback from the demonstrator is also used to disambiguate
between different possible goals.

One significant difficulty in inferring the goal behind a demonstration is that the
same observed behavior can often be explained by several possible goals. Goal in-
ference is, therefore, an ill-posed problem, and many approaches adopt a proba-
bilistic setting to partly mitigate this situation [10, 119, 142]. For example, in [10],
the authors address the problem of action understanding by children. To this pur-
pose, they propose the use of a Bayesian model that matches observed inferences
in children facing new tasks or environmental constraints. Similar ideas have been
applied to robots in different works [80, 119, 142]. In [119], the goals of the robot
are restricted to shortest-path problems while in [80, 142] general goals are consid-
ered. In [156], a maximum entropy approach is used to infer the goal in navigation
tasks. The paper computes a distribution over “paths to the goal” that matches the
observed empirical distributions but otherwise being as little “committed” as possi-
ble. Optimization is performed by a gradient-based approach. All these approaches
handle the body correspondence problem by performing the recognition in terms of
a self-world model.

In a sense, all the aforementioned approaches interpret the demonstration as pro-
viding “implicit” information about the goal of the demonstrator, a soft answer to the
problem of “What to imitate”. In other words, while the approaches in [17, 38] seek
to single out a particular aspect of the demonstration to replicate, the latter assumes
that the actual goal of the demonstration drives the action choice in the demonstra-
tion, but needs not be “contained” in it. This makes the latter approach more flexible
to errors in the demonstration and non-exhaustive demonstrations. Another way of
looking at the distinction between the two classes of approaches outlined above
is by interpreting the latter as providing models and methods that allow the agent
to extract a general task description from the demonstration, rather than a specific
mapping from situations to actions that may replicate, to some extent, the observed
behavior. This approach is closer to imitation in the biological sense, as defined
in [25]. Finally, several recent works have proposed general models that contrast
with those referred above in that they are able to generate multiple social-learning
behaviors [79, 89].

In the remainder of this section we describe in detail the approach in [79]. Fol-
lowing the taxonomy in [25], our model takes into account several possible sources
of information. Concretely, the sources of influence on our model’s behavior are:
beliefs about the world’s possible states and the actions causing transitions between
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them; a baseline preference for certain actions; a variable tendency to infer and
share goals in observed behavior; and a variable tendency to act efficiently to reach
the observed final states (or any other salient state).

6.2 Inverse Reinforcement Learning as Goal Inference

We now introduce the general formalism used to model the interaction of both the
learning agent and the demonstrator with their environment. This approach shares
many common concepts with those in [10, 119, 142], in that it infers a goal from the
behaviors using bayesian inference to deal with noise and to disambiguate the set of
possible goals.

Environment Model

At each time instant t, the environment can be described by its state, a random
variable that takes values in a finite set of possible states (the state-space). The tran-
sitions between states are controlled to some extent by the actions of the agent (the
demonstrator during the demonstration and the learner otherwise). In particular, at
each time instant the agent (be it the learner or the demonstrator) chooses an action
from its (finite) repertoire of action primitives and, depending on the action par-
ticular action chosen, the state evolves at time t + 1 according to some transition
probabilities P [Xt+1 | Xt ,At ].

We assume that the learner has knowledge of its world, in the sense that it knows
the set of possible states of the environment, its action repertoire and that of the
demonstrator, and the world dynamics, i.e., how both his and the demonstrator’s
actions affect the way the state changes (the transition probabilities). Note that we
do not assume that this world knowledge is correct, in the sense that the agent may
not know (or may know incorrectly) the transitions induced by certain actions. In
any case, throughout this section we assume this knowledge as fixed – one can
imagine the approach described herein eventually to take place after a period of self-
modeling and learning about the world.2 In this section, the modeled agent does not
learn new actions, but instead learns how to combine known actions in new ways.
In this sense, it is essentially distinct from the approach surveyed in Section 4.

Finally, in a first approach, we assume that the agent is able to recognize the
actions performed by the demonstrator. In this section we do not discuss how this
recognizer can be built, but refer that it can rely, for example, on the affordance
models discussed in Section 5. Toward the end of the section we briefly discuss how
the ability to recognize the demonstrator’s actions affects the ability of the learner
to recover the correct task to be learned (see also [80]).

In our adopted formalism, we “encode” a general task as a function r mapping
states to real values that describes the “desirability” of each particular state. This
function r can be seen as a reward for the learner and, once r is known, the problem

2 To our knowledge, no work exists that explores knowledge acquisition simultaneously with
learning by imitation, but we believe that such approach could yield interesting results.
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falls back into the standard framework of Markov decision processes [115]. In fact,
given the transition probabilities and the reward function r, it is possible to compute
a function Qr that, at each possible state, provides a “ranking” of all actions detailing
how useful each particular action is in terms of the overall goal encoded in r. From
this function Qr(x,a) it is possible to extract an optimal decision rule, henceforth
denoted by πr and referred as the optimal policy for reward r, that indicates the
agent the best action(s) to choose at each state,

πr(x) = argmax
a

Qr(x,a)

The computation of πr, or equivalently Qr, given r, is a standard problem and can
be solved using any of several standard methods available in the literature [115].

Bayesian Recovery of the Task Description

We consider that the demonstration consists of a sequence D of state-action pairs

D = {(x1,a1),(x2,a2), . . . ,(xn,an)} .

Each pair (xi,ai) exemplifies to the learner the expected action (ai) in each of the
states visited during the demonstration (xi). In the formalism just described, the goal
inference problem lies in the estimation of the function r from the observed demon-
stration D . Notice that this is closely related to the problem of inverse reinforcement
learning as described in [1]. We adopt the method described in [89], which is a basic
variation of the Bayesian inverse reinforcement learning (BIRL) algorithm in [116],
but the same problem could be tackled using other IRL methods from the literature
(see, for example, [102, 136]).

For a given reward function r, we define the likelihood of a state-action pair,
(x,a), as

Lr(x,a) = P [(x,a) | r] =
eηQr(x,a)

∑b eηQr(x,b)
,

where η is a user-defined confidence parameter that we describe further ahead. The
value Lr(x,a) translates the plausibility of the choice of action a in state x when
the underlying task is described by r. Therefore, the likelihood of a demonstration
sequence D can easily be computed from the expression above. We use MCMC
to estimate the distribution over the space of possible reward functions given the
demonstration (as proposed in [116]) and choose the maximum a posteriori.

We note that it may happen that the transition model available is inaccurate. In
this situation, the learner should still be able to perceive the demonstrated task, given
that the “errors” in the model are not too severe. We also note that, in the process
of estimating this maximum, the learner uses the knowledge concerning the action
repertoire and world dynamics of the demonstrator. After the task description (the
reward function r) is recovered, the learning agent then uses its own world model to
compute the right policy for the recovered task in terms of its own world dynamics
and action repertoire.
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Fig. 9 Combination of several simple behaviors: Non-social behavior, emulation and imita-
tion. The line separates the observed social vs non-social behavior, and does not correspond
to the agent’s reasoning (reproduced with permission from [79]).

A Model for Social Learning Mechanisms

Following the taxonomy in Fig. 2, we include in our model of social learning three
sources of information to be used by the learner in determining the behavior to adopt
[79]. The sources of influence on our model’s behavior are baseline preferences for
certain actions; a tendency to infer and share goals in observed behavior; and a
tendency to act efficiently to reach rewarding states. Each of the three sources of
information is quantified in terms of a utility functions QA, QI and QE , respectively.
The learner will adhere to the decision-rule obtained by combining the three func-
tions. In particular, the learner will adhere to the decision-rule associated with the
function

Q∗ = λAQA + λEQE + λIQI , (1)

with λA +λI +λE = 1. By resorting to a convex combination as in Eq. 1, there is an
implicit trade-off between the different sources of information (see also Fig. 9). It
remains to discuss how QA, QI and QE are computed from the demonstration.

• The first source of information is the learner’s preference between actions. This
preference can be interpreted, for example, as representing a preference for “eas-
ier” actions than “harder” actions, in terms of the respective energetic costs. This
preference corresponds to natural inclinations of the learner, and is independent
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of the demonstration. The preference is translated in the corresponding utility
function QA, whose values are pre-programmed into the agent.3

• The second source of information corresponds to the desire of the learner to repli-
cate the effects observed in the demonstration. For example, the learner may wish
to reproduce the change in the surroundings observed during the demonstration,
or to replicate some particular transition experienced by the teacher. This can be
translated in terms of a utility function QE by considering the reward function
that assigns a positive value to the desired effect and then solving the obtained
Markov decision process for the corresponding Q-function. The latter is taken as
QE .

• The third and final source of information is related to the desire of the learner to
pursue the same goal as the teacher. Given the demonstration, the learner uses
the Bayesian approach outlined before, inferring the underlying intention of the
teacher. Inferring this intention from the demonstration is thus achieved by a
teleological argument [33]: the goal of the demonstrator is perceived as the one
that more rationally explains its actions. Note that the goal cannot be reduced to
the final effect only, since the means to reach this end effect may also be part of
the demonstrator’s goal. We denote the corresponding utility function by QI .

It is only to be expected that the use of different values for the parameters λA, λE

and λI will lead to different behaviors from the learner. This is actually so, as illus-
trated by our experiments. We also emphasize that QE greatly depends on the world
model of the learner while QI also depends on the world model of the teacher.4

6.3 Experiments

In this section we compare the simulation results obtained using our proposed model
with those observed in a well-known biological experiment in children. We also
illustrate the application of our imitation-learning framework in a task with a robot.

Modeling Imitation in Humans

In a simple experiment described in [90], several infants were presented with a
demonstration in which an adult turned a light on by pressing it with the head. One
week later, most infants replicated this peculiar behavior, instead of simply using
their hand. Further insights were obtained from this experiment when, years later, a
new dimension to the study was added by including task constraints [54]. In the new
experiment, infants were faced with an adult turning the light on with the head but

3 The exact values of QA translate, at each state, how much a given action is preferred to any
other. The values are chosen so as to lie in the same range as the other utility functions, QI
and QE .

4 Clearly, the world model of the learner includes all necessary information relating the
action repertoire for the learner and its ability to reproduce a particular effect. On the other
hand, the world model of the teacher provides the only information relating the decision-
rule of the teacher and its eventual underlying goal.
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Fig. 10 Percentages of replication of demonstrated action. (a) Percentage of runs in which the
learner replicates the demonstrated use of head. Whenever the action was not performed with
the head, it was performed with the hand. (b) Rates of occurrence of the different actions.
When none of the two indicated actions is performed, no action is performed. In both plots,
each bar corresponds to a trial of 2,000 independent runs.

having the hands restrained/occupied. The results showed that, in this new situation,
children would display a more significant tendency to use their hands to turn the
light on. The authors suggest that infants understand the goal and the restriction and
so when the hands are occupied they emulate because they assume that the demon-
strator did not follow the “obvious” solution because of the restrictions. Notice that,
according to Fig. 2, using the head corresponds to imitation while using the hand
corresponds to (goal) emulation.

We applied our model of social learning to an abstracted version of this experi-
ment, evaluating the dependence of the behavior by the learner on the parameters λA,
λE and λI in two distinct experiments. In the first experiment, we fixed the weight
assigned to the baseline preferences (i.e., we set λA = 0.2) and observed how the be-
havior changed as as λI goes from 0 to 1 (i.e., as the learner increasingly adheres to
the inferred goal of the demonstration). The results are depicted in Figure 10(a). No-
tice that, when faced with a restricted teacher, the learner switches to an “emulative”
behavior much sooner, replicating the results in [54].

On a second experiment, we disregarded the observed effect (i.e., we set λE = 0)
and observed how the behavior of the learner changes as it assigns more importance
to the demonstration and focuses less on its baseline preferences (i.e., as λI goes
from 0 to 1). The results are depicted in Figure 10(b). Notice that, in this test, we
set λE to zero, which means that the agent is not explicitly considering the observed
effect. However, when combining its own interests with the observed demonstration
(that includes goals, actions and effects), the learner tends to replicate the observed
effect and disregard the observed actions, thus displaying emulative behavior. This
is particularly evident in the situation of a restricted teacher.
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Fig. 11 Illustration of the recycling game. (a) The setup. (b) Transition diagrams describing
the transitions for each slot/object.

We emphasize that the difference in behavior between the restricted and non-
restricted teacher is due only to the perceived difference on the ability of the teacher
to interact with the environment. We refer to [79] for further details.

Robot Learning by Imitation

We now present an application of our imitation learning model in a sequential task
using BALTAZAR [78]. To test the imitation learning model in the robot we con-
sidered a simple recycling game, where the robot must separate different objects
according to their shape (Figure 11). We set λE = λA = 0 and used only the im-
itation module to estimate the intention behind the demonstration. In front of the
robot are two slots (Left and Right) where 3 types of objects can be placed: Large
Balls, Small Balls and Boxes. The boxes should be dropped in a corresponding con-
tainer and the small balls should be tapped out of the table. The large balls should be
touched upon, since the robot is not able to efficiently manipulate them. Every time
a large ball is touched, it is removed from the table by an external user. Therefore,
the robot has available a total of 6 possible actions: Touch Left (TcL), Touch Right
(ThR), Tap Left (TpL), Tap Right (TpR), Grasp Left (GrL) and Grasp Right (GrR).

For the description of the task at hand, we considered a state-space consisting of
17 possible states. Of these, 16 correspond to the possible combinations of objects in
the two slots (including empty slots). The 17th state is an invalid state that accounts
for the situations where the robot’s actions do not succeed (for example, when the
robot drops the ball in an invalid position in the middle of the table).

We first provided the robot with an error-free demonstration of the optimal be-
havior rule. As expected, the robot was successfully able to reconstruct the optimal
policy. We also observed the learned behavior when the robot was provided with two
different demonstrations, both optimal. The results are described in Table 4. Each
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state is represented as a pair (S1,S2) where each Si can take one of the values “Ball”
(Big Ball), “ball” (Small Ball), “Box” (Box) or /0 (empty). The second column of
Table 4 then lists the observed actions for each state and the third column lists the
learned policy. Notice that, as before, the robot was able to reconstruct an optimal
policy, by choosing one of the demonstrated actions in those states where different
actions were observed.

Table 4 Demonstration 1: Error free demonstration. Demonstration 2: Inaccurate and incom-
plete demonstration, where the boxed cells correspond to the states not demonstrated or in
which the demonstration was inaccurate. Columns 3 and 5 present the learned policy for
Demo 1 and 2, respectively.

State Demo 1 Learned Pol. Demo 2 Learned Pol.

( /0, Ball) TcR TcR - TcR
(/0, Box) GrR GrR GrR GrR
(/0, ball) TpR TpR TpR TpR
(Ball, /0) TcL TcL TcL TcL

(Ball, Ball) TcL,TcR TcL,TcR GrR TcL
(Ball, Box) TcL,GrR GrR TcL TcL
(Ball, ball) TcL TcL TcL TcL

(Box, /0) GrL GrL GrL GrL
(Box, Ball) GrL,TcR GrL GrL GrL
(Box, Box) GrL,GrR GrR GrL GrL
(Box, ball) GrL GrL GrL GrL

(ball, /0) TpL TpL TpL TpL
(ball, ball) TpL,TcR TpL TpL TpL
(ball, Box) TpL,GrR GrR TpL TpL
(ball, ball) TpL TpL TpL TpL

We then provided the robot with an incomplete and inaccurate demonstration. As
seen in Table 4, the action at state ( /0, Ball) was never demonstrated and the action
at state (Ball, Ball) was wrong. The last column of Table 4 shows the learned policy.
Notice that in this particular case the robot was able to recover the correct policy,
even with an incomplete and inaccurate demonstration.

In Figure 12 we illustrate the execution of the optimal learned policy for the
initial state (Box, SBall).5

To assess the sensitivity of the imitation learning module to the action recogni-
tion errors, we tested the learning algorithm for different error recognition rates. For
each error rate, we ran 100 trials. Each trial consists of 45 state-action pairs, corre-
sponding to three optimal policies. The obtained results are depicted in Figure 13.

As expected, the error in the learned policy increases as the number of wrongly
interpreted actions increases. Notice, however, that for small error rates (≤ 15%) the
robot is still able to recover the demonstrated policy with an error of only 1%. In

5 For videos showing additional experiences see http://vislab.isr.ist.utl.pt/baltazar/demos/
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(a) Initial state. (b) GraspL.

(c) TapR. (d) Final state.

Fig. 12 Execution of the learned policy in state (Box, SBall).
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Fig. 13 Percentage of wrong actions in the learned policy as the action recognition errors
increase.

particular, if we take into account the fact that the error rates of the action recogni-
tion method used by the robot are between 10% and 15%, the results in Figure 13
guarantee a high probability of accurately recovering the optimal policy.
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We conclude by remarking that a more sophisticated model can be used in which
observation noise is taken into account. This may allow more insensitivity to the
noise, by including it explicit in the inference module that estimates the reward
representing the goal of the demonstrator.

7 Other Imitation Settings

Imitation learning goes far beyond programming a single robot to perform a task,
and has been used in many other settings.

For example, in [120], learning from demonstrated behavior somewhat resembles
transfer learning, in which an agent observes demonstrations in different scenarios
and uses this knowledge to recover a reward function that can be used in yet other
scenarios. This problem is addressed as a max-margin structured learning problem
to recover a reward function from a set of demonstrations. In order to simplify the
problem and to leverage fast solution methods, the paper formulates the problem as
a non-linear (non-differentiable) unconstrained optimization problem, that is tackled
using subgradient techniques that rely on the solution structure of the (embedded)
constraints.

In [45, 97], robots able to imitate have been used to interact with autistic children.
On a related application, the Infanoid project [70, 72] deals with gesture imitation
[71], interaction with people [73], and joint attention [98]. The robots in this project
are used in human-robot interaction scenarios with particular emphasis on people
with special needs. Although the results seem promising, and in short term people
seem to react well, care must be taken in ensuring that the robots are used to promote
socialization with other people, and not a stronger focus on the machine itself [121].

Some authors have also addressed imitation in multiagent scenarios, considering
multiple demonstrators [132], multiple learners [30] and human-robot joint work
[42]. In the presence of multiple demonstrators, these may be performing different
tasks and the agent must actively select which one to follow. In [132], this obser-
vation led the authors to call their approach active imitation. Active learning ap-
proaches applied to imitation are very recent [81, 132]. Typically, the burden of
selecting informative demonstrations has been completely on the side of the men-
tor. Active learning approaches endow the learner with the power to select which
demonstrations the mentor should perform. Several criteria have been proposed:
game theoretic approaches [132], entropy [81] and risk minimization [40].

Computational models of imitation have also been proposed to understand bi-
ology by synthesis. Examples include models of language and culture [3, 15], cu-
riosity drives resulting in imitation behaviors [68], behavior switching in children
and chimpanzees [79]. There have also been studies of imitation deficits relying on
models of brain connections [110, 124]

We also note that there are other social learning mechanisms that fall outside the
“imitation realm” in biological research. Often imitation is seen as a fundamental
mental process for acquiring complex social skills but other mechanisms, although
cognitively simpler, may have their own evolutionary advantages [89, 104, 105].
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8 Discussion

In this chapter we presented an overview of imitation learning from two different
perspectives. First, we discussed evidence coming from research in biology and
neurophysiology and identified several cognitive processes required for imitation.
We particularly emphasized two ideas that have a direct impact on imitation: 1) the
action-perception coupling mechanisms involved, for instance, in the mirror system;
and 2) the different social learning mechanisms found in infants and primates, not all
of which can be classified as “true imitation”. We also pointed out the importance of
contextual cues to drive these mechanisms and to interpret the demonstration. As the
bottom line, we stress that social learning happens at different levels of abstraction,
from pure mimicry to more abstract cognitive processes.

Taking this evidence into account, we then reviewed imitation in artificial sys-
tems i.e., methods to learn from a demonstration. As a result of the advances on
this topic, there is currently a vast amount of work. Following the three main chal-
lenges identified in [151], we surveyed several methods that take advantage of the
information provided by a demonstration in many different ways: as initial condi-
tions for self-exploration methods (including planning), as exploration strategies, as
data from which to infer world models, or as data to infer what the task is. These
methods are being used with many different goals in mind, either to speed up robot
programming, to develop more intuitive human-robot interfaces or to study cogni-
tive and social skills of humans. In addition to this, we provide experimental results
of increasing abstract imitation behaviors, from motor resonance to task learning.

An open question, and one we only addressed in an empirical way, is how all
these methods are related or could be combined to achieve complex imitation be-
haviors. Indeed, different approaches usually tailor their formalisms to a particular
domain of application. It is still not clear how different they are and if they can be
used in several domains. If it becomes clear that they are indeed different, it would
be interesting to understand how to switch between each mechanism, and eventually
understand if there is a parallel in the brain.

Another important aspect that requires further research is related to perception.
Although this is not specific to imitation, it plays a crucial role when interpreting the
demonstration. Currently, robots are still unable to properly extract relevant infor-
mation and perceive contextual restrictions from a general purpose demonstration.
Due to this difficulty, having a robot companion that learns by imitation is still be-
yond our technological and scientific knowledge.

Nevertheless, most of these problems can be somewhat reduced when robot pro-
gramming is conducted by skilled people that can handle more intrusive sensory
modalities. In the chapter, we analyzed more in detail an alternative path to imita-
tion which relies on previously learned models for the robot and the environment
that help the understanding of the demonstration.

Using prior knowledge may simplify the interpretation of the demonstration,
but requires the acquisition of good motor, perceptual and task descriptions. Most
approaches consider predefined feature spaces for each of these entities. When
considering object-related tasks, this problem is even more important than when
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addressing pure motor tasks. A given world state may be described in terms
of object locations, object-object relations, robot-object relations, among many
others, but it is not easy to automatically extract, or choose, among the correct
representations.

Finally, a recent trend in imitation learning tries to learn task abstractions from
demonstrations. The rationale is that, once the robot has understood a task in an
abstract manner, it can easily reason about the contextual cues that drive imita-
tion behaviors, include them in future plans and, as a result, generalize better to
other situations. In our experimental results, we showed how to combine multiple
task descriptions to switch between different social learning behaviors through a
biologically-inspired computational imitation model. Also, having such a represen-
tation opens the door to more general cognitive imitation architectures for robots.

Future applications of imitation will handle human-robot collaboration in coop-
erative settings (with several robots or people) and active strategies for interaction
with the demonstrator.

We conclude this review by stating our belief that imitation and learning by
demonstration will become one of the capabilities that future fully autonomous
robots will extensively use, both to acquire new skills and to adapt to new situations
in an efficient manner. The path to this objective is still full of exciting research
challenges and fascinating links to the way we, humans, develop and learn.
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74. Kulić, D., Nakamura, Y.: Incremental Learning of Full Body Motion Primitives. In:
Sigaud, O., Peters, J. (eds.) From Motor Learning to Interaction Learning in Robots.
SCI, vol. 264, pp. 383–406. Springer, Heidelberg (2010)

75. Kuniyoshi, Y., Inaba, M., Inoue, H.: Learning by watching: Extracting reusable task
knowledge from visual observation of human performance. IEEE Trans. on Robotics
and Automation 10(6), 799–822 (1994)

76. Kuniyoshi, Y., Yorozu, Y., Inaba, M., Inoue, H.: From visuo-motor self learning to early
imitation-a neural architecture for humanoid learning. In: IEEE Int. Conf. Robotics and
Automation, vol. 3, pp. 3132–3139 (2003)

77. Liberman, A.M., Mattingly, I.G.: The motor theory of speech perception revised. Cog-
nition 21, 1–36 (1985)

78. Lopes, M., Beira, R., Praça, M., Santos-Victor, J.: An anthropomorphic robot torso for
imitation: design and experiments. In: International Conference on Intelligent Robots
and Systems, Sendai, Japan (2004)

79. Lopes, M., Melo, F., Kenward, B., Santos-Victor, J.: A computational model of social-
learning mechanisms. Adaptive Behavior (to be published)

80. Lopes, M., Melo, F.S., Montesano, L.: Affordance-based imitation learning in robots.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems, USA, pp.
1015–1021 (2007)

81. Lopes, M., Melo, F.S., Montesano, L.: Active learning for reward estimation in
inverse reinforcement learning. In: European Conference on Machine Learning
(ECML/PKDD), Bled, Slovenia (2009)

82. Lopes, M., Santos-Victor, J.: Visual Transformations in Gesture Imitation: What you
see is what you do. In: IEEE Int. Conf. Robotics and Automation (2003)

83. Lopes, M., Santos-Victor, J.: Visual learning by imitation with motor representations.
IEEE Trans. Systems, Man, and Cybernetics - Part B: Cybernetics 35(3) (2005)



352 M. Lopes et al.

84. Lopes, M., Santos-Victor, J.: A developmental roadmap for learning by imitation in
robots. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernet-
ics 37(2) (2007)

85. Lyons, D.E., Young, A.G., Keil, F.C.: The hidden structure of over imitation. Proceed-
ings of the National Academy of Sciences 104(50), 19751–19756 (2005)

86. Maistros, G., Marom, Y., Hayes, G.: Perception-action coupling via imitation and atten-
tion. In: AAAI Fall Symp. Anchoring Symbols to Sensor Data in Single and Multiple
Robot Systems (2001)
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Learning to Imitate Human Actions through
Eigenposes

Rawichote Chalodhorn and Rajesh P.N. Rao

Programming a humanoid robot to perform an action that takes into account the
robot’s complex dynamics is a challenging problem. Traditional approaches typi-
cally require highly accurate prior knowledge of the robot’s dynamics and the en-
vironment in order to devise complex control algorithms for generating a stable
dynamic motion. Training using human motion capture (mocap) data is an intuitive
and flexible approach to programming a robot but direct usage of kinematic data
from mocap usually results in dynamically unstable motion. Furthermore, optimiza-
tion using mocap data in the high-dimensional full-body joint-space of a humanoid
is typically intractable. In this chapter, we purposes a new model-free approach to
tractable imitation-based learning in humanoids by using eigenposes.

The proposed framework is depicted in Fig. 1. A motion capture system trans-
forms the Cartesian positions of markers attached to the human body to joint angles
based on kinematic relationships between the human and robot bodies. Then, linear
PCA is used to create eigenpose data, which are representation of whole-body pos-
ture information in a compact low-dimensional subspace. Optimization of whole-
body robot dynamics to match human motion is performed in the low dimensional
subspace by using eigenposes. In particular, sensory feedback data are recorded
from the robot during motion and a causal relationship between eigenpose actions
and the expected sensory feedback is learned. This learned sensory-motor mapping
allows humanoid motion dynamics to be optimized. An inverse mapping that maps
optimized eigenpose data from the low-dimensional subspace back to the original
joint space is then used to generate motion on the robot. We present several results
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Fig. 1 A framework for learning human behavior by imitation through sensory-motor map-
ping in low dimensional subspaces.

demonstrating that the proposed approach allows a humanoid robot to learn to walk
based solely on human motion capture without the need for a detailed physics-based
model of the robot.

1 Related Work

Imitation is an important learning mechanism in many biological systems including
humans [16]. In humans, a wide range of behaviors, from styles of social interaction
to tool use, are passed from one generation to another through imitative learning.
Unlike trial-and-error-based learning methods such as reinforcement learning (RL)
[18], imitation-based learning is fast: given a demonstration of a desired behavior,
the learning agent only has to search for the optimal solution within a small search
space. The potential for rapid behavior acquisition through demonstration has made
imitation learning an increasingly attractive alternative to manually programming
robots. It is straightforward to recover kinematic information from human motion
using, for example, motion capture, but imitating the motion with stable robot dy-
namics is a much harder problem. Stable imitation requires deriving appropriate
action commands that matches the robot’s dynamics and the dynamic interaction
between the robot and its environment. Sensory feedback data must also be taken
into account for achieving stable imitation.

The idea of using imitation to train robots has been explored by a number of
researchers. Demiris and Hayes [5] demonstrated imitative learning using a wheeled
mobile robot that learned to solve a maze problem by imitating another homologous
robot. Billard [2] showed that imitation is a mechanism that allows the robot imitator
to share a similar set of proprio- and exteroceptions with teacher. Ijspeert et al. [8]
designed a nonlinear dynamical system to imitate trajectories of joints and end-
effectors of a human teacher; the robot learned and performed tennis swing motions
by imitation. The mimesis theory of [9, 4] is based on action acquisition and action
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symbol generation but does not address dynamics compensation for real-time biped
locomotion.

Traditional model-based approaches based on zero-moment point (ZMP) [20, 17]
or the inverted pendulum model [11, 10] require a highly accurate model of robot
dynamics and the environment in order to achieve a stable walking gait. Learning-
based approaches such as RL are more flexible and can adapt to environmental
change but such methods are typically not directly applicable to humanoid robots
due to the “curse of dimensionality” problem engendered by the high dimensionality
of the full-body joint space of the robot. Morimoto et al. [15] demonstrated that
stepping and walking policies could be improved by using RL and kernel dimension
reduction (KDR): stepping and walking controllers are provided, and the learning
system improves the performance of these controllers. The framework proposed
in this chapter does not assume a specific type of nonlinear dynamical system or
a specific gait as in [15] but is designed for learning general human motion from
demonstrations. It can be used for learning different gaits for different tasks without
redesign the algorithm.

Gaussian Process Dynamical Model (GPDM) [21] is a dimensionality reduction
method for modeling high-dimensional sequential data. A temporal sequence of
human walking data was modeled and reproduced without prior information. The
resulted walking gait was reproduced kinematically without involving interactions
with the environment. In contrast, the motion learning framework proposed in this
chapter learns a dynamic model of interaction between the robot and its environment
by learning a causal relationship between low-dimensional posture commands and
sensory feedback.

2 3-D Eigenposes

Nonlinear dimensionality reduction algorithms had previously been applied to rep-
resentation of human posture [3, 7]. Tatani and Nakamura [19] explored using a
low-dimensional subspace to kinematically reproduce human motion on a humanoid
robot via non-linear principal components analysis (NLPCA) [13]. However, these
methods have some parameters that have to be well-tuned. Properties of the result-
ing low-dimensional subspaces used in these algorithms have not been well studied.
Principal components analysis (PCA) is a linear dimensionality reduction technique
whose properties have been well studied. We utilize PCA for the motion learning
framework in this chapter.

2.1 Eigenposes as Low-Dimensional Representation of Postures

Particular classes of motion such as walking, sidestepping, or reaching for an ob-
ject are intrinsically low-dimensional. We apply linear PCA to parameterize the
low-dimensional motion subspace X. Vectors in the high-dimensional joint angle
space are mapped to the low-dimensional space by multiplication with the trans-
formation matrix C. The rows of C consist of the eigenvectors, computed via
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Fig. 2 Posture subspace and example poses from a hand coded walking gait. A three-
dimensional space produced by PCA represents the posture of the Fujitsu HOAP2 robot.
Blue points along a loop represent different robot postures during a single walk cycle. The
first two labeled postures are intermediate postures between an initial stable standing pose
and a point along the periodic gait loop represented by postures three through eight.

eigenvalue decomposition of the motion covariance matrix. Eigenvalue decomposi-
tion produces transformed vectors whose components are uncorrelated and ordered
according to the magnitude of their variance. These transformed vectors shall be
referred as eigenposes.

For example, let Θ be the 20× 1 vector of joint angles (the high-dimensional
space) and x be the 3×1 vector of eigenpose in a 3D subspace. We can calculate x
by first calculating p = CΘ , where p is a 20× 1 vector of all principal component
coefficients of Θ and C is the 20×20 PCA transformation matrix. We then pick the
first three elements of p (corresponding to the first three principal components) to
be x. The inverse mapping Θ̃ , which is an approximation to Θ , can be computed by
Θ̃ = CTp̃ when the first three components of a full-rank-vector p̃ are the elements
of x and the rest of the elements are zero.

Examples of the low dimensional representation of the joint angle space of a
HOAP-2 robot executing a walking gait (in the absence of gravity) are shown in
Fig. 2. The robot images in the figure were produced by inverse PCA mapping. The
figure demonstrates that the temporal sequence of motion data is still preserved in
the low-dimensional subspace representation of the motion.
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2.2 Action Subspace Embedding

PCA reduces the redundancy of posture data in high dimensional joint space. We
use the reduced dimensional subspace X for constraining the postures of a motion
pattern.
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Fig. 3 Embedded action subspace of a humanoid walking gait. Training data points in the
reduced posture space (shown in blue-dots) are converted to cylindrical coordinates relative
to the coordinate frame xθ ,yθ ,zθ . The points are then represented as a function of the phase
angle ϕ , which forms an embedded action subspace (shown as a red solid-line curve).

A periodic movement such as walking can be represented by a closed-curve pat-
tern X. As an example, the periodic part of the data in Fig. 2 was manually seg-
mented and is shown as the blue dots pattern in Fig. 3. In the general case, we
consider a non-linear manifold representing the action space A ⊆ X. Non-linear pa-
rameterization of the action space allows further reduction in dimensionality. In
particular, a one-dimensional representation of the original motion in the three-
dimensional subspace is obtained by converting each point to its representation in a
cylindrical coordinate frame. This is done by establishing a coordinate frame with
three basis directions xθ ,yθ ,zθ . The zero point of the coordinate frame is the empir-
ical mean of the data points in the reduced space. The data are re-centered around
this new zero point and the resulting data is labeled x̂i.

Then, the principal axis of rotation zθ is computed as:

zθ =
Σi(x̂i × x̂i+1)
‖Σi(x̂i × x̂i+1)‖ (1)

Next, xθ is chosen to align with the maximal variance of xi in a plane orthogonal to
zθ . Finally, yθ is specified as orthogonal to xθ and zθ . The final embedded training
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data is obtained by cylindrical conversion to (ϕ ,r,h) where r is the radial distance,
h is the height above the xθ − yθ , and ϕ is the angle in xθ − yθ plane measured
counter-clockwise from xθ .

Given the loop topology of the latent training points, one can parameterize r
and h as a function of ϕ . The embedded action space is represented by a learned
approximation of the function:

[r,h] = g(ϕ) (2)

where 0 ≤ ϕ ≤ 2π . This function is approximated using a radial basis function
(RBF) network. Note that the angle ϕ can be interpreted as the motion phase an-
gle because it indicates how far the current posture is from the beginning of the
motion cycle, which in our case is a walking gait. The first-order time derivative of
ϕ tells us the speed of movement.

2.3 Action Subspace Scaling

The high-dimensional joint angle data are normalized before PCA. The data for each
joint dimension are originally in different scales of values, but after normalization,
they are scaled to the same range. When the normalized data are multiplied by a
scalar value, the results are similar postures but with a different magnitude, allowing
posture scaling. Note that posture scaling yields reasonable results only when the
motion data set contains one specific type of motion.

Fig. 4 Motion scaling of a walking gait. The first row shows four different postures of a
walking gait. The second row shows coherent postures of the first row when a multiplying
factor f = 2.0 is applied to the low-dimensional representation of this walking gait.
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Scaling up and down motion patterns in the low-dimensional subspace produces
similar motion patterns but with differences in the magnitude of motion. This means
posture scaling ability is preserved after PCA is applied. If A represents a walking
gait, multiplying A by a factor f > 1 will result in a similar walking gait but with
larger steps. Multiplying A by a factor f < 1 results in a walking gait with a smaller
step size. Fig. 4 shows an example of posture scaling of a walking motion.

It should be noted that action subspace scaling only produces similarity in kine-
matic postures. The result of scaling may not be dynamically stable, especially when
the scaling factor f > 1. To achieve stable motion, the new motion has to be gradu-
ally learned as will be described in Section 5.1. We use action subspace scaling for
f < 1 to initialize the learning process.

3 Learning to Predict Sensory Consequences of Actions

A key component of the proposed framework is learning to predict future sensory
inputs based on current actions. This learned predictive model is used for optimal
action selection. The goal is to predict, at time step t, the future sensory state of
the robot, denoted by st+1. In general, the state space S = Θ ×P is the Cartesian
product of the high-dimensional joint space Θ and the space of other percepts P.
Other percepts include, for example, measurements from the torso accelerometer or
gyroscope, foot pressure sensors, and information from camera images. The goal is
to learn a function F : S×A �→ S that maps the current state and action to the next
state. In this framework, F is assumed to be deterministic.

Often the perceptual state st by itself is not sufficient for predicting future states.
In such cases, one may learn a higher order mapping based on a history of perceptual
states and actions, as given by an n-th order Markovian function:

st+1 = F(st ,st−1, ...,st−n−1,at ,at−1, ...,at−n−1) (3)

For this chapter, unless stated otherwise, we use a second-order (n = 2) time-delay
radial basis function (RBF) network for learning the predictive model. The state

Fig. 5 Sensory signals (e.g., gyroscope signals) at the next time step are predicted based on
the current posture command (eigenpose) as well as sensory signals and posture commands
from previous time steps. The predictor is learned by comparing the predicted sensory signals
to the actual sensor readings from the robot.
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vector is taken to be the three-dimensional gyroscope signal (st ≡ ωt). As discussed
in the previous section, an action is represented by a phase angle, radius, and height
in latent posture space (at ≡ χt ∈ X). A schematic diagram of the learning method
is shown in Fig. 5.

4 Predictive Model Motion Optimization

The algorithm presented in this section combines optimization and sensory predic-
tion (see previous section) to select an optimal action plan for a humanoid robot.
Fig. 6 illustrates this optimization process.

One may express the desired sensory states that the robot should attain during a
particular class of actions using an objective function Γ (s). The algorithm then se-
lects actions a∗t , . . . ,a∗T such that the predicted future states st , . . . ,sT will be optimal
with respect to Γ (s):

a∗t = argmin
at

Γ (F(st , . . . ,st−n−1,at , . . . ,at−n−1)). (4)

In our work, the objective function Γ measures torso stability as defined by the
following function of gyroscope signals:

Γ (ω) = λxω2
x + λyω2

y + λzω2
z , (5)

where ωx,ωy,ωz refer to gyroscope signals in the x,y,z axes respectively. The con-
stants λx,λy,λz allow one to weight rotation in each axis differently. Assuming that

Fig. 6 Model predictive motion generator for optimizing motion stability. At time t, the op-
timization algorithm generates tentative actions or posture commands (at ≡ χ ∈ X). The
predictive model predicts values of subsequent gyroscope signals ωp. The optimization al-
gorithm then selects the optimal posture command χ∗ based on ωp. The optimal posture
command χ∗ is executed by a robot/simulator. The resulting gyroscope signals are recorded
for retraining the predictive model.
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the starting posture is statically stable, one may simply minimize overall rotation of
the robot body during motion in order to maintain balance by minimizing the sum of
squares of the gyroscope signals. The objective function (5) thus provides a measure
of stability of the posture during motion.

For the second-order predictive function F , the optimization problem becomes
one of searching for the optimal stable action at time t given by:

χ∗
t = argmin

χt∈S
Γ (F(ωt ,ωt−1,χt ,χt−1)) (6)

S =
{[

ϕs rs hs
]T |ϕ ,r,h defined in Section 2.2

}
(7)

For efficient optimization, the search space is restricted to a local region in the action
subspace:

ϕt−1 < ϕs ≤ ϕt−1 + εϕ (8)

ra − εr ≤ rs ≤ ra + εr (9)

ha − εh ≤ hs ≤ ha + εh (10)

0 < εϕ < 2π (11)

[ra,ha] = g(ϕs) (12)

In the above, the phase-motion-command search-range ϕs begins after the position
of the phase motion command ϕt−1 at the previous time step, the range for the radius
search rs begins from a point in the action subspace embedding A defined by (12) in
both positive and negative directions from ra along r for the distance εr ≥ 0, and the
search range for hs is defined in the same manner as rs according to ha and εh. In the
experiments, the parameters εϕ ,εr ,and εh were chosen to ensure efficiency while at
the same time allowing a reasonable range for searching for stable postures.

Note that the search process exploits the availability of a human demonstrator by
using the demonstrated action, as captured by (12), to constrain the search for sta-
ble robot actions. This imitation-based approach contrasts with more traditional ap-
proaches based on trial-and-error reinforcement learning or complex physics-based
models.

Additionally, since selected actions will only truly be optimal if the sensory pre-
dictor is accurate, the prediction model is periodically re-trained based on the pos-
ture commands generated by the optimization algorithm and the sensory feedback
obtained from executing these commands.

The entire motion optimization and action selection process can be summarized
as follows:

1. Use PCA to obtain eigenpose data from the human-demonstrated joint angle data.
2. Apply action subspace embedding for parameterization of the periodic motion

pattern.
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3. Start the learning process by inverse mapping the eigenpose actions back to the
original joint space and executing the corresponding sequence of servo motor
commands in a simulator or a real robot.

4. Use the sensory measurements and motor commands from the previous step to
update the sensory-motor predictor as described in Section 3. In the present work,
the state vector comprised of three channels of the gyroscope signal and the ac-
tion variables were ϕ , r, and h in the low-dimensional subspace.

5. Use the learned model to estimate a sequence of actions according to the model
predictive controller scheme described above (Fig.6).

6. Execute the computed actions and record sensory (gyroscope) feedback.
7. Repeat steps 4 through 6 until satisfactory motion is obtained.

4.1 One-Dimensional Motion Optimization

Our first experiment involved simulation in the Webots dynamic environment [14].
The goal was to increase the stability of a hand-coded walking gait (shown in Fig. 2)
by using the motion optimization technique. The experiment also demonstrates the
utility of action subspace embedding and the physical meaning of the parameter ϕ .
Since this experiment involves one-dimensional optimization along ϕ , the parame-
ters εr and εh in (9) and (10) are set to zero. Thus, (6) becomes:

ϕ∗
t = argmin

ϕt
Γ (F(ωt ,ωt−1,ϕt ,ϕt−1)). (13)

We refer to this process as motion-phase optimization because only the parame-
ter ϕ is optimized – the values of r and h are implicitly optimized through (2).
The three channels of the gyroscope signal are regarded as state and the motion
phase ϕ is regarded as the action. This state-action data is used for training the
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Fig. 7 Motion-phase optimization.
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Fig. 8 Comparison of initial and optimized walking gait. The composite image at the top
depicts the robot performing the initial walking gait for 2 seconds. Motion-phase optimization
results in a faster walking gait as shown in the bottom image.

time-delay RBF network (depicted in Fig.5) to predict the gyroscope signals at the
next time step. The optimization algorithm uses the learned predictor to obtain a
new optimized action plan, which is then executed in the simulator.

The optimization result after three iterations of learning is shown in Fig.7. As
seen in the figure, motion-phase optimization is essentially a line-search and the
result of the optimization remains on the constraint pattern. Thus, no new posture
is derived from this optimization. However, the phase of the motion is altered in
such a way that the selected actions minimize gyroscope signal oscillation. Fig. 8
shows that the optimized walking gait is significantly faster than the original gait.
The walking speed of the optimized walking gait could be increased to three times
the original gait in further optimization. Thus, we conclude that ϕ is controlling the
timing of motion.

4.2 Three-Dimensional Motion Optimization

The second experiment focused on three-dimensional optimization of an initial
walking gait based on equations (6)-(12). Since the optimization process is per-
formed in the three-dimensional space of φ , r and h in cylindrical coordinates, novel
postures resulting from optimized actions that do not lie on the constraint pattern can
be expected.

The optimized walking gait in the low dimensional subspace shown in Fig. 9 was
obtained after three iterations of sensory-motor prediction learning. An improved
dynamically balanced walking gait was achieved. The new trajectory has a shape
similar to the initial one but has a larger magnitude and is shifted. After remapping
this trajectory back to the high dimensional space, the optimized motion pattern was
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Fig. 9 Three-dimensional optimization results for a walking motion pattern based on an ac-
tion subspace embedding in a low-dimensional subspace.

Fig. 10 Walking gait on a Fujitsu HOAP2 robot after three-dimensional optimization.

tested with the simulator and the real robot. The gyroscope readings from the new
walking pattern are shown in Fig.11. The RMS values for the optimized walking
gait along the x, y and z axes are 0.0521, 0.0501 and 0.0533 respectively, while
the values for the original walking gait were 0.3236, 04509 and 0.3795. The RMS
values for the optimized gait are thus significantly less than the original walking gait,
indicating significant improvement in the dynamic stability of the robot. The robot
walks with a larger step size but slower walking speed than the original walking
gait.

The original and optimized gaits are shown in Fig. 10. The optimized walking
gait has a different balance strategy compared to the original walking gait. In the
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Fig. 11 Comparison of gyroscope signals before and after optimization. The plots from top
to bottom show the gyroscope signals for the axes x, y and z recorded during the original and
optimized walking motion. Notice that the root mean squared (RMS) values are significantly
reduced for the optimized motion.

original gait, the robot quickly swings the whole body on the side of the support
leg while it moves the other leg forward. For the optimized gait, the robot leans on
the side of the support leg, bends the torso back in the opposite direction while it
moves the other leg forward slowly. With the optimized gait, the robot also keeps its
torso vertically straight throughout the motion. Fig.11 confirms that the algorithm
was able to optimize the motion in such a way that the gyroscopic signals for the
optimized motion are almost flat.

5 Learning Human Motion through Imitation

To be able to imitate a human motion, one must first solve the correspondence prob-
lem, which in our case is the problem of kinematic mapping of whole-body postures
between a human demonstrator and a humanoid robot (we use a Fujitsu HOAP-2
robot). The human subject and the robot share similar humanoid appearances, but
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their kinematic structure (skeletons) are dissimilar. The correspondence problem is
solved by searching for a set of joint angles for the robot that generates the best
matching pose with respect to the human demonstration. A Vicon optical system
running at 120Hz and a set of 41 reflective markers was used for recording human
motion. Initially, the markers are attached to the human subject and the 3-D posi-
tions of the markers are recorded for each pose during motion. The recorded marker
positions provide a set of Cartesian points in the 3D capture volume for each pose.
To obtain the robot’s poses, the marker positions are used as positional constraints
on the robot’s skeleton and a set of joint angles is obtained using the standard nu-
merical inverse kinematics (IK) solver in the Vicon motion capture system.

As depicted in Fig. 12, in order to generate robot joint angles, the human subject’s
skeleton is simply replaced by a robot skeleton of the same dimension. For exam-
ple, the shoulders were replaced with three distinct 1-dimensional rotating joints
rather than a single 3-dimensional human ball joint. The IK routine then directly
generates the desired joint angles on the robot skeleton for each pose. One limi-
tation of this technique is that there may be particular kinds of motion for which
the robot’s joints cannot approximate the human pose. This implies that the human
demonstrator should try to avoid certain types of motion that the robot cannot imi-
tate. For example, using toes in a walking gait should be avoided. In the case of arm
movement, since the learner robot is a HOAP-2 robot having only four degrees of
freedom (DoFs) in each arm, demonstration of actions that require six DoFs should
be avoided. For the present work, since we only considered human motion that the
robot has the potential to achieve, the above method proved to be a very efficient
way of generating large sets of human motion data for robotic imitation.

Fig. 12 Human skeleton (left) and robot skeleton (right) for kinematic mapping.
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Fig. 13 Posture subspace and example poses obtained from human motion capture. Linear
PCA was applied to joint angle data from a human kinematic configuration obtained via mo-
tion capture as described in Section 5. Blue diamonds represent different human postures
during a single walking cycle. Red circles mark various example poses as shown in the num-
bered images.

5.1 Optimization of Motion Capture Data

Our first experiment with human motion capture data focused on making robot learn
how to walk from a human demonstration of walking. An example of the low-
dimensional representation of joint angle data from human walking are shown in
Fig. 13. Note that the data pattern from human mocap data in Fig. 13 is more irregu-
lar than the data from the hand-coded walking gait in Fig. 2. Optimization based on
human mocap data is difficult because the initial gait is unstable. We therefore used
a motion scaling strategy in a low-dimensional subspace as described in Section 2.3.
When the initial walking pattern in the low-dimensional subspace is scaled down, it
produces smaller movements of the humanoid robot, resulting in smaller changes in
dynamics during motion. The initial walking pattern is scaled down until a dynami-
cally stable motion is found, after which the learning process is started. The motion
optimization method in Section 4 is applied to the scaled-down pattern until its dy-
namic performance reaches an optimal level. The trajectory of the optimized result
is gradually scaled up toward the target motion pattern. In this experiment, a scaling
factor of 0.3 applied to the original motion pattern was found to be stable enough
to start the learning process. The final optimization result is shown as a trajectory
of red circles in Fig. 14. It corresponds to about 80% of the full scale motion from
mocap data.
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Fig. 14 Motion pattern scaling and optimization of human motion capture data. The target
motion pattern is scaled down until it can produce a stable motion which is used to start the
motion optimization process.

For the results in Fig. 14, five learning iterations with scale values 0.3, 0.5 and
0.7 were performed, and for the final result, ten iterations were performed for the
scale 0.8. Note that the optimization time depends on the parameters εϕ ,εr and εh.
The parameter εϕ must be defined such that value of ϕs is greater than the maximum
difference in motion-phase-angle in the original mocap data. This will ensure that
the optimization algorithm can search for a pose in a range that the original move-
ment achieved. The longer the range of ϕs, the better the exploration but greater the
optimization time. For r and h, the same parameter setup as ϕ can be applied. The
value of εr and εh were set to 0.5 for all of the optimizations. The objective function
in (5) has three tuning parameters, which are λx,λy and λz. At the beginning, we set
the values of these parameters to 1. From observation of the first learning iteration,
the parameters may be tuned, after which the values are maintained for the rest of
learning iterations. In this chapter, λx and λz were set to 1.0. λy, which corresponds
to the vertical direction, was set to 2.0 to allow the algorithm to compensate for the
unexpected turns seen during the first learning iteration.

The simulation and experimental results are shown in Fig. 15. The learning pro-
cess is performed in the simulator [14] and the resulting motion is tested on the real
robot to minimize damage to the robot during the learning process. We observed
that as expected, the walking gait on the real robot is not as stable as the results in
the simulator because of differences in the frictional forces modeled in the simulator
and the actual forces on the floor. We believe that performing further learning di-
rectly on the real robot (where permissible) could rectify this problem and improve
performance.
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Fig. 15 Learning to walk through imitation. The first row shows a human subject demonstrat-
ing a walking gait in a motion capture system. The second row shows simulation results for
this motion before optimization. The third row shows simulation results after optimization.
The last row shows results obtained on the real robot.

Note that the learned motion is indeed dynamic and not quasi-static motion be-
cause there are only two postures in the walking gait that can be considered statically
stable, namely, the two postures in the walking cycle where the two feet of the robot
contact the ground. The rest of the postures in the walking gait do not need to be
statically stable to maintain balance.

6 Lossless Motion Optimization

In the previous sections, the eigenposes that have been used for motion learn-
ing were three-dimensional. 3-D data are convenient for visualization and for
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developing motion optimization algorithms based on analytical geometry. Periodic
motion patterns such as hand coded walking and human mocap walking can be suc-
cessfully learned using 3-D eigenposes but for some motion patterns, using only
three dimensions cannot preserve the significant characteristics of the original mo-
tion. In this section, we extend our technique to larger-dimensional eigenposes.
In particular, we show how the phase-motion optimization concept in Section 4.1
can be implemented with a new cylindrical coordinate transformation technique for
large dimensional subspaces. We demonstrate how the algorithm can be used in a
HOAP-2 humanoid robot to learn a sidestepping motion from a human demonstrator
using a motion capture system.

6.1 Human Motion Capture of Sidestepping Motion

A motion capture session of a human demonstrator performing a sidestepping mo-
tion (to the right) as shown in Fig.16 was used as the target motion to be imitated.
The motion sequence can be divided into four major steps starting from a standing
posture. First, the right leg is lifted off the ground. Second, the right leg lands on
the ground. Third, the left leg lifts off the ground. Fourth, the left leg swings in to-
ward the right leg. For purposes of later discussion, we define the sidestep motion as
being comprised of four phases: right-lift, right-landing, left-lift, and left-landing.

The kinematic mapping process described in Section 5 resulted in 20 dimensions
of joint angle data, which were transformed into orthogonal principal axes using
PCA as described in Section 2.1.

Fig.17 plots the accuracy of data reconstruction as a function of the number of
principal components of the mocap data. When only the first three principal com-
ponents are used, less than 80% of accuracy is achieved in reconstructing the origi-
nal joint angle data. Accuracy increases gradually until 100% accuracy is obtained

a) b) c)

d) e) f)

Fig. 16 Motion capture of sidestepping motion. Six samples of a rightward sidestepping
motion sequence are shown in a) through f). Note that f) is a standing posture after one cycle
of sidestepping. Each sidestepping cycle takes about 1 second.
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Fig. 17 Reconstruction accuracy as a function of the number of principal components of the
sidestepping motion data from Figure 16.

when all 20 dimensions of eigenpose data are used. In this section, we illustrate our
technique using 20-dimensional eigenposes for learning.

6.2 Large-Dimensional Cylindrical Coordinate System
Transformation

The motion-phase optimization described above was performed in a cylindrical co-
ordinate system. Transformation of data from a 3-D Cartesian coordinate system to a
3-D cylindrical coordinate is straightforward. However, that is not the case for trans-
formation of data that have more than three dimensions. In this section, we suggest
an extension of the cylindrical coordinate transformation idea to higher dimensions.

When n = 3, transformation from a Cartesian space X to a cylindrical coordinate
system Φ is given by the mapping:

f (x,y,z) → f (ϕ ,r,h) (14)

where
ϕ = arctan(

y
x
), (15)

r =
√

x2 + y2, (16)

and
h = z. (17)

When n > 3, an n-dimensional function may be written as:

f (d1,d2,d3, . . . ,dn) (18)

where the di, i = 1, . . . ,n (n > 3), represent variables along orthogonal axes in R
n.
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We can express the function in (18) as:

f (x,y,z1, . . . ,zn−2) (19)

The key idea is to represent the function f using a set of multiple cylindrical coordi-
nate frames. Suppose, for example, that f is a 5-dimensional function. Then, f can
be expressed in the form of (19) as:

f (x,y,z1,z2,z3). (20)

We use a piecewise mapping of f to cylindrical coordinates as follows:

f (x,y,z1)
f (x,y,z2)
f (x,y,z3)

⇒
f (ϕ ,r,h1)
f (ϕ ,r,h2)
f (ϕ ,r,h3)

(21)

where ϕ and r are defined by Equations (15) and (16). Similarly, h1,h2 and h3 are
defined as in Equation (17).

Thus, the n-orthogonal dimensions of f are mapped to multiple cylindrical coor-
dinate systems as:

f (x,y,z1, . . . ,zn−2) → f (ϕ ,r,h1, . . . ,hn−2). (22)

For the 20-dimensional eigenpose data for sidestepping, 18 cylindrical coordinate
frames are used by the above method.

6.3 Motion-Phase Optimization of Hyperdimensional Eigenposes

Trying to perform optimization on all of the orthogonal components of high-
dimensional eigenposes may be intractactable, due to the curse of dimensionality
problem. We therefore extend the one-dimemsional motion optimization idea from
Section 4.1 to the higher dimensional case. For 3-D data, the action subspace em-
bedding (described in section 2.2) is a single parameter function of motion-phase
angle ϕ that produces values for the radius r and the height h of a periodic motion
pattern in a cylindrical coordinate system. For n-dimensional eigenpose data, the
action subspace embedding is a single parameter function of motion-phase angle ϕ
that produces values for r,h1,h2, . . . ,hn−2 of a periodic motion pattern. In particular,
for the sidestepping motion pattern, the action subspace embedding is given by:

[r,h1,h2, . . . ,h18] = g(ϕ). (23)

The motion-phase optimization procedure in (13) can be directly applied to (23).
Fig. 18 shows the result of optimization (after five learning episodes) in the 3-D

coordinate frame defined by the first three principal axes. From the figure, it can
be seen that the optimized eigenposes are points on the original motion pattern, but
distributed differently from the original pattern. This is because the motion-phase
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Fig. 18 Result of motion-phase angle optimization for sidestepping eigenpose data.

optimization is a one-dimensional optimization of the parameter ϕ in (23). The op-
timized eigenposes are thus strictly constrained to be within the original set of pos-
tures. The differences in distribution between the original pattern and the optimized
pattern means that timing of postures during the motion have been altered. Notice in
the figure that some gaps in the original pattern have been closed by the optimized
postures. There are two reasons for this phenomena. First, the action subspace em-
bedding is modeled as a closed-curve. Second, based on sensory feedback during
learning episodes, the optimization algorithm found that it can achieve lower gyro-
scopic signal oscillation by choosing postures in the gap in the motion trajectory.
As a result, the movement is smoother. Another attempt by the algorithm to obtain
smoother movement can be noticed in the lower-left corner of the trajectory: the
algorithm decided to plan the trajectory across the irregular corner of the original
trajectory.

Fig. 19 show the simulation results for sidestepping motion. Column a) shows the
original sidestepping motion of a human demonstrator. Column b) shows HOAP-2
robot performing the sidestep motion sequence at motion scale 0.5 without opti-
mization in a dynamics simulator. Column c) shows the sidestep motion after five
learning episodes at motion scale 0.5. The first and the last rows are the standing
postures at the beginning and end of the motion sequence, respectively. The second
row is the right-lift phase. The third row is the right-landing phase. The fourth row
is the left-lift phase, and the fifth row is the left-landing phase. In column b), the
right foot of the robot was bouncing at the right-landing phase, causing the robot to
be unable to lift its left foot up in the subsequent lift phase. As a result, the robot
dragged its left foot along the ground during the left-landing period. This made the
whole body of the robot turn, as can be observed in the last two rows of column b).



378 R. Chalodhorn and R.P.N. Rao

a) b) c)

Fig. 19 Simulation results for sidestepping. Column a) shows original sidestepping motion
sequence by the human demonstrator. Column b) shows the sidestep motion sequence on a
HOAP-2 robot in a dynamics simulator without optimization at the motion scale 0.5. Column
c) shows the sidestep motion after five learning episodes at motion scale 0.5.

In column c), the robot could perform the sidestep motion without the undesirable
turn of the body.

While all of the key postures in column c) look very similar to the human postures
in column a), timing of the movements are significantly different. The right-landing
and left-landing phases of the optimized motion in column c) are relatively slower
than the original human motion. These can also be observed in Fig. 18: there are
two regions of the motion pattern with high density of optimized postures. These
corespond to the slow landing phases. The slow landing phases also prevented the
robot from dragging its left foot on the ground. As a result, the undesirable turn of
the body was avoided and the sidestep motion was successfully learned.
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7 Conclusion

This chapter proposed a framework that allows a humanoid robot to learn bipedal
locomotion by imitation of human motion. Whole-body postures are represented
using eigenposes computed from PCA. These eigenposes are used for learning a
predictive sensory-motor model that allows a humanoid robot learn to walk by im-
itation of a human gait. Taken together, our results demonstrate that the physics of
a complex dynamical system can be learned and manipulated in a low-dimensional
subspace. Using a low-dimensional subspace greatly reduces computational com-
plexity and facilitates the learning process. Since all of the joints are always con-
strained to encode postures near the ones to be imitated, the low-dimensional sub-
space reduces the occurrence of unmeaningful or potentially harmful actions (such
as self-intersection) in the learning process.

The action subspace embedding in cylindrical coordinates not only further re-
duces dimensionality and complexity, but also provides meaningful variables in the
low-dimensional subspace such as the motion-phase-angle ϕ and radius r. Opti-
mization of the motion-phase-angle was shown to be equivalent to optimizing pos-
ture timing during the motion, while the radius r reflects magnitude of the motion, as
determined by the first two principal components of the motion pattern. The physi-
cal meaning of the parameter h is yet to be clearly interpreted.

The human imitation-based learning framework described in this chapter demon-
strates how a humanoid robot can learn basic human actions such as walking. These
basic actions could be used a building blocks for learning more complex behav-
iors using approaches such as reinforcement learning. To learn actions other than
walking and sidestepping, the objective function in (5) could be modified to accom-
modate different sensory variables. The robustness of the learned models to noise
could be improved using a probabilistic approach as described in [6].

The proposed framework functions as an off-line motion planner rather than an
on-line feedback controller. Thus, it cannot be applied directly to the problem of
navigation on uneven terrain. One way of adding robustness to an off-line mo-
tion planner is to use a motion stabilizer [12], which is a combination of simple
force/torque and gyroscope-based feedback controllers. We also investigating the
possibility of a real-time feedback controller based on learning an inverse model
of the predictor (3). Also under investigation are methods for learning non-periodic
human motion as well as motion parameterization using eigenposes.
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Incremental Learning of Full Body Motion
Primitives�

Dana Kulić and Yoshihiko Nakamura

Abstract. This paper describes an approach for autonomous and incremental learn-
ing of motion pattern primitives by observation of human motion. Human motion
patterns are abstracted into a dynamic stochastic model, which can be used for
both subsequent motion recognition and generation. As new motion patterns are ob-
served, they are incrementally grouped together using local clustering based on their
relative distance in the model space. The clustering algorithm forms a tree structure,
with specialized motions at the tree leaves, and generalized motions closer to the
root. The generated tree structure will depend on the type of training data provided,
so that the most specialized motions will be those for which the most training has
been received. A complete system for online acquisition and visualization of motion
primitives from continuous observation of human motion will also be described, al-
lowing interactive training.

1 Introduction

Learning from observation is an attractive paradigm for humanoid robots, as it would
allow robots to learn how to accomplish tasks by simply observing a human teacher,
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rather than through programming or trajectory planning. It is an especially attractive
approach for humanoids robots, as these robots have complex, multi-degree of free-
dom systems. By learning from observation, the humanoid robot can take advantage
of the similar structure between itself and the human. In addition, such a program-
ming interface is suitable for non expert demonstrators, allowing robots to acquire
new skills through observation of everyday people in their natural environments.

Learning from observation has received considerable attention in the literature
[7, 58, 31, 46]. However, many of the approaches proposed thus far consider the
case where the motion primitives to be learned are specified in advance by the de-
signer. The motion primitives to be learned are segmented and clustered a-priori,
and then an off-line, one-shot learning process is applied. Following learning, the
robot is able to execute the learned motions, but no further learning or improvement
takes place. However, a robot that cohabits with humans in their environment should
be able to learn incrementally, over a lifetime of observations, as well as accumu-
late knowledge and improve performance over time. The robot should be capable
of observing, segmenting and classifying demonstrated actions on-line during co-
location and interaction with the (human) teacher. If the robot is able to extract mo-
tion primitives during on-line interaction with the teacher, it may then also be able
to employ other learning modalities, such as teacher feedback [53, 45, 12], improve-
ment through practice [14, 28, 56], or a combination of these approaches [3]. In this
type of interactive and online learning framework, the number of motion primitives
may not be known in advance and may be continuously increasing as the teacher
demonstrates new tasks, and must be determined autonomously by the robot, as it is
observing the motions. In addition, as the number of observed motions and learned
motion primitives grows, the robot must be able to organize the acquired knowledge
in an efficient and easily searchable manner.

In order to extract motion primitives during on-line observation, several key is-
sues must be addressed by the learning system: automated motion segmentation,
recognition of previously learned motions, automatic clustering and learning of new
motions, and the organization of the learned data into a storage system which al-
lows for easy data retrieval. In this paper, our focus is on the last three items: motion
learning and recognition, clustering and organization.

1.1 Related Work

Robot skill learning from observation is a longstanding area of research [40, 41, 44,
10]. Breazeal and Scasellati [7] and Schaal et al. [58] provide an overview on recent
research on motion learning by imitation. Lopes et al. [46] provide a recent review
focusing also on the human cognitive processes on which much of the research is
based. As noted by Breazeal and Scasellati, the majority of algorithms discussed
in the literature assume that the motions to be learned are segmented a-priori, and
that the model training takes place off-line. Several different techniques have been
applied to modeling the motion primitives, including dynamical models [51], poly-
nomial functions [55], neural networks [54] and stochastic models [6, 18]. Imitation
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learning problems have also been formulated as inverse reinforcement learning prob-
lems [52, 1], where the goal is to learn the optimal cost function given a set of expert
demonstrations [48].

ining what to imitate based on the variance in each signal type across
demonstrations.

Hidden Markov Models have been a popular technique for human motion model-
ing, and have been used in a variety of applications, including skill transfer [65, 10],
robot assisted surgery [30, 13], sign language and gesture modeling [59, 4, 17],
motion prediction [16, 2] and the mimesis model of symbol emergence for motion
primitives [19, 20, 21, 49]. A common paradigm is Programming by Demonstration
(PbD) [10, 9, 4]. While PbD describes a general framework including online acqui-
sition, for the majority of the approaches proposed thus far, the number of motions
is specified a-priori, the motions are clustered and trained off-line, and then a static
model is used during the recognition phase.

When using HMMs to represent the motion primitive, there is also an issue of
how a motion primitive should be represented. The best representation may differ
with the type of task being demonstrated, for example, for dance movements, joint
angles may be the best representation, whereas for assembly tasks, object positions
and Cartesian hand coordinates may be more important. The representation to be
used is typically selected by the designer a-priori. Lee and Nakamura [43] develop
an approach for converting between joint angle and Cartesian representations of mo-
tion primitives. Billard et al. [6] propose an approach for autonomously determining
what to imitate based on the variance in each signal type across demonstrations.

Jenkins and Mataric [25] describe a system for extracting behaviors from motion
capture data. In their algorithm, joint angle data is embedded in a lower dimen-
sional space using the spatio-temporal Isomap (ST-Isomap) algorithm [26]. Once
the data has been reduced, it is clustered into groupings using the ”sweep-and-
prune” technique. Once a model of the primitive behaviors is formed, a higher level
re-processing of the data is performed to discover meta-behaviors, i.e., probabilis-
tic transition probabilities between the behaviors. Similarly to primitive behaviors,
meta-level behaviors are derived by extracting meta-level feature groups using ST-
Isomap. Chalodhorn and Rao [8] also apply dimensionality reduction using Princi-
pal Components Analysis (PCA) to learn the kinematics and dynamics as well as
the relationship to low-level sensory information of the actions to be learned. Tatani
and Nakamura [62] have used non-linear PCA to generate the reduced dimension-
ality motion space. However, these algorithms cannot operate incrementally, as the
entire range of motions is required to form the lower-dimensional space embedding.

Takano and Nakamura [61] develop a system for automated segmentation, recog-
nition and generation of human motions based on Hidden Markov Models. In their
approach, a set of HMMs is trained incrementally, based on automatically segmented
data. Each new motion sequence is added to the HMM which has the highest like-
lihood of generating the motion. The selected HMM is then trained for competitive
learning with the new data. The number of HMMs is fixed and determines the level
of abstraction. A choice of smaller number results in a higher level of abstraction.
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However, no mechanism is proposed for the emergence of a hierarchy among dif-
ferent levels of abstraction.

Ogata et al. [54] are one of the few works that consider the case of long term,
incremental learning. In their work, a neural network is used to learn a navigation
task during cooperative task execution with a human partner. The authors introduce
a new training method for the recursive neural network, which avoids the problem
of memory corruption during new training data acquisition. However, in this case,
the robot learns only one task, and no hierarchical organization of knowledge takes
place.

Another important issue during model learning is the selection of the model size
and structure. Dixon, Dolan and Khosla [11] describe a system for partially automat-
ing the programming of an industrial robot manipulator by facilitating the definition
of trajectory waypoints. Based on previous programming examples, the proposed
system predicts where the user may move the end-effector and automatically moves
the robot to that point. Continuous density HMMs are used to model previously ob-
served user programming inputs. Relative position and orientation of the end effec-
tor is used as the observed data. Both the structure and the parameters of the HMM
are trained on-line. Initially, each example is constructed as a front-to-back model,
assigning each waypoint to one state. Next, similar nodes are iteratively merged,
resulting in the final topology. To facilitate real-time operation, a one-shot training
procedure is used to estimate the model parameters.

Ekvall, Aarno and Kragic [13] describe a system for robotic assistance during
microsurgery, where adaptive virtual fixtures are used to guide the surgeons hands.
For each task, an HMM is trained by using SVM to determine the appropriate num-
ber of states (corresponding to straight lines in the trajectory) and to estimate the
probability density function for each state of the HMM. The HMM is then used
to recognize the current state (line direction), and apply the appropriate fixture to
constrain the manipulator’s motion.

Billard et al. [6] use HMM models for motion recognition and generation of
humanoid motions. The Bayesian Information Criterion (BIC) is used to select the
optimal number of states for the HMM. In the experiments, three different tasks
are demonstrated using the HOAP-2 humanoid robot. The robot is trained using
kinesthetic training. However, all the exemplar motion patterns are acquired and
grouped before the training begins, and the number of motions to be learned is
specified a priori.

The use of the Akaike criterion [37] has also been proposed, however, both the
AIC and BIC criteria are based on a tradeoff between model performance at char-
acterizing the observations, and the number of parameters, and both require a time-
consuming search of the model space to find the best matching model.

In the approach proposed herein, a variable structure Hidden Markov Model
based representation is used to abstract motion patterns as they are perceived. In-
dividual motion patterns are then clustered in an incremental fashion, based on intra
model distances. The resulting clusters are then used to form a group model, which
can be used for both motion recognition and motion generation. The model size is
adjusted automatically on-line, based on the accuracy requirements in the given
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region of the knowledge space. A new algorithm for sequentially training the
stochastic models is used [39], to allow fast, on-line training, and take advantage
of existing knowledge stored in the lower-accuracy model. Section 2 describes the
stochastic encoding of each motion primitive and model training algorithm. The
incremental behavior learning and hierarchy formation algorithm is described in
Section 3. An interactive learning environment for collecting and learning motions
is described in Section 4. Experimental results on a motion capture data set are de-
scribed in Section 5; concluding remarks are presented in Section 6.

2 Factorial Hidden Markov Models

A Hidden Markov Model (HMM) is a type of stochastic model which abstracts time
series data as a first order stochastic dynamic process. The dynamics of the process
are modeled by a hidden discrete state variable, which varies according to a stochas-
tic state transition model A[N,N], where N is the number of states in the model (i.e.,
the number of unique states the hidden state variable can assume). Each state value
is associated with a continuous output distribution model B[N,K], where K is the
number of outputs. Typically, for continuous data, a Gaussian or a mixture of Gaus-
sians output observation model is used. HMMs are commonly used for encoding
and abstracting noisy time series data, such as speech [57] and human motion pat-
terns [6, 60], because they are able to encode data with both temporal and spatial
variability. In the imitation learning domain, HMMs are also attractive since they are
a generative model, so the same model can be used both for motion recognition and
for motion generation. Efficient algorithms have been developed for model train-
ing (the Baum-Welch algorithm), pattern recognition (the forward algorithm) and
hidden state sequence estimation (the Viterbi algorithm) [57]. The Baum-Welch al-
gorithm is an Expectation-Maximization (EM) algorithm. In the Expectation step,
given a set of model parameters and a data sequence, the posterior probabilities over
the hidden states are calculated. Then, in the Maximization step, a new set of model
parameters are calculated which maximize the log likelihood of the observations.

Once trained, the HMM can also be used to generate a representative output
sequence by sampling the state transition model to generate a state sequence, and
then sampling the output distribution model of the current state at each time step
to generate the output time series sequence. A schematic of an HMM is shown in
Figure 1.

Fig. 1 Hidden Markov Model. In the figure, s refers to the hidden state, while y refers to the
observation.
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A Factorial Hidden Markov Model (FHMM), first proposed by Ghahramani and
Jordan [15] is a generalization of the HMM model, where there may be multiple
dynamic processes interacting to generate a single output. In an FHMM, multiple
independent dynamic chains contribute to the observed output. Each dynamic chain
m is represented by its own state transition model Am[Nm,Nm] and output model
Bm[Nm,K], where M is the number of dynamic chains, Nm is the number of states
in dynamic chain m, and K is the number of outputs. At each time step, the out-
puts from all the dynamic chains are combined, and output through an expectation
function to produce the observed output. The expectation function is a multivariate
Gaussian function with the chain output as the means, and a covariance matrix rep-
resenting the signal noise. FHMMs have been used to model speech signals from
multiple speakers [5], and the dynamics of a robot and changing environment for
simultaneous localization and mapping [47]. FHMMs have also been used for mod-
eling the shape and timing of motion primitives during handwriting [63]. For human
motion representation, FHMMs have been found to improve discrimination ability
between similar motions, and can provide more accurate modeling of the motion
primitives for motion generation [38]. Figure 2 shows a schematic of an FHMM
with two dynamic chains.

An FHMM can be trained by a straightforward extension of the Baum-Welch al-
gorithm [15]. However, this (exact) algorithm has a time complexity of O(TMNM+1)
where T is the length of the data sequence. As the time complexity increases ex-
ponentially with the number of chains, the E-step of the EM algorithm becomes
intractable for a large number of chains. Faster, approximate algorithms, for which
the time complexity is quadratic as a function of the number of chains, have been
developed for FHMM training, which implement an approximate rather than the ex-
act E step. These are based on variational methods [15], or generalized backfitting
[22].

With either the variational [15], or the generalized-backfitting algorithm [22], the
chains are trained simultaneously, significantly increasing the training time required.
Similarly, due to the more complex structure of the FHMM model, the recognition
algorithm (the forward procedure) is more complex and time consuming as com-
pared to a single chain HMM. Therefore, it would be preferrable to use a com-
pact representation (single HMM chain) when patterns are dissimilar and easy to

Fig. 2 Factorial Hidden Markov Model. In the figure, p and q are two hidden variables evolv-
ing independently, but combining to generate the observation y.
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distinguish, and a more detailed representation (multiple chains) during generation
and when motions are very similar to each other. For this approach, a modified
training algorithm is developed [36, 39], training the chains sequentially instead
of simultaneously. With the proposed approach, the single chain (simple HMM) is
trained first, and subsequent chains are added as needed. Each time a new chain is
added, the new chain is trained on the error between the training data and the output
generated by the existing chains.

Once the FHMM is trained, pattern recognition can be implemented by an adapta-
tion of the forward-backward algorithm [15], and pattern generation can be obtained
by first sampling the state sequence and then sampling from the output distribution
of each state to compute the generated output.

2.1 Human Motion Pattern Representation Using FHMMs

HMMs have been widely used to model human motion data for both recognition
and motion generation [6, 60]. In our approach, each motion primitive is initially
encoded as a simple Hidden Markov Model (HMM) λp(π ,A,B), where π is the
vector of initial state probabilities (the likelihood that the model begins in state i),
ANxN is the NxN state transition matrix, and B is the output observation model. N
represents the number of states in the model. For representing non-periodic human
motion primitives, a front-to-back HMM is used, such that the state sequence must
begin with the first state, i.e.,

πi =
{

0, i �= 1
1, i = 1

(1)

In addition, the state transition matrix is constrained such that no backwards state
transitions are allowed, and state transitions can occur only between consecutive
nodes, i.e.,

ai j =
{

ai j, j = ior j = i+ 1
0, otherwise

(2)

The output observation vector is composed of continuous observations. Either
joint angles, or cartesian positions of key body locations (such as the wrist, elbow,
head, knee, etc.) can be used as the observation vector. The output observation model
B is a finite mixture of Gaussians of the form

b j(O) =
M

∑
m=1

c jmN (O,μμμ jm,ΣΣΣ jm) (3)

where b j(O) is the mixture of Gaussians representation of the observation vector
O being modeled for state j, c jm is the mixture weight for mixture m in state j,
N is the Gaussian probability density with mean vector μμμ jm and covariance matrix
ΣΣΣ jm. The number of Gaussian mixtures is denoted by M. To reduce the number of
training parameters, the covariance matrix ΣΣΣ jm is constrained to be diagonal.



390 D. Kulić and Y. Nakamura

However, when using the same HMM structure for both recognition and gener-
ation, there is an inherent tradeoff when selecting the HMM model size, (i.e. the
number of states). An HMM model with a low number of states will be better at
generalizing across data with high variability, and better at correctly recognizing
new data when the motions being recognized are dissimilar. In general, an HMM
with a low number of states (5 - 20) provides excellent recognition performance
[6, 60] in such a scenario. When automatically selecting the number of states based
on Bayesian [6] or Akaike [37] information criteria, which consider only recog-
nition performance, under 10 states are usually selected for typical human motion
patterns such as walking, kicking, punching, etc. On the other hand, a model with
a low number of states will not be able to faithfully reproduce the observed motion
during generation, a criterion which is not considered by the information criteria.
Conversely, a large state model will be better at reproducing the observed motion,
but will be prone to over-fitting. Factorial HMMs, which use a distributed rather
than a single multinomial state representation, provide a more efficient approach
for combining good generalization for recognition purposes with sufficient detail
for better generation. Therefore, rather than selecting a fixed model size, in our ap-
proach the model size is adapted by adding chains to the initial HMM model to form
FHMMs when the recognition and generation requirements increase.

3 Incremental Behavior Learning and Hierarchy Formation

The aim of the proposed approach is to allow the robot to learn motion primitives
through continuous observation of human motion, by extracting motion segments
(the motion primitives) that repeatedly occur in the demonstration. Motion primitive
candidates are first extracted from the continuous data stream through automatic
segmentation [24, 35]. Each time a new motion primitive candidate is observed,
the system must determine if the observed motion is a known motion, or a new
motion to be learned. In addition, over the lifetime of the robot, as the number of
observed motions becomes large, the robot must have an effective way of storing the
acquired knowledge for easy retrieval and organization. In the proposed approach, a
hierarchical tree structure is incrementally formed representing the motions learned
by the robot. Each node in the tree represents a motion primitive (i.e., a learned
behavior primitive), learned from repeated observation of that motion segment. Each
node contains the data segments the system judges to be exemplar observations of
that behavior (the group of similar observations), and a group model synthesizing
the observations into a motion primitive model. The group model can be used to
recognize a similar motion, and also to generate the corresponding motion for the
robot. Rather than using a fixed size model for the motions, the model accuracy is
adjusted based on the recognition requirements in the given region of the knowledge
database. If there are many motions similar to the modeled motion, a better (higher
number of chains in the FHMM) model will be applied.

The algorithm initially begins with one behavior group (the root node). Each time
a motion is observed from the teacher, it is encoded into a Hidden Markov model.
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The encoded motion is then compared to existing behavior groups via a tree search
algorithm, using the symmetric model distance measure [57, 38], and placed into
the closest group. Each time a group is modified, a hierarchical agglomerative clus-
tering algorithm [23] is performed within the exemplars of the group. If a cluster
with sufficiently similar data is found, a child group is formed with this data subset.
The time series data of the motion examples forming the child group is then used
to generate a single group model, which is subsequently used for both behavior
recognition and generation. Therefore the algorithm incrementally learns and orga-
nizes the motion primitive space, based on the robot’s lifetime observations. The
algorithm pseudocode is shown in Figure 4, while a schematic of the incremental
memory structure formation is shown in Fig. 3. Figure 4 shows the detailed algo-
rithm sequence that occurs each time a new motion is observed, while Fig. 3 shows
the evolution of the tree structure in a 2 dimensional representation of the motion
space as more and more motions are observed.

This algorithm allows the robot to incrementally learn and classify behaviors ob-
served during continuous observation of a human demonstrator. The generation of a
hierarchical structure of the learned behaviors allows for easier retrieval, and the au-
tomatic generation of the relationships between behaviors based on their similarity
and inheritance. In addition, the robot’s knowledge is organized based on the type
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Fig. 3 Schematic Illustration of the Clustering Algorithm. The top part of each figure shows
a 2 dimensional visualization of the motion space, while the bottom part shows the corre-
sponding tree structure. (a) initial state, when only one group is present; (b) a child group
forms when enough similar examples are observed; (c) new observations are located into the
closest group based on the distance between the new observation and the group model; (d) a
higher order model is used in dense areas of the motion space.
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1: procedure INCREMENTALCLUSTER

2: Step1 Encode observation sequence Oi into an HMM λi
3: Step2 Search the behavior tree for the closest group λG j to the current observation

model λi, based on the inter-model distance
4: Step3 Place λi into the closest group Gc

5: Step4 Perform clustering on all the exemplar motions within Gc

6: Step5 If a sufficiently similar subgroup of motions is found, form a new group Gn,
as a child of Gc, containing the observation sequences of the subgroup

7: Step6 Using the observations sequences of the new subgroup, form the group model
λGn

8: end procedure

Fig. 4 Clustering Algorithm Pseudocode.

of training received, so that the robot’s knowledge will be most specialized in those
areas of the behavior space where the most data has been observed.

3.1 Step 1: Observation Sequence Encoding

Each newly acquired observation sequence is encoded into a Hidden Markov Model.
In order to train the model, the HMM parameters, such as the number of states and
the number of gaussian mixtures must be selected. We use a variable size model,
where the number of dynamics chains in an FHMM model are increased based on
the density of the motion exemplars in the relevant region of the motion space.
With this approach, each motion is initially represented by a simple, single-chain,
front-to-back HMM, with 6 - 8 hidden states, and using a single Gaussian as the
observation model. If a better model is required, additional chain(s) are added as
described in Section 3.4 below. below.

3.2 Steps 2 and 3: Intra-model Distance Calculation

Once the newly observed behavior is encoded into a model, it is compared to ex-
isting groups (if any). Here, the distance between two models can be computed as
the difference in likelihood that an observation sequence generated by one model
could have also been generated by the second model [57]. This distance measure
represents a Kullback-Leibler distance between the two models:

D(λ1,λ2) =
1
T

[logP(O(2);λ1)− logP(O(2);λ2)] (4)

where λ1,λ2 are two HMM models, O(2) is an observation sequence generated by λ2

and T is the length of the observation sequence. Since this measure is not symmetric,
the average of the two intra HMM distances is used to form a symmetric measure:

Ds =
D(λ1,λ2)+ D(λ2,λ1)

2
(5)
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The formulation of the distance based on the model probability means that this
measure can similarly be applied to Factorial HMM models, by using the modified
forward procedure [15] to calculate the log likelihood, as well as used to compare
FHMM and HMM models [37]. The modified forward procedure [15] makes use
of the independence of the underlying Markov chains to sum over the transition
matrices of each chain, simplifying the computation.

The distance measure quantifies the level of difficulty in discriminating between
two models λ1,λ2. By encoding more information about each pattern, FHMMs can
improve the ability to discriminate between motion patterns, which can be especially
useful when there are many similar motion patterns. Using the more detailed FHMM
models increases the intra-model distances, as depicted conceptually in Figure 5. In
addition, if the FHMM and HMM models of the same motion remain sufficiently
similar, FHMM models may be combined with HMM models, by using FHMM
models only in dense areas of the motion model space where better discriminative
ability is required (shown in Figure 6).

The repository of known groups is organized in a tree structure, so that the new
observation sequence does not need to be compared to all known behaviors. The
comparison procedure is implemented as a tree search. At each node of the tree, the
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Fig. 5 Schematic comparing an HMM model vector space and an FHMM model vector
space. The axes represent principal directions in the vector space (note the space does not
necessarily need to be 3 dimensional).
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Fig. 6 Schematic comparing an HMM model vector space and a hybrid HMM-FHMM model
vector space.
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new observation sequence is compared to the leaves of that node. If the distance be-
tween the new observation sequence and one of the child nodes is sufficiently small,
the search recurses to the most similar child node, otherwise, the new observation
sequence is added to the current node.

Dthresh = KmaxGDDG
max (6)

Dthresh is the distance threshold at which a new observation sequence is considered
for inclusion to a node, KmaxGD is the multiplication factor applied and DG

max is the
maximum intra observation distance for the given node. If the distance between the
new observation and the cluster is larger than Dthresh, this cluster will not be con-
sidered as a possible match for the new observation sequence. If there are multiple
candidate clusters, the new sequence is placed in the closest cluster. If there are no
candidates, the new sequence is placed in the parent cluster. In the case of a new
motion pattern which is completely dissimilar to any existing motion patterns, the
motion pattern will be placed into the root node.

The maximum intra observation distance for the placement node DG
max is also

the criterion used to decide the level of model complexity required for the motion
sequence. If the new motion is most similar to a node which DG

max falls below a
certain threshold, the FHMM model is generated by adding additional chain(s) to
the current representation, to increase the discriminative ability of the model.

Once the best matching cluster is selected for the newly observed sequence, the
distance between the new observation and all the other observations in the cluster is
calculated and added to the distance matrix stored for that node. This matrix is used
for new cluster formation, as described in the next section.

3.3 Steps 4 and 5: Clustering and New Group Formation

When a new observation sequence is added to a cluster, a clustering procedure is
invoked within the modified group, to determine if a subgroup may be formed. A
subgroup consists of a group of motion primitives which are more similar to each
other than the level of similarity found in the group. The complete link hierarchi-
cal clustering algorithm is used to generate the data clusters within a group [23].
Clusters can then be formed based on two criteria: number of leaves in the cluster,
and the maximum proximity measure of the potential cluster. Herein, both a min-
imum number of elements and a maximum distance measure are used. The maxi-
mum distance measure is based on the average of the inter motion distances in the
cluster:

Dcuto f f = Kcuto f f μ (7)

where Dcuto f f is the distance cutoff value (i.e., only clusters where the maximum
distance is less than this value will be formed), and μ is the average distance be-
tween observations.
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3.4 Step 6: New Behavior Instantiation

If a new subgroup is generated in Step 5, a new group model is trained using the raw
observation sequences from all the group elements. The structure of the new group
model (i.e., HMM vs. FHMM) is determined based on the maximum intra observa-
tion distance for group, DG

max. If motions are becoming increasingly similar to each
other, so that better discrimination ability is required, additional chains are added to
the existing model, one at a time, based on a simple threshold evaluation. A training
algorithm allowing incremental training of each chain has also been developed [39].
In the experiments described below, the threshold value was determined manually,
however, the threshold could also be determined automatically based on the inter-
distance distribution within the group, or the decision could be based by testing for
the presence of a multimodal distribution within the group. The generated model is
subsequently used by the robot to generate behaviors. The group model replaces the
individual observations in the parent node.

If one of the group elements allocated to the new cluster is already a group model,
the generated motion sequence based on that model is used for the training. In this
case, a modified form of the re-estimation formulas for multiple observation se-
quences [57] is used. The algorithm is modified by over-weighting the group mod-
els, in order to account for the fact that there are multiple observation sequences
stored in the generated model, and therefore more weight should be given to the
group model, as compared to the individual observation sequences.

3.5 Deterministic Motion Generation

Once a cluster node has been formed, the group model for the node constitutes the
abstraction of the motion primitive. This model is then used to generate a motion
trajectory for the robot to execute.

When the generated motion sequence is to be used for robot motion commands,
we do not want to introduce the noise characteristics abstracted by the stochastic
model. We therefore use a greedy policy to estimate the optimum state sequence.
First, for each chain m, the starting state qm

0 is selected by choosing the highest
value from the initial state probability distribution. At each state, the state duration
is calculated based the state transition matrix,

d̄m
i =

1
1−am

ii
(8)

Following d̄m
i samples in state i, the next state is selected by greedy policy from

the state transition matrix, excluding the 1−am
ii probability. If the model type is

front-to-back, the algorithm iterates until the final state is reached, otherwise the
state sequence is generated for the specified number of time steps. Once the state
sequence has been generated for each chain, the output sequence is calculated by
summing the contribution from each chain at each time step, based on that chain’s
current state value. This algorithm selects the state sequence by a local greedy
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policy over the state transition algorithm. Alternatively, if a motion most similar to a
recently observed motion is required, the optimal state sequence could be generated
by using the Viterbi algorithm, as described in Lee and Nakamura [42].

After the trajectory is generated, some low-pass filtering or smoothing is required
as a post-processing step to eliminate the artifacts caused by discrete state switching
and generate a smooth trajectory for use as a command input.

4 Interactive Motion Learning Environment

During the demonstration process, (as well as following learning), it is important
for the human demonstrator to have visibility into the material learned so far, so
that the teacher can tailor further demonstrations to the current knowledge of the
learner. An interactive training system has been developed for this purpose. In the
developed system, at any time during the demonstration, as well as off-line, the
human demonstrator is able to view animations of the motion primitives acquired
thus far, an overview of the current tree structure of the database, and a visualization
of the current version of the motion primitive graph. During the acquisition process
itself, the demonstrator views an animation of the motion currently being executed,
and is also notified when the system has recognized the current motion primitive as
one of the known motions.

In the implemented system, motion capture is used to acquire the motions of the
demonstrator. The system receives the marker data from the motion capture system
directly. The marker data is first converted to joint angle data via on-line inverse
kinematics [50, 64], based on the kinematic model of the animation character. The
animation character, in terms of the body shape and the number of degrees of free-
dom, can be specified by the user based on the type of training task. For training
tasks where motions are being acquired for human motion analysis, the model can
be selected based on the DoF requirements of the task being demonstrated, or, in
the case of motions being acquired for later re-targeting to the humanoid robot, the

Fig. 7 Screen shot of the visualization software during motion acquisition.
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model can be specified based on the kinematic structure of the robot. The current
motion of the demonstrator is displayed on the animated character simultaneously
with motion execution. This function is useful to allow the demonstrator to ver-
ify that the inverse kinematics is working properly and that motions are being re-
targeted to the model joint angle data correctly, without introducing representational
singularities. Figure 7 shows a screen shot of the visualization system during motion
acquisition.

The time series joint angle data is first segmented into motion primitive candi-
dates, using an automated segmentation approach [24, 35]. The segmentation ap-
proach used tries to find segment points which result in segments of minimum vari-
ance. This is done via the Kohlmorgen and Lemm algorithm [29], where a Hidden
Markov Model is used to represent the incoming data sequence, where each model
state represents the probability density estimate over a window of the data. Based on
the assumption that data belonging to the same motion primitive will have the same
underlying distribution, the segmentation is implemented by finding the optimum
state sequence over the developed model.

Each extractive motion primitive candidate is then passed to the incremental clus-
tering algorithm, as described in Section 3. Each time a new motion primitive is
abstracted, a node is added to the tree structure representing the current status of
the knowledge database. The tree structure can be viewed at any time within the
visualization system; the formation of the first node during training is shown in
Figure 8.

Each time a previously learned motion primitive is recognized in the current
demonstration, the visualization system notifies the demonstrator that the performed
motion is already known to the system. This is indicated (see Figure 9) by changing
the color of the identified node in the tree and motion primitive graph.

Once the demonstration is over, the user can load all the learned motions (behav-
iors), and play them back on the animated character to verify that motion primitives
have been abstracted correctly.

Fig. 8 Screen shot of the visualization software during node formation.
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Fig. 9 Screen shot of the visualization software during motion recognition.

5 Experiments

The system is demonstrated with two sets of experiments. In the first set, a manually
segmented data set is used to illustrate the behavior of the clustering algorithm.
In the second set of experiments, the interactive learning system is demonstrated.
Combined with a low-level controller for ensuring postural stability, the approach
described here has also been used to implement behaviors on a physical humanoid
robot [33].

5.1 Incremental Clustering Experiments

The experiments described below have been performed on a data set containing a
series of 9 different human movement observation sequences obtained through a
motion capture system [27]. The data set contains joint angle data for a 20 degree of
freedom humanoid model from multiple observations of walking (WA - 28 observa-
tions), cheering (CH - 15 observations), dancing (DA - 7 observations), kicking (KI
- 19 observations), punching (PU - 14 observations), sumo leg raise motion (SL -
13 observations), squatting (SQ - 13 observations), throwing (TH - 13 observations)
and bowing (BO - 15 observations). Figure 10 shows an example of a walking mo-
tion from the dataset.

Fig. 10 Sample Walking Motion.
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The motion sequences are presented to the algorithm in random order. Motion
sequences are presented one at a time, simulating on-line, sequential acquisition.
After each motion is presented, the algorithm is executed, performing incremen-
tal clustering. In each simulation performed, the algorithm correctly segments the
behaviors such that the resulting leaf nodes represent the grouping that would be
obtained with an off-line method. Out of 100 simulation runs performed at each
of the parameter settings, there was no cases of misclassification at the leaf nodes,
showing that the final clustering is robust to presentation order. Experiments using
only single-chain HMMs, as well as experiments using adaptable models were per-
formed. In tests where single-chain HMMs were used, the appropriate model size
was selected via the Akaike criterion. Sample clustering results for the single-chain
HMMs are shown in Figs. 11, 12 and 13. Note that the actual order of node forma-
tion will vary depending on the motion presentation order.

The algorithm parameter Kcuto f f (the parameter which controls when a new clus-
ter is formed from an existing cluster) determines the resultant tree structure. For
high cutoff values (see Figure 11), the resulting tree structure is flat, and fairly in-
sensitive to presentation order, consistent with the off-line clustering result. In about
9% of cases, the ’dance’ group fails to form, since this group contains the least ex-
amples. At the high cutoff value, the punch and throw motions are too similar to
subcluster, resulting in a single hybrid generated motion (indicated as GPT in Fig-
ure 11). The generated motion resulting from that subcluster is shown in Figure 14.
As can be seen in the figure, the motion is an averaging of the two motions.

GPT WA KI BO SL CH SQ DA

RunId = 20

Leaf Groups Formed

Fig. 11 Sample Segmentation Result, Kcutto f f = 1.2.

KI PU TH WA SL CH SQ BO DA

RunId = 16

Leaf Groups Formed

Fig. 12 Sample Segmentation Result, Kcutto f f = 0.9.
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Fig. 13 Sample Segmentation Result, Kcutto f f = 0.9.

Fig. 14 Generated Hybrid Punch/Throw Motion.

When low values of Kcuto f f are used, nodes are quicker to form, and the resulting
tree structure becomes more dependant on presentation order. The similarity level at
which nodes will form is highly dependent on presentation order. Figures 12 and 13
show two examples of different tree structures formed, from two simulation runs.
Note that the identified leaf nodes remain the same. In addition, using the lower
cutoff value makes it easier to subdivide the similar throw and punch motions. Even
though the cutoff level was the same for both experiments, the similarity level of the
nodes formed differed, based on the presentation order. The result in Figure 12 is
consistent with global clustering, while in the result shown in Figure 13, one node
is incorrectly assigned. This type of error is due to the local nature of the algorithm,
i.e. clustering is being performed when only a part of the data set is available. There-
fore, there is a tradeoff when selecting the Kcuto f f value between facilitating quick
node formation and differentiation and introducing misclassifications in the hier-
archy tree. However, since the leaf nodes are identified correctly regardless of the
Kcuto f f value, a slower rate tree correction algorithm can be periodically applied, to
reposition leaf nodes to the correct branch as more data becomes available [34].

When single-chain HMM models are used, at high levels of Kcuto f f , the similar
motions of punch and throw cannot be distinguished. However, if both HMM and
FHMM models are used, such that FHMM models are inserted into a dense region
of the motion space, as described in section III.B, better discrimination ability can
be achieved, given the same number of training examples. A sample result of the
clustering performance using the adaptable models is shown in Fig. 15. The adapt-
able model can distinguish between similar motions TH and PU, whereas those mo-
tions cannot be distinguished when only single chain HMM models are used (see
Figure 11).
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TH PU KI WA CH SQ BO SL DA

RunId = 4

Leaf Groups Formed

Fig. 15 Sample Segmentation Results when using adaptable models.

5.2 Experiments with the Interactive Training System

The combined segmentation and clustering system was tested on-line with the visu-
alization system using the motion capture studio. The human demonstrator is outfit-
ted with 34 reflective markers located on various parts of the body, and the marker
[x,y,z] position is captured and computed by the motion capture system online, at
a sample rate of 5ms. During the demonstration, the demonstrator can view the
current status of the learning system via a large screen located in the motion cap-
ture studio. The marker positioning and experimental setup are shown in Figure 16.
The demonstrator performs single and both arm raise, bow and squat motions. The
demonstrator performs approximately 6 repetitions of each motion type.

The marker data is then passed to the combined motion extraction and visualiza-
tion system, which performs the on-line inverse kinematics to generate joint angle
data, displays an animation character performing the demonstrator motions, and si-
multaneously passes the data to the segmentation, clustering and motion primitive
extraction module for processing. In previous work, a simplified inverse kinematics
model was used (20DoF), however, here we use a more realistic 40 DoF model,

Fig. 16 Marker Setup used for the motion capture experiments.
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Fig. 17 Final tree structure following 2.5 minutes of data. Node 1 represents the both arms
raise primitive, Node 2 represents the both arms lower primitive, Node 3 represents left arm
motions, Node 4 represents right arm motions, Node 5 represents Squat Raise, Node 6 repre-
sents Squat Lower, and Node 7 represents the Bend down motion.

which is better able to capture the full range of human motion. Screen shots illus-
trating the visualization system appearance during motion acquisitions are shown in
Figures 7, 8 and 9.

Following the completion of the demonstration (approximately 2.5 minutes of
data), the system has learned 7 of the 10 motions demonstrated. The resulting tree
structure is shown in Figure 17. The single arm motions (both the raise and the
lower) are not yet differentiated, but are instead grouped together in nodes 3 and
4. Further examples of the bend raise and single arm motions result in subsequent
differentiation and abstraction of these motions as well.

The developed system is able to autonomously extract common motion primi-
tives from on-line demonstration consisting of a continuous sequence of behaviors,
as well as visualize the extracted motions to the demonstrator, allowing the demon-
strator insight into the learning process, and the ability to interactively adjust further
training.

6 Conclusions

This paper develops a novel approach towards on-line, long term incremental learn-
ing and hierarchical organization of whole body motion primitives. The learned
motions are aggregates of the observed motions, which have been autonomously
clustered during observation. The appropriate level of accuracy required for each
motion model is determined based on the similarity of the motions to be distin-
guished, such that a larger model is only used in dense regions of the knowledge
base.

The clustered motions are organized into a hierarchical tree structure, where
nodes closer to the root represent broad motion descriptors, and leaf nodes rep-
resent more specific motion patterns. The tree structure and level of specialization
will be based on the history of motions observed by the robot. The resulting knowl-
edge structure is easily searchable for recognition tasks, and can also be utilized to
generate the learned robot motions.

An interactive training system is also developed for performing on-line training
and allowing the demonstrator to visualize the motions learned thus far, as well as
the structure of the learned database of motions.
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404 D. Kulić and Y. Nakamura

17. Iba, S., Paredis, C.J.J., Khosla, P.K.: Interactive multi-modal robot programming. Inter-
national Journal of Robotics Research 24(1), 83–104 (2005)

18. Inamura, T., Toshima, I., Tanie, H., Nakamura, Y.: Embodied symbol emergence based
on mimesis theory. The International Journal of Robotics Research 23(4-5), 363–377
(2004)

19. Inamura, T., Nakamura, Y., Ezaki, H., Toshima, I.: Imitation and primitive symbol ac-
quisition of humanoids by the integrated mimesis loop. In: Proceedings of the IEEE
International Conference on Robotics and Automation, pp. 4208–4213 (2001)

20. Inamura, T., Toshima, I., Nakamura, Y.: Acquisition and embodiment of motion ele-
ments in closed mimesis loop. In: Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 1539–1544 (2002)

21. Inamura, T., Toshima, I., Nakamura, Y.: Acquisition and embodiment of motion ele-
ments in closed mimesis loop. In: Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 1032–1037 (2002)

22. Jacobs, R.A., Jiang, W., Tanner, M.A.: Factorial hidden markov models and the general-
ized backfitting algorithm. Neural Computation 14, 2415–2437 (2002)

23. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Computing Sur-
veys 31(3), 264–323 (1999)

24. Janus, B., Nakamura, Y.: Unsupervised probabilistic segmentation of motion data for
mimesis modeling. In: Proceedings of the IEEE International Conference on Advanced
Robotics, pp. 411–417 (2005)
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Can We Learn Finite State Machine Robot
Controllers from Interactive Demonstration?

Daniel H. Grollman and Odest Chadwicke Jenkins

Abstract. There is currently a gap between the types of robot control polices that
can be learnt from interactive demonstration and those manually programmed by
skilled coders. Using regression-based robot tutelage, robots can be taught previ-
ously unknown tasks whose underlying mappings between perceived world states
and actions are many-to-one. However, in a finite state machine controller, multiple
subtasks may be applicable for a given perception, leading to perceptual aliasing.
The underlying mapping may then be one-to-many. To learn such policies, users are
typically required to provide additional information, such as a decomposition of the
overall task into subtasks, and possibly indications of where transitions occur. We
examine the limits of a regression-based approach for learning an FSM controller
from demonstration of a basic robot soccer goal-scoring task. While the individual
subtasks can be learnt, full FSM learning from this data will require techniques for
model selection and data segmentation. We discuss one possibility for addressing
these issues and how it may be combined with existing work.

1 Introduction

We investigate regression-based interactive Robot Learning from Demonstration
(RLfD) for use in instantiating a soccer-style goal-scoring Finite State Machine
(FSM) controller on a robot dog and conclude that overlaps between subtasks make
the underlying regression problem ill-posed. In order to fully learn the FSM con-
troller, additional information such as the segmentation of data into subtasks must
be given. Without this information, we are limited to learning many-to-one (unimap)
policies, resulting in a divide between policies that can be taught, and those that can
be programmed, as visualized in Figure 1. It may, however, be possible to derive the

Daniel H. Grollman and Odest Chadwicke Jenkins
Brown University, 115 Waterman Street, Providence RI 02912-1910
e-mail: {dang,cjenkins}@cs.brown.edu

O. Sigaud, J. Peters (Eds.): From Mot. Learn. to Inter. Learn. in Rob., SCI 264, pp. 407–430.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010



408 D.H. Grollman and O.C. Jenkins

Fig. 1 An illustration of the gap between robot control policies that are currently learn-
able from interactive, regression based learning from demonstration, and those manually
programmed by skilled coders. Particularly, finite state machine controllers may result in
perceptual aliasing and cause learned behaviors to differ from those desired. Hand coded
controllers can deal with this aliasing and perform correctly.

needed subtask information from the demonstration data itself, by performing both
model selection (choosing the number of subtasks) and data segmentation (the allo-
cation of data to subtasks) at the same time. Policies for these discovered subtasks
and transitions between them may then be learnt with existing methods, providing
for full FSM learning from collected perception-actuation tuples.

More broadly, our aim is to perform Human-Robot Policy Transfer (HRPT), the
realization of decision-making control policies for robots representative of a hu-
man user’s intended robot behavior. As robots and the tasks they perform become
more complicated, it is possible that traditional programming techniques will be
overwhelmed. Learning from Demonstration (LfD, sometimes called Programming
by Demonstration or Learning by Imitation) is a technique that may enable non-
programmers to imbue robots with new capabilities throughout its lifetime [31].

Formally, LfD for HRPT is the estimation of a policy π(ŝ)→ a, a mapping from
perceived states to actions, from demonstrations of a desired task. Data (D = {ŝi,ai})
is limited to pairs of experienced perception and demonstrated actions, from which
learning forms an approximated policy, π̂. In the absence of a demonstrator, this
learned policy can be used to control the robot.

Within RLfD, there are multiple possible approaches for actually inferring π̂ from
D. One method is to assume a known parametric model for the task’s control pol-
icy. Learning is then the estimation of parameters for this model from the human
demonstration. Approximations in the model may be dealt with by learning addi-
tional higher-level task-specific parameters [6].

An alternative technique is to use demonstrated trajectories as constraints on an
underlying reward signal that the user is assumed to be attempting to maximize, in
a form of Inverse Reinforcement Learning. Several techniques can then be used to
find a policy that maximizes this discovered reward function [35]. By modeling the
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reward function directly, this approach can enable robots to perform better than their
demonstrators, as in acrobatic helicopter flight [4].

In interactive learning for discrete action spaces, Confidence-Based Autonomy
[12] uses classification to segment the robot’s perception space into areas where dif-
ferent actions are applicable. This is a form of Direct Policy Approximation, where
the policy itself is learned without intermediate steps [46]. This specific approach
has been extended to consider situations where the correct action is ambiguous, but
the possibilities are equivalent [11].

Here we will use the same interactive robot learning technique, or tutelage, where
the user trains the robot, immediately observes the results of learning, and can in-
crementally provide new demonstrations to improve task performance [25]. This
paradigm differs from that of batch training, where all data is gathered before learn-
ing occurs, which itself takes place offline over extended periods of time. A major
advantage of tutelage is its ability to generate targeted data. That is, the demonstra-
tor only needs to provide demonstrations of the portions of the task that the learner
fails to execute properly, which become evident as the robot behaves. The user does
not, therefore, need to anticipate what portions of the task will be difficult to learn.

Our use of learning, to approximate the control policy, is in contrast to those
which learn a model (dynamic or kinematic) of the robot itself, which can then
be used for decision making [36]. We pursue learning for decision making as one
difficulty of HRPT is that the true robot policy desired by the user is latent in their
mind and may be difficult to express through traditional computer programming. It
may further be challenging to formulate an appropriate reward function or control
basis for the task itself. LfD offers a compelling alternative for HRPT, allowing users
to implicitly instantiate policies through examples of task performance [18, 24].

This chapter is organized as such: This section introduced the robot tutelage
paradigm, and Section 2 discusses learning tasks composed of multiple subtasks.
Section 3 presents the architecture we use, Dogged Learning, and explains how
learning takes place. In Section 4 we present one regression-based learning approach
and show experiments in using it to learn our scoring task in Section 5. We examine
the issue of perceptual aliasing in Section 6 and present a workaround for use with
standard regression, along with our thoughts on a possible new approach to simul-
taneous model selection, data segmentation, and subtask learning. We conclude in
Section 7 with an answer to our titular question.

2 Subtasks

We consider tasks formed from multiple subtasks, such as a finite state machine,
where each machine state is an individual subtask. Learning a full FSM from
demonstration can be divided into three aspects:

1. Learn the number of FSM states (subtasks).
2. Learn their individual policies.
3. Learn the transitions between them.
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(a) Full FSM learning (b) Transition learning (c) Policy learning

Fig. 2 a) The three steps in learning an FSM. Learn the subtasks (boxes), their policies (let-
ters), and the transitions between them (lines). Dashed lines and question marks indicate un-
known quantities. Previous work has learned transitions given policies (b), or policies given
transitions (c).

An optional additional step is to improve the performance of the learned controller
beyond that of the demonstrator. Figure 2a represents full FSM learning.

If a set of subtask policies is given, approaches exist for learning the transitions
between them. One approach is to examine the subtask activity over time, and es-
timate perceptual features that indicate when certain subtasks should start and end
[38]. Likewise, [7] takes skills as given and learns tasks composed of subtasks from
observation, learning where each subtask can be appropriately performed. We illus-
trate this portion of FSM learning in Figure 2b, where the subtasks themselves are
known in advance, and it is only the execution order that must be learned.

An alternative to transitioning between subtasks is to combine, or fuse them [39].
There, outputs from each subtask are weighted by subtask applicability and com-
bined. Alternatively, subtasks can be ordered and constrained to operate in each
other’s null spaces [41].

If, instead of the subtasks, the transitions between them are given, multiple sub-
tasks can be learned at once. We illustrate this approach in Figure 2c. For example,
vocal cues from the user identifying subtask transitions can be used to segment data
according to a pre-determined hierarchy [56]. The segmented data can then be used
to learn each subtask [45]. Layered Learning [50] goes further, and utilizes the rela-
tionships between subtasks to ease learning of the individual policies.

More similar to our work with subtasks, Skill Chaining [30] seeks to discover
the necessary subtasks for performing a given task. That work operates in the rein-
forcement learning domain, and discovers a chain of subtasks, each of which has as
a goal to reach the start of the next skill in the chain. They, however, use intrinsic
motivation (saliency) to drive task goals, instead of user demonstration.

Combining both LfD and RL are approaches that leverage the human demonstra-
tion as a form of exploration [47]. That is, in large state-action spaces with sparse
rewards, standard RL techniques may fail to converge, or require long time periods.
Human demonstration can highlight areas of high reward, guiding the algorithms.
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High dimensional spaces can also be dealt with using dimensionality reduction
techniques. For example, after projecting human demonstrations into a latent task
space, [20] estimates sequences of actions using belief propagation. There they per-
form learning at multiple levels, both on the actions to perform, and also to learn
a dynamics model of the robot. Dynamics learning can also be coupled with RL to
learn perceptually driven motion primitives [28].

Returning to combining subtasks, information about task structure can also be in-
ferred from the order of subtask execution. For example, [40] use the order in which
subtasks are utilized to build rough topological maps of the execution environment.
They, however, take the task execution as given.

Here we attempt to use direct policy approximation to learn tasks, which may
be formed of multiple subtasks, without providing subtask policies, manually seg-
menting the data, or providing a hierarchical decomposition. We seek to perform
this learning in the realm of robot tutelage, which puts certain constraints on our
learning algorithms.

3 Tutelage Based Robot Learning

There are several desirable qualities in a learning algorithm for robot tutelage:

1. Interactive speed: The algorithm must be able to produce a new approximate
policy as training data is generated (inference), and control the robot in realtime
(prediction).

2. Scalability: The algorithm should be able to handle large data sets, on the order
of the lifetime of the robot.

3. Noise: The algorithm should learn in the presence of noise in perception, actua-
tion, and demonstration.

4. Unknown mappings: There is no reason to assume that the mapping from per-
ception to actuation is of a known form, that is, linear or parametric.

These aspects of an algorithm are interrelated. For instance, an algorithm may
initially run at interactive speeds, but slow down as it scales to larger datasets. In
contrast, we desire an algorithm that continues to be interactive even as the data size
grows. We thus focus our consideration on incremental, sparse algorithms. Incre-
mental in the sense that they update the approximation π̂ as new data arrives, instead
of recomputing it anew, and sparse in that they do not require that all previous data
be kept for future consideration.

We note that the speed of a learning algorithm depends not only on its time and
space complexity, but on the underlying hardware as well. That is, batch algorithms,
that process all data after each new datapoint arrives and thus require that all data
be stored, can be interactive, if the underlying computational and memory devices
are fast enough. However, we argue that in the limit, as robots operate over longer
lifetimes, the amount of data generated will overwhelm any batch algorithm with
finite storage and computational power. For fixed-lifetime robots, this may not be
an issue. Likewise, advances in computational and memory hardware may alleviate
this problem to a certain degree.
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In terms of noise, we acknowledge that a robot’s sensors and actuators are inher-
ently noisy. Thus, the control policy and its learned approximation must be robust
to motors that do not do what is commanded, and world states that appear different
over time. Additionally, the human demonstrator is a source of noise as well. That
is, while we assume the demonstrator is attempting to perform the task optimally,
we do not assume that the resulting commanded controls are noise free. The learn-
ing system must operate in the presence of this noise, and attempt to learn what the
demonstrator means to do.

Lastly, we do not wish to assume a known model for the mapping itself, as we
desire robots that can learn unknown tasks over their entire lifetime. We will thus
eschew linear and parametric models in favor of nonlinear and nonparametric ones.
However, by avoiding known models, we must contend even more so with noise, as
it will become harder to separate signal from noise. We thus rely on a preponderance
of data to enable successful learning, and put an emphasis on interpolation between
observed data rather than extrapolation beyond the limits of what has been seen.
Also note that the techniques we use are not without their assumptions as well. As
we will see, even assuming that the mapping is many-to-one puts limits on the types
of policies that can be learned.

3.1 Interactivity

As mentioned, interactive learning is a requirement for robot tutelage. That is, for
robot tutelage to occur, the human demonstrator must interact with the learned au-
tonomy in realtime, observing the approximated policy and providing additional
demonstration as needed. One issue that must be addressed is the method by which
the demonstrations themselves are observed. For instance, if a video feed of a hu-
man performing the task is used, there must be a system for recognizing poses and
actions and determining a corresponding robot pose or action [27]. Additionally, if
the robot and human have different viewpoints, their perspectives may differ and
need to be matched to resolve ambiguities [9, 53].

We avoid both of these issues by using a teleoperative interface, where a user
controls the robot to perform the desired task whilst observing a representation of
the robot’s perception. Using this sort of scenario effectively combines the acces-
sibility of teleoperative interfaces with the autonomous behavior of explicitly pro-
grammed robots. While this setup does require some training of the user before they
can demonstrate tasks, many potential users are already familiar with our interfaces
from current consumer products such as remote-control toys and video games. In
addition, the learning itself does not rely on the teleoperative interface. Thus, as
progress is made on the above issues, new interfaces can be utilized.

By using a teleoperative interface, providing more demonstration data involves
taking over physical control of the robot. Interacting with the learned autonomy
in this manner can be seen as a form of sliding autonomy [14]. In particular, the
autonomy of the robot is shut off entirely during demonstration, as the user makes
all of the actuation decisions. An alternative would be to allow partial autonomy on
the part of the robot.
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When providing additional demonstration data, the user can benefit from feed-
back as to what the robot has learned [52]. By revealing the internal state of the
learner, for instance, a teacher can more accurately understand what errors are be-
ing made [13]. Alternatively, the learner can report a confidence score, indicating
how sure it is that it has learned the policy correctly, for a particular state, or overall.
Such confidence measures can be used to prompt the user for more demonstration,
in a form of active learning [17]. Note that this is not true active learning, as the
query points can not be generated by the learning system. Instead, it can only ask
for correct actuations for perceptions that naturally arise during task performance.

We can further use the idea of confidence to combine active learning and slid-
ing autonomy by performing Mixed-Initiative Control (MIC) [5]. That is, we enable
both the user and the autonomous policy to take and give control of the physical
robot based on their confidence in their policy. When the autonomous system’s con-
fidence is low, it gives control to the user and prompts for more demonstration (active
learning). Conversely, the user can take control away from the autonomous system
(sliding autonomy) when desired. Likewise, the autonomous system can take con-
trol, and the user can give control. If both the user and the autonomy want control
of the robot, arbitration between the control signals is necessary.

3.2 Dogged Learning

To perform robot tutelage, we use the Dogged Learning (DL) architecture, intro-
duced in [21]. Figure 3 shows an overview of the system, which is designed to be
agnostic: Applicable to a variety of robot platforms, demonstrator interfaces, and
learning algorithms. Platforms are taken as sources of perception data, and sinks for
actuation commands. Beyond that, the specific details of the platform’s construction
and low level operation are hidden.

Briefly, using data from the true state of the world (s), the platform’s sensors and
perceptual processes are responsible for forming a state estimate (ŝ). The generated
perception is displayed to the demonstrator, whose function is to provide examples
from the desired control policy mapping, or π(ŝ)→ a. The platform is assumed
to transform a into appropriate actuator commands and bring about a change in
the world, in tandem with the environment. The paired perception-action tuples re-
sulting from demonstration are used to train the learning system, which forms an

Fig. 3 The Dogged Learning architecture. It abstracts out the details of the robot platform,
the user interface, and the learning algorithm.
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approximation of the policy, π̂. As mentioned, the learning system always maintains
a current estimate, and updates it as new data arrives. It can thus be thought of as per-
forming the mapping (π̂t , ŝt ,at)→ π̂t+1. If this update is performed incrementally,
data can be discarded after each update, save for that needed by π̂ itself.

Note that the definition of a platform does not require any particular physical
embodiment. It can, for instance, be a simulated robot, or some other purely software
agent. Additionally, it can be multiple physical robots as well, whose perception and
action spaces are combined.

The demonstrator itself, like the platform, is defined abstractly. It can be any
system that provides task-correct actuation, given a perception. In many cases, this
could be a human user, who is seeking to train a robot to perform some new task.
However, it could also be a hand-coded control system, for testing purposes, or
another robot, for multi-robot task-transfer.

Once an approximate policy is learned, it can be used to control the robot plat-
form in place of the demonstrator. However, as mentioned, we must arbitrate be-
tween the two controllers if they both attempt to control the platform at the same
time. We thus require that both the demonstrator and learner return confidence val-
ues (ς ) in addition to a. Using these confidences, we give control to the more con-
fident controller. Additionally, we achieve active learning by providing a default
controller, that stops the robot and requests more demonstration, if the learner is
acting and its confidence is below a threshold.

Information internal to the learner, such as the current confidence value, is pre-
sented back to the user as a form of secondary feedback. This data is in addition to
the perceptual information of the platform itself and can help guide the teaching pro-
cess. Additionally, because the learning system, platform, and demonstration system
are disjoined, and all interaction between them mediated by the DL framework, the
actual modules need not be co-located. One possibility is then that demonstration
control can take place distally from the robot itself, perhaps over the internet. By
enabling remote users to control robots, we may be able to gather more data, and
learn more robust behaviors.

4 Regression-Based Learning

Regression is the estimation of a mapping f (x) = y from known input-output pairs
{xi,yi}, i∈ 1 : N. Often x and y are continuous variables, as classification techniques
may be more appropriate if they are discrete. Regression techniques can be divided
into two groups: Parametric approaches, which take as given the form of the target
mapping, and nonparametric ones, which do not.

A common parametric technique is to fit a known polynomial form to the data,
such that y = a0 +a1x+a2x2 +a3x3 + ...+adxd up to the order of the desired poly-
nomial, d. If d = 1, linear regression is achieved. The fit can often be performed by
minimizing the squared error between predicted outputs and known outputs, which
is equivalent to assuming that the observed data comes from the model

yi = f (x)+N (0,σ2)
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where observed outputs are distributed in a Gaussian fashion around the true output.
Such an approach is termed Least Squares regression. More generally, approaches
that assume that observed outputs are unimodally distributed perform estimation of
a many-to-one mapping, which we term a unimap. This distinction serves to identify
the class of maps that we will encounter later, the multimaps, where an individual
input may have more than one appropriate output.

Nonparametric approaches, on the other hand, do not take as given a form for
the mapping. That is not to say they do not have parameters, instead nonparametric
methods can be thought of as those where the data itself are the parameters, or the
parameterization grows with the data. One example would be if the degree of the
polynomial model above were to grow with the data, such that d = N. Nonparamet-
ric models thus grow in complexity with the data, but also run the risk of overfitting.

Given that our data, D, is continuous and of unknown form, we consider non-
parametric regression. Of course, as the parameterization can grow with the data, an
algorithm may require unlimited data storage. We must then focus on approaches
that explicitly limit the growth of the parameterization, or sparse nonparametric re-
gressors, that do not require all previous data to make a prediction. Even within this
subset of techniques, there are many possible methods for learning π̂ in an interac-
tive, scalable, robust approach.

We initially consider Locally Weighted Projection Regression (LWPR) [54].
LWPR is a local approximator, in that it fits the overall mapping by dividing the
input space into multiple, overlapping regions called receptive fields (RF). Each RF
performs a local projection and linear regression on the data in that region, and
predictions from multiple RFs can be combined to form the total system’s output.
LWPR is sparse in that only the sufficient statistics for the RFs need to be kept,
so that once a datapoint has been incorporated, it can be discarded. Incorporation
of new data (inference) is incremental, through the use of partial least squares re-
gression in each RF, and an incremental update to the area of the RFs themselves.
LWPR has the added benefit of explicitly considering that there may be unnecessary
dimensions in the data, and seeks to project them out.

Other possible regression algorithms that have been used for learning robot con-
trol include K-Nearest Neighbors [49], Neural Nets [51], and Gaussian Mixture
Regression [10]. Herein we will consider the global approximator Sparse Online
Gaussian Processes (SOGP) [15] for illustrative means, although other algorithms
mentioned above obtain similar results. In particular, all will exhibit the multimap
error due to perceptual aliasing that we will see below.

4.1 SOGP

Gaussian Process Regression (GPR) is a popular statistical nonparametric regression
technique, a review of which can be found in [32]. Briefly, a Gaussian Process is
a Gaussian distribution over functions defined by a mean and covariance function,
N ( f ,Σ). Starting with a mean zero prior, and given a set of data (X,y) = {xi,yi}N

i=1,
we first define a kernel function which represents similarity between two points in
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input space. A popular kernel that we use in our work is the squared exponential, or
Radial Basis Function (RBF):

RBF(x,x′;σ2
k ) = exp

(

−0.5 ∗ ||x−x′||2
σ2

k

)

σ2
k is termed the kernel width, and controls how strongly nearby points interact.

A posterior distribution over functions is then defined where

f (x′) = k�x′C
−1α

Σ(x′) = k∗ −k�x′C
−1kx′

where kx′ is shorthand for [k1,k2...kN ],ki = RBF(x′,xi;σ2
k ), or the kernel distance

between the query point and all previously seen input points X = {xi}N
i . α is the

output vector, which in this case equals the known data’s outputs, y. C is the covari-
ance matrix of the data, where Ci j = RBF(xi,x j)+ δ (i == j)σ2

0 . This second part
represents observation noise (modeled as a Gaussian with mean 0 and variance σ2

0 ).
Without it we would have just the Gram matrix (Q), or all-pairs kernel distance.

As C occupies O(N2) space and requires O(N3) time to invert, GPR is not di-
rectly suitable for our learning scenario. Using the partitioned inverse equations,
C−1 can be computed directly and incrementally as data arrives, removing the in-
version step. The space requirements must be dealt with separately using one of a
variety of approximation techniques [43].

One sparsification technique is to divide the input space into regions, each of
which is approximated by a separate “local” GP [37]. By limiting the area of exper-
tise of each GP, the overall covariance matrix is made block-diagonal, and can be
stored in a smaller space. This approach to approximation recognizes that the effects
that two datapoints that are far away from each other have on each other is nearly
zero, and can often be ignored. A major issue that must be addressed when using
these techniques is determining the number and location of the local GPs. Ad-hoc
approaches such as tiling the input space or using a threshold distance may result in
the creating of unnecessary local models [48].

Alternative techniques that retain the global nature of the GP approximation do
so by replacing the full posterior distribution based on N points with an approxi-
mation based on fewer, β < N. These fewer points are called the basis set, or the
basis vectors (BV). This reduction limits the size of the Gram matrix to β 2, which
can be tuned for desirable properties, such as speed of computation or percentage
of system memory used, for each particular implementation. The approximating
distribution itself is chosen optimally to minimize the KL-divergence with the true
distribution.

The Sparse Online Gaussian Process (SOGP) algorithm proposed by [16] per-
forms this minimization incrementally, which makes it very suitable for our needs.
In essence, when the β +1 point arrives, it is initially included as a basis vector and
then all points are assigned a score corresponding to the residual error between the
distribution based on all points and the distribution based on all points except this
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Algorithm 1. Sparse Online Gaussian Processes

Inference
Require: Training pair (x,y)

Basis Vectors (BV), model (α,C−1,Q)
GP parameters (θ = {σ2

k ,σ2
0 })

capacity (β ),|BV|< β
Ensure: Updated model and BV, |BV|< β

add x to BV and update α,C−1Q
if |BV|> β then

for b = 1 : |BV| do
εb = αb/C−1

b,b
Delete j from BV, j = argmin j ε j

Prediction
Require: Query point (x)

Basis Vectors (BV), model (α,C−1)
GP parameters (θ = {σ2

k ,σ2
0 })

capacity (β ),|BV|< β
Ensure: predicted output ŷ, stddev σ2

for b = 1 : |BV| do
kb = RBF(BVb,x′;σ2

k )
k∗ = RBF(x′,x′;σ2

k )
ŷ = k�α
σ2 = σ2

0 +k∗ −k�C−1k

one. The point with the lowest score is selected for removal. An overview of the
algorithm can be seen in Algorithm 1. The parameters (σ2

0 ,σ2
k ,β ) can be chosen in

multiple fashions, but we choose β = 300 to ensure realtime performance on our
system, and set σ2

0 = σ2
k = 0.1 using a separate test data set.

Note that in switching from the full GP to an approximation, we must make
a distinction between the output vector α and the data’s outputs y. Similarly, C
now no longer tracks Q + Iσ2

0 and the two must be stored separately. By doing so,
information from points not currently in the BV (because they had been deleted) can
still be used to approximate the distribution. This information is not found in y or
Q, which depend only on the basis vectors. While now two matrices are now stored,
they are both of size β 2, so total memory usage is still O(β 2).

It should be noted that all the discussion of GPs in this section is with respect to
scalar outputs. We apply these techniques to vector outputs by providing a interde-
pendence matrix, or, as we do here, assuming independence between the outputs.
This assumption, while almost always false, often provides good results, and has
done so in our case. New techniques may enable us to improve these results further
by learning the dependencies between outputs [8].

5 Experiments

We seek to learn a RoboCup swarm-team style goal scorer policy on a robot dog,
such as shown in Figure 4. This task has four distinct stages: The robot first ap-
proaches the ball, then uses its head and neck to trap the ball close to the body, then
turns with the ball towards the goal, and finally checks that the goal is lined up cor-
rectly and kicks. To minimize noise and enable repeatable data generation, we used
a hand-coded controller to demonstrate this task to the learning system and used
SOGP to learn from interactive demonstration using the DL architecture. However,
initial experiments in learning this task were unsuccessful, and we instead consid-
ered each of the stages in turn, in an attempt to ‘build up to’ the complete task.
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(a) Seek (b) Trap (c) Aim (d) Kick

Fig. 4 Desired Goal-scoring behavior.

5.1 Platform

Our platform, pictured in Figure 5, is a commercially available robot platform, the
Sony AIBO robot dog. We have equipped it with a rudimentary vision system, con-
sisting of color segmentation and blob detection. That is, all perceived colors are
binned into one of six categories (black, orange, blue, yellow, green, white) and
each color is treated as a blob. The x and y locations (in image coordinates) and
blob size (pixel count) of each color serve as input to our learning system. In addi-
tion, we take as input the motor pose of the four motors in the head (tilt, pan, neck
and mouth) and two of the tail (pan and tilt), for a total of 24 dimensions of noisily
observed perception (ŝ). Note that we do not use any of the touch or distance sensors
on the robot as inputs.

Our platform also has a basic walk gait generation system. Previous work [22,
29] has learned this walk gait directly on the motors using both parametric and
nonparametric regression, so here we take it as given. Taking in a desired walk speed
in the lateral and perpendicular directions, as well as a turning rate, it generates leg
motor positions for the robot. These 3 parameters, along with new pose information

Fig. 5 Our robot platform, a Sony AIBO equipped with rudimentary vision (color segmenta-
tion and blob detection) and walk-gait generation. Control policy estimation involves approx-
imating the observed policy mapping from state estimate INPUTs to action OUTPUTs.
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Table 1 Platform perceptual and action spaces.

PERCEPTION ACTUATION

24D: 6 Colors × 3D (image X, Y, and size) 10D: Walk Parameters (X, Y, and α)
+ 4 head motors (pan, neck tilt, chin tilt, mouth) + 4 head motors + 2 tail motors

+ 2 tail motors (pan, tilt) + kick (discrete)

for the head and tail motors, plus a kick potential, form the 10 dimensional action
output space (a). When the kick potential rises above 0.5, a prerecorded kicking
motion is performed. A summary of all inputs and outputs is shown in Table 1. All
dimensions are normalized to lie in the range [-1,1].

5.2 Learned Behaviors

We show here learning of the first two stages of the goal-scoring task presented in
Figure 4. The first, the seek stage (Figure 6a) involves locating and approaching
the ball. We initially use a hand-coded controller that causes the robot to rotate
until it sees the ball, and then walk towards the ball, rotating to keep it centered as
needed. As the robot approaches the ball, its head dips down to keep the ball in view,
and the forward speed reduces until the robot comes to a stop. Using interactive
teaching, a human user toggles the activity of this controller, alternating between
providing demonstration data to the learner, and observing the learned policy in
control of the robot. During interaction, the robot and ball were randomly reset
whenever an approach was complete. Interaction ended and was deemed successful
after the robot performed 10 approaches without requiring further demonstrations.

The trap stage, shown in Figure 6b, was taught in a similar manner. However, as
it is not a mobile task, the ball was alternatingly placed in and removed from the
trap location by the user. In addition to the hand coded controllers, both behaviors

(a) Seek

(b) Trap

Fig. 6 The learned trap and seek subtasks of the goal-scoring behavior.
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Table 2 MSE of SOGP and LWPR on the trap and seek stages.

SOGP LWPR

Seek 0.0184±0.0127 0.1978±0.0502
Trap 0.0316±0.0165 0.0425±0.0159

were taught using human teleoperation as demonstration as well. In this scenario,
the human demonstrator used a two joystick control pad to provide demonstration,
which was used for learning. Again, interactive tutelage was used, and deemed a
success after 10 autonomous executions of the task.

For quantitative results, we collected a further 5 examples of each stage using
the hand-coded controller, and calculated the mean squared error of the code-taught
learned controller on the perception inputs with respect to the hand-coded controller.
The results are shown in Table 2, compared with those when using LWPR. Results
are shown averaged over all 5 test sets with one standard deviation.

6 Perceptual Aliasing from Subtask Switching

Despite our ability to learn the first two component stages of our goal-scoring be-
havior, we are unable to learn their composition. We believe this to be an issue of
perceptual aliasing, where perceptions that are similar require different actions. We
consider three common sources of perceptual aliasing:

1. Equivalent Actions: There are multiple actions that accomplish the same effect,
and user variance causes them all to appear in the collected data.

2. Hidden State: Information not visible to the robot is used by the demonstrator to
select the correct action to perform.

3. Changed objective: The goal of the behavior being performed has changed,
meaning that what was appropriate for a given perception is no longer so.

These three sources of aliasing are related, and can be seen as variations of one
another. For example, user generation of equivalent actions can be seen as relying
on hidden state, the preference for a particular action on the part of the user. Over
many users, or even over time in the same user, this preference may differ.

Likewise a change in objective can be viewed as moving the robot to a different
area of state space, but one that just looks the same to the robot. That is, if the
true state space of the robot included information about the objective of the task, the
robot would occupy different portions of the state space when the objective changed.
As the robot cannot observe this objective information, it is hidden state.

A hidden state framework may thus be suitable for addressing all types of per-
ceptual aliasing, as both user preferences and subtask goal can be thought of as un-
seen state. The POMDP model [42] is such a framework, where perceived states are
mapped into beliefs over the true state space and those beliefs are used for action
selection. However, POMDP approaches often take as given knowledge of the true
state space, and only assume incomplete perception of it. They are thus inappropriate
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for when the underlying state space is truly unknown. This situation occurs in the first
and third types of perceptual aliasing discussed above, as the number of equivalent
actions or subtasks is unknown.

Another method that may be generally applicable to perceptual aliasing and does
not require full knowledge of the state space is to consider a history of past per-
ceptions and actuations, instead of just the current ones. Knowledge of where the
robot just was, and what it did may help resolve aliased states. Using history, [33]
learns the true state space over time in a POMDP model. It does this by considering
the differences in reward achieved per state-action pair over time, and splits states
when it determines that history matters. However, only a finite amount of history
is considered at any given time. For truly ambiguous, equivalent actions, it may be
that no amount of history will serve to uniquely identify the appropriate one. More
generally, for unknown tasks, we do not know how much history will be necessary.

6.1 Analysis

We here analyze the combination of the first two stages of the goal scoring task and
see how it results in perceptual aliasing. Specifically, it is perceptual aliasing of the
third kind, when a change in objective leads to multiple actions being recorded for
the same perception. We can perform learning then by either treating it as an issue
of hidden state, and making that state observable, or reworking the overall task to
avoid ambiguous situations.

The first half of the goal scoring task shown in Figure 4 is the combination of the
previously learned subtasks, and involves approaching and acquiring control of the
ball. We call this the ball-acquire (AQ) task and it consists of the robot first locating
and walking to the ball, and then trapping it for further manipulation, as shown in
Figure 7. Using a hand-coded controller, after 10 minutes of interactive training the
learned autonomy was unable to successfully acquire control of the ball. As both of
the constituent stages were successfully learned in the previous section, we posit that
it is the overlap between these two tasks occurring at the transition point in Figure 7c
that causes issues. This belief is further borne out by the observed behavior of the
learned autonomy. Instead of waiting until the ball was in the correct position to
trap, the robot instead performs portions of the trap randomly, whilst seeking the

(a) (b) (c) (d)

Fig. 7 The Ball-Acquire (AQ) task. The input state at the transition point in (c) is ambiguous,
as the ball is not visible. The robot can either be looking for the ball (a) or trapping it (d). A
context variable, indicating which subtask is being performed, removes the confusion.
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Fig. 8 Data from the seek/trap transitions of the AQ task. Raw inputs and outputs, with extra-
neous dimensions removed, are shown in the middle, as is the true subtask indicator (light is
seek, dark is trap). Six subtask transitions are shown. One datapoint on either side of the first
transition is highlighted and shown graphically. State estimates (head pose and perceived ball
location) are on the left, and actions (commanded head pose [walk velocities are zero]), on
the right.

ball. Thus we can infer that certain perceptual states, which occur during seeking,
are also associated with trapping, and that the learning system cannot distinguish
what action to perform.

To more closely examine this hypothesis, we focus on data from the transition be-
tween seeking and trapping in the AQ policy, where we expect to find a large amount
of overlap. Figure 8 (center) shows raw data from around this transition, with ex-
traneous dimensions such as non-ball color blobs and tail position removed. We
highlight one transition and examine more closely the data on either side, when the
controller has switched from performing the seeking subtask to the trapping subtask.
On the left we show the perception inputs, with the head and ball positions. Note
that both states have very similar inputs. On the right we show the corresponding
outputs. When seeking, the controller keeps the head down, and the walk parameters
are zero. When trapping, the walk parameters are still zero, but instead the head is
raised (to initiate the trap).

In our unimap regressor, there is an implicit assumption that data that is similar
in input space is similar in output space as well (continuity, or smoothness). This as-
sumption is formalized by the squared exponential, or radial basis function, repeated
here for reference

RBF(x,x′;σ2
k ) = exp

(

−0.5 ∗ ||x−x′||2
σ2

k

)

which computes the similarity between two datapoints, and weighs their outputs
for prediction. We see that for the two points on either side of the transition, the
RBF measure is 0.9978. SOGP then assumes that the outputs would be similarly
similar, which is not the case. Instead, the outputs have a measure of 0.1295 between
them. Because the two inputs are so similar, SOGP (and other standard regression
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algorithms) assume that the observed outputs are noise-corrupted versions of the
true output, and approximate them by their average, resulting in incorrect behavior.

6.1.1 Subtasks as Hidden State

Let us, as discussed above, frame subtask switching as an issue of hidden state.
As there are only two subtasks, a single binary indicator variable will serve to dif-
ferentiate them. With this variable included in the perceptual space of the robot,
the similarity between the input points becomes 0.4866. Thus, this indicator serves
to effectively ‘move’ the two subtasks apart in perception space. As the inputs are
now less similar, their associated outputs are not combined as heavily, and standard
regression can learn to differentiate them.

Using this indicator variable, we are able to learn the AQ task successfully from a
hand-coded controller. The indicator variable in this instance came from the internal
state of the code itself. If human demonstration were used, there would need to be a
method to get this information from the user during demonstration. Note that doing
so would require the user to first analyze the task to determine subtasks, and then
provide the indicator variable in addition to commanded actuations.

Using this information is, unfortunately, a stop-gap measure. In general, we are
interested in learning various unknown tasks from demonstration. Because we do
not know the tasks or their structure beforehand, we cannot a priori determine the
number of needed subtasks. Further, requiring the user to perform both analysis and
labeling during demonstration may unnecessarily limit our user base.

6.1.2 Unambiguous Goal Scoring

With some creativity, the goal scoring behavior can be reformulated to remove per-
ceptual aliasing. The new policy, shown in Figure 9, has the robot first circle the
ball until it is lined up with the goal, then approach it and kick. As the ball and the
goal are maintained in view at all times, there is no ambiguity as to what should be
done. Using both a hand-coded controller and human teleoperative demonstration,
this policy was learned successfully. Again, the robot and ball were repositioned

(a) Rotate (b) Align (c) Approach (d) Kick

Fig. 9 An alternate goal scorer policy where the robot maintains sight of the ball and goal.
Actions are thus uniquely determined by the perception, and standard unimap regression can
learn the task.
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randomly after each goal, or when the system entered an unstable state (ball behind
the goal or stuck). Interaction was terminated after 10 autonomous scores.

This approach to scoring, however, is less desirable than our original formulation.
For one, it is slower, and also requires more open field to operate in. To learn our
original policy, we must be able to learn π in the presence of perceptual aliasing.
However, as we have seen, standard regression techniques are unable to learn such
mappings. We require an approach that can automatically derive subtasks from the
data, and learn each subtask policy individually.

6.2 Finite State Machines from Demonstration

We claim that learning general FSMs from interactive demonstration is an open
problem for RLfD. Looking again at our original goal scoring policy in Figure 4,
we reshow it as a finite state machine in Figure 10a, where the AQ task is a sub-
graph within this overall behavior. From our previous discussion we see that using
regression to learn directly from data consisting of examples from two or more sub-
tasks may result in perceptual aliasing and improper autonomous behavior. In terms
of the underlying mapping, we believe it is multimap scenarios caused by percep-
tual aliasing due to a change in objectives that limits the applicability of standard
regression for direct policy approximation.

Recall from Section 2 that approaches exist for learning to transition between
known subtasks to perform a desired behavior. In terms of goal scoring this scenario
would correspond to knowing in advance the subtasks of seek, trap, kick and aim.
Likewise, there are techniques for learning subtasks given the decomposition. For
our goal-scoring task, this approach would be equivalent to knowing that there are
four subtasks, and the shape of the transitions between them. One method for learn-
ing in this scenario would be to include the subtask indicator, as we did above and
in [22]. This variable effectively tells us the number of subtasks (by the different
values it takes on), and the transitions between them (by when it changes).

(a) Goal Scoring FSM (b) Learning subtasks and their policies

Fig. 10 The goal-scoring policy as a finite state machine. Current LfD systems can learn tran-
sitions between known policies, we propose a technique for learning the number of subtasks
and their individual policies.
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Both of the above approaches learn FSMs, but depend on specific knowledge in
addition to the demonstration data, and use that information to resolve perceptual
aliasing. If the possible subtasks are known, multiple actions for a given perception
can be recognized as coming from different subtasks, and therefore will not cause
confusion during learning. Likewise, if the transitions are known, the multiple ac-
tions can be assigned to different subtasks, and then used to learn different policies.

What we seek is an approach that derives the assignment of data to subtasks, the
subtask policies, and the transitions between them from the data itself. In particular,
as the number of subtasks is not known a priori, it must too be deduced. As learning
transitions between known subtasks is already feasible, we focus on the first two of
these inferences, as illustrated in Figure 10b.

One approach to learning the number of subtasks is to take an upper limit on that
number, and allow some of the learnt subtasks to be null. This is the approach used,
for example, by [40], and when using the Bayesian Information Criterion (BIC)
to fit finite mixture models [23]. However, for long-life robots, who learn multiple
tasks over their existence, this may not be a valid approach, as the total number
of subtasks may grow without bound. In addition, we argue that for such a robot
it may be more appropriate to say something about the rate at which subtasks are
generated, rather than their number.

We thus propose to use multimap regression to learn from demonstration data
with multiple overlapping subtasks. This approach, described below, would take in
unannotated perception-actuation data, and produce an assignment of each datapoint
to a subtask, the total number of which is not known a priori. Using this derived an-
notation, individual subtask policies can be learned using standard LfD approaches
such as SOGP regression discussed above. Further, the annotations may provide the
necessary transition information for use in inferring the overall FSM topology.

6.2.1 Multimap Regression

Multiply valued mappings, or multimaps, refer to mappings f (x)→ y1,y2...yn which
are one-to-many. For a given input, x, there may be multiple possible “correct” out-
puts. This scenario is exactly what occurs during perceptual aliasing, and leads to
ill-posed problems for standard regression.

Probabilistically, the shift from unimaps to multimaps can be thought of in terms
of the distribution of observed actions given a perception, P(a|ŝ). In unimap regres-
sion, this distribution is taken to be unimodal (Gaussian in SOGP). Thus, all ob-
served demonstrations for a given input are averaged to create the predicted action.
In multimaps, the distribution is instead multimodal, with one mode corresponding
to each of the possible subtasks that may be applicable at ŝ.

As an illustrative multimap example consider the squareroot mapping,
√

x shown
in Figure 11. Here, the same input x = 4, can lead to two different outputs, denoted as√

4→ {2,−2}. Standard regression techniques applied to data from this mapping
average the possible outputs, as seen in Figure 11a. What we seek is a multimap
regression algorithm which can detect the underlying multimodality of the output
distribution such as in Figure 11b.
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We advocate an approach to multimap regression that models a multimap as a
collection of unimaps, where each subtask (mode of the distribution) is a separate
unimap. Multimap regression then becomes an issue of model selection (determin-
ing the number of unimaps), which corresponds to identifying the number of sub-
tasks, and individual standard regression for each one, which corresponds to policy
learning for each subtask. Further, as we do not know the number of subtasks in
advance, we must be able to create new subtasks as needed.

A mixture of experts approach [26] is thus appropriate, where each expert is a
unimap subtask. As we have already used SOGP to learn individual subtasks, a mix-
ture of SOGP experts would use a separate SOGP expert to learn each subtask, and
then transition between them to perform the overall behavior. The infinite mixture of
Gaussian experts model [34, 44] provides a method for automatically inferring the
number of GP experts needed to approximate a sample multimap. Further, by using a
prior over the segmentation of data, they introduce bias into the rate at which subtasks
are formed. The approach presented is, however, batch, and thus requires all data to
be collected in advance of processing. A similar, incremental approach [55] was used
to learn the multimap in Figure 11b. Further sparsification, by using SOGP experts
for example, may enable the application of this technique to realtime robot tutelage.

Basically, for each datapoint, the infinite mixture of GP experts model computes
the likelihood of that datapoint being generated by every existing GP expert, as well
as a new, previously unseen one. The actual assignment used is drawn from this dis-
tribution, and multiple possibilities are tracked to approximate the full distribution
over assignments of data to experts via Monte-Carlo integration. The result of the
algorithms (both batch and incremental) is a partition of the data, or set of indica-
tor variables that indicates which expert gave rise to each datapoint. Because new,
empty, experts are always considered, the number of experts which have data asso-
ciated with them can be as great as the number of datapoints. The individual experts
themselves are standard GP regressors, and can be used to generate control signals
for the robot.
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Fig. 11 The square root, a multimap. Unimap regression averages the two outputs, while
multimap regression learns a separate unimap for each branch.



Can We Learn Finite State Machine Robot Controllers 427

These techniques, however, only infer the number of subtasks and the policy
associated with each one, but not the transitions between them. There is then the
issue of selecting which should be used during robot execution, when more than
one is applicable. Randomly selecting a subtask for execution is likely to result in
improper robot behavior as there is no consistency in time. That is, the robot may
rapidly oscillate between subtasks, performing nither. For temporal continuity, [19]
learn an infinite hidden Markov model that “sticks,” or favors self-transitions. It may
be possible to merge infinite mixtures of experts, sparse nonparametric regression,
and sticky HMMs into a system that determines the number of experts, assigns data
to them and learns their policies, and infers the necessary transition matrix between
them for task performance, all at interactive speeds.

7 Conclusion

Interactive robot learning from demonstration is a promising approach to enable
autonomous robot control policies to be instantiated without programming. One
method for doing so is to use regression to directly approximate the policy. How-
ever, in our experiments in learning a robot soccer goal-scorer we have observed
that finite state machine controllers may result in ill-posed regression problems,
or multimap scenarios. Specifically, perceptual aliasing can occur when multiple
subtasks with different objectives overlap in perception space. In light of the FSM
formulation of our policy, we cast tutelage as FSM inference and view learning as
estimating the number of subtasks, their policies, and the transitions between them.
Current state-of-the-art techniques exist for inferring individual subtasks, the tran-
sitions between them given subtasks, or multiple subtasks simultaneously given the
transitions. Estimating the number of subtasks can be viewed as a problem of mul-
timap regression, and infinite mixtures of expert models may be bought to bear.

While current techniques can perform multimap regression, in order to fully ap-
ply them to the robot tutelage scenario for FSMs, we require incremental, sparse
versions that can discover subtasks in realtime. Further, we need to incorporate some
method of inferring the transitions between the subtasks, so that the correct action,
of the multiple applicable ones, is executed. With these added capabilities, it may
be possible to infer a complete FSM directly from unsegmented demonstration data
and use that FSM to control the robot immediately after demonstration ceases.

The title of this chapter is a question: Can we learn FSM robot controllers from
interactive demonstration? We have only examined regression based approaches,
but within that domain we optimistically conclude “No, not yet.”
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Mobile Robot Motion Control from
Demonstration and Corrective Feedback

Brenna D. Argall, Brett Browning, and Manuela M. Veloso

Abstract. Robust motion control algorithms are fundamental to the successful, au-
tonomous operation of mobile robots. Motion control is known to be a difficult
problem, and is often dictated by a policy, or state-action mapping. In this chapter,
we present an approach for the refinement of mobile robot motion control policies,
that incorporates corrective feedback from a human teacher. The target applica-
tion domain of this work is the low-level motion control of a mobile robot. Within
such domains, the rapid sampling rate and continuous action space of policies are
both key challenges to providing policy corrections. To address these challenges,
we contribute advice-operators as a corrective feedback form suitable for providing
continuous-valued corrections, and Focused Feedback For Mobile Robot Policies
(F3MRP) as a framework suitable for providing feedback on policies sampled at a
high frequency. Under our approach, policies refined through teacher feedback are
initially derived using Learning from Demonstration (LfD) techniques, which gen-
eralize a policy from example task executions by a teacher. We apply our techniques
within the Advice-Operator Policy Improvement (A-OPI) algorithm, validated on a
Segway RMP robot within a motion control domain. A-OPI refines LfD policies by
correcting policy performance via advice-operators and F3MRP. Within our valida-
tion domain, policy performance is found to improve with corrective teacher feed-
back, and moreover to be similar or superior to that of policies provided with more
teacher demonstrations.
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1 Introduction

Whether an exploration rover in space or recreational robot for the home, successful
autonomous mobile robot operation requires an algorithm for motion control. A
control policy provides such an algorithm, by mapping an observation of the world
to an action available on the robot. This mapping is fundamental to many robotics
applications, yet in general is complex to develop.

Even with a carefully crafted policy, a robot often will not behave as the de-
veloper expects or intends in all areas of the execution space. One way to address
behavior shortcomings is to update a policy based on execution experience, which
can increase policy robustness and overall performance. For example, such an up-
date may expand the state-space areas in which the policy is valid, or increase the
likelihood of successful task completion.

This chapter contributes our approach for refining mobile robot policies with
human feedback. The feedback consists of policy corrections, which are provided
based on human teacher observations of policy executions by the robot. The tar-
get domain of this work is low-level motion control on a mobile robot. Challenges
to providing corrective feedback within this domain include the continuous state-
action space of the policy, and the rapid rate at which the policy is sampled. We
introduce techniques to address both of these challenges.

1.1 Mobile Robot Motion Control

A motion control policy defines a mapping from world state to robot action. Motion
control policies are able to represent actions at a variety of control levels:

Low-level actions: Low-level actions directly control the movement mechanisms
of the robot. These actions are in general continuous-valued and of short time du-
ration, and a low-level motion policy is sampled at a high frequency. An example
low-level action is a command for wheel speed that updates at 50Hz.

High-level actions: High-level actions encode a more abstract action representa-
tion, which is then translated through other means to affect the movement mech-
anisms of the robot; for example, through another controller. These actions are
in general discrete-valued and of longer time duration, and their associated con-
trol policies are sampled at a low frequency. An example high-level action is to
approach and pick up an object, executing over tens of seconds.

The focus of this chapter is on low-level motion control policies. The continuous
action-space and high sampling rate of low-level control are both key considerations
during policy development and refinement.

The state-action mapping represented by a motion control policy is typically
complex to develop. One reason for this complexity is that the target observation-
action mapping is unknown. What is known is the desired robot motion behavior,
which must somehow be represented through an unknown observation-action map-
ping. A second reason for this complexity are the complications of motion policy
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execution in real world environments. The world is observed through sensors that
are typically noisy; models of world dynamics are only an approximation to the true
dynamics; and actions are motions executed with real hardware, which depends on
physical considerations like calibration accuracy and inevitably executes with some
level of imprecision.

The development of control policies therefore generally requires a significant
measure of effort and expertise, and frequently demands extensive prior knowl-
edge and parameter tuning. The required prior knowledge ranges from details of
the robot and its movement mechanisms, to details of the execution domain and
how to implement a given control algorithm. Any successful application typically
has the algorithm highly tuned for operation with a particular robot in a specific
domain. Furthermore, existing approaches are often applicable only to simple tasks
due to computation or task representation constraints.

Traditional approaches to robot control model the domain dynamics and derive
policies using those mathematical models [35]. While theoretically well-founded,
these approaches typically depend heavily upon the accuracy of the model, which
can require considerable expertise to develop and becomes increasingly difficult to
define as robot become more complex. Other approaches, such as Reinforcement
Learning (RL) [37], guide policy learning by providing reward feedback about the
desirability of visiting particular states. To define a function to provide these re-
wards, however, is known to be a difficult problem that also requires considerable
expertise to address. Furthermore, building the policy necessitates gathering infor-
mation by visiting states to receive rewards, which is non-trivial for a mobile robot
executing physical actions.

The experience of personally developing numerous motion behaviors by hand for
this robot [5], and subsequent desire for more straightforward policy development
techniques, was a strong motivating factor in this work. Similar frustrations have
been observed in other roboticists, further underlining the value of approaches that
ease the policy development process. Another, more hypothetical, motivating factor
is that as familiarity with robots within general society becomes more prevalent, it
is expected that future robot operators will include those who are not robotics ex-
perts. We anticipate a future requirement for policy development approaches that not
only ease the development process for experts, but are accessible to non-experts as
well.

1.2 Learning from Demonstration

Learning from Demonstration (LfD) is one policy development technique with
the potential for both application to non-trivial tasks and straightforward use by
robotics-experts and non-experts alike [4, 11]. Under the LfD paradigm, a teacher
first demonstrates a desired behavior to the robot, producing an example state-action
trace. The robot then generalizes from these examples to derive a policy, thus learn-
ing a state-action mapping.
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1.2.1 Support for Demonstration Learning

LfD has many attractive points for both learner and teacher. To develop a policy
within a LfD paradigm typically does not require expert knowledge of the domain
dynamics, which removes the performance dependence on model accuracy. The
relaxation of the expert knowledge requirement also opens policy development to
those who are not robotics-experts, satisfying a need that we expect to increase as
robots become more commonly available. Furthermore, demonstration has the at-
tractive feature of being an intuitive medium for communication from humans, who
already use demonstration to teach other humans.

More concretely, the application of LfD to motion control has many advantages:

Implicit behavior to mapping translation. By demonstrating a desired motion be-
havior, and recording the encountered states and actions, the translation of a be-
havior into a representative state-action mapping is immediate and implicit.

Robustness under real world uncertainty. The uncertainty of the real world means
that multiple demonstrations of the same behavior will not execute identically.
Generalization over demonstration examples thus produces a policy that does
not depend on a strictly deterministic world, and therefore should execute more
robustly under real world uncertainty.

Focused policies. Demonstration has the practical feature of focusing the dataset of
examples to areas of the state-action space actually encountered during behavior
execution. This is particularly useful in continuous action space domains, with
an infinite number of state-action combinations.

The LfD approach to obtaining a policy is in contrast to other techniques in which
a policy is learned from experience, for example building a policy based on data
acquired through exploration, as in RL. Furthermore a policy derived under LfD is
necessarily defined only in those states encountered, and for those actions taken,
during the example executions.

1.2.2 Formalism

Our approach to policy development derives an initial policy from teacher demon-
strations. Within this chapter, we formally define the world to consist of states S and
actions A, with the mapping between states by way of actions being governed by
the probabilistic transition function T (s′|s,a) : S×A× S→ [0,1]. We assume that
state is not fully observable, and instead the learner has access to observed state Z,
through a mapping S→ Z. A teacher demonstration d ∈ D is represented as n pairs
of observations and actions, such that d = {(zi,ai)} ∈ D, zi ∈ Z, ai ∈ A, i = 0 · · ·n.
Within the typical LfD paradigm, the set D of these demonstrations is provided to
the learner. A policy π : Z→ A, that selects actions based on an observation of the
current world state, or query point, is then derived from the dataset D.
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1.2.3 Related Work

LfD has found success on a variety of robot platforms and applications [4, 11].
Since demonstration for real robots involves executing actions in physical environ-
ments, differences in embodiment between the learner and teacher become of crucial
importance. The challenges that arise from these differences, where teacher demon-
strations may not map directly to the learner due to differences in sensing or motion,
are broadly referred to as correspondence issues within the LfD literature [12, 26].
Key design decisions therefore include the choice of teacher controlling, and plat-
form executing, the demonstration, as well as how the demonstration is recorded.

A variety of approaches exist for executing and recording teacher demonstra-
tions. At one extreme lies teleoperation, where the passive robot platform records
from its own sensors while under direct teacher control [9, 13]. This approach is
very effective at reducing teacher-learner correspondence issues, but does require
actively controlling the robot during the task, which might not be manageable for
example if controlling a high-DoF humanoid for low-level motion control. Another
approach has the robot learner actively mimic the teacher during the demonstration
executions, again while recording from its own sensors [18, 29]. This has the advan-
tage of not requiring the teacher to actively control the robot, but does require that
the learner be able to identify and track the teacher; furthermore, the observations
made by the teacher during the execution are not directly recorded.

Other demonstration techniques do not employ the actual learner platform during
the demonstration. One such technique has the teacher wear sensors during task
execution with her own body [14, 21, 23]. This requires specialized sensors and
introduces another level of teacher-learner correspondence, but does not require that
the learner platform be actively operated or able to track the teacher during task
execution. Lastly, at the opposite extreme to teleoperation, sensors external to the
teacher’s body may record his execution of the task with his own body [8, 10]. This
has the lowest requirements in terms of specialized sensors or actively operating the
robot, but is the most likely to encounter correspondence issues when transferring
the recorded teacher demonstrations to the learner platform.

Once the dataset is recorded, a policy must be derived from it. A variety of policy
derivation techniques are employed within LfD, the majority of which fall into three
categories. The first category directly approximates the function mapping states to
actions f () : Z → A, using regression or classification techniques. Successful LfD
implementations of this policy derivation approach include tasks with humanoids
[10, 14, 20], Sony AIBOs [15, 19] and a variety of other platforms [25]. The second
category learns a state-action transition model T (s′|s,a) from the demonstration
data, pairs this with a reward function R(s) (either hand-engineered or learned) and
derives a policy using RL techniques. Successful LfD applications under this ap-
proach span tasks with autonomous helicopters [1, 9, 27] to small quadriped robots
[22, 32], humanoids [24] and robotic arms [8]. The third category learns task plans
from the demonstration set, including small wheeled robot [29] and companion
robot [33] applications. Note that each of these techniques are employed for the
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derivation of policies with high-level actions, while only the first two are used to
derive policies with low-level actions.

Our work takes the policy derivation approach of directly approximating the un-
derlying function mapping states to actions. Since our action space is continuous,
regression techniques are employed. During the empirical validation of our tech-
niques, teleoperation is the approach that will be used for gathering demonstrations.

1.3 Policy Refinement within LfD

LfD is inherently linked to the information provided in the demonstration dataset.
As a result, learner performance is heavily limited by the quality of this informa-
tion. Though LfD has enabled successful policy development for a variety of robot
platforms and applications, this approach is not without its limitations.

1.3.1 Potential Dataset Limitations

One common cause for poor learner performance is dataset sparsity, or the existence
of state space areas in which no demonstration has been provided. Dataset sparsity
is a trade off to focusing the dataset to areas visited during task execution, since the
learner is provided with an indication of which action to take only in those states
visited during demonstration. In all but the most simple domains the teacher will
be unable to demonstrate from every state, and so there will be areas of the state
space absent from the demonstration set. Note however that dataset sparsity may be
overcome to a certain extent by the generalization ability of the policy derivation
technique.

A second cause is poor quality of the dataset examples. Poor quality examples
can result from the demonstration abilities of the teacher, who may in fact provide
suboptimal or ambiguous demonstrations. Poor quality examples also can results
from poor correspondence between the teacher and learner, who may differ in sens-
ing or motion capabilities.

To summarize, common sources of LfD limitations include:

1. Uncovered areas of the state space, absent from the demonstration dataset.
2. Suboptimal or ambiguous teacher demonstrations.
3. Poor translation from teacher to learner, due to correspondence issues.

One way to address dataset limitations is to extend LfD by having the robot update
its policy based on execution experience.

1.3.2 Related Work

One popular approach for dealing with poor or ambiguous teacher demonstrations
is to provide more demonstration data in response to execution experience with
the policy. There are approaches that acquire new demonstrations by enabling the
learner to evaluate its confidence in selecting a particular action, based on the
confidence of the underlying classification algorithm. For example, the robot can
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indicate to the teacher its certainty in performing various elements of the task [19],
or request additional demonstration in states that are either very different from pre-
viously demonstrated states or for which a single action cannot be selected with cer-
tainty [16]. Other approaches rely on teacher observation of the policy performance
alone, for example to provide a robot with new demonstrations through kinesthetic
teaching that moves passive joints through desired position trajectories [14].

Another approach is to pair LfD with RL techniques, which is particularly rel-
evant for implementations that already derive their policies using RL. The goal of
RL is to maximize cumulative reward over time, and typically each state s is asso-
ciated with a value according to the function V (s) (or associating state-action pair
s,a with a Q-value according to the Q(s,a)) [37]. By updating the state values V (s)
with rewards received during execution [36], a policy derived under LfD also up-
dates. We note that these are rewards seen during learner execution, and not during
demonstration. To visit and evaluate new states not seen in the demonstration set, an
exploration policy may be employed [30, 34], though we note that in general tak-
ing exploratory steps on a real robot can be inefficient and even dangerous. Finally,
execution experience may also update a learned transition function T (s′|s,a) [2].

2 Corrective Feedback for Policy Refinement

Our approach to the improvement of LfD policies through experience is to pro-
vide corrections on policy executions. Corrective feedback is provided by a human
teacher, in response to policy executions by a robot learner. In particular, feedback
corrects state-action mappings produced during a student execution to generate new
examples for the LfD policy. We begin by motivating and discussing corrective feed-
back for the improvement of LfD policies (Sec. 2.1), followed by a detailing of the
contributed techniques that enable a human teacher to provide continuous-valued
corrections (Sec. 2.2) to policies sampled at a high frequency (Sec. 2.3). We then
present an algorithm that employs our corrective feedback techniques (Sec. 2.4).

2.1 Policy Corrections

To address potential LfD limitations, the approach of correcting poor policy predic-
tions we argue is particularly direct. While overall performance evaluations or state
rewards can provide an indication of the quality of a policy prediction, they do not
provide any guidance on what might have been a more suitable alternate prediction.
Providing a correction on poor predictions therefore provides more focused and de-
tailed policy improvement information. Furthermore, while more demonstrations
can populate sparse areas of the state space or demonstrate a corrected behavior,
they require state re-visitation, which can be impractical within real world domains.

Policy correction has seen limited attention within LfD however. The selection
of a policy correction in general is sufficiently complex to preclude it being pro-
vided with a simple function. Approaches that do correct policy predictions there-
fore provide corrections through human teachers, which our techniques do as well.
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Furthermore, since the correction involves selecting a preferred state or action,
within the existing literature corrections are only provided within action spaces that
are discrete and with actions of significant time duration, and therefore sampled
with low frequency. For example, the correct action from a discrete set is provided
by a human teacher to update a high-level action classifier [15], and the structure of
a hierarchical Neural Network of robot behaviors [29].

Approaches that correct policies within continuous action-spaces sampled at high
frequency are absent from the existing LfD literature. These considerations have
prompted our development of a corrective feedback form that is appropriate for
continuous-valued action domains (Sec. 2.2). We furthermore develop a feedback
framework (Sec. 2.3) that is suitable for domains with rapidly sampled policies.

2.2 Advice-Operators

To address the challenge of providing continuous-valued corrections, we introduce
advice-operators [3] as a language through which a human teacher provides policy
corrections to a robot student.

Concretely defined, an advice-operator is a mathematical computation performed
on an observation input or action output. Given a policy execution by the learner,
an operator is indicated by the teacher and applied to a state-action pair recorded
during the execution. Key characteristics of advice-operators are that they:

1. Perform mathematical computations on datapoints.
2. Are defined commonly between the student and advisor.
3. May be applied to observations or actions.

Figure 1 presents a diagram of data synthesis from student executions and teacher
feedback (bottom, shaded area); for comparison, LfD data from teacher executions
is also shown (top). To illustrate with an example, consider a simple operator that
modifies translational acceleration by a static amount δ . Suppose the teacher indi-
cates this operator for application over 15 data points from the learner execution.

Fig. 1 Generating demonstration data under classical LfD (top) and advice-operators
(bottom).
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The translational speed a0 of executed point 0 then updates to â0← a0 + δ , point 1
to â1← a1 + δ , and so forth until point 14 updates to â14← a14 + δ .

Policy correction under advice-operators does not rely on teacher demonstration
to indicate a corrected behavior. The advice-operator approach thus includes the
following strengths:

No need to recreate state. This is especially useful if the world states where cor-
rective demonstration is needed are dangerous (e.g., lead to a collision), or diffi-
cult to access (e.g., in the middle of a motion trajectory).

Not limited by the demonstrator. Corrections are not limited to the execution
abilities of the demonstration teacher, who may be suboptimal.

Unconstrained by correspondence. Corrections are not constrained by physical
differences between the teacher and learner.

Possible when demonstration is not. Further demonstration may in fact be im-
possible (e.g., teleoperation over a 40 minute Earth-Mars communications lag).

We thus contribute a formulation for corrective feedback, as a predefined list
of mathematical functions. Advice-operators enable the translation of a statically-
defined high-level correction into a continuous-valued, execution-dependent,
low-level correction. Moreover, when combined with our techniques for provid-
ing feedback (Sec. 2.3), a single piece of advice corrects multiple execution points.
The selection of a single advice-operator thus translates into multiple continuous-
valued corrections, and therefore is suitable for modifying low-level motion control
policies sampled at high frequency.

2.3 Focused Feedback for Mobile Robot Policies

To address the challenge of providing feedback to policies sampled at a rapid rate,
we introduce Focused Feedback For Mobile Robot Policies (F3MRP) [6] as a frame-
work through which portions of a policy execution are selected to receive feedback.
The target application domain for F3MRP is mobile robot motion control.

At the core of the F3MRP framework is a visual presentation of the 2-D path
physically taken by the mobile robot on the ground.1 For experiments with a sim-
ulated robot, the 2-D path is represented in real-time as the robot executes. For
experiments with a real robot, the 2-D path is played back, at true speed, after the
learner execution completes, to mitigate inaccuracies due to network lag.

The visual path presentation is a key component of the interface for the identi-
fication of those portions of the learner execution that require correction. Through
this interface, the teacher selects segments of the 2-D ground path that correspond
to those portions of the execution during which the policy performed poorly. An

1 The F3MRP framework was designed specifically for mobile robot applications. To apply
the framework to non-mobile robots would require an alternative to the 2-D ground path,
to serve as the visualization component of the interface for segment selection.
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Fig. 2 Path visualization, subset selection and data association under the F3MRP framework.

overview of the F3MRP interface is shown in Figure 2, which expands the shaded
area in Figure 1 with the details of segment selection.

Corrective feedback provided under the F3MRP framework must associate
closely with the underlying learner execution, since the feedback corrects specific
execution points. By contrast, consider an overall performance measure, that need
only associate with the execution as a whole and thus links to the data at a fairly
coarse scale. To accomplish close feedback-execution association under F3MRP,
the teacher selects problem segments of the graphically displayed ground path. Seg-
ment sizes are determined dynamically by the teacher, and may range from a single
point to all points in the trajectory.

The F3MRP framework then associates the selected segment of the position
trace, i.e. the ground path, with the corresponding segment of the prediction trace,
i.e. the state-action sequence, recorded during the learner execution. This process is
the tool through which the human flags state-action pairs for modification: by se-
lecting segments of the displayed ground path, which the framework then associates
with the state-action trace of the policy.

2.4 Algorithm Advice-Operator Policy Improvement

The Advice-Operator Policy Improvement (A-OPI) algorithm [3] refines a motion
control policy, initially derived from LfD, by providing corrections through advice-
operators and the F3MRP framework. The algorithm operates in two phases. During
the demonstration phase, a set of teacher demonstrations is provided to the learner.
This demonstration set D consists of example executions of the target behavior,
during which state-action pairs are recorded. From this set the learner generalizes
an initial policy. During the feedback phase, the learner executes with this initial
policy. Feedback on the learner execution is offered by a human teacher, and is used
by the learner to update its policy. The learner then executes with the updated policy,
and the execute-feedback-update cycle continues to the satisfaction of the teacher.
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Algorithm 1. Advice-Operator Policy Improvement

1: Given D
2: initialize π ← policyDerivation(D)
3: while practicing do
4: initialize d←{}, tr←{}
5: repeat
6: predict at ← π (zt)
7: execute at

8: record d ← d ∪ (zt ,at) , tr ← tr ∪ (xt ,yt ,θ t)
9: until done

10: advise { op,Φ }← teacherFeedback( tr )
11: for all ϕ ∈Φ , (zϕ ,aϕ ) ∈ d do
12: if op is observation-modifying then
13: modify (zϕ ,aϕ ) ← (op(zϕ ) ,aϕ )
14: else {op is action-modifying}
15: modify (zϕ ,aϕ ) ← (zϕ ,op(aϕ ))
16: end if
17: update D ← D ∪ (zϕ ,aϕ )
18: end for
19: rederive π ← policyDerivation(D)
20: end while
21: return π

Algorithm 1 presents pseudo-code for the A-OPI algorithm. To begin, an initial
policy π is derived from the set of teacher demonstrations (line 2). A single practice
run (lines 3-20) consists of a single execution-feedback-update cycle.

During the learner execution portion of a practice run (lines 5-9), the learner
executes the task. At each timestep the learner observes the world, and predicts
action at according to policy π (line 6). This action is executed and recorded in the
prediction trace d, along with observation zt (line 8). The information recorded in
the trace d will be incorporated into the policy update. The global position xt ,yt and
heading θ t of the mobile robot is additionally recorded, into the position trace tr.
Information recorded in tr will be used by the F3MRP framework, when visually
depicting the path taken by the robot on the ground during execution.

During the teacher feedback portion of the practice phase, the teacher first indi-
cates, through the F3MRP interface, a segment Φ of the learner execution trajec-
tory requiring improvement. The teacher further indicates an advice-operator op,
selected from a finite list, to correct the execution within this segment (line 10).

The teacher feedback is then applied across all points recorded in d and within
the indicated subset Φ (lines 11-18). For each point (zϕ ,aϕ) ∈ d, ϕ ∈ Φ , the al-
gorithm modifies either its observation (line 13) or action (line 15), depending on
the type of the indicated advice-operator. The modified datapoints are added to the
demonstration set D (line 17), and the policy is rederived (line 19).
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3 Empirical Validation of A-OPI

This section presents an empirical validation of our corrective feedback approach.
We validate the A-OPI algorithm that employs our corrective feedback techniques -
that is, advice-operators and the F3MRP framework - on a Segway Robot Mobility
Platform (RMP) [28] performing a spatial positioning task. Policy modifications due
to corrective feedback are shown to improve policy performance, which furthermore
is found to be similar or superior to the more typical approach of providing more
teacher demonstrations.

3.1 Experimental Setup

Empirical validation of the A-OPI algorithm is performed through a spatial position-
ing task with a Segway RMP. This section presents the task and domain, followed
by policy development and evaluation; further empirical details may be found in [3].

3.1.1 Task and Domain

The Segway RMP is a two-wheeled dynamically-balancing differential drive robot,
which may only drive forward or turn and cannot go sideways. The robot accepts
wheel speed commands, but does not allow access to its balancing control mecha-
nisms. We therefore treat Segway RMP control as a black box, since we do not know
the specific gains or system parameter values. The inverted pendulum dynamics of
the robot present an additional element of uncertainty for low level motion control.

The spatial positioning task consists of attaining a 2-D planar target position
(xg,yg) with a heading θg (Fig. 3). For this task smoothly coupled rotational and
translational speeds are preferred, in contrast to turning on spot to θg after attaining
(xg,yg). To mathematically define for this specific robot platform the desired motion
trajectories for our task is thus non-trivial, encouraging the use of alternate control
approaches such as A-OPI. That the task is straightforward for a human to evaluate
and correct further supports A-OPI as a candidate approach. While the task was cho-
sen for its suitability to validate A-OPI, to our knowledge this work also constitutes
the first implementation of such a motion task on a real Segway RMP platform.

Fig. 3 Segway RMP performing the spatial positioning task (approximate ground path in
yellow).
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To gather demonstration examples, a human teleoperates the platform as the robot
records from its own sensors. Teleoperation minimizes correspondence issues be-
tween demonstrator and learner, and is reasonable to perform for this task and robot
platform. The robot observes its global position and heading through wheel encoders
sampled at 30Hz.

To derive a policy from the demonstration examples, the function mapping states
to actions is directly approximated via regression techniques. We employ a form
of Locally Weighted Learning [7]. Worthwhile to note however is that A-OPI is
not restricted to a particular regression technique, and any are appropriate for use
within the algorithm. Given observation zt , action at is predicted through an averag-
ing of the actions in D, weighted by a kernelized distance between their associated
datapoint observations and the current observation zt . Thus,

at = ∑
(zi,ai)∈D

φ
(

zt ,zi
) ·ai , φ

(

zt ,zi
)

=
e(zi−zt)T Σ−1(zi−zt)

∑z j∈D e(z j−zt)T Σ−1(z j−zt)
(1)

where the weights φ (zt , :) are normalized over i. In this work the distance computa-
tion is Euclidean, the kernel is Gaussian and Σ−1 is a constant diagonal matrix that
scales each observation dimension and embeds the bandwidth of the Gaussian ker-
nel. All parameters are tuned through Leave-One-Out-Cross-Validation (LOOCV),
minimizing the least squared error of the regression prediction on the set D.

The observations for this task are 3-dimensional, and are feature computations
involving the global and target position and heading: (i) squared Euclidean distance
to the target position, (ii) angle between the target position and current robot heading
and (iii) angle between the current and target robot headings. The actions are 2-
dimensional: (i) translational speed and (ii) rotational speed. The motion control
operators developed for this domain adjust observation inputs (Tbl. 1, Operator 0),
single action dimensions by non-static amounts (Operators 1-6) or multiple action
dimensions by non-static amounts (Operators 7-8). The amount of the non-static
adjustments are determined as a function of the executed values of the observations
and actions.

Table 1 Advice-operators for the spatial positioning task.

Operator Parameter

0 Reset goal, recompute observation
1 No turning
2 Start turning [ cw ccw ]
3 Smooth rotational speed [ dec inc ]
4 No translation
5 Smooth translational speed [ dec inc ]
6 Translational [ac/de]celeration [ dec inc ]
7 Turn tightness [ less more ]
8 Stop all motion

Key: (c)cw=(counter)clockwise, (dec/inc)=(de/in)crease
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3.1.2 Policy Development and Evaluation

The set D is seeded with demonstrations recorded as the teacher teleoperates the
robot learner (9 demonstrations, totaling 900 datapoints). Policy improvement pro-
ceeds as follows. A random goal is selected (without replacement) from a practice
set consisting of (xg,yg,θg) goals, drawn uniformly within the bounds of the demon-
stration dataset. The robot executes with its current policy to attain this goal. The
advisor observes this execution, and optionally offers policy improvement informa-
tion. The policy is re-derived, and drawing a new goal initiates another practice run.

Three policies are developed using distinct techniques, differing in what is of-
fered as policy improvement information. A total of four policies are therefore de-
veloped within this domain:

1. Baseline Policy (Base): Derived from the initial demonstration set.

2. Feedback Policy (FB): Provided with policy corrections, via advice-operators.

3. Feedback-Hybrid Policy (FB-H): Initially provided with more teacher demon-
strations; later provided with policy corrections via advice-operators.

4. More-Demonstration Policy (M-Demo): Provided with more teacher
demonstrations.

The final three are referred to collectively as the improvement policies. Note that in
the case of policy M-Demo, a practice run consists of a single execute-demonstrate-
update cycle.

Policies are evaluated for accuracy and success, on an independent test set of
(xg,yg,θg) goals. Here accuracy is defined as Euclidean distance between the final
robot and goal positions ex,y, and the final robot and goal headings eθ . Success is
defined generously as ex,y < 1.0 m and eθ < π

2 rad. Practice runs were halted once
performance on the test set no longer improved (number of practice runs: 60 FB, 59
FB-H and 51 M-Demo).

3.2 Results

Policy performance was found to improve with corrective feedback, in both ex-
ecution success and accuracy [3]. A-OPI additionally enabled similar or superior
performance when compared to a policy derived from more teacher demonstrations.
Furthermore, by concentrating new data exclusively to the areas visited by the robot
and needing improvement, A-OPI produced noticeably smaller datasets.

3.2.1 Success and Accuracy Improvement

Table 2 presents the percent execution success of each policy on the independent
test set. When compared to policy Base, all policy improvement approaches display
an increase in success. Both of the feedback policies additionally achieve higher
success than policy M-Demo.
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Table 2 Execution Percent Success.

Baseline Feedback Feedback-Hybrid More-Demonstration

32 88 92 80

Figure 4 plots, for each policy, the average position and heading error on the test
set goals. For positional error, all improvement policies displayed similar perfor-
mance, which was a dramatic improvement over policy Base. For heading, policy
FB reduced more error than policy FB-H, with both showing marked improvements
over policy Base. By contrast, policy M-Demo displayed no improvement in heading
error over policy Base. That heading error was in general more difficult to improve
than positional error is consistent with our prior experience with this robot platform,
which is highly sensitive to the accumulation of rotational dead reckoning error.

The iterative nature of policy development under A-OPI produces many inter-
mediate policies, a sampling of which were also evaluated on the test set. Figure 5
shows the average position and heading error of the intermediate policies on the test
set goals, to mark the progress of each policy improvement technique.

Superior heading performance was consistently produced by corrective feedback,
with policy FB attaining lower heading error than policy M-Demo throughout policy
improvement. By contrast, initially greater improvement in positional error is seen
with more demonstration and thus with policy M-Demo. While corrective feedback
reduces positional error more slowly, policy FB does however eventually converge
to the level attained through more demonstration.

Policy FB-H initially displays the superior reduction in positional error, and in-
ferior reduction in heading error, of policy M-Demo. This performance is followed
by substantial reductions in heading error, akin to policy FB. These results reflect
to the development technique of policy FB-H. The policy was initially seeded with

Test Set Error, Final Policies

Fig. 4 Average test set error on target position (left) and heading (right), with the final
policies.
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Test Set Error, Intermediate Policies

Fig. 5 Average test set error on target position (left) and heading (right), with intermediate
policies.

an intermediate version of policy M-Demo (resulting after 23 practice runs), and
following the seeding was offered exclusively corrective feedback.

3.2.2 More Focused Datasets

How many datapoints were added with each practice run varied greatly depend-
ing on whether the execution received corrective feedback or more demonstrations
(Fig. 6). The reason is that, in contrast to teleoperation, only subsets of a corrected
execution were added to the dataset; in particular, only those execution points which
actually received corrections. States visited during good performance portions of the
student execution were not redundantly added to the dataset. In this manner, the final
policy performances shown in Figure 4 were achieved with much smaller datasets

Dataset Size

Fig. 6 Growth in dataset size with practice runs.
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for both feedback policies, in comparison to policy M-Demo. Note that the results of
Figure 5 are plotted against the number of practice runs contributing to the dataset,
and not the number of datapoints in the set.

4 Conclusion

To define an algorithm for motion control on a mobile robot is a difficult and chal-
lenging task, which we address by continuing to adapt and refine a control pol-
icy based on execution experience. Our approach to motion control demonstrates
a behavior to the robot, and addresses potential limitations in the resultant dataset
through execution experience. In particular, policy refinement is achieved through
corrective feedback provided by a human teacher.

There are two key challenges to providing feedback within low-level motion con-
trol domains. The first is the continuity of the action space: continuous-valued ac-
tions require continuous-valued corrections, and thus selection from an infinite set.
The second is the sampling rate of the policy: a rapid sampling rate means that mul-
tiple execution points are responsible for a particular behavior being corrected. We
have developed techniques to address each of these challenges.

The first technique, named advice-operators, is a language through which a
human teacher provides corrections to a robot student. Advice-operators perform
mathematical computations on continuous-valued datapoints. To provide a correc-
tion, the teacher selects from a finite list of advice-operators. The robot learner ap-
plies the operator to an execution datapoint, modifying its value and producing a
continuous-valued correction.

The second technique, named Focused Feedback For Mobile Robot Policies
(F3MRP), is a framework through which a human teacher provides feedback on
mobile robot motion control executions. Through the F3MRP interface, the teacher
selects segments of the execution to receive feedback, which simplifies the challenge
of providing feedback to policies sampled at a high frequency. A crucial element of
the interface is the visual presentation of the ground path taken by the robot during
execution; the framework thus targets mobile robots in particular.

By pairing these two techniques, the selection of a single advice-operator and
application segment therefore provides continuous-valued corrections on multiple
execution points. In this manner, our approach enables correction-giving that is
reasonable and effective for a human to provide, even within a continuous-valued,
rapidly sampled, domain.

We have validated these techniques through our Advice-Operator Policy Improve-
ment (A-OPI) algorithm, which employs both advice-operators and the F3MRP
framework. A-OPI was implemented on a Segway RMP robot, performing a spa-
tial positioning task. Within this domain, corrective feedback was found to improve
policy performance, and to enable similar or superior performance when compared
to a policy derived from more teacher demonstrations. Furthermore, by concentrat-
ing new data exclusively to the areas visited by the robot and in need of improve-
ment, corrective feedback also produced noticeably smaller datasets, and without a
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sacrifice in policy performance, suggesting the datasets to be more focused and con-
tain less redundant data.
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Learning Continuous Grasp
Affordances by Sensorimotor
Exploration

R. Detry, E. Başeski, M. Popović, Y. Touati, N. Krüger, O. Kroemer,
J. Peters, and J. Piater

Abstract. We develop means of learning and representing object grasp af-
fordances probabilistically. By grasp affordance, we refer to an entity that is
able to assess whether a given relative object-gripper configuration will yield
a stable grasp. These affordances are represented with grasp densities, contin-
uous probability density functions defined on the space of 3D positions and
orientations. Grasp densities are registered with a visual model of the object
they characterize. They are exploited by aligning them to a target object
using visual pose estimation. Grasp densities are refined through experience:
A robot “plays” with an object by executing grasps drawn randomly for the
object’s grasp density. The robot then uses the outcomes of these grasps
to build a richer density through an importance sampling mechanism. Ini-
tial grasp densities, called hypothesis densities, are bootstrapped from grasps
collected using a motion capture system, or from grasps generated from the
visual model of the object. Refined densities, called empirical densities, repre-
sent affordances that have been confirmed through physical experience. The
applicability of our method is demonstrated by producing empirical densities
for two object with a real robot and its 3-finger hand. Hypothesis densities
are created from visual cues and human demonstration.

1 Introduction

Grasping previously unknown objects is a fundamental skill of autonomous
agents. Human grasping skills improve with growing experience with certain
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objects. In this chapter, we describe a mechanism that allows a robot to learn
grasp affordances [11] of objects described by learned visual models. Our first
aim is to organize and memorize, independently of grasp information sources,
the whole knowledge that an agent has about the grasping of an object, in
order to facilitate reasoning on grasping solutions and their likelihood of
success. A grasp affordance corresponds to the the different ways to place
a hand or a gripper near an object so that closing the gripper will produce
a stable grip. We represent the affordance of an object for a certain grasp
type through a continuous probability density function defined on the 6D
gripper pose space SE(3), within an object-relative reference frame. The
computational encoding is nonparametric: A density is represented by a large
number of weighted samples called particles. The probabilistic density in a
region of space is given by the local density of the particles in that region.
The underlying continuous density function is accessed through kernel density
estimation [28].

The second contribution of this chapter is a framework that allows an
agent to learn initial affordances from various grasp cues, and enrich its grasp-
ing knowledge through experience. Affordances are initially constructed from
human demonstration, or from a model-based method [1]. The grasp data
produced by these grasp sources is used to build continuous grasp hypothesis
densities (Section 5). These densities are registered with 3D visual object
model learned beforehand [8], which allows a robotic agent to execute sam-
ples from a grasp hypothesis density under arbitrary object poses, by using
the visual model to estimate the 3D pose of the object.

The success rate of grasp samples depends on the source that is used to
produce initial grasp data. However, no existing method can claim to be
perfect. For example, data collected from human demonstration will suffer
from the physical and mechanical difference between a human hand and a
robotic gripper. In the case of grasps computed from a 3D model, results
will be impeded by errors in the model, such as missing parts or imprecise
geometry. In all cases, only a fraction of the hypothesis density samples will
succeed; it thus seems necessary to also learn from experience. To this end, we
use samples from grasp hypothesis densities that lead to a successful grasp to
learn grasp empirical densities, i.e. grasps that have been confirmed through
experience.

A unified representation of grasp affordances can potentially lead to many
different applications. For instance, a grasp planner could combine a grasp
density with hardware physical capabilities (robot reachability) and external
constraints (obstacles) in order to select the grasp that has the largest chance
of success within the subset of achievable grasps. Another possibility is the
use of continuous grasp success likelihoods to infer robustness requirements
on the execution particular grasp: if a grasp is centered on a narrow peak,
pose estimation and servoing should be performed with more caution than
when the grasp is placed in a wide region of high success likelihood.
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2 Related Work

Object grasps can emerge in many different ways. One can for instance learn
2D image patches that predict stable grasps. For example, Saxena et al. [27]
have trained a classifier on a set of 2D images that were hand-labeled with
good grasping points. Good grasping points are then identified in several
views of an object and triangulated to infer their 3D position.

Grasping solutions can also emerge from the geometric properties of an ob-
ject, typically obtained from a 3D object model. The most popular 3D model
for grasping is probably the 3D mesh [15, 22], obtained e.g. from CAD or su-
perquadrics fitting [2]. However, grasping has also successfully been achieved
using models consisting of 3D surface patches [26], 3D edge segments [1], or
3D points [13]. When combined with an object pose estimation technique,
the previous methods allow a robot to execute a grasp on a specific object.
This involves object pose estimation, computation of a grasp on the aligned
model, then servoing to the object and performing the grasp [15].

In learning a continuous grasp affordance, one has a choice between learn-
ing success probabilities or learning success-conditional grasp densities. De-
noting by O a random variable encoding grasp outcomes (success or failure),
and by G a random variable encoding grasp poses, this translates to learning
p(O|G) or learning p(G|O). The former allows one to directly compute a
probability of success. The latter allows for grasp sampling, while still pro-
viding direct means of computing relative success probabilities – e.g. grasp
a is twice as likely to succeed as grasp b. We note that one can theoretically
be computed from the other using Bayes’ rule. However, depending on the
means of function representation, this process may prove either too costly or
too noisy to be computationally feasible.

This chapter develops a method for learning success-conditional grasp den-
sities, closely related in spirit to the work of de Granville et al. [5]. In their
work, affordances correspond to object-relative hand approach orientations,
although an extension where object-relative positions are also modeled is
under way [4]. The aim of the authors is to build compact sets of canoni-
cal grasp approaches from human demonstration; they mean to compress a
large number of examples provided by a human teacher into a small num-
ber of clusters. An affordance is expressed through a density represented as
a mixture of position-orientation kernels; machine learning techniques are
used to compute mixture and kernel parameters that best fit the data. This
is quite different from our approach, where a density is represented with a
much larger number of simpler kernels. Conceptually, using a larger num-
ber of kernels allows us to use significantly simpler learning methods (down
to mere resampling of input data, see Section 5.1). Also, the representa-
tion of a grasp cluster through a single position-orientation kernel requires
the assumption that hand position and orientation are independent within
the cluster, which is generally not true. Representing a cluster with many
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particles can intrinsically capture more of the position-orientation correlation
(see Section 6, and in particular Fig. 6). The affordance densities presented
by de Granville et al. correspond to the hypothesis densities developed in this
chapter.

Instead of considering success-conditional grasp probabilities, Montesano
et al. [23] formalize grasp affordances as success probabilities p(O|I), where
I is a local image patch. A robot thus learns a mapping from 2D image
patches to grasp success probabilities, where a grasp is parametrized by its
2D gripper position. From a procedural viewpoint, the method of Montesano
et al. differs from ours in its explicit exploitation of failed grasps, whereas
in our work, empirical densities are learned from successful grasps only. We
note that, in a probabilistic sense, our learning method does take failed grasps
into account, through the absence of learning data in regions where grasps
were sampled and failed. However, we agree that making active use of failed
trials may increase robustness, and we intend to evaluate this option in future
work. Another promising avenue lies in active learning of grasp options, as
demonstrated by Kroemer et al. [16].

Learning grasp affordances from experience was also demonstrated by
Stoytchev [29, 30]. In his work, a robot discovers successful grasps through
random exploratory actions on a given object. When subsequently confronted
with the same object, the robot is able to generate a grasp that should present
a high likelihood of success.

In this chapter, learning may be bootstrapped with grasp data provided by
a motion capture system, a process that constitutes a simple form of imitation
learning. For a broader discussion of imitation learning, we refer the reader
to two dedicated chapters within this collection [20, 19].

The system developed in this chapter is build on a set of existing methods
which are described in Section 3. The visual object model to which affordances
are attached is the part-based model of Detry et al. [8] (Section 3.3). An object
is modeled with a hierarchy of increasingly expressive object parts called
features. The single top feature of a hierarchy represents the whole object.
Features at the bottom of the hierarchy represent short 3D edge segments
for which evidence is collected from stereo imagery via the Early-Cognitive-
Vision (ECV) system of Krüger et al. [17, 25] (Section 3.1). In the following,
we refer to these edge segments as ECV descriptors. The hierarchical model
grounds its visual evidence in ECV reconstructions: a model is learned from
segmented ECV descriptors, and the model can be used to recover the pose
of the object within an ECV representation of a cluttered scene.

The mathematical representation of grasp densities and their association to
hierarchical object models is discussed in Section 4. In Section 5, we demon-
strate the learning and refining of grasp densities from two grasp sources. The
first source is imitation of human grasps. The second source uses a model-
based algorithm which extracts grasping cues from an ECV reconstruction
(Section 3.2).
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(a) ECV descriptors (b) Accumulated reconstructions

Fig. 1 ECV reconstruction. Each ECV descriptor is rendered with a small plane
patch. Patch normals are not part of ECV descriptors; they are arbitrarily defined
for the purpose of 3D rendering.

3 Methods

This section briefly describes the methods that are brought together for mod-
eling the visual percepts of an object, and for bootstrapping hypothesis den-
sities from visual cues. These sophisticated methods have proved essential for
a robust execution of grasps on arbitrary objects in arbitrary poses.

3.1 Early Cognitive Vision

ECV descriptors [17, 25] represent short edge segments in 3D space, each ECV
descriptor corresponding to a circular image patch with a 7-pixel diameter.
To create an ECV reconstruction, pixel patches are extracted along image
contours, within images captured with a calibrated stereo camera. The ECV
descriptors are then computed with stereopsis across image pairs; each de-
scriptor is thus defined by a 3D position and 3D edge orientation. Descriptors
may be tagged with color information, extracted from their corresponding 2D
patches (Fig. 1a).

ECV reconstructions can further be improved by manipulating objects with
a robot arm, and accumulating visual information across several views through
structure-from-motion techniques [12]. Assuming that the motion adequately
spans the object pose space, a complete 3D-edge reconstruction of the object
can be generated, eliminating self-occlusion issues [14] (see Fig. 1b).

3.2 Grasp Reflex From Co-planar ECV Descriptors

Pairs of ECV descriptors that are on the same plane and which have color
information such that two similar colors are pointing towards each other can
be used to define grasps. Grasp position is defined by the location of one of
the descriptors. Grasp orientation is calculated from the normal of the plane
linking the two descriptors, and the orientation of the descriptor at which the
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Fig. 2 Grasp reflex based on visual data. Each ECV descriptor is rendered with
a small plane patch. Patch normals are not part of ECV descriptors; they are
arbitrarily defined for the purpose of 3D rendering.

grasp is located [14] (see Fig. 2). The grasps generated by this method will
be referred to as reflexes. Since each pair of co-planar descriptors generates
multiple reflexes, a large number of these are available.

3.3 Feature Hierarchies for 3D Visual Object
Representation

As explained in Section 3.1, an ECV reconstruction models a scene or an ob-
ject with low-level descriptors. This section outlines a higher-level 3D object
model [8] that grounds its visual evidence in ECV representations.

An object is modeled with a hierarchy of increasingly expressive object
parts called features. Features at the bottom of the hierarchy (primitive fea-
tures) represent ECV descriptors. Higher-level features (meta-features) rep-
resent geometric configurations of more elementary features. The single top
feature of a hierarchy represents the object.

Unlike many part-based models, a hierarchy consists of features that may
have several instances in a scene. To illustrate this, let us consider a part-
based model of a bike, in which we assume a representation of wheels.
Traditional part-based models [10, 3] would work by creating two wheel
parts – one for each wheel. Our hierarchy however uses a single generic wheel
feature; it stores the information on the existence of two wheels within the
wheel feature. Likewise, a primitive feature represents a generic ECV de-
scriptor, e.g. any descriptor that has a red-like color. While an object like
the basket of Fig. 1b produces hundreds of red ECV descriptors, a hierarchy
representing the basket will, in its simplest form, contain a single red-like
primitive feature; it will encode internally that this feature has many in-
stances within a basket object.

A hierarchy is implemented in a Markov tree. Features correspond to hid-
den nodes of the network; when a model is associated to a scene (during
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learning or detection), the pose distribution of feature i in the scene is rep-
resented through a random variable Xi. Random variables are thus defined
over the pose space, which exactly corresponds to the Special Euclidean group
SE(3) = R

3 × SO(3). The random variable Xi associated to feature i effec-
tively links that feature to its instances: Xi represents as one probability
density function the pose distribution of all the instances of feature i, there-
fore avoiding specific model-to-scene correspondences.

The geometric relationship between two neighboring features i and j is en-
coded in a compatibility potentialψij(Xi, Xj). A compatibility potential repre-
sents the pose distribution of all the instances of the child feature in a reference
frame defined by the parent feature; potentials are thus also defined on SE(3).

The only observable features are primitive features, which receive evidence
from the ECV system. Each primitive feature i is linked to an observed
variable Yi; the statistical dependency between a hidden variable Xi and its
observed variable Yi is encoded in an observation potential φi(Xi), which
represents the pose distribution of ECV descriptors that have a color similar
to the color of primitive feature i.

Density functions (random variables, compatibility potentials, observation
potentials) are represented nonparametrically: a density is represented by a
set of particles [8].

3.4 Pose Estimation

The hierarchical model presented above can be used to estimate the pose of a
known object in a cluttered scene. Estimating the pose of an object amounts
to deriving a posterior pose density for the top feature of its hierarchy, which
involves two operations [8]:

1. Extract ECV descriptors, and transform them into observation potentials.
2. Propagate evidence through the graph using an applicable inference

algorithm.

Each observation potential φi(Xi) is built from a subset of the early-vision
observations. The subset that serves to build the potential φi(Xi) is the
subset of ECV descriptors that have a color that is close enough to the color
associated to primitive feature i.

Evidence is propagated through the hierarchy using a belief propagation
(BP) algorithm [24, 31]. BP works by exchanging messages between neigh-
boring nodes. Each message carries the belief that the sending node has about
the pose of the receiving node. In other words, a message allows the sending
feature to probabilistically vote for all the poses of the receiving feature that
are consistent with its own pose – consistency being defined by the compati-
bility potential through which the message flows. Through message passing,
BP propagates collected evidence from primitive features to the top of the
hierarchy; each feature probabilistically votes for all possible object config-
urations consistent with its pose density. A consensus emerges among the
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available evidence, leading to one or more consistent scene interpretations.
The pose likelihood for the whole object is eventually read out of the top fea-
ture; if the object is present twice in a scene, the top feature density should
present two major modes. The global belief about the object pose may also
be propagated from the top node down the hierarchy, reinforcing globally
consistent evidence and permitting the inference of occluded features.

Algorithms that build hierarchies from accumulated ECV reconstructions
are discussed in prior work [7].

4 Representing Grasp Densities

This section is focused on the probabilistic representation of grasp affor-
dances. By grasp affordance, we refer to the different ways to place a hand or
a gripper near an object so that closing the gripper will produce a stable grip.
The grasps we consider are parametrized by a 6D gripper pose composed of
a 3D position and a 3D orientation.

From a mathematical point of view, grasp densities are identical to the
visual potentials of Section 3.3. They can thus be encoded with the same
nonparametric representation. Density evaluation is performed by assigning
a kernel function to each particle supporting the density, and summing the
evaluation of all kernels. Sampling from a distribution is performed by sam-
pling from the kernel of a particle � selected from p(� = i) ∝ wi, where wi is
the weight of particle i.

Grasp densities are defined on the Special Euclidean group SE(3) =
R

3 × SO(3), where SO(3) is the Special Orthogonal group (the group of
3D rotations). We use a kernel that factorizes into two functions defined on
R

3 and SO(3). Denoting the separation of an SE(3) point x into a translation
λ and a rotation θ by

x = (λ, θ), μ = (μt, μr), σ = (σt, σr),

we define our kernel with

K(x;μ, σ) = N(λ;μt, σt)Θ(θ;μr, σr) (1)

where μ is the kernel mean point, σ is the kernel bandwidth, N(·) is a trivari-
ate isotropic Gaussian kernel, and Θ(·) is an orientation kernel defined on
SO(3). Denoting by θ′ and μ′

r the quaternion representations of θ and μr [18],
we define the orientation kernel with the Dimroth-Watson distribution [21]

Θ(θ;μr, σr) = W(θ′;μ′
r, σr) = Cw(σr)eσr(μ′�

r θ′)2 (2)

where Cw(σr) is a normalizing factor. This kernel corresponds to a Gaussian-
like distribution on SO(3). The Dimroth-Watson distribution inherently
handles the double cover of SO(3) by quaternions [5].
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(a) (b) (c)

Fig. 3 Grasp density representation. The top image of Fig. (a) illustrates a particle
from a nonparametric grasp density, and its associated kernel widths: the translu-
cent sphere shows one position standard deviation, the cone shows the variance in
orientation. The bottom image illustrates how the schematic rendering used in the
top image relates to a physical gripper. Fig. (b) shows a 3D rendering of the kernels
supporting a grasp density for a table-tennis paddle (for clarity, only 12 kernels
are rendered). Fig. (c) indicates with a green mask of varying opacity the values
of the location component of the same grasp density along the plane of the paddle
(orientations were ignored to produce this last illustration).

The bandwidth σ associated to a density should ideally be selected jointly
in R

3 and SO(3). However, this is difficult to do. Instead, we set the orienta-
tion bandwidth σr to a constant allowing about 10◦ of deviation; the location
bandwidth σt is then selected using a k-nearest neighbor technique [28].

The expressiveness of a single SE(3) kernel (1) is rather limited: location
and orientation components are both isotropic, and within a kernel, location
and orientation are modeled independently. Nonparametric methods account
for the simplicity of individual kernels by employing a large number of them:
a grasp density will typically be supported by a thousand particles. Fig. 3a
shows an intuitive rendering of an SE(3) kernel from a grasp density. Fig. 3b
and Fig. 3c illustrate continuous densities.

Grasp densities are defined in the same reference frame as visual features.
Once visual features have been aligned to an object pose (Section 3.4), the
object grasp density can be similarly aligned, and one can readily draw grasps
from the density and execute them onto the object. A deeper integration of
the visual model with grasp densities has been covered in prior work [6].

5 Learning Grasp Densities

This section explains how hypothesis densities are learned from source
data (Section 5.1), and how empirical densities are learned from experience
(Section 5.2).
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5.1 Hypothesis Densities from Examples

Initial grasp knowledge, acquired for instance from imitation or reflex, is
structured as a set of grasps parametrized by a 6D pose. Given the non-
parametric representation, building a density from a set of grasps is straight-
forward – grasps can directly be used as particles representing the density.
We typically limit the number of particles in a density to a thousand; if the
number of grasps in a set is larger than 1000, the density is resampled : ker-
nels are associated the particles, and 1000 samples are drawn and used as a
representation replacement.

5.2 Empirical Densities through Familiarization

As the name suggests, hypothesis densities do not pretend to reflect the true
properties of an object. Their main defect is that they may strongly suggest
grasps that might not be applicable at all, for instance because of gripper dis-
crepancies in imitation-based hypotheses. A second, more subtle issue is that
the grasp data used to learn hypothesis densities will generally be afflicted
with a source-dependent spatial bias. A very good example can be made
from the reflex computation of Section 3.2. Reflexes are computed from ECV
visual descriptors. Therefore, parts of an object that have a denser visual res-
olution will yield more reflexes, incidentally biasing the corresponding region
of the hypothesis density to a higher value. The next paragraph explains
how grasping experience can be used to compute new densities (empirical
densities) that better reflect gripper-object properties.

Empirical densities are leaned from the execution of samples from a hy-
pothesis density, intuitively allowing the agent to familiarize itself with the
object by discarding wrong hypotheses and refining good ones. Familiariza-
tion thus essentially consists in autonomously learning an empirical density
from the outcomes of sample executions. A simple way to proceed is to build
an empirical density directly from successful grasp samples. However, this
approach would inevitably propagate the spatial bias mentioned above to em-
pirical densities. Instead, we use importance sampling [9] to properly weight
grasp outcomes, allowing us to draw samples from the physical grasp affor-
dance of an object. The weight associated to a grasp sample x is computed
as a(x) /q(x), where a(x) is 1 if the execution of x has succeeded, 0 else, and
q(x) corresponds to the value of the continuous hypothesis density at x. A
set of these weighted samples directly forms a grasp empirical density that
faithfully and uniformly reflects intrinsic gripper-object properties.

5.3 Updating Empirical Densities in Long-Term
Interaction

In long-term interaction, a robot is constantly producing new evidence which
should ideally be used to continuously enhance empirical densities. The
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methodology presented above can easily be adapted for basic long-term learn-
ing. Essentially, the solution stems from observing that the IS learning of em-
pirical densities may in fact use any arbitrary function as hypothesis density.
In an initial learning cycle, the hypothesis density is computed from grasp
cues. Let us call this initial hypothesis density the bootstrap density. In the
next learning cycle, the empirical density from the first cycle may be linearly
combined with the bootstrap density to form a new hypothesis density that
represents a trade-off between exploration of new possibilities and safe repro-
duction of known experience. Once enough samples from the new hypothe-
sis density have been experienced, the empirical density can be replaced by
an updated representation. In long-term interaction, hypothesis densities are
thus successively computed as weighted sums of the current empirical density
and the bootstrap density. Giving a high weight to the empirical density trig-
gers top-down learning, i.e. refining globally known affordance. Conversely,
focusing on the bootstrap density corresponds to bottom-up learning, i.e.
integrating new low-level evidence into the model.

6 Results

This section illustrates hypothesis densities learned from imitation and re-
flexes, and empirical densities are learned by grasping objects with a 3-finger
Barrett hand. Densities are built for two objects: the table-tennis paddle of
Fig. 3, and a toy plastic jug (Fig. 5). The experimental scenario is described
below.

For each object, the experiment starts with a visual hierarchical model,
and a set of grasps. For the paddle, grasps are generated with the method
described in Section 3.2. Initial data for the jug was collected through human

Fig. 4 Particles supporting grasp hypothesis densities.
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Fig. 5 Barrett hand grasping the toy jug.

Fig. 6 Samples drawn from grasp empirical densities.

demonstration, using a motion capture system. From these data, a hypoth-
esis density is built for each object. The particles supporting the hypothesis
densities are rendered in Fig. 4.

In order to refine affordance knowledge, feedback on the execution of hy-
pothesis density samples is needed. Grasps are executed with a Barrett hand
mounted on an industrial arm. As illustrated in Fig. 5, the hand preshape
is a parallel-fingers, opposing-thumb configuration. The reference pose of the
hand is set for a pinch grasp, with the tool center point located in-between
the tips of the fingers – similar to the reference pose illustrated in Fig. 3a. A
grasp is considered successful if the robot is able to firmly lift up the object,
success being asserted by raising the robotic hand while applying a constant,
inward force to the fingers, and checking whether at least one finger is not
fully closed. Sets of 100 and 25 successful grasps were collected for the pad-
dle and the jug respectively. This information was then used to build a grasp
empirical density, following the procedure described in Section 5.2. Samples
from the resulting empirical densities are shown in Fig. 6. For the paddle, the
main evolution from hypothesis to empirical density is the removal of a large
number of grasps for which the gripper wrist collides with the paddle body.
Grasps presenting a steep approach relative to the plane of the paddle were
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also discarded, thereby preventing fingers from colliding with the object dur-
ing hand servoing. None of the pinch-grasps at the paddle handle succeeded,
hence their absence from the empirical density.

While grasping the top of the jug is easy for a human hand, it proved
to be very difficult for the Barrett hand with parallel fingers and opposing
thumb. Consequently, a large portion of the topside grasps suggested by the
hypothesis density are not represented in the empirical density. The most
reliable grasps approach the handle of the jug from above; these grasps are
strongly supported in the empirical density.

The left image of Fig. 6 clearly illustrates the correlation between grasp
positions and orientations: moving along the edge of the paddle, grasp ap-
proaches are most often roughly perpendicular to the local edge tangent. The
nonparametric density representation successfully captures this correlation.

7 Conclusion and Future Work

We presented a framework for representing and learning object grasp affor-
dances probabilistically. The affordance representation is nonparametric: an
affordance is recorded in a continuous probability density function supported
by a set of particles.

Grasp densities are initially learned from visual cues or imitation, leading
to grasp hypothesis densities. Using the visual model for pose estimation, an
agent is able to execute samples from a hypothesis density under arbitrary
object poses. Observing the outcomes of these grasps allows the agent to learn
from experience: an importance sampling algorithm is used to infer faithful
object grasp properties from successful grasp samples. The resulting grasp
empirical densities eventually allow for more robust grasping.

Importance Sampling is a batch learning method, that requires the exe-
cution of a large number of grasps before an empirical density can be built.
Learning empirical densities on-line would be very convenient, which is a
path we plan to explore next.

We currently learn visual and grasp models independently. Yet, a part-
based representation offers an elegant way to locally encode visuomotor de-
scriptions. One of our goals is to learn visual parts that share the same grasp
properties across different objects. This way, a grasp feature would be directly
and exclusively connected to the visual evidence that predicts its applicabil-
ity, allowing for its generalization across objects.
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Multimodal Language Acquisition Based on
Motor Learning and Interaction

Jonas Hörnstein, Lisa Gustavsson, José Santos-Victor, and Francisco Lacerda

Abstract. This work presents a developmental and ecological approach to language
acquisition in robots, which has its roots in the interaction between infants and their
caregivers. We show that the signal directed to infants by their caregivers include
several hints that can facilitate the language acquisition and reduce the need for
preprogrammed linguistic structure. Moreover, infants also produce sounds, which
enables for richer types of interactions such as imitation games, and for the use of
motor learning. By using a humanoid robot with embodied models of the infant’s
ears, eyes, vocal tract, and memory functions, we can mimic the adult-infant inter-
action and take advantage of the inherent structure in the signal. Two experiments
are shown, where the robot learn a number of word-object associations and the ar-
ticulatory target positions for a number of vowels.

1 Introduction

Language acquisition is a complex process that involves several tasks, such as pro-
ducing speech sounds, learning how to group different sounds into a consistent and
manageable number of classes or speech units, grounding speech, and recognizing
the speech sounds when uttered by other persons. Despite tremendous research ef-
fort in the area of automatic speech recognition (ASR), machines are still far from
human language capabilities in terms of robustness and flexibility. Unfortunately,
this may not be a result of insufficient processing power or insufficient speech sam-
ples in the training database, but rather a fundamental flaw in the architecture of
current models [42]. Children are able to acquire impressive language skills from
very little speech exposure. This poverty of the stimulus has lead researchers to
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believe that children do not learn language automatically from mere exposure, as is
mostly the case in current ASR-systems. Nativists argue that language is essentially
preprogrammed in the human brain and that acquisition mainly consists of setting
the parameters for the specific target language. On the other hand, supporters of the
ecological and emergent perspective believe that the language acquisition is guided
mainly by biological constraints and through interactions, and that it does not de-
pend on any preprogrammed linguistic knowledge.

While the level of preprogrammed versus learned language structure is still a
source of debate, this work aims at two intertwined goals: (i) to investigate how
much of linguistic structure that can be derived directly from the speech signal di-
rected to infants by (ii) designing, building and testing computational models for
language acquisition in a humanoid robot. While this is a very broad and challang-
ing scope, our ambition at this stage is mainly to provide an architecture that can be
implemented in a robotic platformed in order to further study these topics, and to
provide a few concrete examples where robot is able to learn word-object relations
and articulatory target positions for a number of vowels. In line with the ecological
and emergent approach we have therefore avoided to implement preprogrammed
linguistic knowledge, such as phonemes, in the robotic architecture. Instead we
make use of embodiment and interactions in order to find the structure using general
methods such as pattern matching and hierarchical clustering techniques.

The interaction between an adult caregiver and an infant is very different from the
interaction between two adults. Speech directed to infants is highly structured and
characterized by what seems like physically motivated tricks to maintain the com-
municative connection to the infant, actions that at the same time also may enhance
linguistically relevant important aspects of the signal. Also, whereas communication
between adults is usually about exchanging information, speech directed to infants
is more of a referential nature. The adult refers to objects, people and events in the
world surrounding the infant [33]. Because of this, the sound sequences the infant
hears are very likely to co-occur with actual objects or events in the infant’s visual
field. The expanded intonation contours, the repetitive structure of Infant Directed
Speech (IDS) and the modulation of the sentence intensity are likely to play an im-
portant role in helping the infant establishing an implicit and plausible word-object
link. This kind of structuring might very well be one of the first steps in speech
processing, a coarse segmenting of the continuous signal in chunks that stand out
because of some recurrent pattern the infant learns to recognize. Infants are very
sensitive to the characteristic qualities of this typical IDS style, and a number of
studies indicate that infants use this kind of information to find implicit structure
in acoustic signals [27] [11] [32] [6] [47]. Some evidence on the usefulness of
these co-ocurring events can also be found in robotics. In the CELL [46], Cross-
channel Early Lexical Learning, an architecture for processing multisensory data is
developed and implemented in a robot called Toco the Toucan. The robot is able to
acquire words from untranscribed acoustic and video input and represent them in
terms of associations between acoustic and visual sensory experience. Compared to
conventional ASR systems that maps speech signal to human specified labels, this
is an important step towards creating more ecological models. However, important
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shortcuts are still taken, such as the use of a predefined phoneme-model where a set
of 40 phonemes are used and the transition probabilities are trained off-line on large
scale database. In [52], no external database is used. Instead the transition probabil-
ities are trained online only taking into account utterances that have been presented
to the system at the specific instance in time. While this make the model more plau-
sible from a cognitive perspective, infants may not rely on linguistic concepts as
phonemes at all during these early stages of language development. In this work we
have instead chosen a more direct approach and map the auditory impression of the
word as a whole to the object. Underlying concepts like phonemes instead are seen
as emergent consequences imposed by increasing representation needs [45] [35].

In this work we have chosen to represent those underlying structures, i.e. pseudo-
phonemes, in the form of target position in motor space, rather than as auditory
goals. The rationale for this can be found in the motor theory of speech perception
[37], which hypothesizes that we recognize speech sound by first mapping the sound
to our motor capabilities. This statement is also supported by more recent work in
neuroscience that demonstrates an increased activity in the tongue muscles when
listening to words that requires large tongue movements [9]. This leads to believe
that the motor area in the brain is involved not only in the task of production, but also
in that of recognition. Earlier works including neurophysiologic studies of monkeys
have shown a similar relationship between visual stimulation and the activation of
premotor neurons [14]. Those neurons, usually referred to as mirror neurons, fire
both when executing a motor command and when being presented with an action
that involves the same motor command. To learn the audio-motor maps and finding
key target positions, interactions again play an important role in the form of imita-
tion games. Already during the first year a child slowly starts to mix what can be
perceived as spontaneous babbling and some early imitations of the caregivers. Dur-
ing the second year as much as one third of the utterances produced by the child can
be perceived as imitations, [55]. Broadly speaking, these “imitation games" where
the child may play either the role of demonstrator or that of the imitator, serve two
different purposes: (i) learning elementary speech units or speech vocabulary and
(ii) gaining inter-speaker invariance for recognition.

In the remainder of the chapter we first take a closer look at the interaction be-
tween the infant and a caregiver and discuss how these interactions can guide the
infant’s language acquisition. We then discuss the learning architecture and neces-
sary resources that has to be implemented in a robot for it to be able to acquire
early language structures through the described interactions. Finally we show how
a humanoid can use the architecture and interaction scenarios to learn word-object
relations and extract target positions for a number of vowels.

2 The Role of Interaction

In this section we take a closer look at how interaction can facilitate language acqui-
sition, more specifically we look at the interaction between a caregiver and the child
(or robot). When interacting with a child, adults tend to adapt their speech signal in
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a way that is attractive to the infant and in the same time can be helpful for learning
the language. It is therefore natural to start this section with a review of some of the
typical aspects of IDS.

This interaction it typcially multimodal in its nature. The child does not only hear
the caregiver, but receives multimodal information such as combinations of speech,
vision, and tactile input. In this section we discuss how this multimodal information
can be used to ground speech. This kind of interaction, based on shared attention,
starts even before the infant can produce speech itself. However, as the infant starts
to explore its capacity to produce sound, verbal interaction will become more and
more important. Initial verbal interaction is mainly based on imitations. Here we
separate between two types of imitation scenarios, one where the infant imitates its
caregiver, and one where the caregiver imitates the infants. Both have been found
equally common in adult-infant interactions, but they serve two different goals (i)
to learn how to produce sounds that are useful for communication and (ii) to learn
how to map the sound of the caregiver to the own articulatory positions.

2.1 Infant Directed Speech

An important portion of the physical signal in the ambient language of almost every
infant is in the form of Infant Directed Speech (IDS), a typical speech style used by
adults when communicating with infants. IDS is found in most languages [2] [31]
[10] and is characterized by long pauses, repetitions, high fundamental frequency,
exaggerated fundamental frequency contours [11] and hyperarticulated vowels [31].
A very similar speech style is found in speech directed to pets [22] [4], and to some
degree also in speech directed to humanoid robots [17], and pet robots [3].

The function of IDS seems to change in accordance with the infant’s developmen-
tal stages, phonetic characteristics in the adult’s speech are adjusted to accommodate
the communicative functions between the parents and their infants, for example a
gradual change in consonant specifications associated with the infants communica-
tive development was found in a study by Sundberg and Lacerda [50]. In longitudi-
nal studies it has been shown that parents are adapting their speech to their infants
linguistic and social development the first post-natal year. On the whole they use
higher fundamental frequency, greater frequency range, shorter utterance duration,
longer syllable duration, and less number of syllables per utterance when speaking
to their infants as compared to speaking to adults. Sundberg [51] suggests that these
phonetic modifications might be an intuitive strategy adults use automatically that
is both attractive and functional for the infant.

In a study more directly related to infants word learning, Fernald and Mazzie [13]
found that target words in infant directed speech were typically highlighted using
focal stress and utterance-final position. In their study 18 mothers of 14-month-old
infants were asked to tell a story from a picture book called Kelly’s New Clothes,
both to their infants and to an adult listener. Each page of the book introduced a
new piece of clothes that was designated as a target word. When telling the story
to the infants target words were stressed in 76% of the instances, and placed in
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utterance-final position in 75% of the instances. For adult speech the same values
were 40% and 53% respectively. Albin [1] found that an even larger portion of the
target words (87% - 100% depending of subject) occured in final position when
the subjects were asked to present a number of items to an infant. There are some
indications that infants take advantage of these features and have easier to learn
target words with focal stress and utterance final position [15]. It can therefore be
motivated for a robot that mimics infant learning to also have a preference for words
with focal stress and in utterance final position.

2.2 Multimodal Interaction

Whereas communication between adults usually is about exchanging information,
speech directed to infants is of a more referential nature. The adult refers to objects,
people and events in the world surrounding the infant [33]. When for example play-
ing with a toy, the name of the toy is therefore likely to be mentioned several times
within a relatively short time as the infant is being introduced to toy. Finding such
recurrent patterns in the sound stream coming from the caregiver can help the infant
to extract potential word candidates that can be linked to the visual representation
of the object. On the other hand, also words that are not directly related to the object
may be mentioned repeatably to the same extent or even more often than the target
word itself. By linking all recurrent sound patterns to the most salient object in the
visual field we are likely to end up with a large number of false word-object links.
However, if the same wordlike pattern consistantly appears when a certain object is
observed, and only to a less degree when the object is not present, it is highly likely
that the pattern is actually related to the object. While many of the recurrent patterns
are likely to be found closely in time, it may be necessary to look for cross-modal
regularities over a relatively long time in order to separate target words from other
recurrent word pattern.

A robot may therefore need both a short term memory that is searched for recur-
rent patterns and a long-term memory that is searched for cross-modal regularities in
order to form word-object associations, as is the case in the in the CELL-model [46].

2.3 Babbling and Imitation

One of the first key observations regarding a child’s language development is the
use of babbling [36], an exploration process that allows the child to explore differ-
ent actuations of the vocal-tract and the corresponding acoustic consequences. This
process allows to build sensorimotor maps that associate the articulatory parame-
ters of the vocal tract and the produced sounds. In other words, through babbling
the child (or the robot) learns the physics of the vocal tract and how to produce
sounds. While babbling was first seen as an isolated process, it has later been shown
to have a continuous importance for the vocal development [54]. It has also been
shown that in order to babble normally, children need to be able not only to hear
both themselves and other con-specifics [49], but also to establish visual contact
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with others [43]. Speech babbling could therefore be seen as an early type of inter-
action, instead of just a self exploration task. When a caregiver is present, he or she
is likely to imitate the sound of the infant, giving the infant the possibility to also
create a map between its own utterances and that of the caregiver. Imitation studies
performed at Stockholm University has shown that in about 20% of the cases, an
eventual response from the caregiver is seen as an imitation of the infant’s utterance
when judged by other adult listeners. We have previously shown that it is possible
to get a good estimation of when there is an imitation or not by comparing a number
of prosodic features [25].

By creating speech sound and detecting possible imitations, the child or robot
can overcome differences between its own voice and that of the caregiver, and by
repeating this kind of “imitation game" with several different caregivers it is also
possible to overcome inter-speaker variations.

As stated in the introduction of this section, there are two different goals with the
imitation games. Apart from the goal to overcome the inter-speaker differences and
allow the robot to correctly map sounds from different speakers to its own motor
positions in order to reproduce or recognize those sounds, the second goal is to
help the robot to separate between sounds that are useful for communication (thus
becoming part of a motor vocabulary of speech gestures) and sounds that can be
considered as noise and should be forgotten.

The latter goal can be obtained by having the caregiver repeating certain utter-
ances, words or sounds that the child tries to imitate. To imitate a sound the robot
uses its sensor-motor maps to calculate the corresponding vocal tract positions and
then reproduces the same utterance with its own voice. Depending on how well the
robot is able to map the voice of the caregiver to its own vocal tract positions the
reproduced sound may or may not be perceived as an imitation by the caregiver.
During this type of interaction the caregiver may need to actively change his or
her voice in order to facilitate the task. This behaviour can also be found in the
interaction between a child and its parents and has been studied in [8]. When the
child eventually succeeds in producing an “acceptable" imitation, the adult provides
some sort of reinforcement signal. Through this reinforcement, the child identifies
elementary speech units (e.g. phonemes or words) that play a role in the communi-
cation process and will form a (motor) speech vocabulary that can be used in future
interactions. In addition, the child can learn how to better produce those specific
terms in the vocabulary.

3 Embodiment

In order to interact with the caregiver as explained in the previous section, the robot
must be able to see, hear, and also to produce sounds. To mimic the way human
infants interact with their caregivers it is of course an advantage to have a robot
that looks and acts as would be expect from an infant. However, the embodiment
is important not only to evoke emotions and make it more attractive for interac-
tion, but also from a learning perspective. Having a similar body structure facilitates
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imitations since it allows for a more direct mapping between the demonstrator and
the imitator while at the same time limiting the search space and hence the risk of
incorrect mappings.

In this section we describe the architecture and the system components that are
implemented in the humanoid robot in order to allow the robot to engage in the
interaction tasks necessary to acquire early language structures. The described ar-
chitecture is an extension of the architecture described in [23] and [24], which uses
mirror neurons to create a unified model for both speech production and recognition.
A similar architecture can also be found in [28], and some earlier work can be found
in the DIVA model [19]. In this work we have also included a memory model, sim-
ilar to that in [46]. The resulting architecture includes a speech production module,
a sensing unit, a sensorimotor coordination module and a memory unit, as shown in
Figure 1.

Fig. 1 System architecture for language acquisition.

3.1 Speech Production Unit

The speech production unit consists of an articulatory model of the human vocal
tract and a position generator. There has been several attempts to build mechani-
cal models of the vocal tract [21] [18]. While these can produce some human like
sounds they are still rather limited and there are no commercially available mechan-
ical solutions. The alternative is to simulate the vocal tract with a computer model.
Such simulators are typically based on the tube model [40] where the vocal tract
is considered to be a number of concatenated tubes with variable diameter. On top
of the tube model an articulator is used that calculates the diameter of the tubes for
different configurations of the vocalization units. In this work we have chosen to
simulate the vocal tract by using VTcals developed by Maeda [41]. This model has
been developed by studying x-rays from two women articulating French words, and
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has six parameters that can be used to control the movements of the vocal tract. One
parameter is used for controlling the position of the yaw, one for the extrusion of
the lips, one for lip opening, and three parameters for controlling the position of the
tongue. A synthesizer converts the vocal tract positions into sound. While the syn-
thesizer works well for vowel-like sounds, it is unable to produce fricatives sounds
and can hence only produce a limited set of consonants.

Apart from creating sound, the lip parameter is also used to control a number of
Light Emitting Diods (LEDs) in the robot’s face in order to simulate the movements
of the lips. The current lip model is very simple and only shows the mouth as either
open or closed.

3.2 Sensing Units

As explained in the previous section, not only ears but also other sensing modalities
are useful when learning to speak. Here we have implemented two sensing modal-
ities, an auditory sensor unit and a visual sensor unit that extract features from the
acoustic and visual spaces respectively.

The auditory sensor consist of two microphones and artificial pinnas [26]. To get
a more compact representation of the sound signal it is transformed into a tonotopic
sound representation (sound features). There exists various representations that can
be used for this. For production and recognition of vowels, formants are commonly
used [57]. However, formants only contain information useful for vowels so its ap-
plication is rather narrow. In other related work, LPC has been used [30] [44]. LPC
are more generally applicable than formants, but still require rather stationary sig-
nals to perform well. Here we use Mel frequency cepstral coefficients (MFCC) [7]
as our speech features since these do not require a stationary signal. To calculate
the MFCC each utterance is first windowed using 25 ms windows with 50% overlap
between the windows, and MFCC are then calculated for each window.

As visual sensors the robot uses two cameras with pan and tilt controls. However,
in the case of language acquisition only one camera is used. The visual sensor is used
both for finding objects during multimodal interaction, and for tracking faces and
lipmovements to provide information on the lip-opening when trying to imitate the
caregiver.

Starting with the object detector, the robot takes a snapshot of the camera’s view
and segments the image in order and look for the object closest to the center of the
image. The segmentation is done by background subtraction followed by morpho-
logical dilation. Using the silhouette of the object we create a representation of its
shape by taking the distance between the center of mass and the perimeter of the sil-
houette. This is done for each degree of rotation creating a vector with 360 columns.
The tranformation of an image to the object representation is illustrated in Figure 2.

To estimate the opening of the mouth, the visual sensor takes a video sequence of
the speaker’s face as input and calculates the openness of the mouth in each frame.
The openness is defined as the distance between the upper and lower lip, normalized
with the height of the head. We use a face detection algorithm, based on [56] and
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Fig. 2 Original image (top), silhouette image after background substraction and morphologic
operations (center), and the silhouette perimeter in polar coordinates (bottom).

[39], to calculate the size of the head and the initial estimate of the position of the
lips. Within the estimated position we use colour segmentation methods to select
candidate pixels for the lips based on their redness. While there are methods to find
the exact contour of the lips, like snakes or active contour methods [29], we are only
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interested in the openness of the mouth and have chosen to represent the lips with
an ellipse. To fit the ellipse to the lip pixels we use a least square method described
in [16]. Finally we calculate a new estimate for the lip position in the next frame of
the video sequence by using the method in [38].

3.3 Sensorimotor Maps

The sensorimotor maps are responsible for retrieving the vocal tract position from
the given auditory and visual features. We use two separate neural networks to
model the sound-motor and visuomotor maps. The sound-motor map is the more
complicated of the two, mapping the 12 cepstral coefficients back to the 6 articula-
tory parameters of the vocal tract model. The added difficulty of the problem lies in
the fact that several positions of the vocal tract may result in the same sound, hence
giving several possible solutions for a given set of input features. These ambiguities
have to be solved through the interaction with a caregiver. For the sound-motor map
we use an artificial neural network with 20 hidden neurons.

The vision-motor map is a very simple unit, performing a linear mapping from
the mouth opening to the lip height parameter of the synthesizer.

Since the output from both the sound-motor map and the vision-motor map con-
sist of vocal tract positions, the integration of those sensor outputs becomes very
simple. Here we simply use a weighted average of the lip height calculated from the
two maps. The weight is currently set by hand, but should preferably be set auto-
matically according to the quality and intensity of the visual and auditory stimuli.

3.4 Short Term Memory

The short-term memory receives a continuous stream of visual and auditory data
that are stored during a fixed time (here we have used 10-20 s).

The auditory sound stream is sequenced into utterances. This is done automat-
ically when the sound level is under a certain threshold value for at least 200 ms.
Each utterance within the short term memory at a given time is compared pair-wise
with all other utterences in the memory in order to find recurrent patterns. For each
utterance-pair we first make sure that the utterances have the same length by padding
the shortest utterance. The utterances are then aligned in time and we calculate the
sum of differences between their mel coefficients creating a vector with the acous-
tic distance between the two utterances at each window. The second utterance is
then shifted forward and backward in time and for each step a new distance vector
is calculated. These vectors are averaged over 15 windows, i.e. 200 ms, and com-
bined into a distance matrix as illustrated in Figure 3. By averaging over 200 ms
we exclude local matches that are too short and can find word candidates by simply
looking for minimas in the distance matrix. Starting from a minima we find the start
and the end points for the word candidate by moving left and right in the matrix
while making sure that the distance metric at each point is always below a certain
critical threshold.
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Fig. 3 Finding word candidates in sentences “titta här är den söta dappan" and “se på lilla
dappan". Blue color indicates a weak match and red a strong match. The strongest match is
found when shifting the second sentence 15 windows to the right and corresponds to the word
“dappan".

In order to take advantage of the structure of infant directed speech and to mimic
infants’ apparent bias towards target words in utterance-final position and focal
stress, we also check for these features. For a word candidate to be considered to
have utterance-final position we simply check that the end of the candidate is less
than 15 windows away from the end of the utterance. To find the focal stress of an
utterance we look for the F0-peak. While there are many ways for adults to stress
words (e.g. pitch, intensity, length) it has been found that F0-peaks are mainly used
in infant directed speech [13]. If the F0-peak of the utterance as a whole is within the
boundaries of the word candidate, the word candidate is considered to be stressed.
If a word candidates is not stressed and in utterance-final position we may reject it
with a specified probability.

The same pattern matching technique is also be used to compare visual objects.
When comparing two object representations with each other we first normalize the
vectors and then perform a pattern maching, much in the same way as for the au-
ditory representations, by shifting the vectors one step at a time. By doing this we
get a measurement of the visual similarity between objects that is invariant to both
scale and rotation.
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When both a word candidate and a visual object are found, their representations
are paired and sent to the long term memory.

3.5 Long Term Memory

The long term memory is used to store both word candidates, visual objects, and
vocal tract positions that are found interesting during the interaction with the care-
giver. To organize the information we use an hierarchical clustering algorithm [20].
Word candidates, visual objects, and vocal tract positions are organized indepen-
dently into three different tree clusters. The algorithm starts by creating one cluster
for each item. It then iteratively joins the two clusters that have the smallest average
distance between their items until only one cluster remains.

While the algorithm is the same for all three trees, the distance measure varies
slightly between them. The distance between the visual objects is measured directly
through the pattern matching explained above. For the acoustic similarity we use
Dynamic Time Warp (DTW) [48] to measure the distance between different word
candidates. The reason to use DTW instead of directly applying the pattern matching
described earlier is to be less sensitive to how fast the word candidate is pronounced.
For the vocal tract position we simply use the Euclidean distance to measure the
distance between each target position.

The resulting hierarchical trees can now be analyzed in a second step to deter-
mine the correct number of clusters. For each level of the clustering process, we
have different relationships between data groupings. The question is then to find the
“natural" grouping for this dataset. To estimate the adequate number of clusters in
the dataset we have used the Gap statistic [53]. This function compares the within-
cluster dispersion of our data with that obtained by clustering a reference uniform
distribution. This is to compare the gain of raising the cluster number in a struc-
tured data with that arising from adding another cluster to a non-informative and
not structured set of points. To find the optimal number of clusters we look for the
first maximum in the Gap. Each position within the same cluster is considered to be
part of the same phoneme or pseudo-phoneme in the motor speech vocabulary.

When we have interconnected multimodal representations, which is the case for
the word candidates and visual objects that assumingly refers to the same object we
can make use of these connections, not only to create associations, but also to find
where we should cut the trees in order to get a good representations of the words
and the objects. In order to find which branch in the word candidate tree that should
be associated with which branch in the object tree we use the mutual information
criterion [5]. In the general form this can be written as

I(X ;Y ) = ∑
x∈X

∑
y∈Y

p(x,y)log

(
p(x,y)

p1(x)p2(y)

)

(1)

Where p(x,y) is the joint probability distribution function of X and Y , and p1(x)
and p2(y) are the marginal probability distribution functions of X and Y respectively.



Multimodal Language Acquisition Based on Motor Learning and Interaction 479

We want to calculate I(X ;Y ) for all combinations of clusters and objects in order
to find the best word representations. For a specific word cluster A and visual cluster
V we define the binary variables X and Y as

X = {1 i f observation∈ A; 0 otherwise}
Y = {1 i f observation∈V ; 0 otherwise}

The probability functions are estimated using the relative frequencies of all ob-
servations in the long-term memory, i.e. p1(x) is estimated by taking the number of
observations within the cluster A and dividing with the total number of observations
in the long-term memory. In the same way p2(y) is estimated by taking the number
of observations in the cluster V and again dividing with the total number of obser-
vations. The joint probability is found by counting how many of the observations
in cluster A that is paired with an observation in cluster V and dividing by the total
number of observations.

4 Humanoid Robot Experiments

In this section we examplify how the interaction strategies and the described archi-
tecture works in practice by showing the results from two different experiments.

In the first experiment we show how the robot can extract useful word-candidates
and associate those to visual object. This is done both by interacting directly with the
robot and by using recordings of real Infant Directed Speech taken from adult-infant
interactions.

In the second experiment we teach the robot a number of vowels and see how
well the robot can recognize the same vowels when pronounced by different hu-
man speakers. Here we especially look at the effect that the different developmental
stages of babbling and interaction have for the recognition rate and the role played
by the visual input with respect to the recognition rate.

4.1 Experiment 1: Word Learning

In this experiment the robot makes use of multimodal information in order to learn
word-object associations when interacting with the caregiver. The experimental
setup is shown in Figure 4.

The caregiver shows a number of toys for the robot and, at the same time, talks
about these objects in an infant directed speech style. The objects that were used
during the experiment were one ball and two dolls named “Pudde" and “Siffy". The
experiment was performed by demonstrating one object at a time by placing it in
front of the robot for approximately 20 s, while talking to the robot about the object
by saying things like “Look at the nice ball!" and “Do you want to play with the
ball?". Each utterance contained a reference to a target word and we made sure that
the target word has always stressed and in utterance-final position. For the dolls we
referred to them both by using their individual names and the swedish word for doll,
“docka". The ball were always referred to using the swedish word “bollen".
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Fig. 4 Experimental setup for robot test.

During the length of one demonstration, sound and images are continuously
stored in the short-term memory. The sound is then segmented by simply looking
for periods of silence between the utterances and each utterance is then compared to
the others as explained in the previous section. Each word candidate, i.e. matching
sound pattern, in the short-term memory is paired with the visual representation of
the object and sent to the long-term memory. After having demonstrated all three
objects we repeat the procedure once more, but this time with the objects in slightly
different orientations in front of the robot. This is done in order to verify that the
clustering of the visual objects is able to find similarities in the shape despite differ-
ences in the orientation of the objects.

When word candidates have been extracted from all six demonstrations, the hi-
erarchical clustering algorithm is used to group word candidates in the long-term
memory that are acoustically close. The result from the hierarchical clustering of
the word candidates and the visual objects can be seen in Figure 5. The numbers
at each leaf shows the unique identifier that allows us to see which of the word
candidates that was paired with which of the visual objects.

Looking only at the hierarchical tree for the word candidates it is not obvi-
ous where the tree should be cut in order to find good word representations. By
listening to the word candidates we notice that the cluster containing candidates
(25 26 19 20 2 6 18 14 16 1) represent the word “dockan", the cluster (3 7 4 9 5 8 10
12 15 11 13 17) represent the word “Pudde", the cluster (21 22 23 27 28 29 24 31
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Fig. 5 Above: Clusters of the extracted word candidates during the robot experiment. Word
candidates 1-17 are paired with object Pudde, nr 18-29 with object Siffy, and 32-36 with
object bollen. Below: Clusters of the extracted visual objects during the robot experiment.
Objects 1-17 corresponds to object Pudde, nr 18-29 to object Siffy, and 32-36 to object bollen.

30) represent the word “Siffy", and the cluster (32 33 34 36 35) represent the word
“bollen". The hierarchical tree for the visual objects may look more simple and it
is tempting to select the five clusters in the bottom as our objects. However, in this
case it is actually the clusters one level up that represents our visual objects.

To find out which branch in the respective tree that should be associated with
which branch in the other we calculate the mutual information criterion. Calculat-
ing the mutual information criterion for all pair of branches shows that we get the
highest score for associating the word candidates (32-36) with the same visual ob-
jects (32-36). This is what we could expect since all visual observations of “bollen"
were also paired with a correct word candidate. In the case of the objects “Pudde"
and “Siffy" part of the observations are not paired with the object name, but instead
with the word “docka". Still we get the second and third heighest scores by associ-
ating word candidates for the word “Pudde" with object Pudde and the word “Siffy"
with object Siffy respectively. We can also find that the branch above the visual
representations of Pudde and Siffy receives the heighest score for being associated
branch containing word candidates for “dockan".

The experiment was repeated without putting any bias on word candidates that
were stressed and in utterance-final position. This resulted in four false word
candidates for the object Pudde and one for object Siffy. However, this did not affect
the word-object associations as these candidates were found in separate branches in
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Fig. 6 Cluster formations from word candidates taken from infant directed speech. Word
candidates between 1 and 30 are paired with object Kuckan and word candidates between 31
and 35 are paired with Siffy. Using the mutual information criterion, cluster (32 33 34) gets
associated with Siffy and cluster (5 6 3 9 11 10 22 4 7 17 18) gets associated with Kucka.

the word candidate tree and only received low scores by the mutual information
criterion.

A second experiment was performed using recordings of interactions between
parents and their infants. The recordings were made under controlled forms at the
Department of Linguistics, Stockholm University. A lot of care were taken to create
a natural interactions. The room was equipped with several toys, among those two
dolls called “Kuckan" and “Siffy". The parents were not given any information of
the aim of the recordings but were simply introduced to the toys and then left alone
with their infants. In this study we have only used a single recording of a mother
interacting with her 8 month old infant. The total duration of the recording is around
10 minutes. The audio recording has been segmented by hand to exclude sound
coming from the infant. In total the material consists of 132 utterances with time
stamps and also object references in those case that an object were present. In 33 of
these the doll “Kuckan" was present and in 13 of them the doll “Siffy". In total the
word “Kuckan" is mentioned 15 times and “Siffy" is mentioned 6 times.

In this experiment we limit the short-term memory to 10 s. The utterances enter in
the short-term memory one at a time and any utterance older than 10 s is erased from
the memory. Word candidates that also have an assigned object label are transferred
into the long-term memory.

After searching all utterances for word candidates we cluster all the candidates
in the long-term memory. The result can be found in Figure 6. Here we don’t have
any hierarchical tree for the visual objects. Instead we use the labels assigned by
hand that can be used for calculating the mutual information criterion. Doing so
gives us that the object Kuckan is best represented by word candidates (5 6 3 9 11
10 22 4 7 17 18) and Siffy by (32 33 34). Listening to the word candidates confirms
that they represent the names of the dolls, but the segmentation is not as clear as in
the humanoid experiment and there are a few outliers. Among the word candidates
associated with Kuckan, nr 22 was unhearable and nr 17 and 18 were non-words but
with a prosodic resembly of the word “Kuckan". For the word candidates associated
with Siffy all contained parts of initial words.
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When repeating the experiment without bias on focal stress and utterance-final
position, the number of word candidates grew significantly resulting in lots of out-
liers being associated with both the objects. In the case of Kuckan it even caused the
correct word candidates to be excluded from the branch that was associated with the
object. However, it should be stated that the experiment was very small in order to
draw any general conclusions.

4.2 Learning Target Positions

The objective of the second experiment is to show how the robot can learn articula-
tory target positions for a number of Portuguese vowels.

To learn vowels the robot first has to create an initial sound-motor map. Using the
initial map it can then try to imitate the caregiver in order to get some first estimated
motor configurations that represent vowels in the speech motor vocabulary. Local
babbling is used to explore the neighbourhood of the terms in the vocabulary, while
the caregiver gives feedback on the result. Finally, the clustering algorithm is used
to group all positions learned into a feasible number of elements in the vocabulary.

The initial sound-motor map is created through random babbling. We generated
10000 random positions vectors for this phase. Each vector contains information
about the position of the 6 articulators used in Maeda’s model. These configurations
are used by the speech production unit to calculate the resulting sound, which is
coded in MFCC by the auditory unit. The sound-motor-map then tries to map the
MFCC back to the original articulator positions that originated the sound. The error
resulting from the comparison with the correct motor configuration given by the
random articulator generator is used with a back-propagation algorithm to update
the map. Repeating this will create an initial map between sound and the articulator
positions used to create this sound.

The second step can be seen as a parroting behaviour where the robot tries to
imitate the caregiver using the previously learned map. Since the map at this stage
is only trained with the robot’s own voice, it will not generalize very well to different
voices. This may force the caregiver to change his/her own voice in order to direct
the robot. There can also be a need to over-articulate, i.e. exaggerate the positions
of the articulators in order to overcome flat areas in the maps that are a result of
the inversion problem. When two or more articulator positions give the same sound
the initial maps tends to be an average of those. However, for vowels the articulator
positions are usually naturally biased towards the correct position as the sound is
more stable around the correct positions than around the alternative positions. For
most of the vowels it was not necessary to adapt the voice too much. Typically
between one and ten attempts were enough to obtain a satisfying result. When the
caregiver is happy with the sound produced by the robot it gives positive feedback
which causes the robot to store the current articulator positions in its speech motor
vocabulary. Using this method the caregiver was able to teach the robot prototype
positions for nine Portuguese vowels. Visual inspection of the learned articulator
positions showed that the positions used by robot are similar to those used by a
human speaker, Figure 7.
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Fig. 7 Articulator positions used by the robot for the Portuguese vowels. In the center we
show the positions of the vowels in the International Phonetic Alphabet (IPA). The vertical
axis in the IPA corresponds to the vertical position of the tongue and the horizontal axis to
the front-back position when the vowel is pronounced by a human speaker. For the simulated
articulator positions used by the robot the upper line corresponds to the soft palate and the
lower line to the tongue. There is a strong correlation between how the robot and a human
articulate the vowels.

Since the vowel positions were learned under controlled forms where only one
position was stored for each vowel sound we did not do any clustering of the target
positions, but simply let each position represent a pseudo-phoneme. In [24] we did a
larger scale experiment where 281 target positions were learned, each representing
one of the nine vowels above. We then used the hierarchical clustering algorithm
together with GAP statistics to group the target positions into a number of pseudo-
phonemes. This showed that the robot automatically would group the positions into
nine pseudo-phonemes corresponding to the Portuguese vowels.

Here we instead study how well the robot is able to recognize the learned vow-
els when those are pronounced by human speakers. We especially look at how the
recognition rate is improved as a result of the different stages of babbling and inter-
action. To study this training and test data were collected with 14 speakers (seven
males and seven females) reading words that included the nine Portuguese vowels
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above. We used the vowels from seven speakers for training and the other seven
for testing. Each speaker reads the words several times, and the vowels were hand
labelled with a number 1 to 9. The amplitude of the sound was normalized and each
vowel was then divided into 25 ms windows with 50% overlap. Each window was
then treated as individual data which resulted in a training set of 2428 samples, and
a test set of 1694 samples.

During training, we simulated the interaction where the humans imitate the robot
by having the robot pronouncing one of its vowels at the time, and then present the
robot with the same vowel from one of the humans in the training set. In this step
we used both auditory and visual input. The auditory input consisted of a single
window of 25 ms sound, and the visual input is an image showing the face of the
human at the same instant of time. The robot then mapped these inputs to its vocal
tract positions, compared the result with the position used by the robot to create
the same sound, and used the error to update both the auditory-motor map and the
vision-motor map.

For testing, we let the robot listen to the vowels pronounced by the speakers in the
test set, i.e. speakers previously unknown to the robot. The input was mapped to the
robot’s vocal tract positions and the mapped positions were compared to the vowel
positions stored in the speech motor vocabulary. Based on the minimum Euclidean
distance, each position was classified as one of the stored vowel positions.

We performed this test several times using the maps obtained at each of the dif-
ferent stages of babbling and interaction. First we tested how well the robot was able
to map the human vowels using maps that had only been trained using the robot’s
own voice, i.e. after the initial random babbling. As expected at this stage, the esti-
mated positions were relatively far from the correct ones and it was not possible to
recognize more than 18% of the human vowels. This is mainly due to the difference
between the voice of the robot and the voices of the the human adults in the test set,
and it is because of this that the human caregiver may need to adapt his or her voice
during the early interaction with the robot.

When the robot has already had some interaction with humans, through the peo-
ple in the training set, we noticed a significant increase in the performance. The dis-
tance between the vocal tract positions estimated from the human utterances in the
test set, and the positions used by the robot to create the same utterance, decreased,
and the recognition rate improved. Using only sound as input, the recognition rate
became close to 58%, and using both sound and visual data the recognition rate
reached 63%. A summary of the results is shown in Table 1.

Table 1 Recognition rates at the different stages of development.

Training data Sum of square distance recognition rate
Only babbling 9.75 18%

Using interaction 0.52 58%
Using interaction with vision 0.47 63%
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5 Conclusions

In this work we have taken a step away from the traditional data-driven approach
to speech processing. Instead we have adopted a developmental and ecological ap-
proach where embodiment and interactions are seen as enabling factors for the lan-
guage acquisition.

Our review of some of the typical characteristics found in IDS clearly indicates
that the signal directed to infants by their caregivers include several hints that can
facilitate the language acquisition. Two of the most important characteristics is the
use of repetitions and multimodal information. When demonstrating an object, the
caregiver is likely to repeatably mention the name of that object. This provide useful
information for finding word-like structures and to associate those with objects in
the visual field. Moreover, when talking about an object, the name of the object
is typically highlighted using utterance final position and focal stress. It has been
shown that children are very sensitive to these kind of cues.

Infants don’t only listen, they also produce sounds themselves. This enables for
richer types of interactions such as imitation games. We have found that a signifi-
cant part of adult-infant interactions can be seen as imitation games and that those
may serve at least two different purposes. First they allow the infant to find target
positions in it vocal tract that are useful in the communication with the adult, second
they allow the infant to map adult speech to its own vocal tract positions. The latter
is especially important since it allow for making speech recognition in motor space
rather than in the acoustic space.

To implement and test this developmental and ecological approach to language
acquisition in a machine, embodiment becomes a key factor. In this work we have
described the models used for simulating the human ears, eyes, vocal tract, and
memory functions. The focus has been to realise the functions needed for the de-
scribed approach and to implement them in a humanoid platform, rather than to
create complete and biological plausible models of the human organs.

The robot has been used in two experiments where it learns word-object relations
and articulatory positions for a number of vowels.

In the first experiment we show that the robot successfully is able to extract suit-
able words for describing the presented objects. In contrast to related earlier work
on word-object associations, our model is able to create those associations without
any preprogrammed phoneme model. Instead it uses a preference for words in ut-
terance final position and focal stress, which can be motivated from memory issues
and a general attention system that triggers on salient events. Furthermore, our hier-
archical model make it possible to associate names both for individual objects and
groups of objects.

In the second experiment we show how imitation games allow the robot to acquire a
set of target positions for vowel production, and that the robot can recognise the same
vowels when pronounced by other persons by first mapping the sound to motor space.

While the current vocal tract model is only able to produce vowels and a very lim-
ited number of consonants, the robot has not been able to learn a complete phoneme
model, which would be necessary in order to connect the two experiments and
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allow the robot both to produce complete words and to recognise these words by
first mapping to motor space. Still, the results from the individual experiments are
encouraging and provide some initial steps towards a developmental and ecological
approach to language acquisition in robots.

Acknowledgements. This work was partially supported by EU Project CONTACT and by
the Fundação para a Ciência e a Tecnologia (ISR/IST pluriannual funding) through the POS
Conhecimento Program that includes FEDER funds.

References

1. Albin, D.D., Echols, C.H.: Stressed and word-final syllables in infant-directed speech.
Infant Behavior and Development 19, 401–418 (1996)

2. Andruski, J.E., Kuhl, O.K., Hayashi, A.: Point vowels in Japanese mothers’ speech to
infants and adults. The Journal of the Acoustical Society of America 105, 1095–1096
(1999)

3. Batliner, A., Biersack, S., Steidl, S.: The Prosody of Pet Robot Directed Speech: Evi-
dence from Children. In: Proc. of Speech Prosody 2006, Dresden, pp. 1–4 (2006)

4. Burnham, D.: What’s new pussycat? On talking to babies and animnals. Science 296,
1435 (2002)

5. Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley, Chichester (2006)
6. Crystal, D.: Non-segmental phonology in language acquisition: A review of the issues.

Lingua 32, 1–45 (1973)
7. Davis, S.B., Mermelstein, P.: Comparison of Parametric Representations for Mono-

syllabic Word Recognition in Continuously Spoken Sentences. IEEE Transactions on
Acoustics, speech, and signal processing ASSP-28(4) (August 1980)

8. de Boer, B.: Infant directed speech and evolution of language. In: Evolutionary Prereq-
uisites for Language, pp. 100–121. Oxford University Press, Oxford (2005)

9. Fadiga, L., Craighero, L., Buccino, G., Rizzolatti, G.: Speech listening specifically mod-
ulates the excitability of tongue muscles: a TMS study. European Journal of Neuro-
science 15, 399–402 (2002)

10. Ferguson, C.A.: Baby talk in six languages. American Anthropologist 66, 103–114
(1964)

11. Fernald, A.l.: The perceptual and affective salience of mothers’ speech to infants. In: The
origins and growth of communication, Norwood, N.J, Ablex (1984)

12. Fernald, A.: Four-month-old infants prefer to listen to Motherese. Infant Behavior and
Development 8, 181–195 (1985)

13. Fernald, A., Mazzie, C.: Prosody and focus in speech to infants and adults. Developmen-
tal Psychology 27, 209–221 (1991)

14. Gallese, V., Fadiga, L., Fogassi, L., Rizzolatti, G.: Action Recognition in the Premotor
Cortex. Brain 199, 593–609 (1996)

15. Gustavsson, L., Sundberg, U., Klintfors, E., Marklund, E., Lagerkvist, L., Lacerda, F.:
Integration of audio-visual information in 8-months-old infants. In: Proceedings of the
Fourth Internation Workshop on Epigenetic Robotics Lund University Cognitive Studies,
vol. 117, pp. 143–144 (2004)

16. Fitzgibbon, A., Pilu, M., Risher, R.B.: Direct least square fitting of ellipses. Tern Analy-
sis and Machine Intelligence, 21 (1999)

17. Fitzpatrick, P., Varchavskaia, P., Breazeal, C.: Characterizing and processing robotdi-
rected speech. In: Proceedings of the International IEEE/RSJ Conference on Humanoid
Robotics (2001)



488 J. Hörnstein et al.

18. Fukui, K., Nishikawa, K., Kuwae, T., Takanobu, H., Mochida, T., Honda, M., Takanishi,
A.: Development of a New Humanlike Talking Robot for Human Vocal Mimicry. In:
Proc. International Conference on Robotics and Automation, Barcelona, Spain, April
2005, pp. 1437–1442 (2005)

19. Guenther, F.H., Ghosh, S.S., Tourville, J.A.: Neural modeling and imaging of the cortical
interactions underlying syllable production. Brain and Language 96(3), 280–301

20. Hastie, T.: The elements of statistical learning data mining inference and prediction.
Springer, Heidelberg (2001)

21. Higashimoto, T., Sawanda, H.: Speech Production by a Mechanical Model: Construction
of a Vocal Tract and Its Control by Neural Network. In: Proc. International Conference
on Robotics and Automation, Washington DC, May 2002, pp. 3858–3863 (2002)

22. Hirsh-Pasek, K.: Doggerel: motherese in a new context. Journal of Child Language 9,
229–237 (1982)

23. Hörnstein, J., Santos-Victor, J.: A Unified Approach to Speech Production and Recog-
nition Based on Articulatory Motor Representations. In: 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, San Diego, USA (October 2007)

24. Hörnstein, J., Soares, C., Santos-Victor, J., Bernardino, A.: Early Speech Development
of a Humanoid Robot using Babbling and Lip Tracking. In: Symposium on Language
and Robots, Aveiro, Portugal, (December 2007)

25. Hörnstein, J., Gustavsson, L., Santos-Victor, J., Lacerda, F.: Modeling Speech imitation.
In: IROS-2008 Workshop - From motor to interaction learning in robots, Nice, France
(September 2008)

26. Hörnstein, J., Lopes, M., Santos-Victor, J., Lacerda, F.: Sound localization for humanoid
robots - building audio-motor maps based on the HRTF. In: IEEE/RSJ International Con-
ference on intelligent Robots and Systems, Beijing, China, October 9-15 (2006)

27. Jusczyk, P., Kemler Nelson, D.G., Hirsh-Pasek, K., Kennedy, L., Woodward, A., Piwoz,
J.: Perception of acoustic correlates of major phrasal units by young infants. Cognitive
Psychology 24, 252–293 (1992)

28. Kanda, H., Ogata, T.: Vocal imitation using physical vocal tract model. In: 2007
IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, USA,
October 2007, pp. 1846–(1851)

29. Kass, M., Witkin, A., Terzopoulus, D.: Snakes: Active contour models. International
Journal of Computer Vision (1987)

30. Krstulovic, S.: LPC modeling with speech production constraints. In: Proc. 5th speech
production seminar (2000)

31. Kuhl, P., Andruski, J.E., Christovich, I.A., Christovich, L.A., Kozhevnikova, E.V.,
Ryskina, V.L., et al.: Cross-language analysis of Phonetic units in language addressed
to infants. Science 277, 684–686 (1997)

32. Kuhl, P., Miller, J.: Discrimination of auditory target dimensions in the presence or ab-
sence of variation in a second dimension by infants. Perception and Psychophysics 31,
279–292 (1982)

33. Lacerda, F., Marklund, E., Lagerkvist, L., Gustavsson, L., Klintfors, E., Sundberg, U.:
On the linguistic implications of context-bound adult-infant interactions. In: Genova:
Epirob 2004 (2004)

34. Lacerda, F., Klintfors, E., Gustavsson, L., Lagerkvist, L., Marklund, E., Sundberg, U.:
Ecological Theory of Language Acquisition. In: Genova: Epirob 2004 (2004)

35. Lacerda, F.: Phonology: An emergent consequence of memory constraints and sonsory
input. Reading and Writing: An Interdisciplinary Journal 16, 41–59 (2003)

36. Lenneberg, E.: Biological Foundations of Language. Wiley, New York (1967)



Multimodal Language Acquisition Based on Motor Learning and Interaction 489

37. Liberman, A., Mattingly, I.: The motor theory of speech perception revisited. Cogni-
tion 21, 1–36 (1985)

38. Lien, J.J.-J., Kanade, T., Cohn, J., Li, C.-C.: Detection, tracking, and classification of
action units in facial expression. Journal of Robotics and Autonomous Systems (1999)

39. Lienhart, R., Maydt, J.: An extended set of haar-like features for rapid object detection.
In: IEEE ICIP, pp. 900–903 (2002)

40. Liljencrants, J., Fant, G.: Computer program for VT-resonance frequency calculations.
In: Liljencrants, J., Fant, G. (eds.) STL-QPSR, pp. 15–20 (1975)

41. Maeda, S.: Compensatory articulation during speech: evidence from the analysis and
synthesis of vocat-tract shapes using an articulatory model. In: Hardcastle, W.J., Mar-
chal, A. (eds.) Speech production and speech modelling, pp. 131–149. Kluwer Academic
Publishers, Boston

42. Moore, R.K.: PRESENCE: A Human-Inspired Architecture for Speech-Based Human-
Machine Interaction. IEEE Transactions on Computers 56(9) (September 2007)

43. Mulford, R.: First words of the blind child. In: Smith, M.D., Locke, J.L. (eds.) The emer-
gent lexicon: The child’s development of a linguisticvocabulary. Academic Press, New
York (1988)

44. Nakamura, M., Sawada, H.: Talking Robot and the Analysis of Autonomous Voice Ac-
quisition. In: Proc. International Conference on Intelligent Robots and Systems, Beijing,
China, October 2006, pp. 4684–4689 (2006)

45. Nowak, M.A., Plotkin, J.B., Jansen, V.A.A.: The evolution of syntactic communication.
Nature 404, 495–498 (2000)

46. Roy, D., Pentland, A.: Learning words from sights and sounds: A computational model.
Cognitive Science 26, 113–146 (2002)

47. Saffran, J.R., Johnson, E.K., Aslin, R.N., Newport, E.: Statistical learning of tone se-
quences by human infants and adults. Cognition 70, 27–52 (1999)

48. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word
recognition. IEEE Transactions on Acoustics, Speech and Signal Processing 26(1), 43–
49 (1978)

49. Stoel-Gammon, C.: Prelinguistic vocalizations of hearing-impaired and normally hearing
subjects: a comparison of consonantal inventories. J. Speech Hear Disord. 53(3), 302–
315 (1988)

50. Sundberg, U., Lacerda, F.: Voice onset time in speech to infants and adults. Phonetica 56,
186–199 (1999)

51. Sundberg, U.: Mother tongue – Phonetic aspects of infant-directed speech, Department
of Linguistics, Stockholm University (1998)

52. ten Bosch, L., Van hamme, H., Boves, L.: A computational model of language acquisi-
tion: focus on word discovery". In: Interspeech 2008, Brisbane (2008)

53. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via
the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy) 63(2) (2001)

54. Vihman, M.M.: Phonological development. Blackwell, Oxford (1996)
55. Vihman, M., McCune, L.: When is a word a word? Journal of Child Language 21, 517–

542 (1994)
56. Viola, P., Jones, M.J.: Rapid object detection using a boosted cascade of simple features.

In: IEEE CVPR (2001)
57. Yoshikawa, Y., Koga, J., Asada, M., Hosoda, K.: Primary Vowel Imitation between

Agents with Different Articulation Parameters by Parrot-like Teaching. In: Proc. Int.
Conference on Intelligent Robots and Systems, Las Vegas, Nevada, October 2003, pp.
149–154 (2003)



O. Sigaud, J. Peters (Eds.): From Mot. Learn. to Inter. Learn. in Rob., SCI 264, pp. 491–536. 
springerlink.com                                                        © Springer-Verlag Berlin Heidelberg 2010 

Human-Robot Cooperation Based on 
Interaction Learning 

S. Lallee, E. Yoshida, A. Mallet, F. Nori, L. Natale, G. Metta, F. Warneken,  
and P.F. Dominey 

 
 

 
* 

 
 
 
 

 

1   Introduction 

Robots are now physically capable of locomotion, object manipulation, and an es-
sentially unlimited set of sensory motor behaviors. This sets the scene for the cor-
responding technical challenge: how can non-specialist human users interact with 
these robots for human robot cooperation? Crangle and Suppes stated in [1] : "the 
user should not have to become a programmer, or rely on a programmer, to alter 
the robot’s behavior, and the user should not have to learn specialized technical 
vocabulary to request action from a robot." To achieve this goal, one option is to 
consider the robot as a human apprentice and to have it learn through its interac-
tion with a human. This chapter reviews our approach to this problem. 

An apprentice is an able-bodied individual that should interactively assist an 
expert, and through this interaction, they should acquire knowledge and skill in the 
given task domain. In other words, the expert teaches the apprentice by sharing a 
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task with him, or by direct demonstration or explanation of what to do. In this con-
text, the robot owns a repertoire of useful actions which execution can be re-
quested by the user. While the human uses theses actions in order to achieve task, 
the robot should extract information about the human goal and how actions can 
imbricate to reach this goal. 

The implementation of this apprentice architecture is one of our long term goal 
for which we developed the Spoken Language Programming system (SLP). First  
([2],[3]) we established a primary mapping between sentences and actions, allow-
ing verbal command of a robot and online creation of new commands. By includ-
ing some visually guided actions this provides already a large repertoire of  
behaviors. However, even if the SLP allows fluent commanding of the robot, eve-
rything that the robot does has first to be predefined by the user. This is the reason 
that leads us to add anticipation ability to the system in [4]. This ability allows the 
robot to not only wait for commands, but to predict or even execute these com-
mands without any order received from the human. In this chapter, we will review 
our previous work relative to the SLP development and extend it so that the user 
and the robot will have shared representations not only for actions, but also for ob-
jects and high level tasks that can imply sub-tasks. These shared representations 
and “hierarchical actions” are part of a more global cooperation skill used by hu-
mans which is described in [5]. In the second part of this chapter we will describe 
some results about the human cooperation ability and how we can use them to  
improve the SLP so it will provide to robots a human like cooperation ability. 

1.1   Linking Words to Actions – Spoken Language Programming 

Robots will integrate gradually everyday life over the next century. It will require 
a way for non specialists to use them for a wide range of tasks that are not prede-
fined and that will occur in an unknown environment. The most common ability 
used by humans to communicate is spoken language; so it can provide a very rich 
vector for communication between a user and a robot. Through grammatical con-
structions, complex meanings can be communicated. Construction grammar 
(CxG) provides a linguistic formalism for achieving the required link from lan-
guage to meaning [6].Meaning is represented in a predicate-argument structure as 
in [6], based on generalized abstract structures as in [7]. The power of these con-
structions is that they are based on abstract “variables” that can take an open set of 
arguments. 

 1. "John put the ball on the table." 
 2. Transport(John, Ball, Table) 
 3. Event(Agent, Object, Recipient) 

We can thus use the Predicate - Argument structures to extract robot commands 
from natural language, and to generate natural language descriptions of physical 
events extracted from video scenes ([7-12]). In this section we review our work  
[2, 3, 7] aimed to the devellopment of a Spoken Language Programming system 
(SLP). The objective of the SLP is to to use natural language in order to allow 
human users to both command, program or teach the robot with spoken language. 
In a related context, Nicolescu and Mataric [12] employed spoken language to  
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allow the user to clarify what the robot learned by demonstration. In order to ex-
plore how language can be used more directly, Lauria et al. [13] asked naïves sub-
jects to provide verbal instructions to a robot in a visual navigation task. Their 
analysis of the resulting speech corpora yielded a set of verbal action chunks that 
could map onto robot control primitives. They demonstrated the effectiveness of 
such instructions translated into these primitive procedures for actual robot navi-
gation [13]. This indicates the importance of implementing the mapping between 
language and behavioral primitives for natural language instruction or program-
ming [14, 15]. Learning by imitation and/or demonstration likewise provide meth-
ods for humans to transmit desired behavior to robots [11]. The SLP extends such 
methods in a complimentary way. We established a representative scenario where 
human and robot have to interact using spoken language in order to accomplish a 
task. We will first present this scenario and the robotic platform requirements for 
it execution, and then we will use it to benchmark successive versions of the SLP. 

1.2   A Scenario for Human-Robot Cooperation 

In order to test the SLP a task that involve human – robot cooperation has to be 
defined. We first introduced the Cooperative Table Construction Task in [2] and  
 

 

Fig. 1 The Cooperative Table Construction Task with HRP-2 :  robot and human have to 
cooperate in order to build a table (A,D). The robot has to pass legs to the user (B) and hold 
the table while the user screws the legs (C). 
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refined it in [3, 4]. In the Cooperative Table Construction Task a robot and a hu-
man have to cooperate in order to build a small table (Fig. 1).  The user has first to 
ask the robot for the table’s legs, and then he will have to screw then to the table’s 
surface which will be hold by the robot. All the interaction between the two par-
ticipants are done using spoken language. One major interest of this task is that its 
execution includes regularities : the same sequence of actions will occur several 
times. For example, the user will have first to ask “grasp a leg”, then “pass it to 
me” and finally “hold the surface”. Since this sequence will be the same for the 4 
legs, it can be easily extracted by the user, which will be able to speed up the task 
by programming the robot. Moreover, this task involves a lot of knowledge that 
can be hard coded or learned by the robot in real time. It involves mainly two do-
mains: mapping words to actions (what does “pass” mean?) and mapping words to 
arguments (what is a “leg”?), the combination of these two mappings allows the 
execution of a concrete physical action based on a Predicate - Argument structure 
extracted from spoken language. 

1.3   The Robotic Platforms  

One of the main interests of the SLP is that it is not robot specific. The speech in-
terface (synthesis & recognition) is provided by the CSLU Rapid Application  
Development (RAD) Toolkit (http://cslu.cse.ogi.edu/toolkit/) which runs on an in-
dependent computer remotely connected to the robot. RAD provides a state based 
dialog system capability, in which the passage from one state to another occurs as 
a function of recognition of spoken words or phrases; or evaluation of Boolean 
expressions. It also allows scripting in TCL which allows implementing complex 
behaviors. The vision system is also robot independent and need only that a YARP 
interface (http://eris.liralab.it/yarp/) has been defined to access the robots cameras. 
Then the object recognition is then provided using Spikenet, a commercial system 
based on research of Thorpe and al. [16] related to vision processing in the cotex. 
The only components of the SLP that are robot specifics are the 3D object local-
ization (since all robots don’t have the same camera system) and the basic set of 
atomic actions. Since all robots have different bodies and abilities we assume that 
they provide some basic actions that the SLP will be able to call (e.g: “grasp” will 
not be the same according to whether you are using a humanoid robot or a dog ro-
bot.). Anyway, these requirement can be easily implemented on any robot and we 
already used successfully the SLP on multiple robot platforms including : 

 Kawada Industries HRP-2 humanoid robot [17] under the control of 
the OpenHRP controller [18] 

 AIBO ERS7 with a WIFI interface 
 Lynxmotion 6DOF robot arm 
 Khepera mobile robots with a serial port controller [8] 
 iCub humanoid robot [19] using a YARP [20] based architecture 

However, the Cooperative Table Construction Task scenario is more suited to a 
humanoid robot, so most of the researches presented in this chapter are made us-
ing the HRP-2 or the iCub which are robots with many effective degrees of free-
dom (respectively 30 and 54) and possibilities for rich cooperative interaction. 
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2   The Development of Spoken Language Programming 

The SLP is not static and has significantly evolved since its creation. The first im-
plementation was a simple system that allowed the creation of macros, this system 
was then refined to turn these macros into procedures and to include the use of vi-
sion and arguments. The most recent evolution, presented here for the first time, 
allows the creation of hierarchical functions (functions that call functions) and the 
establishment of a common vocabulary between the robot and the user regarding 
visual object names. In this section we will present all these successive evolutions 
of the SLP and suggest what can be improved in future work. 

2.1   Macro style Programming 

The first implementation of SLP is described in [2]. In this study we used the HRP-
2 and an early version of the Cooperative Table Construction Task. There was no 
vision included in the system and only a small set of available actions. However 
this provided already enough material to achieve a proof of concept for the SLP. 

2.1.1   Atomic Actions and Learning Commands 

The central idea in SLP is compositionality: based on a finite set of atomic action 
primitives the user should be able to compose arbitrary new cooperation behav-
iors. As we stated above, one of the few robot specific components of the system 
is the set of atomic actions. These are actions which are available to the user with-
out any need of programming, in the case of the HRP2 theses actions were a set of 
static postures corresponding to required function in the task (table 1). The set of 
atomic actions for this study is presented in table 1. Each atomic action is called 
by the user through the SLP using a verbal command, thus allowing the user to 
control the robot using speech. 

In addition to the set of atomic actions, the system requires a set of commands 
that allow the user to control the actual programming and program execution. 
These commands and their consequences are presented in table 2. When the user 
invokes the “Learn” command, the dialog system begins to encode the sequence 
 

Table 1 HRP-2 Set of Atomic Actions. 
 

Verbal com-
mand 

Resulting actions 

Prepare Move both arms to neutral position, rotate chest to center, elevate left arm, 
avoiding contact with the work surface (5 DOF) 

OpenLeft Open left hand (1 DOF) 

OpenRight Open right hand (1 DOF) 

Give it to me Rotate hip to pass the object in left hand to User (1 DOF) 

Hold Center hip, raise right arm preparing to hold table top (5 DOF) 

Right open Open right hand (1 DOF) 

Right close Close right hand (1 DOF) 
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of the subsequent commands that are issued. The user proceeds to issue action 
commands to effect the desired task that will make up this sequence. When the 
user has finished the part of the task he wants to program, he issues the “OK” 
command. This results in the action sequence being written to a file. Now, when 
the “Macro” command is issued, this file is read into an array, and the commands 
are sequentially executed. During these executions, the behavioral scenarios above 
also identified the requirement for a conditional wait, in which the execution of a 
stored sequence waits for the user to finish what he is doing which the user signi-
fies with the “continue” command. Thus, when the “wait” condition is issued, the 
system pauses until the “continue” command is issued.  

 
Table 2 SLP Learning and control commands. 

 

Commands Correspondence 

Learn Begin encoding subsequent commands 

OK Store encoded command sequence in macro 

Macro Execute the stored macro 

Wait Interrupt command execution until a spoken « continue » command is issued 

Continue Terminate the « wait » pause and resume execution. 

 

By using both the set of atomic actions and the learning commands, the user is 
able to make the task execution easier and faster as we show in the next section. 

2.1.2   Experimental Results 

In order to evaluate the implemented system, we used the Cooperative Table Con-
struction Task in two different ways. First the user and the robot had to assemble 
the table, and then they had to cooperate again but to take the table apart. In our 
initial development, only the first experiment was planned, but when it was suc-
cessfully accomplished we wanted to determine if the set of atomic actions was 
indeed general enough to extend to a new but related task of disassembling  
the table. Each of the two experiments will be presented, followed by an  
analysis of the effects of the ability to program on measures of efficiency of task 
completion. 

Assembling the table  

In the following paragraphs we provide the literal transcription of the human-robot 
dialog, annotated with explanation about the corresponding human and robot be-
havior and key system functions in <> brackets. Robot language will be indicated 
in italics, and human language in plain text, with main commands in bold.  

The user begins its first interaction with the robot. He controls the task via spo-
ken language. Because the task is new to him, he proceeds for the moment only by 
commanding the robot, with no programming. 
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<Robot initiates the interaction> I am ready.  
Prepare.  
You said prepare? Yes. <Because of possible errors in speech recognition, 
we choose to have an explicit validation on each command as illustrated 
here>.  
Preparing to grasp.<Robot raises left hand >  
I am ready.  
Left open.  
You said left open? Yes.  
Opening left hand. <Robot opens left hand>  
I am ready. <A third party user places the table leg in the robot’s left hand>  
Left close.  
You said left close? Yes.  
Closing left hand. <Robot closes left hand to grasp the table leg> 
I am ready.  
Give it to me.  
You said give it to me? Yes.  
Giving you the object. <Robot turns to its right, holding the table leg out to 
User1>  
I am ready.  
Left open.  
You said left open? Yes.  
Opening left hand. <As the Robot opens the hand, User reaches for and 
grasps the table leg> 
I am ready.  
Hold. <The first of several primitives required for the robot to hold the table 
while User attaches the leg.>  
You said give it to me? No. <This is an example of a speech recognition er-
ror.>  
I am ready.  
Hold.  
You said hold? Yes.  
Getting ready to hold. <The robot orients to the work surface and raises its 
right hand.> 
I am ready.  
Right open.  
You said right open? Yes.  
Opening right hand. <With the robot’s right hand open, User places the ta-
ble top within the robot’s grasp>  
I am ready.  
Right close.  
You said right close? Yes.  
Closing right hand. I am ready.  
Wait.  
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You said wait? Yes.  
Waiting for your signal <During this wait period, User attaches the leg to the 
table and then gives the “continue” command when ready.>  
Continue.  
I am ready.  
Right open.  
You said right open? Yes.  
Opening right hand. <User takes the table from the robot and prepares for 
the next leg.>  
I am ready.  

At this point, the user has used spoken language tele-operation to enlist the robot’s 
assistance in attaching the first leg to the table. Given the knowledge of the task he 
has gained, he is now ready to “program” the robot for the repetitive component of 
the task by using the “learn” command. 

Learn.  
You said learn? Yes. I’ll start learning now. I am ready.  
Prepare. <The interaction continues as for the previous leg until the end > 
Continue.  
I am ready.  
Right open.  
You said right open? Yes.  
Opening right hand. <User  takes the table> 
I am ready.  
OK.  
You said OK? Yes. <”OK” indicates the macro end (table 2) > 
OK we will store this plan. I am ready. 

At this point, the sequence of commands including the conditional wait are now 
stored as an SLP macro for immediate re-use. 

Macro 
You said macro ? Yes.  
Running the macro.  
Preparing to grasp.  
Waiting for your signal.  
Continue 
Closing left hand. <Robot takes leg>  
Giving you the object.  
Opening left hand. <User takes leg> 
Getting ready to hold.  
Waiting for your signal.  
Continue 
Closing right hand.  
Waiting for your signal <User attaches the leg>  
Continue  
Opening right hand. In line macro finished. I am ready. < > 
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Third leg is now attached. User takes the table. Same procedure with macro for at-
taching fourth leg. 

Performance Analysis of SLP Effects 

During the assembly of the first two legs, the user issued 10 distinct commands for 
each of the two legs. Installing legs 1 and 2 took 3min 25sec and 3min 24sec. 
Once the program was learned, for legs 3 and 4, a single command initiated the 
program, and the user was only required to issue 3 “continue” commands in order 
to indicate to the robot that he was ready to proceed. Execution time was reduced 
to 2:11 and 2:33 respectively. The ability to execute a suite of primitive behaviors 
with a single command had a significant impact on the execution time for comple-
tion of the task. Fig 2 indicates the average execution times for the individual 
commands under the explicit command conditions without the programmed macro 
(CMD) at 25.14 sec/operation, and under macro program execution conditions 
(PRG) at 15.00 sec/operation. We performed a statistical analysis of the variance 
(ANOVA) in these completion times examining the effects of Repetition (i.e. first 
and second trial in either the CMD or PRG mode), and Programming condition 
(i.e. CMD vs PRG). Only the Programming condition had a significant effect on 
the completion times (ANOVA, Programming Effect: F(1,6) = 109, p < 0.0001). 
These results demonstrate that SLP not only eliminates the need to enumerate the 
successive commands, it also significantly reduces the task completion time. 

Disassembling the table 

Here we test whether the system that was developed for assembling the table 
could equally well serve to allow the user to program the robot to aid in disassem-
bling the table. Disassembly resembles the reverse process of assembly. User will 
first ask the robot to hold the table while he removes the leg. He will then put the 
robot into the “give it to me” posture, with the left hand open, give it the leg, and 
then issue to “prepare” command so that the robot passes the leg to the third party 
user who then puts it away. For ease of reading, we dispense with the portion of 
the dialog in which the robot asks for confirmation of each command. 

I am ready.  
Hold.  
Getting ready to hold. I am ready.  
Right open.  
Opening right hand. I am ready. <User2 puts table in robot’s hand>  
Right close.  
Closing right hand.<Robot grasps the table>  
I am ready.  
Wait.  
Waiting for your signal. <User1 unscrews the first leg while the robot holds 
the table> 
Continue.  
I am ready. 
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Right open. 
Opening right hand. <Robot releases table, User1 takes the table and places 
it on the work surface> I am ready.  
Prepare.  
Preparing to grasp. <Right hand descends, left hand raises, preparing to 
take the leg> I am ready.  
Give it to me  
Giving you the object. <This is a bit counter-intuitive. With this command 
robot rotates its hip to face User1>.  
I am ready.  
Left open.  
Opening left hand. I am ready. <User1 places the first table leg within the 
robot’s left hand.>  
Left close.  
Closing left hand. <Robot grasps the leg> I am ready.  
Prepare. Preparing to grasp <Robot orients to User2> I am ready.  
Left open. <User2 takes the leg.> I am ready. 

As in the previous experiment, after one run with the first leg, the user is now 
ready to program the robot. Again, he initiates the program storage by saying 
“Learn” and then executes step-by-step the procedure for taking a leg off and 
passing it to the third party user with the help of the robot, and finally storing this 
program by saying “OK”. The important point is that by using exactly the same 
primitives but in a different sequence we were able to generate a new stored macro 
on the fly for a different, but related, task, thus demonstrating the generalization 
capability of the SLP system. 
 

I am ready.  
Macro.  
Running the macro. Getting ready to hold. <User1 places the table in the ro-
bot’s right hand> Closing right hand. Waiting for your signal. < User1 un-
screws the leg and then tells the robot to continue>.  
Continue.  
Opening right hand <Robot releases table, user1 places it on table surface> 
Preparing to grasp. <Right hand descends, left hand raises, preparing to 
take the leg> Giving you the object. <Robot rotates hip to face User1>. Clos-
ing left hand. <Robot takes the leg from User1>Preparing to grasp. <Robot 
orients to User2> Opening left hand <Robot gives the leg to User2. The sec-
ond execution of the macro for the final leg is identical, and the table is thus 
taken apart. > 

Performance analysis  

As in Experiment 1, the use of the programming capability for the third and fourth 
leg (executed in 2:51 and 2:51 respectively) yielded significant reductions in exe-
cution time as compared with the first two legs (executed in 3:57 and 4:11  
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respectively). To compare performance in the two experiments we performed a 3 
way ANOVA with the factors Experiment (Exp1 vs. Exp2), Programming vs sim-
ple voice Commanding (PRG vs CMD), and Repetition (First vs. second repetition 
in each condition). Fig 2 indicates that both for Exp1 and Exp2 the completion 
times were elevated for the CMD vs PRG conditions, i.e. action execution was 
slower when programming was not used. The ANOVA reveled that only the Pro-
gramming effect was significant (F(1,6) = 277, p < 0.0001). 

 

Fig. 2 Average command execution times for the Building (Exp1) and Undoing (Exp2) task 
using spoken language for on-line commanding (CMD) and for macro programming 
(PRG). 

2.1.3   Conclusion 

Despite the speed improvement induced by the SLP we have not yet fully ex-
ploited the potential richness of the predicate-argument structure of grammatical 
constructions. There are two important considerations to note here. First, a 3 
month field study with an interacting robot [21] concluded that expectations on 
language-based interfaces have often been too high, and that “we need rich em-
pirical experience of the use of robust and simple systems in order to formulate 
new and relevant questions,” justifying our simplified (and successful) approach. 
Second, this simplified approach has aided us in generating requirements for 
higher level predicate argument representations for robot action and perception 
that will allow us to more deeply exploit the communicative richness of natural 
spoken language. Communicative interaction that will allow humans to truly co-
operate with robots is an open and active area of research. Progress towards this 
objective is being made in part via well-documented methods for action learning 



502 S. Lallee et al. 
 

that include demonstration and imitation [15, 22]. Language has been used in this 
context for correcting and clarifying what is being learned by demonstration [12]. 
One of the fundamental requirements is to establish the grounded meaning at the 
base of the communication, that is the link between human language, and robot 
action and perception. This has recently been explored and developed in the do-
main of language based navigation [13, 23]. Roy and colleagues further establish 
these links via an amodal Grounded Situation Model that integrates perception, ac-
tion and language in a common framework for language based human-robot coop-
eration [14]. We have made progress with a system that can learn grammatical 
constructions which make the mapping between predicate argument representation 
of action as perceived by a robot vision system, and natural language sentences 
that describe that action, generalizing to new action scenes [8, 9]. In this context 
of language-based human-robot cooperation, this research demonstrated - for the 
first time - the capability for a human user to tell a humanoid what to do in a co-
operative task so that in real time, the robot performs the task, and acquires new 
skills that significantly facilitate the ongoing cooperative human-robot interaction. 

2.2   Vision Based Procedures with Arguments 

The first implementation of the SLP was limited: multiple macros were not al-
lowed, and the actions offered were quite rigid. The first refinement of the SLP 
has been done in [3]: we integrated vision and motion planning into the SLP 
framework, providing a new level of flexibility in the behavior that can be created. 
Most important we possibility to the user to create “generic” functions with argu-
ments (e.g. Give me X), and we allowed multiple function creations. We thus 
demonstrated again with the HRP-2 equipped with vision based grasping the  
ability to acquire multiple sensory motor behavioral procedures in real-time 
through SLP in the context of a cooperative task. The humanoid robot thus ac-
quired new sensory motor skills that significantly facilitate the cooperative  
human-robot interaction.  

2.2.1   Adding Visually Guided Action to the Robot 

One of the most impressive improvements of the SLP in [3] is the fact that the ro-
bot is able to localize an object based on vision and to reach/grasp it wherever it is 
in the reachable workspace. In the original study, we used the OpenCV library and 
some basic color recognition algorithm in order to recognize the different colored 
legs. We then used stereovision triangulation to get the object coordinates in a 3D 
space. However, the only requirement of the vision module is to provide 3D coor-
dinates of the object to the SLP, it can be achieved in different ways. For example, 
in our latest studies we use a commercial program (Spikenet) [16, 24] which al-
lows the recognition of arbitrary objects based on their shape; but one can think 
about using other 3D localization systems using markers, etc.  

The second requirement is to be able to use these 3D coordinates in order to 
guide certain actions. Basic actions that involve vision are for example turning the 
head to gaze at an object, or moving the arm and hand in order to grasp it. To do 
so we used an inverse kinematic solver which gives, for a given 3D position, the 
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values of the arm’s joints angles which will bring the hand to this position. This 
approach is simple but sufficient for our purposes, however, usage of more com-
plex motor control algorithm is allowed but they are behind the scope of our  
research. 

Combining object vision and inverse kinematics thus provides the robot with a 
behavioral capability to localize a specified object and grasp it. This allowed the 
creation of an extended set of atomic action described in table 3. 

 
Table 3 Set of atomic action. “Take the leg” is a vision-based action. 

 

Motor Command Resulting Actions 

Ready Position Move bith arms to a ready position above the 
workspace (6DOF) 

Take the $VAR1 leg. Visually localize the $VAR1 colored object, 
and grasp it. $VAR1 = {green, yellow, rose,  
orange}. (6DOF) 

Open(Right,Left) Open right/left hand (1DOF) 

Close(Right,Left) Close right/left hand (1DOF) 

Turn(Right,Left,Center) Rotate chest right, left or center (1DOF) 

Reach(Right,Left) Extend right/left arm (5DOF) 

2.2.2   Learning Arguments Taking Procedures 

In the previous study, the learned programs were fixed sequences of actions, and 
thus had strong requirements on the invariant conditions of execution. In [3] we 
extended such methods in a complimentary way by using spoken language to cre-
ate complex motor procedures or behaviors that are flexible to changes in the  
environment. This robustness is provided through the learning of procedures (i.e. 
actions) that take arguments (i.e. objects that are manipulated in the action). The 
learned behaviors correspond to procedures that take arguments, e.g. “Give me 
X”, where the robot uses vision and motion planning to localize X which can be 
arbitrarily located within the robots perceivable works space. As in the previous 
study, this procedures definition is controlled by a set of learning and interaction 
commands presented in table 4. The updated version of the SLP allowed multiple 
procedures to be created, and allows these procedures to take arguments. While 
the general solution is to allow an arbitrary number of procedures to be created 
and named, we will describe only two specific procedures in this section: “Give 
me the X” and “Hold this”. 

When the user issues a command such as “give me the green leg”, the SLP de-
termines if it has a corresponding procedure, by looking up that command in the 
command database. If there is no procedure defined, the robot asks the user to 
“show me how to give you the green block”. The user proceeds to issue action 
commands to achieve the desired task that will make up this sequence. Of particu-
lar interest in this case, if the user issues a command with an argument as a com-
ponent of the new behavior to be learned, such as “grasp the green leg,” then the 
argument to the grasp command becomes bound to the argument for the give 
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command. When the user has finished the part of the task he wants to program, he 
issues the “OK” command. This results in the action sequence being written to a 
file. Now, when “give me the rose leg” is issued, this file is read into an array, 
and the commands are sequentially executed. Importantly, the value “rose” is 
bound to variable $VAR1 which is passed to any commands that take arguments 
in the procedure, notably the “take the X leg” command. This “natural” pro-
gramming of argument-taking procedures gives the user a powerful tool for speci-
fying generalized behaviors.  
 

 
Table 4 Programming commands. 

 

Commands Correspondence 

Give me the $VAR1 leg Learned procedure 

Hold this Learned procedure 

OK Store encoded command sequence 

Wait Interrupt command execution until a spoken 
“continue” command is issued 

Continue Terminate the “wait” pause and resume execu-
tion 

2.2.3   Experimental Results  

Here again we used the Table Construction Task as a benchmark for the SLP. We 
will describe first how the user teach the two procedures “give me X” and “hold 
this”, then we will show how to use them and study the effect of these procedures 
on the task execution.  

“Give me the X” Procedure 

<Robot initiates the interaction> Describe an action.  
Give me the green leg.  
Please show me how to give you the green leg.  
Take the green leg.  
Attempting to grasp the green leg. <System executes the Vision and Motion 
Planning to place the hand above the leg.>  
Is that good ? <Robot asks user if the hand is correctly placed>. Yes.  
Attempting to grasp. <Robot descends hand, grasps the object and raises the 
hand – executing the Take command>  
Describe an action.  
Turn right. <Robot turns right>  
Open right hand. <Robot opens right hand, giving object to user>.  
Ready position. <Robot pulls right hand back to ready position>  
OK - Finish learning.  
You said OK, so I will store the learned program.  
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At this state in the dialog, the system writes the sequence of commands to a file, in 
the format: Give me the $VAR1 leg { Take the $VAR1 leg Turn right Open right 
hand Ready position } When the “give” procedure is subsequently invoked with an 
argument, as in “give me the orange leg”, the word “orange” that is recognized in 
the $VAR1 position for the “give” command will be passed as an argument to the 
take command. 

“Hold This” Procedure 

At this point in the cooperative interaction, the user needs the robot to hold the ta-
ble while he attaches the leg.  

Hold this <Robot does not have a stored procedure for “hold this”>  
Can you show me how to hold?  
Reach left <Robot extends left arm, and user places table in the hand (Fig 
2C)>.  
Close left hand <Robot closes left hand to hold the table (Fig 2C)>  
Wait <User requests robot to wait while he attaches the leg to the table.>  
Continue <User indicates he is finished>  
Open left hand <Robot opens left hand to release the table (Fig 2C)>  
OK - Finish learning  
You said OK, so I will store the learned program.  

At this point the sequence of commands including the conditional wait are now 
stored as an SLP procedure for immediate re-use. 

Execution of Learned Procedures  

Now the user can apply these learned procedures for the 2-4th legs. 

Give me the orange leg <System executes the learned procedure to place 
the hand above the orange leg.>  
Is that good? <Robot asks user if the hand is correctly placed>  
Yes.  
Attempting to grasp <Robot descends hand, grasps the object and raises the 
hand – executing the Take command>  
Turning right  
Opening right hand <to give the leg to the user>  
Moving to ready position <”Give” procedure finished>  
Describe an action  
Hold this  
Reaching left <Robot begins to execute the stored procedure and reaches 
with left hand>  
Closing left hand  <User places the table in the robot’s hand, and robot 
closes hand to hold the table.>  
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Waiting for your signal <User attaches the leg and then indicates to the ro-
bot to go on.> Continue  
Opening left hand <Robot releases the table, assumes the ready position and 
turns to the center>  
Moving to ready position  
Turning to center <Leg is now attached, using the “give” and “hold” proce-
dures> 

Performance Analysis of SLP Effects  

In order to quantify the benefits of the learning capability, we can analyzed the 
number of commands and the time required to perform the “give” and “hold” pro-
cedures when each command was individually enumerated during learning, vs. 
when the learned procedures were employed. During the attachment of the first 
leg, the user issued 13 distinct commands, and getting the leg and holding the ta-
ble took approximately 2:00 and 2:16 respectively. Once the procedures were 
learned, each of the remaining 3 legs was attached using only 4 commands, and 
the total execution time for the three legs was 5:24. In other words, this means that 
in a total task completion time of less than 10 minutes, the human was able to pro-
gram two different behavior procedures and then immediately use them in order to 
assemble the table, yielding a significant reduction in the number of commands 
and execution time required. 

Another important point that improves the performances on a long term point 
of view is that the user can create and store multiple procedures. These procedures 
will be available for further tasks: for example we can imagine that the “Give me 
X” procedure can be used for a drawing interaction (i.e: “give me orange pen”) 
which will speed up even more the task because the robot will not have to learn 
again how to give an object. 

2.2.4   Conclusion 

In [3] we demonstrated how the functional vocabulary of the robot is extended by 
learning a new command and a new grammatical construction. Part of the richness 
of grammatical constructions in language is that they encode predicate – argument 
relations in a natural and understandable manner. These predicates can be complex 
relations between (or operations on) the set of accompanying arguments. This 
provides a vastly richer communication ability than does the use of single word 
commands. This allows the procedure to operate on an entire class of objects (i.e. 
those that can be “taken” by vision-based grasping capability), and makes the pro-
cedure robust to variability in the position of the argument objects. This implies 
more than just plugging together the specific components for vision, motor con-
trol, language and sequence learning. In particular, the “form to meaning map-
ping” aspect of construction grammar provides a principled method for linking of 
language to “meaning” in the context of predicate-argument meanings. 
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2.3   Flexible Common Ground 

Even if the SLP as it is described in [2, 3] already provide nice programming pos-
sibilities to a naïve user, it is still possible to improve it in order to allow more 
powerful human robot interaction. The goal of the system is that the user can ar-
rive with a new set of objects, and some ideas about the names for these objects, 
and what he wants the robot to do to help him. The construction of the common 
interaction framework can be divided in three different parts: setting visual recog-
nition, teaching non predefined postures and finally having new complex behav-
iors learned by the robot. In this section we describe how any naive user can 
achieved each of these teaching processes. 

2.3.1   Vocal Interaction Prerequisite 

One of the main limitation of the SLP as it was until now, is that the user has to 
know in advance the robot’s vocabulary. He had to know how were named the 
manipulated objects and the robot specifics actions. In this version, we propose to 
the user to be able to name these objects and also to create his own new postures. 
In order to do that, we have to address a technical limitation. To provide speech 
recognition, RAD needs to be fed by every word it can have to recognize. We do 
that using three text files (objects’ names, postures’ names, and behaviors’ names) 
that contain all the words that one can use. These three files will describe the 
complete vocabulary of the SLP and can contain a huge set of words. However, 
they can be edited manually by the user if he needs to do so. 

2.3.2   Real-Time Object Learning 

As we mentioned in the previous section, we use for the vision of the SLP a system 
call Spikenet [16, 24]. The main advantage of this system is that it allows very fast 
object recognition based on template learning. In other words, you give to the sys-
tem some models of the objects you want to use, and it recognize them in real time 
on the video stream from the webcam. First step is the creation of objects' models: 
the user displays the set of objects on the workspace and uses the mouse to circle on 
the camera windows the objects he wants the robot to recognize. During the spoken 
language interaction, the user then presents the objects one at a time, and tells the 
system the name of the object via spoken language as described in this sample. 

Learn object names  
Please, show me only one object <User removes all object from the work-
space but one>  
Ok.  
I can see an object, please tell me its name. 
Leg 
So this is a leg. Do you want to teach me another object ? 
No. 
Learning finished, what should I do now ? 
Describe the scene. <User ask the robot to describe what he see> 
I can see a leg. 
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2.3.3   Improved Set of Atomic Actions 

In previous studies, the set of atomic actions was completely static and it was not 
possible for the user to create his own postures. In this study we refined the SLP 
architecture to allow such a possibility. The set of atomic actions does not contain 
anymore fixed postures, but only atomic procedures that are defined for every ro-
bot and that can be used to build more complex procedures. We describe the set 
we used in our experiment on a humanoid torso in table 5. Note that for a com-
plete humanoid robot this set can be much more extensive. 

 
Table 5 Actual version of the set of atomic action. 

 

Atomic Action Correspondence 

Posture $VAR Move the robot into the posture described by 
$VAR (see 2.3.3.4 Posture Creation) 

Move <up/down> $VAR Move the actual arm along the vertical axis by 
$VAR centimeters 

Move <left/right> $VAR Move the actual arm along the horizontal axis 
by $VAR centimeters 

Move <in/out> $VAR Move the actual arm along the depth axis by 
$VAR centimeters 

Open/Close Open or close the hand of the actual arm 

Reach $VAR Visually locate the object $VAR and reach it 
with the actual arm 

Describe The robot tell the name of every objects that are 
present on the workspace 

Wait Stop execution of all commands until a “Con-
tinue” is issued 

Continue Resume execution of commands when being in 
a “Wait” state. 

 
One can already notice that this set of atomic actions does not include the action 
“grasp X”. This is because “grasp X” is not atomic and is composed by: {reach X, 
move down 5, close, move up 10, posture neutral position}. We will see how to 
define such a composed action later. First we describe how user can create their 
own postures, like neutral position. 

2.3.4   Posture Creation 

User can ask the robot to go to any posture by telling him “Posture Pos-
ture_Name”. In the case of an unknown posture, the robot   goes in a “relative 
movement command” state.  This state allow the user to teach the desired posture 
by verbally moving the gripper with the Move (up|down; left|right; in|out) com-
mands (Table 5). This provides a highly flexible method to create useful postures 
(e.g. for going to a neutral position) 
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Posture neutral position 
Sorry, I don't know what is neutral position . Do you want to teach it to me? 
Yes 
Where do you want me to go? 
Move up 20 
Did you say to move up of 20 centimeters? 
Yes <Robot moves> 
Where do you want me to go? 
Move right 20 
Did you say to move right of 20 degree? 
Yes <Robot moves> 
Where do you want me to go? 
Save 

The user thus positions the robot using spoken language in less than 30 seconds. 
The posture is then added to the robot knowledge and can be embedded in a  
behavioral sequence. Note that in the case of a posture definition, the absolute 
values for the joints angles are recorded as a posture, so asking the robot to reach 
this posture will put him exactly as it was (not just 20cm upper/right of its actual 
position). 

2.3.5   Complex Behavior Creation 

Even if the user is able to call the atomic actions from the set of atomic actions, it 
is much more valuable for him to define his own actions. We exploit simple 
grammatical constructions that allow the mapping of natural language sentences 
onto specification of procedures and their arguments. This improves the SLP  
capabilities and make it able provide more speed improvement. In this section we 
show how to create a simple behavior, and then we use more complex ones in  
order to benchmark the system. 

Learning to Grasp X 

As we mentioned before, the grasp X behavior can be easily defined by the user in 
the case of a robot working on a flat table. Of course the grasping function can be 
hardcoded in the robot, and then it should be part of the set of atomic actions, but 
in our case it’s a useful way to illustrate the power of the new SLP architecture. 
Here is how we defined “Grasp X” for our experiments: 

Grasp leg 
Sorry, I don't know how to grasp. Do you want to teach it to me? 
Yes 
What should I do? 
Reach leg 
Reaching <Robot moves his hand over the table’s leg> 
What should I do? 
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Move down 5 
<Robot lay his hand on the table’s leg> 
What should I do? 
Close 
<Robot closes his hand and grasp the object> 
What should I do? 
Move up 10 
<Robot grasp the table’s leg> 
What should I do? 
Posture neutral position 
<Robot moves to the previously learned neutral position> 
What should I do? 
Save 

The behavior “grasp X” is now saved in the robot knowledge. The SLP inferred 
that the procedure took an argument and it automatically found that this argument 
was the same the one for the atomic action “reach”. So when the user will call 
“grasp ball”, the system will look and reach the ball and not the leg. In a very few 
steps the user defined a behavior that will be useful in a lot of task, and he will 
even be able reuse it in more complex behaviors like “Put X at Y”.  

Learning to Put X at Y 

Here the user asks the robot to put the object “front” (it is the front part of a heli-
copter wood model) on a visual target labeled “3”.  The system does not know 
“put”, and infers there are two arguments.  As the user teaches the robot, known 
procedures “grasp” and “reach” have arguments that match the first and second 
arguments for “put” and so this argument binding order is established for the 
learned sequence.  Note that the learning procedure takes only 71 seconds. 

12:11:05 User : put front 3 
12:11:07 Robot : Do you mean put front 3 ? 
12:11:09 User : yes 
12:11:16 Robot : Tell me what to do. 
12:11:18 User : grasp front 
12:11:22 Robot : Loading grasp front. Tell me what to do. 
12:11:36 User : reach 3 
12:11:39 Robot : Loading reach. Tell me what to do. 
12:11:57 User : open 
12:12:00 Robot : Loading open.  Tell me what to do. 
12:12:07 User : move neutral 
12:12:10 Robot : Loading move neutral. Tell me what to do. 
12:12:16 User : save 
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Learning to Swap X and Y 

Once the “put” procedure is learned it can be used in a more complex. “swap” 
procedure, which itself is learned in just over two minutes. 

12:38:58 User : swap train front 
12:39:11 Robot : Tell me what to do. 
12:39:15 User : put train 3 
12:39:19 Robot : Loading put train 3. Tell me what to do. 
 …. Speech recognition error and recovery … 
12:39:59 User : put front 1 
12:40:02 Robot : Loading put front 1  Tell me what to do. 
12:40:30 User : put train 2 
12:40:34 Robot : Loading put train 2  Tell me what to do. 
12:41:01 User : save 

At this point the “swap” operation has been learned, using graphical markers 
(learned as any other object) as place holders for the objects to be swapped. The 
new behavior is then demonstrated to transfer to new objects, and the complex be-
havior is achieved in just slightly over 1 minute 

12:42:10 User : swap tail  nose 
12:42:13 Robot : Loading swap tail nose  . Is it ok ? 
12:42:16 User : yes 
12:43:15 Robot : Tell me what to do. 

Then it's possible to use swap in an even more high level new sequence and so on. 
After a while of teaching the robot what he wants to do, the user is able to command 
the robot in a very efficient way without taking care of the most basic interactions. 

2.4   Discussion 

With the SLP implementation, we started to build a framework which facilitates the 
cooperation between human beings and robots. It allows any user to program auto-
mated behavior on any kind of robot in a very easy and natural manner. The robot is 
able to “learn” what the human wants to teach to him and then the user is able to 
take benefit of this knowledge in order to improve the way he uses the robot. Since 
the SLP is a kind of programming language, we can imagine multiple ways to im-
prove it (e.g: adding “if…then” conditional commands, loops, etc.). However we 
can’t really call that a cooperative interaction: the robot interacts with the human but 
it does not share any goal with him, he doesn’t show any intentionality. Indeed, the 
SLP provides the user with a vocal puppet mastering ability but it doesn’t give to the 
robot any choice regarding his own behavior. A great improvement of the system 
could be to enable it to learn even without direct teaching, only by interacting with 
the user. Such an ability can really make robots useful to humans and avoid the 
“rigid” aspect of their behavior. In the second part of this chapter we will present our 
efforts to bring to the SLP this human-like cooperation ability. 
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3   Beyond SLP – Anticipation and Cooperation 

In his well known test [25], Turing defined a way to test artificial intelligence by 
having a human being chatting with it. Spoken language is a hard problem; how-
ever we can generalize this test to any kind of collaborative ability between an ar-
tificial system and a human. When the artificial system owns a physical body, like 
a robot, the interactions framework provides a perfect platform to test how the sys-
tem should behave. Collaborative tasks, like the Table Construction Task that we 
defined previously, are situations from which we can extract primates’ specific 
behaviors. Such behaviors should be implemented into collaborative artificial  
systems like robots (especially humanoids one) if we want them to be useful and 
friendly to human beings. In this context we started to add to the SLP anticipation 
ability, which is the first step toward more human-like cooperation ability. Inter-
face between robotic and psychology gave us the fruitful possibility to go further 
in this direction in [5]. 

3.1   Anticipation – Extraction Behavior Regularities 

If robots are to engage with humans in useful, timely and cooperative activities, 
they must be able to learn from their experience, with humans. Ideally this learn-
ing should take place in a way that is natural and comfortable for the user. The  
results of such learning should be that during the course of an interaction, as the 
robot continuously acquires knowledge of the structure of the interaction, it can 
apply that knowledge in order to anticipate the behavior of the user.  This anticipa-
tion can be expressed both in terms of the actions performed by the robot, as well 
as by its style of verbal communication. Anticipation is the hallmark of cognition: 
von Hofsten for example says that: Actions are directed to the future and must 
predict what is going to happen next [26]. 

We have previously developed cooperation systems that allow a hands-free 
condition in which the user can actively perform one role in a cooperative task, 
while instructing the robot at the same time, such that the robot acquired new be-
haviors via its interaction with the human [2, 3]. The current research thus takes 
place in the continuity of our studies of human-robot cooperation in the context of 
a cooperative construction task. The Cooperative Table Construction Task has re-
petitive subtasks (attaching the 4 legs) which provide an opportunity for learning 
and performance improvement within the overall task.  In previous research, the 
user was required to explicitly instruct the robot about when to initiate and termi-
nate behavior learning, that is, the user was required to keep track of the segmen-
tation of the overall task into subtasks. The goal, and novelty of the current work, 
is to extend the learning and anticipation capabilities of the robot within this inter-
active context by allowing the robot to automatically analyze ongoing behavior 
with respect to its internal representation of its past. This will allow the robot  
to anticipate what the user will say (thus improving the spoken language inter-
face), and to take a progressively more proactive role in the interaction. Most  
importantly, this frees the user from requirement to explicitly segment tasks into 
subtasks for teaching the robot, as this is now performed automatically. 
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3.1.1   Multi-level Anticipation Capability 

In order to achieve this anticipatory and adaptive capability we will exploit the no-
tion of the interaction history, as the temporally extended personal sensory motor 
history of the robot in its interaction with the world and the human [27].  By com-
paring ongoing interactions with previous experience in the interaction history, the 
system can begin to anticipate.  Depending on the level of stability of these en-
coded interactions, the system can commit to different levels of anticipatory and 
initiative-taking behavior.  The stability of an interaction will increase as a func-
tion of its reuse over time.  Here we describe the distinct levels of anticipation and 
initiative taking that will be implemented and tested. Level 1 anticipation allows 
the system to predict what the user will say, and thus eliminate the need for verifi-
cation when the prediction holds.  At Level 2 allows the system to take initiative 
to propose the predicted next event.  At Level 3, the robot is highly confident and 
takes initiative to perform the predicted action.   

3.1.1.1   Level 1:  Dialog Anticipation 
While the speech recognition provided by the CSLU RAD system is quite reliable, 
we systematically employ a subdialog in which, after the user makes a statement 
the system asks “Did you say … ?”, in order to correct for recognition errors.  
Most often, the recognition works correctly, and so this verification step is unnec-
essary, and most of all, it is tiresome for the user. 

When the system has recognized that the current sequences of actions matches 
with a sequence that has been previously executed and stored in the Interaction 
History, then it can anticipate what will be said next by the user.  If this item 
matches with what is actually recognized as the user’s next statement, then the 
system can dispense with the need to explicitly validate.  This can significantly 
improve the smoothness of the flow of interaction. 

3.1.1.2   Level 2:  Action Proposition 
Once a sequence has been validated at level 1 (i.e. the system correctly predicts 
what the user will say), then that sequence is elevated to level 2.  At this level, 
again, when the system detects that a level 2 sequence is being executed, it will 
take initiative and propose to the user the next element in the predicted sequence.  
The user can then accept or decline the offer.  In the context of a repetitive task, 
this is actually quite helpful as the user can rely on the record of his own previous 
history with the robot in order to guide ongoing action. 

3.1.1.3   Level 3:  Action Initiation 
Once the sequence has been validated at Level 2, (i.e. the user has accepted the 
succession of actions proposed by the system), then it attains Level 3.  At this lev-
el, when the sequence is detected, the robot takes full imitative and begins to exe-
cute the subsequent actions in the Level 3 sequence.  At this level, the user is truly 
aided by the “apprentice” who has successively gained confidence, and can now 
proceed with its part of the interaction without the need to confer by language. 
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Fig. 3 The cooperative table construction task using iCub platform. Robot and human have 
to cooperate in order to build a table (A,D). The robot has to pass legs to the user (B) and 
hold the table while the user screws the legs (C). 

3.1.1.4   Technical Implementation 
The table construction task has been tested using the iCub platform for this re-
search (Fig 3). Part of the system we developed for the current research is illus-
trated in Fig 4. It describes the control flow that implements the multilevel antici-
pation capability. 

3.1.2   Experimental Results 

As in the first part of this chapter, we use the Cooperative Table Construction 
Task to test the system. In this case we just want to test the anticipation ability and 
not any programming function of the SLP, so we just use a basic set of atomic ac-
tions (Reach, Grasp, Lift, Pass, Open, Hold, Wait, Release). 

3.1.2.1   Assembling the table 
The Cooperative Table Construction Task is interesting as it involves cooperation 
(the robot must pass elements to the user, and hold things while the user works), 
and it has a repetitive structure that allows learning.  For each leg, the user will ask 
the robot to reach to and grasp the leg, lift it, pass it to the user and open the hand, 
and then finally hold the table while the user attaches the leg.  In the following in-
teraction, note how the corresponding interaction becomes streamlined and fluid 
as the robot acquires knowledge of the task. 
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Fig. 4  Anticipation’s specific part of the SLP. The invariant situation is that the last action 
commanded has been added to the ongoing Interaction History, and the previous two ac-
tions are continuously compared in a sliding window with the Interaction History at 
find_match.  If a match is found, the next action in the Interaction History is a candidate for 
anticipation.  At anticp_status, if the sequence is recognized for the first time, then at an-
ticipate_next_command the next command is identified as a target for speech recognition, 
and the sequence anticipation level is incremented for the current sequence element.  
If the sequence is recognized for the second time, at propose_initiative, the system proposes 
this action to the user.  If it has been successfully recognized and validated more than twice, 
the next element is taken for execution at take_initiative. At the main node, Select, the user 
chooses actions from the set of atomic actions.  check_anticipation: Once the action is  
selected, the system determines what level of anticipation can be applied.  If the current  
action is not part of a sequence of at least two elements recognized in the Interaction  
History, then there is no anticipation, and the system asks the user to confirm her command.  
If the command is part of a sequence that has been recognized for the first time – then  
the system will skip the verbal confirmation if command matches prediction. As already 
stated, at the 2nd recognition – propose to anticipate, and for 3rd + recognition: take initia-
tive directly. 
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Reach. 
Did you say reach? Yes Reaching 
Grasp. 
Did you say grasp? Yes. Grasping. 
Lift.  
Did you say lift? Yes. Lifting 
Pass.  
Did you say pass? Yes. Passing 
Open.  
Did you say open? Yes. Opening hand. 
Hold the table. 
Did you say hold? Yes. Holding 
Wait. Did you say wait? Yes. Waiting for your signal; 
OK. 
Release. 
Did you say release? Yes. Releasing 
Wait.  
Did you say wait? Yes. Waiting for your signal; 
OK. 
Reach. 
Did you say reach? Yes. Reaching 
Grasp. 
Did you say grasp? Yes. Grasping. 
Lift. 
Lifting. 
Pass.  
Passing 
Open. 
Opening hand 
Hold the table. 
Holding 
Wait.  
Waiting for your signal. 
OK 
Release. 
Releasing. 
Reach. 
Did you say reach? Yes. Reaching. 
Grasp. 
Did you say grasp. Yes. Grasping. 
Shall I do lift? Yes. Lifting. 
Shall I do pass? Yes. Passing. 
Shall I do open? Yes. Opening hand. 
Shall I do hold? Yes. Holding. 
Shall I do wait? Yes. Waiting for your signal. 
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OK 
Shall I do release? Yes. Releasing. 
Shall I do wait? No  
Reach.  
Did you say reach? Yes. Reaching. 
Grasp. 
Grasping. 
I know what to do. Lifting. 
I know what to do. Passing, 
I know what to do. Opening hand, 
I know what to do. Holding 
I know what to do. Waiting for your signal  
OK 
I know what to do. Releasing 

3.1.2.2   Performance Analysis of SLP Effects  
Previous dialog provides evidence that as the levels of anticipation increase, so 
does the efficiency of the interaction. In order to quantify the effects of this form 
of anticipatory learning, we measured command processing time as the duration 
from the spoken onset of the user’s command to the robot’s completion of that  
action. We then grouped these actions based on the four assembly phases  
corresponding to the four legs of the table.   
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Fig. 5 Action execution times (seconds) for robot actions in the assembly of the table, based 
on level of anticipation. These four levels correspond to the repetitive structure of the task 
for the 4 legs, respectively. Whiskers indicate max and min times, Boxes 25th and 75th 
percentile, point – mean, white line – median. 
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Because of the repetitive structure of the task, the four legs correspond to four 
levels of anticipation – starting at a naïve state with the first leg at Level 0.  
Figure 5 presents the mean values and their ranges.  We see a reduction in proc-
essing time over the course of the task. A repeated measures ANOVA confirmed a 
significant effect of Level of anticipation on completion time, F(3,15)=4,65; 
p<,0172. 

3.1.3   Conclusion 

The current research focused on the use of the interaction history for allowing the 
system to automatically identify useful behaviours.  The user no longer needs to 
manage this learning explicitly, but instead can rely on the robot to extract perti-
nent regularities from their interactions.  However, this ability mimics only a small 
part of the full cooperation capability of a human being. We believe that this 
global skill should be investigated in order to guide future human robot interaction 
research. 

3.2   Shared Plans – Cooperation towards a Common Goal 

There is a fundamental difference between robots that are equipped with sensory, 
motor and cognitive capabilities, vs. simulations or non-embodied cognitive sys-
tems. Via their perceptual and motor capabilities, these robotic systems can inter-
act with humans in an increasingly more “natural” way, physically interacting 
with shared objects in cooperative action settings. Indeed, such cognitive robotic 
systems provide a unique opportunity to developmental psychologists for imple-
menting their theories and testing their hypotheses on systems that are becoming 
increasingly “at home” in the sensory motor and social worlds, where such hy-
potheses are relevant. The current section reviews our work related to cooperation 
and learning [5]. It results of interaction between research in computational neuro-
science and robotics on the one hand, and developmental psychology on the other. 
One of the key findings in the developmental psychology context is that with re-
spect to other primates, humans appear to have a unique ability and motivation to 
share goals and intentions with others. This ability is expressed in cooperative be-
havior very early in life, and appears to be the basis for subsequent development 
of social cognition. Here we attempt to identify a set of core functional elements 
of cooperative behavior and the corresponding shared intentional representations. 
We then begin to specify how these capabilities can be implemented in a robotic 
system, the Cooperator, and tested in human-robot interaction experiments. Based 
on the results of these experiments we discuss the mutual benefit for both fields of 
the interaction between robotics and developmental psychology.  

3.2.1   Introduction 

There is a long history of interaction between theoretical aspects of psychology 
and the information and computer sciences. The “information processing” model 
of cognitive psychology developed by Neisser [28] and Broadbent [29] borrowed 
notions such as input, representation, processing and output from computer  
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science and applied them to the analysis of mental processes. Whether or not one 
holds with specific application of computing metaphors to psychological theories, 
it appears clear that the use of such metaphors is useful in that it confronts psycho-
logical theory with specific questions to be addressed, related to representations 
and processes underlying cognitive functions. Today the psychological and com-
puting sciences are entering a new period of interaction that is linked to new  
technological developments in the domain of robotics. Unlike simulation and tra-
ditional artificial intelligence programs that are constrained at best to “live” in 
simulated artificial worlds, robots are equipped with sensory and motor capabili-
ties that allow them to exist in the physical world of the humans that they can  
interact with. That is, robots can provide experimental platforms to cognitive sci-
entists for implementing and testing theories about the intricate relation between a 
developing system and its physical environment. Likewise, from the robot tech-
nology perspective, robotics scientists have reasoned that the most complex be-
havior cannot be exclusively programmed by hand, but rather should result from 
adaptive and developmental mechanisms that are based on those identified in the 
development of physiological systems [30-32]. One of the most interesting oppor-
tunities provided by this interaction between robotics and psychology will be in 
the domain of developmental psychology. Research in this domain is beginning to 
focus in on the functional aspects of social cognition that make humans unique in 
the animal world. It appears that part of the uniquely human aspects concern the 
ability and motivation to shared intentional states with others [33].The objective of 
the current research is to begin to identify some of the core elements of the human 
ability to share intentions based on experimental and theoretical results from de-
velopmental psychology, and to then begin to determine how these elements can 
be implemented on a corresponding robotic system designed for interacting and 
cooperating with humans. We believe that this work is important because it moti-
vates psychologists to formalize their hypotheses in sufficient detail that they can 
lead to implementation and testing in artificial but naturally inspired cognitive sys-
tems. Of particular interest are the underlying representations required for these 
shared intentions. We also believe that this work is important because it will begin 
to endow robots with human-like abilities to cooperate. Tomasello proposed in 
[33] that the human ability to share intentions develops via the interaction of two 
distinct capabilities. The first concerns the ability to “read” or determine the inten-
tions of other agents through observation of their behavior, and more generally the 
ability to represent and understand others as intentional goal directed agents. The 
second capability concerns the motivation to share intentions with others. While 
non-human and human primates are skilled at the first - reading the intentions of 
others based on action and gaze direction, only humans seem to possess an addi-
tional capability that will make a significant difference. This is the motivation to 
cooperate: to share mental states, including goal based intentions which form the 
basis of cooperation. Perhaps one of the most insightful methods of establishing 
the properties of human social cognition is the comparison of human and great ape 
performance in equivalent conditions [34]. In this context, Warneken, Chen and 
Tomasello [35] engaged 18-to-24 month old children and young chimpanzees  
in goal-oriented tasks and social games which required cooperation. They were  
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interested both in how the cooperation would proceed under optimal conditions, 
but also how the children and chimps would respond when the adult stopped per-
forming the task. The principal finding was that children enthusiastically partici-
pate both in goal directed cooperative tasks and social games, and spontaneously 
attempt to reengage and help the adult when he stops. In contrast, chimpanzees are 
uninterested in non-goal directed social games, and appear wholly fixed on attain-
ing food goals, independent of cooperation. Warneken et al. [36, 37] thus observed 
what appears to be a very early human capacity for actively engaging in coopera-
tive activities just for the sake of cooperation, and for helping or reengaging the 
perturbed adult. In one of the social games, the experiment began with a demon-
stration where one participant sent a wooden block sliding down an inclined tube 
and the other participant caught the block in a tin cup that made a rattling sound. 
This can be considered more generally as a task in which one participant manipu-
lates an object so that the second participant can then in turn manipulate the ob-
ject. This represents a minimal case of a coordinated action sequence. After the 
demonstration, in Trials 1 and 2 the experimenter sent the block down one of the 
tubes three times, and then switched to the other, and the child was required to 
choose the same tube as the partner. In Trials 3 and 4 during the game, the  
experimenter interrupted the behavior for 15 seconds and then resumed. Behavior-
ally, children successfully participated in the game in Trials 1 and 2. In the inter-
ruption Trials 3 and 4 they displayed two particularly interesting types of response 
that were (a) to reengage the experimenter with a communicative act (on 38% of 
the interruption trials for 24 month olds), or less often, (b) to attempt to perform 
the role of the experimenter themselves (on 22% of interruption trials for 24 
month olds). Though (b) was considered a non-cooperative behavior, i.e. as an at-
tempt to solve the task individually, it still indicates that the children had a clear 
awareness both of their role and that of the adult in the shared coordinated activ-
ity. Importantly, after only a few demonstrations of the game (and only one dem-
onstration for the 24 month children) it was apparent that the children had a 
“bird’s eye view” or third person representation of the interaction, allowing them 
to subsequently take either role in the game – that of the launcher or of the re-
ceiver of the sliding block. This implies a rather clever representation scheme 
which can keep track of the goal directed actions of multiple agents, and their in-
teraction, allowing the observer to then take the role of either of the observed 
agents. In a related study, Warneken & Tomasello [35] demonstrated that 18 and 
24 month old children spontaneously help adults in a variety of situations. This is 
interpreted as evidence for an altruistic motivation to help, and an ability to under-
stand and represent the goals and intentions of others. Indeed, such helping repre-
sents a mutual commitment to the shared activity which is one of the defining  
features of shared cooperative activity [38].The ability to represent the action from 
multiple perspectives was examined more directly in a study of role reversal imita-
tion conducted by Carpenter et al. [39]. In one experiment of this study, children 
observed the experimenter cover a “Big Bird” figurine with a cloth. The experi-
menter then asked the child “Where is big bird? Can you find him?” and the child 
(or the experimenter) lifted the cloth to reveal the toy. After three such demonstra-
tions, the experimenter handed the cloth to the child and said “It’s your turn now.” 
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Approximately 70% of the 21 18 month old children tested successfully per-
formed the role reversal. Again, this suggests that the child maintains a representa-
tion of the alternating roles of both participants in a third-person perspective that 
can then be used to allow the child to take on either of the two roles. In order to 
begin to think about how such a system has come to be (and could be built), we 
can look to recent results in human and primate neurophysiology and neuroanat-
omy. It has now become clearly established that neurons in the parietal and the 
premotor cortices encode simple actions both for the execution of these actions as 
well as for the perception of these same actions when they performed by a second 
agent [40, 41]. This research corroborates the emphasis from behavioral studies on 
the importance of the goal (rather than the details of the means) in action percep-
tion [33, 42-44]. It has been suggested that these premotor and parietal “mirror” 
neurons play a crucial role in imitation, as they provide a common representation 
for the perception and subsequent execution of a given action. Interestingly, how-
ever, it has been clearly demonstrated that the imitation ability of non-human pri-
mates is severely impoverished when compared to that of humans [33, 41]. This 
indicates that the human ability to imitate novel actions and action sequences in 
real time (i.e. after only one or two demonstrations) relies on additional neural 
mechanisms to those found in non-human primates. In this context, a recent study 
of human imitation learning [45] implicates Brodmann’s area (BA) 46 as respon-
sible for orchestrating and selecting the appropriate actions in novel imitation 
tasks. We have recently proposed that BA 46 participates in a dorsal stream 
mechanism for the manipulation of variables in abstract sequences and language 
[46]. Thus, variable “slots” that can be instantiated by arbitrary motor primitives 
during the observation of new behavior sequences are controlled in BA 46, and 
their sequential structure is under the control of corticostriatal systems which have 
been clearly implicated in sensorimotor sequencing [46]. This allows us to pro-
pose that this evolutionarily more recent cortical area BA 46 may play a crucial 
role in allowing humans to perform compositional operations (i.e. sequence learn-
ing) on more primitive action representations in the ventral premotor and parietal 
motor cortices. In other words, ventral premotor and parietal cortices instantiate 
shared perceptual and motor representations of atomic actions, and BA46 provides 
the capability to compose arbitrary sequences of these atomic actions, while rely-
ing on well known corticostriatal neurophysiology for sequence storage and re-
trieval. The functional result is the human ability to observe and represent novel 
behavioral action sequences. We further claim that this system can represent be-
havioral sequences from the “bird’s eye view” or third person perspective, as re-
quired for the cooperative tasks of Warneken et al. [36]. That is, it can allow one 
observer to perceive and form an integrated representation of the coordinated ac-
tions of two other agents engaged in a cooperative activity. The observer can then 
use this representation to step in and play the role of either of the two agents. This 
is a “dialogic cognitive representation,” or “we intention” in that it represents the 
“dialog” of interaction between agents. Given this overview of some of the core 
functional elements of cooperative behavior and the corresponding representations 
(including the “bird’s eye view”), we can now take on the task of beginning to 
specify how these capabilities can be implemented in a robotic system, and tested 
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in human-robot interaction experiments. When making the transition from human 
behaviour to technological implantation, there is the risk that the implementation 
will be biased in terms of specific computational or functionalist solutions. In this 
context, we are making a concerted effort in “cognitive systems engineering,” a 
process in which the cognitive robotics systems we build are constrained by (1) 
functional requirements (i.e. specification of how the system behaves) derived 
from behavior from developmental psychology, and (2) architectural constraints 
from the neurosciences. To as large a degree as possible, we avoid arbitrary con-
straints from the purely computational aspects of the implementation platform.  

3.2.2   The Robotic System – The Cooperator  

In the current experiments the human and robot cooperate by moving physical ob-
jects to different positions in a shared work-space as illustrated in Figures 6 and 7. 
The cooperative activity will involve interactive tasks that preserve the important 
aspects of the “block launching” task of Warneken et al. [36], transposed into a 
domain of objects suitable for our robot system. The 4 moveable objects are pieces 
of a wooden puzzle, representing a dog, a pig, a duck and a cow. These pieces can 
be moved by the robot and the user in the context of cooperative activity. Each has 
fixed to it a vertically protruding metal screw, which provides an easy grasping 
target both for the robot and for humans. In addition there are 6 images that are  

 

 

Fig. 6 Cooperation System. In a shared workspace, human and robot manipulate objects 
(green, yellow, red and blue circles corresponding to dog, horse, pig and duck), placing 
them next to the fixed landmarks (light, turtle, hammer, etc.). Action: Spoken commands in-
terpreted as individual words or grammatical constructions, and the command and possible 
arguments are extracted using grammatical constructions in Language Proc. The resulting 
Action(Agent,Object,Recipient) representation is Current Action. This is converted into ro-
bot command primitives (Motor Command) and joint angles (Motor Control) for the robot. 
Perception: Vision provides object location input, allowing action to be perceived as 
changes in World State (State Comparator). Resulting Current Action used for action de-
scription, imitation, and cooperative action sequences. Imitation: The user performed action 
is perceived and encoded in Current Action, which is the used to control the robot under the 
supervision of Executive Control. Cooperative Games: During observations, individual ac-
tions are perceived, and attributed to the agent or the other player (“Me” or “You”). The ac-
tion sequence is stored in the “We” Intention structure, that can then be used to separately 
represent self vs. other actions. 
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Fig. 7 Cooperative task of Exp 5-6. Robot arm Cooperator, with 6 landmarks (Light, turtle, 
hammer, rose, lock and lion from top to bottom). Moveable objects include Dog and Horse. 
In A-D, human demonstrates a “horse chase the dog” game, and successively moves the 
Dog then Horse, indicating that in the game, the user then the robot are agents, respectively. 
After demonstration, human and robot “play the game”. In each of E – F user moves Dog, 
and robot follows with Horse. In G robot moves horse, then in H robot detects that the user 
is having trouble and so “helps” the user with the final move of the dog. See Exp 5 & 6. 

 

fixed to the table and serve as landmarks for placing the moveable objects, and 
correspond to a light, a turtle, a hammer, a rose, a lock and a lion, as partially il-
lustrated in Fig 6 & 7. In the interactions, human and robot are required to place 
objects in zones next to the different landmarks, so that the robot can more easily 
determine where objects are, and where to grasp them. Fig 6 provides an overview 
of the architecture, and Fig 7, which corresponds to Experiment 6 provides an 
overview of the actual physical state of affairs during a cooperative interaction. 

3.3.2.1   Representation  
The structure of the internal representations is a central factor determining how the 
system will function, and how it will generalize to new conditions. Based on the 
neurophysiology reviewed above, we use a common representation of action for 
both perception and production. In the context of the current study, actions involve 
moving objects to different locations, and are identified by the agent, the object, 
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and the target location the object is moved to. As illustrated in Fig 6, by taking the 
“short loop” from vision, via Current Action Representation, to Motor Command, 
the system is thus configured for a form of goal-based action imitation. This will 
be expanded upon below. In order to allow for more elaborate cooperative activ-
ity, the system must be able to store and retrieve actions in a sequential structure, 
and must be able to associate each action with its agent. We thus propose that the 
ability to store a sequence of actions, each tagged with its agent, provides an initial 
capability for dialogic cognitive representation. This form of real time sequence 
learning for imitation is not observed in non-human primates[41]. In this context, 
an fMRI study [45] which addressed the human ability to observe and program ar-
bitrary actions indicated that a cortical area (BA46) which is of relatively recent 
phylogenetic origin is involved in such processes. Rizzolatti and Craighero [41] 
have thus suggested that the BA 46 in man will orchestrate the real-time capability 
to store and retrieve recognized actions, and we can further propose that this or-
chestration will recruit canonical brain circuitry for sequence processing including 
the cortico-striatal system (see [46, 47] for discussion of such sequence process-
ing). An additional important representational feature of the system is the World 
Model that represents the physical state of the world, and can be accessed and up-
dated by vision, motor control, and language, similar to the Grounded Situation 
Model of Mavridis and Roy [14]. The World Model encodes the physical loca-
tions of objects and is updated by vision and proprioception (i.e. robot action up-
dates World Model with new object location). Changes observed in the World 
Model in terms of an object being moved allows the system to detect actions in 
terms of these object movements. Actions are represented in terms of the agent, 
the object and the goal of the action, in the form MOVE(object, goal location, 
agent). These representations can be used for commanding action, for describing 
recognized action, and thus for action imitation and narration, as seen below. In 
the current study we address behavioral conditions which focus on the observation 
and immediate re-use of an intentional (goal directed) action plan. However, in the 
more general case, one should consider that multiple intentional action plans can 
be observed and stored in a repertory (IntRep or Intentional Plan Repertory in  
Fig 7). When the system is subsequently observing the behavior of others, it can 
compare the ongoing behavior to these stored sequences. Detection of a match 
with the beginning of a stored sequence can be used to retrieve the entire se-
quence. This can then be used to allow the system to “jump into” the scenario, to 
anticipate the other agent’s actions, and/or to help that agent if there is a problem. 

3.3.2.2   Cooperation Control Architecture  
As in the SLP, the spoken language control architecture illustrated in Fig 8 is im-
plemented with the CSLU RAD. This system provides a state-based dialog  
management system that allows interaction with the robot (via the serial port con-
troller) and with the vision processing system (via file i/o). Most importantly it 
also provides the spoken language interface that allows the user to determine what 
mode of operation he and the robot will work in, and to manage the interaction via 
spoken words and sentences. Fig 8 illustrates the flow of control of the interaction 
management. In the Start state the system first visually observes where all of the 
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objects are currently located. From the start state, the system allows the user to 
specify if he wants to ask the robot to perform actions via spoken commands 
(Act), to imitate the user, or to play (Imitate/Play). In the Act state, the user can 
specify actions of the form “Put the dog next to the rose” and a grammatical  
construction template [8-11, 46] is used to extract the action that the robot then 
performs, in the form Move(object, location). In the Imitate state, the robot first 
verifies the current state (Update World) and then invites the user to demonstrate 
an action (Invite Action). The user shows the robot one action. The robot then be-
gins to visually observe the scene until it detects the action, based on changes in 
object locations detected (Detect Action). This action is then saved and transmit-
ted (via Play the Plan with Robot as Agent) to execution (Execute action). A 
predicate(argument) representation of the form Move(object, landmark) is used 
both for action observation and execution. Imitation is thus a minimal case of 
Playing in which the “game” is a single action executed by the robot. The more 
general case corresponds to “games” in which the robot and human will take turns 
in the execution of a shared plan. In the current implementation of this, the user  
 

 
Fig. 8 Spoken Language Based Cooperation flow of control. Interaction begins with pro-
posal to act, or imitate/play a game. Act – user says an action that is verified and executed 
by robot. World Model updated based on action. Downward arrow indicates return to Start. 
Imitate/Play – user demonstrates actions to robot and says who the agent should be when 
the game is to be played (e.g.“You/I do this”). Each time, system checks the state of the 
world, invites the next action and detects the action based on visual object movement. 
When the demo is finished, the plan (of a single item in the case of imitation) is stored and 
executed (Play Plan). If the user is the agent (encoded as part of the game sequence), sys-
tem checks execution status and helps user if failure. If robot is agent, system executes ac-
tion, and then moves on to next item. 
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can demonstrate multiple successive actions, and indicate the agent (by saying 
“You/I do this”) for each action. Improvements in the visual processing will allow 
the more general case in which the system can observe two agents interacting and 
attribute each action to its respective agent. The resulting intentional plan specifies 
what is to be done by whom. When the user specifies that the plan is finished, the 
system moves to the Save Plan, and then to the Play Plan states. For each action, 
the system recalls whether that action is to be executed by the robot or the user. 
Robot execution takes the standard Execute Action pathway. User execution per-
forms a check (based on user response) concerning whether the action was cor-
rectly performed or not. Interestingly, the ability of the robot to “help” the user 
comes quite naturally, based on the shared intentional plan. If the user action is not 
performed, the robot “knows” the failed action based on its own representation of 
the plan. The robot can thus communicate with the user, and if the user agrees, the 
robot can help by performing the action itself. Thus, “helping” was quite naturally 
implemented by combining an evaluation of the user action, with the existing ca-
pability to perform a stored action representation. Still, it is worth noting that one 
crucial difference between the helping by the robot and what Warneken et al. 
tested in the helping study [35] was that the children and chimpanzees helped the 
other with their action, not just performing the other’s action completely, but com-
plementing the other’s action. 

3.3.2.3   Bird’s Eye View and Role Reversal  
In an initial set of experiments (Experiments 1-6 below), the “intentional plan” 
was represented for the robot as a sequence of actions in the “We Intention” of  
Fig 6, with the attribution of the agent fixed for each action. We know however 
from the experimental results of  Warneken et al. [36], and from the role reversal 
studies of [39] that this representation is flexible, in the sense that the child can 
take on the role of either of the two represented agents. Once the adult indicates 
the role he takes, the child then spontaneously adapts and takes the other role. In 
the current system, we thus introduce a new capability in which, prior to the play-
ing of the game, the roles can be determined and modified. When control reaches 
the “Plan Play” node in the controller, i.e. after a new game has been demon-
strated, or after the user chooses to play the old game, the robot now asks the user 
if he wants to go first. If the user responds yes, then the roles of user and robot 
remain as they were in the demonstration. If the user says no, then the roles are re-
versed. Reversal corresponds to systematically reassigning the agents (i.e. robot or 
user) associated with each action. Indeed, technically it would be possible that 
based upon the first move by the user (or the users insistent waiting for the robot 
to start), the robot infers who does what (i.e. whether to reverse roles or not) and 
what role it will take in the cooperative plan, though this has was not implemented 
in the current version of the system. 

3.2.3   Experimental Results 

For each of the 6 following experiments, equivalent variants were repeated at least 
ten times to demonstrate the generalized capability and robustness of the system. 
In less than 5 percent of the trials overall, errors of two types were observed to  
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occur. Speech errors resulted from a failure in the voice recognition, and were re-
covered from by the command validation check (Robot: “Did you say …?”). Vis-
ual image recognition errors occurred when the objects were rotated beyond 20° 
from their upright position. These errors were identified when the user detected 
that an object that should be seen was not reported as visible by the system, and 
were corrected by the user re-placing the object and asking the system to “look 
again”. At the beginning of each trial the system first queries the vision system, 
and updates the World Model with the position of all visible objects. It then in-
forms the user of the locations of the different objects, for example “The dog is 
next to the lock, the horse is next to the lion.” It then asks the user “Do you want 
me to act, imitate, play or look again?”, and the user responds with one of the ac-
tion-related options, or with “look again” if the scene is not described correctly.  

3.2.3.1   Experiment 1: Validation of Sensorimotor Control  
In this experiment, the user says that he wants the “Act” state (Fig 6), and then 
uses spoken commands such as “Put the horse next to the hammer”. Recall that 
the horse is among the moveable objects, and hammer is among the fixed land-
marks. The robot requests confirmation and then extracts the predicate-argument 
representation - Move(X to Y) - of the sentence based on grammatical construction 
templates. In the Execute Action state, the action Move(X to Y) is decomposed into 
two components of Get(X), and Place-At(Y). Get(X) queries the World Model in 
order to localize X with respect to the different landmarks, and then performs a 
grasp at the corresponding landmark target location. Likewise, Place-At(Y) simply 
performs a transport to target location Y and releases the object. Decomposing the 
get and place functions allows the composition of all possible combinations in the 
Move(X to Y) space. Ten trials were performed moving the four objects to and 
from different landmark locations. In these ten experimental runs, the system per-
formed correctly. Experiment 1 thus demonstrates that the system has (1) the abil-
ity to transform a spoken sentence into a Move(X to Y) command, (2) the ability 
to perform visual localization of the target object, and (3) the sensory-motor abil-
ity to grasp the object and put it at the specified location.  

3.2.3.2   Experiment 2: Imitation   
In this experiment the user chooses the “imitate” state. As stated above, imitation 
is centered on the achieved ends – in terms of observed changes in state – rather 
than the detailed trajectory or means by which these ends were achieved [39, 42]. 
Before the user performs the demonstration of the action to be imitated, the robot 
queries the vision system, and updates the World Model (Update World in Fig 6) 
and then invites the user to demonstrate an action. The robot pauses, and then 
again queries the vision system and continues to query until it detects a difference 
between the currently perceived world state and the previously stored World 
Model (in State Comparator of Fig 6, and Detect Action in Fig 8, corresponding to 
an object displacement. Extracting the identity of the displaced object, and its new 
location (with respect to the nearest landmark) allows the formation of an 
Move(object, location) action representation. Before imitating, the robot operates  
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on this representation with a meaning-to-sentence construction in order to verify 
the action to the user, as in “Did you put the dog next to the rose?” It then asks the 
user to put things back as they were so that it can perform the imitation. At this 
point, the action is executed (Execute Action in Fig 8). In ten experimental runs 
the system performed correctly. This demonstrates the ability of the system to de-
tect the final “goal” of user-generated actions as defined by visually perceived 
state changes, and the utility of a common representation of action for perception, 
description and execution.  

3.2.3.3    Experiment 3: A Cooperative Game    
The cooperative game is similar to imitation, except that there is a sequence of ac-
tions (rather than just one), and the actions can be effected by either the user or the 
robot in a cooperative, turn taking manner. In this experiment, the user responds to 
the system request and enters the “play” state. In what corresponds to the demon-
stration in Warneken et al. [36] the robot invites the user to start showing how the 
game works. Note that in these experiments, two experimenters demonstrate the 
game and the subject is observing this interaction from a third-person-perspective. 
The experimenters invite the child to see how the game works by showing it to 
them first and then have them participate afterwards. For technical limitations of 
the visual system, we currently use the following modification: The user then be-
gins to perform a sequence of actions that are observed by the robot. For each ac-
tion, the user specifies who does the action, i.e. either “you do this” or “I do this”. 
The intentional plan is thus stored as a sequence of action-agent pairs, where each 
action is the movement of an object to a particular target location. Note that be-
cause the system can detect actions, if it is capable of identifying distinct users (by 
some visual cue on their hands for example) then the system could observe two 
humans perform the task, thus adhering more closely to the protocol of Warneken 
et al. [36]. In Fig 6, the resulting interleaved sequence is stored as the “We inten-
tion”, i.e. an action sequence in which there are different agents for different ac-
tions. When the user is finished he says “play the game”. The robot then begins to 
execute the stored intentional plan. During the execution, the “We intention” is 
decomposed into the components for the robot (Me Intention) and the human (You 
intention). In one run, during the demonstration, the user said “I do this” and 
moved the horse from the lock location to the rose location. He then said “you do 
this” and moved the horse back to the lock location. After each move, the robot 
asks “Another move, or shall we play the game?” When the user is finished dem-
onstrating the game, he replies “Play the game.” During the playing of this game, 
the robot announced “Now user puts the horse by the rose”. The user then per-
formed this movement. The robot then asked the user “Is it OK?” to which the 
user replied “Yes”. The robot then announced “Now robot puts the horse by the 
lock” and performed the action. In two experimental runs of different demonstra-
tions, and 5 runs each of the two demonstrated games, the system performed cor-
rectly. This demonstrates that the system can learn a simple intentional plan as a 
stored action sequence in which the human and the robot are agents in the respec-
tive actions.  
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3.2.3.4   Experiment 4: Interrupting a Cooperative Game 
In this experiment, everything proceeds as in experiment 3, except that after one cor-
rect repetition of the game, in the next repetition, when the robot announced “Now 
user puts the horse by the rose” the user did nothing. The robot asked “Is it OK” and 
during a 15 second delay, the user replied “no”. The robot then said “Let me help 
you” and executed the move of the horse to the rose. Play then continued for the re-
maining move of the robot. This illustrates how the robot’s stored representation of 
the action that was to be performed by the user allowed the robot to “help” the user.  

3.2.3.5   Experiment 5: A More Complex Game   
Experiment 3 represented the simplest behavior that could qualify as a cooperative 
action sequence. In order to more explicitly test the intentional sequencing capa-
bility of the system, this experiment replicates Exp 3 but with a more complex 
task. In this game, the user starts by moving the dog, and after each move the ro-
bot “chases” the dog with the horse, until they both return to their starting places. 
Action User identifies agent User Demonstrates Action Ref in Figure 6 1. I do this 
Move dog from the lock to the rose B 2. You do this Move the horse from the lion 
to the lock B 3. I do this Move the dog from the rose to the hammer C 4. You do 
this Move the horse from the lock to the rose C 5. You do this Move the horse 
from the rose to the lion D 6. I do this Move the dog from the hammer to the lock 
D Table 1. Cooperative “horse chase the dog” game specified by the user in terms 
of who does the action (indicated by saying) and what the action is (indicated by 
demonstration). Illustrated in Fig 6. As in Experiment 3, the successive actions are 
visually recognized and stored in the shared “We Intention” representation. Once 
the user says “Play the game”, the final sequence is stored, and then during the ex-
ecution, the shared sequence is decomposed into the robot and user components 
based on the agent associated with each action. When the user is the agent, the 
system invites the user to make the next move, and verifies (by asking) if the 
move was OK. When the system is the agent, the robot executes the movement. 
After each move the World Model is updated. As in Exp 3, two different complex 
games were learned, and each one “played” successfully 5 times. This illustrates 
the learning by demonstration [15] of a complex intentional plan in which the hu-
man and the robot are agents in a coordinated and cooperative activity.  

3.2.3.6   Experiment 6: Interrupting the Complex Game 
As in Experiment 4, the objective was to verify that the robot would take over if 
the human had a problem. In the current experiment this capability is verified in a 
more complex setting. Thus, when the user is making the final movement of the 
dog back to the “lock” location, he fails to perform correctly, and indicates this to 
the robot. When the robot detects failure, it reengages the user with spoken lan-
guage, and then offers to fill in for the user. This demonstrates the generalized 
ability to help that can occur whenever the robot detects the user is in trouble.  

3.2.3.7   Experiment 7: Role reversal in the Complex Game   
Carpenter et al. [43] demonstrated that 18 month old children can observe and par-
ticipate in a cooperative turn-taking task, and then reverse their role, indicating 
that they develop a third person “bird’s eye view” perspective of the interaction. 
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The current experiment tests the ability of the system to benefit from the “bird’s 
eye view” representation of the shared intentional plan in order to take either role 
in the plan. In one test, the same “old game” from experiments 5 and 6 was used, 
with the modified version of the system that asks, prior to playing the game “do 
you want to go first”. To test the role reversal, the human responds “no”. In the 
demonstrated game, the human went first, so the “no” response constitutes a role 
reversal. The system thus systematically reassigns the You and Me actions of the 
We intention in Fig 6. Once this reassignment has been made, then the shared plan 
execution  mechanism proceeds in the standard manner. The system successfully 
performed this role reversal. Again, it is technically feasible for the robot to infer 
its own role based upon only what the user does, by detecting whether or not  
the user initiates the first action in the game, and such an implementation will be 
pursued in our future work.  

3.3   Discussion 

Significant progress has been made in identifying some of the fundamental char-
acteristics of human cognition in the context of cooperative interaction, particu-
larly with respect to social cognition [48-51]. Breazeal and Scassellati [52]  
investigate how perception of socially relevant face stimuli and object motion will 
both influence the emotional and attentional state of the system and thus the hu-
man-robot interaction. Scassellati [53] further investigates how developmental 
theories of human social cognition can be implemented in robots. In this context, 
Kozima and Yano [50] outline how a robot can attain intentionality – the linking 
of goal states with intentional actions to achieve those goals – based on innate ca-
pabilities including: sensory-motor function and a simple behavior repertoire, 
drives, an evaluation function, and a learning mechanism. The abilities to observe 
an action, determine its goal and attribute this to another agent are all clearly im-
portant aspects of the human ability to cooperate with others. The current research 
demonstrates how these capabilities can contribute to the “social” behavior of 
learning to play a cooperative game, playing the game, and helping another player 
who has gotten stuck in the game, as displayed in 18-24 month old children [35, 
36]. While the primitive basis of such behavior is visible in chimpanzees, its full 
expression is uniquely human. As such, it can be considered a crucial component 
of human-like behavior for robots. The current research is part of an ongoing ef-
fort to understand aspects of human social cognition by bridging the gap between 
cognitive neuroscience, simulation and robotics [7-11, 46, 47]. The experiments 
presented here indicate that functional requirements derived from human child be-
havior and neurophysiological constraints can be used to define a system that  
displays some interesting capabilities for cooperative behavior in the context of 
imitation. Likewise, they indicate that evaluation of another’s progress, combined 
with a representation of his/her failed goal provides the basis for the human char-
acteristic of “helping.” This may be of interest to developmental scientists, and the 
potential collaboration between these two fields of cognitive robotics and human 
cognitive development is promising. The developmental cognition literature lays 
out a virtual roadmap for robot cognitive development [33, 47]. In this context, we 
are currently investigating the development of hierarchical means-end action  
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sequences [44]. At each step, the objective will be to identify the characteristic 
underlying behavior and to implement it in the most economic manner in this con-
tinuously developing system for human robot cooperation. Here we begin to  
address the mechanisms that allow agents to make changes in perspective. In the 
experiments of Warneken et al. the child watched two adults perform a coordi-
nated task (one adult launching the block down the tube, and the other catching 
the block). At 18-24 months, the child can thus observe the two roles being played 
out, and then step into either role [43]. This indicates a “bird’s eye view” represen-
tation of the cooperation, in which rather than assigning “me” and “other” agent 
roles from the outset, the child represents the two distinct agents A and B, and as-
sociates one of these with each action in the cooperative sequence. Then, once the 
perspective shift is established (by the adult taking one of the roles, or letting the 
child choose one) the roles A and B are assigned to me and you (or vice versa) as 
appropriate. This is consistent with the system illustrated in Fig 6. We could im-
prove the system: rather than having the user tell the robot “you do this” and “I do 
this,” the vision system can be modified to recognize different agents who can be 
identified by saying their name as they act, or via visually identified cues on their 
acting hands. In the current system we demonstrate that the roles associated with 
“you” and “me” can be reversed. More generally, they can also be dissociated 
from “you” and “me” and linked with other agents. The key is that there is a cen-
tral representation corresponding to the “We intention” in Figure 6, which allows 
the “bird’s eye view”, and a remapping mechanism that can then assign these 
component actions to their respective agents (corresponding to the Me and You in-
tentions in Fig 6). Clearly there remains work to be done in this area, but the  
current results represent a first step in specifying how these intentional representa-
tions could be implemented. Indeed, we take a clear position in terms of internal 
representational requirements, defined by a hybrid form of representation. At one 
level, online action and perception are encoded in an “embodied” form in terms of 
joint angles, and continuous values from the visual system. At a different level, 
“we intentions” which allow an extension in time, are distinct sequences of predi-
cate-argument propositional elements. Thus there is a continuum of embodiment 
and representation. In the context of representing a joint activity through observa-
tion – the action perception is linked to the sensorimotor system, but the system 
that stores and replays these sequences can be considered to be independent. In-
deed, it is this simulation capability that might well provide the basis for abstract 
processing [54]. More broadly speaking, though the demands of requiring imple-
mentation, robot experiments such as these can help us to shed further light on the 
nature and necessity of internal representations. An important open issue that has 
arisen through this research has to do with inferring intentions. The current re-
search addresses one cooperative activity at a time, but nothing prevents the sys-
tem from storing multiple such intentional plans in a repertory (IntRep in Fig 6). 
In this case, as the user begins to perform a sequence of actions involving himself 
and the robot, the robot can compare this ongoing sequence to the initial subse-
quences of all stored sequences in the IntRep. In case of a match, the robot can re-
trieve the matching sequence, and infer that it is this that the user wants to  
perform. This can be confirmed with the user and thus provides the basis for a  
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potentially useful form of learning for cooperative activity. Indeed, this develop-
ment in the robotics context provides interesting predictions about how these in-
ferences will be made that can be tested with children. A potential criticism of this 
work could hold that while it might demonstrate an interesting and sophisticated 
simulation, everything of interest seems to be built in rather than emergent or de-
veloped, thus of relatively thin relevance to psychologists. We would respond that 
any implementation must make choices about what is built in and what is emer-
gent. Here we have built in functions that provide the ability to perceive actions, 
encode action-agent sequences, and to use these sequences in behaviour. What re-
sults is the open ended capability to learn arbitrary cooperative behaviors, to help, 
and to changes perspectives/roles. The relevance to psychologists is twofold, in 
terms of what the resulting system can do, and in terms of where it fails. Thus, 
while we have begun to implement some aspects of these intention representa-
tions, we should also stress how the robot’s capabilities still differ from what these 
young children already do, including the following. (1) Children learn intentional 
plans quickly without direct teaching, but just by observing from the outside how 
two people interact. (2) They are not told who performs which role, but they them-
selves are able to parse the interaction into roles. (3) They spontaneously provide 
help without the experimenter asking them for help and without them asking the 
experimenter whether he wants help. (4) They not only help the other with his role 
but they insist on the partner performing his role when he interrupts. In other 
words, they seem to insist on the joint commitment to perform the respective 
roles. For the most part, these differences are “peripheral” in that they are related 
to the perception and action capabilities, rather than to the structure of internal 
representations. Point (1) will rely on a “salience” system that determines what 
behavior is interesting and merits learning (perhaps any behavior between multiple 
agents operating on the same objects). Point (2) will require vision processing that 
allows identification of different individuals. For points (3) and (4), the behavior is 
currently available, i.e. it is wholly feasible for the robot to help and to insist that 
the other partner participates spontaneously as the situation requires. In conclu-
sion, the current research has attempted to build and test the Cooperator, a robotic 
system for cooperative interaction with humans, based on behavioral and neuro-
physiological requirements derived from the respective literatures. The interaction 
involves spoken language and the performance and observation of actions in the 
context of cooperative action. The experimental results demonstrate a rich set of 
capabilities for robot perception and subsequent use of cooperative action plans in 
the context of human-robot cooperation. This work thus extends the imitation 
paradigm into that of sequential behavior, in which the learned intentional action 
sequences are made up of interlaced action sequences performed in cooperative 
and flexible alternation by the human and robot. While many technical aspects of 
robotics (including visuomotor coordination and vision) have been simplified, we 
believe that this work makes a useful contribution in demonstrating how empirical 
and theoretical results in developmental psychology can be formalized to the ex-
tent that they can be implemented and tested in a robotic system. In doing so, we 
gain further insight into the core functions required for cooperation, and help to 
increase the cooperative capabilities of robots in human-robot interaction. 
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4   Conclusion 

In the future, robots will cooperate with human beings in everyday life. Even (and 
especially) people that are not involved in any kind of programming or computer 
science should be able to command, ask for help or play with a robot. In this con-
text, robots will have to adapt to human desires through social interaction, which 
include spoken language, behavior and intention recognition, etc. In this chapter, 
we reviewed our work in this direction. We believe that the most natural modality 
for social interaction is spoken language, which led us to build the Spoken  
Language Programming system. This tool provides a way to control a robot effi-
ciently, but the lack of free will and intentionality of the robot is somehow restric-
tive and result in an interaction that is too artificial and rigid. Cooperative abilities 
like the anticipation of actions or the will to help people have to be embedded in 
the SLP in order to build a complete robotic collaborative system. Such skills will 
elevate the robot behaviors to a new level of fluency, allowing the robot to  
become a partner instead of just being commanded. Our studies have already ex-
tracted some of these skills from human interaction based experiments and we  
begin to implement them within the context of human-robot cooperation. Such 
collaborations between domains of psychology and robotic are still novel and will 
lead to most interesting results in the future. 
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