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PREFACE

This book is a response to those instructors who feel that calculus textbooks are too
big. In writing the book I asked myself: What is essential for a three-semester calcu-
lus course for scientists and engineers?

The book is about two-thirds the size of my other calculus books (Calculus, Seventh
Edition and Calculus, Early Transcendentals, Seventh Edition) and yet it contains
almost all of the same topics. I have achieved relative brevity mainly by condensing
the exposition and by putting some of the features on the website www.stewartcal-
culus.com. Here, in more detail are some of the ways I have reduced the bulk:

■ I have organized topics in an efficient way and rewritten some sections
with briefer exposition.

■ The design saves space. In particular, chapter opening spreads and photo-
graphs have been eliminated.

■ The number of examples is slightly reduced. Additional examples are 
provided online.

■ The number of exercises is somewhat reduced, though most instructors 
will find that there are plenty. In addition, instructors have access to the
archived problems on the website.

■ Although I think projects can be a very valuable experience for students, 
I have removed them from the book and placed them on the website.

■ A discussion of the principles of problem solving and a collection of
challenging problems for each chapter have been moved to the website.

Despite the reduced size of the book, there is still a modern flavor: Conceptual
understanding and technology are not neglected, though they are not as prominent as
in my other books.

ALTERNATE VERSIONS

I have written several other calculus textbooks that might be preferable for some
instructors. Most of them also come in single variable and multivariable versions.
■ Essential Calculus, Second Edition, is similar to the present textbook except

that the logarithm is defined as an integral and so the exponential, logarith-
mic, and inverse trigonometric functions are covered later than in the present
book. 

■ Calculus: Early Transcendentals, Seventh Edition, has more complete cover-
age of calculus than the present book, with somewhat more examples and
exercises.

■ Calculus: Early Transcendentals, Seventh Edition, Hybrid Version, is similar
to Calculus: Early Transcendentals, Seventh Edition, in content and coverage
except that all of the end-of-section exercises are available only in Enhanced
WebAssign. The printed text includes all end-of-chapter review material.

■ Calculus, Seventh Edition, is similar to Calculus: Early Transcendentals,
Seventh Edition, except that the exponential, logarithmic, and inverse trig-
onometric functions are covered in the second semester. It is also available 
in a Hybrid Version.

ix
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■ Calculus: Concepts and Contexts, Fourth Edition, emphasizes conceptual
understanding. The coverage of topics is not encyclopedic and the material on
transcendental functions and on parametric equations is woven throughout the
book instead of being treated in separate chapters. It is also available in a
Hybrid Version.

■ Calculus: Early Vectors introduces vectors and vector functions in the first
semester and integrates them throughout the book. It is suitable for students
taking Engineering and Physics courses concurrently with calculus.

■ Brief Applied Calculus is intended for students in business, the social sciences,
and the life sciences. It is also available in a Hybrid Version.

WHAT’S NEW IN THE SECOND EDITION?

The changes have resulted from talking with my colleagues and students at the Uni-
versity of Toronto and from reading journals, as well as suggestions from users and
reviewers. Here are some of the many improvements that I’ve incorporated into this
edition: 
■ At the beginning of the book there are four diagnostic tests, in Basic Algebra, 

Analytic Geometry, Functions, and Trigonometry. Answers are given and students
who don’t do well are referred to where they should seek help (Appendixes,
review sections of Chapter 1, and the website).

■ Section 7.5 (Area of a Surface of Revolution) is new. I had asked reviewers if
there was any topic missing from the first edition that they regarded as essential.
This was the only topic that was mentioned by more than one reviewer.

■ Some material has been rewritten for greater clarity or for better motivation. See,
for instance, the introduction to maximum and minimum values on pages 203–04
and the introduction to series on page 436.

■ New examples have been added (see Example 4 on page 725 for instance). And
the solutions to some of the existing examples have been amplified. A case in
point: I added details to the solution of Example 1.4.9 because when I taught
Section 1.4 from the first edition I realized that students need more guidance
when setting up inequalities for the Squeeze Theorem.

■ The data in examples and exercises have been updated to be more timely.
■ Several new historical margin notes have been added.
■ About 40% of the exercises are new. Here are some of my favorites: 1.6.43,

2.2.13–14, 2.5.59, 2.6.39–40, 3.2.70, 4.3.66, 5.3.44–45, 7.6.24, 8.2.29–30,
8.7.67–68, 10.1.38, 10.4.43–44

■ The animations in Tools for Enriching Calculus (TEC) have been completely
redesigned and are accessible in Enhanced WebAssign, CourseMate, and 
PowerLecture. Selected Visuals and Modules are available at 
www.stewartcalculus.com.

CONTENT

DIAGNOSTIC TESTS ■ The book begins with four diagnostic tests, in Basic Algebra,
Analytic Geometry, Functions, and Trigonometry.

CHAPTER 1 ■ FUNCTIONS AND LIMITS After a brief review of the basic functions,
limits and continuity are introduced, including limits of trigonometric functions, lim-
its involving infinity, and precise definitions.

x PREFACE
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CHAPTER 2 ■ DERIVATIVES The material on derivatives is covered in two sections in
order to give students time to get used to the idea of a derivative as a function. The
formulas for the derivatives of the sine and cosine functions are derived in the section
on basic differentiation formulas. Exercises explore the meanings of derivatives in
various contexts.

CHAPTER 3 ■ INVERSE FUNCTIONS: EXPONENTIAL, LOGARITHMIC, AND INVERSE TRIGONO-
METRIC FUNCTIONS Exponential functions are defined first and the number is defined
as a limit. Logarithms are then defined as inverse functions. Applications to exponen-
tial growth and decay follow. Inverse trigonometric functions and hyperbolic func-
tions are also covered here. L’Hospital’s Rule is included in this chapter because limits
of transcendental functions so often require it. 

CHAPTER 4 ■ APPLICATIONS OF DIFFERENTIATION The basic facts concerning
extreme values and shapes of curves are deduced from the Mean Value Theorem. The
section on curve sketching includes a brief treatment of graphing with technology. The
section on optimization problems contains a brief discussion of applications to busi-
ness and economics.

CHAPTER 5 ■ INTEGRALS The area problem and the distance problem serve to moti-
vate the definite integral, with sigma notation introduced as needed. (Full coverage of
sigma notation is provided in Appendix B.) A quite general definition of the definite
integral (with unequal subintervals) is given initially before regular partitions are
employed. Emphasis is placed on explaining the meanings of integrals in various con-
texts and on estimating their values from graphs and tables. 

CHAPTER 6 ■ TECHNIQUES OF INTEGRATION All the standard methods are covered,
as well as computer algebra systems, numerical methods, and improper integrals.

CHAPTER 7 ■ APPLICATIONS OF INTEGRATION General methods are emphasized.
The goal is for students to be able to divide a quantity into small pieces, estimate with
Riemann sums, and recognize the limit as an integral. The chapter concludes with an
introduction to differential equations, including separable equations and direction
fields.

CHAPTER 8 ■ SERIES The convergence tests have intuitive justifications as well as
formal proofs. The emphasis is on Taylor series and polynomials and their applica-
tions to physics. Error estimates include those based on Taylor’s Formula (with
Lagrange’s form of the remainder term) and those from graphing devices.

CHAPTER 9 ■ PARAMETRIC EQUATIONS AND POLAR COORDINATES This chapter
introduces parametric and polar curves and applies the methods of calculus to them.
A brief treatment of conic sections in polar coordinates prepares the way for Kepler’s
Laws in Chapter 10. 

CHAPTER 10 ■ VECTORS AND THE GEOMETRY OF SPACE In addition to the material
on vectors, dot and cross products, lines, planes, and surfaces, this chapter covers vector-
valued functions, length and curvature of space curves, and velocity and acceleration
along space curves, culminating in Kepler’s laws.

CHAPTER 11 ■ PARTIAL DERIVATIVES In view of the fact that many students have dif-
ficulty forming mental pictures of the concepts of this chapter, I’ve placed a special
emphasis on graphics to elucidate such ideas as graphs, contour maps, directional
derivatives, gradients, and Lagrange multipliers.

e
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CHAPTER 12 ■ MULTIPLE INTEGRALS Cylindrical and spherical coordinates are intro-
duced in the context of evaluating triple integrals. 

CHAPTER 13 ■ VECTOR CALCULUS The similarities among the Fundamental Theorem
for line integrals, Green’s Theorem, Stokes’ Theorem, and the Divergence Theorem
are emphasized.

WEBSITE

The web site www.stewartcalulus.com includes the following.
■ Review of Algebra, Trigonometry, Analytic Geometry, and Conic Sections
■ Homework Hints
■ Additional Examples
■ Projects
■ Archived Problems (drill exercises that were in previous editions of my

other books), together with their solutions 
■ Challenge Problems 
■ Lies My Calculator and Computer Told Me
■ Additional Topics (complete with exercise sets): Principles of Problem

Solving, Strategy for Integration, Strategy for Testing Series, Fourier Series,
Linear Differential Equations, Second Order Linear Differential Equations,
Nonhomogeneous Linear Equations, Applications of Second Order Differ-
ential Equations, Using Series to Solve Differential Equations, Complex
Numbers, Rotation of Axes  

■ Links, for particular topics, to outside Web resources
■ History of Mathematics, with links to the better historical websites
■ TEC animations for Chapters 2 and 5
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ANCILLARIES FOR INSTRUCTORS

PowerLecture
ISBN 1-133-52566-0
This comprehensive DVD contains all art from the text in both
jpeg and PowerPoint formats, complete pre-built PowerPoint
lectures, an electronic version of the Instructor’s Guide,
Solution Builder, ExamView algorithmic testing software,
Tools for Enriching Calculus, and video instruction.

Instructor’s Guide
By Douglas Shaw
ISBN 1-133-52510-5
Each section of the text is discussed from several viewpoints.
The Instructor’s Guide contains suggested time to allot, points
to stress, text discussion topics, core materials for lecture,
work-show/discussion suggestions, group work exercises in a
form suitable for handout, and suggested homework assign-
ments. An electronic version of the Instructor’s Guide is avail-
able on the PowerLecture DVD.

Complete Solutions Manual
ISBN 1-133-36444-6
Includes worked-out solutions to all exercises in the text.

Solution Builder
www.cengage.com/solutionbuilder

This online instructor database offers complete worked-out
solutions to all exercises in the text. Solution Builder allows
you to create customized, secure solution printouts (in PDF
format) matched exactly to the problems you assign in class.

ExamView Algorithmic Testing
Create, deliver, and customize tests in print and online formats
with ExamView, an easy-to-use assessment and tutorial soft-
ware. ExamView contains hundreds of multiple-choice,
numerical response, and short answer test items. ExamView
algorithmic testing is available on the PowerLecture DVD.

ANCILLARIES FOR INSTRUCTORS AND STUDENTS

Stewart Website
www.stewartcalculus.com

Contents: Review of Algebra, Trigonometry, Analytic
Geometry, and Conic Sections ■ Homework Hints ■

Additional Examples ■ Projects ■ Archived Problems ■

Challenge Problems ■ Lies My Calculator and Computer
Told Me ■ Principles of Problem Solving ■ Additional 
Topics ■ Web Links ■ History of Mathematics

Tools for Enriching™ Calculus
By James Stewart, Harvey Keynes, Dan Clegg, and 
developer Hu Hohn

Tools for Enriching Calculus (TEC) functions as both a power-
ful tool for instructors, as well as a tutorial environment in
which students can explore and review selected topics. The
Flash simulation modules in TEC include instructions, written
and audio explanations, and exercises. TEC modules are
assignable in Enhanced WebAssign. TEC is also available at
www.stewartcalculus.com, as well as in the YouBook and
CourseMate.

Enhanced WebAssign
www.webassign.net

WebAssign’s homework system lets instructors deliver, collect,
and record assignments via the Web. Enhanced WebAssign for
Stewart’s Essential Calculus: Early Transcendentals now
includes opportunities for students to review prerequisite skills
and content both at the start of the course and at the beginning
of each section. In addition, for selected problems, students can
get extra help in the form of “enhanced feedback” (rejoinders)
and video solutions. Other key features include: thousands of
problems from Stewart’s Essential Calculus: Early Transcen-
dentals, a QuickPrep for Calculus review, a customizable
Cengage YouBook, Just In Time Review questions, a Show My
Work feature, assignable Tools for Enriching Calculus mod-
ules, quizzes, lecture videos (with associated questions), and
more!

Cengage Customizable YouBook
YouBook is an eBook that is both interactive and custom-
izable! Containing all the content from Stewart’s Essential
Calculus: Early Transcendentals, YouBook features a text edit
tool that allows instructors to modify the textbook narrative as
needed. With YouBook, instructors can quickly reorder entire
sections and chapters or hide any content they don’t teach to
create an eBook that perfectly matches their syllabus. Instructors
can further customize the text by adding instructor-created or
YouTube video links. Additional media assets include: Tools
for Enriching Calculus visuals and modules, Wolfram anima-
tions, video clips, highlighting, notes, and more! YouBook is
available in Enhanced WebAssign.

TEC
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CourseMate
www.cengagebrain.com

CourseMate is a perfect self-study tool for students, and
requires no set-up from instructors. CourseMate brings 
course concepts to life with interactive learning, study, and
exam preparation tools that support the printed textbook.
CourseMate for Stewart’s Essential Calculus: Early Trans-
cendentals includes: an interactive eBook, Tools for Enriching
Calculus, videos, quizzes, flashcards, and more! For instruc-
tors, CourseMate includes engagement tracker, a first-of-its
kind tool that monitors student engagement.

Maple
Maple™ is an essential tool that allows you to explore, visual-
ize, and solve even the most complex mathematical problems,
reducing errors and providing greater insight into the math.
Maple’s world-leading computation engine offers the breadth,
depth, and performance to handle every type of mathematics.
With Maple, teachers can bring complex problems to life and
students can focus on concepts rather than the mechanics of
solutions. Maple’s intuitive interface supports multiple styles
of interaction, from Clickable Math™ tools to a sophisticated
programming language.

CengageBrain.com
To access additional course materials and companion
resources, please visit www.cengagebrain.com. At the
CengageBrain.com home page, search for the ISBN of your
title (from the back cover of your book) using the search box
at the top of the page. This will take you to the product page
where free companion resources can be found.

ANCILLARIES FOR STUDENTS

Student Solutions Manual
ISBN 1-133-49097-2
Provides completely worked-out solutions to all odd-
numbered exercises in the text, giving students a chance to
check their answers and ensure they took the correct steps to
arrive at an answer.

CalcLabs with Maple

SINGLE VARIABLE By Robert J. Lopez and Philip B. Yasskin
ISBN 0-8400-5811-X

MULTIVARIABLE By Robert J. Lopez and Philip B. Yasskin
ISBN 0-8400-5812-8

CalcLabs with Mathematica

SINGLE VARIABLE By Selwyn Hollis
ISBN 0-8400-5814-4

MULTIVARIABLE By Selwyn Hollis
ISBN 0-8400-5813-6

Each of these comprehensive lab manuals will help students
learn to use the technology tools available to them. CalcLabs
contain clearly explained exercises and a variety of labs and
projects.

A Companion to Calculus
By Dennis Ebersole, Doris Schattschneider, Alicia Sevilla, 
and Kay Somers
ISBN 0-495-01124-X
Written to improve algebra and problem-solving skills of stu-
dents taking a calculus course, every chapter in this companion
is keyed to a calculus topic, providing conceptual background
and specific algebra techniques needed to understand and solve
calculus problems related to that topic. It is designed for calcu-
lus courses that integrate the review of precalculus concepts or
for individual use. 

Linear Algebra for Calculus
By Konrad J. Heuvers, William P. Francis, John H. Kuisti,
Deborah F. Lockhart, Daniel S. Moak, and Gene M. Ortner
ISBN 0-534-25248-6
This comprehensive book, designed to supplement the calculus
course, provides an introduction to and review of the basic
ideas of linear algebra.
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Reading a calculus textbook is different from reading a 
newspaper or a novel, or even a physics book. Don’t be dis-
couraged if you have to read a passage more than once in
order to understand it. You should have pencil and paper and
calculator at hand to sketch a diagram or make a calculation.

Some students start by trying their homework problems
and read the text only if they get stuck on an exercise. I sug-
gest that a far better plan is to read and understand a section
of the text before attempting the exercises. In particular, you
should look at the definitions to see the exact meanings of
the terms. And before you read each example, I suggest that
you cover up the solution and try solving the problem your-
self. You’ll get a lot more from looking at the solution if you
do so.

Part of the aim of this course is to train you to think logi-
cally. Learn to write the solutions of the exercises in a con-
nected, step-by-step fashion with explanatory sentences—
not just a string of disconnected equations or formulas.

The answers to the odd-numbered exercises appear at the
back of the book, in Appendix E. Some exercises ask for a
verbal explanation or interpretation or description. In such
cases there is no single correct way of expressing the
answer, so don’t worry that you haven’t found the definitive
answer. In addition, there are often several different forms in
which to express a numerical or algebraic answer, so if your
answer differs from mine, don’t immediately assume you’re
wrong. For example, if the answer given in the back of the
book is and you obtain , then you’re
right and rationalizing the denominator will show that the
answers are equivalent.

The icon ; indicates an exercise that definitely requires 
the use of either a graphing calculator or a computer with
graphing software. (The use of these graphing devices and
some of the pitfalls that you may encounter are discussed on
stewartcalculus.com. Go to Additional Topics and click on
Graphing Calculators and Computers.) But that doesn’t
mean that graphing devices can’t be used to check your
work on the other exercises as well. The symbol is
reserved for problems in which the full resources of a com-
puter algebra system (like Derive, Maple, Mathematica, or
the TI-89/92) are required.

You will also encounter the symbol | , which warns you
against committing an error. I have placed this symbol in the
margin in situations where I have observed that a large pro-
portion of my students tend to make the same mistake.

s2 � 1 1�(1 � s2)

CAS

TO THE STUDENT

xvi

Tools for Enriching Calculus, which is a companion to
this text, is referred to by means of the symbol and
can be accessed in Enhanced WebAssign and CourseMate
(selected Visuals and Modules are available at www.stewart-
calculus.com). It directs you to modules in which you can
explore aspects of calculus for which the computer is partic-
ularly useful.

There is a lot of useful information on the website
stewartcalculus.com. There you will find a review of pre-
calculus topics (in case your algebraic skills are rusty), as
well as Homework Hints (see the following paragraph),
Additional Examples (see below), Challenge Problems,
Projects, Lies My Calculator and Computer Told Me,
(explaining why calculators sometimes give the wrong
answer), Additional Topics, and links to outside resources.

Homework Hints for representative exercises are indi-
cated by printing the exercise number in blue: 5. These hints
can be found on stewartcalculus.com as well as Enhanced
WebAssign and CourseMate. The homework hints ask you
questions that allow you to make progress toward a solution
without actually giving you the answer. You need to pursue
each hint in an active manner with pencil and paper to work
out the details. If a particular hint doesn’t enable you to
solve the problem, you can click to reveal the next hint.

You will see margin notes in some sections directing 
you to Additional Examples on the website. You will also 
see the symbol beside two or three of the examples in
every section of the text. This means that there are videos 
(in Enhanced WebAssign and CourseMate) of instructors
explaining those examples in greater detail.

I recommend that you keep this book for reference pur-
poses after you finish the course. Because you will likely
forget some of the specific details of calculus, the book will
serve as a useful reminder when you need to use calculus in
subsequent courses. And, because this book contains more
material than can be covered in any one course, it can also
serve as a valuable resource for a working scientist or 
engineer.

Calculus is an exciting subject, justly considered to be
one of the greatest achievements of the human intellect. I
hope you will discover that it is not only useful but also
intrinsically beautiful.

JAMES STEWART

TEC

V
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A DIAGNOSTIC TEST: ALGEBRA

1. Evaluate each expression without using a calculator.

(a) (b) (c)

(d) (e) (f )

2. Simplify each expression. Write your answer without negative exponents.

(a)

(b)

(c)

3. Expand and simplify.

(a) (b)

(c) (d)

(e)

4. Factor each expression.

(a) (b)

(c) (d)

(e) (f )

5. Simplify the rational expression.

(a) (b)

(c) (d)

6. Rationalize the expression and simplify.

(a) (b)

7. Rewrite by completing the square.

(a) (b)

��3�4 �34 3�4

523

521 �2

3�
�2

16�3�4

s200 � s32

�3a3b3��4ab2�2

�3x 3�2y 3

x 2y�1�2��2

3�x � 6� � 4�2x � 5� �x � 3��4x � 5�

(sa � sb )(sa � sb ) �2x � 3�2

�x � 2�3

4x 2 � 25 2x 2 � 5x � 12

x 3 � 3x 2 � 4x � 12 x 4 � 27x

3x 3�2 � 9x 1�2 � 6x�1�2 x 3y � 4xy

x 2 � 3x � 2

x 2 � x � 2

2x 2 � x � 1

x 2 � 9
�

x � 3

2x � 1

x 2

x 2 � 4
�

x � 1

x � 2

y

x
�

x

y

1

y
�

1

x

s4 � h � 2

h
s10

s5 � 2

2x 2 � 12x � 11x 2 � x � 1
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DIAGNOSTIC TEST S
Success in calculus depends to a large extent on knowledge of the mathematics that precedes calculus:
algebra, analytic geometry, functions, and trigonometry. The following tests are intended to diagnose
weaknesses that you might have in these areas. After taking each test you can check your answers
against the given answers and, if necessary, refresh your skills by referring to the review materials that
are provided.

xvii
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8. Solve the equation. (Find only the real solutions.)

(a) (b)

(c) (d)

(e) (f )

(g)

9. Solve each inequality. Write your answer using interval notation.

(a) (b)

(c) (d)

(e)

10. State whether each equation is true or false.

(a) (b)

(c) (d)

(e) (f )

x � 5 � 14 �
1
2 x

2x

x � 1
�

2x � 1

x

x2 � x � 12 � 0 2x 2 � 4x � 1 � 0

x 4 � 3x 2 � 2 � 0 3� x � 4 � � 10

2x�4 � x��1�2 � 3s4 � x � 0

�4 � 5 � 3x � 17 x 2 � 2x � 8

x�x � 1��x � 2� � 0 � x � 4 � � 3

2x � 3

x � 1
� 1

�p � q�2 � p2 � q 2
sab � sa sb

sa2 � b2 � a � b
1 � TC

C
� 1 � T

1

x � y
�

1

x
�

1

y

1�x

a�x � b�x
�

1

a � b

xviii DIAGNOSTIC TESTS
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A ANSWERS TO DIAGNOSTIC TEST A: ALGEBRA

1. (a) (b) (c)

(d) (e) (f )

2. (a) (b) (c)

3. (a) (b)
(c) (d)
(e)

4. (a) (b)
(c) (d)
(e) (f )

5. (a) (b)

(c) (d)

81 �81 1
81

25 9
4

1
8

6s2 48a5b7 x

9y7

11x � 2 4x 2 � 7x � 15
a � b 4x 2 � 12x � 9
x 3 � 6x 2 � 12x � 8

�2x � 5��2x � 5� �2x � 3��x � 4�
�x � 3��x � 2��x � 2� x�x � 3��x 2 � 3x � 9�
3x�1�2�x � 1��x � 2� xy�x � 2��x � 2�

x � 2

x � 2

x � 1

x � 3
1

x � 2
��x � y�

6. (a) (b)

7. (a) (b)  

8. (a) (b) (c)

(d) (e) (f )

(g)

9. (a) (b)
(c) (d)
(e)

10. (a) False (b) True (c) False
(d) False (e) False (f ) True

5s2 � 2s10
1

s4 � h � 2

(x �
1
2)2

�
3
4 2�x � 3�2 � 7

6 1 �3, 4

�1 �
1
2s2 �1, �s2 2

3 , 22
3

12
5

��4, 3� ��2, 4�
��2, 0� � �1, �� �1, 7�
��1, 4	

If you have had difficulty with these problems, you may wish to consult  
the Review of Algebra on the website www.stewartcalculus.com.
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B DIAGNOSTIC TEST: ANALYTIC GEOMETRY

1. Find an equation for the line that passes through the point and

(a) has slope 

(b) is parallel to the -axis

(c) is parallel to the -axis

(d) is parallel to the line 

2. Find an equation for the circle that has center and passes through the point
.

3. Find the center and radius of the circle with equation .

4. Let and be points in the plane.

(a) Find the slope of the line that contains and .

(b) Find an equation of the line that passes through and . What are the intercepts?

(c) Find the midpoint of the segment .

(d) Find the length of the segment .

(e) Find an equation of the perpendicular bisector of .

(f ) Find an equation of the circle for which is a diameter.

5. Sketch the region in the -plane defined by the equation or inequalities.

(a) (b)

(c) (d)

(e) (f )

�2, �5�
�3

x

y

2x � 4y � 3

��1, 4�
�3, �2�

x 2 � y2 � 6x � 10y � 9 � 0

A��7, 4� B�5, �12�
A B

A B

AB

AB

AB

AB

xy

�1 � y � 3 � x � � 4 and � y � � 2

y � 1 �
1
2 x y 	 x 2 � 1

x 2 � y 2 � 4 9x 2 � 16y 2 � 144

DIAGNOSTIC TESTS  xix
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B ANSWERS TO DIAGNOSTIC TEST B: ANALYTIC GEOMETRY

1. (a) (b)

(c) (d)

2.

3. Center , radius 5

4. (a)
(b) ; -intercept , -intercept 
(c)
(d)
(e)
(f )

y � �3x � 1 y � �5

x � 2 y � 1
2 x � 6

�x � 1�2 � �y � 4�2 � 52

�3, �5�

�
4
3

4x � 3y � 16 � 0 x �4 y �
16
3

��1, �4�
20
3x � 4y � 13
�x � 1�2 � �y � 4�2 � 100

5.

y

x1 2

0

y

x0

y

x0 4

3

_1

2

y

x

0

y

x0 4_4

y

x0 2

1

(a) (b) (c)

(d) (e) (f)

_1

3

2

_2

y=≈-1

≈+¥=4

 

y=1-   x
1
2

If you have had difficulty with these problems, you may wish to consult the
review of analytic geometry on the website www.stewartcalculus.com.
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C DIAGNOSTIC TEST: FUNCTIONS

1. The graph of a function is given at the left.
(a) State the value of .
(b) Estimate the value of .
(c) For what values of is ?
(d) Estimate the values of such that .
(e) State the domain and range of .

2. If , evaluate the difference quotient and simplify your answer.

3. Find the domain of the function.

(a) (b) (c)

4. How are graphs of the functions obtained from the graph of ?

(a) (b) (c)

5. Without using a calculator, make a rough sketch of the graph.

(a) (b) (c)

(d) (e) (f )

(g) (h)

6. Let 

(a) Evaluate and . (b) Sketch the graph of .

7. If and , find each of the following functions.
(a) (b) (c)

f
f ��1�

f �2�
x f �x� � 2

x f �x� � 0
f

f �x� � x 3 f �2 � h� � f �2�
h

f �x� �
2x � 1

x2 � x � 2
t�x� �

s
3 x

x 2 � 1
h�x� � s4 � x � sx 2 � 1

f

y � �f �x� y � 2 f �x� � 1 y � f �x � 3� � 2

y � x 3 y � �x � 1�3 y � �x � 2�3 � 3

y � 4 � x 2 y � sx y � 2sx

y � �2x y � 1 � x�1

f �x� � 
1 � x 2

2x � 1

if x � 0

if x � 0

f ��2� f �1� f

f �x� � x 2 � 2x � 1 t�x� � 2x � 3
f � t t � f t � t � t
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y

0 x

1

1

FIGURE FOR PROBLEM 1
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C ANSWERS TO DIAGNOSTIC TEST C: FUNCTIONS

1. (a) (b) 2.8

(c) (d)

(e)

2.

3. (a)

(b)

(c)

4. (a) Reflect about the -axis
(b) Stretch vertically by a factor of 2, then shift 1 unit

downward
(c) Shift 3 units to the right and 2 units upward

5.

�2

�3, 1 �2.5, 0.3

��3, 3	, ��2, 3	

12 � 6h � h2

���, �2� � ��2, 1� � �1, ��
���, ��
���, �1	 � �1, 4	

x

y

x0

(a)

1

1

y(b)

x0

1

_1

(c) y

x0

(2, 3)

6. (a) 7. (a)
(b) (b)

(c)

y(d)

x0

4

2

(e) y

x0 1

(f ) y

x0 1

(g) y

x

0

1
_1

y(h)

x0

1

1

� f � t��x� � 4x 2 � 8x � 2�3, 3
�t � f ��x� � 2x 2 � 4x � 5y

x0_1

1

�t � t � t��x� � 8x � 21

If you have had difficulty with these problems, you should look at Sections 1.1–1.2 of this book.
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xxii DIAGNOSTIC TESTS

D ANSWERS TO DIAGNOSTIC TEST D: TRIGONOMETRY

1. (a) (b)

2. (a) (b)

3.

4. (a) (b) (c)

5. (a) (b)

5
�3 �
�10

150� �360�
�� � 114.6�

2
 cm

s3 �
1
2 2

24 sin � 24 cos �

6.

8.

9.

1
15 (4 � 6s2 )
0, 
�3, 
, 5
�3, 2


_π π x0

2

y

If you have had difficulty with these problems, you should look at Appendix A of this book.

D DIAGNOSTIC TEST: TRIGONOMETRY

1. Convert from degrees to radians.

(a) (b)

2. Convert from radians to degrees.

(a) (b)

3. Find the length of an arc of a circle with radius 12 cm if the arc subtends a central angle
of .

4. Find the exact values.

(a) (b) (c)

5. Express the lengths and in the figure in terms of .

6. If and , where and lie between and , evaluate .

7. Prove the identities.

(a)

(b)

8. Find all values of such that and .

9. Sketch the graph of the function without using a calculator.

300� �18�

5
�6 2

30�

tan�
�3� sin�7
�6� sec�5
�3�

a b �

sin x � 1
3 sec y � 5

4 x y 0 
 2 sin�x � y�

tan �  sin � � cos � � sec �

2 tan x

1 � tan2x
� sin 2x

x sin 2x � sin x 0 � x � 2


y � 1 � sin 2x

a

¨

b

24

FIGURE FOR PROBLEM 5
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1

1.1 FUNCTIONS AND THEIR REPRESENTATIONS
Functions arise whenever one quantity depends on another. Consider the following
four situations.

A. The area of a circle depends on the radius of the circle. The rule that connects
and is given by the equation . With each positive number there is

associated one value of , and we say that is a function of .

B. The human population of the world depends on the time . The table gives esti-
mates of the world population at time for certain years. For instance,

But for each value of the time there is a corresponding value of and we say that
is a function of .

C. The cost of mailing an envelope depends on its weight . Although there is no
simple formula that connects and , the post office has a rule for determining
when is known.

D. The vertical acceleration of the ground as measured by a seismograph during an
earthquake is a function of the elapsed time Figure 1 shows a graph generated by
seismic activity during the Northridge earthquake that shook Los Angeles in 1994.
For a given value of the graph provides a corresponding value of .

Each of these examples describes a rule whereby, given a number ( , , , or ),
another number ( , , , or ) is assigned. In each case we say that the second num-
ber is a function of the first number.

A r
r A A � �r 2 r

A A r

P t
P�t� t,

P�1950� � 2,560,000,000

t P,
P t

C w
w C C

w

a
t.

t, a

FIGURE 1
Vertical ground acceleration during

the Northridge earthquake

{cm/s@}

(seconds)

Calif. Dept. of Mines and Geology

5

50

10 15 20 25

a

t

100

30

_50

twtr
aCPA

Population
Year (millions)

1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2560
1960 3040
1970 3710
1980 4450
1990 5280
2000 6080
2010 6870
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FUNCTIONS AND LI MI T S
Calculus is fundamentally different from the mathematics that you have studied previously. Calculus 
is less static and more dynamic. It is concerned with change and motion; it deals with quantities that
approach other quantities. So in this first chapter we begin our study of calculus by investigating how
the values of functions change and approach limits.

1
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A function is a rule that assigns to each element in a set exactly one
element, called , in a set .

We usually consider functions for which the sets and are sets of real numbers.
The set is called the domain of the function. The number is the value of 
at and is read “ of .” The range of is the set of all possible values of as
varies throughout the domain. A symbol that represents an arbitrary number in the
domain of a function is called an independent variable. A symbol that represents
a number in the range of is called a dependent variable. In Example A, for
instance, is the independent variable and is the dependent variable.

It’s helpful to think of a function as a machine (see Figure 2). If is in the domain
of the function then when enters the machine, it’s accepted as an input and the
machine produces an output according to the rule of the function. Thus we can
think of the domain as the set of all possible inputs and the range as the set of all pos-
sible outputs.

Another way to picture a function is by an arrow diagram as in Figure 3. Each
arrow connects an element of to an element of . The arrow indicates that is
associated with is associated with , and so on.

The most common method for visualizing a function is its graph. If is a function
with domain , then its graph is the set of ordered pairs

(Notice that these are input-output pairs.) In other words, the graph of consists of all
points in the coordinate plane such that and is in the domain of .

The graph of a function gives us a useful picture of the behavior or “life history”
of a function. Since the -coordinate of any point on the graph is , we
can read the value of from the graph as being the height of the graph above the
point . (See Figure 4.) The graph of also allows us to picture the domain of on
the -axis and its range on the -axis as in Figure 5.

EXAMPLE 1 The graph of a function is shown in Figure 6.
(a) Find the values of and .
(b) What are the domain and range of ?

SOLUTION
(a) We see from Figure 6 that the point lies on the graph of , so the value of

at 1 is . (In other words, the point on the graph that lies above is
3 units above the x-axis.)

When , the graph lies about 0.7 unit below the -axis, so we estimate that
.

f x D
f �x� E

D f �x� f
x f x f f �x� x

f
f

r A
x

f, x
f �x�

f �x�
x, f �a� a

f

��x, f �x�� � x � D�

f
�x, y� y � f �x� x f

f
y �x, y� y � f �x�

f �x�
x f f

x y

D E

D E

D

0

y � ƒ(x)

domain

range

FIGURE 4 

{x, ƒ}

ƒ

f(1)

f(2)

0 1 2 x

FIGURE 5 

x

y

x

y

f
f �5�f �1�

f

f
f�1, 3�

x � 1f �1� � 3

x � 5
f �5� � �0.7

x
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2 CHAPTER 1 FUNCTIONS AND LIMITS

f
D E

ƒ

f(a)a

x

FIGURE 3
Arrow diagram for ƒ

FIGURE 6

x

y

0

1

1

FIGURE 2
Machine diagram for a function ƒ

x

(input)
ƒ

(output)
f
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(b) We see that is defined when , so the domain of is the closed
interval . Notice that takes on all values from to 4, so the range of is

■

REPRESENTATIONS OF FUNCTIONS

There are four possible ways to represent a function:
■ verbally (by a description in words) ■ visually (by a graph)
■ numerically (by a table of values) ■ algebraically (by an explicit formula)

If a single function can be represented in all four ways, it is often useful to go from
one representation to another to gain additional insight into the function. But certain
functions are described more naturally by one method than by another. With this in
mind, let’s reexamine the four situations that we considered at the beginning of this
section.

A. The most useful representation of the area of a circle as a function of its radius 
is probably the algebraic formula , though it is possible to compile a
table of values or to sketch a graph (half a parabola). Because a circle has to have
a positive radius, the domain is , and the range is also .

B. We are given a description of the function in words: is the human population
of the world at time . Let’s measure so that corresponds to the year 1900.
The table of values of world population provides a convenient representation of this
function. If we plot these values, we get the graph (called a scatter plot) in Figure
7. It too is a useful representation; the graph allows us to absorb all the data at once.
What about a formula? Of course, it’s impossible to devise an explicit formula that
gives the exact human population at any time . But it is possible to find an
expression for a function that approximates . In fact, we could use a graphing
calculator with exponential regression capabilities to obtain the approximation

Figure 8 shows that it is a reasonably good “fit.” The function is called a mathe-
matical model for population growth. In other words, it is a function with an 
explicit formula that approximates the behavior of our given function. We will see,
however, that the ideas of calculus can be applied to a table of values; an explicit
formula is not necessary.

f0 � x � 7f �x�
f�0, 7	 f

�y � �2 � y � 4� � ��2, 4	

A�r� � �r 2

�r � r � 0� � �0, �� �0, ��
P�t�

t � 0tt

P�t�
P�t�

P�t� � f �t� � �1.43653 � 109� � �1.01395�t

f

FIGURE 8    Graph of a mathematical model for population growth FIGURE 7    Scatter plot of data points for population growth

P

t20 40 60 80 100 120 20 40 60 80 100 120

P

t0 0

5x10' 5x10'

�2

t
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SECTION 1.1  FUNCTIONS AND THEIR REPRESENTATIONS 3

■ The notation for intervals is given 
on Reference Page 3. The Reference
Pages are located at the back of the
book.

Population
(millions)

0 1650
10 1750
20 1860
30 2070
40 2300
50 2560
60 3040
70 3710
80 4450
90 5280

100 6080
110 6870

t

■ www.stewartcalculus.com
See Additional Examples A, B.
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The function is typical of the functions that arise whenever we attempt to
apply calculus to the real world. We start with a verbal description of a function.
Then we may be able to construct a table of values of the function, perhaps from
instrument readings in a scientific experiment. Even though we don’t have com-
plete knowledge of the values of the function, we will see throughout the book that
it is still possible to perform the operations of calculus on such a function.

C. Again the function is described in words: Let be the cost of mailing a large
envelope with weight . The rule that the US Postal Service used as of 2011 is as
follows: The cost is 88 cents for up to one ounce, plus 20 cents for each successive
ounce (or less) up to 13 ounces. The table of values shown in the margin is the most
convenient representation for this function, though it is possible to sketch a graph
(see Example 6).

D. The graph shown in Figure 1 is the most natural representation of the vertical accel-
eration function . It’s true that a table of values could be compiled, and it is even
possible to devise an approximate formula. But everything a geologist needs to
know—amplitudes and patterns—can be seen easily from the graph. (The same is
true for the patterns seen in electrocardiograms of heart patients and polygraphs for
lie-detection.)

In the next example we sketch the graph of a function that is defined verbally.

EXAMPLE 2 When you turn on a hot-water faucet, the temperature of the water
depends on how long the water has been running. Draw a rough graph of as a
function of the time that has elapsed since the faucet was turned on.

SOLUTION The initial temperature of the running water is close to room tempera-
ture because the water has been sitting in the pipes. When the water from the hot-
water tank starts flowing from the faucet, increases quickly. In the next phase, 

is constant at the tempera ture of the heated water in the tank. When the tank is
drained, decreases to the temperature of the water supply. This enables us to make
the rough sketch of as a function of in Figure 9. ■

EXAMPLE 3 Find the domain of each function.

(a) (b) 

SOLUTION
(a) Because the square root of a negative number is not defined (as a real number),
the domain of consists of all values of such that . This is equivalent to

, so the domain is the interval .

(b) Since

and division by is not allowed, we see that is not defined when or
. Thus the domain of is , which could also be written in

interval notation as . ■

The graph of a function is a curve in the -plane. But the question arises: Which
curves in the -plane are graphs of functions? This is answered by the following test.

THE VERTICAL LINE TEST A curve in the -plane is the graph of a function of
if and only if no vertical line intersects the curve more than once.

T
T

t

T
T

T
T t

t�x� �
1

x 2 � x
f �x� � sx 	 2

x 	 2 
 0f
��2, ��x 
 �2

t�x� �
1

x 2 � x
�

1

x�x � 1�

x � 0t�x�0
�x � x � 0, x � 1�tx � 1

���, 0� � �0, 1� � �1, ��

xy
xy

C�w�
w

a�t�

P

xy
x

x
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■ A function defined by a table of values
is called a tabular function.

(ounces) (dollars)

0.88
1.08
1.28
1.48
1.68

��
��

� �

4 � w � 5
3 � w � 4
2 � w � 3
1 � w � 2
0 � w � 1

w C�w�

t

T

0

FIGURE 9

■ If a function is given by a formula 
and the domain is not stated explicitly,
the convention is that the domain is the
set of all numbers for which the formula
makes sense and defines a real number.
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SECTION 1.1  FUNCTIONS AND THEIR REPRESENTATIONS 5

The reason for the truth of the Vertical Line Test can be seen in Figure 10. If each
vertical line intersects a curve only once, at , then exactly one functional
value is defined by . But if a line intersects the curve twice, at
and , then the curve can’t represent a function because a function can’t assign
two different values to .

PIECEWISE DEFINED FUNCTIONS

The functions in the following three examples are defined by different formulas in dif -
ferent parts of their domains.

EXAMPLE 4 A function is defined by

Evaluate , , and and sketch the graph.

SOLUTION Remember that a function is a rule. For this particular function the rule
is the following: First look at the value of the input . If it happens that , then
the value of is . On the other hand, if , then the value of is .

How do we draw the graph of ? We observe that if , then ,
so the part of the graph of that lies to the left of the vertical line must coin-
cide with the line , which has slope and -intercept 1. If , then

, so the part of the graph of that lies to the right of the line must
coincide with the graph of , which is a parabola. This enables us to sketch the
graph in Figure l1. The solid dot indicates that the point is included on the
graph; the open dot indicates that the point is excluded from the graph. ■

The next example of a piecewise defined function is the absolute value function.
Recall that the absolute value of a number , denoted by , is the distance from
to on the real number line. Distances are always positive or , so we have

for every number 

For example,

�a, b�x � a
x � af �a� � b

�a, c�
�a, b�

a

FIGURE 10
a

x=a

(a, b)

0 a

(a, c)

(a, b)

x=a

0 x

y

x

y

fV

f �x� � 
1 � x

x 2

if  x � 1

if  x � 1

f �2�f �1�f �0�

x
x � 11 � xf �x�

x � 1
x 2f �x�

Since 0 � 1, we have f �0� � 1 � 0 � 1.

Since 1 � 1, we have f �1� � 1 � 1 � 0.

Since 2 � 1, we have f �2� � 22 � 4.

f �x� � 1 � xx � 1f
f

�1y � 1 � x
x � 1

ff �x� � x 2
x � 1y

y � x 2
x � 1

�1, 1�
�1, 0�

a� a �a
00

a� a � 
 0

� s2 � 1 � � s2 � 1� 0 � � 0� �3 � � 3� 3 � � 3 � 3 � � � � � � 3

1

x

y

1

FIGURE 11

■ www.stewartcalculus.com
For a more extensive review of
absolute values, click on Review of 
Algebra.
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In general, we have

(Remember that if is negative, then is positive.)

EXAMPLE 5 Sketch the graph of the absolute value function .

SOLUTION From the preceding discussion we know that

Using the same method as in Example 4, we see that the graph of coincides with
the line to the right of the -axis and coincides with the line to the
left of the -axis (see Figure 12). ■

EXAMPLE 6 In Example C at the beginning of this section we considered the cost
of mailing a large envelope with weight . In effect, this is a piecewise defined

function because, from the table of values on page 4, we have

The graph is shown in Figure 13. You can see why functions similar to this one are
called step functions—they jump from one value to the next. ■

SYMMETRY

If a function satisfies for every number in its domain, then is
called an even function. For instance, the function is even because

The geometric significance of an even function is that its graph is symmetric with
respect to the -axis (see Figure 14). This means that if we have plotted the graph of

� a � � a if  a 
 0

� a � � �a if  a � 0

a �a

f �x� � � x �

� x � � 
x

�x

if  x 
 0

if  x � 0

f
y � x y y � �x

y

C�w� w

0.88

1.08

1.28

1.48

if 0 � w � 1

if 1 � w � 2

if 2 � w � 3

if 3 � w � 4

C�w� �

fxf ��x� � f �x�f
f �x� � x 2

f ��x� � ��x�2 � ��1�2x 2 � x 2 � f �x�

y

0 x_x

f(_x) ƒ

FIGURE 14 An even function 

x

y

0

x

_x ƒ

FIGURE 15 An odd function
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y
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x

y=| x |

0

y

FIGURE 12

FIGURE 13

C

0.50

1.00

1.50

0 1 2 3 54 w

■ www.stewartcalculus.com
See Additional Examples C, D.
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SECTION 1.1  FUNCTIONS AND THEIR REPRESENTATIONS 7

Unless otherwise noted, all content on this page is © Cengage Learning.

for , we obtain the entire graph simply by reflecting this portion about the 
-axis.

If satisfies for every number in its domain, then is called an
odd function. For example, the function is odd because

The graph of an odd function is symmetric about the origin (see Figure 15 on page 6).
If we already have the graph of for , we can obtain the entire graph by rotat-
ing this portion through about the origin.

EXAMPLE 7 Determine whether each of the following functions is even, odd, or
neither even nor odd.
(a) (b) (c) 

SOLUTION

(a)

Therefore is an odd function.

(b)

So is even.

(c)

Since and , we conclude that is neither even nor
odd. ■

The graphs of the functions in Example 7 are shown in Figure 16. Notice that the
graph of is symmetric neither about the -axis nor about the origin.

INCREASING AND DECREASING FUNCTIONS

The graph shown in Figure 17 rises from to , falls from to , and rises again
from to . The function is said to be increasing on the interval , decreasing
on , and increasing again on . Notice that if and are any two numbers
between and with , then . We use this as the defining prop-
erty of an increasing function.

A function is called increasing on an interval if

It is called decreasing on if

f �x� � x 5 	 x t�x� � 1 � x 4 h�x� � 2x � x 2

f ��x� � ��x�5 	 ��x� � ��1�5x 5 	 ��x�

� �x 5 � x � ��x 5 	 x�

� �f �x�

f

t��x� � 1 � ��x�4 � 1 � x 4 � t�x�

t

h��x� � 2��x� � ��x�2 � �2x � x 2

h��x� � h�x� h��x� � �h�x� h

fxf ��x� � �f �x�f
f �x� � x 3

f ��x� � ��x�3 � ��1�3x 3 � �x 3 � �f �x�

x 
 0f
180�

V

f
y
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 0

yh

CBBA
�a, b	fDC

x2x1�c, d 	�b, c	
f �x1 � � f �x2 �x1 � x2ba

If

whenever x1 � x2 in If �x1 � � f �x2 �

I

whenever x1 � x2 in If �x1 � � f �x2 �

1

1 x

y

h

1

1
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g

1
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8 CHAPTER 1 FUNCTIONS AND LIMITS

In the definition of an increasing function it is important to realize that the inequal-
ity must be satisfied for every pair of numbers and in with

.
You can see from Figure 18 that the function is decreasing on the inter-

val and increasing on the interval .���, 0	 �0, ��
f �x� � x 2

x2x1f �x1 � � f �x2 �
x1 � x2

I

FIGURE 18 
0

y

x

y=≈

1.1 EXERCISES

1. If and , is it true
that ?

2. If

and    

is it true that ?

3. The graph of a function is given.
(a) State the value of .
(b) Estimate the value of .
(c) For what values of is ?
(d) Estimate the value of such that .
(e) State the domain and range of .
(f ) On what interval is increasing?

4. The graphs of and are given.
(a) State the values of and .
(b) For what values of is ?
(c) Estimate the solution of the equation .
(d) On what interval is decreasing?
(e) State the domain and range of 

f �x� � x 	 s2 � x t�u� � u 	 s2 � u
f � t

f �x� �
x 2 � x

x � 1
t�x� � x

f � t

f
f �1�

f ��1�
f �x� � 1x

f �x� � 0x
f

f

y

0 x1

1

f
t�3�f ��4�

f �x� � t�x�x
f �x� � �1

f
f.

t

(f) State the domain and range of .

5–8 ■ Determine whether the curve is the graph of a function 
of . If it is, state the domain and range of the function.

5. 6.

7. 8.

g

x

y

0

f

2

2

x

y

x0 1

1

y

x0 1

1

y

x0 1

1

y

x0

1

1

t

; Graphing calculator or computer required Computer algebra system required 1 Homework Hints at stewartcalculus.comCAS
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in minutes since the plane has left the terminal, let be
the horizontal distance traveled and be the altitude of
the plane.
(a) Sketch a possible graph of .
(b) Sketch a possible graph of .
(c) Sketch a possible graph of the ground speed.
(d) Sketch a possible graph of the vertical velocity.

19. If , find , , , ,
, , , , and .

20. A spherical balloon with radius inches has volume
. Find a function that represents the amount of

air required to inflate the balloon from a radius of inches
to a radius of inches.

21–24 ■ Evaluate the difference quotient for the given function.
Simplify your answer.

21. ,    

22. ,    

23. ,    

24. ,    

25–29 ■ Find the domain of the function.

25. 26.

27.

28.

29.

30. Find the domain and range and sketch the graph of the
function .

31–42 ■ Find the domain and sketch the graph of the function.

31. 32.

33. 34.

35. 36.

37. 38.

39.

y�t�
x�t�

x�t�
y�t�

f ��a�f �a�f ��2�f �2�f �x� � 3x 2 � x 	 2
f �a 	 h�[ f �a�]2,f �a2�f �2a�2 f �a�f �a 	 1�

r
V�r� � 4

3 �r 3

r
r 	 1

f �3 	 h� � f �3�
h

f �x� � 4 	 3x � x 2

f �a 	 h� � f �a�
h

f �x� � x 3

f �x� � f �a�
x � a

f �x� �
1

x

f �x� � f �1�
x � 1

f �x� �
x 	 3

x 	 1

f �x� �
2x 3 � 5

x 2 	 x � 6
f �x� �

x 	 4

x 2 � 9

F� p� � s2 � sp

t�t� � s3 � t � s2 	 t

h�x� �
1

s
4 x 2 � 5x

h�x� � s4 � x 2 

F�x� � x 2 � 2x 	 1f �x� � 2 � 0.4x

H�t� �
4 � t 2

2 � t
f �t� � 2t 	 t 2

F�x� � � 2x 	 1 �t�x� � sx � 5

t�x� � � x � � xG�x� �
3x 	 � x �

x

f �x� � 
x 	 2

1 � x

if x � 0

if x 
 0

9. The graph shown gives the weight of a certain person as a
function of age. Describe in words how this person’s weight
varies over time. What do you think happened when this
person was 30 years old?

10. The graph shows the height of the water in a bathtub as a
function of time. Give a verbal description of what you
think happened.

11. You put some ice cubes in a glass, fill the glass with cold
water, and then let the glass sit on a table. Describe how the
temperature of the water changes as time passes. Then
sketch a rough graph of the temperature of the water as a
function of the elapsed time.

12. Sketch a rough graph of the number of hours of daylight as
a function of the time of year.

13. Sketch a rough graph of the outdoor temperature as a func-
tion of time during a typical spring day.

14. Sketch a rough graph of the market value of a new car as a
function of time for a period of 20 years. Assume the car is
well maintained.

15. Sketch the graph of the amount of a particular brand of cof-
fee sold by a store as a function of the price of the coffee.

16. You place a frozen pie in an oven and bake it for an 
hour. Then you take it out and let it cool before eating it.
Describe how the temperature of the pie changes as time
passes. Then sketch a rough graph of the temperature of the
pie as a function of time.

17. A homeowner mows the lawn every Wednesday afternoon.
Sketch a rough graph of the height of the grass as a function
of time over the course of a four-week period.

18. An airplane takes off from an airport and lands an hour later
at another airport, 400 miles away. If represents the time

Age
(years)

Weight
(pounds)

0

150

100

50

10

200

20 30 40 50 60 70

0

Height
(inches)

15

10

5

Time
(min)

5 10 15

t
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54. The functions in Example 6 and Exercises 52 and 53(a) 
are called step functions because their graphs look like
stairs. Give two other examples of step functions that arise
in everyday life.

55–56 ■ Graphs of and are shown. Decide whether each
function is even, odd, or neither. Explain your reasoning.

55. 56.

57. (a) If the point is on the graph of an even function,
what other point must also be on the graph?

(b) If the point is on the graph of an odd function,
what other point must also be on the graph?

58. A function has domain and a portion of its graph
is shown.
(a) Complete the graph of if it is known that is even.
(b) Complete the graph of if it is known that is odd.

59–64 ■ Determine whether is even, odd, or neither. If you
have a graphing calculator, use it to check your answer visually.

59. 60.

61. 62.

63. 64.

65. If and are both even functions, is even? If and
are both odd functions, is odd? What if is even and

is odd? Justify your answers.

66. If and are both even functions, is the product even? If
and are both odd functions, is odd? What if is even

and is odd? Justify your answers.

tf

y

x

f

g

y

x

f

g
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��5, 5	f
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5_5

f

f �x� �
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x 4 	 1
f �x� �

x

x 2 	 1

f �x� � x � x �f �x� �
x

x 	 1

f �x� � 1 	 3x 3 � x 5f �x� � 1 	 3x 2 � x 4

tff 	 ttf
ff 	 t

t

fttf
ffttf

t

40.

41.

42.

43–46 ■ Find an expression for the function whose graph is the
given curve.

43. The line segment joining the points and 

44. The line segment joining the points and 

45. The bottom half of the parabola 

46. The top half of the circle 

47–51 ■ Find a formula for the described function and state its
domain.

47. A rectangle has perimeter 20 m. Express the area of the
rect angle as a function of the length of one of its sides.

48. A rectangle has area 16 m . Express the perimeter of the
rect angle as a function of the length of one of its sides.

49. Express the area of an equilateral triangle as a function of
the length of a side.

50. Express the surface area of a cube as a function of its
volume.

51. An open rectangular box with volume 2 m has a square
base. Express the surface area of the box as a function of
the length of a side of the base.

52. A cell phone plan has a basic charge of $35 a month. The
plan includes 400 free minutes and charges 10 cents for
each additional minute of usage. Write the monthly cost
as a function of the number of minutes used and graph
as a function of for .

53. In a certain country, income tax is assessed as follows.
There is no tax on income up to $10,000. Any income over
$10,000 is taxed at a rate of 10%, up to an income of
$20,000. Any income over $20,000 is taxed at 15%.
(a) Sketch the graph of the tax rate as a function of the

income .
(b) How much tax is assessed on an income of $14,000? 

On $26,000?
(c) Sketch the graph of the total assessed tax as a function

of the income .

f �x� � 
x 	 2

x 2

if x � �1

if x � �1

f �x� � 
�1

3x 	 2

7 � 2x

if x � �1

if � x � � 1

if x 
 1

�5, 7��1, �3�

��5, 10� �7, �10�

x 	 �y � 1�2 � 0

x 2 	 �y � 2�2 � 4

2

3

x
C

x
C

0 � x � 600

R
I

f �x� � 
3 �
1
2 x

2x � 5

if x � 2

if x � 2

T
I

10 CHAPTER 1 FUNCTIONS AND LIMITS

Unless otherwise noted, all content on this page is © Cengage Learning.

12280_ch01_ptg01_hr_001-011.qk_12280_ch01_ptg01_hr_001-011  11/16/11  11:56 AM  Page 10

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 1.2  A CATALOG OF ESSENTIAL FUNCTIONS 11
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1.2 A CATALOG OF ESSENTIAL FUNCTIONS
In solving calculus problems you will find that it is helpful to be familiar with the
graphs of some commonly occurring functions. These same basic functions are often
used to model real-world phenomena, so we begin with a discussion of mathematical
modeling. We also review briefly how to transform these functions by shifting, stretch-
ing, and reflecting their graphs as well as how to combine pairs of functions by the
standard arithmetic operations and by composition.

MATHEMATICAL MODELING

A mathematical model is a mathematical description (often by means of a function
or an equation) of a real-world phenomenon such as the size of a population, the
demand for a product, the speed of a falling object, the concentration of a product in
a chemical reaction, the life expectancy of a person at birth, or the cost of emission
reductions. The purpose of the model is to understand the phenomenon and perhaps
to make predictions about future behavior.

Figure 1 illustrates the process of mathematical modeling. Given a real-world prob-
lem, our first task is to formulate a mathematical model by identifying and naming the
independent and dependent variables and making assumptions that simplify the phe-
nomenon enough to make it mathematically tractable. We use our knowledge of the
physical situation and our mathematical skills to obtain equations that relate the vari-
ables. In situations where there is no physical law to guide us, we may need to collect
data (either from a library or the Internet or by conducting our own experiments) and
examine the data in the form of a table in order to discern patterns. From this numeri -
cal representation of a function we may wish to obtain a graphical representation by
plotting the data. The graph might even suggest a suitable algebraic formula in some
cases.

The second stage is to apply the mathematics that we know (such as the calculus
that will be developed throughout this book) to the mathematical model that we have
formulated in order to derive mathematical conclusions. Then, in the third stage, we
take those mathematical conclusions and interpret them as information about the origi-
nal real-world phenomenon by way of offering explanations or making predictions.
The final step is to test our predictions by checking against new real data. If the pre-
dictions don’t compare well with reality, we need to refine our model or to formulate
a new model and start the cycle again.

A mathematical model is never a completely accurate representation of a physical
situation—it is an idealization. A good model simplifies reality enough to permit
mathematical calculations but is accurate enough to provide valuable conclusions. It
is important to realize the limitations of the model. In the end, Mother Nature has the
final say.

There are many different types of functions that can be used to model relationships
observed in the real world. In what follows, we discuss the behavior and graphs

FIGURE 1 The modeling process

Real-world
problem

Mathematical
model

Real-world
predictions

Mathematical
conclusions

Test

Formulate Solve Interpret
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of these functions and give examples of situations appropriately modeled by such
functions.

■ Linear Models
When we say that is a linear function of , we mean that the graph of the function
is a line, so we can use the slope-intercept form of the equation of a line to write a for-
mula for the function as

where is the slope of the line and is the -intercept.
A characteristic feature of linear functions is that they grow at a constant rate. For

instance, Figure 2 shows a graph of the linear function and a table of
sample values. Notice that whenever increases by 0.1, the value of increases by
0.3. So increases three times as fast as . Thus the slope of the graph ,
namely 3, can be interpreted as the rate of change of with respect to .

EXAMPLE 1
(a) As dry air moves upward, it expands and cools. If the ground temperature is

and the temperature at a height of 1 km is , express the temperature 
(in °C) as a function of the height (in kilometers), assuming that a linear model is
appropriate.
(b) Draw the graph of the function in part (a). What does the slope represent?
(c) What is the temperature at a height of 2.5 km?

SOLUTION
(a) Because we are assuming that is a linear function of , we can write

We are given that when , so

In other words, the -intercept is .
We are also given that when , so

The slope of the line is therefore and the required linear func-
tion is

xy

y � f �x� � mx � b

ybm

f �x� � 3x � 2
f �x�x

y � 3x � 2xf �x�
xy

x

y

0

y=3x-2

_2

FIGURE 2

V

T10�C20�C
h

hT

T � mh � b

h � 0T � 20

20 � m � 0 � b � b

b � 20y
h � 1T � 10

10 � m � 1 � 20

m � 10 � 20 � �10

T � �10h � 20
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■ www.stewartcalculus.com
To review the coordinate geometry 
of lines, click on Review of Analytic 
Geometry.

x

1.0 1.0
1.1 1.3
1.2 1.6
1.3 1.9
1.4 2.2
1.5 2.5

f �x� � 3x � 2

■ www.stewartcalculus.com
See Additional Examples A, B.
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(b) The graph is sketched in Figure 3. The slope is , and this repre-
sents the rate of change of temperature with respect to height.

(c) At a height of , the temperature is

■

■ Polynomials
A function is called a polynomial if

where is a nonnegative integer and the numbers are constants
called the coefficients of the polynomial. The domain of any polynomial is

If the leading coefficient , then the degree of the polynomial 
is . For example, the function

is a polynomial of degree 6.
A polynomial of degree 1 is of the form and so it is a linear func-

tion. A polynomial of degree 2 is of the form and is called a
quadratic function. Its graph is always a parabola obtained by shifting the parabola

. The parabola opens upward if and downward if . (See Figure 4.)

A polynomial of degree 3 is of the form

and is called a cubic function. Figure 5 shows the graph of a cubic function in part
(a) and graphs of polynomials of degrees 4 and 5 in parts (b) and (c). We will see later
why the graphs have these shapes.

Polynomials are commonly used to model various quantities that occur in the nat-
ural and social sciences. For instance, in Chapter 2 we will explain why economists
often use a polynomial to represent the cost of producing units of a commodity. 

h � 2.5 km

T � �10�2.5� � 20 � �5�C

P

P�x� � an xn � an�1xn�1 � � � � � a2 x 2 � a1x � a0

n a0, a1, a2, . . . , an

� � ���, ��. an � 0
n

P�x� � 2x 6 � x 4 �
2
5 x 3 � s2

P�x� � mx � b
P�x� � ax 2 � bx � c

y � ax 2 a � 0 a � 0

The graphs of quadratic
 functions are parabolas.

FIGURE 4 0
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FIGURE 3 
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■ Power Functions
A function of the form , where is a constant, is called a power function.
We consider several cases.

(i) , where n is a positive integer
The graphs of for , and are shown in Figure 6. (These are
polynomials with only one term.) You are familiar with the shape of the graphs of

(a line through the origin with slope 1) and (a parabola).

The general shape of the graph of depends on whether is even or
odd. If is even, then is an even function and its graph is similar to the
parabola . If is odd, then is an odd function and its graph is simi-
lar to that of . Notice from Figure 7, however, that as increases, the graph of

becomes flatter near 0 and steeper when . (If is small, then is
smaller, is even smaller, is smaller still, and so on.)

(ii) , where n is a positive integer
The function is a root function. For it is the square root
function , whose domain is and whose graph is the upper half of
the parabola . [See Figure 8(a).] For other even values of , the graph of

is similar to that of . For we have the cube root function 

y=x$

(1, 1)(_1, 1)

y=x^

y=≈

FIGURE 7
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whose domain is (recall that every real number has a cube root) and
whose graph is shown in Figure 8(b). The graph of for odd is
similar to that of .

(iii)

The graph of the reciprocal function is shown in Figure 9. Its
graph has the equation , or , and is a hyperbola with the coordinate
axes as its asymptotes. This function arises in physics and chemistry in connection
with Boyle’s Law, which says that, when the temperature is constant, the volume
of a gas is inversely proportional to the pressure :

where is a constant. Thus the graph of as a function of has the same general
shape as the right half of Figure 9.

Power functions are also used to model species-area relationships (Exercise 16),
illumination as a function of distance from a light source (Exercise 15), and the peri-
od of revolution of a planet as a function of its distance from the sun (Kepler’s Sec-
ond Law, page 606).

■ Rational Functions
A rational function is a ratio of two polynomials:

where and are polynomials. The domain consists of all values of such that
. A simple example of a rational function is the function , whose

domain is ; this is the reciprocal function graphed in Figure 9. The function

is a rational function with domain . Its graph is shown in Figure 10.

■ Trigonometric Functions
Trigonometry and the trigonometric functions are reviewed on Reference Page 2 
and also in Appendix A. In calculus the convention is that radian measure is always
used (except when otherwise indicated). For example, when we use the function

, it is understood that means the sine of the angle whose radian
measure is . Thus the graphs of the sine and cosine functions are as shown in Fig-
ure 11.

�f �x� � s
3 x

�n � 3�y � s
n x

y � s
3 x

a � �1
f �x� � x�1 � 1�x

xy � 1y � 1�x

V
P

V �
C

P

PVC

f

f �x� �
P�x�
Q�x�

xQP
f �x� � 1�xQ�x� � 0

�x � x � 0�

f �x� �
2x 4 � x 2 � 1

x 2 � 4

�x � x � 
2�

sin xf �x� � sin x
x

n

(a) ƒ=sin x

π

2

5π

2

3π

2

π

2
_

x

y

π
0

_π

1

_1
2π 3π

(b) ©=cos x

x

y

0

1

_1

π_π

2π

3π

π

2

5π

2

3π

2

π

2
_

FIGURE 11
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FIGURE 9
The reciprocal function
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Notice that for both the sine and cosine functions the domain is and the
range is the closed interval . Thus, for all values of , we have

or, in terms of absolute values,

Also, the zeros of the sine function occur at the integer multiples of ; that is,

An important property of the sine and cosine functions is that they are periodic
functions and have period . This means that, for all values of ,

The periodic nature of these functions makes them suitable for modeling repetitive
phenomena such as tides, vibrating springs, and sound waves.

The tangent function is related to the sine and cosine functions by the equation

and its graph is shown in Figure 12. It is undefined whenever , that is, when
, Its range is . Notice that the tangent function has per -

iod :

The remaining three trigonometric functions (cosecant, secant, and cotangent) are 
the reciprocals of the sine, cosine, and tangent functions. Their graphs are shown in
Appendix A.

■ Exponential Functions and Logarithms
The exponential functions are the functions of the form , where the base
is a positive constant. The graphs of and are shown in Figure 13. In
both cases the domain is and the range is .

Exponential functions will be studied in detail in Section 3.1, and we will see that
they are useful for modeling many natural phenomena, such as population growth (if

) and radioactive decay (if 
The logarithmic functions , where the base is a positive constant,

are the inverse functions of the exponential functions. They will be studied in Sec-
tion 3.2. Figure 14 shows the graphs of four logarithmic functions with various bases.
In each case the domain is , the range is , and the function increases
slowly when .

TRANSFORMATIONS OF FUNCTIONS

By applying certain transformations to the graph of a given function we can obtain the
graphs of certain related functions. This will give us the ability to sketch the graphs of 

� cos x � � 1� sin x � � 1

�

n an integerx � n�whensin x � 0

x2�

cos�x � 2�� � cos xsin�x � 2�� � sin x

tan x �
sin x

cos x

cos x � 0
���, ��
3��2, . . . .x � 
��2

�

for all xtan�x � �� � tan x

af �x� � ax

y � �0.5�xy � 2x

�0, �����, ��

a � 1�.a � 1
af �x� � loga x

���, ���0, ��
x � 1

���, ��
x��1, 1	

�1 � cos x � 1�1 � sin x � 1
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FIGURE 14
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many functions quickly by hand. It will also enable us to write equations for given
graphs. Let’s first consider translations. If is a positive number, then the graph of

is just the graph of shifted upward a distance of units
(because each -coordinate is increased by the same number ). Likewise, if

, where , then the value of at is the same as the value of at
( units to the left of ). Therefore the graph of is just the graph

of shifted units to the right.

VERTICAL AND HORIZONTAL SHIFTS Suppose . To obtain the graph of

Now let’s consider the stretching and reflecting transformations. If , then the
graph of is the graph of stretched by a factor of in the vertical 
direction (because each -coordinate is multiplied by the same number ). The graph
of is the graph of reflected about the -axis because the point

is replaced by the point . The following chart also incorporates the results
of other stretching, shrinking, and reflecting transformations.

VERTICAL AND HORIZONTAL STRETCHING, SHRINKING, AND REFLECTING
Suppose . To obtain the graph of

Figure 16 illustrates these stretching transformations when applied to the cosine
function with . For instance, in order to get the graph of we multi-
ply the -coordinate of each point on the graph of by 2. This means that the
graph of gets stretched vertically by a factor of 2.

cy � f �x�y � f �x� � c
cy

fxtc � 0t�x� � f �x � c�
y � f �x � c�xx � c

cy � f �x�

c � 0

y � f �x� � c, shift the graph of y � f �x� a distance c units upward

y � f �x� � c, shift the graph of y � f �x� a distance c units downward

y � f �x � c�, shift the graph of y � f �x� a distance c units to the right

y � f �x � c�, shift the graph of y � f �x� a distance c units to the left

c � 1
y � f �x�y � cf �x�

cy
xy � f �x�y � �f �x�

�x, �y��x, y�

c � 1

y � cf �x�, stretch the graph of y � f �x� vertically by a factor of c

y � �1�c� f �x�, shrink the graph of y � f �x� vertically by a factor of c

y � f �cx�, shrink the graph of y � f �x� horizontally by a factor of c

y � f �x�c�, stretch the graph of y � f �x� horizontally by a factor of c

y � �f �x�, reflect the graph of y � f �x� about the x-axis

y � f ��x�, reflect the graph of y � f �x� about the y-axis

y � 2 cos xc � 2
y � cos xy

y � cos x

c

FIGURE 16
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FIGURE 15
y=(x+3)@+1

1

0_3

(_3, 1)

y=≈

x

y

■ Figure 15 illustrates these shifts 
by showing how the graph of

is obtained from the
graph of the parabola : Shift 3
units to the left and 1 unit upward.

y � x 2
y � �x � 3�2 � 1
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EXAMPLE 2 Given the graph of , use transformations to graph
, , , , and .

SOLUTION The graph of the square root function , obtained from Fig-
ure 8(a), is shown in Figure 17(a). In the other parts of the figure we sketch

by shifting 2 units downward, by shifting 2 units to the
right, by reflecting about the -axis, by stretching vertically by
a factor of 2, and by reflecting about the -axis.

■

EXAMPLE 3 Sketch the graph of the function .

SOLUTION To obtain the graph of , we start with . We
reflect about the -axis to get  the graph and then we shift 1 unit upward
to get (See Figure 18.)

■

COMBINATIONS OF FUNCTIONS

Two functions and can be combined to form new functions , , , and
in a manner similar to the way we add, subtract, multiply, and divide real numbers.

The sum and difference functions are defined by

If the domain of is and the domain of is , then the domain of is the inter-
section because both and have to be defined. For example, the domain
of is and the domain of is , so the
domain of is .

Similarly, the product and quotient functions are defined by

y � sx
y � sx � 2 y � sx � 2 y � �sx y � 2sx y � s�x

y � sx

y � sx � 2 y � sx � 2
y � �sx x y � 2sx

y � s�x y

V

(a) y=œ„x (b) y=œ„-2x (c) y=œ„„„„x-2 (d) y=_œ„x (e) y=2œ„x (f ) y=œ„„_x

0 x

y

0 x

y

0 x

y

20 x

y

_2

0 x

y

1

10 x

y

FIGURE 17

y � 1 � sin x

y � 1 � sin x y � sin x
x y � �sin x

y � 1 � sin x.

FIGURE 18
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π0 2π
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π
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3π

2

f t f � t f � t ft
f�t

� f � t��x� � f �x� � t�x�� f � t��x� � f �x� � t�x�

f � ttf
t�x�f �x�A � B

B � ���, 2	t�x� � s2 � xA � �0, ��f �x� � sx
A � B � �0, 2	� f � t��x� � sx � s2 � x


 f

t
��x� �

f �x�
t�x�

� ft��x� � f �x� t�x�

A B

■ www.stewartcalculus.com
See Additional Examples C, D, E.
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The domain of is , but we can’t divide by 0 and so the domain of 
is . For instance, if and , then 
the domain of the rational function is , or

.
There is another way of combining two functions to get a new function. For 

example, suppose that and . Since is a function
of and is, in turn, a function of , it follows that is ultimately a function of . We
compute this by substitution:

The procedure is called composition because the new function is composed of the two
given functions and .

In general, given any two functions and , we start with a number in the domain
of and find its image . If this number is in the domain of , then we can cal-
culate the value of . The result is a new function obtained by
substituting into . It is called the composition (or composite) of and and is
denoted by (“ circle ”).

DEFINITION Given two functions and , the composite function (also
called the composition of and ) is defined by

The domain of is the set of all in the domain of such that is in the
domain of . In other words, is defined whenever both and are
defined. Figure 19 shows how to picture in terms of machines.

EXAMPLE 4 If and , find the composite functions 
and .

SOLUTION We have

■

| NOTE You can see from Example 4 that, in general, . Remember, the 
notation means that the function is applied first and then is applied second.
In Example 4, is the function that first subtracts 3 and then squares; is the
function that first squares and then subtracts 3.

ft A � B f�t

f �x� � x 2
t�x� � x � 1

� f�t��x� � x 2��x � 1� �x � x � 1�
���, 1� � �1, ��

y � f �u� � su u � t�x� � x 2 � 1
y

y � f �u� � f �t�x�� � f �x 2 � 1� � sx 2 � 1

f t

f t

t t�x� t�x� f
f �t�x�� h�x� � f �t�x��

t f f t

f � t

f t f � t

f t

� f � t��x� � f �t�x��

f � t x t t�x�
f � f � t��x� t�x� f �t�x��

f � t

�x � A � B � t�x� � 0�

u u x x

f t

f{©}

(output)
x

(input)
g g(x) f

FIGURE 19

f • g

The f • g machine is composed
of the g machine (first) and

then the f machine.

f �x� � x 2
t�x� � x � 3 f � t

t � f

� f � t��x� � f �t�x�� � f �x � 3� � �x � 3�2

�t � f ��x� � t� f �x�� � t�x 2 � � x 2 � 3

f � t � t � f
ftf � t

t � ff � t

y

x
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EXAMPLE 5 If and , find each function and its
domain.
(a) (b) (c) (d) 

SOLUTION

(a)

The domain of is .

(b)

For to be defined we must have . For to be defined we must have
If , then . , that is, , or . Thus we have , so the domain of

is the closed interval .

(c)

The domain of is .

(d)

This expression is defined when both and The 
first inequality means , and the second is equivalent to , or 

, or . Thus, , so the domain of is the closed
interval . ■

It is possible to take the composition of three or more functions. For instance, the
composite function is found by first applying , then , and then as follows:

So far we have used composition to build complicated functions from simpler ones.
But in calculus it is often useful to be able to decompose a complicated function into
simpler ones, as in the following example.

EXAMPLE 6 Given , find functions , , and such that
.

SOLUTION Since , the formula for says: First add 9, then
take the cosine of the result, and finally square. So we let

Then

■

f �x� � sx t�x� � s2 � x

f � t t � f f � f t � t

� f � t��x� � f �t�x�� � f (s2 � x ) � ss2 � x � s
4 2 � x

f � t �x � 2 � x 	 0� � �x � x � 2� � ���, 2	

�t � f ��x� � t� f �x�� � t(sx ) � s2 � sx

sx x 	 0 s2 � sx
0 � a � b a 2 � b 2 2 � sx 	 0 sx � 2 x � 4 0 � x � 4

t � f �0, 4	

� f � f ��x� � f � f �x�� � f (sx ) � ssx � s
4 x

f � f �0, ��

�t � t��x� � t�t�x�� � t(s2 � x ) � s2 � s2 � x

2 � x 	 0 2 � s2 � x 	 0.
x � 2 s2 � x � 2

2 � x � 4 x 	 �2 �2 � x � 2 t � t

��2, 2	

f � t � h h t f

� f � t � h��x� � f �t�h�x���

F�x� � cos2�x � 9� f t

F � f � t � h

F�x� � �cos�x � 9�	2

h�x� � x � 9 t�x� � cos x f �x� � x 2

� f � t � h��x� � f �t�h�x��� � f �t�x � 9�� � f �cos�x � 9��

� �cos�x � 9�	2 � F�x�

V

F

h

■ www.stewartcalculus.com
See Additional Examples F, G.
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1.2 EXERCISES

1. (a) Find an equation for the family of linear functions with
slope 2 and sketch several members of the family.

(b) Find an equation for the family of linear functions such
that and sketch several members of the family.

(c) Which function belongs to both families?

2. What do all members of the family of linear functions
have in common? Sketch several

members of the family.

3. What do all members of the family of linear functions
have in common? Sketch several members of 

the family.

4. Find expressions for the quadratic functions whose graphs
are shown.

5. Find an expression for a cubic function if and
.

6. Some scientists believe that the average surface temperature
of the world has been rising steadily. They have modeled
the temperature by the linear function ,
where is temperature in and represents years since
1900.
(a) What do the slope and -intercept represent?
(b) Use the equation to predict the average global surface

temperature in 2100.

7. If the recommended adult dosage for a drug is (in mg),
then to determine the appropriate dosage for a child of 
age , pharmacists use the equation .
Suppose the dosage for an adult is 200 mg.
(a) Find the slope of the graph of . What does it represent?
(b) What is the dosage for a newborn?

8. The manager of a weekend flea market knows from past
experience that if he charges dollars for a rental space at
the flea market, then the number of spaces he can rent is
given by the equation .
(a) Sketch a graph of this linear function. (Remember that

the rental charge per space and the number of spaces
rented can’t be negative quantities.)

(b) What do the slope, the y-intercept, and the x-intercept of
the graph represent?

9. The relationship between the Fahrenheit and Celsius
temperature scales is given by the linear function

.
(a) Sketch a graph of this function.

f �2� � 1

f �x� � 1 � m�x � 3�

f �x� � c � x

y

(0, 1)

(1, _2.5)

(_2, 2)

y

x0

(4, 2)

f

g

x0

3

f f �1� � 6
f ��1� � f �0� � f �2� � 0

T � 0.02t � 8.50
T �C t

T

D
c

a c � 0.0417D�a � 1�

c

x
y

y � 200 � 4x

�F�
�C�
F � 9

5 C � 32

(b) What is the slope of the graph and what does it rep-
resent? What is the F-intercept and what does it 
represent?

10. Jason leaves Detroit at 2:00 PM and drives at a constant
speed west along I-96. He passes Ann Arbor, 40 mi from
Detroit, at 2:50 PM.
(a) Express the distance traveled in terms of the time

elapsed.
(b) Draw the graph of the equation in part (a).
(c) What is the slope of this line? What does it represent?

11. Biologists have noticed that the chirping rate of crickets of 
a certain species is related to temperature, and the relation-
ship appears to be very nearly linear. A cricket produces
113 chirps per minute at and 173 chirps per minute 
at .
(a) Find a linear equation that models the temperature T as

a function of the number of chirps per minute N.
(b) What is the slope of the graph? What does it represent?
(c) If the crickets are chirping at 150 chirps per minute,

estimate the temperature.

12. The manager of a furniture factory finds that it costs $2200
to manufacture 100 chairs in one day and $4800 to produce
300 chairs in one day.
(a) Express the cost as a function of the number of chairs

produced, assuming that it is linear. Then sketch the
graph.

(b) What is the slope of the graph and what does it
represent?

(c) What is the y-intercept of the graph and what does it 
represent?

13. At the surface of the ocean, the water pressure is the same
as the air pressure above the water, . Below the sur-
face, the water pressure increases by for every
10 ft of descent.
(a) Express the water pressure as a function of the depth

below the ocean surface.
(b) At what depth is the pressure ?

14. The monthly cost of driving a car depends on the number of
miles driven. Lynn found that in May it cost her $380 to
drive 480 mi and in June it cost her $460 to drive 800 mi.
(a) Express the monthly cost as a function of the distance

driven assuming that a linear relationship gives a suit-
able model.

(b) Use part (a) to predict the cost of driving 1500 miles per
month.

(c) Draw the graph of the linear function. What does the
slope represent?

(d) What does the y-intercept represent?
(e) Why does a linear function give a suitable model in this 

situation?

70�F
80�F

15 lb�in2

4.34 lb�in2

100 lb�in2

C
d,

Unless otherwise noted, all content on this page is © Cengage Learning.

SECTION 1.2  A CATALOG OF ESSENTIAL FUNCTIONS 21

12280_ch01_ptg01_hr_012-021.qk_12280_ch01_ptg01_hr_012-021  11/16/11  12:01 PM  Page 21

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



20. The graph of is given. Draw the graphs of the following
functions.
(a) (b)
(c) (d)

21. The graph of is given. Use it to graph the following 
functions.
(a) (b)
(c) (d)

22. (a) How is the graph of related to the graph of
? Use your answer and Figure 18(a) to sketch

the graph of .
(b) How is the graph of related to the graph of

? Use your answer and Figure 17(a) to sketch
the graph of .

23–36 ■ Graph the function by hand, not by plotting points, but
by starting with the graph of one of the standard functions and
then applying the appropriate transformations.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37–38 ■ Find (a) , (b) , (c) , and (d) and state
their domains.

37. ,  

38. ,  

f

y � f �x� � 2 y � f �x � 2�
y � �2 f �x� y � f ( 1

3 x) � 1

x

y

0 1

2

f

y � f �2x� y � f ( 1
2 x)

y � f ��x� y � �f ��x�

x

y

0 1

1

y � 2 sin x
y � sin x

y � 2 sin x
y � 1 � sx

y � sx
y � 1 � sx

y �
1

x � 2
y � �x � 1�3

y � �s
3 x y � x 2 � 6x � 4

y � sx � 2 � 1 y � 4 sin 3x

y � sin(1
2 x) y �

2

x
� 2

y � 1
2�1 � cos x� y � 1 � 2sx � 3

y � 1 � 2x � x 2 y � � x � � 2

y �
2

x � 1
y �

1

4
 tan�x �

�

4 �
f � t f � t ft f�t

f �x� � x 3 � 2x 2
t�x� � 3x 2 � 1

f �x� � s3 � x t�x� � sx 2 � 1

15. Many physical quantities are connected by inverse square
laws, that is, by power functions of the form . In
particular, the illumination of an object by a light source is
inversely proportional to the square of the distance from the
source. Suppose that after dark you are in a room with just
one lamp and you are trying to read a book. The light is too
dim and so you move halfway to the lamp. How much
brighter is the light?

16. It makes sense that the larger the area of a region, the larger
the number of species that inhabit the region. Many ecolo-
gists have modeled the species-area relation with a power
function and, in particular, the number of species of bats
living in caves in central Mexico has been related to the sur-
face area of the caves by the equation .
(a) The cave called Misión Imposible near Puebla, Mexico,

has a surface area of . How many species of
bats would you expect to find in that cave?

(b) If you discover that four species of bats live in a cave,
estimate the area of the cave.

17. Suppose the graph of is given. Write equations for the
graphs that are obtained from the graph of as follows.
(a) Shift 3 units upward.
(b) Shift 3 units downward.
(c) Shift 3 units to the right.
(d) Shift 3 units to the left.
(e) Reflect about the -axis.
(f ) Reflect about the -axis.
(g) Stretch vertically by a factor of 3.
(h) Shrink vertically by a factor of 3.

18. Explain how each graph is obtained from the graph of
.

(a) (b)
(c) (d)
(e) (f)

19. The graph of is given. Match each equation with
its graph and give reasons for your choices.
(a) (b)

(c) (d)

(e)

f �x� � kx�2

S

S � 0.7A0.3A

A � 60 m2

f
f

x
y

y � f �x�
y � f �x � 8�y � f �x� � 8
y � f �8x�y � 8 f �x�
y � 8 f ( 1

8 x)y � �f �x� � 1

y � f �x�

y � f �x � 4� y � f �x� � 3

y � 1
3 f �x� y � �f �x � 4�

y � 2 f �x � 6�

!@

$

%

#f

y

3

_3

6

0 x3_3_6 6

22 CHAPTER 1 FUNCTIONS AND LIMITS

Unless otherwise noted, all content on this page is © Cengage Learning.

12280_ch01_ptg01_hr_022-031.qk_12280_ch01_ptg01_hr_022-031  11/16/11  12:03 PM  Page 22

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



56. A spherical balloon is being inflated and the radius of the
balloon is increasing at a rate of .
(a) Express the radius of the balloon as a function of the

time (in seconds).
(b) If is the volume of the balloon as a function of the

radius, find and interpret it.

57. A stone is dropped into a lake, creating a circular ripple that
travels outward at a speed of .
(a) Express the radius of this circle as a function of the 

time (in seconds).
(b) If is the area of this circle as a function of the radius,

find and interpret it.

58. An airplane is flying at a speed of at an altitude 
of one mile and passes directly over a radar station at 
time .
(a) Express the horizontal distance (in miles) that the

plane has flown as a function of .
(b) Express the distance between the plane and the radar 

station as a function of .
(c) Use composition to express as a function of .

59. The Heaviside function H is defined by

It is used in the study of electric circuits to represent the
sudden surge of electric current, or voltage, when a switch
is instantaneously turned on.
(a) Sketch the graph of the Heaviside function.
(b) Sketch the graph of the voltage in a circuit if the

switch is turned on at time and 120 volts are
applied instantaneously to the circuit. Write a formula
for in terms of .

(c) Sketch the graph of the voltage in a circuit if the
switch is turned on at time seconds and 240 volts
are applied instantaneously to the circuit. Write a for-
mula for in terms of . (Note that starting at

corre sponds to a translation.)

60. The Heaviside function defined in Exercise 59 can also be
used to define the ramp function , which repre-
sents a gradual increase in voltage or current in a circuit.
(a) Sketch the graph of the ramp function .

x

y

0

fg

2

2

2 cm�s
r

t
V

V � r

60 cm�s
r

t
A

A � r

350 mi�h

t � 0
d
t

s
d

s t

H�t� � �0

1

if  t � 0

if  t � 0

V�t�
t � 0

V�t� H�t�
V�t�

t � 5

V�t� H�t�
t � 5

y � ctH�t�

y � tH�t�

39–44 ■ Find the functions (a) , (b) , (c) , and 
(d) and their domains.

39. ,  

40. ,  

41. ,  

42. ,  

43. ,  

44. ,  

45–46 ■ Find 

45. ,  ,  

46. ,  ,  

47–50 ■ Express the function in the form 

47. 48.

49. 50.

51–53 ■ Express the function in the form 

51. 52.

53.

54. Use the table to evaluate each expression.
(a) (b) (c) 

(d) (e) (f )

55. Use the given graphs of and to evaluate each expression, 
or explain why it is undefined.
(a) (b) (c) 

(d) (e) (f )

t � t

f �x� � x 2 � 1 t�x� � 2x � 1

f � ft � ff � t

f �x� � x � 2 t�x� � x 2 � 3x � 4

f �x� � 1 � 3x t�x� � cos x

f �x� � sx t�x� � s
3 1 � x

f �x� � x �
1

x
t�x� �

x � 1

x � 2

f �x� �
x

1 � x
t�x� � sin 2x

f � t � h.

h�x� � x 3 � 2t�x� � x 2f �x� � sx � 3

h�x� � s
3 xt�x� �

x

x � 1
f �x� � tan x

f � t.

F�x� � cos2xF�x� � �2x � x 2�4

u�t� �
tan t

1 � tan t
v�t� � sec�t 2� tan�t 2�

f � t � h.

H�x� � s
8 2 � � x �R�x� � ssx � 1

H�x� � sec4(sx )

f � f �1��t� f �1��f �t�1��
� f � t��6��t � f ��3�t�t�1��

tf

� f � t��0�t� f �0��f �t�2��
� f � f ��4��t � t���2��t � f ��6�
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What do these compositions represent? Find a formula for
the composition of copies of .

63. (a) If and , find a
function such that . (Think about what opera-
tions you would have to perform on the formula for to
end up with the formula for .)

(b) If and , find a
function such that .

64. If and , find a function such
that .

65. Suppose t is an even function and let . Is h always
an even function?

66. Suppose t is an odd function and let . Is h always
an odd function? What if is odd? What if is even?

f �x� � x � 4 h�x� � 4x � 1 t

t � f � h

h � f � t

h � f � t

f f

n A

t�x� � 2x � 1 h�x� � 4x 2 � 4x � 7
f f � t � h

t

h
f �x� � 3x � 5 h�x� � 3x 2 � 3x � 2

f � t � ht

(b) Sketch the graph of the voltage in a circuit if the
switch is turned on at time and the voltage is
gradually increased to 120 volts over a 60-second 
time interval. Write a formula for in terms of
for .

(c) Sketch the graph of the voltage in a circuit if the
switch is turned on at time seconds and the volt-
age is gradually increased to 100 volts over a period of 
25 seconds. Write a formula for in terms of 
for .

61. Let and be linear functions with equations
and . Is also a lin-

ear function? If so, what is the slope of its graph?

62. If you invest dollars at 4% interest compounded annually,
then the amount of the investment after one year is

. Find , , and .

V�t� H�t�
t � 60

V�t�
t � 7

V�t� H�t�
t � 32

f t

f �x� � m1x � b1 t�x� � m2 x � b2 f � t

x
A�x�

A � A � A � AA � A � AA � AA�x� � 1.04x

V�t�
t � 0

1.3 THE LIMIT OF A FUNCTION
Our aim in this section is to explore the meaning of the limit of a function. We begin
by showing how the idea of a limit arises when we try to find the velocity of a falling
ball.

EXAMPLE 1 Suppose that a ball is dropped from the upper observation deck of
the CN Tower in Toronto, 450 m above the ground. Find the velocity of the ball
after 5 seconds.

SOLUTION Through experiments carried out four centuries ago, Galileo discovered
that the distance fallen by any freely falling body is proportional to the square of the
time it has been falling. (This model for free fall neglects air resistance.) If the dis-
tance fallen after seconds is denoted by and measured in meters, then Galileo’s
law is expressed by the equation

The difficulty in finding the velocity after 5 s is that we are dealing with a single
instant of time , so no time interval is involved. However, we can approxi-
mate the desired quantity by computing the average velocity over the brief time
interval of a tenth of a second from to :

The table shows the results of similar calculations of the average velocity over suc-
cessively smaller time periods. It appears that as we shorten the time period, the
average velocity is becoming closer to . The instantaneous velocity when 

t s�t�

s�t� � 4.9t 2

�t � 5�

t � 5 t � 5.1

average velocity �
change in position

time elapsed

�
s�5.1� � s�5�

0.1

�
4.9�5.1�2 � 4.9�5�2

0.1
� 49.49 m�s

V

49 m�s

24 CHAPTER 1 FUNCTIONS AND LIMITS

Time Average velocity
interval (m�s)

53.9
49.49
49.245
49.049
49.00495 � t � 5.001

5 � t � 5.01
5 � t � 5.05
5 � t � 5.1
5 � t � 6
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is defined to be the limiting value of these average velocities over shorter and
shorter time periods that start at . Thus the (instantaneous) velocity after 5 s is

■

INTUITIVE DEFINITION OF A LIMIT

Let’s investigate the behavior of the function defined by for val-
ues of near 2. The following table gives values of for values of close to 2, but
not equal to 2.

From the table and the graph of (a parabola) shown in Figure 1 we see that when
is close to 2 (on either side of 2), is close to 4. In fact, it appears that we can

make the values of as close as we like to 4 by taking sufficiently close to 2. We
express this by saying “the limit of the function as approaches
2 is equal to 4.” The notation for this is

In general, we use the following notation.

DEFINITION Suppose is defined when is near the number . (This
means that is defined on some open interval that contains , except possibly
at itself.) Then we write

and say “the limit of , as approaches , equals ”

if we can make the values of arbitrarily close to (as close to L as we
like) by taking x to be sufficiently close to (on either side of ) but not 
equal to .

Roughly speaking, this says that the values of approach as approaches . In
other words, the values of tend to get closer and closer to the number as gets
closer and closer to the number (from either side of ) but .

An alternative notation for

is as    

which is usually read “ approaches as approaches .”

v � 49 m�s

f f �x� � x 2 � x � 2
x f �x� x

f
x f �x�

f �x� x
f �x� � x 2 � x � 2 x

lim
x l2

�x 2 � x � 2� � 4

lim
x l a

f �x� � L

f �x� x a L

f �x� L
a a

a

f �x�
L x

a a x � a

lim
x l a

f �x� � L

f �x� l L x l a

f �x� L x a

1 f �x� x a
f a

a

L x a
f �x�

t � 5
t � 5
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x

3.0 8.000000
2.5 5.750000
2.2 4.640000
2.1 4.310000
2.05 4.152500
2.01 4.030100
2.005 4.015025
2.001 4.003001

f �x�x

1.0 2.000000
1.5 2.750000
1.8 3.440000
1.9 3.710000
1.95 3.852500
1.99 3.970100
1.995 3.985025
1.999 3.997001

f �x�

4

ƒ

approaches
4.

x

y

2

As x approaches 2,

y=≈-x+2

0

FIGURE 1 
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Notice the phrase “but ” in the definition of limit. This means that in find ing
the limit of as approaches , we never consider . In fact, need not
even be defined when . The only thing that matters is how is defined near .

Figure 2 shows the graphs of three functions. Note that in part (c), is not
defined and in part (b), . But in each case, regardless of what happens at ,
it is true that  .

EXAMPLE 2 Guess the value of .

SOLUTION Notice that the function is not defined when
, but that doesn’t matter because the definition of says that we

consider values of that are close to but not equal to .
The tables at the left give values of (correct to six decimal places) for values

of that approach 1 (but are not equal to 1). On the basis of the values in the tables,
we make the guess that

■

Example 2 is illustrated by the graph of in Figure 3. Now let’s change slightly
by giving it the value 2 when and calling the resulting function :

This new function still has the same limit as approaches 1. (See Figure 4.)

x � a
f �x� x a x � a f �x�

x � a f a
f �a�

f �a� � L a
lim x l a f �x� � L

(c)

x

y

0

L

a

(b)

x

y

0

L

a

(a)

x

y

0

L

a

lim
x l1

x � 1

x 2 � 1

f �x� � �x � 1���x 2 � 1�
x � 1 lim x l a f �x�

x a a
f �x�

x

lim
x l1

x � 1

x 2 � 1
� 0.5

f f
x � 1 t

t(x) � � x � 1

x 2 � 1
if  x � 1

2 if  x � 1

t x

0
1

0.5

x-1

≈-1
y=

FIGURE 3 FIGURE 4 

0
1

0.5

y=©

2

y

x

y

x
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FIGURE 2 
lim ƒ=L in all three cases.
x    a

0.5 0.666667
0.9 0.526316
0.99 0.502513
0.999 0.500250
0.9999 0.500025

x � 1 f �x�

1.5 0.400000
1.1 0.476190
1.01 0.497512
1.001 0.499750
1.0001 0.499975

x � 1 f �x�
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t

	1.0 0.16228
	0.5 0.16553
	0.1 0.16662
	0.05 0.16666
	0.01 0.16667

st 2 � 9 � 3

t 2

t

	0.0005 0.16800
	0.0001 0.20000
	0.00005 0.00000
	0.00001 0.00000

st 2 � 9 � 3

t 2

■ www.stewartcalculus.com
For a further explanation of why 
calculators sometimes give false 
values, click on Lies My Calculator and
Computer Told Me. In particular, see
the section called The Perils of
Subtraction.

EXAMPLE 3 Estimate the value of .

SOLUTION The table lists values of the function for several values of near 0.

As approaches 0, the values of the function seem to approach and so
we guess that

■

In Example 3 what would have happened if we had taken even smaller values of
The table in the margin shows the results from one calculator; you can see that some-
thing strange seems to be happening.

If you try these calculations on your own calculator you might get different values,
but eventually you will get the value 0 if you make sufficiently small. Does this mean
that the answer is really 0 instead of ? No, the value of the limit is , as we will show

| in the next section. The problem is that the calculator gave false values because
is very close to 3 when is small. (In fact, when t is sufficiently small, a cal-

culator’s value for is to as many digits as the calculator is capable
of carrying.)

Something similar happens when we try to graph the function

of Example 3 on a graphing calculator or computer. Parts (a) and (b) of Figure 5 show
quite accurate graphs of , and when we use the trace mode (if available) we can esti-
mate easily that the limit is about . But if we zoom in too much, as in parts (c) and (d),
then we get inaccurate graphs, again because of problems with subtraction.

lim
t l 0

st 2 � 9 � 3

t 2

t

t 0.1666666 . . .

lim
t l 0

st 2 � 9 � 3

t 2 �
1

6

t?

t
1
6

1
6

st 2 � 9 t

st 2 � 9 3.000. . .

f �t� �
st 2 � 9 � 3

t 2

f
1
6

FIGURE 5 

0.1

0.2

(a) 	_5, 5
 by 	_0.1, 0.3


0.1

0.2

(b) 	_0.1, 0.1
 by 	_0.1, 0.3
 (c) 	_10–^, 10–^
 by 	_0.1, 0.3
 (d) 	_10–&, 10–& 
 by 	_0.1, 0.3


12280_ch01_ptg01_hr_022-031.qk_12280_ch01_ptg01_hr_022-031  11/16/11  12:03 PM  Page 27

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.stewartcalculus.com


Unless otherwise noted, all content on this page is © Cengage Learning.

28 CHAPTER 1 FUNCTIONS AND LIMITS

x

	1.0 0.84147098
	0.5 0.95885108
	0.4 0.97354586
	0.3 0.98506736
	0.2 0.99334665
	0.1 0.99833417
	0.05 0.99958339
	0.01 0.99998333
	0.005 0.99999583
	0.001 0.99999983

sin x

x

■ COMPUTER ALGEBRA SYSTEMS
Computer algebra systems (CAS) have
commands that compute limits. In order
to avoid the types of pitfalls demon-
strated in Examples 3 and 5, they don’t
find limits by numerical experimentation.
Instead, they use more sophisticated
techniques such as computing infinite
series. If you have access to a CAS, use
the limit command to compute the limits
in the examples of this section and to
check your answers in the exercises of
this chapter.

EXAMPLE 4 Guess the value of .

SOLUTION The function is not defined when . Using a cal-
culator (and remembering that, if , means the sine of the angle whose
radian measure is ), we construct the table of values correct to eight decimal
places. From the table at the left and the graph in Figure 6 we guess that

This guess is in fact correct, as will be proved in the next section using a geometric 
argument.

■

EXAMPLE 5 Investigate .

SOLUTION Again the function is undefined at 0. Evaluating the
function for some small values of , we get

Similarly, On the basis of this information we might be
tempted to guess that

| but this time our guess is wrong. Note that although for any
integer , it is also true that for infinitely many values of that approach 0.
The graph of is given in Figure 7.

lim
x l 0

sin x

x

f �x� � �sin x��x x � 0
x � � sin x

x

lim
x l 0

sin x

x
� 1

0 x_1 1

y

sin x

x
y=1

FIGURE 6 

lim
x l 0

sin 
�

x

f �x� � sin���x�
x

f �1� � sin � � 0 f ( 1
2 ) � sin 2� � 0

f ( 1
3) � sin 3� � 0 f ( 1

4 ) � sin 4� � 0

f �0.1� � sin 10� � 0 f �0.01� � sin 100� � 0

f �0.001� � f �0.0001� � 0.

lim
x l 0

sin 
�

x
� 0

f �1�n� � sin n� � 0
n f �x� � 1 x

f

FIGURE 7 

y=sin(π/x)

x

y

1

1

_1

_1

V

V
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The dashed lines near the -axis indicate that the values of oscillate
between 1 and infinitely often as approaches 0. (Use a graphing device to
graph and zoom in toward the origin several times. What do you observe?) 

Since the values of do not approach a fixed number as approaches 0,

■

| Examples 3 and 5 illustrate some of the pitfalls in guessing the value of a limit. It
is easy to guess the wrong value if we use inappropriate values of , but it is difficult
to know when to stop calculating values. And, as the discussion after Example 3
shows, sometimes calculators and computers give the wrong values. In the next sec-
tion, however, we will develop foolproof methods for calculating limits.

EXAMPLE 6 The Heaviside function is defined by

[This function is named after the electrical engineer Oliver Heaviside (1850–1925)
and can be used to describe an electric current that is switched on at time .] Its
graph is shown in Figure 8.

As approaches 0 from the left, approaches 0. As approaches 0 from the
right, approaches 1. There is no single number that approaches as
approaches 0. Therefore does not exist. ■

ONE-SIDED LIMITS

We noticed in Example 6 that approaches 0 as approaches 0 from the left and
approaches 1 as approaches 0 from the right. We indicate this situation symbol-

ically by writing

and    

The symbol “ ” indicates that we consider only values of that are less than 0.
Likewise, “ ” indicates that we consider only values of that are greater than 0.

DEFINITION We write

and say the left-hand limit of as approaches [or the limit of as
approaches from the left] is equal to if we can make the values of

arbitrarily close to L by taking x to be sufficiently close to a and x less than a.

�1 x
f

f �x� x

lim
x l 0

sin 
�

x
does not exist

x

H

H�t� � �0

1

if  t � 0

if  t � 0

t � 0

t H�t� t
H�t� H�t� t

lim t l 0 H�t�

H�t� t
H�t� t

lim
t l0�

H�t� � 0 lim
t l0�

H�t� � 1

t l 0� t
t l 0� t

lim
x la�

f �x� � L

f �x� x a f �x�
x a L f �x�

sin���x�y

V

2
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t

y

1

0

FIGURE 8 

■ www.stewartcalculus.com
See Additional Example A.
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Notice that Definition 2 differs from Definition 1 only in that we require to be
less than . Similarly, if we require that be greater than , we get “the right-hand
limit of as approaches is equal to ” and we write

Thus the symbol “ ” means that we consider only . These definitions are
illustrated in Figure 9.

By comparing Definition l with the definitions of one-sided limits, we see that the
following is true.

if and only if   and  

EXAMPLE 7 The graph of a function is shown in Figure 10. Use it to state the 
values (if they exist) of the following:

(a) (b) (c) 

(d) (e) (f ) 

SOLUTION From the graph we see that the values of approach 3 as x
approaches 2 from the left, but they approach 1 as x approaches 2 from the right.
Therefore

(a) and    (b) 

(c) Since the left and right limits are different, we conclude from that
does not exist.

The graph also shows that

(d) and    (e) 

(f ) This time the left and right limits are the same and so, by , we have

Despite this fact, notice that ■

x
axa

Laxf �x�

lim
x l a�

f �x� � L

x � ax l a�

0 x

y

L

xa0 x

y

ƒ
L

x a

ƒ

x    a+x    a_

(a) lim  ƒ=L (b) lim  ƒ=LFIGURE 9 

lim
x la�

f �x� � Llim
x la�

f �x� � Llim
x l a

f �x� � L3

tV

lim
x l 2

t�x�lim
x l 2�

t�x�lim
x l 2�

t�x�

lim
x l 5

t�x�lim
x l 5�

t�x�lim
x l 5�

t�x�

t�x�

lim
x l 2�

t�x� � 1lim
x l 2�

t�x� � 3

limx l 2 t�x�

lim
x l 5�

t�x� � 2lim
x l 5�

t�x� � 2

lim
x l 5

t�x� � 2

t�5� � 2.

3

3

FIGURE 10

y

0 x

y=©

1 2 3 4 5

1

3

4
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EXAMPLE 8 Find if it exists.

SOLUTION As becomes close to 0, also becomes close to 0, and becomes
very large. (See the following table.) In fact, it appears from the graph of the func-
tion shown in Figure 11 that the values of can be made arbitrarily
large by taking close enough to 0. Thus the values of do not approach a num-
ber, so does not exist.

■

PRECISE DEFINITION OF A LIMIT

Definition 1 is appropriate for an intuitive understanding of limits, but for deeper under-
standing and rigorous proofs we need to be more precise.

We want to express, in a quantitative manner, that can be made arbitrarily
close to by taking to be sufficiently close to (but . This means that 
can be made to lie within any preassigned distance from (traditionally denoted by
, the Greek letter epsilon) by requiring that be within a specified distance (the

Greek letter delta) from . That is, when and .
Notice that we can stipulate that by writing . The resulting precise
definition of a limit is as follows.

DEFINITION Let be a function defined on some open interval that con-
tains the number , except possibly at itself. Then we say that the limit of

as approaches is , and we write

if for every number there is a corresponding number such that

if    

Definition 4 is illustrated in Figures 12 –14. If a number  is given, then we
draw the horizontal lines and and the graph of . (See Fig-
ure 12.) If , then we can find a number such that if we restrict

to lie in the interval and take , then the curve lies 

lim
x l 0

1

x 2

x x 2 1�x 2

f �x� � 1�x 2 f �x�
x f �x�

lim x l 0 �1�x 2 �

FIGURE 11

0

y

x

y=
1

≈

f �x�
L x a x � a� f �x�

L

 x �

a � f �x� � L � � 
 � x � a � � � x � a
x � a 0 � � x � a �

f
a a

f �x� x a L

lim
x l a

f �x� � L


 � 0 � � 0

0 � � x � a � � � then � f �x� � L � � 



 � 0
y � L � 
 y � L � 
 f

limx l a f �x� � L � � 0
x �a � �, a � �� x � a y � f �x�

4
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x

	1 1
	0.5 4
	0.2 25
	0.1 100
	0.05 400
	0.01 10,000
	0.001 1,000,000

1

x2

In Module 1.3/1.6 you can explore
the precise definition of a limit both
graphically and numerically.

TEC

■ www.stewartcalculus.com
See Additional Example B.
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between the lines and . (See Figure 13.) You can see that if such
a has been found, then any smaller will also work.

It’s important to realize that the process illustrated in Figures 12 and 13 must work
for every positive number , no matter how small it is chosen. Figure 14 shows that if
a smaller is chosen, then a smaller may be required.

In proving limit statements it may be helpful to think of the definition of limit as a
challenge. First it challenges you with a number . Then you must be able to produce
a suitable . You have to be able to do this for every , not just a particular .

EXAMPLE 9 Prove that .

SOLUTION Let be a given positive number. According to Definition 4 with 
and , we need to find a number such that

if    

But . Therefore we want:

if    

Note that . So let’s choose . We can
then write the following:

if   so   

Therefore, by the definition of a limit,

■

For a left-hand limit we restrict so that , so in Definition 4 we replace
by . Similarly, for a right-hand limit we use

.

EXAMPLE 10 Prove that .

SOLUTION Let be a given positive number. We want to find a number such that

if    that is  

But . So if we choose and , then
. (See Figure 16.) This shows that as . ■

y � L � � y � L � �
� �

FIGURE 12 FIGURE 13 FIGURE 14

when x is in here (x≠ a)

0 x

y

a

y=L+∑

y=L-∑

a-∂ a+∂

∑

∑

L

ƒ

is in
here

0 x

y

a

y=L+∑

y=L-∑

∑

∑

L

y=ƒ

L+∑

L-∑

0 x

y

a

y=L+∑

y=L-∑

a-∂ a+∂

�
� �

�
� � � 0 �

lim
x l3

�4x � 5� � 7

� a � 3
L � 7 �

0 � � x � 3 � � � then � �4x � 5� � 7 � � �

� �4x � 5� � 7 � � � 4x � 12 � � � 4�x � 3� � � 4� x � 3 �
0 � � x � 3 � � � then 4� x � 3 � � �

0 � � x � 3 � � � then 4 � x � 3 � � �

lim
x l3

�4x � 5� � 7 

x x � a
0 � � x � a � � � a � � � x � a
a � x � a � �

lim
x l0�

sx � 0

� �

0 � x � � then � sx � 0 � � � sx � �

sx � � &? x � �2 � � �2 0 � x � � � �2

sx � � sx l 0 x l 0�

V

4 � x � 3 � � � &? � x � 3 � � ��4 � � ��4

� �4x � 5� � 7 � � �

V
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■ Figure 15 shows the geometry behind
Example 9.

FIGURE 15

y

0 x

7+∑

7

7-∑

3-∂ 3+∂

3

y=4x-5

FIGURE 16

0

y=œ„x

y=∑∑

y

x∂=∑@
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1.3 EXERCISES

1. If a ball is thrown into the air with a velocity of 40 ft�s, its
height in feet seconds later is given by .
(a) Find the average velocity for the time period beginning

when and lasting
(i) 0.5 second (ii) 0.1 second

(iii) 0.05 second (iv) 0.01 second
(b) Estimate the instantaneous velocity when 

2. If a rock is thrown upward on the planet Mars with a veloc-
ity of 10 m�s, its height in meters seconds later is given by

(a) Find the average velocity over the given time intervals:
(i) [1, 2] (ii) [1, 1.5] (iii) [1, 1.1]

(iv) [1, 1.01] (v) [1, 1.001]
(b) Estimate the instantaneous velocity when .

3. For the function whose graph is given, state the value of
each quantity, if it exists. If it does not exist, explain why.

(a) (b) (c)

(d) (e)

4. Use the given graph of to state the value of each quantity, 
if it exists. If it does not exist, explain why.

(a) (b) (c)

(d) (e) (f )

5. For the function whose graph is given, state the value of
each quantity, if it exists. If it does not exist, explain why.

(a) (b) (c)

(d) (e) (f )

(g) (h)

t y � 40t � 16t 2

t � 2

t � 2.

t
y � 10t � 1.86t 2.

t � 1

f

lim
x l 1

f �x� lim
x l 3�

f �x� lim
x l 3�

f �x�

lim
x l 3

f �x� f �3�

y

0 x2 4

4

2

f

lim
x l2�

f �x� lim
x l 2�

f �x� lim
x l 2

f �x�

f �2� lim
x l 4

f �x� f �4�

y

0 x2 4

4

2

t

lim
t l 0

t�t�lim
t l 0�

t�t�lim
t l 0�

t�t�

lim
t l 2

t�t�lim
t l 2�

t�t�lim
t l 2�

t�t�

lim
t l 4

t�t�t�2�

6. Sketch the graph of the following function and use it to
determine the values of for which exists:

7–10 ■ Sketch the graph of an example of a function that 
satisfies all of the given conditions.

7. ,  ,

8. ,  , ,

,  

9. , ,  ,

,  

10. ,  , ,

,  ,  

11–14 ■ Guess the value of the limit (if it exists) by evaluating
the function at the given numbers (correct to six decimal places).

11.

12.

13.

, , , , , 

y

t2 4

4

2

a limx l a f �x�

f �x� � �1 � sin x

cos x

sin x

if x � 0

if 0 � x � 	

if x � 	

f

lim
x l 0�

f �x� � �1 lim
x l 0�

f �x� � 2 f �0� � 1

lim
x l 0

f �x� � 1 lim
x l 3�

f �x� � �2 lim
x l 3�

f �x� � 2

f �0� � �1 f �3� � 1

lim
x l 3�

f �x� � 4 lim
x l 3�

f �x� � 2 lim
x l �2

f �x� � 2

f �3� � 3 f ��2� � 1

lim
x l 0�

f �x� � 2 lim
x l 0�

f �x� � 0 lim
x l 4�

f �x� � 3

lim
x l 4�

f �x� � 0 f �0� � 2 f �4� � 1

lim
x l2

x 2 � 2x

x 2 � x � 2
x � 2.5, 2.1, 2.05, 2.01, 2.005, 2.001,
1.9, 1.95, 1.99, 1.995, 1.999

lim
x l � 1

x 2 � 2x

x 2 � x � 2
x � 0, �0.5, �0.9, �0.95, �0.99, �0.999,
�2, �1.5, �1.1, �1.01, �1.001

lim
x l 0

sin x

x � tan x

0.01
0.05
0.1
0.2
0.5x � 
1
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23. Use the given graph of to find a number
such that

if    then    

24. Use the given graph of to find a number such
that

if    then    

; 25. Use a graph to find a number such that

if    then    

; 26. Use a graph to find a number such that

if    then    

27. A machinist is required to manufacture a circular metal
disk with area . 
(a) What radius produces such a disk?
(b) If the machinist is allowed an error tolerance of

in the area of the disk, how close to the ideal
radius in part (a) must the machinist control the
radius?

(c) In terms of the definition of ,
what is ? What is ? What is ? What is ? What
value of is given? What is the corresponding value
of ?

; 28. A crystal growth furnace is used in research to determine
how best to manufacture crystals used in electronic com-
ponents for the space shuttle. For proper growth of the
crystal, the temperature must be controlled accurately by
adjusting the input power. Suppose the relationship is
given by 

f �x� � sx �

� x � 4 � � � � sx � 2 � � 0.4

??

y=œ„x

x

y

4
0

2

2.4

1.6

f �x� � x2 �

� x � 1 � � � � x 2 � 1 � �
1
2

x

y

? 1 ?0

1.5

1

0.5

y=≈

�

� x �
	

4 � � � � tan x � 1� � 0.2

�

� x � 1� � � � 2x

x 2 � 4
� 0.4 � � 0.1

1000 cm2


5 cm2

�, � limx l a f �x� � L
x f �x� a L
�

�

T�w� � 0.1w 2 � 2.155w � 20
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14.

, , , , 

15–18 ■ Use a table of values to estimate the value of the
limit. If you have a graphing device, use it to confirm your
result graphically.

15. 16.

17. 18.

; 19. (a) By graphing the function
and zooming in toward the point where the graph
crosses the -axis, estimate the value of .

(b) Check your answer in part (a) by evaluating for 
values of that approach 0.

; 20. (a) Estimate the value of

by graphing the function . State
your answer correct to two decimal places.

(b) Check your answer in part (a) by evaluating for 
values of that approach 0.

21. (a) Evaluate the function for 
1, 0.8, 0.6, 0.4, 0.2, 0.1, and 0.05, and guess the

value of

(b) Evaluate for � 0.04, 0.02, 0.01, 0.005, 0.003,
and 0.001. Guess again.

22. (a) Evaluate for , 0.5, 0.1,
0.05, 0.01, and 0.005.

(b) Guess the value of .

(c) Evaluate for successively smaller values of until
you finally reach values for . Are you still con-
fident that your guess in part (b) is correct? Explain 
why you eventually obtained 0 values. (In Section 3.7 
a method for evaluating the limit will be explained.)

; (d) Graph the function h in the viewing rectangle 
by . Then zoom in toward the point where the
graph crosses the -axis to estimate the limit of as 

approaches 0. Continue to zoom in until you observe
distortions in the graph of . Compare with the results
of part (c).

h � 
0.5 
0.1 
0.01 
0.001 
0.0001

lim
x l 0

tan 3x

tan 5x
lim
x l 0

sx � 4 � 2

x

lim
x l 0

9 x � 5 x

x
lim
x l 1

x6 � 1

x10 � 1

f �x� � �cos 2x � cos x��x 2

lim x l 0 f �x�y
f �x�

x

lim
x l 0

sin x

sin 	x

f �x� � �sin x���sin 	x�

f �x�
x

x �
f �x� � x 2 � �2x�1000�

lim
x l 0

�x 2 �
2x

1000	
xf �x�

x � 1h�x� � �tan x � x��x 3

lim
x l 0

tan x � x

x 3

xh�x�
h�x�0

lim
hl 0

�2 � h�5 � 32

h


�1, 1�

0, 1�

y h�x�
x

h
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1.4 CALCULATING LIMITS
In Section 1.3 we used calculators and graphs to guess the values of limits, but we saw
that such methods don’t always lead to the correct answer. In this section we use the
following properties of limits, called the Limit Laws, to calculate limits.

LIMIT LAWS Suppose that is a constant and the limits

exist. Then

1.

2.

3.

4.

5.

c

lim
x l a

f �x� and lim
x l a

t�x�

lim
x l a

� f �x� � t�x�� � lim
x l a

f �x� � lim
x l a

t�x�

lim
x l a

� f �x� � t�x�� � lim
x l a

f �x� � lim
x l a

t�x�

lim
x l a

�cf �x�� � c lim
x l a

f �x�

lim
x l a

� f �x� t�x�� � lim
x l a

f �x� � lim
x l a

t�x�

lim
x l a

f �x�
t�x�

�
lim
x l a

f �x�

lim
x l a

t�x�
if lim

x l a
t�x� � 0

39. 40.

41. 42.

43. [Hint: Write .

Show that if , then . If you let
be the smaller of the numbers 1 and , show that this 

works.]

44. [Hint: If , what can

you say about ?]

45. (a) For the limit , use a graph to
find a value of that corresponds to 

(b) By using a computer algebra system to solve the cubic
equation , find the largest possible
value of that works for any given .

(c) Put in your answer to part (b) and compare
with your answer to part (a).

46. If is the Heaviside function defined in Example 6, prove,
using Definition 4, that does not exist. [Hint:
Use an indirect proof as follows. Suppose that the limit is .
Take in the definition of a limit and try to arrive at a
contradiction.]

� x � 3 � � 1 � x � 3 � � 7 �
��7

�

lim
x l3

�x 2 � x � 4� � 8 � x � 3 � � 1

� x � 4 �

limx l 1 �x3 � x � 1� � 3
� � � 0.4.

x3 � x � 1 � 3 � �
� � � 0

� � 0.4

H
lim t l 0 H�t�

L
� � 1

2

CAS

� x 2 � 9 � � � x � 3 �� x � 3 �lim
x l 3

x 2 � 9

lim
x l 0

� x � � 0 lim
x l 9�

s
4 9 � x � 0

lim
x l 0

x 3 � 0lim
x l 0

x 2 � 0where is the temperature in degrees Celsius and is the
power input in watts.
(a) How much power is needed to maintain the temperature

at ?
(b) If the temperature is allowed to vary from by up

to , what range of wattage is allowed for the input
power?

(c) In terms of the definition of , what
is ? What is ? What is ? What is ? What value
of is given? What is the corresponding value of ?

29–32 ■ Prove the statement using the definition of a limit
and illustrate with a diagram like Figure 15.

29. 30.

31. 32.

33–44 ■ Prove the statement using the definition of a limit.

33. 34.

35. 36.

37. 38.

�, �

lim
x l 4

�2x � 5� � 3lim
x l 3

(1 �
1
3 x) � 2

lim
x l�2

�3x � 5� � �1lim
x l�3

�1 � 4x� � 13

�, �

lim
x l 10

(3 �
4
5 x) � �5lim

x l1

2 � 4x

3
� 2

lim
x l�1.5

9 � 4x 2

3 � 2x
� 6lim

x l2

x 2 � x � 6

x � 2
� 5

lim
x l a

c � clim
x l a

x � a

T w

200�C
200�C

	1�C

�, � limx l a f �x� � L
x f �x� a L
� �
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These five laws can be stated verbally as follows:

Sum Law 1. The limit of a sum is the sum of the limits.

Difference Law 2. The limit of a difference is the difference of the limits.

Constant Multiple Law 3. The limit of a constant times a function is the constant times the limit of the 
function.

Product Law 4. The limit of a product is the product of the limits.

Quotient Law 5. The limit of a quotient is the quotient of the limits (provided that the limit of
the denominator is not 0).

It is easy to believe that these properties are true. For instance, if is close to 
and is close to , it is reasonable to conclude that is close to .
This gives us an intuitive basis for believing that Law 1 is true. All of these laws can
be proved using the precise definition of a limit. (See Appendix D.)

If we use the Product Law repeatedly with , we obtain the following
law.

Power Law 6. where is a positive integer

In applying these six limit laws, we need to use two special limits: 

7. 8.

These limits are obvious from an intuitive point of view (state them in words or
draw graphs of and ), but they can be proved from the precise definition.
(See Exercises 37 and 38 in Section 1.3.)

If we now put in Law 6 and use Law 8, we get another useful special
limit.

9. where is a positive integer

A similar limit holds for roots as follows. 

10. where is a positive integer

(If is even, we assume that .)

More generally, we have the following law.

Root Law 11. where is a positive integer

[If is even, we assume that ]

f �x� L
t�x� M f �x� � t�x� L � M

t�x� � f �x�

lim
x la


 f �x��n � [ lim
x la

f �x�]n n

lim
x l a

c � c lim
x l a

x � a

y � c y � x

f �x� � x

lim
x l a

xn � an n

lim
x l a

s
n x � s

n a n

n a � 0

lim 
x la

s
n f �x) � s

n lim
x la

f �x) n

n lim
x la

f �x� � 0.
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EXAMPLE 1 Evaluate the following limits and justify each step.

(a) (b) 

SOLUTION

(a) (by Laws 2 and 1)

(by 3)

(by 9, 8, and 7)

(b) We start by using Law 5, but its use is fully justified only at the final stage when
we see that the limits of the numerator and denominator exist and the limit of the
denominator is not 0.

(by Law 5)

(by 1, 2, and 3)

(by 9, 8, and 7)

■

NOTE If we let , then . In other words, we would
have gotten the correct answer in Example 1(a) by substituting 5 for x. Similarly,
direct substitution provides the correct answer in part (b). The functions in Example
1 are a polynomial and a rational function, respectively, and similar use of the Limit
Laws proves that direct substitution always works for such functions (see Exercises 57
and 58). We state this fact as follows.

DIRECT SUBSTITUTION PROPERTY If is a polynomial or a rational function
and is in the domain of , then

The trigonometric functions also enjoy the Direct Substitution Property. We know
from the definitions of and that the coordinates of the point P in Figure 1
are . As , we see that P approaches the point and so

and . Thus

Since and , the equations in assert that the cosine and sine 

lim
x l5

�2x 2 � 3x � 4� lim
x l�2

x 3 � 2x 2 � 1

5 � 3x

lim
x l5

�2x 2 � 3x � 4� � lim
x l5

�2x 2 � � lim
x l5

�3x� � lim
x l5

4

� 2 lim
x l5

x 2 � 3 lim
x l5

x � lim
x l5

4

� 2�52 � � 3�5� � 4

� 39

lim
x l�2

x 3 � 2x 2 � 1

5 � 3x
�

lim
x l�2

�x 3 � 2x 2 � 1�

lim
x l�2

�5 � 3x�

�
lim

x l�2
x 3 � 2 lim

x l�2
x 2 � lim

x l�2
1

lim
x l�2

5 � 3 lim
x l�2

x

�
��2�3 � 2��2�2 � 1

5 � 3��2�

� �
1

11

f �x� � 2x 2 � 3x � 4 f �5� � 39

f
a f

lim
x la

f �x� � f �a�

sin � cos �
�cos �, sin �� � l 0 �1, 0�

cos � l 1 sin � l 0

lim
� l 0

cos � � 1 lim
� l 0

sin � � 0

cos 0 � 1 sin 0 � 0

1

1
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¨

1

x0

y

(1, 0)

P(cos ¨, sin ¨)

FIGURE 1 

■ NEWTON AND LIMITS
Isaac Newton was born on Christmas Day
in 1642, the year of Galileo’s death. When
he entered Cambridge University in 1661
Newton didn’t know much mathematics,
but he learned quickly by reading Euclid
and Descartes and by attending the lectures
of Isaac Barrow. Cambridge was closed
because of the plague in 1665 and 1666,
and Newton returned home to reflect on
what he had learned. Those two years were
amazingly productive for at that time he
made four of his major discoveries: (1) his
representa tion of functions as sums of infi-
nite series, including the binomial theorem;
(2) his work on differential and integral cal-
culus; (3) his laws of motion and law of
universal gravitation; and (4) his prism
experi ments on the nature of light and
color. Because of a fear of controversy and
criticism, he was reluctant to publish his
discoveries and it wasn’t until 1687, at the
urging of the astronomer Halley, that New-
ton published Principia Mathematica. In
this work, the greatest scientific treatise
ever written, Newton set forth his version
of calculus and used it to investigate
mechanics, fluid dynamics, and wave
motion, and to explain the motion of 
planets and comets.

The beginnings of calculus are found in 
the calculations of areas and volumes by
ancient Greek scholars such as Eudoxus
and Archimedes. Although aspects of the
idea of a limit are implicit in their “method
of exhaustion,” Eudoxus and Archimedes
never explicitly formulated the concept of a
limit. Likewise, mathematicians such as
Cavalieri, Fermat, and Barrow, the immedi-
ate precursors of Newton in the develop-
ment of calculus, did not actually use
limits. It was Isaac Newton who was the
first to talk explicitly about limits. He
explained that the main idea behind limits
is that quantities “approach nearer than by
any given difference.” Newton stated that
the limit was the basic concept in calculus,
but it was left to later mathe maticians like
Cauchy to clarify his ideas about limits.
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functions satisfy the Direct Substitution Property at 0. The addition formulas for cosine
and sine can then be used to deduce that these functions satisfy the Direct Substitution
Property everywhere (see Exercises 59 and 60). In other words, for any real number

,

This enables us to evaluate certain limits quite simply. For example,

Functions with the Direct Substitution Property are called continuous at a and will
be studied in Section 1.5. However, not all limits can be evaluated by direct substitu-
tion, as the following examples show.

EXAMPLE 2 Find .

SOLUTION Let . We can’t find the limit by substituting
because isn’t defined. Nor can we apply the Quotient Law, because the

limit of the denominator is 0. Instead, we need to do some preliminary algebra. We
factor the numerator as a difference of squares:

The numerator and denominator have a common factor of . When we take the
limit as approaches 1, we have and so . Therefore we can cancel
the common factor and compute the limit as follows:

■

NOTE In Example 2 we were able to compute the limit by replacing the given
function by a simpler function, , with the same
limit. This is valid because except when , and in computing a limit
as approaches 1 we don’t consider what happens when is actually equal to 1. In
general, we have the following useful fact.

, provided the limits exist.

EXAMPLE 3 Find where 

a

lim
� l a

sin � � sin a lim
� l a

cos � � cos a

lim
x l 	

x cos x � ( lim x
x l 	 ) ( lim

x l 	
cos x) � 	 � cos 	 � �	

lim
x l 1

x 2 � 1

x � 1

f �x� � �x 2 � 1���x � 1�
x � 1 f �1�

x 2 � 1

x � 1
�

�x � 1��x � 1�
x � 1

x � 1
x x � 1 x � 1 � 0

lim
x l 1

x 2 � 1

x � 1
� lim

x l 1

�x � 1��x � 1�
x � 1

� lim
x l 1

�x � 1�

� 1 � 1 � 2

f �x� � �x 2 � 1���x � 1� t�x� � x � 1
f �x� � t�x� x � 1

x x

If f �x� � t�x� when x � a, then lim
x l a

f �x� � lim
x l a

t�x�

lim
x l1

t�x�

t�x� � �x � 1

	

if x � 1

if x � 1
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■ Another way to establish the limits 
in is to use the inequality 
(for ), which is proved on page 42.� � 0

sin � � �1
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SOLUTION Here is defined at and , but the value of a limit as
approaches 1 does not depend on the value of the function at 1. Since
for , we have

■

Note that the values of the functions in Examples 2 and 3 are identical except when
(see Figure 2) and so they have the same limit as approaches 1.

EXAMPLE 4 Evaluate .

SOLUTION If we define 

then, as in Example 2, we can’t compute by letting since is
undefined. But if we simplify algebraically, we find that

(Recall that we consider only when letting approach 0.) Thus

■

EXAMPLE 5 Find .

SOLUTION We can’t apply the Quotient Law immediately, since the limit of the
denominator is 0. Here the preliminary algebra consists of rationalizing the 
numerator:

This calculation confirms the guess that we made in Example 3 in Section 1.3. ■

Some limits are best calculated by first finding the left- and right-hand limits. The
following theorem is a reminder of what we discovered in Section 1.3. It says that a
two-sided limit exists if and only if both of the one-sided limits exist and are equal.

THEOREM if and only if    

t x � 1 t�1� � 	 x
t�x� � x � 1

x � 1

lim
x l 1

t�x� � lim
x l 1

�x � 1� � 2

x � 1 x

lim
h l 0

�3 � h�2 � 9

h

F�h� �
�3 � h�2 � 9

h

lim h l 0 F�h� h � 0 F�0�
F�h�

F�h� �
�9 � 6h � h 2 � � 9

h
�

6h � h 2

h
� 6 � h

h � 0 h

lim
h l 0

�3 � h�2 � 9

h
� lim

h l 0
�6 � h� � 6

lim
t l 0

st 2 � 9 � 3

t 2

lim
t l 0

st 2 � 9 � 3

t 2 � lim
t l 0

st 2 � 9 � 3

t 2 �
st 2 � 9 � 3

st 2 � 9 � 3

� lim
t l 0

�t 2 � 9� � 9

t 2(st 2 � 9 � 3) � lim
t l 0

t 2

t 2(st 2 � 9 � 3)

� lim
t l 0

1

st 2 � 9 � 3
�

1

slim
t l 0

�t 2 � 9� � 3
�

1

3 � 3
�

1

6

lim
x l a

f �x� � L

V

2 lim
x la�

f �x� � L � lim
x la�

f �x�
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y
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1
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y

0
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3

FIGURE 2 
The graphs of the functions f (from
Example 2) and g (from Example 3)
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When computing one-sided limits, we use the fact that the Limit Laws also hold
for one-sided limits.

EXAMPLE 6 Show that .

SOLUTION Recall that

Since for , we have

For we have and so 

Therefore, by Theorem 2,

■

EXAMPLE 7 Prove that does not exist.

SOLUTION

Since the right- and left-hand limits are different, it follows from Theorem 2 that
does not exist. The graph of the function is shown in

Figure 4 and supports the one-sided limits that we found. ■

EXAMPLE 8 The greatest integer function is defined by the largest integer 
that is less than or equal to . (For instance, , , , , 

) Show that does not exist.

SOLUTION The graph of the greatest integer function is shown in Figure 5. Since
for , we have

Since for , we have

Because these one-sided limits are not equal, does not exist by 
Theorem 2. ■

lim
x l 0

� x � � 0

� x � � �x

�x

if x  0

if x � 0

� x � � x x � 0

lim
x l 0� � x � � lim

x l 0�
x � 0

x � 0 � x � � �x

lim
x l 0� � x � � lim

x l 0�
��x� � 0

lim
x l 0

� x � � 0

lim
x l 0

� x �
x

lim
x l 0�

� x �
x

� lim
x l 0�

x

x
� lim

x l 0�
1 � 1

lim
x l 0�

� x �
x

� lim
x l 0�

�x

x
� lim

x l 0�
��1� � �1

lim x l 0 � x ��x f �x� � � x ��x

�x �
x �4 � 4 �4.8 � 4 �	 � 3 �s2  � 1

��
1
2 � �1. lim x l3 �x

�x � 3 3 � x � 4

lim
x l3�

�x � lim
x l3�

3 � 3

�x � 2 2 � x � 3

lim
x l3�

�x � lim
x l3�

2 � 2

lim x l3 �x

V

x

y=| x |

0

y

FIGURE 3

■ The result of Example 6 looks 
plausible from Figure 3.

1

_1

x

y

0

y=
|x|

x

FIGURE 4 

y=[ x]

1 2 3

1

2

3

4

4 5
x

y

0

FIGURE 5 
Greatest integer function

■ Other notations for are and .
The greatest integer function is some-
times called the floor function.

⎣x⎦
x��x
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The next two theorems give two additional properties of limits. Their proofs can be
found in Appendix D.

THEOREM If when is near (except possibly at ) and the
limits of and both exist as approaches , then

THE SQUEEZE THEOREM If when is near (except
possibly at ) and

then

The Squeeze Theorem, which is sometimes called the Sandwich Theorem or the
Pinching Theorem, is illustrated by Figure 6. It says that if is squeezed between

and near , and if and have the same limit at , then is forced to have
the same limit at .

EXAMPLE 9 Show that .

SOLUTION First note that we cannot use

because does not exist (see Example 5 in Section 1.3).
Instead we apply the Squeeze Theorem, and so we need to find a function

smaller than and a function bigger than such that both
and approach 0. To do this we use our knowledge of the sine function. Because
the sine of any number lies between and 1, we can write

Any inequality remains true when multiplied by a positive number. We know that
for all and so, multiplying each side of the inequalities in by , we get

as illustrated by Figure 7. We know that

Taking , , and in the Squeeze Theorem, we
obtain

■

f �x� � t�x� x a a
f t x a

lim
x l a

f �x� � lim
x l a

t�x�

f �x� � t�x� � h�x� x a
a

lim
x l a

f �x� � lim
x l a

h�x� � L

lim
x l a

t�x� � L

t�x�
f �x� h�x� a f h L a t

L a

lim
x l 0

x 2 sin 
1

x
� 0

lim
x l 0

x 2 sin 
1

x
� lim

x l 0
x 2 � lim

x l 0
sin 

1

x

lim x l 0 sin�1�x�

3

4

V

f
t�x� � x 2 sin�1�x� h t f �x�

h�x�
�1

�1 � sin 
1

x
� 1

x 2  0 x 5 x 2

�x 2 � x 2 sin 
1

x
� x 2

lim
x l 0

x 2 � 0 and lim
x l 0

��x 2 � � 0

f �x� � �x 2
t�x� � x 2 sin�1�x� h�x� � x 2

lim
x l 0

x 2 sin 
1

x
� 0

5
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FIGURE 6        

■ www.stewartcalculus.com
See Additional Example A.
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In Example 4 in Section 1.3 we made the guess, on the basis of numerical and
graphical evidence, that

We can prove Equation 6 with help from the Squeeze Theorem. Assume first that 
lies between 0 and . Figure 8(a) shows a sector of a circle with center O, central
angle , and radius 1. BC is drawn perpendicular to OA. By the definition of radian
measure, we have arc . Also, . From the diagram
we see that

Therefore so    

Let the tangent lines at and intersect at . You can see from Figure 8(b) that the 
cir cumference of a circle is smaller than the length of a circumscribed polygon, and
so arc . Thus

(In Appendix D the inequality is proved directly from the definition of the
length of an arc without resorting to geometric intuition as we did here.) Therefore we
have

and so    

We know that and , so by the Squeeze Theorem, we
have

But the function is an even function, so its right and left limits must be equal.
Hence we have

so we have proved Equation 6.

EXAMPLE 10 Find .

lim
� l 0

sin �

�
� 1

�
��2

�
AB � � � BC � � � OB � sin � � sin �

� BC � � � AB � � arc AB

sin � � �
sin �

�
� 1

A B E

AB � � AE � � � EB �
� � arc AB � � AE � � � EB � � � AE � � � ED �

� � AD � � � OA � tan � � tan �

� � tan �

� �
sin �

cos �
cos � �

sin �

�
� 1

lim � l 0 1 � 1 lim � l 0 cos � � 1

lim
� l 0�

sin �

�
� 1

�sin ����

lim
� l 0

sin �

�
� 1

lim
x l 0

sin 7x

4x

6
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1. Given that

find the limits that exist. If the limit does not exist, explain
why.

(a) (b) 

(c) (d) 

(e) (f ) 

lim
x l 2

h�x� � 0lim
x l 2

t�x� � �2lim
x l 2

f �x� � 4

lim
x l 2

�t�x��3lim
x l 2

� f �x� � 5t�x��

lim
x l 2

3f �x�
t�x�

lim
x l 2

sf �x�

lim
x l 2

t�x�h�x�
f �x�

lim
x l2

t�x�
h�x�
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1.4 EXERCISES

2. The graphs of and t are given. Use them to evaluate each
limit, if it exists. If the limit does not exist, explain why.

(a) (b)

(c) (d)

(e) (f )

f

x1

y

y=ƒ

1

0 x

y

1

y=©

1

lim
x l1

� f �x� � t�x��lim
x l2

� f �x� � t�x��

lim
x l�1

f �x�
t�x�

lim
x l0

� f �x�t�x��

lim
x l1

s3 � f �x�lim
x l2

�x 3 f �x��

SOLUTION In order to apply Equation 6, we first rewrite the function by multiply-
ing and dividing by 7:

Notice that as , we have , and so, by Equation 6 with ,

Thus

■

EXAMPLE 11 Evaluate .

SOLUTION

(by Equation 6)
■

sin 7x

4x
�

7

4 � sin 7x

7x 	
x l 0 7x l 0 � � 7x

lim
x l 0

sin 7x

7x
� lim

x l 0

sin 7x

7x
� 1

lim
x l 0

sin 7x

4x
� lim

x l 0

7

4 � sin 7x

7x 	
�

7

4
 lim
x l 0

sin 7x

7x
�

7

4
� 1 �

7

4

lim
� l 0

cos � � 1

�

lim
� l 0

cos � � 1

�
� lim

� l 0
� cos � � 1

�
�

cos � � 1

cos � � 1	 � lim
� l 0

cos2� � 1

� �cos � � 1�

� lim
� l 0

�sin2�

� �cos � � 1�
� �lim

� l 0
� sin �

�
�

sin �

cos � � 1	
� �lim

� l 0

sin �

�
� lim

� l 0

sin �

cos � � 1

� �1 � � 0

1 � 1	 � 0

SECTION 1.4  CALCULATING LIMITS 43

Note that .sin 7x � 7 sin x

■ We multiply numerator and denomi-
nator by in order to put the
function in a form in which we can use
the limits we know.

cos � � 1
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;29.(a) Estimate the value of

by graphing the function .
(b) Make a table of values of for x close to 0 and guess

the value of the limit.
(c) Use the Limit Laws to prove that your guess is correct.

; 30. (a) Use a graph of

to estimate the value of to two decimal
places.

(b) Use a table of values of to estimate the limit to four
decimal places.

(c) Use the Limit Laws to find the exact value of the limit.

; 31. Use the Squeeze Theorem to show that
. Illustrate by graphing the func-

tions , and on
the same screen.

; 32. Use the Squeeze Theorem to show that

Illustrate by graphing the functions and (in the nota-
tion of the Squeeze Theorem) on the same screen.

33. If for , find .

34. If for all , evaluate .

35. Prove that 

36. Prove that .

37–42 ■ Find the limit, if it exists. If the limit does not exist,
explain why.

37. 38.

39. 40.

41. 42.

43. Let .

(a) Find

(i) (ii) 

lim
x l0

x

s1 � 3x � 1

f �x� � x�(s1 � 3x � 1)
f �x�

f �x� �
s3 � x � s3 

x

limx l 0 f �x�

f �x�

limx l 0 �x 2 cos 20�x� � 0
h�x� � x 2f �x� � �x 2, t�x� � x 2 cos 20�x

lim
x l0

sx 3 � x 2 sin 
�

x
� 0

hf, t,

lim
x l 4 

f �x�x � 04x � 9 � f �x� � x 2 � 4x � 7

lim
x l 1

t�x�x2x � t�x� � x 4 � x 2 � 2

lim
x l0

x 4 cos 
2

x
� 0.

lim
x l0�

sx �1 � sin2�2��x�� � 0

lim
x l�6

2x � 12

� x � 6 �lim
x l 3

(2x � � x � 3 �)

lim
x l�2

2 � � x �
2 � x

lim
x l0.5�

2x � 1

� 2x 3 � x 2 �

lim
x l0� � 1

x
�

1

� x � 	lim
x l0� �1

x
�

1

� x � 	

t�x� �
x 2 � x � 6

� x � 2 �

lim
x l2�

t�x�lim
x l2�

t�x�

3–9 ■ Evaluate the limit and justify each step by indicating the
appropriate Limit Law(s).

3.

4.

5. 6.

7. 8.

9.

10. (a) What is wrong with the following equation?

(b) In view of part (a), explain why the equation

is correct.

11–28 ■ Evaluate the limit, if it exists.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

lim
x l3

�5x 3 � 3x 2 � x � 6�

lim
xl �1

�x 4 � 3x��x 2 � 5x � 3�

lim
ul�2

su 4 � 3u � 6lim
t l �2

t 4 � 2

2t 2 � 3t � 2

lim
x l 0

cos 4 x

5 � 2x 3lim
x l 8

(1 � s
3 x )�2 � 6x 2 � x 3�

lim
� l��2

� sin �

x 2 � x � 6

x � 2
� x � 3

lim
x l2

x 2 � x � 6

x � 2
� lim

x l2
�x � 3�

lim
x l 4

x 2 � 4x

x 2 � 3x � 4
lim
x l5

x 2 � 6x � 5

x � 5

lim
x l�1

x 2 � 4x

x 2 � 3x � 4
lim
x l5

x 2 � 5x � 6

x � 5

lim
x l�1

2x 2 � 3x � 1

x 2 � 2x � 3
lim

t l�3

t 2 � 9

2t 2 � 7t � 3

lim
h l0

�2 � h�3 � 8

h
lim
hl0

��5 � h�2 � 25

h

lim
x l�1

x 2 � 2x � 1

x 4 � 1
lim

x l�2

x � 2

x 3 � 8

lim
ul 2

s4u � 1 � 3

u � 2
lim
h l 0

s9 � h � 3

h

lim
t l 0

�1

t
�

1

t 2 � t	lim
x l 16

4 � sx

16x � x 2

lim
x l�4

sx 2 � 9 � 5

x � 4
lim

x l�4

1

4
�

1

x

4 � x

lim
h l 0

1

�x � h�2 �
1

x 2

h
lim
h l 0

�x � h�3 � x 3

h
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55. 56.

57. If is a polynomial, show that .

58. If r is a rational function, use Exercise 57 to show that
for every number a in the domain of r.

59. To prove that sine has the Direct Substitution Property
we need to show that for every real
number a. If we let , then and 

. So an equivalent statement is that

Use to show that this is true.

60. Prove that cosine has the Direct Substitution Property.

61. If , find .

62. Prove that if and exists and is
not 0, then

does not exist

63. Show by means of an example that
may exist even though neither nor
exists.

64. Show by means of an example that may
exist even though neither nor exists.

65. Is there a number such that

exists? If so, find the value of a and the value of the limit.

66. The figure shows a fixed circle with equation
and a shrinking circle with radius

and center the origin. P is the point , Q is the upper
point of intersection of the two circles, and R is the point of
intersection of the line PQ and the -axis. What happens to
R as shrinks, that is, as ?

lim x l a sin x � sin a
h � x � a x � a � h

x l a &? h l 0

lim
h l0

sin�a � h� � sin a

lim
x l 1

f �x� � 8

x � 1
� 10 lim

x l 1
f �x�

limx l a t�x� � 0 limx l a f �x�

lim
x l a

f �x�
t�x�

limx l a � f �x� � t�x��
limx l a f �x� limx l a t�x�

limx l a � f �x� t�x��
limx l a f �x� limx l a t�x�

lim
x l�2

3x 2 � ax � a � 3

x 2 � x � 2

C1

�x � 1�2 � y 2 � 1 C2 r
�0, r�

x
C2 r l 0�

x

y

0

P
Q

C™

C¡

R

a

1

lim xl a p�x� � p�a�p

limx l a r�x� � r�a�

lim
x l 0

sin�x 2�
x

lim
� l 0

sin �

� � tan �

(b) Does exist?
(c) Sketch the graph of .

44. Let

(a) Evaluate each of the following limits, if it exists.
(i) (ii) (iii)

(iv) (v) (vi)

(b) Sketch the graph of .

45. (a) If the symbol denotes the greatest integer function
defined in Example 8, evaluate
(i) (ii) (iii) 

(b) If n is an integer, evaluate
(i) (ii) 

(c) For what values of does exist?

46. Let , .
(a) Sketch the graph of 
(b) Evaluate each limit, if it exists.

(i) (ii)

(iii) (iv)

(c) For what values of does exist?

47. If , show that exists but is
not equal to .

48. In the theory of relativity, the Lorentz contraction formula

expresses the length L of an object as a function of its
velocity with respect to an observer, where is the
length of the object at rest and c is the speed of light. Find

and interpret the result. Why is a left-hand limit
necessary?

49–56 ■ Find the limit.

49. 50.

51. 52.

53. 54.

limx l 2 t�x�
t

x

3

2 � x 2

x � 3

    if  x � 1

    if  x � 1

    if  1 � x � 2

    if  x 	 2

t�x� �

t�1�lim
x l 1

t�x�lim
x l1�

t�x�

lim
x l 2

t�x�lim
x l 2�

t�x�lim
x l2�

t�x�

t


 �

lim
x l�2.4


x�lim
x l�2


x�lim
x l�2�


x�

lim
x l n�


x�lim
x ln�


x�

limx l a 
x�a

�� � x � �f �x� � 
cos x�
f.

lim
x l���2��

f �x�lim
x l 0

f �x�

lim
x l��2

f �x�lim
x l���2�� 

f �x�

limx l a f �x�a

limx l 2 f �x�f �x� � 
x� � 
�x�
f �2�

L � L0 s1 � v 2�c 2 

L0v

limv l c� L

lim
x l 0

sin 4x

sin 6x
lim
x l 0

sin 3x

x

lim
� l 0

cos � � 1

sin �
lim
t l 0

tan 6t

sin 2t

lim
x l 0

sin 3x sin 5x

x 2lim
x l 0

sin 3x

5x 3 � 4x
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46 CHAPTER 1 FUNCTIONS AND LIMITS

1.5 CONTINUITY
We noticed in Section 1.4 that the limit of a function as approaches can often 
be found simply by calculating the value of the function at . Functions with this 
property are called continuous at a. We will see that the mathematical definition of
continuity corresponds closely with the meaning of the word continuity in everyday
language. (A continuous process is one that takes place gradually, without interrup-
tion or abrupt change.)

DEFINITION A function is continuous at a number a if

Notice that Definition l implicitly requires three things if is continuous at a:

1. is defined (that is, a is in the domain of )

2. exists

3.

The definition says that is continuous at if approaches as approaches
. Thus a continuous function has the property that a small change in produces

only a small change in . In fact, the change in can be kept as small as we
please by keeping the change in sufficiently small.

If is defined near (in other words, is defined on an open interval containing
, except perhaps at ), we say that is discontinuous at a (or has a discontinuity

at ) if is not continuous at .
Physical phenomena are usually continuous. For instance, the displacement or

velocity of a vehicle varies continuously with time, as does a person’s height. But dis-
continuities do occur in such situations as electric currents. [See Example 6 in Sec-
tion 1.3, where the Heaviside function is discontinuous at because does
not exist.]

Geometrically, you can think of a function that is continuous at every number in an
interval as a function whose graph has no break in it. The graph can be drawn with-
out removing your pen from the paper.

EXAMPLE 1 Figure 2 shows the graph of a function f. At which numbers is f dis-
continuous? Why?

SOLUTION It looks as if there is a discontinuity when because the graph has a
break there. The official reason that f is discontinuous at 1 is that is not defined.

The graph also has a break when , but the reason for the discontinuity is
different. Here, is defined, but does not exist (because the left and
right limits are different). So f is discontinuous at 3.

What about ? Here, is defined and exists (because the left
and right limits are the same). But

So is discontinuous at 5. ■

Now let’s see how to detect discontinuities when a function is defined by a formula.

x a
a

f

lim
x la

f �x� � f �a�

f

f �a� f

lim
x la

f �x�

lim
x la

f �x� � f �a�

f a f �x� f �a�
f

f �x� f �x�
x

f a f
a a f f

a f a

0 lim t l 0 H�t�

f �1�
a � 3

f �3� lim x l3 f �x�

a � 5 f �5� lim x l5 f �x�

lim
x l 5

f �x� � f �5�

f

1

a
x

x

a � 1

FIGURE 2 

y

0 x1 2 3 4 5

f(a)

x0

y

a

y=ƒ

ƒ

approaches
f(a).

As x approaches a,

FIGURE 1 

■ As illustrated in Figure 1, if is con-
tinuous, then the points on the
graph of approach the point 
on the graph. So there is no gap in the
curve.

�a, f �a��f
�x, f �x��

f
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EXAMPLE 2 Where are each of the following functions discontinuous?

(a) (b) 

(c) (d) 

SOLUTION
(a) Notice that is not defined, so f is discontinuous at 2. Later we’ll see why
is continuous at all other numbers.

(b) Here is defined but

does not exist. (See Example 8 in Section 1.3.) So f is discontinuous at 0.

(c) Here is defined and

exists. But 

so is not continuous at 2.

(d) The greatest integer function has discontinuities at all of the integers
because does not exist if is an integer. (See Example 8 and Exercise 45
in Section 1.4.) ■

Figure 3 shows the graphs of the functions in Example 2. In each case the graph
can’t be drawn without lifting the pen from the paper because a hole or break or jump
occurs in the graph. The kind of discontinuity illustrated in parts (a) and (c) is called
removable because we could remove the discontinuity by redefining at just the 
single number 2. [The function is continuous.] The discontinuity in part
(b) is called an infinite discontinuity. The discontinuities in part (d) are called jump
discontinuities because the function “jumps” from one value to another.

f �x� �
x 2 � x � 2

x � 2
f �x� � � 1

x 2 if  x � 0

1 if  x � 0

f �x� � � x 2 � x � 2

x � 2
if  x � 2

1 if  x � 2

f �x� � 
x�

V

f �2� f

f �0� � 1

lim
x l 0

f �x� � lim
x l 0

1

x 2

f �2� � 1

lim
x l2

f �x� � lim
x l2

x 2 � x � 2

x � 2
� lim

x l2

�x � 2��x � 1�
x � 2

� lim
x l2

�x � 1� � 3

lim
x l2

f �x� � f �2�

f

f �x� � 
x�
lim x ln 
x� n

f
t�x� � x � 1

1 2 3

1

x

y

0

(d) ƒ=[x]

1 2

1

x

y

0

(c) ƒ=
if  x≠2

1 if x=2

≈-x-2

x-2(b) ƒ=
if  x≠0

1 if 

1

x=0

1

x

y

0
1 2

x

y

0

1

(a) ƒ=
≈-x-2

x-2

FIGURE 3 Graphs of the functions in Example 2

≈
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DEFINITION A function is continuous from the right at a number a if

and is continuous from the left at a if

EXAMPLE 3 At each integer , the function [see Figure 3(d)] is continu-
ous from the right but discontinuous from the left because

but
■

DEFINITION A function is continuous on an interval if it is continuous
at every number in the interval. (If f is defined only on one side of an endpoint
of the interval, we understand continuous at the endpoint to mean continuous
from the right or continuous from the left.)

EXAMPLE 4 Show that the function is continuous on the 
interval 

SOLUTION If , then using the Limit Laws, we have

(by Laws 2 and 7)

(by 11)

(by 2, 7, and 9)

Thus, by Definition l, is continuous at if . Similar calculations show
that

and    

so is continuous from the right at �1 and continuous from the left at 1. Therefore,
according to Definition 3, is continuous on .

The graph of is sketched in Figure 4. It is the lower half of the circle

■

lim
x la�

f �x� � f �a�

f

lim
x la�

f �x� � f �a�

f �x� � 
x�

lim
x ln�

f �x� � lim
x ln�


x� � n � f �n�

lim
x ln�

f �x� � lim
x ln�


x� � n � 1 � f �n�

f

f �x� � 1 � s1 � x 2 

��1, 1�.

�1 � a � 1

lim
x l a

f �x� � lim
x l a

(1 � s1 � x 2 )

� 1 � lim
x l a

s1 � x 2 

� 1 � slim
x l a

�1 � x 2 �

� 1 � s1 � a 2 

� f �a�

f a �1 � a � 1

3

f2

lim
x l1�

f �x� � 1 � f �1�lim
x l�1�

f �x� � 1 � f ��1�

f
��1, 1�f

f

x 2 � �y � 1�2 � 1

n
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1-1

1

x

y

0

ƒ=1-œ„„„„„1-≈

FIGURE 4 
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Instead of always using Definitions 1, 2, and 3 to verify the continuity of a func-
tion as we did in Example 4, it is often convenient to use the next theorem, which
shows how to build up complicated continuous functions from simple ones.

THEOREM If and are continuous at and is a constant, then the
following functions are also continuous at :

1. 2. 3.

4. 5. if 

PROOF Each of the five parts of this theorem follows from the corresponding Limit
Law in Section 1.4. For instance, we give the proof of part 1. Since and are con-
tinuous at , we have

Therefore

(by Law 1)

This shows that is continuous at . ■

It follows from Theorem 4 and Definition 3 that if and are continuous on an
interval, then so are the functions , and (if is never 0) . The
following theorem was stated in Section 1.4 as the Direct Substitution Property.

THEOREM
(a) Any polynomial is continuous everywhere; that is, it is continuous on

.
(b) Any rational function is continuous wherever it is defined; that is, it is

continuous on its domain.

PROOF
(a) A polynomial is a function of the form

where are constants. We know that

(by Law 7)

and (by 9)

This equation is precisely the statement that the function is a continuous 
function. Thus, by part 3 of Theorem 4, the function is continuous. Since 

f t a c
a

f � t f � t cf

ft
f

t
t�a� � 0

4

f t

a

lim
x l a

f �x� � f �a� and lim
x l a

t�x� � t�a�

lim
x l a

� f � t��x� � lim
x l a

� f �x� � t�x��

� lim
x l a

f �x� � lim
x l a

t�x�

� f �a� � t�a�

� � f � t��a�

f � t a

f t

f � t, f � t, cf, ft t f�t

� � ��
, 
�

P�x� � cnxn � cn�1xn�1 � � � � � c1x � c0

c0, c1, . . . , cn

lim
x l a

c0 � c0

lim
x l a

xm � am m � 1, 2, . . . , n

5

f �x� � xm

t�x� � cxm
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is a sum of functions of this form and a constant function, it follows from part 1
of Theorem 4 that is continuous.

(b) A rational function is a function of the form

where and are polynomials. The domain of is . We
know from part (a) that and are continuous everywhere. Thus, by part 5 of The-
orem 4, is continuous at every number in . ■

As an illustration of Theorem 5, observe that the volume of a sphere varies contin-
uously with its radius because the formula shows that is a polynomial
function of . Likewise, if a ball is thrown vertically into the air with a velocity of
50 ft�s, then the height of the ball in feet seconds later is given by the formula

. Again this is a polynomial function, so the height is a continuous
function of the elapsed time.

Knowledge of which functions are continuous enables us to evaluate some limits
very quickly, as the following example shows. Compare it with Example 1(b) in Sec-
tion 1.4.

EXAMPLE 5 Find .

SOLUTION The function

is rational, so by Theorem 5 it is continuous on its domain, which is . 
Therefore

■

It turns out that most of the familiar functions are continuous at every number in
their domains. For instance, Limit Law 10 (page 36) is exactly the statement that root
functions are continuous.

From the appearance of the graphs of the sine and cosine functions (Figure 11 in
Section 1.2), we would certainly guess that they are continuous. And in Section 1.4
we showed that

In other words, the sine and cosine functions are continuous everywhere. It follows
from part 5 of Theorem 4 that

is continuous except where cos . This happens when x is an odd integer mul-
tiple of , so y � tan x has infinite discontinuities when
and so on (see Figure 5).

P
P

f �x� �
P�x�
Q�x�

D � x � � � Q�x� � 0�fQP
QP

Df

VV�r� � 4
3 �r 3

r
t

h � 50t � 16t 2

lim
x l�2

x 3 � 2x 2 � 1

5 � 3x

f �x� �
x 3 � 2x 2 � 1

5 � 3x

{x � x � 5
3}

lim
x l�2

x 3 � 2x 2 � 1

5 � 3x
� lim

x l�2
f �x� � f ��2�

�
��2�3 � 2��2�2 � 1

5 � 3��2�
� �

1

11

lim
� l a

sin � � sin a lim
� l a

cos � � cos a

tan x �
sin x

cos x

x � 0
x � ���2, �3��2, �5��2,��2

Unless otherwise noted, all content on this page is © Cengage Learning.

50 CHAPTER 1 FUNCTIONS AND LIMITS

__
x

y

π0_π

1

π

2

3π

 2

π

2

3π

 2

FIGURE 5 
y=tan x

12280_ch01_ptg01_hr_042-051.qk_12280_ch01_ptg01_hr_042-051  11/16/11  12:12 PM  Page 50

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 1.5  CONTINUITY 51

THEOREM The following types of functions are continuous at every 
number in their domains: polynomials, rational functions, root functions,
trigonometric functions

EXAMPLE 6 On what intervals is each function continuous?

(a) (b)

(c)

SOLUTION 
(a) is a polynomial, so it is continuous on by Theorem 5(a).

(b) is a rational function, so by Theorem 5(b) it is continuous on its domain,
which is . Thus is continuous on the inter-
vals , , and .

(c) We can write , where

is continuous on by Theorem 6. is a rational function, so it is continuous
everywhere except when , that is, . is also a rational function, but
its denominator is never 0, so is continuous everywhere. Thus, by parts 1 and 2 of
Theorem 4, is continuous on the intervals and . ■

Another way of combining continuous functions and to get a new continuous
function is to form the composite function . This fact is a consequence of the fol-
lowing theorem.

THEOREM If is continuous at and then
In other words,

Intuitively, Theorem 7 is reasonable because if is close to , then is close to
, and since is continuous at , if is close to , then is close to . A

proof of Theorem 7 is given in Appendix D.

THEOREM If is continuous at and is continuous at , then the
composite function given by is continuous at .

This theorem is often expressed informally by saying “a continuous function of a
continuous function is a continuous function.”

PROOF Since is continuous at , we have

6

f �x� � x 100 � 2x 37 � 75 t�x� �
x 2 � 2x � 17

x 2 � 1

h�x� � sx �
x � 1

x � 1
�

x � 1

x 2 � 1

f ��
, 
�
t

D � x � x 2 � 1 � 0� � x � x � �1� t

��
, �1� ��1, 1� �1, 
�
h�x� � F�x� � G�x� � H�x�

F�x� � sx G�x� �
x � 1

x � 1
H�x� �

x � 1

x 2 � 1

F �0, 
� G
x � 1 � 0 x � 1 H

H
h �0, 1� �1, 
�

f t

f � t

f b lim
x la

t�x� � b, 
lim
x la

f �t�x�� � f �b�.
lim
x l a

f �t�x�� � f (lim
x l a

t�x�)

x a t�x�
b f b t�x� b f �t�x�� f �b�

t a f t�a�
f � t � f � t��x� � f �t�x�� a

t a

lim
x l a

t�x� � t�a�

7

8

■ This theorem says that a limit symbol
can be moved through a function sym-
bol if the function is continuous and the
limit exists. In other words, the order of
these two symbols can be reversed.
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Since is continuous at , we can apply Theorem 7 to obtain

which is precisely the statement that the function is continuous at ;
that is, is continuous at . ■

EXAMPLE 7 Where are the following functions continuous?

(a) (b) 

SOLUTION
(a) We have , where

Now is continuous on since it is a polynomial, and is also continuous every-
where by Theorem 6. Thus is continuous on by Theorem 8.

(b) Notice that can be broken up as the composition of four continuous functions:

or    

where

We know that each of these functions is continuous on its domain (by Theorems 5
and 6), so by Theorem 8, is continuous on its domain, which is

■

An important property of continuous functions is expressed by the following theo-
rem, whose proof is found in more advanced books on calculus.

THE INTERMEDIATE VALUE THEOREM Suppose that is continuous on
the closed interval and let be any number between and ,
where . Then there exists a number in such that .

The Intermediate Value Theorem states that a continuous function takes on every
intermediate value between the function values and . It is illustrated by Fig-
ure 6. Note that the value can be taken on once [as in part (a)] or more than once
[as in part (b)].

f b � t�a�

lim
x l a

f �t�x�� � f �t�a��

h�x� � f �t�x�� a
f � t a

h�x� � sin�x 2 � F�x� �
1

sx 2 � 7 � 4

h�x� � f �t�x��

t�x� � x 2 and f �x� � sin x

t � f
h � f � t �

F

F � f � t � h � k F�x� � f �t�h�k�x����

f �x� �
1

x
t�x� � x � 4 h�x� � sx k�x� � x 2 � 7

F

{x � � � sx 2 � 7 � 4} � �x � x � �3� � ���, �3� � ��3, 3� � �3, ��

f
�a, b� N f �a� f �b�

f �a� � f �b� c �a, b� f �c� � N

f �a� f �b�
N

(b)

0 x

y

f(b)

N

f(a)

a c£ b

y=ƒ

c™c¡

(a)

0 x

y

f(b)

N

f(a)

a c b

y=ƒ

FIGURE 6 

V

9
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If we think of a continuous function as a function whose graph has no hole or
break, then it is easy to believe that the Intermediate Value Theorem is true. In geo-
metric terms it says that if any horizontal line is given between and

as in Fig ure 7, then the graph of can’t jump over the line. It must intersect
somewhere.

It is important that the function in Theorem 9 be continuous. The Intermediate
Value Theorem is not true in general for discontinuous functions (see Exercise 36).

One use of the Intermediate Value Theorem is in locating roots of equations as in
the following example.

EXAMPLE 8 Show that there is a root of the equation

between 1 and 2.

SOLUTION Let . We are looking for a solution of the
given equation, that is, a number between 1 and 2 such that . Therefore
we take , , and in Theorem 9. We have

and

Thus ; that is, is a number between and . Now is
continuous since it is a polynomial, so the Intermediate Value Theorem says there 
is a number between 1 and 2 such that . In other words, the equation

has at least one root in the interval .
In fact, we can locate a root more precisely by using the Intermediate Value 

Theorem again. Since

a root must lie between 1.2 and 1.3. A calculator gives, by trial and error,

so a root lies in the interval . ■

We can use a graphing calculator or computer to illustrate the use of the Interme-
diate Value Theorem in Example 8. Figure 8 shows the graph of in the viewing rect-
angle by and you can see that the graph crosses the -axis between 1
and 2. Fig ure 9 shows the result of zooming in to the viewing rectangle by

.

y � N y � f �a�
y � f �b� f
y � N

f

4x 3 � 6x 2 � 3x � 2 � 0

f �x� � 4x 3 � 6x 2 � 3x � 2
c f �c� � 0

a � 1 b � 2 N � 0

f �1� � 4 � 6 � 3 � 2 � �1 � 0

f �2� � 32 � 24 � 6 � 2 � 12 � 0

f �1� � 0 � f �2� N � 0 f �1� f �2� f

c f �c� � 0
4x 3 � 6x 2 � 3x � 2 � 0 c �1, 2�

f �1.2� � �0.128 � 0 and f �1.3� � 0.548 � 0

f �1.22� � �0.007008 � 0 and f �1.23� � 0.056068 � 0

�1.22, 1.23�

f
��1, 3� ��3, 3� x

�1.2, 1.3�
��0.2, 0.2�

0.2

_0.2

1.2 1.3

FIGURE 9FIGURE 8

3

_3

_1 3

V
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1.5 EXERCISES

1. Write an equation that expresses the fact that a function 
is continuous at the number 4.

2. If is continuous on , what can you say about its
graph?

3. (a) From the graph of , state the numbers at which is
discontinuous and explain why.

(b) For each of the numbers stated in part (a), determine
whether is continuous from the right, or from the left, 
or neither.

4. From the graph of , state the intervals on which is 
continuous.

5–8 ■ Sketch the graph of a function that is continuous except
for the stated discontinuity.

5. Discontinuous, but continuous from the right, at 2

6. Discontinuities at and 4, but continuous from the left at
and from the right at 4

7. Removable discontinuity at 3, jump discontinuity at 5

8. Neither left nor right continuous at , continuous only
from the left at 2

f

f ���, ��

f f

f

y

x
_4 2 4 6_2

0

t t

y

x
_4 2 4 6_2 8

f

�1
�1

�2

9. The toll charged for driving on a certain stretch of a toll
road is $5 except during rush hours (between 7 AM and 
10 AM and between 4 PM and 7 PM) when the toll is $7.
(a) Sketch a graph of as a function of the time , mea-

sured in hours past midnight.
(b) Discuss the discontinuities of this function and their 

significance to someone who uses the road.

10. Explain why each function is continuous or discontinuous.
(a) The temperature at a specific location as a function of

time
(b) The temperature at a specific time as a function of the

distance due west from New York City
(c) The altitude above sea level as a function of the distance

due west from New York City
(d) The cost of a taxi ride as a function of the distance 

traveled
(e) The current in the circuit for the lights in a room as a

function of time

11. Suppose and are continuous functions such that 
and . Find .

12–13 ■ Use the definition of continuity and the properties of
limits to show that the function is continuous at the given num-
ber .

12. ,  

13. ,  

14. Use the definition of continuity and the properties of 
limits to show that the function is 
continuous on the interval .

15–18 ■ Explain why the function is discontinuous at the given
number . Sketch the graph of the function.

15.

16.

17.

T

T t

f t

t�2� � 6 lim x l2 �3 f �x� � f �x�t�x�� � 36 f �2�

a

f �x� � 3x 4 � 5x � s
3 x 2 � 4 a � 2

f �x� � �x � 2x 3 �4 a � �1

f �x� � xs16 � x2 

��4, 4�

a

f �x� �
1

x � 2
a � �2

f �x� � 	 1

x � 2

1

    if  x � �2

    if  x � �2

a � �2

f �x� � 	1 � x 2

1
x

if x � 1

if x � 1
a � 1

In fact, the Intermediate Value Theorem plays a role in the very way these graph-
ing devices work. A computer calculates a finite number of points on the graph and
turns on the pixels that contain these calculated points. It assumes that the function is
continuous and takes on all the intermediate values between two consecutive points.
The computer therefore connects the pixels by turning on the intermediate pixels.
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where is the mass of the earth, is its radius, and is
the gravitational constant. Is a continuous function of ?

33. For what value of the constant is the function continu-
ous on ?

34. Find the values of and that make continuous
everywhere.

35. Which of the following functions has a removable dis-
continuity at ? If the discontinuity is removable, find a
function that agrees with for and is continuous
at .

(a) ,  

(b) ,  

(c) ,  

36. Suppose that a function is continuous on [0, 1] except at
0.25 and that and . Let . Sketch
two pos sible graphs of , one showing that might not sat-
isfy the conclusion of the Intermediate Value Theorem and
one showing that might still satisfy the conclusion of the
Intermediate Value Theorem (even though it doesn’t satisfy
the hypothesis).

37. If , show that there is a number
such that .

38. Suppose is continuous on and the only solutions of
the equation are and . If ,
explain why .

39–42 ■ Use the Intermediate Value Theorem to show that
there is a root of the given equation in the specified interval.

39. ,  

40. ,

41. ,  

42. ,  

c f
���, ��

f �x� � 	cx 2 � 2x

x 3 � cx

if  x � 2

if  x � 2

a b f

f �x� �

x 2 � 4

x � 2

ax 2 � bx � 3

2x � a � b

if x � 2

if  2 	 x � 3

if x � 3

f
a

t f x � a
a

f �x� �
x 4 � 1

x � 1
a � 1

f �x� �
x 3 � x 2 � 2x

x � 2
a � 2

f �x� � �sin x � a � 


f
f �0� � 1 f �1� � 3

f f

f

f �x� � x 2 � 10 sin x c
f �c� � 1000

f �1, 5�
f �x� � 6 x � 1 x � 4 f �2� � 8
f �3� � 6

x 4 � x � 3 � 0 �1, 2�

s
3 x � 1 � x �0, 1�

N � 2

cos x � x �0, 1�

sin x � x 2 � x �1, 2�

GRM
rF18.

19–24 ■ Explain, using Theorems 4, 5, 6, and 8, why the func-
tion is continuous at every number in its domain. State the
domain.

19. 20.

21. 22.

23. 24.

; 25–26 ■ Locate the discontinuities of the function and
illustrate by graphing.

25. 26.

27–28 ■ Use continuity to evaluate the limit.

27. 28.

29–30 ■ Show that is continuous on .

29.

30.

31. Find the numbers at which the function

is discontinuous. At which of these points is continuous
from the right, from the left, or neither? Sketch the graph
of .

32. The gravitational force exerted by the earth on a unit mass
at a distance r from the center of the planet is

f �x� � 	 x 2 � x

x 2 � 1

1

    if  x � 1

    if  x � 1

a � 1

F�x� �
2x 2 � x � 1

x 2 � 1
G�x� �

x 2 � 1

2x 2 � x � 1

Q�x� �
s
3 x � 2

x 3 � 2
B�x� �

tan x

s4 � x 2 

M�x� � 1 �
1

x
F�x� � sin�cos�sin x��

y �
1

1 � sin x
y � tan sx

lim
x l4

5 � sx

s5 � x
lim
x l


sin�x � sin x�

f ���, ��

f �x� � 	 x 2 if  x � 1

sx if  x � 1

f �x� � 	sin x if x � 

4

cos x if x � 

4

f �x� � 	x � 2

2x 2

2 � x

if x � 0

if  0 	 x 	 1

if x � 1

f

f

F�r� �

GMr

R 3 if  r � R

GM

r 2 if  r � R
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1.6 LIMITS INVOLVING INFINITY
In this section we investigate the global behavior of functions and, in particular,
whether their graphs approach asymptotes, vertical or horizontal.

INFINITE LIMITS

In Example 8 in Section 1.3 we concluded that

does not exist

by observing, from the table of values and the graph of in Figure 1, that the
values of can be made arbitrarily large by taking close enough to 0. Thus the
values of do not approach a number, so does not exist.

To indicate this kind of behavior we use the notation

| This does not mean that we are regarding as a number. Nor does it mean that the
limit exists. It simply expresses the particular way in which the limit does not exist:

can be made as large as we like by taking close enough to 0.
In general, we write symbolically

to indicate that the values of become larger and larger (or “increase without
bound”) as approaches .

lim
x l0

1

x 2

y � 1
x2

1
x2 x
f �x� limx l 0 �1
x 2 �

lim
x l0

1

x 2 � �

�

1
x 2 x

lim
x la

f �x� � �

f �x�
x a
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49. Show that the function

is continuous on .

50. (a) Show that the absolute value function is 
continuous everywhere.

(b) Prove that if is a continuous function on an interval,
then so is .

(c) Is the converse of the statement in part (b) also true? 
In other words, if is continuous, does it follow 
that is continuous? If so, prove it. If not, find a 
counterexample.

51. A Tibetan monk leaves the monastery at 7:00 AM and 
takes his usual path to the top of the mountain, arriving at
7:00 P M. The following morning, he starts at 7:00 AM at
the top and takes the same path back, arriving at the monas-
tery at 7:00 P M. Use the Intermediate Value Theorem to
show that there is a point on the path that the monk will
cross at exactly the same time of day on both days.

� f �
� f �

f

F�x� � � x �
f

f �x� � 	x 4 sin�1
x�
0

if  x � 0

if  x � 0

���, ��

43–44 ■ (a) Prove that the equation has at least one real root.
(b) Use your calculator to find an interval of length 0.01 that
contains a root.

43. 44.

;45–46 ■ (a) Prove that the equation has at least one real root.
(b) Use your graphing device to find the root correct to three
decimal places.

45. 46.

47. Is there a number that is exactly 1 more than its cube?

48. If and are positive numbers, prove that the equation

has at least one solution in the interval .

x 5 � x 2 � 4 � 0 sx � 5 �
1

x � 3

ba

a

x 3 � 2x 2 � 1
�

b

x 3 � x � 2
� 0

��1, 1�

cos x � x 3 x 5 � x 2 � 2x � 3 � 0
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DEFINITION The notation

means that the values of can be made arbitrarily large (as large as we
please) by taking sufficiently close to (on either side of ) but not equal to .

Another notation for is

as    

Again, the symbol is not a number, but the expression is often read
as

“the limit of , as approaches , is infinity”

or “ becomes infinite as approaches ”

or “ increases without bound as approaches ”

This definition is illustrated graphically in Figure 2.
Similarly, as shown in Figure 3,

means that the values of are as large negative as we like for all values of that
are sufficiently close to , but not equal to .

The symbol can be read as “the limit of , as approaches
, is negative infinity” or “ decreases without bound as approaches .” As an

example we have

Similar definitions can be given for the one-sided infinite limits

remembering that “ ” means that we consider only values of that are less than
, and similarly “ ” means that we consider only . Illustrations of these

four cases are given in Figure 4.

lim
x la

f �x� � �

f �x�
x a a a

limx l a f �x� � �
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f �x� � ��

f �x� x
a a

limx l a f �x� � �� f �x� x
a f �x� x a

lim
x l0

 ��
1

x 2� � ��

lim
x la�

f �x� � � lim
x la�

f �x� � �

lim
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f �x� � �� lim
x la�

f �x� � ��

x l a� x
a x l a� x � a
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0

FIGURE 4 

y

x

y

x

y

x

y

x

Unless otherwise noted, all content on this page is © Cengage Learning.

SECTION 1.6  LIMITS INVOLVING INFINITY 57

■ A more precise version of Definition 1
is given at the end of this section.

x    a

FIGURE 2 
lim ƒ=`

x=a

y=ƒ

a0 x

y

0 x

y

x=a

y=ƒ

a

FIGURE 3 
lim ƒ=_`
x    a

■ When we say that a number is “large
negative,” we mean that it is negative but
its magnitude (absolute value) is large.
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DEFINITION The line is called a vertical asymptote of the curve
if at least one of the following statements is true:

For instance, the -axis is a vertical asymptote of the curve because
. In Figure 4 the line is a vertical asymptote in each of the 

four cases shown.

EXAMPLE 1 Find and .

SOLUTION If is close to 3 but larger than 3, then the denominator is a
small positive number and is close to 6. So the quotient is a large
positive number. Thus, intuitively, we see that

Likewise, if is close to 3 but smaller than 3, then is a small negative number
but is still a positive number (close to 6). So is a numerically large
negative number. Thus

The graph of the curve is given in Figure 5. The line is a
vertical asymptote. ■

EXAMPLE 2 Find the vertical asymptotes of .

SOLUTION Because

there are potential vertical asymptotes where . In fact, since 
as and as , whereas is positive (and not
near 0) when x is near , we have

and    

This shows that the line is a vertical asymptote. Similar reasoning shows 
that the lines , where n is an integer, are all vertical asymptotes of

. The graph in Figure 6 confirms this. ■

LIMITS AT INFINITY

In computing infinite limits, we let approach a number and the result was that the
values of became arbitrarily large (positive or negative). Here we let become arbi-
trarily large (positive or negative) and see what happens to .

x � a
y � f �x�

lim
x la

f �x� � � lim
x la�

f �x� � � lim
x la�

f �x� � �

lim
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f �x� � �� lim
x la�

f �x� � �� lim
x la�

f �x� � ��

y y � 1
x 2

limx l 0 �1
x 2 � � � x � a

2

lim
x l3�

2x

x � 3
lim

x l3�

2x

x � 3

x x � 3
2x 2x
�x � 3�

lim
x l3�

2x

x � 3
� �

x x � 3
2x 2x
�x � 3�
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x l3�

2x
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� ��

y � 2x
�x � 3� x � 3
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tan x �
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cos x � 0 cos x l 0�

x l �
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2
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2��

tan x � � lim
x l�

2��
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2
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2
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Let’s begin by investigating the behavior of the function defined by

as becomes large. The table at the left gives values of this function correct to six 
decimal places, and the graph of has been drawn by a computer in Figure 7.

As grows larger and larger you can see that the values of get closer and clos-
er to 1. In fact, it seems that we can make the values of as close as we like to 1
by taking sufficiently large. This situation is expressed symbolically by writing

In general, we use the notation

to indicate that the values of approach as becomes larger and larger.

DEFINITION Let be a function defined on some interval . Then

means that the values of can be made as close to as we like by taking
sufficiently large.

Another notation for is

as  

The symbol does not represent a number. Nonetheless, the expression
is often read as 

“the limit of , as approaches infinity, is ”

or “the limit of , as becomes infinite, is ”

or “the limit of , as increases without bound, is ”

The meaning of such phrases is given by Definition 3. A more precise definition, sim-
ilar to the definition of Section 1.3, is given at the end of this section.

f

f �x� �
x 2 � 1

x 2 � 1

x
f

1
0

y=1

y=
≈-1

≈+1

FIGURE 7 
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f �x� L x

f �a, ��
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x l�

f �x� � L

f �x� L x

limx l � f �x� � L

f �x� l L x l �

� lim
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f �x� � L

f �x� x L
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Geometric illustrations of Definition 3 are shown in Figure 8. Notice that there are
many ways for the graph of to approach the line (which is called a horizon-
tal asymptote) as we look to the far right of each graph.

Referring back to Figure 7, we see that for numerically large negative values of ,
the values of are close to 1. By letting decrease through negative values with-
out bound, we can make as close to 1 as we like. This is expressed by writing

In general, as shown in Figure 9, the notation

means that the values of can be made arbitrarily close to by taking sufficiently
large negative.

Again, the symbol does not represent a number, but the expression
is often read as

“the limit of , as x approaches negative infinity, is L”

DEFINITION The line is called a horizontal asymptote of the
curve if either 

For instance, the curve illustrated in Figure 7 has the line as a horizontal
asymptote because 

The curve sketched in Figure 10 has both and as horizontal
asymptotes because

x
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x    `

FIGURE 8 
Examples illustrating lim ƒ=L

x    _`

FIGURE 9
Examples illustrating  lim  ƒ=L
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EXAMPLE 3 Find the infinite limits, limits at infinity, and asymptotes for the func-
tion whose graph is shown in Figure 11.

SOLUTION We see that the values of become large as from both
sides, so

Notice that becomes large negative as x approaches 2 from the left, but large
positive as x approaches 2 from the right. So

Thus both of the lines and are vertical asymptotes.
As x becomes large, it appears that approaches 4. But as x decreases through

neg ative values, approaches 2. So

This means that both and are horizontal asymptotes. ■

EXAMPLE 4 Find and .

SOLUTION Observe that when is large, is small. For instance,

In fact, by taking large enough, we can make as close to 0 as we please.
Therefore, according to Definition 3, we have 

Similar reasoning shows that when is large negative, is small negative, so we
also have

It follows that the line (the -axis) is a horizontal asymptote of the curve
. (This is an equilateral hyperbola; see Figure 12.) ■
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FIGURE 11

0 x

y

2

2

x

x    ` x    _`

1

x

1

x

0

y

FIGURE 12

lim    =0,   lim     =0

y=
1

x

12280_ch01_ptg01_hr_052-061.qk_12280_ch01_ptg01_hr_052-061  11/16/11  12:13 PM  Page 61

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Most of the Limit Laws that were given in Section 1.4 also hold for limits at infin-
ity. It can be proved that the Limit Laws listed in Section 1.4 (with the exception of
Laws 9 and 10) are also valid if “ ” is replaced by “ ” or “ .” In
particular, if we combine Law 6 with the results of Example 4 we obtain the follow-
ing important rule for calculating limits.

If is a positive integer, then

EXAMPLE 5 Evaluate

SOLUTION As becomes large, both numerator and denominator become large, so
it isn’t obvious what happens to their ratio. We need to do some preliminary algebra. 

To evaluate the limit at infinity of any rational function, we first divide both the
numerator and denominator by the highest power of that occurs in the denomi-
nator. (We may assume that , since we are interested only in large values of .)
In this case the highest power of is , and so, using the Limit Laws, we have

[by ]

A similar calculation shows that the limit as is also . ■

EXAMPLE 6 Compute .

SOLUTION Because both and x are large when x is large, it’s difficult to
see what happens to their difference, so we use algebra to rewrite the function. We
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■ Figure 13 illustrates Example 5 by
showing how the graph of the given
rational function approaches the
horizontal asymptote .y � 3

5

1

y=0.6

x

y

0

FIGURE 13

y=
3≈-x-2

5≈+4x+1
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first multiply numerator and denominator by the conjugate radical:

Notice that the denominator of this last expression becomes large as
(it’s bigger than ). So

Figure 14 illustrates this result. ■

EXAMPLE 7 Evaluate .

SOLUTION If we let , then as . Therefore

(See Exercise 59.) ■

EXAMPLE 8 Evaluate .

SOLUTION As x increases, the values of sin x oscillate between and infinitely
often. Thus does not exist. ■

INFINITE LIMITS AT INFINITY

The notation

is used to indicate that the values of become large as becomes large. Similar
meanings are attached to the following symbols:

EXAMPLE 9 Find and .

SOLUTION When becomes large, also becomes large. For instance,

In fact, we can make as big as we like by taking large enough. Therefore we
can write

Similarly, when is large negative, so is . Thus

These limit statements can also be seen from the graph of in Figure 15. ■
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� 0
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1

x
� lim

t l 0�
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f �x� x

lim
x l��

f �x� � � lim
x l�

f �x� � �� lim
x l��

f �x� � ��

lim
x l �

x 3 lim
x l��

x 3

x x 3

103 � 1000 1003 � 1,000,000 10003 � 1,000,000,000

x 3 x

lim
x l �

x 3 � �

x x 3

lim
x l��

x 3 � ��

y � x 3

Unless otherwise noted, all content on this page is © Cengage Learning.

SECTION 1.6  LIMITS INVOLVING INFINITY 63

■ We can think of the given function as
having a denominator of 1.

FIGURE 14
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x

y

0

FIGURE 15
lim x#=`,   lim  x#=_`
x    ` x    _`
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EXAMPLE 10 Find .

| SOLUTION It would be wrong to write

The Limit Laws can’t be applied to infinite limits because is not a number 
( can’t be defined). However, we can write

because both and become arbitrarily large. ■

EXAMPLE 11 Find .

SOLUTION We divide numerator and denominator by (the highest power of that
occurs in the denominator):

because and as . ■

PRECISE DEFINITIONS

The following is a precise version of Definition 1.

DEFINITION Let be a function defined on some open interval that con-
tains the number , except possibly at itself. Then

means that for every positive number there is a positive number such that

if    

This says that the values of can be made arbitrarily large (larger than any given
number ) by taking close enough to (within a distance , where depends on ,
but with ). A geometric illustration is shown in Figure 16.

Given any horizontal line , we can find a number such that if we
restrict to lie in the interval but , then the curve lies
above the line . You can see that if a larger is chosen, then a smaller may
be required.

lim
x l�

�x 2 � x�

lim
x l�

�x 2 � x� � lim
x l�

x 2 � lim
x l�

x � � � �

�
� � �
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x l�

�x 2 � x� � lim
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x�x � 1� � �

x x � 1
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x l�

x 2 � x

3 � x

x x
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x l�

x 2 � x

3 � x
� lim

x l�

x � 1
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� 1

� ��

x � 1 l � 3�x � 1 l �1 x l �

f
a a
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x l a
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f �x�
M x a � � M
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FIGURE 16
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■ www.stewartcalculus.com
See Additional Example A.
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EXAMPLE 12 Use Definition 6 to prove that .

SOLUTION Let be a given positive number. According to Definition 6, we need
to find a number such that

if    then    that is    

But . We can choose because

if    then    

Therefore, by Definition 6,

■

Similarly, means that for every negative number there is a
positive number such that if , then .

Definition 3 can be stated precisely as follows.

DEFINITION Let be a function defined on some interval . Then

means that for every there is a corresponding number such that

if    

In words, this says that the values of can be made arbitrarily close to (with-
in a distance , where is any positive number) by taking sufficiently large (larger
than , where depends on ). Graphically it says that by choosing large enough
(larger than some number ) we can make the graph of lie between the given hor-
izontal lines and as in Figure 17. This must be true no matter
how small we choose . 
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N N 	 x
N f
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FIGURE 17
lim ƒ=L
x    `

7

Module 1.3/1.6 illustrates 
Definition 7 graphically and numerically.
TEC
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Figure 18 shows that if a smaller value of is chosen, then a larger value of may
be required.

Similarly, means that for every there is a corresponding
number such that if , then .

EXAMPLE 13 Use Definition 7 to prove that .

SOLUTION Given , we want to find such that

if    then    

In computing the limit we may assume that . Then .
Let’s choose . So

if    then    

Therefore, by Definition 7,

Figure 19 illustrates the proof by showing some values of and the corresponding
values of .
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1

	

lim
x l �

1

x
� 0

	
N

FIGURE 19

x

y

0 N=1

∑=1

x

y

0 N=5

∑=0.2

x

y

0 N=10

∑=0.1

■ www.stewartcalculus.com
See Additional Example B.
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1.6 EXERCISES

1. For the function whose graph is given, state the following.

(a) (b)

(c) (d)

(e) The equations of the asymptotes

2. For the function whose graph is given, state the following.

(a) (b)

(c) (d)

(e)

(f) The equations of the asymptotes

f

lim
x l�

f �x� lim
x l��

f �x�

lim
x l1

f �x� lim
x l3

f �x�

1 x

y

1

t

lim
x l�

t�x� lim
x l��

t�x�

lim
x l 0

t�x� lim
x l2�

t�x�

lim
x l2�

t�x�

1 x

y

1

3–8 Sketch the graph of an example of a function that 
satisfies all of the given conditions.

3. ,  ,  

4. ,  ,  ,  

,  ,  

5.

6. ,  ,  ,  is odd

7.

8. is even

; 9. Guess the value of the limit

by evaluating the function for 
4, 5, 6, 7, 8, 9, 10, 20, 50, and . Then use a graph of 
to support your guess.

10. Determine and 

(a) by evaluating for values of that
approach 1 from the left and from the right,

(b) by reasoning as in Example 1, and

; (c) from a graph of .

lim
x l 0

f �x� � �� lim
x l��

f �x� � 5 lim
x l�

f �x� � �5

lim
x l 2

f �x� � � lim
x l�2�

f �x� � � lim
x l�2�

f �x� � ��

lim
x l��

f �x� � 0 lim
x l�

f �x� � 0 f �0� � 0

lim
x l2

f �x� � ��, lim
x l�

f �x� � �, lim
x l��

f �x� � 0,

lim
x l0�

f �x� � �, lim
x l0�

f �x� � ��

lim
x l �

f �x� � 3 lim
x l2�

f �x� � � lim
x l2�

f �x� � �� f

f �0� � 3, lim
x l0�

f �x� � 4, lim
x l0�

f �x� � 2,

lim
x l��

f �x� � ��, lim
x l 4�

f �x� � ��, lim
x l 4�

f �x� � �,

lim
x l�

f �x� � 3

lim
x l 3

f �x� � ��, lim
x l�

f �x� � 2, f �0� � 0, f

f

lim
x l�

x 2

2x

x � 0, 1, 2, 3,f �x� � x 2�2x

f100

lim
x l1�

1

x 3 � 1
lim

x l1�

1

x 3 � 1
xf �x� � 1��x 3 � 1�

f

Finally we note that an infinite limit at infinity can be defined as follows. The geo-
metric illustration is given in Figure 20.

DEFINITION Let be a function defined on some interval . Then

means that for every positive number there is a corresponding positive
number N such that

if    then    

Similar definitions apply when the symbol is replaced by .

lim
x l �

f �x� � �

M

x � N f �x� � M

� ��

f �a, ��8
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FIGURE 20
lim ƒ=`
x    `

0 x

y

N

M

y=M
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(b) By calculating values of , give numerical estimates
of the limits in part (a).

(c) Calculate the exact values of the limits in part (a). Did
you get the same value or different values for these two
limits? [In view of your answer to part (a), you might
have to check your calculation for the second limit.]

; 35–36 ■ Find the horizontal and vertical asymptotes of each 
curve. Check your work by graphing the curve and estimating
the asymptotes.

35. 36.

; 37. (a) Estimate the value of

by graphing the function .
(b) Use a table of values of to guess the value of the

limit.
(c) Prove that your guess is correct.

; 38. (a) Use a graph of

to estimate the value of to one decimal
place.

(b) Use a table of values of to estimate the limit to
four decimal places.

(c) Find the exact value of the limit.

; 39. Estimate the horizontal asymptote of the function

by graphing for . Then calculate the equa-
tion of the asymptote by evaluating the limit. How do you
explain the discrepancy?

40. Find a formula for a function that has vertical asymptotes
and and horizontal asymptote .

41. Find a formula for a function that satisfies the following 
conditions:

,  ,  ,

,  

42. Evaluate the limits.

(a) (b)

43. A function is a ratio of quadratic functions and has a ver-
tical asymptote and just one -intercept, . It is
known that has a removable discontinuity at and

. Evaluate
(a) (b)

f �x�

y �
2x 2 � x � 1

x 2 � x � 2
F�x� �

x � 9

s4x 2 � 3x � 2

lim
x l��

(sx 2 � x � 1 � x)

f �x� � sx 2 � x � 1 � x
f �x�

f �x� � s3x 2 � 8x � 6 � s3x 2 � 3x � 1

lim x l � f �x�

f �x�

f �x� �
3x 3 � 500x 2

x 3 � 500x 2 � 100x � 2000

f �10 
 x 
 10

x � 1 x � 3 y � 1

f

lim
x l ��

f �x� � 0 lim
x l0

f �x� � �� f �2� � 0

lim
x l3�

f �x� � � lim
x l3�

f �x� � ��

lim
x l �

x sin 
1

x
lim
x l �

sx sin 
1

x

f
x � 4 x x � 1

f x � �1
limx l�1 f �x� � 2

f �0� lim
x l �

f �x�

; 11. Use a graph to estimate all the vertical and horizontal
asymptotes of the curve

; 12. (a) Use a graph of

to estimate the value of correct to two 
decimal places.

(b) Use a table of values of to estimate the limit to 
four decimal places.

13–33 ■ Find the limit.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25.

26.

27. 28.

29. 30.

31. 32.

33.

; 34. (a) Graph the function

How many horizontal and vertical asymptotes do you
observe? Use the graph to estimate the values of the
limits

and    

y �
x 3

x 3 � 2x � 1

f �x� � �1 �
2

x�x

lim x l � f �x�

f �x�

lim
x l�3�

x � 2

x � 3
lim

x l�3�

x � 2

x � 3

lim
x l��

cot xlim
x l1

2 � x

�x � 1�2

lim
x l 2�

x 2 � 2x

x 2 � 4x � 4
lim

x l 2��
x csc x

lim
x l �

1 � x 2

x 3 � x � 1
lim
x l �

3x � 2

2x � 1

lim
tl �

t � tst

2t 3�2 � 3t � 5
lim
t l �

st � t 2

2t � t 2

lim
x l �

x 2

sx 4 � 1
lim
x l �

�2x 2 � 1�2

�x � 1�2�x 2 � x�

lim
x l�

(s9x 2 � x � 3x)

lim
x l�

(sx 2 � ax � sx2 � bx )

lim
x l �

x 4 � 3x 2 � x

x 3 � x � 2
lim
x l�

sin2x

x 2

lim
x l�

cos x lim
x l ��

1 � x 6

x 4 � 1

lim
x l �

(x � sx ) lim
x l �

�x 2 � x 4 �

lim
x l ��

�x 4 � x 5 �

f �x� �
s2x 2 � 1

3x � 5

lim
x l��

s2x 2 � 1

3x � 5
lim
x l�

s2x 2 � 1

3x � 5
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50. (a) Show that .

; (b) By graphing the function in part (a) and the line
on a common screen, find a number such

that

if    

What if 1.9 is replaced by 1.99?

51. How close to do we have to take so that

52. Prove, using Definition 6, that .

53. Prove that .

; 54. For the limit 

illustrate Definition 7 by finding values of that corre-
spond to and .

; 55. Use a graph to find a number such that

if    

; 56. For the limit 

illustrate Definition 8 by finding a value of that corre-
sponds to .

57. (a) How large do we have to take so that ?
(b) Taking in , we have the statement

Prove this directly using Definition 7.

58. Prove, using Definition 8, that .

59. Prove that 

and

if these limits exist.

lim
x l�

4x 2 � 5x

2x 2 � 1
� 2

y � 1.9 N

4x 2 � 5x

2x 2 � 1
� 1.9

�3 x

1

�x � 3�4 � 10,000

lim
x l�3

1

�x � 3�4 � �

lim
x l �1�

5

�x � 1�3 � ��

lim
x l �

s4x2 � 1

x � 1
� 2

N
	 � 0.5 	 � 0.1

N

x � N then � 3x 2 � 1

2x 2 � x � 1
� 1.5 � � 0.05

lim
x l �

2x � 1

sx � 1
� �

N
M � 100

x 1�x 2 � 0.0001
n � 2

lim
x l �

1

x 2 � 0

lim
x l �

x 3 � �

lim
x l �

f �x� � lim
t l 0�

f �1�t�

lim
x l��

f �x� � lim
t l 0�

f �1�t�

x � N then

5

; 44. By the end behavior of a function we mean the behavior 
of its values as and as .
(a) Describe and compare the end behavior of the

functions

by graphing both functions in the viewing rectangles
by and by

.
(b) Two functions are said to have the same end behavior

if their ratio approaches 1 as . Show that P and
Q have the same end behavior.

45. Let and be polynomials. Find

if the degree of is (a) less than the degree of and 
(b) greater than the degree of .

46. Make a rough sketch of the curve ( an integer) 
for the following five cases:

(i) (ii) , odd

(iii) , even (iv) , odd

(v) , even

Then use these sketches to find the following limits.

(a) (b)

(c) (d)

47. Find if, for all ,

48. In the theory of relativity, the mass of a particle with 
velocity is

where is the mass of the particle at rest and is the
speed of light. What happens as ?

49. (a) A tank contains 5000 L of pure water. Brine that con-
tains 30 g of salt per liter of water is pumped into the
tank at a rate of 25 L�min. Show that the concentration
of salt minutes later (in grams per liter) is

(b) What happens to the concentration as ?

x l � x l ��

P�x� � 3x 5 � 5x 3 � 2x Q�x� � 3x 5

	�2, 2
 	�2, 2
 	�10, 10

	�10,000, 10,000


x l �

P Q

lim
x l �

P�x�
Q�x�

P Q
Q

y � x n n

n � 0 n � 0 n

n � 0 n n � 0 n

n � 0 n

lim
x l0�

x n lim
x l0�

x n

lim
x l�

x n lim
x l��

x n

limx l � f �x� x � 5

4x � 1

x
� f �x� �

4x 2 � 3x

x 2

v

m �
m0

s1 � v2�c2 

m0 c
v l c�

t

C�t� �
30t

200 � t

t l �
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CHAPTER 1 REVIEW
CONCEPT CHECK

TRUE-FALSE QUIZ

70 CHAPTER 1 FUNCTIONS AND LIMITS

1. (a) What is a function? What are its domain and range?
(b) What is the graph of a function?
(c) How can you tell whether a given curve is the graph of

a function?

2. Discuss four ways of representing a function. Illustrate your
discussion with examples.

3. (a) What is an even function? How can you tell if a func-
tion is even by looking at its graph? Give three examples
of an even function.

(b) What is an odd function? How can you tell if a function
is odd by looking at its graph? Give three examples of
an odd function.

4. What is an increasing function?

5. What is a mathematical model?

6. Give an example of each type of function.
(a) Linear function (b) Power function
(c) Exponential function (d) Quadratic function
(e) Polynomial of degree 5 (f) Rational function

7. Sketch by hand, on the same axes, the graphs of the follow-
ing functions.
(a) (b)
(c) (d)

8. Draw, by hand, a rough sketch of the graph of each function.
(a) (b)
(c) (d)
(e) (f)

9. Suppose that has domain and has domain .
(a) What is the domain of ?
(b) What is the domain of ?
(c) What is the domain of ?

10. How is the composite function defined? What is its
domain?

11. Suppose the graph of is given. Write an equation for 
each of the graphs that are obtained from the graph of 
as follows.
(a) Shift 2 units upward.

t�x� � x 2f �x� � x
j�x� � x 4h�x� � x 3

y � tan xy � sin x
y � 1�xy � 2x

y � sxy � � x �
BtAf

f � t

f t

f�t

f � t

f
f

(b) Shift 2 units downward.
(c) Shift 2 units to the right.
(d) Shift 2 units to the left.
(e) Reflect about the x-axis.
(f ) Reflect about the y-axis.
(g) Stretch vertically by a factor of 2.
(h) Shrink vertically by a factor of 2.
(i) Stretch horizontally by a factor of 2.
( j) Shrink horizontally by a factor of 2.

12. Explain what each of the following means and illustrate
with a sketch.
(a) (b)

(c) (d)

(e)

13. Describe several ways in which a limit can fail to exist.
Illustrate with sketches.

14. State the following Limit Laws.
(a) Sum Law (b) Difference Law
(c) Constant Multiple Law (d) Product Law
(e) Quotient Law (f) Power Law
(g) Root Law

15. What does the Squeeze Theorem say?

16. (a) What does it mean for f to be continuous at a?
(b) What does it mean for f to be continuous on the interval

? What can you say about the graph of such a 
function?

17. What does the Intermediate Value Theorem say?

18. (a) What does it mean to say that the line is a vertical
asymptote of the curve ? Draw curves to illus-
trate the various possibilities.

(b) What does it mean to say that the line is a horizon-
tal asymptote of the curve ? Draw curves to
illustrate the various possibilities.

lim
x la

f �x� � L lim
x la�

f �x� � L

lim
x la�

f �x� � L lim
x la

f �x� � �

lim
x l�

f �x� � L

���, ��

x � a
y � f �x�

y � L
y � f �x�

Determine whether the statement is true or false. If it is true, explain
why. If it is false, explain why or give an example that disproves the
statement.

1. If is a function, then .

2. If , then .

3. If is a function, then .

f f �s � t� � f �s� � f �t�

f �s� � f �t� s � t

f f �3x� � 3 f �x�

4. If and is a decreasing function, then
.

5. A vertical line intersects the graph of a function at most
once.

6. If and are functions, then .

x1 � x2 f
f �x1 � � f �x2 �

f t f � t � t � f
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1. Let be the function whose graph is given.
(a) Estimate the value of .
(b) Estimate the values of such that .
(c) State the domain of 
(d) State the range of 
(e) On what interval is increasing?
(f) Is even, odd, or neither even nor odd? Explain.

2. Determine whether each curve is the graph of a function 
of . If it is, state the domain and range of the function.
(a) (b)

f
f �2�
x f �x� � 3

f.
f.

f
f

y

x1

1

f

x

2

y

0 1x

2

y

0 1

x

17. If the line is a vertical asymptote of , then
is not defined at 1.

18. If and are polynomials and , then the rational
function has the vertical asymptote .

19. If is any real number, then .

20. If and , then there exists a number c
between 1 and 3 such that .

21. If f is continuous at 5 and and , then

22. If f is continuous on and and
then there exists a number r such that and .

23. Let be a function such that . Then 
there exists a positive number such that if ,
then .

24. If for all and exists, then
.

25. If is continuous at , so is .

26. If is continuous at , so is .

f t t�2� � 0
h�x� � f �x��t�x� x � 2

sx 2 � xx

f �3� � 0f �1� � 0
f �c� � 0

f �4� � 3f �5� � 2
limx l 2 f �4x 2 � 11� � 2.

f �1� � 3,f ��1� � 4	�1, 1

f �r� � �� r � � 1

lim x l 0 f �x� � 6f
0 � � x � � ��

� f �x� � 6 � � 1

lim x l 0 f �x�xf �x� � 1
lim x l 0 f �x� � 1

� f �af

fa� f �

y � f �x� fx � 1
7.

8.

9.

10. If and  , then
does not exist.

11. If and  , then
does not exist.

12. If exists, then the limit must be 

13. If p is a polynomial, then 

14. If and , then
.

15. A function can have two different horizontal asymptotes.

16. If has domain and has no horizontal asymptote,
then or .

lim
x l1

x 2 � 6x � 7

x 2 � 5x � 6
�

lim
x l1

�x 2 � 6x � 7�

lim
x l1

�x 2 � 5x � 6�

lim
x l1

x � 3

x 2 � 2x � 4
�

lim
x l1

�x � 3�

lim
x l1

�x 2 � 2x � 4�

limx l 5 f �x� � 2 limx l 5 t�x� � 0
limx l 5 	 f �x��t�x�


lim x l5 f �x� � 0 limx l 5 t�x� � 0
limx l 5 	 f �x��t�x�


limx l 6 	 f �x� t�x�
 f �6� t�6�.

limx l b p�x� � p�b�.

limx l 0 f �x� � � limx l 0 t�x� � �
limx l 0 	 f �x� � t�x�
 � 0

f 	0, ��
limx l � f �x� � � limx l � f �x� � ��

lim
x l4
� 2x

x � 4
�

8

x � 4� � lim
x l4

2x

x � 4
� lim

x l4

8

x � 4
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EXERCISES

3–6 ■ Find the domain and range of the function. Write your
answer in interval notation.

3. 4.

5. 6.

7. Suppose that the graph of is given. Describe how the
graphs of the following functions can be obtained from the
graph of 
(a) (b)
(c) (d)
(e) (f)

8. The graph of is given. Draw the graphs of the following 
functions.
(a) (b)

(c) (d)

f �x� � 2��3x � 1� t�x� � s16 � x 4 

y � 1 � sin x y � tan 2x

f

f.
y � f �x� � 8 y � f �x � 8�
y � 1 � 2 f �x� y � f �x � 2� � 2
y � �f �x� y � 3 � f �x�

f

y � f �x � 8� y � �f �x�
y � 2 � f �x� y � 1

2 f �x� � 1

y

x0 1

1
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25. 26.

27. 28.

29. 30.

31. 32.

33.

34.

35. 36.

;37–38 ■ Use graphs to discover the asymptotes of the curve.
Then prove what you have discovered.

37. 38.

39. If for , find .

40. Prove that .

41–44 ■ Prove the statement using the precise definition of a
limit.

41. 42.

43. 44.

45. Let

(a) Evaluate each limit, if it exists.
(i) (ii) (iii)

(iv) (v) (vi)

(b) Where is discontinuous?
(c) Sketch the graph of .

46. Show that each function is continuous on its domain. State
the domain.

(a) (b)

47–48 ■ Use the Intermediate Value Theorem to show that
there is a root of the equation in the given interval.

47.

48. ,

lim
h l0

�h � 1�3 � 1

h
lim
t l2

t 2 � 4

t 3 � 8

lim
r l9

sr

�r � 9�4 lim
v l 4�

4 � v

� 4 � v �
lim
s l16

4 � ss

s � 16
lim
v l2

v 2 � 2v � 8

v 4 � 16

lim
x l �

1 � 2x � x 2

1 � x � 2x 2 lim
x l ��

1 � 2x 2 � x 4

5 � x � 3x 4

lim
x l �

(sx 2 � 4x � 1 � x)

lim
x l 1

� 1

x � 1
�

1

x 2 � 3x � 2�
lim
x l 0

cot 2x

csc x
lim
t l 0

t 3

tan3 2t

y �
cos2x

x 2 y � sx 2 � x � 1 � sx 2 � x

limx l1 f �x�0 � x � 32x � 1 � f �x� � x 2

limx l 0 x 2 cos�1�x 2 � � 0

lim
x l 0

s
3 x � 0lim

x l 2
�14 � 5x� � 4

lim
x l4�

2

sx � 4
� �lim

x l �

1

x 4 � 0

f �x� � �s�x

3 � x

�x � 3�2

if x � 0

if 0 � x � 3

if x � 3

lim
x l0

f �x�lim
x l0�

f �x�lim
x l0�

f �x�

lim
x l3

f �x�lim
x l3�

f �x�lim
x l3�

f �x�

f
f

h�x� � s
4 x � x 3 cos xt�x� �

sx 2 � 9

x 2 � 2

�1, 2�x 5 � x 3 � 3x � 5 � 0, 

�0, 1�2 sin x � 3 � 2x

9–14 ■ Use transformations to sketch the graph of the
function.

9. 10.

11. 12.

13. 14.

15. Determine whether is even, odd, or neither even nor odd.
(a) (b)
(c) (d)

16. Find an expression for the function whose graph consists
of the line segment from the point to the point

together with the top half of the circle with center
the origin and radius 1.

17. If and , find the functions (a) ,
(b) , (c) , (d) , and their domains.

18. Express the function as a composition
of three functions.

19. The graph of is given.
(a) Find each limit, or explain why it does not exist.

(i) (ii) (iii)

(iv) (v) (vi)

(vii) (viii)

(b) State the equations of the horizontal asymptotes.
(c) State the equations of the vertical asymptotes.
(d) At what numbers is discontinuous? Explain.

20. Sketch the graph of an example of a function that satis-
fies all of the following conditions:

,  ,  ,

,  ,

is continuous from the right at 3

21–36 ■ Find the limit.

21. 22.

23. 24.

y � �x � 2�2y � �sin 2x

y � 2 � sxy � 1 �
1
2 x 3

f �x� �
1

x � 2
f �x� � �1 � x

1 � x 2

if x � 0

if x � 0

f
f �x� � 2x 5 � 3x 2 � 2 f �x� � x 3 � x 7

f �x� � cos�x 2 � f �x� � 1 � sin x

��1, 0�
��2, 2�

f � tt�x� � sin xf �x� � sx
t � tf � ft � f

F�x� � 1�sx � sx

f

lim
x l�3�

f �x�lim
x l2�

f �x�

lim
x l4

f �x�

lim
x l�3

f �x�

lim
x l2�

f �x�lim
x l0

f �x�

lim
x l��

f �x�lim
x l�

f �x�

f

0 x

y

1

1

f

lim
x l�3

f �x� � �lim
x l �

f �x� � 0lim
x l��

f �x� � �2

lim
x l3�

f �x� � 2lim
x l3�

f �x� � ��

f

lim
x l3

x 2 � 9

x 2 � 2x � 3
lim
x l 0

cos�x � sin x�

lim
x l1�

x 2 � 9

x 2 � 2x � 3
lim

x l�3

x 2 � 9

x 2 � 2x � 3
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2.1 DERIVATIVES AND RATES OF CHANGE
The problem of finding the tangent line to a curve and the problem of finding the
velocity of an object involve finding the same type of limit, which we call a derivative.

THE TANGENT PROBLEM

The word tangent is derived from the Latin word tangens, which means “touching.”
Thus a tangent to a curve is a line that touches the curve. In other words, a tangent line
should have the same direction as the curve at the point of contact. How can this idea
be made precise?

For a circle we could simply follow Euclid and say that a tangent is a line that inter-
sects the circle once and only once as in Figure 1(a). For more complicated curves this
definition is inadequate. Figure l(b) shows two lines and passing through a point

on a curve . The line intersects only once, but it certainly does not look like
what we think of as a tangent. The line , on the other hand, looks like a tangent but
it intersects twice.

To be specific, let’s look at the problem of trying to find a tangent line to the
parabola in the following example.

EXAMPLE 1 Find an equation of the tangent line to the parabola at the 
point .

SOLUTION We will be able to find an equation of the tangent line as soon as we
know its slope . The difficulty is that we know only one point, , on , whereas 
we need two points to compute the slope. But observe that we can compute an
approximation to by choosing a nearby point on the parabola (as in Fig-
ure 2) and computing the slope of the secant line . [A secant line, from the
Latin word secans, meaning cutting, is a line that cuts (intersects) a curve more than
once.]

L T
P C L C

T
C

(a) (b)

T

P

CT

L

FIGURE 1 

T
y � x 2

y � x 2

P�1, 1�

T
m P T

m Q�x, x 2 �

V

mPQ PQ
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DERIVATIVES
In this chapter we study a special type of limit, called a derivative, that occurs when we want to find a
slope of a tangent line, or a velocity, or any instantaneous rate of change.

2

FIGURE 2 

x

y

0

y=≈

TQ{x, ≈}

P(1, 1)

■ www.stewartcalculus.com
See Additional Example A.
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We choose so that . Then

What happens as approaches 1? From Figure 3 we see that approaches 
along the parabola and the secant lines rotate about and approach the tangent
line .

It appears that the slope of the tangent line is the limit of the slopes of the
secant lines as approaches 1:

Using the point-slope form of the equation of a line, we find that an equation of the
tangent line at is

■

We sometimes refer to the slope of the tangent line to a curve at a point as the slope
of the curve at the point. The idea is that if we zoom in far enough toward the point,
the curve looks almost like a straight line. Figure 4 illustrates this procedure for the
curve in Example 1. The more we zoom in, the more the parabola looks like a
line. In other words, the curve becomes almost indistinguishable from its tangent line.

mPQ �
x 2 � 1

x � 1

x Q P
PQ P

T

Q approaches P from the right

Q approaches P from the left

P

y

x0

Q

T

P

y

x0

Q

T

P

y

x0

Q

T

P

y

x0

Q

T

P

y

x0

Q

T

P

y

x0

Q

T

FIGURE 3 

Q � Px � 1

m
x

m � lim
x l1

x 2 � 1

x � 1
� lim

x l 1

�x � 1��x � 1�
x � 1

� lim
x l1

�x � 1� � 1 � 1 � 2

�1, 1�

y � 2x � 1ory � 1 � 2�x � 1�

y � x 2
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■ Point-slope form for a line through
the point with slope :

y � y1 � m�x � x1�
m�x1, y1�

In Visual 2.1A you can see how the
process in Figure 3 works for additional
functions.

TEC
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In general, if a curve has equation and we want to find the tangent line
to at the point , then we consider a nearby point , where ,
and compute the slope of the secant line :

Then we let approach along the curve by letting approach . If 
approaches a number , then we define the tangent to be the line through with
slope . (This amounts to saying that the tangent line is the limiting position of the
secant line as approaches . See Figure 5.)

DEFINITION The tangent line to the curve at the point
is the line through with slope

provided that this limit exists.

There is another expression for the slope of a tangent line that is sometimes easier
to use. If , then and so the slope of the secant line is

(See Figure 6 where the case is illustrated and is to the right of . If it hap-
pened that , however, would be to the left of .) Notice that as approaches
, approaches (because ) and so the expression for the slope of the 

C y � f �x�
C P�a, f �a�� Q�x, f �x�� x � a

PQ

mPQ �
f �x� � f �a�

x � a

Q P C x a mPQ

m T P
m

PQ Q P

FIGURE 5 

0 x

y

P

t

Q

Q

Q

0 x

y

a x

P{a, f(a)}

ƒ-f(a)

x-a

Q{x, ƒ}

y � f �x� P�a, f �a��
P

m � lim
x l a

f �x� � f �a�
x � a

h � x � a x � a � h PQ

mPQ �
f �a � h� � f �a�

h

h � 0 Q P
h � 0 Q P x

a h 0 h � x � a

FIGURE 4 Zooming in toward the point (1, 1) on the parabola y=≈

(1, 1)

2

0 2

(1, 1)

1.5

0.5 1.5

(1, 1)

1.1

0.9 1.1

1
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0 x

y

a a+h

P{a, f(a)}

h

Q{a+h, f(a+h)}

t

FIGURE 6

f(a+h)-f(a)

Visual 2.1B shows an animation of
Figure 4.
TEC
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tangent line in Definition 1 becomes

EXAMPLE 2 Find an equation of the tangent line to the hyperbola at the 
point .

SOLUTION Let . Then the slope of the tangent at is

Therefore an equation of the tangent at the point is

which simplifies to

The hyperbola and its tangent are shown in Figure 7. ■

THE VELOCITY PROBLEM

In Section 1.3 we investigated the motion of a ball dropped from the CN Tower and
defined its velocity to be the limiting value of average velocities over shorter and
shorter time periods.

In general, suppose an object moves along a straight line according to an equation
of motion , where is the displacement (directed distance) of the object from
the origin at time . The function that describes the motion is called the position
function of the object. In the time interval from to the change in
position is . (See Figure 8.) The average velocity over this time inter-
val is

which is the same as the slope of the secant line in Figure 9.
Now suppose we compute the average velocities over shorter and shorter time inter-

vals . In other words, we let approach . As in the example of the falling
ball, we define the velocity (or instantaneous velocity) at time to be the
limit of these average velocities:

m � lim
h l 0

f �a � h� � f �a�
h

y � 3�x
�3, 1�

f �x� � 3�x �3, 1�

m � lim
h l 0

f �3 � h� � f �3�
h

� lim
h l 0

3

3 � h
� 1

h
� lim

h l 0

3 � �3 � h�
3 � h

h

� lim
h l 0

�h

h�3 � h�
� lim

h l 0
�

1

3 � h
� �

1

3

�3, 1�

y � 1 � �
1
3 �x � 3�

x � 3y � 6 � 0

s � f �t� s
t f

t � a t � a � h
f �a � h� � f �a�

average velocity �
displacement

time
�

f �a � h� � f �a�
h

PQ

�a, a � h� h 0
v�a� t � a

v�a� � lim
h l 0

f �a � h� � f �a�
h

2

3

FIGURE 7 

y=

(3, 1)

x+3y-6=0

x

y

0

3

x

0

P{a, f(a)}

Q{a+h, f(a+h)}

h

a+ha

s

t

mPQ=
average  
velocity

FIGURE 9

FIGURE 8

0 s

f(a+h)-f(a)

position at
time t=a

position at
time t=a+h

f(a)

f(a+h)

f(a+h)-f(a)

h 
=
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This means that the velocity at time is equal to the slope of the tangent line at
(compare Equations 2 and 3).
Now that we know how to compute limits, let’s reconsider the problem of the fall-

ing ball.

EXAMPLE 3 Suppose that a ball is dropped from the upper observation deck of
the CN Tower, 450 m above the ground.
(a) What is the velocity of the ball after 5 seconds?
(b) How fast is the ball traveling when it hits the ground?

SOLUTION We first use the equation of motion to find the velocity
after seconds:

(a) The velocity after 5 s is m�s.

(b) Since the observation deck is 450 m above the ground, the ball will hit the
ground at the time when , that is,

This gives

The velocity of the ball as it hits the ground is therefore

■

DERIVATIVES

We have seen that the same type of limit arises in finding the slope of a tangent line
(Equation 2) or the velocity of an object (Equation 3). In fact, limits of the form

arise whenever we calculate a rate of change in any of the sciences or in engineering,
such as a rate of reaction in chemistry or a marginal cost in economics. Since this type
of limit occurs so widely, it is given a special name and notation.

DEFINITION The derivative of a function at a number , denoted by
, is

if this limit exists.

t � a
P

s � f �t� � 4.9t 2

v�a� a

v�a� � lim
h l 0

f �a � h� � f �a�
h

� lim
h l 0

4.9�a � h�2 � 4.9a 2

h

� lim
h l 0

4.9�a 2 � 2ah � h 2 � a 2 �
h

� lim
h l 0

4.9�2ah � h 2 �
h

� lim
h l 0

4.9�2a � h� � 9.8a

v�5� � �9.8��5� � 49

t1 s�t1� � 450

4.9t1
2 � 450

t1
2 �

450

4.9
and t1 � �450

4.9
� 9.6 s

v�t1� � 9.8t1 � 9.8�450

4.9
� 94 m�s

lim
h l0

f �a � h� � f �a�
h

f a
f ��a�

f ��a� � lim
h l0

f �a � h� � f �a�
h

V

4

SECTION 2.1  DERIVATIVES AND RATES OF CHANGE 77

■ Recall from Section 1.3: The dis tance 
(in meters) fallen after seconds is .4.9t 2t

■ is read “ prime of .”aff ��a�

■ www.stewartcalculus.com
See Additional Example B.
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If we write , then and approaches if and only if
approaches . Therefore an equivalent way of stating the definition of the derivative,
as we saw in finding tangent lines, is

EXAMPLE 4 Find the derivative of the function at the 
number .

SOLUTION From Definition 4 we have

■

We defined the tangent line to the curve at the point to be the
line that passes through and has slope given by Equation 1 or 2. Since, by Defini -
tion 4, this is the same as the derivative , we can now say the following.

The tangent line to at is the line through whose
slope is equal to , the derivative of at .

If we use the point-slope form of the equation of a line, we can write an equation
of the tangent line to the curve at the point :

EXAMPLE 5 Find an equation of the tangent line to the parabola
at the point .

SOLUTION From Example 4 we know that the derivative of at
the number is . Therefore the slope of the tangent line at is

. Thus an equation of the tangent line, shown in Figure 10, is

or    ■

RATES OF CHANGE

Suppose is a quantity that depends on another quantity . Thus is a function of
and we write . If changes from to , then the change in (also called the
increment of ) is

a

f ��a� � lim
x l a

f �x� � f �a�
x � a

f �x� � x 2 � 8x � 9
a

f ��a� � lim
h l0

f �a � h� � f �a�
h

� lim
h l0

��a � h�2 � 8�a � h� � 9� � �a 2 � 8a � 9�
h

� lim
h l0

a 2 � 2ah � h 2 � 8a � 8h � 9 � a 2 � 8a � 9

h

� lim
h l0

2ah � h 2 � 8h

h
� lim

h l0
�2a � h � 8�

� 2a � 8

y � f �x� P�a, f �a��
P m

f ��a�

y � f �x� �a, f �a�� �a, f �a��
f ��a� f a

y � f �x� �a, f �a��

y � f �a� � f ��a��x � a�

y � x 2 � 8x � 9 �3, �6�

f �x� � x 2 � 8x � 9
a f ��a� � 2a � 8 �3, �6�

f ��3� � 2�3� � 8 � �2

y � ��6� � ��2��x � 3� y � �2x

y x y x
y � f �x� x x1 x2 x
x

�x � x2 � x1

5

V

V

x0hh � x � ax � a � h
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y=≈-8x+9

(3, _6)

y=_2x

FIGURE 10 

0 x

y
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and the corresponding change in is

The difference quotient

is called the average rate of change of y with respect to x over the interval
and can be interpreted as the slope of the secant line in Figure 11.

By analogy with velocity, we consider the average rate of change over smaller and
smaller intervals by letting approach and therefore letting approach . The
limit of these average rates of change is called the (instantaneous) rate of change of
y with respect to x at � , which is interpreted as the slope of the tangent to the
curve at :

We recognize this limit as being the derivative .
We know that one interpretation of the derivative is as the slope of the tan-

gent line to the curve when . We now have a second interpretation:

The derivative is the instantaneous rate of change of with
respect to when .

The connection with the first interpretation is that if we sketch the curve ,
then the instantaneous rate of change is the slope of the tangent to this curve at the
point where . This means that when the derivative is large (and therefore the
curve is steep, as at the point in Figure 12), the -values change rapidly. When the
derivative is small, the curve is relatively flat and the -values change slowly.

In particular, if is the position function of a particle that moves along a
straight line, then is the rate of change of the displacement with respect to 
the time . In other words, is the velocity of the particle at time . The speed
of the particle is the absolute value of the velocity, that is, 

In the following example we estimate the rate of change of the national debt with
respect to time. Here the function is defined not by a formula but by a table of values.

EXAMPLE 6 Let be the US national debt at time t. The table in the margin
gives approximate values of this function by providing end of year estimates, in
billions of dollars, from 1990 to 2010. Interpret and estimate the value of .

SOLUTION The derivative means the rate of change of with respect to
when , that is, the rate of increase of the national debt in 2000.

According to Equation 5,

y

�y � f �x2� � f �x1�

�y

�x
�

f �x2� � f �x1�
x2 � x1

�x1, x2�
PQ

x2 x1 �x 0

x x1

y � f �x� P�x1, f �x1��

instantaneous rate of change � lim
�x l 0

�y

�x
� lim

x2 l x1

f �x2� � f �x1�
x2 � x1

f ��x1�
f ��a�

y � f �x� x � a

f ��a� y � f �x�
x x � a

y � f �x�

x � a
P y

y
s � f �t�
f ��a� s

t f ��a� t � a

	 f ��a� 	.

D�t�

D��2000�

D��2000�
t � 2000

D��2000� � lim
t l 2000

D�t� � D�2000�
t � 2000

6

V

D t
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average rate of change � mPQ 

instantaneous rate of change �
slope of tangent at P  

0 x

y

⁄ ¤

Q{¤, ‡}

Îx

Îy
P{⁄, fl}

FIGURE 11 

FIGURE 12
The y-values are changing rapidly
at P and slowly at Q.

P

Q

x

y

t

1990 3,233.3
1995 4,974.0
2000 5,674.2
2005 7,932.7
2010 13,050.8

D�t�
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2.1 EXERCISES

1. (a) Find the slope of the tangent line to the parabola
at the point 

(i) using Definition 1 (ii) using Equation 2
(b) Find an equation of the tangent line in part (a).

; (c) Graph the parabola and the tangent line. As a check 
on your work, zoom in toward the point until the
parabola and the tangent line are indistinguishable.

y � 4x � x 2 �1, 3�

�1, 3�

2. (a) Find the slope of the tangent line to the curve
at the point 

(i) using Definition 1 (ii) using Equation 2
(b) Find an equation of the tangent line in part (a).

; (c) Graph the curve and the tangent line in successively
smaller viewing rectangles centered at until the
curve and the line appear to coincide.

y � x � x 3 �1, 0�

�1, 0�

So we compute and tabulate values of the difference quotient (the average rates of
change) as follows.

From this table we see that lies somewhere between 140.04 and 451.70
billion dollars per year. [Here we are making the reasonable assumption that the
debt didn’t fluctuate wildly between 1995 and 2005.] We estimate that the rate of
increase of the national debt of the United States in 2000 was the average of these
two numbers, namely

Another method would be to plot the debt function and estimate the slope of the
tangent line when . ■

The rate of change of the debt with respect to time in Example 6 is just one example
of a rate of change. Here are a few of the many others:

The velocity of a particle is the rate of change of displacement with respect to time.
Physicists are interested in other rates of change as well—for instance, the rate of
change of work with respect to time (which is called power). Chemists who study a
chemical reaction are interested in the rate of change in the concentration of a reac-
tant with respect to time (called the rate of reaction). A steel manufacturer is inter-
ested in the rate of change of the cost of producing tons of steel per day with respect
to (called the marginal cost). A biologist is interested in the rate of change of the
population of a colony of bacteria with respect to time. In fact, the computation of
rates of change is important in all of the natural sciences, in engineering, and even in
the social sciences.

All these rates of change can be interpreted as slopes of tangents. This gives added
significance to the solution of the tangent problem. Whenever we solve a problem
involving tangent lines, we are not just solving a problem in geometry. We are also
implicitly solving a great variety of problems involving rates of change in science and
engineering.

D��2000�

D��2000� � 296 billion dollars per year

t � 2000

x
x

80 CHAPTER 2 DERIVATIVES

; Graphing calculator or computer required Computer algebra system required 1 Homework Hints at stewartcalculus.comCAS

t

1990 244.09
1995 144.04
2005 451.70
2010 736.66

D�t� � D�2000�
t � 2000

■ A NOTE ON UNITS
The units for the average rate of change

are the units for divided by
the units for , namely, billions of dol-
lars per year. The instan taneous rate of
change is the limit of the average rates 
of change, so it is measured in the same
units: billions of dollars per year.

�t
�D�D��t

■ www.stewartcalculus.com
See Additional Examples C, D.
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12. If an arrow is shot upward on the moon with a velocity of
58 m�s, its height (in meters) after seconds is given by

.
(a) Find the velocity of the arrow after one second.
(b) Find the velocity of the arrow when .
(c) When will the arrow hit the moon?
(d) With what velocity will the arrow hit the moon?

13. The displacement (in meters) of a particle moving in a
straight line is given by the equation of motion ,
where is measured in seconds. Find the velocity of the 
par ticle at times , and .

14. The displacement (in meters) of a particle moving in a
straight line is given by , where is mea-
sured in seconds.
(a) Find the average velocity over each time interval:

(i) (ii)
(iii) (iv)

(b) Find the instantaneous velocity when .
(c) Draw the graph of as a function of and draw the

secant lines whose slopes are the average velocities in
part (a) and the tangent line whose slope is the instan-
taneous velocity in part (b).

15. For the function t whose graph is given, arrange the
following numbers in increasing order and explain your
reasoning:

16. Find an equation of the tangent line to the graph of
at if and .

17. If an equation of the tangent line to the curve at
the point where is , find and .

18. If the tangent line to at (4, 3) passes through the
point (0, 2), find and .

19. Sketch the graph of a function for which ,
, and .

20. Sketch the graph of a function for which
, ,

, , , and
.

t
H � 58t � 0.83t 2

t � a

s � 1�t 2

t
t � a, t � 1, t � 2 t � 3

s � t 2 � 8t � 18 t

�3, 4� �3.5, 4�
�4, 5� �4, 4.5�

t � 4
s t

0 t���2� t��0� t��2� t��4�

y=©

1 3 4_1
0 x

2

y

y � t�x� x � 5 t�5� � �3 t��5� � 4

y � f �x�
a � 2 y � 4x � 5 f �2� f ��2�

y � f �x�
f �4� f ��4�

f f �0� � 0
f ��0� � 3, f ��1� � 0 f ��2� � �1

t

t�0� � t�2� � t�4� � 0 t��1� � t��3� � 0
t��0� � t��4� � 1 t��2� � �1 limx l � t�x� � �
limx l �� t�x� � ��

3–6 ■ Find an equation of the tangent line to the curve at the 
given point.

3. ,  4. ,  

5. 6. ,  

7. (a) Find the slope of the tangent to the curve
at the point where .

(b) Find equations of the tangent lines at the points 
and .

; (c) Graph the curve and both tangents on a common screen.

8. (a) Find the slope of the tangent to the curve at
the point where .

(b) Find equations of the tangent lines at the points 
and .

; (c) Graph the curve and both tangents on a common screen.

9. The graph shows the position function of a car. Use the
shape of the graph to explain your answers to the follow-
ing questions.
(a) What was the initial velocity of the car?
(b) Was the car going faster at or at ?
(c) Was the car slowing down or speeding up at , 

and ?
(d) What happened between and ?

10. Shown are graphs of the position functions of two runners,
and , who run a 100-m race and finish in a tie.

(a) Describe and compare how the runners run the race.
(b) At what time is the distance between the runners the

greatest?
(c) At what time do they have the same velocity?

11. If a ball is thrown into the air with a velocity of 40 ft�s, its
height (in feet) after seconds is given by .
Find the velocity when .

y � 4x � 3x 2 �2, �4� y � x 3 � 3x � 1 �2, 3�

y � sx , (1, 1� y �
2x � 1

x � 2
�1, 1�

y � 3 � 4x 2 � 2x 3 x � a
�1, 5�

�2, 3�

y � 1�sx
x � a

�1, 1�
(4, 1

2 )

B C
A, B

C
D E

A

B

C

D E

t

s

0

A B

s (meters)

0 4 8 12

80

40

t (seconds)

A

B

t y � 40t � 16t 2

t � 2
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39. The number of US cellular phone subscribers (in
millions) is shown in the table. (Midyear estimates are
given.)

(a) Find the average rate of cell phone growth
(i) from 2002 to 2006 (ii) from 2002 to 2004

(iii) from 2000 to 2002
In each case, include the units.

(b) Estimate the instantaneous rate of growth in 2002 by 
taking the average of two average rates of change.
What are its units?

(c) Estimate the instantaneous rate of growth in 2002 by
measuring the slope of a tangent.

40. The number of locations of a popular coffeehouse chain
is given in the table. (The numbers of locations as of Octo-
ber 1 are given.)

(a) Find the average rate of growth
(i) from 2006 to 2008 (ii) from 2006 to 2007

(iii) from 2005 to 2006
In each case, include the units.

(b) Estimate the instantaneous rate of growth in 2006 by 
taking the average of two average rates of change.
What are its units?

(c) Estimate the instantaneous rate of growth in 2006 by
measuring the slope of a tangent.

(d) Estimate the intantaneous rate of growth in 2007 and
compare it with the growth rate in 2006. What do you
conclude?

41. The cost (in dollars) of producing units of a certain com-
modity is .
(a) Find the average rate of change of with respect to

when the production level is changed
(i) from to 

(ii) from to 

P

T (°F)

0 30 60 90 120 150

100

200

t  (min)

N

N

x
C�x� � 5000 � 10x � 0.05x 2

C x

x � 100 x � 105
x � 100 x � 101

21. If , find and use it to find an equation
of the tangent line to the curve at the point

.

22. If , find and use it to find an equation
of the tangent line to the curve at the point

.

23. (a) If , find and use it to find an
equation of the tangent line to the curve

at the point .

; (b) Illustrate part (a) by graphing the curve and the tangent
line on the same screen.

24. (a) If , find and use it to find equa-
tions of the tangent lines to the curve at
the points and .

; (b) Illustrate part (a) by graphing the curve and the tangent
lines on the same screen.

25–30 ■ Find .

25. 26.

27. 28.

29. 30.

31–36 ■ Each limit represents the derivative of some function
at some number . State such an and in each case.

31. 32.

33. 34.

35. 36.

37. A warm can of soda is placed in a cold refrigerator. Sketch
the graph of the temperature of the soda as a function of
time. Is the initial rate of change of temperature greater or
less than the rate of change after an hour?

38. A roast turkey is taken from an oven when its temperature
has reached 185°F and is placed on a table in a room
where the temperature is 75°F. The graph shows how the
temperature of the turkey decreases and eventually
approaches room temperature. By measuring the slope of
the tangent, estimate the rate of change of the temperature
after an hour.

�1, 2�

t�x� � x 4 � 2 t��1�
y � x 4 � 2

�1, �1�

F�x� � 5x��1 � x 2� F��2�

y �
5x

1 � x 2

�2, 2�

G�x� � 4x 2 � x 3 G��a�
y � 4x 2 � x 3

�2, 8� �3, 9�

f ��a�

f �t� � 2t 3 � tf �x� � 3x 2 � 4x � 1

f �x� � x �2f �t� �
2t � 1

t � 3

f �x� �
4

s1 � x
f �x� � s1 � 2x

f afa

lim
h l0

s
4 16 � h � 2

h
lim
h l0

�1 � h�10 � 1

h

lim
x l	�4

tan x � 1

x � 	�4
lim
x l5

2x � 32

x � 5

lim
t l1

t 4 � t � 2

t � 1
lim
h l0

cos�	 � h� � 1

h

f ��1�f �x� � 3x 2 � x 3

y � 3x 2 � x 3
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47. The quantity of oxygen that can dissolve in water depends
on the temperature of the water. (So thermal pollution influ-
ences the oxygen content of water.) The graph shows how
oxygen solubility varies as a function of the water temper-
ature .
(a) What is the meaning of the derivative ? What are

its units?
(b) Estimate the value of and interpret it.

48. The graph shows the influence of the temperature on the
maximum sustainable swimming speed of Coho salmon.
(a) What is the meaning of the derivative ? What are 

its units?
(b) Estimate the values of and and interpret

them.

49–50 ■ Determine whether exists.

49.

50.

T
S��T �

S��16�

(mg/L)

4

8

12

16

S

0
T (°C)

Adapted from Kupchella & Hyland, Environmental Science: Living  
Within the System of Nature, 2d ed.; © 1989. Printed and  
electronically reproduced by permission of Pearson Education, Inc.,  
Upper Saddle River, NJ.

8 16 24 32 40

T
S

S��T �

S��15� S��25�

20
0 T (°C)10

S

(cm/s)

20

f ��0�

f �x� � 
x sin 
1

x
if  x � 0

0 if  x � 0

f �x� � 
x 2 sin 
1

x
if  x � 0

0 if  x � 0

S

(b) Find the instantaneous rate of change of with respect
to when . (This is called the marginal cost. Its
significance will be explained in Section 2.3.)

42. If a cylindrical tank holds 100,000 gallons of water, which
can be drained from the bottom of the tank in an hour, then
Torricelli’s Law gives the volume of water remaining in
the tank after minutes as

Find the rate at which the water is flowing out of the tank
(the instantaneous rate of change of with respect to ) as a
function of t. What are its units? For times t � 0, 10, 20, 30,
40, 50, and 60 min, find the flow rate and the amount of
water remaining in the tank. Summarize your findings in a
sentence or two. At what time is the flow rate the greatest?
The least?

43. The cost of producing x ounces of gold from a new gold
mine is dollars.
(a) What is the meaning of the derivative ? What are

its units?
(b) What does the statement mean?
(c) Do you think the values of will increase or

decrease in the short term? What about the long term?
Explain.

44. The number of bacteria after t hours in a controlled labora-
tory experiment is .
(a) What is the meaning of the derivative ? What are

its units?
(b) Suppose there is an unlimited amount of space and

nutrients for the bacteria. Which do you think is larger,
or ? If the supply of nutrients is limited,

would that affect your conclusion? Explain.

45. Let be the temperature (in ) in Phoenix hours after
midnight on September 10, 2008. The table shows values of
this function recorded every two hours. What is the meaning
of ? Estimate its value.

46. The quantity (in pounds) of a gourmet ground coffee that is
sold by a coffee company at a price of p dollars per pound 
is .
(a) What is the meaning of the derivative ? What are

its units?
(b) Is positive or negative? Explain.

C
x x � 100

V
t

V�t� � 100,000(1 �
1

60 t)2 0 
 t 
 60

V t

C � f �x�
f ��x�

f ��800� � 17
f ��x�

n � f �t�
f ��5�

f ��5� f ��10�

T�t� �F t

T ��8�

Q � f � p�
f ��8�

f ��8�
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2.2 THE DERIVATIVE AS A FUNCTION
In Section 2.1 we considered the derivative of a function at a fixed number :

Here we change our point of view and let the number a vary. If we replace a in Equa-
tion 1 by a variable x, we obtain

Given any number x for which this limit exists, we assign to x the number . 
So we can regard as a new function, called the derivative of and defined by Equa-
tion 2. We know that the value of at , , can be interpreted geometrically as the
slope of the tangent line to the graph of at the point .

The function is called the derivative of because it has been “derived” from 
by the limiting operation in Equation 2. The domain of is the set exists
and may be smaller than the domain of .

EXAMPLE 1 The graph of a function is given in Figure 1. Use it to sketch the
graph of the derivative .

SOLUTION We can estimate the value of the derivative at any value of by draw-
ing the tangent at the point and estimating its slope. For instance, for 
we draw the tangent at in Figure 2(a) and estimate its slope to be about , so

. This allows us to plot the point on the graph of directly
beneath . Repeating this procedure at several points, we get the graph shown in
Figure 2(b). Notice that the tangents at , , and are horizontal, so the derivative
is 0 there and the graph of crosses the -axis at the points , , and , directly
beneath A, B, and C. Between and the tangents have positive slope, so is
positive there. But between and the tangents have negative slope, so is
negative there.

f ��a� � lim
h l 0

f �a � h� � f �a�
h

f ��x� � lim
h l 0

f �x � h� � f �x�
h

f ��x�
f � f

f � x f ��x�
f �x, f �x��

f � f f
f � �x � f ��x� �

f

f
f �

x
�x, f �x��

P 3
2

f ��5� � 1.5 P��5, 1.5� f �

A B C
f � x A� B� C�

1

2

V

x � 5

P

FIGURE 1

1
0

1

y=ƒ

x

y

A B f ��x�
B C f ��x�

f a
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■

EXAMPLE 2
(a) If , find a formula for .
(b) Illustrate by comparing the graphs of and .

SOLUTION
(a) When using Equation 2 to compute a derivative, we must remember that the
variable is and that is temporarily regarded as a constant during the calculation
of the limit.

Pª (5, 1.5)

FIGURE 2 

y

B

A

m=0

m=0

m=0

mÅ

C

P

(a)

x

1

1
0

5

y=ƒ

y

Aª

Bª

Cª

(b)

x

1

1
0

5

y=fª(x)

3

2

f �x� � x 3 � x f ��x�
f f �

h x

V

f ��x� � lim
h l 0

f �x � h� � f �x�
h

� lim
h l 0

��x � h�3 � �x � h�	 � �x 3 � x	
h

� lim
h l 0

x 3 � 3x 2h � 3xh 2 � h 3 � x � h � x 3 � x

h

� lim
h l 0

3x 2h � 3xh 2 � h 3 � h

h
� lim

h l 0
�3x 2 � 3xh � h 2 � 1� � 3x 2 � 1
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Visual 2.2 shows an animation of 
Figure 2 for several functions.
TEC
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(b) We use a graphing device to graph and in Figure 3. Notice that
when has horizontal tangents and is positive when the tangents have positive
slopes. So these graphs serve as a check on our work in part (a).

■

EXAMPLE 3 If , find the derivative of . State the domain of .

SOLUTION

We see that exists if , so the domain of is . This is smaller than
the domain of , which is . ■

Let’s check to see that the result of Example 3 is reasonable by looking at the
graphs of and in Figure 4. When is close to 0, is also close to , so

is very large and this corresponds to the steep tangent lines near
in Figure 4(a) and the large values of just to the right of 0 in Figure 4(b).

When is large, is very small and this corresponds to the flatter tangent lines at
the far right of the graph of and the horizontal asymptote of the graph of .

EXAMPLE 4 Find if .

SOLUTION

■

f ��x� � 0f �f
f ��x�f

2

_2

_2 2

2

_2

_2 2

f
f ª

FIGURE 3 

f �x� � sx f f �

f ��x� x � 0 f � �0, ��
f �0, ��

f f � x sx 0
f ��x� � 1
(2sx )
�0, 0� f ��x�

x f ��x�
f f �

f ��x� � lim
h l0

f �x � h� � f �x�
h

� lim
h l0

sx � h � sx

h

� lim
h l0

�sx � h � sx

h
�

sx � h � sx

sx � h � sx
�

� lim
h l0

�x � h� � x

h(sx � h � sx )
� lim

h l0

1

sx � h � sx

�
1

sx � sx
�

1

2sx

f � f �x� �
1 � x

2 � x

f ��x� � lim
h l 0

f �x � h� � f �x�
h

� lim
h l 0

1 � �x � h�
2 � �x � h�

�
1 � x

2 � x

h

� lim
h l 0

�1 � x � h��2 � x� � �1 � x��2 � x � h�
h�2 � x � h��2 � x�

� lim
h l 0

�2 � x � 2h � x 2 � xh� � �2 � x � h � x 2 � xh�
h�2 � x � h��2 � x�

� lim
h l 0

�3h

h�2 � x � h��2 � x�
� lim

h l 0

�3

�2 � x � h��2 � x�
� �

3

�2 � x�2
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(a) ƒ=œ„x

1

2œ„x

(b) f ª (x)=

x

1

y

1
0

x

1

y

1
0

FIGURE 4 

Here we rationalize the numerator.

a c

b d
= § 

e

ad-bc

bd

1

e

-
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OTHER NOTATIONS

If we use the traditional notation to indicate that the independent variable is
and the dependent variable is , then some common alternative notations for the

derivative are as follows:

The symbols and are called differentiation operators because they indicate
the operation of differentiation, which is the process of calculating a derivative.

The symbol , which was introduced by Leibniz, should not be regarded as a
ratio (for the time being); it is simply a synonym for . Nonetheless, it is a very
useful and suggestive notation, especially when used in conjunction with increment
notation. Referring to Equation 2.1.6, we can rewrite the definition of derivative in
Leibniz notation in the form

If we want to indicate the value of a derivative in Leibniz notation at a specific
number , we use the notation

or    

which is a synonym for .

DIFFERENTIABLE FUNCTIONS

DEFINITION A function is differentiable at a if exists. It is dif-
ferentiable on an open interval [or or or ] if it
is differentiable at every number in the interval.

EXAMPLE 5 Where is the function differentiable?

SOLUTION If , then and we can choose small enough that
and hence . Therefore, for , we have

and so is differentiable for any .
Similarly, for we have and can be chosen small enough that

. Therefore, for ,

and so is differentiable for any .

y � f �x�
x y

f ��x� � y� �
dy

dx
�

df

dx
�

d

dx
f �x� � Df �x� � Dx f �x�

D d�dx

dy�dx
f ��x�

dy

dx
� lim

�x l 0

�y

�x

dy�dx
a

dy

dx �
x�a

dy

dx�x�a

f ��a�

f f ��a�
�a, b� �a, �� ���, a� ���, ��

f �x� � � x �
x � 0 � x � � x h

x � h � 0 � x � h � � x � h x � 0

f ��x� � lim
h l 0

� x � h � � � x �
h

� lim
h l 0

�x � h� � x

h
� lim

h l 0

h

h
� lim

h l 0
1 � 1

f x � 0
x � 0 � x � � �x h

x � h � 0 and so � x � h � � ��x � h� x � 0

f ��x� � lim
h l 0

� x � h � � � x �
h

� lim
h l 0

��x � h� � ��x�
h

� lim
h l 0

�h

h
� lim

h l 0
��1� � �1

f x � 0

3

V
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■ LEIBNIZ
Gottfried Wilhelm Leibniz was born in
Leipzig in 1646 and studied law, theology, 
philosophy, and mathematics at the univer-
sity there, graduating with a bachelor’s
degree at age 17. After earning his doctor-
ate in law at age 20, Leibniz entered the
diplomatic service and spent most of his
life traveling to the capitals of Europe on
political missions. In particular, he worked
to avert a French military threat against
Ger many and attempted to reconcile the
Catholic and Protestant churches.

His serious study of mathematics did not
begin until 1672 while he was on a diplo-
matic mission in Paris. There he built a cal-
culating machine and met scientists, like
Huygens, who directed his attention to the
latest develop ments in mathematics and sci-
ence. Leibniz sought to develop a symbolic
logic and system of notation that would
simplify logical reasoning. In particular, the
version of calculus that he published in
1684 established the notation and the rules
for finding derivatives that we use today.

Unfortunately, a dreadful priority dispute
arose in the 1690s between the followers of
Newton and those of Leibniz as to who had
invented calculus first. Leibniz was even
accused of plagiarism by members of the 
Royal Society in England. The truth is that 
each man invented calculus independently.
Newton arrived at his version of calculus
first but, because of his fear of controversy,
did not publish it immediately. So Leibniz’s
1684 account of calculus was the first to be
published.
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For we have to investigate

Let’s compute the left and right limits separately:

and

Since these limits are different, does not exist. Thus is differentiable at all
except 0.

A formula for is given by

and its graph is shown in Figure 5(b). The fact that does not exist is reflected
geometrically in the fact that the curve does not have a tangent line at .
[See Figure 5(a).] ■

Both continuity and differentiability are desirable properties for a function to have.
The following theorem shows how these properties are related.

THEOREM If is differentiable at , then is continuous at .

PROOF To prove that is continuous at , we have to show that .
We do this by showing that the difference approaches 0.

The given information is that f is differentiable at a, that is,

exists (see Equation 2.1.5). To connect the given and the unknown, we divide and
multiply by (which we can do when ):

Thus, using the Product Law and (2.1.5), we can write

f ��0� � lim
h l 0

f �0 � h� � f �0�
h

� lim
h l 0

� 0 � h � � � 0 �
h

�if it exists�

lim
h l 0�

� 0 � h � � � 0 �
h

� lim
h l 0�

� h �
h

� lim
h l 0�

h

h
� lim

h l 0�
1 � 1

f ��0� f x

x � 0

lim
h l 0�

� 0 � h � � � 0 �
h

� lim
h l 0�

� h �
h

� lim
h l 0�

�h

h
� lim

h l 0�
��1� � �1

f �

f ��x� � �1

�1

if  x � 0

if  x � 0

f ��0�
y � � x � �0, 0�

f a f a

f a lim x l a f �x� � f �a�
f �x� � f �a�

f ��a� � lim
x l a

f �x� � f �a�
x � a

f �x� � f �a� x � a x � a

f �x� � f �a� �
f �x� � f �a�

x � a
�x � a�

lim
x l a

� f �x� � f �a�	 � lim
x l a

f �x� � f �a�
x � a

�x � a�

� lim
x l a

f �x� � f �a�
x � a

� lim
x l a

�x � a�

� f ��a� � 0 � 0

4
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FIGURE 5

(a) y=ƒ=| x |

(b) y=fª(x) 
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To use what we have just proved, we start with and add and subtract :

Therefore is continuous at . ■

| NOTE The converse of Theorem 4 is false; that is, there are functions that are con-
tinuous but not differentiable. For instance, the function is continuous at 0
because

(See Example 6 in Section 1.4.) But in Example 5 we showed that is not differen-
tiable at 0.

HOW CAN A FUNCTION FAIL TO BE DIFFERENTIABLE?

We saw that the function in Example 5 is not differentiable at 0 and Fig-
ure 5(a) shows that its graph changes direction abruptly when . In general, if the
graph of a function has a “corner” or “kink” in it, then the graph of has no tangent
at this point and is not differentiable there. [In trying to compute , we find that
the left and right limits are different.]

Theorem 4 gives another way for a function not to have a derivative. It says that if
is not continuous at , then is not differentiable at . So at any discontinuity (for

instance, a jump discontinuity) fails to be differentiable.
A third possibility is that the curve has a vertical tangent line when ; that is,

is continuous at and

This means that the tangent lines become steeper and steeper as . Figure 6 shows
one way that this can happen; Figure 7(c) shows another. Figure 7 illustrates the three
possibilities that we have discussed.

A graphing calculator or computer provides another way of looking at differentia-
bility. If is differentiable at , then when we zoom in toward the point the 

f �x� f �a�

lim
x l a

f �x� � lim
x l a

� f �a� � � f �x� � f �a��	

� lim
x l a

f �a� � lim
x l a

� f �x� � f �a�	

� f �a� � 0 � f �a�

f a

f �x� � � x �
lim
x l 0

f �x� � lim
x l 0

� x � � 0 � f �0�

f

y � � x �
x � 0

f f
f f ��a�

f a f a
f

x � a
f a

lim
x l a

� f ��x� � � �

x l a

f a �a, f �a��

(a) A corner (c) A vertical tangent(b) A discontinuity

FIGURE 7
Three ways for ƒ not to be

differentiable at a

x

y

a0 x

y

a0x

y

a0
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FIGURE 6

vertical tangent
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graph straightens out and appears more and more like a line. (See Figure 8. We saw a
specific example of this in Figure 4 in Section 2.1.) But no matter how much we zoom
in toward a point like the ones in Figures 6 and 7(a), we can’t eliminate the sharp point
or corner (see Figure 9).

HIGHER DERIVATIVES

If is a differentiable function, then its derivative is also a function, so may have
a derivative of its own, denoted by . This new function is called the sec-
ond derivative of because it is the derivative of the derivative of . Using Leibniz
notation, we write the second derivative of as

EXAMPLE 6 If , find and interpret .

SOLUTION In Example 2 we found that the first derivative is . So
the second derivative is

The graphs of , , are shown in Figure 10.
We can interpret as the slope of the curve at the point .

In other words, it is the rate of change of the slope of the original curve .
Notice from Figure 10 that is negative when has negative slope

and positive when has positive slope. So the graphs serve as a check on
our calculations. ■

FIGURE 8
ƒ is differentiable at a.

FIGURE 9
ƒ is not differentiable at a.

x

y

a0x

y

a0

f f � f �
� f ��� � f 	 f 	

f f
y � f �x�

d

dx � dy

dx� �
d 2y

dx 2

f �x� � x 3 � x f 	�x�

f ��x� � 3x 2 � 1

f ���x� � lim
h l0

f ��x � h� � f ��x�
h

� lim
h l0

�3�x � h�2 � 1	 � �3x 2 � 1	
h

� lim
h l0

3x 2 � 6xh � 3h2 � 1 � 3x 2 � 1

h

� lim
h l0

�6x � 3h� � 6x

f f � f 	
f 	�x� y � f ��x� �x, f ��x��

y � f �x�
f 	�x� y � f ��x�

y � f ��x�

Unless otherwise noted, all content on this page is © Cengage Learning.

90 CHAPTER 2 DERIVATIVES

FIGURE 10

f ·
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In Module 2.2 you can see how
changing the coefficients of a poly-
nomial affects the appearance of the
graphs of , , and .
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f
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In general, we can interpret a second derivative as a rate of change of a rate of
change. The most familiar example of this is acceleration, which we define as follows.

If is the position function of an object that moves in a straight line, we
know that its first derivative represents the velocity of the object as a function of
time:

The instantaneous rate of change of velocity with respect to time is called the accel-
eration of the object. Thus the acceleration function is the derivative of the veloc-
ity function and is therefore the second derivative of the position function:

or, in Leibniz notation,

The third derivative is the derivative of the second derivative: . So
can be interpreted as the slope of the curve or as the rate of change

of . If , then alternative notations for the third derivative are

The process can be continued. The fourth derivative is usually denoted by . In
general, the th derivative of is denoted by and is obtained from by differen-
tiating times. If , we write

EXAMPLE 7 If , find and .

SOLUTION In Example 6 we found that . The graph of the second
derivative has equation and so it is a straight line with slope 6. Since the
derivative is the slope of , we have

for all values of . So is a constant function and its graph is a horizontal line.
Therefore, for all values of ,

■

We have seen that one application of second derivatives occurs in analyzing the
motion of objects using acceleration. We will investigate another application of sec-
ond derivatives in Section 4.3, where we show how knowledge of gives us infor-
mation about the shape of the graph of . In Section 8.7 we will see how second and
higher derivatives enable us to represent functions as sums of infinite series.

s � s�t�
v�t�

v�t� � s��t� �
ds

dt

a�t�

a�t� � v��t� � s	�t�

a �
dv

dt
�

d 2s

dt 2

f 
 f 
 � � f 	 ��
f 
�x� y � f 	�x�

f 	�x� y � f �x�

y
 � f 
�x� �
d

dx � d 2 y

dx 2 � �
d 3y

dx 3

f � f �4�

n f f �n� f
n y � f �x�

y �n� � f �n��x� �
dn y

dxn

f �x� � x3 � x f 
�x� f �4��x�

f 	�x� � 6x
y � 6x

f 
�x� f 	�x�

f 
�x� � 6

x f 

x

f �4��x� � 0

f 	
f
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■ www.stewartcalculus.com
See Additional Example A.
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2.2 EXERCISES

1–2 ■ Use the given graph to estimate the value of each deriva-
tive. Then sketch the graph of .

1. (a)

(b)

(c)

(d)

(e)

(f)

(g)

2. (a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

3. Match the graph of each function in (a)–(d) with the graph
of its derivative in I–IV. Give reasons for your choices.

f �

f ���3� y

x

1

1

f ���2�
f ���1�
f ��0�
f ��1�
f ��2�
f ��3�

f ��0� y

0 x

1

1

f ��1�
f ��2�
f ��3�
f ��4�
f ��5�
f ��6�
f ��7�

y

0

y

0

y

0

y

0

xx

x x

(b)(a)

(c) (d)

III

III IV

y

0

y

0

y

0

x

x

y

0

x

x

4 –11 ■ Trace or copy the graph of the given function .
(Assume that the axes have equal scales.) Then use the method
of Example 1 to sketch the graph of below it.

4.

5. 6.

7. 8.

9. 10.

11.

12. Shown is the graph of the population function for yeast
cells in a laboratory culture. Use the method of Example 1 to

f

f �

0 x

y

x

y

0
0 x

y

x

y

0 0 x

y

0 x

y

x

y

0

0 x

y

P�t�

(yeast cells)

t (hours)

P

0 5 10 15

500
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ner as in Exercises 4–11. Can you guess what the derivative
of the sine function is from its graph?

; 17. Let .

(a) Estimate the values of , , , and by
using a graphing device to zoom in on the graph of f.

(b) Use symmetry to deduce the values of , ,
and .

(c) Use the results from parts (a) and (b) to guess a formula
for .

(d) Use the definition of a derivative to prove that your
guess in part (c) is correct.

; 18. Let .
(a) Estimate the values of , , , , and

by using a graphing device to zoom in on the
graph of f.

(b) Use symmetry to deduce the values of , ,
, and .

(c) Use the values from parts (a) and (b) to graph .
(d) Guess a formula for .
(e) Use the definition of a derivative to prove that your

guess in part (d) is correct.

19–27 ■ Find the derivative of the function using the definition
of derivative. State the domain of the function and the domain of
its derivative.

19. 20.

21. 22.

23. 24.

25. 26.

27.

28. (a) Sketch the graph of by starting with the
graph of and using the transformations of Sec -
tion 1.2.

(b) Use the graph from part (a) to sketch the graph of .
(c) Use the definition of a derivative to find . What are

the domains of f and ?

; (d) Use a graphing device to graph and compare with
your sketch in part (b).

29. (a) If , find .

; (b) Check to see that your answer to part (a) is reasonable
by comparing the graphs of and .

30. (a) If , find .

; (b) Check to see that your answer to part (a) is reasonable
by comparing the graphs of and .

f �x� � x 2

f ��0� f �( 1
2 ) f ��1� f ��2�

f �(�1
2 ) f ���1�

f ���2�

f ��x�

f �x� � x 3

f ��0� f �( 1
2 ) f ��1� f ��2�

f ��3�

f �(�1
2 ) f ���1�

f ���2� f ���3�
f �

f ��x�

f �x� � 1
2 x �

1
3 f �x� � 1.5x 2 � x � 3.7

f �x� � x 2 � 2x 3
t�t� �

1

st

t�x� � s9 � x f �x� �
x 2 � 1

2x � 3

G�t� �
1 � 2t

3 � t
f �x� � x 3
2

f �x� � x 4

f �x� � s6 � x
y � sx

f �
f ��x�

f �
f �

f �x� � x 4 � 2x f ��x�

f f �

f ��x�f �x� � x � 1
x

f �f

graph the derivative . What does the graph of tell us
about the yeast population?

13. A rechargeable battery is plugged into a charger. The graph
shows , the percentage of full capacity that the battery
reaches as a function of time elapsed (in hours).
(a) What is the meaning of the derivative ?
(b) Sketch the graph of . What does the graph tell you?

14. The graph (from the US Department of Energy) shows how
driving speed affects gas mileage. Fuel economy is mea-
sured in miles per gallon and speed is measured in miles
per hour.
(a) What is the meaning of the derivative ?
(b) Sketch the graph of .
(c) At what speed should you drive if you want to save on

gas?

15. The graph shows how the average age of first marriage of
Japanese men varied in the last half of the 20th century. 
Sketch the graph of the derivative function . During 
which years was the derivative negative?

16. Make a careful sketch of the graph of the sine function and
below it sketch the graph of its derivative in the same man-

C�t�
t

C��t�
C��t�

t (hours)2 4 6 8 10 12

20

40

60

80

100

percentage 
of full charge

C

F
v

F��v�
F��v�

√ (mi/h)0

10

30

20

70604020 503010

F    (mi/gal)

M��t�

1990 2000

25

M

1960 1970 1980

27

t

P��t� P�
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notice? Account for what you see in terms of the differen-
tiability of t.

39. The figure shows the graphs of , , and . Identify each
curve, and explain your choices.

40. The figure shows graphs of , , and . Identify
each curve, and explain your choices.

41. The figure shows the graphs of three functions. One is the
position function of a car, one is the velocity of the car,
and one is its acceleration. Identify each curve, and explain
your choices.

; 42–43 ■ Use the definition of a derivative to find and
. Then graph , , and on a common screen and check

to see if your answers are reasonable.

42. 43.

; 44. If , find , , , and .
Graph , , , and on a common screen. Are the 

f f � f �

x

y
a

b

c

f, f � f � f �

x

y
a b c d

t

y
a

b
c

0

f ��x�
f ��x� f f � f �

f �x� � x 3 � 3x f �x� � 3x 2 � 2x � 1

f �x� � 2x 2 � x3 f ��x� f ��x� f ��x� f �4��x�
f f � f � f �

31. The unemployment rate varies with time. The table
(from the Bureau of Labor Statistics) gives the percentage
of unemployed in the US labor force from 1999 to 2008.

(a) What is the meaning of ? What are its units?
(b) Construct a table of estimated values for .

32. Let be the percentage of Americans under the age of
18 at time . The table gives values of this function in cen-
sus years from 1950 to 2000.

(a) What is the meaning of ? What are its units?
(b) Construct a table of estimated values for .
(c) Graph and .
(d) How would it be possible to get more accurate values 

for ?

33–36 ■ The graph of is given. State, with reasons, the num-
bers at which is not differentiable.

33. 34.

35. 36.

; 37. Graph the function . Zoom in repeatedly, 
first toward the point (�1, 0) and then toward the origin.
What is different about the behavior of in the vicinity of
these two points? What do you conclude about the differ-
entiability of f ?

; 38. Zoom in toward the points (1, 0), (0, 1), and (�1, 0) on 
the graph of the function . What do you

U�t�

U��t�
U��t�

P�t�
t

P��t�
P��t�

P�P

P��t�

f
f

2 4
x

y

0

_2 2
x

y

0

_2 2
x

y

0_2 4
x

y

0

f �x� � x � s� x �
f

t�x� � �x 2 � 1�2�3
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t t

1999 4.2 2004 5.5
2000 4.0 2005 5.1
2001 4.7 2006 4.6
2002 5.8 2007 4.6
2003 6.0 2008 5.8

U�t�U�t�

t t

1950 31.1 1980 28.0
1960 35.7 1990 25.7
1970 34.0 2000 25.7

P�t�P�t�
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49. Recall that a function is called even if 
for all in its domain and odd if for all
such . Prove each of the following.
(a) The derivative of an even function is an odd function.
(b) The derivative of an odd function is an even function.

50. When you turn on a hot-water faucet, the temperature 
of the water depends on how long the water has been 
running.
(a) Sketch a possible graph of as a function of the time

that has elapsed since the faucet was turned on.
(b) Describe how the rate of change of with respect to

varies as increases.
(c) Sketch a graph of the derivative of .

51. Let be the tangent line to the parabola at the point
. The angle of inclination of is the angle that

makes with the positive direction of the -axis. Calculate
correct to the nearest degree.

f ��x� � f �x�f

x
f ��x� � �f �x�x

T

tT

tT
t

T

y � x 2�
����1, 1�

x
�

graphs consistent with the geometric interpretations of
these derivatives?

45. Let .
(a) If , use Equation 2.1.5 to find .
(b) Show that does not exist.
(c) Show that has a vertical tangent line at .

(Recall the shape of the graph of . See Figure 8 in
Section 1.2.)

46. (a) If , show that does not exist.
(b) If , find .
(c) Show that has a vertical tangent line at .

; (d) Illustrate part (c) by graphing .

47. Show that the function is not differentiable
at 6. Find a formula for and sketch its graph.

48. Where is the greatest integer function not dif-
ferentiable? Find a formula for and sketch its graph.

f �x� � s
3 x

f ��a�a � 0
f ��0�

�0, 0�y � s
3 x

f

t��0�t�x� � x 2�3

t��a�a � 0
�0, 0�y � x 2�3

y � x 2�3

f �x� � � x � 6 �
f �

f �x� � � x �
f �
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2.3 BASIC DIFFERENTIATION FORMULAS
If it were always necessary to compute derivatives directly from the definition, as we
did in the preceding section, such computations would be tedious and the evaluation
of some limits would require ingenuity. Fortunately, several rules have been developed
for finding derivatives without having to use the definition directly. These formulas
greatly simplify the task of differentiation.

In this section we learn how to differentiate constant functions, power functions,
polynomials, and the sine and cosine functions. Then we use this knowledge to com-
pute rates of change.

Let’s start with the simplest of all functions, the . The
graph of this function is the horizontal line , which has slope 0, so we must have

. (See Figure 1.) A formal proof, from the definition of a derivative, is also
easy:

In Leibniz notation, we write this rule as follows.

DERIVATIVE OF A CONSTANT FUNCTION

f �x� � c

f ��x� � 0

f ��x� � lim
h l 0

f �x � h� � f �x�
h

� lim
h l 0

c � c

h

� lim
h l 0

0 � 0

y � c
constant function

d

dx
�c� � 0

FIGURE 1
The graph of ƒ=c is the
line y=c, so fª(x)=0.

y

c

0 x

y=c

slope=0
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96 CHAPTER 2 DERIVATIVES

POWER FUNCTIONS

We next look at the functions , where is a positive integer. If , the
graph of is the line , which has slope 1. (See Figure 2.) So

(You can also verify Equation 1 from the definition of a derivative.) We have already 
investigated the cases and . In fact, in Section 2.2 (Exercises 17 and 18)
we found that

For we find the derivative of as follows:

Thus

Comparing the equations in (1), (2), and (3), we see a pattern emerging. It seems to
be a reasonable guess that, when is a positive integer, . This
turns out to be true.

THE POWER RULE If is a positive integer, then

PROOF If , then

d

dx
�x� � 1

n � 2 n � 3

d

dx
�x 2 � � 2x

d

dx
�x 3 � � 3x 2

n � 4 f �x� � x 4

f ��x� � lim
h l 0

f �x � h� � f �x�
h

� lim
h l 0

�x � h�4 � x 4

h

� lim
h l 0

x 4 � 4x 3h � 6x 2h 2 � 4xh 3 � h 4 � x 4

h

� lim
h l 0

4x 3h � 6x 2h 2 � 4xh 3 � h 4

h

� lim
h l 0

�4x 3 � 6x 2h � 4xh 2 � h 3 � � 4x 3

d

dx
�x 4 � � 4x 3

�d�dx��xn � � nxn�1

d

dx
�xn � � nxn�1

f �x� � xn n � 1
f �x� � x y � x

n

2

1

3

n

n

f �x� � xn

f ��x� � lim
h l 0

f �x � h� � f �x�
h

� lim
h l 0

�x � h�n � xn

h

y

0

x

y=x

slope=1

FIGURE 2 
The graph of ƒ=x is the
line y=x, so fª(x)=1.
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In finding the derivative of we had to expand . Here we need to expand
and we use the Binomial Theorem to do so:

because every term except the first has as a factor and therefore approaches 0. ■

We illustrate the Power Rule using various notations in Example 1.

EXAMPLE 1
(a) If , then . (b) If , then � .

(c) If , then . (d)
■

What about power functions with negative integer exponents? In Exercise 57 we
ask you to verify from the definition of a derivative that

We can rewrite this equation as

and so the Power Rule is true when . In fact, we will show in the next section
[Exercise 57(c)] that it holds for all negative integers.

What if the exponent is a fraction? In Example 3 in Section 2.2 we found that

which can be written as

This shows that the Power Rule is true even when . In fact, we will show in Sec-
tion 3.3 that it is true for all real numbers .

�x � h�n

f ��x� � lim
h l 0

�xn � nx n�1h �
n�n � 1�

2
xn�2h 2 � � � � � nxh n�1 � hn	 � xn

h

� lim
h l 0

nxn�1h �
n�n � 1�

2
xn�2h 2 � � � � � nxh n�1 � h n

h

� lim
h l 0

�nxn�1 �
n�n � 1�

2
xn�2h � � � � � nxh n�2 � hn�1	

� nxn�1

h

f �x� � x 6 f ��x� � 6x 5 y � x 1000 y� 1000x 999

y � t 4 dy

dt
� 4t 3 d

dr
�r 3 � � 3r 2

d

dx 
1

x� � �
1

x 2

d

dx
�x�1� � ��1�x�2

d

dx
sx �

1

2sx

d

dx
�x1�2� � 1

2 x�1�2

n � �1

x 4 �x � h�4

n � 1
2

n
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■ The Binomial Theorem is given on 
Reference Page 1.
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98 CHAPTER 2 DERIVATIVES

THE POWER RULE (GENERAL VERSION) If n is any real number, then

EXAMPLE 2 Differentiate:

(a) (b) 

SOLUTION In each case we rewrite the function as a power of x.

(a) Since , we use the Power Rule with n � �2:

(b)
■

The Power Rule enables us to find tangent lines without having to resort to the defi-
nition of a derivative. It also enables us to find normal lines. The normal line to a
curve at a point is the line through that is perpendicular to the tangent line at .
(In the study of optics, one needs to consider the angle between a light ray and the nor-
mal line to a lens.)

EXAMPLE 3 Find equations of the tangent line and normal line to the curve
at the point . Illustrate by graphing the curve and these lines.

SOLUTION The derivative of is

So the slope of the tangent line at (1, 1) is . Therefore an equation of the
tangent line is

The normal line is perpendicular to the tangent line, so its slope is the negative
reciprocal of , that is, . Thus an equation of the normal line is

We graph the curve and its tangent line and normal line in Figure 4. ■

NEW DERIVATIVES FROM OLD

When new functions are formed from old functions by addition, subtraction, or mul-
tiplication by a constant, their derivatives can be calculated in terms of derivatives of
the old functions. In particular, the following formula says that the derivative of a con-
stant times a function is the constant times the derivative of the function.

d

dx
�xn � � nxn�1

f �x� �
1

x 2 y � s
3 x 2 

f �x� � x�2

f ��x� �
d

dx
�x�2� � �2x�2�1 � �2x�3 � �

2

x 3

dy

dx
�

d

dx
(s3 x 2 ) �

d

dx
�x 2�3� � 2

3 x �2�3��1 � 2
3 x�1�3

C P P P

y � xsx �1, 1�

f �x� � xsx � xx 1�2 � x 3�2

f ��x� � 3
2 x �3�2��1 � 3

2 x 1�2 � 3
2 sx

f ��1� � 3
2

y � 1 � 3
2 �x � 1� or y � 3

2 x �
1
2

3
2 �

2
3

y � 1 � �
2
3�x � 1� or y � �

2
3 x �

5
3

V

3

_1

_1 3

tangent

normal

FIGURE 4

2

_2

_3 3

y

yª

FIGURE 3
y=#œ„≈

■ Figure 3 shows the function in
Example 2(b) and its derivative .
Notice that is not differentiable at 
( is not defined there). Observe that 
is positive when increases and is neg-
ative when decreases.

y�

y�

y
y

y
y�

0

y
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THE CONSTANT MULTIPLE RULE If is a constant and is a differentiable
function, then

PROOF Let . Then

(by Law 3 of limits)

■

EXAMPLE 4

(a) 

(b) 
■

The next rule tells us that the derivative of a sum of functions is the sum of the 
derivatives.

THE SUM RULE If and are both differentiable, then

PROOF Let . Then

(by Law 1)

■

f

d

dx
�cf �x� � c

d

dx
f �x�

t�x� � cf �x�

t��x� � lim
h l 0

t�x � h� � t�x�
h

� lim
h l 0

cf �x � h� � cf �x�
h

� lim
h l 0

c� f �x � h� � f �x�
h 	

� c lim
h l 0

f �x � h� � f �x�
h

� cf ��x�

d

dx
�3x 4 � � 3 

d

dx
�x 4 � � 3�4x 3 � � 12x 3

d

dx
��x� �

d

dx
���1�x � ��1�

d

dx
�x� � �1�1� � �1

d

dx
� f �x� � t�x� �

d

dx
f �x� �

d

dx
t�x�

F�x� � f �x� � t�x�

F��x� � lim
h l 0

F�x � h� � F�x�
h

� lim
h l 0

� f �x � h� � t�x � h� � � f �x� � t�x�
h

� lim
h l 0

� f �x � h� � f �x�
h

�
t�x � h� � t�x�

h 	
� lim

h l 0

f �x � h� � f �x�
h

� lim
h l 0

t�x � h� � t�x�
h

� f ��x� � t��x�

c

f t
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■ GEOMETRIC INTERPRETATION 
OF THE CONSTANT MULTIPLE RULE

x

y

0

y=2ƒ

y=ƒ

Multiplying by stretches the graph
vertically by a factor of 2. All the rises
have been doubled but the runs stay the
same. So the slopes are doubled too.

c � 2

■ Using prime notation, we can write
the Sum Rule as

� f � t�� � f � � t�
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100 CHAPTER 2 DERIVATIVES

The Sum Rule can be extended to the sum of any number of functions. For in-
stance, using this theorem twice, we get

By writing as and applying the Sum Rule and the Constant Mul-
tiple Rule, we get the following formula.

THE DIFFERENCE RULE If and are both differentiable, then

The Constant Multiple Rule, the Sum Rule, and the Difference Rule can be com-
bined with the Power Rule to differentiate any polynomial, as the following examples
demonstrate.

EXAMPLE 5

■

EXAMPLE 6 Find the points on the curve where the tangent
line is horizontal.

SOLUTION Horizontal tangents occur where the derivative is zero. We have

Thus if x � 0 or , that is, . So the given curve has 
horizontal tangents when x � 0, , and . The corresponding points are ,

, and . (See Figure 5.)

■

� f � t � h�� � �� f � t� � h� � � f � t�� � h� � f � � t� � h�

f � t f � ��1�t

d

dx
� f �x� � t�x� �

d

dx
f �x� �

d

dx
t�x�

d

dx
�x 8 � 12x 5 � 4x 4 � 10x 3 � 6x � 5�

�
d

dx
�x 8 � � 12 

d

dx
�x 5 � � 4 

d

dx
�x 4 � � 10 

d

dx
�x 3 � � 6 

d

dx
�x� �

d

dx
�5�

� 8x 7 � 12�5x 4 � � 4�4x 3 � � 10�3x 2 � � 6�1� � 0

� 8x 7 � 60x 4 � 16x 3 � 30x 2 � 6

y � x 4 � 6x 2 � 4

dy

dx
�

d

dx
�x 4 � � 6 

d

dx
�x 2 � �

d

dx
�4�

� 4x 3 � 12x � 0 � 4x�x 2 � 3�

dy�dx � 0 x 2 � 3 � 0 x � 	s3
s3 �s3 �0, 4�

(s3 , �5) (�s3 , �5)

FIGURE 5
The curve y=x$-6x@+4 and

its horizontal tangents

0 x

y

(0, 4)

{œ„3, _5}{_œ„3, _5}

f t

V

■ www.stewartcalculus.com
See Additional Example A.
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SECTION 2.3  BASIC DIFFERENTIATION FORMULAS 101

THE SINE AND COSINE FUNCTIONS

If we sketch the graph of the function and use the interpretation of
as the slope of the tangent to the sine curve in order to sketch the graph of (see 
Exer cise 16 in Section 2.2), then it looks as if the graph of may be the same as the
cosine curve (see Figure 6).

To prove that this is true we need to use two limits from Section 1.4 (see Equation 6
and Example 11 in that section):

PROOF If , then

■

f �x� � sin x f ��x�
f �

f �

x

ƒ=sin x

0 π

2

π 2π

2π x

fª(x)

0 π

2

π

FIGURE 6

lim

 l 0

sin 




� 1 lim


 l 0

cos 
 � 1



� 0

d

dx
�sin x� � cos x

f �x� � sin x

f ��x� � lim
h l 0

f �x � h� � f �x�
h

� lim
h l 0

sin�x � h� � sin x

h

� lim
h l 0

sin x cos h � cos x sin h � sin x

h

� lim
h l 0

� sin x cos h � sin x

h
�

cos x sin h

h 	
� lim

h l 0
�sin x 
 cos h � 1

h � � cos x 
 sin h

h �	
� lim

h l 0
sin x � lim

h l 0

cos h � 1

h
� lim

h l 0
cos x � lim

h l 0

sin h

h

� �sin x� � 0 � �cos x� � 1 � cos x

4

Visual 2.3 shows an animation 
of Figure 6.
TEC

■ We have used the addition formula
for sine. See Appendix A.

■ Note that we regard as a constant
when computing a limit as , so

and are also constants.cos xsin x
h l 0

x
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102 CHAPTER 2 DERIVATIVES

Using the same methods as in the proof of Formula 4, one can prove (see Exer-
cise 58) that

EXAMPLE 7 Differentiate .

SOLUTION

■

EXAMPLE 8 Find the 27th derivative of .

SOLUTION The first few derivatives of are as follows:

Looking for a pattern, we see that the successive derivatives occur in a cycle of
length 4 and, in particular, whenever is a multiple of 4. Therefore

and, differentiating three more times, we have

■

APPLICATIONS TO RATES OF CHANGE

We discussed velocity and other rates of change in Section 2.1, but now that we know
some differentiation formulas we can solve problems involving rates of change more
easily.

EXAMPLE 9 The position of a particle is given by the equation

where is measured in seconds and in meters.
(a) Find the velocity at time .
(b) What is the velocity after 2 s? After 4 s?
(c) When is the particle at rest?
(d) When is the particle moving forward (that is, in the positive direction)?
(e) Draw a diagram to represent the motion of the particle.
(f ) Find the total distance traveled by the particle during the first five seconds.
(g) Find the acceleration at time and after 4 s.
(h) Graph the position, velocity, and acceleration functions for .

d

dx
�cos x� � �sin x

y � 3 sin 
 � 4 cos 


dy

d

� 3 

d

d

�sin 
� � 4 

d

d

�cos 
� � 3 cos 
 � 4 sin 


cos x

f �x� � cos x

f ��x� � �sin x

f ��x� � �cos x

f � �x� � sin x

f �4��x� � cos x

f �5��x� � �sin x

f �n��x� � cos x n

f �24��x� � cos x

f �27��x� � sin x

s � f �t� � t 3 � 6t 2 � 9t

t s
t

t

5

V

0 � t � 5
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SOLUTION
(a) The velocity function is the derivative of the position function.

(b) The velocity after 2 s means the instantaneous velocity when , that is,

The velocity after 4 s is

(c) The particle is at rest when , that is,

and this is true when or . Thus the particle is at rest after 1 s and after 3 s.

(d) The particle moves in the positive direction when , that is, 

This inequality is true when both factors are positive or when both factors
are negative . Thus the particle moves in the positive direction in the time
intervals and . It moves backward (in the negative direction) when

.

(e) Using the information from part (d) we make a schematic sketch in Figure 7 of
the motion of the particle back and forth along a line (the -axis).

(f ) Because of what we learned in parts (d) and (e), we need to calculate the dis-
tances traveled during the time intervals [0, 1], [1, 3], and [3, 5] separately.

The distance traveled in the first second is

From to the distance traveled is

From to the distance traveled is

The total distance is .

(g) The acceleration is the derivative of the velocity function:

(h) Figure 8 shows the graphs of . ■

s � f �t� � t 3 � 6t 2 � 9t

v�t� �
ds

dt
� 3t 2 � 12t � 9

t � 2

v�2� �
ds

dt �
t�2

� 3�2�2 � 12�2� � 9 � �3 m�s

v�4� � 3�4�2 � 12�4� � 9 � 9 m�s

v�t� � 0

3t 2 � 12t � 9 � 3�t 2 � 4t � 3� � 3�t � 1��t � 3� � 0

t � 1 t � 3

v�t� � 0

3t 2 � 12t � 9 � 3�t � 1��t � 3� � 0

�t � 3�
�t  1�

t  1 t � 3
1  t  3

s

� f �1� � f �0� � � � 4 � 0 � � 4 m

t � 1 t � 3

� f �3� � f �1� � � � 0 � 4 � � 4 m

t � 3 t � 5

� f �5� � f �3� � � � 20 � 0 � � 20 m

4 � 4 � 20 � 28 m

a�t� �
d 2s

dt 2 �
dv

dt
� 6t � 12

a�4� � 6�4� � 12 � 12 m�s2

s, v, and a
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EXAMPLE 10 Suppose is the total cost that a company incurs in producing
units of a certain commodity. The function is called a cost function. If the 

number of items produced is increased from to , then the additional cost is
, and the average rate of change of the cost is

The limit of this quantity as , that is, the instantaneous rate of change of 
cost with respect to the number of items produced, is called the marginal cost by
economists:

[Since often takes on only integer values, it may not make literal sense to let 
approach 0, but we can always replace by a smooth approximating function.]

Taking and large (so that is small compared to ), we have

Thus the marginal cost of producing units is approximately equal to the cost of
producing one more unit [the st unit].

It is often appropriate to represent a total cost function by a polynomial

where represents the overhead cost (rent, heat, maintenance) and the other terms 
represent the cost of raw materials, labor, and so on. (The cost of raw materials may
be proportional to , but labor costs might depend partly on higher powers of
because of overtime costs and inefficiencies involved in large-scale operations.)

For instance, suppose a company has estimated that the cost (in dollars) of pro-
ducing items is

Then the marginal cost function is

The marginal cost at the production level of 500 items is

This gives the rate at which costs are increasing with respect to the production level
when and predicts the cost of the 501st item.

The actual cost of producing the 501st item is

Notice that . ■

C�x�
x C

x1 x2

�C � C�x2 � � C�x1�

�C

�x
�

C�x2 � � C�x1�
x2 � x1

�
C�x1 � �x� � C�x1�

�x

�x l 0

marginal cost � lim
�x l 0

�C

�x
�

dC

dx

x �x
C�x�

�x � 1 n �x n

C��n� � C�n � 1� � C�n�

n
�n � 1�

C�x� � a � bx � cx 2 � dx 3

V

a

x x

x

C�x� � 10,000 � 5x � 0.01x 2

C��x� � 5 � 0.02x

C��500� � 5 � 0.02�500� � $15�item

x � 500

C�501� � C�500� � �10,000 � 5�501� � 0.01�501�2 �

� � �10,000 � 5�500� � 0.01�500�2 �

� $15.01

C��500� � C�501� � C�500�
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2.3 EXERCISES

1–26 ■ Differentiate the function.

1. 2.

3. 4.

5.

6.

7. 8.

9.

10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27–28 ■ Find equations of the tangent line and normal line to
the curve at the given point.

27. ,  28. ,  

;29–30 ■ Find an equation of the tangent line to the curve at
the given point. Illustrate by graphing the curve and the
tangent line on the same screen.

29. , 30. ,  

31–34 ■ Find the first and second derivatives of the function.

31. 32.

33. 34.

35. Find .

36. Find the derivative of each function by calculating the
first few derivatives and observing the pattern that occurs.
(a) (b)

f �x� � 2 40 f �x� � � 2

f �t� � 2 �
2
3 t F �x� � 3

4 x 8

f �x� � x 3 � 4x � 6

f �t� � 1.4t 5 � 2.5t 2 � 6.7

f �x� � 3x 2 � 2 cos x y � sin t � � cos t

t�x� � x 2�1 � 2x�

h�x� � �x � 2��2x � 3�

t�t� � 2t�3�4 B�y� � cy�6

A�s� � �
12

s 5 y � x 5�3 � x 2�3

R�a� � �3a � 1�2 y � sx �x � 1�

S� p� � sp � p S�R� � 4�R 2

y �
x 2 � 4x � 3

sx
t�u� � s2 u � s3u

v � t 2 �
1

s
4 t 3 y �

sx � x

x 2

z �
A

y10 � B cos y y �
sin �

2
�

c

�

H�x� � �x � x�1�3 u � s
3 t 2 � 2st 3 

y � 6 cos x ���3, 3� y � x 2 � x 4 �1, 0�

y � 3x2 � x3 �1, 2� y � x � sx �1, 0�

f �x� � x 4 � 3x 3 � 16x G �r� � sr � s
3 r

t�t� � 2 cos t � 3 sin t h�t� � st � 5 sin t

d 99

dx99
 �sin x�

nth

f �x� � x n f �x� � 1�x

37. For what values of does the graph of
have a horizontal tangent?

38. Find the points on the curve
where the tangent is horizontal.

39. Show that the curve has no tangent
line with slope 4.

40. Find an equation of the tangent line to the curve
that is parallel to the line .

41. Find an equation of the normal line to the parabola
that is parallel to the line .

42. Where does the normal line to the parabola 
at the point (1, 0) intersect the parabola a second time?
Illustrate with a sketch.

43. The equation of motion of a particle is , where
is in meters and is in seconds. Find

(a) the velocity and acceleration as functions of ,
(b) the acceleration after 2 s, and
(c) the acceleration when the velocity is 0.

44. The equation of motion of a particle is
, where is in meters and is in

seconds.
(a) Find the velocity and acceleration as functions of .
(b) Find the acceleration after 1 s.

; (c) Graph the position, velocity, and acceleration func-
tions on the same screen.

45–46 ■ A particle moves according to a law of motion
, , where is measured in seconds and in feet.

(a) Find the velocity at time .
(b) What is the velocity after 3 s?
(c) When is the particle at rest?
(d) When is the particle moving in the positive direction?
(e) Find the total distance traveled during the first 8 s.
(f ) Draw a diagram like Figure 2 to illustrate the motion of

the particle.
(g) Find the acceleration at time and after 3 s.

; (h) Graph the position, velocity, and acceleration functions 
for .

45. 46.

47. The position function of a particle is given by
.

(a) When does the particle reach a velocity of ?
(b) When is the acceleration 0? What is the significance

of this value of ?

y � 2x 3 � 3x 2 � 12x � 1

y � 6x 3 � 5x � 3

y � xsx
y � 1 � 3x

y � x 2 � 5x � 4 x � 3y � 5

y � x � x 2

s � t 3 � 3t
s t

t

s � 2t 3 � 7t 2 � 4t � 1 s t

t

s � f �t� t � 0 t s
t

t

0 	 t 	 8

f �t� � t 3 � 12t 2 � 36t f �t� � 0.01t 4 � 0.04t 3

s � t 3 � 4.5t 2 � 7t, t � 0
5 m�s

t

f �x� � x � 2 sin xx
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(b) Calculate when . What is the mean-
ing of the derivative? What are its units?

56. Newton’s Law of Gravitation says that the magnitude of
the force exerted by a body of mass on a body of mass
is

where is the gravitational constant and is the distance
between the bodies.
(a) Find and explain its meaning. What does the

minus sign indicate?
(b) Suppose it is known that the earth attracts an object 

with a force that decreases at the rate of 2 N�km when 
r � 20,000 km. How fast does this force change when 
r � 10,000 km?

57. Use the definition of a derivative to show that if ,
then . (This proves the Power Rule for the
case .)

58. Prove, using the definition of derivative, that if ,
then .

59. The equation is called a differential
equation because it involves an unknown function and its
derivatives and . Find constants and such that the
function satisfies this equation. (Dif-
ferential equations will be studied in detail in Section 7.7.)

60. Find constants such that the function
satisfies the differential equation

.

61. Draw a diagram to show that there are two tangent lines to
the parabola that pass through the point .
Find the coordinates of the points where these tangent lines
intersect the parabola.

62. (a) Find equations of both lines through the point
that are tangent to the parabola .

(b) Show that there is no line through the point that is
tangent to the parabola. Then draw a diagram to see
why.

63. For what values of and is the line tangent to
the parabola when ?

64. Find a parabola with equation that has
slope 4 at , slope at , and passes through
the point .

65. Find a cubic function whose graph
has horizontal tangents at the points and .

66. Suppose the curve has a
tangent line when with equation and a
tangent line when with equation . Find
the values of , , , and .

67. Find the parabola with equation whose tan-
gent line at (1, 1) has equation .

F
m M

F �
GmM

r 2

G r

dF�dr

f �x� � 1�x
f ��x� � �1�x 2

n � �1

f �x� � cos x
f ��x� � �sin x

y
 � y� � 2y � sin x
y

y� y
 A B
y � A sin x � B cos x

A, B, and C
y � Ax 2 � Bx � C
y 
 � y� � 2y � x 2

y � x 2 �0, �4�

�2, �3�
y � x 2 � x

�2, 7�

a b 2x � y � b
y � ax 2 x � 2

y � ax 2 � bx � c
x � 1 �8 x � �1

�2, 15�

y � ax 3 � bx 2 � cx � d
��2, 6� �2, 0�

P � 50 kPadV�dP

y � x 4 � ax 3 � bx 2 � cx � d
y � 2x � 1x � 0
y � 2 � 3xx � 1 

dcba

y � ax 2 � bx
y � 3x � 2

48. If a ball is given a push so that it has an initial velocity of
down a certain inclined plane, then the distance it has

rolled after seconds is .
(a) Find the velocity after 2 s.
(b) How long does it take for the velocity to reach ?

49. If a rock is thrown vertically upward from the surface of 
Mars with velocity , its height after seconds is

.
(a) What is the velocity of the rock after 2 s?
(b) What is the velocity of the rock when its height is 25 m

on its way up? On its way down?

50. If a ball is thrown vertically upward with a velocity of 
80 ft�s, then its height after seconds is .
(a) What is the maximum height reached by the ball?
(b) What is the velocity of the ball when it is 96 ft above

the ground on its way up? On its way down?

51. The cost, in dollars, of producing yards of a certain fabric
is

(a) Find the marginal cost function.
(b) Find and explain its meaning. What does it 

predict?
(c) Compare with the cost of manufacturing the

201st yard of fabric.

52. The cost function for production of a commodity is

(a) Find and interpret .
(b) Compare with the cost of producing the 101st

item.

53. A spherical balloon is being inflated. Find the rate of
increase of the surface area with respect to the
radius when is (a) 1 ft, (b) 2 ft, and (c) 3 ft. What
conclusion can you make?

54. If a tank holds 5000 gallons of water, which drains from the
bottom of the tank in 40 minutes, then Torricelli’s Law
gives the volume of water remaining in the tank after 

minutes as

Find the rate at which water is draining from the tank after 
(a) 5 min, (b) 10 min, (c) 20 min, and (d) 40 min. At what
time is the water flowing out the fastest? The slowest? 
Summarize your findings.

55. Boyle’s Law states that when a sample of gas is compressed
at a constant pressure, the pressure of the gas is inversely
proportional to the volume of the gas.
(a) Suppose that the pressure of a sample of air that occu-

pies at is . Write as a function
of .

35 m�s

5 m�s
s � 5t � 3t 2t

t15 m�s
h � 15t � 1.86t 2

s � 80t � 16t 2t

x

C�x� � 1200 � 12x � 0.1x 2 � 0.0005x 3

C��200�

C��200�

C�x� � 339 � 25x � 0.09x 2 � 0.0004x 3

C��100�
C��100�

�S � 4�r 2 �
rr

V
t

0 	 t 	 40V � 5000(1 �
1
40 t)2

P
V

V50 kPa25�C0.106 m3

P

106 CHAPTER 2 DERIVATIVES

Unless otherwise noted, all content on this page is © Cengage Learning.

12280_ch02_ptg01_hr_104-113.qk_12280_ch02_ptg01_hr_104-113  11/16/11  12:39 PM  Page 106

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



70. Draw a diagram showing two perpendicular lines that inter-
sect on the -axis and are both tangent to the parabola

. Where do these lines intersect?

71. If , how many lines through the point are normal

lines to the parabola ? What if ?

72. Sketch the parabolas and . Do you
think there is a line that is tangent to both curves? If so, find
its equation. If not, why not?

c �
1
2 �0, c�

y � x 2 c 	
1
2

y � x 2 y � x 2 � 2x � 2

y
y � x 2

68. A tangent line is drawn to the hyperbola at a point .
(a) Show that the midpoint of the line segment cut from this

tangent line by the coordinate axes is .
(b) Show that the triangle formed by the tangent line and

the coordinate axes always has the same area, no matter
where is located on the hyperbola.

69. Evaluate .

Pxy � c

P

P

lim
x l 1

x 1000 � 1

x � 1

2.4 THE PRODUCT AND QUOTIENT RULES
The formulas of this section enable us to differentiate new functions formed from old
functions by multiplication or division.

THE PRODUCT RULE

| By analogy with the Sum and Difference Rules, one might be tempted to guess, as
Leibniz did three centuries ago, that the derivative of a product is the product of the
derivatives. We can see, however, that this guess is wrong by looking at a particular
example. Let and . Then the Power Rule gives and

. But , so . Thus . The correct for-
mula was discovered by Leibniz (soon after his false start) and is called the Product
Rule.

THE PRODUCT RULE If and are both differentiable, then

PROOF Let . Then

In order to evaluate this limit, we would like to separate the functions and as in 
the proof of the Sum Rule. We can achieve this separation by subtracting and adding
the term in the numerator:

f �x� � x t�x� � x 2 f ��x� � 1
t��x� � 2x � ft��x� � x 3 � ft���x� � 3x 2 � ft�� � f �t�

f t

F�x� � f �x�t�x�

F��x� � lim
h l 0

F�x � h� � F�x�
h

� lim
h l 0

f �x � h�t�x � h� � f �x�t�x�
h

f t

f �x � h� t�x�

F��x� � lim
h l 0

f �x � h�t�x � h� � f �x � h�t�x� � f �x � h�t�x� � f �x�t�x�
h

� lim
h l 0

�f �x � h�
t�x � h� � t�x�

h
� t�x�

f �x � h� � f �x�
h 	

� lim
h l 0

f �x � h� � lim
h l 0

t�x � h� � t�x�
h

� lim
h l 0

t�x� � lim
h l 0

f �x � h� � f �x�
h

� f �x�t��x� � t�x� f ��x�

d

dx
� f �x�t�x�� � f �x�

d

dx
�t�x�� � t�x�

d

dx
� f �x��
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■ We can write the Product Rule in
prime notation as

� ft�� � ft� � t f �
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Note that because is a constant with respect to the variable
. Also, since is differentiable at , it is continuous at by Theorem 2.2.4, and so

. ■

In words, the Product Rule says that the derivative of a product of two functions is
the first function times the derivative of the second function plus the second function
times the derivative of the first function.

EXAMPLE 1 Differentiate .

SOLUTION Using the Product Rule, we have

■

EXAMPLE 2 Differentiate the function .

SOLUTION 1 Using the Product Rule, we have

SOLUTION 2 If we first use the laws of exponents to rewrite , then we can
proceed directly without using the Product Rule.

which is equivalent to the answer given in Solution 1. ■

Example 2 shows that it is sometimes easier to simplify a product of functions than 
to use the Product Rule. In Example 1, however, the Product Rule is the only possible
method.

EXAMPLE 3 If and it is known that and , find .

SOLUTION Applying the Product Rule, we get

Therefore ■

y � x 2 sin x

dy

dx
� x 2 d

dx
�sin x� � sin x

d

dx
�x 2 �

� x 2 cos x � 2x sin x

f �t� � st �a � bt�

f ��t� � st
d

dt
�a � bt� � �a � bt�

d

dt
(st )

� st � b � �a � bt� 
1
2 t�1�2

� bst �
a � bt

2st
�

a � 3bt

2st

lim h l 0 f �x � h� � f �x�

t�x�lim h l 0 t�x� � t�x�
xxfh

V

f �t�

f �t� � ast � btst � at 1�2 � bt 3�2

f ��t� � 1
2at�1�2 �

3
2 bt 1�2

h�x� � xt�x� t�3� � 5 t��3� � 2 h��3�

h��x� �
d

dx
�xt�x�� � x

d

dx
�t�x�� � t�x�

d

dx
�x�

� xt��x� � t�x�

h��3� � 3t��3� � t�3� � 3 � 2 � 5 � 11
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■ Figure 1 shows the graphs of the
function of Example 1 and its deriva -
tive. Notice that whenever has
a horizontal tangent.

yy� � 0

5

_5

_4 4

yyª

FIGURE 1

■ In Example 2, and are constants.
It is customary in mathematics to use
letters near the beginning of the alpha-
bet to represent constants and letters
near the end of the alphabet to represent
variables.

ba

■ www.stewartcalculus.com
See Additional Examples A, B.
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THE QUOTIENT RULE

The following rule enables us to differentiate the quotient of two differentiable functions.

THE QUOTIENT RULE If and are differentiable, then

PROOF Let . Then

We can separate and in this expression by subtracting and adding the term
in the numerator:

Again is continuous by Theorem 2.2.4, so . ■

In words, the Quotient Rule says that the derivative of a quotient is the denomina-
tor times the derivative of the numerator minus the numerator times the derivative of
the denominator, all divided by the square of the denominator.

The Quotient Rule and the other differentiation formulas enable us to compute the
derivative of any rational function, as the next example illustrates.

f t

d

dx � f �x�
t�x� 	 �

t�x�
d

dx
� f �x�� � f �x�

d

dx
�t�x��

�t�x�� 2

F�x� � f �x��t�x�

F��x� � lim
h l 0

F�x � h� � F�x�
h

� lim
h l 0

f �x � h�
t�x � h�

�
f �x�
t�x�

h

� lim
h l 0

f �x � h�t�x� � f �x�t�x � h�
ht�x � h�t�x�

f t

f �x� t�x�

F��x� � lim
h l 0

f �x � h�t�x� � f �x�t�x� � f �x�t�x� � f �x�t�x � h�
ht�x � h�t�x�

� lim
h l 0

t�x�
f �x � h� � f �x�

h
� f �x�

t�x � h� � t�x�
h

t�x � h�t�x�

�

lim
h l 0

t�x� � lim
h l 0

 
f �x � h� � f �x�

h
� lim

h l 0
f �x� � lim

h l 0

t�x � h� � t�x�
h

lim
h l 0

t�x � h� � lim
h l 0

t�x�

�
t�x� f ��x� � f �x�t��x�

�t�x��2

t lim h l 0 t�x � h� � t�x�
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■ In prime notation we can write the
Quotient Rule as


 f

t
��

�
t f � � ft�

t
2
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EXAMPLE 4 Let .

Then

■

EXAMPLE 5 Find an equation of the tangent line to the curve at
the point .

SOLUTION According to the Quotient Rule, we have

So the slope of the tangent line at is

We use the point-slope form to write an equation of the tangent line at :

or    

The curve and its tangent line are graphed in Figure 3. ■

NOTE Don’t use the Quotient Rule every time you see a quotient. Sometimes it’s
easier to rewrite a quotient first to put it in a form that is simpler for the purpose of
differentiation. For instance, although it is possible to differentiate the function

�
�x 3 � 6��2x � 1� � �x 2 � x � 2��3x 2 �

�x 3 � 6�2

�
�2x 4 � x 3 � 12x � 6� � �3x 4 � 3x 3 � 6x 2 �

�x 3 � 6�2

�
�x 4 � 2x 3 � 6x 2 � 12x � 6

�x 3 � 6�2

y � sx��1 � x 2 �
(1, 1

2 )

dy

dx
�

�1 � x 2 �
d

dx
(sx ) � sx

d

dx
�1 � x 2 �

�1 � x 2 �2

�

�1 � x 2 �
1

2sx
� sx �2x�

�1 � x 2 �2

�
�1 � x 2 � � 4x 2

2sx �1 � x 2 �2 �
1 � 3x 2

2sx �1 � x 2 �2

(1, 1
2 )

dy

dx �
x�1

�
1 � 3 � 12

2s1 �1 � 12 �2 � �
1

4

y �
x 2 � x � 2

x 3 � 6

y� �

�x 3 � 6�
d

dx
�x 2 � x � 2� � �x 2 � x � 2�

d

dx
�x 3 � 6�

�x 3 � 6�2

V

(1, 1
2 )

y �
1
2 � �

1
4 �x � 1� y � �

1
4 x �

3
4

F�x� �
3x 2 � 2sx

x
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■ We can use a graphing device to
check that the answer to Example 4 is
plausible. Figure 2 shows the graphs of
the function of Example 4 and its deriv-
ative. Notice that when grows rapidly
(near ), is large. And when 
grows slowly, is near .y� 0

yy��2
y

1.5

_1.5

_4 4

yª

y

FIGURE 2

1

0
4

”1,    ’
1

2

y=
œ„x

1+≈

FIGURE 3
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using the Quotient Rule, it is much easier to perform the division first and write the
function as

before differentiating.

TRIGONOMETRIC FUNCTIONS

Knowing the derivatives of the sine and cosine functions, we can use the Quotient
Rule to find the derivative of the tangent function:

The derivatives of the remaining trigonometric functions, , , and , can also
be found easily using the Quotient Rule (see Exercises 37–39). We collect all the dif-
ferentiation formulas for trigonometric functions in the following table. Remember
that they are valid only when is measured in radians.

DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

F�x� � 3x � 2x�1�2

d

dx
�tan x� �

d

dx 
 sin x

cos x�
�

cos x
d

dx
�sin x� � sin x

d

dx
�cos x�

cos2x

�
cos x � cos x � sin x ��sin x�

cos2x

�
cos2x � sin2x

cos2x

�
1

cos2x
� sec2x

d

dx
�tan x� � sec2x

csc cot 

x

d

dx
�sin x� � cos x

d

dx
�csc x� � �csc x cot x

d

dx
�cos x� � �sin x

d

dx
�sec x� � sec x tan x

d

dx
�tan x� � sec2x

d

dx
�cot x� � �csc2x

sec 
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■ When you memorize this table, it is
helpful to notice that the minus signs go
with the derivatives of the “cofunctions,”
that is, cosine, cosecant, and cotangent.
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2.4 EXERCISES

1. Find the derivative of in two
ways: by using the Product Rule and by performing the
multiplication first. Do your answers agree?

2. Find the derivative of the function

in two ways: by using the Quotient Rule and by simplifying
first. Show that your answers are equivalent. Which method
do you prefer?

3–26 ■ Differentiate.

3. 4.

5.

6.

7. 8.

9. 10.

11. 12.

13. 14.

f �x� � �1 � 2x 2��x � x 2�

F�x� �
x 4 � 5x 3 � sx

x 2

t�t� � t 3 cos t f �x� � sx sin x

F�y� � 
 1

y2 �
3

y4��y � 5y3�

J�v� � �v 3 � 2v��v�4 � v�2�

f �x� � sin x �
1
2 cot x y � 2 sec x � csc x

h��� � � csc � � cot � y � sin � cos �

t�x� �
1 � 2x

3 � 4x
G�x� �

x 2 � 2

2x � 1

y �
x 3

1 � x 2 y �
x � 1

x 3 � x � 2

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27–30 ■ Find an equation of the tangent line to the curve at the
given point.

27. ,  28. ,  

29. ,  30. ,  

y �
v3 � 2vsv

v
t�t� �

t � st

t 1�3

f �t� �
2t

2 � st
y �

sx � 1

sx � 1

y �
x

2 � tan x
y �

cos x

1 � sin x

f ��� �
sec �

1 � sec �
y �

1 � sec x

tan x

y �
t sin t

1 � t
y �

t

�t � 1�2

f �x� �
x

x �
c

x

y � x 2  sin x tan x

y �
x 2 � 1

x 2 � x � 1
�1, 0� y �

sx

x � 1
�4, 0.4�

y � cos x � sin x ��, �1� y � x � tan x ��, ��

EXAMPLE 6 Differentiate . For what values of x does the graph of 
have a horizontal tangent?

SOLUTION The Quotient Rule gives 

In simplifying the answer we have used the identity .
Since is never 0, we see that when , and this occurs

when , where n is an integer (see Figure 4). ■

f ��x� �

�1 � tan x�
d

dx
�sec x� � sec x

d

dx
�1 � tan x�

�1 � tan x�2

�
�1 � tan x� sec x tan x � sec x � sec2x

�1 � tan x�2

�
sec x �tan x � tan2x � sec2x�

�1 � tan x�2

�
sec x �tan x � 1�

�1 � tan x�2

tan2x � 1 � sec2x
sec x f ��x� � 0 tan x � 1

x � n� � ��4

f �x� �
sec x

1 � tan x
f
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3

_3

_3 5

FIGURE 4
The horizontal tangents in Example 6
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45. If is a differentiable function, find an expression for the
derivative of each of the following functions.

(a) (b) (c)

46. If is a differentiable function, find an expression for the
derivative of each of the following functions.

(a) (b)

(c) (d)

47. How many tangent lines to the curve ) pass
through the point ? At which points do these tangent
lines touch the curve?

48. Find equations of the tangent lines to the curve

that are parallel to the line .

49. Find , where

Hint: Instead of finding first, let be the numera-
tor and the denominator of and compute
from , , , and .

50. A manufacturer produces bolts of a fabric with a fixed
width. The quantity of this fabric (measured in yards)
that is sold is a function of the selling price (in dollars
per yard), so we can write . Then the total
revenue earned with selling price is .
(a) What does it mean to say that and

?
(b) Assuming the values in part (a), find and inter-

pret your answer.

51. A mass on a spring vibrates horizontally on a smooth 
level surface (see the figure). Its equation of motion is

, where is in seconds and in centimeters.
(a) Find the velocity and acceleration at time .

F

G

x

y

0 1

1

t

y � xt�x� y �
x

t�x�
y �

t�x�
x

f

y � x 2 f �x� y �
f �x�
x 2

y �
x 2

f �x�
y �

1 � x f �x�
sx

y � x��x � 1
�1, 2�

y �
x � 1

x � 1

x � 2y � 2

R��0�

R�x� �
x � 3x 3 � 5x 5

1 � 3x 3 � 6x 6 � 9x 9

R��x� f �x�
t�x� R�x� R��0�

f �0� f ��0� t�0� t��0�

q � f �p�
R�p� � pf �p�

f �20� � 10,000
f ��20� � �350

R��20�

q
p

p

x�t� � 8 sin t t x
t

31. (a) The curve is called a witch of Maria
Agnesi. Find an equation of the tangent line to this
curve at the point .

; (b) Illustrate part (a) by graphing the curve and the tangent
line on the same screen.

32. (a) The curve is called a serpentine. Find
an equation of the tangent line to this curve at the point

.

; (b) Illustrate part (a) by graphing the curve and the tangent
line on the same screen.

33. If , find .

34. If , find .

35. If , find .

36. Find .

37. Prove that .

38. Prove that .

39. Prove that .

40. Suppose and , and let
and . Find

(a) (b)

41. Suppose that , , , and
. Find the following values.

(a) (b) (c)

42. If , , , and , find the
following numbers.

(a) (b) (c)

43. If and are the functions whose graphs are shown, let
and .

(a) Find (b) Find 

44. Let and , where and
are the functions whose graphs are shown.

(a) Find . (b) Find .

y � 1��1 � x 2�

(�1, 1
2 )

y � x��1 � x 2 �

�3, 0.3�

f �x� � x 2��1 � x� f 
�1�

f �x� � sec x f 
���4�

H��� � � sin � H���� and H 
���

d 35

dx 35
 �x sin x�

d

dx
�csc x� � �csc x cot x

d

dx
�sec x� � sec x tan x

d

dx
�cot x� � �csc2x

f ���3� � 4 f ����3� � �2
t�x� � f �x� sin x h�x� � �cos x��f �x�

t����3� h����3�

f �5� � 1 f ��5� � 6 t�5� � �3
t��5� � 2

� ft���5� � f�t���5� �t�f ���5�

t��3� � 5f ��3� � �6t�3� � 2f �3� � 4

� f�t���3�� ft���3�� f � t���3�

tf
v�x� � f �x��t�x�u�x� � f �x�t�x�

v��5�.u��1�.

f

g

x

y

0

1

1

FQ�x� � F�x��G�x�P�x� � F�x�G�x�
G

Q��7�P��2�
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change of the reaction with respect to . A particular 
example is that when the brightness of a light source is
increased, the eye reacts by decreasing the area of the
pupil. The experimental formula

has been used to model the dependence of on when
is measured in square millimeters and is measured in
appropriate units of brightness.
(a) Find the sensitivity.

; (b) Illustrate part (a) by graphing both and as functions 
of . Comment on the values of and at low levels
of brightness. Is this what you would expect?

55. (a) Use the Product Rule twice to prove that if , , and
are differentiable, then .

(b) Use part (a) to differentiate .

56. (a) If , where and have derivatives 
of all orders, show that .

(b) Find similar formulas for and .
(c) Guess a formula for .

57. (a) If t is differentiable, the Reciprocal Rule says that

Use the Quotient Rule to prove the Reciprocal Rule.
(b) Use the Reciprocal Rule to differentiate the function

.
(c) Use the Reciprocal Rule to verify that the Power Rule

is valid for negative integers, that is,

for all positive integers .

F � � f �t � 2 f �t� � ft �
F � F �4�

F �n�

d

dx � 1

t�x�� � �
t��x�

�t�x��2

y � 1��x 4 � x 2 � 1�

d

dx
�x�n� � �nx�n�1

n

x
x

R

R �
40 � 24x 0.4

1 � 4x 0.4

RxR
x

SR
SRx

htf
� fth�� � f �th � ft�h � fth�

y � x sin x cos x

tfF�x� � f �x�t�x�

(b) Find the position, velocity, and acceleration of the
mass at time . In what direction is it moving
at that time? Is it speeding up or slowing down?

52. An object with weight is dragged along a horizontal
plane by a force acting along a rope attached to the object.
If the rope makes an angle with the plane, then the mag-
nitude of the force is

where is a constant called the coefficient of friction.
(a) Find the rate of change of with respect to .
(b) When is this rate of change equal to 0?

; (c) If lb and , draw the graph of as a
function of and use it to locate the value of for
which . Is the value consistent with your
answer to part (b)?

53. The gas law for an ideal gas at absolute temperature 
(in kelvins), pressure  (in atmospheres), and volume 
(in liters) is , where is the number of moles of
the gas and is the gas constant. Suppose that,
at a certain instant, atm and is increasing at a rate
of 0.10 atm�min and and is decreasing at a rate
of 0.15 L�min. Find the rate of change of with respect to
time at that instant if mol.

54. If denotes the reaction of the body to some stimulus of
strength , the sensitivity is defined to be the rate of

t � 2��3

x
x

0

equilibrium
position

W

�

F �
	W

	 sin � � cos �

	
�F

F	 � 0.6W � 50
��

dF�d� � 0

T
VP

nPV � nRT
R � 0.0821

P � 8.0
V � 10 L

T
n � 10

R
Sx
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2.5 THE CHAIN RULE
Suppose you are asked to differentiate the function 

The differentiation formulas you learned in the previous sections of this chapter do not
enable you to calculate .

Observe that is a composite function. In fact, if we let and let
, then we can write , that is, . We

know how to differentiate both and , so it would be useful to have a rule that tells
us how to find the derivative of in terms of the derivatives of and .

It turns out that the derivative of the composite function is the product of the
derivatives of and . This fact is one of the most important of the differentiation rules 

F�x� � sx 2 � 1

F��x�
y � f �u� � suF

F � f � ty � F�x� � f �t�x��u � t�x� � x 2 � 1
tf

tfF � f � t

f � t

tf

■ See Section 1.2 for a review of 
composite functions.
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and is called the Chain Rule. It seems plausible if we interpret derivatives as rates of
change. Regard as the rate of change of with respect to , as the rate
of change of with respect to , and as the rate of change of with respect to  
. If changes twice as fast as and changes three times as fast as , then it seems

reasonable that changes six times as fast as , and so we expect that 

THE CHAIN RULE If f and t are both differentiable and is the com-
posite function defined by , then is differentiable and is
given by the product 

In Leibniz notation, if and are both differentiable functions,
then

COMMENTS ON THE PROOF OF THE CHAIN RULE Let be the change in cor-
responding to a change of in , that is,

Then the corresponding change in is 

It is tempting to write

The only flaw in this reasoning is that in it might happen that (even
when ) and, of course, we can’t divide by 0. 

Nonetheless, this reasoning does at least suggest that the Chain Rule is true. A
full proof of the Chain Rule is given at the end of this section. ■

y x

dy

dx
�

dy

du

du

dx

F � f � t

F�x� � f �t�x�� F F�

F��x� � f ��t�x�� � t��x�

y � f �u� u � t�x�

dy

dx
�

dy

du

du

dx

�u u
�x x

�u � t�x � �x� � t�x�

y

�y � f �u � �u� � f �u�

dy

dx
� lim

�x l 0

�y

�x

� lim
�x l 0

�y

�u
�

�u

�x

� lim
�x l 0

�y

�u
� lim

�x l 0

�u

�x

� lim
�u l 0

�y

�u
� lim

�x l 0

�u

�x

�
dy

du

du

dx

�u � 0
�x � 0

1

dy�duxudu�dx
ydy�dxuy
uyxux

1
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(Note that as 

since is continuous.)t

�x l 0�u l 0

■ JAMES GREGORY
The first person to formulate the Chain
Rule was the Scottish mathematician 
James Gregory (1638–1675), who also
designed the first practical reflecting tele-
scope. Gregory discovered the basic 
ideas of calculus at about the same time 
as Newton. He became the first Professor 
of Mathematics at the University of St.
Andrews and later held the same position 
at the University of Edinburgh. But one
year after accepting that position he died 
at the age of 36.
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116 CHAPTER 2 DERIVATIVES

The Chain Rule can be written either in the prime notation

or, if and , in Leibniz notation:

Equation 3 is easy to remember because if and were quotients, then we
could cancel . Remember, however, that has not been defined and should
not be thought of as an actual quotient.

EXAMPLE 1 Find if .

SOLUTION 1 (using Equation 2): At the beginning of this section we expressed
as where and . Since

and    

we have

SOLUTION 2 (using Equation 3): If we let and , then

■

When using Formula 3 we should bear in mind that refers to the derivative
of when is considered as a function of (called the derivative of with respect 
to ), whereas refers to the derivative of when considered as a function of
(the derivative of with respect to ). For instance, in Example 1, can be considered
as a function  of and also as a function of . Note that

whereas    

NOTE In using the Chain Rule we work from the outside to the inside. Formula 2
says that we differentiate the outer function [at the inner function ] and then we
multiply by the derivative of the inner function.

� f � t���x� � f ��t�x�� � t��x�

y � f �u� u � t�x�

dy

dx
�

dy

du

du

dx

dy�du du�dx
du du du�dx

F��x� F�x� � sx 2 � 1

F
F�x� � � f � t��x� � f �t�x�� f �u� � su t�x� � x 2 � 1

f ��u� � 1
2 u�1�2 �

1

2su
t��x� � 2x

F��x� � f ��t�x�� � t��x�

�
1

2sx 2 � 1
� 2x �

x

sx 2 � 1

u � x 2 � 1 y � su

F��x� �
dy

du

du

dx
�

1

2su
�2x�

�
1

2sx 2 � 1
�2x� �

x

sx 2 � 1

dy�dx
y y x y
x dy�du y u

y u y
x (y � sx 2 � 1) u (y � su )

dy

dx
� F��x� �

x

sx 2 � 1

dy

du
� f ��u� �

1

2su

f t�x�

d

dx
f �t�x�� � f � �t�x�� � t��x�

outer
function

evaluated
at inner
function

derivative
of outer
function

evaluated
at inner
function

derivative
of inner
function

2

3
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EXAMPLE 2 Differentiate (a) and (b) .

SOLUTION
(a) If , then the outer function is the sine function and the inner function
is the squaring function, so the Chain Rule gives

(b) Note that . Here the outer function is the squaring function and
the inner function is the sine function. So

The answer can be left as or written as (by a trigonometric 
identity known as the double-angle formula). ■

In Example 2(a) we combined the Chain Rule with the rule for differentiating the
sine function. In general, if , where is a differentiable function of , then,
by the Chain Rule,

Thus

In a similar fashion, all of the formulas for differentiating trigonometric functions
can be combined with the Chain Rule.

Let’s make explicit the special case of the Chain Rule where the outer function
is a power function. If , then we can write where .
By using the Chain Rule and then the Power Rule, we get

THE POWER RULE COMBINED WITH THE CHAIN RULE If is any real
number and is differentiable, then

Alternatively,

Notice that the derivative in Example 1 could be calculated by taking in Rule 4.

y � sin�x 2 � y � sin2x

y � sin�x 2 �

dy

dx
�

d

dx
sin �x 2 � � cos �x 2 � � 2x

� 2x cos�x 2 �

sin2x � �sin x�2

dy

dx
�

d

dx
�sin x�2      � 2 � �sin x� � cos x

2 sin x cos x sin 2x

y � sin u u x

dy

dx
�

dy

du

du

dx
� cos u

du

dx

d

dx
�sin u� � cos u

du

dx

f
y � �t�x��n y � f �u� � un u � t�x�

dy

dx
�

dy

du

du

dx
� nun�1 du

dx
� n�t�x��n�1

t��x�

n
u � t�x�

d

dx
�u n � � nun�1 du

dx

d

dx
�t�x��n � n�t�x��n�1 � t��x�

n � 1
2

outer
function

evaluated
at inner
function

derivative
of outer
function

evaluated
at inner
function

derivative
of inner
function

inner
function

derivative
of outer
function

evaluated
at inner
function

derivative
of inner
function

4
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■ See Reference Page 2 or Appendix A.
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118 CHAPTER 2 DERIVATIVES

EXAMPLE 3 Differentiate .

SOLUTION Taking and in , we have

■

EXAMPLE 4 Find if .

SOLUTION First rewrite : . Thus

■

EXAMPLE 5 Find the derivative of the function 

SOLUTION Combining the Power Rule, Chain Rule, and Quotient Rule, we get 

■

EXAMPLE 6 Differentiate .

SOLUTION In this example we must use the Product Rule before using the Chain
Rule:

Noticing that each term has the common factor , we could 
factor it out and write the answer as

■

The reason for the name “Chain Rule” becomes clear when we make a longer chain
by adding another link. Suppose that , , and , where , , and 

y � �x 3 � 1�100

u � t�x� � x 3 � 1 n � 100

dy

dx
�

d

dx
�x 3 � 1�100 � 100�x 3 � 1�99 d

dx
�x 3 � 1�

� 100�x 3 � 1�99 � 3x 2 � 300x 2�x 3 � 1�99

f ��x� f �x� �
1

s
3 x 2 � x � 1

f f �x� � �x 2 � x � 1��1�3

f ��x� � �
1
3 �x 2 � x � 1��4�3 d

dx
�x 2 � x � 1�

� �
1
3 �x 2 � x � 1��4�3�2x � 1�

t�t� � 	 t � 2

2t � 1
9

t��t� � 9	 t � 2

2t � 1
8 d

dt 	 t � 2

2t � 1

� 9	 t � 2

2t � 1
8 �2t � 1� � 1 � 2�t � 2�
�2t � 1�2 �

45�t � 2�8

�2t � 1�10

y � �2x � 1�5�x 3 � x � 1�4

dy

dx
� �2x � 1�5 d

dx
�x 3 � x � 1�4 � �x 3 � x � 1�4 d

dx
�2x � 1�5

� �2x � 1�5 � 4�x 3 � x � 1�3 d

dx
�x 3 � x � 1�

� �x 3 � x � 1�4 � 5�2x � 1�4 d

dx
�2x � 1�

� 4�2x � 1�5�x 3 � x � 1�3�3x 2 � 1� � 5�x 3 � x � 1�4�2x � 1�4 � 2

2�2x � 1�4�x 3 � x � 1�3

dy

dx
� 2�2x � 1�4�x 3 � x � 1�3�17x 3 � 6x 2 � 9x � 3�

y � f �u� u � t�x� x � h�t� f t

V

4

■ The graphs of the functions and 
in Example 6 are shown in Figure 1.
Notice that is large when increases
rapidly and when has a hori-
zontal tangent. So our answer appears to
be reasonable.

y
yy�

y� � 0

y�y

10

_10

_2 1

y

yª

FIGURE 1
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are differentiable functions. Then, to compute the derivative of with respect to ,
we use the Chain Rule twice:

EXAMPLE 7 If , then

Notice that we used the Chain Rule twice. ■

EXAMPLE 8 Differentiate .

SOLUTION Here the outer function is the square root function, the middle function
is the secant function, and the inner function is the cubing function. So we have

■

HOW TO PROVE THE CHAIN RULE

Recall that if and changes from to , we defined the increment of
as

According to the definition of a derivative, we have

So if we denote by the difference between the difference quotient and the derivative, 
we obtain

But

If we define to be 0 when , then becomes a continuous function of . 

y t

dy

dt
�

dy

dx

dx

dt
�

dy

du

du

dx

dx

dt

f �x� � sin�cos�tan x��

f ��x� � cos�cos�tan x��
d

dx
cos�tan x�

� cos�cos�tan x����sin�tan x��
d

dx
�tan x�

� �cos�cos�tan x�� sin�tan x� sec2x

y � ssec x 3 

dy

dx
�

1

2ssec x 3 

d

dx
�sec x 3 �

�
1

2ssec x 3 
sec x 3 tan x 3

d

dx
�x 3 �

�
3x 2 sec x 3 tan x 3

2ssec x 3 

y � f �x� a � 
x


y � f �a � 
x� � f �a�

lim

x l 0


y


x
� f ��a�

�

lim

x l 0

� � lim

x l 0

	
y


x
� f ��a�
 � f ��a� � f ��a� � 0

� �

y


x
� f ��a� ? 
y � f ��a� 
x � � 
x

� 
x � 0 � 
x

h

x a
y

V
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2.5 EXERCISES

1–6 ■ Write the composite function in the form . 
[Identify the inner function and the outer function

.] Then find the derivative .

1. 2.

3. 4.

5. 6.

7–42 ■ Find the derivative of the function.

7. 8.

9. 10.

11. 12.

13. 14.

f �t�x��
u � t�x�

y � f �u� dy�dx

y � s
3 1 � 4x y � �2x 3 � 5�4

y � tan �x y � sin�cot x�

y � ssin x y � sin sx

F�x� � �x 4 � 3x 2 � 2�5 F�x� � �4x � x 2�100

F�x� � s1 � 2x f �x� �
1

�1 � sec x�2

f �z� �
1

z 2 � 1
f �t� � s

3 1 � tan t

y � a3 � cos3xy � cos�a3 � x 3 �

15. 16.

17.

18.

19.

20.

21. 22.

23. 24.

25. 26.

27. 28.

y � x sec kx y � 3 cot n�

f �x� � �2x � 3�4�x 2 � x � 1�5

t�x� � �x 2 � 1�3�x 2 � 2�6

h�t� � �t � 1�2�3�2t 2 � 1�3

F�t� � �3t � 1�4�2t � 1��3

y � 	 x 2 � 1

x 2 � 1
3

f �s� � � s2 � 1

s2 � 4

y � sin�x cos x� f �x� �
x

s7 � 3x

y �
r

sr 2 � 1
G�y� �

�y � 1�4

�y2 � 2y�5

y � sins1 � x 2 F�v� � 	 v

v 3 � 1

6

Thus, for a differentiable function f, we can write

and is a continuous function of . This property of differentiable functions is what
enables us to prove the Chain Rule.

PROOF OF THE CHAIN RULE Suppose is differentiable at a and 
is differentiable at . If is an increment in x and and are the corre-
sponding increments in u and y, then we can use Equation 5 to write

where as . Similarly

where as . If we now substitute the expression for from Equa-
tion 6 into Equation 7, we get

so

As , Equation 6 shows that . So both and as
Therefore

This proves the Chain Rule. ■


y � f ��a� 
x � � 
x where    � l 0 as 
x l 0

� 
x

u � t�x� y � f �u�
b � t�a� 
x 
u 
y


u � t��a� 
x � �1 
x � �t��a� � �1� 
x

�1 l 0 
x l 0


y � f ��b� 
u � �2 
u � � f ��b� � �2 � 
u

�2 l 0 
u l 0 
u


y � � f ��b� � �2 ��t��a� � �1� 
x


y


x
� � f ��b� � �2 ��t��a� � �1�


x l 0 
u l 0 �1 l 0 �2 l 0 
x l 0.

dy

dx
� lim


x l 0


y


x
� lim


x l 0
� f ��b� � �2 ��t��a� � �1�

� f ��b� t��a� � f ��t�a�� t��a�

5

6

7
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(a) If , find .
(b) If , find .

56. Let and be the functions in Exercise 55.
(a) If , find .
(b) If , find .

57. If and are the functions whose graphs are shown, let
, , and . Find

each derivative, if it exists. If it does not exist, explain why.
(a) (b) (c)

58. If is the function whose graph is shown, let
and . Use the graph of to 

estimate the value of each derivative.
(a) (b)

59. If , where the graph of is shown, evaluate
.

60. Suppose is differentiable on and is a real number. 
Let and . Find expressions 
for (a) and (b) .

61. Let , where , ,
, , and . Find .

62. If is a twice differentiable function and ,
find in terms of , , and .

63. Find the 50th derivative of .

F�x� � f � f �x�� F��2�
G�x� � t�t�x�� G��3�

f t

u�x� � f �t�x�� v�x� � t� f �x�� w�x� � t�t�x��

u��1� v��1� w��1�

x

y

0

f

g

1

1

f
h�x� � f � f �x�� t�x� � f �x 2 � f

h��2� t��2�

x

y

0 1

y=ƒ

1

t�x� � sf �x� f
t��3�

x

y

0

1

1

f

f � �
F�x� � f �x � � G�x� � � f �x���

F��x� G��x�

r�x� � f �t�h�x��� h�1� � 2 t�2� � 3
h��1� � 4 t��2� � 5 f ��3� � 6 r��1�

t f �x� � xt�x 2 �
f � t t� t �

y � cos 2x

h��1�h�x� � f �t�x��
H��1�H�x� � t� f �x��

tf

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43–46 ■ Find the first and second derivatives of the function.

43. 44.

45. 46.

47–48 ■ Find an equation of the tangent line to the curve at
the given point.

47. ,  48. ,  

49. (a) Find an equation of the tangent line to the curve
at the point .

; (b) Illustrate part (a) by graphing the curve and the tangent
line on the same screen.

50. (a) The curve is called a bullet-nose
curve. Find an equation of the tangent line to this curve
at the point .

; (b) Illustrate part (a) by graphing the curve and the tangent
line on the same screen.

51. Find all points on the graph of the function
at which the tangent line is 

horizontal.

52. Find an equation of the tangent line to the curve
that is parallel to the line .

53. If , where , ,
, , and , find .

54. If , where and , 
find .

55. A table of values for , , , and is given.

y � sin�tan 2x� y � sec2�m��

y � sec2x � tan2x y � x sin 
1

x

y � 	1 � cos 2x

1 � cos 2x

4

y � (ax � sx 2 � b2 )�2

y � cot 2�sin �� y � sin�sin�sin x��

y � �x 2 � �1 � 3x�5 � 3 y � sx � sx � sx

y � cos4�sin3x�t�x� � �2r sin rx � n�p

y � cosssin�tan �x� y � �x � �x � sin2x�3� 4

y � cos2xy � cos�x 2�

H�t� � tan 3t y �
4x

sx � 1

y � s1 � x 3 �2, 3�y � sin�sin x� ��, 0�

�1, 1�y � tan��x 2�4�

y � � x ��s2 � x 2 

�1, 1�

f �x� � 2 sin x � sin2x

y � s3 � x 2 x � 2y � 1

f ���2� � 4f ��2� � 8F�x� � f �t�x��
F��5�t��5� � 6t�5� � �2f ��5� � 3

f ��1� � 4f �1� � 7h�x� � s4 � 3f �x�
h��1�

t�f �tf
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Explain the difference between the meanings of the deriva-
tives .

70. Air is being pumped into a spherical weather balloon. At
any time , the volume of the balloon is and its radius 
is .
(a) What do the derivatives and represent?
(b) Express in terms of .

71. (a) If is a positive integer, prove that

(b) Find a formula for the derivative of 
that is similar to the one in part (a).

72. Use the Chain Rule to prove the following.
(a) The derivative of an even function is an odd function.
(b) The derivative of an odd function is an even function.

73. Use the Chain Rule to show that if is measured in
degrees, then

(This gives one reason for the convention that radian mea-
sure is always used when dealing with trigonometric func-
tions in calculus: The differentiation formulas would not 
be as simple if we used degree measure.)

74. Suppose is a curve that always lies above the 
-axis and never has a horizontal tangent, where is dif -

ferentiable everywhere. For what value of is the rate of
change of with respect to eighty times the rate of
change of with respect to ?

75. If , where and , 
find .

76. If , where , ,
, , and , find .

77. If , where and are twice differen-
tiable functions, show that

78. (a) Write and use the Chain Rule to show that

(b) If , find and sketch the graphs of 
and . Where is not differentiable?

(c) If , find and sketch the graphs of 
and . Where is not differentiable?

dV�dt dr�dt

n

d

dx
�sinnx cos nx� � n sinn�1x cos�n � 1�x

y � cosnx cos nx

�

d

d�
�sin �� �

�

180
 cos �

y � f �x�
x f

y
y 5 x
y x

F�x� � f �3f �4 f �x��� f �0� � 0 f ��0� � 2
F��0�

F�x� � f �x f �x f �x��� f �1� � 2 f �2� � 3
f ��1� � 4 f ��2� � 5 f ��3� � 6 F��1�

y � f �u� and u � t�x� f t

d 2y

dx 2 �
dy

du

d 2u

dx 2 �
d 2y

du 2 	du

dx
2

� x � � sx 2 

d

dx � x � �
x

� x �
f �x� � � sin x � f ��x� f

f � f
t�x� � sin � x � t��x� t

t� t

V�t�t
r�t�

dV�dtdV�dr

dv�dt and dv�ds
64. If the equation of motion of a particle is given by

, the particle is said to undergo simple 
harmonic motion.
(a) Find the velocity of the particle at time .
(b) When is the velocity 0?

65. A Cepheid variable star is a star whose brightness alter-
nately increases and decreases. The most easily visible such
star is Delta Cephei, for which the interval between times of
maxi mum brightness is 5.4 days. The average brightness of
this star is 4.0 and its brightness changes by . In view
of these data, the brightness of Delta Cephei at time , where

is measured in days, has been modeled by the function

(a) Find the rate of change of the brightness after days.
(b) Find, correct to two decimal places, the rate of increase

after one day.

66. A model for the length of daylight (in hours) in Philadel-
phia on the th day of the year is given by the function

Use this model to compare how the number of hours of day -
light is increasing in Philadelphia on March 21 and May 21.

67. The force acting on a body with mass and velocity is
the rate of change of momentum: . If is
constant, this becomes , where is the
acceleration. But in the theory of relativity the mass of a
particle varies with as follows: ,
where is the mass of the particle at rest and is the
speed of light. Show that

68. Some of the highest tides in the world occur in the Bay of
Fundy on the Atlantic Coast of Canada. At Hopewell Cape
the water depth at low tide is about 2.0 m and at high tide 
it is about 12.0 m. The natural period of oscillation is a 
little more than 12 hours and on June 30, 2009, high tide
occurred at 6:45 AM. This helps explain the following model
for the water depth (in meters) as a function of the time
(in hours after midnight) on that day:

How fast was the tide rising (or falling) at the following
times?
(a) 3:00 AM (b) 6:00 AM

(c) 9:00 AM (d) Noon

69. A particle moves along a straight line with displacement
velocity , and acceleration . Show that

s � A cos�t � ��

t

�0.35
t

t

B�t� � 4.0 � 0.35 sin�2�t�5.4�

t

t

L�t� � 12 � 2.8 sin� 2�

365
�t � 80��

vmF
mF � �d�dt��mv�

a � dv�dtF � ma

m � m0�s1 � v 2�c 2 v
cm0

F �
m0a

�1 � v 2�c 2�3�2

tD

D�t� � 7 � 5 cos�0.503�t � 6.75��

s�t�,
a�t�v�t�

a�t� � v�t�
dv

ds
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2.6 IMPLICIT DIFFERENTIATION
The functions that we have met so far can be described by expressing one variable
explicitly in terms of another variable—for example,

or    

or, in general, . Some functions, however, are defined implicitly by a relation
between and such as

or

In some cases it is possible to solve such an equation for as an explicit function 
(or several functions) of . For instance, if we solve Equation 1 for , we obtain

, so two of the functions determined by the implicit Equation l are
and . The graphs of and are the upper and

lower semicircles of the cir cle . (See Figure 1.)

It’s not easy to solve Equation 2 for explicitly as a function of by hand. (A com-
puter algebra system has no trouble, but the expressions it obtains are very compli-
cated.) Nonetheless, is the equation of a curve called the folium of Descartes
shown in Fig ure 2 and it implicitly defines as several functions of . The graphs of
three such functions are shown in Figure 3. When we say that is a function defined
implicitly by Equa tion 2, we mean that the equation

is true for all values of in the domain of .

y � sx 3 � 1 y � x sin x

y � f �x�
x y

x 2 � y 2 � 25

x 3 � y 3 � 6xy

1

2

y
x y

y � �s25 � x 2 

f �x� � s25 � x 2 
t�x� � �s25 � x 2 f t

x 2 � y 2 � 25

FIGURE 1 

0 x

y

0 x

y

0 x

y

(c) ©=_œ„„„„„„25-≈(b) ƒ=œ„„„„„„25-≈(a) ≈+¥=25

y x

y x
f

x 3 � � f �x��3 � 6x f �x�

x f

x

y

0

˛+Á=6xy

FIGURE 2 The folium of Descartes

x

y

0

FIGURE 3 Graphs of three functions defined by the folium of Descartes

x

y

0x

y

0

2
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Fortunately, we don’t need to solve an equation for in terms of in order to find
the derivative of . Instead we can use the method of implicit differentiation: This
consists of differentiating both sides of the equation with respect to and then solv-
ing the resulting equation for . In the examples and exercises of this section it is
always assumed that the given equation determines implicitly as a differentiable
function of so that the method of implicit differentiation can be applied.

EXAMPLE 1

(a) If , find .

(b) Find an equation of the tangent to the circle at the point .

SOLUTION 1
(a) Differentiate both sides of the equation :

Remembering that is a function of and using the Chain Rule, we have 

Thus

Now we solve this equation for :

(b) At the point we have and , so

An equation of the tangent to the circle at is therefore

SOLUTION 2
(b) Solving the equation , we get . The point
lies on the upper semicircle and so we consider the function

. Differentiating using the Chain Rule, we have

y x
y

x
y�

y
x

x 2 � y 2 � 25
dy

dx
x 2 � y 2 � 25 �3, 4�

V

x 2 � y 2 � 25

d

dx
�x 2 � y 2 � �

d

dx
�25�

d

dx
�x 2 � �

d

dx
�y 2 � � 0

y x

d

dx
�y 2 � �

d

dy
�y 2 �

dy

dx
� 2y

dy

dx

2x � 2y
dy

dx
� 0

dy�dx

dy

dx
� �

x

y

�3, 4� x � 3 y � 4

dy

dx
� �

3

4

�3, 4�

y � 4 � �
3
4 �x � 3� or 3x � 4y � 25

x 2 � y 2 � 25 y � �s25 � x 2 �3, 4�
y � s25 � x 2 

f �x� � s25 � x 2 f

f ��x� � 1
2 �25 � x 2 ��1�2 d

dx
�25 � x 2 �

� 1
2 �25 � x 2 ��1�2��2x� � �

x

s25 � x 2 
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So

and, as in Solution 1, an equation of the tangent is . ■

EXAMPLE 2
(a) Find if .
(b) Find the tangent to the folium of Descartes at the point .
(c) At what point in the first quadrant is the tangent line horizontal?

SOLUTION
(a) Differentiating both sides of with respect to , regarding as a
function of , and using the Chain Rule on the term and the Product Rule on the

term, we get

or

We now solve for :

(b) When ,

and a glance at Figure 4 confirms that this is a reasonable value for the slope 
at . So an equation of the tangent to the folium at is

or    

(c) The tangent line is horizontal if . Using the expression for from 
part (a), we see that when (provided that . Sub-
stituting in the equation of the curve, we get

which simplifies to . Since in the first quadrant, we have .
If , then . Thus the tangent is horizontal at

, which is approximately (2.5198, 3.1748). Looking at Figure 5, we see
that our answer is reasonable. ■

EXAMPLE 3 Find if .

SOLUTION Differentiating implicitly with respect to and remembering that is a
function of , we get

(Note that we have used the Chain Rule on the left side and the Product Rule and

f ��3� � �
3

s25 � 32 
� �

3

4

3x � 4y � 25

y� x 3 � y 3 � 6xy
x 3 � y 3 � 6xy �3, 3�

V

x 3 � y 3 � 6xy x y
x y 3

6xy

3x 2 � 3y 2 y� � 6y � 6xy�

x 2 � y 2 y� � 2y � 2xy�

y� y 2y� � 2xy� � 2y � x 2

�y 2 � 2x�y� � 2y � x 2

y� �
2y � x 2

y 2 � 2x

x � y � 3

y� �
2 � 3 � 32

32 � 2 � 3
� �1 

�3, 3� �3, 3�

y � 3 � �1�x � 3� x � y � 6

y� � 0 y�
y� � 0 2y � x 2 � 0 y 2 � 2x � 0)

y � 1
2 x 2

x 3 � ( 1
2 x 2)3 � 6x ( 1

2 x 2)

x 6 � 16x 3 x � 0 x 3 � 16
x � 161�3 � 24�3 y � 1

2 �28�3� � 25�3

�24�3, 25�3�

y� sin�x � y� � y 2 cos x

x y
x

cos�x � y� � �1 � y�� � y 2��sin x� � �cos x��2yy��
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■ Example 1 illustrates that even when
it is possible to solve an equation
explicitly for in terms of , it may be
easier to use implicit differentiation.

xy

FIGURE 4 

0

y

x

(3, 3)

4

0
4

FIGURE 5 
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FIGURE 6

2

_2

_2 2

Chain Rule on the right side.) If we collect the terms that involve , we get

So

Figure 6, drawn with the implicit-plotting command of a computer algebra sys-
tem, shows part of the curve . As a check on our calculation,
notice that when and it appears from the graph that the slope is
approximately at the origin. ■

EXAMPLE 4 Find if .

SOLUTION Differentiating the equation implicitly with respect to , we get

Solving for gives

To find we differentiate this expression for using the Quotient Rule and
remembering that is a function of :

If we now substitute Equation 3 into this expression, we get

But the values of and must satisfy the original equation . So the
answer simplifies to

■

y� �
y 2 sin x � cos�x � y�
2y cos x � cos�x � y�

sin�x � y� � y 2 cos x
y� � �1 x � y � 0

�1

y�

cos�x � y� � y 2 sin x � �2y cos x�y� � cos�x � y� � y�

y� x 4 � y 4 � 16

x

4x 3 � 4y 3y� � 0

y�

y� � �
x 3

y 3

y� y�
y x

y� �
d

dx ��
x 3

y 3�

� �
y 3 � 3x 2 � x 3�3y 2 y��

y 6

y� � �

3x 2 y 3 � 3x 3y 2��
x 3

y 3�
y 6

� �
3�x 2y 4 � x 6 �

y 7 � �
3x 2�y 4 � x 4 �

y 7

x y x 4 � y 4 � 16

y� � �
3x 2�16�

y 7 � �48 
x 2

y 7

3

� �
y 3 �d�dx��x 3 � � x 3 �d�dx��y 3 �

�y 3 �2

x

2

y

2
0

x$+y$=16

FIGURE 7

■ Figure 7 shows the graph of the curve
of Example 4. Notice that

it’s a stretched and flat tened version of
the circle . For this reason
it’s sometimes called a fat circle. It
starts out very steep on the left but
quickly becomes very flat. This can be
seen from the expression

y� � �
x 3

y 3 � ��x

y�3

x 2 � y 2 � 4

x 4 � y 4 � 16

■ www.stewartcalculus.com
See Additional Example A.
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2.6 EXERCISES

1–2 ■

(a) Find by implicit differentiation.
(b) Solve the equation explicitly for and differentiate to get 

in terms of .
(c) Check that your solutions to parts (a) and (b) are consistent

by substituting the expression for into your solution for
part (a).

1. 2.

3–16 ■ Find by implicit differentiation.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. If and , find .

18. If , find .

19–24 ■ Use implicit differentiation to find an equation of the 
tangent line to the curve at the given point.

19. ,  (ellipse)

20. ,  (hyperbola)

21. 22.

(cardioid) (astroid)

23. 24.
(3, 1)  (lemniscate) (0, �2)  (devil’s curve)

y�
y y�

x

y

9x 2 � y 2 � 1 2x 2 � x � xy � 1

dy�dx

x 3 � y3 � 1 2x 3 � x 2y � xy3 � 2

x 2 � xy � y 2 � 4 y 5 � x 2y 3 � 1 � x 4y

y cos x � x 2 � y 2 cos�xy� � 1 � sin y

4 cos x sin y � 1 y sin�x 2� � x sin�y 2�

tan�x�y� � x � y sx � y � 1 � x2y2

sxy � 1 � x 2y x sin y � y sin x � 1

y cos x � 1 � sin�xy� tan�x � y� �
y

1 � x 2

f �x� � x2 � f �x��3 � 10 f �1� � 2 f ��1�

t�x� � x sin t�x� � x 2
t��0�

x2 � xy � y2 � 3 �1, 1�

x2 � 2xy � y2 � x � 2 �1, 2�

x 2 � y 2 � �2x 2 � 2y 2 � x�2 x 2�3 � y 2�3 � 4

(0, 1
2) (�3s3 , 1)

x

y

x

y

0 8

y2�y2 � 4� � x2�x2 � 5�2�x 2 � y 2 �2 � 25�x 2 � y 2 �

x

y

x

y

0

25–28 ■ Find by implicit differentiation.

25. 26.

27. 28.

29. (a) The curve with equation is called a
kampyle of Eudoxus. Find an equation of the tangent
line to this curve at the point .

; (b) Illustrate part (a) by graphing the curve and the tangent
line on a common screen. (If your graphing device will
graph implicitly defined curves, then use that capabil-
ity. If not, you can still graph this curve by graphing its
upper and lower halves separately.)

30. (a) The curve with equation is called the
Tschirnhausen cubic. Find an equation of the tangent
line to this curve at the point .

(b) At what points does this curve have a horizontal
tangent?

; (c) Illustrate parts (a) and (b) by graphing the curve and
the tangent lines on a common screen.

31. Fanciful shapes can be created by using the implicit plot-
ting capabilities of computer algebra systems.
(a) Graph the curve with equation

At how many points does this curve have horizontal 
tangents? Estimate the -coordinates of these points.

(b) Find equations of the tangent lines at the points (0, 1) 
and (0, 2).

(c) Find the exact -coordinates of the points in part (a).
(d) Create even more fanciful curves by modifying the

equation in part (a).

32. (a) The curve with equation

has been likened to a bouncing wagon. Use a computer
algebra system to graph this curve and discover why.

(b) At how many points does this curve have horizontal 
tangent lines? Find the -coordinates of these points.

33. Find the points on the lemniscate in Exercise 23 where the 
tangent is horizontal.

34. Show by implicit differentiation that the tangent to the
ellipse

at the point is

9x 2 � y2 � 9 sx � sy � 1

x 3 � y 3 � 1 x 4 � y4 � a4

y 2 � 5x 4 � x 2

�1, 2�

y 2 � x 3 � 3x 2

�1, �2�

y�y 2 � 1��y � 2� � x�x � 1��x � 2�

x

x

2y 3 � y 2 � y 5 � x 4 � 2x 3 � x 2

x

x 2

a 2 �
y 2

b 2 � 1

�x0, y0 �

x0 x

a 2 �
y0 y

b 2 � 1

y�

CAS

CAS
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the coordinate axes. Find the points at which this ellipse
crosses the -axis and show that the tangent lines at these
points are parallel.

44. (a) Where does the normal line to the ellipse
at the point intersect the

ellipse a second time? 

; (b) Illustrate part (a) by graphing the ellipse and the nor-
mal line.

45. Find all points on the curve where the
slope of the tangent line is .

46. Find equations of both the tangent lines to the ellipse
that pass through the point .

47. Show that the ellipse and the
hyperbola are orthogonal trajectories
if and (so the ellipse and
hyperbola have the same foci).

48. Find the value of the number such that the families of
curves and are orthogonal 
trajectories.

49. The Bessel function of order 0, , satisfies the dif-
ferential equation for all values of
and its value at 0 is .
(a) Find .
(b) Use implicit differentiation to find .

50. The figure shows a lamp located three units to the right of 
the -axis and a shadow created by the elliptical region

. If the point is on the edge of the
shadow, how far above the -axis is the lamp located?

x 2 � 4y 2 � 36 �12, 3�

x 2�a 2 � y 2�b 2 � 1
x 2�A2 � y 2�B 2 � 1

A2 � a 2 a 2 � b 2 � A2 � B 2

a
y � �x � c��1 y � a�x � k�1�3

y � J�x�
xy � � y� � xy � 0 x

J�0� � 1
J��0�

J ��0�

y
x 2 � 4y 2 � 5 ��5, 0�

x

?

x

y

3
0

_5

≈+4¥=5

x

��1, 1�x 2 � xy � y 2 � 3

x 2 y 2 � xy � 2
�1

35–38 ■ Two curves are orthogonal if their tangent lines are
perpendicular at each point of intersection. Show that the given
families of curves are orthogonal trajectories of each other,
that is, every curve in one family is orthogonal to every curve
in the other family. Sketch both families of curves on the same
axes.

35.

36.

37.

38.

39. (a) The van der Waals equation for moles of a gas is

where is the pressure, is the volume, and is the
temperature of the gas. The constant is the universal
gas constant and and are positive constants that are
characteristic of a particular gas. If remains constant,
use implicit differentiation to find .

(b) Find the rate of change of volume with respect to pres-
sure of 1 mole of carbon dioxide at a volume of

and a pressure of . Use
and .

40. (a) Use implicit differentiation to find if
.

(b) Plot the curve in part (a). What do you see? Prove that
what you see is correct.

(c) In view of part (b), what can you say about the expres-
sion for that you found in part (a)?

41. Show, using implicit differentiation, that any tangent line
at a point to a circle with center is perpendicular to
the radius .

42. Show that the sum of the - and -intercepts of any
tangent line to the curve is equal to .

43. The equation represents a “rotated
ellipse,” that is, an ellipse whose axes are not parallel to

x 2 � y 2 � r 2, ax � by � 0

x 2 � y 2 � ax, x 2 � y 2 � by

y � cx 2, x 2 � 2y 2 � k

y � ax 3, x 2 � 3y 2 � b

n

�P �
n 2a

V 2 ��V � nb� � nRT

TVP
R

ba
T

dV�dP

V � 10 L P � 2.5 atm
a � 3.592 L2-atm�mole2 b � 0.04267 L�mole

y�
x 2 � xy � y 2 � 1 � 0

y�

OP
OP

yx
csx � sy � sc

x 2 � xy � y 2 � 3

CAS
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2.7 RELATED RATES
If we are pumping air into a balloon, both the volume and the radius of the balloon are
increasing and their rates of increase are related to each other. But it is much easier to
measure directly the rate of increase of the volume than the rate of increase of the
radius.

In a related rates problem the idea is to compute the rate of change of one quantity
in terms of the rate of change of another quantity (which may be more easily mea-
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sured). The procedure is to find an equation that relates the two quantities and then use
the Chain Rule to differentiate both sides with respect to time.

EXAMPLE 1 Air is being pumped into a spherical balloon so that its volume
increases at a rate of . How fast is the radius of the balloon increasing
when the diameter is 50 cm?

SOLUTION We start by identifying two things:

the given information:

the rate of increase of the volume of air is 

and the unknown:

the rate of increase of the radius when the diameter is 50 cm

In order to express these quantities mathematically, we introduce some suggestive
notation:

Let V be the volume of the balloon and let r be its radius.

The key thing to remember is that rates of change are derivatives. In this problem,
the volume and the radius are both functions of the time . The rate of increase of
the volume with respect to time is the derivative , and the rate of increase 
of the radius is . We can therefore restate the given and the unknown as 
follows:

Given:

Unknown:

In order to connect and , we first relate and by the formula for the
volume of a sphere:

In order to use the given information, we differentiate each side of this equation
with respect to . To differentiate the right side, we need to use the Chain Rule:

Now we solve for the unknown quantity:

If we put and in this equation, we obtain

The radius of the balloon is increasing at the rate of cm�s. ■

EXAMPLE 2 A ladder 10 ft long rests against a vertical wall. If the bottom of the
ladder slides away from the wall at a rate of 1 ft�s, how fast is the top of the ladder
sliding down the wall when the bottom of the ladder is 6 ft from the wall?

100 cm3�s

100 cm3�s

t
dV�dt

dr�dt

dV

dt
� 100 cm3�s

dr

dt
when r � 25 cm

V

dV�dt dr�dt V r

V � 4
3 	r 3

t

dV

dt
�

dV

dr

dr

dt
� 4	r 2 dr

dt

dr

dt
�

1

4	r 2

dV

dt

r � 25 dV�dt � 100

dr

dt
�

1

4	�25�2 100 �
1

25	

1��25	� 	 0.0127
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■ Notice that, although is 
constant, is not constant.dr�dt

dV�dt
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SOLUTION We first draw a diagram and label it as in Figure 1. Let feet be the
distance from the bottom of the ladder to the wall and feet the distance from the
top of the ladder to the ground. Note that and are both functions of (time,
measured in seconds).

We are given that ft�s and we are asked to find when ft.
(See Figure 2.) In this problem, the relationship between and is given by the
Pythagorean Theorem:

Differentiating each side with respect to using the Chain Rule, we have

and solving this equation for the desired rate, we obtain

When , the Pythagorean Theorem gives and so, substituting these values
and , we have

The fact that is negative means that the distance from the top of the ladder
to the ground is decreasing at a rate of . In other words, the top of the ladder is
sliding down the wall at a rate of . ■

EXAMPLE 3 A water tank has the shape of an inverted circular cone with base
radius 2 m and height 4 m. If water is being pumped into the tank at a rate of 
2 m �min, find the rate at which the water level is rising when the water is 3 m deep.

SOLUTION We first sketch the cone and label it as in Figure 3. Let , , and be
the volume of the water, the radius of the surface, and the height at time , where is
measured in minutes.

We are given that m �min and we are asked to find when is
3 m. The quantities and are related by the equation

but it is very useful to express as a function of alone. In order to eliminate , we
use the similar triangles in Figure 3 to write

and the expression for becomes

Now we can differentiate each side with respect to :

so

x
y

x y t

dx�dt � 1 dy�dt x � 6
x y

x 2 � y 2 � 100

t

2x
dx

dt
� 2y

dy

dt
� 0

dy

dt
� �

x

y

dx

dt

x � 6 y � 8
dx�dt � 1

dy

dt
� �

6

8
�1� � �

3

4
 ft�s

dy�dt
3
4 ft�s

3
4 ft�s

3

V r h
t t

dV�dt � 2 3 dh�dt h
V h

V � 1
3 	r 2h

V h r

r

h
�

2

4
r �

h

2

V

V �
1

3
	�h

2�2

h �
	

12
h 3

t

dV

dt
�

	

4
 h 2 dh

dt

dh

dt
�

4

	h 2

dV

dt
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Substituting m and m �min, we have

The water level is rising at a rate of . ■

STRATEGY Examples 1–3 suggest the following steps in solving related rates problems:

1. Read the problem carefully.

2. Draw a diagram if possible.

3. Introduce notation. Assign symbols to all quantities that are functions of time.

4. Express the given information and the required rate in terms of derivatives.

5. Write an equation that relates the various quantities of the problem. If necessary,
use the geometry of the situation to eliminate one of the variables by substitution
(as in Example 3).

6. Use the Chain Rule to differentiate both sides of the equation with respect to .

7. Substitute the given information into the resulting equation and solve for the 
unknown rate.

The following examples are further illustrations of the strategy.

EXAMPLE 4 Car A is traveling west at 50 mi�h and car B is traveling north at
60 mi�h. Both are headed for the intersection of the two roads. At what rate are 
the cars approaching each other when car A is 0.3 mi and car B is 0.4 mi from the
intersection?

SOLUTION We draw Figure 4, where is the intersection of the roads. At a given
time let be the distance from car A to , let be the distance from car B to ,
and let be the distance between the cars, where , , and are measured in miles.

We are given that mi�h and mi�h. (The derivatives
are negative because and are decreasing.) We are asked to find . The equa-
tion that relates , , and is given by the Pythagorean Theorem:

Differentiating each side with respect to , we have

When mi and mi, the Pythagorean Theorem gives mi, so

The cars are approaching each other at a rate of 78 mi�h. ■

3dV�dt � 2h � 3

dh

dt
�

4

	 �3�2 � 2 �
8

9	

8��9	� 	 0.28 m�min

t

V

C
CyCxt,

zyxz
dy�dt � �60dx�dt � �50

dz�dtyx
zyx

z2 � x 2 � y 2

t

2z
dz

dt
� 2x

dx

dt
� 2y

dy

dt

dz

dt
�

1

z �x
dx

dt
� y

dy

dt �
z � 0.5y � 0.4x � 0.3

dz

dt
�

1

0.5
 �0.3��50� � 0.4��60��

� �78 mi�h
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| WARNING A common error is to
substitute the given numerical informa-
tion (for quantities that vary with time)
too early. This should be done only
after the differentiation. (Step 7 follows
Step 6.) For instance, in Example 3 we
dealt with general values of until we
finally substituted at the last
stage. (If we had put earlier, we
would have gotten , which is
clearly wrong.)

h � 3

dV�dt � 0
h � 3

h

FIGURE 4

C

z
y

x

B

A
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EXAMPLE 5 A man walks along a straight path at a speed of 4 ft�s. A search-
light is located on the ground 20 ft from the path and is kept focused on the man. At
what rate is the searchlight rotating when the man is 15 ft from the point on the path
closest to the searchlight?

SOLUTION We draw Figure 5 and let be the distance from the man to the point
on the path closest to the searchlight. We let be the angle between the beam of the
searchlight and the perpendicular to the path.

We are given that ft�s and are asked to find when . The
equation that relates and can be written from Figure 5:

Differentiating each side with respect to , we get

so

When , the length of the beam is 25 ft, so and

The searchlight is rotating at a rate of 0.128 rad�s. ■

x



dx�dt � 4 d
�dt x � 15
x 


x

20
� tan 
 x � 20 tan 


t

dx

dt
� 20 sec2


d


dt

d


dt
� 1

20 cos2

dx

dt
� 1

20 cos2
 �4� � 1
5 cos2


V

x � 15 ft cos 
 � 4
5

d


dt
�

1

5
 �4

5�2

�
16

125
� 0.128 

FIGURE 5

x
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2.7 EXERCISES

1. If is the volume of a cube with edge length and the
cube expands as time passes, find in terms of .

2. (a) If is the area of a circle with radius and the circle
expands as time passes, find in terms of .

(b) Suppose oil spills from a ruptured tanker and spreads in
a circular pattern. If the radius of the oil spill increases
at a constant rate of , how fast is the area of the
spill increasing when the radius is 30 m?

3. Each side of a square is increasing at a rate of . At
what rate is the area of the square increasing when the area
of the square is ?

4. The length of a rectangle is increasing at a rate of 
and its width is increasing at a rate of . When the
length is 20 cm and the width is 10 cm, how fast is the area
of the rectangle increasing?

5. A cylindrical tank with radius 5 m is being filled with water 
at a rate of . How fast is the height of the water
increasing?

V x
dV�dt dx�dt

A r
dA�dt dr�dt

1 m�s

6 cm�s

16 cm2

8 cm�s
3 cm�s

3 m3�min

6. The radius of a sphere is increasing at a rate of .
How fast is the volume increasing when the diameter is 
80 mm?

7. Suppose , where and are functions of .
(a) If , find when .
(b) If , find when .

8. Suppose , where and are functions of .
(a) If , find when and .
(b) If , find when and .

9. If , , and , find
when .

10. A particle is moving along a hyperbola . As it
reaches the point , the -coordinate is decreasing at a
rate of . How fast is the -coordinate of the point
changing at that instant?

11–14 ■

(a) What quantities are given in the problem?
(b) What is the unknown?
(c) Draw a picture of the situation for any time t.

y � s2x � 1 x y t
dx�dt � 3 dy�dt x � 4
dy�dt � 5 dx�dt x � 12

4x 2 � 9y 2 � 36 x y t
dy�dt � 1

3 dx�dt x � 2 y � 2
3 s5

dx�dt � 3 dy�dt x � �2 y � 2
3 s5

x 2 � y 2 � z 2 � 9 dx�dt � 5 dy�dt � 4 dz�dt
�x, y, z� � �2, 2, 1�

xy � 8
y�4, 2�

x3 cm�s

4 mm�s
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at a rate of 1 m�s, how fast is the boat approaching the dock
when it is 8 m from the dock?

21. At noon, ship A is 100 km west of ship B. Ship A is sailing
south at 35 km�h and ship B is sailing north at 25 km�h.
How fast is the distance between the ships changing at
4:00 PM?

22. A particle moves along the curve . As the
particle passes through the point , its -coordinate
increases at a rate of . How fast is the distance
from the particle to the origin changing at this instant?

23. Two carts, A and B, are connected by a rope 39 ft long that
passes over a pulley . The point is on the floor 12 ft
directly beneath and between the carts. Cart A is being
pulled away from at a speed of 2 ft�s. How fast is cart B
moving toward at the instant when cart A is 5 ft from ?

24. Water is leaking out of an inverted conical tank at a rate 
of 10,000 cm �min at the same time that water is being
pumped into the tank at a constant rate. The tank has height
6 m and the diameter at the top is 4 m. If the water level is
rising at a rate of 20 cm�min when the height of the water
is 2 m, find the rate at which water is being pumped into the
tank.

25. A trough is 10 ft long and its ends have the shape of isos-
celes triangles that are 3 ft across at the top and have a
height of 1 ft. If the trough is being filled with water at a
rate of 12 ft �min, how fast is the water level rising when
the water is 6 inches deep?

26. A swimming pool is 20 ft wide, 40 ft long, 3 ft deep at the
shallow end, and 9 ft deep at its deepest point. A cross-
section is shown in the figure. If the pool is being filled at a
rate of 0.8 , how fast is the water level rising when
the depth at the deepest point is 5 ft?

27. Gravel is being dumped from a conveyor belt at a rate of 
30 , and its coarseness is such that it forms a pile in 

y � 2 sin�	x�2�
( 1

3, 1) x
s10 cm�s

P Q
P

Q
Q Q

A B

Q

P

12 ft 

3

3

ft3�min

3

6

12 6166

ft3�min

(d) Write an equation that relates the quantities.
(e) Finish solving the problem.

11. If a snowball melts so that its surface area decreases at a
rate of 1 cm �min, find the rate at which the diameter
decreases when the diameter is 10 cm.

12. At noon, ship A is 150 km west of ship B. Ship A is sailing
east at 35 km�h and ship B is sailing north at 25 km�h. How
fast is the distance between the ships changing at 4:00 PM?

13. A plane flying horizontally at an altitude of 1 mi and a
speed of 500 mi�h passes directly over a radar station. Find
the rate at which the distance from the plane to the station is
increasing when it is 2 mi away from the station.

14. A street light is mounted at the top of a 15-ft-tall pole. 
A man 6 ft tall walks away from the pole with a speed of
5 ft�s along a straight path. How fast is the tip of his
shadow moving when he is 40 ft from the pole?

15. Two cars start moving from the same point. One travels
south at 60 mi�h and the other travels west at 25 mi�h. At
what rate is the distance between the cars increasing two
hours later?

16. A spotlight on the ground shines on a wall 12 m away. If a
man 2 m tall walks from the spotlight toward the building at
a speed of 1.6 m�s, how fast is the length of his shadow on
the building decreasing when he is 4 m from the building?

17. A man starts walking north at 4 ft�s from a point . Five
minutes later a woman starts walking south at 5 ft�s from 
a point 500 ft due east of . At what rate are the people
moving apart 15 minutes after the woman starts walking?

18. A baseball diamond is a square with side 90 ft. A batter hits
the ball and runs toward first base with a speed of 24 ft�s.
(a) At what rate is his distance from second base decreasing

when he is halfway to first base?
(b) At what rate is his distance from third base increasing at

the same moment?

19. The altitude of a triangle is increasing at a rate of 1 cm�min
while the area of the triangle is increasing at a rate of 
2 cm �min. At what rate is the base of the triangle changing
when the altitude is 10 cm and the area is ?

20. A boat is pulled into a dock by a rope attached to the bow
of the boat and passing through a pulley on the dock that is
1 m higher than the bow of the boat. If the rope is pulled in

2

P

P

90 ft

2

100 cm2
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the shape of a cone whose base diameter and height are
always equal. How fast is the height of the pile increasing
when the pile is 10 ft high?

28. A kite 100 ft above the ground moves horizontally at a
speed of 8 ft�s. At what rate is the angle between the string
and the horizontal decreasing when 200 ft of string has
been let out?

29. Two sides of a triangle are 4 m and 5 m in length and the
angle between them is increasing at a rate of 0.06 rad�s.
Find the rate at which the area of the triangle is increasing
when the angle between the sides of fixed length is .

30. Two sides of a triangle have lengths 12 m and 15 m. The
angle between them is increasing at a rate of . How
fast is the length of the third side increasing when the
angle between the sides of fixed length is 60 ?

31. The top of a ladder slides down a vertical wall at a rate of
. At the moment when the bottom of the ladder is

3 m from the wall, it slides away from the wall at a rate of
. How long is the ladder?

; 32. A faucet is filling a hemispherical basin of diameter 60 cm 
with water at a rate of . Find the rate at which the
water is rising in the basin when it is half full. [Use the
following facts: 1 L is . The volume of the portion
of a sphere with radius from the bottom to a height is

, as we will show in Chapter 7.]

33. Boyle’s Law states that when a sample of gas is com-
pressed at a constant temperature, the pressure and vol-
ume satisfy the equation , where is a constant.
Suppose that at a certain instant the volume is 600 cm , the
pressure is 150 kPa, and the pressure is increasing at a rate
of 20 kPa�min. At what rate is the volume decreasing at
this instant?

34. When air expands adiabatically (without gaining or losing
heat), its pressure and volume are related by the equa-
tion , where is a constant. Suppose that at a
certain instant the volume is 400 cm and the pressure is
80 kPa and is decreasing at a rate of 10 kPa�min. At what
rate is the volume increasing at this instant?

35. If two resistors with resistances and are connected 
in parallel, as in the figure, then the total resistance , 

��3

2��min

�

0.15 m�s

0.2 m�s

2 L�min

1000 cm3

hr
V � � (rh 2 �

1
3 h 3)

P
CPV � CV

3

VP
CPV 1.4 � C

3

R2R1

R
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measured in ohms ( ), is given by

If and are increasing at rates of and ,
respectively, how fast is changing when and

?

36. Brain weight as a function of body weight in fish has 
been modeled by the power function ,
where and are measured in grams. A model for body
weight as a function of body length (measured in centi-
meters) is . If, over 10 million years, the aver-
age length of a certain species of fish evolved from 15 cm
to 20 cm at a constant rate, how fast was this species’ brain
growing when the average length was 18 cm?

37. A television camera is positioned 4000 ft from the base of
a rocket launching pad. The angle of elevation of the cam-
era has to change at the correct rate in order to keep the
rocket in sight. Also, the mechanism for focusing the cam-
era has to take into account the increasing distance from
the camera to the rising rocket. Let’s assume the rocket
rises vertically and its speed is 600 ft�s when it has risen
3000 ft.
(a) How fast is the distance from the television camera to

the rocket changing at that moment?
(b) If the television camera is always kept aimed at the

rocket, how fast is the camera’s angle of elevation
changing at that same moment?

38. A lighthouse is located on a small island 3 km away from
the nearest point on a straight shoreline and its light
makes four revolutions per minute. How fast is the beam of
light moving along the shoreline when it is 1 km from ?

39. A plane flying with a constant speed of 300 km�h passes
over a ground radar station at an altitude of 1 km and
climbs at an angle of 30 . At what rate is the distance from
the plane to the radar station increasing a minute later?

40. Two people start from the same point. One walks east at
3 mi�h and the other walks northeast at 2 mi�h. How 
fast is the distance between the people changing after 
15 minutes?

41. A runner sprints around a circular track of radius 100 m at 
a constant speed of 7 m�s. The runner’s friend is standing 
at a distance 200 m from the center of the track. How fast
is the distance between the friends changing when the dis-
tance between them is 200 m?

42. The minute hand on a watch is 8 mm long and the hour
hand is 4 mm long. How fast is the distance between the
tips of the hands changing at one o’clock?

R1 R2 0.3 ��s 0.2 ��s
R R1 � 80 �

R2 � 100 �

R¡ R™

B W
B � 0.007W 2�3

B W
L

W � 0.12L2.53

P

P

�

�

1

R
�

1

R1
�

1

R2
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2.8 LINEAR APPROXIMATIONS AND DIFFERENTIALS
We have seen that a curve lies very close to its tangent line near the point of tangency.
In fact, by zooming in toward a point on the graph of a differentiable function, we
noticed that the graph looks more and more like its tangent line. (See Figure 4 in 
Section 2.1.) This observation is the basis for a method of finding approximate values
of functions.

The idea is that it might be easy to calculate a value of a function, but diffi-
cult (or even impossible) to compute nearby values of f. So we settle for the easily
computed values of the linear function L whose graph is the tangent line of f at

. (See Figure 1.)
In other words, we use the tangent line at as an approximation to the curve

when x is near a. An equation of this tangent line is

and the approximation

is called the linear approximation or tangent line approximation of f at a. The lin-
ear function whose graph is this tangent line, that is,

is called the linearization of f at a.

EXAMPLE 1 Find the linearization of the function at and
use it to approximate the numbers and . Are these approximations
overestimates or underestimates?

SOLUTION The derivative of is

and so we have and . Putting these values into Equation 2, we see
that the linearization is

The corresponding linear approximation is

(when is near )

In particular, we have

The linear approximation is illustrated in Figure 2. We see that, indeed, the tan-
gent line approximation is a good approximation to the given function when is
near l. We also see that our approximations are overestimates because the tangent
line lies above the curve.

Of course, a calculator could give us approximations for and , but
the linear approximation gives an approximation over an entire interval. ■

f �a�

�a, f �a��
�a, f �a��

y � f �x�

y � f �a� � f ��a��x � a�

f �x� � f �a� � f ��a��x � a�

L�x� � f �a� � f ��a��x � a�

f �x� � sx � 3 a � 1
s3.98 s4.05

f �x� � �x � 3�1�2

f ��x� � 1
2 �x � 3��1�2 �

1

2sx � 3

1

2

V

f �1� � 2 f ��1� � 1
4

L�x� � f �1� � f ��1��x � 1� � 2 �
1
4 �x � 1� �

7

4
�

x

4

sx � 3 �
7

4
�

x

4
x 1

s3.98 � 7
4 �

0.98
4 � 1.995 and s4.05 � 7

4 �
1.05

4 � 2.0125

x

s3.98 s4.05

1
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In the following table we compare the estimates from the linear approximation in
Example 1 with the true values. Notice from this table, and also from Figure 2, that
the tangent line approximation gives good estimates when x is close to 1 but the accu-
racy of the approximation deteriorates when x is farther away from 1.

How good is the approximation that we obtained in Example 1? The next example
shows that by using a graphing calculator or computer we can determine an interval
throughout which a linear approximation provides a specified accuracy.

EXAMPLE 2 For what values of is the linear approximation

accurate to within 0.5? What about accuracy to within 0.1?

SOLUTION Accuracy to within 0.5 means that the functions should differ by less 
than 0.5: 

Equivalently, we could write

This says that the linear approximation should lie between the curves obtained by
shifting the curve upward and downward by an amount 0.5. Figure 3
shows the tangent line intersecting the upper curve
at and . Zooming in and using the cursor, we estimate that the -coordinate of
is about and the -coordinate of is about 8.66. Thus we see from the graph
that the approximation

is accurate to within 0.5 when . (We have rounded to be safe.)
Similarly, from Figure 4 we see that the approximation is accurate to within 0.1

when . ■

APPLICATIONS TO PHYSICS

Linear approximations are often used in physics. In analyzing the consequences of an
equation, a physicist sometimes needs to simplify a function by replacing it with its
linear approximation. For instance, in deriving a formula for the period of a pendu-

x

sx � 3 �
7

4
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4

� sx � 3 � �7

4
�

x

4� � � 0.5

sx � 3 � 0.5 �
7

4
�

x

4
� sx � 3 � 0.5

y � sx � 3
y � �7 � x��4 y � sx � 3 � 0.5

P Q x P
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sx � 3 �
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�2.6 � x � 8.6
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x From Actual value

0.9 1.975 1.97484176 . . .

0.98 1.995 1.99499373 . . .

1 2 2.00000000 . . .

1.05 2.0125 2.01246117 . . .

1.1 2.025 2.02484567 . . .

2 2.25 2.23606797 . . .

3 2.5 2.44948974 . . .s6

s5

s4.1

s4.05

s4

s3.98

s3.9

L�x�
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lum, physics textbooks obtain the expression for tangential accelera-
tion and then replace by with the remark that is very close to if is not
too large. [See, for example, Physics: Calculus, 2d ed., by Eugene Hecht (Pacific
Grove, CA, 2000), p. 431.] You can verify that the linearization of the function

at is and so the linear approximation at 0 is

(see Exercise 28). So, in effect, the derivation of the formula for the period of a pen-
dulum uses the tangent line approximation for the sine function.

Another example occurs in the theory of optics, where light rays that arrive at 
shallow angles relative to the optical axis are called paraxial rays. In paraxial (or Gaus-
sian) optics, both and are replaced by their linearizations. In other words,
the linear approximations

and    

are used because is close to 0. The results of calculations made with these approxi-
mations became the basic theoretical tool used to design lenses. [See Optics, 4th ed.,
by Eugene Hecht (San Francisco, 2002), p. 154.]

In Section 8.8 we will present several other applications of the idea of linear approxi-
mations to physics.

DIFFERENTIALS

The ideas behind linear approximations are sometimes formulated in the terminology
and notation of differentials. If , where is a differentiable function, then the
differential is an independent variable; that is, can be given the value of 
any real number. The differential is then defined in terms of by the equation 

So is a dependent variable; it depends on the values of and . If is given a
specific value and is taken to be some specific number in the domain of , then the
numerical value of is determined.

The geometric meaning of differentials is shown in Figure 5. Let and
be points on the graph of and let . The correspond-

ing change in is

The slope of the tangent line is the derivative . Thus the directed distance
from S to R is . Therefore represents the amount that the tangent line
rises or falls (the change in the linearization), whereas represents the amount that
the curve rises or falls when changes by an amount . Notice from Fig-
ure 5 that the approximation becomes better as becomes smaller.

If we let , then and we can rewrite the linear approxima-
tion in the notation of differentials:

For instance, for the function in Example 1, we have

sin 	 	 sin 	 	 	

f �x� � sin x L�x� � x

sin x � x

sin 	 cos 	

sin 	 � 	 cos 	 � 1

	

y � f �x� f
dx dx

dy dx

dy � f ��x� dx

dy x dx dx
x f
dy

a � 0

3

aT � �t sin 	

P�x, f �x��
Q�x � 
x, f �x � 
x�� f dx � 
x

y


y � f �x � 
x� � f �x�

PR f ��x�
f ��x� dx � dy dy


y
y � f �x� x dx


y � dy 
x
dx � x � a x � a � dx

f �a � dx� � f �a� � dy

f �x� � sx � 3

dy � f ��x� dx �
dx

2sx � 3

1
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■ If , we can divide both sides of
Equation 3 by to obtain

We have seen similar equations before,
but now the left side can genuinely be
interpreted as a ratio of differentials.

dy

dx
� f ��x�

dx
dx � 0

R

0 x

y

Îy

x

P

Q

dx=Îx

x+Îx

y=ƒ

S

dy

FIGURE 5
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If and , then

and

just as we found in Example 1.
Our final example illustrates the use of differentials in estimating the errors that

occur because of approximate measurements.

EXAMPLE 3 The radius of a sphere was measured and found to be 21 cm with a
pos sible error in measurement of at most 0.05 cm. What is the maximum error in
using this value of the radius to compute the volume of the sphere?

SOLUTION If the radius of the sphere is , then its volume is . If the error
in the measured value of is denoted by , then the corresponding error in
the calculated value of is , which can be approximated by the differential

When and , this becomes

The maximum error in the calculated volume is about 277 cm . ■

NOTE Although the possible error in Example 3 may appear to be rather large, 
a better picture of the error is given by the relative error, which is computed by 
dividing the error by the total volume:

Therefore the relative error in the volume is approximately three times the relative
error in the radius. In Example 3 the relative error in the radius is approximately

and it produces a relative error of about 0.007 in the vol-
ume. The errors could also be expressed as percentage errors of in the radius
and in the volume.

dy �
0.05

2s1 � 3
� 0.0125

s4.05 � f �1.05� � f �1� � dy � 2.0125

r V � 4
3 �r 3

r dr � 
r
V 
V

dV � 4�r 2 dr

r � 21 dr � 0.05

dV � 4��21�20.05 � 277

3


V

V
�

dV

V
�

4�r 2 dr
4
3 �r 3 � 3 

dr

r

dr�r � 0.05�21 � 0.0024
0.24%

0.7%

V

dx � 
x � 0.05a � 1

2.8 EXERCISES

1–4 ■ Find the linearization of the function at .

1. ,  

2. ,  

3. ,  4. ,  

; 5. Find the linear approximation of the function
at and use it to approximate the

numbers and . Illustrate by graphing and
the tangent line.

L�x� a

f �x� � x 4 � 3x 2 a � �1

f �x� � sin x a � ��6

f �x� � sx a � 4 f �x� � x 3�4 a � 16

f �x� � s1 � x a � 0
s0.9 s0.99 f

; 6. Find the linear approximation of the function
at and use it to approximate the

numbers and . Illustrate by graphing and
the tangent line.

; 7–10 ■ Verify the given linear approximation at . Then
determine the values of for which the linear approximation is
accurate to within 0.1.

7. 8.

9. 10.

a � 0t�x� � s
3 1 � x

ts
3 1.1s

3 0.95

a � 0
x

tan x � x� 1 �
1
2 xs

4 1 � 2x

�1 � x��3 � 1 � 3x1��1 � 2x�4 � 1 � 8x
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26. One side of a right triangle is known to be 20 cm long and
the opposite angle is measured as , with a possible error 
of .
(a) Use differentials to estimate the error in computing the

length of the hypotenuse.
(b) What is the percentage error?

27. When blood flows along a blood vessel, the flux (the vol-
ume of blood per unit time that flows past a given point) is
proportional to the fourth power of the radius of the blood
vessel:

(This is known as Poiseuille’s Law.) A partially clogged
artery can be expanded by an operation called angioplasty,
in which a balloon-tipped catheter is inflated inside the
artery in order to widen it and restore the normal blood flow.

Show that the relative change in is about four times the
relative change in . How will a 5% increase in the radius
affect the flow of blood?

28. On page 431 of Physics: Calculus, 2d ed., by Eugene Hecht
(Pacific Grove, CA, 2000), in the course of deriving the for-
mula for the period of a pendulum of length
L, the author obtains the equation for the tan-
gential acceleration of the bob of the pendulum. He then
says, “for small angles, the value of in radians is very
nearly the value of ; they differ by less than 2% out to
about 20°.”
(a) Verify the linear approximation at 0 for the sine function:

; (b) Use a graphing device to determine the values of for
which and differ by less than 2%. Then verify
Hecht’s statement by converting from radians to degrees.

29. Suppose that the only information we have about a function
is that and the graph of its derivative is as shown.

(a) Use a linear approximation to estimate and .
(b) Are your estimates in part (a) too large or too small?

Explain.

30. Suppose that we don’t have a formula for but we know
that and for all .
(a) Use a linear approximation to estimate 

and .
(b) Are your estimates in part (a) too large or too small?

Explain.

30�
�1�

F

R

F � kR 4

F
R

T � 2�sL�t

aT � �t sin 	

	
sin 	

sin x � x

x
sin x x

f f �1� � 5
f �0.9� f �1.1�

y

x0 1

y=fª(x)

1

t�x�
t�2� � �4 t��x� � sx 2 � 5 x

t�1.95�
t�2.05�

11–14 ■ Use a linear approximation (or differentials) to
estimate the given number.

11. 12.

13. 14.

15–16 ■ Explain, in terms of linear approximations or differen-
tials, why the approximation is reasonable.

15. 16.

17–18 ■ Find the differential of each function.

17. (a) (b)

18. (a) (b)

19. Let .
(a) Find the differential .
(b) Evaluate and if and .

20. Let .
(a) Find the differential .
(b) Evaluate and if and .
(c) Sketch a diagram like Figure 5 showing the line

segments with lengths , , and .

21. The edge of a cube was found to be 30 cm with a pos-
sible error in measurement of 0.1 cm. Use differentials to
estimate the maximum possible error, relative error, and
percentage error in computing (a) the volume of the cube
and (b) the surface area of the cube.

22. The radius of a circular disk is given as 24 cm with a maxi -
mum error in measurement of 0.2 cm.
(a) Use differentials to estimate the maximum error in the

calculated area of the disk.
(b) What is the relative error? What is the percentage error?

23. The circumference of a sphere was measured to be 84 cm
with a possible error of 0.5 cm.
(a) Use differentials to estimate the maximum error in the 

calculated surface area. What is the relative error?
(b) Use differentials to estimate the maximum error in the 

calculated volume. What is the relative error?

24. Use differentials to estimate the amount of paint needed to
apply a coat of paint 0.05 cm thick to a hemispherical dome
with diameter 50 m.

25. If a current passes through a resistor with resistance ,
Ohm’s Law states that the voltage drop is . If is
constant and is measured with a certain error, use differ-
entials to show that the relative error in calculating is
approximately the same (in magnitude) as the relative error
in .

�1.999�4
s
3 1001

�8.06�2�3 1�4.002

�1.01�6 � 1.06sec 0.08 � 1

y �
1 � v 2

1 � v 2y � tan st

y � u cos uy � s��1 � 2s�

y � tan x
dy

dx � �0.1x � ��4
ydy

y � sx
dy

dx � 
x � 1x � 1
ydy


ydydx

RI
VV � RI

R
I

R
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CHAPTER 2 REVIEW
CONCEPT CHECK

TRUE-FALSE QUIZ

140 CHAPTER 2 DERIVATIVES

1. Write an expression for the slope of the tangent line to the
curve at the point .

2. Suppose an object moves along a straight line with position
at time t. Write an expression for the instantaneous

velocity of the object at time . How can you interpret
this velocity in terms of the graph of f ?

3. Define the derivative . Discuss two ways of interpreting
this number.

4. If and x changes from to , write expressions
for the following.
(a) The average rate of change of y with respect to x over

the interval .
(b) The instantaneous rate of change of y with respect to x

at .

5. Define the second derivative of . If is the position
function of a particle, how can you interpret the second
derivative?

6. (a) What does it mean for to be differentiable at a?
(b) What is the relation between the differentiability and

continuity of a function?

y � f �x� �a, f �a��

f �t�
t � a

f ��a�

y � f �x� x1 x2

	x1, x2 


x � x1

f f �t�

f

(c) Sketch the graph of a function that is continuous but not 
differentiable at .

7. Describe several ways in which a function can fail to be 
differentiable. Illustrate with sketches.

8. State each differentiation rule both in symbols and in words.
(a) The Power Rule (b) The Constant Multiple Rule
(c) The Sum Rule (d) The Difference Rule
(e) The Product Rule (f) The Quotient Rule
(g) The Chain Rule

9. State the derivative of each function.
(a) (b) (c)
(d) (e) (f)
(g)

10. Explain how implicit differentiation works.

11. (a) Write an expression for the linearization of at .
(b) If , write an expression for the differential .
(c) If , draw a picture showing the geometric

meanings of and .

a � 2

y � x n y � sin x y � cos x
y � tan x y � csc x y � sec x
y � cot x

f a
y � f �x� dy
dx � 
x


y dy

Determine whether the statement is true or false. If it is true, explain
why. If it is false, explain why or give an example that disproves the
statement.

1. If is continuous at a, then is differentiable at a.

2. If and are differentiable, then

3. If and are differentiable, then

4. If and are differentiable, then

5. If is differentiable, then

f f

f t

d

dx
	 f �x� � t�x�
 � f ��x� � t��x�

f t

d

dx
	 f �x� t�x�
 � f ��x� t��x�

f t

d

dx
	 f �t�x��
 � f ��t�x�� t��x�

f

d

dx
sf �x� �

f ��x�
2sf �x�

6. If is differentiable, then

7.

8. If exists, then 

9. If , then

10.

11. An equation of the tangent line to the parabola at
is .

12.

f

d

dx
f (sx ) �

f ��x�
2sx

d

dx � x 2 � x � � � 2x � 1 �
f ��r� limx l r f �x� � f �r�.

t�x� � x 5

lim
x l 2

t�x� � t�2�
x � 2

� 80

d 2 y

dx 2 � �dy

dx�2

y � x 2

��2, 4� y � 4 � 2x�x � 2�

d

dx
�tan2x� �

d

dx
�sec2x�
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EXERCISES

1. For the function whose graph is shown, arrange the
following numbers in increasing order:

2. Find a function and a number a such that

3. The total cost of repaying a student loan at an interest rate
of r% per year is .
(a) What is the meaning of the derivative ? What are its

units?
(b) What does the statement mean?
(c) Is always positive or does it change sign?

4 –6 ■ Trace or copy the graph of the function. Then sketch a
graph of its derivative directly beneath.

4. 5. 6.

7. The figure shows the graphs of , , and . Identify each
curve, and explain your choices.

8. The total fertility rate at time t, denoted by , is an esti-
mate of the average number of children born to each woman
(assuming that current birth rates remain constant). The

f

0 1    f ��2� f ��3� f ��5� f ��5�

x

y

0 1

1

f

lim
h l0

�2 � h�6 � 64

h
� f ��a�

C � f �r�
f ��r�

f ��10� � 1200
f ��r�

x

y

0 x

y

0 x

y

f �f �f

x

y

a

b

c

0

F�t�

graph of the total fertility rate in the United States shows
the fluctuations from 1940 to 1990.
(a) Estimate the values of , , and .
(b) What are the meanings of these derivatives?
(c) Can you suggest reasons for the values of these 

derivatives?

9. Let be the total value of US currency (coins and 
banknotes) in circulation at time . The table gives values 
of this function from 1980 to 2000, as of September 30, in 
billions of dollars. Interpret and estimate the value of

.

10–11 ■ Find from first principles, that is, directly from
the definition of a derivative.

10. 11.

12. (a) If , use the definition of a derivative to 
find .

(b) Find the domains of and .

; (c) Graph and on a common screen. Compare the
graphs to see whether your answer to part (a) is 
reasonable.

13–40 ■ Calculate .

13. 14.

15. 16.

17. 18.

F��1950� F��1965� F��1987�

t

y

1940 1960 1970 1980 19901950

1.5

2.0

2.5

3.0

3.5

y=F(t)

baby
boom

baby
bust

baby
boomlet

C�t�
t

C��1990�

f ��x�

f �x� �
4 � x

3 � x
f �x� � x 3 � 5x � 4

f �x� � s3 � 5x
f ��x�

f f �
f f �

y�

y � �x 2 � x 3�4 y �
1

sx
�

1

s
5 x3

y �
x 2 � x � 2

sx
y �

tan x

1 � cos x

y � x 2 sin �x y � �x �
1

x 2�s7

t 1980 1985 1990 1995 2000

129.9 187.3 271.9 409.3 568.6C�t�
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52. If and are the functions whose graphs are shown, let
, , and . 

Find (a) , (b) , and (c) .

53–60 ■ Find in terms of .

53. 54.

55. 56.

57. 58.

59. 60.

61–62 ■ Find in terms of and .

61. 62.

63. The graph of is shown. State, with reasons, the numbers
at which is not differentiable. 

64. The volume of a right circular cone is , where
is the radius of the base and is the height.
(a) Find the rate of change of the volume with respect to the

height if the radius is constant.
(b) Find the rate of change of the volume with respect to the

radius if the height is constant.

65. A particle moves on a vertical line so that its coordinate at
time is , .
(a) Find the velocity and acceleration functions.
(b) When is the particle moving upward and when is it

moving downward?

0

g

f

y

x1

1

f � t�

f �x� � x 2
t�x� f �x� � t�x 2 �

f �x� � 	t�x�
2 f �x� � x a
t�x b �

f �x� � t�t�x�� f �x� � sin�t�x��

f �x� � t�sin x� f �x� � t(tan sx )

h� f � t�

h�x� �
f �x� t�x�

f �x� � t�x�
h�x� � f �t�sin 4x��

f
f

x

y

2
0

4 6_1

V � 1
3�r 2h r

h

t y � t 3 � 12t � 3 t  0

tf
C�x� � f �t�x��Q�x� � f �x��t�x�P�x� � f �x� t�x�

C��2�Q��2�P��2�

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. If , find .

42. If , find .

43. Find if .

44. Find if .

45–46 ■ Find an equation of the tangent to the curve at the
given point.

45. ,  46. ,

47–48 ■ Find equations of the tangent line and normal line to
the curve at the given point.

47. ,  

48. ,  

49. At what points on the curve , , 
is the tangent line horizontal?

50. Find the points on the ellipse where the tan-
gent line has slope 1.

51. Suppose that and , where
, , , , and .

Find (a) and (b) .

y �
t 4 � 1

t 4 � 1
y � sin�cos x�

y �
1

sin�x � sin x�
y � tan s1 � x

y � sec�1 � x 2 �xy 4 � x 2y � x � 3y

x 2 cos y � sin 2y � xyy �
sec 2	

1 � tan 2	

y � 1�s
3 x � sxy � �1 � x �1 ��1

y � ssin sxsin�xy� � x 2 � y

y �
�x � ��4

x 4 � �4y � cot�3x 2 � 5�

y � sx cos sx y �
sin mx

x

y � tan2�sin 	� x tan y � y � 1

y �
�x � 1��x � 4�
�x � 2��x � 3�

y � s
5 x tan x

y � sin(tan s1 � x 3 ) y � sin2(cosssin �x )

f ��2�f �t� � s4t � 1

t ����6�t�	� � 	 sin 	

x 6 � y 6 � 1y �

f �x� � 1��2 � x�f �n��x�

���6, 1�y � 4 sin2x �0, �1�y �
x2 � 1

x2 � 1

�0, 1�y � s1 � 4 sin x

�2, 1�x2 � 4xy � y2 � 13

0 � x � 2�y � sin x � cos x

x 2 � 2y 2 � 1

F�x� � f �t�x��h�x� � f �x� t�x�
f ��5� � 11f ��2� � �2t��2� � 4t�2� � 5f �2� � 3

F��2�h��2�
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; 72. (a) Find the linear approximation to 
near 3.

(b) Illustrate part (a) by graphing and the linear 
approximation.

(c) For what values of is the linear approximation accu-
rate to within 0.1?

73. (a) Find the linearization of at .
State the corresponding linear approximation and use it
to give an approximate value for .

; (b) Determine the values of for which the linear approxi-
mation given in part (a) is accurate to within 0.1.

74. Evaluate if , , and .

75. A window has the shape of a square surmounted by a
semi circle. The base of the window is measured as having
width 60 cm with a possible error in measurement of 
0.1 cm. Use differentials to estimate the maximum error
possible in computing the area of the window.

76–78 ■ Express the limit as a derivative and evaluate.

76. 77.

78.

79. Evaluate .

80. Show that the length of the portion of any tangent line to
the astroid cut off by the coordinate
axes is constant.

81. If , find the value of .

82. Find the values of the constants and such that

lim
x l1

x 17 � 1

x � 1
lim
h l 0

s
4 16 � h � 2

h

lim
	 l ��3

cos 	 � 0.5

	 � ��3

lim
x l 0

s1 � tan x � s1 � sin x

x 3

x 2�3 � y 2�3 � a 2�3

f �x� � lim
t l x

sec t � sec x

t � x
f ����4�

a b

lim
x l 0

s
3 ax � b � 2

x
�

5

12

x

a � 0f �x� � s
3 1 � 3x

s
3 1.03

x

dx � 0.2x � 2y � x 3 � 2x 2 � 1dy

f �x� � s25 � x 2 

f

(c) Find the distance that the particle travels in the time
interval .

; (d) Graph the position, velocity, and acceleration functions
for .

66. The cost, in dollars, of producing units of a certain com-
modity is

(a) Find the marginal cost function.
(b) Find and explain its meaning.
(c) Compare with the cost of producing the 101st

item.

67. The volume of a cube is increasing at a rate of 10 .
How fast is the surface area increasing when the length of
an edge is 30 cm?

68. A paper cup has the shape of a cone with height 10 cm and
radius 3 cm (at the top). If water is poured into the cup at a
rate of , how fast is the water level rising when the
water is 5 cm deep?

69. A balloon is rising at a constant speed of . A boy is
cycling along a straight road at a speed of . When
he passes under the balloon, it is 45 ft above him. How fast
is the distance between the boy and the balloon increasing 
3 s later?

70. A waterskier skis over the ramp shown in the figure at a
speed of . How fast is she rising as she leaves the
ramp?

71. The angle of elevation of the sun is decreasing at a rate of
. How fast is the shadow cast by a 400-ft-tall

building increasing when the angle of elevation of the sun 
is ?

0 � t � 3

0 � t � 3

x

C�x� � 920 � 2x � 0.02x 2 � 0.00007x 3

C��100�
C��100�

cm3�min

2 cm3�s

5 ft�s
15 ft�s

30 ft�s

4 ft

15 ft

0.25 rad�h

��6
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3 INVERSE FUNCTIONS
Exponential, Logarithmic, and 
Inverse Trigonometric Functions

The common theme that links the functions of this chapter is that they occur as pairs of inverse func-
tions. In particular, two of the most important functions that occur in mathematics and its applications
are the exponential function and its inverse function, the logarithmic function .
Here we investigate their properties, compute their derivatives, and use them to describe exponential
growth and decay in biology, physics, chemistry, and other sciences. We also study the inverses of the
trigonometric and hyperbolic functions. Finally we look at a method (l’Hospital’s Rule) for computing
limits of such functions.

f �x� � ax
t�x� � log a x

3.1 EXPONENTIAL FUNCTIONS
The function is called an exponential function because the variable, , is the
exponent. It should not be confused with the power function , in which the
variable is the base.

In general, an exponential function is a function of the form

where is a positive constant. Let’s recall what this means.
If , a positive integer, then

n factors

If , and if , where is a positive integer, then

If is a rational number, , where and are integers and , then

But what is the meaning of if x is an irrational number? For instance, what is meant
by or ?

To help us answer this question we first look at the graph of the function ,
where x is rational. A representation of this graph is shown in Figure 1. We want to
enlarge the domain of to include both rational and irrational numbers.

There are holes in the graph in Figure 1 corresponding to irrational values of x. We
want to fill in the holes by defining , where , so that is an increasing
continuous function. In particular, since the irrational number satisfies

f �x� � 2x

t�x� � x 2

f �x� � ax

a
x � n

an � a � a � � � � � a

x � 0, then a 0 � 1 x � �n n

a �n �
1

an

x x � p�q p q q � 0

ax � ap�q � q
sap � ( q

sa ) p

a x

2s3 5�

y � 2x

y � 2x

f �x� � 2x x � � f
s3

1.7 � s3 � 1.8

x

145

FIGURE 1 
Representation of y=2®, x rational

x0

y

1

1
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we must have

and we know what and mean because 1.7 and 1.8 are rational numbers. Simi-
larly, if we use better approximations for , we obtain better approximations 
for :

. . . .

. . . .

. . . .

It can be shown that there is exactly one number that is greater than all of the numbers

. . .

and less than all of the numbers

. . .

We define to be this number. Using the preceding approximation process, we can
compute it correct to six decimal places:

Similarly, we can define (or , if ) where x is any irrational number. Fig-
ure 2 shows how all the holes in Figure 1 have been filled to complete the graph of the
function .

In general, if a is any positive number, we define

This definition makes sense because any irrational number can be approximated as
closely as we like by a rational number. For instance, because has the decimal rep-
resentation . . . , Definition 1 says that is the limit of the
sequence of numbers

Similarly, is the limit of the sequence of numbers

It can be shown that Definition 1 uniquely specifies and makes the function
continuous.

The graphs of members of the family of functions are shown in Figure 3 for
various values of the base . Notice that all of these graphs pass through the same 

21.7 � 2s3 � 21.8

21.7 21.8

s3
2s3

1.73 � s3 � 1.74  ? 21.73 � 2s3 � 21.74

1.732 � s3 � 1.733  ? 21.732 � 2s3 � 21.733

1.7320 � s3 � 1.7321  ? 21.7320 � 2s3 � 21.7321

1.73205 � s3 � 1.73206 ? 21.73205 � 2s3 � 21.73206

21.7, 21.73, 21.732, 21.7320, 21.73205, 

21.8, 21.74, 21.733, 21.7321, 21.73206, 

2s3

2s3 � 3.321997

2x a x a � 0

f �x� � 2x, x � �

ax � lim
r lx

a r r rational

s3
s3 � 1.7320508 2 s3

21.7, 21.73, 21.732, 21.7320, 21.73205, 21.732050, 21.7320508, . . .

5�

53.1, 53.14, 53.141, 53.1415, 53.14159, 53.141592, 53.1415926, . . .

a x

f �x� � ax

y � ax

1

a

x
1

0

y

1

FIGURE 2
y=2®, x real

■ A proof of this fact is given in 
J. Marsden and A. Weinstein, Calculus
Unlimited (Menlo Park, CA, 1981). For
an online version, see

www.cds.caltech.edu/~marsden/
volume/cu/CU.pdf
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point because for . Notice also that as the base a gets larger, the
exponential function grows more rapidly (for ).

Figure 4 shows how the exponential function compares with the power
function . The graphs intersect three times, but ultimately the exponential curve

grows far more rapidly than the parabola . (See also Figure 5.)
You can see from Figure 3 that there are basically three kinds of exponential func-

tions . If , the exponential function decreases; if , it is a con-
stant; and if , it increases. These three cases are illustrated in Figure 6. Since

, the graph of is just the reflection of the graph of
about the -axis.

The properties of the exponential function are summarized in the following theorem.

THEOREM If and , then is a continuous function
with domain and range . In particular, for all . If , and 
, , then

1. 2. 3. 4.

The reason for the importance of the exponential function lies in properties 1–4,
which are called the Laws of Exponents. If and are rational numbers, then these
laws are well known from elementary algebra. For arbitrary real numbers and
these laws can be deduced from the special case where the exponents are rational by
using Equation 1.

�0, 1� a 0 � 1 a � 0
x � 0

x0

y

2 4

10

y=2®

y=≈

x0

y

2

y=2®

4

y=≈

100

200

6

FIGURE 4 FIGURE 5 

0

1®

1.5®
2®4®10®”   ’

®1

4
”   ’

®1

2

FIGURE 3 

x

y

1

Members of the family of exponential functions

y � 2x

y � x 2

y � 2x y � x 2

y � ax 0 � a � 1 a � 1
a � 1

�1�a�x � 1�ax � a�x y � �1�a�x

y � ax y

(a) y=a®,  0<a<1 (b) y=1® (c) y=a®,  a>1FIGURE 6

1

(0, 1)

(0, 1)

x0

y y

x0x0

y

a � 0 a � 1 f �x� � ax

� �0, �� a x � 0 x a b � 0
x y � �

ax�y � axay ax�y �
ax

ay �ax �y � axy �ab�x � axbx

x y
x y

2
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■ www.stewartcalculus.com
See Additional Example A.

■ In Appendix C we present a defini-
tion of the exponential function that
enables us to give an easy proof of the
Laws of Exponents.

12280_ch03_ptg01_hr_145-155.qk_12280_ch03_ptg01_hr_145-155  11/21/11  3:09 PM  Page 147

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.stewartcalculus.com


The following limits can be read from the graphs shown in Figure 6 or proved from
the definition of a limit at infinity. (See Exercise 79 in Section 3.2.)

In particular, if , then the -axis is a horizontal asymptote of the graph of the
exponential function .

EXAMPLE 1
(a) Find .
(b) Sketch the graph of the function .

SOLUTION

(a)

[by with ]

(b) We write as in part (a). The graph of is shown in Figure 3,
so we shift it down one unit to obtain the graph of shown in Figure 7.
(For a review of shifting graphs, see Section 1.2.) Part (a) shows that the line

is a horizontal asymptote. ■

THE NUMBER e AND THE NATURAL EXPONENTIAL FUNCTION

Of all possible bases for an exponential function, there is one that is most convenient
for the purposes of calculus. We will see in Section 3.3 that the differentiation formula
for an exponential function is simplest when the base is chosen to be the number ,
which is defined as follows:

The graph of the function is shown in Figure 8. It is not defined
when , but its behavior when is near is indicated by the table of values cor-
rect to eight decimal places. These values suggest (but don’t prove) that the limit in
Definition 4 exists and that . The existence of the limit is proved in
Appendix D. The approximate value to 20 decimal places is

The decimal expansion of is nonrepeating because is an irrational number. (See
Exercise 30 in Section 8.8.) The notation for this number was chosen by the Swiss
mathematician Leonhard Euler in 1727, probably because it’s the first letter of the
word exponential.

a � 1 x
y � ax

lim x l � �2�x � 1�
y � 2�x � 1

lim
x l�

�2�x � 1� � lim
x l�

[( 1
2 )x

� 1]

� 0 � 1 a � 1
2 � 1

� �1

y � ( 1
2 )x

� 1 y � ( 1
2 )x

y � ( 1
2 )x

� 1

y � �1

e

e � lim
x l 0

�1 � x�1�x

y � �1 � x�1�x

x � 0 x 0

e � 2.71828

e � 2.71828182845904523536

e e
e

3 If a � 1, then  lim
x l�

ax � � and lim
x l��

ax � 0

If 0 � a � 1, then lim
x l�

ax � 0 and lim
x l��

ax � �

4

3
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FIGURE 7 

x0

y

y=_1

y=2–®-1

FIGURE 8

2

3

y=(1+x)!?®

1

0

y

x

x

0.1 2.59374246
0.01 2.70481383
0.001 2.71692393
0.0001 2.71814593
0.00001 2.71826824
0.000001 2.71828047
0.0000001 2.71828169
0.00000001 2.71828181

(1 � x)1�x
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The exponential function with base is called the natural exponential
function. Because lies between 2 and 3, the graph of lies between the graphs
of and , as shown in Figure 9.

We will see in Section 3.3 that the natural exponential function is the exponential
function whose graph crosses the -axis with a slope of 1. (See Figure 10.) In fact, we
can see why this might be true if we look at the limit in Definition 4. The slope of the
tangent line to the graph of at the point is

Replacing by in Definition 4, we see that, for small values of ,

so    and    

Thus if is near , we have

and so it seems plausible that .
The exponential function is one of the most frequently occurring func-

tions in calculus and its applications, so it is important to be familiar with its graph
(Figure 10) and properties. We summarize these properties as follows, using the fact
that this function is just a special case of the exponential functions considered before
but with base .

PROPERTIES OF THE NATURAL EXPONENTIAL FUNCTION The exponen-
tial function is a continuous function with domain and range

. Thus for all . Also

So the -axis is a horizontal asymptote of .

EXAMPLE 2 Evaluate .

SOLUTION If we let , we know from Section 1.6 that as .
Therefore, by ,

■

EXAMPLE 3 Find .

SOLUTION We divide numerator and denominator by :

We have used the fact that as and so

■

y � ex e
e y � ex

y � 2x y � 3x

y

f �x� � ex �0, 1�

f 	�0� � lim
h l 0

f �0 � h� � f �0�
h

� lim
h l 0

eh � 1

h

x h h

e � �1 � h�1�h eh � 1 � h eh � 1 � h

h 0

eh � 1

h
� 1

f 	�0� � 1
f �x� � ex

a � e � 1

f �x� � ex �

�0, �� ex � 0 x

lim
x l��

ex � 0            lim
x l �

ex � �

x f �x� � ex

lim
x l0�

e 1�x

t � 1�x t l �� x l 0�

lim
x l0�

e 1�x � lim
t l��

e t � 0

lim
x l�

e 2x

e 2x � 1

e 2x

lim
x l�

e 2x

e 2x � 1
� lim

x l�

1

1 � e�2x �
1

1 � lim
x l�

e�2x �
1

1 � 0
� 1

t � �2x l �� x l �

lim
x l�

e�2x � lim
t l��

e t � 0

5

V

5
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0

1

y=2®

y=e®

y=3®

FIGURE 9

y

x

FIGURE 10
The natural exponential function
crosses the y-axis with a slope of 1.

0

y=´

1

m=1

x

y

■ www.stewartcalculus.com
See Additional Example B.
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3.1 EXERCISES

1. (a) Write an equation that defines the exponential function
with base .

(b) What is the domain of this function?
(c) If , what is the range of this function?
(d) Sketch the general shape of the graph of the exponen-

tial function for each of the following cases.
(i) (ii) (iii) 

2. (a) How is the number defined?
(b) What is an approximate value for ?
(c) What is the natural exponential function?

; 3–6 ■ Graph the given functions on a common screen. How
are these graphs related?

3. ,  ,  ,  

4. ,  ,  ,  

5. ,  ,  ,  

6. ,  ,  ,  

7–12 ■ Make a rough sketch of the graph of the function. Do
not use a calculator. Just use the graphs given in Figures 3 and
9 and, if necessary, the transformations of Section 1.2.

7. 8.

9. 10.

11. 12.

13. Starting with the graph of , write the equation of the
graph that results from
(a) shifting 2 units downward
(b) shifting 2 units to the right
(c) reflecting about the x-axis
(d) reflecting about the y-axis
(e) reflecting about the x-axis and then about the y-axis

14. Starting with the graph of , find the equation of the
graph that results from
(a) reflecting about the line 
(b) reflecting about the line 

15–16 ■ Find the domain of each function.

15. (a) (b)

16. (a) (b)

a � 0

a � 1

a � 1 a � 1 0 � a � 1

e
e

y � 2x y � e x y � 5x y � 20 x

y � e x y � e �x y � 8x y � 8�x

y � 3x y � 10 x y � ( 1
3 )x

y � ( 1
10)x

y � 0.9 x y � 0.6x y � 0.3x y � 0.1x

y � 10 x�2 y � �0.5�x � 2

y � �2�x y � e � x �

y � 1 �
1
2 e�x y � 2�1 � e x �

y � e x

y � e x

y � 4
x � 2

f �x� �
1 � e x 2

1 � e1�x 2 f �x� �
1 � x

e cos x

t�t� � sin�e�t � t�t� � s1 � 2 t

17–18 ■ Find the exponential function whose
graph is given.

17. 18.

19. Suppose the graphs of and are drawn
on a coordinate grid where the unit of measurement is 
1 inch. Show that, at a distance 2 ft to the right of the ori-
gin, the height of the graph of is 48 ft but the height 
of the graph of is about 265 mi.

; 20. Compare the rates of growth of the functions
and by graphing both functions in several view-
ing rectangles. Find all points of intersection of the graphs
correct to one decimal place.

; 21. Compare the functions and by graph-
ing both and in several viewing rectangles. When does
the graph of finally surpass the graph of ?

; 22. Use a graph to estimate the values of such that
.

23–30 ■ Find the limit.

23. 24.

25. 26.

27. 28.

29. 30.

; 31. If you graph the function

you’ll see that appears to be an odd function. Prove it.

; 32. Graph several members of the family of functions

where . How does the graph change when
changes? How does it change when changes?

0

(1, 6)

(3, 24)

y

x

f �x� � Ca x

”2,    ’
2

9

0

2

y

x

f �x� � x 2
t�x� � 2x

f
t

f �x� � x 5

t�x� � 5x

f �x� � x 10
t�x� � e x

f t

t f

x
e x � 1,000,000,000

lim
x l �

�1.001�x lim
x l �

e�x2

lim
x l �

e 3x � e�3x

e 3x � e�3x lim
x l �

2 � 10 x

3 � 10 x

lim
x l2�

e 3��2�x� lim
x l2�

e 3��2�x�

lim
x l �

�e�2x cos x� lim
x l���2��

e tan x

f �x� �
1 � e 1�x

1 � e 1�x

f

f �x� �
1

1 � ae bx

a � 0 b
a

; Graphing calculator or computer required Computer algebra system required 1 Homework Hints at stewartcalculus.comCAS
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3.2 INVERSE FUNCTIONS AND LOGARITHMS
Table 1 gives data from an experiment in which a bacteria culture started with 100
bacteria in a limited nutrient medium; the size of the bacteria population was recorded
at hourly intervals. The number of bacteria is a function of the time : .

Suppose, however, that the biologist changes her point of view and becomes inter-
ested in the time required for the population to reach various levels. In other words,
she is thinking of t as a function of N. This function is called the inverse function of f,
denoted by , and read “ f inverse.” Thus is the time required for the 
population level to reach N. The values of can be found by reading Table 1 from
right to left or by consulting Table 2. For instance, because 

Not all functions possess inverses. Let’s compare the functions and whose
arrow diagrams are shown in Figure 1. Note that never takes on the same value twice
(any two inputs in have different outputs), whereas does take on the same value
twice (both 2 and 3 have the same output, 4). In symbols,

but

Functions that share this property with are called one-to-one functions.

DEFINITION A function is called a one-to-one function if it never takes
on the same value twice; that is,

If a horizontal line intersects the graph of in more than one point, then we see
from Figure 2 that there are numbers and such that . This means
that is not one-to-one. Therefore we have the following geometric method for deter-
mining whether a function is one-to-one.

HORIZONTAL LINE TEST A function is one-to-one if and only if no horizontal
line intersects its graph more than once.

N � f �t�

f �1 t � f �1�N �
f �1

f �1�550� � 6 f �6� � 550.

f t

f
A t

t�2� � t�3�

f �x1 � � f �x 2 � whenever x1 � x 2

f

f

f �x1 � � f �x2 � whenever x1 � x2

f
x1 x2 f �x1 � � f �x2 �

f

tN

1
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TABLE 2 t as a function of N

N � time to reach N bacteria

100 0
168 1
259 2
358 3
445 4
509 5
550 6
573 7
586 8

t � f �1�N�

TABLE 1 N as a function of t

t
(hours) � population at time t

0 100
1 168
2 259
3 358
4 445
5 509
6 550
7 573
8 586

N � f �t�

4

3

2

1

10

4

2

A B

g

FIGURE 1 

4

3

2

1

10

7

4

2

A B

f

f is one-to-one; g is not.

0

‡fl

y=ƒ

FIGURE 2
This function is not one-to-one
because f(⁄)=f(¤).

y

x⁄ ¤

■ In the language of inputs and outputs,
Definition 1 says that is one-to-one if
each output corresponds to only one
input.

f
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EXAMPLE 1 Is the function one-to-one?

SOLUTION 1 If , then (two different numbers can’t have the same
cube). Therefore, by Definition 1, is one-to-one.

SOLUTION 2 From Figure 3 we see that no horizontal line intersects the graph of
more than once. Therefore, by the Horizontal Line Test, is one-to-one.

■

EXAMPLE 2 Is the function one-to-one?

SOLUTION 1 This function is not one-to-one because, for instance,

and so 1 and have the same output.

SOLUTION 2 From Figure 4 we see that there are horizontal lines that intersect the
graph of more than once. Therefore, by the Horizontal Line Test, is not one-to-
one. ■

One-to-one functions are important because they are precisely the functions that
possess inverse functions according to the following definition.

DEFINITION Let be a one-to-one function with domain and range .
Then its inverse function has domain and range and is defined by

for any in .

This definition says that if maps into , then maps back into . (If were
not one-to-one, then would not be uniquely defined.) The arrow diagram in Fig-
ure 5 indicates that reverses the effect of . Note that

For example, the inverse function of is because if ,
then

| CAUTION Do not mistake the in for an exponent. Thus

The reciprocal could, however, be written as .

f �x� � x 3

x1 � x 2 x 3
1 � x 3

2

f �x� � x 3

f �x� � x 3 f

t�x� � x 2

t�1� � 1 � t��1�

�1

t t

f A B
f �1 B A

f �1�y� � x &? f �x� � y

y B

f x y f �1 y x f
f �1

f �1 f

domain of f �1 � range of f

range of f �1 � domain of f

f �x� � x 3 f �1�x� � x 1�3 y � x 3

f �1�y� � f �1�x 3 � � �x 3 �1�3 � x

�1 f �1

f �1�x� does not mean
1

f �x�

1�f �x� � f �x���1

2

V

VFIGURE 3 
ƒ=˛ is one-to-one.

0

y=˛

y

x

FIGURE 4 
©=≈ is not one-to-one.

0

y=≈

x

y

x

y

A

B

f – !f

FIGURE 5
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FIGURE 6
The inverse function reverses
inputs and outputs.

B

5

7

_10

f

A

1

3

8

A

1

3

8

f –!

B

5

7

_10

EXAMPLE 3 If , , and , find and
.

SOLUTION From the definition of we have

The diagram in Figure 6 makes it clear how reverses the effect of in this case.
■

The letter is traditionally used as the independent variable, so when we concen-
trate on rather than on , we usually reverse the roles of and in Definition 2
and write

By substituting for in Definition 2 and substituting for in , we get the follow-
ing cancellation equations:

The first cancellation equation says that if we start with , apply , and then apply
we arrive back at , where we started (see the machine diagram in Figure 7). Thus 

undoes what does. The second equation says that undoes what does.

For example, if , then and so the cancellation equations
become

These equations simply say that the cube function and the cube root function cancel
each other when applied in succession.

Now let’s see how to compute inverse functions. If we have a function and
are able to solve this equation for in terms of , then according to Definition 2 we
must have . If we want to call the independent variable , we then inter-
change and and arrive at the equation .

f �1� � 5 f �3� � 7 f �8� � �10 f �1�7�, f �1�5�,
f �1��10�

f �1

f �1�7� � 3 because f �3� � 7

f �1�5� � 1 because f �1� � 5

f �1��10� � 8 because f �8� � �10

f �1 f

x
f �1 f x y

f �1�x� � y &? f �y� � x

y x

f �1� f �x�� � x for every x in A

f � f �1�x�� � x for every x in B

x f f �1,
x

f �1 f f f �1

FIGURE 7 
x xf ƒ f –!

f �x� � x 3 f �1�x� � x 1�3

f �1� f �x�� � �x 3 �1�3 � x

f � f �1�x�� � �x 1�3 �3 � x

y � f �x�
x y

x � f �1�y�
x y y � f �1�x�

V

3

4

3

x

12280_ch03_ptg01_hr_145-155.qk_12280_ch03_ptg01_hr_145-155  11/21/11  3:09 PM  Page 153

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



154 CHAPTER 3 INVERSE FUNCTIONS

Unless otherwise noted, all content on this page is © Cengage Learning.

HOW TO FIND THE INVERSE FUNCTION OF A ONE-TO-ONE FUNCTION 

STEP 1 Write .

STEP 2 Solve this equation for in terms of (if possible).

STEP 3 To express as a function of x, interchange and . 
The resulting equation is .

EXAMPLE 4 Find the inverse function of .

SOLUTION According to , we first write

Then we solve this equation for :

Finally, we interchange and :

Therefore the inverse function is . ■

The principle of interchanging and to find the inverse function also gives us the
method for obtaining the graph of from the graph of . Since if and only
if , the point is on the graph of if and only if the point is on
the graph of . But we get the point from by reflecting about the line

. (See Figure 8.)

Therefore, as illustrated by Figure 9:

The graph of is obtained by reflecting the graph of about the line .

f

y � f �x�

x y

f �1 x y
y � f �1�x�

f �x� � x 3 � 2

y � x 3 � 2

x

x 3 � y � 2

x � s
3 y � 2

x y

y � s
3 x � 2

f �1�x� � s
3 x � 2

x y
f �1 f f �a� � b

f �1�b� � a �a, b� f �b, a�
f �1 �b, a� �a, b�

y � x

FIGURE 8

0

y

x

(b, a)

(a, b)

y=x

FIGURE 9

0

y

x

f –!

y=x f

f �1 f y � x

5

V

5

■ In Example 4, notice how reverses
the effect of . The function is the rule
“Cube, then add 2”; is the rule “Sub-
tract 2, then take the cube root.”

f
f �1

f
f �1
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EXAMPLE 5 Sketch the graphs of and its inverse function using
the same coordinate axes.

SOLUTION First we sketch the curve (the top half of the parabola
, or ) and then we reflect about the line to get the 

graph of . (See Figure 10.) As a check on our graph, notice that the expression
for is . So the graph of is the right half of the
parabola and this seems reasonable from Figure 10.

■

THE CALCULUS OF INVERSE FUNCTIONS

Now let’s look at inverse functions from the point of view of calculus. Suppose that
is both one-to-one and continuous. We think of a continuous function as one whose
graph has no break in it. (It consists of just one piece.) Since the graph of is
obtained from the graph of by reflecting about the line , the graph of has
no break in it either (see Figure 9). Thus we might expect that is also a continu-
ous function.

This geometrical argument does not prove the following theorem but at least it
makes the theorem plausible. A proof can be found in Appendix D.

THEOREM If is a one-to-one continuous function defined on an interval,
then its inverse function is also continuous.

Now suppose that is a one-to-one differentiable function. Geometrically we can
think of a differentiable function as one whose graph has no corner or kink in it. We
get the graph of by reflecting the graph of about the line , so the graph of

has no corner or kink in it either. We therefore expect that is also differen-
tiable (except where its tangents are vertical). In fact, we can predict the value of the
derivative of at a given point by a geometric argument. In Figure 11 the graphs of

and its inverse are shown. If , then and is the
slope of the tangent line to the graph of at , which is . Reflecting in
the line has the effect of interchanging the - and -coordinates. So the slope of
the reflected line � [the tangent to the graph of at ] is . Thus the slope of

is the reciprocal of the slope of �, that is,

f �x� � s�1 � x

y � s�1 � x
y 2 � �1 � x x � �y 2 � 1 y � x

f �1

f �1 f �1�x� � �x 2 � 1, x 
 0 f �1

y � �x 2 � 1

FIGURE 10

0

y=x

y=ƒ

(0, _1)

y=f –!(x)

(_1, 0)

y

x

f

f �1

f y � x f �1

f �1

f
f �1

f

f �1 f y � x
f �1 f �1

f �1

6

f f �1 f �b� � a f �1�a� � b � f �1�	�a�
L f �1 �a, b� �y��x

y � x x y
f �b, a� �x��y

L

� f �1�	�a� �
�y

�x
�

1

�x��y
�

1

f 	�b�
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FIGURE 11 

y

x

(b, a)

(a, b)

y=x

Îy

Îx

Îx

Îy

f

f –!
L

�
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THEOREM If is a one-to-one differentiable function with inverse func-
tion and , then the inverse function is differentiable at 

and

PROOF Write the definition of derivative as in Equation 2.1.5:

If , then . And if we let , then . Since is
differentiable, it is continuous, so is continuous by Theorem 6. Thus if ,
then , that is, . Therefore

■

NOTE 1 Replacing by the general number in the formula of Theorem 7, we get

If we write , then , so Equation 8, when expressed in Leibniz nota-
tion, becomes

NOTE 2 If it is known in advance that is differentiable, then its derivative can
be computed more easily than in the proof of Theorem 7 by using implicit differen-
tiation. If , then . Differentiating the equation implicitly
with respect to , remembering that is a function of , and using the Chain Rule, we
get

Therefore

f
f �1 f �� f �1�a�� � 0

a

� f �1���a� �
1

f �� f �1�a��

� f �1���a� � lim
x l a

f �1�x� � f �1�a�
x � a

f �b� � a f �1�a� � b y � f �1�x� f �y� � x f
f �1 x l a

f �1�x� l f �1�a� y l b

� f �1���a� � lim
x l a

f �1�x� � f �1�a�
x � a

� lim
y l b

y � b

f �y� � f �b�

� lim
y l b

1

f �y� � f �b�
y � b

�
1

lim
y l b

f �y� � f �b�
y � b

�
1

f ��b�
�

1

f �� f �1�a��

a x

� f �1���x� �
1

f �� f �1�x��

y � f �1�x� f �y� � x

dy

dx
�

1

dx

dy

f �1

y � f �1�x� f �y� � x f �y� � x
x y x

f ��y�
dy

dx
� 1

dy

dx
�

1

f ��y�
�

1

dx

dy

7

8
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■ Note that 
because is one-to-one.f

x � a ? f � y� � f �b�
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EXAMPLE 6 If , find .

SOLUTION Notice that is differentiable and one-to-one. (Its graph is shown in Fig-
ure 12.) To use Theorem 7 we need to know and we can find it by inspection:

Therefore

■

LOGARITHMIC FUNCTIONS

If and , the exponential function is either increasing or decreas-
ing and so it is one-to-one by the Horizontal Line Test. It therefore has an inverse 
function , which is called the logarithmic function with base a and is denoted by

. If we use the formulation of an inverse function given by ,

then we have 

Thus if , then is the exponent to which the base must be raised to give .
For example, because .

The cancellation equations , when applied to the functions and
, become

The logarithmic function has domain and range and is continuous
since it is the inverse of a continuous function, namely, the exponential function. Its
graph is the reflection of the graph of about the line .

Figure 13 shows the case where . (The most important logarithmic functions
have base .) The fact that is a very rapidly increasing function for
is reflected in the fact that is a very slowly increasing function for .

Figure 14 shows the graphs of with various values of the base .
Since , the graphs of all logarithmic functions pass through the point .

f
f �1�1�

f �0� � 1 ? f �1�1� � 0

� f �1���1� �
1

f �� f �1�1��
�

1

f ��0�
�

1

2 � sin 0
�

1

2

FIGURE 12

5

10

0 x

y

a � 0 a � 1 f �x� � ax

f �1

loga

f �1�x� � y &? f �y� � x

loga x � y &? ay � x

x � 0 loga x a x
log10 0.001 � �3 10�3 � 0.001

f �x� � ax

f �1�x� � loga x

loga�a x � � x for every x � �

a loga x � x for every x � 0

loga �0, �� �

y � ax y � x
a � 1

a � 1 y � ax x � 0
y � loga x x � 1

y � loga x a � 1
loga 1 � 0 �1, 0�

� f �1���1�f �x� � 2x � cos xV

3

4

9

10
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0

y=x

y=a®,  a>1

y=loga x,  a>1

FIGURE 13

y

x

FIGURE 14

0

y

1

x
1

y=log£ x

y=log™ x

y=log∞ x

y=log¡¸ x
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The following properties of logarithmic functions follow from the corresponding
properties of exponential functions given in Section 3.1.

LAWS OF LOGARITHMS If x and y are positive numbers, then

1.

2.

3. (where r is any real number)

EXAMPLE 7 Use the laws of logarithms to evaluate .

SOLUTION Using Law 2, we have

because . ■

The limits of exponential functions given in Section 3.1 are reflected in the follow-
ing limits of logarithmic functions. (Compare with Figure 13.)

If , then

In particular, the -axis is a vertical asymptote of the curve .

EXAMPLE 8 Find .

SOLUTION As , we know that and the values of are
positive. So by with , we have

■

NATURAL LOGARITHMS

Of all possible bases for logarithms, we will see in the next section that the most
convenient choice of a base is the number , which was defined in Section 3.1. The
logarithm with base is called the natural logarithm and has a special notation:

If we put and replace with “ln” in and , then the defining proper-
ties of the natural logarithm function become

loga�xy� � loga x � loga y

loga� x

y� � loga x � loga y

loga�xr � � r loga x

log2 80 � log2 5

log2 80 � log2 5 � log2�80

5 � � log2 16 � 4

24 � 16

a � 1

lim
x l �

loga x � � and lim
x l 0�

loga x � ��

y y � loga x

lim
x l 0

log10�tan2x�

x l 0 t � tan2x l tan2 0 � 0 t
a � 10 � 1

lim
x l 0

log10�tan2x� � lim
t l 0�

log10 t � ��

a
e

e

loge x � ln x

a � e loge

ln x � y &? ey � x

11

11

9 10

12
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■ NOTATION FOR LOGARITHMS
Most textbooks in calculus and the 
sciences, as well as calculators, use the
notation for the natural logarithm
and for the “common logarithm,”

. In the more advanced mathe-
matical and scientific literature and 
in computer languages, however, the
notation usually denotes the 
natural logarithm.

log x

log10 x
log x

ln x
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In particular, if we set , we get

EXAMPLE 9 Find if .

SOLUTION 1 From we see that

Therefore .
(If you have trouble working with the “ln” notation, just replace it by . Then

the equation becomes ; so, by the definition of logarithm, .)

SOLUTION 2 Start with the equation

and apply the exponential function to both sides of the equation:

But the second cancellation equation in says that . Therefore . ■

EXAMPLE 10 Solve the equation .

SOLUTION We take natural logarithms of both sides of the equation and use :

Since the natural logarithm is found on scientific calculators, we can approximate
the solution to four decimal places: . ■

EXAMPLE 11 Express as a single logarithm.

SOLUTION Using Laws 3 and 1 of logarithms, we have

■

The following formula shows that logarithms with any base can be expressed in
terms of the natural logarithm.

e ln x � x x � 0

x � 1

ln e � 1

x ln x � 5

ln x � 5 means e 5 � x

x � e 5

loge

loge x � 5 e 5 � x

ln x � 5

e ln x � e 5

e ln x � x x � e 5

e 5�3x � 10

ln�e 5�3x � � ln 10

5 � 3x � ln 10

3x � 5 � ln 10

x � 1
3 �5 � ln 10�

x � 0.8991

ln a �
1
2 ln b

ln a �
1
2 ln b � ln a � ln b 1�2 � ln a � ln sb � ln(asb )

ln�ex � � x x � �13

12

13

V

V

13
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CHANGE OF BASE FORMULA For any positive number , we have

PROOF Let . Then, from , we have . Taking natural loga-
rithms of both sides of this equation, we get . Therefore

■

Scientific calculators have a key for natural logarithms, so Formula 14 enables us
to use a calculator to compute a logarithm with any base (as shown in the following
example). Simi larly, Formula 14 allows us to graph any logarithmic function on a
graphing calculator or computer (see Exercises 55 and 56).

EXAMPLE 12 Evaluate correct to six decimal places.

SOLUTION Formula 14 gives

■

The graphs of the exponential function and its inverse function, the natural
logarithm function, are shown in Figure 15. Because the curve crosses the
y-axis with a slope of 1, it follows that the reflected curve crosses the x-axis
with a slope of 1.

In common with all other logarithmic functions with base greater than 1, the natu-
ral logarithm is a continuous, increasing function defined on and the y-axis is a
vertical asymptote.

If we put in , then we have the following limits:

EXAMPLE 13 Sketch the graph of the function .

SOLUTION We start with the graph of as given in Figure 15. Using the
transfor mations of Section 1.2, we shift it 2 units to the right to get the graph of

and then we shift it 1 unit downward to get the graph of
. (See Figure 16.) Notice that the line is a vertical asymp-

tote since

a �a � 1�

loga x �
ln x

ln a

y � loga x ay � x
y ln a � ln x

y �
ln x

ln a

log8 5

log8 5 �
ln 5

ln 8
� 0.773976

y � ex

y � ex

y � ln x

�0, ��

a � e

lim
x l �

ln x � � lim
x l0�

ln x � ��

y � ln�x � 2� � 1

y � ln x

y � ln�x � 2�
y � ln�x � 2� � 1 x � 2

lim
x l2�

�ln�x � 2� � 1	 � ��

14

15

V

11

9

y

1

0

x
1

y=x

y=´

y=ln x

FIGURE 15
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■

0

y

2 x(3, 0)

x=2

y=ln(x-2)

0

y

x

y=ln x

(1, 0) 0

y

2 x

x=2

(3, _1)

y=ln(x-2)-1

FIGURE 16

SECTION 3.2  INVERSE FUNCTIONS AND LOGARITHMS 161

Unless otherwise noted, all content on this page is © Cengage Learning.

3.2 EXERCISES

1. (a) What is a one-to-one function?
(b) How can you tell from the graph of a function whether

it is one-to-one?

2. (a) Suppose is a one-to-one function with domain and
range . How is the inverse function defined? What
is the domain of ? What is the range of ?

(b) If you are given a formula for , how do you find a 
formula for ?

(c) If you are given the graph of , how do you find the
graph of ?

3–14 ■ A function is given by a table of values, a graph, a 
formula, or a verbal description. Determine whether it is 
one-to-one.

3.

4.

5. 6.

7. 8.

9. 10.

f A
B f �1

f �1 f �1

f
f �1

f
f �1

x

y y

x

x

y y

x

f �x� � 10 � 3xf �x� � x 2 � 2x

11. 12.

13. is the height of a football t seconds after kickoff.

14. is your height at age t.

15. Assume that is a one-to-one function.
(a) If , what is ?
(b) If , what is ?

16. If , find and .

17. If , find .

18. The graph of is given.
(a) Why is one-to-one?
(b) What are the domain and range of ?
(c) What is the value of ?
(d) Estimate the value of .

19. The formula , where ,
expresses the Celsius temperature C as a function of the
Fahrenheit temperature F. Find a formula for the inverse
function and interpret it. What is the domain of the inverse
function?

20. In the theory of relativity, the mass of a particle with speed 
is

where is the rest mass of the particle and is the speed
of light in a vacuum. Find the inverse function of and
explain its meaning.

f �t�

f �t�

f
f �6� � 17 f �1�17�
f �1�3� � 2 f �2�

f �x� � x 5 � x 3 � x f �1�3� f ( f �1�2�)
t�x� � 3 � x � e x

t
�1�4�

f
f

f �1

f �1�2�
f �1�0�

y

x0 1

1

C � 5
9 �F � 32� F � �459.67

v
m � f �v� �

m 0

s1 � v 2�c 2 

m 0 c
f

t�x� � cos xt�x� � 1�x

x 1 2 3 4 5 6

1.5 2.0 3.6 5.3 2.8 2.0f �x�

x 1 2 3 4 5 6

1.0 1.9 2.8 3.5 3.1 2.9f �x�
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41. (a) How is the logarithmic function defined?
(b) What is the domain of this function?
(c) What is the range of this function?
(d) Sketch the general shape of the graph of the

function if .

42. (a) What is the natural logarithm?
(b) What is the common logarithm?
(c) Sketch the graphs of the natural logarithm function

and the natural exponential function with a common
set of axes.

43–46 ■ Find the exact value of each expression (without a
calculator.)

43. (a) (b)

44. (a) (b)

45. (a)
(b)

46. (a) (b)

47–50 ■ Use the properties of logarithms to expand the
quantity.

47. 48.

49. 50.

51–53 ■ Express the given quantity as a single logarithm.

51.

52.

53.

54. Use Formula 14 to evaluate each logarithm correct to six 
decimal places.
(a) (b)

;55–56 ■ Use Formula 14 to graph the given functions on a
common screen. How are these graphs related?

55. ,  ,  ,  

56. ,  ,  ,  

57. Suppose that the graph of is drawn on a coor-
dinate grid where the unit of measurement is an inch.
How many miles to the right of the origin do we have to
move before the height of the curve reaches ft?

; 58. Compare the functions and by
graphing both and in several viewing rectangles.
When does the graph of finally surpass the graph of ?

y � loga x

y � loga x a � 1

log5 125 log3 ( 1
27)

ln�1�e� log10 s10

log2 6 � log2 15 � log2 20
log3 100 � log3 18 � log3 50

e�2 ln 5 ln(ln ee10)

ln sab log10 � x � 1

x � 1

ln 
x 2

y 3z 4 ln(s 4
st su )

ln 5 � 5 ln 3

ln�a � b� � ln�a � b� � 2 ln c
1
3 ln�x � 2�3 �

1
2 �ln x � ln�x 2 � 3x � 2�2�

log12 10 log2 8.4

y � log1.5 x y � ln x y � log10 x y � log50 x

y � ln x y � log10 x y � e x y � 10 x

y � log2 x

3

f �x� � x 0.1
t�x� � ln x

f t

f t

21–26 ■ Find a formula for the inverse of the function.

21. 22.

23. 24. ,  

25. 26.

;27–28 ■ Find an explicit formula for and use it to graph
, and the line on the same screen. To check your

work, see whether the graphs of and are reflections about
the line.

27. ,  28.

29–30 ■ Use the given graph of to sketch the graph of .

29. 30.

31–34 ■

(a) Show that is one-to-one.
(b) Use Theorem 7 to find .
(c) Calculate and state the domain and range of .
(d) Calculate from the formula in part (c) and check

that it agrees with the result of part (b).
(e) Sketch the graphs of and on the same axes.

31. ,  

32. ,  

33. ,  ,  

34. ,  ,  

35–38 ■ Find .

35. ,  

36. ,  

37. , ,  

38. ,  

39. Suppose is the inverse function of a differentiable
function and . Find .

40. Suppose is the inverse function of a differentiable
function and let . If and

, find .

f �x� � 1 � s2 � 3x

f �x� � e 2x�1 y � x 2 � x x �
1
2

y � ln�x � 3� y �
e x

1 � 2e x

f �1

f �1, f y � x
f f �1

f �x� � x 4 � 1 x � 0 f �x� � 2 � e x

f f �1

y

x0 1

1

y

x0 2

1

f �x� �
4x � 1

2x � 3

f
� f �1���a�

f �1f �1�x�
� f �1���a�

f �1f

a � 8f �x� � x 3

a � 2f �x� � sx � 2

a � 80 � x � 3f �x� � 9 � x 2

a � 2x � 1f �x� � 1��x � 1�

� f �1���a�

a � 4f �x� � 2x 3 � 3x 2 � 7x � 4

a � 2f �x� � x 3 � 3 sin x � 2 cos x

a � 3�1 � x � 1f �x� � 3 � x 2 � tan�	x�2�

a � 2f �x� � sx 3 � x 2 � x � 1

f �1

� f �1���5�f �4� � 5, f ��4� � 2
3f

f �1

f �3� � 2G�x� � 1�f �1�x�f
G��2�f ��3� � 1

9
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71–76 ■ Find the limit.

71. 72.

73. 74.

75.

76.

77. Graph the function and explain
why it is one-to-one. Then use a computer algebra system
to find an explicit expression for . (Your CAS will
produce three possible expressions. Explain why two of
them are irrelevant in this context.)

78. When a camera flash goes off, the batteries immediately
begin to recharge the flash’s capacitor, which stores electric
charge given by

(The maximum charge capacity is and is measured in 
seconds.)
(a) Find the inverse of this function and explain its

meaning.
(b) How long does it take to recharge the capacitor to 90%

of capacity if ?

79. Let . Prove, using precise definitions, that
(a) (b)

80. (a) If we shift a curve to the left, what happens to its
reflection about the line ? In view of this geo-
metric principle, find an expression for the inverse of

, where is a one-to-one function.
(b) Find an expression for the inverse of ,

where .

lim
x l3�

ln�x 2 � 9� lim
x l2�

log5�8x � x 4�

lim
x l 0

ln�cos x� lim
x l 0�

ln�sin x�

lim
x l �

�ln�1 � x 2� � ln�1 � x�	

lim
x l �

�ln�2 � x� � ln�1 � x�	

f �x� � sx 3 � x 2 � x � 1

f �1�x�

Q�t� � Q0�1 � e �t�a �

Q0 t

a � 2

a � 1
lim

x l��
a x � 0 lim

x l �
a x � �

y � x

t�x� � f �x � c� f
h�x� � f �cx�

c � 0

CAS

59–60 ■ Make a rough sketch of the graph of each function. Do
not use a calculator. Just use the graphs given in Figures 14 and
15 and, if necessary, the transformations of Section 1.2.

59. (a) (b)

60. (a) (b)

61–62 ■

(a) What are the domain and range of ?
(b) What is the -intercept of the graph of ?
(c) Sketch the graph of .

61. 62.

63–66 ■ Solve each equation for .

63. (a) (b)

64. (a) (b)

65. (a) (b)

66. (a) (b) , where 

67–68 ■ Solve each inequality for .

67. (a) (b)

68. (a) (b)

69. (a) Find the domain of .
(b) Find and its domain.

70. (a) What are the values of and ?
(b) Use your calculator to evaluate and . What

do you notice? Can you explain why the calculator has
trouble?

y � log10�x � 5� y � �ln x

y � ln��x� y � ln � x �

f
x f

f

f �x� � ln x � 2 f �x� � ln�x � 1� � 1

x

e7�4x � 6 ln�3x � 10� � 2

ln�x 2 � 1� � 3 e 2x � 3e x � 2 � 0

2x�5 � 3 ln x � ln�x � 1� � 1

ln�ln x� � 1 e ax � Ce bx a � b

x

e x � 5ln x 	 0

1 � 2 ln x 	 31 	 e 3x�1 	 2

f �x� � ln�e x � 3�
f �1

ln�e 300�e ln 300

ln�e 300�e ln 300

3.3 DERIVATIVES OF LOGARITHMIC AND 
EXPONENTIAL FUNCTIONS

In this section we find formulas for the derivatives of logarithmic functions and then
use them to calculate the derivatives of exponential functions.

DERIVATIVES OF LOGARITHMIC FUNCTIONS

In using the definition of a derivative to differentiate the function , we
use the fact that it is continuous, together with some of the laws of logarithms. We also
need to recall the definition of from Section 3.1:

f �x� � log a x

e

e � lim
x l 0

�1 � x�1�x
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THEOREM The function is differentiable and

PROOF

(by Limit Law 3)

(by Law 3 of Logarithms)

(since is continuous)

The final step may be seen more clearly by making the change of variable .
As , we also have , so

by the definition of . Thus

■

NOTE We know from the Change of Base Formula (3.2.14) that

and so the formula in Theorem 1 can be rewritten as follows:

f �x� � log a x

f ��x� �
1

x
log ae

1

f ��x� � lim
h l 0

f �x � h� � f �x�
h

� lim
h l 0

loga�x � h� � loga x

h

� lim
h l 0

log a� x � h

x �
h

� lim
h l 0

1

h
log a�1 �

h

x�
� lim

h l 0

1

x
�

x

h
log a�1 �

h

x�
�

1

x
lim
h l 0

x

h
log a�1 �

h

x�
�

1

x
lim
h l 0

log a�1 �
h

x�
x�h

�
1

x
log a�lim

h l 0
�1 �

h

x�
x�h log a

�
1

x
log a�lim

h l 0
�1 �

h

x�
1��h�x� �

1

x
log a e

t � h�x
h l 0 t l 0

lim
h l 0

�1 �
h

x�
1��h�x�

� lim
t l 0

�1 � t�1�t � e

e

f ��x� �
1

x
log a e

log a e �
ln e

ln a
�

1

ln a

d

dx
�loga x� �

1

x ln a
2
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EXAMPLE 1 Differentiate .

SOLUTION Using Formula 2 with , together with the Chain Rule, we have

■

If we put in Formula 2, then the factor on the right side becomes
and we get the formula for the derivative of the natural logarithmic function

:

DERIVATIVE OF THE NATURAL LOGARITHMIC FUNCTION

By comparing Formulas 2 and 3, we see one of the main reasons that natural loga-
rithms (logarithms with base e) are used in calculus: The differentiation formula is
simplest when because .

EXAMPLE 2 Differentiate .

SOLUTION To use the Chain Rule, we let . Then , so

■

In general, if we combine Formula 3 with the Chain Rule as in Example 2, we get

or

EXAMPLE 3 Find .

SOLUTION Using , we have

■

EXAMPLE 4 Differentiate .

SOLUTION This time the logarithm is the inner function, so the Chain Rule gives

■

f �x� � log10�2 � sin x�

a � 10

f ��x� �
d

dx
log10�2 � sin x� �

1

�2 � sin x� ln 10
 

d

dx
�2 � sin x�

�
cos x

�2 � sin x� ln 10

a � e ln a
ln e � 1
loge x � ln x

d

dx
�ln x� �

1

x

a � e ln e � 1

y � ln�x 3 � 1�

u � x 3 � 1 y � ln u

dy

dx
�

dy

du

du

dx
�

1

u

du

dx
�

1

x 3 � 1
 �3x 2 � �

3x 2

x 3 � 1

d

dx
�ln u� �

1

u

du

dx

d

dx
�ln t�x�	 �

t��x�
t�x�

d

dx
ln�sin x�

d

dx
ln�sin x� �

1

sin x

d

dx
�sin x� �

1

sin x
cos x � cot x

f �x� � sln x

f ��x� � 1
2 �ln x��1�2 d

dx
�ln x� �

1

2sln x
�

1

x
�

1

2xsln x

3

4

V

V

4
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EXAMPLE 5 Find .

SOLUTION 1

SOLUTION 2 If we first simplify the given function using the laws of logarithms,
then the differentiation becomes easier:

(This answer can be left as written, but if we used a common denominator we would
see that it gives the same answer as in Solution 1.) ■

EXAMPLE 6 Find if .

SOLUTION Since

it follows that

Thus for all . ■

The result of Example 6 is worth remembering:

d

dx
ln 

x � 1

sx � 2

d

dx
ln 

x � 1

sx � 2
�

1

x � 1

sx � 2

d

dx

x � 1

sx � 2

�
sx � 2

x � 1
 
sx � 2 � 1 � �x � 1�( 1

2 )�x � 2��1�2

x � 2

�
x � 2 �

1
2 �x � 1�

�x � 1��x � 2�
�

x � 5

2�x � 1��x � 2�

d

dx
ln 

x � 1

sx � 2
�

d

dx
[ln�x � 1� �

1
2 ln�x � 2�]

�
1

x � 1
�

1

2 � 1

x � 2�

f ��x� f �x� � ln � x �

f �x� � �ln x

ln��x�
if x � 0

if x � 0

f ��x� �

1

x
if x � 0

1

�x
��1� �

1

x
if x � 0

f ��x� � 1�x x � 0

d

dx
ln � x � �

1

x
5

V
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■ Figure 1 shows the graph of the func-
tion of Example 5 together with the
graph of its derivative. It gives a visual
check on our calculation. Notice that

is large negative when is rapidly
decreasing.

ff ��x�

f

x0

y

1

f

f ª

FIGURE 1

■ Figure 2 shows the graph of the func-
tion in Example 6 and 
its derivative . Notice that 
when is small, the graph of 
is steep and so is large (positive 
or negative).

f ��x�
y � ln � x �x

f ��x� � 1�x
f �x� � ln � x �

3

_3

_3 3

f

f ª

FIGURE 2
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LOGARITHMIC DIFFERENTIATION

The calculation of derivatives of complicated functions involving products, quotients,
or powers can often be simplified by taking logarithms. The method used in the fol-
lowing example is called logarithmic differentiation.

EXAMPLE 7 Differentiate .

SOLUTION We take logarithms of both sides of the equation and use the Laws of 
Logarithms to simplify:

Differentiating implicitly with respect to gives

Solving for , we get

Because we have an explicit expression for , we can substitute and write

■

STEPS IN LOGARITHMIC DIFFERENTIATION

1. Take natural logarithms of both sides of an equation and use the
Laws of Logarithms to simplify.

2. Differentiate implicitly with respect to .

3. Solve the resulting equation for .

If for some values of , then is not defined, but we can write
and use Equation 5. We illustrate this procedure by proving the general

version of the Power Rule, as promised in Section 2.3.

THE POWER RULE If is any real number and , then

PROOF Let and use logarithmic differentiation:

Therefore

Hence
■

y �
x 3�4

sx 2 � 1

�3x � 2�5
V

ln y � 3
4 ln x �

1
2 ln�x 2 � 1� � 5 ln�3x � 2�

x

1

y

dy

dx
�

3

4
�

1

x
�

1

2
�

2x

x 2 � 1
� 5 �

3

3x � 2

dy�dx

dy

dx
� y� 3

4x
�

x

x 2 � 1
�

15

3x � 2�
y

dy

dx
�

x 3�4
sx 2 � 1

�3x � 2�5 � 3

4x
�

x

x 2 � 1
�

15

3x � 2�

y � f �x�

x

y�

ln f �x�xf �x� � 0

� y � � � f �x� �

f �x� � xnn

f ��x� � nxn�1

y � x n

x � 0ln � y � � ln � x �n � n ln � x �
y�

y
�

n

x

y� � n
y

x
� n

xn

x
� nxn�1
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■ If we hadn’t used logarithmic differ-
entiation in Example 7, we would have
had to use both the Quotient Rule and
the Product Rule. The resulting calcula-
tion would have been horrendous.

■ If , we can show that 
for directly from the definition of
a derivative.

n � 1
f ��0� � 0x � 0
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DERIVATIVES OF EXPONENTIAL FUNCTIONS

To compute the derivative of the exponential function we use the fact that
exponential and logarithmic functions are inverse functions.

THEOREM The exponential function is differentiable
and

PROOF We know that the logarithmic function is differentiable (and its
derivative is nonzero) by Theorem 1. So its inverse function is differentiable
by Theorem 3.2.7.

If , then . Differentiating this equation implicitly with respect 
to , we get

Thus
■

EXAMPLE 8 Combining Formula 6 with the Chain Rule, we have

■

If we put in Theorem 6, the differentiation formula for exponential functions
takes on a particularly simple form:

DERIVATIVE OF THE NATURAL EXPONENTIAL FUNCTION

This equation says that the exponential function is its own derivative. Com-
paring Equations 6 and 7, we see that the simplest differentiation formula for an expo-
nential function occurs when . This is the reason that the natural exponential
function is most often used in calculus.

The geometric significance of Equation 7 is that the slope of a tangent to the
curve at any point is equal to the -coordinate of the point. In particular, if

, then . This means that of all the possible exponential func-
tions , is the one that crosses the  -axis with a slope of 1. (See Figure 3.)

EXAMPLE 9 Differentiate the function .

SOLUTION To use the Chain Rule, we let . Then we have , so

■

y � ax

f �x� � ax, a � 0,6

d

dx
�ax � � ax ln a

y � log a x
y � ax

log a y � xy � ax

x

1

y ln a

dy

dx
� 1

dy

dx
� y ln a � ax ln a

d

dx
(10 x2) � 10 x2

�ln 10�
d

dx
�x 2 � � �2 ln 10�x10 x2

a � e

7

d

dx
�e x � � ex

f �x� � ex

a � e

yy � e x

f ��0� � e0 � 1f �x� � ex

yy � exy � ax

y � e tan x

y � euu � tan x

dy

dx
�

dy

du

du

dx
� eu du

dx
� e tan x sec2x

■ Another method for proving 
Theorem 6 is to use logarithmic 
differentiation.

Visual 3.3 uses the slope-a-scope
to illustrate this formula.
TEC

FIGURE 3

0

y

1

x

slope=1

slope=e®

y=e®

{x, e ® }

12280_ch03_ptg01_hr_166-175.qk_12280_ch03_ptg01_hr_166-175  11/21/11  3:10 PM  Page 168

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In general, if we combine Formula 7 with the Chain Rule, as in Example 9, we get

EXAMPLE 10 Find if .

SOLUTION Using Formula 8 and the Product Rule, we have

■

To differentiate a function of the form , where both the base and the
exponent are functions, logarithmic differentiation can be used as in the following
example.

EXAMPLE 11 Differentiate .

SOLUTION 1 Using logarithmic differentiation, we have

SOLUTION 2 Another method is to write :

(as in Solution 1)
■

d

dx
�eu � � eu du

dx

y� y � e�4x sin 5x

y� � e�4x�cos 5x��5� � �sin 5x�e�4x��4� � e�4x�5 cos 5x � 4 sin 5x�

8

y � 	 f �x�
t�x�

y � xsx

ln y � ln xsx � sx ln x

y�

y
� sx �

1

x
� �ln x�

1

2sx

y� � y� 1

sx
�

ln x

2sx � � xsx� 2 � ln x

2sx �
x sx � �e ln x�sx

d

dx
(xsx ) �

d

dx
(esx ln x ) � esx ln x d

dx
(sx ln x)

� xsx�2 � ln x

2sx �

V
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■ Figure 4 illustrates Example 11 by
showing the graphs of and
its derivative.

f �x� � x sx

FIGURE 4

1

1

f

f ª

x0

y

3.3 EXERCISES

1–40 ■ Differentiate the function.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

f �x� � log10�x 3 � 1� f �x� � x ln x � x

f �x� � sin�ln x� f �x� � ln�sin2x�

f �x� � ln 
1

x
y �

1

ln x

f �x� � sin x ln�5x� f �x� � log5�xe x�

t�x� � ln 
a � x

a � x
f �u� �

u

1 � ln u

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

t�x� � ln(xsx 2 � 1 ) h�x� � ln(x � sx 2 � 1 )

G�y� � ln 
�2y � 1�5

sy 2 � 1
t�r� � r 2 ln�2r � 1�

F�s� � ln ln s y � ln � cos�ln x� �

y � tan 	ln�ax � b�
 H�z� � ln� a 2 � z 2

a 2 � z 2
 

f �x� � �x 3 � 2x�e x
t�x� � sx e x

■ www.stewartcalculus.com
See Additional Examples A, B, C.
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59. 60.

61. Find if .

62. Find an equation of the tangent line to the curve
at the point .

63. Find if .

64. Find if .

; 65. The motion of a spring that is subject to a frictional force or 
a damping force (such as a shock absorber in a car) is often
modeled by the product of an exponential function and a
sine or cosine function. Suppose the equation of motion of a
point on such a spring is

where is measured in centimeters and in seconds. Find
the velocity after seconds and graph both the position and
velocity functions for .

66. Under certain circumstances a rumor spreads according to
the equation

where is the proportion of the population that knows
the rumor at time and and are positive constants.
(a) Find .
(b) Find the rate of spread of the rumor.

; (c) Graph for the case , with measured
in hours. Use the graph to estimate how long it will take
for 80% of the population to hear the rumor.

67. Show that the function satisfies the 
differential equation .

68. For what values of does the function satisfy the
equation ?

69. If , find a formula for .

70. Find the thousandth derivative of .

71. Find a formula for if .

72. Find .

73. If , find .

74. Evaluate .

y� y � ln�x 2 � y 2 �

y� x y � y x

s�t� � 2e�1.5 t sin 2�t

s t
t

0 	 t 	 2

p�t� �
1

1 � ae �k t

p�t�
t a k

lim t l 
 p�t�

p a � 10 k � 0.5 t

y � Ae�x � Bxe�x

y� � 2y� � y � 0

r y � erx

y� � 5y� � 6y � 0

f �x� � e 2x f �n��x�

f �x� � xe�x

f �n��x� f �x� � ln�x � 1�

d 9

dx 9 �x 8 ln x�

f �x� � 3 � x � e x � f �1���4�

lim
x l �

e sin x � 1

x � �

y � �tan x�1�x y � �sin x� ln x

e x 2y � x � yy�

�0, 1�xe y � ye x � 1

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41–44 ■ Find and .

41. 42.

43. 44.

45–46 ■ Find an equation of the tangent line to the curve at the
given point.

45. ,  46.

47–48 ■ Differentiate and find the domain of .

47. 48.

49. Let . For what value of is
?

50. Let . For what value of is ?

51–60 ■ Use logarithmic differentiation or an alternative
method to find the derivative of the function.

51. 52.

53. 54.

55. 56.

57. 58.

y �
x

e x y �
e x

1 � e x

y � s1 � 2e3x y � e�2 t cos 4t

y � 5�1�x y � 101�x 2

F�t� � et sin 2t y �
e u � e�u

e u � e�u

y � ln �2 � x � 5x2 � y � s1 � xe�2x

f �t� � tan�e t � � e tan t y � ek tan sx

y � ln�e�x � xe�x � y � 	ln�1 � e x �
 2

y � 2x log10 sx y � x 2e�1�x

f �t� � sin2�esin2 t � y � log2�e�x cos �x�

t�x� � �2ra rx � n�p y � 23x2

y �y�

y �
ln x

x 2y � e �x sin x

y � ln�sec x � tan x�y � x ln x

�3, 0�y � ln�x 2 � 3x � 1� y � e x�x, �1, e�

ff

f �x� � ln ln ln xf �x� �
x

1 � ln�x � 1�

cf �x� � cx � ln�cos x�
f ����4� � 6

f ��1� � 3af �x� � loga�3x 2 � 2�

y �
e�x cos2x

x 2 � x � 1
y � �x 2 � 2�2�x 4 � 4�4

y � sx ex 2�x�x � 1�2�3y � � x � 1

x 4 � 1

y � x cos xy � x x

y � sx xy � �cos x�x
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3.4 EXPONENTIAL GROWTH AND DECAY
In many natural phenomena, quantities grow or decay at a rate proportional to their
size. For instance, if is the number of individuals in a population of animals
or bacteria at time , then it seems reasonable to expect that the rate of growth 
is proportional to the population ; that is, for some constant .
Indeed, under ideal conditions (unlimited environment, adequate nutrition, immunity
to disease) the mathematical model given by the equation predicts what
actually happens fairly accurately. Another example occurs in nuclear physics where
the mass of a radioactive substance decays at a rate proportional to the mass. In chem-
istry, the rate of a unimolecular first-order reaction is proportional to the concentration 
of the substance. In finance, the value of a savings account with continuously com-
pounded interest increases at a rate proportional to that value.

In general, if is the value of a quantity at time and if the rate of change of
with respect to is proportional to its size at any time, then

where is a constant. Equation 1 is sometimes called the law of natural growth (if
) or the law of natural decay (if ). It is called a differential equation

because it involves an unknown function and its derivative .
It’s not hard to think of a solution of Equation 1. This equation asks us to find a func-

tion whose derivative is a constant multiple of itself. We have met such functions in
this chapter. Any exponential function of the form , where is a constant,
satisfies

We will see in Section 7.7 that any function that satsifies must be of the
form . To see the significance of the constant , we observe that

Therefore is the initial value of the function.

THEOREM The only solutions of the differential equation are
the exponential functions

POPULATION GROWTH

What is the significance of the proportionality constant ? In the context of population
growth, where is the size of a population at time , we can write

y � f �t�
t f ��t�

f �t� f ��t� � kf �t� k

f ��t� � kf �t�

y�t� y t
y t y�t�

dy

dt
� ky

k

1

k � 0 k � 0
y dy�dt

y�t� � Cekt C

y��t� � C�kekt� � k�Cekt� � ky�t�

dy�dt � ky
y � Cekt C

y�0� � Ce k � 0 � C

C

dy�dt � ky

y�t� � y�0�ekt

P�t� t

dP

dt
� kP or

1

P

dP

dt
� k

2

3

k
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172 CHAPTER 3 INVERSE FUNCTIONS

The quantity

is the growth rate divided by the population size; it is called the relative growth rate.
According to , instead of saying “the growth rate is proportional to population size”
we could say “the relative growth rate is constant.” Then says that a population
with constant relative growth rate must grow exponentially. Notice that the relative
growth rate appears as the coefficient of in the exponential function . For
instance, if

and is measured in years, then the relative growth rate is and the popula-
tion grows at a relative rate of 2% per year. If the population at time 0 is , then the
expression for the population is

EXAMPLE 1 Use the fact that the world population was 2560 million in 1950
and 3040 million in 1960 to model the population of the world in the second half of
the 20th century. (Assume that the growth rate is proportional to the population size.)
What is the relative growth rate? Use the model to estimate the world population in
1993 and to predict the population in the year 2020.

SOLUTION We measure the time t in years and let t � 0 in the year 1950. We mea-
sure the population in millions of people. Then and
Since we are assuming that , Theorem 2 gives

The relative growth rate is about 1.7% per year and the model is

We estimate that the world population in 1993 was

The model predicts that the population in 2020 will be

The graph in Figure 1 shows that the model is fairly accurate to date (the dots repre-
sent the actual population), so the estimate for 1993 is quite reliable. But the predic-
tion for 2020 is riskier.

1

P

dP

dt

3
2

Cekttk

dP

dt
� 0.02P

k � 0.02t
P0

P�t� � P0e 0.02t

V

P�10) � 3040.P�0� � 2560P�t�
dP�dt � kP

P�t� � P�0�ekt � 2560ekt

P�10� � 2560e 10k � 3040

k �
1

10
 ln 

3040

2560
� 0.017185

P�t� � 2560e 0.017185t

P�43� � 2560e 0.017185�43� � 5360 million

P�70� � 2560e 0.017185�70� � 8524 million

■ www.stewartcalculus.com
See Additional Example A.
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■

RADIOACTIVE DECAY

Radioactive substances decay by spontaneously emitting radiation. If is the mass
remaining from an initial mass of the substance after time , then the relative decay
rate

has been found experimentally to be constant. (Since is negative, the relative
decay rate is positive.) It follows that

where is a negative constant. In other words, radioactive substances decay at a rate
proportional to the remaining mass. This means that we can use to show that the
mass decays exponentially:

Physicists express the rate of decay in terms of half-life, the time required for half
of any given quantity to decay.

EXAMPLE 2 The half-life of radium-226 ( ) is 1590 years.
(a) A sample of radium-226 has a mass of 100 mg. Find a formula for the mass 
of that remains after years.
(b) Find the mass after 1000 years correct to the nearest milligram.
(c) When will the mass be reduced to 30 mg?

SOLUTION
(a) Let be the mass of radium-226 (in milligrams) that remains after years.
Then and , so gives

In order to determine the value of , we use the fact that . Thus

A model for world population growth
in the second half of the 20th century

6000

P

t20 40

Years since 1950

Population
(in millions)

P=2560e
0.017185t

FIGURE 1

m�t�
tm0

�
1

m

dm

dt

dm�dt

dm

dt
� km

k
2

m�t� � m0ekt

. 88
226 RaV

t. 88
226 Ra

tm�t�
2y�0� � 100dm�dt � km

m�t� � m�0�ekt � 100ekt

y�1590� � 1
2 �100�k

e 1590k � 1
2so100e 1590k � 50
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and

Therefore

We could use the fact that to write the expression for in the alternative
form

(b) The mass after 1000 years is 

(c) We want to find the value of such that , that is,

We solve this equation for by taking the natural logarithm of both sides:

Thus
■

As a check on our work in Example 2, we use a graphing device to draw the graph
of in Figure 2 together with the horizontal line . These curves intersect
when , and this agrees with the answer to part (c).

NEWTON’S LAW OF COOLING

Newton’s Law of Cooling states that the rate of cooling of an object is proportional 
to the temperature difference between the object and its surroundings, provided 
that this difference is not too large. (This law also applies to warming.) If we 
let be the temperature of the object at time and be the temperature of the sur-
roundings, then we can formulate Newton’s Law of Cooling as a differential equation:

where is a constant. This equation is not quite the same as Equation 1, so we
make the change of variable . Because is constant, we have

and so the equation becomes

We can then use to find an expression for , from which we can find .

k � �
ln 2

1590

m�t� � 100e��ln 2�t�1590

e ln 2 � 2 m�t�

m�t� � 100 � 2�t�1590

m�1000� � 100e��ln 2�1000�1590 � 65 mg

t m�t� � 30

100e��ln 2�t�1590 � 30 or e��ln 2�t�1590 � 0.3

t

�
ln 2

1590
 t � ln 0.3

t � �1590 
ln 0.3

ln 2
� 2762 years

m�t� m � 30
t � 2800

1590k � ln 1
2 � �ln 2

T�t� t Ts

dT

dt
� k�T � Ts�

k
y�t� � T�t� � Ts Ts

y ��t� � T ��t�

dy

dt
� ky

y T2
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m=30

0 4000

150

m=100e
_(ln 2)t/1590

FIGURE 2
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EXAMPLE 3 A bottle of soda pop at room temperature ( F) is placed in a refrig-
erator where the temperature is F. After half an hour the soda pop has cooled 
to F.
(a) What is the temperature of the soda pop after another half hour?
(b) How long does it take for the soda pop to cool to F?

SOLUTION
(a) Let be the temperature of the soda after minutes. The surrounding temper-
ature is , so Newton’s Law of Cooling states that

If we let , then , so satisfies

and by we have

We are given that , so and

Taking logarithms, we have

Thus

So after another half hour the pop has cooled to about F.

(b) We have when

The pop cools to F after about 1 hour 33 minutes. ■

50�

T�t� t
Ts � 44�F

dT

dt
� k�T � 44)

y � T � 44 y�0� � T�0� � 44 � 72 � 44 � 28 y

dy

dt
� ky y�0� � 28

y�t� � y�0�ekt � 28ekt

T�30� � 61 y�30� � 61 � 44 � 17

28e30k � 17 e30k � 17
28

k �
ln(17

28)
30

� �0.01663

2

72�
44�

61�

y�t� � 28e�0.01663t

T�t� � 44 � 28e�0.01663t

T�60� � 44 � 28e�0.01663�60� � 54.3

54�

T�t� � 50

44 � 28e�0.01663t � 50

e�0.01663t � 6
28

t �
ln( 6

28)
�0.01663

� 92.6

50�
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Notice that in Example 3, we have

which is to be expected. The graph of the temperature function is shown in Figure 3.

CONTINUOUSLY COMPOUNDED INTEREST

EXAMPLE 4 If $1000 is invested at 6% interest, compounded annually, then after
1 year the investment is worth , after 2 years it’s worth

, and after years it’s worth . In general,
if an amount is invested at an interest rate in this example), then 
after years it’s worth . Usually, however, interest is compounded more
frequently, say, times a year. Then in each compounding period the interest rate is

and there are compounding periods in years, so the value of the investment
is

For instance, after 3 years at 6% interest a $1000 investment will be worth

You can see that the interest paid increases as the number of compounding periods
increases. If we let , then we will be compounding the interest continu-

ously and the value of the investment will be

(where )

But the limit in this expression is equal to the number . So with continuous com-
pounding of interest at interest rate , the amount after years is

lim
t l �

T�t� � lim
t l �

�44 � 28e�0.01663t� � 44 � 28 � 0 � 44

$1000�1.06� � $1060
$�1000�1.06��1.06 � $1123.60 t $1000�1.06�t

A0 r �r � 0.06
t A0�1 � r�t

n
r�n nt t

A0�1 �
r

n�nt

$1000�1.06�3 � $1191.02 with annual compounding

$1000�1.03�6 � $1194.05 with semiannual compounding

$1000�1.015�12 � $1195.62 with quarterly compounding

$1000�1.005�36 � $1196.68 with monthly compounding

$1000�1 �
0.06

365 �365 � 3

� $1197.20 with daily compounding

�n� n l �

A�t� � lim
n l �

A0�1 �
r

n�nt

� lim
n l �

A0	�1 �
r

n�n�r
rt

� A0	lim
n l �

�1 �
r

n�n�r
rt

� A0	 lim
m l �

�1 �
1

m�m
rt

m � n�r

A�t� � A0ert

tr
e
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FIGURE 3

72

T

t600 30 90

44

■ Recall:

If we put , then as
and so an alternative expression

for ise
x l 0�

n l �n � 1�x

e � lim
n l �

�1 �
1

n�
n

e � lim
x l 0

�1 � x�1�x
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3.4 EXERCISES

1. A population of protozoa develops with a constant relative
growth rate of 0.7944 per member per day. On day zero the
population consists of two members. Find the population
size after six days.

2. A common inhabitant of human intestines is the bacterium
Escherichia coli. A cell of this bacterium in a nutrient-broth
medium divides into two cells every 20 minutes. The initial
population of a culture is 60 cells.
(a) Find the relative growth rate.
(b) Find an expression for the number of cells after hours.
(c) Find the number of cells after 8 hours.
(d) Find the rate of growth after 8 hours.
(e) When will the population reach 20,000 cells?

3. A bacteria culture initially contains 100 cells and grows at a
rate proportional to its size. After an hour the population has
increased to 420.
(a) Find an expression for the number of bacteria after 

hours.
(b) Find the number of bacteria after 3 hours.
(c) Find the rate of growth after 3 hours.
(d) When will the population reach 10,000?

4. A bacteria culture grows with constant relative growth rate.
The bacteria count was 400 after 2 hours and 25,600 after 
6 hours.
(a) What is the relative growth rate? Express your answer

as a percentage.
(b) What was the intitial size of the culture?
(c) Find an expression for the number of bacteria after 

hours.
(d) Find the number of cells after 4.5 hours.
(e) Find the rate of growth after 4.5 hours.
(f ) When will the population reach 50,000?

t

t

t

5. The table gives estimates of the world population, in
millions, from 1750 to 2000:

(a) Use the exponential model and the population figures
for 1750 and 1800 to predict the world population in
1900 and 1950. Compare with the actual figures.

(b) Use the exponential model and the population figures
for 1850 and 1900 to predict the world population in
1950. Compare with the actual population.

(c) Use the exponential model and the population figures
for 1900 and 1950 to predict the world population in
2000. Compare with the actual population and try to
explain the discrepancy.

6. The table gives the population of India, in millions, for the 
second half of the 20th century.

(a) Use the exponential model and the census figures for
1951 and 1961 to predict the population in 2001. Com-
pare with the actual figure.

If we differentiate this equation, we get

which says that, with continuous compounding of interest, the rate of increase of an
investment is proportional to its size.

Returning to the example of $1000 invested for 3 years at 6% interest, we see
that with continuous compounding of interest the value of the investment will be

Notice how close this is to the amount we calculated for daily compounding,
$1197.20. But the amount is easier to compute if we use continuous compounding.

■

dA

dt
� rA0ert � rA�t�

A�3� � $1000e �0.06�3 � $1197.22

SECTION 3.4  EXPONENTIAL GROWTH AND DECAY 177

Unless otherwise noted, all content on this page is © Cengage Learning.

Year Population Year Population

1750 790 1900 1650
1800 980 1950 2560
1850 1260 2000 6080

Year Population

1951 361
1961 439
1971 548
1981 683
1991 846
2001 1029
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12. A curve passes through the point and has the prop-
erty that the slope of the curve at every point is twice the 
-coordinate of . What is the equation of the curve?

13. A roast turkey is taken from an oven when its temperature
has reached and is placed on a table in a room
where the temperature is .
(a) If the temperature of the turkey is after half an

hour, what is the temperature after 45 minutes?
(b) When will the turkey have cooled to ?

14. In a murder investigation, the temperature of the corpse
was at 1:30 PM and an hour later. Normal
body temperature is and the temperature of the sur-
roundings was . When did the murder take place?

15. When a cold drink is taken from a refrigerator, its tempera-
ture is C. After 25 minutes in a C room its tempera-
ture has increased to C.
(a) What is the temperature of the drink after 50 minutes?
(b) When will its temperature be C?

16. A freshly brewed cup of coffee has temperature C in a 
C room. When its temperature is C, it is cooling at a

rate of C per minute. When does this occur?

17. The rate of change of atmospheric pressure with respect
to altitude is proportional to , provided that the temper-
ature is constant. At C the pressure is kPa at sea
level and kPa at m.
(a) What is the pressure at an altitude of 3000 m?
(b) What is the pressure at the top of Mount McKinley, at

an altitude of 6187 m?

18. (a) If $1000 is borrowed at 8% interest, find the amounts 
due at the end of 3 years if the interest is compounded
(i) annually, (ii) quarterly, (iii) monthly, (iv) weekly, 
(v) daily, (vi) hourly, and (vii) continuously.

; (b) Suppose $1000 is borrowed and the interest is com -
pounded continuously. If is the amount due after 

years, where , graph for each of the
interest rates 6%, 8%, and 10% on a common screen.

19. If $3000 is invested at 5% interest, find the value of 
the investment at the end of 5 years if the interest is 
com pounded
(a) annually (b) semiannually
(c) monthly (d) weekly
(e) daily (f ) continuously

20. (a) How long will it take an investment to double in value
if the interest rate is 6% compounded continuously?

(b) What is the equivalent annual interest rate?

P
y P

185�F
75�F

150�F

100�F

32.5�C 30.3�C
37.0�C

20.0�C

5� 20�
10�

15�

95�
20� 70�

1�

P
h P

15� 101.3
87.14 h � 1000

A�t�
t 0 � t � 3 A�t�

�0, 5�(b) Use the exponential model and the census figures for
1961 and 1981 to predict the population in 2001. Com-
pare with the actual population. Then use this model to
predict the population in the years 2010 and 2020.

; (c) Graph both of the exponential functions in parts (a)
and (b) together with a plot of the actual population.
Are these models reasonable ones?

7. Experiments show that if the chemical reaction 

takes place at , the rate of reaction of dinitrogen pent-
oxide is proportional to its concentration as follows:

(a) Find an expression for the concentration N O after 
seconds if the initial concentration is .

(b) How long will the reaction take to reduce the concen-
tration of N O to 90% of its original value?

8. Strontium-90 has a half-life of 28 days. 
(a) A sample has a mass of 50 mg initially. Find a formula

for the mass remaining after days.
(b) Find the mass remaining after 40 days.
(c) How long does it take the sample to decay to a mass 

of 2 mg?
(d) Sketch the graph of the mass function.

9. The half-life of cesium-137 is 30 years. Suppose we have a
100-mg sample.
(a) Find the mass that remains after years.
(b) How much of the sample remains after 100 years?
(c) After how long will only 1 mg remain?

10. A sample of tritium-3 decayed to 94.5% of its original
amount after a year.
(a) What is the half-life of tritium-3?
(b) How long would it take the sample to decay to 20% of

its original amount?

11. Scientists can determine the age of ancient objects by the
method of radiocarbon dating. The bombardment of the
upper atmosphere by cosmic rays converts nitrogen to a
radioactive isotope of carbon, C, with a half-life of about
5730 years. Vegetation absorbs carbon dioxide through the
atmosphere and animal life assimilates C through food
chains. When a plant or animal dies, it stops replacing its 
carbon and the amount of C begins to decrease through
radioactive decay. Therefore the level of radioactivity must
also decay exponentially.
A parchment fragment was discovered that had about

74% as much C radioactivity as does plant material on
the earth today. Estimate the age of the parchment.

N2O5 l 2NO2 �
1
2 O2

45�C

�
d�N2O5�

dt
� 0.0005�N2O5�

5�2�
Ct

52

t

t

14

14

14

14
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3.5 INVERSE TRIGONOMETRIC FUNCTIONS
Recall from Section 3.2 that the only functions that have inverse functions are one-to-
one functions. Trigonometric functions, however, are not one-to-one and so they don’t
have inverse functions. But we can make them one-to-one by restricting their domains
and we will see that the inverses of these restricted trigonometric functions play a
major role in integral calculus.

You can see from Figure 1 that the sine function is not one-to-one (use
the Horizontal Line Test). But the function (see 
Figure 2), is one-to-one. The inverse function of this restricted sine function exists
and is denoted by or . It is called the inverse sine function or the arcsine
function.

Since the definition of an inverse function says that

we have

| Thus if , is the number between and whose sine is .

EXAMPLE 1 Evaluate (a) and (b) .

SOLUTION
(a) We have

because and lies between and .

(b) Let , so . Then we can draw a right triangle with angle as
in Figure 3 and deduce from the Pythagorean Theorem that the third side has length

. This enables us to read from the triangle that

■

y � sin x
f �x� � sin x, ���2 � x � ��2

f
sin�1 arcsin

y

0
_π π

xπ

2

y=sin x

FIGURE 1

0

y

x

_
π

2

π

2

FIGURE 2 y=sin x, _   ¯x¯
π

2

π

2

f �1�x� � y &? f �y� � x

sin�1x � y &? sin y � x and �
�

2
� y �

�

2

sin�1x �
1

sin x
�1 � x � 1 sin�1x ���2 ��2 x

1

sin�1(1
2) tan(arcsin 1

3 )

sin�1(1
2) �

�

6

sin���6� � 1
2 ��6 ���2 ��2

� � arcsin 1
3 sin � � 1

3 �

s9 � 1 � 2s2

tan(arcsin 1
3 ) � tan � �

1

2s2
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¨

1

FIGURE 3
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The cancellation equations for inverse functions become, in this case,

The inverse sine function, , has domain and range , and 
its graph, shown in Figure 4, is obtained from that of the restricted sine function (Fig-
ure 2) by reflection about the line .

We know that the sine function is continuous, so the inverse sine function is also
continuous. We also know from Section 2.3 that the sine function is differentiable, so
the inverse sine function is also differentiable. We could calculate the derivative of

by the formula in Theorem 3.2.7, but since we know that is differentiable,
we can just as easily calculate it by implicit differentiation as follows.

Let . Then and . Differentiating
implicitly with respect to , we obtain

and

Now since , so

Therefore

EXAMPLE 2 If , find (a) the domain of , (b) , and 
(c) the domain of .

SOLUTION
(a) Since the domain of the inverse sine function is , the domain of is

(b) Combining Formula 3 with the Chain Rule, we have

sin�1�sin x� � x for �
�

2
� x �

�

2

sin�sin�1x� � x for �1 � x � 1

sin�1 ��1, 1� ����2, ��2�

y � x
f

sin�1 sin�1

y � sin�1x sin y � x ���2 � y � ��2 sin y � x
x

cos y
dy

dx
� 1

dy

dx
�

1

cos y

cos y 	 0 ���2 � y � ��2

cos y � s1 � sin2y � s1 � x 2 

dy

dx
�

1

cos y
�

1

s1 � x 2 

d

dx
�sin�1x� �

1

s1 � x 2 
�1 
 x 
 1

2

3

f �x� � sin�1�x 2 � 1� f f ��x�
f �

��1, 1� f

�x � �1 � x 2 � 1 � 1 � �x � 0 � x 2 � 2

� {x � � x � � s2 } � [�s2 , s2 ]

f ��x� �
1

s1 � �x 2 � 1�2 

d

dx
�x 2 � 1�

�
1

s1 � �x 4 � 2x 2 � 1�
2x �

2x

s2x 2 � x 4 

V

0

y

x
1_1

π

2

_
π

2

FIGURE 4  y=sin–! x=arcsin x

■ www.stewartcalculus.com
See Additional Example A.

4

_4

_2 2

f

f ª

FIGURE 5

■ The graphs of the function of 
Example 2 and its derivative are shown
in Figure 5. Notice that is not differ-
entiable at and this is consistent with
the fact that the graph of makes a
sudden jump at .

f

x � 0
f �

0

f

12280_ch03_ptg01_hr_176-185.qk_12280_ch03_ptg01_hr_176-185  11/21/11  3:11 PM  Page 180

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.stewartcalculus.com


(c) The domain of is

■

The inverse cosine function is handled similarly. The restricted cosine function
, , is one-to-one (see Figure 6) and so it has an inverse func-

tion denoted by or .

The cancellation equations are

The inverse cosine function, , has domain and range and is a
continuous function whose graph is shown in Figure 7. Its derivative is given by

Formula 6 can be proved by the same method as for Formula 3 and is left as 
Exercise 11.

The tangent function can be made one-to-one by restricting it to the interval
. Thus the inverse tangent function is defined as the inverse of the func-

tion . (See Figure 8.) It is denoted by or 

EXAMPLE 3 Simplify the expression .

SOLUTION 1 Let . Then and . We want to
find but, since is known, it’s easier to find first:

Thus

SOLUTION 2 Instead of using trigonometric identities as in Solution 1, it is per-
haps easier to use a diagram. If , then , and we can read from

�x � �1 
 x 2 � 1 
 1 � �x � 0 
 x 2 
 2

� {x � 0 
 � x � 
 s2 } � (�s2 , 0) � (0, s2 )

f �x� � cos x 0 � x � �
cos�1 arccos

cos�1x � y &? cos y � x and 0 � y � �

cos�1�cos x� � x for 0 � x � �

cos�cos�1x� � x for �1 � x � 1

cos�1 ��1, 1� �0, ��

d

dx
�cos�1x� � �

1

s1 � x 2 
�1 
 x 
 1

����2, ��2�
f �x� � tan x, ���2 
 x 
 ��2 tan�1 arctan.

tan�1x � y &? tan y � x and �
�

2

 y 


�

2

f �

4

5

6

7

cos�tan�1x�

y � tan�1x tan y � x ���2 
 y 
 ��2
cos y tan y sec y

sec2 y � 1 � tan2y � 1 � x 2

sec y � s1 � x 2 �since sec y � 0 for ���2 
 y 
 ��2�

cos�tan�1x� � cos y �
1

sec y
�

1

s1 � x 2 

tan y � xy � tan�1x
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0

y

x

1

π
π

2

y=cos x, 0¯x¯πFIGURE 6

0

y

x
1

π

_1

π

2

y=cos–! x=arccos xFIGURE 7

π

2

π

2
_

y

0 x

FIGURE 8
y=tan x, _   <x<

π

2

π

2
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Figure 9 (which illustrates the case ) that

■

The inverse tangent function, , has domain and its range is
. Its graph is shown in Figure 10.

We know that

and so the lines are vertical asymptotes of the graph of . Since the graph
of is obtained by reflecting the graph of the restricted tangent function about the
line , it follows that the lines and are horizontal asymptotes
of the graph of . This fact is expressed by the following limits:

EXAMPLE 4 Evaluate .

SOLUTION If we let , we know that as . Therefore, by
the second equation in , we have

■

Since is differentiable, is also differentiable. To find its derivative, let
. Then . Differentiating this last equation implicitly with respect

to , we have

and so

The remaining inverse trigonometric functions are not used as frequently and are
summarized here.

cos�tan�1x� � cos y �
1

s1 � x 2 

tan�1 � arctan �

����2, ��2�

lim
x l���2��

tan x � � and lim
x l����2��

tan x � ��

x � ��2 tan
tan�1

y � x y � ��2 y � ���2
tan�1

lim
x l �

tan�1x �
�

2
lim

x l��
tan�1x � �

�

2

lim
x l2�

arctan� 1

x � 2�

8

t � 1��x � 2� t l � x l 2�

lim
x l2�

arctan� 1

x � 2� � lim
t l �

arctan t �
�

2

8

tan tan�1

y � tan�1x tan y � x
x

sec2y
dy

dx
� 1

dy

dx
�

1

sec2y
�

1

1 � tan2y
�

1

1 � x 2

d

dx
�tan�1x� �

1

1 � x 2

y � csc�1x �� x � 	 1� &? csc y � x and y � �0, ��2� � ��, 3��2�

9

10

y � �0, ��2� � ��, 3��2�andsec y � x&?y � sec�1x �� x � 	 1�

y � �0, ��andcot y � x&?y � cot�1x �x � ��

y � 0
œ„„„„„1+≈

1

y

x

FIGURE 9

FIGURE 10
y=tan–! x=arctan x

y

0

x

π

2

_
π

2

■ www.stewartcalculus.com
See Additional Example B.
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The choice of intervals for in the definitions of and is not universally
agreed upon. For instance, some authors use in the defini-
tion of . [You can see from the graph of the secant function in Figure 11 that both
this choice and the one in will work.] The reason for the choice in is that the
differentiation formulas are simpler (see Exercise 41).

We collect in Table 11 the differentiation formulas for all of the inverse trigono-
metric functions. The proofs of the formulas for the derivatives of , , and

are left as Exercises 13–15.

TABLE OF DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS

Each of these formulas can be combined with the Chain Rule. For instance, if is
a differentiable function of , then

EXAMPLE 5 Differentiate .

SOLUTION

■

y � �0, ��2� � ���2, ��
sec�1

csc�1 sec�1

cot�1

d

dx
�sin�1x� �

1

s1 � x 2 

d

dx
�csc�1x� � �

1

xsx 2 � 1

d

dx
�cos�1x� � �

1

s1 � x 2 

d

dx
�sec�1x� �

1

xsx 2 � 1

d

dx
�tan�1x� �

1

1 � x 2

d

dx
�cot�1x� � �

1

1 � x 2

u
x

d

dx
�sin�1u� �

1

s1 � u 2 

du

dx
and

d

dx
�tan�1u� �

1

1 � u 2

du

dx

f �x� � x tan�1
sx

f ��x� � x
1

1 � (sx )2

1

2
 x�1�2 � tan�1

sx �
sx

2�1 � x�
� tan�1

sx

sec�1csc�1y

10 10

11

V
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y=sec x

0

y

x

_1
2ππ

FIGURE 11

3.5 EXERCISES

1–6 ■ Find the exact value of each expression.

1. (a) (b)

2. (a) (b)

3. (a) (b)

4. (a) (b)

5. (a) (b)

6. (a) (b)

7. Prove that .

sin�1(s3�2) cos�1��1�

tan�1(1�s3 ) sec�1 2

arctan 1 sin�1(1�s2 )

cot�1(�s3 ) arccos(�1
2)

tan�arctan 10� sin�1�sin�7��3��

tan�sec�1 4� sin(2 sin�1 (3
5))

cos�sin�1 x� � s1 � x 2 

8 –10 ■ Simplify the expression.

8. 9.

10.

11. Prove Formula 6 for the derivative of by the same
method as for Formula 3.

12. (a) Prove that .
(b) Use part (a) to prove Formula 6.

13. Prove that .

cos�2 tan�1x�

cos�1

sin�1x � cos�1x � ��2

d

dx
�cot�1x� � �

1

1 � x 2

sin�tan�1x�tan�sin�1x�
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34. Find an equation of the tangent line to the curve
at the point .

35–38 ■ Find the limit.

35. 36.

37. 38.

39. A ladder 10 ft long leans against a vertical wall. If the bot-
tom of the ladder slides away from the base of the wall at a
speed of 2 ft�s, how fast is the angle between the ladder and
the wall changing when the bottom of the ladder is 6 ft
from the base of the wall?

40. A lighthouse is located on a small island, 3 km away from
the nearest point on a straight shoreline, and its light
makes four revolutions per minute. How fast is the beam of
light moving along the shoreline when it is 1 km from ?

41. Some authors define and
. Show that with this definition, 

we have (instead of the formula given in Exercise 14)

42. (a) Sketch the graph of the function .
(b) Sketch the graph of the function ,

(c) Show that .

(d) Sketch the graph of , , and
find its derivative.

y � sec�1x &? sec y � x
y � �0, ��2� � ���2, ��

d

dx
�sec�1x� �

1

� x �sx 2 � 1 � x � � 1

f �x� � sin�sin�1x�
t�x� � sin�1�sin x�

x � �.

t��x� �
cos x

� cos x �
h�x� � cos�1�sin x� x � �

lim
x l �

arccos� 1 � x 2

1 � 2x 2	lim
x l �1� 

sin�1x

lim
x l 0�

tan�1�ln x�lim
x l �

arctan�e x �

P

P

�1, ��y � 3 arccos�x�2�14. Prove that .

15. Prove that .

16–29 ■ Find the derivative of the function. Simplify where 
possible.

16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29.

30–31 ■ Find the derivative of the function. Find the domains
of the function and its derivative.

30. 31.

32. Find if .

33. If , find .

d

dx
�csc�1x� � �

1

xsx 2 � 1

y � tan�1�x 2�

y � �tan�1x�2
t�x� � sx 2 � 1 sec�1 x

y � sin�1�2x � 1� y � tan�1(x � s1 � x 2 )
G�x� � s1 � x 2 arccos x F��� � arcsin ssin �

h�t� � cot�1�t� � cot�1�1�t� y � cos�1�sin�1 t�

y � arctan�cos �� f �x� � x ln�arctan x�

y � x sin�1 x � s1 � x 2 y � arctan
 1 � x

1 � x

y � arccos� b � a cos x

a � b cos x	, 0 	 x 	 �, a � b � 0

t�x� � cos�1�3 � 2x�f �x� � arcsin�e x �

tan�1�xy� � 1 � x 2yy �

t��2�t�x� � x sin�1�x�4� � s16 � x 2 

d

dx
�sec�1x� �

1

xsx 2 � 1
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3.6 HYPERBOLIC FUNCTIONS
Certain even and odd combinations of the exponential functions and arise so
frequently in mathematics and its applications that they deserve to be given special
names. In many ways they are analogous to the trigonometric functions, and they have
the same relationship to the hyperbola that the trigonometric functions have to the 
circle. For this reason they are collectively called hyperbolic functions and individu-
ally called hyperbolic sine, hyperbolic cosine, and so on. 

DEFINITION OF THE HYPERBOLIC FUNCTIONS

ex e�x

sinh x �
ex � e�x

2
csch x �

1

sinh x

cosh x �
ex � e�x

2
sech x �

1

cosh x

tanh x �
sinh x

cosh x
coth x �

cosh x

sinh x
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The graphs of hyperbolic sine and cosine can be sketched using graphical addition
as in Figures 1 and 2.

Note that has domain and range , while has domain and range
. The graph of is shown in Figure 3. It has the horizontal asymptotes

. (See Exercise 19.)
Applications of hyperbolic functions to science and engineering occur whenever an

entity such as light, velocity, electricity, or radioactivity is gradually absorbed or
extinguished, for the decay can be represented by hyperbolic functions. The most
famous application is the use of hyperbolic cosine to describe the shape of a hanging
wire. It can be proved that if a heavy flexible cable (such as a telephone or power line)
is suspended between two points at the same height, then it takes the shape of a curve
with equation called a catenary (see Figure 4). (The Latin word
catena means “chain.”)

Another application of hyperbolic functions occurs in the description of ocean
waves: The velocity of a water wave with length moving across a body of water with
depth is modeled by the function

where is the acceleration due to gravity. (See Figure 5 and Exercise 45.)
The hyperbolic functions satisfy a number of identities that are similar to well-

known trigonometric identities. We list some of them here and leave most of the
proofs to the exercises.

HYPERBOLIC IDENTITIES

0

y

x

1

2
y=    ´

y=_     e–®
1

2

y=sinh x

1

0

y

x

y=    e–®
1

2

1

2
y=    ´

y=cosh x

y=sinh x=   ´-   e–®
1

2

1

2
y=cosh x=   ´+   e–®

1

2

1

2

y

0 xy=tanh x

y=_1

y=1

FIGURE 1 FIGURE 2 FIGURE 3

sinh � � cosh �

�1, �� tanh
y � 1

y � c � a cosh�x�a�

L
d

v � � tL

2�
tanh�2�d

L �
t

sinh��x� � �sinh x cosh��x� � cosh x

cosh2x � sinh2x � 1 1 � tanh2x � sech2x

sinh�x � y� � sinh x cosh y � cosh x sinh y

cosh�x � y� � cosh x cosh y � sinh x sinh y
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A catenary y=c+a cosh(x/a)

y

0 x

FIGURE 4

L

d

FIGURE 5
Idealized ocean wave 
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EXAMPLE 1 Prove (a) and (b) .

SOLUTION

(a)

(b) We start with the identity proved in part (a):

If we divide both sides by , we get

or ■

The identity proved in Example 1(a) gives a clue to the reason for the name “hyper-
bolic” functions:

If is any real number, the point lies on the unit circle
because . In fact, can be interpreted as the radian measure of

in Figure 6. For this reason the trigonometric functions are sometimes called
circular functions.

Likewise, if is any real number, then the point lies on the right
branch of the hyperbola because and .
This time, does not represent the measure of an angle. However, it turns out that
represents twice the area of the shaded hyperbolic sector in Figure 7, just as in the
trigonometric case represents twice the area of the shaded circular sector in Figure 6.

The derivatives of the hyperbolic functions are easily computed. For example,

We list the differentiation formulas for the hyperbolic functions as Table 1. The
remaining proofs are left as exercises. Note the analogy with the differentiation for-
mulas for trigonometric functions, but beware that the signs are different in some cases.

DERIVATIVES OF HYPERBOLIC FUNCTIONS

V cosh2x � sinh2x � 1 1 � tanh2x � sech2x

cosh2x � sinh2x � � ex � e�x

2 �2

� � ex � e�x

2 �2

�
e 2x � 2 � e�2x

4
�

e 2x � 2 � e�2x

4

� 4
4 � 1

cosh2x � sinh2x � 1

cosh2x

1 �
sinh2x

cosh2x
�

1

cosh2x

1 � tanh2x � sech2x

t P�cos t, sin t� x 2 � y 2 � 1
cos2t � sin2t � 1 t

�POQ

t P�cosh t, sinh t�
x 2 � y 2 � 1 cosh2t � sinh2t � 1 cosh t � 1

t t

t

d

dx
�sinh x� �

d

dx � e x � e�x

2 � �
ex � e�x

2
� cosh x

d

dx
�sinh x� � cosh x

d

dx
�csch x� � �csch x coth x

d

dx
�cosh x� � sinh x

d

dx
�sech x� � �sech x tanh x

d

dx
�tanh x� � sech2x

d

dx
�coth x� � �csch2x

1

O

y

x

P(cos t, sin t)

≈+¥=1

Q

FIGURE 6

0

y

x

≈-¥=1

P(cosh t, sinh t)

FIGURE 7
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EXAMPLE 2 Any of these differentiation rules can be combined with the Chain
Rule. For instance,

■

INVERSE HYPERBOLIC FUNCTIONS

You can see from Figures 1 and 3 that and are one-to-one functions and so
they have inverse functions denoted by and . Figure 2 shows that is
not one-to-one, but when restricted to the domain it becomes one-to-one. The
inverse hyperbolic cosine function is defined as the inverse of this restricted function.

The remaining inverse hyperbolic functions are defined similarly (see Exercise 24).
We can sketch the graphs of , , and in Figures 8, 9, and 10 by

using Figures 1, 2, and 3.

Since the hyperbolic functions are defined in terms of exponential functions, it’s
not surprising to learn that the inverse hyperbolic functions can be expressed in terms
of logarithms. In particular, we have:

EXAMPLE 3 Show that .

SOLUTION Let . Then

d

dx
(cosh sx ) � sinh sx �

d

dx
sx �

sinh sx

2sx

sinh tanh
sinh�1 tanh�1 cosh

�0, ��

y � sinh�1x &? sinh y � x

y � cosh�1x &? cosh y � x and y � 0

y � tanh�1x &? tanh y � x

sinh�1 cosh�1 tanh�1

FIGURE 8 y=sinh–! x

domain=R range=R

0

y

x

FIGURE 9 y=cosh–! x

domain=[1, `}    range=[0, }̀

0

y

x1

FIGURE 10 y=tanh–! x

domain=(_1, 1)    range=R

0

y

x1_1

2

V

sinh�1x � ln(x � sx 2 � 1) x � �

cosh�1x � ln(x � sx 2 � 1) x � 1

tanh�1x � 1
2 ln� 1 � x

1 � x� �1 � x � 1

sinh�1x � ln(x � sx 2 � 1)
y � sinh�1x

x � sinh y �
ey � e�y

2

3

4

5
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■ Formula 3 is proved in Example 3. The 
proofs of Formulas 4 and 5 are requested
in Exercises 22 and 23.
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so

or, multiplying by ,

This is really a quadratic equation in :

Solving by the quadratic formula, we get

Note that , but (because ). Thus the minus
sign is inadmissible and we have

Therefore

(See Exercise 21 for another method.) ■

DERIVATIVES OF INVERSE HYPERBOLIC FUNCTIONS

The inverse hyperbolic functions are all differentiable because the hyperbolic func-
tions are differentiable. The formulas in Table 6 can be proved either by the method
for inverse functions or by differentiating Formulas 3, 4, and 5.

EXAMPLE 4 Prove that .

SOLUTION Let . Then . If we differentiate this equation
implicitly with respect to , we get

Since and , we have , so

■

ey � 2x � e�y � 0

ey

e 2y � 2xey � 1 � 0

ey

�ey �2 � 2x�ey � � 1 � 0

ey �
2x � s4x 2 � 4

2
� x � sx 2 � 1

ey � 0 x � sx 2 � 1 � 0 x � sx 2 � 1

ey � x � sx 2 � 1

y � ln�ey � � ln(x � sx 2 � 1)

d

dx
�sinh�1x� �

1

s1 � x 2 

d

dx
�csch�1x� � �

1

� x �sx 2 � 1

d

dx
�cosh�1x� �

1

sx 2 � 1

d

dx
�sech�1x� � �

1

xs1 � x 2 

d

dx
�tanh�1x� �

1

1 � x 2

d

dx
�coth�1x� �

1

1 � x 2

6

V
d

dx
�sinh�1x� �

1

s1 � x 2 

y � sinh�1x sinh y � x
x

cosh y
dy

dx
� 1

cosh2y � sinh2y � 1 cosh y � 0 cosh y � s1 � sinh2y

dy

dx
�

1

cosh y
�

1

s1 � sinh2 y
�

1

s1 � x 2 

188 CHAPTER 3 INVERSE FUNCTIONS

■ Notice that the formulas for the deriv-
atives of and appear to
be identical. But the domains of these
functions have no numbers in common:

is defined for , whereas
is defined for coth�1x

tanh�1x

� x � � 1.
� x � � 1

coth�1xtanh�1x

■ Another method for solving 
Example 4 is to differentiate 
Formula 3.
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3.6 EXERCISES

1–6 ■ Find the numerical value of each expression.

1. (a) (b)

2. (a) (b)

3. (a) (b)

4. (a) (b)

5. (a) (b)

6. (a) (b)

7–15 ■ Prove the identity.

7.
(This shows that is an odd function.)

8.
(This shows that is an even function.)

9.

10.

11.

12.

13.

14.

15.
( any real number)

16. If , find the values of the other hyperbolic func-
tions at .

17. If and , find the values of the other hyper-
bolic functions at .

18. (a) Use the graphs of , , and in Figures 1–3
to draw the graphs of , , and .

; (b) Check the graphs that you sketched in part (a) by using
a graphing device to produce them.

sinh 0 cosh 0

tanh 0 tanh 1

sinh�ln 2� sinh 2

cosh 3 cosh�ln 3�

sech 0 cosh�1 1

sinh 1 sinh�1 1

sinh��x� � �sinh x
sinh

cosh��x� � cosh x
cosh

cosh x � sinh x � e x

cosh x � sinh x � e�x

sinh�x � y� � sinh x cosh y � cosh x sinh y

cosh�x � y� � cosh x cosh y � sinh x sinh y

sinh 2x � 2 sinh x cosh x

1 � tanh x

1 � tanh x
� e 2x

�cosh x � sinh x�n � cosh nx � sinh nx
n

tanh x � 12
13

x

cosh x � 5
3 x � 0

x

sinh cosh tanh
csch sech coth

19. Use the definitions of the hyperbolic functions to find each
of the following limits.
(a) (b)

(c) (d)

(e) (f )

(g) (h)

(i)

20. Prove the formulas given in Table 1 for the derivatives of
the functions (a) , (b) , (c) , (d) , and 
(e) .

21. Give an alternative solution to Example 3 by letting
and then using Exercise 9 and Example 1(a) 

with replaced by .

22. Prove Equation 4.

23. Prove Formula 5 using (a) the method of Example 3 and 
(b) Exercise 14 with replaced by .

24. For each of the following functions (i) give a definition
like those in , (ii) sketch the graph, and (iii) find a for-
mula similar to Formula 3.
(a) (b) (c)

25. Prove the formulas given in Table 6 for the derivatives of
the following functions.
(a) (b) (c) 

26–41 ■ Find the derivative. Simplify where possible.

26. 27.

28. 29.

30. 31.

32.

33.

34. 35.

lim
x l �

tanh x lim
x l��

tanh x

lim
x l �

sinh x lim
x l��

sinh x

lim
x l �

sech x lim
x l �

coth x

lim
x l0�

coth x lim
x l0�

coth x

lim
x l��

csch x

cosh tanh csch sech
coth

y � sinh�1x
x y

x y

csch�1 sech�1 coth�1

cosh�1 tanh�1 sech�1

2

f �x� � tanh�1 � e 2x� f �x� � x sinh x � cosh x

t�x� � cosh�ln x� h�x� � ln�cosh x�

y � x coth�1 � x 2� y � e cosh 3x

f �t� � csch t �1 � ln csch t�

f �t� � sech2�e t�

y � sinh�cosh x� G�x� �
1 � cosh x

1 � cosh x

EXAMPLE 5 Find .

SOLUTION Using Table 6 and the Chain Rule, we have

■

d

dx
�tanh�1�sin x�� �

1

1 � �sin x�2

d

dx
�sin x�

�
1

1 � sin2x
cos x �

cos x

cos2x
� sec x

d

dx
�tanh�1�sin x��V
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(b) Find the angle between the line and the pole.

48. Using principles from physics it can be shown that when a
cable is hung between two poles, it takes the shape of a
curve that satisfies the differential equation 

where is the linear density of the cable, is the accelera-
tion due to gravity, is the tension in the cable at its 
lowest point, and the coordinate system is chosen appro-
priately. Verify that the function

is a solution of this differential equation.

49. A cable with linear density is strung from the
tops of two poles that are 200 m apart.
(a) Use Exercise 48 to find the tension so that the cable

is 60 m above the ground at its lowest point. How tall
are the poles?

(b) If the tension is doubled, what is the new low point of
the cable? How tall are the poles now?

50. Evaluate .

51. (a) Show that any function of the form

satisfies the differential equation .
(b) Find such that , , 

and .

52. If , show that .

53. At what point of the curve does the tangent
have slope 1?

54. Show that if and , then there exist numbers
and such that equals either or

. In other words, almost every function of
the form is a shifted and stretched
hyperbolic sine or cosine function.

y � f �x�

d 2 y

dx 2 �
	t

T 	1 � �dy

dx�2 

	 t

T

y � f �x� �
T

	t
cosh�	tx

T �
	 � 2 kg
m

T

lim
x l �

sinh x

e x

y � A sinh mx � B cosh mx

y
 � m 2 y
y � y�x� y
 � 9y y�0� � �4

y��0� � 6

x � ln�sec � � tan �� sec � � cosh x

y � cosh x

a � 0 b � 0 
� ae x � be�x  sinh�x � ��

 cosh�x � ��
f �x� � ae x � be�x

y

0 x_7 7

5

¨

�36.

37.

38.

39.

40.

41.

42. Show that .

43. Show that .

44. The Gateway Arch in St. Louis was designed by Eero Saari-
nen and was constructed using the equation

for the central curve of the arch, where and are mea-
sured in meters and .

; (a) Graph the central curve.
(b) What is the height of the arch at its center?
(c) At what points is the height 100 m?
(d) What is the slope of the arch at the points in part (c)?

45. If a water wave with length moves with velocity in a
body of water with depth , then

where is the acceleration due to gravity. (See Figure 5.)
Explain why the approximation

is appropriate in deep water.

; 46. A flexible cable always hangs in the shape of a catenary
, where and are constants and

(see Figure 4 and Exercise 48). Graph several mem-
bers of the family of functions . How does
the graph change as varies?

47. A telephone line hangs between two poles 14 m apart in
the shape of the catenary , where

and are measured in meters.
(a) Find the slope of this curve where it meets the right

pole.

y � sinh�1�tan x�

y � cosh�1
sx

y � x tanh�1x � ln s1 � x 2 

y � x sinh�1�x
3� � s9 � x 2 

y � sech�1�e�x�

y � coth�1�sec x�

� 1
2 ex
2d

dx 	4
1 � tanh x

1 � tanh x

d

dx
arctan�tanh x� � sech 2x

y � 211.49 � 20.96 cosh 0.03291765x

yx

� x � � 91.20

vL
d

v � 	 tL

2�
tanh�2�d

L �
t

v � 	 tL

2�

acy � c � a cosh�x
a�
a � 0

y � a cosh�x
a�
a

y � 20 cosh�x
20� � 15
yx
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3.7 INDETERMINATE FORMS AND L’HOSPITAL’S RULE
Suppose we are trying to analyze the behavior of the function

Although is not defined when , we need to know how behaves near 1. In
particular, we would like to know the value of the limit

In computing this limit we can’t apply Law 5 of limits (the limit of a quotient is the
quotient of the limits, see Section 1.4) because the limit of the denominator is 0. In
fact, although the limit in exists, its value is not obvious because both numerator
and denominator approach and is not defined.

In general, if we have a limit of the form

where both and as , then this limit may or may not exist and
is called an indeterminate form of type . We met some limits of this type in Chap-
ter 1. For rational functions, we can cancel common factors:

We used a geometric argument to show that

But these methods do not work for limits such as , so in this section we introduce
a systematic method, known as l’Hospital’s Rule, for the evaluation of indeterminate
forms.

Another situation in which a limit is not obvious occurs when we look for a hori-
zontal asymptote of F and need to evaluate the limit

It isn’t obvious how to evaluate this limit because both numerator and denominator
become large as . There is a struggle between numerator and denominator. 
If the numerator wins, the limit will be ; if the denominator wins, the answer will 
be 0. Or there may be some compromise, in which case the answer may be some finite
positive number.

In general, if we have a limit of the form

where both (or ) and (or ), then the limit may or may not 

F�x� �
ln x

x � 1

F x � 1 F

lim
x l1

ln x

x � 1

0 0
0

lim
x l a

f �x�
t�x�

f �x� l 0 t�x� l 0 x l a
0
0

lim
x l1

x 2 � x

x 2 � 1
� lim

x l1

x�x � 1�
�x � 1��x � 1�

� lim
x l1

x

x � 1
�

1

2

lim
x l 0

sin x

x
� 1

lim
x l �

ln x

x � 1

x l �
�

lim
x l a

f �x�
t�x�

1

2

1

��t�x� l ���f �x� l �

1
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exist and is called an indeterminate form of type . We saw in Section 1.6 that
this type of limit can be evaluated for certain functions, including rational functions,
by dividing numerator and denominator by the highest power of that occurs in the
denominator. For instance,

This method does not work for limits such as , but l’Hospital’s Rule also applies to
this type of indeterminate form.

L’HOSPITAL’S RULE Suppose and are differentiable and near
(except possibly at ). Suppose that

and    

or that and    

(In other words, we have an indeterminate form of type or .) Then

if the limit on the right side exists (or is or ).

NOTE 1 L’Hospital’s Rule says that the limit of a quotient of functions is equal to
the limit of the quotient of their derivatives, provided that the given conditions are sat-
isfied. It is especially important to verify the conditions regarding the limits of and

before using l’Hospital’s Rule.

NOTE 2 L’Hospital’s Rule is also valid for one-sided limits and for limits at infin-
ity or negative infinity; that is, “ ” can be replaced by any of the symbols

, , or .

NOTE 3 For the special case in which , and are continuous,
and , it is easy to see why l’Hospital’s Rule is true. In fact, using the alter-
native form of the definition of a derivative, we have

The general version of l’Hospital’s Rule is more difficult; its proof can be found in
Appendix D.

�
�

x

lim
x l �

x 2 � 1

2x 2 � 1
� lim

x l �

1 �
1

x 2

2 �
1

x 2

�
1 � 0

2 � 0
�

1

2

f t t��x� � 0 a
a

lim
x l a

f �x� � 0 lim
x l a

t�x� � 0

lim
x l a

f �x� � �� lim
x l a

t�x� � ��

0
0 �
�

lim
x l a

f �x�
t�x�

� lim
x l a

f ��x�
t��x�

� ��

f
t

x l a x l a�,
x l a� x l � x l ��

f �a� � t�a� � 0 f � t�
t��a� � 0

lim
x l a

f ��x�
t��x�

�
f ��a�
t��a�

�

lim
x l a

f �x� � f �a�
x � a

lim
x l a

t�x� � t�a�
x � a

� lim
x l a

f �x� � f �a�
t�x� � t�a�

� lim
x l a

f �x�
t�x�

2

� lim
x l a

f �x� � f �a�
x � a

t�x� � t�a�
x � a

■ L’Hospital’s Rule is named after a
French nobleman, the Marquis de l’Hospi-
tal (1661–1704), but was discovered by a
Swiss mathematician, John Bernoulli
(1667–1748). See Exercise 49 for the
example that the Marquis used to illustrate
his rule.

0

y

xa

y=m¡(x-a)

y=m™(x-a)

0

y

xa

f

g

FIGURE 1

■ Figure 1 suggests visually why 
l’Hospital’s Rule might be true. The
first graph shows two differentiable
functions and , each of which
approaches as . If we were to
zoom in toward the point , the
graphs would start to look almost linear.
But if the functions actually were linear,
as in the second graph, then their ratio
would be

which is the ratio of their derivatives.
This suggests that

lim
x l a

f �x�
t�x�

� lim
x l a

f ��x�
t��x�

m1�x � a�
m2�x � a�

�
m1

m2

�a, 0�
x l a0

tf
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EXAMPLE 1 Find .

SOLUTION Since

we can apply l’Hospital’s Rule:

■

EXAMPLE 2 Calculate .

SOLUTION We have and , so l’Hospital’s Rule gives

Since and as , the limit on the right side is also indetermi-
nate, but a second application of l’Hospital’s Rule gives

■

EXAMPLE 3 Calculate .

SOLUTION Since and as , l’Hospital’s Rule applies:

Notice that the limit on the right side is now an indeterminate of type . But instead
of applying l’Hospital’s Rule a second time as we did in Example 2, we simplify the
expression and see that a second application is unnecessary:

■

EXAMPLE 4 Find . [See Exercise 22 in Section 1.3.]

SOLUTION Noting that both and as , we use l’Hospi-
tal’s Rule:

lim
x l1

ln x

x � 1
V

lim
x l1

�x � 1� � 0andlim
x l1

ln x � ln 1 � 0

� lim
x l1

1

x
� 1lim

x l 1

ln x

x � 1
� lim

x l 1

d

dx
�ln x�

d

dx
�x � 1�

� lim
x l 1

1
x

1

lim
x l �

ex

x 2
V

lim x l � x 2 � �lim x l � ex � �

lim
x l �

ex

x 2 � lim
x l �

d

dx
�ex �

d

dx
�x 2�

� lim
x l �

ex

2x

x l �2x l �ex l �

lim
x l �

ex

x 2 � lim
x l �

ex

2x
� lim

x l �

ex

2
� �

lim
x l �

ln x

s
3 x

V

x l �s
3 x l �ln x l �

lim
x l �

ln x

s
3 x

� lim
x l �

1
x
1
3 x�2
3

0
0

lim
x l �

ln x

s
3 x

� lim
x l �

1
x
1
3 x�2
3 � lim

x l �

3

s
3 x

� 0 

lim
x l 0

tan x � x

x 3

x l 0x 3 l 0tan x � x l 0

lim
x l 0

tan x � x

x 3 � lim
x l 0

sec2x � 1

3x 2
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| Notice that when using l’Hospital’s
Rule we differentiate the numerator and
denominator separately. We do not use
the Quotient Rule.

■ The graph of the function of 
Example 2 is shown in Figure 2. We
have noticed previously that exponen-
tial functions grow far more rapidly
than power functions, so the result of
Example 2 is not unexpected. See also
Exercise 41.

y=
´

≈

10

20

0

FIGURE 2

■ The graph of the function of 
Exam ple 3 is shown in Figure 3. We
have discussed previously the slow
growth of logarithms, so it isn’t sur-
prising that this ratio approaches 
as . See also Exercise 42.x l �

0

0

_1

2

10,000

y=
ln x

Œ„x

FIGURE 3
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Since the limit on the right side is still indeterminate of type , we apply l’Hospital’s
Rule again:

Because , we simplify the calculation by writing

We can evaluate this last limit either by using l’Hospital’s Rule a third time or by
writing as and making use of our knowledge of trigonometric
limits. Putting together all the steps, we get

■

EXAMPLE 5 Find .

SOLUTION If we blindly attempted to use l’Hospital’s Rule, we would get

|

This is wrong! Although the numerator as , notice that the
denominator does not approach , so l’Hospital’s Rule can’t be applied
here.

The required limit is, in fact, easy to find because the function is continuous at
and the denominator is nonzero there:

■

Example 5 shows what can go wrong if you use l’Hospital’s Rule without think-
ing. Other limits can be found using l’Hospital’s Rule but are more easily found by
other methods. (See Examples 2 and 4 in Section 1.4, Example 5 in Section 1.6, and
the discussion at the beginning of this section.) So when evaluating any limit, you
should consider other methods before using l’Hospital’s Rule.

INDETERMINATE PRODUCTS

If and (or ), then it isn’t clear what the value of
, if any, will be. There is a struggle between and . If wins, the

answer will be ; if wins, the answer will be (or ). Or there may be a com-
promise where the answer is a finite nonzero number. This kind of limit is called an
indeterminate form of type . We can deal with it by writing the product as 
a quotient:

or    

0
0

lim
x l 0

sec2x � 1

3x 2 � lim
x l 0

2 sec2x tan x

6x

limx l 0 sec2x � 1

lim
x l 0

2 sec2x tan x

6x
�

1

3
 lim

x l 0
sec2x � lim

x l 0

tan x

x
�

1

3
 lim

x l 0

tan x

x

tan x �sin x�
�cos x�

lim
x l 0

tan x � x

x3 � lim
x l 0

sec2x � 1

3x2 � lim
x l 0

2 sec2x tan x

6x

�
1

3
 lim

x l 0

tan x

x
�

1

3
 lim

x l 0

sec2x

1
�

1

3

lim
x l � �

sin x

1 � cos x

lim
x l � �

sin x

1 � cos x
� lim

x l � �

cos x

sin x
� ��

sin x l 0 x l ��

�1 � cos x� 0

�

lim
x l � �

sin x

1 � cos x
�

sin �

1 � cos �
�

0

1 � ��1�
� 0

lim x l a f �x� � 0 lim x l a t�x� � � ��
lim x l a f �x�t�x� f t f

0 t � ��

0 � � ft

ft �
f

1
t
ft �

t

1
f

V

■ The graph in Figure 4 gives visual
confirmation of the result of Exam ple 4.
If we were to zoom in too far, however,
we would get an inaccurate graph
because is close to when is
small. See Exercise 22(d) in Section 1.3.

xxtan x

FIGURE 4

y=
tan x- x

˛

0

_1 1

1
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This converts the given limit into an indeterminate form of type or so that we
can use l’Hospital’s Rule.

EXAMPLE 6 Evaluate .

SOLUTION The given limit is indeterminate because, as , the first factor
approaches 0 while the second factor approaches . Writing ,
we have as , so l’Hospital’s Rule gives

■

NOTE In solving Example 6 another possible option would have been to write

This gives an indeterminate form of the type , but if we apply l’Hospital’s Rule we
get a more complicated expression than the one we started with. In general, when we
rewrite an indeterminate product, we try to choose the option that leads to the simpler
limit.

INDETERMINATE DIFFERENCES

If and , then the limit

is called an indeterminate form of type . Again there is a contest between
and . Will the answer be ( wins) or will it be ( wins) or will they compro-
mise on a finite number? To find out, we try to convert the difference into a quotient
(for instance, by using a common denominator, or rationalization, or factoring out a
common factor) so that we have an indeterminate form of type or .

EXAMPLE 7 Compute .

SOLUTION First notice that and as , so the limit
is indeterminate. Here we use a common denominator:

Note that the use of l’Hospital’s Rule is justified because and
as . ■

0
0 �
�

V lim
x l0�

x ln x

x l 0� �x�
�ln x� �� x � 1
�1
x�

1
x l � x l 0�

lim
x l 0�

x ln x � lim
x l 0�

ln x

1
x
� lim

x l 0�

1
x

�1
x 2 � lim
x l 0�

��x� � 0

lim
x l 0�

x ln x � lim
x l 0�

x

1
ln x

0
0

lim x l a f �x� � � lim x l a t�x� � �

lim
x l a

� f �x� � t�x��

� � � f
t � f �� t

0
0 �
�

lim
x l��
2��

�sec x � tan x�

sec x l � tan x l � x l ��
2��

lim
x l��
2��

�sec x � tan x� � lim
x l��
2��

� 1

cos x
�

sin x

cos x�
� lim

x l��
2��

1 � sin x

cos x
� lim

x l��
2��

�cos x

�sin x
� 0

1 � sin x l 0
cos x l 0 x l ��
2��
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■ Figure 5 shows the graph of the 
function in Example 6. Notice that the
function is undefined at ; the
graph approaches the origin but never
quite reaches it.

x � 0

0

y

x1

y=x ln x

FIGURE 5
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INDETERMINATE POWERS

Several indeterminate forms arise from the limit

1. and  type 

2. and  type 

3. and  type 

Each of these three cases can be treated either by taking the natural logarithm:

,  

or by writing the function as an exponential:

(Recall that both of these methods were used in differentiating such functions.) In
either method we are led to the indeterminate product , which is of type

.

EXAMPLE 8 Calculate .

SOLUTION First notice that as , we have and ,
so the given limit is indeterminate. Let

Then

so l’Hospital’s Rule gives

So far we have computed the limit of , but what we want is the limit of . To
find this we use the fact that :

■

EXAMPLE 9 Find .

SOLUTION Notice that this limit is indeterminate since for any but
for any . We could proceed as in Example 8 or by writing the function

as an exponential:

lim
x l a

� f �x�� t�x�

lim
x l a

f �x� � 0 lim
x l a

t�x� � 0 00

lim
x l a

f �x� � � lim
x l a

t�x� � 0 � 0

lim
x l a

f �x� � 1 lim
x l a

t�x� � �� 1�

let y � � f �x�� t�x� then ln y � t�x� ln f �x�

� f �x�� t�x� � e t�x� ln f �x�

t�x� ln f �x�
0 � �

lim
x l 0�

�1 � sin 4x�cot x

x l 0� 1 � sin 4x l 1 cot x l �

y � �1 � sin 4x�cot x

ln y � ln��1 � sin 4x�cot x� � cot x ln�1 � sin 4x�

lim
x l 0�

ln y � lim
x l 0�

ln�1 � sin 4x�
tan x

� lim
x l 0�

4 cos 4x

1 � sin 4x

sec2x
� 4

ln y y
y � e ln y

lim
x l 0�

�1 � sin 4x�cot x � lim
x l 0�

y � lim
x l 0�

e ln y � e 4

lim
x l 0�

x x

0 x � 0 x � 0
x 0 � 1 x � 0

x x � �e ln x�x � ex ln x

V
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■ Although forms of the type , , and
are indeterminate, the form is not

indeterminate. (See Exercise 52.)
0�1�

�000

■ The graph of the function , 
, is shown in Figure 6. Notice that

although is not defined, the values 
of the function approach as .
This confirms the result of Example 9.

x l 0�1
00

x � 0
y � x x

2

0
2_1

FIGURE 6
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3.7 EXERCISES

1–38 ■ Find the limit. Use l’Hospital’s Rule where appropriate.
If there is a more elementary method, consider using it. If l’Hos-
pital’s Rule doesn’t apply, explain why.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31.

32.

lim
x l1

x 2 � 1

x 2 � x
lim
x l 2

x 2 � x � 6

x � 2

lim
x l���2��

cos x

1 � sin x
lim
xl 0

sin 4x

tan 5x

lim
t l 0

e 2t � 1

sin t
lim
x l 0

x 2

1 � cos x

lim
� l ��2

1 � sin �

1 � cos 2�
lim

� l ��2

1 � sin �

csc �

lim
x l 0�

ln x

x
lim
x l �

lnsx

x 2

lim
t l 1

t 8 � 1

t 5 � 1
lim
t l 0

8 t � 5 t

t

lim
x l 0

e x � 1 � x

x 2 lim
ul �

e u�10

u3

lim
x l 0

x3 x

3x � 1
lim
x l 0

cos mx � cos nx

x 2

lim
x l 1

1 � x � ln x

1 � cos �x
lim
x l 0

x

tan�1�4x�

lim
x l 1

x a � ax � a � 1

�x � 1�2 lim
x l 0

e x � e�x � 2x

x � sin x

lim
x l 0

cos x � 1 �
1
2 x 2

x 4 lim
x la�

cos x ln�x � a�
ln�e x � ea �

lim
x l 0

cot 2x sin 6x lim
x l �

sx e�x�2

lim
x l �

x 3e �x 2

lim
x l 0�

sin x ln x

lim
x l1�

ln x tan��x�2� lim
x l �

x tan�1�x�

lim
x l0� � 1

x
�

1

e x � 1� lim
x l 0

�csc x � cot x�

lim
x l �

�x � ln x�

lim
x l1�

�ln�x 7 � 1� � ln�x 5 � 1��

33. 34.

35. 36.

37. 38.

;39–40 ■ Use a graph to estimate the value of the limit. Then
use l’Hospital’s Rule to find the exact value.

39. 40.

41. Prove that

for any positive integer . This shows that the exponential
function approaches infinity faster than any power of .

42. Prove that

for any number . This shows that the logarithmic
function approaches more slowly than any power of .

43–44 ■ What happens if you try to use l’Hospital’s Rule to
find the limit? Evaluate the limit using another method.

43. 44.

45. If an initial amount of money is invested at an interest
rate compounded times a year, the value of the invest -
ment after years is

If we let , we refer to the continuous compounding
of interest. Use l’Hospital’s Rule to show that if interest is
compounded continuously, then the amount after years is

lim
x l0�

xsx lim
x l 0�

�tan 2x�x

lim
x l 0

�1 � 2x�1�x lim
x l �

�1 �
a

x�bx

lim
x l1�

x 1��1�x� lim
x l �

�e x � x�1�x

lim
x l �

�1 �
2

x�
x

lim
x l 0

5x � 4x

3x � 2x

lim
x l �

e x

x n � �

n
x

lim
x l �

ln x

x p � 0

p � 0
� x

lim
x l �

x

sx 2 � 1
lim

x l���2��

sec x

tan x

A0

r n
t

A � A0�1 �
r

n�nt

n l �

t

A � A0ert

In Example 6 we used l’Hospital’s Rule to show that

Therefore
■

lim
x l 0�

x ln x � 0

lim
x l 0�

x x � lim
x l 0�

ex ln x � e 0 � 1
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51. Evaluate .

52. Suppose is a positive function. If and
, show that

This shows that is not an indeterminate form.

53. If is continuous, , and , evaluate

54. For what values of and is the following equation true?

55. If is continuous, use l’Hospital’s Rule to show that

Explain the meaning of this equation with the aid of a 
diagram.

56. If is continuous, show that

57. Let

(a) Use the definition of derivative to compute .
(b) Show that has derivatives of all orders that are

defined on . [Hint: First show by induction that there
is a polynomial and a nonnegative integer such
that for .]

; 58. Let

(a) Show that is continuous at .
(b) Investigate graphically whether is differentiable at

by zooming in several times toward the point on
the graph of .

(c) Show that is not differentiable at . How can you 
reconcile this fact with the appearance of the graphs in
part (b)?

f lim xla f �x� � 0
lim xla t�x� � �

lim
x l a

� f �x�� t�x� � 0

0�

f 	 f �2� � 0 f 	�2� � 7

lim
x l 0

f �2 � 3x� � f �2 � 5x�
x

a b

lim
x l 0

� sin 2x

x3 � a �
b

x2� � 0

f 	

lim
h l 0

f �x � h� � f �x � h�
2h

� f 	�x�

f 


lim
h l 0

f �x � h� � 2 f �x� � f �x � h�
h 2 � f 
�x�

f �x� � 	e�1�x 2

0

if  x � 0

if  x � 0

f 	�0�
f
�

pn�x� kn

f �n��x� � pn�x� f �x��x kn x � 0

f �x� � 	
 x 
x

1

if  x � 0

if  x � 0

f 0
f 0

�0, 1�
f

f 0

lim
x l �

�x � x 2 ln�1 � x

x ��46. If an object with mass is dropped from rest, one model
for its speed after seconds, taking air resistance into
account, is

where is the acceleration due to gravity and is a positive
constant.
(a) Calculate . What is the meaning of this limit?
(b) For fixed , use l’Hospital’s Rule to calculate .

What can you conclude about the velocity of a falling
object in a vacuum?

47. If an electrostatic field acts on a liquid or a gaseous polar
dielectric, the net dipole moment per unit volume is

Show that .

48. A metal cable has radius and is covered by insulation, so
that the distance from the center of the cable to the exterior
of the insulation is . The velocity of an electrical impulse
in the cable is

where is a positive constant. Find the following limits and
interpret your answers.
(a) (b)

49. The first appearance in print of l’Hospital’s Rule was in 
the book Analyse des Infiniment Petits published by the
Marquis de l’Hospital in 1696. This was the first calculus 
textbook ever published and the example that the Marquis 
used in that book to illustrate his rule was to find the limit 
of the function

as approaches , where . (At that time it was com-
mon to write instead of .) Solve this problem.

50. The figure shows a sector of a circle with central angle .
Let be the area of the segment between the chord
and the arc . Let be the area of the triangle .
Find .

v �
mt

c
�1 � e �ct�m �

t c

lim t l � v
t limc l 0� v

E
P

P�E� �
e E � e�E

e E � e�E �
1

E

lim E l 0� P�E� � 0

r

vR

v � �c� r

R�
2

ln� r

R�
c

lim
r l0�

vlim
R lr� 

v

y �
s2a 3x � x 4 � as

3 aax

a � s
4 ax 3 

a � 0ax
a 2aa

�
PRA���

PQRB���PR
lim� l 0� ���������

P

Q R

A(¨)

B(¨)

O

¨

m
tv
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CHAPTER 3 REVIEW
CONCEPT CHECK

TRUE-FALSE QUIZ

1. (a) What is a one-to-one function? How can you tell if a
function is one-to-one by looking at its graph?

(b) If is a one-to-one function, how is its inverse function 
defined? How do you obtain the graph of from

the graph of ?
(c) Suppose is a one-to-one function. If ,

write a formula for .

2. (a) Express as a limit.
(b) What is the value of correct to five decimal places?
(c) Why is the natural exponential function used

more often in calculus than the other exponential func-
tions ?

(d) Why is the natural logarithmic function used
more often in calculus than the other logarithmic func-
tions ?

3. (a) What are the domain and range of the natural exponen-
tial function ?

(b) What are the domain and range of the natural logarith-
mic function ?

(c) How are the graphs of these functions related? Sketch
these graphs, by hand, using the same axes.

(d) If a is a positive number, , write an equation that
expresses in terms of .

4. (a) How is the inverse sine function defined?
What are its domain and range?

(b) How is the inverse cosine function 
defined? What are its domain and range?

f
f �1 f �1

f
f

� f �1�	�a�

e
e

y � e x

y � a x

y � ln x

y � loga x

f �x� � e x

f �x� � ln x

a � 1
loga x ln x

f �x� � sin�1x

f �x� � cos�1x

f 	� f �1�a�� � 0

(c) How is the inverse tangent function 
defined? What are its domain and range? Sketch its 
graph.

5. Write the definitions of the hyperbolic functions ,
, and .

6. State the derivative of each function.
(a) (b) (c)
(d) (e) (f)
(g) (h) (i)
( j) (k) (l)
(m)

7. (a) Write a differential equation that expresses the law of 
natural growth. What does it say in terms of relative
growth rate?

(b) Under what circumstances is this an appropriate model
for population growth?

(c) What are the solutions of this equation?

8. (a) What does l’Hospital’s Rule say?
(b) How can you use l’Hospital’s Rule if you have a prod-

uct where and as ?
(c) How can you use l’Hospital’s Rule if you have a differ-

ence where and as
?

(d) How can you use l’Hospital’s Rule if you have a power
where and as ?

sinh x
cosh x tanh x

y � e x y � a x y � ln x
y � loga x y � sin�1x y � cos�1x
y � tan�1x y � sinh x y � cosh x
y � tanh x y � sinh�1x y � cosh�1x
y � tanh�1x

f �x�t�x� f �x� l 0 t�x� l � x l a

f �x� � t�x� f �x� l � t�x� l �
x l a

� f �x�� t�x� f �x� l 0 t�x� l 0 x l a

f �x� � tan�1x

Determine whether the statement is true or false. If it is true, explain
why. If it is false, explain why or give an example that disproves the
statement.

1. If is one-to-one, with domain , then .

2. If is one-to-one and differentiable, with domain , 
then .

3. The function , , is 
one-to-one.

4.

5. If , then .

6.

7. You can always divide by .

8. If and , then .

9. If , then .

f � f �1� f �6�� � 6

f �

� f �1�	�6� � 1�f 	�6�

f �x� � cos x ���2  x  ��2

tan�1��1� � 3��4

0 � a � b ln a � ln b

� s5 � es5 ln �

e x

a � 0 b � 0 ln�a � b� � ln a � ln b

x � 0 �ln x�6 � 6 ln x

10.

11.

12. The inverse function of is .

13.

14.

15. for all 

16.

d

dx
�ln 10� �

1

10

y � e 3x y � 1
3 ln x

cos�1x �
1

cos x

tan�1x �
sin�1x

cos�1x

cosh x � 1 x

lim
x l � �

tan x

1 � cos x
� lim

x l � �

sec2x

sin x
� �

d

dx
�10 x � � x10 x�1
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200 CHAPTER 3 INVERSE FUNCTIONS

EXERCISES

1. The graph of is shown. Is one-to-one? Explain.

2. The graph of is given.
(a) Why is one-to-one?
(b) Estimate the value of .
(c) Estimate the domain of .
(d) Sketch the graph of .

3. Suppose f is one-to-one, , and . Find
(a) and (b) .

4. Find the inverse function of .

5–9 ■ Sketch a rough graph of the function without using a 
calculator.

5. 6.

7. 8.

9.

10. Let . For large values of , which of the functions
, , and has the largest values and

which has the smallest values?

11–12 ■ Find the exact value of each expression.

11. (a) (b)

12. (a) (b)

13–16 ■ Solve the equation for .

13. (a) (b)

14. (a) (b)

15. (a) (b)

f f

y

x0

t

t

t
�1�2�
t

�1

t
�1

g
y

x0 1

1

f �7� � 3 f 	�7� � 8
f �1�3� � f �1�	�3�

f �x� �
x � 1

2x � 1

y � 5x � 1 y � �e�x

y � �ln x y � ln�x � 1�

y � 2 arctan x

a � 1 x
y � x a y � a x y � loga x

e 2 ln 3 log10 25 � log10 4

ln e� tan(arcsin 1
2 )

x

e x � 5 ln x � 2

e e x
� 2 tan�1x � 1

ln�x � 1� � ln�x � 1� � 1 log 5�c x� � d

16. (a) (b)

17–43 ■ Differentiate.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43.

44. Show that

45–48 ■ Find in terms of .

45. 46.

47. 48.

49–50 ■ Find .

49. 50.

51. Use mathematical induction to show that if , 
then .

52. Find an equation of the tangent to the curve at
the point .

53. At what point on the curve is the tangent 
horizontal?

y � ln�x ln x� y � emx cos nx

y �
e1�x

x 2 y � ln sec x

y � x cos�1xy � sarctan x

f �t� � t 2 ln t t�t� �
e t

1 � e t

y � 3 x ln x y � �cos x�x

y � x sinh�x 2� xe y � y sin x

h��� � e tan 2� y � �arcsin 2x�2

y � ln sin x �
1
2 sin2x y � 10tan ��

y � log 5�1 � 2x� y � e cos x � cos�e x �

y �
sx � 1 �2 � x�5

�x � 3�7 y � sin�1�e x �

y � x tan�1�4x� y �
�x 2 � 1�4

�2x � 1�3�3x � 1�5

y � ln�cosh 3x� y � arctan(arcsin sx )
y � cosh�1�sinh x� y � x tanh�1

sx

y � cos(estan 3x )

d

dx�1
2 tan�1x �

1
4 ln 

�x � 1�2

x 2 � 1 � �
1

�1 � x��1 � x 2�

f 	 t	

f �x� � e t�x� f �x� � t�e x �

f �x� � ln 
 t�x� 
 f �x� � t�ln x�

f �n��x�

f �x� � 2x f �x� � ln�2x�

f �x� � xe x

f �n��x� � �x � n�e x

y � x ln x
�e, e�

y � �ln�x � 4��2

ln�1 � e�x � � 3 sin x � 0.3
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60. A cup of hot chocolate has temperature in a room
kept at . After half an hour the hot chocolate cools to

.
(a) What is the temperature of the chocolate after another

half hour?
(b) When will the chocolate have cooled to ?

61–76 ■ Evaluate the limit.

61. 62.

63. 64.

65. 66.

67. 68.

69. 70.

71. 72.

73. 74.

75. 76.

77. If , find .

78. Show that

lim
x l 0

e x � 1

tan x
lim
x l 0

tan 4x

x � sin 2x

lim
x l 0

e4x � 1 � 4x

x2 lim
x l �

e4x � 1 � 4x

x2

lim
x l ��

�x 2 � x 3�e 2x lim
x l��

�x � �� csc x

lim
x l 1�� x

x � 1
�

1

ln x� lim
x l ���2� �

�tan x�cos x

f �x� � ln x � tan�1 x � f �1�	���4�

cos arctan�sin�arccot x��� � � x 2 � 1

x 2 � 2

80�C
20�C

60�C

40�C

lim
x l0�

tan�1�1�x� lim
x l �

e x�x2

lim
x l 3�

e2��x�3� lim
x l �

arctan�x 3 � x�

lim
x l 0�

ln�sinh x� lim
x l �

e�x sin x

lim
x l �

1 � 2x

1 � 2x lim
x l �

�1 �
4

x�x

; 54. If , find . Graph and on the same
screen and comment.

55. (a) Find an equation of the tangent to the curve that
is parallel to the line .

(b) Find an equation of the tangent to the curve that
passes through the origin.

56. The function , where a, b, and K are
positive constants and , is used to model the concen-
tration at time t of a drug injected into the bloodstream.
(a) Show that .
(b) Find , the rate at which the drug is cleared from 

circulation.
(c) When is this rate equal to 0?

57. A bacteria culture contains 200 cells initially and grows at
a rate proportional to its size. After half an hour the popula-
tion has increased to 360 cells.
(a) Find the number of bacteria after hours.
(b) Find the number of bacteria after 4 hours.
(c) Find the rate of growth after 4 hours.
(d) When will the population reach 10,000?

58. Cobalt-60 has a half-life of 5.24 years.
(a) Find the mass that remains from a 100-mg sample after

20 years.
(b) How long would it take for the mass to decay to 1 mg?

59. Let be the concentration of a drug in the bloodstream. 
As the body eliminates the drug, decreases at a rate
that is proportional to the amount of the drug that is pres-
ent at the time. Thus , where is a positive
number called the elimination constant of the drug. 
(a) If is the concentration at time , find the

concentration at time .
(b) If the body eliminates half the drug in 30 hours, how

long does it take to eliminate 90% of the drug?

f 	ff 	�x�f �x� � xesin x

y � e x

x � 4y � 1
y � e x

C�t� � K�e�at � e�bt �
b � a

lim t l � C�t� � 0
C	�t�

t

C�t�
C�t�

kC	�t� � �kC�t�

t � 0C0

t
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4 APPLICATIONS OF 
DIFFERENTIATION
We have already investigated some of the applications of derivatives, but now that we know the differ-
entiation rules we are in a better position to pursue the applications of differentiation in greater depth.
Here we learn how derivatives affect the shape of a graph of a function and, in particular, how they help
us locate maximum and minimum values of functions. Many practical problems require us to minimize
a cost or maximize an area or somehow find the best possible outcome of a situation. In particular, we
will be able to investigate the optimal shape of a can and to explain the shape of cells in beehives.

4.1 MAXIMUM AND MINIMUM VALUES
Some of the most important applications of differential calculus are optimization
problems, in which we are required to find the optimal (best) way of doing something.
Here are examples of such problems that we will solve in this chapter:

■ What is the shape of a can that minimizes manufacturing costs?

■ What is the maximum acceleration of a space shuttle? (This is an important 
question to the astronauts who have to withstand the effects of acceleration.)

■ What is the radius of a contracted windpipe that expels air most rapidly
during a cough?

■ How far should you stand from a painting in an art gallery to get the best
view of the painting?

These problems can be reduced to finding the maximum or minimum values of a func-
tion. Let’s first explain exactly what we mean by maximum and minimum values.

We see that the highest point on the graph of the function shown in Figure 1 is 
the point . In other words, the largest value of is . Likewise, the small-
est value is . We say that is the absolute maximum of and
is the absolute minimum. In general, we use the following definition.

DEFINITION Let be a number in the domain of a function . Then
is the

■ absolute maximum value of on if for all in .
■ absolute minimum value of on if for all in .

An absolute maximum or minimum is sometimes called a global maximum or
minimum. The maximum and minimum values of are called extreme values of .

Figure 2 shows the graph of a function with absolute maximum at and absolute 
minimum at . Note that is the highest point on the graph and is 
the lowest point. In Figure 2, if we consider only values of near [for instance, if
we restrict our attention to the interval ], then is the largest of those values
of and is called a local maximum value of . Likewise, is called a local 
minimum value of because for near [in the interval , for

f
�3, 5� f f �3� � 5

f �6� � 2 f �3� � 5 f f �6� � 2

c D f f �c�

f D f �c� � f �x� x D

f D f �c� � f �x� x D

f f
f d

a �d, f �d �� �a, f �a��
x b

�a, c� f �b�

1

f �c�ff �x�
�b, d �cxf �c� � f �x�f

203

y

0 x

2

4

2 64

FIGURE 1

f(a)

f(d)

b x

y

0 d ea c

FIGURE 2 
Abs min f(a), abs max f(d),

loc min f(c), f(e), loc max f(b), f(d)
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instance]. The function also has a local minimum at . In general, we have the fol-
lowing definition.

DEFINITION The number is a

■ local maximum value of if when is near .
■ local minimum value of if when is near .

In Definition 2 (and elsewhere), if we say that something is true near , we mean
that it is true on some open interval containing . For instance, in Figure 3 we see that

is a local minimum because it’s the smallest value of on the interval . It’s
not the absolute minimum because takes smaller values when is near 12 (in the
interval , for instance). In fact is both a local minimum and the absolute
minimum. Similarly, is a local maximum, but not the absolute maximum
because takes larger values near 1.

EXAMPLE 1 The function takes on its (local and absolute) maxi-
mum value of 1 infinitely many times, since for any integer and

for all . Likewise, is its minimum value,
where is any integer. ■

EXAMPLE 2 If , then because for all . Therefore
is the absolute (and local) minimum value of . This corresponds to the

fact that the origin is the lowest point on the parabola . (See Figure 4.) How-
ever, there is no highest point on the parabola and so this function has no maximum
value. ■

EXAMPLE 3 From the graph of the function , shown in Figure 5, we see
that this function has neither an absolute maximum value nor an absolute minimum
value. In fact, it has no local extreme values either. ■

EXAMPLE 4 The graph of the function

is shown in Figure 6. You can see that is a local maximum, whereas the
absolute maximum is . (This absolute maximum is not a local maxi-
mum because it occurs at an endpoint.) Also, is a local minimum and

is both a local and an absolute minimum. Note that has neither a
local nor an absolute maximum at . ■

We have seen that some functions have extreme values, whereas others do not. The 
following theorem gives conditions under which a function is guaranteed to possess
extreme values.

THE EXTREME VALUE THEOREM If is continuous on a closed interval
, then attains an absolute maximum value and an absolute mini-

mum value at some numbers and in .

f �c�

f f �c� � f �x� x c

f f �c� � f �x� x c

c
c

f �4� � 5 f I
f �x� x

K f �12� � 3
f �8� � 7

f

2

f �x� � cos x
ncos 2n� � 1

cos�2n � 1�� � �1x�1 � cos x � 1
n

xx 2 � 0f �x� � f �0�f �x� � x 2

ff �0� � 0
y � x 2

f �x� � x 3

�1 � x � 4f �x� � 3x 4 � 16x 3 � 18x 2

f �1� � 5
f ��1� � 37

f �0� � 0
ff �3� � �27

x � 4

f
f �c�f�a, b�

�a, b�dcf �d �

V

3

ef

loc
min

loc
max

loc
and
abs
min

I J K

y

x0

2

4

6

4 8 12

FIGURE 3

FIGURE 4
Minimum value 0, no maximum

FIGURE 5
No minimum, no maximum

x

y

0

y=≈

x

y

0

y=˛

FIGURE 6 

(_1, 37)

_1 1 2 3 4 5

(3, _27) 

(1, 5)

y

x

y=3x$-16˛+18≈
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The Extreme Value Theorem is illustrated in Figure 7. Note that an extreme value
can be taken on more than once. Although the Extreme Value Theorem is intuitively
very plausible, it is difficult to prove and so we omit the proof.

Figures 8 and 9 show that a function need not possess extreme values if either
hypothesis (continuity or closed interval) is omitted from the Extreme Value Theorem.

The function f whose graph is shown in Figure 8 is defined on the closed interval
[0, 2] but has no maximum value. [Notice that the range of f is [0, 3). The function
takes on values arbitrarily close to 3, but never actually attains the value 3.] This 
does not contradict the Extreme Value Theorem because f is not continuous. [None-
theless, a discontinuous function could have maximum and minimum values. See Exer-
cise 13(b).]

The function t shown in Figure 9 is continuous on the open interval (0, 2) but has
neither a maximum nor a minimum value. [The range of t is . The function takes
on arbitrarily large values.] This does not contradict the Extreme Value Theorem
because the interval (0, 2) is not closed.

The Extreme Value Theorem says that a continuous function on a closed interval
has a maximum value and a minimum value, but it does not tell us how to find these
extreme values. We start by looking for local extreme values.

Figure 10 shows the graph of a function with a local maximum at and a local 
minimum at . It appears that at the maximum and minimum points the tangent lines
are horizontal and therefore each has slope 0. We know that the derivative is the slope
of the tangent line, so it appears that and . The following theorem
says that this is always true for differentiable functions.

FERMAT’S THEOREM If has a local maximum or minimum at , and if
exists, then .

FIGURE 7 x

y

0 ba c d x

y

0 ba c¡ d c™x

y

0 d=ba c

FIGURE 9
This continuous function g has
no maximum or minimum.

FIGURE 8
This function has minimum value
f(2)=0, but no maximum value.

1

x

y

0
2

3

1

x

y

0
2

g

f

�1, ��

f c
d

f ��c� � 0 f ��d � � 0

f c
f ��c� f ��c� � 0
4

SECTION 4.1  MAXIMUM AND MINIMUM VALUES 205

Unless otherwise noted, all content on this page is © Cengage Learning.

0 xc d

{c, f(c)}

{d, f(d)}

FIGURE 10

y
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PROOF Suppose, for the sake of definiteness, that has a local maximum at .
Then, according to Definition 2, if is sufficiently close to . This
implies that if is sufficiently close to 0, with being positive or negative, then

and therefore

We can divide both sides of an inequality by a positive number. Thus if and
is sufficiently small, we have

Taking the right-hand limit of both sides of this inequality (using Theorem 1.4.3),
we get

But since exists, we have

and so we have shown that .
If , then the direction of the inequality is reversed when we divide by :

So, taking the left-hand limit, we have

We have shown that and also that . Since both of these inequali-
ties must be true, the only possibility is that .

We have proved Fermat’s Theorem for the case of a local maximum. The case of
a local minimum can be proved in a similar manner, or we could use Exercise 64 to
deduce it from the case we have just proved (see Exercise 65). ■

Although Fermat’s Theorem is very useful, we have to guard against reading too
much into it. If , then , so . But has no maximum or
minimum at 0, as you can see from its graph in Figure 11. The fact that sim-
ply means that the curve has a horizontal tangent at . Instead of having a
maximum or minimum at , the curve crosses its horizontal tangent there.

| Thus, when , doesn’t necessarily have a maximum or minimum at .
(In other words, the converse of Fermat’s Theorem is false in general.)

We should bear in mind that there may be an extreme value where does not
exist. For instance, the function has its (local and absolute) minimum
value at 0 (see Figure 12), but that value cannot be found by setting because,
as was shown in Example 5 in Section 2.2, does not exist.

Fermat’s Theorem does suggest that we should at least start looking for extreme
values of at the numbers where or where does not exist. Such num-
bers are given a special name.

f �c � h� � f �c� � 05

h � 0 h

f �c � h� � f �c�
h

� 0

lim
h l0�

f �c � h� � f �c�
h

� lim
h l0� 

0 � 0

f ��c�

f ��c� � lim
h l 0

f �c � h� � f �c�
h

� lim
h l0�

f �c � h� � f �c�
h

f ��c� � 0
h � 0 h

f �c � h� � f �c�
h

� 0 h � 0

f ��c� � lim
h l 0

f �c � h� � f �c�
h

� lim
h l0�

f �c � h� � f �c�
h

� 0

f ��c� � 0 f ��c� � 0
f ��c� � 0

f �x� � x 3 f ��x� � 3x 2 f ��0� � 0 f
f ��0� � 0

y � x 3 �0, 0�
�0, 0�

f ��c� � 0 f c

f ��c�

h h

f �c� � f �c � h�

f c
f �c� � f �x� x c

5

f �x� � � x �
f ��x� � 0

f ��0�

f ��c�f ��c� � 0cf
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FIGURE 11
If ƒ=˛, then fª(0)=0 but ƒ
has no maximum or minimum.

y=˛

x

y

0

FIGURE 12

x0

y=|x|

y

If ƒ=| x |, then f(0)=0 is a mini- 
mum value, but fª(0) does not exist.

■ FERMAT
Fermat’s Theorem is named after Pierre
Fermat (1601–1665), a French lawyer who
took up mathematics as a hobby. Despite
his amateur status, Fermat was one of the
two inventors of analytic geometry
(Descartes was the other). His methods for
finding tangents to curves and maximum
and minimum values (before the invention
of limits and derivatives) made him a 
forerunner of Newton in the creation of
differential calculus.

12280_ch04_ptg01_hr_203-213.qk_12280_ch04_ptg01_hr_203-213  11/28/11  10:32 AM  Page 206

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



DEFINITION A critical number of a function is a number in the
domain of such that either or does not exist.

EXAMPLE 5 Find the critical numbers of .

SOLUTION The Product Rule gives

[The same result could be obtained by first writing .] Therefore
if , that is, , and does not exist when . Thus

the critical numbers are and . ■

In terms of critical numbers, Fermat’s Theorem can be rephrased as follows (com-
pare Definition 6 with Theorem 4):

If f has a local maximum or minimum at c, then c is a critical number 
of f.

To find an absolute maximum or minimum of a continuous function on a closed
interval, we note that either it is local [in which case it occurs at a critical number by

] or it occurs at an endpoint of the interval. Thus the following three-step procedure
always works.

THE CLOSED INTERVAL METHOD To find the absolute maximum and mini-
mum values of a continuous function on a closed interval :

1. Find the values of at the critical numbers of in .

2. Find the values of at the endpoints of the interval.

3. The largest of the values from Steps 1 and 2 is the absolute maximum
value; the smallest of these values is the absolute minimum value.

EXAMPLE 6 Find the absolute maximum and minimum values of the function

SOLUTION Since is continuous on , we can use the Closed Interval
Method:

Since exists for all , the only critical numbers of occur when , that
is, or . Notice that each of these critical numbers lies in the interval

f f ��c� � 0 f ��c�

f �x� � x 3�5�4 � x�

f ��x� � x 3�5��1� �
3
5 x�2�5�4 � x� � �x 3�5 �

3�4 � x�
5x 2 �5

�
�5x � 3�4 � x�

5x 2�5 �
12 � 8x

5x 2�5

f �x� � 4x 3�5 � x 8�5

f ��x� � 0 12 � 8x � 0 x � 3
2 f ��x� x � 0

3
2 0

f �a, b�
f f �a, b�
f

f �x� � x 3 � 3x 2 � 1 �
1
2 � x � 4

f [�1
2, 4]

cf6

7

V

7

V

f �x� � x 3 � 3x 2 � 1

f ��x� � 3x 2 � 6x � 3x�x � 2�

f ��x� � 0fxf ��x�
x � 2x � 0
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■ Figure 13 shows a graph of the func-
tion in Example 5. It supports our
answer because there is a horizontal tan-
gent when and a vertical tangent
when .x � 0

x � 1.5

f

FIGURE 13

3.5

_2

_0.5 5

■ www.stewartcalculus.com
See Additional Example A.
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4.1 EXERCISES

1. Explain the difference between an absolute minimum and a
local minimum.

2. Suppose is a continuous function defined on a closed 
interval .
(a) What theorem guarantees the existence of an absolute

maximum value and an absolute minimum value for ?
(b) What steps would you take to find those maximum and

minimum values?

3–4 ■ For each of the numbers , , , , , and , state whether
the function whose graph is shown has an absolute maximum or
minimum, a local maximum or minimum, or neither a maximum
nor a minimum.

3. 4.

5–6 ■ Use the graph to state the absolute and local maximum
and minimum values of the function.

5. 6.

f
�a, b�

f

x

y

0 a b c d r s x

y

0 a b c d r s

a b c d r s

y

0 x

y=ƒ
1

1

y

0 x

y=©

1

1

7–10 ■ Sketch the graph of a function that is continuous 
on [1, 5] and has the given properties.

7. Absolute minimum at 2, absolute maximum at 3, 
local minimum at 4

8. Absolute minimum at 1, absolute maximum at 5, 
local maximum at 2, local minimum at 4

9. Absolute maximum at 5, absolute minimum at 2, 
local maximum at 3, local minima at 2 and 4

10. has no local maximum or minimum, but 2 and 4 are 
critical numbers

11. (a) Sketch the graph of a function that has a local maximum 
at 2 and is differentiable at 2.

(b) Sketch the graph of a function that has a local maximum 
at 2 and is continuous but not differentiable at 2.

(c) Sketch the graph of a function that has a local maximum 
at 2 and is not continuous at 2.

12. (a) Sketch the graph of a function on [�1, 2] that has an
absolute maximum but no local maximum.

(b) Sketch the graph of a function on [�1, 2] that has a
local maximum but no absolute maximum.

13. (a) Sketch the graph of a function on [�1, 2] that has an
absolute maximum but no absolute minimum.

(b) Sketch the graph of a function on [�1, 2] that is dis-
continuous but has both an absolute maximum and an
absolute minimum.

14. (a) Sketch the graph of a function that has two local 
maxima, one local minimum, and no absolute minimum.

(b) Sketch the graph of a function that has three local 
minima, two local maxima, and seven critical numbers.

f

f

. The values of at these critical numbers are

The values of at the endpoints of the interval are

Comparing these four numbers, we see that the absolute maximum value is
and the absolute minimum value is .

Note that in this example the absolute maximum occurs at an endpoint, whereas
the absolute minimum occurs at a critical number. The graph of is sketched in
Figure 14. ■

f �2� � �3

f

f (�1
2 ) � 1

8 f �4� � 17

f �4� � 17 f �2� � �3

f

(�1
2, 4) f

f �0� � 1
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FIGURE 14

5

10

20

_5

15

1 2

3 4

(4, 17)

(2, _3)

_1

y=˛-3≈+1

x

y

0
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49.

50. ,  

51. If and are positive numbers, find the maximum value 
of , .

; 52. Use a graph to estimate the critical numbers of
correct to one decimal place.

;53–56 ■

(a) Use a graph to estimate the absolute maximum and
minimum values of the function to two decimal places.

(b) Use calculus to find the exact maximum and minimum 
values.

53.

54.

55.

56.

57. Between and , the volume (in cubic centi-
meters) of 1 kg of water at a temperature is given 
approximately by the formula

Find the temperature at which water has its maximum 
density.

58. An object with weight is dragged along a horizontal
plane by a force acting along a rope attached to the object.
If the rope makes an angle with the plane, then the mag-
nitude of the force is

where is a positive constant called the coefficient of fric-
tion and where . Show that is minimized
when .

59. A model for the US average price of a pound of white sugar
from 1993 to 2003 is given by the function

where is measured in years since August of 1993. Estimate
the times when sugar was cheapest and most expensive dur-
ing the period 1993–2003.

60. The Hubble Space Telescope was deployed April 24, 1990,
by the space shuttle Discovery. A model for the velocity of
the shuttle during this mission, from liftoff at until 

a b
f �x� � x a�1 � x�b 0 � x � 1

f �x� � � x 3 � 3x 2 � 2 �

f �x� � x 5 � x 3 � 2,    �1 � x � 1

f �x� � e x � e�2x,    0 � x � 1

f �x� � xsx � x 2 

f �x� � x � 2 cos x,    �2 � x � 0

0�C 30�C V
T

V � 999.87 � 0.06426T � 0.0085043T 2 � 0.0000679T 3

W

�

F �
W

 sin � � cos �


0 � � � ��2 F

tan � � 

S�t� � �0.00003237t 5 � 0.0009037t 4 � 0.008956t 3

� 0.03629t 2 � 0.04458t � 0.4074

t

t � 0

�0, 4�f �x� � x � 2 tan�1x

f �x� � ln�x 2 � x � 1�, ��1, 1�15–22 ■ Sketch the graph of by hand and use your sketch to 
find the absolute and local maximum and minimum values of .
(Use the graphs and transformations of Sections 1.2.)

15. ,  

16. ,  

17. ,  

18. ,  

19. ,  

20. ,  

21.

22.

23–36 ■ Find the critical numbers of the function.

23.

24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37–50 ■ Find the absolute maximum and absolute minimum
values of on the given interval.

37. ,  

38. ,  

39. ,  

40. ,  

41. ,  

42. ,  

43. ,  

44. ,  

45. ,  

46. ,  

47. ,  

48. ,  

f �x� � 1
2�3x � 1� x � 3

f �x� � 2 �
1
3 x x � �2

f
f

0 � x 
 ��2f �x� � sin x

�3��2 � t � 3��2f �t� � cos t

0 
 x � 2f �x� � ln x

1 
 x 
 3f �x� � 1�x

f �x� � 1 � sx

f �x� � �4 � x 2

2x � 1

if �2 � x 
 0

if 0 � x � 2

f �x� � 4 �
1
3 x �

1
2 x 2

f �x� � x 3 � 6x 2 � 15x

f �x� � 2x 3 � x 2 � 2xf �x� � 2x 3 � 3x 2 � 36x

t�t� � � 3t � 4 �t�t� � t 4 � t 3 � t 2 � 1

h�p� �
p � 1

p2 � 4
t�y� �

y � 1

y 2 � y � 1

F�x� � x 4�5�x � 4�2
t�x� � x 1�3 � x�2�3

t��� � 4� � tan �f ��� � 2 cos � � sin2�

f �x� � x �2 ln xf �x� � x 2e�3x

f

�0, 5�f �x� � 12 � 4x � x 2

�0, 4�f �x� � 5 � 54x � 2x 3

��2, 3�f �x� � 2x 3 � 3x 2 � 12x � 1

��3, 5�f �x� � x 3 � 6x 2 � 5

��2, 3�f �x� � 3x 4 � 4x 3 � 12x 2 � 1

��1, 2�f �x� � �x2 � 1�3

��1, 2�f �t� � ts4 � t 2

�0, 3�f �x� �
x

x 2 � x � 1

�0, ��2�f �t� � 2cos t � sin 2t

���4, 7��4�f �t� � t � cot(1
2 t)

��1, 4�f �x� � xe�x2�8

[ 1
2 , 2]f �x� � x � ln x

SECTION 4.1  MAXIMUM AND MINIMUM VALUES 209

Unless otherwise noted, all content on this page is © Cengage Learning.

12280_ch04_ptg01_hr_203-213.qk_12280_ch04_ptg01_hr_203-213  11/16/11  3:41 PM  Page 209

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



wall stiffens under pressure and a contraction greater than
is prevented (otherwise the person would suffocate).

(a) Determine the value of in the interval at
which has an absolute maximum. How does this 
compare with experimental evidence?

(b) What is the absolute maximum value of on the interval?
(c) Sketch the graph of on the interval .

62. Show that 5 is a critical number of the function
but does not have a local extreme

value at 5.

63. Prove that the function has 
neither a local maximum nor a local minimum.

64. If has a local minimum value at , show that the function
has a local maximum value at .

65. Prove Fermat’s Theorem for the case in which has a local
minimum at .

66. A cubic function is a polynomial of degree 3; that is, it has
the form , where .
(a) Show that a cubic function can have two, one, or no

critical number(s). Give examples and sketches to illus-
trate the three possibilities.

(b) How many local extreme values can a cubic function
have?

v
�0, r0 �v

tt�x� � 2 � �x � 5�3

f �x� � x 101 � x 51 � x � 1

cf
ct�x� � �f �x�

f
c

a � 0f �x� � ax 3 � bx 2 � cx � d

v

1
2 r0

[ 1
2 r0, r0]r

the solid rocket boosters were jettisoned at , is
given by

(in feet per second). Using this model, estimate the absolute
maximum and minimum values of the acceleration of the
shuttle between liftoff and the jettisoning of the boosters.

61. When a foreign object lodged in the trachea (windpipe)
forces a person to cough, the diaphragm thrusts upward
causing an increase in pressure in the lungs. This is accom-
panied by a contraction of the trachea, making a narrower
channel for the expelled air to flow through. For a given
amount of air to escape in a fixed time, it must move faster
through the narrower channel than the wider one. The
greater the velocity of the airstream, the greater the force on
the foreign object. X-rays show that the radius of the circu-
lar tracheal tube contracts to about two-thirds of its normal
radius during a cough. According to a mathematical model
of coughing, the velocity of the airstream is related to the
radius of the trachea by the equation

where is a constant and is the normal radius of the tra-
chea. The restriction on is due to the fact that the tracheal 

t � 126 s

v�t� � 0.001302t 3 � 0.09029t 2 � 23.61t � 3.083

v
r

1
2 r0 � r � r0v�r� � k�r0 � r�r 2

r0k
r
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4.2 THE MEAN VALUE THEOREM
We will see that many of the results of this chapter depend on one central fact, which
is called the Mean Value Theorem. But to arrive at the Mean Value Theorem we first
need the following result.

ROLLE’S THEOREM Let be a function that satisfies the following three
hypotheses:

1. is continuous on the closed interval .

2. is differentiable on the open interval .

3.

Then there is a number in such that .

Before giving the proof let’s take a look at the graphs of some typical functions that
satisfy the three hypotheses. Figure 1 shows the graphs of four such functions. In each
case it appears that there is at least one point on the graph where the tangent
is horizontal and therefore . Thus Rolle’s Theorem is plausible.

f

f �a, b�

f �a, b�

f �a� � f �b�

c �a, b� f ��c� � 0

�c, f �c��
f ��c� � 0

■ ROLLE
Rolle’s Theorem was first published in
1691 by the French mathematician Michel
Rolle (1652–1719) in a book entitled 
Méthode pour resoudre les Egalitez. He
was a vocal critic of the methods of his day
and attacked calculus as being a “collection
of ingenious fallacies.” Later, however, he
became convinced of the essential correct-
ness of the methods of calculus.
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PROOF There are three cases:

CASE I , a constant
Then , so the number can be taken to be any number in .

CASE II for some x in [as in Figure 1(b) or (c)]
By the Extreme Value Theorem (which we can apply by hypothesis 1), has a max-
imum value somewhere in . Since , it must attain this maximum
value at a number in the open interval . Then has a local maximum at
and, by hypothesis 2, is differentiable at . Therefore by Fermat’s
Theorem.

CASE III for some x in [as in Figure 1(c) or (d)]
By the Extreme Value Theorem, has a minimum value in and, since

, it attains this minimum value at a number in . Again by
Fermat’s Theorem. ■

EXAMPLE 1 Let’s apply Rolle’s Theorem to the position function of a
moving object. If the object is in the same place at two different instants and

, then . Rolle’s Theorem says that there is some instant of time
between and when ; that is, the velocity is 0. (In particular, you

can see that this is true when a ball is thrown directly upward.) ■

EXAMPLE 2 Prove that the equation has exactly one real root.

SOLUTION First we use the Intermediate Value Theorem (1.5.9) to show that a root
exists. Let . Then and . Since is
a polynomial, it is continuous, so the Intermediate Value Theorem states that there is
a number between 0 and 1 such that . Thus the given equation has a root.

To show that the equation has no other real root, we use Rolle’s Theorem and
argue by contradiction. Suppose that it had two roots and . Then
and, since is a polynomial, it is differentiable on and continuous on .
Thus by Rolle’s Theorem there is a number between and such that .
But

(since ) so can never be 0. This gives a contradiction. Therefore the
equation can’t have two real roots. ■

Our main use of Rolle’s Theorem is in proving the following important theorem,
which was first stated by another French mathematician, Joseph-Louis Lagrange.

FIGURE 1 

(a)

ba c¡ c™ x

y

0

(b)

a c b x

y

0

(c)

ba c¡ c™ x

y

0

(d)

ba c

y

x0

f (x) � k
f ��x� � 0 c �a, b�

f (x) > f (a) (a, b)
f

�a, b� f �a� � f �b�
c �a, b� f c

f c f ��c� � 0

f (x) < f (a) (a, b)
f �a, b�

f �a� � f �b� c �a, b� f ��c� � 0

s � f �t�
t � a

t � b f �a� � f �b�
t � c a b f ��c� � 0

x 3 � x � 1 � 0

f �x� � x 3 � x � 1 f �0� � �1 
 0 f �1� � 1 	 0 f

c f �c� � 0

a b f �a� � 0 � f �b�
f �a, b� �a, b�

c a b f ��c� � 0

f ��x� � 3x 2 � 1 � 1 for all x

x 2 � 0 f ��x�
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■ Figure 2 shows a graph of the func-
tion discussed in
Example 2. Rolle’s Theorem shows that,
no matter how much we enlarge the
viewing rectangle, we can never find a
second -intercept.x

f �x� � x 3 � x � 1

FIGURE 2 

_2

3

_3

2
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THE MEAN VALUE THEOREM Let be a function that satisfies the following
hypotheses:

1. is continuous on the closed interval .

2. is differentiable on the open interval .

Then there is a number in such that

or, equivalently,

Before proving this theorem, we can see that it is reasonable by interpreting it geo-
metrically. Figures 3 and 4 show the points and on the graphs of
two differentiable functions. The slope of the secant line is

which is the same expression as on the right side of Equation 1. Since is the slope
of the tangent line at the point , the Mean Value Theorem, in the form given
by Equation 1, says that there is at least one point on the graph where the
slope of the tangent line is the same as the slope of the secant line . In other words,
there is a point where the tangent line is parallel to the secant line . (Imagine a
line parallel to , starting far away and moving parallel to itself until it touches the
graph for the first time.)

PROOF We apply Rolle’s Theorem to a new function defined as the difference
between and the function whose graph is the secant line . Using Equation 3, 
we see that the equation of the line can be written as

or as

f

f �a, b�
f �a, b�

c �a, b�

f ��c� �
f �b� � f �a�

b � a

f �b� � f �a� � f ��c��b � a�

A�a, f �a�� B�b, f �b��
AB

mAB �
f �b� � f �a�

b � a

f ��c�
�c, f �c��

P�c, f �c��
AB

P AB

FIGURE 3 FIGURE 4

0 x

y

a c b

B{b, f(b)}

0 x

y

a bc¡ c™

B
P¡

A P™
A{a, f(a)}

P{c, f(c)}

h
f AB

AB

y � f �a� �
f �b� � f �a�

b � a
�x � a�

y � f �a� �
f �b� � f �a�

b � a
�x � a�

1

2

3

AB

■ The Mean Value Theorem is an
example of what is called an existence
theorem. Like the Intermediate Value
Theorem, the Extreme Value Theorem,
and Rolle’s Theorem, it guarantees that
there exists a number with a certain
property, but it doesn’t tell us how to
find the number.
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So, as shown in Figure 5,

First we must verify that satisfies the three hypotheses of Rolle’s Theorem.

1. The function is continuous on because it is the sum of and a first-
degree polynomial, both of which are continuous.

2. The function is differentiable on because both and the first-degree
polynomial are differentiable. In fact, we can compute directly from Equa-
tion 4:

(Note that and are constants.)

3.

Therefore .

Since satisfies the hypotheses of Rolle’s Theorem, that theorem says there is a
number in such that . Therefore

and so
■

EXAMPLE 3 To illustrate the Mean Value Theorem with a specific function, let’s
consider . Since is a polynomial, it is continuous and
differentiable for all , so it is certainly continuous on and differentiable on

. Therefore, by the Mean Value Theorem, there is a number in such that

Now , and , so this equation becomes

which gives , that is, . But must lie in , so . 
Figure 6 illustrates this calculation: The tangent line at this value of is parallel to
the secant line . ■

EXAMPLE 4 If an object moves in a straight line with position function ,
then the average velocity between and is

h�x� � f �x� � f �a� �
f �b� � f �a�

b � a
�x � a�

h

h �a, b� f

h �a, b� f
h�

h��x� � f ��x� �
f �b� � f �a�

b � a

f �a� � f �b� � f �a����b � a�

h�a� � f �a� � f �a� �
f �b� � f �a�

b � a
�a � a� � 0

h�b� � f �b� � f �a� �
f �b� � f �a�

b � a
�b � a�

� f �b� � f �a� � � f �b� � f �a�� � 0

h�a� � h�b�

h
c �a, b� h��c� � 0

0 � h��c� � f ��c� �
f �b� � f �a�

b � a

f ��c� �
f �b� � f �a�

b � a

f �x� � x 3 � x, a � 0, b � 2 f
x �0, 2�

�0, 2� c �0, 2�

f �2� � f �0� � f ��c��2 � 0�

f �2� � 6, f �0� � 0 f ��x� � 3x 2 � 1

6 � �3c 2 � 1�2 � 6c 2 � 2

c 2 � 4
3 c � �2�s3 c �0, 2� c � 2�s3

c
OB

s � f �t�
t � a t � b

f �b� � f �a�
b � a

4

V

V
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FIGURE 5 
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f(b)-f(a)
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■ LAGRANGE AND THE 
MEAN VALUE THEOREM
The Mean Value Theorem was first 
formulated by Joseph-Louis Lagrange
(1736–1813), born in Italy of a French
father and an Italian mother. He was a
child prodigy and became a professor in
Turin at the tender age of 19. Lagrange
made great contributions to number theory,
theory of functions, theory of equations,
and analytical and celestial mechanics. In
particular, he applied calculus to the analy-
sis of the stability of the solar system. At
the invitation of Frederick the Great, he
succeeded Euler at the Berlin Academy
and, when Frederick died, Lagrange
accepted King Louis XVI’s invitation to
Paris, where he was given apartments in
the Louvre. Despite all the trappings of
luxury and fame, he was a kind and quiet
man, living only for science.

FIGURE 6 

y=˛- x

B

x

y

c 2

O
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and the velocity at is . Thus the Mean Value Theorem (in the form of
Equation 1) tells us that at some time between and the instantaneous
velocity is equal to that average velocity. For instance, if a car traveled 180 km
in 2 hours, then the speedometer must have read 90 km�h at least once.

In general, the Mean Value Theorem can be interpreted as saying that there is a
number at which the instantaneous rate of change is equal to the average rate of
change over an interval. ■

The main significance of the Mean Value Theorem is that it enables us to obtain
information about a function from information about its derivative. The next example
provides an instance of this principle.

EXAMPLE 5 Suppose that and for all values of . How
large can possibly be?

SOLUTION We are given that is differentiable (and therefore continuous) every-
where. In particular, we can apply the Mean Value Theorem on the interval .
There exists a number such that

so

We are given that for all , so in particular we know that . Multi-
plying both sides of this inequality by 2, we have , so

The largest possible value for is 7. ■

The Mean Value Theorem can be used to establish some of the basic facts of dif-
ferential calculus. One of these basic facts is the following theorem. Others will be
found in the following sections.

THEOREM If for all in an interval , then is constant 
on .

PROOF Let and be any two numbers in with . Since is dif-
ferentiable on , it must be differentiable on and continuous on .
By applying the Mean Value Theorem to on the interval , we get a number

such that and

Since for all , we have , and so Equation 6 becomes

Therefore has the same value at any two numbers and in . This means
that is constant on . ■

t � c f ��c�
t � c a b

f ��c�

f �0� � �3 f ��x� � 5 x
f �2�

f
�0, 2�

c

f �2� � f �0� � f ��c��2 � 0�

f �2� � f �0� � 2 f ��c� � �3 � 2 f ��c�

f ��x� � 5 x f ��c� � 5
2 f ��c� � 10

f �2� � �3 � 2 f ��c� � �3 � 10 � 7

f �2�

f ��x� � 0 x �a, b� f
�a, b�

x1 x2 �a, b� x1 � x2 f
�a, b� �x1, x2 � �x1, x2 �

f �x1, x2 �
c x1 � c � x2

f �x2 � � f �x1� � f ��c��x2 � x1�

f ��x� � 0 x f ��c� � 0

f �x2 � � f �x1� � 0 or f �x2 � � f �x1�

f x1 x2 �a, b�

V

5

6

�a, b�f
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COROLLARY If for all in an interval , then is
constant on ; that is, where is a constant.

PROOF Let . Then

for all in . Thus, by Theorem 5, is constant; that is, is constant. ■

NOTE Care must be taken in applying Theorem 5. Let

The domain of is and for all in . But is obviously
not a constant function. This does not contradict Theorem 5 because is not an inter-
val. Notice that is constant on the interval and also on the interval .

We will make extensive use of Theorem 5 and Corollary 7 when we study anti-
derivatives in Section 4.7.

f ��x� � t��x� x �a, b� f � t

�a, b� f �x� � t�x� � c c

F�x� � f �x� � t�x�

F��x� � f ��x� � t��x� � 0

x �a, b� F f � t

f �x� �
x

� x � � �1

�1

if x � 0

if x � 0

f D � 	x � x � 0
 f ��x� � 0 x D f
D

f �0, �� ���, 0�

7
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■ www.stewartcalculus.com
See Additional Example A.

4.2 EXERCISES

1–4 ■ Verify that the function satisfies the three hypotheses of
Rolle’s Theorem on the given interval. Then find all numbers 
that satisfy the conclusion of Rolle’s Theorem.

1.

2.

3.

4.

5. Let . Show that but there is
no number in such that . Why does this
not contradict Rolle’s Theorem?

6. Let . Show that but there is no 
number in such that . Why does this not
contradict Rolle’s Theorem?

7. Use the graph of to estimate the values of that satisfy
the conclusion of the Mean Value Theorem for the interval

.

c

f �x� � 5 � 12x � 3x 2, �1, 3�

f �x� � x 3 � x 2 � 6x � 2, �0, 3�

f �x� � sx �
1
3 x, �0, 9�

f �x� � cos 2x, �	�8, 7	�8�

f �x� � 1 � x 2�3 f ��1� � f �1�
c ��1, 1� f ��c� � 0

f �x� � tan x f �0� � f �	�
c �0, 	� f ��c� � 0

f c

�0, 8�

y =ƒ

1

0 1

y

x

8. Use the graph of given in Exercise 7 to estimate the val-
ues of that satisfy the conclusion of the Mean Value Theo-
rem for the interval .

9–12 ■ Verify that the function satisfies the hypotheses of the
Mean Value Theorem on the given interval. Then find all num-
bers that satisfy the conclusion of the Mean Value Theorem.

9. ,  

10. ,  

11. ,  

12. ,  

;13–14 ■ Find the number that satisfies the conclusion of the
Mean Value Theorem on the given interval. Graph the function,
the secant line through the endpoints, and the tangent line at

. Are the secant line and the tangent line parallel?

13. ,  14. ,  

15. Let . Show that there is no value of in
such that . Why does this

not contradict the Mean Value Theorem?

16. Let . Show that there is no value of
such that . Why does this not
contradict the Mean Value Theorem?

f
c

�1, 7�

c

f �x� � 2x 2 � 3x � 1 �0, 2�

f �x� � x 3 � 3x � 2 ��2, 2�

f �x� � ln x �1, 4�

f �x� � 1�x �1, 3�

c

�c, f �c��

f �x� � sx �0, 4� f �x� � e�x �0, 2�

f �x� � �x � 3��2 c
�1, 4� f �4� � f �1� � f ��c��4 � 1�

f �x� � 2 � �2x � 1� c
f �3� � f �0� � f ��c��3 � 0�
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29. Use the Mean Value Theorem to prove the inequality

30. If (c a constant) for all , use Corollary 7 to show
that for some constant .

31. Let and

Show that for all in their domains. Can we
conclude from Corollary 7 that is constant?

32. Use Theorem 5 to prove the identity 

33. Prove the identity

34. At 2:00 PM a car’s speedometer reads 30 mi�h. At 2:10 PM

it reads 50 mi�h. Show that at some time between 2:00 and
2:10 the acceleration is exactly 120 mi�h .

35. Two runners start a race at the same time and finish in a tie.
Prove that at some time during the race they have the same
speed. [Hint: Consider , where and
are the position functions of the two runners.]

36. A number a is called a fixed point of a function if
. Prove that if for all real numbers x,

then has at most one fixed point.

arcsin 
x � 1

x � 1
� 2 arctan sx �

	

2

2

f �t� � t�t� � h�t� t h

f
f �a� � a f ��x� � 1

f

f �x� � 1�x

t�x� �

1

x

1 �
1

x

if

if

x � 0

x � 0

xf ��x� � t��x�
f � t

x 
 02 sin�1x � cos�1�1 � 2x 2 �

for all a and b� sin a � sin b � � � a � b �
xf ��x� � c

df �x� � cx � d

17–18 ■ Show that the equation has exactly one real root.

17. 18.

19. Show that the equation has at most one
root in the interval .

20. Show that the equation has at most two 
real roots.

21. (a) Show that a polynomial of degree 3 has at most three 
real roots.

(b) Show that a polynomial of degree has at most real
roots.

22. (a) Suppose that is differentiable on and has two roots.
Show that has at least one root.

(b) Suppose is twice differentiable on and has three
roots. Show that has at least one real root.

(c) Can you generalize parts (a) and (b)?

23. If and for , how small can
possibly be?

24. Suppose that for all values of . Show that
.

25. Does there exist a function such that ,
, and for all ?

26. Suppose that and are continuous on and differ-
enti able on . Suppose also that and

for . Prove that . 
[Hint: Apply the Mean Value Theorem to the function

.]

27. Show that if .

28. Suppose is an odd function and is differentiable every-
where. Prove that for every positive number , there exists 
a number in such that .

2x � cos x � 0 x 3 � e x � 0

x 3 � 15x � c � 0
��2, 2�

x 4 � 4x � c � 0

nn

�f
f �

�f
f �

1 � x � 4f ��x� 
 2f �1� � 10
f �4�

x3 � f ��x� � 5
18 � f �8� � f �2� � 30

f �0� � �1f
xf ��x� � 2f �2� � 4

�a, b�tf
f �a� � t�a��a, b�

f �b� � t�b�a � x � bf ��x� � t��x�

h � f � t

x � 0s1 � x � 1 �
1
2 x

f
b

f ��c� � f �b��b��b, b�c
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4.3 DERIVATIVES AND THE SHAPES OF GRAPHS
Many of the applications of calculus depend on our ability to deduce facts about a
function from information concerning its derivatives. Because represents the
slope of the curve at the point , it tells us the direction in which the
curve proceeds at each point. So it is reasonable to expect that information about 
will provide us with information about .

f ��x�
y � f �x� �x, f �x��

f ��x�
f �x�

f
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WHAT DOES SAY ABOUT ?

To see how the derivative of can tell us where a function is increasing or decreas-
ing, look at Figure 1. (Increasing functions and decreasing functions were defined in
Section 1.1.) Between and and between and , the tangent lines have positive
slopes and so . Between and , the tangent lines have negative slopes and
so . Thus it appears that increases when is positive and decreases
when is negative. To prove that this is always the case, we use the Mean Value
Theorem.

INCREASING/ DECREASING TEST

(a) If on an interval, then is increasing on that interval.

(b) If on an interval, then is decreasing on that interval.

PROOF
(a) Let and be any two numbers in the interval with . According to the
definition of an increasing function (page 7) we have to show that .

Because we are given that , we know that is differentiable on .
So by the Mean Value Theorem, there is a number c between and such that

Now by assumption and because . Thus the right 
side of Equation 1 is positive, and so

This shows that is increasing.
Part (b) is proved similarly. ■

EXAMPLE 1 Find where the function is increas-
ing and where it is decreasing.

SOLUTION

To use the I�D Test we have to know where and where . This
depends on the signs of the three factors of , namely, , , and .
We divide the real line into intervals whose endpoints are the critical numbers ,
and and arrange our work in a chart. A plus sign indicates that the given expres-
sion is positive, and a minus sign indicates that it is negative. The last column of 
the chart gives the conclusion based on the I�D Test. For instance, for

, so is decreasing on (0, 2). (It would also be true to say that is
decreasing on the closed interval .)

The graph of shown in Figure 2 confirms the information in the chart. ■

f � f

f

f ��x� � 0
f ��x� � 0 f ��x�

f ��x�

f ��x� � 0 f

f ��x� � 0 f

x1 x2 x1 � x2

f �x1� � f �x2 �
f ��x� � 0 f �x1, x2 �

x1 x2

f �x2 � � f �x1� � f ��c��x2 � x1�

f ��c� � 0 x2 � x1 � 0 x1 � x2

f �x2 � � f �x1� � 0 or f �x1� � f �x2 �

f

f �x� � 3x 4 � 4x 3 � 12x 2 � 5

f ��x� � 12x 3 � 12x 2 � 24x � 12x�x � 2��x � 1�

f ��x� � 0 f ��x� � 0
f ��x� 12x x � 2 x � 1

�1, 0
2

f ��x� � 0
0 � x � 2 f f

�0, 2�

f

A B C D
B C

f

1

V
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_30
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FIGURE 2

D

A

B

C

FIGURE 1 

y

0 x

Interval

� � � � decreasing on (��, �1)
� � � � increasing on (�1, 0)
� � � � decreasing on (0, 2)
� � � � increasing on (2, �)

fx � 1x � 2 f ��x�12x

x � 2
0 � x � 2

�1 � x � 0
x � �1

■ Let’s abbreviate the name of this test
to the I/D Test.
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Recall from Section 4.1 that if has a local maximum or minimum at , then
must be a critical number of (by Fermat’s Theorem), but not every critical number
gives rise to a maximum or a minimum. We therefore need a test that will tell us
whether or not has a local maximum or minimum at a critical number.

You can see from Figure 2 that is a local maximum value of because
increases on and decreases on . Or, in terms of derivatives, for

and for . In other words, the sign of changes
from positive to negative at . This observation is the basis of the following test.

THE FIRST DERIVATIVE TEST Suppose that is a critical number of a continu-
ous function .

(a) If changes from positive to negative at , then has a local maximum
at .

(b) If changes from negative to positive at , then has a local minimum 
at .

(c) If does not change sign at (for example, if is positive on both sides
of c or negative on both sides), then has no local maximum or minimum
at .

The First Derivative Test is a consequence of the I�D Test. In part (a), for instance,
since the sign of changes from positive to negative at c, f is increasing to the left
of c and decreasing to the right of c. It follows that f has a local maximum at c.

It is easy to remember the First Derivative Test by visualizing diagrams such as
those in Figure 3.

EXAMPLE 2 Find the local minimum and maximum values of the function in
Example 1.

SOLUTION From the chart in the solution to Example 1 we see that changes
from negative to positive at �1, so is a local minimum value by the First
Derivative Test. Similarly, changes from negative to positive at 2, so
is also a local minimum value. As previously noted, is a local maximum
value because changes from positive to negative at 0. ■

EXAMPLE 3 Find the local maximum and minimum values of the function

SOLUTION To find the critical numbers of , we differentiate:

f c c
f

f
f �0� � 5 f f

��1, 0� �0, 2� f ��x� � 0
�1 � x � 0 f ��x� � 0 0 � x � 2 f ��x�

0

c
f

f � c f
c

f � c f
c

f � c f �
f

c

f ��x�

FIGURE 3

c0 x

y

fª(x)<0

fª(x)<0

(d) No maximum or minimum(c) No maximum or minimum

c0 x

y

fª(x)>0

fª(x)>0

c0 x

y

fª(x)<0 fª(x)>0

(b) Local minimum

0 x

y

c

fª(x)>0 fª(x)<0

(a) Local maximum

f

f ��x�
f ��1� � 0

f � f �2� � �27
f �0� � 5

f ��x�

t�x� � x � 2 sin x 0 � x � 2	

t

t��x� � 1 � 2 cos x

V
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So when . The solutions of this equation are and .
Because is differentiable everywhere, the only critical numbers are and
and so we analyze in the following table.

Because changes from positive to negative at , the First Derivative Test
tells us that there is a local maximum at and the local maximum value is

Likewise, changes from negative to positive at and so

is a local minimum value. The graph of in Figure 4 supports our conclusion. ■

WHAT DOES SAY ABOUT ?

Figure 5 shows the graphs of two increasing functions on . Both graphs join
point to point but they look different because they bend in different directions.
How can we distinguish between these two types of behavior? In Figure 6 tangents to
these curves have been drawn at several points. In (a) the curve lies above the tangents
and is called concave upward on . In (b) the curve lies below the tangents and

is called concave downward on .

DEFINITION If the graph of lies above all of its tangents on an interval ,
then it is called concave upward on . If the graph of lies below all of its
tangents on I, it is called concave downward on .

t��x� � 0 cos x � �
1
2 2	�3 4	�3

t 2	�3 4	�3
t

t��x� 2	�3
2	�3

t�2	�3� �
2	

3
� 2 sin 

2	

3
�

2	

3
� 2�s3

2 � �
2	

3
� s3  3.83

t��x� 4	�3

t�4	�3� �
4	

3
� 2 sin 

4	

3
�

4	

3
� 2��

s3

2 � �
4	

3
� s3  2.46

t

f � f

�a, b�
A B

f �a, b�
t �a, b�

FIGURE 5 FIGURE 6

a b

f

A

B

x

y

0 a b

g

A

B

x

y

0

g

A

B

x

y

0

f

A

B

x

y

0

(a) (b) (a) Concave upward (b) Concave downward

f I
I f

I
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Interval

� increasing on (0, 2	�3)

� decreasing on (2	�3, 4	�3)

� increasing on (4	�3, 2	)

tt��x� � 1 � 2 cos x

4	�3 � x � 2	

2	�3 � x � 4	�3

0 � x � 2	�3
■ The + signs in the table come from
the fact that when .
From the graph of , this is true
in the indicated intervals.

y � cos x
cos x � �

1
2t��x� � 0

FIGURE 4 
y=x+2 sin x

6

0
2π
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Figure 7 shows the graph of a function that is concave upward (abbreviated CU) on
the intervals , , and and concave downward (CD) on the intervals ,

, and .

DEFINITION A point on a curve is called an inflection point if
is continuous there and the curve changes from concave upward to concave
downward or from concave downward to concave upward at .

For instance, in Figure 7, , and are the points of inflection. Notice that if
a curve has a tangent at a point of inflection, then the curve crosses its tangent there.

Let’s see how the second derivative helps determine the intervals of concavity.
Looking at Figure 6(a), you can see that, going from left to right, the slope of the tan-
gent increases. This means that the derivative is an increasing function and there-
fore its derivative is positive. Likewise, in Figure 6(b) the slope of the tangent
decreases from left to right, so decreases and therefore is negative. This reason-
ing can be reversed and suggests that the following theorem is true. A proof is given
in Appendix D with the help of the Mean Value Theorem.

CONCAVITY TEST

(a) If for all in , then the graph of is concave upward on .

(b) If for all in , then the graph of is concave downward on .

In view of the Concavity Test, there is a point of inflection at any point where the
second derivative changes sign.

EXAMPLE 4 Sketch a possible graph of a function that satisfies the following 
conditions:

SOLUTION Condition (i) tells us that is increasing on and decreasing on
. Condition (ii) says that is concave upward on and , and

concave downward on . From condition (iii) we know that the graph of has
two horizontal asymptotes: and .

�b, c� �d, e� �e, p� �a, b�
�c, d � �p, q�

FIGURE 7 

a b c d e p q

B
C

D

P

x

y

0

CD CU CD CU CDCU

P y � f �x� f

P

B, C, D P

f �
f �

f � f �

f ��x� � 0 x I f I

f ��x� � 0 x I f I

f

�i� f ��x� � 0 on ���, 1�, f ��x� � 0 on �1, ��

�ii� f ��x� � 0 on ���, �2� and �2, ��, f ��x� � 0 on ��2, 2�

�iii� lim
x l��

f �x� � �2, lim
x l �

f �x� � 0

f ���, 1�
�1, �� f ���, �2� �2, ��

��2, 2� f
y � �2 y � 0

V

■ www.stewartcalculus.com
See Additional Example A.
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FIGURE 8 

x

y=_2

0 1 2-2

y

fª(c)=0

f(c)

ƒ

c

P

x x

y

0

FIGURE 9
f·(c)>0, f is concave upward

f

FIGURE 10

x

y

2 3

(2, _16)

(3, _27)

y=x$-4˛

inflection
points

(0, 0)
Interval Concavity

(��, 0) � upward
(0, 2) � downward
(2, �) � upward

f ��x� � 12x�x � 2�

We first draw the horizontal asymptote as a dashed line (see Figure 8).
We then draw the graph of approaching this asymptote at the far left, increasing to
its maximum point at and decreasing toward the x-axis at the far right. We
also make sure that the graph has inflection points when and 2. Notice that
we made the curve bend upward for and , and bend downward when
x is between �2 and 2. ■

Another application of the second derivative is the following test for maximum and
minimum values. It is a consequence of the Concavity Test.

THE SECOND DERIVATIVE TEST Suppose is continuous near .

(a) If and , then has a local minimum at .

(b) If and , then has a local maximum at .

For instance, part (a) is true because near c and so is concave upward
near . This means that the graph of lies above its horizontal tangent at c and so
has a local minimum at . (See Figure 9.)

EXAMPLE 5 Discuss the curve with respect to concavity, points of
inflection, and local maxima and minima. Use this information to sketch the curve.

SOLUTION If , then

To find the critical numbers we set and obtain and . To use
the Second Derivative Test we evaluate at these critical numbers:

Since and , is a local minimum. Since ,
the Second Derivative Test gives no information about the critical number 0. But
since for and also for , the First Derivative Test tells us
that does not have a local maximum or minimum at 0. [ In fact, the expression for

shows that decreases to the left of 3 and increases to the right of 3.]
Since when or , we divide the real line into intervals with these

numbers as endpoints and complete the following chart.

The point is an inflection point since the curve changes from concave
upward to concave downward there. Also is an inflection point since the
curve changes from concave downward to concave upward there.

Using the local minimum, the intervals of concavity, and the inflection points, we
sketch the curve in Figure 10. ■

y � �2
f

x � 1
x � �2

x � �2 x � 2

f � c

f ��c� � 0 f ��c� � 0 f c

f ��c� � 0 f ��c� � 0 f c

f ��x� � 0 f
c f f

c

y � x 4 � 4x 3

f �x� � x 4 � 4x 3

f ��x� � 4x 3 � 12x 2 � 4x 2�x � 3�

f ��x� � 12x 2 � 24x � 12x�x � 2�

f ��x� � 0 x � 0 x � 3
f �

f ��0� � 0 f ��3� � 36 � 0

f ��3� � 0 f ��3� � 0 f �3� � �27 f ��0� � 0

f ��x� � 0 x � 0 0 � x � 3
f

f ��x� f
f ��x� � 0 x � 0 2

�0, 0�
�2, �16�

V
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NOTE The Second Derivative Test is inconclusive when . In other words,
at such a point there might be a maximum, there might be a minimum, or there might
be neither (as in Example 5). This test also fails when does not exist. In such
cases the First Derivative Test must be used. In fact, even when both tests apply, the
First Derivative Test is often the easier one to use.

EXAMPLE 6 Sketch the graph of the function .

SOLUTION You can use the differentiation rules to check that the first two deriva-
tives are

Since when and does not exist when or , the
critical numbers are , and .

To find the local extreme values we use the First Derivative Test. Since
changes from negative to positive at 0, is a local minimum. Since
changes from positive to negative at 4, is a local maximum. The sign of

does not change at 6, so there is no minimum or maximum there. (The Second
Derivative Test could be used at 4 but not at 0 or 6 since does not exist at either
of these numbers.)

Looking at the expression for and noting that for all , we have
for and for and for . So is concave

downward on and and concave upward on , and the only inflec-
tion point is . The graph is sketched in Figure 11. Note that the curve has verti-
cal tangents at and because as and as . ■

f ��c� � 0

f ��c�

f �x� � x 2�3�6 � x�1�3

f ��x� �
4 � x

x 1�3�6 � x�2�3 f ��x� �
�8

x 4�3�6 � x�5�3

f ��x� � 0 x � 4 f ��x� x � 0 x � 6
0, 4 6

f �
f �0� � 0 f �
f �4� � 25�3

f �
f �

f ��x� x 4�3 
 0 x
f ��x� � 0 x � 0 0 � x � 6 f ��x� � 0 x � 6 f

���, 0� �0, 6� �6, ��
�6, 0�

�0, 0� �6, 0� � f ��x� � l � x l 0 x l 6
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Interval f

� � � � decreasing on (��, 0)
� � � � increasing on (0, 4)
� � � � decreasing on (4, 6)
� � � � decreasing on (6, �)

4 � x f ��x��6 � x�2�3x 1�3

x � 6
4 � x � 6
0 � x � 4

x � 0

■ Try reproducing the graph in Fig -
ure 11 with a graphing calculator or
computer. Some machines produce the
complete graph, some produce only the
portion to the right of the -axis, and
some produce only the portion between

and . An equivalent expres-
sion that gives the correct graph is

y � �x 2 �1�3 �
6 � x

� 6 � x � � 6 � x �1�3

x � 6x � 0

y

FIGURE 11

y

x0

2

3

4

1 2 3 4 5 7

(4, 2%?# )

y=x@?#(6-x)!?#

■ www.stewartcalculus.com
See Additional Examples B, C, D.

4.3 EXERCISES

1–10 ■

(a) Find the intervals on which is increasing or decreasing.
(b) Find the local maximum and minimum values of .
(c) Find the intervals of concavity and the inflection points.

1.

2.

3.

4.

5.

6. ,  

f
f

f �x� � 2x 3 � 3x 2 � 36x

f �x� � 4x 3 � 3x 2 � 6x � 1

f �x� � x4 � 2x2 � 3

f �x� �
x

x 2 � 1

f �x� � sin x � cos x,    0 � x � 2	

f �x� � cos2x � 2 sin x 0 � x � 2	

7. 8.

9. 10.

11–12 ■ Find the local maximum and minimum values of 
using both the First and Second Derivative Tests. Which method
do you prefer?

11. 12.

13. Suppose is continuous on .
(a) If and , what can you say about ?
(b) If and , what can you say about ?

f

f �x� � 1 � 3x 2 � 2x 3 f �x� �
x 2

x � 1

f � ���, ��
f ��2� � 0 f ��2� � �5 f

ff ��6� � 0f ��6� � 0

f �x� � x 2 ln xf �x� � e2x � e�x

f �x� � x 4e�xf �x� � x 2 � x � ln x
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22. if ,  if ,  

,  ,  ,  

if ,  if 

23–24 ■ The graph of the derivative of a continuous function
is shown.

(a) On what intervals is increasing or decreasing?
(b) At what values of x does have a local maximum or

minimum?
(c) On what intervals is concave upward or downward?
(d) State the x-coordinate(s) of the point(s) of inflection.
(e) Assuming that , sketch a graph of f.

23.

24.

25–36 ■

(a) Find the intervals of increase or decrease.
(b) Find the local maximum and minimum values.
(c) Find the intervals of concavity and the inflection points.
(d) Use the information from parts (a)–(c) to sketch the graph.

Check your work with a graphing device if you have one.

25. 26.

27. 28.

29. 30.

31. 32.  

33. 34.

35. ,  

36. ,  

f ��x� � 0 0 � x � 3 f ��x� � 0 x � 3

� x � � 2f ��x� � 0� x � � 2f ��x� � 0

f ��x� � �f �x�lim
x l �

f �x� � 1f ��2� � 0

f �
f

f
f

f

f �0� � 0

2 4

y

0 x6 8

_2

y=fª(x)

2

y

0 x2 4 6 8

_2

2

y=fª(x)

f �x� � x 3 � 12x � 2 f �x� � 36x � 3x 2 � 2x 3

f �x� � 2 � 2x 2 � x 4
t�x� � 200 � 8x 3 � x 4

h�x� � �x � 1�5 � 5x � 2 h�x� � 5x 3 � 3x 5

F�x� � xs6 � x G�x� � 5x 2�3 � 2x 5�3

C�x� � x1�3�x � 4� f �x� � ln�x 4 � 27�

f ��� � 2 cos � � cos2� 0 � � � 2	

S�x� � x � sin x 0 � x � 4	

14. (a) Find the critical numbers of .
(b) What does the Second Derivative Test tell you about the

behavior of at these critical numbers?
(c) What does the First Derivative Test tell you?

15. In each part state the -coordinates of the inflection points
of . Give reasons for your answers.
(a) The curve is the graph of .
(b) The curve is the graph of .
(c) The curve is the graph of .

16. The graph of the first derivative of a function is shown.
(a) On what intervals is increasing? Explain.
(b) At what values of does have a local maximum or

minimum? Explain.
(c) On what intervals is concave upward or concave

down ward? Explain.
(d) What are the -coordinates of the inflection points of ?

Why?

17–22 ■ Sketch the graph of a function that satisfies all of the
given conditions.

17. and are always negative.

18. Vertical asymptote ,  if ,

if ,

if ,  if 

19. ,  

if or ,  

if or ,  

if ,  if or 

20. ,  if ,  

if ,  if ,  

if ,  inflection point 

21. if ,  if ,  

,  ,  if 

f

f �x� � x 4�x � 1�3

x
f

f
f �
f �

2

y

0 x4 6 8

ff �
f

fx

f

fx

3

y

0 x
5 71 9

y=fª(x)

f ��x�f ��x�

x � �2f ��x� � 0x � 0

�x � 0�x � �2f ��x� � 0

x � 0f ��x� � 0x � 0f ��x� � 0

f ��0� � f ��2� � f ��4� � 0

2 � x � 4x � 0f ��x� � 0

x � 40 � x � 2f ��x� � 0

x � 3x � 1f ��x� � 01 � x � 3f ��x� � 0

� x � � 1f ��x� � 0f ��1� � f ���1� � 0

� x � � 2f ��x� � �11 � � x � � 2f ��x� � 0

�0, 1��2 � x � 0f ��x� � 0

� x � � 2f ��x� � 0� x � � 2f ��x� � 0

x � 2f ��x� � 0lim
x l 2

� f ��x� � � �f ���2� � 0
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the factor and let’s analyze the special case
where . So we study the function

(a) Find the asymptote, maximum value, and inflection
points of .

(b) What role does play in the shape of the curve?

; (c) Illustrate by graphing four members of this family on
the same screen.

51. Find a cubic function that
has a local maximum value of at and a local
minimum value of 0 at .

52. For what values of the numbers and does the function

have the maximum value ?

53. (a) If the function has the local
minimum value at , what are the val-
ues of and ?

(b) Which of the tangent lines to the curve in part (a) has
the smallest slope?

54. Show that the inflection points of the curve lie
on the curve .

55. Show that the curve has three
points of inflection and they all lie on one straight line.

56. Show that the curves and touch the
curve at its inflection points.

57. Show that for . [Hint: Show that
is increasing on .]

58. (a) Show that for .
(b) Deduce that for .
(c) Use mathematical induction to prove that for

and any positive integer ,

59. Show that a cubic function (a third-degree polynomial) 
always has exactly one point of inflection. If its graph has
three -intercepts , and , show that the -coordinate
of the inflection point is .

; 60. For what values of does the polynomial
have two inflection points? One

inflection point? None? Illustrate by graphing for several
values of . How does the graph change as decreases?

61. Prove that if is a point of inflection of the graph 
of and exists in an open interval that contains , then

. [Hint: Apply the First Derivative Test and 
Fermat’s Theorem to the function .]

1�(�s2� )
� � 0

f �x� � e�x 2��2� 2�

f
�

f �x� � ax 3 � bx 2 � cx � d
3 x � �2

x � 1

a b

f �x� � axe bx2

f �2� � 1

f �x� � x 3 � ax 2 � bx
�

2
9 s3 x � 1�s3

a b

y � x sin x
y 2�x 2 � 4� � 4x 2

y � �1 � x���1 � x 2�

y � e�x y � �e�x

y � e�x sin x

tan x � x 0 � x � ��2
f �x� � tan x � x �0, ��2�

e x 	 1 � x x 	 0
e x 	 1 � x �

1
2 x 2 x 	 0

x 	 0
n

e x 	 1 � x �
x 2

2!
� 
 
 
 �

x n

n!

x x1, x2 x3 x
�x1 � x2 � x3 ��3

c
P�x� � x 4 � cx 3 � x 2

P
c c

�c, f �c��
f f � c

f ��c� � 0
t � f �

37–44 ■

(a) Find the vertical and horizontal asymptotes.
(b) Find the intervals of increase or decrease.
(c) Find the local maximum and minimum values.
(d) Find the intervals of concavity and the inflection points.
(e) Use the information from parts (a)–(d) to sketch the graph 

of .

37. 38.

39. 40.

41. 42.

43. 44.

45. Suppose the derivative of a function is
. On what interval is

increasing?

46. Use the methods of this section to sketch the curve
, where is a positive constant. What

do the members of this family of curves have in common?
How do they differ from each other?

;47–48 ■

(a) Use a graph of to estimate the maximum and minimum 
values. Then find the exact values.

(b) Estimate the value of at which increases most rapidly.
Then find the exact value.

47. 48.

49. A drug response curve describes the level of medication in
the bloodstream after a drug is administered. A surge 
function is often used to model the response 
curve, reflecting an initial surge in the drug level and then
a more gradual decline. If, for a particular drug,

, and is measured in minutes, estimate
the times corresponding to the inflection points and explain
their significance.  If you have a graphing device, use it to
graph the drug response curve.

50. The family of bell-shaped curves

occurs in probability and statistics, where it is called the
normal density function. The constant is called the mean
and the positive constant is called the standard devia-
tion. For simplicity, let’s scale the function so as to remove

f

f �x� �
x 2 � 4

x 2 � 4
f �x� � 1 �

1

x
�

1

x 2

f �x� �
e x

1 � e xf �x� � sx 2 � 1 � x

f �x� � e�x2

f �x� � x �
1
6 x 2 �

2
3 ln x

f �x� � earctan xf �x� � ln�1 � ln x�

f
ff ��x� � �x � 1�2�x � 3�5�x � 6�4

ay � x3 � 3a2x � 2a3

f

fx

f �x� � x 2 e�xf �x� �
x � 1

sx 2 � 1

S�t� � At pe�kt

A � 0.01,
tp � 4, k � 0.07

y �
1

�s2�
e��x���2��2� 2�

�
�
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65. Suppose is differentiable on an interval and
for all numbers in except for a single number . Prove
that is increasing on the entire interval .

66. For what values of is the function

increasing on ?

f I f ��x� � 0
x I c

f I

c

f �x� � cx �
1

x 2 � 3

��, �

62. Show that if , then , but is not an
inflection point of the graph of .

63. Show that the function has an inflection point
at but does not exist.

64. Suppose that is continuous and , but
. Does have a local maximum or minimum at ?

Does have a point of inflection at ?

f

t�x� � x � x �
�0, 0� t��0�

f � f ��c� � f ��c� � 0
f ��c� � 0 f c

f c

�0, 0�f ��0� � 0f �x� � x 4
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4.4 CURVE SKETCHING
So far we have been concerned with some particular aspects of curve sketching:
domain, range, symmetry, limits, continuity, and asymptotes in Chapter 1; deriva tives
and tangents in Chapters 2 and 3; l’Hospital’s Rule in Chapter 3; and extreme values,
intervals of increase and decrease, concavity, and points of inflection in this chapter.
It’s now time to put all of this information together to sketch graphs that reveal the
important features of functions.

You may ask: Why don’t we just use a graphing calculator or computer to graph a
curve? Why do we need to use calculus?

It’s true that modern technology is capable of producing very accurate graphs. But
even the best graphing devices have to be used intelligently. The use of calculus 
enables us to discover the most interesting aspects of curves and to detect behavior
that we might otherwise overlook. We will see in Example 4 how calculus helps us to
avoid the pitfalls of technology.

GUIDELINES FOR SKETCHING A CURVE

The following checklist is intended as a guide to sketching a curve by hand.
Not every item is relevant to every function. (For instance, a given curve might not
have an asymptote or possess symmetry.) But the guidelines provide all the informa-
tion you need to make a sketch that displays the most important aspects of the function.

A. Domain It’s often useful to start by determining the domain of , that is, the set
of values of for which is defined.

B. Intercepts The -intercept is and this tells us where the curve intersects the 
-axis. To find the -intercepts, we set and solve for . (You can omit this

step if the equation is difficult to solve.)
C. Symmetry

(i) If for all in , that is, the equation of the curve is
unchanged when is replaced by , then is an even function and the curve is
symmetric about the -axis. This means that our work is cut in half. If we know
what the curve looks like for , then we need only reflect about the -axis to
obtain the complete curve [see Figure 1(a)]. Here are some examples:

, and .
(ii) If for all in , then is an odd function and the curve

is symmetric about the origin. Again we can obtain the complete curve if we know
what it looks like for . [Rotate 180° about the origin; see Figure 1(b).] Some
simple examples of odd functions are , and .

(iii) If for all in , where is a positive constant, then is
called a periodic function and the smallest such number is called the period. 

y � f �x�

D f
x f �x�

y f �0�
y x y � 0 x

f ��x� � f �x� x D
x �x f

y
x 	 0 y

y � x 2,
y � x 4, y � � x � y � cos x

f ��x� � �f �x� x D f

x 	 0
y � x, y � x 3, y � x 5 y � sin x

f �x � p� � f �x� x D p f
pFIGURE 1 

(a) Even function: reflectional symmetry

(b) Odd function: rotational symmetry

x

y

0

x

y

0
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For instance, has period and has period . If we know what
the graph looks like in an interval of length , then we can use translation to sketch
the entire graph (see Figure 2).

D. Asymptotes
(i) Horizontal Asymptotes. Recall from Section 1.6 that if

or , then the line is a horizontal asymptote of the curve
. If it turns out that (or ), then we do not have an

asymptote to the right, but that is still useful information for sketching the curve.
(ii) Vertical Asymptotes. Recall from Section 1.6 that the line is a ver-

tical asymptote if at least one of the following statements is true:

(For rational functions you can locate the vertical asymptotes by equating the
denominator to 0 after canceling any common factors. But for other functions this
method does not apply.) Furthermore, in sketching the curve it is very useful 
to know exactly which of the statements in is true. If is not defined but
is an endpoint of the domain of , then you should compute or

, whether or not this limit is infinite.
E. Intervals of Increase or Decrease Use the I /D Test. Compute and find the

intervals on which is positive ( is increasing) and the intervals on which
is negative ( is decreasing).

F. Local Maximum and Minimum Values Find the critical numbers of [the num-
bers where or does not exist]. Then use the First Derivative Test.
If changes from positive to negative at a critical number , then is a local 
maximum. If changes from negative to positive at , then is a local mini-
mum. Although it is usually preferable to use the First Derivative Test, you can 
use the Second Derivative Test if and . Then 
implies that is a local minimum, whereas implies that is a local
maximum.

G. Concavity and Points of Inflection Compute and use the Concavity Test.
The curve is concave upward where and concave downward where

. Inflection points occur where the direction of concavity changes.
H. Sketch the Curve Using the information in items A–G, draw the graph. Sketch the

asymptotes as dashed lines. Plot the intercepts, maximum and minimum points,
and inflection points. Then make the curve pass through these points, rising 
and falling according to E, with concavity according to G, and approaching the
asymptotes. If additional accuracy is desired near any point, you can compute the
value of the derivative there. The tangent indicates the direction in which the curve
proceeds.

p

FIGURE 2 
Periodic function:

translational symmetry
a-p a a+p a+2p x

y

0

lim x l  f �x� � L
lim x l�  f �x� � L y � L

y � f �x� lim x l  f �x� �  �

x � a

lim
x la�

f �x� �  lim
x la�

f �x� � 

lim
x la�

f �x� � � lim
x la�

f �x� � �

f �a� a
f lim x l a� f �x�

lim x l a� f �x�
f ��x�

f ��x� f
f ��x� f

f
c f ��c� � 0 f ��c�

f � c f �c�
f � c f �c�

f ��c� � 0 f ��c� � 0 f ��c� � 0
f �c� f ��c� � 0 f �c�

f ��x�
f ��x� � 0

f ��x� � 0

1

�y � tan x2�y � sin x

1

In Module 4.4 you can practice
using information about and to
determine the shape of the graph of .f

f �f �
TEC
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EXAMPLE 1 Use the guidelines to sketch the curve .

A. The domain is

B. The - and -intercepts are both 0.
C. Since , the function is even. The curve is symmetric about the 

-axis.

D.

Therefore the line is a horizontal asymptote. 
Since the denominator is 0 when , we compute the following limits:

Therefore the lines and are vertical asymptotes. This information
about limits and asymptotes enables us to draw the preliminary sketch in 
Figure 3, showing the parts of the curve near the asymptotes.

E.

Since when and when , is
increasing on and and decreasing on and .

F. The only critical number is . Since changes from positive to negative 
at 0, is a local maximum by the First Derivative Test.

G.

Since for all , we have

and . Thus the curve is concave upward on the intervals
and and concave downward on . It has no point of inflec-

tion since 1 and are not in the domain of .
H. Using the information in E–G, we finish the sketch in Figure 4. ■

EXAMPLE 2 Sketch the graph of .

A. The domain is .
B. The - and -intercepts are both 0.
C. Symmetry: None
D. Because both x and become large as , we have . As

, however, and so we have an indeterminate product that requires
the use of l’Hospital’s Rule:

Thus the -axis is a horizontal asymptote.

�x � x 2 � 1 � 0� � �x � x � �1� � ��, �1� � ��1, 1� � �1, �

x y
f ��x� � f �x� f

y

lim
x l�

2x 2

x 2 � 1
� lim

x l�

2

1 � 1�x 2 � 2

y � 2
x � �1

lim
x l1�

2x 2

x 2 � 1
�  lim

x l1�

2x 2

x 2 � 1
� �

lim
x l�1�

2x 2

x 2 � 1
� � lim

x l�1�

2x 2

x 2 � 1
� 

x � 1 x � �1

f ��x� �
4x �x 2 � 1� � 2x 2 � 2x

�x 2 � 1�2 �
�4x

�x 2 � 1�2

f ��x� � 0 x � 0 �x � �1� f ��x� � 0 x � 0 �x � 1� f
��, �1� ��1, 0� �0, 1� �1, �

x � 0 f �
f �0� � 0

f ��x� �
�4�x 2 � 1�2 � 4x � 2�x 2 � 1�2x

�x 2 � 1�4 �
12x 2 � 4

�x 2 � 1�3

12x 2 � 4 � 0 x

f ��x� � 0 &? x 2 � 1 � 0 &? � x � � 1

f ��x� � 0   &? � x � � 1
��, �1� �1, � ��1, 1�

�1 f

f �x� � xex

�

y

ex x l  lim x l  xex � 
x l � ex l 0

lim
x l�

xex � lim
x l�

x

e�x � lim
x l�

1

�e�x � lim
x l�

��ex � � 0

V

x

x

y �
2x 2

x 2 � 1
V

■ We have shown the curve approach-
ing its horizontal asymptote from above
in Figure 3. This is confirmed by the
intervals of increase and decrease.

FIGURE 3 
Preliminary sketch

x=1x=_1

y=2

x

y

0

FIGURE 4 
Finished sketch of y=

x=1x=_1

y=2

2≈

≈-1

x

y

0
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FIGURE 5

x

y

1

_1_2

y=x´

(_1, _1/e)

E.

Since is always positive, we see that when , and
when . So f is increasing on and decreasing 

on .
F. Because and changes from negative to positive at ,

is a local (and absolute) minimum.

G.

Since if and if , is concave upward on
and concave downward on . The inflection point is .

H. We use this information to sketch the curve in Figure 5. ■

EXAMPLE 3 Sketch the graph of .

A. The domain is .
B. The -intercept is . The -intercepts occur when , that is,

, where is an integer.
C. is neither even nor odd, but for all and so is periodic

and has period . Thus in what follows we need to consider only
and then extend the curve by translation in part H.

D. Asymptotes: None

E.

Thus when 
. So is increasing on and decreasing on

and .
F. From part E and the First Derivative Test, we see that the local minimum value 

is and the local maximum value is .
G. If we use the Quotient Rule again and simplify, we get

Because and for all , we know that
when , that is, . So is concave upward on

and concave downward on and . The inflection
points are .

H. The graph of the function restricted to is shown in Figure 6. Then
we extend it, using periodicity, to the complete graph in Figure 7.

■

f ��x� � 0 x � 1 � 0 ��1, �
��, �1�

f ���1� � 0 f � x � �1
f ��1� � �e�1

f ��x� � �x � 1�ex � ex � �x � 2�ex

f ��x� � 0 x � �2 f ��x� � 0 x � �2 f
��2, � ��, �2� ��2, �2e�2�

f �x� �
cos x

2 � sin x

�

y f �0� � 1
2 x cos x � 0

x � �2n � 1���2 n
f f �x � 2�� � f �x� x f

2� 0 � x � 2�

f ��x� �
�2 � sin x���sin x� � cos x �cos x�

�2 � sin x�2 � �
2 sin x � 1

�2 � sin x�2

f ��x� � 0 2 sin x � 1 � 0  &? sin x � �
1
2 &?

7��6 � x � 11��6 f �7��6, 11��6�
�0, 7��6� �11��6, 2��

f �7��6� � �1�s3 f �11��6� � 1�s3

f ��x� � �
2 cos x �1 � sin x�

�2 � sin x�3

�2 � sin x�3 � 0 1 � sin x 	 0 x f ��x� � 0
cos x � 0 ��2 � x � 3��2 f

���2, 3��2� �0, ��2� �3��2, 2��
���2, 0� and �3��2, 0�

0 � x � 2�

FIGURE 6 FIGURE 7

y

xππ

2

1

2

2π3π

2

”     ,      ’
11π

6

1

œ„3

y

xπ_π

1

2

2π 3π

-”
7π

6

1

œ„3
, ’

f ��x� � xex � ex � �x � 1�ex

x � 1 � 0f ��x� � 0ex

■ www.stewartcalculus.com
See Additional Examples A, B.
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GRAPHING WITH TECHNOLOGY

When we use technology to graph a curve, our strategy is different from that in Exam-
ples 1–3. Here we start with a graph produced by a graphing calculator or computer
and then we refine it. We use calculus to make sure that we reveal all the important
features of the curve. And with the use of graphing devices we can tackle curves that
would be far too complicated to consider without technology.

EXAMPLE 4 Graph the polynomial . Use the graphs
of and to estimate all maximum and minimum points and intervals of concavity.

SOLUTION If we specify a domain but not a range, many graphing devices will
deduce a suitable range from the values computed. Figure 8 shows the plot from one
such device if we specify that . Although this viewing rectangle is use-
ful for showing that the asymptotic behavior (or end behavior) is the same as for

, it is obviously hiding some finer detail. So we change to the viewing rect-
angle by shown in Figure 9.

From this graph it appears that there is an absolute minimum value of about
3 when (by using the cursor) and is decreasing on

and increasing on . Also there appears to be a horizontal tangent at the
origin and inflection points when and when is somewhere between 
and .

Now let’s try to confirm these impressions using calculus. We differentiate 
and get 

When we graph in Figure 10 we see that changes from negative to positive
when ; this confirms (by the First Derivative Test) the minimum value
that we found earlier. But, perhaps to our surprise, we also notice that changes
from positive to negative when and from negative to positive when .
This means that has a local maximum at 0 and a local minimum when ,
but these were hidden in Figure 9. Indeed, if we now zoom in toward the origin in
Figure 11, we see what we missed before: a local maximum value of 0 when
and a local minimum value of about when .

What about concavity and inflection points? From Figures 9 and 11 there appear
to be inflection points when is a little to the left of and when is a little to the 

f �x� � 2x 6 � 3x 5 � 3x 3 � 2x 2

f � f �

�5 � x � 5

y � 2x 6

��3, 2	 ��50, 100	

�15.3 x 
 �1.62 f ��, �1.62�
��1.62, �

x � 0 x �2
�1

f ��x� � 12x 5 � 15x 4 � 9x 2 � 4x

f ��x� � 60x 4 � 60x 3 � 18x � 4

f � f ��x�
x 
 �1.62

f ��x�
x � 0 x 
 0.35

f x 
 0.35

x � 0
�0.1 x 
 0.35

20

_5

_3 2

y=fª(x)

FIGURE 10

1

_1

_1 1

y=ƒ

FIGURE 11

x �1 x
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41,000

_1000

_5 5

y=ƒ

FIGURE 8

100

_50

_3 2

y=ƒ

FIGURE 9

■ www.stewartcalculus.com
See Additional Examples C–F.
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4.4 EXERCISES

1–44 ■ Use the guidelines of this section to sketch the curve.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. ,  

30. ,  

31. ,  

32. ,

33. 34.

35. 36.

37. 38.

y � x 3 � 12x 2 � 36x y � 2 � 3x 2 � x 3

y � x 4 � 4x y � x 4 � 8x 2 � 8

y � x�x � 4�3 y � x 5 � 5x

y � 1
5 x 5 �

8
3 x 3 � 16x y � �4 � x 2 �5

y �
x

x � 1
y � 1 �

1

x
�

1

x 2

y �
1

x 2 � 9
y �

x

x 2 � 9

y �
x

x 2 � 9
y �

x 2

x 2 � 9

y �
x � 1

x 2 y �
x

x 3 � 1

y � xs5 � x y � 2sx � x

y �
x

sx2 � 1
y � sx 2 � x � x

y �
s1 � x 2 

x
y � xs2 � x 2 

y � x � 3x1�3 y � x 5�3 � 5x 2�3

y � s
3 x 2 � 1 y � s

3 x 3 � 1

y � sin3 x y � x � cos x

y � x tan x ���2 � x � ��2

y � 2x � tan x ���2 � x � ��2

y � 1
2 x � sin x 0 � x � 3�

y � sec x � tan x 0 � x � ��2

y �
sin x

1 � cos x
y �

sin x

2 � cos x

y � 1��1 � e �x � y � e2 x � e x

y � x ln x y � e x�x 2

39. 40.

41. 42.

43. 44.

45. In the theory of relativity, the mass of a particle is

where is the rest mass of the particle, is the mass
when the particle moves with speed relative to the
observer, and is the speed of light. Sketch the graph of
as a function of .

46. In the theory of relativity, the energy of a particle is

where is the rest mass of the particle, is its wave
length, and is Planck’s constant. Sketch the graph of as
a function of . What does the graph say about the energy?

47. The figure shows a beam of length embedded in concrete
walls. If a constant load is distributed evenly along its
length, the beam takes the shape of the deflection curve

where and are positive constants. ( is Young’s modulus
of elasticity and is the moment of inertia of a cross-section
of the beam.) Sketch the graph of the deflection curve.

y � xe�1�x y � tan�1� x � 1

x � 1�
y � ln�sin x� y � e x � 3e �x � 4x

m �
m0

s1 � v2�c2 

m0 m
v

c m
v

E � sm0
2 c4 � h2 c 2��2 

m0 �
h E

�

L
W

y � �
W

24EI
x 4 �

WL

12EI
x 3 �

WL2

24EI
x 2

E I E
I

Wy

0

L

y � xe�x y � ln�x 2 � 3x � 2�

right of 0. But it’s difficult to determine inflection points from the graph of , so we
graph the second derivative in Figure 12. We see that changes from positive 
to negative when and from negative to positive when . So, cor-
rect to two decimal places, is concave upward on and and
concave downward on . The inflection points are 
and .

We have discovered that no single graph reveals all the important features of 
this polynomial. But Figures 9 and 11, when taken together, do provide an accurate
picture. ■

f ��, �1.23� �0.19, �
��1.23, 0.19� ��1.23, �10.18�

�0.19, �0.05�

f
f �f �

x 
 0.19x 
 �1.23
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10

_30

_3 2

y=f·(x)

FIGURE 12
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; 55–58 ■ Produce graphs of that reveal all the important
aspects of the curve. In particular, you should use graphs of
and to estimate the intervals of increase and decrease,
extreme values, intervals of concavity, and inflection points.

55.

56.

57. ,  

58.

59–60 ■ Produce graphs of that reveal all the important
aspects of the curve. Estimate the intervals of increase and
decrease and intervals of concavity, and use calculus to find
these intervals exactly.

59. 60.

; 61–65 ■ Describe how the graph of varies as varies. Graph 
several members of the family to illustrate the trends that you
discover. In particular, you should investigate how maximum
and minimum points and inflection points move when
changes. You should also identify any transitional values of 
at which the basic shape of the curve changes.

61. 62.

63. 64.

65.

; 66. Investigate the family of curves given by the equation
. Start by determining the transi-

tional value of at which the number of inflection points
changes. Then graph several members of the family to see
what shapes are possible. There is another transitional
value of at which the number of critical numbers
changes. Try to discover it graphically. Then prove what
you have discovered.

f �x� � 1 �
1

x
�

8

x 2 �
1

x 3 f �x� �
1

x 8 �
2 � 108

x 4

f c

c
c

f �x� � sx 4 � cx 2 f �x� � x 3 � cx

f �x� � e�c�x 2

f �x� � ln�x 2 � c�

f �x� � cx � sin x

f �x� � x 4 � cx 2 � x
c

c

f
f �

f �

f �x� � 4x 4 � 32x 3 � 89x 2 � 95x � 29

f �x� � x6 � 15x 5 � 75x 4 � 125x 3 � x

�� � x � �f �x� � 6 sin x � cot x

f �x� � e x � 0.186x 4

f

48. Coulomb’s Law states that the force of attraction between
two charged particles is directly proportional to the prod-
uct of the charges and inversely proportional to the square
of the distance between them. The figure shows particles
with charge 1 located at positions 0 and 2 on a coordinate
line and a particle with charge at a position between
them. It follows from Coulomb’s Law that the net force
acting on the middle particle is

where is a positive constant. Sketch the graph of the net
force function. What does the graph say about the force?

49–52 ■ The line is called a slant asymptote
if as or because the 
vertical distance between the curve and the line

approaches 0 as becomes large. Find an equa-
tion of the slant asymptote of the function and use it to help
sketch the graph. [For rational functions, a slant asymptote
occurs when the degree of the numerator is one more than the
degree of the denominator. To find it, use long division to write

.]

49. 50.

51. 52.

53. Show that the curve has two slant asymp-
totes: and . Use this fact to
help sketch the curve.

54. Show that the curve has two slant asymp-
totes: and . Use this fact to help
sketch the curve.
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SECTION 4.5  OPTIMIZATION PROBLEMS 231

4.5 OPTIMIZATION PROBLEMS
The methods we have learned in this chapter for finding extreme values have practi-
cal applications in many areas of life. A businessperson wants to minimize costs and
maximize profits. A traveler wants to minimize transportation time. Fermat’s Principle
in optics states that light follows the path that takes the least time. In this section and
the next we solve such problems as maximizing areas, volumes, and profits and min-
imizing distances, times, and costs.

In solving such practical problems the greatest challenge is often to convert the
word problem into a mathematical optimization problem by setting up the function
that is to be maximized or minimized. The following steps may be useful.
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12280_ch04_ptg01_hr_224-233.qk_12280_ch04_ptg01_hr_224-233  11/16/11  3:47 PM  Page 231

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1. Understand the Problem The first step is to read the problem carefully until it is
clearly understood. Ask yourself: What is the unknown? What are the given quan-
tities? What are the given conditions?

2. Draw a Diagram In most problems it is useful to draw a diagram and identify
the given and required quantities on the diagram.

3. Introduce Notation Assign a symbol to the quantity that is to be maximized
or minimized (let’s call it for now). Also select symbols 
for other unknown quantities and label the diagram with these symbols. It may
help to use initials as suggestive symbols—for example, for area, for
height, for time.

4. Express in terms of some of the other symbols from Step 3.

5. If has been expressed as a function of more than one variable in Step 4, use the
given information to find relationships (in the form of equations) among these
variables. Then use these equations to eliminate all but one of the variables in the
expression for . Thus will be expressed as a function of one variable , say,

. Write the domain of this function.

6. Use the methods of Sections 4.1 and 4.3 to find the absolute maximum or mini-
mum value of . In particular, if the domain of is a closed interval, then the
Closed Interval Method in Section 4.1 can be used.

EXAMPLE 1 A farmer has 2400 ft of fencing and wants to fence off a rectangular
field that borders a straight river. He needs no fence along the river. What are the
dimensions of the field that has the largest area?

SOLUTION In order to get a feeling for what is happening in this problem, let’s
experiment with some special cases. Figure 1 (not to scale) shows three possible
ways of laying out the 2400 ft of fencing. We see that when we try shallow, wide
fields or deep, narrow fields, we get relatively small areas. It seems plausible that
there is some intermediate configuration that produces the largest area.

Figure 2 illustrates the general case. We wish to maximize the area of the rect-
angle. Let and be the depth and width of the rectangle (in feet). Then we express

in terms of and :

We want to express as a function of just one variable, so we eliminate by
expressing it in terms of . To do this we use the given information that the total
length of the fencing is 2400 ft. Thus 

Q �a, b, c, . . . , x, y�

A h
t

Q

Q

Q Q x
Q � f �x�

f f

STEPS IN SOLVING 
OPTIMIZATION PROBLEMS
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From this equation we have , which gives

Note that 0 and (otherwise ). So the function that we wish to
maximize is

The derivative is , so to find the critical numbers we solve the 
equation

which gives . The maximum value of must occur either at this critical
number or at an endpoint of the interval. Since , 
and , the Closed Interval Method gives the maximum value as

.
[Alternatively, we could have observed that for all , so is

always concave downward and the local maximum at must be an absolute
maximum.]

Thus the rectangular field should be 600 ft deep and 1200 ft wide. ■

EXAMPLE 2 A cylindrical can is to be made to hold 1 L of oil. Find the dimen-
sions that will minimize the cost of the metal to manufacture the can.

SOLUTION Draw the diagram as in Figure 3, where is the radius and the height
(both in centimeters). In order to minimize the cost of the metal, we minimize the
total surface area of the cylinder (top, bottom, and sides). From Figure 4 we see that
the sides are made from a rectangular sheet with dimensions and h. So the
surface area is

To eliminate we use the fact that the volume is given as 1 L, which we take to
be 1000 cm . Thus

which gives . Substitution of this into the expression for gives

Therefore the function that we want to minimize is

To find the critical numbers, we differentiate:

Then when , so the only critical number is .
Since the domain of is , we can’t use the argument of Example 1 con-

cerning endpoints. But we can observe that for and
for , so is decreasing for all to the left of the critical 

y � 2400 � 2x

A � x �2400 � 2x� � 2400x � 2x 2

x 	 x � 1200 A � 0
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r h
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h
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number and increasing for all to the right. Thus must give rise to an
absolute minimum.

[Alternatively, we could argue that as and as ,
so there must be a minimum value of , which must occur at the critical number.
See Figure 5.]

The value of corresponding to is

Thus to minimize the cost of the can, the radius should be cm and
the height should be equal to twice the radius, namely, the diameter. ■

NOTE 1 The argument used in Example 2 to justify the absolute minimum is a
variant of the First Derivative Test (which applies only to local maximum or minimum
values) and is stated here for future reference.

FIRST DERIVATIVE TEST FOR ABSOLUTE EXTREME VALUES Suppose that is
a critical number of a continuous function defined on an interval.

(a) If for all and for all , then is the
absolute maximum value of .

(b) If for all and for all , then is the
absolute minimum value of .

NOTE 2 An alternative method for solving optimization problems is to use implicit
differentiation. Let’s look at Example 2 again to illustrate the method. We work with
the same equations

but instead of eliminating h, we differentiate both equations implicitly with respect 
to r :

The minimum occurs at a critical number, so we set , simplify, and arrive at the
equations

and subtraction gives , or .

EXAMPLE 3 Find the point on the parabola that is closest to the 
point .

SOLUTION The distance between the point and the point is

(See Figure 6.) But if lies on the parabola, then , so the expression
for becomes

r r � s
3 500��

A�r� l � r l 0� A�r� l � r l �
A�r�

h r � s
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� 2r
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c
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(Alternatively, we could have substituted to get in terms of alone.)
Instead of minimizing , we minimize its square:

(You should convince yourself that the minimum of occurs at the same point as
the minimum of , but is easier to work with.) Differentiating, we obtain

so when . Observe that when and when
, so by the First Derivative Test for Absolute Extreme Values, the absolute

minimum occurs when . (Or we could simply say that because of the geo-
metric nature of the problem, it’s obvious that there is a closest point but not a far-
thest point.) The corresponding value of is . Thus the point on

closest to is . ■

EXAMPLE 4 A man launches his boat from point on a bank of a straight river, 
3 km wide, and wants to reach point , 8 km downstream on the opposite bank, as
quickly as possible (see Figure 7). He could row his boat directly across the river to
point and then run to , or he could row directly to , or he could row to some
point between and and then run to . If he can row 6 km�h and run 8 km�h,
where should he land to reach as soon as possible? (We assume that the speed of
the water is negligible compared with the speed at which the man rows.)

SOLUTION If we let be the distance from to , then the running distance 
is and the Pythagorean Theorem gives the rowing distance as

. We use the equation

Then the rowing time is and the running time is , so the total
time as a function of is

The domain of this function is . Notice that if he rows to and if
he rows directly to . The derivative of is

Thus, using the fact that , we have
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The only critical number is . To see whether the minimum occurs at this
critical number or at an endpoint of the domain , we evaluate at all three
points:

Since the smallest of these values of occurs when , the absolute mini-
mum value of must occur there. Figure 8 illustrates this calculation by showing
the graph of .

Thus the man should land the boat at a point km ( km) downstream
from his starting point. ■

EXAMPLE 5 Find the area of the largest rectangle that can be inscribed in a
semicircle of radius .

SOLUTION 1 Let’s take the semicircle to be the upper half of the circle
with center the origin. Then the word inscribed means that the rect-

angle has two vertices on the semicircle and two vertices on the -axis as shown in
Figure 9.

Let be the vertex that lies in the first quadrant. Then the rectangle has sides
of lengths and , so its area is

To eliminate we use the fact that lies on the circle and so
. Thus

The domain of this function is . Its derivative is

which is 0 when , that is, (since ). This value of gives a 
maximum value of since and . Therefore the area of the largest
inscribed rectangle is

SOLUTION 2 A simpler solution is possible if we think of using an angle as a
variable. Let be the angle shown in Figure 10. Then the area of the rectangle is

We know that has a maximum value of 1 and it occurs when . So
has a maximum value of and it occurs when .

Notice that this trigonometric solution doesn’t involve differentiation. In fact, we 
didn’t need to use calculus at all. ■
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APPLICATIONS TO BUSINESS AND ECONOMICS

In Example 10 in Section 2.3 we introduced the idea of marginal cost. Recall that if
, the cost function, is the cost of producing units of a certain product, then the

marginal cost is the rate of change of with respect to . In other words, the mar-
ginal cost function is the derivative, , of the cost function.

Now let’s consider marketing. Let be the price per unit that the company can
charge if it sells units. Then is called the demand function (or price function)
and we would expect it to be a decreasing function of . If units are sold and the
price per unit is , then the total revenue is

and is called the revenue function. The derivative of the revenue function 
is called the marginal revenue function and is the rate of change of revenue with
respect to the number of units sold.

If units are sold, then the total profit is

and is called the profit function. The marginal profit function is , the derivative
of the profit function. In Exercises 43– 48 you are asked to use the marginal cost, rev-
enue, and profit functions to minimize costs and maximize revenues and profits.

EXAMPLE 6 A store has been selling 200 DVD burners a week at each. 
A market survey indicates that for each rebate offered to buyers, the number of
units sold will increase by 20 a week. Find the demand function and the revenue
function. How large a rebate should the store offer to maximize its revenue?

SOLUTION If is the number of DVD burners sold per week, then the weekly
increase in sales is . For each increase of 20 units sold, the price is
decreased by . So for each additional unit sold, the decrease in price will 
be and the demand function is

The revenue function is

Since , we see that when . This value of gives
an absolute maximum by the First Derivative Test (or simply by observing that the
graph of is a parabola that opens downward). The corresponding price is

and the rebate is . So to maximize revenue, the store should offer
a rebate of . ■
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4.5 EXERCISES

1. Consider the following problem: Find two numbers whose
sum is 23 and whose product is a maximum.
(a) Make a table of values, like the following one, so that

the sum of the numbers in the first two columns is
always 23. On the basis of the evidence in your table,
estimate the answer to the problem.

(b) Use calculus to solve the problem and compare with
your answer to part (a).

2. Find two numbers whose difference is 100 and whose prod-
uct is a minimum.

3. Find two positive numbers whose product is 100 and whose
sum is a minimum.

4. The sum of two positive numbers is 16. What is the smallest
possible value of the sum of their squares?

5. What is the maximum vertical distance between the line
and the parabola for ?

6. What is the minimum vertical distance between the parabo-
las and ?

7. Find the dimensions of a rectangle with perimeter 100 m
whose area is as large as possible.

8. Find the dimensions of a rectangle with area whose
perimeter is as small as possible.

9. Consider the following problem: A farmer with 750 ft of
fencing wants to enclose a rectangular area and then divide
it into four pens with fencing parallel to one side of the 
rectangle. What is the largest possible total area of the four
pens?
(a) Draw several diagrams illustrating the situation, some

with shallow, wide pens and some with deep, narrow
pens. Find the total areas of these configurations. Does
it appear that there is a maximum area? If so, estimate it.

(b) Draw a diagram illustrating the general situation. Intro-
duce notation and label the diagram with your symbols.

(c) Write an expression for the total area.
(d) Use the given information to write an equation that

relates the variables.
(e) Use part (d) to write the total area as a function of one 

variable.
(f ) Finish solving the problem and compare the answer

with your estimate in part (a).

y � x � 2 y � x 2 �1 
 x 
 2

y � x 2 � 1 y � x � x 2

1000 m2

10. Consider the following problem: A box with an open top is
to be constructed from a square piece of cardboard, 3 ft
wide, by cutting out a square from each of the four corners
and bending up the sides. Find the largest volume that such
a box can have.
(a) Draw several diagrams to illustrate the situation, some

short boxes with large bases and some tall boxes with
small bases. Find the volumes of several such boxes.
Does it appear that there is a maximum volume? If so,
estimate it.

(b) Draw a diagram illustrating the general situation. Intro-
duce notation and label the diagram with your symbols.

(c) Write an expression for the volume.
(d) Use the given information to write an equation that

relates the variables.
(e) Use part (d) to write the volume as a function of one 

variable.
(f ) Finish solving the problem and compare the answer

with your estimate in part (a).

11. If 1200 cm of material is available to make a box with a
square base and an open top, find the largest possible
volume of the box.

12. A box with a square base and open top must have a volume
of 32,000 cm . Find the dimensions of the box that mini -
mize the amount of material used.

13. (a) Show that of all the rectangles with a given area, the one
with smallest perimeter is a square.

(b) Show that of all the rectangles with a given perimeter,
the one with greatest area is a square.

14. A rectangular storage container with an open top is to have
a volume of 10 m . The length of its base is twice the width.
Material for the base costs $10 per square meter. Material
for the sides costs $6 per square meter. Find the cost of
materials for the cheapest such container.

15. Find the point on the line that is closest to the 
origin.

16. Find the point on the curve that is closest to the 
point .

17. Find the points on the ellipse that are farthest
away from the point .

; 18. Find, correct to two decimal places, the coordinates of the
point on the curve that is closest to the point .

19. Find the dimensions of the rectangle of largest area that can
be inscribed in an equilateral triangle of side if one side
of the rectangle lies on the base of the triangle.

20. Find the area of the largest trapezoid that can be inscribed
in a circle of radius 1 and whose base is a diameter of the
circle.

2

3

3

y � 2x � 3

y � sx
�3, 0�

4x 2 � y 2 � 4
�1, 0�

y � sin x �4, 2�

L
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efficiency, what must be minimized is not the consumption
in gallons per hour but rather the fuel consumption in
gallons per mile. Let’s call this consumption . Using the
graph, estimate the speed at which has its minimum
value.

33. If a resistor of ohms is connected across a battery of 
volts with internal resistance ohms, then the power 

(in watts) in the external resistor is

If and are fixed but varies, what is the maximum
value of the power?

34. For a fish swimming at a speed relative to the water, the
energy expenditure per unit time is proportional to . It is
believed that migrating fish try to minimize the total energy
required to swim a fixed distance. If the fish are swimming
against a current , then the time required to swim a
distance is and the total energy required to 
swim the distance is given by

where is the proportionality constant.
(a) Determine the value of that minimizes .
(b) Sketch the graph of .

Note: This result has been verified experimentally; 
migrating fish swim against a current at a speed
greater than the current speed.

35. In a beehive, each cell is a regular hexagonal prism, open 
at one end with a trihedral angle at the other end as in the
figure. It is believed that bees form their cells in such a way
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21. Find the dimensions of the isosceles triangle of largest area
that can be inscribed in a circle of radius .

22. Find the area of the largest rectangle that can be inscribed in
a right triangle with legs of lengths 3 cm and 4 cm if two
sides of the rectangle lie along the legs.

23. A right circular cylinder is inscribed in a sphere of radius .
Find the largest possible volume of such a cylinder.

24. Find the area of the largest rectangle that can be inscribed in
the ellipse .

25. A Norman window has the shape of a rectangle surmounted 
by a semicircle. (Thus the diameter of the semicircle is
equal to the width of the rectangle.) If the perimeter of the
window is 30 ft, find the dimensions of the window so that
the greatest possible amount of light is admitted.

26. A right circular cylinder is inscribed in a cone with height
and base radius . Find the largest possible volume of such
a cylinder.

27. A piece of wire 10 m long is cut into two pieces. One piece 
is bent into a square and the other is bent into an equilateral 
triangle. How should the wire be cut so that the total area
enclosed is (a) a maximum? (b) A minimum?

28. A fence 8 ft tall runs parallel to a tall building at a distance
of 4 ft from the building. What is the length of the shortest
ladder that will reach from the ground over the fence to the
wall of the building?

29. A cone-shaped drinking cup is made from a circular piece
of paper of radius by cutting out a sector and joining the
edges and . Find the maximum capacity of such a
cup.

30. A cone-shaped paper drinking cup is to be made to hold
of water. Find the height and radius of the cup that

will use the smallest amount of paper.

31. A cone with height is inscribed in a larger cone with
height so that its vertex is at the center of the base of the
larger cone. Show that the inner cone has maximum volume
when .

32. The graph shows the fuel consumption of a car (measured
in gallons per hour) as a function of the speed of the car.
At very low speeds the engine runs inefficiently, so initially

decreases as the speed increases. But at high speeds the
fuel consumption increases. You can see that is mini-
mized for this car when mi�h. However, for fuel

r

r

x 2�a 2 � y 2�b 2 � 1

h
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43. (a) If is the cost of producing units of a commodity,
then the average cost per unit is . Show
that if the average cost is a minimum, then the marginal
cost equals the average cost.

(b) If , in dollars, find 
(i) the cost, average cost, and marginal cost at a pro-
duction level of 1000 units; (ii) the production level 
that will minimize the average cost; and (iii) the mini-
mum average cost.

44. (a) Show that if the profit is a maximum, then the
marginal revenue equals the marginal cost.

(b) If is the
cost function and is the demand
function, find the production level that will maximize
profit.

45. A baseball team plays in a stadium that holds 55,000 spec-
tators. With ticket prices at , the average attendance had
been 27,000. When ticket prices were lowered to , the
average attendance rose to 33,000.
(a) Find the demand function, assuming that it is linear.
(b) How should ticket prices be set to maximize revenue?

46. During the summer months Terry makes and sells
necklaces on the beach. Last summer he sold the necklaces
for each and his sales averaged 20 per day. When he
increased the price by , he found that the average
decreased by two sales per day.
(a) Find the demand function, assuming that it is linear.
(b) If the material for each necklace costs Terry , what

should the selling price be to maximize his profit?

47. A manufacturer has been selling 1000 flat-screen TVs a
week at each. A market survey indicates that for each

rebate offered to the buyer, the number of TVs sold
will increase by 100 per week.
(a) Find the demand function.
(b) How large a rebate should the company offer the buyer

in order to maximize its revenue?
(c) If its weekly cost function is ,

how should the manufacturer set the size of the rebate
in order to maximize its profit?

48. The manager of a 100-unit apartment complex knows from
experience that all units will be occupied if the rent is 
per month. A market survey suggests that, on average, one
additional unit will remain vacant for each increase in
rent. What rent should the manager charge to maximize 
revenue?

49. Let and be positive numbers. Find the length of the
shortest line segment that is cut off by the first quadrant
and passes through the point .

50. The frame for a kite is to be made from six pieces of wood.
The four exterior pieces have been cut with the lengths 

xC�x�
c�x� � C�x��x

C�x� � 16,000 � 200x � 4x 3�2

P�x�

C�x� � 16,000 � 500x � 1.6x 2 � 0.004x 3

p�x� � 1700 � 7x

$10
$8

$10
$1

$6

$450
$10

C�x� � 68,000 � 150x

$800

$10

ba

�a, b�

CAS

as to minimize the surface area, thus using the least amount
of wax in cell construction. Examination of these cells has
shown that the measure of the apex angle is amazingly
consistent. Based on the geometry of the cell, it can be
shown that the surface area is given by

where , the length of the sides of the hexagon, and , the
height, are constants.
(a) Calculate .
(b) What angle should the bees prefer?
(c) Determine the minimum surface area of the cell (in

terms of and ).

Note: Actual measurements of the angle in beehives have
been made, and the measures of these angles seldom differ
from the calculated value by more than .

36. A boat leaves a dock at 2:00 PM and travels due south at a
speed of 20 km�h. Another boat has been heading due east
at 15 km�h and reaches the same dock at 3:00 PM. At what
time were the two boats closest together?

37. The illumination of an object by a light source is directly 
proportional to the strength of the source and inversely 
proportional to the square of the distance from the source. 
If two light sources, one three times as strong as the other,
are placed 10 ft apart, where should an object be placed 
on the line between the sources so as to receive the least
illumination?

38. A woman at a point on the shore of a circular lake with
radius 2 mi wants to arrive at the point diametrically
opposite on the other side of the lake in the shortest pos-
sible time. She can walk at the rate of 4 mi�h and row a
boat at 2 mi�h. How should she proceed?

39. Find an equation of the line through the point that
cuts off the least area from the first quadrant.

40. At which points on the curve does the
tangent line have the largest slope?

41. What is the shortest possible length of the line segment that
is cut off by the first quadrant and is tangent to the curve

at some point?

42. What is the smallest possible area of the triangle that is cut
off by the first quadrant and whose hypotenuse is tangent to
the parabola at some point?

�
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S � 6sh �
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would you fold it so as to minimize the length of the fold?
In other words, how would you choose to minimize ?

54. A steel pipe is being carried down a hallway 9 ft wide. 
At the end of the hall there is a right-angled turn into a nar-
rower hallway 6 ft wide. What is the length of the longest
pipe that can be carried horizontally around the corner?

55. Find the maximum area of a rectangle that can be circum -
scribed about a given rectangle with length and width .
[Hint: Express the area as a function of an angle .]

56. A rain gutter is to be constructed from a metal sheet of
width 30 cm by bending up one-third of the sheet on each
side through an angle . How should be chosen so that the
gutter will carry the maximum amount of water?

57. Where should the point be chosen on the line segment
so as to maximize the angle ?

58. A painting in an art gallery has height and is hung so that
its lower edge is a distance above the eye of an observer
(as in the figure). How far from the wall should the observer
stand to get the best view? (In other words, where should
the observer stand so as to maximize the angle subtended
at his eye by the painting?)
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x y
indicated in the figure. To maximize the area of the kite,
how long should the diagonal pieces be?

51. Let be the velocity of light in air and the velocity of
light in water. According to Fermat’s Principle, a ray of
light will travel from a point in the air to a point in the
water by a path that minimizes the time taken. Show
that

where (the angle of incidence) and (the angle of
refrac tion) are as shown. This equation is known as Snell’s
Law.

52. Two vertical poles and are secured by a rope 
going from the top of the first pole to a point on the
ground between the poles and then to the top of the second
pole as in the figure. Show that the shortest length of such a
rope occurs when .

53. The upper right-hand corner of a piece of paper, 12 in. by
8 in., as in the figure, is folded over to the bottom edge. How 
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4.6 NEWTON’S METHOD
Suppose that a car dealer offers to sell you a car for $18,000 or for payments of $375
per month for five years. You would like to know what monthly interest rate the dealer
is, in effect, charging you. To find the answer, you have to solve the equation

(The details are explained in Exercise 31.) How would you solve such an equation?
For a quadratic equation there is a well-known formula for the

roots. For third- and fourth-degree equations there are also formulas for the roots, but
they are extremely complicated. If f is a polynomial of degree 5 or higher, there is no
such formula. Likewise, there is no formula that will enable us to find the exact roots
of a transcendental equation such as .

We can find an approximate solution to Equation 1 by plotting the left side of the
equation. Using a graphing device, and after experimenting with viewing rectangles,
we produce the graph in Figure 1.

We see that in addition to the solution x � 0, which doesn’t interest us, there is a
solution between 0.007 and 0.008. Zooming in shows that the root is approximately
0.0076. If we need more accuracy we could zoom in repeatedly, but that becomes tire-
some. A faster alternative is to use a numerical rootfinder on a calculator or computer
algebra system. If we do so, we find that the root, correct to nine decimal places, is
0.007628603.

How do those numerical rootfinders work? They use a variety of methods, but 
most of them make some use of Newton’s method, which is also called the Newton-
Raphson method. We will explain how this method works, partly to show what hap-
pens inside a calculator or computer, and partly as an application of the idea of linear
approximation.

The geometry behind Newton’s method is shown in Figure 2, where the root that
we are trying to find is labeled . We start with a first approximation , which is
obtained by guessing, or from a rough sketch of the graph of , or from a computer-
generated graph of f. Consider the tangent line to the curve at the point

and look at the -intercept of , labeled . The idea behind Newton’s
method is that the tangent line is close to the curve and so its x-intercept, , is close
to the x-intercept of the curve (namely, the root r that we are seeking). Because the
tangent is a line, we can easily find its x-intercept.

To find a formula for in terms of we use the fact that the slope of L is ,
so its equation is

Since the -intercept of is , we set and obtain

If , we can solve this equation for :

We use as a second approximation to r.

48x�1 � x�60 � �1 � x�60 � 1 � 0

ax 2 � bx � c � 0

cos x � x

1

r x1

f
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�x1, f �x1�� x L x2

x2

x2 x1 f ��x1�
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x L x2 y � 0
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FIGURE 1

■ Try to solve Equation 1 using the
numerical rootfinder on your calculator
or computer. Some machines are not
able to solve it. Others are successful
but require you to specify a starting
point for the search.
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Next we repeat this procedure with replaced by , using the tangent line at
. This gives a third approximation:

If we keep repeating this process, we obtain a sequence of approximations
as shown in Figure 3. In general, if the th approximation is and
, then the next approximation is given by

If the numbers become closer and closer to as becomes large, then we say
that the sequence converges to and we write

| Although the sequence of successive approximations converges to the desired root for
functions of the type illustrated in Figure 3, in certain circumstances the sequence may
not converge. For example, consider the situation shown in Figure 4. You can see that

is a worse approximation than . This is likely to be the case when is close
to 0. It might even happen that an approximation (such as in Figure 4) falls outside
the domain of . Then Newton’s method fails and a better initial approximation
should be chosen. See Exercises 25–27 for specific examples in which Newton’s
method works very slowly or does not work at all.

EXAMPLE 1 Starting with , find the third approximation to the root of
the equation .

SOLUTION We apply Newton’s method with

and    

Newton himself used this equation to illustrate his method and he chose after
some experimentation because , , and . Equation 2
becomes

With we have

Then with we obtain

�x2, f �x2 ��

x3 � x2 �
f �x2 �
f ��x2 �

x1, x2,
x3, x4, . . . n xn

f ��xn � � 0

xn�1 � xn �
f �xn �
f ��xn �

xn r n
r

lim
n l �

xn � r

x2 x1 f ��x1�
x3

f x1

x1 x2

2

x1 � 2 x3

x 3 � 2x � 5 � 0

f �x� � x 3 � 2x � 5 f ��x� � 3x 2 � 2

x1 � 2
f �1� � �6 f �2� � �1 f �3� � 16

xn�1 � xn �
xn

3 � 2xn � 5

3xn
2 � 2

n � 1

x2 � x1 �
x1

3 � 2x1 � 5

3x1
2 � 2

� 2 �
23 � 2�2� � 5

3�2�2 � 2
� 2.1

n � 2

x3 � x2 �
x2

3 � 2x2 � 5

3x2
2 � 2

� 2.1 �
�2.1�3 � 2�2.1� � 5

3�2.1�2 � 2
� 2.0946

V
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■ The convergence of infinite sequences
is discussed in detail in Section 8.1.
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In Module 4.6 you can investigate
how Newton’s method works for several
functions and what happens when you
change .x1

TEC

■ Figure 5 shows the geometry behind
the first step in Newton’s method in
Example 1. Since , the tan-
gent line to at 
has equation and so its 

-intercept is .x2 � 2.1x
y � 10x � 21
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It turns out that this third approximation is accurate to four decimal
places. ■

Suppose that we want to achieve a given accuracy, say to eight decimal places,
using Newton’s method. How do we know when to stop? The rule of thumb that 
is generally used is that we can stop when successive approximations and 
agree to eight decimal places. (A precise statement concerning accuracy in Newton’s
method will be given in Exercise 29 in Section 8.8.)

Notice that the procedure in going from to is the same for all values of .
(It is called an iterative process.) This means that Newton’s method is particularly
convenient for use with a programmable calculator or a computer.

EXAMPLE 2 Use Newton’s method to find correct to eight decimal places.

SOLUTION First we observe that finding is equivalent to finding the positive
root of the equation

so we take . Then and Formula 2 (Newton’s method)
becomes

If we choose as the initial approximation, then we obtain

Since and agree to eight decimal places, we conclude that

to eight decimal places. ■

EXAMPLE 3 Find, correct to six decimal places, the root of the equation
.

SOLUTION We first rewrite the equation in standard form:

Therefore we let . Then , so Formula 2
becomes

x3 � 2.0946

xn xn�1

n n � 1 n

V s
6 2

s
6 2

x 6 � 2 � 0

f �x� � x 6 � 2 f ��x� � 6x 5

xn�1 � xn �
xn

6 � 2

6xn
5

x1 � 1

x2 � 1.16666667

x3 � 1.12644368

x4 � 1.12249707

x5 � 1.12246205

x6 � 1.12246205

x5 x6

s
6 2 � 1.12246205

cos x � x

cos x � x � 0

f �x� � cos x � x f ��x� � �sin x � 1

xn�1 � xn �
cos xn � xn

�sin xn � 1
� xn �

cos xn � xn

sin xn � 1

V

■ www.stewartcalculus.com
See Additional Example A.
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In order to guess a suitable value for we sketch the graphs of and
in Figure 6. It appears that they intersect at a point whose -coordinate is

somewhat less than 1, so let’s take as a convenient first approximation. Then,
remembering to put our calculator in radian mode, we get

Since and agree to six decimal places (eight, in fact), we conclude that the root
of the equation, correct to six decimal places, is . ■

Instead of using the rough sketch in Figure 6 to get a starting approximation for
Newton’s method in Example 3, we could have used the more accurate graph that a
calculator or computer provides. Figure 7 suggests that we use as the initial
approximation. Then Newton’s method gives

and so we obtain the same answer as before, but with one fewer step.

x1 y � cos x
y � x x

x1 � 1

x2 � 0.75036387

x3 � 0.73911289

x4 � 0.73908513

x5 � 0.73908513

x4 x5

0.739085

x1 � 0.75

x2 � 0.73911114 x3 � 0.73908513 x4 � 0.73908513
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4.6 EXERCISES

1. The figure shows the graph of a function . Suppose that
Newton’s method is used to approximate the root of the
equation with initial approximation .
(a) Draw the tangent lines that are used to find and ,

and esti mate the numerical values of and .
(b) Would be a better first approximation? Explain.

2. Follow the instructions for Exercise 1(a) but use as
the starting approximation for finding the root .

3. Suppose the tangent line to the curve at the point
has the equation . If Newton’s method is

used to locate a root of the equation and the initial
approximation is , find the second approximation .

f
r

f �x� � 0 x1 � 1
x2 x3

x2 x3

x1 � 5

x

y

0 r

1

1 s

x1 � 9
s

y � f �x�
�2, 5� y � 9 � 2x

f �x� � 0
x1 � 2 x2

4. For each initial approximation, determine graphically what
happens if Newton’s method is used for the function whose
graph is shown.
(a) (b) (c)
(d) (e)

5. For which of the initial approximations and
do you think Newton’s method will work and lead to the
root of the equation ?

x1 � 0 x1 � 1 x1 � 3
x1 � 4 x1 � 5

30 51 x

y

x1 � a, b, c, d

f �x� � 0
y

0
b c da

x
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24. (a) Apply Newton’s method to the equation
to derive the following reciprocal algorithm:

(This algorithm enables a computer to find reciprocals
without actually dividing.)

(b) Use part (a) to compute correct to six deci-
mal places.

25. Explain why Newton’s method doesn’t work for finding
the root of the equation if the initial
approximation is chosen to be .

26. (a) Use Newton’s method with to find the root of
the equation correct to six decimal places.

(b) Solve the equation in part (a) using as the ini-
tial approximation.

(c) Solve the equation in part (a) using . (You
definitely need a programmable calculator for this
part.)

; (d) Graph and its tangent lines at
, 0.6, and 0.57 to explain why Newton’s method

is so sensitive to the value of the initial approximation.

27. Explain why Newton’s method fails when applied to the
equation with any initial approximation .
Illustrate your explanation with a sketch.

28. Use Newton’s method to find the absolute maximum value 
of the function , correct to six 
decimal places.

29. Use Newton’s method to find the coordinates of the inflec-
tion point of the curve , , correct to
six decimal places.

30. Of the infinitely many lines that are tangent to the curve
and pass through the origin, there is one that

has the largest slope. Use Newton’s method to find the
slope of that line correct to six decimal places.

31. A car dealer sells a new car for . He also offers to
sell the same car for payments of per month for five
years. What monthly interest rate is this dealer charging?

To solve this problem you will need to use the formula
for the present value of an annuity consisting of equal
payments of size with interest rate per time period: 

Replacing by , show that

Use Newton’s method to solve this equation.

32. The figure shows the sun located at the origin and the 
earth at the point . (The unit here is the distance 

xn�1 � 2xn � axn
2

1�1.6984

x 3 � 3x � 6 � 0
x1 � 1

x1 � 1
x 3 � x � 1

x1 � 0.6

x1 � 0.57

f �x� � x 3 � x � 1
x1 � 1

s
3 x � 0 x1 � 0

f �x� � x cos x, 0 � x � �

y � x 2 sin x 0 � x � �

y � �sin x

$18,000
$375

A n
R i

A �
R

i
�1 � �1 � i ��n �

i x

48x�1 � x�60 � �1 � x�60 � 1 � 0 

�1, 0�

1�x � a � 06–8 ■ Use Newton’s method with the specified initial approxi-
mation to find , the third approximation to the root of the
given equation. (Give your answer to four decimal places.)

6. ,  

7. ,  

8. ,  

; 9. Use Newton’s method with initial approximation
to find , the second approximation to the root of the
equation . Explain how the method 
works by first graphing the function and its tangent line 
at .

; 10. Use Newton’s method with initial approximation to 
find , the second approximation to the root of the equa-
tion . Explain how the method works by
first graphing the function and its tangent line at .

11–12 ■ Use Newton’s method to approximate the given num-
ber correct to eight decimal places.

11. 12.

13–14 ■ Use Newton’s method to approximate the indicated
root of the equation correct to six decimal places.

13. The root of in the interval 

14. The positive root of 

;15–22 ■ Use Newton’s method to find all the roots of the
equation correct to eight decimal places. Start by drawing a
graph to find initial approximations.

15.

16.

17. 18.

19. 20.

21. 22.

23. (a) Apply Newton’s method to the equation to
derive the following square-root algorithm used by the
ancient Babylonians to compute :

(b) Use part (a) to compute correct to six decimal
places.

x1 x3

x1 � �31
3 x 3 �

1
2 x 2 � 3 � 0

x1 � �1x 7 � 4 � 0

x1 � 1x 5 � x � 1 � 0

x1 � �1
x2

x 3 � x � 3 � 0

��1, 1�

x1 � 1
x2

x4 � x � 1 � 0
�1, �1�

100
s100s

5 20

�1, 2�x 4 � 2x 3 � 5x 2 � 6 � 0

3 sin x � x

x 6 � x 5 � 6x 4 � x 2 � x � 10 � 0

x 5 � 3x 4 � x 3 � x 2 � x � 6 � 0

e�x � 2 � x x 2�4 � x 2 � �
4

x 2 � 1

x2
s2 � x � x 2 � 1 cos�x 2 � x� � x 4

e arctan x � sx 3 � 14e�x 2

sin x � x 2 � x � 1

x 2 � a � 0
(

sa )

xn�1 �
1

2 �xn �
a

xn
�

s1000
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and the -coordinate of is the root of the equation

Using the value , find the locations of
the libration points (a) and (b) .

L¡ L™L∞

L¢

L£

sun
earth

x

y

r � 3.04042 � 10�6

L 1 L 2

p�x� � 2rx 2 � 0

L 2xbetween the centers of the earth and the sun, called an
astronomical unit: 1 AU km.) There are five
locations , , , , and in this plane of rotation of
the earth about the sun where a satellite remains motionless
with respect to the earth because the forces acting on the
satellite (including the gravitational attractions of the earth
and the sun) balance each other. These locations are called
libration points. (A solar research satellite has been placed
at one of these libration points.) If is the mass of the 
sun, is the mass of the earth, and , it
turns out that the -coordinate of is the unique root of
the fifth-degree equation

L1 L 2 L 3 L 4 L 5

m1

m2 r � m2��m1 � m2 �
x L 1

p�x� � x 5 � �2 � r�x 4 � �1 � 2r�x 3 � �1 � r�x 2

� � 2�1 � r�x � r � 1 � 0 

� 1.496 � 108
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4.7 ANTIDERIVATIVES
A physicist who knows the velocity of a particle might wish to know its position at a
given time. An engineer who can measure the variable rate at which water is leaking
from a tank wants to know the amount leaked over a certain time period. A biologist
who knows the rate at which a bacteria population is increasing might want to deduce
what the size of the population will be at some future time. In each case, the problem
is to find a function whose derivative is a known function . If such a function
exists, it is called an antiderivative of .

DEFINITION A function is called an antiderivative of on an interval if
for all in .

For instance, let . It isn’t difficult to discover an antiderivative of if we
keep the Power Rule in mind. In fact, if , then . But the
function also satisfies . Therefore both and are
antiderivatives of . Indeed, any function of the form , where is a
constant, is an antiderivative of . The question arises: Are there any others?

To answer this question, recall that in Section 4.2 we used the Mean Value Theorem
to prove that if two functions have identical derivatives on an interval, then they must
differ by a constant (Corollary 4.2.7). Thus if and are any two antiderivatives of
, then

so , where is a constant. We can write this as ,
so we have the following result.

THEOREM If is an antiderivative of on an interval , then the most
general antiderivative of on is

where is an arbitrary constant.

F f I
F��x� � f �x� x I

f �x� � x 2 f
F�x� � 1

3 x 3 F��x� � x 2 � f �x�
G�x� � 1

3 x 3 � 100 G��x� � x 2 F G
f H�x� � 1

3 x 3 � C C
f

f
f F

F G
f

F��x� � f �x� � G��x�

G�x� � F�x� � C C G�x� � F�x� � C

F f I
f I

F�x� � C

C

1

F
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Going back to the function , we see that the general antiderivative of is
. By assigning specific values to the constant , we obtain a family of func-

tions whose graphs are vertical translates of one another (see Figure 1). This makes
sense because each curve must have the same slope at any given value of .

EXAMPLE 1 Find the most general antiderivative of each of the following functions.
(a) (b) (c) ,

SOLUTION
(a) If , then , so an antiderivative of is . By
Theorem 1, the most general antiderivative is .

(b) Recall from Section 3.3 that

So on the interval the general antiderivative of is . We also
learned that

for all . Theorem 1 then tells us that the general antiderivative of is
on any interval that doesn’t contain 0. In particular, this is true on each

of the intervals and . So the general antiderivative of is

(c) We use the Power Rule to discover an antiderivative of . In fact, if ,
then

Thus the general antiderivative of is

This is valid for since then is defined on an interval. If n is negative
(but ), it is valid on any interval that doesn’t contain 0. ■

As in Example 1, every differentiation formula, when read from right to left, gives
rise to an antidifferentiation formula. In Table 2 we list some particular antideriva-
tives. Each formula in the table is true because the derivative of the function in the
right column appears in the left column. In particular, the first formula says that the
antiderivative of a constant times a function is the constant times the antiderivative of
the function. The second formula says that the antiderivative of a sum is the sum of
the antiderivatives. (We use the notation , .)

f �x� � x 2 f
1
3 x 3 � C C

x

f �x� � sin x f �x� � 1�x f �x� � xn n � �1

F�x� � �cos x F��x� � sin x sin x �cos x
G�x� � �cos x � C

d

dx
�ln x� �

1

x

�0, �� 1�x ln x � C

d

dx
�ln 
 x 
� �

1

x

x � 0 f �x� � 1�x
ln 
 x 
 � C

���, 0� �0, �� f

F�x� � �ln x � C1

ln��x� � C2

if  x 	 0

if  x 
 0

xn n � �1

d

dx � xn�1

n � 1	 �
�n � 1�xn

n � 1
� xn

f �x� � xn

F�x� �
xn�1

n � 1
� C

n � 0 f �x� � xn

n � �1

F�� f G� � t
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x

y

0

y=
˛

3

y=    -2
˛

3

y=    -1
˛

3

y=    +1
˛

3

y=    +2
˛

3

y=    +3
˛

3

FIGURE 1
Members of the family of
antiderivatives of ƒ=≈ 

12280_ch04_ptg01_hr_244-256.qk_12280_ch04_ptg01_hr_244-256  11/16/11  3:55 PM  Page 248

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 4.7  ANTIDERIVATIVES 249

Unless otherwise noted, all content on this page is © Cengage Learning.

TABLE OF ANTIDIFFERENTIATION FORMULAS

EXAMPLE 2 Find all functions such that

SOLUTION We first rewrite the given function as follows:

Thus we want to find an antiderivative of 

Using the formulas in Table 2 together with Theorem 1, we obtain

■

In applications of calculus it is very common to have a situation as in Example 2,
where it is required to find a function, given knowledge about its derivatives. An equa-
tion that involves the derivatives of a function is called a differential equation. These
will be studied in some detail in Section 7.7, but for the present we can solve some
elementary differential equations. The general solution of a differential equation
involves an arbitrary constant (or constants) as in Example 2. However, there may be
some extra conditions given that will determine the constants and therefore uniquely
specify the solution.

EXAMPLE 3 Find if .

SOLUTION The general antiderivative of

is

t

t��x� � 4 sin x �
2x 5 � sx

x

t��x� � 4 sin x �
2x 5

x
�

sx

x
� 4 sin x � 2x 4 �

1

sx

t��x� � 4 sin x � 2x 4 � x�1�2

t�x� � 4��cos x� � 2 
x 5

5
�

x1�2

1
2

� C

� �4 cos x �
2
5 x 5 � 2sx � C

2

f f ��x� � ex � 20�1 � x 2 ��1 and f �0� � �2

f ��x� � ex �
20

1 � x 2

f �x� � ex � 20 tan�1x � C

■ To obtain the most general anti -
derivative from the particular ones in
Table 2, we have to add a constant (or
constants), as in Example 1.

Function Particular antiderivative Function Particular antiderivative

cos x sin x

sin x �cos x

F�x� � G�x�

e xe x

ln 
 x 
1

x

x n �n � �1�

f �x� � t�x�

cF�x�c f �x�

x n�1

n � 1

tan x

sec x tan x sec x

cosh xsinh x

sinh xcosh x

tan�1x
1

1 � x 2

sin�1x
1

s1 � x 2 

sec2x
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To determine we use the fact that : 

Thus we have , so the particular solution is

■

EXAMPLE 4 Find if , , and .

SOLUTION The general antiderivative of is

Using the antidifferentiation rules once more, we find that

To determine and we use the given conditions that and .
Since , we have . Since

we have . Therefore the required function is

■

RECTILINEAR MOTION

Antidifferentiation is particularly useful in analyzing the motion of an object moving
in a straight line. Recall that if the object has position function , then the
velocity function is . This means that the position function is an anti-
derivative of the velocity function. Likewise, the acceleration function is ,
so the velocity function is an antiderivative of the acceleration. If the acceleration and
the initial values and are known, then the position function can be found by
antidifferentiating twice.

EXAMPLE 5 A particle moves in a straight line and has acceleration given by
. Its initial velocity is cm�s and its initial displacement is

cm. Find its position function .

SOLUTION Since , antidifferentiation gives

Note that . But we are given that , so and

Since , is the antiderivative of :

C f �0� � �2

f �0� � e 0 � 20 tan�1 0 � C � �2

C � �2 � 1 � �3

f �x� � ex � 20 tan�1x � 3

f f ��x� � 12x 2 � 6x � 4 f �0� � 4 f �1� � 1

f ��x� � 12x 2 � 6x � 4

f ��x� � 12 
x 3

3
� 6 

x 2

2
� 4x � C � 4x 3 � 3x 2 � 4x � C

f �x� � 4 
x 4

4
� 3 

x 3

3
� 4 

x 2

2
� Cx � D � x 4 � x 3 � 2x 2 � Cx � D

C D f �0� � 4 f �1� � 1
f �0� � 0 � D � 4 D � 4

f �1� � 1 � 1 � 2 � C � 4 � 1

C � �3

f �x� � x 4 � x 3 � 2x 2 � 3x � 4

s � f �t�
v�t� � s��t�

a�t� � v��t�

s�0� v�0�

a�t� � 6t � 4 v�0� � �6
s�0� � 9 s�t�

v��t� � a�t� � 6t � 4

v�t� � 6 
t 2

2
� 4t � C � 3t 2 � 4t � C

V

V

v�0� � C v�0� � �6 C � �6

v�t� � 3t 2 � 4t � 6

v�t� � s��t� s v

s�t� � 3 
t 3

3
� 4 

t 2

2
� 6t � D � t 3 � 2t 2 � 6t � D

■ www.stewartcalculus.com
See Additional Example A.

■ Figure 2 shows the graphs of the func-
tion in Example 3 and its antiderivative
. Notice that , so is always

increasing. Also notice that when has a
maximum or minimum, appears to have
an inflection point. So the graph serves as
a check on our calculation.

f

f
f �

f ��x� 	 0f
f �

40

_2 3

f

fª

_25

FIGURE 2
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This gives . We are given that , so and the required position
function is

■

An object near the surface of the earth is subject to a gravitational force that pro-
duces a downward acceleration denoted by . For motion close to the ground we may
assume that is constant, its value being about m�s (or ft�s ).

EXAMPLE 6 A ball is thrown upward with a speed of ft�s from the edge of a
cliff ft above the ground. Find its height above the ground seconds later. When
does it reach its maximum height? When does it hit the ground?

SOLUTION The motion is vertical and we choose the positive direction to be
upward. At time the distance above the ground is and the velocity is
decreasing. Therefore the acceleration must be negative and we have

Taking antiderivatives, we have

To determine we use the given information that . This gives
, so

The maximum height is reached when , that is, after s. Since ,
we antidifferentiate again and obtain

Using the fact that , we have and so

The expression for is valid until the ball hits the ground. This happens when
, that is, when

or, equivalently,

Using the quadratic formula to solve this equation, we get

We reject the solution with the minus sign since it gives a negative value for .
Therefore the ball hits the ground after s. ■

s�0� � D s�0� � 9 D � 9

s�t� � t 3 � 2t 2 � 6t � 9

t

t 9.8 2 32 2

48
432 t

t s�t� v�t�

a�t� �
dv

dt
� �32

v�t� � �32t � C

C v�0� � 48
48 � 0 � C

v�t� � �32t � 48

v�t� � 0 1.5 s��t� � v�t�

s�t� � �16t 2 � 48t � D

s�0� � 432 432 � 0 � D

s�t� � �16t 2 � 48t � 432

s�t�
s�t� � 0

�16t 2 � 48t � 432 � 0

t 2 � 3t � 27 � 0

t �
3  3s13

2

t
3(1 � s13 )�2 � 6.9
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■ Figure 3 shows the position function
of the ball in Example 6. The graph cor-
roborates the conclusions we reached:
The ball reaches its maximum height
after and hits the ground after .6.9 s1.5 s

500

0 8

FIGURE 3 
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4.7 EXERCISES

1–14 ■ Find the most general antiderivative of the function.
(Check your answer by differentiation.)

1.

2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

;15–16 ■ Find the antiderivative of that satisfies the given
condition. Check your answer by comparing the graphs of 
and .

15.

16.

17–34 ■ Find .

17.

18.

19. 20.

21. 22.

23. ,  

24. ,  

25. ,  

26. ,  ,  

27. ,  ,  

28.

29.

30.

31. ,  ,  

32. ,  ,  

33. ,  ,  ,  

34. ,  ,  

f �x� � 1
2 �

3
4 x 2 �

4
5 x 3

f �x� � 8x 9 � 3x 6 � 12x 3

f �x� � 7x 2�5 � 8x�4�5 f �x� � s
3 x 2 � xsx

f �x� � 3sx � 2s
3 x f �t� �

3t 4 � t 3 � 6t 2

t 4

t�t� �
1 � t � t 2

st
r��� � sec� tan � � 2e�

h��� � 2 sin � � sec2� f �t� � sin t � 2 sinh t

f �x� � 5e x � 3 cosh x f �x� � 2sx � 6 cos x

f �x� �
x 5 � x 3 � 2x

x 4 f �x� �
2 � x 2

1 � x 2

F f
f

F

f �x� � 5x 4 � 2x 5, F�0� � 4

f �x� � 4 � 3�1 � x 2 ��1, F�1� � 0

f

f ��x� � 20x 3 � 12x 2 � 6x

f ��x� � x 6 � 4x 4 � x � 1

f ��x� � 2
3 x 2�3 f ��x� � 6x � sin x

f ��t� � cos t f ��t� � e t � t �4

f ��x� � 1 � 3sx f �4� � 25

f ��x� � 5x 4 � 3x 2 � 4 f ��1� � 2

f ��t� � 4��1 � t 2� f �1� � 0

f ��t� � t � 1�t 3 t 	 0 f �1� � 6

f ��t� � 2 cos t � sec2t ���2 
 t 
 ��2 f ���3� � 4

f ��x� � 4�s1 � x 2 , f ( 1
2 ) � 1

f ��x� � �2 � 12x � 12x 2, f �0� � 4,    f ��0� � 12

f ��x� � 8x 3 � 5,    f �1� � 0,    f ��1� � 8

f ���� � sin � � cos � f �0� � 3 f ��0� � 4

f ��t� � 3�st f �4� � 20 f ��4� � 7

f ��x� � x �2 x 	 0 f �1� � 0 f �2� � 0

f ��t� � 2e t � 3 sin t f �0� � 0 f ��� � 0

35. Given that the graph of passes through the point 
and that the slope of its tangent line at is ,
find .

36. Find a function such that and the line
is tangent to the graph of .

37–38 ■ The graph of a function is shown. Which graph is
an antiderivative of and why?

37. 38.

39–42 ■ A particle is moving with the given data. Find the
position of the particle.

39.

40.

41. ,  ,  

42. ,  ,  

43. A stone is dropped from the upper observation deck (the
Space Deck) of the CN Tower, m above the ground.
(a) Find the distance of the stone above ground level at 

time .
(b) How long does it take the stone to reach the ground?
(c) With what velocity does it strike the ground?
(d) If the stone is thrown downward with a speed of 

5 m�s, how long does it take to reach the ground?

44. Show that for motion in a straight line with constant accel-
eration , initial velocity , and initial displacement , the
dis placement after time is

45. An object is projected upward with initial velocity 
meters per second from a point meters above the

ground. Show that 

46. Two balls are thrown upward from the edge of the cliff in
Example 6. The first is thrown with a speed of ft�s and
the other is thrown a second later with a speed of ft�s.
Do the balls ever pass each other?

f �1, 6�
�x, f �x�� 2x � 1

f �2�

f f ��x� � x 3

x � y � 0 f

f
f

y

x

f
b

c

a

x

y

f

b

c

a

v�t� � sin t � cos t, s�0� � 0

v�t� � 1.5st , s�4� � 10

a�t� � 10 sin t � 3 cos t s�0� � 0 s�2�� � 12

a�t� � t 2 � 4t � 6 s�0� � 0 s�1� � 20

450

t

a v0 s0

t

s � 1
2 at 2 � v0 t � s0

v0 s0

�v�t��2 � v0
2 � 19.6�s�t� � s0 �

48
24
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52. A car braked with a constant deceleration of 16 ft�s , pro-
ducing skid marks measuring 200 ft before coming to a
stop. How fast was the car traveling when the brakes were
first applied?

53. A car is traveling at when the driver sees an acci-
dent 80 m ahead and slams on the brakes. What constant
deceleration is required to stop the car in time to avoid a
pileup?

54. A model rocket is fired vertically upward from rest. Its
acceleration for the first three seconds is , at
which time the fuel is exhausted and it becomes a freely
“falling” body. Fourteen seconds later, the rocket’s
parachute opens, and the (downward) velocity slows
linearly to ft�s in 5 s. The rocket then “floats” to the
ground at that rate.
(a) Determine the position function and the velocity func-

tion (for all times ). Sketch the graphs of and .
(b) At what time does the rocket reach its maximum height,

and what is that height?
(c) At what time does the rocket land?

55. A high-speed bullet train accelerates and decelerates at the
rate of 4 ft�s . Its maximum cruising speed is 90 mi�h.
(a) What is the maximum distance the train can travel if it

accelerates from rest until it reaches its cruising speed
and then runs at that speed for 15 minutes?

(b) Suppose that the train starts from rest and must come to 
a complete stop in 15 minutes. What is the maximum
distance it can travel under these conditions?

(c) Find the minimum time that the train takes to travel
between two consecutive stations that are 45 miles
apart.

(d) The trip from one station to the next takes 37.5 minutes.
How far apart are the stations?

2

100 km�h

a�t� � 60t

�18

s
vstv

247. A stone was dropped off a cliff and hit the ground with a
speed of 120 ft�s. What is the height of the cliff? 

48. If a diver of mass stands at the end of a diving board with
length and linear density , then the board takes on the
shape of a curve , where

and are positive constants that depend on the material 
of the board and is the acceleration due to gravity.
(a) Find an expression for the shape of the curve.
(b) Use to estimate the distance below the horizontal at

the end of the board.

49. Since raindrops grow as they fall, their surface area
increases and therefore the resistance to their falling
increases. A raindrop has an initial downward velocity of
10 m�s and its downward acceleration is

If the raindrop is initially m above the ground, how
long does it take to fall?

50. A car is traveling at 50 mi�h when the brakes are fully
applied, producing a constant deceleration of 22 ft�s . What
is the distance traveled before the car comes to a stop?

51. What constant acceleration is required to increase the speed
of a car from 30 mi�h to 50 mi�h in 5 s?

m
L �

y � f �x�

EIy � � mt�L � x� �
1
2 �t�L � x�2

E I
t �
 0�

f �L�

y

x0

a � �9 � 0.9t

0

if 0 � t � 10

if t 	 10

500

2
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CHAPTER 4 REVIEW
CONCEPT CHECK

1. Explain the difference between an absolute maximum and a
local maximum. Illustrate with a sketch.

2. (a) What does the Extreme Value Theorem say?
(b) Explain how the Closed Interval Method works.

3. (a) State Fermat’s Theorem.
(b) Define a critical number of .

4. (a) State Rolle’s Theorem.
(b) State the Mean Value Theorem and give a geometric 

interpretation.

5. (a) State the Increasing/Decreasing Test.
(b) What does it mean to say that is concave upward on

an interval ?

f

f
I

(c) State the Concavity Test.
(d) What are inflection points? How do you find them?

6. (a) State the First Derivative Test.
(b) State the Second Derivative Test.
(c) What are the relative advantages and disadvantages of

these tests?

7. If you have a graphing calculator or computer, why do you
need calculus to graph a function?

8. (a) Given an initial approximation to a root of the equa-
tion , explain geometrically, with a diagram,
how the second approximation in Newton’s method is
obtained.

x1

f �x� � 0
x2
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9. (a) What is an antiderivative of a function ?
(b) Suppose and are both antiderivatives of on an

interval . How are and related?
F1 F2 f

I F1 F2

f(b) Write an expression for in terms of , , 
and .

(c) Write an expression for in terms of , 
and .

(d) Under what circumstances is Newton’s method likely to
fail or to work very slowly?

x2 x1 f �x1�
f ��x1�

xn, f �xn �xn�1

f ��xn �
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TRUE-FALSE QUIZ

Determine whether the statement is true or false. If it is true, explain
why. If it is false, explain why or give an example that disproves the
statement.

1. If , then has a local maximum or minimum at .

2. If has an absolute minimum value at , then .

3. If is continuous on , then attains an absolute maxi-
mum value and an absolute minimum value at
some numbers and in .

4. If is differentiable and , then there is a num-
ber such that and .

5. If for , then is decreasing on (1, 6).

6. If , then is an inflection point of the 
curve .

7. If for , then for

8. There exists a function such that ,
and for all .

9. There exists a function such that , ,
and for all .

f ��c� � 0 f c

f c f ��c� � 0

f �a, b� f
f �c� f �d �

c d �a, b�

f f ��1� � f �1�
c 
 c 
 
 1 f ��c� � 0

f ��x� 
 0 1 
 x 
 6 f

f ��2� � 0 �2, f �2��
y � f �x�

f ��x� � t��x� 0 
 x 
 1 f �x� � t�x�
0 
 x 
 1.

f f �1� � �2, f �3� � 0
f ��x� 	 1 x

f ��x� 
 0f �x� 	 0f
xf ��x� 	 0

10. There exists a function such that , ,
and for all .

11. If and are increasing on an interval , then is
increasing on .

12. If and are increasing on an interval , then is
increasing on .

13. If and are increasing on an interval , then is 
increasing on .

14. If and are positive increasing functions on an interval ,
then is increasing on .

15. If is increasing and on , then is
decreasing on .

16. If is even, then is even.

17. If is periodic, then is periodic.

18. The most general antiderivative of is

19. If exists and is nonzero for all , then .

f t I ft
I

f t I
ft I

f f �x� 	 0 I t�x� � 1�f �x�
I

f f �

f f �

f �x� � x �2

F�x� � �
1

x
� C

f ��x� x f �1� � f �0�

f f �x� 
 0 f ��x� 
 0
f ��x� 	 0 x

f t I f � t

I

f t I f � t

I

EXERCISES

1–4 ■ Find the local and absolute extreme values of the
function on the given interval.

1. ,  

2. ,  

3. ,  4. ,  

5–7 ■ Sketch the graph of a function that satisfies the given 
conditions.

5. , 

on , and 

on and 

on and 

on and 

f �x� � x 3 � 6x 2 � 9x � 1 �2, 4�

f �x� � xs1 � x ��1, 1�

f �x� �
3x � 4

x 2 � 1
��2, 2� f �x� � x2e�x ��1, 3�

f �0� � 0, f ���2� � f ��1� � f ��9� � 0

limx l � f �x� � 0,    limx l 6 f �x� � ��,

f ��x� 
 0 ���, �2�, �1, 6� �9, ��,
f ��x� 	 0 ��2, 1� �6, 9�,
f ��x� 	 0 ���, 0� �12, ��,
f ��x� 
 0 �0, 6� �6, 12�

6. ,  is continuous and even,  

if if ,  

if 

7. is odd,  for ,  

for ,  for ,  

for ,  

8. The figure shows the graph of the derivative of a
function .
(a) On what intervals is increasing or decreasing?
(b) For what values of does have a local maximum or 

minimum?
(c) Sketch the graph of .
(d) Sketch a possible graph of .

f �0� � 0 f

f ��x� � 2x 0 
 x 
 1, f ��x� � �1 1 
 x 
 3

f ��x� � 1 x 	 3

f f ��x� 
 0 0 
 x 
 2

f ��x� 	 0 x 	 2 f ��x� 	 0 0 
 x 
 3

f ��x� 
 0 x 	 3 lim x l � f �x� � �2

f �
f

f
x f

f �
f
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(c) Use the graph of to estimate the coordinates of the
inflection points.

(d) Use your CAS to compute and graph .
(e) Use the graph in part (d) to estimate the inflection

points more accurately.

31–32 ■ Use the graphs of to estimate the 
-coordinates of the maximum and minimum points and inflec-

tion points of .

31. ,  

32.

; 33. Investigate the family of functions .
What features do the members of this family have in com-
mon? How do they differ? For which values of is con-
tinuous on ? For which values of does have no
graph at all? What happens as ?

; 34. Investigate the family of functions . What
happens to the maximum and minimum points and the
inflection points as changes? Illustrate your conclusions
by graphing several members of the family.

35. Show that the equation has exactly
one real root.

36. Suppose that is continuous on , and
for all in . Show that .

37. By applying the Mean Value Theorem to the function
on the interval , show that

38. For what values of the constants and is a point of
inflection of the curve ?

39. Find two positive integers such that the sum of the first
number and four times the second number is 1000 and the
product of the numbers is as large as possible.

40. Find the point on the hyperbola that is closest to
the point .

41. Find the smallest possible area of an isosceles triangle that
is circumscribed about a circle of radius .

42. Find the volume of the largest circular cone that can be
inscribed in a sphere of radius .

43. In lies on , , ,
, and . Where should a point be

chosen on so that the sum is a
minimum? What if ?

f

f �

f, f �, and f �
x

f

f �x� �
cos2 x

sx 2 � x � 1
�� � x � �

f �x� � e�0.1x ln�x 2 � 1�

f �x� � ln�sin x � C �

C f
���, �� C f

C l �

f �x� � cxe �cx 2

c

3x � 2 cos x � 5 � 0

f �0, 4�, f �0� � 1
2 � f ��x� � 5 x �0, 4� 9 � f �4� � 21

f �x� � x 1�5 �32, 33�

2 
 s
5 33 
 2.0125

a b �1, 3�
y � ax 3 � bx 2

CAS

xy � 8
�3, 0�

r

r

�ABC, D AB 
 CD 
 � 5 cm 
 AD 
 � 4 cm


 BD 
 � 4 cm CD� AB P
CD 
 PA 
 � 
 PB 
 � 
 PC 



 CD 
 � 2 cm

9–14 ■

(a) Find the vertical and horizontal asymptotes, if any.
(b) Find the intervals of increase or decrease.
(c) Find the local maximum and minimum values.
(d) Find the intervals of concavity and the inflection points.
(e) Use the information from parts (a)–(d) to sketch the graph

of . Check your work with a graphing device.

9. 10.

11. 12.

13. 14.

15–24 ■ Use the guidelines of Section 4.4 to sketch the curve.

15.

16.

17. 18.

19. 20.

21.

22.

23. 24.

;25–28 ■ Produce graphs of that reveal all the important
aspects of the curve. Use graphs of and to estimate the
intervals of increase and decrease, extreme values, intervals of
concavity, and inflection points. In Exercise 25 use calculus to
find these quantities exactly.

25. 26.

27.

28.

; 29. Graph in a viewing rectangle that shows all
the main aspects of this function. Estimate the inflection
points. Then use calculus to find them exactly.

30. (a) Graph the function .
(b) Explain the shape of the graph by computing the limits

of as approaches , , , and .

0 x

y

1 2 3 4 5 6 7_1

_2

y=f ª(x)

f

f �x� �
1

1 � x 2f �x� � 2 � 2x � x 3

y � e2x�x 2

y � sin2x � 2 cos x

y � ln�x 2 � 1�y � e x � e�3x

y � x 3 � 6x 2 � 15x � 4

y � x 4 � 3x 3 � 3x 2 � x

y �
1

x�x � 3�2 y �
x

1 � x 2

y � xs2 � x y � s1 � x � s1 � x

y � sin�1�1�x�

y � 4x � tan x, ���2 
 x 
 ��2

y � x � ln�x 2 � 1�y � �x � 2�e�x

f
f �f �

f �x� �
x 3 � x

x 2 � x � 3
f �x� �

x 2 � 1

x 3

f �x� � 3x 6 � 5x 5 � x 4 � 5x 3 � 2x 2 � 2

f �x� � x 2 � 6.5 sin x,    �5 � x � 5

f �x� � e �1�x 2

f �x� � 1��1 � e 1�x �CAS

0�0����xf �x�
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54. ,  

55. ,  ,  

56. ,  ,  

57–58 ■ A particle is moving with the given data. Find the
position of the particle.

57. ,  

58. ,  ,  

59. A canister is dropped from a helicopter m above the
ground. Its parachute does not open, but the canister has
been designed to withstand an impact velocity of m�s.
Will it burst?

; 60. Investigate the family of curves given by

In particular you should determine the transitional value of
at which the number of critical numbers changes and the

transitional value at which the number of inflection points
changes. Illustrate the various possible shapes with graphs.

61. A rectangular beam will be cut from a cylindrical log of 
radius 10 inches.
(a) Show that the beam of maximal cross-sectional area is 

a square.
(b) Four rectangular planks will be cut from the four sec-

tions of the log that remain after cutting the square
beam. Determine the dimensions of the planks that will
have maximal cross-sectional area.

(c) Suppose that the strength of a rectangular beam is pro-
portional to the product of its width and the square of its
depth. Find the dimensions of the strongest beam that
can be cut from the cylindrical log.

v�t� � 2t � 1��1 � t 2� s�0� � 1

a�t� � sin t � 3 cos t s�0� � 0 v�0� � 2

500

100

f �x� � x 4 � x 3 � cx 2

c

depth

width

10

f ��0� � 2f �0� � 1f ��x� � 1 � 6x � 48x 2

f �1� � 0f �0� � 2f ��x� � 2x 3 � 3x 2 � 4x � 5

f �1� � 3f ��u� �
u2 � su

u

44. An observer stands at a point , one unit away from a track.
Two runners start at the point in the figure and run along
the track. One runner runs three times as fast as the other.
Find the maximum value of the observer’s angle of sight
between the runners. [Hint: Maximize .]

45. The velocity of a wave of length in deep water is

where and are known positive constants. What is the
length of the wave that gives the minimum velocity?

46. A metal storage tank with volume is to be constructed in
the shape of a right circular cylinder surmounted by a hemi-
sphere. What dimensions will require the least amount of
metal?

47. A hockey team plays in an arena with a seating capacity of
15,000 spectators. With the ticket price set at , average
attendance at a game has been 11,000. A market survey
indicates that for each dollar the ticket price is lowered,
average attendance will increase by 1000. How should the
owners of the team set the ticket price to maximize their
revenue from ticket sales?

48. Use Newton’s method to find all roots of the equation
correct to six decimal places.

49. Use Newton’s method to find the absolute maximum value
of the function correct to eight deci-
mal places.

50. Use the guidelines in Section 4.4 to sketch the curve
, . Use Newton’s method when 

necessary.

51–52 ■ Find the most general antiderivative of the function.

51. 52.

53–56 ■ Find .

53.

�
tan �

S

1

P

¨

L

v � K� L

C
�

C

L

K C

V

$12

sin x � x 2 � 3x � 1

f �t� � cos t � t � t 2

y � x sin x 0 � x � 2�

f �x� � e x � (2�sx ) t�t� � �1 � t��st

f �x�

P
S

f ��x� � 2��1 � x 2 �,    f �0� � �1
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257

5.1 AREAS AND DISTANCES
In this section we discover that in trying to find the area under a curve or the distance 
traveled by a car, we end up with the same special type of limit.

THE AREA PROBLEM

We begin by attempting to solve the area problem: Find the area of the region that
lies under the curve from to . This means that , illustrated in Figure 1, is
bounded by the graph of a continuous function [where ], the vertical lines

and , and the -axis.
In trying to solve the area problem we have to ask ourselves: What is the meaning

of the word area? This question is easy to answer for regions with straight sides. For
a rectangle, the area is defined as the product of the length and the width. The area of
a triangle is half the base times the height. The area of a polygon is found by dividing
it into triangles (as in Figure 2) and adding the areas of the triangles.

However, it isn’t so easy to find the area of a region with curved sides. We all have
an intuitive idea of what the area of a region is. But part of the area problem is to make
this intuitive idea precise by giving an exact definition of area.

Recall that in defining a tangent we first approximated the slope of the tangent line
by slopes of secant lines and then we took the limit of these approximations. We pur-
sue a similar idea for areas. We first approximate the region by rectangles and then
we take the limit of the areas of these rectangles as we increase the number of rect-
angles. The following example illustrates the procedure.

EXAMPLE 1 Use rectangles to estimate the area under the parabola from
0 to 1 (the parabolic region S illustrated in Figure 3).

SOLUTION We first notice that the area of S must be somewhere between 0 and 1
because is contained in a square with side length 1, but we can certainly do better 

S
y � f �x� a b S

f f �x� � 0
x � a x � b x

FIGURE 2

h

b

A=   bh
   

A=A¡+A™+A£+A¢A=lw

l

w

1

2

A¡

A™ A£

A¢

S

y � x 2

S

V
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INTEGRALS
In Chapter 2 we used the tangent and velocity problems to introduce the derivative, which is the cen-
tral idea in differential calculus. In much the same way, this chapter starts with the area and distance
problems and uses them to formulate the idea of a definite integral, which is the basic concept of inte-
gral calculus. We will see in Chapter 7 how to use the integral to solve problems concerning volumes,
lengths of curves, work, forces on a dam, and centers of mass, among many others.

There is a connection between integral calculus and differential calculus. The Fundamental Theorem
of Calculus relates the integral to the derivative, and we will see in this chapter that it greatly simplifies
the solution of many problems.

5

FIGURE 1
S=s(x, y) | a¯x¯b, 0¯y¯ƒd

0

y

a b x

y=ƒ

S

x=a

x=b

FIGURE 3

0

y

x1

(1, 1)

y=≈

S
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than that. Suppose we divide S into four strips , , , and by drawing the ver-
tical lines , , and as in Figure 4(a).

We can approximate each strip by a rectangle whose base is the same as the strip
and whose height is the same as the right edge of the strip [see Figure 4(b)]. In other
words, the heights of these rectangles are the values of the function at the
right endpoints of the subintervals , , , and .

Each rectangle has width and the heights are , , , and . If we let
be the sum of the areas of these approximating rectangles, we get

From Figure 4(b) we see that the area A of S is less than , so

Instead of using the rectangles in Figure 4(b) we could use the smaller rectangles
in Figure 5 whose heights are the values of at the left endpoints of the subintervals.
(The leftmost rectangle has collapsed because its height is 0.) The sum of the areas
of these approximating rectangles is

We see that the area of S is larger than , so we have lower and upper estimates 
for A:

We can repeat this procedure with a larger number of strips. Figure 6 shows what
happens when we divide the region S into eight strips of equal width.

S1 S2 S3 S4

x � 1
4 x � 1

2 x � 3
4

FIGURE 4 (b)

0 1

(1, 1)

3

4

1

2

1

4

(a)

0

y

x1

(1, 1)

y=≈

3

4

1

2

1

4

S¢

S£
S™

S¡

y

x

f �x� � x 2

[0, 1
4 ] [ 1

4, 1
2 ] [ 1

2, 3
4 ] [ 3

4, 1]
1
4 ( 1

4 )2 ( 1
2 )2 ( 3

4 )2 12 R4

R4 � 1
4 � ( 1

4 )2
�

1
4 � ( 1

2 )2
�

1
4 � ( 3

4 )2
�

1
4 � 12 � 15

32 � 0.46875

R4

A � 0.46875

f

L4 � 1
4 � 02 �

1
4 � ( 1

4 )2
�

1
4 � ( 1

2 )2
�

1
4 � ( 3

4 )2 � 7
32 � 0.21875

L4

0.21875 � A � 0.46875

FIGURE 6
Approximating S with eight rectangles (a) Using left endpoints (b) Using right endpoints
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By computing the sum of the areas of the smaller rectangles and the sum of
the areas of the larger rectangles , we obtain better lower and upper estimates
for A:

So one possible answer to the question is to say that the true area of S lies some-
where between 0.2734375 and 0.3984375.

We could obtain better estimates by increasing the number of strips. The table 
at the left shows the results of similar calculations (with a computer) using n rect-
angles whose heights are found with left endpoints or right endpoints . 
In particular, we see by using 50 strips that the area lies between 0.3234 and 
0.3434. With 1000 strips we narrow it down even more: A lies between 0.3328335
and 0.3338335. A good estimate is obtained by averaging these numbers:

. ■

From the values in the table in Example 1, it looks as if is approaching as n
increases. We confirm this in the next example.

EXAMPLE 2 For the region S in Example 1, show that the sum of the areas of
the upper approximating rectangles approaches , that is,

SOLUTION is the sum of the areas of the rectangles in Figure 7. Each rectangle
has width and the heights are the values of the function at the points

; that is, the heights are .
Thus

Here we need the formula for the sum of the squares of the first n positive integers:

Perhaps you have seen this formula before. It is proved in Example 5 in Appendix B.
Putting Formula 1 into our expression for , we get

�L8 �
�R8 �

0.2734375 � A � 0.3984375

�Ln � �Rn �

A � 0.3333335

Rn
1
3

1
3

lim
n l �

Rn � 1
3

Rn n
1�n f �x� � x 2

1�n, 2�n, 3�n, . . . , n�n �1�n�2, �2�n�2, �3�n�2, . . . , �n�n�2

Rn �
1

n � 1

n�2

�
1

n � 2

n�2

�
1

n �3

n�2

� � � � �
1

n �n

n�2

�
1

n
�

1

n 2 �12 � 22 � 32 � � � � � n 2 �

�
1

n 3 �12 � 22 � 32 � � � � � n 2 �

12 � 22 � 32 � � � � � n 2 �
n�n � 1��2n � 1�

6

Rn

Rn �
1

n 3 �
n�n � 1��2n � 1�

6
�

�n � 1��2n � 1�
6n 2

V

1
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n

10 0.2850000 0.3850000
20 0.3087500 0.3587500
30 0.3168519 0.3501852
50 0.3234000 0.3434000

100 0.3283500 0.3383500
1000 0.3328335 0.3338335

RnLn

FIGURE 7

1

n

0

y

x1

(1, 1)

y=≈
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Thus we have

■

It can be shown that the lower approximating sums also approach , that is,

From Figures 8 and 9 it appears that, as n increases, both and become better and
better approximations to the area of S. Therefore we define the area A to be the limit
of the sums of the areas of the approximating rectangles, that is,

lim
n l �

Rn � lim
n l �

�n � 1��2n � 1�
6n 2

� lim
n l �

1

6
 �n � 1

n ��2n � 1

n �
� lim

n l �

1

6
 �1 �

1

n��2 �
1

n�
� 1

6 � 1 � 2 � 1
3

1
3

lim
n l �

Ln � 1
3

Ln Rn

A � lim
n l �

Rn � lim
n l �

Ln � 1
3

FIGURE 8

10

y

n=50    R∞¸=0.3434

10

y

n=30    R£¸Å0.3502

10 x x x

y

n=10    R¡¸=0.385

Right endpoints produce upper sums because ƒ=≈ is increasing.

10

y

n=10    L¡¸=0.285

10x x

y

n=30    L£¸Å0.3169

10 x

y

n=50    L∞¸=0.3234

FIGURE 9 Left endpoints produce lower sums because ƒ=≈ is increasing.
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■ Here we are computing the limit of
the sequence . Sequences and their
limits will be studied in detail in Sec-
tion 8.1. The idea is very similar to a
limit at infinity (Section 1.6) except that
in writing we restrict to be a
positive integer. In particular, we know
that

When we write we mean
that we can make as close to as we
like by taking sufficiently large.n

1
3Rn

lim n l � Rn � 1
3

nlim n l �

lim
n l �

1

n
� 0

�Rn 	

In Visual 5.1 you can create 
pictures like those in Figures 8 and 9 for
other values of .n

TEC
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Let’s apply the idea of Examples 1 and 2 to the more general region S of Figure 1.
We start by subdividing S into n strips of equal width as in Figure 10. 

The width of the interval is , so the width of each of the n strips is

These strips divide the interval [a, b] into n subintervals

where and . The right endpoints of the subintervals are

Let’s approximate the th strip by a rectangle with width and height ,
which is the value of at the right endpoint (see Figure 11). Then the area of the
rectangle is . What we think of intuitively as the area of is approximated by
the sum of the areas of these rectangles, which is

S1, S2, . . . , Sn

FIGURE 10
ba0

y

x.  .  ..  .  .

y=ƒ

S¡ S™ S£ S
i

S
n

xixi-1 xn-1¤⁄ ‹

�a, b� b � a

�x �
b � a

n

�x0, x1�, �x1, x2 �, �x2, x3 �, . . . , �xn�1, xn �

x0 � a xn � b

x1 � a � �x,

x2 � a � 2 �x,

x3 � a � 3 �x,

�
�
�

i Si �x f �xi�
f ith

f �xi� �x S

Rn � f �x1� �x � f �x2 � �x � � � � � f �xn � �x

FIGURE 11
0

y

x

Îx

xixi-1a b¤⁄ ‹

f(xi)
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FIGURE 12
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(c) n=8

0
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xa

b

b

b

b

(d) n=12

Figure 12 shows this approximation for n � 2, 4, 8, and 12. Notice that this approx-
imation appears to become better and better as the number of strips increases, that is,
as . Therefore we define the area A of the region S in the following way.

DEFINITION The area A of the region S that lies under the graph of the 
continuous function is the limit of the sum of the areas of approximating
rectangles:

It can be proved that the limit in Definition 2 always exists, since we are assuming
that is continuous. It can also be shown that we get the same value if we use left
endpoints:

In fact, instead of using left endpoints or right endpoints, we could take the height of
the ith rectangle to be the value of f at any number in the ith subinterval .
We call the numbers , , . . . , the sample points. Figure 13 shows approxi-
mating rectangles when the sample points are not chosen to be endpoints. So a more
general expression for the area of S is

NOTE It can be shown that an equivalent definition of area is the following: is
the unique number that is smaller than all the upper sums and bigger than all the
lower sums. We saw in Examples 1 and 2, for instance, that the area is trapped
between all the left approximating sums and all the right approximating sums .
The function in those examples, , happens to be increasing on and so
the lower sums arise from left endpoints and the upper sums from right endpoints.
(See Figures 8 and 9.) In general, we form lower (and upper) sums by choosing the 

n l �

f

A � lim
n l �

Rn � lim
n l �

� f �x1� �x � f �x2 � �x � � � � � f �xn � �x�

f

A � lim
n l �

Ln � lim
n l �

� f �x0 � �x � f �x1� �x � � � � � f �xn�1� �x�

xi* �xi�1, xi�
x1* x2* xn*

A � lim
n l �

� f �x1*� �x � f �x2* � �x � � � � � f �xn*� �x�

FIGURE 13
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sample points so that is the minimum (and maximum) value of on the th
subinterval. (See Figure 14 and Exercises 7–8.)

We often use sigma notation to write sums with many terms more compactly. For
instance,

So the expressions for area in Equations 2, 3, and 4 can be written as follows:

We can also rewrite Formula 1 in the following way:

EXAMPLE 3 Let A be the area of the region that lies under the graph of
between x � 0 and x � 2.
(a) Using right endpoints, find an expression for as a limit. Do not evaluate the
limit.
(b) Estimate the area by taking the sample points to be midpoints and using four
sub intervals and then ten subintervals.

SOLUTION
(a) Since a � 0 and b � 2, the width of a subinterval is

So , and . The sum of the areas
of the approximating rectangles is

FIGURE 14   

0

y

xa b

Lower sums (short rectangles)
and upper sums (tall rectangles)

�
n

i�1
f �xi� �x � f �x1� �x � f �x2 � �x � � � � � f �xn � �x

A � lim
n l �

�
n

i�1
f �xi� �x

A � lim
n l �

�
n

i�1
f �xi�1� �x

A � lim
n l �

�
n

i�1
f �xi*� �x

�
n

i�1
i 2 �

n�n � 1��2n � 1�
6

f �x� � e�x

A

�x �
2 � 0

n
�

2

n

x1 � 2�n, x2 � 4�n, x3 � 6�n, xi � 2i�n xn � 2n�n

Rn � f �x1� �x � f �x2 � �x � � � � � f �xn � �x

� e�x1 �x � e�x2 �x � � � � � e�xn �x

� e�2�n�2

n� � e�4�n�2

n� � � � � � e�2n�n� 2

n�

ff �xi*�xi* i
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This tells us to
end with i=n.

This tells us
to add.

This tells us to
start with i=m.

μ f(xi) Îx

n

i=m

■ If you need practice with sigma nota-
tion, look at the examples and try some
of the exercises in Appendix B.
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According to Definition 2, the area is

Using sigma notation we could write

It is difficult to evaluate this limit directly by hand, but with the aid of a computer
algebra system it isn’t hard (see Exercise 22). In Section 5.3 we will be able to find
A more easily using a different method.

(b) With n � 4 the subintervals of equal width are , ,
, and . The midpoints of these subintervals are , ,

, and , and the sum of the areas of the four approximating 
rectangles (see Fig ure 15) is

So an estimate for the area is

With the subintervals are , , . . . , and the midpoints
are . Thus

From Figure 16 it appears that this estimate is better than the estimate with .
■

THE DISTANCE PROBLEM

Now let’s consider the distance problem: Find the distance traveled by an object dur-
ing a certain time period if the velocity of the object is known at all times. (In a sense
this is the inverse problem of the velocity problem that we discussed in Section 2.1.)
If the velocity remains constant, then the distance problem is easy to solve by means
of the formula

But if the velocity varies, it’s not so easy to find the distance traveled. We investigate
the problem in the following example.

EXAMPLE 4 Suppose the odometer on our car is broken and we want to estimate
the distance driven over a 30-second time interval. We take speedometer readings
every five seconds and record them in the following table:

A � lim
n l �

Rn � lim
n l �

2

n
�e�2�n � e�4�n � e�6�n � � � � � e�2n�n�

A � lim
n l �

2

n �
n

i�1
e�2i�n

�x � 0.5 
0, 0.5� 
0.5, 1�

1, 1.5� 
1.5, 2� x1* � 0.25 x2* � 0.75
x3* � 1.25 x4* � 1.75

M4 � �
4

i�1
f �xi*� �x

� f �0.25� �x � f �0.75� �x � f �1.25� �x � f �1.75� �x

� e�0.25�0.5� � e�0.75�0.5� � e�1.25�0.5� � e�1.75�0.5�

� 1
2 �e�0.25 � e�0.75 � e�1.25 � e�1.75 � � 0.8557

A � 0.8557

n � 10 
0, 0.2� 
0.2, 0.4� 
1.8, 2�
x1* � 0.1, x2* � 0.3, x3* � 0.5, . . . , x10* � 1.9

A � M10 � f �0.1� �x � f �0.3� �x � f �0.5� �x � � � � � f �1.9� �x

� 0.2�e�0.1 � e�0.3 � e�0.5 � � � � � e�1.9 � � 0.8632

n � 4

distance � velocity 	 time
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FIGURE 15

1

2

2

1 y=e–®

0

y

x

12280_ch05_ptg01_hr_257-267.qk_12280_ch05_ptg01_hr_257-267  11/16/11  3:57 PM  Page 264

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In order to have the time and the velocity in consistent units, let’s convert the veloc-
ity readings to feet per second (1 mi�h � 5280�3600 ft�s):

During the first five seconds the velocity doesn’t change very much, so we can esti-
mate the distance traveled during that time by assuming that the velocity is constant.
If we take the velocity during that time interval to be the initial velocity (25 ft�s),
then we obtain the approximate distance traveled during the first five seconds:

Similarly, during the second time interval the velocity is approximately constant and
we take it to be the velocity when t � 5 s. So our estimate for the distance traveled
from to is

If we add similar estimates for the other time intervals, we obtain an estimate for the
total distance traveled:

We could just as well have used the velocity at the end of each time period
instead of the velocity at the beginning as our assumed constant velocity. Then our
estimate becomes

If we had wanted a more accurate estimate, we could have taken velocity readings
every two seconds, or even every second. ■

Perhaps the calculations in Example 4 remind you of the sums we used earlier to
estimate areas. The similarity is explained when we sketch a graph of the velocity
function of the car in Figure 17 and draw rectangles whose heights are the initial
velocities for each time interval. The area of the first rectangle is ,
which is also our estimate for the distance traveled in the first five seconds. In fact, the
area of each rectangle can be interpreted as a distance because the height represents
velocity and the width represents time. The sum of the areas of the rectangles in 
Figure 17 is , which is our initial estimate for the total distance traveled.

In general, suppose an object moves with velocity , where and
(so the object always moves in the positive direction). We take velocity read-

ings at times so that the velocity is approximately constant
on each subinterval. If these times are equally spaced, then the time between consecu-
tive readings is . During the first time interval the velocity is approxi-
mately and so the distance traveled is approximately . Similarly, the 
distance traveled during the second time interval is about and the total dis-

25 ft�s 	 5 s � 125 ft

t � 5 s t � 10 s

31 ft�s 	 5 s � 155 ft

�25 	 5� � �31 	 5� � �35 	 5� � �43 	 5� � �47 	 5� � �46 	 5� � 1135 ft

�31 	 5� � �35 	 5� � �43 	 5� � �47 	 5� � �46 	 5� � �41 	 5� � 1215 ft

25 	 5 � 125

L6 � 1135
v � f �t� a 
 t 
 b

f �t� � 0
t0 �� a�, t1, t2, . . . , tn �� b�

�t � �b � a��n
f �t0 � f �t0 � �t

f �t1� �t
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Time (s) 0 5 10 15 20 25 30

Velocity (mi�h) 17 21 24 29 32 31 28

Time (s) 0 5 10 15 20 25 30

Velocity (ft�s) 25 31 35 43 47 46 41

FIGURE 17
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tance traveled during the time interval is approximately

If we use the velocity at right endpoints instead of left endpoints, our estimate for the
total distance becomes

The more frequently we measure the velocity, the more accurate our estimates
become, so it seems plausible that the exact distance d traveled is the limit of such
expressions:

We will see in Section 5.3 that this is indeed true.
Because Equation 5 has the same form as our expressions for area in Equations 2

and 3, it follows that the distance traveled is equal to the area under the graph of 
the velocity function. In Chapter 7 we will see that other quantities of interest in the
natural and social sciences—such as the work done by a variable force—can also be
interpreted as the area under a curve. So when we compute areas in this chapter, bear
in mind that they can be interpreted in a variety of practical ways.

f �t0 � �t � f �t1� �t � � � � � f �tn�1� �t � �
n

i�1
f �ti�1� �t

f �t1� �t � f �t2 � �t � � � � � f �tn � �t � �
n

i�1
f �ti� �t

d � lim
n l �

�
n

i�1
f �ti�1� �t � lim

n l �
�
n

i�1
f �ti� �t5


a, b�
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5.1 EXERCISES

1. (a) By reading values from the given graph of , use five
rect angles to find a lower estimate and an upper estimate
for the area under the given graph of from to

. In each case sketch the rectangles that you use.
(b) Find new estimates using ten rectangles in each case.

2. (a) Use six rectangles to find estimates of each type for the
area under the given graph of from to .

(i) (sample points are left endpoints)
(ii) (sample points are right endpoints)

(iii) (sample points are midpoints)
(b) Is an underestimate or overestimate of the true area?
(c) Is an underestimate or overestimate of the true area?

f

f x � 0
x � 10

y

x0 5

5
y=ƒ

10

f x � 0 x � 12
L6

R6

M6

L6

R6

(d) Which of the numbers , , or gives the best esti-
mate? Explain.

3. (a) Estimate the area under the graph of from
to using four approximating rectangles

and right endpoints. Sketch the graph and the rectangles.
Is your estimate an underestimate or an overestimate?

(b) Repeat part (a) using left endpoints.

4. (a) Estimate the area under the graph of from
to using four approximating rect angles and

L6 R6 M6

y

x0 4

4

8

y=ƒ

8 12

f �x� � cos x
x � 0 x � ��2

f �x� � sx
x � 0 x � 4

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints at stewartcalculus.comCAS
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(b) Give another estimate using the velocities at the end of
the time periods.

(c) Are your estimates in parts (a) and (b) upper and lower 
estimates? Explain.

11. Oil leaked from a tank at a rate of liters per hour. The
rate decreased as time passed and values of the rate at two-
hour time intervals are shown in the table. Find lower and
upper estimates for the total amount of oil that leaked out.

12. When we estimate distances from velocity data, it is some-
times necessary to use times that are not
equally spaced. We can still estimate distances using the
time periods . For example, on May 7, 1992,
the space shuttle Endeavour was launched on mission
STS-49, the purpose of which was to install a new perigee
kick motor in an Intelsat communications satellite. The
table, provided by NASA, gives the velocity data for the
shuttle between liftoff and the jettisoning of the solid
rocket boosters. Use these data to estimate the height
above the earth’s surface of the space shuttle Endeavour,
62 seconds after liftoff.

13. The velocity graph of a braking car is shown. Use it to
esti mate the distance traveled by the car while the brakes
are applied.

r�t�

t0, t1, t2, t3, . . .

�ti � ti � ti�1

√

(ft /s)

t

(seconds)
0 2

20

40

60

4 6

right endpoints. Sketch the graph and the rectangles. Is
your estimate an underestimate or an overestimate?

(b) Repeat part (a) using left endpoints.

5. (a) Estimate the area under the graph of
from to using three rectangles and right
end points. Then improve your estimate by using six
rect angles. Sketch the curve and the approximating 
rectangles.

(b) Repeat part (a) using left endpoints.
(c) Repeat part (a) using midpoints.
(d) From your sketches in parts (a)–(c), which appears to 

be the best estimate?

; 6. (a) Graph the function

(b) Estimate the area under the graph of using four
approximating rectangles and taking the sample points
to be (i) right endpoints and (ii) midpoints. In each
case sketch the curve and the rectangles.

(c) Improve your estimates in part (b) by using eight 
rectangles.

7. Evaluate the upper and lower sums for ,
, with and . Illustrate with diagrams

like Figure 14.

8. Evaluate the upper and lower sums for ,
, with and . Illustrate with diagrams

like Figure 14.

9. The speed of a runner increased steadily during the first
three seconds of a race. Her speed at half-second intervals
is given in the table. Find lower and upper estimates for
the distance that she traveled during these three seconds.

10. Speedometer readings for a motorcycle at 12-second inter-
vals are given in the table.

(a) Estimate the distance traveled by the motorcycle during
this time period using the velocities at the beginning of
the time intervals.

f �x� � 1 � x 2

x � 2x � �1

f �x� � x � 2 ln x

f

f �x� � 2 � sin x
8n � 2, 4,0 
 x 
 �

f �x� � 1 � x 2

4n � 3�1 
 x 
 1

1 
 x 
 5
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0 2 4 6 8 10

(L�h) 8.7 7.6 6.8 6.2 5.7 5.3

t �h�

r�t�

Event Time (s) Velocity (ft�s)

Launch 0 0
Begin roll maneuver 10 185
End roll maneuver 15 319
Throttle to 89% 20 447
Throttle to 67% 32 742
Throttle to 104% 59 1325
Maximum dynamic pressure 62 1445
Solid rocket booster separation 125 4151t (s) 0 0.5 1.0 1.5 2.0 2.5 3.0

(ft�s) 0 6.2 10.8 14.9 18.1 19.4 20.2v

t (s) 0 12 24 36 48 60

(ft�s) 30 28 25 22 24 27v
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(b) Show that

Then draw a diagram to illustrate this equation by
showing that the rectangles representing can
be reassembled to form a single rectangle whose area is
the right side of the equation.

(c) Deduce that

20. If is the area under the curve from 1 to 3, use 
Exercise 19 to find a value of such that .

21. (a) Express the area under the curve from 0 to 2 as 
a limit.

(b) Use a computer algebra system to find the sum in your
expression from part (a).

(c) Evaluate the limit in part (a).

22. Find the exact area of the region under the graph of
from 0 to 2 by using a computer algebra system to evaluate
the sum and then the limit in Example 3(a). Compare your
answer with the estimate obtained in Example 3(b).

23. Find the exact area under the cosine curve from
to , where . (Use a computer 

algebra system both to evaluate the sum and compute the
limit.) In particular, what is the area if ?

24. (a) Let be the area of a polygon with equal sides
inscribed in a circle with radius . By dividing the poly-
gon into congruent triangles with central angle ,
show that

(b) Show that . [Hint: Use Equation 1.4.6
on page 42.]

Rn � Ln �
b � a

n
� f �b� � f �a��

n Rn � Ln

Rn � A �
b � a

n
� f �b� � f �a��

A y � e x

n Rn � A � 0.0001

CAS y � x 5

CAS y � e�x

CAS y � cos x
x � 0 x � b 0 � b � ��2

b � ��2

An n
r

n 2��n

An � 1
2 nr 2 sin�2�

n �
limn l � An � �r 2

14. The velocity graph of a car accelerating from rest to a speed
of over a period of 30 seconds is shown. Estimate
the distance traveled during this period.

15–16 ■ Use Definition 2 to find an expression for the area
under the graph of as a limit. Do not evaluate the limit.

15. ,  

16. ,  

17. Determine a region whose area is equal to

Do not evaluate the limit.

18. (a) Use Definition 2 to find an expression for the area under
the curve from 0 to 1 as a limit.

(b) The following formula for the sum of the cubes of the
first integers is proved in Appendix B. Use it to evalu-
ate the limit in part (a).

19. Let be the area under the graph of an increasing contin-
uous function from to , and let  and be the approx-
imations to with subintervals using left and right
endpoints, respectively.
(a) How are , , and related?

120 km�h

40

80

√

t

(seconds)
0 10 20 30

(km/h)

f

1 � x � 3f �x� �
2x

x 2 � 1

4 � x � 7f �x� � x 2 � s1 � 2x

lim
n l �

	
n

i�1

�

4n
tan 

i�

4n

y � x 3

n

13 � 23 � 33 � � � � � n 3 � 
n�n � 1�
2 �2

A
RnLnbaf

nA

RnLnA
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5.2 THE DEFINITE INTEGRAL
We saw in Section 5.1 that a limit of the form

arises when we compute an area. We also saw that it arises when we try to find the
distance traveled by an object. It turns out that this same type of limit occurs in a wide
variety of situations even when is not necessarily a positive function. Here we con-
sider limits similar to but in which need not be positive or continuous and the
subintervals don’t necessarily have the same length.

lim
n l �

	
n

i�1
f �xi*� 	x � lim

n l �
� f �x1*� 	x � f �x2*� 	x � � � � � f �xn*� 	x�

f
f

1

1
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In general, we start with any function defined on and we divide into
smaller subintervals by choosing partition points so that

The resulting collection of subintervals

is called a partition of . We use the notation for the length of the sub-
interval . Thus

Then we choose sample points in the subintervals with in the
subinterval . These sample points could be left endpoints or right endpoints
or any numbers between the endpoints. Figure 1 shows an example of a partition and
sample points.

A Riemann sum associated with a partition and a function is constructed by
evaluating at the sample points, multiplying by the lengths of the corresponding sub-
intervals, and adding:

The geometric interpretation of a Riemann sum is shown in Figure 2. Notice that if
is negative, then is negative and so we have to subtract the area of the

corresponding rectangle.

If we imagine all possible partitions of and all possible choices of sample
points, we can think of taking the limit of all possible Riemann sums as becomes
large by analogy with the definition of area. But because we are now allowing subin-
tervals with different lengths, we need to ensure that all of these lengths approach 0.

x0, x1, x2, . . . , xn

a � x0 � x1 � x2 � � � � � xn�1 � xn � b

�x0, x1�,   �x1, x2�,   �x2, x3�,   . . . ,   �xn�1, xn�

P �a, b� 	xi ith
�xi�1, xi�

	xi � xi � xi�1

x1*, x2*, . . . , xn* xi* ith
�xi�1, xi�

FIGURE 1
A partition of [a, b] with 

sample points x
i
*

xn=ba=x¸ x.  .  ..  .  . xixi-1 xn-1¤⁄

Î⁄

‹

Î¤ Î‹ Îxi Îxn

¤* ‹* xi
* xn

*⁄*

P f
f

	
n

i�1
f �xi*� 	xi � f �x1*� 	x1 � f �x2*� 	x2 � � � � � f �xn*� 	xn

f �xi*� f �xi*� 	xi

n
�a, b��a, b�f

FIGURE 2
ba0

y

x¤*
x¢*

x∞*⁄*

y=ƒ

μ f{x
i
*} Îx

i
=A¡+A™-A£-A¢+A∞

A¡
A™

A£
A¢

A∞‹*

i=1

5

A Riemann sum is the sum of the  
areas of the rectangles above the  

x-axis and the negatives of the areas  
of the rectangles below the x-axis.

�a, b�
n

	xi
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■ The Riemann sum is named after 
the German mathematician Bernhard
Riemann (1826–1866). See the 
biographical note on page 270.
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270 CHAPTER 5 INTEGRALS

We can do that by insisting that the largest of these lengths, which we denote by
, approaches 0. The result is called the definite integral of from to .

DEFINITION OF A DEFINITE INTEGRAL If is a function defined on ,
the definite integral of f from a to b is the number

provided that this limit exists. If it does exist, we say that is integrable
on .

The precise meaning of the limit that defines the integral in Definition 2 is as follows:

means that for every there is a corresponding number such that

for all partitions of with and for all possible choices of in .

This means that a definite integral can be approximated to within any desired degree
of accuracy by a Riemann sum.

NOTE 1 The symbol was introduced by Leibniz and is called an integral sign. It
is an elongated and was chosen because an integral is a limit of sums. In the nota-
tion is called the integrand and and are called the limits of inte-
gration; is the lower limit and is the upper limit. For now, the symbol has 
no official meaning by itself; is all one symbol. The simply indicates 
that the independent variable is . The procedure of calculating an integral is called
integration.

NOTE 2 The definite integral is a number; it does not depend on . In 
fact, we could use any letter in place of without changing the value of the integral:

We have defined the definite integral for an integrable function, but not all func-
tions are integrable. The following theorem shows that the most commonly occurring
functions are in fact integrable. The theorem is proved in more advanced courses.

THEOREM If is continuous on , or if has only a finite number of
jump discontinuities, then is integrable on ; that is, the definite integral

exists.

If is integrable on , then the Riemann sums in Definition 2 must approach
as no matter how the partitions and sample points are chosen.

So in calculating the value of an integral we are free to choose partitions and 

max 	xi f a b

f �a, b�

y
b

a
f �x� dx � lim

max 	xi l 0
	
n

i�1
f �xi*� 	xi

f
�a, b�

x
b
a f �x� dx � I 
 � 0 � � 0

� I � 	
n

i�1
f �xi*� 	xi � � 


P �a, b� max 	xi � � xi* �xi�1, xi�

x

S
x

b
a f �x� dx, f �x� a b

a b dx
x

b
a f �x� dx

x
b
a f �x� dx x

x

y
b

a
f �x� dx � y

b

a
f �t� dt � y

b

a
f �r� dr

2

dx
x

f �a, b� f
f �a, b�

x
b
a

f �x� dx

f �a, b�
x

b
a

f �x� dx max 	xi l 0
P

3

■ RIEMANN
Bernhard Riemann received his Ph.D.
under the direction of the legendary 
Gauss at the University of Göttingen and
remained there to teach. Gauss, who 
was not in the habit of praising other
mathematicians, spoke of Riemann’s 
“creative, active, truly mathematical mind
and gloriously fertile originality.” The 
definition of an integral that we use is
due to Riemann. He also made major con-
tributions to the theory of functions of a
complex variable, mathematical physics,
number theory, and the foundations of
geometry. Riemann’s broad concept of
space and geometry turned out to be the
right setting, 50 years later, for Einstein’s
general relativity theory. Riemann’s health
was poor throughout his life, and he died
of tuberculosis at the age of 39.

2
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sample points to simplify the calculation. It’s often convenient to take to be a
regular partition; that is, all the subintervals have the same length . Then

and

If we choose to be the right endpoint of the subinterval, then

In this case, as , so Definition 2 gives

THEOREM If is integrable on , then

where and    

In computing the value of an integral, Theorem 4 is much simpler to use than Defini-
tion 2.

EXAMPLE 1 Express

as an integral on the interval .

SOLUTION Comparing the given limit with the limit in Theorem 4, we see that
they will be identical if we choose . We are given that and

. Therefore, by Theorem 4, we have

■

Later, when we apply the definite integral to physical situations, it will be impor-
tant to recognize limits of sums as integrals, as we did in Example 1. When Leibniz
chose the notation for an integral, he chose the ingredients as reminders of the limit-
ing process. In general, when we write

we replace by , by x, and by dx.

xi* P
	x

	x � 	x1 � 	x2 � � � � � 	xn �
b � a

n

x0 � a,  x1 � a � 	x,  x2 � a � 2 	x,  . . . ,  xi � a � i 	x

xi* ith

xi* � xi � a � i 	x � a � i
b � a

n

max 	xi � 	x � �b � a��n l 0 n l �

y
b

a
f �x� dx � lim

	x l 0
	
n

i�1
f �xi� 	x � lim

n l �
	
n

i�1
f �xi� 	x

f �a, b�

y
b

a
f �x� dx � lim

n l �
	
n

i�1
f �xi� 	x

	x �
b � a

n
xi � a � i 	x

lim
n l �

	
n

i�1
�xi

3 � xi sin xi� 	x

�0, ��

f �x� � x 3 � x sin x a � 0

4

b � �

lim
n l �

	
n

i�1
�xi

3 � xi sin xi� 	x � y
�

0
�x 3 � x sin x� dx

lim
n l �

	
n

i�1
f �xi*� 	x � y

b

a
f �x� dx

	xxi*xlim 
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NOTE 3 If happens to be positive, then the Riemann sum can be interpreted as a
sum of areas of approximating rectangles (see Fig ure 3). By comparing Theorem 4
with the definition of area in Section 5.1, we see that the definite integral
can be interpreted as the area under the curve from a to b. (See Figure 4.)

If takes on both positive and negative values, as in Figure 5, then the Riemann
sum is the sum of the areas of the rectangles that lie above the -axis and the nega-
tives of the areas of the rectangles that lie below the -axis (the areas of the dark blue
rectangles minus the areas of the light blue rectangles). When we take the limit of such
Riemann sums, we get the situation illustrated in Figure 6. A definite integral can be
interpreted as a net area, that is, a difference of areas:

where is the area of the region above the -axis and below the graph of , and
is the area of the region below the -axis and above the graph of .

EVALUATING INTEGRALS

When we use the definition or Theorem 4 to evaluate a definite integral, we need to
know how to work with sums. The following three equations give formulas for sums
of powers of positive integers. Equation 5 may be familiar to you from a course in
algebra. Equations 6 and 7 were discussed in Section 5.1 and are proved in Appendix B.

x
b
a f �x� dx

y � f �x�

xi
*0

y

xa

Îx

FIGURE 3
If ƒ˘0, the Riemann sum μ f(xi

*) Îx

is the sum of areas of rectangles.

y=ƒ

0

y

xab b

FIGURE 4
If ƒ˘0, the integral j  ƒ dx is the
area under the curve y=ƒ from a to b.

a

b

f
x

x

y
b

a
f �x� dx � A1 � A2

A1 x f A2

x f

FIGURE 5
μ f(xi

*) Îx is an approximation to
the net area.

0

y=ƒ

y

a b x

y=ƒ

y

xa b0

FIGURE 6

j  ƒ dx is the net area.
a

b

f

	
n

i�1
i �

n�n � 1�
2

5
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The remaining formulas are simple rules for working with sigma notation:

EXAMPLE 2
(a) Evaluate the Riemann sum for taking the sample points to be
right endpoints and , , and .

(b) Evaluate .

SOLUTION
(a) With the interval width is

and the right endpoints are , , , , , and
. So the Riemann sum is

Notice that f is not a positive function and so the Riemann sum does not represent a
sum of areas of rectangles. But it does represent the sum of the areas of the dark
blue rectangles (above the x-axis) minus the sum of the areas of the light blue rect-
angles (below the x-axis) in Figure 7.

(b) With n subintervals we have
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n
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a � 0 b � 3 n � 6
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0
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	x �
b � a

n
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6
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x1 � 0.5 x2 � 1.0 x3 � 1.5 x4 � 2.0 x5 � 2.5
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■ Formulas 8–11 are proved by writing
out each side in expanded form. The left
side of Equation 9 is

The right side is

These are equal by the distributive prop-
erty. The other formulas are discussed in 
Appendix B.

c�a1 � a2 � � � � � an �

ca1 � ca2 � � � � � can

0

y

3 x

5 y=˛-6x

FIGURE 7
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Thus , , , , and, in general, . Since we
are using right endpoints, we can use Theorem 4:

(Equation 9 with )

(Equations 11 and 9)

(Equations 7 and 5)

This integral can’t be interpreted as an area because takes on both positive and
negative values. But it can be interpreted as the difference of areas , where

and are shown in Figure 8.
Figure 9 illustrates the calculation by showing the positive and negative terms in

the right Riemann sum for . The values in the table show the Riemann
sums approaching the exact value of the integral, , as .

■

A much simpler method for evaluating the integral in Example 2 will be given in
Section 5.3 after we have proved the Evaluation Theorem.

EXAMPLE 3 Evaluate the following integrals by interpreting each in terms of
areas.

(a) (b) 
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FIGURE 8

j  (˛-6x) dx=A¡-A™=_6.75
0

3

A™

A¡

0

y

3 x

5 y=˛-6x

■ In the sum, is a constant (unlike ),
so we can move in front of the 

sign.
3�n

in

n

40 �6.3998
100 �6.6130
500 �6.7229

1000 �6.7365
5000 �6.7473

Rn

■ www.stewartcalculus.com
See Additional Example A.
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SOLUTION
(a) Since , we can interpret this integral as the area under the
curve from 0 to 1. But, since , we get , which
shows that the graph of is the quarter-circle with radius 1 in Figure 10. Therefore

(In Section 6.2 we will be able to prove that the area of a circle of radius r is .)

(b) The graph of is the line with slope 1 shown in Figure 11. We com-
pute the integral as the difference of the areas of the two triangles:

■

THE MIDPOINT RULE

We often choose the sample point to be the right endpoint of the th subinterval
because it is convenient for computing the limit. But if the purpose is to find an
approximation to an integral, it is usually better to choose to be the midpoint of the
interval, which we denote by . Any Riemann sum is an approximation to an integral,
but if we use midpoints and a regular partition we get the following approximation.

MIDPOINT RULE

where

and

EXAMPLE 4 Use the Midpoint Rule with to approximate .

SOLUTION The endpoints of the five subintervals are , , , , , and , 
so the midpoints are , , , , and . The width of the subintervals is

, so the Midpoint Rule gives 

Since for , the integral represents an area, and the
approxi mation given by the Midpoint Rule is the sum of the areas of the rectangles
shown in Figure 12. ■

f �x� � s1 � x 2  0
y � s1 � x 2 y 2 � 1 � x 2 x 2 � y 2 � 1

f

y
1

0
s1 � x 2 dx � 1

4 � �1�2 �
�

4

�r 2

y � x � 1

y
3

0
 �x � 1� dx � A1 � A2 � 1

2 �2 � 2� �
1
2 �1 � 1� � 1.5

xi* i

xi*
xi

y
b

a
f �x� dx � 	

n

i�1
f �xi� 	x � 	x � f �x1� � � � � � f �xn ��

	x �
b � a

n

xi � 1
2 �xi�1 � xi� � midpoint of �xi�1, xi�

V n � 5 y
2

1

1

x
dx

1 1.2 1.4 1.6 1.8 2.0
1.1 1.3 1.5 1.7 1.9

	x � �2 � 1��5 � 1
5

y
2

1

1

x
dx � 	x � f �1.1� � f �1.3� � f �1.5� � f �1.7� � f �1.9��

�
1

5
 � 1

1.1
�

1

1.3
�

1

1.5
�

1

1.7
�

1

1.9� � 0.691908

1 � x � 2f �x� � 1�x � 0

SECTION 5.2  THE DEFINITE INTEGRAL 275

Unless otherwise noted, all content on this page is © Cengage Learning.

x

y

10

1

y=   1-≈

or

≈+¥=1

œ„„„„„

FIGURE 10

Module 5.2/6.5 shows how the
Midpoint Rule estimates improve as 
increases.

n
TEC

x

y

10

_1

3

y=x-1

A¡

(3, 2)

A™

FIGURE 11

FIGURE 12

0 x

y

1 2

y=
1

x
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At the moment we don’t know how accurate the approximation in Example 4 is,
but in Section 6.5 we will learn a method for estimating the error involved in using the
Midpoint Rule. At that time we will discuss other methods for approximating definite
integrals.

If we apply the Midpoint Rule to the integral in Example 2, we get the picture in
Fig ure 13. The approximation is much closer to the true value
than the right endpoint approximation, , shown in Figure 9.

PROPERTIES OF THE DEFINITE INTEGRAL

We now develop some basic properties of integrals that will help us to evaluate inte-
grals in a simple manner. We assume that and are integrable functions.

When we defined the definite integral , we implicitly assumed that .
But the definition as a limit of Riemann sums makes sense even if . Notice that
if we reverse a and b in Theorem 4, then changes from to .
Therefore

If , then and so

PROPERTIES OF THE INTEGRAL Suppose all the following integrals exist.

1. ,  where c is any constant

2.

3. ,  where c is any constant

4.

M40 � �6.7563 �6.75
R40 � �6.3998

FIGURE 13
M¢¸Å_6.7563

0

y

3 x

5 y=˛-6x

x
b
a f �x� dx a � b

a � b
	x �b � a��n �a � b��n

y
a

b
f �x� dx � �y

b

a
f �x� dx

a � b 	x � 0

y
a

a
f �x� dx � 0

f t

y
b

a
c dx � c�b � a�

y
b

a
� f �x� � t�x�� dx � y

b

a
f �x� dx � y

b

a
t�x� dx

y
b

a
c f �x� dx � c y

b

a
f �x� dx

y
b

a
� f �x� � t�x�� dx � y

b

a
f �x� dx � y

b

a
t�x� dx
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In Visual 5.2 you can compare left,
right, and midpoint approximations to
the integral in Example 2 for different
values of .n

TEC
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Property 1 says that the integral of a constant function is the constant
times the length of the interval. If and , this is to be expected because

is the area of the shaded rectangle in Figure 14.
Property 2 says that the integral of a sum is the sum of the integrals. For positive

functions it says that the area under is the area under plus the area under t.
Figure 15 helps us understand why this is true: In view of how graphical addition
works, the corresponding vertical line segments have equal height.

In general, Property 2 follows from Theorem 4 and the fact that the limit of a sum
is the sum of the limits:

Property 3 can be proved in a similar manner and says that the integral of a con-
stant times a function is the constant times the integral of the function. In other words,
a constant (but only a constant) can be taken in front of an integral sign. Property 4 is
proved by writing and using Properties 2 and 3 with .

EXAMPLE 5 Use the properties of integrals to evaluate .

SOLUTION Using Properties 2 and 3 of integrals, we have

We know from Property 1 that

and we found in Example 2 in Section 5.1 that . So

■

The next property tells us how to combine integrals of the same function over adja-
cent intervals:

5.

f �x� � c
c � 0 a � b

c�b � a�

f � t f

y
b

a
� f �x� � t�x�� dx � lim

n l �
	
n

i�1
� f �xi� � t�xi�� 	x

� lim
n l �


	
n

i�1
f �xi� 	x � 	

n

i�1
t�xi� 	x�

� lim
n l �

	
n

i�1
f �xi� 	x � lim

n l �
	
n

i�1
t�xi� 	x

� y
b

a
f �x� dx � y

b

a
t�x� dx

f � t � f � ��t� c � �1

y
1

0
�4 � 3x 2 � dx

y
1

0
 �4 � 3x 2 � dx � y

1

0
 4 dx � y

1

0
 3x 2 dx � y

1

0
 4 dx � 3 y

1

0
 x 2 dx

y
1

0
 4 dx � 4�1 � 0� � 4

y
1

0
x 2 dx � 1

3

y
1

0
 �4 � 3x 2 � dx � y

1

0
 4 dx � 3 y

1

0
 x 2 dx

� 4 � 3 � 1
3 � 5

y
c

a
f �x� dx � y

b

c
f �x� dx � y

b

a
f �x� dx
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FIGURE 14

j  c dx=c(b-a)
a

b

0

y

xa b

c
y=c

area=c(b-a)

y

0 xa b

f

g

f+g

FIGURE 15

j   [ƒ+©] dx=

j   ƒ dx+j   © dx

a

b

a

b

a

b

■ Property 3 seems intuitively reason-
able because we know that multiplying
a function by a positive number 
stretches or shrinks its graph vertically
by a factor of . So it stretches or
shrinks each approximating rectangle by
a factor and therefore it has the effect
of multiplying the area by .c

c

c

c

12280_ch05_ptg01_hr_268-277.qk_12280_ch05_ptg01_hr_268-277  11/16/11  3:59 PM  Page 277

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Property 5 is more complicated and is proved in Appendix D, but for the case
where and it can be seen from the geometric interpretation in
Figure 16: The area under from a to c plus the area from c to b is equal to
the total area from a to b.

EXAMPLE 6 If it is known that and , 
find .

SOLUTION By Property 5, we have

so ■

Notice that Properties 1–5 are true whether , , or . The following
properties, in which we compare sizes of functions and sizes of integrals, are true only 
if 

COMPARISON PROPERTIES OF THE INTEGRAL

6. If for , then .

7. If for , then .

8. If for , then

If , then represents the area under the graph of , so the geo-
metric interpretation of Property 6 is simply that areas are positive. (It also follows
directly from the definition because all the quantities involved are positive.). Prop-
erty 7 says that a bigger function has a bigger integral. It follows from Properties 6
and 4 because 

Property 8 is illustrated by Figure 17 for the case where . If is continu-
ous we could take and to be the absolute minimum and maximum values of on
the interval . In this case Property 8 says that the area under the graph of is
greater than the area of the rectangle with height and less than the area of the rect-
angle with height .

In general, since , Property 7 gives

Using Property 1 to evaluate the integrals on the left- and right-hand sides, we obtain

f �x� � 0 a � c � b
y � f �x�

x
10
0 f �x� dx � 17 x

8
0 f �x� dx � 12

x
10
8 f �x� dx

y
8

0
f �x� dx � y

10

8
f �x� dx � y

10

0
f �x� dx

y
10

8
f �x� dx � y

10

0
f �x� dx � y

8

0
f �x� dx � 17 � 12 � 5

a � b a � b a � b

a � b.

f �x� � 0 a � x � b y
b

a
f �x� dx � 0

f �x� � t�x� a � x � b y
b

a
f �x� dx � y

b

a
t�x� dx

m � f �x� � M a � x � b

m�b � a� � y
b

a
f �x� dx � M�b � a�

f �x� � 0 x
b
a f �x� dx f

f � t � 0.

V

f �x� � 0 f
m M f

�a, b� f
m

M
m � f �x� � M

y
b

a
m dx � y

b

a
f �x� dx � y

b

a
M dx

m�b � a� � y
b

a
f �x� dx � M�b � a�
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FIGURE 16

0

y

xa bc

y=ƒ

0

y

m

M

xa b

y=ƒ

FIGURE 17
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5.2 EXERCISES

1. Evaluate the Riemann sum for , ,
with six subintervals, taking the sample points to be left
endpoints. Explain, with the aid of a diagram, what the 
Riemann sum represents.

2. If , , evaluate the Riemann sum
with , taking the sample points to be right endpoints.
What does the Riemann sum represent? Illustrate with a
diagram.

3. If , , find the Riemann sum with
correct to six decimal places, taking the sample

points to be midpoints. What does the Riemann sum repre-
sent? Illustrate with a diagram.

4. (a) Find the Riemann sum for , ,
with six terms, taking the sample points to be right end-
points. (Give your answer correct to six decimal places.)
Explain what the Riemann sum represents with the aid
of a sketch.

(b) Repeat part (a) with midpoints as the sample points.

5. Find the Riemann sum for , , if the
partition points are and the sample
points are .

6. Find the Riemann sum for , , if
the partition points are and
the sample points are left endpoints. What is ?

f �x� � 3 �
1
2 x 2 � x � 14

f �x� � x 2 � 2x 0 � x � 3
n � 6

f �x� � e x � 2 0 � x � 2
n � 4

f �x� � sin x 0 � x � 3��2

f �x� � x 3 �1 � x � 1
�1, �0.5, 0, 0.5, 1

�1, �0.4, 0.2, 1

f �x� � x � x 2 �2 � x � 0
�2, �1.5, �1, �0.7, �0.4, 0

max 	xi

7. The graph of a function is given. Estimate 
using five subintervals with (a) right endpoints, (b) left end-
points, and (c) midpoints.

8. The graph of is shown. Estimate with six sub-
 intervals using (a) right endpoints, (b) left endpoints, and
(c) midpoints.

f x
10

0 f �x� dx

x

y

0

1

1

t x
4
�2 t�x� dx

x

y

1

1

Property 8 is useful when all we want is a rough estimate of the size of an integral
without going to the bother of using the Midpoint Rule.

EXAMPLE 7 Use Property 8 to estimate .

SOLUTION Because is a decreasing function on , its absolute
maximum value is and its absolute minimum value is

. Thus, by Property 8,

or

Since , we can write

■

The result of Example 7 is illustrated in Figure 18. The integral is greater than the
area of the lower rectangle and less than the area of the square.

y
1

0
e�x2

dx

f �x� � e�x 2

�0, 1�
M � f �0� � 1

m � f �1� � e�1

e�1�1 � 0� � y
1

0
e�x 2

dx � 1�1 � 0�

e�1 � y
1

0
e�x 2

dx � 1

e�1 � 0.3679

0.367 � y
1

0
e�x 2

dx � 1
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FIGURE 18

y

x
1

0

1

y=1

y=e–
x

2

y=1/e
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(c) Use Theorem 4 to evaluate .
(d) Interpret the integral in part (c) as a difference of areas

and illustrate with a diagram like Figure 6.

25–26 ■ Express the integral as a limit of Riemann sums. Do
not evaluate the limit.

25. 26.

27–28 ■ Express the integral as a limit of sums. Then evaluate,
using a computer algebra system to find both the sum and the
limit.

27. 28.

29. The graph of is shown. Evaluate each integral by inter-
 preting it in terms of areas.

(a) (b)

(c) (d)

30. The graph of t consists of two straight lines and a semi -
circle. Use it to evaluate each integral.

(a) (b) (c)

31–36 ■ Evaluate the integral by interpreting it in terms of areas.

31. 32.

33. 34.

35. 36.

y
6

2

x

1 � x 5 dx y
10

1
�x � 4 ln x� dx

y
�

0
 sin 5x dx y

10

2
 x 6 dx

f

y
2

0
f �x� dx y

5

0
f �x� dx

y
7

5
f �x� dx y

9

0
f �x� dx

x

y

0

2

4 6 82

y=ƒ

y
2

0
t�x� dx y

6

2
t�x� dx y

7

0
t�x� dx

x

y

0

2

4 7

4

y=©

y
2

�1
 �1 � x� dx y

9

0
( 1

3 x � 2) dx

y
0

�3
 (1 � s9 � x 2 ) dx y

5

�5
 (x � s25 � x 2 ) dx

CAS

y
10

0
 � x � 5 � dxy

2

�1
 � x � dx

x
4
0 �x 2 � 3x� dx9. A table of values of an increasing function is shown. Use

the table to find lower and upper estimates for .

10. The table gives the values of a function obtained from an
experiment. Use them to estimate using three
equal subintervals with (a) right endpoints, (b) left end -
points, and (c) midpoints. If the function is known to be an
increasing function, can you say whether your estimates are
less than or greater than the exact value of the integral?

11–14 ■ Use the Midpoint Rule with the given value of to
approximate the integral. Round the answer to four decimal
places.

11. 12. ,  

13. 14.

15–18 ■ Express the limit as a definite integral on the given 
interval.

15.

16.

17. ,  

18. ,  

19–23 ■ Use the form of the definition of the integral given in 
Theorem 4 to evaluate the integral.

19. 20.

21. 22.

23.

24. (a) Find an approximation to the integral
using a Riemann sum with right endpoints and .

(b) Draw a diagram like Figure 2 to illustrate the approxi-
mation in part (a).

f
x

30
10 f �x� dx

x
9

3 f �x� dx

n

n � 4y
��2

0
cos4x dxy

8

0
sinsx dx, n � 4

y
5

1
x 2e�x dx, n � 4y

2

0

x

x � 1
dx, n � 5

lim
n l 


	
n

i�1
xi ln�1 � xi

2� 	x, �2, 6�

lim
n l 


	
n

i�1

cos xi

xi
	x, ��, 2��

�2, 7]lim
n l 


	
n

i�1
�5�xi*�3 � 4xi*� 	x

�1, 3�lim
n l 


	
n

i�1

xi*

�xi*�2 � 4
	x

y
4

1
�x 2 � 4x � 2 � dxy

5

2
�4 � 2x� dx

y
2

0
 �2x � x 3 � dxy

0

�2
 �x 2 � x � dx

y
1

0
 �x 3 � 3x 2� dx

x
4

0 �x 2 � 3x� dx
n � 8
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x 10 14 18 22 26 30

�12 �6 �2 1 3 8f �x�

x 3 4 5 6 7 8 9

0.3 0.9 1.4 1.8�0.6�2.1�3.4f �x�
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45. Each of the regions , , and bounded by the graph of
and the -axis has area 3. Find the value of

46. Suppose has absolute minimum value and absolute
maximum value . Between what two values must

lie? Which property of integrals allows you to
make your conclusion?

47. Use the properties of integrals to verify that 

without evaluating the integral.

48 –52 ■ Use Property 8 to estimate the value of the integral.

48. 49.

50. 51.

52.

53. Express the following limit as a definite integral:

f m
M

x
2

0 f �x� dx

0 � y
3

1
ln x dx � 2 ln 3

y
2

0
sx 3 � 1 dx y

2

1

1

x
dx

y
2

0
�x 3 � 3x � 3� dx y

��3

��4
tan x dx

y
3��4

��4
sin2x dx

lim
n l 


	
n

i�1

i 4

n 5

y
2

�4
� f �x� � 2x � 5� dx

y

0 x_4 _2 2A

B

C

fCBA
x

37. Evaluate .

38. Given that , what is

?

39. Write as a single integral in the form :

40. If and , find .

41. If and , find 

.

42. Find if

43. In Example 2 in Section 5.1 we showed that . 
Use this fact and the properties of integrals to evaluate

.

44. If , where is the function whose graph is
given, which of the following values is largest?
(A) (B)
(C) (D)
(E)

y
�

�
sin2x cos4x dx

y
1

0
3xsx 2 � 4 dx � 5s5 � 8

y
0

1
3usu 2 � 4 du

x
b
a f �x� dx

y
2

�2 
f �x� dx � y

5

2
f �x� dx � y

�1

�2
f �x� dx

x
4
1 f �x� dxx

5
4 f �x� dx � 3.6x

5
1 f �x� dx � 12

x
9

0 t�x� dx � 16x
9

0 f �x� dx � 37

x
9

0 �2 f �x� � 3t�x�� dx

x
5
0 f �x� dx

f �x� � 
3  for x � 3

x for x � 3

x
1
0 x 2 dx � 1

3

x
1
0 �5 � 6x 2 � dx

fF�x� � x
x
2 f �t� dt

F�1�F�0�
F�3�F�2�

F�4�

y

0 t1 2 3 4

y=f(t)
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5.3 EVALUATING DEFINITE INTEGRALS
In Section 5.2 we computed integrals from the definition as a limit of Riemann sums
and we saw that this procedure is sometimes long and difficult. Sir Isaac Newton dis-
covered a much simpler method for evaluating integrals and a few years later Leibniz
made the same discovery. They realized that they could calculate if they
happened to know an antiderivative of . Their discovery, called the Evaluation The-
orem, is part of the Fundamental Theorem of Calculus, which is discussed in the next
section.

x
b
a f �x� dx

F f
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EVALUATION THEOREM If is continuous on the interval , then

where is any antiderivative of , that is, .

This theorem states that if we know an antiderivative of , then we can evaluate
simply by subtracting the values of at the endpoints of the interval .

It is very surprising that , which was defined by a complicated procedure
involving all of the values of for , can be found by knowing the values
of at only two points, and .

For instance, we know from Section 4.7 that an antiderivative of is
, so the Evaluation Theorem tells us that 

Comparing this method with the calculation in Example 2 in Section 5.1, where we
found the area under the parabola from 0 to 1 by computing a limit of sums,
we see that the Evaluation Theorem provides us with a simple and powerful method.

Although the Evaluation Theorem may be surprising at first glance, it becomes
plausible if we interpret it in physical terms. If is the velocity of an object and 

is its position at time t, then , so s is an antiderivative of . In Section
5.1 we considered an object that always moves in the positive direction and made 
the guess that the area under the velocity curve is equal to the distance traveled. In 
symbols:

That is exactly what the Evaluation Theorem says in this context.

PROOF OF THE EVALUATION THEOREM We divide the interval into subin-
tervals with endpoints , , , and with length .
Let be any antiderivative of . By subtracting and adding like terms, we can
express the total difference in the values as the sum of the differences over the
subintervals:

Now is continuous (because it’s differentiable) and so we can apply the Mean
Value Theorem to on each subinterval . Thus there exists a number
between and such that

f �a, b�

y
b

a
f �x� dx � F�b� � F�a�

F f F�� f

F f
x

b
a f �x� dx F �a, b�

x
b
a f �x� dx

f �x� a � x � b
F�x� a b

f �x� � x 2

F�x� � 1
3 x 3

y
1

0
x 2 dx � F�1� � F�0� � 1

3 � 13 �
1
3 � 03 � 1

3

y � x 2

v�t�
s�t� v�t� � s��t� v

y
b

a
v�t� dt � s�b� � s�a�

�a, b� n
x0 �� a� x1 x2, … xn �� b� 	x � �b � a��n

F f
F

F�b� � F�a� � F�xn� � F�x0�

� F�xn� � F�xn�1� � F�xn�1� � F�xn�2� � � � � � F�x 2� � F�x1� � F�x1� � F�x0�

� 	
n

i�1
�F�xi � � F �xi�1��

F
F �xi�1, xi� xi*

xi�1 xi

F�xi� � F�xi�1� � F��xi*��xi � xi�1� � f �xi*� 	x

■ See Section 4.2 for The Mean Value
Theorem.
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Therefore

Now we take the limit of each side of this equation as . The left side is a
constant and the right side is a Riemann sum for the function , so

■

When applying the Evaluation Theorem we use the notation

and so we can write

Other common notations are and .

EXAMPLE 1 Evaluate  .

SOLUTION An antiderivative of is , so we use the Evaluation 
Theorem as follows:

■

EXAMPLE 2 Find the area under the cosine curve from to , where .

SOLUTION Since an antiderivative of is , we have

In particular, taking , we have proved that the area under the cosine
curve from 0 to is . (See Figure 1.) ■

When the French mathematician Gilles de Roberval first found the area under the
sine and cosine curves in 1635, this was a very challenging problem that required a
great deal of ingenuity. If we didn’t have the benefit of the Evaluation Theorem, we
would have to compute a difficult limit of sums using obscure trigonometric identities
(or a computer algebra system as in Exercise 23 in Section 5.1). It was even more dif-
ficult for Roberval because the apparatus of limits had not been invented in 1635. But
in the 1660s and 1670s, when the Evaluation Theorem was discovered by Newton and
Leibniz, such problems became very easy, as you can see from Example 2.

INDEFINITE INTEGRALS

We need a convenient notation for antiderivatives that makes them easy to work with.
Because of the relation given by the Evaluation Theorem between antiderivatives and
integrals, the notation is traditionally used for an antiderivative of and is 

F�b� � F�a� � 	
n

i�1
f �xi*� 	x

n l 

f

F�b� � F�a� � lim
n l 


	
n

i�1
f �xi*� 	x � y

b

a
f �x� dx

F�x�]a

b
� F�b� � F�a�

y
b

a
f �x� dx � F�x�]a

b
where F�� f

F�x��b
a �F�x��a

b

y
3

1
ex dx

f �x� � ex F�x� � ex

y
3

1
ex dx � ex]3

1 � e3 � e

0 b 0 � b � ��2

f �x� � cos x F�x� � sin x

A � y
b

0
cos x dx � sin x]0

b
� sin b � sin 0 � sin b

b � ��2
��2 sin���2� � 1

x f �x� dx f

V

FIGURE 1

y

0

1

x

y=cos x

area=1

π

2

■ In applying the Evaluation Theorem
we use a particular antiderivative of .
It is not necessary to use the most gen-
eral antiderivative .�e x � C�

fF

■ www.stewartcalculus.com
See Additional Example A.
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called an indefinite integral. Thus

means

| You should distinguish carefully between definite and indefinite integrals. A
definite integral is a number, whereas an indefinite integral is a
func tion (or family of functions). The connection between them is given by the Eval-
uation Theorem: If is continuous on , then

Recall from Section 4.7 that if is an antiderivative of on an interval , then the
most general antiderivative of on is , where is an arbitrary constant.
For instance, the formula

is valid (on any interval that doesn’t contain 0) because . So an
indefinite integral can represent either a particular antiderivative of or an
entire family of antiderivatives (one for each value of the constant ).

The effectiveness of the Evaluation Theorem depends on having a supply of anti-
derivatives of functions. We therefore restate the Table of Antidifferentiation Formulas
from Section 4.7, together with a few others, in the notation of indefinite integrals. Any
formula can be verified by differentiating the function on the right side and ob tain ing
the integrand. For instance,

because    

TABLE OF INDEFINITE INTEGRALS

y f �x� dx � F�x� F��x� � f �x�

x
b
a

f �x� dx x f �x� dx

f �a, b�

y
b

a
f �x� dx � y f �x� dx�b

a

F f I
f I F�x� � C C

y
1

x
dx � ln � x � � C

�d�dx� ln � x � � 1�x
x f �x� dx f

C

y sec2x dx � tan x � C
d

dx
�tan x � C � � sec2x

y � f �x� � t�x�� dx � y f �x� dx � y t�x� dx y cf �x� dx � c y f �x� dx

y xn dx �
x n�1

n � 1
� C �n � �1� y

1

x
dx � ln � x � � C

y ex dx � ex � C y ax dx �
a x

ln a
� C

y sin x dx � �cos x � C y cos x dx � sin x � C

y sec2x dx � tan x � C y csc2x dx � �cot x � C

y sec x tan x dx � sec x � C y csc x cot x dx � �csc x � C

y
1

x 2 � 1
 dx � tan�1x � C y

1

s1 � x 2 
dx � sin�1x � C

1

y sinh x dx � cosh x � C y cosh x dx � sinh x � C

284 CHAPTER 5 INTEGRALS

■ We adopt the convention that when a
formula for a general indefinite integral
is given, it is valid only on an interval.

Unless otherwise noted, all content on this page is © Cengage Learning.
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EXAMPLE 3 Find the general indefinite integral

SOLUTION Using our convention and Table 1, we have

You should check this answer by differentiating it. ■

EXAMPLE 4 Evaluate .

SOLUTION Using the Evaluation Theorem and Table 1, we have 

Compare this calculation with Example 2(b) in Section 5.2. ■

EXAMPLE 5 Find and interpret the result in terms 

of areas.

SOLUTION The Evaluation Theorem gives

This is the exact value of the integral. If a decimal approximation is desired, we can
use a calculator to approximate . Doing so, we get

■

y �10x 4 � 2 sec2x� dx

y �10x 4 � 2 sec2x� dx � 10 y x 4 dx � 2 y sec2x dx

� 10 
x 5

5
� 2 tan x � C

� 2x 5 � 2 tan x � C

y
3

0
�x 3 � 6x� dx

y
3

0
�x 3 � 6x� dx �

x 4

4
� 6 

x 2

2 �0

3

� ( 1
4 � 34 � 3 � 32 ) � ( 1

4 � 04 � 3 � 02 )

� 81
4 � 27 � 0 � 0 � �6.75

y
2

0
�2x 3 � 6x �

3

x 2 � 1 dx

y
2

0
�2x 3 � 6x �

3

x 2 � 1 dx � 2 
x 4

4
� 6 

x 2

2
� 3 tan�1x�

0

2

� 1
2 x 4 � 3x 2 � 3 tan�1x]2

0

� 1
2 �24 � � 3�22 � � 3 tan�1 2 � 0

� �4 � 3 tan�1 2

tan�1 2

y
2

0
�2x 3 � 6x �

3

x 2 � 1 dx � �0.67855

V
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■ The indefinite integral in Example 3
is graphed in Figure 2 for several 
values of . Here the value of is the 
-intercept.y

CC

4

_4

_1.5 1.5

FIGURE 2

■ Figure 3 shows the graph of the inte-
grand in Example 5. We know from
Section 5.2 that the value of the integral
can be interpreted as the sum of the
areas labeled with a plus sign minus the
area labeled with a minus sign.

0

y

2 x

3

FIGURE 3
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EXAMPLE 6 Evaluate .

SOLUTION First we need to write the integrand in a simpler form by carrying out
the division:

■

APPLICATIONS

The Evaluation Theorem says that if is continuous on , then

where is any antiderivative of . This means that , so the equation can be
rewritten as

We know that represents the rate of change of with respect to x and
is the change in y when x changes from a to b. [Note that could, for

instance, increase, then decrease, then increase again. Although might change in
both directions, represents the net change in .] So we can reformulate
the Evaluation Theorem in words as follows.

NET CHANGE THEOREM The integral of a rate of change is the net change: 

This principle can be applied to all of the rates of change in the natural and social
sciences. Here are a few instances of this idea:

■ If is the volume of water in a reservoir at time t, then its derivative
is the rate at which water flows into the reservoir at time t. So

is the change in the amount of water in the reservoir between time and
time .

■ If is the concentration of the product of a chemical reaction at time t,
then the rate of reaction is the derivative . So

is the change in the concentration of C from time to time .

y
9

1

2t 2 � t 2
st � 1

t 2 dt

y
9

1

2t 2 � t 2
st � 1

t 2 dt � y
9

1
�2 � t 1�2 � t�2 � dt

� 2t �
t 3�2

3
2

�
t�1

�1�1

9

� 2t �
2
3 t 3�2 �

1

t �1

9

� [2 � 9 �
2
3 �9�3�2 �

1
9 ] � (2 � 1 �

2
3 � 13�2 �

1
1 )

� 18 � 18 �
1
9 � 2 �

2
3 � 1 � 32 4

9

f �a, b�

y
b

a
f �x� dx � F�b� � F�a�

F f F� � f

y
b

a
F��x� dx � F�b� � F�a�

F��x� y � F�x�
F�b� � F�a� y

y
F�b� � F�a� y

y
b

a
F��x� dx � F�b� � F�a�

V�t� V��t�

y
t2

t1

V��t� dt � V�t2 � � V�t1�

t1

t2

�C��t�
d �C��dt

y
t2

t1

d �C�
dt

dt � �C��t2 � � �C��t1�

t2t1

■ www.stewartcalculus.com
See Additional Example B.
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■ If the rate of growth of a population is , then

is the net change in population during the time period from to .
(The population increases when births happen and decreases when deaths
occur. The net change takes into account both births and deaths.)

■ If an object moves along a straight line with position function , then its
velocity is , so

is the net change of position, or displacement, of the particle during the
time period from to . In Section 5.1 we guessed that this was true for
the case where the object moves in the positive direction, but now we have
proved that it is always true.

■ If we want to calculate the distance traveled during the time interval, we
have to consider the intervals when (the particle moves to the
right) and also the intervals when (the particle moves to the left).
In both cases the distance is computed by integrating , the speed.
Therefore

Figure 4 shows how both displacement and distance traveled can be inter-
preted in terms of areas under a velocity curve.

■ The acceleration of the object is , so

is the change in velocity from time to time .

EXAMPLE 7 A particle moves along a line so that its velocity at time is
(measured in meters per second).

(a) Find the displacement of the particle during the time period .
(b) Find the distance traveled during this time period.

SOLUTION
(a) By Equation 2, the displacement is

This means that the particle’s position at time is 4.5 m to the left of its posi-
tion at the start of the time period.

dn�dt

y
t2

t1

dn

dt
dt � n�t2 � � n�t1�

t1 t2

s�t�
v�t� � s��t�

y
t2

t1

v�t� dt � s�t2 � � s�t1�

t1 t2

v�t� � 0
v�t� � 0

� v�t� �

y
t2

t1
� v�t� � dt � total distance traveled

a�t� � v��t�

y
t2

t1

a�t� dt � v�t2 � � v�t1�

t1 t2

t
v�t� � t 2 � t � 6

1 � t � 4

s�4� � s�1� � y
4

1
v�t� dt � y

4

1
�t 2 � t � 6� dt

� � t 3

3
�

t 2

2
� 6t�

1

4

� �
9

2

t � 4

2

3

V
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FIGURE 4

t¡

t™

distance=j   | √ (t)| dt=A¡+A™+A£
t¡

t™

displacement=j   √(t) dt=A¡-A™+A£

√

0 t

A¡

A™

A£

t¡ t™

√(t)
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(b) Note that and so on the interval
and on . Thus, from Equation 3, the distance traveled is

■

EXAMPLE 8 Figure 5 shows the power consumption in the city of San Francisco
for a day in September (P is measured in megawatts; t is measured in hours starting
at mid night). Estimate the energy used on that day.

SOLUTION Power is the rate of change of energy: . So, by the Net
Change Theorem,

is the total amount of energy used on that day. We approximate the value of the
integral using the Midpoint Rule with 12 subintervals and :

The energy used was approximately 15,840 megawatt-hours. ■

■ A note on units How did we know what units to use for energy in Example 8? The integral
is defined as the limit of sums of terms of the form . Now is

measured in megawatts and is measured in hours, so their product is measured in
megawatt-hours. The same is true of the limit. In general, the unit of measurement for

is the product of the unit for and the unit for x.

v�t� � t 2 � t � 6 � �t � 3��t � 2� v�t� � 0
�1, 3� v�t� � 0 �3, 4�

y
4

1
� v�t� � dt � y

3

1
��v�t�� dt � y

4

3
v�t� dt

� y
3

1
��t 2 � t � 6� dt � y

4

3
�t 2 � t � 6� dt

� ��
t 3

3
�

t 2

2
� 6t�3

1

� � t 3

3
�

t 2

2
� 6t�

3

4

�
61

6
	 10.17 m

V

P

0 181512963 t21

400

600

800

200

Pacific Gas & Electric
FIGURE 5

P�t� � E��t�

y
24

0
 P�t� dt � y

24

0
 E��t� dt � E�24� � E�0�

�t � 2

y
24

0
 P�t� dt 	 �P�1� � P�3� � P�5� � � � � � P�21� � P�23�� �t

	 �440 � 400 � 420 � 620 � 790 � 840 � 850

� 840 � 810 � 690 � 670 � 550��2�

� 15,840

x
24
0 P�t� dt P�ti*� �t P�ti*�

�t

x
b
a

f �x� dx f �x�
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■ To integrate the absolute value of ,
we use Property 5 of integrals from Sec-
tion 5.2 to split the integral into two
parts, one where and one
where .v�t� � 0

v�t� � 0

v�t�
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5.3 EXERCISES

1–30 ■ Evaluate the integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17.

18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31–32 ■ What is wrong with the equation?

31.

32.

y
3

�2
�x 2 � 3� dx y

2

1
�4x 3 � 3x 2 � 2x� dx

y
0

�2
( 1

2 t 4 �
1
4 t 3 � t) dt y

3

0
�1 � 6w 2 � 10w4� dw

y
2

0
�2x � 3��4x 2 � 1� dx y

1

�1
t�1 � t�2 dt

y
	

0
�5e x � 3 sin x� dx y

2

1

 1

x 2 �
4

x 3� dx

y
4

1

 4 � 6u

su
� du y

4

0
(3st � 2e t) dt

y
1

0
x(s3 x � s

4 x ) dx y
4

1

sy � y

y 2 dy

y
2

1

 x

2
�

2

x� dx y
1

0
�5x � 5 x� dx

y
1

0
�x 10 � 10 x� dx y

	�3

	�4
csc2
 d


y
	�4

0

1 � cos2


cos2

d


y
	�3

0

sin 
 � sin 
 tan2


sec2

d


y
1

0
cosh t dt y

10

�10

2e x

sinh x � cosh x
dx

y
s3�2

0

dr

s1 � r 2 y
s3

1�s3

8

1 � x 2
dx

y
e

1

x 2 � x � 1

x
dx y

	�3

	�4
sec 
 tan 
 d


y
1

�1
eu�1 du y

2

1

�x � 1�3

x 2 dx

y
1�s3

0

t 2 � 1

t 4 � 1
 dt y

2

0
� 2x � 1 � dx

y
2

�1
(x � 2 � x �) dx y

3	�2

0
� sin x � dx

y
3

�1

1

x 2 dx �
x�1

�1�
3

�1

� �
4

3

y
	

0
sec2x dx � tan x]0

	
� 0

33–34 ■ Calculate the area of the region that lies under the
curve and above the -axis.

33. 34.

;35–36 ■ Use a graph to give a rough estimate of the area of the
region that lies beneath the given curve. Then find the exact
area.

35. , 36. , 

37–38 ■ Evaluate the integral and interpret it as a difference of
areas. Illustrate with a sketch.

37. 38.

39–40 ■ Verify by differentiation that the formula is correct.

39.

40.

; 41–42 ■ Find the general indefinite integral. Illustrate by graph -
ing several members of the family on the same screen.

41. 42.

43–48 ■ Find the general indefinite integral.

43. 44.

45. 46.

47. 48.

49. The area of the region that lies to the right of the -axis and
to the left of the parabola (the shaded region in
the figure) is given by the integral . (Turn

x

y � 1 � x 2 y � 2x � x 2

y � sin x 0 � x � 	 y � sec2x 0 � x � 	�3

y
2

�1
x 3 dx y

5	�2

	�4
sin x dx

y
x

sx 2 � 1
dx � sx 2 � 1 � C

y cos2 x dx � 1
2 x �

1
4 sin 2x � C

y xsx dx y �cos x � 2 sin x� dx

y �sin x � sinh x� dx y (sx 3 � s
3 x 2 ) dx

y �u � 4��2u � 1� du y v�v 2 � 2�2 dv

y
sin x

1 � sin2x
dx y

sin 2x

sin x
dx

y
x � 2y � y 2

x
2
0 �2y � y 2 � dy

0

y

x
1

x=2y-¥

2
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velocity at time and (b) the distance traveled during the given
time interval.

61. ,  ,  

62. ,  ,  

63. The velocity of a car was read from its speedometer at 
10-second intervals and recorded in the table. Use the Mid-
point Rule to estimate the distance traveled by the car.

64. Suppose that a volcano is erupting and readings of the rate
at which solid materials are spewed into the atmosphere

are given in the table. The time is measured in seconds and
the units for are tonnes (metric tons) per second.

(a) Give upper and lower estimates for the total quantity
of erupted materials after 6 seconds.

(b) Use the Midpoint Rule to estimate .

65. Water flows from the bottom of a storage tank at a rate of
liters per minute, where . Find

the amount of water that flows from the tank during the first
10 minutes.

66. Water flows into and out of a storage tank. A graph of the
rate of change of the volume of water in the tank, in
liters per day, is shown. If the amount of water in the tank 
at time is 25,000 L, use the Midpoint Rule to estimate
the amount of water four days later.

67. A bacteria population is 4000 at time and its rate of
growth is bacteria per hour after hours. What is
the population after one hour?

68. Shown is the graph of traffic on an Internet service
provider’s T1 data line from midnight to 8:00 AM. is the

a�t� � t � 4 v�0� � 5 0 � t � 10

a�t� � 2t � 3 v�0� � �4 0 � t � 3

r�t�
t

r�t�

Q�6�
Q�6�

r�t� � 200 � 4t 0 � t � 50

r�t�

t � 0

3

2000

_1000

r

t0 1 2 4

1000

t

t � 0
1000 � 2 t t

D

your head clockwise and think of the region as lying below
the curve from to .) Find the area
of the region.

50. The boundaries of the shaded region are the y-axis, the line
, and the curve . Find the area of this region

by writing x as a function of y and integrating with respect
to y (as in Exercise 49).

51. If is the rate of growth of a child in pounds per year,
what does represent?

52. The current in a wire is defined as the derivative of the
charge: . What does represent?

53. If oil leaks from a tank at a rate of gallons per minute at
time , what does represent?

54. A honeybee population starts with 100 bees and increases 
at a rate of bees per week. What does
represent?

55. In Section 4.5 we defined the marginal revenue function
as the derivative of the revenue function , where 

is the number of units sold. What does 
represent?

56. If is the slope of a trail at a distance of miles from
the start of the trail, what does represent?

57. If is measured in meters and is measured in newtons,
what are the units for ?

58. If the units for are feet and the units for are pounds
per foot, what are the units for ? What units does

have?

59–60 ■ The velocity function (in meters per second) is given 
for a particle moving along a line. Find (a) the displacement and 
(b) the distance traveled by the particle during the given time 
interval.

59. ,  

60. ,  

61–62 ■ The acceleration function (in ) and the initial
velocity are given for a particle moving along a line. Find (a) the

x � 2y � y 2 y � 0 y � 2

y � s
4 xy � 1

y=$œ„x

y=1

0

y

x
1

1

w��t�
x

10
5 w��t� dt

x
b
a I�t� dtI�t� � Q��t�

r�t�
x

120
0  r�t� dtt

100 � x
15
0

n��t� dtn��t�

R�x�R��x�
x

5000
1000  R��x� dxx

xf �x�
x

5
3 f �x� dx

f �x�x
x

100
0  f �x� dx

a�x�x
da�dx

x
8
2  a�x� dx

0 � t � 3v�t� � 3t � 5

1 � t � 6v�t� � t 2 � 2t � 8

m�s2
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t (s) (mi�h) t (s) (mi�h)

0 0 60 56
10 38 70 53
20 52 80 50
30 58 90 47
40 55 100 45
50 51

vv

t 0 1 2 3 4 5 6

2 10 24 36 46 54 60r�t�
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69. Suppose h is a function such that , ,
, , , , and is con-

tinuous everywhere. Evaluate .

70. The area labeled is three times the area labeled .
Express in terms of .

h��1� � 2h�1� � �2
h�h��2� � 13h��2� � 5h�2� � 6h��1� � 3

x
2
1  h��u� du

AB
ab

0

y

xa

A

y=´

0

y

xb

B

y=´

data throughput, measured in megabits per second. Use the
Midpoint Rule to estimate the total amount of data trans-
mitted during that time period.

0

0.4

4 6

0.8

2 8

D

t (hours)
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5.4 THE FUNDAMENTAL THEOREM OF CALCULUS
The Fundamental Theorem of Calculus is appropriately named because it establishes
a connection between the two branches of calculus: differential calculus and integral
calculus. Differential calculus arose from the tangent problem, whereas integral cal-
culus arose from a seemingly unrelated problem, the area problem. Newton’s mentor
at Cambridge, Isaac Barrow (1630–1677), discovered that these two problems are
actually closely related. In fact, he realized that differentiation and integration are
inverse processes. The Fundamental Theorem of Calculus gives the precise inverse
relationship between the derivative and the integral. It was Newton and Leibniz who
exploited this relationship and used it to develop calculus into a systematic mathe-
ma tical method.

The first part of the Fundamental Theorem deals with functions defined by an equa -
tion of the form

where is a continuous function on and varies between and . Observe that
depends only on , which appears as the variable upper limit in the integral. If is

a fixed number, then the integral is a definite number. If we then let vary,
the number also varies and defines a function of denoted by .

If happens to be a positive function, then can be interpreted as the area under
the graph of from to , where can vary from to . (Think of as the “area so
far” function; see Figure 1.)

EXAMPLE 1 If is the function whose graph is shown in Figure 2 and
, find the values of , , , , , and . Then sketch

a rough graph of .

SOLUTION First we notice that . From Figure 3 we see that
is the area of a triangle:

t�x� � y
x

a
f �t� dt

f �a, b� x a b
t x x

x
x
a f �t� dt x

x
x
a f �t� dt x t�x�

f t�x�
f a x x a b t

f
t�x� � x

x
0 f �t� dt t�0� t�1� t�2� t�3� t�4� t�5�

t

t�0� � x
0
0 f �t� dt � 0

t�1�

t�1� � y
1

0
f �t� dt � 1

2 �1 � 2� � 1

1

V

0

y

ta bx

area=©

y=f(t)

FIGURE 1

t0

1

1

22

42

y

y=f(t)

FIGURE 2

12280_ch05_ptg01_hr_288-297.qk_12280_ch05_ptg01_hr_288-297  11/16/11  4:04 PM  Page 291

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



To find we add to the area of a rectangle:

We estimate that the area under from 2 to 3 is about 1.3, so

For , is negative and so we start subtracting areas:

We use these values to sketch the graph of in Figure 4. Notice that, because
is positive for , we keep adding area for and so is increasing up to

, where it attains a maximum value. For , decreases because is
negative. ■

EXAMPLE 2 If , where and , find a formula for
and calculate .

SOLUTION In this case we can compute explicitly using the Evaluation 
Theorem:

Then ■

For the function in Example 2 notice that , that is . In other words,
if is defined as the integral of by Equation 1, then turns out to be an antideriva-
tive of , at least in this case. And if we sketch the derivative of the function shown
in Figure 4 by estimating slopes of tangents, we get a graph like that of in Figure 2.
So we suspect that in Example 1 too.

To see why this might be generally true we consider any continuous function
with . Then can be interpreted as the area under the graph of

from to , as in Figure 1.

t�2� t�1�

t�2� � y
2

0
f �t� dt � y

1

0
f �t� dt � y

2

1
f �t� dt � 1 � �1 � 2� � 3

f

t�3� � t�2� � y
3

2
f �t� dt 	 3 � 1.3 � 4.3

t � 3 f �t�

t�4� � t�3� � y
4

3
f �t� dt 	 4.3 � ��1.3� � 3.0

t�5� � t�4� � y
5

4
f �t� dt 	 3 � ��1.3� � 1.7

t

f �t� t  3 t  3 t

x � 3 x � 3 t f �t�

t�x� � x
x
a f �t� dt a � 1 f �t� � t 2

t�x�
t��x�

t�x�

t�x� � y
x

1
t 2 dt �

t 3

3 �1

x

�
x 3 � 1

3

t��x� �
d

dx
(1

3 x
3 �

1
3) � x 2

t��x� � x 2
t�� f

t f t

f t

f
t�� f

f
f �x� � 0 t�x� � x

x
a

f �t� dt
xaf

FIGURE 3

t0

1

1

22

2

y

3t0

1

1

22

2

y

g(1)=1

t0

1

1
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y

t0

1

1
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t0

1

1
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FIGURE 4

©=j  f(t) dt
a

x

x0

1

1

2

42

y

3

4
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y

0 ta b
x x+h

h

ƒ

FIGURE 5

■ We abbreviate the name of this 
theorem as FTC1. In words, it says that
the derivative of a definite integral with
respect to its upper limit is the integrand
evaluated at the upper limit.

Module 5.4 provides visual 
evidence for FTC1.
TEC

FIGURE 6

0

y

xx u √=x+h

y=ƒ

m

M

In order to compute from the definition of derivative we first observe that, 
for is obtained by subtracting areas, so it is the area under the
graph of from to (the shaded area in Figure 5). For small you can see from
the figure that this area is approximately equal to the area of the rectangle with height

and width :

so

Intuitively, we therefore expect that

The fact that this is true, even when is not necessarily positive, is the first part of the
Fundamental Theorem of Calculus.

THE FUNDAMENTAL THEOREM OF CALCULUS, PART 1 If is continuous on
, then the function defined by

is an antiderivative of , that is, for .

PROOF If and are in the open interval , then

(by Property 5)

and so, for ,

For now let’s assume that . Since is continuous on , the Extreme
Value Theorem says that there are numbers and in such that
and , where and are the absolute minimum and maximum values of
on . (See Figure 6.)

By Property 8 of integrals, we have

that is,

t��x� � lim
h l 0

t�x � h� � t�x�
h

� f �x�

f

f
�a, b� t

t�x� � y
x

a
f �t� dt a � x � b

f t��x� � f �x� a  x  b

x x � h �a, b�

t�x � h� � t�x� � y
x�h

a
f �t� dt � y

x

a
f �t� dt

� 
y
x

a
f �t� dt � y

x�h

x
f �t� dt� � y

x

a
f �t� dt

� y
x�h

x
f �t� dt

h � 0

t�x � h� � t�x�
h

�
1

h y
x�h

x
f �t� dt

h � 0 f �x, x � h�
u v �x, x � h� f �u� � m

f �v� � M m M f
�x, x � h�

mh � y
x�h

x
f �t� dt � Mh

f �u�h � y
x�h

x
f �t� dt � f �v�h

2

t��x�
h � 0, t�x � h� � t�x�

hx � hxf

hf �x�

t�x � h� � t�x� 	 hf �x�

t�x � h� � t�x�
h

	 f �x�
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Since , we can divide this inequality by :

Now we use Equation 2 to replace the middle part of this inequality:

Inequality 3 can be proved in a similar manner for the case .
Now we let . Then and , since and lie between and

. Thus

and    

because is continuous at . We conclude, from and the Squeeze Theorem, that

If or , then Equation 4 can be interpreted as a one-sided limit. Then Theo -
rem 2.2.4 (modified for one-sided limits) shows that is continuous on . ■

Using Leibniz notation for derivatives, we can write FTC1 as

when is continuous. Roughly speaking, this equation says that if we first integrate
and then differentiate the result, we get back to the original function .

EXAMPLE 3 Find the derivative of the function .

SOLUTION Since is continuous, Part 1 of the Fundamental Theo-
rem of Calculus gives

■

EXAMPLE 4 Although a formula of the form may seem like a
strange way of defining a function, books on physics, chemistry, and statistics are
full of such functions. For instance, the Fresnel function

is named after the French physicist Augustin Fresnel (1788–1827), who is famous
for his works in optics. This function first appeared in Fresnel’s theory of the 
diffraction of light waves, but more recently it has been applied to the design of
highways.

Part 1 of the Fundamental Theorem tells us how to differentiate the Fresnel 
function:

This means that we can apply all the methods of differential calculus to analyze
(see Exercise 29).

x � h

lim
h l 0

f �u� � lim
u l x

f �u� � f �x� lim
h l 0

f �v� � lim
v l x

f �v� � f �x�

f x

t��x� � lim
h l 0

t�x � h� � t�x�
h

� f �x�

x � a b
t �a, b�

d

dx y
x

a
f �t� dt � f �x�

f f
f

t�x� � y
x

0
s1 � t 2 dt

f �t� � s1 � t 2 

t��x� � s1 � x 2 

t�x� � x
x
a f �t� dt

S�x� � y
x

0
sin�	 t 2�2� dt

4

V

S��x� � sin�	x 2�2�

S

hh � 0

f �u� �
1

h y
x�h

x
f �t� dt � f �v�

f �u� �
t�x � h� � t�x�

h
� f �v�3

h  0
xvuv l xu l xh l 0

3
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FIGURE 7
ƒ=sin(π≈/2)

S(x)=j   sin(πt@/2) dt
0

x

S(x)=j   sin(πt@/2) dt
0

x

FIGURE 8
The Fresnel function  

y

1

0.5

x

1
0 x

1

y

f

S

Figure 7 shows the graphs of and the Fresnel function
. A computer was used to graph by computing the value of this

integral for many values of . It does indeed look as if is the area under the
graph of from to [until , when becomes a difference of areas].
Figure 8 shows a larger part of the graph of .

If we now start with the graph of in Figure 7 and think about what its derivative
should look like, it seems reasonable that . [For instance, is increasing
when and decreasing when .] So this gives a visual confirmation
of Part 1 of the Fundamental Theorem of Calculus. ■

EXAMPLE 5 Find . 

SOLUTION Here we have to be careful to use the Chain Rule in conjunction with
Part 1 of the Fundamental Theorem. Let . Then

(by the Chain Rule)

(by FTC1)

■

DIFFERENTIATION AND INTEGRATION AS INVERSE PROCESSES

We now bring together the two parts of the Fundamental Theorem. We regard Part 1
as fundamental because it relates integration and differentiation. But the Evaluation
Theorem from Section 5.3 also relates integrals and derivatives, so we rename it as
Part 2 of the Fundamental Theorem.

THE FUNDAMENTAL THEOREM OF CALCULUS Suppose is continuous 
on .

1. If , then .

2. , where is any antiderivative of , that is, 

We noted that Part 1 can be rewritten as

which says that if is integrated and the result is then differentiated, we arrive back
at the original function . In Section 5.3 we reformulated Part 2 as the Net Change
Theorem:

f �x� � sin�	x 2�2�
SS�x� � x

x
0 f �t� dt

S�x�x
S�x�x 	 1.4x0f
S

S
SS��x� � f �x�

f �x�  0f �x� � 0

d

dx y
x4

1
sec t dt

u � x 4

d

dx y
x4

1
sec t dt �

d

dx y
u

1
sec t dt

�
d

du �y
u

1
sec t dt� du

dx

� sec u
du

dx

� sec�x 4 � � 4x 3

f
�a, b�

t��x� � f �x�t�x� � x
x
a f �t� dt

F�� f.fFx
b
a f �x� dx � F�b� � F�a�

d

dx y
x

a
f �t� dt � f �x�

f
f

y
b

a
F��x� dx � F�b� � F�a�
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This version says that if we take a function , first differentiate it, and then integrate
the result, we arrive back at the original function , but in the form .
Taken together, the two parts of the Fundamental Theorem of Calculus say that differ-
entiation and integration are inverse processes. Each undoes what the other does.

The Fundamental Theorem of Calculus is unquestionably the most important theo -
rem in calculus and, indeed, it ranks as one of the great accomplishments of the human
mind. Before it was discovered, from the time of Eudoxus and Archimedes to the time
of Galileo and Fermat, problems of finding areas, volumes, and lengths of curves were
so difficult that only a genius could meet the challenge. But now, armed with the sys-
tematic method that Newton and Leibniz fashioned out of the Funda mental Theorem,
we will see in the chapters to come that these challenging problems are accessible to
all of us.

AVERAGE VALUE OF A FUNCTION

It’s easy to calculate the average value of finitely many numbers , , . . . , :

But how do we compute the average temperature during a day if infinitely many tem-
perature readings are possible? Figure 9 shows the graph of a temperature function

, where is measured in hours and in C, and a guess at the average tempera-
ture, .

In general, let’s try to compute the average value of a function ,
We start by dividing the interval into equal subintervals, each with length

. Then we choose points , . . . , in successive subintervals and
calculate the average of the numbers , . . . , :

(For example, if represents a temperature function and , this means that we
take temperature readings every hour and then average them.) Since ,
we can write and the average value becomes

If we let increase, we would be computing the average value of a large number of
closely spaced values. (For example, we would be averaging temperature readings
taken every minute or even every second.) The limiting value is

by the definition of a definite integral.

F F�b� � F�a�

y1 y2 yn

yave �
y1 � y2 � � � � � yn

n

T�t� t T �
Tave

y � f �x� a � x � b.
�a, b� n

�x � �b � a��n x1* xn*
f �x1*� f �xn*�

f �x1*� � � � � � f �xn*�
n

f n � 24
�x � �b � a��n

n � �b � a���x

f �x1*� � � � � � f �xn*�
b � a

�x

�
1

b � a
� f �x1*� �x � � � � � f �xn*� �x�

�
1

b � a 
n

i�1
f �xi*� �x

n

lim
n l �

1

b � a 
n

i�1
f �x i*� �x �

1

b � a y
b

a
f �x� dx

F
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Therefore, we define the average value of f on the interval as

EXAMPLE 6 Find the average value of the function on the 
interval .

SOLUTION With and we have

■

If is the temperature at time , we might wonder if there is a specific time when
the temperature is the same as the average temperature. For the temperature function
graphed in Figure 9, we see that there are two such times––just before noon and just
before midnight. In general, is there a number at which the value of a function is
exactly equal to the average value of the function, that is, ? The following
theorem says that this is true for continuous functions.

THE MEAN VALUE THEOREM FOR INTEGRALS If is continuous on ,
then there exists a number in such that

that is,

PROOF Let for . By the Mean Value Theorem for
derivatives, there is a number between  and such that

But by FTC1. Therefore

■

The geometric interpretation of the Mean Value Theorem for Integrals is that, for
positive functions , there is a number such that the rectangle with base and
height has the same area as the region under the graph of from to . (See 
Figure 10 and the more picturesque interpretation in the margin note.)

EXAMPLE 7 Since is continuous on the interval , the
Mean Value Theorem for Integrals says there is a number in such that

�a, b�

fave �
1

b � a y
b

a
f �x� dx

f �x� � 1 � x 2

��1, 2�

a � �1 b � 2

fave �
1

b � a y
b

a
f �x� dx �

1

2 � ��1� y
2

�1
�1 � x 2 � dx �

1

3
 �x �

x 3

3 �
2

�1

� 2

T�t� t

c f
f �c� � fave

f �a, b�
c �a, b�

f �c� � fave �
1

b � a y
b

a
f �x� dx

y
b

a
f �x� dx � f �c��b � a�

F�x� � x
x
a

f �t� dt a � x � b
c a b

F�b� � F�a� � F��c��b � a�

F��x� � f �x�

y
b

a
f �t� dt � 0 � f �c��b � a�

f c �a, b�
f �c� f a b

f �x� � 1 � x 2 ��1, 2�
c ��1, 2�

y
2

�1
�1 � x 2 � dx � f �c��2 � ��1��

V

V
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■ For a positive function, we can think
of this definition as saying

area

width
� average height

FIGURE 10

0 x

y

a c b

y=ƒ

f(c)=fave

■ You can always chop off the top of 
a (two-dimensional) mountain at a 
certain height and use it to fill in the
valleys so that the mountaintop becomes
completely flat.
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5.4 EXERCISES

1. Let , where is the function whose graph 
is shown.
(a) Evaluate , , , , and .
(b) On what interval is increasing?
(c) Where does have a maximum value?
(d) Sketch a rough graph of .

2. Let , where is the function whose graph 
is shown.
(a) Evaluate for and 6.
(b) Estimate .
(c) Where does have a maximum value? Where does it

have a minimum value?
(d) Sketch a rough graph of .

3–4 ■ Sketch the area represented by . Then find in
two ways: (a) by using Part 1 of the Fundamental Theorem and
(b) by evaluating the integral using Part 2 and then differentiating.

3. 4.

t�x� � x
x

0 f �t� dt f

t�0� t�1� t�2� t�3� t�6�
t

t

t

1 5 t

y

1

0

f

t�x� � x
x

0 f �t� dt f

t�x� x � 0, 1, 2, 3, 4, 5,
t�7�

t

t

t

y

0

1

1 4 6

t�x� t��x�

t�x� � y
x

1
t 2 dt t�x� � y

x

0
�2 � sin t� dt

5–14 ■ Use Part 1 of the Fundamental Theorem of Calculus to
find the derivative of the function.

5. 6.

7.

8.

9. 10.

11. 12.

13.

14.

15–18 ■ Find the average value of the function on the given 
interval.

15. 16.

17.

18.

19–20 ■

(a) Find the average value of on the given interval.
(b) Find such that .

t�x� � y
x

1

1

t 3 � 1
 dt t�x� � y

x

3
et2�t dt

t�s� � y
s

5
�t � t 2�8 dt

F�x� � y
10

x
tan � d�

�Hint: y
10

x
tan � d� � �y

x

10
tan � d��

h�x� � y
1�x

2
arctan t dt h�x� � y

x 2

0
s1 � r 3 dr

y � y
tan x

0
st � st dt y � y

1

sin x
s1 � t 2 dt

t�x� � y
3x

2x

u 2 � 1

u 2 � 1
 du

� Hint: y
3x

2x
f �u� du � y

0

2x
f �u� du � y

3x

0
f �u� du�

y � y
cos x

sin x
�1 � v 2�10 dv

t�x� � s
3 x , �1, 8� f �x� � 1�x, �1, 4�

t�x� � cos x, �0, ��2�

f ��� � sec � tan �, �0, ��4�

f
fave � f �c�c

In this particular case we can find explicitly. From Example 6 we know that
, so the value of c satisfies

Therefore

Thus in this case there happen to be two numbers in the interval
that work in the Mean Value Theorem for Integrals. ■

Examples 6 and 7 are illustrated by Figure 11.

c
fave � 2

f �c� � fave � 2

1 � c 2 � 2 so c 2 � 1

c � �1 ��1, 2�
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y=1+≈

FIGURE 11

0 1 2_1

(_1, 2)

(2, 5)

fave=2

x

y
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26.

27. If , is continuous, and , what
is the value of ?

28. The error function

is used in probability, statistics, and engineering.
(a) Show that .
(b) Show that the function satisfies the differ-

ential equation .

29. The Fresnel function was defined in Example 4 and
graphed in Figures 7 and 8.
(a) At what values of does this function have local maxi -

mum values?
(b) On what intervals is the function concave upward?
(c) Use a graph to solve the following equation correct to

two decimal places:

30. The sine integral function

is important in electrical engineering. [The integrand
is not defined when , but we know

that its limit is 1 when . So we define and
this makes a continuous function everywhere.]
(a) Draw the graph of .
(b) At what values of does this function have local maxi -

mum values?
(c) Find the coordinates of the first inflection point to the

right of the origin.
(d) Does this function have horizontal asymptotes?
(e) Solve the following equation correct to one decimal

place:

31. Find a function and a number such that

for all .

y

1 t0 73 5 9

f

_0.2

0.2

0.4

f �1� � 12 f � x
4
1 f ��x� dx � 17

f �4�

erf�x� �
2

s�
y

x

0
e�t 2

dt

x
b
a

e�t 2

dt � 1
2 s� �erf�b� � erf�a��
y � e x2

erf�x�
y� � 2xy � 2�s�

S

x

y
x

0
sin�� t 2�2� dt � 0.2

Si�x� � y
x

0

sin t

t
dt

f �t� � �sin t��t t � 0
t l 0 f �0� � 1

f
Si
x

y
x

0

sin t

t
dt � 1

CAS

CAS

af

6 � y
x

a

f �t�
t 2 dt � 2sx

x � 0

(c) Sketch the graph of and a rectangle whose area is the
same as the area under the graph of .

19. ,  20. ,  

21. Find the average value of on .

22. The velocity graph of an accelerating car is shown.
(a) Estimate the average velocity of the car during the first

12 seconds.
(b) At what time was the instantaneous velocity equal to the

average velocity?

23. On what interval is the curve

concave downward?

24. If and , 
find .

25–26 ■ Let , where is the function whose
graph is shown.
(a) At what values of do the local maximum and minimum 

values of occur?
(b) Where does attain its absolute maximum value?
(c) On what intervals is concave downward?
(d) Sketch the graph of .

25.

f �x� � �x � 3�2 �2, 5� f �x� � sx �0, 4�

�0, 8�f

x

y

0 2 4 6

1

4 t (seconds)

20

0 8 12

40

60

√

(km/h)

y � y
x

0

t 2

t 2 � t � 2
 dt

t�y� � x
y

3 f �x� dxf �x� � x
sin x
0 s1 � t 2 dt

t 	���6�

ft�x� � x
x

0 f �t� dt

x
t

t

t

t

y

2
t0

_1

_2

1

2

4 6 8

3

f

f
f
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(c) Determine the absolute minimum of on .
(d) Sketch the graphs of and in the same coordinate

system, and verify the result in part (a) in this case.

33. A manufacturing company owns a major piece of equip -
ment that depreciates at the (continuous) rate ,
where is the time measured in months since its last over-
haul. Because a fixed cost is incurred each time the
machine is overhauled, the company wants to determine the
optimal time (in months) between overhauls.
(a) Explain why represents the loss in value of 

the machine over the period of time since the last 
overhaul.

(b) Let be given by

What does represent and why would the company
want to minimize ?

(c) Show that has a minimum value at the numbers
where .

f � f �t�
t

A

T
x

t
0 f �s� ds

t

C � C�t�

C�t� �
1

t �A � y
t

0
f �s� ds�

C
C

C t � T
C�T � � f �T �

�0, T �C
f � tC

32. A high-tech company purchases a new computing system
whose initial value is . The system will depreciate at the
rate and will accumulate maintenance costs at the
rate , where is the time measured in months. The
com pany wants to determine the optimal time to replace the
system.
(a) Let

Show that the critical numbers of occur at the num -
bers where .

(b) Suppose that

and

Determine the length of time for the total deprecia   tion
to equal the initial value .

f � f �t�
t � t�t� t

C�t� �
1

t y
t

0
 � f �s� � t�s�� ds

C
t C�t� � f �t� � t�t�

f �t� � 	
0

V

15
�

V

450
 t if

if

0 
 t � 30

t � 30

t�t� �
Vt 2

12,900
t � 0

V

T
VD�t� � x

t
0 f �s� ds
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5.5 THE SUBSTITUTION RULE
Because of the Fundamental Theorem, it’s important to be able to find antiderivatives.
But our antidifferentiation formulas don’t tell us how to evaluate integrals such as

To evaluate this integral our strategy is to simplify the integral by changing from the
variable x to a new variable u. Suppose that we let be the quantity under the root sign
in , . Then the differential of is . Notice that if the in
the notation for an integral were to be interpreted as a differential, then the differen-
tial would occur in and so, formally, without justifying our calculation, we
could write

But now we can check that we have the correct answer by using the Chain Rule to 
differentiate the final function of Equation 2: 

y 2xs1 � x 2 dx

u
u � 1 � x 2 u du � 2x dx dx

2x dx

y 2xs1 � x 2 dx � y s1 � x 2 2x dx � y su du

� 2
3 u3�2 � C � 2

3 �x 2 � 1�3�2 � C

d

dx
[ 2

3 �x 2 � 1�3�2 � C] � 2
3 � 3

2 �x 2 � 1�1�2 � 2x � 2xsx 2 � 1

1

2

1

1

■ Differentials were defined in 
Sec tion 2.8. If , then

du � f ��x� dx

u � f �x�

Unless otherwise noted, all content on this page is © Cengage Learning.
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In general, this method works whenever we have an integral that we can write in the
form . Observe that if , then

because, by the Chain Rule,

If we make the “change of variable” or “substitution” , then from Equa-
tion 3 we have 

or, writing , we get 

Thus we have proved the following rule.

THE SUBSTITUTION RULE If is a differentiable function whose
range is an interval and is continuous on , then

Notice that the Substitution Rule for integration was proved using the Chain Rule
for differentiation. Notice also that if , then , so a way to
remember the Substitution Rule is to think of and in as differentials.

Thus the Substitution Rule says: It is permissible to operate with dx and du
after integral signs as if they were differentials.

EXAMPLE 1 Find .

SOLUTION We make the substitution because its differential is
, which, apart from the constant factor 4, occurs in the integral. Thus,

using and the Substitution Rule, we have

Notice that at the final stage we had to return to the original variable . ■

x f �t�x�� t��x� dx F�� f

y F��t�x�� t��x� dx � F�t�x�� � C

d

dx
�F�t�x��� � F��t�x�� t��x�

3

u � t�x�

y F��t�x�� t��x� dx � F�t�x�� � C � F�u� � C � y F��u� du

F� � f

y f �t�x�� t��x� dx � y f �u� du

u � t�x�
I f I

y f �t�x�� t��x� dx � y f �u� du

u � t�x� du � t��x� dx
dx du

y x 3 cos�x 4 � 2� dx

u � x 4 � 2
du � 4x 3 dx

x 3 dx � 1
4 du

y x 3 cos�x 4 � 2� dx � y cos u � 1
4 du � 1

4 y cos u du

� 1
4 sin u � C

� 1
4 sin�x 4 � 2� � C

x

4

4
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■ Check the answer by differentiating it.
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The idea behind the Substitution Rule is to replace a relatively complicated inte-
gral by a simpler integral. This is accomplished by changing from the original vari-
able to a new variable that is a function of . Thus in Example 1 we replaced the
integral by the simpler integral .

The main challenge in using the Substitution Rule is to think of an appropriate sub-
stitution. You should try to choose to be some function in the integrand whose dif-
ferential also occurs (except for a constant factor). This was the case in Example 1. If
that is not possible, try choosing to be some complicated part of the integrand (per-
haps the inner function in a composite function). Finding the right substitution is a bit
of an art. It’s not unusual to guess wrong; if your first guess doesn’t work, try another
substitution.

EXAMPLE 2 Evaluate .

SOLUTION 1 Let . Then , so . Thus the Substitu-
tion Rule gives

SOLUTION 2 Another possible substitution is . Then

so    

(Or observe that so .) Therefore

■

EXAMPLE 3 Find .

SOLUTION Let . Then , so and

■

The answer to Example 3 could be checked by differentiation, but instead let’s
check it with a graph. In Figure 1 we have used a computer to graph both the integrand

and its indefinite integral (we take the case

x u x
x x 3 cos�x 4 � 2� dx 1

4 x cos u du

u

u

y s2x � 1 dx

u � 2x � 1 du � 2 dx dx � 1
2 du

y s2x � 1 dx � y su � 1
2 du � 1

2 y u 1�2 du

�
1

2
�

u 3�2

3�2
� C � 1

3 u 3�2 � C

� 1
3 �2x � 1�3�2 � C

u � s2x � 1

du �
dx

s2x � 1
dx � s2x � 1 du � u du

u 2 � 2x � 1, 2u du � 2 dx

y s2x � 1 dx � y u � u du � y u 2 du

�
u 3

3
� C � 1

3 �2x � 1�3�2 � C

y
x

s1 � 4x 2 
dx

u � 1 � 4x 2 du � �8x dx x dx � �
1
8 du

y
x

s1 � 4x 2 
dx � �

1
8 y

1

su
du � �

1
8 y u�1�2 du

� �
1
8 (2su ) � C � �

1
4 s1 � 4x 2 � C

f �x� � x�s1 � 4x 2 
t�x� � �

1
4 s1 � 4x 2 

V
1

_1

_1 1

©=
 ƒ dx

f

FIGURE 1

©=j ƒ dx=_   œ„„„„„„

x

œ„„„„„„1-4≈

1-4≈
1

4

ƒ=
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). Notice that decreases when is negative, increases when is posi-
tive, and has its minimum value when . So it seems reasonable, from the
graphical evidence, that is an antiderivative of .

EXAMPLE 4 Calculate .

SOLUTION If we let , then , so . Therefore

■

NOTE With some experience, you might be able to evaluate integrals like those in
Examples 1–4 without going to the trouble of making an explicit substitution. By rec-
ognizing the pattern in Equation 3, where the integrand on the left side is the product
of the derivative of an outer function and the derivative of the inner function, we could
work Example 1 as follows:

Similarly, the solution to Example 4 could be written like this:

The following example, however, is more complicated and so an explicit substitution
is advisable.

EXAMPLE 5 Calculate .

SOLUTION First we write tangent in terms of sine and cosine:

This suggests that we should substitute , since then and so
:

■

Since , the result of
Example 5 can also be written as

f �x� � 0
t f

y e 5x dx

u � 5x du � 5 dx dx � 1
5 du

y e 5x dx � 1
5 y eu du � 1

5 eu � C � 1
5 e 5x � C

y x 3 cos�x 4 � 2� dx � y cos�x 4 � 2� � x 3 dx � 1
4 y cos�x 4 � 2� � �4x 3� dx

� 1
4 y cos�x 4 � 2� �

d

dx
�x 4 � 2� dx � 1

4 sin�x 4 � 2� � C

y e 5x dx � 1
5 y 5e 5x dx � 1

5 y
d

dx
�e 5x� dx � 1

5 e 5x � C

y tan x dx

y tan x dx � y
sin x

cos x
dx

u � cos x du � �sin x dx
sin x dx � �du

y tan x dx � y
sin x

cos x
dx � �y

1

u
du

� �ln � u � � C � �ln � cos x � � C

�ln � cos x � � ln�� cos x ��1� � ln�1��cos x �� � ln � sec x �

y tan x dx � ln � sec x � � C

V

5

f �x�f �x�t�x�C � 0
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See Additional Example A.
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DEFINITE INTEGRALS

When evaluating a definite integral by substitution, two methods are possible. One
method is to evaluate the indefinite integral first and then use the Evaluation Theorem.
For instance, using the result of Example 2, we have 

Another method, which is usually preferable, is to change the limits of integration
when the variable is changed.

THE SUBSTITUTION RULE FOR DEFINITE INTEGRALS If is continuous
on and is continuous on the range of , then

PROOF Let be an antiderivative of . Then, by , is an antiderivative of
and so, by the Evaluation Theorem, we have

But, applying the Evaluation Theorem a second time, we also have

■

EXAMPLE 6 Evaluate .

SOLUTION Let . Then , so . To find the new
limits of integration we note that

when , and    when , 

Therefore

Observe that when using we do not return to the variable after integrating.
We simply evaluate the expression in between the appropriate values of . ■

y
4

0
s2x � 1 dx � y s2x � 1 dx]0

4
� 1

3 �2x � 1�3�2]0

4

� 1
3 �9�3�2 �

1
3 �1�3�2 � 1

3 �27 � 1� � 26
3

t�
�a, b� f u � t�x�

y
b

a
f �t�x�� t��x� dx � y

t�b�

t�a�
f �u� du

F f F�t�x��
f �t�x�� t��x�

y
b

a
f �t�x�� t��x� dx � F�t�x��]b

a � F�t�b�� � F�t�a��

y
t�b�

t�a�
f �u� du � F�u�]

t�a�
t�b�

� F�t�b�� � F�t�a��

6

3

y
2

1

dx

�3 � 5x�2

u � 3 � 5x du � �5 dx dx � �
1
5 du

x � 1 u � 3 � 5�1� � �2 x � 2 u � 3 � 5�2� � �7

y
2

1

dx

�3 � 5x�2 � �
1

5
 y

�7

�2

du

u 2 � �
1

5  ��
1

u�
�2

�7

�
1

5u�
�2

�7

�
1

5
 ��

1

7
�

1

2 �
1

14

x
u u

6

■ www.stewartcalculus.com
See Additional Example B.

■ This rule says that when using a sub-
stitution in a definite integral, we must
put everything in terms of the new vari-
able , not only and but also the
limits of integration. The new limits of
integration are the values of that cor-
respond to and .

u
x � bx � a

dxxu

■ The integral given in Example 6 is an 
abbreviation for

y
2

1

1

�3 � 5x�2 dx
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EXAMPLE 7 Calculate .

SOLUTION We let because its differential occurs in the inte-
gral. When , ; when , . Thus

■

SYMMETRY

The next theorem uses the Substitution Rule for Definite Integrals to simplify the
calculation of integrals of functions that possess symmetry properties.

INTEGRALS OF SYMMETRIC FUNCTIONS Suppose is continuous on .

(a) If is even , then .

(b) If is odd , then .

PROOF We split the integral in two:

In the first integral on the far right side we make the substitution . Then
and when , . Therefore

and so Equation 8 becomes

(a) If is even, then so Equation 9 gives 

(b) If is odd, then and so Equation 9 gives

■

V y
e

1

ln x

x
dx

u � ln x du � dx�x
x � 1 u � ln 1 � 0 x � e u � ln e � 1

y
e

1

ln x

x
dx � y

1

0
u du �

u 2

2 �0

1

�
1

2

f ��a, a�

f � f ��x� � f �x�� x
a
�a f �x� dx � 2 xa

0 f �x� dx

f � f ��x� � �f �x�� x
a
�a f �x� dx � 0

y
a

�a
f �x� dx � y

0

�a
f �x� dx � y

a

0
f �x� dx � �y

�a

0
f �x� dx � y

a

0
f �x� dx

u � �x
du � �dx x � �a u � a

�y
�a

0
f �x� dx � �y

a

0
f ��u� ��du� � y

a

0
f ��u� du

y
a

�a
f �x� dx � y

a

0
f ��u� du � y

a

0
f �x� dx

f f ��u� � f �u�

y
a

�a
f �x� dx � y

a

0
f �u� du � y

a

0
f �x� dx � 2 y

a

0
f �x� dx

f f ��u� � �f �u�

y
a

�a
f �x� dx � �y

a

0
f �u� du � y

a

0
f �x� dx � 0

6

7

8

9
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FIGURE 2

x0

y

0.5

1
e

y=
ln x

x

■ Since the function in
Example 7 is positive for , the
integral represents the area of the
shaded region in Figure 2.

x � 1
f �x� � �ln x��x
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5.5 EXERCISES

1–6 ■ Evaluate the integral by making the given substitution.

1.

2.

3.

4.

5.

6.

7–36 ■ Evaluate the indefinite integral.

7. 8.

9. 10.

11. 12.

13. 14.

y e�x dx, u � �x

y x 3�2 � x 4�5 dx,  u � 2 � x 4

y x 2
sx 3 � 1 dx, u � x 3 � 1

y
dt

�1 � 6t�4 ,  u � 1 � 6t

y cos3� sin � d�,  u � cos �

y
sec2�1�x�

x 2 dx,  u � 1�x

y x sin�x 2� dx y x 2 ex3

dx

y �1 � 2x�9 dx y �3t � 2�2.4 dt

y
�ln x�2

x
dx y sec2 2� d�

y
dx

5 � 3x y
x

�x 2 � 1�2 dx

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

y
a � bx 2

s3ax � bx 3 
dx y us1 � u 2 du

y sin � t dt y
sin sx

sx
dx

y e x
s1 � e x dx y cos4� sin � d�

y sinh2x cosh x dx y
sin�ln x�

x
dx

y scot x csc2x dx y
tan�1x

1 � x 2 dx

y
dx

s1 � x 2 sin�1x
y

cos���x�
x 2 dx

y sec3x tan x dx y
2 t

2 t � 3
 dt

y 5 t sin�5 t� dt y
dt

cos2 ts1 � tan t

y
sin 2x

1 � cos2x
dx y

sin x

1 � cos2x
dx

y x�2x � 5�8 dx y
x 3

sx 2 � 1
dx

y
1 � x

1 � x 2 dx y
x

1 � x 4 dx
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Theorem 7 is illustrated by Figure 3. For the case where is positive and even,
part (a) says that the area under from to is twice the area from to
because of symmetry. Recall that an integral can be expressed as the area
above the -axis and below minus the area below the axis and above the
curve. Thus part (b) says the integral is because the areas cancel.

EXAMPLE 8 Since satisfies , it is even and so

■

EXAMPLE 9 Since satisfies , it is odd
and so

■

x y � f �x�
0

f �x� � x 6 � 1 f ��x� � f �x�

y
2

�2
�x 6 � 1� dx � 2 y

2

0
�x 6 � 1� dx

� 2[1
7 x 7 � x]0

2
� 2(128

7 � 2) � 284
7

f �x� � �tan x���1 � x 2 � x 4 � f ��x� � �f �x�

y
1

�1

tan x

1 � x 2 � x 4 dx � 0

V

x
b
a

f �x� dx

f
y � f �x� �a a 0 a

0

y

x_a a

FIGURE 3

(a) ƒ even, j    ƒ dx=2 j  ƒ dx
0

a

_a

a

0

x

_a

a

y

(b) ƒ odd, j    ƒ dx=0
_a

a
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basal metabolism of this man, , over a 24-hour
time period?

61. An oil storage tank ruptures at time and oil leaks
from the tank at a rate of liters per minute.
How much oil leaks out during the first hour?

62. A bacteria population starts with 400 bacteria and grows at
a rate of bacteria per hour. How
many bacteria will there be after three hours?

63. Breathing is cyclic and a full respiratory cycle from the
beginning of inhalation to the end of exhalation takes 
about 5 s. The maximum rate of air flow into the lungs is
about 0.5 L�s. This explains, in part, why the function

has often been used to model the rate of
air flow into the lungs. Use this model to find the volume of
inhaled air in the lungs at time .

64. Alabama Instruments Company has set up a production line
to manufacture a new calculator. The rate of production of
these calculators after weeks is

(Notice that production approaches 5000 per week as time
goes on, but the initial production is lower because of the
workers’ unfamiliarity with the new techniques.) Find the
number of calculators produced from the beginning of the
third week to the end of the fourth week.

65. If is continuous and , find .

66. If is continuous and , find .

67. If is continuous on , prove that

For the case where and , draw a dia -
gram to interpret this equation geometrically as an equality
of areas.

68. If is continuous on , prove that

For the case where , draw a diagram to interpret
this equation geometrically as an equality of areas.

69. If and are positive numbers, show that

x
24

0 R�t� dt

t � 0
r�t� � 100e�0.01t

r�t� � �450.268�e1.12567t

f �t� � 1
2 sin�2� t�5�

t

t

dx

dt
� 5000�1 �

100

�t � 10�2 calculators�week

f y
4

0
f �x� dx � 10 y

2

0
f �2x� dx

f y
9

0
f �x� dx � 4 y

3

0
x f �x 2 � dx

f �

y
b

a
f ��x� dx � y

�a

�b
f �x� dx

f �x� � 0 0 
 a 
 b

f �

y
b

a
f �x � c� dx � y

b�c

a�c
f �x� dx

f �x� � 0

a b

y
1

0
x a�1 � x�b dx � y

1

0
x b�1 � x�a dx

37–52 ■ Evaluate the definite integral.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53–56 ■ Find the average value of the function on the given
interval.

53.

54.

55.

56.

57. Evaluate by writing it as a sum of 
two integrals and interpreting one of those integrals in terms 
of an area.

58. Evaluate by making a substitution and
interpreting the resulting integral in terms of an area.

59. Which of the following areas are equal? Why?

60. A model for the basal metabolism rate, in , of a
young man is , where is the
time in hours measured from 5:00 AM. What is the total

y
1

0
cos�� t�2� dt y

1

0
�3t � 1�50 dt

y
1

0
s
3 1 � 7x dx y

3

0

dx

5x � 1

y
�

0
sec2�t�4� dt y

1�2

1�6
csc � t cot � t dt

y
2

1

e1�x

x 2 dx y
��2

0
cos x sin�sin x� dx

y
��2

���2

x 2 sin x

1 � x 6 dxy
2

1
xsx � 1 dx

y
4

0

x

s1 � 2x
dxy

1

0

e z � 1

e z � z
dz

y
��4

���4
�x 3 � x 4 tan x� dx y

a

0
xsa 2 � x 2 dx

y
1�2

0

sin�1x

s1 � x 2 
dxy

e4

e

dx

xsln x

f �t� � te�t 2
, �0, 5�

f �x� � sin 4x, ���, ��

h�x� � cos4x sin x, �0, ��

h�r� � 3��1 � r�2, �1, 6�

x
2

�2 �x � 3�s4 � x 2 dx

x
1
0 xs1 � x 4 dx

y=2x´

0 x

y

1

y=e
sin x

 sin 2x

0 x

y

π

2

1

y=e
œ„x

0 x

y

1

kcal�h
tR�t� � 85 � 0.18 cos�� t�12�
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CHAPTER 5 REVIEW
CONCEPT CHECK

TRUE-FALSE QUIZ

308 CHAPTER 5 INTEGRALS

1. (a) Write an expression for a Riemann sum of a function .
Explain the meaning of the notation that you use.

(b) If , what is the geometric interpretation of a 
Riemann sum? Illustrate with a diagram.

(c) If takes on both positive and negative values, what
is the geometric interpretation of a Riemann sum? Illus-
trate with a diagram.

2. (a) Write the definition of the definite integral of from 
to . How does the definition simplify if you know that

is continuous and you use equal subintervals?
(b) What is the geometric interpretation of if

?
(c) What is the geometric interpretation of if 

takes on both positive and negative values? Illustrate
with a diagram.

3. State the Midpoint Rule.

4. (a) State the Evaluation Theorem.
(b) State the Net Change Theorem.
(c) If is the rate at which water flows into a reservoir,

what does represent?

f

f �x� � 0

f �x�

f a
b

f
x

b
a f �x� dx

f �x� � 0
x

b
a

f �x� dx f �x�

r�t�
x

t2

t1
r�t� dt

5. (a) Explain the meaning of the indefinite integral .
(b) What is the connection between the definite integral

and the indefinite integral ?

6. State both parts of the Fundamental Theorem of Calculus.

7. Suppose a particle moves back and forth along a straight
line with velocity , measured in feet per second, and
accelera tion .
(a) What is the meaning of ?

(b) What is the meaning of ?

(c) What is the meaning of ?

8. (a) What is the average value of a function on an 
interval ?

(b) What does the Mean Value Theorem for Integrals say?
What is its geometric interpretation?

9. Explain exactly what is meant by the statement that
“differen tiation and integration are inverse processes.”

10. State the Substitution Rule. In practice, how do you 
use it?

x f �x� dx

x
b
a

f �x� dx x f �x� dx

v�t�
a�t�

x
120
60 v�t� dt

x
120
60 � v�t� � dt

x
120
60 a�t� dt

f
�a, b�

Determine whether the statement is true or false. If it is true, explain
why. If it is false, explain why or give an example that disproves the
statement.

1. If and are continuous on , then

2. If and are continuous on , then 

3. If is continuous on , then

4. If is continuous on , then

5. If is continuous on and , then

f t �a, b�

y
b

a
� f �x� � t�x�� dx � y

b

a
f �x� dx � y

b

a
t�x� dx

f t �a, b�

y
b

a
� f �x� t�x�� dx � �y

b

a
f �x� dx��y

b

a
t�x� dx�

f �a, b�

y
b

a
5f �x� dx � 5 y

b

a
f �x� dx

f �a, b�

y
b

a
x f �x� dx � x y

b

a
f �x� dx

f �a, b� f �x� � 0

y
b

a
sf �x� dx � 	y

b

a
f �x� dx

6. If is continuous on , then .

7. If and are continuous and for ,
then

8. If and are differentiable and for ,
then for .

9.

10.

11. All continuous functions have derivatives.

12. All continuous functions have antiderivatives.

13.

14. If , then for .

f t f �x� � t�x� a � x � b

y
b

a
f �x� dx � y

b

a
t�x� dx

f t f �x� � t�x� a � x � b
f ��x� � t��x� a � x � b

y
1

�1
�x 5 � 6x 9 �

sin x

�1 � x 4 �2� dx � 0

y
5

�5
�ax 2 � bx � c� dx � 2 y

5

0
�ax 2 � c� dx

y
3

0
ex2

dx � y
5

0
ex2

dx � y
3

5
ex2

dx

0 � x � 1f �x� � 0x
1
0 f �x� dx � 0

y
3

1
f ��v� dv � f �3� � f �1��1, 3�f �
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CHAPTER 5  REVIEW 309

15. If is continuous on , then

16. represents the area under the curve
from 0 to 2.

x
2

0 �x � x 3� dx
y � x � x 3

�a, b�f

d

dx �y
b

a
f �x� dx� � f �x�

17.

18. If has a discontinuity at 0, then does not exist.

y
1

�2

1

x 4 dx � �
3

8

f y
1

�1
f �x� dx

EXERCISES

1. Use the given graph of to find the Riemann sum with six
subintervals. Take the sample points to be (a) left endpoints
and (b) midpoints. In each case draw a diagram and explain
what the Riemann sum represents.

2. (a) Evaluate the Riemann sum for

with four subintervals, taking the sample points to be
right endpoints. Explain, with the aid of a diagram, what
the Riemann sum represents.

(b) Use the definition of a definite integral (with right end -
points) to calculate the value of the integral

(c) Use the Fundamental Theorem to check your answer to
part (b).

(d) Draw a diagram to explain the geometric meaning of the
integral in part (b).

3. Evaluate

by interpreting it in terms of areas.

4. Express

as a definite integral on the interval and then evaluate 
the integral.

f

2 x

y

2

0 6

y=ƒ

f �x� � x 2 � x 0 � x � 2

y
2

0
�x 2 � x� dx

y
1

0
(x � s1 � x 2 ) dx

lim
n l �



n

i�1
sin xi 	x

�0, 
�

5. The following figure shows the graphs of , and 
. Identify each graph, and explain your choices.

6. Evaluate:

(a) (b)

(c)

7–32 ■ Evaluate the integral, if it exists.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

x
x

0 f �t� dt

y

x

a

b

c

y
1

0

d

dx
�earctan x� dx

d

dx y
1

0
earctan x dx

d

dx y
x

0
earctan t dt

y
2

1
�8x 3 � 3x 2 � dx y

T

0
�x 4 � 8x � 7� dx

y
1

0
�1 � x 9 � dx y

1

0
�1 � x�9 dx

y
9

1

su � 2u2

u
du y

1

0
(s4 u � 1�2 du

y
1

0
y�y2 � 1�5 dy y

2

0
y 2

s1 � y 3 dy

y
1

0
v2 cos�v3� dv y

1

0
sin�3
t� dt

y

�4

�
�4

t 4 tan t

2 � cos t
dt y

1

�1

sin x

1 � x 2 dx

y �1 � x

x �2

dx y
1

0

e x

1 � e 2x dx

y
x � 2

sx 2 � 4x
dx y

csc2x

1 � cot x
dx

f, f �
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44. A radar gun was used to record the speed of a runner at the
times given in the table. Use the Midpoint Rule to estimate
the distance the runner covered during those 5 seconds.

45. A population of honeybees increased at a rate of 
bees per week, where the graph of is as shown. Use the
Midpoint Rule with six subintervals to estimate the
increase in the bee population during the first 24 weeks.

46. Find the average value of the function on
the interval .

47. If is a continuous function, what is the limit as of
the average value of on the interval ?

48. Let

Evaluate by interpreting the integral as a differ-
ence of areas.

; 49. Estimate the value of the number c such that the area under
the curve between and is equal 
to 1.

50. Evaluate

r�t�
r

r

0
2420161284 (weeks)t

4000

8000

12000

f �x� � t sin�t 2�
�0, 2�

f h l 0
f �x, x � h�

f �x� � ��x � 1

�s1 � x 2 

if �3 � x � 0

if 0 � x � 1

x
1
�3 f �x� dx

y � sinh cx x � 0 x � 1

lim
n l �

1

n �1

n�9

� �2

n�9

� �3

n�9

� � � � � �n

n�9�

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

; 33. Use a graph to give a rough estimate of the area of the
region that lies under the curve .
Then find the exact area.

; 34. Graph the function and use the graph to
guess the value of the integral . Then evaluate
the integral to confirm your guess.

35–38 ■ Find the derivative of the function.

35. 36.

37. 38.

39. Use Property 8 of integrals to estimate the value of 

40. Use the properties of integrals to verify that 

41. Use the Midpoint Rule with to approximate
.

42. A particle moves along a line with velocity function
, where is measured in meters per second.

Find (a) the displacement and (b) the distance traveled by
the particle during the time interval .

43. Let be the rate at which the world’s oil is consumed,
where is measured in years starting at on January 1,
2000, and is measured in barrels per year. What does

represent?

y
e sx

sx
dx y

cos�ln x�
x

dx

y tan x ln�cos x� dx y
x

s1 � x 4 
dx

y
x 3

1 � x 4 dx y sinh�1 � 4x� dx

y
sec � tan �

1 � sec �
d� y


�4

0
�1 � tan t�3 sec2t dt

y � xsx , 0 � x � 4

f �x� � cos2x sin x
x

2


0 f �x� dx

F�x� � y
x

1
s1 � t 4 dt t�x� � y

cos x

1
s
3 1 � t 2 dt

y � y
x

sx

e t

t
dt y � y

3x�1

2x
sin�t 4 � dt

y
3

1
sx 2 � 3 dx

0 � y
1

0
x 4 cos x dx � 0.2

n � 5
x

1
0 s1 � x 3 dx

vv�t� � t 2 � t

�0, 5�

r�t�
t � 0t

r�t�
x

3
0 r�t� dt

y sin 
t cos 
t dt y sin x cos�cos x� dx
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t (s) (m�s) t (s) (m�s)

0 0 3.0 10.51
0.5 4.67 3.5 10.67
1.0 7.34 4.0 10.76
1.5 8.86 4.5 10.81
2.0 9.73 5.0 10.81
2.5 10.22

vv

12280_ch05_ptg01_hr_308-310.qk_12280_ch05_ptg01_hr_308-310  11/16/11  4:07 PM  Page 310

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



311

6.1 INTEGRATION BY PARTS
Every differentiation rule has a corresponding integration rule. For instance, the Sub-
stitution Rule for integration corresponds to the Chain Rule for differentiation. The
rule that corresponds to the Product Rule for differentiation is called the rule for inte-
gration by parts.

The Product Rule states that if and are differentiable functions, then

In the notation for indefinite integrals this equation becomes

or

f t

d

dx
� f �x�t�x�� � f �x�t��x� � t�x� f ��x�

y � f �x�t��x� � t�x� f ��x�� dx � f �x�t�x�

y f �x�t��x� dx � y t�x� f ��x� dx � f �x�t�x�

TECHNIQUES OF INTEGRATION
Because of the Fundamental Theorem of Calculus, we can integrate a function if we know an anti-
derivative, that is, an indefinite integral. We summarize here the most important integrals that we 
have learned so far.

,

,  

In this chapter we develop techniques for using these basic integration formulas to obtain 
indefinite integrals of more complicated functions. We learned the most important method of 
integration, the Substitution Rule, in Section 5.5. The other general technique, integration by parts, is
presented in Section 6.1. Then we learn methods that are special to particular classes of functions such
as trigonometric functions and rational functions.

y xn dx �
x n�1

n � 1
� C n � �1 y

1

x
dx � ln � x � � C

y ex dx � ex � C y ax dx �
a x

ln a
� C

y sin x dx � �cos x � C y cos x dx � sin x � C

y sec2x dx � tan x � C y csc2x dx � �cot x � C

y sec x tan x dx � sec x � C y csc x cot x dx � �csc x � C

y sinh x dx � cosh x � C y cosh x dx � sinh x � C

y tan x dx � ln � sec x � � C y cot x dx � ln � sin x � � C

y
1

x 2 � a 2 dx �
1

a
tan�1� x

a� � C y
1

sa 2 � x 2 
dx � sin�1� x

a� � C a � 0

6
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312 CHAPTER 6 TECHNIQUES OF INTEGRATION

■ It is helpful to use the pattern:

v � �du � �

dv � �u � �

u d√ u √ √ du

We can rearrange this equation as

Formula 1 is called the formula for integration by parts. It is perhaps easier to 
remember in the following notation. Let and . Then the differentials
are and , so, by the Substitution Rule, the formula for inte-
gration by parts becomes

EXAMPLE 1 Find .

SOLUTION USING FORMULA 1 Suppose we choose and .
Then and . (For we can choose any antiderivative of .)
Thus, using Formula 1, we have

It’s wise to check the answer by differentiating it. If we do so, we get , as
expected.

SOLUTION USING FORMULA 2 Let

Then

and so

■

NOTE Our aim in using integration by parts is to obtain a simpler integral than the
one we started with. Thus in Example 1 we started with and expressed it
in terms of the simpler integral . If we had chosen and , 

u � f �x� v � t�x�
du � f ��x� dx dv � t��x� dx

y u dv � uv � y v du

y x sin x dx

f �x� � x t��x� � sin x
f ��x� � 1 t�x� � �cos x t t�

� x ��cos x� � y ��cos x� dx

� �x cos x � y cos x dx

� �x cos x � sin x � C

x sin x

u � x dv � sin x dx

du � dx v � �cos x

y x sin x dx � y x sin x dx � x ��cos x� � y ��cos x� dx

� �x cos x � y cos x dx

� �x cos x � sin x � C

x x sin x dx
x cos x dx u � sin x dv � x dx

1

2

y f �x�t��x� dx � f �x�t�x� � y t�x� f ��x� dx

y x sin x dx � f �x�t�x� � y t�x� f ��x� dx
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then and , so integration by parts gives

Although this is true, is a more difficult integral than the one we started
with. In general, when deciding on a choice for and , we usually try to choose

to be a function that becomes simpler when differentiated (or at least not
more complicated) as long as can be readily integrated to give .

EXAMPLE 2 Evaluate .

SOLUTION Here we don’t have much choice for and . Let

Then

Integrating by parts, we get

Integration by parts is effective in this example because the derivative of the
function is simpler than . ■

EXAMPLE 3 Find .

SOLUTION Notice that becomes simpler when differentiated (whereas is
unchanged when differentiated or integrated), so we choose

Then

Integration by parts gives

The integral that we obtained, , is simpler than the original integral but is still
not obvious. Therefore we use integration by parts a second time, this time with

and . Then , , and

du � cos x dx v � x 2	2

y x sin x dx � �sin x�
x 2

2
�

1

2
 y x 2 cos x dx

x x 2 cos x dx
u dv

u � f �x�
dv � t��x� dx v

y ln x dx

u dv

u � ln x dv � dx

du �
1

x
dx v � x

y ln x dx � x ln x � y x
dx

x

� x ln x � y dx

� x ln x � x � C

f �x� � ln x f

y t 2et dt

t 2 et

u � t 2  dv � et dt

du � 2t dt v � et

y t 2et dt � t 2et � 2 y tet dt

x tet dt

u � t dv � et dt du � dt v � et

y tet dt � tet � y et dt

� tet � et � C

3

V

V

SECTION 6.1  INTEGRATION BY PARTS 313

■ It’s customary to write as .x dxx 1 dx

■ Check the answer by differentiating it.
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Putting this in Equation 3, we get

■

EXAMPLE 4 Evaluate .

SOLUTION Neither nor becomes simpler when differentiated, but we try 
choosing and anyway. Then and , so
integration by parts gives

The integral that we have obtained, , is no simpler than the original one,
but at least it’s no more difficult. Having had success in the preceding example inte-
grating by parts twice, we persevere and integrate by parts again. This time we use

and . Then , , and

At first glance, it appears as if we have accomplished nothing because we have
arrived at , which is where we started. However, if we put the expression
for from Equation 5 into Equation 4 we get

This can be regarded as an equation to be solved for the unknown integral. Adding
to both sides, we obtain

Dividing by 2 and adding the constant of integration, we get

■

If we combine the formula for integration by parts with the Evaluation Theorem,
we can evaluate definite integrals by parts. Evaluating both sides of Formula 1 be-
tween and , assuming and are continuous, and using the Evaluation Theorem,
we obtain

y t 2et dt � t 2et � 2 y tet dt

� t 2et � 2�tet � et � C �

� t 2et � 2tet � 2et � C1 where C1 � �2C

y ex sin x dx

ex sin x
u � ex dv � sin x dx du � ex dx v � �cos x

y ex sin x dx � �ex cos x � y ex cos x dx

x ex cos x dx

u � ex dv � cos x dx du � ex dx v � sin x

y ex cos x dx � ex sin x � y ex sin x dx

x ex sin x dx
x ex cos x dx

y ex sin x dx � �ex cos x � ex sin x � y ex sin x dx

x ex sin x dx

2 y ex sin x dx � �ex cos x � ex sin x

y ex sin x dx � 1
2 ex�sin x � cos x� � C

a b f � t�

4

5

6

V

y
b

a
f �x�t��x� dx � f �x�t�x�]a

b
� y

b

a
t�x� f ��x� dx

■ Figure 1 illustrates Example 4 by 
showing the graphs of 
and . As a
visual check on our work, notice that

when has a maximum or
minimum.

Ff �x� � 0

F�x� � 1
2 e x�sin x � cos x�

f �x� � e x sin x

_3

_4

12

6

F

f

FIGURE 1

■ www.stewartcalculus.com
An easier method, using complex
numbers, is given under Additional 
Topics. Click on Complex Numbers
and see Exercise 50.
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■ Since for , the integral
in Example 5 can be interpreted as the 
area of the region shown in Figure 2.

x � 0tan�1x � 0

y

0

x
1

y=tan–!x

FIGURE 2

■ Equation 7 is called a reduction 
formula because the exponent has
been reduced to and .n � 2n � 1

n

EXAMPLE 5 Calculate .

SOLUTION Let

Then

So Formula 6 gives

To evaluate this integral we use the substitution (since has another
meaning in this example). Then , so . When , ;
when , ; so

Therefore ■

EXAMPLE 6 Prove the reduction formula

where is an integer.

SOLUTION Let

Then

so integration by parts gives

Since , we have

y
1

0
tan�1x dx

u � tan�1x dv � dx

du �
dx

1 � x 2 v � x

y
1

0
tan�1x dx � x tan�1x]0

1
� y

1

0

x

1 � x 2 dx

� 1 � tan�1 1 � 0 � tan�1 0 � y
1

0

x

1 � x 2 dx

�
�

4
� y

1

0

x

1 � x 2 dx

t � 1 � x 2 u
dt � 2x dx x dx � 1

2 dt x � 0 t � 1
x � 1 t � 2

y
1

0

x

1 � x 2 dx � 1
2 y

2

1

dt

t
� 1

2 ln � t �]1

2

� 1
2 �ln 2 � ln 1� � 1

2 ln 2

y
1

0
tan�1x dx �

�

4
� y

1

0

x

1 � x 2 dx �
�

4
�

ln 2

2

y sinnx dx � �
1

n
cos x sinn�1x �

n � 1

n y sinn�2x dx

n � 2

u � sinn�1x dv � sin x dx

du � �n � 1� sinn�2x cos x dx v � �cos x

y sinnx dx � �cos x sinn�1x � �n � 1� y sinn�2x cos2x dx

cos2x � 1 � sin2x

y sinnx dx � �cos x sinn�1x � �n � 1� y sinn�2x dx � �n � 1� y sinnx dx

7
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6.1 EXERCISES

1–2 ■ Evaluate the integral using integration by parts with the 
indicated choices of and .

1. ;  , 

2. ;  , 

3–26 ■ Evaluate the integral.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

u dv

y x 2 ln x dx u � ln x dv � x 2 dx

y � cos � d� u � � dv � cos � d�

y x cos 5x dx y ye 0.2y dy

y te �3t dt y �x � 1� sin �x dx

y �x 2 � 2x� cos x dx y t 2 sin 	t dt

y ln�2x � 1� dx y p5 ln p dp

y arctan 4t dt y sin�1x dx

y e 2� sin 3� d� y e�� cos 2� d�

y
xe 2x

�1 � 2x�2 dx y t 3e t dt

y
1	2

0
x cos �x dx y

1

0
�x 2 � 1�e�x dx

y
3

1
r 3 ln r dr y

9

4

ln y

sy
dy

y
1

0
t cosh t dt y

s3

1
arctan�1	x� dx

23. 24.

25. 26.

27–30 ■ First make a substitution and then use integration by
parts to evaluate the integral.

27. 28.

29. 30.

31. (a) Use the reduction formula in Example 6 to show that

(b) Use part (a) and the reduction formula to evaluate
.

32. (a) Prove the reduction formula

(b) Use part (a) to evaluate .
(c) Use parts (a) and (b) to evaluate .

33. (a) Use the reduction formula in Example 6 to show that

where is an integer.

y
1	2

0
cos�1x dx y

1

0

r 3

s4 � r 2 
dr

y
2

1
�ln x�2 dx y

t

0
e s sin�t � s� ds

y cos sx dx y t 3e�t2

dt

y
s�

s�	2
� 3 cos�� 2 � d� y

4

1
esx dx

y sin2x dx �
x

2
�

sin 2x

4
� C

x sin4x dx

y cosnx dx �
1

n
cosn�1x sin x �

n � 1

n y cosn�2x dx

x cos2x dx
x cos4x dx

y
�	2

0
sinnx dx �

n � 1

n y
�	2

0
sinn�2x dx

n � 2

As in Example 4, we solve this equation for the desired integral by taking the last
term on the right side to the left side. Thus we have

or ■

The reduction formula is useful because by using it repeatedly we could even-
tually express in terms of (if is odd) or (if

is even).

n y sinnx dx � �cos x sinn�1x � �n � 1� y sinn�2x dx

y sinnx dx � �
1

n
cos x sinn�1x �

n � 1

n y sinn�2x dx

x sinnx dx x sin x dx n x �sin x�0 dx � x dx
n

7
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rate , and the exhaust gases are ejected with constant veloc-
ity (relative to the rocket). A model for the velocity of the
rocket at time is given by the equation

where is the acceleration due to gravity and is not too 
large. If , kg, kg	s, and

, find the height of the rocket one minute 
after liftoff.

43. A particle that moves along a straight line has velocity
meters per second after seconds. How far will 

it travel during the first seconds?

44. If and and are continuous, show that

45. Suppose that , , , ,
and is continuous. Find the value of .

46. (a) Use integration by parts to show that

(b) If and are inverse functions and is continuous,
prove that

[Hint: Use part (a) and make the substitution .]
(c) In the case where and are positive functions and 

, draw a diagram to give a geometric interpre-
tation of part (b).

(d) Use part (b) to evaluate .

f �1� � 2 f �4� � 7 f ��1� � 5 f ��4� � 3
f 
 x

4
1 x f 
�x� dx

y f �x� dx � x f �x� � y x f ��x� dx

f t f �

y
b

a
f �x� dx � bf �b� � af �a� � y

f �b�

f �a�
t�y� dy

y � f �x�
f t

b � a � 0

x
e
1 ln x dx

tt

r � 160m � 30,000t � 9.8 m	s2

ve � 3000 m	s

tv�t� � t 2e�t

t

t 
f 
f �0� � t�0� � 0

y
a

0
f �x�t 
�x� dx � f �a�t��a� � f ��a�t�a� � y

a

0
f 
�x�t�x� dx

t

v�t� � �tt � ve ln 
m � rt

m

ve

r(b) Use part (a) to evaluate and .
(c) Use part (a) to show that, for odd powers of sine,

34. Prove that, for even powers of sine,

35–38 ■ Use integration by parts to prove the reduction
formula.

35.

36.

37.

38.

39. Use Exercise 35 to find .

40. Use Exercise 36 to find .

41. Calculate the average value of on the interval
.

42. A rocket accelerates by burning its onboard fuel, so its mass
decreases with time. Suppose the initial mass of the rocket
at liftoff (including its fuel) is , the fuel is consumed at 

y
�	2

0
sin2n�1x dx �

2 � 4 � 6 � � � � � 2n

3 � 5 � 7 � � � � � �2n � 1�

y
�	2

0
sin2nx dx �

1 � 3 � 5 � � � � � �2n � 1�
2 � 4 � 6 � � � � � 2n

�

2

y �ln x�n dx � x �ln x�n � n y �ln x�n�1 dx

y x ne x dx � x ne x � n y x n�1e x dx

�n � 1�y tann x dx �
tann�1 x

n � 1
� y tann�2 x dx

y secnx dx �
tan x secn�2x

n � 1
�

n � 2

n � 1
 y secn�2x dx

�n � 1�

x �ln x�3 dx

x x 4e x dx

f �x� � x sec2x
�0, �	4�

m

x
�	2
0 sin5x dxx

�	2
0 sin3x dx
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6.2 TRIGONOMETRIC INTEGRALS AND SUBSTITUTIONS
In this section we look at integrals involving trigonometric functions and integrals that
can be transformed into trigonometric integrals by substitution.

TRIGONOMETRIC INTEGRALS

Here we use trigonometric identities to integrate certain combinations of trigo nometric
functions. We start with powers of sine and cosine.

EXAMPLE 1 Evaluate .

SOLUTION Simply substituting isn’t helpful, since then .
In order to integrate powers of cosine, we would need an extra factor. Similarly,
a power of sine would require an extra factor. Thus here we can separate one
cosine factor and convert the remaining factor to an expression involving sine 

y cos3x dx

u � cos x du � �sin x dx
sin x

cos x
cos2x
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using the identity :

We can then evaluate the integral by substituting , so and

■

In general, we try to write an integrand involving powers of sine and cosine in a
form where we have only one sine factor (and the remainder of the expression in terms
of cosine) or only one cosine factor (and the remainder of the expression in terms of
sine). The identity enables us to convert back and forth between
even powers of sine and cosine.

EXAMPLE 2 Find .

SOLUTION We could convert to , but we would be left with an
expression in terms of with no extra factor. Instead, we separate a single
sine factor and rewrite the remaining factor in terms of :

Substituting , we have and so

■

In the preceding examples, an odd power of sine or cosine enabled us to separate
a single factor and convert the remaining even power. If the integrand contains even
powers of both sine and cosine, this strategy fails. In this case, we can take advantage
of the following half-angle identities (see Equations 17b and 17a in Appendix A):

and    

EXAMPLE 3 Evaluate .

SOLUTION If we write , the integral is no simpler to evaluate.
Using the half-angle formula for , however, we have

Notice that we mentally made the substitution when integrating .
Another method for evaluating this integral was given in Exercise 31 in Section 6.1.

■

sin2x � cos2x � 1

cos3x � cos2x � cos x � �1 � sin2x� cos x

u � sin x du � cos x dx

y cos3x dx � y cos2x � cos x dx � y �1 � sin2x� cos x dx

� y �1 � u 2 � du � u �
1
3 u 3 � C � sin x �

1
3 sin3x � C

sin2x � cos2x � 1

y sin5x cos2x dx

cos2x 1 � sin2x
sin x cos x

sin4x cos x

sin5x cos2x � �sin2x�2 cos2x sin x � �1 � cos2x�2 cos2x sin x

u � cos x du � �sin x dx

y sin5x cos2x dx � y �sin2x�2 cos2x sin x dx � y �1 � cos2x�2 cos2x sin x dx

� y �1 � u 2 �2u 2 ��du� � �y �u 2 � 2u 4 � u 6 � du

� ��u 3

3
� 2 

u 5

5
�

u 7

7 � � C

� �
1
3 cos3x �

2
5 cos5x �

1
7 cos7x � C

sin2x � 1
2 �1 � cos 2x� cos2x � 1

2 �1 � cos 2x�

y
�

0
sin2x dx

sin2x � 1 � cos2x
sin2x

y
�

0
sin2x dx � 1

2 y
�

0
�1 � cos 2x� dx � [ 1

2 (x �
1
2 sin 2x)]0 

�

� 1
2 (� �

1
2 sin 2�) �

1
2 (0 �

1
2 sin 0) � 1

2 �

u � 2x cos 2x

V

V

■ Figure 1 shows the graphs of the inte-
grand in Example 2 and its
indefinite integral (with ). Which
is which?

C � 0
sin5x cos2x

FIGURE 1

_π

_0.2

0.2

π

■ Example 3 shows that the area of the
region shown in Figure 2 is .�	2

FIGURE 2

0

_0.5

1.5

π

y=sin@ x
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EXAMPLE 4 Find .

SOLUTION We could evaluate this integral using the reduction formula for
(Equation 6.1.7) together with Example 3 (as in Exercise 31 in Section 6.1), but a
better method is to write and use a half-angle formula:

Since occurs, we must use another half-angle formula

This gives

■

We can use a similar strategy to evaluate integrals of the form .
Since , we can separate a factor and convert the remain-
ing (even) power of secant to an expression involving tangent using the identity

. Or, since , we can separate a
factor and convert the remaining (even) power of tangent to secant.

EXAMPLE 5 Evaluate .

SOLUTION If we separate one factor, we can express the remaining
factor in terms of tangent using the identity . We can then evalu-
ate the integral by substituting with :

■

y sin4x dx

x sinnx dx

sin4x � �sin2x�2

y sin4x dx � y �sin2x�2 dx

� y � 1 � cos 2x

2 �2

dx

� 1
4 y �1 � 2 cos 2x � cos2 2x� dx

cos2 2x

cos2 2x � 1
2 �1 � cos 4x�

y sin4x dx � 1
4 y �1 � 2 cos 2x �

1
2 �1 � cos 4x�� dx

� 1
4 y ( 3

2 � 2 cos 2x �
1
2 cos 4x) dx

� 1
4 ( 3

2 x � sin 2x �
1
8 sin 4x) � C

x tanmx secnx dx
�d	dx� tan x � sec2x sec2x

sec2x � 1 � tan2x �d	dx� sec x � sec x tan x sec x tan x

y tan6x sec4x dx

sec2x sec2x
sec2x � 1 � tan2x

u � tan x du � sec2x dx

y tan6x sec4x dx � y tan6x sec2x sec2x dx

� y tan6x �1 � tan2x� sec2x dx

� y u 6�1 � u 2 � du � y �u 6 � u 8 � du

�
u 7

7
�

u 9

9
� C

V

� 1
7 tan7x �

1
9 tan9x � C
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■ HOW TO INTEGRATE POWERS 
OF AND 
From Examples 1– 4 we see that the 
following strategy works:

(i) If the power of is odd, 
save one cosine factor and use

to express the 
remaining factors in terms of . Then
substitute .

(ii) If the power of is odd, save
one sine factor and use 
to express the remaining factors in terms
of . Then substitute .

(iii) If the powers of both sine and
cosine are even, use the half-angle 

identities:

It is sometimes helpful to use the identity

sin x

sin x cos x � 1
2 sin 2x

cos2x � 1
2 �1 � cos 2x�

sin2x � 1
2 �1 � cos 2x�

u � cos xcos x

sin2x � 1 � cos2x

u � sin x
sin x

cos2x � 1 � sin2x

cos x

cos xsin x

Unless otherwise noted, all content on this page is © Cengage Learning.
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320 CHAPTER 6 TECHNIQUES OF INTEGRATION

EXAMPLE 6 Find .

SOLUTION If we separate a factor, as in the preceding example, we are left
with a factor, which isn’t easily converted to tangent. However, if we separate
a factor, we can convert the remaining power of tangent to an expression
involving only secant using the identity . We can then evaluate
the integral by substituting , so :

■

For other cases, the guidelines are not as clear-cut. We may need to use identities,
integration by parts, and occasionally a little ingenuity. We will sometimes need to be
able to integrate by using the formula established in (5.5.5):

We will also need the indefinite integral of secant:

We could verify Formula 1 by differentiating the right side, or as follows. First we
multiply numerator and denominator by :

If we substitute , then , so the inte-
gral becomes . Thus we have

y tan5� sec7� d�

sec2�
sec5�

sec � tan �
tan2� � sec2� � 1
du � sec � tan � d�u � sec �

y tan5� sec7� d� � y tan4� sec6� sec � tan � d�

� y �sec2� � 1�2 sec6� sec � tan � d�

� y �u 2 � 1�2 u 6 du � y �u 10 � 2u 8 � u 6 � du

�
u 11

11
� 2 

u 9

9
�

u 7

7
� C

� 1
11 sec11� �

2
9 sec9� �

1
7 sec7� � C

tan x

y tan x dx � ln � sec x � � C

y sec x dx � ln � sec x � tan x � � C1

sec x � tan x

y sec x dx � y sec x
sec x � tan x

sec x � tan x
dx

� y
sec2x � sec x tan x

sec x � tan x
dx

du � �sec x tan x � sec2x� dxu � sec x � tan x
x �1	u� du � ln � u � � C

y sec x dx � ln � sec x � tan x � � C

■ HOW TO INTEGRATE POWERS 
OF AND 
From Examples 5 and 6 we have a 
strategy for two cases:

(i) If the power of is even, 
save a factor of and use

to express the 
remaining factors in terms of . 
Then substitute .

(ii) If the power of is odd, 
save a factor of and use

to express the 
remaining factors in terms of . 
Then substitute .

sec2x

u � sec x
sec x

sec x tan x

u � tan x
tan x

sec2x � 1 � tan2x

tan x

tan2x � sec2x � 1

sec x

sec xtan x

■ Formula 1 was discovered by James
Gregory in 1668. (See his biography on
page 115.) Gregory used this formula to
solve a problem in constructing nautical
tables.

Unless otherwise noted, all content on this page is © Cengage Learning.
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EXAMPLE 7 Find .

SOLUTION Here only occurs, so we use to rewrite a
factor in terms of :

In the first integral we mentally substituted so that . ■

If an even power of tangent appears with an odd power of secant, it is helpful to
express the integrand completely in terms of . Powers of may require inte-
gration by parts, as shown in the following example.

EXAMPLE 8 Find .

SOLUTION Here we integrate by parts with

Then

Using Formula 1 and solving for the required integral, we get

■

Integrals such as the one in Example 8 may seem very special but they occur fre-
quently in applications of integration, as we will see in Chapter 7. Integrals of the
form can be found by similar methods because of the identity

.

TRIGONOMETRIC SUBSTITUTIONS

In finding the area of a circle or an ellipse, an integral of the form 
arises, where . If it were , the substitution would
be effective but, as it stands, is more difficult. If we change the vari-
able from to by the substitution , then the identity
allows us to get rid of the root sign because

Notice the difference between the substitution (in which the new vari-

y tan3x dx

tan x tan2x � sec2x � 1 tan2x
sec2x

y tan3x dx � y tan x tan2x dx � y tan x �sec2x � 1� dx

� y tan x sec2x dx � y tan x dx

�
tan2x

2
� ln � sec x � � C

u � tan x du � sec2x dx

sec x sec x

y sec3x dx

u � sec x dv � sec2x dx

du � sec x tan x dx v � tan x

y sec3x dx � sec x tan x � y sec x tan2x dx

� sec x tan x � y sec x �sec2x � 1� dx

� sec x tan x � y sec3x dx � y sec x dx

y sec3x dx � 1
2 (sec x tan x � ln � sec x � tan x �) � C

x cotmx cscnx dx
1 � cot2x � csc2x

x sa 2 � x 2 dx
a � 0 x xsa 2 � x 2 dx u � a 2 � x 2

x sa 2 � x 2 dx
x � x � a sin � 1 � sin2� � cos2�

sa 2 � x 2 � sa 2 � a 2 sin2� � sa 2�1 � sin2�� � sa 2 cos2� � a � cos � �
u � a 2 � x 2
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able is a function of the old one) and the substitution (the old variable is
a function of the new one).

In general, we can make a substitution of the form by using the Substitu-
tion Rule in reverse. To make our calculations simpler, we assume that has an inverse
function; that is, is one-to-one. In this case, if we replace by and by in the
Substitution Rule (Equation 5.5.4), we obtain

This kind of substitution is called inverse substitution.
We can make the inverse substitution provided that it defines a one-to-

one function. We accomplish this by restricting to lie in the interval .
In the following table we list trigonometric substitutions that are effective for the

given radical expressions because of the specified trigonometric identities. In each case
the restriction on is imposed to ensure that the function that defines the substitution
is one-to-one. (These are the same intervals used in Section 3.5 in defining the inverse
functions.)

TABLE OF TRIGONOMETRIC SUBSTITUTIONS

EXAMPLE 9 Evaluate .

SOLUTION Let , where . Then and

(Note that because .) Thus, using inverse substitution,
we get

Since this is an indefinite integral, we must return to the original variable . This 
can be done either by using trigonometric identities to express in terms of

or by drawing a diagram, as in Figure 3, where is interpreted as an
angle of a right tri angle. Since , we label the opposite side and the hypot-
enuse as having lengths and . Then the Pythagorean Theorem gives the length of 

x � a sin �

x � t�t�
t

t u x x t

y f �x� dx � y f �t�t��t��t� dt

x � a sin �
� ����2, ��2�

�

y
s9 � x 2 

x 2 dx

x � 3 sin � ���2 � � � ��2 dx � 3 cos � d�

s9 � x 2 � s9 � 9 sin2� � s9 cos2� � 3 � cos � � � 3 cos �

cos � � 0 ���2 � � � ��2

y
s9 � x 2

x 2 dx � y
3 cos �

9 sin2�
3 cos � d� � y

cos2�

sin2�
d�

� y cot2� d� � y �csc2� � 1� d� � �cot � � � � C

x
cot �

sin � � x�3 �
sin � � x�3

x 3

V
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Expression Substitution Identity

1 � tan2� � sec2�x � a tan �, �
�

2
	 � 	

�

2

1 � sin2� � cos2�x � a sin �, �
�

2
� � �

�

2

sec2� � 1 � tan2�x � a sec �, 0 � � 	
�

2
or � � � 	

3�

2
sx 2 � a 2 

sa 2 � x 2 

sa 2 � x 2 

3

¨

x

œ„„„„„9-≈

FIGURE 3 

sin ¨=
x
3
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the adjacent side as , so we can simply read the value of from the
figure:

(Although in the diagram, this expression for is valid even when .)
Since , we have and so

■

EXAMPLE 10 Find the area enclosed by the ellipse

SOLUTION Solving the equation of the ellipse for , we get

Because the ellipse is symmetric with respect to both axes, the total area is four
times the area in the first quadrant (see Figure 4). The part of the ellipse in the first
quadrant is given by the function

and so

To evaluate this integral we substitute . Then . To change
the limits of integration we note that when , , so ; when ,

, so . Also

since . Therefore

We have shown that the area of an ellipse with semiaxes and is . In particu-
lar, taking , we have proved the famous formula that the area of a circle
with radius is . ■

NOTE Since the integral in Example 10 was a definite integral, we changed the
limits of integration and did not have to convert back to the original variable .

s9 � x 2 cot �

cot � �
s9 � x 2 

x

� 
 0 cot � � 	 0
sin � � x�3 � � sin�1�x�3�

y
s9 � x 2 

x 2
dx � �

s9 � x 2 

x
� sin�1� x

3	 � C

x 2

a 2 �
y 2

b 2 � 1

y

y 2

b 2 � 1 �
x 2

a 2 �
a 2 � x 2

a 2 or y � �
b

a
sa 2 � x 2 

A

y �
b

a
sa 2 � x 2 0 � x � a

1
4 A � y

a

0

b

a
sa 2 � x 2 dx

x � a sin � dx � a cos � d�
x � 0 sin � � 0 � � 0 x � a

sin � � 1 � � ��2

sa 2 � x 2 � sa 2 � a 2 sin2� � sa 2 cos2� � a � cos � � � a cos �

0 � � � ��2

A � 4 
b

a y
a

0
sa 2 � x 2 dx � 4 

b

a y
��2

0
a cos � � a cos � d�

� 4ab y
��2

0
cos2� d� � 4ab y

��2

0

1
2 �1 � cos 2�� d�

� 2ab[� �
1
2 sin 2�]0

��2
� 2ab��

2
� 0 � 0	 � �ab

a b �ab
a � b � r
r �r 2

x

V

SECTION 6.2  TRIGONOMETRIC INTEGRALS AND SUBSTITUTIONS 323

Unless otherwise noted, all content on this page is © Cengage Learning.

FIGURE 4 

≈

a@

¥

b@
+ =1

y

0 x

(0, b)

(a, 0)
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EXAMPLE 11 Find .

SOLUTION Let . Then and

Thus we have

To evaluate this trigonometric integral we put everything in terms of and :

Therefore, making the substitution , we have

We use Figure 5 to determine that and so

■

EXAMPLE 12 Find .

SOLUTION It would be possible to use the trigonometric substitution
here (as in Example 11). But the direct substitution is simpler, because
then and

■

EXAMPLE 13 Evaluate , where .

SOLUTION We let , where or . Then
and

y
1

x 2
sx 2 � 4

dx

x � 2 tan �, ���2 	 � 	 ��2 dx � 2 sec2� d�

sx 2 � 4 � s4�tan2� � 1� � s4 sec2� � 2 � sec � � � 2 sec �

y
dx

x 2
sx 2 � 4

� y
2 sec2� d�

4 tan2� � 2 sec �
�

1

4
 y

sec �

tan2�
d�

sin � cos �

sec �

tan2�
�

1

cos �
�

cos2�

sin2�
�

cos �

sin2�

u � sin �

y
dx

x 2
sx 2 � 4

�
1

4
 y

cos �

sin2�
d� �

1

4
 y

du

u 2

�
1

4
 ��

1

u	 � C � �
1

4 sin �
� C

� �
csc �

4
� C

csc � � sx 2 � 4 �x

y
dx

x 2
sx 2 � 4

� �
sx 2 � 4

4x
� C

y
x

sx 2 � 4
dx

x � 2 tan �
u � x 2 � 4

du � 2x dx

y
x

sx 2 � 4
dx �

1

2
 y

du

su
� su � C � sx 2 � 4 � C

y
dx

sx 2 � a 2 
a 
 0

x � a sec � 0 	 � 	 ��2 � 	 � 	 3��2
dx � a sec � tan � d�

sx 2 � a 2 � sa 2�sec2� � 1� � sa 2 tan2� � a � tan � � � a tan �

V

œ„„„„„≈+4

2

¨

x

FIGURE 5 

tan ¨=
x
2

■ Example 12 illustrates the fact that
even when trigonometric substitutions
are possible, they may not give the 
easiest solution. You should look for 
a simpler method first.
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Therefore

The triangle in Figure 6 gives , so we have

Writing , we have

■

EXAMPLE 14 Find .

SOLUTION First we note that so trigonometric substi-
tution is appropriate. Although is not quite one of the expressions in the
table of trigonometric substitutions, it becomes one of them if we make the prelimi-
nary substitution . When we combine this with the tangent substitution, we
have , which gives and

When , , so ; when , , so .

Now we substitute so that . When , ; when
. Therefore

■

y
dx

sx 2 � a 2 
� y

a sec � tan �

a tan �
d�

� y sec � d� � ln � sec � � tan � � � C

tan � � sx 2 � a 2 �a

y
dx

sx 2 � a 2 
� ln 
 x

a
�

sx 2 � a 2 

a 
 � C

� ln � x � sx 2 � a 2 � � ln a � C

C1 � C � ln a

y
dx

sx 2 � a 2 
� ln � x � sx 2 � a 2 � � C1

y
3 s3�2

0

x 3

�4x 2 � 9�3�2 dx

�4x 2 � 9�3�2 � �s4x 2 � 9 )3

s4x 2 � 9

u � 2x
x � 3

2 tan � dx � 3
2 sec2� d�

s4x 2 � 9 � s9 tan2� � 9 � 3 sec �

x � 0 tan � � 0 � � 0 x � 3s3�2 tan � � s3 � � ��3

y
3 s3�2

0

x 3

�4x 2 � 9�3�2 dx � y
��3

0

27
8 tan3�

27 sec3�
3
2 sec2� d�

� 3
16 y

��3

0

tan3�

sec �
d� � 3

16 y
��3

0

sin3�

cos2�
d�

� 3
16 y

��3

0

1 � cos2�

cos2�
sin � d�

u � cos � du � �sin � d� � � 0 u � 1
� � ��3, u � 1

2

y
3 s3�2

0

x 3

�4x 2 � 9�3�2 dx � �
3
16 y

1�2

1

1 � u 2

u 2 du � 3
16 y

1�2

1
�1 � u�2 � du

� 3
16 �u �

1

u�1

1�2

� 3
16 [( 1

2 � 2) � �1 � 1�] � 3
32
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FIGURE 6

sec ¨=
x
a

œ„„„„„

a

¨

x
≈-a@

■ As Example 14 shows, trigonometric
substitution is sometimes a good idea
when occurs in an integral,
where is any integer. The same is true
when or occur.�x 2 � a2�n�2�a2 � x 2�n�2

n
�x 2 � a2�n�2

■ www.stewartcalculus.com
See Additional Example A.
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6.2 EXERCISES

1–36 ■ Evaluate the integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

y sin2x cos3x dx y sin3� cos4� d�

y
��2

0
sin7� cos5� d� y

��2

0
sin5x dx

y
��2

0
cos2� d� y

2�

0
sin2 (1

3�) d�

y
�

0
cos4�2t� dt y

��2

0
�2 � sin ��2 d�

y
��2

0
sin2x cos2x dx y

�

0
cos6� d�

y t sin2t dt y x cos2x dx

y cos2x tan3x dx y cot5� sin4� d�

y
1 � sin x

cos x
dx y cos2x sin 2x dx

y tan x sec3x dx y tan2� sec4� d�

y tan2x dx y �tan2x � tan4x� dx

y tan4x sec6x dx y
��4

0
sec4� tan4� d�

y
��3

0
tan5x sec4x dx y tan5x sec3x dx

y tan3x sec x dx y
��4

0
tan4t dt

y tan5x dx y tan2x sec x dx

y
��2

��6
cot2x dx y

��2

��4
cot3x dx

y
��2

��4
cot5� csc3� d� y csc 4x cot 6x dx

y csc x dx y
1 � tan2x

sec2x
dx

y
��6

0
s1 � cos 2x dx y

dx

cos x � 1

37. (a) Use the formulas for and to
show that

(b) Use part (a) to evaluate .

38. (a) Use the formulas for to
show that

(b) Use part (a) to evaluate .

39–41 ■ Evaluate the integral using the indicated trigonometric
substitution. Sketch and label the associated right triangle.

39.

40.

41.

42–60 Evaluate the integral.

42.

43. 44.

45. , 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

x sin 5x sin 2x dx

sin�A � B� and sin�A � B�

sin A cos B � 1
2 �sin�A � B� � sin�A � B��

x sin 3x cos x dx

cos�A � B� cos�A � B�

sin A sin B � 1
2 �cos�A � B� � cos�A � B��

y
dx

x 2
s4 � x 2 

x � 2 sin �

y
x 3

sx 2 � 4
dx x � 2 tan �

y
sx2 � 4

x
dx x � 2 sec �

y
1

0
x 3

s1 � x 2 dx

y
2

s2

1

t 3
st 2 � 1

dt y
2

0
x 3

sx 2 � 4 dx

y
a

0

dx

�a2 � x 2�3�2 a 
 0 y
dt

t 2
st 2 � 16

y
dx

sx 2 � 16
y

t 5

st 2 � 2
dt

y s1 � 4x 2 dx y
du

us5 � u 2 

y
sx 2 � 9

x 3 dx y
x

s1 � x 2 
dx

y
0.6

0

x 2

s9 � 25x 2 
dx y

dx

��ax�2 � b 2 �3�2

y
x

sx 2 � 7
dx y

1

0
sx 2 � 1 dx

y
s1 � x 2 

x
dx y

1

0

dx

�x 2 � 1�2

y xs1 � x 4 dx y
��2

0

cos t

s1 � sin2t
dt
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68. Find the area of the region bounded by the hyperbola
and the line .

69. Prove the formula for the area of a sector of 
a circle with radius and central angle . [Hint: Assume

and place the center of the circle at the origin
so it has the equation . Then is the sum of
the area of the triangle and the area of the region
in the figure.] 

70. A charged rod of length produces an electric field at point
given by

where is the charge density per unit length on the rod and
is the free space permittivity (see the figure). Evaluate the

integral to determine an expression for the electric field .


�0

E�P�

0 x

y

L

P (a, b)

9x 2 � 4y 2 � 36 x � 3

A � 1
2 r 2�

�r
0 	 � 	 ��2

Ax 2 � y 2 � r 2

PQRPOQ

O x

y

RQ

¨

P

L
P�a, b�

E�P� � y
L�a

�a

b

4��0�x 2 � b 2 �3�2 dx

61. Evaluate the integral

by first completing the square and using the substitution
.

62–64 ■ Evaluate the integral by first completing the square.

62. 63.

64.

65. A particle moves on a straight line with velocity function
. Find its position function 

if 

66. Household electricity is supplied in the form of alternating 
current that varies from V to V with a frequency 
of 60 cycles per second (Hz). The voltage is thus given by 
the equation

where is the time in seconds. Voltmeters read the RMS
(root-mean-square) voltage, which is the square root of the
average value of over one cycle.
(a) Calculate the RMS voltage of household current.
(b) Many electric stoves require an RMS voltage of 220 V.

Find the corresponding amplitude needed for the volt-
age .

67. Find the average value of , .

y
1

s9x 2 � 6x � 8
dx

u � 3x � 1

y
x 2

�3 � 4x � 4x 2�3�2 dx y s5 � 4x � x 2 dx

y
x 2 � 1

�x 2 � 2x � 2�2 dx

v�t� � sin �t cos2�t s � f �t�
f �0� � 0.

155 �155

E�t� � 155 sin�120� t�

t

�E�t��2

A
E�t� � A sin�120�t�

1 � x � 7f �x� � sx 2 � 1�x
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6.3 PARTIAL FRACTIONS
In this section we show how to integrate any rational function (a ratio of polynomials)
by expressing it as a sum of simpler fractions, called partial fractions, that we already
know how to integrate. To illustrate the method, observe that by taking the fractions

and to a common denominator we obtain

If we now reverse the procedure, we see how to integrate the function on the right side
of this equation:

To see how the method of partial fractions works in general, let’s consider a rational
function

2��x � 1� 1��x � 2�

2

x � 1
�

1

x � 2
�

2�x � 2� � �x � 1�
�x � 1��x � 2�

�
x � 5

x 2 � x � 2

y
x � 5

x 2 � x � 2
 dx � y � 2

x � 1
�

1

x � 2	 dx

� 2 ln � x � 1 � � ln � x � 2 � � C

f �x� �
P�x�
Q�x�
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where and are polynomials. It’s possible to express as a sum of simpler frac-
tions provided that the degree of is less than the degree of . Such a rational func-
tion is called proper. Recall that if

where , then the degree of is and we write .
If is improper, that is, , then we must take the preliminary step

of dividing into (by long division) until a remainder is obtained such that
. The division statement is

where and are also polynomials.
As the following example illustrates, sometimes this preliminary step is all that is

required.

EXAMPLE 1 Find .

SOLUTION Since the degree of the numerator is greater than the degree of the
denominator, we first perform the long division. This enables us to write

■

The next step is to factor the denominator as far as possible. It can be shown
that any polynomial can be factored as a product of linear factors (of the form
and irreducible quadratic factors (of the form , where ).
For instance, if , we could factor it as

The third step is to express the proper rational function (from Equation 1)
as a sum of partial fractions of the form

A theorem in algebra guarantees that it is always possible to do this. We explain the
details for the four cases that occur.

CASE I The denominator is a product of distinct linear factors.

This means that we can write

where no factor is repeated (and no factor is a constant multiple of another). In this
case the partial fraction theorem states that there exist constants such 

P Q

P�x� � an xn � an�1xn�1 � � � � � a1 x � a0

an � 0 P n deg�P� � n
f deg�P� � deg�Q�

Q P R�x�
deg�R� 	 deg�Q�

f �x� �
P�x�
Q�x�

� S�x� �
R�x�
Q�x�

S R

y
x 3 � x

x � 1
 dx

y
x 3 � x

x � 1
 dx � y �x 2 � x � 2 �

2

x � 1	 dx

�
x 3

3
�

x 2

2
� 2x � 2 ln � x � 1 � � C

Q�x�
Q ax � b�

ax 2 � bx � c b 2 � 4ac 	 0
Q�x� � x 4 � 16

Q�x� � �x 2 � 4��x 2 � 4� � �x � 2��x � 2��x 2 � 4�

R�x��Q�x�

A

�ax � b�i or
Ax � B

�ax 2 � bx � c� j

Q�x�

Q�x� � �a1x � b1 ��a2x � b2 � � � � �ak x � bk �

A1, A2, . . . , Ak

fQP

V

1
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≈+x +2

˛-≈

≈+x

≈-x

2x

2x-2

2

˛ +x)
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that

These constants can be determined as in the following example.

EXAMPLE 2 Evaluate .

SOLUTION Since the degree of the numerator is less than the degree of the denom-
inator, we don’t need to divide. We factor the denominator as

Since the denominator has three distinct linear factors, the partial fraction decompo-
sition of the integrand has the form

To determine the values of , , and , we multiply both sides of this equation by
the product of the denominators, , obtaining

Expanding the right side of Equation 4 and writing it in the standard form for
polyno mials, we get

The polynomials in Equation 5 are identical, so their coefficients must be equal.
The coefficient of on the right side, , must equal the coefficient of

on the left side—namely, 1. Likewise, the coefficients of are equal and the con-
stant terms are equal. This gives the following system of equations for , , and :

Solving, we get , , and , and so

In integrating the middle term we have made the mental substitution ,
which gives and . ■

NOTE We can use an alternative method to find the coefficients , , and in
Example 2. Equation 4 is an identity; it is true for every value of . Let’s choose val-

R�x�
Q�x�

�
A1

a1 x � b1
�

A2

a2x � b2
� � � � �

Ak

akx � bk

y
x 2 � 2x � 1

2x 3 � 3x 2 � 2x
dx

2x 3 � 3x 2 � 2x � x �2x 2 � 3x � 2� � x �2x � 1��x � 2�

x 2 � 2x � 1

x �2x � 1��x � 2�
�

A

x
�

B

2x � 1
�

C

x � 2

A B C
x �2x � 1��x � 2�

x 2 � 2x � 1 � A�2x � 1��x � 2� � Bx �x � 2� � Cx �2x � 1�

x 2 � 2x � 1 � �2A � B � 2C �x 2 � �3A � 2B � C �x � 2A

x 2 2A � B � 2C
x 2 x

A B C

2A � B � 2C � 1

3A � 2B � C � 2

�2A � 2B � 2C � �1

A � 1
2 B � 1

5 C � �
1
10

y
x 2 � 2x � 1

2x 3 � 3x 2 � 2x
dx � y � 1

2
 
1

x
�

1

5
 

1

2x � 1
�

1

10
 

1

x � 2� dx

� 1
2 ln � x � �

1
10 ln � 2x � 1 � �

1
10 ln � x � 2 � � K

u � 2x � 1
du � 2 dx dx � du�2

A B C
x

2

3

4

5

2

V
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■ Another method for finding , , and
is given in the note after this example.C

BA

■ Figure 1 shows the graphs of the 
integrand in Example 2 and its indefi-
nite integral (with ). Which is
which?

K � 0

FIGURE 1

_3

_2

2

3

■ We could check our work by taking 
the terms to a common denominator and
adding them.
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ues of that simplify the equation. If we put in Equation 4, then the second and
third terms on the right side vanish and the equation then becomes , or

. Likewise, gives and gives , so and
. (You may object that Equation 3 is not valid for , , or , so why

should Equation 4 be valid for those values? In fact, Equation 4 is true for all values
of , even , , and . See Exercise 45 for the reason.)

CASE II is a product of linear factors, some of which are repeated.

Suppose the first linear factor is repeated times; that is,
occurs in the factorization of . Then instead of the single term in
Equation 2, we would use

By way of illustration, we could write

but we prefer to work out in detail a simpler example.

EXAMPLE 3 Find .

SOLUTION The first step is to divide. The result of long division is

The second step is to factor the denominator . Since
, we know that is a factor and we obtain

Since the linear factor occurs twice, the partial fraction decomposition is

Multiplying by the least common denominator, , we get

Now we equate coefficients:

Q�x�

�a1 x � b1� r �a1x � b1�r

Q�x� A1��a1x � b1�

A1

a1x � b1
�

A2

�a1x � b1�2 � � � � �
Ar

�a1 x � b1�r

x 3 � x � 1

x 2�x � 1�3 �
A

x
�

B

x 2 �
C

x � 1
�

D

�x � 1�2 �
E

�x � 1�3

y
x 4 � 2x 2 � 4x � 1

x 3 � x 2 � x � 1
 dx

x 4 � 2x 2 � 4x � 1

x 3 � x 2 � x � 1
� x � 1 �

4x

x 3 � x 2 � x � 1

Q�x� � x 3 � x 2 � x � 1
Q�1� � 0 x � 1

x 3 � x 2 � x � 1 � �x � 1��x 2 � 1� � �x � 1��x � 1��x � 1�

� �x � 1�2�x � 1�

x � 1

4x

�x � 1�2�x � 1�
�

A

x � 1
�

B

�x � 1�2 �
C

x � 1

�x � 1�2�x � 1�

4x � A�x � 1��x � 1� � B�x � 1� � C�x � 1�2

� �A � C �x 2 � �B � 2C �x � ��A � B � C �

A � B � C � 0

A � B � 2C � 4

�A � B � C � 0

A � 1
2 x � 1

2 5B�4 � 1
4 x � �2 10C � �1 B � 1

5

C � �
1
10 x � 0 1

2 �2

x x � 0 1
2 �2

x x � 0
�2A � �1

6

7
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■ Another method for finding the 
coefficients:
Put in : .
Put : .
Put : .A � B � C � 1x � 0

C � �1x � �1
B � 2x � 1 7

■ www.stewartcalculus.com
See Additional Examples A, B.
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Solving, we obtain , , and , so

■

CASE III contains irreducible quadratic factors, none of which is repeated.

If has the factor , where , then, in addition to the par-
tial fractions in Equations 2 and 6, the expression for will have a term of
the form

where and are constants to be determined. For instance, the function given by
has a partial fraction decomposition of the form

The term in can be integrated by completing the square (if necessary) and using
the formula

EXAMPLE 4 Evaluate .

SOLUTION Since can’t be factored further, we write

Multiplying by , we have

Equating coefficients, we obtain

Thus , , and and so

A � 1 B � 2 C � �1

y
x 4 � 2x 2 � 4x � 1

x 3 � x 2 � x � 1
 dx � y �x � 1 �

1

x � 1
�

2

�x � 1�2 �
1

x � 1� dx

�
x 2

2
� x � ln � x � 1 � �

2

x � 1
� ln � x � 1 � � K

�
x 2

2
� x �

2

x � 1
� ln 
 x � 1

x � 1 
 � K

Q�x�

Q�x� ax 2 � bx � c b 2 � 4ac 	 0
R�x��Q�x�

Ax � B

ax 2 � bx � c

A B
f �x� � x���x � 2��x 2 � 1��x 2 � 4��

x

�x � 2��x 2 � 1��x 2 � 4�
�

A

x � 2
�

Bx � C

x 2 � 1
�

Dx � E

x 2 � 4

y
dx

x 2 � a 2 �
1

a
tan�1� x

a	 � C

y
2x 2 � x � 4

x 3 � 4x
dx

x 3 � 4x � x �x 2 � 4�

2x 2 � x � 4

x �x 2 � 4�
�

A

x
�

Bx � C

x 2 � 4

x �x 2 � 4�

2x 2 � x � 4 � A�x 2 � 4� � �Bx � C �x

� �A � B�x 2 � Cx � 4A

A � B � 2 C � �1 4A � 4

A � 1 B � 1 C � �1

y
2x 2 � x � 4

x 3 � 4x
dx � y �1

x
�

x � 1

x 2 � 4	 dx

8

9

V

8
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■ Here we use .ln 
a

b
� ln a � ln b
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In order to integrate the second term we split it into two parts:

We make the substitution in the first of these integrals so that
. We evaluate the second integral by means of Formula 9 with :

■

EXAMPLE 5 Evaluate .

SOLUTION Since the degree of the numerator is not less than the degree of the
denominator, we first divide and obtain

Notice that the quadratic is irreducible because its discriminant is
. This means it can’t be factored, so we don’t need to use the 

partial fraction technique.
To integrate the given function we complete the square in the denominator:

This suggests that we make the substitution . Then, and
, so

■

NOTE Example 5 illustrates the general procedure for integrating a partial fraction
of the form

y
x � 1

x 2 � 4
 dx � y

x

x 2 � 4
 dx � y

1

x 2 � 4
 dx

u � x 2 � 4
du � 2x dx a � 2

y
2x 2 � x � 4

x �x 2 � 4�
dx � y

1

x
dx � y

x

x 2 � 4
 dx � y

1

x 2 � 4
 dx

� ln � x � �
1
2 ln�x 2 � 4� �

1
2 tan�1�x�2� � K

y
4x 2 � 3x � 2

4x 2 � 4x � 3
 dx

4x 2 � 3x � 2

4x 2 � 4x � 3
� 1 �

x � 1

4x 2 � 4x � 3

4x 2 � 4x � 3
b 2 � 4ac � �32 � 0

4x 2 � 4x � 3 � �2x � 1�2 � 2

u � 2x � 1 du � 2 dx
x � �u � 1��2

y
4x 2 � 3x � 2

4x 2 � 4x � 3
 dx � y �1 �

x � 1

4x 2 � 4x � 3� dx

� x �
1
2 y

1
2 �u � 1� � 1

u 2 � 2
 du � x �

1
4 y

u � 1

u 2 � 2
 du

� x �
1
4 y

u

u 2 � 2
 du �

1
4 y

1

u 2 � 2
 du

� x �
1
8 ln�u 2 � 2� �

1

4
�

1

s2
tan�1� u

s2� � C

� x �
1
8 ln�4x 2 � 4x � 3� �

1

4s2
tan�1� 2x � 1

s2 � � C

Ax � B

ax 2 � bx � c
where b 2 � 4ac � 0

332 CHAPTER 6 TECHNIQUES OF INTEGRATION

■ www.stewartcalculus.com
We have now learned several tech-
niques for evaluating integrals. How
do you know which technique to use
on a given integral? For advice, click
on Additional Topics and then on
Strategy for Integration.

Unless otherwise noted, all content on this page is © Cengage Learning.

12280_ch06_ptg01_hr_332-341.qk_12280_ch06_ptg01_hr_332-341  11/16/11  4:12 PM  Page 332

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.stewartcalculus.com


SECTION 6.3  PARTIAL FRACTIONS 333

■ It would be extremely tedious to
work out by hand the numerical values
of the coefficients in Example 6. Most
computer algebra systems, however, can
find the numerical values very quickly.
For instance, the Maple command

or the Mathematica command

gives the following values:

,  ,  ,

,  ,  

I � �
1
2 , J � 1

2

Apart[f]

convert�f, parfrac, x�

A � �1 B � 1
8 C � D � �1

E � 15
8 F � �

1
8 G � H � 3

4

Unless otherwise noted, all content on this page is © Cengage Learning.

We complete the square in the denominator and then make a substitution that brings
the integral into the form

Then the first integral is a logarithm and the second is expressed in terms of .

CASE IV contains a repeated irreducible quadratic factor.

If has the factor , where , then instead of the 
single partial fraction , the sum

occurs in the partial fraction decomposition of . Each of the terms in can
be integrated by completing the square and using a substitution (if necessary).

EXAMPLE 6 Write out the form of the partial fraction decomposition of the function

SOLUTION

■

EXAMPLE 7 Evaluate .

SOLUTION The form of the partial fraction decomposition is

Multiplying by , we have

If we equate coefficients, we get the system

y
Cu � D

u2 � a2 du � C y
u

u2 � a2 du � D y
1

u2 � a2 du

tan�1

Q�x�

Q�x� �ax 2 � bx � c�r b 2 � 4ac � 0

A1x � B1

ax 2 � bx � c
�

A2 x � B2

�ax 2 � bx � c�2 � � � � �
Ar x � Br

�ax 2 � bx � c�r

R�x��Q�x�

x 3 � x 2 � 1

x �x � 1��x 2 � x � 1��x 2 � 1�3

x 3 � x 2 � 1

x �x � 1��x 2 � x � 1��x 2 � 1�3

�
A

x
�

B

x � 1
�

Cx � D

x 2 � x � 1
�

Ex � F

x 2 � 1
�

Gx � H

�x 2 � 1�2 �
Ix � J

�x 2 � 1�3

y
1 � x � 2x 2 � x 3

x �x 2 � 1�2 dx

1 � x � 2x 2 � x 3

x �x 2 � 1�2 �
A

x
�

Bx � C

x 2 � 1
�

Dx � E

�x 2 � 1�2

x �x 2 � 1�2

�x 3 � 2x 2 � x � 1 � A�x 2 � 1�2 � �Bx � C �x �x 2 � 1� � �Dx � E�x

� A�x 4 � 2x 2 � 1� � B�x 4 � x 2 � � C�x 3 � x� � Dx 2 � Ex

� �A � B�x 4 � Cx 3 � �2A � B � D�x 2 � �C � E�x � A

A � B � 0 C � �1 2A � B � D � 2 C � E � �1 A � 1

10

8

10
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6.3 EXERCISES

1–6 ■ Write out the form of the partial fraction decomposition of
the function (as in Example 6). Do not determine the numerical
values of the coefficients.

1. (a) (b)

2. (a) (b)

3. (a) (b)

4. (a) (b)

5. (a) (b)

6. (a) (b)

7–34 ■ Evaluate the integral.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

1 � 6x

�4x � 3��2x � 5�
10

5x 2 � 2x 3

x

x 2 � x � 2

x 2

x 2 � x � 2

x 4 � 1

x 5 � 4x 3

1

�x 2 � 9�2

x 4 � 2x 3 � x 2 � 2x � 1

x 2 � 2x � 1

x 2 � 1

x 3 � x 2 � x

x 6

x 2 � 4

x 4

�x 2 � x � 1��x 2 � 2�2

t 6 � 1

t 6 � t 3

x5 � 1

�x 2 � x��x 4 � 2x 2 � 1�

y
x 4

x � 1
 dx y

3t � 2

t � 1
 dt

y
5x � 1

�2x � 1��x � 1�
dx y

y

�y � 4��2y � 1�
dy

y
1

0

2

2x2 � 3x � 1
 dx y

1

0

x � 4

x 2 � 5x � 6
 dx

y
ax

x 2 � bx
dx y

1

�x � a��x � b�
dx

y
1

0

2x � 3

�x � 1�2 dx y
1

0

x 3 � 4x � 10

x 2 � x � 6
 dx

y
2

1

4y 2 � 7y � 12

y�y � 2��y � 3�
dy y

x 2 � 2x � 1

x 3 � x
dx

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35–40 ■ Make a substitution to express the integrand as a
rational function and then evaluate the integral.

35.

36.

37. 38.

39. 40.

y
x 2 � 1

�x � 3��x � 2�2 dx y
x 2 � 5x � 16

�2x � 1��x � 2�2 dx

y
x 3 � 4

x 2 � 4
 dx y

x 2 � x � 6

x 3 � 3x
dx

y
10

�x � 1��x 2 � 9�
dx y

x 2 � 2x � 1

�x � 1�2�x 2 � 1�
dx

y
x 3 � x 2 � 2x � 1

�x 2 � 1��x 2 � 2�
dx y

x 3 � 2x 2 � x � 1

x 4 � 5x 2 � 4
 dx

y
x � 4

x 2 � 2x � 5
 dx y

1

0

x

x 2 � 4x � 13
 dx

y
1

x 3 � 1
 dx y

x 5 � x � 1

x 3 � 1
 dx

y
dx

x�x 2 � 4�2 y
x 4 � 3x 2 � 1

x 5 � 5x 3 � 5x
dx

y
x � 3

�x 2 � 2x � 4�2 dx y
x 4 � 1

x �x 2 � 1�2 dx

y
16

9

sx

x � 4
 dx (Let u � sx .)

y
1

0

1

1 � s
3 x

dx (Let u � s
3 x .)

y
x 3

s
3 x 2 � 1

dx y
3

1�3

sx

x 2 � x
dx

y
e 2x

e 2x � 3e x � 2
 dx y

sin x

cos2 x � 3 cos x
dx

which has the solution , , , , and . Thus

■

A � 1 B � �1 C � �1 D � 1 E � 0

y
1 � x � 2x 2 � x 3

x �x 2 � 1�2 dx � y � 1

x
�

x � 1

x 2 � 1
�

x

�x 2 � 1�2� dx

� y
dx

x
� y

x

x 2 � 1
 dx � y

dx

x 2 � 1
� y

x dx

�x 2 � 1�2

� ln � x � �
1
2 ln�x 2 � 1� � tan�1x �

1

2�x 2 � 1�
� K
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■ In the second and fourth terms we 
made the mental substitution .u � x 2 � 1

Unless otherwise noted, all content on this page is © Cengage Learning.

12280_ch06_ptg01_hr_332-341.qk_12280_ch06_ptg01_hr_332-341  11/16/11  4:12 PM  Page 334

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



45. Suppose that , and are polynomials and

for all except when . Prove that for 
all . [Hint: Use continuity.]

46. If is a quadratic function such that and

is a rational function, find the value of .

47. If and is a positive integer, find the partial fraction
decomposition of

[Hint: First find the coefficient of . Then subtract
the resulting term and simplify what is left.]

F�x�
Q�x�

�
G�x�
Q�x�

F�x� � G�x�Q�x� � 0x
x

f �0� � 1f

y
f �x�

x 2�x � 1�3 dx

f ��0�

na � 0

f �x� �
1

x n�x � a�

1��x � a�

QF, G41–42 ■ Use integration by parts, together with the techniques
of this section, to evaluate the integral.

41. 42.

43. One method of slowing the growth of an insect population
without using pesticides is to introduce into the population 
a number of sterile males that mate with fertile females 
but produce no offspring. If represents the number of
female insects in a population, the number of sterile males
introduced each generation, and the population’s natural
growth rate, then the female population is related to time
by

Suppose an insect population with 10,000 females grows at
a rate of and 900 sterile males are added. Evaluate
the integral to give an equation relating the female popu-
lation to time. (Note that the resulting equation can’t be
solved explicitly for .)

44. Factor as a difference of squares by first adding and
subtracting the same quantity. Use this factorization to eval-
uate .

y ln�x 2 � x � 2� dx y x tan�1x dx

P
S

r
t

t � y
P � S

P��r � 1�P � S	
dP

r � 0.10

P

x 4 � 1

x 1��x 4 � 1� dx
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6.4 INTEGRATION WITH TABLES AND
COMPUTER ALGEBRA SYSTEMS

In this section we describe how to evaluate integrals using tables and computer alge-
bra systems.

TABLES OF INTEGRALS

Tables of indefinite integrals are very useful when we are confronted by an integral
that is difficult to evaluate by hand and we don’t have access to a computer algebra
system. A relatively brief table of 120 integrals, categorized by form, is provided on
the Reference Pages at the back of the book. More extensive tables are available in
CRC Standard Mathe matical Tables and Formulae, 32nd ed, by Daniel Zwillinger
(Boca Raton, FL, 2012) (709 entries) or in Gradshteyn and Ryzhik’s Table of Inte-
grals, Series, and Products, 7e, edited by A. Jefferey and D. Zwillinger (Boston,
2007), which contains hundreds of pages of integrals. It should be remembered, how-
ever, that integrals do not often occur in exactly the form listed in a table. Usually we
need to use the Substitution Rule or algebraic manipulation to transform a given inte-
gral into one of the forms in the table.

EXAMPLE 1 Use the Table of Integrals to find .y
x 2

s5 � 4x 2 
dxV

■ The Table of Integrals appears on 
Reference Pages 6–10 at the back of 
the book.
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336 CHAPTER 6 TECHNIQUES OF INTEGRATION

SOLUTION If we look at the section of the table entitled Forms involving
, we see that the closest entry is number 34:

This is not exactly what we have, but we will be able to use it if we first make the
substitution :

Then we use Formula 34 with (so ):

■

EXAMPLE 2 Use the Table of Integrals to find .

SOLUTION If we look in the section called Trigonometric Forms, we see that none
of the entries explicitly includes a factor. However, we can use the reduction
formula in entry 84 with :

We now need to evaluate . We can use the reduction formula in entry 85
with , followed by entry 82:

Combining these calculations, we get

where . ■

EXAMPLE 3 Use the Table of Integrals to find .

SOLUTION Since the table gives forms involving , , and
, but not , we first complete the square:

If we make the substitution (so ), the integrand will involve 

sa 2 � u 2 

y
u 2

sa 2 � u 2 
du � �

u

2
 sa 2 � u 2 �

a 2

2
 sin�1� u

a� � C

u � 2x

y
x 2

s5 � 4x 2 
dx � y

�u�2�2

s5 � u 2 

du

2
�

1

8
 y

u 2

s5 � u 2 
du

a 2 � 5 a � s5

y
x 2

s5 � 4x 2 
dx �

1

8
 y

u 2

s5 � u 2 
du �

1

8
 
�

u

2
 s5 � u 2 �

5

2
 sin�1

u

s5
� � C

� �
x

8
 s5 � 4x 2 �

5

16
 sin�1� 2x

s5 � � C

y x 3 sin x dx

u 3

n � 3

y x 3 sin x dx � �x 3 cos x � 3 y x 2 cos x dx

x x 2 cos x dx
n � 2

y x 2 cos x dx � x 2 sin x � 2 y x sin x dx

� x 2 sin x � 2�sin x � x cos x� � K

y x 3 sin x dx � �x 3 cos x � 3x 2 sin x � 6x cos x � 6 sin x � C

C � 3K

y xsx 2 � 2x � 4 dx

sa 2 � x 2 
sa 2 � x 2 

sx 2 � a 2 
sax 2 � bx � c

x 2 � 2x � 4 � �x � 1�2 � 3

u � x � 1 x � u � 1

V

85.

� u n sin u � n y u n�1 sin u du

y u n cos u du
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the pattern :

The first integral is evaluated using the substitution :

For the second integral we use Formula 21 with :

Thus

■

COMPUTER ALGEBRA SYSTEMS

We have seen that the use of tables involves matching the form of the given integrand
with the forms of the integrands in the tables. Computers are particularly good at
matching patterns. And just as we used substitutions in conjunction with tables, a CAS
can perform substitutions that transform a given integral into one that occurs in its
stored formulas. So it isn’t surprising that computer algebra systems excel at integra-
tion. That doesn’t mean that integration by hand is an obsolete skill. We will see that
a hand computation sometimes produces an indefinite integral in a form that is more
convenient than a machine answer.

To begin, let’s see what happens when we ask a machine to integrate the relatively 
simple function . Using the substitution , an easy calcula-
tion by hand gives

whereas Derive, Mathematica, and Maple all return the answer

The first thing to notice is that computer algebra systems omit the constant of integra-
tion. In other words, they produce a particular antiderivative, not the most general
one. Therefore, when making use of a machine integration, we might have to add a
constant. Second, the absolute value signs are omitted in the machine answer. That is
fine if our problem is concerned only with values of greater than . But if we are
interested in other values of , then we need to insert the absolute value symbol.

In the next example we reconsider the integral of Example 3, but this time we ask
a machine for the answer.

� y usu 2 � 3 du � y su 2 � 3 du

sa 2 � u 2 

y xsx 2 � 2x � 4 dx � y �u � 1� su 2 � 3 du

t � u 2 � 3

y usu 2 � 3 du � 1
2 y st dt � 1

2 � 2
3 t 3�2 � 1

3 �u 2 � 3�3�2

a � s3

y su 2 � 3 du �
u

2
 su 2 � 3 �

3
2 ln(u � su 2 � 3 )

y xsx 2 � 2x � 4 dx

� 1
3�x 2 � 2x � 4�3�2 �

x � 1

2
 sx 2 � 2x � 4 �

3
2 ln(x � 1 � sx 2 � 2x � 4 ) � C

y � 1��3x � 2� u � 3x � 2

y
1

3x � 2
 dx � 1

3 ln � 3x � 2 � � C

1
3 ln�3x � 2�

x 2
3

x

SECTION 6.4  INTEGRATION WITH TABLES AND COMPUTER ALGEBRA SYSTEMS 337

21.

�
a 2

2
 ln(u � sa 2 � u 2 ) � C

y sa 2 � u 2 du �
u

2
 sa 2 � u 2 
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EXAMPLE 4 Use a computer algebra system to find .

SOLUTION Maple responds with the answer

This looks different from the answer we found in Example 3, but it is equivalent
because the third term can be rewritten using the identity

Thus

The resulting extra term can be absorbed into the constant of integration.
Mathematica gives the answer

Mathematica combined the first two terms of Example 3 (and the Maple result) into
a single term by factoring.

Derive gives the answer

The first term is like the first term in the Mathematica answer, and the second term
is identical to the last term in Example 3. ■

EXAMPLE 5 Use a CAS to evaluate .

SOLUTION Maple and Mathematica give the same answer:

It’s clear that both systems must have expanded by the Binomial Theorem
and then integrated each term.

If we integrate by hand instead, using the substitution , we get

For most purposes, this is a more convenient form of the answer. ■

1
3 �x 2 � 2x � 4�3�2 �

1
4 �2x � 2�sx 2 � 2x � 4 �

3

2
 arcsinh 

s3

3
 �1 � x�

y xsx 2 � 2x � 4 dx

arcsinh x � ln(x � sx 2 � 1)

arcsinh 
s3

3
 �1 � x� � ln
s3

3
 �1 � x� � s|

1
3 �1 � x�2 � 1�

� ln 
1

s3
[1 � x � s�1 � x�2 � 3 ]

� ln 
1

s3
� ln(x � 1 � sx 2 � 2x � 4 )

�
3
2 ln(1�s3 )

� 5

6
�

x

6
�

x 2

3 � sx 2 � 2x � 4 �
3

2
 arcsinh� 1 � x

s3
�

1
6 sx 2 � 2x � 4 �2x 2 � x � 5� �

3
2 ln(sx 2 � 2x � 4 � x � 1)

y x �x 2 � 5�8 dx

1
18 x 18 �

5
2 x 16 � 50x 14 �

1750
3 x 12 � 4375x 10 � 21875x 8 �

218750
3 x 6 � 156250x 4 �

390625
2 x 2

�x 2 � 5�8

u � x 2 � 5

y x �x 2 � 5�8 dx � 1
18 �x 2 � 5�9 � C

338 CHAPTER 6 TECHNIQUES OF INTEGRATION

■ This is Equation 3.6.3.

■ Derive and the TI-89 and TI-92 also
give this answer.
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EXAMPLE 6 Use a CAS to find .

SOLUTION In Example 2 in Section 6.2 we found that

Derive and Maple report the answer

whereas Mathematica produces

We suspect that there are trigonometric identities which show these three answers
are equivalent. Indeed, if we ask Derive, Maple, and Mathematica to simplify their
expressions using trigonometric identities, they ultimately produce the same form of
the answer as in Equation 1. ■

CAN WE INTEGRATE ALL CONTINUOUS FUNCTIONS?

The question arises: Will our basic integration formulas, together with the Substitu-
tion Rule, integration by parts, tables of integrals, and computer algebra systems,
enable us to find the integral of every continuous function? In particular, can we use
it to evaluate ? The answer is No, at least not in terms of the functions that we
are familiar with.

Most of the functions that we have been dealing with in this book are what are
called elementary functions. These are the polynomials, rational functions, power
functions , exponential functions , logarithmic functions, trigonometric and
in verse trigonometric functions, and all functions that can be obtained from these by
the five operations of addition, subtraction, multiplication, division, and composition.
For instance, the function

is an elementary function.
If is an elementary function, then is an elementary function but need

not be an elementary function. Consider . Since is continuous, its integral
exists, and if we define the function by 

then we know from Part 1 of the Fundamental Theorem of Calculus that

Thus has an antiderivative , but it can be proved that is not an elemen-
tary function. This means that no matter how hard we try, we will never succeed in
evaluating in terms of the functions we know. (In Chapter 8, however, we will
see how to express as an infinite series.) The same can be said of the follow-

y sin5x cos2x dx

y sin5x cos2x dx � �
1
3 cos3x �

2
5 cos5x �

1
7 cos7x � C1

�
1
7 sin4x cos3x �

4
35 sin2x cos3x �

8
105 cos3x

�
5
64 cos x �

1
192 cos 3x �

3
320 cos 5x �

1
448 cos 7x

x ex2

dx

�xa� �ax �

f �x� � � x 2 � 1

x 3 � 2x � 1
� ln�cos x� � xe sin 2x

f f � x f �x� dx
f �x� � ex2

f
F

F�x� � y
x

0
et 2

dt

F��x� � ex2

f �x� � ex2

F F

x ex2

dx
x ex2

dx
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6.4 EXERCISES

1–22 ■ Use the Table of Integrals on Reference Pages 6–10 to
evaluate the integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. Verify Formula 53 in the Table of Integrals (a) by differenti-
ation and (b) by using the substitution .

24. Verify Formula 31 (a) by differentiation and (b) by substi-
tuting .

y
��8

0
arctan 2x dx y

2

0
x 2

s4 � x 2 dx

y
cos x

sin2x � 9
 dx y

ln(1 � sx )
sx

dx

y
dx

x 2
s4x 2 � 9

y
s2y 2 � 3

y 2 dy

y
�

0
x 3 sin x dx y

dx

2x 3 � 3x 2

y
tan3�1�z�

z 2 dz y sin�1
sx dx

y ys6 � 4y � 4y2 dy y x sin�x 2� cos�3x 2� dx

y sin2x cos x ln�sin x� dx y sin6 2x dx

y
e x

3 � e2x dx y
2

0
x 3

s4x 2 � x 4 dx

y
x 4 dx

sx 10 � 2
y

1

0
x 4e�x dx

y
s4 � �ln x�2

x
dx y

sec2� tan2�

s9 � tan2�
d�

y se 2x � 1 dx y e t sin�	t � 3� dt

t � a � bu

u � a sin �

ing integrals:

In fact, the majority of elementary functions don’t have elementary antiderivatives.

y sx 3 � 1 dx y
1

ln x
dx y

sin x

x
dx

y cos�ex � dxy sin�x 2� dxy
ex

x
dx
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25–32 ■ Use a computer algebra system to evaluate the
integral. Compare the answer with the result of using tables. If
the answers are not the same, show that they are equivalent.

25. 26.

27. 28.

29. 30.

31. 32.

33. (a) Use the table of integrals to evaluate ,
where

What is the domain of and ?
(b) Use a CAS to evaluate . What is the domain of the

function that the CAS produces? Is there a discrepancy
between this domain and the domain of the function
that you found in part (a)?

34. Computer algebra systems sometimes need a helping hand
from human beings. Try to evaluate

with a computer algebra system. If it doesn’t return an
answer, make a substitution that changes the integral into
one that the CAS can evaluate.

y sec4x dx y csc5x dx

y x 2
sx 2 � 4 dx y

dx

e x�3e x � 2�

y cos4 x dx y x 2
s1 � x 2 dx

y tan5x dx y
1

s1 � s
3 x

dx

F�x� � x f �x� dx

f �x� �
1

xs1 � x 2

f F
F�x�

F
F

y �1 � ln x� s1 � �x ln x�2 dx

CAS

CAS

CAS
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6.5 APPROXIMATE INTEGRATION
There are two situations in which it is impossible to find the exact value of a definite 
integral.

The first situation arises from the fact that in order to find using the Eval-
uation Theorem we need to know an antiderivative of . Sometimes, however, it is dif-
ficult, or even impossible, to find an antiderivative (see Section 6.4). For example, it
is impossible to evaluate the following integrals exactly:

The second situation arises when the function is determined from a scientific exper -
iment through instrument readings or collected data. There may be no formula for the
function (see Example 5).

In both cases we need to find approximate values of definite integrals. We already
know one such method. Recall that the definite integral is defined as a limit of Rie-
mann sums, so any Riemann sum could be used as an approximation to the integral:
If we divide into subintervals of equal length , then we have

where is any point in the th subinterval . If is chosen to be the left end-
point of the interval, then and we have

If , then the integral represents an area and represents an approximation
of this area by the rectangles shown in Figure 1(a). If we choose to be the right end-
point, then and we have

[See Figure 1(b).] The approximations and defined by Equations 1 and 2 
are called the left endpoint approximation and right endpoint approximation, 
respectively.

In Section 5.2 we also considered the case where is chosen to be the midpoint
of the subinterval . Figure 1(c) shows the midpoint approximation ,

which appears to be better than either or .

MIDPOINT RULE

and

x
b
a f �x� dx

f

y
1

0
ex2

dx y
1

�1
s1 � x 3 dx

�a, b	 n 
x � �b � a��n

y
b

a
f �x� dx  �

n

i�1
f �xi*� 
x

xi* i �xi�1, xi	 xi*
xi* � xi�1

y
b

a
f �x� dx  Ln � �

n

i�1
f �xi�1� 
x

f �x� � 0
xi*

xi* � xi

y
b

a
f �x� dx  Rn � �

n

i�1
f �xi � 
x

Ln Rn

xi*
xi �xi�1, xi 	 Mn

Ln Rn

y
b

a
f �x� dx  Mn � 
x � f �x1� � f �x2 � � � � � � f �xn �	

where 
x �
b � a

n

xi � 1
2 �xi�1 � xi� � midpoint of �xi�1, xi	

1

2

1
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Another approximation, called the Trapezoidal Rule, results from averaging the
approximations in Equations 1 and 2:

TRAPEZOIDAL RULE

where and .

The reason for the name Trapezoidal Rule can be seen from Figure 2, which illus-
trates the case . The area of the trapezoid that lies above the th subinterval
is

and if we add the areas of all these trapezoids, we get the right side of the Trapezoidal
Rule.

EXAMPLE 1 Use (a) the Trapezoidal Rule and (b) the Midpoint Rule with to
approximate the integral .

SOLUTION
(a) With , and , we have , and so the
Trapezoidal Rule gives

This approximation is illustrated in Figure 3.

(b) The midpoints of the five subintervals are , , , , and , so the Mid-
point Rule gives

This approximation is illustrated in Figure 4. ■

y
b

a
f �x� dx �

1

2  ��
n

i�1
f �xi�1 � �x � �

n

i�1
f �xi� �x� �

�x

2
 ��

n

i�1
( f �xi�1 � � f �xi�)�

�
�x

2
 [( f �x0 � � f �x1�) � ( f �x1� � f �x2 �) � � � � � ( f �xn�1� � f �xn �)]

�
�x

2
 � f �x0 � � 2 f �x1� � 2 f �x2 � � � � � � 2 f �xn�1� � f �xn �	

y
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f �x� dx � Tn �

�x

2
 � f �x0 � � 2 f �x1� � 2 f �x2 � � � � � � 2 f �xn�1� � f �xn �	

�x � �b � a�
n xi � a � i �x

f �x� � 0 i

�x � f �xi�1� � f �xi �
2 � �

�x

2
 � f �xi�1� � f �xi�	

n � 5
x

2
1 �1
x� dx

n � 5, a � 1 b � 2 �x � �2 � 1�
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y
2

1

1

x
dx � T5 �
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In Example 1 we deliberately chose an integral whose value can be computed 
explicitly so that we can see how accurate the Trapezoidal and Midpoint Rules are. 
By the Fundamental Theorem of Calculus,

The error in using an approximation is defined to be the amount that needs to be added
to the approximation to make it exact. From the values in Example 1 we see that the
errors in the Trapezoidal and Midpoint Rule approximations for are 

In general, we have

The following tables show the results of calculations similar to those in Example 1,
but for , and and for the left and right endpoint approximations as well
as the Trapezoidal and Midpoint Rules.

We can make several observations from these tables:

1. In all of the methods we get more accurate approximations when we increase
the value of . (But very large values of result in so many arithmetic opera-
tions that we have to beware of accumulated round-off error.)

2. The errors in the left and right endpoint approximations are opposite in sign
and appear to decrease by a factor of about 2 when we double the value of .

3. The Trapezoidal and Midpoint Rules are much more accurate than the end-
point approximations.

4. The errors in the Trapezoidal and Midpoint Rules are opposite in sign and
appear to decrease by a factor of about 4 when we double the value of .

5. The size of the error in the Midpoint Rule is about half the size of the error in
the Trapezoidal Rule.

Figure 5 (on page 344) shows why we can usually expect the Midpoint Rule to be
more accurate than the Trapezoidal Rule. The area of a typical rectangle in the Mid-
point Rule is the same as the trapezoid whose upper side is tangent to the graph

y
2

1

1

x
dx � ln x]1

2
� ln 2 � 0.693147 . . .

n � 5

ET � �0.002488 and EM � 0.001239

ET � y
b

a
f �x� dx � Tn and EM � y

b

a
f �x� dx � Mn

n � 5, 10 20

n n

n

n

ABCD
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n

5 0.745635 0.645635 0.695635 0.691908
10 0.718771 0.668771 0.693771 0.692835
20 0.705803 0.680803 0.693303 0.693069

MnTnRnLn

n

5 �0.052488 0.047512 �0.002488 0.001239
10 �0.025624 0.024376 �0.000624 0.000312
20 �0.012656 0.012344 �0.000156 0.000078

EMETEREL

Module 5.2/6.5 allows you 
to compare approximation methods.
TEC

Approximations to y
2

1

1

x
dx

Corresponding errors

■ It turns out that these observations are
true in most cases.

approximation errory
b

a
f �x� dx � �
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at . The area of this trapezoid is closer to the area under the graph than is the area of
the trapezoid used in the Trapezoidal Rule. [The midpoint error (shaded gray)
is smaller than the trapezoidal error (shaded blue).]

These observations are corroborated in the following error estimates, which are
proved in books on numerical analysis. Notice that Observation 4 corresponds to the

in each denominator because . The fact that the estimates depend on the
size of the second derivative is not surprising if you look at Figure 5, because
measures how much the graph is curved. [Recall that measures how fast the
slope of changes.]

ERROR BOUNDS Suppose for . If and are
the errors in the Trapezoidal and Midpoint Rules, then

Let’s apply this error estimate to the Trapezoidal Rule approximation in Example 1.
If , then and . Since , we have

, so

Therefore, taking , and in the error estimate , we see
that

Comparing this error estimate of with the actual error of about , we
see that it can happen that the actual error is substantially less than the upper bound
for the error given by .

EXAMPLE 2 How large should we take in order to guarantee that the Trapezoi-
dal and Midpoint Rule approximations for are accurate to within ?

SOLUTION We saw in the preceding calculation that for ,
so we can take , , and in . Accuracy to within means
that the size of the error should be less than . Therefore we choose so that

Solving the inequality for , we get

or

Thus will ensure the desired accuracy.

P
AQRD

�2n�2 � 4n 2n 2

f ��x�
f ��x�

y � f �x�

EMETa � x � b f ��x�  � K3
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K�b � a�3

24n 2and ET  �
K�b � a�3

12n 2

1 � x � 2f ��x� � 2
x 3f 	�x� � �1
x 2f �x� � 1
x
1
x � 1

 f ��x�  � � 2

x 3 � �
2

13 � 2

3n � 5K � 2, a � 1, b � 2

 ET  �
2�2 � 1�3

12�5�2 �
1
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� 0.006667

0.0024880.006667

3

nV

0.0001x
2
1 �1
x� dx

1 � x � 2 f ��x�  � 2
0.00013b � 2a � 1K � 2

n0.0001

2�1�3

12n 2 
 0.0001

n

n 2 �
2

12�0.0001�

n �
1
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■ can be any number larger than all
the values of , but smaller values
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For the same accuracy with the Midpoint Rule we choose so that

which gives ■

EXAMPLE 3
(a) Use the Midpoint Rule with to approximate the integral .
(b) Give an upper bound for the error involved in this approximation.

SOLUTION
(a) Since , and , the Midpoint Rule gives

Figure 6 illustrates this approximation.

(b) Since , we have and . Also, since
, we have and so

Taking , , , and in the error estimate , we see that an
upper bound for the error is

■

SIMPSON’S RULE

Another rule for approximate integration results from using parabolas instead of
straight line segments to approximate a curve. As before, we divide into sub-
intervals of equal length , but this time we assume that is an
even number. Then on each consecutive pair of intervals we approximate the curve

by a parabola as shown in Figure 7. If , then is the 

n
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0 ex2
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■ Error estimates are upper bounds for 
the error. They give theoretical, worst-
case scenarios. The actual error in this
case turns out to be about .0.0023
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point on the curve lying above . A typical parabola passes through three consecutive
points , and .

To simplify our calculations, we first consider the case where , and
. (See Figure 8.) We know that the equation of the parabola through , and

is of the form and so the area under the parabola from
to is

But, since the parabola passes through , , and , we have

and therefore

Thus we can rewrite the area under the parabola as

By shifting this parabola horizontally we do not change the area under it. This means
that the area under the parabola through , and from to in Fig-
ure 7 is still

Similarly, the area under the parabola through from to is

If we compute the areas under all the parabolas in this manner and add the results, we
get

P0, P1x2 � h
x � �hy � Ax 2 � Bx � CP2

Pi, Pi�1 Pi�2
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y
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0
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x 3

3
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0
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� 2�A
h 3

3
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h

3
 �2Ah 2 � 6C �
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y1 � C
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3
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y
b

a
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■ Here we have used Theorem 5.5.7. 
Notice that is even and 
is odd.
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FIGURE 8
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Although we have derived this approximation for the case in which , it is a
reasonable approximation for any continuous function and is called Simpson’s Rule
after the English mathematician Thomas Simpson (1710–1761). Note the pattern of
coefficients: .

SIMPSON’S RULE

where is even and .

EXAMPLE 4 Use Simpson’s Rule with to approximate .

SOLUTION Putting , and in Simpson’s Rule, we
obtain

■

Notice that, in Example 4, Simpson’s Rule gives us a much better approximation
to the true value of the integral than does the

Trapezoidal Rule or the Midpoint Rule . It turns
out (see Exercise 42) that the approximations in Simpson’s Rule are weighted aver-
ages of those in the Trapezoidal and Midpoint Rules:

(Recall that and usually have opposite signs and is about half the size 
of .)

In many applications of calculus we need to evaluate an integral even if no explic-
it formula is known for y as a function of x. A function may be given graphically or
as a table of values of collected data. If there is evidence that the values are not chang-
ing rapidly, then the Trapezoidal Rule or Simpson’s Rule can still be used to find an
approximate value for , the integral of y with respect to x.
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■ SIMPSON
Thomas Simpson was a weaver who 
taught himself mathematics and went on 
to become one of the best English mathe-
maticians of the 18th century. What we 
call Simpson’s Rule was actually known 
to Cavalieri and Gregory in the 17th cen-
tury, but Simpson popularized it in his 
best-selling calculus textbook, entitled 
A New Treatise of Fluxions.

Unless otherwise noted, all content on this page is © Cengage Learning.

12280_ch06_ptg01_hr_342-351.qk_12280_ch06_ptg01_hr_342-351  11/28/11  10:24 AM  Page 347

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



348 CHAPTER 6 TECHNIQUES OF INTEGRATION

Unless otherwise noted, all content on this page is © Cengage Learning.

EXAMPLE 5 Figure 9 shows data traffic on the link from the United States to
SWITCH, the Swiss education and research network, on February 10, 1998. is
the data through put, measured in megabits per second . Use Simpson’s Rule
to estimate the total amount of data transmitted on the link up to noon on that day.

SOLUTION Because we want the units to be consistent and is measured in
mega bits per second, we convert the units for from hours to seconds. If we let
be the amount of data ( in megabits) transmitted by time , where is measured in
seconds, then . So, by the Net Change Theorem (see Section 5.3), the 
total amount of data transmitted by noon (when ) is

We estimate the values of at hourly intervals from the graph and compile them
in the table.

Then we use Simpson’s Rule with and to estimate the integral:

Thus the total amount of data transmitted up to noon is about 144,000 megabits, or 
144 gigabits. ■

V

D�t�
�Mb
s�

FIGURE 9 0

2

4

6

D

8

3 6 9 12 15 18 21 24
t (hours)

D�t�
A�t�t

tt
A	�t� � D�t�

t � 12 � 602 � 43,200

A�43,200� � y
43,200

0
D�t� dt

D�t�

�t � 3600n � 12

y
43,200

0
A�t� dt �

�t

3
 �D�0� � 4D�3600� � 2D�7200� � � � � � 4D�39,600� � D�43,200�	

�
3600

3
 �3.2 � 4�2.7� � 2�1.9� � 4�1.7� � 2�1.3� � 4�1.0�

� 2�1.1� � 4�1.3� � 2�2.8� � 4�5.7� � 2�7.1� � 4�7.7� � 7.9	

� 143,880

0 0 3.2 7 25,200 1.3
1 3,600 2.7 8 28,800 2.8
2 7,200 1.9 9 32,400 5.7
3 10,800 1.7 10 36,000 7.1
4 14,400 1.3 11 39,600 7.7
5 18,000 1.0 12 43,200 7.9
6 21,600 1.1

D�t�t �seconds�t �hours�t �hours� D�t�t �seconds�
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The table in the margin shows how Simpson’s Rule compares with the Midpoint
Rule for the integral , whose value is about 0.69314718. The second table
shows how the error in Simpson’s Rule decreases by a factor of about 16 when
is doubled. (In Exercise 24 you are asked to verify this for another integral.) That is
consistent with the appearance of in the denominator of the following error esti-
mate for Simpson’s Rule. It is similar to the estimates given in for the Trapezoidal
and Midpoint Rules, but it uses the fourth derivative of .

ERROR BOUND FOR SIMPSON’S RULE Suppose that for
. If is the error involved in using Simpson’s Rule, then

EXAMPLE 6 How large should we take in order to guarantee that the Simpson’s
Rule approximation for is accurate to within ?

SOLUTION If , then . Since , we have and
so

Therefore we can take in . Thus for an error less than we should
choose so that

This gives

or

Therefore ( must be even) gives the desired accuracy. (Compare this with
Example 2, where we obtained for the Trapezoidal Rule and for the
Midpoint Rule.) ■

EXAMPLE 7
(a) Use Simpson’s Rule with to approximate the integral .
(b) Estimate the error involved in this approximation.

SOLUTION
(a) If , then and Simpson’s Rule gives 

x
2
1 �1
x� dx

nES

n 4

3
f

 f �4��x�  � K4
ESa � x � b

 ES  �
K�b � a�5

180n 4

n
0.0001x

2
1 �1
x� dx

1
x � 1x � 1f �4��x� � 24
x 5f �x� � 1
x

 f �4��x�  � � 24

x 5 � � 24

0.00014K � 24
n

24�1�5

180n 4 
 0.0001

n 4 �
24

180�0.0001�

n �
1

s
4 0.00075

� 6.04

nn � 8
n � 29n � 41

x
1
0 ex2

dxn � 10

�x � 0.1n � 10

y
1

0
ex2

dx �
�x

3
 � f �0� � 4 f �0.1� � 2 f �0.2� � � � � � 2 f �0.8� � 4 f �0.9� � f �1�	

�
0.1

3
 �e 0 � 4e 0.01 � 2e 0.04 � 4e 0.09 � 2e 0.16 � 4e 0.25 � 2e 0.36

� 4e 0.49 � 2e 0.64 � 4e 0.81 � e 1 	

� 1.462681
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4 0.69121989 0.69315453
8 0.69266055 0.69314765

16 0.69302521 0.69314721

Snn Mn

4 0.00192729
8 0.00048663

16 0.00012197 �0.00000003
�0.00000047
�0.00000735

ESn EM

■ Many calculators and computer 
algebra systems have a built-in algo-
rithm that computes an approximation
of a definite integral. Some of these
machines use Simpson’s Rule; others
use more sophisticated techniques such
as adaptive numerical integration. This
means that if a function fluctuates much
more on a certain part of the interval
than it does elsewhere, then that part
gets divided into more sub intervals.
This strategy reduces the number of 
calculations required to achieve a pre-
scribed accuracy.

■ Figure 10 illustrates the calculation
in Example 7. Notice that the parabolic
arcs are so close to the graph of 
that they are practically indistinguish-
able from it.

y � ex2

0

y

x
1

y=e
x

2

FIGURE 10
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(b) The fourth derivative of is

and so, since , we have

Therefore, putting , and in , we see that the error
is at most

[Compare this with Example 3(b).] Thus, correct to three decimal places, we have

■

f �x� � ex2

f �4��x� � �12 � 48x 2 � 16x 4 �ex2

0 � x � 1

0 � f �4��x� � �12 � 48 � 16�e 1 � 76e

K � 76e, a � 0, b � 1 n � 10

76e�1�5

180�10�4 � 0.000115

y
1

0
ex2

dx � 1.463

4
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6.5 EXERCISES

1. Let , where is the function whose graph is
shown.
(a) Use the graph to find .
(b) Are these underestimates or overestimates of ?
(c) Use the graph to find . How does it compare with ?
(d) For any value of , list the numbers and 

in increasing order.

2. The left, right, Trapezoidal, and Midpoint Rule approxima-
tions were used to estimate , where is the func-
tion whose graph is shown. The estimates were 0.7811,
0.8675, 0.8632, and 0.9540, and the same number of sub-
intervals were used in each case.
(a) Which rule produced which estimate?
(b) Between which two approximations does the true value

of lie?

I � x
4
0 f �x� dx f

L2, R2, and M2

I
T2 I

n Ln, Rn, Mn, Tn,
I

f

x

1

y

2

3

10 2 3 4

x
2

0 f �x� dx f

x
2

0 f �x� dx

y

x0

1

2

y=ƒ

; 3. Estimate using (a) the Trapezoidal Rule and
(b) the Midpoint Rule, each with . From a graph of
the integrand, decide whether your answers are under-
estimates or overestimates. What can you conclude about
the true value of the integral?

; 4. Draw the graph of in the viewing rect-
angle by and let .
(a) Use the graph to decide whether , and

underestimate or overestimate .
(b) For any value of , list the numbers and 

in increasing order.
(c) Compute . From the graph, which do

you think gives the best estimate of ?

5–6 ■ Use (a) the Midpoint Rule and (b) Simpson’s Rule to
approximate the given integral with the specified value of .
(Round your answers to six decimal places.) Compare your
results to the actual value to determine the error in each 
approximation.

5. ,  6. ,  

7–16 ■ Use (a) the Trapezoidal Rule, (b) the Midpoint Rule,
and (c) Simpson’s Rule to approximate the given integral with
the specified value of . (Round your answers to six decimal
places.)

7. ,  8. ,  

9. ,  10. ,  

x
1
0 cos�x 2 � dx

n � 4

f �x� � sin(1
2 x 2)

�0, 1	 �0, 0.5	 I � x
1
0 f �x� dx
L2, R2, M2 T2

I
n Ln, Rn, Mn, Tn,

I
L5, R5, M5, and T5

I

n

y
2

0

x

1 � x 2 dx n � 10 y


0
x cos x dx n � 4

n

y
2

1
sx 3 � 1 dx n � 10 y

2

0

1

1 � x 6 dx n � 8

y
2

0

e x

1 � x 2 dx n � 10 y

2

0
s
3 1 � cos x n � 4
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22. Repeat Exercise 21 for the integral .

23. Find the approximations , and to the integral
for , and . Then compute the corre-

sponding errors , and . (Round your answers
to six decimal places. You may wish to use the sum com-
mand on a computer algebra system.) What observations
can you make? In particular, what happens to the errors
when is doubled?

24. Find the approximations , , and to the integral
for and . Then compute the corre-

sponding errors , and . (Round your answers 
to six decimal places. You may wish to use the sum 
command on a computer algebra system.) What 
observations can you make? In particular, what happens
to the errors when is doubled?

25. Estimate the area under the graph in the figure by using
(a) the Trapezoidal Rule, (b) the Midpoint Rule, and
(c) Simpson’s Rule, each with .

26. A radar gun was used to record the speed of a runner
during the first 5 seconds of a race (see the table). Use
Simpson’s Rule to estimate the distance the runner cov-
ered during those 5 seconds.

27. The graph of the acceleration of a car measured in
is shown. Use Simpson’s Rule to estimate the

increase in the velocity of the car during the 6-second
time interval.

y
1

�1
s4 � x 3 dx

Ln, Rn, Tn Mn

n � 5, 10 20
EL, ER, ET EM

n

x
1
0 xe x dx

Tn Mn Sn

n � 6 12
ET, EM ES

n

x
4
1 1
sx dx

CAS

n � 6

1

x

y

0 43 6521

a�t�
ft
s2

a

t0 642

4

8

12

11. , 12. ,  

13. ,  

14. ,  

15. ,  16. ,  

17. (a) Find the approximations and for the integral
.

(b) Estimate the errors in the approximations of part (a).
(c) How large do we have to choose so that the approxi-

mations and to the integral in part (a) are accu-
rate to within ?

18. (a) Find the approximations and for .
(b) Estimate the errors involved in the approximations of

part (a).
(c) How large do we have to choose so that the approxi-

mations and to the integral in part (a) are accu-
rate to within ?

19. (a) Find the approximations , , and for
and the corresponding errors , , and .

(b) Compare the actual errors in part (a) with the error
esti mates given by and .

(c) How large do we have to choose so that the approxi-
mations , , and to the integral in part (a) are
accurate to within ?

20. How large should be to guarantee that the Simpson’s
Rule approximation to is accurate to within

?

21. The trouble with the error estimates is that it is often very 
difficult to compute four derivatives and obtain a good
upper bound for by hand. But computer alge-
bra systems have no problem computing and graphing
it, so we can easily find a value for from a machine
graph. This exercise deals with approximations to the
integral , where .
(a) Use a graph to get a good upper bound for .
(b) Use to approximate .
(c) Use part (a) to estimate the error in part (b).
(d) Use the built-in numerical integration capability of

your CAS to approximate .
(e) How does the actual error compare with the error esti-

mate in part (c)?
(f) Use a graph to get a good upper bound for .
(g) Use to approximate .
(h) Use part (f ) to estimate the error in part (g).
( i ) How does the actual error compare with the error esti-

mate in part (h)?
( j) How large should be to guarantee that the size of the

error in using is less than ?

y
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0
sin�x 3� dx n � 10

n � 10y
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0 cos �x 2� dx

n
MnTn
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1 e 1
x dxM10T10
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0 sin x dxS10M10T10

ESEMET
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SnMnTn
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x
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 f �4��x� K
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t (s) (m
s) t (s) (m
s)

0 0 3.0 10.51
0.5 4.67 3.5 10.67
1.0 7.34 4.0 10.76
1.5 8.86 4.5 10.81
2.0 9.73 5.0 10.81
2.5 10.22

vv
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33. The table (supplied by San Diego Gas and Electric) gives
the power consumption in megawatts in San Diego
County from midnight to 6:00 AM on a day in December.
Use Simpson’s Rule to estimate the energy used during
that time period. (Use the fact that power is the derivative
of energy.)

34. The figure shows a pendulum with length that makes a
maximum angle with the vertical. Using Newton’s Sec-
ond Law, it can be shown that the period (the time for
one complete swing) is given by

where and is the acceleration due to gravity. 
If m and , use Simpson’s Rule with
to find the period.

35. The intensity of light with wavelength traveling through 
a diffraction grating with slits at an angle is given by

, where and is the 
distance between adjacent slits. A helium-neon laser with

0

0.4

4 6

0.8

2 8

D

t (hours)

P

L
�0

T

T � 4� L

t
y

��2

0

dx

s1 � k 2 sin2x

k � sin( 1
2 �0 ) t

L � 1 �0 � 42� n � 10

¨¸

CAS

�
N �

dk � ��Nd sin ����I��� � N 2 sin2k�k 2

28. Water leaked from a tank at a rate of liters per hour,
where the graph of is as shown. Use Simpson’s Rule to
estimate the total amount of water that leaked out during the
first six hours.

29. A graph of the temperature in New York City on Septem-
ber 19, 2009 is shown. Use Simpson’s Rule with to
estimate the average temperature on that day.

30. (a) A table of values of a function is given. Use
Simpson’s Rule to estimate .

(b) If for , estimate the error
involved in the approximation in part (a).

31. (a) Use the Midpoint Rule and the given data to estimate
the value of the integral .

(b) If it is known that for all , estimate
the error involved in the approximation in part (a).

32. Shown is the graph of traffic on an Internet service
provider’s T1 data line from midnight to 8:00 AM. is the
data throughput, measured in megabits per second. Use
Simpson’s Rule to estimate the total amount of data trans-
mitted during that time period.

r�t�
r

r

t0 642

2

4

n � 12

0 4

70

60

50

8 4 8 tnoon

T (°F)

t

x
1.6
0 t�x� dx

0 � x � 1.6�5 � t
�4��x� � 2

x
5
1 f �x� dx

x�2 � f ��x� � 3

D
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x x

0.0 12.1 1.0 12.2
0.2 11.6 1.2 12.6
0.4 11.3 1.4 13.0
0.6 11.1 1.6 13.2
0.8 11.7

t�x�t�x�

x x

1.0 2.4 3.5 4.0
1.5 2.9 4.0 4.1
2.0 3.3 4.5 3.9
2.5 3.6 5.0 3.5
3.0 3.8

f �x�f �x�

t P t P

0:00 1814 3:30 1611
0:30 1735 4:00 1621
1:00 1686 4:30 1666
1:30 1646 5:00 1745
2:00 1637 5:30 1886
2:30 1609 6:00 2052
3:00 1604
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38. Use the Trapezoidal Rule with to approximate
. Compare your result to the actual value. 

Can you explain the discrepancy?

39. If is a positive function and for ,
show that

40. Show that if is a polynomial of degree 3 or lower, then 
Simpson’s Rule gives the exact value of .

41. Show that .

42. Show that .

x
20

0 cos��x� dx

f f ��x� 	 0 a � x � b

Tn 	 y
b

a
f �x� dx 	 Mn

f
x

b
a f �x� dx

1
2 �Tn 
 Mn � � T2n

1
3 Tn 


2
3 Mn � S2n

n � 10wavelength is emitting a narrow band
of light, given by , through a grating
with 10,000 slits spaced apart. Use the Midpoint
Rule with to estimate the total light intensity

emerging from the grating.

36. Sketch the graph of a continuous function on for
which the right endpoint approximation with is more
accurate than Simpson’s Rule.

37. Sketch the graph of a continuous function on for
which the Trapezoidal Rule with is more accurate
than the Midpoint Rule.

�10�6 	 � 	 10�6

10�4 m
n � 10

x
10�6

�10�6 I��� d�

�0, 2�
n � 2

�0, 2�
n � 2

� � 632.8 � 10�9 m
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6.6 IMPROPER INTEGRALS
In defining a definite integral we dealt with a function defined on a finite
interval . In this section we extend the concept of a definite integral to the case
where the interval is infinite and also to the case where has an infinite discontinuity
in . In either case the integral is called an improper integral.

TYPE 1: INFINITE INTERVALS

Consider the infinite region that lies under the curve , above the -axis, and
to the right of the line . You might think that, since is infinite in extent, its area
must be infinite, but let’s take a closer look. The area of the part of that lies to the
left of the line (shaded in Figure 1) is

Notice that no matter how large is chosen.
We also observe that

The area of the shaded region approaches as (see Figure 2), so we say that
the area of the infinite region is equal to and we write

x
b
a f �x� dx f

�a, b�
f

�a, b�

S y � 1�x 2 x
x � 1 S

S
x � t

A�t� � y
t

1

1

x 2 dx � �
1

x�1

t

� 1 �
1

t

A�t� 	 1 t

lim
t l �

A�t� � lim
t l �

	1 �
1

t 
 � 1

1 t l �
S 1

y
�

1

1

x 2 dx � lim
t l �

y
t

1

1

x 2 dx � 1

0

y

x1 2
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1
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0

y

x1 3
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2
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0

y
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FIGURE 2

FIGURE 1
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x=1
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≈
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Using this example as a guide, we define the integral of (not necessarily a posi-
tive function) over an infinite interval as the limit of integrals over finite intervals.

DEFINITION OF AN IMPROPER INTEGRAL OF TYPE 1

(a) If exists for every number , then

provided this limit exists (as a finite number).

(b) If exists for every number , then

provided this limit exists (as a finite number).

The improper integrals and are called convergent if the
corresponding limit exists and divergent if the limit does not exist.

(c) If both and are convergent, then we define

In part (c) any real number can be used (see Exercise 52).

Any of the improper integrals in Definition 1 can be interpreted as an area provided
that is a positive function. For instance, in case (a) if and the integral

is convergent, then we define the area of the region

in Figure 3 to be

This is appropriate because is the limit as of the area under the graph
of from to .

EXAMPLE 1 Determine whether the integral is convergent or divergent.

SOLUTION According to part (a) of Definition 1, we have
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The limit does not exist as a finite number and so the improper integral
is divergent. ■

Let’s compare the result of Example 1 with the example given at the beginning of
this section:

Geometrically, this says that although the curves and look very sim-
ilar for , the region under to the right of (the shaded region in
Figure 4) has finite area whereas the corresponding region under (in Fig-
ure 5) has infinite area. Note that both and approach as but
approaches faster than . The values of 1�x don’t decrease fast enough for its inte-
gral to have a finite value.

EXAMPLE 2 Evaluate .

SOLUTION Using part (b) of Definition 1, we have

We integrate by parts with , , so that , :

We know that as , and by l’Hospital’s Rule we have

Therefore

■

EXAMPLE 3 Evaluate .

SOLUTION It’s convenient to choose in Definition 1(c):

x
�

1 �1�x� dx

y
�

1

1

x
dx divergesy

�

1

1

x 2 dx converges

y � 1�xy � 1�x 2

x � 1y � 1�x 2x � 0
y � 1�x

1�x 2x l �01�x1�x 2

1�x0

1

x

FIGURE 5

infinite area

0

y

x
1

y=

j    (1/x) dx diverges.
1

`FIGURE 4

0

y

x
1

finite area

y=
1

≈

j    (1/≈) dx converges.
1

`

y
0

��
xe x dx

y
0

��
xex dx � lim

t l��
y

0

t
xe x dx

v � exdu � dxdv � ex dxu � x

� �te t � 1 
 e t
y

0

t
xe x dx � xex]t

0
� y

0

t
e x dx

t l ��e t l 0

� lim
t l��

��e t� � 0lim
t l��

te t � lim
t l��

t

e�t � lim
t l��

1

�e�t

� �0 � 1 
 0 � �1y
0

��
xex dx � lim

t l��
��te t � 1 
 e t�

y
�

��

1

1 
 x 2 dx

a � 0

y
�

��

1

1 
 x 2 dx � y
0

��

1

1 
 x 2 dx 
 y
�

0

1

1 
 x 2 dx
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In Module 6.6 you can investigate
visually and numerically whether several
improper integrals are convergent or
divergent.

TEC
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We must now evaluate the integrals on the right side separately:

Since both of these integrals are convergent, the given integral is convergent and

Since , the given improper integral can be interpreted as the area of 
the infinite region that lies under the curve and above the -axis (see
Figure 6). ■

EXAMPLE 4 For what values of is the following integral convergent?

SOLUTION We know from Example 1 that if , then the integral is divergent,
so let’s assume that . Then

If , then , so as , and . Therefore

and so the integral converges. But if , then and so

and the integral diverges. ■

y
�

0

1

1 
 x 2 dx � lim
t l �

y
t

0

dx

1 
 x 2 � lim
t l �

tan�1x]0

t

� lim
t l �

�tan�1t � tan�1 0� � lim
t l �

tan�1t �
�

2

y
0

��

1

1 
 x 2 dx � lim
t l ��

y
0

t

dx

1 
 x 2 � lim
t l ��

tan�1x]t

0

� lim
t l ��

�tan�1 0 � tan�1t�

� 0 � 	�
�

2 
 �
�

2

y
�

��

1

1 
 x 2 dx �
�

2



�

2
� �

1��1 
 x 2 � � 0
xy � 1��1 
 x 2 �

p

y
�

1

1

x p dx

p � 1
p � 1

y
�

1

1

x p dx � lim
t l �

y
t

1
x�p dx � lim

t l �

x�p
1

�p 
 1�x�1

x�t

� lim
t l �

1

1 � p� 1

t p�1 � 1�
1�t p�1 l 0t p�1 l �t l �p � 1 � 0p � 1

if p � 1y
�

1

1

x p dx �
1

p � 1

p � 1 	 0p 	 1

as t l �
1

t p�1 � t 1�p l �
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FIGURE 6
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We summarize the result of Example 4 for future reference:

TYPE 2: DISCONTINUOUS INTEGRANDS

Suppose that is a positive continuous function defined on a finite interval but
has a vertical asymptote at . Let be the unbounded region under the graph of and
above the -axis between and . (For Type 1 integrals, the regions extended indefi-
nitely in a horizontal direction. Here the region is infinite in a vertical direction.) The
area of the part of between and (the shaded region in Figure 7) is

If it happens that approaches a definite number as , then we say that
the area of the region is and we write

We use this equation to define an improper integral of Type 2 even when is not a pos-
itive function, no matter what type of discontinuity has at .

DEFINITION OF AN IMPROPER INTEGRAL OF TYPE 2

(a) If is continuous on and is discontinuous at , then 

if this limit exists (as a finite number).

(b) If is continuous on and is discontinuous at , then 

if this limit exists (as a finite number).

The improper integral is called convergent if the corresponding
limit exists and divergent if the limit does not exist.

(c) If has a discontinuity at , where , and both and
are convergent, then we define

EXAMPLE 5 Find .

SOLUTION We note first that the given integral is improper because
has the vertical asymptote . Since the infinite discontinuity 

y
�

1

1

x p dx is convergent if p � 1 and divergent if p � 1.2

�a, b�f
fSb

bax

taS

A�t� � y
t

a
f �x� dx

t l b�AA�t�
AS

y
b

a
f �x� dx � lim

t l b�
y

t

a
f �x� dx

f
bf

3

b�a, b�f

y
b

a
f �x� dx � lim

t l b�
y

t

a
f �x� dx

a�a, b�f

y
b

a
f �x� dx � lim

tla

y

b

t
f �x� dx

x
b
a

f �x� dx

x
c
a

f �x� dxa 	 c 	 bcf
x

b
c

f �x� dx

y
b

a
f �x� dx � y

c

a
f �x� dx 
 y

b

c
f �x� dx

y
5

2

1

sx � 2
dx

x � 2f �x� � 1�sx � 2

FIGURE 7

0

y

xbta

x=b
y=ƒ

0

y

xa t b

FIGURE 8

0

y

xa c b

FIGURE 9

■ Parts (b) and (c) of Definition 3 are
illustrated in Figures 8 and 9 for the
case where and has vertical
asymptotes at and , respectively.ca

ff �x�  0
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occurs at the left endpoint of , we use part (b) of Definition 3:

Thus the given improper integral is convergent and, since the integrand is posi-
tive, we can interpret the value of the integral as the area of the shaded region in
Figure 10. ■

EXAMPLE 6 Determine whether converges or diverges.

SOLUTION Note that the given integral is improper because .
Using part (a) of Definition 3 and Formula 14 from the Table of Integrals, we have

because and as . Thus the given improper integral is
divergent. ■

EXAMPLE 7 Evaluate if possible.

SOLUTION Observe that the line is a vertical asymptote of the integrand.
Since it occurs in the middle of the interval , we must use part (c) of Definition 3
with :

where

because as . Thus is divergent. This implies that
is divergent. [We do not need to evaluate .] ■

| WARNING If we had not noticed the asymptote in Example 7 and had
instead confused the integral with an ordinary integral, then we might have made the
following erroneous calculation:

This is wrong because the integral is improper and must be calculated in terms of limits.

�2, 5�

y
5

2

dx

sx � 2
� lim

t l 2
 y
5

t

dx

sx � 2
� lim

t l 2

2sx � 2 ]t

5

� lim
t l 2


2(s3 � st � 2 ) � 2s3

y
�/2

0
sec x dxV

lim x l��/2�� sec x � �

y
�/2

0
 sec x dx � lim

t l���2��
y

t

0
sec x dx

� lim
t l���2��

ln � sec x 
 tan x �]0

t

� lim
t l���2��

�ln�sec t 
 tan t� � ln 1� � �

t l ���2��tan t l �sec t l �

y
3

0

dx

x � 1

x � 1
�0, 3�

c � 1

y
3

0

dx

x � 1
� y

1

0

dx

x � 1

 y
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1

dx

x � 1
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1

0

dx

x � 1
� lim

t l 1�
y

t
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dx

x � 1
� lim

t l 1�
ln � x � 1 �]0

t

� lim
t l 1�

(ln � t � 1 � � ln � �1 �)
� lim

t l 1�
ln�1 � t� � ��

x
1
0 dx��x � 1�t l 1�1 � t l 0


x
3
1 dx��x � 1�x

3
0 dx��x � 1�

x � 1

y
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dx

x � 1
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1 2 4 53

y=
1

œ„„„„x-2

area=2œ„3

FIGURE 10

■ www.stewartcalculus.com
See Additional Example A.
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From now on, whenever you meet the symbol you must decide, by look-
ing at the function on , whether it is an ordinary definite integral or an improper 
integral.

A COMPARISON TEST FOR IMPROPER INTEGRALS

Sometimes it is impossible to find the exact value of an improper integral and yet it 
is important to know whether it is convergent or divergent. In such cases the follow-
ing theorem is useful. Although we state it for Type 1 integrals, a similar theorem is
true for Type 2 integrals.

COMPARISON THEOREM Suppose that and are continuous functions with
for .

(a) If is convergent, then is convergent.

(b) If is divergent, then is divergent.

We omit the proof of the Comparison Theorem, but Figure 11 makes it seem plau-
sible. If the area under the top curve is finite, then so is the area under the
bottom curve . And if the area under is infinite, then so is the area
under . [Note that the reverse is not necessarily true: If is conver-
gent, may or may not be convergent, and if is divergent,
may or may not be divergent.]

EXAMPLE 8 Show that is convergent.

SOLUTION We can’t evaluate the integral directly because the antiderivative of
is not an elementary function (as explained in Section 6.4). We write

and observe that the first integral on the right-hand side is just an ordinary definite
integral. In the second integral we use the fact that for we have , so

and therefore . (See Figure 12.) The integral of is easy to
evaluate:

Thus, taking and in the Comparison Theorem, we see that
is convergent. It follows that is convergent. ■

In Example 8 we showed that is convergent without computing its value.
In Exercise 58 we indicate how to show that its value is approximately 0.8862. In
probability theory it is important to know the exact value of this improper integral;
using the methods of multivariable calculus it can be shown that the exact value is

. Table 1 illustrates the definition of an improper integral by showing how the
(computer-generated) values of approach as becomes large. In fact, 
these values converge quite quickly because very rapidly as .

x
b
a f �x� dx

�a, b�f

tf
x  af �x�  t�x�  0
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�

a t�x� dxx
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a f �x� dx
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t l �
y
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�
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�
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x
�
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TABLE 1

t

1 0.7468241328
2 0.8820813908
3 0.8862073483
4 0.8862269118
5 0.8862269255
6 0.8862269255

x
t
0 e�x2

dx

0

y

xa

g

f

FIGURE 11

0
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y=e
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y=e
_x

FIGURE 12
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6.6 EXERCISES

1. Explain why each of the following integrals is improper.

(a) (b)

(c) (d)

2. Which of the following integrals are improper? Why?

(a) (b)

(c) (d)

3. Find the area under the curve from to
and evaluate it for , , and . Then find

the total area under this curve for .

; 4. (a) Graph the functions and in
the viewing rectangles by and by

.
(b) Find the areas under the graphs of and from 

to and evaluate for , , , , , 
and .

(c) Find the total area under each curve for , if it
exists.

5–32 ■ Determine whether each integral is convergent or
divergent. Evaluate those that are convergent.

5. 6.

7. 8.

9. 10.

11. 12.

y
�

0

1

1 
 x 3 dxy
2

1

x

x � 1
 dx

y
��4

0
cot x dxy

�

��
x 2e�x2

dx

y
�

0
tan x dxy

��4

0
tan x dx

y
�

0
e�x3

dxy
1

�1

dx

x 2 � x � 2

x � t
x � 1y � 1�x 3

1000100t � 10
x  1

t�x� � 1�x 0.9f �x� � 1�x 1.1

�0, 100��0, 1��0, 10�
�0, 1�

x � 1tf
1010106104100t � 10x � t

1020

x  1

y
�

0

1

s
4 1 
 x

dxy
�

3

1

�x � 2�3�2 dx

y
�

1

1

�2x 
 1�3 dxy
0

��

1

3 � 4x
dx

y
0

��
2 r dry

�

2
e�5p dp

y
�

��
�y 3 � 3y 2� dyy

�

0

x 2

s1 
 x 3 
dx

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33–38 ■ Sketch the region and find its area (if the area is
finite).

33.

34.

; 35.

; 36.

y
�

��
xe�x2

dx y
�

��
x 2e�x 3

dx

y
0

��
ze 2z dz y

�

��
cos � t dt

y
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1

ln x

x
dx y

6

��
re r�3 dr
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1

1

x 2 
 x
dx y

�

1

ln x

x 3 dx

y
�

��

x 2

9 
 x 6 dx y
�

0

e x

e 2x 
 3
 dx

y
1

0

3

x 5 dx y
3

2

1

s3 � x
dx

y
14

�2

dx

s
4 x 
 2

y
8

6

4

�x � 6�3 dx

y
9

0

1

s
3 x � 1

dx y
5

0
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w � 2
 dw

y
1

�1

e x

e x � 1
 dx y

1

0

dx

s1 � x 2 

y
2

0
z 2 ln z dz y

1

0

ln x

sx
dx

S � ��x, y� � x  1,  0 � y � e�x

S � ��x, y� � x � 0,  0 � y � e x

S � ��x, y� � x  1,  0 � y � 1��x 3 
 x�

S � ��x, y� � x  0,  0 � y � xe�x

EXAMPLE 9 The integral is divergent by the Comparison Theorem

because

and is divergent by Example 1 [or by with ]. ■

Table 2 illustrates the divergence of the integral in Example 9. It appears that the 
values are not approaching any fixed number.

y
�

1

1 
 e�x

x
dx

1 
 e�x

x
�

1

x

x
�

1 �1�x� dx p � 12
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TABLE 2

t

2 0.8636306042
5 1.8276735512

10 2.5219648704
100 4.8245541204

1000 7.1271392134
10000 9.4297243064

x
t
1 ��1 
 e�x ��x� dx
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50. (a) Evaluate the integral for , , , and .

(b) Guess the value of when is an arbitrary
positive integer.

(c) Prove your guess using mathematical induction.

51. (a) Show that is divergent.
(b) Show that

This shows that we can’t define

52. If is convergent and and are real numbers, 
show that

53. A manufacturer of lightbulbs wants to produce bulbs that
last about 700 hours but, of course, some bulbs burn out
faster than others. Let be the fraction of the company’s
bulbs that burn out before hours, so always lies
between 0 and 1.
(a) Make a rough sketch of what you think the graph of

might look like.
(b) What is the meaning of the derivative ?
(c) What is the value of ? Why?

54. The average speed of molecules in an ideal gas is

where is the molecular weight of the gas, is the gas
constant, is the gas temperature, and is the molecular
speed. Show that

55. As we saw in Section 3.4, a radioactive substance decays
exponentially: The mass at time is , where

is the initial mass and is a negative constant. The
mean life of an atom in the substance is

For the radioactive carbon isotope, , used in radio-
carbon dating, the value of is . Find the mean
life of a atom.

x
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0 x ne�x dx n

x
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x dx

lim
t l �

y
t

�t
x dx � 0

y
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��
f �x� dx � lim

t l �
y

t

�t
f �x� dx

x
�

��
f �x� dx a b

y
a

��
f �x� dx � y

�

a
f �x� dx � y

b

��
f �x� dx � y

�

b
f �x� dx

F�t�
t F�t�

F

r�t� � F��t�
x

�

0  r�t� dt

v �
4

s�
� M

2RT�3�2

y
�

0
v 3e�Mv2��2RT � dv

M R
T v

v � �8RT

�M

t m�t� � m�0�e kt

m�0� k
M

M � �k y
�

0
te kt dt

14C
k �0.000121

14C

321n � 0x
�

0 x ne�x dx
; 37.

; 38.

; 39. (a) If , use your calculator or computer to
make a table of approximate values of for 

, 5, 10, 100, 1000, and 10,000. Does it appear that
is convergent?

(b) Use the Comparison Theorem with to
show that is convergent.

(c) Illustrate part (b) by graphing and on the same
screen for . Use your graph to explain
intui tively why is convergent.

; 40. (a) If , use your calculator or computer 
to make a table of approximate values of for

, 10, 100, 1000, and 10,000. Does it appear that
is convergent or divergent?

(b) Use the Comparison Theorem with to
show that is divergent.

(c) Illustrate part (b) by graphing and on the same
screen for . Use your graph to explain
intui tively why is divergent.

41–46 ■ Use the Comparison Theorem to determine whether
the integral is convergent or divergent.

41. 42.

43. 44.

45. 46.

47. The integral

is improper for two reasons: The interval is infinite
and the integrand has an infinite discontinuity at 0. Evalu-
ate it by expressing it as a sum of improper integrals of
Type 2 and Type 1 as follows: 

48 –49 ■ Find the values of for which the integral converges
and evaluate the integral for those values of .

48. 49.

S � ��x, y� 	 0 � x � ��2,  0 � y � sec2x


S � {�x, y� 	 �2 � x � 0, 0 � y � 1�sx � 2 }
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t�x� � 1�(sx � 1)
x

t
2 t�x� dx

t � 5
x

�

2 t�x� dx
f �x� � 1�sx

x
�

2 t�x� dx
tf

2 � x � 20
x

�

2 t�x� dx

y
�

1

2 � e�x

x
dxy

�

0

x

x 3 � 1
 dx

y
�

0

arctan x

2 � e x dxy
�

1

x � 1

sx 4 � x
dx

y
�

0

sin2x

sx
dxy

1

0

sec 2x

xsx
dx

y
�

0

1

sx �1 � x�
dx

�0, ��

y
�

0

1

sx �1 � x�
dx � y

1

0

1

sx �1 � x�
dx � y

�

1

1

sx �1 � x�
dx

p
p

y
1

0

1

x p dxy
�

e

1

x �ln x� p dx
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59. Show that .

60. Show that by interpreting the
integrals as areas.

61. Find the value of the constant for which the integral

converges. Evaluate the integral for this value of .

62. Find the value of the constant for which the integral

converges. Evaluate the integral for this value of .

63. Suppose is continuous on and . Is it
possible that is convergent?

64. Show that if and , then the following
integral is convergent.

x
�

0 x 2e�x 2

dx � 1
2 x

�

0 e�x 2

dx

x
�

0 e�x 2 

dx � x
1
0 s�ln y dy

C

y
�

0
� 1

sx 2 � 4
�

C

x � 2
� dx

C

C

y
�

0
� x

x 2 � 1
�

C

3x � 1� dx

C

f �0, �� limx l� f �x� � 1
x

�

0 f �x� dx

a � �1 b � a � 1

y
�

0

x a

1 � x b dx

56. Astronomers use a technique called stellar stereography to
determine the density of stars in a star cluster from the
observed (two-dimensional) density that can be analyzed
from a photograph. Suppose that in a spherical cluster of
radius the density of stars depends only on the distance
from the center of the cluster. If the perceived star density is
given by , where is the observed planar distance from
the center of the cluster, and is the actual density, it can
be shown that

If the actual density of stars in a cluster is ,
find the perceived density .

57. Determine how large the number has to be so that

58. Estimate the numerical value of by writing it as
the sum of and . Approximate the first
integral by using Simpson’s Rule with and show that
the second integral is smaller than , which is less
than 0.0000001.

rR

sy�s�
x �r�

y�s� � y
R

s

2r

sr 2 � s 2 
x �r� dr

x �r� � 1
2 �R � r�2

y�s�

a

y
�

a

1

x 2 � 1
 dx � 0.001

x
�

0  e�x2

dx

x
�

4  e�x2

dxx
4
0  e�x2

dx
n � 8

x
�

4  e�4x dx
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CHAPTER 6 REVIEW
CONCEPT CHECK

1. State the rule for integration by parts. In practice, how do
you use it?

2. How do you evaluate if is odd? What if
is odd? What if and are both even?

3. If the expression occurs in an integral, what sub -
stitution might you try? What if occurs? What if

occurs?

4. What is the form of the partial fraction expansion of a
rational function if the degree of is less than
the degree of and has only distinct linear factors?
What if a linear factor is repeated? What if has an irre-
ducible quadratic factor (not repeated)? What if the quadratic
factor is repeated?

x sinmx cosnx dx m
n m n

sa 2 � x 2 

sa 2 � x 2 

sx 2 � a 2 

P�x��Q�x� P
Q Q�x�

Q�x�

5. State the rules for approximating the definite integral
with the Midpoint Rule, the Trapezoidal Rule, and

Simpson’s Rule. Which would you expect to give the best
estimate? How do you approximate the error for each rule?

6. Define the following improper integrals.

(a) (b) (c) 

7. Define the improper integral for each of the fol-
lowing cases.
(a) has an infinite discontinuity at .
(b) has an infinite discontinuity at .
(c) has an infinite discontinuity at , where .

8. State the Comparison Theorem for improper integrals.

x
b
a f �x� dx

y
�

a
f �x� dx y

b

��
f �x� dx y

�

��
f �x� dx

x
b
a f �x� dx

f a
f b
f c a � c � b

TRUE-FALSE QUIZ

Determine whether the statement is true or false. If it is true, explain
why. If it is false, explain why or give an example that disproves the
statement.

1. can be put in the form .

2. can be put in the form .

x �x 2 � 4�
x 2 � 4

A

x � 2
�

B

x � 2

x 2 � 4

x �x 2 � 4�
A

x
�

B

x � 2
�

C

x � 2

3. can be put in the form .

4. can be put in the form .

5.

x 2 � 4

x 2�x � 4�
A

x 2 �
B

x � 4

x 2 � 4

x �x 2 � 4�
A

x
�

B

x 2 � 4

y
4

0

x

x 2 � 1
 dx � 1

2 ln 15
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11. If is a continuous, decreasing function on and
, then is convergent.

12. If and are both convergent, then
is convergent.

13. If and are both divergent, then
is divergent.

14. If and diverges, then also
diverges.

x
�
a f �x� dx x

�

a
t�x� dx

x
�

a
� f �x� � t�x�� dx

x
�

a
f �x� dx x

�

a
t�x� dx

x
�

a
� f �x� � t�x�� dx

f �x� � t�x� x
�

0 t�x� dx x
�

0 f �x� dx

f �1, ��
limx l � f �x� � 0 x

�

1 f �x� dx
6. is convergent.

7. If is continuous, then .

8. The Midpoint Rule is always more accurate than the Trape-
zoidal Rule.

9. (a) Every elementary function has an elementary derivative.
(b) Every elementary function has an elementary anti-

derivative.

10. If is continuous on and is convergent,
then is convergent.

y
�

1

1

x s2
dx

f x
�

��
f �x� dx � lim t l � x

t
�t f �x� dx

f �0, �� x
�

1 f �x� dx
x

�

0 f �x� dx
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EXERCISES

1–40 ■ Evaluate the integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

y
2

1

�x � 1�2

x
dx y

2

1

x

�x � 1�2 dx

y
��2

0
sin 	 e cos 	 d	 y

��6

0
t sin 2t dt

y
dt

2t 2 � 3t � 1 y
2

1
x 5 ln x dx

y
sin�ln t�

t
dt y

dx

x 2
s1 � x 2 

y
4

1
x 3�2 ln x dx y

1

0

sarctan x

1 � x 2 dx

y
2

1

sx 2 � 1

x
dx y

��4

���4

tan x

4 � x 2 dx

y
dx

x 3 � x y
x 2 � 2

x � 2
 dx

y
��2

0
sin3	 cos2	 d	 y

sec6	

tan2	
d	

y x sec x tan x dx y
x 2 � 8x � 3

x 3 � 3x 2 dx

y
x � 1

9x 2 � 6x � 5
 dx y

dt

sin2t � cos 2t

y
dx

sx 2 � 4x
y

x 3

�x � 1�10 dx

y csc4 4x dx y e x cos x dx

y
3x 3 � x 2 � 6x � 4

�x 2 � 1��x 2 � 2�
dx y tan5	 sec3	 d	

y
��2

0
cos3x sin 2x dx y

s
3 x � 1

s
3 x � 1

 dx

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41–50 ■ Evaluate the integral or show that it is divergent.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51–54 ■ Use the Table of Integrals on the Reference Pages to 
evaluate the integral.

51. 52.

y
3

�3

x

1 � 	 x 	 dx y
dx

e x
s1 � e�2x

y
ln 10

0

e x
se x � 1

e x � 8
 dx y

��4

0

x sin x

cos3x
dx

y
x 2

�4 � x 2 �3�2 dx y �arcsin x�2 dx

y
1

sx � x 3�2
dx y

1 � tan 	

1 � tan 	
d	

y �cos x � sin x�2 cos 2x dx y
2 sx

sx
dx

y
1�2

0

xe 2x

�1 � 2x�2 dx y
��3

��4

stan 	

sin 2	
d	

y
�

1

1

�2x � 1�3 dx y
�

1

ln x

x 4 dx

y
�

2

dx

x ln x y
6

2

y

sy � 2
dy

y
4

0

ln x

sx
dx y

1

0

1

2 � 3x
dx

y
1

0

x � 1

sx
dx y

1

�1

dx

x 2 � 2x

y
�

��

dx

4x 2 � 4x � 5 y
�

1

tan�1x

x 2 dx

y s4x 2 � 4x � 3 dx y csc5t dt
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62. A population of honeybees increased at a rate of bees 
per week, where the graph of is as shown. Use Simpson’s
Rule with six subintervals to estimate the increase in the
bee population during the first 24 weeks.

63. (a) If , use a graph to find an upper bound 
for .

(b) Use Simpson’s Rule with to approximate 
and use part (a) to estimate the error.

(c) How large should be to guarantee that the size of the
error in using is less than ?

64. Use the Comparison Theorem to determine whether the
integral 

is convergent or divergent.

65. If is continuous on and , show
that

f �x� � sin�sin x�
� f �4��x��

n � 10
x

�

0 f �x� dx
n

Sn 0.00001

y
�

1

x 3

x 5 � 2
 dx

f � �0, �� lim x l � f �x� � 0

y
�

0
f ��x� dx � �f �0�

r�t�
r

r

0
2420161284 (weeks)t

4000

8000

12000

CAS

53. 54.

55. Is it possible to find a number such that is 
convergent?

56. For what values of is convergent? Evaluate
the integral for those values of .

57–58 ■ Use (a) the Trapezoidal Rule, (b) the Midpoint Rule, 
and (c) Simpson’s Rule with to approximate the given
integral. Round your answers to six decimal places.

57. 58.

59. Estimate the errors involved in Exercise 57, parts (a) and
(b). How large should be in each case to guarantee an
error of less than 0.00001?

60. Use Simpson’s Rule with to estimate the area under
the curve from to .

61. The speedometer reading ( ) on a car was observed at 
1-minute intervals and recorded in the chart. Use Simpson’s
Rule to estimate the distance traveled by the car.

y cos x s4 � sin2 x dx y
cot x

s1 � 2 sin x
dx

x
�

0 x n dxn

x
�

0 e ax cos x dxa
a

n � 10

y
4

1
sx cos x dxy

4

2

1

ln x
dx

n

n � 6
x � 4x � 1y � e x�x

v
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t (min) (mi�h) t (min) (mi�h)

0 40 6 56
1 42 7 57
2 45 8 57
3 49 9 55
4 52 10 56
5 54

vv
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365

7.1 AREAS BETWEEN CURVES
In Chapter 5 we defined and calculated areas of regions that lie under the graphs of 
functions. Here we use integrals to find areas of regions that lie between the graphs of
two functions.

Consider the region that lies between two curves and and be-
tween the vertical lines and , where and are continuous functions and

for all in . (See Figure 1.)
Just as we did for areas under curves in Section 5.1, we divide S into n strips of

equal width and then we approximate the ith strip by a rectangle with base and
height . (See Figure 2. If we like, we could take all of the sample points
to be right endpoints, in which case .) The Riemann sum

is therefore an approximation to what we intuitively think of as the area of S.

S y � f �x� y � t�x�
x � a x � b f t

f �x� � t�x� x �a, b�

�x
f �xi*� � t�xi*�

xi* � xi

�
n

i�1
� f �xi*� � t�xi*�� �x

(a) Typical rectangle

x

y

b
0 a

f(x
i
*)

f(x
i
*)-g(x

i
*)

_g(x
i
*)

x
i
*

Îx

(b) Approximating rectangles

x

y

b
0 a

FIGURE 2

APPLICATIONS OF INTEGRATION
In this chapter we explore some of the applications of the definite integral by using it to compute areas
between curves, volumes of solids, lengths of curves, the work done by a varying force, the center of
gravity of a plate, and the force on a dam. The common theme in most of these applications is the 
following general method, which is similar to the one we used to find areas under curves: We break up
a quantity into a large number of small parts. We next approximate each small part by a quantity of
the form and thus approximate by a Riemann sum. Then we take the limit and express 
as an integral. Finally we evaluate the integral by using the Evaluation Theorem, or Simpson’s Rule, or
technology.

In the final section we look at what is perhaps the most important of all the applications of integra-
tion: differential equations. When a scientist uses calculus, more often than not it is to solve a differen-
tial equation that has arisen in the description of some physical process.

Q
f �xi*� �x Q Q

7

0

y=©

y=ƒ

S

FIGURE 1 
S=s(x, y) | a¯x¯b, ©¯y¯ƒd

x

y

ba
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This approximation appears to become better and better as . Therefore we
define the area of as the limiting value of the sum of the areas of these approxi-
mating rectangles.

We recognize the limit in as the definite integral of . Therefore we have
the following formula for area.

The area A of the region bounded by the curves , and
the lines , , where and are continuous and for all
in , is

Notice that in the special case where , is the region under the graph of 
and our general definition of area reduces to our previous definition (Defini-

tion 5.1.2).
In the case where both and are positive, you can see from Figure 3 why is

true: 

EXAMPLE 1 Find the area of the region bounded above by , bounded below
by , and bounded on the sides by x � 0 and x � 1.

SOLUTION The region is shown in Figure 4. The upper boundary curve is
and the lower boundary curve is y � x. So we use the area formula with

, , and :

■

In Figure 4 we drew a typical approximating rectangle with width as a reminder
of the procedure by which the area is defined in . In general, when we set up an
integral for an area, it’s helpful to sketch the region to identify the top curve , the
bottom curve , and a typical approximating rectangle as in Figure 5. Then the area
of a typical rectangle is and the equation

summarizes the procedure of adding (in a limiting sense) the areas of all the typical 
rectangles.

n l �
A S

A � lim
n l �

�
n

i�1
� f �xi*� � t�xi*�� �x

f � t

y � f �x�, y � t�x�
x � a x � b f t f �x� � t�x� x

�a, b�

A � y
b

a
� f �x� � t�x�� dx

t�x� � 0 S
f

f t

A � �area under y � f �x�� � �area under y � t�x��

� y
b

a
f �x� dx � y

b

a
t�x� dx � y

b

a
� f �x� � t�x�� dx

y � ex

y � x

y � ex

f �x� � ex
t�x� � x a � 0, b � 1

A � y
1

0
�ex � x� dx � ex �

1
2 x 2]1

0 � e �
1
2 � 1 � e � 1.5

�x

yT

yB

�yT � yB� �x

A � lim
n l �

�
n

i�1
�yT � yB� �x � y

b

a
�yT � yB� dx

1

2

1

1

2

2

1
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Notice that in Figure 5 the left-hand boundary reduces to a point, whereas in Fig-
ure 3 the right-hand boundary reduces to a point. In the next example both of the side
boundaries reduce to a point, so the first step is to find a and b.

EXAMPLE 2 Find the area of the region enclosed by the parabolas and
.

SOLUTION We first find the points of intersection of the parabolas by solving their
equations simultaneously. This gives , or . Therefore

, so or 1. The points of intersection are and .
We see from Figure 6 that the top and bottom boundaries are

and    

The area of a typical rectangle is

and the region lies between and . So the total area is

■

EXAMPLE 3 Figure 7 shows velocity curves for two cars, A and B, that start side by
side and move along the same road. What does the area between the curves repre-
sent? Use Simpson’s Rule to estimate it.

SOLUTION We know from Section 5.3 that the area under the velocity curve A
represents the distance traveled by car A during the first 16 seconds. Similarly, the
area under curve B is the distance traveled by car B during that time period. So the
area between these curves, which is the difference of the areas under the curves, is
the distance between the cars after 16 seconds. We read the velocities from the
graph and convert them to feet per second .

Using Simpson’s Rule with intervals, so that , we estimate the dis-
tance between the cars after 16 seconds: 

■

V y � x 2

y � 2x � x 2

x 2 � 2x � x 2 2x 2 � 2x � 0
2x�x � 1� � 0 x � 0 �0, 0� �1, 1�

yT � 2x � x 2 yB � x 2

�yT � yB� �x � �2x � x 2 � x 2 � �x � �2x � 2x 2� �x

A � y
1

0
�2x � 2x 2 � dx � 2 y

1

0
�x � x 2 � dx

� 2� x 2

2
�

x 3

3 �0

1

� 2	 1

2
�

1

3
 �
1

3

�1 mi�h � 5280
3600 ft�s�

n � 8 �t � 2

y
16

0
�vA � vB � dt

� 2
3 �0 � 4�13� � 2�20� � 4�23� � 2�25� � 4�28� � 2�29� � 4�29� � 30�

� 367 ft

x � 0 x � 1
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■ www.stewartcalculus.com
See Additional Examples A, B.
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Some regions are best treated by regarding x as a function of y. If a region is 
bounded by curves with equations , , , and , where and

are continuous and for (see Figure 8), then its area is

If we write for the right boundary and for the left boundary, then, as Fig -
ure 9 illustrates, we have

Here a typical approximating rectangle has dimensions and .

EXAMPLE 4 Find the area enclosed by the line and the parabola
.

SOLUTION By solving the two equations we find that the points of intersection are
and . We solve the equation of the parabola for x and notice from

Figure 10 that the left and right boundary curves are

and    

We must integrate between the appropriate -values, and . Thus

■

NOTE We could have found the area in Example 4 by integrating with respect to x
instead of y, but the calculation is much more involved. It would have meant splitting
the region in two and computing the areas labeled and in Figure 11. The method
we used in Example 4 is much easier.

x � f �y� x � t�y� y � c y � d f
t f �y� � t�y� c � y � d

A � y
d

c
� f �y� � t�y�� dy

x

c

d

y

0

y=d

x=g(y)

x=f(y)

y=c

Îy
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0 x

y

c

d
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L

x
R
-x

L

Îy
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xR xL

A � y
d

c
�xR � xL � dy

xR � xL �y
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y 2 � 2x � 6

��1, �2� �5, 4�

xL � 1
2 y 2 � 3 xR � y � 1

y y � �2 y � 4

A � y
4

�2
�xR � xL � dy � y

4

�2
[�y � 1� � ( 1

2 y 2 � 3)] dy

� y
4

�2
(�1

2 y 2 � y � 4) dy

� �
1

2
 	 y 3

3 
 �
y 2

2
� 4y�

�2

4

� �
1
6 �64� � 8 � 16 � ( 4
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A1 A2

V
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7.1 EXERCISES

1–4 ■ Find the area of the shaded region.

1. 2.

3. 4.

5–10 ■ Sketch the region enclosed by the given curves. Decide
whether to integrate with respect to or . Draw a typical
approximating rectangle and label its height and width. Then
find the area of the region.

5.

6.

7. ,  

8. ,  ,  

9. ,  

10. ,  

11–20 ■ Sketch the region enclosed by the given curves and
find its area.

11. ,  

12. ,  

13. ,  ,  

14. ,  ,  

15. ,  

16. ,  ,  

17. ,  

18.

19. ,  ,  ,  

y=x

y=5x-≈

x

y

(4, 4) x=2

y=œ„„„„x+2

y=
1

x+1

x

y

x

x=¥-2

x=e
y

y=1

y=_1

y

x

y

(_3, 3)

x=2y-¥

x=¥-4y

x y

y � e x, y � x 2 � 1, x � �1, x � 1

y � sin x,  y � x, x � ��2, x � �

y � �x � 2�2 y � x

y � sin x y � 2x�� x � 0

x � 1 � y 2 x � y 2 � 1

4x � y2 � 12 x � y

y � 12 � x 2 y � x 2 � 6

y � x 2 y � 4x � x 2

y � e x y � xe x x � 0

y � cos x y � 2 � cos x 0 � x � 2�

x � 2y 2 x � 4 � y 2

x � y 4 y � s2 � x y � 0

y � cos �x y � 4x2 � 1

y � � x �, y � x2 � 2

x � 0y � 1
4 xy � xy � 1�x

20. ,  ,  ,  

21. Sketch the region that lies between the curves and
and between and . Notice that the

region consists of two separate parts. Find the area of this
region.

; 22. Graph the curves and on a
common screen and observe that the region between them
consists of two parts. Find the area of this region.

;23–26 ■ Graph the region between the curves and use your cal-
culator to compute the area correct to five decimal places.

23. ,  24. ,  

25. ,  

26. ,  

27. Racing cars driven by Chris and Kelly are side by side at
the start of a race. The table shows the velocities of each car
(in miles per hour) during the first ten seconds of the race.
Use Simpson’s Rule to estimate how much farther Kelly
travels than Chris does during the first ten seconds.

28. Two cars, A and B, start side by side and accelerate from
rest. The figure shows the graphs of their velocity functions.
(a) Which car is ahead after one minute? Explain.
(b) What is the meaning of the area of the shaded region?
(c) Which car is ahead after two minutes? Explain.
(d) Estimate the time at which the cars are again side by side.

y � 1
4 x 2 y � 2x2 x � y � 3 x � 0

y � cos x
y � sin 2x x � 0 x � ��2

y � x 2 � x y � x 3 � 4x 2 � 3x

y �
2

1 � x 4 y � x 2 y � e1�x2

y � x 4

y � tan2 x y � sx

y � cos x y � x � 2 sin4x

0

A

B

 21

√

t (min)

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints at stewartcalculus.comCAS
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t t

0 0 0 6 69 80
1 20 22 7 75 86
2 32 37 8 81 93
3 46 52 9 86 98
4 54 61 10 90 102
5 62 71

vKvCvKvC
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34. Sketch the region in the -plane defined by the inequalities
, and find its area.

35. Find the values of such that the area of the region 
bounded by the parabolas and 
is 576.

36. Find the area of the region bounded by the parabola ,
the tangent line to this parabola at , and the -axis.

37. Find the number such that the line divides the
region bounded by the curves and into two
regions with equal area.

38. (a) Find the number such that the line bisects the
area under the curve , 

(b) Find the number such that the line bisects the
area in part (a).

39. Find a positive continuous function such that the area
under the graph of from 0 to is for all .

40. Suppose that . For what value of is the 
area of the region enclosed by the curves ,

, and equal to the area of the region
enclosed by the curves , , and ?

41. For what values of do the line and the curve
enclose a region? Find the area of the

region.

xy
x � 2y 2 � 0 1 � x �  y  � 0

c
y � x 2 � c 2 y � c 2 � x 2

y � x 2

�1, 1� x

b y � b
y � x 2 y � 4

a x � a
y � 1�x 2 1 � x � 4.

b y � b

f
f t A�t� � t 3 t 	 0

0 
 c 
 ��2 c
y � cos x

y � cos�x � c� x � 0
y � cos�x � c� x � � y � 0

m y � mx
y � x��x 2 � 1�

R

r

29. The widths (in meters) of a kidney-shaped swimming pool
were measured at 2-meter intervals as indicated in the
figure. Use Simpson’s Rule to estimate the area of the pool.

30. A cross-section of an airplane wing is shown. Measurements
of the height of the wing, in centimeters, at 20-centimeter
intervals are , , , , , , , ,

, , and . Use Simpson’s Rule to estimate the area
of the wing’s cross-section.

31. If the birth rate of a population is people
per year and the death rate is people per
year, find the area between these curves for .
What does this area represent?

32. A water storage tank has the shape of a cylinder with diam-
eter 10 ft. It is mounted so that the circular cross-sections
are vertical. If the depth of the water is 7 ft, what per cent -
age of the total capacity is being used?

33. Find the area of the crescent-shaped region (called a lune)
bounded by arcs of circles with radii and (see the figure).

6.2

5.0

7.2

6.8
5.6 4.8

4.8

20.523.827.327.629.026.720.35.8
2.88.715.1

200 cm

b�t� � 2200e0.024 t

d�t� � 1460e0.018t

0 � t � 10

Rr
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7.2 VOLUMES
In trying to find the volume of a solid we face the same type of problem as in finding
areas. We have an intuitive idea of what volume means, but we must make this idea
precise by using calculus to give an exact definition of volume.

We start with a simple type of solid called a cylinder (or, more precisely, a right
cylinder). As illustrated in Figure 1(a), a cylinder is bounded by a plane region , 
called the base, and a congruent region in a parallel plane. The cylinder consists of
all points on line segments that are perpendicular to the base and join to . If the
area of the base is and the height of the cylinder (the distance from to ) is ,
then the volume of the cylinder is defined as

In particular, if the base is a circle with radius , then the cylinder is a circular cylinder
with volume [see Figure 1(b)], and if the base is a rectangle with length 
and width , then the cylinder is a rectangular box (also called a rectangular parallel-
epiped ) with volume [see Figure 1(c)].

B1

B2

B1 B2

A B1 B2 h
V

V � Ah

r
V � �r 2h l

w
V � lwh
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For a solid that isn’t a cylinder we first “cut” into pieces and approximate each
piece by a cylinder. We estimate the volume of by adding the volumes of the cylin-
ders. We arrive at the exact volume of S through a limiting process in which the num-
ber of pieces becomes large.

We start by intersecting S with a plane and obtaining a plane region that is called a
cross-section of Let be the area of the cross-section of in a plane perpen-
dicular to the -axis and passing through the point , where . (See Figure 2.
Think of slicing with a knife through and computing the area of this slice.) The
cross-sectional area will vary as increases from to .

We consider a partition of the interval into subintervals with partition
points . We divide S into n “slabs” of width by using
the planes , , . . . to slice the solid. (Think of slicing a loaf of bread.) If we choose
sample points in , we can approximate the th slab (the part of that lies
between the planes and ) by a cylinder with base area and “height” .
(See Figure 3.)

FIGURE 1 (a) Cylinder V=Ah

h

B¡

B™

(b) Circular cylinder V=πr@h

h

r

(c) Rectangular box V=lwh

h

l

w

S S
S

S. A�x� S Px

x x a � x � b
S x

A�x� x a b

FIGURE 2

y

x0 a bx

A(a)

A(b)

PxP

�a, b� n
x0, x1, x2, . . . , xn �xi � xi � xi�1

Px1
Px2

xi* �xi�1, xi � i Si S
Pxi�1

Pxi
A�xi*� �xi

FIGURE 3

xi-1 xi

y

0 x
x*

i

S

a b

y

0 xx¶=ba=x¸ ⁄ ¤ ‹ x¢x x∞ xß

Îxi
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The volume of this cylinder is , so an approximation to our intuitive con-
ception of the volume of the th slab is 

Adding the volumes of these slabs, we get an approximation to the total volume (that
is, what we think of intuitively as the volume): 

This approximation appears to become better and better as the slices become thinner
and thinner. So we define the volume as the limit of these sums as . But
we recognize the limit of Riemann sums as a definite integral and so we have the fol-
lowing definition.

DEFINITION OF VOLUME Let be a solid that lies between and .
If the cross-sectional area of in the plane , through x and perpendicular to
the x-axis, is , where is an integrable function, then the volume of is

When we use the volume formula it is important to remember that 
is the area of a moving cross-section obtained by slicing through perpendicu-

lar to the -axis.
Notice that, for a cylinder, the cross-sectional area is constant: for all .

So our definition of volume gives ; this agrees with the for-
mula 

EXAMPLE 1 Show that the volume of a sphere of radius is .

SOLUTION If we place the sphere so that its center is at the origin (see Figure 4),
then the plane intersects the sphere in a circle whose radius (from the Py thag o-
 re an Theorem) is . So the cross-sectional area is

Using the definition of volume with and , we have

(The integrand is even.)

■

Figure 5 illustrates the definition of volume when the solid is a sphere with radius 
. From the result of Example 1, we know that the volume of the sphere is

. Here the slabs are circular cylinders, or disks, and the three parts of 

A�xi*� �xi

i Si

V�Si� � A�xi*� �xi

V � �
n

i�1
A�xi*� �xi

max �xi l 0

S x � a x � b
S Px

A�x� A S

V � lim
max �xi l 0

�
n

i�1
A�xi*� �xi � y

b

a
A�x� dx

V � x
b
a A�x� dx

A�x� x
x

A�x� � A x
V � x

b
a A dx � A�b � a�

V � Ah.

r V � 4
3 �r 3

Px

y � sr 2 � x 2 

A�x� � �y 2 � � �r 2 � x 2 �

a � �r b � r

V � y
r

�r
A�x� dx � y

r

�r
� �r 2 � x 2 � dx

� 2� y
r

0
�r 2 � x 2 � dx

� 2��r 2x �
x 3

3 �0

r

� 2�	r 3 �
r 3

3 

� 4

3 �r 3

r � 1
4
3 � � 4.18879

■ It can be proved that this definition is
independent of how is situated with
respect to the -axis. In other words, no
matter how we slice with parallel
planes, we always get the same answer
for .

S

V

x
S

FIGURE 4

y

_r

x

r

y

x
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Figure 5 show the geometric interpretations of the Riemann sums

when , 10, and 20 if we use regular partitions and choose the sample points
to be the midpoints . Notice that as we increase the number of approximating cylin-
ders, the corresponding Riemann sums become closer to the true volume.

EXAMPLE 2 Find the volume of the solid obtained by rotating about the x-axis
the region under the curve from 0 to 1. Illustrate the definition of volume
by sketching a typical approximating cylinder.

SOLUTION The region is shown in Figure 6(a). If we rotate about the x-axis, we
get the solid shown in Figure 6(b). When we slice through the point x, we get a disk
with radius . The area of this cross-section is

and the volume of the approximating cylinder (a disk with thickness ) is

The solid lies between and , so its volume is

■

�
n

i�1
A�xi� �x � �

n

i�1
� �12 � xi

2� �x

xi*
xi

 (a) Using 5 disks, VÅ4.2726  (b) Using 10 disks, VÅ4.2097  (c) Using 20 disks, VÅ4.1940

y � sx

sx

A�x� � � (sx )2 � �x

�x

A�x� �x � �x �x

x � 0 x � 1

V � y
1

0
A�x� dx � y

1

0
�x dx � �

x 2

2 �0

1

�
�

2

FIGURE 6 (a)

x
0 x

y
y=œ„

1

œ„

(b)

Îx

0 x

y

1

V

n � 5
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FIGURE 5
Approximating the volume  
of a sphere with radius 1 

Visual 7.2A shows an animation of
Figure 5.
TEC

■ Did we get a reasonable answer in 
Example 2? As a check on our work,
let’s replace the given region by a
square with base and height . If
we rotate this square, we get a cylinder
with radius , height , and volume

. We computed that the
given solid has half this volume. That
seems about right.

11
� � 12 � 1 � �

1�0, 1�

Visual 7.2B shows how the solids
of revolution in Examples 2–6 are
formed.

TEC
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EXAMPLE 3 Find the volume of the solid obtained by rotating the region 
bounded by , , and about the -axis.

SOLUTION The region is shown in Figure 7(a) and the resulting solid is shown in
Figure 7(b). Because the region is rotated about the -axis, it makes sense to slice
the solid perpendicular to the -axis and therefore to integrate with respect to y. If we
slice at height , we get a circular disk with radius , where . So the area of
a cross-section through is

and the volume of the approximating cylinder pictured in Figure 7(b) is

Since the solid lies between and , its volume is

■

EXAMPLE 4 The region enclosed by the curves and is rotated
about the -axis. Find the volume of the resulting solid.

SOLUTION The curves and intersect at the points and .
The region between them, the solid of rotation, and a cross-section perpendicular to
the -axis are shown in Figure 8. A cross-section in the plane has the shape of a
washer (an annular ring) with inner radius and outer radius , so we find the
cross-sectional area by subtracting the area of the inner circle from the area of the
outer circle:

Therefore we have

y � x 3 y � 8 x � 0 y

x � s
3 y

A�y� � �x 2 � � (s3 y )2 � �y 2�3

A�y� �y � �y 2�3 �y

V � y
8

0
A�y� dy � y

8

0
�y 2�3 dy � � [ 3

5 y 5�3 ]0
8

�
96�

5

FIGURE 7
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0 x

y
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x

� y � x y � x 2

x

y � x y � x 2 �0, 0� �1, 1�

x Px

x 2 x

A�x� � �x 2 � � �x 2 �2 � � �x 2 � x 4 �

V � y
1

0
A�x� dx � y

1

0
� �x 2 � x 4 � dx

� �� x 3

3
�

x 5

5 �0

1

�
2�
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y � 8y � 0

y
y

y
y
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■

EXAMPLE 5 Find the volume of the solid obtained by rotating the region in 
Example 4 about the line .

SOLUTION The solid and a cross-section are shown in Figure 9. Again the cross-
section is a washer, but this time the inner radius is and the outer radius 
is . The cross-sectional area is

and so the volume of is

■

The solids in Examples 1–5 are all called solids of revolution because they are
obtained by revolving a region about a line. In general, we calculate the volume of a

y � 2

2 � x
2 � x 2

A�x� � � �2 � x 2 �2 � � �2 � x�2

S

V � y
1

0
A�x� dx � � y

1

0
��2 � x 2 �2 � �2 � x�2 � dx

� � y
1

0
�x 4 � 5x 2 � 4x� dx

� �� x 5

5
� 5 

x 3

3
� 4 

x 2

2 �0

1

�
8�

15

FIGURE 9
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y=≈
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solid of revolution by using the basic defining formula

and we find the cross-sectional area or in one of the following ways:

■ If the cross-section is a disk (as in Examples 1–3), we find the radius of the
disk (in terms of x or y) and use

■ If the cross-section is a washer (as in Examples 4 and 5), we find the inner
radius and outer radius from a sketch (as in Figures 9 and 10) and
compute the area of the washer by subtracting the area of the inner disk
from the area of the outer disk:

The next example gives a further illustration of the procedure.

EXAMPLE 6 Find the volume of the solid obtained by rotating the region in 
Example 4 about the line .

SOLUTION Figure 11 shows a horizontal cross-section. It is a washer with inner
radius and outer radius , so the cross-sectional area is

The volume is

V � y
b

a
A�x� dx or V � y

d

c
A�y� dy

A�x� A�y�

A � � �radius�2

rin rout

A � � �outer radius�2 � � �inner radius�2

FIGURE 10

rinrr
rroutr

x � �1

1 � y 1 � sy

A�y� � � �outer radius�2 � � �inner radius�2

� � (1 � sy )2 � � �1 � y�2

V � y
1

0
A�y� dy � � y

1

0
[(1 � sy )2 � �1 � y�2 ] dy

� � y
1

0
(2sy � y � y 2 ) dy

� ��4y 3�2

3
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y 2

2
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■

We now find the volumes of two solids that are not solids of revolution.

EXAMPLE 7 Figure 12 shows a solid with a circular base of radius 1. Parallel cross-
sections perpendicular to the base are equilateral triangles. Find the volume of the
solid.

SOLUTION Let’s take the circle to be . The solid, its base, and a typi-
cal cross-section at a distance from the origin are shown in Figure 13.

Since lies on the circle, we have and so the base of the triangle
is . Since the triangle is equilateral, we see from Figure 13(c) 

that its height is . The cross-sectional area is therefore

and the volume of the solid is

■

x 2 � y 2 � 1
x

FIGURE 13
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FIGURE 12
Computer-generated picture
of the solid in Example 7

y

x

Visual 7.2C shows how the solid in
Figure 12 is generated.
TEC
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EXAMPLE 8 Find the volume of a pyramid whose base is a square with side
and whose height is .

SOLUTION We place the origin at the vertex of the pyramid and the -axis along
its central axis as in Figure 14. Any plane that passes through and is perpendi-
cular to the -axis intersects the pyramid in a square with side of length , say. We
can express in terms of by observing from the similar triangles in Figure 15 that

and so . [Another method is to observe that the line has slope
and so its equation is .] Thus the cross-sectional area is

The pyramid lies between and , so its volume is

■

NOTE We didn’t need to place the vertex of the pyramid at the origin in Example 8.
We did so merely to make the equations simple. If, instead, we had placed the center
of the base at the origin and the vertex on the positive -axis, as in Figure 16, you can
verify that we would have obtained the integral

L
h

O x
Px x

x s
s x

x

h
�

s�2

L�2
�

s

L

s � Lx�h OP L��2h�
y � Lx��2h�

A�x� � s 2 �
L2

h 2 x 2

O

x h

FIGURE 14
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FIGURE 15
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A�x� dx � y

h
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h 2 x 2 dx �
L2

h 2

x 3

3 �0

h

�
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V � y
h

0

L2

h 2 �h � y�2 dy �
L2h

3

V

0

y

FIGURE 16

h

x
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7.2 EXERCISES

1–12 ■ Find the volume of the solid obtained by rotating the
region bounded by the given curves about the specified line.
Sketch the region, the solid, and a typical disk or washer.

1. , , , ;  about the -axisy � 2 �
1
2 x y � 0 x � 1 x � 2 x

2. , ;  about the -axis

3. , , ;  about the -axis

4. , , , ;  about the -axis

y � 1 � x 2 y � 0 x

x � 2sy x � 0 y � 9 y

y � ln x y � 1 y � 2 x � 0 y
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26. , ;  

27–28 ■ Each integral represents the volume of a solid.
Describe the solid.

27. (a) (b)

28. (a) (b)

29. A CAT scan produces equally spaced cross-sectional views
of a human organ that provide information about the organ
otherwise obtained only by surgery. Suppose that a CAT
scan of a human liver shows cross-sections spaced 1.5 cm
apart. The liver is 15 cm long and the cross-sectional areas,
in square centimeters, are 0, 18, 58, 79, 94, 106, 117, 128,
63, 39, and 0. Use the Midpoint Rule to estimate the vol-
ume of the liver.

30. A log 10 m long is cut at 1-meter intervals and its cross -
sectional areas (at a distance from the end of the log)
are listed in the table. Use the Midpoint Rule with
to estimate the volume of the log.

31–43 ■ Find the volume of the described solid .

31. A right circular cone with height and base radius 

32. A frustum of a right circular cone with height , lower
base radius , and top radius 

33. A cap of a sphere with radius and height 

� y
��2

0
cos2x dx � y

1

0
�y 4 � y 8 � dy

� y
5

2
y dy � y

��2

0
��1 � cos x�2 � 12 	 dx

A x
n � 5

S

h r

h
R r

R

h

r

about y � 3y � xe1�x�2y � x

hr

r

h

5. , , ;  about the -axis

6. , ;  about the -axis

7. , ;  about the -axis

8. , , ;  about the -axis

9. , ;  about 

10. , , ;  about 

11. , ;  about 

12. , ;  about 

13–18 ■ The region enclosed by the given curves is rotated
about the specified line. Find the volume of the resulting solid.

13. , , , ;  about the -axis

14. , ;  about the -axis

15. , ;  about 

16. , ;  about 

17. , ;  about 

18. , ;  about 

19–22 ■ Set up an integral for the volume of the solid
obtained by rotating the region bounded by the given curves
about the specified line. Then use your calculator to evaluate
the integral correct to five decimal places.

19. , , , 
(a) About the -axis (b) About 

20. , , 
(a) About the -axis (b) About 

21.
(a) About (b) About 

22. , , 
(a) About the -axis (b) About the -axis

; 23–24 ■ Use a graph to find approximate -coordinates of the
points of intersection of the given curves. Then use your calcu-
lator to find (approxi mately) the volume of the solid obtained
by rotating about the -axis the region bounded by these
curves.

23. ,  

24.

25–26 ■ Use a computer algebra system to find the exact vol-
ume of the solid obtained by rotating the region bounded by
the given curves about the specified line.

25. , , ;  

y � x 3 y � x x � 0 x

y � 1
4 x 2 y � 5 � x 2 x

y 2 � x x � 2y y

yy � 0x � 2y � 1
4 x 2

y � 1y � sxy � x

y � 2x � 2y � 1y � e�x

y � 1y � 3y � 1 � sec x

x � 2y � sxy � x

y � 1�x x � 1 x � 2 y � 0 x

yx � 0x � 2y � y 2

y � 3y � x 2 � 4x � 3x � y � 1

x � 1x � 1x � y 2

y � x 3 y � sx x � 1

y � x 3 y � sx y � 1

x � 1x � �1y � 0y � e�x2

y � �1x

���2 � x � ��2y � cos2 xy � 0
y � 1x

x 2 � 4y 2 � 4
x � 2y � 2

y � 0x 2 � y 2 � 1y � x 2

yx

x

x

y � x 4 � x � 1y � 2 � x 2 cos x

y � 3 sin�x 2 �, y � e x�2 � e�2x

CAS

about y � �10 � x � �y � 0y � sin2 x
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x (m) A ( ) x (m) A ( )

0 0.68 6 0.53
1 0.65 7 0.55
2 0.64 8 0.52
3 0.61 9 0.50
4 0.58 10 0.48
5 0.59

m2m2
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34. A frustum of a pyramid with square base of side , square
top of side , and height 

What happens if ? What happens if ?

35. A pyramid with height and rectangular base with dimen-
sions and 

36. A pyramid with height and base an equilateral triangle
with side (a tetrahedron)

37. A tetrahedron with three mutually perpendicular faces and
three mutually perpendicular edges with lengths 3 cm, 
4 cm, and 5 cm

38. The base of is a circular disk with radius . Parallel cross-
sections perpendicular to the base are squares.

39. The base of is an elliptical region with boundary curve
. Cross-sections perpendicular to the -axis 

are isosceles right triangles with hypotenuse in the base.

40. The base of is the triangular region with vertices , 
, and . Cross-sections perpendicular to the -axis 

are equilateral triangles.

41. The base of is the same base as in Exercise 40, but cross-
sections perpendicular to the -axis are squares.

42. The base of is the region enclosed by the parabola
and the -axis. Cross-sections perpendicular to

the -axis are squares.

43. The base of is the same base as in Exercise 42, but cross-
sections perpendicular to the -axis are isosceles triangles
with height equal to the base.

44. The base of is a circular disk with radius . Parallel cross-
sections perpendicular to the base are isosceles triangles
with height and unequal side in the base.
(a) Set up an integral for the volume of .
(b) By interpreting the integral as an area, find the volume 

of .

45. Some of the pioneers of calculus, such as Kepler and New-
ton, were inspired by the problem of finding the volumes

a h

a

b

a � b a � 0

h
2bb

h
a

a

a
a

S r

S
9x 2 � 4y 2 � 36 x

S �0, 0�
�1, 0� �0, 1� y

S
x

S
y � 1 � x 2 x

y

S
x

rS

h
S

S

b
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of wine barrels. (In fact Kepler published a book Stereome-
tria doliorum in 1715 devoted to methods for finding the
volumes of barrels.) They often approximated the shape of
the sides by parabolas.
(a) A barrel with height and maximum radius is con-

structed by rotating about the -axis the parabola
, , where is a positive

constant. Show that the radius of each end of the barrel
is , where .

(b) Show that the volume enclosed by the barrel is

46. (a) A model for the shape of a bird’s egg is obtained by
rotating about the -axis the region under the graph of 

Use a CAS to find the volume of such an egg.
(b) For a Red-throated Loon, , , 

, and . Graph and find the volume 
of an egg of this bird.

47. (a) Set up an integral for the volume of a solid torus (the
donut-shaped solid shown in the figure) with radii 
and .

(b) By interpreting the integral as an area, find the volume
of the torus.

48. A wedge is cut out of a circular cylinder of radius 4 by two
planes. One plane is perpendicular to the axis of the cylin-
der. The other intersects the first at an angle of along a
diameter of the cylinder. Find the volume of the wedge.

49. (a) Cavalieri’s Principle states that if a family of parallel
planes gives equal cross-sectional areas for two solids 

and , then the volumes of and are equal.
Prove this principle.

(b) Use Cavalieri’s Principle to find the volume of the
oblique cylinder shown in the figure.

h R
x

y � R � cx 2 �h�2 � x � h�2 c

r � R � d d � ch 2�4

V � 1
3 �h(2R2 � r 2 �

2
5 d 2 )

x

f �x� � �ax 3 � bx 2 � cx � d�s1 � x 2 

a � �0.06 b � 0.04
c � 0.1 d � 0.54 f

r
R

r
R

30�

S1 S2 S1 S2

h

r

CAS
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52. A bowl is shaped like a hemisphere with diameter 30 cm. A
ball with diameter 10 cm is placed in the bowl and water is
poured into the bowl to a depth of centimeters. Find the
volume of water in the bowl.

53. A hole of radius is bored through a cylinder of radius
at right angles to the axis of the cylinder. Set up, but

do not evaluate, an integral for the volume cut out.

54. A hole of radius is bored through the center of a sphere of
radius . Find the volume of the remaining portion of
the sphere.

h

r
R � r

r
R � r

50. Find the volume common to two circular cylinders, each
with radius , if the axes of the cylinders intersect at right
angles.

51. Find the volume common to two spheres, each with radius ,
if the center of each sphere lies on the surface of the other
sphere.

r

r
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7.3 VOLUMES BY CYLINDRICAL SHELLS
Some volume problems are very difficult to handle by the methods of the preceding
section. For instance, let’s consider the problem of finding the volume of the solid
obtained by rotating about the -axis the region bounded by and .
(See Figure 1.) If we slice perpendicular to the -axis, we get a washer. But to com-
pute the inner radius and the outer radius of the washer, we would have to solve the
cubic equation for in terms of ; that’s not easy.

Fortunately, there is a method, called the method of cylindrical shells, that is eas-
ier to use in such a case. Figure 2 shows a cylindrical shell with inner radius , outer
radius , and height . Its volume is calculated by subtracting the volume of the
inner cylinder from the volume of the outer cylinder:

If we let (the thickness of the shell) and (the average
radius of the shell), then this formula for the volume of a cylindrical shell becomes

and it can be remembered as

Now let be the solid obtained by rotating about the -axis the region bounded 
by [where is continuous and ], and , where

. (See Figure 3 on page 382.)

y y � 2x 2 � x 3 y � 0

y � 2x 2 � x 3

r1

r2 h V V1

V2

V � V2 � V1

� �r2
2 h � �r2

1 h � � �r 2
2 � r 2

1 �h

� � �r2 � r1��r2 � r1�h

� 2�
r2 � r1

2
 h�r2 � r1�

	r � r2 � r1 r � 1
2 �r2 � r1�

y

yx

V � 2�rh 	r1

V � [circumference][height][thickness]

yS
x � by � 0, x � a, f �x� � 0fy � f �x�

b � a � 0

FIGURE 1
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We divide the interval into n subintervals of equal width and let
be the midpoint of the ith subinterval. If the rectangle with base and height

is rotated about the y-axis, then the result is a cylindrical shell with average
radius , height , and thickness (see Figure 4), so by Formula 1 its volume is

Therefore an approximation to the volume of is given by the sum of the volumes
of these shells:

This approximation appears to become better as . But, from the definition of an
integral, we know that

Thus the following appears plausible; a proof is outlined in Exercise 43.

The volume of the solid in Figure 3, obtained by rotating about the y-axis
the region under the curve from a to b, is

The best way to remember Formula 2 is to think of a typical shell, cut and flattened
as in Figure 5, with radius x, circumference , height , and thickness or :

FIGURE 3
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FIGURE 4 
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This type of reasoning will be helpful in other situations, such as when we rotate
about lines other than the -axis.

EXAMPLE 1 Find the volume of the solid obtained by rotating about the -axis the
region bounded by and .

SOLUTION From the sketch in Figure 6 we see that a typical shell has radius x,
circumference , and height . So, by the shell method, the 
volume is

It can be verified that the shell method gives the same answer as slicing. ■

NOTE Comparing the solution of Example 1 with the remarks at the beginning of
this section, we see that the method of cylindrical shells is much easier than the 
washer method for this problem. We did not have to find the coordinates of the local
maximum and we did not have to solve the equation of the curve for in terms of .
However, in other examples the methods of the preceding section may be easier.

EXAMPLE 2 Find the volume of the solid obtained by rotating about the -axis
the region between and .

SOLUTION The region and a typical shell are shown in Figure 8. We see that the
shell has radius x, circumference , and height . So the volume is

■

As the following example shows, the shell method works just as well if we rotate
about the x-axis. We simply have to draw a diagram to identify the radius and height
of a shell.

y
y � 2x 2 � x 3 y � 0

2�x f �x� � 2x 2 � x 3

V � y
2

0
�2�x��2x 2 � x 3 � dx � 2� y

2

0
�2x 3 � x 4 � dx

� 2�[ 1
2 x 4 �

1
5 x 5 ]0

2
� 2� (8 �

32
5 ) � 16

5 �

FIGURE 7
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2�x x � x 2

V � y
1

0
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1

0
�x 2 � x 3 � dx

� 2�� x 3
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1
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�
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FIGURE 6

y

x

2≈-˛

x 2

■ Figure 7 shows a computer-generated 
picture of the solid whose volume we
computed in Example 1.

Visual 7.3 shows how the solid
and shells in Example 1 are formed.
TEC

FIGURE 8

0 x

y

y=x

y=≈

x

shell
height=x-≈

12280_ch07_ptg01_hr_376-385.qk_12280_ch07_ptg01_hr_376-385  11/17/11  10:58 AM  Page 383

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



384 CHAPTER 7 APPLICATIONS OF INTEGRATION

Unless otherwise noted, all content on this page is © Cengage Learning.

FIGURE 9
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EXAMPLE 3 Use cylindrical shells to find the volume of the solid obtained by
rotating about the -axis the region under the curve from 0 to 1.

SOLUTION This problem was solved using disks in Example 2 in Section 7.2. To
use shells we relabel the curve (in the figure in that example) as in
Figure 9. For rotation about the x-axis we see that a typical shell has radius y, cir-
cumference , and height . So the volume is

In this problem the disk method was simpler. ■

EXAMPLE 4 Find the volume of the solid obtained by rotating the region 
bounded by and about the line .

SOLUTION Figure 10 shows the region and a cylindrical shell formed by rotation
about the line . It has radius , circumference , and height .

The volume of the given solid is

■

2�y 1 � y 2

V � y
1

0
�2�y��1 � y 2 � dy � 2� y

1

0
�y � y 3 � dy

� 2�� y 2

2
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y 4

4 �0

1

�
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2

y � x � x 2 y � 0 x � 2

x � 2 2 � x 2� �2 � x� x � x 2

FIGURE 10
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4
� x 3 � x 2�

0

1

�
�

2

V

y � sx x � y 2

x y � sx
V

7.3 EXERCISES

1. Let be the solid obtained by rotating the region shown in 
the figure about the -axis. Explain why it is awkward to
use slicing to find the volume of . Sketch a typical
approxi mating shell. What are its circumference and height?
Use shells to find .

S
y

V S

V

0 x

y

1

y=x(x-1)@

2. Let be the solid obtained by rotating the region shown 
in the figure about the -axis. Sketch a typical cylindrical
shell and find its circumference and height. Use shells to
find the volume of . Do you think this method is preferable
to slicing? Explain.

S
y

S

0 x

y

œ„π

y=sin{≈}
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24. , ;  about 

25. about 

26. about 

27. Use the Midpoint Rule with to estimate the volume
obtained by rotating about the -axis the region under the
curve , .

28. (a) If the region shown in the figure is rotated about the 
-axis to form a solid, use Simpson’s Rule with

to estimate the volume of the solid.
(b) Estimate the volume if the region is rotated about the 

-axis.

29–32 ■ Each integral represents the volume of a solid.
Describe the solid.

29. 30.

31.

32.

33–38 ■ The region bounded by the given curves is rotated
about the specified axis. Find the volume of the resulting solid
by any method.

33. , ;  about the -axis

34. , ;  about the -axis

35. , ;  about  the -axis

36. , ;  about the -axis

37. ;  about the -axis

38. , ;  about 

39–41 ■ Use cylindrical shells to find the volume of the solid.

39. A sphere of radius 

40. The solid torus of Exercise 47 in Section 7.2

41. A right circular cone with height and base radius 

x � �1y � 2x��1 � x3�y � x

y � 4x � ssin y , 0 � y � �, x � 0;

y � 5x 2 � y 2 � 7, x � 4;

n � 4
y

0 � x � ��4y � tan x

n � 8y

x

0 4

4

102 86

2

y

x

2� y
2

0

y

1 � y 2 dyy
3

0
2�x 5 dx

y
1

0
2� �3 � y��1 � y2� dy

y
��4

0
2� �� � x��cos x � sin x� dx

yy � 0y � �x 2 � 6x � 8

xy � 0y � �x 2 � 6x � 8

xy � 2y 2 � x 2 � 1

yy � 2y 2 � x 2 � 1

yx 2 � �y � 1�2 � 1

y � 1x � 4x � �y � 3�2

r

rh

3–7 ■ Use the method of cylindrical shells to find the volume
generated by rotating the region bounded by the given curves
about the -axis.

3. ,  ,  

4. ,  ,  ,  

5.

6. ,  

7. ,  

8. Let be the volume of the solid obtained by rotating about
the -axis the region bounded by and . Find

both by slicing and by cylindrical shells. In both cases
draw a diagram to explain your method.

9–14 ■ Use the method of cylindrical shells to find the volume
of the solid obtained by rotating the region bounded by the given
curves about the -axis.

9. ,  ,  ,  

10. ,  ,  

11. ,  ,  

12. ,  

13. ,  

14.

15–20 ■ Use the method of cylindrical shells to find the volume 
generated by rotating the region bounded by the given curves 
about the specified axis.

15. , ;  about 

16. , ;  about 

17. , ;  about 

18. , ;  about 

19. , , ;  about 

20. , ;  about 

21–26 ■

(a) Set up an integral for the volume of the solid obtained by 
rotating the region bounded by the given curves about the
specified axis.

(b) Use your calculator to evaluate the integral correct to five 
decimal places.

21. , , ;  about the -axis

22. , , ;  about 

23. , , ;  about 

y

x � 1y � 0y � s
3 x

x � 2x � 1y � 0y � x 3

y � e�x2
, y � 0, x � 0, x � 1

y � xy � 4x � x 2

y � 6x � 2x 2y � x 2

V
y � x 2y � sxy

V

x

y � 3y � 1x � 0xy � 1

y � 2x � 0y � sx

x � 0y � 8y � x 3

x � 0x � 4y 2 � y 3

x � 2x � 1 � �y � 2�2

x � y � 3, x � 4 � �y � 1�2

x � 2y � 0, x � 1y � x 4

x � �1y � 0,  x � 1y � sx

x � 1y � 3y � 4x � x 2

x � 1y � 2 � x 2y � x 2

y � 1x � 1y � 0y � x 3

y � �2x � 2x � y 2 � 1

yx � 2y � 0y � xe�x

x � ��2x � ��4y � 0y � tan x

x � ����2 � x � ��2y � �cos4xy � cos4x
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43. Use the following steps to prove Formula 2 for the case
where is one-to-one and therefore has an inverse func -
tion : Use the figure to show that

Make the substitution and then use integration 
by parts on the resulting integral to prove that

y

0 xa b

c

d

x=a

x=b

y=ƒx=f –! (y)

y � f �x�

V � y
b

a
2�x f �x� dx

f
f �1

V � �b 2d � �a 2c � y
d

c
� � f �1�y��2 dy

42. Suppose you make napkin rings by drilling holes with dif-
ferent diameters through two wooden balls (which also have
different diameters). You discover that both napkin rings
have the same height , as shown in the figure.
(a) Guess which ring has more wood in it.
(b) Check your guess: Use cylindrical shells to compute the

volume of a napkin ring created by drilling a hole with
radius through the center of a sphere of radius and
express the answer in terms of .

h

Rr
h

h
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FIGURE 1 
What is the length of this curve?

FIGURE 3

y

P¸

P¡

P™

P
i-1

P
i P

n

y=ƒ

0 xi¤ i-1 bx¡a x x

7.4 ARC LENGTH
What do we mean by the length of a curve? We might think of fitting a piece of string
to the curve in Figure 1 and then measuring the string against a ruler. But that might
be difficult to do with much accuracy if we have a complicated curve. We need a pre-
cise definition for the length of an arc of a curve, in the same spirit as the definitions
we developed for the concepts of area and volume.

If the curve is a polygon, we can easily find its length; we just add the lengths of
the line segments that form the polygon. (We can use the distance formula to find the
distance between the endpoints of each segment.) We are going to define the length of
a general curve by first approximating it by a polygon and then taking a limit as the
number of segments of the polygon is increased. This process is familiar for the case
of a circle, where the circumference is the limit of lengths of inscribed polygons (see
Figure 2).

Now suppose that a curve is defined by the equation , where f is con-
tinuous and . We obtain a polygonal approximation to by dividing the
interval into n subintervals with endpoints and equal width . If

, then the point lies on and the polygon with vertices , , . . . ,
, illustrated in Figure 3, is an approximation to . The length L of is approxi-

mately the length of this polygon and the approximation gets better as we let n
increase. (See Figure 4, where the arc of the curve between and has been 
magnified and approximations with successively smaller values of are shown.)
Therefore we define the length of the curve with equation , ,
as the limit of the lengths of these inscribed polygons (if the limit exists):

FIGURE 2

y � f �x�C
Ca � x � b

�xx0, x1, . . . , xn�a, b�
P1P0CPi�xi, yi �yi � f �xi�

CCPn

PiPi�1

�x
a � x � by � f �x�CL

Visual 7.4 shows an animation of
Figure 2.
TEC
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Notice that the procedure for defining arc length is very similar to the procedure
we used for defining area and volume: We divided the curve into a large number of
small parts. We then found the approximate lengths of the small parts and added them.
Finally, we took the limit as . (For the limit of a sequence, see the margin note
on page 260 or Section 8.1.)

The definition of arc length given by Equation 1 is not very convenient for compu-
tational purposes, but we can derive an integral formula for in the case where has
a continuous derivative. [Such a function is called smooth because a small change
in produces a small change in .]

If we let , then

By applying the Mean Value Theorem to on the interval , we find that there
is a number between and such that

that is,

Thus we have

(since )

Therefore, by Definition 1,

We recognize this expression as being equal to

by the definition of a definite integral. This integral exists because the function
is continuous. Thus we have proved the following theorem:

THE ARC LENGTH FORMULA If is continuous on , then the length
of the curve , , is

L � lim
n l �

�
n

i�1
� Pi�1Pi �

n l �

L f
f

x f ��x�
�yi � yi � yi�1

� Pi�1Pi � � s�xi � xi�1�2 � �yi � yi�1�2 � s��x�2 � ��yi�2 

f �xi�1, xi�

1

xi* xi�1 xi

f �xi� � f �xi�1 � � f ��xi*��xi � xi�1 �

�yi � f ��xi*� �x

� Pi�1Pi � � s��x�2 � ��yi�2 

� s��x�2 � � f ��xi*� �x�2 

� s1 � [ f ��xi*��2 
s��x�2 

� s1 � � f ��xi*��2 �x �x 	 0

L � lim
n l �

�
n

i�1
� Pi�1Pi � � lim

n l �
�
n

i�1
s1 � � f ��xi*�� 2 

�x

y
b

a
s1 � � f ��x��2 dx

t�x� � s1 � � f ��x��2 

f � �a, b�
y � f �x� a � x � b

L � y
b

a
s1 � � f ��x��2 dx

2
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FIGURE 4
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If we use Leibniz notation for derivatives, we can write the arc length formula as 
follows:

EXAMPLE 1 Find the length of the arc of the semicubical parabola between
the points and . (See Figure 5.)

SOLUTION For the top half of the curve we have

and so the arc length formula gives

If we substitute , then . When , ; when ,
. Therefore

■

If a curve has the equation , , and is continuous, then by
interchanging the roles of and in Formula 2 or Equation 3, we obtain the follow-
ing formula for its length:

EXAMPLE 2 Find the length of the arc of the parabola from to .

SOLUTION Since , we have , and Formula 4 gives

We make the trigonometric substitution , which gives
and . When , , so ; when

, , so , say. Thus

(from Example 8 in Section 6.2)

L � y
b

a
�1 � 	 dy

dx
2 

dx

y 2 � x 3

�1, 1� �4, 8�

y � x 3�2 dy

dx
� 3

2 x 1�2

L � y
4

1
�1 � 	 dy

dx
2 

dx � y
4

1
s1 � 9

4 x dx

3

u � 1 �
9
4 x du � 9

4 dx x � 1 u � 13
4 x � 4

u � 10

L � 4
9 y

10

13�4
su du � 4

9 � 2
3 u 3�2]13�4

10

� 8
27 [103�2 � ( 13

4 )3�2 ] � 1
27 (80s10 � 13s13 )

x � t�y� c � y � d t��y�
x y

L � y
d

c
s1 � �t��y��2 dy � y

d

c
�1 � 	dx

dy
2 

dy

y 2 � x �0, 0� �1, 1�

x � y 2 dx�dy � 2y

L � y
1

0
�1 � 	dx

dy
2 

dy � y
1

0
s1 � 4y 2 dy

y � 1
2 tan 
 dy � 1

2 sec2
 d

s1 � 4y 2 � s1 � tan2
 � sec 
 y � 0 tan 
 � 0 
 � 0

y � 1 tan 
 � 2 
 � tan�1 2 � �

L � y
�

0
sec 
 � 1

2 sec2
 d
 � 1
2 y

�

0
sec3
 d


� 1
2 � 1

2 [sec 
 tan 
 � ln � sec 
 � tan 
 �]0

�

� 1
4 (sec � tan � � ln � sec � � tan � �)

4

V

(4, 8)

FIGURE 5

0 x

y

(1, 1)

¥=˛

■ As a check on our answer to Exam-
ple 1, notice from Figure 5 that it ought
to be slightly larger than the distance
from to , which is

According to our calculation in Exam-
ple 1, we have

Sure enough, this is a bit greater than the
length of the line segment.

L � 1
27 (80s10 � 13s13 ) � 7.633705

s58 � 7.615773

�4, 8��1, 1�
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(We could have used Formula 21 in the Table of Integrals.) Since , we
have , so and

■

Because of the presence of the square root sign in Formulas 2 and 4, the calcula-
tion of an arc length often leads to an integral that is very difficult or even impossible
to evaluate explicitly. Thus we sometimes have to be content with finding an approx-
imation to the length of a curve as in the following example.

EXAMPLE 3
(a) Set up an integral for the length of the arc of the hyperbola from the
point to the point .
(b) Use Simpson’s Rule with to estimate the arc length.

SOLUTION
(a) We have

and so the arc length is

(b) Using Simpson’s Rule (see Section 6.5) with , , , ,
and , we have

■

L �
s5

2
�

ln(s5 � 2)
4

0 x

y

1

1

x=¥

FIGURE 6

tan � � 2
sec2� � 1 � tan2� � 5 sec � � s5

xy � 1
�1, 1� (2, 1

2 )
n � 10

y �
1

x

dy

dx
� �

1

x 2

L � y
2

1
�1 � 	 dy

dx
2 

dx � y
2

1
�1 �

1

x 4
 dx � y

2

1

sx 4 � 1

x 2 dx

V

�x � 0.1n � 10b � 2a � 1
f �x� � s1 � 1�x 4 

L � y
2

1
�1 �

1

x 4
 dx

� � � � � 2 f �1.8� � 4 f �1.9� � f �2���
�x

3
 � f �1� � 4 f �1.1� � 2 f �1.2� � 4 f �1.3�

� 1.1321
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n

1 1.414
2 1.445
4 1.464
8 1.472

16 1.476
32 1.478
64 1.479

Ln

■ Figure 6 shows the arc of the
parabola whose length is computed in
Example 2, together with polygonal
approximations having and 

line segments, respectively. For
the approximate length is

, the diagonal of a square. The
table shows the approximations that
we get by dividing into equal
subintervals. Notice that each time we
double the number of sides of the poly-
gon, we get closer to the exact length,
which is

n � 1

L �
s5

2
�

ln(s5 � 2)
4

� 1.478943

n�0, 1�
Ln

L1 � s2

n � 2
n � 1

■ Checking the value of the definite
integral with a more accurate approxi-
mation produced by a computer algebra
system, we see that the approximation
using Simpson’s Rule is accurate to four
decimal places.
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THE ARC LENGTH FUNCTION

We will find it useful to have a function that measures the arc length of a curve from
a particular starting point to any other point on the curve. Thus if a smooth curve
has the equation , , let be the distance along from the initial
point to the point . Then is a function, called the arc length
function, and, by Formula 2,

(We have replaced the variable of integration by so that does not have two mean-
ings.) We can use Part 1 of the Fundamental Theorem of Calculus to differentiate Equa-
tion 5 (since the integrand is continuous):

Equation 6 shows that the rate of change of with respect to is always at least 1 and
is equal to 1 when , the slope of the curve, is 0. The differential of arc length is

and this equation is sometimes written in the symmetric form

The geometric interpretation of Equation 8 is shown in Figure 7. It can be used as a
mnemonic device for remembering both of the Formulas 3 and 4. If we write ,
then from Equation 8 either we can solve to get , which gives , or we can solve
to get

which gives .

EXAMPLE 4 Find the arc length function for the curve taking
as the starting point.

SOLUTION If , then

C
y � f �x� a � x � b s�x� C

P0�a, f �a�� Q�x, f �x�� s

s�x� � y
x

a
s1 � � f ��t��2 dt

t x

ds

dx
� s1 � � f ��x��2 � �1 � 	dy

dx
2 

5

6

s x
f ��x�

ds � �1 � 	 dy

dx
2
 dx

�ds�2 � �dx�2 � �dy�2

L � x ds

ds � �1 � 	dx

dy
2
 dy

y � x 2 �
1
8 ln x

P0�1, 1�

f �x� � x 2 �
1
8 ln x

f ��x� � 2x �
1

8x

1 � � f ��x��2 � 1 � 	2x �
1

8x
2

� 1 � 4x 2 �
1

2
�

1

64x 2

� 4x 2 �
1

2
�

1

64x 2 � 	2x �
1

8x
2

s1 � � f ��x��2 � 2x �
1

8x

7

8

7 3

4

V

0

y

dx

ds
dy

Îs Îy

FIGURE 7

x
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Thus the arc length function is given by

For instance, the arc length along the curve from to is

■

s�x� � y
x

1
s1 � � f ��t��2 dt

� y
x

1
	2t �

1

8t
 dt � t 2 �
1
8 ln t]1

x

� x 2 �
1
8 ln x � 1

�1, 1� �3, f �3��

s�3� � 32 �
1
8 ln 3 � 1 � 8 �

ln 3

8
� 8.1373

s(x)=≈+   ln x-1

P¸

1
8

y=≈-   ln x
1
8

FIGURE 8 FIGURE 9

0 x

y

1

1

0 x

y

1 x

1

s(x)
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■ Figure 8 shows the interpretation of
the arc length function in Example 4.
Figure 9 shows the graph of this arc
length function. Why is negative
when is less than ?1x

s�x�

7.4 EXERCISES

1. Use the arc length formula to find the length of the curve
, . Check your answer by noting

that the curve is a line segment and calculating its length by
the distance formula.

2. Use the arc length formula to find the length of the curve
, . Check your answer by noting

that the curve is part of a circle.

3–6 ■ Set up an integral that represents the length of the curve.
Then use your calculator to find the length correct to four deci-
mal places.

3. ,  

4. ,  

5. ,  

6. ,  

7–18 ■ Find the exact length of the curve.

7. ,  

3
y � 2x � 5 �1 � x � 3

y � s2 � x 2 0 � x � 1

y � sin x 0 � x � �

y � xe �x 0 � x � 2

x � sy � y 1 � y � 4

x � y 2 � 2y 0 � y � 2

y � 1 � 6x 3�2 0 � x � 1

8. ,  ,

9. ,  

10. ,  

11. ,  

12. ,

13. ,  

14. ,  

15. ,  

16.

17. ,  

18. ,  

y 2 � 4�x � 4�3 0 � x � 2 y 	 0

y �
x 3

3
�

1

4x
1 � x � 2

x �
y 4

8
�

1

4y 2 1 � y � 2

x � 1
3 sy �y � 3� 1 � y � 9

y � ln�cos x� 0 � x � ��3

y � ln�sec x� 0 � x � ��4

y � 3 �
1
2 cosh 2x 0 � x � 1

y � 1
4 x 2 �

1
2 ln x 1 � x � 2

y � sx � x 2 � sin�1(sx )

y � ln�1 � x 2� 0 � x �
1
2

y � 1 � e �x 0 � x � 2
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33. A hawk flying at at an altitude of 180 m acciden-
tally drops its prey. The parabolic trajectory of the falling
prey is described by the equation

until it hits the ground, where is its height above the
ground and is the horizontal distance traveled in meters.
Calculate the distance traveled by the prey from the time
it is dropped until the time it hits the ground. Express
your answer correct to the nearest tenth of a meter.

34. (a) The figure shows a telephone wire hanging between 
two poles at and . It takes the shape of a
catenary with equation . Find the
length of the wire.

; (b) Suppose two telephone poles are 50 ft apart and the
length of the wire between the poles is 51 ft. If the
lowest point of the wire must be 20 ft above the
ground, how high up on each pole should the wire be
attached?

35. A manufacturer of corrugated metal roofing wants to 
produce panels that are 28 in. wide and 2 in. thick by 
processing flat sheets of metal as shown in the figure. The
profile of the roofing takes the shape of a sine wave. Ver-
ify that the sine curve has equation and
find the width of a flat metal sheet that is needed to
make a 28-inch panel. (Use your calculator to evaluate the
integral correct to four significant digits.)

; 36. The curves with equations , , , , . . . ,
are called fat circles. Graph the curves with , , , ,
and to see why. Set up an integral for the length of
the fat circle with . Without attempting to evaluate
this integral, state the value of .

y � 180 �
x 2

45

y
x

x � �b x � b
y � c � a cosh�x�a�

y

0 x_b b

y � sin��x�7�
w

28 in
2 inw

x n � y n � 1 n � 4 6 8
n � 2 4 6 8

10 L2k

n � 2k
limk l � L 2k

15 m�s
;19–20 ■ Graph the curve and visually estimate its length.

Then use your calculator to find the length correct to four dec-
imal places.

19. ,  

20. ,  

21–24 ■ Use Simpson’s Rule with to estimate the arc
length of the curve. Compare your answer with the value of
the integral produced by your calculator.

21. ,  

22. ,  

23. ,  

24. ,  

25. Use either a computer algebra system or a table of 
integrals to find the exact length of the arc of the curve

that lies between the points and
.

26. Use either a computer algebra system or a table of inte-
grals to find the exact length of the arc of the curve

that lies between the points and . If
your CAS has trouble evaluating the integral, make a
substitution that changes the integral into one that the
CAS can evaluate.

27. Sketch the curve with equation and use
symmetry to find its length.

28. (a) Sketch the curve .
(b) Use Formulas 3 and 4 to set up two integrals for the

arc length from to . Observe that one of
these is an improper integral and evaluate both of
them.

(c) Find the length of the arc of this curve from 
to .

29. Find the arc length function for the curve with
starting point .

30. (a) Find the arc length function for the curve
, , with starting point .

; (b) Graph both the curve and its arc length function on
the same screen.

31. Find the arc length function for the curve
with starting point .

32. A steady wind blows a kite due west. The kite’s height
above ground from horizontal position to

is given by . Find the
distance traveled by the kite.

y � x 2 � x 3 1 � x � 2

y � x � cos x 0 � x � ��2

n � 10

y � x sin x 0 � x � 2�

y � s
3 x 1 � x � 6

y � ln�1 � x 3� 0 � x � 5

y � e�x2

0 � x � 2

�0, 0�x � ln�1 � y 2 �
(ln 3

4, 1
2 )

�1, 1��0, 0�y � x 4�3

x 2�3 � y 2�3 � 1

y 3 � x 2

�1, 1��0, 0�

��1, 1�
�8, 4�

y � 2x 3�2

P0�1, 2�

CAS

CAS

y � ln�sin x� ���2, 0�0  x  �

�0, 1�y � sin�1 x � s1 � x 2 

x � 0
y � 150 �

1
40 �x � 50�2x � 80 ft
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7.5 AREA OF A SURFACE OF REVOLUTION
A surface of revolution is formed when a curve is rotated about a line. Such a surface
is the lateral boundary of a solid of revolution of the type discussed in Sections 7.2
and 7.3.

We want to define the area of a surface of revolution in such a way that it corre-
sponds to our intuition. If the surface area is , we can imagine that painting the sur-
face would require the same amount of paint as does a flat region with area .

Let’s start with some simple surfaces. The lateral surface area of a circular cylin-
der with radius and height is taken to be because we can imagine cut-
ting the cylinder and unrolling it (as in Figure 1) to obtain a rectangle with dimensions

and .
Likewise, we can take a circular cone with base radius and slant height , cut it

along the dashed line in Figure 2, and flatten it to form a sector of a circle with radius
and central angle . We know that, in general, the area of a sector of a 

circle with radius and angle is (see Exercise 69 in Section 6.2) and so in this
case the area is

Therefore we define the lateral surface area of a cone to be .

What about more complicated surfaces of revolution? If we follow the strategy 
we used with arc length, we can approximate the original curve by a polygon. When
this polygon is rotated about an axis, it creates a simpler surface whose surface area
approximates the actual surface area. By taking a limit, we can determine the exact
surface area.

The approximating surface, then, consists of a number of bands, each formed by
rotating a line segment about an axis. To find the surface area, each of these bands can
be considered a portion of a circular cone, as shown in Figure 3. The area of the band
(or frustum of a cone) with slant height and upper and lower radii and is found
by subtracting the areas of two cones:

From similar triangles we have

A
A

r h A � 2�rh

2�r h
r l

l

FIGURE 2 

l¨

2πr

l

r

cut


 � 2�r�l
l 
 1

2 l 2


A � 1
2 l 2
 � 1

2 l 2	2�r

l 
 � �rl

A � �rl

l r1 r2

A � �r2�l1 � l � � �r1l1 � � ��r2 � r1�l1 � r2l �1

l1

r1
�

l1 � l

r2
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which gives

or    

Putting this in Equation 1, we get

or

where is the average radius of the band.
Now we apply this formula to our strategy. Consider the surface shown in Fig-

ure 4, which is obtained by rotating the curve , , about the -axis,
where is positive and has a continuous derivative. In order to define its surface area,
we divide the interval into subintervals with endpoints and equal
width , as we did in determining arc length. If , then the point
lies on the curve. The part of the surface between and is approximated by tak-
ing the line segment and rotating it about the -axis. The result is a band with
slant height and average radius so, by Formula 2, its sur-
face area is

As in the proof of Theorem 7.4.2, we have

where is some number in . When is small, we have
and also , since is continuous. Therefore

and so an approximation to what we think of as the area of the complete surface of
revolution is

This approximation appears to become better as and, recognizing as a Rie-
mann sum for the function , we have

r2l1 � r1l1 � r1l �r2 � r1�l1 � r1l

A � � �r1l � r2l �

A � 2�rl2

r � 1
2 �r1 � r2 �

y � f �x� a � x � b x
f

�a, b� x0, x1, . . . , xn

�x yi � f �xi� Pi�xi, yi�
xi�1 xi

Pi�1Pi x
l � � Pi�1Pi � r � 1

2 �yi�1 � yi �

2�
yi�1 � yi

2
 � Pi�1Pi �

� Pi�1Pi � � s1 � � f ��xi*��2 �x

n

xi* �xi�1, xi � �x yi � f �xi � � f �xi*�
yi�1 � f �xi�1� � f �xi*� f

2�
yi�1 � yi

2
 � Pi�1Pi � � 2� f �xi*� s1 � � f ��xi*��2 �x

�
n

i�1
2� f �xi*� s1 � � f ��xi*��2 �x

n l �
t�x� � 2� f �x� s1 � � f ��x��2 

lim
n l �

�
n

i�1
2� f �xi*� s1 � � f ��xi*��2 �x � y

b

a
2� f �x� s1 � � f ��x��2 dx

3

3
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FIGURE 4

(b) Approximating band
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Therefore, in the case where is positive and has a continuous derivative, we define
the surface area of the surface obtained by rotating the curve , ,
about the -axis as

With the Leibniz notation for derivatives, this formula becomes

If the curve is described as , , then the formula for surface area
becomes

and both Formulas 5 and 6 can be summarized symbolically, using the notation for arc
length given in Section 7.4, as

For rotation about the -axis, the surface area formula becomes

where, as before, we can use either

or    

These formulas can be remembered by thinking of or as the circumference
of a circle traced out by the point on the curve as it is rotated about the -axis
or -axis, respectively (see Figure 5).

S � y
b

a
2�y�1 � 	dy

dx
2 

dx

x � t�y� c � y � d

S � y
d

c
2�y�1 � 	dx

dy
2 

dy

S � y 2�y ds

5

6

7

y

S � y 2�x ds

ds � �1 � 	dy

dx
2 

dx ds � �1 � 	dx

dy
2 

dy

2�y 2�x
�x, y� x

y

8

S � y
b

a
2� f �x� s1 � � f ��x��2 dx4

f
y � f �x� a � x � b

x
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FIGURE 5

(a) Rotation about x-axis: S=j 2πy ds

(x, y)

y

circumference=2πy

x0

y

(b) Rotation about y-axis: S=j 2πx ds

(x, y)
x

circumference=2πx

x0

y
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EXAMPLE 1 The curve , , is an arc of the circle
. Find the area of the surface obtained by rotating this arc about the 

-axis. (The surface is a portion of a sphere of radius 2. See Figure 6.)

SOLUTION We have

and so, by Formula 5, the surface area is

■

EXAMPLE 2 The arc of the parabola from to is rotated about
the -axis. Find the area of the resulting surface.

SOLUTION 1 Using

and    

we have, from Formula 8,

Substituting , we have . Remembering to change the limits
of integration, we have

SOLUTION 2 Using

and    

dy

dx
� 1

2 �4 � x 2 ��1�2��2x� �
�x

s4 � x 2 

S � y
1

�1
2�y �1 � � dy

dx�2 

dx

� 2� y
1

�1
s4 � x 2 �1 �

x 2

4 � x 2
 dx

� 2� y
1

�1
s4 � x 2 

2

s4 � x 2 
dx

� 4� y
1

�1
1 dx � 4� �2� � 8�

y � x 2 �1, 1� �2, 4�
y

y � x 2 dy

dx
� 2x

S � y 2�x ds

� y
2

1
2�x �1 � �dy

dx�2 

dx

� 2� y
2

1
x s1 � 4x 2 dx

u � 1 � 4x 2 du � 8x dx

S �
�

4
 y

17

5
su du �

�

4
 [ 2

3 u 3�2]5

17

�
�

6
 (17s17 � 5s5 )

V

V y � s4 � x 2 �1 � x � 1
x 2 � y 2 � 4
x

dx

dy
�

1

2sy
x � sy
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1 x

y

FIGURE 6

■ Figure 6 shows the portion of the
sphere whose surface area is computed
in Example 1.

(2, 4)

y=≈

x0

y

1 2

FIGURE 7

■ Figure 7 shows the surface of rev-
olution whose area is computed in 
Example 2.

■ As a check on our answer to Exam-
ple 2, notice from Figure 7 that the 
surface area should be close to that of a
circular cylinder with the same height
and radius halfway between the upper
and lower radius of the surface:

. We computed that
the surface area was

which seems reasonable. Alternatively, the
surface area should be slightly larger than
the area of a frustum of a cone with the
same top and bottom edges. From Equa-
tion 2, this is .2� �1.5�(s10 ) � 29.80

�

6
 (17s17 � 5s5 ) � 30.85

2� �1.5��3� � 28.27
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we have

(where )

(as in Solution 1) ■

�
�

4
 y

17

5
su du u � 1 � 4y

�
�

6
 (17s17 � 5s5 )

S � y 2�x ds � y
4

1
2�x �1 � � dx

dy�2 

dy

� 2� y
4

1
sy �1 �

1

4y
dy � � y

4

1
s4y � 1 dy
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See Additional Example A.

7.5 EXERCISES

1–4 ■

(a) Set up an integral for the area of the surface obtained by
rotating the curve about (i) the -axis and (ii) the -axis.

(b) Use the numerical integration capability of your calculator 
to evaluate the surface areas correct to four decimal places.

1. ,  

2. ,  

3. ,  

4. ,  

5–12 ■ Find the exact area of the surface obtained by rotating
the curve about the -axis.

5. ,  

6. ,  

7. ,  

8. ,  

9. ,  

10. ,

11. ,  

12. ,  

13–16 ■ The given curve is rotated about the -axis. Find the
area of the resulting surface.

13. ,  

14. ,  

15. ,  

x y

y � tan x 0 � x � ��3

y � x�2 1 � x � 2

y � e�x2

�1 � x � 1

x � ln�2y � 1� 0 � y � 1

x

y � x 3 0 � x � 2

9x � y 2 � 18 2 � x � 6

y � s1 � 4x 1 � x � 5

y � s1 � e x 0 � x � 1

y � sin �x 0 � x � 1

y �
x 3

6
�

1

2x
1
2 � x � 1

x � 1
3 �y 2 � 2�3�2 1 � y � 2

x � 1 � 2y 2 1 � y � 2

y

y � s
3 x 1 � y � 2

y � 1 � x 2 0 � x � 1

x � sa 2 � y 2 0 � y � a�2

16. ,  

17–18 ■ Use a CAS to find the exact area of the surface
obtained by rotating the curve about the -axis. If your CAS
has trouble evaluating the integral, express the surface area as
an integral in the other variable.

17. ,  

18. ,  

19. (a) If , find the area of the surface generated by 
rotating the loop of the curve about
the -axis.

(b) Find the surface area if the loop is rotated about the 
-axis.

20. A group of engineers is building a parabolic satellite dish
whose shape will be formed by rotating the curve
about the -axis. If the dish is to have a 10-ft diameter and
a maximum depth of 2 ft, find the value of and the sur-
face area of the dish.

21. (a) The ellipse

is rotated about the -axis to form a surface called an
ellipsoid, or prolate spheroid. Find the surface area of
this ellipsoid.

(b) If the ellipse in part (a) is rotated about its minor axis
(the -axis), the resulting ellipsoid is called an oblate
spheroid. Find the surface area of this ellipsoid.

22. Find the surface area of the torus in Exercise 47 in 
Section 7.2.

y

y � x 3 0 � y � 1

y � ln�x � 1� 0 � x � 1

a � 0
3ay 2 � x�a � x�2

x

y

y � ax 2

y
a

x 2

a 2 �
y 2

b 2 � 1 a � b

x

y

CAS

y � 1
4x 2 �

1
2 ln x 1 � x � 2
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26. (a) Show that the surface area of a zone of a sphere that
lies between two parallel planes is , where 

is the radius of the sphere and is the distance
between the planes. (Notice that depends only on the
distance between the planes and not on their location,
provided that both planes intersect the sphere.)

(b) Show that the surface area of a zone of a cylinder with
radius and height is the same as the surface area of
the zone of a sphere in part (a).

R h
S

R h

S � 2�Rh
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23. If the curve , , is rotated about the
horizontal line , where , find a formula for
the area of the resulting surface.

24. Use the result of Exercise 23 to set up an integral to find
the area of the surface generated by rotating the curve

, , about the line . Then use a
CAS to evaluate the integral.

25. Find the area of the surface obtained by rotating the 
circle about the line .

y � c f �x� � c
y � f �x� a � x � b

CAS

y � 40 � x � 4y � sx

y � rx 2 � y 2 � r 2

7.6 APPLICATIONS TO PHYSICS AND ENGINEERING
Among the many applications of integral calculus to physics and engineering, we con-
sider three: work, force due to water pressure, and centers of mass. As with our pre-
vious applications to geometry (areas, volumes, and lengths), our strategy is to break
up the physical quantity into a large number of small parts, approximate each small
part, add the results, take the limit, and evaluate the resulting integral.

WORK

The term work is used in everyday language to mean the total amount of effort
required to perform a task. In physics it has a technical meaning that depends on the
idea of a force. Intuitively, you can think of a force as describing a push or pull on an
object—for example, a horizontal push of a book across a table or the downward pull
of the earth’s gravity on a ball. In general, if an object moves along a straight line with
position function , then the force on the object (in the same direction) is given
by Newton’s Second Law of Motion as the product of its mass and its acceleration:

In the SI metric system, the mass is measured in kilograms (kg), the displacement in
meters (m), the time in seconds (s), and the force in newtons ( ). Thus a
force of 1 N acting on a mass of 1 kg produces an acceleration of 1 m�s . In the US
Customary system the fundamental unit is chosen to be the unit of force, which is the
pound.

In the case of constant acceleration, the force is also constant and the work done
is defined to be the product of the force and the distance that the object moves:

If is measured in newtons and in meters, then the unit for is a newton-meter,
which is called a joule (J). If is measured in pounds and in feet, then the unit for

is a foot-pound (ft-lb), which is about 1.36 J.
For instance, suppose you lift a 1.2-kg book off the floor to put it on a desk that is

0.7 m high. The force you exert is equal and opposite to that exerted by gravity, so
Equation 1 gives

Fs�t�
m

F � m
d 2s

dt 21

N � kg�m�s2

2

F
dF

work � force � distanceW � Fd2

WdF

W
dF

F � mt � �1.2��9.8� � 11.76 N

■ As a consequence of a calculation 
of work, you will be able to compute
the velocity needed for a rocket to
escape the earth’s gravitational field.
(See Exercise 23.)
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and then Equation 2 gives the work done as

But if a 20-lb weight is lifted 6 ft off the ground, then the force is given as lb,
so the work done is

Here we didn’t multiply by because we were given the weight (a force) and not the
mass.

Equation 2 defines work as long as the force is constant, but what happens if the
force is variable? Let’s suppose that the object moves along the -axis in the positive
direction, from to , and at each point between and a force acts
on the object, where is a continuous function. We divide the interval into n
subintervals with endpoints and equal width . We choose a sample
point in the th subinterval . Then the force at that point is . If 
is large, then is small, and since is continuous, the values of don’t change 
very much over the interval . In other words, is almost constant on the inter-
val and so the work that is done in moving the particle from to is approxi-
mately given by Equation 2:

Thus we can approximate the total work by

It seems that this approximation becomes better as we make larger. Therefore we
define the work done in moving the object from a to b as the limit of this quantity
as . Since the right side of is a Riemann sum, we recognize its limit as being
a definite integral and so

EXAMPLE 1 When a particle is located a distance feet from the origin, a force 
of pounds acts on it. How much work is done in moving it from 
to ?

SOLUTION

The work done is ft-lb. ■

In the next example we use a law from physics: Hooke’s Law states that the force
required to maintain a spring stretched units beyond its natural length is proportional 
to :

W � Fd � �11.76��0.7� � 8.2 J

F � 20

W � Fd � 20 � 6 � 120 ft-lb

t

x
x � a x � b x a b f �x�

f 	a, b

x0, x1, . . . , xn 	x

xi* i 	xi�1, xi
 f �xi*� n
	x f f

	xi�1, xi 
 f
Wi xi�1 xi

Wi � f �xi*� 	x

W � �
n

i�1
f �xi*� 	x

n

n l 


W � lim
n l 


�
n

i�1
f �xi*� 	x � y

b

a
f �x� dx

x
x 2 � 2x x � 1
x � 3

W � y
3

1
�x 2 � 2x� dx �

x 3

3
� x 2�

1

3

�
50

3

162
3

3

4

x
x

f �x� � kx

3
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where is a positive constant (called the spring constant). Hooke’s Law holds pro-
vided that is not too large (see Figure 1).

EXAMPLE 2 A force of 40 N is required to hold a spring that has been stretched
from its natural length of 10 cm to a length of 15 cm. How much work is done in
stretching the spring from 15 cm to 18 cm?

SOLUTION According to Hooke’s Law, the force required to hold the spring
stretched meters beyond its natural length is . When the spring is
stretched from 10 cm to 15 cm, the amount stretched is cm m. This means
that so

Thus and the work done in stretching the spring from 15 cm to 18 cm is

■

EXAMPLE 3 A 200-lb cable is 100 ft long and hangs vertically from the top of a
tall building. How much work is required to lift the cable to the top of the building?

SOLUTION Here we don’t have a formula for the force function, but we can use an
argument similar to the one that led to Definition 4.

Let’s place the origin at the top of the building and the -axis pointing downward
as in Figure 2. We divide the cable into small parts with length . If is a point
in the such interval, then all points in the interval are lifted by approximately the
same amount, namely . The cable weighs 2 pounds per foot, so the weight of the

part is . Thus the work done on the part, in foot-pounds, is 

We get the total work done by adding all these approximations and letting the
number of parts become large (so ):

■

EXAMPLE 4 A tank has the shape of an inverted circular cone with height 10 m and
base radius 4 m. It is filled with water to a height of 8 m. Find the work required to
empty the tank by pumping all of the water to the top of the tank. (The density of
water is 1000 kg�m .)

SOLUTION Let’s measure depths from the top of the tank by introducing a vertical
coordinate line as in Figure 3. The water extends from a depth of 2 m to a depth 
of 10 m and so we divide the interval into n subintervals with endpoints

and choose in the th subinterval. This divides the water into
layers. The th layer is approximated by a circular cylinder with radius and 

x f �x� � kx
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FIGURE 2 

■ If we had placed the origin at the 
bottom of the cable and the -axis
upward, we would have gotten

which gives the same answer.
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height . We can compute from similar triangles, using Figure 4, as follows:

Thus an approximation to the volume of the th layer of water is

and so its mass is

The force required to raise this layer must overcome the force of gravity and so

Each particle in the layer must travel a distance of approximately . The work
done to raise this layer to the top is approximately the product of the force and the
distance :

To find the total work done in emptying the entire tank, we add the contributions of
each of the layers and then take the limit as :

■

HYDROSTATIC PRESSURE AND FORCE

Deep-sea divers realize that water pressure increases as they dive deeper. This is
because the weight of the water above them increases.

In general, suppose that a thin horizontal plate with area square meters is sub-
merged in a fluid of density kilograms per cubic meter at a depth meters below the
surface of the fluid as in Figure 5. The fluid directly above the plate has volume

, so its mass is . The force exerted by the fluid on the plate is
therefore

where is the acceleration due to gravity. The pressure on the plate is defined to be
the force per unit area:
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The SI unit for measuring pressure is newtons per square meter, which is called a 
pascal (abbreviation: 1 N�m Pa). Since this is a small unit, the kilopascal (kPa)
is often used. For instance, because the density of water is kg�m , the pres-
sure at the bottom of a swimming pool 2 m deep is

An important principle of fluid pressure is the experimentally verified fact that at
any point in a liquid the pressure is the same in all directions. (A diver feels the same
pressure on nose and both ears.) Thus the pressure in any direction at a depth in a
fluid with mass density is given by

This helps us determine the hydrostatic force against a vertical plate or wall or dam
in a fluid. This is not a straightforward problem because the pressure is not constant
but increases as the depth increases.

EXAMPLE 5 A dam has the shape of the trapezoid shown in Figure 6. The
height is 20 m and the width is 50 m at the top and 30 m at the bottom. Find the
force on the dam due to hydrostatic pressure if the water level is 4 m from the top of
the dam.

SOLUTION We choose a vertical -axis with origin at the surface of the water as in
Figure 7(a). The depth of the water is 16 m, so we divide the interval into 
sub intervals with endpoints and we choose . The horizontal strip
of the dam is approximated by a rectangle with height and width , where, from
similar triangles in Figure 7(b),

or    

and so

If is the area of the strip, then

If is small, then the pressure on the strip is almost constant and we can use
Equation 5 to write

The hydrostatic force acting on the strip is the product of the pressure and the
area:

Adding these forces and taking the limit as , we obtain the total hydrostatic 
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■ When using US Customary units, we
write , where is the
weight density (as opposed to , which 
is the mass density). For in stance, the
weight density of water is .� � 62.5 lb�ft3
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force on the dam:

■

EXAMPLE 6 Find the hydrostatic force on one end of a cylindrical drum with radius
3 ft if the drum is submerged in water 10 ft deep.

SOLUTION In this example it is convenient to choose the axes as in Figure 8 so
that the origin is placed at the center of the drum. Then the circle has a simple equa-
tion, . As in Example 5 we divide the circular region into horizontal
strips of equal width. From the equation of the circle, we see that the length of the

strip is and so its area is

The pressure on this strip is approximately

and so the force on the strip is approximately

The total force is obtained by adding the forces on all the strips and taking the limit:

The second integral is 0 because the integrand is an odd function (see Theorem
5.5.7). The first integral can be evaluated using the trigonometric substitution

, but it’s simpler to observe that it is the area of a semicircular disk with
radius 3. Thus

■
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MOMENTS AND CENTERS OF MASS

Our main objective here is to find the point on which a thin plate of any given shape
balances horizontally as in Figure 9. This point is called the center of mass (or cen-
ter of gravity) of the plate.

We first consider the simpler situation illustrated in Figure 10, where two masses
and are attached to a rod of negligible mass on opposite sides of a fulcrum and

at distances and from the fulcrum. The rod will balance if

This is an experimental fact discovered by Archimedes and called the Law of the Lever.
(Think of a lighter person balancing a heavier one on a seesaw by sitting farther away
from the center.)

Now suppose that the rod lies along the -axis with at and at and the
center of mass at . If we compare Figures 10 and 11, we see that and

and so Equation 6 gives

The numbers and are called the moments of the masses and (with
respect to the origin), and Equation 7 says that the center of mass is obtained by
adding the moments of the masses and dividing by the total mass .

In general, if we have a system of particles with masses , . . . , located
at the points , . . . , on the -axis, it can be shown similarly that the center of
mass of the system is located at

where is the total mass of the system, and the sum of the individual
moments

is called the moment of the system about the origin. Then Equation 8 could be re-
written as , which says that if the total mass were considered as being con-
centrated at the center of mass , then its moment would be the same as the moment
of the system.
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Now we consider a system of particles with masses , . . . , located at the
points , , . . . , in the -plane as shown in Figure 12. By anal-
ogy with the one-dimensional case, we define the moment of the system about the
y-axis to be

and the moment of the system about the x-axis as

Then measures the tendency of the system to rotate about the -axis and mea-
sures the tendency to rotate about the -axis.

As in the one-dimensional case, the coordinates of the center of mass are
given in terms of the moments by the formulas

where is the total mass. Since and , the center of mass 
is the point where a single particle of mass would have the same moments as

the system.

EXAMPLE 7 Find the moments and center of mass of the system of objects that
have masses 3, 4, and 8 at the points , , and .

SOLUTION We use Equations 9 and 10 to compute the moments:

Since , we use Equations 11 to obtain

Thus the center of mass is . (See Figure 13.) ■

Next we consider a flat plate (called a lamina) with uniform density that occu-
pies a region of the plane. We wish to locate the center of mass of the plate, which
is called the centroid of . In doing so we use the following physical principles: The
symmetry principle says that if is symmetric about a line , then the centroid of 
lies on . (If is reflected about , then remains the same so its centroid remains
fixed. But the only fixed points lie on .) Thus the centroid of a rectangle is its center.
Moments should be defined so that if the entire mass of a region is concentrated at the
center of mass, then its moments remain unchanged. Also, the moment of the union
of two nonoverlapping regions should be the sum of the moments of the individual
regions.
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Suppose that the region is of the type shown in Figure 14(a); that is, lies
between the lines and , above the -axis, and beneath the graph of ,
where is a continuous function. We divide the interval into n subintervals with
endpoints and equal width . We choose the sample point to be the
midpoint of the subinterval, that is, . This determines the
polygonal approximation to shown in Figure 14(b). The centroid of the approx-
imating rectangle is its center . Its area is , so its mass is

The moment of about the -axis is the product of its mass and the distance from
to the -axis, which is 

Adding these moments, we obtain the moment of the polygonal approximation to 
, and then by taking the limit as we obtain the moment of itself about the 

-axis:

In a similar fashion we compute the moment of about the -axis as the product
of its mass and the distance from to the -axis:

Again we add these moments and take the limit to obtain the moment of about the 
-axis:

Just as for systems of particles, the center of mass of the plate is defined so that
and . But the mass of the plate is the product of its density and its

area:

and so

Notice the cancellation of the ’s. The location of the center of mass is independent
of the density.
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In summary, the center of mass of the plate (or the centroid of ) is located at the
point , where

EXAMPLE 8 Find the center of mass of a semicircular plate of radius .

SOLUTION In order to use we place the semicircle as in Figure 15 so that
and , . Here there is no need to use the formula to

calculate because, by the symmetry principle, the center of mass must lie on the 
-axis, so . The area of the semicircle is , so

The center of mass is located at the point . ■

If the region lies between two curves and , where ,
as illustrated in Figure 16, then the same sort of argument that led to Formulas 12 can
be used to show that the centroid of is , where

(See Exercise 55.)

EXAMPLE 9 Find the centroid of the region bounded by the line and the
parabola .

SOLUTION The region is sketched in Figure 17. We take , ,
, and in Formulas 13. First we note that the area of the region is

Therefore
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■ www.stewartcalculus.com
See Additional Example A.
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The centroid is . ■

We end this section by showing a surprising connection between centroids and vol-
umes of revolution.

THEOREM OF PAPPUS Let be a plane region that lies entirely on one side
of a line in the plane. If is rotated about , then the volume of the resulting
solid is the product of the area of and the distance traveled by the cen-
troid of .

PROOF We give the proof for the special case in which the region lies between
and as in Figure 16 and the line is the -axis. Using the method

of cylindrical shells (see Section 7.3), we have

(by Formulas 13)

where is the distance traveled by the centroid during one rotation about the 
-axis. ■

EXAMPLE 10 A torus is formed by rotating a circle of radius about a line in
the plane of the circle that is a distance from the center of the circle. Find
the volume of the torus.

SOLUTION The circle has area . By the symmetry principle, its centroid is
its center and so the distance traveled by the centroid during a rotation is .
Therefore, by the Theorem of Pappus, the volume of the torus is

■

The method of Example 10 should be compared with the method of Exercise 47 in
Section 7.2.

� 3� x 3

3
�

x 5

5 	0

1

�
2

5

( 1
2, 2

5 )

�
l � l

A � d
�

y � f �x� y � t�x� l y

V � y
b

a
2�x � f �x� � t�x�� dx � 2� y

b

a
x � f �x� � t�x�� dx

� 2� �xA�

� �2� x�A � Ad

d � 2�x
y

r
R �	 r�

A � �r 2

d � 2�R

V � Ad � ��r 2 ��2�R� � 2� 2r 2R

y �
1

A y
1

0

1
2 
� f �x��2 � �t�x��2 � dx �

1
1
6

y
1

0

1
2 �x 2 � x 4 � dx

V
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■ This theorem is named after the
Greek mathematician Pappus of 
Alexandria, who lived in the fourth 
century A.D.

7.6 EXERCISES

1. A variable force of pounds moves an object along a
straight line when it is feet from the origin. Calculate the
work done in moving the object from ft to ft.

2. When a particle is located a distance meters from the ori-
gin, a force of newtons acts on it. How much

5x �2

x
x � 1 x � 10

x
cos��x�3�

work is done in moving the particle from to ?
Interpret your answer by considering the work done from

to and from to .

3. Shown is the graph of a force function (in newtons) that
increases to its maximum value and then remains constant. 

x � 1 x � 2

x � 1 x � 1.5 x � 1.5 x � 2
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12. A bucket that weighs 4 lb and a rope of negligible weight
are used to draw water from a well that is 80 ft deep. The
bucket is filled with 40 lb of water and is pulled up at a rate
of , but water leaks out of a hole in the bucket at a rate
of . Find the work done in pulling the bucket to the
top of the well.

13. A leaky 10-kg bucket is lifted from the ground to a height
of 12 m at a constant speed with a rope that weighs

. Initially the bucket contains 36 kg of water, but
the water leaks at a constant rate and finishes draining just as
the bucket reaches the 12-meter level. How much work is
done?

14. A 10-ft chain weighs 25 lb and hangs from a ceiling. Find
the work done in lifting the lower end of the chain to the
ceiling so that it’s level with the upper end.

15. An aquarium 2 m long, 1 m wide, and 1 m deep is full of
water. Find the work needed to pump half of the water out 
of the aquarium. (Use the fact that the density of water is

.)

16. A circular swimming pool has a diameter of 24 ft, the sides
are 5 ft high, and the depth of the water is 4 ft. How much
work is required to pump all of the water out over the side?
(Use the fact that water weighs .)

17. The tank shown is full of water.
(a) Find the work required to pump the water out of the

spout.

; (b) Suppose that the pump breaks down after J 
of work has been done. What is the depth of the water
remaining in the tank?

18. (a) The tank shown is full of water. Given that the water
weighs 62.5 lb�ft , find the work required to pump the
water out of the spout.

(b) What if the tank is half full of oil that has a density of
?

2 ft�s
0.2 lb�s

0.8 kg�m

1000 kg�m3

62.5 lb�ft3

4.7 
 105

2 m

3 m

8 m

3 m

3

900 kg�m3

sphere

3 m

1 m

How much work is done by the force in moving an object a
distance of 8 m?

4. The table shows values of a force function , where is
measured in meters and in newtons. Use the Midpoint
Rule to estimate the work done by the force in moving an
object from to . 

5. A force of 10 lb is required to hold a spring stretched 4 in.
beyond its natural length. How much work is done in
stretching it from its natural length to 6 in. beyond its natu-
ral length?

6. A spring has a natural length of 20 cm. If a 25-N force is
required to keep it stretched to a length of 30 cm, how
much work is required to stretch it from 20 cm to 25 cm?

7. Suppose that 2 J of work is needed to stretch a spring from
its natural length of 30 cm to a length of 42 cm.
(a) How much work is needed to stretch the spring from

35 cm to 40 cm?
(b) How far beyond its natural length will a force of 30 N

keep the spring stretched?

8. If 6 J of work is needed to stretch a spring from 10 cm to
12 cm and another 10 J is needed to stretch it from 12 cm 
to 14 cm, what is the natural length of the spring?

9–16 ■ Show how to approximate the required work by a Rie-
mann sum. Then express the work as an integral and evaluate it.

9. A heavy rope, 50 ft long, weighs and hangs over
the edge of a building 120 ft high. 
(a) How much work is done in pulling the rope to the top of

the building?
(b) How much work is done in pulling half the rope to the

top of the building?

10. A chain lying on the ground is 10 m long and its mass is 
80 kg. How much work is required to raise one end of the
chain to a height of 6 m?

11. A cable that weighs is used to lift 800 lb of coal up a
mine shaft 500 ft deep. Find the work done.

0 x (m)

F

10

1

20

30

2 3 4 5 6 7 8

(N)

f �x� x
f �x�

x � 4 x � 20

0.5 lb�ft

2 lb�ft
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5 5.8 7.0 8.8 9.6 8.2 6.7 5.2 4.1f �x�
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25–29 ■ A vertical plate is submerged (or partially submerged)
in water and has the indicated shape. Explain how to approxi-
mate the hydrostatic force against one side of the plate by a 
Riemann sum. Then express the force as an integral and eval-
uate it.

25. 26.

27. 28.

29.

30. A milk truck carries milk with density in a hori-
zontal cylindrical tank with diameter 6 ft.
(a) Find the force exerted by the milk on one end of the

tank when the tank is full.
(b) What if the tank is half full?

31. A trough is filled with a liquid of density 840 kg�m . The
ends of the trough are equilateral triangles with sides 8 m
long and vertex at the bottom. Find the hydrostatic force on
one end of the trough.

32. A dam is inclined at an angle of from the vertical and
has the shape of an isosceles trapezoid 100 ft wide at the
top and 50 ft wide at the bottom and with a slant height of
70 ft. Find the hydrostatic force on the dam when it is full
of water.

33. A swimming pool is 20 ft wide and 40 ft long and its bot-
tom is an inclined plane, the shallow end having a depth of
3 ft and the deep end, 9 ft. If the pool is full of water, esti-
mate the hydro static force on (a) the shallow end, (b) the
deep end, (c) one of the sides, and (d) the bottom of the
pool.

6 m6 m
1 m

2 m

64.6 lb�ft3

3

30�

19. When gas expands in a cylinder with radius , the pressure
at any given time is a function of the volume: .
The force exerted by the gas on the piston (see the figure) is
the product of the pressure and the area: . Show
that the work done by the gas when the volume expands
from volume to volume is

20. In a steam engine the pressure and volume of steam sat-
isfy the equation , where is a constant. (This is
true for adiabatic expansion, that is, expansion in which
there is no heat transfer between the cylinder and its sur -
roundings.) Use Exercise 19 to calculate the work done by
the engine during a cycle when the steam starts at a pressure
of 160 lb�in and a volume of 100 in and expands to a vol-
ume of 800 in .

21. (a) Newton’s Law of Gravitation states that two bodies with
masses and attract each other with a force

where is the distance between the bodies and is the
gravitational constant. If one of the bodies is fixed, find
the work needed to move the other from to .

(b) Compute the work required to launch a 1000-kg satellite
vertically to a height of 1000 km. You may assume that
the earth’s mass is kg and is concentrated at
its center. Take the radius of the earth to be m
and .

22. Use an improper integral and information from Exercise 21
to find the work needed to propel a 1000-kg satellite out of
the earth’s gravitational field.

23. Find the escape velocity that is needed to propel a rocket
of mass out of the gravitational field of a planet with
mass and radius . (Use the fact that the initial kinetic
energy of supplies the needed work.)

24. The Great Pyramid of King Khufu was built of limestone in
Egypt over a 20-year time period from 2580 BC to 2560 BC.
Its base is a square with side length 756 ft and its height
when built was 481 ft. (It was the tallest man-made struc-
ture in the world for more than 3800 years.) The density 
of the limestone is about .
(a) Estimate the total work done in building the pyramid.
(b) If each laborer worked 10 hours a day for 20 years, for

340 days a year, and did of work in lifting
the limestone blocks into place, about how many labor-
ers were needed to construct the pyramid?

V1 V2

W � y
V2

V1

P dV

x
piston head

VP
kPV 1.4 � k

32

3

m2m1

F � G
m1m2

r 2

Gr

r � br � a

5.98 
 1024

6.37 
 106

G � 6.67 
 10�11 N�m2�kg2

v0

m
RM

1
2 mv0

2

F � �r 2P

P � P�V �

150 lb�ft3

200 ft-lb�h

r
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46. ,  ,  

47–48 ■ Calculate the moments and and the center of
mass of a lamina with the given density and shape.

47. 48.

49. Prove that the centroid of any triangle is located at the point 
of intersection of the medians. [Hints: Place the axes so that
the vertices are , , and . Recall that a median 
is a line segment from a vertex to the midpoint of the oppo-
site side. Recall also that the medians intersect at a point
two-thirds of the way from each vertex (along the median)
to the opposite side.]

50–51 ■ Find the centroid of the region shown, not by integra-
tion, but by locating the centroids of the rectangles and triangles
(from Exercise 49) and using additivity of moments.

50. 51.

52–54 ■ Use the Theorem of Pappus to find the volume of the
given solid.

52. A sphere of radius (Use Example 8.)

53. A cone with height and base radius 

54. The solid obtained by rotating the triangle with vertices 
, , and about the -axis

55. Prove Formulas 13.

56. Let be the region that lies between the curves 
and , , where and are integers with

.
(a) Sketch the region .
(b) Find the coordinates of the centroid of .
(c) Try to find values of and such that the centroid lies

outside .

Mx My

� � 10

x

(4, 3)

y

0

�a, 0� �0, b� �c, 0�

x

y

0
1_1 2

1

2

x

y

0
1_1

_1

2

1

2

_2

y � 0x � y � 2y � x 3

r

h r

�2, 3� �2, 5� �5, 4� x

� y � x m

y � x n 0  x  1 m n
0  n � m

�
�

m n
�

x

y

0
1

_1

1

� � 3

34. A vertical dam has a semicircular gate as shown in the
figure. Find the hydrostatic force against the gate.

35. A metal plate was found submerged vertically in sea water,
which has density . Measurements of the width of
the plate were taken at the indicated depths. Use Simpson’s
Rule to estimate the force of the water against the plate.

36. Point-masses are located on the -axis as shown. Find
the moment of the system about the origin and the center
of mass .

37–38 ■ The masses are located at the points . Find the
moments and and the center of mass of the system.

37. , , ;

, , 

38. , , , ;

, , , 

39–42 ■ Sketch the region bounded by the curves, and visually
estimate the location of the centroid. Then find the exact coor-
di nates of the centroid.

39. ,  ,  

40. ,  ,  

41. ,  ,  ,  

42. ,  ,  

43–46 ■ Find the centroid of the region bounded by the given
curves.

43. ,  

44. ,  

45. ,  ,  ,  

12 m

2 m

4 m

water level

64 lb�ft3

xmi

M
x

x0 82

m™=15 m£=20

_3

m¡=12

Pimi

MyMx

m3 � 4m2 � 2m1 � 4

P3�3, 5�P2��3, 1�P1�2, �3�

m4 � 6m3 � 3m2 � 4m1 � 5

P4�1, �2�P3�3, 2�P2�0, 5�P1��4, 2�

x � 1y � 0y � 2x

x � 4y � 0y � sx

x � 1x � 0y � 0y � e x

0  x  �y � 0y � sin x

x � y 2y � x 2

y � xy � 2 � x 2

x � ��4x � 0y � cos xy � sin x
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Depth (m) 7.0 7.4 7.8 8.2 8.6 9.0 9.4

Plate width (m) 1.2 1.8 2.9 3.8 3.6 4.2 4.4
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7.7 DIFFERENTIAL EQUATIONS
A differential equation is an equation that contains an unknown function and one or
more of its derivatives. Here are some examples:

In each of these differential equations is an unknown function of . The importance 
of differential equations lies in the fact that when a scientist or engineer formulates 
a physical law in mathematical terms, it frequently turns out to be a differential 
equation.

The order of a differential equation is the order of the highest derivative that occurs
in the equation. Thus Equations 1, 2, and 3 are of order 1, 2, and 3, respectively.

A function is called a solution of a differential equation if the equation is satis-
fied when and its derivatives are substituted into the equation. Thus is a solu-
tion of Equation 1 if

for all values of x in some interval.
When we are asked to solve a differential equation we are expected to find all 

possible solutions of the equation. We have already solved some particularly simple
differential equations, namely, those of the form . For instance, we know that
the general solution of the differential equation is given by ,
where C is an arbitrary constant.

But, in general, solving a differential equation is not an easy matter. There is no
systematic technique that enables us to solve all differential equations. In this section
we learn how to solve a certain type of differential equation called a separable equa-
tion. At the end of the section, however, we will see how to sketch a rough graph of a
solution of a first-order differential equation, even when it is impossible to find a for-
mula for the solution.

SEPARABLE EQUATIONS

A separable equation is a first-order differential equation that can be written in the
form

The name separable comes from the fact that the expression on the right side can be
“separated” into a function of and a function of . Equivalently, if , we
could write

y� � xy

y � � 2y� � y � 0

d 3y

dx 3 � x
d 2y

dx 2 �
dy

dx
� 2y � e�x

1

2

3

y x

f
y � f �x� f

f ��x� � xf �x�

y� � f �x�
y� � x 3 y � 1

4 x 4 � C

dy

dx
� t�x� f �y�

x y f �y� � 0

dy

dx
�

t�x�
h�y�

4
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where . To solve this equation we rewrite it in the differential form

so that all ’s are on one side of the equation and all ’s are on the other side. Then we
integrate both sides of the equation:

Equation 5 defines implicitly as a function of . In some cases we may be able to
solve for in terms of .

We use the Chain Rule to justify this procedure: If and satisfy , then

so

and

Thus Equation 4 is satisfied.
When applying differential equations, we are usually not as interested in finding a

family of solutions (the general solution) as we are in finding a solution that satisfies
some additional requirement. In many physical problems we need to find the particu-
lar solution that satisfies a condition of the form . This is called an initial
condition, and the problem of finding a solution of the differential equation that sat-
isfies the initial condition is called an initial-value problem.

EXAMPLE 1

(a) Solve the differential equation .

(b) Find the solution of this equation that satisfies the initial condition .

SOLUTION
(a) We write the equation in terms of differentials and integrate both sides:

where is an arbitrary constant. (We could have used a constant on the left side
and another constant on the right side. But then we could combine these con-
stants by writing .)

Solving for , we get

We could leave the solution like this or we could write it in the form

where . (Since is an arbitrary constant, so is .)

h�y� � 1�f �y�

h�y� dy � t�x� dx

y x

y h�y� dy � y t�x� dx

y x
y x

5

h t

d

dx �y h�y� dy �
d

dx �y t�x� dx
d

dy �y h�y� dy dy

dx
� t�x�

h�y�
dy

dx
� t�x�

y�x0 � � y0

dy

dx
�

x 2

y 2

y�0� � 2

y 2dy � x 2dx

y y 2dy � y x 2dx

1
3 y 3 � 1

3 x 3 � C

C C1

C2

C � C2 � C1

y

y � s
3 x 3 � 3C

y � s
3 x 3 � K

K � 3C C K

5
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■ The technique for solving separable 
differential equations was first used by
James Bernoulli (in 1690) in solving 
a problem about pendulums and by
Leibniz (in a letter to Huygens in 
1691). John Bernoulli explained the
general method in a paper published 
in 1694.

■ Figure 1 shows graphs of several
members of the family of solutions of
the differential equation in Example 1.
The solution of the initial-value problem
in part (b) is shown in blue.

3

_3

_3 3

FIGURE 1
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(b) If we put in the general solution in part (a), we get . To sat-
isfy the initial condition , we must have and so .

Thus the solution of the initial-value problem is

■

EXAMPLE 2 Solve the differential equation .

SOLUTION Writing the equation in differential form and integrating both sides, we
have

where is a constant. Equation 6 gives the general solution implicitly. In this case
it’s impossible to solve the equation to express explicitly as a function of . ■

EXAMPLE 3 Solve the equation .

SOLUTION First we rewrite the equation using Leibniz notation: 

If , we can rewrite it in differential notation and integrate:

This equation defines implicitly as a function of . But in this case we can solve
explicitly for as follows:

so

We can easily verify that the function is also a solution of the given differen-
tial equation. So we can write the general solution in the form

where is an arbitrary constant ( , or , or ). ■

y � s
3 x 3 � 8

y�0� � 2 s
3 K � 2 K � 8

y �0� � s
3 Kx � 0

dy

dx
�

6x 2

2y � cos y

�2y � cos y�dy � 6x 2 dx

y �2y � cos y�dy � y 6x 2 dx

y 2 � sin y � 2x 3 � C

C
y x

y� � x 2 y

dy

dx
� x 2y

y � 0

y
dy

y
� y x 2 dx

ln � y � �
x 3

3
� C

y x
y

� y � � e ln � y � � e �x 3�3��C � eCex 3�3

y � �eCex 3�3

y � 0

y � Aex 3�3

A A � eC A � �eC A � 0

V

6

dy

y
� x 2 dx y � 0

■ Some computer algebra systems 
can plot curves defined by implicit
equations. Figure 2 shows the graphs of
several members of the family of solu-
tions of the differential equation in
Example 2. As we look at the curves
from left to right, the values of are ,
, , , , , and .�3�2�1012

3C

4

_4

_2 2

FIGURE 2 

■ If a solution is a function that satis-
fies for some , it follows
from a uniqueness theorem for solutions
of differential equations that 
for all .x

y�x� � 0

xy�x� � 0
y

■ Several solutions of the differential
equation in Example 3 are graphed in
Figure 3. The values of are the same
as the -intercepts.y

A

6

_6

_2 2

FIGURE 3
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EXAMPLE 4 Solve the equation .

SOLUTION This differential equation was studied in Section 3.4, where it was
called the law of natural growth (or decay). Since it is a separable equation, we can
solve it by the methods of this section as follows:

where is an arbitrary constant. ■

LOGISTIC GROWTH

The differential equation of Example 4 is appropriate for modeling population growth
says that the rate of growth is proportional to the size of the population)

under conditions of unlimited environment and food supply. However, in a restricted
environment and with limited food supply, the population cannot exceed a maximal
size (called the carrying capacity) at which it consumes its entire food supply. If
we make the assumption that the rate of growth of population is jointly proportional
to the size of the population and the amount by which falls short of the maximal
size , then we have the equation

where is a constant. Equation 7 is called the logistic differential equation and was
used by the Dutch mathematical biologist Pierre-François Verhulst in the 1840s to model
world population growth.

The logistic equation is separable, so we write it in the form

Using partial fractions, we have

and so

dy

dt
� ky

y
dy

y
� y k dt y � 0

ln � y � � kt � C

� y � � ekt�C � eCe kt

y � Aekt

A ���eC or 0�

�y� � ky

M

�y� y
�M � y�

dy

dt
� ky�M � y�

k

y
dy

y�M � y�
� y k dt

1

y�M � y�
�

1

M �1

y
�

1

M � y	
1

M �y
dy

y
� y

dy

M � y	 � y k dt � kt � C

1

M
(ln � y � � ln � M � y �) � kt � C

7
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But and , since , so we have

If the population at time is , then , so

If we solve this equation for , we get

Using the latter expression for , we see that

which is to be expected.
The graph of the logistic growth function is shown in Figure 4. At first the graph is

concave upward and the growth curve appears to be almost exponential, but then it is
concave downward and approaches the limiting population .

MIXING PROBLEMS

A typical mixing problem involves a tank of fixed capacity filled with a thoroughly
mixed solution of some substance, such as salt. A solution of a given concentration
enters the tank at a fixed rate and the mixture, thoroughly stirred, leaves at a fixed rate,
which may differ from the entering rate. If denotes the amount of substance in the
tank at time , then is the rate at which the substance is being added minus the
rate at which it is being removed. The mathematical description of this situation often
leads to a first-order sepa rable differential equation. We can use the same type of rea-
soning to model a variety of phenomena: chemical reactions, discharge of pollutants
into a lake, injection of a drug into the bloodstream.

EXAMPLE 5 A tank contains 20 kg of salt dissolved in 5000 L of water. Brine that
contains 0.03 kg of salt per liter of water enters the tank at a rate of 25 L�min. The
solution is kept thoroughly mixed and drains from the tank at the same rate. How
much salt remains in the tank after half an hour?

SOLUTION Let be the amount of salt (in kilograms) after minutes. We are
given that and we want to find . We do this by finding a differential
equation satisfied by . Note that is the rate of change of the amount of salt,
so

� y � � y � M � y � � M � y 0 � y � M

ln 
y

M � y
� M�kt � C�

y

M � y
� AekMt �A � eMC �

t � 0 y�0� � y0 A � y0��M � y0�

y

M � y
�

y0

M � y0
ekMt

y

y �
y0MekMt

M � y0 � y0ekMt �
y0M

y0 � �M � y0�e�kMt

y

lim
t l �

y�t� � M

M

y�t�
y��t�

y�t� t
y�0� � 20 y�30�

y�t� dy�dt

dy

dt
� �rate in� � �rate out�

8

t

9
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FIGURE 4
Logistic growth function 
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where (rate in) is the rate at which salt enters the tank and (rate out) is the rate at
which salt leaves the tank. We have

The tank always contains 5000 L of liquid, so the concentration at time is
(measured in kilograms per liter). Since the brine flows out at a rate of

25 L�min, we have

Thus from Equation 9 we get

Solving this separable differential equation, we obtain

Since , we have , so

Therefore

Since is continuous and and the right side is never 0, we deduce that
is always positive. Thus and so

The amount of salt after 30 min is

■

DIRECTION FIELDS

Suppose we are given a first-order differential equation of the form

where is some expression in and . [Recall that a separable equation is the
special case in which can be factored as a function of times a function of .]
Even if it is impossible to find a formula for the solution, we can still visualize the

rate in � �0.03 
kg

L ��25 
L

min� � 0.75 
kg

min

t
y�t��5000

rate out � � y�t�
5000

 
kg

L ��25 
L

min� �
y�t�
200

 
kg

min

dy

dt
� 0.75 �

y�t�
200

�
150 � y�t�

200

y
dy

150 � y
� y

dt

200

�ln � 150 � y � �
t

200
� C

y�0� � 20 �ln 130 � C

�ln � 150 � y � �
t

200
� ln 130

� 150 � y � � 130e�t�200

y�t� y�0� � 20
150 � y�t� � 150 � y � � 150 � y

y�t� � 150 � 130e�t�200

y�30� � 150 � 130e�30�200 � 38.1 kg

y� � F�x, y�

F�x, y� x y
F�x, y� x y
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FIGURE 5

■ Figure 5 shows the graph of the 
function of Example 5. Notice that,
as time goes by, the amount of salt
approaches 150 kg.

y�t�
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solution curves by means of a direction field. If a solution curve passes through a point
, then its slope at that point is , which is equal to . If we draw short line

segments with slopes at several points , the result is called a direction field
(or slope field). These line segments indicate the direction in which a solution curve
is heading, so the direction field helps us visualize the general shape of these curves.

EXAMPLE 6
(a) Sketch the direction field for the differential equation .
(b) Use part (a) to sketch the solution curve that passes through the origin.

SOLUTION
(a) We start by computing the slope at several points in the following chart:

Now we draw short line segments with these slopes at these points. The result is the
direction field shown in Figure 6.

(b) We start at the origin and move to the right in the direction of the line segment
(which has slope ). We continue to draw the solution curve so that it moves paral-
lel to the nearby line segments. The resulting solution curve is shown in Figure 7.
Returning to the origin, we draw the solution curve to the left as well. ■

The more line segments we draw in a direction field, the clearer the picture
becomes. Of course, it’s tedious to compute slopes and draw line segments for a huge
number of points by hand, but computers are well suited for this task. Figure 8 shows
a more detailed, computer-drawn direction field for the differential equation in
Example 6. It enables us to draw, with reasonable accuracy, the solution curves shown
in Figure 9 with -intercepts , , , , and .

�x, y� y� F�x, y�
F�x, y� �x, y�

y� � x 2 � y 2 � 1

�1

y �2 �1 0 1 2

FIGURE 8

3

_3

_3 3

FIGURE 9

3

_3

_3 3

V

x �2 �1 0 1 2 �2 �1 0 1 2 . . .

y 0 0 0 0 0 1 1 1 1 1 . . .

3 0 �1 0 3 4 1 0 1 4 . . .y� � x 2 � y 2 � 1
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y
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2
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FIGURE 6

FIGURE 7

Module 7.7 shows direction fields
and solution curves for a variety of differ-
ential equations.

TEC

7.7 EXERCISES

1–8 ■ Solve the differential equation.

1. 2.
dy

dx
� xy 2 dy

dx
� xe�y

3. 4.

5. 6.

xy 2y� � x � 1 �y 2 � xy 2�y� � 1

�y � sin y�y� � x � x 3 dy

d�
�

e y sin2�

y sec �
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25–26 ■ Refer to the direction fields in Exercises 21–24.

25. Use field II to sketch the graphs of the solutions that sat-
isfy the given initial conditions.
(a) (b) (c) 

26. Use field IV to sketch the graphs of the solutions that sat-
isfy the given initial conditions.
(a) (b) (c) 

27–28 ■ Sketch a direction field for the differential equation.
Then use it to sketch three solution curves.

27. 28.

29–32 ■ Sketch the direction field of the differential equa tion.
Then use it to sketch a solution curve that passes through the
given point.

29. ,  30. ,  

31. ,  32. ,  

33. Psychologists interested in learning theory study learning
curves. A learning curve is the graph of a function ,
the performance of someone learning a skill as a function
of the training time . The derivative represents the
rate at which performance improves.
(a) If is the maximum level of performance of which

the learner is capable, explain why the differential
equation

is a reasonable model for learning.

y

0 x

4

2_2

2

y

0 x2_2

2

_2

y

0 x

4

2_2

2

y

0 x2_2

2

_2

I II

III IV

y�0� � 1 y�0� � 2 y�0� � �1

y�0� � �1 y�0� � 0 y�0� � 1

y� � 1
2 y y� � x � y � 1

y� � y � 2x �1, 0� y� � 1 � xy �0, 0�

y� � y � xy �0, 1� y� � x � xy �1, 0�

P�t�

t dP�dt

M

k a positive constant
dP

dt
� k�M � P�

7. 8.

9–14 ■ Find the solution of the differential equation that satis-
fies the given initial condition.

9. ,  

10. ,  

11. ,  

12. ,  

13. ,  ,  

14. ,  

15. Find an equation of the curve that passes through the
point and whose slope at is .

16. Find the function such that and
.

17. (a) Solve the differential equation .

; (b) Solve the initial-value problem ,
, and graph the solution.

(c) Does the initial-value problem ,
, have a solution? Explain.

; 18. Solve the equation and graph several
members of the family of solutions. How does the solu-
tion curve change as the constant varies?

19. Solve the initial-value problem ,
, and graph the solution (if your CAS does

implicit plots).

20. Solve the equation and graph sev-
eral members of the family of solutions (if your CAS
does implicit plots). How does the solution curve change
as the constant varies?

21–24 ■ Match the differential equation with its direction
field (labeled I–IV). Give reasons for your answer.

21. 22.

23. 24.

dp

dt
� t 2p � p � t 2 � 1

dz

dt
� e t�z � 0

dy

dx
�

x

y
y�0� � �3

dy

dx
�

ln x

xy
y�1� � 2

du

dt
�

2t � sec2t

2u
u�0� � �5

P�1� � 2
dP

dt
� sPt

0 � x � ��2y���3� � ay� tan x � a � y

L�1� � �1
dL

dt
� kL2 ln t

xy�x, y��0, 1�

f ��x� � f �x��1 � f �x��f
f �0� � 1

2

y� � 2xs1 � y 2 

y� � 2xs1 � y 2 

y�0� � 0
y� � 2xs1 � y 2 

y�0� � 2

e�yy� � cos x � 0

C

y� � �sin x��sin y
y�0� � ��2

y� � xsx 2 � 1��ye y �

C

CAS

CAS

y� � x�2 � y�y� � 2 � y

y� � sin x sin yy� � x � y � 1
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(b) Solve the differential equation in part (a) to find an
expression for . What is the limit of this expression?

34. A sphere with radius 1 m has temperature . It lies
inside a concentric sphere with radius 2 m and tempera-
ture . The temperature at a distance from the
common center of the spheres satisfies the differential 
equation

If we let , then satisfies a first-order differential
equation. Solve it to find an expression for the temperature

between the spheres.

35. A glucose solution is administered intravenously into the
bloodstream at a constant rate . As the glucose is added, it
is converted into other substances and removed from the
bloodstream at a rate that is proportional to the concen-
tration at that time. Thus a model for the concentration

of the glucose solution in the bloodstream is

where is a positive constant.
(a) Suppose that the concentration at time is .

Determine the concentration at any time by solving the
differential equation.

(b) Assuming that , find and interpret
your answer.

36. A certain small country has $10 billion in paper currency in
circulation, and each day $50 million comes into the coun-
try’s banks. The government decides to introduce new cur-
rency by having the banks replace old bills with new ones
whenever old currency comes into the banks. Let
denote the amount of new currency in circulation at time ,
with .
(a) Formulate a mathematical model in the form of an 

initial-value problem that represents the “flow” of the
new currency into circulation.

(b) Solve the initial-value problem found in part (a).
(c) How long will it take for the new bills to account for

of the currency in circulation?

37. Write the solution of the logistic initial-value problem

and use it to find the population sizes and . At
what time does the population reach 900?

38. The Pacific halibut fishery has been modeled by the differ-
ential equation

15 	C

25 	C T �r� r

d 2T

dr 2 �
2

r

dT

dr
� 0

S � dT�dr S

T �r�

r

C � C�t�

dC

dt
� r � kC

k
C0t � 0

t

lim t l � C�t�C0 � r�k

x � x �t�
t

x �0� � 0

90%

dP

dt
� 0.00008P�1000 � P� P�0� � 100

P�80�P�40�

P�t�

dy

dt
� ky�M � y�
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where is the biomass (the total mass of the members of 
the population) in kilograms at time (measured in years),
the carrying capacity is estimated to be ,
and per year.
(a) If , find the biomass a year later.
(b) How long will it take the biomass to reach ?

39. One model for the spread of a rumor is that the rate of
spread is proportional to the product of the fraction of the
popula tion who have heard the rumor and the fraction who
have not heard the rumor.
(a) Write a differential equation that is satisfied by .
(b) Solve the differential equation.
(c) A small town has 1000 inhabitants. At 8 AM, 80 people

have heard a rumor. By noon half the town has heard it.
At what time will of the population have heard the
rumor?

40. Biologists stocked a lake with 400 fish and estimated the 
carrying capacity (the maximal population for the fish of
that species in that lake) to be 10,000. The number of fish
tripled in the first year.
(a) Assuming that the size of the fish population satisfies

the logistic equation, find an expression for the size of
the population after years.

(b) How long will it take for the population to increase 
to 5000?

41. (a) Show that if satisfies the logistic equation , then

(b) Deduce that a population grows fastest when it reaches
half its carrying capacity.

; 42. For a fixed value of (say ), the family of logistic
functions given by Equation 8 depends on the initial value

and the proportionality constant . Graph several mem -
bers of this family. How does the graph change when
varies? How does it change when varies?

43. A tank contains 1000 L of brine with 15 kg of dissolved
salt. Pure water enters the tank at a rate of 10 L�min. The
solution is kept thoroughly mixed and drains from the tank
at the same rate. How much salt is in the tank (a) after 

minutes and (b) after 20 minutes?

44. The air in a room with volume contains car-
bon dioxide initially. Fresher air with only 0.05% carbon
dioxide flows into the room at a rate of and the
mixed air flows out at the same rate. Find the percentage 
of carbon dioxide in the room as a function of time. What
happens in the long run?

45. A vat with 500 gallons of beer contains 4% alcohol (by 
volume). Beer with 6% alcohol is pumped into the vat at a
rate of and the mixture is pumped out at the same
rate. What is the percentage of alcohol after an hour?

y�t�
t

M � 8 
 107 kg
k � 8.875 
 10�9

y�0� � 2 
 107 kg
4 
 107 kg

y

y

90%

t

y

d 2y

dt 2 � k 2y�M � y��M � 2y�

M M � 10

y0 k
y0

k

t

180 m3 0.15%

2 m3�min

7

5 gal�min
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49. Let be the area of a tissue culture at time and let
be the final area of the tissue when growth is complete.
Most cell divisions occur on the periphery of the tissue
and the number of cells on the periphery is proportional to

. So a reasonable model for the growth of tissue is
obtained by assuming that the rate of growth of the area is
jointly proportional to and .
(a) Formulate a differential equation and use it to show

that the tissue grows fastest when .
(b) Solve the differential equation to find an expression 

for . Use a computer algebra system to perform
the integration.

50. According to Newton’s Law of Universal Gravitation, the 
gravitational force on an object of mass that has been
projected vertically upward from the earth’s surface is 

where is the object’s distance above the surface 
at time , is the earth’s radius, and is the acceler-
ation due to gravity. Also, by Newton’s Second Law,

and so

(a) Suppose a rocket is fired vertically upward with an
initial velocity . Let be the maximum height above
the surface reached by the object. Show that

[Hint: By the Chain Rule, .]
(b) Calculate . This limit is called the

escape velocity for the earth.
(c) Use mi and ft�s to calculate in 

feet per second and in miles per second.

F �
mtR2

�x � R�2

x � x�t�
t R t

F � ma � m �dv�dt�

m
dv

dt
� �

mtR2

�x � R�2

v0 h

v0 � 	 2tRh

R � h

m �dv�dt� � mv �dv�dx�
ve � lim h l � v0

R � 3960 t � 32 2 ve

MtA�t�

sA�t�

M � A�t�sA�t�

A�t� � 1
3 M

A�t�
CAS

m
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46. A tank contains 1000 L of pure water. Brine that contains
0.05 kg of salt per liter of water enters the tank at a rate of
5 L�min. Brine that contains 0.04 kg of salt per liter of
water enters the tank at a rate of 10 L�min. The solution is
kept thoroughly mixed and drains from the tank at a rate of
15 L�min. How much salt is in the tank (a) after minutes
and (b) after one hour?

47. When a raindrop falls, it increases in size and so its mass 
at time is a function of , . The rate of growth of the
mass is for some positive constant . When we 
apply New ton’s Law of Motion to the raindrop, we get

, where is the velocity of the raindrop
(directed downward) and is the acceleration due to gravity.
The terminal velocity of the raindrop is . Find an
expression for the terminal velocity in terms of and .

48. An object of mass is moving horizontally through a
medium which resists the motion with a force that is a func-
tion of the velocity; that is,

where and represent the velocity and posi-
tion of the object at time , respectively. For example, think
of a boat moving through the water.
(a) Suppose that the resisting force is proportional to the

velocity, that is, , a positive constant. 
(This model is appropriate for small values of .) Let

and be the initial values of and .
Determine and at any time . What is the total dis-
tance that the object travels from time ?

(b) For larger values of a better model is obtained by sup-
posing that the resisting force is proportional to the
square of the velocity, that is, , . (This
model was first proposed by Newton.) Let and be
the initial values of and . Determine and at any
time . What is the total distance that the object travels
in this case?

t

t t m�t�
km�t� k

�mv�� � tm v
t

lim t l � v�t�
t k

m

m
d 2s

dt 2 � m
dv

dt
� f �v�

s � s�t�v � v�t�
t

kf �v� � �kv
v

svs�0� � s0v�0� � v0

tsv
t � 0

v

k � 0f �v� � �kv2

s0v0

svsv
t

CHAPTER 7 REVIEW
CONCEPT CHECK

1. (a) Draw two typical curves and , where
for . Show how to approximate

the area between these curves by a Riemann sum and
sketch the corresponding approximating rectangles.
Then write an expression for the exact area.

(b) Explain how the situation changes if the curves have 
equations and , where 
for .

2. Suppose that Sue runs faster than Kathy throughout a 
1500-meter race. What is the physical meaning of the area
between their velocity curves for the first minute of the race?

y � f �x� y � t�x�
f �x� � t�x� a  x  b

x � f �y� x � t�y� f �y� � t�y�
c  y  d

3. (a) Suppose is a solid with known cross-sectional areas.
Explain how to approximate the volume of by a 
Riemann sum. Then write an expression for the exact
volume.

(b) If is a solid of revolution, how do you find the cross-
sectional areas?

4. (a) What is the volume of a cylindrical shell?
(b) Explain how to use cylindrical shells to find the volume

of a solid of revolution.
(c) Why might you want to use the shell method instead of

slicing?

S
S

S
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9. (a) What is the physical significance of the center of mass
of a thin plate?

(b) If the plate lies between and , where
, write expressions for the coordinates of the

center of mass.

10. What does the Theorem of Pappus say?

11. (a) What is a differential equation?
(b) What is the order of a differential equation?
(c) What is an initial condition?

12. What is a direction field for the differential equation
?

13. What is a separable differential equation? How do you 
solve it?

y� � F�x, y�

y � 0y � f �x�
a  x  b

5. (a) How is the length of a curve defined?
(b) Write an expression for the length of a smooth curve

given by , .
(c) What if is given as a function of ?

6. (a) Write an expression for the surface area of the surface
obtained by rotating the curve , ,
about the -axis.

(b) What if is given as a function of ?
(c) What if the curve is rotated about the -axis?

7. Suppose that you push a book across a 6-meter-long table
by exerting a force at each point from to .
What does represent? If is measured in 
newtons, what are the units for the integral?

8. Describe how we can find the hydrostatic force against a
vertical wall submersed in a fluid.

y � f �x� a  x  b
x y

a  x  by � f �x�
x

yx
y

x � 6x � 0f �x�
f �x�x

6
0 f �x� dx

422 CHAPTER 7 APPLICATIONS OF INTEGRATION

EXERCISES

1–4 ■ Find the area of the region bounded by the given curves.

1.

2.

3.

4. ,  

5–9 ■ Find the volume of the solid obtained by rotating the
region bounded by the given curves about the specified axis.

5. , ;  

6. , ;  

7. , ;  

8. , ;  

9. , (where , );
about the -axis

10–12 ■ Set up, but do not evaluate, an integral for the volume
of the solid obtained by rotating the region bounded by the given
curves about the specified axis.

10. , , ;  about the -axis

11. , , ;  about 

12. , ;  about 

13. Find the volumes of the solids obtained by rotating the
region bounded by the curves and about the
following lines.
(a) The -axis      (b) The -axis      (c) 

y � x 2, y � 4x � x 2

y � 1�x,    y � x 2,    y � 0,    x � e

y � 1 � 2x 2,    y � � x �
x � y � 0 x � y 2 � 3y

y � 2x y � x 2 about the x-axis

x � 1 � y 2 y � x � 3 about the y-axis

x � 0 x � 9 � y 2 about x � �1

y � x 2 � 1 y � 9 � x 2 about y � �1

x 2 � y 2 � a2 x � a � h a � 0 h � 0
y

y � tan x y � x x � ��3 y

y � cos2 x � x �  ��2 y � 1
4 x � ��2

y � sx y � x 2 y � 2

y � x y � x 2

x y y � 2

14. Let be the region in the first quadrant bounded by the
curves and . Calculate the following
quantities.
(a) The area of 
(b) The volume obtained by rotating about the -axis
(c) The volume obtained by rotating about the -axis

15. Let be the region bounded by the curves 
, and . Use the Midpoint Rule with to

estimate the following quantities.
(a) The area of 
(b) The volume obtained by rotating about the -axis

; 16. Let be the region bounded by the curves and
. Estimate the following quantities.

(a) The -coordinates of the points of intersection of the
curves

(b) The area of 
(c) The volume generated when is rotated about the 

-axis
(d) The volume generated when is rotated about the 

-axis

17–20 ■ Each integral represents the volume of a solid.
Describe the solid.

17. 18.

19.

20.

21. The base of a solid is a circular disk with radius 3. Find the
volume of the solid if parallel cross-sections perpendicular 

�
y � 2x � x 2y � x 3

�
x�
y�

y � tan�x 2 �,�
n � 4y � 0x � 1

�
x�

y � 1 � x 2�
y � x 6 � x � 1

x

�

x
�

y
�

y
��2

0
2� cos2x dxy

��2

0
2�x cos x dx

y
�

0
� �2 � sin x�2 dx

y
4

0
2� �6 � y��4y � y 2� dy
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the elevator from the basement to the third floor, a distance 
of 30 ft?

35. A tank full of water has the shape of a paraboloid of revolu-
tion as shown in the figure; that is, its shape is obtained by
rotating a parabola about a vertical axis.
(a) If its height is 4 ft and the radius at the top is 4 ft, find

the work required to pump the water out of the tank.

; (b) After 4000 ft-lb of work has been done, what is the
depth of the water remaining in the tank?

36. A trough is filled with water and its vertical ends have the
shape of the parabolic region in the figure. Find the hydro -
static force on one end of the trough.

37. A gate in an irrigation canal is constructed in the form of a
trapezoid 3 ft wide at the bottom, 5 ft wide at the top, and
2 ft high. It is placed vertically in the canal so that the water
just covers the gate. Find the hydrostatic force on one side
of the gate.

38. Find the centroid of the region shown.

39–40 ■ Find the centroid of the region bounded by the given
curves.

39. ,  

40. ,  ,  ,  

41. Find the volume obtained when the circle of radius 1 with 
center is rotated about the -axis.

42. Use the Theorem of Pappus and the fact that the volume of 
a sphere of radius is to find the centroid of the semi -
circular region bounded by the curve and 
the -axis.

4 ft

4 ft

4 ft

8 ft

(3, 2)

x

y

0

y � sxy � 1
2 x

x � 3��4x � ��4y � 0y � sin x

y�1, 0�

4
3 �r 3r

y � sr 2 � x 2 

x

to the base are isosceles right triangles with hypotenuse
lying along the base.

22. The base of a solid is the region bounded by the parabolas
and . Find the volume of the solid if the

cross-sections perpendicular to the -axis are squares with
one side lying along the base.

23. The height of a monument is 20 m. A horizontal cross-
section at a distance meters from the top is an equilateral
triangle with side meters. Find the volume of the 
monument.

24. (a) The base of a solid is a square with vertices located at
, and . Each cross-section

perpendicular to the -axis is a semicircle. Find the vol-
ume of the solid.

(b) Show that by cutting the solid of part (a), we can
rearrange it to form a cone. Thus compute its volume
more simply.

25–26 ■ Find the length of the curve.

25. ,  

26. ,  

27. (a) Find the length of the curve

(b) Find the area of the surface obtained by rotating the
curve in part (a) about the -axis.

28. (a) The curve , , is rotated about the 
-axis. Find the area of the resulting surface.

(b) Find the area of the surface obtained by rotating the
curve in part (a) about the -axis.

29. Use Simpson’s Rule with to estimate the length of
the sine curve , .

30. Use Simpson’s Rule with to estimate the area of the 
surface obtained by rotating the sine curve in Exercise 29
about the -axis.

31. Find the length of the curve

32. Find the area of the surface obtained by rotating the curve
in Exercise 31 about the -axis.

33. A force of 30 N is required to maintain a spring stretched
from its natural length of 12 cm to a length of 15 cm. How
much work is done in stretching the spring from 12 cm to
20 cm?

34. A 1600-pound elevator is suspended by a 200-foot cable
that weighs 10 lb�ft. How much work is required to raise

y � x 2 y � 2 � x 2

x

x
1
4 x

�1, 0�, �0, 1�, ��1, 0� �0, �1�
x

0  x  3y � 1
6�x 2 � 4�3�2

��3  x  �y � 2 ln(sin 1
2 x)

1  x  2y �
x 4

16
�

1

2x 2

y

y
0  x  1y � x 2

x

n � 10
0  x  �y � sin x

n � 10

x

1  x  16y � y
x

1
sst � 1 dt

y
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(b) Check your work in part (a) by solving the differential
equation explicitly. What type of curve is each solution
curve?

48. Let be the region bounded by , , and ,
where . Let be the region bounded by ,

, and .
(a) Is there a value of such that and have the same

area?
(b) Is there a value of such that sweeps out the same 

volume when rotated about the -axis and the -axis?
(c) Is there a value of such that and sweep out the

same volume when rotated about the -axis?
(d) Is there a value of such that and sweep out the

same volume when rotated about the -axis?

x � by � 0y � x 2�1

y � x 2�2b � 0
y � b 2x � 0

�2�1b

�1b
yx

�2�1b
x
�2�1b
y

43–44 ■ Solve the differential equation.

43. 44.

45–46 ■ Solve the initial-value problem.

45. ,  

46. ,  

47. (a) Sketch a direction field for the differential equation
. Then use it to sketch the four solutions that 

satisfy the initial conditions , ,
, and .

dx

dt
� 1 � t � x � tx2ye y2

y� � 2x � 3sx

r�0� � 5
dr

dt
� 2tr � r

y�0� � 0�1 � cos x�y� � �1 � e�y�sin x

y� � x�y
y�0� � �1y�0� � 1

y��2� � 1y�2� � 1
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425

8.1 SEQUENCES
A sequence can be thought of as a list of numbers written in a definite order:

The number is called the first term, is the second term, and in general is the
nth term. We will deal exclusively with infinite sequences and so each term will
have a successor .

Notice that for every positive integer there is a corresponding number and so
a sequence can be defined as a function whose domain is the set of positive integers.
But we usually write instead of the function notation for the value of the func-
tion at the number .

NOTATION The sequence { , , , . . .} is also denoted by

EXAMPLE 1 Some sequences can be defined by giving a formula for the nth term.
In the following examples we give three descriptions of the sequence: one by using
the preceding notation, another by using the defining formula, and a third by writing
out the terms of the sequence. Notice that doesn’t have to start at 1.

(a)  

(b)  

(c)  

(d)  ■

a1, a2, a3, a4, . . . , an, . . .

a1 a2 an

an

an�1

n an

an f �n�
n

a1 a2 a3

�an � or �an � n�1
�

n

� n

n � 1�n�1

�

an �
n

n � 1 �1

2
, 

2

3
, 

3

4
, 

4

5
, . . . , 

n

n � 1
, . . .�

���1�n�n � 1�
3n � an �

��1�n�n � 1�
3n ��

2

3
, 

3

9
, �

4

27
, 

5

81
, . . . , 

��1�n�n � 1�
3n , . . .�

{sn � 3 }n�3
�

an � sn � 3 , n � 3 {0, 1, s2 , s3 , . . . , sn � 3 , . . .}

�cos 
n�

6 �n�0

�

an � cos 
n�

6
, n � 0 �1, 

s3

2
, 

1

2
, 0, . . . , cos 

n�

6
, . . .�

SERIES
Infinite series are sums of infinitely many terms. (One of our aims in this chapter is to define exactly
what is meant by an infinite sum.) Their importance in calculus stems from Newton’s idea of represent-
ing functions as sums of infinite series. For instance, in finding areas he often integrated a function by
first expressing it as a series and then integrating each term of the series. We will pursue his idea in
Section 8.7 in order to integrate such functions as . (Recall that we have previously been unable to
do this.) Many of the functions that arise in mathematical physics and chemistry, such as Bessel func-
tions, are defined as sums of series, so it is important to be familiar with the basic concepts of conver-
gence of infinite sequences and series.

Physicists also use series in another way, as we will see in Section 8.8. In studying fields as diverse as
optics, special relativity, and electromagnetism, they analyze phenomena by replacing a function with
the first few terms in the series that represents it.

e�x2

8
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EXAMPLE 2 Find a formula for the general term of the sequence

assuming that the pattern of the first few terms continues.

SOLUTION We are given that

Notice that the numerators of these fractions start with 3 and increase by 1 whenever
we go to the next term. The second term has numerator 4, the third term has numer-
ator 5; in general, the th term will have numerator . The denominators are the
powers of 5, so has denominator . The signs of the terms are alternately posi-
tive and negative, so we need to multiply by a power of . In Example 1(b) the
factor meant we started with a negative term. Here we want to start with a
positive term and so we use or . Therefore

■

EXAMPLE 3 Here are some sequences that don’t have a simple defining equation.

(a) The sequence , where is the population of the world as of January 1 in
the year .

(b) If we let be the digit in the nth decimal place of the number , then is a
well-defined sequence whose first few terms are

(c) The Fibonacci sequence is defined recursively by the conditions

Each term is the sum of the two preceding terms. The first few terms are

This sequence arose when the 13th-century Italian mathematician known as Fibonacci
solved a problem concerning the breeding of rabbits (see Exercise 45). ■

A sequence such as the one in Example 1(a), , can be pictured
either by plotting its terms on a number line as in Figure 1 or by plotting its graph as
in Figure 2. Note that, since a sequence is a function whose domain is the set of posi-
tive integers, its graph consists of isolated points with coordinates

. . .    . . .

From Figure 1 or 2 it appears that the terms of the sequence are
approaching 1 as becomes large. In fact, the difference

�3

5
, �

4

25
, 

5

125
, �

6

625
, 

7

3125
, . . .�

a 1 �
3

5
a 2 � �

4

25
a 3 �

5

125
a 4 � �

6

625
a 5 �

7

3125

n n � 2
an 5 n

�1
��1� n

��1� n�1 ��1� n�1

an � ��1� n�1 n � 2

5 n

�pn� pn

n

an e �an �

�7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, . . .�

� fn�

f1 � 1 f2 � 1 fn � fn�1 � fn�2 n � 3

�1, 1, 2, 3, 5, 8, 13, 21, . . .�

an � n��n � 1�

�1, a1� �2, a2� �3, a3� �n, an �

an � n��n � 1�
n

1 �
n

n � 1
�

1

n � 1

anV

0 11

2

a¡ a™ a£
a¢

FIGURE 1

FIGURE 2

0 n

an

1

1

2 3 4 5 6 7

7

8
a¶=
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can be made as small as we like by taking sufficiently large. We indicate this by 
writing

In general, the notation

means that the terms of the sequence approach as becomes large. Notice that
the following definition of the limit of a sequence is very similar to the definition of a
limit of a function at infinity given in Section 1.6.

DEFINITION A sequence has the limit and we write

if we can make the terms as close to as we like by taking sufficiently
large. If exists, we say the sequence converges (or is convergent).
Otherwise, we say the sequence diverges (or is divergent).

Figure 3 illustrates Definition 1 by showing the graphs of two sequences that have
the limit .

A more precise version of Definition 1 is as follows.

DEFINITION A sequence has the limit and we write

if for every there is a corresponding integer such that

if    then    

Definition 2 is illustrated by Figure 4, in which the terms , , , . . . are plotted
on a number line. No matter how small an interval is chosen, there exists
an such that all terms of the sequence from onward must lie in that interval.

n

lim
n l �

n

n � 1
� 1

lim
n l �

an � L

�an � L n

�an � L

lim
n l �

an � L or an l L as n l �

an L n
limn l � an

L

0 n

an

L

0 n

an

L

FIGURE 3
Graphs of two
sequences with
lim an= L
n     `

�an� L

lim
n l �

an � L or an l L as n l �

� � 0 N

n � N 	 an � L 	 	 �

a1 a2 a3

�L � �, L � ��
N aN�1

FIGURE 4 0 L-∑ L L+∑

a¡ a£ a¢a™ a∞aß a¶aˆ a˜aN+1 aN+2

1

2

■ Compare this definition with 
Definition 1.6.7.
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Another illustration of Definition 2 is given in Figure 5. The points on the graph of
must lie between the horizontal lines and if . This

picture must be valid no matter how small is chosen, but usually a smaller requires
a larger .

If you compare Definition 2 with Definition 1.6.7, you will see that the only differ-
ence between and is that is required to be an inte-
ger. Thus we have the following theorem, which is illustrated by Figure 6.

THEOREM If and when is an integer, then 
.

In particular, since we know that when , we have

if 

If becomes large as n becomes large, we use the notation . The
following precise definition is similar to Definition 1.6.8.

DEFINITION means that for every positive number there
is a positive integer such that

if    then    

If , then the sequence is divergent but in a special way. We say
that diverges to .

The Limit Laws given in Section 1.4 also hold for the limits of sequences and their
proofs are similar.

�an� y � L � � y � L � � n � N
� �

N

20 n

y

1 3 4

L

y=L+∑

N

y=L-∑

FIGURE 5

limn l � an � L limx l � f �x� � L n

limx l � f �x� � L f �n� � an n
limn l � an � L

FIGURE 6

y=ƒ

20 x

y

1 3 4

L

limx l � �1�xr � � 0 r � 0

lim
n l �

1

nr � 0 r � 0

an lim n l � an � �

limn l � an � � M
N

n � N an � M

lim n l � an � � �an �
�an � �

3

4

5
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If and are convergent sequences and is a constant, then

The Squeeze Theorem can also be adapted for sequences as follows (see Figure 7).

If for and , then .

Another useful fact about limits of sequences is given by the following theorem,
whose proof is left as Exercise 49.

THEOREM If , then .

EXAMPLE 4 Find .

SOLUTION The method is similar to the one we used in Section 1.6: Divide numer-
ator and denominator by the highest power of that occurs in the denominator and
then use the Limit Laws.

Here we used Equation 4 with . ■

lim
n l �

�an � bn � � lim
n l �

an � lim
n l �

bn

lim
n l �

�an � bn � � lim
n l �

an � lim
n l �

bn

lim
n l �

c � clim
n l �

can � c lim
n l �

an

lim
n l �

�an bn � � lim
n l �

an � lim
n l �

bn

lim
n l �

an

bn
�

lim
n l �

an

lim
n l �

bn
if  lim

n l �
bn � 0         

lim
n l �

an
p � [lim

n l �
an] p

if   p � 0 and an � 0

lim
n l �

bn � Llim
n l �

an � lim
n l �

cn � Ln � n0an 
 bn 
 cn

lim
n l �

an � 0lim
n l �

	 an 	 � 06

lim
n l �

n

n � 1

n

lim
n l �

n

n � 1
� lim

n l �

1

1 �
1

n

�
lim
n l �

1 

lim
n l �

1 � lim
n l �

1

n

�
1

1 � 0
� 1

r � 1

c�bn ��an �

Squeeze Theorem for Sequences

■ This shows that the guess we made 
earlier from Figures 1 and 2 was correct.

FIGURE 7
The sequence �bn� is squeezed
between the sequences �an�
and �cn�.

0 n

cn

an

bn

Limit Laws for Sequences
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EXAMPLE 5 Calculate .

SOLUTION Notice that both numerator and denominator approach infinity as
. We can’t apply l’Hospital’s Rule directly because it applies not to sequences

but to functions of a real variable. However, we can apply l’Hospital’s Rule to the
related function and obtain

Therefore, by Theorem 3, we have

■

EXAMPLE 6 Determine whether the sequence is convergent or divergent.

SOLUTION If we write out the terms of the sequence, we obtain

The graph of this sequence is shown in Figure 8. Since the terms oscillate between 1
and infinitely often, does not approach any number. Thus does
not exist; that is, the sequence is divergent. ■

EXAMPLE 7 Evaluate if it exists.

SOLUTION

Therefore, by Theorem 6,

■

The following theorem says that if we apply a continuous function to the terms of
a convergent sequence, the result is also convergent. The proof is left as Exercise 50.

CONTINUITY AND CONVERGENCE THEOREM If and the function
is continuous at , then

EXAMPLE 8 Find .

SOLUTION Because the sine function is continuous at , the Continuity and Con-
vergence Theorem enables us to write

■

lim
n l �

ln n

n

n l �

f �x� � �ln x��x

lim
x l �

ln x

x
� lim

x l �

1�x

1
� 0

lim
n l �

ln n

n
� 0

an � ��1�n

��1, 1, �1, 1, �1, 1, �1, . . .�

lim n l � ��1�nan�1
���1�n �

lim
n l �

��1�n

n

lim
n l �


 ��1�n

n 
 � lim
n l �

1

n
� 0

lim
n l �

��1�n

n
� 0

lim
n l �

an � L
Lf

lim
n l �

f �an� � f �L�

lim
n l �

sin���n�

0

lim
n l �

sin���n� � sin�lim
n l �

���n�� � sin 0 � 0

0 n

an

1

1

2 3 4

_1

FIGURE 8

■ The graph of the sequence in 
Example 7 is shown in Figure 9 and
supports the answer.

FIGURE 9

0 n

an

1

1

_1

■ www.stewartcalculus.com
See Additional Example A.
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EXAMPLE 9 Discuss the convergence of the sequence , where
.

SOLUTION Both numerator and denominator approach infinity as but here
we have no corresponding function for use with l’Hospital’s Rule ( is not defined
when is not an integer). Let’s write out a few terms to get a feeling for what 
happens to as gets large:

It appears from these expressions and the graph in Figure 10 that the terms are
decreasing and perhaps approach 0. To confirm this, observe from Equation 7 that

Notice that the expression in parentheses is at most 1 because the numerator is less
than (or equal to) the denominator. So

We know that as . Therefore as by the Squeeze 
Theorem. ■

EXAMPLE 10 For what values of is the sequence convergent?

SOLUTION We know from Section 1.6 and the graphs of the exponential functions
in Section 3.1 that for and for .
Therefore, putting and using Theorem 3, we have

For the cases and we have

and    

If , then , so

and therefore by Theorem 6. If , then diverges as in 

an � n!�nnV

n! � 1 � 2 � 3 � � � � � n

n l �
x!

x
nan

a3 �
1 � 2 � 3

3 � 3 � 3
a2 �

1 � 2

2 � 2
a1 � 1

an �
1 � 2 � 3 � � � � � n

n � n � n � � � � � n
7

an �
1

n �2 � 3 � � � � � n

n � n � � � � � n�

0 	 an 

1

n

n l �an l 0n l �1�n l 0

�r n �rV

0 	 a 	 1limx l � ax � 0a � 1limx l � ax � �
a � r

lim
n l �

r n � ��

0

if r � 1

if 0 	 r 	 1

r � 0r � 1

lim
n l �

0 n � lim
n l �

0 � 0lim
n l �

1n � lim
n l �

1 � 1

0 	 	 r 	 	 1�1 	 r 	 0

lim
n l �

	 r n 	 � lim
n l �

	 r 	n � 0

�r n �r 
 �1lim n l � r n � 0
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■ CREATING GRAPHS OF SEQUENCES
Some computer algebra systems have spe-
cial commands that enable us to create
sequences and graph them directly. With
most graphing calcula tors, however,
sequences can be graphed by using para-
metric equations. For instance, the
sequence in Example 9 can be graphed 
by entering the parametric equations

and graphing in dot mode starting with 
, setting the -step equal to . The 

result is shown in Figure 10.
1tt � 1

x � t y � t!�t t

FIGURE 10

1

0
10
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Example 6. Figure 11 shows the graphs for various values of . (The case is
shown in Figure 8.)

■

The results of Example 10 are summarized for future use as follows.

The sequence is convergent if and divergent for all other
values of .

DEFINITION A sequence is called increasing if for all
, that is, It is called decreasing if for all
. A sequence is monotonic if it is either increasing or decreasing.

EXAMPLE 11 The sequence is decreasing because

and so for all . ■

EXAMPLE 12 Show that the sequence is decreasing.

SOLUTION We must show that , that is,

This inequality is equivalent to the one we get by cross-multiplication:

r>1

r=1

0<r<1

0

r<_1

_1<r<0

0 n

an

1

1

n

an

1
1

FIGURE 11
The sequence an=rn

�r n � �1 	 r 
 1
r

lim
n l �

r n � �0

1

if �1 	 r 	 1

if r � 1

r r � �1

8

�an � an 	 an�1

n � 1 a1 	 a2 	 a3 	 � � � . an � an�1

n � 1

� 3

n � 5�
3

n � 5
�

3

�n � 1� � 5
�

3

n � 6

an � an�1 n � 1

an �
n

n2 � 1

an�1 	 an

n � 1

�n � 1�2 � 1
	

n

n2 � 1

n � 1

�n � 1�2 � 1
	

n

n2 � 1
&? �n � 1��n2 � 1� 	 n�n � 1�2 � 1�

9

n3 � n2 � n � 1 	 n3 � 2n2 � 2n&?

1 	 n2 � n&?
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■ Another way to do Example 12 is to
show that the function

is decreasing because for
.x � 1

f ��x� 	 0

x � 1f �x� �
x

x 2 � 1

■ The right side is smaller because it
has a larger denominator.
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Since , we know that the inequality is true. Therefore 
and so is decreasing. ■

DEFINITION A sequence is bounded above if there is a number 
such that

It is bounded below if there is a number such that

If it is bounded above and below, then is a bounded sequence.

For instance, the sequence is bounded below but not above. The
sequence is bounded because for all .

We know that not every bounded sequence is convergent [for instance, the 
sequence satisfies but is divergent from Example 6] and 
not every mono tonic sequence is convergent . But if a sequence is 
both bounded and monotonic, then it must be convergent. This fact is proved as 
The o rem 11, but intuitively you can understand why it is true by looking at Fig-
ure 12. If is increasing and for all , then the terms are forced to crowd
together and approach some number .

The proof of Theorem 11 is based on the Completeness Axiom for the set of
real numbers, which says that if is a nonempty set of real numbers that has an upper
bound ( for all in ), then has a least upper bound . (This means that

is an upper bound for , but if is any other upper bound, then .) The 
Completeness Axiom is an expression of the fact that there is no gap or hole in the real
number line.

MONOTONIC SEQUENCE THEOREM Every bounded, monotonic sequence
is convergent.

PROOF Suppose is an increasing sequence. Since is bounded, the set
has an upper bound. By the Completeness Axiom it has a least

upper bound . Given , is not an upper bound for (since is the least
upper bound). Therefore

But the sequence is increasing so for every . Thus if we have

so

�an � M

an 
 M for all n � 1

m

m 
 an for all n � 1

�an �

an � n �an � 0�
an � n��n � 1� 0 	 an 	 1 n

an � ��1�n �1 
 an 
 1
�an � n l ��

�an � an 
 M n
L

�

S
M x 
 M x S S b

b S M b 
 M

�an � �an �
S � �an 	 n � 1�

L � � 0 L � � S L

aN � L � � for some integer N

an � aN n � N n � N

an � L � �

0 
 L � an 	 �

an�1 	 ann2 � n � 1n � 1
�an �

10

11
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20 n

an

1 3

L

M

FIGURE 12
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since . Thus

so .
A similar proof (using the greatest lower bound) works if is decreasing. ■

The proof of Theorem 11 shows that a sequence that is increasing and bounded
above is convergent. (Likewise, a decreasing sequence that is bounded below is con-
vergent.) This fact is used many times in dealing with infinite series in Sections 8.2
and 8.3.

Another use of Theorem 11 is indicated in Exercises 42– 44.

an 
 L

	 L � an 	 	 � whenever n � N

lim n l � an � L
�an �
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■ www.stewartcalculus.com
See Additional Example B.

8.1 EXERCISES

1. (a) What is a sequence?
(b) What does it mean to say that ?
(c) What does it mean to say that ?

2. (a) What is a convergent sequence? Give two examples.
(b) What is a divergent sequence? Give two examples.

3. List the first six terms of the sequence defined by

Does the sequence appear to have a limit? If so, find it.

4. List the first nine terms of the sequence . Does
this sequence appear to have a limit? If so, find it. If not,
explain why.

5–8 ■ Find a formula for the general term of the sequence,
assuming that the pattern of the first few terms continues.

5. 6.

7. 8.

9–32 ■ Determine whether the sequence converges or diverges.
If it converges, find the limit.

9. 10.

11. 12.

13. 14.

limn l � an � 8
limn l � an � �

an �
n

2n � 1

�cos�n��3��

an

��3, 2, �4
3 , 8

9 , �16
27 , . . .� �1, �1

3 , 1
9 , � 1

27 , 1
81 , . . .�

� 1
2 , �4

3 , 9
4 , �16

5 , 25
6 , . . .� �5, 8, 11, 14, 17, . . .�

an � 1 � �0.2�n an �
n3

n3 � 1

an �
3 � 5n2

n � n2 an �
n3

n � 1

an � tan� 2n�

1 � 8n� an �
3n�2

5n

15. 16.

17. 18.

19. 20.

21. 22.

23.

24.

25. 26.

27. 28.

29. 30.

31.

32.

33. If $1000 is invested at 6% interest, compounded annually,
then after years the investment is worth
dollars.
(a) Find the first five terms of the sequence .
(b) Is the sequence convergent or divergent? Explain.

an �
n2

sn3 � 4n
an � � n � 1

9n � 1

an �
��1�n

2sn
an �

��1�n�1n

n � sn

an � cos�n�2� an � cos�2�n�

� �2n � 1 �!
�2n � 1�!� an �

tan�1n

n

�n2e �n�

an � ln�n � 1� � ln n

an �
cos2n

2n an � 2�n cos n�

an � �1 �
2

n�
n

an �
sin 2n

1 � sn

�0, 1, 0, 0, 1, 0, 0, 0, 1, . . . � an �
�ln n�2

n

an � ln�2n2 � 1� � ln�n2 � 1�

an �
��3�n

n!

n an � 1000�1.06�n

�an �

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints at stewartcalculus.comCAS
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34. Find the first 40 terms of the sequence defined by

and . Do the same if . Make a conjecture
about this type of sequence.

35. Suppose you know that is a decreasing sequence and 
all its terms lie between the numbers 5 and 8. Explain why 
the sequence has a limit. What can you say about the value 
of the limit?

36. (a) If is convergent, show that

(b) A sequence is defined by and
for . Assuming that is

convergent, find its limit.

37–40 ■ Determine whether the sequence is increasing,
decreasing, or not monotonic. Is the sequence bounded?

37. 38.

39. 40.

41. Find the limit of the sequence

42. A sequence is given by , .
(a) By induction or otherwise, show that is increasing 

and bounded above by 3. Apply the Monotonic
Sequence Theorem to show that exists.

(b) Find .

43. Use induction to show that the sequence defined by ,
is increasing and for all . Deduce

that is convergent and find its limit.

44. Show that the sequence defined by

satisfies and is decreasing. Deduce that the
sequence is convergent and find its limit.

45. (a) Fibonacci posed the following problem: Suppose that 
rabbits live forever and that every month each pair pro-
duces a new pair which becomes productive at age
2 months. If we start with one newborn pair, how many
pairs of rabbits will we have in the month? Show

an�1 � �1
2 an

3an � 1

if an is an even number

if an is an odd number

a1 � 25a1 � 11

�an �

�an �

lim
n l �

an�1 � lim
n l �

an

a1 � 1�an �
�an �n � 1an�1 � 1��1 � an �

an �
2n � 3

3n � 4
an �

1

2n � 3

an � n �
1

n
an � n��1�n

{s2 , s2s2 , s2s2s2 , . . .}
an�1 � s2 � ana1 � s2�an �

�an �

limn l � an

limn l � an

a1 � 1
nan 	 3an�1 � 3 � 1�an

�an �

an�1 �
1

3 � an
a1 � 2

0 	 an 
 2

nth
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that the answer is , where is the Fibonacci
sequence defined in Example 3(c).

(b) Let and show that .
Assuming that is convergent, find its limit.

46. (a) Let , , , . . . ,
, where is a continuous function. If

, show that .
(b) Illustrate part (a) by taking , , and 

estimating the value of to five decimal places.

47. We know that [from with ].
Use logarithms to determine how large has to be so that

.

48. Use Definition 2 directly to prove that 
when .

49. Prove Theorem 6.
[Hint: Use either Definition 2 or the Squeeze Theorem.]

50. Prove the Continuity and Convergence Theorem.

51. Prove that if and is bounded, then
.

52. (a) Show that if and , 
then is convergent and .

(b) If and

find the first eight terms of the sequence . Then use 
part (a) to show that . This gives the 
continued fraction expansion

53. The size of an undisturbed fish population has been
modeled by the formula

where is the fish population after years and and are
positive constants that depend on the species and its environ-
ment. Suppose that the population in year 0 is .
(a) Show that if is convergent, then the only possible 

values for its limit are 0 and .
(b) Show that .
(c) Use part (b) to show that if , then ; 

in other words, the population dies out.
(d) Now assume that . Show that if , then

is increasing and . Show also that 
if , then is decreasing and .
Deduce that if , then .

a1 � a a2 � f �a� a3 � f �a2� � f � f �a��
an�1 � f �an � f
limn l � an � L f �L� � L

f �x� � cos x a � 1
L

limn l � �0.8�n � 0 r � 0.8
n

�0.8�n 	 0.000001

lim n l � r n � 0

	 r 	 	 1

limn l � an � 0 �bn�
limn l � �an bn� � 0

lim n l � a2n � L lim n l � a2n�1 � L
�an � lim n l � an � L

a1 � 1

an�1 � 1 �
1

1 � an

�an �
lim n l � an � s2

s2 � 1 �
1

2 �
1

2 � � � �

pn�1 �
bpn

a � pn

pn n a b

p0 � 0
� pn�

b � a
pn�1 	 �b�a�pn

a � b limn l � pn � 0

a 	 b p 0 	 b � a
� pn� 0 	 pn 	 b � a

p 0 � b � a � pn� pn � b � a
a 	 b limn l � pn � b � a

�an �

8

fn � fn �

an�1 � 1 � 1�an�2an � fn�1�fn
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8.2 SERIES
What do we mean when we express a number as an infinite decimal? For instance,
what does it mean to write

The convention behind our decimal notation is that any number can be written as an
infinite sum. Here it means that

where the three dots indicate that the sum continues forever, and the more terms
we add, the closer we get to the actual value of .

In general, if we try to add the terms of an infinite sequence we get an
expression of the form

which is called an infinite series (or just a series) and is denoted, for short, by the
symbol

Does it make sense to talk about the sum of infinitely many terms?
It would be impossible to find a finite sum for the series

because if we start adding the terms we get the cumulative sums 1, 3, 6, 10, 15, 
21, . . . and, after the term, we get , which becomes very large as 
increases.

However, if we start to add the terms of the series

we get , , , , , , . . . , , . . . . The table shows that as we add more and
more terms, these partial sums become closer and closer to 1. In fact, by adding suf-
ficiently many terms of the series we can make the partial sums as close as we like 
to 1. So it seems reasonable to say that the sum of this infinite series is 1 and to write

We use a similar idea to determine whether or not a general series has a sum.
We consider the partial sums

� � 3.14159 26535 89793 23846 26433 83279 50288 . . .

� � 3 �
1

10
�

4

102 �
1

103 �
5

104 �
9

105 �
2

106 �
6

107 �
5

108 � ���

�����
�

�an �n�1
�

a1 � a2 � a3 � � � � � an � � � �

�
�

n�1
an or � an

1

1 � 2 � 3 � 4 � 5 � � � � � n � � � �

nth n�n � 1��2 n

1

2
�

1

4
�

1

8
�

1

16
�

1

32
�

1

64
� � � � �

1

2n � � � �

1
2

3
4

7
8

15
16

31
32

63
64 1 � 1�2n

�
�

n�1

1

2n �
1

2
�

1

4
�

1

8
�

1

16
� � � � �

1

2n � � � � � 1

s1 � a1

s2 � a1 � a2

s3 � a1 � a2 � a3

s4 � a1 � a2 � a3 � a4

1
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■ The current record (2011) is that 
has been computed to more than ten tril-
lion decimal places by Shigeru Kondo
and Alexander Yee.

�

n Sum of first n terms

1 0.50000000
2 0.75000000
3 0.87500000
4 0.93750000
5 0.96875000
6 0.98437500
7 0.99218750

10 0.99902344
15 0.99996948
20 0.99999905
25 0.99999997
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and, in general,

These partial sums form a new sequence , which may or may not have a limit. If
exists (as a finite number), then, as in the preceding example, we call it

the sum of the infinite series .

DEFINITION Given a series , let denote
its th partial sum:

If the sequence is convergent and exists as a real number,
then the series is called convergent and we write

The number is called the sum of the series. If the sequence is divergent,
then the series is called divergent.

Thus the sum of a series is the limit of the sequence of partial sums. So when we
write we mean that by adding sufficiently many terms of the series we can
get as close as we like to the number . Notice that

EXAMPLE 1 An important example of an infinite series is the geometric series

Each term is obtained from the preceding one by multiplying it by the common
ratio . (We have already considered the special case where and on
page 436.)

If , then . Since doesn’t
exist, the geometric series diverges in this case.

If , we have

and

Subtracting these equations, we get

sn � a1 � a2 � a3 � � � � � an � �
n

i�1
ai

�sn �
lim n l � sn � s

� an

��
n�1 an � a1 � a2 � a3 � � � � sn

n

sn � �
n

i�1
ai � a1 � a2 � � � � � an

�sn � lim n l � sn � s
� an

a1 � a2 � � � � � an � � � � � s or �
�

n�1
an � s

s �sn �

��
n�1 an � s

s

�
�

n�1
an � lim

n l �
�
n

i�1
ai

a � ar � ar 2 � ar 3 � � � � � arn�1 � � � � � �
�

n�1
arn�1 a � 0

r a � 1
2 r � 1

2

r � 1 sn � a � a � � � � � a � na l �� lim n l � sn

r � 1

sn � a � ar � ar 2 � � � � � ar n�1

rsn � ar � ar 2 � � � � � ar n�1 � ar n

2

sn � rsn � a � arn

sn �
a�1 � rn �

1 � r
3
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■ Compare with the improper integral

To find this integral we integrate from 1
to and then let . For a series, we
sum from 1 to and then let .n l �

t l �
n

t

y
�

1
f �x� dx � lim

t l �
y

t

1
f �x� dx
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If , we know from (8.1.8) that as , so

Thus when the geometric series is convergent and its sum is .
If or , the sequence is divergent by (8.1.8) and so, by Equation 3,

does not exist. Therefore the geometric series diverges in those cases. ■

We summarize the results of Example 1 as follows.

The geometric series

is convergent if and its sum is

If , the geometric series is divergent.

EXAMPLE 2 Find the sum of the geometric series

SOLUTION The first term is and the common ratio is . Since
, the series is convergent by and its sum is

■

EXAMPLE 3 Is the series convergent or divergent?

SOLUTION Let’s rewrite the nth term of the series in the form :

�1 � r � 1 rn l 0 n l �

lim
n l �

sn � lim
n l �

a�1 � rn �
1 � r

�
a

1 � r
�

a

1 � r
lim
n l �

rn �
a

1 � r

	 r 	 � 1 a��1 � r�
r 	 �1 r 
 1 �rn �

lim n l � sn

�
�

n�1
arn�1 � a � ar � ar 2 � � � �

	 r 	 � 1

�
�

n�1
arn�1 �

a

1 � r 	 r 	 � 1

	 r 	 � 1

5 �
10
3 �

20
9 �

40
27 � � � �

a � 5 r � �
2
3

	 r 	 � 2
3 � 1

5 �
10

3
�

20

9
�

40

27
� � � � �

5

1 � (� 2
3 ) �

5
5
3

� 3

FIGURE 2

0 n

s
n

20

3

4

V

�
�

n�1
22n31�n

arn�1

�
�

n�1
22n31�n � �

�

n�1
�22�n 3��n�1� � �

�

n�1

4n

3n�1 � �
�

n�1
4(4

3 )n�1

4
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n

1 5.000000
2 1.666667
3 3.888889
4 2.407407
5 3.395062
6 2.736626
7 3.175583
8 2.882945
9 3.078037

10 2.947975

sn

■ What do we really mean when we 
say that the sum of the series in Exam-
ple 2 is ? Of course, we can’t literally
add an infinite number of terms, one by
one. But, according to Definition 2, the
total sum is the limit of the sequence 
of partial sums. So, by taking the sum
of sufficiently many terms, we can get
as close as we like to the number . 
The table shows the first ten partial
sums and the graph in Figure 2 shows
how the sequence of partial sums
approaches .3

3

3

sn

■ Another way to identify and is to
write out the first few terms:

4 �
16
3 �

64
9 � � � �

ra

■ Figure 1 provides a geometric demon-
stration of the result in Example 1. If
the triangles are constructed as shown
and is the sum of the series, then, by
similar triangles,

s

a
�

a

a � ar
so s �

a

1 � r

s

FIGURE 1

aa

a

ara-ar

ar

ar@

ar#

ar@

s
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We recognize this series as a geometric series with and . Since ,
the series diverges by . ■

EXAMPLE 4 Write the number . . . as a ratio of integers.

SOLUTION

After the first term we have a geometric series with and . 
Therefore

■

EXAMPLE 5 Find the sum of the series , where .

SOLUTION Notice that this series starts with and so the first term is .
(With series, we adopt the convention that even when .) Thus

This is a geometric series with and . Since , it converges
and gives

■

EXAMPLE 6 Show that the series is convergent, and find its sum.

SOLUTION This is not a geometric series, so we go back to the definition of a
convergent series and compute the partial sums.

We can simplify this expression if we use the partial fraction decomposition

(see Section 6.3). Thus we have

2.317 � 2.3171717

2.3171717. . . � 2.3 �
17

103 �
17

105 �
17

107 � � � �

a � 17�103 r � 1�102

2.317 � 2.3 �

17

103

1 �
1

102

� 2.3 �

17

1000

99

100

�
23

10
�

17

990
�

1147

495

�
�

n�0
xn � x � � 1

n � 0 x 0 � 1
x 0 � 1 x � 0

�
�

n�0
xn � 1 � x � x 2 � x 3 � x 4 � � � �

a � 1 r � x � r � � � x � � 1

�
�

n�0
xn �

1

1 � x

�
�

n�1

1

n�n � 1�

sn � �
n

i�1

1

i�i � 1�
�

1

1 � 2
�

1

2 � 3
�

1

3 � 4
� � � � �

1

n�n � 1�

1

i�i � 1�
�

1

i
�

1

i � 1

V

5

4

r � 1r � 4
3a � 4

4

sn � �
n

i�1

1

i�i � 1�
� �

n

i�1
� 1

i
�

1

i � 1�
� �1 �

1

2� � � 1

2
�

1

3� � � 1

3
�

1

4� � � � � � � 1

n
�

1

n � 1�
� 1 �

1

n � 1
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Module 8.2 explores a series that
depends on an angle in a triangle and
enables you to see how rapidly the series 
converges when varies.�

�
TEC

■ Notice that the terms cancel in pairs. 
This is an example of a telescoping
sum: Because of all the cancellations,
the sum collapses (like a pirate’s col -
laps ing telescope) into just two terms.
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and so

Therefore the given series is convergent and

■

EXAMPLE 7 Show that the harmonic series

is divergent.

SOLUTION For this particular series it’s convenient to consider the partial sums , 
, , and show that they become large.

Similarly, , , and in general

This shows that as and so is divergent. Therefore the harmonic
series diverges. ■

THEOREM If the series is convergent, then .

PROOF Let . Then . Since is conver-
gent, the sequence is convergent. Let . Since as

, we also have . Therefore

■

NOTE 1 With any series we associate two sequences: the sequence of its
partial sums and the sequence of its terms. If is convergent, then the limit of

lim
n l �

sn � lim
n l �


1 �
1

n � 1� � 1 � 0 � 1

�
�

n�1

1

n�n � 1�
� 1

�
�

n�1

1

n
� 1 �

1

2
�

1

3
�

1

4
� � � �

s2

s4 s8, s16 s32, . . .

s2 � 1 �
1
2

s4 � 1 �
1
2 � ( 1

3 �
1
4 ) 
 1 �

1
2 � ( 1

4 �
1
4 ) � 1 �

2
2

s8 � 1 �
1
2 � ( 1

3 �
1
4 ) � ( 1

5 �
1
6 �

1
7 �

1
8 )


 1 �
1
2 � ( 1

4 �
1
4 ) � ( 1

8 �
1
8 �

1
8 �

1
8 )

� 1 �
1
2 �

1
2 �

1
2 � 1 �

3
2

s16 � 1 �
1
2 � ( 1

3 �
1
4 ) � ( 1

5 � � � � �
1
8 ) � ( 1

9 � � � � �
1
16 )


 1 �
1
2 � ( 1

4 �
1
4 ) � ( 1

8 � � � � �
1
8 ) � ( 1

16 � � � � �
1
16 )

� 1 �
1
2 �

1
2 �

1
2 �

1
2 � 1 �

4
2

s32 
 1 �
5
2 s64 
 1 �

6
2

s2n 
 1 �
n

2

s2n l � n l � �sn �

�
�

n�1
an lim

n l �
an � 0

V

6

sn � a1 � a2 � � � � � an an � sn � sn�1 � an

�sn � lim n l � sn � s n � 1 l �
n l � lim n l � sn�1 � s

lim
n l �

an � lim
n l �

�sn � sn�1� � lim
n l �

sn � lim
n l �

sn�1 � s � s � 0

� an �sn �
�an � � an

■ Figure 3 illustrates Example 6 by
showing the graphs of the sequence 
of terms and the
sequence of partial sums. Notice
that and . See Exer -
cises 46 and 47 for two geometric inter-
pretations of Example 6.

sn l 1an l 0
�sn �

an � 1�[n�n � 1�]

FIGURE 3

0

1

�an�

n

�sn�

■ The method used in Example 7 for 
showing that the harmonic series
diverges is due to the French scholar
Nicole Oresme (1323–1382).
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the sequence is (the sum of the series) and, as Theorem 6 asserts, the limit of the
sequence is 0.

| NOTE 2 The converse of Theorem 6 is not true in general. If , we
cannot conclude that is convergent. Observe that for the harmonic series
we have as , but we showed in Example 7 that is divergent.

TEST FOR DIVERGENCE If does not exist or if , then the

series is divergent.

The Test for Divergence follows from Theorem 6 because, if the series is not diver-
gent, then it is convergent, and so .

EXAMPLE 8 Show that the series diverges.

SOLUTION

So the series diverges by the Test for Divergence. ■

NOTE 3 If we find that , we know that is divergent. If we find
that , we know nothing about the convergence or divergence of .
Remember the warning in Note 2: If , the series might converge or
it might diverge.

THEOREM If and are convergent series, then so are the series
(where is a constant), , and , and

(i) (ii) 

(iii)

These properties of convergent series follow from the corresponding Limit Laws
for Sequences in Section 8.1. For instance, here is how part (ii) of Theorem 8 is
proved:

Let

The nth partial sum for the series is

�an �

lim n l � an � 0
� an � 1�n

an � 1�n l 0 n l � � 1�n

lim
n l �

an lim
n l �

an � 0

�
�

n�1
an

lim n l � an � 0

�
�

n�1

n2

5n2 � 4

lim
n l �

an � lim
n l �

n2

5n2 � 4
� lim

n l �

1

5 � 4�n2 �
1

5
� 0

lim n l � an � 0 � an

lim n l � an � 0 � an

lim n l � an � 0 � an

� an � bn

� can c � �an � bn � � �an � bn �

�
�

n�1
can � c �

�

n�1
an �

�

n�1
�an � bn � � �

�

n�1
an � �

�

n�1
bn

�
�

n�1
�an � bn � � �

�

n�1
an � �

�

n�1
bn

sn � �
n

i�1
ai s � �

�

n�1
an tn � �

n

i�1
bi t � �

�

n�1
bn

� �an � bn �

un � �
n

i�1
�ai � bi�

s�sn �

7

8
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and, using Equation 5.2.10, we have

Therefore is convergent and its sum is

■

EXAMPLE 9 Find the sum of the series .

SOLUTION The series is a geometric series with and , so

In Example 6 we found that

So, by Theorem 8, the given series is convergent and

■

NOTE 4 A finite number of terms doesn’t affect the convergence or divergence of
a series. For instance, suppose that we were able to show that the series

is convergent. Since

it follows that the entire series is convergent. Similarly, if it is known 
that the series converges, then the full series

is also convergent.

lim
n l �

un � lim
n l �

�
n

i�1
�ai � bi� � lim

n l �

�

n

i�1
ai � �

n

i�1
bi�

� lim
n l �

�
n

i�1
ai � lim

n l �
�
n

i�1
bi

� lim
n l �

sn � lim
n l �

tn � s � t

� �an � bn �

�
�

n�1
�an � bn � � s � t � �

�

n�1
an � �

�

n�1
bn

�
�

n�1

 3

n�n � 1�
�

1

2n�
� 1�2n a � 1

2 r � 1
2

�
�

n�1

1

2n �
1
2

1 �
1
2

� 1

�
�

n�1

1

n�n � 1�
� 1 

�
�

n�1

 3

n�n � 1�
�

1

2n� � 3 �
�

n�1

1

n�n � 1�
� �

�

n�1

1

2n � 3 � 1 � 1 � 4

�
�

n�4

n

n 3 � 1

�
�

n�1

n

n 3 � 1
�

1

2
�

2

9
�

3

28
� �

�

n�4

n

n 3 � 1

��
n�1 n��n 3 � 1�

��
n�N�1 an

�
�

n�1
an � �

N

n�1
an � �

�

n�N�1
an
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8.2 EXERCISES

1. (a) What is the difference between a sequence and a series?
(b) What is a convergent series? What is a divergent series?

2. Explain what it means to say that .

3–6 ■ Calculate the first eight terms of the sequence of partial
sums correct to four decimal places. Does it appear that the
series is convergent or divergent?

3. 4.

5. 6.

7–12 ■ Determine whether the geometric series is convergent or
divergent. If it is convergent, find its sum.

7.

8.

9. 10.

11. 12.

13–24 ■ Determine whether the series is convergent or diver-
gent. If it is convergent, find its sum.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23.

24.

��
n�1 an � 5

�
�

n�1

1

ln�n � 1��
�

n�1

1

n3

�
�

n�1

��1�n�1

n!�
�

n�1

n

1 � sn

10 � 2 � 0.4 � 0.08 � � � �

2 � 0.5 � 0.125 � 0.03125 � � � �

�
�

n�1

��3�n�1

4 n �
�

n�1

10 n

��9�n�1

�
�

n�0

� n

3 n�1 �
�

n�0

1

(s2 )n

�
�

n�1

3n

e n�1 �
�

k�1

k�k � 2�
�k � 3�2

�
�

n�1

n � 1

3n � 1 �
�

n�1

1 � 3 n

2 n

�
�

n�1

1 � 2n

3n �
�

n�1
cos 

1

n

�
�

n�1
��0.8�n�1 � �0.3�n�

�

n�1
s
n 2

�
�

k�1
�cos 1�k�

�

n�1
arctan n

1

3
�

1

6
�

1

9
�

1

12
�

1

15
� � � �

1

3
�

2

9
�

1

27
�

2

81
�

1

243
�

2

729
� � � �

25–28 ■ Determine whether the series is convergent or diver-
gent by expressing as a telescoping sum (as in Ex am ple 6). 
If it is convergent, find its sum.

25. 26.

27. 28.

29. Let 
(a) Do you think that or ?
(b) Sum a geometric series to find the value of .
(c) How many decimal representations does the number 1

have?
(d) Which numbers have more than one decimal 

representation?

30. A sequence of terms is defined by

Calculate .

31–34 ■ Express the number as a ratio of integers.

31. 32.

33.

34.

35–37 ■ Find the values of for which the series converges.
Find the sum of the series for those values of .

35. 36.

37.

38. We have seen that the harmonic series is a divergent series
whose terms approach 0. Show that

is another series with this property.

39. If the partial sum of a series is

find and .

�
�

n�2

2

n2 � 1 �
�

n�1
ln 

n

n � 1

�
�

n�1

3

n�n � 3�

sn

�
�

n�1
(e 1�n � e1��n�1�)

x � 0.99999 . . . .
x � 1 x � 1

x

a1 � 1 an � �5 � n�an�1

��
n�1 an

0.8 � 0.8888 . . . 0.46 � 0.46464646 . . .

2.516 � 2.516516516 . . .

10.135 � 10.135353535 . . .

x
x

�
�

n�1
��5�nx n �

�

n�0
��4�n�x � 5�n

�
�

n�0

�x � 2�n

3n

�
�

n�1
ln
1 �

1

n�

nth ��
n�1 an

sn �
n � 1

n � 1

an ��
n�1 an
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45. Find the value of if .

; 46. Graph the curves , , for
on a common screen. By finding the areas between

successive curves, give a geometric demonstration of the
fact, shown in Example 6, that

47. The figure shows two circles and of radius 1 that touch
at . is a common tangent line; is the circle that
touches , , and ; is the circle that touches , , 
and ; is the circle that touches , , and . This 
procedure can be continued indefinitely and produces an
infinite sequence of circles . Find an expression for 
the diameter of and thus provide another geometric
demonstration of Example 6.

48. A right triangle is given with and . 
is drawn perpendicular to , is drawn perpendicu-

lar to , , and this process is continued indefi -
nitely as shown in the figure. Find the total length of all the 
perpendiculars

in terms of and .

y � x n 0 	 x 	 1 n � 0, 1, 2, 3,
4, . . .

�
�

n�1

1

n�n � 1�
� 1 

C D
P T C1

C D T C2 C D
C1 C3 C D C2

�Cn �
Cn

1 1

P

C£

C™

C¡
D

T

C

ABC �A � � 	 AC 	 � b
CD AB DE

BC EF � AB

	 CD 	 � 	 DE 	 � 	 EF 	 � 	 FG 	 � � � �

b �

A

CEGB

F

H

D
¨

b

�
�

n�2
�1 � c��n � 2c40. If the partial sum of a series is , 

find and .

41. A patient takes 150 mg of a drug at the same time every
day. Just before each tablet is taken, 5% of the drug remains
in the body.
(a) What quantity of the drug is in the body after the third

tablet? After the th tablet?
(b) What quantity of the drug remains in the body in the

long run?

42. After injection of a dose of insulin, the concentration of
insulin in a patient’s system decays exponentially and so it
can be written as , where represents time in hours
and is a positive constant.
(a) If a dose is injected every hours, write an expres-

sion for the sum of the residual concentrations just
before the st injection.

(b) Determine the limiting pre-injection concentration.
(c) If the concentration of insulin must always remain at or

above a critical value , determine a minimal dosage
in terms of , , and .

43. When money is spent on goods and services, those who
receive the money also spend some of it. The people receiv-
ing some of the twice-spent money will spend some of that,
and so on. Economists call this chain reaction the multiplier
effect. In a hypothetical isolated community, the local gov-
ernment begins the process by spending dollars. Suppose
that each recipient of spent money spends and saves

of the money that he or she receives. The values
and s are called the marginal propensity to consume and the
marginal propensity to save and, of course, .
(a) Let be the total spending that has been generated after 

transactions. Find an equation for .
(b) Show that , where . The number 

is called the multiplier. What is the multiplier if the 
marginal propensity to consume is ?

Note: The federal government uses this principle to justify
deficit spending. Banks use this principle to justify lend-
 ing a large percentage of the money that they receive in
deposits.

44. A certain ball has the property that each time it falls from 
a height onto a hard, level surface, it rebounds to a height

, where . Suppose that the ball is dropped from
an initial height of meters.
(a) Assuming that the ball continues to bounce indefinitely,

find the total distance that it travels.
(b) Calculate the total time that the ball travels. (Use the 

fact that the ball falls in .)
(c) Suppose that each time the ball strikes the surface 

with velocity it rebounds with velocity , where
. How long will it take for the ball to come 

to rest?
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(a) Show that the total length of all the intervals that are
removed is 1. Despite that, the Cantor set contains infi-
nitely many numbers. Give examples of some numbers
in the Cantor set.

(b) The Sierpinski carpet is a two-dimensional counterpart
of the Cantor set. It is constructed by removing the cen-
ter one-ninth of a square of side 1, then removing the
centers of the eight smaller remaining squares, and 
so on. (The figure shows the first three steps of the 
construction.) Show that the sum of the areas of the 
removed squares is 1. This implies that the Sierpinski
carpet has area 0.

58. (a) A sequence is defined recursively by the equation
for , where and can be

any real numbers. Experiment with various values of
and and use your calculator to guess the limit of the
sequence.

(b) Find in terms of and by expressing
in terms of and summing a series.

59. Consider the series

(a) Find the partial sums and . Do you recognize
the denominators? Use the pattern to guess a formula
for .

(b) Use mathematical induction to prove your guess.
(c) Show that the given infinite series is convergent, and

find its sum.

60. In the figure there are infinitely many circles approaching
the vertices of an equilateral triangle, each circle touching
other circles and sides of the triangle. If the triangle has
sides of length 1, find the total area occupied by the circles.

�an �
an � 1

2 �an�1 � an�2 � n � 3 a1 a2

a1

a2

limn l � an a1 a2

an�1 � an a2 � a1

�
�

n�1

n

�n � 1�!

s1, s2, s3, s4

sn

49. What is wrong with the following calculation?

(Guido Ubaldus thought that this proved the existence of
God because “something has been created out of nothing.”)

50. Suppose that is known to be a convergent
series. Prove that is a divergent series.

51. Prove part (i) of Theorem 8.

52. If is divergent and , show that is divergent.

53. If is convergent and is divergent, show that 
the series is divergent. [Hint: Argue by 
contradiction.]

54. If and are both divergent, is neces-
sarily divergent?

55. Suppose that a series has positive terms and its partial
sums satisfy the inequality for all . Explain
why must be convergent.

56. The Fibonacci sequence was defined in Section 8.1 by the
equations

Show that each of the following statements is true.

(a) (b)

(c)

57. The Cantor set, named after the German mathematician
Georg Cantor (1845–1918), is constructed as follows. We
start with the closed interval and remove the open
interval . That leaves the two intervals and
and we remove the open middle third of each. Four intervals
remain and again we remove the open middle third of each
of them. We continue this procedure indefinitely, at each
step removing the open middle third of every interval that
remains from the preceding step. The Cantor set consists of
the numbers that remain in after all those intervals
have been removed.
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8.3 THE INTEGRAL AND COMPARISON TESTS
In general, it is difficult to find the exact sum of a series. We were able to accomplish
this for geometric series and the series because in each of those cases
we could find a simple formula for the partial sum . But usually it isn’t easy 
to compute . Therefore, in this section and the next, we develop tests that
enable us to determine whether a series is convergent or divergent without explicitly
finding its sum.

In this section we deal only with series with positive terms, so the partial sums are
in creasing. In view of the Monotonic Sequence Theorem, to decide whether a series
is convergent or divergent, we need to determine whether the partial sums are bounded
or not.

TESTING WITH AN INTEGRAL

Let’s investigate the series whose terms are the reciprocals of the squares of the posi-
tive integers:

There’s no simple formula for the sum of the first terms, but the computer-
generated table of values given in the margin suggests that the partial sums are ap-
proaching a number near 1.64 as and so it looks as if the series is convergent.

We can confirm this impression with a geometric argument. Figure 1 shows the
curve and rectangles that lie below the curve. The base of each rectangle is
an interval of length 1; the height is equal to the value of the function at the
right endpoint of the interval. So the sum of the areas of the rectangles is

If we exclude the first rectangle, the total area of the remaining rectangles is 
smaller than the area under the curve for , which is the value of the
integral . In Section 6.6 we discovered that this improper integral is con-
vergent and has value 1. So the picture shows that all the partial sums are less than

Thus the partial sums are bounded and the series converges. The sum of the series (the 
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n

5 1.4636
10 1.5498
50 1.6251

100 1.6350
500 1.6429

1000 1.6439
5000 1.6447
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limit of the partial sums) is also less than 2:

[The exact sum of this series was found by the Swiss mathematician Leonhard Euler
(1707–1783) to be , but the proof of this fact is beyond the scope of this book.]

Now let’s look at the series

The table of values of suggests that the partial sums aren’t approaching a finite num-
ber, so we suspect that the given series may be divergent. Again we use a picture for
confirmation. Figure 2 shows the curve , but this time we use rectangles
whose tops lie above the curve.

The base of each rectangle is an interval of length 1. The height is equal to the
value of the function at the left endpoint of the interval. So the sum of the
areas of all the rectangles is

This total area is greater than the area under the curve for , which is
equal to the integral . But we know from Section 6.6 that this improper
integral is divergent. In other words, the area under the curve is infinite. So the sum of
the series must be infinite, that is, the series is divergent.

The same sort of geometric reasoning that we used for these two series can be used
to prove the following test. (The proof is given at the end of this section.)

THE INTEGRAL TEST Suppose is a continuous, positive, decreasing function
on and let . Then the series is convergent if and only if
the improper integral is convergent. In other words:

(i) If is convergent, then is convergent.

(ii) If is divergent, then is divergent.
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5 3.2317
10 5.0210
50 12.7524

100 18.5896
500 43.2834

1000 61.8010
5000 139.9681
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NOTE When we use the Integral Test it is not necessary to start the series or the
integral at . For instance, in testing the series

Also, it is not necessary that be always decreasing. What is important is that be
ultimately decreasing, that is, decreasing for larger than some number . Then

is convergent, so is convergent by Note 4 of Section 8.2.

EXAMPLE 1 Determine whether the series converges or diverges.

SOLUTION The function is positive and continuous for
because the logarithm function is positive and continuous there. But it is not obvious
whether or not is decreasing, so we compute its derivative:

Thus when , that is, . It follows that is decreasing when
and so we can apply the Integral Test:

Since this improper integral is divergent, the series is also divergent by
the Integral Test. ■

EXAMPLE 2 For what values of is the series convergent?

SOLUTION If , then . If , then . 
In either case , so the given series diverges by the Test for 
Divergence [see (8.2.7)].

If , then the function is clearly continuous, positive, and
decreasing on . We found in Chapter 6 [see (6.6.2)] that

It follows from the Integral Test that the series converges if and
diverges if . (For , this series is the harmonic series discussed in
Example 7 in Section 8.2.) ■

The series in Example 2 is called the p-series. It is important in the rest of this
chapter, so we summarize the results of Example 2 for future reference as follows.

The -series is convergent if and divergent if .
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■ www.stewartcalculus.com
See Additional Example A.

■ In order to use the Integral Test we 
need to be able to evaluate 
and therefore we have to be able to find
an antiderivative of . Frequently this is
difficult or impossible, so we need other
tests for convergence too.

f

x
�

1 f �x� dx

■ Exercises 33–38 show how to
estimate the sum of a series that is 
convergent by the Integral Test.
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For instance, the series

is convergent because it is a p-series with . But the series

is divergent because it is a p-series with .

TESTING BY COMPARING

The series

reminds us of the series , which is a geometric series with and
and is therefore convergent. Because the series is so similar to a convergent series,
we have the feeling that it too must be convergent. Indeed, it is. The inequality

shows that our given series has smaller terms than those of the geometric series
and therefore all its partial sums are also smaller than 1 (the sum of the geometric
series). This means that its partial sums form a bounded increasing sequence, which is
convergent. It also follows that the sum of the series is less than the sum of the geo-
metric series:

Similar reasoning can be used to prove the following test, which applies only to
series whose terms are positive. The first part says that if we have a series whose terms
are smaller than those of a known convergent series, then our series is also convergent.
The second part says that if we start with a series whose terms are larger than those
of a known divergent series, then it too is divergent.

THE COMPARISON TEST Suppose that and are series with positive
terms.

(i) If is convergent and for all , then is also convergent.

(ii) If is divergent and for all , then is also divergent.

PROOF
(i) Let

Since both series have positive terms, the sequences and are increasing

�
�

n�1

1

n 3 �
1

13 �
1

23 �
1

33 �
1

43 � � � �

p � 3 � 1

�
�

n�1

1

n 1�3 � �
�

n�1

1

s
3 n

� 1 �
1

s
3 2

�
1

s
3 3

�
1

s
3 4

� � � �

p � 1
3 � 1

�
�

n�1

1

2n � 1
2

r � 1
2a � 1

2��
n�1 1�2n

2

1

2n � 1
�

1

2n

2

�
�

n�1

1

2n � 1
� 1

� bn� an

� annan � bn� bn

� annan � bn� bn

t � �
�

n�1
bntn � �

n

i�1
bisn � �

n

i�1
ai

�tn ��sn �

SECTION 8.3  THE INTEGRAL AND COMPARISON TESTS 449

Unless otherwise noted, all content on this page is © Cengage Learning.

■ It is important to keep in mind the
distinction between a sequence and a
series. A sequence is a list of numbers,
whereas a series is a sum. With every
series there are associated two
sequences: the sequence of terms
and the sequence of partial sums.�sn �

�an �
� an
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. Also , so for all . Since we have
. Thus for all . This means that is increasing and bounded above

and therefore converges by the Monotonic Sequence Theorem. Thus converges.
(ii) If is divergent, then (since is increasing). But so

. Thus . Therefore diverges. ■

In using the Comparison Test we must, of course, have some known series for
the purpose of comparison. Most of the time we use one of these series: 

■ A -series [ con verges if and diverges if ; see ]
■ A geometric series [ converges if and diverges if ; 

see (8.2.4)]

EXAMPLE 3 Determine whether the series converges or
diverges.

SOLUTION For large the dominant term in the denominator is , so we com-
pare the given series with the series . Observe that

because the left side has a bigger denominator. (In the notation of the Comparison
Test, is the left side and is the right side.) We know that

is convergent ( -series with ). Therefore

is convergent by part (i) of the Comparison Test. ■

Although the condition or in the Comparison Test is given for all
, we need verify only that it holds for , where is some fixed integer, because

the convergence of a series is not affected by a finite number of terms. This is illus-
trated in the next example.

EXAMPLE 4 Test the series for convergence or divergence.

SOLUTION We used the Integral Test to test this series in Example 1, but we can
also test it by comparing it with the harmonic series. Observe that for

and so

We know that is divergent ( -series with ). Thus the given series is
divergent by the Comparison Test. ■
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Standard Series for Use 
with the Comparison Test
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NOTE The terms of the series being tested must be smaller than those of a conver-
gent series or larger than those of a divergent series. If the terms are larger than the
terms of a convergent series or smaller than those of a divergent series, then the Com-
parison Test doesn’t apply. Consider, for instance, the series

The inequality

is useless as far as the Comparison Test is concerned because is conver-
gent and . Nonetheless, we have the feeling that ought to be con-
vergent because it is very similar to the convergent geometric series . In such
cases the following test can be used.

THE LIMIT COMPARISON TEST Suppose that and are series with 
positive terms. If

where is a finite number and , then either both series converge or 
both diverge.

PROOF Let m and M be positive numbers such that . Because is
close to c for large n, there is an integer N such that

and so

If converges, so does . Thus converges by part (i) of the Com par i -
son Test. If diverges, so does and part (ii) of the Comparison Test shows
that diverges. ■

EXAMPLE 5 Test the series for convergence or divergence.

SOLUTION We use the Limit Comparison Test with

and obtain

Since this limit exists and is a convergent geometric series, the given series
converges by the Limit Comparison Test. ■
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■ Exercises 42 and 43 deal with the
cases and .c � �c � 0

■ www.stewartcalculus.com
See Additional Example B.
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PROOF OF THE INTEGRAL TEST

We have already seen the basic idea behind the proof of the Integral Test in Figures 1
and 2 for the series and . For the general series look at Figures 3
and 4. The area of the first shaded rectangle in Figure 3 is the value of at the right end-
point of , that is, . So, comparing the areas of the shaded rectangles
with the area under from 1 to , we see that

(Notice that this inequality depends on the fact that is decreasing.) Likewise, Fig-
ure 4 shows that

(i) If is convergent, then gives

since . Therefore

where is a constant. Since for all , the sequence is bounded above.
Also

since . Thus is an increasing bounded sequence and so it is 
convergent by the Monotonic Sequence Theorem (8.1.11). This means that is 
convergent.

(ii) If is divergent, then as because .
But gives

and so . This implies that and so diverges. ■

� 1�n2 � 1�sn � an

f
�1, 2� f �2� � a2

y � f �x� n

a2 � a3 � � � � � an � y
n

1
f �x� dx

f

y
n

1
f �x� dx � a1 � a2 � � � � � an�1

y
�

1
f �x� dx

�
n

i�2
ai � y

n

1
f �x� dx � y

�

1
f �x� dx

f �x� � 0

sn � a1 � �
n

i�2
ai � a1 � y

�

1
f �x� dx � M

M sn � M n 
sn �

sn�1 � sn � an�1 � sn

an�1 � f �n � 1� � 0 
sn �
� an

x
�

1 f �x� dx x
n
1 f �x� dx l � n l � f �x� � 0

y
n

1
f �x� dx � �

n�1

i�1
ai � sn�1

sn�1 l � sn l � � an

3

4

3

4

0 x

y

1 2 3 4 5
. . .

n

y=ƒ

a
n

a™ a£ a¢ a∞

FIGURE 3 

FIGURE 4 

0 x

y

1 2 3 4 5
. . .

n

y=ƒ

a™ a£ a¢a¡

a
n-1

8.3 EXERCISES

1. Draw a picture to show that

What can you conclude about the series?

�
�

n�2

1

n 1.3 � y
�

1

1

x 1.3 dx

2. Suppose is a continuous positive decreasing function 
for and . By drawing a picture, rank the 
following three quantities in increasing order:

y
6

1
f �x� dx �

5

i�1
ai �

6

i�2
ai

f
an � f �n�x � 1
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21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31–32 ■ Find the values of for which the series is convergent.

31. 32.

33. Let be the sum of a series that has been shown to be
convergent by the Integral Test and let be the function
in that test. The remainder after terms is

Thus is the error made when , the sum of the first
terms, is used as an approximation to the total sum .
(a) By comparing areas in a diagram like Figures 3 and 4

(but with ), show that

(b) Deduce from part (a) that

34. (a) Find the partial sum of the series . Use
Exercise 33(a) to estimate the error in using as an
approximation to the sum of the series.

(b) Use Exercise 33(b) with to give an improved
estimate of the sum.

(c) Find a value of so that is within of the
sum.

35. (a) Use the sum of the first 10 terms and Exercise 33(a) to
estimate the sum of the series . How good is
this estimate?

(b) Improve this estimate using Exercise 33(b) with .
(c) Find a value of that will ensure that the error in the

approximation is less than .

�
�

n�1

cos2 n

n2 � 1 �
�

n�1

4 � 3n

2n

�
�

n�1

n � 1

n4 n �
�

n�1

1

sn 3 � 1

�
�

n�1

1 � 4n

1 � 3n �
�

n�1

1

2n � 3

�
�

n�1

2 � ��1� n

nsn
�
�

n�0

1 � sin n

10 n

�
�

n�1
sin1

n� �
�

n�1

n � 5

s
3 n 7 � n2 

p

�
�

n�2

1

n�ln n� p �
�

n�1

ln n

n p

s � an

f �x�
n

Rn � s � sn � an�1 � an�2 � an�3 � � � �

Rn sn n
s

x � n

y
�

n�1
f �x� dx � Rn � y

�

n
f �x� dx

sn � y
�

n�1
f �x� dx � s � sn � y

�

n
f �x� dx

s10 ��
n�1 1�n4

s10

n � 10

n sn 0.00001

��
n�1 1�n2

n � 10
n
s � sn 0.001

3. Suppose and are series with positive terms and
is known to be convergent.

(a) If for all , what can you say about ? Why?
(b) If for all , what can you say about ? Why?

4. Suppose and are series with positive terms and
is known to be divergent.

(a) If for all n, what can you say about ? Why?
(b) If for all n, what can you say about ? Why?

5. It is important to distinguish between

and    

What name is given to the first series? To the second? For
what values of does the first series converge? For what
values of does the second series converge?

6–8 ■ Use the Integral Test to determine whether the series is 
convergent or divergent.

6. 7.

8.

9–10 ■ Use the Comparison Test to determine whether the
series is convergent or divergent.

9. 10.

11–30 ■ Determine whether the series is convergent or
divergent.

11. 12.

13.

14.

15.

16.

17. 18.

19. 20.

� an � bn

� bn

an 	 bn n � an

an � bn n � an

� an � bn

� bn

an 	 bn � an

an � bn � an

�
�

n�1
n b �

�

n�1
b n

b
b

�
�

n�1

1

s
5 n

�
�

n�1

1

n5

�
�

n�1

1

sn � 4

�
�

n�2

n3

n4 � 1�
�

n�1

n

2n3 � 1

�
�

n�1
�n�1.4 � 3n�1.2��

�

n�1

2

n0.85

1 �
1

8
�

1

27
�

1

64
�

1

125
� � � �

1 �
1

2s2
�

1

3s3
�

1

4s4
�

1

5s5
� � � �

1 �
1

3
�

1

5
�

1

7
�

1

9
� � � �

1

5
�

1

8
�

1

11
�

1

14
�

1

17
� � � �

�
�

n�1

n2

n3 � 1�
�

n�1
ne�n

�
�

n�1

n2 � 1

3n4 � 1�
�

n�2

1

n ln n
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(b) Use part (a) to show that the series converges.

(i) (ii)

43. (a) Suppose that and are series with positive terms
and is divergent. Prove that if

then is also divergent.
(b) Use part (a) to show that the series diverges.

(i) (ii)

44. Give an example of a pair of series and with posi-
tive terms where and diverges, but

converges. [Compare with Exercise 42.]

45. Prove that if and converges, then also 
converges.

46. Find all positive values of for which the series 
converges.

47. Show that if and then is 
divergent.

48. Find all values of for which the following series
converges. 

an 	 0 lim n l � nan � 0, � an

c

�
�

n�1
 c

n
�

1

n � 1�

�
�

n�1

ln n

sn en�
�

n�1

ln n

n3

� bn� an

� bn

lim
n l �

an

bn
� �

� an

�
�

n�1

ln n

n�
�

n�2

1

ln n

� bn� an

� bnlim n l � �an�bn� � 0
� an

� an
2� anan � 0

��
n�1 b ln nb

36. Find the sum of the series correct to three decimal
places.

37. (a) Use a graph of to show that if is the par-
tial sum of the harmonic series, then

(b) The harmonic series diverges, but very slowly. Use
part (a) to show that the sum of the first million terms is 
less than 15 and the sum of the first billion terms is less
than 22.

38. Show that if we want to approximate the sum of the series
so that the error is less than 5 in the ninth deci-

mal place, then we need to add more than terms!

39. The meaning of the decimal representation of a number
(where the digit is one of the numbers 0, 1, 

2, . . . , 9) is that

Show that this series always converges.

40. Show that if and is convergent, then
is convergent.

41. If is a convergent series with positive terms, is it true
that is also convergent?

42. (a) Suppose that and are series with positive terms
and is convergent. Prove that if

then is also convergent.

��
n�1 1�n5

y � 1�x sn nth

sn � 1 � ln n

��
n�1 n�1.001

1011,301

0.d1d2d3 . . . di

0.d1d2d3d4 . . . �
d1

10
�

d2

102 �
d3

103 �
d4

104 � � � �

an 	 0 � an

� ln�1 � an �

� an

� sin�an �

� bn� an

� bn

lim
n l �

an

bn
� 0

� an
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8.4 OTHER CONVERGENCE TESTS
The convergence tests that we have looked at so far apply only to series with positive
terms. In this section we learn how to deal with series whose terms are not necessarily
positive.

ALTERNATING SERIES

An alternating series is a series whose terms are alternately positive and negative.
Here are two examples:

We see from these examples that the term of an alternating series is of the form

where is a positive number. (In fact, .)

1 �
1

2
�

1

3
�

1

4
�

1

5
�

1

6
� � � � � �

�

n�1
��1�n�1 1

n

�
1

2
�

2

3
�

3

4
�

4

5
�

5

6
�

6

7
� � � � � �

�

n�1
��1�n n

n � 1

nth

an � ��1�n�1bn or an � ��1�nbn

bn bn � � an �
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The following test says that if the terms of an alternating series decrease to 0 in
absolute value, then the series converges.

THE ALTERNATING SERIES TEST If the alternating series

satisfies

(i)

(ii)

then the series is convergent.

Before giving the proof let’s look at Figure 1, which gives a picture of the idea
behind the proof. We first plot on a number line. To find we subtract , so

is to the left of . Then to find we add , so is to the right of . But, since
, is to the left of . Continuing in this manner, we see that the partial sums

oscillate back and forth. Since , the successive steps are becoming smaller and
smaller. The even partial sums , , , . . . are increasing and the odd partial sums ,

, , . . . are decreasing. Thus it seems plausible that both are converging to some
number , which is the sum of the series. Therefore, in the following proof, we con-
sider the even and odd partial sums separately.

PROOF OF THE ALTERNATING SERIES TEST We first consider the even partial
sums:

In general

Thus

But we can also write

Every term in brackets is positive, so for all . Therefore the sequence
of even partial sums is increasing and bounded above. So it is convergent by the
Monotonic Sequence Theorem. Let’s call its limit , that is,

�
�

n�1
��1�n�1bn � b1 � b2 � b3 � b4 � b5 � b6 � � � � bn 	 0

bn�1 � bn for all n

lim
n l �

bn � 0

s1 � b1 s2 b2

s2 s1 s3 b3 s3 s2

b3 � b2 s3 s1

bn l 0
s2 s4 s6 s1

s3 s5

s

FIGURE 1 0 s¡s™ s£s¢ s∞sß s

b¡

-b™

+b£

-b¢

+b∞

-bß

s2 � b1 � b2 � 0 since b2 � b1

s4 � s2 � �b3 � b4 � � s2 since b4 � b3

s2n � s2n�2 � �b2n�1 � b2n � � s2n�2 since b2n � b2n�1

0 � s2 � s4 � s6 � � � � � s2n � � � �

s2n � b1 � �b2 � b3 � � �b4 � b5 � � � � � � �b2n�2 � b2n�1� � b2n

s2n � b1 n 
s2n �

s

lim
n l �

s2n � s
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Now we compute the limit of the odd partial sums:

[by condition (ii)]

Since both the even and odd partial sums converge to , we have (see
Exercise 52 in Section 8.1) and so the series is convergent. ■

EXAMPLE 1 The alternating harmonic series

satisfies

(i) because    

(ii) 

so the series is convergent by the Alternating Series Test. ■

EXAMPLE 2 The series is alternating, but

so condition (ii) is not satisfied. Instead, we look at the limit of the term of the
series:

This limit does not exist, so the series diverges by the Test for Divergence. ■

EXAMPLE 3 Test the series for convergence or divergence.

SOLUTION The given series is alternating so we try to verify conditions (i) and (ii)
of the Alternating Series Test.

Unlike the situation in Example 1, it is not obvious that the sequence given by
is decreasing. However, if we consider the related function

, we find that

lim
n l �

s2n�1 � lim
n l �

�s2n � b2n�1�

� lim
n l �

s2n � lim
n l �

b2n�1

� s � 0

� s

s lim n l � sn � s

1 �
1

2
�

1

3
�

1

4
� � � � � �

�

n�1

��1�n�1

n

bn�1 � bn
1

n � 1
�

1

n

lim
n l �

bn � lim
n l �

1

n
� 0

�
�

n�1

��1�n3n

4n � 1

lim
n l �

bn � lim
n l �

3n

4n � 1
� lim

n l �

3

4 �
1

n

�
3

4

nth

lim
n l �

an � lim
n l �

��1�n3n

4n � 1

�
�

n�1
��1�n�1 n2

n3 � 1

bn � n2��n3 � 1�
f �x� � x 2��x 3 � 1�

f ��x� �
x �2 � x 3 �
�x 3 � 1�2

V

V
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■ Figure 2 illustrates Example 1 
by show  ing the graphs of the terms

and the partial sums 
. Notice how the values of zig-

zag across the limiting value, which
appears to be about . In fact, it can 
be proved that the exact sum of the 
series is .

sn

ln 2 � 0.693

0.7

sn

an � ��1�n�1�n

FIGURE 2

0 n

1

�an�

�sn�
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Since we are considering only positive , we see that if , 
that is, . Thus is decreasing on the interval . This means that

and therefore when . (The inequality can
be verified directly but all that really matters is that the sequence is eventually
decreasing.)

Condition (ii) is readily verified:

Thus the given series is convergent by the Alternating Series Test. ■

A partial sum of any convergent series can be used as an approximation to the
total sum , but this is not of much use unless we can estimate the accuracy of the
approximation. The error involved in using is the remainder . The
next theorem says that for series that satisfy the conditions of the Alternating Series
Test, the size of the error is smaller than , which is the absolute value of the first
neglected term.

ALTERNATING SERIES ESTIMATION THEOREM If is the sum
of an alter nating series that satisfies

(i) and (ii) 

then

PROOF We know from the proof of the Alternating Series Test that s lies between
any two consecutive partial sums and . (There we showed that is larger than
all the even partial sums. A similar argument shows that is smaller than all the odd
sums.) It follows that

■

EXAMPLE 4 Find the sum of the series correct to three decimal
places. (By definition, .)

SOLUTION We first observe that the series is convergent by the Alternating Series
Test because

(i)

(ii) so  as 

To get a feel for how many terms we need to use in our approximation, let’s write
out the first few terms of the series:

x f ��x� � 0 2 � x 3 � 0
x � s

3 2 f (s3 2 , �)
f �n � 1� � f �n� bn�1 � bn n 	 2 b2 � b1

�bn �

lim
n l �

bn � lim
n l �

n2

n3 � 1
� lim

n l �

1

n

1 �
1

n3

� 0

sn

s
s � sn Rn � s � sn

bn�1

s � 	 ��1�n�1bn

0 
 bn�1 
 bn lim
n l �

bn � 0


 Rn 
 � 
 s � sn 
 
 bn�1

sn sn�1


 s � sn 
 
 
 sn�1 � sn 
 � bn�1

�
�

n�0

��1�n

n!0! � 1

bn�1 �
1

�n � 1�!
�

1

n!�n � 1�
�

1

n!
� bn

0 �
1

n!
�

1

n
l 0 bn �

1

n!
l 0 n l �

s �
1

0!
�

1

1!
�

1

2!
�

1

3!
�

1

4!
�

1

5!
�

1

6!
�

1

7!
� � � �

� 1 � 1 �
1
2 �

1
6 �

1
24 �

1
120 �

1
720 �

1
5040 � � � �

V

s
s
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■ Instead of verifying condition (i) of
the Alternating Series Test by com -
puting a derivative, we could verify 
that directly by using the
tech ni que of Example 12 in Section 8.1.

bn�1 � bn

■ You can see geometrically why the 
Alternating Series Estimation Theorem
is true by looking at Figure 1 (on 
page 455). Notice that ,

, and so on. Notice also
that lies between any two consecutive
partial sums.

s

 s � s5 
 � b6

s � s4 � b5
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Notice that

and

By the Alternating Series Estimation Theorem we know that

This error of less than does not affect the third decimal place, so we have

correct to three decimal places. ■

| NOTE The rule that the error (in using to approximate ) is smaller than the first
neglected term is, in general, valid only for alternating series that satisfy the condi-
tions of the Alternating Series Estimation Theorem. The rule does not apply to other
types of series.

ABSOLUTE CONVERGENCE

Given any series , we can consider the corresponding series

whose terms are the absolute values of the terms of the original series.

DEFINITION A series is called absolutely convergent if the series of
absolute values is convergent.

Notice that if is a series with positive terms, then and so absolute
convergence is the same as convergence.

EXAMPLE 5 The series

is absolutely convergent because

is a convergent -series ( ). ■

EXAMPLE 6 We know that the alternating harmonic series

b7 � 1
5040 �

1
5000 � 0.0002

s6 � 1 � 1 �
1
2 �

1
6 �

1
24 �

1
120 �

1
720 � 0.368056


 s � s6 
 
 b7 � 0.0002

0.0002

s � 0.368

sn s

	 an

�
�

n�1

 an 
 � 
 a1 
 � 
 a2 
 � 
 a3 
 � � � �

	 an

	 
 an 


	 an 
 an 
 � an

�
�

n�1

��1�n�1

n2 � 1 �
1

22 �
1

32 �
1

42 � � � �

�
�

n�1
� ��1�n�1

n2 � � �
�

n�1

1

n2 � 1 �
1

22 �
1

32 �
1

42 � � � �

p p � 2

�
�

n�1

��1�n�1

n
� 1 �

1

2
�

1

3
�

1

4
� � � �

■ In Section 8.7 we will prove that
for all , so what we

have obtained in Example 4 is actually
an approximation to the number .e�1

xe x � 	�
n�0 x n�n!

■ We have convergence tests for series
with positive terms and for alternating
series. But what if the signs of the terms
switch back and forth irregularly? We
will see in Example 7 that the idea of
absolute convergence sometimes helps
in such cases.
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is convergent (see Example 1), but it is not absolutely convergent because the corre-
sponding series of absolute values is

which is the harmonic series ( -series with ) and is therefore divergent. ■

DEFINITION A series is called conditionally convergent if it is conver-
gent but not absolutely convergent.

Example 6 shows that the alternating harmonic series is conditionally convergent.
Thus it is possible for a series to be convergent but not absolutely convergent. How-
ever, the next theorem shows that absolute convergence implies convergence.

THEOREM If a series is absolutely convergent, then it is convergent.

PROOF Observe that the inequality

is true because is either or . If is absolutely convergent, then
is convergent, so is convergent. Therefore, by the Comparison Test,

is convergent. Then

is the difference of two convergent series and is therefore convergent. ■

EXAMPLE 7 Determine whether the series

is convergent or divergent.

SOLUTION This series has both positive and negative terms, but it is not alternating. 
(The first term is positive, the next three are negative, and the following three are
positive. The signs change irregularly.) We can apply the Comparison Test to the
series of absolute values

Since for all , we have

We know that is convergent ( -series with ) and therefore
is convergent by the Comparison Test. Thus the given series is abso-
lutely convergent and therefore convergent by Theorem 1. ■
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■ It can be proved that if the terms of
an absolutely convergent series are
rearranged in a different order, then the
sum is unchanged. But if a conditionally
convergent series is rearranged, the sum
could be different.

■ Figure 3 shows the graphs of the
terms and partial sums of the series
in Example 7. Notice that the series is
not alternating but has positive and neg-
ative terms.

snan

FIGURE 3

0 n

0.5

�an�

�sn�
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THE RATIO TEST

The following test is very useful in determining whether a given series is absolutely
convergent.

THE RATIO TEST

(i) If , then the series is absolutely convergent 

(and therefore convergent).

(ii) If or , then the series 

is divergent.

(iii) If , the Ratio Test is inconclusive; that is, no conclusion

can be drawn about the convergence or divergence of .

PROOF
(i) The idea is to compare the given series with a convergent geometric series.

Since , we can choose a number such that . Since

the ratio will eventually be less than ; that is, there exists an integer 
such that

or, equivalently,

Putting successively equal to , , , . . . in , we obtain

and, in general,

Now the series

is convergent because it is a geometric series with . So the inequality , 
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together with the Comparison Test, shows that the series

is also convergent. It follows that the series is convergent. (Recall that a
finite number of terms doesn’t affect convergence.) Therefore is absolutely
convergent.

(ii) If or , then the ratio will eventu-
ally be greater than 1; that is, there exists an integer such that

This means that whenever and so

Therefore diverges by the Test for Divergence. ■

NOTE Part (iii) of the Ratio Test says that if , the test gives
no information. For instance, for the convergent series we have

whereas for the divergent series we have

Therefore, if , the series might converge or it might
diverge. In this case the Ratio Test fails and we must use some other test.

EXAMPLE 8 Test the series for absolute convergence.

SOLUTION We use the Ratio Test with :

Thus by the Ratio Test the given series is absolutely convergent and therefore 
convergent. ■
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■ Series that involve factorials or other
products (including a constant raised to
the th power) are often conveniently
tested using the Ratio Test.

n
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EXAMPLE 9 Test the convergence of the series .

SOLUTION Since the terms are positive, we don’t need the absolute
value signs.

Since , the given series is divergent by the Ratio Test. ■

The following test is convenient to apply when th powers occur. Its proof is sim-
ilar to the proof of the Ratio Test and is left as Exercise 47.

THE ROOT TEST

(i) If , then the series is absolutely convergent 

(and therefore convergent).

(ii) If or , then the series is 

divergent.

(iii) If , the Root Test is inconclusive.

If , then part (iii) of the Root Test says that the test gives no infor-
mation. The series could converge or diverge. (If in the Ratio Test, don’t
try the Root Test because will again be 1. And if in the Root Test, don’t try the
Ratio Test because it will fail too.)

EXAMPLE 10 Test the convergence of the series .

SOLUTION

Thus the given series converges by the Root Test. ■
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■ We know that

by the definition of . If we let ,
then as and sox l 0�n l �

n � 1�xe

lim
n l �

�1 � 1�n�n � e

lim
x l 0

�1 � x�1�x � e

■ www.stewartcalculus.com
We now have several tests for 
convergence of series. So, given a
series, how do you know which 
test to use? For advice, click on 
Additional Topics and then on 
Strategy for Testing Series.
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8.4 EXERCISES

1. (a) What is an alternating series?
(b) Under what conditions does an alternating series

converge?
(c) If these conditions are satisfied, what can you say about

the remainder after terms?

2. What can you say about the series in each of the
following cases?

(a) (b)

(c)

3–8 ■ Test the series for convergence or divergence.

3.

4.

5. 6.

7. 8.

9–12 ■ Show that the series is convergent. How many terms of
the series do we need to add in order to find the sum to the indi-
cated accuracy?

9.

10.

11.

12.

13–16 ■ Approximate the sum of the series correct to four 
decimal places.

13. 14.

15. 16.
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17. Is the 50th partial sum of the alternating series
an overestimate or an underestimate of the 

total sum? Explain.

18. For what values of is the following series convergent?

19–40 ■ Determine whether the series is absolutely convergent, 
conditionally convergent, or divergent.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37.

38.

39.

40.
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45. (a) Show that converges for all .
(b) Deduce that for all .

46. Around 1910, the Indian mathematician Srinivasa 
Ramanujan discovered the formula

William Gosper used this series in 1985 to compute the first
17 million digits of .
(a) Verify that the series is convergent.
(b) How many correct decimal places of do you get if

you use just the first term of the series? What if you use
two terms?

47. Prove the Root Test.  [Hint for part (i): Take any number
such that and use the fact that there is an integer

such that whenever .]
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41–42 ■ Let be a sequence of positive numbers that con-
verges to . Determine whether the given series is absolutely
convergent.

41. 42.

43. For which of the following series is the Ratio Test inconclu-
sive (that is, it fails to give a definite answer)?

(a) (b)

(c) (d)

44. For which positive integers is the following series 
convergent?
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8.5 POWER SERIES
A power series is a series of the form

where is a variable and the ’s are constants called the coefficients of the series. For
each fixed , the series is a series of constants that we can test for convergence or
divergence. A power series may converge for some values of and diverge for other
values of . The sum of the series is a function

whose domain is the set of all for which the series converges. Notice that resembles
a polynomial. The only difference is that has infinitely many terms.

For instance, if we take for all , the power series becomes the geometric
series

which converges when and diverges when (see Equation 8.2.5).
More generally, a series of the form

is called a power series in or a power series centered at a or a power series
about a. Notice that in writing out the term corresponding to in Equations 1
and 2 we have adopted the convention that even when . Notice
also that when all of the terms are 0 for and so the power series
always converges when .
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■ TRIGONOMETRIC SERIES
A power series is a series in which
each term is a power function. A
trigonometric series

is a series whose terms are trigono-
metric functions. This type of series 
is discussed on the website

www.stewartcalculus.com

Click on Additional Topics and then on
Fourier Series.

�
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n�0
�an cos nx � bn sin nx�
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EXAMPLE 1 For what values of is the series convergent?

SOLUTION We use the Ratio Test. If we let , as usual, denote the nth term of the
series, then . If , we have

By the Ratio Test, the series diverges when . Thus the given series converges
only when . ■

EXAMPLE 2 For what values of does the series converge?

SOLUTION Let . Then

By the Ratio Test, the given series is absolutely convergent, and therefore conver-
gent, when and divergent when . Now

so the series converges when and diverges when or .
The Ratio Test gives no information when so we must consider

and separately. If we put in the series, it becomes , the
harmonic series, which is divergent. If , the series is , which con-
verges by the Alternating Series Test. Thus the given power series converges for

. ■

We will see that the main use of a power series is that it provides a way to repre-
sent some of the most important functions that arise in mathematics, physics, and
chemistry. In particular, the sum of the power series in the next example is called a
Bessel function, after the German astronomer Friedrich Bessel (1784–1846), and the
function given in Exer cise 29 is another example of a Bessel function. In fact, these
functions first arose when Bessel solved Kepler’s equation for describing planetary
motion. Since that time, these functions have been applied in many different physical
situations, including the temperature distribution in a circular plate and the shape of a
vibrating drumhead.

EXAMPLE 3 Find the domain of the Bessel function of order 0 defined by
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■ Notice that

� �n � 1�n!

�n � 1�! � �n � 1�n�n � 1� � . . . � 3 � 2 � 1

■ Notice how closely the computer-
generated model (which involves Bessel 
functions and cosine functions) matches
the photograph of a vibrating rubber
membrane.
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SOLUTION Let . Then

Thus by the Ratio Test the given series converges for all values of . In other words,
the domain of the Bessel function is . ■

Recall that the sum of a series is equal to the limit of the sequence of partial sums.
So when we define the Bessel function in Example 3 as the sum of a series we mean
that, for every real number ,

where    

The first few partial sums are

Figure 1 shows the graphs of these partial sums, which are polynomials. They are all
approximations to the function , but notice that the approximations become better
when more terms are included. Figure 2 shows a more complete graph of the Bessel
function.

For the power series that we have looked at so far, the set of values of for which
the series is convergent has always turned out to be an interval [a finite interval for the 
geometric series and the series in Example 2, the infinite interval in Example
3, and a collapsed interval in Example 1]. The following theorem, proved
in Appendix D, says that this is true in general.

THEOREM For a given power series there are only three 
possibilities:

(i) The series converges only when .

(ii) The series converges for all .

(iii) There is a positive number such that the series converges if
and diverges if .

The number in case (iii) is called the radius of convergence of the power series.
By convention, the radius of convergence is in case (i) and in case (ii).
The interval of convergence of a power series is the interval that consists of all val-
ues of for which the series converges. In case (i) the interval consists of just a 
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single point . In case (ii) the interval is . In case (iii) note that the inequality
can be rewritten as . When is an endpoint of the

interval, that is, , anything can happen—the series might converge at one
or both endpoints or it might diverge at both endpoints. Thus in case (iii) there are four
possibilities for the interval of convergence:

The situation is illustrated in Figure 3.

We summarize here the radius and interval of convergence for each of the examples
already considered in this section.

The Ratio Test (or sometimes the Root Test) should be used to determine the radius
of convergence in most cases. The Ratio and Root Tests always fail when is an
endpoint of the interval of convergence, so the endpoints must be checked with some
other test.

EXAMPLE 4 Find the radius of convergence and interval of convergence of the series

SOLUTION Let . Then

By the Ratio Test, the given series converges if and diverges if .
Thus it converges if and diverges if . This means that the radius of 
convergence is .
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�a � R, a � R� �a � R, a � R� �a � R, a � R� �a � R, a � R�

FIGURE 3
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8.5 EXERCISES

1. What is a power series?

2. (a) What is the radius of convergence of a power series? 
How do you find it?

(b) What is the interval of convergence of a power series? 
How do you find it?

3–22 ■ Find the radius of convergence and interval of conver-
gence of the series.

3. 4.�
�

n�1
��1�nnx n �

�

n�1

��1�nx n

s
3 n

We know the series converges in the interval , but we must now test for 
convergence at the endpoints of this interval. If , the series becomes

which diverges. (Use the Integral Test or simply observe that it is a -series with
.) If , the series is

which converges by the Alternating Series Test. Therefore the given power series
converges when , so the interval of convergence is . ■

EXAMPLE 5 Find the radius of convergence and interval of convergence of the
series

SOLUTION If , then

Using the Ratio Test, we see that the series converges if and it
diverges if . So it converges if and diverges if

. Thus the radius of convergence is .
The inequality can be written as , so we test the series

at the endpoints and 1. When , the series is

which diverges by the Test for Divergence [ doesn’t converge to 0]. When
, the series is

which also diverges by the Test for Divergence. Thus the series converges only 
when , so the interval of convergence is . ■
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; 28. Graph the first several partial sums of the series
, together with the sum function ,

on a common screen. On what interval do these partial 
sums appear to be converging to ?

29. The function defined by

is called the Bessel function of order 1.
(a) Find its domain.

; (b) Graph the first several partial sums on a common 
screen.

(c) If your CAS has built-in Bessel functions, graph on
the same screen as the partial sums in part (b) and
observe how the partial sums approximate .

30. The function defined by

is called an Airy function after the English mathematician 
and astronomer Sir George Airy (1801–1892).
(a) Find the domain of the Airy function.

; (b) Graph the first several partial sums on a common
screen.

(c) If your CAS has built-in Airy functions, graph on the
same screen as the partial sums in part (b) and observe
how the partial sums approximate .

31. A function is defined by

that is, its coefficients are and for all 
. Find the interval of convergence of the series and

find an explicit formula for .

32. If , where for all , find the
interval of convergence of the series and a formula for .

33. Show that if , where , then the
radius of convergence of the power series is .

34. Suppose that the power series satisfies
for all . Show that if exists, then it is
equal to the radius of convergence of the power series.

35. Suppose the series has radius of convergence 2 and
the series has radius of convergence 3. What is the
radius of convergence of the series ?

36. Suppose that the radius of convergence of the power series
is . What is the radius of convergence of the power

series ?
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19. 20.

21.

22.

23. If is convergent, does it follow that the following
series are convergent?

(a) (b)

24. Suppose that converges when and
diverges when . What can be said about the conver-
gence or divergence of the following series?

(a) (b)

(c) (d)

25. If is a positive integer, find the radius of convergence of 
the series

26. Let and be real numbers with . Find a power
series whose interval of convergence is 
(a) (b)
(c) (d)

27. Is it possible to find a power series whose interval of
convergence is ? Explain.
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8.6 REPRESENTING FUNCTIONS AS POWER SERIES
In this section we learn how to represent certain types of functions as sums of power
series by manipulating geometric series or by differentiating or integrating such a
series. You might wonder why we would ever want to express a known function as a
sum of infinitely many terms. This strategy is useful for integrating functions that
don’t have elementary antiderivatives, for solving differential equations, and for approx-
imating functions by polynomials. (Scientists do this to simplify the expressions 
they deal with; computer scientists do this to represent functions on calculators and 
computers.)

We start with an equation that we have seen before:

We first encountered this equation in Example 5 in Section 8.2, where we obtained it
by observing that the series is a geometric series with and . But here our
point of view is different. We now regard Equation 1 as expressing the function

as a sum of a power series.

EXAMPLE 1 Express as the sum of a power series and find the inter-
val of convergence.

SOLUTION Replacing by in Equation 1, we have

Because this is a geometric series, it converges when , that is, , or
. Therefore the interval of convergence is . (Of course, we could have

determined the radius of convergence by applying the Ratio Test, but that much
work is unnecessary here.) ■

EXAMPLE 2 Find a power series representation for .

SOLUTION In order to put this function in the form of the left side of Equation 1 

1

1 � x
� 1 � x � x 2 � x 3 � � � � � �

�

n�0
xn � x � � 1

a � 1 r � x

1

f �x� � 1��1 � x�

FIGURE 1
0 x

y

1_1

f

s™

s∞

sˆ

s¡¡

1��1 � x 2 �

x �x 2

1

1 � x 2 �
1

1 � ��x 2 �
� �

�

n�0
��x 2 �n

� �
�

n�0
��1�nx 2n � 1 � x 2 � x 4 � x 6 � x 8 � � � �

V

x 2 � 1� �x 2 � � 1
��1, 1�� x � � 1

1��x � 2�

■ A geometric illustration of Equa-
 tion 1 is shown in Figure 1. Because 
the sum of a series is the limit of the
sequence of partial sums, we have

where

is the th partial sum. Notice that as 
increases, becomes a better approxi-
mation to for .�1 � x � 1f �x�
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we first factor a 2 from the denominator:

This series converges when , that is, . So the interval of conver-
gence is . ■

EXAMPLE 3 Find a power series representation of .

SOLUTION Since this function is just times the function in Example 2, all we
have to do is to multiply that series by :

Another way of writing this series is as follows:

As in Example 2, the interval of convergence is . ■

DIFFERENTIATION AND INTEGRATION OF POWER SERIES

The sum of a power series is a function whose domain is the
interval of convergence of the series. We would like to be able to differentiate and inte-
grate such functions, and the following theorem (which we won’t prove) says that we
can do so by differentiating or integrating each individual term in the series, just as we
would for a polynomial. This is called term-by-term differentiation and integration.

THEOREM If the power series has radius of convergence
, then the function defined by

is differentiable (and therefore continuous) on the interval and

(i)

(ii) 

The radii of convergence of the power series in Equations (i) and (ii) are both .
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■ It’s legitimate to move across the 
sigma sign because it doesn’t depend on
. [Use Theorem 8.2.8(i) with .]c � x 3n

x 3

■ In part (ii), is 
written as , where

, so all the terms of the
series have the same form.
C � C1 � ac0

c0�x � a� � C
x c0 dx � c0 x � C1
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NOTE 1 Equations (i) and (ii) in Theorem 2 can be rewritten in the form

(iii)

(iv) 

We know that, for finite sums, the derivative of a sum is the sum of the derivatives and
the integral of a sum is the sum of the integrals. Equations (iii) and (iv) assert that the
same is true for infinite sums, provided we are dealing with power series. (For other
types of series of functions the situation is not as simple; see Exercise 38.)

NOTE 2 Although Theorem 2 says that the radius of convergence remains the same
when a power series is differentiated or integrated, this does not mean that the inter-
val of convergence remains the same. It may happen that the original series converges
at an endpoint, whereas the differentiated series diverges there. (See Exercise 39.)

EXAMPLE 4 In Example 3 in Section 8.5 we saw that the Bessel function

is defined for all . Thus by Theorem 2, is differentiable for all and its deriva-
tive is found by term-by-term differentiation as follows:

■

EXAMPLE 5 Express as a power series by differentiating Equation 1.
What is the radius of convergence?

SOLUTION Differentiating each side of the equation

we get

If we wish, we can replace n by n � 1 and write the answer as

According to Theorem 2, the radius of convergence of the differentiated series is the
same as the radius of convergence of the original series, namely, . ■

EXAMPLE 6 Find a power series representation for and its radius of 
convergence.

SOLUTION We notice that the derivative of this function is . From Equa-
tion 1 we have
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■ www.stewartcalculus.com
The idea of differentiating a power
series term by term is the basis for 
a powerful method for solving differ-
ential equations. Click on Additional 
Topics and then on Using Series to
Solve Differential Equations.
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Integrating both sides of this equation, we get

To determine the value of we put in this equation and obtain .
Thus and

The radius of convergence is the same as for the original series: . ■

EXAMPLE 7 Find a power series representation for .

SOLUTION We observe that and find the required series by
integrating the power series for found in Example 1.

To find we put and obtain . Therefore

Since the radius of convergence of the series for is 1, the radius of con-
vergence of this series for is also 1. ■

EXAMPLE 8 Evaluate as a power series.

SOLUTION The first step is to express the integrand, , as the sum of a
power series. As in Example 1, we start with Equation 1 and replace by :

ln�1 � x� � y
1

1 � x
dx � y �1 � x � x 2 � x 3 � � � �� dx

� x �
x 2

2
�

x 3

3
�

x 4

4
� � � � � C

� �
�

n�1
��1�n�1 x n

n
� C � x � � 1

ln�1 � 0� � Cx � 0C
C � 0

� x � � 1ln�1 � x� � x �
x 2

2
�

x 3

3
�

x 4

4
� � � � � �

�

n�1
��1�n�1 x

n

n

R � 1

f �x� � tan�1xV

f ��x� � 1��1 � x 2 �
1��1 � x 2 �

tan�1x � y
1

1 � x 2 dx � y �1 � x 2 � x 4 � x 6 � � � �� dx

� C � x �
x 3

3
�

x 5

5
�

x 7

7
� � � �

C � tan�1 0 � 0x � 0C

tan�1x � x �
x 3

3
�

x 5

5
�

x 7

7
� � � � � �

�

n�0
��1�n x 2n�1

2n � 1

1��1 � x 2 �
tan�1x

x �1��1 � x 7 �� dx

1��1 � x 7 �
�x 7x

1

1 � x 7 �
1

1 � ��x 7 �
� �

�

n�0
��x 7 �n

� �
�

n�0
��1�nx 7n � 1 � x 7 � x 14 � � � �
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■ The power series for obtained 
in Example 7 is called Gregory’s series
after the Scottish mathematician James
Gregory (1638–1675), who had antici-
pated some of Newton’s discoveries. We
have shown that Gregory’s series is
valid when , but it turns out
(although it isn’t easy to prove) that it is
also valid when . Notice that
when the series becomes

This beautiful result is known as the
Leibniz formula for .�

�

4
� 1 �

1

3
�

1

5
�

1

7
� � � �

x � 1
x � �1

�1 � x � 1

tan�1x
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Now we integrate term by term:

This series converges for , that is, for . ■

y
1

1 � x 7 dx � y �
�

n�0
��1�nx 7n dx � C � �

�

n�0
��1�n x 7n�1

7n � 1

� C � x �
x 8

8
�

x 15

15
�

x 22

22
� � � �

� �x 7 � � 1 � x � � 1
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■ This example demonstrates one way
in which power series representations
are useful. Integrating by
hand is incredibly difficult. Different
computer algebra systems return differ-
ent forms of the answer, but they are all
extremely complicated. (If you have a
CAS, try it yourself.) The infinite series
answer that we obtain in Exam ple 8 is
actually much easier to deal with than
the finite answer provided by a CAS.

1��1 � x 7 �

8.6 EXERCISES

1. If the radius of convergence of the power series 
is 10, what is the radius of convergence of the series

? Why?

2. Suppose you know that the series converges for
. What can you say about the following series? Why?

3–10 ■ Find a power series representation for the function and
determine the interval of convergence.

3. 4.

5. 6.

7. 8.

9. 10.

11–12 ■ Express the function as the sum of a power series by
first using partial fractions. Find the interval of convergence.

11. 12.

13. (a) Use differentiation to find a power series representation
for

What is the radius of convergence?

��
n�0 cn x n

��
n�1 ncn x n�1

��
n�0 bn x n

� x � � 2

�
�

n�0

bn

n � 1
 x n�1

f �x� �
1

1 � x
f �x� �

5

1 � 4x 2

f �x� �
2

3 � x
f �x� �

1

x � 10

f �x� �
x

9 � x 2 f �x� �
x

2x 2 � 1

f �x� �
1 � x

1 � x
f �x� �

x 2

a 3 � x 3

f �x� �
3

x 2 � x � 2
f �x� �

x � 2

2x 2 � x � 1

f �x� �
1

�1 � x�2

(b) Use part (a) to find a power series for

(c) Use part (b) to find a power series for

14. (a) Use Equation 1 to find a power series representation for
. What is the radius of convergence?

(b) Use part (a) to find a power series for
.

(c) By putting in your result from part (a), express
as the sum of an infinite series.

15–20 ■ Find a power series representation for the function and
determine the radius of convergence.

15. 16.

17. 18.

19. 20.

;21–24 ■ Find a power series representation for , and graph
and several partial sums on the same screen. What happens
as increases?

21. 22.

23. 24.

f �x� �
x 2

�1 � x�3

f �x� � ln�1 � x�

f �x� � x ln�1 � x�
x � 1

2

ln 2

f �x� � ln�5 � x� f �x� � x 2 tan�1�x 3�

f �x� �
x

�1 � 4x�2 f �x� � � x

2 � x	
3

f �x� �
1 � x

�1 � x�2 f �x� �
x 2 � x

�1 � x�3

f f
sn�x�

n

f �x� �
x

x 2 � 16
f �x� � ln�x 2 � 4�

f �x� � ln�1 � x

1 � x	 f �x� � tan�1�2x�

f �x� �
1

�1 � x�3
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37. (a) Show that the function

is a solution of the differential equation

(b) Show that .

38. Let . Show that the series
converges for all values of but the series of derivatives

diverges when , an integer. For what val-
ues of does the series converge?

39. Let

Find the intervals of convergence for , , and .

40. (a) Starting with the geometric series , find the sum
of the series

(b) Find the sum of each of the following series.

(i) ,  (ii)

(c) Find the sum of each of the following series.

(i) ,  

(ii) (iii)

41. Use the power series for to prove the following 
expression for as the sum of an infinite series:

42. Find the sum of the series

fn�x� � �sin nx��n2 � fn�x�
x

� fn��x� x � 2n� n
x � fn�x�

f �x� � �
�

n�1

x n

n2

f f � f 

��
n�0 x n

�
�

n�1
nx n�1 � x � � 1 

�
�

n�1
nx n � x � � 1 �

�

n�1

n

2n

�
�

n�2
n�n � 1�x n � x � � 1

�
�

n�2

n2 � n

2n �
�

n�1

n2

2n

tan �1x
�

� � 2s3 �
�

n�0

��1�n

�2n � 1�3n

f �x� � e x

�
�

n�1

4 n

n5n

f �x� � �
�

n�0

x n

n!

f ��x� � f �x�

25–28 ■ Evaluate the indefinite integral as a power series. What
is the radius of convergence?

25. 26.

27. 28.

29–32 ■ Use a power series to approximate the definite integral
to six decimal places.

29. 30.

31. 32.

33. Use the result of Example 7 to compute correct to
five decimal places.

34. Show that the function

is a solution of the differential equation

35. (a) Show that (the Bessel function of order 0 given in 
Example 4) satisfies the differential equation

(b) Evaluate correct to three decimal places.

36. The Bessel function of order 1 is defined by

(a) Show that satisfies the differential equation

(b) Show that .

y
t

1 � t 8 dt y
t

1 � t 3 dt

y x 2 ln�1 � x� dx y
tan�1x

x
dx

y
0.2

0

1

1 � x 5 dx y
0.4

0
ln�1 � x 4� dx

y
0.1

0
 x arctan�3x� dx y

0.3

0

x 2

1 � x 4 dx

arctan 0.2

f �x� � �
�

n�0

��1�nx 2n

�2n�!

f �x� � f �x� � 0

J0

x 2J0�x� � xJ0��x� � x 2J0�x� � 0

x
1

0 J0�x� dx

J1�x� � �
�

n�0

��1�n x 2n�1

n! �n � 1�!22n�1

J1

x 2J1�x� � xJ1��x� � �x 2 � 1�J1�x� � 0

J0��x� � �J1�x�
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8.7 TAYLOR AND MACLAURIN SERIES
In the preceding section we were able to find power series representations for a cer-
tain restricted class of functions. Here we investigate more general problems: Which
functions have power series representations? How can we find such representations?

We start by supposing that is any function that can be represented by a power
series:

Let’s try to determine what the coefficients must be in terms of . To begin, notice
that if we put in Equation 1, then all terms after the first one are 0 and we get

By Theorem 8.6.2, we can differentiate the series in Equation 1 term by term:

and substitution of in Equation 2 gives

Now we differentiate both sides of Equation 2 and obtain

Again we put in Equation 3. The result is

Let’s apply the procedure one more time. Differentiation of the series in Equation 3
gives

and substitution of in Equation 4 gives

By now you can see the pattern. If we continue to differentiate and substitute ,
we obtain

Solving this equation for the th coefficient 

This formula remains valid even for if we adopt the conventions that and
. Thus we have proved the following theorem.

f

1 f �x� � c0 � c1�x � a� � c2�x � a�2 � c3�x � a�3 � c4�x � a�4 � � � �

� x � a � � R

cn f
x � a

f �a� � c0

2 f ��x� � c1 � 2c2�x � a� � 3c3�x � a�2 � 4c4�x � a�3 � � � � � x � a � � R

x � a

f ��a� � c1

3 f ��x� � 2c2 � 2 � 3c3�x � a� � 3 � 4c4�x � a�2 � � � � � x � a � � R

x � a

f ��a� � 2c2

4 f ��x� � 2 � 3c3 � 2 � 3 � 4c4�x � a� � 3 � 4 � 5c5�x � a�2 � � � � � x � a � � R

x � a

f ��a� � 2 � 3c3 � 3!c3

x � a

f �n��a� � 2 � 3 � 4 � � � � � ncn � n!cn

n cn, we get

cn �
f �n��a�

n!

n � 0 0! � 1
f �0� � f
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THEOREM If has a power series representation (expansion) at , that 
is, if

then its coefficients are given by the formula

Substituting this formula for back into the series, we see that if has a power
series expansion at , then it must be of the following form.

The series in Equation 6 is called the Taylor series of the function f at a (or about
a or centered at a). For the special case the Taylor series becomes

This case arises frequently enough that it is given the special name Maclaurin series.

NOTE We have shown that if can be represented as a power series about , then
is equal to the sum of its Taylor series. But there exist functions that are not equal

to the sum of their Taylor series. An example of such a function is given in Exercise 70.

EXAMPLE 1 Find the Maclaurin series of the function and its radius
of convergence.

SOLUTION If , then , so for all . Therefore
the Taylor series for at 0 (that is, the Maclaurin series) is

To find the radius of convergence we let . Then

f a

f �x� � �
	

n�0
 cn�x � a�n � x � a � � R

cn �
f �n��a�

n!

cn f
a

f �x� � �
	

n�0

f �n��a�
n!

 �x � a�n

� f �a� �
f ��a�
1!

 �x � a� �
f ��a�
2!

 �x � a�2 �
f ��a�

3!
 �x � a�3 � � � �

a � 0

f �x� � �
	

n�0

f �n��0�
n!

 xn � f �0� �
f ��0�
1!

 x �
f ��0�
2!

 x 2 � � � �

f a
f

5

6

7

f �x� � ex

f �x� � ex f �n��x� � ex f �n��0� � e 0 � 1 n
f

�
	

n�0

f �n��0�
n!

 xn � �
	

n�0

xn

n!
� 1 �

x

1!
�

x 2

2!
�

x 3

3!
� � � �

an � xn�n!

� an�1

an
� � � xn�1

�n � 1�!
�

n!

xn � � � x �
n � 1

l 0 � 1

V
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■ The Taylor series is named after the
English mathematician Brook Taylor
(1685–1731) and the Maclaurin series is
named in honor of the Scottish mathemati-
cian Colin Maclaurin (1698–1746) despite
the fact that the Maclaurin series is really
just a special case of the Taylor series. 
But the idea of representing particular
functions as sums of power series goes
back to Newton, and the general Taylor
series was known to the Scottish mathe-
matician James Gregory in 1668 and to the
Swiss mathematician John Bernoulli in the
1690s. Taylor was apparently unaware of
the work of Gregory and Bernoulli when
he published his discoveries on series in
1715 in his book Methodus incrementorum
directa et inversa. Maclaurin series are
named after Colin Maclaurin because he
popularized them in his calculus textbook
Treatise of Fluxions published in 1742.
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so, by the Ratio Test, the series converges for all and the radius of convergence 
is . ■

The conclusion we can draw from Theorem 5 and Example 1 is that if has a
power series expansion at 0, then

So how can we determine whether does have a power series representation?
Let’s investigate the more general question: Under what circumstances is a func-

tion equal to the sum of its Taylor series? In other words, if has derivatives of all
orders, when is it true that

As with any convergent series, this means that is the limit of the sequence of par-
tial sums. In the case of the Taylor series, the partial sums are

Notice that is a polynomial of degree called the nth-degree Taylor polynomial
of f at a. For instance, for the exponential function , the result of Example 1
shows that the Taylor polynomials at 0 (or Maclaurin polynomials) with , 2, and
3 are

The graphs of the exponential function and these three Taylor polynomials are drawn
in Figure 1.

In general, is the sum of its Taylor series if

If we let

so that    

then is called the remainder of the Taylor series. If we can somehow show that
, then it follows that

We have therefore proved the following.

THEOREM If , where is the nth-degree Taylor
polynomial of at and

for , then is equal to the sum of its Taylor series on the interval
.

x
R � 	

ex

ex � �
	

n�0

xn

n!

e x

f

f �x� � �
	

n�0

f �n��a�
n!

 �x � a�n

f �x�

Tn�x� � �
n

i�0

f �i��a�
i!

 �x � a�i

� f �a� �
f ��a�
1!

 �x � a� �
f ��a�
2!

 �x � a�2 � � � � �
f �n��a�

n!
 �x � a�n

Tn n
f �x� � ex

n � 1

T1�x� � 1 � x T2�x� � 1 � x �
x 2

2!
T3�x� � 1 � x �

x 2

2!
�

x 3

3!

f �x�

f �x� � lim
n l 	

Tn�x�

Rn�x� � f �x� � Tn�x� f �x� � Tn�x� � Rn�x�

Rn�x�
lim n l 	 Rn�x� � 0

lim
n l 	

Tn�x� � lim
n l 	

� f �x� � Rn�x�	 � f �x� � lim
n l 	

Rn�x� � f �x�

Tnf �x� � Tn�x� � Rn�x�8
af

lim
n l 	

Rn�x� � 0

f� x � a � � R

� x � a � � R

0 x

y

y=´

y=T£(x)

(0, 1)

y=T™(x)

y=T¡(x)

y=T™(x)

y=T£(x)

FIGURE 1

■ As increases, appears to
approach in Figure 1. This suggests
that is equal to the sum of its Taylor
series.

e x
e x

Tn�x�n

12280_ch08_ptg01_hr_476-485.qk_12280_ch08_ptg01_hr_476-485  11/17/11  11:10 AM  Page 478

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 8.7  TAYLOR AND MACLAURIN SERIES 479

Unless otherwise noted, all content on this page is © Cengage Learning.

In trying to show that for a specific function , we usually use
the expression in the next theorem.

TAYLOR’S FORMULA If has derivatives in an interval that 
contains the number , then for in there is a number strictly between
and such that the remainder term in the Taylor series can be expressed as

NOTE 1 For the special case , if we put and in Taylor’s For-
mula, we get , which is the Mean Value Theorem. In fact,
Theorem 9 can be proved by a method similar to the proof of the Mean Value Theo-
rem. The proof is given at the end of this section.

NOTE 2 Notice that the remainder term

is very similar to the terms in the Taylor series except that is evaluated at
instead of at . All we can say about the number is that it lies somewhere between

and . The expression for in Equation 10 is known as Lagrange’s form of the
remainder term.

NOTE 3 In Section 8.8 we will explore the use of Taylor’s Formula in approximat-
ing functions. Our immediate use of it is in conjunction with Theorem 8.

In applying Theorems 8 and 9 it is often helpful to make use of the following fact.

for every real number x

This is true because we know from Example 1 that the series converges for all
and so its th term approaches 0.

EXAMPLE 2 Prove that is equal to the sum of its Taylor series.

SOLUTION If , then , so the remainder term in Taylor’s 
Formula is

where lies between and . (Note, however, that depends on .) If , then
, so . Therefore

by Equation 11, so as by the Squeeze Theorem. If , then 

lim n l 	 Rn�x� � 0 f

f n � 1 I
a x I z x

a

Rn�x� �
f �n�1��z�
�n � 1�!

 �x � a�n�1

n � 0 x � b z � c
f �b� � f �a� � f ��c��b � a�

Rn�x� �
f �n�1��z�
�n � 1�!

 �x � a�n�1

f �n�1� z
a z

x a Rn�x�

lim
n l 	

xn

n!
� 0

9

10

11


 xn�n!
x n

ex

f �x� � ex f �n�1��x� � ex

Rn�x� �
e z

�n � 1�!
 xn�1

x 
 0nzx0z
e z � ex0 � z � x

0 � Rn�x� �
e z

�n � 1�!
 xn�1 � ex xn�1

�n � 1�!
 l 0

x � 0n l 	Rn�x� l 0
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, so and

Again . Thus, by Theorem 8, is equal to the sum of its Taylor series,
that is,

■

In particular, if we put in Equation 12, we obtain the following expression for
the number as a sum of an infinite series:

EXAMPLE 3 Find the Taylor series for at .

SOLUTION We have and so, putting in the definition of a Taylor
series , we get

Again it can be verified, as in Example 1, that the radius of convergence is .
As in Example 2 we can verify that , so

■

We have two power series expansions for , the Maclaurin series in Equation 12
and the Taylor series in Equation 14. The first is better if we are interested in values
of near 0 and the second is better if is near 2.

EXAMPLE 4 Find the Maclaurin series for and prove that it represents for
all .

SOLUTION We arrange our computation in two columns as follows:

Rn�x� l 0 ex

ex � �
�

n�0

xn

n!
for all x

x � 1
e

e � �
�

n�0

1

n!
� 1 �

1

1!
�

1

2!
�

1

3!
� � � �

f �x� � ex a � 2

f �n��2� � e 2 a � 2

�
�

n�0

f �n��2�
n!

 �x � 2�n � �
�

n�0

e 2

n!
 �x � 2�n

R � �
lim n l � Rn�x� � 0

ex � �
�

n�0

e 2

n!
 �x � 2�n for all x

ex

x x

e z � e0 � 1x � z � 0

� Rn�x� � � � x �n�1

�n � 1�!
  l 0

12

13

14

6

sin x sin x
x

f �x� � sin x f �0� � 0

f ��x� � cos x f ��0� � 1

f ��x� � �sin x f ��0� � 0

f 	�x� � �cos x f 	�0� � �1

f �4��x� � sin x f �4��0� � 0

■ In 1748 Leonard Euler used Equation 13 
to find the value of correct to digits.
In 2010 Shigeru Kondo, again using the
series in , computed to more than 
a trillion decimal places!

e

23e

13
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Since the derivatives repeat in a cycle of four, we can write the Maclaurin series as 
follows:

Using the remainder term with , we have

where and lies between 0 and . But is or . In
any case, and so

By Equation 11 the right side of this inequality approaches 0 as , so
by the Squeeze Theorem. It follows that as , so

is equal to the sum of its Maclaurin series by Theorem 8. ■

We state the result of Example 4 for future reference.

EXAMPLE 5 Find the Maclaurin series for .

SOLUTION We could proceed directly as in Example 4 but it’s easier to differenti-
ate the Maclaurin series for given by Equation 16:

Since the Maclaurin series for converges for all , Theorem 8.6.2 tells us that
the differentiated series for also converges for all . Thus

■

f �0� �
f ��0�
1!

 x �
f ��0�
2!

 x 2 �
f ��0�

3!
 x 3 � � � �

� x �
x 3

3!
�

x 5

5!
�

x 7

7!
� � � � � �

	

n�0
��1�n x 2n�1

�2n � 1�!

a � 0

Rn�x� �
f �n�1��z�
�n � 1�!

 xn�1

f �x� � sin x z x f �n�1��z� �sin z �cos z

� f �n�1��z� � � 1

0 � � Rn�x� � � � f �n�1��z� �
�n � 1�!

 � xn�1 � � � x �n�1

�n � 1�!

n l 	

� Rn�x� �l 0 Rn�x� l 0 n l 	 sin x

sin x � x �
x 3

3!
�

x 5

5!
�

x 7

7!
� � � �

� �
	

n�0
��1�n x 2n�1

�2n � 1�!
for all x

cos x

sin x

cos x �
d

dx
�sin x� �

d

dx �x �
x 3

3!
�

x 5

5!
�

x 7

7!
� � � ��

� 1 �
3x 2

3!
�

5x 4

5!
�

7x 6

7!
� � � � � 1 �

x 2

2!
�

x 4

4!
�

x 6

6!
� � � �

15

16

sin x x
cos x x

cos x � 1 �
x 2

2!
�

x 4

4!
�

x 6

6!
� � � �

� �
	

n�0
��1�n x 2n

�2n�!
for all x

17

10
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■ Figure 2 shows the graph of 
together with its Taylor (or Maclaurin) 
polynomials

Notice that, as increases, 
becomes a better approximation to .sin x

Tn�x�n

T5�x� � x �
x 3

3!
�

x 5

5!

T3�x� � x �
x 3

3!

T1�x� � x

sin x

FIGURE 2

0 x

y

1

1

y=sin x

T∞

T£

T¡

■ The Maclaurin series for , ,
and that we found in Examples 2,
4, and 5 were discovered, using differ-
ent methods, by Newton. These equa-
tions are remarkable because they say
we know everything about each of these
functions if we know all its derivatives
at the single number 0.

cos x
sin xe x
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EXAMPLE 6 Find the Maclaurin series for the function .

SOLUTION Instead of computing derivatives and substituting in Equation 7, it’s
easier to multiply the series for (Equation 17) by :

■

The power series that we obtained by indirect methods in Examples 5 and 6 and 
in Section 8.6 are indeed the Taylor or Maclaurin series of the given functions 
because Theorem 5 asserts that, no matter how we obtain a power series representa-
tion , it is always true that . In other words, the coef-
ficients are uniquely determined.

EXAMPLE 7 Find the Maclaurin series for , where is any real
number.

SOLUTION Arranging our work in columns, we have

. .

. .

. .

Therefore the Maclaurin series of is

This series is called the binomial series. Notice that if is a nonnegative integer,
then the terms are eventually 0 and so the series is finite. For other values of none
of the terms is 0 and so we can try the Ratio Test. If the term is 

Thus by the Ratio Test the binomial series converges if and diverges if
. ■

f �x� � x cos x

cos x x

x cos x � x �
	

n�0
��1�n x 2n

�2n�!
� �

	

n�0
��1�n x 2n�1

�2n�!

f �x� � 
 cn�x � a�n cn � f �n��a��n!

f �x� � �1 � x�k k

f �x� � �1 � x�k f �0� � 1

f ��x� � k�1 � x�k�1  f ��0� � k

f ��x� � k�k � 1��1 � x�k�2  f ��0� � k�k � 1�

f ��x� � k�k � 1��k � 2��1 � x�k�3  f ��0� � k�k � 1��k � 2�

f �n��x� � k�k � 1� � � � �k � n � 1��1 � x�k�n f �n��0� � k�k � 1� � � � �k � n � 1�

f �x� � �1 � x�k

�
	

n�0

f �n��0�
n!

 xn � �
	

n�0

k�k � 1� � � � �k � n � 1�
n!

 xn

� an�1

an
� � � k�k � 1� � � � �k � n � 1��k � n�xn�1

�n � 1�!
�

n!

k�k � 1� � � � �k � n � 1�xn �

� � k � n �
n � 1

 � x � �
�1 �

k

n
�

1 �
1

n

� x � l � x � as n l 	

k
k

an, thennth

� x � � 1

� x � 
 1

■ www.stewartcalculus.com
See Additional Example A.
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The traditional notation for the coefficients in the binomial series is

and these numbers are called the binomial coefficients.
The following theorem states that is equal to the sum of its Maclaurin

series. It is possible to prove this by showing that the remainder term approaches
0, but that turns out to be quite difficult. The proof outlined in Exercise 69 is much
easier.

THE BINOMIAL SERIES If is any real number and , then

Although the binomial series always converges when , the question of
whether or not it converges at the endpoints, , depends on the value of . It turns
out that the series converges at 1 if and at both endpoints if . Notice
that if is a positive integer and , then the expression for contains a factor

, so  0 for . This means that the series terminates and reduces to the
ordinary Binomial Theorem when is a positive integer. (See Reference Page 1.)

EXAMPLE 8 Find the Maclaurin series for the function and its
radius of convergence.

SOLUTION We write in a form where we can use the binomial series:

Using the binomial series with and with replaced by , we have

We know from that this series converges when , that is, , so
the radius of convergence is . ■

Rn�x�

k � x � � 1

�1 � x�k � �
	

n�0
� k

n�xn � 1 � kx �
k�k � 1�

2!
x 2 �

k�k � 1��k � 2�
3!

x 3 � � � �

� x � � 1
�1 k

�1 � k � 0 k � 0
k n 
 k ( k

n )
�k � k� ( k

n ) n 
 k
k

f �x� �
1

s4 � x

f �x�

1

s4 � x
�

1

4�1 �
x

4�
�

1

21 �
x

4

�
1

2
 �1 �

x

4��1�2

k � �
1
2 x �x�4

1

s4 � x
�

1

2
 �1 �

x

4��1�2

�
1

2
 �

	

n�0
��

1
2

n ���
x

4�n

�
1

2
 �1 � ��

1

2���
x

4� �
(� 1

2 )(� 3
2 )

2!
 ��

x

4�2

�
(� 1

2)(� 3
2)(� 5

2)
3!

 ��
x

4�3

� � � � �
(� 1

2)(� 3
2)(� 5

2) � � � (� 1
2 � n � 1)

n!
 ��

x

4�n

� � � ��
�

1

2
 �1 �

1

8
 x �

1 � 3

2!82 x 2 �
1 � 3 � 5

3!83 x 3 � � � � �
1 � 3 � 5 � � � � � �2n � 1�

n!8n xn � � � ��

� k

n� �
k�k � 1��k � 2� � � � �k � n � 1�

n!

�1 � x�k

18

18 � �x�4 � � 1 � x � � 4
R � 4

V
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■ www.stewartcalculus.com
See Additional Example B.
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We collect in the following table, for future reference, some important Maclaurin
series that we have derived in this section and the preceding one.

One reason that Taylor series are important is that they enable us to integrate func-
tions that we couldn’t previously handle. In fact, in the introduction to this chapter we
mentioned that Newton often integrated functions by first expressing them as power
series and then integrating the series term by term. The function can’t be
integrated by techniques discussed so far because its antiderivative is not an elemen-
tary function (see Section 6.4). In the following example we use Newton’s idea to inte-
grate this function.

EXAMPLE 9
(a) Evaluate as an infinite series.

(b) Evaluate correct to within an error of .

SOLUTION
(a) First we find the Maclaurin series for . Although it’s possible to use
the direct method, let’s find it simply by replacing with in the series for
given in the table of Maclaurin series. Thus, for all values of x,

Now we integrate term by term:

This series converges for all because the original series for converges for all .

1

1 � x
� �

	

n�0
 xn � 1 � x � x 2 � x 3 � � � � R � 1

ex � �
	

n�0

xn

n!
� 1 �

x

1!
�

x 2

2!
�

x 3

3!
� � � � R � 	

sin x � �
	

n�0
��1�n x 2n�1

�2n � 1�!
� x �

x 3

3!
�

x 5

5!
�

x 7

7!
� � � � R � 	

cos x � �
	

n�0
��1�n x 2n

�2n�!
� 1 �

x 2

2!
�

x 4

4!
�

x 6

6!
� � � � R � 	

tan�1x � �
	

n�0
��1�n x 2n�1

2n � 1
� x �

x 3

3
�

x 5

5
�

x 7

7
� � � � R � 1

ln�1 � x� � �
	

n�1
��1�n�1 x n

n
� x �

x 2

2
�

x 3

3
�

x 4

4
� � � � R � 1

�1 � x�k � �
	

n�0
� k

n�xn � 1 � kx �
k�k � 1�

2!
x 2 �

k�k � 1��k � 2�
3!

 x 3 � � � � R � 1

f �x� � e�x2

V

x e�x2

dx

x
1
0 e�x2

dx 0.001

f �x� � e�x2

x �x 2 ex

e�x2

� �
	

n�0

��x 2 �n

n!
� �

	

n�0
��1�n x 2n

n!
� 1 �

x 2

1!
�

x 4

2!
�

x 6

3!
� � � �

y e�x 2

dx � y �1 �
x 2

1!
�

x 4

2!
�

x 6

3!
� � � � � ��1�n x 2n

n!
� � � �� dx

� C � x �
x 3

3 � 1!
�

x 5

5 � 2!
�

x 7

7 � 3!
� � � � � ��1�n x 2n�1

�2n � 1�n!
� � � �

x e�x 2

x

TABLE 1
Important Maclaurin Series and 

Their Radii of Convergence

Module 8.7/8.8 enables you to see
how successive Taylor polynomials
approach the original function.

TEC
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(b) The Evaluation Theorem gives

The Alternating Series Estimation Theorem shows that the error involved in this
approximation is less than

■

Another use of Taylor series is illustrated in the next example. The limit could be
found with l’Hospital’s Rule, but instead we use a series.

EXAMPLE 10 Evaluate .

SOLUTION Using the Maclaurin series for , we have

because power series are continuous functions. ■

MULTIPLICATION AND DIVISION OF POWER SERIES

If power series are added or subtracted, they behave like polynomials (Theorem 8.2.8
shows this). In fact, as the following example illustrates, they can also be multiplied
and divided like polynomials. We find only the first few terms because the calculations
for the later terms become tedious and the initial terms are the most important ones.

EXAMPLE 11 Find the first three nonzero terms in the Maclaurin series for 
(a) and (b) .

SOLUTION
(a) Using the Maclaurin series for and in Table 1, we have

y
1

0
e�x 2

dx � �x �
x 3

3 � 1!
�

x 5

5 � 2!
�

x 7

7 � 3!
�

x 9

9 � 4!
� � � ��

0

1

� 1 �
1
3 �

1
10 �

1
42 �

1
216 � � � �

� 1 �
1
3 �

1
10 �

1
42 �

1
216 � 0.7475

1

11 � 5!
�

1

1320
� 0.001

lim
x l 0

ex � 1 � x

x 2

ex

lim
x l 0

ex � 1 � x

x 2 � lim
x l 0

�1 �
x

1!
�

x 2

2!
�

x 3

3!
� � � �� � 1 � x

x 2

� lim
x l 0

x 2

2!
�

x 3

3!
�

x4

4!
� � � �

x 2

� lim
x l 0

�1

2
�

x

3!
�

x 2

4!
�

x 3

5!
� � � �� �

1

2

ex sin x tan x

ex sin x

ex sin x � �1 �
x

1!
�

x 2

2!
�

x 3

3!
� � � ���x �

x 3

3!
� � � ��
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■ We can take in the 
anti derivative in part (a).

C � 0

■ Some computer algebra systems 
compute limits in this way.
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We multiply these expressions, collecting like terms just as for polynomials:

Thus

(b) Using the Maclaurin series in the table, we have

We use a procedure like long division:

Thus ■

Although we have not attempted to justify the formal manipulations used in Exam -
ple 11, they are legitimate. There is a theorem which states that if both
and converge for and the series are multiplied as if they were
polynomials, then the resulting series also converges for and represents

. For division we require ; the resulting series converges for sufficiently
small .

PROOF OF TAYLOR’S FORMULA

We conclude this section by giving the promised proof of Theorem 9.
Let , where is the -degree Taylor polynomial of at .

The idea for the proof is the same as that for the Mean Value Theorem: We apply
Rolle’s Theorem to a specially constructed function. We think of as a constant,

, and we define a function on by

1 � x �
1
2 x 2 �

1
6 x 3 � � � �

� x �
1
6 x 3 � � � �

x � x 2 �
1
2 x 3 �

1
6 x 4 � � � �

� �
1
6 x 3 �

1
6 x 4 � � � �

x � x 2 �
1
3 x 3 � � � �

e x sin x � x � x 2 �
1
3 x 3 � � � �

tan x �
sin x

cos x
�

x �
x 3

3!
�

x 5

5!
� � � �

1 �
x 2

2!
�

x 4

4!
� � � �

f �x� � � cnxn

t�x� � � bn xn � x � � R

� x � � R
f �x� t�x� b0 � 0

� x �

Rn�x� � f �x� � Tn�x� Tn nth f a

x
x � a t I

t�t� � f �x� � f �t� � f ��t��x � t� �
f ��t�

2!
�x � t�2 � � � �

�
f �n��t�

n!
�x � t�n � Rn�x�

�x � t�n�1

�x � a�n�1

x �
1
3 x 3 �

2
15 x 5 � � � �

1 �
1
2 x 2 �

1
24 x 4 � � � �)x � 1

6 x 3 � 1
120 x 5 � � � �

x �
1
2 x 3 �

1
24 x 5 � � ��

1
3 x 3 �

1
30 x 5 � � � �

1
3 x 3 �

1
6 x 5 � � � �

2
15 x 5 � � � �

tan x � x �
1
3 x 3 �

2
15 x 5 � � � �
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Then

Thus, by Rolle’s Theorem (applied to on the interval from to ), there is a num-
ber between and such that . If we differentiate the expression for ,
then most terms cancel. We leave it to you to verify that the expression for sim-
plifies to

Thus we have

and so ■

t�x� � f �x� � f �x� � 0 � � � � � 0 � 0

t�a� � f �x� � �Tn�x� � Rn�x�� � f �x� � f �x� � 0

t a x
z x a t��z� � 0 t

t��t�

t��t� � �
f �n�1��t�

n!
�x � t�n � �n � 1�Rn�x�

�x � t�n

�x � a�n�1

t��z� � �
f �n�1��z�

n!
�x � z�n � �n � 1�Rn�x�

�x � z�n

�x � a�n�1 � 0

Rn�x� �
f �n�1��z�
�n � 1�!

 �x � a�n�1

SECTION 8.7  TAYLOR AND MACLAURIN SERIES 487

Unless otherwise noted, all content on this page is © Cengage Learning.

8.7 EXERCISES

1. If for all , write a formula for .

2. The graph of is shown. 

(a) Explain why the series

is not the Taylor series of centered at 1.
(b) Explain why the series

is not the Taylor series of centered at 2.

3. If for find the Maclaurin
series for and its radius of convergence.

4. Find the Taylor series for centered at 4 if

What is the radius of convergence of the Taylor series?

f �x� � �	
n�0 bn�x � 5�n x b8

f

y

0 x

f

1

1

1.6 � 0.8�x � 1� � 0.4�x � 1�2 � 0.1�x � 1�3 � � � �

f

2.8 � 0.5�x � 2� � 1.5�x � 2�2 � 0.1�x � 2�3 � � � �

f

f �n��0� � �n � 1�! n � 0, 1, 2, . . . ,
f

f

f �n��4� �
��1�nn!

3n�n � 1�

5–10 ■ Find the Maclaurin series for using the definition 
of a Maclaurin series. [Assume that has a power series expan -
sion. Do not show that .] Also find the associated
radius of convergence.

5. 6.

7. 8.

9. 10.

11–18 ■ Find the Taylor series for centered at the given
value of . [Assume that has a power series expansion. Do 
not show that .]

11. ,  

12. ,  

13. ,  14. ,  

15. ,  16. ,  

17. ,  18. ,  

19. Prove that the series obtained in Exercise 7 represents
for all .

20. Prove that the series obtained in Exercise 16 represents
for all .

f �x�
f

Rn�x� l 0

f �x� � �1 � x��2 f �x� � e�2x

f �x� � sin 
x f �x� � x cos x

f �x� � sinh x f �x� � cosh x

f �x�
a f

Rn�x� l 0

f �x� � x 4 � 3x 2 � 1 a � 1

f �x� � x � x 3 a � �2

f �x� � ln x a � 2 f �x� � 1�x a � �3

f �x� � e 2x a � 3 f �x� � sin x a � 
�2

f �x� � cos x a � 
 f �x� � sx a � 16

sin 
x x

sin x x
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47–50 ■ Use series to approximate the definite integral to
within the indicated accuracy.

47. (three decimal places)

48. (four decimal places)

49.

50.

51–53 ■ Use series to evaluate the limit.

51. 52.

53.

54. Use the series in Example 11(b) to evaluate

We found this limit in Example 4 in Section 3.7 using 
l’Hospital’s Rule three times. Which method do you
prefer?

55–58 ■ Use multiplication or division of power series to find
the first three nonzero terms in the Maclaurin series for each
function.

55. 56.

57. 58.

59–64 ■ Find the sum of the series.

59. 60.

61. 62.

63.

64.

y
1

0
x cos�x 3 � dx

y
1

0
sin�x 4� dx

y
0.1

0

dx

s1 � x 3 
(� error � � 10�8)

y
0.5

0
x 2e�x2

dx (� error � � 0.001)

lim
x l 0

x � ln�1 � x�
x 2 lim

x l0

1 � cos x

1 � x � e x

lim
x l0

sin x � x �
1
6 x 3

x 5

lim
x l 0

tan x � x

x 3

y � e�x2

cos x y � sec x

y �
x

sin x
y � e x ln�1 � x�

	
	

n�0
��1�n x 4n

n! 	
	

n�0

��1�n 
 2n

62n�2n�!

	
	

n�0

��1�n 
 2n�1

42n�1�2n � 1�! 	
	

n�0

3n

5n n!

3 �
9

2!
�

27

3!
�

81

4!
� � � �

1 � ln 2 �
�ln 2�2

2!
�

�ln 2�3

3!
� � � �

21. Prove that the series obtained in Exercise 9 represents
for all .

22. Prove that the series obtained in Exercise 10 represents
for all .

23–26 ■ Use the binomial series to expand the function as a
power series. State the radius of convergence.

23. 24.

25. 26.

27–36 ■ Use a Maclaurin series in Table 1 to obtain the
Maclaurin series for the given function.

27. 28.

29. 30.

31. 32.

33. 34.

35. Hint: Use 

36.

;37–38 ■ Find the Maclaurin series of (by any method) and
its radius of convergence. Graph and its first few Taylor poly-
nomials on the same screen. What do you notice about the
relation  ship between these polynomials and ?

37. 38.

39. Use the Maclaurin series for to compute cor-
rect to five decimal places.

40. Use the Maclaurin series for to calculate correct
to five decimal places.

41. (a) Use the binomial series to expand .
(b) Use part (a) to find the Maclaurin series for .

42. (a) Expand as a power series.
(b) Use part (a) to estimate correct to three

decimal places.

43–46 ■ Evaluate the indefinite integral as an infinite series.

43. 44.

45. 46.

sinh x x

cosh x x

s
4 1 � x s

3 8 � x

1

�2 � x�3 �1 � x�2�3

f �x� � sin 
x f �x� � cos�
x�2�

f �x� � e x � e 2x f �x� � e x � 2e�x

f �x� � x cos( 1
2 x 2) f �x� � x 2 ln�1 � x 3�

f �x� �
x

s4 � x 2 
f �x� �

x 2

s2 � x

f �x� � sin2x [ sin2x � 1
2 �1 � cos 2x�.]

f �x� � 
1
6

x � sin x

x 3 if x � 0

if x � 0

f
f

f

f �x� � cos�x 2 � f �x� � e�x2

� cos x

cos x cos 5�

e x 1�s
10 e

1�s1 � x 2 

sin�1x

1�s
4 1 � x

1�s
4 1.1

y x cos�x 3� dx y
e x � 1

x
dx

y
cos x � 1

x
dx y arctan�x 2� dx
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69. Use the following steps to prove .

(a) Let . Differentiate this series to show
that

(b) Let and show that .
(c) Deduce that .

70. (a) Show that the function defined by

is not equal to its Maclaurin series.

; (b) Graph the function in part (a) and comment on its
behavior near the origin.

t�x� � �	
n�0 ( k

n )x n

t��x� �
kt�x�
1 � x

�1 � x � 1

h�x� � �1 � x��k
t�x� h��x� � 0

t�x� � �1 � x�k

f �x� � 
e�1�x2

0

if x � 0

if x � 0

1865. (a) Expand as a power series.
(b) Use part (a) to find the sum of the series

66. (a) Expand as a power series.
(b) Use part (a) to find the sum of the series

67. Show that if is an th-degree polynomial, then

68. If , what is ?

	
	

n�1

n

2n

f �x� � �x � x 2 ���1 � x�3

	
	

n�1

n 2

2n

p n

p�x � 1� � 	
n

i�0

p �i��x�
i!

f �x� � �1 � x 3�30 f �58��0�

f �x� � x��1 � x�2
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8.8 APPLICATIONS OF TAYLOR POLYNOMIALS
In this section we explore two types of applications of Taylor polynomials. First we
look at how they are used to approximate functions––computer scientists like them
because polynomials are the simplest of functions. Then we investigate how physicists
and engineers use them in such fields as relativity, electric dipoles, the velocity of
water waves, and building highways across a desert.

APPROXIMATING FUNCTIONS BY POLYNOMIALS

Suppose that is equal to the sum of its Taylor series at :

In Section 8.7 we introduced the notation for the th partial sum of this series
and called it the th-degree Taylor polynomial of at . Thus

Since is the sum of its Taylor series, we know that as and so 
can be used as an approximation to : .

Notice that the first-degree Taylor polynomial

is the same as the linearization of f at a that we discussed in Section 2.8. Notice also
that and its derivative have the same values at a that and have. In general, it can
be shown that the derivatives of at agree with those of up to and including deriv-
atives of order .

f �x�

f �x� � 	
	

n�0

f �n��a�
n!

 �x � a�n

Tn�x� n
n f a

Tn�x� � 	
n

i�0

f �i��a�
i!

 �x � a�i

� f �a� �
f ��a�
1!

 �x � a� �
f ��a�
2!

 �x � a�2 � � � � �
f �n��a�

n!
 �x � a�n

f Tn�x� l f �x� n l 	 Tn

f f �x� � Tn�x�

T1�x� � f �a� � f ��a��x � a�

T1 f f �
Tn a f

n

a
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To illustrate these ideas let’s take another look at the graphs of and its first
few Taylor polynomials, as shown in Figure 1. The graph of is the tangent line to

at ; this tangent line is the best linear approximation to near . The
graph of is the parabola , and the graph of is the cubic curve

, which is a closer fit to the exponential curve than
. The next Taylor polynomial would be an even better approximation, and so on.
The values in the table in the margin give a numerical demonstration of the conver-

gence of the Taylor polynomials to the function . We see that when x � 0.2
the convergence is very rapid, but when x � 3 it is somewhat slower. In fact, the far-
ther x is from 0, the more slowly converges to .

When using a Taylor polynomial to approximate a function , we have to ask
the questions: How good an approximation is it? How large should we take to be in
order to achieve a desired accuracy? To answer these questions we need to look at the
absolute value of the remainder:

There are three possible methods for estimating the size of the error:

1. If a graphing device is available, we can use it to graph and thereby
estimate the error.

2. If the series happens to be an alternating series, we can use the Alternating
Series Estimation Theorem.

3. In all cases we can use Taylor’s Formula (8.7.9), which says that

where is a number that lies between and .

EXAMPLE 1
(a) Approximate the function by a Taylor polynomial of degree 2 
at .
(b) How accurate is this approximation when ?

SOLUTION
(a)

Thus the second-degree Taylor polynomial is

The desired approximation is

y � ex

T1

y � ex �0, 1� ex �0, 1�
T2 y � 1 � x � x 2�2 T3

y � 1 � x � x 2�2 � x 3�6 y � ex

T2 T4

Tn�x� y � ex

Tn�x� e x

Tn f
n

� Rn�x� � � � f �x� � Tn�x� �

� Rn�x� �

Rn�x� �
f �n�1��z�
�n � 1�!

 �x � a�n�1

z x a

f �x� � s
3 x

a � 8
7 � x � 9

f �x� � s
3 x � x 1�3 f �8� � 2

f ��x� � 1
3 x�2�3  f ��8� � 1

12

f ��x� � �
2
9 x�5�3  f ��8� � �

1
144

f �x� � 10
27 x�8�3

T2�x� � f �8� �
f ��8�
1!

 �x � 8� �
f ��8�
2!

 �x � 8�2

� 2 �
1
12 �x � 8� �

1
288 �x � 8�2

s
3 x � T2�x� � 2 �

1
12 �x � 8� �

1
288 �x � 8�2

V
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0 x

y

y=´

y=T£(x)

(0, 1)

y=T™(x)

y=T¡(x)

y=T™(x)

y=T£(x)

FIGURE 1

x

1.220000 8.500000
1.221400 16.375000
1.221403 19.412500
1.221403 20.009152
1.221403 20.079665

1.221403 20.085537

x � 3.0x � 0.2

e x

T10�x�
T8�x�
T6�x�
T4�x�
T2�x�
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(b) The Taylor series is not alternating when , so we can’t use the Alternating
Series Estimation Theorem in this example. But using Taylor’s Formula we can
write

where lies between and . In order to estimate the error we note that if
, then , so and therefore .

Also, since , we have

and so

Thus if , the approximation in part (a) is accurate to within . ■

Let’s use a graphing device to check the calculation in Example 1. Figure 2 shows
that the graphs of and are very close to each other when is near
8. Figure 3 shows the graph of computed from the expression

We see from this graph that

when . Thus the error estimate from graphical methods is slightly better
than the error estimate from Taylor’s Formula in this case.

EXAMPLE 2
(a) What is the maximum error possible in using the approximation 

when ? Use this approximation to find correct to six decimal
places.
(b) For what values of is this approximation accurate to within ?

SOLUTION
(a) Notice that the Maclaurin series

is alternating for all nonzero values of , and the successive terms decrease in size
because , so we can use the Alternating Series Estimation Theorem. The
error in approximating by the first three terms of its Maclaurin series is at most

x � 8

R2�x� �
f �z�

3!
� x � 8�3 � 10

27 z�8�3 �x � 8�3

3!
�

5�x � 8�3

81z8�3

z 8 x
7 � x � 9 �1 � x � 8 � 1 � x � 8 � � 1 � x � 8 �3 � 1

z � 7

z8�3 � 78�3 � 179

� R2�x� � �
5� x � 8 �3

81z8�3 �
5 � 1

81 � 179
� 0.0004

7 � x � 9 0.0004

y � s
3 x y � T2�x� x

� R2�x� �
� R2�x� � � � s

3 x � T2�x� �

� R2�x� � � 0.0003

7 � x � 9

sin x � x �
x 3

3!
�

x 5

5!

�0.3 � x � 0.3 sin 12�

x 0.00005

sin x � x �
x 3

3!
�

x 5

5!
�

x 7

7!
� � � �

x

� x � � 1
sin x

� x 7

7! � � � x �7

5040

V
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2.5

0
15

T™

y=#œ„x

0.0003

7 9

y=|R™(x)|

0

FIGURE 2

FIGURE 3
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If , then , so the error is smaller than

To find we first convert to radian measure.

Thus, correct to six decimal places, .

(b) The error will be smaller than if

Solving this inequality for , we get

So the given approximation is accurate to within when . ■

What if we had used Taylor’s Formula to solve Example 2? The remainder term is

(Note that .) But , so and we get the same
estimates as with the Alternating Series Estimation Theorem.

What about graphical methods? Figure 4 shows the graph of

and we see from it that when . This is the same esti-
mate that we obtained in Example 2. For part (b) we want , so we
graph both and in Figure 5. By placing the cursor on the
right intersection point we find that the inequality is satisfied when . Again
this is the same estimate that we obtained in the solution to Example 2.

If we had been asked to approximate instead of in Example 2, it
would have been wise to use the Taylor polynomials at (instead of )
because they are better approximations to for values of close to . Notice
that is close to (or radians) and the derivatives of are easy to com-
pute at .

Figure 6 shows the graphs of the Maclaurin polynomial approximations

�0.3 � x � 0.3 � x � � 0.3

�0.3�7

5040
� 4.3 � 10�8

sin 12�

sin 12� � sin12


180 � � sin 


15�
�




15
�  


15�3 1

3!
�  


15�5 1

5!

� 0.20791169

sin 12� � 0.207912

0.00005

� x �7

5040
� 0.00005

x

� x �7 � 0.252 or � x � � �0.252�1�7 � 0.821

0.00005 � x � � 0.82

R6�x� �
f �7��z�

7!
 x 7 � �cos z

x 7

7!

T5 � T6 � �cos z � � 1 � R6�x� � � � x �7�7!

� R6�x� � � � sin x � (x �
1
6 x 3 �

1
120 x 5 ) �

� R6�x� � � 4.3 � 10�8 � x � � 0.3

� R6�x� � � 0.00005
y � � R6�x� � y � 0.00005

� x � � 0.82

sin 72� sin 12�
a � 
�3 a � 0

sin x x 
�3
72� 60� 
�3 sin x


�3

T1�x� � x T3�x� � x �
x 3

3!

T5�x� � x �
x 3

3!
�

x 5

5!
 T7�x� � x �

x 3

3!
�

x 5

5!
�

x 7

7!
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4.3 � 10–*

_0.3 0.3

0

y=|Rß(x)|

FIGURE 4

0.00006

_1 1

y=|Rß(x)|

0

y=0.00005

FIGURE 5

Module 8.7/8.8 graphically shows
the remainders in Taylor polynomial
approximations.
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to the sine curve. You can see that as increases, is a good approximation to
on a larger and larger interval.

One use of the type of calculation done in Examples 1 and 2 occurs in calculators
and computers. For instance, when you press the or key on your calculator, or
when a computer programmer uses a subroutine for a trigonometric or exponential or
Bessel function, in many machines a polynomial approximation is calculated. The
polynomial is often a Taylor polynomial that has been modified so that the error is
spread more evenly throughout an interval. 

APPLICATIONS TO PHYSICS

Taylor polynomials are also used frequently in physics. In order to gain insight into
an equation, a physicist often simplifies a function by considering only the first two or
three terms in its Taylor series. In other words, the physicist uses a Taylor polynomial
as an approximation to the function. Taylor’s Formula can then be used to gauge the
accuracy of the approximation. The following example shows one way in which this
idea is used in special relativity. Other applications are explored in Exercises 24–28.

EXAMPLE 3 In Einstein’s theory of special relativity the mass of an object mov-
ing with velocity is

where is the mass of the object when at rest and is the speed of light. The
kinetic energy of the object is the difference between its total energy and its energy
at rest:

(a) Show that when is very small compared with , this expression for agrees
with classical Newtonian physics: .
(b) Use Taylor’s Formula to estimate the difference in these expressions for when

m�s.

SOLUTION
(a) Using the expressions given for and , we get 

With , the Maclaurin series for is most easily computed as a
binomial series with . (Notice that because .) Therefore we 

n Tn�x�
sin x

FIGURE 6

0 x

y

T¶

T∞

T£

y=sin x

T¡

sin ex

v

m �
m0

s1 � v 2�c 2 

m0 c

K � mc 2 � m0c 2

v c K
K � 1

2 m0v2

K

� v � � 100

K m

K � mc 2 � m0c 2 �
m0 c 2

s1 � v 2�c 2 
� m0c 2

� m0 c 2�1 �
v2

c 2��1�2

� 1�
x � �v 2�c 2 �1 � x��1�2

k � �
1
2 � x � � 1 v � c

V
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have

and

If is much smaller than , then all terms after the first are very small when com-
pared with the first term. If we omit them, we get

(b) By Taylor’s Formula we can write the remainder term as

where and . Since
, we get

where lies between and . We have and ,
so

Thus when m�s, the magnitude of the error in using the Newtonian
expression for kinetic energy is at most . ■

�1 � x��1�2 � 1 �
1
2 x �

(� 1
2 )(� 3

2 )
2!

 x 2 �
(� 1

2 )(� 3
2 )(� 5

2)
3!

 x 3 � � � �

� 1 �
1
2 x �

3
8 x 2 �

5
16 x 3 � � � �

K � m0 c 2��1 �
1

2
 
v2

c 2 �
3

8
 
v4

c 4 �
5

16
 
v6

c 6 � � � �� � 1�
� m0c 2� 1

2
 
v2

c 2 �
3

8
 
v4

c 4 �
5

16
 
v6

c 6 � � � ��
v c

K 	 m0c 2�1

2
 
v2

c 2� � 1
2 m0 v2

R1�x� �
f ��z�

2!
 x 2

f �x� � m0c2
�1 � x��1�2 � 1� x � �v 2�c 2

f ��x� � 3
4 m0c2�1 � x��5�2

R1�x� �
3m0c 2

8�1 � z�5�2 �
v 4

c 4

z 0 �v 2�c 2 c � 3 � 108 m�s � v � � 100 m�s

R1�x� �
3
8 m0�9 � 1016��100�c�4

�1 � 1002�c 2 �5�2 � �4.17 � 10�10�m0

� v � � 100
�4.2 � 10�10�m0
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■ The upper curve in Figure 7 is the
graph of the expression for the kinetic
energy of an object with velocity 
in special relativity. The lower curve
shows the function used for in classi-
cal Newtonian physics. When is much
smaller than the speed of light, the
curves are practically identical.

v
K

vK

FIGURE 7

√

K

0

K=mc@-m¸c@

K =   m¸√ @
1

2

c

8.8 EXERCISES

; 1. (a) Find the Taylor polynomials up to degree 6 for
centered at . Graph and these

polynomials on a common screen.
(b) Evaluate and these polynomials at , , 

and .
(c) Comment on how the Taylor polynomials converge 

to .

; 2. (a) Find the Taylor polynomials up to degree 3 for
centered at . Graph and these

polynomials on a common screen.
(b) Evaluate and these polynomials at and 1.3.

f �x� � cos x a � 0 f

f x � 	�4 	�2
	

f �x�

f �x� � 1�x a � 1 f

x � 0.9f

(c) Comment on how the Taylor polynomials converge 
to .

;3–8 ■ Find the Taylor polynomial for the function cen-
tered at the number . Graph and on the same screen.

3. ,  

4. ,  

5. ,  

6. ,  

f �x�

T3�x� f
a f T3

f �x� � 1�x a � 2

f �x� � e�x sin x a � 0

f �x� � cos x a � 	�2

f �x� �
ln x

x
a � 1
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22.

23. A car is moving with speed 20 m�s and acceleration 2 m�s
at a given instant. Using a second-degree Taylor polyno -
mial, estimate how far the car moves in the next second.
Would it be reasonable to use this polynomial to estimate
the distance traveled during the next minute?

24. The resistivity of a conducting wire is the reciprocal of
the conductivity and is measured in units of ohm-meters 
( -m). The resistivity of a given metal depends on the 
temperature according to the equation

where is the temperature in C. There are tables that list
the values of (called the temperature coefficient) and
(the resistivity at C) for various metals. Except at very
low temperatures, the resis tivity varies almost linearly with
tem perature and so it is common to approximate the
expression for by its first- or second-degree Taylor
polynomial at .
(a) Find expressions for these linear and quadratic 

approximations.

; (b) For copper, the tables give C and
-m. Graph the resistivity of copper 

and the linear and quadratic approximations for 
C C.

; (c) For what values of does the linear approximation
agree with the exponential expression to within one 
percent?

25. An electric dipole consists of two electric charges of equal
magnitude and opposite sign. If the charges are and
and are located at a distance from each other, then the
electric field at the point in the figure is

By expanding this expression for as a series in powers of
, show that is approximately proportional to

when is far away from the dipole.

26. If a water wave with length moves with velocity across
a body of water with depth , as in the figure on page 496,
then

(a) If the water is deep, show that .

�

�

��t� � � 20 e ��t�20�

t �
� � 20

20�

��t�
t � 20

� � 0.0039��
� 20 � 1.7 � 10�8 �

�250� � t � 1000�
t

q �q
d

E P

E �
q

D2 �
q

�D � d�2

E
d�D E 1�D 3

P

P

D d

q _q

L v
d

v 2 �
tL

2

tanh 

2
d

L

2

(� error � � 0.005)cos x � 1 �
x 2

2
�

x 4

24

v � stL��2
�

7. ,  

8. ,  

9–16 ■

(a) Approximate by a Taylor polynomial with degree at 
the number .

(b) Use Taylor’s Formula to estimate the accuracy of the
approximation when x lies in the given 
interval.

; (c) Check your result in part (b) by graphing .

9. ,  ,  ,  

10. ,  ,  ,  

11. ,  ,  ,  

12. ,  ,  ,  

13. ,  ,  ,  

14. ,  ,  ,  

15. ,  ,  ,  

16. ,  ,  ,  

17. Use the information from Exercise 5 to estimate
correct to five decimal places.

18. Use the information from Exercise 12 to estimate 
correct to five decimal places.

19. Use Taylor’s Formula to determine the number of terms of
the Maclaurin series for that should be used to estimate

to within .

20. Suppose you know that

and the Taylor series of centered at 4 converges to
for all in the interval of convergence. Show that the fifth-
degree Taylor polynomial approximates with error
less than 0.0002.

;21–22 ■ Use the Alternating Series Estimation Theorem or 
Taylor’s Formula to estimate the range of values of for which
the given approximation is accurate to within the stated error.
Check your answer graphically.

21.

f �x� � xe �2x a � 0

nf
a

f �x� � Tn�x�

� Rn�x� �
4 � x � 4.2n � 2a � 4f �x� � sx

0.9 � x � 1.1n � 2a � 1f �x� � x�2

0.8 � x � 1.2n � 3a � 1f �x� � x 2�3

0 � x � 
�3n � 4a � 
�6f �x� � sin x

0 � x � 0.1n � 3a � 0f �x� � ex2

0.5 � x � 1.5n � 3a � 1f �x� � ln�1 � 2x�

�1 � x � 1n � 4a � 0f �x� � x sin x

0.5 � x � 1.5n � 3a � 1f �x� � x ln x

cos 80�

sin 38�

e x

0.00001e 0.1

f �n��4� �
��1�n n!

3n�n � 1�

f �x�f
x

f �5�

x

(� error � � 0.01)sin x � x �
x 3

6

f �x� � tan�1x a � 1
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often used. A better approximation is obtained by using
two terms:

(b) Notice that all the terms in the series after the first one
have coefficients that are at most . Use this fact to com-
pare this series with a geometric series and show that

(c) Use the inequalities in part (b) to estimate the period of
a pendulum with meter and . How does it
compare with the estimate ? What if

?

29. In Section 4.6 we considered Newton’s method for approxi-
mating a root of the equation , and from an 
initial approximation we obtained successive approxi-
mations , , . . . , where

Use Taylor’s Formula with , , and to
show that if exists on an interval containing , ,
and , and , for all , then

[This means that if is accurate to decimal places, then
is accurate to about decimal places. More precisely,

if the error at stage is at most , then the error at stage
is at most .]

30. Use the following outline to prove that is an irrational
number.
(a) If were rational, then it would be of the form ,

where and are positive integers and . Use
Taylor’s Formula to write

where .
(b) Show that is an integer.
(c) Show that .
(d) Use parts (b) and (c) to deduce that is irrational.

T � 2��L

t
(1 �

1
4 k 2 )

1
4

2��L

t
(1 �

1
4 k 2 ) � T � 2��L

t

4 � 3k 2

4 � 4k 2

L � 1 �0 � 10�
T � 2�sL�t

�0 � 42�

r f �x� � 0
x1

x2 x3

xn�1 � xn �
f �xn�
f ��xn�

n � 1 a � xn x � r
f 	�x� I r xn

xn�1 � f 	�x� � � M � f ��x� � 
 K x � I

� xn�1 � r � �
M

2K � xn � r �2

xn d
xn�1 2d

n 10�m

n � 1 �M�2K �10�2m

e

e e � p�q
p q q � 2

p

q
� e � 1 �

1

1!
�

1

2!
� � � � �

1

q!
�

e z

�q � 1�!

� sq �
e z

�q � 1�!

0  z  1
q!�e � sq�
q!�e � sq�  1

e

(b) If the water is shallow, use the Maclaurin series for
to show that . (Thus in shallow water the
velocity of a wave tends to be independent of the length
of the wave.)

(c) Use the Alternating Series Estimation Theorem to show
that if , then the estimate is accurate to
within .

27. If a surveyor measures differences in elevation when mak-
ing plans for a highway across a desert, corrections must be
made for the curvature of the earth.
(a) If is the radius of the earth and is the length of the

highway, show that the correction is

(b) Use a Taylor polynomial to show that

(c) Compare the corrections given by the formulas in parts
(a) and (b) for a highway that is 100 km long. (Take the
radius of the earth to be 6370 km.)

28. The period of a pendulum with length that makes a maxi -
mum angle with the vertical is

where and is the acceleration due to gravity.
(In Exercise 34 in Section 6.5 we approximated this integral
using Simpson’s Rule.)
(a) Expand the integrand as a binomial series and use the

result of Exercise 34 in Section 6.1 to show that

If is not too large, the approximation ,
obtained by using only the first term in the series, is

tanh
v � std

v 2 � tdL � 10d
0.014tL

L

d

LR

C � R sec�L�R� � R

C �
L 2

2R
�

5L 4

24R 3

R

L C

R

L
�0

T � 4 �L

t
y

��2

0

dx

s1 � k 2 sin2x

tk � sin( 1
2 �0 )

T � 2��L

t
�1 �

12

22 k 2 �
1232

2242 k 4 �
123252

224262 k 6 � � � �	
T � 2�sL�t�0
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CHAPTER 8  REVIEW 497

CHAPTER 8 REVIEW
CONCEPT CHECK

TRUE-FALSE QUIZ

1. (a) What is a convergent sequence?
(b) What is a convergent series?
(c) What does mean?
(d) What does mean?

2. (a) What is a bounded sequence?
(b) What is a monotonic sequence?
(c) What can you say about a bounded monotonic

sequence?

3. (a) What is a geometric series? Under what circumstances
is it convergent? What is its sum?

(b) What is a -series? Under what circumstances is it 
convergent?

4. Suppose and is the partial sum of the series.
What is ? What is ?

5. State the following.
(a) The Test for Divergence
(b) The Integral Test
(c) The Comparison Test
(d) The Limit Comparison Test
(e) The Alternating Series Test
(f) The Ratio Test
(g) The Root Test

6. (a) What is an absolutely convergent series?
(b) What can you say about such a series?
(c) What is a conditionally convergent series?

limn l � an � 3

�

n�1 an � 3

p


 an � 3 sn nth
limn l � an limn l � sn

7. If a series is convergent by the Alternating Series Test, how
do you estimate its sum?

8. (a) Write the general form of a power series.
(b) What is the radius of convergence of a power series?
(c) What is the interval of convergence of a power series?

9. Suppose is the sum of a power series with radius of
convergence .
(a) How do you differentiate ? What is the radius of con-

vergence of the series for ?
(b) How do you integrate ? What is the radius of conver-

gence of the series for ?

10. (a) Write an expression for the th-degree Taylor polyno -
mial of centered at .

(b) Write an expression for the Taylor series of centered
at .

(c) Write an expression for the Maclaurin series of .
(d) How do you show that is equal to the sum of its 

Taylor series?
(e) State Taylor’s Formula.

11. Write the Maclaurin series and the interval of convergence
for each of the following functions.
(a) (b) (c)
(d) (e) (f)

12. Write the binomial series expansion of . What is the
radius of convergence of this series?

f �x�
R

f
f �

f
x f �x� dx

n
f a

f
a

f
f �x�

1��1 � x� e x sin x
cos x tan�1x

�1 � x�k

ln�1 � x�

Determine whether the statement is true or false. If it is true, explain
why. If it is false, explain why or give an example that disproves the
statement.

1. If , then is convergent.

2. The series is convergent.

3. If , then .

4. If is convergent, then is convergent.

5. If is convergent, then is convergent.

6. If diverges when , then it diverges when 
.

7. The Ratio Test can be used to determine whether 
converges.

8. The Ratio Test can be used to determine whether 
converges.

9. If and diverges, then diverges.

limn l � an � 0 
 an


�
n�1 n �sin 1

limn l � an � L limn l � a2n�1 � L


 cn6n 
 cn��2�n


 cn6n 
 cn��6�n


 cn x n x � 6
x � 10


 1�n 3


 1�n!


 an
 bn0 � an � bn

10.

11. If , then .

12. If is divergent, then is divergent.

13. If converges for all , 
then .

14. If and are divergent, then is divergent.

15. If and are divergent, then is divergent.

16. If is decreasing and for all , then is 
convergent.

17. If and converges, then converges.

�
�

n�0

��1�n

n!
�

1

e

limn l � � n � 0�1  �  1


 � an �
 an

xf �x� � 2x � x 2 �
1
3 x 3 � � � �

f ��0� � 2

�an � bn �bn �an 

�an bn �bn �an 

�an nan � 0�an 


 ��1�nan
 anan � 0
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21. If a finite number of terms are added to a convergent series,
then the new series is still convergent.

22. If and , then .�
�

n�1
an � A �

�

n�1
bn � B �

�

n�1
an bn � AB

18. If and , then .

19.

20. If , then .

limn l � an � 0limn l � �an�1�an�  1an � 0

0.99999 . . . � 1

lim
n l �

�an�3 � an� � 0lim
n l �

an � 2
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EXERCISES

1–8 ■ Determine whether the sequence is convergent or diver-
gent. If it is convergent, find its limit.

1. 2.

3. 4.

5. 6.

7. 8.

9–20 ■ Determine whether the series is convergent or divergent.

9. 10.

11. 12.

13. 14.

15. 16.

17.

18.

19.

20.

21–24 ■ Determine whether the series is conditionally conver-
gent, absolutely convergent, or divergent.

21. 22.

an �
2 � n3

1 � 2n3 an �
9n�1

10n

an �
n3

1 � n2 an � cos�n��2�

an �
n sin n

n 2 � 1
an �

ln n

sn

��1 � 3�n�4n  ���10�n�n!

�
�

n�1

n

n3 � 1 �
�

n�1

n2 � 1

n3 � 1

�
�

n�1

n3

5n �
�

n�1

��1�n

sn � 1

�
�

n�2

1

nsln n
�
�

n�1
ln� n

3n � 1�
�
�

n�1

cos 3n

1 � �1.2�n �
�

n�1

n2n

�1 � 2n2�n

�
�

n�1

1 � 3 � 5 � � � � � �2n � 1�
5n n!

�
�

n�1

��5�2n

n 2 9n

�
�

n�1
��1�n�1 sn

n � 1

�
�

n�1

sn � 1 � sn � 1

n

�
�

n�1
��1�n�1n �3�

�

n�1
��1�n�1n �1�3

23. 24.

25–29 ■ Find the sum of the series.

25. 26.

27.

28.

29.

30. Express the repeating decimal as a 
fraction.

31. Show that for all .

32. For what values of does the series converge?

33. Find the sum of the series correct to four 
decimal places.

34. (a) Show that the series is convergent.

(b) Deduce that .

35. Prove that if the series is absolutely convergent, then
the series

is also absolutely convergent.

36–39 ■ Find the radius of convergence and interval of conver-
gence of the series.

36. 37.

�
�

n�1

��1�n�n � 1�3n

22n�1 �
�

n�2

��1�n
sn

ln n

�
�

n�1

22n�1

5n �
�

n�1

1

n�n � 3�

�
�

n�1
�tan�1�n � 1� � tan�1n�

�
�

n�0

��1�n� n

32n�2n�!

1 � e �
e 2

2!
�

e 3

3!
�

e 4

4!
� � � �

4.17326326326 . . .

cosh x 
 1 �
1
2 x 2 x

x 
�
n�1 �ln x�n

�
�

n�1

��1�n�1

n 5

�
�

n�1

n n

�2n�!

lim
n l �

n n

�2n�!
� 0


�
n�1 an

�
�

n�1
�n � 1

n �an

�
�

n�1
��1�n x n

n2 5n �
�

n�1

�x � 2�n

n 4n
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54. ,  ,  ,  

55. Use series to evaluate the following limit.

56. The force due to gravity on an object with mass at a
height above the surface of the earth is

where is the radius of the earth and is the acceleration
due to gravity.
(a) Express as a series in powers of .

; (b) Observe that if we approximate by the first term in
the series, we get the expression that is usually
used when is much smaller than . Use the Alter -
nating Series Estimation Theorem to estimate the range
of values of for which the approximation is
accurate to within one percent. (Use km.)

57. A sequence is defined recursively by the equations ,
. Show that is increasing and 

for all . Deduce that is convergent and find its limit.

; 58. Show that and use a graph to find the
smallest value of that corresponds to in the pre-
cise definition of a limit.

59. Suppose that for all .
(a) If is an odd function, show that

(b) If is an even function, show that

60. If , show that .

R t

F h�R
F
F � mt

h R

h F � mt

R � 6400

a1 � 1
an�1 � 1

3 �an � 4� �an  an  2
n �an 

lim n l � n 4e �n � 0
N � � 0.1

f �x� � 
�
n�0 cn x n x

f

c0 � c2 � c4 � � � � � 0

f

c1 � c3 � c5 � � � � � 0

f �x� � ex2

f �2n��0� �
�2n�!

n!

m
h

F �
mtR2

�R � h�2

0 � x � ��6n � 2a � 0f �x� � sec x

lim
x l 0

sin x � x

x 3

38. 39.

40. Find the radius of convergence of the series

41. Find the Taylor series of at .

42. Find the Taylor series of at .

43–50 ■ Find the Maclaurin series for and its radius of 
convergence. You may use either the direct method (defini-
tion of a Maclaurin series) or known series such as geometric
series, binomial series, or the Maclaurin series for , , 
and .

43. 44.

45. 46.

47. 48.

49. 50.

51. Evaluate as an infinite series.

52. Use series to approximate correct to two
decimal places.

53–54 ■

(a) Approximate by a Taylor polynomial with degree at the
number .

; (b) Graph and on a common screen.
(c) Use Taylor’s Formula to estimate the accuracy of the

approximation when lies in the given 
interval.

; (d) Check your result in part (c) by graphing .

53. ,  ,  ,  

�
�

n�1

2n�x � 2�n

�n � 2�! �
�

n�0

2n�x � 3�n

sn � 3

�
�

n�1

�2n�!
�n!�2 x n

f �x� � sin x a � ��6

f �x� � cos x a � ��3

f

e x sin x
tan�1x

f �x� �
x 2

1 � x
f �x� � tan�1�x 2 �

f �x� � ln�4 � x� f �x� � xe 2x

f �x� � 10 xf �x� � sin�x 4 �

f �x� � �1 � 3x��5f �x� � 1�s
4 16 � x

y
e x

x
dx

x
1
0 s1 � x 4 dx

nf
a

Tnf

xf �x� � Tn�x�

� Rn�x� �
0.9 � x � 1.1n � 3a � 1f �x� � sx
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501

9.1 PARAMETRIC CURVES
Imagine that a particle moves along the curve shown in Figure 1. It is impossible to
describe by an equation of the form because fails the Vertical Line Test.
But the - and -coordinates of the particle are functions of time and so we can write

and . Such a pair of equations is often a convenient way of describ-
ing a curve and gives rise to the following definition.

Suppose that and are both given as functions of a third variable (called a
param eter) by the equations

(called parametric equations). Each value of determines a point , which we
can plot in a coordinate plane. As varies, the point varies and
traces out a curve , which we call a parametric curve. The parameter does not nec-
essarily represent time and, in fact, we could use a letter other than for the parame-
ter. But in many applications of parametric curves, does denote time and therefore
we can interpret as the position of a particle at time .

EXAMPLE 1 Sketch and identify the curve defined by the parametric equations

SOLUTION Each value of gives a point on the curve, as shown in the table. For
instance, if , then , and so the corresponding point is . In
Figure 2 we plot the points determined by several values of the parameter
and we join them to produce a curve.

y � f �x�

y � t�t�x � f �t�

tyx

y � t�t�x � f �t�

�x, y�t
�x, y� � � f �t�, t�t��t

C

�x, y� � � f �t�, t�t��

y � t � 1x � t2 � 2t

t
�0, 1�y � 1x � 0t � 0

t�x, y�

C C
C

x y

FIGURE 2 

0
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t=2

t=3

t=4

t=_1

t=_2

(0, 1)

y

x

8

t

t
t

t

PARAMETRIC EQUATIONS AND
POLAR COORDINATES
So far we have described plane curves by giving as a function of or as a function of 

or by giving a relation between and that defines implicitly as a function of
. In this chapter we discuss two new methods for describing curves.

Some curves, such as the cycloid, are best handled when both and are given in terms of a third
variable called a parameter . Other curves, such as the cardioid, have their most
convenient description when we use a new coordinate system, called the polar coordinate system.

y x �y � f �x�� x
y �x � t�y�� x y y x
� f �x, y� � 0�

x y
t �x � f �t�, y � t�t��

9
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�2 8 �1
�1 3 0

0 0 1
1 �1 2
2 0 3
3 3 4
4 8 5

t x y

C

0

(x, y)={f(t), g(t)}

FIGURE 1 

y

x

Module 9.1A gives an ani  ma tion
of the relationship between motion
along a parametric curve ,

and motion along the graphs 
of and as functions of .ttf
y � t�t�

x � f �t�
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A particle whose position is given by the parametric equations moves along the
curve in the direction of the arrows as increases. Notice that the consecutive points
marked on the curve appear at equal time intervals but not at equal distances. That is
because the particle slows down and then speeds up as increases.

It appears from Figure 2 that the curve traced out by the particle may be a 
parab ola. This can be confirmed by eliminating the parameter as follows. We
obtain from the second equation and substitute into the first equation.
This gives

and so the curve represented by the given parametric equations is the parabola
. ■

No restriction was placed on the parameter in Example 1, so we assumed that
could be any real number. But sometimes we restrict to lie in a finite interval. For
instance, the parametric curve

shown in Figure 3 is the part of the parabola in Example 1 that starts at the point
and ends at the point . The arrowhead indicates the direction in which the curve
is traced as increases from 0 to 4.

In general, the curve with parametric equations

has initial point and terminal point .

EXAMPLE 2 What curve is represented by the following parametric equations?

SOLUTION If we plot points, it appears that the curve is a circle. We can confirm
this impression by eliminating Observe that

Thus the point moves on the unit circle . Notice that in this 
example the parameter can be interpreted as the angle (in radians) shown in Fig-
ure 4. As increases from 0 to , the point moves once
around the circle in the counterclockwise direction starting from the point . ■

EXAMPLE 3 What curve is represented by the given parametric equations?

SOLUTION Again we have

so the parametric equations again represent the unit circle . But as
increases from 0 to , the point starts at and moves
twice around the circle in the clockwise direction as indicated in Figure 5. ■

t

t
t � y � 1

x � t 2 � 2t � �y � 1�2 � 2�y � 1� � y 2 � 4y � 3

x � y 2 � 4y � 3

t

x � t 2 � 2t y � t � 1 0 � t � 4

�0, 1�
�8, 5�

t

x � f �t� y � t�t� a � t � b

� f �a�, t�a�� � f �b�, t�b��

x � cos t y � sin t 0 � t � 2�

t.

x 2 � y 2 � cos2t � sin2t � 1

�x, y� x 2 � y 2 � 1
t

t 2� �x, y� � �cos t, sin t�

t

�1, 0�

0 � t � 2�y � cos 2tx � sin 2t

x 2 � y 2 � sin2 2t � cos2 2t � 1

tx 2 � y 2 � 1
�0, 1��x, y� � �sin 2t, cos 2t�2�

V

t
t
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■ This equation in and describes 
where the particle has been, but it 
doesn’t tell us when the particle was at a
particular point. The parametric equations
have an advantage––they tell us when the
particle was at a point. They also indicate
the direction of the motion.

yx

FIGURE 3 
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(0, 1)
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x

FIGURE 4 
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t
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x

y

0

t=0, π, 2π
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Examples 2 and 3 show that different sets of parametric equations can represent the
same curve. Thus we distinguish between a curve, which is a set of points, and a para-
metric curve, in which the points are traced in a particular way.

EXAMPLE 4 Find parametric equations for the circle with center and radius .

SOLUTION If we take the equations of the unit circle in Example 2 and multiply
the expressions for and by , we get , . You can verify that
these equations represent a circle with radius and center the origin traced counter-
clockwise. We now shift units in the -direction and units in the -direction and
obtain parametric equations of the circle (Figure 6) with center and radius :

■

EXAMPLE 5 Sketch the curve with parametric equations , .

SOLUTION Observe that and so the point moves on the
parabola . But note also that, since , we have , 
so the parametric equations represent only the part of the parabola for which

. Since is periodic, the point moves back and
forth infinitely often along the parabola from to . (See Figure 7.) ■

GRAPHING DEVICES

Most graphing calculators and computer graphing programs can be used to graph
curves defined by parametric equations. In fact, it’s instructive to watch a parametric
curve being drawn by a graphing calculator because the points are plotted in order as
the corresponding parameter values increase.

EXAMPLE 6 Use a graphing device to graph the curve .

SOLUTION If we let the parameter be , then we have the equations

Using these parametric equations to graph the curve, we obtain Figure 8. It would
be possible to solve the given equation for as four functions of
and graph them individually, but the parametric equations provide a much easier
method. ■

In general, if we need to graph an equation of the form , we can use the
parametric equations

Notice also that curves with equations (the ones we are most familiar with—
graphs of functions) can also be regarded as curves with parametric equations

�h, k� r

x y r x � r cos t y � r sin t
r

h x k y
�h, k� r

x � h � r cos t y � k � r sin t 0 � t � 2�

x � sin t y � sin2t

y � �sin t�2 � x 2 �x, y�
y � x 2 �1 � sin t � 1 �1 � x � 1

�1 � x � 1 sin t �x, y� � �sin t, sin2t�
��1, 1� �1, 1�

x � y 4 � 3y 2

t � y

x � t 4 � 3t 2 y � t

�x � y 4 � 3y 2 �

x � t�y�

x � t�t� y � t

y � f �x�

x � t y � f �t�

V

y x

FIGURE 6
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y
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0
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y
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See Additional Example A.
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Graphing devices are particularly useful for sketching complicated curves. For
instance, the curves shown in Figures 9, 10, and 11 would be virtually impossible to
produce by hand.

THE CYCLOID

EXAMPLE 7 The curve traced out by a point on the circumference of a circle as
the circle rolls along a straight line is called a cycloid (see Figure 12). If the circle
has radius and rolls along the -axis and if one position of is the origin, find
parametric equations for the cycloid.

SOLUTION We choose as parameter the angle of rotation of the circle
when is at the origin). Suppose the circle has rotated through radians. Because
the circle has been in contact with the line, we see from Figure 13 that the distance
it has rolled from the origin is

Therefore the center of the circle is . Let the coordinates of be . 
Then from Figure 13 we see that

Therefore parametric equations of the cycloid are

One arch of the cycloid comes from one rotation of the circle and so is described by
. Although Equations 1 were derived from Figure 13, which illustrates

the case , it can be seen that these equations are still valid for other
values of (see Exercise 33).

1

_1

_2 2

FIGURE 10
x=sin t-sin 2.3t  

y=cos t

1.5

_1.5

_1.5 1.5

FIGURE 9
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1

2
cos 5t+

1

4
sin 13t

1

2
sin 5t+

1

4
cos 13t

1.8

_1.8

_1.8 1.8

FIGURE 11
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An animation in Module 9.1B
shows how the cycloid is formed as the
circle moves.
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Although it is possible to eliminate the parameter from Equations 1, the result-
ing Cartesian equation in and is very complicated and not as convenient to work
with as the parametric equations. ■

One of the first people to study the cycloid was Galileo, who proposed that bridges
be built in the shape of cycloids and who tried to find the area under one arch of a
cycloid. Later this curve arose in connection with the brachistochrone problem: Find
the curve along which a particle will slide in the shortest time (under the influence of
gravity) from a point to a lower point not directly beneath . The Swiss math-
ematician John Bernoulli, who posed this problem in 1696, showed that among all
possible curves that join to , as in Figure 14, the particle will take the least time
sliding from to if the curve is part of an inverted arch of a cycloid.

The Dutch physicist Huygens had already shown that the cycloid is also the sol-
ution to the tautochrone problem; that is, no matter where a particle is placed 
on an inverted cycloid, it takes the same time to slide to the bottom (see Figure 15).
Huygens proposed that pendulum clocks (which he invented) should swing in cycloi-
dal arcs because then the pendulum takes the same time to make a complete oscilla-
tion whether it swings through a wide or a small arc.

�
x y

A B A

A B
A B

P
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9.1 EXERCISES

1–4 ■ Sketch the curve by using the parametric equations to
plot points. Indicate with an arrow the direction in which the
curve is traced as increases.

1. ,  ,  

2. ,  ,  

3. ,  ,  

4. ,  ,  

5–8 ■

(a) Sketch the curve by using the parametric equations to plot
points. Indicate with an arrow the direction in which the
curve is traced as increases.

(b) Eliminate the parameter to find a Cartesian equation of the
curve.

5. ,  

6. ,  ,  

7. ,  8. ,  

9–14 ■

(a) Eliminate the parameter to find a Cartesian equation of the
curve.

(b) Sketch the curve and indicate with an arrow the direction in
which the curve is traced as the parameter increases.

9. ,  ,  

t

x � t 2 � t y � t 2 � t �2 � t � 2

x � t 2 y � t 3 � 4t �3 � t � 3

x � cos2t y � 1 � sin t 0 � t � ��2

x � e�t � t y � e t � t �2 � t � 2

x � 3 � 4t y � 2 � 3t

x � t � 1 y � t 3 � 1 �2 � t � 2

x � st y � 1 � t x � t 2 y � t 3

x � sin 1
2� y � cos 1

2� �� � � � �

t

10. ,  ,  

11. ,  ,  

12. ,  

13. ,  

14. ,  

15–18 ■ Describe the motion of a particle with position
as varies in the given interval.

15. ,  ,  

16. ,  ,  

17. ,  ,  

18. ,  ,  

19–21 ■ Use the graphs of and to sketch the
parametric curve , . Indicate with arrows the
direction in which the curve is traced as increases.

19.

x � sin t y � csc t 0 � t � ��2

x � et � 1 y � e 2 t

x � e 2 t y � t � 1

y � st � 1 y � st � 1

�x, y�
t

x � 3 � 2 cos t y � 1 � 2 sin t ��2 � t � 3��2

x � 2 sin t y � 4 � cos t 0 � t � 3��2

x � 5 sin t y � 2 cos t �� � t � 5�

x � sin t y � cos2t �2� � t � 2�

x � f �t� y � t�t�
x � f �t� y � t�t�

t

t

x

_1

1 t

y

1

1

0 � � � �y � 2 sin �x � 1
2 cos �

FIGURE 14

P

P

P

P

P 

FIGURE 15
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cycloid

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints at stewartcalculus.comCAS
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where , describe the line segment that joins
the points and .

(b) Find parametric equations to represent the line segment
from to .

; 26. Use a graphing device and the result of Exercise 25(a) to
draw the triangle with vertices , , and

.

27. Find parametric equations for the path of a particle that
moves along the circle in the manner
described.
(a) Once around clockwise, starting at 
(b) Three times around counterclockwise, starting at 
(c) Halfway around counterclockwise, starting at 

; 28. (a) Find parametric equations for the ellipse
. [Hint: Modify the equations of 

the circle in Example 2.]
(b) Use these parametric equations to graph the ellipse

when and � 1, 2, 4, and 8.
(c) How does the shape of the ellipse change as varies?

;29–30 ■ Use a graphing calculator or computer to reproduce
the picture.

29. 30.

31–32 ■ Compare the curves represented by the parametric
equations. How do they differ?

31. (a) ,  (b) ,  
(c) ,  

32. (a) ,  (b) ,  
(c) ,  

33. Derive Equations 1 for the case .

34. Let be a point at a distance from the center of a circle
of radius . The curve traced out by as the circle rolls
along a straight line is called a trochoid. (Think of the
motion of a point on a spoke of a bicycle wheel.) The
cycloid is the special case of a trochoid with . Using
the same parameter as for the cycloid and, assuming the
line is the -axis and when is at one of its lowest
points, show that parametric equations of the trochoid are

Sketch the trochoid for the cases and .

0 � t � 1
P2�x 2, y2 �P1�x1, y1�

�3, �1���2, 7�

B �4, 2�A �1, 1�
C �1, 5�

x 2 � �y � 1�2 � 4

�2, 1�
�2, 1�

�0, 3�

x 2�a 2 � y 2�b 2 � 1

a � 3

0

y

x

2

3 8

4

0

2

y

x2

y � t 4x � t 6y � t 2x � t 3

y � e�2 tx � e�3 t

y � sec2tx � cos ty � t �2x � t
y � e�2 tx � e t

��2 � � � �

dP
Pr

d � r
�

P� � 0x

y � r � d cos �x � r� � d sin �

d � rd � r

b
b

20.

21.

22. Match the parametric equations with the graphs labeled 
I–VI. Give reasons for your choices. (Do not use a graph-
ing device.)
(a) ,  

(b) ,  

(c) ,  

(d) ,  

(e) ,  

(f ) ,  

; 23. Graph the curve .

; 24. Graph the curves and and find
their points of intersection correct to one decimal place.

25. (a) Show that the parametric equations

t

x

1

1 t

y

1

1

t

y

1

1t

x

1

1

x � t 4 � t � 1 y � t 2

x � t 2 � 2t y � st

x � sin 2t y � sin�t � sin 2t�
x � cos 5t y � sin 2t

x � t � sin 4t y � t 2 � cos 3t

x �
sin 2t

4 � t 2 y �
cos 2t

4 � t 2

x

y

x

y

x

y

x

y

x

y

x

y

I II III

IV V VI

x � y � 2 sin �y

y � x 3 � 4x x � y 3 � 4y

x � x1 � �x 2 � x1�t y � y1 � �y2 � y1�t
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38. If a projectile is fired with an initial velocity of meters
per second at an angle above the horizontal and air
resistance is assumed to be negligible, then its position
after seconds is given by the parametric equations

where is the acceleration due to gravity ( m�s ).
(a) If a gun is fired with and m�s, when 

will the bullet hit the ground? How far from the gun
will it hit the ground? What is the maximum height
reached by the bullet?

; (b) Use a graphing device to check your answers to part
(a). Then graph the path of the projectile for several
other values of the angle to see where it hits the
ground. Summarize your findings.

(c) Show that the path is parabolic by eliminating the 
parameter.

; 39. Investigate the family of curves defined by the parametric
equations , . How does the shape change 
as increases? Illustrate by graphing several members of
the family.

; 40. The swallowtail catastrophe curves are defined by the
parametric equations , .
Graph several of these curves. What features do the curves
have in common? How do they change when increases?

; 41. Graph several members of the family of curves with para-
metric equations , , where

. How does the shape change as increases? For
what values of does the curve have a loop?

; 42. Graph several members of the family of curves
, , where is a posi-

tive integer. What features do the curves have in common?
What happens as increases?

; 43. The curves with equations , are
called Lissajous figures. Investigate how these curves
vary when , , and vary. (Take to be a positive
integer.)

; 44. Investigate the family of curves defined by the parametric
equations , , where . Start 
by letting be a positive integer and see what happens to
the shape as increases. Then explore some of the possi-
bilities that occur when is a fraction.

t 9.8 2

	 � 30
 v0 � 500

	

x � t 2 y � t 3 � ct
c

x � 2ct � 4t 3 y � �ct 2 � 3t 4

c

x � t � a cos t y � t � a sin t
a � 0 a

a

x � sin t � sin nt y � cos t � cos nt n

n

x � a sin nt y � b cos t

a b n n

x � cos t y � sin t � sin ct c � 0
c

c
c

v0

	

t

y � �v0 sin 	�t �
1
2 tt 2x � �v0 cos 	�t

35. If and are fixed numbers, find parametric equations for
the curve that consists of all possible positions of the point

in the figure, using the angle as the parameter. Then
eliminate the param eter and identify the curve.

36. A curve, called a witch of Maria Agnesi, consists of all
possible positions of the point in the figure. Show that
parametric equations for this curve can be written as 

Sketch the curve.

; 37. Suppose that the position of one particle at time is given
by

and the position of a second particle is given by

(a) Graph the paths of both particles. How many points 
of intersection are there?

(b) Are any of these points of intersection collision points? 
In other words, are the particles ever at the same place
at the same time? If so, find the collision points.

(c) Describe what happens if the path of the second par-
ticle is given by

ba

�P

O

y

x

¨

a
b

P

P

y � 2a sin2�x � 2a cot �

O x

a

A
P

y=2a

¨

y

C

t

0 � t � 2�y1 � 2 cos tx1 � 3 sin t

0 � t � 2�y2 � 1 � sin tx 2 � �3 � cos t

x 2 � 3 � cos t y2 � 1 � sin t 0 � t � 2�
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9.2 CALCULUS WITH PARAMETRIC CURVES
Having seen how to represent curves by parametric equations, we now apply the meth-
ods of calculus to these parametric curves. In particular, we solve problems involving
tangents, areas, and arc length.

TANGENTS

Suppose and are differentiable functions and we want to find the tangent line at a
point on the parametric curve , where is also a differentiable func-
tion of . Then the Chain Rule gives

If , we can solve for :

Equation 1 (which you can remember by thinking of canceling the ’s) enables us
to find the slope of the tangent to a parametric curve without having to elimi-
nate the parameter . We see from that the curve has a horizontal tangent when

(provided that ) and it has a vertical tangent when
(provided that ). This information is useful for sketching parametric curves.

As we know from Chapter 4, it is also useful to consider . This can be
found by replacing by in Equation 1:

EXAMPLE 1 A curve is defined by the parametric equations , 
(a) Show that has two tangents at the point (3, 0) and find their equations.
(b) Find the points on where the tangent is horizontal or vertical.
(c) Determine where the curve is concave upward or downward.
(d) Sketch the curve.

SOLUTION
(a) Notice that when or . Therefore
the point on arises from two values of the parameter, and .
This indicates that crosses itself at . Since

f t

x � f �t� y � t�t� y
x

dy

dt
�

dy

dx
�

dx

dt

dx�dt � 0 dy�dx

dy

dx
�

dy

dt

dx

dt

if   
dx

dt
� 0

dt
dy�dx

t
dy�dt � 0 dx�dt � 0 dx�dt � 0

dy�dt � 0
d 2 y�dx 2

dy�dx

d 2 y

dx 2 �
d

dx � dy

dx	 �

d

dt � dy

dx	
dx

dt

C x � t 2 y � t 3 � 3t.
C

C

y � t 3 � 3t � t�t 2 � 3� � 0 t � 0 t � �s3
�3, 0� C t � s3 t � �s3

C �3, 0�

dy

dx
�

dy�dt

dx�dt
�

3t 2 � 3

2t
�

3

2
 �t �

1

t 	

1

1

y

■ If we think of the curve as being
traced out by a moving particle, then

and are the vertical and
horizontal velocities of the particle and
Formula 1 says that the slope of the 
tangent is the ratio of these velocities. 

dx�dtdy�dt

| Note that .
d 2y

dx 2 �

d 2y

dt 2

d 2x

dt 2

■ www.stewartcalculus.com
See Additional Example A.
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the slope of the tangent when is , so the
equations of the tangents at are

(b) has a horizontal tangent when , that is, when and
. Since , this happens when , that is, . The

corresponding points on are and (1, 2). has a vertical tangent when
, that is, . (Note that there.) The corresponding

point on is (0, 0).

(c) To determine concavity we calculate the second derivative:

Thus the curve is concave upward when and concave downward when .

(d) Using the information from parts (b) and (c), we sketch in Figure 1. ■

EXAMPLE 2
(a) Find the tangent to the cycloid , at the point
where .  (See Example 7 in Section 9.1.)
(b) At what points is the tangent horizontal? When is it vertical?

SOLUTION
(a) The slope of the tangent line is

When , we have

and

Therefore the slope of the tangent is and its equation is

The tangent is sketched in Figure 2.

y � s3 �x � 3� and y � �s3 �x � 3�

C dy�dx � 0 dy�dt � 0
dx�dt � 0 dy�dt � 3t 2 � 3 t 2 � 1 t � �1

C �1, �2� C
dx�dt � 2t � 0 t � 0 dy�dt � 0

C

d 2 y

dx 2 �

d

dt � dy

dx	
dx

dt

�

3

2
 �1 �

1

t 2	
2t

�
3�t 2 � 1�

4t 3

dy�dx � �6�(2s3 ) � �s3t � �s3
�3, 0�

t � 0 t � 0

C

x � r �� � sin �� y � r �1 � cos ��
� � ��3

dy

dx
�

dy�d�

dx�d�
�

r sin �

r �1 � cos ��
�

sin �

1 � cos �

� � ��3

x � r��

3
� sin 

�

3 	 � r��

3
�

s3

2 	 y � r�1 � cos 
�

3 	 �
r

2

dy

dx
�

sin���3�
1 � cos���3�

�
s3�2

1 �
1
2

� s3

s3

y �
r

2
� s3 �x �

r�

3
�

rs3

2 	 or s3 x � y � r� �

s3
� 2	

0

y

x2πr 4πr

(πr, 2r)(_πr, 2r) (3πr, 2r) (5πr, 2r)

π

3
¨=

FIGURE 2

V

SECTION 9.2  CALCULUS WITH PARAMETRIC CURVES 509

Unless otherwise noted, all content on this page is © Cengage Learning.

0

y

x

(3, 0)

(1, _2)

(1, 2)

t=1

t=_1

y=œ„3(x-3)

y=_ œ„3(x-3)

FIGURE 1
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(b) The tangent is horizontal when , which occurs when and
, that is, , an integer. The corresponding point on the

cycloid is .
When , both and are 0. It appears from the graph that there

are vertical tangents at those points. We can verify this by using l’Hospital’s Rule as
follows:

A similar computation shows that as , so indeed there are
vertical tangents when , that is, when . ■

AREAS

We know that the area under a curve from to is , where
. If the curve is given by parametric equations , and is tra-

versed once as increases from to , then we can adapt the earlier formula by using
the Sub stitution Rule for Definite Integrals as follows:

EXAMPLE 3 Find the area under one arch of the cycloid ,
. (See Figure 3.)

SOLUTION One arch of the cycloid is given by . Using the Substitu-
tion Rule with and , we have

■

ARC LENGTH

We already know how to find the length of a curve given in the form ,
. Formula 7.4.3 says that if is continuous, then

Suppose that can also be described by the parametric equations , ,
, where . This means that is traversed once, from left

dy�dx � 0 sin � � 0
1 � cos � � 0 � � �2n � 1�� n

(�2n � 1��r, 2r)
� � 2n� dx�d� dy�d�

lim
� l 2n��

dy

dx
� lim

� l 2n��

sin �

1 � cos �
� lim

� l 2n��

cos �

sin �
� �

dy�dx l �� � l 2n��

� � 2n� x � 2n�r

y � F�x� a b A � x
b
a F�x� dx

F�x�  0 x � f �t� y � t�t�
	 �

A � y
b

a
y dx � y

�

	
t�t� f ��t� dt


or y
	

�
t�t� f ��t� dt if ( f ���, t���) is the leftmost endpoint�

x � r �� � sin ��
y � r �1 � cos ��

0 � � � 2�
y � r �1 � cos �� dx � r �1 � cos �� d�

A � y
2�r

0
y dx � y

2�

0
r �1 � cos �� r �1 � cos �� d�

� r 2
y

2�

0
�1 � cos ��2 d� � r 2

y
2�

0
�1 � 2 cos � � cos2�� d�

� r 2
y

2�

0
[1 � 2 cos � �

1
2 �1 � cos 2��] d�

� r 2[ 3
2 � � 2 sin � �

1
4 sin 2�]0

2�
� r 2( 3

2 � 2�) � 3�r 2

L C y � F�x�
a � x � b F�

L � y
b

a
�1 � �dy

dx	2 

dx

C x � f �t� y � t�t�
	 � t � � dx�dt � f ��t� � 0 C

V

2

t

FIGURE 3 
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■ The result of Example 3 says that the
area under one arch of the cycloid is
three times the area of the rolling circle
that generates the cycloid (see Example 7
in Section 9.1). Galileo guessed this
result but it was first proved by the
French mathematician Roberval and the
Italian mathematician Torricelli.
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to right, as increases from to and , . Putting Formula 1 into
Formula 2 and using the Substitution Rule, we obtain

Since , we have

Even if can’t be expressed in the form , Formula 3 is still valid but we
obtain it by polygonal approximations. We divide the parameter interval into
subintervals of equal width . If , , , . . . , are the endpoints of these subinter-
vals, then and are the coordinates of points that lie on
and the polygon with vertices , , . . . , approximates (see Figure 4).

As in Section 7.4, we define the length of to be the limit of the lengths of these
approximating polygons as :

The Mean Value Theorem, when applied to on the interval , gives a number
in such that

If we let and , this equation becomes

Similarly, when applied to , the Mean Value Theorem gives a number in
such that

Therefore

and so

The sum in resembles a Riemann sum for the function but it
is not exactly a Riemann sum because in general. Nevertheless, if and
are continuous, it can be shown that the limit in is the same as if and were
equal, namely,

t 	 � f �	� � a f ��� � b

L � y
b

a
�1 � �dy

dx	2 

dx � y
�

	
�1 � �dy�dt

dx�dt	2 dx

dt
dt

dx�dt � 0

L � y
�

	
��dx

dt 	2

� �dy

dt 	2 

dt

C y � F�x�
�	, ��

�t t0 t1 t2 tn

3

xi � f �ti � yi � t�ti � Pi�xi, yi� C
P0 P1 Pn C

L C
n l �

L � lim
n l �


n

i�1
� Pi�1Pi �

f �ti�1, ti �
ti* �ti�1, ti �

f �ti� � f �ti�1� � f ��ti*��ti � ti�1�

�xi � xi � xi�1 �yi � yi � yi�1

�xi � f ��ti*� �t

t ti** �ti�1, ti�

�yi � t��ti**� �t

� Pi�1Pi � � s��xi �2 � ��yi �2 � s� f ��ti*��t�2 � �t��ti
**��t�2 

� s� f ��ti*��2 � �t��ti
**��2 �t

L � lim
n l �


n

i�1
s� f ��ti*��2 � �t��ti

**��2 �t

s� f ��t��2 � �t��t��2 

ti* � ti** f � t�
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Thus, using Leibniz notation, we have the following result, which has the same form 
as .

THEOREM If a curve is described by the parametric equations ,
, , where and are continuous on and is tra-

versed exactly once as increases from to , then the length of is

Notice that the formula in Theorem 5 is consistent with the general formulas
and of Section 7.4.

EXAMPLE 4 If we use the representation of the unit circle given in Example 2 in
Section 9.1,

then and , so Theorem 5 gives

as expected. If, on the other hand, we use the representation given in Example 3 in
Section 9.1,

then , , and the integral in Theorem 5 gives

| Notice that the integral gives twice the arc length of the circle because as increases
from 0 to , the point traverses the circle twice. In general, when
finding the length of a curve from a parametric representation, we have to be
careful to ensure that is traversed only once as increases from to . ■

EXAMPLE 5 Find the length of one arch of the cycloid ,

SOLUTION From Example 3 we see that one arch is described by the parameter
interval . Since

C x � f �t�
y � t�t� � � t � � f � t� ��, �� C

t � � C

L � y
�

�
��dx

dt �2

� � dy

dt �2 

dt

L � x ds �ds�2 � �dx�2 � �dy�2

3

5

x � cos t y � sin t 0 � t � 2�

dx	dt � �sin t dy	dt � cos t

L � y
2�

0
��dx

dt �2

� �dy

dt �2 

dt � y
2�

0
ssin2t � cos2t dt

� y
2�

0
 dt � 2�

x � sin 2t y � cos 2t 0 � t � 2�

dx	dt � 2 cos 2t dy	dt � �2 sin 2t

y
2�

0
�� dx

dt �2

� � dy

dt �2 

dt � y
2�

0
s4 cos2�2t� � 4 sin2�2t� dt � y

2�

0
2 dt � 4�

t
2� �sin 2t, cos 2t�

C
C t � �

x � r �	 � sin 	�
y � r �1 � cos 	�.

0 � 	 � 2�

dx

d	
� r �1 � cos 	� and

dy

d	
� r sin 	
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we have

To evaluate this integral we use the identity with ,
which gives . Since , we have
and so . Therefore

and so

■

1 � cos 	 � 2 sin2�		2� 0 � 	 � 2� 0 � 		2 � �
sin�		2� 
 0

s2�1 � cos 	� � s4 sin2�		2� � 2 
 sin�		2� 
 � 2 sin�		2�

L � 2r y
2�

0
sin�		2� d	 � 2r ��2 cos�		2�]0

2�

� 2r �2 � 2� � 8r

L � y
2�

0
�� dx

d	�2

� � dy

d	�2 

d	 � y
2�

0
sr 2�1 � cos 	�2 � r 2 sin2	 d	

� y
2�

0
sr 2�1 � 2 cos 	 � cos2	 � sin2	� d	 � r y

2�

0
s2�1 � cos 	� d	

sin2x � 1
2 �1 � cos 2x� 	 � 2x
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■ The result of Example 5 says that the
length of one arch of a cycloid is eight
times the radius of the gener ating circle
(see Figure 5). This was first proved in
1658 by Sir Christopher Wren, who
later became the architect of St. Paul’s
Cathedral in London.

FIGURE 5

0

y

x2πr

L=8r

r

9.2 EXERCISES

1–2 ■ Find .

1. ,  2. ,  

3–6 ■ Find an equation of the tangent to the curve at the point 
corresponding to the given value of the parameter.

3. ,  ;  

4. ,  ;  

5. ,  ;  

6. ,  ;  

7. Find an equation of the tangent to the curve ,
at the point by two methods: (a) without

eliminating the parameter and (b) by first eliminating the
parameter.

; 8. Find equations of the tangents to the curve ,
at the origin. Then graph the curve and

the tangents.

9–12 ■ Find and . For which values of is the
curve concave upward?

9. ,  

10. ,  

11. ,  

dy	dx

x � t sin t y � t 2 � t x � 1	t y � st e�t

x � 1 � 4t � t 2 y � 2 � t 3 t � 1

x � t � t�1 y � 1 � t 2 t � 1

x � t cos t y � t sin t t � �

x � sin3	 y � cos3	 	 � �	6

x � 1 � ln t
y � t 2 � 2 �1, 3�

x � sin t
y � sin�t � sin t�

td 2 y	dx 2dy	dx

y � t 2 � tx � t 3 � 1

y � t 2 � tx � t 2 � 1

y � te� tx � e t

12. ,  ,  

13–16 ■ Find the points on the curve where the tangent is hor-
izontal or vertical. If you have a graphing device, graph the
curve to check your work.

13. ,  

14. ,  

15. ,  

16. ,  

; 17. Use a graph to estimate the coordinates of the rightmost
point on the curve , . Then use calculus to
find the exact coordinates.

; 18. Use a graph to estimate the coordinates of the lowest 
point and the leftmost point on the curve ,

. Then find the exact coordinates.

;19–20 ■ Graph the curve in a viewing rectangle that displays
all the important aspects of the curve.

19. ,  

20. ,  

21. Show that the curve , has two tan-
gents at and find their equations. Sketch the curve.

x � t 3 � 3t y � t 2 � 3

x � t 3 � 3t y � t 3 � 3t 2

x � 2 cos 	 y � sin 2	

x � e sin 	 y � e cos 	

x � t � t 6 y � e t

x � t 4 � 2t
y � t � t 4

x � t 4 � 2t 3 � 2t 2 y � t 3 � t

x � t 4 � 4t 3 � 8t 2 y � 2t 2 � t

x � cos t y � sin t cos t
�0, 0�

x � cos 2 t y � cos t 0 � t � �
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38. ,  ,  

39. ,  ,  

40. ,  ,  

; 41–43 ■ Graph the curve and find its length.

41. ,  ,  

42. ,  ,  

43. ,  ,  

44. Find the length of the loop of the curve ,
.

45. Use Simpson’s Rule with to estimate the length of
the curve , , .

46. In Exercise 36 in Section 9.1 you were asked to derive the
parametric equations , for the
curve called the witch of Maria Agnesi. Use Simpson’s
Rule with to estimate the length of the arc of this
curve given by .

47–48 ■ Find the distance traveled by a particle with position
as varies in the given time interval. Compare with the

length of the curve.

47. ,  ,  

48. ,  ,  

49. Show that the total length of the ellipse ,
, , is

where is the eccentricity of the ellipse , where
.

50. Find the total length of the astroid ,
, where 

51. (a) Graph the epitrochoid with equations

What parameter interval gives the complete curve?
(b) Use your CAS to find the approximate length of this

curve.

x � e t cos t y � e t sin t 0 � t � �

x � cos t � ln(tan 1
2 t) y � sin t �	4 � t � 3�	4

x � e t � t y � 4e t	2 �8 � t � 3

x � 3t � t 3

y � 3t 2

n � 6
x � t � e t y � t � e t �6 � t � 6

x � 2a cot 	 y � 2a sin2	

n � 4
�	4 � 	 � �	2

�x, y� t

x � sin2t y � cos2t 0 � t � 3�

x � cos2t y � cos t 0 � t � 4�

x � a sin 	
y � b cos 	 a � b � 0

L � 4a y
�	2

0
s1 � e 2 sin2	 d	

e (e � c	a
c � sa 2 � b 2 )

x � a cos3	
y � a sin3	 a � 0.

x � 11 cos t � 4 cos�11t	2�

y � 11 sin t � 4 sin�11t	2�

CAS

0 � t � 1y � t cos tx � t sin t

0 � t � �y � 3 sin t � sin 3tx � 3 cos t � cos 3t

0 � t � 3y � 5 � 2tx � et � e�t

; 22. Graph the curve ,
to discover where it crosses itself. Then find equations of
both tangents at that point.

23. (a) Find the slope of the tangent line to the trochoid
, in terms of . (See

Exercise 34 in Section 9.1.)
(b) Show that if , then the trochoid does not have a 

vertical tangent.

24. (a) Find the slope of the tangent to the astroid ,
in terms of .

(b) At what points is the tangent horizontal or vertical?
(c) At what points does the tangent have slope 1 or ?

25. At what points on the curve ,
does the tangent line have slope ?

26. Find equations of the tangents to the curve ,
that pass through the point .

27. Use the parametric equations of an ellipse, ,
, , to find the area that it encloses.

28. Find the area enclosed by the curve ,
and the .

29. Find the area enclosed by the and the curve 
, .

30. Find the area of the region enclosed by the astroid
, .

31. Find the area under one arch of the trochoid of Exercise 34
in Section 9.1 for the case .

32. Let be the region enclosed by the loop of the curve in
Example 1.
(a) Find the area of .
(b) If is rotated about the -axis, find the volume of the

resulting solid.
(c) Find the centroid of .

33–36 ■ Set up an integral that represents the length of the
curve. Then use your calculator to find the length correct to 
four decimal places.

33. ,  ,  

34. ,  ,  

35. ,  ,  

36. ,  ,  

37–40 ■ Find the exact length of the curve.

37. ,  ,  

x � r	 � d sin 	 y � r � d cos 	 	

d � r

x � a cos3	
y � a sin3	 	

�1

x � 2t 3 y � 1 � 4t � t 2

1

x � 3t 2 � 1
y � 2t 3 � 1 �4, 3�

x � a cos 	
y � b sin 	 0 � 	 � 2�

x � t 2 � 2t y � st
y-axis

x-axis
x � 1 � e t y � t � t 2

x � a cos3	 y � a sin3	

d � r

�

�
x�

�

0 � t � 2y � t � e�tx � t � e�t

1 � t � 4y � t 4x � t 2 � t

0 � t � 4�y � 1 � 2 cos tx � t � 2 sin t

0 � t � 1y � t � stx � t � st

0 � t � 1y � 4 � 2t 3x � 1 � 3t 2

x � cos t � 2 cos 2t y � sin t � 2 sin 2t
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54. A cow is tied to a silo with radius by a rope just long
enough to reach the opposite side of the silo. Find the area
available for grazing by the cow.

xO

y

r

¨ P

T

r

52. A curve called Cornu’s spiral is defined by the para-
metric equations

where and are the Fresnel functions that were intro -
duced in Chapter 5.
(a) Graph this curve. What happens as and as 

?
(b) Find the length of Cornu’s spiral from the origin to

the point with parameter value .

53. A string is wound around a circle and then unwound
while being held taut. The curve traced by the point at
the end of the string is called the involute of the circle. If
the circle has radius and center and the initial posi-
tion of is , and if the parameter is chosen as in
the figure, show that parametric equations of the involute
are

t

P

P
Or

	�r, 0�

y � r �sin 	 � 	 cos 	�x � r �cos 	 � 	 sin 	�

x � C�t� � y
t

0
cos��u 2	2� du

y � S�t� � y
t

0
sin��u 2	2� du

C S

t l 
t l �

CAS
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9.3 POLAR COORDINATES
A coordinate system represents a point in the plane by an ordered pair of numbers
called coordinates. Usually we use Cartesian coordinates, which are directed distances
from two perpendicular axes. Here we describe a coordinate system introduced by
Newton, called the polar coordinate system, which is more convenient for many 
purposes.

We choose a point in the plane that is called the pole (or origin) and is labeled .
Then we draw a ray (half-line) starting at called the polar axis. This axis is usually
drawn horizontally to the right and corresponds to the positive -axis in Cartesian
coordinates.

If is any other point in the plane, let be the distance from to and let be
the angle (usually measured in radians) between the polar axis and the line as in
Figure 1. Then the point is represented by the ordered pair and , are called
polar coordinates of . We use the convention that an angle is positive if measured
in the counterclockwise direction from the polar axis and negative in the clockwise
direction. If , then and we agree that represents the pole for any
value of .

We extend the meaning of polar coordinates to the case in which is nega-
tive by agreeing that, as in Figure 2, the points and lie on the same line
through and at the same distance from , but on opposite sides of . If ,
the point lies in the same quadrant as ; if , it lies in the quadrant on the
opposite side of the pole. Notice that represents the same point as .

O
O

x

P r O P 	
OP

P �r, 	� r 	
P

P � O r � 0 �0, 	�
	

�r, 	� r
��r, 	� �r, 	�

O 
 r 
 O O r � 0
�r, 	� 	 r � 0

��r, 	� �r, 	 � ��

x
O

¨

r

polar axis

P(r, ̈ )

FIGURE 1

(_r, ¨)

O

¨

(r, ¨ )

¨+π

FIGURE 2
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EXAMPLE 1 Plot the points whose polar coordinates are given.
(a) (b) (c) (d)

SOLUTION The points are plotted in Figure 3. In part (d) the point is
located three units from the pole in the fourth quadrant because the angle is in
the second quadrant and is negative.

■

In the Cartesian coordinate system every point has only one representation, but in
the polar coordinate system each point has many representations. For instance, the
point in Example 1(a) could be written as or or

. (See Figure 4.)

In fact, since a complete counterclockwise rotation is given by an angle 2 , the
point represented by polar coordinates is also represented by

where is any integer.
The connection between polar and Cartesian coordinates can be seen from Figure 5,

in which the pole corresponds to the origin and the polar axis coincides with the pos-
itive -axis. If the point has Cartesian coordinates and polar coordinates ,
then, from the figure, we have

and so

Although Equations 1 were deduced from Figure 5, which illustrates the case
where and , these equations are valid for all values of and
(See the general definition of and in Appendix A.)

Equations 1 allow us to find the Cartesian coordinates of a point when the polar
coordinates are known. To find and when and are known, we use the equations

��3, 3�	4�
3�	4

r � �3

O

”_3,       ’
3π

4

3π

4

(2, 3π)
O

3π

”1,       ’
5π

4

5π

4

O

FIGURE 3
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��1, �	4�

�1, 5�	4� �2, 3�� �2, �2�	3� ��3, 3�	4�

O

13π

4

”1,        ’
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4
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_
3π

4
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n

x P �x, y� �r, 	�
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x

r
sin 	 �

y

r

x � r cos 	 y � r sin 	

r � 0 0 � 	 � �	2 r 	.
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r 	 x y
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which can be deduced from Equations 1 or simply read from Figure 5.

EXAMPLE 2 Convert the point from polar to Cartesian coordinates.

SOLUTION Since and , Equations 1 give

Therefore the point is in Cartesian coordinates. ■

EXAMPLE 3 Represent the point with Cartesian coordinates in terms of
polar coordinates.

SOLUTION If we choose to be positive, then Equations 2 give

Since the point lies in the fourth quadrant, we can choose or
. Thus one possible answer is ; another is . ■

NOTE Equations 2 do not uniquely determine when and are given because, 
as increases through the interval , each value of occurs twice.
Therefore, in converting from Cartesian to polar coordinates, it’s not good enough just
to find and that satisfy Equations 2. As in Example 3, we must choose so that
the point lies in the correct quadrant.

POLAR CURVES

The graph of a polar equation , or more generally , consists of
all points that have at least one polar representation whose coordinates satisfy
the equation.

EXAMPLE 4 What curve is represented by the polar equation ?

SOLUTION The curve consists of all points with . Since represents the
distance from the point to the pole, the curve represents the circle with center

and radius . In general, the equation represents a circle with center and
radius . (See Figure 6.) ■

r 2 � x 2 � y 2 tan 	 �
y

x

�2, �	3�

r � 2 	 � �	3

x � r cos 	 � 2 cos 
�

3
� 2 �

1

2
� 1

y � r sin 	 � 2 sin  
�

3
� 2 �

s3

2
� s3

(1, s3 )

�1, �1�

r

r � sx 2 � y 2 � s12 � ��1�2 � s2

tan 	 �
y

x
� �1

2

�1, �1� 	 � ��	4
	 � 7�	4 (s2 , ��	4) �s2 , 7�	4�

	 x y
	 0 � 	 � 2� tan 	

r 	 	
�r, 	�

r � f �	� F�r, 	� � 0
P �r, 	�

r � 2

�r, 	� r � 2 r
r � 2

O 2 r � a O


 a 


V

FIGURE 6
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EXAMPLE 5 Sketch the polar curve .

SOLUTION This curve consists of all points such that the polar angle is
1 radian. It is the straight line that passes through and makes an angle of 1 radian
with the polar axis (see Figure 7). Notice that the points on the line with
are in the first quadrant, whereas those with are in the third quadrant. ■

EXAMPLE 6
(a) Sketch the curve with polar equation .
(b) Find a Cartesian equation for this curve.

SOLUTION
(a) In Figure 8 we find the values of for some convenient values of and plot the
corresponding points . Then we join these points to sketch the curve, which
appears to be a circle. We have used only values of between 0 and , since if we
let increase beyond , we obtain the same points again.

(b) To convert the given equation into a Cartesian equation we use Equations 1 
and 2. From we have , so the equation 
becomes , which gives

or    

Completing the square, we obtain

which is an equation of a circle with center and radius 1. ■

	 � 1

�r, 	� 	
O

�r, 1� r � 0
r � 0

r � 2 cos 	

r 	
�r, 	�

	 �
	 �

FIGURE 8
Table of values and

graph of  r=2 cos ̈
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	 r � 2 cos 	

■ The curve in Example 6 is sym-
metric about the polar axis because

.cos��	� � cos 	

■ Figure 9 shows a geometrical illustra-
tion that the circle in Example 6 has the
equation . The angle is
a right angle (Why?) and so .r	2 � cos 	

OPQr � 2 cos 	

O
1

(_1, 1)

(_2, 1)

(1, 1)

(2, 1)

(3, 1)

¨=1

FIGURE 7
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EXAMPLE 7 Sketch the curve .

SOLUTION Instead of plotting points as in Example 6, we first sketch the graph of
in Cartesian coordinates in Figure 10 by shifting the sine curve up

one unit. This enables us to read at a glance the values of that correspond to
increasing values of . For instance, we see that as increases from 0 to , (the
distance from ) increases from 1 to 2, so we sketch the corresponding part of the
polar curve in Figure 11(a). As increases from to , Figure 10 shows that
decreases from 2 to 1, so we sketch the next part of the curve as in Figure 11(b). As 

increases from to , decreases from 1 to 0 as shown in part (c). Finally, 
as increases from to , increases from 0 to 1 as shown in part (d). If 
we let increase beyond or decrease beyond 0, we would simply re trace our
path. Putting together the parts of the curve from Figure 11(a)–(d), we sketch the
complete curve in part (e). It is called a cardioid because it’s shaped like a heart.

EXAMPLE 8 Sketch the curve .

SOLUTION As in Example 7, we first sketch , , in Cartesian
coordinates in Figure 12. As increases from 0 to , Figure 12 shows that
decreases from 1 to 0 and so we draw the corresponding portion of the polar curve
in Figure 13 (indicated by !). As increases from to , goes from 0 to .
This means that the distance from increases from 0 to 1, but instead of being in
the first quadrant this portion of the polar curve (indicated by @) lies on the opposite
side of the pole in the third quadrant. The remainder of the curve is drawn in a simi-
lar fashion, with the arrows and numbers indicating the order in which the portions
are traced out. The resulting curve has four loops and is called a four-leaved rose.

■

	 2�

(a) (b) (c) (d) (e)

FIGURE 11 Stages in sketching the cardioid r=1+sin ¨
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FIGURE 12
r=cos 2¨ in Cartesian coordinates

FIGURE 13
Four-leaved rose r=cos 2̈
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FIGURE 10
r=1+sin ̈  in Cartesian coordinates,
0¯¨¯2π

0

r
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¨π 2π3π
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Module 9.3 helps you see how
polar curves are traced out by showing
animations similar to Figures 10–13. 

TEC
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TANGENTS TO POLAR CURVES

To find a tangent line to a polar curve we regard as a parameter and write
its parametric equations as

Then, using the method for finding slopes of parametric curves (Equation 9.2.1) and
the Product Rule, we have

We locate horizontal tangents by finding the points where (provided that
). Likewise, we locate vertical tangents at the points where

(provided that ).
Notice that if we are looking for tangent lines at the pole, then and Equation 3

simplifies to

For instance, in Example 8 we found that when or .
This means that the lines and (or and ) are tangent
lines to at the origin.

EXAMPLE 9
(a) For the cardioid of Example 7, find the slope of the tangent line 
when .
(b) Find the points on the cardioid where the tangent line is horizontal or vertical.

SOLUTION Using Equation 3 with , we have

(a) The slope of the tangent at the point where is

r � f �	� 	

x � r cos 	 � f �	� cos 	 y � r sin 	 � f �	� sin 	

dy

dx
�

dy

d	

dx

d	

�

dr

d	
sin 	 � r cos 	

dr

d	
cos 	 � r sin 	

dy	d	 � 0
dx	d	 � 0 dx	d	 � 0

dy	d	 � 0
r � 0

dy

dx
� tan 	 if

dr

d	
� 0

r � cos 2	 � 0 	 � �	4 3�	4
	 � �	4 	 � 3�	4 y � x y � �x

r � cos 2	

3

r � 1 � sin 	
	 � �	3

r � 1 � sin 	

dy

dx
�

dr

d	
sin 	 � r cos 	

dr

d	
 cos 	 � r sin 	

�
cos 	 sin 	 � �1 � sin 	� cos 	

cos 	 cos 	 � �1 � sin 	� sin 	

�
cos 	 �1 � 2 sin 	�
1 � 2 sin2	 � sin 	

�
cos 	 �1 � 2 sin 	�

�1 � sin 	��1 � 2 sin 	�

	 � �	3

�
1
2 (1 � s3 )

(1 � s3	2)(1 � s3 )
dy

dx �
	�� 	3

�
cos��	3��1 � 2 sin��	3��

�1 � sin��	3���1 � 2 sin��	3��

�
1 � s3

�1 � s3
� �1�

1 � s3

(2 � s3 )(1 � s3 )
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(b) Observe that

Therefore there are horizontal tangents at the points , ,
and vertical tangents at and . When , both and

are 0, so we must be careful. Using l’Hospital’s Rule, we have

By symmetry,

Thus there is a vertical tangent line at the pole (see Figure 14). ■

NOTE Instead of having to remember Equation 3, we could employ the method
used to derive it. For instance, in Example 9 we could have written

Then we have

which is equivalent to our previous expression.

GRAPHING POLAR CURVES WITH GRAPHING DEVICES

Although it’s useful to be able to sketch simple polar curves by hand, we need to use
a graphing calculator or computer when we are faced with a curve as complicated as
the one shown in Figure 15.

Some graphing devices have commands that enable us to graph polar curves 
directly. With other machines we need to convert to parametric equations first. In this
case we take the polar equation and write its parametric equations as

Some machines require that the parameter be called rather than .

dy

d	
� cos 	 �1 � 2 sin 	� � 0 when 	 �
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2
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3�

2
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�

6
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	 l �3�	2��

cos 	

1 � sin 	�
� �
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1
2 sin 2	
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FIGURE 15
r=sin@(1.2¨)+cos#(6¨)
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FIGURE 14
Tangent lines for r=1+sin ¨
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EXAMPLE 10 Graph the curve .

SOLUTION Let’s assume that our graphing device doesn’t have a built-in polar
graphing command. In this case we need to work with the corresponding parametric
equations, which are

In any case we need to determine the domain for . So we ask ourselves: How many
complete rotations are required until the curve starts to repeat itself? If the answer 
is , then

and so we require that be an even multiple of . This will first occur when
. Therefore we will graph the entire curve if we specify that .

Switching from to , we have the equations

and Figure 16 shows the resulting curve. Notice that this rose has 16 loops. ■

r � sin�8��5�

x � r cos � � sin�8��5� cos �

y � r sin � � sin�8��5� sin �

�

n

sin 
8�� � 2n��

5
� sin�8�

5
�

16n�

5 � � sin 
8�

5

16n��5 �
n � 5 0 � � � 10�

� t

x � sin�8t�5� cos t y � sin�8t�5� sin t 0 � t � 10�
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1

_1

_1 1

FIGURE 16
r=sin(8¨/5)

■ www.stewartcalculus.com
See Additional Example A.

9.3 EXERCISES

1–2 ■ Plot the point whose polar coordinates are given. Then
find two other pairs of polar coordinates of this point, one with

and one with .

1. (a) (b) (c) 

2. (a) (b) (c) 

3–4 ■ Plot the point whose polar coordinates are given. Then
find the Cartesian coordinates of the point.

3. (a) (b) (c) 

4. (a) (b) (c) 

5–6 ■ The Cartesian coordinates of a point are given.
(i) Find polar coordinates of the point, where 

and .
(ii) Find polar coordinates of the point, where 

and .

5. (a) (b)

6. (a) (b)

r � 0 r � 0

�2, ��3� �1, �3��4� ��1, ��2�

�1, 7��4� ��3, ��6� �1, �1�

�1, �� (2, �2��3) ��2, 3��4�

(�s2 , 5��4) �1, 5��2� �2, �7��6�

�r, �� r � 0
0 � � � 2�

�r, �� r � 0
0 � � � 2�

�2, �2� (�1, s3 )
(3s3 , 3) �1, �2�

7–12 ■ Sketch the region in the plane consisting of points
whose polar coordinates satisfy the given conditions.

7.

8. ,  

9. ,  

10. ,  

11. ,  

12. ,  

13–16 ■ Identify the curve by finding a Cartesian equation for
the curve.

13. 14.

15. 16.

17–20 ■ Find a polar equation for the curve represented by the
given Cartesian equation.

17. 18.

1 � r � 2

0 � r � 2 � � � � 3��2

r 	 0 ��4 � � � 3��4

1 � r � 3 ��6 � � � 5��6

2 � r � 3 5��3 � � � 7��3

�1 � r � 1 ��4 � � � 3��4

r � 2 cos � � � ��3

r 2 cos 2� � 1 r � tan � sec �

y � 1 � 3x 4y 2 � x
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46. Match the polar equations with the graphs labeled I–VI.
Give reasons for your choices. (Don’t use a graphing
device.)

(a) (b)
(c) (d)
(e) (f)

47–50 ■ Find the slope of the tangent line to the given polar
curve at the point specified by the value of .

47. ,  48. ,  

49. , 50. ,  

51–54 ■ Find the points on the given curve where the tangent
line is horizontal or vertical.

51. 52.

53. 54.

55. Show that the polar equation , where
, represents a circle, and find its center and radius.

56. Show that the curves and intersect
at right angles.

;57–60 ■ Use a graphing device to graph the polar curve.
Choose the parameter interval to make sure that you produce the
entire curve.

57. (butterfly curve)

58.

59. (PacMan curve)

60. (valentine curve)

; 61. How are the graphs of and
related to the graph of ?

In general, how is the graph of related to the
graph of ?

r � � 2,   0 � � � 16�r � s� ,  0 � � � 16�

r � 1 � 2 cos �r � cos���3�
r � 1 � 2 sin 3�r � 2 � sin 3�

I II III

IV V VI

�

� � ��3r � 2 � sin �� � ��6r � 2 sin �

� � �r � cos���3�� � �r � 1��

r � e �r � 3 cos �

r 2 � sin 2�r � 1 � cos �

r � a sin � � b cos �
ab � 0

r � a cos �r � a sin �

r � e sin � � 2 cos�4��

r � sin2�4�� � cos�4��

r � 1 � cos999�

r � � tan � �� cot � �

r � 1 � sin�� � ��6�
r � 1 � sin �r � 1 � sin�� � ��3�

r � f �� � 
�
r � f ���

19. 20.

21–22 ■ For each of the described curves, decide if the curve
would be more easily given by a polar equation or a Cartesian
equation. Then write an equation for the curve.

21. (a) A line through the origin that makes an angle of
with the positive -axis

(b) A vertical line through the point 

22. (a) A circle with radius 5 and center 
(b) A circle centered at the origin with radius 4

23–40 ■ Sketch the curve with the given polar equation by 
first sketching the graph of as a function of in Cartesian
coordinates.

23. 24.

25. 26.

27. , 28. ,

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41–42 ■ The figure shows a graph of as a function of in
Cartesian coordinates. Use it to sketch the corresponding polar
curve.

41. 42.

43. Show that the polar curve (called a
conchoid) has the line as a vertical asymptote by
showing that . Use this fact to help sketch the
conchoid.

44. Sketch the curve .

45. Show that the curve (called a cissoid of 
Diocles) has the line as a vertical asymptote. Show
also that the curve lies entirely within the vertical strip

. Use these facts to help sketch the cissoid.

x 2 � y 2 � 2cx xy � 4

��6
x

�3, 3�

�2, 3�

r �

r � �2 sin � r � 1 � cos �

r � 2�1 � cos �� r � 1 � 2 cos �

r � � � 	 0 r � ln � � 	 1

r � 4 sin 3� r � cos 5�

r � 2 cos 4� r � 3 cos 6�

r � 1 � 2 sin � r � 2 � sin �

r 2 � 9 sin 2� r 2 � cos 4�

r � 2 � sin 3� r 2� � 1

r � 1 � 2 cos 2� r � 3 � 4 cos �

r �

r � 4 � 2 sec �
x � 2

lim r l�� x � 2

¨

r

0 π 2π

1

2

¨

r

0 π 2π

2

_2

�x 2 � y 2 �3 � 4x 2 y 2

r � sin � tan �
x � 1

0 � x � 1
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shaped only for certain values of and . (Cassini thought
that these curves might represent planetary orbits better
than Kepler’s ellipses.) Investigate the variety of shapes
that these curves may have. In particular, how are and
related to each other when the curve splits into two parts?

67. Let be any point (except the origin) on the curve
. If is the angle between the tangent line at

and the radial line , show that

[Hint: Observe that in the figure.]

68. (a) Use Exercise 67 to show that the angle between the
tangent line and the radial line is at every
point on the curve .

; (b) Illustrate part (a) by graphing the curve and the tangent
lines at the points where and .

(c) Prove that any polar curve with the property
that the angle between the radial line and the tangent
line is a constant must be of the form , where

and are constants.
r � Ce k�

C k



r � f ���
P

P
OP

tan  �
r

dr�d�

 � � � �

O

P

ÿ

¨
˙

r=f(¨ )

 � ��4
r � e�

��2� � 0
r � f ���

ca

ca
; 62. Use a graph to estimate the -coordinate of the highest

points on the curve . Then use calculus to find
the exact value.

; 63. (a) Investigate the family of curves defined by the polar
equations , where is a positive integer.
How is the number of loops related to ?

(b) What happens if the equation in part (a) is replaced by
?

; 64. A family of curves is given by the equations
, where is a real number and is a posi-

tive integer. How does the graph change as increases?
How does it change as changes? Illustrate by graph-
ing enough members of the family to support your 
conclusions.

; 65. A family of curves has polar equations

Investigate how the graph changes as the number
changes. In particular, you should identify the transitional
values of for which the basic shape of the curve changes.

; 66. The astronomer Giovanni Cassini (1625–1712) studied 
the family of curves with polar equations

where and are positive real numbers. These curves are
called the ovals of Cassini even though they are oval

r � sin n� n
n

r � � sin n� �

r � 1 � c sin n� c n
n

c

y
r � sin 2�

r �
1 � a cos �

1 � a cos �

a

a

r 4 � 2c2r 2 cos 2� � c 4 � a 4 � 0 

ca
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9.4 AREAS AND LENGTHS IN POLAR COORDINATES
In this section we develop the formula for the area of a region whose boundary is
given by a polar equation. We need to use the formula for the area of a sector of a 
circle

where, as in Figure 1, is the radius and is the radian measure of the central angle.
Formula 1 follows from the fact that the area of a sector is proportional to its central
angle: . (See also Exercise 69 in Section 6.2.)

Let be the region, illustrated in Figure 2, bounded by the polar curve 
and by the rays and , where is a positive continuous function and where

. We divide the interval into subintervals with endpoints , 
, , . . . , and equal width . The rays then divide into smaller

regions with central angle . If we choose in the th subinterval
, then the area of the th region is approximated by the area of the sector

of a circle with central angle and radius . (See Figure 3.)

A � 1
2 r 2�

r �

1

A � ���2���r 2 � 1
2 r 2�

� r � f ���
� � a � � b f

0 � b � a � 2� �a, b	 �0

�1 �2 �n �� � � �i � n
�� � �i � �i�1 �i* i

��i�1, �i 	 �Ai i
�� f ��i*�

¨

r

FIGURE 1
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Thus from Formula 1 we have

and so an approximation to the total area of is

It appears from Figure 3 that the approximation in improves as . But the
sums in are Riemann sums for the function , so

It therefore appears plausible (and can in fact be proved) that the formula for the area
of the polar region is

Formula 3 is often written as

with the understanding that . Note the similarity between Formulas 1 and 4.
When we apply Formula 3 or 4 it is helpful to think of the area as being swept out

by a rotating ray through that starts with angle and ends with angle .

EXAMPLE 1 Find the area enclosed by one loop of the four-leaved rose
.

SOLUTION The curve was sketched in Example 8 in Section 9.3.
Notice from Figure 4 that the region enclosed by the right loop is swept out by a ray
that rotates from to . Therefore Formula 4 gives

■

EXAMPLE 2 Find the area of the region that lies inside the circle and
outside the cardioid .

SOLUTION The cardioid (see Example 7 in Section 9.3) and the circle are sketched
in Figure 5 and the desired region is shaded. The values of and in Formula 4 are
determined by finding the points of intersection of the two curves. They intersect
when , which gives , so , . The desired
area can be found by subtracting the area inside the cardioid between and 

A 
 �
n

i�1

1
2 � f ��i*�	2 ��

n l �

t��� � 1
2 � f ���	2

lim
n l �

�
n

i�1

1
2 � f ��i*�	2 �� � y

b

a

1
2 � f ���	2 d�

A �

A � y
b

a

1
2 � f ���	2 d�

A � y
b

a

1
2 r 2 d�

r � f ���

O a b

r � cos 2�

r � cos 2�

� � ���4 � � ��4

A � y
��4

���4

1
2 r 2 d� � 1

2 y
��4

���4
cos2 2� d� � y

��4

0
cos2 2� d�

� y
��4

0

1
2 �1 � cos 4�� d� � 1

2 [� �
1
4 sin 4�]0

��4
�

�

8

2

3

4

V

2
2

r � 3 sin �
r � 1 � sin �

a b

3 sin � � 1 � sin � sin � � 1
2 � � ��6 5��6

� � ��6

V

�Ai 
 1
2 � f ��i*�	2 ��

�A
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FIGURE 2

O

¨=b

b
¨=a

r=f(¨)

a

�

O

¨=b

¨=a

¨=¨
i-1

¨=¨
i

Î¨

f(̈
i
*)

FIGURE 3

r=cos 2¨ ¨=
π

4

¨=_
π

4

FIGURE 4

FIGURE 5

O

¨=
5π

6

¨=
π

6

r=3 sin ̈

r=1+sin ¨
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from the area inside the circle from to . Thus

Since the region is symmetric about the vertical axis , we can write

[because ]

■

Example 2 illustrates the procedure for finding the area of the region bounded by
two polar curves. In general, let be a region, as illustrated in Figure 6, that is 
bounded by curves with polar equations , , , and , where

and . The area of is found by subtracting the
area inside from the area inside , so using Formula 3 we have

| CAUTION The fact that a single point has many representations in polar coordi-
nates sometimes makes it difficult to find all the points of intersection of two polar
curves. For instance, it is obvious from Figure 5 that the circle and the cardioid have
three points of intersection; however, in Example 2 we solved the equations

and and found only two such points, and .
The origin is also a point of intersection, but we can’t find it by solving the equations
of the curves because the origin has no single representation in polar coordinates that
satisfies both equations. Notice that, when represented as or , the origin
satisfies and so it lies on the circle; when represented as , it sat-
isfies and so it lies on the cardioid. Think of two points moving along
the curves as the parameter value increases from 0 to . On one curve the origin is
reached at and ; on the other curve it is reached at . The points
don’t collide at the origin because they reach the origin at different times, but the
curves intersect there nonetheless.

Thus, to find all points of intersection of two polar curves, it is recommended that
you draw the graphs of both curves. It is especially convenient to use a graphing cal-
culator or computer to help with this task.

EXAMPLE 3 Find all points of intersection of the curves and .

SOLUTION If we solve the equations and , we get and
therefore � , , , . Thus the values of between 0 and
that satisfy both equations are , , , . We have found four
points of inter section: , , and .

However, you can see from Figure 7 that the curves have four other points of
inter section—namely, , , , and . These can be
found using symmetry or by noticing that another equation of the circle is
and then solving the equations and . ■

� y
��2

��6
�8 sin2� � 1 � 2 sin �� d�

� y
��2

��6
�3 � 4 cos 2� � 2 sin �� d� sin2� � 1

2 �1 � cos 2��

� 3� � 2 sin 2� � 2 cos �]��6

��2
� �

�
r � f ��� r � t��� � � a � � b

f ��� 	 t��� 	 0 0 � b � a � 2� A �
r � t��� r � f ���

A � y
b

a

1
2 � f ���	2 d� � y

b

a

1
2 �t���	2 d� � 1

2 y
b

a
(� f ���	2 � �t���	2) d�

r � 3 sin � r � 1 � sin � ( 3
2, ��6) (3

2, 5��6)

�0, 0� �0, ��
r � 3 sin � �0, 3��2�

r � 1 � sin �
� 2�

� � 0 � � � � � 3��2

r � cos 2� r � 1
2

r � cos 2� r � 1
2 cos 2� � 1

2

2� ��3 5��3 7��3 11��3 � 2�
� � ��6 5��6 7��6 11��6

(1
2, ��6) (1

2, 5��6), ( 1
2, 7��6) (1

2, 11��6)

� � ��2

A � 2�1
2 y

��2

��6
9 sin2� d� �

1
2 y

��2

��6
�1 � 2 sin � � sin2�� d�

� � 5��6 ��6 5��6

A � 1
2 y

5��6

��6
�3 sin ��2 d� �

1
2 y

5��6

��6
�1 � sin ��2 d�

( 1
2, 5��3)(1

2, 4��3)(1
2, 2��3)(1

2, ��3)
r � �

1
2

r � �
1
2r � cos 2�
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O

¨=b

¨=a

r=f(¨)

�

r=g(¨)

FIGURE 6

FIGURE 7

r=cos 2¨

1

2
r=

”   ,     ’
1

2

π

3

”   ,    ’
1

2

π

6
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ARC LENGTH

To find the length of a polar curve , , we regard as a parameter
and write the parametric equations of the curve as

Using the Product Rule and differentiating with respect to , we obtain

so, using , we have

Assuming that is continuous, we can use Formula 9.2.5 to write the arc length as

Therefore the length of a curve with polar equation , , is

EXAMPLE 4 Find the length of the cardioid .

SOLUTION The cardioid is shown in Figure 8. (We sketched it in Example 7 in
Section 9.3.) Its full length is given by the parameter interval , so
Formula 5 gives 

We could evaluate this integral by multiplying and dividing the integrand by
, or we could use a computer algebra system. In any event, we find

that the length of the cardioid is . ■

r � f ��� a � � � b �

x � r cos � � f ��� cos � y � r sin � � f ��� sin �

�

dx

d�
�

dr

d�
cos � � r sin �

dy

d�
�

dr

d�
sin � � r cos �

cos2� � sin2� � 1

� dx

d�
�2

� � dy

d�
�2

� � dr

d�
�2

cos2� � 2r
dr

d�
cos � sin � � r 2 sin2�

� � � dr

d�
�2

sin2� � 2r
dr

d�
sin � cos � � r 2 cos2�

� � dr

d�
�2

� r 2

f �

L � y
b

a
�� dx

d��2

� � dy

d��2 

d�

r � f ��� a � � � b

L � y
b

a
�r 2 � � dr

d��2 

d�

r � 1 � sin �

0 � � � 2�

5

V

L � y
2�

0
�r 2 � � dr

d��2 

d� � y
2�

0
s�1 � sin ��2 � cos2� d�

� y
2�

0
s2 � 2 sin � d�

s2 � 2 sin �
L � 8
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O

FIGURE 8
r=1+sin ¨
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9.4 EXERCISES

1–4 ■ Find the area of the region that is bounded by the given
curve and lies in the specified sector.

1. ,  

2. ,  

3. ,  ,  

4. ,  

5–8 ■ Find the area of the shaded region.

5. 6.

7. 8.

9–12 ■ Sketch the curve and find the area that it encloses.

9. 10.

11. 12.

;13–14 ■ Graph the curve and find the area that it encloses.

13. 14.

15–18 ■ Find the area of the region enclosed by one loop of 
the curve.

15.

16.

17. (inner loop)

18.

r � e���4 ��2 � � � �

r � cos � 0 � � � ��6

r 2 � 9 sin 2� r 	 0 0 � � � ��2

r � tan � ��6 � � � ��3

r=œ„̈ r=1+cos ¨

r=4+3  sin  ¨ r=sin 2̈

r � 2 sin � r � 1 � sin �

r � 3 � 2 cos � r � 4 � 3 sin �

r � 3 � 2 cos 4�r � s1 � cos2�5��

r 2 � sin 2�

r � 4 cos 3�

r � 1 � 2 sin �

r � 2 cos � � sec �

19–22 ■ Find the area of the region that lies inside the first
curve and outside the second curve.

19. ,  

20. ,  

21. ,  

22. ,  

23–26 ■ Find the area of the region that lies inside both
curves.

23. ,  

24. ,  

25. ,  

26. ,  

27. Find the area inside the larger loop and outside the smaller
loop of the limaçon .

28. When recording live performances, sound engineers often
use a microphone with a cardioid pickup pattern because it
suppresses noise from the audience. Suppose the micro-
phone is placed 4 m from the front of the stage (as in the
figure) and the boundary of the optimal pickup region is
given by the cardioid , where is measured
in meters and the microphone is at the pole. The musicians
want to know the area they will have on stage within the
optimal pickup range of the microphone. Answer their 
question.

29–32 ■ Find all points of intersection of the given curves.

29. ,  

30. ,  

31. ,  

32. ,  

r � 1r � 1 � sin �

r � 1r � 2 cos �

r � 1 � cos �r � 3 cos �

r � 3 sin �r � 2 � sin �

r � sin �r � s3 cos �

r � 1 � cos �r � 1 � cos �

r � cos 2�r � sin 2�

r � 1r 2 � 2 sin 2�

r � 1
2 � cos �

rr � 8 � 8 sin �

stage

audience
microphone

12 m

4 m

r � 3 sin �r � 1 � sin �

r � sin 3�r � cos 3�

r � sin 2�r � sin �

r 2 � cos 2�r 2 � sin 2�
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37–38 ■ Use a calculator to find the length of the curve correct
to four decimal places. If necessary, graph the curve to deter-
mine the parameter interval.

37.

38.

r � sin�6 sin ��

r � sin���4�

33–36 ■ Find the exact length of the polar curve.

33. ,  

34. ,  

35. ,  36.

0 � � � 2�r � e 2�

0 � � � ��3r � 3 sin �

0 � � � 2�r � � 2 r � 2�1 � cos ��
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9.5 CONIC SECTIONS IN POLAR COORDINATES
In your previous study of conic sections, parabolas were defined in terms of a focus
and directrix whereas ellipses and hyperbolas were defined in terms of two foci. After
reviewing those definitions and equations, we present a more unified treatment of all
three types of conic sections in terms of a focus and directrix. Furthermore, if we place
the focus at the origin, then a conic section has a simple polar equation. In Chapter 10
we will use the polar equation of an ellipse to derive Kepler’s laws of planetary motion.

CONICS IN CARTESIAN COORDINATES

Here we provide a brief reminder of what you need to know about conic sections. A
more thorough review can be found on the website www.stewartcalculus.com. (Click
on Review: Conic Sections.)

Recall that a parabola is the set of points in a plane that are equidistant from a
fixed point (called the focus) and a fixed line (called the directrix). This definition
is illustrated by Figure 1. Notice that the point halfway between the focus and the 
directrix lies on the parabola; it is called the vertex. The line through the focus per-
pendicular to the directrix is called the axis of the parabola.

A parabola has a very simple equation if its vertex is placed at the origin and its
directrix is parallel to the -axis or -axis. If the focus is on the -axis at the point

, then the directrix has the equation and an equation of the parabola is
. [See parts (a) and (b) of Figure 2.] If the focus is on the -axis at ,

then the directrix is and an equation is as in parts (c) and (d).

An ellipse is the set of points in a plane the sum of whose distances from two fixed
points and is a constant. These two fixed points are called the foci (plural of
focus).

F

x y y
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An ellipse has a simple equation if we place the foci on the -axis at the points
and as in Figure 3 so that the origin is halfway between the foci. If the

sum of the distances from a point on the ellipse to the foci is , then the points 
and where the ellipse meets the -axis are called the vertices. The -intercepts
are , where . (See Figure 4.)

The ellipse

has foci , where , and vertices .

If the foci of an ellipse are located on the -axis at , then we can find its
equation by interchanging and in .

A hyperbola is the set of all points in a plane the difference of whose distances
from two fixed points and (the foci) is a constant. Notice that the definition 
of a hyperbola is similar to that of an ellipse; the only change is that the sum of dis-
tances has become a difference of distances. If the foci are on the -axis at 
and the difference of distances is , then the equation of the hyperbola is

, where . The -intercepts are and the points
and are the vertices of the hyperbola. There is no -intercept and the

hyperbola consists of two parts, called its branches. (See Figure 5.)
When we draw a hyperbola it is useful to first draw its asymptotes, which are 

the dashed lines and shown in Figure 5. Both branches of 
the hyperbola approach the asymptotes; that is, they come arbitrarily close to the
asymptotes.

The hyperbola

has foci , where , vertices , and asymptotes
.

If the foci of a hyperbola are on the -axis, then by reversing the roles of and
we get the graph shown in Figure 6.

We have given the standard equations of the conic sections, but any of them can be
shifted by replacing by and by . For instance, an ellipse with center

has an equation of the form

CONICS IN POLAR COORDINATES

In the following theorem we show how all three types of conic sections can be char-
acterized in terms of a focus and directrix.
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THEOREM Let be a fixed point (called the focus) and be a fixed line
(called the directrix) in a plane. Let be a fixed positive number (called the
eccentricity). The set of all points in the plane such that

(that is, the ratio of the distance from to the distance from is the con -
stant ) is a conic section. The conic is

(a) 

(b) 

(c) 

PROOF Notice that if the eccentricity is , then and so the given
condition simply becomes the definition of a parabola.

Let us place the focus at the origin and the directrix parallel to the -axis and
units to the right. Thus the directrix has equation and is perpendicular to the

polar axis. If the point has polar coordinates , we see from Figure 7 that

Thus the condition , or , becomes

If we square both sides of this polar equation and convert to rectangular coordinates, 
we get

or

After completing the square, we have

If , we recognize Equation 5 as the equation of an ellipse. In fact, it is of the
form

where

We know that the foci of an ellipse are at a distance from the center, where

F l
e

P

� PF �
� Pl � � e

F l
e

an ellipse if e � 1

a parabola if e � 1

a hyperbola if e � 1

e � 1 � PF � � � Pl �
F y

d x � d
P �r, ��

� PF � � r � Pl � � d � r cos �

� PF ��� Pl � � e � PF � � e � Pl �
r � e�d � r cos ��

x 2 � y 2 � e 2�d � x�2 � e 2�d 2 � 2dx � x 2 �

�1 � e 2 �x 2 � 2de 2x � y 2 � e 2d 2
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This shows that

and confirms that the focus as defined in Theorem 3 means the same as the focus
defined earlier. It also follows from Equations 6 and 7 that the eccentricity is given
by

If , then and we see that Equation 5 represents a hyperbola. Just as
we did before, we could rewrite Equation 5 in the form

and see that

■

By solving Equation 4 for , we see that the polar equation of the conic shown in
Fig ure 7 can be written as

If the directrix is chosen to be to the left of the focus as , or if the directrix is
chosen to be parallel to the polar axis as , then the polar equation of the conic
is given by the following theorem, which is illustrated by Figure 8. (See Exercises
19–21.)

THEOREM A polar equation of the form

represents a conic section with eccentricity . The conic is an ellipse if , 
a parabola if , or a hyperbola if .

EXAMPLE 1 Find a polar equation for a parabola that has its focus at the origin
and whose directrix is the line .

SOLUTION Using Theorem 8 with and , and using part (d) of Figure 8,
we see that the equation of the parabola is

■

EXAMPLE 2 A conic is given by the polar equation

Find the eccentricity, identify the conic, locate the directrix, and sketch the conic.

c �
e 2d

1 � e 2 � �h

e �
c
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e � 1 1 � e 2 � 0
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a 2 �
y 2
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e �
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a
where c 2 � a 2 � b 2
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ed

1 � e sin �

e e � 1
e � 1 e � 1
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e � 1 d � 6

r �
6

1 � sin �

r �
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3 � 2 cos �

V

V
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SOLUTION Dividing numerator and denominator by 3, we write the equation as

From Theorem 8 we see that this represents an ellipse with . Since , 
we have

so the directrix has Cartesian equation . When , ; when � ,
. So the vertices have polar coordinates and . The ellipse is

sketched in Figure 9. ■

EXAMPLE 3 Sketch the conic .

SOLUTION Writing the equation in the form

we see that the eccentricity is and the equation therefore represents a hyper-
bola. Since , and the directrix has equation . The vertices occur
when and , so they are and , which can be writ-
ten as . It is also useful to plot the -intercepts. These occur when , ;
in both cases . For additional accuracy we could draw the asymptotes. Note
that when or and when .
Thus the asymptotes are parallel to the rays and . The hyper-
bola is sketched in Figure 10. ■

In Figure 11 we use a computer to sketch a number of conics to demonstrate the
effect of varying the eccentricity . Notice that when is close to 0 the ellipse is nearly
circular, whereas it becomes more elongated as . When , of course, the
conic is a parabola.

r �
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9.5 EXERCISES

1–8 ■ Write a polar equation of a conic with the focus at the
origin and the given data.

1. Ellipse,  eccentricity ,  directrix 

2. Parabola,  directrix 

3. Hyperbola,  eccentricity 1.5,  directrix 

4. Hyperbola,  eccentricity 3,  directrix 

5. Parabola,  vertex 

6. Ellipse,  eccentricity ,  vertex 

7. Ellipse,  eccentricity ,  directrix 

8. Hyperbola,  eccentricity 3,  directrix 

9–16 ■ (a) Find the eccentricity, (b) identify the conic, (c) give
an equation of the directrix, and (d) sketch the conic.

9. 10.

11. 12.

13. 14.

15. 16.

; 17. Graph the conics with , , 
, and on a common screen. How does the value of

affect the shape of the curve?

; 18. (a) Graph the conics for and
various values of . How does the value of affect the
shape of the conic?

(b) Graph these conics for and various values of .
How does the value of affect the shape of the conic?

19. Show that a conic with focus at the origin, eccentricity ,
and directrix has polar equation

20. Show that a conic with focus at the origin, eccentricity ,
and directrix has polar equation

21. Show that a conic with focus at the origin, eccentricity ,
and directrix has polar equation

1
2 x � 4

x � �3

y � 2

x � 3

�4, 3��2�

0.8 �1, ��2�
1
2 r � 4 sec �

r � �6 csc �

r �
4

5 � 4 sin �
r �

12

3 � 10 cos �

r �
2

3 � 3 sin �
r �

3

2 � 2 cos �

r �
9

6 � 2 cos �
r �

5

2 � 2 sin �

r �
3

4 � 8 cos �
r �

4

2 � cos �

r � e��1 � e cos � � e � 0.4 0.6
0.8 1.0 e

r � ed��1 � e sin �� e � 1
d d

d � 1 e
e

e
x � �d

r �
ed

1 � e cos �

e
y � d

r �
ed

1 � e sin �

e
y � �d

r �
ed

1 � e sin �

22. Show that the parabolas and
intersect at right angles.

23. (a) Show that the polar equation of an ellipse with directrix
can be written in the form

(b) Find an approximate polar equation for the elliptical
orbit of the earth around the sun (at one focus) given
that the eccentricity is about and the length of the
major axis is about km.

24. (a) The planets move around the sun in elliptical orbits 
with the sun at one focus. The positions of a planet that
are closest to and farthest from the sun are called its
perihelion and aphelion, respectively. Use Exercise 23(a)
to show that the perihelion distance from a planet to the
sun is and the aphelion distance is .

(b) Use the data of Exercise 23(b) to find the distances from
the earth to the sun at perihelion and at aphelion.

25. The orbit of Halley’s comet, last seen in 1986 and due to 
return in 2062, is an ellipse with eccentricity 0.97 and one
focus at the sun. The length of its major axis is 36.18 AU. 
[An astronomical unit (AU) is the mean distance between
the earth and the sun, about 93 million miles.] Find a polar
equation for the orbit of Halley’s comet. What is the maxi-
mum distance from the comet to the sun?

26. The Hale-Bopp comet, discovered in 1995, has an elliptical
orbit with eccentricity 0.9951 and the length of the major
axis is 356.5 AU. Find a polar equation for the orbit of this
comet. How close to the sun does it come?

27. The planet Mercury travels in an elliptical orbit with eccen-
tricity . Its minimum distance from the sun is

km. Use the results of Exercise 24(a) to find its
maximum distance from the sun.

28. The distance from the planet Pluto to the sun is 
km at perihelion and km at aphelion.

Use Exercise 24 to find the eccentricity of Pluto’s orbit.

29. Using the data from Exercise 27, find the distance traveled
by the planet Mercury during one complete orbit around the
sun. (If your calculator or computer algebra system evalu-
ates definite integrals, use it. Otherwise, use Simpson’s Rule.)

r � c��1 � cos ��
r � d��1 � cos ��

x � �d

r �
a�1 � e 2 �

1 � e cos �

0.017
2.99 
 108

a�1 � e� a�1 � e�

perihelionaphelion
sun

planet

¨

r

0.206
4.6 
 107

4.43 
 109 7.37 
 109
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CHAPTER 9  REVIEW 535

CHAPTER 9 REVIEW
CONCEPT CHECK

TRUE-FALSE QUIZ

1. (a) What is a parametric curve?
(b) How do you sketch a parametric curve?

2. (a) How do you find the slope of a tangent to a parametric
curve?

(b) How do you find the area under a parametric 
curve?

3. Write an expression for the length of a parametric 
curve.

4. (a) Use a diagram to explain the meaning of the polar coor-
dinates of a point.

(b) Write equations that express the Cartesian coordinates
of a point in terms of the polar coordinates.

�r, ��

�x, y�

(c) What equations would you use to find the polar coordi -
nates of a point if you knew the Cartesian coordinates?

5. (a) How do you find the slope of a tangent line to a polar
curve?

(b) How do you find the area of a region bounded by a
polar curve?

(c) How do you find the length of a polar curve?

6. (a) What is the eccentricity of a conic section?
(b) What can you say about the eccentricity if the conic sec-

tion is an ellipse? A hyperbola? A parabola?
(c) Write a polar equation for a conic section with

eccentricity and directrix . What if the directrix
is ? ? ?

e x � d
x � �d y � d y � �d

Determine whether the statement is true or false. If it is true, explain
why. If it is false, explain why or give an example that disproves the
statement.

1. If the parametric curve , satisfies
, then it has a horizontal tangent when .

2. If and are twice differentiable, then

3. The length of the curve , , , 
is .

x � f �t� y � t�t�
t��1� � 0 t � 1

x � f �t� y � t�t�

d 2y

dx 2 �
d 2y�dt 2

d 2x�dt 2

x � f �t� y � t�t� a � t � b
x

b
a s� f ��t�� 2 � �t��t�� 2 dt

4. If a point is represented by in Cartesian coordinates
(where ) and in polar coordinates, then

.

5. The polar curves and have
the same graph.

6. The equations , , and ,
all have the same graph.

7. The parametric equations , have the same
graph as , .

8. A hyperbola never intersects its directrix.

�x, y�
x � 0 �r, ��

� � tan �1� y�x�

r � 1 � sin 2� r � sin 2� � 1

r � 2 x 2 � y 2 � 4 x � 2 sin 3t
y � 2 cos 3t �0 � t � 2��

x � t 2 y � t 4

x � t 3 y � t 6

EXERCISES

1–4 ■ Sketch the parametric curve and eliminate the parameter
to find the Cartesian equation of the curve.

1. ,  ,  

2. ,  

3. ,  ,  

4. ,  

5. Write three different sets of parametric equations for the 
curve .

6. Use the following graphs of and to sketch
the parametric curve , . Indicate with arrows
the direction in which the curve is traced as increases.

x � t 2 � 4t y � 2 � t �4 � t � 1

x � 1 � e 2 t y � e t

x � cos � y � sec � 0 � � � ��2

x � 2 cos � y � 1 � sin �

y � sx

y � t�t�x � f �t�
y � t�t�x � f �t�

t

7. (a) Plot the point with polar coordinates . Then
find its Cartesian coordinates.

(b) The Cartesian coordinates of a point are . Find
two sets of polar coordinates for the point.

8. Sketch the region consisting of points whose polar coor-
dinates satisfy .

t

x

_1

1 t

y

1

1

�4, 2��3�

��3, 3�

1 � r � 2 and ��6 � � � 5��6
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32. Find the area enclosed by the inner loop of the curve
.

33. Find the points of intersection of the curves and
.

34. Find the points of intersection of the curves and
.

35. Find the area of the region that lies inside both of the 
circles and .

36. Find the area of the region that lies inside the curve
but outside the curve .

37–40 ■ Find the length of the curve.

37. ,  ,  

38. ,  ,  

39. ,  

40. ,  

; 41. The curves defined by the parametric equations

are called strophoids (from a Greek word meaning “to
turn or twist”). Investigate how these curves vary as
varies.

; 42. A family of curves has polar equations
where is a positive number. Investigate how the curves
change as changes.

43. Find a polar equation for the ellipse with focus at the ori-
gin, eccentricity .

44. Show that the angles between the polar axis and the 
asymptotes of the hyperbola , , 
are given by .

45. In the figure the circle of radius is stationary, and for
every , the point is the midpoint of the segment .
The curve traced out by for is called the
longbow curve. Find parametric equations for this curve.

r � 2
r � 4 cos �

r � cot �
r � 2 cos �

r � 2 sin � r � sin � � cos �

r � 2 � cos 2� r � 2 � sin �

x � 3t 2 y � 2t 3 0 � t � 2

x � 2 � 3t y � cosh 3t 0 � t � 1

r � 1�� � � � � 2�

r � sin3���3� 0 � � � �

1
3 , and directrix with equation r � 4 sec �

r � ed��1 � e cos �� e � 1
cos�1��1�e�

x �
t 2 � c

t 2 � 1
y �

t�t 2 � c�
t 2 � 1

c

r a � � sin 2� �
a

a

a
� P QR

P 0 � � � �

0

y

2a

a

x

y=2a

¨

R

P

Q

r � 1 � 3 sin �
9–16 ■ Sketch the polar curve.

9. 10.

11. 12.

13. 14.

15. 16.

17–18 ■ Find a polar equation for the curve represented by the
given Cartesian equation.

17. 18.

; 19. The curve with polar equation is called a
cochleoid. Use a graph of as a function of in Cartesian
coordinates to sketch the cochleoid by hand. Then graph it
with a machine to check your sketch.

; 20. Graph the ellipse and its directrix. 
Also graph the ellipse obtained by rotation about the origin
through an angle .

21–24 ■ Find the slope of the tangent line to the given curve at
the point corresponding to the specified value of the parameter.

21. , ;  

22. ,  ;  

23. ;  

24. ;  

25–26 ■ Find and .

25. ,  

26. ,  

; 27. Use a graph to estimate the coordinates of the lowest point
on the curve , .  Then use cal-
culus to find the exact coordinates.

28. Find the area enclosed by the loop of the curve in 
Exercise 27.

29. At what points does the curve

have vertical or horizontal tangents? Use this information
to help sketch the curve.

30. Find the area enclosed by the curve in Exercise 29.

31. Find the area enclosed by the curve .

r � cos 3 � r � 3 � cos 3�

r � 1 � cos 2� r � 2 cos���2�

r �
3

1 � 2 sin �
r �

3

2 � 2 cos �

x � y � 2 x 2 � y 2 � 2

r � �sin � ���
r �

r � 2��4 � 3 cos � �

2��3

x � ln t y � 1 � t 2 t � 1

x � t 3 � 6t � 1 y � 2t � t 2 t � �1

r � e �� � � �

r � 3 � cos 3� � � ��2

dy�dx d 2 y�dx 2

x � t � sin t y � t � cos t

x � 1 � t 2 y � t � t 3

x � t 3 � 3t y � t 2 � t � 1

x � 2a cos t � a cos 2t y � 2a sin t � a sin 2t

r 2 � 9 cos 5�

r � sin 4�r � 1 � cos �
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537

10.1 THREE-DIMENSIONAL COORDINATE SYSTEMS
To locate a point in a plane, two numbers are necessary. We know that any point 
in the plane can be represented as an ordered pair of real numbers, where is
the -coordinate and is the -coordinate. For this reason, a plane is called two-
dimensional. To locate a point in space, three numbers are required. We represent any
point in space by an ordered triple of real numbers.

In order to represent points in space, we first choose a fixed point (the origin)
and three directed lines through that are perpendicular to each other, called the
coordinate axes and labeled the -axis, -axis, and -axis. Usually we think of the 
- and -axes as being horizontal and the -axis as being vertical, and we draw the ori-

entation of the axes as in Figure 1. The direction of the -axis is determined by the
right-hand rule as illustrated in Figure 2: If you curl the fingers of your right hand
around the -axis in the direction of a counterclockwise rotation from the positive
-axis to the positive -axis, then your thumb points in the positive direction of the 
-axis.

The three coordinate axes determine the three coordinate planes illustrated in Fig-
ure 3(a). The -plane is the plane that contains the - and -axes; the -plane con-
tains the - and -axes; the -plane contains the - and -axes. These three coordinate
planes divide space into eight parts, called octants. The first octant, in the fore-
ground, is determined by the positive axes.

Because many people have some difficulty visualizing diagrams of three-dimen-
sional figures, you may find it helpful to do the following [see Figure 3(b)]. Look at
any bottom corner of a room and call the corner the origin. The wall on your left is in 

a�a, b�
ybx

�a, b, c�
O

O
zyx

zyx
z

90�z
yx

z

yzyxxy
zxxzzy

FIGURE 3 (a) Coordinate planes
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VECTORS AND THE 
GEOMETRY OF SPACE
In this chapter we introduce vectors and coordinate systems for three-dimensional space. This will be
the setting for the study of functions of two variables in Chapter 11 because the graph of such a func-
tion is a surface in space. In this chapter we will see that vectors provide particularly simple descriptions
of lines, planes, and curves. We will also use vector-valued functions to describe the motion of objects
through space. In particular, we will use them to derive Kepler’s laws of planetary motion.

10
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FIGURE 2 
Right-hand rule
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FIGURE 4

z

y
x

O

b

a
c

P(a, b, c)

the -plane, the wall on your right is in the -plane, and the floor is in the -plane.
The -axis runs along the intersection of the floor and the left wall. The -axis runs
along the intersection of the floor and the right wall. The -axis runs up from the floor
toward the ceiling along the intersection of the two walls. You are situated in the first
octant, and you can now imagine seven other rooms situated in the other seven octants
(three on the same floor and four on the floor below), all connected by the common
corner point .

Now if is any point in space, let be the (directed) distance from the -plane to
let be the distance from the -plane to and let be the distance from the 
-plane to . We represent the point by the ordered triple of real numbers

and we call , , and the coordinates of ; is the -coordinate, is the -coordi-
nate, and is the -coordinate. Thus to locate the point we can start at the ori-
gin and move units along the -axis, then units parallel to the -axis, and then

units parallel to the -axis as in Figure 4.
The point determines a rectangular box as in Figure 5. If we drop a per-

pendicular from to the -plane, we get a point with coordinates called
the projection of on the -plane. Similarly, and are the projec-
tions of on the -plane and -plane, respectively.

As numerical illustrations, the points and are plotted in
Figure 6.

The Cartesian product is the set of all 
ordered triples of real numbers and is denoted by . We have given a one-to-one cor-
respondence between points in space and ordered triples in . It is called
a three-dimensional rectangular coordinate system. Notice that, in terms of coor-
dinates, the first octant can be described as the set of points whose coordinates are all
positive.

In two-dimensional analytic geometry, the graph of an equation involving and
is a curve in . In three-dimensional analytic geometry, an equation in , , and rep-
resents a surface in .

EXAMPLE 1 What surfaces in are represented by the following equations?
(a) (b)

SOLUTION
(a) The equation represents the set , which is the set of all
points in whose -coordinate is . This is the horizontal plane that is parallel to
the -plane and three units above it as in Figure 7(a).

P a yz
P, b xz P, c
xy P P �a, b, c�

a b c P a x b y
c z �a, b, c�

O a x b y
c z

P�a, b, c�
P xy Q �a, b, 0�
P xy R�0, b, c� S�a, 0, c�

P yz xz
��4, 3, �5� �3, �2, �6�

FIGURE 6
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(b) The equation represents the set of all points in whose -coordinate 
is 5. This is the vertical plane that is parallel to the -plane and five units to the
right of it as in Figure 7(b). ■

NOTE When an equation is given, we must understand from the context whether it
represents a curve in or a surface in . In Example 1, represents a plane in

, but of course can also represent a line in if we are dealing with two-
dimensional analytic geometry. See Figure 7, parts (b) and (c).

In general, if is a constant, then represents a plane parallel to the -plane,
is a plane parallel to the -plane, and is a plane parallel to the -plane.

In Figure 5, the faces of the rectangular box are formed by the three coordinate 
planes (the -plane), (the -plane), and (the -plane), and the
planes , , and .

EXAMPLE 2 Describe and sketch the surface in represented by the 
equation .

SOLUTION The equation represents the set of all points in whose - and 
-coordinates are equal, that is, . This is a vertical plane

that intersects the -plane in the line , . The portion of this plane that
lies in the first octant is sketched in Figure 8. ■

The familiar formula for the distance between two points in a plane is easily
extended to the following three-dimensional formula.

DISTANCE FORMULA IN THREE DIMENSIONS The distance between
the points and is

To see why this formula is true, we construct a rectangular box as in Figure 9,
where and are opposite vertices and the faces of the box are parallel to the coor-
dinate planes. If and are the vertices of the box indicated in
the figure, then

FIGURE 7 (c) y=5, a line in R@
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x

(b) y=5, a plane in R#(a) z=3, a plane in R#
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k x � k yz
y � k xz z � k xy

x � 0 yz y � 0 xz z � 0 xy
x � a y � b z � c

� 3

y � x

� 3 x
y ��x, x, z� � x � �, z � ��

xy y � x z � 0

� P1P2 �
P1�x1, y1, z1� P2�x2, y2, z2 �

� P1P2 � � s�x2 � x1�2 � �y2 � y1�2 � �z2 � z1�2 

P1 P2

A�x2, y1, z1� B�x2, y2, z1�

� P1A � � � x2 � x1 � � AB � � � y2 � y1 � � BP2 � � � z2 � z1 �

V
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See Additional Example A.
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Because triangles and are both right-angled, two applications of the Pythag-
o rean Theorem give

and

Combining these equations, we get

Therefore

EXAMPLE 3 The distance from the point to the point is

■

EXAMPLE 4 Find an equation of a sphere with radius and center .

SOLUTION By definition, a sphere is the set of all points whose distance
from is . (See Figure 10.) Thus is on the sphere if and only if .
Squaring both sides, we have or

■

The result of Example 4 is worth remembering.

EQUATION OF A SPHERE An equation of a sphere with center and
radius is

In particular, if the center is the origin , then an equation of the sphere is

EXAMPLE 5 Show that is the equation of a
sphere, and find its center and radius.

SOLUTION We can rewrite the given equation in the form of an equation of a
sphere if we complete squares:

Comparing this equation with the standard form, we see that it is the equation of a
sphere with center and radius . ■

P1BP2 P1AB

� P1P2 �2 � � P1B �2 � � BP2 �2

� P1B �2 � � P1A �2 � � AB �2

� P1P2 �2 � � P1A �2 � � AB �2 � � BP2 �2

� � x2 � x1 �2 � � y2 � y1 �2 � � z2 � z1 �2

� �x2 � x1�2 � �y2 � y1�2 � �z2 � z1�2

� P1P2 � � s�x2 � x1�2 � �y2 � y1�2 � �z2 � z1�2 

P�2, �1, 7� Q�1, �3, 5�

� PQ � � s�1 � 2�2 � ��3 � 1�2 � �5 � 7�2 � s1 � 4 � 4 � 3

r C�h, k, l �

P�x, y, z�
C r P � PC � � r

� PC �2 � r 2

�x � h�2 � �y � k�2 � �z � l �2 � r 2

C�h, k, l �
r

�x � h�2 � �y � k�2 � �z � l �2 � r 2

O

x 2 � y 2 � z2 � r 2

x 2 � y 2 � z2 � 4x � 6y � 2z � 6 � 0

�x 2 � 4x � 4� � �y 2 � 6y � 9� � �z2 � 2z � 1� � �6 � 4 � 9 � 1

�x � 2�2 � �y � 3�2 � �z � 1�2 � 8

��2, 3, �1� s8 � 2s2

V
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10.1 EXERCISES

1. Suppose you start at the origin, move along the -axis a dis-
tance of 4 units in the positive direction, and then move
downward a distance of 3 units. What are the coordinates 
of your position?

2. Sketch the points , , , and
on a single set of coordinate axes.

3. Which of the points , , and
is closest to the -plane? Which point lies in the

-plane?

4. What are the projections of the point (2, 3, 5) on the -, -,
and -planes? Draw a rectangular box with the origin and

as opposite vertices and with its faces parallel to
the coordinate planes. Label all vertices of the box. Find the
length of the diagonal of the box.

5. Describe and sketch the surface in represented by the
equation .

6. (a) What does the equation represent in ? What
does it represent in ? Illustrate with sketches.

(b) What does the equation represent in ? What
does represent? What does the pair of equations

, represent? In other words, describe the set
of points such that and . Illustrate
with a sketch.

7. Find the lengths of the sides of the triangle . Is it a
right triangle? Is it an isosceles triangle?
(a) ,  ,  
(b) ,  ,  

x

�0, 5, 2� �4, 0, �1� �2, 4, 6�
�1, �1, 2�

A��4, 0, �1� B�3, 1, �5�
C�2, 4, 6� yz
xz

xy yz
xz

�2, 3, 5�

�3

x � y � 2

x � 4 �2

�3

y � 3 �3

z � 5
y � 3 z � 5

�x, y, z� y � 3 z � 5

PQR

P�3, �2, �3� Q�7, 0, 1� R�1, 2, 1�
P�2, �1, 0� Q�4, 1, 1� R�4, �5, 4�

8. Find the distance from to each of the following.
(a) The -plane (b) The -plane
(c) The -plane (d) The -axis
(e) The -axis (f) The -axis

9. Determine whether the points lie on a straight line.
(a) ,  ,  
(b) ,  ,  

10. Find an equation of the sphere with center and
radius 5. Describe its intersection with each of the coordi-
nate planes.

11. Find an equation of the sphere that passes through the point 
and has center .

12. Find an equation of the sphere that passes through the ori-
gin and whose center is .

13–16 ■ Show that the equation represents a sphere, and find its 
center and radius.

13.

14.

15.

16.

17. (a) Prove that the midpoint of the line segment from
to is

xz x
y z

�4, �2, 6�
yzxy

A�2, 4, 2� B�3, 7, �2� C�1, 3, 3�
D�0, �5, 5� E�1, �2, 4� F�3, 4, 2�

�2, �6, 4�

�4, 3, �1� �3, 8, 1�

�1, 2, 3�

x 2 � y 2 � z2 � 2x � 4y � 8z � 15

x 2 � y 2 � z 2 � 8x � 6y � 2z � 17 � 0

2x 2 � 2y 2 � 2z 2 � 8x � 24z � 1

3x 2 � 3y 2 � 3z 2 � 10 � 6y � 12z

P1�x1, y1, z1� P2�x2, y2, z2 �

� x1 � x2

2
, 

 y1 � y2

2
, 

z1 � z2

2 �

EXAMPLE 6 What region in is represented by the following inequalities?

SOLUTION The inequalities

can be rewritten as

so they represent the points whose distance from the origin is at least 1 
and at most 2. But we are also given that , so the points lie on or below the 

-plane. Thus the given inequalities represent the region that lies between (or on)
the spheres and and beneath (or on) the 

-plane. It is sketched in Figure 11. ■

� 3

1 � x 2 � y 2 � z2 � 4 z � 0

1 � sx 2 � y 2 � z 2 � 2

�x, y, z�
z � 0

xy
x 2 � y 2 � z2 � 1 x 2 � y 2 � z2 � 4

xy

1 � x 2 � y 2 � z 2 � 4
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32. The solid cylinder that lies on or below the plane and
on or above the disk in the -plane with center the origin
and radius 2

33. The region consisting of all points between (but not on) the
spheres of radius and centered at the origin, where

34. The solid upper hemisphere of the sphere of radius 2
centered at the origin

35. Find an equation of the set of all points equidistant from the
points and . Describe the set.

36. Find the volume of the solid that lies inside both of the
spheres

and

37. Find the distance between the spheres
and .

38. Describe and sketch a solid with the following properties.
When illuminated by rays parallel to the -axis, its shadow
is a circular disk. If the rays are parallel to the -axis, its
shadow is a square. If the rays are parallel to the -axis, its
shadow is an isosceles triangle.

B�6, 2, �2�A��1, 5, 3�

x 2 � y 2 � z2 � 4x � 2y � 4z � 5 � 0

x 2 � y 2 � z2 � 4

x 2 � y 2 � z 2 � 4
x 2 � y 2 � z 2 � 4x � 4y � 4z � 11

z
y

x

Rr
r � R

z � 8
xy

(b) Find the lengths of the medians of the triangle with ver -
tices , , and .

18. Find an equation of a sphere if one of its diameters has end -
points and .

19. Find equations of the spheres with center that
touch (a) the -plane, (b) the -plane, (c) the -plane.

20. Find an equation of the largest sphere with center (5, 4, 9)
that is contained in the first octant.

21–30 ■ Describe in words the region of represented by the
equations or inequalities.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31–34 ■ Write inequalities to describe the region.

31. The region between the -plane and the vertical plane

A�1, 2, 3� B��2, 0, 5� C�4, 1, 5�

�4, 3, 10��2, 1, 4�

�2, �3, 6�
xzyzxy

� 3

y � �2x � 5

x � �3y � 8

z 2 � 10 � z � 6

x � zx 2 � y 2 � z 2 � 3

x 2 � y 2 � z 2 	 2zx 2 � z 2 � 9

yz
x � 5
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10.2 VECTORS
The term vector is used by scientists to indicate a quantity (such as displacement or
velocity or force) that has both magnitude and direction. A vector is often represented
by an arrow or a directed line segment. The length of the arrow represents the magni-
tude of the vector and the arrow points in the direction of the vector. We denote a 
vector by printing a letter in boldface or by putting an arrow above the letter 

For instance, suppose a particle moves along a line segment from point to point
. The corresponding displacement vector , shown in Figure 1, has initial point

(the tail) and terminal point (the tip) and we indicate this by writing AB
l

.
Notice that the vector CD

l
has the same length and the same direction as even

though it is in a different position. We say that and are equivalent (or equal) and
we write . The zero vector, denoted by 0, has length . It is the only vector with
no specific direction.

COMBINING VECTORS

Suppose a particle moves from , so its displacement vector is AB
l

. Then the par-
ticle changes direction and moves from , with displacement vector BC

l
as in

Figure 2. The combined effect of these displacements is that the particle has moved
from . The resulting displacement vector AC

l
is called the sum of AB

l
and BC

l
and

we write
AC
l

AB
l

BC
l

In general, if we start with vectors and , we first move so that its tail coincides
with the tip of and define the sum of and as follows.

�v� �vl�.
A

B v A
B v �

u � v
u v

u � v 0

A to B
B to C

A to C

� �

u v v
u u v

FIGURE 1
Equivalent vectors

A

B

v

C

D

u

FIGURE 2

C

B

A
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DEFINITION OF VECTOR ADDITION If and are vectors positioned so the
initial point of is at the terminal point of , then the sum is the vector
from the initial point of to the terminal point of .

The definition of vector addition is illustrated in Figure 3. You can see why this defi -
nition is sometimes called the Triangle Law.

In Figure 4 we start with the same vectors and as in Figure 3 and draw another 
copy of with the same initial point as . Completing the parallelogram, we see that

. This also gives another way to construct the sum: If we place and
so they start at the same point, then lies along the diagonal of the parallelo-

gram with and as sides. (This is called the Parallelogram Law.)

EXAMPLE 1 Draw the sum of the vectors shown in Figure 5.

SOLUTION First we translate and place its tail at the tip of , being careful to
draw a copy of that has the same length and direction. Then we draw the vector

[see Figure 6(a)] starting at the initial point of and ending at the terminal
point of the copy of .

Alternatively, we could place so it starts where starts and construct by
the Parallelogram Law as in Figure 6(b).

■

It is possible to multiply a vector by a real number . (In this context we call the
real number a scalar to distinguish it from a vector.) For instance, we want to be
the same vector as , which has the same direction as but is twice as long. In
general, we multiply a vector by a scalar as follows.

DEFINITION OF SCALAR MULTIPLICATION If is a scalar and is a vector,
then the scalar multiple is the vector whose length is times the length
of and whose direction is the same as if and is opposite to if

. If or , then .

u v
v u u � v

u v

FIGURE 3 The Triangle Law

vu+v

u

FIGURE 4 The Parallelogram Law

v
v+

u

u

u

v

u+
v

u v
v u

u � v � v � u u
v u � v

u v

a and b

b a
b

a � b a
b

b a a � b

FIGURE 6

a

b

a+b

(a)

a

a+b
b

(b)

c
c 2v

v � v v

c v
cv � c �

v v c 	 0 v
c � 0 c � 0 v � 0 cv � 0

V
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FIGURE 5

a b

Visual 10.2 shows how the 
Triangle and Parallelogram Laws 
work for various vectors .u and v

TEC
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This definition is illustrated in Figure 7. We see that real numbers work like scal-
ing factors here; that’s why we call them scalars. Notice that two nonzero vectors 
are parallel if they are scalar multiples of one another. In particular, the vector

has the same length as but points in the opposite direction. We call it
the negative of .

By the difference of two vectors we mean

So we can construct by first drawing the negative of , , and then adding it
to by the Parallelogram Law as in Figure 8(a). Alternatively, since
the vector , when added to , gives . So we could construct as in Fig-
 ure 8(b) by means of the Triangle Law.

EXAMPLE 2 If are the vectors shown in Figure 9, draw .

SOLUTION We first draw the vector pointing in the direction opposite to
and twice as long. We place it with its tail at the tip of and then use the Triangle
Law to draw as in Figure 10.

■

COMPONENTS

For some purposes it’s best to introduce a coordinate system and treat vectors alge-
braically. If we place the initial point of a vector at the origin of a rectangular coor-
dinate system, then the terminal point of has coordinates of the form or

, depending on whether our coordinate system is two- or three-dimensional
(see Figure 11). These coordinates are called the components of and we write

or      

We use the notation for the ordered pair that refers to a vector so as not to
confuse it with the ordered pair that refers to a point in the plane.

For instance, the vectors shown in Figure 12 are all equivalent to the vector
OP
l

whose terminal point is . What they have in common is that the
terminal point is reached from the initial point by a displacement of three units to the
right and two upward. We can think of all these geometric vectors as representations
of the algebraic vector . The particular representation OP

l
from the origin

to the point is called the position vector of the point .

�v � ��1�v v
v

u � v

u � v � u � ��v�

u � v v �v
u v � �u � v� � u,

u � v v u u � v

FIGURE 8
Drawing u-v (a)

uv

u-v

_v

(b)

v

u-v

u

a and b a � 2b

�2b b
a

a � ��2b�

FIGURE 9

a

b

FIGURE 10

a
_2b

a-2b

a
a �a1, a2�

�a1, a2, a3�
a

a � 	a1, a2 
 a � 	a1, a2, a3 


	a1, a2 

�a1, a2�

� 	3, 2 
 P�3, 2�

a � 	3, 2 

PP�3, 2�
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_1.5v

v 2v

_v

v1

2

FIGURE 7
Scalar multiples of v

FIGURE 11

a=ka¡, a™l

a=ka¡, a™, a£l

(a¡, a™)

O

y

x

a

z

x
y

a
O

(a¡, a™, a£)
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In three dimensions, the vector OP
l

is the position vector of the
point . (See Figure 13.) Let’s consider any other representation AB

l
of 

, where the initial point is and the terminal point is . Then 
we must have , , and and so ,

, and . Thus we have the following result.

Given the points and , the vector with represen-
tation AB

l
is

EXAMPLE 3 Find the vector represented by the directed line segment with initial
point ) and terminal point .

SOLUTION By , the vector corresponding to AB
l

is

■

The magnitude or length of the vector is the length of any of its representations
and is denoted by the symbol or . By using the distance formula to compute
the length of a segment , we obtain the following formulas.

The length of the two-dimensional vector is

The length of the three-dimensional vector is

How do we add vectors algebraically? Figure 14 shows that if and
, then the sum is , at least for the case where

the components are positive. In other words, to add algebraic vectors we add their
components. Similarly, to subtract vectors we subtract components. From the similar
triangles in Figure 15 we see that the components of are and . So to multi-
ply a vector by a scalar we multiply each component by that scalar.

a � � 	a1, a2, a3 

P�a1, a2, a3�

a A�x1, y1, z1� B�x2, y2, z2 �
x1 � a1 � x2 y1 � a2 � y2 z1 � a3 � z2 a1 � x2 � x1

a2 � y2 � y1 a3 � z2 � z1

A�x1, y1, z1� B�x2, y2, z2 � a

a � 	x2 � x1, y2 � y1, z2 � z1 


A�2, �3, 4 B��2, 1, 1�

a � 	�2 � 2, 1 � ��3�, 1 � 4 
 � 	�4, 4, �3 


v

� v � � v �
OP

a � 	a1, a2 


� a � � sa 2
1 � a 2

2
  

a � 	a1, a2, a3 


� a � � sa 2
1 � a 2

2 � a 2
3

  

a � 	a1, a2 

b � 	b1, b2 
 a � b � 	a1 � b1, a2 � b2 


ca ca1 ca2

FIGURE 12
Representations of the vector a=k3, 2l

(1, 3)

(4, 5)

x

y

O

P(3, 2)

FIGURE 13
Representations of a=ka¡, a™, a£l

O

z

y

x

position
vector of P

P(a¡, a™, a£)

A(x, y, z)

B(x+a¡, y+a™, z+a£)

1

V

1

FIGURE 14

0

y

xb¡a¡

b¡

b™b
a+b

a

(a¡+b¡, a™+b™)

a™ a™

FIGURE 15

ca™

ca¡

ca
a™

a¡

a
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If and , then

Similarly, for three-dimensional vectors,

EXAMPLE 4 If and , find and the vectors
, , , and .

SOLUTION

■

We denote by the set of all two-dimensional vectors and by the set of all
three-dimensional vectors. More generally, we will later need to consider the set of
all -dimensional vectors. An -dimensional vector is an ordered -tuple:

where are real numbers that are called the components of . Addition
and scalar multiplication are defined in terms of components just as for the cases

and .

PROPERTIES OF VECTORS If , , and are vectors in and and are
scalars, then

1. 2.

3. 4.

5. 6.

7. 8.

These eight properties of vectors can be readily verified either geometrically or
algebraically. For instance, Property 1 can be seen from Figure 4 (it’s equivalent to the 

a � 	a1, a2 
 b � 	b1, b2 


a � b � 	a1 � b1, a2 � b2 
 a � b � 	a1 � b1, a2 � b2 


ca � 	ca1, ca2 


	a1, a2, a3 
 � 	b1, b2, b3 
 � 	a1 � b1, a2 � b2, a3 � b3 


	a1, a2, a3 
 � 	b1, b2, b3 
 � 	a1 � b1, a2 � b2, a3 � b3 


c 	a1, a2, a3 
 � 	ca1, ca2, ca3 


a � 	4, 0, 3 
 b � 	�2, 1, 5 
 � a �
a � b a � b 3b 2a � 5b

� a � � s42 � 0 2 � 32 � s25 � 5

a � b � 	4, 0, 3 
 � 	�2, 1, 5 


� 	4 � 2, 0 � 1, 3 � 5 
 � 	2, 1, 8 


a � b � 	4, 0, 3 
 � 	�2, 1, 5 


� 	4 � ��2�, 0 � 1, 3 � 5 
 � 	6, �1, �2 


3b � 3 	�2, 1, 5 
 � 	3��2�, 3�1�, 3�5�
 � 	�6, 3, 15 


2a � 5b � 2 	4, 0, 3 
 � 5 	�2, 1, 5 


� 	8, 0, 6 
 � 	�10, 5, 25 
 � 	�2, 5, 31 


V2 V3

Vn

n n n

a � 	a1, a2, . . . , an 


a1, a2, . . . , an a

n � 2 n � 3

a b c Vn c d

a � b � b � a a � �b � c� � �a � b� � c

a � 0 � a a � ��a� � 0

c�a � b� � ca � cb �c � d �a � ca � da

�cd �a � c�da� 1a � a

V

■ Vectors in dimensions are used to
list various quantities in an organized
way. For instance, the components of a
six-dimensional vector

might represent the prices of six dif fer-
ent ingredients required to make a partic-
ular product. Four-dimensional vectors

are used in relativity theory,
where the first three compo nents specify
a position in space and the fourth repre-
sents time.

	 x, y, z, t


p � 	 p1, p2, p3, p4, p5, p6


n
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Paral lelogram Law) or as follows for the case :

We can see why Property 2 (the associative law) is true by looking at Figure 16 and
applying the Triangle Law several times: The vector PQ

l
is obtained either by first con-

structing a � b and then adding c or by adding a to the vector b � c.
Three vectors in play a special role. Let

These vectors , , and are called the standard basis vectors. They have length and
point in the directions of the positive -, -, and -axes. Similarly, in two dimensions
we define and . (See Figure 17.)

If , then we can write

Thus any vector in can be expressed in terms of , , and . For instance,

Similarly, in two dimensions, we can write

See Figure 18 for the geometric interpretation of Equations 3 and 2 and compare with
Figure 17.

EXAMPLE 5 If and , express the vector in
terms of , , and .

SOLUTION Using Properties 1, 2, 5, 6, and 7 of vectors, we have

■

n � 2

a � b � 	a1, a2 
 � 	b1, b2 
 � 	a1 � b1, a2 � b2 


� 	b1 � a1, b2 � a2 
 � 	b1, b2 
 � 	a1, a2 


� b � a

V3

i � 	1, 0, 0 
 j � 	0, 1, 0 
 k � 	0, 0, 1 


i j k 1
x y z

i � 	1, 0 
 j � 	0, 1 


FIGURE 17
Standard basis vectors in V™ and V£ (a)

0

y

x

j

(1, 0)

i

(0, 1)

(b)

z

x
y

j

i

k

a � 	a1, a2, a3 


a � 	a1, a2, a3 
 � 	a1, 0, 0 
 � 	0, a2, 0 
 � 	0, 0, a3 


� a1 	1, 0, 0 
 � a2 	0, 1, 0 
 � a3 	0, 0, 1 


a � a1 i � a2 j � a3 k

V3 i j k

	1, �2, 6 
 � i � 2 j � 6k

a � 	a1, a2 
 � a1 i � a2 j

a � i � 2 j � 3k b � 4 i � 7 k 2a � 3b
i j k

2a � 3b � 2�i � 2 j � 3k� � 3�4 i � 7k�

� 2 i � 4 j � 6k � 12 i � 21k � 14 i � 4 j � 15k

3

2
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FIGURE 18

(b) a=a¡i+a™ j+a£k

(a) a=a¡i+a™ j

0

a

a¡i

a™ j

(a¡, a™)

a™ j

a£k

(a¡, a™, a£)

a¡i

a

y

x

z

x

y

FIGURE 16

b

c

a

(a+b)+c

P

Q

=a+(b+c)
a+b

b+c
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A unit vector is a vector whose length is 1. For instance, , , and are all unit vec-
tors. In general, if , then the unit vector that has the same direction as is

In order to verify this we let . Then and is a positive scalar, so 
has the same direction as . Also

EXAMPLE 6 Find the unit vector in the direction of the vector .

SOLUTION The given vector has length

so, by Equation 4, the unit vector with the same direction is

■

APPLICATIONS

Vectors are useful in many aspects of physics and engineering. In Section 10.9 we will
see how they describe the velocity and acceleration of objects moving in space. Here
we look at forces.

A force is represented by a vector because it has both a magnitude (measured in
pounds or newtons) and a direction. If several forces are acting on an object, the resul -
tant force experienced by the object is the vector sum of these forces.

EXAMPLE 7 A 100-lb weight hangs from two wires as shown in Figure 19. Find the
tensions (forces) and in both wires and their magnitudes.

SOLUTION We first express and in terms of their horizontal and vertical
components. From Figure 20 we see that

The resultant of the tensions counterbalances the weight and so we must
have

Thus

Equating components, we get

Solving the first of these equations for and substituting into the second, we get

i j k
a � 0 a

u �
1

� a � a �
a

� a �
c � 1�� a � u � ca c u

a

� u � � � ca � � � c � � a � �
1

� a � � a � � 1

2 i � j � 2k

� 2 i � j � 2k � � s22 � ��1�2 � ��2�2 � s9 � 3

1
3 �2 i � j � 2k� � 2

3 i �
1
3 j �

2
3 k

T1 T2

T1 T2

T1 � �� T1 � cos 50� i � � T1 � sin 50� j

T2 � � T2 � cos 32� i � � T2 � sin 32� j

T1 � T2 w

T1 � T2 � �w � 100 j

(�� T1 � cos 50� � � T2 � cos 32�) i � (� T1 � sin 50� � � T2 � sin 32�) j � 100 j

� T2 �

� T1 � sin 50� � � T1� cos 50�

cos 32�
sin 32� � 100

5

6

4

�� T1 � cos 50� � � T2 � cos 32� � 0

� T1 � sin 50� � � T2 � sin 32� � 100
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■ GIBBS
Josiah Willard Gibbs (1839–1903), a profes-
sor of mathematical physics at Yale College,
published the first book on vectors, Vector
Analysis, in 1881. More complicated objects,
called quaternions, had earlier been invented
by Hamilton as mathematical tools for
describing space, but they weren’t easy for
scientists to use. Quaternions have a scalar
part and a vector part. Gibb’s idea was to
use the vector part separately. Maxwell and
Heaviside had similar ideas, but Gibb’s
approach has proved to be the most conven-
ient way to study space.

FIGURE 20

50°

w

T¡

50° 32°

32°

T™

FIGURE 19

100

T¡

50° 32°

T™
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So the magnitudes of the tensions are

and

Substituting these values in and , we obtain the tension vectors

■

� T1 � �
100

sin 50� � tan 32� cos 50�
� 85.64 lb

� T2 � � � T1 � cos 50�

cos 32�
� 64.91 lb

T1 � �55.05 i � 65.60 j T2 � 55.05 i � 34.40 j

5 6
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10.2 EXERCISES

1. Name all the equal vectors in the parallelogram shown.

2. Write each combination of vectors as a single vector.

(a) AB
l

BC
l

(b) CD
l

DB
l

(c) DB
l

AB
l

(d) DC
l

CA
l

AB
l

3. Copy the vectors in the figure and use them to draw the 
following vectors.
(a) (b)
(c) (d)
(e) (f)

4. Copy the vectors in the figure and use them to draw the 
following vectors.
(a) (b)
(c) (d)
(e) (f)

B

E

A

D C

� �

� � �

A

D
C

B

u � v u � w
v � w u � v
v � u � w u � w � v

wvu

a � b a � b
1
2 a �3b
a � 2b 2b � a

b a

5–8 ■ Find a vector with representation given by the directed
line segment AB

l
. Draw AB

l
and the equivalent representation

starting at the origin.

5. ,  6. ,  

7. ,  8. ,  

9–12 ■ Find the sum of the given vectors and illustrate 
geometrically.

9. ,  10. ,  

11. ,  12. ,  

13–16 ■ Find , , , and .

13. ,  

14. ,  

15. ,  

16. ,  

17. Find a unit vector with the same direction as .

18. Find a vector that has the same direction as but
has length 6.

19–20 ■ What is the angle between the given vector and the
positive direction of the -axis?

19. 20.

21. If lies in the first quadrant and makes an angle with
the positive -axis and , find in component form.

22. If a child pulls a sled through the snow on a level path with
a force of 50 N exerted at an angle of above the
horizontal, find the horizontal and vertical components of
the force.

a

A��1, 1� B�3, 2� A��4, �1� B�1, 2�

A�0, 3, 1� B�2, 3, �1� A�4, 0, �2� B�4, 2, 1�

��1, 4 � �6, �2 � �3, �1 � ��1, 5 �

�3, 0, 1 � �0, 8, 0 � �1, 3, �2 � �0, 0, 6 �

� a � � a � b �
a � �5, �12 � b � ��3, �6 �

a � 4 i � j b � i � 2 j

a � i � 2 j � 3k b � �2 i � j � 5k

a � 2 i � 4 j � 4 k b � 2 j � k

a � b 2a � 3b

8 i � j � 4k

��2, 4, 2 �

x

i � s3 j 8 i � 6 j

v ��3
x � v � � 4 v

38 �
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31. A boatman wants to cross a canal that is 3 km wide and
wants to land at a point 2 km upstream from his starting
point. The current in the canal flows at and the
speed of his boat is .
(a) In what direction should he steer?
(b) How long will the trip take?

32. Three forces act on an object. Two of the forces are at an
angle of to each other and have magnitudes 25 N and
12 N. The third is perpendicular to the plane of these two
forces and has magnitude 4 N. Calculate the magnitude of
the force that would exactly counterbalance these three
forces.

33. Find the unit vectors that are parallel to the tangent line to
the parabola at the point .

34. (a) Find the unit vectors that are parallel to the tangent line
to the curve at the point .

(b) Find the unit vectors that are perpendicular to the
tangent line.

(c) Sketch the curve and the vectors in parts (a) 
and (b), all starting at .

35. (a) Draw the vectors , , and 

(b) Show, by means of a sketch, that there are scalars and
such that .

(c) Use the sketch to estimate the values of and .
(d) Find the exact values of and .

36. Suppose that and are nonzero vectors that are not paral-
lel and is any vector in the plane determined by and .
Give a geometric argument to show that can be written as

for suitable scalars and Then give an argu-
ment using components.

37. If and , describe the set of all
points such that .

38. If , , and , describe the 
set of all points such that ,
where .

39. Figure 16 gives a geometric demonstration of Property 2 of 
vectors. Use components to give an algebraic proof of this 
fact for the case .

40. Prove Property 5 of vectors algebraically for the case .
Then use similar triangles to give a geometric proof.

41. Use vectors to prove that the line joining the midpoints of 
two sides of a triangle is parallel to the third side and half 
its length.

3.5 km�h
13 km�h

100�

y � x 2 �2, 4�

y � 2 sin x ���6, 1�

y � 2 sin x
���6, 1�

a � �3, 2 � b � �2, �1 �
c � �7, 1 � .

s
t c � sa � tb

s t
s t

a b
c a b

c
c � sa � tb s t.

r � �x, y, z � r0 � �x0, y0, z0 �
�x, y, z� � r � r0 � � 1

r � �x, y � r1 � �x1, y1 � r2 � �x2, y2 �
�x, y� � r � r1 � � � r � r2 � � k

k � � r1 � r2 �

n � 2

n � 3

23. A quarterback throws a football with angle of elevation
and speed . Find the horizontal and vertical compo-
nents of the velocity vector.

24 –25 ■ Find the magnitude of the resultant force and the angle
it makes with the positive -axis.

24. 25.

26. The magnitude of a velocity vector is called speed. Suppose
that a wind is blowing from the direction N W at a speed
of 50 km�h. (This means that the direction from which the
wind blows is west of the northerly direction.) A pilot 
is steering a plane in the direction N E at an airspeed
(speed in still air) of 250 km�h. The true course, or track,
of the plane is the direction of the resul tant of the velocity
vectors of the plane and the wind. The ground speed of the
plane is the magnitude of the resultant. Find the true course
and the ground speed of the plane.

27. A woman walks due west on the deck of a ship at 3 mi�h.
The ship is moving north at a speed of 22 mi�h. Find the
speed and direction of the woman relative to the surface of
the water.

28. Ropes 3 m and 5 m in length are fastened to a holiday deco-
ration that is suspended over a town square. The decoration
has a mass of 5 kg. The ropes, fastened at different heights,
make angles of and with the horizontal. Find the
tension in each wire and the magnitude of each tension.

29. A clothesline is tied between two poles, 8 m apart. The line 
is quite taut and has negligible sag. When a wet shirt with a
mass of 0.8 kg is hung at the middle of the line, the mid -
point is pulled down 8 cm. Find the tension in each half of
the clothesline.

30. The tension T at each end of the chain has magnitude 25 N
(see the figure). What is the weight of the chain?

60 ft�s
40 �

x

300 N

200 N

60°
0

y

x

20 lb

16 lb

45°
0

y

x30°

45�

45�
60�

40�52�

3 m 5 m

52°

40°

37° 37°
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10.3 THE DOT PRODUCT
So far we have added two vectors and multiplied a vector by a scalar. The question
arises: Is it possible to multiply two vectors so that their product is a useful quantity?
One such product is the dot product, whose definition follows. Another is the cross
product, which is discussed in the next section.

DEFINITION If and , then the dot prod-
uct of and is the number given by

Thus to find the dot product of and we multiply corresponding components and
add. The result is not a vector. It is a real number, that is, a scalar. For this reason, the
dot product is sometimes called the scalar product (or inner product). Although
Definition 1 is given for three-dimensional vectors, the dot product of two-dimension-
al vectors is defined in a similar fashion:

EXAMPLE 1

■

The dot product obeys many of the laws that hold for ordinary products of real
numbers. These are stated in the following theorem.

PROPERTIES OF THE DOT PRODUCT If , , and are vectors in and 
is a scalar, then

1. 2.

3. 4.

5.

These properties are easily proved using Definition 1. For instance, here are the
proofs of Properties 1 and 3:

1.

3.

The proofs of the remaining properties are left as exercises. ■

a � �a1, a2, a3 � b � �b1, b2, b3 �
a b a � b

a � b � a1b1 � a2b2 � a3b3

a b

�a1, a2 � � �b1, b2 � � a1b1 � a2b2

�2, 4 � � �3, �1 � � 2�3� � 4��1� � 2

��1, 7, 4 � � �6, 2, � 1
2 � � ��1��6� � 7�2� � 4(� 1

2 ) � 6

�i � 2 j � 3k� � �2 j � k� � 1�0� � 2�2� � ��3���1� � 7

a b c V3

c

a � a � � a �2 a � b � b � a

a � �b � c� � a � b � a � c �ca� � b � c�a � b� � a � �cb�
0 � a � 0

a � a � a 2
1 � a 2

2 � a 2
3 � � a �2

a � �b � c� � �a1, a2, a3 � � �b1 � c1, b2 � c2, b3 � c3 �

� a1�b1 � c1� � a2�b2 � c2� � a3�b3 � c3�

� a1b1 � a1c1 � a2b2 � a2c2 � a3b3 � a3c3

� �a1b1 � a2b2 � a3b3� � �a1c1 � a2c2 � a3c3 �

� a � b � a � c

1

2

V
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FIGURE 1

z

x
y

a
¨

b
a-b

B

0 A

The dot product can be given a geometric interpretation in terms of the angle
between and , which is defined to be the angle between the representations of

and that start at the origin, where . In other words, is the angle between
the line segments OA

l
and OB

l
in Figure 1. Note that if and are parallel vectors, then

or .
The formula in the following theorem is used by physicists as the definition of the

dot product. 

THEOREM If is the angle between the vectors and , then

PROOF If we apply the Law of Cosines to triangle in Figure 1, we get

(Observe that the Law of Cosines still applies in the limiting cases when or 
, or or .) But , , and , so

Equation 4 becomes

Using Properties 1, 2, and 3 of the dot product, we can rewrite the left side of this
equation as follows:

Therefore Equation 5 gives

Thus

or ■

EXAMPLE 2 If the vectors a and b have lengths 4 and 6, and the angle between
them is , find .

SOLUTION Using Theorem 3, we have

■

The formula in Theorem 3 also enables us to find the angle between two vectors.

COROLLARY If is the angle between the nonzero vectors and , then

a � b
� a b a

b 0 � � � � �
a b

� � 0 � � �

� a b

a � b � � a � � b � cos �

OAB

� AB �2 � � OA �2 � � OB �2 � 2 � OA � � OB � cos �

� � 0
� a � 0 b � 0 � OA � � � a � � OB � � � b � � AB � � � a � b �

� a � b �2 � � a �2 � � b �2 � 2 � a � � b � cos �

� a � b �2 � �a � b� � �a � b� � a � a � a � b � b � a � b � b

� � a �2 � 2a � b � � b �2

� a �2 � 2a � b � � b �2 � � a �2 � � b �2 � 2 � a � � b � cos �

�2a � b � �2 � a � � b � cos �

a � b � � a � � b � cos �

��3 a � b

a � b � � a � � b � cos���3� � 4 � 6 � 1
2 � 12

� a b

cos � �
a � b

� a � � b �

3

4

5

6
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EXAMPLE 3 Find the angle between the vectors and
.

SOLUTION Since

and    

and since

we have, from Corollary 6,

So the angle between and is

■

Two nonzero vectors and are called perpendicular or orthogonal if the angle
between them is . Then Theorem 3 gives

and conversely if , then , so . The zero vector is con-
sidered to be perpendicular to all vectors. Therefore we have the following method for
determining whether two vectors are orthogonal.

Two vectors 

EXAMPLE 4 Show that is perpendicular to .

SOLUTION Since

these vectors are perpendicular by . ■

Because if and if , we see that
is positive for and negative for . We can think of as

measuring the extent to which a and b point in the same direction. The dot product
is positive if a and b point in the same general direction, 0 if they are perpendi-

cular, and negative if they point in generally opposite directions (see Figure 2). In the
extreme case where a and b point in exactly the same direction, we have , so

and

If a and b point in exactly opposite directions, then and so and
.

a � �2, 2, �1 �
b � �5, �3, 2 �

� a � � s22 � 22 � ��1�2 � 3 � b � � s52 � ��3�2 � 22 � s38

a � b � 2�5� � 2��3� � ��1��2� � 2

cos � �
a � b

� a � � b � �
2

3s38

V

a b

� � cos�1	 2

3s38

 � 1.46 �or 84��

a b
� � ��2

a � b � � a � � b � cos���2� � 0

a � b � 0 cos � � 0 � � ��2 0

a and b are orthogonal if and only if a � b � 0.

2 i � 2 j � k 5 i � 4 j � 2k

�2 i � 2 j � k� � �5 i � 4 j � 2k� � 2�5� � 2��4� � ��1��2� � 0

cos � � 0 0 � � 	 ��2 cos � 	 0 ��2 	 � � �
a � b � 	 ��2 � � ��2 a � b

a � b

� � 0
cos � � 1

a � b � � a � � b �
� � � cos � � �1

a � b � �� a � � b �

7

7
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FIGURE 2

a
b

a · b>0¨

a b
a · b=0

a
b

a · b<0

¨

¨ acute

¨ obtuse

¨=π/2

Visual 10.3A shows an animation
of Figure 2.
TEC

12280_ch10_ptg01_hr_548-557.qk_12280_ch10_ptg01_hr_548-557  12/15/11  1:24 PM  Page 553

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



554 CHAPTER 10 VECTORS AND THE GEOMETRY OF SPACE

Unless otherwise noted, all content on this page is © Cengage Learning.

Visual 10.3B shows how Figure 3
changes when we vary and .ba
TEC

FIGURE 4
Scalar projection

�b � cos  ¨ =

b

a

R

S
Q

¨

P compa b

PROJECTIONS

Figure 3 shows representations PQ
l

and PR
l

of two vectors and with the same ini-
tial point . If is the foot of the perpendicular from to the line containing PQ

l
, then 

the vector with representation PS
l

is called the vector projection of onto and is
denoted by . (You can think of it as a shadow of ).

The scalar projection of onto (also called the component of along ) is
defined to be the signed magnitude of the vector projection, which is the number

, where is the angle between and . (See Figure 4.) This is denoted by
. Observe that it is negative if .

The equation

shows that the dot product of and can be interpreted as the length of times the
scalar projection of onto . Since 

the component of along can be computed by taking the dot product of with the
unit vector in the direction of . To summarize: 

Scalar projection of onto :

Vector projection of onto :

Notice that the vector projection is the scalar projection times the unit vector in the
direction of a.

EXAMPLE 5 Find the scalar projection and vector projection of
onto .

SOLUTION Since , the scalar projection of
onto is

a b
P S R

b a
proja b b

b a b a

� b � cos � � a b
compa b ��2 	 � � �

FIGURE 3
Vector projections

Q

R

P
S

b
a

R

S
P

Q

a

proja b

b

proja b

a � b � � a � � b � cos � � � a �(� b � cos �)

a b a
b a

� b � cos � �
a � b

� a � �
a

� a � � b

b a b
a

b a compa b �
a � b

� a �

b a proja b � 	a � b

� a � 
 a

� a � �
a � b

� a �2 a

b � �1, 1, 2 �
a � ��2, 3, 1 �

� a � � s��2�2 � 32 � 12 � s14 b
a

compa b �
a � b

� a � �
��2��1� � 3�1� � 1�2�

s14
�

3

s14

V
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The vector projection is this scalar projection times the unit vector in the direction
of :

■

One use of projections occurs in physics in calculating work. In Section 7.6 we
defined the work done by a constant force in moving an object through a distance
as , but this applies only when the force is directed along the line of motion
of the object. Suppose, however, that the constant force is a vector PR

l
pointing

in some other direction as in Figure 5. If the force moves the object from to , then
the displacement vector is PQ

l
. The work done by this force is defined to be the

product of the component of the force along and the distance moved:

But then, from Theorem 3, we have

Thus the work done by a constant force is the dot product , where is the dis-
placement vector.

EXAMPLE 6 A wagon is pulled a distance of 100 m along a horizontal path by a
constant force of 70 N. The handle of the wagon is held at an angle of above the
horizontal. Find the work done by the force.

SOLUTION If are the force and displacement vectors, as pictured in Fig-
ure 6, then the work done is

■

EXAMPLE 7 A force is given by a vector and moves a particle
from the point to the point . Find the work done.

SOLUTION The displacement vector is PQ
l

, so by Equation 8, the
work done is

If the unit of length is meters and the magnitude of the force is measured in newtons,
then the work done is 36 J. ■

a

proja b �
3

s14

a

� a � �
3

14
 a � ��

3

7
, 

9

14
, 

3

14�
F d

W � Fd
F �

P Q
D �

D

W � (� F � cos �) � D �

W � � F � � D � cos � � F � D

F F � D D

8

35�

F and D

W � F � D � � F � � D � cos 35�

� �70��100� cos 35� � 5734 N
m � 5734 J

F � 3 i � 4 j � 5k
P�2, 1, 0� Q�4, 6, 2�

D � � �2, 5, 2 �

W � F � D � �3, 4, 5 � � �2, 5, 2 �

� 6 � 20 � 10 � 36
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FIGURE 5

D

F

35°

35°

FIGURE 6
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10.3 EXERCISES

1. Which of the following expressions are meaningful? Which
are meaningless? Explain.
(a) (b)

(c) (d)

(e) (f)

2–10 ■ Find .

2. ,  

3. ,

4. ,  

5. ,  

6. ,  

7. ,  

8. ,  

9. ,  ,  the angle between and is 

10. ,  ,  the angle between and is 

11–12 ■ If is a unit vector, find and .

11. 12.

13. (a) Show that .
(b) Show that .

14. A street vendor sells hamburgers, hot dogs, and soft
drinks on a given day. He charges $2 for a hamburger, $1.50
for a hot dog, and $1 for a soft drink. If and

, what is the meaning of the dot product
?

15–17 ■ Find the angle between the vectors. (First find an exact
expression and then approximate to the nearest degree.)

15. ,  

16. ,  

17. ,  

�a � b� � c �a � b�c

� a � �b � c� a � �b � c�
a � b � c � a � � �b � c�

a � b

a � ��2, 3� b � �0.7, 1.2 �

a � ��2, 1
3 � b � ��5, 12 �

a � �6, �2, 3� b � �2, 5, �1 �

a � �4, 1, 1
4 � b � �6, �3, �8 �

a � �p, �p, 2p� b � �2q, q, �q �

a � 2 i � j b � i � j � k

a � 3 i � 2 j � k b � 4 i � 5k

� a � � 6 � b � � 5 a b 2��3

� a � � 3 � b � � s6 a b 45�

u � v u � w

w

u v

w

u

v

i � j � j � k � k � i � 0
i � i � j � j � k � k � 1

a b c

A � �a, b, c �
P � �2, 1.5, 1 �
A � P

a � �4, 3 � b � �2, �1 �

u

a � �4, 0, 2 � b � �2, �1, 0 �

a � 4i � 3j � k b � 2i � k

18. Find, correct to the nearest degree, the three angles of the
triangle with vertices , , and

.

19–20 ■ Determine whether the given vectors are orthogonal, 
parallel, or neither.

19. (a) ,  

(b) ,  

(c) ,  

(d) ,  

20. (a) ,  

(b) ,  

(c) ,  

21. Use vectors to decide whether the triangle with vertices
, , and is right-

angled.

22. Find the values of such that the angle between the vectors
, and is .

23. Find a unit vector that is orthogonal to both and .

24. Find two unit vectors that make an angle of with
.

25–26 ■ Find the acute angle between the lines.

25. ,  

26. ,  

27–28 ■ Find the acute angles between the curves at their
points of intersection. (The angle between two curves is the
angle between their tangent lines at the point of intersection.)

27. ,  

28. ,  ,  

29–32 ■ Find the scalar and vector projections of onto .

29. ,  

30. ,  

31. ,  

32. ,  

B�3, �2, 0�A�1, 0, �1�
C�1, 3, 3�

a � ��5, 3, 7 � b � �6, �8, 2 �
a � �4, 6 � b � ��3, 2 �
a � �i � 2 j � 5k b � 3 i � 4 j � k

a � 2 i � 6 j � 4k b � �3 i � 9 j � 6k

u � ��3, 9, 6 � v � �4, �12, �8 �
u � i � j � 2k v � 2 i � j � k

u � �a, b, c � v � ��b, a, 0 �

P�1, �3, �2� Q�2, 0, �4� R�6, �2, �5�

x
�2, 1, �1 � �1, x, 0 � 45�

i � j i � k

60�
v � �3, 4 �

2x � y � 3 3x � y � 7

x � 2y � 7 5x � y � 2

y � x 2 y � x 3

y � sin x y � cos x 0 � x � ��2

b a

a � ��5, 12 � b � �4, 6 �

a � �1, 4 � b � �2, 3 �

a � �3, 6, �2 � b � �1, 2, 3 �

a � i � j � k b � i � j � k
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formed by the H— C—H combination; it is the angle
between the lines that join the carbon atom to two of the
hydrogen atoms. Show that the bond angle is about . 
Hint: Take the vertices of the tetrahedron to be the points

, , , and , as shown in the 
figure. Then the centroid is .

46. If , where , , and are all nonzero vec-
tors, show that bisects the angle between and .

47. Prove Properties 2, 4, and 5 of the dot product (Theorem 2).

48. Suppose that all sides of a quadrilateral are equal in length
and opposite sides are parallel. Use vector methods to show
that the diagonals are perpendicular.

49. Use Theorem 3 to prove the Cauchy-Schwarz Inequality:

50. The Triangle Inequality for vectors is

(a) Give a geometric interpretation of the Triangle Inequality.
(b) Use the Cauchy-Schwarz Inequality from Exercise 49 to

prove the Triangle Inequality. [Hint: Use the fact that
and use Property 3 of the

dot product.]

51. The Parallelogram Law states that 

(a) Give a geometric interpretation of the Parallelogram
Law.

(b) Prove the Parallelogram Law. (See the hint in 
Exercise 50.)

52. Show that if and are orthogonal, then the vec-
tors and must have the same length.

H

H

H

H

C

x

y

z

c � � a � b � � b � a a b c
c a b

� a � b � � � a � � b �

� a � b � � � a � � � b �

� a � b �2 � �a � b� 
 �a � b�

� a � b �2 � � a � b �2 � 2 � a �2 � 2 � b �2

u � v u � v
u v

109.5�
[

�1, 1, 1��0, 0, 1��0, 1, 0��1, 0, 0�
]( 1

2 , 1
2 , 1

2 )

33. Show that the vector is orthogonal
to . (It is called an orthogonal projection of .)

34. For the vectors in Exercise 30, find and illustrate by
drawing the vectors , , , and .

35. If , find a vector such that .

36. Suppose that and are nonzero vectors.
(a) Under what circumstances is ?
(b) Under what circumstances is ?

37. Find the work done by a force that
moves an object from the point to the point

along a straight line. The distance is measured in
meters and the force in newtons.

38. A tow truck drags a stalled car along a road. The chain
makes an angle of with the road and the tension in the
chain is 1500 N. How much work is done by the truck in
pulling the car 1 km?

39. A sled is pulled along a level path through snow by a rope. 
A 30-lb force acting at an angle of  above the horizontal
moves the sled 80 ft. Find the work done by the force.

40. A boat sails south with the help of a wind blowing in the
direction S E with magnitude 400 lb. Find the work done
by the wind as the boat moves 120 ft.

41. Use a scalar projection to show that the distance from a
point to the line is

Use this formula to find the distance from the point
to the line .

42. If , and ,
show that the vector equation repre-
sents a sphere, and find its center and radius.

43. Find the angle between a diagonal of a cube and one of its
edges.

44. Find the angle between a diagonal of a cube and a diagonal
of one of its faces.

45. A molecule of methane, , is structured with the four
hydrogen atoms at the vertices of a regular tetrahedron and
the carbon atom at the centroid. The bond angle is the angle

orth a b � b � proja b
a b

orth a b
orth a bproja bba

comp a b � 2ba � �3, 0, �1 �

ba
comp a b � comp b a
proja b � projb a

F � 8 i � 6 j � 9k
�0, 10, 8�

�6, 12, 20�

30�

40�

36�

ax � by � c � 0P1�x1, y1�

� ax1 � by1 � c �
sa 2 � b 2 

��2, 3�
3x � 4y � 5 � 0

b � �b1, b2, b3 �r � �x, y, z � , a � �a1, a2, a3 �
�r � a� � �r � b� � 0
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10.4 THE CROSS PRODUCT
The cross product of two vectors and , unlike the dot product, is a vector.
For this reason it is also called the vector product. Note that is defined only
when and are three-dimensional vectors.

DEFINITION If and , then the cross 
product of and is the vector

This may seem like a strange way of defining a product. The reason for the partic-
ular form of Definition 1 is that the cross product defined in this way has many useful
properties, as we will soon see. In particular, we will show that the vector is
perpendicular to both and .

In order to make Definition 1 easier to remember, we use the notation of determi-
nants. A determinant of order 2 is defined by

For example,

A determinant of order 3 can be defined in terms of second-order determinants as 
follows:

Observe that each term on the right side of Equation 2 involves a number in the first
row of the determinant, and is multiplied by the second-order determinant obtained
from the left side by deleting the row and column in which appears. Notice also the
minus sign in the second term. For example,

If we now rewrite Definition 1 using second-order determinants and the standard
basis vectors , , and , we see that the cross product of and 

a � b a b
a � b

a b

a � �a1, a2, a3 � b � �b1, b2, b3 �
a b

a � b � �a2b3 � a3b2, a3b1 � a1b3, a1b2 � a2b1 �

a � b
a b

� a

c

b

d � � ad � bc

� 2

�6

1

4 � � 2�4� � 1��6� � 14

� a1

b1

c1

a2

b2

c2

a3

b3

c3 � � a1 � b2

c2

b3

c3
� � a2 � b1

c1

b3

c3
� � a3 � b1

c1

b2

c2
�
ai

ai

ai

1

2

� 1

3

�5

2

0

4

�1

1

2 � � 1 � 0

4

1

2 � � 2 � 3

�5

1

2 � � ��1� � 3

�5

0

4 �
� 1�0 � 4� � 2�6 � 5� � ��1��12 � 0� � �38

i j k a � a1 i � a2 j � a3 k
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■ HAMILTON
The cross product was invented by the Irish
mathematician Sir William Rowan Hamilton
(1805–1865), who had created a precursor 
of vectors, called quaternions. When he was
five years old Hamilton could read Latin,
Greek, and Hebrew. At age eight he added
French and Italian and when ten he could
read Arabic and Sanskrit. At the age of 21,
while still an undergraduate at Trinity Col-
lege in Dublin, Hamilton was appointed 
Professor of Astronomy at the university 
and Royal Astronomer of Ireland!
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is

In view of the similarity between Equations 2 and 3, we often write

Although the first row of the symbolic determinant in Equation 4 consists of vectors,
if we expand it as if it were an ordinary determinant using the rule in Equation 2, we
obtain Equation 3. The symbolic formula in Equation 4 is probably the easiest way of
remembering and computing cross products.

EXAMPLE 1 If and , then

■

EXAMPLE 2 Show that for any vector in .

SOLUTION If , then

■

One of the most important properties of the cross product is given by the follow-
ing theorem.

THEOREM The vector is orthogonal to both and .

PROOF In order to show that is orthogonal to , we compute their dot prod-
uct as follows:

a � b � � i
a1

b1

j
a2

b2

k
a3

b3 �
a � �1, 3, 4 � b � �2, 7, �5 �

a � b � � i
1

2

j
3

7

k
4

�5 � � � 3

7

4

�5 � i � � 1

2

4

�5 � j � � 1

2

3

7 � k

� ��15 � 28� i � ��5 � 8� j � �7 � 6� k � �43 i � 13 j � k

a � a � 0 a V3

a � �a1, a2, a3 �

a � a � � i
a1

a1

j
a2

a2

k
a3

a3 �
� �a2a3 � a3a2� i � �a1a3 � a3a1� j � �a1a2 � a2a1� k

� 0 i � 0 j � 0 k � 0

b � b1 i � b2 j � b3 k

a � b � � a2

b2

a3

b3
� i � � a1

b1

a3

b3
� j � � a1

b1

a2

b2
� k3

4

V

V

a � b a b

a � b a

�a � b� � a � � a2

b2

a3

b3
� a1 � � a1

b1

a3

b3
� a2 � � a1

b1

a2

b2
� a3

� a1�a2b3 � a3b2 � � a2�a1b3 � a3b1� � a3�a1b2 � a2b1�

� a1a2b3 � a1b2a3 � a1a2b3 � b1a2a3 � a1b2a3 � b1a2a3

� 0

5
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A similar computation shows that . Therefore is orthogonal
to both and . ■

If and are represented by directed line segments with the same initial point (as
in Figure 1), then Theorem 5 says that the cross product points in a direction
perpendicular to the plane through and . It turns out that the direction of is
given by the right-hand rule: If the fingers of your right hand curl in the direction of
a rotation (through an angle less than ) from to , then your thumb points in the
direction of .

Now that we know the direction of the vector , the remaining thing we need
to complete its geometric description is its length . This is given by the fol-
lowing theorem.

THEOREM If is the angle between and (so ), then

PROOF From the definitions of the cross product and length of a vector, we have

(by Theorem 10.3.3)

Taking square roots and observing that because when
, we have

■

Since a vector is completely determined by its magnitude and direction, we can
now say that is the vector that is perpendicular to both and , whose orienta-
tion is determined by the right-hand rule, and whose length is . In fact,
that is exactly how physicists define .

COROLLARY Two nonzero vectors and are parallel if and only if

PROOF Two nonzero vectors and are parallel if and only if or . In
either case , so and therefore . ■

�a � b� � b � 0 a � b
a b

a b
a � b

a b a � b

180� a b
a � b

a � b

� a � b �

� a b 0 � � � �

� a � b � � � a � � b � sin �

� a � b �2 � �a2b3 � a3b2�2 � �a3b1 � a1b3�2 � �a1b2 � a2b1�2

� a 2
2b 2

3 � 2a2a3b2b3 � a 2
3b 2

2 � a 2
3b 2

1 � 2a1a3b1b3 � a 2
1 b 2

3

� a 2
1 b 2

2 � 2a1a2b1b2 � a 2
2b 2

1

� �a 2
1 � a 2

2 � a 2
3 ��b 2

1 � b 2
2 � b 2

3 � � �a1b1 � a2b2 � a3b3 �2

� � a �2� b �2 � �a � b�2

� � a �2� b �2 � � a �2� b �2 cos2�

� � a �2� b �2�1 � cos2��

� � a �2� b �2 sin2�

ssin2� � sin � sin � 	 0
0 � � � �

� a � b � � � a � � b � sin �

6

a � b a b

� a � � b � sin �
a � b

a b

a � b � 0

a b � � 0 �
sin � � 0 � a � b � � 0 a � b � 0

7

FIGURE 1
The right-hand rule gives
the direction of axb.

a b

axb

¨

Visual 10.4 shows how 
changes as changes.b

a � bTEC

Geometric characterization of a � b
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a

b

¨

�b � sin ¨

FIGURE 2

The geometric interpretation of Theorem 6 can be seen by looking at Figure 2. If
and are represented by directed line segments with the same initial point, then they
determine a parallelogram with base , altitude , and area

Thus we have the following way of interpreting the magnitude of a cross product.

The length of the cross product is equal to the area of the parallelogram
determined by and .

EXAMPLE 3 Find a vector perpendicular to the plane that passes through the points
, , and .

SOLUTION The vector PQ
l

PR
l

is perpendicular to both PQ
l

and PR
l

and is there-
fore perpendicular to the plane through , , and . We know from (10.2.1) that

PQ
l

PR
l

We compute the cross product of these vectors:

PQ
l

PR
l

So the vector is perpendicular to the given plane. Any nonzero
scalar multiple of this vector, such as , is also perpendicular to the
plane. ■

EXAMPLE 4 Find the area of the triangle with vertices , , 
and .

SOLUTION In Example 3 we computed that PQ
l

PR
l

. The 
area of the parallelogram with adjacent sides and is the length of this cross
product:

PQ
l

PR
l

The area of the triangle is half the area of this parallelogram, that is, .
■

If we apply Theorems 5 and 6 to the standard basis vectors , , and using
, we obtain

Observe that
|

a
b

� a � � b � sin �

A � � a �(� b � sin �) � � a � b �

a � b
a b

P�1, 4, 6� Q��2, 5, �1� R�1, �1, 1�

�
P Q R

� ��2 � 1� i � �5 � 4� j � ��1 � 6� k � �3 i � j � 7k

� �1 � 1� i � ��1 � 4� j � �1 � 6� k � �5 j � 5k

� � � i
�3

0

j
1

�5

k
�7

�5 �
� ��5 � 35� i � �15 � 0� j � �15 � 0� k � �40 i � 15 j � 15k

��40, �15, 15 �
��8, �3, 3 �

P�1, 4, 6� Q��2, 5, �1�
R�1, �1, 1�

� � ��40, �15, 15 �
PQ PR

� � � � s��40�2 � ��15�2 � 152 � 5s82

A PQR 5
2 s82

i j k
� � ��2

i � j � k j � k � i k � i � j

j � i � �k k � j � �i i � k � �j

i � j � j � i
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Thus the cross product is not commutative. Also

whereas

So the associative law for multiplication does not usually hold; that is, in general,

|

However, some of the usual laws of algebra do hold for cross products. The following
theorem summarizes the properties of vector products.

THEOREM If , , and are vectors and is a scalar, then

1. a � b � �b � a

2. (ca) � b � c(a � b) � a � (cb)

3. a � (b � c) � a � b � a � c

4. (a � b) � c � a � c � b � c

5.

6.

These properties can be proved by writing the vectors in terms of their components 
and using the definition of a cross product. We give the proof of Property 5 and leave
the remaining proofs as exercises.

PROOF OF PROPERTY 5 If , , and ,
then

■

TRIPLE PRODUCTS

The product that occurs in Property 5 is called the scalar triple product
of the vectors , , and . Notice from Equation 9 that we can write the scalar triple
product as a determinant:

The geometric significance of the scalar triple product can be seen by considering
the parallelepiped determined by the vectors , , and . (See Figure 3.) The area of
the base parallelogram is . If is the angle between and , then
the height of the parallelepiped is . (We must use instead of

i � �i � j� � i � k � �j

�i � i� � j � 0 � j � 0

�a � b� � c � a � �b � c�

a b c c

a � �b � c� � �a � b� � c

a � �b � c� � �a � c�b � �a � b�c

a � �a1, a2, a3 � b � �b1, b2, b3 � c � �c1, c2, c3 �

a � �b � c� � a1�b2c3 � b3c2� � a2�b3c1 � b1c3� � a3�b1c2 � b2c1�

� a1b2c3 � a1b3c2 � a2b3c1 � a2b1c3 � a3b1c2 � a3b2c1

� �a2b3 � a3b2 �c1 � �a3b1 � a1b3 �c2 � �a1b2 � a2b1�c3

� �a � b� � c

8

9

a � �b � c�
a b c

a � �b � c� � � a1

b1

c1

a2

b2

c2

a3

b3

c3 �
a b c

A � � b � c � � a b � c
h h � � a � � cos � � � cos � �

10

a

b

¨

bxc

c
h

FIGURE 3
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in case .) Therefore the volume of the parallelepiped is

Thus we have proved the following formula.

The volume of the parallelepiped determined by the vectors , , and is
the magnitude of their scalar triple product:

If we use the formula in and discover that the volume of the parallelepiped 
determined by a, b, and c is 0, then the vectors must lie in the same plane; that is, they
are coplanar.

EXAMPLE 5 Use the scalar triple product to show that the vectors ,
, and are coplanar.

SOLUTION We use Equation 10 to compute their scalar triple product:

Therefore by the volume of the parallelepiped determined by , , and is 0.
This means that , , and are coplanar. ■

The product that occurs in Property 6 is called the vector triple prod-
uct of , , and . Property 6 will be used to derive Kepler’s First Law of planetary
motion in Section 10.9. Its proof is left as Exercise 50.

TORQUE

The idea of a cross product occurs often in physics. In particular, we consider a force
acting on a rigid body at a point given by a position vector . (For instance, if we

tighten a bolt by applying a force to a wrench as in Figure 4, we produce a turning
effect.) The torque (relative to the origin) is defined to be the cross product of the
position and force vectors

and measures the tendency of the body to rotate about the origin. The direction of the
torque vector indicates the axis of rotation. According to Theorem 6, the magnitude of
the torque vector is

cos � � 
 ��2

V � Ah � � b � c � � a � � cos � � � � a � �b � c� �

a b c

V � � a � �b � c� �

a � �1, 4, �7 �
b � �2, �1, 4 � c � �0, �9, 18 �

a � �b � c� � � 1

2

0

4

�1

�9

�7

4

18 �
� 1 � �1

�9

4

18 � � 4 � 2

0

4

18 � � 7 � 2

0

�1

�9 �
� 1�18� � 4�36� � 7��18� � 0

a b c
a b c

a � �b � c�
a b c

11

11

V

11

F r

�

� � r � F

� � � � � r � F � � � r � � F � sin �
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FIGURE 4

r

F

�

¨
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10.4 EXERCISES

1–7 ■ Find the cross product and verify that it is orthog-
onal to both and .

1. ,  

2. ,  

3. ,  

4. ,  

5. ,  

6. ,  

7. ,  

8. If a � i � 2k and b � j � k, find a � b. Sketch a, b, and 
a � b as vectors starting at the origin.

9–12 ■ Find the vector, not with determinants, but by using
properties of cross products.

9. 10.

11. 12.

13. State whether each expression is meaningful. If not, explain
why. If so, state whether it is a vector or a scalar.
(a) (b)
(c) (d)
(e) (f )

a � b

a � �6, 0, �2 � b � �0, 8, 0 �

a � �1, 1, �1 � b � �2, 4, 6 �

a � i � 3 j � 2k b � �i � 5k

a � j � 7k b � 2 i � j � 4k

a � i � j � k b � 1
2 i � j �

1
2 k

a � t i � cos t j � sin tk b � i � sin t j � cos tk

a � � t, 1, 1�t� b � � t 2, t 2, 1 �

�i � j� � k k � �i � 2 j�

� j � k� � �k � i� �i � j� � �i � j�

a � �b � c� a � �b � c�
a � �b � c� a � �b � c�
�a � b� � �c � d� �a � b� � �c � d�

a b
14 –15 ■ Find and determine whether is directed
into the page or out of the page.

14. 15.

16. The figure shows a vector in the -plane and a vector
in the direction of . Their lengths are and 
(a) Find .
(b) Use the right-hand rule to decide whether the com -

ponents of are positive, negative, or 0.

17. If and , find and .

18. If , , and , show
that .

19. Find two unit vectors orthogonal to both and
.

� u � v �

45°

|u |=4

|v |=5 |v |=16

120°
|u |=12

a xy b
k � a � � 3 � b � � 2.

� a � b �
a � b

x

z

y

b

a

a � �2, �1, 3 � b � �4, 2, 1� a � b b � a

a � �1, 0, 1� b � �2, 1, �1 � c � �0, 1, 3 �
a � �b � c� � �a � b� � c

�3, 2, 1 �
��1, 1, 0 �

u � v

where is the angle between the position and force vectors. Observe that the 
only component of that can cause a rotation is the one perpendicular to , that is,

. The magnitude of the torque is equal to the area of the parallelogram deter-
mined by and .

EXAMPLE 6 A bolt is tightened by applying a 40-N force to a 0.25-m wrench as
shown in Figure 5. Find the magnitude of the torque about the center of the bolt.

SOLUTION The magnitude of the torque vector is

If the bolt is right-threaded, then the torque vector itself is

where is a unit vector directed down into the page. ■

F r

� F � sin �
r F

� � � � � r � F � � � r � � F � sin 75� � �0.25��40� sin 75�

� 10 sin 75� 	 9.66 N�m

� � � � � n 	 9.66 n

n

�
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FIGURE 5

75°

40 N
0.25 m
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40. Find the magnitude of the torque about if a 36-lb force is
applied as shown.

41. A wrench 30 cm long lies along the positive -axis and
grips a bolt at the origin. A force is applied in the direction

at the end of the wrench. Find the magnitude of
the force needed to supply of torque to the bolt.

42. Let v � 5 j and let u be a vector with length 3 that starts at 
the origin and rotates in the -plane. Find the maximum
and minimum values of the length of the vector u � v. In
what direction does u � v point?

43. If and , find the angle
between and .

44. (a) Find all vectors such that

(b) Explain why there is no vector such that

45. (a) Let be a point not on the line that passes through
the points and . Show that the distance from the
point to the line is

where QR
l

and QP
l

.
(b) Use the formula in part (a) to find the distance from 

the point to the line through and
.

46. (a) Let be a point not on the plane that passes through the
points , , and . Show that the distance from to
the plane is

where QR
l

, QS
l

, and QP
l

.
(b) Use the formula in part (a) to find the distance from the

point to the plane through the points ,
, and .

47. Show that .

48. If , show that

30°
36 lb

4 ft

4 ft
P

y

�0, 3, �4 �
100 N�m

xy

a � b � s3 a � b � �1, 2, 2 �
a b

v

�1, 2, 1 � � v � �3, 1, �5 �

v

�1, 2, 1 � � v � �3, 1, 5 �

P L
Q R d

P L

d � � a � b �
� a �

a � b �

P�1, 1, 1� Q�0, 6, 8�
R��1, 4, 7�

P
Q R S d P

d � � a � �b � c� �
� a � b �

a � b � c �

P

Q�1, 0, 0�P�2, 1, 4�
S�0, 0, 3�R�0, 2, 0�

� a � b �2 � � a �2 � b �2 � �a � b�2

a � b � c � 0

a � b � b � c � c � a

20. Find two unit vectors orthogonal to both and .

21. Show that for any vector in .

22. Show that for all vectors and in .

23. Prove Property 1 of Theorem 8.

24. Prove Property 2 of Theorem 8.

25. Prove Property 3 of Theorem 8.

26. Prove Property 4 of Theorem 8.

27. Find the area of the parallelogram with vertices ,
, , and .

28. Find the area of the parallelogram with vertices ,
, , and .

29–32 ■ (a) Find a nonzero vector orthogonal to the plane
through the points , , and , and (b) find the area of triangle

.

29. ,  ,  

30. ,  ,  

31. ,  ,  

32. ,  ,  

33–34 ■ Find the volume of the parallelepiped determined by
the vectors , , and .

33. ,  ,  

34. ,  ,  

35–36 ■ Find the volume of the parallelepiped with adjacent
edges , , and .

35. ,  ,  ,  

36. ,  ,  ,  

37. Use the scalar triple product to verify that the vectors
, , and 

are coplanar.

38. Use the scalar triple product to determine whether the
points , , , and lie
in the same plane.

39. A bicycle pedal is pushed by a foot with a 60-N force as
shown. The shaft of the pedal is 18 cm long. Find the mag-
nitude of the torque about .

j � k i � j

0 � a � 0 � a � 0 a V3

�a � b� � b � 0 a b V3

A��2, 1�
B�0, 4� C�4, 2� D�2, �1�

K�1, 2, 3�
L�1, 3, 6� M�3, 8, 6� N�3, 7, 3�

P Q R
PQR

P�1, 0, 1� Q��2, 1, 3� R�4, 2, 5�

P�0, 0, �3� Q�4, 2, 0� R�3, 3, 1�

P�0, �2, 0� Q�4, 1, �2� R�5, 3, 1�

P��1, 3, 1� Q�0, 5, 2� R�4, 3, �1�

a b c

a � �1, 2, 3 � b � ��1, 1, 2 � c � �2, 1, 4 �

a � i � j b � j � k c � i � j � k

PQ PR PS

P��2, 1, 0� Q�2, 3, 2� R�1, 4, �1� S�3, 6, 1�

P�3, 0, 1� Q��1, 2, 5� R�5, 1, �1� S�0, 4, 2�

u � i � 5 j � 2 k v � 3 i � j w � 5 i � 9 j � 4 k

A�1, 3, 2� B�3, �1, 6� C�5, 2, 0� D�3, 6, �4�

P

10°

70°
60 N

P
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54. If , , and are noncoplanar vectors, let

(These vectors occur in the study of crystallography. 
Vectors of the form , where each 
is an integer, form a lattice for a crystal. Vectors written
similarly in terms of , , and form the reciprocal 
lattice.)
(a) Show that is perpendicular to if .
(b) Show that for .

(c) Show that .

n1 v1 � n2 v2 � n3 v3 ni

k1 k2 k3

k i vj i � j
k i � vi � 1 i � 1, 2, 3

k1 � �k2 � k3 � �
1

v1 � �v2 � v3 �

v3v2v1

k2 �
v3 � v1

v1 � �v2 � v3 �
k1 �

v2 � v3

v1 � �v2 � v3 �

k3 �
v1 � v2

v1 � �v2 � v3 �

49. Prove that .

50. Prove Property 6 of Theorem 8, that is,

51. Use Exercise 50 to prove that

52. Prove that

53. Suppose that .
(a) If , does it follow that ?
(b) If , does it follow that ?
(c) If and , does it follow 

that ?

�a � b� � �a � b� � 2�a � b�

a � �b � c� � �a � c�b � �a � b�c

a � �b � c� � b � �c � a� � c � �a � b� � 0

�a � b� � �c � d� � � a � c
a � d

b � c
b � d �

a � 0
b � ca � b � a � c

b � ca � b � a � c
a � b � a � ca � b � a � c

b � c

10.5 EQUATIONS OF LINES AND PLANES
A line in the -plane is determined when a point on the line and the direction of the
line (its slope or angle of inclination) are given. The equation of the line can then be
written using the point-slope form.

Likewise, a line in three-dimensional space is determined when we know a point
on and the direction of . In three dimensions the direction of a line is

conveniently described by a vector, so we let be a vector parallel to . Let 
be an arbitrary point on and let and be the position vectors of and (that is,
they have representations OPA and OPA). If is the vector with representation P PA, 
as in Figure 1, then the Triangle Law for vector addition gives . But, since

and are parallel vectors, there is a scalar such that . Thus 

which is a vector equation of . Each value of the parameter gives the position vec-
tor of a point on . In other words, as varies, the line is traced out by the tip of the
vector . As Figure 2 indicates, positive values of correspond to points on that lie
on one side of , whereas negative values of correspond to points that lie on the other
side of 

If the vector that gives the direction of the line is written in component form as
, then we have . We can also write and

, so the vector equation becomes

Two vectors are equal if and only if corresponding components are equal. Therefore
we have the three scalar equations:

xy

L
P0�x0, y0, z0� L L

v L P�x, y, z�
L r0 r P0 P

0 a 0

r � r0 � a
a v t a � tv

r � r0 � tv

L t
r L t

r t L
P0 t

P0.
v L

v � �a, b, c � tv � � ta, tb, tc � r � �x, y, z �

1

r0 � �x0, y0, z0 �

�x, y, z � � �x0 � ta, y0 � tb, z0 � tc �

x � x0 � at y � y0 � bt z � z0 � ct

1

2
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x

O

z

y

a

v
r

r¸L

P¸(x¸, y¸, z¸)

P(x, y, z)

FIGURE 1

x

z

y

L

t=0 t>0

t<0

r¸

FIGURE 2
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(5, 1, 3)

r¸

v=i+4j-2k

x

z

y

L

FIGURE 3

■ Figure 3 shows the line in 
Exam ple 1 and its relation to the given
point and to the vector that gives its 
direction.

L

where . These equations are called parametric equations of the line through
the point and parallel to the vector . Each value of the param-
eter gives a point on .

EXAMPLE 1
(a) Find a vector equation and parametric equations for the line that passes through
the point and is parallel to the vector .
(b) Find two other points on the line.

SOLUTION
(a) Here and , so the vector equa -
tion becomes

or

Parametric equations are

(b) Choosing the parameter value gives , , and so
is a point on the line. Similarly, gives the point . ■

The vector equation and parametric equations of a line are not unique. If we change
the point or the parameter or choose a different parallel vector, then the equations
change. For instance, if, instead of , we choose the point in Example 1,
then the parametric equations of the line become

Or, if we stay with the point but choose the parallel vector , we
arrive at the equations

In general, if a vector is used to describe the direction of a line ,
then the numbers , , and are called direction numbers of . Since any vector par-
allel to could also be used, we see that any three numbers proportional to , , and

could also be used as a set of direction numbers for .
Another way of describing a line is to eliminate the parameter from Equations 2.

If none of , , or is , we can solve each of these equations for , equate the results,
and obtain

These equations are called symmetric equations of . Notice that the numbers , 
, and that appear in the denominators of Equations 3 are direction numbers of ,

that is, components of a vector parallel to . If one of , , or is , we can still elim-

t � � L
P0�x0, y0, z0� v � �a, b, c �

t �x, y, z� L

�5, 1, 3� i � 4 j � 2k

r0 � �5, 1, 3 � � 5 i � j � 3k v � i � 4 j � 2k

r � �5 i � j � 3k� � t�i � 4 j � 2k�

r � �5 � t� i � �1 � 4t� j � �3 � 2t� k

x � 5 � t y � 1 � 4t z � 3 � 2t

t � 1 x � 6 y � 5 z � 1, �6, 5, 1�
t � �1 �4, �3, 5�

�5, 1, 3� �6, 5, 1�

x � 6 � t y � 5 � 4t z � 1 � 2t

�5, 1, 3� 2 i � 8 j � 4k

x � 5 � 2t y � 1 � 8t z � 3 � 4t

v � �a, b, c � L
a b c L

v a b
c L

L t
a b c 0 t

1

x � x0

a
�

y � y0

b
�

z � z0

c

L a
b c L

L a b c 0

3
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FIGURE 4

x

z

y

L

A

P

B 2
4

1

1

_1

■ Figure 4 shows the line in
Example 2 and the point where it
intersects the -plane.xy

P
L

inate . For instance, if , we could write the equations of as

This means that lies in the vertical plane .

EXAMPLE 2
(a) Find parametric equations and symmetric equations of the line that passes
through the points and .
(b) At what point does this line intersect the -plane?

SOLUTION
(a) We are not explicitly given a vector parallel to the line, but observe that the
vector with representation is parallel to the line and

Thus direction numbers are , , and . Taking the point 
as ,we see that parametric equations are

and symmetric equations are

(b) The line intersects the -plane when , so we put in the symmetric
equations and obtain

This gives and , so the line intersects the -plane at the point .
■

In general, the procedure of Example 2 shows that direction numbers of the line
through the points and are , , and and
so symmetric equations of are

Often, we need a description, not of an entire line, but of just a line segment. How,
for instance, could we describe the line segment in Example 2? If we put 
in the parametric equations in Example 2(a), we get the point and if we 
put we get . So the line segment is described by the parametric
equations

or by the corresponding vector equation

t a � 0 L

x � x0
y � y0

b
�

z � z0

c

L x � x0

A�2, 4, �3� B�3, �1, 1�
xy

v AB
l

v � �3 � 2, �1 � 4, 1 � ��3�� � �1, �5, 4 �

a � 1 b � �5 c � 4 �2, 4, �3�
P0

x � 2 � t y � 4 � 5t z � �3 � 4t

x � 2

1
�

y � 4

�5
�

z � 3

4

xy z � 0 z � 0

x � 2

1
�

y � 4

�5
�

3

4

x � 11
4 y � 1

4 xy ( 11
4 , 1

4 , 0)

L
P0�x0, y0, z0 � P1�x1, y1, z1� x1 � x0 y1 � y0 z1 � z0

L

x � x0

x1 � x0
�

y � y0

y1 � y0
�

z � z0

z1 � z0

AB t � 0
�2, 4, �3�

t � 1 �3, �1, 1� AB

x � 2 � t y � 4 � 5t z � �3 � 4t 0 � t � 1

2

3

0 � t � 1r�t� � �2 � t, 4 � 5t, �3 � 4 t �
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In general, we know from Equation 1 that the vector equation of a line through the
(tip of the) vector in the direction of a vector is . If the line also passes
through (the tip of) , then we can take and so its vector equation is

The line segment from to is given by the parameter interval .

The line segment from to is given by the vector equation

EXAMPLE 3 Show that the lines and with parametric equations

are skew lines; that is, they do not intersect and are not parallel (and therefore do
not lie in the same plane).

SOLUTION The lines are not parallel because the corresponding vectors
and are not parallel. (Their components are not proportional.) If and
had a point of intersection, there would be values of and such that

But if we solve the first two equations, we get and , and these values
don’t satisfy the third equation. Therefore there are no values of and that satisfy
the three equations, so and do not intersect. Thus and are skew lines. ■

PLANES

Although a line in space is determined by a point and a direction, a plane in space is
more difficult to describe. A single vector parallel to a plane is not enough to convey
the “direction” of the plane, but a vector perpendicular to the plane does completely
specify its direction. Thus a plane in space is determined by a point in the
plane and a vector that is orthogonal to the plane. This orthogonal vector is called
a normal vector. Let be an arbitrary point in the plane, and let and be
the position vectors of and . Then the vector is represented by P PA. 
(See Figure 6.) The normal vector is orthogonal to every vector in the given plane.
In particular, is orthogonal to and so we have

which can be rewritten as

Either Equation 5 or Equation 6 is called a vector equation of the plane.

r0 v r � r0 � tv
r1 v � r1 � r0

r � r0 � t �r1 � r0� � �1 � t�r0 � tr1

r0 r1 0 � t � 1

r0 r1

r�t� � �1 � t�r0 � tr1 0 � t � 1

L1 L 2

x � 1 � t y � �2 � 3t z � 4 � t

x � 2s y � 3 � s z � �3 � 4s

�1, 3, �1 �
�2, 1, 4 � L1 L 2

t s

1 � t � 2s

�2 � 3t � 3 � s

4 � t � �3 � 4s

t � 11
5 s � 8

5

t s
L1 L 2 L1 L 2

P0�x0, y0, z0�
n n

4

V

P�x, y, z� r0 r
P0 P r � r0 0

n
n r � r0

n � �r � r0 � � 0

n � r � n � r0

5

6
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■ The lines and in Example 3,
shown in Figure 5, are skew lines.

L 2L1

x

z

y

L¡ L™

FIGURE 5

5

_5

5

105

FIGURE 6

0

n

r

r¸

r-r¸

P¸(x¸, y¸, z¸)

P(x, y, z)

y

z

x
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To obtain a scalar equation for the plane, we write , , and
. Then the vector equation becomes

or

Equation 7 is the scalar equation of the plane through with normal
vector .

EXAMPLE 4 Find an equation of the plane through the point with
normal vector . Find the intercepts and sketch the plane.

SOLUTION Putting , , , , , and in Equa -
tion 7, we see that an equation of the plane is

or

To find the -intercept we set in this equation and obtain . Simi-
larly, the -intercept is 4 and the -intercept is 3. This enables us to sketch the por-
tion of the plane that lies in the first octant (see Figure 7). ■

By collecting terms in Equation 7 as we did in Example 4, we can rewrite the equa-
tion of a plane as

where . Equation 8 is called a linear equation in , , and .
Conversely, it can be shown that if , , and are not all 0, then the linear equation

represents a plane with normal vector . (See Exercise 59.)

EXAMPLE 5 Find an equation of the plane that passes through the points ,
, and .

SOLUTION The vectors and corresponding to PQ
l

and PR
l

are

Since both and lie in the plane, their cross product is orthogonal to the
plane and can be taken as the normal vector. Thus

With the point and the normal vector , an equation of the plane is

or ■

r0 � �x0, y0, z0 �

�a, b, c � � �x � x0, y � y0, z � z0 � � 0

a�x � x0 � � b�y � y0 � � c�z � z0 � � 0

P0�x0, y0, z0 �
n � �a, b, c �

�2, 4, �1�
n � �2, 3, 4 �

a � 2 b � 3 c � 4 x0 � 2 y0 � 4 z0 � �1

2�x � 2� � 3�y � 4� � 4�z � 1� � 0

2x � 3y � 4z � 12

x y � z � 0 x � 6
y z

ax � by � cz � d � 0

d � ��ax0 � by0 � cz0 � x y z
a b c

�a, b, c �

r � �x, y, z �n � �a, b, c �
5

7

V

8

8

P�1, 3, 2�
Q�3, �1, 6� R�5, 2, 0�

a b

a � �2, �4, 4 � b � �4, �1, �2 �

a b a � b

n � a � b � � i
2

4

j
�4

�1

k
4

�2 � � 12 i � 20 j � 14 k

P�1, 3, 2� n

12�x � 1� � 20�y � 3� � 14�z � 2� � 0

6x � 10y � 7z � 50

FIGURE 7

x

z

y

(0, 0, 3)

(0, 4, 0)

(6, 0, 0)

■ Figure 8 shows the portion of the
plane in Example 5 that is enclosed by
triangle .PQR

FIGURE 8

x

z

y

R(5, 2, 0)

P(1, 3, 2)

Q(3, _1, 6)
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Two planes are parallel if their normal vectors are parallel. For instance, the planes
and are parallel because their normal vectors

are and and . If two planes are not paral-
lel, then they intersect in a straight line and the angle between the two planes is de-
fined as the acute angle between their normal vectors (see angle in Figure 9).

EXAMPLE 6
(a) Find the angle between the planes and .
(b) Find symmetric equations for the line of intersection of these two planes.

SOLUTION
(a) The normal vectors of these planes are

and so, if is the angle between the planes,

(b) We first need to find a point on . For instance, we can find the point where the
line intersects the -plane by setting in the equations of both planes. This
gives the equations and , whose solution is , . So
the point lies on .

Now we observe that, since lies in both planes, it is perpendicular to both of
the normal vectors. Thus a vector parallel to is given by the cross product

and so the symmetric equations of can be written as

■

EXAMPLE 7 Find a formula for the distance from a point to the 
plane .

SOLUTION Let be any point in the given plane and let be the vector
corresponding to P PA. Then

From Figure 11 you can see that the distance from to the plane is equal to the
absolute value of the scalar projection of onto the normal vector .
(See Section 10.3.) Thus

x � 2y � 3z � 4 2x � 4y � 6z � 3
n1 � �1, 2, �3 � n2 � �2, 4, �6 � n2 � 2n1

�

x � y � z � 1 x � 2y � 3z � 1
L

n1 � �1, 1, 1 � n2 � �1, �2, 3 �

�

cos � �
n1 � n2

� n1 � � n2 � �
1�1� � 1��2� � 1�3�

s1 � 1 � 1 s1 � 4 � 9
�

2

s42

� � cos�1� 2

s42
� 	 72�

L
xy z � 0

x � y � 1 x � 2y � 1 x � 1 y � 0
�1, 0, 0� L

L
v L

v � n1 � n2 � � i
1

1

j
1

�2

k
1

3 � � 5 i � 2 j � 3 k

V

L

x � 1

5
�

y

�2
�

z

�3

D P1�x1, y1, z1�
ax � by � cz � d � 0

P0�x0, y0, z0 � b

0 1

b � �x1 � x0, y1 � y0, z1 � z0 �

D P1

b n � �a, b, c �

D � � compn b � � � n � b �
� n � � � a�x1 � x0 � � b�y1 � y0 � � c�z1 � z0 � �

sa 2 � b 2 � c 2 

� � �ax1 � by1 � cz1� � �ax0 � by0 � cz0 � �
sa 2 � b 2 � c 2 
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FIGURE 9

¨ n¡n™

¨

■ Figure 10 shows the planes in Exam-
ple 6 and their line of intersection .L

x-2y+3z=1x+y+z=1

L

FIGURE 10

z

y
x

6

4

2

0

_2

_4

0
2

_2
0

2

_2

■ Another way to find the line of inter-
section is to solve the equations of the
planes for two of the variables in terms
of the third, which can be taken as the
parameter.

FIGURE 11

D

n

¨

b

P¸

P¡
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Since lies in the plane, its coordinates satisfy the equation of the plane and so we
have . Thus the formula for can be written as

■

EXAMPLE 8 Find the distance between the parallel planes 
and .

SOLUTION First we note that the planes are parallel because their normal vectors
and are parallel. To find the distance between the planes,

we choose any point on one plane and calculate its distance to the other plane. In
particular, if we put in the equation of the first plane, we get and
so is a point in this plane. By Formula 9, the distance between and
the plane is

So the distance between the planes is . ■

P0

ax0 � by0 � cz0 � d � 0 D

D � � ax1 � by1 � cz1 � d �
sa 2 � b 2 � c 2 

10x � 2y � 2z � 5
5x � y � z � 1

�10, 2, �2 � �5, 1, �1 � D

y � z � 0 10x � 5
(1

2, 0, 0) ( 1
2, 0, 0)

5x � y � z � 1 � 0

D � � 5(1
2 ) � 1�0� � 1�0� � 1 �
s52 � 12 � ��1�2 

�
3
2

3s3
�

s3

6

s3
6

9

■ www.stewartcalculus.com
See Additional Examples A, B.

10.5 EXERCISES

1. Determine whether each statement is true or false.
(a) Two lines parallel to a third line are parallel.
(b) Two lines perpendicular to a third line are parallel.
(c) Two planes parallel to a third plane are parallel.
(d) Two planes perpendicular to a third plane are parallel.
(e) Two lines parallel to a plane are parallel.
(f ) Two lines perpendicular to a plane are parallel.
(g) Two planes parallel to a line are parallel.
(h) Two planes perpendicular to a line are parallel.
(i) Two planes either intersect or are parallel.
( j) Two lines either intersect or are parallel.
(k) A plane and a line either intersect or are parallel.

2–5 ■ Find a vector equation and parametric equations for the
line.

2. The line through the point and parallel to the 
vector 

3. The line through the point and parallel to the 
vector 

4. The line through the point and parallel to the
line , , 

5. The line through the point (1, 0, 6) and perpendicular to the
plane 

�6, �5, 2�
�1, 3, �2

3 �
�2, 2.4, 3.5�

3 i � 2 j � k

�0, 14, �10�
z � 3 � 9ty � 6 � 3tx � �1 � 2t

x � 3y � z � 5

6–10 ■ Find parametric equations and symmetric equations for
the line.

6. The line through the points and 

7. The line through the points and 

8. The line through and perpendicular to both 
and 

9. The line through and parallel to the line

10. The line of intersection of the planes 
and 

11. Is the line through and parallel to
the line through and ?

12. Is the line through and perpendicular to
the line through and ?

13. (a) Find symmetric equations for the line that passes 
through the point and is parallel to the vector

.
(b) Find the points in which the required line in part (a)

intersects the coordinate planes.

14. (a) Find parametric equations for the line through
that is perpendicular to the plane .

�1.0, 2.4, 4.6� �2.6, 1.2, 0.3�

(0, 1
2 , 1) �2, 1, �3�

�2, 1, 0� i � j
j � k

�1, �1, 1�
x � 2 � 1

2 y � z � 3

x � 2y � 3z � 1
x � y � z � 1

��4, �6, 1� ��2, 0, �3�
�10, 18, 4� �5, 3, 14�

��2, 4, 0� �1, 1, 1�
�2, 3, 4� �3, �1, �8�

�1, �5, 6�
��1, 2, �3 �

�2, 4, 6�
x � y � 3z � 7
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32. The plane that passes through the line of intersection of the
planes and and is perpendicular to
the plane 

33. Find the point at which the line , ,
intersects the plane .

34. Where does the line through and
intersect the plane ?

35–38 ■ Determine whether the planes are parallel, perpendicu-
lar, or neither. If neither, find the angle between them.

35. ,  

36. ,  

37. ,  

38. ,  

39. (a) Find parametric equations for the line of intersection of
the planes and .

(b) Find the angle between these planes.

40. Find an equation for the plane consisting of all points that
are equidistant from the points and .

41. Find an equation of the plane with -intercept , -intercept
, and -intercept .

42. (a) Find the point at which the given lines intersect:

(b) Find an equation of the plane that contains these lines.

43. Find parametric equations for the line through the point
that is parallel to the plane and 

perpendicular to the line , , .

44. Find parametric equations for the line through the point
that is perpendicular to the line , 

, and intersects this line.

45. Which of the following four planes are parallel? Are any of
them identical?

46. Which of the following four lines are parallel? Are any of
them identical?

,  ,  

,  ,  

x � z � 1 y � 2z � 3
x � y � 2z � 1

x � 3 � t y � 2 � t
z � 5t x � y � 2z � 9

�1, 0, 1� �4, �2, 2�
x � y � z � 6

x � y � z � 1 x � y � z � 1

2x � 3y � 4z � 5 x � 6y � 4z � 3

x � 4y � 2z 8y � 1 � 2x � 4z

x � 2y � 2z � 1 2x � y � 2z � 1

x � y � z � 1 x � 2y � 2z � 1

�2, 5, 5� ��6, 3, 1�

x a y
b z c

r � �1, 1, 0 � � t �1, �1, 2 �

r � �2, 0, 2 � � s ��1, 1, 0 �

�0, 1, 2� x � y � z � 2
x � 1 � t y � 1 � t z � 2t

�0, 1, 2� x � 1 � t
y � 1 � t z � 2t

P1:   3x � 6y � 3z � 6 P2: 4x � 12y � 8z � 5

P3:  9y � 1 � 3x � 6z P4: z � x � 2y � 2

L1: x � 1 � 6t y � 1 � 3t z � 12t � 5

L2: x � 1 � 2t y � t z � 1 � 4t

L3:  2x � 2 � 4 � 4y � z � 1

L4: r � �3, 1, 5 � � t �4, 2, 8 �

(b) In what points does this line intersect the coordinate
planes?

15. Find a vector equation for the line segment from 
to .

16. Find parametric equations for the line segment from
to .

17–20 ■ Determine whether the lines and are parallel,
skew, or intersecting. If they intersect, find the point of 
intersection.

17. : ,  ,  

: ,  ,  

18. : ,  ,  

: ,  ,  

19. : 

: 

20. : 

: 

21–32 ■ Find an equation of the plane.

21. The plane through the point and with normal 
vector 

22. The plane through the point and perpendicular to
the line , , 

23. The plane through the point and parallel to the
plane 

24. The plane that contains the line , ,
and is parallel to the plane 

25. The plane through the points , , and 

26. The plane through the origin and the points 
and 

27. The plane that passes through the point and con-
tains the line , , 

28. The plane that passes through the point and 
contains the line with symmetric equations 

29. The plane that passes through the point and con-
tains the line of intersection of the planes
and 

30. The plane that passes through the points and
and is perpendicular to the plane 

31. The plane that passes through the point and is per-
pendicular to the planes and 

�2, �1, 4�
�4, 6, 1�

�10, 3, 1� �5, 6, �3�

L1 L2

L1 x � 3 � 2t y � 4 � t z � 1 � 3t

L2 x � 1 � 4s y � 3 � 2s z � 4 � 5s

L1 x � 5 � 12t y � 3 � 9t z � 1 � 3t

L2 x � 3 � 8s y � �6s z � 7 � 2s

L1
x � 2

1
�

y � 3

�2
�

z � 1

�3

L2
x � 3

1
�

y � 4

3
�

z � 2

�7

L1
x

1
�

y � 1

�1
�

z � 2

3

L2
x � 2

2
�

y � 3

�2
�

z

7

(�1, 1
2 , 3)

i � 4 j � k

�2, 0, 1�
z � 3 � 4ty � 2 � tx � 3t

�1, �1, �1�
5x � y � z � 6

y � 2 � tx � 1 � t
5x � 2y � z � 1z � 4 � 3t

�1, 1, 0��1, 0, 1��0, 1, 1�

�2, �4, 6�
�5, 1, 3�

�6, 0, �2�
z � 7 � 4 ty � 3 � 5tx � 4 � 2t

�1, �1, 1�
x � 2y � 3z

��1, 2, 1�
x � y � z � 2

2x � y � 3z � 1

�0, �2, 5�
2z � 5x � 4y��1, 3, 1�

�1, 5, 1�
x � 3z � 42x � y � 2z � 2
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55. Show that the lines with symmetric equations
and are skew, and find the distance
between these lines. [Hint: The skew lines lie in parallel
planes.]

56. Find the distance between the skew lines with parametric 
equations , , , and ,

, .

57. Let be the line through the origin and the point .
Let be the line through the points and .
Find the distance between and .

58. Let be the line through the points and . 
Let be the line of intersection of the planes and , 
where is the plane and is the
plane through the points , , and .
Calculate the distance between and .

59. If , , and are not all 0, show that the equation
represents a plane and is 

a normal vector to the plane.
Hint: Suppose and rewrite the equation in the form

60. Give a geometric description of each family of planes.
(a) (b)
(c)

x � 1 � 2sz � 2ty � 1 � 6tx � 1 � t
z � �2 � 6sy � 5 � 15s

�2, 0, �1�L1

�1, �1, 1�L2

L2L1

�4, 1, 3�

�2, 4, 8��1, 2, 6�L1

�2�1L2

�2x � y � 2z � 1 � 0�1

�1, 2, 1��0, 0, 1��3, 2, �1�
L2L1

cba
�a, b, c �ax � by � cz � d � 0

a � 0

a�x �
d

a� � b�y � 0� � c�z � 0� � 0

x � y � cz � 1x � y � z � c
y cos � � z sin � � 1

x � y � z
x � 1 � y
2 � z
3

47–48 ■ Use the formula in Exercise 45 in Section 10.4 to find
the distance from the point to the given line.

47. ;  , , 

48. ;  , , 

49–50 ■ Find the distance from the point to the given plane.

49. ,  

50. ,  

51–52 ■ Find the distance between the given parallel planes.

51. ,  

52. ,  

53. Show that the distance between the parallel planes
and is

54. Find equations of the planes that are parallel to the plane
and two units away from it.

�4, 1, �2� x � 1 � t y � 3 � 2t z � 4 � 3t

�0, 1, 3� x � 2t y � 6 � 2t z � 3 � t

3x � 2y � 6z � 5�1, �2, 4�

x � 2y � 4z � 8��6, 3, 5�

4x � 6y � 2z � 32x � 3y � z � 4

9z � 1 � 3x � 6y6z � 4y � 2x

ax � by � cz � d2 � 0ax � by � cz � d1 � 0

D � � d1 � d2 �
sa 2 � b 2 � c 2 

x � 2y � 2z � 1
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10.6 CYLINDERS AND QUADRIC SURFACES
We have already looked at two special types of surfaces—planes (in Section 10.5) and
spheres (in Section 10.1). Here we investigate two other types of surfaces—cylinders
and quadric surfaces.

In order to sketch the graph of a surface, it is useful to determine the curves of
intersection of the surface with planes parallel to the coordinate planes. These curves
are called traces (or cross-sections) of the surface.

CYLINDERS

A cylinder is a surface that consists of all lines (called rulings) that are parallel to a
given line and pass through a given plane curve.

EXAMPLE 1 Sketch the graph of the surface .

SOLUTION Notice that the equation of the graph, , doesn’t involve y. This
means that any vertical plane with equation (parallel to the -plane) inter-
sects the graph in a curve with equation . So these vertical traces are parab-
olas. Figure 1 shows how the graph is formed by taking the parabola in the 

-plane and moving it in the direction of the y-axis. The graph is a surface, called a

z � x 2

z � x 2

y � k xz
z � x 2

z � x 2

xz

V

FIGURE 1
The surface z=≈ is a  
parabolic cylinder.

x y

0

z
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parabolic cylinder, made up of infinitely many shifted copies of the same parabola.
Here the rulings of the cylinder are parallel to the y-axis. ■

We noticed that the variable y is missing from the equation of the cylinder in Exam -
ple 1. This is typical of a surface whose rulings are parallel to one of the coordinate
axes. If one of the variables x, y, or is missing from the equation of a surface, then
the surface is a cylinder.

EXAMPLE 2 Identify and sketch the surfaces.
(a) (b)

SOLUTION
(a) Since is missing and the equations , represent a circle with
radius 1 in the plane , the surface is a circular cylinder whose
axis is the -axis (see Figure 2). Here the rulings are vertical lines.

(b) In this case x is missing and the surface is a circular cylinder whose axis is the
x-axis (see Figure 3). It is obtained by taking the circle , in the 

-plane and moving it parallel to the x-axis.

■

| NOTE When you are dealing with surfaces, it is important to recognize that an
equation like represents a cylinder and not a circle. The trace of the
cylinder in the -plane is the circle with equations , .

QUADRIC SURFACES

A quadric surface is the graph of a second-degree equation in three variables , ,
and . The most general such equation is

where , , are constants, but by translation and rotation it can be brought
into one of the two standard forms

or    

Quadric surfaces are the counterparts in three dimensions of the conic sections in the
plane. (See Section 9.5 for a review of conic sections.)

z

x 2 � y 2 � 1 y 2 � z 2 � 1

z x 2 � y 2 � 1 z � k
z � k x 2 � y 2 � 1

z

y 2 � z2 � 1 x � 0
yz

FIGURE 2   ≈+¥=1 FIGURE 3   ¥+z@=1

z

y

x
0

z

y

x

x 2 � y 2 � 1
x 2 � y 2 � 1 xy x 2 � y 2 � 1 z � 0

x y
z

Ax 2 � By 2 � Cz2 � Dxy � Eyz � Fxz � Gx � Hy � Iz � J � 0

A B C, . . . , J

Ax 2 � By 2 � Cz2 � J � 0 Ax 2 � By 2 � Iz � 0

SECTION 10.6  CYLINDERS AND QUADRIC SURFACES 575

Unless otherwise noted, all content on this page is © Cengage Learning.

12280_ch10_ptg01_hr_568-577.qk_12280_ch10_ptg01_hr_568-577  12/15/11  1:25 PM  Page 575

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



576 CHAPTER 10 VECTORS AND THE GEOMETRY OF SPACE

Unless otherwise noted, all content on this page is © Cengage Learning.

FIGURE 4

The ellipsoid ≈+     +     =1
z@

4

y@

9

(0, 3, 0)

0

(0, 0, 2)

(1, 0, 0)

x

y

z

EXAMPLE 3 Use traces to sketch the quadric surface with equation

SOLUTION By substituting , we find that the trace in the xy-plane is
, which we recognize as an equation of an ellipse. In general, the

horizontal trace in the plane is

which is an ellipse, provided that , that is, .
Similarly, the vertical traces are also ellipses:

Figure 4 shows how drawing some traces indicates the shape of the surface. It’s
called an ellipsoid because all of its traces are ellipses. Notice that it is symmetric
with respect to each coordinate plane; this is a reflection of the fact that its equation
involves only even powers of x, y, and . ■

EXAMPLE 4 Use traces to sketch the surface .

SOLUTION If we put , we get , so the -plane intersects the surface in
a parabola. If we put (a constant), we get . This means that if we 
slice the graph with any plane parallel to the -plane, we obtain a parabola that
opens upward. Similarly, if , the trace is , which is again a
parabola that opens upward. If we put , we get the horizontal traces

, which we recognize as a family of ellipses. Knowing the shapes of
the traces, we can sketch the graph in Figure 5. Because of the elliptical and para-
bolic traces, the quadric surface is called an elliptic paraboloid.

■

EXAMPLE 5 Sketch the surface .

SOLUTION The traces in the vertical planes are the parabolas ,
which open upward. The traces in are the parabolas , which
open downward. The horizontal traces are , a family of hyperbolas. We
draw the families of traces in Figure 6, and we show how the traces appear when
placed in their correct planes in Figure 7.

z � 0
x 2 � y 2
9 � 1

z � k

x 2 �
y 2

9
� 1 �

k 2

4
z � k

k 2 	 4 �2 	 k 	 2

y 2

9
�

z2

4
� 1 � k 2  x � k �if �1 	 k 	 1�

x 2 �
z2

4
� 1 �

k 2

9
 y � k �if �3 	 k 	 3�

z

z � 4x 2 � y 2

x � 0 z � y 2 yz
x � k z � y 2 � 4k 2

yz
y � k z � 4x 2 � k 2

z � k
4x 2 � y 2 � k

z � 4x 2 � y 2

x y

0

z

FIGURE 5 
The surface z=4≈+¥  is an elliptic

paraboloid. Horizontal traces are ellipses;
vertical traces are parabolas.

z � y 2 � x 2V

x 2 �
y 2

9
�

z2

4
� 1

z � y 2 � k 2x � k
z � �x 2 � k 2y � k

y 2 � x 2 � k
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In Figure 8 we fit together the traces from Figure 7 to form the surface
, a hyperbolic paraboloid. Notice that the shape of the surface near the

origin resembles that of a saddle. This surface will be investigated further in Section
11.7 when we discuss saddle points.

■

EXAMPLE 6 Sketch the surface .

SOLUTION The trace in any horizontal plane is the ellipse

but the traces in the - and -planes are the hyperbolas

This surface is called a hyperboloid of one sheet and is sketched in Figure 9. ■

FIGURE 6
Vertical traces are parabolas;
horizontal traces are hyperbolas.
All traces are labeled with the
value of k.

FIGURE 7
Traces moved to their
correct planes

Traces in x=k are z=¥-k@

0


1


2

Traces in z=k are ¥-≈=k

_1

1

1

0

_1

Traces in x=k

x

y

z

1

0

_1

Traces in y=k are z=_≈+k@

0


1


2

Traces in y=k

1

x

y

z

_1
0

Traces in z=k

x

y

z

1

0

_1

z

y

y

x

z

x

z � y 2 � x 2

x

y

0

z

FIGURE 8
The surface z=¥-≈ is a

hyperbolic paraboloid.

x 2

4
� y 2 �

z 2

4
� 1

z � k

x 2

4
� y 2 � 1 �

k 2

4
z � k

xz yz

x 2

4
�

z2

4
� 1 y � 0 and y2 �

z2

4
� 1 x � 0

SECTION 10.6  CYLINDERS AND QUADRIC SURFACES 577

Unless otherwise noted, all content on this page is © Cengage Learning.

In Module 10.6A you can investi-
gate how traces determine the shape of
a surface.

TEC

FIGURE 9 

(0, 1, 0)(2, 0, 0)

yx

z
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The idea of using traces to draw a surface is employed in three-dimensional graph-
ing software for computers. In most such software, traces in the vertical planes
and are drawn for equally spaced values of , and parts of the graph are elimi-
nated using hidden line removal. Table 1 shows computer-drawn graphs of the six
basic types of quadric surfaces in standard form. All surfaces are symmetric with
respect to the -axis. If a quadric surface is symmetric about a different axis, its equa-
tion changes accordingly.

EXAMPLE 7 Classify the quadric surface .

SOLUTION By completing the square we rewrite the equation as

Comparing this equation with Table 1, we see that it represents an elliptic parabo-

x � k
ky � k

z

x 2 � 2z2 � 6x � y � 10 � 0

y � 1 � �x � 3�2 � 2z2
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Surface Equation Surface Equation

Ellipsoid Cone

Elliptic Paraboloid Hyperboloid of One Sheet

Hyperbolic Paraboloid Hyperboloid of Two Sheets

z

yx

z

y

x

z

yx

z

y
x

z

yx

z

yx

Horizontal traces are ellipses.

Vertical traces in the planes
and are

hyperbolas if but are
pairs of lines if .k � 0

k � 0
y � kx � k

z 2

c 2 �
x 2

a 2 �
y 2

b 2

All traces are ellipses.

If , the ellipsoid is
a sphere.

a � b � c

x 2

a 2 �
y 2

b 2 �
z 2

c 2 � 1

Horizontal traces are ellipses.

Vertical traces are hyperbolas.

The axis of symmetry
corresponds to the variable
whose coefficient is negative.

x 2

a 2 �
y 2

b 2 �
z 2

c 2 � 1

Horizontal traces are ellipses.

Vertical traces are parabolas.

The variable raised to the
first power indicates the axis
of the paraboloid.

z

c
�

x 2

a 2 �
y 2

b 2

Horizontal traces in are
ellipses if or .

Vertical traces are hyperbolas.

The two minus signs indicate
two sheets.

k � �ck � c
z � k

�
x 2

a 2 �
y 2

b 2 �
z 2

c 2 � 1

Horizontal traces are
hyperbolas.

Vertical traces are parabolas.

The case where is
illustrated.

c � 0

z

c
�

x 2

a 2 �
y 2

b 2

TABLE 1 Graphs of Quadric Surfaces

In Module 10.6B you can see how
changing , , and in Table 1 affects the
shape of the quadric surface.

cba
TEC

■ www.stewartcalculus.com
See Additional Example A.
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10.6 EXERCISES

1. (a) What does the equation represent as a curve 
in ?

(b) What does it represent as a surface in ?
(c) What does the equation represent?

2. (a) Sketch the graph of as a curve in .
(b) Sketch the graph of as a surface in .
(c) Describe and sketch the surface .

3–8 ■ Describe and sketch the surface.

3. 4.

5. 6.

7. 8.

9. (a) Find and identify the traces of the quadric surface
and explain why the graph looks like 

the graph of the hyperboloid of one sheet in Table 1.
(b) If we change the equation in part (a) to

, how is the graph affected?
(c) What if we change the equation in part (a) to

?

10. (a) Find and identify the traces of the quadric surface
and explain why the graph looks

like the graph of the hyperboloid of two sheets in 
Table 1.

(b) If the equation in part (a) is changed to
, what happens to the graph? Sketch

the new graph.

y � x 2

�2

�3

z � y 2

y � e x �2

y � e x �3

z � e y

x 2 � z 2 � 1 4x 2 � y 2 � 4

z � 1 � y 2 y � z 2

xy � 1 z � sin y

x 2 � y2 � z2 � 1

x 2 � y2 � z2 � 1

x 2 � y2 � 2y � z2 � 0

�x 2 � y2 � z2 � 1

x 2 � y2 � z2 � 1

11–20 ■ Use traces to sketch and identify the surface.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21–28 ■ Reduce the equation to one of the standard forms, clas-
sify the surface, and sketch it.

21.

22.

23.

24.

25.

26.

27.

28.

29. Sketch the region bounded by the surfaces 
and for .

x � y 2 � 4z2 9x 2 � y 2 � z2 � 0

x 2 � y 2 � 4z 2 25x 2 � 4y 2 � z2 � 100

�x 2 � 4y 2 � z2 � 4 4x 2 � 9y 2 � z � 0

36x 2 � y 2 � 36z2 � 36 4x 2 � 16y 2 � z2 � 16

y � z2 � x 2 x � y 2 � z2

y 2 � x 2 �
1
9 z 2

4x 2 � y � 2z 2 � 0

x 2 � 2y � 2z2 � 0

y 2 � x 2 � 4z 2 � 4

4x 2 � y 2 � 4z2 � 4y � 24z � 36 � 0

4y 2 � z 2 � x � 16y � 4z � 20 � 0

x 2 � y 2 � z2 � 4x � 2y � 2z � 4 � 0

x 2 � y 2 � z2 � 2x � 2y � 4z � 2 � 0

z � sx 2 � y 2 

x 2 � y 2 � 1 1 � z � 2

loid. Here, however, the axis of the paraboloid is parallel to the -axis, and it has
been shifted so that its vertex is the point . The traces in the plane

are the ellipses

The trace in the -plane is the parabola with equation , .
The paraboloid is sketched in Figure 10.

■

y
�3, 1, 0� y � k

�k � 1�
�x � 3�2 � 2z2 � k � 1 y � k

xy y � 1 � �x � 3�2 z � 0

FIGURE 10
≈+2z@-6x-y+10=0

(3, 1, 0)

0

y

x

z
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; 33. Graph the surfaces and on a
common screen using the domain ,
and observe the curve of intersection of these surfaces.
Show that the projection of this curve onto the -plane is
an ellipse.

34. Show that the curve of intersection of the surfaces
and 

lies in a plane.

z � x 2 � y 2 z � 1 � y 2

� x � � 1.2 � y � � 1.2

xy

x 2 � 2y 2 � z2 � 3x � 1 2x 2 � 4y 2 � 2z2 � 5y � 0

30. Sketch the region bounded by the paraboloids
and .

31. Find an equation for the surface consisting of all points
that are equidistant from the point and the
plane . Identify the surface.

32. Find an equation for the surface consisting of all points
for which the distance from to the -axis is twice the
distance from to the -plane. Identify the surface.

x � 1

P
P x

P yz

z � x 2 � y 2 z � 2 � x 2 � y 2

��1, 0, 0�
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10.7 VECTOR FUNCTIONS AND SPACE CURVES
In general, a function is a rule that assigns to each element in the domain an element
in the range. A vector-valued function, or vector function, is simply a function whose
domain is a set of real numbers and whose range is a set of vectors. We are most inter-
ested in vector functions whose values are three-dimensional vectors. This means
that for every number in the domain of there is a unique vector in denoted by

. If , , and are the components of the vector , then , , and are
real-valued functions called the component functions of and we can write

We use the letter to denote the independent variable because it represents time in
most applications of vector functions.

EXAMPLE 1 If

then the component functions are

By our usual convention, the domain of consists of all values of for which the
expression for is defined. The expressions , , and are all defined
when and . Therefore the domain of is the interval . ■

The limit of a vector function is defined by taking the limits of its component
functions as follows.

If , then

provided the limits of the component functions exist.

Equivalently, we could have used an definition (see Exercise 70). Limits of vec-
tor functions obey the same rules as limits of real-valued functions (see Exercise 69).

r
t r V3

r�t� f �t� t�t� h�t� r�t� f t h
r

r�t� � � f �t�, t�t�, h�t�� � f �t� i � t�t� j � h�t� k

t

r�t� � �t3, ln�3 � t�, st �

f �t� � t 3
t�t� � ln�3 � t� h�t� � st

r t
r�t� t 3 ln�3 � t� st

3 � t � 0 t � 0 r �0, 3�

r

r�t� � � f �t�, t�t�, h�t��

lim
t l a

r�t� � � lim
t l a

f �t�, lim
t l a

t�t�, lim
t l a

h�t��

�-	

1
■ If , this definition is
equivalent to saying that the length and
direction of the vector approach the
length and direction of the vector .L

r�t�

lim t la r�t� � L
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EXAMPLE 2 Find , where .

SOLUTION According to Definition 1, the limit of r is the vector whose compo-
nents are the limits of the component functions of r:

(by Equation 1.4.6) ■

A vector function is continuous at a if

In view of Definition 1, we see that is continuous at if and only if its component
functions , , and are continuous at .

There is a close connection between continuous vector functions and space curves.
Suppose that , , and are continuous real-valued functions on an interval . Then
the set of all points in space, where

and varies throughout the interval , is called a space curve. The equations in are
called parametric equations of C and is called a parameter. We can think of as
being traced out by a moving particle whose position at time is . If 
we now consider the vector function , then is the position
vector of the point on . Thus any continuous vector function
defines a space curve that is traced out by the tip of the moving vector , as shown
in Figure 1.

EXAMPLE 3 Describe the curve defined by the vector function

SOLUTION The corresponding parametric equations are

which we recognize from Equations 10.5.2 as parametric equations of a line passing
through the point and parallel to the vector . Alternatively, we
could observe that the function can be written as , where
and , and this is the vector equation of a line as given by Equation 10.5.1.

■

Plane curves can also be represented in vector notation. For instance, the curve
given by the parametric equations and (see Example 1 in Sec-
tion 9.1) could also be described by the vector equation

where and .

lim
t l 0

r�t� r�t� � �1 � t 3 � i � te�t j �
sin t

t
k

lim
t l 0

r�t� � � lim
t l 0

 �1 � t 3 �� i � � lim
t l 0

te�t� j � 	lim
t l 0

sin t

t 
 k

� i � k

r

lim
t l a

r�t� � r�a�

r a
f t h a

f t h I
C �x, y, z�

x � f �t� y � t�t� z � h�t�

t I
t C

t ( f �t�, t�t�, h�t�)
r�t� � � f �t�, t�t�, h�t�� r�t�

P( f �t�, t�t�, h�t�) C r
C r�t�

r�t� � �1 � t, 2 � 5t, �1 � 6t �

x � 1 � t y � 2 � 5t z � �1 � 6t

�1, 2, �1� �1, 5, 6 �
r � r0 � tv r0 � �1, 2, �1 �

v � �1, 5, 6 �

x � t 2 � 2t y � t � 1

r�t� � � t 2 � 2t, t � 1 � � �t 2 � 2t� i � �t � 1� j

i � �1, 0 � j � �0, 1 �

2

V

2
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FIGURE 1
C is traced out by the tip of a moving
position vector r(t).

C

0

z

x
y

P{f(t), g(t), h(t)}

r(t)=kf(t), g(t), h(t)l

Visual 10.7A shows several curves
being traced out by position vectors,
including those in Figures 1 and 2.

TEC
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FIGURE 2

 ”0, 1,    ’
π

2

(1, 0, 0)

z

x

y

EXAMPLE 4 Sketch the curve whose vector equation is

SOLUTION The parametric equations for this curve are

Since , the curve must lie on the circular cylinder
. The point lies directly above the point , which moves 

counterclockwise around the circle in the xy-plane. (The projection of
the curve onto the -plane has vector equation . See Exam-
ple 2 in Section 9.1.) Since , the curve spirals upward around the cylinder as
increases. The curve, shown in Figure 2, is called a helix. ■

The corkscrew shape of the helix in Example 4 is familiar from its occurrence in
coiled springs. It also occurs in the model of DNA (deoxyribonucleic acid, the genetic
material of living cells). In 1953 James Watson and Francis Crick showed that the
structure of the DNA molecule is that of two linked, parallel helixes that are inter-
twined as in Figure 3.

In Examples 3 and 4 we were given vector equations of curves and asked for a geo-
metric description or sketch. In the next two examples we are given a geometric descrip-
tion of a curve and are asked to find parametric equations for the curve.

EXAMPLE 5 Find a vector equation and parametric equations for the line segment
that joins the point to the point .

SOLUTION In Section 10.5 we found a vector equation for the line segment that
joins the tip of the vector to the tip of the vector :

(See Equation 10.5.4.) Here we take and to obtain
a vector equation of the line segment from to :

or

The corresponding parametric equations are

■

EXAMPLE 6 Find a vector function that represents the curve of intersection of
the cylinder and the plane .

SOLUTION Figure 5 shows how the plane and the cylinder intersect, and Figure 6
shows the curve of intersection C, which is an ellipse.

r�t� � cos t i � sin t j � t k

x � cos t y � sin t z � t

x 2 � y 2 � cos2t � sin2t � 1
x 2 � y 2 � 1 �x, y, z� �x, y, 0�

x 2 � y 2 � 1

z � t t

V

xy r�t� � �cos t, sin t, 0�

P�1, 3, �2� Q�2, �1, 3�

r 0 r1

r�t� � �1 � t�r 0 � tr1 0 � t � 1

r 0 � �1, 3, �2 � r1 � �2, �1, 3 �
P Q

r�t� � �1 � t��1, 3, �2� � t �2, �1, 3 � 0 � t � 1

r�t� � �1 � t, 3 � 4t, �2 � 5t � 0 � t � 1

x � 1 � t y � 3 � 4t z � �2 � 5t 0 � t � 1

x 2 � y 2 � 1 y � z � 2
V

FIGURE 3

■ Figure 4 shows the line segment 
in Example 5.

PQ

FIGURE 4

Q(2, _1, 3)

P(1, 3, _2)

z

x y
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The projection of C onto the xy-plane is the circle . So we
know from Example 2 in Section 9.1 that we can write

From the equation of the plane, we have

So we can write parametric equations for C as

The corresponding vector equation is

This equation is called a parametrization of the curve C. The arrows in Figure 6
indicate the direction in which C is traced as the parameter t increases. ■

USING COMPUTERS TO DRAW SPACE CURVES

Space curves are inherently more difficult to draw by hand than plane curves; for an
accurate representation we need to use technology. For instance, Figure 7 shows a
computer-generated graph of the curve with parametric equations

It’s called a toroidal spiral because it lies on a torus. Another interesting curve, the
trefoil knot, with equations

is graphed in Figure 8. It wouldn’t be easy to plot either of these curves by hand.
Even when a computer is used to draw a space curve, optical illusions make it dif-

ficult to get a good impression of what the curve really looks like. (This is especially
true in Figure 8.) The next example shows how to cope with this problem.

FIGURE 5 FIGURE 6

C

(0, _1, 3)

(1, 0, 2)

(_1, 0, 2)

(0, 1, 1)

y+z=2

≈+¥=1

z

y

0

x

z

yx

x 2 � y 2 � 1, z � 0

x � cos t y � sin t 0 � t � 2


z � 2 � y � 2 � sin t

x � cos t y � sin t z � 2 � sin t 0 � t � 2


r�t� � cos t i � sin t j � �2 � sin t� k 0 � t � 2


x � �4 � sin 20t� cos t y � �4 � sin 20t� sin t z � cos 20t

x � �2 � cos 1.5t� cos t y � �2 � cos 1.5t� sin t z � sin 1.5t
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FIGURE 7 A toroidal spiral

z

x

y

FIGURE 8 A trefoil knot

z

x
y
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EXAMPLE 7 Use a computer to draw the curve with vector equation
This curve is called a twisted cubic.

SOLUTION We start by using the computer to plot the curve with parametric equa-
tions , , for . The result is shown in Figure 9(a), but
it’s hard to see the true nature of the curve from that graph alone. Most three-
dimensional computer graphing programs allow the user to enclose a curve or sur-
face in a box instead of displaying the coordinate axes. When we look at the same
curve in a box in Figure 9(b), we have a much clearer picture of the curve. We can
see that it climbs from a lower corner of the box to the upper corner nearest us, and
it twists as it climbs. We get an even better idea of the curve when we view it from
different vantage points. Part (c) shows the result of rotating the box to give another
viewpoint.

■

DERIVATIVES

The derivative of a vector function is defined in much the same way as for real-
valued functions:

if this limit exists. The geometric significance of this definition is shown in Figure 10.

If the points and have position vectors and , then PQ
l

represents the
vector , which can therefore be regarded as a secant vector. If ,

r�t� � � t, t 2, t 3 �.

x � t y � t 2 z � t 3 �2 � t � 2

x

z

y

2

_2

2

4

6

_6

4

2

0

2

0

_6

_2

6

0

y

z

x

_6

6

0z

4
2

0
2

0

_2

y
x

(a) (b) (c)

FIGURE 9
Views of the twisted cubic

rr�

dr
dt

� r��t� � lim
h l 0

r�t � h� � r�t�
h

r�t � h�r�t�QP
r�t � h� � r�t�

3

(b) The tangent vector(a) The secant vector

0

P

C

Q

r(t+h)-r(t)

r(t)

r(t+h)

r(t+h)-r(t)

h

0

C

P
Q

r(t+h)

r(t)

rª(t)

y

z

x x

z

y

FIGURE 10

h � 0

In Visual 10.7B you can rotate the
box in Figure 9 to see the curve from any
viewpoint.

TEC

Visual 10.7C shows an animation
of Figure 10.
TEC
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the scalar multiple has the same direction as .
As , it appears that this vector approaches a vector that lies on the tangent line.
For this reason, the vector is called the tangent vector to the curve defined by
at the point , provided that exists and . The tangent line to at is
defined to be the line through parallel to the tangent vector . We will also have
occasion to consider the unit tangent vector, which is

The following theorem gives us a convenient method for computing the derivative
of a vector function : just differentiate each component of .

THEOREM If , where , 
, and are differentiable functions, then

PROOF

■

EXAMPLE 8
(a) Find the derivative of .
(b) Find the unit tangent vector at the point where .

SOLUTION
(a) According to Theorem 4, we differentiate each component of r:

(b) Since and , the unit tangent vector at the point
is

■

r��t�P

T�t� �
r��t�

� r��t� �

h l 0
rr��t�

PCr��t� � 0r��t�P

r�t � h� � r�t�

r r

r�t� � � f �t�, t�t�, h�t�� � f �t� i � t�t� j � h�t� k f
t h

r��t� � � f ��t�, t��t�, h��t�� � f ��t� i � t��t� j � h��t� k

r��t� � lim
�t l 0

1

�t
�r�t � �t� � r�t��

� lim
�t l 0

1

�t
�� f �t � �t�, t�t � �t�, h�t � �t�� � � f �t�, t�t�, h�t���

� lim
�t l 0

� f �t � �t� � f �t�
�t

, 
t�t � �t� � t�t�

�t
, 

h�t � �t� � h�t�
�t �

� � lim
�t l 0

f �t � �t� � f �t�
�t

, lim
�t l 0

t�t � �t� � t�t�
�t

, lim
�t l 0

h�t � �t� � h�t�
�t �

� � f ��t�, t��t�, h��t��

r�t� � �1 � t 3 � i � te�t j � sin 2t k
t � 0

r��t� � 3t 2 i � �1 � t�e�t j � 2 cos 2t k

r�0� � i r��0� � j � 2k �1, 0, 0�

T�0� �
r��0�

� r��0� � �
j � 2k

s1 � 4
�

1

s5
j �

2

s5
k

4

V

�1h��r�t � h� � r�t��
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EXAMPLE 9 For the curve , find and sketch the position
vector and the tangent vector .

SOLUTION We have

The curve is a plane curve and elimination of the parameter from the equations
, gives , . In Figure 11 we draw the position vec-

tor starting at the origin and the tangent vector starting at the corre-
sponding point . ■

EXAMPLE 10 Find parametric equations for the tangent line to the helix with
parametric equations

at the point .

SOLUTION The vector equation of the helix is , so

The parameter value corresponding to the point is , so the tan-
gent vector there is . The tangent line is the line through

parallel to the vector , so by Equations 10.5.2 its parametric
equations are

■

Just as for real-valued functions, the second derivative of a vector function r is the
derivative of , that is, . For instance, the second derivative of the function
in Example 10 is

DIFFERENTIATION RULES

The next theorem shows that the differentiation formulas for real-valued functions
have their counterparts for vector-valued functions.

r��t� �
1

2st
i � j and r��1� �

1

2
 i � j

x � st y � 2 � t y � 2 � x 2 x � 0
r�1� � i � j r��1�

�1, 1�

x � 2 cos t y � sin t z � t

�0, 1, 
2�

r�t� � �2 cos t, sin t, t �

r��t� � ��2 sin t, cos t, 1�

�0, 1, 
2� t � 
2
r��
2� � ��2, 0, 1 �

�0, 1, 
2� ��2, 0, 1 �

x � �2t y � 1 z �



2
� t

r� r � �r���

r�t� � ��2 cos t, �sin t, 0 �

V

r�t� � st i � �2 � t� j r��t�
r�1� r��1�

FIGURE 12

z

0

12

1
0

_1
2

0

_2

y

x

8

4

_0.5
0.5

r(1) rª(1)

(1, 1)

FIGURE 11

0

y

2

x1

■ The helix and the tangent line in
Example 10 are shown in Figure 12.

■ In Section 10.9 we will see how 
and can be interpreted as the veloc-
ity and acceleration vectors of a particle
moving through space with position
vector at time .tr�t�

r�t�
r��t�
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THEOREM Suppose and are differentiable vector functions, is a
scalar, and is a real-valued function. Then

1.

2.

3.

4.

5.

6. (Chain Rule)

This theorem can be proved either directly from Definition 3 or by using Theorem
4 and the corresponding differentiation formulas for real-valued functions. The proof of
Formula 4 follows; the remaining proofs are left as exercises.

PROOF OF FORMULA 4 Let

Then

so the Product Rule for scalar functions gives

■

EXAMPLE 11 Show that if (a constant), then is orthogonal to 
for all .

SOLUTION Since

d

dt
�u�t� � v�t�� � u��t� � v�t� � u�t� � v��t�

d

dt
�u�t� � v�t�� � u��t� � v�t� � u�t� � v��t�

d

dt
�u� f �t��� � f ��t� u�� f �t��

u�t� � � f1�t�, f2�t�, f3�t�� v�t� � � t1�t�, t2�t�, t3�t��

u�t� � v�t� � f1�t�t1�t� � f2�t�t2�t� � f3�t�t3�t� � �
3

i�1
fi�t� ti�t�

d

dt
�u�t� � v�t�� �

d

dt �
3

i�1
fi�t� ti�t� � �

3

i�1

d

dt
� fi�t� ti�t��

� �
3

i�1
� f �i �t� ti�t� � fi�t� t�i�t��

� �
3

i�1
f �i �t� ti�t� � �

3

i�1
fi�t� t�i�t�

� u��t� � v�t� � u�t� � v��t�

� r�t� � � c r��t� r�t�
t

r�t� � r�t� � � r�t� �2 � c 2

d

dt
� f �t� u�t�� � f ��t� u�t� � f �t� u��t�

f

d

dt
�u�t� � v�t�� � u��t� � v��t�

d

dt
�cu�t�� � cu��t�

V

cvu5
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and is a constant, Formula 4 of Theorem 5 gives

Thus , which says that is orthogonal to .
Geometrically, this result says that if a curve lies on a sphere with center the origin,

then the tangent vector is always perpendicular to the position vector . ■

INTEGRALS

The definite integral of a continuous vector function can be defined in much the
same way as for real-valued functions except that the integral is a vector. But then we
can express the integral of in terms of the integrals of its component functions , ,
and as follows. (We use the notation of Chapter 5.)

and so

This means that we can evaluate an integral of a vector function by integrating each
component function.

We can extend the Fundamental Theorem of Calculus to continuous vector func-
tions as follows:

where is an antiderivative of , that is, . We use the notation for
indefinite integrals (antiderivatives).

EXAMPLE 12 If , then

where is a vector constant of integration, and

■

c 2

0 �
d

dt
�r�t� � r�t�� � r��t� � r�t� � r�t� � r��t� � 2r��t� � r�t�

r��t� � r�t� � 0 r��t� r�t�

r��t� r�t�

r�t�

r f t

h

y
b

a
r�t� dt � lim

n l �
�
n

i�1
r�t*i � �t

� lim
n l �

���
n

i�1
f �t*i � �t	 i � ��

n

i�1
t�t*i � �t	 j � ��

n

i�1
h�t*i � �t	 k


y
b

a
r�t� dt � �y

b

a
f �t� dt	 i � �y

b

a
t�t� dt	 j � �y

b

a
h�t� dt	 k

y
b

a
r�t� dt � R�t�]b

a � R�b� � R�a�

R r R��t� � r�t� x r�t� dt

r�t� � 2 cos t i � sin t j � 2t k

y r�t� dt � �y 2 cos t dt	 i � �y sin t dt	 j � �y 2t dt	 k

� 2 sin t i � cos t j � t 2 k � C

C

y
��2

0
r�t� dt � [2 sin t i � cos t j � t 2 k]0

��2
� 2 i � j �

� 2

4
 k
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10.7 EXERCISES

1–2 ■ Find the domain of the vector function.

1.

2.

3–4 ■ Find the limit.

3.

4.

5–12 ■ Sketch the curve with the given vector equation.
Indicate with an arrow the direction in which increases.

5.

6.

7.

8.

9.

10.

11.

12.

13–16 ■ Find a vector equation and parametric equations for
the line segment that joins to .

13. ,  

14. ,  

15. ,  

16. ,  

17–22 ■ Match the parametric equations with the graphs 
(labeled I–VI). Give reasons for your choices.

r�t� � �s4 � t 2 , e�3 t, ln�t � 1� 

r�t� �
t � 2

t � 2
 i � sin t j � ln�9 � t2� k

lim
t l 0

�e�3 t i �
t 2

sin2t
j � cos 2t k	

lim
t l 1

� t 2 � t

t � 1
 i � st � 8 j �

sin � t

ln t
k	

t

r�t� � � t 3, t 2 

r�t� � �sin t, t 

r�t� � � t, 2 � t, 2t 

r�t� � �sin � t, t, cos � t 

r�t� � t 2 i � t j � 2k

r�t� � �1, cos t, 2 sin t

r�t� � t 2 i � t 4 j � t 6 k

r�t� � cos t i � cos t j � sin t k

QP

P��1, 2, �2�

Q�6, 2, �2�P�2, 0, 0�

Q��3, 5, 1�

Q�u, v, w�P�a, b, c�

Q(1
2 , 1

3 , 1
4)P�0, �1, 1�

I II

x
y

z z

x
y

17. ,  ,  ,  

18. ,  ,  

19. ,  ,  

20. ,  ,  

21. ,  ,  ,  

22. ,  ,  

23. Show that the curve with parametric equations ,
, lies on the cone , and use this

fact to help sketch the curve.

24. Show that the curve with parametric equations ,
, is the curve of intersection of the

surfaces and . Use this fact to help
sketch the curve.

25. At what points does the curve inter-
sect the paraboloid ?

; 26. Graph the curve with parametric equations

Explain the appearance of the graph by showing that it lies
on a sphere.

27. Show that the curve with parametric equations ,
, passes through the points (1, 4, 0)

and (9, �8, 28) but not through the point (4, 7, �6).

x � t cos t y � t z � t sin t t � 0

x � cos t y � sin t z � 1��1 � t 2�

x � t y � 1��1 � t 2 � z � t 2

x � cos t y � sin t z � cos 2t

x � cos 8t y � sin 8t z � e 0.8 t t � 0

x � cos2 t y � sin2 t z � t

x � t cos t
y � t sin t z � t z2 � x 2 � y 2

x � sin t
y � cos t z � sin2t

z � x 2 x 2 � y 2 � 1

r�t� � t i � �2t � t 2� k
z � x 2 � y 2

III IV

V VIz

x
y

y

z

x

y
x

z

x
y

z

x � s1 � 0.25 cos 2 �10t� cos t

y � s1 � 0.25 cos 2 �10t� sin t

z � 0.5 cos�10t�

x � t 2

y � 1 � 3t z � 1 � t 3
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47. If , find and 

48. If , find , , and 

49–52 ■ Find parametric equations for the tangent line to the
curve with the given parametric equations at the specified point.

49. ,  ,  ;  

50. ,  ,  ;  

51. ,  ,  ;  

52. ,  ,  ;  

53. Find a vector equation for the tangent line to the curve of
intersection of the cylinders and

at the point .

54. Find the point on the curve ,
, where the tangent line is parallel to the plane

.

55. Find parametric equations for the tangent line to the curve
, , at the point .

Illustrate by graphing both the curve and the tangent line
on a common screen.

56. (a) Find the point of intersection of the tangent lines to the
curve at the points
where and .

; (b) Illustrate by graphing the curve and both tangent lines.

57. The curves and
intersect at the origin. Find their angle of intersection 
correct to the nearest degree.

58. At what point do the curves and
intersect? Find their angle of

intersection correct to the nearest degree.

59–64 ■ Evaluate the integral.

59.

60.

61.

62.

63.

64.

65. Find if and .

66. Find if and .

r��t� 	 r
�t�.r��t�, T�1�, r
�t�, r�t� � � t, t 2, t 3 

r��t� � r
�t�.r
�0�T�0�r�t� � �e 2 t, e�2 t, te 2 t

�3, 0, 2�z � t 3 � ty � t 3 � tx � 1 � 2st

�1, 0, 0�z � te t 2

y � te tx � e t

�1, 0, 1�z � e�ty � e�t sin tx � e�t cos t

�2, ln 4, 1�z � ty � ln�t 2 � 3�x � st 2 � 3

x 2 � y 2 � 25
�3, 4, 2�y 2 � z 2 � 20

r�t� � �2 cos t, 2 sin t, e t 
0 � t � �
s3 x � y � 1

CAS

���, �, 0�z � t sin ty � tx � t cos t

r�t� � �sin � t, 2 sin � t, cos � t 
t � 0.5t � 0

r2�t� � �sin t, sin 2t, t r1�t� � � t, t 2, t 3 

r1�t� � � t, 1 � t, 3 � t 2 
r2�s� � �3 � s, s � 2, s 2 

y
2

0
�t i � t 3 j � 3t 5 k� dt

y
1

0
� 4

1 � t 2 j �
2t

1 � t 2 k	 dt

y
��2

0
�3 sin 2t cos t i � 3 sin t cos 2t j � 2 sin t cos t k� dt

y
2

1
(t 2 i � tst � 1 j � t sin � t k) dt

y �sec2 t i � t�t 2 � 1�3 j � t 2 ln t k� dt

y �te 2t i �
t

1 � t
j �

1

s1 � t 2
k	 dt

r�1� � i � jr��t� � 2t i � 3t 2 j � st kr�t�

r�0� � i � j � kr��t� � t i � e t j � te t kr�t�

28 –30 ■ Find a vector function that represents the curve of
intersection of the two surfaces.

28. The cylinder and the surface 

29. The cone and the plane 

30. The semiellipsoid , , and the 
cylinder 

; 31. Try to sketch by hand the curve of intersection of the cir-
cular cylinder and the parabolic cylinder

. Then find parametric equations for this curve and
use these equations and a computer to graph the curve.

; 32. Try to sketch by hand the curve of intersection of the 
parabolic cylinder and the top half of the ellipsoid

. Then find parametric equations 
for this curve and use these equations and a computer to
graph the curve.

33–38 ■

(a) Sketch the plane curve with the given vector equation.
(b) Find .
(c) Sketch the position vector and the tangent vector

for the given value of .

33. ,  

34. ,  

35. ,  

36. ,  

37. ,  

38. ,  

39–44 ■ Find the derivative of the vector function.

39.

40.

41.

42.

43.

44.

45–46 ■ Find the unit tangent vector at the point with the
given value of the parameter .

45. ,  

46. ,  

z � xyx 2 � y 2 � 4

z � 1 � yz � sx 2 � y 2 

y � 0x 2 � y 2 � 4z 2 � 4
x 2 � z 2 � 1

x 2 � y 2 � 4
z � x 2

y � x 2

x 2 � 4y 2 � 4z2 � 16

r��t�
r��t�r�t�

t

t � �1r�t� � � t � 2, t 2 � 1 

t � 1r�t� � � t 2, t 3 

t � ��4r�t� � sin t i � 2 cos t j

t � 0r�t� � e t i � e �t j

t � 0r�t� � e2 t i � et j

t � ��6r�t� � �1 � cos t� i � �2 � sin t� j

r�t� � � t sin t, t 2, t cos 2t 

r�t� � � tan t, sec t, 1�t 2 

r�t� � e t 2

i � j � ln�1 � 3t� k

r�t� � at cos 3t i � b sin3t j � c cos 3t k

r�t� � a � t b � t 2 c

r�t� � t a 	 �b � t c�

T�t�
t

t � 0r�t� � cos t i � 3t j � 2 sin 2t k

t � 1r�t� � � t 3 � 3t, t 2 � 1, 3t � 4 
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75. If and , use 
Formula 4 of Theorem 5 to find 

76. If and are the vector functions in Exercise 75, use 
Formula 5 of Theorem 5 to find 

77. Find , where , ,
, and .

78. If , where are the vector
functions in Exercise 77, find .

79. Show that if is a vector function such that exists, then

80. Find an expression for .

81. If , show that .

[Hint: ]

82. If a curve has the property that the position vector is
always perpendicular to the tangent vector , show that 
the curve lies on a sphere with center the origin.

83. If , show that

d

dt
�u�t� � �v�t� 	 w�t���

r�t� � 0
d

dt � r�t� � �
1

� r�t� � r�t� � r��t�

� r�t� �2 � r�t� � r�t�

r�t�
r��t�

u�t� � r�t� � �r��t� 	 r
�t��

u��t� � r�t� � �r��t� 	 r��t��

v�t� � � t, cos t, sin tu�t� � �sin t, cos t, t 

d

dt
�u�t� � v�t��

vu

d

dt
�u�t� 	 v�t��

u�2� � �1, 2, �1 f �t� � u�t� � v�t�f ��2�
v�t� � � t, t 2, t 3 u��2� � �3, 0, 4 

u and vr�t� � u�t� 	 v�t�
r��2�

r
r

d

dt
�r�t� 	 r��t�� � r�t� 	 r
�t�

67. If two objects travel through space along two different
curves, it’s often important to know whether they will col-
lide. (Will a missile hit its moving target? Will two aircraft
collide?) The curves might intersect, but we need to know
whether the objects are in the same position at the same
time. Suppose the trajectories of two particles are given by
the vector functions

for . Do the particles collide?

68. Two particles travel along the space curves

Do the particles collide? Do their paths intersect?

69. Suppose and are vector functions that possess limits as
and let be a constant. Prove the following prop -

erties of limits.

(a)

(b)

(c)

(d)

70. Show that if and only if for every 
there is a number such that whenever

.

71. Prove Formula 1 of Theorem 5.

72. Prove Formula 3 of Theorem 5.

73. Prove Formula 5 of Theorem 5.

74. Prove Formula 6 of Theorem 5.

r2 �t� � �4t � 3, t 2, 5t � 6 r1 �t� � � t 2, 7t � 12, t 2 

t � 0

r2 �t� � �1 � 2t, 1 � 6t, 1 � 14t r1 �t� � � t, t 2, t 3 

vu
ct l a

lim
t l a

�u�t� � v�t�� � lim
t l a

u�t� � lim
t l a

v�t�

lim
t l a

cu�t� � c lim
t l a

u�t�

lim
t l a

�u�t� � v�t�� � lim
t l a

u�t� � lim
t l a

v�t�

lim
t l a

�u�t� 	 v�t�� � lim
t l a

u�t� 	 lim
t l a

v�t�

 � 0lim t l a r�t� � b

� r�t� � b � � � � 0
0 � � t � a � � �
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10.8 ARC LENGTH AND CURVATURE
In Section 9.2 we defined the length of a plane curve with parametric equations

, , , as the limit of lengths of inscribed polygons and, for
the case where and are continuous, we arrived at the formula
x � f �t� y � t�t� a � t � b

f � t�

1

� y
b

a
��dx

dt 	2

� �dy

dt 	2 

dt

L � y
b

a
s� f ��t�� 2 � �t��t�� 2 dt
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FIGURE 1
The length of a space curve is the limit
of lengths of inscribed polygons.

0

z

x

y

■ Figure 2 shows the arc of the 
helix whose length is computed in
Example 1.

FIGURE 2

(1, 0, 2π)

z

x
y

(1, 0, 0)

The length of a space curve is defined in exactly the same way (see Figure 1). 
Suppose that the curve has the vector equation , , or,
equivalently, the parametric equations , , , where , , and 
are continuous. If the curve is traversed exactly once as increases from to , then
it can be shown that its length is

Notice that both of the arc length formulas and can be put into the more
compact form

because, for plane curves ,

whereas, for space curves ,

EXAMPLE 1 Find the length of the arc of the circular helix with vector equation
from the point to the point .

SOLUTION Since , we have

The arc from to is described by the parameter interval
and so, from Formula 3, we have

■

A single curve can be represented by more than one vector function. For in-
stance, the twisted cubic

could also be represented by the function

where the connection between the parameters and is given by . We say that
Equations 4 and 5 are parametrizations of the curve . If we were to use Equation 3
to compute the length of using Equations 4 and 5, we would get the same answer.

L � y
b

a
s� f ��t��2 � �t��t��2 � �h��t��2 dt

� y
b

a
��dx

dt 	2

� �dy

dt 	2

� � dz

dt 	2 

dt

L � y
b

a
� r��t� � dt

r�t� � f �t� i � t�t� j

� r��t� � � � f ��t� i � t��t� j � � s� f ��t��2 � �t��t��2 

r�t� � f �t� i � t�t� j � h�t� k

� r��t� � � � f ��t� i � t��t� j � h��t� k � � s� f ��t��2 � �t��t��2 � �h��t��2 

2

3

1

r�t� � � f �t�, t�t�, h�t� a � t � b
x � f �t� y � t�t� z � h�t� f � t� h�

t a b

2

r�t� � cos t i � sin t j � t k �1, 0, 0� �1, 0, 2��

r��t� � �sin t i � cos t j � k

� r��t� � � s��sin t�2 � cos2t � 1 � s2

�1, 0, 0� �1, 0, 2��
0 � t � 2�

L � y
2�

0
� r��t� � dt � y

2�

0
s2 dt � 2s2�

C

r1�t� � � t, t 2, t 3  1 � t � 2

r2�u� � �eu, e 2u, e 3u  0 � u � ln 2

t u t � eu

C

4

5

V

C
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In general, it can be shown that when Equation 3 is used to compute arc length, the
answer is independent of the parametrization that is used.

Now we suppose that is a curve given by a vector function

where is continuous and is traversed exactly once as increases from to . We
define its arc length function by

Thus is the length of the part of between and . (See Figure 3.) If we 
differentiate both sides of Equation 6 using Part 1 of the Fundamental Theorem of Cal -
cu lus, we obtain

It is often useful to parametrize a curve with respect to arc length because arc
length arises naturally from the shape of the curve and does not depend on a particu-
lar coordinate system. If a curve is already given in terms of a parameter and
is the arc length function given by Equation 6, then we may be able to solve for as a
function of : Then the curve can be reparametrized in terms of by substi-
tuting for : . Thus if for instance, is the position vector of the
point 3 units of length along the curve from its starting point.

EXAMPLE 2 Reparametrize the helix with respect to
arc length measured from in the direction of increasing .

SOLUTION The initial point corresponds to the parameter value .
From Example 1 we have

and so

Therefore and the required reparametrization is obtained by substituting
for :

■

CURVATURE

A parametrization is called smooth on an interval if is continuous and
on . A curve is called smooth if it has a smooth parametrization. A smooth curve has
no sharp corners or cusps; when the tangent vector turns, it does so continuously.

If is a smooth curve defined by the vector function , recall that the unit tangent
vector is given by

C

r�t� � f �t� i � t�t�j � h�t�k a � t � b

C t a b
s

s�t� � y
t

a
� r��u� � du � y

t

a
�� dx

du	2

� � dy

du	2

� � dz

du	2 

du

s�t� C r�a� r�t�

ds

dt
� � r��t� �

r�t� t s�t�
t

s t � t�s�. s
t r � r�t�s�� r�t�3��

r�t� � cos t i � sin t j � t k
�1, 0, 0� t

�1, 0, 0� t � 0

6

7

s � 3

ds

dt
� � r��t� � � s2

s � s�t� � y
t

0
� r��u� � du � y

t

0
s2 du � s2 t

t � s�s2
t

r�t�s�� � cos(s�s2 ) i � sin(s�s2 ) j � (s�s2 ) k

r�t� I r� r��t� � 0
I

C r
T�t�

r�

T�t� �
r��t�

� r��t� �
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FIGURE 3
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FIGURE 4
Unit tangent vectors at equally spaced
points on C

z

0

x
y

C

Visual 10.8A shows animated unit
tangent vectors, like those in Figure 4, 
for a variety of plane curves and space
curves.

TEC

and indicates the direction of the curve. From Figure 4 you can see that changes
direction very slowly when is fairly straight, but it changes direction more quickly
when bends or twists more sharply.

The curvature of at a given point is a measure of how quickly the curve changes
direction at that point. Specifically, we define it to be the magnitude of the rate of
change of the unit tangent vector with respect to arc length. (We use arc length so that
the curvature will be independent of the parametrization.)

DEFINITION The curvature of a curve is

where is the unit tangent vector.

The curvature is easier to compute if it is expressed in terms of the parameter
instead of , so we use the Chain Rule (Theorem 10.7.5, Formula 6) to write

But from Equation 7, so

EXAMPLE 3 Show that the curvature of a circle of radius is .

SOLUTION We can take the circle to have center the origin, and then a parame-
trization is

Therefore

so

and

This gives , so using Equation 9, we have

■

The result of Example 3 shows that small circles have large curvature and large cir-
cles have small curvature, in accordance with our intuition. We can see directly from
the definition of curvature that the curvature of a straight line is always 0 because the
tangent vector is constant.

Although Formula 9 can be used in all cases to compute the curvature, the formula
given by the following theorem is often more convenient to apply.

C
C

� � � dT
ds �

T

t
s

dT
dt

�
dT
ds

ds

dt
and � � � dT

ds � � � dT�dt

ds�dt �
ds�dt � � r��t� �

��t� � � T��t� �
� r��t� �

a 1�a

r�t� � a cos t i � a sin t j

8

9

V

r��t� � �a sin t i � a cos t j and � r��t� � � a

T�t� �
r��t�

� r��t� � � �sin t i � cos t j

T��t� � �cos t i � sin t j

� T��t� � � 1

��t� � � T��t��
� r��t� � �

1

a

C
T�t�
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THEOREM The curvature of the curve given by the vector function is

PROOF Since and , we have

so the Product Rule (Theorem 10.7.5, Formula 3) gives

Using the fact that (see Example 2 in Section 10.4), we have

Now for all , so and are orthogonal by Example 11 in Section 10.7.
Therefore, by Theorem 10.4.6,

Thus

and ■

EXAMPLE 4 Find the curvature of the twisted cubic at a general
point and at .

SOLUTION We first compute the required ingredients:

r

��t� � � r��t� 	 r
�t� �
� r��t� �3

T � r��� r�� � r�� � ds�dt

r� � � r��T �
ds

dt
T

r 
 �
d 2s

dt 2 T �
ds

dt
T�

T 	 T � 0

r� 	 r
 � �ds

dt	2

�T 	 T��

� T�t� � � 1 t T T�

� r� 	 r
 � � �ds

dt	2

� T 	 T� � � �ds

dt	2

� T � � T� � � �ds

dt	2

� T� �

� T� � � � r� 	 r
 �
�ds�dt�2 � � r� 	 r
 �

� r� �2

� � � T� �
� r� � � � r� 	 r
 �

� r� �3

10

r�t� � � t, t 2, t 3 
�0, 0, 0�

r��t� � �1, 2t, 3t 2  r
�t� � �0, 2, 6t 

� r��t� � � s1 � 4t 2 � 9t 4 

r��t� 	 r
�t� � � i
1

0

j
2t

2

k
3t 2

6t � � 6t 2 i � 6t j � 2 k

� r��t� 	 r
�t� � � s36t 4 � 36t 2 � 4 � 2s9t 4 � 9t 2 � 1
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FIGURE 5
The parabola y=≈ and its
curvature function

2

1 x0

y

y=≈

y=k(x)

y=k(x)

Theorem 10 then gives

At the origin, where , the curvature is . ■

For the special case of a plane curve with equation , we choose as the
parameter and write . Then and .
Since and , we have . We also have

and so, by Theorem 10,

EXAMPLE 5 Find the curvature of the parabola at the points , , 
and .

SOLUTION Since and , Formula 11 gives

The curvature at is . At it is . At it
is . Observe from the expression for or the graph of in
Figure 5 that as . This corresponds to the fact that the parabola
appears to become flatter as . ■

THE NORMAL AND BINORMAL VECTORS

At a given point on a smooth space curve , there are many vectors that are orthog-
onal to the unit tangent vector . We single out one by observing that, because

for all , we have by Example 11 in Section 10.7, so
is orthogonal to . Note that is itself not a unit vector. But at any point where

we can define the principal unit normal vector (or simply unit normal)
as

The vector is called the binormal vector. It is perpendicular to
both and and is also a unit vector. (See Figure 6.)

EXAMPLE 6 Find the unit normal and binormal vectors for the circular helix

��t� � � r��t� 	 r
�t� �
� r��t� �3 �

2s1 � 9t 2 � 9t 4 

�1 � 4t 2 � 9t 4 �3�2

t � 0 ��0� � 2

y � f �x� x
r�x� � x i � f �x� j r��x� � i � f ��x� j r
�x� � f 
�x� j

i 	 j � k j 	 j � 0 r��x� 	 r
�x� � f 
�x� k

� r��x� � � s1 � � f ��x��2 

��x� � � f 
�x� �
�1 � � f ��x��2 �3�2

y � x 2 �0, 0� �1, 1�
�2, 4�

y� � 2x y
 � 2

��x� � � y
 �
�1 � �y��2 �3�2 �

2

�1 � 4x 2 �3�2

�0, 0� ��0� � 2 �1, 1� ��1� � 2�53�2 � 0.18 �2, 4�
��2� � 2�173�2 � 0.03 ��x� �

��x� l 0 x l ��
x l ��

r�t�
T�t�

� T�t� � � 1 t T�t� � T��t� � 0 T��t�

11

T�t� T��t�
N�t�

N�t� �
T��t�

� T��t� �
B�t� � T�t� 	 N�t�

T N

r�t� � cos t i � sin t j � t k

� � 0

■ We can think of the normal vector as
indicating the direction in which the
curve is turning at each point.

FIGURE 6

N(t)

B(t)T(t)
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SOLUTION We first compute the ingredients needed for the unit normal vector:

This shows that the normal vector at a point on the helix is horizontal and points
toward the -axis. The binormal vector is

■

The plane determined by the normal and binormal vectors and at a point on
a curve is called the normal plane of at . It consists of all lines that are orthog-
onal to the tangent vector . The plane determined by the vectors and is called
the osculating plane of at . The name comes from the Latin osculum, meaning
“kiss.” It is the plane that comes closest to containing the part of the curve near . (For
a plane curve, the osculating plane is simply the plane that contains the curve.)

The circle that lies in the osculating plane of at , has the same tangent as at
, lies on the concave side of (toward which points), and has radius (the

reciprocal of the curvature) is called the osculating circle (or the circle of curvature)
of at . It is the circle that best describes how behaves near ; it shares the same
tangent, normal, and curvature at . (See Figure 8.)

We summarize here the formulas for unit tangent, unit normal and binormal vec-
tors, and curvature.

T��t� �
1

s2
��cos t i � sin t j� � T��t� � �

1

s2

N�t� �
T��t�

� T��t� � � �cos t i � sin t j � ��cos t, �sin t, 0 

z

�
1

s2
�sin t, �cos t, 1 

N B P
C C P

T T N
C P

P

C P C
P C N � � 1��

r��t� � �sin t i � cos t j � k

� r��t� � � s2

T�t� �
r��t�

� r��t� � �
1

s2
��sin t i � cos t j � k�

B�t� � T�t� 	 N�t� �
1

s2 � i
�sin t

�cos t

j
cos t

�sin t

k
1

0



C P C P
P

T�t� �
r��t�

� r��t� � N�t� �
T��t�

� T��t� � B�t� � T�t� 	 N�t�

� � � dT
ds � � � T��t� �

� r��t� � � � r��t� 	 r
�t� �
� r��t� �3
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■ Figure 7 illustrates Example 6 by
showing the vectors , , and at two
locations on the helix. In general, the
vectors , , and , starting at the 
various points on a curve, form a set 
of orthogonal vectors, called the 
frame, that moves along the curve as 

varies. This frame plays an
important role in the branch of mathe-
matics known as differential geometry
and in its applications to the motion of
spacecraft.

TNB

BNT

t

TNB

BNT

N

N

B

T

TB

FIGURE 7

x

y

z

Visual 10.8B shows how the TNB
frame moves along several curves.
TEC

y

x0

1

2

1

y=≈osculating
circle

FIGURE 8

Visual 10.8C shows how the oscu-
lating circle changes as a point moves
along a curve.

TEC

■ www.stewartcalculus.com
See Additional Examples A, B.
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10.8 EXERCISES

1–4 ■ Find the length of the curve.

1. ,  

2. ,  

3. ,  

4. ,  

5–6 ■ Find the length of the curve correct to four decimal
places. (Use your calculator to approximate the integral.)

5. ,  

6. ,  

7. Let be the curve of intersection of the parabolic cylinder
and the surface . Find the exact length of

from the origin to the point .

; 8. Graph the curve with parametric equations ,
. Find the total length of this curve

correct to four decimal places.

9–10 ■ Reparametrize the curve with respect to arc length 
measured from the point where in the direction of
increasing .

9.

10.

11. Suppose you start at the point and move 5 units
along the curve , , in the posi-
tive direction. Where are you now?

12. Reparametrize the curve

with respect to arc length measured from the point (1, 0) in
the direction of increasing . Express the reparametrization
in its simplest form. What can you conclude about the
curve?

13–16 ■

(a) Find the unit tangent and unit normal vectors and .
(b) Use Formula 9 to find the curvature.

13.

14. ,  

15.

r�t� � � t, 3 cos t, 3 sin t� �5 � t � 5

r�t� � cos t i � sin t j � ln cos t k 0 � t � ��4

r�t� � i � t 2 j � t 3 k 0 � t � 1

r�t� � 12t i � 8t 3�2 j � 3t 2 k 0 � t � 1

r�t� � � t 2, t 3, t 4 � 0 � t � 2

r�t� � � t, e�t, te�t � 1 � t � 3

C
x 2 � 2y 3z � xy
C �6, 18, 36�

x � cos t
y � sin 3t, z � sin t

t � 0
t

r�t� � 2t i � �1 � 3t� j � �5 � 4t� k

r�t� � e 2 t cos 2t i � 2 j � e 2 t sin 2t k

�0, 0, 3�
x � 3 sin t y � 4t z � 3 cos t

r�t� � � 2

t 2 � 1
� 1� i �

2t

t 2 � 1
 j

t

T�t� N�t�

r�t� � � t, 3 cos t, 3 sin t�

r�t� � � t 2, sin t � t cos t, cos t � t sin t � t � 0

r�t� � �s2 t, e t, e �t�

16.

17–19 ■ Use Theorem 10 to find the curvature.

17.

18.

19.

20. Find the curvature of at the 
point .

21. Find the curvature of at the point 
(1, 1, 1).

; 22. Graph the curve with parametric equations ,
, and find the curvature at the 

point .

23–25 ■ Use Formula 11 to find the curvature.

23. 24. 25.

26–27 ■ At what point does the curve have maximum curva-
ture? What happens to the curvature as ?

26. 27.

28. Find an equation of a parabola that has curvature 4 at the 
origin.

29. (a) Is the curvature of the curve shown in the figure
greater at or at ? Explain.

(b) Estimate the curvature at and at by sketching the 
osculating circles at those points.

; 30–31 ■ Use a graphing calculator or computer to graph both
the curve and its curvature function on the same screen.
Is the graph of what you would expect?

30. 31.

r�t� � � t, 1
2 t 2, t 2�

r�t� � t 3 j � t 2 k

r�t� � t i � t 2 j � e t k

r�t� � 3t i � 4 sin t j � 4 cos t k

r�t� � � t 2, ln t, t ln t �
�1, 0, 0�

r�t� � � t, t 2, t 3 �

x � cos t
y � sin t z � sin 5t

�1, 0, 0�

y � x 4 y � tan x y � xe x

x l �

y � ln x y � e x

C
P Q

P Q

1

1 x0

y P

Q

C

��x�
�

y � x 4 � 2x 2 y � x�2
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; 44. Find equations of the osculating circles of the parabola
at the points and . Graph both oscu -

lating circles and the parabola on the same screen.

45. At what point on the curve , , is the 
normal plane parallel to the plane ?

46. Is there a point on the curve in Exercise 45 where the 
oscu lating plane is parallel to the plane ? 
[Note: You will need a CAS for differentiating, for sim-
plifying, and for computing a cross product.]

47. Show that the curvature is related to the tangent and 
normal vectors by the equation

48. Show that the curvature of a plane curve is ,
where is the angle between and ; that is, is the
angle of inclination of the tangent line.

49. (a) Show that is perpendicular to .
(b) Show that is perpendicular to .
(c) Deduce from parts (a) and (b) that

for some number called the torsion of the curve.
(The torsion measures the degree of twisting of a
curve.)

(d) Show that for a plane curve the torsion is .

50. The following formulas, called the Frenet-Serret for-
mulas, are of fundamental importance in differential 
geometry:

1.

2.

3.

(Formula 1 comes from Exercise 47 and Formula 3
comes from Exercise 49.) Use the fact that
to deduce Formula 2 from Formulas 1 and 3.

51. Use the Frenet-Serret formulas to prove each of the fol-
lowing. (Primes denote derivatives with respect to . Start
as in the proof of Theorem 10.)
(a)
(b)
(c)

(d)

52. Show that the circular helix , 
where and are positive constants, has constant curva-
ture and constant torsion. [Use the result of Exercise
51(d).]

x � t 3 y � 3t z � t 4

6x � 6y � 8z � 1

x � y � z � 1
CAS

�

dT
ds

� �N

� � 	 d	�ds 	
	 T i 	

dB�ds B
dB�ds T

dB�ds � �
�s�N

�s�


 �s� � 0

dT�ds � �N

dN�ds � ��T � 
B

dB�ds � �
N

N � B � T

t

r� � s�T � ��s�2 N
r � r� � ��s�3 B
r� � 
s� � �2�s�3 � T � 
3�ss� � ��s�2 � N


 �
�r � r�� � r�

	 r � r� 	2

r�t� � �a cos t, a sin t, bt�
a b

� �
 �s�3 B

(1, 1
2 )�0, 0�y � 1

2 x 2
32–33 ■ Plot the space curve and its curvature function . 
Comment on how the curvature reflects the shape of the
curve.

32. ,  

33. ,  

34 –35 ■ Two graphs, and , are shown. One is a curve
and the other is the graph of its curvature function
. Identify each curve and explain your choices.

34. 35.

36. Use Theorem 10 to show that the curvature of a plane
parametric curve , is

where the dots indicate derivatives with respect to .

37–38 ■ Use the formula in Exercise 36 to find the curvature.

37. ,  

38. ,  

39–40 ■ Find the vectors , , and at the given point.

39. ,  

40. ,  

41–42 ■ Find equations of the normal plane and osculating
plane of the curve at the given point.

41. , , ;  

42. , , ;  

; 43. Find equations of the osculating circles of the ellipse
at the points and . Use a

graphing calculator or computer to graph the ellipse and
both osculating circles on the same screen.

��t�

r�t� � � t � sin t, 1 � cos t, 4 cos�t�2�� 0 � t � 8�

r�t� � � tet, e�t, s2 t � �5 � t � 5

a b
y � f �x�
y � ��x�

y

x

a

b

y

x

a

b

CAS

y � t�t�x � f �t�

� � 	 x�y�� � y�x�� 	

x� 2 � y� 2 �3�2

t

y � e t sin tx � e t cos t

y � b sin �tx � a cos �t

BNT

(1, 2
3 , 1)r�t� � � t 2, 2

3 t 3, t�
�1, 0, 0�r�t� � �cos t, sin t, ln cos t �

�0, �, �2�z � 2 cos 3ty � tx � 2 sin 3t

�1, 1, 1�z � t 3y � t 2x � t

�0, 3��2, 0�9x 2 � 4y 2 � 36
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(a) Find a polynomial of degree 5 such that the
function defined by

is continuous and has continuous slope and continuous 
curvature.

; (b) Use a graphing calculator or computer to draw the
graph of .F

P � P�x�
F

F�x� � �0

P�x�
1

if x � 0

if 0 � x � 1

if x � 1

53. The DNA molecule has the shape of a double helix (see 
Figure 3 on page 582). The radius of each helix is about
10 angstroms (1 ). Each helix rises about

during each complete turn, and there are about
complete turns. Estimate the length of each

helix.

54. Let’s consider the problem of designing a railroad track to
make a smooth transition between sections of straight
track. Existing track along the negative -axis is to be
joined smoothly to a track along the line for .

x
y � 1 x � 1

Å � 10�8 cm
34 Å
2.9 � 108

10.9 MOTION IN SPACE: VELOCITY AND ACCELERATION
In this section we show how the ideas of tangent and normal vectors and curvature can
be used in physics to study the motion of an object, including its velocity and accel-
eration, along a space curve. In particular, we follow in the footsteps of Newton by
using these methods to derive Kepler’s First Law of planetary motion.

Suppose a particle moves through space so that its position vector at time is .
Notice from Figure 1 that, for small values of , the vector

approximates the direction of the particle moving along the curve . Its magnitude
measures the size of the displacement vector per unit time. The vector gives the
average velocity over a time interval of length and its limit is the velocity vector
at time :

Thus the velocity vector is also the tangent vector and points in the direction of the tan-
gent line.

The speed of the particle at time is the magnitude of the velocity vector, that is,
. This is appropriate because, from and from Equation 10.8.7, we have

As in the case of one-dimensional motion, the acceleration of the particle is defined
as the derivative of the velocity:

t r�t�
h

r�t � h� � r�t�
h

r�t�

h v�t�
t

v�t� � lim
h l 0

r�t � h� � r�t�
h

� r�t�

t

	 v�t� 	

	 v�t� 	 � 	 r�t� 	 �
ds

dt
� rate of change of distance with respect to time

a�t� � v�t� � r��t�

1

2

1

2
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EXAMPLE 1 The position vector of an object moving in a plane is given by
Find its velocity, speed, and acceleration when and illustrate

geometrically.

SOLUTION The velocity and acceleration at time are

and the speed is

When , we have

These velocity and acceleration vectors are shown in Figure 2. ■

EXAMPLE 2 Find the velocity, acceleration, and speed of a particle with position
vector .

SOLUTION

■

The vector integrals that were introduced in Section 10.7 can be used to find posi-
tion vectors when velocity or acceleration vectors are known, as in the next example.

EXAMPLE 3 A moving particle starts at an initial position with
initial velocity . Its acceleration is . Find its
velocity and position at time .

SOLUTION Since , we have

To determine the value of the constant vector , we use the fact that
. The preceding equation gives , so and

r�t� � t 3 i � t 2 j. t � 1

t

v�t� � r�t� � 3t 2 i � 2t j

a�t� � r��t� � 6t i � 2 j

	 v�t� 	 � s�3t 2 �2 � �2t�2 � s9t 4 � 4t 2 

t � 1

v�1� � 3 i � 2 j a�1� � 6 i � 2 j 	 v�1� 	 � s13

r�t� � � t 2, e t, te t�

v�t� � r�t� � �2t, e t, �1 � t�e t �

a�t� � v�t� � �2, e t, �2 � t�e t �

	 v�t� 	 � s4t 2 � e 2t � �1 � t�2e 2t

r�0� � �1, 0, 0 �
v�0� � i � j � k a�t� � 4t i � 6t j � k

t

a�t� � v�t�

v�t� � y a�t� dt � y �4t i � 6t j � k� dt

� 2t 2 i � 3t 2 j � t k � C

C
v�0� � i � j � k v�0� � C C � i � j � k

v�t� � 2t 2 i � 3t 2 j � t k � i � j � k

� �2t 2 � 1� i � �3t 2 � 1� j � �t � 1� k

V
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FIGURE 2
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x

(1, 1)

a(1)

v(1)

Visual 10.9 shows animated veloc-
ity and acceleration vectors for objects
moving along various curves.

TEC

■ Figure 3 shows the path of the 
par ticle in Example 2 with the velocity
and acceleration vectors when .t � 1

FIGURE 3
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x

1

a(1)

v(1)
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Since , we have

Putting , we find that , so

■

In general, vector integrals allow us to recover velocity when acceleration is known
and position when velocity is known:

If the force that acts on a particle is known, then the acceleration can be found from
Newton’s Second Law of Motion. The vector version of this law states that if, at any
time , a force acts on an object of mass producing an acceleration , then

EXAMPLE 4 An object with mass that moves in a circular path with constant
angular speed has position vector . Find the force
acting on the object and show that it is directed toward the origin.

SOLUTION

Therefore Newton’s Second Law gives the force as

Notice that . This shows that the force acts in the direction oppo-
site to the radius vector and therefore points toward the origin (see Figure 5).
Such a force is called a centripetal (center-seeking) force. ■

EXAMPLE 5 A projectile is fired with angle of elevation and initial velocity .
(See Figure 6.) Assuming that air resistance is negligible and the only external force
is due to gravity, find the position function of the projectile. What value of
maximizes the range (the horizontal distance traveled)?

SOLUTION We set up the axes so that the projectile starts at the origin. Since the
force due to gravity acts downward, we have

where m�s . Thus

v�t� � r�t�

r�t� � y v�t� dt

� y 
�2t 2 � 1� i � �3t 2 � 1� j � �t � 1� k� dt

� ( 2
3 t 3 � t) i � �t 3 � t� j � ( 1

2 t 2 � t) k � D

t � 0 D � r�0� � i

r�t� � ( 2
3 t 3 � t � 1) i � �t 3 � t� j � ( 1

2 t 2 � t) k

v�t� � v�t0� � y
t

t0

a�u� du r�t� � r�t0� � y
t

t0

v�u� du

t F�t� m a�t�

F�t� � ma�t�

m
� r�t� � a cos �t i � a sin �t j

v�t� � r�t� � �a� sin �t i � a� cos �t j

a�t� � v�t� � �a�2 cos �t i � a�2 sin �t j

F�t� � ma�t� � �m�2�a cos �t i � a sin �t j�

F�t� � �m�2r�t�
r�t�

� v0

r�t� �

F � ma � �mt j

t � 	 a 	  9.8 2

a � �t j

V

■ The expression for that we
obtained in Example 3 was used to 
plot the path of the particle in Figure 4
for .0 � t � 3

r�t�

FIGURE 4

(1, 0, 0) 0

20
x

0
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y

0

4
z
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2
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■ The angular speed of the object 
moving with position is ,
where is the angle shown in Figure 5.�

� � d��dtP

FIGURE 5

P

¨
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x

FIGURE 6
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Since , we have

where . Therefore

Integrating again, we obtain

But , so the position vector of the projectile is given by

If we write (the initial speed of the projectile), then

and Equation 3 becomes

The parametric equations of the trajectory are therefore 

The horizontal distance is the value of when . Setting , we obtain
or . The latter value of then gives

Clearly, has its maximum value when , that is, . ■

EXAMPLE 6 A projectile is fired with muzzle speed and angle of eleva-
tion from a position 10 m above ground level. Where does the projectile hit the
ground, and with what speed?

SOLUTION If we place the origin at ground level, then the initial position of the
projectile is (0, 10) and so we need to adjust Equations 4 by adding 10 to the expres-
sion for . With , , and , we have

Impact occurs when , that is, . Solving this quadratic
equation (and using only the positive value of ), we get

v�t� � a

v�t� � �tt j � C

C � v�0� � v0

r�t� � v�t� � �tt j � v0

r�t� � �
1
2 tt 2 j � t v0 � D

D � r�0� � 0

r�t� � �
1
2 tt 2 j � t v0

	 v0 	 � v0

v0 � v0 cos � i � v0 sin � j

r�t� � �v0 cos ��t i � [�v0 sin ��t �
1
2 tt 2 ] j

x � �v0 cos ��t y � �v0  sin ��t �
1
2 tt 2

d x y � 0 y � 0
t � 0 t � �2v0 sin ���t t

d � x � �v0 cos ��
2v0 sin �

t
�

v 2
0 �2 sin � cos ��

t
�

v 2
0 sin 2�

t

d sin 2� � 1 � � ��4

150 m�s
45�

y v0 � 150 m�s � � 45� t � 9.8 m�s2

x � 150 cos���4�t � 75s2 t

y � 10 � 150 sin���4� t �
1
2 �9.8�t 2 � 10 � 75s2 t � 4.9t 2

y � 0 4.9t 2 � 75s2 t � 10 � 0
t

t �
75s2 � s11,250 � 196

9.8
 21.74

3

4

V
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■ If you eliminate from Equations 4,
you will see that is a quadratic func-
tion of . So the path of the projectile is
part of a parabola.

x
y

t
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Then , so the projectile hits the ground about 2306 m
away.

The velocity of the projectile is

So its speed at impact is

■

TANGENTIAL AND NORMAL COMPONENTS OF ACCELERATION

When we study the motion of a particle, it is often useful to resolve the acceleration
into two components, one in the direction of the tangent and the other in the direction
of the normal. If we write for the speed of the particle, then

and so

If we differentiate both sides of this equation with respect to , we get

If we use the expression for the curvature given by Equation 10.8.9, then we have

The unit normal vector was defined in the preceding section as , so
gives

and Equation 5 becomes

Writing and for the tangential and normal components of acceleration, we have

where

This resolution is illustrated in Figure 7.
Let’s look at what Formula 7 says. The first thing to notice is that the binormal vec-

tor B is absent. No matter how an object moves through space, its acceleration always
lies in the plane of T and N (the osculating plane). (Recall that T gives the direction
of motion and N points in the direction the curve is turning.) Next we notice that the 

x  75s2 �21.74�  2306

v�t� � r�t� � 75s2 i � (75s2 � 9.8t) j

	 v�21.74� 	 � s(75s2 )2
� (75s2 � 9.8 � 21.74)2  151 m�s

v � 	 v 	

T�t� �
r�t�

	 r�t� 	 �
v�t�

	 v�t� 	 �
v
v

v � vT

t

a � v � vT � vT

� � 	 T	
	 r	 � 	 T	

v
so 	 T	 � �v

N � T�	 T	

T � 	 T	N � �vN

a � vT � �v2N

aT aN

a � aT T � aN N

aT � v and aN � �v2

5

6

7

8

6

aT

aN

N

a

T

FIGURE 7
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tangential component of acceleration is , the rate of change of speed, and the normal
component of acceleration is , the curvature times the square of the speed. This
makes sense if we think of a passenger in a car—a sharp turn in a road means a large
value of the curvature , so the component of the acceleration perpendicular to the
motion is large and the passenger is thrown against a car door. High speed around the
turn has the same effect; in fact, if you double your speed, is increased by a factor
of 4.

Although we have expressions for the tangential and normal components of accel-
eration in Equations 8, it’s desirable to have expressions that depend only on , , and

. To this end we take the dot product of with as given by Equation 7:

(since and )

Therefore

Using the formula for curvature given by Theorem 10.8.10, we have

EXAMPLE 7 A particle moves with position function . Find the
tangential and normal components of acceleration.

SOLUTION

Therefore Equation 9 gives the tangential component as

Since

Equation 10 gives the normal component as

■

v
�v2

�

aN

r r
r� v � vT a

v � a � vT � �vT � �v2N�

� vvT � T � �v3 T � N

� vv T � T � 1 T � N � 0

aT � v �
v � a

v
�

r�t� � r��t�

	 r�t� 	

aN � �v2 � 	 r�t� � r�t� 	
	 r�t� 	3 	 r�t� 	2 � 	 r�t� � r�t� 	

	 r�t� 	

r�t� � � t 2, t 2, t 3 �

r�t� � t 2 i � t 2 j � t 3 k

r�t� � 2t i � 2t j � 3t 2 k

r��t� � 2 i � 2 j � 6t k

	 r�t� 	 � s8t 2 � 9t 4 

aT �
r�t� � r��t�

	 r�t� 	 �
8t � 18t 3

s8t 2 � 9t 4 

r�t� � r��t� � 	 i
2t

2

j
2t

2

k
3t 2

6t 	 � 6t 2 i � 6t 2 j

aN � 	 r�t� � r��t� 	
	 r�t� 	 �

6s2 t 2

s8t 2 � 9t 4 

9

10
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KEPLER’S LAWS OF PLANETARY MOTION

We now describe one of the great accomplishments of calculus by showing how the
material of this chapter can be used to prove Kepler’s laws of planetary motion. After
20 years of studying the astronomical observations of the Danish astronomer Tycho
Brahe, the German mathematician and astronomer Johannes Kepler (1571–1630) for-
mulated the following three laws.

KEPLER’S LAWS

1. A planet revolves around the sun in an elliptical orbit with the sun at one
focus.

2. The line joining the sun to a planet sweeps out equal areas in equal times.

3. The square of the period of revolution of a planet is proportional to the
cube of the length of the major axis of its orbit.

In his book Principia Mathematica of 1687, Sir Isaac Newton was able to show
that these three laws are consequences of two of his own laws, the Second Law of
Motion and the Law of Universal Gravitation. In what follows we prove Kepler’s First
Law. The remaining laws are proved as a Web Project (with hints).

Since the gravitational force of the sun on a planet is so much larger than the forces
exerted by other celestial bodies, we can safely ignore all bodies in the universe except
the sun and one planet revolving about it. We use a coordinate system with the sun at
the origin and we let be the position vector of the planet. (Equally well,
could be the position vector of the moon or a satellite moving around the earth or a
comet moving around a star.) The velocity vector is and the acceleration vec-
tor is . We use the following laws of Newton:

where is the gravitational force on the planet, and are the masses of the plan-
et and the sun, is the gravitational constant, , and is the unit vec-
tor in the direction of .

We first show that the planet moves in one plane. By equating the expressions for
in Newton’s two laws, we find that

and so is parallel to . It follows that . We use Formula 5 in Theorem
10.7.5 to write

Therefore

r � r�t� r

v � r
a � r�

Second Law of Motion: F � ma

Law of Gravitation:  F � �
GMm

r 3 r � �
GMm

r 2 u

F m M
G r � 	 r 	 u � �1�r�r

r

F

a � �
GM

r 3 r

a r r � a � 0

d

dt
�r � v� � r � v � r � v

� v � v � r � a � 0 � 0 � 0

r � v � h
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where is a constant vector. (We may assume that ; that is, and are not par-
allel.) This means that the vector is perpendicular to for all values of t, so
the planet always lies in the plane through the origin perpendicular to . Thus the orbit
of the planet is a plane curve.

To prove Kepler’s First Law we rewrite the vector as follows:

Then

(by Theorem 10.4.8, Property 6)

But and, since , it follows from Example 11 in Sec-
tion 10.7 that . Therefore

and so

Integrating both sides of this equation, we get

where is a constant vector.
At this point it is convenient to choose the coordinate axes so that the standard basis

vector points in the direction of the vector . Then the planet moves in the -plane.
Since both and are perpendicular to , Equation 11 shows that lies in the 

-plane. This means that we can choose the - and -axes so that the vector lies in
the direction of , as shown in Figure 8.

If is the angle between and , then are polar coordinates of the planet.
From Equation 11 we have

where . Then

where . But

h h � 0 r v
r � r�t� h

h

h

h � r � v � r � r � r u � �r u�

� r u � �r u � ru� � r 2�u � u� � rr�u � u�

� r 2�u � u�

a � h �
�GM

r 2 u � �r 2 u � u� � �GM u � �u � u�

� �GM 
�u � u�u � �u � u�u�

u � u � 	 u 	2 � 1 	 u�t� 	 � 1
u � u � 0

a � h � GM u

�v � h� � v � h � a � h � GM u

v � h � GM u � c

c

k h xy
v � h u h c

xy x y i
c

� c r �r, ��

r � �v � h� � r � �GM u � c� � GM r � u � r � c

� GMr u � u � 	 r 	 	 c 	 cos � � GMr � rc cos �

c � 	 c 	
r �

r � �v � h�
GM � c cos �

�
1

GM

r � �v � h�
1 � e cos �

e � c��GM�

r � �v � h� � �r � v� � h � h � h � 	 h 	2 � h 2

11
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10.9 EXERCISES

1–6 ■ Find the velocity, acceleration, and speed of a particle
with the given position function. Sketch the path of the particle
and draw the velocity and acceleration vectors for the specified
value of .

1. ,  

2. ,  

3. ,  

4. ,  

5. ,  

6. ,  

7–10 ■ Find the velocity, acceleration, and speed of a particle
with the given position function.

7.

8.

9.

10.

11–12 ■ Find the velocity and position vectors of a particle that
has the given acceleration and the given initial velocity and 
position.

11. ,  ,  

t

r�t� � ��1
2 t 2, t � t � 2

r�t� � �2 � t, 4st � t � 1

r�t� � 3 cos t i � 2 sin t j t � ��3

r�t� � e t i � e 2 t j t � 0

r�t� � t i � t 2 j � 2 k t � 1

r�t� � t i � 2 cos t j � sin t k t � 0

r�t� � � t 2 � t, t 2 � t, t 3 �

r�t� � �2 cos t, 3t, 2 sin t�

r�t� � s2 t i � e t j � e�t k

r�t� � t 2 i � 2t j � ln t k

a�t� � i � 2 j v�0� � k r�0� � i

12. ,  ,  

13–14 ■

(a) Find the position vector of a particle that has the given
acceleration and the specified initial velocity and position.

; (b) Use a computer to graph the path of the particle.

13. ,  ,  

14. ,  ,  

15. The position function of a particle is given by
. When is the speed a minimum?

16. What force is required so that a particle of mass has the
position function ?

17. A force with magnitude 20 N acts directly upward from the 
-plane on an object with mass 4 kg. The object starts at

the origin with initial velocity . Find its posi-
tion function and its speed at time .

18. Show that if a particle moves with constant speed, then the
velocity and acceleration vectors are orthogonal.

19. A projectile is fired with an initial speed of 200 m�s and 
angle of elevation . Find (a) the range of the projectile, 
(b) the maximum height reached, and (c) the speed at
impact.

20. Rework Exercise 19 if the projectile is fired from a position
100 m above the ground.

a�t� � 2 i � 6t j � 12t 2 k v�0� � i r�0� � j � k

a�t� � 2t i � sin t j � cos 2t k v�0� � i r�0� � j

a�t� � t i � e t j � e�t k v�0� � k r�0� � j � k

r�t� � � t 2, 5t, t 2 � 16t �

m
r�t� � t 3 i � t 2 j � t 3 k

xy
v�0� � i � j

t

60�

where . So

Writing , we obtain the equation

Comparing with Theorem 9.5.8, we see that Equation 12 is the polar equation of a
conic section with focus at the origin and eccentricity . We know that the orbit of a
planet is a closed curve and so the conic must be an ellipse.

This completes the derivation of Kepler’s First Law. A Web Project will guide you
through the derivation of the Second and Third Laws. The proofs of these three laws
show that the methods of this chapter provide a powerful tool for describing some of
the laws of nature.

h � � h �
r �

h 2��GM �
1 � e cos �

�
eh 2�c

1 � e cos �

d � h 2�c

r �
ed

1 � e cos �

e

12
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the opposite bank will the boat touch shore? Graph the
path of the boat.

(b) Suppose we would like to pilot the boat to land at the
point on the east bank directly opposite . If we
maintain a constant speed of and a constant
heading, find the angle at which the boat should head.
Then graph the actual path the boat follows. Does the
path seem realistic?

30–33 ■ Find the tangential and normal components of the
acceleration vector.

30.

31.

32.

33.

34. If a particle with mass moves with position 
vector , then its angular momentum is defined as

and its torque as .
Show that . Deduce that if for all ,
then is constant. (This is the law of conservation of
angular momentum.)

35. The position function of a spaceship is

and the coordinates of a space station are . The
captain wants the spaceship to coast into the space station.
When should the engines be turned off?

36. A rocket burning its onboard fuel while moving through
space has velocity and mass at time . If the
exhaust gases escape with velocity relative to the rocket,
it can be deduced from Newton’s Second Law of Motion
that

(a) Show that .

(b) For the rocket to accelerate in a straight line from rest
to twice the speed of its own exhaust gases, what frac-
tion of its initial mass would the rocket have to burn as
fuel?

r�t� � �1 � t� i � �t 2 � 2t� j

r�t� � cos t i � sin t j � t k

r�t� � t i � cos2t j � sin2t k

r�t� � �3t � t 3 � i � 3t 2 j

m
r�t�

L�t� � mr�t� � v�t� � �t� � mr�t� � a�t�
L��t� � ��t� � �t� � 0 t

L�t�

r�t� � �3 � t� i � �2 � ln t� j � �7 �
4

t 2 � 1	 k

�6, 4, 9�

v�t� m�t� t
ve

m
dv
dt

�
dm

dt
ve

v�t� � v�0� � ln 
m�0�
m�t�

ve

5 m�s
AB

21. A ball is thrown at an angle of to the ground. If the
ball lands 90 m away, what was the initial speed of the
ball?

22. A gun is fired with angle of elevation . What is the 
muzzle speed if the maximum height of the shell is 500 m?

23. A gun has muzzle speed . Find two angles of ele-
vation that can be used to hit a target 800 m away.

24. A batter hits a baseball 3 ft above the ground toward the 
center field fence, which is 10 ft high and 400 ft from
home plate. The ball leaves the bat with speed at
an angle above the horizontal. Is it a home run? (In
other words, does the ball clear the fence?)

25. A medieval city has the shape of a square and is protected 
by walls with length 500 m and height 15 m. You are the
commander of an attacking army and the closest you can
get to the wall is 100 m. Your plan is to set fire to the city
by catapulting heated rocks over the wall (with an initial
speed of ). At what range of angles should you tell
your men to set the catapult? (Assume the path of the
rocks is perpendicular to the wall.)

26. Show that a projectile reaches three-quarters of its maxi-
mum height in half the time needed to reach its maximum
height.

27. A ball is thrown eastward into the air from the origin (in 
the direction of the positive -axis). The initial velocity is

, with speed measured in feet per second. The
spin of the ball results in a southward acceleration of

, so the acceleration vector is .
Where does the ball land and with what speed?

28. A ball with mass 0.8 kg is thrown southward into the air
with a speed of at an angle of to the ground. A
west wind applies a steady force of 4 N to the ball in an
easterly direction. Where does the ball land and with what
speed?

; 29. Water traveling along a straight portion of a river normally
flows fastest in the middle, and the speed slows to almost
zero at the banks. Consider a long straight stretch of river
flowing north, with parallel banks 40 m apart. If the maxi-
mum water speed is 3 , we can use a quadratic func-
tion as a basic model for the rate of water flow units
from the west bank: .
(a) A boat proceeds at a constant speed of from a

point on the west bank while maintaining a heading
perpendicular to the bank. How far down the river on 

45�

30�

150 m�s

115 ft�s
50�

80 m�s

x
50 i � 80 k

4 ft�s2 a � �4 j � 32 k

30�30 m�s

m�s
x

f �x� � 3
400 x�40 � x�

5 m�s
A
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CHAPTER 10 REVIEW
CONCEPT CHECK

610 CHAPTER 10 VECTORS AND THE GEOMETRY OF SPACE

1. What is the difference between a vector and a scalar?

2. How do you add two vectors geometrically? How do you
add them algebraically?

3. If a is a vector and c is a scalar, how is ca related to a
geo metrically? How do you find ca algebraically?

4. How do you find the vector from one point to another?

5. How do you find the dot product of two vectors if you
know their lengths and the angle between them? What if
you know their components?

6. How are dot products useful?

7. Write expressions for the scalar and vector projections of b
onto a. Illustrate with diagrams.

8. How do you find the cross product a � b of two vectors if
you know their lengths and the angle between them? What
if you know their components?

9. How are cross products useful?

10. (a) How do you find the area of the parallelogram deter -
mined by a and b?

(b) How do you find the volume of the parallelepiped 
determined by a, b, and c?

11. How do you find a vector perpendicular to a plane?

12. How do you find the angle between two intersecting planes?

13. Write a vector equation, parametric equations, and sym -
metric equations for a line.

14. Write a vector equation and a scalar equation for a plane.

15. (a) How do you tell if two vectors are parallel?
(b) How do you tell if two vectors are perpendicular?
(c) How do you tell if two planes are parallel?

16. (a) Describe a method for determining whether three points 
, , and lie on the same line.

(b) Describe a method for determining whether four points 
, , , and lie in the same plane.

a � b

RQP

SRQP

17. (a) How do you find the distance from a point to a line?
(b) How do you find the distance from a point to a plane?

18. What are the traces of a surface? How do you find them?

19. Write equations in standard form of the six types of quadric
surfaces.

20. What is a vector function? How do you find its derivative
and its integral?

21. What is the connection between vector functions and space
curves?

22. How do you find the tangent vector to a smooth curve at a
point? How do you find the tangent line? The unit tangent
vector?

23. If and are differentiable vector functions, is a scalar,
and is a real-valued function, write the rules for differen-
tiating the following vector functions.
(a) (b) (c)
(d) (e) (f)

24. How do you find the length of a space curve given by a 
vector function 

25. (a) What is the definition of curvature?
(b) Write a formula for curvature in terms of and .
(c) Write a formula for curvature in terms of and .
(d) Write a formula for the curvature of a plane curve with

equation .

26. Write formulas for the unit normal and binormal vectors of
a smooth space curve .

27. (a) How do you find the velocity, speed, and acceleration of
a particle that moves along a space curve?

(b) Write the acceleration in terms of its tangential and nor-
mal components.

28. State Kepler’s Laws.

u v c
f

u�t� � v�t� cu�t� f �t� u�t�
u�t� � v�t� u�t� � v�t� u� f �t��

r�t�?

r��t� T��t�
r��t� r	�t�

y � f �x�

r�t�
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TRUE-FALSE QUIZ

Determine whether the statement is true or false. If it is true, explain
why. If it is false, explain why or give an example that disproves the
statement.

1. If and , then .

2. For any vectors and in , .

3. For any vectors and in , .

4. For any vectors and in , .

5. For any vectors and in , .

6. For any vectors and in , .

7. For any vectors and in , .

8. For any vectors and in and any scalar ,
.

9. For any vectors and in and any scalar ,
.

10. For any vectors , , and in ,
.

11. For any vectors , , and in , 
.

12. For any vectors , , and in ,
.

13. For any vectors and in , .

14. For any vectors and in , .

15. The vector is parallel to the plane
.

16. A linear equation represents a
line in space.

17. The set of points is a circle.

18. In the graph of is a paraboloid.

u � �u1, u2 � v � �v1, v2 � u � v � �u1v1, u2v2 �

u v V3 � u � v � � � u � � � v �
� u � v � � � u �� v �V3vu

� u � v � � � u �� v �V3vu

u � v � v � uV3vu

u � v � v � uV3vu

� u � v � � � v � u �V3vu

kV3vu
k�u � v� � �ku� � v

kV3vu
k�u � v� � �ku� � v

V3wvu
�u � v� � w � u � w � v � w

V3wvu
u � �v � w� � �u � v� � w

V3wvu
u � �v � w� � �u � v� � w

�u � v� � u � 0V3vu

�u � v� � v � u � vV3vu

�3, �1, 2 �
6x � 2y � 4z � 1

Ax � By � Cz � D � 0

{�x, y, z� � x 2 � y 2 � 1}

y � x 2�3

19. If , then or .

20. If , then or .

21. If and , then or .

22. If and are in , then .

23. The curve with vector equation is 
a line.

24. The curve is a parabola.

25. The curve is a line that passes through
the origin.

26. The derivative of a vector function is obtained by differen-
ti ating each component function.

27. If and are differentiable vector functions, then

28. If is a differentiable vector function, then

29. If is the unit tangent vector of a smooth curve, then the
curvature is .

30. The binormal vector is .

31. Suppose is twice continuously differentiable. At an inflec-
tion point of the curve , the curvature is 0.

32. If for all , the curve is a straight line.

33. If for all , then is a constant.

34. If for all , then is orthogonal to for 
all .

� u � v � 
 � u � � v �V3vu

r�t� � t 3 i � 2t 3 j � 3t 3 k

r�t� � �0, t 2, 4t�

r�t� � �2t, 3 � t, 0 �

v�t�u�t�

d

dt

u�t� � v�t�� � u��t� � v��t�

r�t�

d

dt � r�t� � � � r��t� �

T�t�
� � � dT�dt �

B�t� � N�t� � T�t�

f
y � f �x�

t��t� � 0

� r��t� �t� r�t� � � 1

r�t�r��t�t� r�t� � � 1
t

v � 0u � 0u � v � 0

v � 0u � 0u � v � 0

v � 0u � 0u � v � 0u � v � 0
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EXERCISES

1. (a) Find an equation of the sphere that passes through the
point and has center .

(b) Find the curve in which this sphere intersects the 
-plane.

(c) Find the center and radius of the sphere

2. Copy the vectors in the figure and use them to draw each of
the following vectors.
(a) (b) (c) (d)

3. If u and v are the vectors shown in the figure, find and
. Is u � v directed into the page or out of it?

4. Calculate the given quantity if

(a) (b)
(c) (d)
(e) (f)
(g) (h)
(i) (j)
(k) The angle between and (correct to the nearest

degree)

5. Find the values of such that the vectors and
are orthogonal.

6. Find two unit vectors that are orthogonal to both 
and .

7. Suppose that . Find
(a) (b)

(c) (d)

��1, 2, 1��6, �2, 3�

yz

x 2 � y2 � z2 � 8x � 2y � 6z � 1 � 0

2a � b�
1
2 aa � ba � b

a
b

u � v

� u � v �

45°

|v |=3

|u |=2

a � i � j � 2k

b � 3 i � 2 j � k

c � j � 5k

� b �2a � 3b
a � ba � b
a � �b � c�� b � c �
a � �b � c�c � c
proja bcomp a b

ba

�3, 2, x �x
�2x, 4, x �

j � 2k
i � 2 j � 3k

u � �v � w� � 2
u � �w � v��u � v� � w

�u � v� � vv � �u � w�

8. Show that if , , and are in , then

9. Find the acute angle between two diagonals of a cube.

10. Given the points , , , and
, find the volume of the parallelepiped with adja-

cent edges , , and .

11. (a) Find a vector perpendicular to the plane through the
points , , and .

(b) Find the area of triangle .

12. A constant force moves an object
along the line segment from to . Find the
work done if the distance is measured in meters and the
force in newtons.

13. A boat is pulled onto shore using two ropes, as shown in the
diagram. If a force of 255 N is needed, find the magnitude
of the force in each rope.

14. Find the magnitude of the torque about if a 50-N force is
applied as shown.

15–17 ■ Find parametric equations for the line.

15. The line through and 

16. The line through and parallel to the line

17. The line through and perpendicular to the 
plane 

C��1, 1, 4�B�2, 3, 0�A�1, 0, 1�
D�0, 3, 2�

ADACAB

C�1, 4, 3�B�2, 0, �1�A�1, 0, 0�
ABC

F � 3 i � 5 j � 10k
�5, 3, 8��1, 0, 2�

20°

30°

255 N

P

P

40 cm

50 N
30°

�1, 1, 5��4, �1, 2�

�1, 0, �1�
1
3�x � 4� � 1

2 y � z � 2

��2, 2, 4�
2x � y � 5z � 12

V3cba

�a � b� � 
�b � c� � �c � a�� � 
a � �b � c��2
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35.

36.

37. An ellipsoid is created by rotating the ellipse
about the -axis. Find an equation of the

ellipsoid.

38. A surface consists of all points such that the distance
from to the plane is twice the distance from to
the point . Find an equation for this surface and
identify it.

39. (a) Sketch the curve with vector function

(b) Find and .

40. Let .
(a) Find the domain of . (b) Find .
(c) Find .

41. Find a vector function that represents the curve of intersec-
tion of the cylinder and the plane .

; 42. Find parametric equations for the tangent line to the curve
, , at the point

. Graph the curve and the tangent line on a com-
mon screen.

43. If , evaluate .

44. Let be the curve with equations , ,
. Find (a) the point where intersects the -plane,

(b) parametric equations of the tangent line at , and
(c) an equation of the normal plane to at .

45. Use Simpson’s Rule with to estimate the length of 
the arc of the curve with equations , , ,

.

46. Find the length of the curve ,
.

47. The helix intersects the curve
at the point . Find the

angle of intersection of these curves.

48. Reparametrize the curve
with respect to arc length measured from the point
in the direction of increasing .

49. For the curve given by , find (a) the unit
tangent vector, (b) the unit normal vector, and (c) the 
curvature.

50. Find the curvature of the ellipse , at
the points and .

51. Find the curvature of the curve at the point .

4x 2 � 4y 2 � 8y � z2 � 0

x � y2 � z2 � 2y � 4z � 5

x4x 2 � y 2 � 16

P
Py � 1P

�0, �1, 0�

t � 0r�t� � t i � cos � t j � sin � t k

r	�t�r��t�

r�t� � �s2 � t , �et � 1��t, ln�t � 1��
lim t l 0 r�t�r

r��t�

x � z � 5x 2 � y 2 � 16

z � 2 sin 3ty � 2 sin 2tx � 2 sin t
(1, s3 , 2)

x
1
0 r�t� dtr�t� � t 2 i � t cos � t j � sin � t k

y � 2t � 1x � 2 � t 3C
xzCz � ln t

�1, 1, 0�
�1, 1, 0�C

n � 6
z � t 4y � t 3x � t 2

0 
 t 
 3

r�t� � �2t 3�2, cos 2t, sin 2t �
0 
 t 
 1

r1�t� � cos t i � sin t j � t k
�1, 0, 0�r2�t� � �1 � t� i � t 2 j � t 3 k

r�t� � e t i � e t sin t j � e t cos t k
�1, 0, 1�

t

r�t� � � 1
3 t 3, 1

2 t 2, t �

y � 4 sin tx � 3 cos t
�0, 4��3, 0�

�1, 1�y � x 4

18 –20 ■ Find an equation of the plane.

18. The plane through and parallel to 

19. The plane through , , and 

20. The plane through that contains the line 
, , 

21. Find the point in which the line with parametric equations
, , intersects the plane

.

22. Find the distance from the origin to the line 
, , .

23. Determine whether the lines given by the symmetric 
equations

and

are parallel, skew, or intersecting.

24. (a) Show that the planes and
are neither parallel nor 

perpendicular.
(b) Find, correct to the nearest degree, the angle between

these planes.

25. Find an equation of the plane through the line of
intersection of the planes and and
perpendicular to the plane .

26. (a) Find an equation of the plane that passes through the
points , , and .

(b) Find symmetric equations for the line through that is 
perpendicular to the plane in part (a).

(c) A second plane passes through and has normal
vector . Show that the acute angle between
the planes is approximately .

(d) Find parametric equations for the line of intersection of
the two planes.

27. Find the distance between the planes 
and .

28 –36 ■ Identify and sketch the graph of each surface.

28. 29.

30. 31.

32. 33.

34.

z � 4ty � 1 � 3tx � 2 � t
2x � y � z � 2

z � �1 � 2ty � 2 � tx � 1 � t

x � 1

2
�

y � 2

3
�

z � 3

4

x � 1

6
�

y � 3

�1
�

z � 5

2

x � y � z � 1
2x � 3y � 4z � 5

y � 2z � 3x � z � 1
x � y � 2z � 1

C�1, 3, �4�B��1, �1, 10�A�2, 1, 1�
B

�2, 0, 4�
�2, �4, �3 �

43�

3x � y � 4z � 2
3x � y � 4z � 24

x � zx � 3

x 2 � y 2 � 4z2y � z2

�4x 2 � y 2 � 4z2 � 44x � y � 2z � 4

y 2 � z2 � 1 � x 2

z � 1 � 3ty � 3 � tx � 2t

x � 4y � 3z � 1�2, 1, 0�

�6, 3, 1��4, 0, 2��3, �1, 1�

�1, 2, �2�
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55. An athlete throws a shot at an angle of to the horizon-
tal at an initial speed of 43 ft�s. It leaves his hand 7 ft
above the ground.
(a) Where is the shot 2 seconds later?
(b) How high does the shot go?
(c) Where does the shot land?

56. Find the tangential and normal components of the acceler-
ation vector of a particle with position function

57. Find the curvature of the curve with parametric equations

r�t� � t i � 2t j � t 2 k

x � y
t

0
sin(1

2 �� 2) d� y � y
t

0
cos(1

2 �� 2) d�

45�
; 52. Find an equation of the osculating circle of the curve

at the origin. Graph both the curve and its 
osculating circle.

53. A particle moves with position function

Find the velocity, speed, and acceleration of the particle.

54. A particle starts at the origin with initial velocity
. Its acceleration is

Find its position function.

y � x 4 � x 2

r�t� � t ln t i � t j � e�t k

i � j � 3k

a�t� � 6t i � 12t 2 j � 6t k
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615

11.1 FUNCTIONS OF SEVERAL VARIABLES
The temperature at a point on the surface of the earth at any given time depends on
the longitude and latitude of the point. We can think of as being a function of
the two variables and , or as a function of the pair . We indicate this functional
dependence by writing .

The volume of a circular cylinder depends on its radius and its height . In 
fact, we know that . We say that is a function of and , and we write

.

DEFINITION A function of two variables is a rule that assigns to each
ordered pair of real numbers in a set a unique real number denoted by

. The set is the domain of and its range is the set of values that
takes on, that is, .

We often write to make explicit the value taken on by at the general
point . The variables and are independent variables and is the dependent
variable. [Compare this with the notation for functions of a single variable.]

A function of two variables is just a function whose domain is a subset of and
whose range is a subset of . One way of visualizing such a function is by means of
an arrow diagram (see Figure 1), where the domain is represented as a subset of the

-plane and the range is a set of numbers on a real line, shown as a -axis. For
instance, if represents the temperature at a point in a flat metal plate with
the shape of , we can think of the -axis as a thermometer displaying the recorded
temperatures.

If a function is given by a formula and no domain is specified, then the domain
of is understood to be the set of all pairs for which the given expression is a
well-defined real number.

EXAMPLE 1 Find the domains of the following functions and evaluate .

(a) (b) 

SOLUTION

(a)

The expression for makes sense if the denominator is not 0 and the quantity under

T
x y T

x y �x, y�
T � f �x, y�

V r h
V � �r 2h V r h

V�r, h� � �r 2h

f
�x, y� D

f �x, y� D f f
� f �x, y� � �x, y� � D�

z � f �x, y� f
�x, y� x y z

y � f �x�
�2

�

D
xy

f
f �x, y�

f �3, 2�

f �x, y� �
sx � y � 1

x � 1
f �x, y� � x ln�y 2 � x�

z
f �x, y� �x, y�
D z

f �3, 2� �
s3 � 2 � 1

3 � 1
�

s6

2

f

PARTIAL DERI VATI VES
So far we have dealt with the calculus of functions of a single variable. But, in the real world, physical
quantities often depend on two or more variables, so in this chapter we turn our attention to functions
of several variables and extend the basic ideas of differential calculus to such functions.

11
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FIGURE 1

y

x0

z

D f(a, b)

f (x, y)

(x, y)

(a, b)

0
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FIGURE 2 
œ„„„„„„„

x-1

x+y+1
Domain of f(x, y)=

x0

y

_1

_1

x=1

x+y+1=0

FIGURE 3 
Domain of f(x, y)=x ln(¥-x)

x0

y

x=¥

≈+¥=9

3_3

FIGURE 4
Domain of g(x, y)=œ„„„„„„„„„9-≈-¥

x

y

the square root sign is nonnegative. So the domain of is

The inequality , or , describes the points that lie on or
above the line , while means that the points on the line
must be excluded from the domain (see Figure 2).

(b)

Since is defined only when , that is, , the domain of
is . This is the set of points to the left of the parabola .
(See Figure 3.) ■

EXAMPLE 2 Find the domain and range of .

SOLUTION The domain of is

which is the disk with center and radius 3. (See Figure 4.) The range of is

Since is a positive square root, . Also

So the range is

■

GRAPHS

Another way of visualizing the behavior of a function of two variables is to consider
its graph.

DEFINITION If is a function of two variables with domain D, then the
graph of is the set of all points in such that and
is in D.

Just as the graph of a function of one variable is a curve with equation
so the graph of a function of two variables is a surface with equation 

D � ��x, y� � x � y � 1 � 0,  x � 1�

x � y � 1 � 0 y � �x � 1
y � �x � 1 x � 1 x � 1

f �3, 2� � 3 ln�22 � 3� � 3 ln 1 � 0

ln�y 2 � x� y 2 � x � 0 x � y 2 f
x � y 2

t�x, y� � s9 � x 2 � y 2 

t

D � ��x, y� � 9 � x 2 � y 2 � 0� � ��x, y� � x 2 � y 2 � 9�

�0, 0� t

�z � z � s9 � x 2 � y 2 , �x, y� � D�

z z � 0

9 � x 2 � y 2 � 9 ? s9 � x 2 � y 2 � 3

�z � 0 � z � 3� � �0, 3�

f
f �x, y, z� �3 z � f �x, y� �x, y�

D � ��x, y� � x � y 2 �

f

Cf
Sfy � f �x�,
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. We can visualize the graph of as lying directly above or below its
domain in the -plane (see Figure 5).

EXAMPLE 3 Sketch the graph of the function .

SOLUTION The graph of has the equation , or ,
which represents a plane. To graph the plane we first find the intercepts. Putting

in the equation, we get as the -intercept. Similarly, the -intercept
is 3 and the -intercept is 6. This helps us sketch the portion of the graph that lies in
the first octant (Figure 6). ■

The function in Example 3 is a special case of the function

which is called a linear function. The graph of such a function has the equation
, or , so it is a plane. In much the same way

that linear functions of one variable are important in single-variable calculus, we will
see that linear functions of two variables play a central role in multivariable calculus.

EXAMPLE 4 Sketch the graph of .

SOLUTION The graph has equation . We square both sides of
this equation to obtain , or , which we recognize
as an equation of the sphere with center the origin and radius 3. But, since ,
the graph of is just the top half of this sphere (see Figure 7).

■

EXAMPLE 5 Find the domain and range and sketch the graph of

SOLUTION Notice that is defined for all possible ordered pairs of real num-
bers , so the domain is , the entire xy-plane. The range of h is the set
of all nonnegative real numbers. [Notice that and , so for
all x and y.]

The graph of h has the equation , which is the elliptic paraboloid
that we sketched in Example 4 in Section 10.6. Horizontal traces are ellipses and
vertical traces are parabolas (see Figure 8). ■

Computer programs are readily available for graphing functions of two variables.
In most such programs, traces in the vertical planes and are drawn for
equally spaced values of and parts of the graph are eliminated using hidden line
removal.

fSz � f �x, y�
xyD

f �x, y� � 6 � 3x � 2y

3x � 2y � z � 6z � 6 � 3x � 2yf

yxx � 2y � z � 0
z

f �x, y� � ax � by � c

ax � by � z � c � 0z � ax � by � c

t�x, y� � s9 � x2 � y 2 V

z � s9 � x 2 � y 2 

x 2 � y 2 � z2 � 9z2 � 9 � x 2 � y 2

z � 0
t

FIGURE 7
Graph of g(x, y)=   9-≈-¥œ„„„„„„„„„

0
(0, 3, 0)

(0, 0, 3) 

(3, 0, 0) y

z

x

V

h�x, y� � 4x 2 � y 2

h�x, y�
�0, 	��2�x, y�

h�x, y� � 0y 2 � 0x 2 � 0

z � 4x 2 � y 2

y � kx � k
k
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FIGURE 5 

f(x, y)

0

z

y

x

D

S

{x, y, f(x, y)}

(x, y, 0)

S

FIGURE 6

(2, 0, 0)

(0, 3, 0)

z

y

x

(0, 0, 6)

Graph of f(x, y)=6-3x-2y

FIGURE 8 
Graph of h(x, y)=4≈+¥

z

y
x
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Fig ure 9 shows computer-generated graphs of several functions. Notice that we get
an especially good picture of a function when rotation is used to give views from dif-
ferent vantage points. In parts (a) and (b) the graph of is very flat and close to the

-plane except near the origin; this is because is very small when or is large.

LEVEL CURVES

So far we have two methods for visualizing functions: arrow diagrams and graphs. A
third method, borrowed from mapmakers, is a contour map on which points of con-
stant elevation are joined to form contour curves, or level curves.

DEFINITION The level curves of a function of two variables are the curves
with equations , where is a constant (in the range of ).

A level curve is the set of all points in the domain of at which takes
on a given value . In other words, it shows where the graph of has height .

You can see from Figure 10 the relation between level curves and horizontal traces.
The level curves are just the traces of the graph of in the horizontal plane

projected down to the -plane. So if you draw the level curves of a function 

xy
f

yxe�x 2� y 2

FIGURE 9

(c) f(x, y)=sin x+sin y

z

x y

x

z

y

(d) f(x, y)=
sin x  sin y

xy

(a) f(x, y)=(≈+3¥)e
_≈_¥

z

y
x

(b) f(x, y)=(≈+3¥)e
_≈_¥

x

z

f
fkf �x, y� � k

fff �x, y� � k
kfk

ff �x, y� � k
xyz � k
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and visualize them being lifted up to the surface at the indicated height, then you can
mentally piece together a picture of the graph. The surface is steep where the level
curves are close together. It is somewhat flatter where they are farther apart.

One common example of level curves occurs in topographic maps of mountainous
regions, such as the map in Figure 11. The level curves are curves of constant eleva-
tion above sea level. If you walk along one of these contour lines you neither ascend nor
descend. Another common example is the temperature function introduced in the
opening paragraph of this section. Here the level curves are called isothermals and
join locations with the same temperature. Figure 12 shows a weather map of the world
indicating the average January temperatures. The isothermals are the curves that sep-
arate the shaded bands.

LONESOME MTN.

5000

4500

4500
4000

5000

5500

Lonesome Creek

A

B

FIGURE 11FIGURE 10

yx

0

z

45

k=35

k=40

k=20

k=25

k=30

k=45

f(x, y)=20

FIGURE 12
World mean sea-level temperatures

in January in degrees Celsius
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Visual 11.1A animates Figure 10 by
showing level curves being lifted up to
graphs of functions.

TEC
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EXAMPLE 6 A contour map for a function is shown in Figure 13. Use it to esti-
mate the values of and .

SOLUTION The point (1, 3) lies partway between the level curves with -values 70
and 80. We estimate that

Similarly, we estimate that

■

EXAMPLE 7 Sketch the level curves of the function for the
values , , , .

SOLUTION The level curves are

This is a family of lines with slope . The four particular level curves with
, , , and are , , , and

. They are sketched in Figure 14. The level curves are equally
spaced parallel lines because the graph of is a plane (see Figure 6). ■

EXAMPLE 8 Sketch the level curves of the function

SOLUTION The level curves are

This is a family of concentric circles with center and radius . The
cases , , , are shown in Figure 15. Try to visualize these level curves lifted
up to form a surface and compare with the graph of (a hemisphere) in Figure 7.
(See TEC Visual 11.1A.)

■

EXAMPLE 9 Sketch some level curves of the function .

SOLUTION The level curves are

which, for , describes a family of ellipses with semiaxes and .
Figure 16(a) shows a contour map of h drawn by a computer. Figure 16(b) shows
these level curves lifted up to the graph of h (an elliptic paraboloid) where they 

f
f �1, 3� f �4, 5�

z

f �1, 3� 	 73

f �4, 5� 	 56

f �x, y� � 6 � 3x � 2y
k � �6 0 6 12

6 � 3x � 2y � k or 3x � 2y � �k � 6� � 0

�
3
2

k � �6 0 6 12 3x � 2y � 12 � 0 3x � 2y � 6 � 0 3x � 2y � 0
3x � 2y � 6 � 0

f

t�x, y� � s9 � x 2 � y 2 for k � 0, 1, 2, 3

s9 � x 2 � y 2 � k or x 2 � y 2 � 9 � k 2

�0, 0� s9 � k 2 

k � 0 1 2 3
t

0

k=3

k=2

k=1

k=0

3

y

x

FIGURE 15
Contour map of g(x, y)=œ„„„„„„„„„9-≈-¥
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x 2

1
4�k � 1�

�
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1
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FIGURE 14
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become horizontal traces. We see from Figure 16 how the graph of h is put together
from the level curves.

■

Figure 17 shows some computer-generated level curves together with the corre -
sponding computer-generated graphs. Notice that the level curves in part (c) crowd
together near the origin. That corresponds to the fact that the graph in part (d) is very
steep near the origin.

FIGURE 16
The graph of h(x, y)=4≈+¥+1

is formed by lifting the level curves.

x

y

z

x

y

(a) Contour map (b) Horizontal traces are raised level curves

FIGURE 17 (c) Level curves of f(x, y)=
_3y

≈+¥+1
(d) f(x, y)=

_3y

≈+¥+1

(b) Two views of f(x, y)=_xye
_≈_¥(a) Level curves of f(x, y)=_xye
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Visual 11.1B demonstrates the 
connection between surfaces and their 
contour maps.

TEC
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FUNCTIONS OF THREE OR MORE VARIABLES

A function of three variables, , is a rule that assigns to each ordered triple
in a domain a unique real number denoted by . For instance, the tem-
perature at a point on the surface of the earth depends on the longitude x and lati-
tude y of the point and on the time t, so we could write .

EXAMPLE 10 Find the domain of if .

SOLUTION The expression for is defined as long as , so the
domain of is

This is a half-space consisting of all points that lie above the plane . ■

It’s very difficult to visualize a function of three variables by its graph, since that
would lie in a four-dimensional space. However, we do gain some insight into by
examining its level surfaces, which are the surfaces with equations ,
where is a constant. If the point moves along a level surface, the value of

remains fixed.

EXAMPLE 11 Find the level surfaces of the function .

SOLUTION The level surfaces are , where . These form a
family of concentric spheres with radius . (See Figure 18.) Thus as varies
over any sphere with center , the value of remains fixed. ■

Functions of any number of variables can be considered. A function of n vari ables
is a rule that assigns a number to an -tuple of
real numbers. We denote by the set of all such n-tuples. For example, if a company
uses different ingredients in making a food product, is the cost per unit of the
ingredient, and units of the ingredient are used, then the total cost of the ingre-
dients is a function of the variables :

The function is a real-valued function whose domain is a subset of . Some   -
times we will use vector notation in order to write such functions more compactly: If

, we often write in place of . With this nota-
tion we can rewrite the function defined in Equation 1 as

where and denotes the dot product of the vectors c and x
in .

In view of the one-to-one correspondence between points in and
their position vectors in , we have three ways of looking at a
function f defined on a subset of :

1. As a function of real variables 

2. As a function of a single point variable 

3. As a function of a single vector variable 

We will see that all three points of view are useful.

f �x, y, z�
D � � 3 f �x, y, z�

T
T � f �x, y, t�

f f �x, y, z� � ln�z � y� � xy sin z

f �x, y, z� z � y � 0
f

D � ��x, y, z� � � 3 � z � y�

z � y

f
f

f �x, y, z� � k
k �x, y, z�

f �x, y, z�

f �x, y, z� � x 2 � y 2 � z2

x 2 � y 2 � z2 � k k � 0
sk �x, y, z�

O f �x, y, z�

z � f �x1, x2, . . . , xn � n �x1, x2, . . . , xn �
�n

n ci ith
xi ith C

n x1, x2, . . . , xn

C � f �x1, x2, . . . , xn � � c1x1 � c2x2 � 
 
 
 � cnxn

f � n

x � 
x1, x2, . . . , xn � f �x� f �x1, x2, . . . , xn �

f �x� � c � x

c � 
c1, c2, . . . , cn � c � x
Vn

�x1, x2, . . . , xn� � n

x � 
x1, x2, . . . , xn � Vn

�n

n x1, x2, . . . , xn

�x1, x2, . . . , xn �
x � 
x1, x2, . . . , xn �

1
FIGURE 18

≈+¥+z@=9
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11.1 EXERCISES

1. Let .
(a) Evaluate .
(b) Find the domain of .
(c) Find the range of .

2. Let .
(a) Evaluate .
(b) Find and sketch the domain of .
(c) Find the range of .

3. Let .
(a) Evaluate .
(b) Find and describe the domain of .

4. Let .
(a) Evaluate .
(b) Find and describe the domain of .

5–12 ■ Find and sketch the domain of the function.

5.

6.

7.

8.

9.

10.

11.

12.

13–20 ■ Sketch the graph of the function.

13.

14.

15.

16.

17.

18.

19.

20.

21. A contour map for a function is shown. Use it to esti mate
the values of and . What can you say
about the shape of the graph?

t�x, y� � cos�x � 2y�
t�2, �1�

t

t

F �x, y� � 1 � s4 � y 2

F �3, 1�
F

F

f �x, y, z� � sx � sy � sz � ln�4 � x 2 � y 2 � z 2�
f �1, 1, 1�

f

t�x, y, z� � x 3y 2zs10 � x � y � z
t�1, 2, 3�

t

f �x, y� � s2x � y

f �x, y� � sxy

f �x, y� � ln�9 � x 2 � 9y2 �

f �x, y� � sy � s25 � x 2 � y 2 

f �x, y� �
sy � x 2 

1 � x 2

f �x, y� � arcsin�x 2 � y 2 � 2�

f �x, y, z� � s1 � x 2 � y 2 � z2 

f �x, y, z� � ln�16 � 4x 2 � 4y2 � z2 �

f �x, y� � 10 � 4x � 5y

f �x, y� � 2 � x

f �x, y� � y 2 � 1

f �x, y� � e�y

f �x, y� � 9 � x 2 � 9y 2

f �x, y� � 1 � 2x 2 � 2y 2

f �x, y� � s4 � 4x 2 � y 2 

f �x, y� � s4x 2 � y 2 

f
f ��3, 3� f �3, �2�

22. Two contour maps are shown. One is for a function whose
graph is a cone. The other is for a function t whose graph is
a paraboloid. Which is which, and why?

23. Locate the points and on the map of Lonesome Moun-
tain (Figure 11). How would you describe the terrain near ? 
Near ?

24. Make a rough sketch of a contour map for the function
whose graph is shown.

25–32 ■ Draw a contour map of the function showing several
level curves.

25. 26.

27. 28.

29. 30.

31. 32.

y

x0 1

1
70 60 50 40

30

20

10

f

A B
A

B

z

y

x

I II

x x

y y

f �x, y� � �y � 2x�2 f �x, y� � x 3 � y

f �x, y� � sx � y f �x, y� � ln�x 2 � 4y 2�

f �x, y� � ye x f �x, y� � y sec x

f �x, y� � sy 2 � x 2 f �x, y� � y��x 2 � y2�

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints at stewartcalculus.comCAS
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49.

50.

51–52 ■ Describe how the graph of is obtained from the
graph of .

51. (a)
(b)
(c)
(d)

52. (a)
(b)
(c)

; 53. Use a computer to graph the function

using various domains and viewpoints. Comment on the
limiting behavior of the function. What happens as both
and become large? What happens as approaches
the origin?

; 54. Use a computer to investigate the family of surfaces

How does the shape of the graph depend on the numbers
and ?

; 55. Use a computer to investigate the family of functions
. How does the shape of the graph depend 

on ?

; 56. Graph the functions

and

In general, if t is a function of one variable, how is the
graph of 

obtained from the graph of t?

t

f

t�x, y� � f �x, y� � 2
t�x, y� � 2 f �x, y�
t�x, y� � �f �x, y�
t�x, y� � 2 � f �x, y�

t�x, y� � f �x � 2, y�
t�x, y� � f �x, y � 2�
t�x, y� � f �x � 3, y � 4�

f �x, y� �
x � y

x 2 � y 2

x
y �x, y�

z � �ax 2 � by 2 �e�x 2�y 2

a b

f �x, y� � e cx2�y2

c

f �x, y� � sx 2 � y 2 

f �x, y� � esx2�y2 

f �x, y� � lnsx 2 � y 2 

f �x, y� � sin(sx 2 � y 2 )

f �x, y� �
1

sx 2 � y 2 

f �x, y� � t(sx 2 � y 2 )

f �x, y, z� � x 2 � y 2 � z2

f �x, y, z� � y 2 � z233–34 ■ Sketch both a contour map and a graph of the func-
tion and compare them.

33.

34.

35. A thin metal plate, located in the -plane, has tempera-
ture at the point . The level curves of are
called isothermals because at all points on such a curve
the temperature is the same. Sketch some isothermals if
the temperature function is given by

36. If is the electric potential at a point in the 
-plane, then the level curves of are called equipoten-

tial curves because at all points on such a curve the elec-
tric potential is the same. Sketch some equipotential
curves if , where is a posi-
tive constant.

; 37–40 ■ Use a computer to graph the function using various
domains and viewpoints. Get a printout of one that, in your
opinion, gives a good view. If your software also produces
level curves, then plot some contour lines of the same function
and compare with the graph.

37. (monkey saddle)

38. (dog saddle)

39.

40.

41–46 ■ Match the function (a) with its graph (labeled A–F
on page 625) and (b) with its contour map (labeled I–VI).
Give reasons for your choices.

41. 42.

43. 44.

45.

46.

47–50 ■ Describe the level surfaces of the function.

47.

48.

xy
T�x, y� �x, y� T

T�x, y� �
100

1 � x 2 � 2y 2

V�x, y� �x, y�
xy V

V�x, y� � c�sr 2 � x 2 � y 2 c

f �x, y� � xy 2 � x 3

f �x, y� � xy 3 � yx 3

f �x, y� � e��x 2�y 2��3�sin�x 2� � cos�y 2��

f �x, y� � cos x cos y

f �x, y� � x 2 � 9y 2

f �x, y� � s36 � 9x 2 � 4y 2 

z � e x cos yz � sin�xy�

z � sin x � sin yz � sin�x � y�

z � �1 � x 2��1 � y 2�

z �
x � y

1 � x 2 � y 2

f �x, y, z� � x � 3y � 5z

f �x, y, z� � x 2 � 3y 2 � 5z2
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11.2 LIMITS AND CONTINUITY
The limit of a function of two or more variables is similar to the limit of a function of
a single variable. We use the notation

to indicate that the values of approach the number L as the point 
approaches the point along any path that stays within the domain of . In other
words, we can make the values of as close to L as we like by taking the point

sufficiently close to the point , but not equal to . A more precise defi-
nition follows.

DEFINITION Let be a function of two variables whose domain D
includes points arbitrarily close to . Then we say that the limit of
as approaches is and we write

if for every number there is a corresponding number such that

and then

Other notations for the limit in Definition 1 are

and    

Notice that is the distance between the numbers and , and
is the distance between the point and the point .

Thus Definition 1 says that the distance between and can be made arbitrar-
ily small by making the distance from to sufficiently small (but not 0).
Figure 1 illustrates Definition 1 by means of an arrow diagram. If any small interval

is given around , then we can find a disk with center and
radius such that maps all the points in [except possibly ] into the
interval .

lim
� x, y� l � a, b�

f �x, y� � L

f �x, y� �x, y�
�a, b� f

f �x, y�
�x, y� �a, b� �a, b�

f
�a, b� f �x, y�

�x, y� �a, b� L

lim
�x, y� l �a, b�

f �x, y� � L

� � 0 � � 0

if �x, y� � D 0 � s�x � a�2 � �y � b�2 � � � f �x, y� � L � � �

lim
x l a
y l b

f �x, y� � L f �x, y� l L as  �x, y� l �a, b�

� f �x, y� � L � f �x, y� L
s�x � a� 2 � �y � b� 2 �x, y� �a, b�

f �x, y� L
�x, y� �a, b�

�L � �, L � �� L D� �a, b�
� � 0 f D� �a, b�

�L � �, L � ��

y

0 x

z

L

L-∑

L+∑

0

f
)

(

D

(x, y)

(a, b)

∂

FIGURE 1 

1
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Another illustration of Definition 1 is given in Figure 2 where the surface is the
graph of . If is given, we can find such that if is restricted to lie
in the disk and , then the corresponding part of lies between the
horizontal planes and .

For functions of a single variable, when we let approach , there are only two
possible directions of approach, from the left or from the right. We recall from Chap -
ter 1 that if , then does not exist.

For functions of two variables the situation is not as simple because we can let
approach from an infinite number of directions in any manner whatsoever

(see Figure 3) as long as stays within the domain of .
Definition 1 says that the distance between and L can be made arbitrarily

small by making the distance from to sufficiently small (but not 0). The
definition refers only to the distance between and . It does not refer to the
direction of approach. Therefore, if the limit exists, then must approach the
same limit no matter how approaches . Thus if we can find two different
paths of approach along which the function has different limits, then it follows
that does not exist.

If as along a path and as
along a path , where , then does 

not exist.

EXAMPLE 1 Show that does not exist.

SOLUTION Let . First let’s approach along the 
-axis. Then gives for all , so

We now approach along the -axis by putting . Then for 
all , so

(See Figure 4.) Since has two different limits along two different lines, the given
limit does not exist. ■

EXAMPLE 2 If , does exist?

SOLUTION If , then . Therefore

If , then , so

S
f � � 0 � � 0 �x, y�

D� �x, y� � �a, b� S
z � L � � z � L � �

x a

limx l a� f �x� � limx l a� f �x� limx l a f �x�

�x, y� �a, b�
�x, y� f

f �x, y�
�x, y� �a, b�

�x, y� �a, b�
f �x, y�

�x, y� �a, b�
f �x, y�

lim�x, y� l �a, b� f �x, y�

f �x, y� l L1 �x, y� l �a, b� C1 f �x, y� l L2

�x, y� l �a, b� C2 L1 � L2 lim�x, y� l �a, b� f �x, y�

lim
� x, y� l �0, 0�

x 2 � y 2

x 2 � y 2

f �x, y� � �x 2 � y 2 ���x 2 � y 2 � �0, 0�
x y � 0 f �x, 0� � x 2�x 2 � 1 x � 0

f �x, y� l 1 as �x, y� l �0, 0� along the x-axis

y x � 0 f �0, y� �
�y 2

y 2 � �1
y � 0

f �x, y� l �1 as �x, y� l �0, 0� along the y-axis

f

f �x, y� � xy��x 2 � y 2 � lim
�x, y� l �0, 0�

f �x, y�

y � 0 f �x, 0� � 0�x 2 � 0

f �x, y� l 0 as �x, y� l �0, 0� along the x-axis

x � 0 f �0, y� � 0�y 2 � 0

V

�x, y� l �0, 0� along the y-axisasf �x, y� l 0
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Although we have obtained identical limits along the axes, that does not show that
the given limit is 0. Let’s now approach along another line, say . For all

,

Therefore

(See Figure 5.) Since we have obtained different limits along different paths, the
given limit does not exist. ■

Figure 6 sheds some light on Example 2. The ridge that occurs above the line
corresponds to the fact that for all points on that line except the 
origin.

EXAMPLE 3 If , does exist?

SOLUTION With the solution of Example 2 in mind, let’s try to save time by letting
along any nonvertical line through the origin. Then , where 

is the slope, and

So

Thus has the same limiting value along every nonvertical line through the origin.
But that does not show that the given limit is 0, for if we now let
along the parabola , we have

so

Since different paths lead to different limiting values, the given limit does not exist.
■

Now let’s look at limits that do exist. Just as for functions of one variable, the cal-
culation of limits for functions of two variables can be greatly simplified by the use of
properties of limits. The Limit Laws listed in Section 1.4 can be extended to functions
of two variables: The limit of a sum is the sum of the limits, the limit of a product is
the product of the limits, and so on. In particular, the following equations are true.

The Squeeze Theorem also holds.

EXAMPLE 4 Find if it exists.

SOLUTION As in Example 3, we could show that the limit along any line through
the origin is 0. This doesn’t prove that the given limit is 0, but the limits along the 

f �x, x� �
x 2

x 2 � x 2 �
1

2

f �x, y� l 1
2 as �x, y� l �0, 0� along y � x

y � x�0, 0�
x � 0

y � x
f �x, y� � 1

2 �x, y�

f �x, y� �
xy 2

x 2 � y 4 lim
� x, y� l �0, 0�

f �x, y�

�x, y� l �0, 0� y � mx m

f �x, y� � f �x, mx� �
x�mx�2

x 2 � �mx�4 �
m 2x 3

x 2 � m 4x 4 �
m 2x

1 � m 4x 2

f �x, y� l 0 as �x, y� l �0, 0� along y � mx

f
�x, y� l �0, 0�

x � y 2

f �x, y� � f �y 2, y� �
y 2 � y 2

�y 2 �2 � y 4 �
y 4

2y 4 �
1

2

f �x, y� l 1
2 as �x, y� l �0, 0� along x � y 2

lim
�x, y� l �a, b�

c � clim
�x, y� l �a, b�

y � blim
�x, y� l �a, b�

x � a

lim
�x, y� l �0, 0�

3x 2y

x 2 � y 2

V

2
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FIGURE 5

y

f=0

xf=0

y=x

1

2
f=

In Visual 11.2 a rotating line on
the surface in Figure 6 shows different
limits at the origin from different
directions.

TEC

FIGURE 6 f(x, y)=
xy

≈+¥

z y

x

■ Figure 7 shows the graph of the func-
tion in Example 3. Notice the ridge
above the parabola .x � y 2

_202

x

z

_2
0

2 y_0.5

0

0.5

FIGURE 7
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parabolas and also turn out to be 0, so we begin to suspect that the
limit does exist and is equal to 0.

Let . We want to find such that

if   

that is, if

But since , so and therefore

Thus if we choose and let , then

Hence, by Definition 1,

■

CONTINUITY

Recall that evaluating limits of continuous functions of a single variable is easy. It can
be accomplished by direct substitution because the defining property of a continuous
function is . Continuous functions of two variables are also defined
by the direct substitution property.

DEFINITION A function of two variables is called continuous at if

We say is continuous on if is continuous at every point in .

The intuitive meaning of continuity is that if the point changes by a small
amount, then the value of changes by a small amount. This means that a sur-
face that is the graph of a continuous function has no hole or break.

Using the properties of limits, you can see that sums, differences, products, and
quotients of continuous functions are continuous on their domains. Let’s use this fact
to give examples of continuous functions.

A polynomial function of two variables (or polynomial, for short) is a sum of
terms of the form , where is a constant and and are nonnegative integers.
A rational function is a ratio of polynomials. For instance,

y � x 2 x � y 2

� � 0 � � 0

0 � sx 2 � y 2 � � then � 3x 2y

x 2 � y 2 � 0 � � �

0 � sx 2 � y 2 � � then
3x 2� y �
x 2 � y 2 � �

x 2 � x 2 � y 2 y 2 	 0 x 2��x 2 � y 2 � � 1

3x 2� y �
x 2 � y 2 � 3 � y � � 3sy 2 � 3sx 2 � y 2 

� � ��3 0 � sx 2 � y 2 � �

� 3x 2 y

x 2 � y 2 � 0 � � 3sx 2 � y 2 � 3� � 3��

3� � �

lim
�x, y� l �0, 0�

3x 2y

x 2 � y 2 � 0

limx l a f �x� � f �a�

f �a, b�

lim
�x, y� l �a, b�

f �x, y� � f �a, b�

f D f �a, b� D

�x, y�
f �x, y�

cxmyn c m n

f �x, y� � x 4 � 5x 3y 2 � 6xy 4 � 7y � 6

3

4
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■ Another way to do Example 4 is to
use the Squeeze Theorem instead of
Definition 1. From it follows that

and so the first inequality in shows
that the given limit is 0.

lim
�x, y� l �0, 0�

3� y � � 0

3

2
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is a polynomial, whereas

is a rational function.
The limits in show that the functions , , and

are continuous. Since any polynomial can be built up out of the simple functions , 
, and by multiplication and addition, it follows that all polynomials are continuous

on . Likewise, any rational function is continuous on its domain because it is a quo-
tient of continuous functions.

EXAMPLE 5 Evaluate .

SOLUTION Since is a polynomial, it is continu-
ous everywhere, so we can find the limit by direct substitution:

■

EXAMPLE 6 Where is the function continuous?

SOLUTION The function is discontinuous at because it is not defined there. 
Since is a rational function, it is continuous on its domain, which is the set

. ■

EXAMPLE 7 Let

Here is defined at but is still discontinuous there because
does not exist (see Example 1). ■

EXAMPLE 8 Let

We know is continuous for since it is equal to a rational function
there. Also, from Example 4 we have

Therefore is continuous at , and so it is continuous on . ■

Just as for functions of one variable, composition is another way of combining 
two continuous functions to get a third. In fact, it can be shown that if is a contin-
uous function of two variables and is a continuous function of a single variable 
that is defined on the range of , then the composite function defined by

is also a continuous function.

t�x, y� �
2xy � 1

x 2 � y 2

f �x, y� � x t�x, y� � y h�x, y� � c
f

t h
� 2

lim
�x, y� l �1, 2�

�x 2y 3 � x 3y 2 � 3x � 2y�

f �x, y� � x 2y 3 � x 3y 2 � 3x � 2y

lim
�x, y� l �1, 2�

�x 2y 3 � x 3y 2 � 3x � 2y� � 12 � 23 � 13 � 22 � 3 � 1 � 2 � 2 � 11

f �x, y� �
x 2 � y 2

x 2 � y 2

f �0, 0�
f

D � 	�x, y� � �x, y� � �0, 0�


t�x, y� � �
0

x 2 � y 2

x 2 � y 2
ifi

f�

x,  y��� 0,  0� �

x,  y��� 0,  0�

t �0, 0� t lim�x, y� l �0, 0� t�x, y�

f �x, y� � �
0

3x 2y

x 2 � y 2
ifi

f�

x,  y��� 0,  0� �

x,  y��� 0,  0�

f �x, y� � �0, 0�

lim
�x, y� l �0, 0�

f �x, y� � lim
�x, y� l �0, 0�

3x 2y

x 2 � y 2 � 0 � f �0, 0�

f �0, 0� � 2

f
t

f h � t � f
h�x, y� � t� f �x, y��

2

V

■ Figure 8 shows the graph of the 
continuous function in Example 8.

FIGURE 8

z

y

x
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EXAMPLE 9 Where is the function continuous?

SOLUTION The function is a rational function and therefore continu-
ous except on the line . The function is continuous everywhere.
So the composite function

is continuous except where . The graph in Figure 9 shows the break in the
graph of above the -axis. ■

FUNCTIONS OF THREE OR MORE VARIABLES

Everything that we have done in this section can be extended to functions of three or
more variables. The notation

means that the values of approach the number L as the point
approaches the point along any path in the domain of f. Because the distance
between two points and is , we
can write the precise definition as follows: For every number there is a corre-
sponding number such that

if and

then  

The function f is continuous at if

For instance, the function

is a rational function of three variables and so is continuous at every point in except
where . In other words, it is discontinuous on the sphere with cen-
ter the origin and radius 1.

If we use the vector notation introduced at the end of Section 11.1, then we can
write the definitions of a limit for functions of two or three variables in a single com-
pact form as follows.

If is defined on a subset D of , then means that for
every number there is a corresponding number such that

if  and  then  

Notice that if , then and , and is just the definition of a limit
for functions of a single variable. For the case , we have , , 
and , so becomes Definition 1. If , then

, , and becomes the definition of a limit of a function of
three variables. In each case the definition of continuity can be written as

f �x, y� � y�x
x � 0 t�t� � arctan t

t� f �x, y�� � arctan�y�x� � h�x, y�

x � 0
h y

lim
�x, y, z� l �a, b, c�

f �x, y, z� � L

f �x, y, z� �x, y, z�
�a, b, c�
�x, y, z� �a, b, c� s�x � a� 2 � �y � b� 2 � �z � c� 2 

� � 0
� � 0

�x, y, z� is in the domain of f 0 � s�x � a� 2 � �y � b� 2 � �z � c� 2 � �

� f �x, y, z� � L � � �

�a, b, c�

lim
�x, y, z� l �a, b, c�

f �x, y, z� � f �a, b, c�

f �x, y, z� �
1

x 2 � y 2 � z2 � 1

� 3

x 2 � y 2 � z2 � 1

f �n lim x l a f �x� � L
� � 0 � � 0

x � D 0 � � x � a � � � � f �x� � L � � �

n � 1 x � x a � a
n � 2 x � �x, y  a � �a, b 

�x � a � � s�x � a� 2 � �y � b� 2 n � 3
x � �x, y, z  a � �a, b, c 

lim
x l a

f �x� � f �a�

h�x, y� � arctan�y�x�

5

5

5
5
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FIGURE 9
The function h(x, y)=arctan(y/x)

is discontinuous where x=0.
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11.2 EXERCISES

1. Suppose that . What can you say 
about the value of ? What if is continuous?

2. Explain why each function is continuous or discontinuous.
(a) The outdoor temperature as a function of longitude, 

latitude, and time
(b) Elevation (height above sea level) as a function of lon-

gitude, latitude, and time
(c) The cost of a taxi ride as a function of distance traveled 

and time

3–16 ■ Find the limit, if it exists, or show that the limit does 
not exist.

3.

4.

5. 6.

7. 8.

9. 10.

11. 12.

13.

14.

15.

16

; 17–18 ■ Use a computer graph of the function to explain why
the limit does not exist.

17. 18.

19–20 ■ Find and the set on which is 
continuous.

19. ,  

20. ,  

lim�x, y� l �3, 1� f �x, y� � 6
f �3, 1� f

lim
�x, y� l �1, 2�

�5x 3 � x 2y 2�

lim
�x, y� l �1, �1�

e�xy cos�x � y�

lim
�x, y� l �0, 0�

x 4 � 4y 2

x 2 � 2y 2 lim
�x, y� l �0, 0�

5y 4 cos2 x

x 4 � y 4

lim
�x, y� l �0, 0�

y 2 sin2 x

x 4 � y 4 lim
�x, y� l �1, 0�

xy � y

�x � 1�2 � y 2

lim
�x, y� l �0, 0�

xy

sx 2 � y 2 
lim

�x, y� l �0, 0�

x 2 sin2 y

x 2 � 2y 2

lim
�x, y� l �0, 0�

x 2ye y

x 4 � 4y 2 lim
�x, y� l �0, 0�

xy 4

x 2 � y 8

lim
�x, y� l �0, 0�

x 2 � y 2

sx 2 � y 2 � 1 � 1

lim
�x, y� l �0, 0�

x 4 � y 4

x 2 � y 2

lim
�x, y, z� l �0, 0, 0�

xy � yz 2 � xz2

x 2 � y 2 � z 4

lim
�x, y, z� l �0, 0, 0�

yz

x 2 � 4y 2 � 9z2

lim
�x, y� l �0, 0�

2x 2 � 3xy � 4y 2

3x 2 � 5y 2 lim
�x, y� l �0, 0�

xy 3

x 2 � y6

h�x, y� � t� f �x, y�� h

t�t� � t 2 � st f �x, y� � 2x � 3y � 6

t�t� � t � ln t f �x, y� �
1 � xy

1 � x 2 y 2

21–28 ■ Determine the set of points at which the function is 
continuous.

21.

22.

23.

24.

25.

26.

27.

28.

29–31 ■ Use polar coordinates to find the limit. [If are 
polar coordinates of the point with , note that

as .]

29.

30.

31.

; 32. Graph and discuss the continuity of the function

33. Show that the function given by is 
continuous on .  [Hint: Consider

.]

34. If , show that the function f given by
is continuous on .

F�x, y� �
1 � x 2 � y 2

1 � x 2 � y 2

F�x, y� � coss1 � x � y

G�x, y� � ln�x 2 � y 2 � 4 �

H�x, y� �
e x � e y

e xy � 1

f �x, y, z� � arcsin�x 2 � y 2 � z 2�

f �x, y, z� � sy � x 2 ln z

f �x, y� � �
1

x 2 y 3

2x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

f �x, y� � �
0

xy

x 2 � xy � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

�r, 
�
�x, y� r 	 0

r l 0� �x, y� l �0, 0�

lim
�x, y� l �0, 0�

x3 � y3

x2 � y2

lim
�x, y� l �0, 0�

�x2 � y2 � ln�x2 � y2 �

lim
�x, y� l �0, 0�

e�x2�y2

� 1

x 2 � y 2

f �x, y� � �
1

sin xy

xy
if

if

xy � 0

xy � 0

f f �x� � � x �
� n

� x � a �2 � �x � a� � �x � a�

c � Vn f �x� � c � x
� n
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11.3 PARTIAL DERIVATIVES
If is a function of two variables and , suppose we let only vary while keeping

fixed, say , where is a constant. Then we are really considering a function of
a single variable , namely, . If has a derivative at , then we call it the
partial derivative of with respect to x at and denote it by . Thus

By the definition of a derivative, we have

and so Equation 1 becomes

Similarly, the partial derivative of with respect to y at , denoted by ,
is obtained by keeping fixed and finding the ordinary derivative at of the
function :

If we now let the point vary in Equations 2 and 3, and become functions
of two variables.

If is a function of two variables, its partial derivatives are the functions
and defined by

There are many alternative notations for partial derivatives. For instance, instead of 
we can write or (to indicate differentiation with respect to the first variable)

or . But here can’t be interpreted as a ratio of differentials.

f x y x
y y � b b

x t�x� � f �x, b� t a
f �a, b� fx�a, b�

fx�a, b� � t��a� where t�x� � f �x, b�

t��a� � lim
h l 0

t�a � h� � t�a�
h

fx�a, b� � lim
h l 0

f �a � h, b� � f �a, b�
h

f fy�a, b�
x �x � a� b

G�y� � f �a, y�

fy�a, b� � lim
h l 0

f �a, b � h� � f �a, b�
h

�a, b� fx fy

f
fx fy

fx�x, y� � lim
h l 0

f �x � h, y� � f �x, y�
h

fy�x, y� � lim
h l 0

f �x, y � h� � f �x, y�
h

fx f1 D1 f
�f��x �f��x

1

2

3

4

�a, b�
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NOTATIONS FOR PARTIAL DERIVATIVES If , we write

To compute partial derivatives, all we have to do is remember from Equation 1 that 
the partial derivative with respect to is just the ordinary derivative of the function
of a single variable that we get by keeping fixed. Thus we have the following rule.

RULE FOR FINDING PARTIAL DERIVATIVES OF z �

1. To find , regard as a constant and differentiate with respect to .

2. To find , regard as a constant and differentiate with respect to .

EXAMPLE 1 If , find and .

SOLUTION Holding constant and differentiating with respect to , we get

and so

Holding constant and differentiating with respect to , we get

■

INTERPRETATIONS OF PARTIAL DERIVATIVES

To give a geometric interpretation of partial derivatives, we recall that the equation
represents a surface (the graph of ). If , then the point

lies on . By fixing , we are restricting our attention to the curve in
which the vertical plane intersects S. (In other words, is the trace of in the
plane .) Likewise, the vertical plane intersects in a curve . Both of the
curves and pass through the point . (See Figure 1.)

Notice that the curve is the graph of the function , so the slope 
of its tangent at is . The curve is the graph of the function

, so the slope of its tangent at is .
Thus the partial derivatives and can be interpreted geometrically as

the slopes of the tangent lines at to the traces and of in the planes
and .

Partial derivatives can also be interpreted as rates of change. If , then
represents the rate of change of with respect to when is fixed. Similarly,
represents the rate of change of with respect to when is fixed.

z � f �x, y�

fx�x, y� � fx �
�f

�x
�

�

�x
f �x, y� �

�z

�x
� f1 � D1 f � Dx f

fy�x, y� � fy �
�f

�y
�

�

�y
f �x, y� �

�z

�y
� f2 � D2 f � Dy f

x t

y

f �x, y�

fx y f �x, y� x

fy x f �x, y� y

f �x, y� � x 3 � x 2 y 3 � 2y 2 fx�2, 1� fy�2, 1�

y x

fx�x, y� � 3x 2 � 2xy 3

fx�2, 1� � 3 � 22 � 2 � 2 � 13 � 16

x y

fy�x, y� � 3x 2y 2 � 4y

fy�2, 1� � 3 � 22 � 12 � 4 � 1 � 8

z � f �x, y� S f f �a, b� � c
P�a, b, c� S y � b C1

y � b C1 S
y � b x � a S C2

C1 C2 P
C1 t�x� � f �x, b�

T1 P t��a� � fx�a, b� C2

G�y� � f �a, y� T2 P G��b� � fy�a, b�
fx�a, b� fy �a, b�

P�a, b, c� C1 C2 S
y � b x � a

z � f �x, y�
�z��x z x y
�z��y z y x

FIGURE 1
The partial derivatives of f at (a, b) are
the slopes of the tangents to C¡  and C™.

0

(a, b, 0)

C™

C¡

T¡

P(a, b, c)

S
T™

z

yx
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EXAMPLE 2 If , find and and interpret these
numbers as slopes.

SOLUTION We have

The graph of is the paraboloid and the vertical plane
intersects it in the parabola , . (As in the preceding discussion, we
label it in Figure 2.) The slope of the tangent line to this parabola at the point

is . Similarly, the curve in which the plane intersects
the paraboloid is the parabola , , and the slope of the tangent line
at is . (See Figure 3.) ■

EXAMPLE 3 If , calculate and .

SOLUTION Using the Chain Rule for functions of one variable, we have

■

EXAMPLE 4 Find and if is defined implicitly as a function of
and by the equation

SOLUTION To find , we differentiate implicitly with respect to , being care-
ful to treat as a constant:

Solving this equation for , we obtain

Similarly, implicit differentiation with respect to gives

■

f �x, y� � 4 � x 2 � 2y 2 fx�1, 1� fy�1, 1�

fx�x, y� � �2x fy�x, y� � �4y

fx�1, 1� � �2 fy�1, 1� � �4

f z � 4 � x 2 � 2y 2 y � 1
z � 2 � x 2 y � 1

C1

�1, 1, 1� fx�1, 1� � �2 C2 x � 1
z � 3 � 2y 2 x � 1

�1, 1, 1� fy�1, 1� � �4

f �x, y� � sin� x

1 � y� �f

�x

�f

�y

�f

�x
� cos� x

1 � y� �
�

�x � x

1 � y� � cos� x

1 � y� �
1

1 � y

�f

�y
� cos� x

1 � y� �
�

�y � x

1 � y� � �cos� x

1 � y� �
x

�1 � y�2

�z��x �z��y z x
y

x 3 � y 3 � z3 � 6xyz � 1

�z��x x
y

3x 2 � 3z2 �z

�x
� 6yz � 6xy

�z

�x
� 0

�z��x

�z

�x
� �

x 2 � 2yz

z 2 � 2xy

y

�z

�y
� �

y 2 � 2xz

z 2 � 2xy

V

V
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FIGURE 2
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z

y
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FIGURE 4

■ Some computer algebra systems can
plot surfaces defined by implicit equa-
tions in three variables. Figure 4 shows
such a plot of the surface defined by the
equation in Example 4.
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FUNCTIONS OF MORE THAN TWO VARIABLES

Partial derivatives can also be defined for functions of three or more variables. For
example, if is a function of three variables , , and , then its partial derivative with
respect to is defined as

and it is found by regarding and as constants and differentiating with
respect to . If , then can be interpreted as the rate of change
of with respect to x when y and are held fixed. But we can’t interpret it geometri-
cally because the graph of f lies in four-dimensional space.

In general, if is a function of variables, , its partial deriva -
tive with respect to the ith variable is

and we also write

EXAMPLE 5 Find , , and if .

SOLUTION Holding and constant and differentiating with respect to , we have

Similarly, ■

HIGHER DERIVATIVES

If is a function of two variables, then its partial derivatives and are also func-
tions of two variables, so we can consider their partial derivatives , , ,
and , which are called the second partial derivatives of . If , we use
the following notation:

Thus the notation (or ) means that we first differentiate with respect to
and then with respect to , whereas in computing the order is reversed.

f x y z
x

fx�x, y, z� � lim
h l 0

f �x � h, y, z� � f �x, y, z�
h

y z f �x, y, z�
x w � f �x, y, z� fx � �w��x

w z

u n u � f �x1, x2, . . . , xn �
xi

�u

�xi
� lim

h l 0

f �x1, . . . , xi�1, xi � h, xi�1, . . . , xn � � f �x1, . . . , xi , . . . , xn�
h

�u

�xi
�

�f

�xi
� fxi � fi � Di f

fx fy fz f �x, y, z� � ex y ln z

y z x

fx � yex y ln z

fy � xex y ln z and fz �
exy

z

f fx fy

� fx �x � fx�y � fy �x

� fy �y f z � f �x, y�

� fx �x � fxx � f11 �
�

�x � �f

�x� �
�2f

�x 2 �
�2z

�x 2

� fx �y � fxy � f12 �
�

�y � �f

�x� �
�2f

�y �x
�

�2z

�y �x

� fy �x � fyx � f21 �
�

�x � �f

�y� �
�2f

�x �y
�

�2z

�x �y

� fy �y � fyy � f22 �
�

�y � �f

�y� �
�2f

�y 2 �
�2z

�y 2

fx y �2f��y �x x
y fyx

636 CHAPTER 11 PARTIAL DERIVATIVES

Unless otherwise noted, all content on this page is © Cengage Learning.

12280_ch11_ptg01_hr_636-645.qk_12280_ch11_ptg01_hr_636-645  12/15/11  2:19 PM  Page 636

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



EXAMPLE 6 Find the second partial derivatives of

SOLUTION In Example 1 we found that

Therefore

■

Notice that in Example 6. This is not just a coincidence. It turns out that
the mixed partial derivatives and are equal for most functions that one meets in
practice. The following theorem, which was discovered by the French mathematician
Alexis Clairaut (1713–1765), gives conditions under which we can assert that
The proof is given in Appendix D.

CLAIRAUT’S THEOREM Suppose is defined on a disk that contains the
point . If the functions and are both continuous on , then

Partial derivatives of order 3 or higher can also be defined. For instance,

and using Clairaut’s Theorem it can be shown that if these functions
are continuous.

EXAMPLE 7 Calculate if .

SOLUTION

■

PARTIAL DIFFERENTIAL EQUATIONS

Partial derivatives occur in partial differential equations that express certain physical
laws. For instance, the partial differential equation

f �x, y� � x 3 � x 2y 3 � 2y 2

fx�x, y� � 3x 2 � 2xy 3 fy�x, y� � 3x 2y 2 � 4y

fxx �
�

�x
�3x 2 � 2xy 3 � � 6x � 2y 3 fxy �

�

�y
�3x 2 � 2xy 3 � � 6xy 2

fyx �
�

�x
�3x 2 y 2 � 4y� � 6xy 2 fyy �

�

�y
�3x 2y 2 � 4y� � 6x 2 y � 4

fx y � fyx

fx y fyx

fx y � fyx.

f D
�a, b� fx y fyx D

fx y�a, b� � fyx�a, b�

fx yy � � fx y �y �
�

�y � �2f

�y �x� �
�3f

�y 2 �x

fx yy � fyx y � fyyx

fxx yz f �x, y, z� � sin�3x � yz�

fx � 3 cos�3x � yz�

fxx � �9 sin�3x � yz�

fxx y � �9z cos�3x � yz�

fxx yz � �9 cos�3x � yz� � 9yz sin�3x � yz�

V

�2u

�x 2 �
�2u

�y 2 � 0
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■ Alexis Clairaut was a child prodigy in 
mathematics, having read l’Hospital’s text-
book on calculus when he was ten and pre-
sented a paper on geometry to the French
Academy of Sciences when he was 13. 
At the age of 18, Clairaut published
Recherches sur les courbes à double cour-
bure, which was the first systematic trea-
tise on three-dimensional analytic
geometry and included the calculus of
space curves.
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is called Laplace’s equation after Pierre Laplace (1749–1827). Solutions of this equa -
 tion are called harmonic functions and play a role in problems of heat conduction,
fluid flow, and electric potential.

EXAMPLE 8 Show that the function is a solution of Laplace’s 
equation.

SOLUTION

Therefore satisfies Laplace’s equation. ■

The wave equation

describes the motion of a waveform, which could be an ocean wave, a sound wave, a
light wave, or a wave traveling along a vibrating string. For instance, if repre-
sents the displacement of a vibrating violin string at time and at a distance from
one end of the string (as in Figure 5), then satisfies the wave equation. Here the
constant depends on the density of the string and on the tension in the string.

EXAMPLE 9 Verify that the function satisfies the wave 
equation.

SOLUTION

So satisfies the wave equation. ■

u�x, y� � ex sin y

ux � ex sin y uy � ex cos y

uxx � ex sin y uyy � �ex sin y

uxx � uyy � ex sin y � ex sin y � 0

u

�2u

�t 2 � a2 �2u

�x 2

u�x, t�
t x

u�x, t�
a

u�x, t� � sin�x � at�

ux � cos�x � at� uxx � �sin�x � at�

ut � �a cos�x � at� utt � �a 2 sin�x � at� � a 2uxx

u
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FIGURE 5

u(x, t)

x

11.3 EXERCISES

1. The temperature at a location in the Northern Hemisphere
depends on the longitude , latitude , and time , so we can
write . Let’s measure time in hours from the
beginning of January.
(a) What are the meanings of the partial derivatives 

, and ?
(b) Honolulu has longitude and latitude . 

Suppose that at 9:00 AM on January 1 the wind is blow-
ing hot air to the northeast, so the air to the west and
south is warm and the air to the north and east is cooler.
Would you expect , and

to be positive or negative? Explain.

T
x y t

T � f �x, y, t�

�T��x,
�T��y �T��t

158� W 21� N

fx�158, 21, 9�, fy�158, 21, 9�
ft�158, 21, 9�

2. A contour map is given for a function . Use it to estimate
and .

f
fx�2, 1� fy�2, 1�

3

3

_2

0
6 8

10

14

16

12

18

2

4

_4

1 x

y
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33. ;  

34. ;  

35–36 ■ Use the definition of partial derivatives as limits to
find and .

35. 36.

; 37–38 ■ Find and and graph , , and with domains and 
viewpoints that enable you to see the relationships between
them.

37. 38.

39–42 ■ Use implicit differentiation to find and .

39. 40.

41. 42.

43–44 ■ Find and .

43. (a) (b)

44. (a) (b)
(c)

45–50 ■ Find all the second partial derivatives.

45. 46.

47. 48.

49. 50.

51–52 ■ Verify that the conclusion of Clairaut’s Theorem holds,
that is, .

51. 52.

53–58 ■ Find the indicated partial derivative(s).

53. ;  ,  

54. ;  

55. ;  

56. ;  

57. ;  58. ;  

f �x, y, z� �
y

x � y � z
fy �2, 1, �1�

f �x, y, z� � ssin2x � sin2y � sin2z fz �0, 0, ��4�

fx�x, y� fy�x, y�

f �x, y� � xy 2 � x 3y f �x, y� �
x

x � y 2

4

fx fy f fx fy

f �x, y� � x 2y3 f �x, y� �
y

1 � x 2y2

�z��x �z��y

x 2 � 2y 2 � 3z2 � 1 x 2 � y 2 � z 2 � 2z � 4

e z � xyz yz � x ln y � z2

�z��x �z��y

z � f �x� � t�y� z � f �x � y�

z � f �x�t�y� z � f �xy�
z � f �x�y�

f �x, y� � x 3y 5 � 2x 4y f �x, y� � sin2�mx � ny�

w � su 2 � v 2 v �
xy

x � y

z � arctan 
x � y

1 � xy
v � e xey

ux y � uyx

u � x 4y 3 � y 4 u � e xy sin y

fxyxfxxxf �x, y� � x 4y 2 � x 3y

fyxyf �x, y� � sin�2x � 5y�

fxyzf �x, y, z� � exyz2

trstt�r, s, t� � e r sin�st�

�6u

�x �y 2 �z 3u � x a y bz c� 3u

�r 2 ��
u � e r� sin �

3  –4 ■ Determine the signs of the partial derivatives for the
function whose graph is shown.

3. (a) (b)

4. (a) (b)
(c) (d)

5. If , find and and
interpret these numbers as slopes. Illustrate with either
hand-drawn sketches or computer plots.

6. If , find and and
interpret these numbers as slopes. Illustrate with either
hand-drawn sketches or computer plots.

7–30 ■ Find the first partial derivatives of the function.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29.

30.

31–34 ■ Find the indicated partial derivative.

31. ;  

32. ;  

f

1
2

x

y

z

fx�1, 2� fy�1, 2�

fx��1, 2� fy��1, 2�
fxx��1, 2� fyy��1, 2�

f �x, y� � 16 � 4x 2 � y 2 fx�1, 2� fy�1, 2�

f �x, y� � s4 � x 2 � 4y 2 fx�1, 0� fy�1, 0�

f �x, y� � y 5 � 3xy f �x, y� � x 4y 3 � 8x 2y

f �x, t� � e�t cos �x f �x, t� � sx ln t

f �x, y� �
x

y
f �x, y� �

x

�x � y�2

f �x, y� �
ax � by

cx � dy
w �

ev

u � v 2

t�u, v� � �u 2v � v 3�5 u�r, �� � sin�r cos ��

R�p, q� � tan�1�pq 2� f �x, y� � x y

F�x, y� � y
x

y
cos�e t� dt F��, 	� � y

	

�
st 3 � 1 dt

f �x, y, z� � xz � 5x 2y 3z4 f �x, y, z� � x sin�y � z�

w � ln�x � 2y � 3z� w � ze xyz

u � xy sin�1�yz� u � x y�z

h�x, y, z, t� � x 2y cos�z�t� 
�x, y, z, t� �
�x � 	y 2

�z � �t 2

u � sx 2
1 � x 2

2 �    � x 2
n

u � sin�x1 � 2x2 �    � nxn �

fx �3, 4�f �x, y� � ln(x � sx 2 � y 2 )
fx �2, 3�f �x, y� � arctan�y�x�
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(b) For the ideal gas of part (a), show that

71. The van der Waals equation for moles of a gas is

where is the pressure, is the volume, and is the 
temperature of the gas. The constant is the universal 
gas constant and and are positive constants that are
characteristic of a particular gas. Calculate and

.

72. The wind-chill index is a measure of how cold it feels in
windy weather. It is modeled by the function

where is the temperature and is the wind speed
. When and , by how

much would you expect the apparent temperature to drop
if the actual temperature decreases by ? What if the
wind speed increases by ?

73. The kinetic energy of a body with mass and velocity is
. Show that

74. If , , are the sides of a triangle and , , are the
opposite angles, find , , by implicit dif-
ferentiation of the Law of Cosines.

75. You are told that there is a function whose partial deriva-
tives are and . Should
you believe it?

; 76. The paraboloid intersects the plane
in a parabola. Find parametric equations for the tan-

gent line to this parabola at the point . Use a com-
puter to graph the paraboloid, the parabola, and the tangent
line on the same screen.

77. The ellipsoid intersects the plane
in an ellipse. Find parametric equations for the

tangent line to this ellipse at the point .

78. In a study of frost penetration it was found that the tempera-
ture at time (measured in days) at a depth (measured
in feet) can be modeled by the function

where and is a positive constant.
(a) Find . What is its physical significance?
(b) Find . What is its physical significance?

T
�P

�T

�V

�T
� mR

W � 13.12 � 0.6215T � 11.37v 0.16 � 0.3965Tv 0.16

T �in �C� v
�in km�h� T � �15�C v � 30 km�h

W
1�C

1 km�h

m v
K � 1

2 mv2

�K

�m

�2K

�v2 � K

a b c A B C
�A��a �A��b �A��c

f
fx�x, y� � x � 4y fy�x, y� � 3x � y

z � 6 � x � x 2 � 2y 2

x � 1
�1, 2, �4�

4x 2 � 2y 2 � z2 � 16
y � 2

�1, 2, 2�

T t x

n

�P �
n 2a

V 2 ��V � nb� � nRT

P V T
R

a b
�T��P

�P��V

T�x, t� � T0 � T1e��x sin��t � �x�

�� � 2��365
�T��x
�T��t

59. If , find . [Hint: Which
order of differentiation is easiest?]

60. If , find . [Hint: Use a
different order of differentiation for each term.]

61. Verify that the function is a solution of the
heat conduction equation .

62. Determine whether each of the following functions is a
solution of Laplace’s equation .
(a) (b)
(c) (d)
(e)
(f )

63. Verify that the function is a 
solution of the three-dimensional Laplace equation

.

64. Show that each of the following functions is a solution of
the wave equation .
(a) (b)
(c)
(d)

65. If and are twice differentiable functions of a single vari-
able, show that the function

is a solution of the wave equation given in Exercise 64.

66. If , where , 
show that

67. Show that the function is a solution of the 
equation

68. The temperature at a point on a flat metal plate is
given by , where is measured
in C and in meters. Find the rate of change of temper -
ature with respect to distance at the point in (a) the 
-direction and (b) the -direction.

69. The total resistance produced by three conductors with
resistances , , connected in a parallel electrical cir-
cuit is given by the formula

Find .

70. (a) The gas law for a fixed mass of an ideal gas at
absolute temperature , pressure , and volume is

, where is the gas constant. Show that

t�x, y, z� � s1 � xz � s1 � xy txyz

u � e��2k2 t sin kx
ut � �2uxx

uxx � uyy � 0
u � x 2 � y 2 u � x 2 � y 2

u � x 3 � 3xy 2 u � ln sx 2 � y 2 

u � sin x cosh y � cos x sinh y
u � e�x cos y � e�y cos x

u � 1�sx 2 � y 2 � z 2 

uxx � u yy � uzz � 0

ut t � a 2uxx

u � sin�kx� sin�akt� u � t��a 2t 2 � x 2 �
u � �x � at�6 � �x � at�6

u � sin�x � at� � ln�x � at�

f t

u�x, t� � f �x � at� � t�x � at�

u � e a1x1�a2 x2��an xn a 2
1 � a 2

2 �    � a 2
n � 1

�2u

�x 2
1

�
�2u

�x 2
2

�    �
�2u

�x 2
n

� u

z � xe y � ye x

�3z

�x 3 �
�3z

�y 3 � x
�3z

�x �y 2 � y
�3z

�x 2 �y

�x, y�
T�x, y� � 60��1 � x 2 � y 2 � T

� x, y
�2, 1�

x y

R
R1 R2 R3

1

R
�

1

R1
�

1

R2
�

1

R3

�R��R1

m

PV � mRT
VPT

R

fxzyf �x, y, z� � xy 2z3 � arcsin(xsz )

�P

�V

�V

�T

�T

�P
� �1
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81. If , find . 
[Hint: Instead of finding first, note that it’s easier 
to use Equation 1 or Equation 2.]

82. If , find .

83. Let

; (a) Use a computer to graph .
(b) Find and when .
(c) Find and using Equations 2 and 3.
(d) Show that and .
(e) Does the result of part (d) contradict Clairaut’s Theo-

rem? Use graphs of and to illustrate your answer.

f �x, y� � s
3 x 3 � y 3 fx�0, 0�

f �x, y� � �
0

x 3y � xy 3

x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

f
fx�x, y� fy�x, y� �x, y� � �0, 0�
fx�0, 0� fy�0, 0�

fxy�0, 0� � �1 fyx�0, 0� � 1

fxy fyx

CAS

fx�x, y�
f �x, y� � x�x 2 � y 2 ��3�2e sin�x2y� fx�1, 0�(c) Show that satisfies the heat equation for a

certain constant .

; (d) If , , and , use a computer to 
graph .

(e) What is the physical significance of the term in
the expression ?

79. Use Clairaut’s Theorem to show that if the third-order
partial derivatives of are continuous, then

80. (a) How many th-order partial derivatives does a
function of two variables have?

(b) If these partial derivatives are all continuous, how
many of them can be distinct?

(c) Answer the question in part (a) for a function of three 
variables.

Tt � kTxxT
k

T1 � 10T0 � 0� � 0.2
T�x, t�

��x
sin��t � �x�

f

fx yy � fyx y � fyyx

n
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11.4 TANGENT PLANES AND LINEAR APPROXIMATIONS
One of the most important ideas in single-variable calculus is that as we zoom in
toward a point on the graph of a differentiable function, the graph becomes indistin-
guishable from its tangent line and we can approximate the function by a linear func-
tion. (See Sec tion 2.8.) Here we develop similar ideas in three dimensions. As we
zoom in toward a point on a surface that is the graph of a differentiable func tion of
two variables, the surface looks more and more like a plane (its tangent plane) and we
can approximate the function by a linear function of two variables. We also extend the
idea of a differential to functions of two or more variables.

TANGENT PLANES

Suppose a surface has equation , where has continuous first partial
derivatives, and let be a point on . As in the preceding section, let and

be the curves obtained by intersecting the vertical planes and with
the surface . Then the point lies on both and . Let and be the tangent
lines to the curves and at the point . Then the tangent plane to the surface
at the point is defined to be the plane that contains both tangent lines and . (See
Figure 1.)

We will see in Section 11.6 that if is any other curve that lies on the surface
and passes through , then its tangent line at also lies in the tangent plane. There-
fore you can think of the tangent plane to at as consisting of all possible tangent
lines at to curves that lie on and pass through . The tangent plane at is the plane
that most closely approximates the surface near the point .

We know from Equation 10.5.7 that any plane passing through the point
has an equation of the form

By dividing this equation by and letting and , we can write
it in the form

S z � f �x, y� f
P�x0, y0, z0 � S C1

C2 y � y0 x � x0

S P C1 C2 T1 T2

C1 C2 P S
P T1 T2

C S
P P

S P
P S P P

S P
P�x0, y0, z0 �

A�x � x0 � � B�y � y0 � � C�z � z0 � � 0

C a � �A�C b � �B�C

z � z0 � a�x � x0� � b�y � y0 �1

z

FIGURE 1
The tangent plane contains the
tangent lines T¡TT and T™TT .

y

x
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If Equation 1 represents the tangent plane at , then its intersection with the plane
must be the tangent line . Setting in Equation 1 gives

and we recognize these as the equations (in point-slope form) of a line with slope . 
But from Section 11.3 we know that the slope of the tangent is . Therefore

.
Similarly, putting in Equation 1, we get , which must rep-

resent the tangent line , so .

Suppose has continuous partial derivatives. An equation of the tangent
plane to the surface at the point is

EXAMPLE 1 Find the tangent plane to the elliptic paraboloid at
the point .

SOLUTION Let . Then

Then gives the equation of the tangent plane at as

or ■

Figure 2(a) shows the elliptic paraboloid and its tangent plane at (1, 1, 3) that we
found in Example 1. In parts (b) and (c) we zoom in toward the point (1, 1, 3) by
restricting the domain of the function . Notice that the more we
zoom in, the flatter the graph appears and the more it resembles its tangent plane.

P
y � y0 T1 y � y0

z � z0 � a�x � x0 � y � y0

a
T1 fx�x0, y0 �

a � fx�x0, y0 �
x � x0 z � z0 � b�y � y0 �

T2 b � fy�x0, y0 �

f
z � f �x, y� P�x0, y0, z0 �

z � z0 � fx�x0, y0 ��x � x0 � � fy�x0, y0 ��y � y0 �

z � 2x 2 � y 2

�1, 1, 3�

f �x, y� � 2x 2 � y 2

fx�x, y� � 4x fy�x, y� � 2y

fx�1, 1� � 4  fy�1, 1� � 2

�1, 1, 3�

z � 3 � 4�x � 1� � 2�y � 1�

z � 4x � 2y � 3

V

2

2

f �x, y� � 2x 2 � y 2

FIGURE 2  The elliptic paraboloid z=2≈+¥ appears to coincide with its tangent plane as we zoom in toward (1, 1, 3).
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0
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0
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20

0
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z
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(a)
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20

0
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y

z
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2
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■ Note the similarity between the equa-
tion of a tangent plane and the equation
of a tangent line:

y � y0 � f ��x0 ��x � x0 �

Visual 11.4 shows an animation of
Figure 2.
TEC
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In Figure 3 we corroborate this impression by zooming in toward the point (1, 1)
on a contour map of the function . Notice that the more we zoom
in, the more the level curves look like equally spaced parallel lines, which is charac-
teristic of a plane.

LINEAR APPROXIMATIONS

In Example 1 we found that an equation of the tangent plane to the graph of the func-
tion at the point (1, 1, 3) is . Therefore, in view
of the visual evidence in Figures 2 and 3, the linear function of two variables

is a good approximation to when is near (1, 1). The function L is called
the linearization of f at (1, 1) and the approximation

is called the linear approximation or tangent plane approximation of f at (1, 1).
For instance, at the point (1.1, 0.95) the linear approximation gives

which is quite close to the true value of . 
But if we take a point farther away from (1, 1), such as (2, 3), we no longer get a good
approximation. In fact, whereas .

In general, we know from that an equation of the tangent plane to the graph of
a function f of two variables at the point is

if and are continuous. The linear function whose graph is this tangent plane, namely

is called the linearization of f at and the approximation

is called the linear approximation or the tangent plane approximation of at

f �x, y� � 2x 2 � y 2

FIGURE 3
Zooming in toward (1, 1)

on a contour map of
f(x, y)=2≈+¥ 0.95 1.05

1.05

0.8 1.2

1.2

0.5 1.5

1.5

f �x, y� � 2x 2 � y 2 z � 4x � 2y � 3

L�x, y� � 4x � 2y � 3

f �x, y� �x, y�

f �x, y� � 4x � 2y � 3

f �1.1, 0.95� � 4�1.1� � 2�0.95� � 3 � 3.3

f �1.1, 0.95� � 2�1.1�2 � �0.95�2 � 3.3225

L�2, 3� � 11 f �2, 3� � 17

�a, b, f �a, b��

z � f �a, b� � fx�a, b��x � a� � fy�a, b��y � b�

fx fy

L�x, y� � f �a, b� � fx�a, b��x � a� � fy�a, b��y � b�

�a, b�

f �x, y� � f �a, b� � fx�a, b��x � a� � fy�a, b��y � b�

f �a, b�.

3

4

2
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We have defined tangent planes for surfaces , where has continuous
first partial derivatives. What happens if and are not continuous? Figure 4 pic-
tures such a function; its equation is

You can verify (see Exercise 38) that its partial derivatives exist at the origin and, in
fact, and , but and are not continuous. The linear approx-
imation would be , but at all points on the line (other
than the origin). So a function of two variables can behave badly even though both of
its partial derivatives exist. To rule out such behavior, we formulate the idea of a dif-
ferentiable function of two variables.

Recall that for a function of one variable, , if x changes from a to
we defined the increment of as

In Chapter 2 we showed that if is differentiable at a, then

Now consider a function of two variables, , and suppose x changes from
a to and y changes from b to . Then the corresponding increment of

is

Thus the increment represents the change in the value of when changes
from to . By analogy with we define the differentiability
of a function of two variables as follows.

DEFINITION If , then is differentiable at if can be
expressed in the form

where and as .

Definition 7 says that a differentiable function is one for which the linear approxi-
mation is a good approximation when is near . In other words, the tan-
gent plane approximates the graph of f well near the point of tangency.

It’s sometimes hard to use Definition 7 directly to check the differentiability of 
a function, but the following theorem provides a convenient sufficient condition for
differentiability.

THEOREM If the partial derivatives and exist near and are con-
tinuous at , then is differentiable at .

z � f �x, y� f
fx fy

f �x, y� � �
0

xy

x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

fx�0, 0� � 0 fy�0, 0� � 0 fx fy

f �x, y� � 0 f �x, y� � 1
2 y � x

y � f �x� a � �x,
y

�y � f �a � �x� � f �a�

f

�y � f ��a� �x � � �x where  � l 0  as  �x l 0

z � f �x, y�
a � �x b � �y

z

�z � f �a � �x, b � �y� � f �a, b�

�z f �x, y�
�a, b� �a � �x, b � �y�

z � f �x, y� f �a, b� �z

�z � fx�a, b� �x � fy�a, b� �y � �1 �x � �2 �y

�1 �2 l 0 ��x, �y� l �0, 0�

�x, y� �a, b�

fx fy �a, b�
�a, b� f �a, b�

5

6

7

8

5

4
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z y

x

xy

≈+¥
 if (x, y)≠(0, 0),

f(0, 0)=0

FIGURE 4

f(x, y)=

■ This is Equation 2.5.5.

■ Theorem 8 is proved in Appendix D.
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EXAMPLE 2 Show that is differentiable at (1, 0) and find its lin-
earization there. Then use it to approximate .

SOLUTION The partial derivatives are

Both and are continuous functions, so is differentiable by Theorem 8. The
linearization is

The corresponding linear approximation is

so

Compare this with the actual value of . ■

DIFFERENTIALS

For a differentiable function of one variable, , we define the differential dx to
be an independent variable; that is, dx can be given the value of any real number. The
differential of is then defined as

(See Section 2.8.) Figure 6 shows the relationship between the increment and the
differential : represents the change in height of the curve and rep-
resents the change in height of the tangent line when changes by an amount 

For a differentiable function of two variables, , we define the differen-
tials and to be independent variables; that is, they can be given any values. Then
the differential , also called the total differential, is defined by

(Compare with Equation 9.) Sometimes the notation is used in place of .
If we take and in Equation 10, then the dif-

ferential of is

So, in the notation of differentials, the linear approximation can be written as

f �x, y� � xexy

f �1.1, �0.1�

fx�x, y� � exy � xye xy fy�x, y� � x 2e xy

fx�1, 0� � 1 fy�1, 0� � 1

fx fy f

L�x, y� � f �1, 0� � fx�1, 0��x � 1� � fy�1, 0��y � 0�

� 1 � 1�x � 1� � 1 � y � x � y

xexy � x � y

f �1.1, �0.1� � 1.1 � 0.1 � 1

f �1.1, �0.1� � 1.1e�0.11 � 0.98542

y � f �x�

y

dy � f ��x� dx

�y
dy �y y � f �x� dy

x dx � �x.
z � f �x, y�

dx dy
dz

dz � fx�x, y� dx � fy�x, y� dy �
�z

�x
dx �

�z

�y
dy

d f dz
dx � �x � x � a dy � �y � y � b

z

dz � fx�a, b��x � a� � fy�a, b��y � b�

f �x, y� � f �a, b� � dz

V

9

10

4
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FIGURE 5
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■ Figure 5 shows the graphs of the
function and its linearization in
Example 2.

Lf

xa a+Îx

y

0

dx=Îx

y=ƒ

dy

Îy

FIGURE 6

tangent line
y=f(a)+fª(a)(x-a)
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Figure 7 is the three-dimensional counterpart of Figure 6 and shows the geometric
interpretation of the differential and the increment : represents the change in
height of the tangent plane, whereas represents the change in height of the surface

when changes from to .

EXAMPLE 3
(a) If , find the differential .
(b) If changes from 2 to and changes from 3 to , compare the values 
of and .

SOLUTION
(a) Definition 10 gives

(b) Putting , , , and , we get

The increment of is

Notice that but is easier to compute. ■

EXAMPLE 4 The base radius and height of a right circular cone are measured as
10 cm and 25 cm, respectively, with a possible error in measurement of as much as

cm in each. Use differentials to estimate the maximum error in the calculated
volume of the cone.

dz �z dz
�z

z � f �x, y� �x, y� �a, b� �a � �x, b � �y�

y

x

z

Î
x
=

d
x

0

{a,{{ b, f(a, b)}

(a, b, 0)

(a+Îx, b+Îy, 0)

{a+Îx, b+Îy, f (a+Îx, b+Îy)}

f(a, b)

f(a, b)

Îy=dy

tangent plane
z-f(a, b)=fxff (a, b)(x-a)+fyf (a, b)(y-b)

surface z=f(x, y)

dz

Îz

FIGURE 7

z � f �x, y� � x 2 � 3xy � y 2 dz
x 2.05 y 2.96

�z dz

dz �
�z

�x
dx �

�z

�y
dy � �2x � 3y� dx � �3x � 2y� dy

x � 2 dx � �x � 0.05 y � 3 dy � �y � �0.04

dz � �2�2� � 3�3��0.05 � �3�2� � 2�3����0.04�

� 0.65

z

�z � f �2.05, 2.96� � f �2, 3�

� ��2.05�2 � 3�2.05��2.96� � �2.96�2 � � �22 � 3�2��3� � 32 �

� 0.6449

�z � dz dz

0.1

V

646 CHAPTER 11 PARTIAL DERIVATIVES

Unless otherwise noted, all content on this page is © Cengage Learning.

FIGURE 8
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■ In Example 3, is close to because
the tangent plane is a good approximation
to the surface near

. (See Figure 8.)�2, 3, 13�
z � x 2 � 3xy � y 2

�zdz
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SOLUTION The volume of a cone with base radius and height is .
So the differential of is

Since each error is at most cm, we have , . To estimate the
largest error in the volume we take the largest error in the measurement of and of
. Therefore we take and along with , . This gives

Thus the maximum error in the calculated volume is about cm cm. ■

FUNCTIONS OF THREE OR MORE VARIABLES

Linear approximations, differentiability, and differentials can be defined in a similar
manner for functions of more than two variables. A differentiable function is defined
by an expression similar to the one in Definition 7. For such functions the linear
approximation is

and the linearization is the right side of this expression.
If , then the increment of is

The differential is defined in terms of the differentials , , and of the inde-
pendent variables by

EXAMPLE 5 The dimensions of a rectangular box are measured to be 75 cm, 60 cm, 
and 40 cm, and each measurement is correct to within cm. Use differentials to
estimate the largest possible error when the volume of the box is calculated from
these measurements.

SOLUTION If the dimensions of the box are , , and , its volume is and
so

We are given that , , and . To estimate the largest
error in the volume, we therefore use , , and together
with , , and :

Thus an error of only cm in measuring each dimension could lead to an error of
approximately 1980 cm in the calculated volume! This may seem like a large error,
but it’s only about 1% of the volume of the box. ■

V r h V � �r 2h�3
V

dV �
�V

�r
dr �

�V

�h
dh �

2�rh

3
 dr �

�r 2

3
 dh

0.1 � �r � � 0.1 � �h � � 0.1
r

h dr � 0.1 dh � 0.1 r � 10 h � 25

dV �
500�

3
 �0.1� �

100�

3
 �0.1� � 20�

20� 3 � 63 3

f �x, y, z� � f �a, b, c� � fx�a, b, c��x � a� � fy�a, b, c��y � b� � fz�a, b, c��z � c�

L�x, y, z�
w � f �x, y, z� w

�w � f �x � �x, y � �y, z � �z� � f �x, y, z�

dw dx dy dz

dw �
�w

�x
dx �

�w

�y
dy �

�w

�z
dz

0.2

x y z V � xyz

dV �
�V

�x
dx �

�V

�y
dy �

�V

�z
dz � yz dx � xz dy � xy dz

� �x � � 0.2 � �y � � 0.2 � �z � � 0.2
dx � 0.2 dy � 0.2 dz � 0.2

x � 75 y � 60 z � 40

�V � dV � �60��40��0.2� � �75��40��0.2� � �75��60��0.2� � 1980

0.2
3
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11.4 EXERCISES

1–6 ■ Find an equation of the tangent plane to the given 
surface at the specified point.

1. ,  

2. ,  

3. ,  

4. ,  

5. ,  

6. ,  

; 7–8 ■ Graph the surface and the tangent plane at the given
point. (Choose the domain and viewpoint so that you get a
good view of both the surface and the tangent plane.) Then
zoom in until the surface and the tangent plane become 
indistinguishable.

7. ,  

8. ,  

9–10 ■ Draw the graph of and its tangent plane at the
given point. (Use your computer algebra system both to com-
pute the partial derivatives and to graph the surface and its
tangent plane.) Then zoom in until the surface and the tangent
plane become indistinguishable.

9.

10.

11–14 ■ Explain why the function is differentiable at the
given point. Then find the linearization of the function
at that point.

11. ,  

12. ,  

13. ,  

14. ,  

15–16 ■ Verify the linear approximation at .

15.

16.

17. Given that is a differentiable function with ,
, and , use a linear approxima-

tion to estimate .

z � 3y 2 � 2x 2 � x �2, �1, �3�

z � 3�x � 1�2 � 2�y � 3�2 � 7 �2, �2, 12�

z � sxy �1, 1, 1�

z � xe xy �2, 0, 2�

z � x sin�x � y� ��1, 1, 0�

z � ln�x � 2y� �3, 1, 0�

z � x 2 � xy � 3y 2 �1, 1, 5�

z � arctan�xy 2� �1, 1, ��4�

f

f �x, y� �
xy sin�x � y�
1 � x 2 � y 2 ,  �1, 1, 0�

f �x, y� � e�xy�10 (sx � sy � sxy ),  �1, 1, 3e�0.1�

L�x, y�

f �x, y� � 1 � x ln�xy � 5� �2, 3�

CAS

�0, 3�f �x, y� � y � sin�x�y�

��, 0�f �x, y� � e�xy cos y

�3, 0�f �x, y� � sx � e 4y

�0, 0�

2x � 3

4y � 1
� 3 � 2x � 12y

sy � cos2 x � 1 �
1
2 y

f �2, 5� � 6f
fy �2, 5� � �1fx �2, 5� � 1

f �2.2, 4.9�

; 18. Find the linear approximation of the function
at and use it to approx-

imate . Illustrate by graphing and the 
tangent plane.

19. Find the linear approximation of the function
at and use it to 

approximate the number .

20–24 ■ Find the differential of the function.

20.

21. 22.

23. 24.

25. If and changes from to
compare the values of and .

26. If and changes from to
, compare the values of and .

27. The length and width of a rectangle are measured as 
30 cm and 24 cm, respectively, with an error in measure-
ment of at most cm in each. Use differentials to esti-
mate the maximum error in the calculated area of the
rectangle.

28. Use differentials to estimate the amount of metal in a
closed cylindrical can that is 10 cm high and 4 cm in
diameter if the metal in the top and bottom is cm thick
and the metal in the sides is cm thick.

29. Use differentials to estimate the amount of tin in a closed
tin can with diameter 8 cm and height 12 cm if the tin is

cm thick.

30. The pressure, volume, and temperature of a mole of an
ideal gas are related by the equation , where
is measured in kilopascals, in liters, and in kelvins.
Use differentials to find the approximate change in the
pressure if the volume increases from 12 L to 12.3 L and
the temperature decreases from 310 K to 305 K.

31. A model for the surface area of a human body is given by
, where is the weight (in pounds),

is the height (in inches), and is measured in square
feet. If the errors in measurement of and are at most
2%, use differentials to estimate the maximum percentage
error in the calculated surface area.

32. The wind-chill index is modeled by the function

where is the temperature and is the wind speed

f �x, y� � 1 � xy cos �y �1, 1�
f �1.02, 0.97� f

f �x, y, z� � sx 2 � y 2 � z 2 �3, 2, 6�
s�3.02� 2 � �1.97� 2 � �5.99� 2 

u � sx 2 � 3y 2 

m � p5q3 T �
v

1 � uvw

R � �	 2 cos 
 L � xze�y2�z2

z � 5x 2 � y 2 �x, y� �1, 2�
�1.05, 2.1�, �z dz

z � x 2 � xy � 3y 2 �x, y� �3, �1�
�2.96, �0.95� �z dz

0.1

0.1
0.05

0.04

PV � 8.31T P
V T

S � 0.1091w 0.425h 0.725 w
h S

w h

W � 13.12 � 0.6215T � 11.37v 0.16 � 0.3965Tv 0.16

v�in �C�T

648 CHAPTER 11 PARTIAL DERIVATIVES

Unless otherwise noted, all content on this page is © Cengage Learning.

12280_ch11_ptg01_hr_646-655.qk_12280_ch11_ptg01_hr_646-655  12/15/11  2:23 PM  Page 648

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



35–36 ■ Show that the function is differentiable by finding val-
ues of and that satisfy Definition 7.

35.

36.

37. Prove that if is a function of two variables that is differen-
tiable at , then is continuous at .  

Hint: Show that

38. (a) The function

was graphed in Figure 4. Show that and
both exist but is not differentiable at . [Hint: Use 
the result of Exercise 37.]

(b) Explain why and are not continuous at .

f
�a, b�f�a, b�

lim
��x, �y� l �0, 0�

f �a � �x, b � �y� � f �a, b�

f �x, y� � 	
0

xy

x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

fy�0, 0�fx�0, 0�
�0, 0�f

�0, 0�fyfx

�2�1

f �x, y� � xy � 5y 2

f �x, y� � x 2 � y 2

. The wind speed is measured as , with a
possible error of , and the temperature is measured
as , with a possible error of . Use differentials
to estimate the maximum error in the calculated value of
due to the measurement errors in and .

33. If is the total resistance of three resistors, connected in
par al lel, with resistances , , , then

If the resistances are measured in ohms as ,
, and , with a possible error of in

each case, estimate the maximum error in the calculated
value of .

34. Suppose you need to know an equation of the tangent plane
to a surface at the point . You don’t have an
equation for but you know that the curves

both lie on . Find an equation of the tangent plane at .

2 km�h
�11�C 1�C

W
vT

R
R3R2R1

1

R
�

1

R1
�

1

R2
�

1

R3

R1 � 25 �
0.5%R3 � 50 �R2 � 40 �

R

P�2, 1, 3�S
S

r1�t� � 
2 � 3t, 1 � t 2, 3 � 4t � t 2 �

r2�u� � 
1 � u2, 2u3 � 1, 2u � 1 �

PS

26 km�h�in km�h�
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11.5 THE CHAIN RULE
Recall that the Chain Rule for functions of a single variable gives the rule for differ-
entiating a composite function: If and , where and are differen-
tiable functions, then is indirectly a differentiable function of and

For functions of more than one variable, the Chain Rule has several versions, each
of them giving a rule for differentiating a composite function. The first version (The-
orem 2) deals with the case where and each of the variables and is, in
turn, a function of a variable . This means that is indirectly a function of ,

, and the Chain Rule gives a formula for differentiating as a function
of . We assume that is differentiable (Definition 11.4.7). Recall that this is the case
when and are continuous (Theorem 11.4.8).

THE CHAIN RULE (CASE 1) Suppose that is a differentiable
function of and , where and are both differentiable func-
tions of . Then is a differentiable function of and

y � f �x� x � t�t� f t

y t

dy

dt
�

dy

dx

dx

dt

z � f �x, y� x y
t z t

z � f �t�t�, h�t�� z
t f

fx fy

z � f �x, y�
x y x � t�t� y � h�t�

t z t

dz

dt
�

�f

�x

dx

dt
�

�f

�y

dy

dt

1

2
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PROOF A change of in produces changes of in and in . These, in
turn, produce a change of in , and from Definition 11.4.7 we have

where and as . [If the functions and are not
defined at , we can define them to be 0 there.] Dividing both sides of this equa-
tion by , we have

If we now let , then because is differentiable
and therefore continuous. Similarly, . This, in turn, means that and

, so

■

Since we often write in place of , we can rewrite the Chain Rule in the
form

EXAMPLE 1 If , where and , find when
.

SOLUTION The Chain Rule gives

It’s not necessary to substitute the expressions for and in terms of . We simply
observe that when we have x � sin 0 � 0 and y � cos 0 � 1. Therefore

■

�t t �x x �y y
�z z

�z �
�f

�x
�x �

�f

�y
�y � �1 �x � �2 �y

�1 l 0 �2 l 0 ��x, �y� l �0, 0� �1 �2

�0, 0�
�t

�z

�t
�

�f

�x

�x

�t
�

�f

�y

�y

�t
� �1

�x

�t
� �2

�y

�t

�t l 0 �x � t�t � �t� � t�t� l 0 t

�y l 0 �1 l 0
�2 l 0

dz

dt
� lim

�t l 0

�z

�t

�
�f

�x
lim

�t l 0

�x

�t
�

�f

�y
lim

�t l 0

�y

�t
� lim

�t l 0
 �1 lim

�t l 0

�x

�t
� lim

�t l 0
�2 lim

�t l 0

�y

�t

�
�f

�x

dx

dt
�

�f

�y

dy

dt
� 0 �

dx

dt
� 0 �

dy

dt

�
�f

�x

dx

dt
�

�f

�y

dy

dt

�z��x �f��x

dz

dt
�

�z

�x

dx

dt
�

�z

�y

dy

dt

z � x 2y � 3xy4 x � sin 2t y � cos t dz�dt
t � 0

dz

dt
�

�z

�x

dx

dt
�

�z

�y

dy

dt

� �2xy � 3y 4 ��2 cos 2t� � �x 2 � 12xy 3 ���sin t�

x y t
t � 0

dz

dt �
t�0

� �0 � 3��2 cos 0� � �0 � 0���sin 0� � 6
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■ Notice the similarity to the definition
of the differential:

dz �
�z

�x
dx �

�z

�y
dy
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The derivative in Example 1 can be interpreted as the rate of change of with
respect to as the point moves along the curve with parametric equations

, . (See Figure 1.) In particular, when , the point is
and is the rate of increase as we move along the curve through

. If, for instance, represents the temperature at the
point , then the composite function represents the tempera-
ture at points on and the derivative represents the rate at which the temper -
ature changes along .

EXAMPLE 2 The pressure (in kilopascals), volume (in liters), and tempera-
ture (in kelvins) of a mole of an ideal gas are related by the equation . 
Find the rate at which the pressure is changing when the temperature is and
increas ing at a rate of and the volume is 100 L and increasing at a rate of

.

SOLUTION If represents the time elapsed in seconds, then at the given instant we
have , , , . Since

the Chain Rule gives

The pressure is decreasing at a rate of about kPa�s. ■

We now consider the situation where but each of and is a function
of two variables and : , . Then is indirectly a function of and

and we wish to find and . Recall that in computing we hold fixed
and compute the ordinary derivative of with respect to . Therefore we can apply
Theorem 2 to obtain

A similar argument holds for and so we have proved the following version of
the Chain Rule.

THE CHAIN RULE (CASE 2) Suppose that is a differentiable
function of and , where and are differentiable func-
tions of s and t. Then

x � sin 2t y � cos t t � 0 �x, y�
�0, 1� dz�dt � 6 C
�0, 1� z � T�x, y� � x 2y � 3xy 4

�x, y� z � T �sin 2t, cos t�
C dz�dt

C

P V
T PV � 8.31T

V

300 K
0.1 K�s

0.2 L�s

t
T � 300 dT�dt � 0.1 V � 100 dV�dt � 0.2

P � 8.31
T

V

dP

dt
�

�P

�T

dT

dt
�

�P

�V

dV

dt
�

8.31

V

dT

dt
�

8.31T

V 2

dV

dt

�
8.31

100
 �0.1� �

8.31�300�
1002 �0.2� � �0.04155

0.042

z � f �x, y� x y
s t x � t�s, t� y � h�s, t� z s

t �z��s �z��t �z��t s
z t

�z

�t
�

�z

�x

�x

�t
�

�z

�y

�y

�t

�z��s

z � f �x, y�
x y x � t�s, t� y � h�s, t�

�z

�s
�

�z

�x

�x

�s
�

�z

�y

�y

�s

�z

�t
�

�z

�x

�x

�t
�

�z

�y

�y

�t

3

z
t �x, y� C
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FIGURE 1
The curve x=sin 2t, y=cos t

x

(0, 1)

y

12280_ch11_ptg01_hr_646-655.qk_12280_ch11_ptg01_hr_646-655  12/15/11  1:51 PM  Page 651

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



652 CHAPTER 11 PARTIAL DERIVATIVES

Unless otherwise noted, all content on this page is © Cengage Learning.

EXAMPLE 3 If , where and , find and .

SOLUTION Applying Case 2 of the Chain Rule, we get

■

Case 2 of the Chain Rule contains three types of variables: and are indepen-
dent variables, and are called intermediate variables, and is the dependent vari-
able. Notice that Theorem 3 has one term for each intermediate variable and each of
these terms resembles the one-dimensional Chain Rule in Equation 1.

To remember the Chain Rule it’s helpful to draw the tree diagram in Figure 2. We
draw branches from the dependent variable to the intermediate variables and to
indicate that is a function of and . Then we draw branches from and to the
independent variables and . On each branch we write the corresponding partial
derivative. To find we find the product of the partial derivatives along each path
from to and then add these products:

Similarly, we find by using the paths from to .
Now we consider the general situation in which a dependent variable is a func-

tion of intermediate variables , , each of which is, in turn, a function of
independent variables , . Notice that there are terms, one for each interme-
diate variable. The proof is similar to that of Case 1.

THE CHAIN RULE (GENERAL VERSION) Suppose that is a differentiable
function of the variables , , and each is a differentiable func-
tion of the variables , , . Then is a function of , , and

for each , , .

EXAMPLE 4 Write out the Chain Rule for the case where and
, , , and .

SOLUTION We apply Theorem 4 with and . Figure 3 shows the tree
diagram. Although we haven’t written the derivatives on the branches, it’s under-
stood that if a branch leads from to , then the partial derivative for that branch is 

z � ex sin y x � st 2 y � s 2t �z��s �z��t

�z

�s
�

�z

�x

�x

�s
�

�z

�y

�y

�s
� �e x sin y��t 2 � � �e x cos y��2st�

� t 2est 2

sin �s 2t� � 2ste st 2

cos�s 2t�

�z

�t
�

�z

�x

�x

�t
�

�z

�y

�y

�t
� �e x sin y��2st� � �e x cos y��s 2 �

� 2ste st 2

sin �s 2t� � s 2est 2

cos�s 2t�

s t
x y z

z x y
z x y x y

s t
�z��s

z s

�z

�s
�

�z

�x

�x

�s
�

�z

�y

�y

�s

�z��t z t
u

n x1 . . . , xn m
t1 . . . , tm n

u
n x1 x2 . . . , xn xj

m t1 t2 . . . , tm u t1 t2 . . . , tm

�u

�ti
�

�u

�x1

�x1

�ti
�

�u

�x2

�x2

�ti
� � � � �

�u

�xn

�xn

�ti

i � 1 2 . . . , m

w � f �x, y, z, t�
x � x�u, v� y � y�u, v� z � z�u, v� t � t�u, v�

n � 4 m � 2

y u
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. With the aid of the tree diagram we can now write the required expressions:

■

EXAMPLE 5 If , where , , and ,
find the value of when , , .

SOLUTION With the help of the tree diagram in Figure 4, we have

When , , and , we have , , and , so

■

EXAMPLE 6 If and is differentiable, show that
satisfies the equation

SOLUTION Let and . Then and the Chain
Rule gives

Therefore

■

EXAMPLE 7 If has continuous second-order partial derivatives and
and , find (a) and (b) .

SOLUTION
(a) The Chain Rule gives

(b) Applying the Product Rule to the expression in part (a), we get

�y��u

�w

�u
�

�w

�x

�x

�u
�

�w

�y

�y

�u
�

�w

�z

�z

�u
�

�w

�t

�t

�u

�w

�v
�

�w

�x

�x

�v
�

�w

�y

�y

�v
�

�w

�z

�z

�v
�

�w

�t

�t

�v

u � x 4y � y 2z3 x � rse t y � rs 2e�t z � r 2s sin t
�u��s r � 2 s � 1 t � 0

�u

�s
�

�u

�x

�x

�s
�

�u

�y

�y

�s
�

�u

�z

�z

�s

� �4x 3y��re t� � �x 4 � 2yz3 ��2rse�t� � �3y 2z2 ��r 2 sin t�

V

r � 2 s � 1 t � 0 x � 2 y � 2 z � 0

�u

�s
� �64��2� � �16��4� � �0��0� � 192
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t
�t

�s
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�t

�t
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t�s, t� � f �x, y�

�t

�s
�
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FIGURE 5

�z

�x

yx

r s r s

But, using the Chain Rule again (see Figure 5), we have

Putting these expressions into Equation 5 and using the equality of the mixed second-
order derivatives, we obtain

■

IMPLICIT DIFFERENTIATION

The Chain Rule can be used to give a more complete description of the process of
implicit differentiation that was introduced in Sections 2.6 and 11.3. We suppose that
an equation of the form defines implicitly as a differentiable function of
, that is, , where for all in the domain of . If is differen-

tiable, we can apply Case 1 of the Chain Rule to differentiate both sides of the equa-
tion with respect to . Since both and are functions of , we obtain

But , so if we solve for and obtain

To derive this equation we assumed that defines implicitly as a func-
tion of . The Implicit Function Theorem, proved in advanced calculus, gives con-
ditions under which this assumption is valid. It states that if is defined on a disk
containing where , , and and are continuous on
the disk, then the equation defines as a function of near the point
and the derivative of this function is given by Equation 6.

EXAMPLE 8 Find if .

SOLUTION The given equation can be written as

�

�r � �z

�x� �
�

�x � �z

�x� �x

�r
�

�

�y � �z

�x� �y
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�

�2z

�x 2 �2r� �
�2z

�y �x
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�

�r � �z
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�

�x � �z

�y� �x
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�

�

�y � �z

�y� �y
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�

�2z

�x �y
�2r� �

�2z

�y 2 �2s�

�2z

�r 2 � 2 
�z

�x
� 2r�2r

�2z

�x 2 � 2s
�2z

�y �x� � 2s�2r
�2z

�x �y
� 2s

�2z

�y 2�
� 2 

�z

�x
� 4r 2 �2z

�x 2 � 8rs
�2z

�x �y
� 4s 2 �2z

�y 2

F�x, y� � 0 y
x y � f �x� F�x, f �x�� � 0 x f F

F�x, y� � 0 x x y x

�F

�x

dx

dx
�

�F

�y

dy

dx
� 0

dx�dx � 1 �F��y � 0 dy�dx
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�F
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�F
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� �
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x

F
�a, b�, F�a, b� � 0 Fy�a, b� � 0 Fx Fy
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y� x 3 � y 3 � 6xy
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so Equation 6 gives

■

Now we suppose that is given implicitly as a function by an equation
of the form . This means that for all in the
domain of . If and are differentiable, then we can use the Chain Rule to differ-
entiate the equation as follows:

But

so this equation becomes

If , we solve for and obtain the first formula in Equations 7. The for-
mula for is obtained in a similar manner.

Again, a version of the Implicit Function Theorem gives conditions under which 
our assumption is valid. If is defined within a sphere containing , where

, , and , , and are continuous inside the sphere,
then the equation defines as a function of and near the point

and this function is differentiable, with partial derivatives given by .

EXAMPLE 9 Find and if .

SOLUTION Let . Then, from Equations 7,
we have

■

dy

dx
� �

Fx

Fy
� �

3x 2 � 6y

3y 2 � 6x
� �

x 2 � 2y

y 2 � 2x
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f F f
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�F

�x

�x

�x
�

�F

�y

�y

�x
�

�F

�z

�z

�x
� 0

�

�x
�x� � 1 and

�

�x
�y� � 0

�F

�x
�

�F

�z

�z

�x
� 0

�F��z � 0 �z��x
�z��y

�z

�x
� �

�F

�x

�F

�z

�z

�y
� �

�F

�y

�F

�z

F �a, b, c�
F�a, b, c� � 0 Fz�a, b, c� � 0 Fx Fy Fz

F�x, y, z� � 0 z x y
�a, b, c�

�z

�x

�z

�y
x 3 � y 3 � z3 � 6xyz � 1

F�x, y, z� � x 3 � y 3 � z3 � 6xyz � 1

�z

�x
� �

Fx

Fz
� �

3x 2 � 6yz

3z2 � 6xy
� �

x 2 � 2yz

z2 � 2xy

�z

�y
� �

Fy

Fz
� �

3y 2 � 6xz

3z2 � 6xy
� �

y 2 � 2xz

z2 � 2xy

7

7
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■ The solution to Example 9 should be 
compared to the one in Example 4 in 
Section 11.3.

■ The solution to Example 8 should be
compared to the one in Example 2 in 
Section 2.6.
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11.5 EXERCISES

1–4 ■ Use the Chain Rule to find or .

1. ,  ,  

2. ,  ,  

3. ,  ,  ,  

4. ,  ,  ,  

5–8 ■ Use the Chain Rule to find and .

5. ,  ,  

6. ,  ,  

7. ,  ,  

8. ,  ,  

9. If , where is differentiable, and

find when .

10. Let , where are differ-
entiable, and

Find and .

11. Suppose is a differentiable function of and , and
. Use the table of values 

to calculate 

12. Suppose is a differentiable function of and , and
Use the table of values in

Exercise 11 to calculate and 

13–16 ■ Use a tree diagram to write out the Chain Rule for the
given case. Assume all functions are differentiable.

13. ,  where , 

14. ,  where , ,
, 

dz�dt dw�dt

z � x 2 � y 2 � xy x � sin t y � e t

z � cos�x � 4y� x � 5t 4 y � 1�t

w � xe y�z x � t 2 y � 1 � t z � 1 � 2t

w � lnsx 2 � y 2 � z2 x � sin t y � cos t z � tan t

�z��s �z��t

z � x 2y 3 x � s cos t y � s sin t

z � arcsin�x � y� x � s 2 � t 2 y � 1 � 2st

z � e r cos � r � st � � ss 2 � t 2 

z � tan�u�v� u � 2s � 3t v � 3s � 2t

z � f �x, y� f

x � t�t� y � h�t�
t�3� � 2 h�3� � 7

t��3� � 5 h��3� � �4

fx�2, 7� � 6 fy�2, 7� � �8

dz�dt t � 3

W�s, t� � F�u�s, t�, v�s, t�� F, u, and v

u�1, 0� � 2 v�1, 0� � 3

us�1, 0� � �2 vs�1, 0� � 5

ut�1, 0� � 6 vt�1, 0� � 4

Fu�2, 3� � �1 Fv�2, 3� � 10

Ws�1, 0� Wt�1, 0�

f x y
t�u, v� � f �e u � sin v, e u � cos v�

tu�0, 0� and tv�0, 0�.

f x y
t�r, s� � f �2r � s, s 2 � 4r�.

tr�1, 2� ts�1, 2�.

y � y�r, s, t�x � x�r, s, t�u � f �x, y�

y � y�u, v, w�x � x�u, v, w�R � f �x, y, z, t�
t � t�u, v, w�z � z�u, v, w�

15. ,  where , , 

16. ,  where , ,

17–21 ■ Use the Chain Rule to find the indicated partial 
derivatives.

17. ,  ,  ;

, , when , , 

18. ,  ,  ;

, , when , , 

19. ,  ,  ,  ;

, when , 

20. ,  ,  ,  ;

, when 

21. ,  ,  ,  ;

, , when 

22–24 ■ Use Equation 6 to find .

22.

23. 24.

25–28 ■ Use Equations 7 to find and .

25. 26.

27. 28.

29. The temperature at a point is , measured in
degrees Celsius. A bug crawls so that its position after

seconds is given by , where and
are measured in centimeters. The temperature func tion

satisfies and . How fast is the tem-
perature rising on the bug’s path after 3 seconds?

30. Wheat production in a given year depends on the aver-
age temperature and the annual rainfall . Scientists 
estimate that the average temperature is rising at a rate 
of 0.15°C�year and rainfall is decreasing at a rate of 

w � f �r, s, t� r � r�x, y� s � s�x, y� t � t�x, y�

t � f �u, v, w� u � u�p, q, r, s� v � v�p, q, r, s�
w � w�p, q, r, s�

z � x 4 � x 2y x � s � 2t � u y � stu2

�z

�s

�z

�t

�z

�u
s � 4 t � 2 u � 1

T �
v

2u � v
u � pqsr v � psq r

�T

�p

�T

�q

�T

�r
p � 2 q � 1 r � 4

w � xy � yz � zx x � r cos � y � r sin � z � r�

�w

�r

�w

��
r � 2 � � ��2

P � su 2 � v2 � w 2 u � xe y v � ye x w � e xy

�P

�x

�P

�y
x � 0, y � 2

N �
p � q

p � r
p � u � vw q � v � uw r � w � uv

�N

�u

�N

�v

�N

�w
u � 2, v � 3, w � 4

dy�dx

cos�xy� � 1 � sin y

tan�1�x 2y� � x � xy 2 e y sin x � x � xy

�z��x �z��y

x 2 � 2y 2 � 3z2 � 1 xyz � cos�x � y � z�

e z � xyz yz � x ln y � z2

�x, y� T�x, y�

t x � s1 � t , y � 2 �
1
3 t x

y
Tx�2, 3� � 4 Ty�2, 3� � 3

W
T R
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3 6 4 8

6 3 2 5�1, 2�

�0, 0�

fyfxtf
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36. If a sound with frequency is produced by a source travel-
ing along a line with speed and an observer is traveling
with speed along the same line from the opposite direc-
tion toward the source, then the frequency of the sound
heard by the observer is

where is the speed of sound, about . (This is the
Doppler effect.) Suppose that, at a particular moment, 
you are in a train traveling at and accelerating at

. A train is approaching you from the opposite
direction on the other track at , accelerating at

, and sounds its whistle, which has a frequency of
460 Hz. At that instant, what is the perceived frequency that
you hear and how fast is it changing?

37–40 ■ Assume that all the given functions are differentiable.

37. If , where and , (a) find
and and (b) show that

38. If , where and , show
that

39. If , show that .

40. If , where and , show that

41–46 ■ Assume that all the given functions have continuous 
second-order partial derivatives.

41. Show that any function of the form

is a solution of the wave equation

[Hint: Let , .]

42. If , where and , show
that

43. If , where and , find
. (Compare with Example 7.)

fo � � c � vo

c � vs
� fs

c 332 m�s

34 m�s
1.2 m�s2

40 m�s
1.4 m�s2

z � f �x, y� x � r cos � y � r sin �
�z��r �z���

� �z

�x�2

� � �z

�y�2

� ��z

�r�2

�
1

r 2 � �z

��
�2

u � f �x, y� x � e s cos t y � e s sin t

��u

�x�2

� ��u

�y�2

� e�2s���u

�s�2

� ��u

�t �2�
z � f �x � y�

�z

�x
�

�z

�y
� 0

z � f �x, y� x � s � t y � s � t

� �z

�x�2

� � �z

�y�2

�
�z

�s

�z

�t

z � f �x � at� � t�x � at�

�2z

�t 2 � a 2 �2z

�x 2

u � x � at v � x � at

u � f �x, y� x � e s cos t y � e s sin t

�2u

�x 2 �
�2u

�y 2 � e�2s��2u

�s 2 �
�2u

�t 2�

vo

y � 2rsx � r 2 � s 2z � f �x, y�
�2z��r �s

fs

vs

0.1 cm�year. They also estimate that, at current production
levels, and .
(a) What is the significance of the signs of these partial 

derivatives?
(b) Estimate the current rate of change of wheat production,

.

31. The speed of sound traveling through ocean water with
salinity 35 parts per thousand has been modeled by the
equation

where is the speed of sound (in meters per second), is
the temperature (in degrees Celsius), and is the depth
below the ocean surface (in meters). A scuba diver began a
leisurely dive into the ocean water; the diver’s depth and the
surrounding water temperature over time are recorded in the
following graphs. Estimate the rate of change (with respect
to time) of the speed of sound through the ocean water
experienced by the diver 20 minutes into the dive. What are
the units?

32. The radius of a right circular cone is increasing at a rate of 
in�s while its height is decreasing at a rate of in�s.

At what rate is the volume of the cone changing when the
radius is 120 in. and the height is 140 in.?

33. The length �, width , and height of a box change with 
time. At a certain instant the dimensions are and 

m, and � and are increasing at a rate of 2 m�s
while is decreasing at a rate of 3 m�s. At that instant find
the rates at which the following quantities are changing.
(a) The volume
(b) The surface area
(c) The length of a diagonal

34. The voltage in a simple electrical circuit is slowly
decreasing as the battery wears out. The resistance is
slowly increasing as the resistor heats up. Use Ohm’s Law,

, to find how the current is changing at the moment
when , A, V�s, and

.

35. The pressure of 1 mole of an ideal gas is increasing at a rate 
of kPa�s and the temperature is increasing at a rate of 

K�s. Use the equation in Example 2 to find the rate of
change of the volume when the pressure is 20 kPa and the 
temperature is 320 K.

dW�dt

C � 1449.2 � 4.6T � 0.055T 2 � 0.00029T 3 � 0.016D

C T
D

t

(min)

T

10

12

10 20 30 40

14

16

8

t

(min)

D

5

10

10 20 30 40

15

20

1.8 2.5

w h
� � 1 m

w � h � 2 w
h

V
R

V � IR I
R � 400 � I � 0.08 dV�dt � �0.01

dR�dt � 0.03 ��s

0.05
0.15

�W��T � �2 �W��R � 8
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(b) Find a similar formula for .

47. Suppose that the equation implicitly defines
each of the three variables , , and as functions of the
other two: , , . If is dif-
ferentiable and , , and are all nonzero, show that

48. Equation 6 is a formula for the derivative of a func-
tion defined implicitly by an equation , provided
that is differentiable and . Prove that if has con-
tinuous second derivatives, then a formula for the second
derivative of is

Fx � h�y, z�y � t�x, z�z � f �x, y�
FzFyFx

�z

�x

�x

�y

�y

�z
� �1

dy�dx
F �x, y� � 0

FFy � 0F

y

d 2y

dx 2 � �
FxxFy

2 � 2FxyFxFy � FyyFx
2

Fy
3

F�x, y, z� � 0
zyx

�2z��s �t44. If , where and , find 
(a) , (b) , and (c) .

45. If , where and , show that 

46. Suppose , where and .
(a) Show that

�2z

�x 2 �
�2z

�y 2 �
�2z

�r 2 �
1

r 2

�2z

�� 2 �
1

r

�z

�r

z � f �x, y� x � t�s, t� y � h�s, t�

�2z

�t 2 �
�2z

�x 2 ��x

�t �2

� 2 
�2z

�x �y

�x

�t

�y

�t
�

�2z

�y 2 ��y

�t �2

�
�z

�x

�2x

�t 2 �
�z

�y

�2 y

�t 2

y � r sin �x � r cos �z � f �x, y�
�2z��r ���z����z��r

y � r sin �x � r cos �z � f �x, y�
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11.6 DIRECTIONAL DERIVATIVES AND 
THE GRADIENT VECTOR

Recall that if , then the partial derivatives and are defined as

and represent the rates of change of in the - and -directions, that is, in the direc-
tions of the unit vectors and .

Suppose that we now wish to find the rate of change of at in the direction
of an arbitrary unit vector . (See Figure 1.) To do this we consider the sur-
face with equation (the graph of ) and we let . Then the
point lies on . The vertical plane that passes through in the direction
of intersects in a curve . (See Figure 2.) The slope of the tangent line to at
the point is the rate of change of in the direction of .

If is another point on and , are the projections of , on the
-plane, then the vector P�BQ� is parallel to and so

P�BQ�

for some scalar . Therefore , , so ,
, and

If we take the limit as , we obtain the rate of change of (with respect to dis-
tance) in the direction of , which is called the directional derivative of in the direc-
tion of .

fyfxz � f �x, y�

fx�x0, y0 � � lim
h l 0

f �x0 � h, y0 � � f �x0, y0 �
h

1

fy�x0, y0 � � lim
h l 0

f �x0, y0 � h� � f �x0, y0 �
h

yxz
ji

�x0, y0 �z
u � 	a, b 


z0 � f �x0, y0 �fz � f �x, y�S
PSP�x0, y0, z0 �

CTCSu
uzP

QPQ�P�CQ�x, y, z�
uxy

� hu � 	ha, hb 


x � x0 � hay � y0 � hbx � x0 � hah
y � y0 � hb

	z

h
�

z � z0

h
�

f �x0 � ha, y0 � hb� � f �x0, y0 �
h

zh l 0
fu

u

FIGURE 1
A unit vector u=ka, bl=kcos ¨, sin ¨l

y

0 x

(x¸, y¸)

cos ¨

sin ¨

¨

u
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DEFINITION The directional derivative of at in the direction of
a unit vector is

if this limit exists.

By comparing Definition 2 with Equations 1, we see that if , then
and if , then . In other words, the partial derivatives

of with respect to and are just special cases of the directional derivative.
When we compute the directional derivative of a function defined by a formula, we

generally use the following theorem.

THEOREM If is a differentiable function of and , then has a direc-
tional derivative in the direction of any unit vector and

PROOF If we define a function of the single variable by

then by the definition of a derivative we have

u � i � 	1, 0 

Di f � fx u � j � 	0, 1 
 Dj f � fy

f x y

f x y f
u � 	a, b 


3

Du f �x, y� � fx�x, y�a � fy�x, y�b

ht

t�h� � f �x0 � ha, y0 � hb�

t��0� � lim
h l 0

t�h� � t�0�
h

� lim
h l 0

f �x0 � ha, y0 � hb� � f �x0, y0 �
h

4

� Du f �x0, y0 �

�x0, y0 �f2
u � 	a, b 


Du f �x0, y0 � � lim
h l 0

f �x0 � ha, y0 � hb� � f �x0, y0 �
h

FIGURE 2

T

Q(x, y, z)

P(x¸, y¸, z¸)

y

x

z
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Visual 11.6A animates Figure 2 by
rotating and therefore .Tu
TEC
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On the other hand, we can write , where , ,
so the Chain Rule (Theorem 11.5.2) gives

If we now put , then , , and

Comparing Equations 4 and 5, we see that

■

If the unit vector makes an angle with the positive -axis (as in Figure 1), then
we can write and the formula in Theorem 3 becomes

EXAMPLE 1 Find the directional derivative if
and is the unit vector given by angle . What is ?

SOLUTION Formula 6 gives

Therefore

■

THE GRADIENT VECTOR

Notice from Theorem 3 that the directional derivative can be written as the dot prod-
uct of two vectors:

The first vector in this dot product occurs not only in computing directional deriv -
atives but in many other contexts as well. So we give it a special name (the gradient
of ) and a special notation (grad or , which is read “del ”).

DEFINITION If is a function of two variables and , then the gradient
of is the vector function defined by

t��h� �
�f

�x

dx

dh
�

�f

�y

dy

dh
� fx�x, y�a � fy�x, y�b

y � y0 � hbx � x0 � hat�h� � f �x, y�

y � y0x � x0h � 0

t��0� � fx�x0, y0 �a � fy�x0, y0 �b5

Du f �x0, y0 � � fx�x0, y0 �a � fy�x0, y0 �b

x�u
u � 	cos �, sin � 


Du f �x, y� � fx�x, y� cos � � fy�x, y� sin �6

f �x, y� � x 3 � 3xy � 4y 2Du f �x, y�
Du f �1, 2�� � ��6u

� �3x 2 � 3y�
s3

2
� ��3x � 8y� 1

2Du f �x, y� � fx�x, y� cos 
�

6
� fy�x, y� sin 

�

6

� 1
2 [3 s3 x 2 � 3x � (8 � 3s3 )y]

Du f �1, 2� � 1
2 [3s3 �1�2 � 3�1� � (8 � 3s3 )�2�] �

13 � 3s3

2

Du f �x, y� � fx�x, y�a � fy�x, y�b7

� 	 fx�x, y�, fy�x, y�
 � 	a, b 


� 	 fx�x, y�, fy�x, y�
 � u

f
 fff

yxf8

 ff


 f �x, y� � 	 fx�x, y�, fy�x, y�
 �
�f

�x
i �

�f

�y
j

■ The directional derivative 
in Example 1 represents the rate of 
change of in the direction of . This is
the slope of the tangent line to the 
curve of intersection of the surface

and the vertical 
plane through in the direction 
of shown in Figure 3.u

�1, 2, 0�
z � x 3 � 3xy � 4y2

uz

Du f �1, 2�

FIGURE 3

(1, 2, 0)

π

6

z

x

y0

u
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EXAMPLE 2 If , then

and ■

With this notation for the gradient vector, we can rewrite the expression for the
directional derivative as

This expresses the directional derivative in the direction of as the scalar projection
of the gradient vector onto .

EXAMPLE 3 Find the directional derivative of the function
at the point in the direction of the vector .

SOLUTION We first compute the gradient vector at :

Note that is not a unit vector, but since , the unit vector in the direction
of is

Therefore, by Equation 9, we have

■

FUNCTIONS OF THREE VARIABLES

For functions of three variables we can define directional derivatives in a similar man-
ner. Again can be interpreted as the rate of change of the function in the
direction of a unit vector .

DEFINITION The directional derivative of at in the direc-
tion of a unit vector is

if this limit exists.

f �x, y� � sin x � ex y


 f �x, y� � 	 fx , fy 
 � 	cos x � yex y, xex y 



 f �0, 1� � 	2, 0 


Du f �x, y� � 
 f �x, y� � u9

u
u

f �x, y� � x 2 y 3 � 4yV

v � 2 i � 5 j�2, �1�

�2, �1�


 f �x, y� � 2xy 3 i � �3x 2y 2 � 4�j


 f �2, �1� � �4 i � 8 j

� v � � s29v
v

u �
v

� v � �
2

s29
i �

5

s29
j

Du f �2, �1� � 
 f �2, �1� � u � ��4 i � 8 j� � � 2

s29
i �

5

s29
j�

�
�4 � 2 � 8 � 5

s29
�

32

s29

Du f �x, y, z�
u

�x0, y0, z0 �f10
u � 	a, b, c 


Du f �x0, y0, z0 � � lim
h l 0

f �x0 � ha, y0 � hb, z0 � hc� � f �x0, y0, z0 �
h

7
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■ The gradient vector in
Example 3 is shown in Figure 4 with
initial point . Also shown is the
vector that gives the direction of the
directional derivative. Both of these 
vectors are superimposed on a contour
plot of the graph of .f

v
�2, �1�


f �2, �1�

v

(2, _1)

±f(2, _1)

FIGURE 4

x

y
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If we use vector notation, then we can write both definitions (2 and 10) of the direc-
tional derivative in the compact form

where if and if . This is reasonable since
the vector equation of the line through in the direction of the vector is given by

(Equation 10.5.1) and so represents the value of at a point
on this line.

If is differentiable and , then the same method that was used
to prove Theorem 3 can be used to show that

For a function of three variables, the gradient vector, denoted by or
grad , is

or, for short,

Then, just as with functions of two variables, Formula 12 for the directional derivative
can be rewritten as

EXAMPLE 4 If , (a) find the gradient of and (b) find the
directional derivative of at in the direction of .

SOLUTION
(a) The gradient of is 

(b) At we have . The unit vector in the direction of
is

Du f �x0 � � lim
h l 0

f �x0 � hu� � f �x0 �
h

11

n � 3x0 � 	x0, y0, z0 
n � 2x0 � 	x0, y0 

ux0

ff �x0 � hu�x � x0 � tu

u � 	a, b, c 
f �x, y, z�

Du f �x, y, z� � fx�x, y, z�a � fy�x, y, z�b � fz�x, y, z�c12


 ff
f


 f �x, y, z� � 	 fx�x, y, z�, fy�x, y, z�, fz�x, y, z�



 f � 	 fx, fy, fz 
 �
�f

�x
i �

�f

�y
j �

�f

�z
k13

Du f �x, y, z� � 
 f �x, y, z� � u14

ff �x, y, z� � x sin yzV

v � i � 2 j � k�1, 3, 0�f

f


 f �x, y, z� � 	 fx�x, y, z�, fy�x, y, z�, fz�x, y, z�


� 	sin yz, xz cos yz, xy cos yz 



 f �1, 3, 0� � 	0, 0, 3 
�1, 3, 0�
v � i � 2 j � k

u �
1

s6
i �

2

s6
j �

1

s6
k
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Therefore Equation 14 gives

■

MAXIMIZING THE DIRECTIONAL DERIVATIVE

Suppose we have a function of two or three variables and we consider all possible
directional derivatives of at a given point. These give the rates of change of in all
possible directions. We can then ask the questions: In which of these directions does

change fastest and what is the maximum rate of change? The answers are provided
by the following theorem.

THEOREM Suppose is a differentiable function of two or three vari-
ables. The maximum value of the directional derivative is and
it occurs when has the same direction as the gradient vector .

PROOF From Equation 9 or 14 we have

where is the angle between and . The maximum value of is 1 and this
occurs when . Therefore the maximum value of is and it occurs
when , that is, when has the same direction as . ■

EXAMPLE 5
(a) If , find the rate of change of at the point in the direction
from to .
(b) In what direction does have the maximum rate of change? What is this maxi-
mum rate of change?

SOLUTION
(a) We first compute the gradient vector:

The unit vector in the direction of is , so the rate of
change of in the direction from to is

(b) According to Theorem 15, increases fastest in the direction of the gradient
vector . The maximum rate of change is

■

Du f �1, 3, 0� � 
 f �1, 3, 0� � u

� 3k � � 1

s6
i �

2

s6
j �

1

s6
k�

� 3��
1

s6
� � �� 3

2

f
ff

f

f15

� 
 f �x� �Du f �x�

 f �x�u

Du f � 
 f � u � � 
 f �� u � cos � � � 
 f � cos �

cos �u
 f�

� 
 f �Du f� � 0

 fu� � 0

P�2, 0�ff �x, y� � xey

Q( 1
2, 2)P

f


 f �x, y� � 	 fx, fy 
 � 	ey, xey 



 f �2, 0� � 	1, 2 


u � 	� 3
5, 4

5 
PQ
l

� 	�1.5, 2 

QPf

Du f �2, 0� � 
 f �2, 0� � u � 	1, 2 
 � 	� 3
5, 4

5 

� 1(� 3

5 ) � 2(4
5 ) � 1

f

 f �2, 0� � 	1, 2 


� 
 f �2, 0� � � � 	1, 2 
 � � s5
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Visual 11.6B provides visual confir-
mation of Theorem 15.
TEC

FIGURE 5

Q

±f(2, 0)

0
1 3

1

2

P
x

y

FIGURE 6

20

5

0 1
3

x
y

z 10

1

15

0

0

2

2

■ At the function in Example 5
increases fastest in the direction of the
gradient vector .
Notice from Figure 5 that this vector
appears to be perpendicular to the level
curve through . Figure 6 shows the
graph of and the gradient vector.

�2, 0�
f


 f �2, 0� � 	1, 2


�2, 0�
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EXAMPLE 6 Suppose that the temperature at a point in space is given by
, where is measured in degrees Celsius and 

, , in meters. In which direction does the temperature increase fastest at the point
? What is the maximum rate of increase?

SOLUTION The gradient of is

At the point the gradient vector is

By Theorem 15 the temperature increases fastest in the direction of the gradient
vector or, equivalently, in the direction of

or the unit vector . The maximum rate of
increase is the length of the gradient vector:

Therefore the maximum rate of increase of temperature is . ■

TANGENT PLANES TO LEVEL SURFACES

Suppose is a surface with equation , that is, it is a level surface of a
function of three variables, and let be a point on . Let be any curve
that lies on the surface and passes through the point . Recall from Section 10.7 that
the curve is described by a continuous vector function . Let

be the parameter value corresponding to ; that is, . Since lies
on , any point must satisfy the equation of , that is,

If , , and are differentiable functions of and is also differentiable, then we can
use the Chain Rule to differentiate both sides of Equation 16 as follows:

But, since and , Equation 17 can be writ-
ten in terms of a dot product as

�x, y, z�
T�x, y, z� � 80��1 � x 2 � 2y 2 � 3z2 �

zyx
�1, 1, �2�

T


T �
�T

�x
i �

�T

�y
j �

�T

�z
k

� �
160x

�1 � x 2 � 2y 2 � 3z2 �2 i �
320y

�1 � x 2 � 2y 2 � 3z2 �2 j �
480z

�1 � x 2 � 2y 2 � 3z2 �2 k

�
160

�1 � x 2 � 2y 2 � 3z2 �2 ��x i � 2y j � 3z k�

�1, 1, �2�


T�1, 1, �2� � 160
256 ��i � 2 j � 6 k� � 5

8 ��i � 2 j � 6 k�


T �1, 1, �2� � 5
8 ��i � 2 j � 6 k�

��i � 2 j � 6 k��s41�i � 2 j � 6 k

� 
T �1, 1, �2� � � 5
8 � �i � 2 j � 6 k � �

5s41

8

5s41�8  4�C�m

F�x, y, z� � kS
CSP�x0, y0, z0 �F

PS

t0

r�t� � 	x�t�, y�t�, z�t�
C
Cr�t0� � 	x0, y0, z0 
P

S�x�t�, y�t�, z�t��S

F(x�t�, y�t�, z�t�) � k16

Ftzyx

�F

�x

dx

dt
�

�F

�y

dy

dt
�

�F

�z

dz

dt
� 017

r��t� � 	x��t�, y��t�, z��t�

F � 	Fx , Fy , Fz 



F � r��t� � 0

T
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In particular, when we have , so

Equation 18 says that the gradient vector at , , is perpendicular to the 
tangent vector to any curve on that passes through . (See Figure 7.) If

, it is therefore natural to define the tangent plane to the level sur-
face at as the plane that passes through and has normal
vector . Using the standard equation of a plane (Equation 10.5.7), we can
write the equation of this tangent plane as

The normal line to at is the line passing through and perpendicular to the
tangent plane. The direction of the normal line is therefore given by the gradient vec-
tor and so, by Equation 10.5.3, its symmetric equations are

In the special case in which the equation of a surface is of the form
(that is, is the graph of a function of two variables), we can rewrite the equation
as

and regard as a level surface (with ) of . Then

so Equation 19 becomes

which is equivalent to Equation 11.4.2. Thus our new, more general, definition of a tan-
gent plane is consistent with the definition that was given for the special case of Sec-
tion 11.4.

EXAMPLE 7 Find the equations of the tangent plane and normal line at the point
to the ellipsoid

SOLUTION The ellipsoid is the level surface (with ) of the function


F�x0, y0, z0 � � r��t0 � � 0

P 
F�x0, y0, z0 �
r��t0 � C S P


F�x0, y0, z0 � � 0
F�x, y, z� � k P�x0, y0, z0 � P


F�x0, y0, z0 �

Fx�x0, y0, z0 ��x � x0 � � Fy�x0, y0, z0 ��y � y0 � � Fz�x0, y0, z0 ��z � z0 � � 0

S P P


F�x0, y0, z0 �

x � x0

Fx�x0, y0, z0 �
�

y � y0

Fy�x0, y0, z0 �
�

z � z0

Fz�x0, y0, z0 �

S z � f �x, y�
S f

F�x, y, z� � f �x, y� � z � 0

t � t0 r�t0� � 	x0, y0, z0 


18

19

20

S k � 0 F

Fx�x0, y0, z0 � � fx�x0, y0 �

Fy�x0, y0, z0 � � fy�x0, y0 �

Fz�x0, y0, z0 � � �1 

fx�x0, y0 ��x � x0 � � fy�x0, y0 ��y � y0 � � �z � z0 � � 0

��2, 1, �3�

x 2

4
� y 2 �

z2

9
� 3

k � 3

F�x, y, z� �
x 2

4
� y 2 �

z2

9

V
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±F±± (x¸, y¸, z¸)

tangent plane

FIGURE 7
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Therefore we have

Then Equation 19 gives the equation of the tangent plane at as

which simplifies to .
By Equation 20, symmetric equations of the normal line are

■

SIGNIFICANCE OF THE GRADIENT VECTOR

We now summarize the ways in which the gradient vector is significant. We first con-
sider a function of three variables and a point in its domain. On the one
hand, we know from Theorem 15 that the gradient vector gives the direc-
tion of fastest increase of . On the other hand, we know that is orthog-
onal to the level surface of through . (Refer to Figure 7.) These two properties
are quite compatible intuitively because as we move away from on the level surface 

, the value of does not change at all. So it seems reasonable that if we move in the
perpendicular direction, we get the maximum increase.

In like manner we consider a function of two variables and a point in
its domain. Again the gradient vector gives the direction of fastest increase
of . Also, by considerations similar to our discussion of tangent planes, it can be
shown that is perpendicular to the level curve that passes
through . Again this is intuitively plausible because the values of remain constant
as we move along the curve. (See Figure 9.)

If we consider a topographical map of a hill and let represent the height
above sea level at a point with coordinates , then a curve of steepest ascent can
be drawn as in Figure 10 by making it perpendicular to all of the contour lines. This
phenomenon can also be noticed in Figure 11 in Section 11.1, where Lonesome Creek
follows a curve of steepest descent.

Fx�x, y, z� �
x

2
Fy�x, y, z� � 2y Fz�x, y, z� �

2z

9

Fx��2, 1, �3� � �1 Fy��2, 1, �3� � 2 Fz��2, 1, �3� � �
2
3

��2, 1, �3�

�1�x � 2� � 2�y � 1� �
2
3 �z � 3� � 0

3x � 6y � 2z � 18 � 0

x � 2

�1
�

y � 1

2
�

z � 3

�
2
3

f P�x0, y0, z0 �
� f �x0, y0, z0 �

f � f �x0, y0, z0 �
S f P

P
S f

f P�x0, y0 �
� f �x0, y0 �

f
� f �x0, y0 � f �x, y� � k

P f

y

0 x

P(x¸, y¸)

level curve
f(x, y)=k

±f(x¸, y¸)

300

200

100

curve of
steepest
ascent

FIGURE 9 FIGURE 10
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■ Figure 8 shows the ellipsoid, tangent
plane, and normal line in Example 7.

FIGURE 8
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11.6 EXERCISES

1–2 ■ Find the directional derivative of at the given point in
the direction indicated by the angle .

1. ,  ,  

2. ,  ,  

3–6 ■

(a) Find the gradient of .
(b) Evaluate the gradient at the point .
(c) Find the rate of change of at in the direction of the 

vector .

3. ,  ,  

4. ,  ,  

5. ,  ,  

6. ,  ,  

7–11 ■ Find the directional derivative of the function at the
given point in the direction of the vector .

7. ,  ,  

8. ,  ,  

9. ,  ,  

10. ,  ,  

11. ,  ,  

12. Use the figure to estimate .

13. Find the directional derivative of at
in the direction of .

14. Find the directional derivative of
at in the direction of .

15–18 ■ Find the maximum rate of change of at the given
point and the direction in which it occurs.

15. ,  

16. ,  

17. ,  

f
�

f �x, y� � ye�x �0, 4� � � 2��3

f �x, y� � x 3y 4 � x 4y 3 �1, 1� � � ��6

f
P

f P
u

f �x, y� � sin�2x � 3y� P��6, 4� u � 1
2 (s3 i � j)

f �x, y� � y 2�x P�1, 2� u � 1
3 (2 i � s5 j)

f �x, y, z� � x 2yz � xyz 3 P�2, �1, 1� u � �0, 4
5 , �3

5 �
f �x, y, z� � y 2e xyz P�0, 1, �1� u � � 3

13 , 4
13 , 12

13 �

v

f �x, y� � e x sin y �0, ��3� v � ��6, 8 �

f �x, y� �
x

x 2 � y 2 �1, 2� v � �3, 5 �

t�p, q� � p4 � p2q3 �2, 1� v � i � 3 j

t�r, s� � tan�1�rs� �1, 2� v � 5 i � 10 j

f �x, y, z� � xe y � ye z � ze x �0, 0, 0� v � �5, 1, �2 �

Du f �2, 2�

y

x0

(2, 2)

±f(2, 2)

u

f �x, y� � sxy P�2, 8�
Q�5, 4�

f �x, y, z� � xy � yz � zx
P�1, �1, 3� Q�2, 4, 5�

f

f �x, y� � sin�xy� �1, 0�

f �s, t� � te st �0, 2�

f �x, y, z� � sx 2 � y 2 � z 2 �3, 6, �2�

18. ,  

19. (a) Show that a differentiable function decreases most
rapidly at in the direction opposite to the gradient vec-
tor, that is, in the direction of .

(b) Use the result of part (a) to find the direction in which
the function decreases fastest at
the point .

20. Find the directions in which the directional derivative of
at the point (1, 0) has the value 1.

21. Find all points at which the direction of fastest change of
the function is .

22. Near a buoy, the depth of a lake at the point with coordi -
nates is , where , , and

are measured in meters. A fisherman in a small boat starts
at the point and moves toward the buoy, which is
located at . Is the water under the boat getting deeper
or shallower when he departs? Explain.

23. The temperature in a metal ball is inversely proportional
to the distance from the center of the ball, which we take to
be the origin. The temperature at the point is .
(a) Find the rate of change of at in the direction

toward the point .
(b) Show that at any point in the ball the direction of great-

est increase in temperature is given by a vector that
points toward the origin.

24. The temperature at a point is given by 

where is measured in and , , in meters.
(a) Find the rate of change of temperature at the point

in the direction toward the point .
(b) In which direction does the temperature increase fastest 

at ?
(c) Find the maximum rate of increase at .

25. Suppose that over a certain region of space the electrical
potential is given by .
(a) Find the rate of change of the potential at in

the direction of the vector .
(b) In which direction does change most rapidly at ?
(c) What is the maximum rate of change at ?

26. Suppose you are climbing a hill whose shape is given by the
equation , where , , and
are measured in meters, and you are standing at a point with
coordinates . The positive -axis points east
and the positive -axis points north.
(a) If you walk due south, will you start to ascend or

descend? At what rate?

f �p, q, r� � arctan�pqr� �1, 2, 1�

f
x

�� f �x�

f �x, y� � x 4y � x 2 y 3

�2, �3�

f �x, y� � x 2 � sin xy

f �x, y� � x 2 � y 2 � 2x � 4y i � j

�x, y� z � 200 � 0.02x 2 � 0.001y 3 x y
z

�80, 60�
�0, 0�

T

�1, 2, 2� 120�
T �1, 2, 2�

�2, 1, 3�

�x, y, z�

T�x, y, z� � 200e�x 2�3y 2�9z 2

T �C x y z

P�2, �1, 2� �3, �3, 3�

P
P

V V�x, y, z� � 5x 2 � 3xy � xyz
P�3, 4, 5�

v � i � j � k
V P

P

z � 1000 � 0.005x 2 � 0.01y 2 x y z

�60, 40, 966� x
y
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31–36 ■ Find equations of (a) the tangent plane and (b) the 
normal line to the given surface at the specified point.

31. ,  

32. ,  

33. ,  

34. ,  

35. ,  

36.  ,  

;37–38 ■ Use a computer to graph the surface, the tangent plane,
and the normal line on the same screen. Choose the domain
carefully so that you avoid extraneous vertical planes. Choose
the viewpoint so that you get a good view of all three objects.

37. ,  38. ,  

39. If , find the gradient vector and use it 
to find the tangent line to the level curve at the
point . Sketch the level curve, the tangent line, and the
gradient vector.

40. If , find the gradient vector
and use it to find the tangent line to the level curve

at the point . Sketch the level curve, the
tangent line, and the gradient vector.

41. Show that the equation of the tangent plane to the ellipsoid
at the point can be 

written as

42. At what point on the paraboloid is the tangent
plane parallel to the plane ?

43. Are there any points on the hyperboloid
where the tangent plane is parallel to the plane ?

44. Show that the ellipsoid and the sphere
are tangent to

each other at the point . (This means that they have
a common tangent plane at the point.)

45. Where does the normal line to the paraboloid
at the point intersect the paraboloid a second time?

46. At what points does the normal line through the point
on the ellipsoid intersect the

sphere ?

47. Show that the sum of the -, -, and -intercepts of any 
tangent plane to the surface is a 
constant.

2�x � 2�2 � �y � 1�2 � �z � 3�2 � 10 �3, 3, 5�

y � x 2 � z 2 �4, 7, 3�

xyz 2 � 6 �3, 2, 1�

xy � yz � zx � 5 �1, 2, 1�

x � y � z � e xyz �0, 0, 1�

x 4 � y 4 � z 4 � 3x 2y 2z 2 �1, 1, 1�

xy � yz � zx � 3 �1, 1, 1� xyz � 6 �1, 2, 3�

f �x, y� � xy � f �3, 2�
f �x, y� � 6

�3, 2�

t�x, y� � x 2 � y 2 � 4x �t�1, 2�

t�x, y� � 1 �1, 2�

x 2�a 2 � y 2�b 2 � z2�c 2 � 1 �x0, y0, z0 �

xx0

a 2 �
yy0

b 2 �
zz0

c 2 � 1

y � x 2 � z2

x � 2y � 3z � 1

x 2 � y 2 � z2 � 1
z � x � y

3x 2 � 2y 2 � z2 � 9
x 2 � y 2 � z2 � 8x � 6y � 8z � 24 � 0

�1, 1, 2�

z � x 2 � y 2

�1, 1, 2�

�1, 2, 1� 4x 2 � y 2 � 4z 2 � 12
x 2 � y 2 � z 2 � 102

x y z
sx � sy � sz � sc

(b) If you walk northwest, will you start to ascend or
descend? At what rate?

(c) In which direction is the slope largest? What is the rate
of ascent in that direction? At what angle above the hor-
izontal does the path in that direction begin?

27. Let be a function of two variables that has continuous 
partial derivatives and consider the points , ,

, and . The directional derivative of at in
the direction of the vector is 3 and the directional deriv-
ative at in the direction of is 26. Find the directional
derivative of at in the direction of the vector .

28. Shown is a topographic map of Blue River Pine Provincial
Park in British Columbia. Draw curves of steepest descent
from point (descending to Mud Lake) and from point .

29. Show that the operation of taking the gradient of a function
has the given property. Assume that and are differen -
tiable functions of and and that , are constants.

(a)

(b) 

(c) (d) 

30. Sketch the gradient vector for the function
whose level curves are shown. Explain how you chose the
direction and length of this vector.

f
A�1, 3� B�3, 3�

C�1, 7� D�6, 15� f A
AB
l

A AC
l

f A AD
l

A B

2000 m
2200 m

2200 m

2200 m

Blue RiverBlue River

Smoke CreekSmoke Creek

North Thompson RiverNorth Thompson River

Mud LakeMud Lake

Mud CreekMud Creek

Blue River

Blue River Pine Provincial Park

A

B
1000 m

© Department of Natural Resources Canada. All rights reserved.

u v
x y a b

��au � bv� � a �u � b �v

��uv� � u �v � v �u

��u

v� �
v �u � u �v

v 2 �un � nu n�1 �u

� f �4, 6� f

20

2

4

6

4 6 x

y

_1

0

1
3 5

_3

_5

(4, 6)
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intersection. Can you see why this is true without using 
calculus?

52. (a) Show that the function is continuous
and the partial derivatives and exist at the origin
but the directional derivatives in all other directions do
not exist.

; (b) Graph near the origin and comment on how the
graph confirms part (a).

53. Suppose that the directional derivatives of are
known at a given point in two nonparallel directions given
by unit vectors and . Is it possible to find at this
point? If so, how would you do it?

54. Show that if is differentiable at
then

[Hint: Use Definition 11.4.7 directly.]

f �x, y� � s
3 xy

fyfx

f

f �x, y�

� fvu

x0 � �x0, y0 �,z � f �x, y�

lim
x l x 0

f �x� � f �x0 � � � f �x0 � � �x � x0 �

	 x � x0 	 � 0

48. Show that every normal line to the sphere
passes through the center of the sphere.

49. Find parametric equations for the tangent line to the curve
of intersection of the paraboloid and the ellip-
soid at the point .

50. (a) The plane intersects the cylinder
in an ellipse. Find parametric equations

for the tangent line to this ellipse at the point .

; (b) Graph the cylinder, the plane, and the tangent line on
the same screen.

51. (a) Two surfaces are called orthogonal at a point of inter-
section if their normal lines are perpendicular at that
point. Show that surfaces with equations
and are orthogonal at a point where

and if and only if

at 

(b) Use part (a) to show that the surfaces and
are orthogonal at every point of 

x 2 � y 2 � z2 � r 2

z � x 2 � y 2

��1, 1, 2�4x 2 � y 2 � z2 � 9

y � z � 3
x 2 � y 2 � 5

�1, 2, 1�

F�x, y, z� � 0
PG�x, y, z� � 0

�G � 0�F � 0

PFx Gx � FyGy � FzGz � 0

z2 � x 2 � y 2

x 2 � y 2 � z2 � r 2
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11.7 MAXIMUM AND MINIMUM VALUES
As we saw in Chapter 4, one of the main uses of ordinary derivatives is in finding max-
imum and minimum values. In this section we see how to use partial derivatives to
locate maxima and minima of functions of two variables. In particular, in Example 5
we will see how to maximize the volume of a box without a lid if we have a fixed
amount of cardboard to work with.

Look at the hills and valleys in the graph of shown in Figure 1. There are two
points where has a local maximum, that is, where is larger than nearby
values of . The larger of these two values is the absolute maximum. Likewise,

has two local minima, where is smaller than nearby values. The smaller of
these two values is the absolute minimum.

DEFINITION A function of two variables has a local maximum at if
when is near . [This means that 

for all points in some disk with center .] The number is
called a local maximum value. If when is near ,
then is a local minimum value.

If the inequalities in Definition 1 hold for all points in the domain of , then
has an absolute maximum (or absolute minimum) at .

THEOREM If has a local maximum or minimum at and the first-
order partial derivatives of exist there, then and .

f
�a, b� f f �a, b�

f �x, y�
f f �a, b�

�a, b�
f �x, y� � f �a, b� �x, y� �a, b� f �x, y� � f �a, b�

�x, y� �a, b� f �a, b�
f �x, y� 	 f �a, b� �x, y� �a, b�

f �a, b�

�x, y� f
f �a, b�

f �a, b�
f fx�a, b� � 0 fy�a, b� � 0

1

2

FIGURE 1

absolute
maximum

absolute
minimum

local
minimum

local
maximum

x

z

y

■ Notice that the conclusion of Theo-
rem 2 can be stated in the notation of
gradient vectors as .�f �a, b� � 0
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PROOF Let . If has a local maximum (or minimum) at , then 
has a local maximum (or minimum) at , so by Fermat’s Theorem (see

Theorem 4.1.4). But (see Equation 11.3.1) and so .
Similarly, by applying Fermat’s Theorem to the function , we obtain

. ■

If we put and in the equation of a tangent plane (Equation
11.4.2), we get . Thus the geometric interpretation of Theorem 2 is that if the
graph of has a tangent plane at a local maximum or minimum, then the tangent plane
must be horizontal.

A point is called a critical point (or stationary point) of if and
, or if one of these partial derivatives does not exist. Theorem 2 says that

if has a local maximum or minimum at , then is a critical point of .
However, as in single-variable calculus, not all critical points give rise to maxima or
minima. At a critical point, a function could have a local maximum or a local mini-
mum or neither.

EXAMPLE 1 Let . Then

These partial derivatives are equal to 0 when and , so the only critical
point is . By completing the square, we find that

Since and , we have for all values of and .
Therefore is a local minimum, and in fact it is the absolute minimum 
of . This can be confirmed geometrically from the graph of which is the elliptic
paraboloid with vertex shown in Figure 2. ■

EXAMPLE 2 Find the extreme values of .

SOLUTION Since and , the only critical point is . Notice
that for points on the -axis we have , so (if ). How-
ever, for points on the -axis we have , so (if ). Thus
every disk with center contains points where takes positive values as well as
points where takes negative values. Therefore can’t be an extreme
value for , so has no extreme value. ■

Example 2 illustrates the fact that a function need not have a maximum or mini-
mum value at a critical point. Figure 3 shows how this is possible. The graph of is
the hyperbolic paraboloid , which has a horizontal tangent plane ( )
at the origin. You can see that is a maximum in the direction of the -axis
but a minimum in the direction of the -axis. Near the origin the graph has the shape
of a saddle and so is called a saddle point of .

We need to be able to determine whether or not a function has an extreme value at
a critical point. The following test, which is proved in Appendix D, is analogous to the
Second Derivative Test for functions of one variable.

t a t
�a� � 0
t
�a� � fx�a, b� fx�a, b� � 0

G�y� � f �a, y�
fy�a, b� � 0

fx�a, b� � 0 fy�a, b� � 0
z � z0

f

�a, b� f fx�a, b� � 0
fy�a, b� � 0

f �a, b� �a, b� f

f �x, y� � x 2 � y 2 � 2x � 6y � 14

fx�x, y� � 2x � 2 fy�x, y� � 2y � 6

x � 1 y � 3
�1, 3�

f �x, y� � 4 � �x � 1�2 � �y � 3�2

�x � 1�2 	 0 �y � 3�2 	 0 f �x, y� 	 4 x y
f �1, 3� � 4

f f,
�1, 3, 4�

�a, b�ft�x� � f �x, b�

f �x, y� � y 2 � x 2

fx � �2x fy � 2y �0, 0�
x y � 0 f �x, y� � �x 2 � 0 x � 0
y x � 0 f �x, y� � y 2 � 0 y � 0
�0, 0� f

f f �0, 0� � 0
f f

f
z � y 2 � x 2 z � 0

f �0, 0� � 0 x
y

�0, 0� f
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y
x

z

0

(1, 3, 4)

FIGURE 2
z=≈+¥-2x-6y+14

FIGURE 3
z=¥-≈

z

y
x
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SECOND DERIVATIVES TEST Suppose the second partial derivatives of
are con tin uous on a disk with center , and suppose that and

[that is, is a critical point of ]. Let

(a) If and , then is a local minimum.

(b) If and , then is a local maximum.

(c) If , then is not a local maximum or minimum.

NOTE 1 In case (c) the point is called a saddle point of and the graph of
crosses its tangent plane at .

NOTE 2 If , the test gives no information: could have a local maximum or
local minimum at , or could be a saddle point of .

NOTE 3 To remember the formula for it’s helpful to write it as a determinant:

EXAMPLE 3 Find the local maximum and minimum values and saddle points of
.

SOLUTION We first locate the critical points:

Setting these partial derivatives equal to 0, we obtain the equations

To solve these equations we substitute from the first equation into the second
one. This gives

so there are three real roots: , , . The three critical points are , , 
and .

Next we calculate the second partial derivatives and :

Since , it follows from case (c) of the Second Derivatives Test
that the origin is a saddle point; that is, has no local maximum or minimum at

. Since and , we see from case (a) 
of the test that is a local minimum. Similarly, we have

and , so is also a
local minimum.

The graph of is shown in Figure 4. ■

�a, b� fx�a, b� � 0
fy�a, b� � 0 �a, b� f

D � D�a, b� � fxx�a, b� fyy�a, b� � 
 fx y �a, b��2

D � 0 fxx�a, b� � 0 f �a, b�

D � 0 fxx�a, b� � 0 f �a, b�

D � 0 f �a, b�

�a, b� f
f �a, b�

D � 0 f
�a, b� �a, b� f

D

D � � fxx

fyx

fx y

fyy
� � fxx fyy � � fx y �2

f �x, y� � x 4 � y 4 � 4xy � 1

fx � 4x 3 � 4y fy � 4y 3 � 4x

x 3 � y � 0 and y 3 � x � 0

y � x 3

0 � x 9 � x � x�x 8 � 1� � x�x 4 � 1��x 4 � 1� � x�x 2 � 1��x 2 � 1��x 4 � 1�

f3

V

x � 0 1 �1 �0, 0� �1, 1�
��1, �1�

D�x, y�

fxx � 12x 2 fx y � �4 fyy � 12y 2

D�x, y� � fxx fyy � � fx y�2 � 144x 2y 2 � 16

D�0, 0� � �16 � 0
f

�0, 0� D�1, 1� � 128 � 0 fxx�1, 1� � 12 � 0
f �1, 1� � �1

D��1, �1� � 128 � 0 fxx ��1, �1� � 12 � 0 f ��1, �1� � �1

f
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FIGURE 4
z=x$+y$-4xy+1
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EXAMPLE 4 Find the shortest distance from the point to the plane
.

SOLUTION The distance from any point to the point is

but if lies on the plane , then and so we
have . We can minimize by minimizing the
simpler expression

By solving the equations

we find that the only critical point is . Since , , and , we
have and , so by the Second Derivatives
Test has a local minimum at . Intuitively, we can see that this local minimum
is actually an absolute minimum because there must be a point on the given plane
that is closest to . If and , then

The shortest distance from to the plane is . ■

EXAMPLE 5 A rectangular box without a lid is to be made from 12 m of card-
board. Find the maximum volume of such a box.

SOLUTION Let the length, width, and height of the box (in meters) be , , and ,
as shown in Figure 6. Then the volume of the box is

FIGURE 5

0.9

0.5

0

_0.5

1.1

1.5

2

3

y

x
1

�1, 0, �2�
x � 2y � z � 4

�x, y, z� �1, 0, �2�

d � s�x � 1�2 � y 2 � �z � 2�2 

�x, y, z� x � 2y � z � 4 z � 4 � x � 2y
d � s�x � 1�2 � y 2 � �6 � x � 2y�2 d

d 2 � f �x, y� � �x � 1�2 � y 2 � �6 � x � 2y�2

fx � 2�x � 1� � 2�6 � x � 2y� � 4x � 4y � 14 � 0

fy � 2y � 4�6 � x � 2y� � 4x � 10y � 24 � 0

(11
6 , 5

3 ) fxx � 4 fx y � 4 fyy � 10
D�x, y� � fxx fy y � � fx y�2 � 24 � 0 fxx � 0

V

f ( 11
6 , 5

3 )

�1, 0, �2� x � 11
6 y � 5

3

d � s�x � 1�2 � y 2 � �6 � x � 2y�2 � s( 5
6)2 � ( 5

3)2 � ( 5
6)2 �

5s6

6

�1, 0, �2� x � 2y � z � 4 5
6 s6

2

x y z

V � xyz

V
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■ A contour map of the function in
Example 3 is shown in Figure 5. The
level curves near and 
are oval in shape and indicate that as 
we move away from or 
in any direction the values of are
increasing. The level curves near ,
on the other hand, resemble hyper bolas.
They reveal that as we move away from
the origin (where the value of is ), the
values of decrease in some directions
but increase in other directions. Thus
the contour map suggests the presence
of the minima and saddle point that we
found in Example 3.

f
f

f
��1, �1��1, 1�

1

�0, 0�

��1, �1��1, 1�

f

In Module 11.7 you can use con-
tour maps to estimate the locations of
critical points.

TEC

■ Example 4 could also be solved using
vectors. Compare with the methods of
Section 10.5.

■ www.stewartcalculus.com
See Additional Example A.

FIGURE 6

y

x

z
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We can express as a function of just two variables and by using the fact that
the area of the four sides and the bottom of the box is

Solving this equation for , we get , so the expression for
becomes

We compute the partial derivatives:

If is a maximum, then , but or gives , so
we must solve the equations

These imply that and so . (Note that and must both be positive in
this problem.) If we put in either equation we get , which gives

, , and .
We could use the Second Derivatives Test to show that this gives a local maxi-

mum of , or we could simply argue from the physical nature of this problem that
there must be an absolute maximum volume, which has to occur at a critical point 
of , so it must occur when , , . Then , so the
maximum volume of the box is 4 m . ■

ABSOLUTE MAXIMUM AND MINIMUM VALUES

For a function of one variable the Extreme Value Theorem says that if is continu-
ous on a closed interval , then has an absolute minimum value and an absolute
maximum value. According to the Closed Interval Method in Section 4.1, we found
these by evaluating not only at the critical numbers but also at the endpoints and .

There is a similar situation for functions of two variables. Just as a closed interval
contains its endpoints, a closed set in is one that contains all its boundary points.
[A boundary point of D is a point such that every disk with center con-
tains points in D and also points not in D.] For instance, the disk

which consists of all points on and inside the circle , is a closed set
because it contains all of its boundary points (which are the points on the circle

). But if even one point on the boundary curve were omitted, the set would
not be closed. (See Figure 7.)

A bounded set in is one that is contained within some disk. In other words, it
is finite in extent. Then, in terms of closed and bounded sets, we can state the follow-
ing counterpart of the Extreme Value Theorem in two dimensions.

2xz � 2yz � xy � 12

z z � �12 � xy��
2�x � y��
V

V � xy
12 � xy

2�x � y�
�

12xy � x 2 y 2

2�x � y�

V

x
�

y 2�12 � 2xy � x 2 �
2�x � y�2

V

y
�

x 2�12 � 2xy � y 2 �
2�x � y�2

V V�x � V�y � 0 x � 0 y � 0 V � 0

12 � 2xy � x 2 � 0 12 � 2xy � y 2 � 0

x 2 � y 2 x � y x y
x � y 12 � 3x 2 � 0

x � 2 y � 2 z � �12 � 2 � 2��
2�2 � 2�� � 1

V

V x � 2 y � 2 z � 1 V � 2 � 2 � 1 � 4
3

f f

a, b� f

f a b

� 2

�a, b� �a, b�

D � �x, y� 	 x 2 � y 2 � 1�

x 2 � y 2 � 1

x 2 � y 2 � 1

� 2

yxV
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(a) Closed sets

(b) Sets that are not closed

FIGURE 7
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EXTREME VALUE THEOREM FOR FUNCTIONS OF TWO VARIABLES If is
continuous on a closed, bounded set in , then attains an absolute maxi-
mum value and an absolute minimum value at some points

and in .

To find the extreme values guaranteed by Theorem 4, we note that, by Theorem 2,
if has an extreme value at , then is either a critical point of or a
boundary point of . Thus we have the following extension of the Closed Interval
Method.

To find the absolute maximum and minimum values of a continuous func-
tion on a closed, bounded set :

1. Find the values of at the critical points of in .

2. Find the extreme values of on the boundary of .

3. The largest of the values from steps 1 and 2 is the absolute maximum
value; the smallest of these values is the absolute minimum value.

EXAMPLE 6 Find the absolute maximum and minimum values of the function
on the rectangle .

SOLUTION Since is a polynomial, it is continuous on the closed, bounded rect-
angle , so Theorem 4 tells us there is both an absolute maximum and an absolute
minimum. According to step 1 in , we first find the critical points. These occur
when

so the only critical point is , and the value of there is .
In step 2 we look at the values of on the boundary of , which consists of the

four line segments , , , shown in Figure 8. On we have and

This is an increasing function of , so its minimum value is and its
maximum value is . On we have and

This is a decreasing function of , so its maximum value is and its mini-
mum value is . On we have and

By the methods of Chapter 4, or simply by observing that , we
see that the minimum value of this function is and the maximum value
is . Finally, on we have and

f4
f� 2D

f �x2, y2 �f �x1, y1�
D�x2, y2��x1, y1�

f�x1, y1��x1, y1�f
D

5
Df

Dff

Df

D � �x, y� 	 0 � x � 3, 0 � y � 2�f �x, y� � x 2 � 2xy � 2y

f
D

5

fy � �2x � 2 � 0fx � 2x � 2y � 0

f �1, 1� � 1f�1, 1�
Df

y � 0L1L 4L3L 2L1

0 � x � 3f �x, 0� � x 2

f �0, 0� � 0x
x � 3L 2f �3, 0� � 9

0 � y � 2f �3, y� � 9 � 4y

f �3, 0� � 9y
y � 2L3f �3, 2� � 1

0 � x � 3f �x, 2� � x 2 � 4x � 4

f �x, 2� � �x � 2�2

f �2, 2� � 0
x � 0L4f �0, 2� � 4

0 � y � 2f �0, y� � 2y
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11.7 EXERCISES

1. Suppose is a critical point of a function with contin-
uous second derivatives. In each case, what can you say 
about ?

(a)

(b)

2. Use the level curves in the figure to predict the location of 
the critical points of and
whether has a saddle point or a local maximum or mini-
mum at each of those points. Explain your reasoning. Then
use the Second Derivatives Test to confirm your predictions.

3–14 ■ Find the local maximum and minimum values and 
saddle point(s) of the function. If you have three-dimensional
graphing software, graph the function with a domain and view-
point that reveal all the important aspects of the function.

3.

4.

�1, 1� f

f

fxx�1, 1� � 4, fx y�1, 1� � 1, fyy�1, 1� � 2

fxx�1, 1� � 4, fx y�1, 1� � 3, fyy�1, 1� � 2

y

x

_2.5

_2.9

_2.7

_
1

_
1
.5

1.9

1.7

1.5

1.5

1

0
.5

0

_
2

1

1

_1

_1

f
f �x, y� � 3x � x 3 � 2y 2 � y 4

f �x, y� � x 2 � xy � y 2 � y

f �x, y� � xy � 2x � 2y � x 2 � y 2

5.

6.

7.

8.

9.

10.

11.

12.

13. ,  

14. ,  ,  

; 15–18 ■ Use a graph or level curves or both to estimate the
local maximum and minimum values and saddle point(s) of the
function. Then use calculus to find these values precisely.

15.

16.

17. ,
, 

18. ,
, 

;19–22 ■ Use a graphing device (or Newton’s method or a
rootfinder) to find the critical points of correct to three decimal 

f �x, y� � y 3 � 3x 2y � 6x 2 � 6y 2 � 2

f �x, y� � xe�2x2�2y2

f �x, y� � x 3 � 12xy � 8y 3

f �x, y� � xy�1 � x � y�

f �x, y� � e x cos y

f �x, y� � xy �
1

x
�

1

y

f �x, y� � �x 2 � y 2�e y2�x2

f �x, y� � e y�y 2 � x 2�

f �x, y� � y 2 � 2y cos x �1 � x � 7

f �x, y� � sin x sin y �� � x � � �� � y � �

f �x, y� � 3x 2 y � y 3 � 3x 2 � 3y 2 � 2

f �x, y� � xye�x2�y2

f �x, y� � sin x � sin y � sin�x � y�
0 � x � 2� 0 � y � 2�

f �x, y� � sin x � sin y � cos�x � y�
0 � x � ��4 0 � y � ��4

f

with maximum value and minimum value . Thus, on the
boundary, the minimum value of is 0 and the maximum is 9.

In step 3 we compare these values with the value at the critical point
and conclude that the absolute maximum value of on is and the
absolute minimum value is . Figure 9 shows the graph of .

■

f D f �3, 0� � 9
f �0, 0� � f �2, 2� � 0 f

9

0

0

2
3

L¡

L™

D

FIGURE 9
f(x, y)=≈-2xy+2y

f �0, 0� � 0f �0, 2� � 4
f

f �1, 1� � 1
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35. Find three positive numbers whose sum is 100 and whose 
product is a maximum.

36. Find three positive numbers whose sum is 12 and the sum
of whose squares is as small as possible.

37. Find the maximum volume of a rectangular box that is
inscribed in a sphere of radius .

38. Find the dimensions of the box with volume that
has minimal surface area.

39. Find the volume of the largest rectangular box in the first
octant with three faces in the coordinate planes and one 
vertex in the plane .

40. Find the dimensions of the rectangular box with largest 
volume if the total surface area is given as 64 cm .

41. Find the dimensions of a rectangular box of maximum vol-
ume such that the sum of the lengths of its 12 edges is a
constant .

42. The base of an aquarium with given volume is made of
slate and the sides are made of glass. If slate costs five times
as much (per unit area) as glass, find the dimensions of the
aquarium that minimize the cost of the materials.

43. A cardboard box without a lid is to have a volume of
32,000 cm Find the dimensions that minimize the amount 
of cardboard used.

44. A rectangular building is being designed to minimize 
heat loss. The east and west walls lose heat at a rate of

per day, the north and south walls at a rate of
per day, the floor at a rate of per day,

and the roof at a rate of per day. Each wall must
be at least 30 m long, the height must be at least 4 m, and
the volume must be exactly .
(a) Find and sketch the domain of the heat loss as a

function of the lengths of the sides.
(b) Find the dimensions that minimize heat loss. (Check

both the critical points and the points on the boundary
of the domain.)

(c) Could you design a building with even less heat loss 
if the restrictions on the lengths of the walls were
removed?

45. If the length of the diagonal of a rectangular box must be ,
what is the largest possible volume?

46. Three alleles (alternative versions of a gene) A, B, and O 
determine the four blood types A (AA or AO), B (BB or
BO), O (OO), and AB. The Hardy-Weinberg Law states that
the proportion of individuals in a population who carry two
different alleles is

where , , and are the proportions of A, B, and O in the 
population. Use the fact that to show that
is at most .

r

1000 cm3

x � 2y � 3z � 6

2

c

V

3.

10 units�m2

8 units�m2 1 unit�m2

5 units�m2

4000 m3

L

P � 2pq � 2pr � 2rq

p q r
p � q � r � 1 P

2
3

places. Then classify the critical points and find the highest or
lowest points on the graph, if any.

19.

20.

21.

22. ,  ,  

23–28 ■ Find the absolute maximum and minimum values of
on the set .

23. , is the closed triangular region
with vertices , , and 

24. , is the closed triangular region
with vertices , , and 

25. ,

26. ,

27. ,

28. ,  

; 29. For functions of one variable it is impossible for a con -
tinuous function to have two local maxima and no local
minimum. But for functions of two variables such func-
tions exist. Show that the function

has only two critical points, but has local maxima at both
of them. Then use a computer to produce a graph with a
carefully chosen domain and viewpoint to see how this is
possible.

; 30. If a function of one variable is continuous on an interval
and has only one critical number, then a local maximum
has to be an absolute maximum. But this is not true for
functions of two variables. Show that the function

has exactly one critical point, and that has a local maxi -
mum there that is not an absolute maximum. Then use a
computer to produce a graph with a carefully chosen
domain and viewpoint to see how this is possible.

31. Find the shortest distance from the point to the
plane .

32. Find the point on the plane that is 
closest to the point .

33. Find the points on the cone that are closest
to the point .

34. Find the points on the surface that are closest
to the origin.

f �x, y� � x 4 � y 4 � 4x 2y � 2y

f �x, y� � y 6 � 2y 4 � x 2 � y 2 � y

f �x, y� � x 4 � y 3 � 3x 2 � y 2 � x � 2y � 1

� y � � 1� x � � 1f �x, y� � 20e�x2�y2
sin 3x cos 3y

Df

Df �x, y� � x 2 � y 2 � 2x
�0, �2��0, 2��2, 0�

Df �x, y� � x � y � xy
�4, 0��0, 2��0, 0�

f �x, y� � x 2 � y 2 � x 2 y � 4
D � ��x, y� � � x � � 1, � y � � 1�

f �x, y� � 4x � 6y � x 2 � y 2

D � ��x, y� � 0 � x � 4, 0 � y � 5�

f �x, y� � x 4 � y 4 � 4xy � 2
D � ��x, y� � 0 � x � 3, 0 � y � 2�

D � ��x, y� � x � 0, y � 0, x 2 � y 2 � 3�f �x, y� � xy 2

f �x, y� � ��x 2 � 1�2 � �x 2 y � x � 1�2

f �x, y� � 3xe y � x 3 � e 3y

f

�2, 0, �3�
x � y � z � 1

x � 2y � 3z � 6
�0, 1, 1�

z 2 � x 2 � y 2

�4, 2, 0�

y 2 � 9 � xz
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Let be the vertical deviation of the
point from the line. The method of least squares
determines and so as to minimize , the sum of
the squares of these deviations. Show that, according to this
method, the line of best fit is obtained when

Thus the line is found by solving these two equations in the
two unknowns and .

48. Find an equation of the plane that passes through the point
and cuts off the smallest volume in the first octant.

di � yi � �mxi � b�
�xi, yi�

m b �n
i�1 di

2

m 	
n

i�1
xi � bn � 	

n

i�1
yi

m 	
n

i�1
xi

2 � b 	
n

i�1
xi � 	

n

i�1
xi yi

m b

�1, 2, 3�

47. Suppose that a scientist has reason to believe that two quan -
tities and are related linearly, that is, , at
least approximately, for some values of and . The scien-
tist performs an experiment and collects data in the form of
points , , , and then plots these
points. The points don’t lie exactly on a straight line, so the
scientist wants to find constants and so that the line

“fits” the points as well as possible (see the
figure).

y � mx � byx
bm

. . . , �xn, yn ��x2, y2 ��x1, y1�

bm
y � mx � b

(⁄, ›)

(xi, yi)

mxi+b

di

y

x0
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11.8 LAGRANGE MULTIPLIERS
In Example 5 in Section 11.7 we maximized a volume function subject to the
constraint , which expressed the side condition that the surface
area was 12 m . In this section we present Lagrange’s method for maximizing or min-
imizing a general function subject to a constraint (or side condition) of the
form .

It’s easier to explain the geometric basis of Lagrange’s method for functions of two
variables. So we start by trying to find the extreme values of subject to a con-
straint of the form . In other words, we seek the extreme values of 
when the point is restricted to lie on the level curve . Figure 1 shows
this curve together with several level curves of . These have the equations
where , , , , . To maximize subject to is to find the
largest value of such that the level curve intersects . It appears
from Figure 1 that this happens when these curves just touch each other, that is, when
they have a common tangent line. (Otherwise, the value of c could be increased fur-
ther.) This means that the normal lines at the point where they touch are iden-
tical. So the gradient vectors are parallel; that is, for some
scalar .

This kind of argument also applies to the problem of finding the extreme values of
subject to the constraint . Thus the point is restricted to

lie on the level surface with equation . Instead of the level curves in
Figure 1, we consider the level surfaces and argue that if the maximum
value of is , then the level surface is tangent to the
level surface and so the corresponding gradient vectors are parallel.

This intuitive argument can be made precise as follows. Suppose that a function
has an extreme value at a point on the surface and let be a curve with
vector equation that lies on and passes through . If is the
parameter value corresponding to the point , then . The compos-
ite function represents the values that takes on the curve .
Since has an extreme value at , it follows that has an extreme value at

V � xyz
2xz � 2yz � xy � 12

2

f �x, y, z�
t�x, y, z� � k

f �x, y�
t�x, y� � k f �x, y�

�x, y� t�x, y� � k
f f �x, y� � c,

c � 7 8 9 10 11 f �x, y� t�x, y� � k
c f �x, y� � c t�x, y� � k

�x0, y0 �
� f �x0, y0 � � � �t�x0, y0 �

�

f �x, y, z� t�x, y, z� � k �x, y, z�
S t�x, y, z� � k

f �x, y, z� � c
f f �x0, y0, z0 � � c f �x, y, z� � c

t�x, y, z� � k
f

P�x0, y0, z0 � S C
r�t� � 
x�t�, y�t�, z�t�� S P t0

P r�t0� � 
x0, y0, z0 �
h�t� � f �x�t�, y�t�, z�t�� f C

f �x0, y0, z0 � h

f(x, y)=11

f(x, y)=10

f(x, y)=9

f(x, y)=8

f(x, y)=7

x

y

0

g(x, y)=k

FIGURE 1

Visual 11.8 animates Figure 1 for
both level curves and level surfaces.
TEC
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, so . But if is differentiable, we can use the Chain Rule to write

This shows that the gradient vector is orthogonal to the tangent vector
to every such curve . But we already know from Section 11.6 that the gradient

vector of , , is also orthogonal to . (See Equation 11.6.18.) This
means that the gradient vectors and must be parallel.
There  fore if , there is a number such that

The number in Equation 1 is called a Lagrange multiplier. The procedure based
on Equation 1 is as follows.

METHOD OF LAGRANGE MULTIPLIERS To find the maximum and minimum
values of subject to the constraint [assuming that these
extreme values exist and on the surface ]:

(a) Find all values of , , , and such that

and

(b) Evaluate at all the points that result from step (a). The largest of
these values is the maximum value of ; the smallest is the minimum
value of .

If we write the vector equation in terms of its components, then the equa -
tions in step (a) become

This is a system of four equations in the four unknowns , , , and , but it is not neces -
 sary to find explicit values for .

For functions of two variables the method of Lagrange multipliers is similar to the
method just described. To find the extreme values of subject to the constraint

, we look for values of , , and such that

This amounts to solving three equations in three unknowns:

h��t0� � 0 f

0 � h��t0�

� fx�x0, y0, z0 �x��t0 � � fy�x0, y0, z0 �y��t0 � � fz�x0, y0, z0 �z��t0 �

� � f �x0, y0, z0 � � r��t0 �

� f �x0, y0, z0 �
r��t0 � C

t �t�x0, y0, z0 � r��t0 �
� f �x0, y0, z0 � �t�x0, y0, z0 �

�t�x0, y0, z0 � � 0 �

� f �x0, y0, z0 � � � �t�x0, y0, z0 �

�

f �x, y, z� t�x, y, z� � k
�t � 0 t�x, y, z� � k

x y z �

� f �x, y, z� � � �t�x, y, z�

t�x, y, z� � k

f �x, y, z�
f

f

� f � � �t

fx � �tx fy � �ty fz � �tz t�x, y, z� � k

x y z �
�

f �x, y�
t�x, y� � k x y �

� f �x, y� � � �t�x, y� and t�x, y� � k

1

fx � �tx fy � �ty t�x, y� � k

t0

■ Lagrange multipliers are named after
the French-Italian mathematician Joseph-
Louis Lagrange (1736–1813). See page
213 for a biographical sketch of Lagrange.

■ In deriving Lagrange’s method we
assumed that . In each of our 
examples you can check that 
at all points where . See
Exercise 23 for what can go wrong if

.

�t � 0
t�x, y, z� � k

�t � 0

�t � 0
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Our first illustration of Lagrange’s method is to reconsider the problem given in
Example 5 in Section 11.7.

EXAMPLE 1 A rectangular box without a lid is to be made from 12 m of card-
board. Find the maximum volume of such a box.

SOLUTION As in Example 5 in Section 11.7 we let , , and be the length, width,
and height, respectively, of the box, in meters. Then we wish to maximize

subject to the constraint

Using the method of Lagrange multipliers, we look for values of , , , and such
that and . This gives the equations

which become

There are no general rules for solving systems of equations. Sometimes some inge-
nuity is required. In the present example you might notice that if we multiply 
by by , and by , then the left sides of these equations will be identical.
Doing this, we have

We observe that because would imply from , 
, and and this would contradict . Therefore from and we have

which gives . But (since would give ), so . From
and we have

which gives and so (since ) . If we now put in
, we get

Since , , and are all positive, we therefore have , , and as
before. ■

2

x y z

V � xyz

t�x, y, z� � 2xz � 2yz � xy � 12

x y z �
�V � � �t t�x, y, z� � 12

Vx � �tx Vy � �ty Vz � �tz 2xz � 2yz � xy � 12

yz � ��2z � y�

xz � ��2z � x�

xy � ��2x � 2y�

2xz � 2yz � xy � 12

x, y z

xyz � ��2xz � xy�

xyz � ��2yz � xy�

xyz � ��2xz � 2yz�

� � 0 � � 0 yz � xz � xy � 0

2xz � xy � 2yz � xy

xz � yz z � 0 z � 0 V � 0 x � y

2yz � xy � 2xz � 2yz

2xz � xy x � 0 y � 2z x � y � 2z

4z2 � 4z2 � 4z2 � 12

x y z z � 1 x � 2 y � 2

V

2

3

4

5

6

7

8

5
2

3 4 6 7

7 8

5

2
3 4
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■ Another method for solving the sys-
tem of equations (2 –5) is to solve each
of Equations 2, 3, and 4 for and then
to equate the resulting expressions.

�
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EXAMPLE 2 Find the extreme values of the function on the 
circle .

SOLUTION We are asked for the extreme values of subject to the constraint
. Using Lagrange multipliers, we solve the equations

, , which can be written as

or as

From we have or . If , then gives . If , then
from , so then gives . Therefore has possible extreme values 

at the points , , , and . Evaluating at these four points, we
find that

Therefore the maximum value of on the circle is and
the minimum value is . Checking with Figure 2, we see that these
values look reasonable. ■

EXAMPLE 3 Find the extreme values of on the disk .

SOLUTION According to the procedure in (11.7.5), we compare the values of at
the critical points with values at the points on the boundary. Since and

, the only critical point is . We compare the value of at that point
with the extreme values on the boundary from Example 2:

Therefore the maximum value of on the disk is and the
minimum value is . ■

EXAMPLE 4 Find the points on the sphere that are closest to and
farthest from the point .

SOLUTION The distance from a point to the point is

but the algebra is simpler if we instead maximize and minimize the square of the 
distance:

The constraint is that the point lies on the sphere, that is,

f
t�x, y� � x 2 � y 2 � 1
� f � � �t t�x, y� � 1

fx � �tx fy � �ty t�x, y� � 1

2x � 2x�

4y � 2y�

x 2 � y 2 � 1

x � 0 � � 1 x � 0 y � 	1 � � 1
y � 0 x � 	1 f

�0, 1� �0, �1� �1, 0� ��1, 0� f

f �0, 1� � 2 f �0, �1� � 2 f �1, 0� � 1 f ��1, 0� � 1

f x 2 � y 2 � 1 f �0, 	1� � 2
f �	1, 0� � 1

f �x, y� � x 2 � 2y 2 x 2 � y 2 � 1

f
fx � 2x

fy � 4y �0, 0� f

f �0, 0� � 0 f �	1, 0� � 1 f �0, 	1� � 2

f x 2 � y 2 � 1 f �0, 	1� � 2
f �0, 0� � 0

x 2 � y 2 � z2 � 4
�3, 1, �1�

�x, y, z� �3, 1, �1�

d � s�x � 3�2 � �y � 1�2 � �z � 1�2 

d 2 � f �x, y, z� � �x � 3�2 � �y � 1�2 � �z � 1�2

�x, y, z�

f �x, y� � x 2 � 2y 2

x 2 � y 2 � 1
V

9

10

11

9 11
10 11

t�x, y, z� � x 2 � y 2 � z2 � 4

■ In geometric terms, Example 2 asks
for the highest and lowest points on the
curve in Figure 2 that lies on the
paraboloid and directly
above the constraint circle .x 2 � y 2 � 1

z � x 2 � 2y 2
C

FIGURE 2

z=≈+2¥

C

z

x

y

 ≈+¥=1

■ The geometry behind the use of
Lagrange multipliers in Example 2 is
shown in Figure 3. The extreme values
of correspond to the
level curves that touch the circle

.x 2 � y 2 � 1

f �x, y� � x 2 � 2y 2

FIGURE 3

x

y

0

≈+2¥=1

≈+2¥=2
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According to the method of Lagrange multipliers, we solve , . 
This gives

The simplest way to solve these equations is to solve for , , and in terms of 
from , , and , and then substitute these values into . From we have

[Note that because is impossible from .] Similarly, and 
give

Therefore from we have

which gives , , so

These values of then give the corresponding points :

and    

It’s easy to see that has a smaller value at the first of these points, so the closest
point is and the farthest is .

■

TWO CONSTRAINTS

Suppose now that we want to find the maximum and minimum values of a function
subject to two constraints (side conditions) of the form and

. Geometrically, this means that we are looking for the extreme values of
when is restricted to lie on the curve of intersection of the level surfaces

and . (See Figure 5.) Suppose has such an extreme value
at a point . We know from the beginning of this section that is orthog-
onal to there. But we also know that is orthogonal to and is
orthogonal to , so and are both orthogonal to . This means that
the gradient vector is in the plane determined by and

. (We assume that these gradient vectors are not zero and not parallel.) 

t � 4� f � � �t

2�x � 3� � 2x�12

2�y � 1� � 2y�13

2�z � 1� � 2z�14

x 2 � y 2 � z2 � 415

�zyx
1215141312

x �
3

1 � �
orx�1 � �� � 3orx � 3 � x�

1312� � 11 � � � 0
14

z � �
1

1 � �
y �

1

1 � �

15

32

�1 � ��2 �
12

�1 � ��2 �
��1�2

�1 � ��2 � 4

1 � � � 	s11�2�1 � ��2 � 11
4

� � 1 	
s11

2

�x, y, z��

��
6

s11
, �

2

s11
, 

2

s11
� 6

s11
, 

2

s11
, �

2

s11


f
(�6�s11, �2�s11, 2�s11)(6�s11, 2�s11, �2�s11)

t�x, y, z� � kf �x, y, z�
h�x, y, z� � c

C�x, y, z�f
fh�x, y, z� � ct�x, y, z� � k

� fP�x0, y0, z0�
�ht�x, y, z� � k�tC

C�h�th�x, y, z� � c
�t�x0, y0, z0 �� f �x0, y0, z0 �

�h�x0, y0, z0 �
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■ Figure 4 shows the sphere and the
nearest point in Example 4. Can you
see how to find the coordinates of 
without using calculus?

P
P

FIGURE 4

z

y

x

(3, 1, _1)

P

FIGURE 5

h=c

g=k

C

±g

P
±h

g

P
±h

±f
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So there are numbers and (called Lagrange multipliers) such that

In this case Lagrange’s method is to look for extreme values by solving five equations
in the five unknowns , , , , and . These equations are obtained by writing Equa -
tion 16 in terms of its components and using the constraint equations:

EXAMPLE 5 Find the maximum value of the function
on the curve of intersection of the plane and the cylinder

.

SOLUTION We maximize the function subject to the
constraints and . The Lagrange
condition is , so we solve the equations

Putting [from ] in , we get , so . Similarly, 
gives . Substitution in then gives

and so , . Then , , and, from ,
. The corresponding values of are

Therefore the maximum value of on the given curve is . ■

� 


� f �x0, y0, z0 � � � �t�x0, y0, z0 � � 
 �h�x0, y0, z0 �

x y z � 


fx � �tx � 
hx

fy � �ty � 
hy

fz � �tz � 
hz

t�x, y, z� � k

h�x, y, z� � c

f �x, y, z� � x � 2y � 3z
x � y � z � 1

x 2 � y 2 � 1

f �x, y, z� � x � 2y � 3z
t�x, y, z� � x � y � z � 1 h�x, y, z� � x 2 � y 2 � 1
� f � � �t � 
 �h

1 � � � 2x


2 � �� � 2y


3 � �

x � y � z � 1

x 2 � y 2 � 1

� � 3 2x
 � �2 x � �1�

y � 5��2
�

1


2 �
25

4
2 � 1


2 � 29
4 
 � 	s29�2 x � �2�s29 y � 	5�s29

z � 1 � x � y � 1 	 7�s29 f

�
2

s29
� 2�	

5

s29
 � 3�1 	

7

s29
 � 3 	 s29

f 3 � s29

16

V

17

18

19

20

21

19 17 18
21

20

■ The cylinder intersects
the plane in an ellipse
(Figure 6). Example 5 asks for the 
maximum value of when is
restricted to lie on the ellipse.

f �x, y, z�

x � y � z � 1
x 2 � y 2 � 1

FIGURE 6

0

y

z

_1

_2

_1

0

1

2

3

4

1
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11.8 EXERCISES

1–12 ■ Use Lagrange multipliers to find the maximum and
minimum values of the function subject to the given constraint.

1. ;  

2. ;  

3. ;  

4. ;  

5. ;  

6. ;  

7. ;  

8. ;  

9. ;  

10. ;  

11. ;  

12. ;

13–16 ■ Find the extreme values of subject to both
constraints.

13. ;  ,  

14. ;
,  

15. ;  ,  

16. ;  ,  

17–19 ■ Find the extreme values of on the region described
by the inequality.

17. ,  

18. ,  

19. ,  

; 20. (a) Use a graphing calculator or computer to graph the 
circle . On the same screen, graph several
curves of the form until you find two that
just touch the circle. What is the significance of the
values of for these two curves?

(b) Use Lagrange multipliers to find the extreme values of
subject to the constraint .

Compare your answers with those in part (a).

f �x, y� � x 2 � y 2 xy � 1

f �x, y� � 3x � y x 2 � y 2 � 10

f �x, y� � y 2 � x 2 1
4 x 2 � y 2 � 1

f �x, y� � e xy x 3 � y 3 � 16

f �x, y, z� � 2x � 2y � z x 2 � y 2 � z 2 � 9

f �x, y, z� � x 2 � y 2 � z 2 x � y � z � 12

f �x, y, z� � xyz x 2 � 2y 2 � 3z2 � 6

f �x, y, z� � x 2 y 2z2 x 2 � y 2 � z2 � 1

f �x, y, z� � x 2 � y 2 � z2 x 4 � y 4 � z4 � 1

f �x, y, z� � x 4 � y 4 � z4 x 2 � y 2 � z2 � 1

f �x, y, z, t� � x � y � z � t x 2 � y 2 � z2 � t 2 � 1

f �x1, x2, . . . , xn� � x1 � x2 � � � � � xn

x 2
1 � x 2

2 � � � � � x 2
n � 1

f

f �x, y, z� � x � 2y x � y � z � 1 y 2 � z2 � 4

f �x, y, z� � 3x � y � 3z
x � y � z � 0 x 2 � 2z2 � 1

f �x, y, z� � yz � xy xy � 1 y 2 � z2 � 1

f �x, y, z� � x 2 � y 2 � z 2 x � y � 1 y 2 � z 2 � 1

f

f �x, y� � x 2 � y 2 � 4x � 4y x 2 � y 2 � 9

f �x, y� � 2x 2 � 3y 2 � 4x � 5 x 2 � y 2 � 16

f �x, y� � e �xy x 2 � 4y 2 � 1

x 2 � y 2 � 1
x 2 � y � c

c

f �x, y� � x 2 � y x 2 � y 2 � 1

21. Pictured are a contour map of and a curve with equation
. Estimate the maximum and minimum values 

of subject to the constraint that . Explain
your reasoning.

22. Consider the problem of maximizing the function
subject to the constraint .

(a) Try using Lagrange multipliers to solve the problem.
(b) Does give a larger value than the one in 

part (a)?

; (c) Solve the problem by graphing the constraint equation
and several level curves of .

(d) Explain why the method of Lagrange multipliers fails
to solve the problem.

(e) What is the significance of ?

23. Consider the problem of minimizing the function
on the curve (a piriform).

(a) Try using Lagrange multipliers to solve the problem.
(b) Show that the minimum value is but the

Lagrange condition is not satis-
fied for any value of .

(c) Explain why Lagrange multipliers fail to find the min-
imum value in this case.

24. (a) If your computer algebra system plots implicitly
defined curves, use it to estimate the minimum and
maximum values of subject
to the con straint by graphi-
cal methods.

(b) Solve the problem in part (a) with the aid of Lagrange 
multipliers. Use your CAS to solve the equations
numerically. Compare your answers with those in
part (a).

25. The total production of a certain product depends on the
amount of labor used and the amount of capital
investment. The Cobb-Douglas model for the production
function is , where and are positive con-
stants and . If the cost of a unit of labor is and
the cost of a unit of capital is , and the company can 

t�x, y� � 8
f t�x, y� � 8

y

x0

70

60

50

40

30

20

10

g(x, y)=8

f �x, y� � 2x � 3y sx � sy � 5

f �25, 0�

f

f �9, 4�

f �x, y� � x y 2 � x 4 � x 3 � 0

f �0, 0� � 0
� f �0, 0� � ��t�0, 0�
�

f �x, y� � x 3 � y 3 � 3xy
�x � 3�2 � �y � 3�2 � 9

CAS

P
KL

bP � bLK 1�

m � 1
n

f
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44. The plane intersects the cone
in an ellipse.

; (a) Graph the cone and the plane, and observe the resulting
ellipse.

(b) Use Lagrange multipliers to find the highest and lowest
points on the ellipse.

45 –46 ■ Find the maximum and minimum values of
subject to the given constraints. Use a computer algebra sys-
tem to solve the system of equations that arises in using
Lagrange multipliers. (If your CAS finds only one solution,
you may need to use additional commands.)

45. ;  
, 

46. ;  , 

47. (a) Find the maximum value of 

given that are positive numbers and
, where is a constant.

(b) Deduce from part (a) that if are positive
numbers, then

This inequality says that the geometric mean of 
numbers is no larger than the arithmetic mean of the
numbers. Under what circumstances are these two
means equal?

48. (a) Maximize subject to the constraints
and .

(b) Put

to show that

for any numbers . This inequality
is known as the Cauchy-Schwarz Inequality.

f �x, y, z� � ye x�z

9x 2 � 4y 2 � 36z2 � 36 xy � yz � 1

f �x, y, z� � x � y � z x 2 � y 2 � z x 2 � z2 � 4

f �x1, x2, . . . , xn � � s
n x1 x2 � � � xn

x1, x2, . . . , xn

x1 � x2 � � � � � xn � c c
x1, x2, . . . , xn

s
n x1 x2 � � � xn �

x1 � x2 � � � � � xn

n

n

�n
i�1 xi yi

�n
i�1 xi

2 � 1 �n
i�1 yi

2 � 1

xi �
ai

s� a 2
j

and    yi �
bi

s� b 2
j

	 ai bi � s� a 2
j s� b 2

j

a1, . . . , an, b1, . . . , bn

fCAS

4x � 3y � 8z � 5
z2 � x 2 � y 2
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spend only dollars as its total budget, then maximizing
the production is subject to the constraint .
Show that the maximum production occurs when

26. Referring to Exercise 25, we now suppose that the pro-
duction is fixed at , where is a constant.
What values of and minimize the cost function

?

27. Use Lagrange multipliers to prove that the rectangle with 
maximum area that has a given perimeter is a square.

28. Use Lagrange multipliers to prove that the triangle with 
maximum area that has a given perimeter is equilateral.

Hint: Use Heron’s formula for the area:

where and , , are the lengths of the sides.

29–41 ■ Use Lagrange multipliers to give an alternate solution
to the indicated exercise in Section 11.7.

29. Exercise 31 30. Exercise 32

31. Exercise 33 32. Exercise 34

33. Exercise 35 34. Exercise 36

35. Exercise 37 36. Exercise 38

37. Exercise 39 38. Exercise 40

39. Exercise 41 40. Exercise 42

41. Exercise 45

42. Find the maximum and minimum volumes of a rectangular
box whose surface area is 1500 cm and whose total edge
length is 200 cm.

43. The plane intersects the paraboloid
in an ellipse. Find the points on this ellipse 

that are nearest to and farthest from the origin.

p
mL � nK � pP

K �
�1 � �p

n
andL �

p

m

QbLK 1� � Q
KL

C�L, K � � mL � nK

p

p

A � ss�s � x��s � y��s � z�

zyxs � p�2

2

x � y � 2z � 2
z � x 2 � y 2
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CHAPTER 11  REVIEW 685

CHAPTER 11 REVIEW
CONCEPT CHECK

TRUE-FALSE QUIZ

1. (a) What is a function of two variables?
(b) Describe three methods for visualizing a function of two

variables.

2. What is a function of three variables? How can you visual-
ize such a function?

3. What does

mean? How can you show that such a limit does not exist?

4. (a) What does it mean to say that is continuous at ?
(b) If is continuous on , what can you say about its

graph?

5. (a) Write expressions for the partial derivatives and
as limits.

(b) How do you interpret and geometrically?
How do you interpret them as rates of change?

(c) If is given by a formula, how do you calculate 
and 

6. What does Clairaut’s Theorem say?

7. How do you find a tangent plane to each of the following
types of surfaces?
(a) A graph of a function of two variables, 
(b) A level surface of a function of three variables,

8. Define the linearization of at . What is the corre -
sponding linear approximation? What is the geometric 
interpretation of the linear approximation?

9. (a) What does it mean to say that is differentiable at ?
(b) How do you usually verify that is differentiable?

10. If , what are the differentials , , and ?

lim
�x, y� l �a, b�

f �x, y� � L

f �a, b�
f �2

fx�a, b�
fy�a, b�

fx�a, b� fy�a, b�

fxf �x, y�
fy ?

z � f �x, y�

F�x, y, z� � k

�a, b�f

�a, b�f
f

dzdydxz � f �x, y�

11. State the Chain Rule for the case where and
and are functions of one variable. What if and are
functions of two variables?

12. If is defined implicitly as a function of and by an
equation of the form , how do you find
and ?

13. (a) Write an expression as a limit for the directional deriva-
tive of at in the direction of a unit vector

. How do you interpret it as a rate? How do
you interpret it geometrically?

(b) If is differentiable, write an expression for
in terms of and .

14. (a) Define the gradient vector for a function of two or
three variables.

(b) Express in terms of .
(c) Explain the geometric significance of the gradient.

15. What do the following statements mean?
(a) has a local maximum at .
(b) has an absolute maximum at .
(c) has a local minimum at .
(d) has an absolute minimum at .
(e) has a saddle point at .

16. (a) If has a local maximum at , what can you say
about its partial derivatives at ?

(b) What is a critical point of ?

17. State the Second Derivatives Test.

18. (a) What is a closed set in ? What is a bounded set?
(b) State the Extreme Value Theorem for functions of two 

variables.
(c) How do you find the values that the Extreme Value 

Theorem guarantees?

19. Explain how the method of Lagrange multipliers works 
in finding the extreme values of subject to the con-
straint . What if there is a second constraint

?

z � f �x, y� x
y x y

z x y
F�x, y, z� � 0 �z��x

�z��y

f �x0, y0 �
u � 
a, b �

f Du f �x0, y0 �
fx fy

� f f

Du f � f

f �a, b�
f �a, b�
f �a, b�
f �a, b�
f �a, b�

f �a, b�
�a, b�

f

� 2

f �x, y, z�
t�x, y, z� � k

h�x, y, z� � c

Determine whether the statement is true or false. If it is true, explain
why. If it is false, explain why or give an example that disproves the
statement.

1.

2. There exists a function with continuous second-order 
partial derivatives such that and

.

fy�a, b� � lim
y l b

f �a, y� � f �a, b�
y � b

f
fx�x, y� � x � y 2

fy�x, y� � x � y 2

3.

4.

5. If as along every straight line
through , then .

6. If and both exist, then is differentiable 
at .

fxy �
�2f

�x �y

Dk f �x, y, z� � fz�x, y, z�

f �x, y� l L �x, y� l �a, b�
�a, b� lim�x, y� l �a, b� f �x, y� � L

fx�a, b� fy�a, b� f
�a, b�

12280_ch11_ptg01_hr_676-688.qk_12280_ch11_ptg01_hr_676-688  12/15/11  2:10 PM  Page 685

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



10. If is a critical point of and 

then has a saddle point at .

11. If , then .

12. If has two local maxima, then must have a local 
minimum.

f �x, y� � sin x � sin y �s2 � Du f �x, y� � s2

f �x, y� f

fxx�2, 1� fyy�2, 1� � � fx y�2, 1�� 2

f �2, 1�

f�2, 1�7. If has a local minimum at and is differentiable at
, then .

8. If is a function, then

9. If , then .

f �a, b� f
�a, b� � f �a, b� � 0

f

lim
�x, y� l �2, 5�

f �x, y� � f �2, 5�

f �x, y� � ln y � f �x, y� � 1�y
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EXERCISES

1–2 ■ Find and sketch the domain of the function.

1.

2.

3–4 ■ Sketch the graph of the function.

3.

4.

5–6 ■ Sketch several level curves of the function.

5. 6.

7. Make a rough sketch of a contour map for the function
whose graph is shown.

8. A contour map of a function is shown. Use it to make a
rough sketch of the graph of .

9–10 ■ Evaluate the limit or show that it does not exist.

9. 10.

f �x, y� � ln�x � y � 1�

f �x, y� � s4 � x 2 � y 2 � s1 � x 2

f �x, y� � 1 � y 2

f �x, y� � x 2 � �y � 2�2

f �x, y� � s4x 2 � y 2  f �x, y� � e x � y

2
x

z

2
y

f
f

y

x

1

1.5

2

4

lim
�x, y� l �1, 1�

2xy

x 2 � 2y 2 lim
�x, y� l �0, 0�

2xy

x 2 � 2y 2

11–15 ■ Find the first partial derivatives.

11. 12.

13. 14.

15.

16. The speed of sound traveling through ocean water is a func-
tion of temperature, salinity, and pressure. It has been mod-
eled by the function

where is the speed of sound (in meters per second), is
the temperature (in degrees Celsius), is the salinity (the
concentration of salts in parts per thousand, which means
the number of grams of dissolved solids per 1000 g of
water), and is the depth below the ocean surface (in
meters). Compute , , and when

, parts per thousand, and m.
Explain the physical significance of these partial 
derivatives.

17–20 ■ Find all second partial derivatives of .

17. 18.

19. 20.

21. If , show that .

22. If , show that

23–27 ■ Find equations of (a) the tangent plane and (b) the nor-
mal line to the given surface at the specified point.

23. ,  

24. ,  

f �x, y� � �5y 3 � 2x 2y�8
t�u, v� �

u � 2v

u 2 � v 2

F �, �� �  2 ln� 2 � � 2� G�x, y, z� � e xz sin�y�z�

S�u, v, w� � u arctan(vsw )

C � 1449.2 � 4.6T � 0.055T 2 � 0.00029T 3

� �1.34 � 0.01T ��S � 35� � 0.016D

C T
S

D
�C��T �C��S �C��D

T � 10�C S � 35 D � 100

f

f �x, y� � 4x 3 � xy 2 z � xe�2y

f �x, y, z� � x k y lz m v � r cos�s � 2t�

z � xy � xe y�x x
�z

�x
� y

�z

�y
� xy � z

z � sin�x � sin t�

�z

�x

�2z

�x �t
�

�z

�t

�2z

�x 2

z � 3x 2 � y 2 � 2x �1, �2, 1�

z � e x cos y �0, 0, 1�
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40. If , find and .

41. Find the gradient of the function .

42. (a) When is the directional derivative of a maximum?
(b) When is it a minimum?
(c) When is it 0?
(d) When is it half of its maximum value?

43–44 ■ Find the directional derivative of at the given point
in the indicated direction.

43. ,  , 
in the direction toward the point 

44. ,  , 
in the direction of 

45. Find the maximum rate of change of 
at the point . In which direction does it occur?

46. Find parametric equations of the tangent line at the point
to the curve of intersection of the surface

and the plane .

47–50 ■ Find the local maximum and minimum values and
saddle points of the function. If you have three-dimensional
graphing software, graph the function with a domain and view-
point that reveal all the important aspects of the function.

47.

48.

49.

50.

51–52 ■ Find the absolute maximum and minimum values of
on the set .

51. ;  is the closed triangular
region in the -plane with vertices , , and 

52. ;  is the disk 

; 53. Use a graph or level curves or both to estimate the local 
maximum and minimum values and saddle points of

. Then use calculus to find 
these values precisely.

; 54. Use a graphing calculator or computer (or Newton’s
method or a computer algebra system) to find the critical
points of correct to
three decimal places. Then classify the critical points and
find the highest point on the graph.

f �x, y, z� � x 2e yz 2

f

f

f �x, y� � x 2e�y ��2, 0�
�2, �3�

f �x, y, z� � x 2 y � xs1 � z �1, 2, 3�
v � 2 i � j � 2k

f �x, y� � x 2 y � sy
�2, 1�

��2, 2, 4�
z � 2x 2 � y 2 z � 4

f �x, y� � x 2 � xy � y 2 � 9x � 6y � 10

f �x, y� � x 3 � 6xy � 8y 3

f �x, y� � 3xy � x 2 y � xy 2

f �x, y� � �x 2 � y�e y�2

f D

f �x, y� � 4xy 2 � x 2 y 2 � xy 3 D
xy �0, 0� �0, 6� �6, 0�

f �x, y� � e�x2�y2�x 2 � 2y 2 � D x 2 � y 2 � 4

f �x, y� � x 3 � 3x � y 4 � 2y 2

f �x, y� � 12 � 10y � 2x 2 � 8xy � y 4

�z

�y

�z

�x
cos�xyz� � 1 � x 2y 2 � z 225. ,  

26. ,  

27. ,  

; 28. Use a computer to graph the surface and its 
tangent plane and normal line at on the same
screen. Choose the domain and viewpoint so that you get a
good view of all three objects.

29. Find the points on the hyperboloid
where the tangent plane is parallel to the plane

.

30. Find if .

31. Find the linear approximation of the function
at the point (2, 3, 4) and use it 

to estimate the number .

32. The two legs of a right triangle are measured as 5 m and
12 m with a possible error in measurement of at most

cm in each. Use differentials to estimate the maximum
error in the calculated value of (a) the area of the triangle
and (b) the length of the hypotenuse.

33. If , where , , and 
, use the Chain Rule to find .

34. If , where and , use
the Chain Rule to find and when and

.

35. Suppose , where , ,
, , , ,

, , , and
. Find and when and .

36. Use a tree diagram to write out the Chain Rule for the case
where , , and

are all differentiable functions.

37. If , where is differentiable, show that

38. The length of a side of a triangle is increasing at a rate of
3 in�s, the length of another side is decreasing at a rate
of 2 in�s, and the contained angle is increasing at a rate
of radian�s. How fast is the area of the triangle
changing when in, in, and ?

39. If , where , , and has continu-
ous second partial derivatives, show that

x 2 � 2y 2 � 3z 2 � 3 �2, �1, 1�

xy � yz � zx � 3 �1, 1, 1�

�2, �1, 0�sin�xyz� � x � 2y � 3z

z � x 2 � y 4

�1, 1, 2�

x 2 � 4y 2 � z2 � 4

2x � 2y � z � 5

u � ln�1 � se 2 t �du

f �x, y, z� � x 3
sy 2 � z 2 

�1.98�3
s�3.01� 2 � �3.97� 2 

0.2

y � pe px � p � 3p2u � x 2y3 � z4

du�dpz � p sin p

y � stx � s � 2tv � x 2 sin y � ye xy

s � 0�v��t�v��s
t � 1

y � h�s, t�x � t�s, t�z � f �x, y�
h�1, 2� � 6tt�1, 2� � 4ts�1, 2� � �1t�1, 2� � 3

fy�3, 6� � 8
fx�3, 6� � 7ht�1, 2� � 10hs�1, 2� � �5

t � 2s � 1�z��t�z��s

u � u� p, q, r, s�w � f �t, u, v�, t � t� p, q, r, s�
v � v� p, q, r, s�

fz � y � f �x 2 � y 2 �

y
�z

�x
� x

�z

�y
� x

x
y

�
0.05

� � ��6y � 50x � 40

fv � y�xu � xyz � f �u, v�

x 2 �2z

�x 2 � y 2 �2z

�y 2 � �4uv
�2z

�u �v
� 2v

�z

�v
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61. A pentagon is formed by placing an isosceles triangle on a 
rectangle, as shown in the figure. If the pentagon has fixed 
perimeter , find the lengths of the sides of the pentagon
that maximize the area of the pentagon.

62. A particle of mass moves on the surface . Let
and be the - and -coordinates of the 

particle at time .
(a) Find the velocity vector and the kinetic energy

of the particle.
(b) Determine the acceleration vector .
(c) Let and , . Find 

the velocity vector, the kinetic energy, and the accelera-
tion vector.

P

=

=

¨

m z � f �x, y�
x � x�t� y � y�t� x y

t
v

K � 1
2 m � v �2

a
z � x 2 � y 2 x�t� � t cos t y�t� � t sin t

55–58 ■ Use Lagrange multipliers to find the maximum and
minimum values of subject to the given constraint(s).

55. ;  

56. ;  

57. ;  

58. ;
,

59. Find the points on the surface that are closest to 
the origin.

60. A package in the shape of a rectangular box can be mailed
by the US Postal Service if the sum of its length and girth
(the perimeter of a cross-section perpendicular to the
length) is at most 108 in. Find the dimensions of the pack-
age with largest volume that can be mailed.

f

f �x, y� � x 2 y x 2 � y 2 � 1

f �x, y� �
1

x
�

1

y

1

x 2 �
1

y 2 � 1

f �x, y, z� � xyz x 2 � y 2 � z 2 � 3

f �x, y, z� � x 2 � 2y 2 � 3z2

x � y � z � 1 x � y � 2z � 2

xy 2z3 � 2
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689

12.1 DOUBLE INTEGRALS OVER RECTANGLES
In much the same way that our attempt to solve the area problem led to the definition
of a definite integral, we now seek to find the volume of a solid and in the process we
arrive at the definition of a double integral.

REVIEW OF THE DEFINITE INTEGRAL

First let’s recall the basic facts concerning definite integrals of functions of a single
variable. If is defined for , we start by dividing the interval into
n subintervals with length and we choose sample points
in these subintervals as in Figure 1. Then we form the Riemann sum

and take the limit of such sums as the largest of the lengths approaches to obtain the
definite integral of from to :

In the special case where , the Riemann sum can be interpreted as the sum of
the areas of the approximating rectangles in Figure 1, and represents the
area under the curve from to .

VOLUMES AND DOUBLE INTEGRALS

In a similar manner we consider a function of two variables defined on a closed 
rectangle

and we first suppose that . The graph of f is a surface with equation
. Let S be the solid that lies above R and under the graph of f, that is,

(See Figure 2.) Our goal is to find the volume of S.

�a, b�a � x � bf �x�
xi*�xi � xi � xi�1�xi�1, xi�

�
n

i�1
f �xi*� �xi

0
baf

y
b

a
f �x� dx � lim

max �xi l 0
�
n

i�1
f �xi*� �xi

f �x� � 0
x

b
a f �x� dx

bay � f �x�

f

R � �a, b� � �c, d � � ��x, y� � �2 � a � x � b,  c � y � d	
f �x, y� � 0

z � f �x, y�

S � ��x, y, z� � �3 � 0 � z � f �x, y�, �x, y� � R	

1

2

MULTIPLE INTEGRALS
In this chapter we extend the idea of a definite integral to double and triple integrals of functions of
two or three variables. These ideas are then used to compute volumes, masses, and centroids of more
general regions than we were able to consider in Chapter 7. We will see that polar coordinates are 
useful in computing double integrals over some types of regions. In a similar way, we will introduce 
two new coordinate systems in three-dimensional space––cylindrical coordinates and spherical coor-
dinates––that greatly simplify the computation of triple integrals over certain commonly occurring
solid regions.

12
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The first step is to take a partition of into subrectangles. This is accomplished
by dividing the intervals and as follows:

By drawing lines parallel to the coordinate axes through these partition points as in
Figure 3, we form the subrectangles

for and . There are of these subrectangles, and they
cover . If we let and , then the area of is

If we choose a sample point in each , then we can approximate the part
of S that lies above each by a thin rectangular box (or “column”) with base and
height as shown in Figure 4. (Compare with Figure 1.) The volume of this
box is the height of the box times the area of the base rectangle:

If we follow this procedure for all the rectangles and add the volumes of the corre-
sponding boxes, we get an approximation to the total volume of S:

(See Figure 5.) This double Riemann sum means that for each subrectangle we eval-
uate at the chosen point and multiply by the area of the subrectangle, and then we
add the results.

P R
�a, b� �c, d �

a � x0 � x1 � � � � � xi�1 � xi � � � � � xm � b

c � y0 � y1 � � � � � yj�1 � yj � � � � � yn � d

Rij � �xi�1, xi � � �yj�1, yj� � ��x, y� � xi�1 � x � xi, yj�1 � y � yj	

i � 1, . . . , m j � 1, . . . , n mn
R �xi � xi � xi�1 �yj � yj � yj�1 Rij

�Aij � �xi �yj

FIGURE 3
Partition of a rectangle

(x*£™, y*£™)

yj_1

yj

xixi_1

y

x

d

c

›

0 ⁄ ¤

R
ij

a b

(x*
ij

, y*
ij
)

Îxi

Îyj

(x
i
, y

j
)

�xij*, yij*� Rij

Rij Rij

f �xij*, yij*�

f �xij*, yij*� �Aij

V 
 �
m

i�1
�
n

j�1
f �xij*, yij*� �Aij

f

3
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Our intuition tells us that the approximation given in becomes better as the sub-
rectangles become smaller. So if we denote by , the largest of the lengths
of all the subintervals, we would expect that

We use the expression in Equation 4 to define the volume of the solid that lies under
the graph of and above the rectangle . (It can be shown that this definition is con-
sistent with our formula for volume in Section 7.2.)

Limits of the type that appear in Equation 4 occur frequently, not just in finding
volumes but in a variety of other situations as well—as we will see in Section 12.4—
even when is not a positive function. So we make the following definition.

DEFINITION The double integral of over the rectangle is

if this limit exists.

The precise meaning of the limit in Definition 5 is that for every number
there is a corresponding number such that

for all partitions of whose subinterval lengths are less than , and for any choice
of sample points in 

A function is called integrable if the limit in Definition 5 exists. It is shown in
courses on advanced calculus that all continuous functions are integrable. In fact, the
double integral of exists provided that is “not too discontinuous.” In particular, 

max �xi �yj

V � lim
max �xi , �yj l 0

�
m

i�1
�
n

j�1
f �xij*, yij*� �Aij

S
f R

f

f R

yy
R

f �x, y� dA � lim
max �xi , �yj l 0

�
m

i�1
�
n

j�1
f �xij*, yij*� �Aij

	 
 0
�

� yy
R

f �x, y� dA � �
m

i�1
�
n

j�1
f �xij*, yij*� �Aij � � 	

P R �
�xij*, yij*� Rij.

f

f f

0

FIGURE 4 FIGURE 5

z

y

c

d
a

b

x x

y

0

z

R
ij

f(x*
ij

y*
ij
) , 

4

5

3

■ The meaning of the double limit in 
Equation 4 is that we can make the 
double sum as close as we like to the
number [for any choice of 
in ] by making the subrectangles 
sufficiently small.

Rij

�xij*, yij*�V

■ Notice the similarity between 
Definition 5 and the definition of a 
single integral in Equation 2.
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if is bounded [that is, there is a constant such that for all 
in ], and is continuous there, except on a finite number of smooth curves, then
is integrable over .

If we know that is integrable, we can choose the partitions to be regular, that
is, all the subrectangles have the same dimensions and therefore the same area:

. In this case we can simply let and . In addition, the sam-
ple point can be chosen to be any point in the subrectangle but if we
choose it to be the upper right-hand corner of [namely , see Fig ure 3], then
the expression for the double integral looks simpler:

By comparing Definitions 4 and 5, we see that a volume can be written as a double
integral:

If , then the volume of the solid that lies above the rectangle
and below the surface is

The sum in Definition 5,

is called a double Riemann sum and is used as an approximation to the value of the 
double integral. [Notice how similar it is to the Riemann sum in for a function of
a single variable.] If happens to be a positive function, then the double Riemann sum 
represents the sum of volumes of columns, as in Figure 5, and is an approximation to
the volume under the graph of .

EXAMPLE 1 Estimate the volume of the solid that lies above the square
and below the elliptic paraboloid . Divide 

into four equal squares and choose the sample point to be the upper right corner
of each square . Sketch the solid and the approximating rectangular boxes.

SOLUTION The squares are shown in Figure 6. The paraboloid is the graph of
and the area of each square is 1. Approximating the vol-

ume by the Riemann sum with , we have

This is the volume of the approximating rectangular boxes shown in Figure 7. ■

f M � f �x, y� � � M �x, y�
R f f

R
f P

Rij

�A � �x �y m l � n l �
�xij*, yij*� Rij,

Rij �xi, yj�

yy
R

f �x, y� dA � lim
m, n l �

�
m

i�1
�
n

j�1
f �xi, yj � �A

f �x, y� � 0 V R
z � f �x, y�

V � yy
R

f �x, y� dA

�
m

i�1
�
n

j�1
f �xij*, yij*� �Aij

f

f

R � �0, 2� � �0, 2� z � 16 � x 2 � 2y 2

R
Rij

f �x, y� � 16 � x 2 � 2y 2

m � n � 2

V 
 �
2

i�1
�
2

j�1
f �xi, yj� �A

� f �1, 1� �A  f �1, 2� �A  f �2, 1� �A  f �2, 2� �A

� 13�1�  7�1�  10�1�  4�1� � 34

6

V

1
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We get better approximations to the volume in Example 1 if we increase the num-
ber of squares. Figure 8 shows how the columns start to look more like the actual solid
and the corresponding approximations become more accurate when we use 16, 64, and
256 squares. In Example 7 we will be able to show that the exact volume is 48.

EXAMPLE 2 If , evaluate the integral

SOLUTION It would be very difficult to evaluate this integral directly from Defini-
tion 5 but, because , we can compute the integral by interpreting it as a
volume. If , then and , so the given double integral
represents the volume of the solid S that lies below the circular cylinder
and above the rectangle R. (See Figure 9.) The volume of S is the area of a semicircle
with radius 1 times the length of the cylinder. Thus

■

THE MIDPOINT RULE

The methods that we used for approximating single integrals (the Midpoint Rule, the
Trapezoidal Rule, Simpson’s Rule) all have counterparts for double integrals. Here we
consider only the Midpoint Rule for double integrals. This means that we use a double
Riemann sum with a regular partition to approximate the double integral, where all the
subrectangles have area and the sample point in is chosen to be the
center of . In other words, is the midpoint of and is the mid-
point of .

MIDPOINT RULE FOR DOUBLE INTEGRALS

where is the midpoint of and is the midpoint of .

FIGURE 8
The Riemann sum approximations to

the volume under z=16-≈-2¥

become more accurate as m and
n increase. (c) m=n=16, VÅ46.46875(b) m=n=8, VÅ44.875(a) m=n=4, VÅ41.5

R � ��x, y� � �1 � x � 1, �2 � y � 2	

yy
R

s1 � x 2 dA

s1 � x 2 � 0
z � s1 � x 2 x 2  z2 � 1 z � 0

x 2  z2 � 1

yy
R

s1 � x 2 dA � 1
2 � �1�2 � 4 � 2�

�A �xij*, yij*� Rij

�xi, yj� Rij xi �xi�1, xi� yj

�yj�1, yj�

V

yy
R

f �x, y� dA 
 �
m

i�1
�
n

j�1
f �xi, yj� �A

�yj�1, yj�yj�xi�1, xi �xi
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EXAMPLE 3 Use the Midpoint Rule with to estimate the value of the
integral , where , .

SOLUTION In using the Midpoint Rule with , we evaluate
at the centers of the four subrectangles shown in Figure 10. So

, , , and . The area of each subrectangle is . Thus

Thus we have ■

NOTE In Example 5 we will see that the exact value of the double integral in
Example 3 is . (Remember that the interpretation of a double integral as a volume
is valid only when the integrand is a positive function. The integrand in Example 3
is not a positive function, so its integral is not a volume. In Examples 5 and 6 we will
discuss how to interpret integrals of functions that are not always positive in terms of
volumes.) If we keep dividing each subrectangle in Figure 10 into four smaller ones
with similar shape, we get the Midpoint Rule approximations displayed in the chart in
the margin. Notice how these approximations approach the exact value of the double
integral, .

ITERATED INTEGRALS

Recall that it is usually difficult to evaluate single integrals directly from the definition
of an integral, but the Evaluation Theorem (Part 2 of the Fundamental Theorem of
Calculus) provides a much easier method. The evaluation of double integrals from first
principles is even more difficult, but here we see how to express a double integral as
an iterated integral, which can then be evaluated by calculating two single integrals.

Suppose that is a function of two variables that is continuous on the rectangle
. We use the notation to mean that is held fixed and

is integrated with respect to from to . This procedure is called
partial integration with respect to . (Notice its similarity to partial differentiation.)
Now is a number that depends on the value of , so it defines a function
of :

If we now integrate the function with respect to from to , we get

The integral on the right side of Equation 7 is called an iterated integral. Usually the 

m � n � 2V

1 � y � 2	R � ��x, y� � 0 � x � 2xxR �x � 3y 2 � dA

m � n � 2
f �x, y� � x � 3y 2

�A � 1
2y2 � 7

4y1 � 5
4x2 � 3

2x1 � 1
2

yy
R

�x � 3y 2 � dA 
 �
2

i�1
�
2

j�1
f �xi, yj� �A

� f �x1, y1� �A  f �x1, y2 � �A  f �x2, y1 � �A  f �x2, y2 � �A

� f ( 1
2, 5

4 ) �A  f ( 1
2, 7

4 ) �A  f ( 3
2, 5

4 ) �A  f ( 3
2, 7

4 ) �A

� (� 67
16 ) 1

2  (� 139
16 ) 1

2  (� 51
16) 1

2  (� 123
16 ) 1

2

� �
95
8 � �11.875

yy
R

�x � 3y 2 � dA 
 �11.875

�12
f

�12

f
xx

d
c f �x, y� dyR � �a, b� � �c, d �

y � dy � cyf �x, y�
y

xx
d
c

f �x, y� dy
x

A�x� � y
d

c
f �x, y� dy

x � bx � axA

y
b

a
A�x� dx � y

b

a
�y

d

c
f �x, y� dy dx7

0

y

1

2

x1 2

3

2

(2, 2)

R¡™ R™™

R¡¡ R™¡

FIGURE 10

Number of Midpoint Rule
subrectangles approximations

1 �11.5000
4 �11.8750

16 �11.9687
64 �11.9922

256 �11.9980
1024 �11.9995
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brackets are omitted. Thus

means that we first integrate with respect to from to and then with respect to
from to .

Similarly, the iterated integral

means that we first integrate with respect to (holding fixed) from to
and then we integrate the resulting function of with respect to from to
Notice that in both Equations 8 and 9 we work from the inside out.

EXAMPLE 4 Evaluate the iterated integrals.

(a) (b)

SOLUTION
(a) Regarding as a constant, we obtain

Thus the function in the preceding discussion is given by in this
example. We now integrate this function of from 0 to 3:

(b) Here we first integrate with respect to :

■

Notice that in Example 4 we obtained the same answer whether we integrated with
respect to or first. In general, it turns out (see Theorem 10) that the two iterated
integrals in Equations 8 and 9 are always equal; that is, the order of integration does
not matter. (This is similar to Clairaut’s Theorem on the equality of the mixed partial
derivatives.)

The following theorem gives a practical method for evaluating a double integral by
expressing it as an iterated integral (in either order).

y
b

a
y

d

c
f �x, y� dy dx � y

b

a
�y

d

c
f �x, y� dy dx8

xdcy
ba

y
d

c
y

b

a
f �x, y� dx dy � y

d

c
�y

b

a
f �x, y� dx dy9

x � bx � ayx
y � d.y � cyy

y
2

1
y

3

0
x 2 y dx dyy

3

0
y

2

1
x 2y dy dx

x

� x 2�22

2 � � x 2�12

2 � � 3
2 x 2

y
2

1
x 2y dy � �x 2 y 2

2 y�1

y�2

A�x� � 3
2 x 2A

x

y
3

0
y

2

1
x 2y dy dx � y

3

0
�y

2

1
x 2y dy dx

� y
3

0

3
2 x 2 dx �

x 3

2 0

3

�
27

2

x

y
2

1
y

3

0
x 2 y dx dy � y

2

1
�y

3

0
x 2 y dx dy � y

2

1
� x 3

3
 y

x�0

x�3

dy

� y
2

1
9y dy � 9 

y 2

2 1

2

�
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FUBINI’S THEOREM If is continuous on the rectangle 
, , then

More generally, this is true if we assume that is bounded on , is discon-
tinuous only on a finite number of smooth curves, and the iterated integrals
exist.

The proof of Fubini’s Theorem is too difficult to include in this book, but we can
at least give an intuitive indication of why it is true for the case where .
Recall that if is positive, then we can interpret the double integral as
the volume of the solid that lies above and under the surface . But
we have another formula that we used for volume in Chapter 7, namely,

where is the area of a cross-section of in the plane through perpendicular to
the -axis. From Figure 11 you can see that is the area under the curve whose
equation is , where is held constant and . Therefore

and we have

A similar argument, using cross-sections perpendicular to the -axis as in Figure 12,
shows that

EXAMPLE 5 Evaluate the double integral , where 
, . (Compare with Example 3.)

SOLUTION 1 Fubini’s Theorem gives

SOLUTION 2 Again applying Fubini’s Theorem, but this time integrating with
respect to first, we have

■

f
R � ��x, y� � a � x � b c � y � d 	

yy
R

f �x, y� dA � y
b

a
y

d

c
f �x, y� dy dx � y

d

c
y

b

a
f �x, y� dx dy

f R f

f �x, y� � 0
f xx

R
f �x, y� dA

V S R z � f �x, y�

V � y
b

a
A�x� dx

A�x� S x
x A�x� C

z � f �x, y� x c � y � d

A�x� � y
d

c
f �x, y� dy

yy
R

f �x, y� dA � V � y
b

a
A�x� dx � y

b

a
y

d

c
f �x, y� dy dx

y

yy
R

f �x, y� dA � y
d

c
y

b

a
f �x, y� dx dy

xxR �x � 3y 2 � dA
R � ��x, y� � 0 � x � 2 1 � y � 2	

yy
R

�x � 3y 2 � dA � y
2

0
y

2

1
�x � 3y 2 � dy dx � y

2

0

 [xy � y 3] y�1
y�2 dx

� y
2

0
�x � 7� dx �

x 2

2
� 7x

0

2

� �12

x

yy
R

�x � 3y 2 � dA � y
2

1
y

2

0
�x � 3y 2 � dx dy � y

2

1
� x 2

2
� 3xy 2

x�0

x�2

dy

� y
2

1
�2 � 6y 2 � dy � 2y � 2y 3]1

2
� �12

10

V

■ Theorem 10 is named after the Italian 
mathematician Guido Fubini (1879–1943), 
who proved a very general version of this 
theorem in 1907. But the version for con-
tinuous functions was known to the French
mathematician Augustin-Louis Cauchy
almost a century earlier.

FIGURE 11

a

x

0

z

x

b

y

A(x)

Visual 12.1 illustrates Fubini’s 
Theorem by showing an animation of
Figures 11 and 12.

TEC

FIGURE 12

0
yc

x

z

y

d

■ Notice the negative answer in Exam-
ple 5; nothing is wrong with that. The
function in that example is not a posi-
tive function, so its integral doesn’t rep-
resent a volume. From Figure 13 we see
that is always negative on , so the
value of the integral is the negative of
the volume that lies above the graph of 
and below .R

f

Rf

f

FIGURE 13

R0
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1
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EXAMPLE 6 Evaluate , where .

SOLUTION If we first integrate with respect to , we get

■

NOTE If we first integrate with respect to in Example 6, we get

but this order of integration is much more difficult than the method given in the exam-
ple because it involves integration by parts twice. Therefore, when we evaluate dou-
ble integrals, it is wise to choose the order of integration that gives simpler integrals.

EXAMPLE 7 Find the volume of the solid that is bounded by the elliptic 
paraboloid , the planes and , and the three coor-
dinate planes.

SOLUTION We first observe that is the solid that lies under the surface
and above the square . (See Figure 15.) This

solid was considered in Example 1, but we are now in a position to evaluate the
double integral using Fubini’s Theorem. Therefore

■

In the special case where can be factored as the product of a function of 
only and a function of only, the double integral of can be written in a particularly
simple form. To be specific, suppose that and .
Then Fubini’s Theorem gives

In the inner integral is a constant, so is a constant and we can write

since is a constant. Therefore, in this case, the double integral of can be
written as the product of two single integrals:

x

yy
R

y sin�xy� dA � y
�

0
y

2

1
y sin�xy� dx dy � y

�

0
[�cos�xy�]x�1

x�2
dy

� y
�

0
��cos 2y  cos y� dy � �

1
2 sin 2y  sin y]0

�
� 0

y

yy
R

y sin�xy� dA � y
2

1
y

�

0
y sin�xy� dy dx

S
x 2  2y 2  z � 16 x � 2 y � 2

S
z � 16 � x 2 � 2y 2 R � �0, 2� � �0, 2�

V � yy
R

�16 � x 2 � 2y 2 � dA � y
2

0
y

2

0
�16 � x 2 � 2y 2 � dx dy

� y
2

0
[16x �

1
3 x 3 � 2y 2x]x�0
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dy � y

2

0
( 88

3 � 4y 2 ) dy � [ 88
3 y �

4
3 y3 ]0

2
� 48

f �x, y� x
y f

f �x, y� � t�x� h�y� R � �a, b� � �c, d �
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R

f �x, y� dA � y
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c
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a
t�x� h�y� dx dy � y

d

c
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a
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y
d

c
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b

a
t�x�h�y� dx dy � y

d

c
�h�y��y

b

a
t�x� dx� dy � y

b

a
t�x� dx y

d

c
h�y� dy

x
b
a

t�x� dx f

yy
R

t�x� h�y� dA � y
b

a
t�x� dx y

d

c
h�y� dy where R � �a, b� � �c, d �

V

11

R � �1, 2� � �0, ��xxR y sin�xy� dAV
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■ For a function that takes on 
both positive and negative values,

is a difference of 
volumes: , where is the 
volume above and below the graph 
of and is the volume below 
and above the graph. The fact that the
integral in Example 6 is means that
these two volumes and are equal.
(See Figure 14.)

V2V1

Rf

0

V2

R
V1V1 � V2

xx
R

f �x, y� dA

f

FIGURE 14

z=y sin(xy)
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FIGURE 15
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EXAMPLE 8 If , then, by Equation 11,

■

PROPERTIES OF DOUBLE INTEGRALS

We list here three properties of double integrals that can be proved in the same man-
ner as in Section 5.2. We assume that all of the integrals exist. Properties 12 and 13
are referred to as the linearity of the integral.

where c is a constant

If for all in , then

R � �0, ��2� � �0, ��2�

yy
R

sin x cos y dA � y
��2

0
sin x dx y

��2

0
cos y dy

� [�cos x]0

��2 [sin y]0

��2
� 1 � 1 � 1

yy
R

� f �x, y�  t�x, y�� dA � yy
R

f �x, y� dA  yy
R

t�x, y� dA

yy
R

c f �x, y� dA � c yy
R

f �x, y� dA

f �x, y� � t�x, y� �x, y� R

yy
R

f �x, y� dA � yy
R

t�x, y� dA

12

13

14

■ The function in
Example 8 is positive on , so the inte-
gral represents the volume of the solid
that lies above and below the graph of

shown in Figure 16.
R

f

R
f �x, y� � sin x cos y

FIGURE 16

y

x

z

0

■ Double integrals behave this way
because the double sums that define
them behave this way.

12.1 EXERCISES

1. (a) Estimate the volume of the solid that lies below the 
surface and above the rectangle

, 

Use a Riemann sum with , , and a regular
partition, and take the sample point to be the upper right
corner of each square.

(b) Use the Midpoint Rule to estimate the volume of the
solid in part (a).

2. If , use a Riemann sum with ,
to estimate the value of . Take the 

sample points to be (a) the lower right corners and (b) the
upper left corners of the rectangles.

3. (a) Use a Riemann sum with to estimate the
value of , where . Take
the sample points to be upper right corners.

(b) Use the Midpoint Rule to estimate the integral in part (a).

4. (a) Estimate the volume of the solid that lies below the 
surface and above the rectangle

. Use a Riemann sum with

z � xy

R � ��x, y� � 0 � x � 6 0 � y � 4	
m � 3 n � 2

R � �0, 4� � ��1, 2� m � 2
n � 3 xx

R
�1 � xy 2� dA

m � n � 2
xx

R
xe�xy dA R � �0, 2� � �0, 1�

z � x  2y 2

R � �0, 2� � �0, 4�

and choose the sample points to be lower
right corners.

(b) Use the Midpoint Rule to estimate the volume in 
part (a).

(c) Evaluate the double integral and compare your answer
with the estimates in parts (a) and (b).

5. A contour map is shown for a function on the square
. Use the Midpoint Rule with

to estimate the value of .

f
R � �0, 4� � �0, 4�
m � n � 2 xx

R
f �x, y� dA

0

2

4

2 4

10

10

10 20

20

30

300 0

y

x

m � n � 2

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints at stewartcalculus.comCAS
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25. ,  

26. ,  

27–28 ■ Sketch the solid whose volume is given by the
iterated integral.

27.

28.

29. Find the volume of the solid that lies under the plane
 and above the rectangle

.

30. Find the volume of the solid that lies under the hyperbolic
paraboloid and above the rectangle

.

31. Find the volume of the solid lying under the elliptic 
paraboloid and above the rectangle

.

32. Find the volume of the solid enclosed by the surface
and the planes , , , 

and .

33. Find the volume of the solid enclosed by the surface
and the planes , , , , 

and .

34. Find the volume of the solid in the first octant bounded by 
the cylinder and the plane .

35. Find the volume of the solid enclosed by the paraboloid
and the planes , ,

, , and .

; 36. Graph the solid that lies between the surface
and the plane and is

bounded by the planes , , , and .
Then find its volume.

37. Use a computer algebra system to find the exact value of
the integral , where .
Then use the CAS to draw the solid whose volume is
given by the integral.

38. Graph the solid that lies between the surfaces
and for ,

. Use a computer algebra system to approximate
the volume of this solid correct to four decimal places.

yy
R

ye�xy dA R � �0, 2� � �0, 3�

yy
R

x

1 � xy
dA R � �0, 1� � �0, 1�

y
1

0
y

1

0
�4 � x � 2y� dx dy

y
1

0
y

1

0
�2 � x 2 � y 2 � dy dx

4x � 6y � 2z � 15 � 0
R � ��x, y� � �1 � x � 2, �1 � y � 1�

z � 3y 2 � x 2 � 2
R � ��1, 1� � �1, 2�

x 2	4 � y 2	9 � z � 1
R � ��1, 1� � ��2, 2�

z � 1 � e x sin y x � �1 y � 0 y � �
z � 0

z � x sec2y z � 0 x � 0 x � 2 y � 0
y � �	4

z � 16 � x 2 y � 5

z � 2 � x 2 � �y � 2�2 z � 1 x � 1
x � �1 y � 0 y � 4

z � 2xy	�x 2 � 1� z � x � 2y
x � 0 x � 2 y � 0 y � 4

xx
R

x 5y 3e x y dA R � �0, 1� � �0, 1�

z � e�x2

cos �x 2 � y 2 � z � 2 � x 2 � y 2 � x � � 1

� y � � 1

CAS

CAS

6. A 20-ft-by-30-ft swimming pool is filled with water. The
depth is measured at 5-foot intervals, starting at one corner
of the pool, and the values are recorded in the table.
Estimate the volume of water in the pool.

7–9 ■ Evaluate the double integral by first identifying it as the 
volume of a solid.

7.

8.

9.

10. The integral , where , 
represents the volume of a solid. Sketch the solid.

11–20 ■ Calculate the iterated integral.

11. 12.

13. 14.

15.

16.

17. 18.

19. 20.

21–26 ■ Calculate the double integral.

21. ,  

22. ,  

23. ,  

24. ,  

xxR 3 dA, R � ��x, y� � �2 � x � 2, 1 � y � 6�

xxR �5 � x� dA, R � ��x, y� � 0 � x � 5, 0 � y � 3�

xxR �4 � 2y� dA, R � �0, 1� � �0, 1�

R � �0, 4� � �0, 2�xxR s9 � y 2 dA

y
1

0
y

2

1
�4x 3 � 9x 2 y2� dy dxy
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y 3e 2x dy dx
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ss � t ds dty
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v�u � v2�4 du dv

R � ��x, y� � 0 � x � 1, �3 � y � 3�yy
R

xy 2
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 dA

R � ��x, y� � 0 � x � 2, 1 � y � 2�yy
R

�y � xy�2� dA

R � �0, �	6� � �0, �	3�yy
R

x sin�x � y� dA
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1 � x 2
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43–44 ■ Use symmetry to evaluate the double integral.

43. ,  

44. ,

45. Use your CAS to compute the iterated integrals 

Do the answers contradict Fubini’s Theorem? Explain what
is happening.

46. (a) In what way are the theorems of Fubini and Clairaut 
similar?

(b) If is continuous on and 

for , , show that
.

R � ��x, y� � �1 � x � 1, 0 � y � 1�yy
R

xy

1 � x 4 dA

R � ���, �� � ���, ��yy
R

�1 � x 2 sin y � y 2 sin x� dA

y
1

0
y

1

0

x � y

�x � y�3 dx dyandy
1

0
y

1

0

x � y

�x � y�3 dy dx

�a, b� � �c, d �f �x, y�

t�x, y� � y
x

a
y

y

c
f �s, t� dt ds

txy � tyx � f �x, y�
c � y � da � x � b

CAS

39–40 ■ The average value of a function over a rec t-
an gle is defined to be

(Compare with the definition for functions of one variable 
in Section 5.4.) Find the average value of over the given 
rectangle.

39. ,  
has vertices , , , 

40. ,  

41. If is a constant function, , and 
, show that

42. Use the result of Exercise 41 to show that

where .

�1, 5���1, 5���1, 0�R
f �x, y� � x 2 y

�1, 0�

f �x, y�
R

fave �
1

A�R� yy
R

f �x, y� dA

f

R � �0, 4� � �0, 1�f �x, y� � e y
sx � e y

f �x, y� � kf
R � �a, b� � �c, d�

yy
R

k dA � k�b � a��d � c�

0 � yy
R

sin �x cos �y dA �
1

32

R � [0, 1
4] � [ 1

4, 1
2]
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12.2 DOUBLE INTEGRALS OVER GENERAL REGIONS
For single integrals, the region over which we integrate is always an interval. But for 
double integrals, we want to be able to integrate a function not just over rectangles
but also over regions of more general shape, such as the one illustrated in Figure 1.
We suppose that is a bounded region, which means that can be enclosed in a rect-
angular region as in Figure 2. Then we define a new function with domain by

If the double integral of F exists over R, then we define the double integral of over 
D by

Definition 2 makes sense because R is a rectangle and so has been
previously defined in Section 12.1. The procedure that we have used is reasonable
because the values of are 0 when lies outside and so they contribute
nothing to the integral. This means that it doesn’t matter what rectangle we use as
long as it contains .

f
D

DD
RFR

F�x, y� � 	0

f �x, y� if

if

�x, y� is in D

�x, y� is in R but not in D
1

f

where F is given by Equation 1yy
D

f �x, y� dA � yy
R

F�x, y� dA2

xx
R

F�x, y� dA

D�x, y�F�x, y�
R

D

FIGURE 1

0

y

x

D

y

0 x

D

R

FIGURE 2
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In the case where we can still interpret as the volume of
the solid that lies above and under the surface (the graph of ). You can
see that this is reasonable by comparing the graphs of and in Figures 3 and 4 and
remembering that is the volume under the graph of .

Figure 4 also shows that is likely to have discontinuities at the boundary points
of Nonetheless, if is continuous on and the boundary curve of is “well
behaved” (in a sense outside the scope of this book), then it can be shown that

exists and therefore exists. In particular, this is the case for
the following types of regions.

A plane region is said to be of type I if it lies between the graphs of two contin-
uous functions of , that is,

where and are continuous on . Some examples of type I regions are shown
in Figure 5.

In order to evaluate when is a region of type I, we choose a rect-
angle that contains , as in Figure 6, and we let be the func-
tion given by Equation 1; that is, agrees with on and is outside . Then, by
Fubini’s Theorem,

Observe that if or because then lies outside .
Therefore

xx
D

f �x, y� dAf �x, y� � 0
fz � f �x, y�D

Ff
Fxx

R
F�x, y� dA

FIGURE 4

y

0

z

x

D

graph of F

y

0

z

x

D

graph of f

FIGURE 3

F
DDfD.

xxD f �x, y� dAxxR F�x, y� dA

D
x

D � ��x, y� � a � x � b, t1�x� � y � t2�x��
�a, b�t2t1

FIGURE 5  Some type I regions
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R
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a
y

d

c
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c
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because when . Thus we have the following for-
mula that enables us to evaluate the double integral as an iterated integral.

If is continuous on a type I region D such that

then

The integral on the right side of is an iterated integral that is similar to the ones
we considered in the preceding section, except that in the inner integral we regard
as being constant not only in but also in the limits of integration, and 

We also consider plane regions of type II, which can be expressed as 

where and are continuous. Two such regions are illustrated in Figure 7.
Using the same methods that were used in establishing , we can show that

where D is a type II region given by Equation 4.

EXAMPLE 1 Evaluate , where is the region bounded by the 
parabolas and .

SOLUTION The parabolas intersect when , that is, , so .
We note that the region , sketched in Figure 8, is a type I region but not a type II
region and we can write

Since the lower boundary is and the upper boundary is , Equa-
tion 3 gives

■

t1�x� � y � t2�x�F�x, y� � f �x, y�

f3

D � ��x, y� � a � x � b, t1�x� � y � t2�x��

yy
D

f �x, y� dA � y
b

a
y

t2�x�

t1�x�
f �x, y� dy dx

3
x

t2�x�.t1�x�f �x, y�

D � ��x, y� � c � y � d, h1�y� � x � h2�y��4

h2h1

3

yy
D

f �x, y� dA � y
d

c
y

h2� y�

h1� y�
f �x, y� dx dy5

Dxx
D

�x � 2y� dAV

y � 1 � x 2y � 2x 2

x � 
1x 2 � 12x 2 � 1 � x 2

D

D � ��x, y� � �1 � x � 1, 2x 2 � y � 1 � x 2�

y � 1 � x 2y � 2x 2

� y
1

�1
[xy � y 2]y�2x2
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dxyy
D
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1

�1
y

1�x2

2x2
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1

�1
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FIGURE 7
Some type II regions
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NOTE When we set up a double integral as in Example 1, it is essential to draw a
diagram. Often it is helpful to draw a vertical arrow as in Figure 8. Then the limits of 
integration for the inner integral can be read from the diagram as follows: The arrow 
starts at the lower boundary , which gives the lower limit in the integral, and 
the arrow ends at the upper boundary , which gives the upper limit of inte-
gration. For a type II region the arrow is drawn horizontally from the left boundary to
the right boundary.

EXAMPLE 2 Find the volume of the solid that lies under the paraboloid
and above the region in the -plane bounded by the line and the parabola

.

SOLUTION 1 From Figure 9 we see that is a type I region and

Therefore the volume under and above is

SOLUTION 2 From Figure 10 we see that can also be written as a type II region:

Therefore another expression for is

■

EXAMPLE 3 Evaluate where is the region bounded by the line
and the parabola .

y � t1�x�
y � t2�x�

z � x 2 � y 2

y � 2xxyD
y � x 2

D

D � ��x, y� � 0 � x � 2, x 2 � y � 2x�

Dz � x 2 � y 2

V � yy
D

�x 2 � y 2 � dA � y
2

0
y
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x2
�x 2 � y 2 � dy dx

� y
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0
�x 2y �

y 3
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21
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35
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2 y
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0
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2 y
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0
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FIGURE 10
D as a type II region

FIGURE 9
D as a type I region
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■ Figure 11 shows the solid whose 
volume is calculated in Example 2. 
It lies above the -plane, below the
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SOLUTION The region is shown in Figure 12. Again is both type I and type II,
but the description of as a type I region is more complicated because the lower
boundary consists of two parts. Therefore we prefer to express as a type II region:

Then gives

If we had expressed as a type I region using Figure 12(a), then we would have
obtained

but this would have involved more work than the other method. ■

EXAMPLE 4 Find the volume of the tetrahedron bounded by the planes
, , , and .

SOLUTION In a question such as this, it’s wise to draw two diagrams: one of the
three-dimensional solid and another of the plane region over which it lies. 
Figure 13 shows the tetrahedron bounded by the coordinate planes , ,
the vertical plane , and the plane . Since the plane

intersects the -plane (whose equation is ) in the line
, we see that lies above the triangular region in the -plane 

bounded by the lines , , and . (See Figure 14.)
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The plane can be written as , so the required
volume lies under the graph of the function and above

Therefore

■

EXAMPLE 5 Evaluate the iterated integral .

SOLUTION If we try to evaluate the integral as it stands, we are faced with the task 
of first evaluating . But it’s impossible to do so in finite terms since

is not an elementary function. (See the end of Section 6.4.) So we must
change the order of integration. This is accomplished by first expressing the given
iterated integral as a double integral. Using backward, we have

where

We sketch this region in Figure 15. Then from Figure 16 we see that an alterna-
tive description of is

This enables us to use to express the double integral as an iterated integral in the
reverse order:

■

PROPERTIES OF DOUBLE INTEGRALS

We assume that all of the following integrals exist. The first three properties of double
integrals over a region follow immediately from Definition 2 and Properties 12, 13,
and 14 in Section 12.1.
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If for all in , then 

The next property of double integrals is similar to the property of single integrals
given by the equation .

If , where and don’t overlap except perhaps on their bound-
aries (see Figure 17), then

Property 9 can be used to evaluate double integrals over regions that are neither
type I nor type II but can be expressed as a union of regions of type I or type II. Fig-
ure 18 illustrates this procedure. (See Exercises 49 and 50.)

The next property of integrals says that if we integrate the constant function
over a region , we get the area of :

Figure 19 illustrates why Equation 10 is true: A solid cylinder whose base is and
whose height is 1 has volume , but we know that we can also write
its volume as .

Finally, we can combine Properties 7, 8, and 10 to prove the following property.
(See Exercise 53.)

yy
D

� f �x, y� � t�x, y�� dA � yy
D

f �x, y� dA � yy
D

t�x, y� dA

yy
D

c f �x, y� dA � c yy
D

f �x, y� dA

f �x, y� � t�x, y� �x, y� D

yy
D

f �x, y� dA � yy
D

t�x, y� dA

x
b
a f �x� dx � x

c
a f �x� dx � x

b
c f �x� dx

D � D1 � D2 D1 D2

yy
D

f �x, y� dA � yy
D1

f �x, y� dA � yy
D2

f �x, y� dA

6

7

8

9

D

f �x, y� � 1 D D

yy
D

1 dA � A�D�

D
A�D� � 1 � A�D�

xx
D

1 dA

10

FIGURE 18

x0

y

D

(a) D is neither type I nor type II.

x0

y

D¡

D™

(b) D=D¡ � D™,

D¡ is type I, D™ is type II.

706 CHAPTER 12 MULTIPLE INTEGRALS

Unless otherwise noted, all content on this page is © Cengage Learning.

0

y

x

D

D¡ D™

FIGURE 17

FIGURE 19
Cylinder with base D and height 1

y

0

z

x

z=1

12280_ch12_ptg01_hr_700-709.qk_12280_ch12_ptg01_hr_700-709  12/15/11  2:34 PM  Page 706

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



If for all in , then

EXAMPLE 6 Use Property 11 to estimate the integral , where is the
disk with center the origin and radius 2.

SOLUTION Since and , we have
and therefore

Thus, using , , and in Property 11, we obtain

■

m � e�1 � 1�e M � e A�D� � � �2�2

4�

e
� yy

D

e sin x cos y dA � 4�e

e�1 � e sin x cos y � e 1 � e

xxD e sin x cos y dA D

�1 � sin x � 1 �1 � cos y � 1
�1 � sin x cos y � 1

mA�D� � yy
D

f �x, y� dA � MA�D�

m � f �x, y� � M �x, y� D11
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12.2 EXERCISES

1–6 ■ Evaluate the iterated integral.

1. 2.

3. 4.

5. 6.

7–10 ■ Evaluate the double integral.

7.

8.

9.

10.

11–12 ■ Express as a region of type I and also as a region of
type II. Then evaluate the double integral in two ways.

11. is enclosed by the lines 

y
4

0
y

sy

0
xy 2 dx dy y

1

0
y

2

2x
�x � y� dy dx

y
1

0
y

x

x 2
�1 � 2y� dy dx y

2

0
y

2y

y
xy dx dy

y
1

0
y

s 2

0
cos�s 3� dt ds y

1

0
y

e

0

v

s1 � ev dw dv

yy
D

y 2 dA, D � ��x, y� � �1 � y � 1,  �y � 2 � x � y�

yy
D

y

x 5 � 1
 dA, D � ��x, y� � 0 � x � 1,  0 � y � x 2�

yy
D

x dA, D � ��x, y� � 0 � x � �,  0 � y � sin x�

yy
D

x 3 dA, D � ��x, y� � 1 � x � e,  0 � y � ln x�

D

yy
D

x dA, D y � x, y � 0, x � 1

12. ,  is enclosed by the curves 

13–14 ■ Set up iterated integrals for both orders of integration.
Then evaluate the double integral using the easier order and
explain why it’s easier.

13. ,  is bounded by 

14. ,  is bounded by 

15–20 ■ Evaluate the double integral.

15. ,  is bounded by , , 

16. , is bounded by , ,

17. ,  

is the triangular region with vertices (0, 1), (1, 2), 

18.

yy
D

x cos y dA D y � 0 y � x 2 x � 1

yy
D

�x 2 � 2y� dA D y � x y � x 3 x � 0

yy
D

y 2 dA

D �4, 1�

yy
D

xy 2 dA, D is enclosed by x � 0 and x � s1 � y 2 

yy
D

y dA D y � x � 2, x � y 2

yy
D

y 2e xy dA D y � x, y � 4, x � 0

yy
D

xy dA D y � x 2, y � 3x
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35–36 ■ Use a computer algebra system to find the exact
volume of the solid.

35. Enclosed by and 

36. Enclosed by and 

37–42 ■ Sketch the region of integration and change the
order of integration.

37. 38.

39. 40.

41. 42.

43–48 ■ Evaluate the integral by reversing the order of 
integration.

43. 44.

45. 46.

47.

48.

49–50 ■ Express as a union of regions of type I or type II
and evaluate the integral.

49. 50.

51–52 ■ Use Property 11 to estimate the value of the integral.

51. ,  

y
1

0
y

��2

arcsin y
cos x s1 � cos2x dx dy

y
8

0
y

2

sy3
ex4

dx dy

y
1

0
y

��4

arctan x
f �x, y� dy dxy

2

1
y

ln
 
x

0
f �x, y� dy dx

y
s�

0
y

s�

y
cos�x 2� dx dyy

1

0
y

3

3y
e x2 

dx dy

y
1

0
y

1

x
e x�y dy dxy

4

0
y

2

sx

1

y3 � 1
 dy dx

y
2

�2
y

s4�y 2

0
f �x, y� dx dyy

��2

0
y

cos x

0
f �x, y� dy dx

y
2

0
y

4

x 2
f �x, y� dy dxy

1

0
y

y

0
f �x, y� dx dy

z � 0z � 1 � x 2 � y 2

z � 2yz � x 2 � y 2

D

yy
D

y dAyy
D

x 2 dA

0

_1

1

_1

x=y-Á

y=(x+1)@

y

x0

1

_1

_1 1

D

(1, 1)

x

y

D � �0, 1� � �0, 1�yy
D

sx 3 � y 3 dA

CAS

708 CHAPTER 12 MULTIPLE INTEGRALS

Unless otherwise noted, all content on this page is © Cengage Learning.

19.

is bounded by the circle with center the origin and
radius 2

20. is the triangular region with vertices ,

, and 

21–30 ■ Find the volume of the given solid.

21. Under the plane and above the region
bounded by and 

22. Under the surface and above the region
enclosed by and 

23. Under the surface and above the triangle with 
vertices , , and 

24. Enclosed by the paraboloid and the planes
, , , 

25. Bounded by the coordinate planes and the plane

26. Bounded by the planes , , , and

27. Enclosed by the cylinders , and the planes 
, 

28. Bounded by the cylinder and the planes
, in the first octant

29. Bounded by the cylinder and the planes
, , in the first octant

30. Bounded by the cylinders and 

31–32 ■ Find the volume of the solid by subtracting two 
volumes.

31. The solid enclosed by the parabolic cylinders ,
and the planes ,

32. The solid enclosed by the parabolic cylinder and
the planes , 

33–34 ■ Sketch the solid whose volume is given by the 
iterated integral.

33. 34.

x 2 � y 2 � 1
y � z x � 0 z � 0

x 2 � y 2 � r 2 y 2 � z2 � r 2

y � 1 � x 2

x � y � z � 2y � x 2 � 1
2x � 2y � z � 10 � 0

y � x 2

z � 2 � yz � 3y

y
1

0
y

1�x 2

0
�1 � x� dy dxy

1

0
y

1�x

0
�1 � x � y� dy dx

z � x y � x x � y � 2
z � 0

z � x 2 y � x 2

z � 0 y � 4

y 2 � z2 � 4
x � 2y, x � 0 z � 0

z � 1 � x 2y2

x � y 2 x � 4

z � xy
�1, 1� �4, 1� �1, 2�

z � x 2 � 3y 2

x � 0 y � 1 y � x z � 0

3x � 2y � z � 6

x � 2y � z � 1
x � y � 1 x 2 � y � 1

yy
D

2xy dA, D �0, 0�

�1, 2� �0, 3�

yy
D

�2x � y� dA,

D
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56. ,  

is the disk with center the origin and radius 

57. ,  

is the rectangle 

58. ,  

59. ,  

60. Graph the solid bounded by the plane and 
the paraboloid and find its exact volume.
(Use your CAS to do the graphing, to find the equations
of the boundary curves of the region of integration, and to
evaluate the double integral.)

x � y � z � 1
z � 4 � x 2 � y 2

CAS

yy
D

(ax 3 � by 3 � sa 2 � x 2 ) dA

D � ��a, a� � ��b, b�

yy
D

�2x � 3y� dA

D 0 � x � a,  0 � y � b

yy
D

�2 � x 2y 3 � y 2 sin x� dA

D � ��x, y� � � x � � � y � � 1�

yy
D

sR 2 � x 2 � y 2 dA

RD

52. ,

is the disk with center the origin and radius 

53. Prove Property 11.

54. In evaluating a double integral over a region , a sum of 
iterated integrals was obtained as follows:

Sketch the region and express the double integral as an 
iterated integral with reversed order of integration.

55–59 ■ Use geometry or symmetry, or both, to evaluate the 
double integral.

55. ,  

yy
D

ex2�y 2

dA

1
2D

D

yy
D

f �x, y� dA � y
1

0
y

2y

0
f �x, y� dx dy � y

3

1
y

3�y

0
f �x, y� dx dy

D

D � ��x, y� � 0 � y � s9 � x 2 �yy
D

�x � 2� dA
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12.3 DOUBLE INTEGRALS IN POLAR COORDINATES
Suppose that we want to evaluate a double integral , where is one 
of the regions shown in Figure 1. In either case the description of in terms of rectan-
gular coordinates is rather complicated but is easily described using polar coordinates.

Recall from Figure 2 that the polar coordinates of a point are related to the rect-
angular coordinates by the equations

The regions in Figure 1 are special cases of a polar rectangle

xx
R

f �x, y� dA R
R

R

FIGURE 1

x0

y

R

≈+¥=1

(a) R=s(r, ¨) | 0¯r¯1, 0¯¨¯2πd

x0

y

R

≈+¥=4

≈+¥=1

(b) R=s(r, ¨)  | 1¯r¯2, 0¯¨¯πd

�r, ��
�x, y�

r 2 � x 2 � y 2 x � r cos � y � r sin �

R � ��r, �� � a � r � b, � � � � �

■ Polar coordinates were introduced in
Section 9.3.

O

y

x

¨

x

y
r

P(r, ¨)=P(x, y)

FIGURE 2

12280_ch12_ptg01_hr_700-709.qk_12280_ch12_ptg01_hr_700-709  12/15/11  2:34 PM  Page 709

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



which is shown in Figure 3. In order to compute the double integral ,
where is a polar rectangle, we divide the interval into subintervals 
with lengths and we divide the interval into subintervals

with lengths . Then the circles and the rays 
divide the polar rectangle R into the small polar rectangles shown in Figure 4.

The “center” of the polar subrectangle

has polar coordinates

We compute the area of using the fact that the area of a sector of a circle with radius
and central angle is . Subtracting the areas of two such sectors, each of which

has central angle , we find that the area of is

Although we have defined the double integral in terms of ordinary
rectangles, it can be shown that, for continuous functions , we always obtain the 
same answer using polar rectangles. The rectangular coordinates of the center of
are , so a typical Riemann sum is

If we write , then the Riemann sum in Equation 1 can be
written as

xx
R

f �x, y� dA
R �a, b� m �ri�1, ri �

�ri � ri � ri�1 ��, �� n
��j�1, �j� ��j � �j � �j�1 r � ri � � �j

FIGURE 3 Polar rectangle

O

∫

å

r=a
¨=å

¨=∫

r=b

R

r=ri

r=ri_
¡

Rij
(r

i
*, ¨

j
*)

¨=¨j_
¡

¨=¨j

Î¨j

FIGURE 4 Dividing R into polar subrectangles

O

Rij � ��r, �� � ri�1 � r � ri, �j�1 � � � �j�

ri* � 1
2 �ri�1 � ri � �j* � 1

2 ��j�1 � �j�

Rij

r � 1
2 r 2�

��j Rij

�Aij � 1
2 ri

2 ��j �
1
2 ri�1

2 ��j � 1
2 �ri

2 � ri�1
2 � ��j

� 1
2 �ri � ri�1 ��ri � ri�1 � ��j � ri* �ri ��j

xx
R

f �x, y� dA
f

Rij

�ri* cos �j*, ri* sin �j*�

	
m

i�1
	
n

j�1
f �ri* cos �j*, ri* sin �j*� �Aij � 	

m

i�1
	
n

j�1
f �ri* cos �j*, ri* sin �j*� ri* �ri ��j

t�r, �� � r f �r cos �, r sin ��

	
m

i�1
	
n

j�1
t�ri*, �j*� �ri ��j

1
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which is a Riemann sum for the double integral

Therefore we have

CHANGE TO POLAR COORDINATES IN A DOUBLE INTEGRAL If is con-
tinuous on a polar rectangle given by , , where

, then

The formula in says that we convert from rectangular to polar coordinates in a 
double integral by writing and , using the appropriate limits of 

| integration for and , and replacing by . Be careful not to forget the addi-
tional factor r on the right side of Formula 2. A classical method for remembering this
is shown in Figure 5, where the “infinitesimal” polar rectangle can be thought of as an
ordinary rectangle with dimensions and and therefore has “area” 

EXAMPLE 1 Evaluate , where is the region in the upper half-
plane bounded by the circles and .

SOLUTION The region can be described as

It is the half-ring shown in Figure 1(b), and in polar coordinates it is given by
, . Therefore, by Formula 2,

■

y
�

�
y

b

a
t�r, �� dr d�

yy
R

f �x, y� dA � lim
max �ri , �� j l 0

	
m

i�1
	
n

j�1
f �ri* cos �j*, ri* sin �j*� �Aij

� lim
max �ri , �� j l 0

	
m

i�1
	
n

j�1
t�ri*, �j*� �ri ��j � y

�

�
y

b

a
t�r, � � dr d�

� y
�

�
y

b

a
f �r cos �, r sin �� r dr d�

f
R 0 � a � r � b � � � � �

0 � � � � � 2	

yy
R

f �x, y� dA � y
�

�
y

b

a
f �r cos �, r sin �� r dr d�

x � r cos � y � r sin �
r � dA r dr d�

r d� dr dA � r dr d�.

xxR �3x � 4y 2 � dA R
x 2 � y 2 � 1 x 2 � y 2 � 4

R

R � ��x, y� � y 
 0, 1 � x 2 � y 2 � 4�

1 � r � 2 0 � � � 	

yy
R

�3x � 4y 2 � dA � y
	

0
y

2

1
�3r cos � � 4r 2 sin2�� r dr d�

� y
	

0
y

2

1
�3r 2 cos � � 4r 3 sin2�� dr d�

� y
	

0
[r 3 cos � � r 4 sin2�]r�1

r�2
d� � y

	

0
�7 cos � � 15 sin2� � d�

� y
	

0
[7 cos � �

15
2 �1 � cos 2��] d�

� 7 sin � �
15�

2
�

15

4
 sin 2�


0

	

�
15	

2

2

2
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O

d¨

r d¨

dr

dA

r

FIGURE 5

■ Here we use the trigonometric identity

as discussed in Section 6.2.

sin2� � 1
2 �1 � cos 2��
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EXAMPLE 2 Find the volume of the solid bounded by the plane and the
paraboloid .

SOLUTION If we put in the equation of the paraboloid, we get .
This means that the plane intersects the paraboloid in the circle , so the
solid lies under the paraboloid and above the circular disk given by
[see Figures 6 and 1(a)]. In polar coordinates is given by , .
Since , the volume is

If we had used rectangular coordinates instead of polar coordinates, then we would
have obtained

which is not easy to evaluate because it involves finding . ■

What we have done so far can be extended to the more complicated type of region
shown in Figure 7. It’s similar to the type II rectangular regions considered in Sec-
tion 12.2. In fact, by combining Formula 2 in this section with Formula 12.2.5, we
obtain the following formula.

If is continuous on a polar region of the form

then

In particular, taking , , and in this formula, we
see that the area of the region bounded by , , and is

and this agrees with Formula 9.4.3.

z � 0
z � 1 � x 2 � y 2

z � 0 x 2 � y 2 � 1
x 2 � y 2 � 1

D x 2 � y 2 � 1
D 0 � r � 1 0 � � � 2	

1 � x 2 � y 2 � 1 � r 2

V � yy
D

�1 � x 2 � y 2 � dA � y
2	

0
y

1

0
�1 � r 2 � r dr d�

� y
2	

0
d� y

1

0
�r � r 3 � dr � 2	� r 2

2
�

r 4

4 
0

1

�
	

2

V � yy
D

�1 � x 2 � y 2 � dA � y
1

�1
y

s1�x2

�s1�x2
�1 � x 2 � y 2 � dy dx

x �1 � x 2 �3�2 dx

f

D � ��r, �� � � � � � �, h1��� � r � h2����

yy
D

f �x, y� dA � y
�

�
y

h2���

h1���
f �r cos �, r sin �� r dr d�

f �x, y� � 1 h1��� � 0 h2��� � h���
D � � � � � � r � h���

A�D� � yy
D

1 dA � y
�

�
y

h���

0
r dr d�

� y
�

�
� r 2

2 
0

h���

d� � y
�

�

1
2 �h����2 d�

3

V

■ www.stewartcalculus.com
See Additional Example A.

FIGURE 6

y

(0, 0, 1)

x

z

O

∫

å

r=h¡(¨)

¨=å

¨=∫
r=h™(¨)

D

FIGURE 7
D=s(r, ¨) | å¯¨¯∫, h¡(¨)¯r¯h™(¨)d
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EXAMPLE 3 Find the volume of the solid that lies under the paraboloid
, above the -plane, and inside the cylinder .

SOLUTION The solid lies above the disk whose boundary circle has equation
or, after completing the square,

(See Figures 8 and 9.) In polar coordinates we have and ,
so the boundary circle becomes , or . Thus the disk is
given by

and, by Formula 3, we have

■

z � x 2 � y 2 xy x 2 � y 2 � 2x

D
x 2 � y 2 � 2x

�x � 1�2 � y 2 � 1

x 2 � y 2 � r 2 x � r cos �
r 2 � 2r cos � r � 2 cos � D

D � ��r, � � � �	�2 � � � 	�2,  0 � r � 2 cos � �

V � yy
D

�x 2 � y 2 � dA � y
	�2

�	�2
y

2
 
cos �

0
r 2 r dr d�� y

	�2

�	�2
� r 4

4 
0

2 cos �

d�

� 4 y
	�2

�	�2
cos4� d� � 8 y

	�2

0
cos4� d� � 8 y

	�2

0
1 � cos 2�

2 �2

d�

� 2 y
	�2

0
�1 � 2 cos 2� �

1
2 �1 � cos 4��� d�

� 2[3
2 � � sin 2� �

1
8 sin 4�]0

	�2
� 23

2�	

2 � �
3	

2

V
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FIGURE 8

0

y

x
1 2

D

(x-1)@+¥=1

 (or  r=2 cos ¨)

FIGURE 9

y

x

z

12.3 EXERCISES

1–4 ■ A region is shown. Decide whether to use polar coor-
dinates or rectangular coordinates and write 
as an iterated integral, where  is an arbitrary continuous func-
tion on .

1. 2.

3. 4.

R
xxR f �x, y� dA

f
R

0 4

4

y

x

0

y

x_1 1

1 y=1-≈

0

y

x_1 1

1

0

y

x

6

3

5–6 ■ Sketch the region whose area is given by the integral and
evaluate the integral.

5. 6.

7–12 ■ Evaluate the given integral by changing to polar 
coordinates.

7. , where is the top half of the disk with center
the origin and radius 5

8. , where is the region in the first quadrant
enclosed by the circle and the lines and

9. , where is the region in the first quad-
rant between the circles with center the origin and radii 1
and 3

10. , where is the region that lies between the 

circles and with 

y
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1
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0
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linearly from 2 ft at the south end to 7 ft at the north end.
Find the volume of water in the pool.

28. An agricultural sprinkler distributes water in a circular pat-
tern of radius 100 ft. It supplies water to a depth of feet
per hour at a distance of feet from the sprinkler.
(a) If , what is the total amount of water sup-

plied per hour to the region inside the circle of radius
centered at the sprinkler?

(b) Determine an expression for the average amount of
water per hour per square foot supplied to the region
inside the circle of radius .

29. Use polar coordinates to combine the sum

into one double integral. Then evaluate the double integral.

30. (a) We define the improper integral (over the entire plane 

where is the disk with radius and center the origin. 
Show that

(b) An equivalent definition of the improper integral in
part (a) is

where is the square with vertices . Use this
to show that

(c) Deduce that

(d) By making the change of variable , show that

(This is a fundamental result for probability and 
statistics.)

31. Use the result of Exercise 30 part (c) to evaluate the follow-
ing integrals.

(a) (b)

e�r

r
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�

0
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11. ,
where 

12. , where is the disk with center the 
origin and radius 2

13–19 ■ Use polar coordinates to find the volume of the given
solid.

13. Under the cone and above the disk

14. Below the paraboloid and above the 
-plane

15. A sphere of radius 

16. Inside the sphere and outside the 
cylinder 

17. Above the cone and below the sphere

18. Bounded by the paraboloids and

19. Inside both the cylinder and the ellipsoid

20. (a) A cylindrical drill with radius is used to bore a hole
through the center of a sphere of radius . Find the vol-
ume of the ring-shaped solid that remains.

(b) Express the volume in part (a) in terms of the height
of the ring. Notice that the volume depends only on ,
not on or .

21–22 ■ Use a double integral to find the area of the region.

21. One loop of the rose 

22. The region enclosed by both of the cardioids
and 

23–26 ■ Evaluate the iterated integral by converting to polar 
coordinates.

23. 24.

25.

26.

27. A swimming pool is circular with a 40-ft diameter. The
depth is constant along east-west lines and increases
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12.4 APPLICATIONS OF DOUBLE INTEGRALS
We have already seen one application of double integrals: computing volumes. 
Another geometric application is finding areas of surfaces and this will be done in the
next chapter. In this section we explore physical applications such as computing mass,
electric charge, center of mass, and moment of inertia.

DENSITY AND MASS

In Chapter 7 we were able to use single integrals to compute moments and the center
of mass of a thin plate or lamina with constant density. But now, equipped with the
double integral, we can consider a lamina with variable density. Suppose the lamina
occupies a region of the -plane and its density (in units of mass per unit area) at
a point in is given by , where is a continuous function on . This
means that

where and are the mass and area of a small rectangle that contains and
the limit is taken as the dimensions of the rectangle approach 0. (See Figure 1.)

To find the total mass of the lamina we divide a rectangle containing into
subrectangles (as in Figure 2) and consider to be 0 outside . If we choose
a point in , then the mass of the part of the lamina that occupies is
approximately , where is the area of . If we add all such masses,
we get an approximation to the total mass:

If we now take finer partitions by using smaller subrectangles, we obtain the total
mass of the lamina as the limiting value of the approximations:

Physicists also consider other types of density that can be treated in the same man-
ner. For example, if an electric charge is distributed over a region and the charge
density (in units of charge per unit area) is given by at a point in , then
the total charge is given by

EXAMPLE 1 Charge is distributed over the triangular region in Figure 3 so that
the charge density at is , measured in coulombs per square meter
(C�m ). Find the total charge.
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SOLUTION From Equation 2 and Figure 3 we have

Thus the total charge is C. ■

MOMENTS AND CENTERS OF MASS

In Section 7.6 we found the center of mass of a lamina with constant density; here we
consider a lamina with variable density. Suppose the lamina occupies a region and
has density function . Recall from Chapter 7 that we defined the moment of a
particle about an axis as the product of its mass and its directed distance from the axis.
We divide into small rectangles as in Figure 2. Then the mass of is approximately

, so we can approximate the moment of with respect to the -axis by

If we now add these quantities and take the limit as the subrectangles be come smaller,
we obtain the moment of the entire lamina about the x-axis:

Similarly, the moment about the y-axis is 

As before, we define the center of mass so that and . The
physical significance is that the lamina behaves as if its entire mass is concentrated at
its center of mass. Thus the lamina balances horizontally when supported at its center
of mass (see Figure 4).

The coordinates of the center of mass of a lamina occupying the
region and having density function are

where the mass is given by
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EXAMPLE 2 Find the mass and center of mass of a triangular lamina with ver-
tices , , and if the density function is .

SOLUTION The triangle is shown in Figure 5. (Note that the equation of the upper
boundary is .) The mass of the lamina is

Then the formulas in give

The center of mass is at the point . ■

EXAMPLE 3 The density at any point on a semicircular lamina is proportional to
the distance from the center of the circle. Find the center of mass of the lamina.

SOLUTION Let’s place the lamina as the upper half of the circle . (See
Fig ure 6.) Then the distance from a point to the center of the circle (the origin)
is . Therefore the density function is

where is some constant. Both the density function and the shape of the lamina
suggest that we convert to polar coordinates. Then and the region
is given by , . Thus the mass of the lamina is

Both the lamina and the density function are symmetric with respect to the -axis, so 
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■ Compare the location of the center of
mass in Example 3 with Example 8 in
Section 7.6 where we found that the
center of mass of a lamina with the
same shape but uniform density is
located at the point .�0, 4a��3	��

the center of mass must lie on the -axis, that is, . The -coordinate is given by

Therefore the center of mass is located at the point . ■

MOMENT OF INERTIA

The moment of inertia (also called the second moment) of a particle of mass
about an axis is defined to be , where is the distance from the particle to the axis.
We extend this concept to a lamina with density function and occupying a
region by proceeding as we did for ordinary moments. We divide into small 
rect angles, approximate the moment of inertia of each subrectangle about the -axis,
and take the limit of the sum as the subrectangles become smaller. The result is the
moment of inertia of the lamina about the x-axis:

Similarly, the moment of inertia about the y-axis is

It is also of interest to consider the moment of inertia about the origin, also called
the polar moment of inertia:

Note that .

EXAMPLE 4 Find the moments of inertia , , and of a homogeneous disk
with density , center the origin, and radius . 

SOLUTION The boundary of is the circle and in polar coordinates 
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is described by , . Let’s compute first:

Instead of computing and directly, we use the facts that and
(from the symmetry of the problem). Thus

■

In Example 4 notice that the mass of the disk is

so the moment of inertia of the disk about the origin (like a wheel about its axle) can
be written as

Thus if we increase the mass or the radius of the disk, we thereby increase the mo-
ment of inertia. In general, the moment of inertia plays much the same role in rota-
tional motion that mass plays in linear motion. The moment of inertia of a wheel is
what makes it difficult to start or stop the rotation of the wheel, just as the mass of a
car is what makes it difficult to start or stop the motion of the car.

The radius of gyration of a lamina about an axis is the number such that

where is the mass of the lamina and is the moment of inertia about the given axis.
Equation 9 says that if the mass of the lamina were concentrated at a distance from
the axis, then the moment of inertia of this “point mass” would be the same as the
moment of inertia of the lamina.

In particular, the radius of gyration with respect to the -axis and the radius of
gyration with respect to the -axis are given by the equations

Thus is the point at which the mass of the lamina can be concentrated without
changing the moments of inertia with respect to the coordinate axes. (Note the anal-
ogy with the center of mass.)

EXAMPLE 5 Find the radius of gyration about the -axis of the disk in Example 4.

SOLUTION As noted, the mass of the disk is , so from Equations 10 we
have

Therefore the radius of gyration about the -axis is , half the radius of the
disk. ■
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12.4 EXERCISES

1. Electric charge is distributed over the rectangle 
, so that the charge density at 

is (measured in coulombs per
square meter). Find the total charge on the rectangle.

2. Electric charge is distributed over the disk so 
that the charge density at is 
(measured in coulombs per square meter). Find the total
charge on the disk.

3–10 ■ Find the mass and center of mass of the lamina that
occupies the region and has the given density function .

3. ; 

4. ;

5. is the triangular region with vertices , , ;

6. is the triangular region enclosed by the lines , 
, and ; 

7. is bounded by and ; 

8. is bounded by and ; 

9. ; 

10. is bounded by the parabolas and ;

11. A lamina occupies the part of the disk in the
first quadrant. Find its center of mass if the density at any
point is proportional to its distance from the -axis.

12. Find the center of mass of the lamina in Exercise 11 if the 
density at any point is proportional to the square of its 
distance from the origin.

13. The boundary of a lamina consists of the semicircles
and together with the portions 

of the -axis that join them. Find the center of mass of the
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12.5 TRIPLE INTEGRALS
Just as we defined single integrals for functions of one variable and double integrals
for functions of two variables, so we can define triple integrals for functions of three
variables. Let’s first deal with the simplest case where is defined on a rectangular box:f

B � ��x, y, z� � a � x � b, c � y � d, r � z � s�1

lamina if the density at any point is proportional to its dis-
tance from the origin.

14. Find the center of mass of the lamina in Exercise 13 if the
density at any point is inversely proportional to its distance
from the origin.

15. Find the center of mass of a lamina in the shape of an 
isosceles right triangle with equal sides of length if the
density at any point is proportional to the square of the 
distance from the vertex opposite the hypotenuse.

16. A lamina occupies the region inside the circle
but outside the circle . Find the

center of mass if the density at any point is inversely pro-
portional to its distance from the origin.

17. Find the moments of inertia , , for the lamina of 
Exercise 7.

18. Find the moments of inertia , , for the lamina of 
Exercise 12.

19. Find the moments of inertia , , for the lamina of 
Exercise 15.

20. Consider a square fan blade with sides of length 2 and the
lower left corner placed at the origin. If the density of the
blade is , is it more difficult to rotate the
blade about the -axis or the -axis?

21–22 ■ Use a computer algebra system to find the mass, cen-
ter of mass, and moments of inertia of the lamina that occupies
the region and has the given density function.

21. is enclosed by the right loop of the four-leaved rose
;  

22. ;  

23–24 ■ A lamina with constant density occupies
the given region. Find the moments of inertia and and the
radii of gyration and .

23. The rectangle 

24. The region under the curve from to 

x 2 � y 2 � 1

Ix Iy I0

Ix Iy I0

Ix Iy I0

��x, y� � 1 � 0.1x
x y

x 2 � y 2 � 2y

D

D
r � cos 2� ��x, y� � x 2 � y 2

D � ��x, y� � 0 � y � xe�x, 0 � x � 2 � ��x, y� � x 2y 2

CAS

��x, y� � �
Ix Iy

x y

0 � x � b, 0 � y � h

y � sin x x � 0 x � �

a
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The first step is to divide B into sub-boxes. We do this by dividing the interval 
into subintervals with lengths , dividing into sub-
intervals with lengths , and dividing into subintervals with
lengths . The planes through the endpoints of these subintervals paral-
lel to the coordinate planes divide the box into sub-boxes

which are shown in Figure 1. The sub-box has volume .
Then we form the triple Riemann sum

where the sample point is in . By analogy with the definition of a
double integral (12.1.5), we define the triple integral as the limit of the triple Riemann
sums in as the sub-boxes shrink.

DEFINITION The triple integral of over the box is

if this limit exists.

Again, the triple integral always exists if is continuous. We can choose the sample
point to be any point in the sub-box, but if we choose it to be the point , and if
we choose sub-boxes with the same dimensions, so that , we get a simpler-
looking expression for the triple integral:

Just as for double integrals, the practical method for evaluating triple integrals is to
express them as iterated integrals as follows.

FUBINI’S THEOREM FOR TRIPLE INTEGRALS If is continuous on the
rectangular box , then

The iterated integral on the right side of Fubini’s Theorem means that we integrate
first with respect to (keeping and fixed), then we integrate with respect to (keep-
ing fixed), and finally we integrate with respect to . There are five other possible
orders in which we can integrate, all of which give the same value. For instance, if we

�a, b	
�xi�1, xi	 	xi � xi � xi�1 �c, d 	

	yj � yj � yj�1 �r, s	
	zk � zk � zk�1

n
ml

B lmn

Bi jk � �xi�1, xi 	 
 �yj�1, yj	 
 �zk�1, zk 	

Bi jk 	Vijk � 	xi 	yj 	zk



l

i�1


m

j�1


n

k�1
f �xij k* , yijk* , zijk* � 	Vijk

�xi jk* , yi jk* , zi jk* � Bi jk

f B

yyy
B

f �x, y, z� dV � lim
max 	xi , 	yj , 	zk l 0



l

i�1


m

j�1


n

k�1
f �xi jk* , yi jk* , zi jk* � 	Vijk

f
�xi, yj, zk�

	Vijk � 	V

yyy
B

f �x, y, z� dV � lim
l, m, nl �



l

i�1


m

j�1


n

k�1
f �xi, yj, zk � 	V

f
B � �a, b	 
 �c, d 	 
 �r, s	

yyy
B

f �x, y, z� dV � y
s

r
y
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c
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a
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In particular, if the projection of onto the -plane is a type I plane region (as
in Figure 3), then

and Equation 6 becomes

If, on the other hand, is a type II plane region (as in Figure 4), then

and Equation 6 becomes

EXAMPLE 2 Evaluate , where is the solid tetrahedron bounded by the
four planes , , , and .

SOLUTION When we set up a triple integral it’s wise to draw two diagrams: one of 
the solid region (see Figure 5) and one of its projection on the -plane (see 
Fig ure 6). The lower boundary of the tetrahedron is the plane and the upper 
boundary is the plane (or ), so we use
and in Formula 7. Notice that the planes and

intersect in the line (or ) in the -plane. So the projec-
tion of is the triangular region shown in Figure 6, and we have

This description of as a type 1 region enables us to evaluate the integral as 
follows:

■

D E xy

E � ��x, y, z� � a � x � b, t1�x� � y � t2�x�, u1�x, y� � z � u2�x, y��

yyy
E

f �x, y, z� dV � y
b

a
y

t2�x�

t1�x�
y

u2�x, y�

u1�x, y�
f �x, y, z� dz dy dx

D

E � ��x, y, z� � c � y � d, h1�y� � x � h2�y�, u1�x, y� � z � u2�x, y��

yyy
E

f �x, y, z� dV � y
d

c
y

h2� y�

h1� y�
y

u2�x, y�

u1�x, y�
f �x, y, z� dz dx dy

xxxE z dV E
x � 0 y � 0 z � 0 x � y � z � 1

E D xy
z � 0

x � y � z � 1 z � 1 � x � y u1�x, y� � 0
u2�x, y� � 1 � x � y x � y � z � 1

z � 0 x � y � 1 y � 1 � x xy
E

E � ��x, y, z� � 0 � x � 1, 0 � y � 1 � x, 0 � z � 1 � x � y�

E

yyy
E

z dV � y
1

0
y

1�x

0
y

1�x�y

0
z dz dy dx

� y
1

0
y

1�x

0
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1

0
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0
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1

0
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1

0
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1
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z=u™(x, y)
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y=g™(x)
y=g¡(x)
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x

a

b

z=u¡(x, y)

FIGURE 3
A type 1 solid region where the  
projection D is a type I plane region

FIGURE 4
Another type 1 solid region with a  
type II projection
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A solid region is of type 2 if it is of the form

where, this time, is the projection of onto the -plane (see Figure 7). The back
surface is , the front surface is , and we have

Finally, a type 3 region is of the form

where is the projection of onto the -plane, is the left surface, and
is the right surface (see Figure 8). For this type of region we have

In each of Equations 10 and 11 there may be two possible expressions for the inte-
gral depending on whether is a type I or type II plane region (and corresponding to
Equa tions 7 and 8).

EXAMPLE 3 Evaluate , where is the region bounded by the
paraboloid and the plane .

SOLUTION The solid is shown in Figure 9. If we regard it as a type 1 region,
then we need to consider its projection onto the -plane, which is the parabolic
region in Figure 10. (The trace of in the plane is the parabola

.)

From we obtain , so the lower boundary surface of
is and the upper surface is . Therefore the description
of as a type 1 region is

D E yz
x � u1�y, z� x � u2�y, z�

yyy
E

f �x, y, z� dV � yy
D

�y
u2� y, z�

u1� y, z�
f �x, y, z� dx� dA10

E � ��x, y, z� � �x, z� � D, u1�x, z� � y � u2�x, z��

D E xz y � u1�x, z�
y � u2�x, z�

yyy
E

f �x, y, z� dV � yy
D

�y
u2�x, z�

u1�x, z�
f �x, y, z� dy� dA

D

xxxE sx 2 � z 2 dV E
y � x 2 � z2 y � 4

E
D1 xy

y � x 2 � z2 z � 0
y � x 2

0

FIGURE 10
Projection onto xy-plane

FIGURE 9
Region of integration
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11

V

E

E � ��x, y, z� � �y, z� � D, u1�y, z� � x � u2�y, z��

FIGURE 7
A type 2 region
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FIGURE 8
A type 3 region

z
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x

0
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Visual 12.5 illustrates how solid
regions (including the one in Figure 9)
project onto coordinate planes.

TEC
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and so we obtain

Although this expression is correct, it is extremely difficult to evaluate. So let’s
instead consider as a type 3 region. As such, its projection onto the -plane is
the disk shown in Figure 11.

Then the left boundary of is the paraboloid and the right boundary
is the plane , so taking and in Equation 11, we
have

Although this integral could be written as

it’s easier to convert to polar coordinates in the -plane: , .
This gives

■

EXAMPLE 4 Express the iterated integral as a triple inte-
gral and then rewrite it as an iterated integral in a different order, integrating first
with respect to , then , and then .

SOLUTION We can write

where . This description of
enables us to write projections onto the three coordinate planes as follows:

on the -plane:

on the -plane:

on the -plane:

From the resulting sketches of the projections in Figure 12 we sketch the solid in

E D3 xz
x 2 � z2 � 4
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FIGURE 11
Projection onto xz-plane
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FIGURE 12
Projections of E
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| The most difficult step in evaluating
a triple integral is setting up an expres-
sion for the region of integration (such as
Equation 9 in Example 2). Remem   ber
that the limits of integra tion in the inner
integral contain at most two variables,
the limits of integration in the middle
integral contain at most one variable, and
the limits of integration in the outer inte-
gral must be constants.
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Figure 13. We see that it is the solid enclosed by the planes , , and
the parabolic cylinder or .

If we integrate first with respect to , then , and then , we use an alternate
description of :

Thus

■

APPLICATIONS OF TRIPLE INTEGRALS

Recall that if , then the single integral represents the area under the
curve from to , and if , then the double integral
represents the volume under the surface and above . The corresponding
interpretation of a triple integral , where , is not very
useful because it would be the “hypervolume” of a four-dimensional object and, of
course, that is very difficult to visualize. (Remember that is just the domain of the
function ; the graph of lies in four-dimensional space.) Nonetheless, the triple inte-
gral can be interpreted in different ways in different physical situa-
tions, depending on the physical interpretations of , , and .

Let’s begin with the special case where for all points in . Then the
triple integral does represent the volume of :

For example, you can see this in the case of a type 1 region by putting
in Formula 6:

and from Section 12.2 we know this represents the volume that lies between the sur-
faces and .

EXAMPLE 5 Use a triple integral to find the volume of the tetrahedron bounded
by the planes , , , and .

SOLUTION The tetrahedron and its projection on the -plane are shown in
Fig ures 14 and 15. The lower boundary of is the plane and the upper
boundary is the plane , that is, . Therefore we have

by the same calculation as in Example 4 in Section 12.2.
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FIGURE 13
The solid E
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(Notice that it is not necessary to use triple integrals to compute volumes. They
simply give an alternative method for setting up the calculation.) ■

All the applications of double integrals in Section 12.4 can be immediately ex -
tended to triple integrals. For example, if the density function of a solid object that
occupies the region is , in units of mass per unit volume, at any given point

, then its mass is

and its moments about the three coordinate planes are

The center of mass is located at the point , where

If the density is constant, the center of mass of the solid is called the centroid of .
The moments of inertia about the three coordinate axes are

As in Section 12.4, the total electric charge on a solid object occupying a region
and having charge density is

EXAMPLE 6 Find the center of mass of a solid of constant density that is 
bounded by the parabolic cylinder and the planes , , and .

SOLUTION The solid and its projection onto the -plane are shown in Fig-
ure 16. The lower and upper surfaces of are the planes and , so we
describe as a type 1 region:
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Then, if the density is , the mass is

Because of the symmetry of and about the -plane, we can immediately say
that and therefore . The other moments are

Therefore the center of mass is

■
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x

0
x� dz dx dy � � y

1

�1
y

1

y2
x 2 dx dy

� � y
1

�1
� x 3

3 �x�y2

x�1

dy �
2�

3
 y

1

0
�1 � y 6 � dy �

2�

3
 �y �

y 7

7 �0

1

�
4�

7

Mxy � yyy
E

z� dV � y
1

�1
y

1

y2
y

x

0
z� dz dx dy � � y

1

�1
y

1

y2

� z2

2 �z�0

z�x

dx dy

�
�

2
 y

1

�1
y

1

y2
x 2 dx dy �

�

3
 y

1

0
�1 � y 6 � dy �

2�

7

�x, y, z � � Myz

m
, 

Mxz

m
, 

Mxy

m � � ( 5
7, 0, 5

14 )

��x, y, z� � �
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12.5 EXERCISES

1. Evaluate the integral in Example 1, integrating first with
respect to , then , and then .

2. Evaluate the integral , where

using three different orders of integration.

3–6 ■ Evaluate the iterated integral.

3.

4.

5.

yxz

xxxE �xy � z 2� dV

E � ��x, y, z� � 0 � x � 2, 0 � y � 1, 0 � z � 3�

y
2

0
y

z 2

0
y

y�z

0
�2x � y� dx dy dz

y
1

0
y

1

0
y

s1�z 2

0

z

y � 1
 dx dz dy

y
��2

0
y

y

0
y

x

0
cos�x � y � z� dz dx dy

6.

7–16 ■ Evaluate the triple integral.

7. , where

8. , where

9. , where

xxxE y dV

E � {�x, y, z� � 0 � x � 3, 0 � y � x, x � y � z � x � y}

xxxE e z�y dV

E � ��x, y, z� � 0 � y � 1, y � x � 1, 0 � z � xy�

xxxE

z

x 2 � z 2 dV

E � ��x, y, z� � 1 � y � 4, y � z � 4, 0 � x � z�

y
s�

0
y

x

0
y

xz

0
x 2 sin y dy dz dx
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(b) Use a computer algebra system to approximate the
integral in part (a) correct to the nearest integer.
Compare with the answer to part (a).

23–24 ■ Use the Midpoint Rule for triple integrals (Exer -
cise 22) to estimate the value of the integral. Divide into
eight sub-boxes of equal size.

23. , where

24. , where

25–26 ■ Sketch the solid whose volume is given by the iter-
ated integral.

25. 26.

27–30 ■ Express the integral as an iterated
integral in six different ways, where is the solid bounded
by the given surfaces.

27. ,  

28. ,  ,  

29. ,  ,  

30. ,  ,  ,  

31. The figure shows the region of integration for the integral

Rewrite this integral as an equivalent iterated integral in
the five other orders.

B � ��x, y, z� � 0 � x � 1, 0 � y � 1,  0 � z � 1�

xxx
B sx e xyz dV

B � ��x, y, z� � 0 � x � 4, 0 � y � 1,  0 � z � 2�

y
1

0
y

1�x

0
y

2�2z

0
 dy dz dx y

2

0
y

2�y

0
y

4�y 2

0
 dx dz dy

xxxE f �x, y, z� dV
E

y � 4 � x 2 � 4z2 y � 0

y 2 � z2 � 9 x � �2 x � 2

y � x 2 z � 0 y � 2z � 4

x � 2 y � 2 z � 0 x � y � 2z � 2

y
1

0
y

1

sx
y

1�y

0
f �x, y, z� dz dy dx

0 

z 

1 

x 

1 y 

z=1-y 

y=œ„x

xxx
B

cos�xyz� dV

B

CAS10. , where lies below the plane and
above the triangular region with vertices , 

, and 

11. , where lies under the plane 
and above the region in the -plane bounded by the
curves , , and 

12. , where is bounded by the parabolic
cylinders and and the planes and

13. , where is the solid tetrahedron with vertices
, , , and 

14. , where is the solid tetrahedron with
vertices , , , and 

15. , where is bounded by the paraboloid 
and the plane 

16. , where is bounded by the cylinder
and the planes , , and in

the first octant

17–20 ■ Use a triple integral to find the volume of the given
solid.

17. The tetrahedron enclosed by the coordinate planes and
the plane 

18. The solid enclosed by the paraboloids and

19. The solid enclosed by the cylinder and the planes
and 

20. The solid enclosed by the cylinder and the
planes and 

21. (a) Express the volume of the wedge in the first octant
that is cut from the cylinder by the
planes and as a triple integral.

(b) Use either the Table of Integrals (on Reference
Pages 6–10) or a computer algebra system to find 
the exact value of the triple integral in part (a).

22. (a) In the Midpoint Rule for triple integrals we use a
triple Riemann sum to approximate a triple integral
over a box , where is evaluated at the cen-
ter of the box . Use the Midpoint Rule
to estimate , where is the
cube defined by , , .
Divide into eight cubes of equal size.

xxx
E

6xy dV E z � 1 � x � y
xy

y � sx y � 0 x � 1

xxx
E

xy dV E
y � x 2 x � y 2 z � 0

z � x � y

xxx
T

x 2 dV T
�0, 0, 0� �1, 0, 0� �0, 1, 0� �0, 0, 1�

xxx
T

xyz dV T
�0, 0, 0� �1, 0, 0� �1, 1, 0� �1, 0, 1�

xxx
E

x dV E
x � 4y2 � 4z2 x � 4

xxx
E

z dV E
y 2 � z2 � 9 x � 0 y � 3x z � 0

2x � y � z � 4

y � x 2 � z 2

y � 8 � x 2 � z 2

y � x 2

y � z � 1z � 0

x 2 � z 2 � 4
y � z � 4y � �1

y 2 � z2 � 1
x � 1y � x

f �x, y, z�B
�xi, yj, zk � Bijk

Bxxx
B sx 2 � y 2 � z 2  dV

B
0 � z � 40 � y � 40 � x � 4

xxx
E

sin y dV E z � x
�0, 0, 0�

��, 0, 0� �0, �, 0�

CAS
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32. The figure shows the region of integration for the integral

Rewrite this integral as an equivalent iterated integral in the
five other orders.

33–34 ■ Write five other iterated integrals that are equal to the
given iterated integral.

33. 34.

35–36 ■ Evaluate the triple integral using only geometric inter-
pretation and symmetry.

35. , where is the cylindrical region

, 

36. , where is the unit ball

37–40 ■ Find the mass and center of mass of the solid with
the given density function .

37. is the solid of Exercise 11;  

38. is bounded by the parabolic cylinder and the
planes , , and ;  

39. is the cube given by , , ;

40. is the tetrahedron bounded by the planes , , 
, ;  

41–42 ■ Set up, but do not evaluate, integral expressions for 
(a) the mass, (b) the center of mass, and (c) the moment of iner-
tia about the -axis.

41. The solid of Exercise 19;  

42. The hemisphere , ; 

y
1

0
y

1�x2

0
y

1�x

0
f �x, y, z� dy dz dx

1 

1 

1 

z=1-≈ 

y=1-x 

0 

y 

x 

z 

y
1

0
y

1

y
y

z

0
f �x, y, z� dx dz dyy

1

0
y

1

y
y

y

0
f �x, y, z� dz dx dy

Cxxx
C

�4 � 5x 2yz 2� dV

�2 � z � 2x 2 � y 2 � 4

BxxxB �z 3 � sin y � 3� dV

x 2 � y 2 � z 2 � 1

E
�

� �x, y, z� � 2E

z � 1 � y 2E
� �x, y, z� � 4z � 0x � 0x � z � 1

0 � z � a0 � y � a0 � x � aE
� �x, y, z� � x 2 � y 2 � z2

y � 0x � 0E
� �x, y, z� � yx � y � z � 1z � 0

z

� �x, y, z� � sx 2 � y 2 

z � 0x 2 � y 2 � z2 � 1
� �x, y, z� � sx 2 � y 2 � z 2 
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43. Let be the solid in the first octant bounded by the cylin-
der and the planes , , and
with the density function . Use
a computer algebra system to find the exact values of the
following quantities for .
(a) The mass
(b) The center of mass
(c) The moment of inertia about the -axis

44. If is the solid of Exercise 16 with density function
, find the following quantities, correct 

to three decimal places.
(a) The mass
(b) The center of mass
(c) The moment of inertia about the -axis

45. Find the moments of inertia for a cube of constant density
and side length if one vertex is located at the origin and

three edges lie along the coordinate axes.

46. Find the moments of inertia for a rectangular brick with
dimensions , , and , mass , and constant density if the
center of the brick is situated at the origin and the edges
are parallel to the coordinate axes.

47. Find the moment of inertia about the -axis of the solid 
cylinder , .

48. Find the moment of inertia about the -axis of the solid
cone .

49–50 ■ The average value of a function over a
solid region is defined to be 

where is the volume of . For instance, if is a density
function, then is the average density of .

49. Find the average value of the function over
the cube with side length that lies in the first octant with
one vertex at the origin and edges parallel to the coordinate
axes.

50. Find the average value of the function
over the region enclosed by the

paraboloid and the plane .

51. (a) Find the region for which the triple integral 

is a maximum.
(b) Use a computer algebra system to calculate the exact 

maximum value of the triple integral in part (a).

E
x 2 � y 2 � 1 y � z x � 0 z � 0

� �x, y, z� � 1 � x � y � z

E

z

E
� �x, y, z� � x 2 � y 2

z

k L

a b c M

CAS

CAS

z
x 2 � y 2 � a 2 0 � z � h

z
sx 2 � y 2 � z � h

f �x, y, z�
E

fave �
1

V�E� yyy
E

f �x, y, z� dV

V�E � E �
�ave E

f �x, y, z� � xyz
L

f �x, y, z� � x 2z � y 2z
z � 1 � x 2 � y 2 z � 0

E

yyy
E

�1 � x 2 � 2y 2 � 3z 2� dV

CAS

12280_ch12_ptg01_hr_730-739.qk_12280_ch12_ptg01_hr_730-739  12/15/11  2:37 PM  Page 730

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



12.6 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES
In plane geometry the polar coordinate system is used to give a convenient description
of certain curves and regions. (See Section 9.3.) Figure 1 enables us to recall the con-
nection between polar and Cartesian coordinates. If the point has Cartesian coordi-
nates and polar coordinates , then, from the figure,

In three dimensions there is a coordinate system, called cylindrical coordinates, that
is similar to polar coordinates and gives convenient descriptions of some commonly
occurring surfaces and solids. As we will see, some triple integrals are much easier to
evaluate in cylindrical coordinates.

CYLINDRICAL COORDINATES

In the cylindrical coordinate system, a point in three-dimensional space is repre-
sented by the ordered triple , where and are polar coordinates of the pro-
jection of onto the -plane and is the directed distance from the -plane to . (See
Figure 2.)

To convert from cylindrical to rectangular coordinates, we use the equations

whereas to convert from rectangular to cylindrical coordinates, we use

EXAMPLE 1
(a) Plot the point with cylindrical coordinates and find its rectangular 
coordinates.
(b) Find cylindrical coordinates of the point with rectangular coordinates

.

SOLUTION
(a) The point with cylindrical coordinates is plotted in Figure 3. From
Equations 1, its rectangular coordinates are

Thus the point is in rectangular coordinates.

P
�x, y� �r, ��

x � r cos � y � r sin �

r 2 � x 2 � y 2 tan � �
y

x

P
�r, �, z� r �

P xy z xy P

x � r cos � y � r sin � z � z

r 2 � x 2 � y 2 tan � �
y

x
z � z

�2, 2��3, 1�

�3, �3, �7�

�2, 2��3, 1�

x � 2 cos 
2�

3
� 2��

1

2� � �1

y � 2 sin 
2�

3
� 2�s3

2 � � s3

z � 1

(�1, s3 , 1)

1

2
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FIGURE 1 

O

r

z

¨

(r, ̈ , 0)

P(r, ̈ , z)

FIGURE 2
The cylindrical coordinates of a point
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FIGURE 3
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FIGURE 4
r=c, a cylinder

0

z

y

x

(0, c, 0)

(c, 0, 0)

FIGURE 5
z=r, a cone

0

z

x

y

FIGURE 6

z

x

y

0

D

r=h™(¨)

¨=b

¨=a

r=h¡(¨)

z=u™(x, y)

z=u¡(x, y)

■ www.stewartcalculus.com
See Additional Example A.

(b) From Equations 2 we have

so    

Therefore one set of cylindrical coordinates is . Another is
. As with polar coordinates, there are infinitely many choices. ■

Cylindrical coordinates are useful in problems that involve symmetry about an
axis, and the -axis is chosen to coincide with this axis of symmetry. For instance, the
axis of the circular cylinder with Cartesian equation is the -axis. In
cylindrical coordinates this cylinder has the very simple equation . (See Figure 4.)
This is the reason for the name “cylindrical” coordinates.

EXAMPLE 2 Describe the surface whose equation in cylindrical coordinates 
is .

SOLUTION The equation says that the -value, or height, of each point on the sur-
face is the same as r, the distance from the point to the -axis. Because doesn’t
appear, it can vary. So any horizontal trace in the plane is a circle of
radius k. These traces suggest that the surface is a cone. This prediction can be con-
firmed by converting the equation into rectangular coordinates. From the first equa-
tion in we have

We recognize the equation (by comparison with Table 1 in Section 10.6)
as being a circular cone whose axis is the -axis (see Figure 5). ■

EVALUATING TRIPLE INTEGRALS 
WITH CYLINDRICAL COORDINATES

Suppose that is a type 1 region whose projection onto the -plane is conveniently
described in polar coordinates (see Figure 6). In particular, suppose that is continu-
ous and

where is given in polar coordinates by

We know from Equation 12.5.6 that

r � s32 � ��3�2 � 3s2

tan � �
�3

3
� �1 � �

7�

4
� 2n�

z � �7

(3s2 , 7��4, �7)
(3s2 , ���4, �7)

z
x 2 � y 2 � c 2 z

r � c

z � r

z
z �
z � k �k 	 0�

z2 � r 2 � x 2 � y 2

z2 � x 2 � y 2

z

E D xy
f

E � ��x, y, z� � �x, y� � D, u1�x, y� � z � u2�x, y�	

D

D � ��r, �� � 
 � � � �, h1��� � r � h2���	

yyy
E

f �x, y, z� dV � yy
D


y
u2�x, y�

u1�x, y�
f �x, y, z� dz� dA

V

3

2

12280_ch12_ptg01_hr_730-739.qk_12280_ch12_ptg01_hr_730-739  12/15/11  2:37 PM  Page 732

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.stewartcalculus.com


SECTION 12.6  TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES 733

Unless otherwise noted, all content on this page is © Cengage Learning.

But we also know how to evaluate double integrals in polar coordinates. In fact, com-
bining Equation 3 with Equation 12.3.3, we obtain

Formula 4 is the formula for triple integration in cylindrical coordinates. It says
that we convert a triple integral from rectangular to cylindrical coordinates by writing

, , leaving as it is, using the appropriate limits of integration
for , , and , and replacing by . (Figure 7 shows how to remember this.)
It is worthwhile to use this formula when is a solid region easily described in cylin-
drical coordinates, and especially when the function involves the expression

.

EXAMPLE 3 A solid lies within the cylinder , below the plane
, and above the paraboloid . (See Figure 8.) The density at

any point is proportional to its distance from the axis of the cylinder. Find the mass
of .

SOLUTION In cylindrical coordinates the cylinder is and the paraboloid is
, so we can write

Since the density at is proportional to the distance from the -axis, the den-
sity function is

where is the proportionality constant. Therefore, from Formula 12.5.13, the mass
of is

■

EXAMPLE 4 Evaluate .

SOLUTION This iterated integral is a triple integral over the solid region 

and the projection of onto the -plane is the disk . The lower sur -
face of is the cone and its upper surface is the plane . (See 

yyy
E

f �x, y, z� dV � y
�



y

h2���

h1���
y

u2�r cos �, r sin ��

u1�r cos �, r sin ��
f �r cos �, r sin �, z� r dz dr d�4

zy � r sin �x � r cos �
r dz dr d�dV�rz

E
f �x, y, z�

x 2 � y2

x 2 � y 2 � 1EV

z � 1 � x 2 � y 2z � 4

E

r � 1
z � 1 � r 2

E � ��r, �, z� � 0 � � � 2�, 0 � r � 1, 1 � r 2 � z � 4	

z�x, y, z�

f �x, y, z� � Ksx 2 � y 2 � Kr

K
E

m � yyy
E

Ksx 2 � y 2 dV � y
2�

0
y

1

0
y

4

1�r2
�Kr� r dz dr d�

� y
2�

0
y

1

0
Kr 2 �4 � �1 � r 2 � dr d� � K y

2�

0
d� y

1

0
�3r 2 � r 4 � dr

� 2�K
r 3 �
r 5

5 �0

1

�
12�K

5

y
2

�2
y

s4�x2

�s4�x2
y

2

sx2�y2
�x 2 � y2 � dz dy dx

E � ��x, y, z� � �2 � x � 2, �s4 � x 2 � y � s4 � x 2 , sx 2 � y 2 � z � 2	

x 2 � y 2 � 4xyE
z � 2z � sx 2 � y 2E

FIGURE 7

FIGURE 8

Volume element in cylindrical
coordinates: dV=r dz dr d¨

z
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r
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Fig ure 9.) This region has a much simpler description in cylindrical coordinates:

Therefore we have

■

y
2

�2
y

s4�x2

�s4�x2
y

2

sx2�y2
�x 2 � y 2 � dz dy dx � yyy

E

�x 2 � y 2 � dV

� y
2�

0
y

2

0
y

2

r
r 2 r dz dr d�

� y
2�

0
d� y

2

0
r 3�2 � r� dr

� 2� [ 1
2 r 4 �

1
5 r 5 ]0

2
� 16

5 �

E � ��r, �, z� � 0 � � � 2�, 0 � r � 2, r � z � 2	
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12.6 EXERCISES

1–2 ■ Plot the point whose cylindrical coordinates are given.
Then find the rectangular coordinates of the point.

1. (a) (b)

2. (a) (b)

3–4 ■ Change from rectangular to cylindrical coordinates.

3. (a) (b)

4. (a) (b)

5–6 ■ Describe in words the surface whose equation is given.

5. 6.

7–8 ■ Identify the surface whose equation is given.

7. 8.

9–10 ■ Write the equations in cylindrical coordinates.

9. (a) (b)

10. (a) (b)

11–12 ■ Sketch the solid described by the given inequalities.

11. ,  ,  

12. ,  

�4, ��3, �2� �2, ���2, 1�

(s2 , 3��4, 2) �1, 1, 1�

��1, 1, 1� (�2, 2s3 , 3)

(2s3, 2, �1) �4, �3, 2�

� � ��4 r � 5

z � 4 � r 2 2r 2 � z2 � 1

x 2 � x � y 2 � z 2 � 1 z � x 2 � y 2

3x � 2y � z � 6 �x 2 � y 2 � z2 � 1

0 � r � 2 ���2 � � � ��2 0 � z � 1

0 � � � ��2 r � z � 2

13. A cylindrical shell is 20 cm long, with inner radius 6 cm
and outer radius 7 cm. Write inequalities that describe the
shell in an appropriate coordinate system. Explain how you
have positioned the coordinate system with respect to the
shell.

; 14. Use a graphing device to draw the solid enclosed by the 
paraboloids and .

15–16 ■ Sketch the solid whose volume is given by the integral 
and evaluate the integral.

15. 16.

17–28 ■ Use cylindrical coordinates.

17. Evaluate , where is the region that lies
inside the cylinder and between the planes

and .

18. Evaluate , where is enclosed by the paraboloid

and the plane .

19. Evaluate , where is the solid in the
first octant that lies under the paraboloid .

20. Evaluate , where is enclosed by the planes 

and and by the cylinders and
.

y
��2

���2
y

2

0
y

r2

0
r dz dr d� y

2

0
y

2�

0
y

r

0
r dz d� dr

xxx
E sx 2 � y 2 dV E

x 2 � y 2 � 16
z � �5 z � 4

xxx
E

z dV E

z � x 2 � y 2 z � 4

xxx
E

�x � y � z� dV E
z � 4 � x 2 � y 2

xxx
E

x dV E z � 0

z � x � y � 5 x 2 � y 2 � 4
x 2 � y 2 � 9

z � x 2 � y 2 z � 5 � x 2 � y 2

FIGURE 9
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29–30 ■ Evaluate the integral by changing to cylindrical 
coordinates.

29.

30.

31. When studying the formation of mountain ranges, geolo -
gists estimate the amount of work required to lift a moun -
tain from sea level. Consider a mountain that is essentially
in the shape of a right circular cone. Suppose that the
weight density of the material in the vicinity of a point is

and the height is .
(a) Find a definite integral that represents the total work

done in forming the mountain.
(b) Assume that Mount Fuji in Japan is in the shape of 

a right circular cone with radius 62,000 ft, height
12,400 ft, and density a constant 200 lb�ft . How much
work was done in forming Mount Fuji if the land was
initially at sea level?

P

P
h�P�t�P�

3

y
3

�3
y

s9�x 2 

0
y

9�x 2�y 2

0
sx2 � y2 dz dy dx

y
2

�2
y

s4�y 2

�s4�y 2 
y

2

sx 2�y 2 
xz dz dx dy

21. Evaluate , where is the solid that lies within the 

cylinder , above the plane , and below
the cone .

22. Find the volume of the solid that lies within both the cylin-
der and the sphere .

23. Find the volume of the solid that is enclosed by the cone
and the sphere .

24. Find the volume of the solid that lies between the parabo-
loid and the sphere .

25. (a) Find the volume of the region bounded by the 
paraboloids and .

(b) Find the centroid of (the center of mass in the case
where the density is constant).

26. (a) Find the volume of the solid that the cylinder
cuts out of the sphere of radius centered

at the origin.

; (b) Illustrate the solid of part (a) by graphing the sphere
and the cylinder on the same screen.

27. Find the mass and center of mass of the solid bounded
by the paraboloid and the plane

if has constant density .

28. Find the mass of a ball given by if
the density at any point is proportional to its distance from
the -axis.

r � a cos � a

S
z � 4x 2 � 4y 2

�a 	 0� S K

B x 2 � y 2 � z2 � a 2

z

z � x 2 � y 2 x 2 � y 2 � z 2 � 2

E
z � x 2 � y 2 z � 36 � 3x 2 � 3y 2

E

x 2 � y 2 � 1 x 2 � y 2 � z2 � 4

z � sx 2 � y 2 x 2 � y 2 � z 2 � 2

x 2 � y 2 � 1 z � 0
z2 � 4x 2 � 4y 2

z � a

Exxx
E

x 2 dV
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12.7 TRIPLE INTEGRALS IN SPHERICAL COORDINATES
Another useful coordinate system in three dimensions is the spherical coordinate sys-
tem. It simplifies the evaluation of triple integrals over regions bounded by spheres or
cones.

SPHERICAL COORDINATES

The spherical coordinates of a point in space are shown in Figure 1,
where is the distance from the origin to , is the same angle as in cylin-
drical coordinates, and is the angle between the positive -axis and the line segment

. Note that

The spherical coordinate system is especially useful in problems where there is sym-
metry about a point, and the origin is placed at this point. For example, the sphere with

��, �, �� P
� � � OP � P �

� z
OP

� � 0 0 � � � �

FIGURE 1
The spherical coordinates of a point

P (∏, ¨, ̇ )

O

∏

¨

˙

z

x
y
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center the origin and radius has the simple equation (see Figure 2); this is the
reason for the name “spherical” coordinates. The graph of the equation is a ver-
tical half-plane (see Figure 3), and the equation represents a half-cone with the
-axis as its axis (see Figure 4).

The relationship between rectangular and spherical coordinates can be seen from
Fig ure 5. From triangles and we have

But and , so to convert from spherical to rectangular coordi-
nates, we use the equations

Also, the distance formula shows that

We use this equation in converting from rectangular to spherical coordinates.

EXAMPLE 1 The point is given in spherical coordinates. Plot the
point and find its rectangular coordinates.

SOLUTION We plot the point in Figure 6. From Equations 1 we have

Thus the point is in rectangular coordinates. ■

c � � c
� � c

� � c
z

FIGURE 2 ∏=c, a sphere FIGURE 3 ¨=c, a half-plane FIGURE 4 ˙=c, a half-cone
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OPQ OPP

z � � cos � r � � sin �

x � r cos � y � r sin �

x � � sin � cos � y � � sin � sin � z � � cos �

�2 � x 2 � y 2 � z2

�2, ��4, ��3�

x � � sin � cos � � 2 sin 
�

3
 cos 

�

4
� 2�s3

2 �� 1

s2 � � �3

2

y � � sin � sin � � 2 sin 
�

3
 sin 

�

4
� 2�s3

2 �� 1

s2 � � �3

2

z � � cos � � 2 cos 
�

3
� 2(1

2 ) � 1

�2, ��4, ��3� (s3�2 , s3�2 , 1)

1

2

V

FIGURE 5
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FIGURE 6
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y

| WARNING There is not universal
agreement on the notation for spherical
coordinates. Most books on physics
reverse the meanings of and and 
use in place of .�r
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EXAMPLE 2 The point is given in rectangular coordinates. Find
spherical coordinates for this point.

SOLUTION From Equation 2 we have

and so Equations 1 give

(Note that because .) Therefore spherical coordinates of the
given point are . ■

EVALUATING TRIPLE INTEGRALS WITH SPHERICAL COORDINATES

In the spherical coordinate system the counterpart of a rectangular box is a spherical
wedge

where and , and . Although we defined triple integrals
by dividing solids into small boxes, it can be shown that dividing a solid into small
spherical wedges always gives the same result. So we divide into smaller spherical
wedges by means of spheres , half-planes , and half-cones .
Figure 7 shows that is approximately a rectangular box with dimensions ,

(arc of a circle with radius angle ), and (arc of a circle with
radius angle ). So an approximation to the volume of is given by

In fact, it can be shown, with the aid of the Mean Value Theorem (Exercise 45), that
the volume of is given exactly by

where is some point in . Let be the rectangular coordi-
nates of this point. Then

But this sum is a Riemann sum for the function

Consequently, we have arrived at the following formula for triple integration in
spherical coordinates.

(0, 2s3 , �2)

� � sx 2 � y 2 � z 2 � s0 � 12 � 4 � 4

cos � �
z

�
�

�2

4
� �

1

2
� �

2�

3

cos � �
x

� sin �
� 0 � �

�

2

� � 3��2 y � 2s3 	 0
�4, ��2, 2��3�

V

E � ���, �, �� � a � � � b, 
 � � � �, c � � � d 	

a � 0 � � 
 � 2�

E
Eijk � � �i � � �j � � �k

Eijk ��i

�i ��k �i, ��k �i sin �k ��j

�i sin �k, ��j Eijk

�Vijk � ���i���i ��k���i sin �k ��j� � �i
2 sin �k ��i ��j ��k
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�
k ��i ��j ��k
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�

j, �
�
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yyy
E
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�
l

i�1
�
m

j�1
�
n
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�
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�
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�
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�
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�
k���i

2
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�
k ��i ��j ��k
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In Module 12.7 you can inves-
tigate families of surfaces in cylindrical
and spherical coordinates.

TEC

■ www.stewartcalculus.com
See Additional Examples A–C.

FIGURE 7
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FIGURE 8
Volume element in spherical
coordinates: dV=∏@ sin ˙ d∏ d¨ d˙

z

0

x

yd¨

∏ d˙

˙

∏ sin ˙ d¨

∏

d∏

d˙

where is a spherical wedge given by

Formula 3 says that we convert a triple integral from rectangular coordinates to
spher ical coordinates by writing

using the appropriate limits of integration, and replacing by .
This is illustrated in Figure 8.

This formula can be extended to include more general spherical regions such as

In this case the formula is the same as in except that the limits of integration for
are and .

Usually, spherical coordinates are used in triple integrals when surfaces such as
cones and spheres form the boundary of the region of integration.

EXAMPLE 3 Evaluate where is the unit ball:

SOLUTION Since the boundary of is a sphere, we use spherical coordinates:

In addition, spherical coordinates are appropriate because

Thus gives

■

NOTE It would have been extremely awkward to evaluate the integral in Example 3
without spherical coordinates. In rectangular coordinates the iterated integral would
have been

yyy
E

f �x, y, z� dV
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EXAMPLE 4 Use spherical coordinates to find the volume of the solid that 
lies above the cone and below the sphere . (See
Figure 9.)

SOLUTION Notice that the sphere passes through the origin and has center .
We write the equation of the sphere in spherical coordinates as

The equation of the cone can be written as

This gives , or . Therefore the description of the solid in
spherical coordinates is

Figure 11 shows how E is swept out if we integrate first with respect to , then ,
and then . The volume of E is

■

z � sx 2 � y 2 x 2 � y 2 � z2 � z
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FIGURE 11
¨ varies from 0 to 2π.∏ varies from 0 to cos ˙ while

˙ and ¨ are constant.
˙ varies from 0 to π/4 while
¨ is constant.
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FIGURE 10

■ Figure 10 gives another look (this
time drawn by Maple) at the solid of
Example 4.

FIGURE 9
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Visual 12.7 shows an 
animation of Figure 11.
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12.7 EXERCISES

1–2 ■ Plot the point whose spherical coordinates are given.
Then find the rectangular coordinates of the point.

1. (a) (b)

2. (a) (b)

3–4 ■ Change from rectangular to spherical coordinates.

3. (a) (b)

4. (a) (b)

5–6 ■ Describe in words the surface whose equation is given.

5. 6.

7–8 ■ Identify the surface whose equation is given.

7. 8.

9–10 ■ Write the equation in spherical coordinates.

9. (a) (b)

10. (a) (b)

11–14 ■ Sketch the solid described by the given inequalities.

11. ,  ,  

12. ,  ,  

13. ,  

14. ,  

15. A solid lies above the cone and below the
sphere . Write a description of the solid in
terms of inequalities involving spherical coordinates.

16. (a) Find inequalities that describe a hollow ball with diame-
ter 30 cm and thickness 0.5 cm. Explain how you have
positioned the coordinate system that you have chosen.

(b) Suppose the ball is cut in half. Write inequalities that
describe one of the halves.

17–18 ■ Sketch the solid whose volume is given by the integral 
and evaluate the integral.

17.

18.

�6, ��3, ��6� �3, ��2, 3��4�

�2, ��2, ��2� �4, ���4, ��3�

�0, �2, 0� (�1, 1, �s2 )
(1, 0, s3 ) (s3 , �1, 2s3 )

� � ��3 � � 3

� � sin � sin � � � 2 cos �

z2 � x 2 � y 2 x 2 � z2 � 9

x 2 � 2x � y 2 � z 2 � 0 x � 2y � 3z � 1

2 � � � 4 0 � � � ��3 0 � � � �

1 � � � 2 0 � � � ��2 ��2 � � � 3��2

� � 1 3��4 � � � �

� � 2 � � csc �

z � sx 2 � y 2 

x 2 � y 2 � z2 � z

y
��6

0
y

��2

0
y

3

0
�2 sin � d� d� d�

y
2�

0
y

�

��2
y

2

1
�2 sin � d� d� d�

19–20 ■ Set up the triple integral of an arbitrary continuous
function in cylindrical or spherical coordinates over the
solid shown.

19. 20.

21–32 ■ Use spherical coordinates.

21. Evaluate , where is the ball with 
center the origin and radius 5.

22. Evaluate , where is the solid

hemisphere , .

23. Evaluate , where lies between the spheres

and .

24. Evaluate , where lies between the spheres 
and and above the cone .

25. Evaluate , where is the portion of the unit

ball that lies in the first octant.

26. Find the average distance from a point in a ball of radius
to its center.

27. (a) Find the volume of the solid that lies above the cone
and below the sphere .

(b) Find the centroid of the solid in part (a).

28. Find the volume of the solid that lies within the sphere
, above the -plane, and below the cone

.

29. (a) Find the centroid of the solid in Example 4.
(b) Find the moment of inertia about the -axis for this

solid.

30. Let be a solid hemisphere of radius whose density at
any point is proportional to its distance from the center of
the base.
(a) Find the mass of .
(b) Find the center of mass of .
(c) Find the moment of inertia of about its axis.

31. (a) Find the centroid of a solid homogeneous hemisphere of
radius .

(b) Find the moment of inertia of the solid in part (a) about
a diameter of its base.
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Pole. The positive -axis passes through the point where
the prime meridian (the meridian through Greenwich,
England) intersects the equator. Then the latitude of is

and the longitude is . Find
the great-circle distance from Los Angeles (lat. N,
long. W) to Montréal (lat. N, long. 

W). Take the radius of the earth to be 3960 mi. 
(A great circle is the circle of intersection of a sphere and
a plane through the center of the sphere.)

43. The surfaces have been used as
models for tumors. The “bumpy sphere” with and

is shown. Use a computer algebra system to find
the volume it encloses.

44. Show that

(The improper triple integral is defined as the limit of a 
triple integral over a solid sphere as the radius of the
sphere increases indefinitely.)

45. (a) Use cylindrical coordinates to show that the volume of 
the solid bounded above by the sphere
and below by the cone (or ),
where , is

(b) Deduce that the volume of the spherical wedge given
by , , is

(c) Use the Mean Value Theorem to show that the volume
in part (b) can be written as

where lies between and , lies between 
and , , , and

.
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P
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x32. Find the mass and center of mass of a solid hemisphere
of radius if the density at any point is proportional to
its distance from the base.

33–36 ■ Use cylindrical or spherical coordinates, whichever
seems more appropriate.

33. Find the volume and centroid of the solid that lies 
above the cone and below the sphere

.

34. Find the volume of the smaller wedge cut from a sphere
of radius by two planes that intersect along a diameter
at an angle of .

35. Evaluate , where lies above the paraboloid 
and below the plane . Use either the

Table of Integrals (on Reference Pages 6–10) or a com-
puter algebra system to evaluate the integral.

36. (a) Find the volume enclosed by the torus .
(b) Use a computer to draw the torus.

37–39 ■ Evaluate the integral by changing to spherical 
coordinates.

37.

38.

39.

40. A model for the density of the earth’s atmosphere near
its surface is

where (the distance from the center of the earth) is mea-
sured in meters and is measured in kilograms per cubic
meter. If we take the surface of the earth to be a sphere
with radius 6370 km, then this model is a reasonable one
for . Use this model to
estimate the mass of the atmosphere between the ground
and an altitude of 5 km.

; 41. Use a graphing device to draw a silo consisting of a 
cylinder with radius 3 and height 10 surmounted by a
hemisphere.

42. The latitude and longitude of a point in the Northern
Hemisphere are related to spherical coordinates , ,
as follows. We take the origin to be the center of the
earth and the positive -axis to pass through the North
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12.8 CHANGE OF VARIABLES IN MULTIPLE INTEGRALS
In one-dimensional calculus we often use a change of variable (a substitution) to sim-
plify an integral. By reversing the roles of and , we can write the Substitution Rule
(5.5.6) as

where and , . Another way of writing Formula 1 is as 
follows:

A change of variables can also be useful in double integrals. We have already seen
one example of this: conversion to polar coordinates. The new variables and are
related to the old variables and by the equations

and the change of variables formula (12.3.2) can be written as

where is the region in the -plane that corresponds to the region in the -plane.
More generally, we consider a change of variables that is given by a transforma-

tion from the -plane to the -plane:

where and are related to and by the equations

or, as we sometimes write,

We usually assume that is a C transformation, which means that and have con-
tinuous first-order partial derivatives.

A transformation is really just a function whose domain and range are both sub-
sets of . If , then the point is called the image of the point

. If no two points have the same image, is called one-to-one. Figure 1 shows
the effect of a transformation on a region in the -plane. transforms into a
region in the -plane called the image of S, consisting of the images of all points
in .
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If is a one-to-one transformation, then it has an inverse transformation
from the -plane to the -plane and it may be possible to solve Equations 3 for
and in terms of and :

EXAMPLE 1 A transformation is defined by the equations

Find the image of the square , .

SOLUTION The transformation maps the boundary of into the boundary of the
image. So we begin by finding the images of the sides of . The first side, , is
given by . (See Figure 2.) From the given equations we have

, , and so . Thus is mapped into the line segment from
to in the -plane. The second side, is and, put-

ting in the given equations, we get

Eliminating , we obtain

which is part of a parabola. Similarly, is given by , whose
image is the parabolic arc

Finally, is given by whose image is , , that is,
. (Notice that as we move around the square in the counterclockwise

direction, we also move around the parabolic region in the counterclockwise direc-
tion.) The image of is the region (shown in Figure 2) bounded by the -axis and
the parabolas given by Equations 4 and 5. ■

Now let’s see how a change of variables affects a double integral. We start with a
small rectangle in the -plane whose lower left corner is the point and
whose dimensions are and . (See Figure 3.)
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The image of is a region in the -plane, one of whose boundary points is
. The vector

is the position vector of the image of the point . The equation of the lower side
of is , whose image curve is given by the vector function . The tangent
vector at to this image curve is

Similarly, the tangent vector at to the image curve of the left side of (namely,
) is

We can approximate the image region by a parallelogram determined by the
secant vectors

shown in Figure 4. But

and so

Similarly

This means that we can approximate R by a parallelogram determined by the vec-
tors and . (See Figure 5.) Therefore we can approximate the area of by
the area of this parallelogram, which, from Section 10.4, is

Computing the cross product, we obtain

i j k

The determinant that arises in this calculation is called the Jacobian of the transforma -
tion and is given a special notation.

xyRS
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DEFINITION The Jacobian of the transformation given by
and is

With this notation we can use Equation 6 to give an approximation to the area 
of :

where the Jacobian is evaluated at .
Next we divide a region in the -plane into rectangles and call their images

in the -plane . (See Figure 6.)

Applying the approximation to each we approximate the double integral of
over as follows:

where the Jacobian is evaluated at . Notice that this double sum is a Riemann
sum for the integral

The foregoing argument suggests that the following theorem is true. (A full proof
is given in books on advanced calculus.)
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■ The Jacobian is named after the German
mathematician Carl Gustav Jacob Jacobi
(1804–1851). Although the French mathe-
matician Cauchy first used these special
determinants involving partial derivatives,
Jacobi developed them into a method for
evaluating multiple integrals.
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CHANGE OF VARIABLES IN A DOUBLE INTEGRAL Suppose that is a
transformation whose Jacobian is nonzero and that maps a region in the 

-plane onto a region in the -plane. Suppose that is continuous on
and that and are type I or type II plane regions. Suppose also that is
one-to-one, except perhaps on the boundary of . Then

Theorem 9 says that we change from an integral in and to an integral in and
by expressing and in terms of and and writing

Notice the similarity between Theorem 9 and the one-dimensional formula in Equa-
tion 2. Instead of the derivative , we have the absolute value of the Jacobian, that
is, .

As a first illustration of Theorem 9, we show that the formula for integration in
polar coordinates is just a special case. Here the transformation from the -plane
to the -plane is given by

and the geometry of the transformation is shown in Figure 7. maps an ordinary rect-
angle in the -plane to a polar rectangle in the -plane. The Jacobian of is

Thus Theorem 9 gives

which is the same as Formula 12.3.2.

EXAMPLE 2 Use the change of variables , to evaluate the 
integral , where is the region bounded by the -axis and the parabolas

and , .

SOLUTION The region is pictured in Figure 2 (on page 743). In Example 1 we
discovered that , where is the square . Indeed, the reason
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for making the change of variables to evaluate the integral is that is a much sim-
pler region than . First we need to compute the Jacobian:

Therefore, by Theorem 9,

■

NOTE Example 2 was not a very difficult problem to solve because we were given
a suitable change of variables. If we are not supplied with a transformation, then the
first step is to think of an appropriate change of variables. If is difficult to inte-
grate, then the form of may suggest a transformation. If the region of integra-
tion is awkward, then the transformation should be chosen so that the corresponding
region in the -plane has a convenient description.

EXAMPLE 3 Evaluate the integral , where is the trapezoidal
region with vertices , , , and .

SOLUTION Since it isn’t easy to integrate , we make a change of vari-
ables suggested by the form of this function:

These equations define a transformation from the -plane to the -plane. 
Theorem 9 talks about a transformation from the -plane to the -plane. It is
obtained by solving Equations 10 for and :

The Jacobian of is

To find the region in the -plane corresponding to , we note that the sides of 
lie on the lines
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and, from either Equations 10 or Equations 11, the image lines in the -plane are

Thus the region is the trapezoidal region with vertices , , , and
shown in Figure 8. Since

Theorem 9 gives

■

TRIPLE INTEGRALS

There is a similar change of variables formula for triple integrals. Let be a transfor-
mation that maps a region in -space onto a region in -space by means of
the equations

The Jacobian of is the following determinant:

Under hypotheses similar to those in Theorem 9, we have the following formula for
triple integrals:

EXAMPLE 4 Use Formula 13 to derive the formula for triple integration in
spherical coordinates.
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SOLUTION Here the change of variables is given by

We compute the Jacobian as follows:

Since , we have . Therefore

and Formula 13 gives

which is equivalent to Formula 12.7.3. ■

x � � sin 	 cos 
 y � � sin 	 sin 
 z � � cos 	

��x, y, z�
���, 
, 	�

� � sin 	 cos 


sin 	 sin 


cos 	

�� sin 	 sin 


�� sin 	 cos 


0

� cos 	 cos 


� cos 	 sin 


�� sin 	 �
� cos 	 � �� sin 	 sin 


� � sin 	 cos 


� cos 	 cos 


� cos 	 sin 
 � � � sin 	 � sin 	 cos 


sin 	 sin 


�� sin 	 sin 



� sin 	 cos  
 �
� cos 	 ���2 sin 	 cos 	 sin2
 � �2 sin 	 cos 	 cos2
�

� � sin 	 �� sin2	 cos2
 � � sin2	 sin2
�

� ��2 sin 	 cos2	 � �2 sin 	 sin2	 � ��2 sin 	

0 � 	 � � sin 	 � 0

� ��x, y, z�
���, 
, 	� � � � ��2 sin 	 � � �2 sin 	

yyy
R

f �x, y, z� dV � yyy
S

f �� sin 	 cos 
, � sin 	 sin 
, � cos 	� �2 sin 	 d� d
 d	
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12.8 EXERCISES

1–6 ■ Find the Jacobian of the transformation.

1. ,  

2. ,  

3. ,  

4. ,  

5. ,  ,  

6. ,  ,  

7–10 ■ Find the image of the set under the given 
transformation.

7. ;

x � 5u � v y � u � 3v

x � uv y � u�v

x � e�r sin 
 y � er cos 


x � es�t y � es�t

x � u�v y � v�w z � w�u

x � v � w 2 y � w � u 2 z � u � v 2

S

S � ��u, v� � 0 � u � 3, 0 � v � 2�
x � 2u � 3v, y � u � v

8. is the square bounded by the lines , , ,
;  , 

9. is the triangular region with vertices , , ;
, 

10. is the disk given by ;  , 

11–14 ■ A region in the -plane is given. Find equations 
for a transformation that maps a rectangular region in the

-plane onto , where the sides of are parallel to the - and 
-axes.

11. is bounded by , , ,

S u � 0 u � 1 v � 0
v � 1 x � v y � u�1 � v 2 �

S �0, 0� �1, 1� �0, 1�
x � u2 y � v

S u 2 � v2 � 1 x � au y � bv

R xy
T S

uv R S u
v

R y � 2x � 1 y � 2x � 1 y � 1 � x
y � 3 � x
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km. Use part (a) to estimate the volume of
the earth.

(c) If the solid of part (a) has constant density , find its
moment of inertia about the -axis.

22. An important problem in thermodynamics is to find the
work done by an ideal Carnot engine. A cycle consists of
alternating expansion and compression of gas in a piston.
The work done by the engine is equal to the area of the
region enclosed by two isothermal curves ,

and two adiabatic curves , ,
where and . Compute the work done
by determining the area of .

23–27 ■ Evaluate the integral by making an appropriate
change of variables.

23. , where is the parallelogram enclosed by

the lines , , , and

24. , where is the rectangle enclosed by
the lines , , , and

25. , where is the trapezoidal region 

with vertices , , , and 

26. , where is the region in the first 
quadrant bounded by the ellipse 

27. , where is given by the inequality

28. Let be continuous on and let be the triangular
region with vertices , , and . Show that

c � 6356

k
z

R xy � a
xy � b xy 1.4 � c xy 1.4 � d

0 � a � b 0 � c � d
R

yy
R

x � 2y

3x � y
dA R

x � 2y � 0 x � 2y � 4 3x � y � 1
3x � y � 8

xx
R

�x � y�e x2�y2

dA R
x � y � 0 x � y � 2 x � y � 0

x � y � 3

yy
R

cos� y � x

y � x� dA R

�1, 0� �2, 0� �0, 2� �0, 1�

xxR sin�9x 2 � 4y 2 � dA R
9x 2 � 4y 2 � 1

xxR e x�y dA R

� x � � � y � � 1

f �0, 1� R
�0, 0� �1, 0� �0, 1�

yy
R

f �x � y� dA � y
1

0
uf �u� du

12. is the parallelogram with vertices , , ,

13. lies between the circles and in
the first quadrant

14. is bounded by the hyperbolas , and the 
lines , in the first quadrant

15–20 ■ Use the given transformation to evaluate the integral.

15. , where is the triangular region with
vertices , , and ;  ,

16. , where is the parallelogram with 
vertices , , , and ;

, 

17. , where is the region bounded by the ellipse 
;  , 

18. , where is the region bounded 
by the ellipse ;

, 

19. , where is the region in the first quadrant
bounded by the lines and and the hyperbolas

, ;  , 

; 20. , where is the region bounded by the curves 
, , , ;  , . 

Illustrate by using a graphing calculator or computer to 
draw .

21. (a) Evaluate , where is the solid enclosed by the
ellipsoid . Use the transfor-
mation , , .

(b) The earth is not a perfect sphere; rotation has resulted
in flattening at the poles. So the shape can be approxi -
mated by an ellipsoid with km and

�2, 4��4, 3��0, 0�R
��2, 1�

x 2 � y2 � 2x 2 � y2 � 1R

y � 4	xy � 1	xR
y � 4xy � x

RxxR �x � 3y� dA
x � 2u � v�1, 2��2, 1��0, 0�

y � u � 2v

RxxR �4x � 8y� dA
�1, 5��3, �1��1, �3���1, 3�

y � 1
4�v � 3u�x � 1

4�u � v�

RxxR x 2 dA
y � 3vx � 2u9x 2 � 4y 2 � 36

RxxR �x 2 � xy � y 2 � dA
x 2 � xy � y 2 � 2

y � s2 u � s2	3 vx � s2 u � s2	3 v

Rxx
R

xy dA
y � 3xy � x

y � vx � u	vxy � 3xy � 1

RxxR y 2 dA
v � xy 2u � xyxy 2 � 2xy 2 � 1xy � 2xy � 1

R

ExxxE dV

x 2	a 2 � y 2	b 2 � z2	c 2 � 1
z � cwy � bvx � au

a � b � 6378
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CHAPTER 12  REVIEW 751

CHAPTER 12 REVIEW
CONCEPT CHECK

TRUE-FALSE QUIZ

1. Suppose is a continuous function defined on a rectangle
.

(a) Write an expression for a double Riemann sum of . 
If , what does the sum represent?

(b) Write the definition of as a limit.
(c) What is the geometric interpretation of if

? What if takes on both positive and nega-
tive values?

(d) How do you evaluate ?
(e) What does the Midpoint Rule for double integrals say?

2. (a) How do you define if is a bounded
region that is not a rectangle?

(b) What is a type I region? How do you evaluate
if is a type I region?

(c) What is a type II region? How do you evaluate
if is a type II region?

(d) What properties do double integrals have?

3. How do you change from rectangular coordinates to polar
coordinates in a double integral? Why would you want to
make the change?

4. If a lamina occupies a plane region and has density func-
tion , write expressions for each of the following in
terms of double integrals.
(a) The mass
(b) The moments about the axes
(c) The center of mass
(d) The moments of inertia about the axes and the origin

5. (a) Write the definition of the triple integral of over a 
rectangular box .

(b) How do you evaluate ?

f
R � �a, b� � �c, d �

f
f �x, y� � 0

xxR f �x, y� dA
xxR f �x, y� dA

f �x, y� � 0 f

xxR f �x, y� dA

xxD f �x, y� dA D

xxD f �x, y� dA D

xxD f �x, y� dA D

D
��x, y�

f
B

xxxB f �x, y, z� dV

(c) How do you define if is a bounded
solid region that is not a box?

(d) What is a type 1 solid region? How do you evaluate
if is such a region?

(e) What is a type 2 solid region? How do you evaluate
if is such a region?

(f) What is a type 3 solid region? How do you evaluate
if is such a region?

6. Suppose a solid object occupies the region and has den-
sity function . Write expressions for each of the
following.
(a) The mass
(b) The moments about the coordinate planes
(c) The coordinates of the center of mass
(d) The moments of inertia about the axes

7. (a) Write the equations for converting from cylindrical to 
rectangular coordinates. In what situation would you use
cylindrical coordinates?

(b) Write the equations for converting from spherical to
rectangular coordinates. In what situation would you use
spherical coordinates?

8. (a) How do you change from rectangular coordinates to
cylindrical coordinates in a triple integral?

(b) How do you change from rectangular coordinates to 
spherical coordinates in a triple integral?

(c) In what situations would you change to cylindrical or
spherical coordinates?

9. (a) If a transformation is given by 
, what is the Jacobian of ?

(b) How do you change variables in a double integral?
(c) How do you change variables in a triple integral?

xxxE f �x, y, z� dV E

xxxE f �x, y, z� dV E

xxxE f �x, y, z� dV E

E
��x, y, z�

T x � t�u, v�,
y � h�u, v� T

ExxxE f �x, y, z� dV

Determine whether the statement is true or false. If it is true, explain
why. If it is false, explain why or give an example that disproves the
statement.

1.

2.

3.

4.

y
2

�1
y

6

0
x 2 sin�x � y� dx dy � y

6

0
y

2

�1
x 2 sin�x � y� dy dx

y
1

0
y

x

0
sx � y 2 dy dx � y

x

0
y

1

0
sx � y 2 dx dy

y
2

1
y

4

3
x 2e y dy dx � y

2

1
x 2 dx y

4

3
e y dy

y
1

�1
y

1

0
ex2�y2

sin y dx dy � 0

5. If is continuous on , then

6.

7. If is the disk given by , then

y
1

0
y

1

0
f �x� f �y� dy dx � 
y

1

0
f �x� dx�2

y
4

1
y

1

0
(x 2 � sy ) sin�x 2 y 2 � dx dy � 9

D x 2 � y 2 � 4

yy
D

s4 � x 2 � y 2 dA � 16
3 	

f �0, 1�
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8. The integral

represents the moment of inertia about the -axis of a solid
with constant density .

z
E k

yyy
E

kr 3 dz dr d


9. The integral 

represents the volume enclosed by the cone 
and the plane .

y
2	

0
y

2

0
y

2

r
dz dr d


z � sx 2 � y 2 

z � 2

EXERCISES

1. A contour map is shown for a function on the square
. Use a Riemann sum with nine terms to

estimate the value of . Take the sample points
to be the upper right corners of the squares.

2. Use the Midpoint Rule to estimate the integral in Exercise 1.

3–8 ■ Calculate the iterated integral.

3.

4.

5.

6.

7.

8.

f
R � �0, 3� � �0, 3�

xx
R

f �x, y� dA

y

0

1

1

1 2 3

2

3

2

3

4

5

8

9

10

6

7

x

y
2

1
y

2

0
�y � 2xe y � dx dy

y
1

0
y

1

0
ye xy dx dy

y
1

0
y

x

0
cos�x 2 � dy dx

y
1

0
y

e x

x
3xy 2 dy dx

y
	

0
y

1

0
y

s1�y 2

0
y sin x dz dy dx

y
1

0
y

y

0
y

1

x
6xyz dz dx dy

9–10 ■ Write as an iterated integral, where is
the region shown and is an arbitrary continuous function on .

9. 10.

11. Describe the region whose area is given by the integral 

12. Describe the solid whose volume is given by the integral 

and evaluate the integral.

13–14 ■ Calculate the iterated integral by first reversing the
order of integration.

13. 14.

15–28 ■ Calculate the value of the multiple integral.

15. , where , 

16. , 
where ,

17. , 

where is bounded by , , 

18. , where is the triangular region with 

vertices , , and 

y
		2

0
y

sin 2


0
r dr d


y
		2

0
y

		2

0
y

2

1
�2 sin � d� d� d


y
1

0
y

1

x
cos�y 2� dy dx y

1

0
y

1

sy

yex2

x 3
 dx dy

xx
R

ye xy dA R � ��x, y� � 0 � x � 2 0 � y � 3

xxD xy dA
D � ��x, y� � 0 � y � 1 y 2 � x � y � 2

yy
D

y

1 � x 2 dA

D y � sx y � 0 x � 1

0 42_2_4

y

x

R

2

4

0

4

y

x

R

4_4

R

Dyy
D

1

1 � x 2 dA

�0, 1��1, 1��0, 0�

RxxR f �x, y� dA
f
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35. Consider a lamina that occupies the region bounded by 
the parabola and the coordinate axes in the first
quadrant with density function .
(a) Find the mass of the lamina.
(b) Find the center of mass.
(c) Find the moments of inertia and radii of gyration about 

the - and -axes.

36. A lamina occupies the part of the disk that
lies in the first quadrant.
(a) Find the centroid of the lamina.
(b) Find the center of mass of the lamina if the density

function is .

37. (a) Find the centroid of a right circular cone with height 
and base radius . (Place the cone so that its base is in
the -plane with center the origin and its axis along
the positive -axis.)

(b) Find the moment of inertia of the cone about its axis 
(the -axis).

38. Find the center of mass of the solid tetrahedron with
vertices , , , and density
function .

39. The cylindrical coordinates of a point are .
Find the rectangular and spherical coordinates of the point.

40. The rectangular coordinates of a point are . Find
the cylindrical and spherical coordinates of the point.

41. The spherical coordinates of a point are .
Find the rectangular and cylindrical coordinates of the
point.

42. Identify the surfaces whose equations are given.
(a) (b)

43. Write the equation in cylindrical coordi-
nates and in spherical coordinates.

44. Sketch the solid consisting of all points with spherical
coordinates such that ,

, and .

45. Use polar coordinates to evaluate

46. Use spherical coordinates to evaluate

47. Rewrite the integral

as an iterated integral in the order .

x y

x 2 � y 2 � a 2

��x, y� � xy 2

h
a

xy
z

z

x � 1 � y 2

��x, y� � y

�0, 0, 0� �1, 0, 0� �0, 2, 0� �0, 0, 3�
��x, y, z� � x 2 � y 2 � z2

(2s3 , 		3, 2)

�2, 2, �1�

�8, 		4, 		6�


 � 		4 � � 		4

x 2 � y 2 � z2 � 4

��, 
, �� 0 � 
 � 		2
0 � � � 		6 0 � � � 2 cos �

y
3

0
y

s9�x 2 

�s9�x 2 
�x 3 � xy 2� dy dx

y
2

�2
y

s4�y 2 

0
y

s4�x 2�y 2 

�s4�x 2�y 2
y 2

sx 2 � y 2 � z 2 dz dx dy

y
1

�1
y

1

x2
y

1�y

0
f �x, y, z� dz dy dx

dx dy dz

CAS

D19. , where is the region in the first quadrant bounded
by the parabolas and 

20. , where is the region in the first quadrant that lies
above the hyperbola and the line and below
the line 

21. , where is the region in the first 
quad rant bounded by the lines and and the 
circle 

22. , where is the region in the first quadrant that lies
between the circles and 

23. , where
, ,

24. , where is the solid tetrahedron with vertices
, , , and 

25. , where is bounded by the paraboloid
and the plane 

26. , where is bounded by the planes , ,
and the cylinder in the first octant

27. , where lies above the plane , below the
plane , and inside the cylinder 

28. , where is the solid hemisphere
that lies above the -plane and has center the origin and
radius 1

29–34 ■ Find the volume of the given solid.

29. Under the paraboloid and above the rectangle

30. Under the surface and above the triangle in the 
-plane with vertices , , and 

31. The solid tetrahedron with vertices , ,
, and 

32. Bounded by the cylinder and the planes 
and 

33. One of the wedges cut from the cylinder by
the planes and 

34. Above the paraboloid and below the half-cone

xx
D

y dA D
xy � 1 y � x

y � 2

xx
D

�x 2 � y 2 �3	2 dA D
y � 0 y � s3 x

x 2 � y 2 � 9

xx
D

x dA D
x 2 � y 2 � 1 x 2 � y 2 � 2

xxx
E

xy dV
E � ��x, y, z� � 0 � x � 3 0 � y � x 0 � z � x � y

xxxT xy dV T
�0, 0, 0� (1

3, 0, 0) �0, 1, 0� �0, 0, 1�

xxxE y 2z2 dV E
x � 1 � y 2 � z2 x � 0

z � 0y � 0ExxxE z dV
y 2 � z2 � 1x � y � 2

z � 0ExxxE yz dV
x 2 � y 2 � 4z � y

HxxxH z3
sx 2 � y 2 � z 2 dV

xy

z � x 2 � 4y 2

R � �0, 2� � �1, 4�

z � x 2 y
�4, 0��2, 1��1, 0�xy

�0, 0, 1��0, 0, 0�
�2, 2, 0��0, 2, 0�

z � 0x 2 � y 2 � 4
y � z � 3

x 2 � 9y 2 � a 2

z � mxz � 0

xx
D

y dA D
x � 8 � y 2x � y 2

z � x 2 � y 2

z � sx 2 � y 2 
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52. (a) Evaluate , where is an integer and 

is the region bounded by the circles with center the
origin and radii and , .

(b) For what values of does the integral in part (a) have a
limit as ?

(c) Find , where is the region 

bounded by the spheres with center the origin and radii
and , .

(d) For what values of does the integral in part (c) have a
limit as ?

yy
D

1

�x 2 � y 2 �n	2 dA n

D
r R 0 � r � R

n
r l 0�

yyy
E

1

�x 2 � y 2 � z2 �n	2 dV E

r R 0 � r � R
n

r l 0�

48. Give five other iterated integrals that are equal to

49. Use the transformation , to evaluate
, where is the square with vertices

, , , and .

50. Use the transformation , , to 
find the volume of the region bounded by the surface

and the coordinate planes.

51. Use the change of variables formula and an appropriate
transformation to evaluate , where is the square
with vertices , , , and .

y
2

0
y

y3

0
y

y2

0
f �x, y, z� dz dx dy

v � x � yu � x � y
Rxx

R
�x � y�	�x � y� dA

�1, 3��2, 2��1, 1��0, 2�

z � w2y � v2x � u 2

sx � sy � sz � 1

Rxx
R

xy dA
�1, �1��2, 0��1, 1��0, 0�
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755

VECTOR CALCULUS
In this chapter we study the calculus of vector fields. (These are functions that assign vectors to points
in space.) In particular we define line integrals (which can be used to find the work done by a force field
in moving an object along a curve). Then we define surface integrals (which can be used to find the rate
of fluid flow across a surface). The connections between these new types of integrals and the single,
double, and triple integrals that we have already met are given by the higher-dimensional versions of
the Fundamental Theorem of Calculus: Green’s Theorem, Stokes’ Theorem, and the Divergence Theorem.

13

Unless otherwise noted, all content on this page is © Cengage Learning.

13.1 VECTOR FIELDS
The vectors in Figure 1(a) are air velocity vectors that indicate the wind speed and
direction at points 10 m above the surface elevation in the San Francisco Bay area at
6:00 PM on March 1, 2010. We see at a glance from the largest arrows that the great-
est wind speeds at that time occurred as the winds entered the bay across the Golden
Gate Bridge. Associated with every point in the air we can imagine a wind velocity
vector. This is an example of a velocity vector field. Another example of a velocity
vector field is illustrated in Figure 1(b).

Another type of vector field, called a force field, associates a force vector with each
point in a region. An example is the gravitational force field that we will look at in
Example 4.

In general, a vector field is a function whose domain is a set of points in (or )
and whose range is a set of vectors in (or ).

DEFINITION Let be a set in (a plane region). A vector field on is
a function that assigns to each point in a two-dimensional vector

.

The best way to picture a vector field is to draw the arrow representing the vector
starting at the point . Of course, it’s impossible to do this for all points

, but we can gain a reasonable impression of by doing it for a few representa-
tive points in as in Figure 2. Since is a two-dimensional vector, we can write 

Nova Scotia

(b) Ocean currents off the coast of Nova Scotia(a) San Francisco Bay wind patterns

� 3� 2

V3V2

� 2� 2D
D�x, y�F

F�x, y�

�x, y�F�x, y�
F�x, y�

F�x, y�D

1

FIGURE 1   Velocity vector fields

FIGURE 2
Vector field on R@

0

(x, y)

F(x, y)

x

y
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it in terms of its component functions and as follows:

or, for short,

Notice that and are scalar functions of two variables and are sometimes called
scalar fields to distinguish them from vector fields.

DEFINITION Let be a subset of . A vector field on is a function
that assigns to each point in a three-dimensional vector .

A vector field on is pictured in Figure 3. We can express it in terms of its com-
ponent functions , , and as

As with the vector functions in Section 10.7, we can define continuity of vector fields 
and show that is continuous if and only if its component functions , , and are 
continuous.

We sometimes identify a point with its position vector and
write instead of . Then becomes a function that assigns a vector
to a vector .

EXAMPLE 1 A vector field on is defined by . Describe
by sketching some of the vectors as in Figure 2.

SOLUTION Since , we draw the vector starting at the point
in Figure 4. Since , we draw the vector with starting

point . Continuing in this way, we calculate several other representative values
of in the table and draw the corresponding vectors to represent the vector
field in Figure 4.

It appears from Figure 4 that each arrow is tangent to a circle with center the
origin. To confirm this, we take the dot product of the position vector
with the vector :

This shows that is perpendicular to the position vector and is therefore
tangent to a circle with center the origin and radius . Notice also that

so the magnitude of the vector is equal to the radius of the circle. ■

P Q

F�x, y� � P�x, y� i � Q�x, y� j � �P�x, y�, Q�x, y��

F � P i � Q j

P Q

E � 3 � 3 F
�x, y, z� E F�x, y, z�

F � 3

P Q R

F�x, y, z� � P�x, y, z� i � Q�x, y, z� j � R�x, y, z� k

F P Q R

�x, y, z� x � �x, y, z �
F�x� F�x, y, z� F F�x�

x

� 2 F�x, y� � �y i � x j F
F�x, y�

F�1, 0� � j j � �0, 1 �
�1, 0� F�0, 1� � �i ��1, 0 �

�0, 1�
F�x, y�

x � x i � y j
F�x� � F�x, y�

x � F�x� � �x i � y j� � ��y i � x j� � �xy � yx � 0

F�x, y� �x, y �
� x � � sx 2 � y 2 

� F�x, y� � � s��y�2 � x 2 � sx 2 � y 2 � � x �

2

V

F�x, y�

F�x, y�

�3, 0 ��0, �3���3, 0 ��0, 3�
�2, 2 ��2, �2���2, �2 ���2, 2�
�1, 0 ��0, �1���1, 0 ��0, 1�

�0, �3 ���3, 0��0, 3 ��3, 0�
�2, �2 ���2, �2���2, 2 ��2, 2�
�0, �1 ���1, 0��0, 1 ��1, 0�

�x, y�F�x, y��x, y�

FIGURE 3
Vector field on R#

y
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FIGURE 4
F(x, y)=_y i+x j
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Some computer algebra systems are capable of plotting vector fields in two or three
dimensions. They give a better impression of the vector field than is possible by hand
because the computer can plot a large number of representative vectors. Figure 5
shows a computer plot of the vector field in Example 1; Figures 6 and 7 show two
other vector fields. Notice that the computer scales the lengths of the vectors so they
are not too long and yet are proportional to their true lengths.

EXAMPLE 2 Sketch the vector field on given by .

SOLUTION The sketch is shown in Figure 8. Notice that all vectors are vertical and
point upward above the -plane or downward below it. The magnitude increases
with the distance from the -plane. ■

We were able to draw the vector field in Example 2 by hand because of its partic-
ularly simple formula. Most three-dimensional vector fields, however, are virtually
impossible to sketch by hand and so we need to resort to a computer. Examples are
shown in Figures 9, 10, and 11. Notice that the vector fields in Figures 9 and 10 have
similar formulas, but all the vectors in Figure 10 point in the general direction of the
negative y-axis because their y-components are all �2. If the vector field in Figure 11
represents a velocity field, then a particle would be swept upward and would spiral
around the -axis in the clockwise direction as viewed from above.

5

_5

_5 5

6

_6

_6 6

5

_5

_5 5

FIGURE 5
F(x, y)=k_y, xl

FIGURE 6
F(x, y)=ky, sin xl

FIGURE 7
F(x, y)=k ln(1+¥), ln(1+≈)l

� 3 F�x, y, z� � z k

xy
xy

z

z

1

0

_1

y 1
0_1

x1
0

_1

FIGURE 9
F(x, y, z)=y i+z j+x k

z

1

0

y 1
0

x1
0

FIGURE 10
F(x, y, z)=y i-2 j+x k

z

5

3

1

y 1
0

_1
x

1

0

_1

FIGURE 11

F(x, y, z)=    i-    j+    k
y

z

x

z

z

4

_1
_1

_1
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FIGURE 8
F(x, y, z)=z k

y

0

z

x

In Visual 13.1 you can rotate 
the vector fields in Figures 9–11 as well 
as additional fields.

TEC
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FIGURE 12
Velocity field in fluid flow

z

y

x

0

EXAMPLE 3 Imagine a fluid flowing steadily along a pipe and let be the 
velocity vector at a point . Then assigns a vector to each point in a
certain domain (the interior of the pipe) and so is a vector field on called a
velocity field. A possible velocity field is illustrated in Figure 12. The speed at any
given point is indicated by the length of the arrow.

Velocity fields also occur in other areas of physics. For instance, the vector field in
Example 1 could be used as the velocity field describing the counterclockwise rota-
tion of a wheel. We have seen other examples of velocity fields in Figure 1. ■

EXAMPLE 4 Newton’s Law of Gravitation states that the magnitude of the gravita-
tional force between two objects with masses and is

where is the distance between the objects and is the gravitational constant. (This 
is an example of an inverse square law.) Let’s assume that the object with mass is 
located at the origin in . (For instance, could be the mass of the earth and the
origin would be at its center.) Let the position vector of the object with mass be

. Then , so . The gravitational force exerted on this
second object acts toward the origin, and the unit vector in this direction is

Therefore the gravitational force acting on the object at is

[Physicists often use the notation instead of for the position vector, so you may
see Formula 3 written in the form .] The function given by Equa-
tion 3 is an example of a vector field, called the gravitational field, because it asso-
ciates a vector [the force ] with every point in space (except for the origin).

Formula 3 is a compact way of writing the gravitational field, but we can also
write it in terms of its component functions by using the facts that

and :

The gravitational field is pictured in Figure 13. ■

EXAMPLE 5 Suppose an electric charge is located at the origin. According to
Coulomb’s Law, the electric force exerted by this charge on a charge located
at a point with position vector is

where is a constant (that depends on the units used). For like charges, we have
and the force is repulsive; for unlike charges, we have and the force

is attractive. Notice the similarity between Formulas 3 and 4. Both vector fields are
examples of force fields.

V�x, y, z�
�x, y, z� V �x, y, z�

E V � 3

m M

� F � �
mMG

r 2

r G
M

� 3 M
m

x � �x, y, z � r � � x � r 2 � � x �2

�
x

� x �
x � �x, y, z �

F�x� � �
mMG

� x �3 x

r x
F � ��mMG�r 3 �r

F�x� x

x � x i � y j � z k � x � � sx 2 � y 2 � z 2 

F�x, y, z� �
�mMGx

�x 2 � y 2 � z2 �3�2 i �
�mMGy

�x 2 � y 2 � z2 �3�2 j �
�mMGz

�x 2 � y 2 � z2 �3�2 k

F

Q
F�x� q

�x, y, z� x � �x, y, z �

F�x� �
�qQ

� x �3 x

�
qQ � 0 qQ � 0

3

4

FIGURE 13
Gravitational force field
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Instead of considering the electric force , physicists often consider the force per
unit charge:

Then is a vector field on called the electric field of . ■

GRADIENT FIELDS

If is a scalar function of two variables, recall from Section 11.6 that its gradient
(or grad ) is defined by

Therefore is really a vector field on and is called a gradient vector field. 
Likewise, if is a scalar function of three variables, its gradient is a vector field on
given by

EXAMPLE 6 Find the gradient vector field of . Plot the gradi-
ent vector field together with a contour map of f. How are they related?

SOLUTION The gradient vector field is given by

Figure 14 shows a contour map of with the gradient vector field. Notice that the
gradient vectors are perpendicular to the level curves, as we would expect from
Section 11.6. Notice also that the gradient vectors are long where the level curves
are close to each other and short where they are farther apart. That’s because the
length of the gradient vector is the value of the directional derivative of and
closely spaced level curves indicate a steep graph. ■

A vector field is called a conservative vector field if it is the gradient of some
scalar function, that is, if there exists a function such that . In this situation

is called a potential function for .
Not all vector fields are conservative, but such fields do arise frequently in physics.

For example, the gravitational field F in Example 4 is conservative because if we
define

then

In Sections 13.3 and 13.5 we will learn how to tell whether or not a given vector field
is conservative.

F

E�x� �
1

q
F�x� �

�Q

� x �3 x

E � 3 Q

f ∇ f
f

� f �x, y� � fx�x, y� i � fy�x, y� j

∇ f � 2

f � 3

� f �x, y, z� � fx�x, y, z� i � fy�x, y, z� j � fz�x, y, z� k

f �x, y� � x 2y � y 3

� f �x, y� �
�f

�x
i �

�f

�y
j � 2xy i � �x 2 � 3y 2 � j

f

f

F
f F � ∇ f

f F

f �x, y, z� �
mMG

sx 2 � y 2 � z 2 

� f �x, y, z� �
�f

�x
i �

�f

�y
j �

�f

�z
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�x 2 � y 2 � z 2 �3�2 i �
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FIGURE 14
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13.1 EXERCISES

1–10 ■ Sketch the vector field by drawing a diagram like 
Fig ure 4 or Figure 8.

1. 2.

3.

4.

5.

6.

7. 8.

9.

10.

11–14 ■ Match the vector fields with the plots labeled I–IV. 
Give reasons for your choices.

11.

12.

13.

14.

F

F�x, y� � 0.3 i � 0.4 j F�x, y� � 1
2 x i � y j

F�x, y� � �
1
2 i � �y � x� j

F�x, y� � y i � �x � y� j

F�x, y� �
y i � x j

sx 2 � y 2 

F�x, y� �
y i � x j

sx 2 � y 2 

F�x, y, z� � k F�x, y, z� � �y k

F�x, y, z� � x k

F�x, y, z� � j � i

F

F�x, y� � �x, �y �

F�x, y� � �y, x � y �

F�x, y� � �y, y � 2 �

F�x, y� � �cos�x � y�, x �

3

_3

_3 3

3

_3

_3 3

3

_3

_3 3

3

_3

_3 3

I II

III IV

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints at stewartcalculus.comCAS
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15–18 ■ Match the vector fields on with the plots labeled 
I–IV. Give reasons for your choices.

15.

16.

17.

18.

19. If you have a CAS that plots vector fields (the command 
is fieldplot in Maple and PlotVectorField or 
VectorPlot in Mathematica), use it to plot

Explain the appearance by finding the set of points 
such that .

20. Let , where and .
Use a CAS to plot this vector field in various domains until
you can see what is happening. Describe the appearance 
of the plot and explain it by finding the points where

.

21–24 ■ Find the gradient vector field of .

21. 22.

23.

24.

F�x, y, z� � i � 2 j � 3 k

F�x, y, z� � i � 2 j � z k

F�x, y, z� � x i � y j � 3 k

F�x, y, z� � x i � y j � z k

z

1

0

_1

y 1
0_1

x1
0

_1

z

1

0

_1

y 1
0_1

x1
0

_1

0
y

1
_1

x1
0

_1

z

1

0

_1

z

1

0

_1

y
10_1

1 0
_1

x

I II

III IV

F�x, y� � �y 2 � 2xy� i � �3xy � 6x 2 � j

�x, y�
F�x, y� � 0

r � � x �x � �x, y �F�x� � �r 2 � 2r�x

F�x� � 0

f

f �x, y� � tan�3x � 4y�f �x, y� � xe xy

f �x, y, z� � sx 2 � y 2 � z 2 

f �x, y, z� � x ln�y � 2z�

CAS

CAS

�3F
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31. The flow lines (or streamlines) of a vector field are the
paths followed by a particle whose velocity field is the
given vector field. Thus the vectors in a vector field are
tangent to the flow lines.
(a) Use a sketch of the vector field to

draw some flow lines. From your sketches, can you
guess the equations of the flow lines?

(b) If parametric equations of a flow line are
, explain why these functions satisfy the dif-

ferential equa tions and . Then
solve the differential equations to find an equation of
the flow line that passes through the point (1, 1).

32. (a) Sketch the vector field and then
sketch some flow lines. What shape do these flow
lines appear to have?

(b) If parametric equations of the flow lines are
, what differential equations do these func-

tions satisfy? Deduce that .
(c) If a particle starts at the origin in the velocity field

given by F, find an equation of the path it follows.

dy�dx � x

F�x, y� � x i � y j

x � x�t�,
y � y�t�

dy�dt � �ydx�dt � x

F�x, y� � i � x j

x � x�t�,
y � y�t�

25–26 ■ Find the gradient vector field of and sketch it.

25. 26.

27–28 ■ Plot the gradient vector field of together with a
contour map of . Explain how they are related to each other.

27.

28.

29. A particle moves in a velocity field
. If it is at position at time

, estimate its location at time .

30. At time , a particle is located at position . If it
moves in a velocity field 

find its approximate location at time .

f∇ f

f �x, y� � sx 2 � y2 f �x, y� � x 2 � y

fCAS

f

f �x, y� � ln�1 � x 2 � 2y 2�

f �x, y� � cos x � 2 sin y

�2, 1�V�x, y� � �x 2, x � y 2 �
t � 3.01t � 3

�1, 3�t � 1

F�x, y� � �xy � 2, y 2 � 10 �

t � 1.05
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13.2 LINE INTEGRALS
In this section we define an integral that is similar to a single integral except that
instead of integrating over an interval , we integrate over a curve . Such inte-
grals are called line integrals, although “curve integrals” would be better terminology.
They were invented in the early 19th century to solve problems involving fluid flow,
forces, electricity, and magnetism.

We start with a plane curve given by the parametric equations

or, equivalently, by the vector equation , and we assume that 
is a smooth curve. [This means that is continuous and . See Section 10.8.]
If we divide the parameter interval into n subintervals and we let

and , then the corresponding points divide into sub-
arcs with lengths (See Figure 1.) We choose any point
in the th subarc. (This corresponds to a point in .) Now if is any function
of two variables whose domain includes the curve , we evaluate at the point

, multiply by the length of the subarc, and form the sum

which is similar to a Riemann sum. Then we take the limit of these sums and make
the following definition by analogy with a single integral.

�a, b	 C

C

x � x�t� y � y�t� a 	 t 	 b

r�t� � x�t� i � y�t� j C
r
 r
�t� � 0

�a, b	 �ti�1, ti	
xi � x�ti� yi � y�ti � Pi �xi, yi � C n

�s1, �s2, . . . , �sn. Pi*�xi*, yi*�
i ti* �ti�1, ti	 f

C f
�xi*, yi*� �si



n

i�1
f �xi*, yi*� �si

1

FIGURE 1

t i-1

P¸

P¡

P™

C

a b
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t

t i

t*i

Pi-1
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Pn

P*
i (x*

i , y
*
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DEFINITION If is defined on a smooth curve given by Equations 1,
then the line integral of f along C is

if this limit exists.

In Section 9.2 we found that the length of is

A similar type of argument can be used to show that if is a continuous function, then
the limit in Definition 2 always exists and the following formula can be used to eval-
uate the line integral:

The value of the line integral does not depend on the parametrization of the curve, pro-
vided that the curve is traversed exactly once as t increases from a to b.

If is the length of C between and , then

So the way to remember Formula 3 is to express everything in terms of the parameter
Use the parametric equations to express and in terms of t and write ds as

In the special case where is the line segment that joins to , using as
the parameter, we can write the parametric equations of as follows: , ,

. Formula 3 then becomes

and so the line integral reduces to an ordinary single integral in this case.
Just as for an ordinary single integral, we can interpret the line integral of a posi-

tive function as an area. In fact, if , represents the area of one
side of the “fence” or “curtain” in Figure 2, whose base is and whose height above
the point is .

EXAMPLE 1 Evaluate , where is the upper half of the unit circle
.

SOLUTION In order to use Formula 3 we first need parametric equations to repre-
sent C. Recall that the unit circle can be parametrized by means of the equations

f C

y
C

f �x, y� ds � lim
max �si l 0



n

i�1
f �xi*, yi*� �si

C

L � y
b

a
��dx

dt 2

� �dy

dt 2
 dt

2

f

y
C

f �x, y� ds � y
b

a
f (x�t�, y�t�)��dx

dt 2

� � dy

dt 2 

dt

s�t� r�a� r�t�

ds

dt
� ��dx

dt 2

� �dy

dt 2 

t: x y

ds � ��dx

dt 2

� �dy

dt 2 

dt

C �a, 0� �b, 0� x
C x � x y � 0

a 	 x 	 b

y
C

f �x, y� ds � y
b

a
f �x, 0� dx

f �x, y� � 0 x
C

f �x, y� ds
C

�x, y� f �x, y�
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■ The arc length function is 
discussed in Section 10.8.
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and the upper half of the circle is described by the parameter interval
(See Figure 3.) Therefore Formula 3 gives

■     

Suppose now that is a piecewise-smooth curve; that is, is a union of a finite
number of smooth curves where, as illustrated in Figure 4, the initial
point of is the terminal point of Then we define the integral of along as
the sum of the integrals of along each of the smooth pieces of :

EXAMPLE 2 Evaluate , where consists of the arc of the parabola
from to followed by the vertical line segment from 

to .

SOLUTION The curve is shown in Figure 5. is the graph of a function of , so
we can choose as the parameter and the equations for become

Therefore

On we choose as the parameter, so the equations of are

and

Thus ■

Any physical interpretation of a line integral depends on the physical
interpretation of the function . Suppose that represents the linear density at a
point of a thin wire shaped like a curve . Then the mass of the part of the wire
from to in Figure 1 is approximately and so the total mass of the

y
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wire is approximately . By taking more and more points on the curve,
we obtain the mass of the wire as the limiting value of these approximations:

[For example, if represents the density of a semicircular wire, then
the integral in Example 1 would represent the mass of the wire.] The center of mass
of the wire with density function is located at the point , where

Other physical interpretations of line integrals will be discussed later in this chapter.

EXAMPLE 3 A wire takes the shape of the semicircle , , and is
thicker near its base than near the top. Find the center of mass of the wire if the
linear density at any point is proportional to its distance from the line .

SOLUTION As in Example 1 we use the parametrization , ,
, and find that . The linear density is

where is a constant, and so the mass of the wire is

From Equations 4 we have

By symmetry we see that , so the center of mass is

See Figure 6. ■

Two other line integrals are obtained by replacing by either or
in Definition 2. They are called the line integrals of along with

respect to x and y:

When we want to distinguish the original line integral from those in
Equa  tions 5 and 6, we call it the line integral with respect to arc length.
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The following formulas say that line integrals with respect to and can also be 
evaluated by expressing everything in terms of : , , ,

.

It frequently happens that line integrals with respect to and occur together.
When this happens, it’s customary to abbreviate by writing

When we are setting up a line integral, sometimes the most difficult thing is to think
of a parametric representation for a curve whose geometric description is given. In
particular, we often need to parametrize a line segment, so it’s useful to remember that
a vector representation of the line segment that starts at and ends at is given by

(See Equation 10.5.4.)

EXAMPLE 4 Evaluate , where (a) is the line segment from
to and (b) is the arc of the parabola from
to . (See Figure 7.)

SOLUTION
(a) A parametric representation for the line segment is

(Use Equation 8 with and .) Then , ,
and Formulas 7 give

(b) Since the parabola is given as a function of , let’s take as the parameter and
write as

t x � x�t� y � y�t� dx � x
�t� dt
dy � y
�t� dt

y
C

f �x, y� dx � y
b

a
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Then and by Formulas 7 we have

■

Notice that we got different answers in parts (a) and (b) of Example 4 even though
the two curves had the same endpoints. Thus, in general, the value of a line integral
depends not just on the endpoints of the curve but also on the path. (But see Sec-
tion 13.3 for conditions under which the integral is independent of the path.)

Notice also that the answers in Example 4 depend on the direction, or orientation,
of the curve. If denotes the line segment from to , then using the
parametrization

you can verify that

In general, a given parametrization , , , determines an
orientation of a curve , with the positive direction corresponding to increasing values
of the parameter (See Figure 8, where the initial point corresponds to the param-
eter value and the terminal point corresponds to .)

If denotes the curve consisting of the same points as but with the opposite
orientation (from initial point to terminal point in Figure 8), then we have

But if we integrate with respect to arc length, the value of the line integral does not
change when we reverse the orientation of the curve:

This is because is always positive, whereas and change sign when we
reverse the orientation of .

LINE INTEGRALS IN SPACE

We now suppose that is a smooth space curve given by the parametric equations

or by a vector equation . If is a function of three vari-
ables that is continuous on some region containing , then we define the line integral
of along (with respect to arc length) in a manner similar to that for plane curves:
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We evaluate it using a formula similar to Formula 3:

Observe that the integrals in both Formulas 3 and 9 can be written in the more com-
pact vector notation

For the special case , we get

where is the length of the curve (see Formula 10.8.3).
Line integrals along with respect to , , and can also be defined. For example,

Therefore, as with line integrals in the plane, we evaluate integrals of the form

by expressing everything , , , , , in terms of the parameter 

EXAMPLE 5 Evaluate , where is the circular helix given by the
equations , , , . (See Figure 9.)

SOLUTION Formula 9 gives

■

EXAMPLE 6 Evaluate , where consists of the line segment
from to followed by the vertical line segment from

to .

SOLUTION The curve is shown in Figure 10. Using Equation 8, we write as

or, in parametric form, as

y
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Thus

Likewise, can be written in the form

or

Then , so

Adding the values of these integrals, we obtain

■

LINE INTEGRALS OF VECTOR FIELDS

Recall from Section 7.6 that the work done by a variable force in moving a 
particle from to along the -axis is . Then in Section 10.3 we found
that the work done by a constant force in moving an object from a point to another
point in space is , where 

l
is the displacement vector.

Now suppose that is a continuous force field on , such as
the gravitational field of Example 4 in Section 13.1 or the electric force field of 
Example 5 in Section 13.1. (A force field on could be regarded as a special case
where and and depend only on and .) We wish to compute the work
done by this force in moving a particle along a smooth curve .

We divide into subarcs with lengths by dividing the parameter inter-
val into subintervals. (See Figure 1 for the two-dimensional case or Figure 11
for the three-dimensional case.) Choose a point on the th subarc cor-
responding to the parameter value . If is small, then as the particle moves from

to along the curve, it proceeds approximately in the direction of , the unit
tangent vector at . Thus the work done by the force in moving the particle from

to is approximately

and the total work done in moving the particle along is approximately

where is the unit tangent vector at the point on . Intuitively, we see
that these approximations ought to become better as the subarcs become shorter.
Therefore we define the work done by the force field as the limit of the Riemann

y
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sums in , namely,

Equation 12 says that work is the line integral with respect to arc length of the tangen -
tial component of the force.

If the curve is given by the vector equation , then
, so using Equation 9 we can rewrite Equation 12 in the form

This integral is often abbreviated as and occurs in other areas of physics as
well. Therefore we make the following definition for the line integral of any continu-
ous vector field.

DEFINITION Let be a continuous vector field defined on a smooth curve
given by a vector function , . Then the line integral of

along C is

When using Definition 13, remember that is just an abbreviation for
, so we evaluate simply by putting , , and

in the expression for . Notice also that we can formally write
.

EXAMPLE 7 Find the work done by the force field in moving
a particle along the quarter-circle , .

SOLUTION Since and , we have

and

Therefore the work done is

■

NOTE Even though and integrals with respect to arc length
are unchanged when orientation is reversed, it is still true that

because the unit tangent vector is replaced by its negative when is replaced by 
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■ Figure 12 shows the force field and
the curve in Example 7. The work done
is negative because the field impedes
movement along the curve.
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■ Figure 13 shows the twisted cubic 
in Example 8 and some typical vectors
acting at three points on .C
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0

12
0

F{r (1)}

F{r(3/4)}

F{r(1 /2)}

(1, 1, 1)

C

13.2 EXERCISES

1–16 ■ Evaluate the line integral, where is the given curve.

1. ,  

2. ,  

3. ,  is the right half of the circle 

C

C: x � t 3, y � t, 0 � t � 2x
C

y 3 ds

C: x � t 2, y � 2t, 0 � t � 1x
C

xy ds

x 2 � y 2 � 16Cx
C

xy 4 ds

4. ,  is the line segment from to 

5. ,
is the arc of the curve from to 

6. ,
C is the arc of the curve from to 

�4, 6��0, 3�Cx
C

x sin y ds

xC (x 2y 3 � sx ) dy
�4, 2��1, 1�y � sxC

x
C

e x dx
�1, 1���1, �1�x � y 3

EXAMPLE 8 Evaluate , where and is the
twisted cubic given by

SOLUTION We have

Thus

■

Finally, we note the connection between line integrals of vector fields and line inte-
grals of scalar fields. Suppose the vector field on is given in component form by
the equation . We use Definition 13 to compute its line integral
along :

But this last integral is precisely the line integral in . Therefore we have

For example, the integral in Example 6 could be expressed
as where

x � t y � t 2 z � t 3 0 � t � 1

r�t� � t i � t 2 j � t 3 k

r��t� � i � 2t j � 3t 2 k

F�r�t�� � t 3 i � t 5 j � t 4 k

y
C

F � dr � y
1

0
F�r�t�� � r��t� dt

� y
1

0
�t 3 � 5t 6 � dt �

t 4

4
�

5t 7

7 �0

1

�
27

28

F � 3

CF�x, y, z� � xy i � yz j � zx kx
C

F � dr

F � P i � Q j � R k
C

y
C

F � dr � y
b

a
F�r�t�� � r��t� dt

� y
b

a
�P i � Q j � R k� � �x��t� i � y��t� j � z��t� k� dt

� y
b

a
[P(x�t�, y�t�, z�t�) x��t� � Q(x�t�, y�t�, z�t�) y��t� � R(x�t�, y�t�, z�t�) z��t�] dt

y
C

F � dr � y
C

P dx � Q dy � R dz where F � P i � Q j � R k

x
C

y dx � z dy � x dz
x

C
F � dr

F�x, y, z� � y i � z j � x k

10
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18. The figure shows a vector field and two curves and
. Are the line integrals of over and positive,

negative, or zero? Explain.

19–22 ■ Evaluate the line integral , where is given
by the vector function .

19. ,  
,  

20. ,
,  

21. ,
,  

22. ,
,  

23–24 ■ Use a calculator or CAS to evaluate the line integral
correct to four decimal places.

23. , where and 
, 

24. , where has parametric equations ,
, , 

25–26 ■ Use a graph of the vector field F and the curve to
guess whether the line integral of F over is positive, nega-
tive, or zero. Then evaluate the line integral.

25. ,
is the arc of the circle traversed counter -

clockwise from (2, 0) to 

26. ,

is the parabola from to (1, 2)

27. (a) Evaluate the line integral , where
and is given by 

, .

C1F
C2C1FC2

y

x

C¡

C™

CxC F � dr
r�t�

F�x, y� � xy i � 3y 2 j
0 � t � 1r�t� � 11t 4 i � t 3 j

F�x, y, z� � �x � y� i � �y � z� j � z2 k
0 � t � 1r�t� � t 2 i � t 3 j � t 2 k

F�x, y, z� � sin x i � cos y j � xz k
0 � t � 1r�t� � t 3 i � t 2 j � t k

F�x, y, z� � x i � y j � xy k
0 � t � �r�t� � cos t i � sin t j � t k

F�x, y� � xy i � sin y jxC F � dr
1 � t � 2r�t� � e t i � e�t2

j

x � tCxC ze�xy ds
0 � t � 1z � e�ty � t 2

CCAS

C

F�x, y� � �x � y� i � xy j
x 2 � y 2 � 4C
�0, �2�

F�x, y� �
x

sx 2 � y 2 
i �

y

sx 2 � y 2 
j

��1, 2�y � 1 � x 2C

x
C

F � dr
CF�x, y� � e x�1 i � xy j

0 � t � 1r�t� � t 2 i � t 3 j

7. ,  consists of line segments
from to and from to 

8. ,  consists of the arc of the circle 
from to followed by the line 

segment from to 

9. ,  

10. ,  
is the line segment from to 

11. ,  
is the line segment from (0, 0, 0) to (1, 2, 3)

12. ,  
: , , , 

13. ,  
: , , , 

14. ,  
: , , , 

15. ,  
is the line segment from to 

16. ,  
consists of line segments from to and

from to 

17. Let be the vector field shown in the figure.
(a) If is the vertical line segment from to

, determine whether is positive, nega-
tive, or zero.

(b) If is the counterclockwise-oriented circle with
radius 3 and center the origin, determine whether

is positive, negative, or zero.

Cx
C

�x � 2y� dx � x 2 dy
�3, 0��2, 1��2, 1��0, 0�

Cx
C

x 2 dx � y 2 dy

�0, 2��2, 0�x 2 � y 2 � 4
�4, 3��0, 2�

x
C

xyz ds
C: x � 2 sin t, y � t,  z � �2 cos t, 0 � t � �

x
C

xyz2 ds
�1, 6, 4���1, 5, 0�C

x
C

xe yz ds
C

x
C

�x 2 � y 2 � z2� ds
0 � t � 2�z � sin 2ty � cos 2tx � tC

x
C

xye yz dy
0 � t � 1z � t 3y � t 2x � tC

x
C

y dx � z dy � x dz
1 � t � 4z � t 2y � tx � stC

x
C

z2 dx � x 2 dy � y 2 dz
�4, 1, 2��1, 0, 0�C

C
x

C
�y � z� dx � �x � z� dy � �x � y� dz

�1, 0, 1�
�1, 0, 1��0, 0, 0�

�0, 1, 2�

F
��3, �3�C1

x
C1

F � dr��3, 3�

C2

x
C2

F � dr

y

x0
1

1

2 3

2

3

_3 _2 _1

_3

_2

_1
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37. Find the work done by the force field
in moving an object along an

arch of the cycloid ,
.

38. Find the work done by the force field
on a particle that moves along the

parabola from to .

39. Find the work done by the force field
on a particle that

moves along the line segment from to .

40. The force exerted by an electric charge at the origin on a
charged particle at a point with position vector

is where is a constant.
(See Example 5 in Section 13.1.) Find the work done 
as the particle moves along a straight line from 
to .

41. The position of an object with mass at time is
, .

(a) What is the force acting on the object at time ?
(b) What is the work done by the force during the time

interval ?

42. An object with mass moves with position function

Find the work done on the object during this time period.

43. A 160-lb man carries a 25-lb can of paint up a helical
staircase that encircles a silo with a radius of 20 ft. If the
silo is 90 ft high and the man makes exactly three com-
plete revolutions climbing to the top, how much work is
done by the man against gravity?

44. Suppose there is a hole in the can of paint in Exercise 43
and 9 lb of paint leaks steadily out of the can during the
man’s ascent. How much work is done?

45. If is a smooth curve given by a vector function ,
, and is a constant vector, show that

46. If is a smooth curve given by a vector function ,
, show that

47. (a) Show that a constant force field does zero work on a 
particle that moves once uniformly around the circle

.
(b) Is this also true for a force field , where is

a constant and ?

48. Experiments show that a steady current in a long wire
pro duces a magnetic field that is tangent to any circle
that lies in the plane perpendicular to the wire and whose 

r�t� � �t � sin t� i � �1 � cos t� j
0 � t � 2�

F�x, y� � x 2 i � ye x j
x � y 2 � 1 �1, 0� �2, 1�

F�x, y, z� � �x � y 2, y � z2, z � x 2 �
�0, 0, 1� �2, 1, 0�

�x, y, z�
r � �x, y, z � F�r� � Kr�
 r 
3 K

�2, 0, 0�
�2, 1, 5�

m t
r�t� � at 2 i � bt 3 j 0 � t � 1

t

0 � t � 1

m

r�t� � a sin t i � b cos t j � ct k 0 � t � ��2

F�x, y� � x i � � y � 2� j

C r�t�
a � t � b v

y
C

v � dr � v � r�b� � r�a��

C r�t�
a � t � b

y
C

r � dr � 1
2[
r�b�
2 � 
r�a�
2]

x 2 � y 2 � 1
F�x� � kx k

x � �x, y �

I
B

; (b) Illustrate part (a) by using a graphing calculator or com-
puter to graph and the vectors from the vector field
corresponding to , , and 1 (as in Figure 13).

28. (a) Evaluate the line integral , where
and is given by

, .

; (b) Illustrate part (a) by using a computer to graph and 
the vectors from the vector field corresponding to 

and (as in Figure 13).

29. Find the exact value of , where is the part of
the astroid , in the first quadrant.

30. (a) Find the work done by the force field
on a particle that moves once

around the circle oriented in the counter-
clockwise direction.

(b) Use a computer algebra system to graph the force
field and circle on the same screen. Use the graph to
explain your answer to part (a).

31. A thin wire is bent into the shape of a semicircle
, . If the linear density is a constant ,

find the mass and center of mass of the wire.

32. A thin wire has the shape of the first-quadrant part of the 
circle with center the origin and radius . If the density 
function is , find the mass and center of
mass of the wire.

33. (a) Write the formulas similar to Equations 4 for the cen-
ter of mass of a thin wire in the shape of a
space curve if the wire has density function .

(b) Find the center of mass of a wire in the shape of the
helix , , , , if
the density is a constant .

34. Find the mass and center of mass of a wire in the shape
of the helix , , , , if the
density at any point is equal to the square of the distance
from the origin.

35. If a wire with linear density lies along a plane
curve its moments of inertia about the - and -axes
are defined as

Find the moments of inertia for the wire in Example 3.

36. If a wire with linear density lies along a space
curve , its moments of inertia about the -, -, and 
-axes are defined as

Find the moments of inertia for the wire in Exercise 33.

C
1�s2t � 0

xC F � dr
CF�x, y, z� � x i � z j � y k

�1 � t � 1r�t� � 2t i � 3t j � t 2 k
C

�
1
2t � �1

CxC x 3y 5 ds
y � sin3tx � cos3t

CAS

F�x, y� � x 2 i � xy j
x 2 � y 2 � 4

kx 	 0x 2 � y 2 � 4

a

�x, y� � kxy

�x, y, z �
C 
�x, y, z�

CAS

0 � t � 2�z � 3ty � 2 cos tx � 2 sin t
k

0 � t � 2�z � sin ty � cos tx � t


�x, y�
yxC,

Iy � y
C

x 2
�x, y� dsIx � y
C

y 2
�x, y� ds


�x, y, z�

z
yxC

Ix � y
C

� y 2 � z2 �
�x, y, z� ds

Iy � y
C

�x 2 � z2 �
�x, y, z� ds

Iz � y
C

�x 2 � y 2 �
�x, y, z� ds
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B

I
center is the axis of the wire (as in the figure at the right).
Ampère’s Law relates the electric current to its magnetic
effects and states that

where is the net current that passes through any surface
bounded by a closed curve , and is a constant called
the permeability of free space. By taking to be a circle
with radius , show that the magnitude of the mag-
netic field at a distance from the center of the wire is

y
C

B � dr � �0 I

I
C �0

C
B � 
 B 
r

r

B �
�0 I

2�r
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13.3 THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS
Recall from Section 5.4 that Part 2 of the Fundamental Theorem of Calculus can be
written as

where is continuous on . We also called Equation 1 the Net Change Theorem:
The integral of a rate of change is the net change.

If we think of the gradient vector of a function of two or three variables as a
sort of derivative of , then the following theorem can be regarded as a version of the
Funda mental Theorem for line integrals.

THEOREM Let be a smooth curve given by the vector function ,
. Let be a differentiable function of two or three variables whose

gradient vector is continuous on . Then

NOTE Theorem 2 says that we can evaluate the line integral of a conservative vec-
tor field (the gradient vector field of the potential function ) simply by knowing the
value of at the endpoints of . In fact, Theorem 2 says that the line integral of
is the net change in f. If is a function of two variables and is a plane curve with
initial point and terminal point , as in Figure 1, then Theorem 2
becomes

If is a function of three variables and is a space curve joining the point 
to the point , then we have

y
b

a
F��x� dx � F�b� � F�a�

F� a, b�

∇ f f
f

C r�t�
a � t � b f

∇ f C

y
C

� f � dr � f �r�b�� � f �r�a��

f

1

2

f C ∇ f
f C

A�x1, y1 � B�x2, y2 �

y
C

� f � dr � f �x2, y2 � � f �x1, y1 �

f C A�x1, y1, z1 �
B�x2, y2, z2 �

y
C

� f � dr � f �x2, y2, z2 � � f �x1, y1, z1 �FIGURE 1

0

A(x¡, y¡, z¡)

B(x™, y™, z™)

C

0

A(x¡, y¡) B(x™, y™)

C

y

z

x

x

y
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Let’s prove Theorem 2 for this case.

PROOF OF THEOREM 2 Using Definition 13.2.13, we have

(by the Chain Rule)

The last step follows from the Fundamental Theorem of Calculus (Equation 1). ■

Although we have proved Theorem 2 for smooth curves, it is also true for piecewise-
smooth curves. This can be seen by subdividing into a finite number of smooth
curves and adding the resulting integrals.

EXAMPLE 1 Find the work done by the gravitational field

in moving a particle with mass from the point to the point
along a piecewise-smooth curve . (See Example 4 in Section 13.1.)

SOLUTION From Section 13.1 we know that is a conservative vector field and, in
fact, , where

Therefore, by Theorem 2, the work done is

■

INDEPENDENCE OF PATH

Suppose and are two piecewise-smooth curves (which are called paths) that
have the same initial point and terminal point . We know from Example 4 in Sec-
tion 13.2 that, in general, . But one implication of Theorem 2 is
that

whenever is continuous. In other words, the line integral of a conservative vector
field depends only on the initial point and terminal point of a curve.

y
C

� f � dr � y
b

a
� f �r�t�� � r��t� dt

� y
b

a
� f

x

dx

dt
�

f

y

dy

dt
�

f

z

dz

dt	 dt

� y
b

a

d

dt
f �r�t�� dt

� f �r�b�� � f �r�a��

C

F�x� � �
mMG


 x 
3 x

m �3, 4, 12� �2, 2, 0�
C

F
F � ∇ f

f �x, y, z� �
mMG

sx 2 � y 2 � z 2 

W � y
C

F � dr � y
C

� f � dr

� f �2, 2, 0� � f �3, 4, 12�

�
mMG

s22 � 2 2 
�

mMG

s32 � 42 � 122 
� mMG� 1

2s2
�

1

13
	

C1 C2

A B
x

C1
F � dr � x

C2
F � dr

y
C1

� f � dr � y
C2

� f � dr

∇ f
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In general, if is a continuous vector field with domain , we say that the line 
integral is independent of path if for any two paths

and in that have the same initial and terminal points. With this terminology
we can say that line integrals of conservative vector fields are independent of path.

A curve is called closed if its terminal point coincides with its initial point, that is,
. (See Figure 2.) If is independent of path in and is any

closed path in , we can choose any two points and on and regard as being
composed of the path from to followed by the path from to . (See Fig -
ure 3.) Then

since and have the same initial and terminal points.
Conversely, if it is true that whenever is a closed path in , then

we demonstrate independence of path as follows. Take any two paths and from
to in and define to be the curve consisting of followed by . Then

and so . Thus we have proved the following theorem.

THEOREM is independent of path in if and only if
for every closed path in .

Since we know that the line integral of any conservative vector field is indepen-
dent of path, it follows that for any closed path. The physical interpre-
tation is that the work done by a conservative force field (such as the gravitational or
electric field in Section 13.1) as it moves an object around a closed path is 0.

The following theorem says that the only vector fields that are independent of path
are conservative. It is stated and proved for plane curves, but there is a similar version
for space curves. We assume that is open, which means that for every point in
there is a disk with center that lies entirely in . (So doesn’t contain any of its
boundary points.) In addition, we assume that is connected. This means that any
two points in can be joined by a path that lies in .

THEOREM Suppose is a vector field that is continuous on an open con-
nected region . If is independent of path in , then is a conserva-
tive vector field on ; that is, there exists a function such that .

PROOF Let be a fixed point in . We construct the desired potential func-
tion by defining

for any point in . Since is independent of path, it does not matter 
which path from to is used to evaluate . Since is open, there 

x
C

F � dr x
C1

F � dr � x
C2

F � dr
C1 C2 D

r�b� � r�a� x
C

F � dr D C
D A B C C

C1 A B C2 B A

y
C

F � dr � y
C1

F � dr � y
C2

F � dr � y
C1

F � dr � y
�C2

F � dr � 0

C1 �C2

x
C

F � dr � 0 C D
C1 C2

A B D C C1 �C2

0 � y
C

F � dr � y
C1

F � dr � y
�C2

F � dr � y
C1

F � dr � y
C2

F � dr

x
C1

F � dr � x
C2

F � dr

xC F � dr D
xC F � dr � 0 C D

F
xC F � dr � 0

D P D
P D D

D
D D

F
D x

C
F � dr D F

D f ∇ f � F

3

4

A�a, b� D
f

f �x, y� � y
�x, y�

�a, b�
F � dr

�x, y� D x
C

F � dr
C �a, b� �x, y� f �x, y� D

DF
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FIGURE 2
A closed curve
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FIGURE 3
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exists a disk contained in with center . Choose any point in the disk
with and let consist of any path from to followed by the
horizontal line segment from to . (See Figure 4.) Then

Notice that the first of these integrals does not depend on , so

If we write , then

On , is constant, so . Using as the parameter, where , we
have

by Part 1 of the Fundamental Theorem of Calculus (see Section 5.4). A similar argu-
ment, using a vertical line segment (see Figure 5), shows that

Thus

which says that is conservative. ■

The question remains: How is it possible to determine whether or not a vector field 
is conservative? Suppose it is known that is conservative, where

and have continuous first-order partial derivatives. Then there is a function such
that , that is,

Therefore, by Clairaut’s Theorem,

�x1, y��x, y�D
�x1, y��a, b�C1Cx1 � x

�x, y��x1, y�C2

f �x, y� � y
C1

F � dr � y
C2

F � dr � y
�x1, y�

�a, b�
F � dr � y

C2

F � dr

x

�

�x
f �x, y� � 0 �

�

�x y
C2

F � dr

F � P i � Q j

y
C2

F � dr � y
C2

P dx � Q dy

x1 � t � xtdy � 0yC2

�
�

�x y
x

x1

P�t, y� dt � P�x, y�

�

�x
f �x, y� �

�

�x y
C

2

P dx � Q dy

�

�y
f �x, y� �

�

�y y
C2

P dx � Q dy �
�

�y y
y

y1

Q�x, t� dt � Q�x, y�

F � P i � Q j �
�f

�x
i �

�f

�y
j � ∇ f

F

PF � P i � Q jF
fQ

F � ∇ f

Q �
�f

�y
andP �

�f

�x

�P

�y
�

�2 f

�y �x
�

�2 f

�x �y
�

�Q

�x
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FIGURE 4

(a, b)

x0

y

D

(x¡, y)

C¡

C™

(x, y)

FIGURE 5

(a, b)

x0

y

D

(x, y)

C¡

C™

(x, y¡)
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THEOREM If is a conservative vector field,
where and have continuous first-order partial derivatives on a domain ,
then throughout we have

The converse of Theorem 5 is true only for a special type of region. To explain this,
we first need the concept of a simple curve, which is a curve that doesn’t intersect
itself anywhere between its endpoints. [See Figure 6; for a simple closed
curve, but when .]

In Theorem 4 we needed an open connected region. For the next theorem we need
a stronger condition. A simply-connected region in the plane is a connected region

such that every simple closed curve in encloses only points that are in . Notice
from Figure 7 that, intuitively speaking, a simply-connected region contains no hole
and can’t consist of two separate pieces.

In terms of simply-connected regions we can now state a partial converse to Theo-
rem 5 that gives a convenient method for verifying that a vector field on is conser-
vative. The proof will be sketched in the next section as a consequence of Green’s
Theorem.

THEOREM Let be a vector field on an open simply-
connected region . Suppose that and have continuous first-order 
derivatives and

Then is conservative.

EXAMPLE 2 Determine whether or not the vector field

is conservative.

SOLUTION Let and . Then

Since , is not conservative by Theorem 5. ■

EXAMPLE 3 Determine whether or not the vector field

is conservative.

SOLUTION Let and . Then

r�a� � r�b�
r�t1 � � r�t2 � a � t1 � t2 � b

D D D

� 2

F � P i � Q j
D P Q

�P

�y
�

�Q

�x
throughout D

F

F�x, y� � �x � y� i � �x � 2� j

P�x, y� � x � y Q�x, y� � x � 2

�P

�y
� �1

�Q

�x
� 1

�P��y � �Q��x F

F�x, y� � �3 � 2xy� i � �x 2 � 3y 2 � j

P�x, y� � 3 � 2xy Q�x, y� � x 2 � 3y 2

6

V

V

F�x, y� � P�x, y� i � Q�x, y� j5
DQP

D

�P

�y
�

�Q

�x

�P

�y
� 2x �

�Q

�x
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FIGURE 6
Types of curves

simple,
not closed

not simple,
closed

not simple,
not closed

not simple,
closed

simple,
closed

FIGURE 7

simply-connected region

regions that are not simply-connected

C

10

_10

_10 10

FIGURE 8

■ Figure 8 shows the vector field in
Example 2. The vectors that start on the
closed curve all appear to point in
roughly the same direction as . So it
looks as if and therefore

is not conservative. The calculation in
Example 2 confirms this impression.

C

F
x

C
F � dr � 0

C
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■ Figure 9 shows the vector field in
Example 3. Some of the vectors near
the curves and point in approxi-
mately the same direction as the curves,
whereas others point in the opposite
direction. So it appears plau sible that
line integrals around all closed paths 
are . Example 3 shows that is indeed
conservative.

F0

C2C1

FIGURE 9

C™C¡

2

_2

_2 2

Also, the domain of is the entire plane , which is open and simply-
connected. Therefore we can apply Theorem 6 and conclude that is conservative.

■

In Example 3, Theorem 6 told us that is conservative, but it did not tell us how
to find the (potential) function such that . The proof of Theorem 4 gives us
a clue as to how to find . We use “partial integration” as in the following example.

EXAMPLE 4
(a) If , find a function such that .

(b) Evaluate the line integral , where is the curve given by
, .

SOLUTION
(a) From Example 3 we know that is conservative and so there exists a function
with , that is,

Integrating with respect to , we obtain

Notice that the constant of integration is a constant with respect to , that is, a func-
tion of , which we have called . Next we differentiate both sides of with
respect to :

Comparing and , we see that

Integrating with respect to , we have

where is a constant. Putting this in , we have

as the desired potential function.

(b) To use Theorem 2 all we have to know are the initial and terminal points of ,
namely, and . In the expression for in part (a),
any value of the constant will do, so let’s choose . Then we have

This method is much shorter than the straightforward method for evaluating line
integrals that we learned in Section 13.2. ■

A criterion for determining whether or not a vector field on is conservative is
given in Section 13.5. Meanwhile, the next example shows that the technique for find-
ing the potential function is much the same as for vector fields on .

F�x, y� � �3 � 2xy� i � �x 2 � 3y 2 � j f F � ∇ f

x
C

F � dr C
r�t� � e t sin t i � e t cos t j 0 � t � �

F f
∇ f � F

fx�x, y� � 3 � 2xy

fy�x, y� � x 2 � 3y 2

x

f �x, y� � 3x � x 2y � t�y�

x
y t�y�

y

fy�x, y� � x 2 � t	�y�

t	�y� � �3y 2

y

t�y� � �y 3 � K

K

f �x, y� � 3x � x 2 y � y 3 � K

C
r�0� � �0, 1� r��� � �0, �e� � f �x, y�

K K � 0

y
C

F � dr � y
C


 f � dr � f �0, �e� � � f �0, 1� � e 3� � ��1� � e 3� � 1

F � 3

� 2

F �D � � 2 �
F

F
f F � ∇ f

f

7

8

9

10

7

8 10

9

9
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EXAMPLE 5 If , find a function 
such that .

SOLUTION If there is such a function , then

Integrating with respect to , we get

where is a constant with respect to . Then differentiating with respect to
, we have

and comparison with gives

Thus and we rewrite as

Finally, differentiating with respect to and comparing with , we obtain
and therefore , a constant. The desired function is

It is easily verified that . ■

CONSERVATION OF ENERGY

Let’s apply the ideas of this chapter to a continuous force field that moves an object
along a path given by , , where is the initial point and

is the terminal point of . According to Newton’s Second Law of Motion
(see Sec tion 10.9), the force at a point on is related to the acceleration

by the equation

So the work done by the force on the object is

(Theorem 10.7.5, Formula 4)

(Fundamental Theorem of Calculus)

F�x, y, z� � y 2 i � �2xy � e 3z � j � 3ye 3z k f
∇ f � F

f

fx�x, y, z� � y 2

fy�x, y, z� � 2xy � e 3z

fz�x, y, z� � 3ye 3z

x

f �x, y, z� � xy 2 � t�y, z�

t�y, z� x
y

fy�x, y, z� � 2xy � ty�y, z�

ty�y, z� � e 3z

t�y, z� � ye 3z � h�z�

f �x, y, z� � xy 2 � ye 3z � h�z�

z h	�z� � 0
h�z� � K

f �x, y, z� � xy 2 � ye 3z � K

∇ f � F

F
C r�t� a � t � b r�a� � A

r�b� � B C
F�r�t�� C

a�t� � r��t�

F�r�t�� � mr��t�

W � y
C

F � dr � y
b

a
F�r�t�� � r	�t� dt � y

b

a
mr��t� � r	�t� dt

�
m

2
 y

b

a

d

dt
�r	�t� � r	�t�� dt

�
m

2
 y

b

a

d

dt � r	�t� �2 dt �
m

2
 [� r	�t� �2]a

b

�
m

2
 (� r	�b� �2 � � r	�a� �2 )

V

11

12

13

14

11

14

12

14

13
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13.3 EXERCISES

1. The figure shows a curve and a contour map of a function
whose gradient is continuous. Find .

2. A table of values of a function with continuous gradient is
given. Find , where has parametric equations

C
x

C

 f � drf

10

20

30

40
50

60

C

y

x0

f
CxC 
 f � dr

x � t 2 � 1        y � t 3 � t 0 � t � 1

1

3

8

6

5

2

4

7

9

x

y

0

1

2

0 1 2

3–10 ■ Determine whether or not is a conservative vector
field. If it is, find a function such that .

3.

4.

5.

6.

7.

8. ,  

9.

10.

11–16 ■ (a) Find a function such that and (b) use 
part (a) to evaluate along the given curve .

11. ,

: ,  

12. ,
,  

F
f F � 
 f

F�x, y� � �2x � 3y� i � ��3x � 4y � 8� j

F�x, y� � e x sin y i � e x cos y j

F�x, y� � e x cos y i � e x sin y j

F�x, y� � �3x 2 � 2y 2� i � �4xy � 3� j

F�x, y� � �ye x � sin y� i � �e x � x cos y� j

F�x, y� � �2xy � y�2� i � �x 2 � 2xy�3� j y � 0

F�x, y� � �ln y � 2xy 3� i � �3x 2y 2 � x�y� j

F�x, y� � �xy cosh xy � sinh xy� i � �x 2 cosh xy � j

f F � ∇ f
xC F � dr C

F�x, y� � xy 2 i � x 2y j

C r�t� � � t � sin 1
2� t, t � cos 1

2� t 	 0 � t � 1

F�x, y� � �1 � xy�e xy i � x 2e xy j
C: r�t� � cos t i � 2 sin t j 0 � t � ��2

Therefore

where is the velocity.
The quantity , that is, half the mass times the square of the speed, is

called the kinetic energy of the object. Therefore we can rewrite Equation 15 as

which says that the work done by the force field along is equal to the change in
kinetic energy at the endpoints of .

Now let’s further assume that is a conservative force field; that is, we can write
. In physics, the potential energy of an object at the point is defined

as , so we have . Then by Theorem 2 we have

Comparing this equation with Equation 16, we see that

which says that if an object moves from one point to another point under the influ-
ence of a conservative force field, then the sum of its potential energy and its kinetic
energy remains constant. This is called the Law of Conservation of Energy and it is
the reason the vector field is called conservative.

W � 1
2 m � v�b� �2 �

1
2 m � v�a� �2

v � r	
1
2 m � v�t� �2

W � K�B� � K�A�

C
C

F
F � ∇ f �x, y, z�

P�x, y, z� � �f �x, y, z� F � �∇P

W � y
C

F � dr � �y
C


P � dr � ��P�r�b�� � P�r�a��� � P�A� � P�B�

P�A� � K�A� � P�B� � K�B�

A B

15

16
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25. Show that if the vector field is con-
servative and , , have continuous first-order partial
derivatives, then

26. Use Exercise 25 to show that the line integral
is not independent of path.

27–30 ■ Determine whether or not the given set is (a) open, 
(b) connected, and (c) simply-connected.

27. 28.

29.

30.

31. Let .

(a) Show that .

(b) Show that is not independent of path. 
[Hint: Compute and , where 
and are the upper and lower halves of the circle

from to .] Does this contra-
dict Theorem 6?

32. (a) Suppose that is an inverse square force field, that is,

for some constant , where . Find
the work done by in moving an object from a point

along a path to a point in terms of the distances
and from these points to the origin.

(b) An example of an inverse square field is the gravita-
 tional field discussed in 
Example 4 in Section 13.1. Use part (a) to find the
work done by the gravitational field when the earth
moves from aphelion (at a maximum distance of

km from the sun) to perihelion (at a 
minimum distance of km). (Use the 
values kg, kg, 
and 

(c) Another example of an inverse square field is the elec -
tric force field discussed in Example
5 in Section 13.1. Suppose that an electron with a
charge of C is located at the origin. A
positive unit charge is positioned a distance m
from the elec tron and moves to a position half that
distance from the electron. Use part (a) to find the
work done by the electric force field. (Use the value

.)

�P

�y
�

�Q

�x

�P

�z
�

�R

�x

�Q

�z
�

�R

�y

x
C

y dx � x dy � xyz dz


�x, y� � 0 � y � 3� 
�x, y� � 1 � � x � � 2�


�x, y� � 1 � x 2 � y 2 � 4, y � 0�


�x, y� � �x, y� � �2, 3��

F�x, y� �
�y i � x j

x 2 � y 2

�P��y � �Q��x

xC F � dr
xC1

F � dr xC2
F � dr C1

C2

x 2 � y 2 � 1 �1, 0� ��1, 0�

F

F�r� �
cr

� r �3

c r � x i � y j � z k
F

P1 P2

d1 d2

F � ��mMG �r�� r �3

1.52  108

1.47  108

m � 5.97  1024 M � 1.99  1030

G � 6.67  10�11 N�m2�kg2.�

F � �qQr�� r �3

�1.6  10�19

10�12

� � 8.985  10 9

F � P i � Q j � R k
RQP

13. ,
is the line segment from to 

14. ,
: , , ,  

15. ,
: ,

16. ,
: ,  

17–18 ■ Show that the line integral is independent of path
and evaluate the integral.

17. ,  

is any path from to 

18. ,  

is any path from to 

19–20 ■ Find the work done by the force field in moving an
object from to .

19. ;  , 

20. ;  , 

21–22 ■ Is the vector field shown in the figure conservative?
Explain.

21. 22.

23. If , use a plot to guess
whether is conservative. Then determine whether your
guess is correct.

24. Let , where . Find curves
and that are not closed and satisfy the equation.

(a) (b)

F�x, y, z� � yz i � xz j � �xy � 2z� k
�4, 6, 3��1, 0, �2�C

F�x, y, z� � �y2z � 2xz2� i � 2xyz j � �xy 2 � 2x 2z� k
0 � t � 1z � t 2y � t � 1x � stC

F�x, y, z� � yze xz i � e xz j � xye xz k
r�t� � �t 2 � 1� i � �t 2 � 1� j � �t 2 � 2t� kC

0 � t � 2

F�x, y, z� � sin y i � �x cos y � cos z� j � y sin z k
0 � t � ��2r�t� � sin t i � t j � 2t kC

xC 2xe�y dx � �2y � x 2e�y� dy

�2, 1��1, 0�C

xC sin y dx � �x cos y � sin y� dy

�1, ���2, 0�C

F
QP

Q�2, 4�P�1, 1�F�x, y� � 2y 3�2 i � 3xsy j

Q�2, 0�P�0, 1�F�x, y� � e�y i � xe�y j

y

x

y

x

F�x, y� � sin y i � �1 � x cos y� j
F

C1

f �x, y� � sin�x � 2y�F � 
 f
C2

y
C2

F � dr � 1y
C1

F � dr � 0

CAS
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13.4 GREEN’S THEOREM
Green’s Theorem gives the relationship between a line integral around a simple closed
curve and a double integral over the plane region bounded by . (See Figure 1.
We assume that consists of all points inside as well as all points on .) In stating
Green’s Theorem we use the convention that the positive orientation of a simple
closed curve refers to a single counterclockwise traversal of . Thus if is given
by the vector function , , then the region is always on the left as the
point traverses . (See Figure 2.)

GREEN’S THEOREM Let be a positively oriented, piecewise-smooth, simple
closed curve in the plane and let be the region bounded by . If and
have continuous partial derivatives on an open region that contains , then

NOTE The notation

g
C

is sometimes used to indicate that the line integral is calculated using the positive ori-
entation of the closed curve . Another notation for the positively oriented boundary
curve of is , so the equation in Green’s Theorem can be written as

Green’s Theorem should be regarded as the counterpart of the Fundamental Theorem
of Calculus for double integrals. Compare Equation 1 with the statement of the Funda -
mental Theorem of Calculus, Part 2, in the following equation:

In both cases there is an integral involving derivatives ( , , and ) on 
the left side of the equation. And in both cases the right side involves the values of 
the original functions ( , , and ) only on the boundary of the domain. (In the one-

C D C
D C C

C C C
r�t� a � t � b D

r�t� C

FIGURE 2 (a) Positive orientation

y

x0

D

C

(b) Negative orientation

y

x0

D

C

C
D C P Q

D

y
C

P dx � Q dy � yy
D

��Q

�x
�

�P

�y  dA

�y
C

P dx � Q dy or P dx � Q dy

C
D �D

yy
D

��Q

�x
�

�P

�y  dA � y
�D

P dx � Q dy

y
b

a
F	�x� dx � F�b� � F�a�

F	 �Q��x �P��y

F Q P

1

FIGURE 1

y

x0

D

C

■ Recall that the left side of this equa-
tion is another way of writing ,
where .F � P i � Q j

x
C

F � dr
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dimensional case, the domain is an interval whose boundary consists of just two
points, and .)

Green’s Theorem is not easy to prove in general, but we can give a proof for the
special case where the region is both of type I and of type II (see Section 12.2). Let’s
call such regions simple regions.

PROOF OF GREEN’S THEOREM FOR THE CASE IN WHICH IS A SIMPLE REGION
Notice that Green’s Theorem will be proved if we can show that

and

We prove Equation 2 by expressing as a type I region:

where and are continuous functions. This enables us to compute the double
integral on the right side of Equation 2 as follows:

where the last step follows from the Fundamental Theorem of Calculus.
Now we compute the left side of Equation 2 by breaking up as the union of the

four curves , , , and shown in Figure 3. On we take as the parameter
and write the parametric equations as , , . Thus

Observe that goes from right to left but goes from left to right, so we can
write the parametric equations of as , , . Therefore

On or (either of which might reduce to just a single point), is constant, so
and

Hence

�a, b�
a b

D

y
C

P dx � �yy
D

�P

�y
dA

y
C

Q dy � yy
D

�Q

�x
dA

D

D � 
�x, y� � a � x � b, t1�x� � y � t2�x��

t1 t2

yy
D

�P

�y
dA � y

b

a
y

t2�x�
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y
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b

a
P�x, t1�x�� dx

C3 �C3

�C3 x � x y � t2�x� a � x � b

y
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P�x, y� dx � �y
�C3

P�x, y� dx � �y
b

a
P�x, t2�x�� dx

C2 C4 x
dx � 0

y
C2

P�x, y� dx � 0 � y
C4

P�x, y� dx

y
C

P�x, y� dx � y
C1

P�x, y� dx � y
C2

P�x, y� dx � y
C3
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P�x, y� dx
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a
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b

a
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■ GREEN
Green’s Theorem is named after the 
self-taught English scientist George Green
(1793–1841). He worked full-time in his
father’s bakery from the age of nine and
taught himself mathematics from library
books. In 1828 he published privately An
Essay on the Application of Mathematical
Analysis to the Theories of Electricity and
Magnetism, but only 100 copies were
printed and most of those went to his
friends. This pamphlet contained a theo-
rem that is equivalent to what we know as
Green’s Theorem, but it didn’t become
widely known at that time. Finally, at age
40, Green entered Cambridge University
as an undergraduate but died four years
after graduation. In 1846 William Thom-
son (Lord Kelvin) located a copy of
Green’s essay, realized its significance, and
had it reprinted. Green was the first person
to try to formulate a mathematical theory
of electricity and magnetism. His work
was the basis for the subsequent electro-
magnetic theories of Thomson, Stokes,
Rayleigh, and Maxwell.
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Comparing this expression with the one in Equation 4, we see that

Equation 3 can be proved in much the same way by expressing as a type II region
(see Exercise 30). Then, by adding Equations 2 and 3, we obtain Green’s Theorem. ■

EXAMPLE 1 Evaluate , where is the triangular curve consisting
of the line segments from to , from to , and from 
to .

SOLUTION Although the given line integral could be evaluated as usual by the
methods of Section 13.2, that would involve setting up three separate integrals along
the three sides of the triangle, so let’s use Green’s Theorem instead. Notice that the
region enclosed by is simple and has positive orientation (see Figure 4). If
we let and , then we have

■

EXAMPLE 2 Evaluate , where is the
circle .

SOLUTION The region bounded by is the disk , so let’s change to
polar coordinates after applying Green’s Theorem:

■

In Examples 1 and 2 we found that the double integral was easier to evaluate than
the line integral. (Try setting up the line integral in Example 2 and you’ll soon be con-
vinced!) But sometimes it’s easier to evaluate the line integral, and Green’s Theorem
is used in the reverse direction. For instance, if it is known that
on the curve , then Green’s Theorem gives

no matter what values and assume in the region .
Another application of the reverse direction of Green’s Theorem is in computing

areas. Since the area of is , we wish to choose and so that

y
C

P�x, y� dx � �yy
D

�P

�y
dA

D

x
C

x 4 dx � xy dy C
�0, 0� �1, 0� �1, 0� �0, 1� �0, 1�

�0, 0�

D C C
P�x, y� � x 4 Q�x, y� � xy

y
C

x 4 dx � xy dy � yy
D

��Q

�x
�

�P

�y  dA � y
1

0
y

1�x

0
�y � 0� dy dx

� y
1

0
[ 1

2 y 2 ]y�0
y�1�x

dx � 1
2 y

1

0
�1 � x�2 dx � �

1
6 �1 � x�3 ]0

1
� 1

6

�xC �3y � e sin x� dx � (7x � sy 4 � 1) dy C
x 2 � y 2 � 9

D C x 2 � y 2 � 9

�y
C

�3y � e sin x� dx � (7x � sy 4 � 1) dy

� yy
D

� �

�x
(7x � sy 4 � 1) �

�

�y
�3y � e sin x�� dA

� y
2�

0
y

3

0
�7 � 3� r dr d� � 4 y

2�

0
d� y

3

0
r dr � 36�

P�x, y� � Q�x, y� � 0
C

yy
D

��Q

�x
�

�P

�y  dA � y
C

P dx � Q dy � 0

P Q D

D xx
D

1 dA P Q

�Q

�x
�

�P

�y
� 1

V

FIGURE 4
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D

■ Instead of using polar coordinates, we
could simply use the fact that is a
disk of radius 3 and write

yy
D

4 dA � 4 � ��3�2 � 36�

D
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There are several possibilities:

Then Green’s Theorem gives the following formulas for the area of :

EXAMPLE 3 Find the area enclosed by the ellipse .

SOLUTION The ellipse has parametric equations and , where
. Using the third formula in Equation 5, we have

■

Although we have proved Green’s Theorem only for the case where is simple,
we can now extend it to the case where is a finite union of simple regions. For exam-
ple, if is the region shown in Figure 5, then we can write , where
and are both simple. The boundary of is and the boundary of is

so, applying Green’s Theorem to and separately, we get

If we add these two equations, the line integrals along and cancel, so we get

which is Green’s Theorem for , since its boundary is .
The same sort of argument allows us to establish Green’s Theorem for any finite

union of nonoverlapping simple regions (see Figure 6).

EXAMPLE 4 Evaluate , where is the boundary of the semi-
annular region in the upper half-plane between the circles and

.

SOLUTION Notice that although is not simple, the -axis divides it into two 
simple regions (see Figure 7). In polar coordinates we can write

P�x, y� � 0 P�x, y� � �y P�x, y� � �
1
2 y

Q�x, y� � x Q�x, y� � 0 Q�x, y� � 1
2 x

D

A � �y
C

x dy � ��y
C

y dx � 1
2 �y

C
x dy � y dx

x 2

a 2 �
y 2

b 2 � 1

x � a cos t y � b sin t
0 � t � 2�

A � 1
2 y

C
x dy � y dx � 1

2 y
2�

0
�a cos t��b cos t� dt � �b sin t���a sin t� dt

�
ab

2
 y

2�

0
 dt � �ab

D
D

D D � D1 � D2 D1

D2 D1 C1 � C3 D2

C2 � ��C3� D1 D2

y
C1�C3

P dx � Q dy � yy
D1

��Q

�x
�

�P

�y  dA

y
C2���C3 �

P dx � Q dy � yy
D2

� �Q

�x
�

�P

�y  dA

C3 �C3

y
C1�C2

P dx � Q dy � yy
D

��Q

�x
�

�P

�y  dA

D � D1 � D2 C � C1 � C2

�x
C

y 2 dx � 3xy dy C
D x 2 � y 2 � 1

x 2 � y 2 � 4

D y

D � 
�r, �� � 1 � r � 2, 0 � � � ��

5

V
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Therefore Green’s Theorem gives

■

Green’s Theorem can be extended to apply to regions with holes, that is, regions
that are not simply-connected. Observe that the boundary of the region in Fig -
ure 8 consists of two simple closed curves and . We assume that these boundary
curves are oriented so that the region is always on the left as the curve is tra-
versed. Thus the positive direction is counterclockwise for the outer curve but
clockwise for the inner curve . If we divide into two regions and by means
of the lines shown in Figure 9 and then apply Green’s Theorem to each of and 
we get

Since the line integrals along the common boundary lines are in opposite directions,
they cancel and we get

which is Green’s Theorem for the region .

EXAMPLE 5 If , show that for
every positively oriented simple closed path that encloses the origin.

SOLUTION Since is an arbitrary closed path that encloses the origin, it’s difficult
to compute the given integral directly. So let’s consider a counterclockwise-oriented
circle with center the origin and radius , where is chosen to be small enough
that lies inside . (See Figure 10.) Let be the region bounded by and .
Then its positively oriented boundary is and so the general version of
Green’s Theorem gives

Therefore

that is,

�y
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y 2 dx � 3xy dy � yy
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� �
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�y
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13.4 EXERCISES

1–4 ■ Evaluate the line integral by two methods: (a) directly
and (b) using Green’s Theorem.

1. ,
is the circle with center the origin and radius 2

2. , 
is the rectangle with vertices , , , 

and 

3. ,
is the triangle with vertices , (1, 0), and (1, 2)

4. ,  consists of the arc of the parabola
from to and the line segments from

to and from to 

�x
C

�x � y� dx � �x � y� dy
C

�x
C

xy dx � x 2 dy
C �0, 0� �3, 0� �3, 1�

�0, 1�

�x
C

xy dx � x 2 y 3 dy
C �0, 0�

�x
C

x 2y 2 dx � xy dy C
y � x 2 �0, 0� �1, 1�
�1, 1� �0, 1� �0, 1� �0, 0�

5–10 ■ Use Green’s Theorem to evaluate the line integral along
the given positively oriented curve.

5. ,
is the triangle with vertices , , and 

6. ,
is the rectangle with vertices , , , 

and 

7. ,
is the boundary of the region enclosed by the parabolas

and 

8. ,  is the ellipse 

x
C

xy 2 dx � 2x 2y dy
C �0, 0� �2, 2� �2, 4�

x
C

cos y dx � x 2 sin y dy
C �0, 0� �5, 0� �5, 2�

�0, 2�

x
C

(y � esx ) dx � �2x � cos y 2 � dy
C
y � x 2 x � y 2

x
C

y 4 dx � 2xy 3 dy C x 2 � 2y 2 � 2

We now easily compute this last integral using the parametrization given by
, . Thus

■

We end this section by using Green’s Theorem to discuss a result that was stated in
the preceding section.

SKETCH OF PROOF OF THEOREM 13.3.6 We’re assuming that is a
vector field on an open simply-connected region , that and have continuous
first-order partial derivatives, and that

If is any simple closed path in and is the region that encloses, then Green’s
Theo   rem gives

A curve that is not simple crosses itself at one or more points and can be broken up
into a number of simple curves. We have shown that the line integrals of around
these simple curves are all 0 and, adding these integrals, we see that
for any closed curve . Therefore is independent of path in by Theo-
 rem 13.3.3. It follows that is a conservative vector field. ■

y
C

F � dr � y
C�

F � dr � y
2�

0
F�r�t�� � r��t� dt

� y
2�

0

��a sin t���a sin t� � �a cos t��a cos t�
a 2 cos2t � a 2 sin2t

dt � y
2�

0
dt � 2�

F � P i � Q j
D P Q

�P

�y
�

�Q

�x
throughout D

C D R C

�y
C

F � dr � �y
C

P dx � Q dy � yy
R

��Q

�x
�

�P

�y � dA � yy
R

0 dA � 0

F
x

C
F � dr � 0

C x
C

F � dr D
F

0 	 t 	 2�r�t� � a cos t i � a sin t j
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21. (a) If is the line segment connecting the point to
the point , show that 

(b) If the vertices of a polygon, in counterclockwise order,
are , , show that the area
of the polygon is

(c) Find the area of the pentagon with vertices ,
, , , and .

22. Let be a region bounded by a simple closed path in
the -plane. Use Green’s Theorem to prove that the
coordi nates of the centroid of are

where is the area of .

23. Use Exercise 22 to find the centroid of a quarter-circular
region of radius .

24. Use Exercise 22 to find the centroid of the triangle with 
vertices , , and , where and .

25. A plane lamina with constant density
occupies a region in the -plane bounded by a simple
closed path . Show that its moments of inertia about the
axes are

26. Use Exercise 25 to find the moment of inertia of a circular
disk of radius with constant density about a diameter.
(Compare with Example 4 in Section 12.4.)

27. Use the method of Example 5 to calculate ,
where

and is any positively oriented simple closed curve that
encloses the origin.

28. Calculate , where
and is the positively oriented boundary curve of a
region that has area 6.

29. If is the vector field of Example 5, show that
for every simple closed path that does not

pass through or enclose the origin.

30. Complete the proof of the special case of Green’s Theo-
rem by proving Equation 3.

�x1, y1�C
�x2, y2�

y
C

x dy � y dx � x1 y2 � x2 y1

�xn , yn ��x2, y2 �, . . . , �x1, y1 �

A � 1
2 	�x1 y2 � x2 y1 � � �x2 y3 � x3 y2 � � 
 
 


A � � �xn�1 yn � xn yn�1 � � �xn y1 � x1 yn �


�0, 0�
��1, 1��0, 2��1, 3��2, 1�

CD
xy

D�x, y �

y � �
1

2A
�y

C
y 2 dxx �

1

2A
�y

C
x 2 dy

DA

a

b � 0a � 0�a, b��a, 0��0, 0�

��x, y� � �
xy

C

Iy �
�

3
 �y

C
x 3 dyIx � �

�

3
 �y

C
y 3 dx

�a

x
C

F � dr

F�x, y� �
2xy i � �y 2 � x 2� j

�x 2 � y 2�2

C

F�x, y� � �x 2 � y, 3x � y 2 �x
C

F � dr
C

D

F
xC F � dr � 0
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9. ,  is the circle 

10. ,  is the boundary of
the region between the circles and

11–14 ■ Use Green’s Theorem to evaluate . (Check
the orientation of the curve before applying the theorem.)

11.  ,  
is the triangle from to to to 

12. ,  consists of the arc
of the curve from to and
the line segment from to 

13. ,  is the circle
oriented clockwise

14. ,  is the triangle from
to to to 

15–16 ■ Verify Green’s Theorem by using a computer alge-
bra system to evaluate both the line integral and the double
integral.

15. ,  ,  consists of the line
segment from to followed by the arc of the
parabola from to 

16. ,  ,
is the ellipse 

17. Use Green’s Theorem to find the work done by the force
in moving a particle from

the origin along the -axis to , then along the line
segment to , and then back to the origin along the 
-axis.

18. A particle starts at the point , moves along the 
-axis to , and then along the semicircle

to the starting point. Use Green’s Theorem
to find the work done on this particle by the force field

.

19. Use one of the formulas in to find the area under one
arch of the cycloid .

; 20. If a circle with radius 1 rolls along the outside of the 
circle , a fixed point on traces out a 
curve called an epicycloid, with parametric equations

, . Graph the
epicycloid and use to find the area it encloses.

F�x, y� � �y cos x � xy sin x, xy � x cos x �
C �0, 0� �0, 4� �2, 0� �0, 0�

F�x, y� � �e�x � y 2, e�y � x 2 � C
y � cos x ����2, 0� ���2, 0�

���2, 0� ����2, 0�

F�x, y� � �y � cos y, x sin y � C
�x � 3�2 � �y � 4�2 � 4

F�x, y� � �sx 2 � 1, tan�1 x � C
�0, 0� �1, 1� �0, 1� �0, 0�

P�x, y� � y 2e x Q�x, y� � x 2e y C
��1, 1� �1, 1�

y � 2 � x 2 �1, 1� ��1, 1�

P�x, y� � 2x � x 3y 5 Q�x, y� � x 3y 8

C 4x 2 � y 2 � 4

F�x, y� � x�x � y� i � xy 2 j
x �1, 0�

�0, 1�
y

��2, 0�
x �2, 0�
y � s4 � x 2 

F�x, y� � �x, x 3 � 3xy 2 �

x
C

F � dr

5
x � t � sin t, y � 1 � cos t

C
CPx 2 � y 2 � 16

y � 5 sin t � sin 5tx � 5 cos t � cos 5t
5

CAS

xC y 3 dx � x 3 dy C x 2 � y 2 � 4

Cx
C

�1 � y 3� dx � (x 3 � e y2) dy

x 2 � y 2 � 9
x 2 � y 2 � 4
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Here is the region in the -plane that corresponds to the
region in the -plane under the transformation given by

, .
[Hint: Note that the left side is and apply the first

part of Equation 5. Convert the line integral over to a 
line integral over and apply Green’s Theorem in the 

-plane.]

R xy
S uv

x � t�u, v� y � h�u, v�
A�R�

�R
�S

uv

31. Use Green’s Theorem to prove the change of variables 
formula for a double integral (Formula 12.8.9) for the case
where :f �x, y� � 1

yy
R

dx dy � yy
S

 ��x, y�
��u, v�  du dv
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13.5 CURL AND DIVERGENCE
In this section we define two operations that can be performed on vector fields and that
play a basic role in the applications of vector calculus to fluid flow and electricity and
magnetism. Each operation resembles differentiation, but one produces a vector field
whereas the other produces a scalar field.

CURL

If is a vector field on and the partial derivatives of , , and
all exist, then the curl of is the vector field on defined by

As an aid to our memory, let’s rewrite Equation 1 using operator notation. We intro-
duce the vector differential operator (“del”) as

It has meaning when it operates on a scalar function to produce the gradient of :

If we think of as a vector with components , , and , we can also con-
sider the formal cross product of with the vector field as follows:

Thus the easiest way to remember Definition 1 is by means of the symbolic expression

F � P i � Q j � R k � 3 P Q
R F � 3

curl F � ��R

�y
�

�Q

�z � i � ��P

�z
�

�R

�x � j � ��Q

�x
�

�P

�y � k

∇

∇ � i 
�

�x
� j 

�

�y
� k 

�

�z

f

∇ f � i
�f

�x
� j

�f

�y
� k

�f

�z
�

�f

�x
i �

�f

�y
j �

�f

�z
k

∇ ���x ���y ���z
∇ F

 � F � � i
�

�x

P

j
�

�y

Q

k
�

�z

R � � ��R

�y
�

�Q

�z � i � ��P

�z
�

�R

�x � j � ��Q

�x
�

�P

�y � k

� curl F

curl F � ∇ � F

1

2
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EXAMPLE 1 If , find .

SOLUTION Using Equation 2, we have

■

Recall that the gradient of a function of three variables is a vector field on and
so we can compute its curl. The following theorem says that the curl of a gradient vec-
tor field is .

THEOREM If is a function of three variables that has continuous second-
order partial derivatives, then

PROOF We have

by Clairaut’s Theorem. ■

Since a conservative vector field is one for which , Theorem 3 can be re -
phrased as follows:

If is conservative, then .

This gives us a way of verifying that a vector field is not conservative.

EXAMPLE 2 Show that the vector field is not
conservative.

SOLUTION In Example 1 we showed that

This shows that and so, by Theorem 3, is not conservative. ■

F�x, y, z� � xz i � xyz j � y 2 k curl F

curl F � ∇ � F � � i
�

�x

xz

j
�

�y

xyz

k
�

�z

�y 2 �
� � �

�y
��y 2 � �

�

�z
�xyz�� i � � �

�x
��y 2 � �

�

�z
�xz�� j � � �

�x
�xyz� �

�

�y
�xz�� k

� ��2y � xy� i � �0 � x� j � �yz � 0� k � �y�2 � x� i � x j � yz k

f � 3

0

f

curl� f � � 0

curl� f � �  � � f � � �
i
�

�x

�f

�x

j
�

�y

�f

�y

k
�

�z

�f

�z
�

� � �2f

�y �z
�

�2f

�z �y� i � � �2f

�z �x
�

�2f

�x �z� j � � �2f

�x �y
�

�2f

�y �x� k

� 0 i � 0 j � 0 k � 0

F � ∇ f

F curl F � 0

F�x, y, z� � xz i � xyz j � y 2 k

curl F � �y�2 � x� i � x j � yz k

3

V

Fcurl F � 0
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■ Most computer algebra systems 
have commands that compute the 
curl and divergence of vector fields. If
you have access to a CAS, use these
commands to check the answers to the
examples and exercises in this section.

■ Notice the similarity to what we
know from Section 10.4: for
every three-dimensional vector .a

a � a � 0

■ Compare this with Exercise 25 in 
Section 13.3.
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The converse of Theorem 3 is not true in general, but the following theorem says
the converse is true if is defined everywhere. (More generally it is true if the domain
is simply-connected, that is, “has no hole.”) Theorem 4 is the three-dimensional ver-
sion of Theorem 13.3.6. Its proof requires Stokes’ Theorem and is sketched at the end
of Section 13.8.

THEOREM If is a vector field defined on all of whose component
functions have continuous partial derivatives and , then is a con-
servative vector field.

EXAMPLE 3
(a) Show that

is a conservative vector field.
(b) Find a function such that .

SOLUTION
(a) We compute the curl of :

Since and the domain of is , is a conservative vector field by 
Theorem 4.

(b) The technique for finding was given in Section 13.3. We have

Integrating with respect to , we obtain

Differentiating with respect to , we get , so com-
parison with gives . Thus and

Then gives . Therefore

■

The reason for the name curl is that the curl vector is associated with rotations. One
connection is explained in Exercise 35. Another occurs when represents the veloc-
ity field in fluid flow (see Example 3 in Section 13.1). Particles near (x, y, ) in the fluid
tend to rotate about the axis that points in the direction of and the length

F

F � 3

curl F � 0 F

F�x, y, z� � y 2z3 i � 2xyz3 j � 3xy 2z2 k

f F �  f

V

4

F

curl F �  � F � � i
�

�x

y 2z 3

j
�

�y

2xyz 3

k
�

�z

3xy 2z 2 �
� �6xyz2 � 6xyz2 � i � �3y 2z2 � 3y 2z2 � j � �2yz3 � 2yz3 � k � 0

curl F � 0 F � 3 F

f

fx�x, y, z� � y 2z3

fy�x, y, z� � 2xyz3

fz�x, y, z� � 3xy 2z2

x

f �x, y, z� � xy 2z3 � t�y, z�

y fy�x, y, z� � 2xyz3 � ty�y, z�
ty�y, z� � 0 t�y, z� � h�z�

fz�x, y, z� � 3xy 2z2 � h��z�

h��z� � 0

f �x, y, z� � xy 2z3 � K

5

6

7

8

5

8
6

7

F
z

curl F�x, y, z�
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of this curl vector is a measure of how quickly the particles move around the axis (see
Figure 1). If at a point , then the fluid is free from rotations at and is
called irro tational at . In other words, there is no whirlpool or eddy at P. If

, then a tiny paddle wheel moves with the fluid but doesn’t rotate about its
axis. If , the paddle wheel rotates about its axis. We give a more detailed
explanation in Section 13.8 as a consequence of Stokes’ Theorem.

DIVERGENCE

If is a vector field on and , , and exist,
then the divergence of is the function of three variables defined by

Observe that is a vector field but is a scalar field. In terms of the gradient
operator , the divergence of can be written sym-
bolically as the dot product of and :

EXAMPLE 4 If , find .

SOLUTION By the definition of divergence (Equation 9 or 10) we have

■

If is a vector field on , then is also a vector field on . As such, we can
compute its divergence. The next theorem shows that the result is 0.

THEOREM If is a vector field on and , , and
have continuous second-order partial derivatives, then

PROOF Using the definitions of divergence and curl, we have

because the terms cancel in pairs by Clairaut’s Theorem. ■

curl F � 0 P P F
P

curl F � 0
curl F � 0

F � P i � Q j � R k � 3 �P��x �Q��y �R��z
F

div F �
�P

�x
�

�Q

�y
�

�R

�z

curl F div F
 � ����x� i � ����y� j � ����z� k F

9

 F

div F �  � F

F�x, y, z� � xz i � xyz j � y 2 k div F

div F �  � F �
�

�x
�xz� �

�

�y
�xyz� �

�

�z
��y 2 � � z � xz

F � 3 curl F � 3

F � P i � Q j � R k � 3 P Q
R

div curl F � 0

div curl F �  � � � F�

�
�

�x � �R

�y
�

�Q

�z � �
�

�y � �P

�z
�

�R

�x � �
�

�z � �Q

�x
�

�P

�y �
�

�2R

�x �y
�

�2Q

�x �z
�

�2P

�y �z
�

�2R

�y �x
�

�2Q

�z �x
�

�2P

�z �y

10

11

� 0
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FIGURE 1

(x, y, z)

curl F(x, y, z)

■ Note the analogy with the scalar
triple product: .a � �a � b� � 0
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EXAMPLE 5 Show that the vector field can’t be 
written as the curl of another vector field, that is, .

SOLUTION In Example 4 we showed that

and therefore . If it were true that , then Theorem 11 would
give

which contradicts . Therefore is not the curl of another vector field. ■

Again, the reason for the name divergence can be understood in the context of fluid
flow. If is the velocity of a fluid (or gas), then represents the
net rate of change (with respect to time) of the mass of fluid (or gas) flowing from 
the point per unit volume. In other words, measures the ten-
dency of the fluid to diverge from the point . If , then is said to be 
incompressible.

Another differential operator occurs when we compute the divergence of a gradi-
ent vector field . If is a function of three variables, we have

and this expression occurs so often that we abbreviate it as . The operator

is called the Laplace operator because of its relation to Laplace’s equation

We can also apply the Laplace operator to a vector field

in terms of its components:

VECTOR FORMS OF GREEN’S THEOREM

The curl and divergence operators allow us to rewrite Green’s Theorem in versions
that will be useful in our later work. We suppose that the plane region , its boundary
curve , and the functions and satisfy the hypotheses of Green’s Theorem. Then
we consider the vector field . Its line integral is

F�x, y, z� � xz i � xyz j � y 2 k
F � curl G

div F � z � xz

div F � 0 F � curl G

div F � div curl G � 0

div F � 0 F

F�x, y, z� div F�x, y, z�

�x, y, z� div F�x, y, z�
�x, y, z� div F � 0 F

V

 f f

div� f � �  � � f � �
�2f

�x 2 �
�2f

�y 2 �
�2f

�z2

 2 f

 2 �  � 

 2 f �
�2f

�x 2 �
�2f

�y 2 �
�2f

�z2 � 0

 2

F � P i � Q j � R k

 2F �  2P i �  2Q j �  2R k

D
C P Q

F � P i � Q j

�y
C

F � dr � �y
C

P dx � Q dy
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■ The reason for this interpretation of
will be explained at the end of

Section 13.9 as a consequence of the
Divergence Theorem.

div F
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and, regarding as a vector field on with third component , we have

Therefore

and we can now rewrite the equation in Green’s Theorem in the vector form

Equation 12 expresses the line integral of the tangential component of along
as the double integral of the vertical component of over the region enclosed
by . We now derive a similar formula involving the normal component of .

If is given by the vector equation

then the unit tangent vector (see Section 10.7) is

You can verify that the outward unit normal vector to is given by

(See Figure 2.) Then, from Equation 13.2.3, we have

by Green’s Theorem. But the integrand in this double integral is just the divergence
of . So we have a second vector form of Green’s Theorem.

0�3F

curl F � � i
�

�x

P�x, y�

j
�

�y

Q�x, y�

k
�

�z

0 � � ��Q

�x
�

�P

�y � k

�curl F� � k � � �Q

�x
�

�P

�y � k � k �
�Q

�x
�

�P

�y

�y
C

F � dr � yy
D

�curl F� � k dA12

CF
Dcurl F

FC
C

a 	 t 	 br�t� � x�t� i � y�t� j

T�t� �
x��t�

� r��t� � i �
y��t�

� r��t� � j

C

n�t� �
y��t�

� r��t� � i �
x��t�

� r��t� � j

�y
C

F � n ds � y
b

a
�F � n��t� � r��t� � dt

� y
b

a
�P�x�t�, y�t�� y��t�

� r��t� � �
Q�x�t�, y�t�� x��t�

� r��t� � � � r��t� � dt

� y
b

a
P�x�t�, y�t�� y��t� dt � Q�x�t�, y�t�� x��t� dt

� y
C

P dy � Q dx � yy
D

� �P

�x
�

�Q

�y � dA

F
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FIGURE 2

0

y

x

D

C

r(t) n(t)

T(t)
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13.5 EXERCISES

1–7 ■ Find (a) the curl and (b) the divergence of the vector
field.

1.

2.

3.

4.

5.

6.

7.

8 –9 ■ The vector field F is shown in the -plane and looks the
same in all other horizontal planes. (In other words, F is inde -
pen dent of and its -component is 0.)
(a) Is div F positive, negative, or zero? Explain.
(b) Determine whether curl . If not, in which direction

does curl F point?
8. 9.

10. Let be a scalar field and a vector field. State whether 
each expression is meaningful. If not, explain why. If so,
state whether it is a scalar field or a vector field.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) ( j)

(k) ( l)

F�x, y, z� � �x � yz� i � �y � xz� j � �z � xy� k

F�x, y, z� � xy 2z3 i � x 3yz2 j � x 2y 3z k

F�x, y, z� � xye z i � yze x k

F�x, y, z� � sin yz i � sin zx j � sin xy k

F�x, y, z� �
1

sx 2 � y 2 � z2 
�x i � y j � z k�

F�x, y, z� � e xy sin z j � y tan�1�x�z� k

F�x, y, z� � �e x sin y, e y sin z , e z sin x �

xy

zz

F � 0

y

x0

y

x0

Ff

grad fcurl f

curl�grad f �div F

grad�div F�grad F

grad�div f �div�grad f �
div�div F�curl�curl F�
div�curl�grad f ���grad f � � �div F�

11–16 ■ Determine whether or not the vector field is conserva-
tive. If it is conservative, find a function such that .

11.

12.

13.

14.

15.

16.

17. Is there a vector field on such that
? Explain.

18. Is there a vector field on such that
? Explain.

19. Show that any vector field of the form

where , , are differentiable functions, is irrotational.

20. Show that any vector field of the form

is incompressible.

21–27 ■ Prove the identity, assuming that the appropriate partial
derivatives exist and are continuous. If is a scalar field and ,

are vector fields, then , , and are defined by

21. div

22. curl

F�x, y, z� � xyz 2 i � x 2yz2 j � x 2y 2z k

F�x, y, z� � 3xy 2z2 i � 2x 2yz3 j � 3x 2y 2z2 k

F�x, y, z� � i � sin z j � y cos z k

F�x, y, z� � e yz i � xze yz j � xye yz k

F�x, y, z� � e x sin yz i � ze x cos yz j � ye x cos yz k

G � 3

curl G � �x sin y, cos y, z � xy�

G � 3

curl G � �xyz, �y 2z, yz2 �

F�x, y, z� � f �x� i � t�y� j � h�z� k

f t h

F�x, y, z� � f �y, z� i � t�x, z� j � h�x, y� k

f F
G f F F � G F � G

� f F��x, y, z� � f �x, y, z� F�x, y, z�

�F � G��x, y, z� � F�x, y, z� � G�x, y, z�

�F � G��x, y, z� � F�x, y, z� � G�x, y, z�

�F � G� � div F � div G

�F � G� � curl F � curl G

F � ∇ ff

F�x, y, z� � y 2z3 i � 2xyz3 j � 3xy 2z2 k

This version says that the line integral of the normal component of along is equal
to the double integral of the divergence of over the region enclosed by .

F C
F D C

�y
C

F � n ds � yy
D

div F�x, y� dA13
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34. Use Green’s first identity to show that if is harmonic 
on and if on the boundary curve then

. (Assume the same hypotheses as in 
Exercise 31.)

35. This exercise demonstrates a connection between the curl 
vector and rotations. Let be a rigid body rotating about
the -axis. The rotation can be described by the vector

, where is the angular speed of , that is, the tan-
gential speed of any point in divided by the distance
from the axis of rotation. Let be the position
vector of .
(a) By considering the angle in the figure, show that the

velocity field of is given by .
(b) Show that .
(c) Show that .

36. Maxwell’s equations relating the electric field and mag-
netic field as they vary with time in a region containing
no charge and no current can be stated as follows:

where is the speed of light. Use these equations to prove
the following:

(a)

(b)

(c) [Hint: Use Exercise 27.]

(d)

v � ��y i � � x j
curl v � 2w

0

¨

P

d
B

w

v

z

y

x

E
H

div E � 0 div H � 0

curl E � �
1

c

�H
�t

curl H �
1

c

�E
�t

c

� � �� � E� � �
1

c 2

�2 E
�t 2

� � �� � H� � �
1

c 2

�2 H
�t 2

� 2E �
1

c 2

�2 E
�t 2

� 2H �
1

c 2

�2 H
�t 2

w � �k
z

B�
dBP

r � �x, y, z �
P

�
v � w � rB

B

xxD � �f �2 dA � 0
C,f �x, y� � 0D,

f23. div

24. curl

25. div

26. div

27.

28 –30 ■ Let and .

28. Verify each identity.
(a) (b)
(c)

29. Verify each identity.
(a) (b)
(c) (d)

30. If , find div . Is there a value of for which 
div ?

31. Use Green’s Theorem in the form of Equation 13 to prove
Green’s first identity:

where and satisfy the hypotheses of Green’s Theorem 
and the appropriate partial derivatives of and exist and
are continuous. (The quantity occurs in the
line integral. This is the directional derivative in the direc-
tion of the normal vector and is called the normal deriva-
tive of .)

32. Use Green’s first identity (Exercise 31) to prove Green’s 
second identity:

where and satisfy the hypotheses of Green’s Theorem 
and the appropriate partial derivatives of and exist and
are continuous.

33. Recall from Section 11.3 that a function is called
harmonic on if it satisfies Laplace’s equation, that is,

on . Use Green’s first identity (with the same
hypotheses as in Exercise 31) to show that if is harmonic
on then . Here is the normal deriva-
tive of defined in Exercise 31.

div F � F � � f� f F� � f

curl F � �� f � � F� f F� � f

�F � G� � G � curl F � F � curl G

�� f � �t� � 0

curl�curl F� � grad�div F� � � 2F

r � � r �r � x i � y j � z k

� � �rr� � 4r� � r � 3
� 2r 3 � 12r

� � r � 0�r � r�r

� ln r � r�r 2��1�r� � �r�r 3

pFF � r�r p

F � 0

yy
D

f �2
t dA � �y

C
f ��t� � n ds � yy

D

� f � �t dA

CD
tf

�t � n � Dn t

n
t

yy
D

� f �2
t � t�2f � dA � �y

C
� f �t � t� f � � n ds

CD
tf

t

D
D�2

t � 0
t

Dn tx�C Dn t ds � 0D,
t
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13.6 PARAMETRIC SURFACES AND THEIR AREAS
So far we have considered special types of surfaces: cylinders, quadric surfaces,
graphs of functions of two variables, and level surfaces of functions of three variables.
Here we use vector functions to describe more general surfaces, called parametric
surfaces, and compute their areas. Then we take the general surface area formula and
see how it applies to special surfaces.

PARAMETRIC SURFACES

In much the same way that we describe a space curve by a vector function of a
single parameter , we can describe a surface by a vector function of two param -
 eters and . We suppose that

is a vector-valued function defined on a region in the -plane. So x, y, and , the
component functions of r, are functions of the two variables u and with domain D.
The set of all points in such that

and varies throughout , is called a parametric surface and Equations 2 are
called parametric equations of . Each choice of u and gives a point on S; by mak-
ing all choices, we get all of S. In other words, the surface is traced out by the tip of
the position vector as moves throughout the region . (See Figure 1.)

EXAMPLE 1 Identify and sketch the surface with vector equation

SOLUTION The parametric equations for this surface are

So for any point on the surface, we have

This means that vertical cross-sections parallel to the -plane (that is, with y con-
stant) are all circles with radius 2. Since and no restriction is placed on , the
surface is a circular cylinder with radius 2 whose axis is the y-axis (see Figure 2). ■

In Example 1 we placed no restrictions on the parameters u and and so we got the
entire cylinder. If, for instance, we restrict u and by writing the parameter domain as

then and we get the quarter-cylinder with length 3 illustrated
in Figure 3.

r�t�
t r�u, v�

u v

1 r�u, v� � x�u, v� i � y�u, v� j � z�u, v� k

D uv z
v

�x, y, z� � 3

2 x � x�u, v� y � y�u, v� z � z�u, v�

�u, v� D S
S v

S
r�u, v� �u, v� D

r�u, v� � 2 cos u i � v j � 2 sin u k

x � 2 cos u y � v z � 2 sin u

�x, y, z�

x 2 � z2 � 4 cos2u � 4 sin2u � 4

xz
y � v v

v
v

0 	 u 	 
�2 0 	 v 	 3

x � 0, z � 0, 0 	 y 	 3,
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A parametric surface
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If a parametric surface S is given by a vector function , then there are two
useful families of curves that lie on S, one family with u constant and the other with

constant. These families correspond to vertical and horizontal lines in the -plane.
If we keep constant by putting becomes a vector function of
the single parameter and defines a curve lying on . (See Figure 4.)

Similarly, if we keep constant by putting given by
that lies on . We call these curves grid curves. (In Example 1, for instance,

the grid curves obtained by letting u be constant are horizontal lines whereas the grid
curves with constant are circles.) In fact, when a computer graphs a parametric sur-
face, it usually depicts the surface by plotting these grid curves, as we see in the fol-
lowing example.

EXAMPLE 2 Use a computer algebra system to graph the surface

Which grid curves have u constant? Which have constant?

SOLUTION We graph the portion of the surface with parameter domain
in Figure 5. It has the appearance of a spiral tube. To

identify the grid curves, we write the corresponding parametric equations:

If is constant, then and are constant, so the parametric equations 
resemble those of the helix in Example 4 in Section 10.7. So the grid curves with
constant are the spiral curves in Figure 5. We deduce that the grid curves with u
constant must be the curves that look like circles in the figure. Further evidence for
this assertion is that if u is kept constant, , then the equation
shows that the -values vary from to . ■

In Examples 1 and 2 we were given a vector equation and asked to graph the cor-
responding parametric surface. In the following examples, however, we are given the
more challenging problem of finding a vector function to represent a given surface. In
the rest of this chapter we will often need to do exactly that.

EXAMPLE 3 Find a vector function that represents the plane that passes through the 
point with position vector and that contains two nonparallel vectors a and b.

r�u, v�

v uv
u u � u0, then r�u0, v�

v C1 S

FIGURE 4

r

0

D

√=√¸

(u¸, √¸)

u=u¸

u

√

0

z

y

x

C¡

C™

v v � v0, we get a curve C2

r�u, v0 � S

v

r�u, v� � ��2 � sin v� cos u, �2 � sin v� sin u, u � cos v �

v

0 	 u 	 4
, 0 	 v 	 2


x � �2 � sin v� cos u y � �2 � sin v� sin u z � u � cos v

v sin v cos v
v

u � u0 z � u0 � cos v
z u0 � 1 u0 � 1

P0 r0
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Visual 13.6 shows animated ver-
sions of Figures 4 and 5, with moving
grid curves, for several parametric
surfaces.

TEC

FIGURE 5
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y
x

u constant

√ constant
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SOLUTION If P is any point in the plane, we can get from to by moving a
certain distance in the direction of and another distance in the direction of . So
there are scalars u and such that A . (Figure 6 illustrates how this
works, by means of the Parallelogram Law, for the case where and are positive.
See also Exercise 36 in Section 10.2.) If r is the position vector of P, then

A A

So the vector equation of the plane can be written as

where u and are real numbers.
If we write , , , and , 

then we can write the parametric equations of the plane through the point
as follows:

■

EXAMPLE 4 Find a parametric representation of the sphere .

SOLUTION The sphere has a simple representation in spherical coordinates,
so let’s choose the angles and in spherical coordinates as the parameters (see
Section 12.7). Then, putting in the equations for conversion from spherical to
rectangular coordinates (Equations 12.7.1), we obtain

as the parametric equations of the sphere. The corresponding vector equation is

We have and , so the parameter domain is the rectangle
. The grid curves with constant are the circles of constant

latitude (including the equator). The grid curves with constant are the meridians
(semi circles), which connect the north and south poles (see Figure 7). ■

NOTE We saw in Example 4 that the grid curves for a sphere are curves of con-
stant latitude and longitude. For a general parametric surface we are really making a
map and the grid curves are similar to lines of latitude and longitude. Describing a
point on a parametric surface (like the one in Figure 5) by giving specific values of
and is like giving the latitude and longitude of a point.

v P0 P � ua � vb
u v

r � OP0 � P0P � r0 � ua � vb

r�u, v� � r0 � ua � vb

v
r � �x, y, z � r0 � �x0, y0, z0 � a � �a1, a2, a3 � b � �b1, b2, b3 �

�x0, y0, z0 �

x � x0 � ua1 � vb1 y � y0 � ua2 � vb2 z � z0 � ua3 � vb3

x 2 � y 2 � z2 � a 2

� � a
 �

� � a

x � a sin  cos � y � a sin  sin � z � a cos 

r�, �� � a sin  cos � i � a sin  sin � j � a cos  k

0 	  	 
 0 	 � 	 2

D � �0, 
	 � �0, 2
	 

�

V

u
v

FIGURE 9FIGURE 8

a b
P0 PP

ua
P¸

√b

a

b

FIGURE 6

FIGURE 7

0

2π

¨

˙

k

c π

D

˙=c

¨=k

r

˙=c

¨=k

0

z

x

y

■ One of the uses of parametric sur -
faces is in computer graphics. Figure 8
shows the result of trying to graph the
sphere by solving the
equation for and graphing the top and
bottom hemispheres separately. Part of
the sphere appears to be missing
because of the rectangular grid system
used by the computer. The much better
picture in Figure 9 was produced by a
computer using the parametric equa-
tions found in Example 4.

z
x 2 � y 2 � z2 � 1
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EXAMPLE 5 Find a parametric representation for the cylinder 

SOLUTION The cylinder has a simple representation in cylindrical coordi-
nates, so we choose as parameters and in cylindrical coordinates. Then the para-
metric equations of the cylinder are

where and . ■

Parametric representations (also called parametrizations) of surfaces are not unique.
The next example shows two ways to parametrize a cone.

EXAMPLE 6 Find a parametric representation for the surface , that
is, the top half of the cone .

SOLUTION 1 If we regard x and y as parameters, then the parametric equations are
simply

and the vector equation is

SOLUTION 2 Another representation results from choosing as parameters the polar
coordinates r and . A point on the cone satisfies , ,
and . So a vector equation for the cone is

where and . ■

As in the first solution of Example 6, a general surface given as the graph of a 
function of and , that is, with an equation of the form , can always be
regarded as a parametric surface by taking and as parameters and writing the para-
metric equations as

SURFACES OF REVOLUTION

Surfaces of revolution can be represented parametrically and thus graphed using a
computer. For instance, let’s consider the surface obtained by rotating the curve

, , about the -axis, where . Let be the angle of rotation
as shown in Figure 10. If is a point on , then

Therefore we take and as parameters and regard Equations 3 as parametric equa-
tions of . The parameter domain is given by , .

EXAMPLE 7 Find parametric equations for the surface generated by rotating the
curve , , about the -axis. Use these equations to graph the
surface of revolution.

r � 2
� z

x � 2 cos � y � 2 sin � z � z

0 	 � 	 2
 0 	 z 	 1

z � 2sx 2 � y 2 

z2 � 4x 2 � 4y 2

x � x y � y z � 2sx 2 � y 2 

r�x, y� � x i � y j � 2sx 2 � y 2 k

� �x, y, z� x � r cos � y � r sin �
z � 2sx 2 � y 2 � 2r

r�r, �� � r cos � i � r sin � j � 2r k

r � 0 0 	 � 	 2


x y z � f �x, y�
x y

x � x y � y z � f �x, y�

S
y � f �x� a 	 x 	 b x f �x� � 0 �

x 2 � y 2 � 4 0 	 z 	 1

�x, y, z� S

x � x y � f �x� cos � z � f �x� sin �

x �
S a 	 x 	 b 0 	 � 	 2


y � sin x 0 	 x 	 2
 x

3

800 CHAPTER 13 VECTOR CALCULUS

Unless otherwise noted, all content on this page is © Cengage Learning.

■ For some purposes the parametric
representations in Solutions 1 and 2 are
equally good, but Solution 2 might be
preferable in certain situations. If we are
interested only in the part of the cone
that lies below the plane , for
instance, all we have to do in Solution 2
is change the parameter domain to

0 	 � 	 2
0 	 r 	
1
2

z � 1

In Module 13.6 you can 
investigate several families 
of parametric surfaces.

TEC

FIGURE 10
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(x, y, z)

y=ƒ
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SOLUTION From Equations 3, the parametric equations are

and the parameter domain is , . Using a computer to plot
these equations and rotate the image, we obtain the graph in Figure 11. ■

We can adapt Equations 3 to represent a surface obtained through revolution about
the - or -axis. (See Exercise 26.)

TANGENT PLANES

We now find the tangent plane to a parametric surface traced out by a vector function

at a point with position vector . If we keep constant by putting ,
then becomes a vector function of the single parameter and defines a grid
curve lying on . (See Figure 12.) The tangent vector to at is obtained by tak-
ing the partial derivative of with respect to :

Similarly, if we keep constant by putting , we get a grid curve given by
that lies on , and its tangent vector at is

If is not , then the surface is called smooth (it has no “corners”). For a
smooth surface, the tangent plane is the plane that contains the tangent vectors and

, and the vector is a normal vector to the tangent plane.

EXAMPLE 8 Find the tangent plane to the surface with parametric equations
, , at the point .

SOLUTION We first compute the tangent vectors:

x � x y � sin x cos � z � sin x sin �

0 	 x 	 2
 0 	 � 	 2


y z

S

r�u, v� � x�u, v� i � y�u, v� j � z�u, v� k

P0 r�u0, v0 � u u � u0

r�u0, v� v
C1 S C1 P0

r v

rv �
�x

�v
�u0, v0 � i �

�y

�v
�u0, v0 � j �

�z

�v
�u0, v0 � k4

C2v � v0v
P0Sr�u, v0 �

ru �
�x

�u
�u0, v0 � i �

�y

�u
�u0, v0 � j �

�z

�u
�u0, v0 � k5

S0ru � rv

ru

ru � rvrv

V

�1, 1, 3�z � u � 2vy � v2x � u 2

ru �
�x

�u
i �

�y

�u
j �

�z

�u
k � 2u i � k

0 u

D

√=√¸

(u¸, √¸)
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√
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Thus a normal vector to the tangent plane is

Notice that the point corresponds to the parameter values and ,
so the normal vector there is

Therefore an equation of the tangent plane at is

or ■

SURFACE AREA

Now we define the surface area of a general parametric surface given by Equation 1.
For simplicity we start by considering a surface whose parameter domain is a rect-
angle, and we divide it into subrectangles . Let’s choose to be the lower left
corner of . (See Figure 14.) 

The part of the surface that corresponds to is called a patch and has the point
with position vector as one of its corners. Let

be the tangent vectors at as given by Equations 5 and 4.
Figure 15(a) shows how the two edges of the patch that meet at can be approx-

imated by vectors. These vectors, in turn, can be approximated by the vectors
and because partial derivatives can be approximated by difference quotients. So
we approximate by the parallelogram determined by the vectors and .
This parallelogram is shown in Figure 15(b) and lies in the tangent plane to at .
The area of this parallelogram is

and so an approximation to the area of is

Our intuition tells us that this approximation gets better as we increase the number of
subrectangles and their dimensions decrease, and we recognize the double sum as a
Riemann sum for the double integral . This motivates the following
definition.

�1, 1, 3�

�2�x � 1� � 4�y � 1� � 4�z � 3� � 0

x � 2y � 2z � 3 � 0

D
Rij �ui*, vj*�

Rij

The image of the
subrectangle Rij is the patch Sij.

FIGURE 14
0
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√
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*
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Î√j
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Sij S Rij

Pij r�ui*, vj*�
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Pij

Pij

�ui ru*
�vj rv*

Sij �ui ru* �vj rv*
S Pij

� ��ui ru*� � ��vj rv*� � � � ru* � rv* � �ui �vj
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n

j�1
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xx
D � ru � rv � du dv
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�2 i � 4 j � 4 k

ru � rv � � i
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j
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FIGURE 15
Approximating a patch
by a parallelogram
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■ Figure 13 shows the self-intersecting
surface in Example 8 and its tangent
plane at .�1, 1, 3�

FIGURE 13
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DEFINITION If a smooth parametric surface is given by the equation

and is covered just once as ranges throughout the parameter domain ,
then the surface area of is

where

EXAMPLE 9 Find the surface area of a sphere of radius .

SOLUTION In Example 4 we found the parametric representation

where the parameter domain is

We first compute the cross product of the tangent vectors:

Thus

since for . Therefore, by Definition 6, the area of the sphere is

■

SURFACE AREA OF THE GRAPH OF A FUNCTION

For the special case of a surface with equation , where lies in and
has continuous partial derivatives, we take and as parameters. The parametric

equations are

S

r�u, v� � x�u, v� i � y�u, v� j � z�u, v� k �u, v� � D

S �u, v� D
S

A�S � � yy
D

� ru � rv � dA

ru �
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�u
i �

�y

�u
j �

�z

�u
k rv �

�x

�v
i �

�y

�v
j �

�z

�v
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x � a sin  cos � y � a sin  sin � z � a cos 

D � ��, �� � 0 	  	 
, 0 	 � 	 2
�
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i
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�
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��

j
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�

�y

��

k
�z

�

�z

��
� � � i

�a cos  cos �

�a sin  sin �

j
a cos  sin �

a sin  cos �

k
�a sin 

0 �
� a 2 sin2 cos � i � a 2 sin2 sin � j � a 2 sin  cos  k

� r � r� � � sa 4 sin4 cos 2� � a 4 sin 4 sin2� � a 4 sin2 cos 2

� sa 4 sin4 � a 4 sin 2 cos2 � a 2
ssin2 � a 2 sin 
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FIGURE 16

999999

x

z

y3

D

so

and

Thus we have

and the surface area formula in Definition 6 becomes

EXAMPLE 10 Find the area of the part of the paraboloid that lies
under the plane .

SOLUTION The plane intersects the paraboloid in the circle , .
Therefore the given surface lies above the disk with center the origin and radius 3.
(See Figure 16.) Using Formula 9, we have

Converting to polar coordinates, we obtain

■

In Exercise 57 you are asked to show that the area of a surface of revolution given
by is

This means that our definition of surface area is consistent with the surface area
formula from single variable calculus (Formula 7.5.4).

rx � i �  �f

�x� k ry � j �  �f

�y� k
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0
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0
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�y
� � �

�f

�x
i �
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�  �f
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�  �z
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A�S � � yy
D

�1 �  �z

�x�2

�  �z

�y�2 

dA

z � x 2 � y 2

z � 9

x 2 � y 2 � 9 z � 9
D

A � yy
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0
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3

0
s1 � 4r 2 r dr d� � y
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0
d� y

3

0
rs1 � 4r 2 dr
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 ( 1
8 ) 2

3 �1 � 4r 2 �3�2 ]0
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6
 (37s37 � 1)

A � 2
 y
b

a
f �x�s1 � � f ��x�	2 dx

7

8

9

V
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6

3

■ Notice the similarity between the sur-
face area formula in Equation 9 and the
arc length formula

from Section 7.4.

L � y
b

a
�1 � dy

dx�2

dx
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13.6 EXERCISES

1–4 ■ Identify the surface with the given vector equation.

1.

2. ,  

3.

4.

; 5–10 ■ Use a computer to graph the parametric surface. Get a
printout and indicate on it which grid curves have constant
and which have constant.

5.

6. ,  

7. ,  
, 

8. ,
, 

9. ,  ,  ,
, 

10. ,  ,  ,
, 

11–14 ■ Match the equations with the graphs labeled I–IV
and give reasons for your answers. Determine which families
of grid curves have constant and which have constant.

11.

12. ,  

13.

14. ,
,

r�u, v� � �u � v� i � �3 � v� j � �1 � 4u � 5v� k

r�u, v� � 2 sin u i � 3 cos u j � v k 0 	 v 	 2

r�s, t� � �s, t, t 2 � s 2 �

r�s, t� � �s sin 2t, s 2, s cos 2t �

u
v

r�u, v� � �u 2, v 2, u � v � , 
�1 	 u 	 1, �1 	 v 	 1

r�u, v� � �u, v 3, �v �
�2 	 u 	 2, �2 	 v 	 2

r�u, v� � �u cos v, u sin v, u5 �
�1 	 u 	 1 0 	 v 	 2


r�u, v� � �u, sin�u � v�, sin v �
�
 	 u 	 
 �
 	 v 	 


x � sin v y � cos u sin 4v z � sin 2u sin 4v
0 	 u 	 2
 �
�2 	 v 	 
�2

x � sin u y � cos u sin  v z � sin v
0 	 u 	 2
 0 	 v 	 2


u v

r�u, v� � u cos v i � u sin v j � v k

r�u, v� � u cos v i � u sin v j � sin u k �
 	 u 	 


r�u, v� � sin v i � cos u sin 2v j � sin u sin 2v k

x � �1 � u��3 � cos v� cos 4
u

y � �1 � u��3 � cos v� sin 4
u

z � 3u � �1 � u� sin v

yx

zI II

y

z

x

15–22 ■ Find a parametric representation for the surface.

15. The plane through the origin that contains the vectors
and 

16. The plane that passes through the point and
contains the vectors and 

17. The part of the hyperboloid that lies
in front of the -plane

18. The part of the ellipsoid that lies to
the left of the -plane

19. The part of the sphere that lies above
the cone 

20. The part of the sphere that lies
between the planes and 

21. The part of the cylinder that lies between
the planes and 

22. The part of the plane that lies inside the 
cylinder 

23–24 ■ Use a computer algebra system to produce a graph
that looks like the given one.

23. 24.

; 25. Find parametric equations for the surface obtained by 
rotating the curve , , about the -axis
and use them to graph the surface.

III

x

y

z IV z

x y

i � j j � k

�0, �1, 5�
�2, 1, 4 � ��3, 2, 5 �

4x 2 � 4y2 � z2 � 4
yz

x 2 � 2y 2 � 3z2 � 1
xz

x 2 � y 2 � z2 � 4
z � sx 2 � y 2 

x 2 � y 2 � z 2 � 16
z � �2 z � 2

y 2 � z 2 � 16
x � 0 x � 5

z � x � 3
x 2 � y 2 � 1

3

0

_3

_3

0

0 5

z

y

x

0

_1
_1

1

0

1

0

_1

z

y x

y � e �x 0 	 x 	 3 x
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42. The helicoid (or spiral ramp) with vector equation
, ,

43. The surface with parametric equations , ,
, 

44. The part of the sphere that lies inside
the cylinder , where 

45. If the equation of a surface is , where
, and you know that and ,

what can you say about ?

46–47 ■ Find the area of the surface correct to four decimal
places by expressing the area in terms of a single integral and
using your calculator to estimate the integral.

46. The part of the surface that lies inside
the cylinder 

47. The part of the surface that lies above the 
disk 

48. Find, to four decimal places, the area of the part of the
surface that lies above the square

. Illustrate by graphing this part of the 
surface.

49. (a) Use the Midpoint Rule for double integrals (see Sec -
tion 12.1) with six squares to estimate the area of the 
surface , , .

(b) Use a computer algebra system to approximate the
surface area in part (a) to four decimal places.
Compare with the answer to part (a).

50. Find the area of the surface with vector equation
, ,

. State your answer correct to four decimal
places.

51. Find the exact area of the surface ,
, .

52. (a) Set up, but do not evaluate, a double integral for the
area of the surface with parametric equations

, , , ,
.

(b) Eliminate the parameters to show that the surface is an
elliptic paraboloid and set up another double integral
for the surface area.

; (c) Use the parametric equations in part (a) with
and to graph the surface.

(d) For the case , , use a computer algebra sys-
tem to find the surface area correct to four decimal
places.

53. (a) Show that the parametric equations ,
, , ,

, represent an ellipsoid.

r�u, v� � u cos v i � u sin v j � v k 0 � u � 1
0 � v � �

x � uv y � u � v
z � u � v u 2 � v2 � 1

x 2 � y2 � z 2 � b2

x 2 � y 2 � a 2 0 � a � b

S z � f �x, y�
x 2 � y 2 � R 2 � fx � � 1 � fy � � 1

A�S�

z � cos�x 2 � y 2�
x 2 � y 2 � 1

z � e�x2�y2

x 2 � y 2 � 4

z � �1 � x 2 ���1 � y 2 �
� x � � � y � � 1

z � 1��1 � x 2 � y 2� 0 � x � 6 0 � y � 4

r�u, v� � �cos3u cos3v, sin3u cos3v, sin3v � 0 � u � �
0 � v � 2�

z � 1 � 2x � 3y � 4y 2

1 � x � 4 0 � y � 1

x � au cos v y � bu sin v z � u 2 0 � u � 2
0 � v � 2�

a � 2
b � 3

a � 2 b � 3

CAS

CAS

CAS

CAS

CAS

x � a sin u cos v
0 � u � �z � c cos uy � b sin u sin v

0 � v � 2�

; 26. Find parametric equations for the surface obtained by 
rotating the curve , , about the 
-axis and use them to graph the surface.

; 27. (a) What happens to the spiral tube in Example 2 (see Fig -
ure 5) if we replace by and by ?

(b) What happens if we replace by and 
by ?

; 28. The surface with parametric equations

where and , is called a Möbius
strip. Graph this surface with several viewpoints. What is
unusual about it?

29–32 ■ Find an equation of the tangent plane to the given
parametric surface at the specified point. If you have software
that graphs parametric surfaces, use a computer to graph the
surface and the tangent plane.

29. ,  ,  ;  

30. ,  ,  ;  

31. ;  , 

32. ;  
, 

33–44 ■ Find the area of the surface.

33. The part of the plane that lies in the 
first octant

34. The part of the plane with vector equation
that is given by

35. The part of the plane that lies inside 
the cylinder 

36. The part of the cone that lies between the
plane and the cylinder 

37. The surface , , 

38. The part of the surface that lies above
the triangle with vertices , , and 

39. The part of the surface that lies within the 
cylinder 

40. The part of the paraboloid that lies inside 
the cylinder 

41. The part of the surface that lies between the
planes , , , and 

x � 4y 2 � y 4 �2 � y � 2
y

cos u sin u sin u cos u
cos u cos 2u sin u

sin 2u

x � 2 cos � � r cos���2�

y � 2 sin � � r cos���2�

z � r sin���2�

�
1
2 � r �

1
2 0 � � � 2�

x � u � v y � 3u2 z � u � v �2, 3, 0�

x � u2 � 1 y � v 3 � 1 z � u � v �5, 2, 3�

r�u, v� � u cos v i � u sin v j � v k u � 1 v � ��3

r�u, v� � sin u i � cos u sin v j � sin v k
u � ��6 v � ��6

3x � 2y � z � 6

r�u, v� � �u � v, 2 � 3u, 1 � u � v �
0 � u � 2, �1 � v � 1

x � 2y � 3z � 1
x 2 � y2 � 3

z � sx 2 � y2 

y � x y � x 2

z � 2
3 �x 3�2 � y 3�2 � 0 � x � 1 0 � y � 1

z � 1 � 3x � 2y 2

�0, 0� �0, 1� �2, 1�

z � xy
x 2 � y 2 � 1

x � y 2 � z2

y 2 � z2 � 9

y � 4x � z2

z � 1z � 0x � 1x � 0
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decrease) and define the surface integral of f over the surface S as

Notice the analogy with the definition of a line integral (13.2.2) and also the analogy
with the definition of a double integral (12.1.5).

To evaluate the surface integral in Equation 1 we approximate the patch area
by the area of an approximating parallelogram in the tangent plane. In our discussion
of surface area in Section 13.6 we made the approximation

where

are the tangent vectors at a corner of . If the components are continuous and and
are nonzero and nonparallel in the interior of D, it can be shown from Definition 1,

even when D is not a rectangle, that

This should be compared with the formula for a line integral:

Observe also that

Formula 2 allows us to compute a surface integral by converting it into a double
integral over the parameter domain . When using this formula, remember that

is evaluated by writing , , and in the for-
mula for .

EXAMPLE 1 Compute the surface integral , where is the unit sphere
.

SOLUTION As in Example 4 in Section 13.6, we use the parametric representation

that is,

As in Example 9 in Section 13.6, we can compute that

yy
S

f �x, y, z� dS � lim
max 	ui , 	v j l 0

�
m

i�1
�
n

j�1
f �Pij*� 	Sij

	Sij

	Sij 	 � ru 
 rv � 	ui 	vj

ru �
�x

�u
i �

�y

�u
j �

�z

�u
k rv �

�x

�v
i �

�y

�v
j �

�z

�v
k

Sij ru

rv

yy
S

f �x, y, z� dS � yy
D

f �r�u, v��� ru 
 rv � dA

y
C

f �x, y, z� ds � y
b

a
f �r�t��� r��t� � dt

yy
S

1 dS � yy
D

� ru 
 rv � dA � A�S�

D
f �r�u, v�� x � x�u, v� y � y�u, v� z � z�u, v�

f �x, y, z�

xx
S

x 2 dS S
x 2 � y 2 � z2 � 1

x � sin  cos � y � sin  sin � z � cos  0 �  � � 0 � � � 2�

r�, �� � sin  cos � i � sin  sin � j � cos  k

� r 
 r� � � sin 

1

2
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The value of the surface integral does
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Therefore, by Formula 2,

■

Surface integrals have applications similar to those for the integrals we have previ-
ously considered. For example, if a thin sheet (say, of aluminum foil) has the shape of
a surface and the density (mass per unit area) at the point is , then
the total mass of the sheet is

and the center of mass is , where

Moments of inertia can also be defined as before (see Exercise 39).

GRAPHS

Any surface with equation can be regarded as a parametric surface with
parametric equations

and so we have

Thus

and

Therefore, in this case, Formula 2 becomes

Similar formulas apply when it is more convenient to project onto the -plane
or -plane. For instance, if is a surface with equation and is its pro-

yy
S

x 2 dS � yy
D

�sin  cos ��2 � r 
 r� � dA � y
2�

0
y

�

0
sin2 cos2� sin  d d�

� y
2�

0
cos2� d� y

�

0
sin3 d � y

2�

0

1
2 �1 � cos 2�� d� y

�

0
�sin  � sin  cos2� d

� 1
2 [� �

1
2 sin 2�]0

2�[�cos  �
1
3 cos3]0

�
�

4�

3

S �x, y, z� ��x, y, z�

m � yy
S

��x, y, z� dS

�x, y, z �

x �
1

m yy
S

x��x, y, z� dS y �
1

m yy
S

y��x, y, z� dS z �
1

m yy
S

z��x, y, z� dS

S z � t�x, y�

x � x y � y z � t�x, y�

rx � i � 
 �t

�x� k ry � j � 
 �t

�y� k

rx 
 ry � �
�t

�x
i �

�t

�y
j � k

� rx 
 ry � � �
 �z

�x�2

� 
 �z

�y�2

� 1

yy
S

f �x, y, z� dS � yy
D

f (x, y, t�x, y�)�
 �z

�x�2

� 
 �z

�y�2

� 1 dA

S yz
xz S y � h�x, z� D

3

4
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jection on the -plane, then

EXAMPLE 2 Evaluate , where is the surface , ,
. (See Figure 2.)

SOLUTION Since

Formula 4 gives

■

If is a piecewise-smooth surface, that is, a finite union of smooth surfaces ,
that intersect only along their boundaries, then the surface integral of over

is defined by

EXAMPLE 3 Evaluate , where is the surface whose sides are given
by the cylinder , whose bottom is the disk in the plane

, and whose top is the part of the plane that lies above .

SOLUTION The surface is shown in Figure 3. (We have changed the usual posi-
tion of the axes to get a better look at .) For we use and as parameters (see
Example 5 in Section 13.6) and write its parametric equations as

where

Therefore

and

xz

yy
S

f �x, y, z� dS � yy
D

f (x, h�x, z�, z)�
 �y

�x�2

� 
 �y

�z�2

� 1 dA

xx
S

y dS S z � x � y 2 0 � x � 1
0 � y � 2

�z

�x
� 1 and

�z

�y
� 2y

yy
S

y dS � yy
D

y�1 � 
 �z

�x�2

� 
 �z

�y�2 

dA

� y
1

0
y

2

0
ys1 � 1 � 4y 2 dy dx

� y
1

0
dx s2 y

2

0
ys1 � 2y 2 dy

� s2 (1
4 ) 2

3 �1 � 2y 2 �3�2]0
2

�
13s2

3

S S1

S2, . . . , Sn f
S

yy
S

f �x, y, z� dS � yy
S1

f �x, y, z� dS � � � � � yy
Sn

f �x, y, z� dS

xxS z dS S S1

x 2 � y 2 � 1 S2 x 2 � y 2 � 1
z � 0 S3 z � 1 � x S2

S
S S1 � z

x � cos � y � sin � z � z

0 � � � 2� and 0 � z � 1 � x � 1 � cos �

r� 
 rz � � i
�sin �

0

j
cos �

0

k
0

1 � � cos � i � sin � j

� r� 
 rz � � scos2� � sin2� � 1

V

FIGURE 2

y

x

z

FIGURE 3
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Thus the surface integral over is

Since lies in the plane , we have

The top surface lies above the unit disk and is part of the plane . So,
taking in Formula 4 and converting to polar coordinates, we have

Therefore

■

ORIENTED SURFACES

To define surface integrals of vector fields, we need to rule out nonorientable surfaces
such as the Möbius strip shown in Figure 4. [It is named after the German geometer
August Möbius (1790–1868).] You can construct one for yourself by taking a long
rectangular strip of paper, giving it a half-twist, and taping the short edges together as
in Fig ure 5. If an ant were to crawl along the Möbius strip starting at a point , it
would end up on the “other side” of the strip (that is, with its upper side pointing in
the opposite direction). Then, if the ant continued to crawl in the same direction, 
it would end up back at the same point without ever having crossed an edge. (If 
you have constructed a Möbius strip, try drawing a pencil line down the middle.)
Therefore a Möbius strip really has only one side. You can graph the Möbius strip
using the parametric equations in Exercise 28 in Section 13.6.

S1

yy
S1

z dS � yy
D

z � r� 
 rz � dA � y
2�

0
y

1�cos
 
�

0
z dz d� � y

2�

0

1
2 �1 � cos ��2 d�

� 1
2 y

2�

0
1 � 2 cos � �

1
2 �1 � cos 2��� d� � 1

2 [ 3
2 � � 2 sin � �

1
4 sin 2�]0

2�
�

3�

2

S2 z � 0

yy
S2

z dS � yy
S2

0 dS � 0

S3 D z � 1 � x
t�x, y� � 1 � x

yy
S3

z dS � yy
D

�1 � x��1 � 
 �z

�x�2

� 
 �z

�y�2 

dA

� y
2�

0
y

1

0
�1 � r cos ��s1 � 1 � 0 r dr d�

� s2 y
2�

0
y

1

0
�r � r 2 cos �� dr d�

� s2 y
2�

0
( 1

2 �
1
3 cos �) d� � s2� �

2
�

sin �

3 �
0

2�

� s2 �

yy
S

z dS � yy
S1

z dS � yy
S2

z dS � yy
S3

z dS

�
3�

2
� 0 � s2 � � ( 3

2 � s2 )�

P

P

FIGURE 5
Constructing a Möbius strip
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FIGURE 4
A Möbius strip

P

Visual 13.7 shows a Möbius strip
with a normal vector that can be moved
along the surface.
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From now on we consider only orientable (two-sided) surfaces. We start with a sur-
face that has a tangent plane at every point on (except at any boundary
point). There are two unit normal vectors and at . (See Figure 6.) 

If it is possible to choose a unit normal vector at every such point so that
varies con tinuously over , then is called an oriented surface and the given choice

of provides with an orientation. There are two possible orientations for any ori-
entable surface (see Figure 7).

For a surface given as the graph of , we use Equation 3 to associate
with the surface a natural orientation given by the unit normal vector

Since the -component is positive, this gives the upward orientation of the surface.
If is a smooth orientable surface given in parametric form by a vector function 

, then it is automatically supplied with the orientation of the unit normal vector

and the opposite orientation is given by . For instance, in Example 4 in Sec -
tion 13.6 we found the parametric representation

for the sphere . Then in Example 9 in Section 13.6 we found that

and

So the orientation induced by is defined by the unit normal vector

Observe that points in the same direction as the position vector, that is, outward
from the sphere (see Figure 8). The opposite (inward) orientation would have been
obtained (see Figure 9) if we had reversed the order of the parameters because

.
For a closed surface, that is, a surface that is the boundary of a solid region , the 

convention is that the positive orientation is the one for which the normal vectors
point outward from , and inward-pointing normals give the negative orientation (see
Figures 8 and 9).

S �x, y, z� S
n1 n2 � �n1 �x, y, z�

n �x, y, z�
n S S

n S

FIGURE 7
The two orientations  
of an orientable surface
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j � k

�1 � 
 �t
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 �t

�y�2 

k
S

r�u, v�

n �
ru 
 rv

� ru 
 rv �
�n

r�, �� � a sin  cos � i � a sin  sin � j � a cos  k

x 2 � y 2 � z2 � a 2

r 
 r� � a 2 sin2 cos � i � a 2 sin2 sin � j � a 2 sin  cos  k

� r 
 r� � � a 2 sin 

r�, ��

n �
r 
 r�

� r 
 r� � � sin  cos � i � sin  sin � j � cos  k �
1

a
r�, ��

n

r� 
 r � �r 
 r�

E

E

5

6
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FIGURE 8
Positive orientation

FIGURE 9
Negative orientation
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SURFACE INTEGRALS OF VECTOR FIELDS

Suppose that is an oriented surface with unit normal vector , and imagine a fluid
with density and velocity field flowing through . (Think of as 
an imaginary surface that doesn’t impede the fluid flow, like a fishing net across a
stream.) Then the rate of flow (mass per unit time) per unit area is . If we divide
into small patches , as in Figure 10 (compare with Figure 1), then is nearly pla-
nar and so we can approximate the mass of fluid crossing in the direction of the
normal per unit time by the quantity

where , , and are evaluated at some point on . (Recall that the component of the
vector in the direction of the unit vector is .) By summing these quantities
and taking the limit we get, according to Definition 1, the surface integral of the func-
tion over :

and this is interpreted physically as the rate of flow through .
If we write , then is also a vector field on and the integral in Equation 7

becomes

A surface integral of this form occurs frequently in physics, even when is not ,
and is called the surface integral (or flux integral ) of over .

DEFINITION If is a continuous vector field defined on an oriented sur-
face with unit normal vector , then the surface integral of over S is

This integral is also called the flux of across .

In words, Definition 8 says that the surface integral of a vector field over is equal
to the surface integral of its normal component over (as previously defined).

If is given by a vector function , then is given by Equation 6, and from
Definition 8 and Equation 2 we have

where is the parameter domain. Thus we have

S n
��x, y, z� v�x, y, z� S S

�v S
Sij Sij

Sij

n

��v � n�A�Sij�

� v n Sij

�v n �v � n

�v � n S

yy
S

�v � n dS � yy
S

��x, y, z�v�x, y, z� � n�x, y, z� dS

S
F � �v F � 3

yy
S

F � n dS

F �v
F S

F
S n F

yy
S

F � dS � yy
S

F � n dS

F S

S
S

S r�u, v� n

yy
S

F � dS � yy
S

F �
ru 
 rv

� ru 
 rv � dS � yy
D

�F�r�u, v�� �
ru 
 rv

� ru 
 rv � �� ru 
 rv � dA

D

yy
S

F � dS � yy
D

F � �ru 
 rv � dA

7

8

9
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FIGURE 10

0

y

z

x

n
F=∏v

S

Sij

■ Compare Equation 9 to the similar 
expression for evaluating line integrals
of vector fields in Definition 13.2.13:

y
C

F � dr � y
b

a
F�r�t�� � r��t� dt
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EXAMPLE 4 Find the flux of the vector field across the
unit sphere .

SOLUTION As in Example 1, we use the parametric representation

Then

and, from Example 9 in Section 13.6,

Therefore

and, by Formula 9, the flux is

by the same calculation as in Example 1. ■

If, for instance, the vector field in Example 4 is a velocity field describing the flow
of a fluid with density 1, then the answer, , represents the rate of flow through the
unit sphere in units of mass per unit time.

In the case of a surface given by a graph , we can think of and as
parameters and use Equation 3 to write

Thus Formula 9 becomes

This formula assumes the upward orientation of ; for a downward orientation we
multiply by . Similar formulas can be worked out if is given by or

. (See Exercises 35 and 36.)

EXAMPLE 5 Evaluate , where and is the
boundary of the solid region enclosed by the paraboloid and the
plane .

F�x, y, z� � z i � y j � x k
x 2 � y 2 � z2 � 1

r�, �� � sin  cos � i � sin  sin � j � cos  k 0 �  � � 0 � � � 2�

F�r�, ��� � cos  i � sin  sin � j � sin  cos � k

r 
 r� � sin2 cos � i � sin2 sin � j � sin  cos  k

F�r�, ��� � �r 
 r� � � cos  sin2 cos � � sin3 sin2� � sin2 cos  cos �

yy
S

F � dS � yy
D

F � �r 
 r� � dA � y
2�

0
y

�

0
�2 sin2 cos  cos � � sin3 sin2�� d d�

� 2 y
�

0
sin2 cos  d y

2�

0
cos � d� � y

�

0
sin3 d y

2�

0
sin2� d�

� 0 � y
�

0
sin3 d y

2�

0
sin2� d� 
since y

2�

0
 cos � d� � 0�

�
4�

3

4��3

S z � t�x, y� x y

F � �rx 
 ry� � �P i � Q j � R k� � 
� �t

�x
i �

�t

�y
j � k�

yy
S

F � dS � yy
D


�P
�t

�x
� Q

�t

�y
� R� dA

S
�1 S y � h�x, z�

x � k�y, z�

xx
S

F � dS F�x, y, z� � y i � x j � z k S
E z � 1 � x 2 � y 2

V

10

z � 0

■ Figure 11 shows the vector field in
Example 4 at points on the unit sphere.

F

FIGURE 11
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SOLUTION consists of a parabolic top surface and a circular bottom surface .
(See Figure 12.) Since is a closed surface, we use the convention of positive 
(outward) orientation. This means that is oriented upward and we can use Equa-
tion 10 with being the projection of on the -plane, namely, the disk

. Since

on and

we have

The disk is oriented downward, so its unit normal vector is and we have

since on . Finally, we compute, by definition, as the sum of the
surface integrals of over the pieces and :

■

Although we motivated the surface integral of a vector field using the example of
fluid flow, this concept also arises in other physical situations. For instance, if is an
electric field (see Example 5 in Section 13.1), then the surface integral

is called the electric flux of through the surface . One of the important laws of
electrostatics is Gauss’s Law, which says that the net charge enclosed by a closed sur-
face is

where is a constant (called the permittivity of free space) that depends on the units
used. (In the SI system, .) Therefore, if the vector field

in Example 4 represents an electric field, we can conclude that the charge enclosed
by is .

Another application of surface integrals occurs in the study of heat flow. Suppose
the temperature at a point in a body is . Then the heat flow is defined 

S S1 S2

S
S1

D S1 xy
x 2 � y 2 � 1

P�x, y, z� � y Q�x, y, z� � x R�x, y, z� � z � 1 � x 2 � y 2

S1
�t

�x
� �2x

�t

�y
� �2y

yy
S1

F � dS � yy
D


�P
�t

�x
� Q

�t

�y
� R� dA � yy

D

�y��2x� � x��2y� � 1 � x 2 � y 2 � dA

� yy
D

�1 � 4xy � x 2 � y 2 � dA � y
2�

0
y

1

0
�1 � 4r 2 cos � sin � � r 2 � r dr d�

� y
2�

0
y

1

0
�r � r 3 � 4r 3 cos � sin �� dr d� � y

2�

0
( 1

4 � cos � sin �) d� � 1
4 �2�� � 0 �

�

2

S2 n � �k

yy
S2

F � dS � yy
S2

F � ��k� dS � yy
D

��z� dA � yy
D

0 dA � 0

z � 0 S2 xxS F � dS
F S1 S2

yy
S

F � dS � yy
S1

F � dS � yy
S2

F � dS �
�

2
� 0 �

�

2

E

yy
S

E � dS

E S

S

Q � �0 yy
S

E � dS

�0

�0 	 8.8542 
 10�12 C2�N�m2

F
S Q � 4��0�3

11

u�x, y, z��x, y, z�
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as the vector field

where is an experimentally determined constant called the conductivity of the sub-
stance. The rate of heat flow across the surface in the body is then given by the sur-
face integral

EXAMPLE 6 The temperature in a metal ball is proportional to the square of
the distance from the center of the ball. Find the rate of heat flow across a sphere
of radius with center at the center of the ball.

SOLUTION Taking the center of the ball to be at the origin, we have

where is the proportionality constant. Then the heat flow is

where is the conductivity of the metal. Instead of using the usual parametrization
of the sphere as in Example 4, we observe that the outward unit normal to the
sphere at the point is

and so

But on we have , so . Therefore the rate of 
heat flow across is

■

F � �K ∇u

K
S

yy
S

F � dS � �K yy
S

∇u � dS

V u
S

a

u�x, y, z� � C�x 2 � y 2 � z2 �

C

F�x, y, z� � �K ∇u � �KC�2x i � 2y j � 2z k�

K

x 2 � y 2 � z2 � a 2 �x, y, z�

n �
1

a
�x i � y j � z k�

F � n � �
2KC

a
�x 2 � y 2 � z2 �

S x 2 � y 2 � z2 � a 2 F � n � �2aKC
S

yy
S

F � dS � yy
S

F � n dS � �2aKC yy
S

dS

� �2aKCA�S� � �2aKC�4�a 2 � � �8KC�a 3

13.7 EXERCISES

1. Let be the boundary surface of the box enclosed by the
planes , , , , , and .
Approximate by using a Riemann sum as
in Defi ni tion 1, taking the patches to be the rectangles
that are the faces of the box and the points to be the
centers of the rectangles.

2. A surface consists of the cylinder ,
, together with its top and bottom disks.

Suppose you know that is a continuous function with 

Estimate the value of by using a Riemann
sum, taking the patches to be four quarter-cylinders and
the top and bottom disks.

S
x � 0 x � 2 y � 0 y � 4 z � 0 z � 6

xx
S

e�0.1�x�y�z� dS
Sij

S Pij*

S x 2 � y 2 � 1
�1 � z � 1

f

f ��1, 0, 0� � 2 f �0, �1, 0� � 3 f �0, 0, �1� � 4

xx
S

f �x, y, z� dS
Sij

3. Let be the hemisphere , and 
suppose is a continuous function with

, and . 
By dividing into four patches, estimate the value of

.

4. Suppose that , where is a 
function of one variable such that . Evaluate

, where is the sphere .

5–20 ■ Evaluate the surface integral.

5. ,
is the parallelogram with parametric equations ,

, , , 

H x 2 � y 2 � z2 � 50, z � 0
f f �3, 4, 5� � 7,

f �3, �4, 5� � 8, f ��3, 4, 5� � 9 f ��3, �4, 5� � 12
H

xxH f �x, y, z� dS

f �x, y, z� � t(sx 2 � y 2 � z 2 ) t

t�2� � �5
xxS f �x, y, z� dS S x 2 � y 2 � z2 � 4

xxS �x � y � z� dS
S x � u � v
y � u � v z � 1 � 2u � v 0 � u � 2 0 � v � 1

12280_ch13_ptg01_hr_816-825.qk_12280_ch13_ptg01_hr_816-825  12/15/11  2:51 PM  Page 816

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



22. ,
is the helicoid of Exercise 7 with upward orientation

23. ,  is the part of the 
para boloid that lies above the square

, and has upward orientation

24. ,
is the part of the cone between the planes

and with downward orientation

25. ,
is the part of the sphere in the first

octant, with orientation toward the origin

26. ,
is the hemisphere , , oriented in

the direction of the positive -axis

27. ,
consists of the paraboloid , , 

and the disk , 

28. ,  is the surface ,
, , with upward orientation

29. ,
is the cube with vertices 

30. ,
is the surface of the tetrahedron with vertices ,

, , and 

31. ,  is the boundary of the
solid half-cylinder , 

32. Find the exact value of , where is the surface
, , .

33. Find the value of correct to four decimal
places, where is the part of the paraboloid

that lies above the -plane.

34. Find the flux of 

across the part of the cylinder that lies above 
the -plane and between the planes and
with upward orientation. Illustrate by using a computer
algebra system to draw the cylinder and the vector field on
the same screen.

35. Find a formula for similar to Formula 10 for the
case where is given by and is the unit nor-
mal that points toward the left.

36. Find a formula for similar to Formula 10 for the
case where is given by and is the unit nor-
mal that points forward (that is, toward the viewer when
the axes are drawn in the usual way).

F�x, y, z� � z i � y j � x k
S

F�x, y, z� � xy i � yz j � zx k S
z � 4 � x 2 � y 2

0 � x � 1, 0 � y � 1

F�x, y, z� � �x i � y j � z 3 k
S z � sx 2 � y 2 

z � 1 z � 3

F�x, y, z� � x i � z j � y k
S x 2 � y 2 � z 2 � 4

F�x, y, z� � xz i � x j � y k
S x 2 � y 2 � z 2 � 25 y � 0

y

F�x, y, z� � y j � z k
S y � x 2 � z2 0 � y � 1

x 2 � z2 � 1 y � 1

F�x, y, z� � xy i � 4x 2 j � yz k S z � xe y

0 � x � 1 0 � y � 1

F�x, y, z� � x i � 2y j � 3z k
S ��1, �1, �1�

F�x, y, z� � y i � �z � y� j � x k
S �0, 0, 0�
�1, 0, 0� �0, 1, 0� �0, 0, 1�

F�x, y, z� � x 2 i � y 2 j � z2 k S
0 � z � s1 � y 2 0 � x � 2

xxS x 2 yz dS S
z � xy 0 � x � 1 0 � y � 1

xxS x 2 y 2z2 dS
S

z � 3 � 2x 2 � y 2 xy

F�x, y, z� � sin�xyz� i � x 2 y j � z2e x�5 k

4y 2 � z2 � 4
xy x � �2 x � 2

xxS F � dS
S y � h�x, z� n

xxS F � dS
S x � k�y, z� n

CAS

CAS

CAS

6. ,
is the cone with parametric equations , 

, , , 

7. , is the helicoid with vector equation
, , 

8. ,
is the surface with vector equation

, 

9. ,
is the part of the plane that lies above

the rectangle 

10. ,
is the part of the plane that lies in the

first octant

11. ,
is the triangular region with vertices , , 

and 

12. ,

is the surface , , 

13. ,
is the part of the cone that lies between the

planes and 

14. ,
is the surface , , 

15. ,
is the part of the paraboloid that lies inside

the cylinder 

16. ,
is the part of the sphere that lies 

inside the cylinder and above the -plane

17. ,
is the hemisphere , 

18. ,
is the boundary of the region enclosed by the cylinder

and the planes and 

19. ,
is the part of the cylinder that lies between

the planes and in the first octant

20. ,
is the part of the cylinder between the planes

and , together with its top and bottom disks

21–31 ■ Evaluate the surface integral for the given
vector field and the oriented surface . In other words, find 
the flux of across . For closed surfaces, use the positive 
(outward) orientation.

21. ,  
is the parallelogram of Exercise 5 with upward orientation

xxS xyz dS
S x � u cos v
y � u sin v z � u 0 � u � 1 0 � v � ��2

xxS y dS S
r�u, v� � �u cos v, u sin v, v � 0 � u � 1 0 � v � �

xxS �x 2 � y 2� dS
S
r�u, v� � �2uv, u 2 � v2, u 2 � v2 � u 2 � v2 � 1

xxS x 2yz dS
S z � 1 � 2x � 3y

�0, 3� � �0, 2�

xxS xz dS
S 2x � 2y � z � 4

xxS x dS
S �1, 0, 0� �0, �2, 0�

�0, 0, 4�

xxS y dS

S z � 2
3 �x 3�2 � y 3�2 � 0 � x � 1 0 � y � 1

xxS x 2z2 dS
S z2 � x 2 � y 2

z � 1 z � 3

xx
S

z dS
S x � y � 2z 2 0 � y � 1 0 � z � 1

xxS y dS
S y � x 2 � z2

x 2 � z2 � 4

xxS y2 dS
S x 2 � y2 � z2 � 4

x 2 � y2 � 1 xy

xxS �x 2z � y 2z� dS
S x 2 � y 2 � z2 � 4 z � 0

xxS xz dS
S
y2 � z2 � 9 x � 0 x � y � 5

xxS �z � x 2 y� dS
S y2 � z2 � 1

x � 0 x � 3

xxS �x 2 � y 2 � z2 � dS
S x 2 � y2 � 9
z � 0 z � 2

xxS F � dS
F S

SF

F�x, y, z� � ze xy i � 3ze xy j � xy k
S
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of flow outward through the hemisphere ,
.

43. Use Gauss’s Law to find the charge contained in the solid
hemisphere , , if the electric field is 

44. Use Gauss’s Law to find the charge enclosed by the cube 
with vertices if the electric field is 

45. The temperature at the point in a substance with
conductivity is . Find the
rate of heat flow inward across the cylindrical surface

, .

46. The temperature at a point in a ball with conductivity is
inversely proportional to the distance from the center of the
ball. Find the rate of heat flow across a sphere of radius
with center at the center of the ball.

47. Let be an inverse square field, that is, for
some constant , where . Show that the
flux of across a sphere with center the origin is inde-
pendent of the radius of .

x 2 � y 2 � z 2 � 9
z � 0

x 2 � y 2 � z2 � a 2 z � 0

E�x, y, z� � x i � y j � 2z k

��1, �1, �1�

E�x, y, z� � x i � y j � z k

�x, y, z�
K � 6.5 u�x, y, z� � 2y 2 � 2z2

y 2 � z2 � 6 0 � x � 4

K

S a

F F�r� � cr�	 r 	3

c r � x i � y j � z k
F S

S

37. Find the center of mass of the hemisphere
, if it has constant density.

38. Find the mass of a thin funnel in the shape of a cone
, , if its density function is

.

39. (a) Give an integral expression for the moment of inertia
about the -axis of a thin sheet in the shape of a surface

if the density function is .
(b) Find the moment of inertia about the -axis of the funnel

in Exercise 38.

40. Let be the part of the sphere that lies
above the plane . If has constant density , find 
(a) the center of mass and (b) the moment of inertia about 
the -axis.

41. A fluid has density and flows with velocity
, where and are measured in

meters and the components of in meters per second. Find
the rate of flow outward through the cylinder ,

.

42. Seawater has density and flows in a velocity
field , where and are measured in meters
and the components of in meters per second. Find the rate

x 2 � y 2 � z2 � a 2, z � 0

z � sx 2 � y 2 1 � z � 4
	�x, y, z� � 10 � z

Iz

z
S 	

z

S x 2 � y2 � z2 � 25
z � 4 S k

z

870 kg�m3

v � z i � y 2 j � x 2 k x, y, z
v

x 2 � y 2 � 4
0 � z � 1

1025 kg�m3

zy,x,v � y i � x j
v

13.8 STOKES’ THEOREM
Stokes’ Theorem can be regarded as a higher-dimensional version of Green’s Theo -
rem. Whereas Green’s Theorem relates a double integral over a plane region to a
line integral around its plane boundary curve, Stokes’ Theorem relates a surface inte-
gral over a surface to a line integral around the boundary curve of (which is a space
curve). Figure 1 shows an oriented surface with unit normal vector . The orientation
of induces the positive orientation of the boundary curve C shown in the figure.
This means that if you walk in the positive direction around with your head point-
ing in the direction of , then the surface will always be on your left.

STOKES’ THEOREM Let be an oriented piecewise-smooth surface that is
bounded by a simple, closed, piecewise-smooth boundary curve with posi-
tive orientation. Let be a vector field whose components have continuous
partial derivatives on an open region in that contains . Then

Since

D

S S
n

S
C

n

S
C

F
� 3 S

y
C

F � dr � yy
S

curl F � dS

y
C

F � dr � y
C

F � T ds and yy
S

curl F � dS � yy
S

curl F � n dS
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Stokes’ Theorem says that the line integral around the boundary curve of of the tan-
gential component of is equal to the surface integral of the normal component of the
curl of .

The positively oriented boundary curve of the oriented surface is often written as 
, so Stokes’ Theorem can be expressed as

There is an analogy among Stokes’ Theorem, Green’s Theorem, and the Fundamental
Theorem of Calculus. As before, there is an integral involving derivatives on the left
side of Equation 1 (recall that is a sort of derivative of ) and the right side
involves the values of only on the boundary of .

In fact, in the special case where the surface is flat and lies in the -plane with
upward orientation, the unit normal is , the surface integral becomes a double inte-
gral, and Stokes’ Theorem becomes

This is precisely the vector form of Green’s Theorem given in Equation 13.5.12. Thus
we see that Green’s Theorem is really a special case of Stokes’ Theorem.

Although Stokes’ Theorem is too difficult for us to prove in its full generality, we
can give a proof when is a graph and , , and are well behaved.

PROOF OF A SPECIAL CASE OF STOKES’ THEOREM We assume that the equa-
tion of is , where has continuous second-order partial
derivatives and is a simple plane region whose boundary curve corresponds 
to . If the orientation of is upward, then the positive orientation of corre-
sponds to the positive orientation of . (See Figure 2.) We are also given that

, where the partial derivatives of , , and are continuous.
Since is a graph of a function, we can apply Formula 13.7.10 with replaced 

by . The result is

where the partial derivatives of , , and are evaluated at . If

is a parametric representation of , then a parametric representation of is

S
F

F
S


S

yy
S

curl F � dS � y

S

F � dr1

Fcurl F
SF

xyS
k

y
C

F � dr � yy
S

curl F � dS � yy
S

�curl F� � k dA

CSFS

t�x, y� � Dz � t�x, y�,S

C
C1D

CS
C1

RQPF � P i � Q j � R k
FS

curl F

yy
S

curl F � dS2

� yy
D


��
R


y
�


Q


z � 
z


x
� �
P


z
�


R


x � 
z


y
� �
Q


x
�


P


y � dA

�x, y, t�x, y��RQP

a � t � by � y�t�x � x�t�

CC1

a � t � bz � t�x�t�, y�t��y � y�t�x � x�t�
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■ STOKES
Stokes’ Theorem is named after the Irish
mathematical physicist Sir George Stokes
(1819–1903). Stokes was a professor at
Cambridge University (in fact he held the
same position as Newton, Lucasian Profes-
sor of Mathematics) and was especially
noted for his studies of fluid flow and
light. What we call Stokes’ Theorem was
actually discovered by the Scottish physi-
cist Sir William Thomson (1824–1907,
known as Lord Kelvin). Stokes learned of
this theorem in a letter from Thomson in
1850 and asked students to prove it on an
examination at Cambridge University in
1854. We don’t know if any of those stu-
dents was able to do so.
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This allows us, with the aid of the Chain Rule, to evaluate the line integral as follows:

where we have used Green’s Theorem in the last step. Then, using the Chain Rule
again and remembering that , , and are functions of , , and and that is
itself a function of and , we get

Four of the terms in this double integral cancel and the remaining six terms can be
arranged to coincide with the right side of Equation 2. Therefore

■

EXAMPLE 1 Evaluate , where and 
is the curve of intersection of the plane and the cylinder .
(Orient to be counterclockwise when viewed from above.)

SOLUTION The curve (an ellipse) is shown in Figure 3. Although
could be evaluated directly, it’s easier to use Stokes’ Theorem. We first compute

Although there are many surfaces with boundary C, the most convenient choice 
is the elliptical region S in the plane that is bounded by . If we 
orient upward, then has the induced positive orientation. The projection of 

on the -plane is the disk and so using Equation 13.7.10 with
, we have

■
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EXAMPLE 2 Use Stokes’ Theorem to compute the integral , where
and is the part of the sphere that 

lies inside the cylinder and above the -plane. (See Figure 4.)

SOLUTION To find the boundary curve we solve the equations
and . Subtracting, we get and so (since ). Thus
is the circle given by the equations , . A vector equation of is

so

Also, we have

Therefore, by Stokes’ Theorem,

■

Note that in Example 2 we computed a surface integral simply by knowing the val-
ues of on the boundary curve . This means that if we have another oriented surface
with the same boundary curve , then we get exactly the same value for the surface
integral!

In general, if and are oriented surfaces with the same oriented boundary curve
and both satisfy the hypotheses of Stokes’ Theorem, then

This fact is useful when it is difficult to integrate over one surface but easy to integrate
over the other.

We now use Stokes’ Theorem to throw some light on the meaning of the curl vec-
tor. Suppose that is an oriented closed curve and represents the velocity field in
fluid flow. Consider the line integral

and recall that is the component of in the direction of the unit tangent vector
. This means that the closer the direction of is to the direction of , the larger the

value of . Thus is a measure of the tendency of the fluid to move around
and is called the circulation of around . (See Figure 5.)
Now let be a point in the fluid and let be a small disk with radius

and center Then ( for all points on because is
con tinuous. Thus, by Stokes’ Theorem, we get the following approximation to the cir-

xxS curl F � dSV

x 2 � y 2 � z2 � 4SF�x, y, z� � xz i � yz j � xy k
xyx 2 � y 2 � 1

x 2 � y 2 � z2 � 4C
Cz � 0z � s3z2 � 3x 2 � y 2 � 1

Cz � s3x 2 � y 2 � 1

0 � t � 2�r�t� � cos t i � sin t j � s3 k

r�t� � �sin t i � cos t j

F�r�t�� � s3 cos t i � s3 sin t j � cos t sin t k

yy
S

curl F � dS � y
C

F � dr � y
2�

0
F�r�t�� � r�t� dt

� y
2�

0
(�s3 cos t sin t � s3 sin t cos t) dt

� s3 y
2�

0
0 dt � 0

CF
C

S2S1

C

yy
S1

curl F � dS � y
C

F � dr � yy
S2

curl F � dS3

vC

y
C

v � dr � y
C

v � T ds

T
vv � T

Tv
x

C
v � drv � T

CvC
aSaP0�x0, y0, z0 �

curl FSaPcurl F��P� � �curl F��P0�P0.
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culation around the boundary circle :

This approximation becomes better as and we have

Equation 4 gives the relationship between the curl and the circulation. It shows that
is a measure of the rotating effect of the fluid about the axis n. The curling

effect is greatest about the axis parallel to .
Finally, we mention that Stokes’ Theorem can be used to prove Theorem 13.5.4

(which states that if on all of , then is conservative). From our 
pre vious work (Theorems 13.3.3 and 13.3.4), we know that is conservative if

for every closed path . Given , suppose we can find an orientable sur-
face whose boundary is . (This can be done, but the proof requires advanced tech-
niques.) Then Stokes’ Theorem gives

A curve that is not simple can be broken into a number of simple curves, and the 
integrals around these simple curves are all 0. Adding these integrals, we obtain

for any closed curve .

� yy
Sa

curl v�P0 � � n�P0 � dS � curl v�P0 � � n�P0 ��a 2

a l 0

curl v�P0 � � n�P0 � � lim
a l 0

1

�a 2 y
Ca

v � dr

curl v � n
curl v

curl F � 0 � 3 F
F

xC F � dr � 0 C C
S C

y
Ca

v � dr � yy
Sa

curl v � dS � yy
Sa

curl v � n dS

Ca

y
C

F � dr � yy
S

curl F � dS � yy
S

0 � dS � 0

xC F � dr � 0 C

4

FIGURE 6

curl v

■ Imagine a tiny paddle wheel placed in
the fluid at a point , as in Figure 6; the
paddle wheel rotates fastest when its
axis is parallel to .curl v

P

13.8 EXERCISES

1–4 ■ Use Stokes’ Theorem to evaluate .

1. ,
is the part of the paraboloid that lies inside

the cylinder , oriented upward

2. ,
is the hemisphere , , oriented 

upward

3. ,
consists of the top and the four sides (but not the bottom) 

of the cube with vertices , oriented outward

4. ,
is the cone , , oriented in the

direction of the positive -axis

xx
S

curl F � dS

F�x, y, z� � x 2z2 i � y2z2 j � xyz k
S z � x 2 � y2

x 2 � y2 � 4

F�x, y, z� � 2y cos z i � e x sin z j � xe y k
S x 2 � y 2 � z2 � 9 z � 0

F�x, y, z� � xyz i � xy j � x 2 yz k
S

��1, �1, �1�

F�x, y, z� � tan�1�x 2 yz2� i � x 2y j � x 2z2 k
S x � sy 2 � z2 0 � x � 2

x

5–8 ■ Use Stokes’ Theorem to evaluate . In each case
is oriented counterclockwise as viewed from above.

5. ,  
is the triangle with vertices (1, 0, 0), (0, 1, 0), and

(0, 0, 1)

6. ,  
is the boundary of the part of the plane 

in the first octant

7. ,
is the circle 

8. ,  is the curve of intersec-
tion of the plane and the cylinder 

C

F�x, y, z� � i � �x � yz� j � (xy � sz ) k
C 3x � 2y � z � 1

F�x, y, z� � yz i � 2xz j � e xy k
C x 2 � y 2 � 16, z � 5

F�x, y, z� � xy i � 2z j � 3y k C
x � z � 5 x 2 � y 2 � 9

F�x, y, z� � �x � y 2 � i � �y � z2 � j � �z � x 2 � k

x
C

F � dr
C
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14. Let be a simple closed smooth curve that lies in the
plane . Show that the line integral

depends only on the area of the region enclosed by and
not on the shape of or its location in the plane.

15. A particle moves along line segments from the origin to
the points , , , and back to the ori-
gin under the influence of the force field 

Find the work done.

16. Evaluate 

where is the curve ,
.  [Hint: Observe that lies on the surface

.]

17. If is a sphere and satisfies the hypotheses of Stokes’ 
Theorem, show that .

18. Suppose and satisfy the hypotheses of Stokes’ Theo-
rem and , have continuous second-order partial deriva-
tives. Use Exercises 22 and 24 in Section 13.5 to show the
following.

(a)

(b)

(c)

xxS curl F � dS � 0

S C
f t

xC � f �t� � dr � xxS �� f � �t� � dS

xC � f � f � � dr � 0

xC � f �t � t� f � � dr � 0

�1, 0, 0� �1, 2, 1� �0, 2, 1�

F�x, y, z� � z 2 i � 2xy j � 4y 2 k

xC �y � sin x� dx � �z2 � cos y� dy � x 3 dz

r�t� � �sin t, cos t, sin 2t �C
C0 � t � 2�

z � 2xy

FS

C
x � y � z � 1

xC z dx � 2x dy � 3y dz

C
C

9. (a) Use Stokes’ Theorem to evaluate , where

and is the curve of intersection of the plane
and the cylinder oriented

counterclockwise as viewed from above.

; (b) Graph both the plane and the cylinder with domains 
chosen so that you can see the curve and the surface 
that you used in part (a).

; (c) Find parametric equations for and use them to graph .

10. (a) Use Stokes’ Theorem to evaluate , where
and is the curve of

intersection of the hyperbolic paraboloid
and the cylinder oriented counterclockwise
as viewed from above.

; (b) Graph both the hyperbolic paraboloid and the cylinder
with domains chosen so that you can see the curve
and the surface that you used in part (a).

; (c) Find parametric equations for and use them to graph .

11–13 ■ Verify that Stokes’ Theorem is true for the given vec-
tor field and surface .

11. ,
is the cone , , oriented downward

12. ,
is the part of the paraboloid that lies

above the plane , oriented upward

13. ,
is the hemisphere , , oriented in

the direction of the positive -axis

xC F � dr

F�x, y, z� � x 2z i � xy 2 j � z2 k

C
x � y � z � 1 x 2 � y 2 � 9

C

C C

xC F � dr
F�x, y, z� � x 2 y i �

1
3 x 3 j � xy k C

z � y 2 � x 2

x 2 � y 2 � 1

C

C C

F S

F�x, y, z� � �y i � x j � 2 k
S z 2 � x 2 � y2 0 � z � 4

F�x, y, z� � �2yz i � y j � 3x k
S z � 5 � x 2 � y 2

z � 1

F�x, y, z� � y i � z j � x k
S x 2 � y 2 � z 2 � 1 y � 0

y
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13.9 THE DIVERGENCE THEOREM
In Section 13.5 we rewrote Green’s Theorem in a vector version as

where is the positively oriented boundary curve of the plane region . If we were
seeking to extend this theorem to vector fields on , we might make the guess that

where is the boundary surface of the solid region . It turns out that Equation 1 is
true, under appropriate hypotheses, and is called the Divergence Theorem. Notice its
similarity to Green’s Theorem and Stokes’ Theorem in that it relates the integral of a

y
C

F � n ds � yy
D

div F�x, y� dA

C D
� 3

yy
S

F � n dS � yyy
E

div F�x, y, z� dV

S E

1
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derivative of a function ( in this case) over a region to the integral of the original
function over the boundary of the region.

At this stage you may wish to review the various types of regions over which we
were able to evaluate triple integrals in Section 12.5. We state and prove the Diver -
gence Theorem for regions that are simultaneously of types 1, 2, and 3 and we call
such regions simple solid regions. (For instance, regions bounded by ellipsoids or
rectangular boxes are simple solid regions.) The boundary of is a closed surface, and
we use the convention, introduced in Section 13.7, that the positive orientation is out-
ward; that is, the unit normal vector is directed outward from .

THE DIVERGENCE THEOREM Let be a simple solid region and let S be the
boundary surface of E, given with positive (outward) orientation. Let be a
vector field whose component functions have continuous partial derivatives on
an open region that contains . Then

Thus the Divergence Theorem states that, under the given conditions, the flux of
across the boundary surface of is equal to the triple integral of the divergence of 

over .

PROOF Let . Then

so

If is the unit outward normal of , then the surface integral on the left side of the
Divergence Theorem is

Therefore, to prove the Divergence Theorem, it suffices to prove the following three
equations:

F

E

E

n E

E
F

E

yy
S

F � dS � yyy
E

div F dV

F
E

F E

F � P i � Q j � R k

div F �

P


x
�


Q


y
�


R


z

yyy
E

div F dV � yyy
E


P


x
dV � yyy

E


Q


y
dV � yyy

E


R


z
dV

n S

div F

yy
S

F � dS � yy
S

F � n dS � yy
S

�P i � Q j � R k� � n dS

� yy
S

P i � n dS � yy
S

Q j � n dS � yy
S

R k � n dS

yy
S

P i � n dS � yyy
E


P


x
dV

yy
S

Q j � n dS � yyy
E


Q


y
dV

yy
S

R k � n dS � yyy
E


R


z
dV

2

3

4

■ The Divergence Theorem is sometimes
called Gauss’s Theorem after the great 
German mathematician Karl Friedrich
Gauss (1777–1855), who discovered 
this theorem during his investigation of
electrostatics. In Eastern Europe the 
Divergence Theorem is known as Ostro-
gradsky’s Theorem after the Russian
mathe  matician Mikhail Ostrogradsky
(1801–1862), who published this result 
in 1826.
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To prove Equation 4 we use the fact that is a type 1 region:

where is the projection of onto the -plane. By Equation 12.5.6, we have

and therefore, by the Fundamental Theorem of Calculus,

The boundary surface consists of three pieces: the bottom surface , the top
surface , and possibly a vertical surface , which lies above the boundary curve
of D. (See Figure 1. It might happen that doesn’t appear, as in the case of a
sphere.) Notice that on we have , because k is vertical and n is horizon-
tal, and so

Thus, regardless of whether there is a vertical surface, we can write

The equation of is , , and the outward normal points
upward, so from Equation 13.7.10 (with replaced by ) we have

On we have , but here the outward normal points downward, so 
we multiply by :

Therefore Equation 6 gives

Comparison with Equation 5 shows that

Equations 2 and 3 are proved in a similar manner using the expressions for as a
type 2 or type 3 region, respectively. ■

E

E � ��x, y, z� 	 �x, y� � D, u1�x, y� � z � u2�x, y��
D E xy

yyy
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z
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u1�x, y�


R


z
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yyy
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z
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S S1

S2 S3

S3

S3 k � n � 0

yy
S3

R k � n dS � yy
S3

0 dS � 0

yy
S

R k � n dS � yy
S1

R k � n dS � yy
S2

R k � n dS

S2 z � u2�x, y� �x, y� � D n
F R k

yy
S2

R k � n dS � yy
D

R�x, y, u2�x, y�� dA

S1 z � u1�x, y� n

5

6

�1

yy
S1

R k � n dS � �yy
D

R�x, y, u1�x, y�� dA

yy
S

R k � n dS � yy
D

�R�x, y, u2�x, y�� � R�x, y, u1�x, y��� dA

yy
S

R k � n dS � yyy
E


R


z
dV

E

FIGURE 1

0

D

E
S£

S™ {z=u™(x, y)}

S¡ {z=u¡(x, y)}

y

z

x

■ Notice that the method of proof of the
Divergence Theorem is very similar to
that of Green’s Theorem.
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EXAMPLE 1 Find the flux of the vector field over
the unit sphere .

SOLUTION First we compute the divergence of :

The unit sphere is the boundary of the unit ball given by .
Thus the Divergence Theorem gives the flux as

■

EXAMPLE 2 Evaluate , where

and is the surface of the region bounded by the parabolic cylinder
and the planes , , and . (See Figure 2.)

SOLUTION It would be extremely difficult to evaluate the given surface integral
directly. (We would have to evaluate four surface integrals corresponding to the four
pieces of .) Furthermore, the divergence of is much less complicated than
itself:

Therefore we use the Divergence Theorem to transform the given surface integral
into a triple integral. The easiest way to evaluate the triple integral is to express as
a type 3 region:

Then we have

■

Although we have proved the Divergence Theorem only for simple solid regions,
it can be proved for regions that are finite unions of simple solid regions. (The proce-
dure is similar to the one we used in Section 13.4 to extend Green’s Theorem.)

For example, let’s consider the region that lies between the closed surfaces and
, where lies inside . Let and be outward normals of and . Then the

boundary surface of is and its normal is given by on and 

F�x, y, z� � z i � y j � x k
x 2 � y 2 � z2 � 1

F

div F �
�

�x
�z� �

�

�y
�y� �

�

�z
�x� � 1

S B x 2 � y 2 � z2 � 1

yy
S

F � dS � yyy
B

div F dV � yyy
B

1 dV � V�B� � 4
3 � �1�3 �

4�

3

yy
S

F � dS

F�x, y, z� � xy i � (y 2 � exz2) j � sin�xy� k

S E z � 1 � x 2

z � 0 y � 0 y � z � 2

S F F

div F �
�

�x
�xy� �

�

�y
(y 2 � e xz2) �

�

�z
�sin xy� � y � 2y � 3y

E

E � ��x, y, z� � �1 � x � 1, 0 � z � 1 � x 2, 0 � y � 2 � z�

V

V

yy
S

F � dS � yyy
E

div F dV � yyy
E

3y dV � 3 y
1

�1
y

1�x2

0
y

2�z

0
y dy dz dx

� 3 y
1

�1
y

1�x2

0

�2 � z�2

2
 dz dx �

3

2
 y

1

�1
��

�2 � z�3

3 �
0

1�x2

dx

� �
1
2 y

1

�1
	�x 2 � 1�3 � 8
 dx � �y

1

0
�x 6 � 3x 4 � 3x 2 � 7� dx � 184

35

E S1

S2 S1 S2 n1 n2 S1 S2

E S � S1 � S2 n n � �n1 S1

FIGURE 2

0

(0, 2, 0)

y=2-z

z=1-≈

y

z

x

(1, 0, 0)

(0, 0, 1)

■ The solution in Example 1 should be
compared with the solution in Exam -
ple 4 in Section 13.7.
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on (See Figure 3.) Applying the Divergence Theorem to , we get

EXAMPLE 3 In Example 5 in Section 13.1 we considered the electric field

where the electric charge is located at the origin and is a position
vector. Use the Divergence Theorem to show that the electric flux of through any
closed surface that encloses the origin is

SOLUTION The difficulty is that we don’t have an explicit equation for because
it is any closed surface enclosing the origin. The simplest such surface would be a
sphere, so we let be a small sphere with radius and center the origin. You can
verify that . (See Exercise 23.) Therefore Equation 7 gives

The point of this calculation is that we can compute the surface integral over
because is a sphere. The normal vector at is . Therefore

since the equation of is . Thus we have

This shows that the electric flux of is through any closed surface that
contains the origin. [This is a special case of Gauss’s Law (Equation 13.7.11) for a
single charge. The relationship between and is .] ■

Another application of the Divergence Theorem occurs in fluid flow. Let
be the velocity field of a fluid with constant density . Then is the rate of flow
per unit area. If is a point in the fluid and is a ball with center and
very small radius , then for all points in since is con-
tinuous. We approximate the flux over the boundary sphere as follows:

� yy
S1

F � ��n1� dS � yy
S2

F � n2  dS

� �yy
S1

F � dS � yy
S2

F � dS

n � n2 S2. S

yyy
E

div F dV � yy
S

F � dS � yy
S

F � n dS7

E�x� �
�Q

� x �3 x

Q x � �x, y, z �
E

S2

yy
S2

E � dS � 4��Q

S2

S1 a
div E � 0

yy
S2

E � dS � yy
S1

E � dS � yyy
E

div E dV � yy
S1

E � dS � yy
S1

E � n dS

S1

S1 x x� x �

E � n �
�Q

� x �3 x � � x

� x � � �
�Q

� x �4 x � x �
�Q

� x �2 �
�Q

a 2

S1 � x � � a

yy
S2

E � dS � yy
S1

E � n dS �
�Q

a 2 yy
S1

dS �
�Q

a 2 A�S1� �
�Q

a 2 4�a 2 � 4��Q

E 4��Q S2

� �0 � � 1�4��0 �

v�x, y, z�
� F � �v

P0�x0, y0, z0 � Ba P0

a div F�P� � div F�P0 � Ba div F
Sa

� div F�P0 �V�Ba �� yyy
Ba

div F�P0 � dVyy
Sa

F � dS � yyy
Ba

div F dV
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This approximation becomes better as and suggests that

Equation 8 says that is the net rate of outward flux per unit volume at .
(This is the reason for the name divergence.) If , the net flow is outward
near and is called a source. If , the net flow is inward near and
is called a sink.

For the vector field in Figure 4, it appears that the vectors that end near are 
shorter than the vectors that start near Thus the net flow is outward near so

and is a source. Near on the other hand, the incoming arrows 
are longer than the outgoing arrows. Here the net flow is inward, so 
and is a sink. We can use the formula for F to confirm this impression. Since

, we have , which is positive when . So the
points above the line are sources and those below are sinks.

SUMMARY

The main results of this chapter are all higher-dimensional versions of the Funda -
mental Theorem of Calculus. To help you remember them, we collect them together
here (without hypotheses) so that you can see more easily their essential similarity.
Notice that in each case we have an integral of a “derivative” over a region on the left
side, and the right side involves the values of the original function only on the bound-
ary of the region.

Fundamental Theorem of Calculus

Green’s Theorem

Stokes’ Theorem

Divergence Theorem

a l 0

div F�P0 � � lim
a l 0

1

V�Ba � yy
Sa

F � dS8

P0div F�P0 �
div F�P� � 0

PPdiv F�P� � 0PP

P1

P1,P1.
P2,P1div F�P1� � 0

div F�P2 � � 0
P2

y � �xdiv F � 2x � 2yF � x 2 i � y 2 j
y � �x

a by
b

a
F��x� dx � F�b� � F�a�

r(a)

r(b)

C

y
C

� f � dr � f �r�b�� � f �r�a��Fundamental Theorem for
Line Integrals

C

Dyy
D

� �Q

�x
�

�P

�y � dA � y
C

P dx � Q dy

C

S

n

yy
S

curl F � dS � y
C

F � dr

E

S

n

n
yyy

E

div F dV � yy
S

F � dS
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FIGURE 4
The vector field F=≈ i+¥ j

P¡

P™

y

x
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13.9 EXERCISES

1–4 ■ Verify that the Divergence Theorem is true for the vector
field on the region .

1. ,
is the cube bounded by the planes , , ,

, , and 

2. ,
is the solid bounded by the paraboloid 

and the -plane

3. ,
is the solid ball 

4. ,
is the solid cylinder , 

5–15 ■ Use the Divergence Theorem to calculate the surface
integral ; that is, calculate the flux of across .

5. ,
is the surface of the box bounded by the coordinate planes

and the planes , , and 

6. ,
is the surface of the box enclosed by the planes , 

, , , , and , where , , and
are positive numbers

7. ,
is the surface of the solid bounded by the cylinder

and the planes and 

8. ,
is the sphere with center the origin and radius 2

9. ,
is the “fat sphere” 

10. ,
is the surface of the tetrahedron enclosed by the

coordinate planes and the plane

where , , and are positive numbers

11. ,
is the surface of the solid bounded by the paraboloid

and the plane 

12. ,
is the surface of the solid bounded by the cylinder

and the planes and 

13. , where ,
consists of the hemisphere and the

disk in the -plane

F E

F�x, y, z� � 3x i � xy j � 2xz k
E x � 0 x � 1 y � 0
y � 1 z � 0 z � 1

F�x, y, z� � x 2 i � xy j � z k
E z � 4 � x 2 � y 2

xy

F�x, y, z� � �z, y, x �
E x 2 � y 2 � z 2 � 16

F�x, y, z� � �x 2, �y, z�
E y 2 � z2 � 9 0 � x � 2

xx
S

F � dS F S

F�x, y, z� � xyez i � xy 2z3 j � yez k
S

x � 3 y � 2 z � 1

F�x, y, z� � x 2yz i � xy 2z j � xyz2 k
S x � 0
x � a y � 0 y � b z � 0 z � c a b c

F�x, y, z� � 3xy 2 i � xe z j � z3 k
S
y 2 � z2 � 1 x � �1 x � 2

F�x, y, z� � �x 3 � y 3� i � �y 3 � z3� j � �z3 � x 3� k
S

F�x, y, z� � x 2 sin y i � x cos y j � xz sin y k
S x 8 � y 8 � z8 � 8

F�x, y, z� � z i � y j � zx k
S

x

a
�

y

b
�

z

c
� 1

a b c

F�x, y, z� � �cos z � xy 2� i � xe�z j � �sin y � x 2z� k
S
z � x 2 � y 2 z � 4

F�x, y, z� � x 4 i � x 3z 2 j � 4xy 2z k
S
x 2 � y 2 � 1 z � x � 2 z � 0

F � � r � r r � x i � y j � z k
S z � s1 � x 2 � y 2 

x 2 � y 2 � 1 xy

14. , where , 
is the sphere with radius and center the origin

15. ,
is the surface of the solid that lies above the -plane 

and below the surface ,

16. Use a computer algebra system to plot the vector field

in the cube cut from the first octant by the planes ,
, and . Then compute the flux across the 

surface of the cube.

17. Use the Divergence Theorem to evaluate , where 

and is the top half of the sphere . 
[Hint: Note that is not a closed surface. First compute 
integrals over and , where is the disk ,
oriented downward, and .]

18. Let . 
Find the flux of across the part of the paraboloid

that lies above the plane and is 
oriented upward.

19. A vector field is shown. Use the interpretation of diver-
gence derived in this section to determine whether 
is positive or negative at and at 

20. (a) Are the points and sources or sinks for the vector
field shown in the figure? Give an explanation based
solely on the picture.

(b) Given that , use the definition of
divergence to verify your answer to part (a).

r � x i � y j � z kF � � r �2 r
RS

F�x, y, z� � e y tan z i � ys3 � x 2 j � x sin y kCAS

xyS
�1 � x � 1,z � 2 � x 4 � y 4

�1 � y � 1

CAS

F�x, y, z� � sin x cos2 y i � sin3y cos4z j � sin5z cos6x k
x � �2

z � �2y � �2

xxS F � dS
F�x, y, z� � z2x i � ( 1

3 y 3 � tan z) j � �x 2z � y 2 � k
x 2 � y 2 � z2 � 1S

S
x 2 � y 2 � 1S1S2S1

S2 � S � S1

F�x, y, z� � z tan�1�y 2 � i � z3 ln�x 2 � 1� j � z k
F

z � 1x 2 � y 2 � z � 2

F
div F

P2.P1

2

_2

_2 2

P¡

P™

P2P1

F

F�x, y� � �x, y 2�

2

_2

_2 2

P¡

P™
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tions and components of the vector fields have continuous 
second-order partial derivatives.

25. , where is a constant vector

26. , where 

27. 28.

29.

30.

F�x, y, z� � x i � y j � z kV�E � � 1
3 yy

S

F � dS

yy
S

Dn f dS � yyy
E

� 2f dVyy
S

curl F � dS � 0

yy
S

� f �t� � n dS � yyy
E

� f � 2
t � � f � �t� dV

yy
S

� f �t � t� f � � n dS � yyy
E

� f � 2
t � t� 2f � dV

ayy
S

a � n dS � 0

21–22 ■ Plot the vector field and guess where and
where . Then calculate to check your guess.

21. 22.

23. Verify that for the electric field .

24.  Use the Divergence Theorem to evaluate

where is the sphere 

25–30 ■ Prove each identity, assuming that and satisfy
the conditions of the Divergence Theorem and the scalar func-

div F 	 0CAS

div Fdiv F 
 0

F�x, y� � �x 2, y 2 �F�x, y� � �xy, x � y 2 �

E�x� �
�Q

� x �3 xdiv E � 0

yy
S

�2x � 2y � z 2� dS

x 2 � y 2 � z2 � 1.S

ES
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CHAPTER 13 REVIEW
CONCEPT CHECK

1. What is a vector field? Give three examples that have physi-
cal meaning.

2. (a) What is a conservative vector field?
(b) What is a potential function?

3. (a) Write the definition of the line integral of a scalar func-
tion along a smooth curve with respect to arc
length.

(b) How do you evaluate such a line integral?
(c) Write expressions for the mass and center of mass of a

thin wire shaped like a curve if the wire has linear
density function .

(d) Write the definitions of the line integrals along of a
scalar function with respect to , , and .

(e) How do you evaluate these line integrals?

4. (a) Define the line integral of a vector field along a
smooth curve given by a vector function .

(b) If is a force field, what does this line integral
represent?

(c) If , what is the connection between the
line integral of and the line integrals of the component
functions , , and ?

5. State the Fundamental Theorem for Line Integrals.

6. (a) What does it mean to say that is independent 
of path?

(b) If you know that is independent of path, what
can you say about ?

f C

C
��x, y�

C
f x y z

F
C r�t�

F

F � �P, Q, R �
F

RQP

xC F � dr

xC F � dr
F

7. State Green’s Theorem.

8. Write expressions for the area enclosed by a curve in
terms of line integrals around .

9. Suppose is a vector field on .
(a) Define curl .
(b) Define div .
(c) If is a velocity field in fluid flow, what are the physi-

cal interpretations of curl and div ?

10. If , how do you test to determine whether
is conservative? What if is a vector field on ?

11. (a) What is a parametric surface? What are its grid curves?
(b) Write an expression for the area of a parametric surface.
(c) What is the area of a surface given by an equation

?

12. (a) Write the definition of the surface integral of a scalar
function over a surface .

(b) How do you evaluate such an integral if is a para -
metric surface given by a vector function ?

(c) What if is given by an equation ?
(d) If a thin sheet has the shape of a surface , and the den-

sity at is , write expressions for the
mass and center of mass of the sheet.

13. (a) What is an oriented surface? Give an example of a non-
orientable surface.

(b) Define the surface integral (or flux) of a vector field F
over an oriented surface S with unit normal vector n.

F
F F

F � P i � Q j F
F �3

z � t�x, y�

f S
S
r�u, v�

S z � t�x, y�
S

�x, y, z� ��x, y, z�

F
F

C
C

�3F
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CHAPTER 13  REVIEW 831

TRUE-FALSE QUIZ

Determine whether the statement is true or false. If it is true, explain
why. If it is false, explain why or give an example that disproves the
statement.

1. If is a vector field, then div is a vector field.

2. If is a vector field, then curl is a vector field.

3. If has continuous partial derivatives of all orders on ,
then .

4. If has continuous partial derivatives on and is any 
circle, then .

5. If and in an open region , then 
is conservative.

6.

7. If and are vector fields and , then .

F F

F F

f � 3

div�curl � f � � 0

f � 3 C
xC � f � dr � 0

F � P i � Q j Py � Qx D F

x
�C f �x, y� ds � �xC f �x, y� ds

F G divF � divG F � G

8. The work done by a conservative force field in moving a
particle around a closed path is zero.

9. If and are vector fields, then

10. If and are vector fields, then

11. If is a sphere and is a constant vector field, then

12. There is a vector field such that

F G

curl�F � G� � curl F � curl G

F G

curl�F � G� � curl F � curl G

S F

xxS F � dS � 0

F

curl F � x i � y j � z k

EXERCISES

1. A vector field , a curve , and a point are shown.
(a) Is positive, negative, or zero? Explain.
(b) Is positive, negative, or zero? Explain.

2–9 ■ Evaluate the line integral.

2. ,
is the arc of the parabola from (0, 0) to (1, 1)

3. ,
: , , , 

4. ,  is the ellipse 
with counterclockwise orientation

F C P
xC F � dr
div F�P�

y

x

P

C

x
C

x ds
C y � x 2

x
C

yz cos x ds
C x � t y � 3 cos t z � 3 sin t 0 � t � �

x
C

y dx � �x � y 2� dy C 4x 2 � 9y 2 � 36

5. ,  is the arc of the parabola
from to 

6. ,
is given by , 

7. ,
is the line segment from , to 

8. , where and is given by
, 

9. , where and 
is given by , 

10. Find the work done by the force field

in moving a particle from the point to the point
along

(a) a straight line
(b) the helix , , 

xC xy dx � y 2 dy � yz dz
C �1, 0, �1� �3, 4, 2�

x
C

F � dr F�x, y� � xy i � x 2 j C
r�t� � sin t i � �1 � t� j 0 � t � �

x
C

F � dr F�x, y, z� � e z i � xz j � �x � y� k
C r�t� � t 2 i � t 3 j � t k 0 � t � 1

F�x, y, z� � z i � x j � y k

�3, 0, 0�
�0, �2, 3�

x � 3 cos t y � t z � 3 sin t

�0, �1� �0, 1�

x
C sxy dx � e y dy � xz dz

C r�t� � t 4 i � t 2 j � t 3 k 0 � t � 1

x � 1 � y 2Cx
C

y 3 dx � x 2 dy

(c) How do you evaluate such an integral if S is a para-
metric surface given by a vector function ?

(d) What if S is given by an equation ?

14. State Stokes’ Theorem.

r�u, v�
z � t�x, y�

15. State the Divergence Theorem.

16. In what ways are the Fundamental Theorem for Line 
Integrals, Green’s Theorem, Stokes’ Theorem, and the
Divergence Theorem similar?
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24. (a) Sketch the curve with parametric equations

(b) Find .

25. Find the area of the part of the surface that lies
above the triangle with vertices , , and .

26. (a) Find an equation of the tangent plane at the point
to the parametric surface S given by

, 

; (b) Use a computer to graph the surface and the tangent
plane found in part (a).

(c) Set up, but do not evaluate, an integral for the surface
area of .

(d) If

find correct to four decimal places.

27–30 ■ Evaluate the surface integral.

27. , where is the part of the paraboloid
that lies under the plane 

28. , where is the part of the plane
that lies inside the cylinder 

29. , where and is
the sphere with outward orientation

30. , where and is the
part of the paraboloid below the plane
with upward orientation 

31. Verify that Stokes’ Theorem is true for the vector field
, where is the part of the

paraboloid that lies above the -plane,
and has upward orientation.

32. Use Stokes’ Theorem to evaluate , where
, is the part of the

sphere that lies above the plane ,
and is oriented upward.

33. Use Stokes’ Theorem to evaluate , where
, and is the triangle with

vertices , , and , oriented counter -
clockwise as viewed from above.

34. Use the Divergence Theorem to calculate the surface
integral , where and

is the surface of the solid bounded by the cylinder
and the planes and .

x � cos t y � sin t z � sin t 0 � t � 2�

xC 2xe 2y dx � �2x 2e 2y � 2y cot z� dy � y 2 csc2z dz

z � x 2 � 2y
�1, 2��1, 0��0, 0�

�4, �2, 1�

�3 � v � 30 � u � 3r�u, v� � v2 i � uv j � u 2 k

S

S

F�x, y, z� �
z2

1 � x 2 i �
x 2

1 � y 2 j �
y 2

1 � z2 k

xxS F � dS

z � x 2 � y 2SxxS z dS
z � 4

SxxS �x 2z � y 2z� dS
x 2 � y 2 � 4z � 4 � x � y

SF�x, y, z� � xz i � 2y j � 3x kxx
S

F � dS
x 2 � y 2 � z2 � 4

SF�x, y, z� � x 2 i � xy j � z kxxS F � dS
z � 1z � x 2 � y 2

SF�x, y, z� � x 2 i � y 2 j � z2 k
xyz � 1 � x 2 � y 2

S

xxS curl F � dS
SF�x, y, z� � x 2 yz i � yz2 j � z3e xy k

z � 1x 2 � y 2 � z2 � 5
S

xC F � dr
CF�x, y, z� � xy i � yz j � zx k

�0, 0, 1��0, 1, 0��1, 0, 0�

F�x, y, z� � x 3 i � y 3 j � z3 kxxS F � dS
S

z � 2z � 0x 2 � y 2 � 1

C

CAS

11–12 ■ Show that is a conservative vector field. Then find a
function such that .

11.

12.

13–14 ■ Show that is conservative and use this fact to evalu-
ate along the given curve.

13. ,
: , 

14. ,
is the line segment from to 

15. Verify that Green’s Theorem is true for the line integral
, where consists of the parabola

from to and the line segment from
to .

16. Use Green’s Theorem to evaluate

where is the triangle with vertices , , and 

17. Use Green’s Theorem to evaluate , 
where is the circle with counterclockwise 
orientation.

18. Find curl and div if

19. Show that there is no vector field such that

20. Show that, under conditions to be stated on the vector fields 
and ,

21. If is any piecewise-smooth simple closed plane curve 
and and are differentiable functions, show that

.

22. If and are twice differentiable functions, show that

23. If is a harmonic function, that is, , show that the
line integral is independent of path in any
simple region .

C r�t� � �t � sin � t� i � �2t � cos � t� j 0 � t � 1

F�x, y, z� � sin y i � x cos y j � sin z k

F
xC F � dr

F�x, y� � �4x 3y 2 � 2xy 3� i � �2x 4 y � 3x 2y 2 � 4y 3� j

F�x, y, z� � e y i � �xe y � e z� j � ye z k
�4, 0, 3��0, 2, 0�C

CxC xy 2 dx � x 2 y dy
�1, 1���1, 1�y � x 2

�1, 1� ��1, 1�

y
C

s1 � x 3 dx � 2xy dy

�1, 3�.�1, 0��0, 0�C

xC x 2 y dx � xy 2 dy
x 2 � y 2 � 4C

FF

F�x, y, z� � e�x sin y i � e�y sin z j � e�z sin x k

G

curl G � 2x i � 3yz j � xz2 k

GF

curl�F  G� � F div G � G div F � �G � � �F � �F � � �G

C
tf

x
C

f �x� dx � t�y� dy � 0

tf

� 2� ft� � f � 2
t � t� 2f � 2� f � �t

� 2 f � 0f
x fy dx � fx dy

D

F
F � ∇ ff

F�x, y� � �1 � xy�e xy i � �e y � x 2e xy � j

832 CHAPTER 13 VECTOR CALCULUS
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38. Let

Evaluate , where is shown in the figure.

39. If is a constant vector, , and is an
oriented, smooth surface with a simple, closed, smooth,
positively oriented boundary curve , show that

40. If the components of have continuous second partial
derivatives and is the boundary surface of a simple solid
region, show that .

�x
C

F � dr C

0 x

y

C

a r � x i � y j � z k S

C

yy
S

2a � dS � y
C

�a  r� � dr

F
S

xxS curl F � dS � 0

F�x, y� �
�2x 3 � 2xy 2 � 2y� i � �2y 3 � 2x 2 y � 2x� j

x 2 � y 2

35. Verify that the Divergence Theorem is true for the vector 
field , where is the unit ball

.

36. Compute the outward flux of

through the ellipsoid .

37. Find , where and
is the outwardly oriented surface shown in the figure (the
boundary surface of a cube with a unit corner cube
removed).

(0, 2, 2)

(2, 0, 2)

(2, 2, 0)S

y

z

x

1

1
1

F�x, y, z� �
x i � y j � z k

�x 2 � y 2 � z2 �32

4x 2 � 9y 2 � 6z2 � 36

xx
S

F � n dS F�x, y, z� � x i � y j � z k S

x 2 � y 2 � z2 � 1
EF�x, y, z� � x i � y j � z k
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A TRIGONOMETRY

ANGLES

Angles can be measured in degrees or in radians (abbreviated as rad). The angle given
by a complete revolution contains , which is the same as rad. Therefore

and

EXAMPLE 1
(a) Find the radian measure of . (b) Express rad in degrees.

SOLUTION
(a) From Equation 1 or 2 we see that to convert from degrees to radians we multi-
ply by . Therefore

(b) To convert from radians to degrees we multiply by . Thus

■

In calculus we use radians to measure angles except when otherwise indicated. The
following table gives the correspondence between degree and radian measures of
some common angles.

Figure 1 shows a sector of a circle with central angle and radius subtending an
arc with length . Since the length of the arc is proportional to the size of the angle,
and since the entire circle has circumference and central angle , we have

Solving this equation for and for , we obtain

Remember that Equations 3 are valid only when is measured in radians.
In particular, putting in Equation 3, we see that an angle of 1 rad is the angle

subtended at the center of a circle by an arc equal in length to the radius of the circle
(see Figure 2).

2�360�

� rad � 180�1

1� �
�

180
 rad � 0.017 rad1 rad � �180

�
��

� 57.3�2

5��460�

��180

60� � 60� �

180� �
�

3
 rad

180��

5�

4
 rad �

5�

4 �180

�
� � 225�

r�
a

2�2�r

�

2�
�

a

2�r

a�

a � r�� �
a

r
3

�
a � r
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Degrees 0° 30° 45° 60° 90° 120° 135° 150° 180° 270° 360°

Radians 0 2�
3�

2
�

5�

6

3�

4

2�

3

�

2

�

3

�

4

�

6

r

r

a

¨

FIGURE 1

r

r

r

1 rad

FIGURE 2
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EXAMPLE 2
(a) If the radius of a circle is 5 cm, what angle is subtended by an arc of 6 cm?
(b) If a circle has radius 3 cm, what is the length of an arc subtended by a central
angle of rad?

SOLUTION
(a) Using Equation 3 with and , we see that the angle is

(b) With cm and rad, the arc length is

■

The standard position of an angle occurs when we place its vertex at the origin of
a coordinate system and its initial side on the positive -axis as in Figure 3. A posi-
tive angle is obtained by rotating the initial side counterclockwise until it coincides
with the terminal side. Likewise, negative angles are obtained by clockwise rotation
as in Figure 4. 

Figure 5 shows several examples of angles in standard position. Notice that differ-
ent angles can have the same terminal side. For instance, the angles , ,
and have the same initial and terminal sides because

and rad represents a complete revolution.

THE TRIGONOMETRIC FUNCTIONS

For an acute angle the six trigonometric functions are defined as ratios of lengths of
sides of a right triangle as follows (see Figure 6).

This definition doesn’t apply to obtuse or negative angles, so for a general angle
in standard position we let be any point on the terminal side of and we let 

3��8

a � 6 r � 5

� � 6
5 � 1.2 rad

r � 3 � � 3��8

a � r� � 3�3�

8 � �
9�

8
  cm

x

3��4 �5��4
11��4

3�

4
� 2� � �

5�

4

3�

4
� 2� �

11�

4

2�

FIGURE 5
Angles in standard position

y

x

0

¨=_
5π

4

0

y

x

¨=
11π

4

0

y

x

¨=
3π

4

0

y

x

¨=_
π

2

0

y

x

¨=1

�

sin � �
opp

hyp
csc � �

hyp

opp

cos � �
adj

hyp
sec � �

hyp

adj

tan � �
opp

adj
cot � �

adj

opp

�
P�x, y� � r

4
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opposite
hypotenuse

adjacent

¨

FIGURE 6

0

y

x

¨ initial side

terminal
side

FIGURE 3 ¨˘0

0

y

x
¨

initial side

terminal side

FIGURE 4 ¨<0
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be the distance as in Figure 7. Then we define

Since division by 0 is not defined, and are undefined when and
and are undefined when . Notice that the definitions in and 

are consistent when is an acute angle.
If is a number, the convention is that means the sine of the angle whose

radian measure is . For example, the expression implies that we are dealing
with an angle of 3 rad. When finding a calculator approximation to this number we
must remember to set our calculator in radian mode, and then we obtain

If we want to know the sine of the angle we would write and, with our cal-
culator in degree mode, we find that

The exact trigonometric ratios for certain angles can be read from the triangles in
Figure 8. For instance,

The signs of the trigonometric functions for angles in each of the four quadrants
can be remembered by means of the rule “All Students Take Calculus” shown in 
Figure 9.

EXAMPLE 3 Find the exact trigonometric ratios for .

SOLUTION From Figure 10 we see that a point on the terminal line for
is . Therefore, taking

in the definitions of the trigonometric ratios, we have

■

� OP �

sin � �
y

r
csc � �

r

y

cos � �
x

r
sec � �

r

x

tan � �
y

x
cot � �

x

y

tan � sec � x � 0
csc � cot � y � 0

�
� sin �

� sin 3

sin 3 � 0.14112

3� sin 3�

sin 3� � 0.05234

sin 
�

4
�

1

s2
sin 

�

6
�

1

2
 sin 

�

3
�

s3

2

cos 
�

4
�

1

s2
cos 

�

6
�

s3

2
 cos 

�

3
�

1

2

tan 
�

4
� 1  tan 

�

6
�

1

s3
tan 

�

3
� s3

� � 2��3

� � 2��3
P(�1, s3)

x � �1 y � s3 r � 2 

sin 
2�

3
�

s3

2
 cos 

2�

3
� �

1

2
 tan 

2�

3
� �s3

csc 
2�

3
�

2

s3
sec 

2�

3
� �2  cot 

2�

3
� �

1

s3

5

4 5
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P(x, y)

O

y

x

r

¨

FIGURE 7

1

1

2œ„

π

4

π

4 1
2 π

3

œ„3

π

6

FIGURE 8

y

0 x

2π

3π

3

2
œ„3

1

P {_1, œ„3}

FIGURE 10

0

y

x

sin ¨>0

tan ¨>0

all ratios>0

cos ¨>0

FIGURE 9
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The following table gives some values of and found by the method of
Example 3.

EXAMPLE 4 If and , find the other five trigonometric func-
tions of .

SOLUTION Since , we can label the hypotenuse as having length 5 and
the adjacent side as having length 2 in Figure 11. If the opposite side has length ,
then the Pythagorean Theorem gives and so , or . We
can now use the diagram to write the other five trigonometric functions:

■

EXAMPLE 5 Use a calculator to approximate the value of in Figure 12.

SOLUTION From the diagram we see that

Therefore ■

TRIGONOMETRIC IDENTITIES

A trigonometric identity is a relationship among the trigonometric functions. The
most elementary are the following, which are immediate consequences of the defini-
tions of the trigonometric functions.

For the next identity we refer back to Figure 7. The distance formula (or, equiva-
lently, the Pythagorean Theorem) tells us that . Therefore

sin � cos �

cos � � 2
5 0 � � � ��2

�

cos � � 2
5

x
x 2 � 4 � 25 x 2 � 21 x � s21

sin � �
s21

5
tan � �

s21

2

csc � �
5

s21
sec � �

5

2
cot � �

2

s21

x

tan 40� �
16

x

x �
16

tan 40�
� 19.07

csc � �
1

sin �
sec � �

1

cos �
cot � �

1

tan �

tan � �
sin �

cos �
cot � �

cos �

sin �

x 2 � y 2 � r 2

sin2� � cos2� �
y 2

r 2 �
x 2

r 2 �
x 2 � y 2

r 2 �
r 2

r 2 � 1

6

0

0 1 0 0

1 0 0 1�1�
s3

2
�

1

s2
�

1

2

1

2

1

s2

s3

2
cos �

�1
1

2

1

s2

s3

2
s3

2

1

s2

1

2
sin �

2�
3�

2
�

5�

6

3�

4

2�

3

�

2

�

3

�

4

�

6
�

5

2

¨

x=œ„„    21

FIGURE 11

16

40°

x

FIGURE 12
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We have therefore proved one of the most useful of all trigonometric identities:

If we now divide both sides of Equation 7 by and use Equations 6, we get

Similarly, if we divide both sides of Equation 7 by , we get

The identities

show that is an odd function and is an even function. They are easily proved
by drawing a diagram showing and in standard position (see Exercise 39).

Since the angles and have the same terminal side, we have

These identities show that the sine and cosine functions are periodic with period .
The remaining trigonometric identities are all consequences of two basic identities

called the addition formulas:

The proofs of these addition formulas are outlined in Exercises 85, 86, and 87.
By substituting for in Equations 12a and 12b and using Equations 10a and

10b, we obtain the following subtraction formulas:

Then, by dividing the formulas in Equations 12 or Equations 13, we obtain the cor-
responding formulas for :

sin2� � cos2� � 1

cos2�

tan2� � 1 � sec2�

sin2�

1 � cot2� � csc2�

sin���� � �sin �

cos���� � cos �

sin cos
� ��

� � � 2�

sin�� � 2�� � sin � cos�� � 2�� � cos �

2�

sin�x � y� � sin x cos y � cos x sin y

cos�x � y� � cos x cos y � sin x sin y

�y y

sin�x � y� � sin x cos y � cos x sin y

cos�x � y� � cos x cos y � sin x sin y

tan�x � y�

tan�x � y� �
tan x � tan y

1 � tan x tan y

tan�x � y� �
tan x � tan y

1 � tan x tan y

7

8

9

10a

10b

11

12a

12b

13a

13b

14a

14b
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■ Odd functions and even functions are
discussed in Section 1.1.
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If we put in the addition formulas , we get the double-angle formulas:

Then, by using the identity , we obtain the following alternate
forms of the double-angle formulas for :

If we now solve these equations for and , we get the following half-angle
formulas, which are useful in integral calculus:

Finally, we state the product formulas, which can be deduced from Equations 12 
and 13:

There are many other trigonometric identities, but those we have stated are the ones
used most often in calculus. If you forget any of them, remember that they can all be
deduced from Equations 12a and 12b.

EXAMPLE 6 Find all values of in the interval such that .

SOLUTION Using the double-angle formula , we rewrite the given equation as

Therefore there are two possibilities:

The given equation has five solutions: , , , , and . ■

y � x

sin 2x � 2 sin x cos x

cos 2x � cos2x � sin2x

sin2x � cos2x � 1
cos 2x

cos 2x � 2 cos2x � 1

cos 2x � 1 � 2 sin2x

cos2x sin2x

cos2x �
1 � cos 2x

2

sin2x �
1 � cos 2x

2

sin x cos y � 1
2 	sin�x � y� � sin�x � y�


cos x cos y � 1
2 	cos�x � y� � cos�x � y�


sin x sin y � 1
2 	cos�x � y� � cos�x � y�


x 	0, 2�
 sin x � sin 2x

sin x � 2 sin x cos x or sin x �1 � 2 cos x� � 0

sin x � 0  or 1 � 2 cos x � 0

x � 0, �, 2� or cos x � 1
2

x � or x �
�

3
, 

5�

3

0 ��3 � 5��3 2�

12

15a

15b

16a

16b

17a

17b

18a

18b

18c

15a
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GRAPHS OF TRIGONOMETRIC FUNCTIONS

The graph of the function , shown in Figure 13(a), is obtained by plotting
points for and then using the periodic nature of the function (from Equa -
tion 11) to complete the graph. Notice that the zeros of the sine function occur at the
integer multiples of , that is,

Because of the identity

(which can be verified using Equation 12a), the graph of cosine is obtained by shift-
ing the graph of sine by an amount to the left [see Figure 13(b)]. Note that for
both the sine and cosine functions the domain is and the range is the closed
interval . Thus, for all values of , we have

The graphs of the remaining four trigonometric functions are shown in Figure 14
and their domains are indicated there. Notice that tangent and cotangent have range

, whereas cosecant and secant have range . All four func-
tions are periodic: tangent and cotangent have period , whereas cosecant and secant
have period .

f �x� � sin x
0 	 x 	 2�

�

sin x � 0 whenever x � n�, n an integer

y

1

_1

x

π_π

2π

3π

0
_

π

2

π

2

3π

2

5π

2

(b) ©=cos x

y

1

_1

0 xπ_π 2π 3π

_
π

2

π

2

3π

2

5π

2

(a) ƒ=sin x

FIGURE 13

cos x � sin�x �
�

2 �
��2

��
, 
�
	�1, 1
 x

�1 	 sin x 	 1 �1 	 cos x 	 1

��
, 
� ��
, �1
 � 	1, 
�
�

2�

FIGURE 14

(d) y=sec x

y

0

π

_π

_1

1

y=cos x

x

_
π

2

π

2

3π

2

(b) y=cot x

y

0 π_π x
_

π

2

π

2

3π

2

(a) y=tan x

y

1

_1

0

xπ

_π

_
π

2

π

2

3π

2

(c) y=csc x

y

1

_1

0

xπ

y=sin x

_
π

2

π

2

3π

2

APPENDIX A  TRIGONOMETRY A7

Unless otherwise noted, all content on this page is © Cengage Learning.

12280_Apdx_ptg01_hr_A001-A011.qk_12280_Apdx_ptg01_hr_A001-A011  12/15/11  3:12 PM  Page 7

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A EXERCISES

1–6 ■ Convert from degrees to radians.

1. 2. 3.

4. 5. 6.

7–12 ■ Convert from radians to degrees.

7. 8. 9.

10. 11. 12.

13. Find the length of a circular arc subtended by an angle of 
rad if the radius of the circle is 36 cm.

14. If a circle has radius 10 cm, find the length of the arc sub-
tended by a central angle of .

15. A circle has radius m. What angle is subtended at the
center of the circle by an arc 1 m long?

16. Find the radius of a circular sector with angle and arc
length 6 cm.

17–22 ■ Draw, in standard position, the angle whose measure is
given.

17. 18. 19. rad

20. rad 21. rad 22. rad

23–28 ■ Find the exact trigonometric ratios for the angle whose
radian measure is given.

23. 24. 25.

26. 27. 28.

29–34 ■ Find the remaining trigonometric ratios.

29. ,  

30. ,  

31. ,  

32. ,  

210� 300� 9�

�315� 900� 36�

4� �
7�

2

5�

12

8�

3
�

3�

8
5

��12

72�

1.5

3��4

315� �150� �
3�

4

7�

3
2 �3

3�

4

4�

3

9�

2

�5�
5�

6

11�

4

sin � �
3

5
0 � � �

�

2

tan � � 2 0 � � �
�

2

sec � � �1.5
�

2
� � � �

cos x � �
1

3
� � x �

3�

2

33. ,  

34. ,  

35–38 ■ Find, correct to five decimal places, the length of the
side labeled .

35. 36.

37. 38.

39–41 ■ Prove each equation.

39. (a) Equation 10a (b) Equation 10b

40. (a) Equation 14a (b) Equation 14b

41. (a) Equation 18a (b) Equation 18b
(c) Equation 18c

42–58 ■ Prove the identity.

42.

43. 44.

45.

46.

47.

48.

49.

50.

51.

52.

x

10 cm
x

35°

25 cm

x

40°

8 cm

x

2π

5

22 cm
x

3π

8

cos��

2
� x� � sin x

sin��

2
� x� � cos x sin�� � x� � sin x

sin � cot � � cos �

�sin x � cos x�2 � 1 � sin 2x

sec y � cos y � tan y sin y

tan2� � sin2� � tan2� sin2�

cot2� � sec2� � tan2� � csc2�

2 csc 2t � sec t csc t

tan 2� �
2 tan �

1 � tan2�

1

1 � sin �
�

1

1 � sin �
� 2 sec2�

3�

2
� � � 2�csc � � �

4

3

� �  � 2�cot  � 3

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints at stewartcalculus.comCAS
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53.

54.

55.

56.

57.

58.

59–64 ■ If and , where and lie between 
and , evaluate the expression.

59. 60.

61. 62.

63. 64.

65–72 ■ Find all values of in the interval that satisfy
the equation.

65. 66.

67. 68.

69. 70.

71. 72.

73–76 ■ Find all values of in the interval that satisfy
the inequality.

73. 74.

75. 76.

77–82 ■ Graph the function by starting with the graphs in Fig -
ures 13 and 14 and applying the transformations of Section 1.3
where appropriate.

77. 78.

79. 80.

81. 82.

83. Prove the Law of Cosines: If a triangle has sides with
lengths , , and , and is the angle between the sides with
lengths and , then

sin �

1 � cos �
� csc � � cot �

tan x � tan y �
sin�x � y�
cos x cos y

sin 3� � sin � � 2 sin 2� cos �

cos 3� � 4 cos3� � 3 cos �

yxsec y � 5
4sin x � 1

3

��20

cos�x � y�sin�x � y�

sin�x � y�cos�x � y�

cos 2ysin 2y

�0, 2��x

3 cot2x � 12 cos x � 1 � 0

� tan x � � 12 sin2x � 1

2 cos x � sin 2x � 0sin 2x � cos x

2 � cos 2x � 3 cos xsin x � tan x

�0, 2��x

2 cos x � 1 � 0sin x �
1
2

sin x � cos x�1 	 tan x 	 1

y � tan 2xy � cos�x �
�

3 	
y � 1 � sec xy �

1

3
 tan�x �

�

2 	
y � 2 � sin�x �

�

4 	y � � sin x �

�cba
ba

c 2 � a 2 � b 2 � 2ab cos �

sin2x � sin2 y � sin�x � y� sin�x � y�

sin x sin 2x � cos x cos 2x � cos x
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[Hint: Introduce a coordinate system so that is in standard
position as in the figure. Express and in terms of and
then use the distance formula to compute .]

84. In order to find the distance across a small inlet, a
point is located as in the figure and the following mea-
surements were recorded:

m    m

Use the Law of Cosines from Exercise 83 to find the
required distance.

85. Use the figure to prove the subtraction formula 

[Hint: Compute in two ways (using the Law of Cosines
from Exercise 83 and also using the distance formula) and
compare the two expressions.]

86. Use the formula in Exercise 85 to prove the addition
formula for cosine .

87. Use the addition formula for cosine and the identities 

to prove the subtraction formula for the sine function.

�
x y �

c

� AB �
C

�C � 103
 � AC � � 820 � BC � � 910

A

C

B

cos�� � �� � cos � cos � � sin � sin �

c2

0

y

B(cos ∫, sin ∫)

∫

1

A(cos å, sin å)

1

å

c

x

cos��

2
� �	 � sin � sin��

2
� �	 � cos �

0

y

P(x, y)

¨

cb

(a, 0) x

12b
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89. Find the area of triangle , correct to five decimal
places, if

cm      cm      � AB � � 10 � BC � � 3 �ABC � 107


ABC88. Show that the area of a triangle with sides of lengths and
and with included angle is

a
b �

A � 1
2 ab sin �

A10 APPENDIX A TRIGONOMETRY
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B SIGMA NOTATION
A convenient way of writing sums uses the Greek letter (capital sigma, correspond-
ing to our letter S) and is called sigma notation.

DEFINITION If are real numbers and and are integers
such that then

With function notation, Definition 1 can be written as

Thus the symbol indicates a summation in which the letter (called the index of
summation) takes on consecutive integer values beginning with m and ending with n,
that is, . Other letters can also be used as the index of summation.

EXAMPLE 1

(a) 

(b) 

(c) 

(d)

(e) 

( f ) ■

EXAMPLE 2 Write the sum in sigma notation.

SOLUTION There is no unique way of writing a sum in sigma notation. We could
write




am, am�1, . . . , an m n
m � n, 

�
n

i�m
ai � am � am�1 � am�2 �    � an�1 � an

�
n

i�m
f �i � � f �m� � f �m � 1� � f �m � 2� �    � f �n � 1� � f �n�


n
i�m i

m, m � 1, . . . , n

�
4

i�1
i 2 � 12 � 22 � 32 � 42 � 30

�
n

i�3
i � 3 � 4 � 5 �    � �n � 1� � n

�
5

j�0
2 j � 20 � 21 � 22 � 23 � 24 � 25 � 63

�
n

k�1

1

k
� 1 �

1

2
�

1

3
�    �

1

n

�
3

i�1

i � 1

i 2 � 3
�

1 � 1

12 � 3
�

2 � 1

22 � 3
�

3 � 1

32 � 3
� 0 �

1

7
�

1

6
�

13

42

�
4

i�1
2 � 2 � 2 � 2 � 2 � 8

23 � 33 �    � n 3

23 � 33 �    � n 3 � �
n

i�2
i 3

1This tells us to
end with i=n.

This tells us
to add.

This tells us to
start with i=m.

μ 
ai

n

i�m
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or

or ■

The following theorem gives three simple rules for working with sigma notation.

THEOREM If is any constant (that is, it does not depend on ), then

(a) (b) 

(c)

PROOF To see why these rules are true, all we have to do is write both sides in
expanded form. Rule (a) is just the distributive property of real numbers:

Rule (b) follows from the associative and commutative properties:

Rule (c) is proved similarly. ■

EXAMPLE 3 Find 

SOLUTION ■

EXAMPLE 4 Prove the formula for the sum of the first positive integers:

SOLUTION This formula can be proved by mathematical induction (see page A12)
or by the following method used by the German mathematician Karl Friedrich
Gauss (1777–1855) when he was ten years old.

Write the sum twice, once in the usual order and once in reverse order:

Adding all columns vertically, we get

23 � 33 �    � n 3 � �
n�2

k�0
�k � 2�3

23 � 33 �    � n 3 � �
n�1

j�1
� j � 1�3

c i

�
n

i�m
cai � c �

n

i�m
ai �

n

i�m
�ai � bi� � �

n

i�m
ai � �

n

i�m
bi

�
n

i�m
�ai � bi� � �

n

i�m
ai � �

n

i�m
bi

cam � cam�1 �    � can � c�am � am�1 �    � an �

�am � bm � � �am�1 � bm�1� �    � �an � bn �

� �am � am�1 �    � an � � �bm � bm�1 �    � bn �

�
n

i�1
1.

�
n

i�1
1 � 1 � 1 �    � 1 � n

n

�
n

i�1
i � 1 � 2 � 3 �    � n �

n�n � 1�
2

S

S � 1 � 2  � 3  �    � �n � 1� � n

S � n � �n � 1� � �n � 2� �    � 2  � 1

2S � �n � 1� � �n � 1� � �n � 1� �    � �n � 1� � �n � 1�

2
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n terms
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On the right side there are terms, each of which is , so

■

EXAMPLE 5 Prove the formula for the sum of the squares of the first positive 
integers:

SOLUTION 1 Let be the desired sum. We start with the telescoping sum (or col-
lapsing sum):

On the other hand, using Theorem 2 and Examples 3 and 4, we have

Thus we have

Solving this equation for , we obtain

or

SOLUTION 2 Let be the given formula.

1. is true because

2. Assume that is true; that is,

Then

So is true.

By the Principle of Mathematical Induction, is true for all . ■

n � 1n

S �
n�n � 1�

2
or2S � n�n � 1�

n

�
n

i�1
i 2 � 12 � 22 � 32 � � � � � n 2 �

n�n � 1��2n � 1�
6

S

�
n

i�1
��1 � i�3 � i 3 � � �23 � 13 � � �33 � 23 � � �43 � 33 � � � � � � ��n � 1�3 � n 3 �

� �n � 1�3 � 13 � n 3 � 3n 2 � 3n

�
n

i�1
��1 � i �3 � i 3 � � �

n

i�1
�3i 2 � 3i � 1� � 3 �

n

i�1
i 2 � 3 �

n

i�1
i � �

n

i�1
1

� 3S � 3 
n�n � 1�

2
� n � 3S �

3
2 n 2 �

5
2 n

n 3 � 3n 2 � 3n � 3S �
3
2 n 2 �

5
2 n

S

3S � n 3 �
3
2 n 2 �

1
2 n

S �
2n 3 � 3n 2 � n

6
�

n�n � 1��2n � 1�
6

Sn

12 �
1�1 � 1��2 � 1 � 1�

6
S1

Sk

12 � 22 � 32 � � � � � k 2 �
k�k � 1��2k � 1�

6

12 � 22 � 32 � � � � � �k � 1�2 � �12 � 22 � 32 � � � � � k 2 � � �k � 1�2

� �k � 1�
k�2k � 1� � 6�k � 1�

6
�

k�k � 1��2k � 1�
6

� �k � 1�2

�
�k � 1��k � 2��2k � 3�

6
� �k � 1�

2k 2 � 7k � 6

6

�
�k � 1���k � 1� � 1��2�k � 1� � 1�

6

Sk�1

nSn
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Most terms cancel in pairs.

■ PRINCIPLE OF 
MATHEMATICAL INDUCTION
Let be a statement involving the 
positive integer . Suppose that

1. is true.
2. If is true, then is true.

Then is true for all positive integers .nSn

Sk�1Sk

S1

n
Sn
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We list the results of Examples 3, 4, and 5 together with a similar result for cubes
(see Exercises 37– 40) as Theorem 3. These formulas are needed for finding areas and
evaluating integrals in Chapter 5.

THEOREM Let be a constant and a positive integer. Then

(a) (b) 

(c) (d) 

(e)

EXAMPLE 6 Evaluate .

SOLUTION Using Theorems 2 and 3, we have

■

EXAMPLE 7 Find .

SOLUTION

■

c n

�
n

i�1
1 � n �

n

i�1
c � nc

�
n

i�1
i �

n�n � 1�
2 �

n

i�1
i 2 �

n�n � 1��2n � 1�
6

�
n

i�1
i 3 � �n�n � 1�

2 �2

�
n

i�1
i�4i 2 � 3�

�
n

i�1
i�4i 2 � 3� � �

n

i�1
�4i 3 � 3i� � 4 �

n

i�1
i 3 � 3 �

n

i�1
i

� 4� n�n � 1�
2 �2

� 3 
n�n � 1�

2

�
n�n � 1��2n�n � 1� � 3�

2

�
n�n � 1��2n 2 � 2n � 3�

2

lim
n l �

�
n

i�1

3

n �	 i

n

2

� 1�
lim
n l �

�
n

i�1

3

n �	 i

n

2

� 1� � lim
n l �

�
n

i�1
� 3

n 3 i 2 �
3

n�
� lim

n l �
� 3

n 3 �
n

i�1
i 2 �

3

n �
n

i�1
1�

� lim
n l �

� 3

n 3

n�n � 1��2n � 1�
6

�
3

n
� n�

� lim
n l �

� 1

2
�

n

n
� 	n � 1

n 
	 2n � 1

n 
 � 3�
� lim

n l �
� 1

2
� 1	1 �

1

n
	2 �
1

n
 � 3�
� 1

2 � 1 � 1 � 2 � 3 � 4

3
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■ The type of calculation in Example 7
arises in Chapter 5 when we compute
areas.
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B EXERCISES

1–10 ■ Write the sum in expanded form.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11–20 ■ Write the sum in sigma notation.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21–35 ■ Find the value of the sum.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

�
5

i�1
si �

6

i�1

1

i � 1

�
6

i�4
3i �

6

i�4
i 3

�
4

k�0

2k � 1

2k � 1 �
8

k�5
xk

�
n

i�1
i 10 �

n�3

j�n
j 2

�
n�1

j�0
��1� j �

n

i�1
f �xi � �xi

1 � 2 � 3 � 4 � � � � � 10

s3 � s4 � s5 � s6 � s7
1
2 �

2
3 �

3
4 �

4
5 � � � � �

19
20

3
7 �

4
8 �

5
9 �

6
10 � � � � �

23
27

2 � 4 � 6 � 8 � � � � � 2n

1 � 3 � 5 � 7 � � � � � �2n � 1�

1 � 2 � 4 � 8 � 16 � 32
1
1 �

1
4 �

1
9 �

1
16 �

1
25 �

1
36

x � x 2 � x 3 � � � � � x n

1 � x � x 2 � x 3 � � � � � ��1�nx n

�
8

i�4
�3i � 2� �

6

i�3
i�i � 2�

�
6

j�1
3 j�1 �

8

k�0
cos k�

�
20

n�1
��1�n �

100

i�1
4

�
4

i�0
�2 i � i 2 � �

4

i��2
23�i

�
n

i�1
2i �

n

i�1
�2 � 5i �

�
n

i�1
�i 2 � 3i � 4� �

n

i�1
�3 � 2i �2

33.

34.

35.

36. Find the number such that .

37. Prove formula (b) of Theorem 3.

38. Prove formula (e) of Theorem 3 using mathematical 
induction.

39. Prove formula (e) of Theorem 3 using a method similar to
that of Example 5, Solution 1 [start with .

40. Prove formula (e) of Theorem 3 using the following method
published by Abu Bekr Mohammed ibn Alhusain Alkarchi
in about AD 1010. The figure shows a square in
which sides and have been divided into segments 
of lengths , , , . . . , Thus the side of the square has
length so the area is . But the area
is also the sum of the areas of the n “gnomons” , , . . . ,

shown in the figure. Show that the area of is and
conclude that formula (e) is true.

41. Evaluate each telescoping sum.

(a) (b)

(c) (d)

42. Prove the generalized triangle inequality:

�
n

i�1
�i � 1��i � 2�

�
n

i�1
i�i � 1��i � 2�

�
n

i�1
�i 3 � i � 2�

�
n

i�1
i � 78n

�1 � i �4 � i 4 �

ABCD
ADAB

n.321
�n�n � 1��2�2n�n � 1��2

G2G1

i 3GiGn

1 2 3 4 5
. . .

n BA

1

2

3

4

5

n

D

.

.

.

C

Gn

G™

G£

G¢

G∞

    .
  .
.

�
100

i�1
�5 i � 5 i�1 ��

n

i�1
�i 4 � �i � 1�4 �

�
n

i�1
�ai � ai�1��

99

i�3
	1

i
�

1

i � 1


� �n
i�1

ai � � �
n

i�1
 ai 
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47. Prove the formula for the sum of a finite geometric series
with first term and common ratio :

48. Evaluate .

49. Evaluate .

50. Evaluate .

r � 1a

�
n

i�1
ar i�1 � a � ar � ar 2 � � � � � ar n�1 �

a�r n � 1�
r � 1

�
n

i�1

3

2 i�1

�
n

i�1
�2i � 2 i �

�
m

i�1
��

n

j�1
�i � j ��

43–46 ■ Find the limit.

43.

44.

45.

46.

lim
n l �

�
n

i�1

1

n 	 i

n

2

lim
n l �

�
n

i�1

1

n �	 i

n

3

� 1�
lim
n l �

�
n

i�1

2

n �	2i

n 

3

� 5	2i

n 
�
lim
n l �

�
n

i�1

3

n �	1 �
3i

n 

3

� 2	1 �
3i

n 
�
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C THE LOGARITHM DEFINED AS AN INTEGRAL
The treatment of exponential and logarithmic functions presented in Chapter 3 relied
on our intuition, which is based on numerical and visual evidence. Here we use the
Fundamental Theorem of Calculus to give an alternative treatment that provides a surer
footing for these functions.

Instead of starting with and defining as its inverse, this time we start by
defining as an integral and then define the exponential function as its inverse. In
this section you should bear in mind that we do not use any of our previous definitions
and results concerning exponential and logarithmic functions.

THE NATURAL LOGARITHM

We first define as an integral.

DEFINITION The natural logarithmic function is the function defined by

The existence of this function depends on the fact that the integral of a continuous
function always exists. If , then can be interpreted geometrically as the area
under the hyperbola from to . (See Figure 1.) For , we have

For ,

and so is the negative of the area shown in Figure 2.

ax loga x
ln x

ln x

ln x � y
x

1

1

t
dt x 	 0

x 	 1 ln x
y � 1�t t � 1 t � x x � 1

ln 1 � y
1

1

1

t
dt � 0

0 
 x 
 1 ln x � y
x

1

1

t
dt � �y

1

x

1

t
dt 
 0

ln x

1

FIGURE 2

FIGURE 1

y=
1

t

0

y

1 x
t

area=ln x

y=
1

t

0

y

1x
t

area=_ ln x
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EXAMPLE 1
(a) By comparing areas, show that .
(b) Use the Midpoint Rule with to estimate the value of .

SOLUTION
(a) We can interpret as the area under the curve from 1 to 2. From
Figure 3 we see that this area is larger than the area of rectangle and smaller
than the area of trapezoid . Thus we have

(b) If we use the Midpoint Rule with , and , we get

■

Notice that the integral that defines is exactly the type of integral discussed in
Part 1 of the Fundamental Theorem of Calculus (see Section 5.4). In fact, using that
theorem, we have

and so

We now use this differentiation rule to prove the following properties of the loga-
rithm function.

LAWS OF LOGARITHMS If and are positive numbers and is a rational
number, then

1. 2. 3.

PROOF
1. Let , where is a positive constant. Then, using Equation 2 and

the Chain Rule, we have

Therefore and have the same derivative and so they must differ by a 
constant:

1
2 
 ln 2 


3
4

n � 10 ln 2

ln 2 y � 1�t
BCDE

ABCD

1
2 � 1 
 ln 2 
 1 � 1

2 (1 �
1
2 )

1
2 
 ln 2 


3
4

f �t� � 1�t, n � 10 �t � 0.1

ln 2 � y
2

1

1

t
dt � �0.1�� f �1.05� � f �1.15� � � � � � f �1.95��

� �0.1�	 1

1.05
�

1

1.15
� � � � �

1

1.95
 � 0.693

ln x

d

dx y
x

1

1

t
dt �

1

x

d

dx
�ln x� �

1

x

x y r

ln�xy� � ln x � ln y ln	 x

y
 � ln x � ln y ln�xr � � r ln x

f �x� � ln�ax� a

f ��x� �
1

ax

d

dx
�ax� �

1

ax
� a �

1

x

f �x� ln x

ln�ax� � ln x � C

V

2

3

FIGURE 3

y=
1

t

0

y

1 2 t

A

B C

D
E
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FIGURE 4

0

y

x1

y=ln x

FIGURE 5 

0

y

1

x1 e

y=ln x

Putting in this equation, we get . Thus

If we now replace the constant by any number , we have

2. Using Law 1 with , we have

and so

Using Law 1 again, we have

The proof of Law 3 is left as an exercise. ■

In order to graph , we first determine its limits:

(a) (b) 

PROOF
(a) Using Law 3 with and (where n is any positive integer), we have

. Now , so this shows that as . But is
an increasing function since its derivative . Therefore as .

(b) If we let , then as . Thus, using (a), we have

■

If , then

and    

which shows that is increasing and concave downward on . Putting this
information together with , we draw the graph of in Figure 4.

Since and is an increasing continuous function that takes on arbitrar-
ily large values, the Intermediate Value Theorem shows that there is a number where

takes on the value 1. (See Figure 5.) This important number is denoted by .

DEFINITION is the number such that .

We will show (in Theorem 19) that this definition is consistent with our previous
definition of e.

x � 1 ln a � ln 1 � C � 0 � C � C

ln�ax� � ln x � ln a

a y

ln�xy� � ln x � ln y

x � 1�y

ln 
1

y
� ln y � ln	 1

y
� y
 � ln 1 � 0

ln 
1

y
� �ln y

ln	 x

y
 � ln	x �
1

y
 � ln x � ln 
1

y
� ln x � ln y

y � ln x

lim
x l �

ln x � � lim
x l 0�

ln x � ��

x � 2 r � n
ln�2n � � n ln 2 ln 2 	 0 ln�2n � l � n l � ln x

1�x 	 0 ln x l � x l �

t � 1�x t l � x l 0�

lim
x l 0�

ln x � lim
t l �

ln	1

t 
 � lim
t l �

��ln t� � ��

y � ln x, x 	 0

dy

dx
�

1

x
	 0

d 2y

dx 2 � �
1

x 2 
 0

ln x �0, ��
y � ln x

ln 1 � 0 ln x

ln x e

e ln e � 1

4

5

4
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THE NATURAL EXPONENTIAL FUNCTION

Since ln is an increasing function, it is one-to-one and therefore has an inverse func-
tion, which we denote by exp. Thus, according to the definition of an inverse function,

and the cancellation equations are

In particular, we have

We obtain the graph of by reflecting the graph of about the line
(See Figure 6.) The domain of is the range of ln, that is, ; the range

of exp is the domain of ln, that is, .
If is any rational number, then the third law of logarithms gives

Therefore, by ,

Thus whenever is a rational number. This leads us to define , even for
irrational values of , by the equation

In other words, for the reasons given, we define to be the inverse of the function
. In this notation becomes

and the cancellation equations become

The natural exponential function is one of the most frequently occurring
functions in calculus and its applications, so it is important to be familiar with its
graph (Figure 7) and its properties (which follow from the fact that it is the inverse of
the natural logarithmic function).

exp�x� � y &? ln y � x

exp�ln x� � x and ln�exp x� � x

exp�0� � 1 since ln 1 � 0

exp�1� � e since ln e � 1

y � exp x y � ln x
y � x. exp ���, ��

�0, ��
r

ln�er � � r ln e � r

exp�r� � er

exp�x� � ex x ex

x

e x � exp�x�

ex

ln x

ex � y &? ln y � x

e ln x � x x 	 0

ln�ex � � x for all x

f �x� � ex

6

7

8

9

10

6

6

7

f �1�x� � y &? f �y� � x

f � f �1�x�� � x

f �1� f �x�� � x

FIGURE 6 

y

1

0 x

y=x

y=ln x

y=exp x

1

y=´

x0

1

y

1

FIGURE 7 
The natural exponential function
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PROPERTIES OF THE EXPONENTIAL FUNCTION The exponential function
is an increasing continuous function with domain and range

. Thus for all . Also

So the -axis is a horizontal asymptote of .

We now verify that has the other properties expected of an exponential function.

LAWS OF EXPONENTS If and are real numbers and is rational, then

1. 2. 3.

PROOF OF LAW 1 Using the first law of logarithms and Equation 10, we have

Since ln is a one-to-one function, it follows that 
Laws 2 and 3 are proved similarly (see Exercises 6 and 7). As we will soon see,

Law 3 actually holds when is any real number. ■

We now prove the differentiation formula for .

PROOF The function is differentiable because it is the inverse function of
, which we know is differentiable with nonzero derivative. To find its deriv-

ative, we use the inverse function method. Let . Then and, differenti-
ating this latter equation implicitly with respect to , we get

■

GENERAL EXPONENTIAL FUNCTIONS

If and is any rational number, then by and ,

Therefore, even for irrational numbers , we define

f �x� � ex �

�0, �� ex 	 0 x

lim
x l��

ex � 0 lim
x l �

ex � �

x f �x� � ex

f

x y r

ex�y � exey e x�y �
ex

ey �ex �r � erx

ln�exey� � ln�ex � � ln�ey � � x � y � ln�ex�y�

e xey � ex�y.

r

ex

d

dx
�e x � � ex

y � ex

y � ln x
y � ex ln y � x

x

1

y

dy

dx
� 1

dy

dx
� y � ex

a 	 0 r

ar � �e ln a �r � er ln a

x

ax � ex ln a

11

12

9 11

13
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Thus, for instance,

The function is called the exponential function with base a. Notice that
is positive for all because is positive for all .
Definition 13 allows us to extend one of the laws of logarithms. We already know

that when is rational. But if we now let be any real number we have,
from Definition 13, 

Thus

The general laws of exponents follow from Definition 13 together with the laws of
exponents for .

LAWS OF EXPONENTS If and are real numbers and , , then

1. 2. 3. 4.

PROOF
1. Using Definition 13 and the laws of exponents for , we have

3. Using Equation 14 we obtain

The remaining proofs are left as exercises. ■

The differentiation formula for exponential functions is also a consequence of
Defi ni tion 13:

PROOF ■

If , then , so , which shows that is
increasing (see Figure 8). If , then and so is decreasing
(see Figure 9).

2s3 � es3 ln 2 � e1.20 � 3.32

f �x� � ax

ax x ex x

ln�ar � � r ln a r r

ln ar � ln�er ln a� � r ln a

ln ar � r ln a for any real number r

ex

x y a b 	 0

a x�y � axay ax�y � ax�ay �ax �y � axy �ab�x � axbx

e x

ax�y � e �x�y� ln a � ex ln a � y ln a � ex ln ae y ln a � axay

�ax�y � ey ln�ax� � eyx ln a � exy ln a � axy

d

dx
�ax � � ax ln a

d

dx
�a x � �

d

dx
�ex ln a � � ex ln a d

dx
�x ln a� � ax ln a

a 	 1 ln a 	 0 �d�dx� ax � ax ln a 	 0 y � ax

0 
 a 
 1 ln a 
 0 y � ax

14

15

16

FIGURE 8
y=a®,   a>1

x

lim  a®=0,  lim a®=`
x _` x `

0

y

1

FIGURE 9 
y=a®,   0<a<1

x

lim  a®=`,  lim a®=0
x _` x `

0

y

1
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GENERAL LOGARITHMIC FUNCTIONS

If and , then is a one-to-one function. Its inverse function is
called the logarithmic function with base a and is denoted by . Thus

In particular, we see that

The laws of logarithms are similar to those for the natural logarithm and can be
deduced from the laws of exponents (see Exercise 10).

To differentiate , we write the equation as . From Equation 14 we
have , so

Since is a constant, we can differentiate as follows:

THE NUMBER EXPRESSED AS A LIMIT

In this section we defined as the number such that . The next theorem shows
that this is the same as the number defined in Section 3.1.

PROOF Let . Then , so . But, by the definition of 
derivative,

a 	 0 a � 1 f �x� � ax

loga

loga x � y &? ay � x

loge x � ln x

y � loga x a y � x
y ln a � ln x

loga x � y �
ln x

ln a

ln a

d

dx
�loga x� �

d

dx

ln x

ln a
�

1

ln a

d

dx
�ln x� �

1

x ln a

d

dx
�loga x� �

1

x ln a

e

e � lim
x l 0

�1 � x�1�x

f �x� � ln x f ��x� � 1�x f ��1� � 1

f ��1� � lim
h l 0

f �1 � h� � f �1�
h

� lim
x l 0

f �1 � x� � f �1�
x

� lim
x l 0

ln�1 � x� � ln 1

x
� lim

x l 0

1

x
ln�1 � x�

� lim
x l 0

ln�1 � x�1�x

17

18

19

e
e

ln e � 1
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Because , we have

Then, by Theorem 1.5.7 and the continuity of the exponential function, we have

■

f ��1� � 1

lim
x l 0

ln�1 � x�1�x � 1

e � e1 � elimx l 0 ln�1�x�1�x

� lim
x l 0

eln�1�x�1�x

� lim
x l 0

�1 � x�1�x
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C EXERCISES

1. (a) By comparing areas, show that

(b) Use the Midpoint Rule with to estimate .

2. Refer to Example 1.
(a) Find the equation of the tangent line to the curve

that is parallel to the secant line .
(b) Use part (a) to show that .

3. By comparing areas, show that

4. (a) By comparing areas, show that .
(b) Deduce that .

1
3 � ln 1.5 �

5
12

n � 10 ln 1.5

y � 1�t AD
ln 2 � 0.66

1

2
�

1

3
� � � � �

1

n
� ln n � 1 �

1

2
�

1

3
� � � � �

1

n � 1

ln 2 � 1 � ln 3
2 � e � 3

5. Prove the third law of logarithms. [Hint: Start by showing
that both sides of the equation have the same derivative.]

6. Prove the second law of exponents for [see ].

7. Prove the third law of exponents for [see ].

8. Prove the second law of exponents [see ].

9. Prove the fourth law of exponents [see ].

10. Deduce the following laws of logarithms from :
(a)

(b)

(c)

e x

e x

loga�xy� � loga x � loga y

loga�x�y� � loga x � loga y

loga�x y � � y loga x

11

11

15

15

15

D PROOFS
In this appendix we present proofs of several theorems that are stated in the main body
of the text. The sections in which they occur are indicated in the margin.

SECTION 1.4 We start by proving the Triangle Inequality, which is an important property of absolute
value.

THE TRIANGLE INEQUALITY If and are any real numbers, then

Observe that if the numbers and are both positive or both negative, then the two
sides in the Triangle Inequality are actually equal. But if and have opposite signs,
the left side involves a subtraction and the right side does not. This makes the Tri angle
Inequality seem reasonable, but we can prove it as follows.

PROOF Notice that

is always true because equals either or . The corresponding statement for
is

a b

� a � b � � � a � � � b �

a b
a b

�� a � � a � � a �
a � a � �� a �

b
�� b � � b � � b �
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Adding these inequalities, we get

If we now use the fact that (with replaced by and
by ), we obtain

which is what we wanted to show. ■

LIMIT LAWS Suppose that is a constant and the limits

and    

exist. Then

1. 2.

3. 4.

5. if 

PROOF OF LAW 1 Let be given. We must find  such that

Using the Triangle Inequality we can write

We will make less than by making each of the terms
and less than .

Since and , there exists a number such that

Similarly, since , there exists a number such that

Let , the smaller of the numbers and . Notice that

and so

�(� a � � � b �) � a � b � � a � � � b �
� x � � a &? �a � x � a x a � b

a � a � � � b �
� a � b � � � a � � � b �

c

lim
x l a

f �x� � L lim
x l a

t�x� � M

lim
x l a

� f �x� � t�x�� � L � M lim
x l a

� f �x� � t�x�� � L � M

lim
x l a

�cf �x�� � cL lim
x l a

� f �x�t�x�� � LM

lim
x l a

f �x�
t�x�

�
L

M
M � 0

� � 0 � � 0

if 0 � � x � a � � � then � f �x� � t�x� � �L � M � � � �

1 � f �x� � t�x� � �L � M � � � � � f �x� � L� � �t�x� � M � �
� � f �x� � L � � � t�x� � M �

� f �x� � t�x� � �L � M � � �

� f �x� � L � � t�x� � M � ��2
��2 � 0 lim x l a f �x� � L �1 � 0

if 0 � � x � a � � �1 then � f �x� � L � �
�

2

lim x l a t�x� � M � 2 � 0

if 0 � � x � a � � � 2 then � t�x� � M � �
�

2

� � min ��1, � 2 	 �1 � 2

if 0 � � x � a � � � then 0 � � x � a � � �1 and 0 � � x � a � � � 2

� t�x� � M � �
�

2
and� f �x� � L � �

�

2
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Therefore, by ,

To summarize,

Thus, by the definition of a limit,

■

PROOF OF LAW 4 Let be given. We want to find such that

In order to get terms that contain and , we add and subtract
as follows:

(Triangle Inequality)

We want to make each of these terms less than .
Since , there is a number such that

Also, there is a number such that if , then

and therefore

Since , there is a number such that

Let min . If , then we have ,
, and , so we can combine the inequalities to

obtain

This shows that . ■

� f �x� � t�x� � �L � M � � � � f �x� � L � � � t�x� � M � �
	

2
�

	

2
� 	

if 0 � � x � a � � 
 then � f �x� � t�x� � �L � M � � � 	

lim
x l a

� f �x� � t�x�� � L � M

	 � 0 
 � 0

if 0 � � x � a � � 
 then � f �x�t�x� � LM � � 	

� f �x� � L � � t�x� � M �
Lt�x�

� f �x�t�x� � LM � � � f �x�t�x� � Lt�x� � Lt�x� � LM �
� � � f �x� � L�t�x� � L�t�x� � M� �
� � � f �x� � L�t�x� � � � L�t�x� � M� �
� � f �x� � L � � t�x� � � � L � � t�x� � M �

	�2

1 � 0lim x l a t�x� � M

� t�x� � M � �
	

2(1 � � L �)then0 � � x � a � � 
1if

0 � � x � a � � 
2
2 � 0

� t�x� � M � � 1

� t�x� � � � t�x� � M � M � � � t�x� � M � � � M � � 1 � � M �

3 � 0lim x l a f �x� � L

� f �x� � L � �
	

2(1 � � M �)then0 � � x � a � � 
3if

0 � � x � a � � 
10 � � x � a � � 
�
1, 
2, 
3 	
 �
0 � � x � a � � 
30 � � x � a � � 
2

� f �x�t�x� � LM � � � f �x� � L � � t�x� � � � L � � t�x� � M �
�

	

2(1 � � M �) (1 � � M �) � � L � 	

2(1 � � L �)
�

	

2
�

	

2
� 	

lim x l a f �x�t�x� � LM

1
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PROOF OF LAW 3 If we take in Law 4, we get

(by Law 7) ■

PROOF OF LAW 2 Using Law 1 and Law 3 with , we have

■

PROOF OF LAW 5 First let us show that

To do this we must show that, given , there exists such that

Observe that

We know that we can make the numerator small. But we also need to know that the
denominator is not small when is near . Since , there is a num-
ber such that, whenever , we have

and therefore

This shows that

and so, for these values of ,

Also, there exists such that

Let min . Then, for , we have

lim
x l a

�cf �x�� � lim
x l a

�t�x� f �x�� � lim
x l a

t�x� � lim
x l a

f �x�

� lim
x l a

c � lim
x l a

f �x�

� c lim
x l a

f �x�

c � �1

lim
x l a

� f �x� � t�x�� � lim
x l a

� f �x� � ��1�t�x�� � lim
x l a

f �x� � lim
x l a

��1�t�x�

� lim
x l a

f �x� � ��1� lim
x l a

t�x� � lim
x l a

f �x� � lim
x l a

t�x�

lim
x l a

1

t�x�
�

1

M

	 � 0 
 � 0

if 0 � � x � a � � 
 then 
 1

t�x�
�

1

M 
 � 	


 1

t�x�
�

1

M 
 � � M � t�x� �
� Mt�x� �

x a lim x l a t�x� � M

1 � 0 0 � � x � a � � 
1

� t�x� � M � � � M �
2

� M � � � M � t�x� � t�x� � � � M � t�x� � � � t�x� � � � M �
2

� � t�x� �

if 0 � � x � a � � 
1 then � t�x� � � � M �
2

x

1

� Mt�x� � �
1

� M � � t�x� � �
1

� M � �
2

� M � �
2

M 2


2 � 0

if 0 � � x � a � � 
2 then � t�x� � M � �
M 2

2
 	


 � �
1, 
2 	 0 � � x � a � � 


t�x� � c


 1

t�x�
�

1

M 
 � � M � t�x� �
� Mt�x� � �

2

M 2

M 2

2
 	 � 	
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It follows that . Finally, using Law 4, we obtain

■

THEOREM If for all in an open interval that contains
(except possibly at ) and

and    

then .

PROOF We use the method of proof by contradiction. Suppose, if possible, that
. Law 2 of limits says that

Therefore, for any , there exists such that

In particular, taking (noting that by hypothesis), we have a
number such that

then    

Since for any number , we have

then    

which simplifies to

then    

But this contradicts . Thus the inequality must be false.
Therefore . ■

THE SQUEEZE THEOREM If for all in an open inter-
val that contains (except possibly at ) and

then

PROOF Let be given. Since , there is a number such
that

if    then    

lim
x l a

f �x�
t�x�

� lim
x l a

f �x�� 1

t�x��� lim
x l a

f �x� lim
x l a

1

t�x�
� L �

1

M
�

L

M

3 f �x� � t�x� x a
a

lim
x l a

f �x� � L lim
x l a

t�x� � M

L � M

L � M

lim
x l a

�t�x� � f �x�� � M � L

	 � 0 
 � 0

if 0 � � x � a � � 
 then � �t�x� � f �x�� � �M � L� � � 	

	 � L � M L � M � 0

 � 0

if 0 � � x � a � � 
 � �t�x� � f �x�� � �M � L� � � L � M

a � � a � a

if 0 � � x � a � � 
 �t�x� � f �x�� � �M � L� � L � M

if 0 � � x � a � � 
 t�x� � f �x�

f �x� � t�x� L � M
L � M

4 f �x� � t�x� � h�x� x
a a

lim
x l a

f �x� � lim
x l a

h�x� � L

lim
x l a

t�x� � L

	 � 0 lim x l a f �x� � L 
1 � 0

0 � � x � a � � 
1 � f �x� � L � � 	

lim x l a 1�t�x� � 1�M
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that is,

if    then    

Since , there is a number such that

then    

that is,
then    

Let min . If , then and 

, so

In particular,

and so . Therefore . ■

The proof of the following result was promised when we proved that .

THEOREM If , then .

PROOF Figure 1 shows a sector of a circle with center , central angle , and 
radius 1. Then

We approximate the arc by an inscribed polygon consisting of equal line seg-
ments and we look at a typical segment . We extend the lines and to
meet in the points and . Then we draw as in Figure 1. Observe that

and so . Therefore we have

If we add such inequalities, we get

where is the length of the inscribed polygon. Thus, by Theorem 1.4.3, we have

But the arc length is defined in Equation 7.4.1 as the limit of the lengths of inscribed
polygons, so

■

if 0 � � x � a � � 
2 L � 	 � h�x� � L � 	


 � �
1, 
 2 	 0 � � x � a � � 
 0 � � x � a � � 
1

0 � � x � a � � 
 2

L � 	 � f �x� � t�x� � h�x� � L � 	

L � 	 � t�x� � L � 	

� t�x� � L � � 	 lim x l a t�x� � L

lim
� l 0

sin �

�
� 1

0 � � � ��2 � � tan �

O �

� AD � � � OA � tan � � tan �

AB n
PQ OP OQ

AD R S RT  PQ

�RTO � �PQO � 90

�RTS � 90

� PQ � � � RT � � � RS �
n

Ln � � AD � � tan �

Ln

lim
n l �

Ln � tan �

� � lim
n l �

Ln � tan �

� h�x� � L � � 	0 � � x � a � � 
2if

L � 	 � f �x� � L � 	0 � � x � a � � 
1


2 � 0lim x l a h�x� � L

Q

T

S

° °

B

D

° °
P

R

AO 1

FIGURE 1 

12280_Apdx_ptg01_hr_A022-A031.qk_12280_Apdx_ptg01_hr_A022-A031  12/15/11  3:16 PM  Page 27

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A28 APPENDIX D PROOFS

Unless otherwise noted, all content on this page is © Cengage Learning.

SECTION 1.5 THEOREM If is continuous at and , then

PROOF Let be given. We want to find a number such that

then    

Since is continuous at , we have

and so there exists such that

then    

Since , there exists such that

then    

Combining these two statements, we see that whenever we have
, which implies that . Therefore we have

proved that . ■

SECTION 3.1 We are going to use the Monotonic Sequence Theorem from Section 8.1 to prove the
existence of the limit that we used to define the number . We will
need the following result.

LEMMA If and is a positive integer, then

PROOF We begin by factoring . Since , we have

We have shown that 

so

Factoring from the left side of this inequality and simplifying, we get

■

	 � 0 
 � 0

if 0 � � x � a � � 
 � f �t�x�� � f �b� � � 	

f b

lim
y l b

f �y� � f �b�


1 � 0

if 0 � � y � b � � 
1 � f �y� � f �b� � � 	

lim x l a t�x� � b 
 � 0

if 0 � � x � a � � 
 � t�x� � b � � 
1

0 � � x � a � � 


� t�x� � b � � 
1 � f �t�x�� � f �b� � � 	
limx l a f �t�x�� � f �b�

elimx l 0�1 � x�1�x

n0 � a � b

bn��n � 1�a � nb� � an�1

a � bbn�1 � an�1

bn�1 � an�1 � �b � a��bn � bn�1a � b n�2a 2 � � � � � ba n�1 � an�

� �b � a��b n � b n�1b � b n�2b 2 � � � � � bb n�1 � b n�

� �b � a��b n � b n � b n � � � � � b n � b n� � �b � a��n � 1�b n

bn�1 � an�1 � �b � a��n � 1�bn

bn�1 � �n � 1�bn�b � a� � an�1

bn

bn��n � 1�a � nb� � an�1

lim x l a t�x� � bbf7

lim
x l a

f �t�x�� � f �b�
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THEOREM The limit exists.

PROOF Let

To show that is an increasing sequence, we put and
in the lemma:

Simplifying the left side of this inequality, we get

This says that , that is, is an increasing sequence.
Next we show that is a bounded sequence. If we let and

in the lemma, we get

so and      

This says that . Since is increasing, we have and so

for all 

Thus is a bounded sequence. It follows froom the Monotonic Sequence
Theorem that is convergent. We denote its limit by .

Now if is any real number that satisfies

then

For instance, the right side of is true because and

�an	 a � 1 � 1��n � 1�
b � 1 � 1�n

�1 �
1

n�
n��n � 1��1 �

1

n � 1� � n�1 �
1

n�� � �1 �
1

n � 1�
n�1

�1 �
1

n�
n

� �1 �
1

n � 1�
n�1

an � an�1 �an	
�an	 a � 1

b � 1 � 1��2n�

�1 �
1

2n�
n�n � 1 � n �

1

2� � 1

�1 �
1

2n�
n

� 2 �1 �
1

2n�
2n

� 4

a2n � 4 �an	 an � a2n

0 � an � 4 n

�an	
�an	 e

x

1

n � 1
� x �

1

n

�1 �
1

n � 1�
n

� �1 � x�1�x � �1 �
1

n�
n�1

1 � x � 1 � 1�n

x �
1

n � 1
      ?

1

x
� n � 1      ? �1 � x�1�x � �1 �

1

n�
n�1

lim
x l 0

�1 � x�1�x

an � �1 �
1

n�
n

1

1
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But

Similarly

It follows from the pair of inequalities in that

Finally, if , let . Then

As , we have and

We have therefore shown that

■

SECTION 3.2 THEOREM If is a one-to-one continuous function defined on an interval
, then its inverse function is also continuous.

PROOF First we show that if is both one-to-one and continuous on , then it
must be either increasing or decreasing on . If it were neither increasing nor
decreasing, then there would exist numbers , , and in with 
such that does not lie between and . There are two possibilities:
either (1) lies between and or (2) lies between and

. (Draw a picture.) In case (1) we apply the Intermediate Value Theorem to the
continuous function to get a number between and such that .
In case (2) the Intermediate Value Theorem gives a number between and such
that . In either case we have contradicted the fact that is one-to-one.

Let us assume, for the sake of definiteness, that is increasing on . We take
any number in the domain of and we let ; that is, is the num-
ber in such that . To show that is continuous at we take any

such that the interval is contained in the interval .
Since is increasing, it maps the numbers in the interval onto the
numbers in the interval and reverses the correspon-
dence. If we let denote the smaller of the numbers and

, then the interval is contained in the interval
and so is mapped into the interval by .

lim
n l �

�1 �
1

n�
n�1

� lim
n l �

��1 �
1

n�
n�1 �

1

n��
� lim

n l �
�1 �

1

n�
n

� lim
n l �

�1 �
1

n� � e � 1 � e

lim
n l �

�1 �
1

n � 1�
n

� e

lim
x l0�

�1 � x�1�x exists

x � 0 t � �x

�1 � x�1�x � �1 � t��1�t � � 1

1 � t�
1�t

� �1 �
t

1 � t�
1�t

� �1 �
t

1 � t�
�1�t��t�1 �

t

1 � t�
t l 0� t��1 � t� l 0�

lim
x l0�

�1 � x�1�x � lim
t l0�

�1 �
t

1 � t�
�1�t��t�1 �

t

1 � t� � e � 1 � e

lim
x l 0

�1 � x�1�x exists

f
�a, b� f �1

f �a, b�
�a, b�
x1 x2 x3 �a, b� x1 � x2 � x3

f �x2 � f �x1� f �x3 �
f �x3 � f �x1� f �x2 � f �x1� f �x2 �

f �x3 �
f c x1 x2 f �c� � f �x3 �

c x2 x3

f �c� � f �x1� f
f �a, b�

y0 f �1 f �1�y0 � � x0 x0

�a, b� f �x0� � y0 f �1 y0

	 � 0 �x0 � 	, x0 � 	� �a, b�
f �x0 � 	, x0 � 	�

� f �x0 � 	�, f �x0 � 	�� f �1


1 � y0 � f �x0 � 	�

�y0 � 
, y0 � 
�
2 � f �x0 � 	� � y0

1

f �1�x0 � 	, x0 � 	�� f �x0 � 	�, f �x0 � 	��

6

A30 APPENDIX D PROOFS

Unless otherwise noted, all content on this page is © Cengage Learning.

12280_Apdx_ptg01_hr_A022-A031.qk_12280_Apdx_ptg01_hr_A022-A031  12/15/11  3:16 PM  Page 30

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



APPENDIX D  PROOFS A31

Unless otherwise noted, all content on this page is © Cengage Learning.

(See the arrow diagram in Figure 2.) We have therefore found a number such
that

This shows that and so is continuous at any number
in its domain. ■

SECTION 3.7 In order to give the promised proof of l’Hospital’s Rule we first need a generalization
of the Mean Value Theorem. The following theorem is named after the French math-
ematician, Augustin-Louis Cauchy (1789–1857).

CAUCHY’S MEAN VALUE THEOREM Suppose that the functions and are
continuous on and differentiable on , and for all in

. Then there is a number in such that

Notice that if we take the special case in which , then and 
Cauchy’s Mean Value Theorem is just the ordinary Mean Value Theorem. Furthermore,
it can be proved in a similar manner. You can verify that all we have to do is change
the function given by Equation 4.2.4 to the function

and apply Rolle’s Theorem as before.

L’HOSPITAL’S RULE Suppose and are differentiable and on an
open interval that contains  (except possibly at ). Suppose that

and    

or that and    

(In other words, we have an indeterminate form of type or .) Then

if the limit on the right side exists (or is or ).
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PROOF OF L’HOSPITAL’S RULE We are assuming that and
. Let

We must show that . Define

Then is continuous on since is continuous on and

Likewise, is continuous on . Let and . Then and are continuous
on and differentiable on and there (since and ).
There fore, by Cauchy’s Mean Value Theorem, there is a number such that

and

Here we have used the fact that, by definition, and . Now, if we
let , then (since ), so

A similar argument shows that the left-hand limit is also . Therefore

This proves l’Hospital’s Rule for the case where is finite.
If is infinite, we let . Then as , so we have

(by l’Hospital’s Rule for finite a)

■

SECTION 4.3 CONCAVITY TEST

(a) If for all in , then the graph of is concave upward on .

(b) If for all in , then the graph of is concave downward on .
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PROOF OF (a) Let be any number in . We must show that the curve
lies above the tangent line at the point . The equation of this tangent is

So we must show that

whenever . (See Figure 3.)
First let us take the case where . Applying the Mean Value Theorem to on

the interval , we get a number , with , such that

Since on we know from the Increasing/ Decreasing Test that is increas-
ing on . Thus, since , we have

and so, multiplying this inequality by the positive number , we get

Now we add to both sides of this inequality:

But from Equation 1 we have . So this inequality becomes

which is what we wanted to prove.
For the case where we have , but multiplication by the nega-

tive number reverses the inequality, so we get and as before. ■■

SECTION 5.2 PROPERTY 5 OF INTEGRALS

if all of these integrals exist.

PROOF We first assume that . Since we are assuming that
exists, we can compute it as a limit of Riemann sums using only partitions that
include as one of the partition points. If is such a partition, let be the corre-
sponding partition of determined by those partition points of  that lie in .
Similarly, will denote the corresponding partition of .
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We introduce the notation for the length of the longest subinterval in , that
is,

Note that and . Thus, if , it follows that
and . If is the set of partition points for and ,
where is the number of subintervals in and is the number of subintervals
in , then is the set of partition points for . If we write

for the partition points to the right of , then is the set of
partition points for . Thus we have

Choosing and letting , we compute as follows:

Now suppose that . By what we have already proved, we have

Therefore

The proofs are similar for the remaining four orderings of , , and . ■

SECTION 8.5 In order to prove Theorem 8.5.3 we first need the following results.

THEOREM

1. If a power series converges when (where ), then it
converges whenever .

2. If a power series diverges when (where ), then it
diverges whenever .

PROOF OF 1 Suppose that converges. Then, by Theorem 8.2.6, we have
. According to Definition 8.1.2 with , there is a positive 

integer such that whenever . Thus for we have
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If , then , so is a convergent geometric series. Therefore,
by the Comparison Test, the series is convergent. Thus the series
is absolutely convergent and therefore convergent. ■

PROOF OF 2 Suppose that diverges. If is any number such that ,
then cannot converge because, by part 1, the convergence of would
imply the convergence of . Therefore diverges whenever .

■

THEOREM For a power series there are only three possibilities:

1. The series converges only when .

2. The series converges for all .

3. There is a positive number such that the series converges if and
diverges if .

PROOF Suppose that neither case 1 nor case 2 is true. Then there are nonzero num-
bers and such that converges for and diverges for . Therefore
the set is not empty. By the preceding theorem, the series
diverges if , so for all . This says that is an upper
bound for the set . Thus, by the Completeness Axiom (see Section 8.1), has a
least upper bound . If , then , so diverges. If , then

is not an upper bound for and so there exists such that . Since
, converges, so by the preceding theorem converges. ■

THEOREM For a power series there are only three possibilities:

1. The series converges only when .

2. The series converges for all .

3. There is a positive number such that the series converges if
and diverges if .

PROOF If we make the change of variable , then the power series
becomes and we can apply the preceding theorem to this series. In case 3 we
have convergence for and divergence for . Thus we have conver-
gence for and divergence for . ■

SECTION 11.3 CLAIRAUT’S THEOREM Suppose is defined on a disk that contains the 
point If the functions and are both continuous on , then

.

PROOF For small values of , , consider the difference

Notice that if we let , then
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Df
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h � 0h
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By the Mean Value Theorem, there is a number between and such that

Applying the Mean Value Theorem again, this time to we get a number
between and such that

Combining these equations, we obtain

If , then , so the continuity of at gives

Similarly, by writing

and using the Mean Value Theorem twice and the continuity of at , we obtain

It follows that . ■

SECTION 11.4 THEOREM If the partial derivatives and exist near and are con-
tinuous at , then is differentiable at .

PROOF Let

According to (11.4.7), to prove that is differentiable at we have to show that
we can write in the form

where and as .
Referring to Figure 4, we write

Observe that the function of a single variable

is defined on the interval and . If we apply the
Mean Value Theorem to , we get

c a a � h

t�a � h� � t�a� � t��c�h � h 	 fx�c, b � h� � fx�c, b�


fx , d
b b � h

fx�c, b � h� � fx�c, b� � fxy�c, d �h

��h� � h 2fxy�c, d �

h l 0 �c, d � l �a, b� fxy �a, b�

lim
h l 0

��h�
h 2 � lim

�c, d� l �a, b�
fxy�c, d � � fxy�a, b�

��h� � 	 f �a � h, b � h� � f �a, b � h�
 � 	 f �a � h, b� � f �a, b�


fyx �a, b�

lim
h l 0

��h�
h 2 � fyx�a, b�

fxy�a, b� � fyx�a, b�

�a, b�fyfx8
�a, b�f�a, b�

�z � f �a � �x, b � �y� � f �a, b�

�a, b�f
�z

�z � fx�a, b� �x � fy�a, b� �y � �1 �x � �2 �y

��x, �y� l �0, 0��2 l 0�1

�z � 	 f �a � �x, b � �y� � f �a, b � �y�
 � 	 f �a, b � �y� � f �a, b�
1

t�x� � f �x, b � �y�
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t
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where is some number between and . In terms of , this equation
becomes

This gives us an expression for the first part of the right side of Equation 1. For the 
second part we let . Then is a function of a single variable defined
on the interval and . A second application of the Mean
Value Theorem then gives

where is some number between and . In terms of , this becomes

We now substitute these expressions into Equation 1 and obtain

where

Since and as and since
and are continuous at , we see that and as .

Therefore f is differentiable at . ■

SECTION 11.7 SECOND DERIVATIVES TEST Suppose the second partial derivatives of are
continuous on a disk with center , and suppose that and

[that is, is a critical point of ]. Let

(a) If and , then is a local minimum.

(b) If and , then is a local maximum.

(c) If , then is not a local maximum or minimum.

PROOF OF PART (a) We compute the second-order directional derivative of in
the direction of . The first-order derivative is given by Theorem 11.6.3:

f �a � �x, b � �y� � f �a, b � �y� � fx�u, b � �y� �x

hh�y� � f �a, y�
h��y� � fy�a, y�	b, b � �y


h�b � �y� � h�b� � h��v� �y

fb � �ybv

f �a, b � �y� � f �a, b� � fy�a, v� �y

�z � fx�u, b � �y� �x � fy�a, v� �y

� fx�a, b� �x � 	 fx�u, b � �y� � fx�a, b�
 �x � fy�a, b� �y

� � 	 fy�a, v� � fy�a, b�
 �y

� fx�a, b� �x � fy�a, b� �y � �1 �x � �2 �y

�1 � fx�u, b � �y� � fx�a, b�

�2 � fy�a, v� � fy�a, b�

fx��x, �y� l �0, 0��a, v� l �a, b��u, b � �y� l �a, b�
��x, �y� l �0, 0��2 l 0�1 l 0�a, b�fy

�a, b�

f
fx�a, b� � 0�a, b�

f�a, b�fy�a, b� � 0

D � D�a, b� � fxx�a, b� fyy�a, b� � 	 fxy�a, b�
2

f �a, b�fxx�a, b� � 0D � 0

f �a, b�fxx�a, b� � 0D � 0

f �a, b�D � 0

f
u � �h, k �

Du f � fxh � fyk

fa � �xau
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Applying this theorem a second time, we have

(by Clairaut’s Theorem)

If we complete the square in this expression, we obtain

We are given that and . But and are
con tinuous functions, so there is a disk with center and radius such
that and whenever is in . Therefore, by looking at
Equation 1, we see that whenever is in . This means that if 

is the curve obtained by intersecting the graph of with the vertical plane 
through in the direction of , then is concave upward on an inter-
val of length . This is true in the direction of every vector , so if we restrict 

to lie in , the graph of lies above its horizontal tangent plane at . Thus
whenever is in . This shows that is a local minimum.

■

D 2
u f � Du�Du f � �

�

�x
�Du f �h �

�

�y
�Du f �k

� � fxxh � fyxk�h � � fxyh � fyy k�k

� fxxh2 � 2 fxyhk � fyyk 2

D 2
u f � fxx�h �

fxy

fxx
k�2

�
k 2

fxx
� fxx fyy � f 2

xy �

fxx�a, b� � 0 D�a, b� � 0 fxx D � fxx fyy � fxy
2

B �a, b� � � 0
fxx�x, y� � 0 D�x, y� � 0 �x, y� B

Du
2 f �x, y� � 0 �x, y� B

C f
P�a, b, f �a, b�� u C

2� u
�x, y� B f P
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1
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35. 37.

39. 41.

43. 45.

47.

49. 51.
53. (a) 

(b) $400, $1900
(c) 

55. is odd, is even

57. (a) (b) 

59. Odd    61. Neither    63. Even
65. Even; odd; neither (unless or )

EXERCISES 1.2 ■ PAGE 21

1. (a) , 
where b is the y-intercept

y

x0 5
x

2

y

0

4

���, �� ���, ��

x

(0, 2)

(0, 1)

_2 1

y

0

x

y

1

�1 0

���, 0� � �0, ���5, ��

f �x� � 5
2 x �

11
2 , 1 � x � 5 f �x� � 1 � s�x

A�L� � 10L � L2, 0 � L � 10

A�x� � s3x 2�4, x � 0 S�x� � x 2 � �8�x�, x � 0

R (%)

0 I (in dollars)10,000 20,000

10

15

T (in dollars)

0 I (in dollars)10,000 20,000

1000

2500

30,000

f t

��5, 3� ��5, �3�

f � 0 t � 0

y � 2x � b
y

x

b=3 b=0

b=_1

y=2x+b

CHAPTER 1

EXERCISES 1.1 ■ PAGE 8

1. Yes
3. (a) 3   (b) (c) 0, 3   (d) 
(e) (f ) 
5. No    7. Yes, 
9. Diet, exercise, or illness
11.

13.

15.

17.

19. 12, 16, , , ,
, , ,

, 
21. 23.
25. 27.
29.

31. 33.

�0.8�0.2
��2, 1���2, 4�, ��1, 3�

��3, 2�, ��3, �2� � ��1, 3�

T

0 t

T

tMIDNIGHT NOON

0

Amount

Price

Height
of grass

tWed.Wed.Wed. Wed. Wed.

3a2 � 5a � 43a2 � a � 23a2 � a � 2
3a4 � a2 � 212a2 � 2a � 26a2 � 2a � 4

3a2 � 6ah � 3h2 � a � h � 29a4 � 6a3 � 13a2 � 4a � 4
�1��ax��3 � h

���, �3� � ��3, 3� � �3, �� �0, 4�
���, 0� � �5, ��

���, �����, ��
y

0
t_1_2

1

y

0 x5

2
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25. 27.

29.

31.

33. 35.

37. (a) , 
(b) , 
(c) , 
(d) , 

39. (a) , 
(b) , 
(c) , 
(d) , 

41. (a) , 
(b) , 
(c) , 
(d) , 

43. (a) , 

(b) , 

(c) , 

(d) 

45.
47. ,

49. ,

51. , ,

y=œ„„„„ x-2-1

3

(2, _1)

0

y

x

y

x0

1
2π

y=sin(x/2)

y=  (1-cos x)
1

2

y

x0

  1

π

y=_(x+1)@+2

0_1

1

2

y

x

y

x0

y=
2

x+1

2

x=_1

� f � t��x� � x 3 � 5x 2 � 1 ���, ��
� f � t��x� � x 3 � x 2 � 1 ���, ��
� ft��x� � 3x 5 � 6x 4 � x 3 � 2x 2 ���, ��
� f�t��x� � �x 3 � 2x 2 ���3x 2 � 1� {x � x � �1�s3}

� f � t��x� � 4x 2 � 4x ���, ��
�t � f ��x� � 2x 2 � 1 ���, ��
� f � f ��x� � x 4 � 2x 2 ���, ��
�t � t��x� � 4x � 3 ���, ��

� f � t��x� � 1 � 3 cos x ���, ��
�t � f ��x� � cos �1 � 3x� ���, ��
� f � f ��x� � 9x � 2 ���, ��
�t � t��x� � cos �cos x� ���, ��

� f � t��x� �
2x 2 � 6x � 5

�x � 2��x � 1�
�x � x � �2, �1�

�t � f ��x� �
x 2 � x � 1

�x � 1�2 {x � x � �1, 0�

� f � f ��x� �
x 4 � 3x 2 � 1

x�x 2 � 1�
{x � x � 0�

�t � t��x� �
2x � 3

3x � 5
, {x � x � �2, �5

3}

0

y=_ Œ„x

y

x

� f � t � h��x� � sx 6 � 4x 3 � 1

t�x� � 2x � x 2 f �x� � x 4

t�t� � t 2 f �t� � sec t tan t

h�x� � sx t�x� � x � 1 f �x� � sx

(b) , 
where m is the slope.
See graph at right.
(c) 

3. Their graphs have slope .

5.
7. (a) 8.34, change in mg for every 1 year change
(b) 8.34 mg
9. (a) (b) , change in for every

change; 32,
Fahrenheit temperature
corresponding to 

11. (a) (b) , change in for every chirp per
minute change   (c) 
13. (a) (b) 196 ft
15. Four times as bright
17. (a) (b) (c) 
(d) (e) (f ) 
(g) (h) 
19. (a) 3   (b) 1   (c) 4   (d) 5   (e) 2
21. (a) (b) 

(c) (d) 

23. 

y

x

m=_1

m=1

m=0

y-1=m(x-2)

(2, 1)
y � 2x � 3

�1 y

x

c=_2

c=_1

0
c=2

c=1

c=0

f �x� � �3x�x � 1��x � 2�

F

C

(100, 212)

F=   C+32
9

5

(_40, _40)

32

9
5 �F
1�C

0�C

T � 1
6 N �

307
6

1
6 �F

76�F
P � 0.434d � 15

y � mx � 1 � 2m

y � f �x � 3�y � f �x� � 3y � f �x� � 3
y � f ��x�y � �f �x�y � f �x � 3�

y � 1
3 f �x�y � 3f �x�

y

0 x

y

0 x

y

0 x

y

0 x

x=_2

1

x+2
y=

0

y

x
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21. 23. 25. 27. 29. (a), (b)
33. 37. 39. 41. Does not exist    
43. (a) (i) 5  (ii) (b) Does not exist
(c) 

45. (a) (i) �2  (ii) Does not exist  (iii) �3
(b) (i) (ii) n (c) a is not an integer.
49. 51. 53. 55. 61.
65. 15; �1

EXERCISES 1.5 ■ PAGE 54

1. 
3. (a) is not defined and [for , , and ]
does not exist
(b) , neither; , left; 2, right; 4, right

5. 7.

9. (a) 11. 4

15. is undefined.

17. does not exist

19. 21.
23.

7 6 �4
�5

_3

_3

0

(2, 5)

(2, _5)

y

x

n � 1
3 3 1

2�
3
4 8

lim x l 4 f �x� � f �4�
f ��4� lim

x l a
f �x� a � �2 2 4

�4 �2

y

0 x2

y

0 x53

7 10 16 19 24
0

5

7

T

t

f ��2�

0

y

x

x=_2

y=
1

x+2

lim
x l 1

f �x� y

x0

y=1/x

y=1-≈

_1

1

1

���, �� (��, s3 2 ) � (s3 2 , �)
���, �1� � �0, ��

2
33x 2�

1
16

1
128

1
653. , , 

55. (a) 4   (b) 3   (c) 0   (d) Does not exist; is
not in the domain of .   (e) 4   (f ) 

57. (a) (b) ; the area of the 
circle as a function of time

59. (a) (b) 

(c) 

61. Yes; 
63. (a) (b) 
65. Yes

EXERCISES 1.3 ■ PAGE 33

1. (a) (i) (ii) (iii) 
(iv) (b) 
3. (a) 2   (b) 1   (c) 4   (d) Does not exist   (e) 3
5. (a) (b) (c) Does not exist    (d) 2    (e) 0
(f) Does not exist    (g) 1    (h) 3
7. 9.

11. 13. 15. 17. 19. (a) 
21. (a) 0.998000, 0.638259, 0.358484, 0.158680, 0.038851,
0.008928, 0.001465; 0
(b) 0.000572, �0.000614, �0.000907, �0.000978, �0.000993,
�0.001000; �0.001
23. 1.44 (or any smaller positive number)
25. (or any smaller positive number)
27. (a) (b) Within approximately 0.0445 cm
(c) Radius; area; ; 1000; 5; 
45. (a) (b) , where

EXERCISES 1.4 ■ PAGE 43

1. (a) (b) (c) 2   (d) 
(e) Does not exist   (f ) 0
3. 105    5. 7. 390    9. 11. 4
13. Does not exist    15. 17. 19.

h�x� � sx t�x� � sec x f �x� � x 4

f �6� � 6
t �2

r�t� � 60t �A � r��t� � 3600
t 2

V

t

120

0

H

t

1

0

V�t� � 120H�t�
V

t

240

0 5

V�t� � 240H�t � 5�

m1m2

t�x� � x 2 � x � 1f (x� � x 2 � 6

�32 ft�s �25.6 ft�s �24.8 ft�s
�24 ft�s�24.16 ft�s

�2�1

y

0 x1

y

0 x

1

_1

2

2
3

1
2

1
4

3
5 �1.5

0.0906

s1000�
 cm

0.0445s1000�


� � �B 2�3 � 12���6B 1�3� � 10.093
B � 216 � 108� � 12s336 � 324� � 81�2

�6 �8 �6

7
8 
�2

1
12�106

5
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CHAPTER 1 REVIEW ■ PAGE 70

True-False Quiz

1. False    3. False    5. True    7. False    9. True
11. False    13. True    15. True    17. False    
19. False    21. True    23. True    25. True

Exercises

1. (a) 2.7   (b) 2.3, 5.6   (c) (d) 
(e) (f ) Odd; its graph is symmetric about the origin.

3. , 5.
7. (a) Shift the graph 8 units upward.
(b) Shift the graph 8 units to the left.
(c) Stretch the graph vertically by a factor of 2, then shift it 
1 unit upward.
(d) Shift the graph 2 units to the right and 2 units downward.
(e) Reflect the graph about the x-axis.
(f ) Reflect the graph about the x-axis, then shift it 3 units
upward.

9.

11.

13.

15. (a) Neither   (b) Odd   (c) Even   (d) Neither

17. (a) ,

(b) , (c) , 
(d) , 
19. (a) (i) 3  (ii) 0  (iii) Does not exist  (iv) 2  
(v) (vi) (vii) 4  (viii) �1   
(b) , (c) , (d) �3, 0, 2, 4
21. 1    23. 25. 3    27. 29. 31.
33. 2    35. 37. 39. 1
45. (a) (i) 3  (ii) 0  (iii) Does not exist  (iv) 0  (v) 0
(vi) 0   (b) At 0 and 3   (c) 

��6, 6� ��4, 4�
��4, 4�

(��, 1
3) � ( 1

3 , �) ���, 0� � �0, �� �, �0, 2�

y

x0

y=_sin 2x

π

x0

1

y

Œ„„

˛+1y=
1
2

_2

y

x0

y=
1

x+2

1
2

x=_2

� f � t��x� � ssin x
�x � x � �2n�, � � 2n��, n an integer�
�t � f ��x� � sin sx �0, �� � f � f ��x� � s

4 x �0, ��
�t � t��x� � sin�sin x� �

� ��
y � 4 y � �1 x � 0 x � 2

3
2 � �

1
8 �

1
2

1
2 x � 0, y � 0

x0

y

3

3

25. , n an integer

27. 31. 0, right; 1, left

33.
35. (a) (b) 
43. (b) 
45. (b) 1.434    47. Yes

EXERCISES 1.6 ■ PAGE 67

1. (a) (b) 2   (c) (d) 
(e) 
3. 5.

7.

9. 11. 13.
15. 17. 19. 21. 23. 4

25. 27. 29. Does not exist    31. 33.
35. ; , 37. (a), (b) 

39. 41.

43. (a) (b) 5    
45. (a) (b) 
47. 4
49. (b) It approaches the concentration of the brine being
pumped into the tank.
51. Within 0.1    55. 57. (a) 

10

�1

�10 10

7
3

y

x

(1, 2)

(1, 1)

(0, 0)

(0, 2)

2
3

t �x� � x 3 � x 2 � x � 1 t �x� � x 2 � x
�0.86, 0.87�

�2 � ��
x � 1, x � 3, y � �2, y � 2

x

y

0

x=2
y

0 x

y=5

y=_5

x

y

0

y=3

x=4

0 x 	 �1.62, x 	 0.62, x � 1; y � 1 ��
� ��

3
2 �1

1
6 � � ��
y � 2 x � �2 x � 1 �

1
2

y � 3 f �x� �
2 � x

x 2�x � 3�
5
4

0 ��

N � 15 x � 100

x � ���
2� � 2n�
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39. (a) (i) (ii) 
(iii) 
(b) (c) 
41. (a) (i) (ii) (b) 
43. (a) The rate at which the cost is changing per ounce of gold
produced; dollars per ounce
(b) When the 800th ounce of gold is produced, the cost of 
production is 
(c) Decrease in the short term; increase in the long term
45. The rate at which the temperature is changing at 8:00 AM;

47. (a) The rate at which the oxygen solubility changes with
respect to the water temperature; 
(b) as the temperature increases past , 
the oxygen solubility is decreasing at a rate of .
49. Does not exist

EXERCISES 2.2 ■ PAGE 92

1. (a) (b) (c) (d) 
(e) (f ) (g) 

3. (a) II   (b) IV   (c) I   (d) III

5. 7.

9. 11.

13. (a) The instantaneous rate of change of percentage of full
capacity with respect to elapsed time in hours
(b) The rate of change of percentage

of full capacity is decreasing and
approaching 0.

16 million�year
18.25 million�year 17 million�year

$20.25�unit $20.05�unit $20�unit

$17�oz.

3.75	F�h

�mg�L��	C
S��16� 
 �0.25; 16	C

0.25 �mg�L��	C

20.5 million�year23 million�year

�0.2 0 1 2
1 0 �0.2

0

1

2

21_1_2

_3

y

x

3

fª

fª

x

y

0

x

y

0

fª

y

0 x

f ª

x0

y

f ª

4 62 8 1210
0

20

40

y

x

y=Cª(t)

CHAPTER 2

EXERCISES 2.1 ■ PAGE 80

1. (a) (b) (c)

3. 5.
7. (a) (b) 
(c) 

9. (a) 0   (b) C (c) Speeding up, slowing down, neither
(d) The car did not move.
11.
13. ; ; ; 
15. 17. ; 
19.

21.
23. (a) (b) 

25. 27. 29.

31. or , 
33.
35. or , 

37. Greater (in magnitude)

2 y � 2x � 1 6

0
5_1

y � �8x � 12 y � 1
2 x �

1
2

8a � 6a 2 y � 2x � 3, y � �8x � 19
10

_3

4_2

�24 ft�s
�

2
27 m�s�

1
4 m�s�2 m�s�2�a3 m�s

t��0�, 0, t��4�, t��2�, t���2� f �2� � 3 f ��2� � 4
y

0
x1

1

y � 3x � 1
4

_2

6_1

�
3
5; y � �

3
5 x �

16
5

�
1

s1 � 2a

5

�a � 3�26a � 4

a � 0f �x� � �1 � x�10f �x� � x 10, a � 1
f �x� � 2x, a � 5

a � 0f �x� � cos�
 � x�f �x� � cos x, a � 


Temperature
(in °F)

0 Time
(in hours)

1

38

2

72
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EXERCISES 2.3 ■ PAGE 105

1. 3. 5.
7. 9.
11. 13.
15. 17.

19. 21.

23.
25.

27. , 

29.
31.
33.
35. 37. , an integer    
41.
43. (a) (b) 
(c) 
45. (a) 
(b) (c) 
(d) 
(e) 
(f ) See graph at right.
(g) 
(h) 

47. (a) 
(b) ; the velocity has a minimum.    

49. (a) (b) 
51. (a) 
(b) ; the cost of producing the 201st yard
(c) $32.20
53. (a) (b) (c) 
The rate increases as the radius increases.
55. (a) 
(b) ; instantaneous rate of change of the volume with
respect to the pressure at ; 
59. , 
61.

63. 65.
67. 69. 71.

f ��x� � 3x 2 � 4f ��t� � �
2
3f ��x� � 0

t��x� � 2x � 6x 2f ��x� � 6x � 2 sin x
A��s� � 60�s 6

t��t� � �
3
2 t �7�4

S��p� � 1
2 p�1�2 � 1R��a� � 18a � 6

v� � 2t �
3

4ts
4 t 3

y� � 3
2 sx �

2

sx
�

3

2xsx
z� � �10A�y11 � B sin y
H��x� � 3x 2 � 3 � 3x �2 � 3x �4

y �
x

3s3
� 3 �




9s3
y � �3s3 x � 3 � 
s3

y � 3x � 1
f ��x� � 4x 3 � 9x 2 � 16,  f ��x� � 12x 2 � 18x
t��t � � �2 sin t � 3 cos t ,  t��t � � �2 cos t � 3 sin t

n�2n � 1�
 �
1
3
�cos x

y � 1
3 x �

1
3

12 m�s2v�t� � 3t 2 � 3, a�t� � 6t
a�1� � 6 m�s2

t � 2,
s � 32t � 0,

s � 0

t � 6,
s � 0

t � 8,
s � 32

s0 20

3t 2 � 24t � 36
t � 2, 6�9 ft�s

0 � t � 2, t � 6
96 ft

t � 4 s
t � 1.5 s

6.24 m�s; �6.24 m�s7.56 m�s
C��x � � 12 � 0.2x � 0.0015x 2

$32�yard

24
 ft2�ft16
 ft2�ft8
 ft2�ft

V � 5.3�P
�0.00212

m3�kPa25	C
B � �

1
10A � �

3
10

6t � 24; �6 ft�s2

s

40

80

�25

√

a

y

0 x

y=≈

{a, a@}

(0, _4)

��2, 4�

y � 3
16 x 3 �

9
4 x � 3a � �

1
2 , b � 2

3; 11000y � 2x 2 � x

15. 1963 to 1971

17. (a) 0, 1, 2, 4   (b) �1, �2, �4   (c) 
19. , 21. , 

23.

25.

27. 29. (a) 

31. (a) The rate at which the unemployment rate is changing, 
in percent unemployed per year
(b) 

33.
35.
37.

Differentiable at �1;
not differentiable at 0

39.
41.
43.

45. (a) 

47.

or

51.

0.05

19901980197019601950

_0.03
t

y=Mª(t)0.1

y

f ��x� � 2x
�, �f ��x� � 1

2 �, �f ��x� � 2x � 6x 2

t��x� � �
1

2s9 � x
, ���, 9�, ���, 9�

G��t� �
�7

�3 � t�2 , ���, �3� � ��3, ��,

f ��x� � 4x 3 � 2f ��x� � 4x 3, �, �

�4 �corner�; 0 �discontinuity�
�1 �vertical tangent�; 4 �corner�

2

_1

_2 1

a � f, b � f �, c � f �
a � acceleration, b � velocity, c � position

7

_1

4

fª

f ·

f

_4

6x � 2; 6

1
3 a�2�3

x

y

0 6

1

_1

f ªf ��x� � ��1

1

if x � 6

if x � 6

f ��x� �
x � 6

� x � 6 �

63	

���, �3� � ��3, ��
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1999 2004
2000 2005
2001 2006
2002 2007
2003 2008

�0.45

0.65
0.9
0.25

�0.2

1.2
0.6

�0.25
�0.45

�0.15

U��t�U��t�
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37.
39.

41.

43. ; 
45. , 
47.
49. (a) (b) 

51. , n an integer
53. 24    55. (a) 30   (b) 36
57. (a) (b) Does not exist   (c) �2    

59. 61. 120    63.
65. (a) (b) 0.16
69. is the rate of change of velocity with respect to time;

is the rate of change of velocity with respect to 
displacement
71. (b) 75. 96

EXERCISES 2.6 ■ PAGE 127

1. (a) (b) 

3. 5. 7.

9. 11.

13. 15.

17. 19. 21.

23. 25. 27.

29. (a) (b) 

31. (a) 

Eight; 

(b) , (c) 
33.

y� � 3�x 2 � �1 � 3x�5�2�2x � 15�1 � 3x�4�
t��x� � p�2r sin rx � n�p�1�2r 2 cos rx�

y� �
�
 cos�tan 
x� sec2�
x� sinssin �tan 
x�

2ssin �tan 
x�
y � � �4x 2 cos�x 2� � 2 sin�x 2�y� � �2x sin�x 2�
H ��t� � 18 sec2 3t tan 3tH��t� � 3 sec2 3t

y � �x � 


(1, 1)

3

0

�2

1.4

y � 
x � 
 � 1

��
�2� � 2n
, 3�, ��3
�2� � 2n
, �1�

3
4

�250 cos 2x�
1
6s2

dB�dt � 7
54
 cos�2
 t�5.4�

dv�dt
dv�ds

�n cosn�1x sin��n � 1�x�

y � �s9x 2 � 1, y� � �9x�s9x 2 � 1y� � 9x�y

y� �
2x � y sin x

cos x � 2y
y� �

2x � y

2y � x
y� � �

x 2

y 2

y� �
y sec 2�x�y� � y 2

y 2 � x sec 2�x�y�
y� � tan x tan y

y� �
y sin x � y cos�xy�
cos x � x cos�xy�

y� �
4xysxy � y

x � 2x 2
sxy

y � x �
1
2y � �x � 2�

16
13

�2x�y 5�81�y 3y � �
9

13 x �
40
13

5

2_2

_2

(1, 2)

y � 9
2 x �

5
2

x 
 0.42, 1.58

4

5_2

_3

1 � s3�3y � 1
3 x � 2y � �x � 1

(�5
4 s3, � 5

4)

EXERCISES 2.4 ■ PAGE 112

1. 3.
5. 7.
9.

11. 13.

15. 17.

19. 21.

23. 25.

27. 29.
31. (a) (b) 

33. 35. ; 
41. (a) �16   (b) (c) 20    43. (a) 0   (b) 
45. (a) (b) 
(c) 
47. Two, 49. 1    
51. (a) , 
(b) ; to the left; speeding up
53.
55. (b) 
57. (b) 

EXERCISES 2.5 ■ PAGE 120

1. 3. 5.

7.

9. 11.

13. 15.

17.

19.

21.

23.
25.
27.
29.
31.

33.

35.

f ���� �
sec � tan �

�1 � sec ��2y� �
2 � tan x � x sec2x

�2 � tan x�2

f ��x� � 2cx��x 2 � c�2y� �
�t 2 � t�cos t � sin t

�1 � t�2

y � x � 
 � 1y � 2
3 x �

2
3

(_1, 0.5)

1.5

�0.5

�4 4

y � 1
2 x � 1

2 cos � � � sin �� cos � � sin �1
4

�
2
3�

20
9

y� � �t�x� � xt��x����t�x�� 2y� � xt��x� � t�x�
y� � �xt��x� � t�x���x 2

(�2 � s3, 1
2 (1 � s3 ))

a�t� � �8 sin tv�t� � 8 cos t
4s3, �4, �4s3
�0.2436 K�min

y� � sin x cos x � x cos2x � x sin2x
y� � �2x(2x 2 � 1)�(x 4 � x 2 � 1)2

cos x

2ssin x

 sec2
x

4

3s
3 �1 � 4x�2

F��x� � 10x�x4 � 3x 2 � 2�4 �2x 2 � 3�

f ��z� � �
2z

�z 2 � 1�2F��x� � �
1

s1 � 2x

y� � sec kx �kx tan kx � 1�y� � �3x 2 sin�a 3 � x 3 �
f ��x� � �2x � 3�3�x 2 � x � 1�4�28x 2 � 12x � 7�
h��t� � 2

3�t � 1��1�3�2t 2 � 1�2�20t 2 � 18t � 1�

f ��t� �
4 � t 1�2

(2 � st )2y� � 2v � 1�sv

f ��x� � cos x �
1
2 csc2xF��y� � 5 � 14�y 2 � 9�y 4

h�(�) � csc � � � csc � cot � � csc 2�

y� �
x 2�3 � x 2�
�1 � x 2�2t��x� �

10

�3 � 4x�2

y� �
�12x �x 2 � 1�2

�x 2 � 1�4

y� � �cos x � x sin x� cos�x cos x�
y� � �r 2 � 1��3�2

y� � (x coss1 � x 2)�s1 � x 2

y� � 2 cos�tan 2x� sec2�2x�
y� � 4 sec 2x tan x

y� �
16 sin 2x�1 � cos 2x�3

�1 � cos 2x�5

y� � �2 cos � cot�sin �� csc2�sin ��

t�(t) � 3t 2 cos t � t 3 sin t1 � 2x � 6x 2 � 8x 3
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17. (a) (b) 

19. (a) (b) 
21. (a) , 0.01, 1%   (b) , , 
23. (a) ; 

(b) ; 
27. A 5% increase in the radius corresponds to a 20% increase
in blood flow.
29. (a) 4.8, 5.2   (b) Too large

CHAPTER 2 REVIEW ■ PAGE 140

True-False Quiz

1. False    3. False    5. True    7. False    
9. True    11. False

Exercises

1.
3. (a) The rate at which the cost changes with respect to the
interest rate; dollars�(percent per year)
(b) As the interest rate increases past 10%, the cost is increasing
at a rate of $1200�(percent per year).
(c) Always positive
5. 7.

9. The rate at which the total value of US currency in 
circulation is changing in billions of dollars per year;

11. 13.

15. 17.

19. 21. 23.

25. 27.

29. 31.

33. 35.

37.

39.

41.
43. 45.
47. ; 
49.

dy �
sec2

st

2st
dt dy �

�4v

�1 � v2�2 dv

dy � �0.2, �y � �0.18237dy � sec2x dx
0.6%0.00636 cm2270 cm3

1
84 
 0.01284�
 
 27 cm2

1764�
 2 
 179 cm3 1
56 
 0.018

f ��5�, 0, f ��5�, f ��2�, 1, f ��3�

a � f, c � f �, b � f �

0 x

y

fª

$22.2 billion�year
4x 7�x � 1�3�3x � 2�f ��x� � 3x 2 � 5

x�
x cos 
x � 2 sin 
x�3
2sx �

1

2sx
�

1

sx 3 

1 � y 4 � 2xy

4xy 3 � x 2 � 3
�

sec2
s1 � x

2s1 � x

8t 3

�t 4 � 1�2

��x � 1��22 sec 2� �tan 2� � 1�
�1 � tan 2��2

�6x csc2�3x 2 � 5�
2x � y cos�xy�
x cos�xy� � 1

2 cos � tan�sin �� sec2�sin ��
cossx � sx sin sx

2sx
1
5 �x tan x��4�5�tan x � x sec2x�

cos(tan s1 � x 3 ) (sec2
s1 � x 3 ) 3x 2

2 s1 � x 3

�
4

27

y � 2s3x � 1 � 
 s3�3�5x 4�y 11

(
�4, s2 ), (5
�4, �s2 )
y � 2x � 1 y � �

1
2 x � 1

35. 37.

39. (a) (b) 

43. 45. 49. (a) 0   (b) 

EXERCISES 2.7 ■ PAGE 132

1. 3. 5.
7. (a) 1   (b) 25 9.
11. (a) The rate of decrease of the surface area is .
(b) The rate of decrease of the diameter when the diameter is 
10 cm
(c) (d) 

(e) 

13. (a) The plane’s altitude is 1 mi and its speed is .
(b) The rate at which the distance from the plane to the station 
is increasing when the plane is 2 mi from the station
(c) (d) 

(e) 

15. 17.
19. 21.

23. 25.

27. 29.
31. 5 m    33. 35.
37. (a) (b) 

39. 41.

EXERCISES 2.8 ■ PAGE 138

1. 3.

5. ;    

,

7. 9.
11. 15.968    13.

V 3�nb � V �
PV 3 � n2aV � 2n3ab

�4.04 L�atm

��1, �1�, �1, 1�(�s3, 0) �
1
2

dV�dt � 3x 2 dx�dt 48 cm2�s 3��25
� m�min
�18

1 cm2�min

S � 
x 2

r
x

1��20
� cm�min

500 mi�h

y 2 � x 2 � 1

y

x

1
250s3 mi�h

837�s8674 
 8.99 ft�s65 mi�h
720
13 
 55.4 km�h�1.6 cm�min

4
5 ft�min10�s133 
 0.87 ft�s

0.3 m2�s6��5
� 
 0.38 ft�min
107
810 
 0.132 ��s80 cm3�min

0.096 rad�s360 ft�s

1650�s31 
 296 km�h 7
4 s15 
 6.78 m�s

L�x� � �10x � 6 L�x� � 1
4 x � 1

3

3_3

_1

(0, 1)

(1, 0)

y=œ„„„„1-x

y=1-   x
1

2

s1 � x 
 1 �
1
2 x

s0.9 
 0.95
s0.99 
 0.995

�0.368 � x � 0.677 �0.045 � x � 0.055
4.02

x

y

x

y
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11.

13. (a) (b) (c) 
(d) (e) 
15. (a) (b) 
17. 21. At 
23. 25. 1    27. 0    29. 0    

EXERCISES 3.2 ■ PAGE 161

1. (a) See Definition 1.
(b) It must pass the Horizontal Line Test.
3. No    5. No 7. Yes    9. No    11. Yes    13. No    
15. (a) 6   (b) 3    17. 0
19. ; the Fahrenheit temperature as a function of
the Celsius temperature; 

21. , 

23. 25.
27. 29.

31. (b) 33. (b) 
(c) , (c) ,

domain ,
(e) 

(e) 

35. 37. 39.
41. (a) It’s defined as the inverse of the exponential function
with base a, that is, .
(b) (c) (d) See Figure 13.

43. (a) 3   (b) 45. (a) 3   (b) 

47. 49.

51. 53.

x

y

0

y=1-   e–®

y=1

1
2

”0,    ’
1
2

y � e x � 2 y � e x�2 y � �e x

y � e�x y � �e�x

���, �1� � ��1, 1� � �1, �� ���, ��
f �x� � 3 � 2x x 
 35.8
�

F � 9
5 C � 32

��273.15, ��
y � 1

3�x � 1�2 �
2
3 x  1

y � 1
2�1 � ln x� y � e x � 3

f �1�x� � s
4 x � 1

6

60

f–!

f

x

y

f

f–!

0

1
12 �

1
2

f �1�x� � s
3 x f �1�x� � s9 � x

domain � � � range � �0, 9�

1 x

1

y

0

ƒ

f –!

range � �0, 3�

3 9 x

3

9

y

0

ƒ

f –!

1
7 2�
 3

2

loga x � y &? a y � x
�0, �� �

�3 �2
1
2 ln a �

1
2 ln b 2 ln x � 3 ln y � 4 ln z

ln 1215 ln 
sx

x � 1

51. (a) 2   (b) 44 53.
55. 57.
59.

61.

63. �4 (discontinuity), �1 (corner), 2 (discontinuity), 
5 (vertical tangent)
65. (a) 
(b) Upward when , downward when (c) 23
(d) 

67. 69. 71.

73. (a) ; 
(b) 
75. 77. 79. 81.

CHAPTER 3

EXERCISES 3.1 ■ PAGE 150

1. (a) (b) (c) 
(d) See Figures 6(c), 6(b), and 6(a), respectively.
3. All approach 0 as ,

all pass through , and
all are increasing. The larger
the base, the faster the rate
of increase.

5. The functions with base
greater than 1 are increasing
and those with base less than
1 are decreasing. The latter
are reflections of the former
about the y-axis.

7. 9.

f ��x� � 2t�x�t��x� f ��x� � t�� t�x��t��x�
f ��x� � t��sin x� � cos x

h��x� �
f ��x��t�x��2 � t��x�� f �x��2

� f �x� � t�x��2

f ��x� � 2xt�x� � x 2
t��x�

v�t� � 3t 2 � 12, a�t� � 6t
0 � t � 2t � 2

20

0 3

�15

a

v

position

t

y

400 ft�h13 ft�s4
3 cm2�min

s
3 1.03 
 1.01L�x� � 1 � x; s3 1 � 3x 
 1 � x

�0.23 � x � 0.40
1
4

1
3212 � 3
�2 
 16.7 cm2

f �x� � a x, a � 0 � �0, ��

x l ��y=20® y=5® y=´

y=2®

5

_1 2
0

�0, 1�

5

_2 2

y=3®y=10®

0

y=”   ’
®1

3
y=”    ’

®1
10

x
_1

y

0

y=_2–®

_1_2 0

1

y

x

y=10x+2

3s2
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19. 21.

23. 25.

27. 29.

31. 33.

35.

37.

39.

41. ;

43. 45.

47. ; 

49. 51.

53.

55.
57.

59.

61. 63.

65.

69. 71.
73.

EXERCISES 3.4 ■ PAGE 177

1. About 235
3. (a) (b) (c) 
(d) 
5. (a) 1508 million, 1871 million   (b) 2161 million
(c) 3972 million; wars in the first half of century, increased life
expectancy in second half
7. (a) (b) 
9. (a) (b) (c) 
11. 13. (a) (b) 

15. (a) (b) 
17. (a) (b) 

y� �
1 � x

e xf ��x� � e x�x 3 � 3x 2 � 2x � 2�

y� � 5�1�x�ln 5��x 2y� �
3e 3x

s1 � 2e 3x

y� �
10x � 1

5x 2 � x � 2
F��t� � et sin 2t�2t cos 2t � sin 2t�

y� � �x��1 � x�f ��t� � sec2 �et�et � e tan t sec2t

y� �
1

ln 10
� log10 x

f ��t� � 4 sin �esin2 t � cos �esin2 t � esin2 t sin t cos t

t��x� � 2r 2 p�ln a� �2ra rx � n� p�1 a rx

y� � e�x�� cos �x � � sin �x�
y� � e�x��� 2 � � 2� sin �x � 2�� cos �x�

y � 3x � 9y� � 1 � ln x, y� � 1�x

f ��x� �
2x � 1 � �x � 1� ln�x � 1�

�x � 1��1 � ln�x � 1�� 2

�1, 1 � e� � �1 � e, ��

y� � �x 2 � 2�2�x 4 � 4�4� 4x

x 2 � 2
�

16x 3

x 4 � 4�7

y� � 	 x � 1

x 4 � 1� 1

2x � 2
�

2x 3

x 4 � 1�
y� � x x�1 � ln x�
y� � �cos x�x��x tan x � ln cos x�

y� � �tan x�1�x� sec2x

x tan x
�

ln tan x

x 2 �
y� �

2x

x 2 � y 2 � 2y
y� �

1 � 2xye x 2y

x 2e x 2y � 1

v�t� � 2e�1.5t�2	 cos 2	t � 1.5 sin 2	t�
15

�7

0 2

√

2

�1

0 2

s

f �n��x� � ��1�n�1�n � 1�!��x � 1�nf (n)(x) � 2ne 2x

1
2


10,632 bacteria�h
7409100�4.2� t

�ln 100���ln 4.2� 
 3.2 h

�2000 ln 0.9 
 211 sCe�0.0005t


199.3 years
9.92 mg100 
 2�t�30 mg

116 min
137�F
2500 years


67.74 min13.3�C

39.9 kPa
64.5 kPa

55. All graphs approach 
as , all

pass through ,
and all are increasing.
The larger the base,
the slower the rate of
increase.

57. About 1,084,588 mi
59. (a) (b) 

61. (a) (b) 
(c) 

63. (a) (b) 
65. (a) (b) 
67. (a) (b) 
69. (a) (b) 
71. 73. 0    75.
77.

The graph passes the 
Horizontal Line Test.

,

where ; 
two of the expressions are complex.

EXERCISES 3.3 ■ PAGE 169

1. 3.

5. 7.

9. 11.

13. 15.

17.

3

�5

4

y=log
1.5

 x

y=log
10

 x

0

y=ln x

y=log
50

 x

�� x l 0�

�1, 0�

1 x

y

0

y=-ln x

_5 _4 x

y

0

y=log
10

 (x+5)

e�2�0, ��; ���, ��

x

y

ƒ=ln x+2

e–@

x=0

0

1
3�e2 � 10�1

4�7 � ln 6�
1
2 (1 � s1 � 4e )5 � log2 3 or 5 � �ln 3��ln 2

x � ln 50  x  1
f �1�x� � ln�e x � 3�; ��ln 3, ��

���

5

_1

4_2

�
s
3 4

6
(s3 D � 27x 2 � 20 � s

3 D � 27x 2 � 20 � s
3 2 )f �1�x� �

D � 3s3s27x 4 � 40x 2 � 16

f ��x� �
cos�ln x�

x
f ��x� �

3x 2

�x 3 � 1� ln 10

f ��x� �
sin x

x
� cos x ln�5x�f ��x� � �

1

x

t��x� �
2x 2 � 1

x �x 2 � 1�
t��x� � �

2a

a 2 � x 2

F��s� �
1

s ln s
G��y� �

10

2y � 1
�

y

y 2 � 1

y� � sec2�ln�ax � b��
a

ax � b
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5. 7.

9.

11. (a) 9   (b) 2    13. (a) (b) 

15. (a) (b) 

17. 19.

21. 23.

25.
27.
29. 31.

33.

35.

37. 39.

41.

43.

45. 47.
49. 53.
55. (a) (b) 

57. (a) (b) 

(c) (d) 
59. (a) (b) 61. 63. 0   
65. 67. 69. 1    71. 8    
73. 0    75. 77.

CHAPTER 4

EXERCISES 4.1 ■ PAGE 208

Abbreviations: abs, absolute; loc, local; max, maximum; 
min, minimum

1. Abs min: smallest function value on the entire domain of the
function; loc min at c: smallest function value when x is near c
3. Abs max at , abs min at , loc max at , loc min at and , 
neither a max nor a min at and 

y

0
x

y=_1

y=5
x
-1

1 x

y

0

y=-ln x

y

0

x

y=π

y=_π

y=2 arctan x

ln 5 e 2

s1 � e
d ln 5

ln c

y� �
1 � ln x

x ln x
y� � �

e1�x�1 � 2x�
x 4

y� �
1

2sarctan x �1 � x 2�
f ��t� � t � 2t ln t

y� � 3x ln x�ln 3��1 � ln x�
y� � 2x 2 cosh�x 2 � � sinh�x 2 �
h���� � 2 sec2�2��e tan 2� y� � cot x � sin x cos x

y� �
2

�1 � 2x� ln 5

y� �
�x � 2�4�3x 2 � 55x � 52�

2sx � 1 �x � 3�8

y� �
4x

1 � 16x 2 � tan�1�4x� y� � 3 tanh 3x

y� �
cosh x

ssinh2x � 1

y� �
�3 sin(estan 3x)estan 3x sec2�3x�

2stan 3x
f ��x� � t��x�e t�x� f ��x� � t��x��t�x�
2x�ln 2�n ��3, 0�

y � 1
4 x �

1
4 �ln 4 � 1� y � ex

200�3.24�t 
22,040


25,910 bacteria�h �ln 50���ln 3.24� 
 3.33 h
C0e�kt 
100 h 
�2

�� �1
2
3

s r c b r
a d

1
2

19. (a) $3828.84  (b) $3840.25  (c) $3850.08
(d) $3851.61  (e) $3852.01  (f ) $3852.08

EXERCISES 3.5 ■ PAGE 183

1. (a) (b) 3. (a) (b) 

5. (a) 10   (b) 9.

17. 19.

21. 23.

25. 27.

29.

31. ; [1, 2], (1, 2)    

33. 35. 37. 39.

EXERCISES 3.6 ■ PAGE 189

1. (a) 0   (b) 1    3. (a) (b) 
5. (a) 1   (b) 0
17.
19. (a) 1   (b) (c) (d) (e) 0   (f ) 1
(g) (h) (i) 0
27. 29.
31.
33.

35. 37.

39. 41.
47. (a) 0.3572   (b) 70.34°
49. (a) 164.50 m   (b) 120 m; 164.13 m
51. (b) 

53.

EXERCISES 3.7 ■ PAGE 197

1. 3. 5. 7. 9. 11.
13. 15. 17. 19.
21. 23. 3    25. 0    27. 29. 31.
33. 1    35. 37. 39. 43. 49.
51. 53. 57. (a) 0

CHAPTER 3 REVIEW ■ PAGE 199

True-False Quiz

1. True    3. False    5. True    7. True    9. False
11. False    13. False    15. True    

Exercises

1. No    3. (a) 7   (b) 


�3 
 
�4 
�4


�3 x�s1 � x 2

y� �
2 tan�1x

1 � x 2 y� �
1

s�x 2 � x

G��x� � �1 �
x arccos x

s1 � x 2
h��t� � 0

y� � �
sin �

1 � cos2�

y� �
sa 2 � b 2

a � b cos x

y� � sin�1x

t��x� �
2

s1 � �3 � 2x�2


�6 �
�2 
�2 1
4 rad�s

3
4

1
2 �e 2 � e�2 � 
 3.62686

sech x � 3
5 , sinh x � 4

3 , csch x � 3
4 , tanh x � 4

5 , coth x � 5
4

����1
���

h��x� � tanh xf ��x� � x cosh x

f �� t � � �2et sech2 �et � tanh�e t �
y� � 3e cosh 3x sinh 3x

y� �
1

2sx�x � 1�
G��x� �

�2 sinh x

�1 � cosh x�2

y� � sinh�1�x�3� y� � �csc x

y � 2 sinh 3x � 4 cosh 3x

(ln �1 � s2 ), s2 )

2 �� 2 1
4 ��

8
5

1
2 1� ln 3 �1�
 2 1

2 a�a � 1�
1
24 �2�


1
2 �

1�ee�2 e2 1 16
9 a

1
2 56

1
8
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(c) 

EXERCISES 4.2 ■ PAGE 215

1. 3. 5. is not differentiable on 
7. 0.3, 3, 6.3    9. 1    11. 13. 1
15. is not continous at . 23. 16    25. No    31. No

EXERCISES 4.3 ■ PAGE 222

Abbreviations:  inc, increasing; dec, decreasing; CD, concave
downward; CU, concave upward; HA, horizontal asymptote; 
VA, vertical asymptote; IP, inflection point(s)

1. (a) Inc on ; 
(b) Loc max ; loc min 
(c) CU on ; CD on ; IP 

3. (a) Inc on , ; dec on , 
(b) Loc max ; loc min 
(c) CU on , ;
CD on ; IP 

5. (a) Inc on , ; dec on 
(b) Loc max ; loc min 
(c) CU on ; CD on , ; 
IP 

7. (a) Inc on ; dec on 
(b) Loc min (c) CU on 

9. (a) Inc on ; dec on (b) Loc min 
(c) CU on 

11. Loc max ; loc min 

13. (a) has a local maximum at 2.  
(b) has a horizontal tangent at 6.

15. (a) 3, 5   (b) 2, 4, 6    (c) 1, 7
17. 19.

21.

√

0 r

kr#̧
4
27

r¸
2
3 r¸

2 9
4 f (�1, 1)

3� ln 4
f 3

���, �3�, �2, �� dec on ��3, 2�
f ��3� � 81 f �2� � �44

��1
2, �� (��, �1

2) (�1
2, 

37
2 )

��1, 0� �1, �� ���, �1� �0, 1�
f �0� � 3 f ��1� � 2

(��, �s3�3) (s3�3, �)
(�s3�3, s3�3) (�s3�3, 22

9 )
�0, ��4� �5��4, 2�� ���4, 5��4�
f ���4� � s2 f �5��4� � �s2

�3��4, 7��4� �0, 3��4� �7��4, 2��
�3��4, 0�, �7��4, 0�

(�1
3 ln 2, �) (��, �1

3 ln 2)
f (�1

3 ln 2) � 2�2�3 � 21�3 ���, ��

�1, �� �0, 1� f �1� � 0
�0, ��

f �1� � 2 f �0� � 1

f
f

y

0 x

x

y

0 1 32 4

x

y

0
_2

x=2

x

y

0
_2 2

5. Abs max , loc max and , 
loc min and 

7. 9.

11. (a) (b) 

(c) 

13. (a) (b)

15. Abs max 17. Abs min 
19. Abs max 21. Abs max 
23. 25. 27. 0    29. 31.
33. 35. 37. , 

39. , 41.

43. , 

45.

47. ,

49.

51.

53. (a) (b) , 

55. (a) 0.32, 0.00   (b) 57.
59. Cheapest, (June 1994); 
most expensive, (March 1998)

61. (a) (b) 

y

x0 54321

3

2

1

y

x0 51 2 3 4

1

2

3

y

0 x1

_1

2

1

3

y

0 x1

_1

2

1

3

y

0 x1

_1

2

1

2

3

y

0 x

y

0 x2

_1

f �3� � 4 f �0� � 0
f �2� � ln 2 f �0� � 1
�2, 31

3 0, 2 0, 8
7, 4

n� �n an integer� 0, 2
3 f �2� � 16 f �5� � 7

f ��1� � 8 f �2� � �19 f ��2� � 33, f �2� � �31

f (s2 ) � 2 f ��1� � �s3

f ���6� � 3
2s3, f ���2� � 0

f �2� � 2�se f ��1� � �1�s
8 e

f �1� � ln 3, f (�1
2) � ln 3

4

f� a

a � b� �
a abb

�a � b�a�b

2.19, 1.81 6
25 s

3
5 � 2 �

6
25 s

3
5 � 2

3
16 s3, 0 �3.9665�C

t � 0.855
t � 4.618

r � 2
3 r0 v � 4

27 kr 0
3

f �4� � 5 f �4� � 5 f �6� � 4
f �2� � 2 f �1� � f �5� � 3
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35. (a) Inc on ;
dec on 
(b) Loc min 
(c) CU on ; 
CD on , ;
IP , 

37. (a) VA ; HA 
(b) Inc on ; 
dec on , 
(c) Loc max 
(d) CU on ; 
CD on , ; IP 
(e) See graph at right.

39. (a) HA 
(b) Dec on 
(c) None
(d) CU on 
(e) See graph at right.

41. (a) HA 
(b) Inc on , dec on 
(c) Loc max 

(d) CU on ,
;

CD on ; 

IP 
(e) See graph at right.

43. (a) VA 
(b) Dec on 
(c) None
(d) CU on (0, 1); CD on ; 
IP (1, 0)
(e) See graph at right.

45. 47. (a) Loc and abs max , no min   
(b) 
49. 28.57 min, when the rate of increase of drug level in the
bloodstream is greatest; 85.71 min, when rate of decrease is
greatest

51.
53. (a) , (b) at 

¨

(π, _1)

”   ,    ’

y

π

3

5

4
”    ,    ’
5π

3

5

41

_1

0 π 2π

�0, ��
f ��� � �1

���3, 5��3�
�0, ��3� �5��3, 2��

(��3, 5
4) (5��3, 5

4)

��, 2��

x � 0 y � 1 y

20 3

y=1

x

(2, 5/4) 

�0, 2�
���, 0� �2, ��

f �2� � 5
4

�3, ��
���, 0� �0, 3� (3, 11

9 )

y � 0

x

y

0

1

���, ��

���, ��

y � 0

x_1 1

y

0

���, 0� �0, ��
f �0� � 1

(��, �1s2 )
(1�s2 , �)

(�1�s2 , 1�s2 )
(�1�s2 , e�1�2)

x � 0, x � e y

0 x

(1, 0)1

x=ex=0�0, e�

�1, e�

�3, �� f �1� � s2
1
4 (3 � s17 )

f �x� � 1
9 �2x 3 � 3x 2 � 12x � 7�

a � 0 b � �1 y � �x �0, 0�

23. (a) Inc on (0, 2), (4, 6), ;
dec on (2, 4), (6, 8)
(b) Loc max at ;
loc min at 
(c) CU on (3, 6), ; 
CD on (0, 3)
(d) 3
(e) See graph at right.

25. (a) Inc on , ; dec on 
(b) Loc max ; loc min 
(c) CU on , CD on ; IP 
(d)

27. (a) Inc on ;
dec on 
(b) Loc max ;
loc min 
(c) CU on ; 
CD on ; 
IP 
(d) See graph at right.

29. (a) Inc on ; 
dec on 
(b) Loc max ; 
loc min 
(c) CU on ; 
CD on ; IP 
(d) See graph at right.

31. (a) Inc on ; dec on 
(b) Loc max 
(c) CD on 
(d) See graph at right.

33. (a) Inc on ;
dec on 
(b) Loc min 
(c) CU on , ; 
CD on ;
IP , 
(d) See graph at right.

�8, ��

x

y

0 2 4 6 8

x � 2, 6
x � 4, 8

�6, ��

��2, 2��2, �����, �2�
f �2� � �14f ��2� � 18

�0, 2����, 0��0, ��

x_2 2

2

y

0

(_2, 18)

(2, _14)

x10

(1, 3)(_1, 3)

”     ,     ’
y

1

23
9

1

œ„3
”_     ,     ’

23
9

1

œ„3

���, �1�, �0, 1�
��1, 0�, �1, ��

f ��1� � 3, f �1� � 3
f �0� � 2

(�1�s3, 1�s3 )
(��, �1�s3 ), �1�s3, �)

(�1�s3, 23
9 )

���, �2�, �0, ��

x_1

(_1, 3)

(0, _1)

(_2, 7)
y

7��2, 0�
h ��2� � 7

h �0� � �1
��1, ��

��1, 3����, �1�

�4, 6����, 4�
{          }

4

y

x0 6

4, 4œ„2

f �4� � 4s2
���, 6�

��1, ��

x

y

_4 0

{ 2, 6 Œ„2 }

(_1, _3)

���, �1�
C��1� � �3

�2, �����, 0�
�0, 2�

(2, 6s
3 2 )�0, 0�
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13. A. B. y-int 0; x-int 0 
C. About the origin   
D. HA 
E. Inc on ;   
dec on 
F. Loc min ;
loc max ;
G. CU on , ;
CD on , ;
IP (0, 0), 
H. See graph at right.

15. A. B. x-int 1
C. None   D. HA ; VA 
E. Inc on ; 
dec on 
F. Loc max 
G. CU on ; 
CD on , ; IP 
H. See graph at right.

17. A. B. y-int. 0; x-int. 0, 5 
C. None   D. None
E. Inc. on ; dec. on 
F. Loc. max. 
G. CD on 
H. See graph at right.

19. A. B. y-int 0; x-int 0
C. About the origin   
D. HA 
E. Inc on F. None   
G. CU on ; 
CD on ; IP 
H. See graph at right.

21. A. 
B. x-int C. About the origin
D. VA 
E. Dec on , 
F. None
G. CU on , ;
CD on , ;
IP 
H. See graph at right.

23. A. B. y-int 0; x-int C. About the origin   
D. None   E. Inc on , ; dec on 
F. Loc max ; 
loc min 
G. CU on ; CD on ; 
IP
H. See graph at right.

y

x

”3,    ’ 
1

6

”_3, _   ’ 
1

6

y � 0
��3, 3�

���, �3�, �3, ��
f ��3� � �

1
6

f �3� � 1
6

(�3s3, 0) (3s3, �)
(��, �3s3 ) (0, 3s3 )

(�3s3, �s3�12)

�

���, 0� � �0,��

”3,   ’
2

9

x

y

0
1

”2,   ’
1

4

y � 0 x � 0
�0, 2�

���, 0�, �2, ��
f �2� � 1

4

�3, ��
���, 0� �0, 3� (3, 2

9)

���, 5�

(��, 10
3 ) ( 10

3 , 5)
f (10

3 ) � 10
9 s15

���, 5�

y

x

”    ,          ’
10

3

10œ„„

9

15

�

x

y

(0, 0)

y=_1

y=1

y � �1
���, ��
���, 0�

�0, �� �0, 0�

{x 	 	 x 	 � 1, x � 0} � 
�1, 0� � �0, 1�
�1

1

�1

x

y

0

x � 0
��1, 0� �0, 1�

(�1, �s2�3 ) (0, s2�3 )
(�s2�3, 0) (s2�3, 1)

(�s2�3, �1�s2 )

� 0, �3s3
���, �1� �1, �� ��1, 1�

f ��1� � 2

x

y

0

�_3œ„3, 0�

�3œ„3, 0�

�1, _2�

�_1, 2�

�0, 0�
f �1� � �2

�0, �� ���, 0�
�0, 0�

EXERCISES 4.4 ■ PAGE 230

Abbreviations: int, intercept; SA, slant asymptote

1. A. B. -int 0; -int 0, 6
C. None   D. None
E. Inc on , ; 
dec on 
F. Loc max ; 
loc min 
G. CU on ; CD on ; 
IP 
H. See graph at right.

3. A. B. -int 0; -int 0, 
C. None   D. None
E. Inc on ; dec on 
F. Loc min 
G. CU on 
H. See graph at right.

5. A. B. -int 0; -int 0, 4
C. None   D. None
E. Inc on ; dec on 
F. Loc min 
G. CU on , ; 
CD on ;
IP , 
H. See graph at right.

7. A. B. -int 0; -int 0
C. About D. None
E. Inc on 
F. None
G. CU on , ;
CD on , ; 
IP , , 
H. See graph at right.

9. A. B. y-int 0; x-int 0
C. None   D. VA , HA 
E. Dec on 
F. None
G. CU on ; CD on 
H. See graph at right.

11. A. B. y-int 
C. About y-axis   D. VA , HA 
E. Inc on , ; 
dec on (0, 3), 
F. Loc max 
G. CU on ; 
CD on 
H. See graph at right.

� y x

x

y

0

(2, 32)

(6, 0)

(4, 16)

���, 2� �6, ��
�2, 6�

f �2� � 32
f �6� � 0

�4, �� ���, 4�
�4, 16�

x

y

(1, _3)

0

s
3 4xy�

���, 1��1, ��
f �1� � �3

���, ��

xy�

x

y

0 (4, 0)

(2, _16)

(1, _27)

���, 1��1, ��
f �1� � �27

�4, �����, 2�
�2, 4�

�4, 0��2, �16�

xy�

x

y

(0,  0)

{_2,  _       }
256

15

{2,       }
256

15

�0, 0�
���, ��

�2, ����2, 0�
�0, 2����, �2�

(2, 256
15 )�0, 0�(�2, �256

15 )

x

y

0

x 	 1

y 	 1

�x 	 x � 1�
y � 1x � 1

���, 1�, �1, ��

���, 1��1, ��

�
1
9�x 	 x � �3�

y � 0x � �3

x

y

x 	 3x 	 �3

��3, 0����, �3�
�3, ��

f �0� � �
1
9

���, �3�, �3, ��
��3, 3�
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35. A. B. y-int. C. None
D. HA 
E. Inc on F. None
G. CU on ; CD on ;
IP H. See graph at right.

37. A. B. x-int. 1
C. None   D. None
E. Inc. on ; dec. on 
F. Loc. min. 
G. CU on 
H. See graph at right.

39. A. B. y-int. 0; x-int. 0
C. None   D. HA 
E. Inc. on ; dec. on 
F. Loc. max. 
G. CU on ; CD on ;
IP H. See graph at right.

41. A. All in ( an integer)   
B. x-int C. Period D. VA 

E. Inc on ; dec on 

F. Loc max G. CD on 

H. 

43. A. 
B. None   C. None   D. VA 
E. Inc on , ; 
dec on 
F. Loc max 
G. CU on ; CD on 
H. See graph at right.

45. 47.

�
1
2

x

y

0

y 	 1y � 0, y � 1
�

���, 0� �0, ��
(0, 1

2 )

�0, �� y

0 x
(1/e, _1/e)

�1�e, �� �0, 1�e�
f �1�e� � �1�e

�0, ��

�

21 x

y

0

”1,    ’
1

ey � 0
���, 1� �1, ��

f �1� � 1�e
�2, �� ���, 2�

�2, 2�e 2 �

x �2n�, �2n � 1��� n
��2 � 2n� 2� x � n�

�2n�, ��2 � 2n�� ���2 � 2n�, �2n � 1���
f ���2 � 2n�� � 0 �2n�, �2n � 1���

x

y

_4π _3π _2π _π π 2π 3π 4π

0

���, 0� � �0, ��

x(0 0)

(_1, _e)

y

x � 0
���, �1� �0, ��

��1, 0�
f ��1� � �e

�0, �� ���, 0�

y

xLL/20

m

0 √

(0, m¸) √=c

25. A. B. y-int ; x-int 
C. About -axis   D. None   
E. Inc on ; dec on 
F. Loc min 
G. CU on ; 
CD on ;
IP 
H. See graph at right.

27. A. B. y-int ; x-int ( an integer)   
C. About the origin, period D. None   
E–G answers for :
E. Inc on ; dec on F. Loc max 

G. Let ; CU on , ;
CD on ; IP at 
H. 

29. A. B. y-int 0; x-int 0   C. About y-axis
D. VA 
E. Inc on ; 
dec on 
F. Loc min 
G. CU on 
H. See graph at right.

31. A. C. None   D. None   
E. Inc on , ; 
dec on , 
F. Loc min , ;
loc max 
G. CU on , ;
CD on ; 
IP , 
H. See graph at right.

33. A. All reals except ( an integer)
B. y-int 0; x-int 
C. About the origin, period 
D. VA 
E. Inc on F. None
G. CU on ; CD on ; 
IP 
H. 

� �1 �1 y

0 x(_1, 0) (1, 0)

(0, _1)

y
���, 0��0, ��

f �0� � �1
��1, 1�

���, �1�, �1, ��
��1, 0�

nn�0�

2�
0 � x � �

f ���2� � 1���2, ���0, ��2�
�� � 
, ���0, 
�
 � sin�1

s2�3
x � 0, �, 
, � � 
�
, � � 
�

x

y

0_2π 2π

4π

����2, ��2�

x

y

0

x 	 �
π

2
x 	

π

2

x � ���2
�0, ��2�

����2, 0�
f �0� � 0

����2, ��2�

�0, 3��
�7��3, 3�����3, 5��3�

�5��3, 7��3��0, ��3�
f �7��3� � �7��6� �

1
2 s3f ���3� � ���6� �

1
2 s3

f �5��3� � �5��6� �
1
2 s3

3π x

y

0 π 2π

7π

3

5π

3

π

3

�2�, 3���0, ��
��, 2��

�2�, ����, ��2�

n�2n � 1��
2n�

2�
x � �2n � 1��

��2n � 1��, �2n � 1���
��2n � 1��, 2n���2n�, �2n � 1���

�2n�, 0�

x

y

_2π 0 2π

x=_3π x=_π x=π x=3π
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59. Inc on ; dec on , 

, ; CU on ,

CD on , 

61. For , there is an absolute minimum at the origin. There
are no other maxima or minima. The more negative becomes,
the farther the two IPs move from the origin. is a transi-
tional value.

63. There is no maximum or minimum, regardless of the 
value of c. For , there is a vertical asymptote at ,

, and .
is a transitional value at which for .

For , , , and there are 
two IPs, which move away from the y-axis as .

65. For , the graph has loc max and min values; for
it does not. The function increases for and

decreases for . As c changes, the IPs move vertically but
not horizontally.

EXERCISES 4.5 ■ PAGE 238

1. (a) 11, 12   (b) 11.5, 11.5    3. 10, 10    5.
7. 25 m by 25 m

1

0.95

f

_100 _1

75

_10

f

_1 1

(��, �8 � s61 )(�8 � s61, �8 � s61 )
(�12 � s138, �12 � s138 )�0, ����8 � s61, 0�

(�12 � s138, 0)(��, �12 � s138 )�0, ��;

c � 0
c

c � 0

10

0

4_4

c=4

c=_4

c=0

c � 0 x � 0
lim x l 0 f�x� � � lim x l �� f �x� � 1
c � 0 f �x� � 1 x � 0

c  0 lim x l 0 f�x� � 0 lim x l �� f �x� � 1
c l �

c=0.5

c=2c=1

2

_1

_4 4
c=_0.5

c=_2

c=_1

4

_1

_4 4

	 c 	 � 1

	 c 	 � 1 c � 1
c � �1

10

_10

_15 1 5

c=3 c=1

c=0.5

c=_3 c=_1

c=_0.5

c=0

9
4

49. A. 
B. -int 0; -int 0   C. None   
D. VA ; SA 
E. Inc on , ; 
dec on , 
F. Loc max ; 
loc min 
G. CU on ; CD on 
H. See graph at right.

51. A. 
B. -int C. None
D. VA ; SA 
E. Inc. on , ;
dec on 
F. Loc min 
G. CU on , 
H. See graph at right.

53.

55. Inc on , ; dec on , ;
loc max ; loc min , ;
CU on , ; 
CD on ; IP , 

57. Inc on , ; dec on ,
, , ; loc max ,

; loc min , ; 
CU on , ; CD on , ; 
IP , 

x

y

(0, 0)

(2, 4)

y x
x � 1 y � x � 1

���, 0� �2, ��
�0, 1� �1, 2�

f �0� � 0
f �2� � 4

�1, �� ���, 1�

���, 1� � �1, ��

���, 0� � �0, ��

x

y

_2

(2, 3)
y=x

0

�s
3 4x

y � xx � 0
�2, �����, 0�

�0, 2�
f �2� � 3

�0, �����, 0�

x

y

0

y 	 x � π

 2

y 	 x � π

 2

�2.58, ���0.92, 2.5� �2.5, 2.58�
f �2.5� � 4 f �2.58� � 3.998f �0.92� � �5.12

�2.54, �����, 1.46�
�1.46, �1.40��1.46, 2.54� �2.54, 3.999�

_6

10

0 4

ƒ

2.7

3.96

4.04

2.4

ƒ

���, �1.40��0.44, 1.40���1.40, �0.44�
f ��0.44� � �4.68�1.40, ���0, 0.44���0.44, 0�

f �0.44� � 5.22f ��1.40� � �6.09f �1.40� � 6.09
�0.77, ����0.77, 0��0, 0.77����, �0.77�

�0.77, 5.22���0.77, �5.22�

8

_8

π_π

f

���, 0.92�
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15.

17.
19.
21.
23. 25.
27.
29.
31.
33. 35. 37. b
39.
41.
43. (a) (b) 
(c) (d) About 9.09 s

47. 225 ft 49.
51. 53.
55. (a) 22.9125 mi   (b) 21.675 mi   (c) 30 min 33 s
(d) 55.425 mi    

CHAPTER 4 REVIEW ■ PAGE 254

True-False Quiz

1. False    3. False    5. True    7. False    9. True
11. True    13. False    15. True    17. True    
19. True

Exercises

1. Abs max , abs and loc min 

3. Abs max , abs and loc min 

5.

7.

9. (a) None
(b) Dec. on 
(c) None

(d) CU on ; CD on ; 
IP 
(e) See graph at right.

F�x� � x 5 �
1
3 x 6 � 4

f �x� � x 5 � x 4 � x 3 � Cx � D

f �x� � 3
20 x 8�3 � Cx � D

f �t� � �sin t � Ct 2 � Dt � E
f �x� � x � 2x 3�2 � 5 f �t� � 4 arctan t � �

f �t� � 2 sin t � tan t � 4 � 2s3

f �x� � �x 2 � 2x 3 � x 4 � 12x � 4

f �� � � �sin � � cos � � 5� � 4
f �x� � �ln x � �ln 2�x � ln 2 10
s�t� � 1 � cos t � sin t
s�t� � �10 sin t � 3 cos t � �6���t � 3

s�t� � 450 � 4.9t 2
s450�4.9 � 9.58 s

�9.8s450�4.9 � �93.9 m�s
130
11 � 11.8 s

88
15 � 5.87 ft�s2 62,500 km�h2 � 4.82 m�s2

f �4� � 5 f �3� � 1

f �2� � 2
5 f (�1

3) � �
9
2

y

0
x1

�2

9 12

x 	 6

y

x

y=_2

y=2

y

x

2

���, ��

���, 0� �0, ��
�0, 2�

9. (a) 

(b) 

(c) (d) (e) 
(f ) 
11. 15. 17.
19. 21. Base , height 
23.
25. Width ; rectangle height 
27. (a) Use all of the wire for the square
(b) m for the square
29. 33.
35. (a) (b) 
(c) 
37. ft from the stronger source
39. 41.
43. (b) (i) $342,491; $342�unit; $390�unit   
(ii) 400   (iii) $320�unit
45. (a) (b) $9.50
47. (a) (b) $175   (c) $100    
49. 53.
55. 57. At a distance from A

EXERCISES 4.6 ■ PAGE 245

1. (a) (b) No    
3. 5. 7. 9.
11. 13. 1.217562    
15. , 
17. 19.
21.
23. (b) 31.622777    29.
31. 0.76286%

EXERCISES 4.7 ■ PAGE 252

1.
3.
5.
7.
9. on , 

an integer
11.

13.

75

120 9000 ft@

250

50 12,500 ft@

125

100 12,500 ft@

y

x

A�x� � 375x �
5
2 x 25x � 2y � 750A � xy

14,062.5 ft 2

4000 cm3 (�6
5 , 3

5) (�1
3 , �4

3 s2 )
L�2, s3 L�4 s3r 3r�2
4�r 3�(3s3 )

60��4 � �� ft 30��4 � �� ft

40s3�(9 � 4s3 )
E 2��4r�V � 2�R3�(9s3 )

cos�1(1�s3 ) � 55�
3
2 s 2 csc � �csc � � s3 cot ��

6s[h � s�(2s2 )]
10s

3 3�(1 � s
3 3 )

y � �
5
3 x � 10 2s6

p�x� � 19 �
1

3000 x
p�x� � 550 �

1
10 x

�a 2�3 � b 2�3�3�2 x � 6 in.
5 � 2s51

2�L � W �2

x2 � 2.3, x3 � 3
�1.251.1785a, b, c9

2

1.82056420
1.13929375, 2.98984102�1.93822883, �1.21997997

�0.44285440 �1.97806681, �0.82646233
0.21916368, 1.08422462

�1.519855, 2.306964�

F �x� � 1
2 x �

1
4 x3 �

1
5 x4 � C

F �x� � 5x 7�5 � 40x 1�5 � C
F �x� � 2x 3�2 �

3
2 x 4�3 � C

G�t� � 2t 1�2 �
2
3t 3�2 �

2
5t 5�2 � C

�n� � ��2, n� � ��2�H��� � �2 cos � � tan � � Cn

n
F �x� � 5e x � 3 sinh x � C

F �x� � 1
2 x 2 � ln	 x 	� 1�x 2 � C
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23. A. 
B. -int ; -int 2   
C. None   D. HA 
E. Inc on ; dec on 
F. Loc max 
G. CU on ; CD on ; 
IP 
H. See graph at right.

25. Inc on , ;

dec on , ;

loc max ,

loc min ;

CU on , ;

CD on , ;

IP , 

27. Inc on , ; dec on , 
loc max ; loc min , ;
CU on , ; CD on ; 
IP , 

29. ; 

31.
33. For , f is periodic with period and has local 
maxima at , n an integer. For , f has no
graph. For , f has vertical asymptotes. For ,
f is continuous on . As C increases, f moves upward and its
oscillations become less pronounced.

39. 500, 125    41. 43. from ; at
45. 47. $11.50   49. 1.16718557    
51. 53.

55. 57.
59. No
61. (b) About 8.5 in. by 2 in.   (c) by 

�

x

y

0

_2

1

2

{3, e
_
#}y �2 x

y � 0
���, 3� �3, ��

f �3� � e�3

�4, �� ���, 4�
�4, 2e�4�

(�s3, 0) (0, s3 )

ƒ

1.5

_1.5

_5 5

(��, �s3 ) (s3, �)
f (s3 ) � 2

9 s3

f (�s3 ) � �
2
9 s3

(�s6, 0) (s6, �)
(��, �s6 ) (0, s6 )

(s6, 5
36 s6 ) (�s6, � 5

36 s6 )

��0.23, 0� �1.62, �� ���, �0.23� �0, 1.62�;
f �0� � 2 f ��0.23� � 1.96 f �1.62� � �19.2

���, �0.12� �1.24, �� ��0.12, 1.24�
��0.12, 1.98� �1.24, �12.1�

f

15

2.1_1

_20

2.5

0.4_0.5

1.5

f

5
0

_5

1 ��0.82, 0.22� (�s2�3, e�3�2 )

�2.96, �0.18, 3.01; �1.57, 1.57; �2.16, �0.75, 0.46, 2.21

C  �1 2�
2n� � ��2 C � �1
�1 � C � 1 C  1

�

3s3r 2 4�s3 cm D C
L � C
F�x� � e x � 4 sx � C 2 arctan x � 1
1
2 x 2 � x 3 � 4x 4 � 2x � 1 s�t� � t 2 � tan�1t � 1

20�s3 in. 20s2�3 in.

11. (a) None   
(b) Inc on , n an integer;
dec on 
(c) Loc max ; loc min 
(d) CU on ;
CD on ; IPs 
(e) 

13. (a) None
(b) Inc on ,
dec on 
(c) Loc min

(d) CU on
(e) See graph at right.

15. A. B. y-int 0; x-int 0, 1 
C. None   D. None
E. Inc on ; dec on 

F. Loc min 

G. CU on , ; 

CD on ; IP , 
H. See graph at right.

17. A. 
B. None   C. None
D. HA ; VAs , 
E. Inc on ;
dec on , , 
F. Loc min 
G. CU on , ; CD on 
H. See graph at right.

19. A. 
B. y-int 0; x-int 
C. None   D. None
E. Inc on , dec on 
F. Loc min 
G. CU on 
H. See graph at right.

21. A. 
B. None   
C. About the origin
D. HA 
E. Dec on , 
F. None
G. CU on ; CD on 
H. See graph at right.

�2n� � ���3�, 2n� � �5��3�� (2n� � ���3�, � 1
4 )

y

x

2

π

_2

_π

2π_2π

1 x

2

y

0

( 1
4 ln 3, �)

(��, 1
4 ln 3)

f ( 1
4 ln 3) � 31�4 � 3�3�4

���, ��

� y

0 x1

1

2

2

( 1
4 , �) (��, 1

4 )
f ( 1

4 ) � �
27

256

(��, 1
2 ) �1, ��

( 1
2 , 1) ( 1

2 , � 1
16 ) �1, 0�

�x 	 x � 0, 3� y

0 x

x 	 3

y � 0 x � 0 x � 3
�1, 3�

���, 0� �0, 1� �3, ��
f �1� � 1

4

�0, 3� �3, �� ���, 0�


�2, �� y

x

”_   , _       ’
4

3

4œ„6

9

�2, 0

(� 4
3 , �) (�2, � 4

3 )
f (� 4

3 ) � �
4
9 s6

��2, ��

�2n�, �2n � 1���
��2n � 1��, �2n � 2���

f ��2n � 1��� � 2 f �2n�� � �2
�2n� � ���3�, 2n� � ���3��

x

y

0 1_1

π

2

π

2
_

{x 	 	 x 	 � 1}

y � 0
�1, �����, �1�

���, �1��1, ��
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,

,

9. 34.7 ft, 44.8 ft    11. 63.2 L, 70 L    13. 155 ft

15.

17. The region under the graph of from 0 to 

19. (a) 

21. (a) (b) (c) 

23.

EXERCISES 5.2 ■ PAGE 279

1.
The Riemann sum represents
the sum of the areas of the two 
rectangles above the -axis
minus the sum of the areas of
the three rectangles below the 
-axis; that is, the net area of the

rectangles with respect to the 
-axis.

3. 2.322986
The Riemann sum represents the sum
of the areas of the three rectangles
above the -axis minus the area of
the rectangle below the -axis.

5.
7. (a) 6   (b) 4   (c) 2
9. Lower, ; upper, 

11. 6.1820 13. 0.9071    

x

y

1

2

3

ππ

4

π

2

3π

4

0

n � 8: upper � 8.65 lower � 7.86

x

y

1

2

3

ππ

4

π

2

3π

4

0

upper � (10 � s2 )���4� � 8.96n � 4:
lower � (8 � s2 )���4� � 7.39

lim
n l �

�
n

i�1

2�1 � 2i�n�
�1 � 2i�n�2 � 1

�
2

n
y � tan x ��4

Ln � A � Rn

lim
n l �

64

n 6 �
n

i�1
i 5 n 2�n � 1�2�2n 2 � 2n � 1�

12
32
3

sin b, 1

�6 y

0 x

2

3

1

2 4 6

ƒ=3-   x
1

2

8 10 12 14
x

x

x

y

0 x

2

3

4

5

6

1

_1
1 2

ƒ=´-2

x
x

�0.028

L5 � �64 R5 � 16

CHAPTER 5

EXERCISES 5.1 ■ PAGE 266

1. (a) 40, 52

(b) 43.2, 49.2 

3. (a) 0.7908, underestimate   (b) 1.1835, overestimate

5. (a) 8, 6.875 (b) 5, 5.375

(c) 5.75, 5.9375

(d) 

7. , 

y

x0
5

5

y=ƒ

10

y

x0
5

5

y=ƒ

10

y

0 x

1

π

2

3π

8

π

4

π

8

ƒ=cos x

y

0 x

1

π

2

3π

8

π

4

π

8

ƒ=cos x

y

x0 1

2

y

x0 1

2

y

x0 1

2

y

x0 1

2

y

x0 1

2

y

x0 1

2

M6

lower � 2� � 6.28upper � 3� � 9.42n � 2:

x

y

1

2

3

ππ

2

0
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EXERCISES 5.4 ■ PAGE 298

1. (a) 0, 2, 5, 7, 3 (d) 
(b) (0, 3)
(c) 

3. (a), (b) 

5. 7.

9. 11.

13. 15.

17.
19. (a) 1   (b) 2, 4   (c) 

21. 23.
25. (a) Loc max at 1 and 5;
loc min at 3 and 7
(b) 

(c) 

(d) See graph at right.

27. 29
29. (a) , n an integer
(b) , , and ,
n an integer (c) 
31.
33. (b) Average expenditure over ; minimize average 
expenditure

EXERCISES 5.5 ■ PAGE 306

1. 3. 5.
7. 9.

y

0 x

1

1

gx � 3

0 1

y

tx

y=t@

x 2

t��x� � 1��x 3 � 1� t��s� � �s � s 2�8

h��x� � �
arctan�1�x�

x 2 y� � stan x � stan x sec2x

t��x� �
�2�4x 2 � 1�

4x 2 � 1
�

3�9x 2 � 1�
9x 2 � 1

45
28

2��

0 x

y

2 3 4 5

1

(5, 4)

(4, 1)(2, 1)

y=(x-3)@

1

9
8 ��4, 0�

x

8642

1

0

_1

y

_2

x � 9

( 1
2 , 2), �4, 6�, �8, 9�

�2sn, s4n � 2 � 0
�0, 1� (�s4n � 1, �s4n � 3 ) (s4n � 1, s4n � 1 )

� 0 �0.74
f �x� � x 3�2, a � 9

�0, t�

�e�x � C 2
9 �x 3 � 1�3�2 � C �

1
4 cos4	 � C

�
1
2 cos�x 2� � C �

1
20�1 � 2x�10 � C

15. 17.

19. 21. 23.

25.

27.

29. (a) 4   (b) 10   (c) �3   (d) 2    

31. 33. 35. 37. 0   

39. 41. 122   43. 3    45.

49. 51.

53.

EXERCISES 5.3 ■ PAGE 289

1. 3. 5. 7. 9. 36

11. 13. 15.

17. 19. 21.

23. 25. 27. 29.
31. The function is not continuous on the interval

, so the Evaluation Theorem cannot be applied.
33. 35. 2    
37. 3.75  

41.

43. 45.
47. 49.

51. Increase in the child’s weight (in pounds) between the 
ages of 5 and 10    
53. Number of gallons of oil leaked in the first 2 hours    
55. Increase in revenue when production is increased from 1000
to 5000 units
57. Newton-meters    59. (a) (b) 
61. (a) (b) 
63. 1.4 mi    65. 1800 L    67. 5443 bacteria    69. 3

x
6
2 x ln�1 � x 2� dx x

7
2 �5x 3 � 4x� dx

�9 2
3 �

3
4

lim
n l �

�
n

i�1

2 � 4i�n

1 � �2 � 4i�n�5 �
4

n

lim
n l �

�
n

i�1
	sin 

5�i

n 
 �

n
�

2

5

5
23 �

9
4�3

2

x
5

�1 f �x� dx 15
�

12

 y

��3

��4
tan x dx 


�

12
 s31

2 
 y
2

1
dx�x 
 1

x
1
0 x 4 dx

�
10
3

21
5 �2 5e� � 1

1

11
�

9

ln 10
3
4 � 2 ln 255

63

1 � ��4 1
2�e � e�1� ��3

1
2 e 2 � e �

1
2 e2 � 1 ��6 �3.5

f �x� � 1�x 2

��1, 3�

x

y

0 2

�1

y=˛

12

_6

_1 5

5 3 0

_2
_4

2
5 x 5�2 � C

�cos x � cosh x � C 2
3u3 �

9
2u2 � 4u � C

4
3sec x � C

41
6 m�

3
2 m

416 2
3 mv�t� � 1

2 t 2 � 4t � 5 m�s

4
3
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CHAPTER 6

EXERCISES 6.1 ■ PAGE 316

1. 3.
5.
7.
9.

11.

13.

15. 17. 19.

21. 23.
25.
27. 29.
31. (b) 

33. (b) 
39.
41.
43. 45. 2

EXERCISES 6.2 ■ PAGE 326

1. 3.
5. 7. 9.
11.
13.
15.
17. 19.
21. 23.
25.
27.

29. 31.
33. 35.
37. (b) 

39. 41.

43. 45.

47.
49.

51. 53.
55.
57.

59.

61.

63.
65. 67.

�
1
3te�3t �

1
9e�3t � C

�x 2 � 2x� sin x � �2x � 2� cos x � 2 sin x � C

1
3 x 3 ln x �

1
9 x 3 � C 1

5 x sin 5x �
1

25 cos 5x � C

1
2�2x � 1� ln�2x � 1� � x � C

t arctan 4t �
1
8 ln�1 � 16t 2� � C

1
13 e 2	�2 sin 3	 � 3 cos 3	� � C

e 2x

4�2x � 1�
� C

� � 2

2� 2
81
4 ln 3 � 5

1 � 1�e 1
6 (� � 6 � 3s3 )

2�ln 2�2 � 4 ln 2 � 2

2sx sin sx � 2 cos sx � C �
1
2 � ��4

�
1
4 cos x sin3x �

3
8 x �

3
16 sin 2x � C

2
3 , 8

15

x ��ln x�3 � 3�ln x�2 � 6 ln x � 6� � C
1 � �2��� ln 2
2 � e�t�t 2 � 2t � 2� meters

1
3 sin3x �

1
5 sin5x � C 1

120

��4 3��8 ��16
1
4t 2 �

1
4t sin 2t �

1
8 cos 2t � C

1
2 cos2x � ln � cos x � � C

ln�1 � sin x� � C
1
3 sec3x � C tan x � x � C
1
9 tan9x �

2
7 tan7x �

1
5 tan5x � C 117

8
1
3 sec3x � sec x � C
1
4 sec4x � tan2x � ln � sec x � � C

s3 �
1
3� 22

105 s2 �
8

105

ln � csc x � cot x � � C 1
2 s2

1
6 sin 3x �

1
14 sin 7x � C

�
s4 � x 2 

4x
� C sx 2 � 4 � 2 sec�1	 x

2
 � C

�

24
�

s3

8
�

1

4

1

s2 a 2

ln(sx 2 � 16 � x) � C
1
4 sin�1�2x� �

1
2 xs1 � 4x 2 � C

1
6 sec�1�x�3� � sx 2 � 9��2x 2� � C 9

500�

sx 2 � 7 � C

ln � (s1 � x 2 � 1)�x � � s1 � x 2 � C
1
4 sin�1�x 2� �

1
4 x 2

s1 � x 4 � C
1
3 ln � 3x � 1 � s9x 2 � 6x � 8 � � C
9
2 sin�1��x � 2��3� �

1
2�x � 2�s5 � 4x � x 2 � C

s � �1 � cos3�t���3�� 1
6 (s48 � sec�1 7)

11. 13.

15. 17.

19. 21.

23. 25.

27. 29.

31.

33.

35.
37. 39. 41. 43.

45. 47. 49.

51. 2    53. 55.

57. 59. All three areas are equal.    61.

63. 65. 5    

CHAPTER 5 REVIEW ■ PAGE 308

True-False Quiz

1. True    3. True    5. False    7. True    9. True
11. False   13. True    15. False    17. False    

Exercises

1. (a) 8 (b) 5.7

3. 5.

7. 37    9. 11. 13. 15.

17. 0 19.

21. 23.

25. 27.

29. 31.

33. 35.

37.

39. 41. 1.11

43. Number of barrels of oil consumed from Jan. 1, 2000,
through Jan. 1, 2003
45. 72,400    47. 49.

2
3 s3ax � bx 3 � C �(1��� cos � t � C
2
3 �1 � e x �3�2 � C 1

3 sinh3x � C

�
2
3 �cot x�3�2 � C ln � sin�1 x � � C

1
3 sec3x � C �

1

ln 5
 cos�5 t� � C

�ln�1 � cos2 x� � C
1

40�2x � 5�10 �
5
36�2x � 5�9 � C

tan�1x �
1
2 ln�1 � x 2 � � C

2�� 45
28 4 e � se

16
15 ln�e � 1� 0

1
10 �1 � e�25 � 2��5��

6� � 4512 L

5

4�
	1 � cos 

2�t

5 
 L

2 x

2

0

y=ƒ

6

y

6

2 x

2

0

y=ƒ

y

f � c, f �� b, xx
0 f �t� dt � a1

2 � ��4
1
3 sin 121

4�769
10

��1�x� � 2 ln � x � � x � C

1

2�
 sin2� t � Csx2 � 4x � C

�
1
2 �ln�cos x��2 � C2e sx � C

ln � 1 � sec 	 � � C1
4 ln�1 � x 4 � � C
64
5 F��x� � s1 � x 4

y� � (2e x � e sx )��2x�
4 
 x

3
1 sx 2 � 3 dx 
 4s3

f �x� c � 1.62

�
1
3 ln� 5 � 3x � � C1

3�ln x�3 � C
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17.

19.

21.

25.

27.

29.

31.

33. (a) ; 

both have domain 

EXERCISES 6.5 ■ PAGE 350

1. (a)
(b) is an underestimate, and are overestimates.
(c) (d) 

3. (a) (underestimate)
(b) (overestimate)

5. (a) ,
(b) ,
7. (a) 1.506361   (b) 1.518362   (c) 1.511519
9. (a) 2.660833   (b) 2.664377   (c) 2.663244
11. (a) 4.513618   (b) 4.748256   (c) 4.675111
13. (a) (b) (c) 
15. (a) 1.064275   (b) 1.067416   (c) 1.074915
17. (a) 
(b) , 
(c) for , for 
19. (a) , ;

, ; 
, 

(b) , 
(c) for , for , for 
21. (a) 2.8   (b) 7.954926518   (c) 0.2894   
(d) 7.954926521   (e) The actual error is much smaller.
(f ) 10.9   (g) 7.953789422   (h) 0.0593
(i) The actual error is smaller.   ( j) 

23.

Observations are the same as after Example 1.

25. (a) 19.8   (b) 20.6   (c) 
27. 29.

1
5 ln � x 5 � sx 10 � 2 � � C
1
2�ln x�s4 � �ln x�2 � 2 ln[ln x � s4 � �ln x�2] � C

se 2x � 1 � cos�1�e�x � � C
1
3 tan x sec2x �

2
3 tan x � C

1
4 x�x 2 � 2�sx 2 � 4 � 2 ln(sx 2 � 4 � x) � C
1
4 cos3x sin x �

3
8x �

3
8 sin x cos x � C

1
4 tan4 x �

1
2 tan2 x � ln� cos x � � C

�ln � 1 � s1 � x 2 

x � � C

��1, 0� � �0, 1�

L2 � 6, R2 � 12, M2 � 9.6
M2R2L2

Ln � Tn � I � Mn � RnT2 � 9 � I

T4 � 0.895759
M4 � 0.908907

T4 � I � M4

EM � �0.001879M10 � 0.806598
ES � �0.000060S10 � 0.804779

�0.526123�0.543321�0.495333

T8 � 0.902333, M8 � 0.905620

� EM � � 0.0039� ET � � 0.0078
Mnn � 50Tnn � 71

ET � 0.016476T10 � 1.983524
EM � �0.008248M10 � 2.008248

ES � �0.000110S10 � 2.000110

� ES � � 0.000170� ET � � 0.025839, � EM � � 0.012919
Snn � 22Mnn � 360Tnn � 509

n � 50

20.53
37.73 ft�s 64.4�F

EXERCISES 6.3 ■ PAGE 334

1. (a) (b) 

3. (a) 

(b) 

5. (a) 

(b) 

7.

9. 11.
13. 15.

17.

19.

21.

23.

25.

27.

29.

31.

33.

35. 37.

39.

41.

43. , where 

47.

EXERCISES 6.4 ■ PAGE 340

1. 3.

5. 7.

9.

11.

13.

15.

A

4x � 3
�

B

2x � 5

A

x
�

B

x 2 �
C

5 � 2x
A

x
�

B

x 2 �
C

x 3 �
Dx � E

x 2 � 4
A

x � 3
�

B

�x � 3�2 �
C

x � 3
�

D

�x � 3�2

x 4 � 4x 2 � 16 �
A

x � 2
�

B

x � 2
Ax � B

x 2 � x � 1
�

Cx � D

x 2 � 2
�

Ex � F

�x 2 � 2�2

1
4x 4 �

1
3x 3 �

1
2x 2 � x � ln � x � 1� � C

2 ln 3
2

1
2 ln � 2x � 1� � 2 ln � x � 1� � C

a ln � x � b � � C 2 ln 2 �
1
2

27
5 ln 2 �

9
5 ln 3 (or 9

5 ln 8
3)

10 ln � x � 3 � � 9 ln � x � 2 � �
5

x � 2
� C

1
2 x 2 � 2 ln�x 2 � 4� � 2 tan�1�x�2� � C

ln � x � 1 � �
1
2 ln�x 2 � 9� �

1
3 tan�1�x�3� � C

1
2 ln�x 2 � 1� � (1�s2 ) tan�1(x�s2 ) � C

1
2 ln�x 2 � 2x � 5� �

3
2 tan�1� x � 1

2 	 � C

1
3 ln � x � 1 � �

1
6 ln�x 2 � x � 1� �

1

s3
tan�1 2x � 1

s3
� C

1
16 ln � x � �

1
32 ln�x 2 � 4� �

1

8�x 2 � 4�
� C

�1

2�x 2 � 2x � 4�
�

2s3

9
 tan�1� x � 1

s3 	 �
2�x � 1�

3�x 2 � 2x � 4�
� C

3
10 �x 2 � 1�5�3 �

3
4 �x 2 � 1�2�3 � C2 � ln 25

9

ln
�e x � 2�2

e x � 1 � � C

(x �
1
2) ln�x 2 � x � 2� � 2x � s7 tan�1�2x � 1

s7 	 � C

C � 10.23t � �ln P �
1
9 ln�0.9P � 900� � C

1

a n�x � a�
�

1

a nx
�

1

an�1x 2 � � � � �
1

ax n

	

8
 arctan 

	

4
�

1
4 ln(1 �

1
16	

2) 1
6 ln � sin x � 3

sin x � 3 � � C

�s4x 2 � 9��9x� � C 	 3 � 6	

�
1
2 tan2�1�z� � ln �cos�1�z� � � C

2y � 1

8
s6 � 4y � 4y 2 �

7
8 sin�1�2y � 1

s7 	
�

1
12 �6 � 4y � 4y 2�3�2 � C

1
9 sin3x �3 ln�sin x� � 1 � C

1

2s3
ln � e x � s3

e x � s3 � � C
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n

5 0.742943 1.286599 1.014771 0.992621
10 0.867782 1.139610 1.003696 0.998152
20 0.932967 1.068881 1.000924 0.999538

MnTnRnLn

n

5 0.257057 �0.286599 �0.014771 0.007379
10 0.132218 �0.139610 �0.003696 0.001848
20 0.067033 �0.068881 �0.000924 0.000462

EMETEREL

12280_Ans_ptg01_hr_A060-A069.qk_12280_Ans_ptg01_hr_A060-A069  6/29/12  12:32 PM  Page 60

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



53. (a) 

(b) The rate at which the fraction increases as t increases
(c) 1; all bulbs burn out eventually

55. 8264.5 years    57. 1000    61. 63. No

CHAPTER 6 REVIEW ■ PAGE 362

True-False Quiz

1. False    3. False    5. False    7. False
9. (a) True   (b) False    11. False    13. False

Exercises

1. 3. 5.

7. 9. 11.

13. 15.
17.

19.
21.

23.

25.

27. 29. 0    31.

33.

35. 37.

39. 41. 43. D

45. 47. 49.

51.

53.
55. No
57. (a) 1.925444   (b) 1.920915   (c) 1.922470
59. (a) 0.01348, (b) , 
61. 8.6 mi    
63. (a) 3.8   (b) 1.7867, 0.000646   (c) 

CHAPTER 7

EXERCISES 7.1 ■ PAGE 369

1. 3. 5. 7.

9. 11. 72    13. 15. 17.
19.

1

700 t0
(in hours)

y

y=F(t)

F�t�

C � 1; ln 2

7
2 � ln 2 e � 1 ln� 2t � 1 � � ln� t � 1 � � C

�cos�ln t� � C 64
5 ln 4 �

124
25 s3 � �	�3�

ln � x � �
1
2 ln�x 2 � 1� � C 2

15

x sec x � ln � sec x � tan x � � C
1
18 ln�9x 2 � 6x � 5� �

1
9 tan�1( 1

2�3x � 1�) � C

ln � x � 2 � sx 2 � 4x � � C

�
1

12 �cot3 4x � 3 cot 4x� � C
3
2 ln�x 2 � 1� � 3 tan�1x � s2 tan�1(x�s2 ) � C
2
5 6 �

3
2	

x

s4 � x 2
� sin�1� x

2	 � C

4s1 � sx � C 1
2 sin 2x �

1
8 cos 4x � C

1
8 e �

1
4

1
36

4 ln 4 � 8 �
4
3 	�4

1
4�2x � 1�s4x 2 � 4x � 3 �

ln � 2x � 1 � s4x 2 � 4x � 3 � � C
1
2 sin xs4 � sin2x � 2 ln(sin x � s4 � sin2x ) � C

n � 368 0.00674 n � 260

n � 30

9
2e � �1�e� �

4
3e � �1�e� �

10
3

32
3

2�	 �
2
3

32
3e � 28

3

ln 2

31. (a) 14.4   (b) 
33. 35. 59.4
37.

EXERCISES 6.6 ■ PAGE 360

Abbreviations: C, convergent; D, divergent

1. (a), (d) Infinite discontinuity   (b), (c) Infinite interval

3. ; 0.495, 0.49995, 0.4999995; 0.5
5. 7. D    9. 11. D    13. 0    15.
17. D    19. 21. 23. D    25.
27. 29. D    31.
33. 43.

37. Infinite area

39. (a) 

It appears that the integral is convergent.
(c) 

41. C    43. D    45. D    47.
49.

1
2

10,177 megawatt-hours

0 x

y

1

1 20.5 1.5

1
2 � 1��2t 2 �
2 1

5e�10 �
1
4

ln 2 	�9 32
3

9
2

8
3 ln 2 �

8
9

1
2 ln 21�e

2

0
3

y=   
1

˛+x

x

y

0 1

x=1

y=e
_x

20

0
π

2

y=sec@ x

1

�0.1

1 10

©=
sin@ x

≈

ƒ=
1
≈

p � 1, 1��1 � p�
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t

2 0.447453
5 0.577101

10 0.621306
100 0.668479

1,000 0.672957
10,000 0.673407

y
t

1
��sin2x��x 2  dx
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9.

11.

13. 15. 17.
19. (a) 

(b) 

21. (a) 

(b) 

23. 25.
27. (a) Solid obtained by rotating the region ,

about the x-axis   (b) Solid obtained by rotating
the region , about the y-axis
29. 31. 33.
35. 37. 39. 24    41. 43.

47. (a) (b) 49. (b) 

51. 53.

EXERCISES 7.3 ■ PAGE 384

1. Circumference , height ;

3. 5. 7. 9.
11. 13. 15. 17.
19. 21. (a) (b) 4.06300

23. (a) (b) 46.50942

25. (a) (b) 36.57476    

27. 1.142
29. Solid obtained by rotating the region ,
about the -axis

	�6 y

0

y=x

y=1

x

y

0 x

(1, 1)
y=œ„x

2	 ( 4
3	 � s3 )

y

0 x

y=1 y=1

y=3

y=1+sec x

y

0 x

”   , 3’
π

3
”_   , 3’

π

3

108	 �5	�2 13	�30
2	 x1

0 e�2x2

dx � 3.75825

2	 x1
0 (e�2x2

� 2e�x2) dx � 13.14312

2	 x2
0 8s1 � x 2�4 dx � 78.95684

2	 x1
0 8s4 � 4y 2 dy � 78.95684

11
8 	 2�1.288, 0.884; 23.780

0 � y � cos x
0 � x � 	�2

0 � y � 1y4 � x � y2

	h2(r �
1
3h)1

3	r 2h1110 cm3

2
3 b 2h 10 cm3 1

3
8

15

	r 2h2	 2r 2R8	R x
r
0 sr 2 � y 2 dy

8 x
r
0 sR 2 � y 2

sr 2 � y 2 dy5
12 	r 3

� 2	x � x �x � 1�2 	�15

4	8		 �1 � 1�e�6	�7
8	�37	�1516	�3768	�7

2	 x2
0 x 2e�x dx5	�14

4	 x	�2
�	�2 �	 � x� cos4x dx

x
	

0 2	 �4 � y�ssin y dy

0 � x � 30 � y � x 4

y

21.

23. 2.80123    25. 0.25142    27. 118 ft    29. 84 
31. 8868; increase in population over a 10-year period
33. 35.
37. 39. 41.

EXERCISES 7.2 ■ PAGE 378

1.

3.

5.

7.

1
2

x

y

0

y=cos x

y=sin 2x

π

6
π

2

m2

rsR 2 � r 2 � 	r 2�2 � R 2 arcsin�r�R� 
6
42�3 f �t� � 3t 2 0 � m � 1; m � ln m � 1

19	�12 y

1

0 x21 y=0

x=1

x=2

y

0 x

y=2-   
1

2
x

162	 y

0 x

(6, 9)

x=2œ„y

y=9

x=0

y

0 x

4	�21 y

0 x

(1, 1)

y=˛

y=x

y

0 x

64	�15

x0

y

(4, 2)

x0

y

x=2y

¥=x
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21. (a) (b) 

23. 25. 6000 lb    27.

29. 31.
33. (a) (b) 
(c) (d) 
35. 4148 lb    37. ; ; 39.

41. 43.

45. 47.

51. 53.

EXERCISES 7.7 ■ PAGE 418

1. , 3.

5. 7.

9. 11.

13. 15.

17. (a) 

(b) , (c) No

19.

21. III    23. IV

25. 27.

s2GM�R 6.7 � 10 4 N

9.8 � 103 N 5.27 � 105 N
5.06 � 104 lb5.63 � 103 lb

3.03 � 105 lb4.88 � 104 lb
10 14 �1.4, 1� (2

3, 
2
3)

( 9
20 , 9

20)� 1

e � 1
, 

e � 1

4 �
� �s2 � 4

4 (s2 � 1) , 
1

4 (s2 � 1)� 60; 160; ( 8
3, 1)

1
3 �r 2h(0, 1

12 )

y �
2

K � x 2 y � 0 y � s
3 3x � 3 ln� x � � K

1
2 y 2 � cos y � 1

2 x 2 �
1
4 x 4 � C p � Ke t3�3�t � 1

u � �st 2 � tan t � 25y � �sx 2 � 9

y �
4a

s3
sin x � a y � e x2�2

sin�1y � x 2 � C

�s��2 � x � s��2y � sin�x 2�
1

0

y=sin (≈)

_œ„„„π/2_œ „„„π/2œ

5

2.5
0

�2.5

cos y � cos x � 1

�8.50 � 109 JGm1m2�1

a
�

1

b�

0 x_3 3

_3

3

yy

x3_3

_3
(c)

(a)
(b)

31. Solid obtained by rotating the region bounded by 
(i) , , and , or (ii) , , and

about the line 

33. 35. 37.
39. 41.

EXERCISES 7.4 ■ PAGE 391

1. 3. 5. 3.6095

7. 9. 11.

13. 15. 17.
19. 10.0556    21. 15.49805; 15.374568    
23. 7.094570; 7.118819    25.
27. 6   

29.

31.
33. 209.1 m    35. 29.36 in.    

EXERCISES 7.5 ■ PAGE 397

1. (a) (i) 

(ii) (b) (i) 10.5017   (ii) 7.9353

3. (a) (i) 

(ii) (b) (i) 11.0753   (ii) 3.9603

5. 7.

9. 11.
13. 15.

17.

19. (a) (b) 

21. (a) 

(b) 

23. 25.

EXERCISES 7.6 ■ PAGE 408

1. 3. 180 J    5.
7. (a) (b) 10.8 cm

9. (a) 625 ft-lb   (b) 
11.
13. 15.
17. (a) (b) 2.0 m

4��34s3 �8�
4
3 �r 3 1

3 �r 2h

4s5 3.8202
2

243 (82s82 � 1) 59
24

32
3

ln(s2 � 1) 3
4 �

1
2 ln 2 ln 3 �

1
2

ln 3 �
1
2

y

x0 1

s�x� � 2
27 [�1 � 9x�3�2 � 10s10 ]

2s2 (s1 � x � 1)

x
��3
0 2� tan xs1 � sec 4 x dx

x
��3
0 2�xs1 � sec 4 x dx

x
1
�1 2�e�x2

s1 � 4x 2e �2x2
dx

x
1
0 2�xs1 � 4x 2e �2x2

dx
98
3 �1

27� (145s145 � 1)
21
2 �2s1 � � 2 � �2��� ln(� � s1 � � 2 )

1
27� (145s145 � 10s10 ) �a 2

1
6� [ln(s10 � 3) � 3s10 ]

56
45�s3a 21

3�a 2

2�	b 2 �
a 2b sin�1(sa 2 � b 2�a)

sa 2 � b 2 


4� 2r 2
x

b
a 2��c � f �x��s1 � � f ��x��2 dx

15
4 ft-lb4.5 ft-lb

25
24 � 1.04 J

1875
4 ft-lb

650,000 ft-lb
2450 J3857 J

x � 1x � y 2y � 0x � 0x � 1 � y 2

y � 3y � 0

�1.06 � 106 J

2�a2 �
2�ab 2

sa 2 � b 2 
ln 

a � sa 2 � b 2

b
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CHAPTER 8

EXERCISES 8.1 ■ PAGE 434

Abbreviations: C, convergent; D, divergent

1. (a) A sequence is an ordered list of numbers. It can also be
defined as a function whose domain is the set of positive
integers.
(b) The terms approach 8 as becomes large.
(c) The terms become large as becomes large.

3. ; yes; 5.

7. 9. 1    11. 5    13. 1    

15. D    17. 0    19. D    21. 0    23. 0    25. 0
27. 29. D    31.
33. (a) 1060, 1123.60, 1191.02, 1262.48, 1338.23   (b) D
35. Convergent by the Monotonic Sequence Theorem;

37. Decreasing; yes    39. Not monotonic; no    41. 2

43. 45. (b) 47. 62

EXERCISES 8.2 ■ PAGE 443

1. (a) A sequence is an ordered list of numbers whereas a series
is the sum of a list of numbers.
(b) A series is convergent if the sequence of partial sums is a
convergent sequence. A series is divergent if it is not convergent.

3. 1, 1.125, 1.1620, 1.1777, 1.1857, 1.1903, 1.1932, 1.1952; C

5. 0.5, 1.3284, 2.4265, 3.7598, 5.3049, 7.0443, 8.9644, 
11.0540; D

7. 9. 11. D    13. D    15. D    17.
19. D    21. D    23. D    25. 27.
29. (b) (c) (d) All rational numbers with a termi-
nating decimal representation, except 0.

31. 33.

35. ; 

37. ; 

39. for , 

41. (a) 157.875 mg; (b) 157.895 mg

43. (a) (b) 5    

45. 47.

49. The series is divergent.
55. is bounded and increasing.

57. (a) 

59. (a) (c) 1

nan

nan
1
2

1
3 , 2

5 , 3
7 , 4

9 , 5
11 , 6

13 an � �3(�2
3)

n�1

an � ��1�n�1 n 2

n � 1

e2 ln 2

5 � L � 8

(3 � s5 )�2 (1 � s5 )�2

25
3

1
7

5
2

11
6

3
2

21

838
333

8
9

3

5 � x
�1 � x � 5

�5x

1 � 5x
�

1

5
� x �

1

5

sum � 1n  1a1 � 0, an � 2��n�n � 1�
3000

19 �1 � 0.05n�

1
2 (s3 � 1)

Sn �
D�1 � c n �

1 � c

1��n�n � 1�

�sn �
0, 1

9 , 2
9 , 1

3 , 2
3 , 7

9 , 8
9 , 1

1
2 , 5

6 , 23
24 , 119

120; ��n � 1�! � 1��n � 1�!

29. 31.

33. (b)  ; M
35. (a) 
(b) ; the concentration approaches regardless of the value
of 
37.
39. (a) 

(b) (c) 3:36 PM

43. (a) (b) 
45. About 4.9%    47.
49. (a) 

(b) , where 

and 

CHAPTER 7 REVIEW ■ PAGE 422

Exercises

1. 3. 5. 7.
9. 11.
13. (a) (b) (c) 
15. (a) 0.38   (b) 0.87    
17. Solid obtained by rotating the region ,

about the y-axis    
19. Solid obtained by rotating the region ,

about the -axis
21. 36    23. 25. 27. (a) (b) 

29. 3.8202    31. 33.
35. (a) (b) 2.1 ft    

37. 39. 41.

43. 45.
47. (a) 

(b) The pair of lines , for ; the hyperbola
for .

y

x3_3

3

_3

y

x3_3

3

_3

P�t� � M � Me�kt

C�t� � �C0 � r�k�e�kt � r�k
r�kr�k

C0

P�40� � 732, P�80� � 985; t � 55
dy�dt � ky�1 � y�

y �
y0

y0 � �1 � y0 �e�kt

15e�0.2 � 12.3 kg15e�t�100 kg
t�k

dA�dt � ksA �M � A�

C �
sM � sA0

sM � sA0
A�t� � M�CesM kt � 1

Ce sM kt � 1	
2

A0 � A�0�

8
3

7
12 64	�15 1656	�5

x
	�3
�	�3 2	 (	�2 � x)(cos2x �

1
4) dx4

3 	 �2ah � h 2 �3�2

8	�15	�62	�15

0 � y � cos x
0 � x � 	�2

0 � x � 	
x0 � y � 2 � sin x

125
3 s3 m3 15

2
21
16

41
10	

124
5 3.2 J

8000	�3 � 8378 ft-lb

( 8
5 , 1)� 458 lb 2	 2

y � 
sln�x 2 � 2x 3�2 � C� r�t� � 5et�t 2

C � 0y � 
x
C � 0x 2 � y 2 � �C
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EXERCISES 8.6 ■ PAGE 474

1. 10    3. 5.

7. 9.

11.

13. (a) 

(b) 

(c) 

15.

17.

19.

21.

23.

25.

27.

29. 0.199989    31. 0.000983    33. 0.19740    
35. (b) 0.920    39.

�
�

n�0
��1�nx n, ��1, 1� 2 �

�

n�0

1

3 n�1 x n, ��3, 3�

�
�

n�0
��1�n 1

9 n�1 x 2n�1, ��3, 3� 1 � 2 �
�

n�1
x n, ��1, 1�

�
�

n�0

��1�n�1 �

1

2n�1�x n, ��1, 1�

�
�

n�0
��1�n�n � 1�x n, R � 1

1

2
 �

�

n�0
��1�n�n � 2��n � 1�x n, R � 1

1

2
 �

�

n�2
��1�nn�n � 1�x n, R � 1

ln 5 � �
�

n�1

x n

n5n , R � 5

�
�

n�0
��1�n4n�n � 1�x n�1, R � 1

4

�
�

n�0
�2n � 1�x n, R � 1

�
�

n�0
��1�n 1

16n�1 x 2n�1, R � 4

0.25

_0.25

4_4

s¡

s¡

s™

s™

s£

s£

s¢

s¢

s∞

s∞

f

f

3

2

�3

�2

s¡

f

s£
s™

�
�

n�0

2x 2n�1

2n � 1
, R � 1

C � �
�

n�0

t 8n�2

8n � 2
, R � 1

C � �
�

n�1
��1�n x n�3

n�n � 3�
, R � 1

��1, 1, ��1, 1�, ��1, 1�

EXERCISES 8.3 ■ PAGE 452

1. C   

3. (a) Nothing   (b) C
5. -series; geometric series; ; 

7. D    9. C    11. D    13. C    15. D    
17. C    19. D    21. C    23. C    25. D    
27. C    29. D    31.
35. (a) 1.54977, (b) 1.64522, 
(c) 
41. Yes

EXERCISES 8.4 ■ PAGE 463

Abbreviations: AC, absolutely convergent;
CC, conditionally convergent
1. (a) A series whose terms are alternately positive and 
negative
(b) and , where 
(c) 
3. C    5. C    7. D    9. 5    11. 4    
13. 15. 17. An underestimate    
19. AC    21. AC    23. CC    25. AC    27. AC
29. AC    31. AC    33. AC    35. D    
37. AC    39. D    41. AC    43. (a) and (d)

EXERCISES 8.5 ■ PAGE 468

1. A series of the form , where is a variable and
and the ’s are constants

3. 1, 5. 1, 7.

9. 11. 13. , 

15. 17. 19. 0, 

21. 23. (a) Yes   (b) No    

25. 27. No

29. (a) 

(b), (c) 

31. ,
35. 2

0 x

y

1

. . .
a™

a£
a¢ a∞

2 3 4

y=
1

x
1.3

�1 � b � 1b � �1p

p  1
error � 0.005error � 0.1

n  1000

0 � bn�1 � bn limn l � bn � 0 bn � � an �
� Rn � � bn�1

�0.4597 0.0676

��
n�0 cn�x � a�n x

a cn

��1, 1� ��1, 1� �, ���, ��
2, ��2, 2� 4, ��4, 4 1

3 [�1
3, 

1
3]

1, �1, 3 b, �a � b, a � b� { 1
2 }

�, ���, ��
k k

���, ��
2

8

_2

_8

s¸

J¡

s£ s∞s¡

s™ s¢

f �x� � �1 � 2x���1 � x 2���1, 1�
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41. (a) 

(b) 

43.

45.

47. 0.440    49. 0.09998750    51. 53.

55. 57. 59.

61. 63.

65. (a) (b) 2

EXERCISES 8.8 ■ PAGE 494

1. (a) ,

,

3.

5.

C � �
�

n�0
��1�n x 6n�2

�6n � 2��2n�!
, R � �

C � �
�

n�1
��1�n 1

2n �2n�!
 x 2n, R � �

1
2

1
120

4
e�x1 �

1
6 x 2 �

7
360 x 41 �

3
2 x 2 �

25
24 x 4

e 3 � 11�s2

�
�

n�1
nx n

T0�x� � 1 � T1�x�, T2�x� � 1 �
1
2 x 2 � T3�x�

T4�x� � 1 �
1
2 x 2 �

1
24 x 4 � T5�x�

T6�x� � 1 �
1
2 x 2 �

1
24 x 4 �

1
720 x 6

2

2π

_2

_2π

T¢=T∞

T™=T£

T¸=T¡

Tß

f

1
2 �

1
4 �x � 2� �

1
8 �x � 2�2 �

1
16 �x � 2�3

2

40

T£

f

��x �
	

2 	 �
1

6 �x �
	

2 	3

1.1

_1.1

T£

T£

f

f

π0
π

2

1 � �
�

n�1

1 � 3 � 5 � � � � � �2n � 1�
2nn!

 x 2n

x � �
�

n�1

1 � 3 � 5 � � � � � �2n � 1�
�2n � 1�2nn!

 x 2n�1

EXERCISES 8.7 ■ PAGE 487

1. 3.

5.

7.

9.

11. ,

13.

15.

17.

23.

25.

27.

29.

31.

33.

35.

37.

39. 0.99619

b8 � f �8��5��8! �
�

n�0
�n � 1�x n, R � 1

�
�

n�0
�n � 1�x n, R � 1

�
�

n�0
��1�n 	 2n�1

�2n � 1�!
 x 2n�1, R � �

�
�

n�0

x 2n�1

�2n � 1�!
, R � �

�1 � 2�x � 1� � 3�x � 1�2 � 4�x � 1�3 � �x � 1�4

R � �

ln 2 � �
�

n�1
��1� n�1 1

n 2n �x � 2�n, R � 2

�
�

n�0

2ne6

n!
 �x � 3�n, R � �

�
�

n�0
��1�n�1 1

�2n�!
 �x � 	�2n, R � �

1 �
1

4
x � �

�

n�2

3 � 7 � � � � � �4n � 5�
4 n � n!

x n, R � 1

�
�

n�0
��1�n �n � 1��n � 2�

2n�4 x n, R � 2

�
�

n�0
��1�n 	 2n�1

�2n � 1�!
 x 2n�1, R � �

�
�

n�0

2n � 1

n!
 x n , R � �

�
�

n�0
��1�n 1

2 2n�2n�!
 x 4n�1 , R � �

1

2
x � �

�

n�1
��1�n 1 � 3 � 5 � � � � � �2n � 1�

n!23n�1 x 2n�1, R � 2

�
�

n�1
��1�n�1 2

2n�1

�2n�!
 x 2n, R � �

�
�

n�0
��1�n 1

�2n�!
 x 4n, R � �

1.5

1.5

_1.5

_1.5

Tˆ=T˜=T¡¸=T¡¡

T¢=T∞=Tß=T¶

T¸=T¡=T™=T£

f
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CHAPTER 9

EXERCISES 9.1 ■ PAGE 505

1. 3.

5. (a) (b) 

7. (a) (b) 

9. (a) , (b) 

11. (a) , (b) 

13. (a) (b) 

0 2

2
t=0
(0, 0)

t=2
(6, 2)

t=_2
(2, 6)

y

x

0 1

1

t=0
(1, 1)

(0, 0)

y

x

t= 
π

2

t= 
π

3

t= 
π

6

y � 3
4x �

1
4

x

y
(7, 5) 

t=_1

(3, 2) 

t=0

(_1, _1) 

t=1

(_5, _4) 

t=2

0

y � 1 � x 2, x � 0y

0 x

(0, 1)  t=0

(1, 0)  t=1

(2, _3)  t=4

y � 0x 2 � y 2 � 1

0 1

1

y

x_1

y

x0

(1, 1)

y  1y � 1�x

y

x0 1

1

y � 1
2 ln x � 1

7.

9. (a) (b) 

11. (a) 

(b) 
13. (a) (b) 0.00006   
15. (a) (b) 0.042    17. 19. Four
21. 23. 21 m, no
27. (c) They differ by about 

CHAPTER 8 REVIEW ■ PAGE 497

True-False Quiz

1. False    3. True    5. False    7. False    9. False
11. True    13. True    15. False    17. True
19. True    21. True

Exercises

1. 3. D    5. 0    7. 9. C    11. C
13. D    15. C    17. C    19. C    21. CC    23. AC
25. 8    27. 29. 33. 0.9721    
37. 4, 39. 0.5, [2.5, 3.5)

41.

43. 45.

47.

49.

51.

53. (a) 
(b) (c) 0.000006

55. 57. 2    

_4f

3

_1 1.5

T£

0.0000156252 �
1
4 �x � 4� �

1
64 �x � 4�2

0.000097

1 �
2
3�x � 1� �

1
9�x � 1�2 �

4
81�x � 1�3

x 2 �
1
6 x 4

1 � x 2

0.17365
�1.037 � x � 1.037

8 � 10�9 km.

1
2 e 12

e�e	�4
��6, 2�

1

2
 �

�

n�0
��1�n
 1

�2n�!
 �x �

	

6 	
2n

�
s3

�2n � 1�!
 �x �

	

6 	
2n�1�

�
�

n�0
��1�nx n�2, R � 1 ln 4 � �

�

n�1

x n

n4n , R � 4

�
�

n�0
��1�n x 8n�4

�2n � 1�!
, R � �

1

2
� �

�

n�1

1 � 5 � 9 � � � � � �4n � 3�
n!26n�1 x n, R � 16

C � ln � x � � �
�

n�1

x n

n � n!

x � 2x 2 � 2x 3

1 �
1
2 �x � 1� �

1
8 �x � 1�2 �

1
16 �x � 1�3

1.5

20

T£

f

�
1
6
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EXERCISES 9.2 ■ PAGE 513

1. 3. 5.

7.

9. , , 11. , , 

13. Horizontal at , vertical at 

15. Horizontal at (four points), vertical at 

17. ; 
19. 21.

23. (a) 25.
27. 29. 31.
33.

35. 37.

39.
41.

43.

45. 612.3053    47.

51. (a) 

(b) 

2t � 1

t cos t � sin t
y � �

3
2x � 7 y � 	x � 	 2

y � 2x � 1

e�3t�2t � 3�e�2 t�1 � t�t � 0�
1

4t 3

2t � 1

2t
t 

3
2

�
2, �2��0, �3�
�
2, 0�(
s2 , 
1)

(5 � 6�6�5, e6�1�5)�0.6, 2�
y � x, y � �x7.5

�1

�8.5 3 0

y

x

(16
27, 

29
9 ), ��2, �4�d sin ���r � d cos ��

2	r 2 � 	d 23 � e	ab
x

2
0 s2 � 2e�2t dt � 3.1416

4s2 � 2x
4	

0 s5 � 4 cos t dt � 26.7298
1
2 s2 �

1
2 ln(1 � s2 )

8

0
�25 2.5

s2 �e 	 � 1�

21

�1
�1 21

e 3 � 11 � e�8

6s2, s2

t � �0, 4	15

�15

�15 15

294

15. Moves counterclockwise along the circle 
from to 

17. Moves 3 times clockwise around the ellipse 
, starting and ending at 

19. 21.

23.

25. (b) , 
27. (a) 
(b) 
(c) 
31. The curve is generated in (a). In (b), only the por-
tion with is generated, and in (c) we get only the portion
with .
35. , ellipse
37. (a) Two points of intersection

(b) One collision point at when 
(c) There are still two intersection points, but no collision point.
39. For , there is a cusp; for , there is a loop whose
size increases as c increases.

41. The curves roughly follow the line , and they start hav-
ing loops when is between 1.4 and 1.6 more precisely, when

. The loops increase in size as increases.
43. As n increases, the number of oscillations increases; 
a and b determine the width and height.

�x 2�25� � �y 2�4� � 1 �0, �2�

�3, 3��x � 3�2 � �y � 1�2 � 4 �3, �1�

x

y

t=0

t=
1
2

1

1

y

x

(0, _1)   t=_1

(0, 1)   t=1

(_1, 0)

t=0

π

_π

4_4

0 � t � 1y � 7 � 8tx � �2 � 5t,
x � 2 cos t, y � 1 � 2 sin t, 0 � t � 2	

x � 2 cos t, y � 1 � 2 sin t, 0 � t � 6	

x � 2 cos t, y � 1 � 2 sin t, 	�2 � t � 3	�2
y � x 2�3

x � 0
x  0

x � a cos �, y � b sin �; �x 2�a 2 � � �y 2�b 2 � � 1

4

�4

�6 6

t � 3	�2��3, 0�

c  0c � 0

3

0 1.5

_3

_1

0
0 1.5

1

_1

1
1
2

y � x
(a

aa  s2 )
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17.
19. 21. (a) (b) 
23. 25.

27. 29.

31. 33.

35. 37.

39. 41.

43. 45.

47. 49.

r � 1��sin � � 3 cos ��
r � 2c cos � � � 	�6 x � 3

O

(2, 3π/2)

O

(4, 0)

O

(2π, 2π)

1

3 4

5

6

2

¨=
π

3

”4,    ’
π

6

¨=
π

8

(2, 0) O

¨=
π

6
¨=

5π

6

O

(3, π/4)

O

(3, π/6)

¨=
π

3
¨=

2π

3

(3, 0)(3, π)

O 1

1

2

(2, 0) (6, 0)

O

x=1

s3 �	

EXERCISES 9.3 ■ PAGE 522

1. (a) (b) 

(c) 

3. (a) (b) 

(c) 

5. (a) (i) (ii) 
(b) (i) (ii) 

7. 9.

11.

13. Circle, center , radius 1
15. Hyperbola, center , foci on -axis

O

π

3

π

3
”2,     ’

O

_
3π

4
”1, _     ’

3π

4

�1, 5	�4�, ��1, 	�4��2, 7	�3�, ��2, 4	�3�

O

π

2

”_1,    ’
π

2

�1, 3	�2�, ��1, 5	�2�

O

_
2π

3

”2, _     ’
2π

3

π

O

(1, π)

(�1, �s3 )��1, 0�

O

3π

4

”_2,      ’
3π

4

(s2, �s2 )
(�2s2, 3	�4)(2s2, 7	�4)

��2, 5	�3��2, 2	�3�

O

r=1

r=2

¨=
3π

4
¨=

π

4

O

O

r=2

r=3

¨=
7π

3

¨=
5π

3

�1, 0�
xO
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EXERCISES 9.5 ■ PAGE 534

1. 3.

5. 7.

9. (a) (b) Ellipse   (c) 
(d) 

11. (a) 1   (b) Parabola   (c) 
(d) 

13. (a) (b) Ellipse   (c) 
(d) 

15. (a) 2   (b) Hyperbola   (c) 
(d) 

17. The ellipse is nearly circular     
when e is close to 0 and becomes
more elongated as . At 

, the curve becomes a 
parabola.

r �
4

2 � cos �
r �

6

2 � 3 sin �

r �
4

2 � cos �
r �

8

1 � sin �

y � �14
5

x

y

(4, π/2)

O
”   , π’

4

5
”    , 0’

4

5

”    ,     ’
4

9

3π

2
y=_1

y � 2
3

x

y

”   ,   ’
1

3

π

2

O

”   , π’
2

3
”   , 0’
2

3

y=2/3

x � 9
2

1
3

O

x=
9

2

”   ,    ’
π

2

3

2

”   , 0’
9

8
”   , π’

9

4

”   ,      ’
3π

2

3

2

x � �
3
8

O

x=_
3

8

”-   , 0’
3

4
”    , π’

1

4

e=0.4 e=1.0

e=0.8
e=0.6

e l 1�

e � 1

51. Horizontal at , ; 
vertical at 
53. Horizontal at , [the pole], and ;

vertical at (2, 0), , 

55. Center , radius 
57. 

59.

61. By counterclockwise rotation through angle , , 
or about the origin
63. (a) A rose with n loops if n is odd and 2n loops if n is even
(b) Number of loops is always 2n
65. For , the curve is an oval, which develops a 
dimple as . When , the curve splits into two parts,
one of which has a loop.

EXERCISES 9.4 ■ PAGE 528

1. 3. 5. 7.
9. 11.

13.

15. 17. 19. 21.

23. 25. 27.

29. , and the pole

31. , and the pole    

33. 35. 37. 8.0091    

(�3�s2, 3��4)(3�s2, ��4)
�3, 0�, �0, ��2�

( 3
2 , 5��3)�0, ��( 3

2 , ��3)
( 1

2 , 4��3)( 1
2 , 2��3)

sa 2 � b 2�2�b�2, a�2�

_3 3

_2.5

3.5

��3��6
�

0 � a � 1
a � 1a l1�

e ���4 � e ���2 9
2 � 2 41

4 �
11�

O

r=2 sin ¨

(2, π/2)
�

(1, π)

(3, π/2)

(3, 3π/2)

O

(5, 0)

1.4

_1.4

2.1_2.1

3
2�

4
3� � �

3
2 s3 1

3� �
1
2 s3

1
2� � 15

24� �
1
4 s3

�
1
4(� � 3s3 )

(3
2, ��6), (3

2, 5��6)
(1

2 s3, ��3), (1
2 s3, 2��3)

�
8
3 ��� 2 � 1�3�2 � 1�
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21. 2    23.

25. 27.

29. Vertical tangent at

;
horizontal tangent at

31. 18    33. 35.

37.

39.

41. All curves have the vertical asymptote . For ,
the curve bulges to the right. At , the curve is the line

. For , it bulges to the left. At there is a
cusp at (0, 0). For , there is a loop.
43.
45. , 

CHAPTER 10

EXERCISES 10.1 ■ PAGE 541

1. 3.

5. A vertical plane that
intersects the xy-plane in
the line , 

7. (a) , , ; isosceles triangle

(b) , , ; right triangle

9. (a) No   (b) Yes    
11.
13. , 6    15.
17. (b) 
19. (a) 
(b) 
(c) 
21. A plane parallel to the -plane and 5 units in front of it
23. A half-space consisting of all points to the left of the 
plane 
25. All points on or between the horizontal planes and

1 � sin t

1 � cos t
, 

1 � cos t � sin t

�1 � cos t�3 ( 11
8 , 3

4 )

x

y

0

(�3a, 0) (a, 0)

(3
2 a, 	 1

2 s3 a), ��3a, 0�

�a, 0�, (�1
2 a, 	3

2 s3a)

�2, 	��3� 1
2�� � 1�

2(5s5 � 1)
2s� 2 � 1 � s4� 2 � 1

2�
� ln�2� � s4� 2 � 1

� � s� 2 � 1 �

�1

c � �1x � 1
c � �1

c � 0�1 � c � 0x � 1
c � 0

r � 4��3 � cos ��
y � a�1 � sin2��x � a�cot � � sin � cos ��

�4, 0, �3� C; A

z

y

2

x

2

0

y=2-x

y=2-x, z=0

z � 0y � 2 � x

	 RP 	 � 6	 QR 	 � 2s10	 PQ 	 � 6

	 PQ 	 � 3 	 QR 	 � 3s5 	 RP 	 � 6

�x � 3�2 � �y � 8�2 � �z � 1�2 � 30
�2, 0, �6�, 9�s2�1, 2, �4�

5
2 , 1

2 s94 , 1
2 s85

�x � 2�2 � �y � 3�2 � �z � 6�2 � 36
�x � 2�2 � �y � 3�2 � �z � 6�2 � 4
�x � 2�2 � �y � 3�2 � �z � 6�2 � 9

yz

y � 8
z � 0

z � 6

23. (b) 

25. 35.64 AU    27. 29.

CHAPTER 9 REVIEW ■ PAGE 535

True-False Quiz

1. False    3. False    5. True    7. False    

Exercises

1. 3.

5. , ; , ; 
, , 

7. (a) (b) ,

9. 11.

13. 15.

17. 19.

r �
1.49 
 108

1 � 0.017 cos �
7.0 
 107 km 3.6 
 108 km

x � y 2 � 8y � 12 y � 1�x
y

x

(0, 6), t=_4

(5, 1),

t=1

x

y

(1, 1), ¨=0

y � t 2x � t 4y � stx � t
0 � t � ��2y � tan tx � tan2 t

(3s2, 3��4)

O

2π

3

”4,      ’
2π

3 (�3s2, 7��4)

(�2, 2s3 )

¨=
π

6

(1, 0)

O

(2, π)

”1,    ’
π

2

”1,      ’
3π

2

”_3,     ’
3π

2

”1,    ’
π

2

3

2
y=

O

O

1

_1

(2, π) (2, 0)

r �
2

cos � � sin � 0.75

-0.3 1.2

-0.75

r= 
sin ̈

¨
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35. (a), (b) (d) 

37. A sphere with radius 1, centered at 

EXERCISES 10.3 ■ PAGE 556

1. (b), (c), (d) are meaningful    3. 5. 7.
9. 11.

15. 17.

19. (a) Neither   (b) Orthogonal    
(c) Orthogonal   (d) Parallel

21. Yes    23.
25. 27. at , at 

29. 4, 31. , 

35. or any vector of the form

37. 39.
41. 43.

EXERCISES 10.4 ■ PAGE 564

1. 3. 5.
7. 9. 11.
13. (a) Scalar   (b) Meaningless   (c) Vector   
(d) Meaningless   (e) Meaningless   (f ) Scalar
15. ; into the page   17.

19. , 

27. 16    29. (a) (b) 

31. (a) (b) 

33. 9    35. 16    39.
41. 43.
45. (b) 53. (a) No   (b) No   (c) Yes

EXERCISES 10.5 ■ PAGE 572

1. (a) True   (b) False   (c) True   (d) False   (e) False
(f ) True   (g) False   (h) True   (i) True   ( j) False
(k) True
3. ;

, , 
5. ; 

, , 

7. , , ;

9. , , ; 

y

x0

a

b

c

sa

tb

s � 9
7 , t � 11

7

�x0, y0, z0 �

14 19 1
�15 u � v � 1

2 , u � w � �
1
2

cos�1� 1

s5 � 
 63� cos�1� 7

s130 � 
 52�

�i � j � k��s3 [or ��i � j � k��s3 ]
45� 0� �0, 0� 8.1� �1, 1�

��
20
13, 

48
13 � 9

7 � 27
49 , 54

49 , �18
49 �

�0, 0, �2s10 �
�s, t, 3s � 2s10 �, s, t � �

144 J 2400 cos�40�� 
 1839 ft-lb
13
5 cos�1(1�s3 ) 
 55�

16 i � 48 k 15 i � 3 j � 3 k 1
2 i � j �

3
2 k

�1 � t� i � �t 3 � t 2� k 0 i � j � k

96s3 ��7, 10, 8 � , �7, �10, �8 �

�
1

3s3
, �

1

3s3
, 

5

3s3 �  1

3s3
, 

1

3s3
, �

5

3s3 �
�0, 18, �9 � 9

2 s5

�13, �14, 5 � 1
2 s390

10.8 sin 80� 
 10.6 N � m


417 N 60�

s97�3

r � �2 i � 2.4 j � 3.5 k� � t�3 i � 2 j � k�
x � 2 � 3t y � 2.4 � 2t z � 3.5 � t

r � �i � 6k� � t�i � 3 j � k�
x � 1 � t y � 3t z � 6 � t

x � 2 � 2t y � 1 �
1
2 t z � �3 � 4t

�x � 2��2 � 2y � 2 � �z � 3����4�
x � 1 � t y � �1 � 2t z � 1 � t

x � 1 � �y � 1��2 � z � 1

27. All points on or inside a sphere with radius and center O

29. All points on or inside a circular cylinder of radius 3 with
axis the -axis

31. 33.
35. , a plane perpendicular to AB

37.

EXERCISES 10.2 ■ PAGE 549

1. AB
l

� DC
l

, DA
l

� CB
l

, DE
l

� EB
l

, EA
l

� CE
l

3. (a) (b)

(c) (d)

(e) (f )

5. 7.

9. 11.

13. , , 13, 10

15. , , , 

17. 19.

21. 23. , 

25.
27.
29.
31. (a) At an angle of from the bank, toward upstream
(b) 20.2 min
33.

s3

y

0 � x � 5 r 2 � x 2 � y 2 � z2 � R2

14x � 6y � 10z � 9

2s3 � 3

w

u

u+w
vu+v

u

_v
u

u-v

w v

v+w

_w
u

_v

u-w-v
w

v

u

v+u+w

a � �4, 1 �

x

y

A(_1, 1)

0

B(3, 2)

a

a � �2, 0, �2 �
z

y

0

A(0, 3, 1)

a
B(2, 3, _1)x

�5, 2 �

x0

y

k6, _2l

k5, 2l

k_1, 4l

�3, 8, 1 �

y

z

k3, 8, 1l

k0, 8, 0l

k3, 0, 1l

x

�1, �42 ��2, �18 �
s82s14�4 i � j � 9 k�i � j � 2 k

60�
8
9 i �

1
9 j �

4
9 k


38.57 ft�s
 45.96 ft�s�2, 2s3 �
100s7 
 264.6 N, 
139.1�

s493 
 22.2 mi�h, N8�W

T1 � �196 i � 3.92 j, T2 � 196 i � 3.92 j
43.4�

	�i � 4 j��s17
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11. Elliptic paraboloid with axis the -axis

13. Elliptic cone with axis the -axis

15. Hyperboloid of two sheets

17. Ellipsoid

19. Hyperbolic paraboloid 

21.

Elliptic cone with axis the

-axis

x

x

z

y

x
z

y

x

z

y

x y

z

(0, 0, 1)

(0, 6, 0)

(1, 0, 0)

z

y

x

y

x

z

y 2 � x 2 �
z2

9

y

11. Yes
13. (a) 
(b) , , 

15. , 
17. Skew    19. 21.
23. 25.
27. 29.
31. 33.
35. Neither, 37. Parallel    

39. (a) , , (b) 

41.
43.
45. and are parallel, and are identical

47. 49. 51. 55.
57.

EXERCISES 10.6 ■ PAGE 579

1. (a) Parabola
(b) Parabolic cylinder with rulings parallel to the -axis
(c) Parabolic cylinder with rulings parallel to the x-axis

3. Circular cylinder 5. Parabolic cylinder

7. Hyperbolic cylinder

9. (a) , , hyperbola ;
, , hyperbola ;
, , circle

(b) The hyperboloid is rotated so that it has axis the -axis
(c) The hyperboloid is shifted one unit in the negative 
-direction

�x � 1����1� � � y � 5��2 � �z � 6����3�
��1, �1, 0� (�3

2 , 0, �3
2) �0, �3, 3�

r�t� � �2 i � j � 4k� � t�2 i � 7 j � 3k� 0 � t � 1
�4, �1, �5� x � 4y � z � 4

5x � y � z � 7 x � y � z � 2
33x � 10y � 4z � 190 x � 2y � 4z � �1
3x � 8y � z � �38 �2, 3, 5�

cos�1(1
3) 
 70.5�

x � 1 y � �t z � t cos�1� 5

3s3� 
 15.8�

�x�a� � �y�b� � �z�c� � 1
x � 3t, y � 1 � t, z � 2 � 2t
P2 P3 P1 P4

1�s65�(2s14 )18
7s61�14

13�s69

z

y

z

x

y

x

z

y

x

y

x � k y2 � z2 � 1 � k2 �k �	1�
y � k x 2 � z2 � 1 � k2 �k �	1�
z � k x 2 � y 2 � 1 � k2

y

y
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5. 7.

9. 11.

13. , ; 
, , , 

15. , ; 

, , , 
17. II    19. V    21. IV
23. 25. , 

29.
31.
33. (a), (c) (b) 

35. (a), (c) (b) 

x y

z

(0, 2, 0)

y

x1

π

x

z

y
y=≈

z

x

1

y

0 � t � 1r�t� � �2 � 4t, 2t, �2t�
0 � t � 1z � �2ty � 2tx � 2 � 4t

0 � t � 1r�t� � � 1
2t, �1 �

4
3t, 1 �

3
4t�

0 � t � 1z � 1 �
3
4ty � �1 �

4
3tx � 1

2t

�1, 0, 1��0, 0, 0�z

y

x

0

r�t� � t i �
1
2 �t 2 � 1� j �

1
2 �t 2 � 1� k

x � 2 cos t, y � 2 sin t, z � 4 cos2t
r�t� � �1, 2t �y

0 x

r(_1)
rª(_1)

(_3, 2)

r�t� � cos t i � 2 sin t jy

0 x

r ”   ’

”     , œ„2’
œ„2

2

π

4

rª ”   ’
π

4

23.

Hyperbolic paraboloid

25.

Ellipsoid with center 

27.
Circular cone with vertex 
and axis parallel to the -axis

29.

31. , paraboloid

33.

EXERCISES 10.7 ■ PAGE 589

1. 3.

z

x

y

y � z2 �
x 2

2

0

z

yx

(0, 4, 3)

(0, 0, 3)

x 2 �
�y � 2�2

4
� �z � 3�2 � 1

�0, 2, 3�

�y � 1�2 � �x � 2�2 � �z � 1�2

x

y

z
(2,-1,1)

�2, �1, 1�
y

z

yx

0

z=œ„„„„„≈+¥

z=2

�4x � y 2 � z2

2
1
0

y
1

0
�1

x
1

0
�1

z

i � j � k��1, 2�
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37. 39.
41.
43.

45. 53.

EXERCISES 10.9 ■ PAGE 608

1.

3.

5.

7. , , 

9.
11. ,
13. (a) 
(b) 

15.
17. , 

� 2
3 , 2

3 , 1
3 �, �� 1

3 , 2
3 , � 2

3 �, �� 2
3 , 1

3 , 2
3 �1�(s2et)

y � 6x � �, x � 6y � 6�

(x �
5
2 )2

� y 2 � 81
4 , x 2 � (y �

5
3 )2 � 16

9

5

2.5�7.5

�5

2.07 
 1010 Å 
 2 m��1, �3, 1�

(_2, 2)

0

y

x

v(2)

a(2)

v�t� � ��t, 1 �
a�t� � ��1, 0 �
	 v�t� 	 � st 2 � 1

0

y

x

v ”   ’
π

3

a ”   ’
π

3

”   , œ„3’
3

2

(0, 2)

(3, 0)

v�t� � �3 sin t i � 2 cos t j
a�t� � �3 cos t i � 2 sin t j

	 v�t� 	 � s5 sin2 t � 4

(1, 1, 2)

z

y

x

a(1)

v(1)

v�t� � i � 2t j
a�t� � 2 j

	 v�t� 	 � s1 � 4t 2

s9t 4 � 8t 2 � 2�2, 2, 6t��2t � 1, 2t � 1, 3t 2 �
s2 i � e t j � e�t k, e t j � e�t k, e t � e�t

r�t� � ( 1
2t 2 � 1� i � t 2 j � t kv�t� � t i � 2t j � k

r�t� � ( 1
3t 3 � t) i � �t � sin t � 1� j � ( 1

4 �
1
4 cos 2t) k

_200
0

200

x

_10

0

10

y

z

0

0.2

0.4

0.6

t � 4

	 v�t� 	 � s25t 2 � 2r�t� � t i � t j �
5
2 t 2 k

37. (a), (c) (b) 

39.
41. 43.
45.

47. , , ,

49. , , 
51. , , 
53.
55. , , 
57. 66°    59. 61.
63.
65.
67. Yes
75. 77. 35

EXERCISES 10.8 ■ PAGE 598

1. 3. 5. 18.6833    7.

9.

11.
13. (a) ,

(b) 

15. (a) 

(b) 
17.

19. 21.
23. 25.

27. ; approaches 0    29. (a) P (b) 
31.

33.

35. is , is 

r�t� � 2e 2 t i � e t j

x

y

0

rª(0)

r(0)

(1, 1)

r�t� � � t cos t � sin t, 2t, cos 2t � 2t sin 2t �
r�t� � b � 2tcr�t� � 2tet 2

i � [3��1 � 3t�� k
3
5 j �

4
5 k

�0, 2, 6t ��1�s14, 2�s14, 3�s14 ��1, 2t, 3t 2 �
�6t 2, �6t, 2 �

z � 2 � 4ty � 2tx � 3 � t
z � 1 � ty � tx � 1 � t

r�t� � �3 � 4t� i � �4 � 3t� j � �2 � 6t� k
z � �� ty � � � tx � �� � t

i � j � k2 i � 4 j � 32 k
tan t i �

1
8�t 2 � 1�4 j � (1

3 t 3 ln t �
1
9 t 3)k � C

t 2 i � t 3 j � ( 2
3t 3�2 �

2
3) k

2t cos t � 2 sin t � 2 cos t sin t

421
27�13 3�2 � 8�10s10

r�t�s�� �
2

s29
s i � �1 �

3

s29
s� j � �5 �

4

s29
s� k

�3 sin 1, 4, 3 cos 1�
�1�s10 , (�3�s10 )sin t, (3�s10 )cos t �

3
10�0, �cos t, �sin t�

1

e2 t � 1
�1 � e 2 t, s2e t, s2e t �1

e 2 t � 1
�s2et, e 2 t, �1 � ,

s2e 2 t��e 2 t � 1�2

6t 2��9t 4 � 4t 2�3�2

1
7 s

19
14

4
25

e x	 x � 2 	��1 � �xe x � e x�2�3�212x 2��1 � 16x 6�3�2

1.3,  0.7(� 1
2 ln 2, 1�s2 )

4

_4 4

_1

y=k(x)

y=x–@

0.6

50_5 t

�(t)

5

_5 0

250

500
100

50
0

0z

y

x

y � ��x�by � f �x�a
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37.
39. (a) 

(b) ,

41. ,
43. 45. 86.631    47.
49. (a) 

(b) 

(c) 
51.
53. ,

, 
55. (a) About 3.8 ft above the ground, 60.8 ft from the athlete
(b) (c) from the athlete
57.

CHAPTER 11

EXERCISES 11.1 ■ PAGE 623

1. (a) 1   (b) (c) 
3. (a) 
(b) ,
interior of a sphere of radius 2, center the origin, in the first
octant
5.

7.

9.

4x 2 � y 2 � z2 � 16
z

y

x

(0, 1, 0)

(2, 1, 0)

r�t� � i � � sin �t j � � cos �t k
r ��t� � �� 2 cos �t j � � 2 sin �t k

0 � t � 2�r�t� � 4 cos t i � 4 sin t j � �5 � 4 cos t�k
��21

3 i � �2�� 2� j � �2���k
� t 2, t, 1 ��st 4 � t 2 � 1

� t 3 � 2t, 1 � t 4, �2t 3 � t��st 8 � 5t 6 � 6t 4 � 5t 2 � 1

st 8 � 5t 6 � 6t 4 � 5t 2 � 1��t 4 � t 2 � 1�2

12�173�2

v�t� � �1 � ln t� i � j � e�t k
a�t� � �1�t� i � e�t k	 v�t� 	 � s2 � 2 ln t � �ln t�2 � e�2 t


64.2 ft
21.4 ft
�	 t 	

��1, 1�� 2

3
��x, y, z� 	 x 2 � y 2 � z 2 � 4, x � 0, y � 0, z � 0�

x

y

x

y

y=2x

0

��x, y� 	 y � 2x�

y

x0

≈+¥=1
1
9

��x, y� 	 1
9 x 2 � y 2 � 1�

y

x0 1_1

y=≈

��x, y� 	 y � x 2, x � 	1�

19. (a) (b) (c) 
21. 23. , 
25. , 
27. ; 
29. (a) 16 m (b) upstream

31. 0, 1    33. 35.

CHAPTER 10 REVIEW ■ PAGE 610

True-False Quiz

1. False    3. False    5. True    7. True    9. True
11. True    13. True    15. False    17. False    
19. False    21. True    23. True    25. False    
27. False    29. False    31. True    33. False

Exercises

1. (a) 
(b) , 
(c) Center , radius 5
3. ; ; out of the page    
5. 7. (a) 2   (b) (c) (d) 0    
9. 11. (a) (b) 
13. 166 N, 114 N    
15. , , 
17. , , 
19. 21. (1, 4, 4)    23. Skew
25. 27.
29. Plane 31. Cone

33. Hyperboloid of two sheets 35. Ellipsoid

200 m�s
1531 m
3535 m

79.8�
10.2�30 m�s

55.4� � � � 85.5�13.0� � � � 36.0�
10s93 
 96.4 ft�s�250, �50, 0�


23.6�

40

_12

0

12

40

_4

0

20

t � 16t, 6

�x � 1�2 � �y � 2�2 � �z � 1�2 � 69
x � 0�y � 2�2 � �z � 1�2 � 68

�4, �1, �3�
	 u 
 v 	 � 3s2u � v � 3s2

�2�2�2, �4
s41�2�4, �3, 4 �cos�1( 1

3 ) 
 71�

z � 2 � 3ty � �1 � 2tx � 4 � 3t
z � 4 � 5ty � 2 � tx � �2 � 2t

�4x � 3y � z � �14
22�s26x � y � z � 4

x

y

z

0

z

y
x

z

x y

(0, 1, 2)

(0, 2, 0)(1, 1, 0)

(0, 1, -2)

z

x

y

(0, 2, 0)
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25. 27.

29. 31.

33.

35. 37.

39.

41. (a) C   (b) II    43. (a) F   (b) I    
45. (a) B   (b) VI    47. Family of parallel planes    
49. Family of circular cylinders with axis the -axis 

y � �sx � k�y � 2x�2 � k

y

x

0

_1

_2

1

2

y

x

0 1 2341234

y 2 � x 2 � k 2y � ke�x

y

x

0

0

1

1

2

2

3

3

y

x0

0

1 2
3

_1

_2

_3

x 2 � 9y 2 � k

y

x

z

z=4

z=3

z=2

z=1

y

0 x

4321

0

_2 0 2 2 0 _2
y x

z

y

0 x

1.0

0.5z

0.0

4
0

x

_4

4

0y

_4

�k � 0�x

11.

13. , plane

15. , parabolic cylinder

17. ,
elliptic paraboloid

19. ,
top half of ellipsoid

21. 23. Steep; nearly flat

z

y

0

x

��x, y, z� 	 x 2 � y 2 � z2 � 1�

0

z

y

x

(0, 0, 10)

(2.5, 0, 0)

(0, 2, 0)

4x � 5y � z � 10

z

x y

z � y2 � 1

x
y

z

(3, 0, 0)
(0, 1, 0)

(0, 0, 9)

z � 9 � x 2 � 9y 2

x
y

z

(0, 0, 2)

(1, 0, 0)
(0, 2, 0)

z � s4 � 4x 2 � y 2


56, 
35
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7. ,
9. ,
11. ,

13. ,

15. ,

17. , 

19. , 
21. , , 
23. , ,

25. ,
, 

27. , , 
, 

29. 31. 33.
35. , 
37. 

39. , 

41. , 

43. (a) (b) 
45. , , 

fx �x, t� � ��e�t sin �x ft �x, t� � �e�t cos �x
fx�x, y� � 1�y fy�x, y� � �x�y 2

fx�x, y� �
�ad � bc�y
�cx � dy�2 fy�x, y� �

�bc � ad�x
�cx � dy�2

tu�u, v� � 10uv�u2v � v 3�4

tv�u, v� � 5�u 2 � 3v 2��u2v � v 3� 4

Rp�p, q� �
q 2

1 � p2q4 Rq�p, q� �
2pq

1 � p2q4

Fx�x, y� � cos�e x� Fy�x, y� � �cos�e y�
fx � z � 10xy 3z4 fy � �15x 2y 2z4 fz � x � 20x 2y 3z3

�w��x � 1��x � 2y � 3z� �w��y � 2��x � 2y � 3z�
�w��z � 3��x � 2y � 3z�

�u��x � y sin�1�yz�
�u��y � x sin�1�yz� � xyz�s1 � y 2z2 �u��z � xy 2�s1 � y 2z2

hx � 2xy cos�z�t� hy � x 2 cos�z�t�
hz � ��x 2y�t� sin�z�t� ht � �x 2yz�t 2� sin�z�t�

�u��xi � xi�sx1
2 � x2

2 � � � � � xn
2

fx�x, y� � y 2 � 3x 2y

1
4

1
5

fy�x, y� � 2xy � x 3

_2
0

2x

0

2

y

_20

0

20

z

_2

f �x, y� � x 2y 3

_2

_2
0

2x

0

2

y

_20

0

20

z

fx�x, y� � 2xy 3

_2
0

2x

0

2

y

0

20

40

_2

z

fy�x, y� � 3x 2y 2

�z

�x
� �

x

3z

�z

�y
� �

2y

3z
�z

�x
�

yz

e z � xy

�z

�y
�

xz

e z � xy
f �x�, t�y� f �x � y�, f �x � y�

fxx � 6xy 5 � 24x 2y fxy � 15x 2y 4 � 8x 3 � fyx fyy � 20x 3y 3

fy �x, y� � 5y 4 � 3xfx �x, y� � �3y51. (a) Shift the graph of upward 2 units
(b) Stretch the graph of vertically by a factor of 2
(c) Reflect the graph of about the -plane
(d) Reflect the graph of about the -plane and then shift it
upward 2 units

53.

The function values approach 0 as x, y become large; as
approaches the origin, f approaches or 0, depending on the
direction of approach.
55. If , the graph is a cylindrical surface. For , the
level curves are ellipses. The graph curves upward as we leave
the origin, and the steepness increases as c increases. For ,
the level curves are hyperbolas. The graph curves upward in the
y-direction and downward, approaching the xy-plane, in the 
x-direction giving a saddle-shaped appearance near (0, 0, 1).

EXERCISES 11.2 ■ PAGE 632

1. Nothing; if is continuous, 3. 1    
5. Does not exist    7. Does not exist
9. 0    11. Does not exist 13. 2    
15. Does not exist
17. The graph shows that the function approaches different 
numbers along different lines.
19. ;

21.

23. 25.

27. 29. 0    31.

EXERCISES 11.3 ■ PAGE 638

1. (a) The rate of change of temperature as longitude varies,
with latitude and time fixed; the rate of change as only latitude
varies; the rate of change as only time varies.
(b) Positive, negative, positive
3. (a) Positive   (b) Negative    
5. , 

f
xyf
xyf

10

5

0

_5

_10

y2
0

_2
x

2

0

_2

z

�x, y�
	�

c � 0c � 0

c � 0

f �3, 1� � 6f

h�x, y� � �2x � 3y � 6�2 � s2x � 3y � 6
��x, y� 	 2x � 3y � 6�

��x, y� 	 x 2 � y 2 � 1�
��x, y, z� 	 x 2 � y 2 � z 2 � 1���x, y� 	 x 2 � y 2 � 4�

�1��x, y� 	 �x, y� � �0, 0��

fy�1, 2� � �4 � slope of C2fx�1, 2� � �8 � slope of C1

z

y

0

x

(1, 2, 8)

C¡

(1, 2)

2

16

4

z

y

0

x

(1, 2, 8)

C™

(1, 2)

2

16

4

f
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13. , ,

15. ,

17. 1582, 3164, 19.

21. 23.

25. 27.

29. 31.
33. (a) (b) (c) 
35.
37. (a) ,

43.

EXERCISES 11.6 ■ PAGE 667

1.
3. (a) 
(b) (c) 

5. (a) 
(b) (c) 

7. 9. 11. 13.

15. 17. 19. (b) 
21. All points on the line 23. (a) 
25. (a) (b) (c) 

27.
31. (a) (b) 

33. (a) (b) 

35. (a) (b) 
37. 39. , 

43. No 45.
49.
53. If and , then and
are known, so we solve linear equations for and .

�u

�t
�

�u

�x

�x

�t
�

�u

�y

�y

�t
�w

�x
�

�w

�r

�r

�x
�

�w

�s

�s

�x
�

�w

�t

�t

�x
�w

�y
�

�w

�r

�r

�y
�

�w

�s

�s

�y
�

�w

�t

�t

�y
�700 2�, �2�

5
144 , � 5

96 , 5
144

�u

�s
�

�u

�x

�x

�s
�

�u

�y

�y

�s

�u

�r
�

�u

�x

�x

�r
�

�u

�y

�y

�r

1 � x 4y 2 � y 2 � x 4y 4 � 2xy

x 2 � 2xy � 2x 5y 3

�
x

3z
, �

2y

3z

yz

e z � xy
, 

xz

e z � xy

2�C�s 
 �0.33 m�s per minute
6 m3�s 10 m2�s 0 m�s


 �0.27 L�s
�z��r � ��z��x� cos � � ��z��y� sin �

�z��� � ���z��x�r sin � � ��z��y�r cos �
4rs �2z��x 2 � �4r 2 � 4s 2 ��2z��x �y � 4rs �2z��y 2 � 2 �z��y

2 � s3�2
�f �x, y� � �2 cos�2x � 3y�, 3 cos�2x � 3y��

�2, 3 � s3 �
3
2

�2xyz � yz 3, x 2z � xz 3, x 2y � 3xyz 2 �
��3, 2, 2 � 2

5

4 � 3s3

10
�8�s10 4�s30 2�5

1, �0, 1 � 1, �3, 6, �2 � ��12, 92 �
y � x � 1 �40�(3s3 )

32�s3 �38, 6, 12 � 2s406
327
13

x � y � z � 11 x � 3 � y � 3 � z � 5

2x � 3y � 12z � 24
x � 3

2
�

y � 2

3
�

z � 1

12
x � y � z � 1 x � y � z � 1

�2, 3� 2x � 3y � 12

1

_1

0

1

2

1
2

x
2

z

y

y

x0

2x+3y=12

xy=6

(3, 2)

f (3, 2)
Î

(�5
4 , �5

4 , 25
8 )

x � �1 � 10t, y � 1 � 16t, z � 2 � 12t
u � �a, b � v � �c, d � afx � bfy c fx � dfy

fx fy

47. , ,

49. , , 
53. , 
55.
57. 59.
69.

71. , 

75. No    77. 81.
83. (a) 

(b) , 

(c) 0, 0   (e) No, since and are not continuous.

EXERCISES 11.4 ■ PAGE 648

1. 3.
5.
7. 9.

11. 13. 17. 6.3    
19.
21.
23.
25. 27. 29.
31. 2.3%    33. 35.

EXERCISES 11.5 ■ PAGE 656

1.
3.
5. ,

7. ,

9. 62    11.

wvv � u2��u2 � v2�3�2

zxx � �2x��1 � x 2�2 zxy � 0 � zyx zyy � �2y��1 � y 2�2

wuu � v2��u2 � v2�3�2 wuv � �uv��u2 � v2�3�2 � wvu

24x 2y � 6x24xy 2 � 6y
�2x 2y 2z 5 � 6xyz 3 � 2z�e xyz2

�e r��2 sin � � � cos � � r� sin �� 6yz 2

R 2�R1
2

�P

�V
�

2n 2a

V 3 �
nRT

�V � nb�2

�T

�P
�

V � nb

nR
x � 1 � t, y � 2, z � 2 � 2t �2

_0.2

0.2

0

_1

0

1

y

1
0

_1

x

z

fy�x, y� �
x 5 � 4x 3y 2 � xy 4

�x 2 � y 2 �2fx�x, y� �
x 4y � 4x 2y 3 � y 5

�x 2 � y 2 �2

fyxfxy

z � �7x � 6y � 5 x � y � 2z � 0
x � y � z � 0

0

2 x

0

2y

_1

0z

1
400

200

0

y5
0

_5
x

10
0

_10

z

6x � 4y � 23 1 � �y
3
7 x �

2
7 y �

6
7 z; 6.9914

dm � 5p4q3 dp � 3p5q2 dq
dR � � 2 cos � d� � 2�� cos � d� � �� 2 sin � d�

�z � 0.9225, dz � 0.9 5.4 cm2 16 cm3

1
17 
 0.059 � �1 � �x, �2 � �y

�2x � y� cos t � �2y � x�e t

e y�z�2t � �x�z� � �2xy�z2 ��
�z��s � 2xy 3cos t � 3x 2y 2 sin t

�z��t � �2sxy 3sin t � 3sx 2y 2cos t

�z

�s
� e r�t cos � �

s

ss 2 � t 2
sin ��

�z

�t
� e r�s cos � �

t

ss 2 � t 2
sin ��

7, 2
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43. Nearest , farthest 
45. Maximum , minimum 
47. (a) (b) When 

CHAPTER 11 REVIEW ■ PAGE 685

True-False Quiz

1. True    3. False    5. False    7. True    9. False
11. True

Exercises

1. 3.

5. 7. 

9.
11. , 

13. , 

15. , , 

17. , , 
19. , ,

, ,
, 

23. (a) (b) 

25. (a) (b) 

27. (a) (b) 

29.

31.
33.
35. 41.
43. 45.

��5.3506�9.7938
x1 � x2 � � � � � xnc�n

��x, y� � y � �x � 1�

x y

z

1

1y

x_1

_1

y=_x-1

x210

y

2

1

y

x

1
2

3
4 5

0

2
3

fx � 32xy�5y 3 � 2x 2y�7 fy � �16x 2 � 120y 2��5y 3 � 2x 2y�7

F� �
2� 3

� 2 � � 2 � 2� ln�� 2 � � 2� F� �
2� 2�

� 2 � � 2

Su � arctan(vsw ) Sv �
usw

1 � v2w
Sw �

uv

2sw �1 � v2w�
f xx � 24x f xy � �2y � f yx f yy � �2x
f xx � k�k � 1�x k�2 y lz m f xy � klx k�1y l�1z m � f yx

f xz � kmx k�1y lz m�1 � f zx f yy � l�l � 1�x k y l�2z m

f yz � lmx k y l�1z m�1 � f zy f zz � m�m � 1�x k y lz m�2

z � 8x � 4y � 1
x � 1

8
�

y � 2

4
�

z � 1

�1

2x � 2y � 3z � 3
x � 2

4
�

y � 1

�4
�

z � 1

�6

x � 2y � 5z � 0 x � 2 �
y � 1

2
�

z

5
(2, 1

2 , �1), (�2, �1
2 , 1)

60x �
24
5 y �

32
5 z � 120; 38.656

2xy 3�1 � 6p� � 3x 2y 2� pe p � e p� � 4z 3� p cos p � sin p�
�47, 108 	2xe yz 2

, x 2z 2e yz 2

, 2x 2yzeyz 2



�

4
5 s145�2, 	4, 9

2 


��1, �1, 2�( 1
2 , 1

2 , 1
2 )EXERCISES 11.7 ■ PAGE 675

1. (a) f has a local minimum at (1, 1).
(b) f has a saddle point at (1, 1).
3. Minimum 
5. Maximum , minimum , 
saddle points at 
7. Minimum , saddle point at 
9. None    11. Minimum , saddle points at 
13. Minima , 
saddle points at , 
15. Maximum , minimum ,
saddle points 
17. Maximum ,
minimum , saddle point at 
19. Minima ,

, saddle points , 
lowest points 
21. Maximum , 
minima , , 
saddle points , , ,
no highest or lowest point
23. Maximum , minimum 
25. Maximum , minimum 
27. Maximum , minimum 
29.

31. 33. , 35.
37. 39. 41. Cube, edge length 
43. Square base of side 40 cm, height 20 cm    45.

EXERCISES 11.8 ■ PAGE 683

1. No maximum, minimum 
3. Maximum , minimum 
5. Maximum , minimum 
7. Maximum , minimum 
9. Maximum , minimum 1

11. Maximum ,

minimum 

13. Maximum ,
minimum 
15. Maximum , minimum 
17. Maximum , 
minimum 
19. Maximum ,

minimum 
21.
29–39. See Exercises 31–41 in Section 11.7.
41.

f (1
3, �

2
3) � �

1
3

f �0, 4� � �30f �0, 0� � 2
�2, 2�, ��2, 2�

�0, 0�f �2, 1� � �8
f �0, 0� � 0 ��1, 0�

f �2	, 1� � �1f �	, �1� �f �0, 1� �
�3	�2, 0��	�2, 0�

f �0, 2� � �2f �0, 0� � 2
��1, 1�

f �	�3, 	�3� � 3s3�2
�	, 	�f �5	�3, 5	�3� � �3s3�2

f �0, �0.794� � �1.191
��0.720, 0.259�f ��1.592, 1.267� � �1.310

��1.592, 1.267, �1.310�
f �0.170, �1.215� � 3.197

f �1.131, 0.549� � �0.701f ��1.301, 0.549� � �3.145
�1.131, �1.215��0.170, 0.549���1.301, �1.215�

f �1, 0� � �1f �0, �2� � 4
f �0, 0� � 4f ��1, 1� � 7

f �1, 1� � 0f �3, 0� � 83

_3

_2

_1

0

_1 0 1

_2

2

4

x

y

z

(_1, 0, 0) (1, 2, 0)

100
3 , 100

3 , 100
3(2, 1, �s5 )(2, 1, s5 )2�s3

c�124
38r 3� (3s3)

L 3�(3s3 )

f �1, 1� � f ��1, �1� � 2
f ��2, 0� � �4f �0, �1� � 1
f ��2, �2, �1� � �9f �2, 2, 1� � 9

�2�s32�s3
s3

f ( 1
2 , 1

2 , 1
2 , 1

2 ) � 2

f (� 1
2 , � 1

2 , � 1
2 , � 1

2 ) � �2

f (1, s2, �s2 ) � 1 � 2s2
f (1, �s2, s2 ) � 1 � 2s2

1
2

3
2

f (3�s2 , �3�s2 ) � 9 � 12s2
f ��2, 2� � �8

f (�1�s2, 
1�(2s2 )) � e 1�4

f (�1�s2, �1�(2s2 )) � e�1�4

�59, 30

L 3�(3s3 )
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33.

35.
37.

39.

41.

43. 45. 47. 49. 1

51. 55.

57. 59.

EXERCISES 12.3 ■ PAGE 713

1. 3.
5.

7. 9. 11. 13.
15. 17.

19. 21. 23.
25. 27. 29.
31. (a) (b) 

0

z

y

x

(0, 0, 1)

(1, 0, 0)

(0, 1, 0)

	�2

x

y

0

y=x

(0, 1)

(1, 1)

x
1
0 x

1
x f �x, y� dy dx

x

y

y=cos x

x=cos_1
y

or

π

2

1

0

x
1
0 x

cos�1 y
0 f �x, y� dx dy

y

x0

x=2

y=ln x  or  x=e†

ln 2

1 2

y=0

x
ln 2
0 x

2
e y f �x, y� dx dy

1
3 (2s2 � 1)1

3 ln 91
6 �e 9 � 1�
0 � xxD sx 3 � y 3 dA � s2 9	

	a 2ba 2b �
3
2 ab 2

x
3	�2

0 x
4
0 f �r cos �, r sin ��r dr d� x

1
�1 x

�x�1��2
0 f �x, y� dy dx

3	�4

x

y

0 1 2_2 _1

¨=
3π

4
¨=

π

4

R

�	�4��cos 1 � cos 9�1250
3

3
64 	 2 16

3 	
4
3 	a 3

�8	�3�(64 � 24s3 )
�2	�3�[1 � (1�s2)]

	�12 1
2	�1 � cos 9�

2s2�3 1800	 ft3

s	�4 s	�2

15
16

47. Minimum 
49. Maximum ; saddle points (0, 0), (0, 3), (3, 0)
51. Maximum , minimum 
53. Maximum , minima ,
saddle points 

55. Maximum ,

minimum 
57. Maximum 1, minimum 

59.
61.

CHAPTER 12

EXERCISES 12.1 ■ PAGE 698

1. (a) 288   (b) 144    3. (a) 0.990   (b) 1.151
5. 7. 60    9. 3    11. 222    13.
15. 18    17. 19. 21.
23. 25.
27.

29. 51    31. 33. 2 35.
37.

39. 43. 0
45. Fubini’s Theorem does not apply. The integrand has an 
infinite discontinuity at the origin.

EXERCISES 12.2 ■ PAGE 707

1. 32    3. 5. 7. 9.
11. Type I: ,

type II: ; 

13.

15. 17. 19. 0    21. 23.
25. 6 27. 29. 31.

(�3�1�4, 3�1�4
s2, �31�4 ), (�3�1�4, �3�1�4

s2, �31�4 )
P(2 � s3 ), P(3 � s3 )�6, P(2s3 � 3)�3

f ��4, 1� � �11
f �1, 1� � 1

f �2, 4� � �64f �1, 2� � 4
f �1, �1� � �3f ��1, 0� � 2

��1, �1�, �1, 0�
f (�s2�3, 1�s3 ) � 2�(3s3 )

f (�s2�3, �1�s3 ) � �2�(3s3 )
�1

32�e 4 � 1�
21
2 ln 2 31

30 9 ln 2
1
2 (s3 � 1) �

1
12	 1

2e�6 �
5
2

z

y
x

0

1

1

4

166
27

64
3

21e � 57

2

0

y
1

0

x1
0

z

5
6

3
10

1
3 sin 1 4

3 	

D � ��x, y� � 0 � x � 1, 0 � y � x�
D � ��x, y� � 0 � y � 1, y � x � 1� 1

3

x
1
0 x

sx
�sx y dy dx � x

4
1 xsx

x�2 y dy dx � x
2

�1 x
y�2
y 2 y dx dy � 9

4

1
2 �1 � cos 1� 11

3
17
60

31
8

128
15

1
3

64
3

248
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33.

35. 37.

39.

41. (a) 

(b) , where

(c) 

43. (a) 

(b) 

(c) 

45. 47. 49.

51. (a) The region bounded by the ellipsoid
(b) 

EXERCISES 12.6 ■ PAGE 734

1. (a) (b)

3. (a) (b) 

5. Vertical half-plane through the -axis

7. Circular paraboloid

9. (a) (b) 

11.

13. Cylindrical coordinates: , ,

� x
1
0 x

x
0 x

x
z

f �x, y, z� dy dz dx �x
1
0 x

1
z

x
x
z

f �x, y, z� dy dx dz

64	 79
30 , ( 358

553 , 33
79 , 571

553 )
a 5, �7a�12, 7a�12, 7a�12�

x
1
0 x

y
0 x

1
y

f �x, y, z� dx dz dy� x
1
0 x

1
z

x
1
y

f �x, y, z� dx dy dz �

x
1
0 x

x
0 x

y
0 f �x, y, z� dz dy dxx

1
0 x

1
y

x
y

0 f �x, y, z� dz dx dy �

3
32 	 �

11
24

� 28

9	 � 44
, 

30	 � 128

45	 � 220
, 

45	 � 208

135	 � 660�
1

240 �68 � 15	�

Ix � Iy � Iz � 2
3 kL5 L3�8

x 2 � 2y 2 � 3z2 � 1
4s6	�45

x

z

y

”4,   , _2’
π

3

_2

4π

3

0

x

z

y

”2, _   , 1’
π

2

2

1

π

2 0_

�0, �2, 1�(2, 2s3 , �2)

�4, 2	�3, 3�(s2 , 3	�4, 1)
z

z � r 2 cos 2�z 2 � 1 � r cos � � r 2

x

z

y2

2

z=11

0 � � � 2	6 � r � 7
0 � z � 20

1
2	kha 4

m � x
1
�1 x

1
x 2 x

1�y
0 sx 2 � y 2 dz dy dx

�x, y, z�
x � �1�m� x

1
�1 x

1
x 2 x

1�y
0 xsx 2 � y 2 dz dy dx

y � �1�m� x
1
�1 x

1
x 2 x

1�y
0 ysx 2 � y 2 dz dy dx

z � �1�m� x
1
�1 x

1
x 2 x

1�y
0 zsx 2 � y 2 dz dy dx

x
1
�1 x

1
x 2 x

1�y
0 �x 2 � y 2�3�2 dz dy dx

EXERCISES 12.4 ■ PAGE 720

1. 3. , 5. 7. , 
9. , 11.
13.
15. if vertex is (0, 0) and sides are along positive
axes
17.
19. , , if vertex is and sides
are along positive axes

21. , ,

, , 

23. , ; , 

EXERCISES 12.5 ■ PAGE 728

3. 5. 7. 9.
11. 13. 15. 17. 19.

21. (a) (b) 

23. 0.985
25.

27.

29.

31.

285 C 42k (2, 85
28) 6, ( 3

4 , 3
2 ) 8

15k (0, 4
7)

L�4 �L�2, 16��9	�� ( 3
8 , 3	�16)

�0, 45��14	��
�2a�5, 2a�5�

64
315k, 8

105k, 88
315k

7ka6�180 7ka6�180 7ka6�90 �0, 0�

m � 3	�64 �x, y� � �16384s2

10395	
, 0�

Ix �
5	

384
�

4

105
Iy �

5	

384
�

4

105
I0 �

5	

192
bh3�3 b3h�3 b�s3 h�s3

16
15 �

1
3

27
2 9	�8

65
28

1
60 16	�3 16

3
8

15

x
1
0 x

x
0 x

s1�y 2

0 dz dy dx 1
4 	 �

1
3

z

y

x

0
1

2

1

x
2
�2 x

4�x 2

0 x
s4�x 2�y�2

�s4�x 2�y�2 f �x, y, z� dz dy dx

� x
4
0 x

s4�y
�s4�y x

s4�x 2�y�2
�s4�x 2�y�2 f �x, y, z� dz dx dy

� x
1
�1 x

4�4z 2

0 x
s4�y�4z 2

�s4�y�4z 2 f �x, y, z� dx dy dz

� x
4
0 x

s4�y�2
�s4�y�2 x

s4�y�4z 2

�s4�y�4z 2 f �x, y, z� dx dz dy

� x
2
�2 x

s4�x 2�2
�s4�x 2�2 x

4�x 2�4z 2

0 f �x, y, z� dy dz dx

� x
1
�1 x

s4�4z 2

�s4�4z 2 x
4�x 2�4z 2

0 f �x, y, z� dy dx dz

x
2
�2 x

4
x 2 x

2�y�2
0 f �x, y, z� dz dy dx

� x
4
0 x

sy
�sy

x
2�y�2
0 f �x, y, z� dz dx dy

� x
2
0 x

4�2z
0 x

sy
�sy

f �x, y, z� dx dy dz

� x
4
0 x

2�y�2
0 x

sy
�sy

f �x, y, z� dx dz dy

� x
2
�2 x

2�x 2�2
0 x

4�2z
x 2 f �x, y, z� dy dz dx

� x
2
0 x

s4�2z
�s4�2z

x
4�2z
x 2 f �x, y, z� dy dx dz

� x
1
0 x

y 2

0 x
1�y
0 f �x, y, z� dz dx dyx

1
0 x

1
sx x

1�y
0 f �x, y, z� dz dy dx

� x
1
0 x

1�y
0 x

y 2

0 f �x, y, z� dx dz dy� x
1
0 x

1�z
0 x

y 2

0 f �x, y, z� dx dy dz

� x
1
0 x

1�sx
0 x

1�z
sx f �x, y, z� dy dz dx

� x
1
0 x

�1�z�2

0 x
1�z
sx f �x, y, z� dy dx dz
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15.
17.

19.

21. 23. 25.
27. (a) (b) (0, 0, 2.1)
29. (a) (b) 

31. (a) (b) 

33. 35.

37. 39.
41. 43.

EXERCISES 12.8 ■ PAGE 749

1. 16 3. 5. 0
7. The parallelogram with vertices (0, 0), (6, 3), (12, 1), (6, �2)
9. The region bounded by the line , the y-axis, and 
11. , is one possible transformation,
where 
13. , is one possible transformation, 
where 
15. 17. 19. 2 ln 3
21. (a) (b) 
(c) 

23. 25. 27.

CHAPTER 12 REVIEW ■ PAGE 751

True-False Quiz

1. True    3. True    5. True    7. True    9. False

Exercises

1. 64.0    3. 5. 7.
9.
11. The region inside the loop of the four-leaved rose
in the first quadrant
13. 15. 17. 19.
21. 23. 25. 27.
29. 176    31. 33.
35. (a) (b) 
(c) 

0 � � � 	�4, 0 �  � cos �
�9	�4� (2 � s3)

x
y

z

π

6

3

x
	�2
0 x

3
0 x

2
0 f �r cos �, r sin �, z� r dz dr d�

	�81688	�15312,500	�7

10	
11K	�960(0, 0, 7

12)
4K	a 5�15(0, 0, 3

8 a)

5	�61
3	 (2 � s2 ), �0, 0, 

3

8(2 � s2 )�
4096	�21(4s2 � 5)�15

136	�99

sin2� � cos2�

y � sxy � 1
y � 1

3�u � 2v�x � 1
3�v � u�

S � ��u, v� � �1 � u � 1, 1 � v � 3�
y � u sin vx � u cos v

S � ��u, v� � 1 � u � s2, 0 � v � 	�2�
6	�3

1.083 � 1012 km34
3 	abc

4
15	�a2 � b2�abck

e � e�13
2 sin 18

5 ln 8

2
3

1
2 sin 14e 2 � 4e � 3

x
	

0 x
4

2 f �r cos �, r sin �� r dr d�
r � sin 2�

81
4 ln 21

2 e 6 �
7
2

1
2 sin 1

64
15	�9681

281	�5

2ma 3�92
3

( 1
3 , 8

15 )1
4

Ix � 1
12 , Iy � 1

24; y � 1�s3, x � 1�s6

15.

17. 19. 21. 23.
25. (a) (b) 
27. 29. 0    

31. (a) , where is the cone
(b) ft-lb

EXERCISES 12.7 ■ PAGE 740

1. (a) (b)

3. (a) (b) 

5. Half-cone 7. Sphere, radius , center 
9. (a) (b) 
11.

13. 

�0, 0, 15�162	

	Ka 2�8, �0, 0, 2a�3�
CxxxC h�P�t�P� dV

�3.1 � 1019

x

z

y

”6,   ,    ’
π

3

π

6

6

π

6

π

3

0

x

z

y

”3,   ,     ’
π

2

3π

4

3

π

2

0

3π

4

�0, 
3s2

2
, �

3s2

2 ��3

2
, 

3s3

2
, 3s3�

�2, 3	�4, 3	�4��2, 3	�2, 	�2�
(0, 1

2, 0)1
2

 2�sin2� cos2� � cos2�� � 9cos2� � sin2�

y

x 

z

∏=4

∏=2

˙=
π

3

4	

y

z

x

4
3	 (s2 � 1)2	�58

3	 �
128
15384	

x

z

y

˙=
3π

4

∏=1
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25.

27.

29.
31. (a) (b) 

EXERCISES 13.2 ■ PAGE 770

1. 3. 1638.4    5. 7.
9. 11. 13. 15.
17. (a) Positive   (b) Negative    19. 45
21. 23. 1.9633    

25.

27. (a) (b) 

�f �x, y� � 2x i � j

0_2_4_6 4 6 x

y

_2

2

4

_4

4_4

�2.04, 1.03�
y � 1�x, x � 0y

x0

y � C�x

1
54 �1453�2 � 1� 243

8
5
2

35
3

2
5�e � 1�1

12s14 �e 6 � 1�s5	

6
5 � cos 1 � sin 1

2.5

�2.5

�2.5 2 .5

3	 �
2
3

0 2.1

2.1

_0.2

F”r”      ’’

F{r(1)}

F{r(0)}

1

œ„2

11
8 � 1�e

37. (a) (b) 
39. , 

41. , 
43. 45. 97.2    
47. 49. 51. 0

CHAPTER 13

EXERCISES 13.1 ■ PAGE 760

1. 3.

5.

7. 9.

11. IV    13. I    15. IV    17. III    
19. The line 

21.

23.

	a 4h�10�0, 0, h�4�
�4, 	�3, 	�3�(s3, 3, 2)

(4, 	�4, 4s3 )(2s2, 2s2, 4s3 )
r 2 � z2 � 4,  � 2

�ln 2x
1
0 x

1�z
0 x

sy
�sy f �x, y, z� dx dy dz

1

2

1_1_2

y

0 x

_1

x

y

2

_2

_2 2

y

x0

z

y

x

z

y
x

y � 2x4.5

�4.5

�4.5 4.5

�f �x, y� � �xy � 1�e xy i � x 2e xy j

� f �x, y, z� �
x

sx 2 � y 2 � z2
i

�
y

sx 2 � y 2 � z2
j �

z

sx 2 � y 2 � z2
k
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7.

9.

11. IV    13. II 15.

17.

19. , ,
, , 

21. , , , 

25. ,
, ,

27. (a) Direction reverses   (b) Number of coils doubles

29. 31.

33. 35.
37. 39.

41. 43.
45. 47.
49. (a) 24.2055   (b) 24.2476    

51.

_1

0
x

1

_1

0
y

z

u constant

√ constant

_1

0

1

1

_1

0
x

1

_1

0
y

1

_1

0z

1

√ constant

u constant

x � u, y � v � u, z � �v

y � y, z � z, x � s1 � y 2 � 1
4 z 2

y � 2 sin � sin �x � 2 sin � cos �
0 � � � 2	0 � � � 	�4z � 2 cos �

[or x � x, y � y, z � s4 � x 2 � y 2, x 2 � y 2 � 2]
0 � x � 5, 0 � � � 2	z � 4 sin �y � 4 cos �x � x

20�101
�1

0

1

y

z

x

x � x, y � e�x cos �
0 � x � 3z � e�x sin �

0 � � � 2	

s3

2
x �

1

2
y � z �

	

3
3x � y � 3z � 3

s14	3s14

�2	�3�(2s2 � 1)4
15�35�2 � 27�2 � 1�
1
2 s21 �

17
4 [ln(2 � s21 ) � ln s17 ] 	 (2s6 �

8
3 )

13.9783	R 2 � A�S� � s3 	R 2

45
8 s14 �

15
16 ln�11s5 � 3s70

3s5 � s70 �

29. 31.

33. (a) ,

,

, where 

(b) 

35. , 37. 39.
41. (a) (b) 
43. 47. (b) Yes    

EXERCISES 13.3 ■ PAGE 780

1. 40    3.
5. Not conservative    7.
9.
11. (a) (b) 2
13. (a) (b) 77
15. (a) (b) 17.
19. 21. No    23. Conservative
27. (a) Yes   (b) Yes   (c) Yes
29. (a) No   (b) Yes   (c) Yes

EXERCISES 13.4 ■ PAGE 787

1. 3. 5. 12 7. 9. 11.
13. 15. 17. 19.
21. (c) 

23. if the region is the portion of the disk
in the first quadrant

27. 0

EXERCISES 13.5 ■ PAGE 795

1. (a) (b) 3
3. (a) (b) 

5. (a) (b) 
7. (a) 
(b) 
9. (a) Zero   (b) curl F points in the negative -direction
11. 13. Not conservative    
15. 17. No

EXERCISES 13.6 ■ PAGE 805

1. Plane through containing vectors ,

3. Hyperbolic paraboloid
5.

945
16,777,216 	 2	k, �4�	, 0�

x � �1�m� xC x�x, y, z� ds

y � �1�m� xC y�x, y, z� ds

m � xC �x, y, z� dsz � �1�m� xC z�x, y, z� ds

�0, 0, 3	�

2	 2Iy � k (1
2	 �

2
3 )Ix � k(1

2	 �
4
3 ) 7

3

2ma 2 �
9
2mb 22ma i � 6mbt j

�1.67 � 104 ft-lb

f �x, y� � x 2 � 3xy � 2y 2 � 8y � K
f �x, y� � ye x � x sin y � K

f �x, y� � x ln y � x 2y 3 � K
f �x, y� � 1

2 x 2y 2

f �x, y, z� � xyz � z 2

4�e4f �x, y, z� � ye xz

30

8	 2
3

1
3 �24	 �

16
3

3	�
1
12�8e � 48e�14	

9
2

�4a�3	, 4a�3	�
x 2 � y 2 � a 2

0
y�e z � e x�ze x i � �xye z � yze x� j � xe z k

2�sx 2 � y 2 � z20
	�e y cos z, �e z cos x, �e x cos y 


e x sin y � e y sin z � e z sin x
z

f �x, y, z� � xy 2z3 � K
f �x, y, z� � xe yz � K

�0, 3, 1� 	1, 0, 4 

	1, �1, 5 


√ constant

z

y

x

2

_2

0

0

0

1
1u constant
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CHAPTER 13 REVIEW ■ PAGE 831

True-False Quiz

1. False    3. True    5. False    
7. False    9. True    11. True

Exercises

1. (a) Negative   (b) Positive    3. 5.

7. 9. 11. 13. 0

17. 25. 27.

29. 33. 37. 21

APPENDIXES

EXERCISES A ■ PAGE A8

1. 3. 5. 7. 9. 75°

11. 13. 15.
17. 19.

21.

23. , , ,
, , 

25. , , ,
, and undefined

27.

29. , , , , 

31. , , , 
, 

33. , , , 
, 

35. 5.73576 cm    37. 24.62147 cm    
59. 61.
63. 65. 67.
69. 71.
73. and 
75.

6s10 4
15

110
3

11
12 � 4�e f �x, y� � e y � xe xy

�8	 1
6 (27 � 5s5 ) �	�60�(391s17 � 1)

�64	�3 �
1
2

720�5		�207	�6
2
3 rad � �120�	��3	 cm�67.5�

0
x

y

_
3π

4

0 x

y

315°

0 x

y

2 rad

tan�3	�4� � �1cos�3	�4� � �1�s2sin�3	�4� � 1�s2
cot�3	�4� � �1sec�3	�4� � �s2csc�3	�4� � s2

csc�9	�2� � 1cos�9	�2� � 0sin�9	�2� � 1
sec�9	�2�tan�9	�2�cot�9	�2� � 0

tan�5	�6� � �1�s3,cos�5	�6� � �s3�2,sin�5	�6� � 1
2 ,

cot�5	�6� � �s3sec�5	�6� � �2�s3,csc�5	�6� � 2,

cot � � 4
3sec � � 5

4csc � � 5
3tan � � 3

4cos � � 4
5

tan � � �s5�2cos � � �
2
3sin � � s5�3

cot � � �2�s5csc � � 3�s5

tan � � 1
3cos � � �3�s10sin � � �1�s10

sec � � �s10�3csc � � �s10

(3 � 8s2 )�15(4 � 6s2 )�15
	�4, 3	�4, 5	�4, 7	�4	�3, 5	�324

25

0, 	, 2		�6, 	�2, 5	�6, 3	�2
5	�6 � x � 2	0 � x � 	�6

0 � x � 	�4, 3	�4 � x � 5	�4, 7	�4 � x � 2	

53. (b) 

(c) 

55. 59.

EXERCISES 13.7 ■ PAGE 816

1. 49.09 3. 5. 7.
9. 11. 13.
15. 17. 19. 12    21. 4    

23. 25. 27. 0    29. 48    31.
33. 3.4895

35. ,
where projection of onto the -plane

37.
39. (a) (b) 

41. 43. 45.

EXERCISES 13.8 ■ PAGE 822

1. 0 3. 0    5. �1    7.
9. (a) (b) 

(c) ,
,

15. 3

EXERCISES 13.9 ■ PAGE 829

5. 7. 9. 0    11. 13.
15.
17. 19. Negative at , positive at 

21. in quadrants I, II; in quadrants III, IV

2

0

�2

�2 �10 2 1 0

z

y x

x
2	

0 x
	

0 s36 sin4u cos2v � 9 sin4u sin2v � 4 cos2u sin2u du dv

4	 �	�6�(37s37 � 17s17 )

900	 11s14 2
3 (2s2 � 1)

364s2	�3s21�3171s14

16	�	�60�(391s17 � 1)
2	 �

8
3�

4
3	713

180

xx
S

F � dS � xx
D

P��h��x� � Q � R��h��z�� dA
xzSD �

�0, 0, a�2�
4329s2	�5Iz � xx

S
�x 2 � y 2 ��x, y, z� dS

1248	8
3	a 3�00 kg�s

80	

�2

5

0

�5

z

0
y

2
�2 2

0
x

81	�2

_2

0

2

4

_2
0

2 2
0

_2

z

y
x

x � 3 cos t, y � 3 sin t
z � 1 � 3�cos t � sin t�
0 � t � 2	

2	32	�39	�29
2

341s2�60 �
81
20 arcsin(s3�3)

P2P113	�20

div F � 0div F � 0
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EXERCISES B ■ PAGE A14

1. 3.

5. 7.

9. 11.

13. 15. 17. 19.

21. 80    23. 3276    25. 0    27. 61    29.

31. 33.

35.
41. (a) (b) (c) (d) 

43. 45. 14    49.

EXERCISES C ■ PAGE A22

1. (b) 0.405

s1 � s2 � s3 � s4 � s5 34 � 35 � 36

�1 �
1
3 �

3
5 �

5
7 �

7
9 110 � 210 � 310 � � � � � n10

1 � 1 � 1 � 1 � � � � � ��1�n�1 �
10

i�1
i

�
19

i�1

i

i � 1 �
n

i�1
2i �

5

i�0
2 i �

n

i�1
x i

n�n � 1�

n�n 2 � 6n � 17��3 n�n 2 � 6n � 11��3

n�n 3 � 2n 2 � n � 10��4
n 4 5100 � 1 97

300 an � a0

1
3 2n�1 � n 2 � n � 2

77.

79.

81.

89.

y

0 x

1
1

2

π

3

5π

6

y

0 x3π

2

2ππ 5π

2

3ππ

2

y

0 x

1

π 2π_π

14.34457 cm2
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A89

INDEX

absolute convergence of a 
series, 458

absolute maximum and minimum 
values, 203, 669, 673

absolute value, RP1
absolute value function, 5
acceleration, 91, 287, 600

vector components of, 604
addition formulas for sine and 

cosine, A5, RP2
addition of vectors, 543, 546
Airy, Sir George, 469
Airy function, 469
Algebra Review, RP1
alternating harmonic series, 456
alternating series, 454
Alternating Series Estimation 

Theorem, 457
Alternating Series Test, 455
angle(s), A1

between vectors, 552
negative and positive, A2
standard position, A2

angular momentum, 609
angular speed, 602
antiderivative, 247

general vs. particular, 284, 337
antidifferentiation formulas, 249, RP5
aphelion, 534
approximate integration, 275, 341
approximating cylinder, 373
approximation

by differentials, 137
to , 148
to an integral, 275, 341
by the Midpoint Rule, 275, 341
by Newton’s method, 242
by Riemann sums, 270
by Simpson’s Rule, 345
tangent line, 135
by Taylor polynomials, 489
by the Trapezoidal Rule, 342

approximation, linear, 135
to a tangent plane, 643, 647

arc curvature, 593, 594, 595, 596, 597

arc length, 386
of a parametric curve, 510
parametrization with respect to, 593
of a polar curve, 527
of a space curve, 592

arc length formula, 387
arc length function, 390, 593
Archimedes, 37, 404
area

of a circle, 323
cross-sectional, 376
under a curve, 262
between curves, 365, 366
enclosed by a parametric curve, 510
by exhaustion, 37
under a graph of from to , 291
by Green’s Theorem, 785
in polar coordinates, 524, 525
of a region, 262
of a sector of a circle, 524
surface, 395
of a surface, 803, 804
of a surface of revolution, 393

Area Problem, 257
arrow diagram for a function, 2
astroid, 127
asymptote(s)

in curve sketching, 226
horizontal, 60, 226
of a hyperbola, 530
slant, 231
vertical, 58, 226

average cost function, 240
average rate of change, 79

units for, 80
average speed of molecules, 361
average value of a function, 296, 

700, 730
average velocity, 24, 76, 600
axes, coordinate 537
axis of a parabola, 529

Barrow, Isaac, 37, 291
base

change of, 160

of an exponential function, 16, 147
of a logarithm, 16, 157

base of a cylinder, 370
basis vectors , , and , 547
Bernoulli, James, 413
Bernoulli, John, 413, 477, 505
Bessel, Friedrich, 465
Bessel function, 128, 465, 469, 475
binomial coefficients, 483
binomial series, 482, 483
Binomial Theorem, RP1
binormal vector, 596, 597
boundary curve, 818

orientation of, 818
bounded sequence, 433
bounded set, 673
brachistochrone problem, 505
branches of a hyperbola, 530
bullet-nose curve, 121

transformation, 742
cable, hanging, 185
calculator, graphing, 27, 431, 503, 521
calculus, differential vs. integral, 291
cancellation equations

for exponential functions and 
logarithms, RP4

for inverse functions, 153
Cantor, Georg, 445
Cantor set, 445
cardioid, 127, 519
carrying capacity, 415
CAS. See Computer algebra system
Cassini, Giovanni, 524
catenary, 185
Cauchy, Augustin-Louis, 37, 696, A31
Cauchy-Schwarz Inequality, 557
Cauchy’s Mean Value Theorem, A31
Cavalieri, Bonaventura, 37, 347
Cavalieri’s Principle, 380
center of gravity, 404
center of mass, 404, 405, 407, 809

of a lamina, 716
of a solid, 727
of a wire, 764

e

f a b

i j k

C1

RP denotes Reference Page numbers.
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A90 INDEX

centripetal force, 602
centroid 

of a plane region, 405, 407
of a solid, 727

Chain Rule, 114, 115
for several variables, 649, 652

change of base in a logarithm, 160
change of variables 

in a double integral, 742, 746
in an integral, 300
in a triple integral, 748

charge, electric, 715, 727
charge density, 715
circle

area of, 323
equation of, RP1

circle of curvature, 597
circular cylinder, 370
circulation of a velocity field, 821
cissoid of Diocles, 523
Clairaut, Alexis, 637
Clairaut’s Theorem, 637, A35
closed curve, 775
Closed Interval Method, 207
closed set, 673
closed surface, 812
Cobb-Douglas production function, 

683
cochleoid, 536
coefficient(s)

binomial, 483
of friction, 114, 209
of a polynomial, 13
of a power series, 464

combinations of functions, 18
common ratio, 437
comparison properties of the 

integral, 278
Comparison Test, 449
comparison tests for series, 449
Comparison Theorem for integrals, 359
Completeness Axiom, 433
component function, 580, 756
component of along , 554
components of a vector, 544, 554
composite function, 19

continuity of, 51, 630
derivative of, 114
limit of, 51

composition of functions, 19
compound interest, 176, 197
computer algebra system, 28

for finding a root, 242
for graphing a function of two 

variables, 617, 618, 621
for graphing an implicit equation, 414

for graphing a parametric 
surface, 799, 800

for graphing a sequence, 431
for graphing a space curve, 583
for integration, 333, 337, 349, 474
for plotting a vector field, 757

concavity, 219
in curve sketching, 226

Concavity Test, 220, A32
conchoid, 523
conditional convergence of a series, 459
conductivity (of a substance), 816
cone, 578

parametrization of, 800
conic section(s), 529

axis of, 529
directrix, 529, 531
eccentricity, 531
focus (foci), 529, 530, 531
polar equations for, 531
vertex (vertices), 529, 530

connected region, 775
conservation of energy, 779
conservative vector field, 759, 780, 791
constant function, 95

derivative of, 95
Constant Multiple Law of limits, 36
Constant Multiple Rule, 99
constraint, 677, 681
continued fraction expansion, 435
continuity

of a composite function, 51
of a function, 46, 51
of a function of three variables, 631
of a function of two variables, 629
on an interval, 48
of inverse functions, 155
from the left or right, 48
of a polynomial or rational 

function, 49
of a vector function, 581

Continuity and Convergence 
Theorem, 430

continuous compounding 
of interest, 176, 197

continuous function, 46
contour curve, 618
contour map, 618
convergence

absolute, 458
conditional, 459
of an improper integral, 354, 357
interval of, 466, 467
radius of, 466, 467
of a sequence, 427
of a series, 437

convergent improper integral, 354, 357
convergent sequence, 425
convergent series, 437

properties of, 441
coordinate axes, 537
coordinate planes, 537
coordinates, 

cylindrical, 731
polar, 515
spherical, 735
three-dimensional Cartesian, 537, 538

coplanar vectors, 563
Cornu’s spiral, 515
cosine function, A2

derivative of, 102
graph, A7
integration of  powers of, 319
inverse, 181
power series for, 481, 484

cost function, 104, 237
critical number, 207
critical point, 670
cross product, 558

geometric characterization of, 560
magnitude of, 559
properties of, 562

cross-section, 371
cross-sectional area, 376
cubic function, 13
curl of a vector field, 789
curvature, 593, 594, 595, 596, 597
curve(s)

boundary, 818
bullet-nose, 121
cardioid, 519
cissoid of Diocles, 523
closed, 775
cochleoid, 536
Cornu’s spiral, 515
devil’s, 127
epitrochoid, 514
equipotential, 624
folium of Descartes, 123
four-leaved rose, 519
grid, 798
guidelines for sketching, 225
helix, 582
involute, 515
kampyle of Eudoxus, 127
length of, 386, 387, 527, 592
level, 618
Lissajous, 507
longbow, 536
orientation of, 766, 782
orthogonal, 128
ovals of Cassini, 524

b a
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INDEX A91

parametric, 501
piecewise-smooth, 763
polar, 517
serpentine, 113
simple, 777
smooth, 387, 593
space, 581
strophoid, 536
swallowtail catastrophe, 507
toroidal spiral, 583
trefoil knot, 583
Tschirnhausen cubic, 127
twisted cubic, 584
witch of Maria Agnesi, 113, 507

curve of steepest ascent, 666
curve sketching, 225

with technology, 229
cycloid, 504, 512
cylinder, 370, 574

parabolic, 575
parametrization of, 800

cylindrical coordinates, 731
conversion to rectangular 

coordinates, 731
triple integration in, 732, 733

cylindrical shell, 381

decay, law of natural, 171
decay, radioactive, 173
decomposition of a function, 20
decreasing function, 7
decreasing sequence, 432
definite integral, 268, 270

evaluation of, 281
properties of, 276
Substitution Rule for, 304
of a vector function, 588

definite integration
by parts, 311, 312
by substitution, 304

degree of a polynomial, 13
del ( ), 660
delta notation, 78
demand function, 237
density, mass vs. weight, 402
density of a lamina, 715
dependent variable, 2, 615, 652
derivative(s), 73, 77, 84

of a composite function, 114
of a constant function, 95
directional, 658, 659, 661, 662
of exponential functions, 168, A20
as a function, 84
of a function at a number , 77
higher, 90, 636
of hyperbolic functions, 186

of an integral, 293
of an inverse function, 156
of inverse hyperbolic functions, 188
of inverse trigonometric 

functions, 183
of logarithmic functions, 163, 164
normal, 796
notation, 87
partial, 633, 636
of a polynomial, 100
of a power function, 96
of a power series, 471
of a product, 107
of a quotient, 109
as a rate of change, 79
second, 91, 586
as the slope of a tangent, 78
third, 91
of trigonometric functions, 101, 

102, 111
of a vector function, 584

Descartes, René, 37, 206
determinant, 558
devil’s curve, 127
Difference Law of limits, 36
difference of vectors, 544, 546
Difference Rule, 100
differentiable function, 87, 644

continuity of, 88
differential, 137, 645, 647
differential calculus, 291
differential equation, 106, 171, 249, 412

family of solutions to, 413
first-order, 412
general solution of, 413
logistic, 415
partial, 637
order of, 412
separable, 412
solution of, 171, 412

differentiation, 87
formulas for, 95, RP5
formulas for vector functions, 587
of a function of two variables, 644
and integration as inverse 

processes, 295
implicit, 123, 124, 654
logarithmic, 167
partial, 633, 636
of power series, 471
term by term, 471
of a vector function, 587

differentiation operator, 87
Direct Substitution Property, 37
direction field, 417, 418
direction numbers, 567

directional derivative, 658, 659, 661, 662
maximum value of, 663

directrix
of a conic, 531
of a parabola, 529

discontinuity of a function, 46, 47
discontinuous integrand, 357
disk method, 372, 376
displacement, 287
displacement vector, 542, 555
distance

between parallel planes, 574
between point and line, 565
between point and plane, 572
between points in space, 539

distance formula, RP1
in three dimensions, 539

Distance Problem, 264
divergence

of an improper integral, 354, 357
of an infinite series, 437
of a sequence, 425
of a vector field, 792

Divergence, Test for, 441
Divergence Theorem, 823, 824

applied to electric charge, 827
applied to fluid flow, 827

divergent improper integral, 354, 357
divergent sequence, 425
divergent series, 437
division of power series, 485
DNA, helical shape of, 582
domain of a function, 2, 615
Doppler effect, 657
dot product, 551

geometric interpretation of, 552
properties of, 551

double-angle formulas for sine and
cosine, A6, RP2

double integral, 689, 691, 692
applications of, 715
change of variable in, 746
Midpoint Rule for, 693
over general regions, 700, 702
in polar coordinates, 709, 711, 712
as a product of single integrals, 697
properties of, 698, 705, 706, 707
over rectangles, 689

double Riemann sum, 692

(the number), 148, A17
as a limit, 148, A21
as a sum of an infinite series, 480

eccentricity, 531
electric charge, 715, 727
electric current, 23, 29, 327

af
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�
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A92 INDEX

electric field, 759, 796
electric flux, 815
elementary functions, integration of, 339
ellipse, 529
ellipsoid, 576, 578
elliptic paraboloid, 576, 578
end behavior of a function, 69
endpoint extreme values, 207
energy

conservation of, 779
kinetic, 780
potential, 780

epitrochoid, 514
, definition of a limit, 31, 64

equation(s)
differential (see differential equation)
of an ellipse, 530
heat conduction, 640
of a hyperbola, 530
Laplace’s, 638, 793
of a line in space, 566
logistic (differential), 415
Maxwell’s, 796
of a parabola, 529
parametric, 501, 566, 567, 581, 797
of a plane, 569, 570
point-slope, 74
polar, 517
slope-intercept, 12
of a space curve, 581
of a sphere, 540
symmetric, 567
wave, 638

equipotential curves, 624
equivalent vectors, 542
error

in approximate integration, 343, 349
percentage, 138
relative, 138
in Taylor approximation, 490

error bounds, 344, 349
error estimate

for alternating series, 457
for the Midpoint Rule, 343, 344
for Simpson’s Rule, 349
for the Trapezoidal Rule, 343, 344

error function, 299
Euclid, 37
Eudoxus, 37
Euler, Leonhard, 148, 213, 447, 480
Evaluation Theorem, 282
even function, 6, 225
exponential decay, 171
exponential function(s), 16, 145, 

A19, RP4
derivative of, 168, A20

integration of, 284, 484
graph, 147
limits involving, 148
natural, 148, 149, 168, A18
power series expansion for, 

480, 484
properties of, 147, A19, A20

exponential graphs, 147
exponential growth, 171
exponents, laws of, 147, A19, A20
extreme value, 203
Extreme Value Theorem, 204, 674

family of exponential functions, 147
family of solutions, 413
fat circle, 126, 392
Fermat, Pierre, 37, 206
Fermat’s Theorem, 205
Fibonacci, 426, 435
Fibonacci sequence, 426, 435, 445
field

conservative, 759, 780, 791
electric, 759, 796
force, 758
gradient, 759
gravitational, 758 
incompressible, 793
irrotational, 792
magnetic, 796
scalar, 756
vector, 755, 756
velocity, 758

First Derivative Test, 218
for Absolute Extreme Values, 234

first octant, 537
first-order differential equation, 412
fixed point of a function, 216
floor function, 40
flow lines, 761
fluid flow, 758, 827
flux, 813, 815
focus (foci)

of a conic, 531
of an ellipse, 529
of a hyperbola, 530
of a parabola, 529

folium of Descartes, 123
foot-pound (unit of work), 398
force, 398

exerted by liquid, 401
force field, 758
four-leaved rose, 519
fractions, partial, 327
Frenet-Serret formulas, 599
Fresnel, Augustin, 294
Fresnel function, 294

Fubini, Guido, 696
Fubini’s Theorem, 696, 721
function(s), 1, 2

absolute value, 5
Airy, 469
arc length, 390
arrow diagram of, 2
average cost, 240
average value of, 296, 700, 730
Bessel, 128, 465, 469, 475
Cobb-Douglas production, 683
combinations of, 18
component, 580, 756
composite, 19
composition of, 19
concavity of, 219
constant, 95
continuity of, 46, 581, 629, 631
contour map of, 618
cost, 104, 237
cubic, 13
decomposition of, 20
decreasing, 7
demand, 237
derivative of, 77
differentiable, 87
discontinuity of, 46, 47
domain of, 2, 615
elementary, 339
end behavior of, 69
error, 299
even, 6, 225
exponential, 16, 145, A19, RP4
extreme value of, 203
fixed point of, 216
floor, 40
Fresnel, 294
gradient of, 660, 662
graph of, 2, 616, 809
greatest integer, 40
harmonic, 638
Heaviside, 23, 29
hyperbolic, 184, RP4
implicit, 123, 654
increasing, 7
integrable, 270, 691
inverse, 151, 152
inverse hyperbolic, 187, 188, RP4
inverse trigonometric, 179, RP3
limit of, 24, 580, 626, 628, 631
linear, 12, 617
logarithmic, 16, 157, RP4
machine diagram of, 2
marginal cost, 104, 237
marginal profit, 237
marginal revenue, 237
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INDEX A93

maximum and minimum values 
of, 203, 669

natural exponential, 148, 149, 
168, A18

natural logarithm, 158, A15
nondifferentiable, 89
nonintegrable, 339
normal density, 224
of variables, 622
odd, 7, 225
one-to-one, 151
periodic, 225
piecewise defined, 5
polynomial, 13, 629
position, 76
potential, 759
power, 14, RP3
price, 237
profit, 237
quadratic, 13
ramp, 23
range of, 2, 615
rational, 15, 629
reciprocal, 15
reflected, 17
representation as a power series, 470
representations of, 3
revenue, 237
root, 14
of several variables, 615
shifted, 17
sine integral, 299
smooth, 387
step, 6
stretched, 17
symmetry of, 6
tabular, 4
of three variables, 622
transformations of, 16
translations of, 17
trigonometric, 15
of two variables, 615
value of, 2
vector, 580
vector-valued, 580

Fundamental Theorem of Calculus, 
291, 293, 295

for line integrals, 773
for vector functions, 588

Galileo, 24, 37, 505, 510
Gauss, Karl Friedrich, 270, 824, A11
Gauss’s Law, 815
Gauss’s Theorem, 824
geometric series, 437

convergence/divergence of, 438

Geometry Review, RP1
Gibbs, Josiah Willard, 548
global maximum and minimum 

values, 203
gradient, 660, 662
gradient vector, 660, 662

interpretations of, 666
gradient vector field, 759
graph(s)

of a curve, 225
of exponential functions, 16, 147
of a function, 2
of a function of two variables, 616
of logarithmic functions, 16, 157
of a parametric curve, 503
of a parametric surface, 809
polar, 517
of a quadric surface, 578
of a sequence, 431
of trigonometric functions, A7, RP2

graphing device for sketching
curve, 229
parametric curve, 503
polar curve, 521
sequence, 431

gravitation law, 410
gravitational acceleration, 398
gravitational field, 758
great circle, 741
greatest integer function, 40
Green, George, 783
Green’s identities, 796
Green’s Theorem, 782

area by, 785
vector forms, 793, 794, 795

Gregory, James, 115, 320, 347, 477
Gregory’s series, 473
grid curve, 798
ground speed, 550
growth, law of natural, 171
growth rate of a population, 287

half-angle formulas for sine and 
cosine, A6, RP2

half-life, 173
half-space, 622
harmonic function, 638
harmonic series, 440, 448
heat conduction equation, 640
heat conductivity, 816
heat flow, 815
Heaviside, Oliver, 29
Heaviside function, 23, 29
Hecht, Eugene, 137, 139
helix, 582
higher derivatives, 90, 636

Hooke’s Law, 399
horizontal asymptote, 60
Horizontal Line Test, 151
Huygens, Christiaan, 413, 505
hydrostatic pressure and force, 401
hyperbola, 530

asymptotes, 530
branches, 530
vertices, 530

hyperbolic function(s), 184, RP4
derivative of, 186
identities, 185
inverse, 187, 188, RP4
in terms of logarithms, 187

hyperbolic paraboloid, 577, 578
hyperboloid, 577, 578

(standard basis vector), 547
I/D Test, 217
ideal gas law, 114
image, 742
implicit differentiation, 123, 124, 654
implicit function, 123, 654
Implicit Function Theorem, 654
improper integral(s), 353, 354, 357

convergence/divergence of, 354, 357
Comparison Theorem for, 359

incompressible velocity field, 793
increasing function, 7
increasing sequence, 432
Increasing/Decreasing Test, 217
increment, 78, 644, 647
indefinite integral(s), 283, 284

table of, 284, RP6–10
independence of path, 774, 775
independent variable, 2, 615, 652
indeterminate forms of limits, 191

difference, 195
power, 196
product, 194
quotient, 191, 192

index of summation, A10
inertia (moment of), 718, 727, 772
infinite discontinuity, 47
infinite interval, 353
infinite limits, 56, 63
infinite sequence. See sequence
infinite series. See series
inflection point(s), 220

in curve sketching, 226
initial condition, 413
initial point 

of a parametric curve, 502
of a vector, 542

initial-value problem, 413
inner product, 551

n

i
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A94 INDEX

instantaneous rate of change, 79
instantaneous velocity, 24, 76
integrable function, 270, 691
integral(s)

approximations to, 275, 341
change of variables in, 300, 742, 

746, 748
conversion to polar coordinates, 711
definite, 268, 270, 304, 588
derivative of, 293
double, 691, 700, 701
evaluation of, 281, 304
improper, 353, 354, 357
indefinite, 283, 284
iterated, 694
line, 761, 762, 764, 766, 768
properties of, 276, 278
surface, 807
of symmetric functions, 305
table of, 284, 335, RP6–10
trigonometric, 317
units for, 288

integral calculus, 291
integral sign, 270
Integral Test, 447

proof of, 452
integrand, 270
integrand, discontinuous, 357
integration, 270

approximate, 341
by change of limits, 304
by computer algebra system, 333,

337, 349, 474
definite, 304
of exponential functions, 484
formulas, RP6–10
indefinite, 283, 284
limits of, 270
numerical, 341
partial, 694
by partial fractions, 327
by parts, 311, 312, 314
of power series, 471, 484
of rational functions, 327
by substitution, 300, 301
tables, use of, 335
term by term, 471
by trigonometric substitution, 321, 322
of a vector function, 588

intercepts in curve sketching, 225
interest compounded continuously, 

176, 197
Intermediate Value Theorem, 52
intermediate variable, 652
intersection of planes, 571
intersection of polar graphs, 525

interval of convergence, 466, 467
intervals of increase or decrease in 

curve sketching, 226
inverse function(s), 151, 152

cancellation equatons for, 153
continuity of, 155
differentiability of, 156
domain and range of, 152
graph of, 154
steps of finding, 154

inverse hyperbolic functions, 187, 
188, RP4

derivatives of, 188
expressed in terms of logarithms, 187

inverse substitution in integration, 322
inverse transformation, 743
inverse trigonometric functions, 179, RP3

cancellation equations for, 180, 181
derivatives of, 180, 181, 183
limits involving, 182

involute of a circle, 515
irrotational vector field, 792
isothermal, 624
iterated integral, 694

(standard basis vector), 547
Jacobi, Carl, 745
Jacobian, 744, 745
joule (unit of work), 398
jump discontinuity, 47

(standard basis vector), 547
kampyle of Eudoxus, 127
Kepler, Johannes, 606
Kepler’s laws of planetary motion, 606
kinetic energy, 780
Kondo, Shigeru, 436, 480

Lagrange, Joseph-Louis, 213, 678
Lagrange multiplier, 677, 678

with two constraints, 681
Lagrange’s form of the remainder 

term, 479
lamina, 405, 715
Laplace, Pierre, 638
Laplace operator, 793
Laplace’s equation, 638, 793
Law of Conservation of Energy, 780
Law of Cosines, A9, RP2
law of gravitation, 106, 410
law of natural growth or decay, 171
Law of Sines, RP2
law of the lever, 404
laws of exponents, 147, A19, 

A20, RP1
laws of logarithms, 158, A16, RP4

learning curve, 419
least squares method, 677
left endpoint approximation, 341
left-hand limit, 29
Leibniz, Gottfried Wilhelm, 87, 

291, 413
Leibniz notation, 87, 270, 294
lemniscate, 127
length 

of a curve, 386
of a polar curve, 419
of a space curve, 591, 592
of a vector, 545

level curve, 618
level surface, 622

tangent plane to, 664, 665
l’Hospital, Marquis de, 192, 198
l’Hospital’s Rule, 192, A31
libration point, 247
Limit Comparison Test, 451
Limit Laws, 35, A23

for functions of two variables, 628
for sequences, 429

limit(s)
calculating, 35
of a composite function, 51

(the number) as, 148, A21
, definition, 31, 64

existence of, 39
of exponential functions, 148
of a function, 24
of a function of three variables, 631
of a function of two variables, 

626, 628
infinite, 56, 63
at infinity, 58, 63
involving infinity, 56
intuitive definition, 25, 29
laws, 35
left-hand, 29
of logarithmic functions, 158, 160,

A17
involving natural logarithms, 

160, A17
Newton’s discovery of, 37
one-sided, 29, 30
precise definition, 31, 64
properties of, 35, 41
right-hand, 30
of a sequence, 260, 427
involving sine function, 42
of a vector function, 580

limits of integration, 270
line, RP1

normal, 98, 665
secant, 73

��
e

j

k
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INDEX A95

slope of, 74
tangent, 73, 75

line (in space)
of intersection (of planes), 571
parametric equations of, 566, 567
segment of, 569
skew, 569
symmetric equations of, 567
tangent, 585
vector equation of, 566

line integral, 761, 762, 764, 766, 768
Fundamental Theorem for, 773
for a plane curve, 761, 764
with respect to arc length, 764, 

765, 767
for a space curve, 766
of vector fields, 768, 769
work defined as, 769

linear approximation, 135, 643, 647
applications to physics, 136

linear equation of a plane, 570
linear function, 12

of two variables, 617
linear model, 12
linearization, 135, 643
liquid force, 402
Lissajous figure, 507
local maximum and minimum values, 

204, 669
in curve sketching, 226

logarithm(s), 16, 157
defined as an integral, A15
laws of, 158, RP4
natural, 158
notation for, 158

logarithmic differentiation, 167
logarithmic function, 16, 157, A21

derivative of, 163, 164, 165, A21
graph of, 16, 157
limits involving, 158, 160, A17
natural, 158, A15
properties of, 158

logistic differential equation, 415
logistic growth, 415
longbow curve, 536

machine diagram of a function, 2
Maclaurin, Colin, 477
Maclaurin series, 476, 477

table of, 484
magnetic field, 796
magnitude of a vector, 545
marginal cost function, 104, 237
marginal profit function, 237
marginal propensity to consume or 

save, 444

marginal revenue function, 237
mass

of a lamina, 715
of a sheet, 809
of a solid, 727
of a wire, 764

mass, center of. See center of mass
mass density, 402
mathematical induction, principle 

of, A12
mathematical model, 3, 11

Cobb-Douglas, 683
exponential, 16
linear, 12
logarithmic, 16
polynomial, 13
for population growth, 415
power function, 14
rational function, 15
trigonometric, 15

maximum and minimum values, 203, 669
Maxwell’s equations, 796
Mean Value Theorem, 210, 212
Mean Value Theorem for integrals, 297
method of cylindrical shells, 381
method of exhaustion, 37
method of Lagrange multipliers, 

677, 678
method of least squares, 677
midpoint approximation, 341
midpoint formula, RP1
Midpoint Rule, 275, 341

for double integrals, 693
error in using, 343, 344
for triple integrals, 729

mixing problems, 416
Möbius, August, 811
Möbius strip, 806, 811
model. See mathematical model
moment

about an axis, 404, 716
of inertia, 718, 727, 772
of a lamina, 405, 716
of a mass, 404
polar, 718
second, 718
of a solid, 727
of a system of particles, 404, 405

monkey saddle curve, 624
monotonic sequence, 432
Monotonic Sequence Theorem, 433
motion in space, 600
multiple integral. See double integral;

triple integral
multiplication, scalar, of vectors, 

543, 546

multiplication of power series, 485
multiplier (Lagrange), 677, 678

natural exponential function, 148, 149,
168, A18

derivative of, 168, A19
graph of, 149
limit of, 149
power series expansions for, 480, 484
properties of, 149, A19

natural growth law, 171
natural logarithm function, 158

defined as an integral, A15
derivative of, 165, A16
limits involving, 160, A17

negative angle, A2
net area, 271
Net Change Theorem, 286
newton (unit of force), 398
Newton, Sir Isaac, 37, 87, 291, 606

discovery of limits by, 37
newton-meter (unit of work), 398
Newton’s Law of Cooling, 174
Newton’s Law of Gravitation, 106, 410,

606, 758
Newton’s method, 242
Newton’s Second Law of Motion, 398, 

602, 606
nondifferentiable function, 89
nonintegrable function, 339
nonparallel planes, 571
normal component of acceleration, 604
normal density function, 224
normal derivative, 796
normal line, 98, 665
normal plane, 597
normal vector, 569, 596
th-degree Taylor polynomial, 478

numerical integration, 341

octant, 537
odd function, 7, 225
one-sided limits, 29, 30
one-to-one function, 151
one-to-one transformation, 742
open region, 775
optimization problems, 231

applications to business and 
economics, 237

strategy for solving, 232
orbit of a planet, 606
order of a differential equation, 412
Oresme, Nicole, 440
orientation

of a curve, 766, 782
of a surface, 811, 812

n
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A96 INDEX

oriented surface, 811, 812
orthogonal curves, 128
orthogonal projection, 557
orthogonal surfaces, 669
orthogonal trajectories, 128
orthogonal vectors, 553
osculating circle, 597
osculating plane, 597
Ostrogradsky, Mikhail, 824
ovals of Cassini, 524

Pappus of Alexandria, 408
parabola, 529
parabolic cylinder, 575
paraboloid, 576, 577, 578
parallel planes, 571
parallel vectors, 544
parallelepiped, 370

volume of, 562, 563
Parallelogram Law, 543
parameter, 501, 566, 581
parametric curve, 501

arc length of, 510
area under, 510
graph of, 503
initial and terminal points of, 502
tangent to, 508

parametric equations, 501
of a line in space, 566, 567
of a space curve, 581
of a surface, 797
of a surface of revolution, 800
of a trajectory, 603

parametric surface, 797
graph of, 809
surface area of, 802, 803

parametrization of a space curve, 581
with respect to arc length, 592
smooth, 593

paraxial rays, 137
partial derivatives, 633, 636

notation for, 634
as rates of change, 634
rule for finding, 634
second, 636
as slopes of tangent lines, 634

partial differential equation, 637
partial differentiation, 633, 636
partial fractions, 327

sum of, 328
partial integration, 311, 312, 694
partial sum of a series, 436
partition, 269

regular, 271, 692
parts, integration by, 311, 312
pascal (unit of pressure), 402

path, 774
percentage error, 138
perihelion, 534
period of a function, 225
periodic function, 225
perpendicular vectors, 553
piecewise defined function, 5
piecewise-smooth curve, 763
plane(s), 569

coordinate, 537
equation of, 570
horizontal, 538
intersection of, 571
linear equation of, 570
normal, 597
osculating, 597
parallel, 571
scalar equation of, 570
tangent, to a surface, 641, 

664, 801
vector equation of, 569
vertical, 539

plane curve in vector notation, 581
plane region of type I, 701
plane region of type II, 702
planetary motion, 606
point(s) of inflection, 220

in curve sketching, 226
point-slope equation of a line, 74
Poiseuille’s Law, 139
polar axis, 515
polar coordinates, 515

area in, 524, 525
changing to Cartesian coordinates, 

516
conic sections in, 530, 532
double integral converted to, 711, 712

polar curve, 517
arc length of, 527
graph of, 517, 521
tangent line to, 520

polar equation, graph of, 517
polar equation of a conic, 532
polar moment of inertia, 718
polar rectangle, 709
polar region, area of, 524, 525
pole, 515
polynomial function, 13

continuity of, 49, 51, 630
of two variables, 629

population growth, 3, 171, 415
position function, 76
position vector, 544, 545
positive angle, A2
positive orientation

of a boundary curve, 818

of a curve, 782
of a surface, 812

potential energy, 780
potential function, 759
pound (unit of force), 398
power, 80, 288
power function(s), 14, RP3

derivative of, 96
Power Law of limits, 36
Power Rule, 96, 98, 167

combined with the Chain Rule, 117
power series, 464

coefficients of, 464
convergence/divergence of, 466
differentiation of, 471
division of, 485
integration of, 471
interval of convergence, 466
multiplication of, 485
radius of convergence, 466
representations of functions as, 470

pressure exerted by a liquid, 401, 402
price function, 237
prime notation, 77, 99
principle of mathematical 

induction, A12
principle unit normal vector, 596
product

cross, 558
dot, 551
scalar, 551
scalar triple, 562
vector triple, 563

product formulas for sine and 
cosine, A6 

Product Law of limits, 36
Product Rule, 107
profit function, 237
projection, 538, 554, 557
p-series, 448

quadratic formula, RP1
quadratic function, 13
quadric surface(s), 575

cone, 578
ellipsoid, 576, 578
graphs of, 578
hyperboloid, 577, 578
paraboloid, 576, 577, 578

quaternion, 548
Quotient Law of limits, 36
Quotient Rule, 109

radian measure, 15, A1
radioactive decay, 173
radiocarbon dating, 178
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INDEX A97

radius of convergence, 466
radius of gyration, 719
ramp function, 23
range of a function, 2, 615
rate(s) of change, 78, 286

average, 79
derivative as, 79
instantaneous, 79
problems involving, 102

rate of cooling, 174
rate of decay, 173
rate of growth, 171, 172, 287
rate of reaction, 286
rates, related, 128
Ratio Test, 460
rational function, 15, 629

continuity of, 49, 51
integration by partial fractions, 327

reciprocal function, 15
Reciprocal Rule, 114
rectangular coordinates

conversion to cylindrical 
coordinates, 731

conversion to spherical 
coordinates, 736

three-dimensional, 537, 538
rectilinear motion, 250
reduction formula, 315
reflection transformation a function, 17
region

between two curves, 365
connected, 775
open, 775
plane, of type I or II, 701, 702
simple plane, 783
simple solid, 824
simply-connected, 777
solid, of type 1, 2, or 3, 722, 724
under a curve, 257

regular partition, 271, 692
related rates, 128

strategy for solving, 131
relative error, 138
relative growth rate, 172
relative maximum and minimum, 204
remainder estimate for an alternating

series, 457
remainder of the Taylor series, 478
removable discontinuity, 47
representation of a function

in four ways, 3
as a power series, 470

resultant force, 548
revenue function, 237
revolution, solid of, 375
Riemann, Georg Bernhard, 269, 270

Riemann sum, 269
for multiple integrals, 692, 721

right cylinder, 370
right-hand limit, 30
right-hand rule, 537
Roberval, Gilles de, 283, 510
Rolle, Michel, 210
Rolle’s Theorem, 210
root function, 14

continuity of, 51
Root Law of Limits, 36
Root Test, 462
rubber membrane, vibration of, 465
ruling of a surface, 574

saddle point, 670, 671
sample point, 262, 269, 690
scalar, 543
scalar equation of a plane, 570
scalar field, 756
scalar multiple of a vector, 543, 546
scalar product, 551
scalar projection, 554
scalar triple product, 562
scatter plot, 3
secant function, integration of 

powers of, 320
secant line, 73
secant vector, 584
second derivative, 91

of a vector function, 586
Second Derivative Test, 221
Second Derivatives Test, 671, A37
second moment, 718
second partial derivative, 636
sector of a circle, area of, 524
separable differential equation, 412
sequence, 425

bounded, 433
convergent, 425
decreasing, 432
divergent, 425
Fibonacci, 426, 435, 445
graph of, 431
increasing, 432
limit laws for, 429
limit of, 427
monotonic, 432
of partial sums, 437
term of, 425

series, 436
absolutely convergent, 458
alternating, 454
alternating harmonic, 456
binomial, 482, 483
coefficients of, 464

conditionally convergent, 459
convergent, 437
divergent, 437
geometric, 437
Gregory’s, 473
harmonic, 440, 448
infinite, 436
Maclaurin, 476, 477
-, 448

partial sum of, 436
power, 464
properties of convergent, 441
sum of, 436
Taylor, 478, 489
term of, 436
testing by comparing, 449
testing by integrals, 446, 447
trigonometric, 464

serpentine, 113
set

bounded, 673
closed, 673

shell method, 381
shifts of functions, 17
Sierpinski carpet, 445
sigma notation, 263, A10
simple curve, 777
simple harmonic motion, 122
simple plane region, 783
simple solid region, 824
simply-connected region, 777
Simpson, Thomas, 347
Simpson’s Rule, 345, 347

error bounds for, 349
sine function, A2

derivative of, 101
graph, A7
integration of powers of, 319
inverse, 180
limit involving, 42
power series for, 481, 484

sine integral function, 299
sink, 828
skew lines, 569
slant asymptote, 231
slope field, 418
slope of a curve, 74
slope of a tangent line, 75, 78
slope-intercept equation of a line, 12
smooth curve, 387, 593
smooth parametrization, 593
smooth surface, 801
solid, volume of, 375, 376, 726
solid of revolution, 375
solid region, simple, 824
solution curve, 418

p
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A98 INDEX

solution of a differential 
equation, 412

source, 828
space, three-dimensional, 537
space curve, 581

arc length of, 591, 592
speed, 79, 550, 600
sphere

equation of, 540
flux across, 814
parametrization of, 799
surface area of, 803

spherical coordinates, 735
conversion to rectangular 

coordinates, 736
triple integration in, 735, 738

spherical wedge, 737
spring constant, 400
Squeeze Theorem, 41, A26

for sequences, 429
standard basis vectors, 547
standard position of an angle, A2
stationary point, 670
step function, 6
Stokes, Sir George, 819
Stokes’ Theorem, 818
strategy for optimization 

problems, 232
strategy for related rates problems, 131
streamlines, 761
stretching transformations of a 

function, 17
strophoid, 536
substitution, trigonometric, 321, 322
Substitution Rule, 300, 301

for definite integrals, 304
subtraction formulas for sine and 

cosine, A5
sum

of a geometric series, 438
of an infinite series, 437
of partial fractions, 328
of vectors, 543, 546

sum, Riemann, 269
sum, telescoping, 439
Sum Law of limits, 36
Sum Rule, 99
summation notation, A10
surface

closed, 812
graph of, 809
level, 622
oriented, 811, 812
orthogonal, 669
parametric, 797

quadric (see quadric surface)
smooth, 801

surface area, 395
of a parametric surface, 802, 803
of a sphere, 803
of a surface of revolution, 804

surface integral, 807
of a parametric surface, 807, 808
of a vector field, 813

surface of revolution
area of, 393
parametrization of, 800

swallowtail catastrophe curve, 507
symmetric equations of a line, 567
symmetric functions, integrals of, 305
symmetry, 6

in curve sketching, 225
symmetry principle, 405
system of particles, moment of, 404, 405

inverse transformation, 743
tables of integrals, 335, RP6–10
tabular function, 4
tangent, vertical, 89
tangent function, A2

derivative of, 111
graph, A7
integral formula for, 303
integration of powers of, 320
inverse, 181, 182

tangent line
to a curve, 73, 75
to a parametric curve, 508
to a polar curve, 520
to a space curve, 585

tangent line approximation, 135
tangent plane

to a level surface, 664, 665
to a parametric surface, 801
to a surface , 641, 642

tangent plane approximation, 643
Tangent Problem, 73
tangent vector, 585
tangential component of 

acceleration, 604
tautochrone problem, 505
Taylor, Brook, 477
Taylor polynomial, 478, 489
Taylor series, 476, 477

remainder of, 478
Taylor’s Formula, 479

proof of, 486
telescoping sum, 439
term of a sequence, 425
term of a series, 436

term-by-term differentiation and 
integration, 471

terminal point 
of a parametric curve, 502
of a vector, 542

Test for Divergence, 441
tests for convergence/divergence of series

Alternating Series Test, 455
Comparison Test, 449
Integral Test, 447
Limit Comparison Test, 451
Ratio Test, 460
Test for Divergence, 441

Theorem of Pappus, 408
third derivative, 91
Thomson, William (Lord Kelvin), 819
three-dimensional coordinate system,

537, 538
TNB frame, 597
toroidal spiral, 583
torque, 563, 609
Torricelli, Evangelista, 510
torsion, 599
torus, 380, 408, 807
total differential, 645
trace, 574
transformation, 742

inverse, 743
Jacobian of, 744, 745
one-to-one, 742

transformations of a function, 16
translations of a function, 17
Trapezoidal Rule, 342

error in, 343, 344
tree diagram, 652
trefoil knot, 583
Triangle Inequality, A22

for vectors, 557
Triangle Law, 543
trigonometric functions, 15, 111, 

A2, RP2
continuity of, 51
derivatives of, 101, 102, 111
graphs of, A7, RP2
integrals of, 284
inverse, 179, 181, 182, 183, RP3

trigonometric identities, A4, RP2
trigonometric integrals, 317
trigonometric series, 464
trigonometric substitutions in 

integration, 321, 322
Trigonometry Review, A1, RP2
triple integral, 720, 721

applications of, 726
in cylindrical coordinates, 731

T�1

z � f �x, y�
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INDEX A99

over a general bounded region, 722
Midpoint Rule for, 729
in spherical coordinates, 737, 738

triple product, 562
geometric representation of, 562
magnitude of, 563

triple Riemann sum, 721
trochoid, 506
Tschirnhausen cubic, 127
twisted cubic, 584
type I plane region, 701
type II plane region, 702
type 1 solid region, 722
type 2 solid region, 724
type 3 solid region, 724

unit normal vector, 596, 597
unit tangent vector, 585, 597
unit vector, 548

value of a function, 2
variable, intermediate, 652
variables, change of, 300, 742, 746, 748
variables, dependent and independent, 

2, 615, 652
vector(s), 542

acceleration, 600, 604
addition of, 543, 545
angle between, 552
basis, 547
binormal, 596, 597
components of, 544, 554
coplanar, 563
cross product of, 558
difference of, 544, 546
displacement, 542, 555
dot product, 551
equivalent, 542
force, 548, 758
geometric representation of, 544
gradient, 660, 662
, , and , 547

initial point, 542
length of, 545
magnitude of, 545
multiplication of, 543, 546

-dimensional, 546
normal, 569, 596
orthogonal, 553
parallel, 544

perpendicular, 533
position, 544, 545
principle unit normal, 596
projection, 538, 554
properties of, 546, 562
scalar multiple of, 543, 546
secant, 584
standard basis, 547
subtraction of, 544, 546
sum of, 543
tangent, 585
terminal point, 542
three-dimensional, 546
triple product, 562
two-dimensional, 545
unit, 548
unit normal, 596, 597
unit tangent, 585, 597
velocity, 600
zero, 542

vector equation
of a line in space, 566
of a line segment, 569
of a plane, 569
of a plane curve, 581

vector field, 755, 756
conservative, 759, 780, 791
curl of, 789
divergence of, 792
electric, 759, 796
force, 758
flux of, 813, 815
gradient, 759
gravitational, 758
incompressible, 793
irrotational, 792
line integral of, 768, 769
surface integral of, 813
velocity, 758

vector form of Green’s Theorem, 793,
794, 795

vector function, 580
continuity of, 581
derivative of, 584, 586
differentiation formulas for, 587
integration of, 588
limit of, 580

vector product, 558
vector projection, 538, 554
vector triple product, 563

vector-valued function. See vector 
function

velocity, 24, 76, 79
average, 24, 76
instantaneous, 24, 76

velocity field, 758
Velocity Problem, 76
velocity vector, 600
Verhulst, Pierre-François, 415
vertex of a parabola, 529
vertical asymptote, 58
Vertical Line Test, 4
vertical plane, 539
vertical tangent line, 89
vertical translations of a graph, 17
visual representations of a function, 2, 

616, 618, 622
volume, 372

by cross-sections, 372
by cylindrical shells, 381, 382
by disks, 372, 376
by double integrals, 691, 692
of a solid, 370, 372
of a solid of revolution, 375
by triple integrals, 726
by washers, 374, 376

washer method, 376, 384
wave equation, 638
weight (force), 399
weight density, 402
wind-chill index, 640
witch of Maria Agnesi, 113, 507
work, 398, 399, 555

expressed as an integral, 399
as a line integral, 768
units for, 398, 399

world population growth, 3, 171, 415
Wren, Sir Christopher, 513

-axis, 537
-coordinate, 538

-axis, 537
-coordinate, 538
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A L G E B R A

A R I T H M E T I C  O P E R AT I O N S

E X P O N E N T S  A N D  R A D I C A L S

FAC TO R I N G  S P E C I A L  P O LY N O M I A L S

B I N O M I A L  T H E O R E M

where 

Q UA D R AT I C  F O R M U L A

If , then .

I N E Q UA L I T I E S  A N D  A B S O LU T E  VA LU E
If and , then .

If , then .

If and , then .

If and , then .

If , then

means  or  

means  

means  or  

G E O M E T R Y

G E O M E T R I C  F O R M U L A S
Formulas for area A, circumference C, and volume V:

Triangle Circle Sector of Circle

Sphere Cylinder Cone

D I S TA N C E  A N D  M I D P O I N T  F O R M U L A S
Distance between and :

Midpoint of : 

L I N E S
Slope of line through and :

Point-slope equation of line through with slope m:

Slope-intercept equation of line with slope m and y-intercept b:

C I R C L E S
Equation of the circle with center and radius r:

n�x

y
�

s
n x

s
n y

x m�n � s
n x m � (sn x )m

� x

y�n

�
x n

yn

x�n �
1

x n

x m

x n � x m�n

�h, k�

�x � h�2 � �y � k�2 � r 2

h

r

r

h
r

y � mx � b

y � y1 � m�x � x1�

P1�x1, y1�

m �
y2 � y1

x2 � x1

P1�x1, y1� P2�x2, y2�

P1P2 � x1 � x2

2
, 

y1 � y2

2 �
d � s�x2 � x1�2 � �y2 � y1�2

P1�x1, y1� P2�x2, y2�

A � 4�r 2

V � 4
3 �r 3 V � �r 2h V � 1

3 �r 2h

r

r

r s

¨

¨

a
h

b

� 1
2 ab sin � C � 2�r s � r� �� in radians�

A � 1
2 bh A � �r 2 A � 1

2 r 2�

� x � � a x � a x � �a

� x � � a �a � x � a

� x � � a x � a x � �a

a � 0

a � b c � 0 ca � cb

a � b c � 0 ca � cb

a � b a � c � b � c

a � b b � c a � c

x �
�b � sb 2 � 4ac

2a
ax 2 � bx � c � 0

�n

k� �
n�n � 1� 	 	 	 �n � k � 1�

1 � 2 � 3 � 	 	 	 � k

� 	 	 	 � �n

k�x n�kyk � 	 	 	 � nxyn�1 � yn

�x � y�n � x n � nx n�1y �
n�n � 1�

2
 x n�2y2

�x � y�3 � x 3 � 3x 2y � 3xy2 � y3

�x � y�3 � x 3 � 3x 2y � 3xy2 � y3

�x � y�2 � x 2 � 2xy � y2 �x � y�2 � x 2 � 2xy � y2

x 3 � y3 � �x � y��x 2 � xy � y2�

x 3 � y3 � �x � y��x 2 � xy � y2�

x 2 � y2 � �x � y��x � y�

s
n xy � s

n xs
n y

x 1�n � s
n x

�xy�n � x nyn

�x m�n � x mn

x mx n � x m�n

a

b

c

d

�
a

b



d

c
�

ad

bc

a � c

b
�

a

b
�

c

b

a

b
�
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d
�
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a�b � c� � ab � ac
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A N G L E  M E A S U R E M E N T

R I G H T  A N G L E  T R I G O N O M E T R Y

T R I G O N O M E T R I C  F U N C T I O N S

G R A P H S  O F  T H E  T R I G O N O M E T R I C  F U N C T I O N S

T R I G O N O M E T R I C  F U N C T I O N S  O F  I M P O R TA N T  A N G L E S

radians

0 0 1 0

1

1 0 —90� ��2

60� ��3 s3�2 1�2 s3

45� ��4 s2�2 s2�2

30� ��6 1�2 s3�2 s3�3

0�

� sin � cos � tan �

π 2π x

y y=cot x

x

1

_1

y

π 2π

y=sec xy=csc x

π 2π x

y

1

_1

x

y

π

2π

y=tan x

y=cos x

π 2π x

y

1

_1

y=sin x

x

y

1

_1

π 2π

(x, y)

r

¨

x

y

¨

opp

adj

hyp

r

r

¨

s

sec � �
r

x

csc � �
r

y

cot � �
x

y
tan � �

y

x

cos � �
x

r

sin � �
y

r

sec � �
hyp

adj

csc � �
hyp

opp

cot � �
adj

opp
tan � �

opp

adj

cos � �
adj

hyp

sin � �
opp

hyp

�� in radians�

s � r�

1 rad �
180�

�
1� �

�

180
 rad

� radians � 180�

T R I G O N O M E T R Y

F U N DA M E N TA L  I D E N T I T I E S

T H E  L AW  O F  S I N E S

T H E  L AW  O F  CO S I N E S

A D D I T I O N  A N D  S U B T R AC T I O N  F O R M U L A S

D O U B L E - A N G L E  F O R M U L A S

H A L F - A N G L E  F O R M U L A S

tan��

2
� �� � cot �

sin��

2
� �� � cos �

cos���� � cos �

1 � cot 2� � csc 2�

sin2� � cos2� � 1

cot � �
cos �

sin �

sec � �
1

cos �

cos2x �
1 � cos 2x

2
sin2x �

1 � cos 2x

2

tan 2x �
2 tan x

1 � tan2x

cos 2x � cos2x � sin2x � 2 cos2x � 1 � 1 � 2 sin2x

sin 2x � 2 sin x cos x

tan�x � y� �
tan x � tan y

1 � tan x tan y

tan�x � y� �
tan x � tan y

1 � tan x tan y

cos�x � y� � cos x cos y � sin x sin y

cos�x � y� � cos x cos y � sin x sin y

sin�x � y� � sin x cos y � cos x sin y

sin�x � y� � sin x cos y � cos x sin y

c 2 � a 2 � b 2 � 2ab cos C

b 2 � a 2 � c 2 � 2ac cos B

a 2 � b 2 � c 2 � 2bc cos A

A

b

c

a

B

C

sin A

a
�

sin B

b
�

sin C

c

cos��

2
� �� � sin �

tan���� � �tan �

sin���� � �sin �

1 � tan2� � sec 2�

cot � �
1

tan �

tan � �
sin �

cos �

csc � �
1

sin �
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S P E C I A L F U N C T I O N S

P O W E R  F U N C T I O N S

(i) , a positive integer

(ii) , a positive integer (iii)

I N V E R S E  T R I G O N O M E T R I C  F U N C T I O N S

f �x� � x�1 �
1

x

x

1

y

1
0

y=Δ

�
�

2
� y �

�

2
andtan y � x&?arctan x � tan�1x � y

0 � y � �andcos y � x&?arccos x � cos�1x � y

�
�

2
� y �

�

2
andsin y � x&?arcsin x � sin�1x � y

ƒ= #œ„xƒ=œ„x

x

y

0

(1, 1)

x

y

0

(1, 1)

n

n

f �x� � x 1�n � s
n x

f �x� � x a

x

y

0

y=x#

y=x%

(_1, _1)

(1, 1)

n odd

n even

0

y

x

y=x$

(1, 1)(_1, 1)

y=x^

y=≈

f �x� � xn

Notation Set description Picture Notation Set description Picture

	x � a � x � b
�a, b�

	x � a � x � b
�a, b�

	x � a � x � b
�a, b�

	x � a � x � b
�a, b�
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T A B L E O F I N T E R V A L S

y=tan–!x=arctan x
π

2

_
π

2

y

0

x

a b

a b

a b

a b

(set of all 
real numbers)
���, �

	x � x � b
��, b�

	x � x � b
��, b�
	x � x � a
�a, �

	x � x � a
�a, �
a

a

b

b

lim
x l 

tan�1x �
�

2

lim
x l �

tan�1x � �
�

2
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S P E C I A L F U N C T I O N S

E X P O N E N T I A L  A N D  LO G A R I T H M I C  F U N C T I O N S

, where

Cancellation Equations Laws of Logarithms

1.

2.

3.

Exponential functions Logarithmic functions

H Y P E R B O L I C  F U N C T I O N S

I N V E R S E  H Y P E R B O L I C  F U N C T I O N S

tanh�1x � 1
2 ln�1 � x

1 � x�y � tanh�1x &? tanh y � x

cosh�1x � ln(x � sx 2 � 1 )y � cosh�1x &? cosh y � x and y � 0

sinh�1x � ln(x � sx 2 � 1 )y � sinh�1x &? sinh y � x

coth x �
cosh x

sinh x
tanh x �

sinh x

cosh x

sech x �
1

cosh x
cosh x �

ex � e�x

2

csch x �
1

sinh x
sinh x �

ex � e�x

2

y

x

y=sinh x

y=cosh x

y=tanh x

loga�xr� � r loga x

loga� x

y� � loga x � loga y

loga�xy� � loga x � loga y

0

y

1

x1

y=ln x

y=log™ x

y=log∞ x

y=log¡¸ x

y

1®

1.5®

2®4®10®
”   ’

®1

4
”   ’

®1

2

x

e®

0

e ln x � xln�e x � � x

a loga x � xloga�ax� � x

ey � x&?ln x � y

ln e � 1ln x � loge x

ay � x&?loga x � y

y

1

0

x
1

y=x

y=´

y=ln x

lim
x l 

ln x � lim
x l 0�

ln x � �

lim
x l 

ex � lim
x l�

ex � 0
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G E N E R A L  F O R M U L A S

1. 2.

3. 4.

5. (Product Rule) 6. (Quotient Rule)

7. (Chain Rule) 8. (Power Rule)

E X P O N E N T I A L  A N D  LO G A R I T H M I C  F U N C T I O N S

9. 10.

11. 12.

T R I G O N O M E T R I C  F U N C T I O N S

13. 14. 15.

16. 17. 18.

I N V E R S E  T R I G O N O M E T R I C  F U N C T I O N S

19. 20. 21.

22. 23. 24.

H Y P E R B O L I C  F U N C T I O N S

25. 26. 27.

28. 29. 30.

I N V E R S E  H Y P E R B O L I C  F U N C T I O N S

31. 32. 33.

34. 35. 36.
d

dx
�coth�1x� �

1

1 � x 2

d

dx
�sech�1x� � �

1

xs1 � x 2

d

dx
�csch�1x� � �

1

� x �sx 2 � 1

d

dx
�tanh�1x� �

1

1 � x 2

d

dx
�cosh�1x� �

1

sx 2 � 1

d

dx
�sinh�1x� �

1

s1 � x 2

d

dx
�coth x� � �csch2x

d

dx
�sech x� � �sech x tanh x

d

dx
�csch x� � �csch x coth x

d

dx
�tanh x� � sech2x

d

dx
�cosh x� � sinh x

d

dx
�sinh x� � cosh x

d

dx
�cot�1x� � �

1

1 � x 2

d

dx
�sec�1x� �

1

xsx 2 � 1

d

dx
�csc�1x� � �

1

xsx 2 � 1

d

dx
�tan�1x� �

1

1 � x 2

d

dx
�cos�1x� � �

1

s1 � x 2

d

dx
�sin�1x� �

1

s1 � x 2

d

dx
�cot x� � �csc2x

d

dx
�sec x� � sec x tan x

d

dx
�csc x� � �csc x cot x

d

dx
�tan x� � sec2x

d

dx
�cos x� � �sin x

d

dx
�sin x� � cos x

d

dx
�loga x� �

1

x ln a

d

dx
ln � x � �

1

x

d

dx
�a x � � a x ln a

d

dx
�e x � � e x

d

dx
�x n � � nx n�1d

dx
f �t�x�� � f ��t�x��t��x�

d

dx � f �x�
t�x� � �

t�x�f ��x� � f �x�t��x�
�t�x��2

d

dx
� f �x�t�x�� � f �x�t��x� � t�x�f ��x�

d

dx
� f �x� � t�x�� � f ��x� � t��x�

d

dx
� f �x� � t�x�� � f ��x� � t��x�

d

dx
�cf �x�� � c f ��x�

d

dx
�c� � 0
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B A S I C  F O R M S

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

F O R M S  I N V O LV I N G  

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. y
du

�a 2 � u 2�3	2 �
u

a 2
sa 2 � u 2

� C

y
du

u 2
sa 2 � u 2

� �
sa 2 � u 2

a 2u
� C

y
du

usa 2 � u 2
� �

1

a
ln 
 sa 2 � u 2 � a

u 
 � C

y
u 2 du

sa 2 � u 2
�

u

2
 sa 2 � u 2 �

a 2

2
 ln(u � sa 2 � u 2 ) � C

y
du

sa 2 � u 2
� ln(u � sa 2 � u 2 ) � C

y
sa 2 � u 2

u 2 du � �
sa 2 � u 2

u
� ln(u � sa 2 � u 2 ) � C

y
sa 2 � u 2

u
du � sa 2 � u 2 � a ln 
 a � sa 2 � u 2

u 
 � C

y u 2
sa 2 � u 2 du �

u

8
 �a 2 � 2u 2� sa 2 � u 2 �

a 4

8
 ln(u � sa 2 � u 2 ) � C

y sa 2 � u 2 du �
u

2
 sa 2 � u 2 �

a 2

2
 ln(u � sa 2 � u 2 ) � C

sa 2 � u 2,  a � 0

y sec u tan u du � sec u � C

y csc2u du � �cot u � C

y sec2u du � tan u � C

y cos u du � sin u � C

y sin u du � �cos u � C

y a u du �
a u

ln a
� C

y e u du � e u � C

y
du

u
� ln � u � � C

n � �1y u n du �
u n�1

n � 1
 � C,

y u dv � uv � y v du

T A B L E O F I N T E G R A L S

11. 

12. 

13. 

14. 

15. 

16. ,  

17. 

18. 

19. 

20. 

a � 0

y
du

u 2 � a 2 �
1

2a
ln 
 u � a

u � a 
 � C

y
du

a 2 � u 2 �
1

2a
ln 
 u � a

u � a 
 � C

y
du

usu 2 � a 2
�

1

a
sec�1 u

a
� C

y
du

a 2 � u 2 �
1

a
tan�1 u

a
� C

y
du

sa 2 � u 2
� sin�1 u

a
� C

y csc u du � ln � csc u � cot u � � C

y sec u du � ln � sec u � tan u � � C

y cot u du � ln � sin u � � C

y tan u du � ln � sec u � � C

y csc u cot u du � �csc u � C
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30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

F O R M S  I N V O LV I N G  

39. 

40. 

41. 

42. 

43. 

44. 

45. 

46. y
du

�u 2 � a 2�3	2 � �
u

a 2
su 2 � a 2
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