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Preface

This book provides a survey of modern cosmology emphasizing the relativistic approach.
It is shaped by a number of guiding principles.

• Adopt a geometric approach Cosmology is crucially based in spacetime geometry,
because the dominant force shaping the universe is gravity; and the best classical theory
of gravity we have is Einstein’s general theory of relativity, which is at heart a geometric
theory. One should therefore explore the spacetime geometry of cosmological models as
a key feature of cosmology.

• Move from general to special One can best understand the rather special models most
used in cosmology by understanding relationships which hold in general, in all space-
times, rather than by only considering special high symmetry cases. The properties of
these solutions are then seen as specialized cases of general relations.

• Explore geometric as well as matter degrees of freedom As well as exploring matter
degrees of freedom in cosmology, one should examine the geometric degrees of free-
dom. This applies in particular in examining the possible explanations of the apparent
acceleration of the expansion of the universe in recent times.

• Determine exact properties and solutions where possible Because of the nonlinearity
of the Einstein field equations, approximate solutions may omit important aspects of
what occurs in the full theory. Realistic solutions will necessarily involve approximation
methods, but we aim where possible to develop exact relations that are true generically, on
the one hand, and exact solutions of the field equations that are of cosmological interest,
on the other.

• Explore the degree of generality or speciality of models A key theme in recent cos-
mological writing is the idea of ‘fine tuning’, and it is typically taken to be bad if a
universe model is rather special. One can, however, only explore the degree of speciality
of specific models by embedding them in a larger context of geometrically and physically
more general models.

• Clearly relate theory to testability Because of the special nature of cosmology, theory
runs into the limits of the possibility of observational testing. One should therefore pur-
sue all possible observational consistency checks, and be wary of claiming theories as
scientific when they may not in principle be testable observationally.

• Focus on physical and cosmological relevance The physics proposed should be plau-
sibly integrated into the rest of physics, where it is not directly testable; and the
cosmological models proposed should be observationally testable, and be relevant to
the astronomical situation we see around us.

xi
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• Search for enduring rather than ephemeral aspects We have attempted to focus on
issues that appear to be of more fundamental importance, and therefore will not fade
away, but will continue to be of importance in cosmological studies in the long term, as
opposed to ephemeral topics that come and go.

Part 1 presents the foundations of relativistic cosmology. Part 2 is a comprehensive
discussion of the dynamical and observational relations that are valid in all models of
the universe based on general relativity. In particular, we analyse to what extent the
geometry of spacetime can be determined from observations on the past light-cone.The stan-
dard Friedmann–Lemaître–Robertson–Walker (FLRW) universes are discussed in depth in
Part 3, covering both the background and perturbed models. We present the theory of per-
turbations in both the standard coordinate-based and the 1+3 covariant approaches, and
then apply the theory to inflation, the cosmic microwave background, structure formation
and gravitational lensing. We review the key unsolved issue of the apparent acceleration of
the expansion of the universe, covering dark energy models and modified gravity models.
Then we look at alternative explanations in terms of large scale inhomogeneity or small
scale inhomogeneity.

Anisotropic homogeneous (Gödel, Kantowski-Sachs and Bianchi) and inhomogeneous
universes (including the Szekeres models) are the focus of Part 4, giving the larger context
of the family of possible models that contains the standard FLRW models as a special case.
In all cases the relation of the models to astronomical observations is a central feature of
the presentation.

The text concludes in Part 5 with a brief review of some of the deeper issues underly-
ing all cosmological models. This includes quantum gravity and the start of the universe,
the relation between local physics and cosmology, why the universe is so special that
it allows intelligent life to exist, and the issue of testability of proposals such as the
multiverse.

The text is at an advanced level; it presumes a basic knowledge of general rel-
ativity (e.g. as in the recent introductory texts of Carroll (2004), Stephani (2004),
Hobson, Efstathiou and Lasenby (2006) and Schutz (2009)) and of the broad nature of cos-
mology and cosmological observations (e.g. as in the recent introductory books of Harrison
(2000), Ferreira (2007) and Silk (2008)). However, we provide a self-contained, although
brief, survey of Riemannian geometry, general relativity and observations.

Our approach is similar to that of our previous reviews, Ellis (1971a, 1973), MacCallum
(1973, 1979), Ellis and van Elst (1999a) and Tsagas, Challinor and Maartens (2008), and it
builds on foundations laid by Eisenhart (1924), Synge (1937), Heckmann and Schucking
(1962), Ehlers (1961), Trümper (1962, and unpublished), Hawking (1966) and
Kristian and Sachs (1966). This approach differs from the approach in the excellent recent
texts by Peacock (1999), Dodelson (2003), Mukhanov (2005), Weinberg (2008), Durrer
(2008), Lyth and Liddle (2009) and Peter and Uzan (2009), in that we emphasize a covari-
ant and geometrical approach to curved spacetimes and where possible consider general
geometries instead of restricting considerations to the FLRW geometries that underlie the
standard models of cosmology.
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A further feature of our presentation is that although it is solidly grounded in relativity
theory, we recognize the usefulness of Newtonian cosmological models and calculations.
We detail how the Newtonian limit follows from the relativistic theory in situations of cos-
mological interest, and make clear when Newtonian calculations give a good approximation
to the results of the relativistic theory and when they do not.

It is not possible to cover all of modern cosmology in depth in one book. We present a
summary of present cosmological observations and of modern astrophysical understanding
of cosmology, drawing out their implications for the theoretical models of the universe, but
we often refer to other texts for in-depth coverage of particular topics. We are relatively
complete in the theory of relativistic cosmological models, but even here the literature
is so vast that we are obliged to refer to other texts for fuller details. In particular, the
very extensive discussions of spatially homogeneous cosmologies and of inhomogeneous
cosmologies in the books by Wainwright and Ellis (1997), Krasiński (1997), and Bolejko
et al. (2010) complement and extend our much shorter summaries of those topics in Part 4.
Our guiding aim is to present a coherent core of theory that is not too ephemeral, i.e.
that in our opinion will remain significant even when some present theories and obser-
vations have fallen away. Only the passage of time will tell how good our judgement
has been.

We have given numerical values for the key cosmological parameters, but these should
be interpreted only as indicative approximations. The values and their error bars change
as observations develop, so that no book can give definitive values. Furthermore, there are
inherent limitations to parameter values and error bars – which depend on the particular
observations used, on the assumptions made in reducing the observational data, on the
chosen theoretical model needed to interpret the observations, and on the type of statistical
analysis used.

In the text we have two kinds of interventions apart from the usual apparatus of footnotes
and references: namely, exercises and problems. The Exercises enable the reader to develop
and test his or her understanding of the main material; we believe we know the answers to
all the exercises, or at least where the answer is given in the literature (in which case an
appropriate reference is provided). By contrast, the Problems are unsolved questions whose
solution would be of some interest, or in some cases would be a major contribution to our
understanding.

We are grateful to numerous people who have played an important role in developing
our understanding of cosmology: we cannot name them all (though most of their names
will be found in the reference list at the end), but we would particularly like to thank John
Barrow, Bruce Bassett, Hermann Bondi,1 Marco Bruni,Anthony Challinor, Chris Clarkson,
Peter Coles, Rob Crittenden, Peter Dunsby, Ruth Durrer, Jürgen Ehlers,1 Henk van Elst,
Pedro Ferreira, Stephen Hawking, Charles Hellaby, Kazuya Koyama, Julien Larena, David
Matravers, Charles Misner, Jeff Murugan, Bob Nichol, Roger Penrose, Felix Pirani, Alan
Rendall,Wolfgang Rindler,Tony Rothman, Rainer Sachs,Varun Sahni, Misao Sasaki, Bernd
Schmidt, Engelbert Schucking, Dennis Sciama,1 Stephen Siklos, John Stewart, Bill Stoeger,

1 deceased
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Reza Tavakol, Manfred Trümper, Christos Tsagas, Jean-Philippe Uzan, John Wainwright
and David Wands for insights that have helped shape much of what is presented here.
We thank the FRD and NRF (South Africa), the STFC and Royal Society (UK), and our
departments, for financial support that has contributed to this work.

George F. R. Ellis
Roy Maartens

Malcolm A. H. MacCallum



PART 1

FOUNDATIONS



1 The nature of cosmology

1.1 The aims of cosmology

The physical universe is the maximal set of physical objects which are locally causally
connected to each other and to the region of spacetime that is accessible to us by astronomical
observation. The scientific theory of cosmology is concerned with the study of the large-
scale structure of the observable region of the universe, and its relation to local physics on
the one hand and to the rest of the universe on the other.

Thus cosmology deals with the distribution and motion of radiation and of galaxies,
clusters of galaxies, radio sources, quasi-stellar objects, and other astronomical objects
observable at large distances, and so – in response to the astronomical observations –
contemplates the nature and history of the expanding universe. Following the evolution of
matter back into the past, this inevitably leads to consideration of physical processes in the
hot early universe (the ‘Hot Big Bang’, or HBB), and even contemplation of the origin of
the universe itself. Such studies underlie our current – still incomplete – understanding of the
origin of galaxies, and in particular of our own Galaxy, which is the environment in which
the Solar System and the Earth developed. Hence, as well as providing an observationally
based analysis of what we can see in distant regions and how it got to be as it is, cosmology
provides important information on the environment in which life – including ourselves —
could come to exist in the universe, and so sets the background against which any philosophy
of life in the universe must be set.

Thus, when understood in the widest sense, cosmology has both narrow and broad aims.
It has aspects similar to normal physics, at least in its role as an explanatory theory for
astrophysical objects (even if laboratory experiments are impossible in this context); aspects
peculiar to scientific theories dealing with unique observable objects (and in particular the
universe itself, regarded as a physical object); and one can use it as a starting point when
considering aspects that stretch beyond science to metaphysics and philosophy.

Sciences vary in their mix of explanatory power, verifiability and links with the rest of
science. The relative value one puts on those different qualities of scientific theories affects
one’s view of the nature of cosmology as a science, and hence one’s approach to cosmology.
The importance of considering such issues arises from one of the fundamental limitations of
cosmology: there is only one universe. We cannot compare it with similar objects, so neither
repeatable nor statistical experiments are possible. Thus a prime problem in cosmology is
the uniqueness of the universe (Bondi, 1960, Harré, 1962, North, 1965, McCrea, 1970, Ellis,
2007). This means we have to pay even more care and attention than in other sciences to
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4 Chapter 1 The nature of cosmology

extracting as much as possible from data and theory; and we have to be very aware of the
limitations of what we can state with reasonable certainty. These issues will be developed
in the analysis that follows.

1.1.1 Scientific cosmology

The starting point of cosmology is a description of what there is in the universe and how it
is distributed and moving – the geography of matter in the large; this is sometimes called
‘cosmography’. It inevitably involves a filter of theory through which the raw data has been
passed. At this level, the main aim is descriptive and work of this type provides the most
accurate representation of the actual universe. We can refer to it as observational cosmology.
It often leads to unexpected discoveries: for example, the expansion of the universe – and
its acceleration, the existence of dark matter, massive walls and voids in the large-scale
distribution of matter and large-scale motions of matter.

However, the cosmologist also seeks to explain the observations, to give an understanding
of what processes are occurring and how they have led to the structures we see – an
explanation of the nature and operation of the universe in physical terms. This explores
the dynamics of the expansion of the universe in the large, but can also be at the level
of the structure and evolution of large-scale objects, e.g. the physics of galaxy formation,
the evolution of radio sources and the clustering of galaxies, as well as considering micro-
processes in the HBB epoch, such as nucleosynthesis and the decoupling of matter and
radiation. These studies can be called physical cosmology. It is usual here to take as the
background model of the universe on the largest scales one of the Friedmann–Lemaître–
Robertson–Walker (FLRW) class, and study the inhomogeneities by considering perturbed
FLRW models: the ‘standard model’ is such a perturbed FLRW model.

The great potential significance of quantum and particle physics for the evolution of the
early universe in the big-bang picture has come to the fore in recent years; this field may be
called particle cosmology. As with physical cosmology, the background model is usually
assumed to be an FLRW universe. Aspects of particle cosmology, such as the concept
of inflation – an extremely brief era of extraordinarily rapid expansion in the very early
universe – are regarded by most cosmologists as part of the standard model of cosmology.
This approach is extended by some to quantum cosmology, which attempts to describe the
very origin of spacetime and of physics. That attempt is still speculative and controversial,
inter alia because it involves an engagement with quantum gravity, an as yet speculative
theory, and also necessarily raises profound questions about the nature of quantum theory
itself.

Finally, this all takes place in the context of gravitational theories based on Einstein’s
General Relativity (GR) theory. Spacetime curvature – and hence the evolution of the
universe – is determined by the matter present via the Einstein Field Equations (EFE).
Both the motion of matter in the universe, and the paths of light rays by which we observe
it, are determined by this curvature. Therefore an exploration of these features ultimately
underlies understanding of the others. Relativistic cosmology puts emphasis on the curved
spaces demanded by GR and related theories, and focuses on the spacetime geometry of
the universe and its consequences for observational and physical cosmology. In order to
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situate our understanding fully, it considers wider families of universe models than the
FLRW models. This is our main approach, and its importance has become apparent from
subtleties in applying the standard framework to such issues as horizons, lensing, gauge
invariance, chaotic inflation and the supernovae data. A further key issue, which we also
explore, is whether GR itself is an adequate theory of gravity for explaining the universe
on cosmological scales, or whether some generalization is required.

These approaches have to some extent developed as a historical sequence of new
‘paradigms’ for cosmology, each offering new depth in our understanding (Ellis, 1993).
We believe each of them offers important insights, and that a full understanding of the
universe can only come about from the interaction of these approaches, to their mutual
enrichment. Thus while our own expertise and emphasis is on the relativistic approach,
which is perhaps the most neglected at the present time, we shall endeavour to link
this fully to the other views. The full depth of the subject of cosmology involves all
of them.

1.1.2 Cosmology’s wider implications

An investigation of the universe as a whole inevitably has implications for philosophy
and the humanities. For example, we may seek some view on how the cosmos relates to
humanity in general and our own individual lives in particular – some conceptualization
of how cosmology relates to meaning. This necessarily takes one beyond purely scientific
concerns to broader philosophical issues, constrained by the scientific data and theories
but not encompassed by them. Science itself cannot resolve the metaphysical issues posed
by seeking reasons for existence of the universe, the existence of any physical laws at all,
or the nature of the specific physical laws that actually hold, because we cannot devise
experimental tests that will answer such questions; they are inevitably philosophical and
metaphysical. However such issues lie at the foundation of cosmology.

This book is concerned with the scientific and technical aspects of cosmology. It will not
specifically deal with the wider concerns, except for some brief comments towards the end.
However, it will contribute to these wider concerns by attempting to delineate carefully
the boundaries of what can be reliably achieved in cosmology by use of the scientific
method. This involves in particular a careful review of which aspects of cosmological theory
are testable by presently possible observations, or by observations that will conceivably
be possible some day. These limitations are not always taken seriously in writings on
cosmology.

1.2 Observational evidence and its limitations

There are three broad ways in which we obtain the evidence used in cosmology (all of them
discussed in more depth later).
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1.2.1 Evidence from astronomical observations

By observing the sky with telescopes and other instruments – detecting electromagnetic
radiation (infrared, radio, optical, ultraviolet, X-ray and γ -ray), neutrinos, and gravitational
waves – we aim to determine the distribution of matter around us. We observe discrete
objects and hydrogen clouds up to very large distances, and indirectly observe the total
matter (dark plus baryonic) via weak lensing. We also observe background radiation of
various kinds that does not come from identifiable discrete sources. The most important
such radiation is the blackbody Cosmic Microwave Background (CMB) that we identify as
being relic radiation from the HBB. Its study is a central part of present day cosmology. It
has propagated freely through space since its emission by hot matter on the Last Scattering
Surface (LSS) in the early universe at the time of decoupling of matter and radiation, as the
universe cooled through its ionization temperature.The universe was opaque at earlier times.

All electromagnetic radiation travels to us at the speed of light, so, via electromagnetic
phenomena, we can only observe the universe on our past light cone; hence, as we observe
to greater distances, we also observe to earlier times: each object is seen when it emitted
the radiation, at a ‘look back time’ determined by the speed of light. In addition, we can
observe massive high-energy particles (‘cosmic rays’), but because they are charged they
are strongly affected by local magnetic fields, so only very high-energy cosmic rays could
carry information across cosmological distances.

Although we have strong evidence for our estimates of distances to the nearer galaxies,
determining the distance of objects further away is difficult and often controversial. The
basic problem is that we have direct observational access only to a two-dimensional projec-
tion of a three-dimensional spacetime region: we have to de-convolve these data to recover
a three-dimensional picture of what is out there. However, this problem is ameliorated
because we can observe at many wavelengths, and so can obtain spectral information about
the objects we observe. We can also separate out different polarizations of the radiation
received.

Experimentally there are problems in measuring faint signals and excluding effects of
intervening matter, theoretically we have to make assumptions about the physical laws and
conditions at the sources, and from both together we have to try to establish the intrinsic
properties of the sources. The essential idea is to determine some class of ‘standard candles’
whose intrinsic luminosity is known and whose measured luminosity therefore gives a well-
defined distance (relationships such as the Tully–Fisher relation between luminosity and
rotational velocity for spiral galaxies are used, as well as classes of objects, like Cepheid
variable stars or brightest cluster galaxies).

In spite of these difficulties, we understand quite a lot about the broad nature of what lies
around us, as we describe in the next section.

Size of the universe

Astronomical length scales are determined by a variety of methods. Perhaps the most impor-
tant thing we learn from these scales is that the universe is extremely large relative to our
own size; even the immensities of our own Galaxy are insignificant compared with the scale
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Here and
now  

Past light
cone

LSS 
BBN

Our
Galaxy
worldline  

opaque

Other
Galaxy
worldline 

Fig. 1.1 Regions from which we have astronomical and ‘geological’ evidence, following Hoyle (1962).

of the observed region of the universe, which is of the order of 1010 light years (whereas the
diameter of our Galaxy is of the order of 50,000 light years, and the distance to the nearest
other galaxy is about 106 light years).

This is the primary reason for our major observational problems in cosmology: in effect
we can only observe the universe from one spacetime event, dubbed ‘here and now’, with
all our direct observational information coming to us on a single light-cone (see Figure 1.1),
supplemented by ‘geological’ data relating to the early history of our part of the universe
(see below). Even a long-term astronomical data collection and analysis programme (say,
collating data obtained over the next 10,000 years by all available means including rocket
probes able to travel at the speed of light) would not enable us to evade this restriction by
observing the universe from an essentially different spatial or temporal vantage point, as,
on cosmological scales, it would not move us from the point labelled ‘here and now’ in that
spacetime diagram. Such a time scale is far too small to be detected relative to 1010 years,
the scale of the universe itself.

1.2.2 Evidence of a geological nature

Additionally we obtain much useful information from evidence of a ‘geological’ nature, i.e.
by careful study of the history of locally occurring objects as implied by their present-day
structure and abundances. Particularly useful are measures of the abundances of elements,
together with studies of the nature and hence the inferred ages of local astronomical objects
such as star clusters. These observations test features of the early universe at times well
before the earliest times accessible with telescopes (though only at points near our world
line), thus enabling us to probe the physical evolution of matter in our vicinity at very early
times (see Figure 1.1), for example testing Big Bang Nucleosynthesis (BBN) near our world
line long before the LSS.
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1.2.3 Evidence from local physics

Thirdly, a line of argument due to Mach, Olbers and others (see e.g. Bondi (1960)), argues
that local physical conditions and even physical laws would be different if the universe were
different; thus we can in principle use the nature of local physical conditions as evidence
of the nature of the distant universe.

Mach raised this issue as regards the origin of inertia, and his proposal that inertia depends
on the most distant matter in the universe had a profound influence on Einstein’s cosmo-
logical thinking. Because the strength of the gravitational coupling constant G might be
related to inertial properties, and so could depend on the state of the universe, this suggests
there might be a time-varying gravitational ‘constant’, G=G(t) (Dirac, 1938). Two other
examples are,

(a) The dark night sky (‘Olbers’paradox’) – the simplest static universe models suggest the
entire sky at night (and, indeed, also during the day) should be as bright as the surface
of the Sun. So why is the night sky dark?

(b) The ‘arrow of time’ – the effects of the macroscopic laws of physics are dominated by
irreversible processes with a unique arrow of time, despite the time reversibility of the
fundamental local physical laws.

Plausibly, both may result from boundary conditions in the distant universe at very early
times (Ellis and Sciama, 1972, Ellis, 2002), but they certainly have a profound effect on
local physics. The essential point is that boundary conditions at the edge of the universe
strongly affect the experienced nature of local physical laws, and conceivably affect the
nature of the laws themselves – the distinction becomes blurred in the case of cosmology,
where the boundary conditions are given and not open to change. We return to these issues
in Sections 21.1 and 21.2.

1.2.4 Existence of horizons

Not only do signals fade with distance: if we live in an almost FLRW universe, as is
commonly assumed, there is a series of horizons that limit what we can ever observationally
or experimentally test in the cosmological context.

Firstly, the HBB era ends when the universe cools so much that matter and radiation,
tightly coupled at earlier times, decouple from each other at the LSS in the early universe,
which is the source of the CMB we detect today. The universe suddenly becomes transparent
at this time: it was opaque to all electromagnetic radiation before then. Hence the earliest
times we can access by electromagnetic experiments of all kinds are limited by a visual
horizon: we can in principle have seen anything this side of the visual horizon, and cannot
possibly have seen anything further out – and this will remain true, no matter how technology
develops in the future.

There are two important provisos here. Firstly, there is no visual horizon if we live in a
small universe, that is a universe spatially closed on such small scales that we have already
seen around the entire universe more than once. This is a possibility we shall discuss below.
Secondly, neutrino and gravitational wave detectors can in principle see to greater distances
and earlier times. But they too will have their own horizons, limiting what they can ever see.
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Because causal communication is limited by the speed of light, unless we live in a small
universe, there exists outside the visual horizon a particle horizon limiting causality in the
universe. We can have some kind of causal connection to any matter inside the particle
horizon, but none whatever with matter outside it. This is a fundamental limitation on
physical possibilities in the early universe. The proviso is that geometry at very early times
may have been quite unlike that of an FLRW universe, and the situation may be different in
FLRW models that collapse to a minimum radius, and then bounce to start a new expansion
era. These possibilities also need investigation.

Because the energies we can attain in particle accelerators are limited by practical con-
siderations (e.g. we cannot build a particle accelerator larger than the Solar System), there
is a limit to our ability to experimentally determine the nature of the physical interactions
that dominate what occurs at extremely early times, and in particular in the quantum gravity
era. Hence there is a physics horizon preventing us from experimentally testing the relevant
physics when we try to apply physical reasoning to earlier times (Section 20.5). Known,
or at least potentially testable, physics applies at more recent times; what occurs at earlier
times involves physics that cannot be directly observed or confirmed.

Unlike the other two horizons, this is technologically dependent, and the energies deter-
mining its location may change with time; nevertheless we may be certain that such a
horizon exists. The ability of physical investigations to determine the nature of processes
relevant to the very early universe is limited by technological and economic practicalities.

1.3 A summary of current observations

The current state of observations is discussed in detail in Chapter 13. The huge increase in
available data and in accuracy of observations is a result of numerous technical develop-
ments such as space and balloon-borne telescopes, multi-mirror telescopes, interferometer
techniques, adaptive optics, fibre optics, photon multipliers, CCDs, massive computing
capabilities and so on, all coming together in an ability to do precision multi-wavelength
observations (from radio through optical and infrared to gamma ray) across the entire sky.We
shall not describe these developments in this book, but acknowledge that it is only through
them that the era of data-based ‘precision cosmology’ has become possible (Bothun, 1998,
Lena, Lebrun and Mignard, 2010). It is this solid grounding in observations and data that
makes cosmology the exciting science that it is.

1.3.1 Expansion of the universe – and its acceleration

After Hubble determined the distance of other galaxies (and hence their nature) by observing
Cepheid variables in them, the earliest observational result of modern cosmology was
Hubble’s 1929 law relating the magnitude and redshift of galaxies. The redshift z can be
interpreted as due to the Doppler effect of a velocity of recession (since the measurements are
made by comparing spectra and using known spectra of different elements, the interpretation
depends on assuming that these were the same in the past). The flux received from a distant
source depends on its distance, and may also be given as the source’s apparent magnitude
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m. For ‘standard candles’, such as supernovae, the flux is related to distance by the inverse
square law; so magnitude is a proxy for distance. For relatively nearby sources believed to
be intrinsically alike, the magnitude is related linearly to the redshift, as seen in Figure 1.2.
This can be interpreted as a linear relation v = H0d between velocity v and distance d ,
which is then in turn interpreted as due to expansion of the universe. The Hubble constant
is H0 = 100hkm/s/Mpc. For a long time there were uncertainties in its value of up to
a factor 2, but recent observations have given much more accurately determined values.
For example the Hubble Space Telescope Key Project gave h = 0.73 ± 0.06km/s/Mpc
(Freedman and Madore, 2010). The constant H0 gives a time scale 1/H0 for the present
day expansion: using a linear extrapolation, this would be the time since a moment when
all galaxies were in the same place, which gives an estimate of the age of the universe.

The fact that the universe is expanding does not necessarily imply it is evolving: it could
conceivably be in a steady state, with the expansion rate always the same and a steady
creation of matter keeping the density constant (Hoyle, 1948, Bondi, 1960). However there
is a greater number density of radio sources at some distance than there is nearby, which
disagrees with a ‘steady state’ picture. The initial rise and later fall in numbers as we go
to fainter fluxes is consistent with a picture of an HBB universe in which radio sources
form after the big bang, and their numbers rise to a peak and then start to decrease as their
energy sources become exhausted. This is evidence of the crucial feature that the universe
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is evolving as it expands, confirmed by QSO source counts, and also by the discovery of
the CMB, as discussed below.

Extension of the magnitude–redshift relation to higher z has depended on using obser-
vations of supernovae of type Ia (SNIa), which are believed to behave as good standard
candles. The first results were announced in 1998–9. A recent compilation is shown in
Figure 1.2. This shows that if the universe has an FLRW geometry, it is expanding more
slowly at larger redshift than nearby: the expansion is accelerating. This requires a ‘dark
energy’, additional to and with a very different equation of state from the dark matter that
we discuss shortly. Accounting for this dark energy is both a central issue for present day
cosmology, and a major problem for theoretical physics (see Chapters 14–16).

1.3.2 Nucleosynthesis and the hot big bang

The observed relative abundances of the chemical elements are well accounted for by the
HBB and subsequent processing in stars, and poorly accounted for by other hypotheses
(Wagoner, Fowler and Hoyle, 1967, Smith, Kawano and Malaney, 1993). Comparing the
results (see Figure 1.3) of cosmological nucleosynthesis theory (based in our understand-
ing of nuclear physics), with element abundance data determined from stellar spectra, the
observed detailed abundances of the light elements determine the density of baryonic matter
in the universe, �bh

2 ≈ 0.01 (Steigman, 2006). Fitting all four observed primordial ele-
ment abundances in this way is a triumph for cosmological theory, because it confirms the
application of nuclear physics to the early universe, with the outcome determined via the
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Fig. 1.3 Production of elements in the early universe versus entropy per baryon. (From Steigman (2006). ©World Scientific
(2006). Reproduced with permission fromWorld Scientific Publishing Co. Pte. Ltd.)
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EFE (which govern the expansion rate of the universe, and hence control the rate of change
of temperature with time).

1.3.3 Cosmic microwave background and the hot big bang

As well as radiation which we attribute to distinct sources, we also measure background
radiation not attributable to such sources. In particular, we detect radiation in the microwave
region that is an excellent approximation to black body radiation. The CMB has a temper-
ature T ≈ 3K. In the HBB picture, this was emitted by the primeval matter at z ≈ 1100,
when the universe became transparent as the temperature dropped below 4000 K, and com-
bination of electrons and nuclei to form atoms took place. At earlier times the universe was
opaque because the mean free path for radiation was very small and so matter and radiation
were tightly coupled before then. The time of decoupling of matter and radiation, when
photons last scatter, defines the LSS.

The CMB has been shown to have a very precise black body spectrum (Mather et al.,
1990, Fixsen et al., 1996), as shown in Figure 1.4. This is a very important result, with
two major consequences. Firstly, this shows that quantum theory as tested in laboratories
today held in precisely the same form 13 billion years ago – since a precise black body
spectrum for thermal radiation is the unique outcome of quantum theory, as shown by Max
Planck over a century ago. Thus this confirms one of the most basic underlying assumptions
of cosmology: that physical laws hold unchanged throughout the history of the universe.
Secondly, it shows the radiation is well thermalized, fitting the HBB model well. Although
the energy density in this radiation is not very high, producing such a spectrum in any model
other than an HBB is very difficult.
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Fig. 1.4 Black body spectrum of the CMB. The RMS errors are 50 parts per million of peak brightness, a small fraction of the line
thickness. (From Fixsen et al. (1996). Data from FIRAS/COBE. Reproduced by permission of the AAS.)
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Fig. 1.5 CMB temperature anisotropy over the sky (WMAP 7-year data). Dark (blue) regions are cold and light (red) are hot:
the magnitude of the variation is of the order of 10−5. (From http://map.gsfc.nasa.gov/, reproduced courtesy of
NASA/WMAP Science Team.) A colour version of this figure is available online.

Isotropy and homogeneity

The CMB has an extraordinarily high observed degree of isotropy about us: after allowance
for the motion of the Earth, Sun and Galaxy through the universe (which combine to
give a dipole variation), the temperature variations around the sky in the CMB are of order
|�T /T |� 10−5, as illustrated in Figure 1.5. These fluctuations mark the presence of density
perturbations on the LSS, which will later form the observed galaxies and clusters. Currently
the best model for the origin of the fluctuations is inflation, as described below.

This high level of isotropy is the primary evidence supporting our belief in the homo-
geneity of the universe on the largest length scales, because most forms of large-scale
inhomogeneity would lead to temperature anisotropies. The distribution of galaxies on
large scales shows no evidence of significant anisotropy, but definite conclusions are hin-
dered by the lack of all-sky coverage. Radio source numbers are isotropic to below 5%, and
the diffuse X-ray background to below 3%. The CMB data are clearly the best we have.

It should be noted that more direct evidence of homogeneity from discrete sources is hard
to obtain. We see distant objects as they were a long time ago, so to compare them to closer
objects we would need a deeper understanding of the evolution of galaxies than we have. In
testing whether the distribution of galaxies becomes truly homogeneous at large distances,
one has to be very sure one has measured beyond the radius at which statistical fluctuations
would dominate. There is still controversy about the true situation (Joyce et al., 2005).

The study of the small-scale anisotropies encoded in these temperature variations, and
their relation to galaxy formation processes, is a key area of modern cosmology: it will be
discussed in detail in Chapter 13. Polarization studies of the CMB, for which first large-
angle results have been given by WMAP (Hinshaw et al., 2007), are likely to be another
key feature in the future.

Other background radiation

In addition to the CMB, electromagnetic background radiation has been observed in detail
in the radio, microwave, X-ray and γ -ray bands. Study of its detailed spectrum and relation
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to the observed matter density and thermal history is an important part of astrophysical cos-
mology. There may also be other forms of background radiation, in particular cosmological
fluxes of neutrinos and gravitational waves. These are at levels unobservable today, but their
effects are indirectly measurable via the CMB (e.g. gravity waves induce B-mode polar-
ization) and the large-scale distribution of matter (e.g. neutrinos affect the matter power
spectrum).

1.3.4 Structure formation and the very early universe

Matter is distributed into great voids, filaments and walls populated with clusters of galax-
ies, apparently arising through a process of structure formation based on a remarkable
confluence of particle physics processes and large-scale properties of the universe. This
is based on the idea of inflation, mentioned above. This very rapid period of expansion
in the very early universe amplifies quantum fluctuations to macroscopic scales, where
they become very small density fluctuations that are then the seeds of large-scale structure
growth later on. These fluctuations on the LSS are visible to us as fluctuations in the CMB
power spectrum, with a particular large peak that has been observed on an angular scale of
about 1 minute of arc – and these CMB fluctuations are related to corresponding peaks in
the matter angular power spectrum, which have also been observed. Theory and observation
fit extremely well.

Also, some observable features of the universe might be due to the properties of quantum
gravity, dominant in the times preceding inflation. Salam (1990) has referred to such epochs
as the ‘speculative era’, since we have so little chance of directly testing our theories of the
behaviour then. However, the consequences of the physics of such epochs could be very far-
reaching, so in recent years much effort has gone into proposed models about what happens
then (see Chapter 20). Indeed one potential use of cosmology is to be a laboratory for probing
quantum gravity – it is difficult to test theories of quantum gravity in any other context.

1.3.5 Baryonic matter: galaxy distribution and acoustic peak

Baryonic matter occurs in luminous (stars) and non-luminous (gas) forms. On the cosmo-
logical scale, we observe an essentially hierarchical structure of stars, star clusters, galaxies
and clusters of galaxies; these in turn form even larger structures (voids, walls and fila-
ments) and massive concentrations of matter such as the ‘Great Attractor’, with associated
large-scale motions of matter. There are about 1011 galaxies in the observable region of the
universe, each containing on the order of 1011 stars. It is likely that other kinds of object
such as radio sources, quasi-stellar objects (QSOs or quasars), X-ray sources, and active
galactic nuclei (AGNs) are related to galaxies, so that understanding their nature is probably
a part of the study of galactic structure and evolution.

Massive redshift surveys – the 2dF and the SDSS – have mapped the distribution of
galaxies in exquisite detail, over significant fractions of the sky. These surveys allow us to
determine the power spectrum of the galaxies observed on various scales, and the related
two-point correlation function of sources seen in the sky. See Figure 1.6 for an illustration
from the SDSS galaxy redshift survey. Future massive radio surveys, such as the planned
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Fig. 1.6 Distribution of galaxies. Left: a section through the SDSS survey. Right: SDSS optical image. (From
http://cmb.as.arizona.edu/∼eisenste/acousticpeak/figs/pie_lrg.eps.gz . Reproduced courtesy of Daniel Eisenstein
and the Sloan Digital Sky Survey.)

SKA, will map the hydrogen on cosmological scales, opening up an important new frontier
in our map of the large-scale distribution of matter.

Inferring densities requires a distance scale such as the Hubble scale, and densities are
usually expressed in dimensionless � quantities, or, where the relevant distance scale is
uncertain, �h2. Luminous matter provides � ≈ 0.01. Intra- and inter-galactic clouds of
gas (e.g. detected by the HI line or by absorption in the Lyman-α forest in quasar spectra),
account for ∼ 45% of the baryonic matter inferred from nucleosynthesis (Nicastro et al.,
2005).

A critical test of our theory of structure formation is to trace the evolution of the acoustic
scale in the primordial plasma from the moment of decoupling onwards. This scale arises
from the acoustic waves in the tightly coupled baryon–photon plasma before decoupling,
and is frozen into the radiation and the matter at the time of decoupling. In radiation, it plays
a crucial role in linking the CMB anisotropies to properties of the universe (see Chapter 11).
In baryonic matter, the scale is imprinted as a slight rise in the 2-point correlator of galaxies
(see Chapter 12). Confirmation of this Baryon Acoustic Oscillation (BAO) peak came in
2005 from the 2dF and the SDSS surveys; see Figure 1.7.

1.3.6 Dark matter

We can directly observe the luminous baryonic stars since they radiate, and indirectly we can
detect the non-luminous gas via absorption and emission. Indirect evidence now strongly
indicates that the visible galaxies and surrounding gas are only a very small part of all that
there is.

From various sources of evidence – rotation curves of galaxies (Figure 1.8), dynamics
of galaxy clusters, X-ray emitting gas in clusters, gravitational lensing – interpreted using
GR, it has been known for some time that there is much more non-luminous ‘dark’ matter
than visible matter (we consider the evidence further in Section 12.3). Dark matter provides
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� ≈ 0.3, but uncertainty about its physical nature and detailed distribution is one of the
major uncertainties of modern cosmology.

There is a ‘bias’ between the clustering of baryonic and dark matter, but its nature is
unknown and phenomenological models for the bias are necessary, supplemented by empir-
ical relations based on N-body simulations. If we know the bias, in principle we can deduce
the distribution of dark matter from that of baryonic matter. A major new development
in cosmology is an independent probe of the total matter distribution, and hence a handle
on the distribution of dark matter. This probe is in the form of gravitational lensing (see
Section 12.4), which is now being used (Massey et al., 2007) to map the dark matter density;
see Figure 1.9.
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Fig. 1.9 Distribution of dark and baryonic matter, mapped via weak gravitational lensing using the COSMOS survey. (From
http://www.spacetelescope.org/images/ . Reproduced courtesy of NASA, ESA/Hubble and R. Massey.) A colour
version of this figure is available online.

The cosmological effects of dark matter, and the particle physics models of candidate
dark matter particles, are consistent with a pressure-free equation of state, and hence it is
known as Cold Dark Matter (CDM). A key feature is the non-baryonic nature of CDM. The
point is that the amount of dark matter detected by astrophysical methods is much larger
than the amount of baryons compatible with the nucleosynthesis results mentioned above.
Major theoretical and experimental efforts are underway to determine what non-baryonic
forms of CDM are plausible. With the advent of gauge theories of physics and the various
forms of grand unified theory (including supersymmetric and superstring theories), a wide
variety of possible exotic particle species can have cosmological significance, and could
indeed constitute the CDM. Many astronomical and laboratory experiments are presently
underway to try to detect these candidates.

1.4 Cosmological concepts

Having outlined the definite and possible constituents of the cosmos, we have to decide how
to theoretically represent the matter present, the physical theories governing its behaviour,
and the spacetime geometries relevant to cosmology.

1.4.1 Matter description

As regards the matter in the universe, in practice a fluid description, associated with a
continuum approximation, is very widely employed. This may or may not be justified;
alternative possibilities are that the universe could be chaotic or hierarchical. The situation
will be clearer if we contrast these cases.

Consider a plot of measured average density ρ against the averaging scale L used in the
measurement of matter in some domain. When L is very small, there will be considerable
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fluctuations in density as L is changed; at these scales, individual particles affect the meas-
ured density appreciably. There may be a significant intermediate range of scales where
the value obtained is essentially independent of smoothing scale chosen: fluctuations are
smoothed out by averaging, giving values insensitive to details of the averaging volume
chosen (Batchelor, 1967). These are the scales where a fluid description is appropriate. At
very large scales, macroscopic gradients become important, and the fluid representation is
then again inadequate for an average at those scales.

In the chaotic case, the curve obtained is not smooth on any scale, so no well-defined
value is defined by any suitable averaging procedure (the value always depends crucially
on averaging size, time and position).

In the hierarchical case, like the fluid situation, the curve becomes smooth at some
averaging size, but it never levels out at a finite radius to become approximately constant:
the average determined at a given scale changes as the averaging volume changes size,
and in hierarchical cosmologies it is usually assumed that the density goes to zero on the
largest scales (though other behaviours might be possible). Thus no good density function
is defined because the result obtained is never approximately independent of the size of the
averaging volume used.

Which of these possible descriptions applies to the real universe can only be determined
by observation. Much of what follows depends on assumption of the existence of averaging
scales where the fluid approximation (smooth representation) is applicable. We believe
this description is valid because we have evidence for smoothness of the matter flow on a
macroscopic scale; such evidence is given by the smooth magnitude–redshift relation (see
Figure 1.2) on scales of 50 Mpc to 200 Mpc. Thus from the present viewpoint, an essential
achievement of those measurements is to validate the smooth (fluid) picture on these scales,
with perhaps some caveats arising from the sponginess of the structures revealed by the
deep redshift surveys.

Hence a fluid description of the matter present is the core of many dynamical studies in
modern cosmology. However, it should be noted (Heller, 1974) that there is an important
point usually glossed over, namely that the fluid picture for the early universe demands
a very different averaging scale: the consequently required transitions between different
averaging scales at different cosmological epochs are rarely considered at all.

The fluid picture essentially arises from averaging over a particle distribution, and one
very useful way to describe that at a microscopic level is kinetic theory, which we outline
in Section 5.4. This description plays a key role in studies of the CMB anisotropies.

Magnetic fields with micro-gauss strength affect the dynamics and evolution of galaxies
and clusters of galaxies. Cosmic magnetic fields on larger scales are generated (at a very
weak level) by second-order effects during recombination; stronger large-scale fields could
be generated by other mechanisms, and could leave a detectable imprint on the CMB. Thus
as well as fluids, some questions involve investigation of magnetic effects.

In the early universe quantum fields are important, and it is conventional to model these
effects by a scalar field. Such a scalar field, with its potential energy dominating its kinetic
energy (and hence with negative pressure), can behave like a positive cosmological constant,
and drive inflation. It is perhaps problematic here that we have not yet physically detected
a single scalar field in a laboratory or particle accelerator experiment; nevertheless it is
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plausible that such fields will give reasonable descriptions of effective theories for various
quantum fields. In any case they are widely used in discussions of the dynamics of the early
universe, so we shall consider them too.

Finally, what description should we use for cold dark matter and dark energy? The
former is conventionally modelled as pressure-free matter (‘dust’), and the latter as either
a cosmological constant, or a scalar field (‘quintessence’).

1.4.2 Dynamics

It is now generally agreed that local physical laws (applied everywhere) can be used to
describe the evolution of the universe; what is controversial is the issue (mentioned above) of
the extent to which the nature of the universe affects the nature of local physical laws, perhaps
causing an evolution of those laws, as for example in Dirac’s proposal (see Section 1.2.3)
of a time-varying gravitational constant as a way of taking cognizance of Mach’s principle.

Our present day understanding of physics is based on there being four fundamental
forces of nature effective at the present time (that were probably unified at early times): the
strong and weak nuclear forces, electromagnetism and gravity. Of these, only gravity and
electromagnetism are long-range and are therefore candidates for determining the spacetime
curvature in cosmology.

Electromagnetic dynamics

If there were an overall electric charge on galaxies, e.g. if there were different numbers of
protons and electrons in astronomical bodies, or if the proton charge were infinitesimally dif-
ferent from the electron charge (Lyttleton and Bondi, 1959), then electromagnetism would
be the dominant force on astronomical scales. However, it would be hard to develop a
scheme consistent with observation in which some astronomical bodies had overall pos-
itive charges and some negative, as they seem so similar in structure. We do not have
evidence of intergalactic lightning, nor is it easy to develop a scheme in which close bodies
are matter–antimatter pairs with opposite charges and associated matter–antimatter annihi-
lation. But if all bodies had like kinds of charges, and therefore repelled each other, then
forces on the cosmological scale would be repulsive, while astronomical objects, such as
our Local Group of galaxies, form bound systems from terrestrial scales up to the scales of
clusters of galaxies and thus clearly must be governed by the attractive force we call gravity.
Hence dominance of electromagnetism on the largest scales does not seem very plausible.

Gravitational dynamics

Thus it is now believed that gravity is the dominant force on large scales. Since GR is the
best available classical theory of gravity, it is clear that it is the most appropriate theory
to use to describe cosmological models, representing the geometry of the universe through
a curved Riemannian spacetime model, and using the EFE to determine the evolution of
spacetime curvature.
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In much cosmological work of an astrophysical nature the fundamental role of GR can be
hidden by the use of only a few time-evolution equations for the FLRW models and quasi-
Newtonian equations for structure formation studies. This can be problematic, and it is one
of the aims of this book to display the importance of relativistic concepts in cosmology.
Among them are the principle of equivalence, and the absence of any independently fixed
background within which the gravitational effects can be calculated, both of which have, as
we shall discuss, implications for the handling of calculations of the evolution of structure.

The nonlinearity of GR implies the possibility of unique features such as existence of black
holes and associated spacetime singularities (on small scales), and existence of spacetime
singularities at the start of the universe (on large scales). Indeed the expanding relativistic
models and associated singularity theorems raise the possibility of a beginning to the uni-
verse, an edge to spacetime, where there is an origin of matter and radiation in the universe,
of space and time, and even of physical laws. If this in fact occurs, it is one of the most
important physical features of the cosmos, for the predictability of science breaks down
here; the nature of causation comes into question at such an event.

Close to such a boundary, the matter density may be very high, and a quantum gravity
theory would appear to be necessary to describe gravity at the very high densities of the
earliest stages of a HBB. Quantum gravity effects may very well allow singularity avoidance
at the start of the universe, and traces of the quantum gravity epoch may still remain in the
details of the CMB anisotropy patterns. These are important features to consider; however,
this volume will only briefly consider issues in quantum cosmology, which is a major topic
in its own right.

1.5 Cosmological models

Taking all this into account, key ingredients of relativistic cosmology are:

(1) a spacetime, with a Lorentzian metric and associated torsion-free connection (these
terms are defined in Chapter 2), determined through the EFE from the matter and
radiation present;

(2) a description of matter and radiation, with appropriate thermodynamic, kinetic or field-
theoretic models that determine their local physical properties;

(3) a uniquely defined family of fundamental observers, whose motion represents the aver-
age motion of matter in the universe. This matter should be expanding during some
epoch which plausibly corresponds to the universe domain we see around us at present
– so these motions should correspond well with astronomical observations.

Observationally, the 4-velocity of such a family can be determined either (a) by measuring
the motion of matter in an averaging volume (e.g. a local cluster of galaxies) and determining
a suitable average of those motions, or (b) from the CMB anisotropy measurements. There
is a preferred frame of motion in the real universe such that the radiation background is
(approximately) isotropic; this is a classic case of a broken symmetry (the solution breaks
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the symmetry of the equations).1 We move with almost that preferred velocity, which can
be dynamically related to that of the matter present in the universe (the ‘Great Attractor’
is thought to be responsible for our own peculiar velocity relative to the cosmological
background). Our usual assumption is that the matter and CMB velocities agree. If not, we
can model this situation too, but with more complex models involving relative motion of
matter and radiation.

With suitable astrophysical assumptions, we also require

(4) A set of observational relations that follow from the geometry and the interactions
between the matter and radiation in it.

Putting this all together,

a cosmological model consists of a spacetime with well-defined, physically realistic,
matter and radiation content plus a uniquely defined family of fundamental observers
whose world lines are expanding away from each other in some universe domain, resulting
in a well-defined set of observational predictions for that domain.

In constructing cosmological models, one attempts to fit them with the observations, but
they are also used to provide explanatory frameworks. There is a tension between these
two roles of the models which is the source of the different approaches to cosmological
modelling that we discuss in the sequel.

1.5.1 Averaging scales

It is fundamentally important that each attempt at modelling is based on an implied aver-
aging scale, determined by the description used, and a range of applicability for both the
physical and geometric descriptions used (together, these determine the physical effects
taken into account). The model will be related to observations which also have an implied
averaging scale (determined by the resolution) and a range of applicability (determined
either by limitations of the method of observation, or by imposing a cutoff in the data).
Clearly the observational technique should involve an averaging scale suitable to the model.

As we shall discuss in Chapter 16, the crucial problem of averaging remains unresolved
in GR, due to the complexities following from the nonlinearity of the theory. Attempts to
solve this problem are of fundamental importance.

When we speak of cosmological models, we imply that the models do not describe small-
scale structure; they are valid as a description only above some scale of averaging, which
should be made explicit. In general we choose an averaging volume large enough that – in
the observed universe – it has a positive matter density.

The models we use will also be restricted in the epoch of their applicability: different
matter models and levels of description may be described at different epochs. Thus there
will usually be some time in our past before which the model is considered inapplicable. An
overall cosmological model is in fact usually a patchwork of models applicable to different

1 One cannot observe this velocity from within an isolated box, e.g. if closed off in a laboratory with no windows;
thus this does not violate the principle of special relativity.
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epochs (inflation, nucleosynthesis, decoupling, galaxy formation, etc.), which are loosely
linked to each other with appropriate junction conditions, to form the overall model.

1.5.2 Specific models

Although we shall cover the full range of available specific models in detail in Parts 3 and
4, it is useful during the general discussion in Part 2 to have some simple models to refer
to as examples.

FLRWmodels

The most important and basic of these are the FLRW models, i.e. the ‘standard models’ of
cosmology. These universes are exactly spatially homogeneous (they have no centre, and
no feature distinguishing any one spatial point from any other) and isotropic (all spatial
directions are equivalent at every point). They are discussed in detail in Part 3.

The FLRW models are extraordinarily effective in their power to explain the broad
features of cosmology – particularly the expansion and evolution of the universe. However,
they are inadequate as realistic universe models in that they are exactly homogeneous and
isotropic: the real universe is clearly neither. Thus we need more elaborate models.

We can obtain a great deal of useful understanding by considering perturbations of the
FLRW universes, enabling us to construct reasonably realistic model universes that are
like FLRW models on average, and to investigate issues such as the growth of structure in
an almost-FLRW universe and observational properties of such models. These important
models will be discussed at length in Chapters 10–13. However they will not enable us to
investigate all the theoretical issues of interest that arise, so we shall also consider universe
models that are intrinsically anisotropic or inhomogeneous. This will lead to useful new
insights on the possible nature of the universe.

We shall consider whether models quite different from the FLRW models could explain
present observations. This can also throw light on the crucial unresolved problem of aver-
aging. Another major unsolved issue in cosmology is whether the universe was initially
very smooth, and then developed inhomogeneity by physical processes, or was initially
very chaotic, and was then smoothed by physical processes. The first possibility can be
adequately studied by using the standard FLRW models and their perturbations; the second
requires the study of alternative (inhomogeneous and anisotropic) models.

Spherically symmetric inhomogeneous models

Lemaître–Tolman–Bondi (LTB) models (Section 15.1) are the simplest inhomogeneous
expanding models, spherically symmetric about a centre. They have been used to give
exact nonlinear models of inhomogeneous cosmologies where no dark energy is needed –
the apparent acceleration of the universe seen in the supernova data is not a consequence
of dark energy (as in an FLRW model), but is due to spatial inhomogeneity. This is an
important alternative to the standard interpretation, and is discussed in detail in Chapter 15.
Further cosmological uses of these models are discussed in Chapter 19.
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Lumpy inhomogeneous models

‘Swiss cheese’models (Section 16.4.1) insert spherical regions representing virialized struc-
tures into a smooth universe (such as FLRW). In the general case they provide simple exact
models which are anisotropic and inhomogeneous. The Einstein–Strauss solution consists
of an interior Schwarzschild region, representing a black hole or the vacuum exterior to a
spherical body, joined across a spherical boundary to an exterior FLRW solution. One can
alternatively take a collapsing FLRW region as the interior spherical body. It is possible to
have any number of such non-overlapping Schwarzschild regions in a surrounding FLRW
solution, with centres distributed in an arbitrary manner, and this makes a model suitable
for nonlinear modelling of a distribution of galaxies or clusters – e.g. for a simplified study
of observational effects due to multiple gravitational lensing. This is discussed in Chapter
16; their further uses are discussed in Chapter 19.

Spatially homogeneous models

Bianchi universe models (Chapter 18) are anisotropic expanding models that are spatially
homogeneous.They are useful for investigations aimed at bounding the anisotropy of the real
universe, or concerned with such matters as the nature of the HBB singularity, the onset of
inflation, a lack of particle horizons in at least some directions, variations in nucleosynthesis
outcomes and complex CMB angular variations and polarization patterns. The simplest
such models that have been investigated in this regard are Bianchi I models, with flat
spatial sections. More general Bianchi models exhibit much more complex behaviours, for
example chaotic dynamics and hesitation dynamics.

1.6 Overview

An outline of the book is as follows:

In Part 1 (‘Foundations’), we consider the nature of cosmology in Chapter 1, and the
geometric and physical foundations of cosmological studies successively in Chapters 2
and 3.

In Part 2 (‘Relativistic cosmological models’), we look at the description of generic
cosmological models. Their geometry and kinematics are described by covariant variables
in Chapter 4. Appropriate matter descriptions and the consequences of their dynamical
equations and conservation equations are covered in Chapter 5. The dynamic consequences
of the gravitational equations (the EFE) are considered in Chapter 6. The nature of observa-
tions in generic cosmological models is considered in Chapter 7, and the light-cone approach
to observations is discussed in Chapter 8.

In Part 3 (‘The standard model and extensions’), we examine in depth the FLRW mod-
els (Chapter 9) and their perturbations (Chapter 10). We consider the CMB anisotropies
in these models (Chapter 11), and then structure formation and gravitational lensing in
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Chapter 12. On this basis, we confront these models with current astronomical observa-
tions (Chapter 13). This leads on to a consideration of the crucial issue of how to explain
the supernova, CMB and galaxy distribution data that indicate a speeding up of the expan-
sion of the universe in recent times. In Chapter 14 we consider dark energy or modified
theories of gravity causing acceleration of the expansion in a FLRW universe. Chapter 15
considers the possibility that the observations can be explained geometrically, with no dark
energy needed, through large-scale spatial inhomogeneity (the Copernican Principle is not
satisfied). Chapter 16 considers the more radical alternative that the apparent acceleration
may be at least in part due to dynamical back-reaction effects and/or averaging effects on
cosmological observations due to local inhomogeneities.

In Part 4 (‘Anisotropic and inhomogeneous models’), we first look at the space of
possible anisotropic and inhomogeneous models in Chapter 17, handling their geome-
try and dynamics in an exact covariant manner. Chapter 18 looks at the geometry and
dynamics of Bianchi spatially homogeneous but anisotropic universe models, which can
be nicely described through a dynamical systems approach. Chapter 19 looks at how
exact inhomogeneous models may be used to illuminate aspects of structure formation
in cosmology.

In Part 5 (‘Broader perspectives’), we discuss the issue of quantum cosmology and a start
to the universe in Chapter 20, emphasizing problems due to difficulties in testing the relevant
physics for this era. Chapter 21 looks at the relation of cosmology to local physics and to the
existence of life in the universe, including the vexed issues of the Anthropic Principle and
the possible existence of a multiverse. A concluding overview and perspective are given in
Chapter 22.

Appendix and References: An appendix summarizes issues to do with notation, units
chosen and common abbreviations. Finally an extensive list of references (arranged alpha-
betically by first author, with full titles of all articles referred to) is a hopefully helpful
resource in its own right.

Problem 1.1 Consider whether cosmic rays may give us useful cosmological information.
(A key issue is how far away from us they originate.)

Problem 1.2 Give a complete and rigorous account of the transitions between and validity
of the differing bases for a fluid picture during the evolution of the universe.

Problem 1.3 Consider the physical conditions needed for charge neutrality of astronomical
objects like stars and galaxies. Are there any fundamental reasons that they should be
fulfilled, or is it just an environmental quirk that has led to this situation?

Problem1.4 Sometimes when new evidence contradicts a model, it can be adapted to accom-
modate this new data; sometimes it has to be abandoned, and replaced by something quite
different. What kind of data would be sufficient to cause abandonment of a cosmological
model, in general; and of the present standard model of cosmology, in particular?



2 Geometry

Physics usually begins with some concept of a space of events, or of positions at which
objects or fields can be present. While this could be a discrete space (e.g. in lattice models)
or a topological space without extra structure, it is usually assumed to be a continuum on
which one can carry out the operations of calculus, i.e. a differential manifold.

Most of modern theoretical physics can be written in the language of differential geometry
and topology, though it has only become common to do so since gauge theories assumed
their present prominent role. Many advanced notions in these areas find a place in physics
(see e.g. Nakahara (1990)). We shall be careful below to distinguish between concepts
dependent on and independent of the presence of a metric, since gauge theories usually do
not assume a metric.

While it is not true that every geometric object is of physical significance, it will be true
of the geometric quantities we discuss in subsequent chapters. So when we consider geo-
metric questions, it is important to recognize that these can also be understood as physical.
Indeed, one of our aims is to show how powerful geometric methods can be in discussing
cosmological questions, once one has mastered the necessary tools.

Dirac in his classic book (Dirac, 1981) emphasizes that quantum mechanics rests on
a number of principles. The first two are that observables are operators, which can be
expressed in different bases, and that the core of the dynamics lies in non-zero commutators
for these operators. The same is true of gravity realized as geometry, in particular in GR.
(However, GR does not display Dirac’s two other main principles, namely that superposition
holds, implying linearity whereas GR is essentially nonlinear, and that only probabilities
are predicted, not definite outcomes.)

Firstly, an operator is an entity that exists in its own right, and can be dealt with as such (e.g.
in defining a commutator), but can be represented in many different bases, leading to various
different representations: in QM Dirac showed this and uncovered the profound equivalence
between apparently completely different representations.We shall describe how, in GR, vec-
tors are differential operators; 1-forms and, more generally, tensors are multilinear algebraic
operators on them; the process of ‘dragging along’ (Section 2.4) is an operator, generated
by its differential version, the Lie derivative; parallel transport is an operator, generated
by its differential form – the covariant derivative (Section 2.5); and there is a Hamiltonian
operator in GR (Section 3.3.2), which is important in the link to quantum gravity.

Vectors and tensors have many different representations related by the usual tensor trans-
formation laws, as well as both coordinate and tetrad representations (Section 2.8). This
illustrates how different representations, which can look very different, may refer to the same
entity. By referring to the operator itself rather than just to some specific representation one
can make manifest the unity behind a diversity of appearances.

25
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Secondly, we observe that the essential gravitational physics in GR lies in the curva-
ture, the commutator of covariant derivatives. Curvature can be thought of as the operator
generating holonomy (the basic feature underlying gauge theories). Consequently geodesic
deviation is also an operator acting on connecting vectors, which is what leads to tidal
gravitational effects, including null geodesic focusing and gravitational lensing. Moreover,
the commutator of two Lie derivatives is another Lie derivative, the basic feature of Lie
algebras and hence of spacetime symmetries.

We therefore emphasize these two aspects of geometry in this chapter. We believe that
doing so leads to conceptual clarity that is useful in understanding GR.

As discussed in the preface, we assume the reader has studied special relativity and
an introduction to general relativity such as the texts named there.1 Such courses have
to introduce manifolds and tensors, including tangent (contravariant) vectors and 1-forms
(covariant vectors), and, at least for the Riemannian case, covariant derivatives, the Levi-
Civita connection, and curvature. Nevertheless, for reference, to fix notation, and to make
our treatment self-contained, we introduce these concepts briefly in Sections 2.1–2.7. For
those to whom differential geometry is new, a suitable relativity text, or works such as Schutz
(1980), might be more digestible, while those to whom it is very familiar can sensibly skip
to what is new to them. Stephani et al. (2003) provides a more formal but still concise
summary with a somewhat different selection of topics.

We also assume the reader is familiar with linear algebra (including scalar products
and duals), and with continuity and differentiability and their basic applications including
three-dimensional vector calculus.

This chapter also covers a number of ideas needed in relativistic cosmology but not rou-
tinely treated in introductory courses. To help readers decide whether to skip this chapter, the
main ones are maps between spacetimes, aspects of tensor algebra, Lie derivatives, holon-
omy, geodesic deviation, symmetries, the Levi-Civita 4-form, the Weyl tensor, sectional
curvature, use of general bases, and geometry of hypersurfaces.

2.1 Manifolds

Essentially, a differential manifold is a space that can be given coordinates locally, though
there may be no coordinate system covering the whole space. Coordinates can be chosen
arbitrarily, provided that the relations between any two coordinate systems are differentiable.

We take a set of points M with a well-defined topology.2 If p is a point in M , an open
set U containing p is called a neighbourhood of p. Note that an open set in R

n does not

1 More advanced material can be found in, for example, Wald (1984), Stewart (1994) and Penrose and Rindler
(1984, 1985).

2 A topology defines and is defined by which sets are open sets: these must include the empty set andM itself, and
have the properties that any union of open sets is open, and any intersection of a finite number of open sets is open.
In spacetime, we want to ensure that distinct events can be taken to lie in distinct open sets, and that it is possible
to define distance and integration without problems. Mathematically these aims are achieved by assuming that
the topology is paracompact and Hausdorff, terms defined in introductory texts, e.g. Brickell and Clark (1970).
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contain any of its boundary points. As an example, open sets in R are just (combinations
of) open intervals (a, b).

In a manifold we can assign coordinates x= (x1, x2, . . . , xm) on a neighbourhood around
any point p in M . A neighbourhood U together with the coordinates on it is called a
coordinate chart. We often write x as (xa), where a = 1 . . .m.

For differentiability we require that if we have two distinct charts which overlap in an open
set W and assign coordinates (x1, x2, . . . , xm) and (y1, y2, . . . , ym) on them, then on W the
functions ya(xb) for a,b= 1 . . .m are differentiable, and so are their inverses xb(ya). The
manifold is said to be of class Ck if the coordinate transformations are continuously differ-
entiable k times. Charts obeying these conditions on the coordinate transformation ya(xb)

are called compatible.AssumingM is connected (i.e. cannot be split into disjoint non-empty
open sets) compatibility implies that m is the same everywhere in M: it is the dimension of
M . For simplicity and physical relevance we consider only connected manifolds.

A set of charts covering all of M is called an atlas, and one can add to it any other
compatible chart, i.e. one has effectively an arbitrary choice of coordinates. Note that in
general an atlas requires more than one chart: for instance, the circle requires at least two
charts. (The usual description, that the circle is labelled by an angle 0≤ θ ≤ 2π and 0≡ 2π ,
is not strictly permitted because it becomes 1-2 at the point labelled by 0. However, the
properties of angular coordinates are so well understood that we usually ignore this, recalling
it only when it becomes important.)

Although coordinates are essential to the structure of a manifold, it is important to char-
acterize physical objects in a coordinate-independent way. This can be done by providing a
coordinate-free definition, or by giving a definition in coordinate terms and proving it gives
the same object whatever coordinates are used. Once we know an object is coordinate-
independent, we can safely use its coordinate representation (or its form in a general basis,
as in Section 2.8) for calculations.

Continuous (or differentiable) functions f on M are those which are continuous (or dif-
ferentiable) when expressed as functions of the coordinates.Amap h :M→N between two
differential manifolds M and N , of dimensions m and n respectively, is a Ck differentiable
map if for coordinates xa in M and yb

′
in N , yb

′
(xa) is Ck differentiable.

While for some purposes, such as proving singularity theorems (Hawking and Ellis,
1973), physicists specify k carefully, for most purposes it is good enough to assume k

is infinite, or even assume the stronger restriction that the coordinate transformations are
analytic, i.e. have Taylor series which converge to the actual map in some neighbourhood.
We shall usually assume without comment that our manifolds (and the various objects on
them that we introduce) are as smooth as necessary for the differentiations we make. To
check this physically would imply arbitrarily accurate measurement, so the assumption is
unlikely to restrict the physical phenomena we can discuss.

The manifolds we use as cosmological models will be four-dimensional spacetimes. We
shall often want to consider lower-dimensional manifolds contained in a spacetime, for
instance a spatial surface at a given time, or more generally consider manifolds contain-
ing others of lower dimension, so we need to introduce submanifolds. A p-dimensional
differential submanifold N of M is a subspace of M such that at any point in N there
are coordinates (x1, . . . , xp, xp+1, . . . , xm) for M in which points in N have coordinates
(x1, . . . , xp, 0, 0, . . . , 0).
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In a differential manifold of dimension m, submanifolds of dimension m− 1 are often
of interest, e.g. the spatial sections t = const in the FLRW spacetimes (2.65). They are
called hypersurfaces and are discussed further in Section 2.9. In cosmology, it is a useful
convention, which we shall follow, to denote the three-dimensional components in a (usually
spacelike) hypersurface � by indices from the middle of the alphabet, e.g. i, j , k, reserving
the early alphabet e.g. a, b, c for the fully four-dimensional objects.

Modelling the interface between two regions as a sharp boundary, e.g. to discuss a shock
wave, the surface of a star or a brane-world cosmology, requires the concept of a manifold
M with boundary ∂M , which is similar to a manifold except that coordinates take values in
the region of R

m with xm ≥ 0 (note that such sets need not be open in R
m). The boundary

∂M , whose intersection with each coordinate patch is xm = 0, is like a hypersurface (but
may have several separate pieces), except that the manifold lies on one side of it only.
When joining regions in spacetime with different matter content or other properties, we can
consider two manifolds with boundary joined at a hypersurface (the ‘junction surface’), at
which junction conditions for physical quantities can be derived by an appropriate matching
procedure (see Section 16.4.2).

Note that the Cartesian product M =Q×N of two manifolds Q and N (the set of pairs
(q, n) for q in Q and n in N ) is also a manifold in an obvious way. In this case, for any q

in Q the points (q, n) for n in N form a submanifold of M .
A manifold is called orientable if one can cover it with systems of coordinates such that

all the Jacobian matrices of the coordinate transformations, which have entries of the form
∂yb

′
/∂xa , have positive determinants. There is then a second set of coordinate systems

whose Jacobian determinants relative to the first are all negative, and these two sets give
the two possible choices of orientation (in three dimensions these correspond to the choice
between a left-hand rule and the usual right-hand rule). An orientation of the manifold with
boundary implies an orientation in the boundary. If a manifold is not orientable, problems
arise in globally defining quantities such as spinors.

2.2 Tangent vectors and 1-forms

Physics makes extensive use of vectors for many entities, such as forces and fields. They
can be introduced in a number of ways, for example as differential operators, as tangents
to (equivalence classes of) curves or via a fibre bundle. These ways can then be proved to
be equivalent, see Auslander and MacKenzie (1963), Hicks (1965) and Lang (1962).

Following our earlier remarks on the significance of operators, we shall take a tangent
vector to be a directional derivative operator, obeying the usual rules for differentiation
of sums and products (the ‘chain rule’ can then be derived from the rules for differen-
tiable maps between manifolds and the chain rule for spaces R

m and R
n). The space

of all tangent vectors at p, Tp(M), is a vector space, with the usual rules for linear
combinations.

Writing a differentiable function f in terms of coordinates as f (xa), and using the chain
rule, we obtain for the directional derivative V(f ) of f in the direction V,
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V(f )= ∂f

∂xa
V(xa)= V a ∂f

∂xa
, (2.1)

where V a = V(xa). Here we use, as we shall from now on, the Einstein summation con-
vention that an index repeated exactly twice in a product, once as a subscript and once as
a superscript, is to be summed over all its possible values; such indices are called dummy
indices. Indices appearing more than twice, or at the same level, are either mistyped or
require explicit summation. Indices appearing just once are called free indices, should
appear in the same way in all terms in an equation and imply that the equation is true for
each of their possible values. The a in ∂f /∂xa is considered to be a subscript. Occasionally
we mildly break this convention when denoting dependences on indexed variables: e.g.
yb = yb(xa). From (2.1), the coordinate form of V is

V = V a ∂

∂xa
. (2.2)

We often refer to the vector just as V a . For brevity we often denote ∂f /∂xa by f,a and
∂/∂xa by ∂a . Equation (2.2) implies that Tp(M) is m-dimensional and hence isomorphic
with R

m.
Now let us consider a change of coordinates, to new coordinates yb

′
. By applying the

vector to an arbitrary function, we find that the new coordinate components of V are given by

V b′ = V(yb
′
)= V a ∂y

b′

∂xa
. (2.3)

Any set of quantities obeying (2.3), for sets of coordinates, form the components of a vector.
We may need to relate vectors on two distinct manifolds, not necessarily of the same

dimension: for example, perturbed and background cosmological models, or a spatial sur-
face and the spacetime containing it, or a higher-dimensional model and four dimensions
within it. If we have a differentiable map of manifolds h :M →N , with dimensions m and
n, a vector V at p in M is mapped to a vector h∗V at h(p) in N by the rule that for any f

on N ,

h∗V(f )= V(f (h(x))). (2.4)

Here, h∗ is called the push-forward map. Evaluation of this in coordinates leads again to
the formula (2.3) but the indices a and b′ now have different ranges (1, . . . ,m and 1, . . . ,n
respectively); yb

′
now refers to the coordinates in N of the point h(p) for p in M , and V b′

to the corresponding components of h∗V in N . Regarding the previous interpretation of
(2.3) as the special case where M = N and h is the identity map p 	→ p we see why this
should be so.

A curve can be expressed in coordinates by m functions xa(v) where v in R is the curve
parameter, which could be taken to lie in the interval I = [0, 1]. The tangent vector at any
point of a differentiable curve is then V a = dxa/dv. This suggests a way of relating vectors
in differential geometry to the elementary idea of vectors as displacements, by identifying
the vector with the displacement from p to a point at unit parameter distance along a curve
α with tangent V. However, since such curves α are not unique, making this concept precise
requires a way to fix α.
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Many of the entities in physical theories, such as an electric field, are vector fields rather
than vectors, i.e. they require a specification of a vector at each point of spacetime. We
shall then need to be able to compare vectors at neighbouring points, so we need to make
the set of all tangent spaces Tp(M) at all points p in M (the tangent bundle T (M) of M) a
differential manifold. To do so, the coordinates on a neighbourhoodU inM can be extended
to a neighbourhood U ×R

m in T (M) by using coordinates (xa ,V b), V b as in (2.2). The
tangent bundle thus has dimension 2m. Vector fields are then (differentiable) maps from M

to T (M) determining a particular vector Vp in Tp(M) at each point p in M . Since we so
frequently use vector fields, we often say ‘vector’ when strictly we mean ‘vector field’.

Any set ofm linearly independent vector fields forms a basis forTp(M) at each point. Usu-
ally introductory texts discuss only coordinate bases {∂a}, but in spacetimes non-coordinate
bases, in particular bases of vectors whose scalar products are constants, are often use-
ful (see Section 2.8). Hence where possible we obtain relations in an arbitrary basis: the
specialization to constant scalar product or coordinate bases is usually easy.

We can compute the commutator of (differentiable) vector fields V and W, provided that
the functions f are at least C2. In that case, V gives a new function V(f ) to which W can
be applied. The commutator

[V, W](f ) := V(W(f ))−W(V(f )) (2.5)

is a vector field which has coordinate components

V b ∂W
a

∂xb
−Wb ∂V

a

∂xb
. (2.6)

Direct evaluation shows that such commutators always obey the Jacobi identity

[U, [V, W]]+ [V, [W, U]]+ [W, [U, V]] = 0 (2.7)

for any three (sufficiently differentiable) vector fields U, V and W. Commutators are
preserved by a map (2.4), i.e.

[h∗V, h∗W] = h∗[V, W] . (2.8)

A covariant vector is characterized by the analogue

ωb′ = ωa

∂xa

∂yb
′ . (2.9)

of (2.3); examples are provided by differentials of functions df . In this language the tangent
vectors above are ‘contravariant’, and these names continue to be used for the upper and
lower index positions on tensors – see Section 2.3. The more modern name for a covariant
vector is a 1-form. Given a vector V, ω can operate on it to give a scalar ω(V) = ωaV

a ,
so covariant vectors are elements of the algebraic dual of the space of tangent vectors.
Although this means that the spaces of tangent vectors and of 1-forms at a point are each
vector spaces of dimensionm, and hence isomorphic, there is no unique map between them.

Following the way we built the tangent bundle from tangent vectors, we can build the
1-form bundle T ∗(M) of M , also called the cotangent bundle of M , and 1-form fields
(usually called just 1-forms, for brevity). From a map of manifolds h : M →N we obtain
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a map h∗ : T ∗(N)→ T ∗(M), the pullback, by the rule that for any ω in T ∗(N) and v in
T (M),

(h∗ω)(v)= ω(h∗v) , (2.10)

using (2.4). Using (2.3) this gives

(h∗ω)a = ∂yb
′

∂xa
ωb′ (2.11)

for the coordinate components of 1-forms, and (2.9) can be seen to be the case whenM =N .
Thus (2.9) can be re-interpreted in the general case as (2.3) was, so that the coordinates
now relate to two different manifolds. Note that if h maps M with coordinates xa to N with
coordinates yb

′
, in general only the derivatives ∂yb

′
/∂xa are defined, because h(M) will

be only a submanifold of N , so one has only the maps h∗ of vectors on M to vectors on N

and h∗ of 1-forms on N to those on M , and not maps of vectors on N to vectors on M or
1-forms on M to those on N .

2.3 Tensors

Physics uses tensors widely, physicists usually encountering first some of rank two. Among
them are: in the mechanics of rigid bodies, the tensor composed of the moments and products
of inertia, mapping angular velocity (a vector) linearly to angular momentum (another
vector); in fluid dynamics, or elastic media, the shear, strain and stress tensors; and in
electromagnetic theory in special relativity, the Maxwell field tensor and its associated
stress tensor.

In linear algebra, a tensor T is an operator acting linearly on each of a number of copies
of a vector space V and its dual V ∗, giving a numerical value T (v1, . . . , vq , w1, . . . , wp)

for each choice of a set of vectors vb, b = 1, . . . , q, in V and 1-forms wa , a = 1, . . . , p, in
V ∗. Such a tensor is said to have rank p+ q and type (p, q). The tensors of type (1, 0)
constitute V itself, and those of type (0, 1) constitute V ∗. Scalars, i.e. numbers, are regarded
as tensors of type (0, 0). In a basis {ea} of V with dual basis {ωb} of V ∗, the components
of a tensor T are the values T (ef , . . . ,eh,ωa , . . . ,ωc). From linearity in each argument we
then get

T (v1, . . . , vq , w1, . . . , wp)= T ab···c
fg···hw1

aw
2
b · · ·wp

c v
f
1 v

g
2 · · ·vhq , (2.12)

where we must remember that the superscripts on w
q
a and subscripts on vcb are not compo-

nent indices, just labels. So far the order of upper indices relative to lower indices is not
significant.

The space of type (p, q) tensors is itself a vector space.Abasis of this space is provided by
the product of basis elements ofV andV ∗ so that we could write, for instance, T=T a

beaωb.
In the context of differential geometry, we are interested in the tensors constructed from

the tangent vectors. These are given by the following formula for the change of coordinate
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components of tensors:

T a′b′···
i′j ′··· = ∂ya

′

∂xc

∂yb
′

∂xd
· · · ∂x

k

∂yi
′
∂xm

∂yj
′ · · ·T cd···

km··· , (2.13)

which contains as special cases the rules (2.3) and (2.9). The same formula of course results
from expansion of (2.12) in terms of coordinates, using the fact that the Jacobian matrix
gives the relevant linear transformation of bases. (As already mentioned, the superscript
indices are referred to as contravariant and the subscripts as covariant.) From this it is easy
to show that the Kronecker delta symbol δab, which has the value 1 if a = b and zero
otherwise, is a tensor.3

From the requirement that for all choices of vectors and 1-forms the formula (2.12) gives
a scalar, one can deduce that the components of T form a tensor obeying (2.13), a result
known as the ‘tensor detection theorem’ (sometimes called the ‘quotient theorem’ although
no division is involved).

Many of the tensors used in general relativity, and physics generally, are either symmetric
or skew-symmetric (also called antisymmetric). Taking a rank two covariant tensor, its
symmetric part is the tensor whose components are

T(ab) := 1
2 (Tab+Tba) . (2.14)

Symmetrization over n indices similarly implies taking all possible permutations of those
indices, and dividing by the number of such permutations;

T(abc) := 1
6 (Tabc+Tcab+Tbca +Tacb+Tbac+Tcba) , (2.15)

for example. Antisymmetrization is analogous, except that each term involving an odd
permutation (i.e. one obtainable by an odd number of exchanges of pairs of indices) is
multiplied by a factor (−1); thus the antisymmetric, or skew, part of a rank two tensor is

T[ab] := 1
2 (Tab−Tba) , (2.16)

and for a rank three tensor,

T[abc] := 1
6 (Tabc+Tcab+Tbca −Tacb−Tbac−Tcba) . (2.17)

Tensors of rank greater than two can be symmetrized or skewed on any set of indices (two
or more) of the same type. The notation is extended, if the indices (anti)symmetrized over
are not adjacent, by using a vertical bar to mark the limits of the (anti)symmetrization; thus,
for example,

T(a|cd|b) := 1
2 (Tacdb+Tbcda) . (2.18)

It is a simple exercise to check that (anti)symmetrization is a property invariant under basis
changes.

Covariant tensors skew on all theirp indices are referred to asp-forms. One can introduce
a derivative d on the space of p-forms (extending the concept of df above), giving the

3 Later we shall use δab , with the same values for given a and b, but which, unlike δba , is not a tensor. It is used,
for example, to write the metric of a three-dimensional spacelike surface in an orthonormal basis.



33 2.3 Tensors

exterior calculus. For information on this see e.g. Schutz (1980) or Stephani et al. (2003),
Chapter 2. The p-form fields and their exterior calculus play an important role in gauge
theories and string theory (see Section 20.3.1).

For a rank two tensor, one easily sees that it can be uniquely split into symmetric and
skew parts:

Tab = T(ab)+T[ab], (2.19)

and similar, but more complicated, combinations hold for higher ranks (Young tableaux,
familiar in quantum mechanics, are a means of working out the combinations required: see
Agacy (1997)).

In simplifying complicated tensor expressions it is often useful to remember the easily
proved rule that ‘symmetric contracted with skew gives zero’, i.e. if Aab···

mn··· is a tensor
symmetric in ab andBpq···

abk··· is a tensor skew in ab, thenAab······B ···
ab··· is 0. In particular

if we have a symmetric metric gab (see Section 2.7.1) the trace of a skew tensor is zero: if
Aab =A[ab], then A :=Aa

a = gabAab = 0.
Now we consider various algebraic operations on tensors. Addition and subtraction, and

multiplication by scalars, are simple. The (outer) product of two tensors, T1 of type (p1, q1)

and T2 of type (p2, q2), is the tensor acting on (p1 +p2) copies of V ∗ and (q1 +q2) copies
of V whose action uses T1 on the first p1 copies of V ∗ and q1 copies of V , and T2 on the
rest. In terms of components we can write the new tensor T as

T ab···cd···e
fg···hi···m = T1

ab···c
fg···hT2

d···e
i···m . (2.20)

The other algebraic operation we need on tensors is contraction. The contraction on the
j th contravariant index and kth covariant index is the tensor whose components are

T ab···n···c
de···m···f δmn = T ab···m···c

de···m···f , (2.21)

where on the left side m is the kth covariant index and n is the j th contravariant index
on T . Calculations involving substantial numbers of contractions are hard to notate in an
index-free way: indices become almost essential (compare Schouten (1954), Section I.11).
It should also be noted that the (dummy) indices on which contraction takes place can be
renamed without changing the value of the resulting expression, so any name other than
those of the free indices or of other dummy indices can be used. Useful scalars can often
be obtained from tensors by suitable contractions.

We can now construct tensor bundles (as we constructed the tangent vector bundle and
cotangent bundle), tensor fields (and scalar fields) and maps h∗ for tensors of type (p, 0)
on M and h∗ for tensors of type (0, q) on N from a map h : M → N (by the obvious
generalizations of (2.4) and (2.10)). Maps of more general tensors are only possible when
h is invertible, so that we can use (h−1)∗ to map forms from M to N and (h−1)∗ to map
vectors from N to M; in this case the formula (2.13), appropriately re-interpreted, gives the
relation between the components.

One of the most important characteristics of tensors, and the one which led to their use
as the means of formulating the Maxwell equations in special relativity and the Einstein
field equations for gravity in general relativity, is that an equation between tensors of the
same type will take the same form in all bases or coordinate systems, so it models the
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physical situation in a way which is completely coordinate or basis invariant: note that
such equations are only meaningful if every term has the same type. Moreover, if such an
equation is satisfied in one basis or coordinate system, it is true in all, which sometimes
provides simple proofs.

Some applications, such as integrals, need tensor densities, which, for manifolds with a
metric gab as defined in Section 2.7, transform like a tensor multiplied by a power of

√|g|,
so that when a coordinate transformation is applied they pick up a factor of the determinant
of the transformation matrix, as well as the factors in (2.13).

Having set up the algebra of tensors, we want to be able to differentiate tensor fields,
but in general the partial derivative of a tensor is not a tensor, as direct calculation shows.
In order to take derivatives we need to say which tensors at neighbouring points are to be
regarded as equal: then, given a point q ∈M and a neighbouring point p, we can compare
the actual tensor at p with the tensor at p ‘equal’ to the actual tensor at q, and thus find
the change in the tensor due to the displacement from q to p. Next we discuss the two
main ways to specify such an equality, the Lie derivative and the covariant derivative. The
Lie derivative requires a given vector field v (not just a vector at a point, because, except
for scalar arguments, the value of the Lie derivative depends on the derivatives of v). The
covariant derivative uses an additional structure, the connection.

2.4 Lie derivatives

The Lie derivative with respect to a vector field v is given for scalars, vectors and 1-forms
respectively by the relations

Lvf = f,av
a , (2.22)

Lvw = [v, w]⇔ (Lvw)a =wa
,bv

b− va ,bw
b , (2.23)

(Lvσ )a = σa,mv
m+σmv

m
,a , (2.24)

from which the Lie derivative of a tensor of arbitrary type can be deduced using the Leibniz
rule.

A coordinate-free definition of the Lie derivative can be obtained by dragging objects
along a congruence of curves. For each point p in M , a vector field v fixes a unique curve
γp(t) such that γp(0) = p and v is tangent to the curve at all points. The family of such
curves – one through each point – is called the congruence associated with the vector field,
and is said to be generated by v. Conversely, a congruence of (differentiable) curves, one
through each point in a neighbourhood, induces a vector field on that neighbourhood.

‘Dragging along’ (Schouten, 1954) through a parameter distance t means taking the map
of manifolds which mapsp to q= γp(t) and using the associated push-forward and pullback
maps. The Lie derivative then takes the limit of the difference of the value at a point and
a dragged-along value, divided by the change in t . An object with zero Lie derivative is
said to be Lie dragged. Using dragging, Lie derivatives can be calculated for non-tensorial
geometric objects such as the connection introduced in the next section.
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If we have a vector field v, and a corresponding congruence of curves, a vector p dragged
along a curve is called a Jacobi field along the curve.Assuming v and p are not parallel, then
p, considered as defining an infinitesimal displacement between curves, always connects
the same two curves of the congruence, and is therefore called a connecting vector for the
congruence. Thus connecting vectors obey

Lvp = [v, p] = −Lpv = pa
,bv

b− va ,bp
b = 0 . (2.25)

Another important application of the Lie derivative is to spacetime symmetries (see
Section 2.7.1).

2.5 Connections and covariant derivatives

We now describe a second way of specifying equality of tensors at neighbouring points,
introducing the connection. From that we can obtain a derivative, the covariant derivative,
by the usual limiting processes.

Take the case of vectors first. For every small displacement δx, from p to q, say, and for
each vector v at p, we need the ‘equal’ vector at q. To preserve the vector space structure,
the map chosen must be linear in v and tend to the identity as δx → 0. To introduce a
derivative, we also want linearity in δx, in lowest order approximation. Hence for small
δx, the transformation can be approximated as the identity minus4 a small transformation
� where � depends linearly on δx. Thinking of δx as being in Tp(M), the resulting map
Tp(M)→L, where L is the space of linear maps of vectors, is called a connection because
it connects vectors at neighbouring points of the manifold. With coordinates {xa}, we can
write the transformation for δx as δab − a

bcδx
c: the a

bc are the components of the
connection. The covariant derivative ∇c in the xc direction of a vector with values va is
now

∇cv
a = va ,c+a

bcv
b , (2.26)

which is usually denoted va ;c.
We can introduce a connection in the same way for vector spaces other than tangent

vectors. If at each point there is a vector space, with vectors vI , I = 1, . . . ,k say, the
connection will have the form I

Jc; in physics these are gauge potentials, often denoted
A with indices suppressed. Note that for electromagnetism k = 1 so the indices I , J are
dropped and the resulting A= � is the usual vector potential: the corresponding covariant
derivative appears, for example, in calculating the Zeeman effect.

We assume that for scalar functions ∇cf = ∂cf = f,c. Then in order for covariant differ-
entiation of tensors to obey the Leibniz rule we have to take specific associated connections
on the cotangent bundle, and the various tensor bundles. These are given, relative to the

4 Minus by convention: plus could have been used.
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same basis, by

∇aωb = ωb,a −c
baωc, (2.27)

∇qT
ab···c

�m···p = T ab···c
�m···p,q +a

rqT
rb···c

�m···p · · ·+c
rqT

ab···r
�m···p

−r
�qT

ab···c
rm···p · · ·−r

pqT
ab···c

�m···r , (2.28)

where in the last formula there is one term with a product of � and T for each index on
T and the indices in these terms are arranged so that each index of T is contracted in turn
with one on �. For brevity we write the components of the covariant derivative of a tensor,
∇qT

ab···c
�m···p say, as T ab···c

�m···p;q . The covariant derivative itself, being a tensor, can of
course be covariantly differentiated, and we notate this as, e.g. T ab···c

�m···p;qr .
We can combine the derivatives ∇a into a single operator ∇ which maps vectors to

differential operators, such that ∇u = ua∇a ; we can regard ∇a as the result of applying ∇
to the basis vector ∂a . The components of ∇uT for the tensor above would be

∇uT
ab···c

�m···p = T ab···c
�m···p;qu

q , (2.29)

so ∇ maps tensors of type (p, q) to tensors of type (p, q+ 1). For a vector v,

∇v = va ;beaω
b , (2.30)

using bases {ea} of V and {ωb} of V ∗. If we have a curve with parameter λ and tangent
vector u we can define, for any quantity Q,

DQ

Dλ
=Q;bu

b . (2.31)

The usual differentiation of (tangent) vectors in R
n does involve a connection, but all

of its components are zero in Cartesian coordinates: however, its components are not zero
in general curvilinear coordinates, and they appear in the formulae for three-dimensional
vector calculus in, for example, spherical polar coordinates. Because the ‘equal’ vectors in
R
n are the parallel vectors in the usual sense, the connection used in (2.26) is regarded as

a generalization of the concept of parallellism. A vector or tensor field with zero covariant
derivative along a curve is therefore said to be parallelly propagated (or transferred or
transported). In curved space (see Section 2.6), parallel propagation is only meaningful
along a particular curve, and not globally.

A curve whose tangent vector va is itself parallelly propagated along the curve is called
an autoparallel and obeys the equation

va ;bv
b = 0 , (2.32)

or in component form with va = dxa/dλ,

d2xa

dλ2
+a

bc

dxb

dλ

dxc

dλ
= 0. (2.33)

This is often called the geodesic equation, although when we introduce geodesics (see
Section 2.7.2) we shall find that strictly this is only correct for Riemannian spaces. Even
in that case, where the parameter w along the autoparallel curve such that va = dxa/dw
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is called an affine parameter, we find that the same curve expressed with a non-affine
parameter would obey a more complicated expression but would still be geodesic.

The connection provides a specific link between vectors and displacements. For each
vector V at p take an autoparallel curve whose tangent vector at p is V, and move a unit
affine parameter distance along it, to q say: this is called the exponential map, mapping
V → q, and exists for a maximal region U around p called a normal neighbourhood.
Choosing a basis of Tp(M)∼= R

m at p, the components of V then give coordinates for q,
these being the Riemannian normal coordinates in U .

Since for any pair of vectors v and w, and any basis, the combination

∇vw−∇wv−[v, w] = (a
bc−a

cb)v
bwc∂a (2.34)

is a vector, we see that the components

a
bc−a

cb =: T a
bc (2.35)

specify a tensor, the torsion T a
bc.

It should be noted that the connection is not a tensor. This is natural since the partial
derivative of a tensor is also not a tensor, while the combination of partial derivative and
connection terms is. In fact a direct calculation gives

a′
b′c′ =

(
∂ya

′

∂xa
a

bc− ∂2ya
′

∂xb∂xc

)
∂xb

∂yb
′
∂xc

∂yc
′ . (2.36)

However, the difference between two connections (on the tangent bundle) is a tensor; the
torsion is an example, being (twice) the difference between the connection and its symmetric
part which is also a connection.

We can understand the physical meaning of symmetry of the connection (T a
bc = 0) as

follows. If we take a point with coordinates xa and construct a ‘parallellogram’ by taking
two infinitesimal displacements δxa1 and δxa2 and parallelly transporting the displacement
δxa1 along δxc2 and vice versa, the figure closes for all choices of δxa1 and δxa2 if and only if

a
bc = a

cb ⇔ T a
bc = 0. (2.37)

Thus the name torsion refers to the idea that some parallelograms will no longer close due to
some kind of twisting of the space. From now on, unless otherwise stated, we shall assume
that the torsion is zero.

2.6 The curvature tensor

2.6.1 Curvature and covariant differentiation

Curvature arises from the noncommutation of covariant derivatives. In components the
curvature tensor or Riemann tensor Rd

abc is given by

wd
;bc−wd

;cb =−Rd
abcw

a (2.38)
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for arbitrary wa (some authors use the opposite sign convention here). Substitution from
(2.26) gives

Rd
abc := d

ac,b−d
ab,c+d

ec
e
ab−d

eb
e
ac. (2.39)

To show that this is actually a tensor, we can directly apply a coordinate transformation, or
introduce the type (1, 3) tensor R such that

R(σ , u, v, w)= σ ((∇u∇v −∇v∇u −∇[u,v])w) (2.40)

for arbitrary 1-form and vector fields, σ , u, v and w and show that this has the component
form (2.38).

From these forms we see that R is always skew in its last two indices:

Rd
abc =Rd

acb ⇔Rd
a(bc) = 0 . (2.41)

Direct calculation shows that in addition

Ra [bcd] = 0; (2.42)

this is called the first Bianchi identity. It can be viewed as a version of the Jacobi identity
(2.7) applied to the basis vectors ∂a . We also obtain the second Bianchi identities, often
called simply the Bianchi identities, which can be written

Ra
b[cd;e] = 0 . (2.43)

The contraction

Rab :=Rc
acb =−Rc

abc (2.44)

of the curvature tensor yields the Ricci tensor (some authors use the opposite sign convention
here). This in general has no symmetry, but for Riemannian spaces it is symmetric (see
Section 2.7). The Ricci tensor satisfies the (once) contracted Bianchi identities

Rbd;e−Rbe;d +Ra
bde;a = 0 . (2.45)

An alternative interpretation (and definition) of curvature is provided by considering
parallel transport around a closed curve. In general this does not bring a vector back to its
original value. The effect is called holonomy, and the group of all transformations of the
tangent space obtained from parallel transport around different closed curves is called the
holonomy group. Curvature arises from considering holonomy around infinitesimally small
closed curves: direct calculation shows that the change between the original and final vectors
is given by the curvature contracted with a skew two-index tensor giving the area (and the
plane in which it lies). We can understand how this is related to the (non)commutation of
covariant derivatives in (2.38) by remembering that parallel transport corresponds to a zero
covariant derivative.

One can compute curvatures by direct application of the formula (2.39) but this is cum-
bersome (even if using the methods of Section 2.8). The exterior calculus provides very
neat and efficient methods if one is calculating by hand (see e.g. Schutz (1980)). Nowadays
the most effective way is to use one of several available computer programs, which can
exploit the symmetries of the objects involved.
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In a gauge theory, the commutator of covariant derivatives gives a curvatureRI
Jcd which

is the gauge field, usually denoted F with indices suppressed. The key difference is that
in GR the tangent vectors appear both as the spacetime and the internal gauge vectors.
Correspondingly, relativity can and does have different dynamical equations, which use the
possibility of contraction between ‘internal’ and spacetime indices (see Section 3.3).

2.6.2 Curvature and geodesic deviation

A third way of arriving at curvature is to consider ‘geodesic deviation’ (strictly, since we
do not yet have a metric, autoparallel deviation), which is geometrically illuminating and
of direct physical importance.

Consider a pair of neighbouring curves taken from a congruence of autoparallels; let
them be given in terms of affine parameters λ as xa(λ), and have tangent vectors u, so
ua ;bu

b = 0. Letpb(λ)= xb1 (λ)−xb2 (λ), where xb1 (λ) and xb2 (λ) are the nearby autoparallels.
The connecting vectors are dragged along by the tangent vector field to the autoparallels,
and we have from (2.25), for a symmetric connection,

ua ;bp
b = pa

;bu
b. (2.46)

Hence we find that (Synge and Schild, 1949)

D2pa

Dλ2
=−Ra

dbcu
dpbuc. (2.47)

Thus we see how to describe the relative acceleration between autoparallels (and, in Rie-
mannian spaces, geodesics) in terms of the curvature. This is fundamental in seeing how
curvature focuses light rays (see e.g. Ellis and van Elst (1999b)) and causes tidal forces
when acting on freely moving matter (Pirani, 1956).

By a similar calculation we see that connecting vectors between curves which are not
autoparallel obey

D2pa

Dλ2
=−Ra

dbcu
dpbuc+ (ua ;bu

b);cp
c , (2.48)

which will show how matter experiencing other forces responds to the gravitational field.

2.7 Riemannian geometry

2.7.1 The metric tensor

The spacetimes of general relativity have an important additional structure, the Riemannian
metric gab which is a (differentiable) symmetric type (0, 2) tensor field and gives a specific
map between vectors and 1-forms, assumed to be 1−1. The metric, operating on a pair of
vectors, gives a scalar product

v ·w = gabv
awb . (2.49)
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Sometimes the term Riemannian is reserved for the case where the quadratic form (2.49)
is positive definite, in which case the indefinite metric used in relativity would be called
pseudo-Riemannian or semi-Riemannian, but we do not generally make this distinction. (A
metric which is not 1−1, and hence not Riemannian, is said to be degenerate.)

In a basis (coordinate or general) the metric gives us a quadratic form,

g(dx, dx)= ds2 = gabdx
adxb, (2.50)

on infinitesimal displacements, sometimes called the line element. The notation ds2 comes
from the fact that in the positive definite case one can, for a displacement, consider ds to
be its length.

Two vectors v, w, are said to be orthogonal if v.w= 0. In relativity, spacetime has dimen-
sion 4 and the metric has signature ±2 where the sign depends on choice of conventions;
we choose+2 so there are three positive eigenvalues and one negative. Anon-zero vector is
then said to be spacelike, timelike or null (or lightlike) depending on whether v.v is positive,
negative or zero, respectively.

At any point in spacetime, the set of timelike vectors and the set of non-zero null vectors
each have two disjoint subsets, which we can call the future and past. The null vectors form
a cone, the null cone or light-cone, which divides the timelike vectors from the spacelike
ones. It has two parts, the future and past light-cones, with the zero vector as the common
apex. We usually assume that spacetime is time orientable, i.e. that the choice of the future
direction can be made consistently over the whole manifold.

If one makes a change of the metric by

g′ab =�2gab, (2.51)

lengths are changed but angles between vectors are not. For this reason the change is called
a conformal transformation. Under conformal transformations null vectors remain null
and the light-cones are unaltered. Hence the causal structure of the spacetime is unaffected,
where causal structure is determined by whether pairs of points can be joined by everywhere
timelike or null future-pointing curves; note that this assumes time orientability. The field of
light-cones can therefore be regarded as specifying the conformal structure of the spacetime.

For positive ds2 (spacelike displacements), the arc length along a curve xa(λ), where λ
is the curve parameter, is

s =
∫ √(

gab
dxa

dλ

dxb

dλ

)
dλ . (2.52)

For negative ds2 (timelike displacements), dτ =√−ds2 defines the proper time τ along
the curve, with the same physical meaning in spacetime as in special relativity: for such
curves τ is the arc length. (Only if we considered curves which were partly timelike and
partly spacelike would this inconsistency in the definition of arc length be a problem.)

A non-degenerate metric has an inverse, which is a symmetric (2, 0) tensor denoted gab

that obeys

gabgbc = δac . (2.53)
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The metric and its inverse then enable us to raise or lower any index on a tensor. Consequently
we can no longer collect all indices of the same type together, as we have up to now, because
we need to keep track of the raising and lowering of indices; it is not in general true that
gabTbcd = gabTcbd , so we cannot write both as T a

cd . The convention is to maintain a
fixed horizontal order of indices whether they are raised or lowered, so we would write
gabTcbd = Tc

a
d and gabTcdb = Tcd

a .

2.7.2 Geodesics and the Levi-Civita connection

Using arc length (2.52), we can characterize geodesics as extremal curves, i.e. those whose
total arc length is stationary under small variations of the curve. For spacelike or timelike
curves we can easily carry out the variational calculation (things are not so simple for the
null case, but we can treat this as a limit of the nonnull cases). Taking the spacelike case,
we obtain a variational problem with Lagrangian

L=
√
gab

dxa

dλ

dxb

dλ
= ds

dλ
. (2.54)

The resulting Euler–Lagrange equation is

d

dλ

(
gab

dxb

dλ

)
− 1

2
gbc,a

dxb

dλ

dxc

dλ
= d2s/dλ2

ds/dλ
gab

dxb

dλ
. (2.55)

We can always choose λ so that d2s/dλ2 = 0. Such a λ is called an affine parameter. In
spacetime, s itself is an affine parameter on spacelike curves, and τ is an affine parameter
on timelike curves (and is the one which is almost always used). From the equation satisfied
by an affine parameter it is easy to show that all affine parameters for a given curve are
related by linear equations with constant coefficients. With an affine parameter we have

d

dλ

(
gab

dxb

dλ

)
− 1

2
gbc,a

dxb

dλ

dxc

dλ
= 0,

which can be rewritten as

d2xd

dλ2
+gda

(
gab,c− 1

2
gbc,a

)
dxb

dλ

dxc

dλ
= 0 . (2.56)

As a consequence of the symmetry of
dxb

dλ

dxc

dλ
in bc and the rule ‘symmetric contracted

with skew is zero’ we need only take the part of the first term in the bracket symmetric in
bc, so obtaining

d2xd

dλ2
+ 1

2g
da(gab,c+ gac,b−gbc,a)

dxb

dλ

dxc

dλ
= 0 . (2.57)

We thus find that using an affine parameter casts (2.55) into the form of the autoparallel

equation (2.32), so that the coefficients of the terms
dxb

dλ

dxc

dλ
for varying b and c in (2.57)
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must form a connection, called the Levi-Civita connection. This connection has as its coor-
dinate components the Christoffel symbols (of the second kind)

{
d
bc

}
, i.e. in a coordinate

basis,

d
bc =

{
d
bc

}
:= 1

2g
da(gab,c+gac,b−gbc,a) . (2.58)

For hand calculations of the Levi-Civita connection it is useful to note that the Lagrangian
L= gab(dxa/dλ)(dxb/dλ) gives (2.57) as its Euler–Lagrange equations.

It is now obvious that in a space with a Riemannian metric, if there is no torsion and the
geodesics are also to be autoparallels, i.e. if these curves are to satisfy the generalizations
of both of the natural definitions of ‘straight line’ in Euclidean space, the connection must
be the Levi-Civita one. Substitution from (2.58) gives

gab;c := gab,c−abc−bac = 0 . (2.59)

Since this is a tensorial equation it must be true in all bases, so parallel transport preserves
lengths and angles given by the scalar product (2.49). Conversely, (2.59) and absence of
torsion lead to the Levi-Civita connection and so ensure that geodesics are the same as
autoparallels. Moreover (2.59) implies that indices can be raised or lowered freely inside a
covariant derivative with this connection, and (2.38) can then easily be extended to tensors
of all ranks.

A space with Riemannian metric and Levi-Civita connection is called a Riemannian
manifold.5 Many generalizations of general relativity also use a space with a metric (which,
as Dicke (1963) has argued, is necessary if particle motion under gravity is to be obtainable
from a Lagrangian formulation) but may use a different connection on the tangent bundle:
such manifolds are called metric-affine, with more specific names depending on the nature
of the assumed connection.

2.7.3 Spacetimes with symmetry

Considering the metric as a sum of products of one-forms, we see from (2.24) that

(Lvg)ab = gab,mv
m+gmbv

m
,a +gamv

m
,b .

Using (2.59) and (2.26) we find that the metric tensor is Lie dragged into itself by the
transformations generated by a vector field v if and only if

(Lvg)ab = va;b+ vb;a = 0, (2.60)

this being Killing’s equation. This implies that if a Killing vector field ξ has ξa = 0 and
ξa;b = 0 at a point p, then ξ ≡ 0.

The weaker symmetries in which

(Lvg)ab = 2φgab (2.61)

5 Or, if one needs to distinguish the positive definite and indefinite cases, a pseudo-Riemannian or semi-
Riemannian manifold in the indefinite case.
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for some function φ are conformal motions: the sub-cases where φ = const �= 0, called
homotheties or self-similarities, are of some importance in cosmology. The vectors v in
(2.60) and (2.61) are called respectively Killing vectors and conformal Killing vectors.

It is easy to see that linear combinations of Killing vectors with constant coefficients are
also Killing. The set of all Killing vectors on a manifold forms a Lie algebra, i.e. a vector
space with a bilinear commutator operation obeying (2.7), since the rules for Lie derivatives
imply that the commutators are Killing. If {ξA : A= 1, . . . ,r} is a basis of the Lie algebra,
we must have

[ξA, ξB ] =CC
ABξC , CC

AB =−CC
BA . (2.62)

The coefficients CA
BC are called the structure constants of the algebra. The Jacobi identity

for {ξA : A= 1, . . . ,r} expressed in terms of these constants reads

CE [ABCF
C]E = 0 . (2.63)

The set of finite transformations generated by {ξA} forms the corresponding Lie group G

of symmetries of the spacetime. Its dimension is often shown by the notation Gr , and the
group is said to have r parameters.

The orbit (or trajectory, or minimum invariant variety) Op of G through a fixed p is the
set of points to which elements of G map p. It is a submanifold of M. The group G is
said to be transitive on its orbits, and to be either transitive (when Op =M) or intransitive
(Op �=M) on M . It is simply transitive on an orbit if for any q in Op the transformation
from p is unique; otherwise it is multiply transitive.

The set of g in G which maps p to itself forms a subgroup of G called the isotropy group
H(p) of p for groups of motions (or, more generally, the stability group): its generators
have v= 0 at p. For any q in Op, H(p) and H(q) are conjugate subgroups of G, and have
the same dimension, s say; one can thus for brevity refer to the isotropy subgroup Hs of an
orbit. Denoting the dimension of Op by d we thus have

r = d+ s . (2.64)

For more information on Lie groups, their related Lie algebras and their application as
transformations of manifolds and spacetimes see Chapter 8 of Stephani et al. (2003) and
references therein.

The Riemannian structure is invariant under the transformations in Gr , called motions
or isometries and discussed further in Chapter 17. Consequently the connection, curvature
tensor and all quantities defined uniquely by them in a covariant way will also be invariant.
Kerr (1963) proved that in a four-dimensional Einstein space, the number of functionally
independent scalar invariants is 4−d , where d is the dimension of the orbits of the maximal
group of motions.

A universe model is spatially homogeneous if there are spacelike surfaces {t = const}
in which any point can be moved to any other point by an isometry. This will be the case
if and only if there are at least three independent Killing vector fields everywhere in these
surfaces. A model is spherically symmetric if there exist spacelike 2-spheres S2 everywhere
(except possibly at the centres of the spheres) in which the rotation group O(3) acts as an
isometry group.
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Example: The Robertson–Walker (RW) metric We can choose coordinates {t , r , θ , φ}
for a RW model such that the metric is

ds2 =−dt2 + a2(t)[dr2 +f 2(r)(dθ2 + sin2 θ dφ2)], (2.65)

where a(t) is the ‘scale factor’ showing how the size of the universe changes with time6

and f (r)= sin r , r or sinh r if the universe has spatial sections of positive, zero or negative
curvature respectively (but compare Section 9.1.3). Fundamental observers move on the
lines {r , θ , φ} = const, so their 4-velocity is ua = dxa/dt = δa0 . The simplest case is the
Einstein–de Sitter model, with flat space sections and a(t)= t2/3.

This is the standard metric used for the universe in cosmology. It is both spatially homo-
geneous and isotropic about every point. The geometry and dynamics of RW spacetimes
will be explored in detail in Part 3.

2.7.4 Riemannian curvature

When the manifold is Riemannian, then in addition to the curvature symmetries given
above, i.e. (2.41) and (2.42), one can show by evaluation in coordinates using (2.58) that
the curvature obeys

R(ab)cd = 0, Rabcd =Rcdab . (2.66)

The first of these results can also be obtained by applying the Ricci identity (2.38) to gab

and using (2.59), and the second by using the first, (2.41), and the cyclic identity (2.42).
For (four-dimensional) spacetime, these symmetries imply that of the 256 components

of Rabcd only 20 are independent. This follows by first considering only the 36 possible
components obtained from distinct skew pairs ab and cd, then noting that the 6×6 matrix
thus obtained is symmetric (with 21 components), and finally evaluating the first Bianchi
identity (2.42) which gives one more equation.

From the second of (2.66) it follows that the Ricci tensor now obeys

Rab =Rba . (2.67)

Moreover, with a metric we can now obtain the Ricci scalar,

R := gabRab . (2.68)

Using the metric we can contract the Bianchi identities (2.45) a second time and obtain

(Ra
b− 1

2Rδ
a
b);a = 0; (2.69)

Ga
b =Ra

b− 1
2Rδ

a
b is called the Einstein tensor.

In a Riemannian space, whatever the initial coordinates, since the matrix gab of com-
ponents of the metric at a point xc = Xc (for some constants Xc) is symmetric, a linear
transformation ya

′ = La′
ax

a , where the components of La′
a are constants, can be used to

6 This notation is the most common one now: in older literature the corresponding quantity may be denoted � for
‘length’, R for ‘radius’ or S for ‘scale factor’.
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transform it into diagonal form. Thus there are coordinates, in any spacetime, in which at a
given point Xc,

ds2 =A2dx2 +B2dy2 +C2dz2 −D2dt2. (2.70)

provided that the metric has the correct ‘signature’, i.e. that three of the eigenvalues of
the matrix of components are positive and one is negative. This is an invariant property
of tensors, and independent of the choice of initial coordinates. At Xa , a simple further
transformation, re-scaling each coordinate, sets A= B = C =D = 1 in (2.70) as required
by the condition that the metric is locally that of special relativity. We can also shift the
origin to Xa .

Using the coordinates with these properties, we can additionally require that the con-
nection vanishes at the origin, so that geodesics are approximately straight coordinate lines
there. Making a transformation to new special coordinates ya

′
we find from (2.36) that to

achieve this we need

a
bc = ∂2ya

′

∂xb∂xc

∂xa

∂ya
′ at the origin,

which is satisfied for any symmetric connection if

∂xa

∂ya
′ = δaa′ and

∂2ye

∂xf ∂xg
= e

fg at the origin

and this in turn is satisfied if

ya
′ = δa

′
e(x

e+ 1
2

e
fgx

f xg). (2.71)

Coordinates which obey the restrictions so far imposed are called locally orthogonal
geodesic coordinates (for brevity, LOGC). In LOGC the metric can be written as

ds2 =−dt2 + dx2 + dy2 + dz2 + kabdx
adxb, (2.72)

where kab is of order 2 in the xa . Riemannian normal coordinates based on an orthonormal
basis of Tp(M) are LOGC and for them a power series for kab can be computed whose
first term is 1

2Racbdx
cxd . Various other refinements of LOGC are used for special purposes.

LOGC are often helpful in checking a tensor equation by evaluating it in a special coordinate
system.

The extreme case is that of zero curvature. It is easy to show (by evaluating (2.39)
in Minkowski coordinates) that Minkowski space is flat (i.e. has zero curvature). In fact
Minkowski space (or a space derived from it by topological identifications) is the only flat

space. To show this, take LOGC at a point Xa . Take the unit vector
(a)
v along the xa axis

at Xa and let the corresponding vector at any other point ya be given by parallel transport
along any curve connecting ya and Xa . That the result is independent of the curve chosen
follows from the holonomy interpretation of curvature. Thus we have obtained a vector

field
(a)
v which has (from its method of definition) a zero covariant derivative. Hence,

(a)
v c;b − (a)

v b;c= 0 ⇒(a)
v c,b − (a)

v b,a= 0,
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since the connection is symmetric. This implies
(a)
v is a gradient, i.e. there is a ξa such that

(a)
v d= ξa ,d .

Using the ξa as new coordinates, the metric in these coordinates must obey

gab ,c = (gdb
(a)
v d

(b)
v b);c = (a)

v d
;c

(b)
v d + (a)

v d (b)
v d;c= 0,

so its components are constants, and by evaluation at Xa , it must be the Minkowski metric.
We have thus proved that Rabcd = 0 in a region if and only if it is a region of Minkowski
space.

2.7.5 The Levi-Civita volume form in spacetime

Given a metric in spacetime, the Levi-Civita 4-form has components

ηabcd =−√|g|εabcd , (2.73)

where g is the determinant of the matrix gab of components of the metric, and εabcd is the
totally skew tensor density whose components are fixed by ε0123 = 1. Note that the value
depends on the orientation of the coordinates (if one interchanged the labels 2 and 3 on
coordinates, the sign of ηabcd would reverse). The Levi-Civita form gives an infinitesimal
volume element,

dV = ηabcd dxadxbdxcdxd , (2.74)

which enables one to integrate functions f in a coordinate-independent way: the eventual
integrand in given coordinates is the scalar density

√|g|f . (In fact such integrals are the
only invariantly defined ones.)

The Levi-Civita 4-form obeys some very useful contraction relations, namely,

ηabcd η
efgh =−24δe[aδf bδgcδhd] , (2.75)

ηabcd η
afgh =−6δf [bδgcδhd] , ηabcd η

abgh =−4δg [cδhd] , (2.76)

ηabcd η
abch =−6δhd , ηabcd η

abcd =−24 . (2.77)

The last four are easily deduced from the first one, which itself follows because both sides
are zero unless abcd and efgh are each permutations of 0123, while, if they are such
permutations, the two sides will each be minus (for spacetimes) the sign of the permutation
turning abcd into efgh (the minus arising from the signature of gab). In a Riemannian
space, ηabcd;e = 0, so we can freely move η inside a covariant differentiation.

Our characterization of ηabcd above is local: in practice we assume that ηabcd exists
globally, which means that spacetime must be orientable.

In three dimensions, the analogous object is denoted ηabc. It has identities similar to,
and deducible from, those above. For an observer moving with 4-velocity ua , the covariant
relation between the four-dimensional Levi-Civita form and a three-dimensional one for
the orthogonal tangent planes is simply

ηabc = ηabcdu
d : (2.78)
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when the three-dimensional planes knit together to form 3-surfaces, this gives a volume
form for the space sections.

The Levi-Civita form and metric enable us to compute, for any tensor skew in 0<m< 4
indices, a corresponding dual object with (4−m) skew indices, by contracting the skew
indices with the last m indices of ηabcd/m!, raised as necessary: in spacetime, carrying
the operation out again on the (4 − m) skew indices arising gives (−1)m−1 times the
original tensor. This operation (which can be stated similarly for any dimension) is called
Hodge duality. It is denoted by prepending or appending ∗ to the symbol for the tensor.
In spacetime, such dualization is especially commonly applied to pairs cd , say, of free
indices, by contracting with 1

2ηabcd : for example, for the electromagnetic field tensor Fab

we have a dual F ∗
ab = 1

2ηab
cdFcd , while for the curvature we have two duals ∗Rabcd =

1
2ηab

ef Ref cd and R∗
abcd = 1

2ηcd
ef Rabef , in which the position of the ∗ shows where the

duality has been applied. (If the metric is not available, the duality is between m-forms
and multi-vectors, elements of the space generated by skewed products of vectors (Schutz,
1980); for an n-dimensional space, a double use of ∗, with the Levi-Civita form, gives
(sgn detg)(−1)m(n−m) times the original tensor.)

2.7.6 TheWeyl tensor

For (four-dimensional) spacetime the Ricci tensor will have 10 independent components;
its trace forms the Ricci scalar. The remaining 10 independent components of the Riemann
tensor are contained in the Weyl tensor,

Cab
cd =Rab

cd + 1
2 (δ

a
dR

b
c− δacR

b
d + δbcR

a
d − δbdR

a
c)+ 1

6R(δ
a
cδ

b
d − δadδ

b
c).

(2.79)

This has all the symmetries of the curvature tensor, but in addition is trace-free on all indices:

Cabcd =C[ab][cd] =Ccdab, Ca[bcd] = 0, Ca
bad = 0. (2.80)

Thus it can be thought of as the trace-free part of Rab
cd . It is in many ways similar to the

electromagnetic field tensor Fab (see Section 5.5). Physically, we can regard it as the ‘free
gravitational field’, i.e. the part of the spacetime curvature not determined locally by the
matter at a point, but rather determined by conditions elsewhere. Thus it represents both a
Coulomb-type part of the field and gravitational radiation.

The Weyl tensor is also known as the conformal curvature tensor, because (a) the tensor
Ca

bcd is unaltered by conformal transformation and (b) if it is zero, the spacetime can
be locally conformally transformed to flat space (or any other conformally flat manifold,
such as the Einstein static universe (Hawking and Ellis, 1973)). These remarks also apply
to dimensions > 4, provided the coefficients in (2.79) are suitably amended. All two-
dimensional Riemannian manifolds are conformally flat. Three-dimensional Riemannian
manifolds are conformally flat if and only if the Cotton tensor,7

Ca
bc := (Ra

b− 1
4Rδ

a
b);c− (Ra

c− 1
4Rδ

a
c);b , (2.81)

7 Also associated with Schouten, Weyl and York.
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vanishes, see Schouten (1954). It may be noted that in three dimensions the Riemann tensor
is completely specified by the Ricci tensor,

Rab
cd = (δacR

b
d − δadR

b
c+ δbdR

a
c− δbcR

a
d)− 1

2R(δ
a
cδ

b
d − δadδ

b
c). (2.82)

In two dimensions it is specified by the Ricci scalar,

Rabcd = 1
2R(gacgbd −gadgbc) . (2.83)

Hence four dimensions is the minimum in which the curvature tensor carries ‘free’ informa-
tion not specified by the Ricci tensor, and so makes gravitational radiation and tidal forces
possible.

The algebraic structure of the Weyl tensor can be characterized by its Petrov type. This
uses the principal null directions (PNDs) k obeying

k[eCa]bc[dkf ]kbkc = 0. (2.84)

There are at most four such null vectors. If they are all distinct, the spacetime is said to
be algebraically general (Petrov type I): otherwise it is algebraically special. It is of Petrov
type II if two PNDs coincide and the others are distinct; type D if two distinct pairs of
PNDs coincide; type III if three PNDs coincide and the other is distinct; and type N if all
four coincide. The conformally flat case Cabcd = 0 is sometimes called Petrov type O. The
Petrov types feature prominently in discussions of gravitational radiation and in obtaining
exact solutions. For example, the Kerr solution for rotating black holes was discovered via
its Petrov type (which is D). For more on Petrov types and applications see e.g. Stewart
(1994) and Stephani et al. (2003).

The fundamental integrability conditions for the curvature tensor, ensuring that it does
come from a connection as in (2.39), are the Bianchi identities (2.43). There is a useful
form of these identities (for spacetime) in terms of the Weyl tensor, which follows from the
properties of ηabcd (in four dimensions). They can be written as

R∗abcd
;d = 0, (2.85)

which in turn implies ∗R∗abcd
;d = 0, where ∗R∗abcd = 1

4η
abstRstuvη

cduv (the double-dual
of the Riemann tensor). After some algebra, this shows that

Cabcd
;d =Rc[a;b] − 1

6g
c[aR;b] =: J abc, (2.86)

where the ‘current’ J abc necessarily has a vanishing divergence,

Cabcd
;dc = 0 ⇒ J abc

;c = 0 . (2.87)

In the vacuum case,

Tab = 0 ⇒Rab = 0 ⇒ J abc = 0 ⇒ Cabcd
;d = 0. (2.88)

Equation (2.86) has a striking similarity to the Maxwell equations (Section 5.5) and
(2.87) to their consequent current conservation equation J a

;a = 0, as we shall see in detail
in Section 6.4.
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2.7.7 Sectional curvature and constant curvature

In a plane specified by two unit vectors u and w, we can evaluate the effect of curvature in
that plane by takingRabcdu

awbucwd , which is called the sectional curvature. If all sectional
curvatures are equal, the space is said to be of constant curvature. In this case the curvature
has the form

Rabcd = κ(gacgbd − gadgbc) , (2.89)

where κ is a constant (note that in (2.83) R need not be constant). Spaces of constant
curvature are highly symmetric and we can find special coordinate systems in which they
take a simple form.

As an example we consider the three-dimensional spaces of constant curvature with
positive definite metric which are used for the spatial sections of the ‘standard model’ of
cosmology with metric (2.65); they are isotropic at every point. We have the freedom to
rescale a → λa with constant λ. When κ �= 0 we can use this freedom to set K = κa2 to
±1, so we now assume K = 1, 0 or −1. (Later we will use a different normalization of a.)
This uniquely determines the scale factor a except when K = 0, when there is no intrinsic
length scale, and we retain this scaling freedom.

Now choose any point p in the surface {�1 : t = const= t1} and draw the radial geodesics
γ of �1 through p, with curve parameter the radial distance r as measured by the induced
three-dimensional metric fij = gij /a

2. The actual distance will then be d = a(t1)r , so
since a(t1) is constant along each of these curves r is an affine parameter on each of them.
Isotropy about every world line implies the 3-metrics are spherically symmetric about p so
the surface {Sd : r = d/a(t1)} in �1 is a 2-sphere orthogonal to the geodesics γ , with metric
proportional to that of a unit 2-sphere. Putting this together, the 3-space metric form is

dσ 2 := hij (x
c)dxidxb = a2(t)[dr2 +f 2(r)(dθ2 + sin2 θ dφ2)], (2.90)

where the function of proportionality f (r) is independent of θ and φ because of isotropy,
and must obey the limit f (r) ∼ r as r → 0 because the origin of coordinates is a regular
spacetime point.

To determine the function f (r), we use the geodesic deviation equation (2.47) for
the radial geodesics γ with tangent vector Xb = dxb/dr = δbr and connecting vector
ηc = dxc/dθ = δcθ . These vectors (each orthogonal to ua) must commute: Xb

,cη
c =

ηb ,cX
c, and are orthogonal to each other: Xbgbcη

c = Xbηb = 0. They have magnitudes
X2 =XbgbcX

c = a2(t), η2 = ηbgbcη
c = f 2(r)a2(t). Thus the geodesic deviation equation

d2ηb/dv2 =−Rb
cdeX

cηdXe becomes

d2ηb

dv2
=−K(hbdhce−hbehcd)X

cηdXe =−K

a2
ηbX2 =−Kηb. (2.91)

To turn the covariant derivatives into ordinary derivatives, we use orthonormal basis vectors
{ea} parallelly propagated along the geodesics γ ,

e1
b = a−1(t)δbr , e2

b = (a(t)f (r))−1δbθ , e3
b = (a(t)f (r)sin θ)−1δbφ . (2.92)
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(That these basis vectors are parallelly propagated can be seen from the fact that they
have constant magnitude and angles, and the rotational symmetry implies they must have
parallelly propagated directions.) On using this basis, the covariant derivative along the
radial curves becomes an ordinary derivative, v can be taken to be r , and the components
of η are ηb = a(t)f (r)δbθ , so the equation becomes

d2f (r)

dr2
+Kf (r)= 0. (2.93)

The solutions with the appropriate limit behaviour f (r)→ 0 as r → 0 are

f (r)= sin r if K = 1, r if K = 0, sinh r if K =−1. (2.94)

Note that if we abandon the link with spherical polars at r = 0 then cosh r and cosr are
also possible cases, among others; indeed they show how the Euclidean parallel postulate
breaks down in these spaces.

Exercise 2.7.1 Calculate the equations governing radial null geodesics in the RW metric
(2.65). Show that the fundamental world lines with tangent vector ua = δa0 are timelike
geodesics.

Exercise 2.7.2 Calculate the curvature tensor for the RW metric (2.65) and hence show that
Cabcd = 0 for these metrics.
Comment: you may find it useful to compare doing this calculation in terms of a coordinate
basis (as used above) and a tetrad basis (see Exercise 2.8.1).

Exercise 2.7.3 Determine the induced metric of the surfaces {r = const} in the metric (2.90).
Show that they are 2-spheres of constant curvature.

Exercise 2.7.4 Derive (2.66) by applying the Ricci identity (2.38) to gab, using (2.59), to get
the first result, and then using this, (2.41) and the cyclic identity (2.42) [Hint: several times]
to get the second result.

Exercise 2.7.5 The metric for Bianchi I models can be written

ds2 =−dt2 +X(t)2dx2 +Y (t)2dy2 +Z(t)2dz2, (2.95)

with fundamental observers moving on lines {x, y, z} = const with 4-velocity ua =
dxa/dt = δa0 . Instead of the single scale factor a(t) of the FLRW models, there are now three
scale factors X(t), Y (t) and Z(t) corresponding to the expansions along three orthogonal
directions.

Show that these models are spatially homogeneous, and in general not isotropic. (These
models are explored further in Chapter 18.)

Exercise 2.7.6 The Lemaître–Tolman–Bondi (LTB) models have the metric

ds2 =−dt2 +R2(r , t)[dϑ2 + sin2(ϑ)dϕ2]+ R′2dr2

1− εf 2(r)
, (2.96)

where the matter world lines have tangent vector ua = δa0 .
Show that these models are spherically symmetric.
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Hint: the 2-spheres with metric dϑ2+sin2(ϑ)dϕ2 are spherically symmetric. (These models
are explored further in Sections 15.1 and 19.1.)

2.8 General bases and tetrads

General bases of Tp(M) are widely used nowadays. They have a number of advantages both
for practical calculations and, when the basis vectors can be chosen in some way relevant
to the problem, in physical interpretation. In a basis of m independent vectors {ea} at p, we
write a vector V as

V= V aea . (2.97)

In spacetime such a basis is often called a tetrad. It is conventional to write ea(f ) as
∂af or f,a . We continue to use Latin indices when we write covariant expressions which
could be in any basis, but change to Greek indices for expressions which are specifically
in a coordinate basis (especially when a particular coordinate basis, or, as for the FLRW
perturbations discussed in Chapter 10, one of a restricted set of coordinate systems, is in
use). Each of the ea can itself be written, in a particular coordinate system, in the form

ea = ea
µ ∂

∂xµ
. (2.98)

If a change of basis is made, then the components of V in the old and new bases are
related by

V b′ =Mb′
a V

a (2.99)

if the basis transformation is

eb′ =M−1
b′
a

ea , (2.100)

where Mb′
a and M−1

b′
a

are a pair of mutually inverse matrices, since V aea = V b′eb′ .
Clearly this is a generalization of (2.3).

In such a basis a metric tensor has components

gab = gµνea
µeb

ν = ea · eb (2.101)

which give the scalar products between the basis vectors. The term tetrad is often taken to
imply that these scalar products are constants. The most frequently used such special type
of tetrad in cosmology is an orthonormal basis, where gab = diag(−1,1,1,1).

The commutators of the basis vectors play an important role in tetrad methods. In the
case of a coordinate basis {∂/∂xµ} any two basis vectors commute, but in a general basis
one will have non-zero commutators,

[ea , eb] = γ c
abec; (2.102)

the coefficients γ c
ab are called the commutation coefficients of the basis. They characterize

the extent to which the vector fields do not commute with each other, and are the components
of the Lie derivatives of the basis vector fields relative to each other (see Section 2.4). They
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vanish if and only if the basis vector fields commute, which is true if and only if these
vectors form a coordinate basis for some set of coordinates {xµ}.

The Jacobi identity, or first Bianchi identity, (2.42), reads

∂aγ
d
bc+ ∂bγ

d
ca + ∂cγ

d
ab+ γ e

abγ
d
ce+ γ e

bcγ
d
ae+ γ e

caγ
d
be = 0, (2.103)

for every triplet of basis vectors {ea , eb, ec}. This is the integrability condition which a set
of functions γ c

ab(x
µ)must satisfy if it is to specify the commutators of a set of vector fields

{ea} according to (2.102).
Covariant derivatives can be written in general bases as follows. If we choose a basis {ea :

a = 1, . . . , m}, the covariant derivative ∇c in the ec direction of a vector with components
va is

∇cv
a = va ,c+a

bcv
b , (2.104)

and the corresponding formulae for other tensors take the forms (2.27) and (2.28) with the
coordinate indices replaced by general basis indices. Here the connection components are
just the covariant derivatives of the basis vectors,

∇ceb = a
bcea ⇔ a

bc = eaνeb
ν

;µec
µ , (2.105)

these quantities being known as the Ricci rotation coefficients. In a Riemannian space, if a
tetrad with constant scalar products between the basis vectors (e.g. an orthonormal tetrad)
is chosen, then

gab;c = 0 ⇔ abc+bac = 0 (2.106)

(bac is skew in its first pair of indices), indices being raised and lowered with gab and its
inverse. Together with (2.102) this leads to,

γabc = (acb−abc) ⇔ cab = 1
2 (γbca + γacb− γcab), (2.107)

where γabc = gadγ
d
bc, relating the connection components to the commutator coefficients

(so bac is not skew in its last pair of indices unless we have a coordinate basis; but a
coordinate basis with constant scalar products is only possible in flat spacetime). The corres-
ponding formulae for the general case can be found in Stephani et al. (2003), Section 3.2.

General tensorial equations take the same form in coordinate and general bases. Expand-
ing covariant derivatives in terms of the commutator coefficients is straightforward using
the above equations (commuted derivatives giving rise to terms involving γ c

ab): e.g. (2.40)
leads to

Ra
bcd = a

bd,c−a
bc,d +a

ec
e
bd −a

ed
e
bc−a

beγ
e
cd . (2.108)

Exercise 2.8.1 Derive the following results.
For the FLRW metric (2.65) we take the basis

e1 = (1/a)∂r , e2 = (1/(f a))∂θ , e3 = (1/(f a sin θ))∂φ , e4 = ∂t , (2.109)
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so we have as (2.102),

[e1, e2] = − f ′

f a
e2, [e2, e3] = −cot θ

f a
e3, [e3, e1] = f ′

f a
e3,

[e1, e4] = − ȧ

a
e1, [e2, e4] = − ȧ

a
e2, [e3, e4] = − ȧ

a
e3,

where the prime and dot are the derivatives with respect to r and t respectively.The condition
(2.106) applies so the non-zero connection coefficients are

141 =−411 = 242 =−422= 343 =−433 =−ȧ/a,

212 =−122 =−f ′/f a, 313 =−133 =−f ′/f a,

322 =−232=−cot θ/f a.

Hence the non-zero curvature components computed from (2.108) are given by

R1414 =R2424 =R3434 = ä/a

R1212 =R1313 = f ′′/f a2 − (ȧ)2/a2

R2323 = (f ′2 − 1)/f 2a2 − (ȧ)2/a2,

and the corresponding components obtained by exchanging indices. Note that since f

satisfies ff ′′ = f ′2 − 1, we have R1212 =R2323.
Now obtain the corresponding results for the Bianchi I metric (2.95).

2.9 Hypersurfaces

As already mentioned in Section 2.1, we often want to consider hypersurfaces, i.e. submani-
folds of dimensionm−1 in anm-dimensional manifold. One can always choose coordinates
(u1, u2, u3, . . . y) such that the hypersurface (or each hypersurface in a non-intersecting
family) is y = const.

There is, as for any submanifold, an injection map i : � →M from the hypersurface �
to the manifold M , fixed by mapping each point of � to itself considered as a point of M .
In particular, the four-dimensional metric g of spacetime gives a three-dimensional metric
h= i∗g on �, often called the first fundamental form of �, that will determine distances
and angles in �. In the special coordinates (u1, u2, u3), this has the components

hµν = gabe
a
µe

b
ν , (µ, ν = 1, 2, 3), (2.110)

where eaµ are coordinate components of the basis vectors {ea}. The metric hµν completely
characterizes the intrinsic geometry of the surfaces. If there is a nonnull unit vector n
orthogonal to �, the first fundamental form gives a four-dimensional projection tensor
hab = gab − nanb/(ncn

c) (beware that in Section 4.4 a similar formula is used with a
vector field n= u which is not necessarily hypersurface-orthogonal). Then one can choose
Gaussian normal coordinates in which y is an affine parameter along the geodesics with
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the unit normal n as the initial tangent vector, and the ui are constant along those geodesics;
such coordinates exist in a neighbourhood of �. In the case of timelike n, Gaussian normal
coordinates are called synchronous and the metric, with y renamed t , is then

ds2 =−dt2 +hµν(t , u
ρ)duµduν , (µ, ν, ρ = 1, 2, 3). (2.111)

Since i is only defined on �, not on some open set in M , it does not define an inverse
and so we cannot map vectors from M to �. When there is a nonnull unit normal n to �,
the projection hab defined by n resolves this difficulty. When the normal n to � is null,
we can obtain a projection into � by using a non-zero vector field l not lying in � (called
a rigging), which may be chosen so that n(l)= 1. Then the tensor Pa

b = δab − lanb is a
projection which maps a vector vb to va − la(nbv

b) in �.
The vector field n also gives the second fundamental form or extrinsic curvature on � as

follows. Take any extension of n off �; then K = i∗(∇n). Using coordinates (u1, u2, u3)

in �, this has coordinate components

Kµν = eaµe
b
νna;b =−nae

a
µ;be

b
ν , (µ, ν = 1, 2, 3), (2.112)

and is symmetric (because the connection is); it can be calculated entirely on�. When n is a
nonnull unit vector, K can be considered to be a four-dimensional tensorKab = ha

chb
dnc;d ,

using the first fundamental form, and can be written as the Lie derivative (as introduced
in Section 2.4) Kab = 1

2Lnhab; this follows from the formula for hab and equations (2.24)
and (2.59). In Gaussian normal coordinates (u1, u2, u3, y) where � is y = 0, the possibly
non-zero components are

Kµν = 1
2hµν,y , (2.113)

for µ, ν = 1, 2, 3, which is the same as 1
2hµν,an

a . The second fundamental form determines
the embedding of the surfaces in the spacetime (it characterizes how their normals diverge).

If | denotes the covariant differentiation in the spacelike surface with unit normal n and
first fundamental form hab, so the curvature tensor 3Rijkl of the 3-spaces is given by the
Ricci identity Vj |kl − Vj |lk = 3RijklV

i for each vector V a orthogonal to na (V bnb = 0),
then

Vj |lk = hk
mhl

nhj
p(Vp|n);m = hk

mhl
nhj

p(hn
qhp

tVt ;q);m.

Substituting for hij and using (2.112) we obtain the Gauss equation,

3Rijkl =Rijkl −KikKjl +KjkKli , (2.114)

showing that the three-dimensional curvature is the projection of the four-dimensional cur-
vature, corrected by terms (with the correct symmetries of a curvature tensor) involving the
second fundamental form. This equation actually holds for any number n of dimensions,
and, with appropriate sign changes (see Stephani et al. (2003)), any signature, if the super-
script 3 is replaced by (n− 1), e.g. 2 for a two-dimensional cylinder or a two-dimensional
sphere in three-dimensional flat space (the embedding space is flat, the two-dimensional
space being flat in the first case but curved in the second).
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For such a spacelike surface one also finds

Ra
jkmna =Kjm|k −Kjk|m, (2.115)

Ra
jbmnan

b =KjkK
k
m+LnKjm+ ṅj ṅm+ ṅ(j ;m) . (2.116)

The first of these is the Codazzi equation.

Exercise 2.9.1 Determine the second fundamental form of the surfaces {r = const} in the
metric (2.90). Show that it is proportional to the induced metric tensor in those surfaces.



3 Classical physics and gravity

In standard cosmology, gravity is modelled by GR. In this chapter we review how, in GR,
gravity is represented by a curved spacetime, with matter moving on timelike geodesics
and photons on null geodesics. There is no definition of gravitational force or gravitational
energy. Thus although GR has a good Newtonian limit, it has totally different conceptual
foundations. It is only in restricted circumstances that gravity will be well represented by
Newtonian theory. GR also has its limits: it can only be a good description if quantum
gravity effects are negligible. Then it is very good: there are no data requiring us to alter it
in such contexts, which include all of cosmology except the very earliest times.

This chapter discusses the Einstein field equations of GR, after a short discussion of
physics in a curved spacetime and the energy–momentum tensor. We give a brief introduc-
tion to the physical foundations of GR such as the equivalence principle and the motivation
of the form adopted for the field equations but do not cover the experimental tests (for
which see Will (2006); note that except for the binary pulsar data, these tests are essentially
tests of the weak field slow motion regime).

3.1 Equivalence principles, gravity and local physics

Using our understanding of spacetime geometry, we now consider how to describe local
physics in a curved spacetime. Two principles underlie the way we do this: namely, use
of tensor equations, and minimal coupling based on covariant differentiation. After moti-
vating use of tensor equations to describe physics, we explain why gravity is such an
exceptional phenomenon and how this leads to the curved spacetime view and the Einstein
field equations.

3.1.1 Tensor equations

As explained in Section 2.3, the fundamental advantage of tensors is that:

if a tensor equation is true in one coordinate or basis system, it is true in all such systems.

We would like this property to be true for physically meaningful equations: they should
hold independently of the coordinate system used (otherwise we could change an effect, or
even make it ‘go away’, by simply changing the coordinate system). Since if, for example,
Tab = Rab in an initial coordinate system, where Tab and Rab are components of tensors,

56
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then Tab−Rab is a zero tensor, the above statement follows immediately from the simpler
result that:

if a tensor vanishes in one coordinate or basis system, it vanishes in all such systems.

This is true for any tensor, Sab say, because in any new system Sa′b′ = Aa′aAb′bSab = 0,
using (2.13).

Thus from now on we assume that physically meaningful equations are tensor equations
(although, as we shall explain in Section 3.1.4, other possibilities exist). They can be
evaluated in any coordinate system or basis.

3.1.2 The weak equivalence principle

When one allows arbitrary choices of coordinates and reference frames, there is no vector
Ga describing the gravitational force in a way analogous to the description of a Newtonian
gravitational force by a 3-vector gi . One can transform the gravitational force away by
changing to a freely falling reference frame; and, conversely, one can generate an apparent
gravitational field by changing from a freely falling frame to a relatively accelerating one.
This is the burden of Einstein’s famous ‘thought experiments’ concerning an observer in
a lift. Because all objects accelerate at the same rate in the Earth’s gravitational field (as
shown by the legendary Tower of Pisa experiment of Galileo, and in more modern Eötvös
experiments, see Will (2006)), an observer isolated in a lift cannot, by any experiments
carried out wholly in the lift, distinguish between the Earth’s gravitational field and a
uniform acceleration. For example, if the observer drops a weight it will apparently float
in the air alongside him or her – since it will accelerate at exactly the same rate as the
observer. This is no longer just a ‘thought experiment’: it is now commonplace to see films
of astronauts floating in their spacecraft as though gravity had been abolished.

Einstein formalized this as the (weak) principle of equivalence (WEP):

gravity and inertia are equivalent, as far as local physical experiments are concerned. They
cannot be distinguished from each other experimentally.

Furthermore, gravity and inertia both depend on the frame of reference adopted, and their
combined effect can be transformed to zero by appropriate choice of reference frame. Thus
the gravitational force is not a tensor quantity, for such a quantity vanishes in all frames if
it vanishes in one. Gravity does not have this property.

How then do we represent gravity? The key idea is that a particle moves on a spacetime
geodesic if in free fall, i.e. if it moves under gravity and inertia alone.This is the interpretation
of (2.32) or (2.33) and it satisfies another formulation of the WEP, namely that the motion of
a test body subject to no non-gravitational force is determined only by its initial position and
velocity (Universality of Free Fall). In special relativity we implicitly regard the geodesic
equation as the equation of motion of a body moving under inertia alone; we now interpret
it as representing any freely falling object, moving under the combined effects of gravity
and inertia, but with no other forces acting. Motion under a non-gravitational force Fa per
unit mass is described by

va ;bv
b = Fa (3.1)
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where, in coordinates, vµ = dxµ/dλ and λ is an affine parameter. (Remember that in GR,
geodesics are autoparallel when an affine parameter is used.) This is the curved space
version of Newton’s first and second laws.

The point then is that in flat spacetime, inertial forces are represented by the s in
(2.32). We can see this for example by transforming from Minkowski coordinates to (a)
rotating coordinates, and (b) uniformly accelerated coordinates. The equivalence principle,
however, says that we cannot locally separate gravity from inertia. Thus we conclude that
both gravitational and inertial forces are incorporated in the a

bc in (2.32) and (3.1); this
is consistent because (like the gravitational–inertial force) they can locally be set to zero by
a change of coordinates (compare the discussion of LOGC in Section 2.7.4).

We thus arrive at the astonishing conclusion that there is no need to define a special vector
to describe the gravitational force: it is already incorporated in the force law (3.1) via the
implicit a

bc. When we adopt (2.32) to describe free motion of a particle, this will (in a
curved spacetime) automatically include a description of the effect of the gravitational field
on its motion. However, it would be incorrect to say that these quantities describe gravity
only; they describe ‘gravity plus inertia’ together, which cannot intrinsically be separated
from each other by any local physical experiments. A theory of gravity based in this way on
a manifold with a metric of the usual Minkowskian signature and with a symmetric affine
connection which affects the other physical laws by a minimal coupling prescription will
also meet the requirements of the strong equivalence principle discussed in Section 3.1.3
(by the arguments in Section 2.7.4).

What is measurable and cannot be transformed away is the relative motion of objects
in free fall, physically caused by tidal forces and gravitational waves, and mathematically
represented by the geodesic deviation equation (2.47). Consequently these gravitational
effects must be represented by the source term in that equation, namely the spacetime
curvature tensor. Thus the gravitational effect of matter is exerted by that matter causing
a curvature of spacetime; this idea is made precise by the Einstein field equations (see
Section 3.3 below). In turn this spacetime curvature determines how the matter moves in
the spacetime, whose curvature is determined by the matter; this basic nonlinearity arises
in any self-consistent modelling of gravitational effects.

It is fundamental that as a consequence of this, there is no fixed background spacetime
underlying the curved spacetimes of GR. Whenever such a background spacetime is intro-
duced, one has a two-metric theory, rather than true GR. It is this lack of a background
spacetime that presents problems with quantizing gravity, as discussed in Section 20.2.1,
and which underlies the gauge problem of perturbation theory in relativity, which we discuss
in detail in Chapter 10.

3.1.3 The strong equivalence principle andminimal coupling

The way we describe local physics in a curved spacetime is usually by assuming minimal
coupling, i.e. making the simplest possible transition from known physics in a flat spacetime
to covariant equations in a curved spacetime. We aim for a spacetime (four-dimensional)
tensor form of all physical equations.
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The form taken is also chosen to satisfy the strong equivalence principle (SEP) that
all non-gravitational phenomena locally take the same form in GR as in special relativ-
ity. Given an algebraic physical law (i.e. one that does not involve differentiation) in flat
spacetime, we can satisfy minimal coupling and the SEP by assuming that the same form
holds in an orthonormal local system in curved spacetime; but what about equations that
involve derivatives? Given a known physical law in Cartesian/Minkowski coordinates in
flat spacetime, we

(a) change all partial derivatives to covariant derivatives, obtaining the general tensor form
of the equations in flat spacetime (valid in any coordinate system); and then

(b) assume the same form holds unchanged in curved spacetime.

In this way we obtain the simplest covariant form of the equations that reduces to the
known flat-space form; in particular, we thereby assume that there is no explicit coupling
to spacetime curvature in the equations.

This procedure will usually, but not always, give us a unique way of extending known
physics from flat to curved spacetime. However,

(a) in some cases minimal coupling is not unique, and we have to make a choice between
alternatives – for example, taking Maxwell’s equations to be minimally coupled, as in
(5.115), then the gauge potential equation (5.141) is not minimally coupled;

(b) sometimes theoretical reasons may suggest non-minimal coupling (see e.g.
Balakin and Ni (2010)) – the challenge then is to give experimental evidence that this
is physically correct;

(c) in some cases, the minimal coupling idea may be quite incorrect. The most striking
example of this kind is gravity. The fundamental insight of Einstein was to realize that
gravity is unlike every other force, so the minimal coupling idea completely fails in this
case. Ultimately this is the reason why gravity is best described by a curved spacetime
structure.

3.1.4 Remarks on the other ‘principles’ of general relativity

Before turning to the mathematical description of the matter content of spacetime and the
gravitational field equations, we mention some more of the ‘principles’ which have played
a part in relativity theory.

There is an even stronger form of the usual SEP, called the Einstein Equivalence Prin-
ciple (Will, 2006), which reads: all physics in freely falling systems is (locally) the same
as in special relativity. This principle, which is true in GR provided the physical laws con-
cerned are minimally coupled, has the consequence that it is impossible to define a local
gravitational energy–momentum tensor, since any such tensor would be zero in the special
relativity approximation, and would thus be zero in all frames (see Section 3.1.1). Therefore
any valid definition of gravitational energy, or of the total energy of a system, in GR must
be non-local, e.g. be defined by an integral over a finite region.

This clash between the equivalence principle and the concept of a local gravitational
energy is the source of the difficulties with the energy concept in GR which have been
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a continual topic of research. The problem has, in our view, so far only been completely
solved in the context of defining a total energy for an isolated (‘asymptotically flat’) system
(see e.g. Chruściel, Jezierski and MacCallum (1998)).

One should also note that in a situation where the actual metric is approximated by an
averaged metric, there may be terms of the form of an energy–momentum representing the
effect of, e.g., high-frequency gravitational waves on the averaged metric (Isaacson, 1968)
(see Section 16.1): this is not in disagreement with the previous statement since such terms
only arise from transferring part of the curvature of the actual metric to the other side of the
equation after splitting the actual curvature into an averaged part and a high-frequency part.

Another principle, which certainly was a motivation for Einstein, is the ‘principle of
covariance’. Unfortunately, this principle is not always carefully formulated. Its simplest
expression is the requirement that the laws of physics should be stated in a way which
makes them independent of the choice of coordinates. (Although explicit calculations may
require the use of coordinates, the physical results should be independent of that choice:
for comparison of metrics in a coordinate-free way see Section 17.2.)1 It is sometimes
supposed that this implies the laws must be in tensor form; however, the use of tensors,
though sufficient (see Section 3.1.1 above), is not necessary to achieve covariance, for the
following reason.

Ricci and Levi-Civita (1901) and Kretschmann (1917) showed that virtually any theory
describing spacetime as a manifold is expressible in coordinate-independent form. A coor-
dinate is a scalar function, which could be regarded as a (zero rank) tensor, so even giving
particular coordinates some physical significance need not violate covariance, and equations
involving them could be rewritten in an arbitrary coordinate system. It is also possible to
use geometric objects which are not tensors to construct equations that are expressed in the
same way in all coordinate systems; in particular, the curvature tensor is defined from the
(non-tensorial) connection. One essential requirement for covariance is that if all non-zero
quantities in an equation are written on one side of the equality sign, they must transform
in a way consistent with the rule that 0 transforms to 0 on the other side.

Thus the reason for adopting tensor equations, as we do, is that they provide an especially
simple and manageable way to satisfy the covariance principle, and moreover one which
works well in practice, but this is not a forced choice.

We shall later make extensive use of a ‘covariant’ 1+3 splitting of spacetime, based on a
choice of a physically preferred four-velocity defined by the matter content of the universe
(or sometimes in another invariant way). The covariance here refers to the fact that the
choice is not arbitrary and does not involve a choice of coordinates: in those respects it is
essentially different from approaches based on choosing three-dimensional spatial sections
in spacetime in a non-unique manner (which we shall refer to as 3+1 rather than 1+3
approaches), such as are frequently used in discussions of cosmological perturbation theory
(compare Chapter 10).

One can also argue that in cosmology and other contexts completely general
covariance is not the correct approach, physically, and a number of aspects and

1 One can consider general covariance to mean invariance under the group of coordinate transformations, and
then similarly define covariance under other groups, e.g. Lorentz covariance under Lorentz transformations.
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examples of restricted covariance have been examined (Ellis and Matravers, 1995,
Zalaletdinov, Tavakol and Ellis, 1996).

It is sometimes said that Einstein ‘geometrized’ physics. In particular, attempts have
been made, as in Kaluza–Klein theory (Kaluza, 1921, Klein, 1926) or Einstein’s own non-
symmetric theories (Einstein, 1956), to describe a wider range of physical fields by a
generalization of the four-dimensional Riemannian metric and connection of GR. In the
sense of differential geometry, any set of fields on a manifold is geometric, but authors
following this idea sometimes seem to just pile up unrelated structures, so that it is not
clear how helpful the concept of ‘geometrization’ is. It could be said to have clarified the
structure of gauge theories when the general description of them in terms of connections
(see Section 2.5) was recognized.

Another principle Einstein had in mind was Mach’s principle. We discuss this in
Section 21.1.3.

3.2 Conservation equations

Conservation is usually concerned with quantities integrated over a finite or infinite hyper-
surface and asks: do the integrals remain constant as we vary the hypersurface in spacetime?
The fundamental way to develop conservation laws is to integrate over a volume or surface.
For an n-dimensional manifold, the integrand must involve an n-form (see Section 2.3): a
volume form enables us to integrate scalars, and these are the physically interesting cases,
enabling covariantly valid conservation laws (see Chapter 20 of Stephani (2004) for further
discussion). Any attempt to define an integral of a vector over a volume by integrating its
components, for example, will not be invariant under general changes of coordinates that
are position dependent within the volume, and so will not be well defined.

Note, however, that when integrating over nonnull hypersurfaces the induced volume
element can be considered as a multiple of the normal vector to the hypersurface, like a
vectorial surface area element in three-dimensional vector calculus. For a spacelike surfaceS
with unit timelike normal na , the 3-volume is d3V = ηµνκdxµdxνdxκ/3! =√|3g|d3x with
coordinate volume d3x = dx1dx2dx3, and the relevant vector is dSa =−|d3V |na , which
can be contracted with another vector to give a scalar on the hypersurface. (The minus in the
definition of dSa arises from our choice of signature; when there is no potential ambiguity
with the four-dimensional or other volumes we will drop the 3 superscript.) Similar remarks
apply to other submanifolds.

Scalar conservation

If we have a 4-vector with vanishing divergence, then this expresses conservation of some
quantity (mass, charge, etc.). Consider a timelike vector J a , and a 3-surface volume element
dSa ; contractingJ a with dSa and integrating over the surfaceS gives the flux I ofJ a through
S: I = ∫

S
J adSa . In the case of a spacelike surface element I =−∫

S
J anad3V .
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In a volume V which is a tube with timelike sides bounded top and bottom by spacelike
surfaces labelled S1 and S2 respectively, and for which either (a) the sides are parallel to
J a , or (b) the sides are in a region where J a = 0 (for example lying very far away in
an asymptotically flat spacetime), there is no flux across the sides. Thus the integral over
the surface of V becomes I1 − I2 ≡

∫
S1
J adSa −

∫
S2
J adSa . Then the (four-dimensional)

divergence theorem shows

I1 = I2 +
∫
V

J a
;adV .

Consequently

J a
;a = 0 ⇒ I1 = I2 , (3.2)

that is, vanishing divergence of J a implies I is a conserved quantity for a 4-volume with
sides parallel to J a or with sides located where J a = 0 (it is independent of the particular
choices of S1 and S2).

To see what this means physically, split J a into its spacetime direction ua and its
magnitude ρ by the equation

J a = ρua , uaua =−1 . (3.3)

This defines the average 4-velocity ua of the conserved quantity represented by J a , and
its density ρ measured by an observer moving at that average velocity (rest mass density,
electric charge density, etc.). Now for a spacelike surface S, by (3.3),

I =
∫
S

J adSa =
∫

ρ(−uana)d3V . (3.4)

Thus

I =
∫
S

ρ coshβ
√
|3g|d3x, where coshβ :=−uana , (3.5)

is the total conserved quantity crossing the surface (rest mass, electric charge, number of
particles, etc., depending on the nature of the conserved current J a ; in these different cases,
ρ is the rest mass density, electric charge density, number density respectively, measured
by an observer moving with velocity ua). In terms of the quantities in (3.3), the divergence
equation (3.2) is

(ρua);a = 0 ⇔ ρ̇+ρ�= 0, (3.6)

where we have defined the expansion � of ua by �= ua ;a .
It is convenient to define a representative length �(xa) by �3 =√|3g|. If we consider a

very narrow tube around a particular world line C that is an integral curve of ua , with na

chosen parallel to ua in this tube in the limit as it shrinks to zero (so that uana =−1 there),
we find that

I =
∫
S

ρ�3d3v = ρ�3ε
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is constant, where ε := ∫
S

d3v is the (constant) comoving coordinate volume of this thin tube.
(‘Comoving’ refers to propagation along the integral curves of ua : comoving coordinates
are discussed more fully in Section 4.1.) Thus (as in Newtonian theory) conservation is
expressed by the differential relation

ρ�3 =: M , Ṁ = 0 ⇔ ρ̇+ 3ρ�̇/�= 0, (3.7)

where the second form is obtained by taking the covariant derivative of the first along this
tube (in the direction ua), and we denote the (comoving) time derivative measured by an
observer with 4-velocity ua by a dot (compare Section 4.3): e.g. ρ̇ = ρ;au

a . Equations (3.6)
and (3.7) together show that the expansion � gives the rate of change of volume,

�= 3�̇/�= (d3V )̇/(d3V ), (3.8)

which also follows either from detailed analysis of the fluid flow characterized by ua (see
Ellis (1971a)) or from the useful identity

uµ;µ = 1√|g|
∂

∂xµ
(
√|g|uµ), (3.9)

expressing the divergence in terms of partial derivatives (to obtain (3.8) use comoving
coordinates (see Section 4.1) such that uµ = δ

µ
0 = nµ, noting that then g = −3g = −�6).

This equation gives a quick way of calculating �.
Conservation of mass, charge, particle number, etc., can thus be expressed in a variety of

forms. We shall usually come across them either in the form (3.6) or (3.7), which for example
describe the conservation of rest-mass in cosmology (see Ellis (1971a) and Section 5.1.1).

Energy–momentum conservation

The relativistic energy, momentum and stresses of whatever matter fields are present are
described by the symmetric energy–momentum–stress tensor Tab = Tba , which gives the
energy and 4-momentum crossing a surface element dSa by the relation T a = T abdSb. The
symmetry of Tab is a fundamental property of relativity theory expressing the equivalence
of mass and relativistic energy (T0i = Ti0) and the absence of macroscopic spin in the matter
(Tij = Tji). (This result can be derived by considering the balance of the net fluxes of energy
and momentum across all faces of an infinitesimally small volume.) Conservation of energy
and momentum is given by the equation

T ab
;b = 0, (3.10)

generalizing the flat-space conservation laws to curved space in the standard way. However,
we cannot integrate the quantities T a over a finite surface to get a vector conserved quantity
in general, because (as mentioned above) we cannot integrate a vector covariantly over a
volume. Nevertheless (3.10) represents the local conservation of energy and momentum, as
we see later in the case of various examples such as perfect fluids, electromagnetic fields
and scalar fields.

Three points should be noted about the stress tensor.
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Firstly, because of the principle of equivalence T ab does not include a contribution
from gravitational energy (unless it represents an averaging over high-frequency parts: see
Section 16.1).

Secondly, if there is a Killing vector ξa in a spacetime, then we get a conserved vectorial
quantity by contracting the Killing vector with the stress tensor:

ξa;b = ξ[a;b], J a := T abξb ⇒ J a
;a = 0 . (3.11)

Thus there is an associated conserved quantity for each Killing vector (i.e. for each space-
time symmetry). This is helpful in understanding specific exact solutions of the Einstein
equations; however, a realistic spacetime has no Killing vectors.

Thirdly, in general there will be various matter components present in spacetime (baryons,
photons, neutrinos, a scalar field, etc.) The total stress-tensor of such multi-component
systems is obtained by adding the stress-tensors of the components: T ab =∑

I T
ab
I where

I labels the different components. Now while total energy and momentum are necessarily
conserved, interchange of energy and momentum between the components is of course
possible, so the energy and momentum of the individual components is not necessarily
conserved. This is represented by interchange vectors Qa

I showing how much energy and
momentum has been gained or lost by each component, their total summing to zero to
guarantee conservation of total energy–momentum:

T ab
I ;b =Qa

I ⇒ T ab
;b =

∑
I

Qa
I = 0. (3.12)

The quantitiesQa
I will be determined by the physics of interactions between the components.

3.3 The field equations in relativity and their structure

Using the Einstein tensor,

Gab =Rab− 1
2Rgab,

we can write Einstein’s field equations (EFE) as

Gab+�gab =Rab− 1
2Rgab+�gab = κTab, (3.13)

where � is the cosmological constant and κ is the gravitational constant (κ = 8πG in our
units: see Appendix A). The essential points about this formulation are that:

(1) these are non-linear, but quasi-linear, second-order partial differential equations for the
gravitational potentials gab, and give the Newtonian limit in the weak-field and slow
motion approximation, and

(2) they guarantee energy–momentum conservation: from these equations,2

Gab
;b = 0 ⇔ T ab

;b = 0 (3.14)

as a consequence of the Bianchi identities (2.69).

2 Provided � and κ are indeed constant! One would have to reconsider the formulation if variation of these
quantities were allowed.
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These are the reasons for the form chosen for the equations.

Defining

T := T a
a ,

we find that (3.13) gives

R− 2R+ 4�= 8πGT ⇒Rab = 8πG(Tab− 1
2T gab)+�gab, (3.15)

which is often more convenient for practical use than (3.13).
Matter present locally fixes the Ricci tensor completely through (3.15), but this is only

a contraction of the full curvature. The remaining part, the Weyl tensor (see (2.79)), is
not fixed by the local matter but is related to it by the Bianchi identities (2.86), which
are differential equations with source terms given by the matter tensor through the EFE
(3.15), implying that the Weyl tensor also requires boundary or initial conditions for its full
specification.

It is in the choice of the equations (3.13) that GR differs essentially from standard gauge
theories of physics. Such theories follow the example of the electromagnetic field, and have
a free-field Lagrangian of the form RI

Jab R
J
I
ab. This is an expression quadratic in first

derivatives of the gauge potentials (the connection) and leads to differential equations of
second order for those potentials. In the Maxwell case these will be the first of (5.115),
the second being integrability conditions for the existence of the gauge potential. In GR
we instead use the extra contraction possibilities made available by working on the tangent
bundle (to reach Rab from Rc

acb) and using a metric (to reach R), and write equations
which are of second order not for the gauge potential (connection) but for the metric itself,
which can be regarded as a kind of pre-potential in this context. If one were to take a
theory of gravity with a purely quadratic Lagrangian such as RabcdRabcd , the equations
would in general be fourth-order equations for the metric, and such theories are therefore
not compatible with experiment: however, theories with a Lagrangian of some form such as
R+αR2 are often considered, in particular because such terms arise naturally in attempts
to perturbatively renormalize GR (see Section 20.2.1).

A cosmological constant is permitted by requirements (1) and (2) above, and could
account for the accelerated expansion suggested by SNIa observations (see Section 13.2),
but causes some difficulties. Even before the inference of a definite value from the SNIa
data, � was known to be small, observationally, or it would have affected (e.g.) dynamics
of galaxy clusters, but attempts to give it an origin in particle physics naturally produced
very large values (Weinberg, 1989). It is then hard to see why the quantum effects should
cancel leaving only a small residual value (rather than either a large value or zero). As a
classical field, it has the drawback of acting on everything but being acted on by nothing,
which makes it different from all other fields in not obeying Newton’s law of action and
reaction. The recent observations oblige us to include such ‘dark energy’ throughout (or
find an alternative explanation for the SNIa observations, as discussed in Chapters 15–16),
but it remains poorly motivated as a field to be expected in the universe.
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3.3.1 Evolution from initial values

Now suppose the EFE are true on an initial spacelike surface S given by t = t0, and consider
under what conditions they will remain true off this surface. The characteristics of the
equations are null rays; in physical terms, gravitational waves travel at the speed of light
(i.e. the equations are hyperbolic if written in suitable coordinates; we discuss this in more
detail in Section 6.6.2). Therefore we obtain a unique solution to the future of S from initial
data on S only in the spacetime region D+(S) called the future Cauchy development of
S (see Tipler, Clarke and Ellis (1980) for a discussion), which is the region such that all
past-directed timelike and null curves from each point in D+(S) intersect S (in brief: it is
the future region of spacetime such that all information arriving there at less than or equal to
the speed of light has had to cross S, so conditions there are completely determined by data
on S). The past Cauchy development D−(S) is similarly defined. The Cauchy development
D(S) of S is the union of these two regions and S and so is the complete region of spacetime
that is determined by data on S.

Define the tensor Aab = Gab − κT ab, which is symmetric. Then the EFE (3.13) are
equivalent to the equationsAab = 0. From (2.69) and (3.10),Aab has vanishing divergence,

Aab
;b = 0 ⇔ Aab

,b+Acba
bc+Aacb

bc = 0. (3.16)

Separating out the time and space summations, this can be written

Aa0
,0 +Aai

,i +Ac0a
0c+A0ia

i0 +Ajia
ij +Aa0b

b0 +Aaib
bi = 0. (3.17)

Now suppose that the equations Aij = 0 are true in a spacetime region V containing S and
lying in the Cauchy development of S while the equations A0a ≡ Aa0 = 0 are true on the
initial surface S. Then the form of the first-order linear set of differential equations (3.17)
(which give the time development of Aa0 off S) guarantees a unique solution locally in V

from given initial data for Aa0 on S. However, there is a solution of these equations given
by Aa0 = 0 in V , which of course implies Aa0 = 0 on S, and, by the uniqueness, is implied
by those initial conditions. Hence we have shown the following: if the four initial value
equations Aa0 = 0 are true on S and the six propagation equations Aij = 0 are true in V ,
then Aa0 = 0 will hold in V . Thus the four Einstein equations Aa0 = 0 are first integrals of
the other six equations (provided the energy–momentum conservation equations (3.14) are
satisfied). This structure is helpful in actually solving the equations.

To see what initial data for the field equations is like, it is convenient to use Gaussian
normal coordinates, giving a metric of the form

ds2 =− dt2 +hij dxidxj (3.18)

(compare (2.111)). The propagation equationsAij = 0 turn out to be equations for d2hij /dt2

in terms of the metrichij and its first derivatives dhij /dt ,hij ,k , while the constraint equations
Aa0 = 0 turn out to be equations involving only the first time derivatives of hij , hij itself
and its spatial derivatives. Thus the initial data for the EFE on S are,
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(a) the first fundamental form hij (just the intrinsic metric of that surface), plus
(b) the second fundamental form Kij = dhij /dt (the derivative of the metric with respect

to proper time measured along the orthogonal geodesics, which characterizes how the
3-space is imbedded in the 4-space), together with

(c) initial data for whatever matter fields may be present.

These data must be chosen to satisfy the constraint equations A0a = 0; then the propaga-
tion equations Aij = 0 together with the evolution equations for the matter will determine
the solution off S. The constraint equations will remain true off S if they are true on S, as just
proved above. The solution will be determined by this data within the Cauchy development
D(S) of S, but not outside this spacetime region.

One can apply similar considerations to equations (2.86) regarded as equations giving
the divergence of the Weyl tensor in terms of matter variables (on using (3.15) to replace the
Ricci terms by matter terms). The corresponding conservation equations are (2.87) which
can be analysed similarly to (3.16), with the constraint equations in the set preserved by the
dynamical evolution equations. We shall in effect be using this result in the 1+3 analyses
of the Weyl tensor propagation in the following chapters.

3.3.2 Variational formulation

One can obtain the gravitational field equations from a variational principle with Einstein–
Hilbert action,

S = 1

16πG

∫
R dV , (3.19)

where R is the curvature scalar (see e.g. Section 22.4 of Stephani (2004)).
Although Lagrangian principles, and the related Hamiltonian principles, are of great

importance, they may be of limited use in applications to specific metrics for the following
reasons.

(a) Varying S above with respect to a general metric, we get the EFE (3.13); if we now
choose a particular metric form, the equations (3.13) specialize to the EFE for that
family of metrics. These are the equations to be solved for specific solutions of the EFE
with a metric of the chosen form, but the variational principle may be of little help in
obtaining them by this route, since the specialization may be a long calculation.

(b) On the other hand we can calculate the curvature scalar R directly from the specific
metric form, and then put this into (3.19) to get a variational principle for those metrics.
Performing the variation, we get another set of equations for metrics of the chosen form.

The latter may provide a quick derivation of equations, but now the problem is that
in general these two sets of equations are not the same: the operations of performing
the variation and specializing the metric do not commute. The reason has to do with the
boundary terms derived in the variation, which we normally assume will be zero. When we
use method (b), in general this will not be so. Hence method (b), the obvious way to use
the variational principle to simplify derivation of the field equations, may give the wrong
answer (MacCallum and Taub, 1972, Sneddon, 1975).
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Thus in practice one should use method (b) with caution, checking whether the surface
terms vanish or not. One could of course check the result from (b) with that from (a), but
then one may as well just use the result obtained by (a), or calculate the curvature directly.

3.3.3 ADM Hamiltonian formulation

The Arnowitt, Deser and Misner (1962) (ADM) formalism (see Peter and Uzan (2009) for
a recent account) foliates the spacetime into spatial hypersurfaces and then uses the splitting
of the metric in these coordinates to rewrite the gravitational action in a way that produces
a Hamiltonian. This Hamiltonian approach is particularly important for aspects of quantum
gravity. However, the ADM form of the metric and field equations has wider applicability.

The ADM metric is

ds2 =−N2dt2 + γij (N
idt + dxi)(Njdt + dxj ), (3.20)

where N is the ‘lapse’ function and Ni is the ‘shift’ vector. Geometry can now be expressed
in terms of the curvatures of the Riemannian 3-spaces t = const. The Einstein–Hilbert action
(3.19) can be written as (we set 8πG= 1 for convenience in this subsection)

S =
∫

dt
∫

d3x
√
γ N

(
3R+KijK

ij −K2
)

, (3.21)

where the extrinsic curvature is

Kij = 1

2N

(
γikDjN

k + γjkDiN
k − γ̇ij

)
, (3.22)

Di being the covariant derivative defined by γij . The trace is K = γ ijKij .
The action is considered as a function of the Lagrangian variable q = (γij , N , Ni) and

q̇, and the Lagrangian density is

L[q, q̇] =√
γ N

(
3R+KijK

ij −K2
)

. (3.23)

There is no dependence on N , Ni , so these variables are not dynamical and are associ-
ated with constraints. The dynamical variable γij defines a conjugate momentum via the
variational derivative:

πij := δL
δγij

=√
γ
(
Kγ ij −Kij

)
. (3.24)

Then the Hamiltonian density in vacuum is

H = πij π̇ij −L, (3.25)

and the Hamiltonian becomes (after dropping a divergence term)

H =−
∫

d3x
√
γ
(
NC0 − 2NiCi

)
, (3.26)

where the constraints are

C0 = 3R−KijK
ij +K2, (3.27)

Ci =−DiK +DjK
j
i . (3.28)
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C0 = 0 is the ‘energy constraint’, and Ci = 0 is the ‘momentum constraint’ (these are
respectively the trace of (2.114), and (2.115), for a vacuum). There is also an evolution
equation from the Hamilton equation q̇ = δH/δp; in vacuum, it is

γ̇ij =−2NKij +DiNj +DjNi . (3.29)

Exercise 3.3.1 Show in detail how the analysis of (2.86) mentioned at the end of Section 3.3.1
works.

3.4 Relation to Newtonian theory

An important issue is to formulate the Newtonian limit of GR in a cosmological context,
when conditions relating to gravitational physics are significantly different from the more
traditional quasi-stationary and asymptotically flat situations where the Newtonian and
post-Newtonian limits are usually derived and where they have been subjected to precise
experimental tests, enabling us to evaluate the κ of (3.13) in terms of the Newtonian grav-
itational constant G. The importance arises because many astrophysical calculations on
the formation of large-scale structure in the universe are done in a Newtonian way and
so depend on such a limit. But there are major differences between Newtonian theory and
GR, particularly because in Newtonian theory (a) there is a preferred time coordinate, (b)
spacetime is flat; neither is true in GR.

There are of course many derivations of Newtonian gravity in terms of the weak field
limit of GR, but in the astrophysical context such linearized derivations cease to be useful
just when the theories become important – namely in the context of nonlinear structure
formation. One should therefore note the following:

(A) The appropriate classical theory of gravitation is GR; Newtonian theory is only a good
theory of gravitation when it is a good approximation to the results obtained from GR.

(B) We have to extend standard Newtonian theory (which strictly can only deal with quasi-
stationary isolated systems in an asymptotically flat spacetime) in some way or another
to deal with a non-stationary cosmological context. This extension needs to be clearly
spelt out (see Section 6.8).

We can give close Newtonian analogues to many of the major covariant relations pre-
sented in this book (see also Ellis (1971a)), but significant questions still remain with regard
to both points. These include:

(1) Full GR involves 10 gravitational potentials (combined in a tensorial variable), subject
to the 10 Einstein field equations (‘EFE’), but Newtonian theory involves only one (a
scalar variable – the acceleration potential), subject to the one Poisson field equation;
how does it arise that the other nine potentials and equations can be ignored in the New-
tonian limit? Given that nine equations of the full theory are not satisfied even in some
limiting sense, how do we know when Newtonian cosmological solutions correspond
to consistent relativistic solutions of the full set of equations? Part of the answer is
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that the coordinate freedom of GR accounts for four of these potentials; however, this
still leaves another five to account for, and we have examples of Newtonian solutions
with no GR analogues (Ellis, 1997, van Elst and Ellis, 1998), as we shall discuss in
Section 6.8.2. Consequently we need to be concerned about how well standard Newto-
nian theory represents the results of GR in the cosmological context we have in mind,
when we take a ‘Newtonian limit’.

(2) The issue of boundary conditions for Newtonian theory in the cosmological context
is problematic even in the context of exactly spatially homogeneous (and spatially
isotropic) cosmological models (Heckmann and Schucking, 1956); no fully adequate
theory exists in the more realistic almost-homogeneous case. The essential difficulty
lies in specifying the boundary conditions at spatial infinity. In normal Newtonian
theory one assumes that the potential becomes constant there: that assumption is not
compatible with an infinite universe of constant or near-constant density, since it would
not satisfy the Poisson field equation (this is why Einstein so strongly supported the
idea of closed spatial sections in cosmology – then no ‘infinity’ would exist where
boundary conditions had to be specified). Numerical simulations, for example, usually
rely on periodic boundary conditions, which correspond to the real universe only if
we live in a ‘small universe’ (see Section 9.1.6) in which there is a long-wavelength
cutoff in the spectrum of inhomogeneities of its large-scale structure.Analytic solutions
usually rely on asymptotically flat conditions which are manifestly not true in a realistic,
almost-FLRW situation (they implicitly or explicitly assume that inhomogeneities die
off sufficiently far away from the region of interest).

(3) How do we obtain a unique propagation equation for the gravitational scalar potential
in a Newtonian cosmology, when Newtonian theory proper has no such equation? In
standard Newtonian theory this is related to the previous problem: since, unlike GR, the
Newtonian gravitational field equation allows infinitely fast propagation of influences
from infinity, boundary conditions have to be imposed at infinity at every instant to
obtain unique propagation.

(4) How do we satisfactorily handle the gauge dependence that underlies most derivations
of a Newtonian limit? Equivalently, most derivations of the Newtonian limit are highly
coordinate dependent, basically because Newtonian theory depends fundamentally on
its preferred time coordinate; there is no such unique coordinate in the perturbed FLRW
models used for studies of structure formation (see discussion of the gauge problem in
perturbation theory, Chapter 10).

We shall return to these issues in Section 6.8 and Chapter 21.
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4 Kinematics of cosmological models

In cosmology, the matter components allow us to make a physically motivated choice of
preferred motion. For example, we could choose the CMB frame, in which the radiation
dipole vanishes, or the frame in which the total momentum density of all components
vanishes. Such a choice corresponds to a preferred 4-velocity fieldua that generates a family
of preferred world lines. We can then make a 1+3 split relative to ua , in order to relate the
physics and geometry to the observations. In this chapter we discuss how to do this for the
kinematics of cosmological models; the following chapter will consider the dynamics.

The (real or fictitious) observers are comoving with the matter-defined 4-velocity ua ,
and we can call the observers and the 4-velocity ‘fundamental’. If we change our choice of
fundamental 4-velocity, the kinematics and dynamics transform in a well-defined way, as
discussed in the following chapter.

4.1 Comoving coordinates

To describe the spacetime geometry it is convenient to use comoving (Lagrangian)
coordinates, adapted to the fundamental world lines. These are locally defined as follows.1

(1) Choose a surface S that intersects each world line once only (note that no unique
choice is available in general). Label each world line where it intersects this surface; as the
surface is three-dimensional, three labels yi , (i = 1,2,3), are required to label all the world
lines.

(2) Extend this labelling off the surface S by maintaining the same labelling for the
world lines at later and earlier times. Thus the yi are comoving coordinates: the value of
the coordinate is maintained along each world line, and in fact the world lines (and so the
fundamental particles) are labelled by these coordinates.

(3) Define a time coordinate t along the fluid flow lines (it must be a function that
increases along each flow line).

Then (t ,yi) are comoving coordinates adapted to the flow lines. Note that the surfaces
t =const will in general not be orthogonal to the fundamental world lines; indeed, in general
it is not possible to choose a time coordinate for which these surfaces are orthogonal (see
Section 4.6 below).

1 In this section we are not concerned about possible global problems with coordinates; these are considered in
Section 6.7.

73
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The coordinate freedoms available which preserve this form are (a) time transformations
t ′ = t ′(t , yi), yi′ = yi , corresponding to a new choice of time surfaces, and (b) relabelling
of the world lines by choosing new coordinates in the initial surface: t ′ = t , yi

′ = yi
′
(yi).

Aparticular choice for t which is often convenient is the normalized time s= s0+τ , where
τ is proper time measured along the fundamental world lines from S (positive to the future
of S, negative to the past) and s0 is an arbitrary constant. With this choice, xµ = (s, yi)
are normalized comoving coordinates, s measuring proper time from the surface S (on
S, s = s0) along the world lines, which lie in the intersection in spacetime of the surfaces
yi =const. The remaining time freedom is then s′ = s+f (yi), corresponding to choice of
the initial surface S. For example, the standard coordinates (t ,r ,θ ,φ) in an FLRW universe
model (2.65) are such normalized comoving cooordinates.

General coordinates xµ will be related to the normalized comoving coordinates by a
coordinate transformation,

xµ = xµ(s,yi), µ= 0, . . . ,3, i = 1, . . . ,3, (4.1)

the spatial parts of which are similar to the transformation from Lagrangian to Eulerian
coordinates in Newtonian theory. Indeed one can define Newtonian-like quasi-Eulerian
(‘fixed’, non-comoving) coordinates in general relativity, defined by the physical (proper)
distance and direction from some chosen world line in preferred space sections. They can
provide a useful alternative to the more usual Lagrangian coordinates when taking the
Newtonian limit (for the FLRW case, see Ellis and Rothman (1993)).

In Newtonian theory, because unique spatial sections exist in spacetime, there is a natural
time coordinate t , uniquely defined (up to a constant), which measures proper time along
all lines. In Newtonian cosmology, one can again choose comoving spatial (‘Lagrangian’)
coordinates yi as in the relativistic case, obtaining spacetime coordinates (t ,yi).

4.2 The fundamental 4-velocity

The preferred matter motion implies a preferred 4-velocity at each point. Geometrically,
this can be depicted as an arrow pointing along the fundamental world lines. If the preferred
world lines are given in terms of local coordinates xµ by xµ = xµ(τ) where τ is proper
time along the world lines, then the preferred 4-velocity is the unit timelike vector

uµ = dxµ

dτ
⇒ uµuµ =−1. (4.2)

The implication follows by considering the integral for proper time along a world
line: τ = ∫ [−(dxµ/dτ)(dxb/dτ)gab]1/2dτ = ∫

(−uµuµ)1/2dτ . In normalized comoving
coordinates xµ = (s, yi) this becomes

uµ = δ
µ
0 ⇔ ds

dτ
= 1,

dyi

dτ
= 0. (4.3)
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These are also sufficient conditions such that the coordinates are normalized comoving
coordinates (the curve parameter is proper time, and the vector uµ is tangent to the direction
where all the yi are constant).

In general coordinates xµ, this vector will be given by

uµ =
(
∂xµ

∂s

)
yi=const

. (4.4)

This is obtained by applying the coordinate transformation (4.1) to (4.3); conversely,
specializing the coordinates in (4.4) to normalized comoving coordinates, we recover (4.3).

The component of any vector Xa parallel to ua is

Xa‖ =Ua
bX

b, Ua
b :=−uaub, (4.5)

where Ua
b is a projection tensor (Ua

bU
b
c = Ua

c) into the one-dimensional tangent line
(Ua

a = 1) parallel to ua (Ua
bu

b = ua). For example, the fundamental 4-velocity in an
FLRW universe model in the standard coordinates (2.65) is given by uµ = δ

µ
0 , uµ =−δ0

µ.
Thus in this case Uµ

ν = δ
µ
0 δ

0
ν .

In Newtonian theory, a 3-velocity vi representing the average motion of matter at
each point will be defined. Lagrangian coordinates (the Newtonian version of comoving
coordinates) are characterized by the condition vi = 0.

Exercise 4.2.1 Show that

(a) if we use general comoving coordinates (t ,yi), then uµ= v−1δ
µ
0 , where v(xα)= ds/dt ,

and that uµ = gµ0/v, g00 =−v2, u0 =−v;
(b) under a time transformation, t ′ = t ′(t ,yi), yi′ = yi , these relations are preserved with

v→ v′ = v/(∂t ′/∂t);
(c) (4.4) reduces to (4.3) on using normalized comoving coordinates;
(d) we have normalized comoving coordinates if and only if uµ = gµ0.

4.3 Time derivatives and the acceleration vector

The time derivative of any tensor Sa···b··· along the fluid flow lines is

Ṡa···b··· = uc∇cS
a···

b··· , (4.6)

and by (2.28) this is of the form

Ṡa···b··· = d

dτ
Sa···b··· +Sc···b···a

cdu
d +·· ·−Sa···c···c

bdu
d −·· · . (4.7)

The first term is the apparent derivative (i.e. the value obtained by only taking the directional
derivative of the components) relative to the coordinate frame along the world lines, and the
others correct this apparent derivative to give the covariant derivative along the world lines.
When a frame which is parallelly propagated along the world lines is used, this reduces
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to Ṡa···b··· = dSa···b···/dτ = ∂Sa···b···/∂τ + Sa···b··· ,iui (the last term vanishes if comoving
coordinates are used).

A particular application of time differentiation is the derivative of the 4-velocity itself in
its own direction: this determines the acceleration vector,

u̇a = ub∇bu
a ⇒ u̇aua = 0, (4.8)

which vanishes if and only if the flow lines are geodesics. Physically, this is the case if they
represent motion under gravity and inertia alone, i.e. no non-gravitational force acts (see
Section 3.1.2). From this definition,

∇bua = ha
chb

d∇duc− u̇aub , (4.9)

where the first term on the right is orthogonal to ua , with hab defined in (4.10).
The corresponding Newtonian derivative is the ‘convective derivative’(Batchelor, 1967),

Ṫ ij ······k� = ∂T ij ······k�/∂t +T ij ······k�,mvm, determining the rate of change of T ij ······k� rela-
tive to the fluid. As we have just seen, this is essentially what is obtained from the general
relativity equations if a parallelly propagated frame is used.

Exercise 4.3.1 Show that in normalized comoving coordinates, u̇µ = µ
00, so that u̇µ =

1
2 (2∂g0µ/∂t − ∂g00/∂x

µ).

Exercise 4.3.2

(a) Show that the Newtonian analogue of the ‘acceleration vector’ is ai = v̇i +�,i where
� is the Newtonian gravitational potential. Deduce that even in Newtonian theory, we
are unable to separate the gravitational and inertial parts of ai invariantly if the matter
density does not go to zero at infinity. (Hint: see Heckmann and Schucking (1955),
Bondi (1960), Trautman (1965)). (Note: when comparing relativistic and Newtonian
equations, u̇µ should be compared with ai not v̇i ; the difference between the two cases
can be considered to arise because in relativity covariant differentiation already has the
gravitational effects coded into it.)

(b) Show that when comoving coordinates are used, ai =�,i .
(c) Consider when this form can be obtained as a limit of the relativistic equations in the

previous exercise (i.e. when does there exist a scalar potential � for u̇a?).

4.4 Projection to give three-dimensional relations

The existence of a preferred velocity at each point implies the existence of preferred rest
frames at each point; locally these define surfaces of simultaneity for the fundamental
observers.

4.4.1 Orthogonal projection

The (induced) effective metric tensor for these surfaces is the tensor

hab = gab+uaub . (4.10)
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We see this as follows: from the above definition and (4.2),

habh
b
c = hac, haa = 3, habu

b = 0, (4.11)

that is, hab is a projection tensor projecting into the three-dimensional tangent plane
orthogonal to ua .

Any vector Xa can be projected, by means of hab, to its part Xa⊥ orthogonal to ua (i.e. its
component in the instantaneous rest-space of an observer moving with the 4-velocity ua):

Xa⊥ = habX
b ⇒ Xa⊥ua = 0, (Xa⊥)⊥ =Xa⊥. (4.12)

The projection tensor is the metric tensor for the rest space; for ifXa and Yb are any vectors
orthogonal to ua (Xaua = 0 = Ybub), then X · Y = XagabY

b = XahabY
b, that is, hab

determines scalar products and so angles and magnitudes for all vectors in the rest space
of ua . It corresponds precisely to the Newtonian metric tensor hij determining magnitudes
and angles in Newtonian theory.
Uab and hab enable projection of any tensor into parts parallel and perpendicular to

ua . A particular example is the metric tensor itself: g⊥ab = ha
dhb

egde = hab, g‖ab =
Ua

dUb
egde =Uab, so its splitting into parallel and perpendicular parts is given by

gab = hab+Uab = hab−uaub . (4.13)

This shows that the interval ds2 associated with an arbitrary displacement xµ → xµ+dxµ

can be decomposed by

ds2 = gµνdxµdxν = hµνdxµdxν − (uµdxµ)2 = (δl)2 − (δt)2 (4.14)

into a time difference δt = (Uµνdxµdxν)1/2 = (−uµdxµ) (= cδt in units in which c �= 1)
and a spatial distance δl = (hµνdxµdxν)1/2 as measured by an observer moving with 4-
velocity uµ. This decomposition implies the usual special relativistic length contraction
and time dilation formulae (as these quantities are related to the interval in the standard
special relativistic way, and all the equations hold for the projection tensors associated with
arbitrary 4-velocities; we will get a different decomposition of gab into Uab and hab if we
choose a different 4-velocity ua).

For example, in comoving coordinates, Uij = 0, hµ0 = 0 in any universe, while the
components of Uab, hab in an orthonormal tetrad {u,ei} are Uab = diag(−1,0,0,0),
hab = diag(0,1,1,1). The components of hab in an FLRW universe in the standard FLRW
coordinates (2.65) are hµν = a2(t)diag(0,1,f 2(r),f 2(r)sin2 θ). In Newtonian theory, we
have δl= (hijdxidxj )1/2, δt = (−Uijdxidxj )1/2 still, but now the flat 3-space metric hij is
given and fixed, and the time metric Uij is also fixed. Using the preferred time coordinate
t , hµ0 = 0, hij = δij (in Cartesian coordinates) and Uµν = −δµ0 δν0 . These relations also
follow from (4.13) in the slow-motion limit.

In the sequel we shall very frequently have occasion to project vectors orthogonal to ua ,
and to take the traceless parts, orthogonal to uµ, of rank two symmetric tensors – i.e. the
projected symmetric tracefree, or PSTF, parts. For brevity we use angled brackets on indices
to denote the PSTF parts. For convenience we use the term PSTF to include projected rank
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one tensors (vectors). For any Va and tensor Sab, the PSTF parts are given by

V〈a〉 = ha
bVb , S〈ab〉 =

{
h(a

chb)
d − 1

3habh
cd
}
Scd . (4.15)

We write equations so that all terms are manifestly PSTF. We continue to use ⊥ to indicate
the projection in other cases. One may note that a general rank two tensor can be written as

Sab = (ha
c+Ua

c)(hb
d +Ub

d)Scd

= 1
3hab(h

cdScd)+S〈ab〉 +ha
chb

dS[cd]
−(ha

cScdu
d)ub−ua(u

cScdhb
d)+uaub(u

cudScd) . (4.16)

This decomposition splits the tensor into parts irreducible under the rotational freedom in
the hyperplane orthogonal to ua . For the projection of time derivatives we use the notation

V̇ 〈a〉 = habV̇
b , (4.17)

and similarly for Ṡ〈ab〉.
Any skew 2-tensor orthogonal to ua can be written as

Aab =A[ab] = ηabcA
c ⇔Ac = 1

2η
abcAbc, (4.18)

where the projected alternating tensor ηabc was defined in Section 2.7.5. Then in (4.16) all
terms can be expressed using ua , scalars, projected vectors obeying Va = V〈a〉, and PSTF
2-tensors Sab = S〈ab〉. Note that such a PSTF tensor has five independent components. By
evaluating components in an orthonormal tetrad aligned with uµ it is easily found that ηabc
has the same components as the skew object in three-dimensional vector calculus used, for
instance, in defining vector products and the curl of a vector.

4.4.2 Orthogonal spatial derivatives

One can project the four-dimensional covariant derivatives to give three-dimensional
derivative operators:

∇cS
a···

b··· = hc
f had · · ·hbe · · · ∇f S

d···
e··· . (4.19)

Other notations for this derivative in the literature are (3)∇a , ∇̂a , �∇a and Da .
Following Maartens (1997), we define

divV =∇a
Va , (divS)a =∇b

Sab , (4.20)

curlVa = ηabc∇b
V c , curlSab = ηcd(a∇c

Sb)
d . (4.21)

The covariant div and curl preserve the PSTF property. Note that∇, div and curl are defined
as operators in a 3-manifold only if the vorticity vanishes (see below). When vorticity is
non-zero, they are only operators in the tangent hyperplane at each point and not on a
manifold.

One should be cautious in using three-dimensional concepts and notation in the case
with non-zero vorticity – since in that case there are no hypersurfaces to which hab is
everywhere tangent (see Section 4.6). This means in particular that there is in general no
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three-dimensional manifold in which Poincaré’s Lemma can be applied to obtain scalar or
vector potentials. However, when vorticity vanishes, we have a powerful covariant spatial
calculus of vectors and tensors. Even with vorticity, it dramatically shortens subsequent
equations, makes derivations far easier and more transparent and facilitates new insights.

With these definitions we find that

∇chab = 0, ∇dηabc = 0, ḣab = 2u(au̇b) , η̇abc = 3u[aηbc]d u̇d . (4.22)

Identities obeyed by div and curl are collected in Section 4.8.

Exercise 4.4.1

(a) Show from (4.14) that the proper time dτ experienced by a particle between events P
and Q for which an observer O determines coordinates xµ, xµ + dxµ, respectively,
is dτ = δt/γ where γ = (1− v2/c2)−1/2 and v = δl/δt is the velocity of the particle
relative to O.

(b) Show that

ηabcd = 2u[aηb]cd − 2ηab[cud] , ηabcηdef = 3!h[adhbehc]f , (4.23)

(V〈a〉)̇= V̇〈a〉 +Vbu̇
bua . (4.24)

(d) Derive (4.22).

4.5 Relative position and velocity

4.5.1 Relative position vectors

Consider a curve yi = yi(v) in a surface S : s = s0, where (s, yi) are comoving coordinates.
This curve links a set of fundamental observer world lines (which we shall assume for now
are also galaxy world lines) in that surface; at all later times, the same curve links the same
set of world lines, that is, the curve is dragged along by the world lines from the surface S
to any other surface s = const.

Similarly the vector βµ = (dxµ/dv)δv tangent to this curve, given in comoving coor-
dinates by βµ = (0, δyi), where δyi = (dyi/dv)δv, links the same pair of world lines O:
yi = ci =const and G: yi = ci + δyi , δyi =const, at all times, provided δv is small (so
that the displacement represented by the vector is a good approximation to displacement
along the curve). This is a connecting vector as described in Section 2.4, since it always
joins the same pair of fundamental world lines. In general coordinates xµ, this vector will
be given by

βµ =
(
∂xµ

∂yi

)
s=const

δyi . (4.25)

An observer on O would at all times find that the spacetime position defined by βµ lies on
the world line of the galaxy G.
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There is, however, a catch.The vectorβa will not in general be orthogonal to the fluid flow
lines; thus it will represent both a spatial displacement from O to G and a time increment,
i.e. it will link O to G at an earlier or later time as measured by O. What we wish to obtain,
however, is the analogue of the Newtonian relative position vector, which represents an
instantaneous spatial displacement as measured in O’s rest frame, and so is orthogonal to
ua . We obtain this by projecting βa orthogonal to ua ; that is, the relative position vector of
G as measured by O is β〈a〉. This projected vector will represent a spacetime displacement
from G to O provided the relative velocity of G and O is not too large, which will be true in
the limit of small δv. We shall find it useful to decompose this vector into a relative distance
δl and a direction ea , where ea is a unit vector in the rest space of O:

β〈a〉 = eaδl, eaea = 1, eaua = 0 ⇒ β〈a〉β〈a〉 = (δl)2 . (4.26)

The set of all directions about an observer O can just be considered as the sphere at unit
radius about O.

4.5.2 Relative velocity

Given the definition of relative position, the way to define relative velocity is clear: take the
time derivative of the relative position vector, and then project orthogonal to ua to produce
a vector in the rest frame of ua :

va = v〈a〉 = habu
d∇d(h

b
cβ

c)= β̇〈a〉. (4.27)

Now by its definition as a connecting vector (dragged along by the 4-velocity ua), the Lie
derivative of βa with respect to ua vanishes:

[u,β]a = ua ,bβ
b−βa

,bu
b = βb∇bu

a −ub∇bβ
a = 0. (4.28)

This is a direct consequence of (4.4), (4.25). It follows that,

va = V a
bβ

〈b〉, Vab := ha
chb

d∇duc =∇bua (4.29)

showing that the relative velocity of nearby particles is given from their relative position by
a linear transformation, the transformation matrix being simply the orthogonal projection
of the covariant derivative of the 4-velocity vector.

Exercise 4.5.1 Show that if the fluid flow lines are non-geodesic,βa cannot remain orthogonal
to ua even if it is orthogonal initially.

4.6 The kinematic quantities

To examine this further, we substitute the decomposition of β〈a〉 in terms of relative distance
and direction into (4.29), and split Vab up into its irreducible parts:

Vab = V(ab)+V[ab] =�ab+ωab , (4.30)
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where�ab =�(ab) =∇(aub), the expansion tensor, andωab =ω[ab] =∇[bua], the vorticity
tensor, are the symmetric and skew-symmetric parts of the projected tensorVab respectively.
Further,

�ab =�〈ab〉 + 1
3�

c
chab ≡ σab+ 1

3�hab, (4.31)

where σab, the shear tensor, is the PSTF part of �ab (so σab =∇〈aub〉) and �, the (volume)
expansion, is the trace part (� = ∇au

a). Note that this is an invariant splitting: because
these are tensor equations, the splitting will be the same irrespective of what coordinates
are used.

In terms of these quantities, we derive from (4.26, 4.27) firstly the relation

δl ˙
δl

=�abe
aeb = 1

3�+σabe
aeb, (4.32)

the generalized Hubble relation, showing that the rate of change of distance of neighbouring
galaxies is proportional to their distance, with a ratio of proportionality which is in general
direction dependent. Secondly, we obtain

ė〈a〉 = ωabe
b+σabe

b− (σcde
ced)ea , (4.33)

the rate of change of direction equation.
It is important to ask: relative to what frame is this rate of change of relative direction

determined? The answer is: a frame for which each basis vector ea obeys the Fermi equation
ė〈a〉 = 0. Physically, this corresponds to a non-rotating local inertial reference frame as
determined by local dynamical experiments (by gyroscopes, Foucault pendula, etc.): see
e.g. Trautman (1965). Relation (4.33) is an observable relation in the sense that if one
can determine a local non-rotating reference frame from local dynamics, then one can
measure the rate of change of direction of galaxies relative to this frame. Thus in principle
the left-hand side of this relation is directly observable; the components on the right-hand
side can then be determined from these observations. This is also true for (4.32), distance
being estimated from apparent size and velocity from redshift; the way this is done will be
discussed in detail later.

The results above are somewhat surprising: we have deduced the generalized Hubble
relation (4.32) apparently out of nothing! Historically, it took many years of devoted obser-
vation to show such a relation in the real universe. How have we arrived at the result
theoretically? What is the origin of these relations?

Basically, it is because we have used a linearized representation of properties of the fluid
flow that follows from the existence and differentiability of the average velocity vector field
ua . For this reason the results are only a first approximation in the region close to the point
of observation. The derivation will be correct provided the continuum (fluid) approximation
is a good description of the matter distribution and velocities in the universe, as discussed
in Section 1.4.

4.6.1 Kinematical effects

To understand these equations better, it is convenient to consider successively the effect on
relative position of pure expansion, shear and vorticity in turn.



82 Chapter 4 Kinematics of cosmological models

In the case of pure expansion, ωab = σab = 0, so the rate of change of relative distance
becomes δl /̇δl=�/3, independent of direction, while the rate of change of relative position
becomes ė〈a〉 = 0. Thus if we consider a sphere of galaxies of radius δl around us at time
t , at time t + δt the distances to all of the galaxies have increased by dl = �δl δt/3 and
their directions have all remained unchanged, so the galaxies then form a larger sphere
(assuming �> 0) with each galaxy lying in the same direction as before. Hence we have
a distortion-free expansion without any rotation.

In the case of pure shear, ωab = � = 0, so the rate of change of relative distance
becomes δl /̇δl = σabe

aeb, and the rate of change of relative position becomes ė〈a〉 =
σabe

b − (σcde
ced)ea . Since the shear tensor is symmetric, we can choose an orthonormal

basis of shear eigenvectors, so the components of σab become σab = diag(0,σ1,σ2,σ3),
where σ1 + σ2 + σ3 = 0 (because this tensor is trace-free). Then if there is an expansion
in the 1-direction (σ1 > 0), there must be a contraction in at least one other direction (say
σ2 < 0). If in this case we consider a sphere of galaxies around us at time t , at time t + δt

the distances to galaxies in the principal j -axis direction will have changed by dl = σj δl δt

and their directions remain unchanged. Thus the galaxies then form an ellipsoid, expanded
in the 1-direction but contracted in the 2-direction, with the same volume as before. Each
galaxy lying in a shear eigendirection will be in the same direction as before; all others will
appear to have moved in the sky, but the average change of direction, integrated over the
whole sky, will be zero (for each galactic apparent motion there will be an equal and oppo-
site apparent motion of another galaxy to compensate). Hence we have a pure distortion,
without rotation or change of volume.

In the case of pure vorticity, σab = � = 0, so the rate of change of relative distance
becomes δl /̇δl = 0 (all relative distances are unchanged), and the rate of change of relative
position becomes ė〈a〉 = ωabe

b. By definition, a rotation preserves all distances, so these
relations show that the change is a pure rotation. To examine this further, it is convenient
to define the vorticity vector ωa by the relations

ωa =− 1
2curl ua = 1

2ηabcω
bc ⇔ ωab = ηabcω

c , (4.34)

showing thatωa is a vector orthogonal to ub which is an eigenvector ofωab with eigenvalue
zero (ωaωab = 0). This implies that it defines the axis of the rotation (which is simply the set
of directions invariant under the rotation). We can choose an orthonormal basis with e0 = u
and e1 parallel to ω; the components ofωa andωab then becomeω1 =ω23 =−ω32 =ω, the
rest being zero. The galaxies in the ω direction momentarily remain unchanged in direction,
as time increases, and all other galaxies remain at the same distance but appear to revolve
around this axis. Thus this represents a pure rotation, without distortion or expansion.

Note that in the Newtonian limit, ωi =− 1
2ω

i
N , where ωN =∇× v.

In a general fluid flow, all these quantities will be non-zero, so a combination of effects
(volume change, rotation, distortion) will occur. It is still true, however, that there will
always be two fixed points in the sky, where (instantaneously) the galaxy directions for a
given celestial sphere of galaxies remain constant; this follows from the fixed point theorem
for vector fields on the 2-sphere, applied to the vector field representing apparent motions in
the sky, together with the fact that equation (4.33) shows that if ea is such a fixed direction, so
is −ea . The volume will still change by an amount proportionate to �: V → V (1+�δt).
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It is convenient to define a representative length scale �(τ ) (in agreement with the � of
Section 3.2) by the relation

�̇

�
= 1

3� (4.35)

determining � up to a constant scale factor along each world line. Then we shall always have
the change of volume along the fluid flow characterized by V ∝ �3. The quantity � here
corresponds to the FLRW scale-factor a in (2.65), but is defined for an arbitrary flow field
(determining the average distance behaviour of that flow field). The Hubble parameter for
the flow is H := �̇/�= 1

3�. Its present-day value H0 = (�̇/�)0 is the Hubble constant.

4.6.2 Non-zero vorticity and cosmic time

We have seen that ωa �= 0 if and only if the local inertial frame rotates relative to the rest
frame defined by distant galaxies. The second important characterization is that ωa �= 0
implies ua is not a gradient. In detail:

ωa = 0 ⇔ u[b∇cud] = 0 ⇔ u[buc,d] = 0

⇔ locally there are functions r , t such that ua =−rt,a , (4.36)

that is, ua is proportional to a gradient (the implication from left to right is trivial; the
implication from right to left follows from Darboux’s theorem).Analytically, t is a potential
function for the direction of ua . Geometrically, this means ua is orthogonal to the surfaces
t =const, for Xaua = 0 ⇔Xat,a = 0, i.e. the derivative of t in the direction Xa is zero for
every vector Xa orthogonal to ua .

We can think of this geometrically as follows: at each point the tangent plane orthogonal
to ua is spanned by hab, but in general these surface elements do not mesh together to form
a surface in spacetime. We can obtain a geometrical picture of this situation by thinking of
a twisted rope where the central strands are nearly vertical and the outer ones lie in a flatter
spiral. Starting at the centre and moving along a curve always orthogonal to the strands, one
can arrive back at the central strand above or below where one departed from it, i.e. the set
of curves orthogonal to the strands do not integrate together to form a 2-space orthogonal to
all the strands. The tangent elements orthogonal to ua mesh together to form a 3-surface in
spacetime (with the 3-space defined by hab tangent to these surfaces at each point) precisely
when ωa = 0, these surfaces being the surfaces t =const: the surfaces are unique because
the vector field is unique. When ωa �= 0, no such orthogonal surfaces exist.

What is the physical meaning? The orthogonal tangent planes are instantaneous rest
spaces for observers moving with 4-velocity ua ; these fit together coherently if and only if
ωa = 0, that is, vanishing vorticity is the condition for the existence of a cosmic time for the
fundamental observers.2 Such a function allows the fundamental observers to synchronize
their clocks, determining the event q on a world line G simultaneous with an event p on a

2 Time functions exist which consistently order events on all timelike lines, whenever the stable causality condition
holds (Hawking and Ellis, 1973), and such a time may even measure proper time along all the fundamental world
lines; but it will not locally determine simultaneity as measured by all the fundamental observers unless it satisfies
(4.36).
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world line O. When the vorticity is non-zero, this is not possible, for starting from p and
moving on a path that is everywhere orthogonal to ua , one can return to O at events earlier
or later than p; thus one does not even obtain a unique result for the cosmic time on the
world line O itself. When vorticity vanishes, synchronization is unique, for each such curve
lies in a surface t = tp and returns to O at the unique event where this surface intersects the
world line. Thus this time extends simultaneity from any one world line to its neighbours;
and as the surfaces t =const are spacelike it gives the same time ordering on all timelike
and null world lines.

However, the function t does not necessarily measure proper time along the world lines.
Indeed, the derivative of t along the world lines with respect to proper time is ṫ = t,au

a =
−r−1uau

a = r−1. Thus t can be chosen to measure proper time along the world lines only if
r = r(t), for only then can we choose r = 1 (by rescaling t → t ′(t)); such a t is a normalized
cosmic time, which both determines the rest space of each fundamental observer and meas-
ures proper time along all the fundamental world lines. The condition for this to be possible
is that ua is a gradient, which will be true if both the vorticity and the acceleration vanish:

ωa = 0 = u̇a ⇔∇[aub] = 0 ⇔ u[a,b] = 0

⇔ locally there is a function t such that ua =−t,a . (4.37)

When ωa = 0, u̇a �= 0, one can normalize the cosmic time to measure proper time along
one world line but then, even though it synchronizes instantaneous events on the different
world lines, it will not measure proper time along other world lines. For example, the time
coordinate t in the FLRW universes is a fundamental cosmic time that measures proper
time along each world line. The standard time coordinate t in a Schwarzschild solution is
a cosmic time for the static observers, but does not measure proper time along their world
lines (because their acceleration is non-zero).

Another example (and a warning) is provided by the Gödel universe (Gödel, 1949,
Hawking and Ellis, 1973). In this rotating universe there exist normalized comoving coordi-
nates;the‘time’coordinatet existsgloballyandmeasurespropertimealongeveryfundamental
world line.However, there isnogood timefunctionwhatever: thesurfaces t =constcannotbe
chosen to be spacelike everywhere. Thus, of necessity, such surfaces become timelike some-
where; such a ‘time’can order events along the fundamental world lines, but does not provide
a unique time ordering along arbitrary timelike or null world lines. This feature can occur
because causality is violated in this universe. Ifω= 0 and the topology is simply connected,
there is a global time coordinate t . We may thus expect causality violations to be associated
either with rotation, if the rotation occurs over a large enough part of the universe, or with
closed topologies in the timelike direction (Tipler, Clarke and Ellis, 1980, Ellis, 1996).

4.6.3 Characterizing the fluid flow

The quantities we have now defined (the acceleration, expansion, shear and vorticity) are
called the kinematic quantities because they characterize the kinematic features of the
fluid flow. More precisely, on the one hand these quantities are all defined from the first
covariant derivative of the 4-velocity vector field ua ; on the other, it follows from (4.8) and
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(4.29)–(4.31) that

∇bua = ωab+σab+ 1
3�hab− u̇aub, (4.38)

which shows that this derivative is completely determined by the kinematic quantities. Thus
they contain precisely the same information as the first derivative ∇bua of ua (there are 12
independent components of ∇bua , which is orthogonal to ua on the index a, while there
are five independent components of σab, three of ωab, one of � and three of u̇a). Their
geometric meaning has been emphasized above. In principle, they are directly measurable
from observations of nearby galaxies through equations (4.32) and (4.33). Their magnitudes
are defined as follows:

ω2 = 1
2ωabω

ab = ωaωa so that ω2 = 0 ⇔ ωa = 0 ⇔ ωab = 0, (4.39)

σ 2 = 1
2σabσ

ab so that σ 2 = 0 ⇔ σab = 0, (4.40)

the implication following because these are spacelike tensors, orthogonal to ua . They can
be used to characterize some simple universe models. For example, in an Einstein static
universe ω= σ = u̇a =�= 0; in all other FLRW universes, ω= σ = u̇a = 0; � �= 0. In a
Gödel universe, �= σ = u̇a = 0; ω �= 0. In a static star model, �= σ = ω= 0; u̇a �= 0.

In the real universe, what are the current limits on the present-day values of these quan-
tities? Direct observations show �0 > 0 (as the Hubble constant is positive), and put upper
limits on σ0 and ω0: σ0 <

1
4�0, ω0 <

1
3�0 (Kristian and Sachs, 1966). Indirect evidence

(from nucleosynthesis and CMB isotropy) is much more stringent (see Chapter 13). How-
ever, even if these values are very low today, this does not imply that these quantities are
unimportant; indeed they can dominate the early expansion of the universe even if very
small today.

The Newtonian analogue of (4.38) is the pair of equations vi,j = ωij + σij +
1
3�hij , ∂vj /∂t = aj − vj ,iv

i −�,j .

Exercise 4.6.1 Show that relations essentially identical to (4.25)–(4.35) hold in Newtonian
theory, with Vij = vi,j .

Exercise 4.6.2

(a) Show that (4.36) implies u̇a = ∇a(ln r), i.e. that (irrespective of the fluid equation of
state) if ω = 0 there necessarily exists an acceleration potential r . [Note: this follows
from (4.43) also.]

(b) Remembering that ṫ = r−1, show that this implies ∇a ṫ =−ṫ u̇a .
(c) Consider neighbouring world linesO andG intersecting the surfaces t = t0 and t = t0+δt

where the corresponding proper times along the world lines O and G are δτO and
δτG respectively and dxa is a relative position vector from O to G. Show that then
δτG = δτ0(1+ u̇adxa).

(d) In the case of a perfect fluid, r will be given (up to a multiplicative constant) by (5.41)
where the integral is taken along the fluid flow lines from some initial surface S. Show
that then δτG/δτO = 1− δp/(ρ +p) where δp = pG −pO is the pressure difference
between O and G. If further p = wρ where w is constant, this becomes δτG/δτO =
1−wδρ/[ρ(1+w)].
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4.7 Curvature and the Ricci identities for the 4-velocity

Here we gather the purely kinematic identities arising from the Ricci identity for the velocity
field ua , that is,

(∇c∇d −∇d∇c)ua =Rabcdu
b. (4.41)

Some of these equations become dynamic when the Ricci tensor has been related to the mat-
ter content through the Einstein field equations (3.13), and we therefore postpone detailed
discussion of the consequences of these equations until Chapter 6, after we have discussed
the possible matter content in Chapter 5. The Newtonian equivalents of the Ricci identities
are the equations ∂(vj ,i )/∂t = (∂vj /∂t),i , vi,j ,k = vi,k,j which follow because the space
sections are locally flat and evenly spaced in the Newtonian limit.

4.7.1 Ricci tensor relations

We note first that on contracting (4.41) with uc, we obtain a propagation equation for ∇dua

along the fluid flow lines:

(∇dua)̇−∇d u̇a + (∇du
c)(∇cua)=Rabcdu

buc . (4.42)

If we now substitute for ua;d in terms of the kinematic quantities, we obtain propagation
equations for expansion, shear and vorticity ((4.43), (4.46) and (4.51) below) but not for
acceleration, due to the Riemann tensor symmetries. The Newtonian analogue of (4.42)
is v̇ij − ai,j + vikv

k
j +�,i,j = 0, which follows from the definitions of the ‘acceleration

vector’ aj and the convective derivative.
The Riemann tensor symmetries imply that of the 24 components arising from the four

possible a and six distinct pairs cd in (4.41), six, the projections on ua , vanish trivially by
(2.66), three equations are given by contraction of (4.41) with uc and one by contraction
with ηabc. Respectively, these last four give (multiplying the first by ηade)

ω̇〈e〉 = − 2
3�ωe+σedωd − 1

2curl u̇e , (4.43)

∇aω
a = ωau̇a . (4.44)

Equation (4.43) gives the basis for the discussion of vorticity conservation in Section 6.2.
The first four of the remaining 14 components of (4.41) are obtained by contraction on

ac, which we call the trace. This can be split into three spatial parts and one time part. The
latter is the same as the contraction of (4.42) and gives

(∇au
a)̇−∇au̇

a + (∇auc)(∇cua)=Ra
bcau

buc =−Rbcu
buc . (4.45)

In terms of the kinematic quantities, this is

�̇+ 1
3�

2 + 2(σ 2 −ω2)−∇au̇
a + u̇au̇a =−Rbcu

buc . (4.46)
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The spatial projection of the trace gives,

ha
b∇c

(
σc

b+ωc
b

)− 2
3∇a�− (ωab+σab)u̇

b = ha
bRb

cuc , (4.47)

which can be written

∇b
σab− curl ωa − 2

3∇a�+ 2ηabcω
bu̇c =R〈a〉bub . (4.48)

4.7.2 Weyl tensor relations

To express the remaining results we shall use the decomposition of the Weyl curvature into
its ‘electric’ and ‘magnetic’ parts Eab and Hab, discussed in more detail in Section 6.4 and
defined by,

Eab =Cacbdu
bud =E〈ab〉, Hab := 1

2ηacdC
cd

beu
e :=H〈ab〉 (4.49)

where we used the Weyl tensor symmetries. Then

Cab
cd = 4

(
h[a [c+u[au[c

)
Eb]d] + 2ηabeu

[cHd]e+ 2ηcdeu[aHb]e . (4.50)

The two PSTF tensors Eab and Hab match with the residual parts of (4.41) which are the
five components arising from the PSTF part of (4.42), and five from the PSTF part of the
contraction with ηcde. These are,

Eab− 1
2R〈ab〉 = −σ̇〈ab〉 − 2

3�σab+∇〈au̇b〉 + u̇〈au̇b〉 −ω〈aωb〉 −σc〈aσb〉c (4.51)

Hab = curl σab+∇〈aωb〉 + 2u̇〈aωb〉 , (4.52)

where we have removed the trace (4.44).

To summarize, the symmetries of the Riemann tensor give (4.43) and (4.44), and the
remaining components give (4.46), (4.48), (4.51) and (4.52). Of these, (4.43), (4.46) and
(4.51) come from (4.42), which is the contraction of (4.41) with uc, and (4.46) and (4.48)
come from the ‘trace’ of (4.41). All these equations are kinematic identities, i.e. they are
true whatever the dynamics in action. They obtain a dynamical content when we join them
with the EFE, which we do in the next chapter.

Exercise 4.7.1

(a) Verify the above equations, and find their Newtonian counterparts. (Hint: See Ellis
(1971a)).

(b) Show that

Cabcd = (gabpqgcdrs −ηabpqηcdrs)u
purEqs

− (ηabpqgcdrs +gabpqηcdrs)u
purHqs , (4.53)

where gabcd := gacgbd −gadgbc. (This corrects a sign error in Ellis (1971a).)
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4.8 Identities for the projected covariant derivatives

The projected spatial derivative is related to the covariant derivative by

∇af =−uaḟ +∇af , (4.54)

∇bVa =−ub
{
V̇〈a〉 + u̇cV

cua
}

+ua

{
1
3�Vb+σbcV

c+ηbcdω
cV d

}
+∇bVa , (4.55)

∇cSab =−uc

{
Ṡ〈ab〉 + 2u(aSb)d u̇

d
}

+ 2u(a
{

1
3�Sb)c+Sb)

d
(
σcd −ηcdeω

e
)}+∇cSab , (4.56)

where

∇bVa = 1
3∇

c
Vc hab− 1

2ηabccurl V c+∇〈aVb〉 , (4.57)

∇cSab = 3
5∇

d
Sd〈ahb〉c− 2

3ηdc(a curl Sb)
d +∇〈aSbc〉 . (4.58)

Thus the spatial derivatives of projected vectors and rank-2 PSTF tensors are made up of
a covariant divergence and curl, and a ‘distortion’ derivative (Maartens, Ellis and Siklos,
1997). In the rank-2 tensor case, the distortion is a rank-3 PSTF tensor, which can be
written as

∇〈aSbc〉 = ∇(aSbc)− 2
5h(ab∇

d
Sc)d . (4.59)

The covariant spatial gradient, divergence and curl obey identities which are a covariant
generalization of Newtonian vector calculus identities. A selection of important identities
is the following (see Maartens (1997), van Elst (1996), Maartens, Ellis and Siklos (1997),
Maartens (1998), Maartens and Bassett (1998)):

curl ∇af =−2ḟ ωa ⇔ ∇[a∇b]f =−ḟ ωab , (4.60)

∇a curl V a =− 2
3ωa

(
3V̇ 〈a〉 +�V a + 3σabVb

)
, (4.61)

(∇af )̇=∇aḟ + (u̇b∇bf )ua + u̇aḟ − 1
3�∇af

−σab∇b
f +ηabcω

b∇c
f . (4.62)

The first two show that, when ωa �= 0, the Newtonian identities, curl grad= 0 and div
curl= 0, no longer hold. The third identity shows how the Newtonian identity (∇f )̇=∇ḟ

is generalized. This identity is important for commuting time and space derivatives of
gradient quantities.

The extensions of these identities to expressions for ∇[a∇b]Vc, ∇[a∇b]Scd , ∇b curl Sab,
(∇aVb)̇, etc. are complicated, and may be found in the references cited above. In the case
of an almost FLRW spacetime, the identities simplify – see Section 10.4.1.
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Our current understanding of the contents of the universe is based on the Standard Model
of particle physics and its extensions (see e.g. Mukhanov (2005), Peter and Uzan (2009)).
The Standard Model incorporates the strong, weak and electromagnetic interactions. The
hadrons, made of quarks and anti-quarks, feel the strong interaction (and the weak). They
are fermionic baryons and bosonic mesons. In cosmology, the key hadrons are the bary-
onic proton and neutron, but many more hadrons have been detected. Fermionic leptons
feel the weak interaction; these include the electron and the three neutrino species. All
charged hadrons and leptons feel the electromagnetic interaction. See Table 9.3 for a
summary.

This model is able to explain all particles so far observed in colliders and particle detectors,
except that experiments have recently detected neutrino oscillations, so that at least two of
the neutrinos must have mass. The candidate particles for cold dark matter also cannot be
explained within the Standard Model.

This Standard Model allows us to understand the ultra-relativistic early universe, for
times t � 10−10 s and energies E � 1TeV. The Large Hadron Collider is beginning to probe
E � 1TeV at the time of writing. One of the outstanding successes of the model is the
prediction of light element nucleosynthesis. A brief overview of particle physics in the
early universe is given in Section 9.6. Our focus in this chapter is on the universe after
matter–radiation equality, when the relevant contents of the universe are:

• Standard-model matter: protons, electrons, atoms, molecules, photons and neutrinos, all
of which are observed in non-gravitational experiments. (Massive neutrinos require a
minimal extension of the Standard Model.) Baryonic matter aggregates under gravity
into gas, stars, galaxies, clusters.

• Cold dark matter: indirectly required by astrophysical and cosmological dynamics.
Non-Standard-Model candidates are proposed, but so far there is no non-gravitational
detection.

• Dark energy: deduced purely from cosmological gravitational effects and dependent on
the cosmological model.

These constituents may be modelled using fluids, gases and fields,1 and in this chapter
we discuss fluids and their thermodynamics, scalar fields, multiple fluids and fields,
electromagnetic fields, kinetic theory and quantum field theory.

1 Although solid, or partially solid, bodies occur, they are not important in cosmological discussions.
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5.1 Conservation laws

There are two different kinds of conservation law which constrain the behaviour of matter.

5.1.1 Average 4-velocities and conserved quantities

How can we define the average 4-velocity of non-relativistic matter, assumed to be made
up of particles of identical mass, whose number is conserved (each ‘particle’ of matter for
the present-day universe may be a cluster of galaxies)? Consider an averaging volume of
scale size L and volume dV , measured by an observer O, which is small relative to the
curvature of spacetime. O can associate with each particle a 3-velocity v∗ and a rest-mass
m∗. From this O can define the rest-mass density current 4-vector,

J a = 1

dV
�∗(m∗,m∗v∗), (5.1)

where the sum is over all particles in the volume. If this vector is well defined for one
observer, it is well defined for all, i.e. the same 4-vector will be found no matter which
observer makes the measurements (this is far from obvious; it follows most easily from
relativistic kinetic theory, see Section 5.4). We now split the vector into a magnitude ρN

(the rest-mass density) and a unit timelike vector ua
(b):

J a = ρNu
a
(b), ua(b)u(b)a =−1. (5.2)

This defines the barycentric frame.
To clarify its meaning, suppose we consider an observer O moving with this 4-velocity.

From (5.2), for O the components will be J a = (ρN ,0,0,0). However, as the definition (5.1)
holds in all frames, we see that in this frame

ρN = 1

dV
�∗m∗, �∗m∗v∗ = 0. (5.3)

Thus ρN is the rest-mass density measured by ua
(b) and the frame is the centre of rest-mass

frame (the total momentum measured relative to this frame is zero).
In the Newtonian case, the second of (5.3) is the definition of the centre-of-rest frame.
At late times in the universe, rest-mass of galaxies is conserved. Hence by the arguments

in Section 3.2 we shall have

ρN =M�−3, Ṁ = 0 ⇔ ρ̇N +ρN�= 0 ⇔∇aJ
a = 0. (5.4)

If one is considering matter at a time when rest-mass is not conserved (e.g. when nucleosyn-
thesis is important), one must define the average velocity in terms of some other quantity
that is conserved at that time: e.g. baryon or lepton number, or electric charge. Then we
obtain the baryon or lepton density current vector, or the charge density current vector
(compare Section 5.5) respectively.

If the particle number is conserved, we can use the particle 4-current density, defined in
a general frame by

Na = nua +na , naua = 0, (5.5)
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where n=−uaNa is the particle number density and na =N 〈a〉 is the particle flux vector, as
measured by ua . For a non-relativistic fluid, Na =m−1J a , where m= ρN/n is the particle
mass. If particle number is conserved, then

∇aN
a = 0 ⇒ ṅ+�n+∇a

na + u̇ana = 0. (5.6)

We can define a unique 4-velocity by requiring that there is no particle number flux relative
to it:

Na = n(p)u
a
(p) . (5.7)

The 4-velocity ua(p) defines the particle (or Eckart) frame. It coincides with the barycentric
frame for a non-relativistic fluid of identical mass particles, but it also applies to massless
and varying-mass particles, provided that the total particle number is conserved.

An alternative frame is defined via energy flux. When the strong energy condition holds
(see below), the energy–momentum tensor (5.9) of a fluid has a unique timelike 4-velocity
eigenvector ua(e), characterized by

qa(e) := Tbch
ab
(e)u

c
(e) = 0. (5.8)

This defines the energy (or Landau–Lifshitz) frame, in which there is no energy flux.
The energy frame 4-velocity is uniquely characterized as the only 4-velocity that is an
eigenvector of the stress tensor: T a

b u
b
(e) =−ρ(e)u

a
(e).

For a perfect fluid, ua(e) = ua(p), and they define a unique hydrodynamic 4-velocity vector.
This is the only frame in which the energy–momentum tensor has perfect-fluid form.

What is clear is that if no quantity is conserved one cannot define an average velocity,
for one cannot then identify the same quantity at the beginning and end of the time period
used to measure the 4-velocities. Thus every such definition of a 4-velocity is based on a
conserved quantity, leading to a conserved 4-current.

Determination of the average velocity of matter locally is a major issue in observa-
tional cosmology, leading to the concepts of large-scale streaming velocities and the ‘Great
Attractor’ (Bertschinger et al., 1990, Burstein, Faber and Dressler, 1990), which attempt to
reconcile the average velocities estimated by observation of galaxies as discussed above
with the average velocity defined by the microwave background radiation. As discussed
later, we usually assume these velocities are the same. If this is not true at some cosmological
scale, there are serious implications for cosmology: a 1-component fluid description must
be replaced by at least a 2-component description at that scale.

5.1.2 Energy–momentum conservation

Energy and momentum conservation is of course a cornerstone of physical theory.

The energy–momentum tensor

As a result of (4.16) and its symmetry, Tab, as measured by an observer moving with
4-velocity ua , can be split up into its parts parallel and orthogonal to ua as follows:

Tab = ρuaub+ qaub+uaqb+phab+πab, qa = q〈a〉, πab = π〈ab〉 . (5.9)
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The observer measures that
ρ = Tabu

aub is the relativistic energy density (the rest mass density plus the total internal
energy due to heat, chemical energy, etc.);
p = habTab/3 is the relativistic pressure;
qa =−T〈a〉bub is the relativistic momentum density (due to processes such as diffusion and
heat conduction), which (because of the equivalence of mass and energy) is also the energy
flux relative to ua ;
πab = T〈ab〉 is the relativistic anisotropic (trace-free) stress tensor due to effects such as
viscosity or free-streaming or magnetic fields.

The 10 components of Tab are thus represented by the two scalar quantities ρ and p, the
three components of the vector qa and the five components of the tensor πab.

Given a choice of ua , this splitting into parallel and perpendicular parts can be applied to
any stress–energy tensor whatever; the physics of the matter is then given by equations of
state relating the quantities ρ, p, qa , πab and possibly other thermodynamic variables such
as the temperature and entropy. The special relativistic transformation laws between energy
density, momentum density and stresses are contained in the decomposition above, since
a different observer will have a different 4-velocity and obtain a different decomposition
of the same stress tensor into such components. When the observer is moving with the
physically defined average velocity, these components will embody the physical nature of
the matter. When the observer is not moving with the average velocity, these interpretations
would not be physically meaningful in a way intrinsic to the matter content itself.

In Newtonian theory, the mass density ρN and energy density ε are independent of each
other, and qa and πab are separately defined (unlike the GR case where, together with ρ,
they are components of a single tensor).

The conservation laws

The energy–momentum conservation equations are given by the four-dimensional equation

∇bT
ab = 0. (5.10)

In terms of the 1+3 decomposition (5.9), the component of these equations parallel to ua

is the energy conservation equation,

ρ̇+ (ρ+p)�+πabσab+∇aq
a + 2u̇aq

a = 0, (5.11)

which determines the rate of change of relativistic energy along the world lines. The
projection orthogonal to ua gives the momentum conservation equation

q̇〈a〉 + 4
3�qa + (ρ+p)u̇a +∇ap+∇b

πab+ u̇bπab+
(
σab+ηabcω

c
)
qb = 0, (5.12)

which determines the acceleration caused by various pressure contributions. This shows
that the inertial mass density of matter is ρ+p, so any form of internal energy (e.g. heat or
chemical energy) contributes to the effective inertial mass both directly (by increasing ρ)
and indirectly (by contributing to p).
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Unlike conservation laws of the general form given by the last expression in (5.4), the
law (5.10) does not in general lead to integral forms of conservation law such as the first of
(5.4). Thus total energy–momentum of an extended region cannot readily be defined: this
is related (see Section 3.1) to the absence of a general definition of gravitational energy in
a curved spacetime.

These conservation laws hold for the total matter stress tensor; if there are several matter
components, the total energy and momentum is conserved, but energy and momentum con-
servation for each component may be modified when interactions between the components
are taken into account, as discussed in Section 5.3.

The Newtonian analogue of (5.12) is the Navier–Stokes equation,

v̇i =−�,i −ρN
−1
(
p,i +πi

j
,j

)
⇔ ρNai +p,i +πi

j
,j = 0. (5.13)

The energy equation ((5.27) below) is deduced separately.

5.1.3 General physical constraints

There are many possible descriptions of the matter and radiation in the universe. However,
irrespective of the detailed description, there are some general constraints that will normally
be applied to classical matter.

Firstly, the speed of sound must be less than the speed of light, or else we can have
violations of special relativistic causality (we can send a signal faster by sound than light).
Furthermore, local mechanical stability demands that the speed of sound be real, for if it
is imaginary an impulse applied to the fluid and causing a perturbation ∝ e−ics t , where
cs is the speed of sound, will cause a collapse of the matter instead of a wave. Now for a
barotropic fluid, p = p(ρ), the speed of sound is given by the adiabatic formula,

c2
s =

dp

dρ
(adiabatic). (5.14)

(For a proof, see Exercise 10.2.4.) Hence, in this case, the conditions are

0 ≤ dp

dρ
≤ 1 for p = p(ρ). (5.15)

The top limit is a rigorous limit which cannot be violated unless we abandon relativity
theory. The bottom limit will apply to a stable situation and certainly to ordinary barotropic
matter. In the case of non-barotropic fluids, the limits would have to be re-evaluated – and
for scalar fields the limits do not apply (see Section 5.6). But in these cases, the speed of
sound is not given by (5.14), and the principle remains: no signals can be sent faster than
light, and we usually demand stable matter.

Secondly, there is the condition that the inertial mass density of matter is positive (i.e.
matter will tend to move in the direction of a pressure gradient applied to it, rather than in
the opposite direction). By (5.12), this condition, known as the weak energy condition, is

ρ+p > 0 weak energy condition. (5.16)

By (5.11), this is also the condition that, when the matter expands, its density decreases
rather than increases.
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Thirdly, there is the condition that the gravitational mass density of matter is posi-
tive, known as the strong energy condition. We shall show in the next section that this
is equivalent to

ρ+ 3p > 0 strong energy condition. (5.17)

For ordinary fluids, we expect each component of matter present to obey both of these
conditions, and so the total stress tensor will also do so. However, scalar fields can violate
(5.17), and the vacuum energy of quantum fields reaches the limiting value in (5.16).

In Newtonian theory, we would normally expect ρN ≥ 0, p ≥ 0.

Exercise 5.1.1
The change of stress tensor splitting with change of 4-velocity.
Consider an observer with 4-velocity ũa , moving relative to the ua frame:

ũa = γ (ua + va), γ = (1− v2)−1/2, vau
a = 0, (5.18)

where va is the relative velocity measured by ua . We can decompose the energy–momentum
tensor of the matter relative to the ũa frame: Tab = ρ̃ũaũb+ p̃ h̃ab+ 2q̃(aũb)+ π̃ab . Show
that

ρ̃ = ρ+ γ 2
[
v2(ρ+p)− 2qav

a +πabv
avb

]
, (5.19)

p̃ = p+ 1
3 γ

2
[
v2(ρ+p)− 2qav

a +πabv
avb

]
, (5.20)

q̃a = γ qa − γπabv
b− γ 3

[
(ρ+p)− 2qbv

b+πbcv
bvc

]
va

− γ 3
[
v2(ρ+p)− (1+ v2)qbv

b+πbcv
bvc

]
ua , (5.21)

π̃ab = πab+ 2γ 2vcπc(a
{
ub)+ vb)

}− 2v2γ 2q(aub)− 2γ 2q〈avb〉

− 1
3 γ

2
[
v2(ρ+p)+πcdv

cvd
]
hab

+ 1
3 γ

4
[
2v4(ρ+p)− 4v2qcv

c+ (3− v2)πcdv
cvd

]
uaub

+ 2
3 γ

4
[
2v2(ρ+p)− (1+ 3v2)qcv

c+ 2πcdv
cvd

]
u(avb)

+ 1
3 γ

4
[
(3− v2)(ρ+p)− 4qcv

c+ 2πcdv
cvd

]
vavb . (5.22)

Exercise 5.1.2 Use the expression for the Weyl tensor in terms of the gravito-electric/magnetic
fields,

Cab
cd = 4

{
u[au[c+h[a [c

}
Eb]d] + 2ηabeu

[cHd]e+ 2u[aHb]eηcde (5.23)

= 4
{
ũ[aũ[c+ h̃[a [c

}
Ẽb]d] + 2η̃abeũ

[cH̃ d]e+ 2ũ[aH̃b]eη̃cde , (5.24)
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to show that the gravito-electric/magnetic fields transform under a velocity boost (5.18) as
follows:

Ẽab = γ 2
{
(1+ v2)Eab+ vc

[
2ηcd(aHb)

d + 2Ec(aub)

+ (uaub+hab)Ecdv
d − 2Ec(avb)+ 2u(aηb)cdH

deve

]}
, (5.25)

H̃ab = γ 2
{
(1+ v2)Hab+ vc

[
−2ηcd(aEb)

d + 2Hc(aub)

+ (uaub+hab)Hcdv
d − 2Hc(avb)− 2u(aηb)cdE

deve

]}
. (5.26)

Exercise 5.1.3 Show that the conserved quantity arising as in (3.11), which is an energy if
ξa is timelike, and a momentum component if ξa is spacelike, generalizes to the case of a
conformal Killing vector obeying (2.61) if T a

a = 0. This is the case for isotropic radiation
and for the electromagnetic field (see below).

5.2 Fluids

The general equation of state for fluids can be expressed in terms of thermodynamic quan-
tities. Defining the specific internal energy ε by ρ = (1+ ε)ρN and the specific volume v
by v = 1/ρN , the temperature T and specific entropy S are determined by the first law of
thermodynamics, i.e.

dε+ptdv= T dS, (5.27)

where pt is the pressure in thermodynamic equilibrium. It follows that

ρNT Ṡ+ (p−pt)�= ρ̇+ (ρ+p)�. (5.28)

Combining this with the energy conservation equation (5.11) we find

ρNT Ṡ+ (p−pt)�=−(πabσab+∇aq
a + 2u̇aq

a). (5.29)

This enables us to calculate the divergence of the entropy flow density vector Sa , defined
by the relation

Sa = ρNSu
a + qa

T
, (5.30)

the first term being the convection term (entropy carried along with the fluid flow) and the
second the conduction and diffusion term (entropy carried by energy flow in the rest frame
of the fluid). We obtain

∇aS
a =− 1

T

[
πabσab+ qa

(
u̇a +∇a lnT

)+ (p−pt)�
]

. (5.31)

Now if we consider an isolated fluid flow (a timelike tube of fluid T such that ρN > 0 in
T but ρN = qa = 0 outside T ), entropy production must always be positive by the second
law of thermodynamics: the entropy density integrated across the tube at an initial time s1
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must be less than or equal to that at a final time s2. By the divergence theorem, this is the
requirement that

∇aS
a ≥ 0. (5.32)

This will necessarily be true for arbitrary fluid flows if

πab =−λσab, (5.33)

qa =−κ(∇aT +T u̇a), (5.34)

p−pt =−ζ�, (5.35)

where λ≥ 0 is the viscosity coefficient, κ ≥ 0 is the heat conduction coefficient, and ζ ≥ 0
is the bulk viscosity coefficient. Then,

∇aS
a = 1

T

(
λσabσab+ T

κ
qaqa + ζ�2

)
, (5.36)

which is clearly non-negative. Thus (5.33)–(5.35) are the simplest thermodynamically
viable equations of state for the dissipative fluid properties. Note that they do not contain
any explicit term for entropy of the gravitational field, just as there are no local gravita-
tional energy effects (see Section 3.1.4). Attempts to define a gravitational entropy will be
discussed in Chapter 21.

Equations (5.33)–(5.35) are the relativistic generalizations of the Newtonian equations.
However, these equations can violate the causality condition that no influence can prop-
agate faster than light. Strictly, they can only be used in non-relativistic conditions. A
much more complex (14-coefficient) description is required to represent dissipative pro-
cesses in a relativistically correct approximation based on kinetic theory (Israel and Stewart,
1979). Luckily, nine of these modes are strongly damped in the long-wave length limit (i.e.
compared to the typical mean-free-path), two propagate at the adiabatic sound speed, two
transverse shear modes decay at the classical viscous damping rate, and the final mode
decays at the classical thermal diffusion rate (Hiscock and Lindblom, 1987). Thus this set
reduces to the familiar dynamics of classical fluids in this limit, and the above equations
will then be adequate.

It is important to realize that the form of the equation of state depends on the choice of the
average 4-vector ua relative to which the 1+3 decomposition of Tab is taken. The forms of
the equations of state given here correspond to the barycentric choice above (the 4-velocity
represents the average motion of rest-mass). One can as an alternative choose the 4-velocity
to represent the average motion of relativistic energy, i.e. as the timelike eigenvector of the
stress–energy tensor (if there is such an eigenvector, which will normally be the case). With
this choice, by definition we will find qa = 0; however, if dissipative processes are taking
place, there will then be an average mass-flux relative to this 4-velocity (the barycentric
4-velocity defined above will have non-zero spatial components relative to this frame), and
thermodynamics will look more complex than in the description above.

In Newtonian theory, the same thermodynamic relations (5.27)–(5.35) hold, except that
the term u̇i does not occur in (5.34).
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5.2.1 Perfect fluids

At most times in cosmology, we can assume that the anisotropic dissipative terms are
negligible. The fluid stress tensor then takes the ‘perfect fluid’ form,

Tab = ρuaub+phab = (ρ+p)uaub+pgab ⇔ qa = 0, πab = 0, (5.37)

where ua is the unique 4-velocity for which the stress tensor has this form. The perfect fluid
form is usually understood to imply no viscous processes – but it is compatible with bulk
viscosity. In general, the energy and momentum conservation equations (5.11) and (5.12)
for a perfect fluid become

ρ̇+ (ρ+p)�= 0 ⇔ ρN Ṡ =− (p−pt )

T
�, (5.38)

(ρ+p)u̇a +∇ap = 0, (5.39)

respectively.
The stress tensor of an FLRW universe must always take the perfect fluid form relative

to the preferred family of observers, because of the isotropy of those spacetimes as seen by
those observers.

An observer O moving relative to a perfect fluid will not determine it to have the perfect
fluid form, but will see an effective non-zero momentum density and anisotropic stress
tensor. For example, by (5.21), O will measure a momentum density q̃a =−γ 3(ρ+p)(va+
v2ua). The dipole anisotropy of the microwave background radiation is interpreted as a
peculiar velocity of the Galaxy relative to the CMB rest frame. Thus if we live in a universe
that is represented to a good approximation by an FLRW model, we are moving relative to
the fundamental velocity at this speed, and will experience an anisotropic stress-tensor of
this form.

Reversible flows and barotropic fluids

In general the physics of a ‘perfect fluid’ is determined by giving equations of state such as
p = p(T ,ρ). Note, however, that the name is misleading; the fluid flow is reversible (i.e.
isentropic) only if there is a barotropic equation of state p = p(ρ), or if the fluid moves in
such a way that such a relation effectively holds; for only then does the general case of two
thermodynamic variables reduce effectively to one. This distinction is of some importance,
for it confirms that irreversible processes can indeed take place in an FLRW universe
despite the perfect fluid form of the energy–momentum tensor, i.e. (5.37) is compatible
with irreversible processes. Reversible flows occur when there is a barotropic equation of
state:

p = p(ρ)⇔ p = pt ⇔ Ṡ = 0. (5.40)

Then we can define the enthalpy and acceleration potential,

W = exp

(∫ ρ

ρ0

dρ

3(ρ+p)

)
, r = exp

(∫ p

p0

dp

ρ+p

)
, (5.41)
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which in effect integrate the energy and momentum conservation equations (5.38) and (5.39)
in the form

W =W0
�0

�
, Ẇ0 = 0, u̇a =−∇a ln r . (5.42)

In the case of a barotropic fluid, using the results of Exercise 5.2.3 below, comoving
coordinates can be found such that

ds2 = hij dxidxj − 1

r2

[
dx0 + ai(x

j )dxi
]2

, (5.43)

uµ = rδ
µ
0 , uµ =−r−1(1,ai), (5.44)

which imply

u̇µ = r−1(0,−r,i ), ωµ0 = 0, ωij =−r−1a[i,j ], (5.45)

�µ0 = 0, �ij = r

2
hij ,0, (5.46)

and the conservation equations (5.39) are identically fulfilled.The coordinate transformation
x0′ = x0+f (xi), xi

′ = xi , preserves these conditions, as does the relabellingx0′ = x0, yi
′ =

yi
′
(yi).
With this coordinate choice, � = (r/2)gij hij ,0 and so (4.35) implies �(xµ) =

exp
∫
gijhij ,0 dt , with the integral taken along the integral curves of uµ from t = t0. If

we define fij by

hij = �2fij ⇒ gijfij ,0 = 0, (5.47)

then the expansion and shear are given by

�= 3r
�,0

�
, σµ0 = 0, σij = r

2
�2fij ,0. (5.48)

5.2.2 Simple equations of state

The barotropic linear equation of state,

p =wρ, w= const, (5.49)

covers the simple matter models in cosmology. From Exercise 5.2.2 (b), this equation of
state is compatible with the perfect-gas form p ∝ ρ1+w

N with B = 0 (w= γ − 1).

Pressure-free matter (‘dust’):

w= 0 ⇒ u̇a = 0, ρ = ρ0

(
�0

�

)3

, (5.50)

from the momentum and energy conservation equations (5.39) and (5.38). This is a good
description of baryonic and cold dark matter at late times in the universe (the random
velocities of CDM particles, of atoms after recombination and of galaxies are small, so
the corresponding kinetic pressures are negligible). The matter must move geodesically
(there are no pressure gradients to make it deviate from free-fall), and the density evolves
as 1/volume. The temperature of dust is strictly zero, but if we take into account the very
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small velocity dispersion, the monatomic gas property, T ∝ 1/�2, can be applied. (This is
consistent with p � 0 as the kinetic energies are small compared with rest-mass energy.)

Radiation (incoherent):

w= 1
3 ⇒ ρ = ρ0

(
�0

�

)4

, T = T0
�0

�
. (5.51)

Here the temperature T is given by ρ = aRT
4, where aR is the radiation constant. Any

distribution of particles that move at the speed of light (photons, zero-mass neutrinos, etc.)
will have a stress tensor of the form Tab =∑

∗ k∗ak∗b where k∗ak∗a = 0, which implies
T a

a = 0. Isotropy implies the perfect fluid form, and for a perfect fluid T a
a =−ρ+3p so

this is just the condition ρ = 3p. It will be a good approximation for relativistic particles in
the early universe, until they become non-relativistic – such as protons or massive neutrinos.

Vacuum energy or cosmological constant:

w=−1 ⇒ ρ = const. (5.52)

This exceptional equation of state is at the limit of violating (5.16). The stress tensor is
Lorentz invariant, i.e. Tab ∝ gab, since by (5.37) this will occur if and only if p+ρ = 0. As
a consequence, there is no unique 4-velocity defined by the medium; in particular, every 4-
velocity is an eigenvector of Tab and thus an energy-frame 4-velocity. Therefore ρ̇ := ρ,au̇

a

vanishes by energy conservation (5.11) for any choice of ua , and thus ρ is a constant:
expansion does not affect the energy density. Furthermore, the acceleration is no longer
determined by momentum conservation: since ρ+p= 0=∇ap, (5.12) does not constrain
u̇a . This equation of state, with ρ ≥ 0, also violates (5.17), for in this case ρ+ 3p =−2ρ.
However, vacuum energy is well behaved: it has no speed of sound, since it does not support
(classical) fluctuations. A slow-rolling scalar field – as in simple models of inflation (see
Section 9.7) – obeys p≈−ρ and has a perfectly well-defined speed of sound cs eff = 1 that
determines the speed of pressure fluctuations.Ascalar field is not barotropic (nor adiabatic),
so that its effective speed of sound is not the adiabatic sound speed, (5.14); see Section 5.6.

Stiff matter:

w= 1 ⇒ ρ = ρ0

(
�0

�

)6

. (5.53)

This is the stiffest equation of state one can have for a fluid – with higher pressures, the
speed of sound will exceed the speed of light by (5.15), violating the consistency of special
relativity. It was proposed by Zel’dovich for a very early era, but it is not clear whether there
is a realistic fluid with this equation of state. It is also a limiting case for a scalar field –
when the potential energy vanishes, w= 1 (see Section 5.6).

From (5.49) and (5.15) we may expect adiabatic perfect fluids to have an energy density
that, as the fluid is compressed or expanded, lies between ρ ∝ �−3 and ρ ∝ �−6.

5.2.3 Unphysical exact solutions

In order that a cosmological model should be meaningful, it is crucial that the matter descrip-
tion used is physically realistic, which (in the cosmological context) means it corresponds
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to one of the models of matter described in the previous sections of this chapter, and also
obeys suitable energy conditions. We make this remark because there are published solu-
tions claiming physical relevance, but which do not obey this requirement. Most often this
is because, in one form or another, authors rediscover the simple trick criticized by Synge
(1971): one can run the EFE (3.13) from left to right, instead of from right to left, so deter-
mining the stress tensor required to give an exact solution of the EFE. But the resultant
solution will in general not be physically meaningful.

Thus in this case, instead of specifying suitable matter content and then solving the
EFE for that matter with appropriate initial/boundary conditions, one simply postulates
some geometry or other, and then differentiates the assumed metric so as to determine the
Riemann and Ricci tensors. The tensor Tab required to exactly balance the EFE follows
trivially (read the equation from left to right). But then, even if restrictions are put on
assuring that the energy conditions are obeyed, the resulting ‘matter’ will almost always
be non-physical: it will not correspond to any of the matter forms discussed above. It will
simply be a formal solution of the field equations.

In particular, this method of ‘solution’ of the EFE often happens in the form of unaccept-
able ‘imperfect fluids’: some geometrical or mathematical assumption is used to provide
an ‘imperfect fluid’ solution of the EFE, i.e. a matter tensor with anisotropic pressures. But
then there is little chance this ‘fluid’will satisfy (5.33), (5.34) or other physically motivated
equations of state. Unless it does so, this is just an arbitrary mathematical solution of the
EFE, with no physical content: calling it ‘imperfect fluid’ solution is a misnomer. It is not
a fluid in any meaningful sense, and is not relevant to physical cosmology.

Exercise 5.2.1

(a) Dominant energy condition. Show that arbitrary observers in a perfect-fluid-filled
spacetime, moving with 4-velocity ũa , will find ρ̃ := Tabũ

aũb ≥ 0 if and only if
ρ ≥ 0, ρ+p ≥ 0.

(b) Strong energy condition. Show that Rabũ
aũb = (Tab− 1

2T
c
cgab)ũ

aũb > 0 for arbitrary
observers if and only if ρ+ 3p > 0, ρ+p > 0.

Exercise 5.2.2 Consider the case of a perfect fluid obeying the ideal gas equation of state
p = αρ

γ

N (α,γ constant).

(a) Show from the conservation equations for ρN and ρ that if γ = 1 then ρ = Cp +
p ln(p/p0), (Ċ = 0 = ṗ0). Why is this solution physically unrealistic?

(b) Show that when γ �= 1, ρ =BρN +p/(γ − 1) with Ḃ = 0, and that the time evolution
of such a fluid is given by ρ =M/�3 +N/�3γ , Ṁ = 0, Ṅ = 0. If B = 1, what is the
internal energy density ε of the fluid?

(c) Show that when γ �= 1, the effective relativistic coefficient γ̃ , defined by p= (γ̃ −1)ρ,
takes the form

γ̃ = B(γ − 1)+ γA�1−3γ

B(γ − 1)+A�1−3γ
, Ȧ= 0.

Plot a graph showing how γ̃ varies with �.
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Exercise 5.2.3 Consider the case of a barotropic fluid. Show that

(a) if we use comoving coordinates xµ= (t ,yi), we can choose a coordinate transformation
so that uµ = r(xν)δ

µ
0 , g00 =−1/r2, u0 =−1/r; and this form is preserved under the

coordinate transformations, x0′ = x0 +f (xi), xi
′ = xi .

(b) If we now writeui =−ai(xµ)/r , theng0i =−ai/r2 and u̇0 = 0, u̇i =−ai,0+(r,0/r)ai−
r,i/r .

(c) The conservation equations (5.39) are now equivalent to ai,0 = 0, and so may be
integrated to give ai = ai(x

j ).
(d) Defining W by (5.41), show that � = λ/W for some function λ(xi), so that we can

relabel λ2fij → fij , �→ 1/W in (5.47) to obtain hij =W−2(xµ)fij (x
ν), f̂ ij fij ,0 = 0,

where f̂ ij fjk = δik . The conservation equations (5.38) are then identically satisfied.

Exercise 5.2.4 Show that for a barotropic perfect fluid with w constant, the enthalpy W =
(ρ/ρ0)

1/3(1+w) and r = (p/p0)
w/(1+w). Deduce that then ρ = M/�3(1+w), Ṁ = 0 and

r = r0/�
3w, ṙ0 = 0.

5.3 Multiple fluids

The universe at different times contains a variety of matter components, and there may
in addition be interactions (exchanges of energy and momentum) between some of these
components. Here we shall treat the components as general fluids, without regard to the
detailed properties of each fluid, so that the treatment applies to any form of matter that has
an energy–momentum tensor.

Since the components will in general have different 4-velocities uaI , where I labels the
components, we need to choose a reference 4-velocity ua . This could be one of the uaI , e.g.
the component that is dominating the universe at the time being studied, or it could be a
combination of the velocities, e.g. the velocity which gives zero total momentum density,
qa = 0. Given a choice of ua , the individual 4-velocities are related to this choice via (5.18):

uaI = γI (u
a + vaI ), γI = (1− v2

I )
−1/2, vaI ua = 0, (5.54)

where vaI are the relative velocities as measured by a ua observer. In cosmology, the com-
ponents typically are photons (I = γ ), baryonic matter (I = b) modelled as a perfect fluid,
cold dark matter (I = c) modelled as dust, neutrinos (I = ν) modelled as a collisionless
distribution, and a cosmological constant (I =�), or more generally a dynamical form of
dark energy (I = de).

The dynamical quantities in the field equations are the total quantities, with contributions
from all dynamically significant species. Thus

T ab =
∑
I

T ab
I = ρuaub+phab+ 2q(aub)+πab , (5.55)

T ab
I = ρ∗I uaI u

b
I +p∗

I h
ab
I + 2q∗(aI u

b)
I +π∗ab

I , (5.56)
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where I labels the species. The dynamical quantities in (5.56) with an asterisk,2 are the
intrinsic quantities, i.e. as measured in the I -frame.

Then the following intrinsic relations hold:

p∗
c = 0 = q∗ac = π∗ab

c , q∗ab = 0 = π∗ab
b , (5.57)

p∗
γ = 1

3ρ
∗
γ , p∗

ν = 1
3ρ

∗
ν , (5.58)

where we have chosen the unique 4-velocity in the cold dark matter and baryonic cases which
follows from modelling these fluids as perfect. After recombination, the baryonic pres-
sure drops to zero, and eventually the neutrinos become non-relativistic. The cosmological
constant is characterized by

p∗
� =−ρ∗� =−� , q∗a� = 0 = π∗ab

� , va� = 0, (5.59)

whereas dynamical dark energy will have an evolving equation of state depending on the
particular model, and will not have zero relative velocity.

The conservation equations for the species are best given in the overall ua-frame, in
terms of the velocities vaI of species I relative to this frame. Furthermore, the evolution and
constraint equations of Chapter 6 are all given in terms of the ua-frame. Thus we need the
expressions for the partial dynamic quantities as measured in the overall frame. Following
Maartens, Gebbie and Ellis (1999), we find (Exercise 5.3.2) the exact (fully nonlinear)
equations for the dynamical quantities of species I as measured in the overall ua-frame:3

ρI = ρ∗I +
{
γ 2
I v

2
I

(
ρ∗I +p∗

I

)+ 2γI q
∗a
I vIa +π∗ab

I vIavIb

}
, (5.60)

pI = p∗
I + 1

3

{
γ 2
I v

2
I

(
ρ∗I +p∗

I

)+ 2γI q
∗a
I vIa +π∗ab

I vIavIb

}
, (5.61)

qaI = q∗aI + (ρ∗I +p∗
I )v

a
I +

{
(γI − 1)q∗aI + γ 2

I v
2
I

(
ρ∗I +p∗

I

)
vaI

+γI q
∗b
I vIbv

a − γI q
∗b
I vIbu

a +π∗ab
I vIb−π∗bc

I vIbvIcu
a
}

, (5.62)

πab
I = π∗ab

I +
{
γ 2
I

(
ρ∗I +p∗

I

)
v
〈a
I v

b〉
I − 2u(aπ∗b)c

I vIc+π∗bc
I vIbvIcu

aub

− 1
3π

∗cd
I vIcvIdh

ab− 2γI q
∗c
I vcI u

(av
b)
I + 2γI v

〈a
I q

∗b〉
I

}
. (5.63)

These equations have been written to make clear the linear parts, which will be applicable
in an almost FLRW model; in that case, all terms in braces will be neglected. The total
dynamical quantities are simply given by

ρ =
∑
I

ρI , p =
∑
I

pI , qa =
∑
I

qaI , πab =
∑
I

πab
I . (5.64)

2 This is the reverse of the asterisk notation used in Maartens, Gebbie and Ellis (1999).
3 With minor corrections to Maartens, Gebbie and Ellis (1999), following Clarkson and Maartens (2010).
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A convenient choice for each partial four-velocity uaI is the energy frame, i.e.

q∗aI = 0, (5.65)

for each I (this is the obvious choice in the cases I = b,c). As measured in the fundamental
frame, the partial energy fluxes do not vanish, i.e. qaI �= 0 – see (5.62). With this choice,
using the above equations, we find the following expressions for the dynamic quantities of
matter as measured in the fundamental frame. For cold dark matter:

ρc = γ 2
c ρ

∗
c , pc = 1

3γ
2
c v

2
cρ

∗
c , (5.66)

qac = γ 2
c ρ

∗
c v

a
c , πab

c = γ 2
c ρ

∗
c v

〈a
c vb〉c . (5.67)

For baryonic matter:

ρb = γ 2
b

(
1+wbv

2
b

)
ρ∗b , pb =

[
wb + 1

3γ
2
b v

2
b(1+wb)

]
ρ∗b , (5.68)

qab = γ 2
b (1+wb)ρ

∗
bv

a
b , πab

b = γ 2
b (1+wb)ρ

∗
bv

〈a
b v

b〉
b , (5.69)

where wb := pb/ρb. In the case of radiation and neutrinos, we shall evaluate the dynamic
quantities relative to the ua-frame directly via kinetic theory (see below).

The total energy–momentum tensor is conserved, i.e. ∇bT
ab = 0. The partial energy–

momentum tensors obey

∇bT
ab
I =Qa

I =QI u
a +Qa

I , (5.70)

where QI is the rate of energy density transfer to species I as measured in the ua-frame,
and Qa

I =M
〈a〉
I is the rate of momentum density transfer to species I , as measured in the

ua-frame. Cold dark matter and neutrinos are decoupled during the period of relevance
for CMB anisotropies, while radiation and baryons are coupled through Thomson (more
generally, Compton) scattering. Thus,

Q∗a
c = 0 =Q∗a

ν , Q∗a
γ =−Q∗a

b ∝ neσT , (5.71)

where ne is the free electron number density, and σT is the Thomson cross-section.

Exercise 5.3.1 Suppose there is a mixture of two perfect fluids with different 4-velocities.
Determine the unit timelike eigenvector Ua of Tab and associated eigenvalue. Hint: the
eigenvector will lie in the plane spanned by the two velocity vectors ua1, ub2; then find the
effective equation of state for the fluid relative to the 4-velocityUa (it will not be equivalent
to a perfect fluid).

Exercise 5.3.2 Show that the velocity formula inverse to equation (5.54) is

ua = γI
(
uaI + v̂aI

)
, v̂aI =−γI

(
vaI + v2

I u
a
)

, (5.72)

where v̂aI uIa = 0, and v̂aI v̂Ia = vaI vIa . Show that v̂aI can also be written as

v̂aI =−γ−1
I

(
vaI + γI v

2
I u

a
I

)
. (5.73)
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Now write hab in terms of v̂aI and uaI . Then derive (5.60)–(5.63) by using the expressions

ρI = T ab
I uaub, pI = 1

3T
ab
I hab, (5.74)

qaI =−T ab
I ub−ρIu

a , πab
I = T cd

I hach
b
d −pIh

ab, (5.75)

and expressing T ab
I in terms of the starred quantities, (5.56).

5.4 Kinetic theory

Relativistic kinetic theory (Lindquist 1966,Ehlers 1971,Stewart 1971, de Groot, van
Leeuwen and Weert 1980, Bernstein 1988) provides a self-consistent microscopically based
treatment of matter and radiation. This is a natural unifying framework to deal with a gas
of particles ranging from hydrodynamic (collision-dominated) to free-streaming (collision-
free) behaviour. The photon gas undergoes a transition from hydrodynamic tight coupling
with matter, through the non-equilibrium process of decoupling from matter, to non-
hydrodynamic free streaming. The transition is characterized by the evolution of the photon
mean free path from effectively zero to effectively infinity. This whole range of behaviour
can be described by kinetic theory with Compton scattering (the Thomson approximation
is adequate for cosmology). Free-streaming neutrinos are also described by kinetic theory.
The baryonic matter that interacts with radiation can reasonably be described as a fluid.

We follow the 1+3 covariant kinetic theory formalism of Ellis, Matravers and Treciokas
(1983b), Ellis, Treciokas and Matravers (1983), which builds on work by
Ehlers, Geren and Sachs (EGS) (1968), Treciokas and Ellis (1971), Treciokas (1972) and
Thorne (1981).

5.4.1 Distribution functions and the Boltzmann equation

In a gas of identical neutral particles, each 4-momentum pa can be written pa = Êûa where
ûa is the particle 4-velocity and Ê is the rest-frame energy. If ua is the chosen fundamental
4-velocity, then ûa = γ (v)(ua + va), where va is the particle’s relative velocity, uava = 0.
Then,

pa =E(ua + va)=Eua +λea , λ= vE =
√
E2 −m2 , eae

a = 1, (5.76)

where E = −uapa (= γ Ê) is the energy in the ua-frame, λ is the magnitude of the 3-
momentum, and ea is the direction of relative motion. For massless particles, like photons,
λ=E and v = 1. For massive particles, like neutrinos or CDM particles, λ= γmv.

If we can neglect polarization (or helicity), the gas can be described by a scalar-valued one-
particle distribution functionf (xa ,pb), which is the number of particles per unit phase space
volume at the phase space point (xa ,pb) (see Chapter 11 for the inclusion of polarization).
For a given set of particles, their phase space volume is both Lorentz invariant (i.e. the
same for all observers) and, in the absence of collisions, constant along their path. The



105 5.4 Kinetic theory

collisionless evolution of the gas is thus described by the Liouville equation,

df

dτ
= pa ∂f

∂xa
+ dpa

dτ

∂f

∂pa
= 0. (5.77)

The particle world lines are geodesics with affine parameter τ , where pa = dxa/dτ and
dpa/dτ =−a

bcp
bpc. In the presence of collisions, we have the Boltzmann equation,

df

dτ
=C[f ] , (5.78)

where C[f ] is Lorentz invariant and determines the rate of change of f due to emis-
sion, absorption and scattering processes. For a collisionless gas, or a collisional gas in
equilibrium due to detailed balancing, C[f ] = 0.

The particle momentum and direction propagate as

dλ

dτ
=−E2u̇ae

a −Eλ
(
σabe

aeb+ 1
3�

)
, (5.79)

de〈a〉

dτ
=−E2

λ
sabu̇

b−E
(
ηabcω

ceb+ sabσbce
c
)

, (5.80)

where sab := hab − eaeb is the screen-projection tensor, which projects into the two-
dimensional screen perpendicular to the propagation direction ea in the local rest-space
of ua . Note that eade〈a〉/dτ = 0, so that eaea = 1 is preserved. In the FLRW limit,
dλ/dτ = −EλH , so the momentum redshifts as 1/a. Also, de〈a〉/dτ = 0, so that ea is
constant. In the real universe this is no longer so and (5.80) then describes the effect of
gravitational lensing.

The distribution function can be expanded in covariant spherical multipoles (Thorne,
1981, Ellis, Matravers and Treciokas, 1983b),

f (x,p)=
∞∑
�=0

FA�
(x,E)eA� = F(x,E)+Fa(x,E)ea +Fab(x,E)eaeb+·· · , (5.81)

where the multipole tensors FA�
= F〈a1...al〉(E) are projected (orthogonal to ua), sym-

metric and tracefree (PSTF), and thus are irreducible under three-dimensional rotations.
Equation (5.81) is equivalent to an expansion in spherical harmonics, but has the advantage
of being fully covariant. The inversion is

FA�
(x,E)= 1

��

∫
f (x,E,e)e〈A�〉 d� where �� := 4π2�(�!)2

(2�+ 1)! , (5.82)

which follows from the identity∫
e〈A�〉e〈B�′ 〉 d�=��h

〈B�〉
〈A�〉 δ��′ =��h

〈b1
〈a1

. . .h
b�〉
a�〉 δ��′ . (5.83)

Propagation equations for the multipoles follow from substituting (5.81) into
the Boltzmann equation, using (5.79) and (5.80), and taking the PSTF part
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(Ellis, Matravers and Treciokas, 1983b),

EḞ〈A�〉 −
λ2

3

∂FA�

∂E
�+ �+ 1

2�+ 3
λ∇a

FaA�
+λ∇〈a�FA�−1〉

+ �EFa〈A�−1ηa�〉abωb−
[
λE

∂F〈A�−1

∂E
− (�− 1)

E2

λ
F〈A�−1

]
u̇a�〉

− �+ 1

2�+ 3

[
(�+ 2)

E2

λ
FaA�

+λE
∂FaA�

∂E

]
u̇a

− �

2�+ 3

[
3EFa〈A�−1 + 2λ2 ∂Fa〈A�−1

∂E

]
σa�〉a

− (�+ 1)(�+ 2)

(2�+ 3)(2�+ 5)

[
(�+ 3)EFabA�

+λ2 ∂FabA�

∂E

]
σab

−
[
λ2 ∂F〈A�−2

∂E
− (�− 2)EF〈A�−2

]
σa�−1a�〉 =CA�

[f ] . (5.84)

HereCA�
[f ] are the collision multipoles. The terms containing derivatives with respect toE

arise from the redshifting of the particle’s energy, as governed by (5.79).The isotropic expan-
sion sources anisotropy at multipole � from multipole �, acceleration sources anisotropy
at � from �± 1, shear sources anisotropy at � from both �± 2 and � and vorticity sources
anisotropy at � from �.

We shall use the multipole propagation equations in Chapter 11 to analyse the evolution
of anisotropies in the CMB. Here we note that in an FLRW spacetime, the homogeneity
and isotropy of the spatial hypersurfaces enforce the vanishing of all multipoles � > 0, and
the isotropy and homogeneity of the monopoles: f (x,p)= F(t ,E). In addition, all terms
on the left-hand side of (5.84) vanish except for the first two. The hierarchy of equations
collapses to

∂F

∂t
−Hλ

∂F

∂λ
=C[F ]. (5.85)

For a collisionless gas, or a collisional gas in equilibrium due to detailed balancing, the
solution isF(t ,λ)=F(a(t)λ), which reflects the fact that aλ is conserved along the particle
world lines.

5.4.2 Bulk properties of the gas

Macroscopic averages over the microscopic distribution function define the bulk properties
of the gas, such as energy density, number density, entropy, etc.

The particle 4-current density (5.5) is

Na(x)=
∫

paf (x,p)dP , dP = d3p

E
= λ2

E
dλd� . (5.86)
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Here dP is the Lorentz-invariant volume element on the positive-energy mass shell papa =
−m2. We decompose Na as in (5.5); on using the identity,

(�+ 1)

4π

∫
eA�d�=

{
0 � odd,
h(a1a2ha3a4 · · ·ha�−1a�) � even,

(5.87)

the number density and particle drift vector are given by

n=�0

∫ ∞

0
λ2F dλ , (5.88)

na =�1

∫ ∞

0
λ2 vFa dλ , v = λ

E
, (5.89)

where �� is defined in (5.82). The propagation equation for n follows from integrating the
�= 0 moment of (5.84) over λ2dλ:

ṅ+�n+∇a
na + u̇ana =�0

∫ ∞

0
λv C̄[f ]dλ , (5.90)

where C̄[f ] is the collision monopole. This is a generalization of (5.6). The right-hand side
represents non-conservation of particle number due to interactions, the left-hand side is the
divergence of Na , and we can rewrite (5.90) as

∇aN
a =

∫
C[f ]dP . (5.91)

The entropy 4-current density is defined (for classical statistics) by (Ehlers, 1971)

Sa(x)=Na(x)−
∫

paf (x,p) lnf (x,p)dP , (5.92)

and its divergence is

∇aS
a =−

∫
lnf C[f ]dP . (5.93)

Entropy is generated if the right-hand side is non-zero, since∇aS
a is the entropy production

density. We can define an equilibrium distribution as one with ∇aS
a = 0. In particular, a

collisionless gas is in equilibrium sinceC[f ] is identically zero.Agas in collision-dominated
equilibrium has C[f ] = 0 due to detailed balancing.

The energy–momentum tensor is

T ab(x)=
∫

papbf (x,p)dP . (5.94)

Decomposing T ab in the usual way, we find that

ρ =�0

∫ ∞

0
λ2EF dλ , p = �0

3

∫ ∞

0
λ2Ev2F dλ , (5.95)

qa =�1

∫ ∞

0
λ2EvFa dλ , (5.96)

πab =�2

∫ ∞

0
λ2Ev2Fab dλ . (5.97)
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The propagation equations for these quantities follow from integrating (5.84) with λ2dλ
and appropriate powers of the velocity-weight v := λ/E. For the energy and momentum
densities,

ρ̇+�(ρ+p)+∇a
qa + 2u̇aqa +σabπab =�0

∫ ∞

0
λ2C̄[f ]dλ , (5.98)

q̇〈a〉 + 4
3�qa + (ρ+p)u̇a +∇ap+∇b

πab

+ (ηabcω
c+σab)q

b+ u̇bπab =�1

∫ ∞

0

λ3

E
Ca[f ]dλ . (5.99)

The terms on the right-hand sides represent energy and momentum exchange through inter-
actions, modifying (5.11), (5.12). The left-hand sides are ∇bTbc projected along uc and hca
respectively. It follows that

∇bT
ab =

∫
pa C[f ]dP . (5.100)

The propagation equations for the energy and momentum densities do not form a closed
system even when there are no interactions – because of the isotropic pressure (which is
in general related to ρ via a dynamical equation of state), and the anisotropic stress, which
needs a propagation equation. The required information is contained in the Boltzmann
equation, in terms of the given collision term. This equation can be recast as a two-
dimensional, infinite hierarchy for the moments of f integrated over energy with positive
(integer) velocity-weights (Ellis, Matravers and Treciokas, 1983b, Lewis and Challinor,
2002). These integrated moments contain (5.95)–(5.97) as a subset.

The two-dimensional hierarchy simplifies in a number of important special cases. For
photons (m= 0,λ=E) and for relativistic neutrinos (at temperatures T �m), λ∼E, the
hierarchy becomes one-dimensional. In this case, we can define the bolometric multipoles,

IA�
(x)=��

∫ ∞

0
E3FA�

(x,E)dE . (5.101)

Then the lowest three multipoles determine the energy–momentum tensor: I = ρ, Ia = qa ,
Iab = πab. For non-relativistic matter the hierarchy is genuinely two-dimensional, but it
can be truncated at low velocity weight (provided that the typical free-streaming distance
per Hubble time is small compared to the size of the inhomogeneity). This truncation
scheme can be used to study the effect of velocity dispersion on linear structure formation
(Maartens, Triginer and Matravers, 1999, Lewis and Challinor, 2002). For tightly coupled
collisional matter, such as the CMB in the pre-recombination era when Thomson scattering
is efficient, truncation can also be performed (but at much higher multipoles). This is
because anisotropies at multipole � are suppressed by (v∗ktcoll/a)

�, where a/k is the scale
of inhomogeneity, tcoll is the collision time and v∗ is a typical particle speed.

5.4.3 Collision term

In Boltzmann’s approximation, the gas is not too far from equilibrium, and not too dense
or too cold, so that particles which are about to collide are not correlated. Implicit here is
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a mean-field type approximation that avoids directly dealing with long-range gravitational
interactions, i.e. the gas particles move in between collisions in the gravitational field
generated collectively by themselves (and possibly other sources).

Collisions (assumed here to be binary) conserve energy–momentum, so that pa +p′a =
p′′a +p′′′a . The probability of collision (and hence the cross-section) is determined by a
Lorentz-invariant function W(pp′ → p′′p′′′), and then the Boltzmann collision integral is
(Ehlers, 1971)

C[f ] = 1
2

∫
dP ′

∫
dP ′′

∫
dP ′′′ (f ′′f ′′′ −ff ′)W , (5.102)

where f ′ denotes f (x,p′) and similarly for f ′′,f ′′′. In general one expects that collisions
will drive the gas towards equilibrium, provided that the rate of interaction is high enough
(e.g. in cosmology, higher than the expansion rate).

Collision-dominated equilibrium is achieved if there is detailed balancing, i.e. f ′′f ′′′ =
ff ′, or equivalently, lnf (x,p) is an additive collision-invariant. For any scalar α(x) and
vector βa(x), we have that α(x)+ βa(x)p

a is an additive collision invariant for elastic
binary collisions. Thus an equilibrium distribution function is given by

f (x,p)=
{

exp[−α(x)−βa(x)p
a]+ ε

}−1
, (5.103)

where ε takes the values 0 (classical particles), +1 (fermions) and −1 (bosons). In order
to ensure that f → 0 as E →∞, βa must be a non-spacelike future-directed vector, and
we can use it to define the preferred (equilibrium) 4-velocity, i.e. βa = βua (β > 0). Then
βap

a =−βE. It follows that (Exercise 5.4.2)

α,a = 0, β(a;b) = χgab , (5.104)

where χ = 0 if m> 0. Thus we have the important theorem:

Theorem 5.1 Collision-dominated equilibrium
is only possible in relativistic spacetime

• for massive particles, if spacetime is stationary (i.e. admits a timelike Killing vector);
• for massless particles if spacetime admits a timelike conformal Killing vector (as does

RW spacetime).

In particular, a massive gas in an expanding RW spacetime cannot be in collisional equi-
librium, and must therefore have non-zero bulk viscosity.
Note that any collision-free gas in any spacetime is in equilibrium, since the entropy
production vanishes by (5.93).

For the CMB in cosmology, the collision integral is not of the simple Boltzmann form
since photons interact with electrons (and much more weakly with protons) via Compton
scattering in the Thomson regime. The collision term for Thomson scattering (neglecting
polarization) is,

C[f ] = σTneEb
[
f̄ (x,p)−f (x,p)

]
, (5.105)
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whereEb =−pau
a
b is the photon energy relative to the baryonic (i.e. baryon-electron) frame

uab, and f̄ (x,p) determines the number of photons scattered into the phase space volume
element at (x,p). The differential Thomson cross-section is proportional to 1 + cos2α,
where α is the angle between initial and final photon directions in the baryonic frame. Thus
cosα = eabe

′
ba , where e′ba is the initial and eab is the final direction, so that

p′a =Eb
(
uab + e′ab

)
, pa =Eb

(
uab + eab

)
, (5.106)

where we have used E′
b = Eb, which follows since the scattering is elastic. Then f̄ is

given by

f̄ (x,p)= 3

16π

∫
f (x,p′)

[
1+ (

eabe
′
ba

)2]
d�′

b . (5.107)

The exact forms of the photon energy and direction in the baryonic frame are

Eb =Eγb
(
1− vabea

)
, (5.108)

eab = E

Eb

[
ea + γ 2

b

(
vbbeb− v2

b

)
ua + γ 2

b

(
vbbeb− 1

)
vab

]
. (5.109)

Exercise 5.4.1 Derive (5.90) and (5.91).

Exercise 5.4.2 For an equilibrium distribution (5.103),
(a) show that Na ,Sa ,T ab have perfect-fluid form with ua = βa/β;
(b) use df /dτ = 0 to derive (5.104).

Exercise 5.4.3 Prove the identity

V〈bSA�〉 = V(bSA�)−
(

�

2�+ 1

)
V cSc(A�−1ha�b), SA�

= S〈A�〉 . (5.110)

Using (5.87), show that for any projected vector va :

vaeaf = 1
3Fav

a +
[
Fva + 2

5Fabv
b
]
ea +

[
F〈avb〉 + 3

7
Fabcv

c

]
e〈aeb〉 + · · ·

=
∑
�≥0

[
F〈A�−1va�〉 +

(
�+ 1

2�+ 3

)
FA�av

a

]
e〈A�〉 . (5.111)

(We use the convention that FA�
= 0 for � < 0.)

Exercise 5.4.4 Derive (5.108) and (5.109).

5.5 Electromagnetic fields

Electromagnetism is central to cosmology because (a) we observe by electromagnetic radi-
ation, which is the geometric optics limit of the electromagnetic field; (b) magnetic fields
are present in galaxies and clusters and play a key role in star and galaxy formation and
evolution – and they could even be significant on cosmological scales in the early universe;
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and (c) electromagnetism provides a model for many important features of the gravitational
field.

5.5.1 Electromagnetic field tensor

The electromagnetic field tensor (or Faraday tensor) is Fab =F[ab]. For an observer moving
with 4-velocity ua , it is measured as an electric field,

Ea = Fabu
b =E〈a〉 , (5.112)

and a magnetic field,

Ba = 1
2ηacdF

cd = F ∗
abu

b = B〈a〉 , (5.113)

where F ∗
ab is the dual. These completely represent the field,

Fab = 2u[aEb] +ηabcB
c. (5.114)

These equations, giving the 1+3 splitting of the field relative to the velocity ua , con-
tain the usual transformation properties of the electromagnetic field when we change to
a different 4-velocity; see Exercise 5.5.2. We write the magnitudes of these 3-vectors as
E2 =EaEa , B2 = BaBa .

The Lorentz force experienced by a particle with electric charge e and 4-velocity V a is
Fa = eFabV

b. The particle equation of motion is V b∇bV
a = (e/m)FabV

b, where m is its
mass. Substituting from (5.114) gives the usual expression for this acceleration in terms of
electric and magnetic fields. For a charged fluid moving with 4-velocity ua , the momentum
conservation equation will have a term corresponding to the Lorentz force (see below).

5.5.2 Maxwell equations

The Maxwell equations are

∇bF
ab = J a , ∇[aFbc] = 0, (5.115)

where the 4-current is

J a =µua + ja , jau
a = 0. (5.116)

Here µ is the charge density and ja the 3-current measured by ua . (We use Heaviside–
Lorentz units, in which µ0 = 1 = ε0.)

Because of the Riemann tensor symmetries, these equations imply the conservation of
current,

∇aJ
a = 0. (5.117)

Making a 1+3 split of these equations, using the definitions (5.112), (5.113) of the electric
and magnetic fields, we find that Maxwell’s equations gain many kinematic terms due to
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the motion of the observers who measure Ea and Ba :

∇aE
a =µ− 2ωaB

a , (5.118)

∇aB
a = 2ωaE

a , (5.119)

Ė〈a〉 =
(
σab+ ηabcω

c− 2
3�hab

)
Eb+ηabcu̇

bBc+ curl Ba − ja , (5.120)

Ḃ〈a〉 =
(
σab+ ηabcω

c− 2
3�hab

)
Bb−ηabcu̇

bEc− curl Ea , (5.121)

and the current conservation equation becomes

µ̇+�µ+∇aj
a + u̇aj

a = 0. (5.122)

These equations reduce to the usual form of Maxwell’s equations for a set of Minkowski
observers (u̇a = ωa = σab =�= 0). The wave equations for Ea and Ba that follow from
these equations will also contain many kinematic terms that will vanish in the Minkowski
case.

5.5.3 Maxwell energy–momentum tensor

The energy–momentum tensor of an electromagnetic field is

T ab
em =−FacFc

b− 1
4gabFcdF

cd , (5.123)

with gabT
ab
em = 0. Substituting from (5.114), we see that the field has the stress tensor of a

radiative imperfect fluid with

ρem = 1
2 (E

2 +B2)= 3pem , (5.124)

qaem = ηabcEbBc , πab
em =−E〈aEb〉 −B〈aBb〉. (5.125)

The momentum density qaem is the Poynting vector. The energy conditions (5.16) and (5.17)
are satisfied.

It follows from Maxwell’s equations (5.115) that

∇bT
ab
em =−FabJb , (5.126)

so if there is no 4-current (i.e. no interaction between the electromagnetic field and other
matter), then the energy and momentum of the field by itself are conserved.

The total energy–momentum tensor, T ab
b +T ab

em , for a combination of a charged baryonic
perfect fluid and an electromagnetic field is conserved, so that∇bT

ab
b =FabJb. This leads to

ρ̇+�(ρ+p)=Eaja , (5.127)

(ρ+p)u̇a +∇ap =µEa +ηabcj
bBc . (5.128)

The terms on the right of the momentum equation are the Lorentz force density.
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5.5.4 Relativistic magnetohydrodynamics

Magnetic fields are a crucial ingredient in the universe, whose presence is ubiquitous, but
whose origin remains to be fully explained. Here we focus on the covariant approach to
cosmic magnetism (see Barrow, Maartens and Tsagas (2007) for a review).

After inflation, the universe is a good conductor – even when the number density of free
electrons drops dramatically during recombination, its residual value is enough to maintain
high conductivity in baryonic matter. As a result, B-fields of cosmological origin have
remained frozen into the expanding baryonic fluid during most of their evolution. Magnetic
effects on structure formation can thus be analysed within the ideal magnetohydrodynamics
approximation. Ohm’s law in the rest frame of the fluid has the covariant form

ja = ςEa , (5.129)

where the 3-current is defined in (5.116) and ς is the conductivity. In the ideal MHD limit,
non-zero spatial currents arise forEa → 0 and ς →∞. Then the energy–momentum tensor
of the magnetic field simplifies to

T ab
B = 1

2 B
2uaub+ 1

6 B
2hab+πab

B , πab
B =−B〈aBb〉 . (5.130)

The B-field corresponds to an imperfect fluid with energy density ρB = B2/2, isotropic
pressure pB =B2/6 and anisotropic stress πab

B . The anisotropic stress has unit eigenvectors
parallel and orthogonal to Ba , with eigenvalues −2B2/3 and +B2/3 respectively. This
means that the field exerts a negative pressure along its own field lines. We can think of this
as following from the ‘tension’ in the field lines – the magnetic field lines tend to straighten.
The field exerts an enhanced positive pressure orthogonal to its field lines.

Maxwell’s equations reduce to one propagation equation (the magnetic induction
equation) and three constraints:

Ḃ〈a〉 =
(
σab+ηabcω

c− 2
3 �hab

)
Bb , (5.131)

curl Ba +ηabcu̇
bBc = ja , (5.132)

2ωaBa =µ , ∇a
Ba = 0. (5.133)

The right-hand side of (5.131) is due to the relative motion of the neighbouring observers
and guarantees that the magnetic force lines always connect the same matter particles, so
that the field remains frozen-in with the highly conducting fluid. (This is similar to the way
vorticity gets frozen into the fluid, see Section 6.2.) Equation (5.132) shows how the spatial
currents are responsible for keeping the field lines frozen-in with the matter. (In the MHD
limit, the magnetic field is not sourced by currents, as confirmed by (5.131).)

The magnetic induction equation (5.131) leads to an evolution equation for the energy
density of the field (Exercise 5.5.6),

(B2)· = − 4
3�B2 − 2σabπ

ab
B . (5.134)

This shows that in a highly conducting medium, B2 ∝ �−4, unless there is substantial
anisotropy, in which case the B-field behaves as a dissipative radiative fluid. In a spatially
homogeneous, radiation-dominated universe with weak overall anisotropy, the shear term
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on the right-hand side means that the ratio B2/ργ is no longer constant but displays a slow
‘quasi-static’ logarithmic decay (Zel’dovich, 1970, Barrow, 1997).

Total energy conservation for a perfect fluid plus magnetic field is given by ρ̇+�(ρ+
p)= 0; it has no magnetic terms since the magnetic energy density is separately conserved,
which is guaranteed by the magnetic induction equation (5.131). The total momentum
conservation gives(

ρ+p+ 2
3B

2
)
u̇a +∇a

p =−ηabcBb curl Bc−πab
B u̇b , (5.135)

where ρ is the fluid energy density. The B curl B term in (5.135) is the magnetic Lorentz
force, which is always normal to the B-field lines and may be decomposed as (Exercise
5.5.6)

ηabcB
b curl Bc = 1

2∇aB
2 −Bb∇bBa . (5.136)

The last term is the result of the magnetic tension. Insofar as this tension stress is not
balanced by the pressure gradients, the field lines are out of equilibrium and there is a
non-zero Lorentz force acting on the particles of the fluid.

Exercise 5.5.1 Complex notation. Show that if we define complex quantitiesGabcd =gacgbd−
gadgbc + iηabcd , Fab = Fab + i

2ηab
cdFcd = Fab + iF ∗

ab, and Ea =Ea + iBa , then (5.114)
is equivalent to Fab = Gabcdu

cEd .

Exercise 5.5.2 We can split the electromagnetic field relative to a different 4-velocity ũa , as
in (5.18), i.e. Fab = 2ũ[aẼb] + η̃abcB̃

c . Show that

η̃abc = γ ηabc+ γ
(
2u[aηb]cd +ucηabd

)
vd , (5.137)

and that

Ẽa = γ
(
Ea + εabcv

bBc+ vbEbua

)
, (5.138)

B̃a = γ
(
Ba − εabcv

bEc+ vbBbua

)
, (5.139)

which generalize the special relativity transformation laws.

Exercise 5.5.3 Show that in the case of an FLRW universe, Maxwell’s equations reduce to
the standard form for flat-spacetime in terms of the rescaled electric, magnetic and current
vectors,

Êa = a2Ea , B̂a = a2Ba , Ĵ a = a2J a , (5.140)

where a denotes the scale length � in FLRW. Thus a source-free solution in Minkowski
spacetime gives a solution in a flat FLRW spacetime by this rescaling (this is essentially
due to the conformal invariance of Maxwell’s equations and the conformal flatness of FLRW
universes). Determine the wave equation for Êa that follows from the equations.

Exercise 5.5.4 The second Maxwell equation guarantees the local existence of a 4-potential
Aa for the electromagnetic field: Fab = 2∇[aAb]. Show

(a) that the potential is fixed up to a gauge transformation Aa → Aa + f,a , where f is
an arbitrary function of position, which can be used to impose the Lorentz gauge:
∇aA

a = 0;



115 5.6 Scalar fields

(b) that when this gauge is imposed, there is still such a gauge freedom provided f satisfies
the harmonic condition f;abg

ab = 0, and
(c) that then Maxwell’s equations reduce to

∇b∇bA
a +RabAb = J a . (5.141)

Exercise 5.5.5 Derive the 1+3 Maxwell and current conservation equations (5.118)–(5.122).

Exercise 5.5.6 In relativistic MHD:

(a) Show that there can be a non-zero magnetic field even if there is a non-zero charge
density, provided that the fluid rotates, but that if the charge density is zero, either the
vorticity must vanish or the magnetic field must be orthogonal to the vorticity vector.

(b) Derive the evolution equation (5.134), the MHD equation (5.135), and the decomposi-
tion (5.136).

5.6 Scalar fields

Quantum scalar fields play a central role in particle physics and string theory (see
Section 20.3), and in inflationary cosmology. The quantum equations for the inflaton field
are relevant for an analysis of its fluctuations, which we discuss in Section 12.2. For the
background dynamics of inflation, as well as the classical evolution of its fluctuations, it is
sufficient to consider a classical scalar field, which we briefly discuss here.

A minimally coupled scalar field ϕ has Lagrangian density

Lϕ =−√
g
[ 1

2∇aϕ∇aϕ+V (ϕ)
]

, (5.142)

where V (ϕ) is the potential that describes self-interaction of the scalar field. The energy–
momentum tensor then has the form

T ab
ϕ =∇aϕ∇bϕ− [ 1

2∇cϕ∇cϕ+V (ϕ)
]
gab , (5.143)

and its conservation leads to the Klein–Gordon equation,

∇a∇aϕ−V ′(ϕ)= 0. (5.144)

(When ∇aϕ = 0, (5.143) reduces to T ab
ϕ = −V (ϕ)gab, and ∇bT

ab
ϕ = 0 implies that

∇aV (ϕ) = 0; thus V (ϕ) is an effective cosmological constant and ϕ is not a dynamical
scalar field.)

In a covariant 1+3 description of scalar fields, one first needs to assign a 4-velocity
to the ϕ-field. Provided that ∇aϕ is timelike, ∇aϕ is normal to the spacelike surfaces
ϕ(xa)= const, and the canonical 4-velocity is

ua =− 1

ϕ̇
∇aϕ , (5.145)

where ϕ̇ = ua∇aϕ �= 0. This means that ϕ̇2 =−∇aϕ∇aϕ > 0 and uau
a =−1, as required.
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It follows immediately from (5.145) that the flow is irrotational,

ωa = 0, (5.146)

and

∇aϕ = 0, (5.147)

which is a key feature of the covariant analysis. Also (see Exercise 5.6.2),

u̇a =− 1

ϕ̇
∇aϕ̇ . (5.148)

The energy–momentum tensor (5.143) has perfect-fluid form, with

ρϕ = 1
2 ϕ̇

2 +V (ϕ) , pϕ = 1
2 ϕ̇

2 −V (ϕ) . (5.149)

Scalar fields do not generally behave like barotropic fluids. This is underlined by the fact
that the adiabatic sound speed is not the true or effective sound speed, namely the maximal
speed of propagation of field fluctuations, as shown in Section 10.2.5. The effective sound
speed is in fact the speed of light,

c2
s := ṗϕ

ρ̇ϕ
�= c2

s eff = 1. (5.150)

The last equality follows from the fact that spatial fluctuations in pressure and density in
the rest frame are equal (see Section 10.2.5), i.e.

∇apϕ =∇aρϕ , (5.151)

which is a consequence of (5.149).
The Klein–Gordon equation becomes

ϕ̈+�ϕ̇+V ′(ϕ)= 0, (5.152)

which is the energy conservation equation. The conservation of momentum is identically
satisfied by virtue of (5.148).

Note that if ϕ̇ = 0, we have the exceptional equation of state pϕ+ρϕ = 0; then the scalar
field is constant, and acts as a cosmological constant or vacuum energy (5.52). Equation
(5.152) then shows that the potential V must be flat, when evaluated at ϕ: (∂V /∂ϕ)(ϕ)= 0.
This will be a good description of the behaviour when the scalar field is potential dominated:
that is, when ϕ̇2 � V (ϕ). In this case the energy inequality ρϕ + 3pϕ ≥ 0 will be violated
leading to the possibility of an accelerating expansion of the universe. This is crucial to
inflationary theory in the early universe (Section 9.4) and may possibly also play a role
in the dynamics of dark energy in the late universe (Section 14.2). If V = 0, we have the
exceptional equation of state p = ρ; then ϕ̇ = const/�3. This will be a good description of
the behaviour when the scalar field is kinetic dominated: that is, when ϕ̇2 � V (ϕ).

For a non-negative potential energy, V ≥ 0, it follows from (5.149) that

−1 ≤wϕ := pϕ

ρϕ
≤ 1 (V ≥ 0). (5.153)
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If we allow V < 0, as in the ‘ekpyrotic’ model (Khoury et al., 2001), then these bounds
can be violated, and, in particular, one can achieve extreme kinetic domination, wϕ � 1.
However, it is not clear that this is physically realistic.

Exercise 5.6.1 Show that the conservation equations (5.11) and (5.12) are identically satisfied
as a result of (5.143) and (5.144); and conversely, that (5.144) is satisfied if the conservation
equations are, provided that ϕ̇ �= 0.

Exercise 5.6.2 Determine the kinematic quantities for the 4-velocity vector defined above.

5.7 Quantum field theory

In the very early universe, but after the time that quantum gravity dominated (see
Section 20.2.1), there will probably be an era when the universe is dominated by quantum
fields but gravity can be treated as a classical theory.

Quantum field theory (QFT) in curved spacetime, in which one continues to treat space-
time classically, had spectacular success in the derivation of Hawking radiation and the
consequent understanding of the thermodynamics of black holes (Hawking, 1975), but
also has difficulties (Wald, 1994). The usual discussions of QFT assume a well-defined
initial vacuum state (distinct vacua give unitarily inequivalent theories), which curved
spaces generally do not have. Those discussions describe states in terms of particles,
but in curved space the particles observed depend on the observer’s motion. Hence a
reformulation of the usual theory is required, especially for the interacting field case,
which is relevant for example to reheating after inflation (one such reformulation uses
an algebraic approach attempting to formulate predictions in terms of probabilities: see e.g.
Hollands and Wald (2005) and references therein). However, many discussions of QFT in
cosmology are carried out using, in effect, flat space QFT. Another issue is the nature of the
correspondence between quantum and classical theories; the usual inflationary scenarios
make assumptions about this transition. Discussions of this issue can be found in, e.g.,
Brandenberger (1985), Sakagami (1988), Padmanabhan, Seshadri and Singh (1989) and
Brandenberger, Laflamme and Mijic (1991). Padmanabhan (1993) even phrases the usual
treatment as defining the classical fluctuations to be the same as the quantum ones.

The two most important applications of QFT in cosmology are to phase transitions in the
early universe, and quantum fluctuations of the inflaton field. Since our theme is the role of
relativity in cosmology, we give only a brief introduction to the ideas of phase transitions, and
refer the reader to the books and papers cited and references therein. Quantum fluctuations
during inflation are discussed in Section 12.2.

A phase transition occurs when a more ordered but less symmetric state becomes ener-
getically favourable, for instance when a liquid with rotational symmetry cools and forms
a solid with a (necessarily reduced) crystallographic symmetry. Typically the solution does
not share the symmetry of the governing equations, and is only one of a set of possible solu-
tions of the same energy which can be mapped into one another by the governing equations’
symmetry. Different solutions may occur at neighbouring points, as for example when a
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ferromagnet cools below its Curie temperature and has different magnetization directions
in neighbouring domains.Aclear discussion of phase transitions in cosmology can be found
in Coles and Lucchin (2003).

Consider first the simple case of a one-dimensional state space of a field ! with two
energy minima which can be taken to be at ±!0. There will be domains where ! = !0

and domains where ! = −!0. At the boundary between two different domains, in order
for there to be a continuous value for the field concerned there must be small regions where
−!0 < ! < !0, i.e. the field is not in a minimum energy state. These are called domain
walls. Similarly for a field with a two-dimensional state space with a ring of minimum energy
solutions surrounding the origin, a circle in physical space may take those same state space
values but, for continuity, points inside the circle must then have states not of minimal
energy: this gives strings (not the same as the superstrings of Section 20.2.1). Going up in
dimension gives monopoles and textures. These are generically referred to as topological
defects. A priori, any of them might occur in the early universe. The density of defects is
usually estimated from a correlation length ξ , which depends on the particular phenomenon
under discussion but which Kibble (1987) argued had to be less than the particle horizon.
Use of these ideas may require some caution, since particle horizons (Section 7.9.1) are not
disjoint (MacCallum, 1982), and there may be correlations on larger scales (Wald, 1993).
However, the inconsistency between the high estimated number density of monopoles,
which goes like ξ−3, and observation was a motivation for the introduction of inflation,
which reduces this density.

Symmetry breaking may be induced by an external magnetic field, or spontaneously,
i.e. brought about by a gradual change of internal parameters of the matter concerned. In
cosmology, changes due to reduction of the ambient temperature arise and are considered
spontaneous phase transitions. When a phase transition happens, there may be an era of
‘supercooling’ in which the field stays in the no longer energetically favourable maximally
symmetric state. This is referred to as a false vacuum. When the field finally moves towards
minimal energy, the energy released produces reheating (which can also arise in other ways).

At high temperatures, T > 1015 GeV, there is believed to be a Grand Unified Theory
(GUT) with a symmetry group sufficiently large to include the known symmetries SU(3)×
SU(2)×U(1) of the strong, weak and electromagnetic forces. Then when T ≈ 1015 GeV,
there is a phase transition in which the symmetry of the quantum field reduces to SU(3)×
SU(2)×U(1), the symmetry of the Standard Model of particle physics (see Section 9.6.3).
The symmetry breaking can form (magnetic) monopoles.

The second expected transition, at 0.1–1 TeV, is the electroweak symmetry breaking
which leads to lepton masses, followed at 200–300 MeV by the QCD phase transition at
which quark confinement arises and which ushers in the hadron era. The extremely large
gap between 1015 and 103 GeV is often referred to as the ‘desert’, as nothing is expected
to happen there, in the normal model of elementary particles and fields.



6 Dynamics of cosmological models

In this chapter, we examine general dynamical relations that hold in any cosmological
model, initially without restricting the equation of state.

We begin by making a 1+3 decomposition of the field equations (3.15), using the
decomposition (5.9) of Tab. We find they are equivalent to

Rabu
aub = 4πG(ρ+ 3p)−�, (6.1)

Rabu
ahbc =−8πGqc, (6.2)

Rabh
a
ch

b
d = [4πG(ρ−p)+�]hcd + 8πGπcd . (6.3)

We now link this dynamics with the kinematics of Chapter 4. Remember that we have to
satisfy all 10 of these field equations, whereas in the Newtonian case we only have to satisfy
one, the Poisson equation,

�,i
,i = 4πGρN −� ,

basically because equations that are dynamical field equations in the GR case reduce to
geometrical identities in the Newtonian case (compare Section 3.4)

6.1 The Raychaudhuri–Ehlers equation

The most important field equation in terms of kinematic quantities, the Raychaudhuri–
Ehlers equation, is obtained from substituting (4.46) into (6.1). It gives the evolution of �
along the fluid flow lines (Raychaudhuri, 1955, Ehlers, 1961):

�̇+ 1
3�

2 + 2(σ 2 −ω2)− u̇a ;a + 4πG(ρ+ 3p)−�= 0. (6.4)

This equation is the fundamental equation of gravitational attraction. To see its
implications, we rewrite it in the form

3�̈/�=−2(σ 2 −ω2)+∇au̇
a + u̇au̇

a − 4πG(ρ+ 3p)+� (6.5)

which follows from the definition (4.35) of the scale factor �. This equation for the curvature
�̈ of the curve �(τ ) directly shows that shear, energy density and pressure tend to make
matter collapse, as they tend to make the �(τ ) curve bend down, while vorticity and a
positive cosmological constant tend to make matter expand, as they tend to make the �(τ )
curve bend up; the acceleration terms are of indefinite sign. It also shows that (ρ+ 3p)=
ρN(1+ε+3p/ρN) is the active gravitational mass density of a fluid obeying the description
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in Section 5.2; hence any increase in the internal energy or the pressure increases its active
gravitational mass density.

For example, in the case of a static star, � = ω = σ = 0 and we can neglect the
cosmological constant on this scale, so the equation reduces to u̇a ;a = 4πG(ρ + 3p),
where the acceleration is determined from the pressure gradient by (5.39). We obtain
(∇ap)/(ρ + p));a = −4πG(ρ + 3p), the basic balance equation between gravitational
attraction and hydrostatic pressure for a star. In the corresponding Newtonian equations,
ρ + 3p → ρN and ρ + p → ρN ; due to these differences, gravitational collapse is much
less severe in Newtonian theory than in GR.

6.1.1 Static FLRW universe models

In the case of a static FLRW universe model, �= ω= σ = 0 = u̇a , so (6.5) becomes

4πG(ρ+ 3p)=�. (6.6)

Thus static universes with ordinary matter are only possible if�> 0 (Einstein, 1917). Then,
given the equation of state p=p(ρ) and the cosmological constant, there is a unique radius
as for this Einstein static solution, at which the gravitational attraction caused by the matter
and the repulsion caused by the cosmological constant balance.

This universe is unstable (Eddington, 1930) because if we increase a, so a > as , ρ
decreases but � stays constant, and hence ä > 0 and the universe expands to infinity; while
similarly a < as ⇒ ä < 0 and the universe collapses. This instability1 leads us to believe
that the universe should either be expanding or contracting, but not static; indeed, failure
to perceive this in the 1920s can be regarded as one of the major lost opportunities in the
history of cosmology (all the major figures in cosmology at that time ‘knew’ the universe
was static, see Ellis (1989)).

The corresponding Newtonian model satisfies 4πGρN =�; the same qualitative results
hold as in GR (i.e. �> 0 and the model is unstable).

6.1.2 The first singularity theorem

The fundamental singularity theorem follows immediately from the Raychaudhuri equation
(Tolman and Ward, 1932, Raychaudhuri, 1955).

Theorem 6.1 (Irrotational geodesic singularities) If � ≤ 0, ρ+ 3p ≥ 0 and ρ+p > 0 in a fluid
flow for which u̇ = 0, ω = 0 and H0 > 0 at some time s0, then a spacetime singularity,
where either �(τ )→ 0 or σ →∞, occurs at a finite proper time τ0 ≤ 1/H0 before s0.

Proof: The proof is simple: if �̈= 0, then �→ 0 a time tH = 1/H0 ago; however, with the
given conditions, �̈ < 0, so following the curve �(τ ) back in the past, it must drop below the
straight line �=H0�0(t − tH ) and reach arbitrarily small positive values of � at a time less

1 As one cannot perturb the actual universe, ‘instability’ here refers to the difficulty of setting exactly the correct
initial conditions for a static universe rather than its instability to perturbation from a previous state.
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than 1/H0 ago (unless some other spacetime singularity intervenes before �→ 0, which
can happen only if the shear diverges first).

In the exceptional case where the shear diverges first, a conformal spacetime singularity
(see Section 6.7) will occur where � �= 0: because of (6.5), that can occur only in very excep-
tional circumstances, and we know of no physically relevant example where it happens. In
the general case where �→ 0, the matter world lines converge at a finite time in the past
and a spacetime singularity develops if ρ +p > 0, for then as the universe contracts, the
density and pressure increase indefinitely, implying the spacetime curvature also does. For
ordinary matter this will additionally imply that T →∞, that is, the universe originates at
a hot big bang. Furthermore, an age problem becomes possible; for if we observe structures
in the universe, such as stars, globular clusters, or galaxies, that are older than 1/H0, there
is a contradiction with the assumptions of the theorem (for the universe must be older than
its contents!) �

Similarly the argument implies that the universe must experience a very rapid evolution
through its hot early phase. The straight line estimate �̈= 0 ⇒H = �0H0/�; however, the
high densities will cause a considerable steepening of the �(τ ) curve at early times, leading
to the inequality H > �0H0/�. For example at the time of decoupling the scale function �d

obeys �d/�0 ≈ 1/1000, which implies a Hubble parameter Hd > 1000H0. Similarly at the
time of nucleosynthesis �/�0 ≈ 10−8, showing that then H > 108H0.

Application: This result applies in particular to an expanding FLRW universe, where
(using (2.65)) a = �→ 0 and a hot big bang must occur (the shear is zero in this case, so
a conformal singularity cannot occur). The proof makes clear that an increase in pressure
does not resist the occurrence of the singularity, but rather decreases the age of the universe
and so makes the age problem worse (the pressure increases the active gravitational mass
and there are no pressure gradients to resist the collapse).

This is the basic singularity theorem, on which further elaborations are built. How can
one avoid the singularity? It is clear that shear anisotropy makes the situation worse. On
the face of it, there are five possible routes to avoid the conclusion: a positive cosmological
constant; acceleration; vorticity; an energy condition violation; or alternative gravitational
equations. We consider them in turn.

(1) Cosmological constant�> 0. In principle this could dominate the matter at small � and
turn the universe around. However, in practice this cannot happen because we have seen
galaxies and quasars up to a redshift over 6, implying (see Chapter 13) that the universe
has expanded by at least a ratio of 7 before now. If it had bounced, then at the turnaround
the density would have been greater than the present density by a factor of at least
73 = 343; so the cosmological constant would have to be equivalent to a large energy
density in order to dominate the Raychaudhuri equation then. This is well outside the
values consistent with observation (see Section 13.2). If we accept that the microwave
background radiation indicates that the universe has expanded by at least a factor of
1000, the argument is even more overwhelming; the cosmological constant would have
to be equivalent to more than 109 times the present matter density to dominate the
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Raychaudhuri equation then! (Observationally acceptable alternatives to the cosmo-
logical constant as models for dark energy, such as ‘quintessence’ (Section 14.2), do
not upset this general argument.)

(2) Pressure inhomogeneity (acceleration) and
(3) Rotational anisotropy (the effect of ‘centrifugal force’).

These both involve abandoning the FLRW geometry. On the face of it, they could
succeed; however the powerful Hawking–Penrose singularity theorems strongly restrict
the allowable cases where they might in fact succeed, because of the CMB observations
which show, for universes that are approximately FLRW, that the conditions of those
more general theorems hold (see Section 6.7 and Hawking and Ellis (1973)).

(4) Violation of the energy condition ρ + 3p > 0. The energy condition (5.17) is obeyed
by all normal matter, but a false vacuum (5.52) can violate it and so in principle cause
a turnaround of the universe, avoiding an initial singularity. However, we only expect
(5.52) to become relevant above temperatures of at least 1012 K. Thus even if violating
the energy condition could enable us to avoid the initial singularity, the turnaround
would only take place under extraordinarily extreme conditions when quantum effects
are expected to be dominant. Hence we can rephrase the conclusion: a viable non-
singular universe model cannot obey the laws of classical physics at all times in the past.

(5) Other gravitational field equations. Finally, we have of course assumed Einstein’s
field equations here. An alternative theory of gravity might hold that avoids the sin-
gularity, as for example in the Steady State universe and its variants (Bondi, 1960,
Hoyle, Burbidge and Narlikar, 1993, 1994) effectively by introducing negative energy
terms into the Raychaudhuri equation. In particular at very early times quantum grav-
itational effects are expected to become important, possibly causing effective energy
condition violations.

Thus the prediction of a singularity is a classical prediction; physically, we may assume
that as we follow the evolution back into the past, the universe cannot avoid entering the
quantum gravity domain. We do not yet have any reliable idea of what this implies (see
Chapter 20).

In Newtonian theory, the discussion is as above except for one important point: in this case
rotation can enable the universe to avoid the initial singularity (unlike the GR case). This
is shown by the existence of spatially homogeneous rotating and expanding but shearfree
Newtonian universe models, in which the rotation spins up to enable the universe to avoid
the initial singularity (see e.g. Heckmann and Schucking (1955)), whereas such universes
cannot exist in relativity theory (Gödel, 1952, Ellis, 1967); see Section 6.2.2 below.

6.1.3 Evaluation today

We obtain very useful information by evaluating the Raychaudhuri equation at the
present time. To express this, we define some parameters as follows. The deceleration
parameter is

q0 =−
( �̈
�

)
0

1

H0
2

(6.7)
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(not to be confused with energy flux qa), which is a dimensionless version of the second
derivative �̈, with the sign chosen so that a positive value corresponds to deceleration. The
energy density of matter, pressure and the cosmological constant are represented by the
dimensionless parameters

�0 = 8πGρ0

3H0
2

, �p0 = 8πGp0

3H0
2

, ��0 = 2�0

3H0
2
. (6.8)

It then follows directly from the Raychaudhuri equation that

2q0 = 4

3

(
σ 2

0

H 2
0

− ω2
0

H 2
0

)
− 2(∇au̇

a + u̇au̇
a)

3H 2
0

+�0 + 3�p0 −��0 . (6.9)

One may define the total density parameter �tot = �+ 3�p −��. If the rotation, shear,
acceleration and pressure terms are small today compared with the others, as is highly
plausible, then

2q0 ��0 −��0, (6.10)

where the error is of the magnitude of the terms neglected in passing from the previous
equation; and if we also assume �= 0, then 2q0 ��0. These become exact equations in
an FLRW universe with vanishing pressure.

These direct relations between the deceleration and density parameters are pivotal in
observational cosmology. The relation (6.10) can be used to determine� from observations
of q0 and �0. Only recently have such observations achieved sufficient accuracy to give
strong limits.The data outlined in Section 13.2 provide estimates�0 ≈ 0.27 and��0 ≈ 0.73,
supporting the arguments for the presence of dark matter and dark energy.

The Newtonian discussion is the same, except that there is no pressure contribution
to (6.9).

6.1.4 First integrals

In the FLRW case, the Raychaudhuri equation (6.5) for �= a becomes

3ä/a =−4πG(ρ+ 3p)+� . (6.11)

Now the conservation equation (5.38) implies (a2ρ)˙=−aȧ(ρ+3p). Thus provided ȧ �= 0
we can multiply (6.11) by aȧ and integrate to find

3ȧ2 − 8πGρa2 −�a2 = const, (6.12)

which is just the Friedmann equation which governs the time evolution of FLRW universe
models (discussed further in Chapter 9). The constant is the curvature of the three-spaces
t = constant (see (6.23) and (6.55) below). If the shear or vorticity are non-zero and we
know, from some geometric constraints, σ 2 or ω2 as a function of �, we could integrate
(6.5) similarly to obtain a generalized Friedmann equation for these more general universe
models. Equation (6.12) also holds for Newtonian RW cosmological models provided one
replaces the total energy density ρ by its Newtonian limit, the mass density ρN .
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6.2 Vorticity conservation

Before looking at the rest of the field equations, we examine the evolution of vorticity, since
its presence or absence radically affects the treatment of the remaining equations.

6.2.1 Vorticity propagation

From (4.43) we can obtain the form

(�2ω)̇ 〈e〉 = �2σe
dω

d − 1
2�

2 curl u̇e (6.13)

for the vorticity propagation equation which is subject to the constraint (4.44); here the
acceleration is determined by the momentum conservation equation (5.12). If the flow is
that of a barotropic perfect fluid, there is an acceleration potential r (given by the second
of (5.41)), and (6.13) becomes

(r�2ω)̇ 〈e〉 = r�2σe
dω

d , (6.14)

which is the basis of the usual (Kelvin–Helmholtz) vorticity conservation laws. Firstly, it
implies the permanence of vorticity:

A: For a perfect fluid with barotropic equation of state, ω �= 0 at one point on a world
line ⇒ ω �= 0 at every point on that world line.

Thus vorticity can be generated only with a non-barotropic or imperfect fluid, by irreversible
processes such as viscosity (through their effect on the acceleration). To understand the
implications further, we have to substitute back for σf

d in terms of uf ;d , finding

(r�3ω)̇ 〈e〉 = ue ;d(r�
3ωd), (6.15)

which shows that Xe = (r�3ωe) is a relative position vector (it satisfies the equation
hf eX

e
;du

d = ue ;dX
d ). In the case of a linear equation of state (5.49), by Exercise 5.2.4,

this becomes

(�−3(w−1)ω)̇ 〈e〉 = ue ;d(ω
d�−3(w−1)), (6.16)

showing that Xe = �−3(w−1)ωe is a relative position vector (always pointing to the same
neighbouring particle). Thus,

B1: Vortex lines consist at all times of the same particles, that is, the vorticity is frozen
into the fluid flow and

B2: The distance of neighbouring particles in the vorticity direction is proportional
to ω�3(1−w).

Now the volume of a section of a vortex tube of length δl and cross-sectional area δF is
δV = δl δF ∝ �3, so we can rewrite this in the form

ω ∝ δlwδFw−1, ω2/ρ ∝ δl3w+1δF 3w−1, (6.17)
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Table 6.1 Scaling factors for vorticity, using a linear equation of state

General case Almost isotropic

Matter w ω∝ ·· · ω2/ρ ∝ ·· · ω∝ ·· · ω2/ρ ∝ ·· ·
dust 0 δF−1 δl δF−1 �−2 �−1

radiation 1/3 δl1/3δF−2/3 δl2 �−1 �2

stiff 1 δl δl4 δF 2 � �8

which is valid for a general expansion. The term ω2/ρ measures the importance of rotation
in the Raychaudhuri equation. In the case of an almost isotropic expansion, δF ∝ �2, so in
that case the previous equation reduces to

ω∝ �3w−2, ω2/ρ ∝ �9w−1. (6.18)

Thus we obtain Table 6.1. This shows that in an almost isotropic expansion, vorticity
‘spins up’ as we go back in the past for all ordinary matter: the dynamical importance of
vorticity increases as a radiation fluid expands, but decreases for dust. However, we must
beware of taking this as the general behaviour; if there is significant distortion, the behaviour
is given by the middle columns in the table, not the last ones. The relation between shear
and vorticity contained in the above equations is not simple; we must, for example, clearly
distinguish between the rotation of the fluid and of the shear eigenvectors. The simplest
behaviour will be if the vorticity vector is at all times a shear eigenvector.

6.2.2 Warning

The simplest conceivable rotating and expanding case is a shearfree expansion of dust:
σ = 0 = u̇a , � �= 0, ω �= 0. In this case, ω =�/�2, �̇= 0; then we can integrate (6.5) to
get a generalized Friedmann equation,

3�̇2 − 8πGρ�2 −��2 + 2�2/�2 = const, (6.19)

which suggests we can have a solution of Einstein’s equations in which a build-up of rotation
does indeed stop the initial singularity of the universe, centrifugal force causing a bounce
at early times.

However, there is no such relativistic expanding solution! The problem is that we have so
far only used one of the ten Einstein equations. Until we have examined all 10 field equations,
we cannot claim to have a solution. In this case, the other equations show no such solution
can exist (Ellis, 1967, Senovilla, Sopuerta and Szekeres, 1998). In the Newtonian case, on
the other hand, such solutions do exist (Heckmann and Schucking, 1955).

The Newtonian discussion of vorticity conservation is similar but simpler: the results are
identical to the ‘dust’ case discussed above.

Exercise 6.2.1 (a) Show that vorticity can be generated in the case of matter with a ‘perfect
fluid’ stress tensor, provided that ηabc∇bp∇cρ �= 0 (in the barotropic situation above, this
quantity vanishes).
(b) Indicate how viscosity can generate vorticity.
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Exercise 6.2.2 Examine vorticity conservation in the case of a fluid obeying the ‘cosmolog-
ical constant’ equation of state p = −ρ. (N.B. the momentum conservation equation is
degenerate in this case.)

Exercise 6.2.3 Magnetic field conservation and evolution. In the case of observers who
measure a pure magnetic field, the Maxwell equations are (5.132)–(5.133) while (5.131)
implies

(�2B)̇ 〈c〉 = (ωc
b+σc

b)�
2Bb,

in close analogy with the equations governing vorticity. Show from these equations that
(�3Ba) is a relative position vector, so that the magnetic field conservation laws (similar to
the vorticity conservation above) are,

A: If Ea = 0, magnetic field lines cannot be created or destroyed.
B: The magnetic field lines are frozen into the fluid, i.e. the integral curves of Ba consist

at all times of the same particles.
C: As the fluid evolves, the field strength B changes inversely with the cross-sectional

area δF of the magnetic field tubes: B ∝ 1/δF .
(Note that µ can be non-zero, even when there is no electric field, if ωa �= 0.)

6.3 The other Einstein field equations

As shown by the result quoted in Section 6.2.2, we must consider all 10 Einstein field
equations, or an equivalent system of equations. We have so far considered only one: the
‘(00)’ equation. For brevity we describe the remaining equations using the numbering that
would follow from use of a tetrad with u = e0.

The (0i) equations

Substituting from (6.2) into (4.48) we get

0 = 8πGq〈a〉 − 2
3∇a�+∇b

σab− curl ω〈a〉 + 2ηabcω
bu̇c . (6.20)

These are a further three of the field equations.
In the Newtonian case, these equations are the identities

ωij
,j −σ ij

,j + 2
3�

,i = 0. (6.21)

In the FLRW case these equations are identically satisfied because the symmetry implies
qa = 0, �=�(t).

The (ij) equations

For the remaining six equations the situation is radically different for ω= 0 and ω �= 0. We
shall deal with ω= 0 first.
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6.3.1 The vorticity-free case

The Gauss equation

When ω = 0, we can examine the geometry of the uniquely defined family of surfaces
orthogonal to ua , embedded in the four-dimensional spacetime. Their metric (the first
fundamental form, compare Section 2.1) is hab, while their second fundamental form is
�ab = ∇(aub). ∇ is now the covariant derivative in these surfaces. This follows because
it (i) is linear, (ii) obeys the Liebniz rule, (iii) commutes with contraction (by hac), (iv)
has zero torsion (being the projection of a torsion-free connection) and (v) preserves the
three-dimensional metric:∇chab = hc

gha
ehb

f hef ;g = 0, each of these properties following
because the corresponding property holds for the four-dimensional covariant derivative.

Thus, contracting the Gauss equation (2.114) and using the propagation equation (4.42)
and the Raychaudhuri equation (6.5), we find

3Rab =∇〈au̇b〉 − �−3(�3σ )̇ 〈ab〉 + u̇〈au̇b〉 + 8πGπab (6.22)

+ 2
3 (σ

2 − 1
3�

2 +�+ 8πGρ)hab ,

showing how the matter tensor (ρ, πab) directly affects the Ricci curvature of the three-
dimensional space, with correction terms due to the embedding. This gives us the last six
field equations when ω= 0 (if we know 3Rab, this is an equation for the rate of change of
shear along the flow lines).

If we contract again (or contract (2.114) twice) we obtain

3R = 2(σ 2 − 1
3�

2 +�+ 8πGρ) , (6.23)

which is a generalized Friedmann equation (or the ‘Hamiltonian constraint’of Section 3.3.3).
This gives the 3-space Ricci scalar in terms of the matter energy density and cosmological
constant, corrected by embedding terms; it is a generalization of the first integral equation
(6.12) we obtained previously. We can give an equation for the time derivative of 3R that
follows from (6.23), (6.5) and (5.11):

(3R− 2σ 2)˙= 2
3�(6σ 2 − 3R− 2u̇a ;a)− 16πG(πabσab+ qa ;a + 2qau̇a), (6.24)

where the second bracket on the right vanishes for a ‘perfect fluid’.
In the case of a three-dimensional space, the full Riemann tensor is determined by the

Ricci tensor and the Ricci scalar as in (2.82). Thus, with the previous equations, 3Rabcd is
completely characterized in terms of the expansion, shear, acceleration, energy density and
anisotropic pressure. Thus (Ehlers, 1961) this fully expresses Einstein’s intention of having
the curvature of space determined by the matter content of spacetime.

In the case of irrotational flows, we now have the full set of 10 field equations: the
Raychaudhuri equation (6.5), the (0j) equations (6.20) and the (ij) equations (6.22), which
can conveniently be split into their trace (6.23) and their tracefree part

3R〈ab〉 = ∇〈au̇b〉 − �−3(�3σ )̇ 〈ab〉 + u̇〈au̇b〉 + 8πGπab . (6.25)
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However, it should be noted that we have not introduced any covariant quantities from
which an expression for 3Rab can be calculated, so at present the 3Rab are extra variables
lacking an independently derived evolution equation. We thus need to introduce extra vari-
ables for the spatial components of the connection that will give a complete set of equations.
This can be accomplished in a convenient way by using the tetrad equations described in
Section 2.8. Nevertheless, even without this completed set of variables and equations, we can
attain many useful understandings and results from the covariant equations, as in Exercises
6.3.1 and 6.3.2.

Non-rotating fluids: comoving coordinates

In the case of non-rotating fluid, there is an obvious choice of comoving coordinates, with
the time t given by (4.36), leading to constant time surfaces orthogonal to the fluid flow.
Then (with this choice ai = 0 in Exercise 5.2.3) the metric has the form

ds2 = hij dxidxj − 1

r2(xµ)
dt2, uν =− 1

r(xµ)
δ0
ν . (6.26)

The Gauss relation determines the geometry of the surfaces t = const. In terms of the
approach above, we obtain this form by noting that ω = 0 ⇒ a[i,j ] = 0, so there is a
function f (xj ) such that ai = f,i . Making a coordinate transformation x0′ = x0 + f (xj )

with this choice of f we obtain (6.26) from (5.43).
In general, the time term is proportional to an exact differential, with proportionality

factor r(xµ) (and Exercise 4.6.2 characterizes the spatial variation of dt/dτ ); the time term
is an exact differential if u̇a = 0 ⇔ r = r(t). In the latter case (5.41) no longer determines
r , and we can renormalize the time coordinate (t → t ′ = t ′(t)) to set r = 1; we then have
normalized comoving coordinates (compare Section 4.1).

6.3.2 Rotating fluids

When ω �= 0 we have more difficulty in giving a covariant form for the remaining field
equations, especially one for which we can pose a satisfactory initial value problem. There
is no set of hypersurfaces orthogonal to the flow. If we attempt to use Cauchy surfaces
(Section 3.3) not orthogonal to the flow we may find that such surfaces do not exist globally,
and there may be closed timelike lines giving a causality problem (see e.g. the discussion
of the Gödel solution in Hawking and Ellis (1973)).

There are two ways of proceeding. The first is to choose a family of surfaces t = const
and then to decompose the field equations along the normals to these surfaces as in the
case of a non-rotating fluid. However, as these cannot be the fluid flow lines, a perfect
fluid will appear to be an imperfect fluid in this frame, and, for example, the conservation
equations will now be more complicated. The other approach is to use the decomposition
orthogonal to the fluid flow, discussed in the rest of this chapter. In both cases, completion
of the equations will require introduction of extra variables such as the Weyl tensor and/or
a tetrad and associated rotation coefficients.
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Correspondingly, two choices of coordinate systems are available. One is to use coor-
dinates that, instead of being comoving with the fluid, are based on a chosen set of
hypersurfaces t = const and are comoving with the normals to those hypersurfaces. The
other possibility is to choose comoving coordinates; the time surfaces then cannot be cho-
sen orthogonal to the fluid flow lines, g0j �= 0, and the Gauss formalism above is not directly
applicable.

It is here that a big difference between Newtonian theory and Einstein’s theory is apparent:
in Newtonian theory there are always unique spatial sections and their metric is flat. No
causality problems arise because of the unique time coordinate that orders events along all
timelike curves.

Non-comoving description

As described above, a hypersurface-orthogonal description of rotating universes is possible
if we abandon coordinates that are comoving with the fluid; this description can also be
used when ω = 0 if there is some special reason to do so (e.g. if there is a surface of
symmetry that is not orthogonal to the fluid flow lines). It may also be best in a multi-fluid
situation, where we appropriately choose some frame (in general, not comoving with any
of the fluids) and express the energy–momentum tensors and field equations relative to
this choice. Associated with this, one may use an orthogonal tetrad formalism with (e.g.)
the normal na to some chosen hypersurfaces, rather than the fluid flow vector ua , as the
timelike tetrad vector. Then the tilt angle (or relative velocity) between the ua and na is an
important variable. This approach is used, for example, for the tilted Bianchi universes in
Chapter 18.

To set this up, first choose the time surfaces. The 1+3 decomposition used previously
applies in this case, but based on na rather than ua , so na replaces ua in the equations
above. In the following, we use a tilde to denote that the decomposition is relative to na

rather than ua and a prime to denote differentiation along the normal lines, replacing the dot
denoting covariant differentiation along the fluid flow lines. For example, (4.10) becomes
h̃ab = gab + nanb and (4.38) becomes na;b = σ̃ab + 1

3�̃h̃ab − ñ′añb. We can then use the
Gauss formalism as above, relative to the 4-velocity vector na . However, the fluid flow
lines will then not be orthogonal to these surfaces, i.e. the fluid will move relative to them
(ua �= na ⇔ ũj �= 0). Consequently a perfect fluid will appear to be imperfect in this frame;
if we decompose relative to na rather than ua , its effective equations of state will be given
by (5.20)–(5.22). The fluid conservation equation will not appear simple in this frame; we
require the general form (5.11)–(5.12) rather than the simple form (5.38)–(5.39), and cannot
use the simple integrations (5.41)–(5.42) (as the expansion �̃ of the normals is not related
in a simple way to the expansion � of the fluid).

With this choice, the coordinates take the form (6.26) but r is not now the fluid acceleration
potential (for the fluid is not at rest in these coordinates). The equations above hold along the
normals (which necessarily have zero vorticity: ω̃= 0) with ρ̃, q̃a , p̃ and π̃ab respectively
the total energy density, energy flux, isotropic pressure and shearfree anisotropic pressure
from all constituents of the matter. There are various choices of time t to simplify the
equations further:
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(1) Use of scalar quantities. A time can be determined by some well-defined physical or
geometrical scalar, e.g. density ⇔ ρ̃ = ρ̃(t); alternatively, we can choose time so that
the pressure p̃, temperature T̃ , or scalar field� are constant on these surfaces.Aspecial
case is when we choose the surfaces to be the surfaces of symmetry in Bianchi models,
which are necessarily surfaces of constant energy density and pressure.

(2) Constant normal expansion. The time function is chosen so that �̃ = �̃(t). This is
‘York time’ (Smarr and York, 1978, Eardley and Smarr, 1979).

(3) Zero shear surfaces. The time function is chosen so that σ̃ab = 0 where possible (but
this implies a restricted set of spacetimes, since zero-shear surfaces are only possible
for very restricted Weyl tensors (van Elst and Ellis, 1998)) or by using minimal shear
surfaces (compare Bardeen (1980)).

(4) Geodesically parallel surfaces. The time function is chosen so that n′a = 0 (acceleration
terms vanish). (Globally problems will then occur, by the Raychaudhuri singularity
theorem applied to the normals. Thus such coordinates will often be singular even if
spacetime is not.) We still have freedom to specify the initial surface in this case.

(5) Proper time. The time coordinate is chosen to measure proper time along the fluid flow
lines, from some arbitrarily chosen initial surface.

In general one cannot satisfy more than one of these conditions; in special cases, a choice
will imply one or more of the others. Which choice is best will depend on the geometrical
situation we are investigating.

Comoving description

In a comoving approach, we cannot use as variables the curvature 3Rab of 3-spaces ortho-
gonal to the fluid flow (as there are no such 3-spaces). The basic strategy is to introduce
extra variables in addition to the variables discussed previously, to close the equations.
Apart from simply introducing coordinates in the traditional way and developing equations
for the metric tensor components, there are various possibilities (not mutually exclusive):

(a) to introduce a covariant quantity 3R̃ab analogous to 3Rab and which reduces to 3Rab

when ω= 0, but does not have such a natural interpretation (compare Section 6.5);
(b) to use covariant Weyl tensor components and the Bianchi identities as developed in

Section 6.4, possibly with extra spatial vectors defined covariantly from the problem:
an example of this approach is given by Sopuerta (1998);

(c) to introduce a complete set of variables for the connection components, by introducing
an orthonormal tetrad (see Section 6.5), with the timelike vector chosen to be the fluid
flow vector, and its rotation coefficients (or equivalently commutator coefficients) then
regarded as primary variables.

To complete the description one will also usually introduce specific coordinates adapted
to the fluid flow (see below). In the end this approach will generally be required to complete
both approaches (a) and (b) above, for they usually give many but not all of the equations
required for completion of a solution. An example of this approach is Ellis (1967).

When ω �= 0 and comoving fluid coordinates are used as above, we cannot set ai =
0 in (5.43) by a gauge transformation. Instead we can choose the t = x0 origin, f (xi),
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so that at each point in some hypersurface t = const, the vector ωa lies in that surface,
i.e. ω0 = 1

2η
0ijkaiaj ,k = 0; because ai is independent of t , this will then be true at all

times. With this choice, εijkaiaj ,k = 0, showing that there exist functions y(xi), z(xi)
such that ai = yz,i ; these functions must be independent, as otherwise ωij = 0. Using
the freedom of initial labelling to choose x3 = z and x2 = x2(y,z) where ∂x2/∂y �= 0,
we have

ai(x
j )= y(x2,x3)δ3

i , ∂y/∂x2 �= 0. (6.27)

Thus we can always obtain coordinates (5.43)–(5.48) with ai given by (6.27). With this
choice the vorticity relation (4.44) and propagation equations (6.14) are both identically
satisfied. It is possible to additionally choose x2 = y⇒ aidxi = x2dx3, but this may be too
restrictive for some applications.

Two additional points about the approaches just discussed are worth making. When the
fluid rotates, so there is no family of hypersurfaces orthogonal to the fluid flow, a further
approach may be better than any of the above, namely:

(d) use non-orthonormal basis vectors, with the fluid flow as the timelike vector and the
spacelike vectors lying in some uniquely chosen spacelike hypersurfaces. Then the
associated coordinates can be chosen to be comoving, but the angles between the basis
vectors will not be constant; thus the dynamical variables will include some metric
tensor components and their derivatives (which are all constant when an orthonormal
tetrad is used) as well as commutator components.

Only experience can tell which is best in any particular case; suitable coordinate choices
can be introduced as appropriate to a specific problem and the tetrad choice can be tied in
to these coordinates.

Finally in each of the cases (b)–(d), one has, by choice of variables, cast the geometric
and dynamical equations into the form of a (generically infinite-dimensional) dynami-
cal system (see e.g. Bogoyavlenskii (1985) and Wainwright and Ellis (1997)), possibly
subject to constraints. It will be finite-dimensional if we are examining families of high-
symmetry spacetimes, which define invariant sets or involutive subsets within the full
infinite-dimensional space of cosmological models (i.e. are such that given initial data in
the subset, the evolution remains within that subset). We shall discuss these aspects further
in Chapters 18 and 19.

We shall look at specific examples of the use of the equations for either rotating or non-
rotating cases in the sequel. Now we turn to general properties of the equations that are true
for both rotating and non-rotating universes.

Exercise 6.3.1 Consider ‘dust’, (5.50), with ω= 0, 3R〈ab〉 = 0.

(a) Deduce from (6.25) that σab = �ab/�
3, �̇ab = 0. Now find a first integral of the

Raychaudhuri equation that generalizes (6.12). What is the relation of this equation to
(6.23)?

(b) Show that (6.24) again leads to the relation 3R = 3R0/�
2.
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Exercise 6.3.2 Suppose πab = qa = 0 = σab = ωab = u̇a (an FLRW universe).

(a) Show from (6.25) that 3R〈ab〉 = 0. Prove that in this case,
3Rab = 1

3
3Rhab and Rabcd = κ(gacgbd −gadgbc) where κ = 3R/6.

(b) Show from (6.24) that 3R = 6K/a2, K̇ = 0, and hence derive the Friedmann equation
from (6.23).

Exercise 6.3.3 What are the components of the vorticity vector and tensor with the choice
(6.27)? Characterize the remaining coordinate freedom preserving this form, and determine
the optimally related tetrad basis. (See King and Ellis (1973).)

Exercise 6.3.4 Use the comoving approach for the rotating case and deduce properties of
3R̃ab. (Using ∇, work out the corresponding ‘curvature tensor’, Ricci tensor and contracted
Bianchi identities, being particularly careful not to incorrectly assume symmetries).Asmall
research problem is that to close the equations we need the time-development of this tensor;
can this be found?2

Problem 6.1 Determine the spatial sections in an FLRW universe that most closely have
the properties of Newtonian space sections. Demonstrate how the properties of Newtonian
time follow from the FLRWgeometry in an appropriate limit. (Compare Ellis and Matravers
(1985) and references therein).

6.4 TheWeyl tensor and the Bianchi identities

Using (6.3), (4.51) gives

�−2(�2σ )̇ 〈ab〉 = ∇〈au̇b〉 + u̇〈au̇b〉 −ω〈aωb〉 −σ〈acσb〉c−Eab+ 4πGπab , (6.28)

which shows how the electric part of the Weyl tensor and the anisotropic fluid pressures
cause distortion in a fluid (i.e. act as tidal forces). Another way to see this is to write the
geodesic deviation equation for the case when ua is geodesic, this being

ξ̈ a =−(Ea
b− 4πGπa

b)ξ
b− [ 4

3πG(ρ+ 3p)− 1
3�

]
ξa . (6.29)

Equation (4.52) shows how the magnetic part Hab is determined from the curls of the shear
and vorticity tensors. From these equations, we can in principle obtain present-day limits
on Eab and Hab.

The Newtonian analogues of (6.28) and (4.52) are

�−2(�2σ ij )˙+ωjωi +σj
kσki + 1

3hij (2σ
2 −ω2 − ak ,k)+Eij = a(i,j), (6.30)

(ω(i
j ;k +σ(i

j ;k)ηm)jk = 0. (6.31)

The second of these is the equation showing the vanishing of the Newtonian analogue of
the magnetic part of the Weyl tensor.

2 It would be preferable to do this covariantly; it certainly should be possible in a tetrad formalism, compare Ellis
(1967) or MacCallum (1973) and Section 6.5.



133 6.4 The Weyl tensor and the Bianchi identities

In general we can introduce Eab and Hab as extra variables, characterizing the nature of
spacetime curvature; in the irrotational case, we can regard Eab as an alternative variable
to 3R〈ab〉.

The Bianchi identities

The form (2.86) of the Bianchi identities is very analogous to the Maxwell equations (5.115)
and current conservation equation (5.122).

As in the case of Maxwell’s equations we can separate these equations out to obtain a set
of Maxwell-like equations for E and H. These equations are most easily obtained using the
complex form analogous to Exercise 5.5.1 for the electromagnetic case and equivalent to
Exercise 4.7.1:

Cabcd :=Cabcd + i
2ηab

ef Cef cd = GabpqGcdrsu
purEqs , where (6.32)

Eab :=Eab+ iHab, Gabcd := 2ga[cgd]b+ iηabcd .

We obtain, taking 8πG= 1 for brevity, and using the four-dimensional covariant notation
combined with the angle brackets of Section 4.4,

∇b
Eba = ηabcσ

b
dH

dc− 3Habω
b (6.33)

+ 1
3∇aρ− 1

2∇
b
πba − 1

3�qa + 1
2σabq

b+ 3
2ηabcω

bqc ,

Ė〈ab〉 = curl Hab+ 2u̇cηcd(aHb)
d −�Eab+ 3σc〈aEc

b〉 −ωc〈aEc
b〉

− 1
2∇〈aqb〉 − u̇〈aqb〉 − 1

2 π̇〈ab〉 − 1
6�πab− 1

2σ
c〈aπb〉c (6.34)

− 1
2ω

c〈aπb〉c− 1
2 (ρ+p)σab ,

∇b
Hba =−ηabcσ

b
dE

dc+ 3Eabω
b (6.35)

+(ρ+p)ωa − 1
2ηabcσ

b
dπ

dc− 1
2πabω

b− 1
2 curl qa

Ḣ〈ab〉 = −curl Eab− 2u̇cηcd(aEb)
d −�Hab+ 3σc〈aHc

b〉 (6.36)

−ωc〈aHc
b〉 + 1

2 curl πab+ 1
2σ

c
(aηb)cdq

d − 3
2ω〈aqb〉,

in close analogy with the Maxwell equations (5.118)–(5.121), the matter terms correspond-
ing to source terms. These equations show how the propagation of the gravitational field
(the Weyl tensor) is governed by the matter distribution, although not all derivatives of the
Weyl tensor are thus determined (Maartens, Ellis and Siklos, 1997, Pareja and MacCallum,
2006). As in the Maxwell case, they can be used to obtain wave equations for Eab and Hab.

The Newtonian analogues of these equations are, Eij
;j = 1

3ρ
,i (corresponding to

(6.33)), E(i
k,mη

j)km = 0, (corresponding to (6.36)) and σ[j [i ,m],k] + 2
3h

[i [j�,k]
,m] = 0

(corresponding to the combination of (6.34) and (6.35), see Ellis (1971a)).

Implied equations

Given the set of equations so far, propagation equations are implied for other quantities of
interest. For instance, we already have propagation equations for all the kinematic quantities
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except the acceleration, but, for suitable equations of state, that equation can be derived
by taking the time derivative of the momentum conservation equation. (When no equation
of state has been given, ṗ is a free function.) Considering the case of a perfect fluid for
simplicity, (5.38) and (5.39) imply the acceleration propagation equation,

ha
c(u̇c)˙= u̇a�

(dp

dρ
− 1

3

)
+ha

b
(dp

dρ
�
)

,b
− u̇c(ω

c
a +σc

a). (6.37)

Two other quantities of considerable interest are the spatial gradients of the energy density
and expansion; these characterize spatial inhomogeneity of a universe model. Propagation
equations can be determined for these quantities in a straightforward way. In the perfect
fluid case, the first is

�−4hc
a(�4∇aρ)˙= −(ρ+p)∇c�− (ωa

c+σa
c)∇aρ , (6.38)

obtained by taking the spatial gradient of the energy conservation equation. The second is

�−3hc
a(�3∇a�)˙= 3R̃u̇c− (σ b

c+ωb
c)∇b� (6.39)

+∇c[−4πGρ− 2σ 2 + 2ω2 +∇d u̇
d + u̇d u̇d ] ,

3R̃ :=− 1
3�

2 − 2σ 2 + 2ω2 +∇cu̇
c+ u̇cu̇

c+ 8πGρ+� , (6.40)

obtained by taking the spatial gradient of the Raychaudhuri equation. (Note that when
ω= 0, 3R̃ is the 3-space Ricci scalar.) In a certain sense there is no new information in these
equations. However, it is useful to have explicitly the information they contain, even if it
was implicitly given by the previous equations; for example the latter two play a central
role later in our discussion of density perturbations of FLRW universe models.

Exercise 6.4.1 Show that when ω = 0, the electric part of the Weyl tensor is related to the
tracefree part of the 3-Ricci tensor by

Eab = 3R〈ab〉 −σ〈acσb〉c+ 1
3�σab− 4πGπab .

Exercise 6.4.2 Show that when ω= 0, equation (6.33) is equivalent to the three-dimensional

Ricci identities 2∇b3Rab =∇a
3R.

Exercise 6.4.3 (a) Show that if a perfect-fluid-filled spacetime is conformally flat (Eab =
Hab = 0) and ρ+p > 0, then σab = ωa = 0 =∇aρ = 0.
(b) Show that if additionally p = p(ρ), then u̇a = 0; thus this must be an FLRW universe.

6.5 The orthonormal 1+3 tetrad equations

As mentioned in Section 6.3, tetrads provide one way of completing the set of variables and
equations, using the methods described in Section 2.8. In a tetrad approach, one can calculate
the rotation coefficients from (2.105) and then obtain the Ricci tensor and the EFE from
(2.108), the formulae involving first derivatives of the rotation coefficients. If the rotation
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coefficients are regarded as the variables then, for consistency, the commutation coefficients
must satisfy the Jacobi identities (2.103). One can call this a minimal tetrad formalism. It
is often a good approach to use in examining the consistency of the field equations and
obtaining solutions when particular assumptions have been made about spacetime geometry;
for example Ellis (1967) determined the LRS dust models this way and Ellis and MacCallum
(1969) the orthogonal perfect fluid Bianchi models.

Alternatively, one can consider a larger set of quantities as variables, e.g. the rotation
coefficients and the Ricci and Weyl tensor components, and make use of the (second)
Bianchi identities as equations for the curvature tensor components. This can be called
an extended tetrad formalism. Applications of the Newman–Penrose formalism (see e.g.
Stephani et al. (2003)) often take this approach, e.g. for studying gravitational radiation or
algebraically special solutions (Section 2.7.6): it has been used to study fluids (e.g. Ozsváth
(1965) and Allnutt (1981)).

Which is the most useful approach will depend on the problem being tackled; if
one first imposes symmetries and then solves, the first may be better, while if one
imposes restrictions on the Weyl tensor or its derivatives, the second may be more
appropriate.

In both cases, if an orthonormal tetrad is used, as it will be below, many of the
tetrad equations will be direct tetrad translations of covariant equations that have featured
above (the primary covariant equations), because many of the rotation coefficients will
be kinematic quantities (as defined in Chapter 4). However, some of the tetrad equations
(particularly those related to spatial variations) may not have direct analogues in that set
of equations. Thus the tetrad equations are more complete: they are sufficient to guaran-
tee existence of a solution, whereas the primary covariant equations are necessary but not
always sufficient.

There are situations, however, in which all the tetrad equations are covariant equations.
This will happen whenever the tetrad vectors have been uniquely defined in a covariant
manner; for example if the timelike vector is the fluid velocity ua and the spacelike vectors
are unique eigenvectors of the shear tensor. Then all the rotation coefficients are covariantly
defined quantities and so all the equations are invariant relations. Using the approach to
classification of spacetimes outlined, with its application to cosmology, in Section 17.2,
one finds such a unique covariant choice is possible in general spacetimes but may not be
possible in all cases.

We now give more specific details of these approaches (MacCallum, 1973,
van Elst and Uggla, 1997).

6.5.1 A minimal tetrad formalism

In a minimal tetrad formalism based on an orthonormal tetrad with timelike vector chosen
as the fluid flow vector, the unknowns are

(1) the tetrad components,
(2) the tetrad rotation coefficients (or equivalently, the commutator coefficients) and
(3) the matter fields.
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The equations are

(1) the tetrad equations (giving their components relative to a coordinate system),
(2) the Jacobi identities for the commutator coefficients,
(3) the EFE written as differential equations for the commutator coefficients, based on the

Ricci identities for all four tetrad vectors and
(4) the energy–momentum conservation equations for the matter, i.e. the contracted Bianchi

identities, together with any matter field equations required.

The idea is to solve as far as possible for the rotation coefficients first, and only then to solve
the tetrad equations for their explicit components; the Jacobi identities are integrability con-
ditions guaranteeing the existence of tetrad components corresponding to the commutator
coefficients.

Because we are taking e0 = u, the commutation coefficients with a 0 index are almost all
specified by the kinematic quantities. The exceptions are the γ i

j0; to parametrize these we
introduce the components of the rotation of the tetrad with respect to a Fermi-propagated
frame,

�ij = ei · ėj ⇔�k = 1
2η

kij ei · ėj (6.41)

(beware that this standard notation risks confusion with the � of (6.8)). The purely spatial
coefficients are decomposed using

1
2γ

i
kmη

jkm = nij + aij , (6.42)

where nij = n(ij) and aij = a[ij ] = ηijkak , so that aj = 1
2γ

k
jk and

γ i
jm = ηjmkn

ik + 2a[j δim] .

In the irrotational case, these determine the three-dimensional Ricci tensor 3Rij ; in general,
together with the other rotation coefficients they completely determine the Weyl tensor
components Eab and Hab.

The corresponding commutator expressions are

[e0,ei] = u̇ie0 −[�i
k +ηkij (ω

j −�j)]ek (6.43)

[ei ,ek] = −2ηikjω
j e0 + (ηikj n

jm+ 2a[iδmk])em . (6.44)

Note that spatial indices in the orthonormal tetrad can be raised and lowered arbitrarily, but
raising or lowering the index 0 introduces a factor −1.

The Jacobi identities (the second set of equations required) can be labelled by indices
{ab} for the equation obtained from

Ra
cdf η

bcdf = 0.

The {00} and {0i} equations are the tetrad forms of (4.44) and (4.43), namely,

0 = (∂i − 2ai − u̇i )ω
i , (6.45)

∂0ω
i =− 2

3�ωi +σ i
jω

j + 1
2n

i
j u̇

j −ηijk[ 1
2 (∂j − aj )u̇k +ωj�k] . (6.46)
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The remaining 12 equations give as the {i0} equation and as the skew and symmetric parts
of {ij} respectively:

0 = (∂j − 2aj )n
ij − 2

3�ωi − 2σ i
jω

j +ηijk(∂j ak + 2ωj�k) , (6.47)

∂0a
i =−(σ ij + 1

3�δij −ωij +�ij )aj (6.48)

+ 1
2 (∂j + u̇j )(σ

ij − 2
3�δij −ωij +�ij ) ,

∂0n
ij = [2σ (i

k − 1
3�δ(ik +ω(i

k −�(i
k]nj)k + δij (∂k + u̇k)(ω

k −�k)

−[∂k + u̇k][ηkm(iσ j)
m+ δk(i(ωj)−�j))] . (6.49)

The G00 and G0i field equations are the tetrad versions of (6.5) and (6.20) respectively
which read,

∂0�=− 1
3�

2 − 2σ 2 + 2ω2 + (∂i + u̇i − 2ai)u̇
i − 4πG(ρ+p)+� , (6.50)

0 = 8πGqi − 2
3δ

ij ∂j�+ (∂j − 3aj )σ
ij − ηijknjmσ

m
k (6.51)

−ηijk(∂j − aj )ωk +nijω
j + 2ηijkωj u̇k .

To express the remaining Einstein equations we follow the first method of Section 6.3
for the rotating case, i.e. introduce a quantity 3R̃ij which will be the three-dimensional
curvature if ωa is zero (and so gives the usual treatment in that case). The tracefree part and
trace of this are

3R̃〈ij 〉 = ∂〈iaj 〉 + 2nk〈inkj 〉 −nkkn〈ij 〉 − ηkm〈i (e|k| − 2a|k|)nj 〉m, (6.52)

3R̃ = 4∂i(a
i)− 6aia

i −nkjn
kj + 1

2 (n
k
k)

2. (6.53)

In terms of these quantities the PSTF part of the Gij equations is

∂0σ
ij =−�σij +[δk〈i∂k + u̇〈i + a〈i]u̇j〉 + 2ηkm〈i[2�kσ

j〉
m−σ j 〉

ku̇m]
+2ω〈i�j 〉 − 3R̃〈ij〉 + 8πGπij , (6.54)

and the trace can be combined with the G00 equation to give

0 = 8πGρ− 1
3�

2 +σ 2 −ω2 − 2ωi�
i − 1

2
3R̃+� . (6.55)

Note that in this treatment (6.52) and (6.53) are regarded as defining the 3-space quantities,
which are not to be treated as extra variables.

Finally, we have the contracted Bianchi identities,

∂0ρ =−(ρ+p)�−πijσij − (∂i − 2ai + 2u̇i )q
i , (6.56)

∂0qi =− 4
3�qi −σi

j qj − (ρ+p)u̇i − ∂ip− (∂j − 3aj + u̇j )πi
j

+ηijk[(ωj +�j)qk +njmπ
m
k] , (6.57)

together with whatever matter field equations or equations of state are needed to completely
specify the matter terms. Note that if the matter terms are specified independently these
become (like the remaining Bianchi identities in this treatment) true identities, and hence
trivial. In practice the matter specification usually gives qa independently of (6.57) and
therefore that equation becomes an equation for u̇i .
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To summarize, the variables to be solved for are

(u̇i ,ωi ,�,σij ,�i ,ai ,nij ,ρ,qi ,p,πij ).

We have evolution equations for (ωi ,�,σij ,ai ,nij ,ρ,qi); equations of state are needed to
give the remaining fluid variables, which then usually determine the propagation of u̇i ,
while �i will in general come from a tetrad choice (the choice is so far fixed only up to a
position-dependent spatial rotation).When the fluid equations do not result in a specification
of u̇i , we encounter an indeterminacy corresponding to the freedom of choice of the lapse
function in the Hamiltonian formalism; however, this may sometimes be determined by
consistency conditions for the full set of equations. We discuss this below in connection
with the Newtonian limit.

6.5.2 An extended tetrad formalism

In an extended tetrad formalism, there are extra variables and equations; the unknowns
additional to those of Section 6.5.1 are,

(4) the Weyl tensor components, and possibly (as discussed more fully in Section 6.6.2)
(5) their covariant derivatives;

and the extra equations are

(5) the (second) Bianchi identities, which are differential equations for the Weyl tensor
components, and possibly

(6) the ‘super-Bianchi’ identities, differential equations for the Weyl tensor derivatives.

Such a formalism also amounts to treating the Ricci tensor components, i.e. the energy–
momentum variables, as independent quantities subject to the Bianchi identities (which are
equations rather than strictly identities, for these choices of variables).

The idea now is to solve as far as possible for the Weyl tensor (and perhaps its derivatives)
first and only then to solve for the rotation coefficients and tetrad components; the existence
of the rotation coefficients is guaranteed by the Bianchi identities (see Section 6.6.2). In
practice one often solves the equations in some mixed order.

The tetrad formulae for the electric and magnetic parts of the Weyl tensor are as follows:

Eij =−∂0(σij )− 2
3 �σij + (∂〈i + u̇〈i + a〈i )u̇j 〉 −σk〈i σ k

j 〉
+ηkm(i

[
2σj)m�k −nj)k u̇m

]−ω〈iωj 〉 + 4πGπij , (6.58)

Hij = (∂〈i + 2 u̇〈i + a〈i )ωj 〉 + 1
2 n

k
k σij − 3nk〈iσj 〉k

+ηkm(i
[
(∂|k| − a|k|)σj)m−nj)k ωm

]
. (6.59)

Combining (6.58) with the field equation (6.54), one easily derives

(Eij + 4πGπij )= 1
3�σij −σk〈i σ k

j 〉 −ω〈i ωj 〉 − 2ω〈i �j 〉 + 3R̃〈ij〉 . (6.60)

From this expression it can be seen that the ‘electric’ part of the Weyl tensor is closely
related to 3R̃〈ij〉 (compare Exercise 6.4.1).
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The Bianchi identities in orthonormal tetrad form can be found in MacCallum (1973)
or van Elst and Uggla (1997). They follow directly from the covariant forms (6.33)–(6.36)
given above.

6.6 Structure of the 1+3 system of equations

The variables of the extended system of 1+3 covariant equations derived above, relative to
a chosen four-velocity ua , are

(u̇a ,ωa ,�,σab,ρ,qa ,p,πab,Eab,Hab),

all of which are scalars, spatial vectors or PSTF tensors: they have 32 independent com-
ponents altogether. The equations are the components of the Ricci identity (4.41) for ua ,
into which where possible the Einstein field equations (3.15) have been substituted, and
the components of the second Bianchi identities. We can readily divide these equations into
‘evolution’ equations (those specifying a time-derivative, in the sense of Section 4.3, of one
of the basic variables) and (differential) constraint equations involving spatial derivatives
along directions orthogonal to ua .

The extended system thus obtained contains four first Bianchi (Jacobi) identities giving

ω̇〈e〉 and ∇b
ωb ((6.13) and (6.45)), five constraint relations for the curvature components

Hab (4.52) and four equations giving �̇ and qa ((6.4) and (6.20)), all of these coming
from the Ricci identity and the Einstein equations, five linear combinations (6.28) of the
Ricci identities (4.51) and the field equations (6.3), giving σ̇〈ab〉, and all 20 independent

Bianchi identities ((5.11) and (6.33)–(6.36)), giving ρ̇, q̇a , Ė〈ab〉, Ḣ〈ab〉,∇a
Eab, and∇b

Hab.
There are therefore 12 Jacobi identities and six independent linear combinations of the
Ricci identity (4.51) and the field equations (6.3) missing, compared with, for example, a
general tetrad system. To solve the Einstein equations fully these missing equations, or extra
equations which can serve as their equivalents, have to be satisfied. (The completeness of
the minimal orthonormal tetrad equations was discussed in Section 6.5.)

There are evolution equations for 23 of the variables in the set. Thus there are nine
quantities, to whit (u̇a ,p,πab), for which we have no evolution equation (though (6.34)
could be re-arranged to give π̇ab rather than Ėab) until equations of state for the matter are
specified. When this is done, the momentum conservation equation (6.20) usually becomes
an equation for u̇a rather than q̇a : in particular, for a perfect fluid only p remains to be
specified. In general one might expect that the process leading to the specification of ua

(see Section 5.1.1) would also lead to a specification of u̇a , since if a completely free choice
of ua is allowed, u̇a could have any value.

Of the equations we do have, the �̇ equation has been studied in detail in Section 6.1,
and the ω̇a equation, which we note requires knowledge only of σab and u̇a , in Section 6.2.
From the σ̇ab equation we note that ωa has a tidal effect and can create shear, while the Eab

terms are tidal forces. Since gravitational waves are possible, distant matter and boundary
conditions can create a non-zero Weyl tensor contribution which then induces shear which
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in turn feeds into the Raychaudhuri equation and tends to cause convergence of the timelike
world lines of fundamental observers.

6.6.1 The initial value problem

It is awkward to pose a well-formulated initial value problem using these equations if
ωa �= 0, since the spatial derivatives are not then derivatives in a hypersurface and so the
‘constraint’ equations are not really constraints on initial values.

The structure is seen most clearly in the case of zero rotation, for then we can use the
Gauss equation relating the fluid flow properties to the geometry of the orthogonal 3-spaces.
The time development of the expansion and shear are given by (6.5) and (6.25) respectively,
corresponding to six field equations; the remaining field equations are (6.20) and (6.23),
which are constraint equations relating the expansion and shear to the energy density, and
momentum density, and must be preserved under the time development of the fluid flow.

As discussed in Section 3.3.1, the nature of this evolution is such as to preserve the
constraint equations: solving these on some surface t = t0 gives a solution of the initial
value problem. They will remain true at later times if initially true, provided the energy–
momentum conservation equations (i.e. contracted Bianchi identities), and hence the
associated conservation of mass and momentum, are true everywhere (compare Section 5.1);
for a perfect fluid these will have the simple form (5.38), (5.39), determining the fluid accel-
eration and the rate of change of the energy density along the flow lines, which are orthogonal
to the naturally defined surfaces t = const (see (4.36)). Thus we obtain a solution every-
where within the Cauchy development (see Section 3.3) of the initial surface. However, in
general this domain will be limited, because singularities will eventually occur. This issue
is discussed in Section 6.7.

Essentially the same structure will hold in the case of rotating solutions; this is most easily
seen by using a non-comoving description based on a suitable choice of time surfaces.

6.6.2 Consistency of the equations

Perhaps the clearest way to formulate this issue is to consider the 1+3 equations as a part
of a full orthonormal tetrad formalism (as developed in Section 6.5). If we start with the
equations defining connection and curvature, the integrability conditions are just the first and
second Bianchi identities.3 However, we actually substitute from some of these equations
into others. If we take as our variables the tetrad components, commutation coefficients
and Riemann tensor components, we shall have equations giving each of these three sets
in terms of the previous ones, plus versions of the Bianchi identities. Edgar (1980) showed
how the equations usually then taken give integrability conditions which are in general
combinations of the commutator equations and the Bianchi identities. In this discussion it
is assumed (sometimes implicitly) that the connection is metric and that the commutation
coefficients and Riemann tensor components have the usual symmetries.

3 Integrability conditions are necessary but not usually sufficient to guarantee existence and uniqueness of
solutions, which depend also on analytic properties of the equations and data.
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There are two main variants of this general discussion. One is to take a different set
of variables. Those used above contain redundant terms (being part of an extended tetrad
formalism rather than a minimal one) so a smaller set, such as just tetrad components,
commutators and matter variables, could be used. Equally one could add the components
of any number of derivatives of the Riemann tensor as extra variables, together with the
equations relating them to the previous variables and the equations (third and higher Bianchi
and Ricci identities) they must satisfy.

So far we have assumed a completely general spacetime and choice of tetrad. Additional
equations and integrability conditions may arise if one imposes additional conditions, such
as specific equations of state. One could distinguish between two different types of choice
of equality, or set of equalities, as follows.

First, one could constrain the tetrad choice in a way that is compatible with the general
case under study. The derivatives of the constraint will then give additional conditions.
However, the processes of imposing the constraint and solving the equations inevitably
commute; that is to say one could in principle have solved the equations in a general
basis and then chosen the tetrad by applying a Lorentz transformation at each point (i.e.
algebraically). Therefore the extra equations in this case must just be specializations of the
differential equations necessarily satisfied by a tetrad solving the general tetrad equations.

In the cosmological context an example of a condition of this type is given by the require-
ment of zero heat flux, qa = 0, corresponding to a particular choice of ua (assuming the
energy–momentum obeys the usual energy conditions which guarantee the existence of a
timelike eigenvector of the Ricci tensor). When using a tetrad other such choices are that
the spatial tetrad vectors are eigenvectors of either σab or Eab, which gives them a helpful
invariant significance.

The second type of equality or set of equalities that can be imposed is one which gives
a consistent specialization of the general system of equations but which is not generally
possible just by choice of tetrad: for example, the conditions that a spacetime is a vacuum, of
Petrov type D, and has shearfree and geodesic principal null congruences. Such conditions
define, within the space of tetrad variables, an invariant set of data in involution (com-
pare Section 6.3.2). For this to be true, the time-derivatives must preserve the conditions
imposed. In cosmology, the assumption that the matter content is irrotational ‘dust’ (with
no acceleration) is such a set of conditions.

One has to check that such sets of conditions really are consistent. Edgar (1980) has
shown, for example, that tetrad equations remain consistent when the vacuum condition is
used in general relativity.

In the cosmological context, while we can impose any geometrical restrictions we wish
on the initial data (provided they are compatible with the initial data constraints), we cannot
assume the same restrictions will necessarily remain true as the fluid flow develops. If we
suppose some particular restrictions hold at all times, this assumption may or may not be
compatible with the field equations (compare the warning in Section 6.2.2).

A number of papers have discussed the consistency of the 1+3 equations in particular
cases (often for the irrotational dust or perfect fluid case): see e.g. van Elst (1996), Maartens
(1997), Maartens, Lesame and Ellis (1998), Velden (1997). The general (and successful)
aim of these papers is to show that the equations are consistent in the sense that if the
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constraint equations are taken to be true at some instant, then the evolution equations
guarantee that the constraints are true at all times. One can in fact show that this consistency
of the 1+3 system follows from the commutators and first and second Bianchi identities
without new calculations; see MacCallum (1998) for the dust case.

One often wants to work out such a set of consistent conditions starting from some
incomplete set of conditions. An example is given by the investigations, in cosmology,
aimed at deciding what solutions, if any, satisfy conditions such as the vanishing of the
electric or magnetic parts of the Weyl tensor (see Section 19.8).

6.6.3 First-order symmetric hyperbolic form

The field equations have both a wave nature (gravitational waves are possible, allowing
transfer of energy and momentum at the speed of light) and a conservative nature (con-
straint equations, satisfied in an initial surface, remain satisfied at later times because of the
conservation equations and so energy and momentum can be bound to localized objects).
We have discussed the second aspect (i.e. conservation of the constraints); now we turn to
the first.

Because of the wavelike nature of the equations (their characteristics are null surfaces),
a solution is determined only within the Cauchy development of initial data (as defined in
Chapter 3). This hyperbolic nature of the above set of equations is not obvious. To show it,
we need to transform them to a symmetric hyperbolic normal form. This involves taking
suitable linear combinations of the tetrad variables defined above, obtaining a collection
of dependent field variables uA which are functions of a set of local spacetime coordinates
{xµ } and are such that the resulting equations are of the form

MABµ ∂µuB =NA , (6.61)

where the objects MABµ =MABµ(xν ,uC) and NA =NA(xµ,uB) denote four symmetric
matrices and a vector, respectively, each acting in a space of dimension equal to the number
of dependent fields. The set of equations (6.61) is hyperbolic if the contraction MABµnµ

with the coordinate components of some past-directed timelike 1-form nµ yields a positive-
definite matrix; it is causal if this contraction is positive-definite for all past-directed
timelike 1-forms nµ (Geroch and Lindblom, 1990). If it satisfies all these conditions, it
is said to be a First Order Symmetric Hyperbolic (FOSH) evolution system. Standard
theorems then guarantee the existence of solutions to the time evolution equations.

The set of characteristic 3-surfacesφ= const underlying a FOSH evolution system can be
interpreted as a collection of wavefronts with phase functionφ across which certain physical
quantities may be discontinuous. The associated characteristic eigenfields propagate along
so-called bicharacteristic rays within these 3-surfaces at velocities v, which represent their
slopes relative to the direction of u (Courant and Hilbert, 1962). The characteristic condition
the associated vector fields ξ must satisfy is

0 = det [MABµ ξµ ]. (6.62)

This determines the characteristic velocities and eigenfields.
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In van Elst and Ellis (1999) (see also Ellis (2005)) it is shown from the tetrad equations
given above that cosmological models (M, g, u)with barotropic perfect fluid matter source
fields form a FOSH evolution system. This shows their hyperbolic nature, as desired. The
nature of the resulting characteristics and associated variables is of interest.

6.6.4 Solving the equations

When solving the EFE there are two especially important points.
Firstly (compare Section 5.2.3), one should clearly state what matter content one is

assuming for spacetime (vacuum, perfect fluid, electromagnetic field, scalar field, etc.)
when obtaining solutions, and also specify any needed equations of state for the chosen
form of matter (for example in the perfect fluid case, one should state what relations hold
between the energy density ρ and the pressure p). Until this has been done, the EFE do not
describe a well-defined physical situation (compare Section 5.2.3).

Secondly, it is important to note that when obtaining solutions of the EFE, one must
always make certain that all ten equations are satisfied. Unless this has been verified, one
is not in a position to claim one has a correct solution of the field equations. (This may
sound a trivial remark but it is surprisingly often overlooked.)

We examine particular solutions under assumptions about the spacetime symmetries,
which determine their geometry and hence the nature of the solutions, as well as their
matter content. Looking at this in the cosmological context is the burden of the following
chapters.

6.7 Global structure and singularities

This chapter is concerned with generic relations holding in all realistic cosmological models.
Apart from the generally valid equations developed up to this point, there is a further set of
remarkable generic4 results that have been established as a result of the pioneering work of
Roger Penrose, Stephen Hawking, Bob Geroch, and Brandon Carter. These relate to global
properties of spacetime and the existence of singularities.

There is only space here to give the briefest summary of these results, which are presented
in depth in Hawking and Ellis (1973), see also Wald (1984), Tipler, Clarke and Ellis (1980)
and Joshi (1996).

6.7.1 Existence theorems for singularities

According to GR, singularities occur in cosmology not only in the context of high-symmetry
models such as the FLRW models, but also for realistic anisotropic and inhomogeneous
models of the universe in which the energy condition (5.17) is satisfied. The latter will be

4 That is, they are not based on any specific exact solutions.
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true for classical fields; it is precisely because this condition is an inequality rather than an
exact equation that these theorems have their power.

The case of irrotational dust was discussed in Section 6.1.2; the same singularity theorem
holds as in the FLRW special case, irrespective of the degree of anisotropy or inhomogeneity
in the spacetime. However, acceleration (due to pressure gradients) or vorticity could in
principle upset this prediction. Examination of specific classes of models failed to find
specific realistic cosmological models where the singularity was avoided in this way,5 but
analytic examination of the full set of covariant or tetrad equations failed to provide a proof
that all realistic (anisotropic and inhomogeneous) cosmologies are singular.

This situation was dramatically changed by Roger Penrose’s pioneering work on black
hole singularities (1965), giving a theorem predicting the existence of singularities in real-
istic gravitational collapse cases. This was extended to the case of cosmology by Stephen
Hawking and others, proving a series of theorems culminating in the major singularity
theorem of Hawking and Penrose (1970).

Global concepts

The key to these developments is the study of global properties of spacetimes, rather than
local properties (Hawking and Ellis, 1973, Tipler, Clarke and Ellis, 1980).

First, one has to work with atlases rather than just local coordinate systems, allowing
global coordinate coverage of spacetimes with complicated topologies.

Second, one has to delineate the nature of causality in spacetime: determining domains
of influence, domains of dependence (the Cauchy development of data on a surface, see
Section 3.3.1), and the boundaries of these regions (null cones and Cauchy horizons for
example). Causal boundaries are generated by null geodesics, which generically develop
self-intersections and caustics; but when caustics occur, this signifies that the boundary has
necessarily come to an end (the caustic points are beyond places where self-intersections
occur, and so lie inside the domain of dependence rather than on the causal boundary).

Thirdly, one can characterize limits of geodesic connectivity from points and surfaces;
these are related to the Cauchy development of a surface.

And fourthly, one defines a spacetime as being singular if there exist inextendible
geodesics in the spacetime: that is, the spacetime runs into some kind of edge that prevents
continuation of geodesics. This is of particular physical significance when the geodesics
are timelike or null: then the possible histories of particles come to an end (to the future) or
start at a beginning (in the past), in contradiction to the situation in non-singular spacetimes,
where particle histories can continue for ever.

The specific key elements in the proof of existence of such singularities were (a) use
of the timelike and null versions of the Raychaudhuri equation for families of irrotational
geodesics with suitable energy conditions, implying intersection of these geodesics after a
finite distance or time, and (b) very careful analysis of the causal properties of spacetime
and the domains of dependence of initial data on spacelike surfaces (these domains being
bounded by null horizons generated by null geodesics). Under very general circumstances

5 Newtonian dust models that are shearfree, expanding and rotating apparently give such universes; but they have
no GR counterparts, see Sections 6.2.2 and 6.8.2.
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characterizing both a black hole geometry and the situation arising after refocusing of
our past light-cone in a realistic cosmology, and providing causal violations are avoided,
these theorems showed the existence of an edge to spacetime, implied by the existence
of incomplete geodesics, i.e. incomplete particle histories. The proof did not, however,
determine the nature of the singularity, i.e. did not necessarily imply an infinite matter
density would arise.

Furthermore, the existence of the CMB alone was adequate evidence of the refocusing
of our past light-cone, which is the central geometrical feature implying existence of closed
trapped surfaces, as in the black hole case, so leading to prediction of existence of a sin-
gularity in the cosmological context (provided the energy conditions are satisfied). Thus
GR implies existence of an edge to spacetime associated with a singularity at the start of
the universe. As long as the energy condition is satisfied, singularity avoidance is only
possible – given suitable causality and energy conditions – if matter is concentrated in such
small isolated regions that reconvergence of our past light-cone is avoided; and that would
imply either major CMB anisotropies that are not observed, or lack of enough matter to
cause the observed blackbody spectrum of that radiation.

The ways of avoiding singularities in general are the same as those discussed in the
simpler cases of Section 6.1.2. The conclusion is again that to avoid singularities would
require some effect of quantum gravity, or an alternative classical field theory of gravity.

6.7.2 Classification of singularities

Because of their nature (proof by contradiction), these theorems prove geodesic incom-
pleteness, rather than showing that the energy density diverges. They do not determine the
nature of the singular behaviour near the origin of the universe. We shall define a singularity
as a boundary of spacetime where either the curvature diverges (see discussion below) or
geodesic incompleteness occurs. The relation between these two kinds or aspects of singu-
larities is still not fully clear; but often they will occur together. For our purposes, existence
of either indicates there is a problem with spacetime at that boundary; hence our definition.

The nature of singularities in classical cosmological solutions is very varied. Specific
examples are discussed later as we discuss specific exact solutions with anisotropy and
inhomogeneity. We consider here the broader classification of cosmological curvature sin-
gularities into scalar curvature singularities and non-scalar singularities. In both cases the
curvature tensor diverges, but in the first case, this is associated with divergence of a scalar
quantity associated with the curvature tensor; in the second case, it is only associated with
divergence of the components of the curvature tensor in a parallelly propagated orthonor-
mal frame. A further type of spacetime singularity is quasi-regular singularities, where
the curvature is perfectly regular but conical singularities occur. We do not consider them
further here, as they are not significant in cosmology, except as idealized representations
of cosmic strings; but this idealization is so rigid as to not correspond to the way cosmic
strings are usually believed to behave.
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Scalar curvature singularities

These occur when at least one scalar polynomial expression formed from the curvature
tensor, the metric tensor, and other uniquely defined covariant tensors (such as the matter
4-velocity) diverges. These singularities can be of various kinds; in particular either the
Ricci tensor or the Weyl tensor (or both) may diverge. It is not known in general whether
singularities, in the incomplete causal geodesics sense, occur where scalars formed from
derivatives of these various tensors diverge. It also could be that neither the Ricci tensor
nor the Weyl tensor gives a divergent scalar polynomial and the only such are mixed ones.
We do not know of such an example, however.

Ricci scalardivergence implies that matter or field energies and densities are unbounded,
and hence so are curvature invariants; thus the spacetime itself is singular. The classic
example is the standard Big Bang at the start of FLRW universe models for ordinary matter,
where Rabu

aub and Tabu
aub diverge for a uniquely defined unit timelike vector field ua .

Note that the Ricci scalarR need not diverge there, because it is proportional to T = 3p−ρ

and so will take the value zero in a radiation-dominated era, even if ρ and p diverge.
However, the scalar T abTab = (ρ +p)2 + 3p2 will diverge in this case. The Weyl tensor
is regular at any such singularity in FLRW models, because it is exactly zero in all these
models; so they present pure Ricci singularities.This case is of course very special; in general
the Weyl tensor will also diverge. Many examples show the variety of scalar singularities
that might exist at the beginning of the universe in more general spacetimes. There is also a
possibility of ‘sudden singularities’ and ‘rip singularities’ at late times (Barrow and Tsagas,
2005, Cattoën and Visser, 2005, Barrow and Lip, 2009), but these seem to occur only for
hypothetical matter with implausible physical properties, so we shall not discuss them
further.

Weyl scalar divergence implies that the gravitational field diverges. This can happen
even if the matter density does not diverge; the classic example is the singularity at r = 0 in
the spatially homogeneous, anisotropic domain in the maximally extended Schwarzschild
solution (with non-zero mass M). The Ricci tensor is regular at this singularity, because it
is zero everywhere in a Schwarzschild solution. However, the conformal curvature scalar
invariant CabcdCabcd =M/r6 diverges there, so this is a pure Weyl singularity. Another
example is given by the singularities in the Kasner spatially homogeneous but anisotropic
vacuum solutions (see Section 18.2), which are also pure Weyl singularities. Generically a
singularity will be a Weyl singularity if a vacuum exists there, which is not the case in the
real universe, but may be asymptotically true at the start or end of the universe. Indeed in
many models matter is negligible at both these times.

General scalar curvature singularities will have both the Ricci and theWeyl tensors sin-
gular, characterized by both RabR

ab and CabcdC
abcd (and/or possibly some mixed scalars)

diverging. The associated singularities can be spacelike or timelike in character, as in the
FLRW and Reissner–Nordström cases respectively (the latter case is empty except for a
Maxwell field, but similar cases can occur in the LTB models (see Section 15.1)), and in
special cases could be null in nature. In the early universe they may be matter dominated,
as in the standard FLRW case, often called velocity dominated in anisotropic situations
such as the Bianchi I case (Eardley, Liang and Sachs, 1971), or curvature dominated, as
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for example in the Bianchi IX case.6 And they may have a variety of geometric structures:
they may be isotropic, as in the FLRW case, cigar-like or pancake-like, as in the generic
and special Kasner (Bianchi I) cases respectively (Thorne, 1967), or chaotically oscillating
with numerous Kasner-like epochs occurring in different directions, as in the Bianchi IX
‘Mixmaster’ solutions (Misner, 1969a, Hobill, Burd and Coley, 1994).

Belinski, Lifshitz and Khalatnikov (1971) argued that generic singularities will be oscil-
latory and locally like the Bianchi IX spatially homogeneous solutions. This may be true
for spacelike singularities (see Section 19.10.1), although a rigorous proof has yet to be
given. However, it seems unlikely that this will be so for solutions with timelike singu-
larities, whose behaviour and indeed physical significance is quite unlike that of spacelike
singularities (Tomita, 1978, Liang, 1979).

A complete categorization of the full range of singular possibilities, and when they will
be likely to occur, has not yet been given. That is a worthwhile endeavour. One should
note of course that these analyses are based on GR, the classical theory of gravity, and
could be modified when quantum gravity effects are taken into account. Nevertheless these
understandings of the classical possibilities set the stage for understanding the quantum
gravity options.

Non-scalar singularities

These are quite different in character. In specific kinds of spatially homogeneous models
(tilted Class B Bianchi models), it is possible for there to be a dramatic change in the nature
of the solution where the surfaces of homogeneity change across a null surface from being
spacelike to being timelike (at early times). Associated with this is a singularity where all
scalar quantities are finite but components of the matter energy–momentum tensor diverge
when measured in a parallelly propagated frame. This is discussed further in Section 18.6.1.

Exercise 6.7.1 Describe and discuss the structure of the set of equations in the Newtonian
case corresponding to those considered above.

Exercise 6.7.2 Examine the validity of the singularity theorems in the case of scalar–tensor
theories.

Exercise 6.7.3 Examine the relation between Weyl scalar divergence singularities and
conformal invariance of the spacetime.

6.8 Newtonianmodels and Newtonian limits

It is of course important that the equations discussed here reduce to Newtonian equations
in an appropriate limit, and so relate to the Newtonian approach used in most astrophysical
studies. In this chapter we have shown the Newtonian analogues of many of the equations

6 These and other examples of singularities in spatially homogeneous solutions will be discussed in Chapter 18.
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given; despite major differences in the nature of the theories, these equations are in the
main very similar in structure to the GR relations, allowing a direct comparison of various
features of the two theories (Ellis, 1971b). However,

• the relativistic equations include extra terms involving the pressure and acceleration;
• the Newtonian equations are not of symmetric hyperbolic form: they allow instantaneous

communication of information;
• there are particular cases where there are no simple Newtonian analogues to the relativistic

variables, in particular the 3-space Ricci curvature 3Rab and the magnetic part of the Weyl
tensor Hab.

Thus when these terms are significant, we expect, on taking appropriate limits, either to get
the Newtonian equations plus correction terms due to relativistic effects (e.g. modifications
due to spatial curvature), or to find there is no Newtonian correspondence (as in the case
of gravitational radiation). In the case of the Newtonian analogues of the FLRW universe
models, however, there are no such problems, because of the very high symmetry of these
models; the Newtonian analogues to these models have very similar equations to the GR
ones, apart from extra pressure terms mentioned above.

6.8.1 Newtonian cosmology

Newton failed to develop a viable cosmological model because of the problem of ill-defined
or infinite forces occurring if there is an infinite distribution of matter (see Norton (1998)).
The Newtonian version of the FLRW models was derived by Milne and McCrea (Milne,
1934, McCrea and Milne, 1934) after the GR models had been discovered.

The key to developing the Newtonian cosmological models is the use of a potential
(rather than force) formulation, with generalized boundary conditions and a generalized
understanding of the nature of acceleration (hence they are not strictly Newtonian models,
but rather are based in a generalized form of Newtonian theory). One uses a convective
derivative (represented by a ‘dot’) to correspond to the GR covariant derivative along fluid
world lines, and one represents the combined effects of gravitation and inertia through an
‘acceleration’ vector aj , defined as in Exercise 4.3.2, which vanishes for the case of ‘free
fall’, i.e. motion under gravity and inertia alone. Then the momentum conservation equation
for a perfect fluid with density ρN and pressure p takes the form

ρNaj +p,j = 0 (6.63)

(from (5.13)). The matter and energy conservation are separate equations, the former taking
the form

ρ̇N +ρN�= 0, (6.64)

where �= 3�̇/� is the fluid expansion, and the gravitational field equations are

�
,i
,i +�= 4πGρN , (6.65)

where G is the gravitational constant and � the Newtonian equivalent of a cosmological
constant.
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In the case of a fluid for which the shear, vorticity and acceleration aj all vanish, we
obtain the Newtonian versions of the FLRW models, which are discussed in Section 9.9.
The Friedmann and Raychaudhuri equations for these follow immediately, with two dif-
ferences from the GR case. First, the constant K in the Friedmann equation is simply a
constant of integration, with no relation to spatial curvature. Second, the source term in
the Raychaudhuri equation is ρN rather than ρ+ 3p/c2. Finally, one should note that the
Newtonian potential for these models diverges at infinity, rather than obeying the usual
Newtonian limits (which are tailored to isolated systems). This emphasizes the fact that
‘Newtonian’ cosmological models are not compatible with Newtonian gravitational theory
as usually stated in textbooks (see the discussion in Section 3.4).

The Newtonian versions of anisotropic spatially homogeneous cosmologies can be devel-
oped along similar lines (Heckmann and Schucking (1955, 1956), Hibler (1976)), with no
analogue of the magnetic part of the Weyl tensor Hab, but a good analogue of its electric
part Eab, see (6.30).

Occurrence of singularities

Comparison of the Newtonian and Relativistic equations shows why the singularity issue
is much worse in GR than in Newtonian Gravitational Theory (NGT).

• Firstly, the momentum conservation equation in GR has an inertial mass density ρ+p

instead of ρN as in NGT; hence the same pressure gradient generates less response in
GR than in NGT. Thus pressure is less effective in counteracting inhomogeneities in GR
than in NGT.

• Secondly, the Raychaudhuri equation in GR has an inertial mass density ρ+3p instead of
ρN as in NGT; hence the same mass of matter generates a greater gravitational attraction
in GR than NGT.

• Thirdly, the energy conservation equation in GR has a prefactor ρ + p to the volume
expansion instead of ρN as in NGT, hence the same fluid contraction generates a larger
density increase in GR than in NGT.

• Fourthly, fluid rotation cannot spin up to resist the gravitational attraction in the same
way in GR as in NGT: hence there are NGT non-singular rotating cosmologies with no
GR counterparts (see Section 6.2.2).

Taken together, these effects make it much more difficult to resist singularity occurrence
in GR than in NGT. Finally, in GR the result is a full spacetime singularity involving
diverging spacetime curvature and indeed an end to space and time, instead of just a density
divergence, as in NGT. Thus the consequences are far more catastrophic in GR.

Structure formation

Local structure formation in the expanding universe is modelled initially by linearly per-
turbed FLRWmodels, as discussed in Chapter 10.The Newtonian version of the perturbation
equations can be developed exactly in parallel with the 1+3 covariant perturbation equations,
see Ellis (1990). But the situation then goes nonlinear as density inhomogeneities build up.
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The linearized equations are no longer applicable, and the usual procedure is then to turn
to numerical solution of Newtonian equations for astrophysical systems, except in a few
cases where strong gravitational fields lead to black hole formation, when relativistic meth-
ods are needed. Thus much of astrophysical cosmology is based on Newtonian rather than
GR equations, tacked on to models of an earlier phase of structure formation handled via
perturbed FLRW models.

However, the viewpoint of this book is that NGT exists as a valid gravitational theory only
as an approximation to GR, because the latter is the correct classical theory of gravity. Thus
rather than assuming they are valid a priori, one should derive the appropriate Newtonian
equations from the GR equations, as an approximation that works under suitable circum-
stances, but not always, and in general only locally. Hence in approaching astrophysics, it
is important to understand the Newtonian limit of GR models.

6.8.2 The Newtonian limit

The weak field limit of Newtonian gravitational attraction in the expanding universe, as
used in structure formation calculations in a cosmological context, will come from looking
at the dynamics of almost-FLRW universe models (Peebles, 1980, Bertschinger, 1992).
However, as remarked before, we are concerned also with nonlinear Newtonian theory and
the way this is a limit of the relativistic theory, because the physical effects are nonlinear
in many astrophysical contexts. It remains an unsolved problem to show satisfactorily how
the nonlinear Newtonian versions of the equations can be derived in a suitable limit from
the relativistic theory.

Issues arise both because the number of gravitational field equations is quite different
in the two cases (see Section 3.4), and because the GR equations are hyperbolic and have
to be reduced to elliptic equations in the Newtonian limit. Consequently the nature of the
initial value problem and associated boundary conditions is quite different in the two cases.

Newtonian-like solutions

To obtain a Newtonian-like form of the equations, one can assume existence of a quasi-
Newtonian (Eulerian) non-comoving reference 4-velocity na(nan

a = −1), such that its
shear and vorticity vanish:

σab(n)= 0, ωab(n)= 0 (6.66)

(see van Elst and Ellis (1998)). This implies that in this frame there is no magnetic part of
the Weyl tensor relative to na :

Hab(n)= 0. (6.67)

Therefore the covariant gravitational equations become ODEs rather than hyperbolic
equations, and no gravitational waves can occur, corresponding to the situation in Newtonian
theory. Furthermore there is an acceleration potential � such that

ṅa := na;bn
b =∇a�, Eab =∇〈a∇b〉�, (6.68)
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where ∇a is the covariant derivative projected orthogonal to na .
The conditions (6.66) imply strong restrictions on the spacetimes; the associated inte-

grability conditions are not fully solved, and this remains an interesting problem for
investigation. The Newtonian-like dynamical equations for this situation are given by
van Elst and Ellis (1998), who relate this approach to Bertschinger’s study of linear energy
density inhomogeneities (Bertschinger, 1992), which uses a similar quasi-Newtonian frame.
The key point is that the Newtonian equation (6.65) does not come from the Raychaudhuri
equation, as one might initially have expected, but rather from the ‘div E’ equation (6.33)
for the electric part of the Weyl tensor, when there is a potential for the Weyl tensor (com-
pare (6.68)). This equation has the elliptic kind of form that is associated with Newtonian
gravitational theory and so leads to the Newtonian correspondence.

Local velocities

Peculiar velocities of matter associated with large-scale motions can be studied by using
such a quasi-Newtonian frame associated with a quasi-Newtonian observer with 4-velocity
ua . Matter with 4-velocity ũa will have a velocity va relative to this reference frame:

ũa � ua + va , vaua = 0, vav
a � 1. (6.69)

The way this leads to the equations used for ‘Great Attractor’ studies of local veloci-
ties and to the Zel’dovich approximation for gravitational collapse is shown respectively
in Ellis, van Elst and Maartens (2001) and Ellis and Tsagas (2002). An in-depth devel-
opment of how this works overall, and is related to CMB anisotropies, is given in
Tsagas, Challinor and Maartens (2008) (and see also Zibin and Scott (2008)). Broadly
speaking one does indeed get satisfactory Newtonian-like derivations of the peculiar veloc-
ity equations and the nature of gravitational collapse as indicated by the Zel’dovich analysis.
However, as discussed in Chapter 16, one should be wary of assuming that these quasi-
Newtonian coordinates can be used globally in realistic cosmological models that represent
large-scale structures and voids imbedded in an expanding almost-FLRWbackground.Their
validity may be local rather than global.

Shear-free dust solutions

A warning against the assumption that a Newtonian limit of this kind is without problems
in the cosmological context has already been mentioned in Section 6.2.2. It is an exact
theorem that shearfree dust solutions of Einstein’s field equations cannot both expand and
rotate, i.e.

σ = 0 , p = 0 ⇒ θω= 0 ; (6.70)

see Ellis (1967), and, for generalizations, Stephani et al. (2003), Section 6.2.1. However,
shearfree solutions of the corresponding Newtonian equations do exist which can both
expand and rotate; compare Narlikar (1963). Consequently, the Newtonian limit is singu-
lar. Consider a sequence GR (i)σ=0 of relativistic shearfree dust solutions with a limiting
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solution GR (0)σ=0 that constitutes the Newtonian limit of this sequence. The latter solu-
tion will necessarily satisfy (6.70) because every solution GR (i)σ=0 in the sequence does
so. The corresponding exact Newtonian solution NGT (0)σ=0 will therefore also neces-
sarily satisfy (6.70). The Newtonian solutions NGT (j)σ=0 that do not satisfy (6.70) are
clearly not obtainable as limits of any sequence of relativistic solutionsGR (j)σ=0.Assum-
ing Einstein’s field equations represent the genuine theory of gravitational interactions in
the physical universe, this result tells us that not all Newtonian solutions are acceptable
approximations.

An important application of this result is as follows: Narlikar (1963) has shown that
shearfree and expanding Newtonian cosmological solutions can have vorticity that spins
up as the universe decreases in size and hence causes a ‘bounce’ (the associated centrifugal
forces avoid a singularity). This would be a counter-example to the cosmological singularity
theorems quoted above, if there were GR analogues of these singularity-free cosmological
solutions; but the shearfree theorem in Ellis (1967) shows that there are no such GR solu-
tions. Thus this is a case where the Newtonian models are very misleading. The Newtonian
limit is singular in such cases; so we need to be cautious about that limit in other situations
of astrophysical and cosmological interest.

Exercise 6.8.1 Show that the equation in Newtonian theory corresponding to (6.5) is the same
except that (ρ+3p)→ ρN (the active gravitational mass density is just the mass density).



7 Observations in cosmological models

The test of a cosmological model is how well it reproduces and predicts astronomical
observations of objects at cosmological distances. Thus it is important to determine what
features we are able to measure by such observations, and how they are related to the
cosmological model.

7.1 Geometrical optics and null geodesics

The basis of astronomical observations is the geometric optics limit of Maxwell’s equations,
supplemented by the quantum mechanical concept of a photon. The photon viewpoint enters
into detector design (in the case of very distant galaxies, individual photons are detected),
but the geometric optics approximation is used to describe the propagation of radiation
through a curved spacetime. Information is conveyed to us along light-rays which are null
geodesics on the future light-cone of the emitter and the past light-cone of the observer.

7.1.1 Geometric optics approximation

Maxwell’s equations (5.115) in a source-free region can be written as (Exercise 5.5.4)

Fab = 2∇[aAb], ∇b∇bAa +RabA
b = 0, ∇aA

a = 0. (7.1)

The last equation defines the Lorentz gauge, imposed by using the gauge freedom Aa →
Aa + f,a . The remaining freedom in Aa is then a similar gauge transformation but with
∇a∇af = 0.

Now we assume that there are solutions of these equations of the form

Aa = g(ψ)αa + small tail terms, (7.2)

where (a) g(ψ) is an arbitrary function of the phase ψ , and (b) g varies rapidly compared
with the amplitude αa , in the sense that∣∣g′k[aαb]∣∣� ∣∣g∇[aαb]

∣∣ , (7.3)

where g′ := ∂g/∂ψ and we have defined the propagation vector ka as

ka :=ψ,a ⇒ k[a;b] = 0. (7.4)
153
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Condition (a) represents the essential feature that arbitrary information can be propagated
by the signal,1 while (b) is the condition that the solution represents a high-frequency wave
with a relatively slowly varying amplitude. One can show that at a large distance from an
isolated system in an almost-FLRW expanding universe, the radiation field does in fact
have this form (Hogan and Ellis, 1989).

Substituting (7.2) into (7.1), ignoring the tail terms, and equating to zero separately the
coefficients of g, g′, and g′′ (since g(ψ) is arbitrary), we find

kaka = 0 ⇔ ka∇aψ = 0, (7.5)

2kb∇bαa =−αa∇bk
b, (7.6)

∇b∇bαa +Rabα
b = 0, (7.7)

αak
a = 0, ∇aα

a = 0. (7.8)

We now consider the implications of these equations.

Null geodesics

Firstly, (7.5) shows ka is null; then the first of (7.8) shows αa is spacelike (if it were parallel
to ka , then by (7.11) below it would generate no electromagnetic field). Secondly, (7.5)
implies ka∇bka = 0, so, by (7.4),

kb∇bk
a = 0, (7.9)

i.e. the light-rays xµ(v) tangent to kµ = dxµ/dv are null geodesics, as expected by the
foundational principles of GR.

It follows that light-rays are differentially bent by an inhomogeneous gravitational field;
thus a curved spacetime will in general distort optical images (Jordan, Ehlers and Sachs,
1961, Penrose, 1968). By (7.5), dψ/dv = 0, so ψ(xµ) is constant along these light-rays,
and the surfaces ψ = const are the future light-cones of the emitter’s world line. It follows
further that dg(ψ)/dv = 0, that is, the signal function g is a constant on each light-ray,
showing that the arbitrary information expressed in the function g is propagated unchanged
along these rays.

As we look down the past light-cone, observations of distant objects will necessarily see
them as they were in the past. This is an essential limitation and a difficulty in interpreting
observations. It is hard to draw a meaningful comparison with Newtonian theory, since
Maxwell’s equations are incompatible with the symmetries of Newtonian geometry, and
there is no experimentally viable purely Newtonian theory of light propagation.

Polarization

The direction of the amplitude αa is parallely propagated along the light-rays by (7.6).
Thus the state of polarization of the light is completely unaffected by the curvature of

1 The fact that g is a function of ψ alone implies that this function is isotropic at the emitter. This is not a
serious limitation because αa can vary with direction at the emitter, so the case of a source emitting radiation
anisotropically is included.
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spacetime. More precisely, there are two independent solutions of (7.6) along the light-
rays (because the spacelike vectors orthogonal to ka span a two-dimensional surface). Any
numerical parameters describing the polarization represent the relative magnitude of these
components of the solution, and will be constant along these null geodesics because each
satisfies the same equation, (7.6). Furthermore any spatial directions associated with the
polarization are determined from the vectors αa , which are parallelly propagated along the
light-rays, so such spatial directions will also be parallelly propagated along the light-rays.

Amplitudes

Equation (7.6) also shows that the square magnitude α2 = αaαa propagates along the
light-rays via

d

dv
α2 =−α2∇ak

a . (7.10)

This determines the intensity properties of the radiation, as we shall see later.
By (7.7) and (7.8), the amplitude αa satisfies the same relations as the full potential Aa .

These equations will play no further part in the present discussion; their essential effect is
to show that we cannot in general omit tail terms (propagating off the light-cone) if (7.2) is
to be an exact solution of (7.1).2 However, these terms are small if spacetime curvature is
small, and they do not affect photon propagation.

Electromagnetic field

From (7.1) and (7.2),

Fab ≈ g′(kaαb−αakb). (7.11)

This determines, by (5.112) and (5.113), the electric and magnetic fields. If we use the
remaining gauge freedom to set αa orthogonal to ua at the point of observation, then

Ea ≈ g′αa(−kbub), Ba ≈ g′ηabckbαc at the observer. (7.12)

This shows the standard radiation pattern:Ea andBa are at each instant equal in magnitude,
and are orthogonal to each other and to the radiation propagation direction k〈a〉.

Splitting the ray 4-vector

We can split the ray 4-vector into parts parallel and orthogonal to the observer’s 4-velocity:

ka = (−ubkb)(ua + ea), eaea = 1, eaua = 0, (7.13)

here ea = k〈a〉/(−ubkb) is the propagation direction of the light-ray, as measured by ua .
The factor −ubkb is proportional to the photon frequency ν as measured by ua-observers.

2 Spacetimes in which electromagnetic waves can propagate without tails are either conformally flat or
conformally plane-wave spacetimes (Friedlander, 1975, McLenaghan and Sasse, 1996); FLRW models are
conformally flat, but perturbed FLRW are not.
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The proportionality constant can be fixed by the freedom to rescale the affine parameter.
We will choose −ubkb = ν. A small increment dv in the affine parameter v will correspond
to a displacement kadv, measured by the observer to be a time difference δt and a spatial
distance δl, where, compare (4.13),

|δt | = |δl| = (−kaua)dv. (7.14)

FLRW case

The implications of the geodesic equation (7.9) for cosmology are fundamental. For a RW
metric (2.65), one can integrate these equations in three ways. Firstly, directly, by calculating

µ
νσ and then integrating (7.9) to find xµ(v). Secondly, by finding ka from the fact that there

is a first integral ξA := ξaAka for each Killing vector field ξaA in FLRW. Thirdly, and most
economically, by using the spacetime symmetry to determine the null geodesics directly
from (2.65). We follow the last approach here.

By spatial homogeneity and isotropy, any null geodesic is equivalent to a radial null
geodesic through the origin of coordinates (we can choose the origin to lie on the null
geodesic, because all spatial locations are identical; and all null geodesics through one point
are equivalent to all the others, because of isotropy). From (2.65), radial null geodesics are
characterized by dt2 = a2(t)dr2. Then

u(te, t0) := re− r0 =
∫ t0

te

dt

a(t)
=
∫ a0

ae

da

a2H
, (7.15)

determines the past light-cone of an arbitrary point in an FLRW universe with given matter
content and curvature.

Exercise 7.1.1 Derive in detail the polarization results sketched above.

Exercise 7.1.2 Integrate (7.9) in an FLRW geometry (for radial geodesics only) to find kµ(v)
and kµ(xν). Show from this that kµuµ =−1/a(t) and dv = a(t)dt = a2(t)dr on a radial
null geodesic, and calculate ∇µk

µ.

Problem 7.1 Find the equations for non-radial null geodesics in a RW spacetime (needed
to calculate observational relations for a source not at the origin). Hint: try changing
coordinates, or using the Killing vector fields.

7.2 Redshifts

The redshift z of a source as measured by an observer is defined in terms of the wavelength
λ of light by

z := λo−λe

λe
= �λ

λe
, (7.16)
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where o refers to the observer and e to the emitter. The measurement of redshifts is done
by identifying absorption or emission lines for particular elements in the spectra of dis-
tant objects, measuring their observed wavelength, and comparing this with the known
(laboratory) wavelength of these lines for a source at rest. The interpretation depends on
assuming these spectra were the same in the past, i.e. that atomic physics is unchanged over
cosmological time scales.

The rate of change of any signal g(ψ) measured by an observer moving with 4-velocity
uµ = dxµ/dτ is dg/dτ = g′kµuµ. If observers ua1, ua2 measure the rate of change of the
same signal g(ψ), these will be in the ratio (kau

a
1)/(kbu

b
2). By (7.16),

1+ z= λo

λe
= νe

νo
= (uak

a)e

(ubkb)o
. (7.17)

This determines the redshift from the 4-velocity vectors ua|o, ua|e, and the tangent vector
ka to the null geodesic. The relation is true no matter what the separation of the emitter
and observer, and holds independent of any interpretation of the redshift as ‘Doppler’ or
‘gravitational’.

The major characteristic of the redshift effect is that the fractional change in wavelength
is the same for all wavelengths; if this is not true in some spectra, then the explanation cannot
be a simple redshift phenomenon. It must be emphasized that the effect is essentially a time
dilation effect, as is clear from the above derivation: all observed phenomena in the source
will appear to be slowed down in the same ratio (e.g. if a quasar has redshift 3, then any
observed variations in its luminosity will be seen to occur at a rate four times slower than
they are happening at the source). We usually refer to the effect in terms of (spectral) redshift
because this happens to be the most reliable way of measuring effective time dilation.

7.2.1 Linear redshift relation in cosmology

Suppose the emitter and observer are fundamental observers.Then the change inuaka occur-
ring in a parameter displacement dv along a null geodesic is d(uaka)= kb∇b(u

aka)dv =
(ua;bk

akb)dv+ua(k
b∇bk

a)dv. The second term vanishes by (7.9). Substituting from (4.38)
and (7.13),

d(uaka)= (�abe
aeb+ u̇ae

a)(uckc)
2dv , (7.18)

where ea is the ray propagation direction. The change dλ in wavelength in the parameter
distance dv is given by dλ/λ=−d(uaka)/(ubkb), so the change of redshift along the null
geodesic segment is (Ehlers, 1961)

dλ

λ
=
(

1

3
�+σabe

aeb+ u̇ae
a

)
dl = (dl)̇+ u̇ae

a dl , (7.19)

where the second equality follows from (4.32). The redshift has been split relative to the
fundamental 4-velocity ua into a ‘Doppler’part (the first term, determined by the expansion
tensor) and a ‘gravitational’ part (the second term, determined by the acceleration vector).
Furthermore, we see how this redshift–distance relation varies with direction in the sky:
the angular dependence of the terms due to � (isotropic monopole), u̇a (dipole) and σab
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(quadrupole) are different, so we can in principle observe these quantities directly from this
relation, by measuring redshifts at different points in the sky and estimating the correspond-
ing distances from the observed brightness of the sources (see below), assuming there are
sufficient sources within the range where the linearized approximation holds.

For the preferred static observers in a static spacetime, we shall have only the acceleration
term, giving the usual prediction of gravitational redshifts.An interesting question is whether
there could be significant gravitational redshifts in a cosmological context.3

FLRW case

In an FLRW model, there will only be an isotropic Doppler contribution, giving the standard
prediction of cosmological redshift z in an expanding universe (see Chapter 13):

1+ z= a(t0)

a(te)
, (7.20)

where t0 is the time of observation and te the time of emission. This result may be obtained
in various ways:

(1) integrating (7.19) with σab = 0 = u̇a ;
(2) showing directly that kaua =−a−1 from Exercise 7.1.2 and (7.17);
(3) considering light pulses emitted at te and te+ δte, received at t0 and t0 + δt0, and using

(7.15) for each light-ray to calculate δt0/δte (note: re and r0 are constant since source
and observer are both comoving).

7.2.2 Different contributions to redshift

Real sources move relative to the fundamental 4-velocity, and may also have gravitational
fields sufficient to alter the observed redshifts. Because redshifts are due to time dilation,
these effects are multiplicative; that is, if zeD is the Doppler shift due to the relative motion of
the source and zeG the redshift due to its gravitational field, and similarly for the observer,
and if z is the cosmological redshift determined by (7.19), then the total redshift ztot is
given by

(1+ ztot)= (1+ z)(1+ zeD)(1+ zeG)(1+ zoD)(1+ zoG). (7.21)

Unfortunately it is only the total redshift ztot that can be measured from spectra; there is
no direct way that these different contributions to the redshift of a particular source can be
separated out. What we have to rely on is that (by definition of the average velocity) the
source Doppler shifts will cancel out if we observe sufficient sources in some spacetime
region, and the observer redshift can be measured from the CMB temperature anisotropy,
while we believe we can estimate the gravitational redshifts on physical grounds. The
problem lies in identifying which sources lie ‘in the same spacetime region’; it is clear that
we can only obtain correct results if we can identify which distant objects (seen together in

3 Ellis, Maartens and Nel (1978) developed a non-standard model based on this idea, but it is not a realistic
universe model.
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one image of the sky) are in fact part of the same cluster, i.e. lie close together in space. It
is difficult not to end up with a circular argument (using the redshifts to claim they do lie
in a cluster).

It is possible to argue that these steps can all be done in a reasonable way, separat-
ing out the different redshift contributions, but nevertheless this ambiguity remains a
problem and underlies arguments about anomalous redshift effects (Flesch and Arp, 1999,
Arp and Carosati, 2007). It also leads to the ‘finger of god’ distortion of galaxy clustering
in redshift (see Section 12.3.5).

Exercise 7.2.1 Deduce from the above the standard radial ‘Doppler’ result 1+z= exp(−β)=√
(1+V )/(1−V ), where V = tanhβ is the radial speed of the emitter relative to the

observer, assuming they are so close to each other that we can use the flat-space approx-
imation. (Hint: uae = coshβ uao + sinhβ ea , where eaea = 1, eaua = 0, and ka ∝ ua − ea .)
Carry out an analogous calculation to determine the transverse Doppler effect (emitter
motion is transverse to the line of sight).

Exercise 7.2.2 Integrate (7.19) and evaluate (7.17) in an FLRW universe.

7.3 Geometry of null geodesics and images

The observer’s screen space is the two-dimensional space in the rest frame of ua orthogonal
to ka . It is spanned by orthonormal vectors ea1 and ea2 , orthogonal to both ua and ea (see
(7.13)). This represents the surface of a screen on which images conveyed by the light-rays
are displayed. The metric tensor of screen space is

sab = hab− eaeb = ea1e
b
1 + ea2e

b
2, eIae

a
J = δIJ , eaI ea = 0 = eaI ua , (7.22)

(where I , J = 1, 2) which is a projection tensor into screen space: sabsbc = sac, saa = 2,
sabu

b = 0, sabkb = 0.
For a given light-ray and ka , the screen space depends on the observer 4-velocity. Con-

sider a vector Xa representing a displacement in the image that links the light-rays at
the extremities of the image. As in the timelike case (Section 4.5), this vector will be a
connecting vector linking the light-rays, and so satisfying the differential equation

kb∇bX
a =Xb∇bk

a . (7.23)

Placing a screen or equivalent detector orthogonal to the rays projects the image into the
screen space, in effect by projecting each connecting vector Xa into a relative position
vector X̂a := sabX

b of points in the actual image. This vector still connects the same light-
rays but is in the instantaneous rest-space of the observer; the observed displacement on
the screen will connect the same pair of points.

Varying the 4-velocity, ua → ũa , will only change the relative position vector by a
multiple of the null vector ka : i.e. X̂a → (X̂)˜a = X̂a + αka for some scalar α. Then the
scalar product of any two such relative position vectors representing displacements in the
image is unchanged: (X̂)˜a(Ŷ )̃a = X̂aŶa , because ka is null and orthogonal to both. Thus
(Jordan, Ehlers and Sachs, 1961) the shape and size of any image is independent of the
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motion of the observer. (It is easiest to see this by thinking of the shadow cast by an opaque
object, but the result will be true for any image formation process where the information is
conveyed along null geodesics.)

7.3.1 Optical kinematic quantities

The propagation of images along the light-rays is characterized by optical kinematic quan-
tities defined in the screen space – which are closely analogous to the kinematic quantities
for timelike curves (Section 4.6). Since ka = ψ,a , the light-rays will have no vorticity
(Section 6.3.1). Furthermore, the light-rays are geodesic, so there is no acceleration. Thus
only the null expansion and shear remain:

�̂ab = sa
csb

d∇ckd = σ̂ab+ 1
2�̂sab, �̂=∇ak

a , σ̂abs
ab = 0. (7.24)

The null expansion �̂ measures the area rate of expansion of images:

d

dv
δS = 1

2�̂δS . (7.25)

The null shear measures the rate of distortion of images.
The rate of change of the null expansion along the light-rays in turn is determined by the

null version of the Raychaudhuri equation:

d

dv
�̂=− 1

2�̂
2 − σ̂abσ̂

ab−Rabk
akb, (7.26)

analogous to (4.45). This shows how matter (which directly determines the Ricci tensor
through the field equations) will tend to converge the light-rays. For example, for a perfect
fluid, from (5.37),

Rabk
akb = 8πG(ρ+p)(uaka)

2, (7.27)

which will be positive if (5.16) is satisfied. It will be zero for a �-dominated universe.
The rate of change of the null distortion is determined by

d

dv
σ̂ab =−�̂σ̂ab−Cacbdk

ckd , (7.28)

analogous to (4.51). As in the timelike case, anisotropy (which must occur if there is in-
homogeneity) sources Weyl curvature, which causes distortion through (7.28) and hence
‘light bending’– which in turn causes convergence through (7.26). This distortion is referred
to as gravitational lensing. In Sections 12.4 and 12.5 we shall discuss the various cases of
lensing: weak lensing, strong lensing and microlensing.

The similarity of the timelike and null cases is due to the fact that both are essentially
determined from the geodesic deviation equation, or its generalization to non-geodesic
curves: see Section 2.6. The null versions differ from the timelike ones as follows: the factors
1
3 change to 1

2 (screen space is two-dimensional, rest space is three-dimensional); the null
version presented here only covers geodesic and rotation-free curves (the case applicable
to geometric optics), while the timelike case includes completely general motions; matter
cannot directly cause distortion of light-rays, while an imperfect fluid can do so in the case
of timelike curves.
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The clearest way of representing lensing effects is through the geodesic deviation equation
for null geodesics (Lewis and Challinor, 2006, de Swardt, Dunsby and Clarkson, 2010a).
By (7.13), ka = ν(ua + ea), and then we find (Example 7.3.1)

δ2Xa

δv2
=− 1

2Rbck
bkcX̂a − ν2

(
2Êab− Êc

c s
ab+ 2Ĥ c〈aηb〉c

)
Xb

−
[(
Ebc+ηdbHcd

)
kc− 1

2ν
(
πbce

c− qb
)]
X̂bka , (7.29)

where a hat denotes a projection into screen space (via sab), and ηab = ηabce
c is the alter-

nating tensor in screen space. This is the basic equation for gravitational lensing, a key tool
in present-day cosmology, discussed in Chapter 12.

Exercise 7.3.1 Derive (7.29). (de Swardt, Dunsby and Clarkson, 2010a)

Exercise 7.3.2 Show that for FRLW with dust and �,

− kauadv =−dt

= dz

(1+ z)[H 2
0 (1+ 2q0z)+ (�/3){2z− 1+ (1+ z)−2}]1/2. (7.30)

Exercise 7.3.3 Using the result of Exercise 7.1.2, integrate (7.25)–(7.28) in an FLRW universe
for a congruence:
(a) with vanishing shear;
(b) with non-zero shear (relevant to gravitational lensing).

7.4 Radiation energy and flux

In the geometric optics case given by (7.11), the electromagnetic stress tensor (5.123) takes
the form

Tab ≈ α2(g′)2kakb. (7.31)

By (7.5), this is the energy–momentum tensor of particles moving at the speed of light,
sometimes called ‘null dust’. We can regard this as the (classical) stress tensor of pho-
tons conveying energy from the source to the observer. The conservation law ∇bT

ab = 0
is equivalent to (7.9) and (7.10), as we might expect, because the source-free Maxwell
equations imply energy–momentum conservation for the electromagnetic field.

From (7.31), an observer with 4-velocity ua finds the instantaneous flux across a surface
perpendicular to ka to be the same as the instantaneous energy density of the radiation and
as the pressure exerted by the radiation in the ray propagation direction ea [(7.13)]. All are
equal to

F = Tabu
aub ≈ α2(g′)2(kaua)2. (7.32)

(The pressure orthogonal to ka is zero.) However, what is measured in practice by an
observation is not F but some convolution with the response function of a detector leading
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to a weighted time-average of F over a large number of high-frequency oscillations. More
precisely, the observed flux F (the rate at which radiation crosses a unit area of surface per
unit time) is the convolution of F over the time of observation with the detector frequency
response function; the result can be written as G(ψ)α2(kau

a)2 where G(ψ) is a slowly
varying function of ψ . The measured flux can therefore be written

F =G(ψ)α2(kau
a)2, (7.33)

where G(ψ) is constant along the null geodesics and α2 obeys equation (7.10).4 F may
also be given as the source’s apparent magnitude m, defined by

m :=−2.5 log10F + const. (7.34)

7.4.1 Image intensity and apparent size

Consider a bundle of null geodesics diverging from a source at some instant (and so lying in
a light-cone ψ = const). We wish to determine how the flux of radiation (and so image
intensity) varies along these light-rays. If we combine (7.10) and (7.25), we find that
d(α2δS)= 0 ⇔ α2δS = const, i.e. the magnitude α2 varies inversely as the cross-sectional
area δS of the bundle. Furthermore the flux F , and hence the factors α2, (kaua)2 in (7.33)
are measured at the observer. Thus by (7.17), F =G(ψ)(α2

e δSe/δSo)(kau
a)2e(1+z)−2, i.e.

FδS =C
d�

(1+ z)2
, (7.35)

where C is constant along the bundle of null geodesics (depending only on the source
properties at the time of emission and the detector response function) and d� is the solid
angle subtended by the null geodesics at the source (which is clearly a constant along the
geodesics).

In physical terms, this result may be understood in the following way: each photon from
the source has an energy hν. The total energy conveyed by these photons per unit time
is proportional to (1) the number of photons arriving per unit time, leading to one factor
(1+ z)−1 (because the rate at which they are measured to arrive is in that ratio to their rate
of emission), and (2) the energy per photon, which depends on the frequency of the photons
at the observer, leading to the second factor (1+ z)−1 (which is the ratio of the frequency
at the observer to the frequency at the emitter). In addition to these factors, the flux F of
energy observed (the energy arriving per unit area per unit time) is proportional to (3) 1/δS,
because photons are conserved along the bundle of null geodesics (so the same number of
photons are spread out over a larger area as the null rays diverge).

When the energy condition ρ+p > 0 holds, the spacetime curvature tends to cause the
bundle of null geodesics to converge, by (7.27) and (7.26). If there is sufficient matter
present to start reconverging the null geodesics, so that the cross-sectional area δS is the
same at two points far apart (say P and Q), then the factor α2 will be the same at these two
points. Thus the source will seem anomalously bright to an observer at Q; if the observers

4 From now on we ignore corrections due to tail terms, and so replace ≈ by =.
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at Q and P both adjust their velocities so as to see the same redshift, they will both measure
the same flux of radiation from the source, although one is much further from it than the
other. Near a point where the null geodesics are refocused, this gravitational lens effect can
in principle produce very high fluxes. It is now observed to occur in many gravitationally
lensed galaxies, and enables us to see lensed galaxies at much greater distances than those
not lensed.

7.4.2 Source luminosity

The constants in (7.35) still have to be related to the source characteristics. The luminosity
L of the source is defined as the total rate of emission of radiant energy. In principle, L
at some instant te would have to be measured by enclosing the source in a 2-sphere S and
measuring the rate at which radiation emitted at time te crosses each surface element dS of
the sphere. Then we form the integral

L=
∫
S

(1+ z)2FdS. (7.36)

By (7.35), this is a constant, independent of the choice of the 2-sphere and of its motion; it
is just the source luminosity.

In practice, we observe the flux from the source along some bundle of geodesics which
subtends a small solid angle d� at the source. Consider a sphere lying in the locally
Minkowski spacetime near the source, surrounding it and centred on it (this implies that the
sphere’s 4-velocity is the same as that of the source, so z= 0 on this sphere), and on which
the bundle of geodesics has cross-sectional area dS. Then on this sphere, FdS = Cd�
(measurable by local observations of flux across the area dS). From (7.35) and (7.36),
L= ∫

S
Cd�. Assuming the source radiates isotropically, the value of C on this sphere (the

flux emitted per unit solid angle) is the same everywhere, so that C =L/4π (the fraction of
the total luminosity emitted into the solid angle d�). Replacing C in (7.35) by this relation,
we find

FdS = L

4π

d�

(1+ z)2
. (7.37)

When the source radiates anisotropically (e.g. if some local mechanism causes substantial
beaming), then the radiation emitted in a particular solid angle d� is not simply proportional
toLd� (as more radiation is emitted in some directions than others), and the relation between
F and L has to be modified accordingly to take this anisotropy into account.

7.4.3 Area distances and luminosity distance

We define the galaxy area distance rG by the relation

dSG = r2
G
d�G, (7.38)

where the subscript G denotes a bundle of light-rays diverging from the source, d�G is its
solid angle at the source and dSG is its cross-sectional area at the observer – see Figure 7.1.
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Fig. 7.1 Areas and angles at observer O and galaxy G.

Then we can rewrite (7.36) as

F = L

4π

1

(1+ z)2r2
G

. (7.39)

These are convenient ways of expressing the observed flux in a curved spacetime as an
‘inverse square’ law. One should not, however, be misled by this apparent simplicity: the
crucial point is how the area distance defined by (7.38) relates to other measures of distance
along the light-rays (coordinate distance, affine parameter distance or redshift). We shall
look at specific examples of this later, e.g. in discussing the FLRW universe models.

The basic problem with the galaxy area distance rG is that, from its definition (7.38), it
is not directly observable: an observer O can measure dSG (the area of O’s detector surface
determines the bundle of rays), O cannot – without knowing rG – determine the solid angle
d�G into which this radiation was emitted. We can define a closely related quantity, the
observer area distance rO , which is in principle directly measurable (for objects of known
intrinsic size). This is obtained by considering a bundle of rays diverging from the observer
to the emitter, subtending a solid angle d�O at the observer and with cross-sectional area
dSO (the subscript O denotes the ray bundle diverging from the observer) – see Figure 7.1.
Then rO is defined by

dSO = r2
O

d�O . (7.40)

This is in principle measurable for an object of known type, because the observer can
measure d�O , the solid angle in the sky subtended by the object, and estimate dSO , its
cross-sectional area.

The quantity rO is often simply called the area distance, or the angular diameter distance,
sometimes denoted DA:

DA = rO . (7.41)

The quantity rG is related to the luminosity distance DL, defined by

DL := (1+ z)rG , (7.42)
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so that (7.39) becomes

F = FG

D2
L

, FG := L

4π
. (7.43)

This distance has the advantage that it is in principle directly observable by flux
measurements. Using (7.34) we can rewrite (7.39) as

µ :=m−M = 5log10DL+ const, M :=−2.5 log10L , (7.44)

where m is the observed (apparent) magnitude and M is the intrinsic (absolute) magnitude,
and µ is known as the distance modulus.

7.4.4 Reciprocity or distance-duality relation

We now have two apparently independent area distances, rG and rO (or equivalentlyDL and
DA), between a given galaxy and an observer, the first defined along a future-directed ray
bundle from source to observer, the second along a past-directed ray bundle from observer
to source. These share common rays that link points in the object to points in the detector. In
fact, provided that photons are conserved between source and observer, there is a conserved
quantity along such a common geodesic , for connecting vectors of the past-going and
future-going families of geodesics, and consequently there is a simple relation between the
area distances.

To see this, let the two families of geodesics have tangent vectors ka , k′a respectively,
coinciding on the common geodesic  (see Figure 7.1). Let v, v′ be affine parameters and
Xa ,X′a be connecting vectors for ka , k′a respectively. Each ofXa ,X′a satisfies the geodesic
deviation equation along . It follows that

X′akb∇bXa −Xakb∇bX
′
a = const along . (7.45)

Evaluating this constant at O (where X′a = 0) and at G (where Xa = 0), we find

(X′akb∇bXa)G =−(Xakb∇bX
′
a)O . (7.46)

Now this is true for all pairs of such connecting vectors Xa , X′a . Choosing two pairs of
such vectors that are orthogonal at both O and G, we obtain the relation,

dSG d�O(k
aua)

2|O = dSO d�G(k
aua)

2|G . (7.47)

Hence we obtain (Etherington, 1933)

Theorem 7.1 Reciprocity or distance-duality relation.
If photons are conserved, area and luminosity distances obey

rG = (1+ z)rO ⇔ DL = (1+ z)2DA . (7.48)

Observational tests of the distance-duality between DL and DA are an important probe of
a fundamental law in cosmology (Bassett and Kunz, 2004). Currently, these tests do not
reveal any statistically significant deviation from (7.48).
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Reciprocity shows that the two distances are the same apart from redshift factors (which
essentially result from the special-relativistic transformation law for solid angles). If there
is a gravitational lens effect leading to an anomalously large source apparent size, this is
accompanied by an anomalously large radiation flux. If we have the situation that light is
refocused, so that the angular diameter of an object of a given size decreases to a minimum
and then starts increasing again as it is moved further down the past light-cone of the
observer, then the flux received in a given solid angle at the observer from the near and far
sources can be the same (up to redshift factors).

We can rewrite (7.39) in the form

F = FG

D2
L

= FG

(1+ z)2D2
A

. (7.49)

Different powers of (1+ z) will occur in luminosity relations depending on the distance
definition used – which has been a source of considerable confusion in the past. The essential
point is that (unlike the case of a flat spacetime) there are different possible definitions of
distance in a curved spacetime, depending on what observation we have in mind to use to
determine the separation of emitter and observer.

7.4.5 FLRW area and luminosity distances

In FLRW models we can determine any one of these distances as a function of redshift and
cosmological parameters, so that these observational relations can be written in explicit
form in terms of the Hubble rate and density parameters.

Consider a bundle of past-directed rays diverging from the event P := {r = 0, t = t0},
bounded by the four rays (θ ,φ), (θ + dθ ,φ), (θ ,φ + dφ), (θ + dθ ,φ + dφ) (note that
the coordinates θ and φ are constant along radial null geodesics). They subtend a solid
angle d�O = sin θdθdφ. From (2.65) with dt = 0, dr = 0, they will span an area dSO =
a2(te)f

2(u)d�O at time te on the past light-cone of P , where u is the comoving radial
distance defined in (7.15). Comparing with (7.40) we see that the area distance is given by

DA = a(t0)(1+ z)−1f

(∫ z

0

dz′

H(z′)

)
, (7.50)

where we have used a(t0)= a(te)(1+z). Similarly, for geodesics diverging from the source
at time te the luminosity distance is given by

DL = a(t0)(1+ z)f

(∫ z

0

dz′

H(z′)

)
. (7.51)

It follows that these formulae obey distance-duality (7.48).
Observational tests based on DL,DA are discussed in Section 13.2. In some cases, one

can write these distances as simple functions of z. For a dust universe with �= 0, we can
use (7.15) to determine u, and we find the Mattig relations,

DA(z)= 2

H0�
2
m0(1+ z)2

[
�m0z− (2−�m0)

(√
1+�m0z− 1

)]
. (7.52)
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An important consequence of (7.52) is refocusing of the past light-cone: for any specific
value of �m0 there will be some redshift z∗ for which the area distance is a maximum
because the cross-sectional area of the past light-cone is a maximum there. The universe
as a whole acts a giant gravitational lens making everything at larger distances appear
anomalously large. All objects at higher redshifts will subtend the same angular size as a
similar object at some lower redshift, and so will be assigned the same area as that closer
object. Hence they will also be anomalously luminous. For the Einstein–de Sitter universe
(K = 0), we find z∗ = 1.25; for lower density universes it has larger values.

Exercise 7.4.1 Reciprocity/distance-duality: fill in the details of the above derivation (Ellis,
1971a).

Exercise 7.4.2 Derive (7.52) directly from the geodesic deviation equation for null geodesics
(Ellis and van Elst, 1999a).5 Show that for the critical density (Einstein–de Sitter) case,

DA(z)= 2H−1
0 (1+ z)−3/2

[
(1+ z)1/2 − 1

]
. (7.53)

Exercise 7.4.3 Show that when p = 0 =�, the luminosity distance is related to the redshift
by 2(1+ z)=�m0(1+H0DL)+ (2−�m0)

√
1+ 2H0DL.

Exercise 7.4.4 Work out the redshift value at which objects in an Einstein–de Sitter universe
will appear to have the same angular size as if they were on the last scattering surface.

Exercise 7.4.5 Using proper spatial distance and proper time as (non-comoving) coordinates,
give a two-dimensional plot of the actual shape of the past light-cone in an Einstein–de
Sitter universe, showing how it reaches a maximum spatial size as one goes to the past and
then refocuses to a point at the initial singularity (Ellis and Rothman, 1993).

Problem 7.2 Consider what happens to the reciprocity relation when the null geodesics go
through a caustic.

7.5 Specific intensity and apparent brightness

The above analysis does not in fact correspond to what is actually measured. Firstly, it
corresponds to measuring bolometric flux (the energy emitted at all wavelengths) – but real
detectors measure radiation in a restricted wavelength band. Secondly, imaging detectors
respond to radiant energy received per unit solid angle, i.e. the intensity of the radiation.
We consider these in turn.

5 It can also be derived from the null Raychaudhuri equation (7.26), but it is simpler via the linear geodesic
deviation equation.
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7.5.1 Specific flux

Most detectors measure radiation in a very narrow wavelength band (e.g. U, B, V bands).
Bolometric detectors attempt to capture all visible and infrared radiation, but it is not possible
for a single detector to measure radiation in all wavebands, including both radio and X-
rays as well as visible. Indeed astronomy is split into sub-disciplines by the wavebands
measured.

To allow for this, we represent the source spectrum by a function I(ν), where LI(ν)dν
is the rate at which radiation is emitted by the source at frequencies between ν and ν+dν.
The function I(ν) is normalized via

∫∞
0 I(ν)dν = 1. Then we rewrite (7.49) as

FD2
L

FG

=
∫ ∞

0
I(νG)dνG = (1+ z)

∫ ∞

0
I(νO(1+ z))dνO . (7.54)

Then the flux measured in the frequency range (ν,ν+ dν) by the observer is

Fνdν = FG(1+ z)

D2
L

I(ν(1+ z))dν. (7.55)

We call Fν the specific flux of the radiation. It is often assumed that over some wavelength
range, I ∝ ν−α where α is a constant spectral index. For many optical sources at wave-
lengths � 5000Å, α ≈ 2 and for many radio sources, 0.7≤ α ≤ 0.9. (An alternative way of
allowing for the effect of the source spectrum is to introduce a K-correction, representing
the difference between the flux and the specific flux.)

7.5.2 Specific intensity

So far we have implicitly assumed the sources observed are point sources. In practice we
usually observe extended sources, as for example in the case of imaging cameras, and the
instrument responds to the flux per unit solid angle, i.e. the intensity of radiation from
the source. Even photometer and spectrograph measurements involve an aperture which
determines an effective solid angle of measurement, so they also correspond to intensity
measurements.

Thus, what is actually measured pointwise in an image is the specific intensity Iν : the
intensity in a specific frequency range. Considering a source of area dSO , we find from
(7.55) that Iν is given by

Iνdν := Fνdν

d�O

= IG
I(ν(1+ z))dν

(1+ z)3
, IG := FG

dSO

, (7.56)

where IG is the source surface brightness (an intrinsic property of the source), and we have
used (7.40)–(7.42). This important result, a direct consequence of the reciprocity/distance-
duality, shows that the measured specific intensity is independent of the area distance of the
source – it depends only on the redshift. This generalizes to arbitrary curved spacetimes the
standard laboratory result that apparent surface brightness is independent of distance from
the object observed (since the inverse square law for the intensity cancels with the change
in its observed solid angle). To measure the specific flux from an extended source, we have
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to integrate this expression over the observed image, whose apparent size is determined by
(7.40) together with detection limits.

7.5.3 Absorption and emission

There may be absorption or emission of radiation by intervening matter along the line of
sight between the source G and the observer O. Consider the change in the specific intensity
Iν as radiation at the event A with affine parameter value v propagates to the nearby event
with affine parameter v+dv on the bundle of rays from G to O. By (7.56) we can represent
the change in Iν due to geometrical and redshift effects alone by the differential equation
dIν′/dv= 3(1+z)−1Iν′dz/dv, where ν′ := ν(1+z) is the frequency of radiation atA.When
redshifted to O, this is observed at frequency ν. Let S(v,ν)dν > 0 be the rate of emission of
radiation by each source at A per unit solid angle in the frequency range ν to ν+dν, ns(v)
be the number density of sources at A, na(v) be the number density of particles scattering
or absorbing radiation at A, and σ(v,ν) be the interaction cross-section of these particles
at frequency ν. Allowing for these processes in the volume dl dS0 = (−uaka)dv dS0 at A,
the change in Iν′ along the geodesic can be represented by the differential equation,

dIν′
dv

− 3Iν′
1+ z

dz

dv
+na(v)σ (v,ν′)Iν′ −uak

a = ns(v)S(v,ν′)(−uaka), (7.57)

where z and uak
a are regarded as known functions of v.

Integrating this equation along the geodesic from the source G (v = 0) to the observer
(v = v∗), we find the specific intensity at O is

Iν =
∫ v∗

0

ns(v)S(v,ν(1+ z))

(1+ z)3
exp[−p(v,ν)](−uaka)(v)dv

+ Iν(1+z∗)(0)

(1+ z∗)3
exp[−p(v∗,ν)], (7.58)

where the optical depth p(v,ν) between A and O for radiation observed at O at frequency
ν is

p(v,ν)=
∫ v

0
na(v

′)σ (v′,ν(1+ z′))(−uaka)(v′)dv′. (7.59)

These equations determine the specific intensity of radiation we observe in any direction
in the sky. The second term in (7.58) represents radiation propagating to us from the event
G at affine parameter value v = 0, attenuated by absorption, while the first term represents
integrated emission and absorption from all sources and absorbers lying between G and the
observer O.

FLRW case

For simplicity we take p = 0 = � and assume that the radiation sources and absorb-
ing particles are conserved (n(z) = n(0)(1 + z)3). If we can ignore absorption, on using
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Example 7.3.2 the contribution to Iν from sources up to a redshift z∗ is

Iν = ns(0)

H0

∫ z∗

0

S(z,ν(1+ z))

(1+ z)3
√

1+�m0z
dz. (7.60)

One can work out from this the effect of line emission, or of simple spectra (regarded as built
up as an integral of line emissions). Using these equations, detailed analysis of integrated
radiation from sources gives vital information on their number density and evolution.

For absorption, the optical depth up to a redshift z in a dust FLRW universe is

p(z,ν)= na(0)

H0

∫ z

0

(1+ z)σ (z,ν(1+ z))√
1+�m0z

dz. (7.61)

One can work out from this the effect of line absorption, or simple absorption processes
regarded as built up as an integral of line absorbers. In the particular case of Thomson
scattering, which is wavelength and redshift independent, so that σ(z,ν)= σT = const, one
can integrate (7.57) directly to get

p(z,ν)= 2σT na(0)

3H0�
2
m0

[(3�m0 +�m0z− 2)(1+�m0z)
1/2 − (3�m0 − 2)]. (7.62)

This will represent the case of an ionized intergalactic medium. Detailed analysis of absorp-
tion effects, including line spectra such as the Lyman-α forest, gives vital information on
the temperature history and spatial distribution of the intergalactic medium.

7.6 Number counts

Number counts relate to the number dN of sources detected in a bundle of rays, for a small
affine parameter displacement v to v+ dv at an event A. This corresponds to a distance
dl = (kaua)dv in the rest frame of a comoving galaxy at A if ka is the tangent vector to the
past directed null geodesics (so kaua > 0). The cross-sectional area of the bundle is dS0 =
D2

A(v)d� if the geodesics subtend a solid angle d� at the observer, so the corresponding
volume at A is dV = dl dS0 = (kaua)dvD2

A(v)d�. Hence if the number density of sources
at A is n per unit proper volume, and fd(v) is the fraction of sources at distance v that
are detected by means of the observational technique used, the number detected is dN =
fd(v)n(v)D

2
A(v)d�(kaua)dv. The total number N(v∗) of sources observed up to some

affine parameter distance v∗ is then

N(v∗)= d�
∫ v∗

0
fd(v)n(v)D

2
A(v)(k

aua)dv. (7.63)

To turn this into an observational relation we need to relate dv to a redshift increment for
comoving observers, or a magnitude increment for a class of standard candles. If we can
estimate the mass per galaxy (or other object observed), then number counts enable us to
estimate the density of matter contributed by these objects to the overall matter density of
the universe.
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FLRW case

In an FLRW universe, if the number of sources is conserved then n= n0a
3
0/a

3 and (7.63)
gives dN = fd(v)n0a

3
0f

2(u)d�du, on using (7.50) and Exercise 7.1.2. If fd(v) can be
regarded as a constant (e.g. the sources are so close that we detect them all, fd = 1), then

N(u)= 4πfdn0a
3
0

∫ u

0
f 2(u′)du′ (7.64)

is the number of sources seen in all directions at distances up to u. Using (9.10), the
integral respectively takes the forms {(2√Ku− sin2

√
Ku)/2

√
K , u3/3, (sinh2

√−Ku−
2
√−Ku)/2

√−K} for {K > 0, K = 0, K < 0}.
Verifying this relation confirms the spatial homogeneity of the universe, and in principle

enables us to determine the sign of the spatial curvature K . In practice the statistical uncer-
tainties, together with source evolution (which affects the detection probabilities), prevent
this from being a useful test of K .

7.7 Selection and detection issues

The quantity fd(v) (the fraction of sources at distance v that are detected) is crucial to
number counts, and indeed to all cosmological statistics, e.g. in the observed magnitude–
redshift relations. But sources have not only to be detected, they have also to be identified
as belonging to the relevant class of sources, hence a selection process is also important.
Some key issues are as follows.

• Detection and selection take place on the basis of properties of images, rather than
directly on the basis of source properties. Hence to examine these effects, one needs to
map object properties (e.g. source luminosity and scale size) to image properties (e.g.
apparent magnitude and image size).

• As shown in an illuminating manner by Disney (1976) in a discussion of visibility of
low surface brightness galaxies, the primary detection criterion is specific intensity of
incident light at the detector. This is determined by the surface brightness distribution at
the source, which in turn is related to both the source luminosity and size. Hence one
cannot adequately discuss selection criterion on the basis of one source characteristic
(e.g. magnitude) alone. This also implies that as far as detection limits are concerned, an
evolution of source size is twice as important as luminosity evolution.

• In terms of source classification, image size (apparent angle) is also important. Hence
it is very useful to set up an observational map between source characteristics for
sources at a given redshift in a given cosmology (the source plane), and correspond-
ing image characteristics for a specific detection system (the image plane), allowing one
to map back selection and detection effects from the image plane to the source plane
(Ellis, Perry and Sievers, 1984).

These effects are routinely handled by observers carrying out major surveys such as the
SDSS and 2dFGRS. However, they are not often clearly explicated in theoretical discussions
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of cosmological observations. A key issue is that the way these corrections are handled
is likely to be very model dependent, implicitly introducing assumptions about source
properties and perhaps even about the cosmological models. Thus they should be made
explicit rather than handled behind the scenes as merely an incidental feature of astronomical
data reduction, for they crucially influence the outcomes of source surveys, and indeed the
statistics of any cosmological observations. It would be to the benefit of the field if clear
up-to-date discussion of these effects and how they are handled were to be available.

Exercise 7.7.1 Re-express (7.64) in terms of H0, �m0, ��0 and DA. Using the expression
(7.52) for DA(z), this gives N(z).

7.8 Background radiation

We receive radiation from all directions in the sky from both discrete sources and background
radiation (due to unresolved sources, intergalactic gas, and the primordial universe itself)
which arrives at Earth at all wavelengths. We have looked at observations of discrete sources
in some detail above. Much detailed information on the matter–radiation interaction in the
early universe is encoded in the background radiation, for example about the density of hot
intergalactic gas (that emits X-rays) and of neutral hydrogen.

Here we shall only look at two key issues: the way blackbody radiation propagates in
a general curved spacetime, and the issue of the total amount of integrated radiation to be
expected.

7.8.1 Blackbody radiation

It follows immediately from (7.56) that radiation emitted as blackbody radiation remains
blackbody. Defining g(ν)= IGI(ν)/ν3, we can rewrite this equation as

Iνdν = g(ν(1+ z))ν3dν, (7.65)

which is the specific intensity of radiation at each frequency ν for any observer who measures
the source redshift as z. If blackbody radiation is emitted by a source at temperature Te,
then at the source,

Iνdν = f (ν/Te)ν
3dν, (7.66)

where f (ν/Te) is the Planck function for blackbody radiation at a temperature Te. Compar-
ing these expressions at the source (where z= 0) shows g(ν)= f (ν/Te), so we can rewrite
(7.65) as

Iνdν = f (ν/T )ν3dν, T := Te(1+ z)−1. (7.67)
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Thus,

Theorem 7.2 Blackbody spectra
Every observer measures a blackbody spectrum for blackbody radiation, but with the
temperature decreased by a factor (1+ z).

This remarkable result (which in effect follows from the reciprocity relation) is not as
celebrated as it should be. Like Hawking’s black hole radiation result, it combines GR,
quantum mechanics and statistical mechanics to give a simple but important result. It is a
key result for cosmology, as it underlies our understanding of the CMB observations.

7.8.2 Integrated radiation

The basic equation determining the total radiation received is (7.58). Omitting the absorption
terms, this takes the form

Iν =
∫ v∗

0

ns(v)S(v,ν(1+ z))

(1+ z)3
(−uak

a)dv+ Iν(1+z∗)(0)

(1+ z∗)3
. (7.68)

Because of the finite age of the universe, the integral is only taken to the LSS and not to
infinity. Because of the expansion of the universe, the redshift factors reduce the radiation
from each distant source to much less than the emitted intensity. And the amount of radi-
ation emitted by each source is limited: S(v,ν(1+ z)) is not too large so that in fact the
second (initial surface) term is the dominant term in the received radiation; and that term
corresponds to 3000K, diluted to 3K by the expansion of the universe since that radiation
was emitted at a redshift of about 1100.

Detailed examination of (7.68) is used by astronomers to interpret the background radi-
ation received on Earth at all frequencies, and not just the 3K blackbody radiation. This
provides valuable information on the radiation history of unresolved sources in the sky.
This is discussed further in Section 11.7. It also gives a resolution of Olbers’ paradox
(Section 21.1.1).

7.9 Causal and visual horizons

A fundamental feature affecting our observational situation is the limits arising because
causal influences cannot propagate at speeds greater than the speed of light. Thus the
region that can causally influence us is bounded by our past light-cone. Combined with the
finite age of the universe, this leads to the existence of a particle horizon limiting the part
of the universe with which we can have had causal connection, and a visual horizon (lying
inside the particle horizon) limiting the domain about which we can have any observational
evidence.
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7.9.1 Particle horizons

Aparticle horizon comprises the limiting world lines of the furthest matter that ever intersects
our past light-cone (Rindler, 1956, 2001, Penrose, 1968, Tipler, Clarke and Ellis, 1980).
This is the limit of matter that we can have had any kind of causal contact with since
the start of the universe. This depends on the time at which we want the answer to that
question: at later and later times in our history, we can see more and more of the universe.
Geometrically, the world lines comprising the particle horizon are those world lines that
intersect our past light-cone in the limit as we go back to the start of the universe.

In an FLRW universe, from (7.15) it is characterized by the comoving radial distance,

uph =
∫ t0

0

dt

a(t)
. (7.69)

The present physical distance to the matter comprising the horizon is

dph = a(t0)uph. (7.70)

The key question is whether the integral (7.69) converges or diverges as we go to the limit of
the initial singularity where a→ 0. This integral diverges in the case of the Milne universe
with a(t) = t ; hence there is no particle horizon in that model. But that is not a realistic
universe model, because it is empty.

Particle horizons will exist in FLRW cosmologies with ordinary matter and radiation, for
uph will be finite in those cases. For example in the Einstein–de Sitter universe, uph= 3t1/30 ,
dph= 3t0 = 2/H0. We shall then have had causal contact with only a fraction of what exists,
and hence shall only have seen part of what is out there, with one exception: this is not the
case if we live in a ‘small universe’, with spatially compact sections so small that light has
had time to traverse right around the whole universe since its start. This case is discussed
further in Section 9.1.6. Here we assume we are not in a small universe.

Penrose’s power ful use of conformal methods (Hawking and Ellis, 1973, Tipler,
Clark and Ellis, 1980) gives a very clear geometrical picture of the nature of horizons.
These methods are based on the use of conformally flat coordinates, so that light-cones
are the same as in flat spacetime (but spatial distances and proper times are distorted). In
the case of RW universes, one can derive these diagrams by using the conformal time
coordinate t=dt/a(t) so that the metric (2.65) becomes6

ds2 = a2(τ )
[
−dτ 2 + dr2 +f 2(r)(dθ2 + sin2 θdφ2)

]
. (7.71)

The equation for radial null geodesics is then given by

ds2 = 0 = dθ = dφ ⇒ dr =±dτ . (7.72)

When coordinates (τ ,r) are used for radial sections (θ = const,φ= const) of the spacetime,
the null geodesics (and hence the light-cones) are at ±45o, as in the case of Minkowski
spacetime in canonical coordinates (see Figure 7.2).

6 These are conformally flat coordinates for the metric in the caseK = 0⇒f (r)= r .Aconformal factor dependent
on the spatial coordinates as well is needed to get the conformally flat form when K �= 0.
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now

Past light-
cone

Our
Galaxy
world line

opaque

Other
Galaxy
world lines 

Visual
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LSS

Particle
horizon

Start of universe

Fig. 7.2 Particle horizon and visual horizon of an event ‘here and now’, for an FLRW universe in conformally flat coordinates.
The galaxy to the far left cannot have been seen by us (it is outside the visual horizon), nor can we have had any causal
contact with it (it is outside the particle horizon). World lines of matter comprising the visual horizon are shown as
dot-dash lines; WMAP images this mattter at the LSS.

Matter world lines are vertical lines (as we are using comoving spatial coordinates) and
the surfaces of constant time t = const (the surfaces of homogeneity in spacetime) are
horizontal lines; but τ is not proper time along the world lines, and spatial distances are
completely distorted. For a radiation equation of state at early times, the boundary t = 0 of
the spacetime is a spacelike surface, and the particle horizon for the observer at r = 0 at
time t0 is the set of matter world lines through the points where the observer’s past light-
cone intersects the initial singularity at t = 0. We can in principle have received radiation
from all matter this side of the particle horizon, but none from matter beyond it; indeed
we cannot have interacted in any way with such matter, and have no information whatever
about it (although we feel its Coulomb fields). This is an absolute limit on communication
and causal effects in the expanding universe.

Equation (7.70) gives the size of the particle horizon at the present time. We are at each
moment surrounded by a 2-sphere of this radius, representing the limits of any possible
causal interaction at the present time; we shall call this the causal limit sphere. We have
already (in principle) received information from all matter this side of this 2-sphere, and
can have received none from any matter the other side. The 2-sphere is the intersection of
the world lines comprising the particle horizon with the past light-cone. But in an FLRW
model it can also be considered as the intersection of our creation light-cone with the surface
of constant time t = t0. Note here that we cannot talk as if space were partitioned into
disjoint horizons: there is nothing special about the horizon for any specific fundamental
observer, rather there is a particle horizon for every fundamental observer (MacCallum,
1982).
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The horizon always grows, because (7.69) shows that uph is a monotonically increasing
function of t0. Despite contrary statements in the literature, it is not possible for matter to
leave the horizon once it has entered. In a (perturbed) FLRW model, once causal contact has
taken place, it remains until the end of the universe. Particle horizons may not exist in non-
FLRW universes, for example Bianchi (anisotropic) models (Misner, 1969a). In universes
with closed spatial sections, a supplementary question arises: is the scale of closure smaller
than the horizon scale? There may be a finite time when causal connectivity is attained, and
particle horizons cease to exist. In standard K > 0 FLRW models, this occurs just as the
universe reaches the final singularity; if, however, there is a positive cosmological constant
or other effective positive energy density field, it will occur earlier. If the scale of closure
is smaller than the visual horizon, one has the case of a ‘small universe’, mentioned above.

The importance of these horizons is two-fold: they represent absolute limits on what is
testable in the universe (Ellis, 1975, 1980), and they underlie causal limitations relevant in
the origin of structure and uniformity, and so affect the formation of structure in the early
universe (see Chapter 12).

7.9.2 Visual horizons

Clearly we cannot obtain any observational data on what is happening beyond the particle
horizon. However, we cannot even see that far, because the universe was opaque to all
wavelengths before decoupling. Our view of the universe is limited by the visual horizon,
comprising the world lines of the furthest matter we can observe – namely, the matter
that emitted the CMB at the LSS (Ellis and Stoeger, 1988, Ellis and Rothman, 1993). This
occurred at the time of decoupling t = tdec (zdec ≈ 1100), and so the visual horizon is
characterized by r = uvh, where from (7.15),

uvh =
∫ t0

tdec

dt

a(t)
< uph. (7.73)

Indeed the LSS delineates our visual horizon in two ways, made clear in Figure 7.2: we are
unable to see to earlier times than its occurrence (because the early universe was opaque
for t < tdec), and we are unable to detect matter at larger distances than that we see on
the LSS (we cannot receive radiation from matter at comoving coordinate values r > uvh).
Analogous to the causal limit sphere, the visual horizon at the present time is represented
by a visual limit sphere: a 2-sphere of matter around us lying inside the particle horizon’s
causal limit sphere, such that we have already (in principle) seen all matter this side of this
sphere, and can have seen none of the matter the other side. The picture we obtain of the
LSS by measuring the CMB from satellites such as COBE and WMAP is just a view of the
matter comprising the visual horizon, viewed by us at the time in the far distant past when
it decoupled from radiation.

The position of the visual horizon is determined by the geometry since decoupling. Visual
horizons do indeed exist, unless we live in a small universe, spatially closed with the closure
scale so small that we can have seen right around the universe since decoupling, as already
mentioned. There is no change in these visual horizons if there was an early inflationary
period, for inflation does not affect the expansion or null geodesics during this later period.
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The major consequence of the existence of visual horizons is that many present-day
speculations about the super-horizon structure of the universe – e.g. the chaotic inflationary
theory – are not observationally testable, because one can obtain no definite information
whatever about what lies beyond the visual horizon (Ellis, 1975, 1980). This is one of the
major limits to be taken into account in our attempts to test cosmological models.

Unless we live in a small universe, the universe itself is much bigger than the observable
universe. There may be many galaxies – perhaps an infinite number – at a greater distance
than the horizon that we cannot observe by any electromagnetic radiation. Furthermore,
no causal influence can reach us from matter more distant than our particle horizon – the
distance light can have travelled since the creation of the universe – so this is the furthest mat-
ter with which we can have had any causal connection (Rindler, 1956, Hawking and Ellis,
1973, Tipler, Clarke and Ellis, 1980). We can hope to obtain information on matter lying
between the visual horizon and the particle horizon by neutrino or gravitational radiation
observatories; but we can obtain no reliable information whatever about what lies beyond
the particle horizon.

We can in principle feel the gravitational Coulomb effect of matter beyond the horizon
because of the force it exerts (for example, matter beyond the horizon may influence veloc-
ities of matter within the horizon, even though we cannot see it). This is possible because
of the constraint equations of GR, which are in effect instantaneous equations valid on
spacelike surfaces.7 However, we cannot uniquely decode that signal to determine what
matter distribution outside the horizon caused it: a particular velocity field might be caused
by a relatively small mass near the horizon, or a much larger mass much further away
(Ellis and Sciama, 1972). Claims about what conditions are like on very large scales – i.e.
much bigger than the Hubble scale – are unverifiable (Ellis, 1975), for we have no obser-
vational evidence as to what conditions are like beyond the visual horizon. The situation is
like that of an ant surveying the world from the top of a sand dune in the Sahara desert. Her
world model will be a world composed only of sand dunes – despite the existence of cities,
oceans, forests, tundra, mountains, and so on beyond her horizon.

7.9.3 Event horizons

There are also event horizons in some cosmological models (Rindler, 1956,
Tipler, Clarke and Ellis, 1980, Rindler, 2001). They are the limiting past light-cones of
all events on the observer’s world line in the far future, separating the spacetime events
that will ever be observable by a particular fundamental observer, from those that will not.
By (7.15) the radial coordinate size of these limiting past light-cones at time t0 in an RW
universe that lasts forever is given by

ueh =
∫ ∞

t0

dt

a(t)
, (7.74)

so the question is whether this integral diverges or not. Roughly speaking, it diverges if
ordinary matter dominates the late universe, so no event horizons exist in that case (which

7 Section 3.3.1 explains why these are valid at any late time in a solution of the EFE.
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corresponds to future infinity being null). The observer will eventually see all spacetime
events. It converges if a cosmological constant dominates the late universe, so event horizons
exist in that case (which corresponds to future infinity being spacelike). There are then many
events the observer will never be able to see, no matter how long he or she lives. If the
universe ends in a second singularity in the future (a big crunch) at a time tbc, then the
future limit of the integral (7.74) must be taken as tbc. The integral will then be finite for
all ordinary matter, so there will be event horizons in these cases.

The definition of event horizon in the cosmological case agrees with the black hole one,
which can be thought of in terms of geodesics outgoing from the black hole, rather than the
past cones of external observers. While event horizons are central to the study of black holes,
they are of little significance in cosmology as they refer to the far future of the universe,
which is never attained in any finite time (unless the universe re-collapses, in which case
no observers can exist at late times). They have no relevance to present-day causal limits
or observational possibilities.

Their existence in de Sitter universes is sometimes used as the basis of calculating
Hawking–Gibbons blackbody radiation in an inflationary era in the early universe (which
then has quantum fluctuations that provide the seeds for galaxy formation at much later
times). However, this must be done with caution, in that if the de Sitter phase ever comes
to an end (as is required for the present-day epoch of the universe to come into existence)
then event horizons may not in fact exist; and whether they do exist or not is independent
of the properties of the early inflationary phase of the universe.

7.9.4 Hubble sphere

In the literature on the inflationary universe it is common to refer to the ‘horizon’, defined
as the characteristic radius RH(t) = H−1(t). It is often stated to be the limit from which
causal influences can propagate, due to the special relativity limit that no cause can propagate
faster than the speed of light. However, in fact this scale has nothing to do with the speed
of propagation of physical effects (van Oirschot, Kwan and Lewis, 2010); rather it is a
characteristic scale for the relative importance of expansion of the universe in relation to
other physical effects. As such it plays an important role in the generation and evolution of
perturbations in the early universe (see Section 12.2), but calling it a ‘horizon’is misleading.
It is preferable to call it the Hubble sphere, or the Hubble horizon.

Exercise 7.9.1 Show that particle horizons exist for an FLRW universe with only matter
and radiation (i.e. a HBB model), and determine uph, dph in this case. Show that particle
horizons do not occur in a de Sitter universe.

Exercise 7.9.2 Explain how in an Einstein–de Sitter universe, the particle horizon size can be
3t0 when the age of the universe is only t0 (Ellis and Rothman, 1993).

Exercise 7.9.3 Show that an event horizon occurs in a de Sitter universe. Deduce that one will
occur in realistic universe models, if the present day acceleration of the universe is caused
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by a cosmological constant. Determine if a realistic universe model can have both a particle
and an event horizon (van Oirschot, Kwan and Lewis, 2010).

Exercise 7.9.4 Show that at any instant t , the Hubble sphere is the radius where objects
receding from the origin according to Hubble’s law, vrec = H(t)a(t), are instantaneously
receding at the speed of light. Those further out are receding faster than light, those closer
in at a lesser speed. Explain why this does not violate special relativity (Harrison, 2000,
Ellis and Rothman, 1993, Davis and Lineweaver, 2004, van Oirschot, Kwan and Lewis,
2010).



8 Light-cone approach to relativistic cosmology

The standard approach to cosmology is a model-based approach: find the simplest possible
model of spacetime that can accommodate the observational data. An alternative is a direct
observational approach. The first method determines observational relations and param-
eters from a model; the second attempts to determine a model from observational relations.
We introduce the latter method in this chapter, and it will also feature in Chapter 15; the
former is essentially used in the rest of this book.

As mentioned before, a fundamental feature of cosmology is that there is only one
universe, which we cannot experiment on: we can only observe it, and moreover, on a
cosmological scale, only from one specific spacetime event. Observations therefore give
direct access only to our past light-cone, at one cosmological time. How can we then devise
and test suitable cosmological models?

8.1 Model-based approach

In the standard approach, one chooses a family of models first, characterized by as few free
parameters and free functions as possible. Then one fixes these parameters and functions
in order to reproduce astronomical observations as accurately as possible. Therefore this is
in fact a form of light-cone best-fitting procedure: one is obtaining a best-fit of the chosen
family of models to the real universe via comparison of observational relations predicted
by the model with actual observations.

Traditionally, this is applied almost exclusively to the FLRW models. The merit of the
approach is that it has good explanatory power, which serves as a vindication of the chosen
models. In particular, it provides a framework that explains the origin of the elements, of the
CMB, and the basics of structure formation, as explained elsewhere in this book. It gives an
exciting link from cosmology to quantum theory, nuclear physics and elementary particle
physics.

There is necessarily a non-uniqueness to the procedure. We could have chosen other
models, for example Bianchi I models in which the shear dies away rapidly enough to
not affect the observations. These are less special than FLRW models, which are a priori
infinitely improbable within the mathematical family of models, because of their exact
symmetries. One can advocate FLRW models on an Occam’s razor basis (they are simpler
than any other), which is necessarily a philosophical rather than observational criterion.
One could try to use a fuller range of options to test if any of them fit better. If the process
is broadened to include a wide range of alternatives, this provides a setting in which we can

180



181 8.2 Direct observational cosmology

evaluate the FLRW models relative to these other models. Specific alternatives we might
wish to examine include:

• Small universes, that appear homogeneous but are globally different from standard FLRW
models (Section 9.1).

• Almost isotropic Bianchi models, that may be either almost isotropic at all late times (e.g.
Bianchi I) or have a temporary but long-lived almost isotropic epoch near a saddle point
in their phase plane (e.g. Bianchi VII) (Section 18.5).

• Lemaître–Tolman–Bondi (LTB) spherically symmetric models, where we are located near
the centre (Chapter 15).

However, there will always be other such models we have not examined: might not one
of them give a better fit? In an era of precision cosmology, as one pushes the limits of
the observational tests, there will always be anomalies that need to be resolved, and more
generic models may provide an answer.

This raises the question: can we do away with choosing a model a priori, and attempt
to construct the model directly from observations? This is the purpose of the direct
observational approach.

8.2 Direct observational cosmology

In the direct observational approach, one starts with a generic metric, and then tries to
progressively restrict its geometry directly by use of observational data. Thus one tries to
determine the spacetime geometry by seeing what is actually there, rather than by starting
off with a chosen restricted family of models.

This approach is in fact a venerable one in astronomy and cosmology, for it is the way
that large-scale motions and large-scale structures such as voids and walls were discovered
(often in the face of resistance from the astronomical establishment). However, in these
cases it is done in essence using a Newtonian model of the local region of the universe: it
is not done relativistically. A more relativistic version is embodied in what is undertaken
through large-scale surveys such as 2dFGRS and SDSS, and through gravitational lensing
observations. However, insofar as these are relativistic, they are usually done in the context
of perturbed FLRW models.

A general relativistic version of the direct approach was pioneered by McCrea (1935,
1939) (see also Florides and McCrea (1959)), and then developed systematically in a major
paper by Kristian and Sachs (1966), using a 1+3 covariant decomposition. These papers,
however, use a power-series description, and so are of restricted applicability. The method
was extended to generic spacetimes by Ellis et al. (1985) (based on Maartens (1980), Nel
(1980), summarized in Ellis (1984); for other versions, see Dautcourt (1983a,b)). In these
papers it was shown that, for suitable matter content, in principle the spacetime metric can
be determined directly from astronomical observations, without assuming a specific model
model first, as in the standard approach.
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The direct approach was however formulated for a baryonic universe.The strong evidence
for dark matter, and the growing evidence for late-time acceleration, which is typically
interpreted as dark energy, completely change the picture. In effect, the direct approach
can only work, in a complete sense, for a baryonic universe. The fundamental reason is that
the dominant cosmological components – dark matter and dark energy – cannot be directly
observed. Unlike luminous baryonic matter, the dark components are only manifest via
their gravitational effect. This unavoidably means that we must impose a model for these
dark components – not merely their physical properties, but how they relate spatially to
observed matter – in order to determine their distribution via observations.

We can formulate two important corollaries to these points: the direct approach is in
principle feasible if

• the late-time acceleration can be explained in terms of inhomogeneities or a cosmological
constant (rather than a spatially varying field), and dark matter can be directly detected
at cosmological distances from its relation to baryons; or,

• a modified theory of gravity is constructed that does not require dark matter or dark
energy.

The distribution of dark matter is mapped by weak lensing surveys (Massey et al., 2007).
But to relate the measured projected potential on the sky in each redshift bin to the dark
matter, we require a specific model, such as a perturbed FLRW model. The dark matter
4-velocity is usually assumed to be aligned with that of baryonic matter – but this is also
based on a perturbed FLRW model. From now on we shall assume that the CDM vel-
ocity is the same as the baryonic velocity, and that we know the primordial ratio of CDM
density to baryonic density, as well as the bias factor that relates the concentrations of
CDM and baryons in clustered matter; thus we assume (Clarkson and Maartens, 2010)
that

ρc is known from ρb and uab = uac =: ua . (8.1)

A possible dark energy component, either � or a dynamical field, cannot be measured
via direct observations (see Section 8.4.1 below). In order to pursue the direct observational
approach, we shall need to assume a knowledge of dark energy – or to follow an alternative
approach that there is in fact no dark energy (see Chapter 15). Here we shall assume for
simplicity that there is dark energy in the form of �, and that its value is known from
non-cosmological physics:

� known independently of cosmological observations. (8.2)

8.2.1 Observational coordinates: metric and kinematics

Observational coordinates are fully adapted to the actual process of observation – prin-
cipally, the fact that cosmological observations are made via electromagnetic signals that
propagate along the past light-cone of the observer (i.e. of our galaxy); see Figure 8.1.
Cosmological data are determined on the past light-cone of the observer, and not on
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Fig. 8.1 Observational coordinates.

spatial surfaces of constant proper time from the big bang. This is the reason that spatial
homogeneity is not directly observable, unlike isotropy about our world line.

We define x0 = w such that w = const are the past light-cones C−(w) of events on the
observer world line C (note that w is not differentiable at C). We normalize w on C to be
proper time: ds2|C =−dw2. Then w is determined up to translation, w→ w+const; this
freedom is fixed by choosing a value w0 corresponding to here-and-now.

The past light-cones C−(w) are generated by the (past-directed) geodesic ray 4-vector
(see Section 7.1):

kµ = ∂µw , kµ = dxµ

dv
, kµkµ = 0 = kν∇νk

µ , (8.3)

where v is an affine parameter (note that kµ is not defined on C). We fix the affine freedom
in v by choosing v = 0 on C and

kµu
µ → 1 as v→ 0, (8.4)

where uµ is the 4-velocity of matter. The radial coordinate x1 = y measures distance down
the null geodesics that rule the past light-cones – and this distance incorporates both a spatial
distance from C and a time difference from the observer.

The coordinates xI = (θ ,φ) are then chosen to label the null geodesics in each past
light-cone, so that kµ∂µxI = 0, i.e. kI = 0. Then

kµ = B−1 δµ1, B := dv

dy
, kµ = δµ

0 . (8.5)

Various choices for y are possible, including y = v (B = 1), and y = z, the redshift, which
is given from (8.3)–(8.5) as

1+ z= kµu
µ = dw

dτ
= u0 , (8.6)
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where τ is proper time on the world line of the emitter. We choose y = z on the observed
past light-cone C−(w0), and then define y in the rest of spacetime by dragging it off to the
future and past, i.e. by requiring that y is comoving with the matter:

y = z on C−(w0) and uµ∂µy = 0 ⇒ u1 = 0. (8.7)

The observational coordinates xµ= (w,y,θ ,φ) cover the part of spacetime that is observ-
able from C. At each event in this region, w gives the time of observation, θ ,φ give the
direction of observation, and y is a representation of distance to the observer. We note
also that the coordinates may give a many-to-one representation in parts of the observ-
able region – if the light-cone develops caustics, due either to gravitational lensing or to
compactness of spatial sections in a small universe, it will only be 1–1 near the origin.

The metric in observational coordinates then takes the form

ds2 =−A2dw2 + 2Bdy dw+ 2CIdxIdw+D2
(
d�2 +LIJ dxIdxJ

)
, (8.8)

and the (geodesic) matter 4-velocity is given by

u0 = 1+ z , u1 = 0, uI = (1+ z)V I , V I := dxI

dw
, (8.9)

u0 =−(1+ z)−1 +uICI , u1 = (1+ z)B , uI = gIJ u
J + (1+ z)CI . (8.10)

The normalization uµu
µ =−1 leads to

A2 = (1+ z)−2 + 2CIV
I + gIJ V

IV J . (8.11)

The metric and 4-velocity components have direct physical meaning in observational co-
ordinates. In particular, D is the area distance for the central observer (Section 7.4.3), LIJ

determines the lensing shear (image distortion) of individual objects as measured by the
central observer, and V I are the transverse velocities of sources (proper motions) measured
by the central observer. Note that we have definedLIJ and V I in a covariant way and not as
perturbations of some background quantities. The number of sources observed at w = w0

in a solid angle d�0, from redshift z to z+ dz, is [(7.63)]

dN = fdnD
2(1+ z)B d�0 dz , (8.12)

where we have used (8.5), (8.7). Here fd is the selection function, giving the fraction of
sources actually detected, and n is the source number density.

The expansion and shear of light-rays in the screen space [(7.24)] are

�̂= 2

BD

∂D

∂y
, σ̂µν = δµ

I δν
J D2

2B

∂

∂y
LIJ . (8.13)

Note that LIJ is not tracefree (gIJLIJ �= 0), but it has only two degrees of freedom. This
follows since the definition of area distance requires that detgIJ =D4 sin2 θ , which implies
(L23)

2 = (1+L22)L33 + sin2 θL22. This condition then ensures that the shear is tracefree:
gIJ σ̂IJ = 0.

The expansion, shear and vorticity of the matter are complicated expressions (Maartens,
1980, Maartens and Matravers, 1994); their limiting behaviour is given below.
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In order to ensure that the null surfacesw=const in the metric (8.8) have regular vertices
along C (y = 0), we need to impose regularity conditions along C. These are derived by
constructing null-geodesic-based normal coordinates (Ellis et al., 1985) (an extension of
the spatial geodesic approach of Manasse and Misner (1963)). For the metric components,
regularity requires the following limiting behaviour:

D =D1y+O(y2), A= 1−D1,0y+O(y2), B =D1 +O(y), (8.14)

CI =D1,I y+O(y), LIJ =LIJ2 y
2 +O(y3), (8.15)

where D1 =D1(w,xI ), LIJ2 =LIJ2(w,xK), and for the redshift and affine parameter:

z=H obsD1y+O(y2), v = (H obs)−1z+O(z2). (8.16)

Here H obs(w,xI ) is the observed effective ‘Hubble’ parameter measured from distance–
redshift observations along C – which in general is anisotropic. It reduces to the Hubble
parameter in an FLRW spacetime. By (8.16), H obs = (dz/dv)v=0, and then from (7.19) we
obtain (MacCallum and Ellis, 1970, Humphreys, Maartens and Matravers, 1997, Clarkson,
2000)

H obs = 1
3�+ u̇ae

a +σabe
aeb. (8.17)

For the transverse velocities,

V I = V I
0 +O(y), V I

0 D1,I =D1,0 −D1H
obs , (8.18)

where V I
0 = V I

0 (w,xJ ), and the second equality arises from the normalization condition
(8.11). The transverse velocity components do not in general vanish alongC – regularity on
C is maintained since the vector fields V I ∂/∂xI vanish along C. The matter density obeys

ρm = ρm0 +O(y), (8.19)

where ρm0,I = 0 since ρm is a physical scalar along C.
Choosing y = z on C−(w0), the light-ray and matter kinematic scalars behave near C as

follows:

�̂= 2H obs
0 z−1 − 2(H obs

0 )2D2 +O(z), σ̂IJ = σ̂IJ1z+O(z2), (8.20)

�=
[
3H obs

0 + (sin θ)−1
(
sin θV I

0

)
,I

]
+O(z), (8.21)

σij = σij0 +O(z), ωi = ωi0 +O(z), (8.22)

whereH obs
0 =H obs(w0,xI ) andD2, σ̂IJ1,V I

0 ,σij0,ωi0 are functions ofw0,xK .Any covari-
antly defined finite scalar must be independent of xI alongC: in particular, this implies that
the magnitudes of shear and vorticity are isotropic on C. Since �,I |C = 0, the anisotropy
of the Hubble parameter is determined by the transverse velocities (Maartens, 1980,
Maartens and Matravers, 1994):

H obs
0,I =− 1

3

[
(sin θ)−1

(
sin θV J

0

)
,J

]
,I

. (8.23)
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Exercise 8.2.1 Consider the case of spherical symmetry (isotropy of the spacetime about C).
Then we must have isotropic observations, and will find

A,I = B,I =D,I =CI =LIJ = 0, z,I = V I =H obs
,I = ρm,I = 0. (8.24)

Show that (a) the matter is irrotational, ωµ = 0; (b) the null shear vanishes, σ̂IJ = 0; (c) the
matter expansion and shear are

�= 1

A

(
B,0

B
+ 2

D,0

D

)
, σ = 2√

3A

∣∣∣∣B,0

B
− D,0

D

∣∣∣∣ , (8.25)

and the shear vanishes along C: σ |C = 0 (recall that 2σ 2 = σµνσ
µν); (d) vanishing matter

acceleration implies

A2A,1 = BA,0 −AB,0 . (8.26)

Exercise 8.2.2 Show that the RW metric ds2 =−dt2+a2(t)[dr2+f 2(r)d�2] and 4-velocity
are transformed to observational form,

ds2 =A2(w− r)
[
−dw2 + 2drdw+f 2(r)d�2

]
, uµ =A−1δ

µ
0 , (8.27)

via the coordinate change w = r + ∫
dt/a(t), where A(w− r)= a(t).

8.3 Ideal cosmography

In cosmography, we try to determine as much as possible without using any theory of
gravity.

8.3.1 Observational data on the past light-cone

The world lines of discrete cosmological sources (galaxies, clusters, SNIa) pierce the past
light-cone C−(w0) of the observer, and their signals reach the observer via null geodesics
of C−(w0). Cosmological observations are effectively made at one time instant w0, and
they directly determine the redshift z, which is a convenient choice for the radial distance
y on C−(w0). Then:

• Given the intrinsic properties and evolution of sources, observations in principle also
determine
(a) the area distance DA(w0,z,xI ) or equivalently, DL(w0,z,xI );
(b) the lensing distortion of images, LIJ (w0,z,xK).
(In practice, we use standard candles and statistical analysis, supplemented by astrophys-
ical modelling and simulations, in the absence of knowledge of intrinsic properties and
source evolution.)

• The number counts N(w0,z,xI ) of galaxies (including clusters of galaxies) are also
in principle directly observable, and are related to the total baryonic matter, given
the selection function and the source masses (including the ‘missing’ baryons in gas).
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Then using (8.1) to include CDM, the observed number counts (8.12) determine
B(w0,z,xI )ρm(w0,z,xI ).

• In principle observations over extended time scales determine the instantaneous trans-
verse velocities V I (w0,z,xJ ) of discrete sources. (In practice, this requires observation
over significant time scales in order to trace the path of the source on the celestial sphere.)

8.3.2 Limits to ideal cosmography

It follows that, in principle and for idealized observations, we can directly determine the
following quantities on C−(w0) down to some maximum observed redshift z∗(xI ):

Idealized data ⇒ {uµ ,Bρm ,gIJ } on C−(w0), 0 ≤ z≤ z∗(xI ). (8.28)

But this is insufficient to determine the spacetime geometry of the past light-cone, because
we needCI and we cannot separate outB and ρm. What we need in order to fully determine
gµν on C−(w0), are B = dv/dz and CI : knowledge of CI , together with (8.28), determines
A, by (8.11). This means that, without gravitational field equations, we are unable to fully
determine the spacetime on the past light-cone (down to z∗), even assuming perfect infor-
mation from discrete-source observations (Ellis et al., 1985). As a consequence, it is also
impossible to test gravity theories directly.

Theorem 8.1 Limits of cosmography
Even with perfect observations, cosmography (no gravitational field equations) cannot
determine the spacetime geometry on our past light-cone.

Cosmological testing of gravity theories
Observations cannot directly test GR on cosmological scales, or test any alternative theories
of large-scale gravity. Any such tests are based on model-dependent assumptions about
spacetime and its contents – and they test those models as much as they test theories of
gravity.

(See Chapters 13 and 14.)

8.4 Field equations: determining the geometry

Analysis of the EFE on the past light-cone and in its neighbourhood (Ellis et al., 1985) –
together with assumptions (8.1) and (8.2) – then shows the following remarkable set of
results.

8.4.1 Ideal cosmological data: the past light-cone

It turns out that the idealized data set (8.28) is precisely what is needed for the EFE to
determineB andCI on the past light-cone (Ellis et al., 1985). There is not too much data (i.e.
the system is not over-determined) and not too little (i.e. the system is not under-determined).
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Theorem 8.2 EFE determine the past light-cone
Given the data set (8.28) – based on idealized observations of luminous sources and the
assumptions (8.1)–(8.2) on dark matter and dark energy – Einstein’s field equations on the
past light-cone (i.e. those equations without derivatives transverse to C−(w0)), uniquely
determine the matter distribution (ρm,uµ) and geometry (gµν) of the observable part of
C−(w0).

Note that the reconstruction of the geometry of the past light-cone from the cosmolog-
ical data depends critically on the assumptions made about CDM and �. For different
assumptions we get different answers. In particular:

Cosmological constant undetermined
Astronomical observations cannot determine � in a model-independent way.

That is why the standard determination of dark energy (see Chapter 13) is completely
model dependent, and one can match the SNIa (and possibly other) observations by choosing
a suitable family of cosmological models without dark energy (see Chapter 15).

8.4.2 Prediction to the past of the light-cone

The next step is to integrate the EFE into the causal past of the observable region of the
past light-cone C−(w0) (i.e. the region of spacetime which can be reached from there by
past directed timelike or null curves). As shown by Ellis et al. (1985):

Theorem 8.3 EFE determine interior of past light-cone
Given the matter distribution and metric on C−(w0), the Einstein equations transverse to
C−(w0) propagate the metric to the past of C−(w0), and thus determine the spacetime
within a region of the interior of C−(w0).

This is a rather intriguing theoretical result: it is not clear why this should be the case.
It implies the possibility of a long-term direct observational programme to determine the
geometry of the observable part of the universe – the past light-cone from the present back
to the LSS – directly, without making any assumptions about its geometry. However, it does
need assumptions about the CDM and dark energy, i.e. (8.1) and (8.2).

The CMB anisotropies determine features of the LSS itself. At prior times, data such
as element abundances serve to restrict the spacetime geometry, even though it is hidden
from us. Determining the geometry of the LSS can be done in an inverse way; the CMB
fluctuations are indeed direct indications of conditions on the LSS. Determining the geom-
etry at the time of nucleosynthesis cannot be done this way; but then it properly belongs
to physical cosmology rather than observational cosmology, in the sense we are using the
terms here.

8.4.3 Prediction to the future of the light-cone

Things are different when we try to determine the spacetime to the future of C−(w0), from
data onC−(w0). We want to propagate the data off the light-cone in both directions of time.
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Fig. 8.2 Predicting to the future from data on the past light-cone: new data can nullify predictions.

We can do so to the past, as stated above: the available data on C−(w0) are sufficient to
determine the geometry off it to the past, as we can integrate the Einstein equations uniquely
off C−(w0) with those data as the starting point. However, integration to the future is quite
different, because new information can come in from points to the future of C−(w0) and
change any prediction we can make on the basis of data on C−(w0) alone. The situation
is inherently unpredictable: we simply do not have enough data available to predict to the
future (unless we live in a small universe, where we have already seen around the whole
universe). This is illustrated in Figure 8.2.

Theorem 8.4 EFE cannot determine the future of C−(w0)

If we do not inhabit a small universe, it is not possible to uniquely predict conditions to the
future of C−(w0), since more data are required for that purpose than are available to us –
we are unable to capture any information that propagates towards us along past light-cones
to the future of C−(w0).

For example, as time progresses the particle horizon expands, and may come to encom-
pass a vast wall where different domains in a chaotic inflationary universe meet. As the
physics in these domains may in principle be quite different – involving different matter con-
tent, and perhaps even different values of the fundamental constants of nature – one might
expect violent electromagnetic and gravitational radiation to be emitted by such a clash of
expanding universe domains with completely different physics. Gamma rays and gravita-
tional radiation could pour down on us from the sky without any warning, because these
events would not have been seen by us before this happened. Thus in chaotic inflationary
universes, where a boundary between expanding universe domains with different physics
might appear across the visual horizon and dramatically interfere with local physics, we
cannot even guarantee that the Moon will rise tomorrow: unpredicted gravitational waves
could tear it away from the Earth.
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Predictability condition
Unless we live in a small universe, we can only predict the future evolution of the universe
from the data observationally available to us if we make a ‘non-interference assumption’:
that no unexpected influences will appear across our visual horizon as time progresses, and
alter the predictions we make on the basis of the available data.

Why do we not normally notice this restriction? Because in the usual approach, we
assume an almost-FLRW geometry, implicitly assuming statistical spatial homogeneity,
which means the data beyond what we can see are very similar to what we can see. But this
is an unverifiable assumption, compatible with old forms of the cosmological principle,
but excluding, for example, chaotic inflation. This result also emphasizes the very special
nature of small universes, discussed in Section 9.1.6 below: these are the only universes
where we can strictly predict to the future from what we can see now.

Problem 8.1 Make precise the nature of the non-interference conditions needed in order to
predict the future, as explained above, in a realistic cosmological context.

8.5 Isotropic and partially isotropic observations

The analysis in the general case is complicated, and the details may be found in Ellis et al.
(1985). Some exact results can be derived when the observations of matter on the past
light-cone are isotropic or partially isotropic.

8.5.1 Isotropic matter distribution on the past light-cone

A fundamental result applies to the case when we assume that observations of discrete
sources on the past light-cone are isotropic. Intuitively one expects that the spacetime
should be isotropic in this event. However, the result is not at all obvious – and furthermore,
it is not clear how many of the observables need to be isotropic for the result to hold.

The original result (Maartens, 1980, Ellis et al., 1985, Maartens and Matravers, 1994)
neglected � and CDM, and we can incorporate both in the way explained above
(Clarkson and Maartens, 2010). Without adopting the Copernican Principle, we have the
following result:

Theorem 8.5 Matter isotropy on light-cone → spatial isotropy
If an observer comoving with the matter measures isotropic area distances, number counts,
bulk velocities, and lensing, in a dust universe with �, then the spacetime is isotropic about
the observer’s world line (i.e. LTB).

Isotropy of bulk velocities seen by the observer is equivalent to vanishing proper motions
(tranverse velocities) on the observer’s sky. Isotropy of lensing means that there is no
distortion of images. Thus by (8.28), isotropic observations imply that

D,I = 0 = (Bρm),I , V I = 0 =LIJ . (8.29)
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Momentum conservation (u̇a = 0) then gives

B,0 +[ln(1+ z)],0B = (1+ z)−3z,1 , (8.30)

CI ,0 +[ln(1+ z)],0CI = (1+ z)−3z,I . (8.31)

The integrability condition on w =w0 (where y = z) is

C′
I + (1+ z)−1CI = B,I , (8.32)

where a prime denotes ∂/∂z. The radial field equation in C−(w0) gives

(B−1)′ + (lnD)′B−1 = (1+ z)2
DBρm

2D′ . (8.33)

Since the right-hand side is isotropic, it follows that (B−1),I = 0 onw=w0, using the central
condition (8.14). Then (8.32) shows that CI = 0 on w = w0, using the central condition
(8.15). Finally, A,I = 0 from (8.11).

Thus the metric on C−(w0) is isotropic – and the interior of C−(w0) must also be
isotropic, in order to evolve to an isotropic state at w = w0. It is clear from the proof that
there is no redundancy in the assumptions – we need isotropy of all four observables.

If we adopt the Copernican Principle, it follows that all observers see isotropy, so that
spacetime is isotropic about all galactic world lines – and hence spacetime is FLRW. This
result then becomes a ‘matter’ alternative to the EGS theorem (Section 11.1), as a basis for
FLRW (Maartens and Matravers, 1994):

Theorem 8.6 Matter isotropy on light-cones → FLRW
In a dust region of a universe with �, if all fundamental observers measure isotropic area
distances, number counts, bulk velocities and lensing, then the spacetime is FLRW in that
region.

In essence, this is the Cosmological Principle, but derived from observed isotropy and
not from assumed spatial isotropy.

8.5.2 Isotropy of lensing and velocities

If we assume only isotropy of transverse velocities and lensing for one observer, then
V I = 0=LIJ , but D,I and (Bρm),I may be non-zero. Analysis of equations (8.30)–(8.33),
together with the light-cone field equations with ∂I derivatives, shows that the spacetime
is not isotropic about the observer, although the anisotropy is restricted (Maartens, 1980,
Maartens and Matravers, 1994):

Theorem 8.7 Isotropic lensing and velocities
If an observer comoving with the matter measures isotropic bulk velocities and lensing, in a
dust universe with �, then Einstein’s equations enforce isotropy of the past light-cone only
to O(z) and isotropy of the area distance only to O(z2).
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By (8.23), the observed Hubble rate is isotropic along C, i.e. H obs
0,I = 0. A series solution

of the field equations on C−(w0), obeying the central conditions (8.14)–(8.19), shows in
detail where anisotropy is allowed (Maartens, 1980, Maartens and Matravers, 1994):

D = (H obs
0 )−1z+α1z

2 +D3(θ ,φ)z3 +O(z4), (8.34)

D3 := β1 +β2 cosθ +β3 sin θ sinφ+β4 sin θ cosφ, (8.35)

B = (H obs
0 )−1 + 2α1z+

[
3D3 + 1

4ρm0(H
obs
0 )−3

]
z2 +O(z3), (8.36)

CI = D3,I z
3 +O(z4), (8.37)

ρm = ρm0 +H obs
0

(
α2 − 2α1ρm0 + 18α−2

1 D3

)
z+O(z2), (8.38)

where the αs and βs are constants. Note that the matter density may be anisotropic at O(z).

8.5.3 Partial isotropy of area distances

If we have full isotropy of area distances, number counts, transverse motions and lensing for
all observers, then spacetime is FLRW. There is a stronger result, based only on distances,
and in fact only requiring isotropy up to third order in redshift (Hasse and Perlick, 1999):

Theorem 8.8 Isotropic distances to O(z3)→FLRW
In a dust region of a universe with �, if all fundamental observers measure isotropic area
distances up to third order in a redshift series expansion, then the spacetime is FLRW in
that region.

The proof relies on series expansions in a general spacetime, using the method of
Kristian and Sachs (1966) (see also MacCallum and Ellis (1970), Humphreys, Maartens
and Matravers (1997), Clarkson (2000)):

D = (KaKb∇aub)
−1
o z+O(z2), (8.39)

where Ka = −(ua + ea) = −ka/(−ubkb) is a past-directed ray vector at the observer
(see (7.13)). The higher-order terms involve KaKbKc∇a∇buc, KaKbKcKd∇a∇b∇cud

and RabK
aKb (Clarkson, 2000, Clarkson and Maartens, 2010). Since (KaKb∇aub)o =

[ka∇a(ubk
b)]o = (dz/dv)o, it follows from (7.19) that(

KaKb∇aub

)
o
=
[

1
3�+ u̇ae

a +σabe
aeb

]
o
=H obs

o , (8.40)

where the second equality is (8.17). Therefore isotropy at O(z) for all observers enforces
u̇a = 0 = σab. With these conditions, the O(z2) term reduces to(

KaKbKc∇a∇buc

)
o
= 1

3

[
�2 + 4πGρm −�− 2ωaω

a
]
o

+
[(

curl ωa − 1
3∇a�

)
ea +

(
Eab− 1

2πab+ω〈aωb〉
)
eaeb

]
o
,

(8.41)
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where a qa term has been eliminated using (6.20). Isotropy atO(z2) then imposes 3curlωa =
∇a�, and 2Eab =πab−2ω〈aωb〉. The complicatedO(z3) term then leads toωa =∇a�= 0,
and πab =Eab = 0, and thus the spacetime is FLRW.

It is an open but important question how the Copernican results above translate to the real-
istic case of almost-isotropy – i.e. is the spacetime almost-FLRW? (This could be compared
to the almost-EGS results, Section 11.1, based on almost-isotropy of the CMB.)

8.5.4 Determining a spherically symmetric geometry

The way to specifically carry out the direct observational approach indicated above
in the spherically symmetric case has been pursued by Maartens et al. (1996),
Araujo (1999), Lu and Hellaby (2007), McClure and Hellaby (2008), Araujo et al. (2008),
Hellaby and Alfedeel (2009) and van der Walt and Bishop (2010). Lu and Hellaby (2007)
show how to set up a numerical programme for determining the metric of the universe from
observational data, particularly addressing the numerical problems at the vertex and those
caused by the maximum in the area distance. Hellaby and Alfedeel (2009) give a presenta-
tion of the mathematical solution in terms of four arbitrary functions. McClure and Hellaby
(2008) simulate observational uncertainties and improve the previous numerical scheme to
ensure that it will be usable with real data as soon as observational surveys are sufficiently
deep and complete.

8.5.5 Verifying an FLRW geometry

Using such a scheme, one should in principle be able to test spatial homogeneity of the
universe from astronomical observations. Given isotropy, what are the observational data
that can prove the universe has FLRW geometry? This is answered in principle by a result
of Ellis et al. (1985):

Theorem 8.9 FLRW from area distances and number counts
A dust isotropic universe with cosmological constant is FLRW if, and only if, the area
distances and number counts as functions of redshift take exactly the standard FLRW forms
(7.50) and (7.64).

(The original result neglected CDM and �.) This gives a precise theoretical answer to
the question posed: but it is very difficult to use in practice, because of evolutionary effects
(sources may change with time) and observational problems (such as selection effects). Note
that it is also model dependent: it is valid only for GR and a specific matter model. One
can, however, find model-independent direct tests of spatial homogeneity in cases where
the universe appears spherically symmetric about us (Clarkson, Bassett and Lu, 2008), as
discussed in Chapter 15.

Exercise 8.5.1 Fill in the details of the proof that matter isotropy on the light-cone implies
isotropic (LTB) geometry. Then prove that FLRW forms for N(z) and D(z) imply
homogeneity (FLRW geometry).
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8.6 Implications and opportunities

The direct observational approach attempted to answer the questions: what is the real infor-
mation in the cosmological data?What can we deduce from those data alone, without a-priori
assumptions about the geometry or matter distribution? These are intrinsically important
questions to pose. It was a similar approach that led to detection of the great walls and
voids that characterize the large-scale structure of the universe. But the approach is ser-
iously compromised by the presence of dark matter and dark energy. And even if we make
assumptions – (8.1) and (8.2) – to incorporate these dark components, the direct approach
suffers from having no explanatory power. At most it just records what is there, in contrast
to the standard model, which gives causal explanations (at a statistical level) for why that
kind of structure is there.

However this approach is useful as a complement to the usual approach, because it
throws light on various theoretical features of cosmology that may otherwise be obscured –
some of these have been highlighted above. It allows examination of issues that one cannot
easily look at with the direct approach, because the assumed RW geometry imposes spatial
homogeneity, which then changes the nature of causality in these models. The symmetry
changes a hyperbolic set of equations into a system of ordinary differential equations, with
completely different causal properties.

8.6.1 Direct observational cosmology with galaxy surveys

There is a major difficulty in determining the density of matter at each event, because the
mass-to-light ratio can be very variable: what you see is not all that is there. Indeed we
run directly into the problem of dark matter: much of the matter present does not emit any
radiation at all, and so is not observable. Gravitational lensing appears to be the answer for
determining the matter distribution indirectly – but this relies on a perturbed RW model.
It may be possible to derive partial constraints on CDM beyond the RW framework, and
this deserves further investigation. The issue of dark energy is equally problematic, as
emphasized above. We have to deal with the problem of the dark components via the
assumptions (8.1) and (8.2).

Massive surveys of the galaxy distribution, such as 2dFGRS, SDSS and the upcoming
DES, directly map the (visible) matter on our past light-cone, and therefore provide a new
opportunity (not possible at the time that the direct approach was formulated) to pursue the
approach (within the context of the necessary assumptions about the dark components). The
survey data can be treated as if the galaxies lie on the spatial surface defined by the time of
observation. The higher the redshift of the survey, the greater the errors introduced by this
approximation. Clustering statistics in a statistically homogeneous universe are defined
on spatial surfaces of constant time – whereas in fact the observed clustering statistics
are on the null surface of the past light-cone. Correlation functions have been defined on
the past light-cone (Yamamoto and Suto, 1999), and other GR corrections to the galaxy
power spectrum have also been computed (Yoo, Fitzpatrick and Zaldarriaga, 2009, Yoo,
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2010, Bonvin and Durrer, 2011, Challinor and Lewis, 2011). An important challenge can
be presented for theoretical cosmology:

Galaxy survey challenge
Develop the analysis of light-cone statistics and selection effects as far as possible without
making assumptions on the light-cone geometry, and see how far we can go towards deter-
mining that geometry from massive galaxy redshift surveys, given the necessary assumptions
on CDM and �.

8.6.2 Transverse velocities

We have seen above what data are needed to determine the geometry of the universe on
the past light-cone. Apart from the problem of the dark components, there is another major
difficulty in obtaining these data: the velocities of the matter. While we can measure the
radial component of velocities, determined by redshift, it is almost impossible to measure
the transverse componentsV I . There is no problem in principle: all one has to do is measure
the apparent motions of distant objects across the celestial sphere, relative to a local non-
rotating rest frame. In practice the motions involved are so small that this is not feasible at
present, or in the foreseeable future, for objects at cosmological distances.

Missing velocity data
The transverse velocities that we need to fix the motion of distant matter are not measured
in practice.

These are key data for anisotropic models. They also relate to other aspects of the
spacetime geometry (Maartens, 1980, Maartens and Matravers, 1994):

Theorem 8.10 Transverse velocities and anisotropy
Anisotropy in the observed Hubble parameter implies that the transverse velocities are
non-zero.
Non-zero shear or vorticity along C imply non-zero transverse velocities.

The first result follows from (8.23), and the second from an expansion of the kinematic
quantities about the centre (Maartens, 1980, Maartens and Matravers, 1994). Hence trans-
verse velocities encode data about anisotropy in the Hubble parameter and the shear and
vorticity tensors. They of course vanish in FLRW models, so lack of these data is no problem
in that case.

In effect the default position is to assume the transverse velocities vanish on average in all
viable universe models, with local radial peculiar velocities being of the same magnitude as
local transverse peculiar velocities; but this may not be true. The mean pairwise velocities of
galaxies are determined by radial and transverse components. In the FLRW framework, the
pairwise velocity distribution is deduced from the radial peculiar velocities (Ferreira et al.,
1999), but the procedure does not apply to more general models of the universe.

The practical implication is that it is worthwhile to try the best that we can to determine
these transverse velocities through very precise measurements of proper motions of objects
at cosmological distances, for these are major missing data in present day cosmology. This
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may be possible with VLBI (Titov, 2009) or through future surveys. Just as we had great
surprises from some radial large-scale motions measured, we could perhaps also be in for
a surprise as regards the transverse components.

8.6.3 Levels of uncertainty

What is the real degree of uncertainty resulting from the limits on cosmological data? Two
points are worth making here (Ellis, 1975, 1980).

(1) Firstly, an obvious point but which needs emphasizing: uncertainty increases with
redshift, i.e. with distance down the past light-cone. This is because the images are both
fainter and smaller, and more intervening matter may obscure and distort what is happening
at greater distances. Thus there are contours of increasing uncertainty in spacetime, with
uncertainty growing down the light-cone and with proper-time off the light-cone.

The implication is that our models become more and more theory dependent, and less
and less observationally based, as we look to higher and higher redshifts. The direct obser-
vational approach becomes more difficult the further back into the past one goes. In a sense
an exception to this rule is the LSS itself, because of the detailed maps we are obtain-
ing of the CMB anisotropies, which directly reflect conditions on the LSS. However, they
too are interfered with by intervening matter (notably through the Rees–Sciama effect, the
Sunyaev–Zel’dovich effect, and by gravitational lensing); hence one cannot interpret them
uniquely without understanding all the intervening material.

(2) Secondly, there is generically an ambiguity of determination of the spacetime from the
observations: two or more quite different models may be able to explain the same observa-
tions, depending on the matter content of the spacetime. This ambiguity in the spherically
symmetric case is made explicit by the theorems of Mustapha, Hellaby and Ellis (1999),
where the key focus is on the possibility of a time evolution of the sources observed. Unless
one can limit this time evolution by astrophysical data, one cannot obtain unique cosmo-
logical information. Indeed what usually happens in this context is the other way round:
it is assumed that the universe is spatially homogeneous, and the unknown time evolution
of radio sources is then determined on the basis of this cosmological assumption (Ellis,
1975). Cosmology is not probed by these observations, rather they are used to determine
astrophysical data on the basis of cosmological assumptions.

This ambiguity also has important applications in terms of interpreting the SNIa data,
that are usually taken to indicate that the recent universe is accelerating, where the key issue
is whether � is zero or not. This issue is discussed further in Chapters 14 and 15.

8.6.4 Averaging the light-cone

As in all cosmological models, one should carefully state what scale is being represented
by the proposed model: will it only attempt a large-scale, smoothed out model, or will it
try to provide a more detailed one, characterizing inhomogeneities in detail? This issue
of averaging will be discussed in more detail in Chapter 16, and here we just make one
comment: in the real universe, strong gravitational lensing leads to existence of a huge
number of caustics in the past light-coneC−(w0) at small scales, as every star, galactic core
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and dense cluster of galaxies will cause multiple images and associated caustics to occur in
C−(w0). Each caustic results in light-rays, that were the boundary of the past of here-and-
now, plunging into the interior of the past (see the diagrams in Ellis, Bassett and Dunsby
(1998)). Thereafter they still represent the paths of light-rays, but are no longer part of the
causal boundary of the past, J−(w0). This caustic structure is only visible when examined
on small scales; when viewed on a large scale, these details are not visible, but the result
is that C−(w0) has an effective thickening of its surface. Evolving the field equations off
C−(w0) to the past is very tricky once this occurs.

Problem 8.2 Assess the best cosmologically relevant measures of proper motions that will
be possible with future technology.

Problem 8.3 Estimate the levels of uncertainty that are encountered as one pursues the direct
observational approach to earlier and earlier time.



PART 3

THE STANDARD MODEL AND
EXTENSIONS



9 Homogeneous FLRW universes

FLRW cosmological models are those universes which are everywhere isotropic about the
fundamental velocity (technically: there is a G3 group of isotropies acting about every
spacetime point which leaves the fundamental velocity invariant).1 This will be the case
if and only if the observations of every fundamental observer are isotropic at all times.
This implies further symmetries of these universes: as well as being isotropic about each
event, they are spatially homogeneous: all physical properties are the same everywhere
on spacelike surfaces orthogonal to the fluid flow (technically: there is a G3 group of
isometries acting simply transitively on these surfaces). This will be proved in the sequel,
but geometrically the result is clear: spheres of constant density centred on one point P
are only consistent with spheres of constant density centred on other points Q and R if the
density is constant.2

Because of these exact symmetries, these spacetimes cannot themselves be realistic mod-
els of the observed universe: they do not represent any of the inhomogeneities associated
with the astronomical structures we see all around us. Realistic models of the observed uni-
verse are provided by perturbed FLRW universes, which are almost isotropic about every
point, and hence are almost spatially homogeneous (they are inhomogeneous on small scales
but homogeneous on large scales). The ‘almost FLRW’ models are the standard models of
cosmology at the present time (considered in the following chapter). The FLRW models
discussed in this chapter are the background models used to construct those more realistic
cosmological models.

It is remarkable that the FLRWmodels provide a very good approximation to the observed
universe despite their very high symmetry (as implied by the above, they are invariant
under a group G6 of isometries). The justification for assuming this symmetry for the
background models is that we observe the universe to be isotropic about us to a high degree
of approximation, once we (1) average over large enough scales (i.e. on scales significantly
larger than clusters of galaxies) and (2) allow for our peculiar velocity relative to the
average motion of matter in the universe (in practice, relative to the microwave background
radiation). Thus on cosmological scales, there is no particular direction we can point to and
say, ‘The centre of the universe is over there’. There are then two possibilities: either (a) the
universe is spatially inhomogeneous, and we are near a distinguished place about which
it looks spherically symmetric, or (b) we are at a typical place in the universe, which is
isotropic for every observer, and consequently is spatially homogeneous.

1 Here and in the sequel, ‘isotropy’ means spatial isotropy, not spacetime isotropy.
2 We need three points because an inhomogeneous curved 3-space can have two different (antipodal) centres of

spherical symmetry, but no more.
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The usual choice is to prefer the latter possibility, on the grounds of some form of
Copernican principle: the assumption that we are not at a privileged position in the universe
(Bondi, 1960, Weinberg, 1972). We shall later reconsider this issue (and we discuss option
(a) in Chapter 15). However, in this chapter we accept the argument, and so examine in depth
the FLRW universes on the understanding that they do indeed gives us good models of the
observed universe domain, when suitably averaged over inhomogeneities. Particular FLRW
models of importance in cosmology are the Einstein static universe, de Sitter universe, Milne
universe and Einstein–de Sitter universe; we shall describe them in this chapter. These are
based on a fluid description of the matter in the universe. One can also include scalar fields
in FLRW models, or use a kinetic theory description of the matter. We shall also deal with
these possibilities here.

9.1 FLRW geometries

The Robertson–Walker (RW) geometries are everywhere isotropic about the fundamental
world lines. These geometries are employed in the Friedmann–Lemaître (FL) world mod-
els, which originally were considered only with pressure-free matter plus a cosmological
constant; but they have since been used with much more general matter content. We shall
refer to all universe models with a RW geometry and some suitably specified matter content
determining the dynamical evolution via the EFE as FLRW models.3

9.1.1 Consequences of isotropy

Geometric isotropy about all the fundamental world lines clearly implies zero shear, vorticity
and acceleration everywhere:

σab = 0, ωa = 0, u̇a = 0, (9.1)

for otherwise these quantities would pick out preferred directions in the 3-space orthogonal
to ua . Therefore, from (4.37), there is a normalized proper time t which is a potential for
ua , i.e. ua =−t,a , and is unique up to t → t + const. The surfaces of spatial homogeneity
in these universes are t =const, which are orthogonal to the fluid flow lines. This much
follows purely from geometry.

The total matter content of necessity has to have perfect fluid form,

πab = 0, qa = 0, (9.2)

as follows from the assumption of isotropy: if qa or πab were non-zero, the stress tensor
and hence the Ricci tensor would be anisotropic. Then p = p(t), or there would be an
anisotropy via a pressure gradient; hence ∇ap= 0, which implies u̇a = 0 from the momen-
tum conservation equation (confirming the vanishing of the acceleration). From the (0, i)

3 In contrast to kinematic world models, where no field equations are employed.
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field equations, qa = 0 ⇒∇a�= 0 . Putting this together, all the non-zero kinematic and
stress–energy scalars are functions only of the time t :

ρ = ρ(t), p = p(t), �=�(t) ⇔ ∇aρ =∇ap =∇a�= 0, (9.3)

expressing the spatial homogeneity of these universes on the surfaces t =const (all physical
quantities are constant on these surfaces). Then:

FLRW definition:
A universe is FLRW if and only if (9.1)–(9.3) hold everywhere.

Alternatively, we can characterize these models directly from isotropy of observations.
On the one hand, if a cosmological model is isotropic about each point, then astronomi-
cal observations will be isotropic everywhere also. Conversely, suppose all cosmological
observations are isotropic about each observer. Then the restrictions (9.1) follow directly
from measured isotropy of the magnitude–redshift relation (implying vanishing σab and u̇a),
number counts (implying ∇aρ = 0, which can only happen if ωa = 0), and vanishing of
proper motions (implying vanishing ωa and σab). The first and third of (9.3) follow because
otherwise anisotropies would be observed in the magnitude–redshift relation. Equations
(9.2) then follow from the Gauss equation and the (0, i) field equations, respectively. Finally
u̇a = 0 implies ∇ap= 0 from the energy–momentum conservation equation (as the matter
is a perfect fluid with ρ+p �= 0). Thus:

Theorem 9.1 Isotropic observations
A universe model is FLRW if and only if all astronomical observations by all fundamental
observers are isotropic at all times.

The 4-velocity ua about which the universe is spatially isotropic is unique, provided
the universe is not also spacetime isotropic (i.e. additionally invariant under boosts). That
characterizes spacetimes of constant curvature, invariant under a group G10 of isometries
(see Sections 2.7.3 and 9.3.1 and Chapter 17). From (5.37), this exceptional case can happen
only when ρ+p= 0, for otherwise (when ρ+p �= 0), ua is uniquely defined as the timelike
eigenvector of the Ricci tensor.

9.1.2 Spacetime geometry

We have seen that the spatially homogeneous surfaces t = const are orthogonal to the fluid
flow lines. We define the scale factor a from a chosen constant value a1 on some initial
surface t = t1 by the relation ȧ/a =�/3; then from (4.35), �=�(t)⇒ a = a(t). Thus,

ua;b = 1

3
�(t)hab = ȧ

a
hab, a(t)= α exp

[∫ t

t1

1

3
�(t ′)dt ′

]
, (9.4)

where α = const. Now using comoving coordinates (t ,xi) as in Section 6.3.1, and writing
hij = a2(t)fij (x

µ) (see (6.26)), from (5.48) the condition σij = 0 implies fij ,0 = 0. Thus
ds2 = −dt2 + a2(t)fij (x

k)dxidxj , uµ = δ
µ
0 . This shows the splitting of the spacetime

metric into parts parallel and orthogonal to uµ (compare (4.13)); the orthogonal part
a2(t)fij (x

k) is the metric of the spatially homogeneous 3-spaces.
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The scale factor a(t) describes how all spatial distances change as the universe evolves.
To make this explicit, consider a curve γ1 joining the world linesC1,C2 of two fundamental
observers in a surface t = t1, and given in terms of the comoving coordinates by xµ(v)=
(t1,λi(v)). The distance d1 measured between C1, C2 along this curve will be

d1 =
∫ C2

C1

a(t1)

[
fij (x

k)
dλi

dv

dλj

dv

]1/2

dv. (9.5)

At any later time t2 the distance d2 between the same world lines along the corres-
ponding curve γ2 given (in comoving coordinates) by the same functions λi(v), i.e.
xµ(v) = (t2, λi(v)), will be given by the corresponding expression with t1 replaced by
t2, and so will be related to d1 by

d2 = [a(t2)/a(t1)]d1. (9.6)

Thus as a increases, all comoving lengths scale proportionately to a(t) and we have an
isotropic expansion about every point, but with no centre because the universe is spatially
homogeneous (and the expansion is not an expansion into anything: there is no spatial edge
to the universe that can expand into any space ‘outside’ the universe, for the universe is all
that there is!). The mapping of 3-spaces t = const into each other defined by the fluid flow
is a conformal mapping, i.e. preserves angles as well as ratios of lengths.

From the above, a distance d1 between fundamental particles in the initial surface t = t1

scales with a(t) in the sense that at later times this corresponds to the distance d(t)= a(t)d1.
Clearly the speed of motion in the surface t = const is defined by

v(t) := ḋ(t)= ȧ(t)d1 =H(t)d(t), H(t) := ȧ(t)/a(t). (9.7)

This shows how the Hubble expansion law may be interpreted as an exact law of recession
in the surfaces t = const. Note that this is a notional speed that does not correspond to the
transfer of information, and so can exceed the speed of light (Ellis and Rothman, 1993),
and it cannot be directly measured by any astronomical observation we can carry out.

Conformal structure

It is clear from (4.51)–(4.52) that in a (perfect fluid) FLRW universe, Eab = 0 = Hab ⇒
Cabcd = 0; thus these universes are conformally flat. Conversely, ifCabcd = 0 andρ+p �= 0,
then by (6.33) ∇aρ = 0, by (6.34) σab = 0, and by (6.35) ωa = 0. Hence if the matter is a
perfect fluid with barotropic equation of state,∇ap= 0 also, and the conservation equations
show u̇a = 0. Then we have an FLRW universe.4

Theorem 9.2 Conformal flatness
A barotropic perfect fluid universe is FLRW if and only if it is conformally flat (i.e.
Cabcd=0).

4 We do not need the barotropic condition if the matter is in geodesic motion.
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This result is helpful in examining the propagation of electromagnetic waves in FLRW
universes, as well as the global properties of these spacetimes (in particular, the nature of
their horizons, discussed in Section 7.8).

9.1.3 3-space geometries

From the Gauss equation in the form (6.25):

πab = σab = 0 ⇒ 3R〈ab〉 = 0 ⇔ 3Rab = 1
3

3Rhab, (9.8)

so the three-dimensional Ricci tensor is isotropic: this is also clear directly from the assump-
tion of isotropy, as otherwise there would be preferred spatial directions, the eigendirections
of the 3-Ricci tensor. Exercise 6.3.2 then shows that the homogeneous hypersurfaces ortho-
gonal to the fluid flow are spaces of constant curvature K/a2(t) where K is a constant and,
as in Section 2.7.7, we can set K to be 1, 0 or −1 and obtain from (2.90) the metric form
and 4-velocity:

ds2 = −dt2 + a2(t)
[
dr2 +f 2(r)

(
dθ2 + sin2 θdφ2

)]
, uµ = δµ0,

f (r) := (sinh r , r , sin r) for K = (−1,0,+1). (9.9)

(Other choices of radial coordinate are also widely used, e.g. Weinberg (1972), Peebles
(1971) and (9.10)).

Conversely, if the metric and 4-velocity take the form (9.9) in a set of coordinates xµ =
(t , r , θ , φ), then (9.1) and (9.4) hold. The field equations then show that (9.2) and (9.3)
follow, and the universe is an FLRW model, so:

Theorem 9.3 FLRW coordinates
A universe model is FLRW if and only if coordinates can be found so that the metric and
4-velocity are given by (9.9).

The nature of these 3-spaces of constant curvature follows immediately from this deriva-
tion. From (2.90), the 2-sphere Sd at distance d = a(t1)r from the origin of coordinates in
t = t1 has surface area A1 = 4πa2(t1)f

2(r). Thus we can imagine testing the geometry
of the space sections by comparing the radii and surface areas of spheres centred on some
point p (which we choose as the origin of coordinates, but in fact is an arbitrary point in
the space: there is nothing special about this point).

In the flat-space case (K = 0 ⇒ 3Rabcd = 0), the familiar Euclidean relation holds:
A∝ r2, and the 3-spaces continue to infinity (one can attain arbitrarily large distances from
the original point, and the volume of these 3-surfaces is unbounded). In the hyperbolic case
(K < 0), the area increases faster with distance than in the Euclidean case, as A∝ sinh2 r .
Again these 3-spaces are unbounded; this is the three-dimensional case analogous to the
two-dimensional Lobachevski plane of constant negative curvature (which can be mapped
into the interior of the unit circle).

In the elliptic case (K > 0), A∝ sin2 r: the area increases slower than in the Euclidean
case, reaches a maximum when r = d/a(t1)=π , and thereafter decreases to zero as r→ 2π
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at a point q ‘antipodal’ to the centre p. To see what is happening, consider geodesics γ1,
γ2 leaving p in opposite directions. They intersect each sphere Sd in points r1,r2 respec-
tively that are antipodal to each other in Sd ; therefore as r → 2π , these geodesics approach
q from precisely opposite directions. Hence if one moves from p along the geodesic γ1,
after approaching q and passing through it one continues along the path of the geodesic
γ2 and then arrives back at p; and this happens whatever direction is chosen for γ1. Thus
when K > 0 the space sections are necessarily closed and of finite volume. The situation
is exactly modelled by the two-dimensional surface of an ordinary sphere, which is the
two-dimensional analogue of the three-dimensional space of constant positive curvature.
This is why Einstein preferred this case to the other possibilities. indeed it was his motiva-
tion for investigating his static universe with closed spatial sections: it solves the problem
of boundary conditions for local physical systems (what are the boundary conditions on
physical fields at infinity?) This problem vanishes when there is no infinity, and periodic
boundary conditions are imposed by the topology.

When we choose K = 0, ±1 as in (9.9), this implies that K and r are dimensionless and
hence a has dimension length. It is common practice in cosmology to take a as dimension-
less. Then we are free to normalize its current value, e.g. to unity: a0 = 1.With dimensionless
a, it follows that r has dimension length and K has dimension (length)−2, and is given by
the curvature scale 3R0 – see (A.6). Then we have that the metric function f (r) = r for
K = 0, while for K �= 0,

f (r)=
{

K−1/2 sin
(√

K r
)

for K > 0
(−K)−1/2 sinh

(√−K r
)

for K < 0
(9.10)

|K| = (3R0
)−2 =

(
a0H0

√|�K0|
)−2

,

where �K0 :=−K/(a0H0)
2 [see (9.16)].

9.1.4 Symmetry properties

The point p was an arbitrary point in the surface t = t1; we could equally have chosen
any other point p′ as the origin of coordinates, and (because K is constant) would have
obtained the identical metric components and geodesic behaviour centred on that point.Thus
the spatial sections, with metric (2.90), (2.93), are completely homogeneous: all points are
equivalent to each other. From (9.3) and (9.4), the scale factor and expansion are also
constant on t = t1 (which is any one of the surfaces orthogonal to the 4-velocity ua), so
the spacetime itself (with metric (9.9)) is spatially homogeneous (we already know that all
physical scalars, e.g. the density and pressure, depend only on the time coordinate t which
labels the surfaces). As all physical and geometrical quantities are identical at all points
of each surface t = const, these are surfaces of homogeneity of the cosmological model.
We have therefore shown that ‘isotropy everywhere’ implies spatial homogeneity of the
spacetime.
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The property of homogeneity can be formalized in various ways; most commonly this is
done in terms of continuous symmetry groups and associated Killing vectors (Section 2.7):

Theorem 9.4 FLRW symmetries
FLRW universe models are uniquely characterized as invariant under a symmetry group
G6 acting on spacelike 3-spaces, with a G3 simply transitive subgroup of isometries and a
G3 isotropy group around every point.

Note that FLRWmodels have Bianchi symmetries for particular Bianchi types (depending
on the curvature K). (See Chapters 17, 18.)

AFLRW universe is not homogeneous on other spacelike sections than the geometrically
preferred surfaces t = const; however, these homogeneous surfaces do not relate in a simple
way either to astronomical observations, or to the Newtonian limit. As to the first, spatial
sections of instantaneity determined by radar do not coincide with these spatial sections if the
universe is expanding; and cosmological observations (down the past null cone) cut across
these surfaces, so (as we discuss later) observationally verifying spatial homogeneity is not
easy. As to the second, one can claim (Ehlers, 1973) that the ‘almost-Newtonian’ spacetime
sections experienced by an observer O are those space sections generated by geodesics
orthogonal to O’s world lines. In an evolving FLRW universe model, these surfaces are not
the surfaces t = const, and the density and pressure are not constant on these surfaces.

If the metric is as in (9.9) but the matter 4-velocity is different (i.e. not orthogonal to
the surfaces of homogeneity), we can claim to have a spacetime with FLRW geometry but
(provided ρ+p �= 0) the matter content is not a perfect fluid (Coley and Tupper, 1983). This
illustrates the fact that the energy–momentum tensor by itself does not force a particular
physical interpretation of its nature. However, the combinations of sources required look
somewhat contrived, even though each constituent may be of a familiar type, and the
universe will not appear isotropic to observers moving with this 4-velocity. There is no
physical reason to choose this model.

9.1.5 Topology

The discussion so far has mainly related only to local properties, but it should be realized
that different global connectivities are possible in each case. If K = 0, the spatial sections
are locally flat and we can change to Cartesian coordinates (x,y,z) in the standard way; the
metric will then be ds2 =−dt2+a2(t)dx2. It is usual to assume these coordinates have the
standard infinite range: −∞ < x,y,z <∞; then the space sections t = const are without
boundary and of infinite volume, and there is an infinite amount of matter in the universe.
However, there are many other possibilities. The simplest is the torus topology, where there
are scales Li such that if the point p has coordinates xi it is identified with every point q
with coordinates (x+nLx ,y+mLy ,z+pLz) where (m,n,p) are arbitrary integers. In this
case each space section t = const is without boundary but is of finite volume, and there is a
finite amount of matter in the universe, which has closed (‘compact’) spatial sections. The
universe is no longer simply connected, as is the case for its ‘natural’ topology, when the
3-spaces are isomorphic to Euclidean space E3. There are many other possible topologies
for flat spatial sections (see e.g. Wolf (1972), Ellis (1971b)), including generalizations of
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the Möbius strip. Thus as well as giving the spacetime metric, we need to specify its global
connectivity (its ‘topology’) in order to fully specify its geometry.

The caseK < 0 is similar: the ‘natural’ topology of the space sections is that of Euclidean
3-space, but there are many other (in fact, infinitely many) possibilities allowing finite,
closed spatial sections (Thurston, 1997).

When K > 0, things are fundamentally different. Considering the geodesics and coordi-
nates described above in this case, where now f (r)= sin r , if no identifications are made
we obtain the compact geometry of a 3-sphere, as described above (which is simply con-
nected). There are still various other topologies possible: for example, each antipodal point
q could be the same as the original point p; but all of them are necessarily compact (Ellis,
1971b).

Thus spatial sections may have an ‘unnatural’ topology (i.e. not be simply connected), but
alternative topologies are more probable (on any ordinary measure) than ‘simple’topologies
and are suggested by string theory approaches to fundamental physics. These models have
a length scale that is indeterminate on the basis of present-day physics, and so just has to
be set as initial data with no known deeper cause; but that is part of the larger problem
that we have no idea what kind of mechanism – if any – determines the topology of the
spatial sections of the universe. The standard assumption that they are simply connected is
a theoretical prejudice that may or may not be true.

Thus the usual assumption that K < 0 and K = 0 models are ‘open’, with infinite spatial
sections, is not necessarily true. However, K > 0 models are necessarily closed.

For any compact FLRW universe model, at any time t∗ there are two important length
scales:

• the minimal closed comoving length L1: a 3-sphere of radius greater than a(t∗)L1 in the
surface t = t∗ intersects itself at least once, while one of radius less than a(t∗)L1 does
not intersect itself;

• the complete closed comoving length L2: a 3-sphere of radius greater than a(t∗)L2 in the
surface t = t∗ intersects itself in every direction, while one of radius less than a(t∗)L2

does not intersect itself in at least one direction.

A key question then is how this relates to horizons in the universe.

Causally closed universes

When the comoving particle horizon uph(t∗) at time t∗ is less than L1, then causal horizons
are broken in at least one direction from that time on, while if uph(t∗) at time t∗ is less than
L2, then causal horizons are broken in all directions from that time on. Given a compact
universe, depending on the dynamics, these possibilities may never occur (for example, in
a dust-filled FLRW model with K > 0 and S3 spatial topology), or they may occur at some
finite time – the horizon breaking time (for example, in an FLRW model with �> 0 and
K > 0 with S3 spatial topology). In an inflationary universe model with compact spatial
sections, they can occur very early in the history of the universe; after that time, all particles
are in causal contact with each other. This then solves the boundary problem for local
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physics raised by Einstein and Wheeler, and completely solves the horizon problem: no
new information enters the past light-cone of any particle at later times.5

It also eliminates many divergences in physics because it implies a long-wavelength cutoff
to all physical effects. An intriguing question is whether this cutoff might have observable
consequences. N-body simulations of structure formation in cosmology effectively assume
such a cutoff via periodic boundary conditions.This is done to solve computational problems
rather than being taken as a model of how the universe really is; but it has to affect the largest
wavelength structures predicted by the theory.

9.1.6 ‘Small universes’

The further question for a closed universe in observational terms is whether or not we can
see right round the universe. If the scale L1 is less than the visual horizon uvh at some
time t∗, the universe is so small that we can see round the universe in at least one direction
from then on, while if the scale L2 is less than uvh the universe is so small that we can see
round the universe in all directions from then on. We call the latter case a small universe:
by definition, that is a universe which closes up on itself spatially for topological reasons,
and does so on such a small scale that we have seen right round the universe since the time
of decoupling.

These universes are of course a subclass of causally closed universes. In this case we can
see all the matter that exists (there are no visual horizons or matter beyond the horizon), with
multiple images of many objects occurring (Ellis and Schreiber, 1986); indeed a universe
that appears to consist of a vary large number of galaxies can actually consist of a relatively
small number of galaxies that are imaged many times over. Then the universe gives the
appearance of an unbounded homogeneous universe, even if it is really a ‘small’ (something
like 300 to 800 Mpc) inhomogeneous block; thus this provides an explanation for the
apparent homogeneity of the universe (it looks homogeneous because we are seeing the
same thing over and over again!).

Checking if the universe is a small universe or not is an important task; there is a quite dif-
ferent relation of humanity to universe in this case, because the entire universe is observable,
which is otherwise false (Ellis and Schreiber, 1986). These are thus the only cosmologies
where we have all the data needed to predict to the future (Section 8.5). This possibility
is observationally testable in various ways, discussed in Section 13.4.3. One should note
here that small universes are compatible with inflation: nothing in the inflationary scenario
determines the topology of the spatial sections, so it is compatible with the creation of
structure via inflation (Section 12.2).

Exercise 9.1.1 Show the tangent vector βa to each dragged along curve γ in an FLRW
universe is a relative position vector, and obeys the equation β̇a =Hβa . Integrate to show
βa = a(t)Ka , K̇a = 0, Kau

a = 0. Confirm from these equations that ėa = 0, δl ˙=H(t)δl

as required by specialization of (4.32)–(4.33).

5 This is not the case for inflation in a universe without compact spatial sections, for then new information is
always entering the particle horizon as time evolves.
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Exercise 9.1.2 Find the equations for the surfaces of constant time in FLRWthat a fundamental
observer determines by radar. Show they coincide with the surfaces of constant density only
if the universe is static. If a(t)= t2/3, what are these surfaces? (Ellis and Matravers, 1985).

Exercise 9.1.3 Explain why it is no accident that the 2-sphere example of a curved surface
serves as an exact model of the 3-sphere case. [Consider the surface φ = const in the
3-space.]

Exercise 9.1.4 Determine the other possible topologies for spatially closed universes with flat
spatial sections. (See Ellis (1971b). Note that we do not suggest trying the K < 0 case: it is
very difficult!)

9.2 FLRW dynamics

9.2.1 Dynamical equations

The basic equations governing the dynamics of FLRW universe models have already been
derived. Collecting them together, the scale factor a(t), energy density ρ(t) and pressure
p(t) are related by the Raychaudhuri equation (6.11), energy conservation (5.38) and the
Friedmann equation:

3
ä

a
=−4πG(ρ+ 3p)+�, (9.11)

ρ̇+ 3H(ρ+p)= 0, (9.12)

H 2 = 8πG

3
ρ+ �

3
− K

a2
. (9.13)

The Friedmann equation is the 3-curvature equation (6.23) and is also a first integral of the
other two equations when ȧ �= 0 (see (6.12)). The momentum conservation equation will
be identically satisfied, as will the other eight field equations provided the metric has the
form discussed in Section 9.1.

Theorem 9.5 FLRW dynamics
Given an FLRW universe model described by (9.9), when ȧ �= 0, only the conservation
equation (9.12) and Friedmann equation (9.13) need be satisfied; then all ten Einstein field
equations will be satisfied.

This follows because the Raychaudhuri equation will then be a consequence of (9.12),
(9.13), and the other eight field equations are trivial. This will be true irrespective of the
equation of state; but to have a determinate set of equations, we must give suitable equations
of state for the matter (as discussed in Chapter 5). Note that although p=p(t) and ρ = ρ(t)

the equation of state need not be barotropic (i.e. of the form p = p(ρ)) – it could be of
the form p = p(ρ,s) where s = s(t) is the entropy of the matter, determined by further
equations of state. It is this extra freedom that allows the expansion and collapse phases of
a realistic model to have different behaviours.
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The matter content of an FLRW universe necessarily has a perfect fluid form. However,
this does not mean the fluid has to have a ‘perfect fluid’ equation of state. Indeed we
can suppose for example that the fluid has equations of state (5.33)–(5.35) with non-zero
coefficients of viscosity λ, heat conductivity κ and bulk viscosity ζ . Since σab = 0,∇aT = 0
and u̇a = 0 in an FLRW universe, these equations of state imply the stress–energy tensor
must take the perfect fluid form (5.37) in an FLRW universe; non-zero bulk viscosity
means that the fluid is not barotropic. Thus even in this case we will arrive at the same
dynamical equations for the universe as above. The same applies if we have a kinetic theory
description of matter (Section 9.5), or if scalar fields dominate (Section 9.7.3). In each
case (when we have a RW geometry) we will necessarily have a perfect fluid form for
the energy–stress tensor, with effective energy density and pressure related to the matter
properties via suitable equations of state, which embody the physics of the situation. The
same gravitational dynamical equations will apply in all cases. The key point is that ρ
should represent the sum total of all matter contributions to the energy density, whatever
they are; then the above equations will be universally valid.

There is an ambiguity with �. One can regard it as an extra term in the EFE, as indicated
above, giving an extra degree of freedom in the relation between the matter and the geometry;
or (following W. H. McCrea) one can regard it as a contribution to the matter term: as
mentioned above, it is a fluid with equation of state p =−ρ. We will adopt whichever of
these equivalent viewpoints is convenient for specific analyses.

9.2.2 Density parameters and dynamical properties

We utilize the standard definitions:

� := 8πGρ

3H 2
, �� := �

3H 2
, q :=− 1

H 2

ä

a
, (9.14)

which are the dimensionless density parameters and deceleration parameter. The Friedmann
equation then can be written

K

a2H 2
=�total − 1 ≡�+��− 1, (9.15)

showing that K > 0 (= 0, < 0) if �total > 1 (= 1, < 1) respectively. Defining a positive
density parameter for curvature, (9.15) becomes

�+��+�K = 1, �K =− K

a2H 2
. (9.16)

This leads to a representation of the matter, curvature and cosmological constant in a ‘cosmic
triangle’ (Bahcall et al., 1999).

The density parameter � as presented here represents the contribution to the energy
density of all matter and fields present: baryons, CDM, photons, neutrinos, but not the cos-
mological constant. It is often useful to separate out the matter and radiation contributions,
to give �=�m +�r; they will have different variations with time. We can further split the
matter into CDM and baryons, �m =�c+�b and the radiation into photons and neutrinos,
�r =�γ +�ν .
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Whatever the physics, we can define an effective (generically time-dependent) equation
of state parameter w(t)= p/ρ (note that this can be defined for a mixture of fluids, such
as matter plus radiation; one can also choose to include the cosmological constant). The
Raychaudhuri equation is then

q = 3
2�

(
w+ 1

3

)−��. (9.17)

Present-day values

The present-day values of these quantities (denoted as usual by a subscript 0) are related
by

2q0 =�0(1+ 3w0)− 2��0, (9.18)

from (6.9), where �0 +��0 +�K0 = 1. Observed redshifts plus distance estimates show
H0 ∼ 10−10yr−1 > 0. As both q0 and �0 are in principle observable, we can use these
equations to determine ��0 (and so �) and �K0.

Accelerating or decelerating?

Suppose we represent � as a component of the cosmic fluid. Then (9.17) shows that
w = −1/3 is a critical value separating decelerating periods (q > 0, w > −1/3) from
accelerating periods (q < 0, w <−1/3). Following Barrow (1993), we shall say the uni-
verse is inflationary when q < 0, for this is the essential feature which (if continued for
long enough) enables the horizon size to grow large relative to the visible region of the
universe. It is certainly satisfied during a period of exponential expansion. If at some time
the dominant dynamical feature of the universe is a cosmological constant, then it will be
in an inflationary phase.

Exercise 9.2.1 Derive equations (9.11)–(9.13) directly from (9.4). (Directly calculate the
restricted form of the Raychaudhuri equation, conservation equations, and Gauss equation
when the fluid only expands.)

Exercise 9.2.2 Suppose we examine an FLRW universe model from a 4-velocity that is tilted
relative to the surfaces of homogeneity. What are the effective equation of state of the matter
and field equations relative to this 4-velocity? (Coley and Tupper, 1983).

9.3 FLRW dynamics with barotropic fluids

If the total energy density is composed of matter and radiation, we can writeρ=ρm+ρr , and
correspondingly�=�m +�r . For present-day values�r0 ∼ 10−4,�m0 ∼ 0.3,��0 ∼ 0.7,
we obtain

2q0 ��m0 − 2��0, �K0 � 1−�m0 −��0. (9.19)

For best-fit current observationally determined values of the parameters, see Chapter 13.
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Dimensionless form

It is convenient to rewrite the Friedmann equation in terms of these dimensionless quantities
and the normalized scale factor y := a(t)/a0. The general result for a universe with non-
interacting matter and radiation is

ẏ2 =H 2
0

[
�m0y

−1 +�r0y
−2 +��0y

2 +�K0

]
, (9.20)

which is essentially quartic in y. In the pure matter case (�r = 0 = ��) this reduces to
ẏ2 =H 2

0 [2q0/y− (2q0 −1)], while in the pure radiation case (�m = 0=��) it reduces to
ẏ2 =H 2

0 [q0/y
2 − (q0 − 1)]. One application is to the age t0 of the universe, given by

t0 =
∫ 1

0

dy

ẏ
. (9.21)

Unique solutions to these equations, and so for a(t), are obtained from the initial data set
{a1,H 2

1 ,�m1,�r1,��1} at an arbitrary time t1. Note, however, that one-parameter families
of these parameters will represent the same cosmological model as seen at different times
(these parameters will vary with the chosen time t1). It is not obvious a priori which sets
of parameter values represent the same model.6 This is made clearest by the phase diagram
representations of their evolution (Section 9.4 below).

Dynamics:� = 0

Consider first the case when � = 0 and the energy conditions are satisfied. Following
the universe back into the past, there is a singular origin before the HBB era. If K < 0 or
K = 0 the universe expands forever in the future because by (9.13) ȧ is never zero; the scale
function a(t) is then unbounded in the future (Figure 9.1). IfK > 0 it will reach a maximum
value of a where ȧ = 0 and then recollapse to a future singularity, where the density and
temperature again increase without limit and spacetime again (at least on a classical view)
comes to an end. The physics of the collapse phase will be somewhat different from the
expansion phase (Rees, 1999) but essentially all complex objects will eventually be broken
down again to their constituent elementary particles in the Hot Big Crunch in the future, as
the photons successively become more energetic than each binding energy.

It is noteworthy that, when � = 0, the question of whether the universe recollapses in
the future or not is the same as whether it has positively curved space sections or not (see
(9.13)), and whether it is a high-density universe (�≥ 1) or not. Table 9.1 summarizes the
situation: here the first three columns are valid for any FLRW model; the last column is the
situation in the case that the universe is dominated by pressure-free matter at recent times.

It is not true that a ‘closed’ universe (with �= 0) will necessarily collapse in the future;
for example, we can have a K = 0 universe, with a torus topology as discussed above, that
is closed but expands forever. However, it is true that, on the one hand, an ‘open’ (infinite)
universe must have K = 0 or K < 0, and so cannot be a high-density universe: it must have

6 This is a special case of the equivalence problem for cosmological models; see Section 17.2.
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K < 0:aa a

a ∞

∞

∞

K > 0

a

K = 0:a

K > 0: collapses
     to second
         singularity

t t

(Einstein – de Sitter)

(a) (b)

(c)

always collapses to
second singularity

all K, but long
‘coasting time’

(Lemaitre models)
only for K > 0

Einstein static
universe for
given values of
Λ, ρ and
equation of state

t

Fig. 9.1 Scale factor a(t) for: (a)�= 0, (b)�< 0, (c)�> 0.

Table 9.1 The three kinds of behaviour when�= 0

K > 0 (spherical geometry) �> 1 recollapses q0 > 1/2
K = 0 (flat geometry) �= 1 just escapes q0 = 1/2
K < 0 (hyperbolic geometry) �< 1 expands forever q0 < 1/2

�≤ 1 and will expand forever, while on the other hand, every very high-density universe
(� > 1) is necessarily closed (has K > 0), and will collapse in the future.

Dynamics:� < 0

When�< 0, the universe necessarily collapses again in the future, irrespective of the value
of K .

Dynamics:� > 0

The greatest variety of behaviour can occur when �> 0. If K < 0 or K = 0, the universe
expands forever (for it would have done so if� had been zero; now� assists the expansion).
If K > 0, the universe can (after starting from a big bang) turn around and recollapse, or
expand forever, depending on the value of � and the density of matter. Then there are the
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unstable static solutions, and solutions asymptotic to them in the late future, either starting
from a big bang (and separating those that expand forever from those that recollapse), or
collapsing to a finite value from infinity. Finally there are models that collapse from infinity
to a finite radius, and then re-expand to infinity; and that start asymptotically in the past
at the Einstein static universe, and then expand forever.7 Note particularly that there are
some universes (the Eddington–Lemaître models) which expand through a HBB epoch and
eventually escape to infinity, but before doing so are almost static, being very close to the
Einstein static universe for a very long time.

9.3.1 Exact solutions

We have already obtained the Einstein static universe (Section 6.1.1). We now look at the
expanding solutions, first for vanishing � and then for non-vanishing �. To obtain exact
solutions, wehave to specify thematter precisely. In this section, weconsider non-interacting
pressure-free dust (‘baryons’) and radiation, possibly with a cosmological constant. In later
sections we consider other possibilities (scalar fields, a kinetic theory description, and
irreversible processes). For most choices only a qualitative or numerical description is
available.

Matter plus radiation (� = 0)

We consider first a non-interacting mixture of pressure-free matter and radiation, with�= 0.
It is convenient to rewrite the Friedmann equation (9.20) for this case in the form

ẏ2 = (a0y)
−2[α2

r + 2αmy−Ky2], (9.22)

where αm := a2
0H

2
0�m0/2, αr := (

a2
0H

2
0�r0

)1/2
. If we choose the form (9.9) for the metric,

i.e. with K = 0,±1 and where a has dimension length, then the general solution can be
written in parametric form in terms of the dimensionless conformal time τ := ∫

dt/a(t).
We set t = τ = 0 when a = 0, and obtain:

K > 0 : a = a0
[
αm(1− cosτ)+αr sin τ

]
,

t = a0
[
αm(τ − sin τ)+αr(1− cosτ)

]
, (9.23)

K = 0 : a = a0
[ 1

2αmτ
2 +αrτ

]
, t = 1

6a0
[
αmτ

3 + 3αrτ
2], (9.24)

K < 0 : a = a0
[
αm(cosh τ − 1)+αr sinh τ

]
,

t = a0
[
αm(sinh τ − τ)+αr(cosh τ − 1)

]
. (9.25)

It is interesting how in this parametrization the dust and radiation terms decouple; this
solution includes generic pure dust solutions, αr = 0, and generic pure radiation solutions,

7 As well as the time-symmetric versions of each solution, which we take for granted.
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αm = 0. The general case represents a smooth transition from a radiation-dominated early
era to a matter-dominated later era, and (if K �= 0) on to a curvature-dominated era.

Einstein–de Sitter universe

Particular cases allowing simpler representation are of interest. The simplest expanding
pure matter solution (p = 0 ⇒ ρr = �r = 0, � = 0) is the Einstein–de Sitter universe,
spatially flat (K = 0) and self-similar:

a(t)=Am(t − tm)
2/3, Ȧm = 0 = ṫm . (9.26)

It is a high-density universe, with age close to the Hubble time:

�= 1, q0 = 1/2, (9.27)

t0 = 2
3H0

−1. (9.28)

Milne universe

The simplest expanding empty universe model is the Milne universe, characterized by
ρm = ρr = 0 ⇒ �= 0, �= 0, q0 = 0, K < 0. The Friedmann equation is dominated by
the 3-space curvature, and

a(t)= t − t∗, (9.29)

t0 =H−1
0 . (9.30)

(The normalization factor in a is necessarily 1 because K < 0.) This is in fact the flat
spacetime of Special Relativity with a cloud of test particles expanding uniformly in it;
that is, gravity does not curve the spacetime at all (this is possible because, dynamically
speaking, the universe is taken to be empty; and we know the FLRW family of models are
conformally flat). This model is the asymptotic future state of low-density universes with
vanishing �.

Models with� �= 0

In general these are more complex than those discussed above. However, in the case of pure
radiation plus a cosmological constant, the equation (9.20) only involves even powers of
y; so, on defining ξ = y2, simple analytic solutions exist again for all values of K .

de Sitter solution

The simplest solution with a cosmological constant is the empty de Sitter solution, charac-
terized by p= ρ = 0, �> 0. The Raychaudhuri equation becomes ä=�a/3, with solution

a =Aexp
[√

�/3(t − t∗)
]
+B exp

[
−√�/3(t − t∗)

]
, (9.31)



217 9.3 FLRW dynamics with barotropic fluids

where the constants A,B can be rescaled by choice of the constant t∗. The Friedmann
equation then imposes 4AB�= 3K . Thus,

K > 0 ⇒ a =√
3K/�cosh

√
�/3 t , (9.32)

K = 0 ⇒ a =Aexp
√
�/3 t , (9.33)

K < 0 ⇒ a =√−3K/�sinh
√
�/3 t . (9.34)

These are all forms of a four-dimensional spacetime of positive constant curvature:
Cabcd=0, Rab − 1

4Rgab = 0, so the only non-zero curvature tensor component is the
Ricci scalar R > 0. The model has the same maximal amount of symmetry as Minkowski
spacetime, invariant under a 10-dimensional group of symmetries. The different FLRW
forms with space sections of positive, zero or negative curvature take advantage of vari-
ous subgroups of this full symmetry group. One can represent the de Sitter universe as a
four-dimensional hyperboloid imbedded in a five-dimensional flat spacetime; only the first
set of coordinates (9.32) covers the whole hyperboloid. Only a part of the hyperboloid is
covered by the other coordinates, so they represent geodesically incomplete parts of this
spacetime (Schrödinger, 1956, Hawking and Ellis, 1973).

The non-uniqueness of the 4-velocity that allows these different FLRW forms for the
same spacetime arises because all timelike vectors are eigenvectors of the Ricci tensor (if
we write the stress tensor in the perfect fluid form, it satisfies the exceptional equation of
state ρ+p= 0) and it has many different spatially homogeneous spatial sections. Thus we
have different universe models for the same spacetime (given by different choices of the
fundamental velocity field ua in that spacetime). As well as these FLRW forms, we can
also choose coordinates representing part of the same spacetime in a static, inhomogeneous
(and so non-FLRW) form.8

The exponentially expanding form of the model (9.33) is a self-similar solution, and is in
a steady state: although the universe is expanding, the expansion does not vary with time:
H =√

�/3= const, and no other physical invariant changes. This is only possible because
it is an empty universe; the density also stays constant – at zero. Of course the cosmological
constant term may be regarded as an energy density, e.g. of the vacuum.

Because the flat de Sitter universe is in a steady state, there is no origin and no end
to the expansion of the universe. It is this form that became the Steady State universe in
1948, proposed by Bondi and Gold purely as a kinematic model satisfying the Perfect
Cosmological Principle that it is unchanging in time as well as space (Bondi, 1960). Hoyle
(1948) suggested a modification of Einstein’s field equations, by addition of a creation field
that would allow a non-zero density of matter to expand while the energy density remained
constant because of the continuous creation everywhere of new matter. It predicts q0 =−1.
It was contradicted by the evidence of evolution of the density of radio sources in the past,
and was finally dropped as a serious contender when the CMB was discovered.

Because it only covers half the full de Sitter hyperboloid, the flat-sliced model is geodesi-
cally incomplete in the past (Penrose, 1999). It is a singular universe, as it has a boundary
at a finite distance from any spacetime point (Ellis and King, 1974). Inflationary models of

8 This is analogous to the Rindler form of Minkowski spacetime.
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the early universe (Section 9.4) are close to the exponentially expanding de Sitter model.
Current data are consistent with a model dominated by positive �, and in this case our
observed universe domain would be asymptotically de Sitter.

Anti-de Sitter solution

The anti-de Sitter universe is the companion spacetime of constant spacetime curvature,
but with opposite curvature: R < 0. It can be represented in FLRW form by the metric

ds2 =−dt2 + cos2 t
[
dχ2 + sinh2χ(dθ2 + sin θ2dφ2)

]
. (9.35)

This coordinate system, however, only covers part of the spacetime; unlike the de
Sitter space, the whole of this spacetime is covered by a static coordinate system
(Hawking and Ellis, 1973). This metric is not a good representation of the real universe
because it requires�< 0, in contradiction to observations, but it seems to play a fundamental
role in string theory, in particular because of the AdS/CFT correspondence (Section 20.3).

9.3.2 Early and late solutions

In this section, we consider only ordinary matter, i.e. we assume that 0 ≤ w ≤ 1, but we
include the possibility of non-zero �.

Solutions at large a:� = 0

If the universe expands to arbitrarily large values of a at late times, and �= 0, then K = 0
or K < 0. The asymptotic solution depends on the value of K .

If K < 0, the curvature term will dominate the Friedmann equation (9.13) at late enough
times. Thus the asymptotic form of equation (9.13) is just the asymptotic form of (9.20):
ẏ= 1/a0, leading to the Milne solution (9.29) as the asymptotic solution for the regime when
the effect of the matter can be neglected relative to the curvature term. As the universe’s
expansion slows down at late times, most of the expansion, in terms of elapsed proper time,
will take place when this asymptotic form is valid; thus for most of its history, the formula
(9.30) would give a good estimate of the age of the universe.

If K = 0, the matter term in (9.20) will dominate at late times, leading to the Einstein–de
Sitter solution (9.26) as the asymptotic solution.Again the universe’s expansion slows down
at late times; thus for most of its history, the formula (9.28) would give a good estimate of
the age of the universe.

Solutions at large a:� > 0

If � �= 0, it must be positive for a long-term expansion of the universe, and the late-time
asymptotic solution will be the exponential form (9.33) of the de Sitter universe (whatever
the value of K), valid when � dominates the matter and curvature terms. In this case the
age of the universe and the Hubble parameter are unrelated at most times.
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Solutions in the HBB era

At early enough times near the initial singularity, the energy density term will dominate
the Friedmann equation (9.13) (independent of the values of � or K). Thus the effective
equation at early times will be 3ȧ2 = 8πGρa2. For the HBB case of a radiation-dominated
early universe (w = 1/3), we obtain the Tolman model,

a =Ar(t − tr)
1/2, ρ = (3/32πG)(t − tr)

−2. (9.36)

The unique relation T = (3/32πGaR)
1/4(t − tr)

−1/2 between temperature and time in
the early universe leads to the standard nucleosynthesis predictions, in agreement with
observations (Section 9.6.6) – with essentially no free parameters.

9.3.3 Combined solutions

For many purposes the dynamics of the universe are adequately described by (9.26) after
decoupling, when it is matter dominated (until the cosmological constant takes over at
fairly recent times), and by (9.36) at early times when it is radiation dominated (after an
inflationary epoch and before equality). If we wish to describe a single model by (9.36)
at early times and (9.26) at late times, then we need to use the freedom in Am, tm,Ar and tr,
to ensure that at the changeover time teq both a(t) and ȧ(t)must be continuous (see Exercise
9.3.3). The same is true for a changeover from an inflationary era to radiation domination
in the early universe, and from matter domination to an accelerated era in the late universe
(Ellis, 1988).

Viscous eras

Irreversible events certainly occur in the early universe, for example during baryosynthesis,
nucleosynthesis, the decoupling of matter and radiation and star formation. To illustrate the
effect of irreversibility on dynamics, one can obtain exact solutions of the FLRW equations
for simple cases of fluids with bulk viscosity (Treciokas and Ellis, 1971) (because of the
RW symmetry, heat conduction and shear viscosity will have no dynamical effect). A more
realistic treatment is based on kinetic theory (see Section 9.6.4).

Ages

There are simple inequalities between the age of the universe t−0 and the Hubble constant
H0 when�= 0. It is reasonable to assume that at late times but before� dominates, the age
depends essentially only on the time spent in the late ‘dust’ (pressure-free) epoch. Then in
a low-density universe (0 ≤�< 1), we have 2/3H0 < t0 ≤ 1/H0; while in a high-density
universe, 1 ≤ �, 1/2H0 ≤ t0 ≤ 2/3H0. When � > 0, one can get ages much higher than
1/H0; and this is always a recourse when it seems that we are finding objects in the universe
older than 1/H0. We can in each case find explicit formulae for the age from (9.21).

Exercise 9.3.1 Given suitable equations of state, determine the unique Einstein static value
of a in terms of constants describing the amount of matter and radiation present.
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Exercise 9.3.2 Obtain the condition separating the universe models that expand forever from
those that recollapse, when �> 0, K > 0.

Exercise 9.3.3 Determine the conditions on Am,Ar and tm, tr leading to continuity of a(t)
and ȧ(t) at the transition from radiation domination to matter domination.

Exercise 9.3.4 Obtain exact formulae for the age of the universe t0 in terms of the Hubble
constant H0 and deceleration parameter q0 when � = 0 = p. [Separate formulae apply
when K = 0, > 0, and < 0.] Prove the inequalities cited above.

9.4 Phase planes

It is useful to represent the dynamics of the universe in terms of various ‘phase planes’,
showing the set of FLRW models in terms of pairs of suitable parameters and how these
parameters evolve with time. Phase planes for the case�= 0 are given by Gott et al. (1976),
characterizing the universe by the Hubble constant H0 and density parameter �0. Another
version is given in Rindler (1977). Because we now have evidence that �> 0, while these
help to understand the behaviour of families of FLRW models, they will only represent the
real universe reasonably well for a limited part of its evolution, and will not relate these
models well to present-day observational parameters.

A version allowing non-zero � was given by Stabell and Refsdal (1966), with plots of
q0 versus �0/2. Flow lines of the dynamical system (p= 0 solutions) and ‘equal age’ lines
are plotted there. Lines of constant K and constant � are invariant curves in this diagram,
which has the Einstein–de Sitter model (q0 = 1/2=�0/2) as a ‘source’, the Milne universe
(�0 = 0, q0 = 0) as an unstable limit point and the de Sitter universe (�0 = 0, q0 =−1)
as a ‘sink’.

9.4.1 Matter, radiation and�

The extension of the Rindler diagram to the case of a non-interacting mixture of matter
and radiation is given by Ehlers and Rindler (1989). This is a three-dimensional phase
space because the matter and radiation vary differently. It shows how a skeleton of higher
symmetry (self-similar) solutions act as sources, attractors and saddle points guiding the
evolution of the more general solutions (see also Section 18.4).

This three-dimensional phase space, shown in Figure 9.2, contains various invariant
planes, corresponding to first integrals of the dynamics.These are shown in the lower panels:
(ii) is the plane of zero radiation (Stabell and Refsdal, 1966), (iii) is the plane of zero matter,
(iv) is the plane of �= 0, and (v) is the plane of K = 0. The background dynamics of the
real universe will differ only at times of significant matter–radiation interaction.

The phase planes show the Tolman (Pr ) and Einstein–de Sitter (Pd ) models as sources,
and the Milne universe (M) as an attractor in the plane �= 0 but a saddle point in the three-
dimensional phase space. The de Sitter universe (S) is an attractor in the three-dimensional
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phase space; that is what underlies the way the inflationary universe works (Section 9.4).
Each of those exact solutions is a fixed point in the phase plane, hence each is a self-similar
solution. The separatrix E1 divides models that expand forever from those that recollapse,
and E2 divides universes with a singular start from those without an initial singularity (the
collapse from infinity and bounce, due to the cosmological constant).

But there is a problem with this phase diagram: it cannot represent the whole trajectory if
the universe recollapses because the variables used are singular there (H → 0⇒�→∞),
and it does not show what happens at infinity. One needs an extended and compactified
phase plane to get complete histories (Section 18.4).An example is given in the next section.

9.4.2 Density parameter� versus scale factor a

We can obtain (�,a) phase planes for universes where the total pressure p and total energy
density ρ (here, including the cosmological constant) are related by p = wρ provided
w =w(�,a) (Madsen and Ellis, 1988).
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The Raychaudhuri equation gives

d�

da
=H�(�− 1)(1+ 3w), (9.37)

valid for any w – but the equation gives a (�,a) phase plane flow if w =w(�,a) (and in
particular if w = w(a) or w =const). It immediately follows that both � = 0 and � = 1
are solutions of (9.37), no matter what form w(a) takes; on the other hand if w(a) =
−1/3 for all a (the critical equation of state such that q = 0), then � = �0 is a solution
for all values of �0. Furthermore, combining these equations gives d�/da = −2q(1 −
�)/a, showing that the signs of d�/da and q are the same when �> 1, and d�/da = 0
when q = 0.

During an epoch of constant w, when the universe is dominated by a simple one-
component fluid, we find that d2�/da2 = (1+ 3w)(1−�) [(1+ 3w)(1− 2�)+ 1]�/a2.
Apart from the special cases w = −1/3, � = 0, and � = 1, this vanishes when � =
[2(3w+ 1)]−1 + 1/2. We can find the explicit solutions, either directly or by integrating
the conservation equations to get ρ = ρ0y

−3(1+w). We obtain

�=�0

[
�0 − (�0 − 1)y1+3w

]−1
. (9.38)

The behaviour is quite different if w >−1/3 or w <−1/3, see Figure 9.3 and 9.4. In the
critical case w =−1/3, as mentioned above, �=�0 is a solution for all �0, so the phase
curves in the (�,a) plane are simply horizontal lines.

In the case w>−1/3, it is awkward to see what happens at late times, so it is convenient
to transform the variables to bring the infinities of both a and � to a finite value (e.g.
change to (s,ω) where s = arctan(lna), ω= arctan(ln�)). To obtain the complete picture,
we then have to adjoin to the axis where � runs from zero to infinity a further axis segment
where it decreases back from infinity to zero (see Figure 9.3, bottom panel). The bottom
half then represents the expansion phase of the universe and the top half the contraction
phase (if there is one). Non-static solutions can be followed through turnaround points
where ȧ = 0 (and so � is infinite) because there H → 0, and � → ∞ like 1/H 2; also,
�̇→∞.

The complete plane is time symmetric, representing all solutions (expanding and con-
tracting). We see that all expanding solutions start asymptotically (when a→ 0) at �= 1.
If K < 0, then the universe expands forever and � → 0. If K = 0, then the universe
expands forever and � = 1 at all times. If K > 0, the universe expands to a maximum
radius where it turns around (at the point on the flow line where � = ∞) and collapses
to a second singularity where � → 1 again. This form of solution will hold in partic-
ular for a pure dust or pure radiation solution. The dust phase planes are illustrated in
Figure 9.2.

In the case w<−1/3, the opposite behaviour happens (see Figure 9.4). Now the energy
conditions are violated so the family of solutions with K > 0 collapse from infinity (�= 1)
to a finite minimum radius and then re-expand to infinity. The K = 0 solutions expand
forever with �= 1 always. The K < 0 solutions expand from �= 0 to �= 1; in fact, in
all cases the future form has �= 1 (the asymptotic de Sitter solution). It is this driving of
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� to 1 that underlies the usual inflationary universe picture. There is a strong similarity
between these behaviours, shown by inverting the plots right to left. This similarity is rooted
in an exact symmetry: the flow equations are invariant under the transformation y → 1/y,
1+ 3w→−(1+ 3w).

Inflationary universe models correspond to a combination of these diagrams (see
Figure 9.5). Suppose the universe starts at time t = 0 (which is not inevitable: it could
have existed forever, see the discussion of the emergent universe below) and is initially
in a radiation-dominated phase, then inflation starts at time ti and ends at tf . From t = 0
until t = ti the universe is a w > −1/3 model (as in Figure 9.3), from t = ti to t = tf

it is a w < −1/3 model (as in Figure 9.4), and from t = tf either forever (in a universe
without a cosmological constant) or until some late time t� when a cosmological constant
dominates again, the universe is aw>−1/3 model. Some interesting new features emerge,
in particular there is now an unstable Einstein static universe that is a saddle point for the
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solutions. There are also non-singular inflationary models that never encounter an initial
singularity.

The present time t0 will be some time greater than tf ; it is clear from the phase plane
that in principle one can find inflationary universes with any value whatever for the density
parameter �0 at the present time t0 (Ellis, 1988). The same result will hold in universes
with a non-zero cosmological constant causing accelerated expansion at late times, when
a further segment with w < −1/3 needs to be added to the model for t > t�. This might
be a realistic phase plane for the dynamics of the real universe. All of this is shown in
Figure 9.5.

Exercise 9.4.1 Determine the (�,a) phase planes for the case of ordinary matter plus a
positive�. Show that the Einstein static universe is a saddle point at the centre of this phase
plane. It consists in effect of back to back copies of Figures 9.3 and 9.4, joined at the value
of a(t) where matter domination gives way to a cosmological constant-dominated epoch
(Madsen and Ellis, 1988). This is the phase plane like Figure 9.5 for the case where there
is additionally a late-time acceleration period driven by �.
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9.5 Kinetic solutions

Exact kinetic theory solutions may also be found. Here we give a particular example of
interest. Recall (Section 5.4) that a distribution function f (x,p) for collision-free particles
at x with 4-momenta p evolves according to the Liouville equation df /dτ = 0, and the
matter tensor is determined by T ab = ∫

papbdP where dP is the volume element on the
tangent space at x. For particles of a single rest mass m= (−papa)

1/2, we have a solution
of the Liouville equation in a K = 0 FLRW model if

f = F(ξ), ξ := (E2 −m2)1/2a(t), (9.39)
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for arbitrary F(ξ), where E =−paua is the particle energy relative to ua . Then the energy
density and pressure are

ρ = 4π

a4(t)

∫ ∞

0
ξ2[ξ2 +m2a2(t)]1/2F(ξ)dξ , (9.40)

p = 4π

3a3(t)

∫ ∞

0
ξ4[ξ2 +m2a2(t)]−1/2F(ξ)dξ . (9.41)

From the Friedmann equation, we have a solution of all 10 EFE for an arbitrary choice of
F(ξ) if

t =
√

3

32πG

∫ a2

0

[
4π

∫ ∞

0
ξ2(ξ2 +m2u)1/2F(ξ)dξ

]−1/2

du. (9.42)

(Ehlers, Geren and Sachs (EGS), 1968, Ellis, Matravers and Treciokas, 1983a).

Exercise 9.5.1 Determine the effective equation of state parameter w = w(t) for the kinetic
theory solution given above, (a) for m �= 0; (b) for m= 0. What is the form of the relation
w =w(ρ)?

Exercise 9.5.2 Determine the kinetic theory FLRW solutions for K �= 0.

9.6 Thermal history and contents of the universe

In this section, we provide a brief and mainly qualitative overview of the current understand-
ing of the contents and thermal history of the universe. For a more detailed discussion, see
Mukhanov (2005), Durrer (2008) or Peter and Uzan (2009). Milestones in the history of the
universe are illustrated in Table 9.2. For times t > 10−10 s, the physics is known, based on
GR and the Standard Model of particle physics, with its minimal extensions, e.g. to incorpo-
rate massive neutrinos. (However, note that the electroweak and quark–hadron transitions
are still not well understood.) For t < 10−10 s, the physics is uncertain, more so as we go
further back. The Large Hadron Collider, which is in the initial stages of operation at the
time of writing, is probing energies � TeV, at the interface of known and unknown physics.

9.6.1 The universe at t< 10−10 s: uncertain physics

Around and before the Planck time, t � tP ≈ 10−43 s, we expect that GR breaks down
and gravity should become a quantum interaction. The nature of this quantum gravity era
remains speculative in the continued absence of a satisfactory quantum gravity theory. We
shall discuss some of the issues arising from this, and discuss the candidate quantum gravity
theories such as string theory, in Chapter 20.

At energies below the Planck scale but above the electroweak unification scale, we
expect that the electromagnetic, weak and strong interactions will be unified. There are
candidate Grand Unified Theories, mainly based on supersymmetry – which relates bosons
to fermions, so that each fermion has a boson superpartner, and vice versa. Supersymmetric
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Table 9.2 History of the universe. (Numerical values are approximate. Adapted from Baumann (2009).)

Time Energy Redshift

Quantum Gravity era? < 10−43 s 1019 GeV
Grand Unification? ∼ 10−36 s ∼ 1016 GeV
Inflation & reheating? � 10−34 s � 1015 GeV
CDM decoupling? < 10−10 s > 1 TeV
Baryogenesis? < 10−10 s > 1 TeV

Electroweak unification ∼ 10−10 s 0.1−1 TeV
Quark–hadron transition ∼ 10−4 s 0.1−0.4 GeV
Neutrino decoupling 1 s 1 MeV
Electron–positron annihilation 4 s 0.5 MeV
Nucleosynthesis 200 s 0.1 MeV 108

Matter–radiation equality 104 yrs 1 eV 104

Photon decoupling 4× 104 yrs 0.1 eV 1,100
Dark Ages 105 − 108 yrs > 25
Reionization 108 yrs 25−6
Galaxy formation ∼ 6× 108 yrs ∼ 10
Dark energy era ∼ 109 yrs ∼ 2
Solar system 8× 109 yrs 0.5
Today 14× 109 yrs 1 meV 0

string theory provides a unification of the three interactions, but with a wide range of possible
mechanisms and energy scales. The typical energy scale in GUTs is MGUT ∼ 1016 GeV.

Currently the most successful phenomenology we have for understanding the very early
universe is inflation, which is discussed in the following section.This is typically expected to
take place at an energy scale � 1015 GeV. Inflation provides a framework for understanding
how the apparently causally disconnected regions of the observable universe happen to
have the same CMB temperature, and it also predicts the generation of fluctuations that
seed the growth of large-scale structure. However, it does not address the problems of
grand unification or quantum gravity.

At the end of inflation, the observable universe is cold and essentially empty of matter: the
universe is reheated and populated with particles via the decay of the inflaton field. Between
reheating and the electroweak transition, a number of crucial processes are expected to occur,
all of them beyond the reach of the Standard Model of particle physics, and all remaining
uncertain at the time of writing. They include the problem of identifying the dark matter
particle and the problem of baryogenesis.

One of the major problems in cosmology is to account for the matter/anti-matter asym-
metry, i.e. the fact that we only observe matter in stars and galaxies (apart from high-energy
collisions that can produce anti-particles, which rapidly annihilate). In the very early Uni-
verse, we expect that some mechanism generated a baryon asymmetry which led to the
baryonic structures that we observe. This is known as the problem of baryogenesis. A
baryogenesis mechanism can be based in the Standard Model, but it produces far too little
asymmetry. Baryogenesis requires a process that is strongly non-equilibrium, that violates
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baryon number conservation, and that violates CP (charge conjugation and parity). Various
models have been proposed, typically based on supersymmetry and GUTs.

Most extensions of the Standard Model are based on supersymmetry. The Minimal Super-
symmetric Standard Model (MSSM) adds only those particles required by supersymmetry,
i.e. the superpartners, and an enlarged Higgs sector. This has more than 100 undetermined
parameters, since colliders have not yet probed the higher energy scales. This number of
parameters can be strongly reduced by using ideas from GUTs and supergravity theories,
leading to the Constrained MSSM (CMSSM). See Olive (2010) for a discussion.

9.6.2 Candidate particles for cold dark matter

The cosmological and astrophysical evidence for dark non-baryonic matter is strong (see
Section 12.3.1 and 12.3.2). Although massive neutrinos are non-baryonic and dark, they
are not cold, and they erase perturbations on large scales in contradiction to observations.
The Standard Model of particle physics does not provide a suitable CDM candidate, i.e.
a non-baryonic cold, stable and neutral particle. There are a number of candidate CDM
particles based on supersymmetric and other extensions of the Standard Model (see Feng
(2010) for a review).

The leading candidates are probably WIMPs – weakly interacting massive particles –
that are stable supersymmetric partners. Supersymmetric extensions of the Standard Model
include a number of light supersymmetric particles, such as the neutralino, sneutrino and
gravitino, which interact with the W±,Z0 bosons but not the photon or gluons. Since these
particles have not been detected at the time of writing, their masses and cross-sections are
unknown, although limits may be imposed from collider and cosmological observations.
The WIMPs can be either thermal relics – i.e. in equilibrium with the cosmic plasma before
decoupling, or non-thermal relics, which are produced by a non-thermal mechanism.

Thermal relics are non-relativistic at the time of decoupling, i.e. when they fall out of
equilibrium with the primordial plasma because the interaction rates that keep them in
equilibrium fall below the Hubble expansion rate. They have mass m� 1keV, and have a
relic density depending on their mass and cross-section.An example is shown in Figure 9.6.
A candidate WIMP is the neutralino, whose mass is constrained by cosmology and collider
experiments to be in the range 100GeV �mχ � 400GeV.

Axions are an example of a non-thermal relic. They form a weakly interacting scalar
field condensate, which enforces zero momentum, so that axions can behave as CDM even
though their mass is very small, ma < 0.01eV. Axions arise from a simple extension of the
Standard Model, and in the presence of magnetic fields they can oscillate into photons.

Note that there are also candidate particles for ‘warm dark matter’, which are relativis-
tic at decoupling but non-relativistic before matter–radiation equality, with mass of order
0.1− 1keV. Examples are sterile neutrinos and gravitinos.

9.6.3 The Standard Model: electroweak and quark–hadron transitions

The Standard Model applies for energies below the electroweak transition (though the
electroweak and quark–hadron transitions are only partly understood, given the complexities
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Table 9.3 Standard model of particle physics

Family Spin Particles

baryons (qqq) n+ 1
2 , n= 0,1,2, . . . p+,n,�, . . .

mesons (qq̄) n, n= 0,1,2, . . . π0,±,K0,±, . . .
leptons 1

2 e−,µ−,τ−; massless: νe,νµ,ντ
gauge fields 1 Z0,W±; massless: γ ,ga

of strong coupling and non-equilibrium processes). It incorporates the strong, weak and
electromagnetic interactions, with symmetry group

SU(3)c×SU(2)L×U(1)Y . (9.43)

The strong interaction is mediated by eight massless neutral gauge bosons ga (gluons),
the weak interaction by three massive charged bosons Z0,W± (vector bosons), and the
electromagnetic interaction by the massless neutral photon γ . Quarks and anti-quarks make
up the baryons (fermionic) and mesons (bosonic) – collectively known as hadrons, which
are the particles that feel the strong interaction (and also the weak interaction). Hundreds of
hadrons have been observed so far. The leptons (fermionic) are the charged electron, muon,
taon and their associated neutral massless neutrinos. Leptons feel the weak interaction. The
overall structure is summarized inTable 9.3. It is now known that at least two of the neutrinos
must have mass, so that an extension of the Standard Model is needed to incorporate this
feature.
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This model accounts for all particles observed in colliders and particle detectors, provided
we introduce the Higgs mechanism to break the electroweak symmetry, SU(2)L×U(1)Y →
U(1)em. It is estimated that this happens at∼ 100GeV.At higher energies, theW±,Z0 bosons
are massless, and interaction rates are rapid enough (i.e. �H ) to keep quarks and leptons
in equilibrium. At lower energies W±,Z0 acquire mass, and the cross-section of the weak
interaction decreases. This leads to neutrino decoupling at ∼ 1MeV, as discussed below.

For T � 200MeV, the quarks and gluons interact only weakly with each other. Below this
temperature, the strong interaction increases in strength sufficiently to confine the quarks
and gluons within hadrons.

9.6.4 Kinetics and thermodynamics of the hot Big Bang

The basic idea in understanding many of the key developments in the evolution of the
universe is this: interaction rates which keep particles in equilibrium are determined by the
temperature and by the number density of particles, since particles must be able to find
each other to interact. As the universe expands, the number densities fall and therefore
the interaction rates fall. Thus there is a tendency for species of particles to fall out of
equilibrium and to decouple from the thermal plasma. This is characterized by the behaviour
of the interaction rate I of species I relative to the Hubble rate H at temperature T , the
plasma temperature:

equilibrium: I �H , TI = T ; decoupling: I �H , TI �= T . (9.44)

Note that, after electron–positron annihilation at t ∼ 1s, the huge number of photons
per baryon, ∼ 109, means that T = Tγ , the temperature of the photons (with blackbody
spectrum).

Particle species in equilibrium with the thermal plasma have Fermi–Dirac (+) or Bose–
Einstein (−) distribution functions (5.103):

FI (E,T )= 1

(2π)3
gI

exp[(E−µI )/T (t)]± 1
, (9.45)

where gI is the degeneracy factor (determined by quantum statistics), µI is the chemical
potential, and each particle energy is given by its 3-momentum and mass as E = (p2 +
m2
I )

1/2. Then FI determines the number density nI , energy density ρI and pressure pI as
integrals over momentum space (see Section 5.4). The important limiting cases are

T �m,µ : n= c1gT
3 , ρ = c2gT

4 , p = 1
3ρ , (9.46)

T �m : n= g
( m

2π

)3/2
T 3/2e(µ−m)/T ,

ρ = (
m+ 3

2T
)
n , p = nT , (9.47)

where

bosons: c1B = ζ(3)

π2
, c2B = π2

30
, (9.48)

fermions: c1F = 3
4c1B , c2F = 7

8c2B . (9.49)
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It follows that in the radiation era, the total density is

ρr(T )= π2

30
g∗T 4 , g∗ =

∑
I

αI gI

(
TI

T

)4

, (9.50)

where αI = 1 for bosons and αI = 7
8 for fermions. g∗ is the effective number of ultra-

relativistic degrees of freedom. It changes with T , as various species decouple, from
g∗ ∼ 100 after the electroweak transition, to g∗ = 2 after electron–positron annihilation.

The temperature satisfies

T ∝ 1

a
= 1+ z , (9.51)

and the Hubble rate and cosmic time are

H(T )=
(

4π3G

45

)1/2

g
1/2∗ T 2 ≈ 1.7g1/2∗

T 2

MP

, (9.52)

t(T )≈ 0.3g−1/2∗
MP

T 2
≈ 2.4g−1/2∗

(
MeV

T

)2

s . (9.53)

Photons are not conserved, since they can be created or annihilated in inelastic scatterings
such as Brehmsstrahlung, e+ p ↔ e+ p+ γ . This requires that µγ = 0. If a particle is
kept in equilibrium with its anti-particle by reactions of the form I + Ī ↔ γ + γ , e.g.
electrons and positrons, then it follows that µI = −µĪ . At high temperatures, T � mI ,
(9.46) implies that

nI −nĪ ≈
gI

6π2
T 3

[
π2

(µI

T

)
+
(µI

T

)3
]

. (9.54)

Thus there is an asymmetry between particles and anti-particles. At lower temperatures,
T <mI , the particles annihilate to produce photons. Only a small excess of particles over
anti-particles survives, given from (9.47) by

nI −nĪ ≈ 2
(mI

2π

)3/2
T 3/2e−mI /T sinh

µI

T
. (9.55)

In the case of electrons, this small excess of surviving electrons corresponds to about 1
electron to 109 photons. Note that electrical neutrality of the universe implies that np =
ne−nē.

As discussed in Section 5.2, the entropy density s satisfies

(sa3)· = −µ

T
(na3)· , s := ρ+p−µn

T
. (9.56)

In the cosmological case, either na3 is constant (particle number conservation), or µ� T ,
so that we have conservation of the entropy S = sa3, and

s = 2π2

45
q∗T 3 , q∗ =

∑
I

αI gI

(
TI

T

)3

. (9.57)
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The photon number density is proportional to the entropy and therefore is a good measure
of entropy. This follows from (9.46) and (9.57):

nγ = 45ζ(3)

π4q∗
s ≈ 1

1.8q∗
s . (9.58)

Note that when all particles are in equilibrium, then q∗ = g∗.
The process of decoupling of a species I is a non-equilibrium process. However, the final

decoupled state, when the I particles are free-streaming, is another equilibrium state. In
addition, the particles maintain the form of their distribution function, since only their 3-
momentum redshifts, p(t)= p(tdec)a(tdec)/a(t). Thus for t > tdec, the distribution satisfies
FI (p, t) = FI [a(t)p/adec, tdec]. If decoupling takes place when the species is relativistic,
i.e. T �m,µ, then

FI (p, t > tdec)= 1

(2π)3
gI

exp[E/TI (t)]± 1
, TI (t)= Tdec

adec

a(t)
. (9.59)

The decoupled temperature redshifts like the photon temperature, TI ∝ a−1, and the entropy
SI is separately conserved. If the species becomes non-relativistic at a time tnr � tdec, then
the distribution maintains the form above, with E ≈mI . This is the case, for example, with
massive neutrinos.

The total entropy S is constant, and the decoupled species has constant entropy SI . Thus
the entropy of the remaining species in equilibrium with the photons,

S−SI = 2π2

45
qγ (T )T

3a3 , qγ (t)≡
∑
J �=I

αJ gJ

(
TJ

T

)3

, (9.60)

is also constant. It follows that after I -decoupling, the temperature of the plasma is given by

T ∝ q−1/3
γ a−1 . (9.61)

If the number of relativistic species does not change, then the temperature redshifts as a−1.
When a species becomes non-relativistic, its entropy is transferred to the relativistic species
in thermal equilibrium, and the plasma undergoes a consequent heating in a short time. This
increase in temperature is given by

T (tdec + ε)=
[
qγ (tdec − ε)

qγ (tdec + ε)

]1/3

T (tdec − ε) , (9.62)

while the temperature of the decoupled species is given for t > tdec by

TI =
[

qγ (T )

qγ (Tdec)

]1/3

T . (9.63)

(We have assumed that qI remains constant.)

9.6.5 Neutrinos

At high T , electron neutrinos are in equilibrium via the weak interactions

νe+ ν̄e ↔ e+ ē , νe+ e↔ νe+ e . (9.64)
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Similar interactions affect the νµ,ντ neutrinos, but since the number densities of µ and
τ are negligible at T = O(TeV) compared to the density of electrons, νµ,ντ are coupled
more weakly, and therefore decouple earlier than the electron neutrinos. At early times it is
a good approximation to treat the neutrinos as massless.

The weak cross-section is σw ∼ G2
F T

2, where GF is the Fermi coupling constant, for
neutrino energiesE�me, and so the interaction rate is= n〈σwv〉∼G2

F T
5. Using (9.52),



H
∼
(

T

1MeV

)3

. (9.65)

Thus neutrinos decouple at Tdec ∼ 1MeV. The neutrino temperature remains equal to the
photon temperature, Tν = T ∝ a−1, until the temperature drops below the electron mass. For
Tdec >T >me, there are four fermion states (ge = gē = 2) and two boson states (gγ = 2) in
equilibrium.WhenT <me, after electron–positron annihilation, only the photons contribute
to qγ . Thus,

qγ (T >me)= 11
2 , qγ (T <me)= 2, (9.66)

and conservation of entropy gives the heating of the plasma encoded in (9.63):

Tγ = ( 11
4

)1/3
Tν ≈ 1.4Tν . (9.67)

The cosmic neutrino background therefore has a current temperature of 1.95K.

9.6.6 Nucleosynthesis (light elements)

Hydrogen constitutes about 75% of all observed baryonic matter in the universe, with helium
accounting for most of the rest, and only trace contributions from other elements.The isotope
deuterium and elements helium, lithium and beryllium are produced in the early universe,
and heavier elements are synthesized much later in stars. Primordial nucleosynthesis may be
analysed via the weak interaction and nuclear reactions, and we can predict the abundances
of these light elements, and then compare with current observations. This is a crucial test
of the HBB model.

Primordial nucleosynthesis, also known as BBN, is sensitive to: (1) g∗, the number of
relativistic degrees of freedom, and hence to the number of neutrino species Nν (with
canonical value Nν = 3), and (2) the baryon–photon ratio η [(9.69)] and thereby the baryon
density parameter �b0h

2.
The strong interaction binds neutrons and protons in atomic nuclei, but at high

temperatures neutrons and protons are kept in equilibrium via the weak interactions

νe+n↔ p+ e , ē+n↔ p+ ν̄e , n↔ p+ e+ ν̄e . (9.68)

In addition, the high entropy, reflected in the high number of photons relative to baryons,
suppresses the formation of nuclei since free neutrons and protons are entropically favoured.
Thus the baryon to photon ratio,

η≡ nb

nγ
≈ 5× 10−10

(
�b0h

2

0.02

)
, (9.69)

is a critical parameter in the process of nucleosynthesis.
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As the temperature drops the weak interactions (9.68) eventually fail to keep neutrons
and protons in equilibrium. This happens at the ‘freeze-out’ temperature Tf ∼ 0.8MeV, and
the fraction of neutrons to protons is temporarily frozen at the current equilibrium value,

nn

np
≈ exp− (mn−mp)

Tf
∼ 1

5
. (9.70)

This fraction of surviving neutrons determines the abundances of the light nuclei that can
now form. The process is therafter affected by neutron decay n→ p+ e+ ν̄e, with lifetime
τn ∼ 900s. The freeze-out neutron fraction decreases exponentially for t > tf as

Xn =Xn fe
−t/τn , Xn ≡ nn

nn+np
. (9.71)

Free neutrons are nearly all captured in nuclei by t ∼ 250s, so that neutron decay plays a
substantial role.

Light nuclei begin to form when the temperature has dropped to T � 0.1MeV. Low
number densities suppress reactions like p+p+n+n→ 4He, and so complex light nuclei
must be produced through two-body reactions. The first step in the chain is deuterium
production (D = 2H) via

p+n→ D+ γ . (9.72)

Until D has been formed in sufficient abundance, the production of helium and heavier
elements like lithium is delayed. This is known as the deuterium bottleneck. Deuterium
production is suppressed by photo-dissociation, i.e. effectively by the small value of η, and
only becomes significant for

T � Tnuc ≈ 0.09MeV. (9.73)

The deuterium bottleneck opens up when the reactions

D+D → 3He+n, D+D → T(≡ 3H)+p (9.74)

become efficient. This happens when the D fraction reaches a critical value, after which this
fraction drops as D is destroyed in the DD reactions. Helium-4 is produced when tritium
or helium-3 combine with deuterium, and indirectly, when helium-3 captures a neutron to
produce tritium. Most of the neutrons are fused into helium-4 by the reaction chains

np→ D → T→ 4He, np→ D → 3He → T→ 4He. (9.75)

The numerically computed evolution of the various species in the nucleosynthesis process
is shown in Figure 9.7.

The final helium-4 abundance is thus determined by the available free neutrons at the
time when the deuterium fraction reaches its critical (maximum) value. This neutron
availability is itself determined by the number of relativistic species Nν and the baryon
density (equivalently, η).

• At a given temperature, the greater Nν , the faster the universe expands – so that neutrons
freeze out earlier and the freeze-out fraction Xn f increases.

• Also, more relativistic species means the nucleosynthesis temperature is reached earlier –
and so more neutrons avoid decay (see (9.71)).
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• The greater the baryon density, i.e. the greater η, the earlier nucleonsynthesis begins, and
so the greater the number of neutrons available.

Primordial nucleosynthesis is a complicated process because it involves a complex chain
of non-equilibrium particle and nuclear reactions, and requires numerical integration to
arrive at accurate results. The results are illustrated in Figure 9.8.
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The primordial abundances of D, 3He and 4He are in good agreement with the CMB data
(WMAP) and large-scale structure data (SDSS), which constrain�b0h

2 andNν , as shown in
Figure 9.9. There is also good agreement with spectroscopic observations of stars. However,
there is a potentially serious discrepancy with the abundance of 7Li. Part of the problem is
the difficulty of measuring element abundances at low redshifts, and these measurements
may also be sensitive to poorly understood astrophysics in stars.

9.6.7 Recombination and photon decoupling

After nucleosynthesis, the main ingredients of the cosmic plasma are γ ,e,p ≡ H+ and
fully ionized helium, He2+ (other ionized light nuclei play a negligible role). Photons are
strongly coupled to baryons via Thomson (e−γ ) and Coulomb (p−e) interactions. As the
temperature drops, the ionized nuclei begin to capture free electrons. Helium recombina-
tion takes place before hydrogen recombination, since its ionization potentials are greater.
Helium recombination takes place in two stages:

He2++ e → He+ (EI+ = 54.4eV) → He (EI = 24.6eV), (9.76)

where EI+,EI are the ionization energies. By T ∼ 5000K, helium is neutral and decouples
from the radiation. At this temperature, the hydrogen is still fully ionized, and it plays the
key role in the formation of the fossil CMB radiation.

For T � 5000K, the reaction p+ e ↔ H+ γ keeps the plasma in equilibrium. As the
temperature drops further, this interaction becomes less effective, and the probability grows
of electrons being captured by protons to form hydrogen. This is measured by the ionization
fraction Xe, which satisfies the Saha equation, leading to

X2
e

1−Xe

=
(
meT

2π

)3/2
e−EI /T

nb
, Xe ≡ ne

nb
, nb = np +nH , (9.77)
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where the hydrogen ionization energy and photon temperature are

EI =me+mp −mH = 13.6eV, (9.78)

T = T0(1+ z)= 2.725(1+ z)K ≈ 2.3× 10−4(1+ z)eV, (9.79)

and nb = ηnγ 0(1+ z)3. Equation (9.77) shows that hydrogen recombination only occurs
for T �EI .

The Saha equation is based on equilibrium thermodynamics, and it predicts that the
ionization fraction should continue to fall exponentially with temperature. However, like
nucleosynthesis, recombination is a non-equilibrium process. In particular, hydrogen recom-
bination produces a large number of nonthermal photons that distort the thermal radiation
spectrum. A detailed analysis based on kinetic theory shows that the ionization fraction in
fact freezes out: the residual electron fraction is

Xe(∞)≈ 7× 10−3 . (9.80)

During recombination, the electron density decreases rapidly, and the e−γ interaction
rate due to Thomson scattering, = neσT , drops rapidly, so that the photons decouple soon
afterwards. An estimate of the decoupling redshift is given by  =H . Using

 = 3× 10−26Xe

�b0h
2

0.02
(1+ z)3 eV, (9.81)

H 2 =�m0H
2
0 (1+ z)3

(
1+ 1+ z

1+ zeq

)
, (9.82)

we find that the decoupling redshift is a solution of

(1+ zdec)
3/2 = 280

Xe(∞)

(
�b0h

2

0.02

)−1(
�m0h

2

0.15

)1/2(
1+ 1+ zdec

1+ zeq

)1/2

. (9.83)

We shall discuss decoupling and recombination again in Chapter 11.

9.6.8 The Dark Ages and the epoch of reionization

After recombination, the baryonic matter is effectively all in the form of neutral hydrogen
and helium. From the decoupling redshift of z= 1100 down to a redshift z∼ 200, the gas
temperature follows the CMB temperature since the residual ionization (9.80), although
very small, is enough to maintain sufficient coupling via Compton scattering:

Tgas = Tγ = Tγ 0(1+ z) , z� 200. (9.84)

Expansion and cooling eventually break this coupling and the gas temperature drops below
the CMB temperature, evolving adiabatically as

Tgas ∝ (1+ z)2, 200 � z� 20. (9.85)

For z � 20, the gas begins to be heated by emissions from the first stars, and eventually
exceeds the CMB temperature,

Ṫgas > 0, z� 20. (9.86)
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After recombination, the baryonic pressure drops towards zero and gravity overcomes the
counterbalancing effect of pressure. The baryonic gas falls into dark matter haloes, and over-
densities grow as δ∼ a. Because of the weakness of gravitational instability in an expanding
background, it takes of the order of a few 100 Myr before the first stars form. Thus there is
a period after recombination, the so-called Dark Ages, when baryonic matter is dark. The
‘backlight’ of the CMB radiation leads to emission and absorption features of the neutral
hydrogen 21 cm hyperfine spin flip transition. The restframe frequency of 1420 MHz is red-
shifted for the range z∼ 10–100 to∼ 140–14MHz.This provides, in principle, a probe of the
DarkAges via massive radio telescopes, such as the planned Square KilometreArray (SKA).

Current simulations indicate that the first stars condense from the gas in dark matter
halos, at the late stage of the Dark Ages (estimated at around z ∼ 15 − 30), eventually
‘lighting up’the universe and reionizing it via ultraviolet radiation.The epoch of reionization
stretches from the time of fully neutral gas to fully ionized gas. The observation of Lyman-α
absorption by neutral gas (the Gunn–Peterson effect) of the light from distant quasars, and
the WMAP constraints on Thomson scattering of CMB photons by reionized gas, lead to
estimates that reionization stretches over the redshift range 11 � z� 6.

Stars aggregate into galaxies and galaxies into clusters. This growth is suppressed (and
may eventually end) when dark energy begins to dominate. In later chapters, we discuss in
detail the topics of structure formation and dark energy.

9.7 Inflation

We have strong evidence that the universe was radiation dominated back to early times –
at least back to nucleosynthesis (t ∼ 102 s) and possibly back to the time of electroweak
unification (t ∼ 10−10 s). In the HBB model of the universe, radiation domination persists
all the way back to the inevitable singularity at t = 0. Variants of this model may have eras
of differing equations of state at earlier times, but all share the property that the universe
decelerates for t > 0.

There are certain puzzling features of a decelerating early universe that raise serious
questions about initial conditions. We discuss these issues below and then we discuss how
a short, accelerating era at very early times addresses these puzzles. The puzzles are often
termed ‘problems’, and inflation is then presented as a solution to these problems. While
this is a reasonable approach, we should note that there are various underlying assumptions
that are worth making explicit. The key assumption is the reasonable expectation that
models of the universe should not be sensitive to initial conditions. But there is no firm
physical principle that underlies this expectation – it is an assumption (see Section 21.4.1
for further discussion). The HBB model rests on highly special initial conditions, which
seem unnatural – but there is no physical principle yet known that rules out this possibility.
It is conceivable that future developments in quantum gravity could explain what appear
to be extreme fine-tunings. Furthermore, inflation itself is not completely free of initial
conditions – for example, it requires a large enough patch where gradients are initially
small enough.
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Inflation does address the special initial conditions in an interesting and important way,
even if it remains a phenomenological scenario that is yet to be rooted in a fundamental
theory. In addition, inflation produces a mechanism for seeding structure formation (which
we describe in more detail in Section 12.2) – and this mechanism was not constructed a
priori to solve the problem of seeding structure formation. Instead, it was a prediction of
the scenario. This is a real strength of the inflation model – and up to now, there is no real
alternative to inflation for the origin of structure.

9.7.1 Some puzzles of a decelerating early universe

If we look in opposite directions on the sky and measure the CMB temperature, we find
it is the same to 1 part in ∼ 105. This suggests that a thermalization process operated
before decoupling. However, in a decelerating radiation universe, thermalization could not
have taken place across the CMB sky. We can see this as follows. The particle horizon at
recombination is

Lrec ≡ arecτrec ≡ arec

∫ trec

0

dt̃

a(t̃)
≈ trec ≈ 1

Hrec
, (9.87)

where τ is the comoving particle horizon, and the approximations indicate that we neglect a
multiplicative factor O(1) (in order to avoid complications of the transition from radiation
to matter domination). This is the distance that light travels from the beginning of the
universe at t = 0(= a = τ), and represents the limit of causal interaction at the time of last
scattering – i.e. particles that are separated by more than Lrec can never have been in causal
communication. Points on the last scattering surface at opposite ends of the sky are separated
today by a distance equal to the distance to the last scattering surface, Drec ≈H−1

0 – which
is much greater than the maximal causal separation, Drec � Lrec. And yet, the particles at
these locations at the time when the CMB distribution was frozen had never been in causal
communication. This is illustrated in Figure 9.10.

It is often called the ‘horizon problem’.
Another puzzle is often called the ‘flatness problem’ – which arises from the fact that

if the universe is close to flat today, then the evolution of the curvature density parameter
implies a severe fine-tuning of the curvature in the early universe. The curvature parameter
in a HBB model evolves as the square of the comoving Hubble radius, |�K | = |K|(aH)−2.
For w ≡ p/ρ =const,

(aH)−1 =H−1
0 a(1+3w)/2 ∝ τ (w �= −1) . (9.88)

Thus the comoving Hubble radius grows in a HBB model, since w ≥ 0. In particular, this
means that the curvature grows, |�K | ∝ |K|τ 2, and so it must be strongly suppressed in the
past if it is small today – unless K = 0. If we take w= 0 (i.e. we approximate the universe
as always matter dominated), then the curvature at nucleosynthesis for example is given by

|�K(anuc)| ≈ anuc

a0
|�K(a0)| ≈ 10−9 |�K(a0)| . (9.89)
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Fig. 9.10 Conformal diagram of the HBB model. (From Baumann (2009).)

Within the HBB framework, this problem can be resolved by assuming that there are
extremely fine-tuned initial conditions on the curvature (including the possibility that
K = 0).

Another puzzle is the ‘monopole problem’: phase transitions in the very early universe –
which are associated with the breaking of symmetries as the temperature drops – can produce
topological defects, such as monopoles. If a phase transition takes place at the Grand Unified
Theory scale, T ∼ 1016 GeV, then the monopoles could dominate the energy density in the
universe. Inflation can evade this problem if it takes place after the GUT phase transition,
since the accelerated expansion disperses the monopoles and dramatically suppresses their
energy density.

9.7.2 Inflation addresses horizon and flatness problems

Underlying both the horizon and flatness puzzles of the HBB model is the same key fact –
the comoving Hubble radius (9.88) grows for t > 0. If instead there is a primordial era in
which this scale shrinks with expansion, then neither of the features will require highly
fine-tuned initial conditions. By (9.88), the condition for a shrinking comoving Hubble
radius is 1+ 3w < 0, which is precisely the condition for acceleration, ä > 0.

Inflation is a period of ‘slow-roll’ acceleration (see Section 9.7.3) withH nearly constant
(i.e. w ≈−1), so that

−τ ≈ (aH)−1 . (9.90)

This means that the singularity a= 0 is pushed to τ =−∞, and the comoving Hubble radius
≈−τ decreases. Equation (9.90) breaks down by the end of inflation, and the brief reheating
period, τ = 0, leads into a HBB evolution in a radiation-dominated universe. As illustrated
in Figure 9.11, the past light cones of all points on the last scattering surface intersect in the
past, provided inflation lasts long enough (� 60 e-folds) to shrink the comoving Hubble
radius sufficiently.
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At the same time, the rapid decrease of the comoving Hubble radius reduces any non-zero
primordial curvature. Provided inflation lasts long enough, this removes the fine-tuning that
is illustrated in (9.89).

In addition to its ability to address the issues of the horizon and flatness, inflation has
the further crucial feature that it incorporates a mechanism for generating the primordial
inhomogeneities that seed structure formation, as discussed in Section 12.2. This may be
thought of as a prediction of inflation, if we consider inflation as a construction for solving
the horizon and flatness problems.

Finally, we note that while inflation alleviates the fine-tuning of the initial conditions of
the HBB model, it is not a theory of initial conditions, and indeed it is not fully independent
of initial conditions. For example, we need to assume that the initial inflaton velocity and
initial inhomogeneities in the inflaton are small enough to allow inflation to begin. See also
Sections 8.4.3 and 21.4.

9.7.3 Dynamics of inflation

Inflation may be defined equivalently as a period of accelerating expansion, or of a decreas-
ing comoving Hubble scale (see Figure 12.1 in Section 12.2). Via the Friedmann equations,
these conditions are in turn equivalent to a source of the gravitational field that violates the
strong energy condition. In summary:

ä > 0 ⇔ d

dt

(
H−1

a

)
< 0 ⇔ w ≡ p

ρ
<− 1

3 . (9.91)
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The violation of the strong energy condition is simple to achieve for a scalar field, whose
dynamics were discussed in Section 5.6:

w = −V (ϕ)+ ϕ̇2/2

V (ϕ)+ ϕ̇2/2
<− 1

3 ⇒ V (ϕ) > ϕ̇2 . (9.92)

(We assume that the potential energy is positive.) The dynamics of the field are governed
by the Klein–Gordon equation,

ϕ̈+ 3Hϕ̇+V ′(ϕ)= 0. (9.93)

The special case of ϕ̇ = 0, which implies V =const, is the extreme way of satisfying the
inflation condition (9.92). This corresponds to a cosmological constant �inf = 8πGV that
drives de Sitter expansion, H =const. (�inf should not be confused with the low-energy
cosmological constant, ���inf, that acts as dark energy in the late universe.) In this case,
w =−1, which is the limiting value for a scalar field (−1 ≤ w ≤ 1). If w is close to, but
above, −1, then ϕ̇ is small, but non-zero, and the expansion rate is close to de Sitter: the
Hubble rate is nearly constant, but slowly decreasing. This is known as a ‘slow-rolling’
inflaton field. Inflationary models are typically of the slow-roll kind.

Qualitatively, slow-roll requires small inflaton velocity ϕ̇ and acceleration ϕ̈, so that the
Friedmann and Klein–Gordon equations become

H 2 ≈ 8πG

3
V , ϕ̇ ≈− V ′

3H
. (9.94)

We can quantify the slow-roll property via two slow-roll parameters:

ε = 4πG
ϕ̇2

H 2
=− Ḣ

H 2
= 1

H

dH

dN
= 3

2 (1+w), (9.95)

η=− 1

H

ϕ̈

ϕ̇
=− 1

ϕ̇

dϕ̇

dN
, (9.96)

where N is the number of e-folds before the end of inflation:

N ≡ ln
aend

a
=
∫ ϕend

ϕ

H

ϕ̇
dϕ =√

4πG
∫ ϕend

ϕ

dϕ√
ε
≈ 8πG

∫ ϕ

ϕend

V

V ′ dϕ . (9.97)

Slow-roll is then characterized by ε � 1, |η| � 1, and the end of inflation is defined by
εend = 1.

An alternative pair of slow-roll parameters is based on the potential, ensuring that the
slope and curvature of V are small:

εV = 1

16πG

(
V ′

V

)2

≈ ε , ηV = 1

8πG

V ′′

V
≈ η+ ε . (9.98)

Slow-roll inflation should last for � 60 e-folds, with the large-scale CMB anisotropies
(the Sachs–Wolfe effect, as discussed in Section 11.5) being seeded by fluctuation modes
that exceed the Hubble scale near the beginning of this period, i.e. N(ϕcmb)∼ 60. As the
inflaton rolls down the flat potential, it eventually picks up speed as the potential steepens,
until the kinetic energy is sufficient to break the accelerating condition, i.e. V (ϕend)= ϕ̇2

end.
This is illustrated in Figure 9.12.



243 9.7 Inflation

V(φ)

δφ

φCMB reheatingφend

φ

∆φ

φ

Fig. 9.12 Schematic of inflationary dynamics. (From Baumann (2009).)

At the end of inflation, the universe is a ‘cold desert’.There must therefore be a mechanism
for ‘reheating’ the universe and populating it with the matter and radiation that sources
the HBB era. This is achieved within the simple inflation scenario by oscillations of the
inflaton about the minimum of its potential. During these oscillations, the inflaton decays
into the fields and particles of the radiation era. The coupling of the inflaton to these
fields and particles is of course not known, since there is as yet no fundamental theory for
the inflaton itself. But simple phenomenological models have been constructed that can
achieve a rapid and efficient conversion of inflaton energy into matter and radiation (see
Bassett, Tsujikawa and Wands (2006) for a review). Reheating is clearly a non-equilibrium
process. The resulting non-thermal distributions of created particles are, however, rapidly
thermalized by interactions, initiating the thermal plasma era of the HBB.

9.7.4 Simple models of inflation

Inflation takes place at energies well beyond those accessible to terrestrial experiments, and
also to the Standard Model of particle physics and its current minimal extensions. Attempts
to imbed inflation in string theory are ongoing at the time of writing, with no generally
accepted and testable model on the horizon. Inflation remains at the level of phenomenology,
and it is remarkable that the simplest single-field models can be successfully grafted onto
the HBB model to produce a ‘standard’ model of cosmology. In order to accommodate
the late-time acceleration of the universe within this framework, it is necessary to add the
(late-time) cosmological constant to the inflationary potential: V → V + 8πG�.

Single-field models may be divided according to the behaviour of the slow-roll
parameters, as follows.

• Large-field models (0 < ηV ≤ εV )
Inflation begins when ϕ is � MP =G−1 away from its stable (V ′′ < 0) minimum. The
key example is ‘chaotic’ inflation, driven by power-law potentials,

V = Vn

(
ϕ

MP

)n

, n= 2,3, . . . , (9.99)
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where Vn is a constant. Slow-roll conditions impose ϕ > nMP .
• Small-field models (ηV < 0 < εV )

The inflaton rolls away from an unstable minimum, as in the ‘new inflation’ models:

V = Vn

[
1−

(
ϕ

µ

)n]
, (9.100)

where µ is a mass scale.
• Hybrid models (0 < εV < ηV )

A typical potential is

V = Vn

[
1+

(
ϕ

µ

)n]
. (9.101)

Strictly, the hybrid models are two-field models, since a second field is required to end the
inflation driven by ϕ. However, during inflation the second field is trapped in a minimum
and plays no role, so that the hybrid potential is effectively single-field.

Constraints on these classes of inflation from the CMB and large-scale structure data are
shown in Figure 9.13.

The classical dynamics of the inflaton dictates that the inflaton always rolls down its
potential. However, quantum fluctuations can also drive the inflaton uphill, which has the
effect of prolonging inflation and enlarging the volume of the region. In some regions
the inflaton will remain high enough up the potential hill to maintain acceleration. This
stochastic scenario, known as ‘eternal’ inflation, is used to motivate the idea of a ‘multi-
verse’. Tunneling is supposed to take place via the Coleman–de Luccia process in a de Sitter
K > 0 universe and leads to new bubbles of ordinary matter in aK < 0 FLRW phase. There
is a competition between the rate of nucleation and the rate of expansion, so that depending
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Fig. 9.13 Constraints on slow-roll parameters from the CMB (WMAP) (grey; red in colour version) and CMB+ galaxy
distribution (SDSS) (black). (From Peiris and Easther (2006).) A colour version of this figure is available online.
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on the parameter values either (i) (high expansion rate) the bubbles never intersect and the
resulting inflation pattern is eternal with a fractal structure, often called a multiverse; or
(ii) (high nucleation rate) all bubbles intersect and eventually the entire universe (when its
entire compact space section has nucleated) has left the de Sitter phase and inflation comes
to an end; or (iii) (in between) all sorts of complex patterns of intersecting bubbles and
inflating phases can occur (Sekino, Shenker and Susskind, 2010). However, the physics of
the tunneling process is speculative; it is an extrapolation of known tunneling processes to
situations where it may or may not occur. See, e.g. Freivogel et al. (2006), Vilenkin (2006),
Ellis and Stoeger (2009a) for various views. There is an ongoing debate about probabilities
in the multiverse (see Section 21.5).

The simple single-field models of inflation have Lagrangian density

L= p(X,ϕ)=X−V (ϕ), X ≡− 1
2∂µϕ∂

µϕ, (9.102)

wherep is the scalar field pressure. More complicated models have been considered. Exten-
sions of the Standard Model of particle physics, including string theory, typically include a
number of scalar fields, which motivates the analysis of multi-field inflation. These models
can generate isocurvature modes and non-Gaussianity, as discussed in Section 12.2. The
Lagrangian is generalized to

p(X,ϕI )=X−V (ϕI ), X ≡− 1
2G

IJ (ϕK)∂µϕI ∂
µϕJ , (9.103)

where GIJ is a metric in field space. Another generalization is to modify the canonical
kinetic energy term, i.e. to consider functionsp(X,ϕ)more general thanX−V .The simplest
example is a ‘phantom’ scalar field, with p =−X−V , but this is quantum mechanically
unstable. K-inflation models use more complicated non-standard kinetic terms to achieve
inflation even when the potential is not flat. Dirac–Born–Infeld models have

p(X,ϕ)= 1

f (ϕ)

[√
1− 2f (ϕ)X− 1

]
−V (ϕ), (9.104)

in the simplest case. These models arise from certain string theory scenarios.
Attempts to construct inflation within string theory are reviewed in Baumann (2009),
Baumann and McAllister (2009).

Exercise 9.7.1 For the simple chaotic inflationary potential, V = 1
2m

2ϕ2, show that:

εV = 1

4π

(
MP

ϕ

)2

= ηV , (9.105)

N(ϕ)≈ 2π

[(
ϕ

MP

)2

−
(
ϕend

MP

)2
]

, ϕend ≈ MP√
4π

, (9.106)

ϕcmb ≈
√

30

π
MP where N(ϕcmb)= 60. (9.107)

Also show that the slow-roll dynamical equations have solution:

ϕ−ϕend = mMP

2
√

3π
(tend − t), a = aend exp

[
2π

M2
P

(ϕ2
end −ϕ2)

]
. (9.108)
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9.8 Origin of FLRW geometry

The FLRW models are very exceptional within the family of all cosmological models,
because of their very high symmetry (see Chapter 17). Why is the universe in which we
live like this?

9.8.1 Origin of uniformity

Assuming we accept the arguments for uniformity and for validity of the FLRW metric, we
are led to one of the major issues in cosmology: namely why is the universe on average
so smooth? These models, because of their exact spatial homogeneity and isotropy, are, on
almost any a-priori assignment of probabilities, infinitely improbable in the family of all
cosmological models. Thus one of the major themes in cosmology is the attempt to explain
this uniformity, which we discuss in Chapter 21.

9.8.2 Preservation of FLRW symmetry

Suppose a universe initially has the full FLRW symmetries, i.e. (9.1)–(9.3) hold on an initial
surface t = t1 (the matter moving orthogonally to this surface). Then provided the matter
remains a perfect fluid the universe must remain an FLRW universe, basically because
there is nothing in the initial data that can choose a preferred spatial direction, so the part
of spacetime determined by these data will also have no preferred spatial directions; thus it
will remain an FLRW universe.

A more formal proof, developing the idea that any symmetries in initial data will be
preserved in development of those data, is discussed in Chapter 17; however it is also
interesting to prove the result directly from the dynamic equations. Essentially, the subset
of these equations governing the growth of anisotropies is a homogeneous set of equations:
so if the anisotropies all vanish on an initial surface they will all vanish at later times. More
precisely, if on t = t1, we have

ωa = σab = u̇a = 0 =∇aρ =∇ap =∇a�, (9.109)

then the same will hold at all later and earlier times within the Cauchy development of those
data; thus a perfect-fluid universe that initially has the FLRW symmetries will remain an
FLRW universe.

If the matter for some reason does not remain a perfect fluid, then this result need
not hold; for a specific example, based on a kinetic theory description of the matter
where the spacetime has the FLRW symmetries while the particle distribution func-
tion does not, see Matravers and Ellis (1989). However, then there needs to be an
anisotropy hidden in the particle distribution function; we do not regard this as physically
plausible.
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Exercise 9.8.1 Determine the time evolution equations for the quantities ∇aρ, ∇ap, ∇a�.
Hence prove the statement above: the quantities in (9.109) form an involutive set for FLRW
initial data.

9.9 Newtonian case

The Newtonian version of the RW models was first given by Milne (1934),
McCrea and Milne (1934), later explicated further by Heckmann and Schucking (1955,
1956) and Bondi (1960). The Newtonian analogues of the GR models are determined by
the conditionsωi =σij = u̇i = 0 which implyρ=ρ(t),p=p(t),�=�(t). The coordinates
of any fluid particle are xi = �(t)ci with ci =const. The basic dynamical equations are

ρ̇N + 3ρN �̇/�= 0, (9.110)

3�̈/�+ 4πGρN −�= 0, (9.111)

Eij (t)= 0, (9.112)

3�̇2 − 8πGρN�
2 −��2 = 10E, E = const, (9.113)

where the last one is a first integral. The gravitational potential satisfying the Poisson
equation �,i

,i +�= 4πGρN is (Bondi, 1960)

�= [4πGρN(t)−�]hij x
ixj /6, (9.114)

where hij is the Newtonian spatial metric.
Several points are of interest, relative to the GR case.
Firstly, the gravitational potential (9.114) diverges at infinity, contrary to the usual bound-

ary conditions in Newtonian gravitational theory. We have to drop the condition that�→ 0
at infinity in order to attain these models. Indeed for more general Newtonian models, we
also have to drop the condition that Eij → 0 at infinity.

Secondly, the time development of Newtonian cosmological models is not determined
until some restriction is put on Eij (t), e.g. choosing some world line and determining
Eij (t) as an arbitrary function along that world line (Heckmann and Schucking, 1956). In
the particular case of FLRW analogues, the condition (9.112) is that Eij (t) be set to zero
at all times. Note that this condition must be reset at each instant: the fact that it is true at
one instant is no guarantee that it will be true at the next instant. This is quite unlike the
GR case.

Thirdly, any non-zero pressure makes no difference whatever to the time development of
these universe models. This is because these universes are spatially homogeneous, so there
is no pressure gradient to influence the dynamics (see (9.110), (9.111)). By contrast in the
GR case, because of the nature of the conservation equations, non-zero pressure influences
the variation of the density as the scale factor changes. Furthermore, because of the nature of
the Einstein equations, non-zero pressure influences the gravitational field causing the scale
factor to change relative to the case with no pressure. Both effects are crucial in determining
the thermal history of the universe.
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Fourthly, the integration constant E in (9.113) has no relation to the spatial curvature, as
is the case in GR.

Finally, this description is attained via a potential description of the gravitational dynam-
ics. A force description runs into serious difficulties, as discovered by Newton: it is either
ambiguous or divergent or both. This is why Newton never succeeded in creating a viable
cosmological model. It was only in the 1930s (after the GR models had been discovered)
that successful Newtonian cosmologies were derived by Milne and McCrea.
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The FLRW model provides a good description of the averaged dynamics of the universe
on very large scales. As we move to smaller scales, the homogeneity of the FLRW model
becomes an increasingly poor description of the universe, which contains inhomogeneities
such as small over- and under-densities at early times, and stars and galaxies at later times.

Before the onset of structure formation, these inhomogeneities may be treated as small
deviations from FLRW, i.e. we can use an almost-FLRW model – a linearly perturbed
FLRW. Once structure formation is underway, we can continue to use the perturbed FLRW
on scales above the comoving galaxy cluster scale. On smaller scales, nonlinear effects
become increasingly important and we need to move beyond linear perturbation theory.

The growth of structure is based on gravitational instability, i.e. the tendency of over-
and under-densities to be enhanced through the universally attractive nature of gravity. If
δρ and δ� denote the small deviations from the FLRW background density ρ̄ and volume
expansion �̄= 3H , then, denoting the normalized density perturbation δρ/ρ̄ by δ,

ρ = ρ̄(1+ δ) , �= 3H + δ� . (10.1)

Energy conservation (5.11) and the Raychaudhuri equation (6.4) for dust then lead to the
background equations at zero order, and at first order to

δ,0 + δ�= 0 and δ�,0 + 2Hδ�=−4πGρ̄δ , (10.2)

where we have used u̇a = 0 from the momentum conservation equation. Eliminating δ�

leads to the evolution equation for small over-densities,

δ,00 + 2Hδ,0 − 4πGρ̄δ = 0. (10.3)

If we neglect the cosmological constant, then the background variables are H = 2t−1/3
and ρ̄ = (6πGt2)−1. The solution is

δ =A+(x)t2/3 +A−(x)t−1 = B+(x)a+B−(x)a−3/2 , (10.4)

where A±,B± are amplitudes of the growing (+) and decaying (−) modes.
We can also track the evolution of peculiar velocities during the growth of structure via

δ�. The dust four-velocity is ua = ūa + va where va is the small peculiar velocity relative
to the background frame of ūa , with ūava = 0. It follows that δ�=∇a

va =−δ,0, so that

va =Ca
1−(x)t−1/3 +Ca

2−(x)t−2 . (10.5)

This Newtonian approach to perturbations gives a flavour of what is involved in Newto-
nian growth of structure, but in order to track this process carefully from the primordial to
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the late universe, taking into account the fluctuations in all matter sectors as well as in the
gravitational field, we need a systematic approach.

10.1 The gauge problem in cosmology

Any approach to the analysis of perturbations faces the so-called gauge problem, which
reflects the fact that in perturbation theory we deal with two spacetime manifolds
(Lifshitz, 1946, Lifshitz and Khalatnikov, 1963, Sachs and Wolfe, 1967, Bardeen, 1980,
Kodama and Sasaki, 1984, Ellis and Bruni, 1989, Mukhanov, Feldman and Brandenberger,
1992, Malik and Wands, 2009), the physical spacetime M, and M, a fictitious background
FLRW spacetime. A gauge is a one-to-one correspondence M → M, between the two
spacetimes. This point-identification map is generally arbitrary. When a coordinate system
is introduced in M, the gauge carries it to M. A change in the map M → M, keeping
the background coordinates fixed, is known as a gauge transformation. This introduces a
coordinate transformation in the physical spacetime, but also changes the event in M which
is associated with a given event in the background M. Gauge transformations are therefore
different from coordinate transformations which merely relabel events. The gauge freedom
is usually expressed as a freedom of coordinate choice in M, but it should be understood
that it generally changes the point-identification between the two spacetimes.

Although we can always perturb away from a given background spacetime, recovering
the smooth metric from a given perturbed one is not a uniquely defined process. This is a
problem because it is always possible to choose an alternative background and therefore
arrive at different perturbation values. Selecting an unperturbed spacetime from a given
lumpy one corresponds to a gauge choice. Determining the best gauge is known as the
fitting problem in cosmology and there is no unique answer to it (see Section 16.2).

By definition, the perturbation of any quantity is the difference between its value at
some event in the real spacetime and its value at the corresponding event (associated
via the gauge) in the background. Spacetime scalar quantities that have non-zero and
position-dependent background values will lead to gauge-dependent perturbations. Fol-
lowing Stewart and Walker (1974) and Stewart (1990), we consider a one-parameter family
of perturbed spacetimes Mε embedded as hypersurfaces in a 5-manifold N. We define a
point-identification map between M and Mε , by introducing in N a vector field XA (with
A= 0, . . . ,4), which is everywhere transverse to the embeddings Mε . Points lying along the
same integral curves of XA, which are parametrized by ε for convenience, will be regarded
as the ‘same’. Thus, selecting a specific vector field XA corresponds to a choice of gauge.
If Qε is some geometrical quantity defined on Mε , with background value Q, then the
perturbation is

δQ=Qε −Q= εLXQε +O(ε2) . (10.6)

Here Qε is the image in M of the perturbed quantity (the pullback). This shows that even
quantities that behave like scalars under coordinate changes will not remain invariant under
gauge transformations. The value of δQ is entirely gauge dependent and therefore arbitrary.
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For instance, one can select the gauge so that the surfaces of constant Q are the surfaces of
constant Qε , thus setting δQ= 0 (Ellis and Bruni, 1989).

One way of addressing the gauge problem is by fixing the gauge. This can be prob-
lematic if a gauge choice turns out to contain residual gauge freedom. This is the case
for the synchronous gauge introduced in the pioneering work of Lifshitz (1946). In order
to avoid spurious gauge modes, one has to take care to compute only physically observ-
able quantities. Alternatively, we can employ gauge-invariant variables (Bardeen, 1980,
Kodama and Sasaki, 1984, Ellis and Bruni, 1989).

Gauge-independent quantities must remain invariant under gauge transformations
between the background and the real spacetimes. According to (10.6), the only cases
are scalars that are constant in the background or tensors that vanish (or are express-
ible as a linear combination with constant coefficients of products of Kronecker deltas)
(Stewart and Walker, 1974). Given the symmetries of FLRW models, any tensor that
describes spatial inhomogeneity or anisotropy must vanish in the background and therefore
its linear perturbation will remain invariant under gauge transformations. This is the basis
for the 1+3 covariant and gauge-invariant (CGI) approach to perturbations (Hawking, 1966,
Lyth and Mukherjee, 1988, Ellis and Bruni, 1989).

An alternative approach starts from perturbations of the FLRW metric and energy–
momentum tensors, and explicitly constructs combinations that are invariant under general
gauge transformations (Bardeen, 1980, Kodama and Sasaki, 1984). We start by reviewing
the metric-based approach to perturbations, and then we describe the CGI approach.

10.2 Metric-based perturbation theory

The standard perturbative formalism is a metric-based approach, which starts from an
FLRW metric in suitable coordinates and defines perturbations away from that metric. This
approach was introduced in general relativity by Lifshitz (1946), and a gauge-invariant
version was developed by Bardeen (1980). For reviews, see Kodama and Sasaki (1984),
Mukhanov, Feldman and Brandenberger (1992). We follow the notation and the more
geometrical approach of Malik and Wands (2009).

10.2.1 Perturbations of the metric

We start with the FLRW metric in conformal time,

ḡµν = a2
( −1 0

0 γij

)
, (10.7)

where γij is the metric on the static hypersurface conformal to the homogeneous hyper-
surfaces with constant curvature K . We denote covariant derivatives with respect to γij by
a vertical bar. First-order perturbations of this metric, gµν = ḡµν + δgµν , can be split into
scalar, vector and tensor parts, which are fields over the static hypersurface:
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• Scalar perturbations are constructed from a scalar quantity or its derivatives, and any
background quantities such as the 3-metric γij . A generic first-order scalar metric
perturbation is described by four scalars φ(τ ,xi), ψ(τ ,xi), B(τ ,xi) and E(τ ,xi), where

δg00 =−2a2φ , δg0i = a2B|i , (10.8)

δgij =−2a2 (ψγij −E|ij
)
. (10.9)

Here, φ generalizes the Newtonian potential (since it determines particle acceleration in
this metric), and ψ determines the perturbation of the 3-curvature of the static surfaces
τ =const.

• Vector perturbations are built from solenoidal (rotational or transverse) 3-vectors, S[i|j ] �=
0, and have no scalar part.This rules out vector quantities that are constructed from scalars,
which are irrotational or longitudinal, i.e. B|[ij ] = 0. They are divergence-free, otherwise
they would define a scalar field (non-locally, requiring a decay condition for K ≤ 0,
Stewart (1990)): so γ ij Si|j = 0. Symmetric 3-tensors which are constructed from vector
perturbations must have no scalar part, so that they are trace-free. The vector metric
perturbation is generically given in terms of solenoidal 3-vectors Si(τ ,xj ) and Fi(τ ,xj ):

δg0i =−a2Si , δgij = 2a2F(i|j) . (10.10)

• Tensor perturbations have no scalar or vector parts, so that they arise from symmetric,
trace-free and divergence-free 3-tensors. The tensor metric perturbation hij (τ ,xk) is
defined by1

δgij = a2hij where h[ij ] = 0 = γ ijhij = γ jkhij |k = 0. (10.11)

Thus the most general linear metric perturbation is

ds2 = a2
{
−(1+ 2φ)dτ 2 + 2(B|i −Si)dτdxi

+ [
(1− 2ψ)γij + 2E|ij + 2Fi|j +hij

]
dxidxj

}
. (10.12)

There are 10 degrees of freedom in the perturbation variables, corresponding to the 10
metric components. The inverse metric tensor is

gµν = a−2
( −(1− 2φ) B |i −Si

B |j −Sj (1+ 2ψ)γ ij − 2E|ij − 2F (i|j)−f ij

)
. (10.13)

10.2.2 Gauge transformations

We can make a gauge transformation, based on a first-order change of coordinates,xµ→ x̃µ:

τ̃ = τ + ξ0(τ ,xj ) , x̃i = xi + ξ |i (τ ,xj )+ ξ i(τ ,xj ) , ξ i |i = 0. (10.14)

The function ξ0 determines the constant-τ hypersurfaces, i.e. the time-slicing, while ξ |i and
ξ i fix the spatial coordinates in these hypersurfaces. The choice of coordinates is arbitrary

1 Not to be confused with the 1+3 projection tensor hab .
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to first order and the definitions of the first-order metric and matter perturbations are thus
gauge dependent.

Any four-dimensional scalar β is homogeneous in the background and can be written as
β(τ ,xi)= β̄(τ )+ δβ(τ ,xi). Under a gauge transformation (10.14),

δβ̃ = δβ− ξ0β̄ ′ . (10.15)

Physical scalars on the hypersurfaces, such as the curvature or δρ, only depend on the choice
of ξ0, and are independent of the coordinates within the hypersurfaces, determined by ξ . The
function ξ can only affect the components of 3-vectors or 3-tensors on the hypersurfaces
and not 3-scalars.

Then to first order:

ds2 = a2 (τ̃ )
{
−
[
1+ 2

(
φ−Hξ0 − ξ0′)]dτ̃ 2 + 2

(
B+ ξ0 − ξ ′

)
|i dτ̃dx̃i

− 2
(
Si + ξ ′i

)
dτ̃dx̃i +

[(
1− 2

{
ψ +Hξ0

})
γij + 2(E− ξ)|ij

+ 2
(
Fi|j − ξi|j

)+hij

]
dx̃idx̃j

}
, (10.16)

where H= a′/a. Thus the coordinate transformation (10.14) induces a change in the metric
perturbation quantities.

φ̃ = φ−Hξ0 − ξ0′ , ψ̃ =ψ +Hξ0 , (10.17)

B̃ = B+ ξ0 − ξ ′ , Ẽ =E− ξ , (10.18)

F̃i = Fi − ξi , S̃i = Si + ξ ′i , h̃ij = hij . (10.19)

10.2.3 Gauge-invariant quantities: metric

The two scalar gauge functions allow two of the metric scalar perturbations to be eliminated
so that there should be two remaining gauge-invariant combinations. The transformations
(10.17)–(10.18) show that

�= φ−Hσ −σ ′ where σ =E′ −B , (10.20)

! =ψ +Hσ , (10.21)

are gauge-invariant forms of the Newtonian potential and the curvature perturbation. The
quantity σ is the shear potential for constant-τ surfaces: see Exercise 10.2.3. Other gauge-
invariant metric scalars can also be defined; for example (Exercise 10.2.2):

A= φ+ψ +
(
ψ

H

)′
, B= B−E′ − ψ

H , (10.22)

Q= φ+ 1

a
[a(v+B)]′ . (10.23)

Given the vector gauge freedom, there is one gauge-invariant metric vector perturbation,
i.e. two degrees of freedom in a single transverse 3-vector. A convenient choice is

Qi = Si +F ′
i . (10.24)
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Gauge transformations have no tensor mode, so that the tensor perturbation hij is
automatically gauge invariant.

10.2.4 Matter perturbations and gauge-invariant quantities

The total energy–momentum tensor (5.9) in the energy frame is

Tµν = (ρ+p)uµuν +pgµν +πµν , (10.25)

where the four-velocity,

uµ = 1

a

dxµ

dτ
= ūµ+ δuµ , (10.26)

is a linear perturbation of the background four-velocity ūµ = a−1δ
µ
0 . Using gµνuµuν =−1,

we find that

uµ = 1

a

(
1−φ, v|i + vi

)
, uµ = a

(
− 1−φ, v|i + vi +B|i −Si

)
. (10.27)

Then,

T 0
0 =−(ρ+ δρ), (10.28)

T 0
i = (ρ+p)

(
v|i + vi +B|i −Si

)
, (10.29)

T i
j = (p+ δp)γ i

j +πi
j , (10.30)

a−2πij =#|i|j − 1
3∇2#γij +#(i|j)+#ij , (10.31)

where # is the scalar potential for anisotropic stress, #i is the transverse vector potential
for anisotropic stress, and #ij is the transverse traceless tensor mode of anisotropic stress.
For convenience, we have dropped the overbars on background quantities.

The density, pressure and velocity perturbations are gauge dependent, while the scalar,
vector and tensor parts of the anisotropic stress are all gauge invariant, since anisotropic
stress vanishes in the background. Density and pressure are scalar quantities, which
transform as in (10.15).

For δρ, a useful gauge-invariant form is defined by

�= δ+ ρ′

ρ
(v+B), (10.32)

where we have used (10.15). Other gauge-invariant density perturbations are

δρσ = δρ+ρ′(B−E′) , δρψ = δρ+ ρ′

Hψ . (10.33)

The velocity transforms as

ṽ = v+ ξ ′ , ṽi = vi + ξ i′ . (10.34)

It follows that

V= v+E′ , (10.35)

is a gauge-invariant velocity potential for scalar perturbations.
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10.2.5 Speed of sound and pressure perturbations

For a general medium, the effective, physical sound-speed cs eff is the propagation speed of
acoustic scalar fluctuations in the rest frame, given by (see Kodama and Sasaki (1984) and
Exercise 10.2.4):

c2
s eff =

δp

δρ

∣∣∣∣
rf

. (10.36)

In the rest frame, the medium has zero peculiar velocity and orthogonal world lines:

v|rf = 0, B|rf = 0 ⇔ ui
∣∣
rf = 0 = ui

∣∣
rf ⇔ T i

0

∣∣
rf = 0 = T 0

i

∣∣
rf . (10.37)

This defines the comoving orthogonal gauge (or zero momentum gauge).
The pressure perturbation δp is in general composed of adiabatic and non-adiabatic parts:

δp = c2
s δρ+ δpnad , c2

s := p′

ρ′
=w+ ρ

ρ′
w′ . (10.38)

where cs is the adiabatic sound-speed (5.14). Since pnad vanishes in the background, its
perturbation δpnad is gauge invariant.

For an adiabatic medium, such as a barotropic fluid, δpnad = 0 and cs = cs eff . If w=const,
then further we have c2

s = w. By contrast, for a non-adiabatic medium, cs �= cs eff . An
example is a scalar field ϕ (see Section 5.6). The rest frame is defined by the surfaces
ϕ =const, since this is the frame where the scalar field energy–momentum tensor has
perfect fluid form and zero momentum density. Thus the rest frame coincides with the
uniform-field gauge, defined by δϕ = 0. The constant field surfaces are orthogonal to the
rest-frame four-velocity,

uµ
∣∣
rf = uµ

∣∣
δϕ=0 ∝∇µϕ , (10.39)

so that ∇µϕ reduces to a time derivative in this frame. Thus the kinetic energy density in the
rest frame is − 1

2∇µϕ∇µϕ = ϕ′2/(2a2). Since δϕ = 0 in the rest frame, we have δV = 0,
where V (ϕ) is the potential. The density and pressure perturbations are consequently equal
in the rest frame (see (12.16) and (12.18)):

δρ =−ϕ̇2φ = δp . (10.40)

Then by (10.36), the physical speed of sound is equal to the speed of light, independent of
the form of V (ϕ), whereas the adiabatic sound speed depends on V (ϕ):

c2
s eff = 1 for anyV (ϕ), c2

s = 1+ 2a2Vϕ

3Hϕ′ . (10.41)

Fluid models for dark energy with constant w are at face value barotropic adiabatic
models. But if we treat the dark energy strictly as an adiabatic fluid, then the sound speed
cs would be imaginary (c2

s =w< 0), leading to instabilities in the dark energy. In order to
fix this problem, it is necessary to impose c2

s eff > 0 by hand, and it is natural to adopt the
scalar field value (10.41). Then the dark energy fluid is non-adiabatic.
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We can find a useful relation for the non-adiabatic pressure perturbation by making a
gauge transformation, xµ → xµ+ (δτ ,δxi), from the rest frame gauge to a general gauge.
This leads to

v+B = (v+B)
∣∣
rf + δτ , δp = δ

∣∣
rf −p′δτ , δρ = δρ

∣∣
rf −ρ′δτ . (10.42)

Thus δτ = v+B, and substituting into the pressure and density fluctuations, we obtain

δp = c2
s δρ+ (

c2
s eff − c2

s

)[
δρ+ρ′ (v+B)

]
, (10.43)

δpnad =
(
c2
s eff − c2

s

)
ρ� , (10.44)

where we have used (10.32).

10.2.6 Gauge-invariant quantities: curvature

The intrinsic spatial curvature on constant-τ surfaces is

3R = 6K

a2
+ 12K

a2
ψ + 4

a2
∇2ψ , (10.45)

so that the perturbed 3-Ricci scalar is

δ3R = 12K

a2
ψ + 4

a2
∇2ψ . (10.46)

Thus the metric perturbation ψ determines the curvature of perturbed τ =const surfaces.
δ3R is gauge invariant for a flat FLRW background, since in that case 3R vanishes in
the background. However, ! is more useful, and is gauge invariant for flat and non-flat
backgrounds.

Other gauge-invariant curvature perturbations are also useful – especially those which
are conserved under certain broad conditions. Two such quantities are:

R=ψ −H(v+B) , (10.47)

ζ =−ψ −Hδρ

ρ′
. (10.48)

R coincides with the curvature perturbation in the comoving v = 0, orthogonal (B = 0)
gauge (see (10.60) below), and −ζ coincides with the curvature perturbation on uniform-
density hypersurfaces [(10.59)]. The explicitly gauge-invariant relation between these
quantities follows on using (10.32):

ζ =−R− Hρ

ρ′
� . (10.49)

The generalized Poisson equation (10.74) shows that

R=−ζ on super-Hubble scales. (10.50)

The perturbed energy conservation equation (10.72) shows that

ζ ′ = − 1
3∇2V−H δpnad

ρ+p
. (10.51)
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Combining these two results, we have the important result:

ζ ′ = 0 =R′ on super-Hubble scales for adiabatic modes, (10.52)

since δpnad = 0 and ∇2V may be neglected.
The perturbed (0i) field equation (10.69) in gauge-invariant form gives an explicitly

gauge-invariant formula for R:

R=!+ 2

3

(
! ′ +H�

)
(1+w)H . (10.53)

This is very useful for relating the conserved curvature perturbation to the metric potentials,
especially in the case of vanishing anisotropic stress, when ! =� (see below):

R=�+ 2

3

�′ +H�

(1+w)H when#= 0. (10.54)

This enables us to relate the amplitude of the Newtonian potential for perturbations re-
entering the Hubble horizon during the radiation- or matter-dominated eras, to the amplitude
of the curvature perturbation at horizon exit during inflation.

10.2.7 Specific gauges

Although we can work with gauge-invariant quantities, it may also often be convenient to
choose a particular gauge. Confining attention to scalar perturbations, some of the gauges
are as follows:

Newtonian or longitudinal gauge:

This is the gauge in which the metric is diagonal, so that

E = 0 = B ⇒ φ =� , ψ =! , δρ = δρσ , v= V , (10.55)

where the gauge-invariant δρσ and V are defined in (10.33) and (10.35). In addition, the
shear of constant-τ surfaces, defined in (10.20), vanishes,

σ =−B+E′ = 0. (10.56)

This gauge is closest to the Newtonian equations on small scales.
The extension of the gauge to include vector perturbations is called the Poisson gauge,

which adds the condition Si = 0.

Flat (or uniform curvature) gauge:

In this gauge the τ =const surfaces are unperturbed:

ψ = 0 =E ⇒ φ =A , B = B , δρ = δρψ , v= V , (10.57)

where the gauge-invariant quantities A,B and δρψ are defined in (10.22) and (10.33). For
a scalar field in the flat gauge, the field perturbation coincides with the gauge-invariant
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Sasaki–Mukhanov variable Q:

δϕ =Q := δϕ+ ϕ′

Hψ . (10.58)

Uniform density gauge:

The constant-τ hypersurfaces have unperturbed (total) density:

δρ = 0 ⇒ ψ =−ζ . (10.59)

Comoving orthogonal gauge:

The fluid four-velocity (10.27) is comoving and normal to the constant-τ hypersurfaces,
so that

B = 0 = v ⇒ φ =Q , ψ =R , δρ = ρ� , (10.60)

where the gauge-invariant Q, R and � are defined respectively by (10.23), (10.47) and
(10.32).

Synchronous gauge:

The metric has no perturbations in its time components:

φ = 0 = B . (10.61)

This simplifies the time evolution equations and hence is used in the CMB Boltzmann
codes such as CMBFAST and CAMB (see Chapter 11). However, this does not determine
the time-slicing unambiguously – there is a residual gauge freedom ξ̂0 = C(xi)/a, and it
is not possible to define gauge-invariant quantities in general using this gauge condition.
In the Boltzmann codes, the residual ambiguity is removed by setting the CDM velocity
to zero.

10.2.8 Perturbed Einstein and conservation equations: scalars

The first-order perturbed Einstein equations δGµ
ν = 8πGδT

µ
ν for scalar modes give two

constraint and two evolution equations. In a general gauge, the (00) (energy) and (0i)
(momentum) constraints are:(

∇2 + 3K
)
ψ − 3H(ψ ′ +Hφ)+H∇2σ = 4πGa2δρ , (10.62)

ψ ′ +Hφ+Kσ =−4πGa2(ρ+p)(v+B). (10.63)

The (ij) evolution equations are:

ψ ′′ + 2Hψ ′ −Kψ +Hφ′ + (2H′ +H2)φ = 4πGa2
(
δp+ 2

3∇2#
)
, (10.64)

σ ′ + 2Hσ −φ+ψ = 8πGa2# . (10.65)

(Recall that σ =E′ −B.)
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The perturbed conservation equations δ∇νTµν = 0 yield evolution equations for the
density perturbation and momentum,

δρ′ + 3H(δρ+ δp)= (ρ+p)
[
3ψ ′ −∇2(v+E′)

]
, (10.66)

[(ρ+p)(v+B)]′ + δp + 2
3

(
∇2 + 3K

)
#=−(ρ+p) [φ+ 4H(v+B)] . (10.67)

We can re-express the perturbation equations (10.62)–(10.67) in terms of gauge-invariant
variables. For a flat background (K = 0):

−∇2!+ 3H(! ′ +H�)=−4πGa2δρσ = 3(H′ −H2)(!+ ζ ), (10.68)

! ′ +H�=−4πGa2(ρ+p)V= H′ −H2

H (!−R), (10.69)

! ′′ +H(2− 3c2
s )!

′ +H�′ + [2H′ + (1− 3c2
s )H2]�

= 4πGa2
(
c2
s ρ�+ δpnad + 2

3∇2#
)
, (10.70)

!−�= 8πGa2# , (10.71)

ζ ′ = − 1
3∇2V−H δpnad

ρ+p
, (10.72)

V ′ +HV+�= −1

ρ+p

(
c2
s ρ�+ δpnad + 2

3∇2#
)
. (10.73)

Note that (10.69) has been used to derive (10.70).
Combining (10.68) and (10.69) we arrive at a gauge-invariant generalization of the

Newtonian Poisson equation:

∇2! = 4πGa2ρ�= 3(H2 −H′)(ζ +R). (10.74)

We can also derive an evolution equation for � when p = 0 =#:

�′′ +H�′ − 4πGa2ρ�= 0. (10.75)

10.2.9 Perfect fluid scalar modes: solutions

In the case of adiabatic perturbations (δpnad = 0) with K = 0 and vanishing anisotropic
stress (#= 0⇔!=�), we can derive a second-order evolution equation for the Newtonian
potential,

�′′ + 3H(1+ c2
s )�

′ +
[
2H′ + (1+ 3c2

s )H2 − c2
s∇2

]
�= 0. (10.76)
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Using (10.54) for the comoving curvature perturbation, this evolution equation may be
rewritten in the form

R′ = 2c2
s

3(1+w)H∇2� , (10.77)

showing again the conservation of R on large scales.
For a perfect fluid with w=const, the scale factor evolves as

a ∝ τ ν , ν = 2

1+ 3w
, c2

s =w= const . (10.78)

Since the equations are linear, one can express each quantity Q in terms of functions
harmonic on the spatial sections. For K = 0 this means a Fourier decomposition using
wave vectors k,

Q= 1

(2π)3

∫
Qk exp(ik · x)d3k, (10.79)

where the inverse integral is taken over the spatial sections, presumed to be infinite, i.e.
this formulation implies an assumption about the behaviour beyond the visual horizon of
Section 7.9 (see MacCallum (1982)). Then (10.76) can be written in Fourier space, using
k := |k|, as,

d2F

dx2
+ 2

x

dF

dx
+
[
c2
s −

ν(ν+ 1)

x2

]
F = 0, F := xν�k , x := kτ . (10.80)

This is a spherical Bessel equation, leading to the general solution

�k =− 3
2ν

2x−νZν(csx) , Zν :=Ajν +Bnν , (10.81)

where Zν denotes a linear combination of the spherical Bessel functions.
Now we can use the Poisson equation (10.74) to find the gauge-invariant comoving

density perturbation, and (10.69) to find the gauge-invariant velocity perturbation:

�k = x2−νZν(csx) , (10.82)

kVk =− 3
4x

1−ν

[
Zν(csx)− csx

(ν+ 1)
Zν−1(csx)

]
. (10.83)

Using the asymptotic behaviour of the spherical Bessel functions, these results lead to the
large-scale (csx� 1, i.e. wavelength much greater than the acoustic horizon) and small-scale
(csx � 1) solutions in Table 10.1.

Note that in the case of matter (cs = 0), only the csx � 1 solutions in Table 10.1 are
relevant.

It follows from Table 10.1 that the non-decaying mode of the potential is constant on
super-acoustic scales (or on all scales for matter domination):

�= const when cskτ � 1. (10.84)

In the radiation era, ν = 1, while ν = 2 for the matter era. Thus on large scales, the
non-decaying mode of the density and velocity perturbations evolve during radiation
domination as

�r ∝ a2 , kVr ∝ a , (10.85)
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Table 10.1 Solutions for the gauge-invariant potential, density and velocity perturbations
(from Peter and Uzan (2009)).

csx � 1 large scales csx � 1 small scales

�k �++�−x−1−2ν �+x−1−ν cos[csx−π(ν+ 1)/2]
�k

−2(�+x2−�−x1−2ν )

3ν2
−2�+x1−ν cos[csx−π(ν+1)/2]

3ν2

kVk
−2[�+x−�−(1+ν−1)x−2ν ]

3ν(1+w)
−2�+x1−ν cos[csx−π(ν+1)/2]

3ν(1+w)

while during matter domination,

�m ∝ a , kVm ∝√
a , (10.86)

on all scales.

10.2.10 Vector and tensor perturbations

The transverse momentum density for vector perturbations is

qi = (ρ+p)(vi −Si), (10.87)

and it satisfies the momentum conservation equation,

q ′i + 4Hqi =−
(
∇2 + 2K

)
#i , (10.88)

where #i is the transverse vector potential for anisotropic stress. We see that we need
non-zero #i to source qi .

The gauge-invariant metric vector perturbation Qi = Si +F ′
i satisfies the (0i) constraint

and (ij) evolution equations:(
∇2 + 2K

)
Qi =−16πGa2qi , (10.89)

Q′
i + 2HQi = 8πGa2#i . (10.90)

The first equation can be thought of as the ‘vector Poisson equation’. If qi = 0 – as in
the case of a scalar field – then Qi = 0, i.e. there are no vector perturbations. Thus vector
perturbations need to be actively sourced via anisotropic stress – otherwise they are zero or
purely decaying. Examples of active sources are magnetic fields and topological defects.

Tensor perturbations satisfy the evolution equation (from the (ij) field equation)

h′′ij + 2Hh′ij +
(
2K −∇2

)
hij = 8πGa2#ij , (10.91)

where #ij is the transverse traceless anisotropic stress. Tensor modes are therefore sourced
or damped by anisotropic stress. In the absence of this stress, they evolve freely under grav-
ity. Equation (10.91) is a wave equation, and it confirms that gravitational waves propagate
at the speed of light.
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For K = 0 and a perfect fluid with w =const (see Exercise 10.2.9), the solutions are

hij = (kτ )−ν+1/2
[
α+
ij Jν−1/2(kτ )+α−

ijNν−1/2(kτ )
]

. (10.92)

It follows that the non-decaying mode is constant on super-Hubble scales.

Exercise 10.2.1 Prove the gauge transformation formulae (10.16)–(10.18).

Exercise 10.2.2 Verify that (10.22), (10.23) and (10.33) are gauge invariant.

Exercise 10.2.3 Show that the unit time-like vector field orthogonal to constant-τ hypersur-
faces is

Nµ = a(−1−φ,0) , Nµ = 1

a
(1−φ,−B |i +Si) . (10.93)

Define the shear in the usual way by decomposing Nµ;ν . Show that for scalar perturbations,

σN
ij = a

(
σ|ij − 1

3γij σ
k

|k
)

, (10.94)

where the scalar shear potential is given in (10.20). Show that for vector and tensor
perturbations, respectively,

σN
ij = a

[
S(i|j)+F ′

(i|j)
]

, σN
ij = 1

2ah
′
ij . (10.95)

Exercise 10.2.4 On small scales, where we can neglect the Hubble expansion, (10.76) reduces
to�′′ −c2

s∇2�= 0. This shows that cs , defined in (5.14), is indeed the propagation speed of
scalar fluctuations in an adiabatic fluid. Now generalize (10.76) to the non-adiabatic case,
and thus verify that cs eff, defined in (10.36) and satisfying (10.44), is indeed the propagation
speed of scalar fluctuations, i.e. the effective sound-speed.

Exercise 10.2.5 Derive (10.45) for the 3-Ricci scalar of the τ =const hypersurfaces.

Exercise 10.2.6 For a scalar field, show that

δpnad =−2a2Vϕ

3Hϕ′ δρ. (10.96)

Exercise 10.2.7 Verify (10.51) and (10.53).

Exercise 10.2.8 Use (10.62)–(10.67) to derive (10.68)–(10.75).

Exercise 10.2.9 Verify the results in Section 10.2.9 for scalar modes, and the solution (10.92)
for tensor modes.

10.3 Covariant nonlinear perturbations

The 1+3 covariant approach developed in Chapters 4–6 is well suited to a gauge-
invariant analysis of perturbations. This is based on early work by Hawking (1966),
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Lyth and Mukherjee (1988) and Ellis and Bruni (1989), subsequently systematized by Ellis,
Bruni, Dunsby and co-workers. Various generalizations and improvements, as well as
further references, may be found in the review articles by van Elst and Ellis (1998) and
Tsagas, Challinor and Maartens (2008), which we shall draw on. A key difference between
the covariant and gauge-invariant (CGI) approach and the standard approach is that CGI
starts from the fully nonlinear equations, rather than from the background. Thus we begin
with the nonlinear case and then linearize, and this gives some advantages when considering
nonlinear questions.

In the CGI approach, we first choose a fundamental 4-velocity, with comoving observers
who will measure the physical quantities in the universe. There are various physically
motivated choices of ua , and a change in choice, ua → ũa leads to a transformation in the
frame-dependent physical quantities measured by observers (see Sections 5.1.1, 5.3).

For a given choice of ua , we can perform a covariant 1+3 splitting of all physical and
geometrical quantities, as in Chapters 4 and 5. All such quantities may be described by
PSTF vectors and tensors:

Va = V〈a〉 , Sab = S〈ab〉 . (10.97)

Higher-rank PSTF tensors are needed in kinetic theory, as discussed in Section 5.4. Spatial
inhomogeneities relative to ua observers are not described by scalars (as in the standard
approach), but by the spatially projected gradients of scalars. A key such variable is the
comoving fractional gradient in the energy density,

�a = a

ρ
∇aρ , a ≡ � , (10.98)

where for later convenience we replace �, defined in (4.35), by a. This gradient vanishes
in spacetimes with homogeneous spatial sections, and thus satisfies the Stewart–Walker
lemma for gauge–invariance (based on (10.6)). The second key quantity is the comoving
volume-expansion gradient,

Za = a∇a� , (10.99)

which gives a CGI description of velocity perturbations.
To deal with the evolution of projected gradients we use the identity (4.62):

(∇af )̇=∇aḟ + (u̇b∇bf )ua + u̇aḟ − 1
3�∇af −σab∇b

f +ηabcω
b∇c

f . (10.100)

10.3.1 Fluids

The comoving gradient of the energy conservation equation, using momentum conservation
to eliminate the pressure gradient, and using the commutation identity (10.100) for time
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and spatial derivatives, leads to the evolution equation (Exercise 10.3.1)

�̇〈a〉 =w��a − (1+w)Za + a�

ρ

(
q̇〈a〉 + 4

3 �qa
)+ a�

ρ
(σab+ωab)q

b

+ a�

ρ
∇b

πab− (σba +ωba)�
b− a

ρ
∇a

(
2u̇bqb+σbcπbc

)
− a

ρ
∇a∇b

qb

+ a�

ρ
πabu̇

b+ 1

ρ

(
∇b

qb+ u̇bqb+σbcπbc

)
(�a − au̇a) . (10.101)

Even if �a is initially zero, it will become non-zero due to the various sources in this
equation. One important source is Za , whose evolution follows from the comoving gradient
of the Raychaudhuri equation (Exercise 10.3.1):

Ż〈a〉 = − 2
3�Za − 4πG

[
(1+ 3c2

s )ρ�a + 3aa

]
− 1

3a
(
�2 − �̇

)
u̇a

+a∇a∇b
u̇b− (σba +ωba)Zb− 2a∇a

(
σ 2 −ω2

)
+ 2au̇b∇au̇b

−a
[
2
(
σ 2 −ω2

)
−∇b

u̇b− u̇bu̇b

]
u̇a . (10.102)

Here w=p/ρ and we have written the comoving pressure gradient in terms of its adiabatic
and non-adiabatic parts:

a∇ap = c2
s ρ�a + aa , a =∇apnad = pa−1Ea , (10.103)

where cs is the adiabatic sound speed, and the dimensionless entropy gradient, Ea may be
used in place of the gradient of the non-adiabatic pressurea . This is the covariant analogue
of (10.38).

If we choose ua as the energy frame 4-velocity, then we can set qa = 0 in (10.101). For
a perfect fluid or scalar field, we can also set πab = 0, so that (10.101) simplifies to

�̇〈a〉 =w��a − (1+w)Za − (σba +ωba)�
b . (10.104)

In (10.102) we can set a = 0 if the fluid is adiabatic.
In the metric-based perturbative formalism, the curvature perturbation is conserved for

the adiabatic growing mode on super-Hubble scales, as shown by (10.51). The geometric
interpretation of this is via the perturbation δN of the expansion e-folds, N = lna, using
the so-called ‘separate universe’picture (Starobinsky, 1985, Wands et al., 2000), which can
be applied at second and higher orders of perturbation. A covariant version of this result is
based on defining an appropriate spatial-gradient quantity, and leads to a simple geometric
nonlinear conserved quantity for a perfect fluid (Langlois and Vernizzi, 2005).

Along each fluid particle world line, we can define a covariant e-fold function,

α = 1
3

∫
�dt , (10.105)

where t is proper time. Applying the identity (4.62) for commuting time and space
derivatives,

1
3 ∇a�=Lu∇aα− α̇u̇a , (10.106)
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where Lu is the Lie derivative along ua , i.e. Lu(∇af )=∇aḟ − ḟ u̇a . The projected gradient
of the energy conservation law gives

Lu(∇aρ)+ 3(ρ+p)Lu(∇aα)+�∇a(ρ+p)= 0. (10.107)

Using (10.103) and defining

ζa :=∇aα− α̇

ρ̇
∇aρ , (10.108)

this becomes

Luζa =− �

(ρ+p)
a . (10.109)

For adiabatic perturbations, a = 0 and

Luζa = 0, (10.110)

so that ζa is a conserved quantity, in the adiabatic case, on all scales and at all perturbative
orders. This is the CGI analogue of the metric-based curvature perturbation ζ .

10.3.2 Multiple perfect fluids

For a mixture of interacting perfect fluids (see (5.70)),

∇bT
ab
I =Qa

I ,
∑
I

Qa
I = 0, (10.111)

where Qa
I are the rates of energy–momentum density exchange. Defining the energy

exchange QI = −Qa
Iua and momentum exchange Qa

I = habQ
b
I in the fundamental (ua)

frame, (10.111) leads to

ρ̇I =−�(ρI +pI )−∇aq
a
I − 2u̇aq

a
I +QI , (10.112)

(ρI +pI ) u̇
a =−c2

sI ρI

a
�a

I −
pI

a
EaI

−q̇〈a〉I − 4
3�qaI +

(
σa

b+ωa
b

)
qbI +Qa

I , (10.113)

where c2
sI = ṗI /ρ̇I , qaI = (ρI +pI )v

a
I (see Section 5.3) and EaI is the entropy gradient of

the I -fluid. Note that ∑
I

QI = 0 =
∑
I

Qa
I . (10.114)

Density inhomogeneity in the I -fluid, relative to the ua-frame, is described by

�a
I =

a

ρI
∇a

ρI . (10.115)
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Taking the time derivative of �a
I and using the conservation laws (10.112) and (10.113),

we find

�̇
〈a〉
I =wI��a

I − (1+wI )Za + a

ρI
�
(
q̇
〈a〉
I + 4

3�qaI

)
− a

ρI
∇a

(
∇bq

b
I −QI

)
−(σba +ωb

a
)
�b

I −
2a

ρ
∇a

(
u̇bq

b
I

)
+ a�

ρI

(
σa

b+ωa
b

)
qbI

+ 1

ρ

(
∇bq

b
I + 2u̇bq

b
I −QI

)(
�a

I − au̇a
)− a�

ρI
Qa

I . (10.116)

When the interaction term is specified, this describes the propagation of spatial inhomo-
geneities in the density distribution of the I -species. The nonlinear evolution of Za is
governed by (10.102).

10.3.3 Magnetized fluids

General features of relativistic magnetohydrodynamics were discussed in Section 5.5.4.
Inhomogeneity associated with a magnetic field may be described via the comoving

fractional gradient of magnetic energy density,

Ba = a

B2
∇aB

2 . (10.117)

In the presence of magnetic fields, the nonlinear evolution of spatial inhomogeneities in the
density distribution of a single, highly conducting perfect fluid is described by (Exercise
10.3.2)

�̇〈a〉 =w��a − (1+w)Za + a�

ρ
ηabcB

bcurl Bc

+ 2
3c

2
Aa�u̇a − (σba +ωba)�

b+ a�

ρ
πB
abu̇

b , (10.118)

where πab
B = −B〈aBb〉 is the magnetic anisotropic stress, and the Alfvén speed cA is

defined by

c2
A := B2

ρ
. (10.119)

The nonlinear evolution equation for the expansion gradients is

Ż〈a〉 = − 2
3�Za − 4πG

[
ρ�a +B2Ba

]
+ 12πGaηabcB

bcurl Bc

+a∇a∇b
u̇b+ 2au̇b∇au̇b+

[
1
2

3R− 3
(
σ 2 −ω2

)
+∇b

u̇b+ u̇bu̇
b
]
au̇a

−(σba +ωba)Zb+ 12πGaπB
abu̇

b− 2a∇a

(
σ 2 −ω2

)
. (10.120)
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Finally, the nonlinear propagation of inhomogeneities in the magnetic energy density is
given by (Exercise 10.3.2)

Ḃ〈a〉 = 4

3(1+w)
�̇〈a〉 − 4w�

3(1+w)
�a − 4a�

3ρ(1+w)
ηabcB

bcurl Bc

−4

3
a�

[
1+ 2B2

3ρ(1+w)

]
u̇a − (σba +ωba)Bb

+ 4

3(1+w)
(σba +ωba)�

b− 4a�

3ρ(1+w)
πB
abu̇

b− 2a

B2
πbc
B ∇aσbc

− 2a

B2
σbc∇aπ

B
bc+

2

B2
σbcπ

bc
B Ba − 2a

B2
σbcπ

bc
B u̇a . (10.121)

This follows on using (5.134) and (10.120).

10.3.4 Scalar fields

The basic general properties of scalar fields are given in Section 5.6. The canonical 4-
velocity – in which the energy–momentum tensor takes perfect fluid form – is orthogonal
to ϕ =const surfaces, so that

∇aϕ = 0 ⇒ �a ≡ a

ρϕ
∇aρϕ = aϕ̇

ρϕ
∇aϕ̇ . (10.122)

This is like a (nonlinear) CGI version of the standard uniform-field gauge.
Using (5.151), we may adapt the equations (10.101) and (10.102) to a scalar field:

�̇〈a〉 =w��a − (1+w)Za − (σba +ωba)�
b , (10.123)

Ż〈a〉 = − 2
3�Za − 16πGρϕ�a − a

3

(
�2 − �̇

)
u̇a + a∇a∇b

u̇b

−(σba +ωba)Zb− 2a∇a

(
σ 2 −ω2

)
+ 2au̇b∇au̇b

−a
[
2
(
σ 2 −ω2

)
−∇b

u̇b− u̇bu̇b

]
u̇a . (10.124)

Finally, combining (5.148) and (5.151),

u̇a =− ρϕ

a(ρϕ +pϕ)
�a . (10.125)

Exercise 10.3.1 Using the identities in Section 4.8, derive (10.101), (10.102) and (10.109).

Exercise 10.3.2 Derive (10.118) and (10.121). (See Barrow, Maartens and Tsagas (2007).)

10.4 Covariant linear perturbations

In order to linearize the nonlinear equations of the previous section and Chapter 6, we first
characterize the limiting spacetime, i.e. the unperturbed (zero-order) FLRW background.
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• The first requirement is that the fundamental 4-velocity ua should smoothly tend to the
unique FLRW 4-velocity in the limit. This requires that ua is chosen in a unique and
invariant way – which is typically achieved by a physical criterion (e.g. choosing ua as
the energy-frame 4-velocity).

• Then a covariant characterization of the FLRW background is:
energy–momentum: ∇aρ = 0 =∇ap, qa = 0, πab = 0;
kinematics: ∇a�= 0, u̇a = 0 = ωa , σab = 0;
curvature: Eab = 0 =Hab, 3R〈ab〉 = 0;
dynamics: �= 3H , 3H 2 = 8πGρ− 3K/a2, ρ̇+ 3(1+w)Hρ = 0.

• In the perturbed equations, we neglect all terms of quadratic and higher order in ∇af

(any f ), qa , πab, u̇a , σab, ωa , Eab, Hab, 3R〈ab〉 and in their time (ua∇a) and spatial (∇a)
derivatives.

Here ρ andp=wρ refer to the total quantities (including any� term). Strictly we should
write ρ̄ to distinguish the background energy density from the perturbed ρ, but whenever ρ
multiplies a perturbative quantity, only the background part of ρ contributes to first order.
As discussed in Section 10.1, scalars like ρ that do not vanish in the background cannot
be gauge-invariantly split into a perturbation and a background value. In the covariant
approach, we avoid this gauge problem by not directly using the perturbations of scalars
(e.g. δρ), but instead by using their spatial gradients (e.g. ∇aρ). Since these vanish in the
background, they are automatically gauge invariant.

However, the CGI perturbation formalism is not frame independent, since it depends on
a choice of fundamental 4-velocity ua . A change of fundamental 4-velocity (a linearized
Lorentz boost),2

ua → ũa = ua + va , uav
a = 0, (10.126)

leads to the transformations (see Exercises 5.1.1 and 10.4.1):

�̃=�+∇av
a , ˜̇ua = u̇a + v̇a +Hva , (10.127)

ω̃a = ωa − 1
2curl va , σ̃ab = σab+∇〈avb〉 , (10.128)

ρ̃ = ρ , p̃ = p , q̃a = qa − (ρ+p)va , π̃ab = πab , (10.129)

Ẽab =Eab , H̃ab =Hab . (10.130)

This is the CGI analogue of a gauge transformation in the standard formalism.
In the coordinate metric-based approach, first-order perturbations are decomposed from

the start into scalar, vector and tensor modes, using appropriate harmonics (i.e. eigenfunc-
tions of the 3-Laplacian). The covariant approach does not depend on any initial splitting
into harmonic modes and it is independent of any Fourier-type decomposition – although
harmonic modes are necessary for quantitative calculations.

In the covariant perturbation formalism, all the perturbative quantities are PSTF rank-1
and rank-2 tensors (as in (10.97)). Higher-rank PSTF tensors are needed for CMB pertur-
bations – this is discussed in Chapter 11. These PSTF rank-1 and rank-2 tensors contain

2 From now on, equality is understood as holding to first order.
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three-dimensional scalar, vector and tensor modes:

Va =∇aV +Va , Sab =∇〈a∇b〉S+∇〈aSb〉 +Sab , (10.131)

where ∇aVa = 0, ∇a
Sa = 0 =∇bSab , Sab = S〈ab〉 .

Note that all the quantities V ,Va , . . . ,Sab are gauge invariant, since they vanish in the
background.

In particular, the scalar potential V vanishes in the background, and hence, by the identity
(4.60),

curl ∇aV =−2V̇ ωa = 0 to first order, (10.132)

since Vωa is second order. By contrast, for a scalar that does not vanish in the background,
such as ρ, we see that

curl ∇aρ =−2ρ̇ωa =− 2ρ̇|background ωa , (10.133)

which is non-zero if ωa �= 0, because of the non-zero background value of ρ̇.
The modes of perturbations are characterized as follows:

• The scalar modes are characterized by the fact that all PSTF vectors and tensors are
generated by scalar potentials:

Va = 0, Sa = 0, Sab = 0 and curl Va = 0 = curl Sab . (10.134)

• For vector modes, all PSTF vectors are transverse (solenoidal) – including spatial gradi-
ents of scalars f such that ḟ does not vanish in the background – and all PSTF tensors
are generated by transverse vector potentials:

Va = Va , Sab =∇〈aSb〉 , curl ∇af =−2ḟ ωa . (10.135)

Note that the vorticity supports only vector modes because of the constraint equation
∇a

ωa = (see (10.143) below).
• Tensor modes are characterized by

∇af = 0, Va = 0, Sab = Sab . (10.136)

Note that to first order, V̇a = V̇〈a〉, Ṡab = Ṡ〈ab〉.
We can expand these modes in harmonic eigenfunctions Qk of the scalar Laplace–

Beltrami operator (Fourier modes in the case K = 0). For example, for scalar modes,

V =
∑
k

V(k)Qk , ∇aV(k) = 0, ∇2Qk =− k2

a2
Qk , Q̇k = 0. (10.137)

Here k = ν for K = 0 and k = ν2 + 1 for K < 0, with ν ≥ 0 representing the comoving
wavenumber. For K > 0, k = ν(ν+ 2) with ν = 1,2, . . ..
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10.4.1 Perturbed equations and identities

The 1+3 covariant evolution and constraint equations were given in Chapter 6 in general
nonlinear form. Linearization about the FLRW limit gives the following equations, which
include scalar, vector and tensor modes:
Evolution:

q̇a + 4
3�qa +ρ(1+w)u̇a +∇ap+∇b

πab = 0, (10.138)

ω̇a + 2
3�ωa + 1

2curl u̇a = 0, (10.139)

σ̇ab+ 2Hσab+Eab− 4πGπab−∇〈au̇b〉 = 0, (10.140)

Ėab+ 3HEab− curl Hab+ 4πGρ(1+w)σab

+ 4πG(π̇ab+Hπab)+ 4πG∇〈aqb〉 = 0, (10.141)

Ḣab+ 3HHab+ curl Eab− 4πGcurl πab = 0. (10.142)

Constraint:

∇a
ωa = 0, (10.143)

∇b
σab− curl ωa − 2

3∇a�+ 8πGqa = 0, (10.144)

curl σab+∇〈aωb〉 −Hab = 0, (10.145)

∇b
Eab+ 4πG∇b

πab− 8πG

3
∇aρ+ 8πGHqa = 0, (10.146)

∇b
Hab+ 4πGcurl qa − 8πGρ(1+w)ωa = 0, (10.147)

3R〈ab〉 −Eab− 4πGπab−H(σab+ωab)= 0. (10.148)

The Gauss–Codazzi trace-free constraint (10.148) has a partner scalar constraint that gives
3R. But this is not gauge invariant, so we take its spatial gradient to get the gauge-invariant
constraint,

∇a
3R− 16πG∇aρ+ 4H∇a�= 0. (10.149)

This defines a CGI curvature perturbation in the case ωa = 0 (when it is meaningful to talk
of the curvature of the hypersurfaces orthogonal to ua).

In these equations, the energy–momentum terms ρ,p=wρ,qa and πab refer to the total
source of the gravitational field. We perform the following replacements (defined in (10.98),
(10.99) and (10.103)):

a∇aρ = ρ�a , a∇ap = c2
s ρ�a + aa , a∇a�=Za . (10.150)

These comoving gradients contain both scalar and vector modes. For example, for the
density inhomogeneity:

scalar: � := a∇a
�a = a2

ρ
∇2

ρ, vector: curl �a = 6a(1+w)Hωa . (10.151)
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The energy conservation and Raychaudhuri equations are evolution equations for scalars,
so we need to take their spatial gradients to arrive at gauge-invariant equations. The
linearization of (10.101) and (10.102) leads to:

�̇a = 3wH �a − (1+w)Za + 3aH

ρ
(q̇a + 4Hqa)

− a

ρ
∇a∇b

qb+ 3aH

ρ
∇b

πab, (10.152)

Ża =−2HZa − 4πG
[
(1+ 3c2

s )ρ�a + 3aa

]
−a

(
3H 2 − Ḣ

)
u̇a + a∇a∇b

u̇b . (10.153)

In deriving and manipulating CGI perturbative equations, we often need identities
for commuting the time and spatial derivatives. Linearization of (10.100) and the other
nonlinear identities (see Section 4.8 for details and references) leads to:

(a∇af )̇= a∇aḟ , (a∇aVb)̇= a∇aV̇b , (a∇aSbc)̇= a∇aṠbc , (10.154)

∇[a∇b]f =−ḟ ωab or curl ∇af =−2ḟ ωa , (10.155)

∇[a∇b]Vc =−K

a2
V[ahb]c , ∇[a∇b]Scd =−2K

a2
S[a(chb]d) , (10.156)

∇a
curl Va = 0, ∇b

curl Sab = 1
2curl ∇b

Sab , (10.157)

curl curl Va =−∇2
Va +∇a(∇b

Vb)+ 2K

a2
Va , (10.158)

curl curl Sab =−∇2
Sab+ 3

2∇〈a(∇c
Sb〉c)+ 3K

a2
Sab , (10.159)

∇2
(∇af )=∇a(∇2

f )+ 2K

a2
∇af + 2ḟ curl ωa . (10.160)

The FLRW background curvature termKa−2 arises from the commutation of spatial deriva-
tives via the spatial Ricci identity, using the fact that the background 3-Riemann tensor has
constant curvature: 3Rabcd = 6Ka−2(hachbd −hadhbc).

We now consider various applications and solutions of these equations.

10.4.2 Barotropic fluid

For a single barotropic perfect fluid, with p = p(ρ), (10.152) and (10.153) lead to

�̇a = 3wH�a − (1+w)Za , (10.161)

Ża =−2HZa − 4πGρ�a − c2
s

1+w

(
∇2 + K

a2

)
�a

− 6ac2
sHcurl ωa , (10.162)

where we have used momentum conservation (10.138) and the commutation identities
above. Equation (10.138) also gives the vorticity and shear propagation equations (10.139)
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and (10.140) as

ω̇a =−
(
2− 3c2

s

)
Hωa , (10.163)

σ̇ab =−2Hσab−Eab− c2
s

a(1+w)
∇〈a�b〉 . (10.164)

Thus vorticity decays with the expansion unless the barotropic medium has a sound speed
cs >

√
2/3.

The CGI curvature perturbation (10.149) evolves as(
a3∇a

3R
)· = 4c2

s

(1+w)
Ha2∇2

�a , (10.165)

so that it is conserved on large scales.
We take the comoving divergence of (10.161) and (10.162), and then eliminate ∇aZa ,

to find that

�̈+
(
2− 6w+ 3c2

s

)
H�̇−

[
4πG

(
1+ 8w− 6c2

s − 3w2
)
ρ

− 12(w− c2
s )
K

a2
+ c2

s∇2
]
�= 0. (10.166)

This is the covariant analogue of the standard equation for δ = δρ/ρ. The last term on the
right demonstrates the competing effects of gravitational attraction and pressure support,
with collapse occurring when the quantity within the braces is positive. The physical wave-
length of the mode is λ = a/k, so that gravitational contraction will take place only on
scales larger than the critical (Jeans) length

λJ ≈ cs√
4πG

(
1+ 8w− 6c2

s − 3w2
)
ρ+ 12(w− c2

s )K/a2
. (10.167)

Since curvature and dark energy are typically negligible after inflation, we set K = 0 =
� in the radiation era. With w = 1/3 = c2

s and H = 1/(2t), we can solve (10.166) on
super-Hubble scales, k/aH � 1, where the pressure support is negligible:

�=�+
(

t

teq

)
+�−

(
t

teq

)−1/2

, (10.168)

with �̇± = 0. During the radiation era, large-scale radiation density perturbations grow
as � ∝ a2. On sub-Hubble scales, k/aH � 1, pressure gradients can support against
gravitational collapse and the solution oscillates:

�(k) =C(k)exp

[
i
√

3
k

aeqHeq

(
t

teq

)1/2
]

, (10.169)

where the real part is understood.
After matter–radiation equality, for CDM we have w= 0= c2

s and H = 2/(3t+ teq). We
can neglect cs for baryons after recombination. Then (10.166) leads to the scale-independent
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solution,

�=�+
(

t

teq

)2/3

+�−
(

t

teq

)−1

. (10.170)

Matter density perturbations in the matter era grow as �∝ a on all scales.
Dissipative processes can modify the ideal-fluid evolution of perturbations. For exam-

ple, radiation begins to deviate from perfect-fluid behaviour as the photon interaction rate
with electrons drops below the expansion rate, and photon free-streaming effects become
significant. This has an increasingly important effect on baryonic matter: as photons diffuse
from high-density to low-density regions, they tend to drag baryons, erasing small-scale
fluctuations. This is known as the Silk damping effect (Silk, 1967).

In the early universe, dark matter decoupled from thermal equilibrium with the plasma and
entered a regime of collisionless motion.Acollisionless gas is not a perfect fluid, and strictly
is not a fluid at all (hydrodynamic behaviour requires interactions). But for massive particles,
the dust approximation (i.e. a perfect ‘fluid’ with vanishing pressure) works for suitably
large scales where free-streaming effects may be neglected. (Free-streaming damping with
massive particles is known as Landau damping.) Below the free-streaming scale, small-
scale structure does not grow as in the dust case, but is erased. The higher the velocity
dispersion, the greater is the free-streaming scale, and therefore the greater is the minimum
mass of fluctuations that can grow. For cold dark matter, the free-streaming masses are very
low, and perturbations grow unimpeded by damping processes on all scales of cosmological
interest.

10.4.3 Multiple perfect fluids

In the FLRW background all components are perfect fluids sharing the same 4-velocity ua .
Thus the peculiar velocities vaI are gauge invariant. Momentum conservation gives

aρI (1+wI ) u̇
a =−c2

sI ρI�
a
I −pIEaI

−a (q̇aI − 4HqaI
)+Qa

I , (10.171)

where c2
sI = ṗI /ρ̇I , wI = pI/ρI and qaI = ρI (1+wI )v

a
I . Equation (10.116) linearizes to

�̇a
I = 3

(
wI − c2

sI

)
H�a

I − 3wIHEaI − (1+wI )Za

− a

ρI
∇a

(
∇bq

b
I −QI

)
− 1

ρ
QI�

a
I

+ 1

ρ(1+w)

[
3(1+wI )H − QI

ρI

](
c2
s ρ�

a +pEa + aq̇a + 4Haqa
)
. (10.172)

The total and partial equations of state and speeds of sound are related by

w = 1

ρ

∑
I

ρIwI , c2
s =

1

ρ(1+w)

∑
I

c2
sI ρI (1+wI ) . (10.173)
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Using Equations (10.102) and (10.103), we obtain

Ża =−2HZa − 4πGρ�a − c2
s

1+w

(
∇2

�a + K

a2
�a

)
(10.174)

− w

1+w

(
∇2Ea + K

a2
Ea
)
− a

ρ(1+w)
∇a∇b

(q̇b+ 4Hqb)

+ 3a

ρ(1+w)

[
1

2
ρ(1+w)− K

a2

]
(q̇a + 4Hqa)− 6ac2

sHcurl ωa .

Equations (10.172) and (10.174) govern the evolution of scalar and vector modes in an
almost-FLRW universe filled with several interacting and non-comoving perfect fluids.
The vector mode can be removed by taking the divergence. Inhomogeneities in the total
energy density ρ are related to those in the individual fluids by

�a = 1

ρ

∑
I

ρI�
a
I . (10.175)

Then (10.171) and (10.103) allow us to relate the individual and total non-adiabatic pressure
gradients:

pEa =
∑
I

pIEaI +
∑
I

c2
sI ρI�

a
I − c2

s

∑
I

ρI�
a
I , (10.176)

where the effective total sound speed is given by (10.173) to zero order. Using this we can
recast (10.176):

pEa =
∑
I

pIEaI +
1

2(ρ+p)

∑
I ,J

(ρI +pI )(ρJ +pJ )
(
c2
sI − c2

sJ

)
EaIJ , (10.177)

EaIJ = �a
I

1+wI

− �a
J

1+wJ

=−EaJ I . (10.178)

Thus the total non-adiabatic (entropy) perturbation is made up of intrinsic (EaI ) and relative
(EaIJ ) contributions. The intrinsic contribution vanishes for a barotropic fluid, but not for
a scalar field. The relative contribution for two fluids vanishes if their sound speeds are
equal, or if their density perturbations are tuned in the ratio:

�a
I

1+wI

= �a
J

1+wJ

, (10.179)

which is the adiabatic condition.
If there are no interactions, Qa

I = 0, then the comoving divergence of (10.172) gives the
evolution for the I density perturbation:

�̇I = 3
(
wI − c2

sI

)
H�I − 3wIHEI − (1+wI )Z− a2

ρI
∇2 (∇aq

a
I

)
+ 3(1+wI )H

ρ(1+w)

(
c2
s ρ�+pE

)
+ 3a2(1+wI )H

ρ(1+w)
∇a

(q̇a + 4Hqa), (10.180)
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where EI = a∇aEaI and E= a∇aEa . Similarly, (10.174) leads to

Ż=−2HZ− 4πGρ�− c2
s

1+w

(
∇2

�+ 3K

a2
�

)
− w

1+w

(
∇2E+ 3K

a2
E
)
+ 3

2
a2∇a

(q̇a + 4Hqa)

− a2

ρ(1+w)

[
∇2∇a

(q̇a + 4Hqa)+ 3K

a2
∇a

(q̇a + 4Hqa)

]
. (10.181)

We used the first-order identity (10.160), which gives a∇a∇2
�a =∇2

�+ (2K/a2)�, and
analogous relations for Ea and E.

In order to proceed, the total flux vector qa = ∑
I q

a
I = ∑

I ρI (1 + wI )v
a
I must be

specified. Choosing the total energy frame qa = 0, the system reduces to

�̇I = 3
(
wI − c2

sI

)
H�I − 3wIHEI − (1+wI )Z

−a (1+wI )∇2
vI + 3(1+wI )H

1+w

(
c2
s�+wE

)
, (10.182)

Ż=−2HZ− 4πGρ�− c2
s

1+w

(
∇2

�+ 3K

a2
�

)
− w

1+w

(
∇2E+ 3K

a2
E
)

. (10.183)

Here vI = a∇a
vaI is the velocity perturbation, and its evolution follows from (10.171) (with

Qa
I = 0) and (10.103):

v̇I =−
(
1− 3c2

sI

)
HvI − 1

a(1+wI )

(
c2
sI�I +wIEI

)
− 1

a(1+w)

(
c2
s�+wE

)
. (10.184)

Radiation and CDM

A spatially flat almost-FLRW spacetime dominated by radiation and CDM has total energy
density ρ = ρr + ρc, and total pressure p = ρr/3. The effective total equation of state
parameter and sound-speed squared are

w = 1

3(1+ y)
, c2

s =
4

3(4+ 3y)
, y := a

aeq
. (10.185)

The radiation field is effectively homogeneous inside the sound horizon after averaging
over acoustic oscillations, or on scales that are damped by diffusion. In this case, we can
consider perturbations in the CDM only, i.e. ρ�≈ ρc�c. By (10.182)–(10.184),

�̇c =−Z− a∇2
vc , Ż=−2HZ− 4πGρ� , v̇c =−Hvc , (10.186)

where the last equation relies on c2
s�+wE= 0. This follows from (10.177), which shows

that E=−4ρc�c/(4ρr + 3ρc).
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We can derive an equation for �c, using the linear commutation law (∇2
vc)

· = ∇2
v̇c −

2H∇2
vc,

�′′
c =− 2+ 3y

2y(1+ y)
�′

c +
3

2y(1+ y)
�c , (10.187)

where a prime denotes d/dy. By inspection, this equation admits a solution that is linear in
y. The general solution can then be found as

�c = C+
(

1+ 3

2
y

)
+C−

[(
1+ 3

2
y

)
ln

(√
1+ y+ 1√
1+ y− 1

)
− 3

√
1+ y

]
. (10.188)

Thus �c ∝ a at late times, in agreement with a single-fluid Einstein–de Sitter model. Deep
in the radiation era, y � 1, �c is effectively constant. This stagnation, or freezing-in, of
matter perturbations prior to equality is generic to models with a period of expansion that
is dominated by relativistic particles, and is called the Meszaros effect (1974).

CDM and baryons

A purely baryonic matter content cannot explain the structure observed in the universe –
baryonic density perturbations cannot grow fast enough from their amplitude at decoupling.
The main reason is the tight coupling between photons and baryons in the pre-recombination
era, which washes out baryonic perturbations. CDM is immune from photon drag, and CDM
perturbations grow between equality and decoupling by a factor of∼ adec/aeq.After decoup-
ling the universe becomes effectively transparent to radiation and baryonic perturbations
can start growing, driven by the CDM gravitational potential.

By (10.182)–(10.184), the baryon perturbations are governed by

�̇b =−Z− a∇2
vb , Ż=−2HZ− 4πGρ� , v̇b =−Hvb , (10.189)

where ρ = ρc +ρb ≈ ρc and ρ�≈ ρc�c. This system implies

�̈b + 2H�̇b = 4πGρc�c . (10.190)

Since �c ∝ a after decoupling and ρc ∝ a−3, we find that

�b =�c

(
1− adec

a

)
, a > adec . (10.191)

This shows that�b →�c for a� arec: after decoupling, CDM accelerates the gravitational
collapse of baryonic matter and therefore the onset of structure formation.

10.4.4 Magnetized fluids

Magnetic fields can imprint significant effects on the CMB and on early struc-
ture formation. In order to compute these effects, we need to incorporate mag-
netic fields into the perturbative formalism. For the standard metric-based approach
and its applications to the CMB and structure formation, see for example
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Durrer (2007), Giovannini and Kunze (2008), Sethi, Nath and Subramanian (2008),
Paoletti, Finelli and Paci (2009), Subramanian (2010), Yamazaki et al. (2010). The
covariant approach is reviewed in Barrow, Maartens and Tsagas (2007) (see also
Betschart, Dunsby and Marklund (2004), Kobayashi et al. (2007), Kandus and Tsagas
(2008)). Here we briefly describe the covariant approach.

Consider a spatially flat FLRW spacetime containing a sufficiently weak, statistically
isotropic magnetic field: 〈Ba〉 = 0, while 〈B2〉 �= 0, and 〈B2〉/ρ� 1 on all scales of interest
(the angled brackets denote averaging over a suitable scale). The quantitiesB2 andBa∇bBc

are first order. We can effectively think of Ba as ‘half order’, but Ba only arises in the
perturbative equations in quadratic form.

The nonlinear inhomogeneity variable (10.117), i.e. Ba = a∇aB
2/B2, is no longer suit-

able for the linear perturbative regime since B2 vanishes in the background, and we define
new quantities,

Aa = a

ρ
∇aB

2 with A= a∇aAa , (10.192)

which are first order. By linearizing the magnetic induction equation (5.131), we see that
the magnetic energy density decays adiabatically as

B2 ∝ a−4 . (10.193)

It follows that

Ȧ= (1+ 3w)HA . (10.194)

For a barotropic fluid with w =const, magnetized density perturbations evolve as

�̇= 3wH�− (1+w)Z+ 3
2HA . (10.195)

This follows from (10.118) and (5.135). The direct magnetic effect on � arises via the
magnetic pressure. The evolution of Z follows from (10.120),

Ż=−2HZ− 4πGρ�+ 2πGρA− c2
s

1+w
∇2

�− 1

2(1+w)
∇2A . (10.196)

Equations (10.194)–(10.196) lead to an evolution equation for�, with source terms in A:

�̈+ (2− 3w)H�̇−
[
4πG

(
1− 2w− 3w2

)
ρ+w∇2

]
�

=
[
4πG(1+w)ρ+ 1

2∇
2
]
A , (10.197)

where we have assumedw=const, and hence c2
s =w. This is the magnetized generalization

of (10.166). The magnetic field acts as a source term that can seed density perturbations. On

large scales, we can neglect ∇2A and the source term is decaying: ρA∝ a−2, by (10.194).
The vector modes are also affected by the magnetic field. This is clearly seen via the

magnetized vorticity evolution equation,

ω̇a =−(2− 3c2
s )Hωa − 1

2(1+w)ρ
Bb∇bcurl Ba . (10.198)
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This shows how magnetic fields can generate vorticity, provided that curlBa varies spatially
along the magnetic field lines.

Magnetized tensor perturbations are considered below.

10.4.5 Scalar fields

Density perturbations of a minimally coupled scalar field are described by the comoving
divergence (10.122): since ∇aϕ = 0, this is strictly only a measure of the inhomogeneity in
the kinetic energy density,

�= a2ϕ̇

ρϕ
∇2

ϕ̇ . (10.199)

Equations (10.123), (10.124) and (5.148) give

�̈=−
(
2− 6w+ 3c2

s

)
H�̇+ 1

2

(
1+ 8w− 3w2 − 6c2

s

)
H 2�

+ 1

a2

[
9(1−w2)K − 2k2

]
� , (10.200)

where cs is the adiabatic sound speed.
Standard slow-roll inflation corresponds to approximately exponential de Sitter expan-

sion, with H and ρϕ nearly constant. This is achieved when ϕ̇2 � V (ϕ) and |ϕ̈| �H |ϕ̇|.
As we approach the de Sitter regime, (10.200) no longer depends on the background spatial
curvature and

�̈=−5H�̇− 6H

[
1+ 1

6

(
k

aH

)2
]
� , (10.201)

where H ≈const. After the mode has crossed the Hubble radius, k� aH , the solution is

�= C1 e−2Ht +C2 e−3Ht , (10.202)

so that � ∝ a−2 during inflation. Kinetic energy density fluctuations of the inflaton field
will decay exponentially irrespective of their scale and the background curvature. But the
large-scale curvature perturbation remains constant, as shown in Section 12.2.1.

In order to compute the large-scale curvature perturbation, we need to quantize the
scalar field fluctuations and evaluate their amplitude at Hubble-crossing. In the metric-
based approach, this is usually implemented via the Sasaki–Mukhanov variable Q (see
Section 12.2.1). The covariant variable corresponding to this is given by (Pitrou and Uzan,
2007)

va = aϕ̇

3H

(∫
∇a�dt −∇a

∫
�dt

)
. (10.203)

This gradient variable corresponds to the variable v= aQ in the metric-based approach.
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10.4.6 Tensor perturbations

Gravitational waves are propagating fluctuations in the geometry of the spacetime fabric,
usually described as weak perturbations of the background metric. The CGI approach is
based instead on the propagating curvature, in the form of the electric and magnetic com-
ponents of the Weyl tensor, which describe the free gravitational field (Hawking, 1966,
Dunsby, Bassett and Ellis, 1997).

Pure tensor modes are transverse and tracefree, so that all physical PSTF rank-2 tensors
are divergence-free:

∇b
Eab =∇b

Hab =∇b
σab =∇b

πab = 0. (10.204)

Using (10.138)–(10.153), we can show the following.
The condition (10.204) requires that

∇aρ =∇ap =∇a�= ωa = 0, (10.205)

to linear order and at all times. These constraints are self-consistent (i.e. they are preserved
in time) at the linear perturbative level, and they also guarantee that

u̇a = qa =∇a
3R = 0. (10.206)

The above constraints express the fact that all scalar modes (spatial gradients of physical
scalars) and vector modes (transverse vectors) must vanish.

Then the only remaining nontrivial constraints are

Hab = curl σab , 3R〈ab〉 =Hσab−Eab , (10.207)

which show that the magnetic Weyl tensor is fully determined by the shear, and that the
tracefree 3-Ricci tensor is also divergence-free.

For a magnetized fluid, we require in addition (Maartens, Tsagas and Ungarelli, 2001)

∇bπ
ab
B = 1

3∇
a
B2 −Bb∇bB

a = 0, (10.208)

at all times.
The energy density of gravitational radiation is determined by the pure tensor part hij of

the metric perturbation,

ρgw = (hij )
′(hij )′

2a2
, (10.209)

where the prime denotes a conformal time derivative. In a comoving frame, with ua = δa0u
0,

we have (Goode, 1989)

σij = a(hij )
′ , σ ij = a−3(hij )′ , (10.210)
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so that the CGI formula is

ρgw = σ 2 . (10.211)

The propagation equations (10.141) and (10.142) for a perfect fluid (πab = 0) are

Ėab =−3HEab− 4πGρ(1+w)σab+ curl Hab , (10.212)

Ḣab =−3HHab− curl Eab . (10.213)

The evolution of Hab is determined by that of the shear; by (10.140),

σ̇ab =−2Hσab−Eab . (10.214)

The commutation law (10.156) for gradients of PSTF tensors and the zero-order expression
3Rabcd = 6Ka−2(hachbd −hadhbc), lead to the auxiliary relation

curl Hab = 3K

a2
σab−∇2

σab . (10.215)

Then (10.212) gives

Ėab =−3HEab− 4πGρ(1+w)σab+ 3K

a2
σab−∇2

σab . (10.216)

The wave equation for the shear is

σ̈ab =−5Hσ̇ab− 4πGρ(1− 3w)σab+ K

a2
σab+∇2

σab . (10.217)

Introducing the tensor harmonics Q(k)
ab , with

Q(k)
ab =Q(k)

〈ab〉 , Q̇(k)

ab = 0 =∇bQ(k)
ab , ∇2Q(k)

ab =− k2

a2
Q(k)

ab , (10.218)

the shear modes satisfy

σ̈(k) =−5Hσ̇(k)−
[
4πGρ(1− 3w)− 1

a2
(K − k2)

]
σ(k) . (10.219)

Note that, in order to account for the different polarization states of gravitational radiation,
one expands the tensor perturbations in terms of electric and magnetic parity harmonics
(Challinor, 2000a). Nevertheless, the coupling between the two states means that (10.219)
still holds.

For a spatially flat background and a radiation-dominated universe, on super-Hubble
scales, we have σ̈(k)+ 5Hσ̇(k) = 0, so that

σ(k) = C0 +C1t
−5/2 . (10.220)

On small scales the shear oscillates and decays. After equality, on super-Hubble scales,

σ(k) = C1 t
−1/3 +C2 t

−2 , (10.221)

so that after equality large-scale gravitational wave perturbations decay as a−1/2.
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Exercise 10.4.1 Derive the transformations (10.127) and (10.128) for the kinematic quantities.

Exercise 10.4.2 Show that in the decomposition (10.131), ∇a∇b
Sab is purely scalar, and

curl ∇b
Sab is purely vector.

Exercise 10.4.3 Derive the � evolution equation (10.166).

Exercise 10.4.4 Derive the shear wave equation (10.217). Verify the solution (10.221).



11 The cosmic background radiation

A central pillar of modern cosmology is the near-isotropy of the CMB, compatible with
a perturbed FLRW model of the universe. The small deviations from isotropy in the
CMB temperature contain a wealth of information. Temperature anisotropies due to in-
homogeneities were predicted by Sachs and Wolfe (1967) soon after the discovery of the
CMB in 1965 by Penzias and Wilson. Shortly afterwards, polarization was predicted in
models with anisotropy in the expansion rate around the time of recombination (Rees,
1968). The detailed physics of CMB fluctuations in almost-FLRW models was essen-
tially understood for models with only baryonic matter by 1970 (Silk, 1968, Peebles,
1968, Zel’dovich, Kurt and Sunyaev, 1968, Peebles and Yu, 1970, Sunyaev and Zel’dovich,
1970). By the early 1980s, CDM was included (Peebles, 1982, Bond and Efstathiou,
1984). Further milestones included the effect of spatial curvature (Wilson, 1983), polariza-
tion (Kaiser, 1983, Bond and Efstathiou, 1984) and gravitational waves (Dautcourt, 1969,
Polnarev, 1985). All of this work used the standard metric-based approach to cosmological
perturbation theory, but CMB physics has also been studied extensively in the 1+3-
covariant approach (Ellis, Matravers and Treciokas, 1983b, Ellis, Treciokas and Matravers,
1983, Stoeger, Maartens and Ellis, 1995, Maartens, Ellis and Stoeger, 1995a,b, Dunsby,
1997, Uzan, 1998, Challinor and Lasenby, 1998, 1999, Maartens, Gebbie and Ellis,
1999, Challinor, 2000a,b, Lewis, Challinor and Lasenby, 2000, Gebbie and Ellis, 2000,
Gebbie, Dunsby and Ellis, 2000, Lewis, 2004a,b, Pitrou, 2009). This brings to the CMB
the benefits of: (i) clarity in the physical meaning of the variables employed; (ii) covari-
ant and gauge-invariant perturbation theory around a variety of background models; (iii) a
good basis for studying nonlinear effects; and (iv) freedom to employ any coordinate system
or tetrad.

In this chapter we review the physics of CMB temperature anisotropies, fol-
lowing mainly the 1+3-covariant approach, and using extensively the review by
Tsagas, Challinor and Maartens (2008).

11.1 The CMB and spatial homogeneity: nonlinear analysis

It is a fundamental aspect of the standard model of cosmology that the FLRW background
is spatially isotropic and homogeneous. This is explored in more detail in Section 9.8. The
key evidence in support of this assumption is the high degree of isotropy of the CMB, which
provides a probe of the universe’s evolution back to the time of decoupling of photons. How-
ever, the CMB can only be observed from one world line, that of our Galaxy, and isotropy

282
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in itself would not allow us to distinguish an FLRW from an LTB model (observed from the
centre). The point is that we need a supplementary assumption in order to fix the geometry
of the background. The simplest assumption is a principle of ‘democracy’, i.e. that we do
not occupy a special place in the universe. This Copernican Principle means that the CMB is
isotropic for all observers if it is isotropic for us. Intuitively, isotropy for all observers should
imply that the spacetime is FLRW, but the proof is not at all straightforward. It follows from
a seminal (though under-recognized) theorem by Ehlers, Geren and Sachs (EGS) (1968).
Note that the standard CMB anisotropy studies do not prove the result – they assume from
the outset that the universe is almost FLRW. Indeed, it is not possible to tackle this prob-
lem via a perturbative approach – one needs to start from the nonlinear field and Liouville
equations for a general spacetime.

The general nonlinear field equations in covariant form are covered in Chapter 6. The
nonlinear Liouville equation for photons in an arbitrary spacetime corresponds to an infi-
nite hierarchy of coupled nonlinear evolution equations for the covariant multipoles FA�

of the distribution function. The hierarchy is given by (5.84), in the massless and colli-
sionless case, λ = E,CA�

[f ] = 0. These are evolution equations in phase space. In order
to obtain evolution equations in spacetime, we multiply by E3 and integrate over all ener-
gies. This leads to nonlinear evolution equations for the covariant intensity multipoles
(Ellis, Treciokas and Matravers, 1983, Maartens, Gebbie and Ellis, 1999):

0 = İ〈A�〉 +
4

3
�IA�

+ �

(2�+ 1)
∇〈a�IA�−1〉 +∇b

IbA�
+ �(�+ 3)

(2�+ 1)
u̇〈a�IA�−1〉

−(�− 2)u̇bIbA�
− �ωbηbc(a�IA�−1)

c− (�− 1)σ bcIbcA�

+ 5�

(2�+ 3)
σ b〈a�IA�−1〉b−

(�− 1)�(�+ 2)

(2�− 1)(2�+ 1)
σ〈a�a�−1IA�−2〉 , (11.1)

where IA�
are defined by (5.101). The monopole (I = ργ ) evolution equation is the energy

conservation equation and the dipole (Ia = qaγ ) evolution equation is the momentum con-
servation equation. The quadrupole (I ab = πab

γ ) gives (Stoeger, Maartens and Ellis, 1995,
Maartens, Gebbie and Ellis, 1999):

π̇ 〈ab〉
γ + 4

3�πab
γ + 8

15ργ σ
ab+ 2

5∇
〈a
qb〉γ + 2u̇〈aqb〉γ − 2ωcηcd

(aπb)d
γ

+ 10
7 σc

〈aπb〉c
γ +∇cI

abc−σcdI
abcd = 0. (11.2)

The original EGS paper used a complicated combination of covariant and
coordinate-based nonlinear analysis. Following Stoeger, Maartens and Ellis (1995), we
present a shorter, more direct and transparent covariant analysis. EGS assumed
that the only source of the gravitational field was the radiation, i.e. they
neglected matter and assumed � = 0. Their result was generalized to include
self-gravitating matter and dark energy by Clarkson and Maartens (2010) (extending
previous results by Treciokas and Ellis (1971), Ferrando, Morales and Portilla (1992),
Stoeger, Maartens and Ellis (1995), Clarkson and Barrett (1999), Räsänen (2009)):
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Theorem 11.1 CMB isotropy + Copernican Principle → FLRW
In a region, if

• collisionless radiation is exactly isotropic,
• the radiation four-velocity is geodesic and expanding,
• there are pressure-free baryons and CDM, and dark energy in the form of�, quintessence

or a perfect fluid,

then the metric is FLRW in that region.

Proof: For the fundamental 4-velocity we choose the radiation 4-velocity, i.e. ua = uaγ ,
which has zero 4-acceleration and positive expansion:1

u̇a = 0, �> 0. (11.3)

Isotropy of the radiation distribution about ua means that for fundamental observers, the
photon distribution in momentum space depends only on components of the 4-momentum
pa along ua , i.e. on the photon energy E =−uap

a :

f (x,p)= F(x,E), Fa1···a� = 0 for �≥ 1. (11.4)

All covariant multipoles of the distribution function beyond the monopole must vanish. In
particular, it follows from (5.96) and (5.97), that the momentum density (from the dipole)
and anisotropic stress (from the quadrupole) must vanish:

qaγ = 0 = πab
γ . (11.5)

The radiation intensity octupole Iabc and hexadecapole Iabcd are also zero. Then the
anisotropic stress evolution equation (11.2) enforces a shear-free expansion of the
fundamental congruence:

σab = 0. (11.6)

We can also show that ua is irrotational. Using (11.3), momentum conservation for
radiation reduces to

∇aργ = 0. (11.7)

Thus the radiation density is homogeneous relative to fundamental observers. Using energy
conservation for radiation and the exact nonlinear identity (4.60) for the covariant curl of
the gradient, we find

curl ∇aργ =−2ρ̇γ ωa ⇒ �ργωa = 0. (11.8)

By assumption �> 0, and hence the vorticity must vanish:

ωa = 0. (11.9)

1 � �= 0 is essential: static spherically symmetric models are inhomogeneous but have isotropic CMB for all static
observers (Ellis, Maartens and Nel, 1978).
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Then we see from the curl shear constraint equation (4.52) that the magnetic Weyl tensor
must vanish:

Hab = 0. (11.10)

Furthermore, (11.7) shows that the expansion must also be homogeneous. From the radia-
tion energy conservation equation and (11.5), �=−3ρ̇γ /4ργ . Taking a covariant spatial
gradient and using the time–space derivative commutation identity (4.62), we find

∇a�= 0. (11.11)

Then the shear divergence constraint (6.20) enforces the vanishing of the total momentum
density in the fundamental frame,

qa ≡
∑
I

qaI = 0 ⇒
∑
I

γ 2
I (ρ

∗
I +p∗

I )v
a
I = 0. (11.12)

The second equality follows from (5.62), using the fact that the baryons, CDM and dark
energy (in the form of quintessence or a perfect fluid) have no momentum density and
anisotropic stress in their own frames,

q∗aI = 0 = π∗ab
I , (11.13)

where the asterisk denotes the intrinsic quantity (see Section 5.3). If we include other
species, such as neutrinos, then the same assumption (11.13) applies to them. Except in
unphysical special cases, it follows from (11.12) that

vaI = 0, (11.14)

i.e. the bulk peculiar velocities of matter and dark energy (and any other self-gravitating
species satisfying (11.13)) are forced to vanish – all species must be comoving with the
radiation.

The comoving condition (11.14) then imposes the vanishing of the total anisotropic stress
in the fundamental frame:

πab ≡
∑
I

πab
I =

∑
I

γ 2
I (ρ

∗
I +p∗

I )v
〈a
I v

b〉
I = 0, (11.15)

where we have used (5.63), (11.13) and (11.14). Excluding unphysical special cases, the
shear evolution equation (6.28) then leads to a vanishing electric Weyl tensor,

Eab = 0. (11.16)

Equations (11.12) and (11.15) now lead via the total momentum conservation equation
(5.12) and the E-divergence constraint (6.33), to homogeneous total density and pressure:

∇aρ = 0 =∇ap . (11.17)

Equations (11.3), (11.6), (11.10), (11.11), (11.12), (11.15) and (11.17) constitute a covari-
ant characterization of an FLRW spacetime. This establishes the generalized EGS theorem,
extended from the original to include self-gravitating matter and dark energy. (We have
also provided an alternative, 1+3 covariant, analysis.) It is straightforward to include other
species such as neutrinos. The critical assumption needed for all species is the vanishing of
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the intrinsic momentum density and anisotropic stress, (11.13). The isotropy of the radiation
and the geodesic nature of its 4-velocity then enforce the vanishing of (bulk) peculiar vel-
ocities vaI . We emphasize that one does not need to assume that the matter or other species
are comoving with the radiation – it follows from the assumptions on the radiation. �

The original EGS result (i.e. without matter or dark energy) was generalized by Ellis,
Treciokas and Matravers (ETM) (1983) to a much weaker assumption on the photon distri-
bution: only the dipole, quadrupole and octupole need vanish. The key step is to show that
the shear vanishes, without having zero hexadecapole. The quadrupole evolution equation
(11.2) no longer automatically gives σab = 0, and we need to find another way to show
this. The elegant ETM trick is to return to the Liouville multipole equation, i.e. (5.84) in
the massless collisionless case. The �= 2 equation, with Fa = Fab = Fabc = 0, gives

12

63

∂

∂E

(
E5σabFabcd

)
+E5 ∂F

∂E
σcd = 0. (11.18)

We integrate over E from 0 to ∞, and use the convergence property E5Fabcd → 0 as
E→∞. This gives

σcd

∫ ∞

0
E5 ∂F

∂E
dE = 0. (11.19)

Integrating by parts, the integral reduces to −5
∫∞

0 E4FdE. Since F > 0, the integral is
strictly negative, and thus we arrive at vanishing shear, σab = 0. Then our proof above
proceeds as before. Thus we have a generalization of the EGS–ETM theorem:

Theorem 11.2 CMB partial isotropy + CP→ FLRW
In a region, if

• collisionless radiation has vanishing dipole, quadrupole and octupole, Fa = Fab =
Fabc=0,

• the radiation 4-velocity is geodesic and expanding,
• there are pressure-free baryons and CDM, and dark energy in the form of�, quintessence

or a perfect fluid,

then the metric is FLRW in that region.

This is the most powerful basis that we have – within the framework of the Copernican
Principle – for background spatial homogeneity and thus an FLRW background model (see
Section 9.8).

Although this theorem applies only to the ‘background universe’, its proof nevertheless
requires a fully nonperturbative analysis.

In practice we can only observe approximate isotropy. Is the EGS result stable – i.e. does
almost-isotropy of the CMB lead to an almost-FLRW universe? This would be the realistic
basis for a perturbed FLRW model of the universe (assuming the Copernican Principle).
Currently the result has only been established with further assumptions on the deriva-
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tives of the multipoles, by Stoeger, Maartens and Ellis (1995), Maartens, Ellis and Stoeger
(1995b):

Theorem 11.3 CMB almost-isotropy + CP → almost-FLRW
In a region of an expanding universe with cosmological constant, if all observers comoving
with the matter measure an almost isotropic distribution of collisionless radiation, and if
some of the time and spatial derivatives of the covariant multipoles are also small, then the
region is almost FLRW.

We emphasize that the perturbative assumptions are purely on the photon distribution,
not on the matter or the metric – and one has to prove that the matter and metric are
then perturbatively close to FLRW. Once again, a nonperturbative analysis is essential,
since we are trying to prove an almost-FLRW spacetime, and we cannot assume an FLRW
background a priori.

Almost-isotropy of the photon distribution means that Fa1···a�(x,E) = O(ε) (� ≥ 1),
where ε is a (dimensionless) smallness parameter. The intensity multipoles IA�

have
dimensions of energy density and we therefore normalize them to the monopole I = ργ :
IA�

/I = O(ε). The task is to show that the relevant kinematical, dynamical and curvature
quantities, suitably non-dimensionalized, are O(ε). For example, the dimensionful kinemat-
ical quantities may be normalized by the expansion, σab/�,ωa/�. The proof then follows
the same pattern as our proof above of the exact EGS result – except that at each stage, we
need to show that quantities are O(ε) rather than equal zero. (Note that the almost-EGS
result has not been proven for quintessence or perfect fluid dark energy, and this needs
further investigation.)

However, in order to show this, we need smallness not just of the multipoles, but also of
some of their derivatives. Smallness of the multipoles does not directly imply smallness of
their derivatives, and we have to assume this (Nilsson et al., 1999, Clarkson et al., 2003,
Räsänen, 2009). If all observers measure small multipoles, then it may be possible to show –
perhaps using observations of galaxies in addition to the CMB – that the time and space
derivatives on cosmologically significant scales must also be small. This remains an open
question.

It may be possible to strengthen the above almost-EGS result by proving that it is sufficient
for only the first three multipoles and their derivatives to be small. This would be an almost-
EGS–ETM result, and would represent a more realistic foundation for almost-homogeneity
than the almost-EGS result.

11.2 Linearized analysis of distributionmultipoles

The multipoles FA�
(� ≥ 1) and the projected gradient of the monopole, ∇aF , are gauge-

invariant measures of perturbations in the distribution function about an FLRW model. (As
for most covariant and gauge-invariant perturbations, the variables do, however, depend
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on the choice of frame ua .) For small departures from FLRW, the covariant and gauge-
invariant variables will themselves be small and we can safely ignore products between
small quantities.

In the FLRW background, the Liouville equation (5.77) for collisionless matter has
general solution f = F(aλ) where F is an arbitrary function. We define the comoving
momentum and energy,

q := aλ , ε := aE , ε2 = q2 + a2m2 , (11.20)

where q is conserved in the background. We can then write the distribution function as
f (xa ,q,eb), and the angular multipoles as FA�

(xa ,q). The spatial gradient of the scale
factor obeys the linearized propagation equation

ḣa = 1
3a∇a�+ aHu̇a , ha :=∇aa . (11.21)

The multipoles of the Boltzmann equation (5.84) involve spacetime derivatives taken at
fixed E (or λ). If we take the derivative at fixed q, then

∇aFA�

∣∣∣
λ
=∇aFA�

∣∣∣
q
+
(

1

a
ha − 1

3
�aua

)
q
∂FA�

∂q
. (11.22)

Then we can obtain the linearized multipole equations (Lewis and Challinor, 2002) (see
Exercise 11.2.1),

ḞA�
+ q

ε

(
�+ 1

2�+ 3

)
∇b

FbA�
+ q

ε
∇〈a�FA�−1〉

+ δ�1

(
1

a

q

ε
ha1 −

ε

q
u̇a1

)
q
∂F

∂q
− δ�2σa1a2q

∂F

∂q
= a

ε
CA�

[f ], (11.23)

where all spacetime derivatives are at fixed q. The dipole (� = 1) equation contains the
variable

Va(q) := a∇aF

∣∣∣
q
+haq

∂F

∂q
= a∇aF

∣∣∣
λ

, (11.24)

which obeys the evolution equation (see Exercise 11.2.1)

V̇a =−aq

3ε
∇a∇b

Fb+ ḣaq
∂F

∂q
+ a2

ε
u̇aC̄[f ]+ a2

ε
∇aC̄[f ]

∣∣∣
λ

. (11.25)

All spacetime derivatives are at fixed q, except for the last one. For a collisionless gas,
(11.25) and the � > 0 multipole equations (11.23) form a closed system, given the kine-
matic equations. The collisionless forms of these equations are given in the synchronous
and Newtonian gauges in Ma and Bertschinger (1995) and are used for numerical mas-
sive neutrino perturbations in Ma and Bertschinger (1995), Seljak and Zaldarriaga (1996),
Dodelson, Gates and Stebbins (1996).

To solve (11.23) we decompose the spatial dependence of FA�
into scalar, vector and

tensor parts which evolve independently in linear theory. In general, for � > 2, a rank-
� PSTF tensor can have higher-rank tensor contributions. But in linear theory there are
no gravitational source terms for the higher-rank contributions. Therefore if we initialize
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in an early epoch when interactions are efficient in maintaining isotropy, the higher-rank
contributions will not be present.

The potentials for the scalar, vector and tensor contributions can be expanded in terms of

complete sets of harmonic eigenfunctions of the comoving projected Laplacian a2∇2
(see

Bruni, Dunsby and Ellis (1992)).

11.2.1 Scalar perturbations

The scalar component of FA�
is obtained by taking the PSTF part of � projected derivatives

of some scalar potential,

FA�
=∇〈a1 · · ·∇a�〉S . (11.26)

The potential S is expanded in terms of scalar-valued eigenfunctions, that satisfy

a2∇2
Q(0)+ k2Q(0) = 0, Q̇(0) = 0. (11.27)

These equations hold only at zero order, i.e. the harmonic functions are defined on the
FLRW background. The superscript (0) denotes scalar perturbations, and for convenience
we suppress the index (k) in Q

(0)
(k). The allowed eigenvalues k2 depend on the spatial

curvature of the background model. Defining ν = k for K = 0 and ν2 = (k2 +K)/|K|
for K �= 0, where 6K/a2 is the curvature scalar of the FLRW spatial sections, the regular,
normalizable eigenfunctions have ν ≥ 0 for open and flat models (K ≤ 0). In Euclidean
space, this implies all k2 ≥ 0. The k = 0 solutions are homogeneous and, therefore, do not
appear in the expansion of first-order tensors, for example, �a ≡ a∇aρ/ρ.

In open models, the modes with ν≥ 0 form a complete set for expanding square-integrable
functions, but they necessarily have k ≥√|K| and so cannot describe correlations longer
than the curvature scale (Lyth and Woszczyna, 1995). Super-curvature solutions (with−1<
ν2 < 0) can be constructed by analytic continuation. A super-curvature mode is generated
in some models of open inflation (Bucher, Goldhaber and Turok, 1995).

In closed models ν is an integer ≥ 1 (Tomita, 1982, Abbott and Schaefer, 1986), and
there are ν2 linearly independent modes for each ν. The mode with ν = 1 cannot be used
to construct perturbations (its projected gradient vanishes globally), while the modes with
ν = 2 can only describe perturbations where all perturbed tensors with rank > 1 vanish
(Bardeen, 1980).

For the scalar contribution to a rank-� tensor like FA�
, we expand in rank-� PSTF tensors

Q
(0)
A�

derived from the Q(0) via (Challinor and Lasenby, 1998, Gebbie and Ellis, 2000)

Q
(0)
A�

=
(−a

k

)�

∇〈a1 . . .∇a�〉Q(0) , Q̇
(0)
A�

= 0, (11.28)

where the factor a� is necessary for the second equality. It follows that

Q
(0)
A�

=−a

k
∇〈a�Q

(0)
A�−1〉. (11.29)
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The multipole equation (11.23) also involves the divergence of Q
(0)
A�

, which satisfies
(Challinor and Lasenby, 1999, Gebbie and Ellis, 2000)

∇a�
Q

(0)
A�

= k

a

�

(2�− 1)

[
1− (�2 − 1)

K

k2

]
Q

(0)
A�−1

. (11.30)

The curl satisfies (Challinor, 2000a)

curl Q(0)
A�

= 0, (11.31)

where the curl of a general rank-� PSTF tensor is defined by

curl SA�
= ηbc〈a�∇b

SA�−1〉c. (11.32)

In closed models, the Q(0)
A�

vanish for �≥ ν, so only modes with ν > � contribute to rank-�
tensors.

The decomposition of the distribution function into angular multipoles FA�
, and the sub-

sequent expansion in the Q(0)
A�

, combine to give a normal mode expansion which involves

the objects ∇〈A�〉Q(0)eA� . For K = 0, with the Q(0) taken to be Fourier modes, this is
equivalent to the usual Legendre expansion P�(k̂ · e) where k̂ is the Fourier wave vec-
tor (e.g. Ma and Bertschinger (1995)). In non-flat models, the expansion is equivalent to
the Legendre tensor approach (Wilson, 1983). The advantage of separating the angular
and scalar harmonic decompositions is that the former can be applied quite generally for
an arbitrary cosmological model. Furthermore, extending the normal-mode expansions to
cover polarization and vector and tensor modes in non-flat models is then rather trivial.

11.2.2 Vector perturbations

The vector component ofFA�
is the PSTF part of �−1 projected derivatives of a (projected)

divergence-free vector potential: FA�
= ∇〈A�−1Va�〉. Such a potential may be expanded in

PSTF rank-1 eigenfunctions of the Laplacian,

a2∇2
Q(±1)

a + k2Q(±1)
a = 0, ∇a

Q(±1)
a = 0 = Q̇(±1)

a . (11.33)

The superscript (±1) labels the two possible parities (‘electric’and ‘magnetic’) of the vector
harmonics (Tomita, 1982). These can be chosen so that

curl Q(±1)
a = k

a

√
1+ 2K

k2
Q(∓1)

a , (11.34)

which ensures that the parities have the same normalization. For vector modes we define
ν = k for K = 0 and ν2 = (k2+2K)/|K| for K �= 0. The regular, normalizable eigenmodes
have ν ≥ 0 for flat and open models, while for closed models ν is an integer ≥ 2.

We can differentiate the Q(±1)
a to form PSTF tensor eigenfunctions:

Q
(±1)
A�

=
(−a

k

)�−1

∇〈A�−1Q
(±1)
a�〉 , Q̇

(±1)
A�

= 0. (11.35)



291 11.2 Linearized analysis of distribution multipoles

They satisfy the same recursion relation (11.29) as the scalar harmonics. The projected
divergence obeys (Lewis, 2004b)

∇a�
Q

(±1)
A�

= k

a

(�2 − 1)

�(2�− 1)

[
1− (�2 − 2)

K

k2

]
Q

(±1)
A�−1

, (11.36)

and the curl gives

curl Q(±1)
A�

= 1

�

k

a

√
1+ 2K

k2
Q

(∓1)
A�

. (11.37)

(See Exercise 11.2.2.)As in the case of scalar perturbations,Q(±1)
A�

= 0 when �≥ ν in closed
models.

11.2.3 Tensor perturbations

The tensor component of FA�
is the PSTF part of the (�-2)-th derivatives of a PSTF,

divergence-free rank-2 tensor potential: FA�
= ∇〈A�−2Sa�−1a�〉. This potential may be

expanded in the PSTF rank-2 eigenfunctions of the Laplacian,

a2∇2
Q

(±2)
ab + k2Q

(±2)
ab = 0, ∇b

Q
(±2)
ab = 0 = Q̇

(±2)
ab . (11.38)

The superscript (±2) labels the two possible parity states for the tensor harmonics (Thorne,
1980, Tomita, 1982, Challinor, 2000a). The states can be conveniently chosen so that

curl Q(±2)
ab = k

a

√
1+ 3K

k2
Q

(∓2)
ab . (11.39)

For tensor modes we define ν = k when K = 0 and ν2 = (k2 + 3K)/|K| if K �= 0. The
regular, normalizable eigenmodes have ν ≥ 0 for flat and open models, while for closed
models ν is an integer ≥ 3.

As for scalar and vector perturbations, we can form rank-� PSTF tensors Q
(±2)
A�

by
differentiation:

Q
(±2)
A�

:=
(−a

k

)�−2

∇〈A�−2Q
(±2)
a�−1a�〉, (11.40)

and they satisfy the same recursion relation (11.29) as the scalar harmonics. The projected
divergence and curl are (Challinor, 2000a)

∇a�
Q

(±2)
A�

= k

a

(�2 − 4)

�(2�− 1)

[
1− (�2 − 3)

K

k2

]
Q

(±2)
A�−1

, (11.41)

curl Q(±2)
A�

= 2

�

k

a

√
1+ 3K

k2
Q

(∓2)
A�

. (11.42)

As before, in closed models, Q(±2)
A�

= 0 for �≥ ν.
Combining the angular and spatial expansions gives a set of normal-mode func-

tions ∇〈A�−2Q
(±2)
a�−1a�〉e

A
� . This generalizes Wilson’s approach (Wilson, 1983) for scalar

perturbations to tensor modes.
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Exercise 11.2.1
(a) Use (11.22) in (5.84), to prove (11.23).
(b) Use the gradient of the monopole of (11.23) to derive (11.25).

Exercise 11.2.2 Derive (11.36) and (11.37).

11.3 Temperature anisotropies in the CMB

The photon distribution function in the FLRW limit is the Planck distribution:

F̄ (q)=
[
exp

(
q

kBT0a0

)
− 1

]−1

=
[
exp

(
E

kBT

)
− 1

]−1

, (11.43)

where q = ε= aE for massless particles, and the temperature is T = T0(a0/a), for any fixed
epoch a0. The redshifting of energy (E = q/a) and temperature with expansion combine to
preserve the Planck form of the background distribution, whether it is in collision-dominated
or collisionless equilibrium.

In the perturbed universe, the distribution is f =∑
FA�

eA� , where the monopole at zero
order is the Planck distribution: F = F̄ . For scalar perturbations,

FA�
(t ,x,q)=− π

��

dF(q)

d lnq

∑
k

F
(0)
� (t ,k)Q(0)

A�
(t ,k), �≥ 1, (11.44)

where the momentum-dependent prefactor is chosen so that the F (0)
� are independent of q.

(Note that this is not the case for massive particles (Tsagas, Challinor and Maartens, 2008).)
In the massless case,

∑
k F

(0)
� Q

(0)
A�

are proportional to the multipoles of the temperature
anisotropy.

For the gradient of the monopole, we define the harmonic coefficient F (0)
0 via

a∇aF =−F
∑
k

kF
(0)
0 Q(0)

a , (11.45)

so that

�
γ
a = a

ργ
∇aργ =−

∑
k

kF
(0)
0 Q(0)

a . (11.46)

The radiation momentum density and anisotropic stress are given by (see Exercise 11.3.1)

q
γ
a = ργ

∑
k

F
(0)
1 Q(0)

a , π
γ

ab = ργ
∑
k

F
(0)
2 Q

(0)
ab , (11.47)

where ργ is the radiation density.
The kinematic quantities are expanded as

ha =−
∑
k

khQ(0)
a , u̇a =

∑
k

k

a
AQ(0)

a , σab =
∑
k

k

a
σQ

(0)
ab . (11.48)
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After decoupling, the photon multipoles satisfy (11.23) and (11.25) with vanishing collision
terms. Expanding in harmonics, we find (Lewis and Challinor, 2002)

Ḟ
(0)
� + k

a

{
�+ 1

2�+ 1

[
1−

(
(�+ 1)2 − 1

) K

k2

]
F
(0)
�+1 −

�

2�+ 1
F
(0)
�−1

}
+ 4δ�0ḣ+ δ�1

4

3

k

a
(h+A)+ δ�2

8

15

k

a
σ = 0. (11.49)

Here we do not consider spectral distortions in the CMB, which are an important probe of
the energetics of the universe (see e.g. Burigana and Salvaterra (2003)). If we neglect spec-
tral distortions, the linearized CMB temperature anisotropy (and polarization brightness)
are independent of energy, since linear perturbations in f inherit the spectral dependence
q∂F̄ /∂q of the Planck distribution (11.43). Then we can integrate over energy without loss
of information, to define bolometric multipoles (5.101):

IA�
=��

∫ ∞

0
dEE3FA�

, �≥ 0. (11.50)

The normalization ensures that the three lowest multipoles give the radiation dynamical
quantities:

I = ργ , I a = qaγ , I ab = πab
γ . (11.51)

The fractional anisotropy in the CMB temperature is δT (ea)= [T (ea)−T ]/T . Then to first
order,

δT (e
a)= π

I

∫ ∞

0
dEE3[f (E,ea)−F(E,ea)] = π

I

∑
l≥1

�−1
� IA�

eA�. (11.52)

If the primordial perturbations are close to being Gaussian distributed, as in the case of
simple inflationary models, then linearized CMB fluctuations are also close to Gaussian.
If we further assume that the statistical properties of the fluctuations are invariant under
the background symmetries, then the CMB power spectra fully characterize the statistics
of the CMB anisotropies and polarization. The temperature power spectrum CT

� is defined
in terms of the IA�

by(π
I

)2 〈
IA�

IBl′
〉
=��C

T
� δ

�′
� h

〈B�〉
〈A�〉 , h

〈B�〉
〈A�〉 := h

〈b1
〈a1

. . .h
b�〉
a�〉. (11.53)

The angle brackets on the left-hand side denote a statistical average over the ensemble of
fluctuations. Equation (11.53) is equivalent to the definition in terms of the variance of a�m,
where δT (e)=∑

�>0 a�mY�m(e).
The temperature correlation function is (Exercise 11.3.2)〈

δT (e
c)δT (e

′c)
〉
=
∑
�≥1

(2�+ 1)

4π
CT
� P�(cosθ) , (11.54)

where P� is a Legendre polynomial.
The splitting of the photon 4-momentum into energy and momentum depends on the

choice of 4-velocity ua . For a new velocity field ũa = γ (ua + va), where va is the pro-
jected relative velocity in the ua frame and γ is the associated Lorentz factor, we have
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pa = E(ua + ea) = Ẽ(ũa + ẽa), where uaea = 0 = ũa ẽa . The energy and propagation
directions in the ũa frame are given by the Doppler and aberration formulae:

Ẽ = γE(1− eava)=E(1− eava), (11.55)

ẽa = [γ (1− ebvb)]−1(ua + ea)− γ (ua + va)

= ea − va + (ua + ea)ebvb , (11.56)

where the second equality in each case gives the linearized result. Using the invariance of
f (E,ea), the bolometric multipoles transform as

ĨA�
=
∑
�′

�−1
�′ IB�′

∫
d� [γ (1− ebvb)]2eB�′ ẽ〈A�〉 = IA�

, (11.57)

where the second equality holds to first order: therefore the multipoles are frame invariant
in the linearized case.

Exercise 11.3.1 Prove (11.47).

Exercise 11.3.2 Use the result

e〈A�〉e′〈A�〉 =
(2�+ 1)

4π
��P�(cosθ), eae′a = cosθ , (11.58)

to derive (11.54).

11.4 Thomson scattering

The dominant collisional process relevant to CMB anisotropies and polarization during
recombination and reionization is Compton scattering. To an excellent approximation we
can ignore electron recoil in the rest frame of the scattering electron, Pauli blocking and
induced scattering. Then Compton scattering is very accurately approximated by classical
Thomson scattering in the electron rest frame, with no change in the photon energy. Further-
more, we can neglect the small velocity dispersion of the electrons arising from their small
finite temperature, and treat the problem as one of scattering off a cold gas of electrons.
(Note that Compton scattering must be used for a hot gas, such as the intra-cluster gas that
generates the Sunyaev-Zel’dovich effect; see Birkinshaw (1999) for a review.)

We denote the electron rest frame by ũa , with proper electron number density ñe. Then
the projected collision tensor in the Thomson limit in that frame is (Challinor, 2000a)

C̃[f ](Ẽ, ẽa)= ñeσTẼ
[
−f (Ẽ, ẽa)+ F̃ (Ẽ, ẽa)+ 1

10 F̃bc(Ẽ, ẽa)ẽbẽc
]
, (11.59)

where σT is the Thomson cross-section and we have neglected polarization (see Section 11.6
for the case with polarization). This expression for the scattering term follows from inserting
the multipole decomposition of the distribution into the kernel for Thomson in-scattering,
and integrating over scattering directions. Scattering out of the phase-space element is
described by −ñeσTẼ

3f . In-scattering couples to the monopole and quadrupole in total
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intensity, and to the E-mode quadrupole. There is no change in energy density in the
electron rest frame due to Thomson scattering, but there is momentum exchange if the
radiation has a dipole moment.

Transforming to a general frame ua , and keeping only first-order terms, (11.59) becomes

C[f ](E,ea)= neσTE

[
−f (E,ea)+F(E,ea)

−ebvbE
∂

∂E
F(E,ea)+ 1

10Fbc(E,ea)ebec
]
, (11.60)

where ne is the electron density relative to ua . Now the multipole expansion of the
Boltzmann equation leads to the total intensity multipole equations,

İA�
+ 4HIA�

+∇b
IbA�

+ l

(2�+ 1)
∇〈a�IA�−1〉 +

4

3
I u̇a1δl1 +

8

15
Iσa1a2δl2

=−neσT
[
IA�

− Iδl0 − 4
3Iva1δl1 − 1

10Ia1a2δl2
]
. (11.61)

The monopole moment of (11.61) does not vanish in the background and we use its projected
gradient to characterize the perturbation in the radiation energy density:

�̇
γ
a + a

I
∇a∇b

Ib+ 4ḣa = 0, (11.62)

where, to linear order, 3ḣa = a(3Hu̇a + ∇a�) from (11.21). The above equation also
follows from integrating (11.25) with λ3 dλ and noting that the linear Thomson collision
term has no monopole.

Equations (11.61) and (11.62) provide a complete description of the linear evolution of
the CMB anisotropies in the absence of polarization, in general almost-FLRW models. In
particular, they are valid for all types of perturbation since no harmonic expansion has been
made. We see that the highest rank of the source terms is �= 2, so that only scalar, vector
and tensor modes can be excited.

11.5 Scalar perturbations

We expand the PSTF multipoles in the harmonic tensors Q(0)
A�

, defined in (11.28):

IA�
= I

∑
k

(
�∏

n=0

κ(0)n

)−1

I
(0)
� Q

(0)
A�

, �≥ 1, (11.63)

�
γ
a = a∇aI

I
=−

∑
k

kI
(0)
0 Q(0)

a , (11.64)

where

κ
(m)
� := [1−K(�2 − 1−m)k−2]1/2, �≥m , κ

(0)
0 = 1. (11.65)
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In scalar harmonic form, the linearized multipole equations (11.61) become, on using
(11.28), (11.30) and (11.48),

İ
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� + k

a

[
(�+ 1)

(2�+ 1)
κ
(0)
�+1I

(0)
�+1 −

�

(2�+ 1)
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� I
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+ 4ḣδ�0 + 4

3

k

a
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15

k

a
κ
(0)
2 σδ�2 =−neσT

[
I
(0)
� − I

(0)
0 δ�0 − 4

3
vδ�1 − 1

10
I
(0)
2 δ�2

]
, (11.66)

for �≥ 0, where v is the harmonic coefficient of the baryon–electron velocity relative to ua ,

va =
∑

vQ(0)
a . (11.67)

These multipole equations hold for a general FLRW model and are fully equivalent to those
obtained in Hu et al. (1998) using the total angular momentum method.

In closed models, Q(m)
A�

vanishes for �≥ ν, and therefore the same is true of IA�
. Power

moves up the hierarchy as far as the �= ν−1 multipole, but is then reflected back down.This
is enforced in (11.66) by κ

(m)
ν = 0. The maximum multipole, and corresponding minimum

angular scale, arise because of the focusing of geodesics in closed FLRW models.
Early computer codes to compute the CMB anisotropy integrated a carefully trun-

cated version of the multipole equations directly. A major advance was made in
Seljak and Zaldarriaga (1996), where the Boltzmann hierarchy was formally integrated,
thus allowing a very efficient solution for the CMB anisotropy. This procedure was imple-
mented in the CMBFAST code,2 and later, in parallelized derivative codes such as CAMB
(Lewis, Challinor and Lasenby, 2000).3

The integral solution for the total intensity for general spatial curvature is
(Zaldarriaga, Seljak and Bertschinger, 1998, Hu et al., 1998, Challinor, 2000a)

I
(0)
� = 4

∫ tR

dt e−τ

{[
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σ + 3neσT

16κ(0)2
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(0)
2

][
1

3
�ν
�(x)+

1

(ν2 + 1)

d2

dx2
�ν
�(x)

]

−
(
k

a
A−neσTv

)
1√

ν2 + 1

d

dx
�ν
�(x)−

[
ḣ− 1

4
neσTI

(0)
�

]
�ν
�(x)

}
, (11.68)

where, τ := ∫
neσTdt is the optical depth back along the line of sight, x =√|K|χ with χ

the comoving radial distance (or, equivalently, conformal look-back time) along the line of
sight, and �ν

�(x) are the ultra-spherical Bessel functions with ν2 = (k2 +K)/|K| for scalar
perturbations.

In the linearized case, I (0)� will depend linearly on the primordial perturbation φk via the
transfer function:

I
(0)
� = T T

� (k)φk . (11.69)

The symmetry of the background ensures that the transfer functions depend only on the
magnitude of the wavenumber k. The choice of φk is one of convention. For the adia-
batic, growing-mode initial conditions that follow from single-field inflation, the convenient

2 http://www.cmbfast.org
3 http://camb.info/
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choice is the (constant) curvature perturbation Rk on comoving hypersurfaces. For models
with isocurvature fluctuations, the relative entropy gradient is appropriate. More generally,
in models with mixed initial conditions having N degrees of freedom per harmonic mode,
the transfer functions generalize to N functions per � and k.

The power spectrum of φ may be defined via (Tsagas, Challinor and Maartens, 2008)〈
φ2
〉
=
∫

νdν

(ν2 + 1)
Pφ(k) , (11.70)

and then the temperature power spectrum is

CT
� = π

4

∫
νdν

(ν2 + 1)
T T
� (k)T T

� (k)Pφ(k) . (11.71)

In flat and open models, νdν/(ν2 + 1) = d lnk; in closed models, one replaces ν2 + 1 by
ν2 − 1 and the integral becomes a discrete sum over integer ν.

At large enough angular scales we can neglect anisotropic Thomson scattering, reion-
ization and the finite width of the last scattering surface. The simple physics of scalar
temperature anisotropies is apparent if we use the conformal Newtonian gauge, for which
the shear of ua vanishes. In this frame, the shear propagation equation becomes a constraint
that determines the acceleration:

∇〈au̇b〉 =Eab− 1
2πab . (11.72)

The scalar modes of the electric Weyl tensor and anisotropic stress are

Eab =
∑
k

k2

a2
�EQ

(0)
ab , πab = ρ

∑
k

k2

a2
#Q

(0)
ab . (11.73)

Then the harmonic form of (11.72) is

A=−�E + 1
2ρa

2# , (11.74)

and in the Newtonian gauge (10.55),

A=−� , �E = 1
2 (�+!) . (11.75)

Then (11.68) reduces to[
1

4
I
(0)
� −�δ�0

]
dec

=
(
I
(0)
0

4
−�

)
�ν
�
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dec

+ vN
1√

ν2 + 1

d�ν
�

dx
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dec

+
∫ t0

tdec

(�̇+ !̇)�ν
� dt . (11.76)

The temperature anisotropy is determined by three terms at decoupling: (1) intrinsic tem-
perature variations I

(0)
0 /4; (2) the Newtonian potential � which describes gravitational

redshifting; and (3) Doppler shifts, where vaN is the baryon velocity relative to the zero-
shear ua . The integrated Sachs–Wolfe term in (11.76) arises because of the net blueshift as a
photon crosses a decaying potential well. It contributes when the Weyl potential evolves in
time, such as when dark energy starts to dominate the expansion dynamics at low redshift.
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11.5.1 Tight coupling and the acoustic peaks

On comoving scales ∼ 30Mpc or greater, photon diffusion due to the finite mean-free path
to Thomson scattering can be ignored. In this limit, the dynamics of the source terms in
(11.76) are those of a driven oscillator (Hu and Sugiyama, 1995). First we note from (11.61)
that in the limit of tight-coupling,

Ia = 4
3Iva , IA�

= 0 for �≥ 2. (11.77)

The CMB is therefore isotropic in the baryon rest frame and the linearized momentum
evolution for the combined photon–baryon fluid gives

v̇a + HR

(1+R)
va + 1

4(1+R)a
�

γ
a + u̇a = 0, R := 3ρb

4ργ
, (11.78)

ignoring baryon pressure. The evolution of �γ
a follows from (11.62):

�̇
γ
a + 4ḣa + 4

3
a∇a∇b

vb = 0. (11.79)

Then (Exercise 11.5.1),

�
γ ′′
a + HR

(1+R)
�

γ ′
a − 1

3(1+R)
a2∇a∇b

�
γ

b =−4h′′a −
4HR

(1+R)
h′a +

4

3
a3∇a∇b

u̇b ,

(11.80)

where H = aH is the conformal Hubble parameter. This equation is valid in any frame
and describes a driven oscillator. The free oscillations are at frequency kcs , where the
sound speed is c2

s = 1/[3(1+R)], and are damped by the expansion of the universe. In the
Newtonian frame, we can express the driving terms on the right in terms of � and !. Using
(Exercise 11.5.1),

a∇〈aḣb〉 = (a2∇〈a∇b〉!)· ⇒ ḣ= !̇, (11.81)

we can recover the standard harmonic form of the oscillator equation in the Newtonian
gauge (Exercise 11.5.1):

�′′ + HR

(1+R)
�′ + k2

3(1+R)
�=−4! ′′ − 4HR

(1+R)
! ′ − 4

3
k2�. (11.82)

For adiabatic initial conditions, the cosine solution of (11.82) is excited and all modes
with k

∫ τdec cs dτ = nπ are at extrema of their oscillation at last scattering. This gives a
series of acoustic oscillations in the temperature power spectrum (Zel’dovich and Sunyaev,
1969). The first three have been observed by a combination of terrestrial experiments and
the WMAP satellite (Dunkley et al., 2009). Figure 11.1 shows the temperature anisotropy
data points from these observations, and the best-fit �CDM curve.

Examples of the CMB power spectra in a �CDM model are shown in Figure 11.2. The
acoustic peaks are a rich source of cosmological information. Their relative heights depend
on the baryon density (i.e.R) and matter density, since these affect the midpoint of the acous-
tic oscillation and the efficacy of the gravitational driving in (11.82) (Hu and Sugiyama,
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1995). The angular position of the peaks depends on the type of initial condition and on
the angular diameter distance to last scattering. Moreover, the general shape of the spec-
tra is related to the distribution of primordial power with scale, i.e. the power spectrum
Pφ(k).

On smaller scales photon diffusion becomes important. The breakdown of tight coupling
has two important effects on the CMB. First, the acoustic oscillations are exponentially
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damped, as apparent in Figure 11.2. Second, anisotropies can start to grow in the CMB
intensity and this produces linear polarization via Thomson scattering.

Exercise 11.5.1
(a) Use (11.78) and (11.79) to prove (11.80).
(b) Use (11.21) and (11.72), and the zero-shear Ėab equation, to derive (11.81).
(c) Finally, derive (11.82).

11.6 CMB polarization

As well as the total intensity, the polarization properties of the CMB are of great impor-
tance. Here we give a brief summary of the key features; further details may be found in
Tsagas, Challinor and Maartens (2008).

To include polarization, we describe the CMB photons by a one-particle distribution func-
tion that is tensor-valued: fbc(xa ,pa) (Berestetskii, Lifshitz and Pitaevskii, 1982). This is
a Hermitian tensor defined so that the expected number of photons contained in a proper
phase-space element d3xd3p, and with polarization state εa is εa∗fabεbd3xd3p. The com-
plex polarization 4-vector εa is orthogonal to the photon momentum, εapa = 0 (adopting
the Lorentz gauge), and is normalized as ε∗aεa = 1. The distribution function is also defined
to be orthogonal to pa so fabp

a = 0. For a photon in a pure polarization state εa , the
direction of the electric field measured by ua is sabεb where sab := hab−eaeb is the screen
projection tensor (7.22).

The (Lorentz-gauge) polarization 4-vector is only unique up to constant multiples of
pa , reflecting the remaining gauge freedom, but the observed polarization vector sabεb is
unique. To remove the residual gauge freedom from the distribution function fab, we can
work directly with the screen-projected polarization tensor,

Pab ∝E3sa
csb

dfcd . (11.83)

The factor E3 is included for convenience. We decompose Pab into its irreducible
components,

Pab(E,ed)= 1
2I (E,ed)sab+Pab(E,ed)+ 1

2 iV (E,ed)ηabce
c . (11.84)

This defines the total intensity brightness, I , the circular polarization, V , and the linear
polarization tensor Pab, which is PSTF and transverse to ea . For quasi-monochromatic
radiation with electric field Re[Ea(t)exp(−iωt)], where ω is the angular frequency and
the complex amplitude Ea varies little over a wave period, we have

Pab ∝ 〈EaEb∗〉, (11.85)

where the angle brackets denote time-averaging.
The linear polarization is often described in terms of Stokes brightness parameters Q

and U (Chandrasekhar, 1960) which measure the difference in intensity between radiation
transmitted by a pair of orthogonal polarizers (for Q), and the same but after a right-handed
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rotation of the polarizers by 45 degrees about the propagation direction ea (for U ). If we
introduce a pair of orthogonal polarization vectors ea1 and ea2 , orthogonal to ua and ea , and
oriented so that {ua ,eai ,ea} form a right-handed orthonormal tetrad, we have

Pabe
a
i e

b
j =

1

2

(
I +Q U + iV

U − iV I −Q

)
. (11.86)

The invariant 2PabPab =Q2 +U2 is the squared magnitude of the linear polarization.
Since I (E,ec) and V (E,ec) are scalar functions on the sphere eaea = 1 at a point in

spacetime, their local angular dependence can be handled by an expansion in PSTF tensor-
valued multipoles, as in (5.81):

I (E,ec)=
∑
�≥0

IA�
(E)eA� , V (E,ec)=

∑
�≥0

VA�
(E)eA� . (11.87)

For Pab, we use the fact that any STF tensor on the sphere can be writ-
ten in terms of angular derivatives of two scalar potentials, PE and PB , as
(Kamionkowski, Kosowsky and Stebbins, 1997)

Pab =∇(2)
〈a ∇(2)

b〉 PE + εc〈a∇(2)
b〉 ∇(2)

c PB , (11.88)

where ∇(2)
a and εab = ηabce

c are the covariant derivative and alternating tensor on the
two-sphere. The scalar fields PE and PB are even and odd under parity respectively, and
define the electric and magnetic parts of the linear polarization. Expanding PE and PB in
PSTF multipoles, and evaluating the angular derivatives, leads to (Challinor, 2000a, Thorne,
1980)

Pab(E,ec)=
∑
�≥2

[EabC�−2(E)e
C�−2]tt

−
∑
�≥2

[ed1η
d1d2

(aBb)d2C�−2(E)e
C�−2]tt . (11.89)

Here tt denotes the transverse (to ea), trace-free part, so that in general [Jab]tt = scas
d
b Jcd −

1
2 sabs

cdJcd . The PSTF tensors EA�
and BA�

can be found by inverting (11.89):

EA�
(E)=M�

2��
−1
∫

d�e〈A�−2Pa�−1a�〉(E,ec), (11.90)

BA�
(E)=M�

2��
−1
∫

d�ebε
bd 〈a�eA�−2Pa�−1〉d(E,ec), (11.91)

where M� := √
2�(�− 1)/[(�+ 1)(�+ 2)]. The multipole expansion in (11.89) is the

coordinate-free version of the tensor spherical harmonic expansion for CMB polarization in
Kamionkowski, Kosowsky and Stebbins (1997). An alternative expansion, whereby Q±
iU is expanded in spin-weighted spherical harmonics, is also used (Seljak and Zaldarriaga,
1997).

The projected collision tensor in theThomson limit in the electron rest frame, generalizing
(11.59), is (Challinor, 2000a) (correcting two sign errors in the right-hand side of (3.7) of
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that reference)

Ẽ2K̃ab(Ẽ, ẽc)= ñeσT

{
1
2 s̃ab

[
−Ĩ (Ẽ, ẽc)+ Ĩ (Ẽ)+ 1

10 Ĩd1d2(Ẽ)ẽ
d1 ẽd2

− 3
5 Ẽd1d2(Ẽ)ẽ

d1 ẽd2
]
+
[
−P̃ab(Ẽ, ẽc)− 1

10 [Ĩab(Ẽ)]tt + 3
5 [Ẽab(Ẽ)]tt

]
+ 1

2 iη̃abd1 ẽ
d1
[
−Ṽ (Ẽ, ẽc)+ 1

2 Ṽd2(Ẽ)ẽ
d2
]}

. (11.92)

In-scattering couples to the monopole and quadrupole in total intensity, and to the E-mode
quadrupole. Linear polarization is generated by in-scattering of the quadrupoles in total
intensity and E-mode polarization. Comparison with (11.89) shows that in the electron rest
frame, the polarization is generated purely as an E-mode quadrupole. Circular polarization
is decoupled from total intensity and linear polarization, so that in any frame the circular
polarization will remain exactly zero if it is initially.

The equations for the energy-integrated multipoles of linear polarization, circular
polarization and total intensity, are (Tsagas, Challinor and Maartens, 2008):

ĖA�
+ 4

3�EA�
+ (�+ 3)(�− 1)

(�+ 1)2
∇bEbA�
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(2�+ 1)
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2

(�+ 1)
curl BA�

=−neσT
[
EA�

+ ( 1
10Ia1a2 − 3

5Ea1a2
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δ�2
]
, (11.93)

ḂA�
+ 4

3
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+ (�+ 3)(�− 1)

(�+ 1)2
∇bBbA�

+ �

(2�+ 1)
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, (11.94)
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, (11.95)
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�IA�

+∇b
IbA�

+ l

(2�+ 1)
∇〈a�IA�−1〉 +
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IAa1δ�1 +
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15
Iσa1a2δ�2

=−neσT
[
IA�

− Iδ�0 − 4
3Iva1δ�1 −

( 1
10Ia1a2 − 3

5Ea1a2

)
δ�2
]
. (11.96)

TheE- andB-mode multipoles are coupled by curl terms. In a general almost-FLRW cos-
mology, B-mode polarization is generated only by advection of the E-mode. This does not
happen if the perturbations about FLRW are curl-free, as is the case for scalar perturbations.
We thus have the important result that linear scalar perturbations do not generate B-
mode polarization (Kamionkowski, Kosowsky and Stebbins, 1997, Seljak and Zaldarriaga,
1997).
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To first order in the ratio of the mean-free time to the expansion time or
the wavelength of the perturbation, the polarization is an E-mode quadrupole
(Tsagas, Challinor and Maartens, 2008):

Eab ≈ 8

45

I

neσT

(
σab+D〈avb〉

)
. (11.97)

For scalar perturbations, the polarization thus traces the projected derivative of the baryon
velocity relative to the Newtonian frame. The peaks in the CE

� spectrum thus occur at the
minima of CT

� as the baryon velocity oscillates π/2 out of phase with �. This behaviour
can be seen in Figure 11.2. The large-angle polarization from recombination is necessarily
small by causality, but a large-angle signal is generated by re-scattering at reionization
(Page et al., 2007).

11.7 Vector and tensor perturbations

Vector modes describe vortical motions of the cosmic fluids. They are not excited during
inflation. Furthermore, due to conservation of angular momentum, the vorticity of radiation
decays as 1/a and matter as 1/a2 so that vector modes are generally singular to the past
(see Table 6.1). Vector modes are important in models with active sources such as magnetic
fields (see Barrow, Maartens and Tsagas (2007) for a recent review) or topological defects
(Turok, Pen and Seljak, 1998).

The CMB anisotropies from vector modes were first studied comprehensively in
Abbott and Schaefer (1986). The full kinetic theory treatment was developed in the
total-angular-momentum method in Hu and White (1997) and Hu et al. (1998). The 1+3-
covariant treatment for the spatially flat case was given in Lewis (2004b). A systematic
treatment, for general spatial curvature, may be found in Tsagas, Challinor and Maartens
(2008).

The imprint of tensor perturbations, or gravitational waves, is implicit in the original work
of Sachs and Wolfe (1967). The first detailed calculations for temperature were reported in
Dautcourt (1969) and for polarization in Polnarev (1985). The E–B decomposition, which
was already implicit in the early work of Dautcourt and Rose (1978), and the realization
that B-mode polarization is a particularly sensitive probe of tensor modes, was developed
in Kamionkowski, Kosowsky and Stebbins (1997) and Seljak and Zaldarriaga (1997). The
effect of tensor modes on the CMB from the 1+3-covariant perspective is discussed in
Challinor (2000a) and Tsagas, Challinor and Maartens (2008).

11.8 Other background radiation

It is important to realize that while the blackbody CMB (� 1 eV cm−3) is the thermally
dominant part of the cosmic background radiation, it is far from being the only component
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of that radiation. In fact we expect some kind of background radiation at all wavelengths;
the CMB is just the microwave component (there will also be neutrino and gravitational
wave backgrounds: these are discussed below).

11.8.1 Other electromagnetic background radiation

The overall observed background radiation spectrum is shown in Figure 11.3. Note that it is
difficult to measure some wavelength bands because of galactic obscuration (the previous
major problems in this regard due to our own atmosphere have been overcome by the advent
of balloon and rocket-borne instruments), and complications arise in determining the spec-
trum as a whole because very different instruments have to be used to measure the radiation
at different wavelengths. Furthermore, the ongoing problem is separating out ‘background
radiation’ from that due to discrete sources. As resolution increases, what was ‘background’
may get resolved into discrete sources. Nevertheless there may be background radiation
from intergalactic gas, as well as the radiation we are forced to classify as background
radiation at any particular time because even though it is due to discrete sources, we are
unable to resolve them.

We may conveniently classify the backgrounds as radio, microwave, optical, infrared,
X-ray, and gamma ray. These radiation backgrounds at different wavelengths are related to
each other through their interactions with each other and with matter, the latter depending
crucially on the thermal history of intergalactic gas. In particular, if that gas is re-ionized
at about the time of galaxy formation to about 105 K, it will emit X-rays, contributing to
the X-ray background. But this is not the only origin of the X-ray background; as well
as hot intergalactic gas, discrete sources contribute. The optical and infrared backgrounds
are dominated by star formation processes in galaxies. High-energy electrons create radio
waves in magnetic fields (which are ubiquitous), giving rise to a radio background. Dark
matter particles may decay to create high-energy photons, which may assist with the origin
of intergalactic gamma rays (still unknown).
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Furthermore background radiation may interact with cosmic ray protons, giving a limit
to the highest energy such protons we should detect, and with cosmic γ -rays, through
pair production with the CMB photons; hence the cosmic ray spectrum is affected by
the background radiation. Cosmic ray electrons interact with the CMB through inverse
Compton scattering (the photon gains energy and the electron loses energy), relating the
galactic radio background to X-rays. (Note that ‘cosmic rays’are mostly from galactic rather
than intergalactic sources.)

11.8.2 Neutrino background

As discussed in Section 9.6.5, the neutrinos free-stream after decoupling at T ∼ 1MeV, and
maintain their blackbody spectrum, up to small anisotropies, in qualitatively the same way
as the photons. There is a neutrino background, much like the CMB – but it is unlikely to
be detected. However, the neutrinos have important effects on the CMB and on large-scale
structure formation. (See Lesgourgues and Pastor (2006) for a review.)

Treating the neutrinos as massless in the early universe is an excellent approximation,
and on that basis we showed that

Tγ = ( 11
4

)1/3
Tν ≈ 1.4Tν . (11.98)

Thus the cosmic neutrino background would have a current temperature of 1.95K.
In fact neutrinos are now understood to be massive – or more precisely, at least two of

the three neutrino flavours are massive, and it appears that there can be oscillation from one
type to another. Constraints on the squared mass differences from solar and atmospheric
neutrino oscillation experiments give

(m2 −m1)
2 ∼ 8× 10−5 eV, (m3 −m1)

2 ∼ 2× 10−3 eV, (11.99)∑
mI � .05eV. (11.100)

Constraints from the CMB and matter power spectra give∑
mI � 0.6eV. (11.101)

Thus terrestrial and cosmological experiments provide a powerful pincer-like constraint
on the neutrino masses, and in particular show that each of the masses is very light. The
most massive neutrino becomes non-relativistic well after radiation–matter equality. We
can estimate the non-relativistic redshift by setting the mean energy per neutrino equal to
the mass. This gives

1+ znr ∼ 945
(mI max

0.5eV

)
. (11.102)

After the transition to non-relativistic energies, the neutrinos begin to have an effect on
structure formation, since they can begin to cluster, above a minimum free-streaming scale,
estimated as

kfs(z)∼ 0.3

(1+ z)2

( mI

0.5eV

)[
�m0(1+ z)3 +��

]1/2
hMpc. (11.103)
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11.8.3 Gravitational wave background

As discussed in Section 12.2, inflation generates a primordial background of gravitational
waves, with nearly scale-invariant spectrum, so that the background is present across all
frequencies, although with very weak amplitude. In simple single-field models of inflation,
the amplitude of this background is given relative to the scalar perturbations by the tensor-to-
scalar ratio r [(12.55)]. In small-field and hybrid models the background would typically be
negligibly small, but it could be substantial in large-field models (such as chaotic inflation).

In principle this background is a discriminator amongst inflation models, at least for
simple single-field models. For more general multi-field inflationary models, constraints
from the tensor background are more complicated. Nevertheless, some simple models could
in principle be ruled out if their predicted strong signal is not seen.

The gravitational wave background cannot be accessed by ground-based gravity wave
detectors because of the extreme weakness of the signal. But it is indirectly detectable via
its generation of B-modes in the CMB polarization spectra – although this signal has to be
disentangled from the weak-lensing B-mode signal. (A further possible complication is that
cosmic strings also generate a B-mode.)WMAPplaced only weak constraints, r � 0.3, on the
amplitude. Planck is expected to significantly improve on this constraint. The CMB probes
the background at wavelengths of roughly the present Hubble horizon, i.e. at frequencies
∼ 10−18 Hz. Space-borne laser interferometers, such as the proposed BBO and DECIGO,
would probe the background at wavelengths of roughly the detector size, i.e. at frequencies
∼ 0.1–1Hz. Direct detection combined with indirect B-mode detection would significantly
improve the constraints on the gravity wave background.



12 Structure formation and gravitational lensing

The primordial seeds of inhomogeneity, whose imprint is seen at last scattering in the
CMB anisotropies, may be generated by quantum fluctuations during inflation in the very
early universe. These seeds subsequently evolve from linear to nonlinear fluctuations via
gravitational instability, and produce the large-scale matter distribution that is observed
at lower redshifts. The previous chapter dealt with the CMB anisotropies. In this chapter
we provide brief overviews of the primordial fluctuations from inflation, and then of the
evolution of large-scale structure, as described via the power spectrum of matter.Akey probe
of the total matter (dark and baryonic) and its distribution is weak gravitational lensing by the
large-scale structure of light from distant sources. We develop the theoretical framework for
gravitational lensing and briefly describe how this is applied in cosmology. The following
chapter will draw on this chapter and its predecessors to show how current observations
constrain and describe the standard model of cosmology. We start with a summary of the
statistical description of perturbations.

12.1 Correlation functions and power spectra

Perturbations on an FLRW background are treated as random variables in space at each time
instant, and observations determine the statistical properties of these random distributions.
(See Durrer (2008) for a more complete discussion.) A perturbative variable A(x) at some
fixed time is associated with an ensemble of random functions, each with a probability
assigned to it. We define the 2-point correlation function 〈A(x)A(x′)〉 as the average over the
ensemble (incorporating the probability distribution). The random field is usually assumed
to be statistically homogeneous and isotropic – i.e. invariant under translations and rotations
(parity invariance is also usually applicable). Homogeneity and isotropy mean that the
2-point correlation function can be written as

ξA(x)= 〈A(x0)A(x0 + xn)〉, (12.1)

so that ξA does not depend on the position x0 or the (unit) direction n.
A fundamental limitation arises in cosmology – because there is only one universe to

observe, i.e. there is only one realization of the stochastic process that generates the fluctu-
ations whose consequences we observe. Therefore we cannot measure ensemble averages
or expectation values, as we would in a repeatable laboratory experiment. What we can do
when observing a fluctuation on a given scale λ is to average over many distinct regions
of size ∼ λ. An ergodic-type hypothesis allows us to replace the ensemble average by a

307
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spatial average over these regions. This is reasonable when the scale is much less than the
observable part of the universe, i.e. for λ�H−1

0 . On larger scales, λ=O(H−1
0 ), we are

unable to average over many volumes – and thus the measured value could be quite far
from the ensemble average. This is called the ‘cosmic variance’ problem.

In Fourier space (assuming a spatially flat background for simplicity),

Ak =
∫

A(x)eik·x d3x , A(x)= 1

(2π)3

∫
Ake

ik·x d3k . (12.2)

The 2-point moment in Fourier space defines the power spectrum PA(k):

〈AkAk′ 〉 = (2π)3δ3(k + k′)PA(k), (12.3)

where statistical isotropy means that PA depends only on |k|, and statistical homogeneity
is reflected in the translation invariance encoded in the δ3(k + k′) term.

A Gaussian random field is characterized by the fact that all the odd-number moments
vanish (e.g. 〈AkAk′Ak′′ 〉 = 0), while all the even-number moments are determined by the
2-point moment (or equivalently, the power spectrum).

A convenient alternative definition of the power spectrum (with a different normaliza-
tion) is

PA = k3

2π2
PA . (12.4)

The power spectrum PA(k) in Fourier space and the real-space 2-point correlation function,
ξA(x), are a Fourier pair,

ξA(x)= 1

(2π)3

∫
PA(k)e

ik·x d3k . (12.5)

With statistical isotropy, this leads to

ξA(r)= 1

2π2

∫ ∞

0
k2j0(kr)PA(k)dk =

∫ ∞

0

1

k
j0(kr)PA(k)dk , (12.6)

where j0(z)= sin z/z is a spherical Bessel function.
For a Gaussian perturbation field, 〈A(x)〉 = 0. The variance is

σ 2
A = 〈A2(x)〉 = ξA(0)= 1

2π2

∫ ∞

0
k2PA(k)dk =

∫ ∞

0
PA(k)

dk

k
. (12.7)

Thus PA is the contribution to 〈A2〉 per unit logarithmic interval in k. These integrals
may diverge in either or both of the short-wavelength (ultraviolet) and long-wavelength
(infrared) regimes. For example, for the matter density perturbation, Pδ grows with k, and
an ultraviolet blow-up arises because the underlying model – pressure-free matter without
peculiar velocities – breaks down on small enough scales, where multi-streaming must
arise to avoid unphysical shell-crossings. Therefore an ultraviolet cutoff is needed to make
the integral converge: k ≤ kmax. Here k−1

max is much smaller than cosmological scales, and
also smaller than the smoothing scale imposed by the finite resolution of astronomical
observations. In the case of the curvature perturbation, Pζ is almost scale-invariant, leading
to logarithmic divergences at both ends of the integral. Then we require both ultraviolet and
infrared cutoffs.
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If P̄A is the observed average, then the cosmic variance is defined as (�PA)
2 = 〈P̄ 2

A〉−
〈PA〉2. The cosmic variance can be estimated as (Lyth and Liddle, 2009)

(�PA(k))
2 ∼ 1

(δk/k)(kL)3
PA(k)

2, (12.8)

where δk is the resolution in k and L is the scale of the observed region. For scales much
smaller than L, the cosmic variance is small, but for scales approaching L, cosmic variance
becomes large and degrades the statistical significance of the observations.

The three-dimensional spatial correlation function can be projected on the sky to produce
a two-dimensional angular correlation function. Consider the case of the matter distribution,
with A = δ. The angular correlation function w(α) determines the probability of finding
galaxies at angular separation α. It is related to the matter power spectrum by the Limber
formula,

w(α)=
∫ ∞

0
kP (k,z)G(kα)dk , (12.9)

where the kernel G is given in the small-angle approximation by

G(kα)= 1

2π

∫
J0(kαχ)

(
1

n

dn

dz

)2

F dχ , (12.10)

F 2 =
(
1+H 2

0 χ
2�K

)H(z)

H0
. (12.11)

Here χ is the comoving angular diameter distance in the FLRW background, and dn/dz
is the redshift distribution of galaxies. Galaxy surveys measure w(α), but the key desired
information is the power spectrum. This poses the problem of inverting (12.9) to extract
P(k,z).

Non-Gaussianity in A is signalled by the fact that there are non-zero higher-order corre-
lation functions that are not determined by the 2-point correlation function. It is typically
described via the bispectrum BA, which is the Fourier transform of the real-space 3-point
correlation function:

〈Ak1Ak2Ak3〉 = (2π)3δ3(k1 + k2 + k3)BA(k1,k2,k3). (12.12)

The amplitude and shape of BA are determined by the mechanisms producing the non-
Gaussianity in a particular model. An initially Gaussian field that is coupled to gravity
will develop non-Gaussianity via the nonlinearity of the gravitational interaction. Non-
Gaussianity in the density perturbations and metric potentials leave an imprint on the CMB
anisotropies and the distribution of large-scale structure, and observations may be used to
place limits on non-Gaussianity and thereby to constrain various models.

12.2 Primordial perturbations from inflation

In Section 9.7 we discussed inflation in the background FLRW model, and showed how it
addresses key issues in the kinematics and dynamics of the standard model of cosmology.
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There is an equally important facet of inflation, i.e. the fact that inflation naturally gen-
erates primordial inhomogeneities. These are imprinted on the hot plasma of the Big
Bang, and leave a fossil imprint on the CMB at the time that radiation decouples from
matter. After decoupling, as the universe expands and cools, the inhomogeneities grow
by gravitational instability, to eventually produce the stars and larger-scale structure.
In addition to density fluctuations, inflation also naturally generates primordial tensor
perturbations.

The origin of the primordial perturbations is the quantum fluctuations of the inflaton field.
A systematic treatment of quantized fluctuations may be found in Bartolo et al. (2004),
Mukhanov (2005), Lyth and Liddle (2009) and Baumann (2009). (Note that there remain
various open questions, including the problem of defining the quantum to classical tran-
sition and the ‘trans-Planckian’ problem. We shall not discuss these problems; see, e.g.
Martin and Brandenberger (2001), Vaudrevange and Kofman (2007), Kiefer and Polarski
(2009).) Here we give a classical description of inflaton perturbations, with qualitative
indications of the quantum treatment.

The basic idea is that quantum fluctuations of the inflaton field behave like one-
dimensional quantum harmonic oscillators (with time-varying mass). Zero-point fluctu-
ations of a quantum harmonic oscillator induce a non-zero variance of the oscillator
amplitude, 〈x̂2〉 = �/2ω. Similarly, the inflaton zero-point fluctuations generate a non-
zero variance 〈δϕ2〉. The fluctuation modes (with comoving wavenumber k) are stretched
from their original small scale (assumed to be above the Planck scale) by the rapid accel-
erating expansion of the universe, until their wavelength ak−1 exceeds the Hubble scale
(when they are assumed to become classical fluctuations).

Quantum inflaton fluctuations are generated with significant amplitude only for modes
with wavelength near the Planck scale. While the mode is sub-Hubble, its amplitude decays,
|δϕk| ∼ a−1 for k > aH . However, when the mode wavelength is stretched beyond the
Hubble scale, k < aH , the amplitude is effectively frozen and preserved. Without inflation,
the wavelength would not cross the Hubble radius, and thus the amplitude would decay
away and there would be no seeds for structure formation.

While a mode’s wavelength is sufficiently smaller than the Hubble radius, it evolves
like a plane wave in Minkowski spacetime, since the spacetime curvature is effectively
negligible. Once the wavelength is super-Hubble, the evolution is frozen. After inflation,
the Hubble scale begins to grow more rapidly than the wavelength, and so eventually
the mode’s wavelength falls below the Hubble scale, i.e. the mode ‘re-enters’ the Hubble
‘horizon’. Inflaton perturbations are coupled to curvature perturbations, which subsequently,
after inflation, couple to density perturbations. When a mode re-enters the Hubble horizon
during the radiation or matter era, it is unfrozen and density perturbations in the matter
begin to grow. The process that links the observed large-scale structure at late times to the
microphysics of primordial inflation is illustrated schematically in Figure 12.1. Modes that
cross the Hubble radius earlier in inflation re-enter the Hubble radius later, and with larger
wavelength. The cosmologically relevant modes are those with wavelength � 1Mpc that
re-enter in the matter era. These modes leave the Hubble horizon about 60 e-folds before
the end of inflation.
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Fig. 12.1 Creation and evolution of perturbations during inflation. (From Baumann (2009).)

12.2.1 Evolution and amplitude of scalar perturbations

Inflaton fluctuations are coupled to metric scalar perturbations. The perturbed metric in
Newtonian gauge (10.55) and for a flat background is

ds2 =−(1+ 2�)dt2 + a2(1− 2!)dx 2. (12.13)

In the Newtonian limit � is the Newtonian potential. ! is the curvature perturbation of
the t = const surfaces. The difference in the metric perturbations is sourced by anisotropic
stress via (10.65), �−! =−16πGa2#.

During inflation, the gravitational field is sourced by the inflaton field, with energy–
momentum tensor given by

T µ
ν = ϕ,µϕ,ν −

[
V (ϕ)+ 1

2ϕ
,γ ϕ,γ

]
δµν . (12.14)

The inflaton propagates according to the Klein–Gordon equation,

(−g)−1/2
[
(−g)1/2ϕ,µ

]
,µ
−Vϕ = 0. (12.15)

Writing ϕ as ϕ(t)+ δϕ(t ,x), we find (see Exercise 12.2.1):

δT 0
0 =−δρϕ =−

(
ϕ̇δϕ̇+Vϕδϕ− ϕ̇2�

)
, (12.16)

δT 0
i = (ρϕ +pϕ)∂ivϕ =−ϕ̇∂iδϕ , (12.17)

δT i
j = δpϕδ

i
j = (ϕ̇δϕ̇−Vϕδϕ− ϕ̇2�)δij , (12.18)

and hence that the anisotropic stress vanishes,

#ϕ = 0 ⇒ ! =� . (12.19)

The perturbed Klein–Gordon equation is (see Exercise 12.2.1)

δϕ̈+ 3Hδϕ̇−∇2δϕ+Vϕϕδϕ+ 2Vϕ�− 4ϕ̇�̇= 0. (12.20)
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The (0 i) perturbed Einstein equation becomes

�̇+H�= 4πGϕ̇δϕ , (12.21)

on using (12.17). The coupled equations (12.20) and (12.21) determine δϕ and �.
In terms of the variable

Q̃= aQ , Q= δϕ+ ϕ̇

H
� , (12.22)

the perturbed Klein–Gordon equation (12.20) becomes (see Exercise 12.2.1)

Q̃′′ +
(
k2 − a′′

a
+M2a2

)
Q̃= 0, M2 := Vϕϕ − 8πG

a3

(
a3

H
ϕ̇2
)·

, (12.23)

where a prime denotes a conformal time derivative. Equation (12.23) has the form of an
oscillator equation in Minkowski spacetime, with variable effective mass. In the slow-
roll regime, M2 ≈ 3(η− 2ε)H 2 and a ≈−[Hτ(1− ε)]−1. Since ε̇, η̇ are second order in
slow-roll, we can treat M2/H 2 as constant. Then the equation reduces to

Q̃′′ +
(
k2 − ν2 − 1

4

τ 2

)
Q̃= 0, ν = 3

2
+ ε−η , (12.24)

with general solution in terms of Hankel functions:

Q̃=√−τ
[
C1(k)H

(1)
ν (−kτ)+C2(k)H

(2)
ν (−kτ)

]
. (12.25)

At this point, we need to invoke quantum theory to determine the correct normalization.
In the ultraviolet regime, k � aH (or −kτ � 1), we should recover the Minkowski
vacuum state (characterized as the minimum energy state), exp(−ikτ )/√2k. With the
large-argument limit of the Hankel functions, this leads to

aQ=
√
π

2
ei(2ν+1)π/4√−τH(1)

ν (−kτ). (12.26)

Amore convenient variable is the comoving curvature perturbation, which is proportional
to Q, and is conserved on large scales:

R :=�+ H

ϕ̇
δϕ = H

ϕ̇
Q , Ṙ=O

(
k2

a2H 2

)
. (12.27)

In the super-Hubble regime, −kτ � 1, we find that

|Q| ≈ H√
2k3

(
k

aH

)3ε−η+3/2

. (12.28)

It follows that

PR ≈
(
H 2

2πϕ̇

)2(
k

aH

)3ε−η+3/2

≈
(
H 2

2πϕ̇

)2
∣∣∣∣∣
hc

, (12.29)

where the last expression is evaluated at Hubble crossing, k = aH .
Note that on super-Hubble scales R=−ζ , so that

Pζ =PR . (12.30)
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Furthermore, (12.27) shows that in slow-roll, R≈Hδϕ/ϕ̇, so that, by (12.29),

Pδϕ ≈
(
H

2π

)2

hc
. (12.31)

We can also use the slow-roll approximations to find (see Exercise 12.2.2)

PR ≈ 8πG
H 2

8πε

∣∣∣∣
hc
≈ (8πG)2

V

24π2ε

∣∣∣∣
hc

. (12.32)

12.2.2 Connecting inflation to the CMB

Perturbations in the inflaton field generated during inflation eventually seed the anisotropies
that are imprinted in the CMB at last scattering, as well as the density perturbations that
grow later into stars and galaxies. From the time of generation inside the Hubble radius at
t ∼ 10−34 s to the decoupling of matter and radiation at t ∼ 400,000yr, the perturbations
evolve through three eras and two transitions: from inflation to radiation domination, across
the reheating transition, then from radiation domination to matter domination across the
matter–radiation equality. The reheating transition is typically a violently non-equilibrium
process, whereas matter–radiation equality is an instantaneous moment in a smooth transi-
tion. Nevertheless, we are able to track the evolution of perturbations without regard to the
details of these transitions.

This remarkable feature arises from the conservation of the growing mode of the curvature
perturbation on super-Hubble scales, as discussed in Section 10.2.6. On these scales, the
curvature perturbation does not ‘feel’ any of the details of reheating, and does not notice the
transition to matter domination. This constancy allows us easily to track the evolution of
the super-Hubble Newtonian potential and density perturbation, which are not conserved.

Since we can neglect anisotropic stresses, we have from (10.54) that

R=�+ 2

3

�′ +H�

(1+w)H . (12.33)

For adiabatic perturbations, and with vanishing anisotropic stress,� is governed by (10.76):

�′′ + 3H(1+ c2
s )�

′ +
[
2H′ +H(1+ 3c2

s )− c2
s∇2

]
�= 0. (12.34)

On super-Hubble scales we can neglect the Laplacian term (and it is exactly zero for dust
on all scales). For an adiabatic fluid, such as radiation or dust matter, (10.38) shows that
c2
s = w−w′/H(1+w). This relation will also apply on large scales to an inflaton field.

Then we can rewrite the evolution equation for super-Hubble scales as

�′′ +
[
(1+w)H− w′

3(1+w)

]
�′ − w′

1+w
H�= 0. (12.35)

If we can neglect w′, then c2
s =w=const. This is a good approximation during slow-roll

inflation, when w= ε−1, in the radiation era, and in the matter era. During the transitions
between these eras, w′ is non-zero – but these transitions happen on a time scale that is
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very small compared to the characteristic (light-crossing) time of the wavelength of the
super-Hubble modes. With these conditions, the evolution equation (12.35) has solution

�=A++A−
∫

a−(1+w)dτ , A′± = 0. (12.36)

The A− mode is decaying and we can neglect it. Thus the growing (i.e. non-decaying)
mode, �=A+, is constant in time – and we can neglect the �′ term in (12.33) to get:

�= 3(1+w)

(5+ 3w)
R . (12.37)

For modes which remain super-Hubble across a transition from era 1 to era 2, we have

�2 = (5+ 3w1)(1+w2)

(5+ 3w2)(1+w1)
�1 , (12.38)

since R2 =R1. The jump in � is positive when w2 >w1 and negative in the opposite case.
For a mode that is super-Hubble from the time of Hubble exit in inflation, whenR=Rprim

(the primordial value), to the time of Hubble re-entry in the matter era, we have:

�inf = 3
2εRprim , �rad = 2

3Rprim , �matt = 3
5Rprim . (12.39)

12.2.3 Non-Gaussianity

The microscopic quantum generation of fluctuations is inherently Gaussian – the represen-
tative quantum harmonic oscillators have random phases. However, the modes do interact
gravitationally, and so non-Gaussianity does emerge, reflected in non-zero higher-order
correlations. For single-field inflation this effect is very small, and effectively negligible
in most cases. Inflation thus provides a natural mechanism for laying down a Gaussian
distribution of microscopic fluctuations, which are automatically stretched to macroscopic
scales and hence serve as seeds for the growth of near-Gaussian density perturbations.

The non-Gaussianity in the Newtonian potential due to gravitational nonlinear coupling
may be described in the weak coupling case by a simplification of (12.12) (Bartolo et al.,
2004),

〈�(k1)�(k2)�NL(k3)〉 = (2π)3δ3(k1+ k2+ k3)2fNLP�(k1)P�(k2) (12.40)

where � is the primordial Gaussian potential, the nonlinearity parameter fNL is treated as
constant, and the evolved nonlinear � is

�NL(x)= fNL

[
�(x)2 −〈�(x)2〉

]
. (12.41)

(Note that this expression guarantees that 〈�NL(x)〉 = 0.)
For simple single-field models of inflation, fNL = O(10−2), while for multi-field and

curvaton models, fNL = O(1− 10) (Bartolo et al., 2004, Malik and Wands, 2009). Con-
straints from the CMB and galaxy surveys give −1 � fNL � 70. Since |�| ∼ 10−5, these
limits mean that the deviation from Gaussianity is extremely small, � 0.1%. Any detection
of |fNL|> 1 would rule out the simplest single-field inflation models.
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12.2.4 Isocurvature (or entropy) modes

Simple inflation models also generate adiabatic fluctuations on scales. A scalar field, unlike
a perfect fluid, does support intrinsic entropy (non-adiabatic) perturbations (see Exercise
12.2.3):

δpnad := δpϕ − ṗϕ

ρ̇ϕ
δρϕ = 2Vϕ

(
δρϕ + 3Hϕ̇δϕ

)= 2Vϕρϕ�ϕ ∝∇2� . (12.42)

Clearly ∇2�→ 0 on large scales, so that we can ignore the entropy perturbations.
The inflaton fluctuations on large scales, where gradients can be neglected, correspond

to a local shift (forward or backward) along the background trajectory in phase space, and
thus are associated with perturbations in the time. The inflaton decays into radiation and
matter, and so its fluctuations affect the total density in different locations after the end of
inflation, but they cannot produce variations in the relative density between components:

δρI ≈ ρ̇I δt → δρI

ρ̇I
= δρJ

ρ̇J
. (12.43)

We can make this more precise by defining the relative entropy perturbations

SIJ := 3H

(
δρI

ρ̇I
− δρJ

ρ̇J

)
= 3(ζJ − ζI ). (12.44)

The last equality follows from the definition of the curvature perturbation on uniform
I -density slices,

−ζI =!+H
δρI

ρ̇I
. (12.45)

Pure adiabatic modes, as in the case of single-field inflation, are then characterized by
SIJ = 0 for all I ,J . In this case, the total curvature perturbation, −ζ = ! +Hδρ/ρ̇, is
equally shared by all components,

ζI = ζJ = ·· · = ζ . (12.46)

The total curvature perturbation on large scales evolves as

ζ̇ =− H

ρ+p
δpnad , δpnad = δp− ṗ

ρ̇
δρ . (12.47)

Thus it is conserved on large scales in the pure adiabatic case.
Relative perturbation modes between components correspond to isocurvature perturba-

tions, with SIJ �= 0.Apure isocurvature mode on large scales corresponds to the case where
the density perturbations of the components compensate each other so as to produce a zero
initial total curvature perturbation,

ζ |init = 0. (12.48)

In multi-field models, intrinsic entropy in each field vanishes on large scales by (12.42),
but relative isocurvature modes may be naturally generated,

SIJ ∝ δϕI

ϕ̇I
− δϕJ

ϕ̇J
. (12.49)
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Fig. 12.2 Adiabatic (r) and entropy (s) fields in (ϕ1,ϕ2) space. (FromMalik and Wands (2009). © Elsevier (2009).)

The imprint of these primordial modes on the CMB anisotropies is model dependent, but
for typical simple models of isocurvature, CMB observations place stringent upper limits
on the allowable isocurvature contribution (Komatsu et al., 2011).

For simplicity, consider the case of two fields. A suitable local rotation in ϕI field space
(see Figure 12.2) leads to a decomposition into instantaneous adiabatic (r) and entropy (s)
fields. Then the curvature perturbation is related to the adiabatic perturbations δr along the
trajectories, via R=H(δr/ṙ)+�, and it evolves as (Gordon et al., 2001)

Ṙ= 2
H

ṙ
θ̇ δs+ H

Ḣ

k2

a2
� . (12.50)

Thus even on large scales, the curvature perturbation is not conserved in the presence of
relative entropy modes, δs := S12, if the trajectories are curved (θ̇ �= 0).

12.2.5 Tensor perturbations

If the mass term in (12.23) is not small, i.e. M2/H 2 > 1, then the vacuum fluctuations
are suppressed on cosmological scales. Significant quantum fluctuations are generated in
all light fields during inflation, including the metric field. These latter fluctuations include
tensor perturbations: for a flat background,

ds2 =−dt2 + a2 (δij +hij
)
dxidxj , hi

i = 0 = ∂jhij . (12.51)

We decompose into Fourier modes, hij (t ,k)= h(t)e±ij (k), where ± refers to the two polar-
izations. The classical evolution equation for the amplitude h is (10.91). Using (12.19), we
obtain

ḧ+ 3Hḣ+ k2

a2
h= 0. (12.52)

This is the same as the wave equation for a massless scalar, and it follows from (12.31) that
Ph ∝ (Hhc/2π)2.

The normalization follows from a quantization of the canonical variable. The result is

Ph = 64πG

(
Hhc

2π

)2

, (12.53)
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where we have incorporated a factor 2 for the two polarizations. In slow roll (Exercise
12.2.2),

Ph = 2(8πG)2
Vhc

3π2
. (12.54)

The tensor-to-scalar ratio is given by (12.53) and (12.32):

r := Ph

PR
≈ 16ε . (12.55)

Exercise 12.2.1 Derive (12.16)–(12.20) and (12.23). Verify that (12.25) is a solution of the
last of these equations.

Exercise 12.2.2 Derive the slow-roll power spectra relations (12.32) and (12.54).

Exercise 12.2.3 Derive (12.42).

12.3 Growth of density perturbations

Density perturbations in matter are the progenitors of stars, galaxies and clusters. If the
matter is pressure-free, i.e. dust, and if it dominates the background, then perturbations
grow like the scale factor, δ ∝ a. Nonlinear structure corresponds to δ � 1, after which the
collapsing region decouples from the cosmic expansion.

12.3.1 Evidence for cold dark matter: cosmological

Baryonic matter, despite being non-relativistic after matter–radiation equality, is tightly
coupled to the radiation via Thomson and Coulomb scattering, up until the brief period of
recombination. This means that δb cannot grow like a until last scattering. If δb ∼ 10−5 at
last scattering, then how does it grow to a nonlinear value by today:

δb0 = a0

adec
δb dec ∼ 10−2 ? (12.56)

This puzzle provides a strong cosmological motivation for the existence of non-relativistic
matter (hence ‘cold’) that does not couple to radiation (hence ‘dark’) – and that can cluster
well before last scattering. The cold dark matter (CDM) would need to dominate over
luminous matter in order to grow structures quickly enough. Thus cosmology indicates
that �c > �b. In fact, the joint constraints from the CMB anisotropies, galaxy surveys
(in the form of baryon acoustic oscillations and weak lensing) and SNIa magnitudes (see
Figure 13.1), show that

�c0 ∼ 0.25 , �b0 ∼ 0.05 ⇒ �c0 ∼ 5�b0 . (12.57)

Note: we are assuming that GR is correct, and that the observable universe is a perturbed
FLRW model.
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Cold dark matter would then start to form potential wells before equality, so that by the
time the baryonic matter is released from the grip of radiation, it experiences a speeded-up
clustering via infall into the CDM halos.

Primordial nucleosynthesis places strong bounds on the total baryonic content of the
universe, which are consistent with CMB and large-scale structure data:

η= nb

nγ
∼ 10−10 , �b0h

2 ∼ 0.02 . (12.58)

Cosmology therefore further suggests that the CDM needs to be non-baryonic – or at least
predominantly non-baryonic, since there could be a small fraction of dark baryonic matter,
such as primordial black holes or brown dwarfs.

The cosmological motivation for non-baryonic CDM is fairly strong, if we assume that
GR is the correct theory of gravity. This is further backed up by astrophysical evidence,
which we shall briefly discuss.

12.3.2 Evidence for cold dark matter: astrophysical

Strong indirect evidence for CDM comes from the observation of circular orbital velocities
of stars in the flat disks of spiral galaxies. The Newtonian limit of GR gives a Keplerian
velocity that is determined by the total mass enclosed within the sphere containing the orbit:

v2(r)= GM<r

r
, M<r = 4π

∫ r

0
ρ(r̃)r̃2dr̃ . (12.59)

The surface brightness of spiral galaxies is observed to fall off exponentially. Thus the stellar
contribution to M<r should lead to M<r stars → const, and hence we expect the velocity
curve to fall off as v ∝ 1/

√
r . The galactic gas also makes a contribution to M<r , which

can be estimated by observations of the HI 21 cm and molecular lines. This baryonic gas
contribution also produces a fall-off of velocity with distance.

In contrast to the predicted rotation curves, spiral galaxies are observed to have rotation
curves that approach a plateau with increasing radius, v→const. The rotation curves differ
in the interior regions, where different characteristics of the galactic bulges complicate the
dynamics, but all share this feature of asymptotically constant v. This indicates the presence
of a non-baryonic CDM with mass profile that falls off much slower than that of baryonic
matter:

M<r c → r , ρc ∝ r−2 for large r . (12.60)

The asymptotic (and maximal) constant orbital velocity, v∞, is related to the luminosity via
the empirical Tully–Fisher relation for spiral galaxies:

L∝ v4∞ . (12.61)

In summary: the rotation of spiral galaxies is incompatible with Newtonian gravity if
only the stars, gas and dust in the galaxy are taken into account. The contradiction may be
resolved if the galaxies are embedded in huge CDM halos.

Clusters of galaxies give independent evidence of CDM. The hot, X-ray-emitting gas at
the centres of clusters would diffuse out of the clusters in less than a Hubble time if it were
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only bound by its self-gravity and that of the galaxies. The CDM creates a potential well
deep enough to trap the intracluster gas. The CDM contribution to the total cluster mass
can be estimated from its trapping effect on the gas. Other estimates of the CDM fraction
come from lensing and from the virial theorem. These estimates show that

Mgas

Mc
∼ 15± 5%,

Mstars

Mc
∼ 3± 2%. (12.62)

In addition, weak lensing by clusters shows that the gravitational potentials of clusters are
deeper than can be explained only via their baryonic content.

Merging clusters have also given evidence of the predominance of CDM. In particular,
the so-called ‘bullet cluster’ (see Section 12.5.5) has moved through a larger cluster, and
the location of the gas (traced by X-ray measurements) is segregated from the location of
the galaxies. The gravitational potential measured by lensing observations traces the galaxy
distribution rather than the dominant gas distribution. A dominant CDM, whose potential
well has trapped the galaxies, can account for this mismatch.

Finally, particle physics is able to provide a range of possible candidate CDM particles,
in particular weakly interacting massive thermal relics (see Section 9.6.2). Currently there
are various experiments underway attempting to detect CDM particles (see Feng (2010) for
a review):

• Via production of CDM particles in terrestrial particle accelerators (such as the Large
Hadron Collider, LHC).

• Via direct detection in terrestrial underground and underwater searches for elastic scat-
tering events with nucleons (such as the Cryogenic Dark Matter Search experiment,
CDMS).

• Via indirect detection in astrophysical signatures of CDM annihilation in very high-
energy environments, such as around the super-massive black hole of the galaxy. The
signal could be carried, for example, in cosmic rays that are produced and monitored by
experiments such as PAMELA, ATIC, FERMI and HESS.

12.3.3 Effective CDM frommodified gravity?

All of the above arguments and conclusions implicitly assume that GR holds on all
scales, from galaxies to the Hubble radius. The CDM paradigm is compelling, but remains
unproven – and it is useful, even necessary, to develop competing paradigms.

It is in principle possible that there is no CDM at all, and that CDM arises simply as
an indicator of the failure of GR. However, in practice it has proved impossible, so far, to
produce a covariant modified gravity theory that can avoid the need for CDM while at the
same time being consistent with observations across the vast range of scales, from the Solar
System, through galaxies and clusters, to the Hubble radius.

A modified Newtonian dynamics (MOND) was formulated by Milgrom to recover the
Tully–Fisher relation (12.61). The modification kicks in at low accelerations, α � α0 ∼
10−8 cms−2. (Surprisingly, this small characteristic acceleration α0 corresponds to a length
scale of order the current Hubble radius.) Despite the ad hoc nature of this modification, it
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is remarkably successful at accounting for rotation curves with a single universal parameter
α0 ≈ 1.2× 10−8 cms−2.

However for galaxy clusters, the typical accelerations are higher than the galaxy α0,
and are thus in the regime where MOND recovers the Newtonian limit of GR. In order to
account for the effects that CDM accounts for, the MOND parameter α0 has to be at least
twice as big in clusters as in galaxies, and even larger for elliptical galaxies.

MOND therefore fails to replace CDM on scales of clusters. Furthermore, as an ad hoc
modification of Newtonian theory, it is unable to deal with cosmological scales. Indeed,
the existence of an absolute acceleration scale also creates difficulties for consistency with
Solar System constraints.

Proposals for relativistic modifications of GR that reproduce the success of MOND for
galaxies have been made, in particular, Bekenstein’s tensor–vector–scalar (TeVeS) theory
and the simpler sub-class of Einstein–Aether vector–tensor theories (for reviews and recent
work, see Ferreira and Starkman (2009), Bekenstein (2010), Zuntz et al. (2010)). These
theories must introduce additional degrees of freedom in the gravitational interaction –
scalar and vector graviton modes in addition to the tensor mode of GR. In some sense, this
is simply replacing one kind of dark matter with another kind. However, if a theory could
be found that avoids the need for dark matter and dark energy via the same mechanism,
then that may be counted as a successful alternative. Currently, the indications are that the
Einstein–Aether theories can easily replace dark energy, but are unable simultaneously to
reproduce all of the key features of dark matter’s contribution to background expansion and
structure formation (Zuntz et al., 2010). (See also Section 14.3.)

Apart from the huge theoretical difficulties facing any candidate modified gravity theory
that attempts to replace CDM, there is also the fact that developments in particle physics
independently predict various CDM candidates. If CDM candidates are detected, or ruled
out, by experiments, then this will have major implications for attempts to modify GR.

12.3.4 Matter power spectrum

The perturbed metric in Newtonian gauge is given by (12.13). The gauge-invariant comov-
ing matter density perturbation �= δ−3aHv obeys the Poisson and evolution equations,
(10.74) and (10.75):

k2�= 4πGa2ρ� , (12.63)

�̈+ 2H�̇− 4πGρ�= 0. (12.64)

These equations are exact on all scales, if perturbations are linear and purely due to matter,
and if there are no anisotropic stresses.

The solution of (12.63) in Fourier space is

�k(z)=−2

3

k2

H 2
0

1

�m0

g(z)

1+ z
�k . (12.65)

Here g = D+(z)/a, where D+ = �+/�in is the growing mode amplitude of the density
perturbation, given by the solution of (12.64). The growth suppression factor g is due to dark
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energy: in Einstein–de Sitter models, g = 1, so that with dark energy, g→ 1 for z� 1 and
g(0)≈ 0.75. An exact expression is given in Exercise 12.3.1. Note that massive neutrinos,
which become non-relativistic after matter–radiation equality, introduce a k-dependence
to g.

The Newtonian potential is determined by the primordial curvature perturbation. The
curvature perturbation is constant on super-Hubble scales. For a simple power-law spectrum,

Pζ (k)= k3

2π2
Pζ (k)=Pζ (k0)

(
k

k0

)ns−1

, (12.66)

where k0 is a (super-Hubble) pivot scale. The Newtonian potential is related to the curvature
perturbation with a scale-dependence that takes account of the matter–radiation transition
and the re-entry of the Hubble horizon at different times by different scales. Those scales
that re-enter the Hubble horizon before matter–radiation equality grow more slowly than
the scales that enter after equality, as discussed in Chapter 10. This differential processing
is encoded in the transfer function T (k) (Lyth and Liddle, 2009), and

�k =− 3
5T (k)ζk . (12.67)

The transfer function is complicated by the role of baryons, but the asymptotic (CDM-
dominated) behaviour is given by

T (k)∼
{

1 k� keq ,
(keq/k)

2 ln(k/keq) k� keq .
(12.68)

Using (12.66), we arrive at

Pδ(k,z)=Pζ (k0)

(
2k2

5H 2
0�m0

)2(
k

k0

)ns−1
g2(k,z)

(1+ z)2
T 2(k), (12.69)

where Pζ (k0) ∼ 10−9 is determined by CMB large-angle anisotropies. From (12.69), we
have

Pδ(k,z)= 2.4× 10−9

(
2k2

5H 2
0�m0

)2(
k

k0

)ns−1
g2(k,z)

(1+ z)2
T 2(k), (12.70)

neglecting running of the spectral index. See Figure 12.3 for a typical transfer function
and power spectrum, showing the characteristic scale keq ∼ 1/(100Mpc) defined by the
comoving size of the Hubble horizon at matter–radiation equality.

There are two further complications that need to be catered for.

• First, galaxy surveys detect only baryonic matter, and thus measure the galaxy power
spectrum. This is related to the total matter power by a bias function,

Pg(k,z)= b2(k,z)Pδ(k,z). (12.71)

In principle, b is determined by the hydrodynamics of baryons falling into CDM potential
wells, but in practice this is still well beyond current understanding and we have to use
simulations and empirical relations to approximate b on different scales.
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Fig. 12.3 Matter transfer function (left) and power spectrum (right) in a typical�CDMmodel.

• Second, in practice the measurements of the density distribution have a minimum res-
olution, and so we must introduce a smoothing scale R, below which structure is not
detected. This is done via a window function W(kR) (in Fourier space) that suppresses
fluctuations on scales k−1 <R, i.e.

Pg(k,z;R)=W 2(kR)Pg(k,z). (12.72)

For a real-space top-hat window function, in Fourier space W(q) = 3[q−3 sinq −
q−2 cosq]. The power is usually normalized via the variance of the mass fluctuation
within spheres of radius R = 8h−1 Mpc:

σ 2
8 =

〈(
δρ

ρ

)〉2

R=8/h
=
∫

dk

k
|W(kr)|2Pδ(k,0). (12.73)

This expression ignores the bias factor. The CMB and weak lensing give σ8 ≈ 0.8.

An example of the observed power spectrum using different probes is shown in
Figure 12.4.

There is an important point about the relativistic nature of galaxy clustering. In a
statistically homogeneous universe, correlation functions are defined on spatial surfaces
of constant time – whereas in fact the observed clustering statistics are on the null
surface of the past light-cone. Correlation functions have been defined on the past
light-cone (Yamamoto and Suto, 1999), and other GR corrections to the galaxy power
spectrum have also been computed (Yoo, Fitzpatrick and Zaldarriaga, 2009, Yoo, 2010,
Challinor and Lewis, 2011, Bonvin and Durrer, 2011). These corrections are small for
low-redshift surveys, but become increasingly important at higher redshifts.

Finally, we note that non-Gaussianity in the primordial power spectrum can have a sig-
nificant influence on large-scale structure. For non-Gaussianity of the local form, (12.41),
the halo power spectrum is boosted on large scales where GR corrections need to be taken
into account (Bruni et al., 2011). Clustering of halos is enhanced for fNL > 0 and decreased
for fNL < 0.
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12.3.5 Peculiar velocities and redshift-space distortions

The evolution of density fluctuations during structure formation sources coherent motions
in the matter. In the linear regime, this is governed by

∇ ·v=−aδ̇ , (12.74)

where we have neglected the metric potential term �̇ in the Newtonian limit. These peculiar
velocities introduce a radial anisotropic distortion in redshift-space via a Doppler effect.
The redshift-space distortions thus provide a handle on the peculiar velocity. In the linear
regime (i.e. on sufficiently large scales), the distortion is a ‘squashing’ in the radial (line of
sight) direction, while in the nonlinear regime there is a stretching (‘finger of god’) effect.

On large scales, the peculiar velocity of an infalling shell is small compared to its radius,
and the shell appears squashed. On smaller scales, not only is the radius of a shell smaller,
but also its peculiar infall velocity tends to be larger. For the shell that is just at turnaround, its
peculiar velocity cancels the Hubble expansion, and it appears collapsed to a single velocity
in redshift space. On even smaller scales, shells that are collapsing in proper coordinates
appear inside out in redshift space. The combination of collapsing shells with previously
collapsed, virialized shells, gives rise to the ‘finger-of-god’ shape. This is illustrated in
Figure 12.5.

We consider the linear case, and assume a distant-observer (plane-parallel) limit and
a scale-independent bias, δg(k,z) = b(z)δ(k,z). Then the distortions are encoded in the
parameter

β(z)= f (z)

b(z)
, f := dln δ

dlna
, (12.75)
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Fig. 12.5 Peculiar velocities lead to redshift space distortions. (From Fig. 2 of Hamilton (1998), reproduced with kind permission
from Springer Science+Business Media B.V.)

which governs the relation between the real-space and redshift-space fluctuations
(Hamilton, 1998),

δrs
g (k‖,k⊥,z)=

[
1+β(z)

(
k‖
k

)2
]
δg(k,z) , (12.76)

where ‖,⊥ denote radial and transverse. (Note the assumption that there is no bias in the
velocities, i.e. vg = v.)

The linear growth factor f obeys the evolution equation (see Exercise 12.3.2)

df

dlna
+ 1

2

(
1− d

dlna
ln�m

)
f +f 2 = 3

2
�m , (12.77)

and a good approximation to the solution of this equation is (Linder, 2005)

f (z)≈�m(z)
γ , γ = 0.55+ 0.05[1+w(z= 1)] . (12.78)

A measurement of β(z) via the redshift-space distortion then gives an estimate of �m(z) if
we know the bias b(z), or a measure of the bias if we know �m(z).

12.3.6 Baryon acoustic oscillations

Before last scattering, the tightly coupled photon–baryon plasma oscillates under the com-
peting effects of gravitational collapse and radiation pressure. The resultant acoustic waves
in the plasma travel at the sound speed cs = (1+R)−1/2, where R = 3ρb/ργ . At baryon
decoupling, the pressure on the baryons disappears and the baryon acoustic wave is frozen
in, while photons stream freely.This leads to an enhanced baryon over-density at the distance
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travelled by a sound wave up to decoupling – and hence to a baryon acoustic oscillation
(BAO) peak in the galaxy correlation function. The gravitational effect of the baryon over-
density is also imprinted on the CDM perturbation. (Note that the feature occurs as a peak
in the real-space correlation function, but as an oscillation in the power spectrum in Fourier
space.) Unlike the acoustic oscillations in radiation, which are imprinted in the CMB TT
power spectrum at the single redshift of decoupling (Section 11.5), the BAO feature in the
galaxy distribution evolves with redshift. This makes it a highly effective probe of the back-
ground geometry and evolution of the universe (Eisenstein et al., 2005, Cole et al., 2005,
Gaztañaga, Cabré and Hui, 2009). (See Bassett and Hlozek (2010) for a review.)

The BAO scale is the sound horizon at decoupling (Lyth and Liddle, 2009):

rs(zdec)=
∫ ∞

zdec

cs

H
dz

= 1√
�m0H

2
0

2√
3zdecRdec

ln

[√
1+Rdec +

√
Req +Rdec

1+√
Req

]
. (12.79)

Note that baryon decoupling actually occurs after photon decoupling because of a rela-
tively low baryon density. The WMAP5 results (Komatsu et al., 2009) show that zb dec ≈
1020, zγ dec ≈ 1090 and rs(zb dec)≈ 153Mpc, rs(zγ dec)≈ 147Mpc.

The emergence of the BAO peak is illustrated in Figure 12.6 via the evolution of the
radial mass profile of a pointlike over-density. At high redshift before decoupling (z= 6824
in Figure 12.6), the photons and baryons travel outwards as a pulse. Close to decoupling
(z = 1440), a wake is induced in the CDM from the pulse of baryons and relativistic
species. The neutrinos are streaming out of the perturbation. After recombination (z≤ 848),
the photons stream out from the baryonic perturbation, while CDM and baryons attract each
other at the near-centre and BAO peaks.

The three-dimensional nature of the BAO feature means that on average there is an
enhancement of clustering at spheres of comoving radius rs(zdec) centred on any galaxy.
Observations along and transverse to the line of sight to a galaxy at redshift z sample the
clustering along those directions. This allows for independent extraction of the area distance
(transverse) and the Hubble rate (line of sight) at z:

rs(zdec)= (1+ z)DA(z)�θs , rs(zdec)= �z

H(z)
, (12.80)

where �θs is the angle subtended at the observer by the physical sound horizon rs/(1+ z)

and �z is its redshift extent along the radial direction. As discussed above, redshift-
space distortions introduced by peculiar velocities need to be corrected for in the
radial relationship. A cut through a simulated galaxy correlation function is shown in
Figure 12.7.

Although the baryon feature is imprinted in the linear regime, and its key properties are
accessible via a linear analysis, the ongoing evolution of structure formation means that
nonlinear distortions will arise at lower redshifts. In other words, the baryon acoustic peak
is not a ‘pure’ geometric observable, but is processed by structure formation. However,
the degree of processing is very small at high redshifts, and small even at lower redshifts.
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Fig. 12.7 Clustering in redshift space for a z = 0.15− 0.30 slice, as predicted for a typical�CDMmodel. (From Gaztañaga,
Cabré and Hui (2009). © RAS.) A colour version of this figure is available online.

Nonlinear effects suppress the amplitude and broaden the width of the baryon acoustic
peak, and shift the peak location to slightly smaller scales. Both of these effects may be
qualitatively understood as the consequence of nonlinear gravitational attraction due to
surrounding galaxies. Detailed analytical and numerical investigations show that the effects
can be computed, at least for standard cosmological models (Eisenstein, Seo and White,
2007, Shoji, Jeong and Komatsu, 2009).

12.3.7 Nonlinear structure formation

A crucial aspect of structure formation is the development of nonlinearity, as matter over-
densities collapse beyond δ ∼ 1 on small scales. The nonlinear enhancement of the matter
power spectrum on small scales is evident in Figure 13.4. In order to track the weakly
nonlinear regime, which is important in accurate modelling of redshift-space distortions,
weak lensing and baryon acoustic oscillations, nonlinear perturbation theory is sufficient.
To go further and track the features of the galaxy distribution, one needs to move beyond
perturbation theory.

Cold dark matter begins to cluster long before baryonic matter, and it also dominates
over baryonic matter. It thus plays the role of ‘scaffolding’ around which baryonic matter
aggregates to form galaxies: CDM ‘halos’ form gravitational potential wells into which
baryons fall and form galaxies and clusters. The process is hierarchical, proceeding from
smaller to larger stuctures through mergers. Although baryons are outweighed by CDM,
they can affect CDM via gravitational interaction. For example, at the cores of clusters, the
baryon concentration itself draws in more CDM. Some general properties of halos can be
predicted via analytical or semi-analytical models, such as the Press–Schechter spherical
or Sheth–Tormen elliptical models. The elliptical models are more realistic – weak lensing
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reveals that halos are not spherical. In the Sheth–Tormen model, about 50% of the CDM
mass is in halos of mass greater than 1010M� (Massey, Kitching and Richard, 2010).

At a more fundamental level, the microscopic physical properties of the CDM particle
(the nature of decoupling from the primordial plasma, the particle mass, cross-section, etc.)
should imprint characteristic scales in the structure formation process. On small enough
scales, CDM cannot be treated as collisionless, and this leads to a minimum halo mass.
If the CDM particle is detected and its properties are determined, then these characteristic
scales can be determined.

Sophisticated N-body simulations on supercomputers have been developed to track the
evolution of structure from the linear regime to the present day (see Springel et al. (2005),
Dolag et al. (2008), Boylan-Kolchin et al. (2009), Diemand and Moore (2011) for recent
reviews).These simulations provide an essential guide to understanding structure formation,
which is too complex to be analysed analytically. Given the huge range of mass scales –
from a CDM particle, with typical mass O(100)GeV ∼ 10−55M�, to a cluster halo, with
typical mass ∼ 1014M� – it is not possible to track hierarchical structure formation from
the clustering of primordial CDM particles all the way up to galaxies and clusters. Instead
the effective ‘particle’ mass in simulations is of the order of a galactic mass.

These simulations reveal the complex, evolving topology of the galaxy distribution,
including the key features of walls, filaments, quasi-spherical regions with galaxy clusters
that are connected by filaments, and voids (underdense regions with sparse galaxy popula-
tion). Some features of the cosmic web can be qualitatively understood via the Zel’dovich
approximation (Mukhanov, 2005). This approximation to the fully nonlinear Newtonian
equations shows that collapse of structure takes place in different forms, according to the
eigenvalues of the expansion tensor,α,β,γ . When the eigenvalues have similar magnitudes,
quasi-spherical collapse results: if all eigenvalues are positive, these are over-dense regions
(clusters and super-clusters), while if all eigenvalues are negative, they are underdense
(voids). If γ �α∼β, then collapse is two-dimensional, forming cigar-like collapse regions
(filaments). If β,γ �α, collapse is one-dimensional and pancake-like regions form (walls).

The N-body simulations provide invaluable tools for understanding the galaxy distri-
bution and testing the cosmological model. Empirical relations based on simulations are
essential for probing the nonlinear regime in weak lensing and other observations. The N-
body codes evolve CDM ‘particles’ (with mass of order a galactic mass) via the Newtonian
equations. Their clustering creates halos, and then these halos are populated by baryonic
galaxies, using phenomenological prescriptions that attempt to mimic the infall of baryons
into the halos.

Aserious limitation resides in the inherently Newtonian nature of the N-body simulations
of large-scale structure. As these simulations extend over great fractions of the Hubble vol-
ume, general relativistic effects should become more important, and it is not clear whether
the Newtonian analysis can be ‘fixed’to take account of these effects.At a fundamental level,
the N-body simulations are not self-gravitating – since they fix the background spacetime
upon which large-scale structure performs its (Newtonian) evolution. However, the devel-
opment of self-gravitating simulations is an enormous computational challenge. Progress in
numerical GR computations of black holes and neutron stars provides a potentially valuable
starting point for a future programme to tackle GR computations of structure formation.
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At the time of writing there remain a number of potential inconsistencies between the
N-body output and the observed features on smaller scales. Furthermore, the understanding
of galaxy evolution and the process of forming larger and larger structures also presents
a number of currently unresolved puzzles. The condensation of gas into stars is not only
highly nonlinear, but also involves the complex astrophysics of the magnetohydrodynamic
and radiative effects of baryon infall – heating, cooling, dissipation, turbulence, feedback
from AGNs and supernovae, role of magnetic fields. These complexities can often only be
dealt with by empirical prescriptions that are incorporated into hydrodynamic codes, whose
output is then compared with observations.

A key limitation of N-body and hydrodynamic simulations is the ‘black box’ problem,
i.e. that we do not always understand the underlying physical mechanism well enough, so
that we do not always have physical guidance to interpret, check and correct the output.
This is an inevitable consequence of attempting to model such a complex nonlinear process
while the requisite astrophysics is not yet well enough developed.

12.3.8 Origin of vorticity

Vorticity in structures is most likely to originate from hydrodynamic effects during gravi-
tational collapse. The alternative is a cosmic ‘seed’ for vorticity, which can counteract the
adiabatic decay of cosmic vorticity governed by (6.14) and the Kelvin–Helmholtz con-
servation law. The only possible seeds are topological defects, if they exist. But the vector
perturbations generated by defects do not transfer to the cosmic medium except at nonlinear
order in the presence of dissipation and turbulence – and hence the effect is negligible. The
basic reason is angular momentum conservation in the cosmic medium (Hollenstein et al.,
2008).

During gravitational collapse, dissipative effects arise, and these can act as sources of
vorticity. In particular, shock fronts form – either triggered by outgoing blasts meeting
infalling gas, or through differentially collapsing shells – and the non-adiabatic pressure
has a gradient that is not aligned with the density gradient. From (6.13), the only possible
source terms for ωa are in the curl u̇a term. This is determined by the curl of the momentum
conservation equation (5.12) when qa = 0 = πab. Using identity (4.60), we find a source
term that is non-zero on shock fronts (Exercise 12.3.3):

ω̇〈a〉 +
(

2

3
− c2

s

)
�ωa −σabω

b = 1

2(ρ+p)2
ηabc∇b

p∇c
ρ. (12.81)

The sourcing of vorticity via ηabc∇b
p∇c

ρ is known as the Biermann mechanism – the same
mechanism generates magnetic fields. When qa and πab are non-zero via shear viscosity
and heat flux, this also provides source terms in the vorticity evolution equation.

Exercise 12.3.1 Show that (12.64) may be rewritten as

D′′ +
(
H ′

H
+ 3

a

)
D′ − 3

2

�m0

a5
D = 0, (12.82)
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where prime denotes d/da and D(a)=�(a)/�(ain). Verify that D− =H is a solution in
�CDM, and show that the growing mode is

D+(z)= 5

2

H(z)

H0
�m0

∫ ∞

z

1+ z̃

[H(z)/H0]3 dz̃ . (12.83)

Verify that the growth suppression factor is given by

g(z)∝ 2F1

[
1,

1

3
;
11

6
;−��0

�m0

1

(1+ z)3

]
. (12.84)

Exercise 12.3.2 Show that the linear growth factor f obeys the evolution equation (12.77),
and verify that (12.78) is an approximate solution.

Exercise 12.3.3 Derive (12.81).

12.4 Gravitational lensing

Light bending, one of the classical tests of GR discussed in all introductory texts, had an extra
importance because it was the only one predicted by the theory before it was observed. How-
ever, the first detection of lensing at cosmological scales (Walsh, Carswell and Weymann,
1979) seems to have surprised many, despite the possibility having been discussed by sev-
eral authors (see Schneider, Ehlers and Falco (1992) for an interesting review of the early
development of the subject).

Gravitational lensing is now recognised as a major tool for exploring the distribution of
mass in the universe and other cosmological parameters, in particular since the first weak
lensing surveys in 2000. It is also used in studying, for example, the physics of quasars, the
internal structure of galaxies and the detection of planets. The many observations include
multiple images of a single source, giant luminous arcs, ‘Einstein rings’ (where the image
fills an annulus round the lens), and arclets, as well as microlensing events. Here we can only
summarize, so we refer the reader to books or substantial review articles, e.g. Wambsganss
(2001), Petters, Levine and Wambsganss (2001), Mollerach and Roulet (2002), Perlick
(2004), Schneider, Kochanek and Wambsganss (2006), Jetzer, Mellier and Perlick (2010)
for more details and fuller bibliography.

The name ‘light bending’ implies that there is a straight line with which the bent one can
be compared. Since in GR the null geodesics themselves are the (generalization of) ‘straight
lines’, and there is thus no intrinsic comparator, such a comparison must use some fictitious
background spacetime: compare Chapter 10.

For the Sun, gravitational light bending is calculated from the spherically symmetric
Schwarzschild solution, and the comparator is flat space.Assuming the observer and source
are effectively at infinity, the bending for a ray well outside the Schwarzschild radius of a
spherical mass M is approximately

α̂ = 4GM
(ξ − ξ ′)
|ξ − ξ ′|2 , (12.85)
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where ξ is a two-dimensional position vector perpendicular to the line of sight in a plane
at the distance of the lensing mass, which is taken to be centred at ξ ′. The plane of such
vectors is called the lens plane.

Small values for light bending imply that the impact parameters |ξ − ξ ′| (and perhaps
the lensing objects themselves) are much bigger than the radii of black holes of the same
mass would be, so (12.85) is usually derived from a weak-field approximation. Lensing
by compact objects at small impact parameters is more complicated: for example, there
may be closed null orbits to which incoming rays can approximate, leading to the possi-
bility that rays will wind round the lensing object multiple times (see Bozza (2010) for a
review).

Since an exact formula for geodesics in Schwarzschild can be given in terms of an integral,
(12.85) can be derived from it, higher-order approximations are straightforward, and exact
results for small impact parameters can be found in this case.

The light bending by the Sun for a given source as seen from the Earth is time dependent,
because the Sun moves in the sky, so one can make a comparison observation with our past
light-cone at a different time. At grazing incidence the bending for a distant source is about
1.75 arcsec. Since the Sun subtends an angle of about 1o at the Earth, this implies that rays
from us touching the Sun and being bent by it cross again at about six light days behind the
Sun, not far at all in astronomical terms. Such a crossing point of distinct geodesics from a
point p is called a conjugate point of p.

This example shows that conjugate points are far from unusual and can arise quite close
by. The light-cone develops caustics, cusps and folds at conjugate points, with the effect
that it may then intersect a source world line several times, giving multiple images of the
same object, at least one of them being significantly magnified (see e.g. Stewart (1994),
Schneider, Ehlers and Falco (1992), Perlick (2004)). These in general come from different
source world line points, i.e. different emission times. Such behaviour does not require
strong fields or large bending of the rays, but is usually called strong lensing; ‘weak lensing’
means that a single image is seen and, usually, that its distortion is mild. Data can also be
derived from an intermediate regime, described as flexion, where the distortion varies
substantially across a single image (see e.g. Massey, Kitching and Richard (2010)): such
an image typically forms an arc. The different cases are illustrated in Figure 12.8.

No lensing
Weak

lensing

Large-scale
structure

Substructure,
outskirts of halos

Cluster and
galaxy cores

Flexion
Strong
lensing

Fig. 12.8 The various regimes of gravitational lensing image distortion. (FromMassey, Kitching and Richard (2010).)
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The geometry of lensing is the same in all metric theories of gravity in which light
travels along null geodesics, but the relation to the sources of the metric depends on the
particular theory. Viable alternative gravity theories must reproduce the observed bending
by the Sun. Almost all treatments of lensing use ray optics, not a full wave optics, compare
Section 7.1.

Many of the applications of gravitational lensing concern light from discrete sources
bent in the gravitational fields of other discrete bodies like the Sun (see e.g. Wambsganss
(2001)). The lensing objects are not truly lenses, in that they do not produce a focused
image. A single galaxy of about 1012M� can produce multiple images with separations
about 3 arcsec, and clusters of size 1014M� separations of an arcminute. Some interesting
and advanced mathematics is needed to properly determine information on the numbers of
images and their magnifications (Petters and Werner, 2010). For brevity, we do not develop
the theory of strong lensing here.

Images formed by galaxies or clusters will be of more distant galaxies or QSOs, and both
sources and lenses will be at cosmological distances. In these cases the lenses themselves
are small compared with those distances, and are thus often approximated as ‘thin’, i.e.
lying in a plane.1

These cosmological scales also imply that the comparison spacetime should be curved,
FLRW models being the first to study. As well as the focusing by the lens, beams are
cosmologically focused (see e.g. (7.52)): indeed, this effect is important in inferring the
spatial curvature from CMB observations (see Section 13.3.1). More recently lensing due
to diffuse over- or under-densities, rather than discrete lenses, has been used to study the
dark matter distribution (see Section 12.5.3).

Neither weak nor strong lensing usually involves large deflections, i.e. lensing by a strong
gravitational field, and most applications to astronomical objects also do not require strong
curvature in the source (although source galaxies may contain black holes). Cases involv-
ing strong curvatures may require the rigorous approach using the ‘exact lens equation’
(Frittelli and Newman, 1999), which writes spacetime position on the geodesic as a func-
tion of the observer’s proper time, angles on the observer’s celestial sphere and a radial
distance (or affine parameter distance), although this equation can only be given explicitly
in some special examples (see Perlick (2004) for a review of this method).

Finding detailed numerical or analytic approximations to the metric, and then tracing
rays in those solutions (see e.g. Holz and Linder (2005)), can very accurately approxi-
mate the true behaviour, but to do this in fully detailed models is a formidable task. For
many cases less accurate approximation treatments are adequate: we shall refer to some
and give details of one, relevant to weak lensing in a perturbed FLRW model, which
uses the 1 + 3 and covariant ideas of this book to derive the quasi-Newtonian ‘lensing
equation’, (12.86). This derivation is not entirely rigorous, a problem linked to the more
general issue of finding a satisfactory way of obtaining Newtonian limits in cosmology (see
Section 3.4).

1 Kling, Newman and Perez (2000) show that although this works well for a single lens, the iterative method they
introduced works better for two neighbouring lenses: the difference is below the observational errors in simple
cases, so we do not give its details.
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12.4.1 The lensing equation

The lensing equation gives the deflection caused by a thin lens, i.e. the angle between the
ray arriving at the observer and the direction in which such a ray would have come in
the absence of the lens. It assumes that the lens is (quasi-)stationary and that the weak
field correction to the metric is well approximated by integrating along the unperturbed ray
(this, by analogy with quantum physics, is called the Born approximation). For a flat-space
comparator, one can simply ‘add up’(i.e. integrate over) the elements of a lens, treating each
part as a Schwarzschild deflector and considering the different lens planes to be identified.
Then the input and output values of the ray’s spatial direction ea are related by

α̂ := ein − eout = 4G
∫
R

2

(ξ − ξ ′)�(ξ ′)
|ξ − ξ ′|2 d2ξ ′, (12.86)

where� is the surface mass density in the lens plane (i.e. the integral of the mass density with
respect to distance perpendicular to the lens plane). We note that one can write (12.86) as

α̂ =∇V̂ , V̂ ≡ 4G
∫
R

2
�(ξ ′) ln |ξ − ξ ′|d2ξ ′. (12.87)

Note that for large angular scale analyses (e.g. to study the dark matter distribution) one
must replace the flat lens plane by (part of) the celestial sphere, though this is not needed
in lensing of discrete sources.

Writing Ds for the distance of the source, Dd for the distance of the lens (the deflector)
and Dds =Ds −Dd for the distance between the deflector and the source, these distances
being well defined in the comparator flat space, we can write (12.86), in terms of angles β

and θ for the unlensed and lensed positions described by position vectors on the celestial
sphere (see Figure 12.9), as

β = θ − Dds

Ds

α̂(ξ), (12.88)

or in terms of the distance η = Dsβ from the source to the optical axis and the closest
approach ξ =Ddθ to the deflector, assuming the angles and distances are measured from

Light Source
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L Lens Plane

Observer

S

y

α∧

Fig. 12.9 A schematic of single-plane gravitational lensing. A pointlike light source is at y on the light source plane S. A light ray
from the source is deflected through an angle α̂ by the gravitational influence of the lens on the lens plane L. (From
Fig. 1 of Petters and Werner (2010), reproduced with kind permission from Springer Science+Business Media B.V.)
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this axis,

η = Ds

Dd

ξ −Dds α̂(ξ). (12.89)

This can be rewritten in terms of some fiducial scale ξ0 as

y = x−α(x), (12.90)

where x = ξ/ξ0, y = Ddη/Dsξ0 and α = DdDds α̂(ξ0x)/Dsξ0. In this notation one can
relate 1

2 (y− x)2 −V (x), where α =∇V , to the arrival times of rays, which can be used in
Fermat’s principle to (re)derive the lensing equation.

In this form we have a lensing map from the lens plane to a source plane, the screen space
at the distance Ds along the ray: this map need not be continuous or differentiable (Perlick,
2004). Note that when strong lensing occurs the emission is not from a single instant of
time and one should replace the source plane by a timelike surface of successive planes.

The equation (12.88) can be extrapolated to a thin lens in a Robertson–Walker background
by replacing the flat space distances by observer area distances. Note that the conformal
flatness of FLRW universes ensures that the behaviour of rays away from the lens is simple.
Alternatively one can calculate lensing using the Swiss cheese models of Section 16.4.1
(Kantowski, 1969b).

12.4.2 The null geodesic deviation equation

The null geodesic deviation equation (NGDE) treats lenses and images sufficiently small
for the rays to be treated as neighbouring rays of a congruence, as introduced in Section 7.3:
this is the only approximation involved. The Weyl tensor terms in (7.28) are important even
when the Ricci tensor contribution in (7.26), i.e. the matter within the beam, is negligible.
Calculating the effect of those terms in an inhomogeneous universe is in general too hard
to be done exactly.

For the lensing application we use the null geodesic deviation equation in the form
(7.29). We note that � does not appear there. Recently a derivation similar to that of
(12.86), but using the Kottler (often called Schwarzschild–de-Sitter) solution, showed
that � nevertheless affects lensing, although the cosmological effect remains unclear
(see Ishak, Rindler and Dossett (2010), Kantowski, Chen and Dai (2010) and references
therein).

The NGDE (7.29) can be projected into the screen space (Lewis and Challinor, 2006,
de Swardt, Dunsby and Clarkson, 2010a), giving

sab
δ2Xb

δv2
=−4πGν2

(
ρ+p+πbce

bec− 2qbe
b
)
X̂a

−2ν2(Ê〈ab〉 + Ĥ c〈aηb〉c)X̂b , (12.91)

where by analogy with PSTF tensors in three dimensions we define Ê〈ab〉 by

Ê〈ab〉 ≡ Êab− 1
2 Ê

c
c s

ab . (12.92)

The projected equation (12.91) is equivalent to (7.26) and (7.28). The matrix of coefficients
of X̂c on the right of this equation has been studied by Seitz, Schneider and Ehlers (1994).
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12.4.3 The lensing equation from the null geodesic deviation equation

We now relate the lensing equation to the NGDE in a perturbed FLRW model. Following a
number of authors, e.g. Sasaki (1993), Pyne and Birkinshaw (1996), Holz and Wald (1998)
and de Swardt, Dunsby and Clarkson (2010a), we use a longitudinal gauge, which is a quasi-
Newtonian gauge (see Sections 6.8 and 10.2). Thus surfaces of constant η are chosen so that
their normals are shear and rotation free (but not necessarily geodesic). This implies that
Hab = 0, from (4.52). We ignore vector and gravitational wave (tensor) perturbations: since
vector perturbations decay as the universe expands, while waves will only affect an image
transiently and linearized effects should anyway be superposable, this seems reasonable.
We assume that the matter content is dust, so from (10.55) and (10.71) �= φ = ψ (more
generally, for any metric theory in the same approximation scheme, the same formulae hold
with 2�→�+!).

As we are dealing with weakly (linearly) perturbed FLRW universes we can write ũa =
ua + va , as in Chapter 10, where ua gives the surface normals, and ũa is the fluid velocity.
We use the tilde to denote quantities evaluated in the ũa frame, and we retain only terms
of order va . Given that the ũa frame is that of comoving dust, the transformations (10.129)
give

qa = ρva , πab = 0, (12.93)

to linear order. Now from the Maxwell–Weyl div-H constraint (10.147), curl qa = 0, which
implies curl va = 0 = ωa . The vorticity propagation equation (10.139) then implies that

u̇a =∇a�, (12.94)

where �= ln r using (10.143) and the acceleration potential (see also Exercise 4.6.2). The
quantity � will be identified with the Newtonian gravitational potential in an appropriate
limit, as the notation suggests. Equation (10.144) then gives

8πGqa = 8πGρva = 2
3∇a� (12.95)

Linearized shear propagation (10.140) gives the constraint

Eab =∇〈a∇b〉�. (12.96)

This agrees with the Newtonian form for Eij , (6.30), after substitution from Section 4.3.
To show this identification is correct we need to show � obeys the relativistic Poisson

equation (10.62), on using σ = 0 (Newtonian gauge) and φ = ψ = � (no anisotropic
stress), i.e. (

∇2 + 3K

a2

)
�− 3H(�̇+H�)= 4πGδρ. (12.97)

The constraint (12.96) must hold identically under time and spatial derivatives. In order to
take the spatial divergence, we need the linearized identity (Maartens, 1998, equation (46))

∇b∇〈aVb〉 = 1

2
∇2

Va + 1

6
∇a∇b

Vb+ K

a2
Va , (12.98)
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which follows from (10.156). Together with the linearized identity (10.160) for commuting
the Laplacian and the gradient, the divergence of (12.96) leads to

∇b∇〈a∇b〉�= 2

3
∇a∇2

�+ 2K

a2
∇a�. (12.99)

Using the divergence constraint (10.146), we find

∇a

[(
∇2 + 3K

a2

)
�− 4πGρ+ 1

3
�2
]
= 0. (12.100)

Now we differentiate (12.96) in the ua direction, using the linearized commutators of
Section 10.4.1. We obtain

∇〈a∇b〉
(
�̇+ 1

3�
)+H∇〈a∇b〉�= 0. (12.101)

A solution of this equation, taken to be the relevant one, is2

∇a

(
�̇+ 1

3�+H�
)= 0. (12.102)

Then (12.100) becomes

∇a

[(
∇2 + 3K

a2

)
�− 3H(�̇+H�)− 4πGρ

]
= 0, (12.103)

which implies (12.97).
To make the link with the lensing equation, we investigate the deflection as the ray passes

the lens. We approximate ν and X̂a as constant during the deflection. The proper distance
corresponding to dv is d�= ν dv, so we have,

sab
δ2Xb

δ�2
=−4πGρX̂a − 2Ê〈ab〉X̂b. (12.104)

Since the NGDE is linear in X̂c we can treat separately the contributions from the back-
ground ρ, which replaces flat space distances in (12.88) by observer area distances, and the
perturbation terms. The coefficients on the right side of (12.104) from the perturbation are
(assuming we can take a locally flat approximation so that derivatives commute)

−∇2�sab − 2∇̂a∇̂b�+ 2
3∇2�sab+ (∇2�− eced∇c∇d�− 2

3∇2�)sab

=−2∇̂a∇̂b�− sabe
ced∇c∇d�=−2∇̂a∇̂b�− sab

∂2

∂�2
�.

For a source and observer both far away from the lensing region, one can take infinite
limits of the integration in �, so integrating (12.104) now gives[

sab
δXb

δ�

]
=−

(∫ ∞

−∞
2∇̂a∇̂b�+ sab

∂2

∂�2
�d�

)
X̂b

=−
(∫ ∞

−∞
2∇̂a∇̂b�d�

)
X̂b+

[
∂�

∂�

]∞
−∞

X̂a

=−
(∫ ∞

−∞
2∇̂a∇̂b�d�

)
X̂b.

2 It may be the case, but has not been proved, that more general solutions differ only in gauge.
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Since X̂a is an infinitesimal vector transverse to the rays, this should agree with the
infinitesimal variation of α̂ with position in the lens plane, i.e. we need to compare it with

α̂a,bX̂b = 4G
∫
R

2

(
δab

|ξ − ξ ′| −
(ξa − ξ ′a)(ξb− ξ ′b)

|ξ − ξ ′|3
)
�(ξ ′)d2ξ ′X̂a . (12.105)

We have, in the local flat space,

�=−G

∫
R

3

δρ′ d3r ′

|r − r′| . (12.106)

Taking the derivatives in the lens plane, we find

−2∇̂a∇̂b�= 2G
∫
R

3

(
δab

|r − r′|2 − 2
(ξa − ξ ′a)(ξb− ξ ′b)

|r − r′|4
)
δρ′ d3r ′ .

The integrals with respect to � are, since |r − r′|2 = (�− �′)2 +|ξ − ξ ′|2,∫ ∞

−∞
d�

|r − r′|2 = 2

|ξ − ξ ′| ,
∫ ∞

−∞
d�

|r − r′|4 = 1

|ξ − ξ ′|3 , (12.107)

so, writing �(ξ ′)= ∫
δρ(r′)d�,

−
∫ ∞

−∞
2∇̂a∇̂b�= 4G

∫
R

2

(
δab

|ξ − ξ ′| −
(ξa − ξ ′a)(ξb− ξ ′b)

|ξ − ξ ′|3
)
�(ξ ′)d2ξ ′, (12.108)

which agrees with (12.105).
The actual value of α̂ depends on the constant of integration of this derivative, corre-

sponding to the choice of a ray taken to be undeflected. In applications relative deflections
are the important quantities, so identifying such a ray is not necessary. But the method
of Pyne and Birkinshaw (1996) instead considers a perturbed solution of the geodesic
equations in the perturbed metric, thus in principle allowing computation of the deflec-
tion directly for each ray, or, alternatively, allowing direct calculation of the deflection of
the central geodesic of the congruence. In the thin lens limit or in considering magnification
and other properties of small images the results are the same.

We have thus linked the lensing equation with the perturbative lensing in a longitudinal
gauge (remember this has to be added to the focusing by the averaged cosmological density
ρ). In terms of scalar perturbations in a general gauge as described in Section 10.2, the
perturbative contribution to (12.88) can be written

α̂ =−
∫

∇̂(�+!)dv , (12.109)

where dv = d2ξ ′ and � and ! are projected into the lens plane.
The treatment above is based on the 1+3 formalism. For spacetimes with preferred two-

dimensional spaces, such as spherically symmetric spacetimes, a further expansion to a
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1+1+2 formalism has been developed by de Swardt, Dunsby and Clarkson (2010b). Note
that the preferred two-dimensional space is in general not the same as the screen space.

12.4.4 Lenses and images

To characterize the apparent size and shape of an image, the magnification matrix defined
from (12.90) as Aab = ∂ya/∂x

b = δab−αa,b is used. From the links made above between
the optical scalars, the NGDE, and the lensing equation, one can see that the 2×2 matrix
αa,b can be written as (

κ + γ1 γ2 −ω

γ2 +ω κ − γ1

)
, (12.110)

where κ , γ1 + iγ2 and ω can be obtained by integrating the optical scalar equations (7.26)
and (7.28) with respect to � and are called the convergence, shear and (field) rotation. From
(the linearized forms of) (7.26) and (7.28) it follows that the convergence depends on the
surface density and the shear can be expressed in terms of a similarly defined surface Weyl
tensor (Kling and Keith, 2005). In the derivation used above, ω= 0 because α is a gradient,
but this need not be true when our approximations are inappropriate. The magnification of
an image is defined as 1/detA.

Lensing events by weak fields do not alter redshifts significantly and so do not change
the specific intensity, (7.56). The peculiar velocities of source and observer are taken into
account in specific intensity and observer area distance. The flux received from a given
source thus varies only with the solid angle subtended at the observer by the image, and
is given by the magnification, integrated across the source. It formally becomes infinite in
strong lensing where the determinant passes through zero, and changes sign. The curves
in the lens plane on which this happens are called critical curves. The real effect would
be finite because close to such a critical curve the actual wave nature of light has to be
considered, but in practice the fact that the sources are not point sources is more important
in ensuring finite answers.

The shear gives the change of shape of an image. A method initially due to
Kaiser and Squires (1993) showed that one can reconstruct the mass distribution in a thin
lens from the shear. This method has been developed by several authors, in particular to
deal with the finite resolution of real data; a variety of algorithms and statistical estima-
tors have been used (see the reviews cited earlier). The method writes the surface density
� (or convergence κ) as an integral of the shear (surface Weyl tensor) over the surface:
Kling and Keith (2005) showed, using the formulation of Miralda-Escudé (1996), that this
is simply an integral form of one of the (linearized) Bianchi identities.

Lensing also causes a time delay in the observations, partly due to the changed path
length of the geodesics, and partly due to gravitational redshift. The understanding of
(12.90) in terms of arrival time can be helpful here. The time delay is measurable if we
at another time see the unlensed source, as in the Solar System where the gravitational
contribution has been well tested, or when strong lensing results in multiple images and a
true variation in the source gives rise to corresponding but time delayed variations in the
different images.
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12.5 Cosmological applications of lensing

12.5.1 Lensing andm−z relations

We observe the visible matter in the universe to be significantly clumped, and expect its
dark matter to also be clumped. We will tend to see images only when there is no visible
matter contributing to the Ricci tensor within a beam, i.e. no corresponding Ricci tensor
contribution in the NGDE. However, the clumps cause a non-zero Weyl tensor which has
a net focusing effect, counteracting the absence of Ricci focusing. If the lens itself is not
static, it can produce a non-zero net gravitational redshift. The combination of these effects
can affect the measured m−z relation. This important matter is discussed in Chapter 16.

12.5.2 Discrete sources and lenses

The first astronomical gravitational lens phenomena to be detected, other than the solar
light bending, were double or multiple images of distant QSOs. Nowadays lensing objects,
galaxies or clusters, can be detected both by such strong lensing and by weak lensing.

The lensing of distant galaxies or QSOs by closer ones gives information in three main
ways. First, both strong and weak lensing can be used to infer the distribution of matter in
the lens: this will include the dark matter in the lens as well as stars, dust and gas. Knowing
the mass distribution, the virial theorem then allows one to infer the velocity dispersion.
Early models used first spherical lenses and then ellipsoidal lenses. Now quite complicated
forms for the lenses are considered, and matched in detail to observations. As well as the
information this provides on the structure and evolution of galaxies or clusters, it constrains
the distribution of dark matter.

There are several criteria for identifying strong lensing resulting in multiple images from
the same source. One would expect to find similar spectra in all wave bands, the same
redshift, and the same line emission, up to limits due to the different paths taken by the light
and perhaps different material encountered, and ideally one would want to be able to see
the lensing object and to be able to correlate time variations of the sources. Not all of these
criteria are satisfied in all strong lensing candidates. Among the complications are that one
or more of the images may show variability due to microlensing, for instance by stars in
the lensing galaxy, and the spectra may appear to be different due to different absorption by
intervening matter or because the lens differentially magnifies regions emitting in different
ways, e.g. continuum- and line-emission regions. Strong lensing of galaxy–galaxy pairs
gives constraints on the dark matter fraction and density profiles.

With weak lensing the difficulty is to know what the source was like in order to infer
the lensing, if studying single images. This was recently addressed by a competition to
compare different methods for inferring shear from images, using 3×107 simulated images
(Bridle et al., 2010), whose results may lead to improved data analyses in future.

In practice a statistical approach is used, based on assumptions about the distant source
population: for example, that spiral galaxies in the lensed region do not have aligned rotation
axes. Provided many galaxies are imaged by the same lens, one can determine the shear
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Fig. 12.10 The statistical signals sought by measurements of weak gravitational lensing are slight but coherent distortions in the
shapes of distant galaxies.
(Left): A tangential, circular pattern of background galaxies is produced around a foreground mass overdensity.
Physical gravitational lensing produces only these ‘E-mode’ patterns. Measurements of the ‘B-mode’ patterns
illustrated below provide a free test for residual systematic defects.
(Right): The observed ellipticities of half a million distant galaxies within the 2 square degree Hubble Space Telescope
COSMOS survey (Massey et al., 2007). Each tick mark represents the mean ellipticity of several hundred galaxies. The
B-mode signal is consistent with zero. (FromMassey, Kitching and Richard (2010).)

field in the lens plane by averaging over many images. Shear has better signal to noise
than magnification, but it needs about 100 images to get S/N > 1. Examples of the data
obtained are given in Figures 1.9 and 12.10. For reviews of weak lensing see Heavens
(2009), Massey, Kitching and Richard (2010) and Huterer (2010).

Lensing shows that the total mass of a galaxy is typically between 20 times the mass in
stars, if the latter is 6×1010M�, and 50 times for 2−3×1011M�. This gives us information
about the fraction of baryons in stars. One can also compare the matter distribution within
objects with theory: most observations favour a flatter central region than expected from
CDM predictions but more astrophysical modelling is needed to establish firm results.

Lensing can also reveal clusters behind foreground clusters, and the presence of multiple
sets of emission lines at differing redshifts in a galaxy may show it is lensing several more
distant sources.

An example of determination of the mass distribution in the lens is given by the recent
measurement of the mass of the X-ray selected cluster XMMUJ2235.3-2557 from its lens-
ing effect on more distant objects (Jee et al., 2009): it has a redshift z = 1.4 and a mass,
assuming a standard Navarro–Frenk–White mass profile and cosmological parameters from
the WMAPdata, of (8.5±1.7)×1014M�, which occurs with � 1% probability in a standard
�CDM model.

The second type of information, mainly from strong lensing, comes from the ability
to determine properties of sources at high redshifts at which, without the magnification
provided by the lens, they would be unobservable. The lens is being used as a telescope.
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One drawback of this method is that the sources need not be typical of the population of,
say, galaxies at high redshift.

Finally, when multiple images of a variable source are observed and one can unambigu-
ously identify the variations in two or more images, the time delay between the arrival of
the same signal in the images gives a measure of the Hubble parameter. If we have a good
model for the lens this can be used to obtain a value for the Hubble constant. The reason is
if we made a change of length scale, and scaled masses the same way, the geometry of the
light rays would agree (being conformally invariant) but the time delay would be scaled.
Hence the measured time delay sets the scale, i.e. the Hubble constant.

A recent analysis using 18 time-delay lenses (Paraficz and Hjorth, 2010) gave a result
666−4, consistent with other methods and even better agreement was found when using only
five lenses where isothermal models could be assumed. Suyu et al. (2010), using radio
monitoring of the four images in the lens B1608+656 coupled with a detailed model of the
lensing object using a high-resolution image from the Hubble Space Telescope and stellar
velocity dispersion measurements, obtained a value H0 = 70.6 ± 3.1 (without a prior of
K = 0) from this one lens. Combining their data with a K = 0 prior and WMAP results
gave H0 = 69.7+4.9

−5 and w = −0.94+0.17
−0.18. These uncertainties are comparable with those

from baryon acoustic oscillation data (see Section 13.2), showing the potential of lensing
results.

Weak lensing and flexion data are used to map galactic and cluster halos: since dark matter
is believed to constitute a large part of the total mass of galaxies and clusters, this enables us
to probe the relation of visible and dark matter without assumptions about ‘bias’. The theory
of virialized halos leads to the Navarro–Frenk–White profile and lensing observations are
in good agreement with this.

12.5.3 Large-scale structure, dark matter and dark energy

We again refer for fuller information to the surveys of Heavens (2009),
Massey, Kitching and Richard (2010) and Huterer (2010).

On the large scale, Weyl tensor terms encode the power spectrum of the distribution of
the matter and so lensing can be used to determine this. The multipolar decomposition is in
good agreement with other measures. In recent years the two-dimensional data of the shear
field has been made three-dimensional (lensing ‘tomography’) by using the photometric
redshifts from redshift surveys as a proxy for distance. By this means Massey et al. (2007)
were able to map the large-scale distribution of dark matter. These data are degenerate in
the �m–σ8 plane but the degeneracy is resolved when CMB data are used. In principle
observations of the mass at different redshifts could be used to test conservation of mass
on cosmological time scales.

Weak lensing can also give constraints on the neutrino masses. (So far, direct observation
of neutrinos gives good measures for mass differences but not for the absolute value.) The
reason is that even if neutrinos are not massless, their low mass would imply a streaming
out of mass concentrations leading to a reduction of small-scale power in the spectrum.
Kristiansen, Elgarøy and Dahle (2007) give a limit Mν < 1.43eV.
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The direct effects of dark energy on lensing are less important than the indirect effect via
the observer area distance and growth rate of perturbations. For example, Kilbinger et al.
(2009), who cite earlier analyses, give bounds −1.18 < w < −0.88 on the equation of
state of dark energy, at 95% confidence, from lensing combined with the WMAP5 and
SNIa data.

12.5.4 Lensing and the CMB

For fuller details of the results summarized here, and entry points into the literature,
see Hanson, Challinor and Lewis (2010). As they say, from the point of view of CMB
observations, lensing is a contaminant.

One might think that the effect of the lensing by stars, galaxies, clusters and so on, each
causing caustics and folds in the past null cone, would be that the area we see on the last
scattering surface would be significantly greater than that in a uniform FLRW universe,
changing the interpretation of the CMB measurements. This indeed would happen if every
line of sight passed near enough to a lensing object (a star, a gas cloud, a concentration of
dark matter). But in fact only a small fraction of the celestial sphere is covered by stars,
galaxies or clusters: astronomical images are misleading in this respect (the same point
affects the Olbers’ paradox arguments, Harrison (2000)).

Detailed estimates give an RMS deflection of CMB rays of 2.7 arcmin, with a coherence
length of a few degrees (against a 10 arcmin scale of the � = 1000 modes in the CMB).
Because there are more of them, smaller lenses contribute most, and the peak contribution
comes from lenses at redshift z ∼ 2. This results in a small but non-negligible effect on
the CMB power spectrum (which completely characterizes the CMB assuming it is a
Gaussian field, with no phase correlations), and the introduction of a vortex-like B-mode
polarization which could confuse searches for the similar effect on polarizations due to
gravitational waves. Note that the lensing does not introduce additional polarization: it just
realigns existing polarizations. These effects can be considered as adding non-Gaussianity
and anisotropy to the predicted observations.

The lensing will be correlated with large-scale temperature anisotropies caused by
the (late-time) integrated Sachs–Wolfe effect, and this will lead to a contribution in the
bispectrum indicating non-Gaussianity.

Conversely, the CMB measurements can be used to calculate a maximum likelihood
estimator for the lensing distribution. In principle CMB measurements on small angular
scales could also be used to reconstruct the mass distribution of individual clusters.

As yet the experimental data give at best about a 3σ detection of a lensing signal in
the CMB, not yet a very convincing level, but future experiments should improve this
substantially, and, conversely, will need to remove the lensing contribution when analysing
data for other cosmological phenomena.

12.5.5 Testing cosmological gravity

Lensing can be used to test theories of gravity under the assumption of an almost RW metric
(compare Section 8.3.2). For example, Smith (2009) used it to bound the PPN parameter γ
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and thence constrain scalar–tensor and f (R) theories, but (Schwab, Bolton and Rappaport,
2010) the present data on this are not good enough for significant conclusions unless
independent constraints on the lensing galaxies can be given.

The observations of the ‘Bullet cluster’ (Clowe, Gonzalez and Markevitch, 2004) show it
is really two colliding clusters which have passed through one another. Lensing shows a mass
distribution significantly different from the distribution of the hot interacting gas shown
by X-ray emission: a number of similar but less spectacular examples have been found
(Shan et al., 2010). This is evidence against, or at least, requiring to be reconciled with, alter-
native gravity theories as an alternative to dark matter. Ferreras et al. (2009) concluded that
strong lensing and galactic rotation curve data together rule out the alternative theory TeVeS
(Section 12.3.3) as a way of removing the need for dark matter. Bean and Tangmatitham
(2010) have examined constraints on variations of the governing equations arising from
combining the SNIa, BAO, ISW, galaxy survey and weak lensing data: these are tight at
last scattering but less so at later times.

Looking for aligned pairs of galaxies, Morganson et al. (2010) found no evidence for
lensing by cosmic strings and thus put limits of Gµ < 2.3× 10−6 and �s < 2.1× 10−5

on the string tension and density, with stronger limits if some doubtful candidates were not
strings.

Weak lensing surveys could be used to distinguish different theories by their effects on
observer area distance and the growth rate of perturbations, for example to distinguish DGP
theory (Section 14.3) and GRT. However, to do so one would need a good understanding
of nonlinear clustering.

12.5.6 Microlensing and its uses

Microlensing occurs when the angular scale of the lens is smaller than that of the lensed
object. Lensing is then not detectable as light bending or multiple images, but as variations in
total brightness, possibly as intensity peaks in an image. It occurs in multiply imaged quasars,
where the stars of the lensing galaxy cause variations in the quasar images, and in observa-
tions of stars in our own Galaxy. Since the lens typically moves across the image, one needs
lensing formulae which take into account source and lens motion: Kopeikin and Schäfer
(1999) provided these using a Lienard–Weichert formula for the light propagation.

One can also do pixel lensing, where several sources (stars) are grouped in a sin-
gle pixel and one measures the aggregated microlensing. There is also ‘millilensing’
(Massey, Kitching and Richard, 2010) by, for example, substructures within a galaxy:
observations so far suggest there is more substructure than predicted.

A number of searches have been conducted to find small objects in our Galaxy or neigh-
bouring galaxies by their lensing effect on more distant stars (Mollerach and Roulet, 2002,
Carr et al., 2010), shown by a light curve characteristic of an object passing in front of
the source. The inferred masses and densities of such objects constrain any contribution to
dark matter in the form of such bodies. The conclusion, from a large number of observa-
tions, is that ‘a substantial contribution of compact objects to a standard halo is now clearly
excluded’ (Moniez, 2010). This includes primordial black holes and masses up to 30M�
(Carr et al., 2010). Thus there is no large component of the dark matter in this form.
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Microlensing can also be used to detect extrasolar planets (Dominik, 2010), which are
of great interest for other reasons: over 400 such planets are now known, of which, so far,
10 have been found from microlensing.

In the case of quasars, one might obtain information about the size of the continuum
emission and line emission regions, and the brightness profile, as well as the lensing objects.
The best-studied example is Q2237+0305, ‘Huchra’s lens’, where changes of brightness
are obvious in the four distinct images.

Another application may be in searching for cosmic superstrings (Chernoff and Tye,
2007).

Overall, gravitational lensing started out as a theoretical prediction of GR, and now is
a crucial tool in detecting different forms of dark matter as well as in other astrophysical
studies.



13 Confronting the Standard Model with observations

The basic observational concepts and relations in cosmology were introduced in Chapter 7.
Here we consider how this works out when applied to the standard models of cosmology:
how do current observations support and refine the use of perturbed FLRW models, dis-
cussed in Chapters 9 to 12? This is crucial in determining how acceptable these models are
as models of the real universe: observational testing is the core of scientific cosmology.

Extraordinary progress has been made in this regard in recent decades. Multi-wavelength
observations (radio to γ -ray) of vast numbers of sources and various backgrounds have
been made, gathering massive amounts of data. This has been based on developments in
telescopes (ground-based, balloon-borne, space-based), detectors (photomultipliers, CCDs,
fibre optics, adaptive optics, interferometric spectrometers, etc.), and high-performance
computing power. We cannot go into those developments here, but simply refer to
Lena, Lebrun and Mignard (2010) for a survey.

An important feature of the observational constraints is that they have two separate
aspects. On the one hand, we can test the background model by observations that probe the
expansion history, such as the magnitude–redshift diagram, and, on the other hand, we can
test perturbations about the background by observations that probe the CMB anisotropies
and the growth of structure.

For the background, we use galaxies, supernovae and the CMB as markers of the geometry
of the background model; for this purpose we are only interested in their capacity to provide
standard candles and standard rulers. For the perturbations, we need probes of the formation
and evolution of CMB anisotropies and large-scale structure. The perturbed model is tested
via its statistical predictions, and the best-fit parameters from tests of the background model
should be used in testing the perturbations. If the perturbed model passes the observational
tests, we will confirm the crucial consistency test:

Observational consistency between the background model and the perturbed model.

This incorporates a test of GR, because the link between background and perturbations is
the theory of gravitation. For example, on super-Hubble scales, for adiabatic perturbations
and neglecting anisotropic stress, the evolution of the perturbations is entirely determined
by the background via (Bertschinger, 2006)

2�′′ − H ′′

H ′ �
′ −

(
H ′

H
+ H ′′

H ′

)
�= 0, f ′ := df

d lna
, (13.1)

where �(=!) in Newtonian gauge is given by (12.13).
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Before discussing these two kinds of observations and their relation to each other, we
first consider the basis for supposing that perturbed FLRW models are good descriptions
of the real universe.

13.1 Observational basis for FLRWmodels

The standard FLRW universe models are simple and have tremendous explanatory power.
Furthermore, their major physical predictions – such as the existence of blackbody CMB
and specific light element production in the early universe – seem confirmed. To what
degree do observational data uniquely indicate these universe models for the expanding
universe geometry?

As discussed in detail in Chapter 9, the background FLRW model is isotropic about every
point, and hence is exactly spatially homogeneous. The perturbations discussed in Chapter
10 are assumed to be statistically compatible with these symmetries. Thus a key issue is,

Universe geometry: is the universe (on a large enough scale) spatially homogeneous and
isotropic?

On small scales it is clearly neither. The FLRW description of the real universe implicitly
assumes two fundamental components: (1) An averaging scale such that the universe is
spatially homogeneous and isotropic above that scale (Ellis, 1984). At the time of writing
the scale has been put at O(70h−1)Mpc (Sarkar et al., 2009), but note the competing claim
of no homogeneity up to 100h−1 Mpc (Sylos Labini et al., 2009). (2)Aprescription for how
the idealized metric form (9.9) is related to the real (‘lumpy’) universe that we see around us
– which may be called the ‘fitting problem’ in cosmology (Ellis and Stoeger, 1987). These
two issues, and the problems that arise through the implied averaging process, are discussed
in Section 16.1.

A direct observational proof of large-scale homogeneity on this basis is very difficult
(Ellis, 1980). As a consequence, the deduction of spatial homogeneity is usually made
on the basis of the observed isotropy of matter and radiation about us (when averaged
on a sufficiently large scale), together with the Copernican Principle. We now discuss the
different approaches used to deduce homogeneity of the universe.

13.1.1 Theoretical approaches

Cosmological Principle

Spatial homogeneity is the simplest case and apparently we do not need anything more
complex on the basis of current data. This can be encoded in a philosophical principle as
the foundational basis of our cosmological models:

Cosmological Principle: the universe is spatially homogeneous and isotropic.
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This is essentially an a-priori prescription for initial conditions for the universe,
embodying the idea that the universe is necessarily simple. For decades following Milne’s
espousal of this principle (Milne, 1935, Gale, 2007), it was taken as a basic principle of
cosmology (Bondi, 1960, Weinberg, 1972). It was even extended to the proposal of the ‘Per-
fect Cosmological Principle’ (Bondi, 1960): that the universe is space–time homogeneous
instead of only spatially homogeneous. This was the basis of the Steady State universe
models (Section 9.3.1), which were, however, ruled out by astronomical data.

The cosmological principle is sometimes justified on the basis of a closely related but
weaker assumption:

Copernican Principle: the Earth does not occupy a privileged position within the universe
as a whole.

This is the culmination of the Copernican revolution whereby the Earth was displaced
from the being at the centre of the universe to being an average planet orbiting an average
star situated in an average galaxy at a typical location in the universe. It is often taken
as justifying the more technical Cosmological Principle as formulated above, which leads
directly to the FLRW family of cosmological models.

However, because of their exact symmetries, on any reasonable measure the FLRW
models are of zero probability within the family of all possible cosmological models. Thus
this assumption implies that the universe is of an extremely special, hence highly fine-
tuned, nature. From the late 1930s to the 1960s, this was taken as reasonable. However, in
the late 1970s, the philosophical tide turned: it became common to assume the universe has
a generic rather than special geometric nature. Indeed it was no longer assumed there were
any specific cosmological principles at all. Instead, general physical principles, such as high
probability and low entropy, would be applied to the universe itself (and not merely to the
matter in it). Furthermore the abundance of data opened up the possibility of observational
testing of spatial homogeneity. The isotropy of observations allows a more empirically
based use of the Copernican Principle, as discussed below.

Physical arguments

One can claim that physical processes such as inflation (Section 9.7) make the existence
of almost-FLRW regions highly likely, indeed much more probable than any alternative.
This is a potentially viable argument, but it amounts to replacing an observational test by
a theoretical argument based on a physical process that is yet to be grounded in an estab-
lished fundamental theory. In addition, the result depends on an unknown measure as well
as some fine-tuned initial conditions. However, it is strongly bolstered because predictions
for the detailed pattern of CMB anisotropy (Hu and Sugiyama, 1995), based on the infla-
tionary universe theory (Section 12.2), have been confirmed (Komatsu et al., 2009). It is in
principle conceivable that for example spherically symmetric inhomogeneous models (with
or without inflation) can produce similar patterns of anisotropy. Such patterns could also
emerge if suitable primordial initial conditions occur without a previous inflationary phase.
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Uniform thermal histories

From an astrophysical viewpoint, a good reason for believing in spatial homogeneity is that
we see the same kinds of objects everywhere we look in the sky. If conditions out there were
different, surely we would see different kinds of objects as a result? Thus from uniformity
in the nature of the objects we see in the sky (e.g. the same types of galaxy at large distances
as nearby), it is reasonable to deduce they must have all undergone essentially the same
thermal history. The aim is to prove a Postulate of Uniform Thermal Histories: observed
homogeneity of structures implies spatial homogeneity of the universe (Bonnor and Ellis,
1986). This is a reasonable conjecture, because development of astrophysical structures
depends on spacetime curvature, which (given the matter content) determines the thermal
history of the universe.

However, turning this idea into a proper test of homogeneity has not succeeded so far:
indeed it is not clear if this can be done, because some (rather special) counter-examples
to this conjecture have been found (Bonnor and Ellis, 1986). Nevertheless the approach
could be used to give evidence on spatial homogeneity. For example, observations showing
that element abundances at high redshift in many directions are the same as locally (Pettini,
1999, Pettini, Lipman and Hunstead, 2005, Sigurdson and Furlanetto, 2006) are very useful
in constraining inhomogeneity by showing that conditions in the very early universe at the
time of nucleosynthesis must have been the same at distant locations in these directions.
Similarly, if ages of distant objects were incompatible with local age estimates, this would
be a possible indication of inhomogeneity (Jain and Dev, 2006).

13.1.2 Observational approaches

The FLRW models require both isotropy and spatial homogeneity. Isotropy of observations
is well established: considered on a large enough angular scale, astronomical observations
are very nearly isotropic about us, both for sources and background radiation. The CMB
has a spectacularly high observed degree of isotropy, after allowance for the motion of the
Earth, Sun and Galaxy through the universe (which combine to give a dipole variation):
the temperature variations around the sky in the CMB are of order |δT /T | < 10−5. The
most detailed results now are those from the WMAP satellite (Jarosik et al., 2011). They
are consistent with the variations expected from the density perturbations which will later
form the observed galaxies and clusters. Galaxy surveys do not currently have the sky
coverage and depth for detailed limits on anisotropy, but tests for quadrupolar anisotropy
in SDSS luminous red galaxies find no statistically significant deviation from isotropy
(Pullen and Hirata, 2010).

Because isotropy applies to all observations, this establishes that in the observable region
of the universe, to high accuracy both the spacetime structure and the matter distribution are
isotropic about us. The generic models compatible with isotropy are spherically symmetric
universe models, with vanishing pressure at late times (i.e. after decoupling) but possibly
with a cosmological constant. The exact models of this kind are well known: they are the
Lemaître–Tolman–Bondi models, discussed in Chapters 15 and 19. In general they will be
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spatially inhomogeneous, with our Galaxy located at or near the centre. This contradicts
the Copernican Principle, but it is certainly possible in principle (see Chapter 15).

Is there convincing observational evidence for spatial homogeneity in addition to the
spherical symmetry?

Number counts

The first observational evidence for spatial homogeneity was from galaxy number counts
carried out by Hubble (1936) (compare Peebles (1971)). But the later radio source counts
did not verify spatial homogeneity, indeed they are only compatible with FLRW models if
we assume major source evolution occurs in either numbers or source flux. As yet we have
no good astrophysical argument for what such evolution should be, and it is customary to
run the argument backwards – assume that spatial homogeneity is known in some other
way, and deduce the source evolution required to make the observations compatible with
this geometric assumption (Ellis, 1975). It is always possible to find a source evolution that
will achieve this (Mustapha, Hellaby and Ellis, 1999). Number counts by themselves do
not show that the universe is spatially homogenous.

FLRW observational relations

If we could show that the source observational relations had the unique FLRW form, as
in (7.52), and (7.64), as a function of redshift, this would establish spatial homogeneity in
addition to the isotropy, and hence an FLRW geometry (Ellis et al., 1985); see Section 8.6.2.
However, the observational problems mentioned above – specifically, unknown source
evolution – prevent us from carrying this through by observations of distant discrete sources:
we cannot measure distances reliably enough because galaxies, quasars and radio sources
are not good standard candles. Astrophysical cosmology could resolve this in principle, but
is unable to do so in practice. Indeed (as just mentioned) the actual situation is the inverse:
taking radio-source number-count data at face value, without allowing for source evolution,
contradicts a RW geometry. Thus attempts to observationally prove spatial homogeneity in
this way fail.

13.1.3 Best current argument for homogeneity

As mentioned above, observations confirm the key feature of isotropy about our spacetime
location. This is a very special feature to observe. Surely we cannot be the only observers
in the universe for whom this is true? That would make us very special in the class of all
observers. But if it is true for arbitrary observers, then the universe of necessity has to be
spatially homogeneous: this is an exact theorem (Walker, 1944, Ehlers, 1961, Ellis, 1971a).

Theorem 13.1 Homogeneity from isotropy
If all observers see an isotropic universe, then spatial homogeneity follows; in fact
homogeneity follows if only three separated observers see isotropy.
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This is the argument for spatial homogeneity that is most generally accepted. We cannot
observe the universe from any other point, so we cannot observationally establish that far dis-
tant observers see an isotropic universe, and we need to assume isotropy of all observations.

A powerful enhancement, also assuming the Copernican Principle, follows from a theo-
rem by Ehlers, Geren and Sachs (EGS) (1968), based only on radiation. The EGS theorem
and its generalization by Ellis, Treciokas and Matravers (1983) (ETM) are discussed in
Section 11.1. The original results assumed that the only source of the gravitational field
was the radiation, i.e. matter and dark energy were neglected. The results are generalized to
include self-gravitating matter and dark energy by Clarkson and Maartens (2010), leading
to Theorem 11.2, repeated here:

Theorem 13.2 CMB partial isotropy + CP → FLRW
In a region, if

• collisionless radiation has vanishing dipole, quadrupole and octupole,
• the radiation four-velocity is geodesic and expanding,
• there are pressure-free baryons and CDM, and dark energy in the form of�, quintessence

or a perfect fluid,

then the metric is FLRW in that region.

In practice we can only observe approximate isotropy. As discussed in Section 11.1, the
more realistic basis for a spatially homogeneous universe (with the Copernican assumption)
is Theorem 11.3 (Stoeger, Maartens and Ellis, 1995, Maartens, Ellis and Stoeger, 1995b),
repeated here:

Theorem 13.3 CMB almost-isotropy + CP → almost-FLRW
In a region of an expanding universe with �, if all observers comoving with the mat-
ter measure an almost isotropic distribution of collisionless radiation, and if some of the
time and spatial derivatives of the covariant multipoles are also small, then the region is
almost FLRW.

These results are currently the most persuasive observationally based arguments we have
for spatial homogeneity. This still relies on plausible philosophical assumptions. The deduc-
tion of spatial homogeneity follows not directly from astronomical data, but because we
add to the observations a philosophical principle that is plausible but as yet untested. Exper-
iments have been proposed to test the Copernican Principle by looking for violations of
isotropy at events down our past light-cone. These include looking for spectral distortions
of CMB photons scattered by ionized gas (Goodman, 1995, Caldwell and Stebbins, 2008):
such distortions are induced by anisotropies in the CMB as seen by distant observers, and
so provide in principle a neat way of confirming the Copernican assumption as used here. A
similar test uses the kinematic Sunyaev–Zel’dovich effect in clusters to observe the dipole
around distant observers (García-Bellido and Haugbølle, 2008). CMB polarization mea-
surements may also be able to probe distant anisotropy (Kamionkowski and Loeb, 1997).
The almost-EGS theorem then gives a framework for probing inhomogeneities via such
observations.
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Domains of validity

In which spacetime regions does this argument establish a RW-like geometry? The CMB
probes the state of the universe from the time of decoupling to the present day, within the
visual horizon. The argument from CMB isotropy can legitimately be applied for that epoch.
However, it does not necessarily imply isotropy of the universe at much earlier or much
later times. For example, as discussed in Chapter 18, there are Bianchi universes which
admit intermediate isotropization (Wainwright and Ellis, 1997, Wainwright et al., 1998):
they can mimic a RWgeometry arbitrarily closely for an arbitrarily long time. No matter how
strong the bounds from CMB anisotropy measurements and data on element abundances,
anisotropic modes can dominate at even earlier times as well as at late times (long after the
present). If inflation took place, this conclusion could be reinforced, since inflation washes
out any information about very early universe anisotropies and inhomogeneities in a very
efficient way.

As well as this time limitation on when we can regard homogeneity as established, there
are major spatial limitations. The above argument does not apply far outside the visual
horizon, for we have no reason to believe the CMB is highly isotropic there, and no data
from there. If chaotic inflation is correct, conditions there are not the same. Indeed that
applies to all observational efforts to establish spatial homogeneity: they cannot succeed
outside the visual horizon, unless we adopt the Copernican assumption.

Problem 13.1 An FLRW model is an approximation: it is only valid through a process of
coarse-graining (see Chapter 16), and there are errors and statistical uncertainties in the
data. Given this context, the ‘proofs’ that the universe is well described by an FLRW model
are only approximately applicable. What observations would be sufficient to disprove this
model as a good model of the observed region of the universe? (If one cannot give such
criteria, then the model is not a scientifically testable hypothesis. But there are such tests:
see Sections 13.4 and 15.6.5.)

Problem 13.2 Develop the Postulate of Uniform Thermal Histories idea further: does it give
us a genuine test of homogeneity? If so, what limits does it give?

13.2 FLRW observations: probing the background evolution

Here we discuss the main observational tests that probe the background evolution, i.e. the
expansion history H(z):

H 2(z)

H 2
0

=�r0(1+ z)4 +�m0(1+ z)3 +�K0(1+ z)2

+�de0 exp3
∫ z

0

[
1+w(z′)

1+ z′

]
dz′ (13.2)
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where w(z) is the dark energy equation of state function. Using six high-precision distance-
determination methods, a recent estimate of H0 is (Freedman and Madore, 2010)

H0 = 100hkm/s/Mpc, h= 0.73± 0.02(random) ± 0.04(systematic). (13.3)

13.2.1 Standard candles: supernovae

Early attempts to use galaxies as standard candles for relating luminosity to distance, or
to use radio source number counts to calibrate the background expansion rate, failed –
essentially because of evolution in these sources. Currently the best standard candles that
we have are supernovae of type Ia (SNIa). Attempts have also been made to use Gamma-
Ray Bursts (GRBs) as standard candles, based on various correlations in their properties
(Wright, 2007). Although the GRBs have not yet been shown to be good standard candles,
they lead to results that are consistent with those from SNIa.

Calibrations of SNIa light curves lead to an empirically determined intrinsic luminosity.
The underlying physics is highly nonlinear and complex, and is not properly understood –
and the empirical approach may be undermined by evolutionary and other systematic effects.
Nevertheless, intensive investigation of a range of systematics has been made and is ongoing.
Currently, SNIa are the most reliable standard candles we have amongst astrophysical
objects. The luminosity distance as a function of redshift in FLRW spacetime is given by
(7.51); using (9.10), this becomes

DL = 1+ z

H0
√−�K0

sin

(√−�K0

∫ z

0

dz′

H(z′)/H0

)
, (13.4)

and the apparent magnitude is related to the absolute magnitude and luminosity distance
by (7.44):

m= 5log10(DL/1Mpc)+M + 42.38− 5log10h . (13.5)

The observed (m) and intrinsic (M) magnitudes constrain the expansion rate H(z) via DL

for a given �K0 and w(z) in (13.2). There is clearly a degeneracy between curvature and
dynamics, and breaking this degeneracy requires independent observational constraints (see
below). A recent compilation of magnitude–redshift data is shown in Figure 1.2, where the
distance modulus is µ=m−M . This shows that the universe is expanding more slowly at
greater distances. If there are no systematic errors in the data, then in an FLRW model, the
implication is that the expansion is accelerating, requiring dark energy. Figure 13.1 shows
how such data constrain the density parameters in (7.44) for w=−1.

13.2.2 Standard rulers in matter: BAO

As discussed in Section 12.3.6, the BAO scale in the matter power spectrum provides a
comoving imprint of the sound horizon at decoupling. This is in principle an excellent
standard ruler, able to probe greater redshifts than SNIa. In addition, it may be understood
on the basis of linear analysis, and is independent of the highly nonlinear astrophysics of
individual objects like SNIa or galaxies.
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Fig. 13.1 Constraints (68%, 95% and 99% CL contours) in the (�m0,��0) plane from SNIa, BAO and CMB. (From Kowalski
et al. (2008). Reproduced by permission of the AAS.)

The baryon ruler must be determined statistically, thus requiring very large-volume sur-
veys to achieve the precision needed. The first detection of the BAO scale used the 2dF
(Cole et al., 2005) and SDSS (Eisenstein et al., 2005) galaxy surveys; see Figure 1.7 for
the real-space feature and Figure 13.4 for the feature in Fourier space. This has provided a
powerful new probe of the expansion history, independent of SNIa data (see Figure 13.1).

As explained in Section 12.3.6, the 2-point correlation function (12.1) for galaxies con-
tains information on the radial (line of sight, ν) and transverse (σ ) BAO features.Averaging
over orientations θ , where ν = σ cosθ , we get the monopole:

ξ0(r)=
∫ 1

0
ξ(σ ,ν)sin θdθ , r2 = σ 2 + ν2. (13.6)

The monopole leads to a constraint on an averaged distance measure DV or an equivalent
dimensionless parameter d (Eisenstein et al., 2005, Cole et al., 2005):

DV (z)=
[
z(1+ z)2D2

A(z)

H(z)

]1/3

, d(z)= rs(zdec)

DV (z)
, (13.7)

where rs is defined in (12.79). Recent results, based on the final SDSS data release 7 and
the 2dF data, give (Percival et al., 2010)

d(0.2)= .1905± .00061, d(0.35)= .1097± .0036. (13.8)

If the average is not taken, then additional information can in principle be extracted from
observing the BAO peak in radial and transverse directions (Gaztañaga, Cabré and Hui,
2009, Kazin et al., 2010). Firstly, a check for consistency between the two versions of the
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peak provides a test of isotropy of the background expansion. Secondly, DA(z) and H(z)

may be independently determined, via (12.80); in particular, a new direct handle on the
evolution of H(z) will be in contrast with the integrated form of H(z) that is given by
SNIa. Current data do not yet have sufficient statistical power to exploit these possibilities.

13.2.3 Standard rulers in matter: equality and damping scales

There are two other scales imprinted in the matter distribution: the comoving Hubble scale
at matter–radiation equality,

k−1
eq = 1

aeqHeq
, (13.9)

and the Silk damping scale from photon diffusion (Lyth and Liddle, 2009),

k−1
S ≈ 1

a

(
t

neσT

)1/2

. (13.10)

For the flat �CDM model, k−1
eq ≈ 100Mpc, and at decoupling, k−1

S ≈ 10Mpc. The equality
scale marks the turn-over peak of the matter power spectrum.

13.2.4 Standard rulers from the CMB

The sound horizon at photon decoupling provides an even cleaner standard ruler than the
baryon acoustic ruler, which is not processed by structure formation and therefore requires
no nonlinear corrections. However, it is available only at one redshift. The CMB provides
two distance ratios, (1+ zdec)DA(zdec)/rs(zdec) and DA(zdec)/H

−1(zdec). Typically these
are represented by the angular scale of the sound horizon, �A, and the ‘shift’ parameter, S,

�A = π
(1+ zdec)DA(zdec)

rs(zdec)
, S =

√
�m0H

2
0 (1+ zdec)DA(zdec). (13.11)

Note that S
√

1+ zdec is only an approximation to DA(zdec)/H
−1(zdec).

These observables are sensitive to the parameters of the background, but they do not
change much for simple models of dark energy. The WMAP 7-year results (Komatsu et al.,
2011) give

�A = 302.09± 0.76 , S = 1.725± 0.018 . (13.12)

(This allows �K0 �= 0, but assumes negligible isocurvature and tensor perturbations, and
negligible deviation from a power-law primordial spectrum of scalar perturbations.) The
combined constraints from the CMB standard rulers, baryon acoustic oscillations and SNIa
are shown in Figures 13.1 and 13.2. The BAO provides the most stringent constraint
on �K0.

13.2.5 Luminosity distance from gravitational waves

A new possible probe of cosmic distances arises from putative future space-based gravita-
tional wave experiments such as the Big Bang Observer (BBO).Although BBO is conceived



355 13.3 Almost FLRW observations: probing structure formation

0 

–0.1 

–0.1 

0 

–0.2 

–0.3 

0 0.2 0.4 

WMAP

WMAP+BAO+
SN

ΩΛ ΩΛ 

Ω
k 

Ωk

Ω
k

0.6 0.8 1.0 0.4 0.6 0.8 –0.10 –0.08 –0.06 –0.04 –0.02 0 0.02 

WMAP

1.0 

0.8 

0.6 

0.4 

0.2 

0 

L
/L

m
ax

 

WMAP+HST

WMAP+HST

WMAP+
SN

WMAP+SN
WMAP+
BAO WMAP+BAO

Fig. 13.2 Constraints (68% and 95% CL contours) on��0,�K0. Left:WMAP5-only (light blue in the colour version) compared
with WMAP+BAO+SN (purple).Middle: Blow-up of region in left panel, showing WMAP-only (light blue),
WMAP+HST (grey), WMAP+SN (dark blue), WMAP+BAO (red). Right: Constraint on�K0 fromWMAP+HST,
WMAP+SN, andWMAP+BAO. (From Komatsu et al. (2009). Reproduced by permission of the AAS.) A colour version of
this figure is available online.

primarily as a probe of the primordial gravitational wave background, a spin-off of this goal
could give high-precision results on distances, in tandem with electromagnetic observations
(Cutler and Holz, 2009). In order to measure the primordial background, BBO would need
first to detect and remove the signals of O(105) compact star binaries out to redshift z∼ 5.
Since the binary signals have amplitude ∝D−1

L , they will provide accurate measures of the
luminosity distance. Electromagnetic detection of the host galaxy would then determine the
redshift to the object. Given the high number of objects distributed out to high redshifts, this
could in principle provide much better cosmological constraints than SNIa. In addition, the
luminosity distance enters the signal amplitude in a way that is independent of the detailed
astrophysics of the sources, so this is in principle also a cleaner measure than those based
on SNIa. Given the high number of expected sources, the dispersion of the measured lumi-
nosities, which is dominated by lensing magnification, could also provide a probe of weak
lensing comparable to that of dedicated weak lensing experiments (Cutler and Holz, 2009).

13.3 Almost FLRW observations: probing structure formation

The evolution of the radiation and matter perturbations on an FRLW background can be
tracked via observations of the large-scale structure. This provides crucial constraints and
tests that are complementary to those arising from observations of the background model
evolution.

13.3.1 CMB anisotropies

The first observations of CMB temperature anisotropies, of order |δT /T | ∼ 10−5 (after
removal of the dipole), came from the COBE satellite (Bennett et al., 1996). A series of
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subsequent sensitive experiments have confirmed and improved the data, and detected
polarization. The most detailed results currently are those from the WMAP experiment,
supplemented by the small-scale experimentsACBAR, CBI, VSA, BOOMERANG, QUAD
(Dunkley et al., 2009, Komatsu et al., 2009, Hinshaw et al., 2009, Larson et al., 2011).
Table 13.1 gives the parameter values for a flat �CDM cosmology, and for curved models
with constant-w dark energy. The table is adapted from Hinshaw et al. (2009), using WMAP
5-year data (Dunkley et al., 2009), then using WMAP5+BAO+SN data (Komatsu et al.,
2009).The updates from theWMAP7-year data release (Larson et al., 2011, Komatsu et al.,
2011) include only small changes from the best-fit values, with significant improvement in
errors on some parameters. The even more sensitive PLANCK experiment was launched in
2009 and its data are expected to further improve the constraints on various cosmological
parameters and models.

The primary anisotropies are laid down at last scattering, z ∼ 1100, and the smallest
observable comoving scale is determined by Silk damping: k−1 � k−1

S ∼ 10Mpc. Secondary
anisotropies are generated as the photons travel to us through the evolving large-scale matter
distribution.These affect very large scales via the (linear) integrated Sachs–Wolfe effect, and
very small scales via the Sunyaev–Zel’dovich effect, lensing, and other nonlinear effects.
Detailed analyses of the CMB temperature anisotropies and polarization spectra were given
in Chapter 11. Here we summarize the key features in the power spectra and how they
constrain various cosmological parameters. A comprehensive discussion may be found in
Durrer (2008).

The perturbed temperature can be described by the brightness function,

�(τ ,x,e) := δT (τ ,x,e)

T (τ )
=
∑
�,m

��m(τ ,x)Y�m(e), (13.13)

where e is the observed direction of the photon. The brightness multipoles are given by

��(τ ,k)= 1

2(−i)�
∫ 1

−1
dµPL

� (µ)�(τ ,k,µ), µ := k · e
k

, (13.14)

where PL
� are the Legendre polynomials.

The ��m evolve according to the Boltzmann equation. The observed anisotropy today
is given by a�m =��m(τ0,x0), which are statistically homogeneous and isotropic random
variables:

〈a�ma∗�′m′ 〉 = δ��′δmm′C�, C� := 〈|a�m|2〉. (13.15)

The variance is related to the power spectrum of �� via

C� = 4π
∫ ∞

0

dk

k
P��

(k)= 4π
∫ ∞

0

dk

k
T 2
� (k)Pζ (k), (13.16)

whereT� is the transfer function determining the multipoles from the curvature perturbation:
�� = T�(k)ζk . The 2-point correlation function is related to the variance C� via

C(α) := 〈�(τ0,x0,e1)�(τ0,x0,e2)〉 =
∑
�

2�+ 1

4π
PL
� (cosα)C�, (13.17)



357 13.3 Almost FLRW observations: probing structure formation

Table 13.1 Cosmological parameter summary

Description Symbol WMAP-only WMAP+BAO+SN

Parameters for standard �CDM model (flat, no tensors, no running)

Age of universe t0 13.69± 0.13 Gyr 13.72± 0.12 Gyr

Hubble constant H0 71.9+2.6
−2.7 km/s/Mpc 70.5± 1.3 km/s/Mpc

Baryon density �b0 0.0441± 0.0030 0.0456± 0.0015

CDM density �c0 0.214± 0.027 0.228± 0.013

Dark energy density ��0 0.742± 0.030 0.726± 0.015

Curvature perturbation Pζ (k0) (2.41± 0.11)× 10−9 (2.445± 0.096)× 10−9

(k0 = 0.002/Mpc)

Matter perturbation amplitude σ8 0.796± 0.036 0.812± 0.026

at 8h−1 Mpc

Scalar spectral index ns 0.963+0.014
−0.015 0.960± 0.013

Redshift at equality zeq 3176+151
−150 3253+89

−87

Angular diameter distance (1+ zeq)DA(zeq) 14279+186
−189 Mpc 14200+137

−140 Mpc

to equality

Redshift of decoupling zdec 1090.51± 0.95 1090.88± 0.72

Age at decoupling tdec 380081+5843
−5841 yr 376971+3162

−3167 yr

Angular diameter distance (1+ zdec)DA(zdec) 14115+188
−191 Mpc 14034+138

−142 Mpc

to decoupling

Comoving sound horizon rs(zdec) 146.8± 1.8 Mpc 145.9+1.1
−1.2 Mpc

at decoupling

Acoustic scale at decoupling �A(zdec) 302.08+0.83
−0.84 302.13± 0.84

Reionization optical depth τreion 0.087± 0.017 0.084± 0.016

Redshift of reionization zreion 11.0± 1.4 10.9± 1.4

Parameters for extended models

Curvature density (w =−1) �K0 −0.099+0.100
−0.085 −0.0050+0.0060

−0.0061

Equation of state w −1.06+0.41
−0.42 −0.992+0.061

−0.062

(w =const, �K0 = 0)

Tensor to scalar ratio r(k0) < 0.43 (95% CL) < 0.22 (95% CL)

(no running)

Running of spectral index dns(k0)/d lnk −0.037± 0.028 −0.028± 0.020

(no tensors)

Neutrino density �νh
2 < 0.014 (95% CL) < 0.0071 (95% CL)

Neutrino mass
∑

mν < 1.3 eV (95% CL) < 0.67 eV (95% CL)

Light neutrino families Neff > 2.3 (95% CL) 4.4± 1.5



358 Chapter 13 Confronting the Standard Model with observations

where cosα = e1 · e2. The uncertainty in the C� due to cosmic variance is given by

�C�

C�

=
√

2

2�+ 1
, (13.18)

so that cosmic variance is a severe limitation on large scales (small �), as expected. The
temperature measurements made by WMAP lead to the C� curve in Figure 13.3, which
shows how the error bars are dominated by cosmic variance at large angles.

On large scales, the scalar brightness function at the observer is

�(e)≈ δγ dec +�dec +
∫ 0

dec
dν(�′ +! ′), (13.19)

where ν is an affine parameter along the photon path and xdec ≈ τ0e (with x0 = 0). The
integral term is known as the integrated Sachs–Wolfe (ISW) effect, and the remaining terms
constitute the ‘ordinary’ SW effect. On large scales and for adiabatic initial conditions,
δγ = 4δm/3 =−8�/3, so that the ordinary SW effect gives

�SW
adi = 1

3�dec =− 1
2δm dec = 1

5ζdec. (13.20)

The near scale-invariance of ζ leads to the SW ‘plateau’. Note also that hot spots in the
primordial CMB (� > 0) correspond to under-densities in the matter. For isocurvature
initial conditions, �SW

iso = 2�dec.
The ISW is made up of an early-time contribution (due to non-negligible radiation present

around decoupling), and a more significant late-time contribution due to dark energy. This
latter contribution – which would be absent in a matter-dominated universe (since in that
case �=! =const) – is responsible for the rise in the plateau on the largest scales, seen
in the theoretical curve in Figure 13.3.
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On intermediate scales, C� is determined by the acoustic peaks that arise from sound
waves in the photon–baryon plasma before decoupling. The location of the peaks (for
adiabatic modes) is given by csknτdec = nπ . The comoving linear scale π/kn subtends the
angle αn, and thus

�n ≈ π

αn
=DA(τdec)kn = nπ

√
3(1+R)

DA(τdec)

τdec
. (13.21)

On small scales, � � 1000, the primordial C� show a (Silk) damping tail, with �S ≈
τ0kS/

√
2 ≈ 1200.

The acoustic peak locations, (13.21), and heights strongly depend on �b0h
2, �m0h

2 and
DA, and therefore are sensitive to the curvature. Open models �K0 > 0 shift the peaks
to smaller scales and vice versa for closed models. But this is subject to an important
degeneracy. Changes in the curvature �K0 which keep the quantities �b0h

2, �m0h
2 and

DA fixed, keep the peak locations fixed and have negligible effects on the CMB anisotropies
(except at the very largest scales, which are very weakly constrained because of large cosmic
variance). This degeneracy means that the CMB does not strongly constrain the curvature on
its own, as shown in Figures 13.1 and 13.2. Additional information is needed – e.g. a value
of h from distance measurements or a value of �m0h

2 from galaxy surveys. Indeed, any
observation that measures a distance to a single redshift z1 cannot constrain �K0, since the
distance depends also onH(z) all the way to z1. Thus it is necessary to combine at least two
distance measures to different redshifts. The results from combining WMAPdata with BAO
and SNIa are shown in Figures 13.1 and 13.2. With the WMAP 7-year data, together with
BAO and H0 data, the constraint on �K0 with � as dark energy is (Komatsu et al., 2011)

�K0 =−.0023+0.0054
−0.0056 , w =−1. (13.22)

If w can vary from −1, but remains constant, then the constraints from WMAP7 and BAO
and SN data are

�K0 =−.0057+0.0067
−0.0068 , w =−0.999+0.057

−0.056 . (13.23)

CMB power on large scales can be boosted by tensor modes, or by a spectral index of
primordial scalar perturbations with ns < 1 (i.e. redder than the scale-invariant limit). The
scalar power spectrum is given in terms of the curvature perturbation, for a nearly power-law
behaviour, as

Pζ (k)= k3

2π2
Pζ (k)=Pζ (k0)

(
k

k0

)ns−1+αs

, αs = 1

2

dns
d lnk

, (13.24)

where k0 = 0.002Mpc−1 is a pivot scale and αs is the ‘running’of the spectral index. If there
is no running, and if tensor modes are neglected, then Table 13.1 shows that for �CDM,
the CMB on its own gives ns ≈ 0.96 and Pζ (k0)≈ 2.4× 10−9. WMAP7 does not change
these values at two significant figures (Komatsu et al., 2011).

When running is allowed (but tensors are neglected), WMAP7 together with BAO and
H0 data give ns = 1.008±0.042 and αs =−0.022±0.020 (Komatsu et al., 2011). If tensors
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are included (without running), then ns ≈ 0.97, reflecting the degeneracy (i.e. tensors can
compensate for large-scale power that is reduced as ns is increased). When tensors and
running are included, ns ≈ 1.07, αs ≈−0.04.

A future detection of B-mode polarization (which cannot be generated by scalar pertur-
bations) would in principle lead to a detection of the tensor modes, and thus be able to break
this degeneracy. The primordial gravitational waves are governed by (12.51)–(12.55). For
a power-law spectrum with tensor spectral index nt ,

Ph(k)=Ph(k0)

(
k

k0

)nt

. (13.25)

For single-field slow-roll inflation, the tensor-to-scalar ratio Ph(k0)/Pζ (k0) is

r = 16ε =−8nt , (13.26)

showing that the spectrum is nearly scale-invariant. Then the upper limit on r from WMAP7,
with BAO and H0 data, is r < 0.24 (95% confidence), assuming no running in ns (running
weakens this to r < 0.49) (Komatsu et al., 2011).

There is also an important degeneracy between baryon content and spectral index: increas-
ing �b0h

2 suppresses the second acoustic peak and enhances Silk damping, both of which
can be compensated by increasing ns (i.e. more power on smaller scales).

A higher optical depth to last scattering, τreion = σT
∫ t0

dec nedt , suppresses power on small
scales but leaves large scales unaffected, thus introducing further degeneracies. There
is an independent constraint on τreion via the E-mode polarization, which is boosted on
large scales by re-ionization, as shown in Figure 13.3. This is a clear signal of reion-
ization, and in �CDM places constraints on the optical depth and reionization redshift,

τreion = 0.87± 0.014 , zreion = 10.4± 1.2 , (13.27)

from WMAP7 with BAO and H0 data (Komatsu et al., 2011) (see Table 13.1).

13.3.2 Matter distribution

The two main (and completed) spectroscopic galaxy surveys at the time of writing are the
2dF-GRS (2-degree Field Galaxy Redshift Survey) and SDSS (Sloan Digital Sky Survey).
2dF observed 230,000 galaxies and their redshifts, and SDSS observed 100 million lumi-
nosities, 1 million galaxy redshifts, and 100,000 quasar redshifts, and also linked this with
a quasar survey.1 The redshifts can be used as distance indicators to give three-dimensional
pictures of the distribution. This idea was first carried out in the Centre for Astrophysics
(CfA) survey (de Lapparent, Geller and Huchra, 1986). As well as giving a measure of the
galaxy power spectrum, these surveys also reveal the topology of large-scale structure in
the form of clusters, filaments, walls and voids. The matter power spectrum from SDSS
Data Release 5 (main galaxy and Luminous Red Galaxy) is shown in Figure 13.4. Note the
increase in power due to nonlinear effects for k > 0.06h/Mpc. The inset shows the BAO
feature, discussed in detail in Section 13.2.2.

1 See http://www.sdss.org/
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New galaxy surveys, such as DES (Dark Energy Survey), will extend the redshift depth
and sky coverage, leading to greater precision in measurements of the matter power spectrum
and its BAO feature.

Peculiar velocities

As discussed in Section 12.3.5, galaxy peculiar velocities cause distortions in the redshift
space in which galaxy survey data resides. These distortions then become a valuable source
of information about the peculiar velocities and thereby the matter distribution that sources
them. The redshift-space over-density (12.76) contains the factor β(z) (see (12.75)), which
encodes the bias (assumed scale independent) and the background density. Thus measure-
ments of the redshift-space power spectrum allow in principle a determination of the bias
if �m(z) is known, or of the latter if the bias is known (see, e.g. Guzzo et al. (2008)).

Neutral hydrogen

After last scattering, z < 1100, most electrons are trapped in hydrogen and other atoms,
and neutral hydrogen clouds undergo gravitational collapse (assisted by CDM potential
wells) to form the first stars. These stars in turn reionize the universe during the period
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6 � z� 30. The period between recombination and reionization is the ‘DarkAges’described
in Section 9.6.8. Although there are no light-emitting objects, there is the back-light of the
CMB, leading to absorption and emission by hydrogen gas at the 21-cm rest wavelength of
the hyperfine transition of the ground state. Thus the 21-cm line provides the best current
probe of the dark ages – and will also give valuable information about the process of
reionization (Furlanetto, Oh and Briggs, 2006, Barkana and Loeb, 2007). The wavelength
of the 21-cm line is redshifted into the low-frequency radio range for z� 6. Currently, radio
arrays have not yet achieved the volume-coverage or precision necessary to map the matter
power spectrum in the dark ages. This will require capacity of the order of the proposed
Square Kilometre Array (SKA), which could usher in H21 tomography.

Galaxy cluster counts

Galaxy clusters are tracers of the evolving dark matter halos that drive large-scale structure
formation. Their abundance provides, in principle, an independent estimate of �m0 and
σ8. Lensing by clusters, and X-ray and Sunyaev–Zel’dovich measurements help to place
constraints on the cluster mass, but this is very sensitive to the nonlinear gas astrophysics
of clusters (Hoekstra, 2007, Rykoff et al., 2008, Mantz et al., 2008). In addition, there are
difficulties in determining the selection function.

Lyman-α forest

Neutral hydrogen absorption lines (corresponding to the Lyman-α resonance) in quasar
spectra give a measure of the matter distribution on small scales, which in principle pro-
vides constraints on the primordial power spectrum (Kim et al., 2007). In practice, this is
complicated by nonlinear astrophysics.

13.3.3 Weak lensing

Gravitational lensing of light from distant sources by intervening matter distributions
provides a powerful probe of the matter distribution, i.e. CDM and baryons together, as
discussed in Sections 12.4 and 12.5. In principle, weak lensing is a more powerful probe
of the matter distribution than galaxy redshift surveys, since it is independent of the bias
between galaxies and CDM. In practice, weak lensing surveys are more difficult to imple-
ment because of the many systematic uncertainties involved in measuring shapes and hence
magnification and shear.

Weak gravitational lensing probes an integrated gradient of the metric potential, via the
deflection angle formula (12.109):

α̂ =−
∫

∇̂(�+!)dv , (13.28)

where ∇̂ is the gradient operator in the image plane normal to the line of sight. Weak
lensing tomography, i.e. probing a range of redshifts to produce a ‘stack’ of slices, provides
in principle a three-dimensional map of the total matter distribution (Massey et al., 2007)
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(see Figure 1.9), in contrast with the three-dimensional map of luminous matter provided
by galaxy surveys (see Figure 1.6). However, space-based surveys will be necessary to
achieve a higher signal-to-noise ratio. A further difficulty is that lensing on smaller scales
is sensitive to nonlinear effects, requiring complicated and intensive analysis to extract the
lensing signal. Recent results from the Canada–France–Hawaii Telescope Legacy Survey
(CFHTLS) on linear scales are shown in Figure 13.5.

13.4 Constraints and consistency checks

Currently the principal observational probes of the standard cosmological model are pro-
vided by CMB anisotropies, galaxy redshift surveys and supernova luminosities. Other
observations provide complementary information and often act as useful consistency
checks; some are more than that, they are crucial requirements for viability of an almost-
FLRW model. For example, BAO measurements (which are derived from galaxy surveys)
provide a powerful confirmation of the model of the primordial plasma and the evolution of
structure. 21-cm radio surveys will extend this independent check to much higher redshifts.
Weak lensing provides a measure of dark matter, independent of the CMB, and thereby also
probes the consistency of the dark matter model. Here we briefly discuss some other probes
(see also Section 15.6.5).
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CMB–matter correlations

The large-angle anisotropies in the CMB temperature encode a signature of the formation
of structure via the integrated Sachs–Wolfe effect: from (13.19),

δT

T

∣∣∣∣
ISW

=
∫ 0

dec
dν(�′ +! ′). (13.29)

The ISWarises since photons are blue shifted when they fall into a gravitational potential and
redshifted when they climb out of it. Hence if the potential varies during this time, photons
acquire a net energy shift, reflected in the CMB temperature map. During matter domination,
the potential is constant at large scales (in the Newtonian gauge). As matter domination is
undermined by the growing strength of dark energy, the ISW term becomes significant.
The correlation between CMB and matter power is therefore a sensitive indicator of the
dark energy, and provides a consistency check of the presence of dark energy within the
standard cosmological model (Boughn and Crittenden, 2004, Giannantonio et al., 2008).
Note that the ISW and weak lensing are determined by the same combination of metric
potentials,�+!. In the standard model we can neglect anisotropic stress after decoupling,
and this combination reduces to 2�. If we consider modifications of GR, then a gravitational
effective anisotropic stress arises, so that ! �=�, and the ISW and weak lensing become
powerful probes of this (see Section 14.3).

CMB and number count dipole alignment

In an almost-FLRW universe, there must be a ∼ 2% number count dipole parallel to the
CMB dipole for all cosmological sources, due to our motion relative to the cosmological
rest frame (Ellis and Baldwin, 1984). If this is not true we cannot live in a RW geometry
with the CMB coming from the surface of last scattering. This effect has been confirmed
(Blake and Wall, 2002).

Big-bang nucleosynthesis

As described in Section 9.6.6, BBN at T ∼ 0.1MeV produces primarily helium-4, with
small amounts of other stable nuclei, deuterium, helium-3 and lithium-7. The primordial
abundances should then be reflected in observations at later epochs, and provide an impor-
tant consistency test of the standard model. Furthermore, the abundances depend on the
baryon density. The CMB provides an independent probe of the baryon density, and it is in
very good agreement with the BBN value – see Figure 9.9. There remains at the time of
writing some discrepancy in the case of lithium, whose detection in stars is at about 50% of
the value inferred from WMAP. The discrepancy could be due to complicated astrophysics
or systematics, or could signal some modification of high-energy physics.

Ages

The standard model predicts t0 ≈ 13.7Gyr (see Table 13.1). A strong consistency test of
this prediction is that the ages of objects in the universe must be < t0. The oldest detected
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cosmological objects are globular clusters. In order to determine their ages, one needs
accurate distance measures, and also accurate modelling of stellar populations. Current
results indicate a consistency, as illustrated in Figure 13.6.

CMB temperature

In an expanding universe, the adiabatic cooling of the CMB leads to the relation T (z) =
T0(1+z) for the average CMB temperature, where T0 = 2.725. Probes of the temperature at
different redshifts, using molecular temperature determinations, quasar absorption spectra
and the Sunyaev–Zel’dovich effect, confirm this law (Luzzi et al., 2009).

GZK limit

Ultra-high cosmic rays (E � 1020 eV) travelling through the CMB will be above the thresh-
old for photohadronic particle production (e.g. protons will induce pair production and
pion production), and will consequently lose energy. This puts a limit on how far the
highest energy extragalactic cosmic rays can propagate from their source, and should lead
to a suppression of cosmic ray flux at the Earth at ultra-high energies (Greisen, 1966,
Zatsepin and Kuz’min, 1966). It was claimed that this GZK cutoff has been observation-
ally detected (Abbasi et al., 2008, Abraham et al., 2008), but the result is controversial at
the time of writing.

Exercise 13.4.1 Which of the above tests are crucial tests of the background model, and
which are rather tests of the matter distribution in the model (and hence potentially fixable
by changing the matter model rather than the background)?
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13.5 Concordancemodel and further issues

Putting this all together, we can state:

Observational concordance
Current observations of the background and of perturbations about it are indeed consistent,
in the context of a �CDM universe governed by GR.

In particular, there is no significant evidence as yet for deviation from w =−1 (see e.g.
Perivolaropoulos (2010), Larson et al. (2011), Komatsu et al. (2011)).

Modifications to GR induce an effective anisotropic stress, so that ! − � �= 0
(Section 14.3): there is currently no evidence for this. Other signatures of modified gravity
(see Section 14.3) have also not been detected, so that currently there is no evidence for
modifications to GR (Reyes et al., 2010, Daniel et al., 2010).

However, it should be pointed out that a number of assumptions have gone into these
tests, even within the framework of a perturbed RW model. For example, a flat back-
ground is typically assumed. While the assumptions may be reasonable, it is worth
testing them.

13.5.1 The need to consider curvature

The sign of the spatial curvature parameter K is a crucial property of the cosmological
model. Despite the convenience of setting K = 0, data analyses should consider �K0 as
a free parameter to be determined along with the other parameters. There are important
degeneracies between K and other parameters, as discussed in Section 13.3.1.

Inflation predicts �K → 0, and not �K ≡ 0. This distinction may seem aca-
demic, but it has far-reaching implications. For example, K > 0 (�K < 0) means
that the background FLRW universe has closed spatial sections and so is necessarily
finite, with a finite amount of matter and finite number of galaxies. This is con-
ceptually completely different from the cases K ≤ 0 which allow an infinite amount
of matter and infinite number of galaxies (Ellis and Brundrit, 1979). And it is the
only case with firstly a possibility of a bounce in the past (given suitable energy
conditions), and secondly a possibility of a maximum radius and recollapse in the
future.

Indeed, it is impossible for the observations discussed above to prove that K = 0, since
the observable �K0 can only be interpreted statistically. By contrast, it would be possible
to show that �K0 is statistically negative or positive.

13.5.2 Large-scale anomalies

Some anomalies in large-scale features of the CMB and the galaxy distribution have been
identified (see Antoniou and Perivolaropoulos (2010) for a summary with references).
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• CMB: The normals to the quadrupole and octupole planes are aligned approximately
with the dipole, in apparent conflict with statistical isotropy. In addition, there is missing
power on angular scales � 60◦.

• Galaxy bulk flow: The bulk flow (dipole moment) of peculiar velocities for a low redshift
galaxy sample extends on scales O(100)h−1 Mpc, with amplitude > 400km/s – much
larger than expected in �CDM.

At the time of writing, it is unclear whether these anomalies indicate real problems with the
standard model, or whether they can be accommodated within the model via a better under-
standing of the highly complicated observational uncertainties and statistical subtleties that
are involved in the analysis. In particular, more detailed analysis is needed of WMAP scan-
ning and foreground removal and calibration. On the large-scale velocities, other samples
at higher redshift do not find anomalously large flows.

13.5.3 Testing small universes

Small universes are discussed in Section 8.3.2. The simplest cases are spatially flat, with a
toroidal topology, but these are highly exceptional (Cornish, Spergel and Starkman, 1998).
Much more complex cases are possible; indeed there are an infinite number of possible
topologies in the non-flat cases (Ellis, 1971b, Lachièze-Rey and Luminet, 1995). Can we
observationally test for them?

In principle one can test for a small universe by direct observational identification of
multiple images of the same object (including our own Galaxy) (Ellis and Schreiber, 1986).
However, in practice this is very difficult: each image will be at a different redshift, seeing
the object at a different stage in its history and effectively from a different direction. (Note
the difference from ordinary gravitational lensing, where redshifts of different images are
the same.) Only really distinctive large-scale structures might be identifiable via multiple
images. The problem is to distinguish a statically homogeneous set of almost identical
objects, from images of effective repetitions of the same objects.

More promising is to examine source statistics: a small universe will result in effectively
periodic structures in the matter distribution, in principle identifiable via peaks in the spatial
power spectrum (Uzan, Lehoucq and Luminet, 2000). However, such peaks may not occur
in a small universe, depending on details of the structures and our location relative to them
(Gomero et al., 2002). We also expect a cutoff in large-scale power because a maximal
scale exists in the universe – but it only occurs in models that can be characterized as
‘well-proportioned’ (Weeks et al., 2004).

CMB anisotropies are more promising. Details of the CMB anisotropies are model
dependent (Levin, 2002, Riazuelo et al., 2004), but there is an important general predic-
tion: whatever the topology, there will be identical circles of fluctuations in the CMB
sky (Cornish, Spergel and Starkman, 1998) because one will see the same points in the
intersection of our past light-cone with the surface of last scattering, in different direc-
tions in the sky. The precise configuration of such identical circles in the CMB sky



368 Chapter 13 Confronting the Standard Model with observations

is then uniquely related to the spatial topology, and would enable us to determine that
topology. This effect has been searched for, with negative results so far (Cornish et al.,
2004, Shapiro Key et al., 2007). But it is important to note that in general the circles will
not be antipodal (Riazuelo et al., 2004), so more general searches are needed than have so
far been conducted.

An interesting model is the Poincáre dodecahedral (‘soccer ball’) universe
(Luminet et al., 2003). It can explain the low quadrupole observed in the CMB spectrum
(Aurich, Lustig and Steiner, 2005) and is supported by some other data (Roukema et al.,
2008), but does not explain the quadrupole–octopole alignment (Weeks and Gundermann,
2007). It has been claimed that this possibility has been ruled out by the circles in the sky
criterion (Shapiro Key et al., 2007), but this is disputed (Caillerie et al., 2007).

If it were ever proved that we live in a small universe, it would be a major discovery about
the geometry of the universe, with major philosophical and observational implications, as
well as ruling out many currently popular models (e.g chaotic inflation). This possibility
should therefore be seriously tested. One particularly interesting point is that if we do indeed
live in a small universe, this gives the one genuine possibility of detecting if the universe has
flat spatial sections (Mota, Rebouças and Tavakol, 2010). Such a detection is not possible
by the methods listed above in this chapter, since at most we can show that �K0 is either
positive or negative, but not prove it is exactly zero.

13.5.4 Effective domain of dependence for our Galaxy

We discussed the nature of causal horizons in the standard models in Section 7.9. However,
these horizons – based on the light-cone – do not in fact show what domains of spacetime
are really important for the development of structure in our local cosmic neighbourhood.
The effective domain of dependence for local conditions is much smaller than indicated by
the past light-cone (Ellis and Stoeger, 2009a), as shown in Figure 13.7.

The limits from the event horizon are limits on what can be influenced by particles and
forces acting at the maximal speed of light. However, freely propagating photons, massless
neutrinos, and gravitons coming from cosmological distances have very little influence on
our Galaxy (indeed we need very delicate experiments to detect them). Massive particles
will travel much slower, and before decoupling, information travels by sound waves at
cs < 1 in the photon–baryon plasma. The characteristics for pressure-free scalar and vector
perturbations are timelike curves, moving at zero velocity relative to the matter; while
density perturbations associated with pressure can move at the speed of sound, only tensor
perturbations can travel at the speed of light.

Thus the true domain that influences us significantly is the small region round our past
world line characterized after decoupling by the comoving scale from which matter coa-
lesced into our Galaxy: a present distance of about 1–2 Mpc, corresponding to an observed
angle of about 0.6 arcmin on the LSS. This is the effective horizon size at that time. Events
inside this horizon (which is generated by timelike curves) can have had a significant effect
on our local neighbourhood; those outside did not. Before decoupling, it would have been
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limited by the sound horizon rather than the particle horizon. The matter horizon is indicated
in the figure (growing into the past, from the present day). It lies inside the effective hori-
zon, because local conditions have been affected by sound waves as well as by accretion of
matter.



14 Acceleration from dark energy or modified gravity

14.1 Overview of the problem

If we describe the universe as a perturbed RW model (with or without GR), then the data
provide compelling evidence that the expansion of the universe has been accelerating
since a redshift z ∼ 1. The mathematically simplest model that produces such accelera-
tion is �CDM, but alternatives have been proposed. This chapter provides a brief overview
of accelerating perturbed RW models, with and without GR, and the theoretical prob-
lems that they face (based on Durrer and Maartens (2008); see also Ellis et al. (2008),
Frieman, Turner and Huterer (2008), Bean (2010), Linder (2010), Ruiz-Lapuente (2010),
Amendola and Tsujikawa (2010) for recent reviews).

In the standard model, the data indicate that the present cosmic energy budget is
given by

��0 ≈ 0.75 , �m0 ≈ 0.25 , �K0 ≈ 0, �r0 ≈ 10−4 . (14.1)

Early indications of a positive � arose in the 1980s. The inflationary model of the early
universe predicted �K → 0, but repeatedly the observations of matter were producing
estimates of �m0 � 0.3. In addition, based on the then current Einstein–de Sitter model,
the age of the universe was less than the estimated ages of the oldest stars. Attempts to
find enough missing CDM to bring �m0 up to the critical value of 1 were unsuccessful,
and � was being invoked by some as a resolution to the problem. Observational evi-
dence against the Einstein–de Sitter model was mounting, and the supernova surveys of
the late 1990s provided strong direct evidence. The field equations give the dimensionless
acceleration as

1

H 2
0

ä

a
=��0 − 1

2
�m0(1+ z)3 −�r0(1+ z)4 . (14.2)

Together with (14.1), this gives the dramatic conclusion that the universe is currently
accelerating.

This conclusion is based on a perturbed FLRW model (governed by GR). In this case the
distance to a given redshift z, and the time elapsed since that redshift, are tightly related
via the only free function of this geometry, a(t). If the universe instead is isotropic around
us but not homogeneous, i.e. if it resembles a Lemaître–Tolman–Bondi solution with our
galaxy cluster at the centre, then this tight relation between distance and time for a given
redshift would be lost and present data would not necessarily imply acceleration or the need
for dark energy. This possibility is discussed in Chapter 15. In a more general scenario,

370



371 14.1 Overview of the problem

anisotropic inhomogeneity could be generated by nonlinear averaging and backreaction
effects, and the link between observations and dark energy would be weakened and could
be broken: this is discussed in Chapter 16.

Here we assume a perturbed RW model. The simplest way to explain acceleration is then
a cosmological constant, i.e. the �CDM model. Even though � can be considered as just
another gravitational constant (in addition to Newton’s constant G), it enters the Einstein
equations in exactly the same way as a contribution from the vacuum energy, i.e. via a
Lorentz–invariant energy–momentum tensor T vac

µν =−(�/8πG)gµν . The only observable
signature of both a cosmological constant and vacuum energy is their effect on spacetime –
and so a vacuum energy and a classical cosmological constant cannot be distinguished
by observation. Therefore the ‘classical’ notion of � is effectively indistinguishable from
quantum vacuum energy.

Even though the absolute value of vacuum energy cannot be calculated within quantum
field theory, changes in the vacuum energy (e.g. during a phase transition) can be calcu-
lated, and they do have a physical effect – for example, on the energy levels of atoms
(Lamb shift), which is well known and well measured. Furthermore, differences of vac-
uum energy in different locations, e.g. between or on one side of two large metallic plates,
have been calculated and their effect, the Casimir force, is well measured. There is no
doubt about the reality of vacuum energy. For a field theory with cutoff energy scale Ec,
the vacuum energy density scales with the cutoff as ρvac ∼ E4

c , corresponding to a cos-
mological constant �vac = 8πGρvac. If Ec = Mp, this yields a naïve contribution to the
‘cosmological constant’ of �vac ∼ 1038 GeV2, whereas the measured effective cosmolog-
ical constant is the sum of the ‘bare’ cosmological constant and the contribution from the
cutoff scale,

�eff =�vac +�∼ 10−83 GeV2 . (14.3)

Hence a cancellation of about 120 orders of magnitude is required. This is called the fine-
tuning or size problem of dark energy: a cancellation is needed to arrive at a result which
is many orders of magnitude smaller than each of the terms. It is possible that the quantum
vacuum energy is much smaller than the Planck scale. But even if we set it to the low-
est possible supersymmetry scale, Esusy ∼ 1TeV, arguing that at higher energies vacuum
energy exactly cancels due to supersymmetry, the required cancellation is still about 60
orders of magnitude. The problem that simple quantum field theory estimates of the mag-
nitude of the vacuum energy are between 60 and 120 orders of magnitude bigger than the
observed value indicates a profound disjuncture between quantum field theory and general
relativity.

A reasonable attitude towards this open problem is the hope that quantum gravity will
explain this cancellation, by showing that the vacuum does not gravitate, �vac ≡ 0. In this
event, one may be able to argue that� is a genuinely gravitational constant, not connected to
the vacuum energy: even though it appears in the same form as a vacuum energy, quantum
gravity will have shown that the vacuum energy does not gravitate. Alternatively, non-
gravitating vacuum energy can be imposed at a phenomenological level (using ideas due
to Weinberg (1989)), by postulating that the gravitational field equations are the trace-
free Einstein equations (known as ‘unimodular gravity’), which do not ‘see’ a vacuum



372 Chapter 14 Acceleration from dark energy or modified gravity

energy–momentum tensor. The conservation equations must then be separately imposed –
and as a consequence, the full Einstein equations are recovered, but with a � term that
is not related to the vacuum (see e.g. Ellis et al. (2010)). However, this interpretation of
� as a ‘classical’ constant like the gravitational coupling constant 8πG also leads to an
‘unnaturalness’ problem. The dimensionless number that can be formed from these two
gravitational constants is 8πG�∼ 10−120 – which seems implausibly small.

The unexpected observational result for � leads to a second problem, the coincidence
problem: given that ρ� =�eff /8πG= const, while ρm ∝ (1+ z)3, why is ρ� of the order
of the present matter density ρm(t0)? It was completely negligible in most of the past and
will entirely dominate in the future. Without this special coincidence of values, the large-
scale structure in the universe would not be observed in its current form – indeed, an early
domination of� could prevent all structure formation. This argument may also be presented
in an alternative way. The key scale in the matter power spectrum is the matter–radiation
equality scale ∼ 100Mpc (which defines the turn-around in the spectrum). The onset of
nonlinearity occurs when the density perturbation obeys δ � 0.3. For a comoving scale
of 100 Mpc, this occurs at redshift znl ∼ 1 – which is coincident with the redshift where
deceleration ends and acceleration begins:

znl(k = 1/100Mpc)∼ zacc ∼ 1. (14.4)

These problems with � have spurred the search for other explanations of the accel-
erated expansion. Instead of a cosmological constant, one may introduce a time-varying
component, with an equation of state such that w < −1/3, w �= −1. Such a dynamical
‘dark energy’ component has the potential to address the coincidence problem – but the
fine-tuning problem requires an investigation that goes beyond cosmological dynamics. So
far, no theoretically consistent model of dark energy has been proposed which can yield a
convincing or natural explanation of either of these problems.

Alternatively, it is possible that there is no dark energy field, but instead the late-time
acceleration is a signal of a gravitational effect. In GR, this requires that the impact of
inhomogeneities somehow acts to produce acceleration, or the appearance of acceleration –
and necessarily this means that the universe is not perturbed FLRW.

If we stay with perturbed RW, then the alternative to dark energy is that gravity itself is
weakened on large scales, i.e. that there is an ‘infrared’ modification to GR which accounts
for the late-time acceleration. The classes of modified gravity models which have been
widely investigated are scalar–tensor models and brane-world models. Schematically, one
is modifying the geometric side of the field equations, Gµν → Gµν +Gdark

µν , rather than

the matter side, Tµν → Tµν + T dark
µν , as in the GR approach. Modified gravity represents

an intriguing possibility for resolving the theoretical crisis posed by late-time acceleration.
However, it turns out to be extremely difficult to modify GR at low energies in cosmology,
without violating observational constraints from cosmological and Solar System data, or
without introducing ghosts and other instabilities into the theory. Up to now, there is no
convincing alternative to the GR dark energy models – which themselves are not very
convincing.
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14.2 Dark energy in an FLRW background

Here we briefly consider the main forms of dark energy within GR. Within GR, various
dynamical alternatives to �CDM have been investigated, in an attempt to address the
coincidence problem – none of the alternatives addresses the vacuum energy problem.
Dynamical dark energy models replace the constant�/8πG by the evolving energy density
of a dark energy component. In order to produce acceleration at late times, the equation of
state is constrained by w <−1/3.

14.2.1 Dark energy as vacuum energy

If� is treated as vacuum energy, then we face the problems of accounting for the incredibly
small and highly fine-tuned value of the vacuum energy, encapsulated in (14.3).

String theory provides a tantalizing possibility in the form of the ‘landscape’ of vacua.
There appear to be a vast number of vacua admitted by string theory, with a broad range
of vacuum energies above and below zero. The idea is that our observable region of the
universe corresponds to a particular small positive vacuum energy, whereas other regions
with greatly different vacuum energies will look entirely different. This multitude of regions
forms in some sense a ‘multiverse’ – an interesting but highly speculative idea, which we
discuss in Chapter 21.

14.2.2 Fluid models

Phenomenological fluid models of dark energy are difficult to motivate. Adiabatic fluid
models are typically unstable to perturbations, since the adiabatic speed of sound is usually
imaginary for negative w:

c2
s =

ṗ

ρ̇
=w− ẇ

3H(1+w)
. (14.5)

In particular, for constant w models, c2
s < 0 and the model is physically unviable. Constant-

w models of dark energy must be non-adiabatic, i.e. the effective speed of sound (which
governs the growth of inhomogeneities in the fluid) is not equal to the adiabatic speed of
sound: c2

s eff �= c2
s . The speed of sound must be positive to avoid unphysical growth of dark

energy inhomogeneities, and usually one sets cs eff = 1 (the quintessence value) by hand.
(See Section 10.2.5.)

It is possible to evade this constraint in an adiabatic fluid (cs eff = cs) if ẇ is sufficiently
negative, as can be seen from (14.5). For example, the ‘Chaplygin gas’ fluid model has
equation of state p=−A/ρα , where A and α are constants, 0<α ≤ 1. This model has real
cs . (See Exercise 14.2.1.)

14.2.3 Quintessence

A scalar field ϕ, with (standard) Lagrangian (5.142) is a self-consistent model that naturally
avoids the problems of fluid models: the effective sound speed is 1, for any potential V (ϕ),
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and it is not equal to the adiabatic sound speed, which depends on V (see (10.41)). This
shows that a scalar field is intrinsically non-adiabatic. In an FLRW spacetime, using (5.149)
and (5.152),

ρϕ = 1
2 ϕ̇

2 +V (ϕ) , pϕ = 1
2 ϕ̇

2 −V (ϕ) , (14.6)

ϕ̈+ 3Hϕ̇+V ′(ϕ)= 0, (14.7)

H 2 + K

a2
= 8πG

3

(
ρr +ρm +ρϕ

)
. (14.8)

The field rolls down its potential and the dark energy density varies through the history
of the universe. ‘Tracker’ potentials have been found for which the field energy density
follows that of the dominant matter component, thus opening up the possibility of solving
the coincidence problem. However, while these models are insensitive to initial conditions,
they do require a strong fine-tuning of the parameters of the Lagrangian to secure recent
dominance of the field, and hence do not evade the coincidence problem.

More generally, the quintessence potential, somewhat like the inflaton potential, remains
arbitrary, until and unless fundamental physics selects a potential. There is currently no
natural choice of potential. There is no compelling reason as yet to choose quintessence
above the � model of dark energy. Quintessence models do not seem more natural, better
motivated or less contrived than �. Nevertheless, they are a viable possibility and compu-
tations are straightforward. Therefore, they remain an interesting target for observations to
shoot at. And it may turn out that developments in particle physics do select a candidate
potential in the future.

14.2.4 Interacting quintessence

It is possible that quintessence and cold dark matter, as fields beyond the Standard Model
of particle physics, interact with each other, but not with baryonic matter or photons (or
only extremely weakly). This does not violate the tight current constraints from fifth force
experiments, because these experiments only probe baryonic matter. It could lead to a new
approach to the coincidence problem, since a coupling in the dark sector may provide a less
unnatural way to explain why acceleration kicks in when ρm ∼ ρde.

In the presence of coupling, the energy conservation equations in the background become

ϕ̇
[
ϕ̈+ 3Hϕ̇+V ′(ϕ)

]=Q , (14.9)

ρ̇dm + 3Hρdm =−Q , (14.10)

where Q is the rate of energy exchange. For a given model of Q, it is usually possible to
choose parameters so that the model remains consistent with the geometric data (from CMB,
SNIa and BAO) that constrain the background expansion history. The perturbations of the
full energy–momentum conservation equations, ∇νT

µν
c =Q

µ
c =−Qµ

de =−∇νT
µν

de , show
that there is a momentum transfer as well as an energy transfer.Analysis of the perturbations
typically leads to more stringent constraints, with some forms of coupling being ruled out
by instabilities.
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14.2.5 Non-standard scalar fields

Another possibility is a scalar field with a non-standard kinetic term in the Lagrangian, for
example,

Lϕ = F(ϕ,X)−V (ϕ) where X :=− 1
2g

µν∂µϕ∂νϕ . (14.11)

The standard Lagrangian has F(ϕ,X) = X. Some of the non-standard F models may be
ruled out on theoretical grounds.An example is provided by ‘phantom’fields, with negative
kinetic energy density (ghosts), F(ϕ,X) = −X. They have w < −1, so that their energy
density grows with expansion. This bizarre behaviour is reflected in the instability of the
quantum vacuum for phantom fields.

Another example is a ‘k-essence’ field, which has F(ϕ,X)= ϕ−2f (X). This theory has
no ghosts, and it can produce late-time acceleration. The effective sound speed of the field
fluctuations for the Lagrangian in (14.11) is

c2
s eff =

F,X

F,X + 2XF,XX

. (14.12)

For a standard Lagrangian, c2
s eff = 1. But for the class of F that produce accelerating k-

essence models, it turns out that there is always an epoch during which c2
s eff > 1, so that

these models may be ruled out according to standard causality requirements.
For models not ruled out on theoretical grounds, there is the same general problem as

with quintessence, i.e. that no model is better motivated than �CDM, none is selected
by fundamental physics and any choice of model is more or less arbitrary. Quintessence
then appears to at least have the advantage of simplicity – although �CDM has the same
advantage over quintessence.

14.2.6 Dark sector degeneracy

Finally, it is important to note a fundamental limitation that operates for all dark energy
models. When investigating generic dark energy models we always have to keep in mind
that since both dark energy and dark matter are only detected gravitationally, we can only
measure the total energy–momentum tensor of the dark component,

T dark
µν = T de

µν +T c
µν . (14.13)

Hence, if we have no information on the equation of state of dark energy, there is a
degeneracy between the dark energy equation of state w(z) and �m(z). Without addi-
tional assumptions, we cannot measure either of them by purely gravitational observations.
This dark sector degeneracy becomes even worse if we allow for interactions between dark
matter and dark energy.

Exercise 14.2.1 Compute the adiabatic speed of sound for the Chaplygin gas, p = −A/ρα ,
with 0 < α ≤ 1, and determine whether c2

s > 0.

Exercise 14.2.2 Analyse the dynamics of quintessence with an exponential potential. Compare
this with the case of a phantom field with exponential potential.
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Exercise 14.2.3 Using (14.5) and (14.12), find the adiabatic and effective sound speeds for
quintessence, phantom fields and k-essence fields.

14.3 Modified gravity in a RW background

Late-time acceleration from nonlinear effects of structure formation is an attempt, within
GR, to solve the coincidence problem without a dark energy field. The modified gravity
approach shares the assumption that there is no dark energy field – but it generates the
acceleration via ‘dark gravity’, i.e. a weakening of gravity on the largest scales, due to a
modification of GR itself. In the modified gravity approach, it is assumed (but not shown)
that the vacuum energy does not gravitate.

Could the late-time acceleration of the universe be a gravitational effect? A historical
precedent is provided by attempts to explain the anomalous precession of Mercury’s peri-
helion by a ‘dark planet’, named Vulcan. In the end, it was discovered that a modification
to Newtonian gravity was needed.

A consistent modification of GR requires a covariant formulation of the field equations
in the general case, i.e. including inhomogeneities and anisotropies. It is not sufficient to
propose ad hoc modifications of the Friedmann equation, of the form f (H 2)= 8πGρ/3 or
H 2 = 8πGg(ρ)/3, for some functions f or g. Such a relation only allows us to compute
the background observations – but we cannot compute the density perturbations without
knowing the covariant parent theory that leads to such a modified Friedmann equation. And
we also cannot compute the Solar System predictions.

It is very difficult to produce infrared corrections to GR that meet all the minimum
requirements:

• Theoretical consistency (in the sense discussed below in Section 14.4).
• Late-time acceleration consistent with SNIa luminosity distances, BAO, the CMB shift

parameter and other data that constrain the expansion history.
• A matter-dominated era with an evolution of the scale factor a(t) that is consistent with

the requirements of structure formation.
• Density perturbations that are consistent with the observed growth factor, matter power

spectrum, peculiar velocities, CMB anisotropies and weak lensing power spectrum.
• Stable static spherical solutions for stars, and consistency with terrestrial and Solar System

observational constraints.
• Consistency with binary pulsar period data.

One of the major challenges is to compute the cosmological perturbations for structure
formation in a modified gravity theory. In GR, the perturbations are well understood (see
Section 10.2.8). The perturbed metric in Newtonian gauge is (12.13) in any modified gravity
theory that is a metric theory. In GR, the difference!−� is sourced by anisotropic stresses,
!−�= 8πGa2#, and vanishes if the gravitational field is entirely due to non-relativistic
matter or a perfect fluid. In modified gravity this will no longer hold: even in the absence
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of matter anisotropic stress, there is an effective gravitational anisotropic stress:

!−�= 8πGa2#modg . (14.14)

On super-Hubble scales (and for adiabatic perturbations, but including the possibility
of anisotropic stresses), the evolution of the perturbations is entirely determined by the
background (and the anisotropic stresses which relate the potentials � and !):

! ′′ +�′′ − H ′′

H ′ !
′ +

(
H ′

H
− H ′′

H ′

)
�= 0, (14.15)

where a prime denotes d/d lna. This generalizes (13.1), and holds in both GR and modified
gravity.

The primordial anisotropies in the CMB, imprinted at last scattering, will not carry a
signature of modified gravity since the deviations from GR only emerge much later, during
structure formation. The large-angle anisotropies in the CMB temperature, however, encode
a signature of the formation of structure. They are determined by the propagation of photons
along the geodesics of the perturbed geometry. For adiabatic perturbations one obtains on
large scales the expression (13.29) for the integrated Sachs–Wolfe (ISW) effect, where the
integral is along the (unperturbed) trajectory of the light-ray from last scattering to today.
The same combination �+! also determines the weak lensing signal, with the deflection
angle given by (12.109).

The ISW effect arises from the fact that the photons are blue shifted when they fall into
a gravitational potential and redshifted when they climb out of it. Hence if the potential
varies during this time, they acquire a net energy shift. In a modified gravity theory, the
ISW and lensing relations (13.29) and (12.109) still apply.

In GR, the gauge-invariant comoving matter density perturbation (10.32),�= δ−3aHv,
obeys the Poisson and evolution equations (12.63) and (12.64). In modified gravity, these
equations will be modified. The modifications can be parameterized in different ways. For
simplicity, we can represent the changes in the GR equations (12.63) and (12.64) in terms
of two modifications to the Newton constant:

k2! =−4πG(1+αmodg)a
2ρ� , (14.16)

�̈+ 2H�̇− 4πG(1+βmodg)ρ�= 0. (14.17)

14.3.1 f(R) theory

GR has a unique status as a four-dimensional theory where gravity is mediated by a massless
spin-2 particle, and the field equations are second order. Consider modifications to the
Einstein–Hilbert action of the general form∫

d4x
√−gR →

∫
d4x

√−gf (R,RµνR
µν ,CµναβC

µναβ) , (14.18)

where Rµν is the Ricci tensor, Cµναβ is the Weyl tensor and f (x1,x2,x3) is an arbitrary
(at least three times differentiable) function. Since the curvature tensors contain second
derivatives of the metric, the resulting equations of motion will in general be fourth order,
and gravity is then carried also by massless spin-0 and spin-1 fields in general.
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However, Ostrogradski’s theorem on dynamics with higher than second-order time
derivatives applies: there is in general a ghost instability. There is actually only one way out,
which is the case ∂2f = ∂3f = 0, i.e. f may only depend on the Ricci scalar. The reason
is that in the Ricci scalar R, only a single component of the metric appears with second
derivatives. In this case, the consequent new degree of freedom can be fixed completely by
the g00 constraint, so that there is no ghost instability in f (R) theories.

Therefore, the only acceptable low-energy generalizations of the Einstein–Hilbert action
of the form (14.18) are f (R) theories, with f ′′(R) �= 0 (see Capozziello and Francaviglia
(2008) and Sotiriou and Faraoni (2010) for reviews). The field equations are

f ′(R)Rµν − 1
2f (R)gµν −

[∇µ∇ν −gµν∇α∇α

]
f ′(R)= 8πGTµν , (14.19)

and standard energy–momentum conservation holds, ∇νT
µν = 0. The trace of the field

equations is a wave-like equation for f ′, with source term T = Tµ
µ:

3∇α∇αf
′(R)+Rf ′(R)− 2f (R)= 8πGT . (14.20)

This equation is important for investigating issues of stability in the theory, and it also
implies that Birkhoff’s theorem does not hold.

There has been a revival of interest in f (R) theories due to their ability to produce late-
time acceleration. (Starobinsky constructed an inflationary model with f (R) = R+ αR2

in the 1980s.) However, it turns out to be extremely difficult for this simplified class of
modified theories to pass the observational and theoretical tests. A simple example of an
f (R) model is f (R) = R −µ/R. For |µ| ∼ H 4

0 , this model successfully achieves late-
time acceleration as the µ/R term starts to dominate. But the model strongly violates
Solar System constraints, can have a strongly non-standard matter era before the late-time
acceleration, and suffers from nonlinear matter instabilities.

In f (R) theories, the gravitational interaction is mediated by a spin-0 scalar as well as
the spin-2 tensor degree of freedom. Indeed, f (R) theories are a special case of scalar–
tensor theories (see Section 14.3.2). This spin-0 field is precisely the cause of the problem
with Solar System constraints in most f (R) models, since the requirement of late-time
acceleration leads to a very light mass for the scalar. The modification to the growth of
large-scale structure due to this light scalar may be kept within observational limits. But on
Solar System scales, the coupling of the light scalar to the Sun and planets induces strong
deviations from the weak-field Newtonian limit of GR, in obvious violation of observations.

In the Brans–Dicke form (14.30) of the general scalar–tensor action (14.24), the f (R)

scalar has an associated Brans–Dicke parameter that vanishes, ωBD = 0, whereas Solar
System and binary pulsar data currently require ωBD > 40,000. The Brans–Dicke action
has a kinetic term but no potential, whereas the scalar–tensor form of f (R) has a potential
but no kinetic term. The potential in the f (R) action is what allows one to evade the Solar
System/binary pulsar constraints – since it provides a mechanism for giving mass to the
scalar.

The only way to evade the Solar System/binary pulsar problem is to increase the mass of
the scalar near massive objects like the Sun, so that the Newtonian limit can be recovered,
while preserving the ultralight mass on cosmological scales. This chameleon mechanism
can be used to construct models that evade Solar System/binary pulsar constraints. However,
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the price to pay is that additional parameters must be introduced, and the chosen f (R) tends
to look unnatural and strongly fine-tuned. An example is

f (R)=R+λR0

[(
1+ R2

R2
0

)−n
− 1

]
, (14.21)

where λ,R0,n are positive parameters. This model and others that successfully avoid local
constraints via a chameleon mechanism, need to mimic the background evolution of a GR
dark energy model very closely in order to produce late-time acceleration.

Cosmological perturbations in f (R) theory are well understood. The modification to GR
produces an effective anisotropic stress

!−�= 8πGa2#f(R) ∝ f ′′(R)
f ′(R)

, (14.22)

and deviations from GR are conveniently characterized by the dimensionless parameter

B = dR/d lna

d lnH/d lna

f ′′(R)
f ′(R)

. (14.23)

Models like (14.21) with a chameleon mechanism to evade local constraints, can match
the observations of expansion history, large-angle CMB anisotropies (see Figure 14.1) and
linear matter power spectrum, for appropriate choices of parameters. However, there may
also be problems with singularities in the strong gravity regime, which could be incompatible
with the existence of neutron stars – another unintended, and unexpected, consequence of
the scalar degree of freedom, this time at high energies.

Regardless of a possible high-energy singularity problem, f (R) models that pass the
Solar System and late-time acceleration tests are valuable working models for probing the
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Fig. 14.1 Left: ISW potential (�+!)/2 for f (R)models, where B0 indicates the strength of deviation from GR [(14.23)].
Right: Large-angle CMB anisotropies for the same models. (Reprinted with permission from Song, Peiris and Hu
(2007). Copyright by the American Physical Society.)
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features of modified gravity theories and for developing tests of GR itself. In order to pursue
this programme, one needs to compute not only the linear cosmological perturbations and
their signature in the growth factor, the matter power spectrum and the CMB anisotropies –
but also the weak lensing signal. For this, we need the additional step of understanding the
transition from the linear to the nonlinear regime. Scalar–tensor behaviour on cosmological
scales relevant to structure formation in the linear regime must evolve to Newtonian-like
behaviour on small scales in the nonlinear regime – otherwise we cannot recover the GR
limit in the Solar System. This means that the standard fitting functions in GR cannot be
applied, and we require the development of N-body codes in f (R) theories.

14.3.2 Scalar–tensor theories

The general scalar–tensor theory (see Peter and Uzan (2009)), which pre-dates but may also
be motivated via low-energy string theory, has an action of the form

S = 1

16πG

∫
d4x

√−g [F(ϕ)R−Z(ϕ)gµν∂µϕ∂νϕ− 2U(ϕ)
]

+Sm[gµν ; matter fields], (14.24)

where ϕ is the spin-0 field that supplements the spin-2 graviton (note that ϕ is dimensionless
in the above expression). The matter fields are minimally coupled to the metric, as in GR,
and there is no coupling to the scalar ϕ. This minimal coupling defines the Jordan frame,
and it means that instruments in experiments (which are made of matter fields) are not
affected by the local value of ϕ. Therefore in the Jordan frame, experimental measurements
will have the same interpretation as in GR.

One of the dimensionless functions F and Z can always be eliminated by a re-definition
of the scalar field; the simplest choice isZ= 1, which gives the standard form to the kinetic
term of ϕ – after a re-definition, ϕ → √

8πGϕ, which gives the scalar field the usual
dimension. F determines the strength of gravitational interaction by effectively modifying
G – and we require F > 0 to keep gravity attractive. Z should also be positive to avoid a
ghost kinetic term. The scalar field has potential U/8πG.

The field equations arise from varying (14.24) with respect to gµν , while variation with
respect to ϕ and the matter fields give, respectively, the dynamical equation for ϕ and the
matter conservation equations:

F(ϕ)Gµν = 8πGTµν +Z(ϕ)
[
∂µϕ∂νϕ− 1

2gµν∂αϕ∂
αϕ
]

+∇µ∇νF (ϕ)− gµν∇α∇αF (ϕ)−gµνU(ϕ), (14.25)

Z(ϕ)∇α∇αϕ =U ′(ϕ)− 1
2F

′(ϕ)R− 1
2Z

′(ϕ)∂αϕ∂αϕ, (14.26)

∇νT
µν = 0. (14.27)

The Klein–Gordon type equation (14.26) can be rewritten without R – see (14.42).
In the context of late-time acceleration, these models are also known as ‘extended

quintessence’. Since there is one more function than in quintessence, it is always possible
to reproduce the same background expansion history of any given quintessence model. The
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modified Friedmann equation is

3F

(
H 2 + K

a2

)
− 3ḞH = 8πGρ+ 1

2
Zϕ̇2 +U . (14.28)

The perturbations of a quintessence model cannot, however, be reproduced. For example,
the scalar–tensor theory has an effective gravitational anisotropic stress given by

!−�= 8πGa2#st = F ′(ϕ)
F (ϕ)

δϕ . (14.29)

The Brans–Dicke form of scalar–tensor theory has

FBD(ϕ)= ϕ , ZBD(ϕ)= ωBD(ϕ)

ϕ
, (14.30)

and Brans–Dicke theory itself is the special case with

UBD = 0. (14.31)

f (R) theory is also a special case of (14.24), which may be seen as follows. We set

F(ϕ)= f ′(ϕ) , Z(ϕ)= 0, U(ϕ)= 1
2

[
ϕf ′(ϕ)−f (ϕ)

]
. (14.32)

Then this defines the scalar–tensor form of the f (R) action, and reproduces the original
f (R) action if we make the identification,

ϕ =R [with f ′′(ϕ) �= 0] . (14.33)

(Note that the case f ′′(ϕ)= 0 is just GR.)
Varying-G theories are another example of scalar–tensor theories, since the effective

gravitational coupling is

Geff(ϕ)= G

F(ϕ)
. (14.34)

The Jordan frame is the one in which matter is minimally coupled, and the gravitational
scalar is non-minimally coupled to curvature. The Einstein frame puts the gravitational
action into Einstein–Hilbert form, so that it has an uncoupled Einstein–Hilbert term,
R/16πG; as a consequence, matter is then generally non-minimally coupled. These frames
are mathematically equivalent under a conformal transformation of the metric and a
re-scaling of the scalar field:

g̃µν = F(ϕ)gµν ,

(
dϕ̃

dϕ

)2

= 3

2

[
d lnF(ϕ)

dϕ

]2

+ Z(ϕ)

F (ϕ)
. (14.35)

However, the frames are not physically equivalent – only one frame, the Jordan frame,
respects the weak equivalence principle. The action (14.24) becomes

S = 1

16πG

∫
d4x

√−g
[
R̃− g̃µν∂µϕ̃∂νϕ̃− 2Ũ (ϕ̃)

]
+Sm

[
A2(ϕ̃) g̃µν ;matter fields

]
, A(ϕ̃) := 1√

F(ϕ)
. (14.36)
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The gravitational action in (14.36) suggests that we have removed the spin-0 gravitational
degree of freedom, since ϕ̃ appears in the gravitational action in exactly the same form as
a standard minimally coupled scalar field in GR. However, the spin-0 scalar has not been
downgraded to a standard scalar field. Its influence has simply been shifted, and is now
reflected in its non-minimal coupling to the matter fields – the matter action is no longer
defined in terms of the metric only, but of A2(ϕ̃) times the metric. The convenience of
the Einstein frame is that the field equations have the Einstein form, but this comes at the
price of non-minimal coupling in the matter equations – and the consequent difficulties of
correctly defining and interpreting measurements and observations in the Einstein frame.
On the other hand, the Einstein frame is the appropriate frame for investigating the Cauchy
problem and the regularity of the theory.

The coupling to matter appears in the Einstein frame as a violation of energy–momentum
conservation:

∇̃ν T̃µν = d lnA(ϕ̃)

dϕ̃
T̃ α

α∂µϕ̃ , T̃µν =A2Tµν . (14.37)

In the Einstein frame, the gravitational coupling is the constant G, unlike the Jordan frame
where G→Geff, which varies in time and space. By contrast, particle masses are constant
in the Jordan frame, but variable in the Einstein frame.

The f (R) action in the Jordan frame can be transformed to the Einstein frame via

g̃µν = f ′(ϕ)gµν , ϕ̃ =−√
12πG lnf ′(ϕ) . (14.38)

In terms of g̃µν and ϕ̃ the gravitational Lagrangian then becomes a standard Einstein–Hilbert
plus scalar field Lagrangian, with potential

V (ϕ̃)= e−ϕ̃/
√

3πG
[
ϕ(ϕ̃)eϕ̃/

√
12πG−f (ϕ(ϕ̃))

]
. (14.39)

14.3.3 Vector–tensor theories

As discussed in Section 12.3.3, a tensor–vector–scalar theory TeVeS has been developed by
Bekenstein as a covariant relativistic theory that contains a MOND-like limit. The additional
degrees of freedom mean that in principle TeVeS can avoid the need for both dark matter
and dark energy. However, it is not clear that all the observations can be satisfied in this
case (see Ferreira and Starkman (2009), Skordis (2009), Bekenstein (2010) for reviews). In
a sense, the full scalar and vector degrees of freedom, on top of the standard tensor degree
of freedom, represent too much arbitrariness – perhaps not in principle different from the
apparent arbitrariness of dark matter and dark energy contributions. Of course, if a simple
version could be found, with reduced freedom of functions and parameters, that would be
very interesting.

In fact a vector–tensor sub-class of theories has recently been investigated as a possible
candidate. The action for these Einstein–Aether theories is

S = 1

16πG

∫
d4x

√−g
[
R+M2F(K)+λ

(
AµAµ+ 1

)]
+Sm[gµν ; matter fields], (14.40)
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where M is a mass scale, and λ is a Lagrange multiplier which enforces that Aµ is a
unit timelike vector field, which is necessary for compatibility with RW geometry in the
background. The dynamics for the gravitational vector Aµ are encoded in

K =M−2Kµν
αβ∇µAα∇νAβ , (14.41)

where Kµν
αβ = c1g

µνgαβ + c2δ
µ
α δ

ν
β + c3δ

µ
β δ

ν
α , with c1,c2 and c3 dimensionless constants.

Initial indications are that the Einstein–Aether theories can readily avoid dark energy,
but are unable simultaneously to reproduce all of the key features of dark matter in the
background expansion and structure formation (Zuntz et al., 2010).

Exercise 14.3.1 Use the trace of the scalar–tensor field equations (14.25) to eliminate R from
the Klein–Gordon type evolution equation (14.26). Show that this leads to (where a prime
denotes d/dϕ)

(2ZF + 3F ′2)∇α∇αϕ+ 1
2 (2ZF + 3F ′2)′∂αϕ∂αϕ

= 8πGF ′T α
α −−4F ′U + 2U ′F . (14.42)

14.3.4 Brane-world models: DGP

Modifications to GR within the framework of quantum gravity are typically ultraviolet
corrections that must arise at high energies in the very early universe or during collapse to a
black hole.A leading candidate for a quantum gravity theory, string theory, is able to remove
the infinities of quantum field theory and unify the fundamental interactions, including
gravity. But there is a price – the theory is only consistent in nine space dimensions. As
discussed in Section 20.3, branes play a fundamental role in the theory. The observable
universe is a 4D brane, on which matter and radiation fields are localized, with gravity
propagating in the bulk (see Figure 20.1).

Brane-world cosmological models inherit some aspects of string theory, but do not attempt
to impose the full machinery of the theory. Instead, simplifications are introduced in order
to be able to construct cosmological models that can be used to compute observational
predictions (see Maartens and Koyama (2010) for a review). Cosmological data can then
be used to constrain the brane-world models, and hopefully provide constraints on string
theory, as well as pointers for the further development of string theory.

Most brane-world models modify GR at high energies, and recover GR in the infrared; the
premier example is the Randall–Sundrum brane-world (see Section 20.3.4). By contrast, the
brane-world model of Dvali–Gabadadze–Porrati (DGP), which was introduced as a particle
physics model and then generalized to cosmology by Deffayet, modifies GR at low energies,
and recovers GR in the ultraviolet. This model produces ‘self-acceleration’ of the late-time
universe due to a weakening of gravity at low energies. Like the Randall–Sundrum model,
the DGP model is a 5D model with infinite (but non-warped) extra dimension.

The gravitational action is given by

1

16πG

[
1

rc

∫
bulk

d5x

√
− (5)g (5)R+

∫
brane

d4x
√−gR

]
. (14.43)
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The bulk is 5D Minkowski spacetime (in the unperturbed case), with infinite volume.
Consequently, there is no normalizable massless spin-2 mode of the 4D graviton in the
DGP brane-world – GR is recovered by an ultralight spin-2 graviton mode. In addition,
there is a spin-0 mode of the graviton.

Gravity ‘leaks’ off the 4D brane into the bulk at large scales, r � rc, where the first term
in the sum (14.43) dominates. On small scales, gravity is effectively bound to the brane
and 4D dynamics is recovered to a good approximation, as the second term dominates. The
transition from 4D to 5D behaviour is governed by the crossover scale rc. For a Minkowski
brane, the weak-field gravitational potential behaves as �∝ r−1 for r � rc and ∝ r−2 for
r � rc. On a RW brane, gravity leakage at late times in the cosmological evolution can
initiate acceleration – not due to any negative pressure field, but due to the weakening of
gravity on the brane.

The energy conservation equation remains the same as in GR, but the Friedmann equation
is modified:

ρ̇+ 3H(ρ+p)= 0, (14.44)

H 2 + K

a2
− 1

rc

√
H 2 + K

a2
= 8πG

3
ρ . (14.45)

To arrive at (14.45) we have to take a square root which implies a choice of sign. As we
shall see, the above choice has the advantage of leading to acceleration but the disadvantage
of the presence of a ‘ghost’ in this background. This is the self-accelerating branch of DGP.
We shall discuss the ‘normal’ DGP model, where the opposite sign of the square root is
chosen, in Section 14.3.5.

From (14.45) we infer that at early times, i.e. Hrc � 1, the GR Friedmann equation is
recovered. By contrast, at late times in an expanding CDM universe, with ρ ∝ a−3 → 0,
we have

H →H∞ = 1

rc
, (14.46)

so that expansion accelerates and is asymptotically de Sitter. The above equations imply

Ḣ − K

a2
=−4πGρ

[
1+ 1√

1+ 32πGr2
c ρ/3

]
. (14.47)

In order to achieve self-acceleration at late times, we require

rc �H−1
0 , (14.48)

since H0 � H∞. This is confirmed by fitting SNIa observations, as shown in Figure 14.2.
The dimensionless cross-over parameter is defined as

�rc =
1

4(H0rc)2
, (14.49)
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and the �CDM relation, �m0 +��0 +�K0 = 1, is modified to

�m0 + 2
√
�rc

√
1−�K0 +�K0 = 1. (14.50)

�CDM and DGP can both account for the SNIa observations, with the fine-tuned values
� ∼ H 2

0 and rc ∼ H−1
0 respectively. When we add further constraints on the expansion

history from the BAO and the CMB shift parameter, the DGP flat models are in strong
tension with data, whereas�CDM models provide a consistent fit. This is evident in Figure
14.2. The open DGPmodels provide a somewhat better fit to the geometric data – essentially
because the lower value of �m0 favoured by SNIa reduces the distance to last scattering
and an open geometry is able to extend that distance.

Observations based on structure formation provide further evidence of the difference
between DGP and �CDM, since the two models suppress the growth of density perturba-
tions in different ways. The distance-based observations draw only upon the background
modified Friedmann equation (14.45) in DGP models – and therefore there are quintessence
models in GR that can produce precisely the same expansion history H(z) as DGP. By con-
trast, structure formation observations require the 5D perturbations in DGP, and one cannot
find equivalent quintessence models.

DGP cosmological perturbations are subtle and complicated: although matter is confined
to the 4D brane, gravity is fundamentally 5D, and the 5D bulk gravitational field responds
to and back-reacts on 4D density perturbations. The evolution of density perturbations
requires an analysis based on the 5D nature of gravity. In particular, the 5D gravitational
field produces an effective ‘dark’ anisotropic stress on the 4D universe. If one neglects this
stress and other 5D effects, and simply treats the perturbations as 4D perturbations with a
modified background Hubble rate – then as a consequence, the 4D Bianchi identity on the
brane is violated, i.e. ∇νGµν �= 0, and the results are inconsistent. When the 5D effects are
incorporated, the 4D Bianchi identity is automatically satisfied. (See Figure 14.3.)
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There are three regimes governing structure formation in DGP models:

• On small scales, below the so-called Vainstein radius (which for cosmological purposes
is roughly the scale of clusters), the spin-0 scalar degree of freedom becomes strongly
coupled, so that the GR limit is recovered.

• On scales relevant for structure formation, i.e. between cluster scales and the Hub-
ble radius, the spin-0 scalar degree of freedom produces a scalar–tensor behaviour. A
quasi-static approximation to the 5D perturbations allows us to solve for the density per-
turbations (see below and Figure 14.3). DGP gravity is like a Brans–Dicke theory with
parameter

ωBD = 3
2 (β− 1), (14.51)

β = 1+ 2H 2rc

(
H 2 + K

a2

)−1/2[
1+ Ḣ

3H 2
+ 2K

3a2H 2

]
. (14.52)

At late times in an expanding universe, when Hrc � 1, it follows that β < 1, so that
ωBD < 0. (This signals a pathology in DGP which is discussed below.)

• The quasi-static approximation breaks down near and beyond the Hubble radius. On
super-horizon scales, 5D gravity effects are dominant. Numerical solutions of the partial
differential equation governing the 5D bulk variable have been developed, and the con-
sequent solutions for �,! and � have been found on super-Hubble scales. The results
are illustrated in Figure 14.4.

On sub-Hubble scales relevant for linear structure formation, 5D effects produce a
difference between ! and �:

k2! =−4πGa2
(

1− 1

3β

)
ρ� , k2�=−4πGa2

(
1+ 1

3β

)
ρ� , (14.53)
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so that there is an effective dark anisotropic stress on the brane:

#DGP = ρ�

3β2k2
. (14.54)

The density perturbations evolve as

�̈+ 2H�̇− 4πG

(
1− 1

3β

)
ρ�= 0. (14.55)

The linear growth factor, g(a)=�(a)/a (i.e. normalized to the flat CDM case, �∝ a), is
shown in Figure 14.3. This shows the dramatic suppression of growth in DGP relative
to �CDM – from both the background expansion and the metric perturbations. If we
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parameterize the growth factor via f := dln�/dlna = �m(a)
γ , (see (12.78)), we can

quantify the deviation from a GR model with smooth dark energy:

γ ≈
{

0.55+ 0.05[1+w(z= 1)] GR, smooth DE
0.68 DGP

(14.56)

Observational data on the growth factor are not yet precise enough to provide meaningful
constraints on the DGP model. Instead, we can look at the large-angle anisotropies of the
CMB, i.e. the ISW effect. This requires a treatment of perturbations near and beyond the
horizon scale, using the full numerical solutions that are illustrated in Figure 14.4. It is
evident from Figure 14.4 that the DGP model is in serious tension with the CMB data on
large scales. The problem arises from the large deviation of the ISW potential (�+!)/2
in the DGP model from the �CDM model. The much stronger decay of the ISW potential
leads to an over-strong ISW effect (see (13.29)).

In addition to the severe problems posed by cosmological observations, a problem of
theoretical consistency is posed by the fact that the late-time asymptotic de Sitter solution
in DGPcosmological models has a ghost.The ghost is signalled by the negative Brans–Dicke
parameter in the effective theory that approximates the DGP on cosmological sub-horizon
scales:

ωBD < 0. (14.57)

The existence of the ghost is confirmed by detailed analysis of the 5D perturbations in the
de Sitter limit. There is a ghost mode in the scalar sector of the gravitational field – which
is more serious than the ghost in a phantom scalar field. It probably rules out the DGP,
since it is hard to see how an ultraviolet completion of the DGP can cure the infrared ghost
problem. Nevertheless, DGP is a useful and rich toy model for modified gravity, which is
very different from the f (R)model. Various attempts are underway to find a generalization
of the DGP that cures the ghost problem, but this is proving to be very difficult.

14.3.5 Normal (non-self-accelerating) DGP

The ‘normal’ (i.e. non-self-accelerating and ghost-free) branch of the DGP arises from a
different embedding of the DGP brane in the Minkowski bulk (see Figure 14.5). In the
background dynamics, this amounts to a replacement rc →−rc in (14.45) – and there is no
longer late-time self-acceleration. It is therefore necessary to include a � term in order to
accelerate the late universe:

H 2 + K

a2
+ 1

rc

√
H 2 + K

a2
= 8πG

3
ρ+ �

3
. (14.58)

Using the dimensionless crossover parameter defined in (14.49), the densities are related
at the present time by √

1−�K0 =−√�rc +
√
�rc +�m0 +��0 , (14.59)

which can be compared with the self-accelerating DGP relation (14.50).
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The ‘degravitation’ feature of normal DGP is that� is effectively screened by 5D gravity
effects. This follows from rewriting the modified Friedmann equation (14.58) in standard
GR form, with

�eff =�− 3

rc

√
H 2 + K

a2
<� . (14.60)

Thus 5D gravity in normal DGPcan in principle reduce the bare vacuum energy significantly.
However, Figure 14.5 shows that best-fit flat models, using geometric data, only admit
insignificant screening. The closed models provide a better fit to the data, and can allow a
bare vacuum energy term with ��0 > 1. This does not address the fundamental problem
of the smallness of ��0, but it is nevertheless an interesting feature.

We can also define an effective equation of state parameter via

�̇eff + 3H(1+weff)�eff = 0. (14.61)

At the present time (setting K = 0 for simplicity),

weff,0 =−1− (�m0 +��0 − 1)�m0

(1−�m0)(�m0 +��0 + 1)
<−1, (14.62)

where the inequality holds since �m0<1. This reveals another important property of the
normal DGP model: effective phantom behaviour of the recent expansion history. This is
achieved without any pathological phantom field (similar to what can be done in scalar–
tensor theories). Furthermore, there is no ‘big rip’ singularity in the future associated with
this phantom acceleration, unlike the situation that typically arises with phantom fields. The
phantom behaviour in the normal DGPmodel is also not associated with any ghost problem –
indeed, the normal DGP branch is free of the ghost that plagues the self-accelerating DGP.

Perturbations in the normal branch have the same structure as those in the self-accelerating
branch, with the same regimes – i.e. below the Vainshtein radius (recovering a GR limit),
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up to the Hubble radius (Brans–Dicke behaviour), and beyond the Hubble radius (strongly
5D behaviour). The quasistatic approximation and the numerical integrations can be simply
repeated with the replacement rc → −rc (and the addition of � to the background). In
the sub-Hubble regime, the effective Brans–Dicke parameter is still given by (14.51) and
(14.52), but now we have ωBD > 0 – and this is consistent with the absence of a ghost.
Furthermore, a positive Brans–Dicke parameter signals an extra positive contribution to
structure formation from the scalar degree of freedom, so that there is less suppression of
structure formation than in �CDM – the reverse of what happens in the self-accelerating
DGP. This is confirmed by computations.

The closed normal DGP models fit the background expansion data reasonably well.
They may be compared with f (R) models: both types of model lead to less suppression
of structure than �CDM, but they produce different ISW effects. However, in the limit
rc →∞, normal DGP tends to ordinary �CDM, hence observations which fit �CDM will
always just provide a lower limit for rc.

14.4 Constraining effective theories

The concept of low-energy effective theories is extremely useful in physics. One of the
most prominent examples is superconductivity. It would be impossible to describe this
phenomenon by using full quantum electrodynamics with a typical energy scale of MeV,
where the energy scale of superconductivity is milli-eV and less. However, many aspects
of superconductivity can be successfully described with the Ginzburg–Landau theory of
a complex scalar field. Microscopically, this scalar field is to be identified with a Cooper
pair of two electrons, but this is irrelevant for many aspects of superconductivity. Another
example is weak interaction and four-Fermi theory. The latter is a good approximation to
weak interactions at energy scales far below the Z-boson mass. Most physicists also regard
the Standard Model of particle physics as a low-energy effective theory which is valid below
some high-energy scale beyond which new degrees of freedom become relevant, be this
supersymmetry, grand unified theory or string theory.

Some models of dark energy have unusual Lagrangians that cannot be quantized in the
usual way, e.g. because they have non-standard kinetic terms. We then simply call them
‘effective low-energy theories’ of some unspecified high-energy theory. Similarly, some
modifications of GR, such as those we discussed above, should also be seen as effective low-
energy theories. Without knowledge of the complete theory, the danger is that unconstrained
arbitrariness can be introduced via effective theories. However, some theoretical constraints
can be imposed on low-energy effective theories.

The requirements for a physical theory are a matter of debate. A possible list is as follows
(see Durrer and Maartens (2008) for further discussion):

1. A fundamental physical theory allows a Lagrangian formulation.
2. Lorentz invariance.
3. No ghosts.
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4. No tachyons (i.e. potentials without a minimum).
5. No superluminal motion.

Which of these properties may be lost if we ‘integrate out’ high-energy excitations and
consider only processes which take place at energies below some cutoff scaleEc? We cannot
completely ignore all particles with masses above Ec, since in the low-energy quantum
theory they can still be produced ‘virtually’, i.e. for a time shorter than 1/Ec. This is
not relevant for the initial and final states of a scattering process, but plays a role in the
interaction.

The Lagrangian formulation will survive if we proceed in a consistent way by simply
integrating out the high-energy degrees of freedom.

The high-energy cutoff will be given by some mass scale, i.e. some Lorentz-invariant
energy scale of the theory, and therefore the effective low-energy theory should also admit a
Lorentz-invariant Lagrangian. Lorentz-invariance is not a high-energy phenomenon which
can simply be lost at low energies.

Effective theories with no ghosts or serious tachyon have an energy functional which
is bounded from below – and that low-energy property is not removed by integrating out
excitations with E >Ec.

What about superluminal motion and causality? One can argue that in cosmology we do
have a preferred frame, the cosmological frame, hence Lorentz invariance is broken and
we can simply demand that all superluminal modes of a field propagate forward in cosmic
time. Then no closed signal curves are possible. But there is a problem. Most solutions of
a Lagrangian theory do break several or most of the symmetries of the Lagrangian sponta-
neously. However, when applying a Lorentz transformation to a solution, we produce a new
solution that, from the point of view of the Lagrangian, has the same right of existence. If
some modes of a field propagate with superluminal speed, this means that their characteris-
tics are spacelike. The condition that the mode has to travel forward in time with respect to
a certain frame implies that one has to use the retarded Green’s function in this frame. Since
spacelike distances have no frame-independent chronology, for spacelike characteristics
this is a frame-dependent statement. Depending on the frame of reference, a given mode
can represent a normal propagating degree of freedom, or it can satisfy an elliptic equation,
a constraint.

14.5 Conclusion

14.5.1 Will evidence for dark energy/ modified gravity persist?

Major efforts are going into explaining the apparent acceleration of the universe; indeed
this is a central preoccupation of present-day cosmology. But in accord with the philosophy
laid out in the preface, we need to ask: ‘Will the apparent acceleration go away as more data
are collected and the observations are reinterpreted?’ Could it in fact be ephemeral, so that
future generations will look back and say, they got it wrong: they misunderstood the data.
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The evidence for a late-time cosmic acceleration, or a weakening of Einstein gravity on
large scales, continues to mount, as the number of experiments and the quality of data grow.
It is possible that some of the evidence may weaken or fall, despite extensive efforts to
check that observations are not being misinterpreted or are not subject to strong systematic
uncertainties. (See Kirshner (2009) for the case of SNIa.)

For example, if new evolutionary effects are discovered in SNIa, this could undermine the
evidence from their luminosities for acceleration/ gravity-weakening. But there is a network
of independent observations that go into the conclusion about acceleration. For example, if
we omit the SNIa data, then the BAO scale and the distance to the last scattering surface of
the CMB still provide strong evidence.

It therefore seems unlikely that the evidence will go away, within the framework of a
RW geometry, i.e. assuming that the universe at late times is adequately described as a
perturbation of a RW background, and that this background is fixed from inflation up to the
present day. This assumption is an essential target for ongoing investigation. We need to
determine whether there is a theoretical misinterpretation of the data, based on a previously
unrecognized role of nonlinear inhomogeneities that invalidates a perturbed RW model with
fixed background. This alternative is discussed in the following two chapters.

14.5.2 Probing gravity in a RW framework

Assuming that a RW framework is applicable, the revolutionary discovery by observational
cosmology confronts theoretical cosmology with a major problem – how to explain the
origin of the acceleration. The core of this problem may be ‘handed over’ to particle physics,
since we require, at the most fundamental level, an explanation for why the vacuum energy
either has an incredibly small and fine-tuned value, or is exactly zero. Both options violently
disagree with naive estimates of the vacuum energy.

If one accepts that the vacuum energy is indeed non-zero, then the dark energy is described
by �, and the �CDM model is the best current model. The cosmological model requires
completion via developments in particle physics that will explain the value of the vacuum
energy. In many ways, this is the best that we can do currently, since the alternatives to
�CDM, within and beyond GR, do not resolve the vacuum energy crisis, and furthermore
have no convincing theoretical motivation. None of the contenders so far appears any better
than �CDM, and it is fair to say that at the theoretical level, there is as yet no serious
challenger to �CDM. One consequence of this is the need to develop better observational
tests of �CDM, which could in principle rule it out, e.g. by showing, to some acceptable
level of statistical confidence, that w �= −1. However, observations are still quite far from
the necessary precision for this.

It remains necessary and worthwhile to continue investigating alternative dark energy
and modified gravity models, in order better to understand the space of possibilities, the
variety of cosmological properties, and the observational strategies needed to distinguish
them. The lack of any consistent and compelling theoretical model means that we need
to keep exploring alternatives – and also to keep challenging the validity of GR itself on
cosmological scales.
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We have focused in this chapter on two of the simplest infrared-modified gravity models:
f (R) (the simplest scalar–tensor models), and DGP (the simplest brane-world models).
In both types of model, the new scalar degree of freedom introduces severe difficulties at
theoretical and observational levels. The f (R) models may be ruled out by the presence
of singularities that may exclude neutron stars (even if they can match all cosmological
observations). And the DGP models are probably ruled out by the appearance of a ghost
in the asymptotic de Sitter state – as well as by a combination of geometric and structure-
formation data. There is no sign as yet of a serious contender for a consistent and ‘not
unnatural’ modified gravity theory.

Nevertheless, f (R) and DGP models are very important toy models – intensive
investigation of them has left an important legacy, in a deeper understanding of:

• the interplay between gravity and expansion history and structure formation;
• the relation between cosmological and local observational constraints;
• the special properties of GR itself;
• the techniques needed to distinguish different candidate models, and the limitations and

degeneracies within those techniques;
• the development of tests that can probe the validity of GR itself on cosmological scales,

independent of any particular alternative model.

The last point is one of the most important by-products of the investigation of modified
gravity models. It involves a careful analysis of the web of consistency relations that link the
background expansion to the evolution of perturbations, and opens up the real prospect of
testing general GR well beyond the Solar System and its neighbourhood. (For recent reviews
and work, see Zhang et al. (2007), Reyes et al. (2010), Pogosian et al. (2010), Daniel et al.
(2010), Jain and Khoury (2010).)

14.5.3 Dark energy and the far future universe

Will the universe expand forever, cooling indefinitely and so leading to the cessation of all
physical phenomena because no free energy is left to sustain any activity of any kind? Or will
it rather recontract to a big crunch in the future, with ever-increasing temperatures leading
to the destruction of all physical structures in a time-reversed version of the big bang? The
outcome depends firstly on the nature of dark energy: will the present acceleration of the
universe, driven by a dark energy field, carry on for ever? Is the dark energy a field that
might decay away in the future?

If the dark energy is in fact a constant, then in the future as the matter density redshifts
to ever smaller values, � will dominate because it dominates today, and the universe will
undergo an accelerating expansion forever. It will get cooler and cooler, stars will die out
and astrophysics will end, life will come to an end, even matter will eventually decay away.
This fate has been called a ‘heat death’ because it signifies the ultimate triumph of entropy,
as stated by Thomson (Lord Kelvin) (1862):

The second great law of thermodynamics involves a certain principle of irreversible action in
Nature. It is thus shown that, although mechanical energy is indestructible, there is a universal
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tendency to its dissipation, which produces gradual augmentation and diffusion of heat, ces-
sation of motion, and exhaustion of potential energy through the material universe. The result
would inevitably be a state of universal rest and death, if the universe were finite and left to
obey existing laws.

Suppose, however, that dark energy is time dependent and eventually becomes dynami-
cally irrelevant, decaying away to zero either through a transition to a new lower vacuum
state – a potentially catastrophic event – or else smoothly because it eventually decays
away at a faster rate than does matter. Then ultimately matter will dominate again, and the
universe will decelerate from then on. So the possibility arises of expansion to a maximum
radius and subsequent recollapse.

In that case, the outcome depends on the second issue to take into account, namely the sign
K of spatial curvature. Assuming the matter always obeys the energy inequalities (which is
likely in view of their ever diluting density), recollapse occurs if and only if K > 0. Then
there will be a heat death in the obvious sense, with everything destroyed by indefinitely
increasing temperature, in a time-reversed image of the Big Bang, but not identical in its
details. All ordered structures are destroyed, and at even later times the universe either ends
up at a final singularity, an end to space and time, mirroring the start of the universe at
a final singularity; or quantum gravity effects cause the universe to bounce, leading to an
oscillating universe (Section 20.6).

It is not clear how we can ever determine whether a time-varying dark energy will
eventually decay away to zero. As the current data are consistent with w = −1, perhaps
the odds are marginally on the first option: eternal expansion will occur (as favoured by
chaotic inflationary models). However, this is certainly not a definite conclusion: it is a topic
meriting further investigation, and emphasizes the importance of observationally testing the
sign of �K0 as well as the issue of whether w is constant or not.

A final comment: the discussion above would have to be revisited if it turned out that
there is after all no dark energy, but that either modified gravity, or nonlinear effects in GR
mimic acceleration.



15 ‘Acceleration’ from large-scale inhomogeneity?

As discussed in the previous chapter, the explanation of dark energy is a central preoccupa-
tion of present-day cosmology. Its presence is indicated by the apparent recent speeding up
of the expansion of the universe indicated by SNIa observations, which is usually taken to
be caused by quintessence or a cosmological constant, and is consistent with other obser-
vations such as those of anisotropies and large-scale structure studies. Like dark matter, its
existence was discovered, not predicted. The astronomical observations are being refined in
many sophisticated ways and used to confirm the acceleration data and test the equation of
state of the hypothetical dark energy. Whether its density is constant or varying, its existence
is a major problem for theoretical physics. It is therefore crucial to pursue the possibility of
other theoretical explanations.

The deduction of the existence of dark energy assumes that the universe has a RW geom-
etry on large scales. However, the interpretation of the observations is ambiguous. They
can at least in principle be accounted for without the presence of dark energy, if we allow
inhomogeneity. This can contribute in one or both of two ways: locally via backreaction
and associated observational effects, as discussed in the next chapter, and globally via
large-scale inhomogeneity, considered in this chapter.

Here we consider the possibility that what appears to be the acceleration of an FLRW
universe due to dark energy, is in fact rather a manifestation of Hubble-scale inhomogeneity
in a universe such as that described by the Lemaître–Tolman–Bondi (LTB) models discussed
in the next section, where we are near the centre of a void. There is then no need for dark
energy. We show that the redshift–distance relation for distant SNIa is compatible with the
proposal that we may be measuring spatial inhomogeneity, rather than acceleration of an
FLRW universe. Then we show that the other cosmological data may also be fitted by such
models. Finally we consider potentially viable further observational tests of this hypothesis.1

A key issue is whether the Copernican Principle holds within the observed region of the
universe. It is the foundation of the standard model, and so needs to be subjected to all
possible tests, irrespective of the issue of dark energy.

15.1 Lemaître–Tolman–Bondi universes

We assume isotropy of the spacetime, with its matter content well described by zero pres-
sure dust matter. This leads to the simplest inhomogeneous cosmology – the LTB model

1 Szekeres inhomogeneous models have been used in a similar way; see Chapter 19.
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(Lemaître, 1933b, Tolman, 1934, Bondi, 1947), which is inhomogeneous in the radial direc-
tion only. In its application later in this chapter, we assume the Earth is at or near the centre
of isotropy.

This general spherically symmetric metric for dust is given in synchronous comoving
coordinates by

ds2 =−dt2 +X2(t ,r)dr2 +R2(t ,r)d�2 , uµ = δµ0, (15.1)

where R is the areal radius, since the proper area of a sphere r =const, t =const, is 4πR2.
Solving the EFE (Bondi, 1947) shows that

ds2 =−dt2 + [R′(t ,r)]2
1+ 2E(r)

dr2 +R2(t ,r)d�2 , (15.2)

where a prime denotes ∂/∂r and R obeys a generalized Friedmann equation,

Ṙ(t ,r)=±
[ 2m(r)

R(t ,r)
+ 2E(r)+ 1

3
�R2(t ,r)

]1/2
. (15.3)

Here E(r) is an arbitrary function, often written as 2E =−Kf (r)2, where K =±1 or 0.2

The density is given by

4πGρ(t ,r)= m′(r)
R2(t ,r)R′(t ,r)

. (15.4)

The differential equation (15.3) with � = 0, like (9.22), can be completely integrated as
follows. The solution for E = 0 is

t − tB(r)=±2R3/2[18m(r)]−1/2, (15.5)

where tB is an arbitrary function of r . For E �= 0, in terms of a parameter η= η(t ,r),

t − tB(r)=±h(η)m(r)f−3(r), R = h′(η)m(r)f−2(r), (15.6)

h(η)= {η− sinη, sinhη−η} for sgn(E)= {−1,+1} . (15.7)

Putting h = η3/6 in (15.6) gives (15.5). Note that, strictly speaking, the three types of
solution apply when RE/m > 0, = 0 and < 0, respectively, since E = 0 at a spherical
origin in all cases. Solutions of (15.3) with � �= 0 may, but do not necessarily, require
elliptic functions (Stephani et al., 2003).

The LTB model is characterized by three arbitrary functions E(r), m(r) and tB(r) of the
coordinate radius r . E(r)≥−1 has a geometrical role, determining the local ‘embedding
angle’of spatial slices, and also a dynamical role, determining the local energy per unit mass
of the dust particles, and, hence, the type of evolution ofR.m(r) is the effective gravitational
mass within comoving radius r . tB(r) is the local time at which R = 0, i.e. the local time
of the Big Bang – if tB �= const, we have a non-simultaneous bang surface. Specification
of these three arbitrary functions fully determines the model, and while each of them can
be given some type of interpretation for arbitrary choice of the radial coordinate r , there is
still a freedom to choose this coordinate, leaving two physically meaningful free functions,

2 Pseudo-spherical and plane versions of these models are discussed in Chapter 19.
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e.g. two of r = r(m), E=E(m), and tB = tB(m). For more details of the dynamics of these
models and its relation to initial data, see Bolejko et al. (2010).

Aphysical limitation on the choices of the arbitrary functions is that ifR′ = 0 we may have
a ‘shell-crossing singularity’, where comoving shells of distinct r collide (Hellaby and Lake,
1985). This equation also holds at an extremum of density if m′ and 1+ 2E have zeros of
the same order.

For particular choices of these initial data, we obtain FLRW dust models:

2E(r)=−Kr2 , R(t ,r)= a(t)r , m(r)= 4π

3
ρ(t)R3. (15.8)

15.1.1 Observer’s past light-cone

We now take the area distance R and density ρ as given on the observer’s past light-cone
as functions of distance, for example being observationally determined as functions of
redshift. We wish to express the three arbitrary LTB functions in terms of these observable
relations, so characterizing the LTB model that fits the observations, following the argument
of Mustapha, Hellaby and Ellis (1999).

Special observational coordinates

As our observations of the sky are essentially based at a single event on cosmological scales,
we only need to be able to locate a single light-cone; we do not need a general solution
for all null geodesics. On radial null geodesics, ds2 = 0 = d�; so from (15.2) if the past
light-cone of the observation event (t = t0, r = 0) is given by t = t̂ (r), then t̂ satisfies

dt̂ =−R′(t̂(r),r)√
1+ 2E

dr =− R̂′
√

1+ 2E
dr . (15.9)

We use a hat to denote a quantity evaluated on the observer’s light-cone, t = t̂ (r); for
example R(t̂(r),r) := R̂. Now if we choose r so that, on the past light-cone of (t0,r),

R′(t̂(r),r)= R̂′ = √
1+ 2E , (15.10)

then the incoming radial null geodesics are given by

t̂ (r)= t0 − r . (15.11)

Thus we can choose coordinates so that our particular past light-cone is conveniently given in
conformally flat coordinates (note that in general no other past light-cone will be expressed
in this way).

With our coordinate choice (15.10), the density (15.4) and the Friedmann equation (15.3)
with �= 0 become

4πρ̂R̂2 = m′
√

1+ 2E
, (15.12)

[
∂R(t ,r)

∂t

]
t=t(r)

=±
√

2m

R̂
+ 2E . (15.13)
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Finding the geometry from observables

If we know R̂(r) and ρ̂(r) from observations, where r = r(z), we want to derive the rest
from these data. Here we determine the relations in terms of r; in the next section, we turn
them into relations in terms of z.

From the total derivative of R on the light-cone, the coordinate conditions give

dR̂

dr
= R̂′ + ̂̇R dt̂

dr
. (15.14)

By (15.11) and (15.13) it follows that

dR̂

dr
−√

1+ 2E =−̂̇R =∓
√

2m

R̂
+ 2E . (15.15)

We solve for 2E(r) by squaring both sides and rearranging:

1+ 2E =
(
2

dR̂

dr

)−2[(dR̂

dr

)2 + 1− 2
m

R̂

]2
. (15.16)

This expression will tell us under what circumstances (or for which regions) the spatial
sections are hyperbolic 1 + 2E > 1, parabolic 1 + 2E = 1 or elliptic 1 + 2E < 1, based
on data obtained from the light-cone. We now use the expression for the density on the
light-cone to find a linear first-order differential equation for m(r). Eliminating 1 + 2E
between (15.16) and (15.12), we get

dm

dr
+ 4πGρ̂R̂

(dR̂

dr

)−1
m= 2πGρ̂R̂2

(dR̂

dr

)−1[(dR̂

dr

)2 + 1
]
. (15.17)

Note the relation,

τ(r) := t̂ (r)− tB(r)= t0 − r − tB(r), (15.18)

which can be interpreted as proper time from the bang surface to the past light-cone along
the particle world lines.

Assuming one knows R̂(r), with m given by (15.17) and E by (15.16), we can solve for
η̂ and then τ(r) from (15.6)–(15.7). Then tB(r) follows.

15.1.2 Origin conditions

At the origin of spherical coordinates, r = 0, where R(t ,0)= 0 and Ṙ(t ,0)= 0 for all t , we
assume that the density is non-zero, that the type of time evolution (hyperbolic, parabolic
or elliptic) is not different from its immediate neighbourhood, and that all functions are
smooth – i.e. functions of r have zero first derivative there. Thus (15.14) shows thatRE/m
and E3/2/m must be finite at r = 0, and (15.3) shows that E → 0 and hence m→ 0 and
E ∼m2/3 at r = 0. Equations (15.14) and (15.15) become

d̂R

dr

∣∣∣
r=0

= R̂′|r=0 = dR̂

dr

∣∣∣
r=0

=√
1+ 2E = 1, (15.19)

and thus R̂ ∼ r to lowest order near r = 0. We can verify that the origin conditions satisfy
(15.17) to order r2 and (15.16) trivially to order r0.
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15.1.3 Redshift–distance formula

We use the fact that in the geometric optics limit, for two light rays emitted on the world
line at re with time interval δte = t+(re)− t−(re) and observed on the central world line
with time interval δto = t+(0)− t−(0),

1+ z= δto

δte
. (15.20)

The incoming radial null geodesics are given by dt =−R′(t ,r)(1+2E)−1/2dr , so for two
successive light rays, − and +, passing through two nearby comoving world lines rA and
rB = rA+ dr at times t−A , t−B , t+A and t+B ,

d(δt)= δtB − δtA = dt+− dt− =
[−R′(t+,r)+R′(t−,r)

]
√

1+ 2E
dr . (15.21)

Consequently,

d ln δt =− 1√
1+ 2E

∂R′(t ,r)
∂t

dr . (15.22)

Then, by integrating along the light-ray and applying this to the log of (15.20), the redshift
is given by

ln(1+ z)=
∫ re

0
Ṙ′(t ,r)(1+ 2E)−1/2 dr , (15.23)

for the central observer at r = 0, receiving signals from an emitter at r = re.
We need to find the redshift z explicitly in terms of other observables. Differentiating

(15.3) with respect to r , and using (15.16), (15.12), (15.15) and (15.23), it follows that

d

dr
ln(1+ z)=−

(dR̂

dr

)−1[d2R̂

dr2
+ 4πGρ̂R̂

]
. (15.24)

As mentioned above, observations are in terms of z, rather than the unobservable coordinate
r . How this works will be addressed in the next section.

Exercise 15.1.1 Verify that imposing conditions (15.8) on a LTB model does indeed give an
FLRW model.

15.2 Observables and source evolution

The particles of the ‘dust’ are galaxies (or perhaps clusters of galaxies). For simplicity we
confine ourselves to one type of cosmic source and only consider bolometric luminosities.
We shall assume that the absolute bolometric luminosity L of each source can evolve with
time, and that the number density of sources can also evolve. The latter we represent as an
evolving mass per source, M , which gives the total local density when multiplied by the
source number density.

The two source evolution functions are most naturally expressed as functions of local
proper time since the big bang, L(τ) and M(τ). However, in a LTB model the time of the
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bang may vary from point to point, so that the age of objects at redshift z is uncertain both
because the bang time is uncertain and because the location of the light-cone is uncertain.The
proper time from bang to light-cone will be a function of redshift, τ(z), and the projections
of the evolution functions on the light-cone we write as L̂ and M̂ . Of course, τ(z) is
unknown until we have solved for the LTB model that fits the data. However, for the
sake of simplicity, we take L̂ and M̂ to be given as functions of z, to illustrate how the
three quantities – cosmic evolution, cosmic spatial variation, and source evolution – are
mixed together in the luminosity and number count observations. A treatment dealing with
evolution functions based on τ would involve solving a much more complicated set of
differential equations in parallel.

The key point that emerges is that if we have no constraints on source evolution, then
we cannot determine the cosmic geometry: on the contrary, what usually happens is that
one assumes FLRW geometry and then uses that assumption to determine what the source
evolution was. However, if one can find a set of sources where one can believe that source
evolution is negligible (i.e. source properties are independent of z), then one can use the
observational relations to test spatial homogeneity. SNIa are the sources that have made
this possibility a reality.

15.2.1 LTBmetric from area distance and number count observations

The area distance gives the true linear extent of the source from the measured angular size.
This is by definition the same as the areal radius in the LTB model R, which multiplies
the angular displacements to give proper distances tangentially. The projection onto the
observer’s light-cone gives the observable quantity R̂. The luminosity distance is theoret-
ically the same as the area distance (up to redshift factors) (Section 7.4.3), and is measurable
provided we know the true absolute luminosity L̂ of the source at the time of emission. If
the observed apparent luminosity is �(z) then

R̂2(z)= L̂(z)

�(z)
. (15.25)

The observational project is to get everything from R̂(z).
Let the observed number density of sources in redshift space be n(z) per steradian per

unit redshift interval, so that the number observed in a given redshift interval and solid angle
is nd�dz and over the whole sky this is 4πndz . Thus the total rest mass between z and
z+ dz is 4πM̂ndz, where M̂(z) =M(τ(z)) is the mass per source – i.e. the true density
over the source number density. This primarily represents the evolution in the number
density of sources. Given a local proper density ρ = ρ(t ,r), and its value on the light-cone
ρ̂, the total rest mass between r and r + dr is

ρ̂ d̂3V = ρ̂4πR̂2R̂′(1+ 2E)−1/2dr , (15.26)

where d̂3V is the proper volume on a constant time slice, evaluated on the light-cone. Hence
by (15.26) and (15.10),

R̂2ρ̂ dr = M̂ndz . (15.27)
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Thus we may substitute for R̂ and ρ̂ from (15.25) and (15.27).
We transform (15.24) to be in terms of redshift z, so finding

dR̂

dz

d2z

dr2
+ (1+ z)−1

[
(1+ z)2

d2R̂

dz2
+ dR̂

dz

](dz

dr

)2

=−4πGρ̂R̂ . (15.28)

Integrating with respect to r and using (15.27) plus the origin conditions
[(dz/dr)(dR̂/dz)]0 = [dR̂/dr)]0 = 1, gives

dz

dr
=
[dR̂

dz
(1+ z)

]−1[
1− 4π

∫ z

0

M̂(z̄)n(z̄)

R̂(z̄)
(1+ z̄)dz

]
, (15.29)

which leads to

r(z)=
∫ z

0
dz̃
[dR̂

dz̃
(1+ z̃)

][
1− 4π

∫ z̃

0

M̂(z̄)n(z̄)

R̂(z)
(1+ z̄)dz̄

]−1
. (15.30)

There are subtleties in the conditions for existence of r(z) and z(r) solutions (15.30)
(Mustapha, Hellaby and Ellis, 1999). These exist if and only if: (i) M̂ ,n, R̂,(1 + z) ≥ 0;
(ii) near z = 0, M̂n/R̂ ∼ zσ with σ > −1; (iii) dR̂/dz is finite everywhere; (iv) z(r) is
monotonic; (v) a condition on dR̂/dz near any maximum in R̂. Mustapha et al. (1998)
show that large enough inhomogeneities can create maxima and minima in z(r) and so
make r(z) multi-valued, especially near dR̂/dz = 0, in which case neither (iii) nor (iv)
would be satisfied. However, a multi-valued r(z) manifests itself in a R̂(z) graph that
loops. In practice, we do not expect to get a looping R̂(z) from the observational data. The
values of � and n at each z are averages over all measured values, and so are single-valued
by construction; if r(z) exists, then inverting it should not be a problem.

15.3 Can we fit area distance and number count observations?

The application of these models to the real universe starts by assuming isotropy about the
Earth (once our proper motion has been accounted for),3 and also that the post decoupling
universe is well described by zero pressure matter. Assuming that the above existence
conditions for r(z),z(r) hold, and that the further existence conditions for m(r) in Exercise
15.3.1 hold, we have (Mustapha, Hellaby and Ellis, 1999):

Theorem 15.1 LTB observations
For any given isotropic observations �(z) and n(z), with any given source evolution L̂(z)

and M̂(z), LTB metric functions can be found (with �= 0) to fit the observations.

To obtain the LTB mass, energy and bangtime functions (m, E, tB ) from observational
data and source evolution we proceed as follows.

• Average the discrete observed data for �(z,θ ,φ), n(z,θ ,φ) over the sky to obtain �(z),
n(z), and fit them to some smooth analytic functions (e.g. polynomials). (First correct

3 Later we consider models where we are near the centre.
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the data for known distortions and selection effects due to proper motions, absorption,
shot noise, image distortion, etc.)

• Choose evolution functions L̂(z), M̂(z).
• Determine R̂(z) from L̂(z) and �(z) using (15.25).
• Solve (15.30) for r(z) and hence z(r).
• Solve (15.17) and (15.27) for m(r).
• Determine E(r) from (15.16).
• Solve for η̂ from (15.6) and (15.7).
• Solve for τ(r) from (15.6) and (15.7) – then find L(τ) and M(τ).
• Determine tB(r) from (15.18).

In practice, these equations would be solved numerically, and in parallel rather than
sequentially; nevertheless the above would determine the numerical procedure within each
integration step.

By determining the three arbitrary functions, we have specified the LTB model that
fits the given observations and evolution functions. This result simply shows that we can
construct an inhomogeneous spherically symmetric exact solution of the field equations
that will fit any given source observations combined with any chosen source evolution
functions.

We assert, without proof, that if the given observations and source evolution functions
are reasonable, then the LTB arbitrary functions will generate a reasonable LTB model.
Our definition of ‘reasonable’ is intentionally rather vague. By reasonable observations we
obviously include the actual data, suitably processed to account for selection effects. We
also include ‘realistic’ hypothetical alternatives, but not functions that are wildly differ-
ent from reality. Reasonable evolution functions are hard to define since the actual ones
are not well known, especially at larger z. By a reasonable LTB model, we mainly mean
that the density and expansion rate will be within realistic ranges. A less crucial criter-
ion is that there will be no shell crossings too close to the past light-cone. Evolving the
model a long time away from the light-cone, either forwards or backwards, may intro-
duce shell crossings because the data are imprecise. In general we do not expect shell
crossings on the large scale – i.e. two or more different large-scale flows of galaxies in
the same region – nevertheless it is conceivable and in that case the LTB description is
inapplicable.

In Section 8.5.5 we discussed how to test for homogeneity via observations on LTB past
light-cones. Here we revisit the result.

Theorem 15.2 Conditions for homogeneity
An LTB universe (with �= 0) is FLRW if and only if the area distance and number count
relations as functions of z take the FLRW form:

R̂(z)= q0z+ (1− q0)
(
1−√

2q0z+ 1
)

H0q0
2(1+ z)2

, (15.31)

n(z)= 3

4πM̂(z)

[
q0z+ (1− q0)(1−√

2q0z+ 1)
]2

H0q
3
0 (1+ z)3

√
2q0z+ 1

. (15.32)
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This follows by showing from (15.31) and (15.32) that

m(z)=H 2
0 q0R̂

3(z)(1+ z)3, 2E(z)= (1− 2q0)H
2
0 R̂

2(z)(1+ z)2. (15.33)

It then follows that m ∝ (2E)3/2, and consequently the universe has a simultaneous
bangtime.

This proof is very model dependent: it relies on a specific theory of gravity (GR) and
a specific matter model (dust). What we would really like is a test of spatial homogeneity
that is not so model dependent. We shall see below that such tests are indeed possible.

Exercise 15.3.1 Show that necessary and sufficient conditions for existence of solutions m(r)
to (15.17) are:
(i) M̂ ,n, R̂,dz/dr ≥ 0, ensuring ρ̂ ≥ 0;
(ii) R̂(r)= R̂(z(r)) has a power-law maximum of the form R̂∼ (r−rmax)

α with 1<α≤ 2.
(Mustapha, Hellaby and Ellis, 1999).

Exercise 15.3.2 Generalize the LTB observations result to � �= 0.

Exercise 15.3.3 Fill in the details of the FLRW observations case.

Problem 15.1 Generalize the FLRW observations result to � �= 0. (While the result will still
hold, proving it is complicated by the fact that simple analytic forms for the observational
relations are not available in general.)

15.4 Testing background LTB with SNIa and CMB distances

In practice, number count observations are not currently feasible for testing cosmological
models, and we need to look for other observations that will constrain the LTB background
model. The first acoustic peak in the CMB temperature power spectrum gives the angular
extent �A of the sound horizon at decoupling, and provides a high-redshift distance measure
DA(zdec). This can be used as a standard ruler in an FLRW model (see Section 13.2.4), and
it should remain a good approximation in LTB models that are close to FLRW models.

It is useful to recast the background metric in RW-like form:

ds2 =−dt2 + a2‖(t ,r)
1− κ(r)r2

dr2 + a2⊥(t ,r)r2d�2 , (15.34)

where the radial (a‖) and angular (a⊥) scale factors are related by a‖ = (a⊥r)′. The curvature
κ = κ(r) is a free function, and the two scale factors define two Hubble rates: H⊥(t ,r)=
(lna⊥)̇ and H‖(t ,r)= (lna‖)̇. The Friedmann equation is

H 2⊥(t ,r)=H 2⊥0(r)
[
�m0(r)a

−3
⊥ (t ,r)+�κ0(r)a

−2
⊥ (t ,r)

]
, (15.35)

�m0(r)+�κ0(r)= 1. (15.36)
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Fig. 15.1 LTB and�CDM fits to SNIa data. (Reprinted with permission from Alnes, Amarzguioui and Grøn (2006). Copyright by
the American Physical Society.)

Here �m0(r) is a free function, specifying the matter density parameter today. In general,
H⊥0(r) is also free, but if we enforce a uniform bangtime, it is fixed in terms of �m0(r).
This single free function is sufficient to fit the SNIa data (see Figure 15.1).

The free function�m0(r)may be parameterized in many different ways; this expands the
freedom to fit data – but it also undermines the statistical goodness of fit. It is preferable,
but difficult, to find physically motivated choices. One possibility is the Gaussian profile,

�m0(r)=�out + (�in −�out)exp−(r2/r2
0 ), (15.37)

where �in is the density parameter at the centre, �out is the asymptotic density parameter
and r0 determines the void size. A void with much sharper transition from the local to the
asymptotic value is given by

�m0(r)=�out + (�in −�out)
[
1+ e−r0/�r

][
1+ e(r−r0)/�r

]−1
, (15.38)

where the transition occurs at r0, with width �r .
With one free function we can design LTB models that reproduce any distance modulus.

Since the shear vanishes at the centre, the Raychaudhuri equation (6.4) with �= 0, shows
that (�̇+�2/3)0 = −4πGρ0 < 0 – i.e. q0 > 0 on the central world line. If we choose
�m0(r) to reproduce exactly a �CDM distance modulus, with q0 < 0, then the LTB model
is forced to have a spiked radial density profile which is non-differentiable at the origin.
However, this non-differentiability is irrelevant for cosmological modelling: a void model
should be constrained directly by data, and not matched to a best-fit �CDM model. If this
is done, a smooth void is perfectly compatible with present SNIa data.

Many specific examples have been given of LTB models that fit the current SNIa
data; see e.g. Alnes, Amarzguioui and Grøn (2006), Biswas, Mansouri and Notari (2007),
Ishak et al. (2008), Yoo, Kai and Nakao (2008), Alexander et al. (2009). A typical observa-
tionally viable model is one in which we live in a large underdense void, roughly centrally
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version of this figure is available online.

(within∼ 10Mpc of the centre): a location too far off-centre induces too large a dipole in the
CMB. If the distance modulus is close to that of �CDM, then the comoving size of the void
is O(Gpc). February et al. (2010) present a parameterization of a void which can repro-
duce concordance model distances to arbitrary accuracy, but with a smooth density profile
everywhere (see Figure 15.2). SNIa data place limits on the size of a void which is roughly
independent of its shape. However, the sharpness of the profile at the origin cannot be well
constrained due to SNIa data being dominated by peculiar velocities in the local universe.

The background LTB model needs to fit more than the SNIa distance data. All observa-
tions that probe the background geometry need to be fitted. If the universe outside the void is
approximately a homogeneous Einstein–de Sitter model, the position of the first CMB peak
can also be made to match the WMAP data (February et al., 2010). For FLRW models, the
BAO scale in the matter power spectrum is a third independent standard ruler that provides
powerful constraints on the background model (Section 13.2.2). Since the background is
homogeneous, the evolution of the BAO feature is a probe only of the background geometry
and not of the density perturbations. If the BAO feature evolves in LTB as it does in FLRW,
then BAO data could rule out LTB void models together with SNIa and CMB distance data
(García-Bellido and Haugbølle, 2008, Zibin, Moss and Scott, 2008). However, the evolu-
tion of the BAO feature on an LTB background, especially at low redshifts, could well
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Fig. 15.3 LTB Gaussian model gives a reasonable fit to SNIa and combined CMB/ BAO distance data. (From Sollerman et al.
(2009). Reproduced by permission of the AAS.)

deviate from the evolution on a homogeneous background. This remains an open problem,
which requires further analysis of the perturbations.

Sollerman et al. (2009) use SNIa data (SDSS-II Supernova Survey together with other
data sets), and then a combined CMB distance and BAO distance measure – assuming that
the BAO feature evolves as in FLRW. A model with Gaussian density profile (15.37) is
compatible with both constraints, as shown in Figure 15.3.

15.5 Perturbations of LTB

Just as in the case of the FLRW models (see Chapter 13), one can test the background LTB
model – Sections 15.3 and 15.4 above – and test the perturbed LTB model, where small-
scale inhomogeneities develop dynamically in the large-scale background. The aim is to
confront the LTB models with the wealth of data in the CMB anistropies, galaxy distribution
and weak lensing.

The equations for perturbations of LTB models have been presented in full generality
by Clarkson, Clifton and February (2009). At the time of writing, the application of the
general equations to the structure formation problem remains incomplete, given the much
greater complexity of the problem than in the FLRW case. We deal with the topic in outline
only, and refer the reader to the literature for the details. A good summary is given by
Clarkson and Maartens (2010).

15.5.1 1+1+2 formalism

Two different approaches have been used to study perturbations of LTB models. The first is
a covariant 1+ 1+ 2 formalism, building on the work by Clarkson and Barrett (2003) for
the case of Schwarzschild black holes. Here the 1+3 covariant approach (Section 10.3) is
extended to a 1+ 1+ 2 covariant formalism by introducing a radial unit vector in addition
to the timelike unit vector ua , and decomposing all covariant quantities with respect to
both vectors. The odd and even parity perturbations may be unified by the discovery of a
covariant and gauge-invariant transverse-traceless tensor describing gravitational waves,
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which satisfies a covariant wave equation equivalent to the Regge–Wheeler equation for
both even and odd parity perturbations. Clarkson (2007) uses this to obtain a covariant
decomposition of the EFE which is particularly suitable for perturbations of spherically
symmetric – and general locally rotationally symmetric – spacetimes.

Application of this theory to LTB models is given in Zibin (2008), where the evolu-
tion of perturbations is determined by a set of linear transfer functions. If decaying modes
are ignored (to be consistent with the standard inflationary paradigm), and the ‘silent’
approximation is used, where the magnetic part of the Weyl tensor is neglected, then the
standard techniques of perturbation theory on homogeneous backgrounds, such as harmonic
expansion, can be applied, and results closely paralleling those of familiar cosmological
perturbation theory can be obtained. The same approach is used in Dunsby et al. (2010).
The ‘silent’ approximation may be a good approximation, but there is no strong motiva-
tion for this. Essentially the mode coupling inherent for inhomogeneous backgrounds is
switched off, and in general this could remove key physical features. Determination of the
observational implications of these equations has yet to be done, but the foundations have
been laid.

15.5.2 2+2 covariant formalism

The second approach is based on a 2 + 2 covariant approach developed for stellar and
black hole physics by Gerlach and Sengupta and by Gundlach and Martin-Garcia. It has
been adapted and applied to the LTB cosmological case by Clarkson, Clifton and February
(2009), who present this theory in a fully general and gauge-invariant form.

In FLRW, linear perturbations split into scalar, vector and tensor modes that decouple
from each other, and so evolve independently. Such a split cannot usefully be performed
in the same way in a spherically symmetric spacetime, as the background is no longer
spatially homogeneous, and modes written in this way couple together. Instead, there
exists a decoupling of the perturbations into two independent sectors, called ‘polar’ (or
even) and ‘axial’ (or odd), which are analogous, but not equivalent, to scalar and vec-
tor modes in FLRW. These are based on how the perturbations transform on the sphere:
roughly speaking, polar modes are ‘curl’-free on S2 while axial modes are divergence-
free. Further decomposition may be made into spherical harmonics, so that all perturbative
variables are for a given spherical harmonic index �, and modes decouple for each � –
analogously to k-modes evolving independently on an FLRW background. There is a
natural gauge – the Regge–Wheeler gauge – in which all perturbation variables are gauge-
invariant (rather like the longitudinal gauge in FLRW perturbation theory). Unfortunately,
the interpretation of the gauge-invariant variables is not straightforward in a cosmological
setting.

Most of the interesting physics happens in the polar sector and the general form of polar
perturbations in the Regge–Wheeler gauge is

ds2 =− [1+ (2η−χ −ϕ)Y ]dt2 − 2a‖ςY√
1− κr2

dtdr

+ [1+ (χ +ϕ)Y ]
a2‖dr2

(1− κr2)
+ a2⊥r2(1+ϕY )d�2, (15.39)



408 Chapter 15 ‘Acceleration’ from large-scale inhomogeneity?

where η(t ,r), χ(t ,r), ϕ(t ,r) and ς(t ,r) are gauge-invariant variables. The spherical
harmonic Y has an implicit sum over �,m, e.g.

ϕY :=
∞∑
�=0

�∑
m=−�

ϕ�m(t ,r)Y�m(θ ,φ). (15.40)

ϕ contains scalar, vector and tensor modes; ς contains vector and tensor modes, while χ is
a tensor mode. For �≥ 2, we have η= 0. The general form of polar matter perturbations in
this gauge is given by

uµ =
[
1+ 1

2 (2η−χ −ϕ)Y ,

√
1− κr2

a‖
WY +ςY , V Y:θ , V Y:φ

]
, (15.41)

ρ = ρ̄(1+�Y), (15.42)

where V , W and � are gauge-invariant velocity and density perturbations and a colon
denotes covariant differentiation on the 2-sphere. In the Regge–Wheeler gauge, the gauge-
invariant metric perturbations are master variables and obey a coupled system of PDEs
which are decoupled from the matter perturbations. The matter perturbation variables are
then determined by the solution to this system. (See Clarkson, Clifton and February (2009)
for details.)

Scalar, vector and tensor perturbations interact: at a fixed time, density perturbations
in each r =const sphere grow at different rates and thus can generate vector and tensor
modes. We may expect structure to grow more slowly relative to FLRW, since there could
be dissipation of potential energy via gravitational radiation. The natural gauge-invariant
variables in LTB cosmology do not correspond straightforwardly to the usual FLRW vari-
ables, in the limit of spatial homogeneity. Clarkson, Clifton and February (2009) construct
new variables that reduce to pure scalar, vector and tensor modes in this limit. Application
of this approach to the LTB models, and determination of the observational implications,
is ongoing.

15.5.3 CMB in void models

For the CMB anisotropies, except on large angles, there are good arguments that the
FLRW results can be used and adapted in a simple way (Zibin, Moss and Scott, 2008,
Clifton, Ferreira and Zuntz, 2009,Vonlanthen, Räsänen and Durrer, 2011, Regis and Clarkson,
2010, Biswas, Notari and Valkenburg, 2010, Clarkson and Regis, 2011,Moss, Zibin and Scott,
2011).The physics of decoupling and line-of-sight effects contribute differently to the CMB,
and have different dependency on the cosmological model. In general inhomogeneous mod-
els, both pre- and post-decoupling effects will play a role, but Hubble-scale void models
allow an important simplification for calculating the moderate to high � part of the CMB
spectrum. This � range is where the statistical power of the data to constrain models is
strongest – on large scales, constraining power is undermined by cosmic variance.

The comoving scale of voids that closely mimic the standard distance modulus isO(Gpc),
while the sound horizon, which sets the largest scale seen in the pre-decoupling part of the
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power spectrum, is about 150Mpc. Thus, in any causally connected patch prior to decoup-
ling, the density gradient is very small. Furthermore, the comoving radius of decoupling
is > 10Gpc, on which scale the gradient of the void profile is small by assumption. This
suggests that before decoupling on small scales we can model the universe in disconnected
FLRW shells at different radii, with the shell of interest located at the distance where we see
the CMB. This may be calculated using standard FLRW codes, but with the line-of-sight
parts corrected for.

For line-of-sight effects, we need to use the full void model. The simple effect is deter-
mined by the background dynamics, which modifies the area distance to the CMB. This is
the important effect for the small-scale CMB. The more complicated effect is on the largest
scales through the ISW effect (see Tomita (2010) for the general formulae in LTB). This
requires the solution of the perturbation equations presented above. Indeed the large-angle
Sachs–Wolfe effect at decoupling may also be modified.

We note that at least some of the observed CMB dipole can arise because we are a bit
off-centre in a large void, and then we would need to re-evaluate the GreatAttractor analysis
and the observed alignment of the dipole and quadrupole.

CMB anisotropies – excluding the largest scales – can be fitted in void models in dif-
ferent ways. The CMB can be very restrictive on void models (Zibin, Moss and Scott,
2008, Clifton, Ferreira and Zuntz, 2009), although with a varying bangtime the data forH0,
SNIa and CMB can be simultaneously accommodated (Clifton, Ferreira and Zuntz, 2009).
Including inhomogeneous radiation in the background, the CMB can be accommodated
along with other local observations with a homogeneous bangtime, but with asymptotic
curvature at the CMB radius (Regis and Clarkson, 2010). It is an open question exactly
what constraints the small-scale CMB places on a generic void solution. It is remarkable
that large void models can reproduce the�CDM CMB power spectrum so closely. It is often
taken for granted that the CMB tells us that the universe is close to flat – these examples
show that curvature can in fact be very large, but inhomogeneous.

15.5.4 Large-scale structure and other observations

If LTB models are a viable alternative to �CDM, they need to fit not only the SNIa and
small to moderate scale CMB anisotropy data, but also the data on the large-scale CMB,
the matter distribution (including BAO) and lensing. Additional constraints from ages and
primordial element abundances must also be satisfied. Many detailed LTB models with large
central voids have been studied, and the resulting observational relations compared with
the data, at present assuming that LTB structural growth relations will be similar to those in
FLRW models. This may be an acceptable approximation, but it remains an open problem
at the time of writing whether the LTB perturbation equations confirm the approximation.

Essentially, one may be able to fit observations that probe different redshifts (e.g. CMB,
SNIa, BAO), because they correspond to different values of the radial variable r , and
there may be sufficient freedom in the LTB models to fit the data at all the relevant dif-
ferent distances (Alexander et al., 2009, Clifton, Ferreira and Zuntz, 2009). With different
observations at different redshifts, corresponding to different distances from the origin,
in principle we determine what the universe geometry must be at each radial distance to
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give the observed data. The real tests come from data that mix observations at different
redshifts, e.g. ISW, Sunyaev–Zel’dovich effect, BAO. Then one is seeing how the whole
integrates together: are the observations implied by different geometry at different distances
all consistent with each other?

Note that the process of fitting the model to the data here is not within an approach of
fine-tuning of the model: rather, the approach is to determine what the actual geometry
of the universe might be. Whether the resulting model determined in this way is probable
or not is a separate and independent issue. Here the issue is – are we using the best ways
possible for determining the actual geometry of what is there?

Approximations of the ‘silent’type have been used to estimate the BAO and other features
of the density perturbations on an LTB background (Zibin (2008), Dunsby et al. (2010),
Biswas, Notari and Valkenburg (2010), Moss, Zibin and Scott (2011)).

Observations that are more direct, i.e. less dependent on models of structure formation,
can lead to interesting results. For example, Regis and Clarkson (2010) consider the lithium
problem in the standard FLRW model: a substantial mismatch between the theoretical
prediction for 7Li from BBN and the value that we observe today. They find that both the
apparent acceleration and the lithium problem can be accounted for as different aspects of
cosmic inhomogeneity, without causing problems for other cosmological phenomena such
as the CMB; see Figure 15.4.

In summary, the current state of the problem is as follows.

• CMB. The details of an inhomogeneous radiation era still have to be investigated. To
calculate the large-scale CMB, there are several additional effects which must be taken
into account. The most important is the Sachs–Wolfe effect, which requires knowing the
perturbation spectrum at the time of decoupling on the largest angular scales. While it
might not deviate from FLRW for a central observer, this needs further investigation. In
addition, the ISW effect will contribute to the line-of-sight part of the CMB calculation.

• Structure formation. The complexity of the perturbation equations is a major stumbling
block. Attempts have been made to solve a limited subcase of the equations, but it is
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not clear how close those approximations are to the full solution. This is required for a
reliable estimate of corrections to the power spectrum and to the BAO feature.

• At the time of writing, it appears that simple LTB models are ruled out as an explanation
of dark energy: a varying bangtime can account for some observables individually, but
is not enough to simultaneously explain SNIa observations, the small-angle CMB, the
local Hubble rate and the kinetic Sunyaev–Zel’dovich effect (Bull, Clifton and Ferreira,
2011).

15.5.5 Dynamical history

Assuming that we can fit the observations by a large void model, can we find a dynamical
history – inflation followed by a HBB era – that can lead to such a model?The void model has
the same basic dynamics as the standard model, i.e. evolution along individual world lines
governed by the Friedmann equation, but with distance-dependent parameters. Can inflation
lead to it? This depends on the initial data, the amount of inflation, and the details of the infla-
ton fields.With multiple fields, a suitable inflationary potential, and the right choice of initial
data, there is sufficient flexibility that this should be possible. Specific models have been
proposed where inflation will indeed lead to large voids. Linde, Linde and Mezhlumian
(1995) achieve this via a particular measure. Afshordi, Slosar and Wang (2011) consider
two-field inflation with a suitable potential (‘multi-stream inflation’) that provides bifur-
cating paths from an initial to a final field state, with quantum tunneling possible between
them; the result is different numbers of inflationary e-foldings at different places, leading
to overdense or underdense spherical bubble formation.

15.6 Observational tests of spatial homogeneity

Assuming that LTB can fit all of the observations, how can we distinguish between it and
FLRW with dark energy?

Testing for homogeneity is not entirely straightforward even if the model is actually
homogeneous. Ribeiro (1992b), in the course of an attempt to make simple models of fractal
cosmologies using LTB models, reminds us of the need to compare data with relativistic
models not Newtonian approximations. Taking the Einstein–de Sitter model, and integrating
down the geodesics, he plotted the number counts against luminosity distances. At small
distances, where a simple interpretation would say the result looks like a uniform density, the
calculation is irrelevant because the distances are inside the region where we know things
are lumpy, while at greater redshifts the model universe ceases to have a simple power-law
relation of density and distance. Thus even Einstein–de Sitter may not seem homogeneous
if an inappropriate comparison is used. Kurki-Suonio and Liang (1992) emphasized the
ambiguity in reconstruction of density from light-cone observations in LTB models, because
one is trying to use one function, ρ(z), to find two metric functions. If the bangtime is
inhomogeneous, an overdensity in redshift space may correspond to an underdensity in real
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space. They conclude that using the FLRW relation between redshift and comoving distance
when there are inhomogeneities is ‘fundamentally self-inconsistent’.

One must therefore first ask ‘do (approximately) homogeneous models look homogen-
eous?’ Of course, they will if the data are handled with appropriate relativistic corrections,
and with suitable statistical methods, but to achieve such comparisons in general requires
the integration of the null geodesic equations in each cosmological model considered, and
this may be difficult. We then need to consider how to distinguish homogeneous and in-
homogeneous universes. Ideally, we need a model-independent test of the basic assumption
of most present-day cosmology: is an RW geometry the correct metric for the observed
universe on large scales? Is the Copernican Principle correct? Four kinds of tests have been
proposed, as we now discuss.

15.6.1 CMB-based tests

Some tests use scattered CMB photons to check spatial homogeneity (Goodman, 1995,
Caldwell and Stebbins, 2008). If the CMB radiation is anisotropic around distant observers
(as will be true in inhomogeneous models), Sunyaev–Zel’dovich scattered photons have a
distorted spectrum that reflects the spatial inhomogeneity. However, this test is somewhat
model dependent. It also has to take into account other possible causes of spectral distortion.

15.6.2 Direct observational tests: behaviour near origin

The geometry of the light-cone vertex must not have a cusp, as this implies a singular-
ity there. There are general regularity conditions at the centre, given in Section 8.2.1,
that must hold also in the special case of spherically symmetric inhomogeneous models
(Vanderveld, Flanagan and Wasserman, 2006). If the distance modulus in a LTB void model
without � behaves for small z as in standard �CDM models, it would imply a singularity
(Clifton, Ferreira and Land, 2008). Observational tests of this requirement may be possible
through sufficient intermediate redshift SNIa.

15.6.3 Direct observational tests: constancy of curvature

There are two geometric effects on distance measurements: the curvature bends null
geodesics and the expansion changes radial distances. These are coupled in RW models, as
expressed in the relation (13.4):

DL(z)= (1+ z)

H0
√−�K0

sin

(√−�K0

∫ z

0

dz′

H(z′)/H0

)
, (15.43)

but they are decoupled in LTB geometries.
In RW geometries, we can combine the Hubble rate and distance data to find the curvature

today, where D :=H0DL/(1+ z):

�K0 = [H(z)D′(z)/H0]2 − 1

D(z)2
. (15.44)
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This relation is independent of all other cosmological parameters, including dark energy
– and it is also independent of the theory of gravity. It can be used at a single redshift to
determine �K0. The exciting result of Clarkson, Bassett and Lu (2008) is that since �K0 is
independent of z, we can differentiate to get the consistency relation,

C(z) :=H 2
0 +H 2(z)

[
D(z)D′′(z)−D′(z)2

]
+H(z)H ′(z)D(z)D′(z)= 0. (15.45)

This is true only for a RW geometry: it is independent of curvature, dark energy, matter
content, and theory of gravity. Thus it gives the desired consistency test for spatial homo-
geneity. In realistic models we should expect C(z)∼ 10−5, reflecting perturbations about
the FLRW model related to structure formation. Errors may be estimated from a series
expansion,

C(z)=
[
q
(DL)
0 − q

(H)
0

]
z+O(z2), (15.46)

where q(DL)
0 is measured from luminosity distance data and q(H)

0 from the Hubble parameter.
It is simplest to measure H(z) from BAO data. Carrying out this test is only as difficult
as carrying out dark energy measurements of w(z) from Hubble data, which require H ′(z)
from distance measurements or the second derivative D′′

L(z).
This is the simplest direct test of spatial homogeneity, and its implementation should be

regarded as a high priority. If it confirms spatial homogeneity, that reinforces the evidence for
the standard view in a satisfying way. But if it does not, it has the possibility of undermining
the entire project of searching for a physical form of dark energy.

15.6.4 Direct observational tests: redshift drift

Uzan, Clarkson and Ellis (2008) use the time drift of the cosmological redshift as a test of
spatial homogeneity. In LTB models, using observational coordinates (Section 8.2.1),

ż(w0,y)=H0[1+ z(y)]−H(w0,y)− 3−1/2σ(w0,y), (15.47)

where σ is the shear scalar [(8.25)] and y is defined on the past light-cone by
∂w ln(B/A2)|w=w0 = 0. In RW models,

ż=H0(1+ z)−H(z), (15.48)

and this leads to a second consistency test. A non-vanishing ż−H0(1+ z)+H(z) at any
redshift would signal a violation of the Copernican Principle and so determine if our universe
is radially inhomogeneous. When combined with distance data, this extra observable allows
one to fully reconstruct the geometry of a LTB void, purely from background observations.
This is a difficult but practicable test (Dunsby et al., 2010, Clarkson and Maartens, 2010);
Figure 15.5 shows the kinds of error bounds that are in principle attainable.

15.6.5 Indirect observational and consistency tests

We discussed consistency tests for FLRW models in Section 13.4. There are a number of
these tests that can be regarded as indirect tests of spatial homogeneity, for they probe the
homogeneity of these models. We revisit these tests here (see Section 13.4 for references).
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Fig. 15.5 Time drift of redshift for�CDM and LTB (mock data). (From Dunsby et al. (2010).)

1. Age consistency at all z. A crucial observational test for cosmology is that the age of
the universe must be greater than the ages of stars. This tension is one area where the
standard models are vulnerable to being shown to be inconsistent. Furthermore the age
limits must be satisfied at all redshifts. At present this age comparison is acceptable
for local objects, assisted by data that � is positive. Ages of stellar objects are very
difficult to determine, and depend critically on nonlinear astrophysical modelling. With
improvements in modelling, continued vigilance is needed on this front. A serious chal-
lenge to the standard model from ages could indicate support for a LTB void model with
appropriate density parameter and curvature. On the other hand, age tests could also rule
out LTB models.

2. CMB temperature as a function of distance.The CMB temperatureTγ varies with redshift
as Tγ = 2.75(1+ z)K. This is a consistency test for both FLRW and LTB: it does not
relate to the Copernican issue. If it were violated, it would be a major problem for both
FLRW and LTB models.

3. CMB and number count dipole alignment. Check that there is a 2% number count dipole
parallel to the CMB dipole for all cosmological sources, due to our motion relative to
the cosmological rest frame. If this is not true we cannot live in a RW geometry with the
CMB coming from the surface of last scattering. In LTB models, the dipoles need not
be correlated, since we can be near, but not exactly at, the centre.

4. Element abundances at high redshift. Confirm that helium abundances are consistent
with a primordial value of 25% at large distances (high redshifts) in all directions. This
tests spatial homogeneity at the very early time of nucleosynthesis. It can be applied to
the other elements created in primordial nucleosynthesis. Thus the lithium observational
fit of LTB models proposed in Regis and Clarkson (2010) (see above) is precisely this
kind of test of inhomogeneity.

5. Physical plausibility. If the standard analysis of the SNIa data to determine the dark
energy equation of state parameter shows there is any redshift range where w :=
p/ρ<−1, this could be a strong indication that a geometric explanation such as an
LTB void model is preferable to the Copernican (Robertson–Walker) assumption, for
otherwise the matter model indicated by these observations is non-physical (it has a
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negative kinetic energy) (see Section 14.2). Although there are ways to avoid nega-
tive kinetic energy, they do not seem more plausible than an inhomogeneous geometry.
The physically most conservative approach is to assume no unusual dark energy, but
rather that an inhomogeneous geometry might be responsible for the observed apparent
acceleration.

15.6.6 Improbability

Many dismiss the LTB models on probability grounds: ‘It is improbable that the universe is
like this, and it is improbable that we are near the centre of such a model.’As discussed in
Section 21.4, meaningful statements of this type are hard to make, and in most attempts to
do so, the universe is improbable. Additionally, a study by Linde, Linde and Mezhlumian
(1995) shows that (for a particular choice of measure) this kind of inhomogeneity actually
is a probable outcome of inflationary theory, with ourselves being located near the centre.
More recently the authors of that paper have decided that the measure used leading to this
result is not a probable measure;4 but the existence of those inflationary models nevertheless
shows that one cannot dismiss such models out of hand for probability reasons.

One can shift the improbability around, but the universe in which we live may indeed
be improbable. In any case, there is no proof that the universe is probable. That is an
unverifiable philosophical assumption. Whatever one’s philosophical views may be, they
will have to give way to the empirical data. If the tests mentioned above show the universe
is spatially inhomogeneous, philosophers and cosmologists alike will have to accept this as
a fact. Any theories on probability would have to be adjusted to such an empirical fact.

15.7 Conclusion: status of the Copernican Principle

The Copernican Principle is a foundational principle for the standard models of cosmology.
That means it should be queried and tested in all ways possible. It seemed for a long while
that it was not testable (Ellis, 2006); but recent work, as discussed above and summarized
for example in Shafieloo and Clarkson (2010), Clarkson and Maartens (2010), has shown
this is not so.

The acceleration indicated by SNIa and other data could be due to large-scale inhomo-
geneity. Observational tests of this possibility are as important as pursuing the dark energy
(exotic physics) option in a homogeneous universe. What is testable and what is not testable
in cosmology is a key issue: theoretical prejudices about the universe’s geometry, and our
place in it, must bow to such observational tests. It is certainly worth pursuing the present
possibility as an alternative to the problematic proposal of dark energy (or of modified
gravity). It is a genuinely scientific proposal, for we have shown there are viable ways in
which it can be tested.

Overall, the validity or not of the Copernican Principle is a core issue that will not go
away. It should be subject to continued examination and testing.

4 A. Linde, private communication
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The fundamental problem considered in this chapter is, how do we relate the FLRW model
to the non-uniform real world? The point we emphasize here is that there is a hidden
averaging scale in all our descriptions of the universe. There is a hierarchy of different
scales of description we can use, with effective equations occurring at each scale. The
relation between the descriptions, dynamics, and observations at each of the scales is a
key issue. The FLRW model only applies at the largest scales; how does it relate to the
inhomogeneities at smaller scales?

Afundamental feature is the non-commutativity of averaging in relation to both dynamics
and observations. Through this effect, inhomogeneities in the universe, such as vast walls,
filaments, clusters and voids in the distribution of galaxies, can affect both the dynamics
and observational properties of the universe. Hence they have the potential to explain at
least part, if not all, of the apparent acceleration of the universe indicated by the SNIa data.
Note that these are smaller-scale inhomogeneities compared with those considered in the
previous chapter, which are of the order of the Hubble scale.

Overall, the question is how to describe the real universe by an (almost) FLRW model,
when it is nothing like that on small cosmological scales. What is the meaning of the FLRW
metric in relation to the real lumpy universe?

16.1 Different scale descriptions

Any mathematical description of a physical system depends on an implicit averaging scale
characterizing the nature of the envisaged model (Section 1.4.1), and its tests also have spe-
cific scales.The averaging scale, or rather the acceptable range of averaging scales, is usually
not explicitly stated but is in fact a key feature underlying the description used, and hence
the effective macroscopic dynamical laws investigated. Indeed, different types of physics
(particle physics, atomic physics, molecular physics, macroscopic physics, astrophysics)
correspond to different assumed averaging scales.

16.1.1 Averaging the matter

When a fluid is described as a continuum, this assumes one is using an averaging scale large
enough that the size of individual molecules is negligible (Section 1.4.1). If the averaging
scale is close to molecular scale, small changes in the position or size of the averaging
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volume lead to large changes in the resulting density and velocity of the matter, as individ-
ual molecules are included or excluded from the reference volume. In this case the fluid
approximation is not applicable; rather one is using a detailed description of the fluid where
individual molecules are represented. Note that a model which is very useful on one scale
may be quite impractical for use at another scale: one does not calculate the motion of a
fluid from the quantum mechanics of its individual atoms.

For a fluid approximation, one assumes a medium-sized averaging scale: not so small
that molecular effects matter, but not so large that spatial gradients in the properties of
the fluid are significant (Batchelor, 1967): hence there is a range of validity L1 <L<L2

where the fluid approximation holds. Instead of referring to a density function ρ, one
should really refer to a function ρL, the density averaged over volumes characterized by
scale length L. The key point about the fluid approximation is that, provided this length
scale is in the appropriate domain, then its actual value does not matter; i.e. when it is
in this range, changing L by a factor of 10,100, . . . makes no difference: the measured
density and average velocity will not change. But if you take L outside this range, this is no
longer true.

Similarly, in electromagnetic theory, polarization effects result from a large-scale field
being applied to a medium with many microscopic charges. The macroscopic field E differs
from the point-to-point microscopic field, which acts on the individual charges because of
a fluctuating internal field Eint, the total internal field at each point being D = E + Eint

(Jackson, 1975). Spatially averaging, one regains the average field because the internal
field cancels out: E = 〈D〉. Indeed this is how the macroscopic field is defined (implying
invariance of the background field under averaging: E = 〈E〉). On a microscopic scale,
however, the detailed field D is the effective physical quantity, and so is the field ‘measured’
by electrons and protons at that scale. Thus, the way different test objects respond to the
field crucially depends on their scale (a macroscopic device will measure the averaged
field). Furthermore, the two fields obey field equations differing by a polarization tensor.
Small-scale and large-scale dynamics are not identical.

During the early stages of structure formation, matter is treated as a pressure-free fluid
of baryons and primordial CDM particles, and this is a physically reasonable model. It
can be improved via collision-free kinetic theory, but the corrections to the dust model are
very small on cosmological scales. When particles begin to condense into galactic struc-
tures, things become much more complicated. N-body simulations, based on Newtonian
gravity on an expanding FLRW grid, are the best current tool. Here the ‘particles’ are typi-
cally galaxy-sized CDM structures. This is not a fluid model, but neither is it a kinetic gas
(there are insufficient galaxies for a consistent kinetic theory model). Baryons in bound
structures are added via largely phenomenological prescriptions. But unbound baryons and
CDM particles are implicitly neglected. Thus, the model of matter in the late universe is
incomplete. Building a physically realistic model is a formidable open question in cosmol-
ogy. The standard model of cosmology is based on an implicit averaging over matter that
leads to an effective fluid model which is pressure-free, and which is assumed to represent
the large-scale dynamics across the range of scales from primordial particles to galaxies.
This may be a good approximation – but we do not have any plausible argument for this,
up to now.
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16.1.2 Coarse-graining the gravitational field

Now, exactly the same issue arises with regard to the gravitational field. Applications such
as the solar system tests of GR are at Solar System scales. We apply gravitational theory,
however, at many other scales: to star clusters, galaxies, and larger-scale structures (clusters,
walls, filaments and voids), as well as to black holes (occurring at Solar System and star
cluster scales, and possibly at much smaller scales). Averaging effects may then alter the
effective gravitational equations at these larger scales. The question then is how do models
on two or more different scales relate to each other in Einstein’s gravitational theory (Ellis,
1984)? This is a difficult issue both because of the nonlinearity of Einstein’s equations, and
because of the lack of a fixed background spacetime – one of the core features of Einstein’s
theory. These cause major problems in defining suitable averaging processes.

In cosmology, we aim to describe the whole observable universe. A range of scales of
description are relevant to cosmology. There are levels of approximation in modelling the
universe, each with a hidden averaging scale. One can have a description in which every
star is represented, or every galaxy (the stars averaged over), or only the largest-scale
cosmological structures (even galaxies averaged over, as in the fluid approximation). In
using (almost) FLRW models one is assuming a large enough averaging scale both for a
fluid approximation to hold and for spatial homogeneity to be valid; this scale should be
explicitly indicated (Ellis, 1984) (in the standard models, it is about 100 Mpc at present
(Sarkar et al., 2009; Sylos Labini et al., 2009); see Section 1.4.1).

The FLRW models are then the background models for cosmology, and perturbed FLRW
models characterize the nature of deviations from the exact FLRW geometry that are
expected on smaller scales, while still using a fluid approximation (Chapter 10). The
same effect can occur here: the averaged small-scale dynamics can lead to extra terms in
the effective equations at cosmological scales (often called ‘back reaction’ terms). Larger
deviations may be characterized by inhomogeneous models that perhaps cannot be ade-
quately represented by perturbed FLRW models; a key issue in what follows is under
what circumstances this may happen. And that leads to the question: what kind of well-
defined averaging or smoothing process can produce an FLRW model from a genuinely
inhomogeneous spacetime model?

One particularly important issue is that of dark energy.A large-scale smoothed-out model
of the universe ignores small-scale inhomogeneities, but the averaged effects of those
inhomogeneities may alter both observational and dynamical relations at the larger scale,
mimicking the effect of a cosmological constant.

16.1.3 Non-commutativity of averaging and dynamics

The key point in considering dynamical effects is that the two processes involved in relating
the field equations at different scales do not commute (Ellis, 1984). These processes are:

E: calculating the Einstein tensor G1ab =R1ab− 1
2R1g1ab from a metric tensor g1ab, and,

hence, determining the quantity E1ab = G1ab − 8πGT1ab for g1ab, where T1ab is the
matter tensor appropriate to the scale represented by g1ab;
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A: averaging the metric tensorg1ab to produce a smoothed metric tensorg2ab :g2ab=〈g1ab〉
and the matter tensor T1ab to produce a corresponding smoothed matter tensor T2ab :
T2ab = 〈T1ab〉.

In general the averaging process does not commute with taking derivatives: for a function
g, usually ∂i〈g〉 �= 〈∂ig〉. Furthermore the inverse metric gab2 (nonlinearly dependent on
the metric tensor components g1ab) is not the smoothed version of gab1 . The resulting
Christoffel terms a

2bc are therefore not the smoothed version of a
1bc, hence the Ricci

tensor components R2ab, nonlinearly dependent on a
2bc, are not the smoothed versions of

R1ab. Extra nonlinearities occur in calculating the Einstein tensor G2ab =R2ab− 1
2R2g2ab

from the Ricci tensor R2ab. Thus, if you smooth first and then calculate the field equations,
you get a different answer than if you calculate the field equations first and then smooth;
symbolically A(E(g1ab)) �= E(A(g1ab)) .

Suppose the field equations are true at the first scale; then they will not be true at the
second scale:

E1ab :=G1ab− 8πGT1ab = 0, E2ab :=G2ab− 8πGT2ab �= 0. (16.1)

Thus there will be an extra term in the equations at the smoother scale. We can either regard
it as an extra term on the left, representing a modified curvature term, or as an extra term
on the right, where it is regarded as an extra contribution to the matter tensor:

G2ab−E2ab = 8πGT2ab , G2ab = 8πGT2ab+E2ab . (16.2)

Which is the more appropriate interpretation depends on the context. In either case, we refer
to a backreaction from the small-scale inhomogeneity to the smoothed out dynamics.

In the case of gravitational radiation, Isaacson (1967; 1968) showed how to average
approximate gravitational wave solutions to the vacuum Einstein equations of GR in situa-
tions where the gravitational fields of interest are quite strong. He assumed the wave to be
of high frequency, expanded the vacuum field equations in powers of the correspondingly
small wavelength, obtaining a gauge-invariant linearized equation for gravitational waves,
and solved it in the WKB approximation to show that gravitational waves travel on null
geodesics of the curved background geometry. The lowest-order nonlinearities are shown to
provide a natural, gauge-invariant, averaged stress tensor for the effective energy localized
in the high-frequency gravitational waves. This is the explicit form of the extra term in
(16.2) in this case.

Szekeres (1971) developed a polarization formulation for a gravitational field acting in a
medium, in analogy to electromagnetic polarization. He showed that the linearized Bianchi
identities for an almost flat spacetime may be expressed in a form that is suggestive of
Maxwell’s equations with magnetic monopoles. Assuming the medium to be molecular
in structure, it is shown how, on performing an averaging process on the field quantities,
the Bianchi identities must be modified by the inclusion of polarization terms resulting
from the induction of quadrupole moments on the individual ‘molecules’. A model of a
medium whose molecules are harmonic oscillators is discussed and constitutive equations
are derived. This results in the form:

Eab
2 =∇d∇cQ

abcd , Qabcd =Q[ab][cd] =Qcdab, (16.3)
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i.e. Eab
2 is expressed as the double divergence of an effective quadrupole gravitational

polarization tensor Qabcd with suitable symmetries. Gravitational waves are demonstrated
to slow down in such a medium.

The problem with such averaging procedures is that they are not covariant. They can
be defined in terms of a background unperturbed space, usually either flat spacetime or
a RW geometry, and so will be adequate for linearized calculations where the perturbed
quantities can be averaged in the background spacetime (although even here the gauge
problem arises, see below). But the procedure is inadequate for nonlinear cases, where the
integral needs to be done over a generic lumpy (nonlinearly perturbed) spacetime which is
not a ‘perturbation’ of a high-symmetry background. However, it is precisely in these cases
that the most interesting effects will occur.

To obtain integrals that are well-defined over a generic spacelike surface or spacetime
region (and one interesting issue is which of these one should use in the averaging pro-
cess) either they have to be for scalars, or one needs the bitensors associated with the
world function (Synge, 1971), based on parallel propagation along geodesics, to com-
pare tensors at different points in a normal neighbourhood. The problem then is that the
bitensors cannot be used for averaging the metric tensor, for it is the metric tensor itself
that defines the parallel propagation used in this process, and so is left invariant by it
(since ∇cgab = 0). So one has to devise a procedure in which either the field equations
are represented only in terms of scalars, possible for example if one takes components
relative to a covariantly uniquely defined tetrad (compare Section 17.2), or else bitensors
are used to define averages of quantities other than the metric. Zalaletdinov (1997) has
taken this issue seriously, and provided the only sustained such attempt based on biten-
sors. He proposes a macroscopic description of gravitation based on a covariant spacetime
averaging procedure. The geometry of the macroscopic spacetime follows from averag-
ing Cartan’s structure equations, leading to a definition of correlation tensors. Macroscopic
field equations (averaged Einstein equations) can be derived in this framework. It is claimed
that use of Einstein’s equations with a hydrodynamic stress–energy tensor means neglect-
ing all gravitational field correlations, and a system of macroscopic gravity equations is
given when the correlations are taken into consideration. This approach has not won many
adherents, but is nevertheless a systematic and coherent attempt to set up the problem
generically.

More recently, Korzynski (2010) has given a general definition of coarse-grained quan-
tities for a dust flow, assigning coarse-grained expansion, shear and vorticity to finite-size
comoving domains of fluid in a covariant, coordinate-independent manner as relativistic
generalizations of simple volume averages of local quantities in a flat space, when the
boundary of the domain in question has spherical topology and positive scalar curvature.
The time evolution equations for the coarse-grained quantities include additional terms rep-
resenting backreaction of small-scale inhomogeneities of the flow on the large-scale motion
of the fluid.

Finally, a requirement of complete covariance for averages over a spacelike surface
or spacetime region demands a covariant definition of the region (Lorentz boosts can
stretch the region along the null cone by an arbitrary amount, which almost certainly will
change the averages.) In the cosmological case, however, this issue is mitigated because,
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as emphasized in this book, there are covariantly defined preferred reference frames and
associated spacelike surfaces in specific cosmological models.

16.2 Cosmological backreaction

The cosmological application is to understand the nature of the backreaction of perturbations
in cosmology. The large-scale solutions used are perturbed FLRW models, approximately
spatially homogeneous and isotropic. The real universe is not like this on many scales: it
has vast inhomogeneities, walls of clusters of galaxies surrounding voids, forming a soap-
bubble-like structure FLRW models are only a smoothed approximation to this complex
reality. All the issues discussed above arise.

Varied methods have been used to study this problem, including straightforward
perturbation approaches. Isaacson’s method of averaging in the gravitational radiation
case has been used in the cosmological context (Futamase, 1996). When Zalaletdi-
nov’s approach to the averaging problem is applied to cosmology, the Einstein field
equations on cosmological scales are modified by appropriate gravitational correlation terms
(Coley, Pelavas and Zalaletdinov, 2005; van den Hoogen, 2009); for a spatially homoge-
neous and isotropic macroscopic spacetime, the correlation tensor is of the form of a positive
spatial curvature term. This already shows the effect can potentially be important, because
if such averaging were to change the effective value of the spatial curvature from negative
to positive, the future evolution of the universe could be drastically changed: only if K > 0
is a recollapse to a big crunch in the future possible. Thus the inclusion of backreaction
has the potential to lead to a situation where the averaged model seems to recollapse in the
future, but the real universe does not.

16.2.1 Fitting problem

Given the difficulty of handling averaging in a covariant and gauge invariant way, the
conclusion may be that one should as far as possible use covariant variables, but choose a
specific gauge when doing averaging. This involves the

Fitting problem: How do we determine what is the best FLRW background model for the
real lumpy universe?

(See Ellis and Stoeger (1987); Kolb, Marra and Matarrese (2010).) This decides what the
magnitude of the backreaction effects is, because it determines the size of the ‘perturbation’
away from the background at each point.

A proper fitting procedure underlies detailed backreaction studies. If the wrong back-
ground is fitted then it may appear to create a back reaction which vanishes if a better fit
is chosen. Thus a gauge choice is inherent in the backreaction issue; this will be apparent
in any detailed studies, even if it is not clearly made explicit. It is important to note the
following: if you consider an FLRW model F1 and perturb it to get an almost-FLRW model
F̂1, it is very tempting to assume that F1 is the best-fit model to F̂1. Indeed this assumption
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is effectively hidden in most perturbation studies. But this is not necessarily the case. For
example, if you add to F̂1 a distribution of positive density fluctuations suitably distributed
over a spacelike surface, you will have raised the density on that surface: so a process of
fitting the background model by averaging densities will no longer result in determining
F1 as the best fit; it will rather yield a model F2, with a higher average density than F1.
To preserve the best-fit model you started with, you need to add a compensated set of per-
turbations (e.g. top-hat models) where an under-density surrounds every over-density, so
that the average density is unchanged by the perturbation procedure. When this is not done,
a change in the average properties will result in a spurious apparent backreaction effect,
which is in reality due to a failure to use the correct background model for the perturbed
spacetime. A proper fitting procedure will lead to related integral constraints (Traschen,
1985).

An important point needs to be made: the usual approach to determining a best-fit FLRW
model to astronomical observations is indeed a fitting approach as defined here: one takes
an FLRW metric with some arbitrary parameters, and adjusts them to give a best fit to the
inhomogeneous real universe by fitting observable relations. This determines H0,�m0, · · ·
for the best-fit background model; one handles inhomogeneities by treating variations from
the idealized FLRW model in a statistical way. Most observational studies (e.g. the classic
study by Sandage (1961)) implicitly use a light-cone fitting procedure, without making this
explicit.

One can also obtain a smoothed out model from a lumpy universe by averaging. If the
universe is homogeneous in the large, this will recover an FLRW model with averaged
quantities such as densities. These procedures will in general give different results, particu-
larly because the former will be based on a spacelike averaging but the latter on a light-cone
averaging (because observations are made on the past light-cone). It is clear that a well-
fitted background model should be regained from the realistic lumpy model by a suitable
averaging or smoothing procedure. The way to do such averaging (or coarse graining) is
still the subject of debate (Buchert and Carfora, 2002; Brown, Robbers and Behrend, 2009;
Paranjape and Singh, 2008). In a fitting approach, one starts with an FLRW model with
some free parameters, and then tries to see which parameter values give the best fit: so the
issue does not arise. The FLRW model was imposed by hand at the start.

16.2.2 Different approaches: key issues

Two key issues arise in all of this, and the approaches taken to these issues shape the
subsequent discussion.

Choice of inhomogeneous models

In an averaging approach, one starts with a lumpy model: either a perturbed FLRW model
or a genuinely inhomogeneous one. The almost-FLRW model we use in the large has
to emerge through an averaging (coarse graining) of this more detailed inhomogeneous
model. It is not surprising if this works in the perturbed FLRW case, for one has started
with an FLRW model in the first place in order to create the lumpy one. The same is true
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for Swiss cheese models discussed below (Section 16.4.1) provided the matching is done
correctly, for again this starts with an FLRW model: averaging will recover that model. The
real challenge is to do the process for a fully inhomogeneous model; initial attempts are
described in Sections 16.4.5 and 16.4.6 below. It is then not so obvious that an FLRW model
will emerge: only a subclass of inhomogeneous models will give that result. Of course the
observable part of the real universe corresponds to that subclass, because FLRW models
give a good representation of what we see (Section 9.8).

Averaging: spaces and surfaces

Suppose this does work out: then the real spacetime is the lumpy one – the smoothed out
FLRW model is a fictitious entity used for convenience to simplify things. The key point
now is that: the dynamics and then the averaging, must be computed in the lumpy model.
Only in this way will the true nature of the effect be tested. The first question is which
surfaces to use for the averaging process? Secondly, are the chosen world lines implied in
the averaging comoving with the matter or not? This corresponds to choice of the lapse
and shift in the ADM approach (Section 3.3.3), which is often used in this context. In
the background model, that choice will be obvious; but in using the averaged (smooth)
background, which is what is most often done, essential aspects of the problem may be
omitted. We want to average in the realistic (lumpy) model. We shall see that this makes a
real difference.

16.3 Specific models: almost FLRW

Most approaches in one way or another assume an almost-FLRW context from the
beginning.

16.3.1 Buchert formalism

One sustained attack is that by Buchert (2000; 2001; 2008), with averaging defined for
observers comoving with the cosmic matter fluid. Here one first thinks of averaging over
scalar quantities like the density or the rate of expansion in an inhomogeneous universe
model. As long as one works with exact equations for the evolution of those fields in
a given foliation of spacetime, such an averaging procedure is covariant. Cosmological
parameters like the rate of expansion or the mass density are to be considered as volume-
averaged quantities, so the relevant parameters are intrinsically scale-dependent unlike
the situation in an FLRW cosmology. Averaging scalar characteristics on a Riemannian
spatial domain delivers the effective dynamical sources that an observer would measure,
but although the measures are made within the lumpy spacetime, they are going to be
interpreted within an FLRW fitting model. This suggests a logical division of the averaging
problem into (1) calculating averages in the real manifold, and (2) determining the mapping
between averages in the real manifold and values in the FLRW model. The first averaging
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is straightforward for scalars, and encounters non-commutativity of averaging and time-
evolution: this is a purely kinematical property that can be expressed, for a scalar field ψ ,
through the rule

∂t 〈ψ〉− 〈∂tψ〉 = 〈�ψ〉− 〈�〉〈ψ〉 . (16.4)

The fluctuation part on the right-hand side of this rule produces the kinematical backreac-
tion. The result of this averaging is the modified Friedmann and Raychaudhuri equations
(Buchert, 2008):

3
ȧ2
D
a2
D

= �+ 8πGρD − 1

2
(QD +〈R〉D) , (16.5)

3
äD
aD

= �− 4πG〈ρ〉D +QD, (16.6)

QD := 2

3
〈�2 − 3σ 2〉D − 2

3
〈�〉2D, (16.7)

where aD, 〈R〉D are the volume averaged scale factor and spatial curvature. This shows
that averaging in principle allows acceleration terms to arise from the averaging process.
The derivation of these equations, and their numerical implementation, has been studied by
many others, see for example Behrend, Brown and Robbers (2008).

The second ‘averaging’ is more adequately thought of as a rescaling of the tensorial
geometry. A (Lagrangian) smoothing as opposed to (Eulerian) rescaling of the metric on
regional spatial domains has been proposed by Buchert and Carfora (2002; 2008), using a
global Ricci deformation flow for the metric initially proposed by Carfora and Piotrkowska
(1995). They introduced real-space renormalization group methods, based on properties of
the Ricci–Hamilton flow. The smoothing of geometry implies a renormalization of averaged
spatial variables, determining the effective cosmological parameters as they appear in the
FLRW-fitting model. Two effects that quantify the difference between background and real
parameters were identified: curvature backreaction and volume effect (Buchert and Carfora,
2003). Both are the result of an inherent non-commutativity of averaging and spatial rescal-
ing. In this way we look at the averaging problem in two directions in function space:
time-evolution (as a deformation in direction of the extrinsic curvature of the space sections
encoding the kinematical variables), and scale-‘evolution’ (as a deformation in direction of
the intrinsic 3-Ricci curvature).

The Buchert method has the advantage of dealing with scalars, so integrals are well-
defined, but it does not deal with the full GR dynamics because it does not average the
shear and vorticity equations (which in turn would need averaging of the Weyl tensor
equations). Consequently closure is obtained by phenomenological assumptions about the
averaged behaviour – which may or may not be true, in general. This analysis will cover only
a subset of possible behaviours. Nevertheless it enables us to discover important aspects of
averaging and backreaction.

For example, Barrow and Tsagas (2007) use the Buchert approach to examine the effects
of spatial inhomogeneities on irrotational anisotropic cosmologies by looking at the average
properties of anisotropic pressure-free models. They recast the averaged scalar equations
in Bianchi-type form and close the standard system by introducing a propagation formula
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for the average shear magnitude. In this case, backreaction effects can modify the familiar
Kasner-like singularity and potentially remove Mixmaster-type oscillations; thus they can
make a major difference to dynamics near the initial singularity.

Averaging via scalars

What would be most useful is an extension of Buchert’s work to averaging a full fam-
ily of scalars completely representing the spacetime geometry and matter. A spacetime
can be completely characterized by scalar invariants (Section 17.2), and this suggests a
spacetime averaging scheme based entirely on scalars. Coley (2010) has illustrated such
a scheme in a simple, static, spherically symmetric, perfect fluid model, where the aver-
aging scales are clearly identified. However, he does not give an explicit construction
for generating the spacetime from a set of invariants; and there are various possible
sets of invariants, some of which may be better suited to the job than others (invari-
ants directly interpretable in terms of the fluid flow may be best). Until those issues are
fully solved, this averaging proposal is incomplete: it may work for some special classes
of models, but not in general. Certainly its full implications have not been worked out.
The remaining problem is an aspect of the equivalence problem – how to characterize
when cosmological models are equivalent to each other – which is discussed further in
Section 17.2.

16.3.2 Perturbed FLRW approach

A common approach to studying backreaction effects is based on a ‘Newtonianly perturbed
FLRW metric’ (Ishibashi and Wald, 2006):

ds2 =−(1+ 2!)dt2 + a2(1− 2!)γijdxidxj , a = a(t), ! =!(t , x), (16.8)

which is just the longitudinal gauge (10.55) with #= 0 [(10.71)]; ! satisfies

|!| � 1, |∂t!|2 � a−2Di!Di!, (Di!Di!)2 � (DiDj!)(DiDj!), (16.9)

where Di is the covariant derivative for γij . Note that the matter present is not assumed
to be comoving in this frame. This metric gives descriptions of linear deviations from an
FLRW model, but does it properly represent the true degrees of inhomogeneity in the real
universe? We return to this issue below.

An alternative coordinate system often used is based on an ADM 1+3 foliation of
spacetime (Section 3.3.3), taking (3.20) with lapse function N and shift vector Ni such
that the 4-velocity na of observers is not necessarily comoving with the normals: rather
na = N−1(1,ni), na = N(−1,0,0,0). Averaging in this system is developed in Larena
(2009). The dynamics of the system follow from the standard ADM formalism.

Finally, synchronous coordinates are often used for irrotational pressure-free dust. This
is a somewhat restricted situation but easy to calculate; it is the special case of (3.20) with
N = 1, Ni = 0 and comoving matter.
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Gauge issue

The gauge problem was described in Section 10.1. The backreaction problem will look
very different if described in terms of different gauges (Brown, Behrend and Malik, 2009).
While many studies have been carried out quantifying backreaction effects in cosmology,
where the smoothed-out effect of the small-scale perturbations causes extra terms in the
Friedmann equations for the background metric, none has been done that both clearly
takes the gauge issue into account and goes beyond linear order. This is an important issue
waiting to be resolved. Gasperini, Marozzi and Veneziano (2010) have made an attempt
based on the Buchert formalism , but it is not clear if their method of varying the bound-
aries of the region of integration gives the correct physical result. One certainly wants to
go at least to second order in understanding the effects of nonlinear perturbations. Many
of the crucial results at linear order no longer hold, for example scalar, vector and ten-
sor perturbations are no longer independent of each other at second order and then the
backreaction in turn affects the perturbations themselves (Martineau and Brandenberger,
2005).

16.4 Inhomogeneousmodels

An alternative to using these perturbation techniques is looking for suitable exact inhomo-
geneous solutions of the field equations. One can then study averaging and observational
issues in these models.

16.4.1 Swiss cheese models

The ‘Swiss cheese’ models were originally developed by Einstein and Straus (1945; 1946)
to examine the effect of the expansion of the universe on the Solar System (if there were
such an effect, we could possibly measure the expansion of the universe by laser ranging
within the Solar System). Their matching of a Schwarzschild interior to an FLRW exterior
showed that the expansion has no effect on the motion of planets in the Schwarzschild
region. Thus one cannot determine the Hubble constant by Solar System observations.

The Swiss cheese model consists of one or more spherically symmetric vacuum regions,
each described by the Schwarzschild metric familiar in black hole theory, joined across
spherical boundaries to an FLRWdust model.This embodies a natural way to model physical
problems, such as describing the boundary between a galaxy and intergalactic space or the
relation between bubbles at the end of an inflationary era, by taking two different regions
where the behaviour is smooth and joining them at a hypersurface of discontinuity. It does
not, however, answer the question as to where the boundary between the regions should be
placed – which determines which regions are affected by the universal expansion.

To describe the interface(s), we need first to briefly study junction conditions in GR.
Because these conditions are also relevant in modelling domain walls, or cosmologies
which change character abruptly at some spacelike slice, or in brane-world models, we



427 16.4 Inhomogeneous models

introduce them in more generality than the Swiss cheese alone would demand. We return
to their other uses in Chapters 19 and 20.

16.4.2 Junction conditions in general

In general a jump discontinuity (step function or Heaviside function) in the metric would, by
(2.58), lead to a δ-function in the connection and thence, by (2.39), to products of δ-functions
in the curvature, which are not usually considered physically meaningful. So attention is
usually restricted to the case where the connection has at worst a step discontinuity and
the curvature at worst a δ-function (see e.g. Taub (1980)). A δ-function in the Ricci tensor
models a thin shell or surface layer of matter through the Einstein equations (see Section 3.3),
for example a domain wall in cosmology (see Section 20.3), while one in the Weyl tensor
describes an impulsive gravitational wave.

We consider regions V + and V − with respective metrics g+ and g− and bounding hyper-
surfaces �+ and �−, which are to be identified as a single hypersurface � in spacetime.
The normal to � is taken so that it points from V − to V +. In either V + or V −, we can
calculate the metric induced on � (see Section 2.1). The first requirement at a boundary is
that the metrics for � calculated from the two sides are the same. This is physically natural
as it says that � has the same internal geometry no matter which side it is viewed from.
Clarke and Dray (1987); Mars and Senovilla (1993) show that then for sufficiently smooth
V ±, there are charts covering the whole spacetime in which the metric coincides with g+
in V + and with g− in V −. We use such coordinates in the following discussion.

Junction conditions are hard to use in practice, except when the hypersurface � shares a
symmetry with the spacetime. This is because we have to specify the surfaces �+ and �−
and fix the identification between �+ and �− in such a way that the metrics agree and V +
and V − lie on opposite sides of �. Hence most of the specific applications have been to
cases with spherical, cylindrical or plane symmetry.

In general � may be null in some regions and non-null elsewhere. The null case is more
awkward because the metric of � is degenerate and the vector normal to � is also tangent
to it. Older literature treated only the cases where� has the same character everywhere, and
many cosmological applications, such as sharp transitions between cosmological epochs
with different behaviours of matter, involve hypersurfaces of fixed character, but there are
others in which the character of � may vary, e.g. a phase transition occurring suddenly in
a limited region which then generates a wave travelling at the speed of light.

Hence we here follow Mars and Senovilla (1993) and treat all cases simultaneously,
using a non-zero vector field la not lying in �, i.e. a rigging as defined in Section 2.1 (in
the non-null case, la can be taken to be the unit normal na to �). We define the tensor

Hab = P c
aP

d
b∇cld , Pa

b = δab− lanb . (16.10)

Then if there is a discontinuity, the extrinsic curvature jumps by [Kab] = ncn
c[Hab] where

[Hab] = (Hab)|V+ − (Hab)|V− , and the Riemann tensor has a δ-function singularity with
coefficient

Qa
bcd = 2

(
na[Hb[c]nd] −nb[Ha [c]nd]

)
. (16.11)
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A physical interpretation is that the geodesic deviation along a geodesic which passes
through � with tangent vector la undergoes a sudden change due to the curvature (16.11)
(see (2.47)).

It is clear from (16.11) that if surface layers and impulsive waves are to be ruled out, the
second condition required for matching is [Hab] = 0. If impulsive waves are allowed, but
surface layers are not, we require the Ricci tensor to have no δ-function part and this holds
if and only if na is non-null and [Hab] = 0, or na is null, na[Hab] = 0 and [Ha

a] = 0.
If [Hab] = 0, the possible (step function) discontinuities in the Riemann tensor satisfy

na[Gab] = 0 = na[Ca
bcd ]P c

eP
d
f , (16.12)

and appear in specific Riemann tensor components in suitable bases (Mars and Senovilla,
1993). We note in particular that if there are no surface layers, normal components of
the Einstein tensor (i.e. from the field equations (3.13), of the energy momentum) are
continuous. Thus if the interface is a spacelike hypersurface, representing an abrupt change
in evolution of the universe, sona is timelike, the energy density and momentum as measured
by an observer with velocity na must be continuous. Conservation of energy and momentum
across the surface will thus be satisfied. When na is spacelike, the stresses (for perfect fluids,
the pressure) and energy flux normal to the boundary must be continuous.

For the case where the boundary hypersurface � is everywhere non-null, discontinuities
were first considered by Darmois (1927) and Lichnerowicz (1955). The required conditions
for non-singular matching, namely the equality of the metric in the surface and the extrinsic
curvature, as calculated from the two sides, were given by Darmois. Israel (1966) similarly
discussed shells, and because of the importance of this case to brane-world studies cosmol-
ogists often call the conditions the Israel conditions, even if no shell is present. By choosing
Gaussian normal coordinates on the two sides of�, one can then obtain a coordinate system
in which the metric and its first derivative are continuous, which is the form of junction
condition given by Lichnerowicz.

The Lichnerowicz form implies the Darmois form is true, and the Darmois form implies
that there are coordinates in which the Lichnerowicz formulation is true; in this sense the
two formulations are equivalent (Bonnor and Vickers, 1981). Moreover, the Darmois form
is equivalent in a similar sense to the conditions of O’Brien and Synge (1952) (the requisite
coordinate choice may require a coordinate transformation which is not differentiable at�).
If the O’Brien–Synge conditions are assumed true in other coordinate systems, they give
additional, and physically unnecessary, restrictions. The corresponding restriction of the
results above to the case where � is null was developed by Taub (1980); Clarke and Dray
(1987); Barrabes (1989) and Barrabes and Israel (1991).

Note that if two spacetimes M1 and M2 are each divided into two regions, giving V +
1 ,

V −
1 , V +

2 and V −
2 , and if V +

1 is matched with V −
2 , then the same conditions will match V +

2
with V −

1 (with the opposite sign for the coefficient of any δ-function part). This has been
called the complementary matching (Fayos, Senovilla and Torres, 1996).

The conditions stated above concern the gravitational field, and thus the total energy–
momentum. However, in non-vacuum spacetimes, the matter content will have its own field
equations leading to additional boundary conditions which also have to be imposed.
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16.4.3 Swiss cheese matching

This is the best known example in the non-null case, in which the Schwarzschild solution,
which models a black hole or the vacuum exterior to a spherically symmetric body, is
matched to an exterior dust FLRW metric (Einstein and Straus, 1945; 1946; Schucking,
1954). The complementary matching is the Oppenheimer–Snyder collapsing spherical dust
body in a vacuum exterior.

The metric for the Schwarzschild solution can be written

ds2 =−AdT 2 +A−1dR2 +R2d�2, A= 1− 2MR−1. (16.13)

We attempt to join this metric, asV −, to (2.65) asV +. By considering the conditions (16.12)
and the properties of the FLRW metric (see Chapter 9) it is clear this can only be done if
the FLRW metric has a dust matter content and in it the hypersurface is a sphere, which
can be taken to be r = r� = const. Physically, these conditions are needed to ensure that a
particle at the bounding surface stays in the surface.

We can identify the angular coordinates on the two sides, and take t as the third coordinate
in�; we have to findR(t) and T (t) for� (known only up to the arbitrary choice of an origin
for T ). The matching of the first fundamental forms leads to R� = a(t)f (r�) (from the
coefficients of the angular coordinates), so the Schwarzschild region expands or contracts
witha(t). The equality of the remaining part of the first fundamental form (the t t component)
implies that T (t) must obey AṪ 2 = 1+ ȧ2f (r�)

2/A, where ˙means the t-derivative. This
together with R� = a(t)f (r�) gives the equations for �−. The unit (spacelike) normals
(fromV − toV +) on the two sides aren+a = (0,a,0,0), andn−a = (−Ṙ, Ṫ ,0,0).As the surface
� is timelike we can take the rigging la = na , so (16.10) is just the extrinsic curvature.
Equating the extrinsic curvatures on the two sides of�, gives, from the angular coordinates,
RAṪ = aff ′(r) which implies, as a third equation for the matching, 2M = f 3a(K + ȧ2).
After some algebra one can check that the t t component gives nothing extra.

The Einstein field equations for an FLRW model with dust density ρ, using physical units
(see Chapter 9), show that the Schwarzschild region has mass M = 4π(ρa3)f (r�)

3/3, i.e.
the mass a Euclidean region of radius R� and density ρ would have (note that in an FLRW
dust model ρa3 is constant). Given M and ρa3, the matching conditions (and the FLRW
field equations) fix R(t , r); given ρa3 and an initial value of R they fix M . This means that
one cannot match arbitrary masses. The Schwarzschild mass must be the same as the mass
that has been removed.

Although we chose coordinates above for the FLRW region which were concentric with
the Schwarzschild mass, this is not necessary. One can put any number of non-overlapping
Schwarzschild regions into a dust FLRW model – whence the name ‘Swiss cheese’, by
analogy with Emmenthal. Swiss cheese models have been widely used in estimating the
effects of localized inhomogeneity in cosmology, in particular on observations.

Mass matching

If the interior and exterior masses were wrongly matched, there would be an excess or
deficient gravitational pull from the mass in the interior that would not fit the exterior
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gravitational field, and the result would be to distort the geometry in the exterior region –
which would then no longer be an FLRW model. Another way to explain why the matching
of masses is needed is that otherwise we would have fitted the wrong background geometry
to the inhomogeneity in the Swiss cheese model – in particular, averaging the masses in
the combined model would not give the correct background average (Ellis and Jaklitsch,
1989), and the model could not have arisen from rearranging uniformly distributed masses
in an inhomogeneous way (this is the content of the integral constraints of Traschen (1984;
1985)). If there is an overdensity, there has to be a compensating underdensity around it so
that the masses match.

Other interiors

Swiss cheese models were originally introduced to deal with matching FLRW exteriors to
Schwarzschild (‘vacuole’) interiors. However, one can use the method for other interiors
(see Section 19.2), in particular LTB and Szekeres, and one can use them to match FLRW
models with two different sets of parameters, or types of matter. Indeed this is implied in
chaotic inflationary models – then proper times have to match across the boundary (the
metric must be continuous) even though there is a power-law expansion on one side and
an exponential expansion on the other. However, this is possible because the boundaries do
not have to be comoving.

16.4.4 Swiss cheese models and backreaction

In a Swiss cheese model of inhomogeneities, there can be no long-range gravitational
effects of such inhomogeneities on other masses, because of the matching conditions: the
Schwarzschild masses cannot cause large-scale motions of matter in the FLRW region. If
the fitting is done properly, matching metrics and masses at the junctions, no strange matter
exists and the junctions and the existence of the lumps does not influence the background
model FLRW first considered: there can be no backreaction effects in a Swiss cheese
model with the boundary conditions properly satisfied. However, the observational effects,
discussed in Section 16.6, are a different matter. Note in particular that there is no scope
for using a Swiss cheese model for the effect of an over-dense or under-dense region on
particles outside that region: the non-FLRW region must include the affected particles.
Moreover, as we shall see in Chapter 19, they are unstable, and therefore not suitable for
describing the histories of objects, but only for such purposes as modelling the effects of
lensing. However, they are indeed useful in that context.

16.4.5 Lindquist–Wheeler type models

A rather different way of treating homogeneity was introduced by Lindquist and Wheeler
(1957), using a Schwarzschild cell method to model an expanding universe with closed
spatial sections (having an S3 topology). They examined joining many Schwarzschild cells
together, with boundaries subject to equations of motion that make the whole expand and
recollapse in an approximation to a K > 0 FLRW universe.
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For simplicity they used a regular lattice, which allows a very limited set of possibilities.
They found that for such lattices with N vertices, every vertex can be equidistant from its
neighbours only when N = 5,8,16,120, or 600. They then derive equations of motion for
the expanding universe from junction conditions between the cells. This is quite different
conceptually from the Swiss cheese approximation just described, because there are no
FLRW domains used in addition to Schwarzschild cells: rather the composite of Schwarz-
schild cells is the approximation to an FLRW universe model. It is locally static but globally
expanding.

In the Swiss cheese case one starts off with a RW spatially homogeneous and isotropic
geometry, and then cuts out ‘vacuoles’within which individual masses are imbedded. These
masses are thus contained in vacua within a spatially homogenous fluid-filled cosmos. In
the Lindquist–Wheeler case, one starts off with the inhomogeneous vacuoles alone, and
then glues them together to create an emergent RW geometry when averaged on large
scales. There is no fluid filling the spacetime; rather (as in the case of kinetic theory) fluid-
like behaviour emerges on large scales when one coarse-grains over the detailed structure.
This is a more fundamental approach to the study of the relation between locally static
inhomogeneity and a globally expanding universe. However, the method is not strictly
realistic (the real universe has matter condensations of different masses, as well as particles
that are not condensed), nor is it strictly self-consistent – in that the gravitational fields of the
neighbouring particles would in fact deform the field in the neighbourhood of each vertex,
thereby resulting in an approximate rather than exact spherically symmetric spacetime
region (the real solution will be locally a bit anisotropic about each vertex). Nevertheless it
is a plausible approximation, and is a very useful approach to tackling the issue raised here.

The Schwarzschild cell method gives the same relation between radius of the universe
and proper time as in a K > 0 FLRW universe, except that the connection between max-
imum radius and mass is different. Thus averaging effects lead to an FLRW counterpart
different from an exactly smooth distribution of the same matter – as shown explicily by
Clifton and Ferreira (2009a). What would be interesting would be extension of such mod-
els to irregular lattices; but this might be technically difficult. Again the issue will arise of
best-fitting of the background model derived in this way.

16.4.6 Wiltshire’s models

An interesting new development is the recognition that there are large (but sub-Hubble)
voids in the universe (see e.g. Rudnick, Brown and Williams (2007)), and these have impor-
tant significance for averaging in cosmology. The geometry and dynamics in and out of
a void may be quite different. In this case the void and non-void regions would have to
be joined with suitable junction conditions so that internal and external geometries agree.
This has been examined by Wiltshire (2007a; 2007b; 2008a; 2009), who argues that time
runs at different rates in and out of voids in a void-dominated universe because of grav-
itational redshift effects, and that the difference is cumulative. This can be thought of as
the source of an extra redshift contribution over that in an FLRW model, changing the
observable relations between cosmological variables. In his model our observable universe
is an underdense bubble, with an internally inhomogeneous fractal bubble distribution of
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bound matter systems, in a spatially flat bulk universe. It is argued that the clocks of the
isotropic observers in average galaxies coincide with clocks defined by the true surfaces
of matter homogeneity of the bulk universe, rather than the comoving clocks at average
spatial positions in the underdense bubble geometry, which are in voids. His model of the
average geometry of the universe, depends on two measured parameters, �m0 and H0. The
observable universe is not accelerating but inferred luminosity distances are larger than
naively expected, in accord with the evidence of distant SNIa. Observational consequences
are worked out in detail in Leith, Ng and Wiltshire (2008).

This is an interesting series of papers that takes seriously the bound nature of local
structures in the universe. However, the details of the models used may or may not be good
representations of that structure: the jury is out on this issue.

Exercise 16.4.1 Generalize the Swiss cheese construction to � �= 0.

16.5 Importance of backreaction effects?

There is no doubt that interesting effects occur (Futamase, 1991;Buchert, Kerscher and Sicka,
2000; Kolb, Matarrese and Riotto, 2006; Buchert, 2008; Li, Seikel and Schwarz, 2008).
The question is whether these backreaction effects are significant in cosmology.

On the one hand, they might play a significant role in the inflationary era
(Mukhanov, Abramo and Brandenberger, 1997; Geshnizjani and Brandenberger, 2005).
On the other, they could possibly help explain the apparent existence either of
dark energy and/or of dark matter as effective terms in the macroscopic dynam-
ics at recent times. Various papers suggest the effect may indeed be signifi-
cant, for example the observed acceleration of the universe could possibly be the
result of the backreaction of cosmological perturbations rather than the effect of
a negative-pressure dark energy (Wetterich, 2003; Kolb, Matarrese and Riotto, 2006;
Kolb, Marra and Matarrese, 2010), if astronomical parameters are restricted in spe-
cific ways (Rosenthal and Flanagan, 2008). However, other studies obtain different
results (Russ et al., 1997; Buchert, Kerscher and Sicka, 2000; Nambu, 2002; Notari, 2006;
Räsänen, 2004; 2008). Gauge effects are problematic (Geshnizjani and Brandenberger,
2002), and many doubt the effect is significant (e.g. Ishibashi and Wald (2006);
Baumann et al. (2010)). The debate continues (Biswas, Mansouri and Notari, 2007;
Li and Schwarz, 2007; Behrend, Brown and Robbers, 2008). We cannot cover all
approaches and will just consider some specific aspects of importance.

16.5.1 Validity of coordinates

An assumption made in analyses such as that of Ishibashi and Wald is that one can use the
‘Newtonianly perturbed FLRW metric’ (16.8) globally. This is probably correct either in a
perturbed FLRW domain, or in a locally isolated quasi-static domain, but it is not obvious
such coordinates can be simultaneously used in both for any extended length of time. Such
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coordinates are probably only locally valid in a realistic description of the universe taking
both expanding matter-filled domains and locally quasi-static domains into account; but it is
the assumption that these coordinates can be used globally that leads to the conclusion that
backreaction effects are negligible (Wiltshire, 2008b; Kolb, Marra and Matarrese, 2008).
The domain of validity in realistic situations needs to be investigated.

Thus a key issue is, how large in space and time is the domain where such quasi-
Newtonian coordinates (16.8)–(16.9) can be used in a realistic model of an expanding
universe with local virialized structures? One may note here that the timelike reference
congruence associated with such coordinates is shear-free, conformally mapping the 3-
spaces onto each other. Assuming such a congruence exists is a major assumption, placing
strong limits on the Weyl tensor, inter alia excluding occurrence of vector and tensor per-
turbations. It may be acceptable in the circumstances considered because matter is not
comoving in this frame, and metric perturbations are small despite density perturbations
being large; but this assumption certainly needs investigation.

Ishibashi and Wald (2006) assert that ‘the metric (16.8)–(16.9) appears to very accurately
describe our Universe on all scales, except in the immediate vicinity of black holes and
neutron stars …The basis for this assertion is simply that the FLRW metric appears to
provide a very accurate description of all phenomena observed on large scales, whereas
Newtonian gravity appears to provide an accurate description of all phenomena observed
on small scales.’However, as described above, the crucial issue is to what extent this metric
can simultaneously provide a good description of both a perturbed expanding universe and
a quasi-static domain of local matter condensations. It is locally acceptable in either context
on its own, but to describe bound gravitational structures in an expanding universe, it may
be that separate coordinate systems of this type should be stitched together in a Swiss cheese
kind of construction, as discussed in Section 16.4.1.

There is another important point. The metric (16.8) follows from (10.55) with � = !,
which is only possible if there are no anisotropic pressure terms in the stress tensor [(10.71)].
But for a perfect fluid, taking the equations to second order, this can only happen if the local
velocity vanishes and the flow is therefore along the normals to the time coordinate surfaces.
Because the normals are orthogonal to these surfaces, they have zero vorticity and are also
shear-free, and shear-free perfect fluid flows are highly restricted (see Section 6.2): inter alia
they are self-similar, and so cannot for example represent the Zel’dovich process of pancake
collapse. Indeed a warning against assuming that all Newtonian theory solutions are accept-
able approximations to GR situations is given by the shear-free theorem which is valid in GR
but not in Newtonian gravity; see Section 6.8.2. Therefore, as well as excluding vector and
tensor perturbations, these metrics are very restricted in terms of the geometrical situations
they can represent; it is not clear they can handle realistic universe models representing non-
linear structure growth, and one should rather use (10.55). But even this sets the magnetic
part of the Weyl tensor to zero in the chosen reference frame (Clarkson, Ananda and Larena,
2009). For further discussion see Kolb, Marra and Matarrese (2008).

The particular form of the background metric used in Baumann et al. (2010) is the locally
Minkowski form,

ds2 ≈−
[
1− (Ḣ +H 2)x2

G

]
dt2G+ (1− 1

2H
2x2

G)dx2
G, (16.14)
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where xG and tG are local ‘physical coordinates’ defined from comoving coordinates in a
spatially flat FLRW metric by

t = tG− 1
2x

2, x = a(t)−1xG
[
1+ 1

4x2
G

]
. (16.15)

These coordinates are defined only in a local spatial neighbourhood of the world line, but
for long time periods. The Hubble expansion is encoded in the Newtonian potential�FLRW

and background velocity field vFLRW :

�FLRW =− 1
2 (Ḣ +H 2), vFLRW =Hx. (16.16)

Adding in perturbation terms as in (10.55) gives a modified form of the metric that can be
used to study the backreaction issue.

There are two issues one should note here. Firstly, the velocity relation in (16.16) refers
to a coordinate velocity, not a physical velocity, because the time tG in (16.14) is coordinate
time, not physical time, and distance |xG| is coordinate distance, not physical distance. Thus
the linearity of the Hubble law in these coordinates is imposed by hand through coordinate
choice (which can always be done) and so is not physically meaningful. It does, however,
reduce to the physical velocity in the limit at the origin, and that raises the second issue.

Because the background model (16.14) is written in expanding coordinates, perturbing
about it cannot easily represent locally bound systems that do not expand with the universe.
One can indeed represent such systems by having a proper motion relative to the expanding
background, but then to attain an effectively locally static state such as the Galaxy or the
Solar System, an infall velocity will have to compensate for the expansion. Thus the metric
(16.14) cannot easily represent locally static systems that are gravitationally bound and are
no longer participating in the Hubble expansion. But this is what we want to investigate:
how can one stack together quasi-static local spacetime regions in such a way as to attain
an overall expanding universe model? What we need in order to analyse the issue properly
is a background metric that is static locally but expanding globally; examples are given (in
different ways) by the Swiss cheese and Lindquist–Wheeler models.

Problem 16.1 Either show that (16.16) can adequately represent an expanding universe with
locally static domains imbedded in it, or show that this is not the case. Explain how this
relates to the idea that the Hubble expansion cannot be measured in the Solar System or the
Galaxy.

16.5.2 Contrasting views

The contrasting views about these issues are well represented by Baumann et al. (2010)
and Clarkson, Ananda and Larena (2009). The first uses a perturbed form of (16.14) and
uses an effective field theory approach for how the long-wavelength universe behaves,
representing it as a viscous fluid coupled to gravity. The expansion is performed in terms
of the peculiar velocity v and second-order terms are treated as a stress–energy tensor.
Integrating out short-wavelength perturbations renormalizes the homogeneous background
and introduces dissipative dynamics into the evolution of long-wavelength perturbations.
They find that the backreaction of small-scale nonlinearities is very small, being suppressed
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by the large hierarchy between the scale of nonlinearities and the horizon scale, and that
virialized scales decouple completely from the large-scale dynamics, at all orders in the
post-Newtonian expansion. They emphasize that one can linearize in terms of velocities
and gravitational potential rather than density fluctuations, which are clearly extremely
nonlinear at recent times.

By contrast Clarkson, Ananda and Larena (2009) calculate the backreaction in the lon-
gitudinal gauge in a consistent way up to second order in a perturbative expansion about
a flat FLRW background, including �, but using a Buchert-style averaging scheme. They
identify an intrinsic homogeneity scale that arises from the averaging procedure, beyond
which a residual offset remains in the expansion rate and deceleration parameter. They give
the intrinsic variance that affects the value of the effective Hubble rate and deceleration
parameter, leading to a correction of order a few per cent at low redshifts. This is clearly
potentially significant in an era of precision cosmology.

The difference in the two results arises from the difference in the approaches used, and
in particular how the authors integrate out small scales. Although both employ a similar
window function on the background to smooth over small-scale structure in the potential
�, Clarkson, Ananda and Larena (2009) require that spatial averages are performed in the
spacetime itself (consistently up to second order), and not just on the background, whereas
Baumann et al. (2010) average in the background spacetime. This makes a crucial differ-
ence. Requiring that the spatial average remains consistently on a surface in the actual
spacetime introduces nontrivial terms O(∇2�)2 when calculating the time derivative of
averaged quantities such as the Hubble rate, and these are significant. These terms occur
not because of the field equations (which cannot lead to higher than second derivatives) but
because of the averaging/smoothing operations (which is what we are investigating).

The key issue is that while the potential may be very small, its derivatives are not; and this
has to be the case in order that it represents an inhomogeneous situation where (albeit the
velocities are low) δρ/ρ� 1020 is typical, so it is certainly not a perturbation. It can of course
be described by Newtonian gravity, but the true dynamics that this approximates is GR,
where matter causes curvature and so the curvature (coupled to the matter inhomogeneities
by the EFE) is way outside the linear approximation regime even though the potential is
very small. We need true nonlinear models to examine this properly, such as those discussed
above.

At the time of writing, it seems likely that dynamical backreaction effects make a negli-
gible contribution to acceleration on cosmological scales, but they do have to be taken into
account in precision cosmology (see Clarkson et al. (2011b) for a review).

16.6 Effects on observations

We now turn to looking at observational effects due to local inhomogeneity. In the real uni-
verse, as pointed out by Zel’dovich (1964) and Bertotti (1966), observations take place via
null geodesics lying in the underdense regions between galaxies. Light rays are focused only
by the curvature actually inside the beam, not the matter that would be there in a completely
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uniform model. The effect on observational relations of introducing inhomogeneities into
a given background spacetime is two-fold: it alters redshifts, and it changes area distances.

16.6.1 Redshift effects

The redshift effects can be understood with the following Newtonian analogy. When a void
intervenes between the source and the observer, photons drop into a potential well and then
climb out, and they exit when the universe is larger than when they went in. If spacetime is
static inside the void the redshift changes in and out cancel, but when structure is forming the
potential well is changing with time so one gets the Rees–Sciama effect (Rees and Sciama,
1968): a change in redshift due to a change in the potential well as the photon traverses it.
A non-zero cosmological constant will also lead to such an effect. When the light source
is in the void, the photon has to climb out of the void, giving a contribution to observed
redshifts.

16.6.2 Area distance effects

The usual analysis of cosmological observations is based on the equations relating apparent
magnitude and redshift in exactly RW spacetimes. In this case (where we ignore the effects
of higher-density matter concentrations), the Weyl tensor Cabcd vanishes, but the Ricci
tensor is non-zero, being given via the Einstein field equations from the matter present.
Thus, in the Sachs optical scalar equations, (7.26) and (7.28), Cabcd = 0 and the relevant
solutions are shear-free:

σ̂ 2 = 0 ⇒ d�̂

dv
=−Rabk

akb− 1

2
�̂2. (16.17)

Integration gives the Mattig relations (7.52) for FLRW models.
The situation in a universe with no intergalactic medium (i.e. in which all the matter is

concentrated in galaxies) would be the opposite of that above: in the region of spacetime
traversed by the geodesics, the Ricci tensor vanishes, so

d�̂

dv
=−2σ̂ 2 − 1

2
�̂2 ,

dσ̂ab
dv

=−�̂σ̂ab−Cacbdk
ckd . (16.18)

The Weyl tensor (the tidal gravitational field caused by nearby matter) generates shear that
then causes focusing. Thus, the description of the focusing by local inhomogeneities in
the vacuum gravitational field (̂σ �= 0, Rab = 0, Cacbdk

ckd �= 0) is radically different from
the one in a smoothed-out FLRW universe where focusing is caused by a smooth matter
distribution only (̂σ = 0,Rab �= 0,Cacbdk

ckd = 0). Hence the area distance–redshift relation
on the small angular scales (i.e. the small solid angle bundles of null geodesics) actually
used in observations of individual objects, may be expected to be different from those for
large scales (averaging over large solid angles).

Various proposals have been made to deal with this. The most popular is the Dyer–Roeder
distance (Dyer and Roeder, 1974; 1975), obtained by assuming that only a fraction α̃ of the
total mass density is smoothly distributed, i.e. not bound in galaxies, while a fraction 1− α̃
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is bound. For matter not passing through bound ‘clumps’, one replaces Rabk
akb in (16.17)

by α̃Rabk
akb. The key is the equation for the area distance,

(z+ 1)(�z+ 1)
d2DA

dz2
+ 1

2
(7�z+�+ 6)

dDA

dz
+
[
3

2
α̃�+ σ̂ 2

(1+ z)5

]
DA = 0, (16.19)

where σ̂ 2 is the shear induced along the light-ray bundle by the gravitational effect of nearby
matter (the equivalent FLRW equation is obtained by setting σ̂ 2 = 0, α̃ = 1). The Dyer–
Roeder proposal is to ignore the shear term in (16.19) and work out the corresponding
area distance (Schneider, Ehlers and Falco, 1992; Demianski et al., 2003). Thus it is the
proposal that the main effect of clumpiness is that light-rays by which we observe most
distant galaxies pass through less matter than in a corresponding smoothed-out FLRW
universe; shear has a negligible effect, because it is only important for near encounters with
isolated masses, when it causes gravitational lensing effects.

This is a good approximation when galaxies are embedded in a fairly uniform intergalactic
medium of dark matter, but clearly does not take shear effects and caustics properly into
account. How good it is will depend on the nature of clustering in the universe and how the
averaged distribution impacts along the line of sight (Linder, 1998). If the dark matter is
uniform, Dyer–Roeder is good; if dark matter is clustered, it is not so good. But we know
that gravitational lensing strong enough to cause significant focusing is a relatively rare
effect over the whole sky, suggesting it will be a good approximation.

One can approach the topic in other ways: for example by using stochastic methods
(Bertotti, 1966), or detailed examination of geodesics in universes with spherically sym-
metric lumps, see below. The results of course depend on the statistics of the clumping (see
the references in Kainulainen and Marra (2009)). The over- and under-densities lead to a
distribution of magnifications, favouring mild demagnifications but with a long tail of mag-
nifications. Holz and Wald (1998) estimated the effects via a Monte Carlo method, assuming
that inhomogeneities were correlated only within some fixed radius. Kainulainen and Marra
(2009) give a general stochastic method for estimating the probability distribution in models
where under-densities occupy more volume than over-densities, which might reasonably
represent the observed voids and filaments, and show good agreement with Holz and Wald
(1998) and the ray tracing in Holz and Linder (2005). They conclude that lensing by struc-
tures on a scale 1015M�/h would be important in analysing the current SNIa data. The
residuals in the data already indicate some lensing effect (Kronborg et al., 2010).

The influence of a cosmological constant in lensing was mentioned in Section 12.4.2
and may need to be accounted for. Similarly any quintessence present affects distances
but otherwise could only be detected by lensing effects if its equation of state were in
some regions significantly different from � or if it were clumped and so caused a Weyl
tensor term.

16.6.3 Averaging over whole sky gives FLRW?

In a fully clustered case (α̃ = 0), the Ricci focusing of the averaged model is replaced
by Weyl focusing on smaller scales. This Weyl focusing should give FLRW equations
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when averaged over the whole sky, but how this happens, and whether the inferred FLRW
model is the one obtained from the averaged density, is not obvious! It has been suggested
(Weinberg, 1976) that energy conservation will imply the correct FLRW all-sky average;
this assumes that the areas of a large angular scale bundle of null geodesics are the same
in the perturbed and background models, which will not be true when one takes the effect
of caustics into account (Ellis, Bassett and Dunsby, 1998). Areas increase slower than in
a RW model in the empty spaces between matter, where the Ricci term is zero, and faster
in the high-density regions where matter is concentrated, so one might think these effects
cancel out. However, the strongly lensed rays soon go through a caustic and emerge highly
divergent, so that areas are rapidly increasing again. It is plausible that on average the
overall effect is always an increase in area, giving a smaller area distance than in the smooth
background model. This suggests that the effect does not average out, over the whole sky.
In any case specific observations e.g. of SNIa are preferentially made in directions where
matter density is lower (universe is transparent) hence they may not represent an all-sky
average.

Nevertheless it is possible that for practical purposes this effect is small, and the large-
sky average is indeed the same as in an FLRW model (Kibble and Lieu, 2005): as long
as the clumps are uncorrelated the average magnification is precisely the same as in a
homogeneous universe with equal mean density. This is a remarkable result: completely
different focusing mechanisms give the same result on average.

16.6.4 Specific examples

Swiss cheese models and observations

Although Swiss cheese models do not affect the global dynamics of a lumpy universe model,
they do affect observations, because they change area distances. Indeed they model precisely
the difference between Weyl and Ricci focusing of null geodesics: null geodesics in the
empty regions are focused only by shear induced by theWeyl tensor.The null geodesics must
be matched across the boundaries between the vacuum and matter-filled regions, and overall
focusing calculated. This does indeed lead to interesting observational effects. Detailed
examination of geodesics in universes with an FLRWbackground and spherically symmetric
lumps – LTB, Schwarzschild or other models (Dyer, 1976; Kantowski, 1969b; Newman,
1979; Wesson, 1979) – show that the corrections depend on the choice of modelling. For
instance Newman’s results from a McVittie model differ from the ones based on standard
Swiss cheese models. In these exact inhomogeneous solutions, the null geodesic equations
can be exactly integrated in each domain and matched; this procedure naturally includes
shear effects.

Kantowski (1969b) investigated this effect in a series of papers on standard Swiss cheese
models with vacuum interiors, and gave a nice geometrical confirmation of the effect on
observational relations. He obtained analytic expressions for distance–redshift relations that
have been corrected for the effects of inhomogeneities in the density (Kantowski, 1998;
2001; 2003). The values of the density parameter and cosmological constant inferred from
a given set of observations depends on the fractional amount of matter in inhomogeneities
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and can significantly differ from those obtained by using the Mattig relations for the FLRW
universes. As an example, ‘a determination of �0 made by applying the homogeneous
distance–redshift relation to SN 1997ap at z = 0.83 could be as much as 50% lower than its
true value’.

Biswas and Notari (2008) studied an exact Swiss cheese model of the universe, where
inhomogeneous LTB patches are embedded in a flat FLRW background. They found a
negligible integrated effect on area distances, suppressed by (LH0)

3 (where L is the size
of a patch). However they found a Doppler term which is much larger. Marra et al. (2007)
analysed similar models and found the opposite: that redshift effects are suppressed when
the hole is small because of spherical symmetry. However, for the angular diameter distance,
strong evolution of the inhomogeneities causes the photon path to deviate from that of the
FLRW case, so the inhomogeneities are able to partly mimic the effects of a dark energy
component. Marra, Kolb and Matarrese (2008) fitted a phenomenological homogeneous
model to describe observables in such a Swiss cheese model. Following a fitting proce-
dure based on light-cone averages, they found that the light-cone average of the density
as a function of redshift is affected by inhomogeneities because, as the universe evolves,
a photon spends more and more time in the (large) voids than in the (thin) high-density
structures. Although the sole source in the Swiss cheese model is matter, the phenomeno-
logical homogeneous model behaves as if it has a dark energy component. However they
find that the holes must have a present size of about 250 Mpc to be able to mimic the
concordance model.

These various papers suffice to show that there may indeed be significant effects on
observation from the effects of inhomogeneities in such models. Particularly, a model with
genuine vacuum regions, as discussed by Kantowski, will show the largest effects. They
will also affect CMB anisotropies; Bolejko (2009) considers the case of Swiss cheese
models with Szekeres (Section 19.6) interiors, showing local and uncompensated inho-
mogeneities can induce temperature fluctuations of amplitude as large as 10−3, and thus
can be responsible for the low multipole anomalies observed in the angular CMB power
spectrum.

Wiltshire’s models

In these models, the observable universe is not accelerating but inferred luminosity distances
are larger than naively expected, in accord with the evidence of distant SNIa. Observational
consequences are worked out in detail in Leith, Ng and Wiltshire (2008).

Lindquist–Wheeler type models

In the appropriate limits the resulting large-scale dynamics (Clifton and Ferreira, 2009a)
approach those of an FLRW universe; the optical properties of such a spacetime, however,
do not. Clifton and Ferreira (2009b) show that these differences have consequences for
cosmological parameter estimation, and that fitting to recent SNIa observations gives a
correction to the inferred value of �� of ∼ 10%. This broadly concurs with Kantowski’s
estimates on the basis of Swiss cheese models.
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Problem16.2 Either give a convincing argument as to why theWeyl focusing effects averaged
over the whole sky produce the same results as Ricci focusing; or show it is not true (perhaps
under some special conditions).

16.7 Combination of effects: altering cosmic concordance?

Averaging processes when there are many local inhomogeneities lead to dynamical back-
reaction effects (see Section 16.2), and to optical effects, due both to altered redshifts and
area distances. This combination of effects seems to have the potential to significantly
influence interpretation of observations such as the SNIa data.

Is this influence of inhomogeneities sufficient to explain fully the apparent acceleration
indicated by the SNIa data? Leith, Ng and Wiltshire (2008) make this claim, but the mod-
elling used is controversial, and not yet universally accepted.According to Clifton and Zuntz
(2009), ‘It is found that intervening voids, between the observer and source, have no notice-
able effect, while sources inside voids can be affected considerably. By averaging observable
quantities over many randomly generated distributions of voids we find that the presence
of these structures has the effect of displacing the average magnitude from its background
value, and introducing a dispersion around that average’. A contrasting view, suggesting
the effect is much smaller, is in Vanderveld, Flanagan and Wasserman (2007).

CMB secondary anisotropies due to the matter distribution between us and last-scattering
can also be modelled using nonlinear inhomogeneities. LTB models have been used
by Raine and Thomas (1981); Panek (1992); Arnau, Fullana and Sáez (1994), and Swiss
cheese models by Rees and Sciama (1968); Dyer (1976); Meszaros and Molner (1996).
The most important outcome is that although in principle such large-scale inhomogeneities
will affect the CMB temperature, the quantitative estimates suggest that the variations are at
the level of 10−6 and therefore hard to distinguish from the variations on the last-scattering
surface expected from the seeds of large-scale structure. However, the axes of the CMB
and Hubble expansion anisotropies can differ in inhomogeneous models (unlike an FLRW
model: the consistency of dipole anisotropies in different data is a test of the latter).

Thus while it is very debatable whether the effect is enough to fully account for the
apparent acceleration, it may well be significant (Mattsson, 2010; Amendola et al., 2010).
Unlike a large local void, these models respect the cosmological principle, further offering
an explanation for the late onset of the perceived acceleration as a consequence of the
forming of nonlinear structures. Clearly, this topic needs further careful investigation.

A tentative interim conclusion is that the dynamical effects are certainly there,
but are small – not enough to explain fully the apparent cosmic acceleration
(Behrend, Brown and Robbers, 2008; Clarkson, Ananda and Larena, 2009). However,
when observational effects are added, the total effect may not be negligible. There are
claims (Leith, Ng and Wiltshire, 2008; Kolb, Matarrese and Riotto, 2006) that these com-
bined effects may be sufficient to do away with the need for any dark energy or cosmological
constant. This seems optimistic: for the present we suggest this is a proposal that needs
careful investigation, in particular taking the existence of voids seriously, but, while it may
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have a measurable effect, it is perhaps not likely by itself to do away with the need for a
cosmological constant or some form of ‘quintessence’.

This is a nontrivial conclusion: for in an era of precision cosmology, if these effects
change the answer by even a few per cent, they must be taken into account in analysing
the data. More than that, they have the potential to upset the cosmic concordance that is a
feature of the standard model. Indeed this effect may show that if the other energy densities
are indeed as measured then the universe does not after all have flat spatial sections.1 This
in turn raises significant issues for the inflationary explanation of the origin of structure –
which is usually stated to necessarily imply a universe with flat spatial sections.

Thus the issue is definitely worth pursuing. One thing we know for sure is that there
are indeed significant inhomogeneities in the matter distribution: great walls, filaments,
clusters and voids. We must take seriously their effect on cosmological dynamics and
observations. In any case, a detailed investigation of backreaction effects helps to improve
the fitting of models on regional scales, to give a better interpretation of observational data.
A key question is: what fraction of matter is present outside of bound structures? If there is
enough matter to cause Ricci focusing, it should be represented by Dyer–Roeder distances.
According to the Sheth–Tormen elliptical collapse model, 20% of the mass is outside bound
haloes (Massey, Kitching and Richard, 2010). This could lead to a significant observational
difference for a standard FLRW model.

Finally we note that the effects mentioned here could occur in addition to those mentioned
in the previous chapter: after all if the Copernican Principle is indeed violated on a large
scale (as discussed there), we should still take into account the fact that the universe is also
inhomogeneous on smaller scales (as discussed here). Investigation of the combination of
these effects has not yet been undertaken. The effects of inhomogeneities on SNIa obser-
vations remain poorly understood, because these observations are made on such a small
angular scale that the fluid approximation is not applicable and the relevant beam of null
geodesics propagates mainly through underdense space (Clarkson et al., 2011a).

Problem 16.3 If there is Weyl focusing it can only work by creating substantial distortion,
which should be visible in distant images as a generic defocusing effect across the sky. Can
one test for this? What limits does this place on the distribution of matter in voids?

Problem 16.4 Determine the effect on SNIa observations if the Dyer–Roeder distance is used
to represent observations made through voids where the density of matter is 50% of the
average density of matter in the universe.

16.8 Entropy and coarse-graining

Related to all this is the puzzling question of gravitational entropy.The spontaneous structure
growth in the expanding universe due to gravitational attraction appears to be contrary to

1 See the detailed description in Chapter 13.
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all the statements about entropy in standard textbooks (Ellis, 1995). This must somehow be
related to the nature of the entropy of the gravitational field itself, not just the entropy of
matter in a gravitational field.

The key feature regarding the entropy of matter, as clearly explained by Penrose (1989;
2004), is that it is associated with the loss of information that occurs with any coarse-grained
description of matter. The most likely macroscopic states will be those that correspond
to the largest numbers of microscopic states; that is to the largest volumes of phase
space. This is made clear in Boltzmann’s definition of entropy: S = k lnV where k is
Boltzmann’s constant and V the volume of phase space with points indistinguishable from
each other by means of macroscopic observations of some macro (coarse-grained) vari-
able to some accuracy ε. The dynamics of the system is accompanied by an increase of
this entropy as the representative point in phase space moves from less probable to more
probable states.

One might therefore expect that a proper definition of gravitational entropy would
similarly be related to some kind of coarse-graining of the gravitational field. However,
most attempts at definitions of gravitational entropy in the cosmological context (e.g.
Pelavas and Coley (2006); Amarzguioui and Grøn (2005)) build on Penrose’s proposal
(1989, 2004) that it be related to the magnitude of the Weyl tensor, with no introduction
of coarse-graining. This is quite puzzling, given the persuasiveness of Penrose’s arguments
that in the case of matter descriptions, entropy is always related to such coarse-graining.
In our view this is one of the most fundamental missing aspects of gravitational theory: a
satisfactory relation of gravitational entropy for a general gravitational field in terms of a
coarse-grained description of that field, therefore relating to all the issues mentioned in the
preceding sections.

A promising start has been made by Hosoya, Buchert and Morita (2004): if we are only
concerned with averaging the matter inhomogeneities on an inhomogeneous geometry, one
can deduce an entropy measure for the distinguishability of the density distribution from
its average value directly from the non-commutativity rule:

∂t 〈$〉− 〈∂t$〉 = −V −1∂tS{$||〈$〉}, S{$||〈$〉} :=
∫

$ ln$〈$〉−1, (16.20)

where the functional S{$||〈$〉} is known in information theory as the Kullback–Leibler
relative entropy, and spatial averaging and integration is performed over a domain with
volume V . Hosoya, Buchert and Morita (2004) conjecture that this functional is, after a
sufficient period of time, always globally increasing. This counter-intuitive statement (in
view of canonical considerations, e.g. in isolated Markovian systems) is justified in a self-
gravitating system because gravity is long range, the averaging domain is not isolated, and
gravity invokes a negative feedback: structural inhomogeneities are amplified due to gravita-
tional instability. We may expect that the information content in the matter inhomogeneities
is always increasing.

Given such a definition, the problem is to determine whether increasing total entropy
(in the gravitational field and in the matter distribution) occurs always, or whether this
is true only for special initial conditions. As discussed by Penrose (1989; 2004), it seems
plausible that the latter is the case, with the arrow of time in physics arising from boundary
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conditions at the start and end of the universe: specifically, the Weyl tensor taking a special
form at the start of the expansion of the universe but a generic form at the end. The specific
details of this proposal have never been clarified, and it is possible that the relation is not
due to the Weyl tensor itself, but rather due to a spatial integral of the divergence of the
electric part of the Weyl tensor (Ellis and Tavakol, unpublished). A further problem is then
relating the arrow of time for structure growth in the universe to that for electromagnetic
and gravitational radiation (Ellis and Sciama, 1972). Here again coarse-graining is crucial,
for this relates to the kind of multi-scale description of the gravitational field envisaged by
Isaacson, as discussed above.

Entropy and the associated arrow of time are fundamental to macroscopic physics. Their
foundations in relation to microphysics remain mysterious in the case of general gravita-
tional fields. The entropy of black holes is of course well understood, but this is an extreme
case that does not by itself help us understand the relation of entropy to spontaneous struc-
ture formation in the expanding universe. Until this is solved, we cannot claim to properly
understand the nature of entropy in the cosmological context.



PART 4

ANISOTROPIC AND
INHOMOGENEOUS MODELS



17 The space of cosmological models

Although the observations appear to be well fitted by perturbed FLRW models, as described
above, more general models need to be considered. One major reason is that the appro-
priateness of the perturbed FLRW models cannot be said to have been tested unless the
consequences of alternatives have been calculated and compared with observation. In par-
ticular, there could be drastic changes to the models for the very early universe, since what
may now be small and decaying perturbations in the standard picture would have been non-
negligible earlier, and could give very different dynamics. Local observations can bound,
but could not be sure to detect, such perturbations, so their testable consequences, if any,
must arise from effects in the early universe.

We also need to consider the possibility of large-scale anisotropies, for example arising
from a cosmic magnetic field aligned on a supergalactic scale, and of large-scale inhomo-
geneities (advanced as a possible explanation, which we discussed in Chapter 15, of the
apparent acceleration seen in the supernova data).

This chapter considers the space of all models and the definition of classes of cosmological
models wider than the FLRW models (compare e.g. Ellis (2005)). There are many ways of
classifying spacetimes, of which the most common are by symmetry and by Petrov type
(see Stephani et al. (2003)). In the cosmological case, symmetries are the more relevant
and we consider that here. (Some models characterized by other covariant properties are
described in Sections 19.6 and 19.7.) These are local properties. We need also to understand
global properties, such as causal structure, global topology, asymptotics, singularities and
horizons (see Sections 3.3.1, 6.7, 7.9, 8.4.2 and 20.6.1 for discussions of some of these
issues); this is in strong contrast to Newtonian theory, where the global spacetime structure
is very simple.

We also outline how to check if two apparently different models are locally isometric.
Finally, we discuss the space of all cosmological models, its representation and dynamics.

The dynamical and observational properties of the spatially homogeneous models and
the more important inhomogeneous models will be considered in the following chapters.
The spacetimes with even greater symmetry are so simple that the brief discussion in this
chapter suffices.

17.1 Cosmological models with symmetries

In Section 2.7.3, it was shown that an isometry group of dimension r acting on a Riemannian
space M of dimension n will define an orbit, of some dimension d , through each point of
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M: the orbits are submanifolds ofM (so d ≤ n: in spacetime d ≤ 4). On an orbit all physical
properties defined by the metric are invariant. When r > d , there is at each point p an
isotropy group of dimension s, and r = d+ s.

By considering the action of isotropies on the tangent space at p, one can easily show
that r ≤ d(d + 1)/2. If d > 2, r �= d(d + 1)/2− 1, because the group of isotropies of the
tangent space to the orbit at p cannot have dimension one less than the relevant orthogonal
group. The case of maximal symmetry, r = d(d + 1)/2, is the case of a space of constant
curvature (Section 2.7.7), which can have positive, zero or negative curvature.

In particular d = n= 4, r = 10 is the maximal symmetry a spacetime can have (de Sitter
space, Minkowski space, or anti-de Sitter space respectively for the three curvatures), with
s = 6. These models apply only if the sole ‘matter’ content is a cosmological constant:
while not realistic as a model of the present-day universe, de Sitter space plays an important
role as the approximate metric in (exponential) inflation, while the anti-de Sitter spaces of
higher dimension are important in string theory (Section 20.3).

In addition to the isometries of a model, there may be a homothetic motion and one or
more conformal symmetries (see (2.61)). Spacetimes with homothety are called self-similar,
and since the homothety implies a known dependence on one of the essential coordinates,
homothety shares with isometries the property of reducing the number of independent
variables in the field equations remaining to be solved.

17.1.1 Isotropy

Cosmological models often have a perfect fluid matter content such that (ρ+p)> 0. In this
case the unit future-pointing timelike eigenvector u of the Ricci tensor at each point, with
eigenvalue ρ, is unique. At each point the isotropy group must act in the three-dimensional
tangent space orthogonal to u (so leaving u invariant), and thus can have dimension s at
most 3. It cannot have dimension 2 since there are no subgroups of dimension 2 of the
three-dimensional rotation group. Note that there can be particular orbits where s is larger
and d is smaller than is the generic case in the spacetime (e.g. the centre of symmetry of a
spherical star has s = 3, d = 0, whereas the other orbits are spheres with s = 1, d = 2).

Uniqueness of the timelike Ricci eigenvector, and its consequences, also applies for
most other physically acceptable non-zero energy–momentum tensors. The cosmologically
relevant exception is when one has only a cosmological constant (which includes the de
Sitter family, the spaces of constant curvature), though this is not an exact representation
of the real universe at any stage, since there is always some matter or field present.

When the timelike Ricci eigenvector is unique, the only options for the isotropy
group are:
s= 3: (Complete) isotropy, which is the FLRW case: all spatial directions are equivalent;

the Weyl tensor vanishes as do all kinematic quantities except �.
s = 1: Local rotational symmetry (LRS). There is one preferred spatial direction, x

say; the Weyl tensor is of type D (or zero) and all kinematic and observable quantities are
rotationally symmetric about x. These models fall into three classes, I-III (Ellis, 1967): in
class I u is rotating and the metrics admit aG4 on timelike hyperplanes; in class II the planes
defined by x and u are integrable and there is a G3 acting on the surfaces (spheres, planes
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or pseudospheres) orthogonal to those planes; in class III the planes are not integrable and
the spacetimes are spatially homogeneous.
s = 0: No continuous isotropy, all neighbouring directions are inequivalent (but there

can be discrete isotropies: models which are locally discretely isotropic, i.e. have the
same discrete isotropy at every point, admit continuous groups of motions (Schmidt, 1969,
Mena and MacCallum, 2002)).

17.1.2 Spacetime homogeneous geometries

These models with d = 4 are unchanging in space and time. We ignore here the constant
curvature spaces and discuss those where the curvature is the same everywhere, but not
‘constant’. Then ρ is a constant, so by the energy conservation equation (5.11), if ρ+p �= 0
no invariantly defined timelike congruence can expand: � = 0.1 Thus by (7.17) these
spacetimes cannot produce any redshift, in the frame of the matter present, and are not
useful as models of the real universe. Nevertheless they have some interesting features.

The isotropic case s = 3 (⇒ r = 7) is the Einstein static universe, the non-expanding
FLRW model (Section 6.1.1) that was the first relativistic cosmological model found.
Although not a viable cosmology (no redshifts), it laid the foundation for the discovery
of the expanding FLRW models.

The LRS case s = 1 (⇒ r = 5) is the Gödel (1949) stationary rotating universe, again
with no redshifts. This model was important because it prompted new understanding
of the effects of rotation and the nature of time in GR (see Hawking and Ellis (1973),
Tipler, Clarke and Ellis (1980), Ellis (1997)). Inter alia, it is a model in which causality is
violated (there exist closed timelike lines through each spacetime point) and no cosmic time
function whatsoever exists.

The anisotropic models s = 0 (⇒ r = 4) are all known (Ozsváth, 1965, 1970) but are
cosmologically interesting only for the light they shed on effects of rotation and on Mach’s
principle; see e.g. Ozsváth and Schucking (1962), Rosquist (1980).

17.1.3 Spatially homogeneous geometries

These models with d = 3 have played a major role in theoretical cosmology, because they
express mathematically the idea of the ‘cosmological principle’: all points of space at
the same time are equivalent to each other (Bondi, 1960). They are discussed further in
Chapter 18.

The isotropic case s= 3 (⇒ r = 6) is the family of FLRW models discussed in Chapter 9.
The LRS case s = 1 (⇒ r = 4) contains the Kantowski–Sachs universes

(Kompaneets and Chernov, 1965, Kantowski and Sachs, 1966, Collins, 1977) and the LRS
orthogonal (Ellis and MacCallum, 1969) and tilted (Farnsworth, 1967, King and Ellis,
1973) Bianchi models.

1 Note that in the spacetimes of constant curvature expanding congruences can be, but need not be, chosen: all
timelike vectors at a point are related by spacetime symmetries.
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The anisotropic case s = 0 (⇒ r = 3) consists of the Bianchi universes, with a simply
transitive group G3 of isometries acting on spacelike surfaces. They are classified into nine
types (Bianchi I to IX) and two major classes: tilted or orthogonal. Some have an additional
homothety, and these special solutions often appear as sources or sinks in the dynamical
system for the larger set of models (see Chapter 18).

Caveat: instead of focusing on the nature of the surfaces of homogeneity we could focus
on the equivalence of experiences of observers (as discussed in Chapter 13).

17.1.4 Spatially inhomogeneous universes

These models have d ≤ 2: discussion of their cosmological applications can be found in
Chapters 15, 16 and 19, and, more extensively, in Krasiński (1997) and Bolejko et al. (2010):
for exact solutions in the various classes see also Stephani et al. (2003). Models with an
additional self-similarity are included in these discussions.

The LRS cases (s = 1 ⇒ d = 2,r = 3) have the metric form

ds2 =−C2(t ,r)dt2 +A2(t ,r)dr2 +B2(t ,r)(dθ2 +f 2(θ)dφ2 ) , (17.1)

where f (θ) is as in (2.65). These are discussed in Section 19.4 and, for K = 1 dust (LTB
models), in Sections 15.1 and 19.1. In the dust case, we can set C(r , t)= 1 and integrate the
field equations analytically. The models may have a centre of symmetry (a timelike world
line), and can even allow two such centres, but they cannot be isotropic about a general
point (because isotropy everywhere implies spatial homogeneity, see Section 9.1.1).

When d = 2, s = 0, and there are two commuting Killing vectors (a G2I ), they may act
on a timelike surface. The resulting solutions include the stationary axisymmetric solutions
important as models of rotating isolated bodies, which we do not discuss further here. They
also include static plane and cylindrical solutions used to model domain walls and cosmic
strings. We briefly consider those in Section 19.5, along with the models where the G2I

acts on a spacelike surface. The spatially self-similar models (see Section 19.3) admit a G2.
Models with exactly two non-commuting Killing vectors (a G2II ) have been relatively

little studied. It is known that they cannot admit two-surfaces orthogonal to the group
orbits if the fluid flow is orthogonal to the orbits (unless they have an extra symmetry) and
that if the fluid is thus orthogonal it is non-rotating (Bugalho, 1987, Van den Bergh, 1988,
Aliev and Leznov, 1992). The ‘stiff fluid’ (Section 5.2.2) is a special case, discussed in
detail by Van den Bergh (1992). Most of these solutions have singularities at finite spatial
distances or can be regarded as inhomogeneous perturbations of the Bianchi VI−1 models.
They have not been applied to major issues in cosmology, and we shall not consider them
further.

Few models with d ≤ 1 are known: most have not been seriously applied to significant
cosmological issues, and so will not be discussed in Chapter 19. Among them are: Ole-
son’s (1971) perfect fluid solutions of Petrov type N, which in general have no isometries;
the solutions obtained by Martín and Senovilla (1986) and Senovilla and Sopuerta (1994)
by a generalization of the Kerr–Schild ansatz, which have a G1; the solutions found by
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Martin-Pascual and Senovilla (1988) which belong to the Wainwright (1974) class; and
the solutions of Stephani and Wolf (1985), found by assuming the existence of flat three-
dimensional slices. Rainer and Schmidt (1995) have discussed the generalization of the last
case to surfaces admitting Bianchi groups.

Solutions with no symmetries at all have r = 0 ⇒ s = 0, d = 0. The real universe, of
course, belongs to this class; all the other models can only provide approximations to this
actual universe. Remarkably, we know some exact solutions of interest in cosmology which
have no symmetries: these are the Szekeres–Szafron models (see Section 19.6), which are
in a sense nonlinear perturbations of the FLRW models, and Stephani’s models, both those
(Stephani, 1987) with a conformally flat 3-space (see Section 19.6) and (Stephani, 1967)
the conformally flat metrics (see Section 19.7).

Inhomogeneous universes can also be constructed by combining two or more solutions,
either by matching portions of different solutions together or by nonlinearly superposing
solutions. The composite solution generally has less symmetry than the parts from which
it is made. The main example of the first type is the Swiss cheese model introduced in
Section 16.4.1, and analogous models (see Section 19.2).

The McVittie solution (19.4) is an example of nonlinear superposition. Few other such
models have been discussed. A number of authors have considered the superposition of
a Kerr solution and an FLRW spacetime, aimed at modelling rotating black holes in the
cosmos, but in general these require ‘null radiation’, i.e. a directed lightlike flow of energy,
which is not very realistic: see Krasiński (1997), chapter 5. Nolan and Vera (2007) have
considered the boundary conditions for a rotating fluid body interfaced to an asymptotically
Friedmann background.

17.1.5 Summary of possible symmetric models

Putting this together, we obtain the classification of possible symmetries of cosmological
models given in Table 17.1.

Exercise 17.1.1 What further features, other than those mentioned above, make the Einstein
static spacetime problematic as a cosmological model?

Exercise 17.1.2 Show that in the case of FLRW models, no causal violations can occur. Does
this result extend to perturbed FLRW models? What about Bianchi models? [See Gödel
(1952) for some examples.]

Problem 17.1 Investigate whether any of the models mentioned above with d ≤ 1 have
interesting cosmological properties.

Problem 17.2 Solutions of the Einstein equations are of rather diverse nature. What restric-
tions should one impose to characterize the subspace of solutions that might reasonably be
called cosmological?
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Table 17.1 Classification of spacetimes by symmetries. s is the dimension of the group of motions and d
that of the orbits. There are no isotropies when d ≤ 1. A Swiss cheese with multiple ‘holes’ may have

no symmetry.

d = 4 d = 3 d = 2
(no redshift)

s = 3 Einstein static Friedmann none
(isotropic) (Chapter 9)

s = 1 Gödel Kantowski LTB (Sections 15.1, 19.1);
(LRS) and Sachs; Simple Swiss cheese

LRS Bianchi (Sections 16.4.1,19.2);
(Chapter 18). and other LRS cases

(Section 19.4).
s = 0 Ozsváth/Kerr Bianchi See Section 19.5. Includes

(Chapter 18). spatially self-similar
models, see Section 19.3.

d = 1 d = 0
Inhomogeneous, no isotropy group (s= 0)

Various cases awaiting cosmological application (Section 17.1.4).
The real universe!
Szekeres–Szafron (Section 19.6).
Stephani–Barnes (Section 19.7).

17.2 The equivalence problem in cosmology

In order to consider the space of possible cosmologies unambiguously, one needs to be
able to check whether two apparently different models are in fact the same. There is a
general procedure for checking the local equivalence of two explicit spacetime metrics, by
comparing the complete covariant local classifications based on calculating the Riemann
tensor and its derivatives in a canonically chosen frame. The components calculated are
known as Cartan invariants. The method has been applied to exact solutions and developed
for other problems.Abrief outline of it follows: for a fuller survey see Stephani et al. (2003),
chapter 9.

To relate two apparently different metrics, we need to consider coordinate or basis trans-
formations, and therefore to consider the set of all frames, leading to the frame bundle
(which at each point p of M consists of all possible bases of the tangent space Tp(M)). If
the metrics are equivalent, the frame bundles they define are identical (locally). In the case
of spacetimes, this implies that the components of the curvature on the frame bundle will
be equal when corresponding points have been correctly identified.
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This condition is necessary, but not sufficient. Cartan showed that a sufficient condition is
obtained by repeatedly taking derivatives of the curvature until no new functionally indepen-
dent quantity arises; at that stage the process terminates because then any further derivatives
depend on those already known. The relations between the independent invariants and the
dependent ones must be the same in (neighbourhoods in) both manifolds for equivalence.
Since the number k of functionally independent quantities is at most the dimension m of
the manifold, the process necessarily terminates in a finite number of steps. If k < m, this
is due to the presence of symmetries.

Hence a metric can be locally uniquely characterized by the Riemann tensor and a finite
number of its covariant derivatives expressed in a canonical frame (collectively called the
Cartan invariants). For practical application one needs to cast the curvature and derivatives
at each step of differentiation into a canonical form and only permit those frame changes
which preserve the canonical form. Existing computer implementations tend to use null
tetrads, but orthonormal tetrads could equally well be used.

It should be noted that for cosmological models, it appears that scalar polynomial invari-
ants in the Riemann tensor and its derivatives would suffice (Coley, Hervik and Pelavas,
2009), but generally these require more computation than the Cartan invariants.

In the cosmological context it is useful to express the method using the 1+3 formalism.
Where one knows the full four-dimensional solution, and there is an invariant timelike vector
(e.g. a fluid velocity), and its shear uniquely defines a set of eigenvectors, the general
procedure can be applied using these vectors as an orthonormal frame. If an invariant
timelike vector is determined but the spacelike vectors are not unique, i.e. there is some
local isotropy, further discussion is needed. Taking perfect fluid cosmologies in which the
kinematic quantities and Weyl tensor are rotationally symmetric leads to LRS solutions,
as defined in Section 17.1.1, or Szekeres dust models as in Section 19.6 (Mustapha et al.,
2000).

A more difficult problem is to give a complete characterization in terms of initial data
on a Cauchy surface, when the solution off the surface is not known explicitly. Although in
principle the Cauchy data determine the spacetime (in its domain of dependence) uniquely,
as would the characterization by Cartan invariants, relating the two is not easy and so far
solved only for Schwarzschild or Kerr data (see e.g. Garcia-Parrado and Valiente Kroon
(2008)). The problem should be simpler when the Cauchy surface is defined by an invariant
timelike normal vector. We would like to be able to express results using the kinematic and
other quantities in the 1+3 approach as presented earlier.

Problem 17.3 Find a general procedure to test equivalence of cosmological models using the
1+3 formalism.

17.3 The space of models and the role of symmetric models

The space of all solutions of Einstein’s equations is clearly an infinite-dimensional space,
although we do not know an entirely satisfactory way to coordinatize it. One can put a
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symplectic structure directly on the space of four-dimensional metrics (see e.g. Szczyryba
(1976)) but most attempts use some form of 1+3 decomposition (it may be possible to
develop an alternative by defining a topology on the space of solutions using values of
invariants).

Since we expect cosmologies, or those regions of them which describe the part of a
possibly larger universe that we observe, to allow Cauchy surfaces, we can consider the
solutions to be described by paths in the space of metrics on spacelike hypersurfaces, with
tangent vectors given by the extrinsic curvatures. Because the constraint equations are
preserved by the second-order evolution equations, as discussed in Section 6.6, only the
latter need be considered once initial conditions have been set. Thus the structure is the
one common in physics: second-order governing equations which have a unique solution
given the initial ‘position’ (spatial metric) and ‘velocity’ (initial extrinsic curvature). Of
course, for non-vacuum cosmologies, the geometric variables need to be supplemented by
appropriate matter variables and field equations for them.

This description does not take into account either the fact that the same geometry can
be represented by different spatial metrics (if they are equivalent under diffeomorphisms
of the hypersurface, although it is not always advantageous to identify isometric space-
times (see Section 18.5.3)) or the fact that the same four-dimensional geometry may be
described by different slicings and hence different paths through the space of hypersurface
metrics. On the first aspect, ‘geometrodynamics’ (Wheeler, 1962) aims to use the space
of geometries, ‘superspace’, rather than that of metrics. Numerous papers have considered
ways of making this explicit, and, for example, of recasting the system of equations to
make it numerically stable. This representation of the space of spacetimes, with the ADM
formalism (Section 3.3.3), is the basis of quantum cosmology (see Section 20.2.1).

The local structure of the infinite-dimensional space is, as in a finite case, described
by infinitesimal differentials. One question that has been studied is whether all lineariza-
tions about a given metric are in fact tangents to families of metrics approaching the given
one, so-called ‘linearization stability’. For compact hypersurfaces, metrics with symme-
try are known not to be linearization stable: the space of solutions is conical there (see
e.g. Marsden (1982)). Only tangents obeying additional conditions, due to Taub (1971),
are allowed. However, no restrictions are known for the non-compact non-asymptotically
flat spacetimes we might expect as cosmological models, though there may be lineariza-
tion instability when the neighbouring spacetimes are restricted to those with a common
symmetry (Brill and Vishveshwara, 1986). Brill, Reula and Schmidt (1987) showed that
linearization stability is always true for any finite region of spacetime with boundary,
and Brauer (1991) found that generic spherical inhomogeneities superimposed on FLRW
were linearization stable for K ≤ 0. So while this is a technical worry, e.g. in studying
perturbations, it seems not to be of practical importance.

We can thus think of the evolution of cosmological models as taking place in an infinite-
dimensional dynamical system on a phase space whose variables are the spatial metric and
extrinsic curvature (with the caveat that much of the theory of dynamical systems has only
been proved to apply to ordinary, not partial, differential equations). Within this space are
subspaces which are invariant sets. Note that defining these sets requires the ‘velocity’ to
be chosen appropriately, as well as the ‘position’.
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Cosmologies with symmetry form particularly important invariant sets.

Theorem 17.1 If the metric and extrinsic curvature on a Cauchy surface are invariant under
a continuous isometry, then the Cauchy development will also be invariant under that
isometry.

The proof for the general case follows that of Lemma 2.1 in Ellis and King (1974),
although the result is stated there only for the spatially homogeneous case. Note that this
result is not true in Newtonian cosmology, because its equations are not hyperbolic equations
and the evolution can be affected instantaneously by boundary conditions at infinity. An
example is given by the FLRW metrics: see Section 9.8.2.

One reason these invariant sets are of interest is that they may form a ‘skeleton’ in the
larger space of less symmetric models, a set of curves which more general models may
approximate, so that the higher symmetry cases are behaving like attractors (or, from the
time reverse, ‘sources’ of the flow), or may produce saddle points in the space of solutions.
In the direction of expansion these attractors are often models with an additional homothety,
self-similar models, and this is also sometimes true in contraction: see Wainwright and Ellis
(1997) and Chapter 18. It is conjectured, and has been proved for some cases, that this
behaviour extends to the infinite-dimensional dynamical systems describing the evolution
of models with less or no symmetry (see Chapter 19).

These properties are clearly shown in the Ehlers–Rindler phase space for FLRW models
(see Figure 9.2). More generally, they have been proved to be correct for many of the
dynamical systems for particular classes of Bianchi models (where the homogeneity ensures
we have ordinary differential equations), which are discussed in the next chapter. They
have also been conjectured, and in some cases have been proved, to apply to the infinite-
dimensional dynamical systems describing the evolution of inhomogeneous models, with
less or no symmetry (see Chapter 19 and Uggla et al. (2003)). This is based on the form
of the evolution equations in appropriately normalized variables, the attractor (in the time
direction towards the big bang) consisting of Kasner and Mixmaster oscillatory models as
described in Chapter 18; see Section 19.10.1.

Exercise 17.3.1 Prove Theorem 17.1. (See Collins and Ellis (1979).)
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FLRW models are spatially homogeneous, but they are a very restricted subclass of such
models because of their isotropy. Why are spatially homogeneous anisotropic models inter-
esting? Basically, because they are tractable solutions of the full non-linear equations since
there is only one essential variable, time, so the equations become ordinary differential
equations, but they allow investigation of much more general behaviour than the FLRW
models. They can represent anisotropic modes, including rotation and global magnetic
fields, which could occur in the real universe (indeed, must do so, if the universe is indeed
generic, as some claim): here an anisotropic but not necessarily inhomogeneous model is
required (see e.g. Thorne (1967)). They allow new classes of singularities, and modification
of the BBN–baryon relation in the early universe. They may also be good approximations
in regions where there is inhomogeneity but spatial gradients are small, see Section 19.9.
They have been explored in various quantum cosmology contexts (see Chapter 20) as well
as in GR.

In particular, the tilted cases provide the only tractable cosmological solutions we have
which involve rotation: rotation is ubiquitous in the universe, and, because of the vorticity
conservation theorems discussed in Chapter 6, this suggests there always was and always
will be rotation. Thus it is valuable to have solutions where we can investigate its effects
on, for example, the CMB, where we find new classes of anisotropy patterns, and on
nucleosynthesis. The models do not provide bounded objects stabilized by rotation such as
we see around us, but could provide seeds of rotation for them. The reasons for looking at
expanding and rotating spatially homogeneous universes now are as good as when Gödel
looked at them in 1952 (and showed they must have non-zero shear).

How could we test if we live in a spatially homogeneous universe if it is anisotropic?
(Compare the discussions in Section 9.8 of testing whether we live in an FLRW model, and,
in Chapter 15, of the difficulty of testing (statistical) homogeneity.) Direct observational
testing is even more difficult than in the FLRW case and there are so far no observations
compelling us to assume the background averaged universe is spatially homogeneous but
anisotropic. The Postulate of Uniform Thermal Histories (Section 9.8) will also remain a
viable option, as there will indeed necessarily be uniform thermal histories in those models.
This remains an issue open for investigation.

As stated in Section 17.1, spatially homogeneous anisotropic models have an isometry
group Gr , r ≤ 4. They are either Bianchi models, with a G3 of one of the nine types I–IX
defined in Section 18.3 below acting simply transitively on spacelike hypersurfaces, or,
as a special case, the Kantowski–Sachs (K-S) metrics with K = 1 and a G4 containing no
simply transitiveG3. The isometry group maps the timelike observer world lines orthogonal
to the hypersurfaces into one another, and similarly maps invariantly defined matter world
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lines (e.g. those of a perfect fluid) intersecting the hypersurfaces into one another. When
the normal and matter world lines coincide, we say the model is ‘orthogonal’: otherwise it
is ‘tilted’. Tilted models are significantly more complicated than orthogonal models.

Orthogonal models must be irrotational, because the world lines are hypersurface-
orthogonal, so rotating models must be tilted (compare the discussion in Section 4.6). In
the tilted case, whether or not there is rotation, the homogeneous hypersurfaces (and their
orthogonal curves) can change character, i.e. there may be a limiting null surface beyond
which the hypersurfaces become timelike.

There have been many papers analysing the systems of equations governing the K-S
and Bianchi models, finding exact solutions of these equations, and discussing physi-
cal properties of the models. These published up to 2003 were discussed in detail in
Wainwright and Ellis (1997) and Coley (2003), and for exact solutions Stephani et al.
(2003), to which the reader is referred for fuller accounts than we can give here. In particular
we shall not have space for full discussion of the more complicated energy momenta that
have been considered (see e.g. Coley (2003)).

We discuss the simple cases of Kantowski–Sachs and Bianchi I universes, before pro-
ceeding to the general dynamics of Bianchi models and the conclusions one can draw
concerning cosmological questions.

18.1 Kantowski–Sachs universes: geometry and dynamics

Kantowski (1966) (compare Kantowski and Sachs (1966)) considered metrics of the form

ds2 =−dt2 +A2(t)dx2 +B2(t)[dy2 +f 2(y)dz2], (18.1)

with K = ±1, where f for various K is as in (2.65). Particular cases, including K = 0
metrics, had earlier been discussed by Kompaneets and Chernov (1965), Doroshkevich
(1965) and, in his 1965 thesis, Thorne (see Thorne (1967)). The Ricci tensor takes a very
simple diagonal form, and the field equations become

2B̈

B
+ Ḃ2

B2
+ K

B2
=�− κ0p1,

B̈

B
+ Ä

A
+ Ȧ

A

Ḃ

B
=�− κ0p2, (18.2)

2ȦḂ

AB
+ Ḃ2

B2
+ K

B2
=�+ κ0ρ.

Here p1 and p2 are the pressures along the x direction and tangential to the (x, y) surfaces
respectively. For a perfect fluid, p1 =p2. However, these metrics have been used in several
discussions of the effects of a cosmic magnetic field, and p1 �= p2 when a magnetic field is
added. The same applies for other forms of matter with anisotropic stresses.

For K =−1 and K = 0, these are LRS models of Bianchi types III and I respectively,
which we discuss later. For K = 1, which we call the Kantowski–Sachs form, there is
no transitive G3 subgroup of the G4 group of isometries. In this case the t = constant,
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x = constant, 2-surfaces are spheres, but they all have the same area (4πB2) and so cannot
be considered concentric: rather they form a three-dimensional cylinder with spherical
cross-section. In particular the models do not include any FLRW geometries, except that a
portion of de Sitter space can be put in the form (18.1) (Torrence and Couch, 1988).

Once given equations of state, (18.2) with K = 1 gives a two-dimensional dynamical
system, which was investigated by Collins (1977) for the case of perfect fluid with �= 0.
The models evolve from an initial to a final singularity, with a time of maximal expansion, as
do those with �< 0; those with �> 0 approach the de Sitter solution (Weber, 1984; 1985).
One can of course, as in the usual K = 1 FLRW models, assume that the universe will re-
expand after its collapse, but this necessitates providing some model of behaviour of matter
at high density which produces such a bounce. The system of equations describes part of the
boundary of the LRS Bianchi IX system of Uggla and von Zur-Muhlen (1990), since the
group structure is a limit of the LRS Bianchi IX structure in which the Bianchi IX subgroup
acts on a sphere rather than a hypersurface (compare Chapter 8 of Wainwright and Ellis
(1997)).

Some other cosmological implications have been studied as follows. Only some
particular inflationary potentials in the metric (18.1) have been considered (e.g. by
Byland and Scialom (1998)). Since in generalA/B does not become approximately constant
initially isotropic distributions in kinetic theory will not remain so, even approximately, and
thus the CMB would show a quadrupolar anisotropy, except in the future of �> 0 models.
Nucleosynthesis would be affected by the change of time evolution (Thorne, 1967).

These problems, coupled perhaps with a prejudice against the global topology implied
when K = 1, explain why the K-S models and their K ≤ 0 counterparts, despite their
simplicity, have not often been applied as models of the actual universe, although their
exact solutions have been much explored and they are widely used as testbeds e.g. for
quantum effects.

Exercise 18.1.1 Show that the K-S models have no simply transitive group of isometries (i.e.
are not Bianchi models) if K = 1. Show that the K-S vacuum solution is the Schwarzschild
solution for r < 2M (i.e. inside the event horizon).

18.2 Bianchi I universes: geometry and dynamics

These are the simplest generalization of the flat FLRW models to allow for different
expansion factors in three orthogonal directions. The metric can be given in the form
(Heckmann and Schucking, 1962)

ds2 =−dt2 + �2
1(t)dx2 + �2

2(t)dy2 + �2
3(t)dz2 , ua = δa0 . (18.3)

The corresponding average expansion scale factor is �(t)= (�1�2�3)
1/3. There are LRS and

isotropic (RW) subcases (the latter, for dust, being the Einstein–de Sitter universe).
The Bianchi I metrics are important because other Bianchi models may and often do have

phases in their evolution when the terms in spatial curvature in (6.54) become negligible
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and the dynamics approximates the Bianchi I case. Their solutions for perfect fluids are
widely used as backgrounds in which to model other processes, and the metric form is often
used with more complicated matter content, because of its simplicity (though note that there
has to be no net energy flux and the total spatial stresses must align with the shear).

The space sections {t = const} are flat (in a surface t = t0, all the metric coefficients are
constant). The normal to these homogeneous surfaces, which must also be the timelike Ricci
eigenvector, is necessarily geodesic and irrotational. Thus these models obey the restrictions

u̇a = ωa = 0 , Xa =Za =∇ap = 0 , 3Rab = 0 , (18.4)

where we have assumed the matter to be a perfect fluid (Xa and Za here are as defined in
Section 9.1.1).

We can find a tetrad in the obvious way from the above coordinates (e1
µ = �1(t)

−1 δ1
µ,

etc.); then, for a perfect fluid, the tetrad equations of Section 6.5 hold with σij = 0 if
i �= j and

u̇i = ωi =�i = 0 , ai = nij = 0 , (18.5)

∂i(�)= ∂i(σjk)= 0 , ∂i(ρ)= ∂i(p)= 0 . (18.6)

It follows that the (0i) equations (6.51) are identically satisfied, and that Hab = 0 and
∇bE

ab = 0. From the Gauss equation (6.22), the shear obeys

(�3σij )˙= 0 ⇒ σij = �ij

�3
, (�ij )˙= 0 , (18.7)

which implies

σ 2 = �2

�6
, �2 := 1

2 �ij�
ij , (�2)˙= 0 . (18.8)

All the field equations will then be satisfied if the conservation equation (5.11), the Ray-
chaudhuri equation (6.5), and the Friedmann-like equation (6.23) are satisfied. As in the
FLRW case, the last is the first integral of the other two.

Assuming a linear equation of state and using (18.8), equation (6.23) becomes the
generalized Friedmann equation,

3
�̇2

�2
= �2

�6
+ M

�3w+3
+� . (18.9)

We can of course think of the � term as a second fluid with w=−1, and can similarly add
together the effects of several fluids.

The Bianchi I case gives an understanding of some of the critical values of w which
arise in many models. When w > 1 the matter term dominates as we approach the big-
bang singularity and the behaviour is quasi-isotropic, similar to an FLRW universe. Taking
�= 0, when w < 1, the matter term dominates evolution at large � and drives the metric
locally towards isotropy, σ/�= 0. However, Bianchi I models are atypical in that there is
no restoring force term in the σ̇ equation: one set of such terms will come, in more com-
plicated models, from the spatial curvature, which evolves in general like 1/�2, suggesting
a bifurcation in behaviour at w = − 1

3 . (In addition we note from (6.18) that in rotating
universes – which are not of course Bianchi I – one can expect a bifurcation at w = 1/9.)
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Early shear domination

The formula (18.9) shows that no matter how small the shear today, it will ifw< 1 dominate
the very early evolution of a Bianchi I universe, which will then approximate the Kasner
vacuum solution (see e.g. Stephani et al. (2003), Section 13.3),

ds2 =−dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2 ,
3∑
1

pi =
3∑
1

(pi)
2 = 1, (18.10)

where the pi are constants. Note that the restrictions on the pi imply the allowed values
form a circle in the plane

∑3
1pi = 1, the Kasner circle.

On writing out the tetrad components of the shear equation (18.7), and using the com-
mutator relations (6.43) to determine the shear components, one finds that the individual
length scales are given by

�i(t)= �(t)exp(�i W(t)), where W(t)=
∫

dt

�3(t)
(18.11)

and the constants �α satisfy

�1 +�2 +�3 = 0 , �2
1 +�2

2 +�2
3 = 2�2 .

These relations can be satisfied by setting

�j = 2
3� sin αj , α1 = α , α2 = α+ 2

3π , α3 = α+ 4
3π , (18.12)

where α is a constant. Thus the fluid solutions are given by choosing a value for w and then
integrating successively (18.9) and (18.11). For example, in the case of dust (w = 0):

�(t)= ( 9
2Mt2 +√

3�t)1/3 , W(t)= 1√
3�

log

(
t

3
4Mt +√

3�

)
,

so �i(t)= �(t)

(
t2

�(t)3

) 2
3 sinαi

. The generic case is anisotropic; LRS cases occur when (up

to a multiple of 2π/3) α = π/6 (the ‘Taub’ case) and α = π/2 in (18.12), and isotropic
(Robertson–Walker) cases when � = 0.

At late times these solutions isotropize to give the Einstein–de Sitter model (assuming
the matter content is dust at large t), and hence may be a good model of the real universe
if � is chosen appropriately. However, at early times, the situation is quite different. As
t → 0, provided � �= 0, then �(t)→ (

√
3�)1/3 t1/3 and

�i(t)→ �i0 t
1
3 (1+2sinαi) , (no sum on i),

where the �i0 are constants. Plotting the functions 1 + 2sinαi , we see that the generic
behaviour occurs for α �= π/2; in this case two of the powers are positive but one is
negative, so as t → 0 the axis with the negative exponent shows a (divergent) expansion,
while collapse occurs (divergently) along the two orthogonal directions; the singularity is a
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cigar singularity. Going forward in time, the initial collapse along the preferred axis stops
and reverses to become an expansion.

However, when α = π/2, one exponent is positive but the other two are zero. Hence,
going back in time, collapse continues divergently along the preferred direction in these
LRS solutions back to the singularity, but in the orthogonal directions it slows down and
halts; this is a pancake singularity. An important consequence in this special case is that
horizons are broken in the preferred direction – communication is possible to arbitrary
distance in a cylinder around this axis (Hawking and Ellis, 1973). The limiting vacuum
solution (18.10) in this case is in fact a wedge of flat Minkowski space.

To summarize, these models can have arbitrarily small shear at the present day, and so
can be arbitrarily close to an Einstein–de Sitter universe since decoupling, but can be quite
different early on.

Astrophysical applications

One can work out detailed observational relations in these models. Because the Killing
vectors are simple, ξ i = ∂/∂xi , the null geodesics can be found explicitly; those along the
three preferred axes are particularly simple. Redshift along each of these axes simply scales
with the expansion ratio in that direction. Area distances can be found explicitly (Tomita,
1968, MacCallum and Ellis, 1970); an interesting feature, shared with all Bianchi class A
models, is that all observations will show an eight-fold discrete isotropy symmetry about
the preferred axes (Schmidt, 1969, Mena and MacCallum, 2002).

One can also work out helium production and CMB anisotropy, following the pioneering
paper by Thorne (1967). Because the shear can dominate the dynamics at nucleosynthesis
or baryosynthesis time, causing a speeding up of the expansion, one can get results quite
different from those in the FLRW models. Consequently, one can use the nucleosynthesis
observations to limit the shear constant �; this still allows extra freedom at the time of
baryosynthesis.

The CMB quadrupole anisotropy will directly measure the cumulative difference in
expansion along the three principal axes since last scattering, and, hence, may also be
used to limit the anisotropy parameter �. The comparison of these two limits is discussed
in Section 18.7.

Bianchi I models have also been investigated in the case of viscous fluid and kinetic
theory solutions (Misner, 1967) and with EM fields, and the effects of reheating on the
CMB anisotropy and spectrum have been examined, see Rees (1968).

While the t-axis must be a Ricci eigenvector, one can consider forms of matter giving a
non-zero πij . These can then show very different forms of behaviour near the singularity,
in particular oscillations of length scales like the ‘Mixmaster’ cases we discuss below
(for example, see LeBlanc (1997) for the magnetic field case, Sandin (2009) for a pair
of tilted fluids whose energy fluxes cancel, Rendall (1996) and Heinzle and Uggla (2006)
for collisionless particles (compare Misner (1968)), and Calogero and Heinzle (2009) for
a general discussion). One way of understanding this similarity is that the extra geometric
terms in (e.g.) Bianchi IX can be interpreted as arising from long-wavelength gravitational
waves (see e.g. King (1991)).



462 Chapter 18 Spatially homogeneous anisotropic models

Exercise 18.2.1 Show how the solutions will be altered by (i) a fluid with simple viscosity:
πij =−ησij with constant viscosity coefficient η, (ii) freely propagating massless neutrinos
(Misner, 1967).

Exercise 18.2.2 Derive the redshifts down the axes in Bianchi I models. Show that observa-
tions in these models have an 8-fold discrete symmetry. Find a formula for area distances
in these models. (See MacCallum and Ellis (1970).)

Exercise 18.2.3 Show that in the exceptional (pancake) Bianchi I models, there are no particle
horizons in certain directions.

18.3 Bianchi geometries and their field equations

In Bianchi models, the inhomogeneous degrees of freedom have been ‘frozen out’. They are
thus quite special in geometrical terms; nevertheless they form a rich set of models where
one can study the exact dynamics with nonlinear field equations.

18.3.1 Constructing Bianchi models

To write down a metric, we first note that the unit normals n to the hypersurfaces of
homogeneity are always irrotational and geodesic, and invariant under the Killing vectors
of the simply transitive G3. Hence, taking a Killing vector basis {ξ i}, we can choose t so
that n= ∂t , na =−∇at . We can then choose a tetrad of vectors ea with n= e0 at a point p.
These can then be dragged to any other point q by the unique group element moving p to
q. Thus the spatial vectors ei commute both with {ξ i} and with n. They in fact generate a
second group of transformations on the spatial surfaces, called the reciprocal group. These
transformations are in general not isometries: one can prove that their commutators have
the same algebraic structure as the Killing vectors, except that the constantsCC

AB in (2.62)
are replaced by functions of t . The metric will then be

ds2 =−dt2 + γij (e
i
α dxα)(ej β dxβ) , (18.13)

where eiα dxα are 1-forms inverse to the spatial vector triad ei . To distinguish between
tetrad and coordinate indices in the hypersurfaces, we here label the latter by α, β etc.

The various approaches in the literature differ in whether the time dependence is: wholly
in the spatial metric γij , this giving the metric approach; wholly in the ei , giving the
orthonormal tetrad approach; or split between the two, giving the automorphism approach.
In each approach there are helpful subsequent changes of variable that are often used. One
can also make changes of the time coordinate, or Lorentz transform the tetrad so the timelike
vector aligns with a tilted matter flow.

The metric approach (Taub, 1951, Heckmann and Schucking, 1962) writes the line-
element as:

ds2 =−dt2 + γij (t) (e
i
α(x

γ )dxα)(ej β(x
γ )dxβ) , (18.14)
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where the eiα(x
γ ) have the same commutators as the generators of the group of

isometries, i.e.

[ei , ej ] =Ck
ij ek , [e0, ei ] = 0 , (18.15)

theCk
ij being the Lie algebra structure constants and satisfying the Jacobi identities (2.63).

The EFE (3.13) become ordinary differential equations for γij (t).
One can modify this to the automorphism approach by factorizing the metric into matrices

in the automorphism group of the isometry group (i.e. the set of maps of the isometry group
to itself) and residual metric terms: considering the automorphisms as part of the tetrad,
this is a form where both the tetrad and the metric have time dependence. The process can
be briefly described as follows. Take a transformation

êi =Mi
j ej .

This is an automorphism of the isometry group if the {êi} obey the same commutation
relations as the {ei}. The matrices M are time dependent and are chosen so that the new
metric coefficients ĝij take some convenient form, for example, become diagonal. The
system of equations then simplifies and the real dynamics is in the remaining components
of ĝij , while the components of M become secondary time-dependent variables.

Often this approach is coupled with the parametrization due to Misner (1968), which can
be written

S6 := e6λ := det(gij ), gik = S2(exp 2β)ik , (18.16)

where β is a symmetric tracefree matrix function of t . If gik is diagonal, one may write

βik = diag
(
β1,− 1

2 (β1 −
√

3β2),− 1
2 (β1 +

√
3β2)

)
. (18.17)

One may now take λ, �=−λ, or S to be a new time variable.
The automorphism idea was present in earlier treatments which grew from Misner’s

methods for the Bianchi IX Mixmaster case (Ryan and Shepley, 1975) but unfortunately
this case is highly misleading in that for Bianchi IX (and no others except Bianchi I) the
rotation group is an automorphism group. We shall not give further details here; for those
see Jantzen (1979; 1984), Wainwright and Ellis (1997) and Jantzen and Uggla (1998).

The orthonormal tetrad approach (Ellis and MacCallum, 1969), which we prefer here
because it leads to the widely used expansion-normalized variables (presented in detail
in Wainwright and Ellis (1997)), takes an orthonormal tetrad invariant under the group of
isometries. This is often with e0 = n, but in the tilted case it could also be with e0 = u,
the matter 4-velocity: we shall discuss only the former choice. In this approach the metric
components in the tetrad are spacetime constants, gab = ηab, and the time variation is in the
commutation functions for the basis vectors, which then determine the time- (and space-)
dependence in the basis vectors themselves.

If e0 = n we have an orthonormal basis {ea , a = 0,1,2,3}, such that

[ea , eb ] = γ c
ab(t)ec . (18.18)
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Note that, unlike the metric approach, here [e0, ei ] �= 0. The dynamical variables are the
commutation functions γ a

bc(t), together with the matter variables. The EFE (3.13) are first-
order equations for these quantities and the matter variables, supplemented by the Jacobi
identities for the γ a

bc(t), which are also first-order equations. Thus the equations needed
are just the tetrad equations given in Section 6.5, for the case

u̇i = ωi = 0 = ei (γ
a
bc) . (18.19)

It is sometimes useful to introduce the Weyl tensor components as auxiliary variables, but
this is not necessary.

We note that in some recent papers the expansion-normalized variables are replaced
by conformally expansion-normalized quantities defined by conformally transforming the
metric by a factor H−2 (Röhr and Uggla, 2005).

The spatial commutation functions γ i
jk(t) can be decomposed into a time-dependent

symmetric matrix nij (t) and vector ai(t) (see (6.42)), and are equivalent to the structure
constantsCi

jk of the symmetry group at each point.1 In view of (18.19), the Jacobi identities
(2.103) now take the simple form

nij aj = 0 . (18.20)

The tetrad basis can be chosen to diagonalize nij (i.e. to attain nij = diag(n1, n2, n3) and
ai = (a, 0, 0)), and the Jacobi identities are then simply n1 a = 0. (Some authors have
preferred to choose ai = (0, 0, a).) Consequently we define two major classes of structure
constants (and so Lie algebras):

Class A: a = 0 (unimodular),
Class B: a �= 0 (non-unimodular).
Following Schucking (see Kundt (2003)), the adaptation of the Bianchi classification

of G3 group types used is as in Table 18.1 (Ellis and MacCallum, 1969). Given a specific
group type at one instant, it will be preserved by the evolution equations for the quantities
ni(t) and a(t). This follows from Theorem 17.1.

In some cases, the Bianchi groups allow higher symmetry subcases: isotropic (FLRW) or
LRS models. Table 18.2 gives the Bianchi symmetry groups admitted by FLRW and LRS
solutions (Grishchuk, 1968, Ellis and MacCallum, 1969), i.e. these are the simply transitive
three-dimensional subgroups allowed by the full G6 of isometries (in the FLRW case) and
the G4 of isometries (in the LRS case). (Remember that the only LRS models not allowing
a simply transitive subgroup G3 are the Kantowski–Sachs models for k = 1.)

Tilted models can be described in non-orthogonal bases in various ways (King and Ellis,
1973); those possibilities will not be pursued further here. In the bases described here,
before use of the field equations, tilted models differ only in the energy–momentum tensor.
In the case of orthogonal perfect fluid models, where the fluid 4-velocity ua is parallel
to the normal vectors na , the matter variables will be just the fluid density and pressure
(Ellis and MacCallum, 1969). In the case of tilted perfect fluid models, where the fluid 4-
velocity is not parallel to the normals, the relation between the n= ũ and u decompositions

1 That is, they can be brought to the canonical forms of the Ci
jk by a suitable change of group-invariant basis,

except that the final normalization to ±1 would require unnormalized basis vectors; the required transformation
depends on time and spatial position.
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Table 18.1 Canonical structure constants for different Bianchi types. The parameter h is a2/n2n3.

Class Type n1 n2 n3 a Notes

A I 0 0 0 0 Abelian
II +ve 0 0 0
VI0 0 +ve −ve 0
VII0 0 +ve +ve 0
VIII −ve +ve +ve 0
IX +ve +ve +ve 0

B V 0 0 0 +ve
IV 0 0 +ve +ve
VIh 0 +ve −ve +ve h < 0
III 0 +ve −ve

√−n2 n3 same as VI−1
VIIIh 0 +ve +ve +ve h > 0

Table 18.2 The Bianchi models permitting higher symmetry subcases. The parameter c is zero if and only
if the preferred spatial vector is hypersurface-orthogonal.

Isotropic Bianchi models

FLRW k =+1: Bianchi IX [two commuting groups]
FLRW k = 0: Bianchi I, Bianchi VII0
FLRW k =−1: Bianchi V, Bianchi VIIh

LRS Bianchi models
Orthogonal c= 0 c �= 0

Taub-NUT 1 [KS K = 1: no subgroup] Bianchi IX
Taub-NUT 3 Bianchi I, VII0 [KS K = 0] Bianchi II
Taub-NUT 2 Bianchi III [KS K =−1] Bianchi VII, III

(Farnsworth)

Tilted

Bianchi V, VIIh
(Collins–Ellis)

can be calculated using the formulae in Exercise 5.1.1. For this we need the peculiar velocity
of the fluid relative to n (King and Ellis, 1973). Note that a perfect fluid will appear as an
imperfect fluid in the n frame.

As usual, the equations (6.50)–(6.51) are constraints on the initial values. The latter
simplify, for the bases discussed in Table 18.1, to

0 = qi − 3aσ 1i −
∑
j

ηijknjσjk . (18.21)

In particular inserting specific values of ni and a from Table 18.1 in (18.21) restricts the
possible energy fluxes qi for some Bianchi types, e.g. for perfect fluids these equations show
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which models can have tilt and what direction the fluid velocity can lie in. Conversely, for a
given qi , including qi = 0, the equations constrain σij . For example, as already mentioned,
Bianchi I models must have qi = 0, and orthogonal cases enforce or allow diagonalization
of σij (Ellis and MacCallum, 1969). Note that, orthogonal models (18.21), considered as
linear equations for σij , are of rank 1 rather than 2 for the special case of Bianchi type VIh,
h=−1/9, giving rise to models with an additional degree of freedom in σij : these cases
are denoted VI∗−1/9.

For Bianchi universes of classA, but not in general those of class B (MacCallum and Taub,
1972, Sneddon, 1975), a variational (Lagrangian or Hamiltonian) formulation can be given,
provided the matter terms admit such a formulation. (The Class B cases with a Lagrangian
are those with nii = 0, a subclass characterized by Ellis and MacCallum (1969).) This takes
the usual form with kinetic and potential terms, the kinetic terms being time derivatives
of parameters in the metric. If such a variational form is possible, the kinetic terms define
a metric on the space of the time-dependent metric parameters, and its symmetry and
other properties can lead to exact solutions, often via choices of time variable (see e.g.
Rosquist and Uggla (1991) and references therein).

The potential terms for the orthogonal fluid cases are proportional to the spatial curvature
scalar. In the automorphism approach, one can calculate and sketch these potentials in the
(β1, β2) plane of (18.17), giving an intuitive feel for the behaviour of the evolution (see
e.g. MacCallum (1979), Jantzen (1984)). This can be extended to tilted cases by using an
additional tilt potential, and the time derivative of an automorphismMi

j gives an additional
centrifugal potential (see e.g. Jantzen (1984)). Broadly, each of these provides restoring
forces, and may prevent escape to infinity in the (β1, β2) plane, leading to evolutions with an
infinite sequence of oscillations in (β1, β2). For the curvature terms, this was first recognised
in studies of Bianchi type IX by Misner (1969a) and Belinski, Lifshitz and Khalatnikov
(1971 and earlier) (BLK, in Russian alphabetic order). Such oscillations are generically
named ‘Mixmaster’ after a popular brand of US food mixer (Misner, 1969a).

Since we have a finite-dimensional ODE system, with constraints, one can give the
number of freely specifiable constants in the solutions (Siklos, 1976; 1984), which cor-
responds to the dimension of the dynamical system. This is summarized, for vacuum and
tilted barotropic perfect fluid solutions, in Table 18.3. For more complicated forms of matter
content extra constants (and hence dimensions) may appear, e.g. if there are two fluids with
different 4-velocities.

A number of authors have considered compactified forms of the metrics (the covering
groups have topology R

3 except for Bianchi type IX where it is S3). In particular one
can identify those cases which correspond to Thurston’s classification of 3-manifolds (see
e.g. Fagundes (1985), Barrow and Hervik (2002)). Koike, Tanimoto and Hosoya (1994)
showed that for the compactifiable spatial geometries the geometric degrees of freedom
can be divided into degrees of freedom of the covering space and degrees of freedom of
the Teichmüller deformations of the discrete isometries used in compactification: Kodama
(2002), Tanimoto, Moncrief and Yasuno (2003) and papers cited therein give fuller details.
Even in the simple Bianchi I case there is a significant moduli space (Hervik, 2000).

One can use the spaces of Bianchi models as finite-dimensional examples in the super-
space approach to quantum gravity, so-called ‘minisuperspaces’ (see Misner (1969b) and
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Table 18.3 The number of essential parameters, by Bianchi type, in general solutions for vacuum and for
tilted perfect fluids with given equation of state.
The number for a non-tilted fluid, including�-term, is one more than for vacuum. Type III is included in VIh.
h itself is regarded as fixed in a solution, i.e. is not counted as a parameter. The number is reduced if there is

extra symmetry or a condition such as ni
i = 0 is imposed.

Energy–
momentum

Bianchi type

VI0 VIII IV, VIIh
I II & VII0 & IX V & VIh, general VI∗−1/9

Vacuum 1 2 3 4 1 3 4
Perfect fluid 2 5 7 8 5 7 7

Section 20.2.1). Where there is a variational description it provides a symplectic meas-
ure which could, if its integral were finite, be used to define probabilities as described in
Chapter 21.

The space of dynamical variables composed of the kinematic quantities and commutators
is non-compact. It turns out to be very powerful to normalize the variables and compactify
this space, which we discuss below in Section 18.4.

Exercise 18.3.1 Find the automorphism groups of the various Bianchi types and choose param-
eters for them well adapted to the form of the EFE. (See e.g. Harvey (1979), Jantzen
(1984).)

18.4 Bianchi universe dynamics

Since the differential equations are ordinary, one can use methods from the theory of dynam-
ical systems to obtain analytic results. These are mathematically powerful and can help us
identify true degrees of freedom and simplify the equations, and find exact solutions, as
well as give qualitative understanding. There have also been many numerical investigations
of these dynamical equations and the resulting solutions.

Shikin (1967) and Collins (1971) introduced the use of ‘phase planes’ in cases where the
dynamical system is two-dimensional (strictly these are not phase planes as the variables
are not q and q̇ for some q). In this case one can map the qualitative features by finding the
equilibrium points or critical points, and the local linear approximations to them, finding
any separatrices present, and then completing the set of evolution curves (the differential
equations are generally polynomial in the variables used so that continuity of the family
of curves is assured, except at critical points). The Poincaré–Bendixson theory for such
systems of equations rests on the Jordan curve theorem, which has no suitable analogue in
higher dimensions.

Bogoyavlenskii and Novikov (1973) (see also Bogoyavlenskii (1985)) showed how to
generalize dynamical systems treatments to higher-dimensional state spaces, by identifying
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equilibria and homoclinic and heteroclinic orbits (the generalization of separatrices) and
finding monotone functions which can be used to show that trajectories must approach
certain limits or boundaries. They also initiated the compactification of the state spaces by
choice of variables, which facilitates discussion of asymptotic behaviour: the most common
current choice is that of the normalized variables we discuss below, though these do not
always give a compactification. Subsequent work has used variables based on the automor-
phism group of the isometry group, Hamiltonian methods, algebraically invariant curves or
Darboux polynomials, and other techniques (see Wainwright and Ellis (1997) and below).

Using the expansion-normalized variables we write the EFE as a dynamical system
(compare Collins, 1971, Wainwright, 1988) so that one can study the evolution of the
various physical and geometrical quantities relative to the overall rate of expansion of
the universe, as described by the rate of expansion scalar �, or equivalently the Hubble
parameter H = 1

3�. The main variables used are essentially the commutation functions
mentioned above, but rescaled by a common time-dependent factor.

Although other energy-momenta can add oscillatory behaviour, as in the Bianchi I case,
studies using these ideas have principally focused on perfect fluids obeying a linear equation
of state; for short, we just say a ‘fluid’below. (We note that until very recently all the literature
used γ rather than w in (5.49).) These studies typically first determine the behaviour in
invariant sets, in particular the vacuum behaviour (which will be a limit of the matter-filled
behaviour), and the (self-similar) power-law solutions, which are equilibria (fixed points)
in the state space of the normalized variables. (Other invariant sets include, for example,
the Bianchi II evolutions as limits of Bianchi IX evolutions in which two of the three ni

are zero.) The results on invariant sets and self-similar solutions are then used to provide a
skeleton of curves in the way described at the end of Chapter 17.

18.4.1 Reducing the differential equations

To avoid dealing with unnecessarily large systems of equations, the remaining freedom in
the choice of orthonormal tetrad needs to be eliminated, first by specifying the variables �i

of Section 6.5 implicitly or explicitly (for example by specifying them as functions of the
σij ). One can also simplify other quantities (depending on the particular models studied): for
example choice of a shear eigenframe will result in the tensor σij being represented by two
independent diagonal terms. These measures lead to a reduced set of variables, consisting
of H and the remaining commutation functions, which we denote symbolically by

x = (γ a
bc|reduced) . (18.22)

The physical state of the model is then described by the vector (H , x), together with matter
variables. The idea is now to normalize x with the Hubble parameter H , and similarly
normalize matter terms. We denote the resulting variables by a vector y ∈ Rn. These new
variables are dimensionless, and will be referred to as expansion-normalized variables.
The details of this reduction differ for the Class A and B models and the choice of matter
terms. Convenient variables may be subject to constraints: for example, in orthogonal
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Class B models, using the variables of Hewitt and Wainwright (1993), there is an algebraic
constraint of the form

g(x)= 0 , (18.23)

where g is a homogeneous polynomial.
It is clear that each dimensionless state y determines a 1-parameter family of physical

states (H , x). The evolution equations for the γ a
bc lead to evolution equations for H and

y. In deriving the evolution equations for y from those for x, the deceleration parameter q,
defined by (6.7), plays an important role, since

Ḣ =−(1+ q)H 2 . (18.24)

We can use the scale factor � defined by (4.35) to introduce a dimensionless time variable
τ according to

�= �0 e
τ , (18.25)

where �0 is the value of the scale factor at some arbitrary reference time. Since � assumes
values 0 < � <∞ in an ever-expanding model, τ assumes all real values, with τ →−∞
at the initial singularity and τ →+∞ at late times. It follows from equations (4.35) and
(18.25) that

dt

dτ
= 1

H
, (18.26)

and the evolution equation (18.24) for H can be written

dH

dτ
=−(1+ q)H . (18.27)

Since the right-hand sides of the evolution equations for the γ a
bc are homogeneous of

degree 2 in the γ a
bc, the change (18.26) of the time variable results in H cancelling out of

the evolution equation for y, yielding an autonomous system of ODEs:

dy

dτ
= f(y) , y ∈Rn . (18.28)

Constraintsg(y)= 0 are preserved by the DEs.The functions f : Rn→R
n andg : Rn→R are

polynomial functions in y. An essential feature of this process is that the evolution equation
for H , namely (18.27), decouples from the remaining equations (18.28). In other words,
the DE (18.28) describes the evolution of the Bianchi cosmologies, the transformation to y
essentially scaling away the effects of the overall expansion. An important consequence is
that the new variables are bounded near the initial singularity.

Since τ assumes all real values (for models which expand indefinitely), the solutions
of (18.28) are defined for all τ and hence define a flow {φτ } on R

n. The evolution of
the cosmological models can thus be analysed by studying the orbits of this flow in the
physical region of state space, which is a subset of R

n defined by the requirement that the
dimensionless energy density � be non-negative, i.e.

�(y)= 8πGρ

3H 2
≥ 0 . (18.29)
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18.4.2 Specific systems

To illustrate these ideas we give the systems of equations in two cases, and we consider the
resulting behaviour in the next section.

For orthogonal models of Class A, using the forms in Table 18.1, (6.51) shows the shear
tensor must be diagonal, and since it is trace-free it can be written, in a manner similar to
(18.17), as

σik = diag
(
−σ+, 1

2 (σ+ −√
3σ−), 1

2 (σ++√
3σ−)

)
.

The physical state of a Bianchi class A cosmology is thus determined by the vector x =
(H ,�+,�−,N1,N2,N3), where Ni := ni/H , �± = σ±/H (Wainwright and Hsu, 1989).
We also use �2 = σ 2/3H 2 = 1

6�ij�
ij .

The Einstein field equations are then given by the autonomous system,

�′± = −(2− q)�± −S±, N ′
2 = (q+ 2�++ 2

√
3�−)N2, (18.30)

N ′
1 = (q− 4�+)N1, N ′

3 = (q+ 2�+− 2
√

3�−)N3,

where

S+ = 1

6

[
(N2 −N3)

2 −N1(2N1 −N2 −N3)
]

S− = 1

2
√

3
(N3 −N2)(N1 −N2 −N3),

together with the decoupled equation (18.27). Here,

�= 1−�2 −K ≥ 0, K := 1

12

∑
i

N2
i − 2

∑
i<j

NiNj

 . (18.31)

The equations for orthogonal Class B models were given by Hewitt and Wainwright
(1993).

For the general case, the equations canbe written as follows (see Hewitt, Bridson and
Wainwright (2001), from which the equations in the rest of this section are taken).
Normalizing the variables of Section 6.5, introduce

�ij = σij

H
, Nij = nij

H
, Ai = ai

H
, Ri = �i

H
, Sij =

3R〈ij 〉
H 2

,

�= ρ

3H 2
, P = p

3H 2
, Qi = qi

H 2
, #ij = πij

H 2
, K =−

3R

6H 2
.

The spatial curvatures are algebraic expressions in the nij and ai , so there will be no
independent evolution equations for them. There are no general evolution equations for P
or #ij , which depend on the nature of the assumed matter: for a tilted barotropic perfect
fluid, vi and the rest frame value of ρ fix the matter variables in the n frame, so we shall only
need evolution equations for � and Qi in that case. Finally there is no general evolution
equation for Ri , reflecting the freedom of choice of the frame.
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Thus the evolution equations are

�′
ij =−(2− q)�ij + 2εkm(i�j)kRm−Sij +#ij ,

N ′
ij = qNij + 2� k

(i Nj)k + 2εkm(iNj)kRm,

A′
i = qAi −�

j
i Aj + ε km

i AkRm, (18.32)

�′ = (2q− 1)�− 3P − 1
3�

j
i # i

j + 2
3AiQ

i

Q′
i = 2(q− 1)Qi −�

j
i Qj − ε km

i RkQm+ 3Aj#ij + ε km
i N

j
k #jm.

These are subject to the constraints

N
j
i Aj = 0, �= 1−�2 −K , Qi = 3� k

i Ak − ε km
i �

j
k Njm. (18.33)

For a tilted fluid we write

ua = 1√
1− vbvb

(na + va),

where the spacelike vector v is orthogonal to the normal vector n. Then (18.33), with
Qi = 3(w+ 1)G−1�vi , assumes the form

3(w+ 1)G−1�vi = 3� k
i Ak − ε km

i �
j
k Njk . (18.34)

where

G= 1+wv2, v2 = viv
i < 1.

The consequent formulae for the kinematic quantities of a general tilted fluid are given
in Hewitt, Bridson and Wainwright (2001). In particular we may note that the normalized
vorticity is given by

Wi =Ni
mvm+ηi

mkvmAk + cosh2β(Nmkvmvk)vi , (18.35)

where uana =−coshβ.
For tilted Bianchi II models, we have Ai = 0 and Nij = diag(N1, 0, 0). Then v1 = 0,

assuming �> 0 and w >−1, and we are free to perform a rotation in the 23-plane to get
v2 = 0, v3 �= 0. The constraints (18.34) now yield

�13 = 0 =R2, �12 �= 0, 3(w+ 1)�v3 =G�12N11, (18.36)

and the �′
13 equation then implies R1 =�23, so Ri is uniquely determined in terms of �ij .

We now relabel the variables as follows:

�+ = 1
2 (�22 +�33), �− = 1

2
√

3
(�22 −�33), (18.37)

N1 =N11, �1 = 1√
3
�23, �3 = 1√

3
�12. (18.38)

It should be noted that the off-diagonal shear components �1 and �3 determine the angular
velocity of the spatial frame.

The set of independent expansion-normalized variables is

(�+,�−,�1,�3,N1,v3),
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subject to one constraint (18.36), which we now write in the form

h(v3)�=�3N1, h(v3) :=
√

3(w+ 1)v3

G
.

The evolution equations for these variables are

�′+ = −(2− q)�+− 3�2
3 + 1

3N
2
1 + 1

2
√

3
�3N1v3 , (18.39)

�′− = −(2− q)�−+ 2
√

3�2
1 −

√
3�2

3 − 1
2�3N1v3 , (18.40)

�′
1 =−(2− q+ 2

√
3�−)�1 , (18.41)

�′
3 =−(2− q− 3�+−√

3�−)�3 , (18.42)

N ′
1 = (q− 4�+)N1 , (18.43)

v′3 =
v3(1− v2

3)

1−wv2
3

(3w− 1−�++√
3�−), (18.44)

where

q = 2
(
1− 1

12N
2
1

)
− 1

2G
−1�

[
3(1−w)(1− v2

3)+ 2(w+ 1)v2
3

]
.

The auxiliary equation for �′ is

�′ =G−1[2Gq− (3w+ 1)− (1−w)v2
3 − (w+ 1)(�+ −√

3�−)v2
3]�. (18.45)

The state space is the subset of R
6 defined by the inequality � ≥ 0, which is

equivalent to

�2+ +�2−+�2
1 +�2

3 + 1
12N

2
1 ≤ 1, (18.46)

and the constraint

g(x)= h(v3)�−�3N1 = 0.

The restriction (18.46), and the fact that v2
3 < 1, implies that the state space is bounded.

18.4.3 Equilibrium points and self-similar cosmologies

Each ordinary orbit in the dimensionless state space corresponds to a one-parameter family
of physical universes, which are conformally related by a constant rescaling of the metric.
On the other hand, for an equilibrium point y∗ of the DE (18.28) (which satisfies f(y∗)= 0),
the deceleration parameter q is a constant, i.e. q(y∗)= q∗, and we find

H(τ)=H0 e
(1+q∗)τ .

The parameter H0 is no longer essential, since it can be set to unity by a translation of τ ,
τ → τ + const; then (18.26) implies that

H t = 1

1+ q∗
, (18.47)
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so that the commutation functions are of the form (const)× t−1. It follows that the resulting
cosmological model is self-similar. Thus each equilibrium point of the DE (18.28) corres-
ponds to a unique self-similar cosmological model. In such a model the physical states
at different times differ only by an overall change in the length scale. Such models are
expanding, but in such a way that their dimensionless state does not change. They include
the flat FLRW model (� = 1) and the Milne model (� = 0). All vacuum and non-tilted
perfect fluid self-similar Bianchi solutions were given by Hsu and Wainwright (1986).

For example, for the Bianchi type II orthogonal models, putting N2 =N3 = 0 in (18.30),
it is easy to work out that the boundaries are N1 = 0 and � = 0, i.e. Bianchi I models
and vacuum Bianchi II models, and that the LRS Bianchi II models (�− = 0) are also an
invariant set. The equilibrium points are the flat Friedmann solution (a special Bianchi I
model), where �+ =�− = 0, the (Bianchi I) Kasner vacua, and an LRS Bianchi II model
due to Collins and Stewart atN1 = 1

4 [(1−w)(3w+1)]1/2,�= (3w+1)/8,�= 3
16 (5−w)

with − 1
3 <w < 1.

18.4.4 More general orbits

The vacuum boundary, defined by �(y) = 0, which describes the evolution of vacuum
Bianchi models, is always an invariant set: this set plays an important role in the qualitative
analysis because vacuum models can be asymptotic states for perfect fluid models near the
Big Bang or at late times. There are other invariant sets which are also specified by simple
restrictions on y which play a special role: the subsets representing each more specialized
Bianchi type (Table 18.1), and the subsets representing the FLRW models and the LRS
Bianchi models (according to Table 18.2).

It is desirable that the dimensionless state space D in Rn be a (closed, bounded) compact
set. In this case the existence of a monotone function will imply that each orbit has a non-
empty future and past limit, and hence there will be a past attractor (the ‘α-limit’) and a
future attractor (the ‘ω-limit’) in state space. Compactness of the state space in expansion-
normalized variables has a direct physical meaning for ever-expanding models: at the Big
Bang no physical or geometrical quantity can diverge more rapidly than the appropriate
power ofH , and at late times no such quantity tends to zero less rapidly than the appropriate
power of H . Compactness in expansion-normalized variables happens for many models;
it fails, however, where there are recollapsing or bouncing solutions and, for example, for
Bianchi type VII0 and type VIII models. When it fails, following the usual methods may
give misleading answers (Goheer, Leach and Dunsby, 2008): the lack of compactness often
manifests itself in extreme dominance of the Weyl tensor at late times. To enable a proper
understanding of the evolution, a different normalization may be needed.

In discussions of the far future evolution, assuming the matter terms do not dominate
like a � term will and the model does not recollapse, it is interesting to characterize the
behaviour according to whether the Ricci or Weyl terms dominate the curvature, or are in
balance: one can distinguish ordinary and extreme Weyl dominance by whether the ratio of
Weyl and Ricci invariants tends to infinity or not (Barrow and Hervik, 2002).

The equilibrium points determine the asymptotic behaviour of other more general models.
An unstable equilibrium may be arbitrarily closely approached by curves whose initial and
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final states are at other equilibria. This leads to quasi-equilibrium epochs, which has an
important consequence for the observational viability of such models.

We should note that the descriptions derived from these considerations, particularly when
infinite sequences of heteroclinic orbits are concerned, in general lack some rigour.Anumber
of the expected evolutions have now been proved (see Weaver (2000), Heinzle and Uggla
(2009a), Liebscher et al. (2011), Béguin (2010), Reiterer and Trubowitz (2010)), starting
with Ringström’s proof (2000) for Bianchi type IX, and there is no reason so far to disbelieve
any of the arguments (although it should be noted that the present proofs do not extend to
the Bianchi VIII or VI−1/9 cases, Heinzle and Uggla (2009b)). So there is more work to
be done.

18.5 Evolution of particular Bianchi models

A full description of the many cases that have been considered would take far more space
than this book allows. Thus we first give here fuller details of two examples, the orthogonal
and tilted Bianchi II fluid cases. Then we tabulate some references in which the various
specific cases have been discussed and earlier literature cited, and describe briefly some of
the most interesting results.

18.5.1 Orthogonal Bianchi II models with−1
3 <w<1

We have already given in Section 18.4.3 the boundaries, invariant sets and equilibria for these
models. The three invariant sets provide the skeleton for the general solution curves. We can
also find three monotone functions: Z5 =�2− on the non-LRS models, Z6 =�−/(2−�+)
on the non-vacuum models, and Z7 =N2m

1 �1−m/(1− v�+)2 on the whole space (except
for the Collins–Stewart point P+

1 ) where v = 1
8 (3w+ 1) and m = 3v(1−w)/8(1− v2).

(Here we use the notation in Wainwright and Ellis (1997).)
The vacuum boundary can be projected into two dimensions with coordinates (�+, �−):

the solutions satisfy �− = k(�+ − 2) for some constant k (these solutions were found
explicitly by Taub). The resulting diagram is Figure 18.1.

The LRS invariant set contains points T1 and Q1 on the Kasner circle, as well as the flat
Friedmann point F and the Collins–Stewart point P+

1 . It is a semicircle with boundaries
N1 = 0 and � = 0 and the separatrices in these boundaries are easy to find. It can be
shown there are no periodic orbits and, from the monotonicity of Z7, that P+

1 is a sink,
so as F is an unstable point (though it is a sink in the plane N1 = 0), the curve running
from it must meet P+

1 . This gives the bold curves in Figure 18.2 which are the skeleton
for the remaining curves depicted in the figure. Figures 18.1 and 18.2 were first given by
Collins (1971).

As we have now studied all the invariant sets and equilibria (the Bianchi I subset N1 = 0
being covered by Section 18.2) we can combine the results to give the three-dimensional
picture of Figure 18.3.
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B3

T1

B2

T2

B1
Σ+

Σ–

T3

Fig. 18.1 The projections of the Taub orbits into the (�+,�−) plane. The circle here is the Kasner circle and the points
marked Ti are the Taub cases given byα = π/6 mod 2π/3 in (18.12). (FromWainwright and Ellis (1997),
figure 6.6.)

T1 F

P1

Q1

N1

Σ+

Ω = 0

(II)
+

Fig. 18.2 The LRS Bianchi II invariant subset. (FromWainwright and Ellis (1997), figure 6.5.)

18.5.2 Tilted Bianchi II models

Although, on evaluating (18.35), we find that the fluid in tilted Bianchi II models has zero
vorticity (so we do not find a critical value w= 1/9) these models play a central role in the
behaviour of other models.

The configuration space of the tilted Bianchi II models, whose evolution
is governed by (18.39)–(18.44), has some important boundary invariant sets
(Hewitt, Bridson and Wainwright, 2001). These are the space of orthogonal nonvacuum
Bianchi II models v3 = 0 and its three invariant subsets (Bianchi I, LRS Bianchi II and
vacuum Bianchi II models) and the extreme tilt models v3 = 1. The vacuum Bianchi II
models have been shown in Figure 18.1, but for use in later discussions it is more helpful
to sketch them in three dimensions, the third variable being N1. This gives the picture in
Figure 18.4, which is in fact the upper boundary of the region in Figure 18.3.



476 Chapter 18 Spatially homogeneous anisotropic models
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Fig. 18.3 Evolution curves of orthogonal Bianchi II models with− 1
3 <w< 1. (FromWainwright and Ellis (1997), figure 6.7.)
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K

T1

Σ–

Σ+

Fig. 18.4 Three-dimensional representation of the evolution of Bianchi II vacua: the upper boundary of Fig. 18.3. (From figure 1
of Ma andWainwright (1994), reproduced with kind permission from Springer Science+Business Media B.V.)

The nonvacuum equilibrium points in the Bianchi II state space are (Hewitt, Bridson and
Wainwright, (2001)): the flat FLRW models; the Collins–Stewart solution; the tilted self-
similar solution due to Hewitt (1991), valid for 3

7 <w < 1; a line L of tilted solutions for
w= 5/9 and varying �1 first found in Hewitt, Bridson and Wainwright (2001); an extreme
tilt case; and the Bianchi I w = 1 (Jacobs) solutions. (w > 1 is not considered as it gives a
sound speed greater than light.) The vacuum equilibrium points are the Kasner circle in both
its original form and a form with extreme tilt represented in a non Fermi-propagated frame.
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The methods for finding the nature of the solution curves are similar to those outlined
above (i.e. finding equilibria and their linearizations, using monotone functions on state
space or part thereof to determine limit points or sets, and building up a skeleton for the
general curves from this information), so we shall just summarize the results.

The future evolution (ω-limit) of the tilted models is one of the self-similar solu-
tions, which one depending on the value of w (Hewitt, Bridson and Wainwright, 2001,
Hervik et al., 2010). For w < − 1

3 it is the flat FLRW model (these models are inflation-
ary and isotropize); for − 1

3 <w < 3
7 it is the Collins–Stewart solution; for 3

7 <w < 5
9 the

Hewitt solution; forw= 5
9 and varying�1 one moves along L to the extreme tilt case which

applies for w > 5
9 . The bifurcation at w = − 1

3 is called the spatial curvature bifurcation,
since it is where spatial curvature starts to outweigh the matter terms as t →∞, and the
bifurcations at w = 3

7 and w = 5
9 are due to the tilt.

The past evolution (α-limit) can be a Jacobs solution if w= 1, or some part of the Kasner
circle, for particular ranges of the �ij , but is in general oscillatory, or of ‘Mixmaster’
character, following heteroclinic sequences tracking the boundary trajectories that join
points on the usual Kasner circle to itself or its extreme tilt copy.

18.5.3 Survey of other cases

Here we first give a table of the most recent papers which cover what is known about
the evolution of the various fluid models, and which give references to earlier literature.
This table can also be read as the table of references for the following summary of results,
which shows both the variety and the interrelations between different types of fluid model.
A detailed table of ω limits is given by Hervik et al. (2007).

We note that the α-limits (relevant to asymptotics in the very early universe), and ω-
limits, which give the far future asymptotics and thus a partial response to questions about
isotropization, have been studied extensively, but we lack detailed quantitative studies which
could be related to present-day observation and predictions (and also lack a complete set
of results for combinations of fluids, including the �CDM combination).

All state spaces of orthogonal models except those of Bianchi types I and V contain
the orthogonal Bianchi II models as an invariant boundary set (and all, orthogonal or not,
contain the flat FLRW model as a limit).

In types VIII and IX there are three distinct such boundary sets, depending on which Nj

remains non-zero. These give rise, in their vacuum limits, i.e. when considering theα-limits,
to three copies of Figure 18.4 which project into the Kasner circle at angles rotated by 2π/3.
Trajectories which approach the big bang may therefore bounce around the Kasner circle,
spending most of their time near the Kasner ring but following a series of heteroclinic orbits
joining points on it. These may form periodic sequences. This description is equivalent to
the original descriptions of the ‘Mixmaster’: the similar occurrence of oscillations in all
Bianchi types except I and V was first noted by Peresetskii (1977). For a recent summary
of results about these dynamics, see Sandin and Uggla (2010).

This discussion shows why identifying all points in state space corresponding to the
same model is not a good idea (Ellis, 2005). The Kasner ring that serves as a framework for
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Table 18.4 References for studies of tilted Bianchi models

Type Tilt References

II General Hewitt, Bridson and Wainwright (2001)
VI0 General Hervik (2004)
VII0 Irrotational Coley and Hervik (2005)

Lim, Deeley and Wainwright (2006)
General Hervik et al. (2006)

VIII General Hervik and Lim (2006)
IV General Coley and Hervik (2005)
V Irrotational Hewitt and Wainwright (1992)

General Coley and Hervik (2005)
VIh Subset Coley and Hervik (2005)

Hervik et al. (2007)
Coley and Hervik (2008)

VI−1/9 General Hervik et al. (2008)
VIIh General Hervik, van den Hoogen and Coley (2005)

evolution of many other Bianchi models contains multiple realizations of the same Kasner
model. To identify them as the same point in state space would make the evolution patterns
very difficult to follow. It is better to keep them separate, but to learn to identify where
multiple realizations of the same model occur (which is just the equivalence problem for
cosmological models, discussed in Section 17.2).

An ongoing issue since the discovery of the ‘Mixmaster’ behaviour of the Type IX
models has been whether or not these solutions show chaotic behaviour, rather than
just oscillatory, as they approach the initial singularity, and various tests have been
applied (see Hobill, Burd and Coley (1994), Hobill in Wainwright and Ellis (1997) and
Maciejewski and Szydowski (1998)). One of the difficulties is the freedom of choice of
time coordinate, and another is that the points at which divergences between neighbouring
trajectories occur are those where a trajectory meets the Kasner circle, which in the usual
approximations are discrete events. A recent review of what has been rigorously proved for
this problem (Heinzle and Uggla, 2009b) points out that although it has been proved that
the limiting behaviour is an approach to the Mixmaster attractor, it is not certain whether
only a subset thereof is involved, nor has it been shown that the Kasner map approximation,
which is what is usually discussed as possibly chaotic, is an adequate approximation for
this purpose (see also Liebscher et al. (2011), Reiterer and Trubowitz (2010)). There may
similarly be chaos in other solutions with oscillatory behaviour.

Bogoyavlenskii and Novikov (1973) discuss the form of the solution as it leaves the
attractor, showing there are three main types of evolution (compare (Bogoyavlenskii, 1985,
section 6.VI)). (The argument is essentially the reverse of the arguments that generic models
approach the vacuum boundary.) It could be interesting to study these further as early
universe models.
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The orthogonal VI0 and VII0 models only allow two copies of Figure 18.4. In addition
there are trajectories which end at the Taub points on the Kasner circle. For type VI0 these
solutions have a flat Kasner limit, which may be important to the horizon problem in Bianchi
VIII models (Heinzle and Ringström, 2009), but for type VII0 this is not so: there can be
unbounded trajectories showing extreme Weyl dominance. Since these are also limit cases
of Bianchi VIII and IX, the descriptions of those cases have to incorporate these special
trajectories. For the behaviour of compactified type VIII space see Ringström (2003). An
inhomogeneously compactified VI0 model was studied as an ‘inhomogenous’ Mixmaster
case (Weaver, Isenberg and Berger, 1998).

In general models will isotropize in the ω-limit if there is an inflationary matter term
(w <− 1

3 ), as was first shown for w =−1 by Wald (1983): the basic reason is as stated in
Section 18.2. However, when there is no such matter, Bianchi models can only isotropize
at the ω-limit if they allow as a special case an FLRW model (see Table 18.2): other-
wise the anisotropic spatial curvature dominates at late times and the model is driven
away from isotropy. We discuss isotropy at intermediate times below (Section 18.6.3). We
should also note that under reasonable conditions there may be no infinitely expanded
ω-limits in Bianchi type IX: the models always recollapse, as do the K > 0 FLRW mod-
els, though the Bianchi IX models will again oscillate as they approach a singularity
(Lin and Wald, 1991). However, Calogero and Heinzle (2010) have shown that there are
Bianchi IX fluid models with negative w obeying the strong energy condition that expand
for ever.

The late time behaviour of the models that do allow specialization to Robertson–
Walker is to isotropize for types I and V, so only type VIh requires further discussion.
Collins and Hawking (1973b) showed that only a set of measure zero in this class have an
isotropic ω-limit, but intermediate isotropization can occur (Wainwright et al., 1998).

The ω-limits of the orthogonal models can show asymptotic self-similarity breaking and
Weyl dominance when the state space in expansion-normalized variables is unbounded, see
e.g. Nilsson, Hancock and Wainwright (2000) for type VII0.

Turning to the tilted models, the α-limits are typically vacuum (if w < 2) and so their
behaviour can often be obtained from the orthogonal cases, though note that new combina-
tions may arise as in the tilted type II case above. Since the tilted type II is a limit of almost
all other cases, those cases’ limits are also oscillatory although the orthogonal models’ limits
are not (this was first remarked by Peresetskii (1977)). Most of the work has thus focused
on the ω-limits.

There are very few extra possible tilted self-similar attractors in the ω-limit
(Apostolopoulos, 2003; 2005, Hervik et al., 2007): Hewitt’s type II solution; the rotating
Bianchi VI0 solution of Rosquist and Jantzen; a new, unstable, solution of type VI−1/9; and
some additional solutions of type VIh. Just as the orthogonal cases include the orthogonal
Bianchi II behaviour as a limit, all tilted cases except Bianchi V include the tilted Bianchi
II behaviour as a limit.

However, there is an important additional limit for Bianchi types IV,VIh andVIIh, namely
the (vacuum) plane wave solutions admitting these groups of symmetries. These arise when
there is non-extreme Weyl dominance (Barrow and Hervik, 2002) and are the only future
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attractor for the general type VIIh models. Type VIh models only approach a plane wave
if h < −1. However, the waves themselves are unstable to inhomogeneous perturbations
(Hervik and Coley, 2005). Remarkably, the state spaces which have plane wave limits also
have a ‘loophole’, a small region of parameter space where the future attractor, the ‘Mussel
attractor’, is a closed loop. Numerical experiment also shows closed trajectories outside the
loophole, and there can be bifurcations at which an equilibrium becomes a closed orbit. Type
III can show some atypical tilted Bianchi VIh behaviour. (See Coley and Hervik (2005) for
the type IV case, Hervik et al. (2007) for the type VIh case, and Hervik et al. (2008) for
rotating type VI−1/9.)

There is also a special vacuum ω-limit for the VI−1/9 class, a particular Robinson–
Trautman solution (see Stephani et al. (2003), Chapter 28), the Collinson–French solution.
This is a Petrov type III vacuum solution and arises in the orthogonal case if w > 1/9,
while for − 1

3 < w < 1/9 the limit is an orthogonal solution due to Collins. The approach
may be oscillatory. In the tilted cases the eventual tilt can be zero, intermediate or
extreme.

Tilted type VIII solutions also have an unbounded state space (since they contain a
Type VII0 limit) and develop extreme tilt if w > 0. There is extreme Weyl dominance if
w > 1/5, with rapid oscillations and self-similarity breaking. The approach to the vacuum
state can be very slow (� ≈ 1/ ln t) whereas in the orthogonal case it is more like t−2w

(ln t)−(w+1)/2.
Type VI0 shows a bifurcation between asymptotically orthogonal and asymptotically

extreme tilted at w = 1
5 : there are unstable self-similar solutions which are attractors in a

subspace and there is Weyl–Ricci balance at late times. In tilted VII0 the shear and tilt go
to zero but the Weyl invariant does not: the shear can oscillate rapidly and lead to Weyl
dominance. There is a bifurcation giving extreme tilt as the limit if w > 1

3 .
The Bianchi I models were discussed in Section 18.2 so only the Bianchi V models

have not been summarized. Their orthogonal cases are rather similar to Bianchi I, since the
surfaces have constant (though negative) curvature, so (18.7) still holds. There is an LRS
tilted case which is non-rotating but shows some interesting behaviours, depending on w

(Coley et al., 2009). The general tilted cases are more complicated, exhibiting bifurcations
for the future behaviour at w =− 1

3 , 1
3 and 1 as usual, and also at 1

5 .
It should be noted that all these remarks concern just perfect fluids with linear equations

of state. As the remarks at the end of Section 18.2 indicate, more complicated evolu-
tions can arise when intrinsically anisotropic stresses are introduced. For example, a
magnetic field in an orthogonal cosmology can mimic the effect of additional spatial
curvature, and so introduce additonal ω-limits and oscillation in the α-limit (Collins,
1972, Horwood and Wainwright, 2004). Other cases such as two or more tilted fluids and
collisionless particles (Rendall and Tod, 1999) have been considered.

Exercise 18.5.1 Introduce suitable variables for considering the behaviour of the fluid in a
comoving (tilted) frame (remember that all rotating Bianchi models are tilted). Show that
for w > 1

3 the tilt generally becomes extreme at late times. (See Coley, Hervik and Lim
(2006).)
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18.6 Cosmological consequences

18.6.1 Evolution near a big bang

The possible evolutions have been summarized in Section 18.5.3 above. One will typically
have oscillatory behaviour in general cases, though whether or not this is chaotic remains
unclear, but certain cases have self-similar limits and for w ≥ 1 there are quasi-isotropic
singularities. Most of the interesting dynamics would take place at times expected to be in a
quantum gravity regime, so it may be that the issue of how the trajectories leave the α-limit
is the right one to pursue.

The oscillations in Bianchi IX were envisaged as a way to remove particle horizons and
so resolve the ‘horizon problem’ (Misner, 1969a). For a variety of reasons this idea did not
work (see e.g. the summary in MacCallum (1979)).

We note that these typical simultaneous spacelike singularities are not the only possi-
bilities. As mentioned in Section 6.7, in tilted Class B models, there may be a dramatic
change in the nature of the solution, where the surfaces of homogeneity change from being
spacelike (at late times) to being timelike (at early times), these regions being separated by
a null surface H, the horizon associated with this change of symmetry. At earlier times the
solution is no longer spatially homogeneous – it is inhomogeneous and stationary. (This
kind of change happens also in the maximally extended Schwarzschild solution at the event
horizon.) Associated with the horizon is a ‘whimper’ singularity where all scalar quantities
are finite but components of the matter energy–momentum tensor diverge when measured
in a parallelly propagated frame as one approaches the boundary of spacetime (this hap-
pens because the parallelly propagated frame gets infinitely rescaled in a finite proper time
relative to a family of Killing vectors which in the limit have this singularity as a fixed
point). The matter itself originates at an anisotropic big-bang singularity at the origin of the
universe in the stationary inhomogeneous region.

Details of how this happens are given in Ellis and King (1974), and phase plane dia-
grams for the simplest models in which this occurs – tilted LRS Type V models – in
Collins and Ellis (1979). These models isotropize at late times, and can be arbitrarily simi-
lar to a low-density FLRW model at the present day. Siklos (1981) showed that in general the
Kretschmann scalar diverges at the big bang, except for plane wave solutions, that the whim-
per singularities are unstable, and that except in type VI−1/9 the non-scalar singularities are
accompanied by horizons.

18.6.2 Occurrence of inflation

An issue of importance is whether these models tend to isotropy at early or late times.
Isotropization may occur regardless of a possibly early inflationary phase: we discuss this
below. Here we note some of the work on the occurrence and effectiveness of such an
inflationary phase in Bianchi models (see also Coley (2003)). Inflation only occurs in
Bianchi models if there is not too much anisotropy to begin with (Rothman and Ellis, 1986),
and it is not clear that shear and spatial curvature are effectively removed in all inflating
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cases (Raychaudhuri and Modak, 1988). Hence, some Bianchi models isotropize due to
inflation, but not all.

Bianchi I models can isotropize without inflation, and inflation in them can be anisotropic
(Gümrükçüoğlu, Himmetoglu and Peloso, 2010), leading to substantial changes in CMB cor-
relations.Aguirregabiria, Labraga and Lazkoz (2002) considered ‘assisted inflation’, where
several scalar fields are used, and found, in Bianchi VI0 models, that inflation was more
likely if there were more non-interacting fields or fewer interacting ones.

Aguirregabiria, Feinstein and Ibañez (1993) considered Bianchi I metrics with an expo-
nential potential for the scalar field proportional to ek� and found they isotropize for
k <

√
2 but not for k >

√
2. The same conclusion was reached by Coley and Goliath

(2000) for K-S metrics (though these recollapse if inflation fails to isotropize them), and
by van den Hoogen and Olasagasti (1999) for a Bianchi IX metric.

For Bianchi class A with a fluid and minimally coupled scalar field, Fay (2004) showed
that the solutions only isotropize if scalar field dominated.

In approximately de Sitter inflation, initial velocities are required to determine the 4-
velocity of matter at the end of inflation (since the de Sitter solution is locally Lorentz
invariant and so has no preferred 4-velocity). Anninos et al. (1991) studied the effect of an
initial tilted velocity before inflation in an LRS Bianchi V model and found numerically
that it did not isotropize on small scales.

18.6.3 Isotropization

Isotropization when just a fluid is present can be studied by use of the evolution curves
discussed above (Wainwright et al., 1998). Collins and Hawking (1973a) showed that for
ordinary matter, many Bianchi models become anisotropic at very late times, even if they
are very nearly isotropic at present. Thus isotropy is unstable in this case. However, Wald
(1983) showed that Bianchi models will tend to isotropize at late times if there is a positive
cosmological constant present, implying that an inflationary era can cause anisotropies to
die away. More detailed discussion of ω-limits was given above (Section 18.5).

Even in the classes of non-inflationary Bianchi models that contain FLRW models as
special cases, not all models isotropize at some period of their evolution; and of those that
do, most become anisotropic again at late times. Only an inflationary equation of state
(w <−1/3) will lead to such isotropization for a fairly general class of models; but once
inflation has turned off, anisotropic modes will again occur.

However, in many Bianchi types the FLRW models are saddle points in the relevant
state spaces, allowing models to be nearly isotropic at intermediate epochs, a behaviour
sometimes called ‘hesitation dynamics’.

Theorem 18.1 Bianchi Evolution Theorem (1): Consider a family of Bianchi models that
allow intermediate isotropization. Define an ε-neighbourhood of an FLRW model as a
region in state space where all geometrical and physical quantities are closer than ε to
their values in an FLRW model. Choose a time scale L. Then no matter how small ε and
how large L, there is an open set of Bianchi models in the state space such that each model
spends longer than L within the corresponding ε-neighbourhood of the FLRW model.



483 18.6 Cosmological consequences

Hence there exist many Bianchi models that are compatible with astronomical observa-
tions and therefore viable as models of the real universe. The catch is that the significant
deviations from FLRW may occur only at times earlier than those at which quantum gravity
effects are normally assumed to dominate, or in the very far future, and hence the difference
may be physically unimportant: numerical estimates would be useful.

Another formulation of this idea is

Theorem 18.2 Bianchi Evolution Theorem (2): In each set of Bianchi models of a type
admitting intermediate isotropization, there will be spatially homogeneous models that are
linearizations of these Bianchi models about FLRW models. These perturbation modes will
occur in any almost-FLRW model that is generic rather than fine-tuned; however, the exact
models approximated by these linearizations will be quite unlike FLRW models at very early
and very late times.

The point is that these modes can exist as linearizations of the FLRW model; if they do
not occur, then initial data have been chosen to set these modes precisely to zero (rather than
being made very small), which requires very special initial conditions. Thus these modes
will occur in almost all almost-FLRW cosmologies. Hence, if one believes in generality
arguments, they will occur in the real universe. When they occur, they will at early and late
times grow until the model is very far from an FLRW geometry (while being arbitrarily
close to an FLRW model for a very long time, as in Theorem 18.1).

18.6.4 Light propagation and observations

Although the field equations for Bianchi models are relatively simple, and many exact
solutions are known, though not for the most complicated cases, the geodesic equations are
not so readily solved. Since there are (at least) three independent Killing vectors ξ i , i = 1, 2,
3, one always has four constants of motion along a geodesic with tangent vector t, namely
t.ξ i and t.t, giving first integrals of the second-order geodesic equations, but analytically
integrating for a second time may not be possible.

Nilsson et al. (1999) considered the general dynamical system with the geodesic
equations included, and pointed out in particular that bounds on shear obtained by
considering Bianchi I and V models are untypical.

Observational relations for a number of these universes have been examined in detail.
(a) Redshift, area distance, and galaxy observations ((M ,z) and (N ,z) relations) are

considered in MacCallum and Ellis (1970). Anisotropies can occur in all these relations,
but many of the models will display discrete isotropies in the sky.

(b) The effect of tilt is to make the universe look inhomogeneous, even though it is
spatially homogeneous (King and Ellis, 1973). This will be reflected in particular in a dipole
anisotropy in number counts, which will thus occur in rotating universes (Gödel, 1952).2

2 They will also occur in FLRW models seen from a reference frame that is not comoving; hence, they should
occur in the real universe if the standard interpretation of the CMB anisotropy, as due to our motion relative to
an FLRW universe, is correct; see Ellis and Baldwin (1984).
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(c) CMB anisotropies will result in anisotropic universe models. For exam-
ple many Class B Bianchi models will show a hot-spot and associated spiral
pattern in the CMB sky (MacCallum and Ellis, 1970, Collins and Hawking, 1973b,
Barrow, Juszkiewicz and Sonoda, 1983, 1985, Bajtlik et al., 1986). This enables us to put
limits on anisotropy from observed CMB anisotropy limits (Collins and Hawking, 1973b,
Bunn, Ferreira and Silk, 1996). If reheating takes place in an anisotropic universe, this will
mix anisotropic temperatures from different directions, and hence distort the CMB spectrum
(Rees, 1968).

Some of the most detailed work has involved Class B models where the quadrupolar
anisotropy found in orthogonal Class A models can be distorted and rotated, leading to hot
and cold spots in the sky and contributions to higher multipoles.

Matravers, Madsen and Vogel (1985) showed that Bianchi V models might be of inter-
est in this context, and these and Bianchi VII models have been examined by a number
of authors since. Jaffe et al. (2006) found that consideration of type VIIh allowed a good
fit to some of the suggested CMB anomalies but not a good overall fit. Pontzen (2009)
considered the temperature patterns produced by Bianchi VIIh anew and in detail: in par-
ticular he noted that certain anisotropies on superhorizon scales could go undetected by
nucleosynthesis limits. Taking only models containing an FLRW case, he notes that there
are two scales in type VIIh, a spiral scale x and the scalar curvature parameter �K , and
derived the CMB patterns. As an example of the type of results obtainable we show Figure
18.5. He also found that in type IX one only got quadrupole terms in the angular distri-
bution, but the E and B modes mixed. Sung and Coles (2009) showed there can also be
mixing in the VIIh case and that this case can give localized cold-spots as suggested by
the data.

Note that almost-isotropic CMB does not imply, as one might have expected from the
almost-EGS theorem (Section 11.1), that a Bianchi metric is close to FLRW. The rea-
son is that one can have cases, e.g. the Bianchi VII0 example, where the derivative of
the shear is large and oscillatory but the shear itself is small (these will be Weyl domi-
nated, as described in Section 18.5.3). One can even have models which at a certain instant
have exactly isotropic CMB (Lim, Nilsson and Wainwright, 2001). Pontzen and Challinor
(2010) have considered linearization of Bianchi models about FLRW models, high-
lighting ‘the existence of arbitrarily long near-isotropic epochs in models of general
Bianchi type’.

18.6.5 Element formation

Element formation will be altered primarily through possible changes in the expansion time
scale at the time of nucleosynthesis (Thorne, 1967, Barrow, 1976, Rothman and Matzner,
1984). This enables us to put limits on anisotropy from measured element abundances in
particular Bianchi types. This effect could in principle go either way, so a useful conjecture
(Matzner, Rothman and Ellis, 1986) is that in fact the effect of anisotropy will always –
despite the possible presence of rotation – be to speed up the expansion time scale in
Bianchi models.
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Fig. 18.5 The vector modes of type VIIh and its specializations. For a grid of parameters the temperature pattern (upper panel)
and E and Bmode polarization exaggerated in scale by a factor 20 (small lower left and right panels respectively) are
shown. x varies from top to bottom while�M (and hence�K ) varies from left to right. Pontzen assumes�� = 0
except in the rightmost panels for which the concordance values are used. The primary effect of non-zero� is to
increase the conformal time to last scattering, causing the final z = 0 pattern to be more tightly wound. The model
with (�M , x)= (0.5, 0.6) (shaded panel) is able to mimic known CMB temperature anomalies. (Reprinted with
permission from Pontzen (2009). Copyright by the American Physical Society.) A colour version of this figure is
available online.

Matravers, Vogel and Madsen (1984) studied nucleosynthesis in Bianchi V models,
showing it could be consistent with observation. More recently Barrow (1997) calculated
the effect of oscillatory behaviour induced by anisotropic stresses in a Bianchi I background.
Further large changes in the predictions are unlikely, which may account for the absence of
more recent or more detailed work on these issues.

18.6.6 Perturbations, structure formation and the CMB

In addition to the effects of the global geometry on the CMB which largely concern low
multipoles, one has to consider whether perturbations will evolve differently and so lead
to different small angular scale variations. In Bianchi I models, modes are similar to those
of FLRW models but are coupled already at the linear level (see e.g. Dunsby (1993),
Gümrükçüoğlu, Contaldi and Peloso (2007)). This can lead to a ‘seesaw’effect and resulting
statistical patterns dependent on the wave vector k rather than just its norm |k|, which could
be related to the observed CMB anomalies (Pereira, Pitrou and Uzan, 2007). The Jeans
instability likewise has directional dependence (Dulaney and Gresham, 2008).
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Ghosh, Hajian and Souradeep (2007) using VIIh models argue that these can match some
of the anomalies in the CMB but cause unacceptable changes in other parameters unless
σ/H ≤ 2.77× 10−10.

18.7 The Bianchi degrees of freedom

The above discussion has shown the richness of behaviour possible in these models, and
how their evolution can usefully be characterized using state spaces. There may well be such
behaviour in the real universe in which we live, possibly dynamically important at early
times, even though it is suppressed at the present epoch. Anisotropies might even become
important again at late times. The most interesting work to be done in the future is perhaps
(a) investigating in further depth the rotating Bianchi models and (b) exploring further the
implications for Bianchi models of the CMB and element abundance observations. Bianchi
models are also being studied in the context of quantum cosmology (see e.g. references in
Damour, Henneaux and Nicolai (2003)), of string cosmology and brane universe models
and of loop quantum gravity (Chapter 20; Coley (2003)).

As remarked above, within Bianchi models one can derive limits on the anisotropy
from the CMB and from BBN element abundances. Barrow (1976), using those Bianchi
types in Table 18.2 which allow FLRW cases, gave limits from BBN which were at the
time substantially better than those available from CMB because nucleosynthesis probes to
earlier times. However, one has to beware that the limits thus obtained may be misleading
if assumed to be correct for other Bianchi models where anisotropic curvature or other
effects absent in the Bianchi I case come into play and diminish the instantaneous and/or
cumulative distortion.

Indeed, the more recent calculations (Barrow, 1997) gave limits from nucleosynthesis
weaker than those from the CMB: this is due to the logarithmic drop in the anisotropy as
it evolves in these cases, meaning that the BBN limit is larger than the CMB limit. The
same should apply to oscillatory effects due to the geometry, by the analogies mentioned
in Section 18.2.

A generic bound from CMB measurements under the assumptions of the almost-EGS
theorem is |σ | � 10−4, but, as mentioned above, models exist that do not obey those
conditions and exceed that bound (Lim, Nilsson and Wainwright, 2001). The more stringent
limits sometimes stated for present-day anisotropy, e.g. |σ0|/�0 ≤ 10−6 to 10−12, are very
model dependent.

Because of the anisotropies that can build up in both directions in time, present-day
limits do not imply that either the very early universe (before BBN) or the late universe
will also be isotropic. This conclusion applies both to CMB and BBN measurements. In
both cases the possibilities are quite model dependent: although very strong limits apply
to some Bianchi models, they are much weaker for other types or other matter content.
Hence, one should be a little cautious in what one claims in this regard. There needs to
be a more careful evaluation of the different possibilities, including quantitative studies of
intermediate regimes.
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If anisotropies are indeed present, they may well dominate at very early and very late
times even if they are very small today; it is therefore important to understand their dynamics
and observational effects.

Exercise 18.7.1 Most studies of CMB anisotropies and nucleosynthesis are carried out for the
Bianchi types that allow FLRW models as special cases (see Table 18.2). Show that Bianchi
models can approximate FLRW models for extended periods even if they do not belong to
those types. What kinds of CMB anisotropies can occur in these models?

Problem 18.1 Give a full account of structure formation in perturbed Bianchi models.
Consider in particular the orbits leaving the attractor (Bogoyavlenskii, 1985, section 6.VI)).
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In the previous chapter, cosmological models which drop the isotropy assumption of FLRW
models were considered; here we drop the homogeneity assumption. Of course, perturbed
FLRW models also satisfy neither assumption, but they are treated only in perturbation
theory. Here we aim to study models in the fully nonlinear theory. Inhomogeneous models
have been applied both globally (as shown by the use of LTB models in Chapter 15) and
to model localized inhomogeneities and, e.g. their fully nonlinear effects on observation
via lensing (as shown by the use of Swiss cheese models in Chapter 16). In the global con-
text, issues such as whether inflation could remove inhomogeneity, or whether hierarchical
models could fit the data, can be examined: these are essential to judging the robustness of
the assumptions of the standard model.

For example, the evidence cited as support for the standard model can be well fitted by
nonstandard models, as we have seen in Chapter 15. Thus one can legitimately ask, what
is the largest family of cosmological models that can fit the observations? One can then try
to devise observational tests to eliminate as many of them as one can.

One may also wonder why we look for exact models of structure formation, when the
perturbative theory is so successful? The inflationary paradigm coupled with the pertur-
bation theory of FLRW models has offered the first viable explanation of the observed
degree of inhomogeneity in the universe (see Chapter 10). However, the galaxies, clus-
ters and voids we observe now have values of (e.g.) δρ/ρ outside the perturbative regime.
Their structure and evolution are often modelled by pseudo-Newtonian N-body calcula-
tions (see Section 12.3.7): inhomogeneous solutions of the EFE, especially spherically
symmetric models, offer an alternative way to model both collapsed regions (represent-
ing galaxies or clusters) and voids. The nonlinear effects of GR may have significant
impacts on structure formation: it is helpful to have the best realistic nonlinear GR mod-
els we can find in order to study this question. Some such models, especially static ones,
are simply descriptions of the present structure: their value is principally as backgrounds
in which to study the effects of light propagation in inhomogeneous models: compare
Chapter 16. Other work is more concerned with modelling formation and evolution of
structures.

Krasiński (1997) gave a very extensive survey of inhomogeneous cosmological models
and their physical properties. He fitted the many specific models discussed in the literature
into a relatively small number of families, including only those classes which contain an
FLRW or Kantowski-Sachs metric, which excludes few models of physical importance.
Stephani et al. (2003) give the ones with a perfect fluid matter content. (Krasiński placed
no restriction on the equation of state, and thus included many metrics outside the scope
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of Stephani et al.) This survey was subsequently complemented by Bolejko et al.’s discus-
sion (2010) of the cosmological application of the LTB (Sections 15.1 and 19.1), ‘Lemaître’
(Section 19.4.1) and Szekeres models (Section 19.6) to structure and evolution. Here we
can only summarize the main points from these surveys and the extensive literature.

We first revisit the commonly used Swiss cheese model and LTB models, where simple
analytic solutions are possible, and then consider other solutions. Following Section 17.1,
we discuss these in order of the amount of their symmetry. (A more detailed classification
of possible irrotational perfect fluid models was given by Wainwright (1979, 1981).)

We have grouped applications with the descriptions of the models involved, and we have
included brief indications of some attempted applications which did not succeed (this is
to help readers avoid repeating these attempts: in Section 17.1.4 we also mention models
whose testable predictions have never been considered). This may impede getting a clear
overall picture of the value of inhomogeneous models. As well as their lensing applications
(Section 12.4 and Chapter 16) and their use as global models (Chapter 15), here are some
of the major points among the many that emerge.

• As well as general discussions of nonlinear collapse, detailed fits to a number of actual
large-scale structures have been made (Sections 19.1, 19.2, and 19.6): these include
for example the Local Group, M87, the Great Attractor, the cluster A2199 and voids
with adjacent clusters. The models enable inferences about, e.g. the masses of objects.
Nonlinearity can speed up structure formation (Section 19.6).

• In the modelling of voids and clusters, velocity perturbations proved more effective
at producing structure than the usual scalar perturbations alone, suggesting that they
should be included in general structure formation models (Section 19.1). Remaining
incompatibilities between CMB measures and observed density contrasts (Sections 19.1
and 19.3) may be resolved by including radiation (Section 19.4).

• The very early universe may have been significantly different from FLRW models imply-
ing that the initial conditions before inflation may be very anisotropic or inhomogeneous
(see Sections 19.3, 19.5.1 and 19.10.1). Such inhomogeneous initial conditions can pre-
vent inflation from producing the relatively smooth universe indicated by the CMB
(Section 19.10.2). This would imply either that one needs fine tuning before inflation or
that the apparent smoothness does not come from inflation.

• The conjecture that universes evolve towards self-similar models, although it is not always
correct, has been shown to be a useful guideline characterizing an intriguing part of the
dynamics of models of interest, which may help explain some observed structures in an
interesting way (Section 19.3).

• Overdensities can grow to underdensities, which does not happen in a linearized picture
(Section 19.1).

• Some of the classes considered include exact nonlinear inhomogeneous gravitational
waves in an expanding background, whose effects are otherwise only known in the
perturbative regime (Section 19.5).

• Models additional to those used in Chapter 15 can be used to fit the SNIa and CMB data
with success (Sections 19.6 and 19.7).
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19.1 LTB revisited

The LTB models, with metrics given by (15.2) and (15.5)–(15.7) containing arbitrary func-
tions f (r), m(r) and tB(r) of r , were introduced in Section 15.1, where their application
as global models was considered. Here we review other cosmological aspects. Note that
we can have LTB models that are FLRW for certain ranges of r , giving concentric shells of
differing behaviour.

Spherically symmetric models, especially the evolving LTB models, sometimes with
discontinuous density distributions, have for a long time been used to model structures.
Lemaître himself (1933a) considered formation of the ‘nebulae’, Tolman’s original paper
(1934) predicts the development of condensations and rarefactions, and Sen (1934) argued
that inhomogeneous models should form voids, while Bondi’s 1947 paper foreshadows
black hole formation and notes that an initially expanding central void never recollapses.

The evolution of LTB voids was studied in much more detail by Occhionero and col-
leagues and Sato and colleagues (see Occhionero, Santangelo and Vittorio (1983), Sato
(1984), and papers cited therein). Depending on initial conditions, the void volume may
grow or decay, with rarefaction/compression waves in the dust: growth can be asymptot-
ically at the speed of light, so voids may be younger than their surroundings. Collision of the
boundaries of growing voids might explain the ‘walls’ of galaxies. Shell-crossings develop
at the edge of expanding voids, but numerical studies (Suto, Sato and Sato, 1984) support
the intuitive expectation that non-zero pressure prevents them from forming.

Quantitative modelling of overdensities by LTB models was introduced by Bonnor
(1956). Later papers studied galactic scale inhomogeneities (Bonnor, 1972, 1974,
Carr and Yahil, 1990), and, on a larger scale, clusters of galaxies (e.g. the Coma cluster,
Kantowski (1969a)), variations in the Hubble flow due to the supercluster (Mavrides,
1977), the observed distribution of galaxies, and simple hierarchical models of the uni-
verse (Bonnor, 1972, Wesson, 1978, Ribeiro, 1992a). There are studies of evolution of a
locally open region in a closed universe (Zel’dovich and Grishchuk, 1984) and of density
contrast (Mena and Tavakol, 1999). Meszaros (1991) developed a variation on the usual
approach by considering cases with shell-crossings, with the aim of producing ‘Great Wall’
like structures, rather than the collapse to the centre producing a spherical cluster or galaxy.

Hellaby and Krasiński (2006) considered ways of specifying data for LTB models so as to
facilitate production of models fitting observations in various circumstances. For example,
Bolejko and Hellaby (2008) used an LTB model for the Shapley concentration and the Great
Attractor, and found that ‘the peculiar velocity maximum near the SC is∼800 km/s inwards,
the density between GA and SC must be about ∼0.9 times background, the mass of the GA
is probably 4− 6× 1015M�,’ and ‘the SC’s contribution to the L[ocal] G[roup] motion is
negligible’.

Krasiński and Hellaby (2004a) modelled M87, a galaxy believed to contain a black hole,
by an LTB metric, showing that models with very different black hole ages were indis-
tinguishable observationally. Their model (2004b) of the galaxy cluster A2199 showed
that velocity perturbations produced density variations more effectively than a pure
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density perturbation. This conclusion, suggesting that a velocity distribution should also be
considered in the standard model, was supported by models of the North and South Galactic
Pole voids (Bolejko, Hellaby and Krasiński, 2005) where the velocity perturbation was the
main factor. Here they also showed that density and velocity perturbations compatible with
the CMB observations could not readily produce the observed density contrasts, within this
class of models, excluding shell crossings (see, however, Section 19.4.1). Faster expansion
produced a larger density contrast.

Sussman (2010b) has recently reformulated the LTB equations using quasi-local integral
scalar variables. This provides a covariant interpretation of the parameters of these models,
and casts the equations in a dynamical systems form suitable for numerical evolution, which
can also be understood in the framework of a gauge invariant and covariant formalism of
spherical nonlinear perturbations on an FLRW background. This formulation may be useful
in fitting models. It has been applied, using techniques similar to those used for Bianchi
models, to LTB models with�> 0 (Sussman and Izquierdo, 2011), generalizing the�CDM
model. Sussman (2010a) used it to show, among other results, that the inversions of over-
to underdensity, or vice versa, can only take overdensities to voids, and only if K ≤ 0.

Another alternative was introduced by Wainwright and Andrews (2009), who used it to
discuss the approach to isotropy and its dependence on �, the Weyl to Ricci curvature ratio
in the limit, and possible ‘hesitation dynamics’.

Exercise 19.1.1 Show how LTB models can be used to characterize the process of gravitational
collapse of an overdensity in an FLRW model, demonstrating how it breaks away from the
overall cosmic expansion to give a locally collapsing region. Use the model to estimate the
relation between turnaround time and initial overdensity. How would this be modified if a
cosmological constant is added?

19.2 Swiss cheese revisited

Swiss cheese models were introduced in Section 16.4.1. They show that FLRW models,
with metric (2.65), can contain Schwarzschild static vacuum regions, with metric (16.13).
We required that there be no surface layer or other discontinuity at the junction: the boundary
� with the FLRW region was then shown to obey

AṪ 2 = 1+ ȧ2f (r�)
2/A, R� = a(t)f (r�), (19.1)

where the dot means derivative with respect to the FLRW t , and we must have Schwarzschild
mass M = 4π(ρa3)f (r�)

3/3. Thus the matching imposes a significant constraint on the
models, and raises the issue of the best-fitting background.When two or more Schwarzschild
regions are present there is no global spherical symmetry.

The extension to include a cosmological constant is straightforward: just add −�r2/3
to A, giving the Kottler solution, which can by itself be regarded as a composite of the
Schwarzschild and (anti-)de Sitter solutions, but can also be joined to an exterior FLRW
dust plus � solution. Its main cosmological use has been in trying to clarify the effect of �
in lensing (see Section 12.4).
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As well as their use in studying lensing effects, the Swiss cheese models are suitable for
modelling (quasi-) static bound systems, such as voids and galaxy clusters. Applications
have included modelling the universe as a patchwork of domains of different curvature
K = 0,±1 (Harwit, 1992) and the evolution of the boundaries of cosmic voids (Sato, 1984,
Hausman, Olson and Roth, 1983, Bonnor and Chamorro, 1990, 1991, Chamorro, 1991).

One can replace either the central portion or the whole of the Schwarzschild region by
a spherical source, e.g. a region of an LTB solution. This gives a sort of Swiss cheese
model with filled holes. To give the right total mass, any underdense part of an LTB portion
has to be compensated by an overdense part (Ribeiro, 1992a), but that may be appropriate
in modelling, for example, a void surrounded by galaxies. The cases with dynamic LTB
interior regions, giving an exact cosmological model with time-dependent inhomogeneities,
can be used to model collapsing systems: for example, Oppenheimer–Snyder collapse in
an expanding universe has been studied (Lake, 1980, Hellaby and Lake, 1981, 1983) by
taking the interior source to be a different, collapsing, FLRW region.

There is an important difference between the original Swiss cheese model and a matching
between LTB and FLRW metrics: in the latter case there is no need for the boundary between
the two or more parts to be comoving and the dust can move between them.1

Discussion of the Swiss cheese model as a special case of LTB with discontinuous density
distribution, and perturbation of this within the LTB class and its generalizations, reveals
that the Swiss cheese is unstable (Sato, 1984, Lake and Pim, 1985). As one might guess, if
the central mass is too small, the boundary of the void would want to expand faster than the
FLRW region does, and if the mass is too large, the vacuole collapses. This suggests that
the Swiss cheese model can at best be an approximation to real structures for some (maybe
long) period of time but not indefinitely.

The construction in which the mass interior to a sphere in FLRW is conserved but con-
tracted in radius can be used to develop the ‘packed Swiss cheese’ (Mureika and Dyer,
2004), in which the construction is repeated multiple times both with different centres and
inside the already compressed regions. These models, with 3–9×104 compressed spheres,
were used as models of fractal distributions of mass, but do not match observation well,
suggesting that luminosity biasing is important.

One can also change the exterior. Bonnor (2000) considered a Schwarzschild region
matched to an LTB exterior, and found that there is then no restriction on the mass of
the Schwarzschild part but that, naturally enough, the boundary is infalling if that mass
is overdense and moving outward if it is underdense. He points out that such models are
inappropriate for the Solar System (because the Galaxy rotates) or the Galaxy itself (because
there is a force between it and M31). They could give simple models of the Local Group
with, for example, a boundary at ∼0.7 Mpc and infall velocity ∼170 km/s, close to the
observed values.

A number of authors have considered the possibility of finding generalizations of the
Swiss cheese with a stationary interior and expanding exterior, but with nonspherical internal

1 One can also match the spherical Vaidya solution, which approximates a radiating source although spherical
gravitational waves do not exist in general relativity, to an FLRW solution (Fayos et al., 1991), with the aim of
studying inhomogeneities and collapse. In this case radiation crosses the boundary. This is only possible with a
re-interpretation of the FLRW energy–momentum, compare remarks in Section 9.1.4.



493 19.3 Self-similar models

or external geometry, or, in some cases, a matter shell at the interface (Lake, 1987). These
ways of generalizing the Swiss cheese turn out not to be very promising. Axially sym-
metric stationary regions in FLRW spacetimes must be static (Nolan and Vera, 2005), and
since if static they must have spherical boundaries (Mars, 2001) this leaves only the orig-
inal Einstein–Straus case. Matching static cylindrical regions to more general anisotropic
cosmologies also encounters severe restrictions (Mena, Tavakol and Vera, 2002).

A further alternative is to study whether models which are neither spherically symmetric
nor stationary can be joined regularly onto an FLRW model. Bonnor (1976) showed that
some Szekeres models can be matched to a Schwarzschild metric across a spherical sur-
face, and (as one might then expect) to a dust FLRW model across a comoving spherical
surface: see Section 19.6. Dyer, Landry and Shaver (1993) have shown that one can match
FLRW and LRS Kasner (vacuum Bianchi Type I, Section 18.2) models across a flat junc-
tion surface. Optical properties of these ‘cheese slice’ models have been investigated in
depth (Landry and Dyer, 1997): they include significant lensing and anisotropic redshifts.
Although the models do not match observations, those properties indicate effects that might
also be seen in a fully three-dimensionally inhomogeneous situation.

Exercise 19.2.1 Work out the details of the matching in the case with a cosmological constant.

Exercise 19.2.2 Show how appropriate choice of initial data in a LTB model can give an
effective Swiss-cheese model with one centre surrounded by a series of successive FLRW
and nonFLRW spherical regions. Can you include (i) flat, (ii) vacuum (Schwarzschild)
regions in this construction?

19.3 Self-similar models

The definition of self-similarity in the literature is somewhat confusing. Usually it means
there is a homothety (Section 2.7.1), i.e. a vector field satisfying

ξ(a;b) = 2kgab, (19.2)

where k is a constant. However, this can be generalized in various ways, for exam-
ple to cases where there are hypersurfaces in which three-dimensional homotheties act
(Carter and Henriksen, 1989, Sintes, 1998).

Mathematically, self-similarity reduces the number of independent variables by one and
so simplifies the system of equations, but a more convincing physical motivation arises
from the following:

Asymptotic self-similarity conjecture:
Expanding models evolve towards self-similar solutions.

The basis for this conjecture lies in the Newtonian theory of blast waves, as treated by
Sedov and others. Its applicability in relativity is reviewed by Carr and Coley (2005): it is
true for some Newtonian cosmologies, for many classes of Bianchi models, as we have seen
in Chapter 18, and for some models of voids in cosmology (Jain and Bertschinger, 1996),
and is consistent with cosmic no-hair results.
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Apart from Bianchi models with an additional homothety, which are discussed in
Chapter 18, self-similar models arise in three main subcases:

(1) generalizations of Bianchi models, with a three-parameter homothety group H3 on
spacelike surfaces S3;

(2) comparable but truly spatially inhomogeneous models withH3 on timelike surfaces T3;
(3) self-similar spherically symmetric models.

We note that all these cases have at least three symmetries, and the first two are special
cases of ‘G2 solutions’ (Section 19.5), with perfect fluid matter content. We discuss all
three only briefly because although their geometry and dynamics have been studied in
considerable detail, they have so far been relatively little applied to the major problems of
cosmology.

The geometry and dynamics of the first type of self-similar model is very like
that of the Bianchi models, and, correspondingly, many details can be found in e.g.
Eardley (1974), Luminet (1978), Wu (1981) and Hanquin and Demaret (1984). Hewitt,
Wainwright and colleagues (Hewitt and Wainwright, 1990, Hewitt, Wainwright and Goode,
1988, Hewitt, Wainwright and Glaum, 1991) considered the second class, where it is found
that the spatial variations can be periodic or monotone; the asymptotic behaviour may be
a vacuum or spatially homogeneous model; the periodic cases are unstable to increases in
the anisotropy; and the singularities can be acceleration dominated.

The third class, spherically symmetric self-similar models, has been studied by many
authors (for a review see Carr and Coley (1999)). Homothety implies that all the met-
ric coefficients in (19.3) are functions of a similarity variable r/t , while in general-
ized self-similarity they depend on r/F (t) for some function F . For a perfect fluid
obeying (5.49) and a spacelike homothety a singularity may arise where the motion
reaches the sound speed

√
w: continuation across this surface is only possible in cer-

tain cases. The models were classified by their behaviour at large and small r by Carr
and Coley, who also studied the asymptotics. After pioneering work of Bogoyavlenskii
(1985), the dynamical system for these models was usefully recast by Goliath et al.
(see Carr et al. (2001)).

Applications of this third class include models of self-similar voids and some global
models asymptotic to FLRW solutions as t →∞, but as the self-similarity of the Newto-
nian blast wave case depends on the effect of pressure, it is more natural to apply the idea
in the early universe, for example to set initial conditions for a later LTB phase. However,
Carr and Coley (1999) showed one could not fit both the void size and the CMB fluctuations.
Other applications include formation of black holes in FLRW models (Carr and Hawking,
1974), other nonlinear FLRW perturbations (Carr and Yahil, 1990) and bubbles in the
early universe (Carr and Koutras, 1993). The more convincing uses, such as critical col-
lapse, and the study of cosmic censorship, are on scales small compared with those in
cosmology.

Exercise 19.3.1 Which FLRW models are self similar? Are they attractors in the space of
FLRW models?
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19.4 Models with aG3 acting onS2

These models have a metric

ds2 =−e2νdt2 + e2λdr2 +R2(dθ2 +f 2(θ)dφ2), (19.3)

where f (θ) = sin θ , θ or sinh θ respectively for the cases with spherical, plane or pseu-
dospherical (hyperbolic) symmetry and ν, λ and R are functions of r and t . The precise
functional forms in the metric depend on the choice of coordinates and the additional
restrictions assumed. The geometry of the time-dependent cases was examined in a covari-
ant way by van Elst and Ellis (1996), and a tetrad analysis was given by Ellis (1967) (for the
pressure-free case) and Stewart and Ellis (1968) (for perfect fluids). Note that these metrics
are frequently used in the deprecated g-method of Synge (Section 5.2).

As already mentioned, the spherical cases, especially those discussed above
(Sections 15.1 and 16.4.1), have been widely applied to issues of cosmological importance.
The plane ones have been used mainly for modelling domain walls and the pseudospherical
ones hardly at all.

19.4.1 Spherically symmetric models

The spherically symmetric cases are the simplest inhomogeneous models. The perfect fluid
cases include stellar models and collapse solutions (see e.g. Misner, Thorne and Wheeler
(1973)): Bolejko et al. (2010) refer to these as the Lemaître models, since they were dis-
cussed in Lemaître (1933b). The dust solutions form the LTB class. A further family that
has been extensively studied is the self-similar subclass (Section 19.3).

Lasky and Bolejko (2010) used models with pressure, as discussed in Section 8.5.4, to
avoid the shell-crossings of LTB models, at least until after structure formation was com-
plete, and studied the resulting magnitude–redshift relations. They showed that pressure
gradients can have significant effects. In particular, radiation can improve the density con-
trast of the voids obtained, compared with the LTB models discussed above: Bolejko (2006a)
concluded radiation was needed to obtain realistic voids.

The shearfree perfect fluid cases belong to the Petrov type D branch of the Stephani–
Barnes family (see Section 19.7). Specific shearfree models were first considered by
McVittie (1933), Wyman (1946) and Kustaanheimo and Qvist (1948) and all known solu-
tions of this type are included in these papers and Wyman (1976): the analysis of the whole
class and the exact solutions in it are described in Stephani et al. (2003), Section 16.2.2.

One solution of interest in this class is the McVittie (1933) metric,

ds2 = (1+f )4

(1+Kr2/4R2)2
eg(t)(r2d�2 + dr2)− (1−f )2

(1+f )2
dt2 , (19.4)

2f =Me−g(t)/2(1+Kr2/4R2)1/2/r , R = constant,
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where K =±1 or 0, defining the spatial curvature of the corresponding Robertson–Walker
universe. This gives the Schwarzschild solution if R→∞, g→ 0, and an FLRW solution
if M = 0; hence it has been interpreted as a mass in a Robertson–Walker universe. It is
the unique spherically symmetric metric containing a shearfree perfect fluid with density
ρ = ρ(t) and approaching an FLRW solution asymptotically. It has been used in evaluating
lensing effects (Section 16.6.4) and Noerdlinger and Petrosian (1971) used it to study the
evolution of clusters.

However, it has drawbacks: the global geometry is not what one would want for such
an interpretation (see the appendix to Sussman (1988)), and in the K = 0 case the surface
r(1+ f )2 = 2M is singular (Nolan, 1999), rather than being a horizon as in the Schwarz-
schild metric, although other members of the shearfree class can be used to give a regular
interior solution for the central region (Nolan, 1993).

A closely related metric form was discussed by Sultana and Dyer (2005): it has the same
metric form as (19.4) but with f,t = 0=K , and was obtained by conformal transformation
of the Schwarzschild metric (16.13). It contains a null fluid as well as dust, and has global
structural drawbacks similar to those of the McVittie solution (Faraoni, 2009): for example,
it has no apparent horizon (Sun, 2011).

19.4.2 Plane symmetric models

Exact solutions for domain walls, using plane symmetric models, usually static, have been
considered (Vilenkin, 1983, Ipser and Sikivie, 1984, Goetz, 1990, Wang, 1992). Since the
sources usually have a boost symmetry in the timelike surface giving the wall, the corre-
sponding solutions have timelike surfaces admitting the (2+1)-dimensional de Sitter group.
It may be noted that all these solutions with groups G3 acting on T3 are included in the
cases considered by Harness (1982).

19.5 G2 cosmologies

These models all have two commuting Killing vectors, which we shall assume are spacelike.
We generally assume also that the orbits of the G2 are orthogonal to another set of two-
dimensional surfaces (block-diagonal metrics). The metrics can then be written as

ds2 = fABdxAdxB + δe2γ ((dx4)2 − (dx3)2)/f , (19.5)

where A, B take values 1, 2 and the values of fAB can be written as a matrix,(
f −fω

−fω fω2 +W 2/f

)
. (19.6)

Here we assume that the gradient of W has the same character (timelike or spacelike) as
the coordinate x3, so δ parameterizes the nature of the gradient of the determinant of the
metric in the surfaces of symmetry.
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If δ = 1 then detfAB has the timelike gradient expected for cosmological models and
colliding waves: if δ =−1 we may have cylindrical, planar and plane metrics. The distinc-
tion here is that in planar metrics there are only two KVs but the orbits are not rolled up into
cylinders, and in the plane cases there is a third, rotational, symmetry. So cylindrical models
may be locally plane; this has caused some confusion in the literature. Regions of differing δ
may be joined across null surfaces. Solutions include colliding waves (see Griffiths (1991)),
Bianchi cosmologies with superposed solitonic waves, ‘corrugated’ cosmologies with spa-
tial irregularities dependent on only one variable, and time-dependent cylindrical metrics.

Cosmic strings, usually static strings,2 have been modelled by cylindrically symmetric
spacetimes, starting with the work of Gott, Hiscock and Linet in 1985. Issues such as
the effects on classical and quantum fields in the neighbourhood of the string have been
discussed.

Note that special cases of G2 cosmologies may have additional symmetry: most Bianchi
models (all save types VIII and IX) are included, as are the spatially self-similar and other
cases with homothety (Section 19.3). In particular the Kasner metrics play an impor-
tant role as expanding backgrounds on which gravitational waves can be superposed.
Centrella and Matzner (1982) found that colliding waves in such a background do focus one
another, but that the expansion means that, unlike the case with a flat background (Griffiths,
1991), this need not lead to a singularity.

19.5.1 Gowdymodels

The cosmological class is sometimes referred to as the Gowdy models, after Gowdy’s
early work (Gowdy, 1971, 1974, 1975) but examples appeared elsewhere even earlier
(e.g. Belinski, Lifshitz and Khalatnikov (1971)). Gowdy added the restriction that spatial
sections should be compact. This led him to spacetimes containing regions with both signs
of δ, which can be considered locally to be colliding wave regions, considered with time
reversed so that they start from a cosmological singularity, and cylindrically symmetric
regions. Space sections of these universes are toroidal (T 3) or have the three-sphere topology
S3 or the hypertorus topology S1 × S2. The further structure of these solutions has been
described by Chruściel (1990) and Chruściel, Isenberg and Moncrief (1990).

The main interest in recent years has been the highly inhomogeneous asymptotic
behaviour (called ‘spikes’) in the approach of these models to their initial singularities,
first found by Berger and Moncrief (1993): some of the apparent discontinuities in the lim-
its of metric variables are ‘false spikes’, i.e. gauge effects, but there are also ‘true spikes’.
See Rendall and Weaver (2001) and Andersson, van Elst and Uggla (2004) for more infor-
mation and fuller references. Recently LeFloch and Rendall (2011) have considered the T 3

case in a low regularity setting allowing discussion of impulsive gravitational waves and
matter shock waves.

2 There is some controversy about whether these can correctly represent strings embedded in an expanding
universe see e.g. Clarke, Ellis and Vickers (1990). There is an obvious difficulty in reconciling the angular
defect formed by a string with a surrounding and pre-existing background which does not have such a defect.
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19.5.2 Soliton solutions

There are generating techniques applicable to G2 models if the matter content has a charac-
teristic propagation speed c, which covers vacuum, electromagnetic, massless neutrino and
‘stiff fluid’ (or equivalently, massless scalar field with a timelike gradient) cases and combi-
nations thereof: in these cases we can take W = x3. These methods, which are described in
Griffiths (1991), Belinski and Verdaguer (2001) and Chapter 10 of Stephani et al. (2003),
relate solutions with one another, often starting from flat space or vacuum Kasner models.
FLRW fluid solutions can be obtained via the same methods in higher dimensions, using
dimensional reduction.

Because of the generating techniques, many exact solutions with two commuting KVs
are known for the special matter contents. Those of cosmological type are listed in chapter
23 of Stephani et al. (2003), together with the known solutions with similar geometry con-
taining perfect fluids other than stiff fluid. Generated solutions of soliton type have received
particular attention.

Gravitational solitons, and related solutions, can be defined as localized perturbations of
the gravitational field which propagate on a homogeneous background and have no disper-
sion. (This definition is sometimes broadened to include any solution that has been generated
using the Belinski and Zakharov (1978) inverse scattering technique.) They are analogous
to classical solitons, which are localized, have a well-defined velocity of propagation, and
show persistent structure even in collisions, usually showing only a phase shift, but do not
behave like classical solitons in all respects. The interaction of gravitational solitons in a
cosmological context could play a role in the process of isotropization in the early universe.
For a review see Belinski and Verdaguer (2001).

19.6 The Szekeres–Szafron family

The largest family of solutions described by Krasiński (1997) have in general no Killing
vectors. They are the solutions of Szekeres (1975) (for the dust case, which can be re-
interpreted as containing a fluid with constant pressure and a compensating cosmological
constant) and Szafron (1977) (for the cases where the pressure is non-zero but depends
only on time) and their generalizations. Szafron and Collins (1979) proved that they can be
characterized as those perfect fluid solutions of Einstein’s equations with a geodesic and
irrotational fluid flow and with conformally flat comoving slices whose second fundamental
form and Ricci tensor possess two equal eigenvalues.Alternative invariant characterizations
have been given by Szafron (1977), Wainwright (1977) and Barnes and Rowlingson (1989):
these use the properties that the Weyl tensor is of Petrov type D (see Section 2.7.6), and
that the fluid flow velocity and the Weyl principal null directions are coplanar.

In coordinates based on those of Goode and Wainwright (1982), the metric of these
solutions takes the form

ds2 =−dt2 +R2[H 2W 2dr2 + e2ν(dx2 + dy2)], (19.7)
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where R obeys (15.3) with �= 0, 2E =−K , K =±1 or 0, and an arbitrary m(r), and thus
has the solutions (15.5) and (15.6), with a bangtime tB(r). For each r , the evolution of R is
like that of an FLRW model obeying (9.22) with β = 0 but the parameters of the relevant
FLRW model depend on r . In these coordinates,

H =A(x, y, r)−β+f+ +β−f− , (19.8)

where β± are functions of r . The functions f±(t , r) each obey the same equation as
perturbations of an FLRW metric (Goode and Wainwright, 1982), i.e.

F̈ + 2ṘḞ /R− 3m(r)F/R3 = 0 : (19.9)

f+ is taken to have the form of a growing perturbation, and f− that of a decaying mode.
Many known solutions are special cases of the Szekeres–Szafron class, as shown in Figs.

2.1 and 2.4 of Krasiński (1997). In particular they include the Kantowski–Sachs solutions
and their generalizations, and Ellis’s (1967) class II LRS solutions including the LTB family
(Sections 15.1 and 19.1), and its plane and hyperbolic counterparts (though the coordinates
of (19.7) do not instantly reduce to those of (15.1)).

The solutions split immediately into two subfamilies, one in which b,r �= 0 and the other
in which b,r = 0, where eb = Reν . The first of these ‘has found no useful application in
astrophysical cosmology’ so far (Bolejko et al., 2010), so we say no more about it.

If b,r �= 0, then W−2 = ε−Kf 2(r), ε =±1 or 0, and

e−ν = [a(r)(x2 + y2)+ 2b(r)x+ 2c(r)y+ d(r)]/f (r), (19.10)

where f is an arbitrary function of r , β+ = −Kfm,r/3r , β− = f tB,r/6m and a, b, c and
d obey

ad− b2 − c2 = 1
4ε . (19.11)

Writing e−ν = √|g|E (Hellaby, 1996, Bolejko et al., 2010) provides a useful alternative
parameterization. The freedom in choosing r together with (19.11) leaves five physical
degrees of freedom.

The surfaces of constant r and t have the intrinsic geometry of spheres, planes or pseudo-
spheres, depending on the value of ε, although in general the r dependence ensures the full
solution does not have these symmetries (this is an example of ‘intrinsic symmetry’, Dingle
(1933), Szafron and Collins (1979)). The quasi-spherical case ε = 1 has been extensively
investigated (whereas the other cases have been little studied):3 the spheres have a mass
dipole whose axis varies with r , while the mass in a comoving volume is constant (Szekeres,
1975, Krasiński, 1997).

The equations governing Szekeres models are the same as those of perturbed FLRW
models, so they might be regarded as exact perturbations of FLRW. However, as Krasiński
(1997) points out, this interpretation has the following weaknesses: the values of m(r) and
Ṙ/R are taken from the full solution, not a background; the total F has the usual relation

3 Hellaby and Krasiński (2008) studied the other geometries and found quasipseudospherical cases describing
a ‘snakelike void in a more gently varying inhomogeneous background’, and showed that regularity imposed
strong conditions on the quasiplanar case but that it could be a boundary between pseudospherical and (quasi-)
spherical regions. Krasiński (2008) considered cases with toroidal topology.
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Fig. 19.1
The residual Hubble diagram for four models involving Szekeres regions, all with the same functions of r . SC denotes
Swiss cheese models, and MV (‘minimal void’) denotes models with a single inhomogeneity. Those labelled model
4 MV and model 4 SC have ε = 1 and model 5 SC and model 5 MV, ε =−1. The corresponding Lemaître–Tolman
models are also presented (LT SC and LT MV). For clarity, the Union supernova data set presented in the inset is for
z > 0.2 only. (Reprinted with permission from Bolejko and Célérier (2010). Copyright by the American Physical
Society.) A colour version of this figure is available online.

to the density perturbation only if A ≈ 1; and only special solutions of (19.9) with the
β± above are possible, except when b,r = 0 �= K . Note that the decaying mode f− has
amplitude dependent on tB,r , the bangtime gradient, while the growing mode has amplitude
dependent on m,r (noted by Silk (1977) for the LTB subcase).

These metrics enable modelling of more complex structures than can be approxi-
mated by LTB or spherically symmetric models. Bolejko (2006b, 2007) modelled adjacent
voids and clusters, finding that the evolution depends on the density contrast and
shape rather than the position of the dipole, and that density contrast evolves faster in
larger and more isolated voids and in adjacent high-density regions. Moreover, Bolejko
(2006b) showed that structure formation can be much faster than in corresponding LTB
models.

Nwankwo, Thompson and Ishak (2011) recently considered null geodesics in these mod-
els. Using the coordinates of Bolejko (2006b), they obtain formulae for the luminosity
distances and redshifts, which could be employed in arguments such as those in Section 16.6.
Bolejko and Célérier (2010) have studied fitting of the SNIa observations using an axisym-
metric Szekeres model, finding results similar to those of LTB models discussed in
Chapter 15. In particular, they find an inhomogeneity scale of 500 Mpc is needed to give a
good match to the data. Figure 19.1 shows the results for two of their ‘minimal-void’ mod-
els (Szekeres models with a single void region) compared with �CDM and Swiss cheese
models.

The generalizations of the Szekeres family add rotation, viscosity, heat flow and/or a
Maxwell field. The most widely used of these have been the solutions with rotation intro-
duced by Stephani (1987) (not to be confused with the Stephani–Barnes family discussed
below). These reduce to members of the Szekeres–Szafron family with b,r = 0 when ω= 0,
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and have timelike conformally flat surfaces: they include a solution with rotating expanding
dust whose nonrotating limit is also nonstatic.

Exercise 19.6.1 Consider the generalization of these models to � �= 0 (see
Barrow and Stein-Schabes (1984)). Identify all cases which are (anti) de Sitter.

19.7 The Stephani–Barnes family

Stephani (1967) considered conformally flat solutions containing an expanding, shearfree
and irrotational perfect fluid, and Barnes (1973) found the analogous Petrov type D solu-
tions: the two classes together are known as the Stephani–Barnes family. They are the only
perfect fluid solutions with σ = ω = 0 �= � (whereas the Szekeres–Szafron family have
ω = 0 = u̇a). Krasiński (1989) found a coordinate representation covering all three of the
type D subclasses, which allows deformation of one type into another. The conformally flat
solutions have no symmetry in general but the type D solutions all have a G3 acting on a
spacelike surface S2 (and are thus covered by Section 19.4).

The conformally flat cases split into two classes. One has �= 0, includes the Einstein
static universe (Section 6.1.1), and generalizes the Schwarzschild interior solution. The
other, more cosmological, class (the ‘Stephani models’) has � �= 0 and generalizes the
FLRW solutions: the models can thus, like the Szekeres solutions, be considered exact
perturbations of FLRW, but with the constant K generalized to K(t) rather than K(r).
Their metric reads

ds2 = V −2(dx2 + dy2 + dz2)− (3V,4/V )2�−2(t)dt2,

κ0ρ = 3C2(t), κ0p =−κ0ρ,+2CC,4V /V,4 (19.12)

V = V0(t)+ C2(t)− 1
9�

2(t)

4V0(t)

{
[x−x0(t)]2 +[y−y0(t)]2 +[z−z0(t)]2

}
,

where x0(t), y0(t), z0(t), C(t), �(t) and V0(t) are arbitrary functions. The dust solutions
here are FLRW. Note that whereas the Szekeres–Szafron class have spatially constant pres-
sure but varying density, these models have varying pressure and spatially constant density.

A number of cosmological investigations have used these models. For example,
Godowski, Stelmach and Szydowski (2004) fitted them to the SNIa and CMB data,
finding agreement similar to that of �CDM but with a higher matter density, and
Stelmach and Jakacka (2006) considered angular diameters (relevant to magnitude–redshift
diagrams). Clarkson and Barrett (1999) found members of the class as examples of
non-FLRW spacetimes with accelerating observers for whom the CMB is isotropic.

If the perfect fluid in these solutions has a barotropic equation of state, they reduce to
FLRW or the solutions of Wyman (1946) or Collins and Wainwright (1983). However, one
can question whether a barotropic equation of state is appropriate in an inhomogeneous
model (including perturbed FLRW models) since it implies isentropy and one might expect
entropy to vary in space (see Chapter 5): for an acceptable thermodynamic interpretation
see Krasiński, Quevedo and Sussman (1997).



502 Chapter 19 Inhomogeneous models

19.8 Silent universes

A novel approach to defining a tractable set of models was introduced by
Bruni, Matarrese and Pantano (1995). The ‘silent universes’ are those in which no infor-
mation is propagated either by sound waves or gravitational waves. The evolution along
distinct world lines is then purely local, i.e. decouples, and is governed by ordinary dif-
ferential equations. This covers most of the tractable models discussed in this book – all
FLRW and Bianchi models, and linearized perturbations of FLRW models, as well as the
Szekeres family and its specializations – and it was hoped to obtain some interesting new
metrics of cosmological significance.

To ensure the desired conditions, it was assumed that the matter content was irrotational
dust and thatHab = 0.Aseries of studies finally led to the result (Apostolopoulos and Carot,
2007) that under these restrictions the only algebraically general spacetimes which are silent
are the Bianchi I models discussed in Chapter 18, and that the inhomogeneous models are
Petrov type D and are members of the Szekeres family (Section 19.6). Rotating dust models
withHab = 0 are similarly restricted (Wylleman and Van den Bergh, 2006). However, silent
irrotational dust models with Hab = 0 are possible if � �= 0 (Van den Bergh and Wylleman,
2004), although the ones found so far are not of physical importance. The analogous class
with irrotational dust and Eab = 0, which would also be silent, reduces to only the FLRW
case (Wylleman, 2006).

Dust models, rotating or not, would be silent if bothEab andHab had zero curl (see (6.34)
and (6.36)) but this general class has yet to be investigated: an example with ω �= 0 and
Hab= 0 is provided by the Gödel (1949) universe.The only irrotational perfect fluid solution
obeying (5.49) is a special model of Bianchi typeVI0 (Wylleman and Van den Bergh, 2006).

Summarizing, the silent universe hypothesis turned out less fruitful, in terms of new
models, than initially hoped: however, the concept helps clarify one of the barriers to
study of more complex models than those described above. Moreover, inhomogeneous
models may be asymptotically silent: we discuss this important characteristic further
below.

19.9 General dynamics of inhomogeneousmodels

A very general study of the dynamics of inhomogeneous cosmologies, aimed at descrip-
tion of the approach to singularities, was developed by Belinski, Lifshitz and Khalatnikov
(BLK): see for instance their review (1982). The work assumes that spa-
tial derivatives become in general negligible compared with time derivatives.
van Elst, Uggla and Wainwright (2002) refer to this as ‘asymptotic silence’ by analogy
with the silent cosmologies of Section 19.8; in such cases, the past horizon in the limit is
just the world line. The same assumption on the magnitude of spatial and time derivatives
is used in the long-wavelength approximation scheme (LWAS): see e.g. Comer (1997).
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In these approximations, the parameters governing time evolution are position dependent.
However, BLK’s self-consistency analysis of the temporal behaviour shows that certain
spatial terms grow as the singularity is approached, causing a change of evolution param-
eters. Locally the solution evolves like a spatially homogeneous model (as described in
Chapter 18), and in general there is oscillatory behaviour. The set of such solutions is open
in the space of all models as it has the maximum number of freely specifiable functions on
a spacelike hypersurface.

These studies did not have the standard of rigour of some work in relativity involving
theorems on systems of partial differential equations: there were open questions about the
relation to linearization stability, domains of dependence, convergence, the relation between
neighbouring patches of differing behaviour, and so on (Barrow and Tipler, 1979). How-
ever, some of the issues have been resolved e.g. the existence of the required synchronous
coordinates (Wald and Yip, 1981): see also Section 19.10.1.

The LWAS scheme, used in various earlier works, was codified and put into Hamilton–
Jacobi form by Parry, Salopek and Stewart (1994): they showed how one can expand
in successive powers of spatial gradients in a gauge-invariant manner giving a gener-
ating function, solved this up to fourth order, and pointed out that one can derive the
Zel’dovich approximation by this means (see also Croudace et al. (1994)). This was then
used (Deruelle and Langlois, 1995) to re-obtain the BLK description.

Work using dynamical systems methods for G2 models has concentrated on the evo-
lution of vacuum or perfect fluid models with equation of state (5.49) (the latter models
not being obtainable by generating techniques, except in the case of ‘stiff’ fluid, p = ρ).
van Elst, Uggla and Wainwright (2002) reviewed previous work and rewrote the govern-
ing equations, using scale-invariant variables generalizing those used in the studies of
Bianchi models, as a first-order symmetric hyperbolic system (which therefore allows
stable numerical studies, estimates of asymptotic behaviour, and calculation of propaga-
tion of discontinuities). Within the infinite-dimensional phase space thus defined are the
finite-dimensional spaces for Bianchi cosmologies other than types VIII and IX.

The ideas of van Elst, Uggla and Wainwright (2002) were generalized to cases without
symmetry by Uggla et al. (2003), and this formalism with expansion-normalized variables
has been used in several investigations mentioned below. A general survey of the method
and some of its possible uses was given by Wainwright and Lim (2005).

19.10 Cosmological applications

19.10.1 The Big Bang

A major feature of cosmology is the singularity at the start of the universe predicted by
the EFE from the trapped surfaces produced by the thermalized CMB in an approximately
FLRW universe, provided the energy conditions are satisfied (see Chapter 6, especially
Sections 6.1 and 6.7). The approach to the initial singularity is of interest because it provides
the geometric background to early universe studies, with the caveat that very early phases
may need to be replaced by a quantum description.
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The key issues in this are whether inhomogeneity allows singularity avoidance, what is
the generic behaviour at the initial singularity, in particular is it like that of FLRW models,
and was the initial singularity in the one universe in which we live of this generic type or
not? None of these is wholly decided.

Not all models have initial singularities. Analogously with stellar models, one can con-
sider exact fluid solutions of the EFE where the matter distribution is finite in two directions
and infinite in one (an infinite fluid cylinder imbedded in an exterior vacuum domain). These
might not cause closed trapped surfaces to occur (null geodesics in some directions may
not be refocused), and so can be singularity free. But they are not good models of the real
universe. There are similar models where there is matter present everywhere, but its density
drops off so fast in some directions that it is insufficient to refocus the past light-cone. The
existence of these models has no impact on the conclusion that there must be a start to
classical models of the real universe in which the averaged matter density continues at a
more or less constant value in all directions until closed trapped surfaces necessarily result,
but they do bring out the need for such claims to be carefully stated. See Senovilla (1990),
Ruiz and Senovilla (1992) and Senovilla (1998).

Singularities in spatially homogeneous cosmological models may be of various types, as
discussed in Chapter 18: we have isotropic (e.g. the FL case), cigar, pancake, oscillatory
(‘Mixmaster’), and nonscalar (‘whimper’) singularities. Does inhomogeneity introduce any
essentially new possibilities for spacelike singularities? (Timelike singular surfaces can arise
in GR (Section 6.7), but no convincing cosmological model of this sort has been obtained
so far.)

We do not have a definitive answer. In many cases essentially the same types of singularity
can occur, but now in a spatially varying way. There are two particular situations where this
has been studied in detail.

Firstly, Eardley, Liang and Sachs (1971) introduced the notions of ‘Friedmann-like and
‘velocity-dominated’ (initial) singularities: in the latter case neither inhomogeneities nor
spatial curvature are significant at early enough times. (Hellaby and Lake (1984) later gave
arguments, from studying the LTB singularity structure, that the initial singularity should
have been Friedmann-like. This case, also called ‘isotropic’, ‘quasi-isotropic’ or ‘non-
chaotic’, was reviewed by Tod (2002).) Eardley et al. showed that a velocity-dominated
singularity can be considered as a three-dimensional manifold with an invariantly and
uniquely defined inner metric tensor, extrinsic curvature tensor, and scalar bangtime func-
tion, and gave examples from exact solutions for plane symmetric and spherically symmetric
expanding dust (LTB) models.These are asymptotically silent universes: the evolution along
each world line is independent of that along neighbouring world lines, and hence (like spa-
tially homogeneous models) can be expressed by ODEs along these world lines, even though
the solution is spatially inhomogeneous.

Secondly, from the approximations described above, Belinski, Lifshitz and Khalatnikov
(1971, 1972) argued that generic inhomogeneous universes locally oscillate like the
Bianchi IX (‘Mixmaster’) case. Although this was the subject of some controversy
(Barrow and Tipler, 1979, Belinski, Khalatnikov and Lifshitz, 1982, MacCallum, 1982),
it now seems generally to be believed to be the case for fluid dominated models, pro-
vided w < 1. For instance, Uggla et al. (2003) argued that if there is asymptotic silence
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the attractor behaviour is the same as for spatially homogeneous models, thereby providing
conjectures giving a more precise form to the BLK arguments, and Bruni and Sopuerta
(2003) showed with an LWAS formulation that it is the magnetic part of the Weyl ten-
sor, Hab, which drives the change to a different Kasner phase in dust examples. If w ≥ 1
then the BLK arguments predict a non-oscillatory approach to the singularity and this
has been verified (Coley and Lim, 2005, Curtis and Garfinkle, 2005) using the methods of
van Elst, Uggla and Wainwright (2002).

Recent work of Damour and collaborators (e.g. Damour, Henneaux and Nicolai (2003),
Damour and de Buyl (2008)) rediscussed the problem of ‘cosmic billiards’, and its gener-
alization to higher dimensions and p-form fields, using ‘Iwasawa variables’. In a manner
analogous to the automorphism group approach to Bianchi models, these write the spatial
part of the metric as

gij =
∑
a

e−2βaNa
i N

a
j ,

where the Na
i are upper triangular matrices with ones on the diagonal. This enables a

rigorous discussion of the oscillatory approach to a singularity. A ‘dual’ discussion using
the expansion-normalized variables has been given by Heinzle, Uggla and Röhr (2009): the
two agree in supporting the BLK description.

Andersson et al. (2005) concluded that asymptotic silence is true in general G2 models,
and discussed the attractors and spike formation. However, some cases have asymptotic
behaviour near the singularity like plane waves (Wainwright, 1983), and others are nonsin-
gular. Moreover the presence of spikes in the Gowdy examples (Section 19.5.1) shows that
the BLK approximation can fail if we relax the requirement of matter domination. Conse-
quently the BLK conjecture is now only thought to be true ‘almost everywhere’ in general,
failing at isolated points such as the locations of gravitational wave spikes in the Gowdy
models. (An explicit example of this has been constructed by Lim (2008) by applying the
generating techniques for G2 solutions to a Bianchi II metric.)

Examples of asymptotic silence breaking caseswere studied by Lim, Uggla and Wainwright
(2006): they included some Bianchi models and a Szekeres model, and some solutions with
a G2. These examples illustrate the possibilities that: the event horizon is unbounded in at
least one direction and/or does not contract to the world line, or the asymptotic solution is a
plane wave, or the singularity is not everywhere spacelike, or the magnetic part of the Weyl
tensor remains significant near the singularity.

The BLK arguments aim to show that chaotic oscillatory type behaviour is generic (see the
review in Belinski (2009)). The chaotic cosmology programme aimed to show that generic
initial conditions could be smoothed out by physical processes to give a smooth RW-like
geometry at late times, but was not very successful. The idea was taken up in the inflationary
universe scenario. Penrose (1989) powerfully argued that the universe cannot have been
truly generic, because of entropy considerations, which imply the initial singularity must
have been isotropic. Inflation can be only partially successful for this reason, and also
because, as discussed in the next section, if the early universe were anisotropic enough,
inflation would never get under way in the first place: anisotropy would dominate instead.
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And (see Section 21.4.2) we cannot make definite statements about probabilities as we still
do not have a satisfactory measure of probability on the space of cosmological models.

19.10.2 The early universe

As in the Bianchi models discussed above, it is important to study the occurrence and
effect of inflation. Numerical and analytic studies implied that inflation would only occur
if the scalar field had sufficiently high and uniform value over several Hubble radii
(Goldwirth and Piran, 1990, Calzetta and Sakellariadou, 1992). Bounds on how large ini-
tial quasi-isotropic inhomogeneities could be before they can prevent inflation were also
found in the LWAS (Deruelle and Goldwirth, 1995). The conclusion was borne out in
Iguchi and Ishihara (1997), where a massive scalar field in chaotic inflation with a modified
long-wavelength approximation was used as initial condition. In the case of exponential
potentials in G2 models (Aguirregabiria, Feinstein and Ibañez, 1993) the result depends on
the steepness of the potential. There can be multiple decelerating and inflating phases and the
solution may homogenize without isotropizing, for steep potentials. Numerical integrations
can be found in Kurki-Suonio, Laguna and Matzner (1993) but the largest grid possible
then was 643: one example with small-scale and one with large-scale inhomogeneities were
studied. The inhomogeneities oscillated and damped, becoming more homogeneous.

The overall conclusion seems to be that inhomogeneity can prevent inflation, and that
when inflation occurs it may not be able to reduce the inhomogeneity to the level of linearized
perturbations on FLRW, but further work is needed on these important questions.

The presence of growing perturbations in general models of the Szekeres class, and similar
results for other cases, suggest that only a set of measure zero among inhomogeneous models
(in some reasonable measure, compare Section 21.4.2) can isotropize without inflation.
Recently Bolejko and Stoeger (2010) have given arguments that in fact there are sets of
initial conditions of non-zero measure which isotropize, using LTB, Szekeres and spherical
metrics as examples.

There seem to be rather few attempts to compute (Kurki-Suonio and Centrella, 1991), or
to test, the effects of inhomogeneity on spatial variations in element abundances arising from
inhomogeneity during the nucleosynthesis era. This is potentially an important consistency
test for FLRW models.

19.10.3 The late universe

The BLK work is concerned with behaviour near a singularity and the LWAS work with
the early universe. One can also consider asymptotic behaviour in the far future. Rendall
(2004) has shown that for � > 0 vacuum models and those with a fluid obeying (5.49),
there are in general formal power series for the metric, of the form e2Ht

∑
n g

(n)
ab e−nHt ,

and discussed the conditions for their validity, making rigorous the methods of
Starobinsky (1983).

As we have seen from the individual examples outlined in the previous sections (and
those collected in Bolejko et al. (2010)), inhomogeneous models can be successfully used
to provide exact models of nonlinear behaviour for large-scale structures, both collapsed
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objects and voids. Some of these become quasi-stationary, just like present-day observed
galaxies, clusters and voids. However, observed objects are stabilized by rotational veloci-
ties (in spiral galaxies) or random orbital motions (in elliptical galaxies and clusters). The
existing models could be claimed to cover the latter case, modelling the effect as that of
gas pressure, but there are no satisfactory models of rotating objects.

Problem 19.1 Use new analytic and numerical work to develop a full understanding of
whether or when inflation occurs in inhomogeneous models and how successful it is at
smoothing out the model.

Problem 19.2 Find tractable models that adequately describe rotation of local systems
embedded in an expanding universe.



PART 5

BROADER PERSPECTIVES



20 Quantum gravity and the start of the universe

In approaching the issue of how the universe started, it is common cause that we have to
face up to the unsolved problem of quantum gravity: the domain where Einstein’s theory of
gravity is expected to break down because quantum effects become so dominant that they
affect the very nature of space and time. Comparing the gravitational constants of nature
with those from quantum theory leads to the Planck length �P ≈ 10−33cm, which is taken
to be the characteristic scale at which quantum gravity dominates. By contrast, most (but
not all) variant classical gravitational theories modify GR at low energies (see Chapter 14).

Quantum gravity processes are presumed to have dominated the very earliest times,
preceding inflation: the geometry and quantum state that provide the initial data for any
inflationary epoch themselves are usually assumed to come from the as yet unknown quan-
tum gravity theory. There are many theories of the quantum origin of the universe, but
none has attained dominance. The problem is that we do not have a good theory of quantum
gravity (Rovelli, 2004,Weltmann, Murugan and Ellis, 2010), so all these attempts are essen-
tially different proposals for extrapolating known physics into the unknown. A key issue
is whether quantum effects can remove the initial singularity and make possible universes
without a beginning.

In addition, the weakness of the gravitational force implies that it will be very difficult,
though perhaps not impossible, to observationally test theories of quantum gravity.

20.1 Is there a quantum gravity epoch?

Can there be a non-singular start to the inflationary era, thus avoiding the need to contemplate
a preceding quantum gravity epoch? In the inflationary epoch the existence of an effective
scalar field leads to a violation of the strong energy condition (5.17): therefore at first sight
it seems that a bounce may be possible preceding the start of the expanding inflationary era
and avoiding the inevitability of a quantum gravity epoch.

However, a series of theorems suggests that inflationary models cannot bounce: they are
stated to be future infinite but not past infinite (Guth, 2001). This is an important issue, so
it is worth looking at it further. There are two major requirements to get a bounce: ä > 0
and ȧ(t∗) = 0 for some t∗. The first condition requires ρ + 3p < 0, where ρ and p refer
to the total quantities (including a possible �).1 This is a violation of the strong energy

1 If there are semi-classical corrections to GR then ρ andp are the total effective quantities, including gravitational
corrections. See Copeland, Lidsey and Mizuno (2006) for examples.
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condition (5.17), which follows in the case of inflation. The second condition requires
8πGa2∗ρ∗ = 3K . If K ≤ 0, this is possible only if ρ∗ ≤ 0. For a scalar field (see (5.149))
this requires negative potential energies, which appears to be unphysical. Only for K > 0
is a bounce possible with ρ∗ > 0 (Robertson, 1933).

For a bounce in an inflationary universe, it is sensible to consider K > 0 inflationary
models, which indeed will turn around if inflation occurs for long enough (curvature will
eventually always win over a slow-rolling inflaton as we go back into the past) (Ellis et al.,
2002a,b). However, the theorems mentioned above do not include the case K > 0 (Guth,
2001). The scale-free K = 0 exponential case clearly is the model underlying many
approaches to the problem. But it is highly exceptional – it is of zero measure within the space
of all inflationary FLRW models. The fluid flow in these models is singularity free, although
the spacetime does have a boundary at finite distance and so is not geodesically complete.

Explicit non-singular models can be constructed, the simplest being the de Sitter universe
in the K = 1 ‘slicing’ (Section 9.3.1), which is an exact eternal solution that bounces at a
minimum radius a∗. This model has the problem that it does not exit inflation (it corresponds
to an exactly constant potential), but variants exist where exit is possible, e.g. a potential that
is constant for a long time, but then changes. There are also classical non-singular models
that start off in a very special state, asymptotic to the Einstein static universe in the distant
past, and avoid the need for a quantum gravity epoch (Ellis and Maartens, 2004). (Quantum
versions of the model may tend to stabilize it against quantum fluctuations (Mulryne et al.,
2005).)

It seems likely that the options for the start of inflation are (1) avoiding the quantum
gravity era, but at the cost of having special (‘fine tuned’) initial conditions, or (2) having
a quantum gravity era preceding the inflationary era. Thus a key issue is whether the start
of the universe was very special or generic. We look at this in Section 21.4.1.

20.2 Quantum gravity effects

Lemaître (1931) explored the possibility of a quantum creation of the universe many decades
ago. Contemporary efforts to explain the beginning of the universe, and the particular initial
conditions that have shaped its evolution, usually adopt some approach to applying quantum
theory to the creation of the universe (Gibbons, Shellard and Rankin, 2003).

The attempt to develop a fully adequate quantum cosmology is of course hampered
by the lack of a fully adequate theory of quantum gravity, as well as by the problems
at the foundation of quantum theory – the measurement problem, collapse of the wave
function, etc. (Isham, 1997) – which can be ignored in many laboratory situations, but have
to be faced in the cosmological context (Perez, Sahlmann and Sudarsky, 2006). There are
many theories of gravity extending and generalizing Einstein’s theory to take into account
quantum effects, while some attempt to start from completely new foundations. Many of
these theories have been specialized to the RW metric form, and we cannot cover here
the extensive literature resulting. In making a selection we have included those theories
which include applications (often phenomenological) to cosmology, i.e. string theory and
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loop quantum gravity. The aims of such applications have been principally the avoidance
of singularities, and the provision of ways of generating initial perturbations in cosmology.

20.2.1 Quantum gravity theories

Although GR is like modern (quantizable) gauge theories in its use of connections and
curvature, it differs fundamentally in its variational principle (3.19): see Section 3.3.2. In
attempting to develop full quantum gravity, historically, research tended to try either to
force relativity into the mould of quantum theory or vice versa. This has led to treatments
that are still in use on the grounds that they should be appropriate limits of some unknown
complete theory.

One basic difficulty occurs because quantum theory, including modern gauge field theo-
ries, usually treats fields on a fixed background, either Euclidean space, in non-relativistic
quantum mechanics, or Minkowski spacetime, in relativistic quantum theory. The formu-
lation is thus not well adapted to considering the situation where the background metric is
itself a field variable. For similar reasons even the discussion of quantum field theory in a
classical curved background is not simple (see Section 5.7).

A second issue is that in a cosmological context one cannot readily avoid the interpre-
tational difficulties of quantum mechanics. In the ‘Copenhagen interpretation’ the wave
function determines the probabilities with which a macroscopic observer will measure the
different possible eigenvalues of the system. However, the observer should also be described
by quantum mechanics, and in the case of a wave function for the universe the observer
certainly has to be part of what is described, making the wave function hard to interpret.
Various solutions to this difficulty have been proposed, one of the more common being
the many-worlds hypothesis (DeWitt and Graham, 1973), but none of them seems fully
satisfactory.

In quantum cosmology, Section 20.2.2, (and in classical theories of gravity which uti-
lize only three-dimensional quantities, see e.g. Anderson et al. (2005)), time is supposed
to be an emergent quantity dependent on the three-geometry. This gives rise to further
interpretational difficulties (Penrose and Isham, 1986).

If one attempts to treat GR in exactly the way other theories are usually quantized, the
attempt fails. For example, in the ‘background-field’ method one quantizes the difference
between the actual field and a background (usually flat space), in the manner of other
field theories. This leads to a theory with spin-2 particles, gravitons, moving on the back-
ground. One can then use the normal Feynman rules, computing the counterterms which
should lead to renormalization (i.e. the systematic removal of divergences), but for grav-
ity the higher terms turn out to be increasingly singular: the theory is not renormalizable
(Goroff and Sagnotti, 1985).

A way out of the non-renormalizability is provided by higher-derivative theories of grav-
ity in which quadratic (or, in principle, higher) terms in the curvature are added to the
Lagrangian (3.19). The resulting fourth derivative terms affect the short-range behaviour
and make the theory renormalizable. However, if a finite number of higher curvature terms
is used, they break unitarity, because they introduce a massive spin-2 ‘ghost’ partner to the
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graviton. Cosmological consequences of corresponding classical theories of gravity have
been widely studied.

Another approach is to start from the classical Einstein equations written as evolu-
tion equations for a three-dimensional metric as in Section 3.3.3 (or Section 3.3.1). The
3-metric (first fundamental form) and conjugate momentum are then the canonically
conjugate variables used in quantization. One would want to consider only inequivalent
geometries so that the diffeomorphisms of the three-manifolds are factored out, but such
a reduction to the true degrees of freedom is not generally possible. The space of three-
geometries is called superspace. This then leads to ‘quantum cosmology’which we discuss
further below (Section 20.2.2).

Other approaches include lattice gauge theory and Regge calculus (two distinct ways of
discretizing theunderlyingmanifolds), causal sets, andconsistenthistories (Brightwell et al.,
2003, Isham and Linden, 1995). There have also been extensive investigations of two- and
three-dimensional spacetimes as possible models for the full theory.

In recent years the two most prominent proposals for reconciling gravity and quantum
theory have taken more radical approaches, going further towards a new theory of which both
relativity and the usual quantum theory are only limits: they are (super)string theory, which
has developed into M-theory, and loop quantum gravity. Their cosmological applications
are discussed in Sections 20.3 and 20.4. The cosmological consequences of a third radical
approach, twistor theory (Huggett and Tod, 1994), have yet to be explored at any length,
although it has recently been used in potentially testable calculations of quantum scattering
amplitudes.

Despite the promising physical and mathematical progress made in both the string and
loop quantum gravity approaches (and some others), gravity remains the only observed
force for which there is no self-consistent and experimentally tested quantum theory.

The various attempts to apply quantum gravity in cosmology each develop in depth some
specific aspect of quantum theory that may be expected to emerge from a successful theory
of quantum gravity applied to the universe as a whole. Before turning to string theory and
loop quantum gravity, we briefly discuss the Wheeler–DeWitt equation.

20.2.2 Wheeler–DeWitt equation

This is a heuristic approach to quantum cosmology based on the ADM formalism
(Section 3.3.3) and the DeWitt approach to quantum gravity (see Bojowald, Kiefer and Ver-
gas Moniz (2010) for a recent review). The core of the approach is the representation of the
quantum state of the universe as !(3[g]) on superspace, subject to the ‘(super)Hamiltonian
constraint’of Section 3.3.3,A00 =C0 = 0 (and, if the diffeomorphism freedom has not been
removed, the ‘momentum constraints’Ai0 =Ci = 0), treated as operators. The result is the
Wheeler–DeWitt (WDW) equation. Turning Aµ0 into operator form has factor-ordering
problems: the method has only been fully implemented for subspaces of metrics, ‘min-
isuperspaces’, usually with such high symmetry that ! is a function of t alone, which
largely avoids the factor ordering issue. However, the imposition of symmetry amounts to
simultaneously setting position and momentum to zero for the ignored degrees of freedom,
violating the uncertainty principle.
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The idea is rather like the Born approach to the atom: it hopes to provide an effective
theory of quantum gravity, giving results that will be true whatever the final quantum theory
of gravity may turn out to be.

Here we discuss only the minisuperspace of RW models. The state of the universe
is thus represented (Hartle, 2003) by a wave function !(t) with a Hamiltonian giving
the corresponding Schrödinger equation. One has usual quantum theory with a universal
dynamical law,

i
d

dt
|!(t)〉 =H|!(t)〉, (20.1)

and an initial quantum state |!(0)〉. Predictions from probabilitiespα for a set of alternatives
are represented by projection operators Pα:

pα = ||Pα|!(t)〉||2. (20.2)

The link to geometry is made by specifying that ! depends only on 3-geometries: ! =
![hij ]. However, the gravitational Hamiltonian projects the wave function to zero, so the
WDW is

H![hij ] = 0, (20.3)

analogous to the time-independent Schrödinger equation in ordinary quantum mechanics.
To solve it one needs boundary conditions for !, i.e. conditions on the spatial geometry.

The usual method of solution is via a path integral, with outcome depending on the
conditions assumed. In the Hartle–Hawking no-boundary proposal (Hartle and Hawking,
1983), ![hij ] =

∫
C Dgµν exp(−I [gµν]), where Dgµν is a suitable measure on the space of

3-spaces, I [gµν] is the Euclidean action of a classical solution that is compact and has the S3

geometry as its boundary, and the sum is over 4-geometries whose only boundary is the 3-
surface on which the metric is specified. Euclideanization is used to improve convergence,
so the functional integral is to be taken over a complex contour C (but the return to Lorentzian
form can be problematic). This prescription is suggested to lead to a ‘start to time’ when
a classical description becomes valid after evolving from a non-singular Euclidean initial
quantum state; thus it is claimed to resolve the issue of the start of the universe.

Variants of this prescription have been given by others. Vilenkin (2003) derives an
effective WDW equation in the RW context,

! ′′(a)−[a2 − a−2
1 a4]!(a)= 0. (20.4)

This gives tunnelling probabilities for the wave function ‘from nothing’ to a closed universe
of finite radius a1, and so represents the birth of an inflationary universe. There are also
other variants (Gott and Li, 1998, Vilenkin, 2003).

Various achievements of the WDW approach have been claimed (Page, 2003), including:
that a Lorentzian signature spacetime can emerge in the WKB limit of an analytic contin-
uation, and that universe models can inflate to a large size, and can predict a near-critical
density and low anisotropies that fit the CMB data. However, there are significant prob-
lems. Firstly, various divergences occur (Page, 2003); the path integral is UV divergent and
non-renormalizable; in the Hartle–Hawking no-boundary proposal, conformal modes make
the Einstein–Hilbert action unbounded below; the sum over all 4-geometries entails a sum
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over topologies that is not computable. Secondly, there is the problem of time: from (20.1)
and (20.3), d|!(t)〉/dt = 0. Hence the solution is static, and so it is difficult to see how it
can represent a time-evolving universe. Various attempts derive an effective time evolution
for the time-independent function !, for example by regarding other variables such as a
in (20.4) as effective time variables. But their success is debatable; Barbour (1999) makes
clear how difficult it is to make this work, if one takes the consequences of the WDW
equation seriously. There are also major problems of interpretation arising with the concept
of a wave function determining probabilities that apply to only a single existing object:
what meaning can be given to (20.2) in this context? Does the idea of a wave function of
the universe in fact make sense?

Overall, the real problem is the ad hoc nature of the prescriptions that lead to the var-
ious solutions of the WDW equation. This approach has now largely been overtaken by
developments in quantum gravity theories. We turn to two of those theories, one of which
explicitly derives a modified WDW equation.

20.3 String theory and cosmology

String theory is widely believed to be a promising route towards a fundamental theory that
unifies the four interactions and includes a theory of quantum gravity. It does so at the price
of extra spatial dimensions, and it continues to face huge theoretical challenges. It is not
clear that string theory (or any competitor) will indeed lay the basis for quantum gravity.
Nevertheless, cosmology is a potential laboratory for testing quantum gravity effects, and
we should therefore aim to test the predictions of string theory against cosmological obser-
vations. The problem facing this aim is two-fold: firstly, string theory is still very far from
being able to make cosmological predictions; and secondly, it is not clear what kinds of
generic signatures of quantum gravity one may look for in CMB and other observations.
String theory predictions for cosmology are currently based on perturbative string theory,
and the lower energy effective theories that result from this. It is not clear how much of
the perturbative analysis will survive future developments in non-perturbative string theory.
Nevertheless, it is worthwhile to have the perturbative results, which are already highly com-
plicated. It is also useful to develop phenomenological brane-world cosmological models
which have qualitative features of string theory but are not derived from the fundamental
string equations.

Here we provide a very brief description of string theory and its associated phenomenol-
ogy, focusing on those aspects relevant to cosmology. For a general treatment of string
theory, see Zwiebach (2004). More detailed reviews of string theory and its relation
to cosmology are given in Lidsey, Wands and Copeland (2000), Kallosh (2006, 2008),
McAllister and Silverstein (2008) and Baumann and McAllister (2009). More phenomeno-
logical brane-world cosmology is reviewed in Brax and van de Bruck (2003), Maartens
(2004), Maartens and Koyama (2010).

String theory was based on the idea that fundamental states are represented as one-
dimensional string-like objects rather than zero-dimensional points – which allows the
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theory to avoid the divergences in quantum field theory associated with vertices in particle
interactions. In particular, it removes the divergences in graviton scattering, which plagued
attempts to deal with gravity in quantum field theory. The strings have characteristic length
�s , which is much smaller than characteristic lengths in sub-TeV particle physics, and they
are considered to have zero thickness. A multitude of string states exist that in principle
should contain as a limit the particle-like states in the Standard Model. These states include
a massless spin-2 particle, which plays the role of a graviton at low energies. Thus string
theory made the first major progress towards unifying the four interactions in a regular way.

The original string theory was classically straightforward, but its quantization revealed an
anomaly that broke Lorentz invariance – unless the spacetime dimension was exactly 1+25.
This could be considered a success, in the sense that a definite prediction was made for the
number of spacetime dimensions, which until then had been arbitrary. However, the number
itself seemed unreasonably large. The original version of the theory incorporated only
bosonic states, including the graviton. But it also included unstable tachyonic (imaginary
mass) states.

20.3.1 Supersymmetry, p-branes, form fields andmoduli

This tachyonic instability in the theory was cured by the inclusion of fermionic states –
via supersymmetry. Supersymmetry is a postulated symmetry (independent of string the-
ory) that links fermions (basically the ‘matter’ states) with bosons (basically the carriers
of interactions). Each boson has a fermionic superpartner and vice versa. A feature of
supersymmetry is that the zero-point energies of the partners exactly cancel, so that while
supersymmetry is unbroken, the total zero-point energy vanishes. This feature was needed
to remove the tachyonic instability. The new theory – superstring theory – was found to
be consistent only in 1 + 9 dimensions, an improvement on the original theory. Further-
more, superstring theory retained the original key feature that the string excitation spectrum
includes a graviton. Thus superstring theory incorporates a theory of gravity, in fact, super-
gravity. In addition to the spin-2 graviton, the theory also contains a massless spin-0 scalar,
the dilaton. Thus superstring theory includes a low-energy scalar–tensor theory of grav-
ity, which is consistent at the quantum level. (Note that it is customary to use ‘string’
interchangeably with ‘superstring’.)

Superstrings can be either open or closed. Closed strings cannot be transformed to open
strings, but open strings can close up, or form closed strings by merging with another
open string. Two open strings can also attach at one end to form a new open string. Two
closed strings can also merge to produce a new closed string. These properties contribute to
the fact that there are different versions of superstring theory.There are five 1+9-dimensional
superstring theories. Type I theory describes open and closed strings, Types IIA and IIB
describe closed strings, and there are two hybrid theories describing closed strings, Heterotic
E8 ×E8 and Heterotic SO(32).

These apparently distinct theories are related to each other and to the 1+10-dimensional
supergravity theory by duality transformations. (Supergravity is only consistent at the quan-
tum level in 1+10 dimensions.) This led to the conjecture that all of these theories arise
as different limits of a single theory, which has come to be known as M-theory. The 11th
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dimension in M-theory is related to the string coupling strength gs ; the size of this dimen-
sion grows as the coupling becomes strong.At low energies, M-theory can be approximated
by 1+10-dimensional supergravity. In this scenario, the five superstring theories would
appear 1+9-dimensional because the 11th dimension would be much smaller than the string
scale �s .

In addition to the duality relations, it was also discovered that p-branes, which are
extended objects of spatial dimension p (strings are 1-branes), play a fundamental role
in the theory. In the weak coupling limit, gs → 0, the p-branes with p > 1 become
infinitely heavy, so that they do not appear in the perturbative theory. But at strong cou-
pling, they are just as important as strings. Of particular importance among p-branes are the
Dp-branes, known generically as D-branes, on which open strings can end. This implies that
quantum field theories can be associated with D-branes. Roughly speaking, open strings,
which describe the non-gravitational sector, are attached at their endpoints to branes, while
the closed strings of the gravitational sector can move freely in the bulk. The observable
universe may be a D3-brane in string theory.

Apart from the fundamental p-branes, string theory also contains form fields, which
are higher-rank antisymmetric analogues of the electromagnetic gauge field. For example,
the Kalb–Ramond field is a 2-form field BAB = B[AB] which appears in the action via
HABCHABC , where HABC = ∂ABBC + ∂CBAB + ∂BBCA is its Faraday-like tensor. The
electromagnetic field couples to charged point particles in standard quantum field theory,
and in a similar way, the form fields can couple to p-branes. Thus one can have anti-branes
which carry an opposite charge to their brane partners.

In order to make contact with the 4D universe at lower energies, the six extra spatial
dimensions must be compactified (or effectively compactified by ‘warping’, as we dis-
cuss below) on a scale that is small enough not to disturb the well-tested predictions of
four-dimensional physics. At each 4D spacetime event, we can think of a six-dimensional
‘internal’space being attached, so that the full bulk spacetime has a product topology. Part of
the complexity in string theory resides in the enormous variety of compactification spaces
for the internal space. Theories with different internal spaces can differ radically, even if
they are of the same type. Compact spaces with zero Ricci tensor – known as Calabi–Yau
spaces – are of particular importance, since they are associated with the gauge interactions
and matter fields in the spacetime.

The huge variety of shapes and sizes in compactification spaces leads to a vast ‘landscape’
of different possible vacua (see Section 21.5). Moduli fields parameterize these vacua by
light scalar fields on the 4D universe that characterize the effects of the internal compact-
ification space (shape, size, etc.) on the 4D universe in string effective theories. On the
one hand, it is useful to have many light fields if one is trying to construct inflation within
string theory. But on the other hand, there are so many fields that it is difficult to see any
predictive power emerging. In typical Calabi–Yau compactifications there can be hundreds
of moduli, and it becomes very difficult to find an attractor slow-roll inflation trajectory in
this huge moduli field space. Furthermore, the light fields can present serious problems if
they decay late enough to affect nucleosynthesis. The moduli fields need to be stabilized in
order to avoid this problem.
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20.3.2 Higher-dimensional gravity

Extra spatial dimensions revive the original higher-dimensional ideas of Kaluza and Klein
in the 1920s, but in a new context of unification and quantum gravity. An important
consequence of extra dimensions is that the 4D Planck scaleMP :=M4 is no longer the fun-
damental scale, which becomes M4+d . This can be seen as follows. For an Einstein–Hilbert
gravitational action,

Sgrav = 1

2κ2
4+d

∫
d4x ddy

√
−(4+d)g

[
(4+d)R− 2�4+d

]
, (20.5)

(4+d)GAB =−�4+d (4+d)gAB + κ2
4+d

(4+d)TAB , (20.6)

κ2
4+d = 8πG4+d = 8π

(M4+d)2+d
, (20.7)

where the coordinates are XA = (xµ,y1, . . . ,yd). The static weak field limit of the field
equations leads to the 4+d-dimensional Poisson equation, whose solution is the gravitational
potential,V (r)∝ κ2

4+dr
−(1+d). If the length scale of the extra dimensions isL, then on scales

r �L, the potential is 4+d-dimensional, V ∼ r−(1+d). By contrast, on scales large relative
toL, the extra dimensions do not contribute to variations in the potential, andV behaves like
a 4D potential, V ∼ L−dr−1. This means that the usual Planck scale becomes an effective
coupling constant, describing gravity on scales much larger than the extra dimensions, and
related to the fundamental scale via the volume of the extra dimensions:

M2
P ∼ (M4+d)2+d Ld . (20.8)

If the extra-dimensional volume is Planck scale, i.e. L∼M−1
P , then M4+d ∼MP . But if the

extra-dimensional volume is significantly above Planck scale, then the true fundamental
scaleM4+d can be much less than the effective scaleMP ≈ 1019 GeV. In this case, we under-
stand the weakness of gravity as due to ‘dilution’: gravity ‘spreads’ into extra dimensions
and only a part of it is felt in four dimensions.

A lower limit on M4+d is given by null results in table-top experiments to test for devia-
tions from Newton’s law in four dimensions, V ∝ r−1. These experiments currently probe
sub-millimetre scales, so that

L� 10−1 mm ∼ (10−15 TeV)−1 ⇒ M4+d � 10(32−15d)/(d+2) TeV. (20.9)

The dilution of gravity via extra dimensions not only weakens gravity in 4D, it also
extends the range of graviton modes felt in 4D beyond the massless mode of 4D gravity.
For simplicity, consider a flat 4D spacetime with one flat extra dimension, compactified
through the identificationy↔ y+2πnL, wheren= 0,1,2, . . . .The perturbative 5D graviton
amplitude can be Fourier expanded as f (xµ,y) = ∑

n e
iny/L fn(x

µ), where fn are the
amplitudes of the Kaluza–Klein (KK) modes, i.e. the effective 4D modes of the 5D graviton.
To see that these KK modes are massive from the 4D viewpoint, we start from the 5D wave
equation that the massless 5D field f satisfies (in a suitable gauge): (5)�f = 0 which is
equivalent to �f + ∂2

yf = 0. It follows that the KK modes satisfy a 4D Klein–Gordon
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equation with an effective 4D mass mn, �fn = m2
n fn, where mn = n/L. The massless

mode f0 is the usual 4D graviton mode. But there is a tower of massive modes, with masses
L−1,2L−1, . . . , which imprint the effect of the 5D gravitational field on the 4D universe.
Compactness of the extra dimension leads to discreteness of the spectrum. For an infinite
extra dimension,L→∞, the separation between the modes disappears and the tower forms
a continuous spectrum. In this case, the coupling of the KK modes to matter must be very
weak in order to avoid exciting the lightest massive modes with m� 0.

The extra dimensions lead to new scalar and vector degrees of freedom in 4D. In 5D, the
spin-2 graviton is represented by a metric perturbation (5)hAB that is transverse traceless:
(5)hAA = 0 = ∂B

(5)hA
B . In a suitable gauge, (5)hAB contains a 3D transverse traceless

perturbation hij , a 3D transverse vector perturbation �i , and a scalar perturbation β, which
each satisfy the 5D wave equation. The other components of (5)hAB are determined via con-
straints once these wave equations are solved. The five degrees of freedom (polarizations)
in the 5D graviton are thus split into:
a 4D spin-2 graviton hij (two polarizations),
a 4D spin-1 gravi-vector (‘gravi-photon’) �i (two polarizations), and
a 4D spin-0 gravi-scalar β.

The massive modes of the 5D graviton are represented via massive modes in all three
of these fields in 4D. The standard 4D graviton corresponds to the massless zero-mode of
hij . In the general case of d extra dimensions, the number of polarizations of the graviton
follows from the irreducible tensor representations of the isometry group as 1

2 (d+1)(d+4).

20.3.3 Brane-world cosmology

D-branes have open strings attached to them, while closed strings move freely in the bulk
spacetime. If our observable universe is a D3-brane, then classically, this is realized via the
localization of matter and radiation fields on the brane, with gravity propagating in the bulk
(see Figure 20.1).

The Horava–Witten solution in string theory has gauge fields of the E8 group confined
on two 1+9-branes located at the end points of an S1/Z2 orbifold, i.e. a circle folded on

e−

e+

γ

G
5−D space

S1/ Z2Λ

φ=0 φ=π

V −V

Fig. 20.1 Left: Schematic of confinement of matter to the brane, while gravity propagates in the bulk. (From Cavaglià (2003). ©
World Scientific (2003). Reproduced with permission fromWorld Scientific Publishing Co. Pte. Ltd.). Right: The RS
2-brane model (from Cheung (2003)).
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itself across a diameter.2 The six extra dimensions on the branes are compactified on a very
small scale close to the fundamental scale, and their effect on the dynamics is felt through
moduli fields, i.e. 5D scalar fields. These solutions can be thought of as effectively 5D,
with an extra dimension (between the branes) that can be large relative to the fundamental
scale. Furthermore, the solution can accommodate the Standard Model of particle states in
a low-energy limit.

This solution provides the basis for the Randall–Sundrum (RS) 2-brane models of 5D
gravity (see Figure 20.1). The single-brane RS models with infinite extra dimension arise
when the orbifold radius tends to infinity.

20.3.4 Randall–Sundrum brane cosmology

The novel features of the RS models compared to previous higher-dimensional models are
that they rely on curvature rather than straightforward compactification, and they incor-
porate the self-gravity of the brane. They have a ‘preferred’ large extra dimension, with
other small extra dimensions treated as ignorable (i.e. stabilized except at energies near the
fundamental scale). The large extra dimension is curved or ‘warped’ rather than flat: the
bulk is a portion of anti-de Sitter (AdS5) spacetime. As in the Horava–Witten solutions,
the RS branes are Z2-symmetric (mirror symmetry), and have a tension, which serves to
counter the influence of the negative bulk cosmological constant on the brane.

RS brane-worlds were developed for particle physics on a Minkowski brane, then later
generalized to cosmology on a RW brane. They provide phenomenological models that
reflect at least some of the features of string theory, and that bring new geometric and
particle physics ideas into play. They also provide a framework for exploring holographic
ideas that have emerged in string theory. Roughly speaking, holography suggests that higher-
dimensional gravitational dynamics may be determined from knowledge of the quantum
fields on a lower-dimensional boundary. The AdS/CFT correspondence is an example, in
which the classical dynamics of the higher-dimensional gravitational field are equivalent
to the quantum dynamics of a conformal field theory (CFT) on the boundary.

What prevents gravity from ‘leaking’into the extra dimension at low energies is a negative
bulk cosmological constant,�5 =−6/�2, where � is the curvature radius ofAdS5. The bulk
cosmological constant acts to ‘squeeze’ the gravitational field closer to the brane. We can
see this clearly from the metric in Gaussian normal coordinates XA = (xµ,y) based on the
brane at y = 0,

(5)ds2 = e−2|y|/�ηµνdxµdxν + dy2. (20.10)

In the bulk, this metric is a solution of the 5D Einstein equations, i.e. (5)TAB = 0 in (20.7).The
brane is a flat Minkowski spacetime, with self-gravity in the form of brane tension. We shall
focus on the RS 1-brane model from now on, perhaps the most simple and geometrically
appealing form of a brane-world model, which at the same time provides a framework for
the AdS/CFT correspondence.

2 This is different from the projective space P 1 which is the group quotient S1/{−1, 1}.
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The energy scales are related viaM3
5 =M2

P /�. The infinite extra dimension makes a finite
contribution to the 5D volume because of the warp factor, and the effective size of the extra
dimension probed by the 5D graviton is �. The brane tension is λ= 3M2

P /(4π�
2), which

ensures that there is a zero effective cosmological constant on the brane. The KK modes of
spin-1 and spin-0 are pure gauge modes and may be set to zero. The spin-2 modes include
a normalizable zero mode, which recovers the GR gravitational potential of a point mass,
and a continuous tower of massive modes, that sum to a correction of the 4D potential:

V (r)≈ GM

r

(
1+ 2�2

3r2

)
. (20.11)

Table-top tests of Newton’s laws currently find no deviations down to O(10−1 mm), so that
�� 0.1 mm, and then λ > (1 TeV)4 and M5 > 105 TeV.

The AdS5 bulk, which admits a foliation into Minkowski surfaces, also admits an RW
foliation since it is 4-isotropic. The generalization of AdS5 that preserves 4-isotropy and
solves the vacuum 5D Einstein equation is Schwarzschild-AdS5, and this bulk therefore also
admits an RW foliation. It follows that a RW brane-world, the cosmological generalization
of the original RS Minkowski brane-world, is a part of Schwarzschild-AdS5, with the Z2-
symmetric RW brane at the boundary. The junction conditions across the brane determine
the modified Friedmann equation as

H 2 = κ2
4

3
ρ
(
1+ ρ

2λ

)
+ m

a4
+ 1

3
�− K

a2
, (20.12)

where m is a mass parameter for the bulk black hole, and the term m/a4 is known as ‘dark
radiation’. The standard energy conservation equation still holds.

The key modification to the Hubble rate is via the high-energy correction ρ/λ. In order
to recover the observational successes of GR, the high-energy regime where significant
deviations occur must take place before nucleosynthesis, i.e. cosmological observations
impose an upper limit on m and a lower limit, λ > (1 MeV)4, on λ, which is much weaker
than the limit imposed by table-top experiments. Since ρ2/λ decays as a−8 during the
radiation era, it will rapidly become negligible after the end of the high-energy regime,
ρ = λ. However, it can have a significant impact on 4D inflation on the brane.

20.3.5 Covariant approach to brane-world dynamics

A broader perspective, with useful insights into the interplay between 4D and 5D effects,
can be obtained via the covariant Shiromizu–Maeda–Sasaki (2000) approach, in which the
brane and bulk metrics remain general. The Gauss–Codazzi equations are used to project
the 5D curvature along the brane, and the Israel–Darmois junction conditions determine
the extrinsic curvature of the brane in terms of the energy–momentum tensor on the brane.
The induced metric on y = const surfaces (the brane is y = 0) is locally given by (where
nA is the unit normal to the brane):

gAB = (5)gAB −nAnB , gµν(x
α ,y)dxµdxν = (5)ds2 − dy2, (20.13)
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The induced field equations on the brane are:

Gµν =−�gµν + κ2
4Tµν + 6

κ2
4

λ
Sµν −Eµν + 4

κ2

λ
Fµν , (20.14)

κ2
4 = 1

6λκ
4
5 , �= 1

2

(
�5 + κ2

4λ
)

. (20.15)

The first correction term relative to GR is quadratic in Tµν :

Sµν = 1
12T Tµν − 1

4TµαT
α
ν + 1

2gµν

[
3TαβT

αβ −T 2
]

. (20.16)

The second correction term is the projected Weyl term,

Eµν = (5)CACBD nCnDgµ
Agν

B . (20.17)

The last correction term is

Fµν = (5)TABgµ
Agν

B +
[
(5)TABn

AnB − 1
4
(5)T

]
gµν , (20.18)

where (5)TAB describes any stresses in the bulk apart from the 5D cosmological constant,
e.g. a 5D scalar field. (Note that a perfect fluid (5)TAB has no physical motivation.)

The conservation equations on the brane are

∇νTµν =−2 (5)TABn
AgBµ. (20.19)

Thus in general there is exchange of energy–momentum between the bulk and the brane,
but we recover the GR conservation when the bulk contains only a cosmological constant.
The 4D contracted Bianchi identities (∇νGµν = 0), applied to (20.14), lead to

∇µEµν = 6κ2
4

λ
∇µSµν , (20.20)

which shows qualitatively how 1+3 spacetime variations in the matter-radiation on the brane
can source KK modes.

The tensor Sµν , which carries local bulk effects onto the brane, may be decomposed
relative to a chosen 4-velocity uµ on the brane as

Sµν = 1
24

[
2ρ2 − 3παβπ

αβ
]
uµuν + 1

24

[
2ρ2 + 4ρp+παβπ

αβ − 4qαq
α
]
hµν

− 1
12 (ρ+ 3p)πµν − 1

4πα〈µπν〉
α + 1

4q〈µqν〉 + 1
3ρq(µuν)− 1

2q
απα(µuν). (20.21)

The tracefree Eµν carries nonlocal bulk effects onto the brane, and contributes an effective
‘dark’ radiative energy–momentum on the brane, with energy density ρE , pressure ρE/3,
momentum density qE

µ , and anisotropic stress πE
µν :

− 1

κ2
4

Eµν = ρE
(
uµuν + 1

3
hµν

)
+ qE

µuν + qE
ν uµ+πE

µν . (20.22)

We can think of this as a KK ‘fluid’. The brane ‘feels’ the bulk gravitational field through
this effective fluid.
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The brane-world corrections can be consolidated into an effective total energy density,
pressure, momentum density, and anisotropic stress:

ρtot = ρ+ 1

4λ

(
2ρ2 − 3πµνπ

µν
)
+ρE , (20.23)

ptot = p+ 1

4λ

(
2ρ2 + 4ρp+πµνπ

µν − 4qµq
µ
)
+ ρE

3
, (20.24)

q tot
µ = qµ+ 1

2λ

(
2ρqµ− 3πµνq

ν
)+ qE

µ , (20.25)

π tot
µν = πµν + 1

2λ

[
− (ρ+ 3p)πµν − 3πα〈µπν〉α + 3q〈µqν〉

]
+πE

µν . (20.26)

Equation (20.20) may be called the ‘energy–momentum balance equation for the KK
fluid’. In the general nonlinear case, it contains many nonlinear source terms from the
brane energy–momentum tensor. If we linearize about an RW background, then (20.20)
gives the following KK energy and momentum balance equations:

ρ̇E + 4
3�ρE +∇µ

qE
µ = 0, (20.27)

q̇E
µ + 4HqE

µ + 1
3∇µρE + 4

3ρEAµ+∇ν
πE
µν

= (ρ+p)

3λ

[
− 3∇µρ+ 2∇ν

πµν +Hqµ

]
. (20.28)

In the RW background, (20.28) is trivially satisfied, while (20.27) has the dark radiation
solution ρE = ρE 0(a0/a)

4.

20.3.6 RS brane cosmological perturbations

In general, the four independent equations in (20.27) and (20.28) constrain four of the nine
independent components of Eµν on the brane. What is missing is an evolution equation
for πE

µν , which has up to five independent components. These five degrees of freedom
correspond to the five polarizations of the 5D graviton. Thus in general, the projection of
the 5D field equations onto the brane does not lead to a closed system, as expected, since
there are bulk degrees of freedom whose impact on the brane cannot be predicted by brane
observers. The KK anisotropic stress πE

µν encodes this nonlocality.

Given a solution for πE
µν from the 5D field equations, we can solve the induced equations

on the brane. Numerical solutions of the 5D equations to find the 4D cosmological scalar
perturbations have been developed (Cardoso et al., 2007). An example of the results for
super-Hubble modes is illustrated in Figure 20.2.

The left panel of Figure 20.2 shows the gauge-invariant density perturbation� [(10.32)],
which evolves from high-energy behaviour to the familiar GR behaviour at low energies.
The scalar KK anisotropic stress κ2

4 δπE steadily decays as the energy falls. Also shown is
�̂b, which is the bulk master variable from solving the 5D field equations, evaluated on
the brane (where it acts like a source term). The right panel shows the brane metric and
curvature perturbations in Newtonian gauge (10.55) – where (�,!) should be replaced by
(−!,�) in our notation. The GR result for the potentials is recovered at low energy. Notice
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Fig. 20.2 Numerical solution for a super-Hubble mode. (From Cardoso et al. (2007).)

that ζ is conserved as in GR [(10.52)], even at high energies. This is due to the fact that
energy conservation holds on the brane.

20.3.7 String inflation

There is a 10D solution in type IIB supergravity similar to the RS model,

ds2
10 = h(y)−1/2ηµνdxµdxν +h(y)1/2g̃mndymdyn, (20.29)

where ym are coordinates on the 6D compact manifold M6. If there are N coincident
D3-branes on the manifold, the 10D spacetime is AdS5 ×X5, where X5 is a 5D Einstein
manifold. The warp factor is given by h(r)∼ (

gsN�2
s /r

)4
, where r is the distance from the

D3-branes in the g̃mn metric. Near the D3-branes, the geometry is AdS5 ×S5.
This warped geometry turned out to be very important to construct inflation models in

string theory. The idea is to use a mobile D3-brane in this warped ‘throat’ (see Figure 20.3).
For a D3-brane moving in the background very slowly, the D3-brane action is treated as
that of a free field. An anti-D3 brane at the tip of the warped throat r0 has a tension and
a five-form charge and perturbs the spacetime and five-form field. Moreover, it has an
opposite charge to the D3-brane.

This creates a potential energy that is dependent on the location of the D3-brane:

V (r1)∝ 1− 1

N

(
r0

r1

)4

. (20.30)

The first term is from the potential energy associated with the anti-D3 brane: the force
exerted by gravity and the five-form are of the same sign and add. The potential energy is
red-shifted due to the warping. The second term is a Coulomb force between the D3 and
anti-D3 branes. Again due to warping of the geometry, this force is suppressed. Thus thanks
to the warping of the spacetime, the potential for r1 is very flat and r1 can act as an inflaton.
This model of inflation is known as D-brane inflation.
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Ψ
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Fig. 20.3 D3-brane inflation in a warped throat geometry. D3-branes are pointlike in the extra dimensions. Circle is base
manifold X5 with angular coordinates! . Brane moves in the radial direction r . At rmax the throat attaches to a
compact Calabi–Yau space. Anti-D3-branes minimize their energy at the tip of the throat, r0. (From Baumann (2009).)

Another interesting possibility is that the D3-brane is moving with relativistic speed. In
this case, it is possible to realize inflation even if the potential is very steep. This type of
inflation is known as Dirac–Born–Infeld (DBI) inflation, and the inflaton can develop large
non-Gaussianity.

D-brane inflation has attracted significant interest as a concrete example of inflation
models in string theory. Detailed studies have shown that it is in general very difficult to
keep the flatness of the potential. In fact, r1 is non-minimally coupled to gravity in the 4D
effective theory, due to the fact that the scalar field r1 is a conformally coupled scalar. This
coupling to gravity gives a mass O(H 2), which spoils the flatness of the potential.

However, there are many other corrections to the inflaton potential and they are sensitive
to the stabilization mechanism that is necessary to fix moduli fields in string theory. The
stabilization mechanism exploits non-perturbative effects and they are often added in the
4D effective theory. But then it is not clear whether the resultant 4D effective theory is
consistent with the 10D equations of motion.

Recently there has been a new development and it has become possible to calculate all
significant contributions to the D3-brane potential in the single coherent framework of 10D
supergravity. This will provide us with a very interesting bridge between phenomenological
brane-world models, where dynamics of higher-dimensional gravity is studied in detail,
and string theory approaches, where 4D effective theory is intensively used. It is crucial
to identify the higher-dimensional signature of the models in order to test a fundamental
theory like string theory.

20.4 Loop quantum gravity and cosmology

Loop quantum gravity (LQG) is one of the alternative attempts to quantize gravity. Unlike
string theory, LQG seeks to directly quantize GR itself, in four spacetime dimensions.
As part of this, LQG does not pre-suppose a classical spacetime, and aims to quantize
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the geometry. It does not currently address the issue of matter fields and the unification
of the fundamental interactions. (See Ashtekar and Lewandowski (2004), Rovelli (2004),
Thiemann (2007) for reviews.) The kinematical structure of LQG has been established, but
the dynamical structure is still uncertain, with various proposals under development. Like
string theory, LQG is still in its infancy – and either or both of these candidate quantum
gravity theories could fail as a result of further discoveries.

Nevertheless, as in the case of string theory, in the absence of an established quantum
gravity theory, it remains useful to develop cosmological models that emerge from LQG,
or that are at least phenomenologically related to LQG. Given the uncertain status of all
current attempts to develop quantum gravity, it is also useful to have competing paradigms.

20.4.1 Basic features of quantum geometry

The quantum theory of geometry is based on formulating the classical theory in the appro-
priate way before quantizing. Attempts to start from the usual metric formulation of GR
do not lead to successful quantization. Trial and error has led to an effective way forward,
based on connections, not metrics. GR is formulated as a dynamical theory of connections,
with the same phase space as in Yang–Mills gauge theories. The important point is that the
spin connection, and not the Levi-Civita connection, is used – and this proves to be crucial
for quantization. The internal group in phase space is SU(2). The fundamental variables are
the Ashtekar variables:

SU(2) (spin) connection Ai
a and triad Ea

i . (20.31)

The classical constraints in a Hamiltonian formulation of GR are written in terms of
holonomies around loops and fluxes through loops. General covariance of GR leads to a
unique representation of the algebra of holonomies and fluxes. A key problem in quantizing
lies in the fact that GR, unlike other field theories, has no background field (spacetime is
dynamical) – so that the theory is fully constrained in its phase space formulation. LQG
adopts the Dirac approach: first the quantum kinematics is constructed for the phase space
ignoring the constraints; then quantum operators are found corresponding to the constraints;
then the quantum constraints are solved to obtain the physical states and the associated
Hilbert space.

The quantum operators corresponding to the diffeomorphism and Gauss constraints can
be constructed relatively straightforwardly, but the scalar (Hamiltonian) constraint creates
bigger difficulties. Ambiguities in factor ordering produce different possible operators,
leading to distinct quantum dynamics. It appears that physical selection criteria will need
to be invoked – and then investigated via the consequent predictions.

The quantum kinematics of LQG appears to be well established, but the problem of quan-
tum dynamics remains open, related to the complexities associated with the Hamiltonian
constraint. Only in symmetry reduced phase spaces has progress been made, although this
begs the key question as to whether symmetry reduction before dynamical quantization
is consistent with symmetry reduction of the full (and still unknown) general quantum
dynamics. Unsurprisingly, it is proving extremely difficult to derive the ‘quantum Einstein
equations’ in the general case.
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It is also important to point out that, although the classical smooth spacetime is used
in the process of motivating a particular quantization scheme, the quantization itself does
not rely on assuming a smooth background spacetime. The holonomies and fluxes at the
quantum level are constructed via graphs with edges and vertices, without pre-supposing an
underlying smooth metric geometry. The quantum operators based on theAshtekar variables
include an area operator, whose eigenvalue spectrum has a minimum,

Amin = 4
√

3πγ �2
P , γ ≈ 0.24 , (20.32)

where γ is the Barbero–Immirzi parameter, whose value is fixed by LQG calculations of
black hole entropy.

20.4.2 Loop quantum cosmology

Significant progress has been made in applying LQG to the cosmological RW spacetimes
(see Bojowald (2005), Ashtekar (2009a,b) for reviews). This progress is unavoidably based
on phenomenology – in the sense that one has to reduce the phase space by rigidly impos-
ing RW symmetries, thus freezing by hand the quantum degrees of freedom in gravity
and geometry. However, in the absence of the general quantum dynamics for an arbitrary
spacetime, there is no alternative. Phenomenology can often serve as a guide for further
developments in the full theory. And the results of the symmetry-reduced LQC are qualita-
tively in accord with expectations: in particular, as we discuss in the next sub-section, the
big bang singularity is removed.

The reduction of LQG to LQC is analogous to the reduction of a quantum field theory to
quantum mechanics. In this sense, LQC operates in the same arena as the Wheeler–DeWitt
equation discussed above. However, the WDW equation is an ad hoc prescription inspired
purely by analogies with quantum mechanics, whereas the LQC analogue arises via a
systematic Dirac quantization procedure in the framework of gauge theories of connections.
Furthermore, the LQC equation is a difference equation, as befits quantum geometry without
a smooth background spacetime. The WDW differential equation is based on a smooth
background, and is unable as a consequence to avoid the big bang singularity.

The symmetry-reduced classical Ashtekar variables become

Ai
a =CV̄ −1/3ēia , Ea

i = P |detq|V̄ −2/3ēai , (20.33)

C = γ V̄ 1/3ȧ , |P | = V̄ 2/3a2 , (20.34)

where V̄ is the volume of a cubical fiducial cell that must be introduced in the flat RW
geometry (physical results are independent of the choice of cell), q̄ab is the fiducial spatial
metric and ēai the associated triad. Note that the expression above for C is only valid in the
classical theory. The absolute value of P above reflects the two possible orientations of the
triad, to which the classical theory is insensitive.

The Hamiltonian constraint becomes, for a massless scalar field source,

0 = Cgrav +Cφ =−6
C2

γ 2
|P |1/2 + 8πG

P 2
φ

|P |3/2 , Pφ := V̄ a3φ̇ . (20.35)
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This constraint gives the classical Friedmann equation, and the Hamilton equation gives
the Raychaudhuri equation.

The symmetry-reduced LQG constraints lead to two LQC Dirac operators – the standard
momentum operator and an ‘instantaneous’ volume operator:

P̂φ!(v,φ)=−i∂φ!(v,φ), (20.36)

|v̂|φ0!(v,φ)= exp[iQ̂1/2(φ−φ0)]|v|!(v,φ), (20.37)

where |v| ∝ �−3
P |P |3/2 is a normalized volume. Q̂ is defined by

Q̂!(v,φ)= f+(v)!(v+ 4,φ)+f0(v)!(v,φ)+f−(v)!(v− 4,φ), (20.38)

where f±,f0 are complicated functions of v.
The quantum Hamiltonian constraint is then a second-order difference equation,

∂2
φ!(v,φ)=−Q̂(v)!(v,φ). (20.39)

By contrast, the WDW equation (20.3) in these variables is the second-order differential
equation

∂2
φ!(v,φ)=−12πG(v∂v)

2!(v,φ). (20.40)

20.4.3 LQC resolution of the big bang singularity

The quantum difference equation (20.39) is solved numerically by iterating in backward
v-steps from an initial semi-classical state peaked at a classical trajectory with ρ � ρP .
The result is illustrated in Figure 20.4, which shows how the LQC evolution differs from
the classical GR trajectory for

ρ � 0.02ρP , (20.41)

until a singularity avoiding bounce is achieved at ρ∼ 0.4ρP . By contrast, numerical integra-
tion of the WDW equation (20.40) shows that the evolution follows the classical trajectory
closely, all the way to the big bang singularity.

Note that in quantum gravity there is no obvious definition of time. In the quantum
difference equation, the role of time may be played by the monotonically evolving scalar
field φ.

The bounce can be understood qualitatively as the result of a repulsive LQG ‘force’ that
kicks in near the Planck scale and overcomes the classical attractive force of GR. This
effect is geometric, based on the holonomies and curvature effects, and does not arise from
high-energy effects in the scalar field.

LQC shows that there is a critical, minimum volume eigenvalue, leading to a critical,
maximum energy density given by

ρcrit = (
√

3/32π2)γ−3ρP ≈ 0.4ρP . (20.42)

At the onset of inflation, it follows that LQC effects are negligible:

(ρ/ρcrit)inflation ∼ 10−11 . (20.43)
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Fig. 20.4 Expectation values and dispersion of the volume operator v in flat RWwith massless scalar fieldφ. LQC differs from
GR forρ � 0.02ρP , and the classical singularity is avoided by a bounce atρ ∼ 0.4ρP . (From Singh (2008).)

It is possible to write an effective classical Hamiltonian which describes the underlying
quantum dynamics to an excellent approximation.This then leads to semi-classical modified
Friedmann and Raychaudhuri equations that capture the LQC corrections to GR:

H 2 = 8πG

3
ρ

(
1− ρ

ρcrit

)
, (20.44)

ä

a
=−4πG

3
ρ

(
1− 4

ρ

ρcrit

)
− 4πGp

(
1− 2

ρ

ρcrit

)
. (20.45)

These two equations imply that the GR conservation law is not modified.

20.5 Physics horizon

A basic problem with all these alternatives is that we have no experimental guidance to help
us choose. The highest energies we can attain in particle accelerators cannot reach the levels
relevant to the very early universe. The uniqueness of cosmology in this regard is that it is
the only science contemplating spacetime regions that have experienced such high energies,
and with which we are in intimate causal contact despite the huge timescales involved –
indeed events at those early times determined much of what we see around us today.

The nuclear reactions underlying nucleosynthesis are well understood, and their cross-
sections reasonably well known; the processes of baryogenesis and quark–gluon recombi-
nation are partly understood and are on the border of being testable; but physical processes
relevant at earlier times are inaccessible to testing by laboratory or accelerator-based
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experiment. We can define a ‘physics horizon’that separates those aspects of physics we can
hope to test by high-energy experiments on Earth or in the Solar System, from those where
it is reasonable to expect no such test will ever be possible. We have to extrapolate from
known physics to the unknown and then test the implications. We cannot experimentally
test whether we have got it right.

The physics horizon limits our knowledge of physics relevant for the very early universe.

This is independent of the issue of setting of initial conditions for the universe, considered
below (Section 20.6.2). The problem arises after the initial conditions have been set and the
universe is running according to invariable physical laws. We cannot be confident of the
validity of the physics we presuppose then. Since we cannot use known physics to predict
the evolution of the very early universe, we end up testing proposals for this physics by
exploring their implications in the early universe – the only ‘laboratory’ where we can test
some of our ideas regarding fundamental physics at the highest energies (Yoshimura, 1988).
This is particularly true in the case of quantum gravity proposals. The problem is we cannot
simultaneously do this and also carry out the aim of physical cosmology, namely predicting
the evolution of the early universe from known physical theory.

Our understanding of physics at those times has of necessity to be based on extrapolation
of known physics way beyond the circumstances in which it can be tested. The trick is to
identify which features are the key to use in that extrapolation: for example, variational
principles, broken symmetries and phase changes, duality invariance, entropy limits are
candidates. If we confirm our guesses for the relevant physics by their satisfactory impli-
cations for the early universe, tested in some suitable way, then this is impressive progress;
but if this is the only way we can test the proposed physics, the situation is problematic. If
the hypothesis solves only the specific issues it was designed to solve in the early universe
and nothing else, then in fact it has little explanatory power, rather it is just an alternative
(perhaps theoretically preferable) description of the known situation.

One obtains positive observational support for a particular proposal for the relevant
physics only if it predicts multiple confirmed outcomes (rather than just one), for example
predicting particles that are then confirmed to exist in a laboratory, so that a single hypothesis
simultaneously solves several different observational issues. Some of the options may be
preferred to others on various theoretical grounds; but one must distinguish this from their
having observational support. They lack physical power if they have no other testable
consequences.

This issue arises particularly as regards quantum cosmology and the origin of the universe;
but it also arises as regards inflation. A particular example is the inflaton field, which has
not been identified, much less shown to exist by any laboratory experiment. The consequent
arbitrariness of the inflaton potential reflects our inability to experimentally determine the
relevant behaviour. What one would like is a laboratory (particle accelerator) test of the
inflaton and its potential. However, we may not in fact be able to achieve this.

One key application where this issue becomes significant is the chaotic inflation theory
(Section 9.7). As remarked in Section 7.9, its geometric predictions are observationally
unverifiable. It would nevertheless be a good physical prediction if it was a more or less
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inevitable outcome of known and tested underlying physics. However this is not the case.
The proposed underlying physics is not experimentally tested: the supposed Coleman–de
Luccia tunneling process (Coleman and de Luccia, 1980) that is the core of the creation
of new universe bubbles is a hypothetical process that may or may not occur; and the
measure that determines probabilities is unknown and the subject of ongoing debate (see
Section 21.5).

20.6 Explaining the universe – the question of origins

The core business of physical cosmology is explaining both why the universe has come into
existence and evolved to the present very high-symmetry RW geometry on large scales,
and how structures come into existence on smaller scales.

20.6.1 Start to the universe

Was there a start to the universe? If so, what was its nature? The issue is unresolved. The
major related question is whether the process of expansion only happens once in the life of
the universe, or occurs repeatedly. Many theories attempt to address the issue. In effect they
attempt either to describe the creation process, or to somehow sidestep the need for one.

Creation theories

These are of two kinds. (1) Simply assume a creation event took place, without investigating
it further. This is the traditional position in older texts. (2) Attempt to give a true theory of
creation from nothing in terms of quantum field theory processes. Such efforts, however,
cannot truly ‘solve’ the issue of creation, for they rely on some structures or other (e.g. the
elaborate framework of quantum field theory and much of the Standard Model of particle
physics) somehow pre-existing the origin of the universe, and hence themselves requiring
explanation.

No-creation theories

These describe a self-sustaining or self-referential universe which by-passes the issue
of creation. One alternative is origination from an eternally pre-existing state, either
via a ‘phoenix’ universe, or via creation from some quite different pre-existing struc-
ture. Examples of the phoenix type are: self-repeating universes, e.g. chaotic inflationary
models (Linde, 1986, Aguirre and Gratton, 2003); ‘pre-big bang’ models based on ana-
logues of the dualities of string theory (Gasperini and Veneziano, 1993); cyclic universes
(Steinhardt and Turok, 2002, Baum and Frampton, 2007, Penrose, 2006). Examples of pre-
existing structures are: emergence from fluctuations in de Sitter spacetime; ‘ekpyrotic’
universes initiated by a collision between pre-existing branes (Khoury et al., 2001); emerg-
ing from an eternal static initial state (Ellis and Maartens, 2004, Mulryne et al., 2005).
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Another alternative is starting from a state with different properties of time than usual
(or with an emergent notion of time), as in: the Hartle–Hawking no-boundary proposal
(Hawking, 1987, 1993); the causal violation proposal (Gott and Li, 1998). Any of these
may be combined with proposals for an effective ensemble of universes (Tegmark, 2003),
realized in spacetime regions that are truly disconnected, or part of a larger entangled quan-
tum entity, or part of a single classical spacetime, but effectively disconnected from each
other.

All of these proposals, however, are strongly speculative extrapolations from the known
to the unknown. They may or may not be true. One thing is certain: they cannot all be true!

The first option is the standard model, where the entire evolution of the universe is a
once-off affair, with all the objects we see, and indeed the universe itself, being transient
objects that will burn out like dead fireworks after a firework display. In this case everything
that ever happens occurs during one expansion phase of the universe (possibly followed
by one collapse phase, which could occur if K > 0 and the present dark energy field dies
away in the future). This evolution might have a singular start at a spacetime singularity; a
beginning where the nature of time changes character; a non-singular bounce from a single
previous collapse phase; or a start from a non-singular static initial state.

The major alternative is that many such phases have occurred in the past, and many more
will occur in the future, new expansion phases repeatedly arising from the ashes of the old.
While the idea of one or more bounces is an old one (Tolman, 1934, Dicke and Peebles,
1979), actual mechanisms that might allow this bounce behaviour are difficult to develop in
a fully satisfactory way.Avariant is the chaotic inflation idea (Section 9.7) of new expanding
universe regions arising from vacuum fluctuations in old expanding regions, leading to a
universe that has a fractal-like structure at the largest scales, with many expanding regions
with different properties emerging out of each other in a universe that lasts forever.

As discussed above (Section 20.1), it is possible (if the universe has positive spatial curva-
ture) that the quantum gravity domain can be avoided and there was no start to the universe
(Ellis and Maartens, 2004); however, this probably requires special initial conditions. If a
quantum gravity epoch indeed occurred, we cannot come to a definite conclusion about
whether there was a creation event or not because we do not know the nature of quantum
gravity, nor how to reliably apply it in the cosmological context where the issue of initial
conditions arises.

Eternal existence is also problematic, leading for instance to the idea of Poincaré’s eternal
return: everything that ever happened will recur an infinite number of times in the future
and has already occurred an infinite number of times in the past (Barrow and Tipler, 1984).
This is typical of the problems associated with the idea of infinity (see Section 21.5.5). It
is not clear which is philosophically preferable: a beginning or eternal existence.

The universe may or may not have a beginning
An initial singularity may or may not have occurred a finite time ago, but a variety of
alternatives are conceivable, including singularity avoidance via quantum gravity and
eternal universes.
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20.6.2 Initial conditions

Even if a beginning does not take place, this does not resolve the underlying issue of what
determined why the universe is the way it is. If the proposal is evolution from a previous
eternal state then why did that come into existence? And why did the universe expansion
start when it did, rather than at some previous time in the pre-existent eternity? Whenever
it started, it could have started before!

No physical experiment at all can help here because of the uniqueness of the universe,
and the feature that no spacetime exists prior to (in a causal sense) a beginning. So brave
attempts to define a ‘physics of creation’ stretch the meaning of ‘physics’. Prior to the start
(if there was a start), physics as we know it is not applicable and our ordinary language
fails us because time did not exist, so our natural tendency to contemplate what existed or
happened ‘before the beginning’ is highly misleading – there was no ‘before’ then, indeed
there was no ‘then’ then! Talking as if there was is commonplace, but quite misleading in
trying to understand a scientific concept of ‘creation’ (Grunbaum, 1989).

We run full tilt into the impossibility of testing the causal mechanisms involved, when
physics did not exist; this is the ‘physics horizon’ of Section 20.4 with a vengeance. No
experimental test can determine the nature of any mechanisms that may be in operation
in circumstances where even the concepts of cause and effect are suspect. This comes
particularly to the fore in proposing ‘laws of initial conditions for the universe’ – for here
we are apparently proposing a theory with only one object. Physics laws are by their nature
supposed to cover more than one event, and are untestable if they do not do so.

Testable physics cannot explain the initial state and hence specific nature of the
universe
Why does the universe have one specific form, when other forms consistent with physical
laws seem perfectly possible?

This question cannot be solved by physics alone, unless one can show that only one
form of physics is self-consistent; but the variety of proposals made is evidence against that
suggestion.

The present state of the universe is very special. Explanation of the present large-scale
isotropy and homogeneity of the universe means determining the dynamical evolutionary
trajectories relating initial to final conditions, and then essentially either explaining initial
conditions, where we run into difficulties (Section 20.6.2), or showing they are irrelevant:
physical processes led to a late time attractor state that is independent of initial conditions
(the basic claim of inflation theory). The issue raised is whether the universe started off in
a very special geometrical state. We will return to this in the next chapter (Section 21.4).
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The main part of scientific cosmology today deals with technical issues to do with modelling
the origin and evolution of the universe, as discussed in the rest of this book. However
cosmology also has wider connotations, as reflected in the broader use of the term in
popular use. The link between these two aspects of cosmology resides in two interrelated
issues: on the one hand, the relation between cosmology and local physics; and on the other,
the foundational question of why the universe is as it is. Both can only be tackled properly
by taking philosophical issues seriously. The underlying issue is fundamental: what is the
nature of cosmology as a science? How does it relate to issues of testing and verification?

This book does not deal with these issues in depth, as to do so fully would take us too far
from our main theme (and our competence), but it does not ignore them either, for to do so
would exclude some of the most interesting issues in cosmology. This chapter considers,
relatively briefly, how issues in relativistic cosmology relate to these two fundamental
themes. It will emphasize two related key topics where these issues come to a head: namely
the possible existence of a multiverse, and the question of whether the universe is probable
or improbable.

We present theses that can be regarded as reasonable within the current framework of
cosmology and physics. Current experiments cannot prove or disprove them; but they are
open to debate and potential refutation.

21.1 Local physics and cosmology

The universe is the context for local physics. It provides the environment in which galaxies,
stars, and planets develop, thus providing a setting in which local physics and chemistry
can function in a way that enables the evolution of life on planets such as the Earth. Thus on
the small scale, it provides matter in the form of protons, neutrons, and electrons, combined
into atoms of chemical elements (including carbon, nitrogen, oxygen, and iron, as well as
hydrogen). On a larger scale, it provides a congenial environment for life, by creating the
Galaxy and, within it, the Solar System, with a planet suitable for life at the right distance
from the Sun. It does all of this through somehow setting both specific laws of physics,
and suitable boundary conditions for those laws. If the cosmological environment were
substantially different, local conditions would be different and in most cases we would not
be here (Carr and Rees, 1979, Davies, 1982, Barrow and Tipler, 1984, Rees, 1999, 2001)
– indeed no biological evolution at all would have taken place. Thus cosmology is of
substantial interest to the whole of the scientific endeavour, for it sets the framework for the
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rest of science, and indeed for the very existence of observers and scientists. It is unique as
the ultimate historical/geographical science.

Many of the aspects of how cosmology influences local conditions have been discussed
in previous sections, e.g. how elements and large-scale structure are formed. The formation
of stars and planetary systems will follow in the resulting galactic environment through
standard astrophysical processes. In all these cases, local physics together with suitable
boundary conditions (set by the cosmology) determine the outcome (Harwit, 1998). How-
ever, there is a different way cosmology influences local conditions: namely through a
variety of global to local influences (Ellis and Sciama, 1972, Ellis, 2002). We discuss some
of these in turn.

21.1.1 Olbers’ paradox and the dark night sky

An old question going back to Halley and Olbers is why the integrated radiation from
all sources in the universe is as low as it is; indeed why is it finite? In an infinite static
Newtonian universe where stars exist at all times, each shell of stars of thickness �r about
us contributes the same amount of light to the night sky, because the inverse square law for
flux of light (F = F0/r

2) is exactly compensated by the growth of numbers of stars with
distance, which increases as the square of the distance (�N =N0r

2�r).Adding up the light
from all such spheres, Ftot = �(F�N) = F0N0��r . This shows that the light from all
the stars in such a universe should diverge as we sum over all distances: ��r →∞ . Thus
extremely distant matter is more important than local matter, because there is so much of it.

This is incorrect in that further stars would be shielded by nearer stars. In fact in such a
universe each line of sight would end up on the surface of a star, so the intensity law for
light suggests a better analysis would be that the entire sky should be as bright as the surface
of the Sun. But then what about absorption by intervening matter – will this not reduce the
result? In the given context the answer is no, for thermal equilibrium would be set up, and
all intervening matter would then emit precisely as much radiation as it absorbs. The night
sky should be just as bright as the surface of a star.

This is known as Olbers’ Paradox: Why is the night sky dark? (Bondi, 1960, Harrison,
2000). The resolution is that the universe is not static and has not existed forever. As a
consequence of the expansion of the universe, it has a finite age, and hence a finite number
of stars are visible to us: we can only see a sphere around us as large as is determined by
motion at the speed of light since the origin of the universe. Additionally, the intensity of
their light is diminished by their redshift of emission according to the intensity law (7.58), as
explained in Section 7.8.2. In fact, most lines of sight intersect the LSS in the early universe,
rather than any stars that are closer by. The blackbody radiation emitted from this surface
is the radiation that comes to us from most directions in the sky, with intensity redshifted
(1+ z)−4. The temperature of the dark night sky is that of the CMB emitted from the LSS,
with its initial temperature of 3000K redshifted to 3K by the expansion of the universe.

A low night sky temperature is thus a result of the particular way the universe is con-
structed. It is a necessary condition for the existence of life on Earth that this temperature
not be too high, because the Earth’s biosphere functions by receiving heat from the Sun
and disposing of the waste energy to the heat sink of the dark night sky (Penrose, 1989).
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This would not work if the sky temperature were greater than about 15◦C. Thus one way
of explaining why the sky is observed to be dark at night is that if this were not so, for
thermodynamic reasons, no observers could exist to observe the sky.

21.1.2 Isolated systems and emergence of classical physics

The nature of physics as we know it, and the chemistry and biology that results, depends
on two rather specific further conditions, also related to the cosmological environment.

Firstly, there must be the possibility of existence of local systems, able to evolve on their
own according to their own internal logic. Isolated systems should exist in the universe,
where local physical and biological processes can take place unimpeded by outside interfer-
ence. In many universe models, this will never be possible: the background electromagnetic
radiation may always be intense and variable; cosmic rays or gravitational waves may always
be of high intensity; black holes may always be tidally disrupting local systems. Then local
physical systems will be unable to proceed in a predictable way and life will be unable to
evolve because of the continuing disruptions interfering with developing complexity.

Thus the concept of locality is fundamental, allowing local systems to function effectively
independently of the detailed structure of the rest of the Universe. We need the universe
and the galaxies in it to be largely empty, and gravitational waves and tidal forces to be
weak enough, so that local systems can function in a largely isolated way (Ellis, 2002).
Existence of life requires that physical conditions on planets must be in a quasi-equilibrium
state for long enough to allow the delicate balances that enable our existence, through the
very slow process of evolution, to be fulfilled. Estimates of non-local influences on local
systems in the expanding universe are given by Cox (2007); they are small enough to be
unproblematic. It is clear that this non-interference by the universe demands the Weyl tensor
Cabcd must be suitably small almost everywhere so that tidal forces and gravitational wave
effects caused by distant objects in a local domain are small. This presumably implies an
almost-RW geometry, because a vanishing Weyl tensor implies an FLRW model, and a small
Weyl tensor implies an almost FLRW model in the large (given suitable equations of state)
(Stoeger, Maartens and Ellis, 1995). However, although local systems will then be isolated,
they will still be influenced in crucial ways by global conditions, particularly requiring a
well-defined arrow of time at the macroscopic level, and hence (as just discussed) the initial
entropy of the universe must be low, as is required for the second law to hold. Thus the
requirement is that the universe should set up conditions that allow local physics to proceed,
and then not interfere any further.

Secondly, the emergence of a classical era out of an early quantum state is required. The
very early universe would be a domain where quantum physics would dominate, leading to
uncertainty and an inability to predict the consequence of any initial situation. For complex-
ity to arise, we need this to evolve to a state where classical physics leads to the properties of
regularity and predictability that allow order to emerge (Hartle, 2011, Kiefer and Polarski,
2009). It appears that the process of decoherence will tend to lead to this result, but we do not
yet have clarity on precisely what initial conditions will necessarily lead to emergence of a
classical era in the history of the universe. Whatever these conditions are, we require them
to be fulfilled if complex systems such as life are to emerge in the history of the universe.
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21.1.3 Mach’s Principle and origin of inertia

Newton carried out a famous bucket experiment, whereby he established that the curvature
of the surface of water in a rotating bucket, after the rotation of the bucket had communicated
itself to the water, occurred only when the bucket was in rotation relative to distant stars
(nowadays, read galaxies); there was no such curvature in a reference at rest relative to
distant matter. The question then is whether this relationship between local non-rotating
rest frames and distant matter is just a coincidence, or whether it is the result of some
causal effect. In his pursuit of unifying explanations, Mach conjectured that this was not a
coincidence: he suggested that the local inertial properties of matter are causally determined
by the distant distribution of matter in the universe (the most distant matter is most important,
just as in Olbers’ paradox), so that if the universe were different, inertia would be different.
This is Mach’s principle (Sciama, 1969), which served as a major impetus for Einstein’s
ideas about cosmology.

Like the previous case, it embodies the idea that local physical conditions are determined
by the sum properties of very distant matter, i.e. by cosmological boundary conditions. The
precise meaning and implications of this idea remain controversial, with some claiming it
is already fully incorporated into Einstein’s theory of gravity, and others denying this is so
(Barbour and Pfister, 1995). The latter viewpoint is supported by realizing that, according
to relativistic cosmology ideas, a local inertial frame is at rest relative to distant matter if
and only if the vorticity is zero (see Section 4.6); but there exist universes where this is
not the case (see Chapter 18). Hence one viewpoint is that Mach’s principle holds only in
universes with special initial conditions (Raine, 1981).

21.1.4 Arrow of time

The existence and direction of the macroscopic arrow of time in physics – and hence in
chemistry, biology, psychology and society – is a considerable puzzle, for the fundamental
physical laws are time symmetric1 and so unable by themselves to explain this feature
(Davies, 1974, Ellis and Sciama, 1972, Zeh, 1992). The main current proposed explanation
is that the observed arrow of time in local macroscopic physics, and hence in chemistry and
biology, is related to differing boundary conditions in the past and future of the universe.

An argument of this kind is the claim by Penrose (1989) that the existence of the arrow
of time is crucially based in the universe having had rather special, low-entropy initial
conditions in the past (see also Wald (2005), Carroll (2010)). Thus what appears in ordinary
physics as an immutable law of nature (i.e. the second law of thermodynamics with a given
arrow of time) may well be the result of specific boundary conditions at the start of the
universe. It might not be true in all universes, even if the underlying fundamental physical
laws are the same. The existence of the arrow of time, and hence of laws like the second law
of thermodynamics, not only underlies the kinds of physics envisaged in inflationary theory
and the physics of the hot big bang; it is also probably necessary for evolution of life and

1 Apart from a minor time asymmetry of the weak force which is hard to detect, and so cannot be the cause of the
major time asymmetry we perceive in the universe.
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the existence of consciousness. This depends on the environmental effect of the universe
in the large on local systems. Thus it is another example of how large-scale cosmological
features can have important local physical results.

In each of the cases just discussed, proposals have been made as to the possible nature of
the deeper underlying unchanging laws, and the relations between the state of the universe
and the resultant effective laws in the context of the expanding universe. These proposals
are, however, intrinsically untestable, because we cannot change the boundary conditions
of the universe and see what happens. But they provide an important explanatory paradigm
relating cosmology to local physics.There is an essential difficulty in distinguishing between
laws of physics and boundary conditions in the cosmological context of the origin of the
universe. Effective physical laws may depend on the boundary conditions of the universe,
and may even vary at different spatial and/or temporal locations:

Thesis 1: Physical laws may depend on the nature of the universe

21.2 Varying ‘constants’

A foundational assumption underlying cosmology is that local physics is the same every-
where; without this, we have no basis to proceed. However, what constitutes local physics
changes over time: as new theories supersede older theories, the nature of local physics
changes. Some fundamental constants in the current version of local physics may turn out
to be dynamical in newer versions.

Any given theory, such as GR, contains constants whose value cannot be predicted by the
theory. These are the ‘fundamental’ constants as opposed to derived constants whose value
can be computed within the theory: e.g. in GR, H0 and Tγ 0 can be calculated, whereas G
and c are fundamental. Sometimes a theory with a fundamental constant is superseded by
another theory in which that constant turns out to be derived or a dynamical variable. For
example, Galilean gravity considered g to be a fundamental constant, whereas Newtonian
gravity showed that it was a derived variable, determined byG and by the mass of the Earth,
g =GME(r ,θ ,φ)/r2.

Any variation in a fundamental constant of a theory would be a signal of the breakdown
of the theory. Possible variations must be tested by experiments which take careful account
of how the measurement process is defined within that theory. In general, it is best to test
for variation in dimensionless quantities, since this avoids the problem of disentangling the
role played by units of measurement. (See Uzan (2003) for a review.)

It is easy to set up phenomenological models where some physical constant A is con-
sidered to be a function of time A(t) in a generalized RW model; e.g. Dirac proposed that
G∝ t−1 to explain certain coincidences amongst universal ‘constants’. While simple phe-
nomenological models may be useful as an initial step, there is a need eventually to ground
this in some proper underlying physical theory, and to work out all the inter-related conse-
quences of this assumption for physics in a consistent way. For example, Dirac’s proposal
is given a consistent theoretical framework by scalar–tensor theories of gravity.
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String theory and GUTs predict that many of the ‘constants of nature’ within GR and
the Standard Model of particle physics are in fact contingent, depending on the nature of
the vacuum state, and effectively controlled by scalar fields such as the dilaton. In models
of fundamental force unification, coupling constants depend on energy, and in the string
theory landscape, they depend on the vacuum (Susskind, 2005).

The possible variation in fundamental constants in time or space has been developed in
cosmology specifically in relation to varying-G theories and varying-c theories. It has also
received a boost from observations suggesting the fine structure constant α may have varied
with time in the past. We shall briefly consider specific cases in turn.

21.2.1 Varying-G theories

In Section 14.3.2 we showed that in scalar–tensor theories, G is proportional to a scalar
field rather than a constant (see (14.34)). This proposal can be tested in the Solar System,
and also has cosmological implications. As noted above, tests for variation in G are best
formulated as tests for variation of a dimensionless quantity, such as G̃ = Gm2(�c)−1,
wherem is some suitably chosen uniquely determined mass, such as the mass of the proton.
Limits on variation of this quantity can be obtained from various sources, e.g. Solar System
tests and the geological history of the Earth. An interesting new variant is the proposal that
weakened gravity in the early universe, i.e. G→ 0, might be the reason that the entropy of
the early universe was so low (Greene et al., 2011).

21.2.2 Varying-c cosmologies

Varying speed of light (VSL) cosmologies have been proposed as potentially solving the
problems that inflationary cosmologies seek to solve (see Magueijo (2003) for a review).
However, there are some foundational issues to be taken into account by any VSL theory
(Ellis and Uzan, 2005). One key point is to distinguish theories where it is the photon
velocity vγ that is supposed to vary, and those where it is a universal causally limiting
speed vlim that is supposed to vary. These are the same speed c in standard relativity, but
they can differ in VSL theories.

Speed of light andmeasurement

What is called ‘the speed of light’ and labelled c is not necessarily the speed of light in
physical terms. The key issue relating this to physics is how one measures spatial distances
and times, for it is only when we have distance and time units set up that we can start
to measure the speed of light. On macroscopic scales, currently the only practical way of
determining distance is via radar; other astronomical distance scales are derived from this.
Parallax distance measurements for example rely on knowing the physical size of the base
used to determine the parallax; and that has to be determined by some method such as
radar. One assumes a good clock can be constructed, and then uses the timing of reflected
electromagnetic radiation to determine the distance. But then the (physical) speed of light
of necessity has to be unity, precisely because all electromagnetic radiation travels at the
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speed of light, and distances are being determined by use of such radiation. This is reflected
in the natural units used for such distance measurements: light seconds and light years.
When such units are used, the speed of light is unity by definition - not by definition of how
fast light moves, but by the definition used for spatial distances.

In order to be viable, a theory with variable vγ should be based on some other method
of measuring spatial distances than radar.

Speed of light and the metric

In standard relativity theory we are allowed to make basis transformations that are not
Lorentz transformations; and they can make the metric tensor components anything we want.
Sometimes this can be misleading. As an example, suppose that there is an instantaneous
‘phase’ change in a RW metric:

ds2 =−c2dt2 + a2(t)dσ 2, c= c1 for t < t∗, c= c2 for t > t∗, (21.1)

where c1,c2 are constants. Then vγ = (c1/a)dσ/dt , for t < t∗, while vγ = (c2/a)dσ/dt ,
for t > t∗ – giving an apparent change in the speed of light by a factor c1/c2. However, in
fact the units of measurement have been changed (leading to a consequent change in the
metric tensor components), rather than the physical speed of light altering. Indeed one can
transform the t > t∗ metric to the t < t∗ form by the change of coordinates t → (c1/c2)t .
Then according to the principle of general covariance, the two metric forms are just the
same spacetime in different coordinates. The confusion arises by using the same label ‘t’
for what are in fact two different time coordinates used before and after t∗. The two metric
forms do not represent different physical speeds of light.

There is a preferred time coordinate that can break this degeneracy in the coordinate
speed of light – proper time τ , measured along a (timelike) world line by a perfect clock.
In GR, τ = ∫ [−gµν(xα)dxµdxν]1/2. Applying this to the fundamental world lines with
tangent vector uµ = δ

µ
0 /cI in (21.1) shows that τ = c1t before t∗ and τ = c2t after t∗.

The quantity τ is an invariant, and will be the same whatever coordinate system is used.
While we can use any coordinates, some are more convenient than others in that they more
directly represent the physics of what is going on; we get these preferred coordinates on
choosing the time coordinate t as proper time τ along the fundamental world lines at all
times. Then c1 = c2 = 1, and there is no jump in the apparent speed of light. Nothing has
changed physically; there has simply been a rescaling in the time coordinate. A VSL theory
based on changes in the metric tensor components should explain what replaces τ in the
proposed theory.

An integrated whole

There are many other issues that must be considered in a varying speed of light theory
(Ellis and Uzan, 2005). They include:

• Causality and Lorentz group. The speed of light plays a key role in standard physics
because it is the limiting speed vlim for local relative motion, as indicated by the standard
relativistic laws for velocity transformations derived from the Lorentz group. The link to
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the metric tensor is that Lorentz transformations are precisely those transformations that
leave the metric tensor components invariant. A VSL theory should show what replaces
this relation.

• Maxwell’s equations.AVSLtheory should not just postulate ad hoc changes to the speed
of light vγ – the physics that underlies the variation of vγ should be made explicit – related
to Maxwell’s equations or its proposed generalizations. These are the equations that
determine the actual speed of light. Possibilities include bimetric theories with one metric
determining space and time measurements and another used in Maxwell’s equations
(Bassett et al., 2000).

The overall message is that we cannot just alter the speed of light in one or two equations
and leave the rest of physics unchanged. It plays a central role in modern physics both
because it is the invariant limiting speed of the Lorentz group and so is built into any
variables that transform under that group, and also because electromagnetism is central to
many physical effects. In particular, light is central to measurement. In the standard view,
these various roles are tightly integrated together in a coherent package in which the speed
of light does not vary. A viable VSL theory needs to propose a similarly integrated viable
alternative to the whole package of physical equations and consequent effects (kinematical
and dynamical) dependent on c.

21.2.3 Varying-α theories

Some observations of absorption lines in spectra of distant quasars suggest the
fine structure constant α = e2(�c)−1 may be varying very slightly with time
(Murphy, Webb and Flambaum, 2008). However, these observations are in dispute, and
there is no strong theoretical justification for such variation. If such a variation is indeed
proven beyond reasonable doubt, this will be an important result requiring a good theoretical
explanation, and its cosmological implications will need exploration. Note that one cannot
explain it as for example being due to c alone varying, as that has no invariant physical
meaning. The source of the variation is c, e, �, or some combination of these quantities,
according to the units used.

21.3 Anthropic question: fine-tuning for life

One impact of the previous section is its implications for one of the most profound issues
in cosmology, namely the anthropic question: why does the universe have the very spe-
cial nature required in order that life can exist? (Davies, 1982, Barrow and Tipler, 1984,
Earman, 1987, Fabian, 1989, Davies, 1987, Balashov, 1991, Rees, 1999, 2001, Barrow,
2002). We can imagine many possibilities for how physics could have been: most of them
will not allow living beings to exist, so a great deal of ‘fine-tuning’ is required in order
that life be possible. The universe sets the context which allows life to come into being.
There are many relationships embedded in physical laws that are not explained by current
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physics, but are required for life to be possible. In particular various fundamental constants
are highly constrained in their values if life as we know it is to exist.

There are three aspects that we consider briefly in turn.

21.3.1 Nature of the laws of physics

The first requirement is laws of physics that guarantee the kind of regularities that can
underlie the existence of life. These laws as we know them are based on variational and
symmetry principles; we do not know if other kinds of laws could produce complexity.
As they are, they permit life to exist, but which aspects are key requirements, and which
inessential?

• The general nature of quantum theory (e.g. superposition, entanglement, decoherence)
and its classical limit?

• The specific nature of quantum field theory and quantum statistics, and specifically quan-
tization that stabilizes matter and allows chemistry to exist through the Pauli exclusion
principle?

• The general nature of Yang–Mills gauge theory and its implications in the context of the
existence of broken symmetries?

• The basic properties of the known forces (effective existence of four fundamental forces;
their unification properties)?

• The specific particles and interactions of the Standard Model of particle physics?

It is not clear precisely which of these are necessary for all possible forms of life, but for
example the existence of electromagnetism would certainly seem to be necessary. If there
were no electromagnetism, there would be no brain as we know it. It is very difficult to
determine if anything else could replace the brain, but within the ambit of physics of the
kind we know, nothing else seems a plausible replacement. But electromagnetism is an
aspect of the electroweak force; is that unification necessary for the existence of life, or
would electromagnetism on its own do? We do not know; nor do we know precisely what
else is required.

Given the Standard Model of particle physics and GR, there are tight limits on a number
of constants governing the strength of interactions, in order that life can exist (Davies, 1982,
Gribbin and Rees, 1989). They include

• The neutron–proton mass differential mn−mp must be highly constrained. If mn were
just a little smaller, proton decay could have resulted in no atoms left at all (Davies,
1982).

• Electron–proton charge equality is required to prevent massive electrostatic forces
overwhelming the weaker electromagnetic forces that govern chemistry.

• The strong nuclear force must be strong enough that stable nuclei exist (Davies, 1982);
indeed complex matter exists only if the strong force properties lie in a tightly constrained
domain relative to the electromagnetic force (Tegmark, 2003) (see Figure 21.1).



544 Chapter 21 Cosmology in a larger setting

0

0.1

1

10

5

4

3

2

1

0

N
um

be
r 

of
 ti

m
e 

di
m

en
si

on
s

St
ro

ng
 c

ou
pl

in
g 

co
ns

ta
nt

 α
s

∞

∞0 0.1

We are
here

Electromagnetic coupling constant α
1

CARBON UNSTABLE

NO NONRELATIVISTIC
ATOMS

UNPREDICTABLE
(elliptic)

UNSTABLE

UNPREDICTABLE
(ultrahyperbolic)

U
N

ST
A

B
L

E

We are
here

Tachyons
only

TOO
SIMPLE

U
N

PR
E

D
IC

TA
B

L
E

(e
lli

pt
ic

)

DIPROTION
DISASTER

10 0 1 2 3 4 5
Number of spatial dimensions

Fig. 21.1 Left: Region in the strong/ weak coupling plane that allows complex structures to emerge. Right: Numbers of space
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• The chemistry on which the human body depends involves intricate folding and bonding
patterns that would be destroyed if the fine structure constant (which controls the nature
of chemical bonding) were a little bit different.

• The masses of the light fermions must be very restricted in order that complex molecules
can form (Hogan, 2005).

• The number of spatial dimensions must be just three for complexity to exist (Tegmark,
2003, Rees, 2001) (see Figure 21.1).

Hogan (2000) has examined the freedom in the parameters of the Standard Model of
particle physics and concluded that five of the 17 free parameters of the Standard Model must
lie in a highly constrained domain if complex structures are to exist. This is of course based
on the Standard Model of particle physics. It is difficult to determine what the constraints
would be in generalizations of the Standard Model. But whatever the nature of fundamental
physics, and in particular of particle physics, only a small subset of all possible laws of
physics will be compatible with the existence of complexity. Taken together, there are many
constraints on the Standard Model resulting from the cosmological context:

• The gravitational force must create large stable structures that can be a habitat for life
and its energy source. This requires the ratio of the gravitational to electrical forces to be
very small and close to the observed value: ∼ 10−36 (Rees, 1999).

• The weak force must allow helium production that leaves sufficient hydrogen over; it is
related to gravity through a numerical factor of∼ 10−11, which cannot be much different.
And for this to work, the neutron–proton mass difference must be close to the mass of
the electron (Davies, 1982).
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• A stellar balance should allow a long lifetime for stars like the Sun, thus enabling the
transmutation of light elements into heavy elements. This requires that the nuclear fusion
efficiency be close to the observed value ∼ 0.007 (Rees, 1999).

• To make heavy elements through nuclear reactions in stars, the beryllium ‘bottleneck’
must be overcome (Gribbin and Rees, 1989, Susskind, 2005). Production of carbon and
oxygen requires the careful setting of two different nuclear energy levels to provide a
resonance; if these levels were just a little different, the elements needed for life would
not exist (Fabian, 1989). Indeed it was on this basis that Hoyle famously predicted a
carbon-12 energy level that has since been experimentally confirmed.

• Something like the existence of neutrinos and the weak interaction with its specific
coupling constant are necessary for supernova explosions that spread heavy elements
through space, as seeds for planetary formation (Gribbin and Rees, 1989).

• The nuclear force must be weak enough that di-protons do not exist, otherwise no protons
will be left over to enable heavier elements to exist (Davies, 1982).

• The neutrino mass must not be too high, or the universe will not last long enough (Davies,
1982).

21.3.2 Specific conditions in the unique universe

Given laws of physics that are suitable in terms of satisfying the requirements of both the
previous sections, the universe itself must also be suitable, in terms of its initial or boundary
conditions, for life to exist. These are constraints on the contingent parameters describing
particular cosmological models. If the laws of physics are basically the same as we now
believe them to be, these cosmological requirements include:

• The universe must be sufficiently old (∼ 15Gyr) for second generation stars to form
and then for planets to have a stable life for long enough that evolution could lead to
intelligent life (Gribbin and Rees, 1989); hence we must have �m0 ≈ 0.3 (Rees, 1999).

• � must not be too large, or galaxies will not form: |��| < 1 (Rees, 1999, Susskind,
2005).

• The amplitude of primordial fluctuations must be large enough for galaxy formation and
small enough to avoid collapse into black holes: ∼ 10−5 (Rees, 1999).

It is easy to emphasize that many of these conditions must be highly restricted (Rees,
1999), but difficult, if not impossible, to state all that is necessary. But for our purposes,
it is sufficient to point out that fine-tuning of some of these parameters is demanded.
Hence only a small part of parameter space allows life to exist. Tegmark et al. (2006)
identify 31 dimensionless physical constants required by particle physics and cosmology,
and emphasize that both microphysical constraints and selection effects might help elucidate
their origin. The overall conclusion is clear:

Thesis 2: Within the context of our current understanding of physics and biology, life is
only possible because both the laws of physics and the boundary conditions for the universe
have a very special nature.
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21.3.3 Multiverse proposal

One way to try to handle this scientifically is through some type of multiverse (Rees, 1999,
Weinberg, 2000a,b, Susskind, 2005), which tries to show how the biophilic situation is
indeed likely to come into existence, even though it is an extremely improbable case. It has
been suggested that multiverses explain the parameters of physics and of cosmology, and
in particular the very problematic observed value of �. The argument is as follows: assume
a multiverse exists with many varied regions each having differing properties. Then it is
likely that some regions will allow life to exist and others will not (Barrow and Tipler, 1984,
Leslie, 1989). Observers can only exist in the highly improbable biophilic outliers where
� is very small (Hartle, 2004). It is supposed that this will be satisfied somewhere in the
multiverse, so we shall indeed observe this condition – and all the necessary requirements
for life – to be fulfilled somewhere. A similar argument has been proposed for neutrino
(Tegmark, Vilenkin and Pogosan, 2005) and light fermion (Hogan, 2005) masses.

The multiverse proposal: If there is a large enough ensemble of numerous universes with
varying properties, it may be claimed that it becomes virtually certain that some of them will
have the right conditions for life to evolve. This could help explain the fine-tuned nature of
many parameters whose values are otherwise unconstrained by physics. Then the anthropic
principle turns out to be a selection principle.

A vibrant strand of current cosmology is based on using this multiverse proposal to show
that life somewhere in the multiverse is probable. Before looking at this further, we first
consider the more fundamental issue: why should we believe that the universe is probable?

21.4 Special or general? Probable or improbable?

21.4.1 Special or general initial conditions?

We decide if a family of universe models is special or generic by considering what subspace
it represents within an ensemble of hypothesized universe models (regarded as a possibility
space for cosmology). The result obviously depends both on the chosen possibility space,
and on the measure imposed on that space; there is a wide variety of choices available in
both cases. Nevertheless reasonable results may be obtained from reasonable assumptions,
as is illustrated above in our conclusion that anthropic universes are very special within the
set of all possible universe models.

The present almost-FLRW state of the universe is very special: whatever measure is used,
such models represent a very small part of the space of possibilities because of the very high
symmetries of the background FLRW models. However, the issue that is open is whether the
initial conditions that led to the present-day special state were special or generic: and both
possibilities have been proposed. The universe could have started out in an almost-FLRW
state, and stayed that way; or it could have started out in a more generic inhomogeneous
state, and then isotropized. Indeed fashions have changed in this regard. The assumption of a
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geometrically special initial state was encoded in the cosmological principle, the assumption
that the geometry is RW. This was taken as a founding principle in cosmology until the
1960s, i.e. as an ‘explanation’ of special initial conditions (see Section 9.8). Then Misner
(1968) introduced the ‘chaotic cosmology’ programme, based on the idea of generic initial
conditions being isotropized at later times by physical processes such as viscosity, making
initial conditions irrelevant. This concept then became central to the inflationary family of
theories (Section 9.7), with the underlying assumption that fine-tuning of initial conditions
is unphysical and to be avoided.

Both programmes are, however, only partially successful: one can explain a considerable
degree of isotropization and homogenization of the physical universe by either process,
but this will not work in all circumstances. Inflation can get rid of much anisotropy (Wald,
1983), but inhomogeneity must be restricted if inflation is to succeed in producing a universe
like that we see today (Rothman and Ellis, 1986, Carroll and Tam, 2010). And the success
of inflation in solving the horizon problem for HBB models – where exact homogeneity
exists to start with – will not necessarily be replicated in anisotropic models. Universes that
are initially too anisotropic may never inflate; indeed when perturbations are taken into
account, an extremely small fraction of cosmologies will inflate (Carroll and Tam, 2010),
and the horizon problem may not be solved in such models if they do. Thus inflation can
only be guaranteed to succeed if initial conditions are somewhat restricted; some degree of
geometric speciality must have occurred at the start of the observed region of the universe.
This conclusion is reinforced by entropy arguments indicating that the universe could not
have been in a genuinely generic condition (entropy is maximized by a black hole), and
only rather special states lead to ordinary thermodynamics (Penrose, 1989, Wald, 2005,
Carroll and Chen, 2005, Greene et al., 2011), which underlies inflationary studies (Penrose,
2004, Carroll, 2010). This special domain might possibly occur within the context of a much
larger universe domain where conditions vary randomly, and only isolated regions lead to
inflation and eventually domains such as that we see around us; this is essentially a version
of the multiverse proposal.

21.4.2 The universe and probability

To explain why the universe is special, we need to consider the further issue: is the universe
probable or improbable? Here, probability is intended as a causal explanation, as in the
anthropic case mentioned above. Probability only makes sense if there is an actual physically
existing ensemble to which probabilities can be applied, not just a hypothetical ensemble
(as in the previous section). A hypothetical ensemble only provides an explanation of the
nature of cosmological existence if it relates to an actually existing ensemble.

A fundamental aspect of cosmology is that there is only one observable expanding uni-
verse region (McCrea, 1953, 1960, Munitz, 1962, 1986, Ellis, 2006), embodied in a larger
unique universe: the single existing physical reality. This essential uniqueness of its object
of study sets cosmology apart from all other sciences. We can observe its many aspects in
many ways, but they are all aspects of one unique object: the universe itself. Cosmological
theory makes statistical predictions of physical outcomes of classes of physical objects in the
cosmological context, so probability theory applies to the emergent families of astronomical
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objects (clusters of galaxies, galaxies, stars, planets for example) in the universe. However,
there is no obvious reason why it should apply to the universe itself, unless we live in a
multiverse.

When there is just one object in existence, and no other similar object to compare it with,
it is not probable or improbable – it simply is. Ordinary probabilities do not apply when
there is only one object under consideration. But a concept of probability underlies much
of modern argumentation in cosmology. Talk of ‘fine-tuning’ for example is based on the
use of probability (it is a way of saying something is improbable). This assumes both that
things could have been different, and that we can meaningfully assign probabilities to the
set of unrealized possibilities.

Thesis 3: The concept of probability is problematic in the context of existence of only one
observable object.

If we base probabilities for cosmology on the concept of ‘the wave function of the
universe’ in quantum cosmology, we face the problem of how to verify that this theory
applies to the actual universe. In any case, as we discuss below, there is no well-established
measure to use on the space of cosmological models, so the result can be changed by
changing the measure used. Additionally, the meaning of the wave function ! is not clear
in this context. Thus there is no well-established context for determining probability in
regard to the universe. But even if there were, there is no guarantee that the single universe
that we actually observe is indeed probable.

The concept of probability does not usefully apply to a single object, even though we
can make many measurements of that single object to determine its detailed nature: it
applies where we can make multiple distinct measurements of the single universe, but not
to issues concerning the existence of the universe itself (Ellis, 2006). If we use a Bayesian
interpretation, which some suggest can be meaningfully applied to only one object, the
results depend on our ‘prior knowledge’, which in this case can be varied by changing
our initial pre-physics assumptions. Bayesian approaches (Garrett and Coles, 1993) are
completely dependent on the priors assumed: in the cosmological context, these priors are
untestable philosophical assumptions.

21.5 Possible existence of multiverses

If a multiverse existed in physical reality, there would be a physically realized ensemble to
apply probability to: probabilities do make sense within the context of a multiverse, because
they deny the uniqueness of the universe. They do indeed provide a causal explanation of
the anthropic puzzle.

Is there a physically existing ensemble out there, within which probabilities would make
sense? This is often assumed to be true. The ensemble is defined by specifying a space of
possible models, the measure to use on this space, and the way it is populated by some uni-
verse creation mechanism. There are a number of ways in which, theoretically, multiverses
could be realized: there might be a fundamental principle that all possible universes occur,
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not causally related to each other (Lewis, 1986, Tegmark, 2003); they might occur as a
realization of different branches of the wave function of the universe envisaged in quantum
cosmology (Section 20.2); they might occur through cyclic processes in time, the phoenix
universe idea, proposed in various ways (Section 20.6); or they might occur in different
spatial places in a greater mega-universe. The pre-eminent proposal today is the latter one:
that the emergence of a spatially separated set of universe domains will be an inevitable
result of chaotic inflation (Susskind, 2005, Guth, 2007).

21.5.1 Defining multiverses

Possibility space

When considering probability in the context of a space of possible universes, one has to
define what constitutes possibilities. This is a deep question which is philosophical, because
there is no conceivable way of testing it. It is a choice we make.

What variations in physics do we allow in a multiverse (Ellis, Kirchner and Stoeger,
2004)? For example, are they all based in the same underlying quantum gravity theory?What
about the set of allowed logics? Probabilities will depend on what we define as the space
of possibilities. The outcome will depend on the choices we make here. Additionally, what
geometrical possibilities shall we consider? Only RW models? Will we include Bianchi and
LTB and general inhomogeneous models? The outcome will depend on these choices too.
One of the proposals of this book is that we should consider all the geometrical possibilities
(see Chapters 17–19).

Chaotic inflation resolves these issues by assuming some form of physics applies in the
megaverse that allows different local realizations of physics in local domains; and the main
proposal for that theory is M-theory, with the possibility space being the landscape of string
theory. This idea is usually applied to a very restricted set of geometrical possibilities:
usually only RW geometries are considered.

Populating the possibility space

Once the space of possibilities is defined, some hypothetical generating mechanism is
needed to populate it with a distribution of models to create a specific multiverse pro-
posal; then we have a suitably defined ensemble of cosmologies in which probability could
make sense. This population is defined by a distribution function on the possibility space
(Ellis, Kirchner and Stoeger, 2004). The distribution can be assumed a priori, or it can be
seen as following from some hypothetical generating mechanism. A popular proposal is
Coleman–de Luccia tunneling from a prior space, as in the chaotic inflation proposals.

The issue of measures

But how probabilities work out in this hypothetical ensemble depends on the measure cho-
sen. And we have no agreed measure on the space of possible universes; what seems special
or general depends on the choice of such a measure. Even if the ensemble is measurable in a
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natural way, one may need to apply a weighting to this measure to make its integral over the
ensemble converge, and to turn it into a probability measure. A common starting point is a
flat a-priori measure, motivated by Laplace’s Principle of Indifference (Gibbons and Turok,
2008), later modified to reflect constraints from extra information. Ways to define and refine
measures remain an issue of debate. We give some examples of current approaches.

Assigning probabilities on the whole infinite-dimensional space of solutions is so diffi-
cult that papers often address only the issue of measures on finite-dimensional subspaces,
e.g. the subspace of RW cosmologies with scalar field or barotropic perfect fluid content.
Kirschner and Ellis (2003) review earlier proposals and their flaws, for example, that the
probability assigned may depend on the t =const slice used to define the measure. They
propose probabilities based on applications of Jaynes’ principle that the measure should
be invariant under a transformation group appropriate to the constraints on the variable,
deriving interesting results for the ‘flatness problem’ from a choice based on considering
the time-independent quantities K , � and (in the dust case) ρa3. However, the probabil-
ities thus defined still depend significantly on the assumptions made: for example, if no
constraint is put on �, the measure is proportional to d�, while if it is assumed that �> 0,
the appropriate measure is proportional to d�/�.

Gibbons and Turok (2008) have reconsidered the proposal of Gibbons, Hawking and Stewart
(1987) to use the natural symplectic measure on the space of trajectories in finite-
dimensional truncations (‘minisuperspaces’) of the whole space governed by a Hamiltonian
and subject to an odd number of holonomic constraints: this counts each classical cos-
mology only once. The origin of the divergence found in the total measure proposed by
Hawking and Page (1988) for scalar field RW models is observationally indistinguishable
nearly-flat models. Gibbons and Turok identify such models and arrive at a finite measure.
It turns out that this suppresses inflationary models by a factor exp(−3N) where N is the
number of e-folds: they compare this with other proposals favourable to inflation. However,
Carroll and Tam (2010) review both proposals, and conclude that the symplectic measure
firstly strongly favours flat models, and secondly shows that inflation is suppressed by an
even higher number: only 1 in 106.6×107

cosmological histories inflate.
In the context of string theory, one may want to calculate probabilities for the different

possible vacua. In (eternal) inflation, one wants to compute probabilities for the parameters
of the different ‘thermalized’ regions (in effect, locally homogeneous regions, i.e. not the
full space of inhomogeneous models) within the one universe we are in.Anumber of papers
discuss the two together, i.e. the inflationary multiverse. For example, Garriga et al. (2006)
used an ergodic assumption on the underlying fields and various choices for weight factors.
Linde (2007) noted the dependence of earlier results on cutoffs and proposed an improved
volume-weighting avoiding some of the difficulties by making comparisons at the stage
when the thermalized volumes enter their stationary phases. This ‘stationary measure’ was
later shown to avoid some problems, in particular the high-temperature CMB background
predicted by some alternatives, and to predict the results of some local experiments, such
as proton decay (Linde, Vanchurin and Winitzki, 2009). Even when inflation is not eternal
and the universe is compact, different measures are possible. Proposals for a proper time
measure, scale factor cutoff measure, causal diamond measure, and stationary measure are
discussed and compared by Linde and Noorbala (2010).
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In a different scenario, the ‘no boundary’ proposal, Hartle, Hawking and Hertog (2008)
considered a probability obtained by weighting the probabilities of the no-boundary wave
function by the number of Hubble volumes in the total present volume, proportional to
exp(3N). This favours larger universes and more inflation.

Overall, the measure issue remains unresolved – some measures allow eternal inflation
and others non-eternal inflation (Linde and Noorbala, 2010). Some even imply that inflation
is improbable by a large factor (Gibbons and Turok, 2008, Carroll and Tam, 2010). The
results obtained depend on the measure used.

21.5.2 Testability of multiverse proposals

Multiverse proposals are observationally and experimentally untestable, because we have
no causal connections with most of the regions predicted to exist by this theory. They
make statements about conditions far beyond the visual horizon, with the term ‘infinity’
often being used. Extrapolation on such scales is dangerous, and the supposed underlying
physics is not yet well established. Any proposed physics underlying a multiverse proposal,
such as Coleman–de Luccia tunneling, will be an extrapolation of known physics; but the
validity of that major extrapolation to cosmology is untestable. Thus these models are not
an inevitable consequence of established physics.

Thesis 4: Multiverse proposals are unprovable by observation or experiment, but some
self-consistency tests are possible.

Given that the claimed other universes or universe domains in a multiverse are obser-
vationally inaccessible, is there any other way of demonstrating their existence? A variety
of probability based tests for the multiverse, particularly related to the expected value of
�, have been proposed (Rees, 2001, Susskind, 2005, Weinberg, 2007), but they cannot be
used to prove the existence of a multiverse, for they cannot sensibly be applied to a single
object. These tests are only applicable if a multiverse exists, and thus assume the result to
be proved:

Thesis 5: Probability-based arguments cannot demonstrate the existence of multiverses.

The consistency tests on some multiverse proposals are necessary conditions for those
specific multiverse proposals, but are hardly by themselves indications that the multiverse
proposal is true.The drive to believe this is the case comes from theoretical and philosophical
considerations (see e.g. Susskind (2005)) rather than from data. The claim that an ensemble
physically exists – as opposed to an explicitly hypothetical ensemble, which can indeed be
useful – is problematic as a proposal for scientific explanation, if science is taken to involve
testability. Indeed, adopting these explanations invokes theory over testability (Gardner,
2003); but the theories being assumed are not testable. It is therefore a choice made for
philosophical reasons. That does not mean it is unreasonable (it can be supported by quite
persuasive plausibility arguments); but its scientific status is unclear.
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21.5.3 Criteria for scientific theories

Typical criteria for a good scientific theory (Kuhn, 1977), could be the following:

• Satisfactory structure: (a) internal consistency, (b) simplicity (Ockham’s razor), (c) aes-
thetic appeal (‘beauty’ or ‘elegance’).

• Intrinsic explanatory power: (a) logical tightness, (b) scope of the theory – the ability
to unify otherwise separate phenomena, (c) probability of the theory within some well-
defined measure.

• Extrinsic explanatory power, or relatedness: (a) connectedness to the rest of science,
(b) extendability – providing a basis for further development.

• Observational and experimental support: (a) testability – the ability to make quantitative
as well as qualitative predictions that can be tested, (b) confirmation – the extent to which
the theory is supported by such tests as have been made.

It is particularly the last that characterizes a scientific theory, in contrast to other types of
theories claiming to explain features of the universe and why things happen as they do. It
should be noted that these criteria are philosophical in nature, in that they themselves cannot
be proven to be correct by any experiment. Rather their choice is based on past experience
combined with philosophical reflection. Philosophical criteria for satisfactory cosmological
theories will in general come into conflict with each other, so that one will have to choose
between them to some degree; this choice will shape the resulting theory – in particular in
the tension between explanatory power and testability of a theory. These criteria will not all
be satisfied to the same degree, and may even lead to opposing conclusions (Ellis, 2006):

Thesis 6: Conflicts arise in applying criteria for satisfactory cosmological theories.

We need a meta-theory telling us what criteria to apply in what context: but no such
meta-theory exists – and if it did, it would not be testable. It would itself be yet another philo-
sophical presupposition. Because of all the limitations in terms of observations and testing,
in the cosmological context we still have to rely heavily on other criteria, such as explanatory
power, which is often taken to be more important than observational testing of the theory.
The problem arises if there is no observational evidence whatever supporting the theory.

21.5.4 Multiverses and verifiability/falsifiability

Unless the nature of causality and horizons is changed by subsequent developments in
physics, multiverse proposals are untestable. They have great explanatory power, for exam-
ple in terms of explaining the small value of �, but in the end that power is too great:
as they can explain virtually anything, they are unable to uniquely explain anything in
particular. Some versions demand negative spatial curvature (Freivogel et al., 2006), but
others are not so constrained (Tegmark, 2003). There are some consistency tests, but they
do not uniquely indicate that a multiverse exists. In order to be characterized as science,
the testability component seems essential; explanatory power alone cannot replace it. The
idea of a multiverse provides a possible route for the explanation of fine-tuning. But it is
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not uniquely defined, and is not scientifically testable apart from some possible consistency
tests. Indeed it explains too much, because (at least in some versions) the multiverse idea
can explain anything; thus no observation can show it wrong.

Thesis 7: It can be argued that multiverses cannot be scientifically proven to exist because
the usual kinds of scientific proof are not available.

We emphasize that there is nothing wrong with scientifically based philosophical pro-
posals, indeed they are very useful; but they should be identified for what they are. The
issue is discussed further in Carr and Ellis (2008) and Ellis (2009).

Problem 21.1 If you disagree with the criteria for good scientific theories suggested above
(Section 21.5.3), propose other ways of defining the issue. Is there for example a more
holistic criterion for a theory as a whole, that validates its essential parts, even if they are
not testable by themselves? But then what criteria are needed for something to be included
as an essential part of a theory?

21.5.5 Infinities in cosmology

One of the reasons that we study cosmology is our fascination with its philosophical aspects;
and one that recurs is the idea of infinity in cosmology. The ideas of infinite spatial sections
with an infinite number of galaxies, and of an infinite number of universes (or expanding
universe domains) in a multiverse, are currently being widely proposed in the context of
chaotic inflation, see e.g. Guth (2007). If true, this has strange implications; it plausibly
implies that countless identical civilizations to ours are scattered in the infinite expanse of
the cosmos, with semi-identical histories to ours replicated an infinite number of times out
there (Ellis and Brundrit, 1979).

It has been claimed that this is a necessary outcome of current inflationary theories
(Knobe, Ohm and Vilenkin, 2006, Vilenkin, 2006). But the problem lies in the idea that this
is currently how things are: that it is the state at the present instant, as is often claimed. The
real situation is that physical processes may be such that eventually an infinite number of
galaxies, stars, planets, and civilizations will tend to come into existence; but that state is
not achieved at any finite time through the supposed physical processes (Ellis and Stoeger,
2009b). And if it were true, it is certainly not verifiable: no observational or experimental
process can prove that an infinite number of any entities exist. Thus any such claim is a
philosophical rather than scientific statement.

Consequently, any claims of actual existence of physical infinities in the real universe
(or an assumed multiverse) should be treated with great caution (Ellis, 2006).

Thesis 8: The physical existence of infinities is questionable.

Hilbert expressed a similar view long ago: ‘the infinite is nowhere to be found in reality. It
neither exists in nature nor provides a legitimate basis for rational thought’ (Hilbert, 1964).

Problem 21.2 Consider any way you can of experimentally or observationally testing the
idea that there is an infinite number of objects (of any kind) in the universe.
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21.6 Why is the universe as it is?

The considerations above, and particularly the fact that it allows life to exist, lead to the
conclusion that the physical universe in which we exist is very improbable. Much of current
cosmology can be viewed as trying to shift the improbability from one place to another (ini-
tial conditions, physical conditions, location in a multiverse, etc.). Thus a key philosophical
issue is, Why do we live in this improbable unverse? Why does it have this improbable
nature? This is the issue of the relation of the universe to ultimate causation (as opposed to
the ultimate limits of physical causation, which we considered in Section 20.6). This might
be true because:
it happened by pure chance (pure happenstance);
it is the only way things could be (necessity);
an ensemble of universes exists, providing a context in which existence of at least one
bio-friendly universe is probable (probability);
it is intended to be that way – in some sense, purpose or design underlies existence (purpose).

In all cases, the final issue of existence remains a mystery: each explanation assumes
some kind of existence as a starting point. We shall not enter this discussion here; we simply
make a fundamental point relating this to scientific cosmology: the ultimate issue cannot
be resolved by the multiverse proposal. If we choose to support the multiverse view on
philosophical grounds, ultimate issues remain: Why does this unique larger whole have the
properties it does? Why this multiverse rather than any other one? Why is it a multiverse
that allows life to exist? Many multiverses will not allow any life at all.

To solve this, we can propose an ensemble of ensembles of universes, with even greater
explanatory power and even less prospect of observational verification; and so on. The
prospect of an infinite regress looms. Indeed if we declare (as suggested at the start of this
book) that ‘the universe’ is the total of all that physically exists, then when an ensemble of
expanding universe domains exists, whether causally connected or not, that ensemble itself
should be called ‘the universe’, for it is then the totality of physically existing entities. All
the foundational problems for a single existing universe domain recur for the multiverse –
because when properly considered, it is indeed the universe! (Ellis, 2006)

Thesis 9: Metaphysical uncertainty remains about ultimate causation in cosmology.

The conclusion of this chapter is that when one probes the far reaches of cosmology, one
inevitably starts to engage with philosophical issues. It is best to recognize this fact, and to
engage with them in an informed way. If one enters this territory, one cannot get away with
the claim that one is just doing physics: an uninformed philosophical attitude is indeed a
philosophical stance, albeit it an uninformed one.

Problem 21.3 Reconsider the issue of the relation between philosophy and cosmology in the
light of the above discussion, and of Tegmark (2008), White (2007), Ellis (2009), Hogg
(2009), Goenner (2010), Balbi (2010).
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22.1 A coherent view?

We conclude by returning to the question we started with: what is our best current picture
of the physical universe, and what are its problems and uncertainties?

There is an agreed basic view of the universe, the standard model of cosmology, in which
the universe expands from a hot big bang early phase to a late-time cool, accelerating
phase driven by a cosmological constant, with structure formation taking place through
gravitational instability around the ‘scaffolding’ provided by dominant CDM, acting on
seed perturbations generated by inflation. This seems to provide a statistically good fit to
all the data up to now, with the same set of parameters.

Given the major physical uncertainties concerning this model, we need to continue sub-
jecting it to further observational tests with ever-improving data – and we need to query its
uniqueness, and probe the alternative possibilities. A key feature is that uncertainty about
both geometry and physics increases with time in the past, and with distance from our world
line. Our cosmological claims should make this feature clear. Use of the FLRW models as
a starting point of analysis tends to hide this fact. The perturbative inhomogeneity imposed
in these models changes the physics equations from PDEs to ODEs and so hides the nature
of causality and associated causal domains.

22.1.1 The visible universe

The visible universe is the part of spacetime within our past light-cone since decoupling. The
CMB emitted from where our past light-cone intersects the last scattering surface marks the
boundary of this domain – the matter emitting this light represents our visual horizon, the fur-
thest away matter that we can detect by electromagnetic radiation of whatever wavelength.
Observations give us direct access to this region, and allow us to find the best fit FLRWmodel
– and to test the theory of structure formation within that model. In particular, we can check
the consistency between the CMB anisotropies and the large-scale distribution of matter.

The major puzzles here are

• What is the dark matter that we discern through its gravitational effects? Can we succeed
in direct detection via experiments on Earth?

• What is the dark energy that we infer through the acceleration of the universe at late
times? Is it � or dynamical? Is it a modification of GR on large scales, or a mirage due
to misinterpretation of observations in a lumpy universe?
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Determining the nature of the dark components is a key focus of present-day cosmology.
In addition to discovering the CDM particle, we need a much better understanding of the
interplay between CDM and baryons in structure formation, involving the complex non-
linear magneto-hydrodynamics of baryonic gas. More and more sophisticated simulations
need to be combined with analytical progress in understanding the qualitative physics of
nonlinear structure formation.

Key developments that will shape our understanding include:

• Wider and deeper galaxy surveys will provide increasingly detailed information about
the distribution and peculiar velocities of large-scale structure.

• Weak lensing will give increasingly detailed maps of the total matter, and together with
galaxy surveys will provide high-precision tests of GR on cosmological scales.

• The evolution of the BAO feature with redshift – in both radial and transverse directions
– will not only provide tight constraints on the expansion history, but will also be a
powerful consistency check of the standard model.

• In order to push the frontier back to the reionization era and even to the pre-stellar
‘dark ages’, deep radio surveys of the HI 21cm signal will provide new advances in our
understanding of the origin of galaxies.

22.1.2 The hidden past

The hidden past, as far as observations by electromagnetic radiation of any wavelength are
concerned, is everything that lies before the surface of last scattering. The CMB blackbody
spectrum provides evidence of the hot big bang era, and its acoustic peaks are relics of
the acoustic waves in the plasma before decoupling. Light element abundances in our
neighbourhood provide a ‘geological’ record that probes BBN at early times near our
world line.

The major puzzles that remain about the hidden past include the nature of baryogenesis
and the fundamental physics underlying inflation. Observational developments that will
help to unravel these puzzles include:

• Probing particle physics beyond the Standard Model via higher and higher energy
colliders.

• Obtaining detailed CMB polarization data as a test of theories of inflation and alternatives.
• Non-Gaussianity on large scales in the CMB and large-scale structure will also test

theories of inflation and probe the primordial perturbations.
• Space-based gravitational wave astronomy as a direct probe of the cosmic gravity wave

background, potentially corroborating the evidence from the CMB.
• Neutrino astronomy developed to the point of directly detecting the neutrino background

radiation – a very remote possibility, but in principle possible.1

1 The possible direct detection of this background is quite different from inferring its existence from the CMB
power spectrum.
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In principle we can obtain useful information back to the end of inflation, but we can learn
much less about pre-inflation, precisely because an inflationary epoch will have wiped out
previous data.

The origin of the universe

We cannot test much of the physics important in the very early universe because we cannot
attain the required energies in accelerators on Earth. This means we are unable to get
certainty on key issues, especially: did the universe have a beginning? Supposing there was
a beginning – then major unresolved questions arise:

• Was it special (highly symmetric) or generic (randomly based)?
• What caused it? Testable physics cannot explain the initial state and hence specific nature

of the universe.
• Why does the universe appear almost FLRW in the observable domain? Inflationary

theory only partly explains this.
• How is the arrow of time built into the structure of the universe, and how does it relate

cosmological conditions to local physics?

The ultimate goal is to find a theory of creation of the universe that is fully compatible with
quantum theory and GR, or some unification of those theories, and that predicts what we
see with a plausible argument for uniqueness.

22.1.3 The inaccessible domains

Observational horizons limit our ability to observationally determine the very large-scale
geometry of the universe (unless we live in a ‘small universe’, where we have already seen
right round the universe since last scattering).

Beyond the horizon

There is no observational way to determine what happens outside the visual horizon.The par-
ticular issue where the nature of the region outside the horizon is in contention, is the debate

• Does a multiverse exist as a physical entity?

Existence of an effective multiverse is a likely outcome of chaotic inflation, but we have
no definitive proof that chaotic inflation occurred.

To the future

Unless we live in a small universe, we do not even in principle have the data necessary
to predict to the future from observable data: we can only do so by making untestable
assumptions (that no new kinds of data will enter our visual horizon). For want of any
better position to adopt, we usually assume things will carry on unchanged. Even in this
case, we face uncertainty. What is the future fate of our universe domain: will it expand
forever, or recollapse? In the latter case, might it recycle to a new expanding phase? This
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depends on a possible decay of dark energy in the future; if this does not occur the universe
will expand forever. If it does occur, the outcome depends on the sign of the spatial curvature,
which we do not yet know. But there is no proof this will happen, and the default assumption
must be that the universe will expand forever.

22.2 Testing alternatives: probing the possibilities

Given the above observational restrictions, it is wise to probe the viable alternatives as
regards both the physics and geometry.

22.2.1 Alternative physics

Much speculation and research is investigating alternative possible forms of dark energy,
and devising observational tests that can test whether acceleration is due to �. Equally
important is investigating alternative forms of gravity. GR is only soundly tested on Solar
System scales, and then in quasi-static situations – testing GR on cosmological scales is
opening up a new frontier in cosmology. Furthermore, as we are engaged in investigating
the most distant regions of space and the earliest epochs of the universe, it is important to
do whatever we can to check whether physics is unchanging with time. In particular, do
any of the constants of nature (within our current theories) vary with time?

In summary, further theoretical and observational efforts are needed to:

• Test alternatives to � within the standard model.
• Test alternatives to dark energy based on modifications of GR.
• Test our current fundamental theories by probing possible variations in their fundamental

constants.

22.2.2 Foundations of homogeneity

The foundation of almost all present-day cosmological analysis is the perturbed RW
geometry of the observed region of spacetime. Therefore, it is vital to test this assumption.

• The strongest support for homogeneity is the exact EGS-ETM theorem (isotropic CMB
for all observers implies homogeneity) and its partial generalization, the almost-EGS
theorem.

• We need to remove the assumptions on derivatives in the almost-EGS result, probably
by using observations of matter in addition to the CMB.

• The galaxy distribution on the past light-cone contains crucial information on spacetime
geometry, and further work is needed to develop light-cone analysis of galaxy surveys.

• The Copernican assumption underlying these results needs to be tested via Sunyaev–
Zel’dovich scattering of the CMB at distant clusters, tests for deviations from RW
curvature and other probes.
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22.2.3 Fitting, averaging and backreaction

More fundamentally, the homogeneity assumption and its theoretical support make implicit
assumptions about how the real universe is smoothed to achieve an RW description.

• Determining the averaging scale, the nature of averaging itself, and the way that the
result of averaging is used to fit a given FLRW background constitute a major unresolved
problem in cosmology.

• Even if it can be shown that the standard approach of assuming perturbed FLRW
is effectively correct, important corrections to precision cosmology may arise from
averaging/backreaction effects on the metric and on light propagation.

22.2.4 Alternative homogeneous geometries

Anisotropic modes

There may be non-zero anisotropic (Bianchi) modes, which would tend to dominate dynam-
ics at both early and late stages, while allowing a very long intermediate period very close
to a RW geometry. If they occur they may leave traces in the CMB anisotropies and may
affect BBN.

Alternative topologies

The topology of the spatial sections of RW geometries can be extremely complex, and no
principle is known that will determine what this topology is. An important issue is whether
we live in a small universe or not; this should be detectable by searching for identical circles
in the CMB sky. These are the only universes where there is no hidden region beyond a
visual horizon and where we can in principle predict the future from available initial data.

22.2.5 Alternative geometries: inhomogeneous models

Inhomogeneous models allow us in principle to explore the nonlinear effects of structure
within GR, independent of the averaging problem. In addition, they allow us to probe the
standard model.

• Large-scale void models, where we are at the centre of an isotropic underdense region,
probably cannot pass all observational tests. Further work is needed on how large-scale
structure grows in these models, in order to settle the issue of whether they are ruled out.

• Given the central role of dark energy in present-day cosmological studies, it is crucial to
test this possibility by all available observational means.

22.3 Limits of cosmology

Cosmological uncertainty mirrors at the largest scales the uncertainty of quantum theory at
the smallest scales. It is a key aspect of physical cosmology: we are limited in what we can
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ever know with reasonable certainty about the geometry of the universe on the largest scales,
and the relevant physics at the earliest times. Cosmological theory should acknowledge this
uncertainty.

22.3.1 Uniqueness of the universe

The overall problem for cosmology, arising from the uniqueness of the universe, is how
does generic theory apply to the specific, when only one specific case exists? What is the
relation of chance versus necessity in the origin of the universe? Necessity is represented by
physical laws, but they may depend to some degree on the cosmological environment. One
has the issue of why specific initial conditions occurred, for both physics and geometry.
The place where this makes a practical difference in cosmology is

• Cosmic variance: cosmological theory gives statistical predictions not unique outcomes.
How do we handle the relation between the specific one universe that does exist, and the
generic theories of the kinds of universe that might exist?

This affects our attitude to such issues as the large-scale power drop-off in the CMB
anisotropies, and possible statistical anisotropies between the Northern and Southern hemi-
spheres: do they need an explanation, or are they to be regarded as chance events, not
needing an explanation? The difference is substantial.

22.3.2 Significant questions

Finally, there remain fundamental issues which lie beyond the scope of science:

• Uncertainty about ultimate issues will remain. Scientific exploration can tell us much
about the universe, but not about its ultimate nature: why things exist, and why they are
the way they are?

• How does it come about that the universe provides a viable home for intelligent life?

The anthropic question will remain one of the most interesting issues in terms of relating
cosmology to the larger philosophical sphere. Astronomically it relates to the existence of
other planetary systems, and theoretically to arguments about why the universe is as it is.
Studies of the nature of the full family of plausible cosmological models will inform that
argument, but not solve it. Philosophically it leads to speculations about ultimate causation
and the nature of existence. Physical cosmology provides the proper context within which
to imbed those speculations.

22.3.3 The ephemeral and the long lasting

To return to a point we made at the start of this book: what we would like to do is to clarify
which are transient issues, that will eventually go away, and which are foundational issues,
that will always remain of concern to the scientific study of cosmology?

We have made choices in this regard in the discussion above, through pointing out the
issues we regard as important. Only time will tell how good these choices have been.



Appendix

Some useful formulae

A.1 Constants and units

Some useful constants are given in SI units in Table A.1. It is convenient to use units that
simplify the often cumbersome expressions in SI units.

Units with c= 1

In units with the speed of light set to unity, length and time, mass and energy, and energy
density and pressure, have the same dimensions:

c= 1 ⇒ [length] = [time] =L, [mass] = [energy] =M , [ρ] = [p] =ML−3, (A.1)

where we have chosen to use length and mass units, but other equivalent choices can be
made. Then Newton’s constant has dimensions

[G] =LM−1. (A.2)

The line element has dimension L2, but coordinates are usually taken to have no dimen-
sion (since they are definable even when there is no metric). Thus the metric tensor gµν
is taken to have dimension L2. Then the Levi-Civita connection components µ

νκ , and
the curvature components Rµ

νκσ and Rµν are dimensionless. The Ricci scalar and � will
have dimension L−2, and this will be unaffected by changes of coordinate or tetrad basis.
If one uses an orthonormal tetrad, the basis vectors have dimension L and the curvature
components have dimension L−2.

It is always possible instead to introduce for each coordinatexµ a factor kµ with dimension
L, and use coordinatesXµ= kµxµ (no sum onµ), which have dimensionL. Then the metric
becomes a dimensionless function of {Xµ/kµ} (no sum on µ), the connection components
have dimension L−1 and the curvature components dimension L−2. The drawback is that
the extra kµ factors in general make the expressions rather cumbersome, but in special cases
that drawback can be overcome.

In particular, as explained in Section 9.1.3 and below, it is convenient in FLRWcosmology
with K �= 0 to choose coordinates adapted to the length scale of the spatial curvature so that
in all cases the scale factor a(t) can be considered dimensionless.

λphys = a(t)λcom . (A.3)

We can choose how to ‘share’ the length units; e.g., we could choose [a] = L, [λcom] = 1.
We follow the convention defined by

[a] = 1, [λcom] =L , (A.4)
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Table A.1 Some useful constants (to 2 significant figures)

CONSTANT SYMBOL VALUE

light speed c 3.0× 108 m/s
Newton constant G 6.7× 10−11 m3/kg/s2

Planck reduced constant � 1.1× 10−34 Js
Boltzmann constant kB 1.4× 10−23 J/K

Planck mass MP 2.2× 10−8 kg
1.2× 1019 GeV/c2

Planck time tP 5.4× 10−44 s

electron mass me 9.2× 10−31 kg
5.1× 10−1 MeV/c2

proton mass mp 1.7× 10−27 kg
9.4× 102 MeV/c2

Thomson cross-section σT 6.7× 10−29 m2

1.7× 10−15 eV−2
�

2c2

parsec pc 3.1× 1016 m
year yr 3.2× 107 s
solar mass M� 2.0× 1030 kg
solar luminosity L� 3.8× 1026 W

Hubble constant H0 3.2× 10−18hs−1

2.2× 10−33heV/�

Hubble radius cH−1
0 9.1× 1025h−1 m

3.0h−1 Gpc
photon temperature Tγ 0 2.7K

2.3× 10−4 eV/kB

photon number density nγ 0 4.1× 108 m−3

equality redshift 1+ zeq 2.4× 104�m0h
2

decoupling redshift 1+ zdec 1.1× 103

eV conversions 1 m 5.1× 1015 GeV−1c�

1 s 1.5× 1024 GeV−1
�

1 kg 5.6× 1026 GeVc−2

1 J 6.2× 109 GeV

1 K 8.6× 10−14 GeVk−1
B

which implies that

[t] = [τ ] = [χ] = [r] = [x] =L , [K] =L−2 , [H ] = [k] =L−1 , (A.5)

where k is a comoving wavenumber. For non-flat spatial sections, the spatial Ricci scalar
defines a curvature scale at the present time,

K = ±1
3R2

0

, 3R0 = 1

a0H0
√|�K0| . (A.6)
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It is useful to fix the present-day scale factor to unity, a0 = 1.
Units with � = c= 1

If we also set Planck’s reduced constant to unity, then the Einstein–Hilbert action is
dimensionless and we get [G] = L2. It follows from (A.2) that mass and inverse length
have the same dimensions:

� = c= 1 ⇒ [length]−1 = [mass] =M . (A.7)

This can also be seen via the formulae for Planck mass, length and time,

MP =
√

�c

G
, �P =

√
�G

c3
, tP =

√
�G

c5
. (A.8)

In these units,

[ρ] =M4, [�] =M2, [H ] = [ϕ] =M , (A.9)

where ϕ is a scalar field.

Units with kB = � = c= 1

If we further set Boltzmann’s constant to unity, temperature has the same dimension as
mass-energy:

kB = � = c= 1 ⇒ [temperature] =M . (A.10)

In the simplified units, we have

�P = tP =M−1
P = T −1

P , G=M−2
P , (A.11)

where the Planck temperature is TP =MPc
2/kB = 1.4× 1032 K.

Then in these units, all physical quantities can be expressed in terms of one dimensionful
quantity, for example mass-energy, using some chosen unit, for example eV (see Table A.1
for conversion factors).

A.2 1+3 covariant equations

Metric sign convention: (−+++).
Tensor indices:
general basis: a,b, · · · = 0,1,2,3; i,j , · · · = 1,2,3
coordinate basis: µ,ν, · · · = 0,1,2,3, i,j , · · · = 1,2,3.

Tensor symmetries:

S(ab) = 1
2 {Sab+Sba} , S[ab] = 1

2 {Sab−Sba} . (A.12)

Alternating (volume) tensor:

ηabcd =−√−g δ0[aδ1
bδ

2
cδ

3
d] . (A.13)
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Curvature tensors and covariant derivatives:

Rd
abc = d

ac,b−d
ab,c+d

ec
e
ab−d

eb
e
ac, (A.14)

Rab =Rc
acb, R =Ra

a , (A.15)

∇agbc = 0, 2∇[a∇b]Wc =RabcdW
d , (A.16)

where ∇a(· · ·) is also written as (· · ·);a .

1+3 covariant split relative to ua (uaua =−1):

Ṡa···b··· = ue∇eS
a···

b··· , (A.17)

∇cS
a···

b··· = hc
f had · · ·hbe · · · ∇f S

d···
e···, hab := gab+uaub. (A.18)

Projected symmetric tracefree (PSTF) parts:

V〈a〉 = ha
bVb , S〈ab〉 =

{
h(a

chb)
d − 1

3habh
cd
}
Scd . (A.19)

Covariant spatial curl:

curl Va = ηabc∇b
V c, curl Sab = ηcd(a∇c

Sb)
d ηabc := ηabcdu

d . (A.20)

For a general spacetime and a general source, the 1+3 covariant equations are:
Evolution:

ρ̇+ (ρ+p)�+∇a
qa =−2u̇aqa −σabπab , (A.21)

�̇+ 1
3�

2 + 4πG(ρ+ 3p)−∇a
u̇a =−σabσ

ab+ 2ωaω
a + u̇au̇

a , (A.22)

q̇〈a〉 + 4
3�qa + (ρ+p)u̇a +∇ap+∇b

πab =−σabq
b+ηabcω

bqc− u̇bπab, (A.23)

ω̇〈a〉 + 2
3�ωa + 1

2curl u̇a = σabω
b , (A.24)

σ̇〈ab〉 + 2
3�σab+Eab− 4πGπab−∇〈au̇b〉 = −σc〈aσb〉c−ω〈aωb〉 + u̇〈au̇b〉, (A.25)

Ė〈ab〉 +�Eab− curlHab+ 4πG
[
(ρ+p)σab+ π̇〈ab〉 + 1

4�πab+∇〈aqb〉
]

=−8πGu̇〈aqb〉 + 2u̇cηcd(aHb)
d + 3σc〈aEb〉c

−ωcηcd(aEb)
d − 4πG

(
σc〈aπb〉c−ωcηcd(aπb)

d
)

, (A.26)

Ḣ〈ab〉 +�Hab+ curlEab− 4πGcurlπab = 3σc〈aHb〉c−ωcηcd(aHb)
d

− 2u̇cηcd(aEb)
c+ 4πG

(
σc

(aηb)cdq
d − 3ω〈aqb〉

)
. (A.27)

Constraint:

∇a
ωa = u̇aωa , (A.28)

∇b
σab− curlωa − 2

3∇a�+ 8πGqa =−2ηabcω
bu̇c , (A.29)

curlσab+∇〈aωb〉 −Hab =−2u̇〈aωb〉 , (A.30)

∇b
Eab+ 4πG

3

(
∇b

πab− 2∇aρ+ 2�qa

)
= ηabcσ

b
dH

cd − 3Habω
b+ 4πG

(
σab+ 3ηabcω

c
)
qb , (A.31)
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∇b
Hab+ 4πG

[
curlqa − 2(ρ+p)ωa

]
= 3Eabω

b−ηabcσ
b
dE

cd − 4πG
(
ηabcσ

b
dπ

cd +πabω
b
)

, (A.32)
3R〈ab〉 =Eab+ 4πGπab− 1

3�(σab+ωab)+σc〈aσb〉c+ωc〈aωb〉c− 2σc[aωb]c, (A.33)

3R = 16πGρ− 2
3�

2 +σabσ
ab−ωaω

a . (A.34)

Here ρ,p,qa ,πab are the total quantities (including a possible � term). In (A.33), (A.34),
3Rab = (Rab)⊥−�∇bua+∇cua∇c

ub, and this reduces to the 3-Ricci tensor when ωa = 0.

A.3 Frequently used acronyms

Frequently used acronyms are listed in Table A.2.

Table A.2 Frequently used acronyms

Acronym Meaning

2dF(GRS) Two-degree Field (Galaxy Redshift Survey)
AGN Active Galactic Nucleus
BAO Baryon Acoustic Oscillations
BBN Big Bang Nucleosynthesis
CCD Charge Coupled Device
(�)CDM (Lambda) Cold Dark Matter
CMB Cosmic Microwave Background
COBE Cosmic Background Explorer (satellite)
DES Dark Energy Survey
EFE Einstein’s Field Equations
FLRW Friedmann–Lemaître–Robertson–Walker
GR General Relativity
GUT Grand Unified Theory
HBB Hot Big Bang
ISW Integrated Sachs–Wolfe (effect)
LG Local Group (of Galaxies)
LSS Last Scattering Surface
LTB Lemaître–Tolman–Bondi
NGT Newtonian Gravity Theory
QSO Quasi-Stellar Object (quasar)
RW Robertson–Walker
SDSS Sloan Digital Sky Survey
SKA Square Kilometre Array
SNIa Supernovae of type Ia
VLBI Very Long Baseline Interferometry
WMAP Wilkinson Microwave Anisotropy Probe (satellite)
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propagation, 105
4-potential, 114
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first derivative, 84–85
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multiple, 101
reference, 101
Ricci identity for, 86
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Absolute magnitude, 165
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Abundance of elements, 11
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from modified gravity, 376–390
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propagation equation,134
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Acoustic waves, 15, 298, 324
Acronyms, 565
Active galactic nuclei (AGN), 14, 329
Active gravitational mass density, 119

Adiabatic
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perturbations, 265, 313, 315, 316
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ADM formulation, 68–69, 425, 514
AdS/CFT correspondence, 218, 521
AdS5 bulk, 521
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Almost-EGS results, 287, 558
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537
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Alternative

models, 181
physics, 558
topologies, 559

Amplitude of primordial fluctuations, 545
Angular correlation function, 309
Angular diameter distance, see Area distance
Angular multipoles, 290
Anisotropic modes, 456, 559
Anisotropic stress, 376–377, 387, 433

(trace-free) stress tensor, 92
Anthropic question, 542–546, 548, 560
Anti-de Sitter spacetime, 218, 521
Anti-particles, 231
Antisymmetrization, 32
Apparent brightness, 167
Apparent magnitude, 9, 162, 165
Arbitrary information, 154
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Area distance, 163, 164, 165, 186, 193, 325,

400–402, 436, 437, 461
Arrow of time, 8, 443, 538–539, 557
Ashtekar variables, 527–528
Asymptotic self-similarity conjecture, 493
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Atlas, 27, 144
Automorphism group (Bianchi models), 463,

466
Autoparallel, 36
Average 4-velocity, 62, 90, 91
Averaged metric, 60
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Averaging, 422–423, 559
not covariant, 420
over whole sky 437–438
scale, 17, 21, 346, 416, 418
the light-cone, 197–198
via scalars, 425

Axions, 228

B-modes (CMB polarization), 306, 360
Background evolution, 351–354
Background-field method, 513
Background radiation, 6–7, 172–173,

other than CMB, 303–306
Background spacetime, 250
Backreaction, 419, 430, 431–434

contrasting views, 434–435
polarization formulation, 419

Barotropic
fluids, 97–98, 101, 212, 255, 271, 277
linear equation of state, 98

Barycentric frame, 90
Baryon Acoustic Oscillation (BAO), 15–16,

324–327, 352–353, 359, 385, 380, 392,
405–406, 410

evolution with redshift, 556
peak, 325–327, 353, 360–361

Baryon
decoupling, 324, 325
density parameter, 233
perturbations, 276

Baryon–photon ratio, 233, 234
Baryogenesis, 227, 530
Baryonic matter, 14, 98, 182, 233, 238, 318, 321,

327, 556
density of, 11, 234
rest frame, 110, 298

Basis of vectors, 30
commutation coefficients, 51
general, 51
of tensor space, 31
transformation, 51

Belinski, Lifshitz and Khalatnikov (BLK), 502–505
Bending angle, 330
Beryllium bottleneck, 545
Bianchi models, 23, 351, 450, 456

Bianchi I models, 50, 180, 458–461
CMB, 485–486
dynamics, 466–480
geometry, 462–466
isotropize, 479
nucleosynthesis, 484–486
orthogonal models, 457, 470, 474
tilted models, 457, 464–465, 471, 475, 478, 479

Bianchi group classification, 464–465
Bianchi identities, 38, 48, 52, 64, 65, 133, 338, 523
Bias, 16, 323

bias function, 321
Biermann mechanism, 329
Big Bang Nucleosynthesis (BBN), 7, 233, 364, 556
Blackbody radiation, 12,

remains blackbody, 172–173
spectrum, 12, 173

Black hole, 178, 537
Bolometric

detectors, 168
flux, 167
multipoles, 293, 294

Boltzmann code (CMBFAST, CAMB), 259, 296
Boltzmann collision integral, 109
Boltzmann equation, 105, 108, 288, 295, 356

collision term, 108–110
Born approximation, 333
Bose–Einstein distribution function, 230
Bounce (in the past), 366, 394, 458, 511–512, 529, 533
Boundary, 28, 118, 144–145, 189, 197, 427, 430, 481,

512
Boundary conditions, 65, 70, 139, 148, 206, 442, 451,

455, 492, 499, 515, 522, 535, 538, 545
Branes, 518

tension, 522
Brane-world

corrections, 523
cosmology, 520–525
dynamics, 522–524
models (alternative to dark energy), 383–390

Brans–Dicke theory, 378, 381, 386, 388, 390
Brightness function, 356, 358
Buchert formalism, 423–425, 435
Bulk cosmological constant, 521
Bulk effects on the brane, 523
Bulk viscosity coefficient, 96

Calabi–Yau spaces, 518
Carbon-12 energy level, 545
Cartesian product of manifolds, 28
Cauchy development (future and past), 66
Causal boundaries, 144
Causal communication, 239, 551
Causal horizons, 173–178, 368

broken, 208
Causal limit sphere, 174
Causality, 144, 540

violations, 84, 391
Centre of the universe, 201
Chameleon mechanism, 378–379
Chaotic behaviour, 478
Chaotic cosmology programme, 547
Chaotic inflation, 243, 245, 531–533, 549, 553, 557
Chaplygin gas, 375
Charge density, 111
Choice of

average 4-velocity, 96
time, 129–130
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Christoffel symbols, 42
Circles in the CMB sky, 368, 559
Circular polarization, 300, 302
Cigar singularity, 461
Classification of spacetimes by symmetries, 452
Closed models, 296
Closed spatial sections, 176, 206, 366

Einstein’s advocacy of, 70
Clustering statistics, 194
Clusters of galaxies, 318–319
Coarse graining the gravitational field, 417–420, 442
COBE, 12, 176, 355
Codazzi equation, 55
Coincidence problem, 372
Cold Dark Matter (CDM), 17, 89, 98, 272, 327–328,

370, 374, 555
and baryons, 276
and radiation, 275–276
evidence for, 317–319
experiments, 319
halos, 318
non-baryonic, 17, 318
particles, 104, 228

Coleman–de Luccia tunnelling, 532, 551
Collision multipoles, 106
Collision tensor, 301–302
Collision term, 108–110
Collision-dominated equilibrium, 109
Collision-invariant, 109
Collisionless gas, 105, 109, 288
Commutation coefficients, 51, 136, 464
Commutators of operators, 26

of vector fields, 30, 136
Comoving coordinates, 73, 128, 203

for rotation, 130–131
normalized, 74

Comoving
curvature perturbation, 312
description, 130–131
fractional gradient, 263
Hubble radius, 241, 354

Comoving orthogonal gauge, 257
Compactified dimensions, 518, 520
Components of tensor, 31
Compton scattering, 237, 294
Concordance model, 366
Confinement of matter to the brane, 520
Conformal curvature tensor (Weyl tensor), 47
Conformal diagram

HBB model, 175, 240, 369
inflation, 241

Conformal Hubble parameter, 298
Conformal mapping, 204
Conformal Newtonian gauge, 297
Conformal

structure, 204

transformation, 40
Conformally flat, 134, 204

coordinates, 174, 175
Conjugate points, 331
Connecting vector, 35, 79
Connection, 35, 41–42

not a tensor, 37
symmetry of, 37

Conservation equations, 61–64
scalar, 61–62
energy–momentum, 63–64, 91–93, 103, 427
multiple fluids, 103
perturbed, 259

Conservation laws, 90–93
current, 111, 112
vorticity, 124

Conservation of entropy, 233
Conservation of growing mode, 313
Conservation of mass, 63, 90
Conserved

quantity, 62
current, 62

Consistency checks, 363–365, 413–415
Consistency tests (multiverse), 551
Consistent model, 366
Constancy of curvature, 412–413
Constant normal expansion, 130
Constants and units, 561–563
Constants of nature, 553–554
Constraint equations, 67
Continuous functions, 27
Continuum approximation, 17, 81, 416
Contracted Bianchi identities, 137, 523
Convective derivative, 76
Convergence, 338
Coordinates, 27–28

atlas, 27
change of, 29
chart, 27

Coordinate system, 26
comoving, 73–74, 76, 128
conformally flat, 174, 175
locally orthogonal geodesic, 45
observational, 182–184
synchronous, 54

Coordinate-independent
definition, 27
form of theory, 60

Coordinate transformations, 250
Copernican Principle, 191, 202, 283, 284, 286, 287,

347, 350, 395, 415, 441, 558
Correlation functions, 194, 307–309, 322
Cosmic billiards, 505
Cosmic concordance, 440–441
Cosmic energy budget, 370
Cosmic magnetic field, 457
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282–303, 388, 403–404, 536, 556

and number count dipole,414
and spatial homogeneity, 282–287, 350
Bianchi models, 485–486
constraints on inflation, 244
fluctuations, 14
gravitational lensing, 342
LTB Models, 408–410
large-angle anisotropies, 321, 377
matter correlations, 364
polarization of, 13, 300–303, 556
power spectra, 298–299
source of, 8
temperature, 365
temperature anisotropy, 13, 239, 242–243,

292–294, 355–360, 367, 461
temperature as a function of distance, 414

Cosmic rays, 24, 305, 365, 537
Cosmic strings, 118, 343
Cosmic time, 83, 231

normalized, 84
Cosmic variance, 308, 309, 358, 560
Cosmography, 4, 187

limits of, 187
Cosmological backreaction, 421
Cosmological constant, 65, 99,102, 119, 121, 182,

212, 370, 437, 545, 555, 558
and life, 546
constraints, 353, 355
effect on dynamics, 214–215
observational determination of, 188

Cosmological models, 20, 21
FLRW, 22
spatially homogeneous (Bianchi), 23
isotropic inhomogeneous, 22
parameters, 357
perturbations, 379

Cosmological Principle, 191, 346, 547
Cosmological testing of gravity theories, 187
Cosmological uncertainty, 559
Cosmology, 3

and local physics, 531–539
observational, 4
particle, 4
physical, 4, 531
quantum, 4
relativistic, 4

Cotangent bundle, 30
Cotton tensor, 47
Coulomb effect of matter, 177
Covariant derivative, 35–36

in general bases, 52
Covariant linear perturbations, 267–281
Covariant multipoles, 283
Covariant nonlinear perturbations, 262–267

Covariant spherical multipoles, 105, 284
propagation equations, 106

Covariant vector, 30
tensors, 32

Creation of universe theories, 532, 534, 557
Criteria for scientific theories, 552
Critical curves (lensing), 338
Curl, 78
Current, 111

conservation, 112
Curvature dominated singularities, 146–147
Curvature of space, 127

constraints, 355, 359
importance of, 366

Curvature perturbation, 56, 261, 271, 272, 316, 321
conserved. 264, 315

Curvature tensor (Riemann tensor), 37–38, 52
constant, 49
FLRW, 53
integrability conditions for, 48
symmetries of, 38, 44

Curves, 29
congruence of, 34

Curved spacetime, 56, 154
Cutoff in large-scale power, 367
Cyclic universes, 532, 549

Dark Ages, 237–238, 362
Dark Energy, 11, 65, 89, 182, 255, 342, 372–394,

391–394, 555, 558, 559
decay to zero?, 394, 558
degeneracy, 375
growth suppression, 320–321

Dark matter, 15–16, 182, 555
and lensing, 339, 343

Darmois conditions, 428, 522
D-brane inflation, 525–526
D-branes, 517, 520
de Sitter expansion, 242
de Sitter universe, 178, 216–218, 220, 244, 442,

512
Decelerating periods, 212
Deceleration parameter, 122–123, 211, 212, 469
Decoupling, 12, 230, 232, 276, 324, 555

redshift, 237
Deflection angle formula, 362
Density, 231

inhomogeneity, 265
Density parameter, 15, 123, 211, 317

constraints, 353,
phase planes, 221–224

Density perturbation, 249, 261, 278, 313, 318, 387
gauge-invariant, 254

Derivatives
Lie derivative, 34–35
covariant derivative, 35–36
identities, 88
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Deuterium, 233–234, 364, 410

bottleneck, 234
Deviations from Newton’s law, 519
DGP models, 383–390, 393
Different scale descriptions, 416–421
Differentiable

functions, 27
map, 27

Differential manifold, 25, 26
Dimension of manifold, 27
Dimensionless

acceleration, 370
crossover parameter, 384, 388
time variable, 469

Dipole equation, 288
Dirac, 25, 539

quantization procedure, 528
Dirac–Born–Infeld (DBI) models, 245, 526
Direct observational cosmology, 180–190
Direction, 80

rate of change of, 81
Directional derivative, 28
Discontinuities (in curvature), 428
Discrete isotropies, 449
Dissipative processes, 273
Distance-duality relation, 165
Distance of object, 6
Distorted optical images, 154, 186
Distribution function, 104, 106

equilibrium, 109
integrated moments, 108
tensor-valued, 300

Div, 78
Divergence identity, 63
Domain of dependence, 144, 368–369, 453, 503
Domain walls, 118, 426, 427, 496
Doppler effect, 157, 158, 159
Doppler shifts, 297
Dragging along, 34
Duality relations, 518
Dummy indices, 29
Dyer–Roeder distance, 436–437
Dynamical system, 131, 454

e-folds, inflation, 242, 264
E-modes (CMB polarization), 302, 303, 306, 360
Earth’s biosphere, 536
Eddington–Lemaître models, 215
Edge to spacetime, 20, 145
Effective theories, 390, 391
Ehlers, Geren and Sachs (EGS) theorem, 283, 350

generalized, 283–286
stability of, 287

Einstein–de Sitter universe, 167, 174, 178, 216,
276, 220, 370, 405, 411, 460

Einstein equivalence principle, 59
Einstein–Aether theories, 320, 382–383
Einstein Field Equations (EFE), 4, 12, 19, 64–65, 119,

136, 187, 429
(0i) equations,126, 312
and initial values, 66
and past light cone, 188–189
perturbed, 257–262
Raychaudhuri equation, 119
satisfy all ten, 143
state matter content, 143
tetrad form, 137
vorticity-free case, 127–128

Einstein frame, 381, 382
Einstein–Hilbert action, 67, 68, 377, 381, 519
Einstein static universe, 85, 120, 206, 215, 449

saddle point, 223, 224
unstable, 120

Einstein summation convention, 29
Einstein tensor, 44
Electric field, 111
Electric part of Weyl tensor, 87, 95, 138, 285,

335
propagation equation, 133

Electrical neutrality, 231
Electromagnetism

and life, 543
dynamics, 19
energy–momentum, 112
field tensor, 111
fields, 110–115
geometric optics, 155
stress tensor, 161

Electron density, 237
Electron–positron annihilation, 230, 232
Electron–proton charge equality, 543
Electroweak transition, 229–230
Electroweak unification, 226
Element abundances at high redshift, 348, 414
Ellipticities (observed), 340
Emergence of a classical era, 537
Emission of radiation, 169
Energy and momentum exchange, 108
Energy–momentum–stress tensor, 64, 91–92

change of 4-velocity, 94
kinetic theory, 107
magnetic field, 113
Maxwell, 112, 161
scalar field, 115, 116, 311

Energy–momentum conservation, 64–65, 91–93, 103,
136, 254, 256, 271, 374, 382, 384

electromagnetism, 112
magnetohydrodynamics, 114
on a brane, 523–524
perfect fluid, 97
kinetic theory, 108, 283
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Energy condition, 145
dominant, 100
null, 162
strong, 94, 100
violation of, 122
weak, 93

Energy conservation equation, 92, 210, 265, 378
Energy constraint, 69
Energy density, 92, 230, 469

radiation, 161
Energy (or Landau–Lifshitz) frame, 91, 275

4-velocity, 264
Energy-integrated multipoles, 302
Ensemble of random functions, 307
Ensemble of universes, 547, 554
Entropy, 232, 233, 442, 547

4-current density, 107
conservation, 231
density, 231
divergence relation, 95–96
gradient, 264, 265
modes, 315–316
per baryon, 11
perturbation, 274
production density, 107

Equations of state, 92
simple, 98–99
ideal gas, 100

Equilibrium, 230, 231, 236
distribution function, 107, 109, 110
point, 472, 473
state, 232

Equivalence principle
Einstein, 59
weak, 54
strong, 59

Equivalence problem, 425, 452–453
Eternal existence, 533
Eternal inflation, 244
Event horizons, 177–178
Evidence

from astronomical observations, 6, 7
from local physics, 7
geological, 7

Evidence for cold dark matter
cosmological, 317–318
astrophysical, 318–319

Evidence for homogeneity
FLRW observational relations, 349
from isotropy, 349–350
number counts, 349
uniform thermal histories, 348

Evolution equations, 67, 86, 92, 95, 108
covariant multipoles, 106, 283
magnetic field, 112, 113
perturbations, 320, 345

Evolution in number density, 400
Evolution of source size, 171
Existence

of consciousness, 539
of life, 537, 538
of local systems, 537
of multiverses, 548–553

Expansion, 63, 81, 82
history, 351
tensor, 81, 328

Expansion of universe, 10
accelerating, 11
forever?, 558

Expansion-normalized variables, 468,
371

Explanations
of fine tuning, 552
of initial conditions, 534
of the universe, 532–534

Explanatory power, 552
Extra dimensions, 519
Extrapolation of known physics, 531, 551
Extrasolar planets, 344
Extremal curves, 41
Extrinsic curvature, 54, 427, 454

f (R) theory, 377–381, 393
False vacuum, 118
Far future universe, 393–394
Fermi–Dirac distribution function, 230
Fermion masses, 544
Fine structure constant, 542, 544
Fine-tuned, 379

initial conditions, 240
Fine tuning problem

dark energy, 371
for life, 542–546

Finger of god effect, 323
First fundamental form, 53, 67, 429
First law of thermodynamics, 95
First stars, 238, 361
Fitting problem in cosmology, 250, 346,

421–422
Flatness problem, 550
Flat spatial sections, 368
Fluid models of dark energy, 373
Fluid description, 17–18, 417
Flux of radiation, 163, 166
Focusing of geodesics, 296
Force law, 57
Form fields, 33, 518
Fourier space, 308
Free fall, 57

reference frame, 57
Free gravitational field, 47
Free-streaming scale, 273
Freeze-out temperature, 234
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Friedmann equation, 123, 210, 241
ad hoc modifications, 376
dimensionless form, 213, 215
generalized, 125, 127
inflation, 242

Friedmann-Lemaitre-Robertson-Walker (FLRW)
universes, 4, 22, 77, 85, 132, 134, 180, 193,
201–248, 202, 268, 374, 418, 423, 426, 429, 436,
464, 555

area distances, 166
best-fit, 422
coordinates, 205
event horizons, 177
kinetic theory in, 106
luminosity distance, 166
matter isotropy, 191
Maxwell’s equations, 144
Newtonian case, 247
null geodesics, 156
number counts, 171
optical depth, 170
parameters, 123
particle horizons, 174
past light-cone, 174–175
perfect fluid form, 202
perturbed, 4, 249, 251–252
redshift, 158
singularity theorem, 121
specific intensity, 170
static, 120

FLRW dynamics, 210–227
basic equations, 210
density parameters, 211
equation of state, 211
kinetic solutions, 225–226
matter and radiation solutions, 215
present-day values, 212
singular origin, 213

FLRW geometries, 202–210, 400
3-space geometry, 205–206
closed space sections, 206
conformal time, 251
elliptic case, 205
flat-space case, 205
FLRW definition, 203
everywhere isotropic, 202
origin of, 246
spacetime geometry, 203–204
surfaces of spatial homogeneity, 202, 206
tetrad rotation coefficients, 52–53
topology, 207–208

FLRW symmetry properties, 206–207
covariant characterization, 285
observational testing, 283–287, 346–350
preservation of, 246

Friedmann equation, 123, 127, 210, 211, 213, 215,
226, 241, 242, 376, 381, 384, 389, 396, 397, 403,
424, 459, 522, 530

Newtonian, 247
Fundamental 4-velocity, 73, 74, 263, 268, 284

change of, 268
Fundamental

constants, 553, 558
forces, 543
observers, 20

G2 cosmologies, 496–498
G3 acting on S2 model, 495–496
Galaxy

mass, 338
rotation curve, 16
cluster counts, 362
clusters, 320

Galaxy surveys, 194, 321, 556, 558
challenge, 195

Gamma- Ray Bursts (GRBs), 352
Gauge-invariant variables, 251, 253–254

curvature perturbations, 256, 260, 261
density perturbations, 260, 261, 524–525
kinetic theory, 287–294
velocity perturbation, 260, 261

Gauge problem, 250–251, 426
fixing the gauge, 251

Gauge theories, 39, 56
Gauge transformations

electromagnetism, 114
perturbations 250, 252–253

Gauss equation, 54, 127, 205, 459
Gauss-Codazzi equations, 54–55, 220, 522
Gaussian normal coordinates, 53, 66, 521
Gaussian perturbation field, 308, 309
General Relativity (GR) theory, 4, 19, 33, 39, 59–69

failure of?, 319
high-precision tests, 556
no background field, 527
no fixed background spacetime, 58

Geodesic, 41
light rays, 160
represent free fall, 57
equation, 36

Geodesic deviation equation, 39, 49, 58, 132,
160–161, 165, 167

null, 334–338
Geodesic ray 4-vector, 183
Geodesically parallel surfaces, 130
Geometric

methods, 25
object, 25

Geometrical optics, 153–154
Geometry of 3-surfaces, 127
Ghosts, 378, 384, 388, 390, 513
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Global
concepts, 144
structure, 143–145

Globular clusters, 365
Gödel universe, 84, 85, 449
Gowdy models, 497
Grand Unified Theory (GUT), 118, 226, 240
Gravitational constant, 64, 69

time-varying, 8
Gravitational

dynamics, 19
effect of matter, 58
energy–momentum tensor, 59
collapse,329
energy, 59, 64
entropy, 441–443
force, 544
instability, 310
potential, 247
redshift, 157

Gravitational lensing, 16–17, 105, 160–161, 163,194,
330–339

and CMB measurements, 342
cosmological applications, 339–342
lensing equation, 333–334
microlensing, 343–344

Gravitational waves, 14, 58, 279–280, 303, 354–355,
419, 461, 537, 556

background, 306, 355
Graviton, 516, 520

5D graviton, 524
Gravity

unlike every other force, 59
plus inertia, 58, 76
propagates in the bulk, 520
weakened on large scales?, 372

Great Attractor, 21, 91, 151, 409, 489–490
Group G6 of isometries, 201
Group of isotropies O(3), 43
Growing mode, 314, 320, 330
Growth suppression factor, 320, 330
GZK limit, 365

Hadrons, 89
Hamiltonian, 515, 550

formulation, 68–69
constraint, 127, 527, 528–529

Harmonic tensors, 295
Heat conduction coefficient, 96
Heat death, 393–394
Heating, 232
Heavy elements, 233
Helium, 233, 234, 461, 544

recombination, 236
Here and now, 7, 175
Hesitation dynamics, 482, 491

Hidden past, 556–557
Higher-derivative theories of gravity, 513
Higher-dimensional gravity, 519–520
Hodge duality, 47
Holography, 521
Holonomy, 38
Homogeneity of universe, 13, 307, 402
Horava–Witten solution, 520–521
Horizon exit, 310
Horizon problem, 209, 239–240, 481
Horizons, 173

event, 177–178
existence of, 8
particle, 9, 174–176
physics, 9, 530–532
visual, 8, 175–177

Hot Big Bang (HBB), 3, 11, 12, 121, 219, 555
conformal diagram, 240
thermodynamics of, 230–232

Hubble constant, 10, 83
Hubble horizon, 310
Hubble parameter, 83, 185, 341, 352, 468

anisotropy of, 185
Hubble radius (scale), 239–240, 242, 278, 310, 386,

390
Hubble rate, 230, 231, 325, 522
Hubble sphere, 178–179
Hubble’s law, 9, 204

and speed of light, 179
generalized, 81

Hydrogen, 233
neutral, 238, 361–362
recombination, 236, 237

Hypersurface, 28, 53–55, 61, 427

Ideal cosmography, 186–187
Images, 159

apparent shape, 338
apparent size, 162, 338
distortion, 331
independent of velocity, 159–160
intensity, 162

Improbability, 415, 554
Impulsive waves, 428
Indices, tensor 29

repeated (‘dummy’), 29
raising or lowering, 40

Induced metric, 522
Inertia, 57–58
Inertial mass density, 92
Inextendible geodesics, 144
Inflation, 212, 227, 238–245, 306, 555

and perturbations, 309–314
and spatial homogeneity, 347, 370, 547
Bianchi models, 481–482, 506
D-brane, 525–526
element formation, 484–485
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Inflation (Cont.)
inhomogeneity can prevent, 506
observational relations, 481–483
reheating, 241, 243
single-field models, 243–245
slow-rolling, 242

Inflationary multiverse, 550
Inflationary universe, 223, 224, 378, 431, 547

non-singular start, 511–512
Inflaton, 243, 244, 310, 311, 313, 526, 531, 550

and inhomogeneity, 411
fluctuations, 315

Infrared background, 304
Infrared corrections to GR, 376, 393
Infrared cutoffs, 308
Inhomogeneous models, 426–431, 488–507, 559
Initial conditions for the universe, 531, 534, 545
Initial singularity, 175, 503–506, 533
Initial value equations, 66
Initial value problem, 140
Initial values, 66
Inaccessible domains, 557–558
Insensitivity to initial conditions, 238
Integrability conditions for the curvature tensor, 48
Integrated radiation, 173
Interaction rates, 230
Intermediate isotropization, 383
Integrated Sachs–Wolfe (ISW) effect, 297, 342, 358,

364, 377, 379, 388, 410
Integration, 61
Intelligent life, 560
Intensity of radiation, 168

independent of distance, 168
multipoles, 283, 295

Internal energy, specific, 95
Invariant sets (phase space), 454–455, 473
Inverse square law, 10, 164
Ionization fraction, 236, 237
Ionized intergalactic medium, 170
Isocurvature modes, 315–316
Isolated systems, 537
Isometries, 43, 447–452
Isotropization, 481–483
Isotropy, 190–191, 307, 448

implies homogeneity, 349
of CMB, 13
of lensing and velocities, 191
of matter distribution, 190
of observations, 190–191, 203, 348
of radiation distribution, 284

Isotropy group, 43, 448–449
Israel conditions, see Darmois conditions

Jacobi field, 35
Jacobi identity, 30, 52, 136, 463, 464
Jaynes’ principle, 550

Jeans length, 272
Jordan frame, 380, 381, 382
Junction conditions, 427–428

k-essence field, 375
Kaluza–Klein (KK) modes, 519–520, 522
Kantowski–Sachs universes, 449, 456–458
Kasner

circle, 460, 475, 476,479
vacuum solution, 460

Keplerian velocity, 318
Killing vector, 43, 64, 156, 207, 462
Killing’s equation, 42
Kinematic quantities, 80–81, 84–85, 185

optical, 160
Kinematic Sunyaev–Zel’dovich effect, 350, 411
Kinetic theory, 18, 104–110

FLRW solutions, 225–226
Klein–Gordon equation, 115, 116, 242, 311, 312, 383
Kottler solution, 491
Kronecker delta, 32

�CDM, 298–299, 370–371, 385, 386, 390, 392,
404–405

Lagrangian, 68, 390, 391, 466
higher order, 65
scalar field, 115, 245
scalar-tensor, 380

Laplace–Beltrami operator, 269
Laplace’s Principle of Indifference, 550
Large-scale

anomalies, 366–367
CMB anisotropies, 242–243
structure data, 244
structures, detailed fits, 489
void models, 559

Last Scattering Surface (LSS), 6, 7, 8, 12, 361, 367,
369, 536

and causality, 239–241
and horizons, 176
density perturbations on, 13, 313, 317, 356

Late universe, 506–507
Laws of initial conditions for the universe, 534
Laws of physics, 535, 543–545

special nature, 545
Lemaître–Tolman–Bondi (LTB) models, 22, 50, 181,

348, 370, 395–403, 490–491
CMB, 408–409
observations, 401–405
perturbations, 406–408

Lens mass distribution, 338
Lensing equation, 333–334, 336–337

exact, 332
Lensing

and m-z relations, 339
as telescope, 340
map, 334
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of distant galaxies, 338, 340
tomography, 341

Leptons, 89
Levi-Civita volume form, 46

contraction relations, 46
Lie derivative, 34–35, 54, 265
Light bending, 330, 331
Light-cone, 40, 397–398
Light element

abundances, 556
nucleosynthesis, 89, 234

Light-rays, 154, 160
refocused, 166

Limber formula, 309
Limiting speed, 542
Limits

of cosmology, 560
on observations, 177

Lindquist–Wheeler type models, 430–431, 439
Line element, 40
Linear growth factor, 324, 387–388
Linear polarization, 302

tensor, 300, 302
electric and magnetic parts, 301

Linear redshift relation, 157
Linearization stability, 454
Liouville equation, 105, 225, 283, 288
Lithium, 233, 413
Locally bound systems, 434

fraction of matter outside, 441
Local inhomogeneity

dynamic effects, 416–435
observational effects, 435–437

Local mechanical stability, 93
Local physics and cosmology, 531–539
Local rotational symmetry (LRS), 448–450, 457, 460,

464
Local velocities, 151
Locally Minkowski metric, 433
Longitudinal gauge, see Newtonian gauge
Look-back time, 6
Loop quantum cosmology, 528–530

Dirac operators, 529
resolution of the big bang singularity, 529–530

Loop Quantum Gravity (LQG), 526–528
Lorentz force, 111, 114

density, 112
Lorentz

gauge, 114, 153, 300
group, 541, 542
invariance/ transformation, 60, 99, 104–105, 107,

109, 141, 371, 390–391, 541–542
Low-energy effective theories, 390
Low-entropy initial conditions, 538
Luminosity, 163
Luminosity distance, 164, 165, 354–355

FLRW, 166
Luminous matter, 15
Lyman-α

absorption, 238
forest, 261

Mach’s Principle, 538
Macroscopic

averages, 106
spacetime, 420

McVittie metric, 495
Magnetic fields, 18, 110, 111, 113, 266,

276–277
can generate vorticity, 278, 329
conservation, 126
energy density, 267

Magnetic induction equation, 113
Magnetic part of Weyl tensor, 87, 95, 138, 279, 285,

433
vanishing, 150
propagation equation, 133

Magnetized fluids, 266, 276–278
Magnetohydrodynamics, 113–115
Magnification matrix, 338
Magnitude-redshift

diagram, 10–11
relationship, 18

Manifolds, 26
dimension of, 27
map of, 29–31
orientable, 28
with boundary, 28

Mass matching, 429–430
Massive neutrinos, 228, 321
Matter/anti-matter asymmetry, 227
Matter density, 185

constraints, 353, 363
Matter description, 17, 20

chaotic case, 18
components, 64, 101
hierarchical case, 18
perturbations, 254, 377

Matter power spectrum, 320–323
distribution, 360–363

Matter horizon, 369
Matter world lines, 175
Mattig relations, 166
Maxwell energy–momentum tensor, 112
Maxwell equations, 48, 111–112, 133, 542

geometric optics, 153
magnetohydrodynamics, 113, 115

Measures (for probability), 549–551
Meszaros effect, 276
Metaphysical

issues, 5
uncertainty, 554

Metric potential, 362



616 Index

Metric tensor, 39–42, 427
diagonalized, 45
in observational coordinates, 184
inverse, 40
signature, 45

Milne universe, 174, 216, 218, 220
Minimal coupling, 58–59
Minisuperspace, 515, 550
Minkowski brane, 521

bulk, 384, 388, 389, 521
Minkowski space, 45–46, 448, 461
Mixmaster, 466, 476, 478
Model-based approach, 180
Modified gravity, 372, 376–377, 391–392
Modified Newtonian Dynamics (MOND), 319–320,

382
Modifications to the Newton constant, 377
Moduli fields, 518
Momentum conservation equation, 92, 261, 273,

298
Momentum constraint, 69
Momentum density, 92
Monopole problem, 240
M-theory, 517
Multi-field inflation, 245
Multiple matter components, 101–103

perfect fluids, 265, 273–275
Multiple images of QSOs, 339, 343
Multipoles, 105, 287–291

bolometric, 108
propagation equations, 106, 288, 296
temperature anisotropy, 292–293

Multiverse, 244, 245, 546, 558–553, 557
measures, 549–551
testability, 551–553

N-body simulations, 328, 380, 417
n-form, 61
Near-isotropy of the CMB, 282
Negative kinetic energy, 415
Neighbourhood (in topology), 26
Neutralino, 228
Neutrinos, 14, 104, 108, 232–233, 545

astronomy, 556
background, 305
decoupling, 230, 233
masses, 305, 341, 545
number of species, 233

Neutron–proton mass differential, 543, 544
Neutrons, 234
Newtonian cosmology, 247–248

conservation equations,148
convective derivative, 148
gravitational field equations, 148
non-singular solutions, 152
occurrence of singularities, 149

Newtonian gauge, 257, 297, 298, 311, 320, 335, 376,
525

Newtonian-like solutions, 150
Newtonian limit, 150
Newtonian models, 147–150

RW, 247
Newtonian potential, 259, 297, 311, 321, 434
Newtonian theory, 69, 119, 120, 122

boundary conditions, 70
Newtonianly perturbed FLRW metric, 425,

432–434
Newton’s bucket experiment, 538
No-boundary proposal, 515, 533, 551
No-creation theories, 532–533
Non-baryonic matter, 17, 228, 318
Non-commutativity of averaging and dynamics,

418–420, 424
Non-comoving description, 129
Non-conservation of particle number, 107
Non-equilibrium process, 232, 237
Non-Gaussianity, 309, 314, 322, 556
Non-gravitating vacuum, 371
Nonlinear perturbations, 262–267
Nonlinear structure formation, 327–329
Non-orthonormal basis vectors, 131
Non-relativistic matter, 317
Non-rotating

fluids, 128
local inertial reference frame, 81

Non-scalar singularities, 147
Nucleosynthesis, 11, 89, 233–236, 233, 239, 484–485,

530
Null cone, 40
Null expansion, 160,184
Null geodesics, 154, 159–160, 162, 183

FLRW, 156, 174
reconverging, 162

Null geodesic deviation equation, 334–338
Null shear, 160, 184, 338, 436

rate of change, 160
Null vector, 40
Number counts, 170–171, 186, 193, 349, 400–403
Number density

of particles, 107, 230
of sources, 170

Number of sources, 184
Number of spatial dimensions, 544

Observational
consistency, 345
horizons, 557
map, 171
relations, 21
support, 552

Observational coordinates, 182–184, 397
Observational tests of spatial homogeneity,

411–415
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Observer area distance rO , 164
FLRW, 166

Observer’s 4-velocity, 155, 159
Occam’s razor, 180
Ohm’s law, 113
Olbers’ paradox, 8, 173, 342, 536–538
Operators,

commutators of, 26
physical significance of, 25
vectors as, 28

Optical depth, 169, 170
Optical kinematic quantities, 160
Optical scalar equations, 336
Orbital velocities of stars, 318
Orientable manifold, 28
Origin

of FLRW geometry, 246
of inertia, 538
of the universe, 557
of vorticity, 329–330

Orthogonal Bianchi II models, 474
Orthogonal decomposition, 77

general rank two tensor, 78
spatial derivatives, 78

Orthonormal tetrads, 134–138, 463–464
minimal tetrad formalism, 135–137
extended formalism, 135, 138–139

Oscillatory behaviour, 481, 505

p-forms, 32
Pancake singularity, 461
Parallel transport, 36, 38, 42
Parities, 290
Partial isotropy of area distances, 192
Particle

4-current density, 90, 106
accelerators, 530
drift vector, 107
flux vector, 90
number conservation, 231
number density, 91

Particle (Eckart) frame, 91
Particle horizon, 9, 173–177

and CMB anisotropy, 239
matter cannot leave, 176

Past light-cone, 6, 7, 154, 174–175, 177, 180, 183,
186, 187, 190, 240–241, 322, 368, 369, 555

determined by EFE, 188
FLRW, 156
LTB, 397–398
prediction to the future of, 188–189
prediction to the past of, 188
refocusing, 167

Peculiar velocities, 249, 324, 361
Perfect Cosmological Principle, 217, 347
Perfect fluids, 97

multiple, 265, 273–275
Perturbation theory, 249–280, 309–318, 320–322

barotropic fluid, 271–272
lensing, 335–337
metric-based, 251–265
linear covariant, 267–281
non-linear covariant, 262–267

Perturbed Einstein equations, 258–262, 268,
270–280

Perturbed FLRW models, 181, 249–281, 370–371
Perturbed LTB models, 406–408
Phantom fields, 375, 389
Phase space, 454

FLRW models, 220–225, 455
Bianchi models, 467, 475, 476
volume, 104

Phase transition, 117–118, 240, 427
Phoenix universe, 532
Photons, 104,108, 161, 162

decoupling, 236–237
diffusion, 299
distribution function, 292
energy, 110
frequency, 155
not conserved, 231
number density, 232

Physical cosmology, 4, 100, 188, 531–2,
559–560

Physical existence
of infinities, 553
of ensembles, 547–548

Physical laws
depend on universe, 539
same everywhere, 539
time symmetric, 538
unchanged, 12

Physics horizon, 9, 530–532, 534
PLANCK, 356
Planck distribution, 292
Planck scale, 310, 519
Planck time, 226
Plane symmetric models, 496
Plane wave solutions, 479
Poincáre dodecahedral universe, 368
Poincaré’s eternal return, 533
Poisson equation, 119, 247, 256, 259, 260, 320, 335,

519
Polarization, 154–155, 300–303

power spectra, 299
tensor, 300
4-vector, 300

Polarization effects (averaging), 417
Positively curved space sections, 213
Postulate of uniform thermal histories, 348, 456
Potential, 260–261

flatness of, 526



618 Index

Power spectra,
CMB, 293, 297, 308–309, 342, 356, 359
matter, 320–323, 360–361

Poynting vector, 112
Pre-big bang models, 532
Predictability condition, 190
Preferred

frame of motion, 20, 73
rest frames, 76–77
time coordinate, 541

Preservation of symmetry, 246
Pressure, 92, 230

Newtonian RW model, 247
FLRW singularity, 121

Pressure-free matter, 19, 98
Pressure perturbations, 255–256
Primary detection criterion, 171
Primordial

abundances, 236, 364
gravitational waves, 360
nucleosynthesis, 233–236, 318
perturbations, 296, 309–311, 545
power spectrum, 299
seeds of inhomogeneity, 307, 310

Principle of covariance, 60
Probability and the universe, 547–551, 554
Problem of time, 516
Projected symmetric tracefree (PSTF) parts, 77–78,

87, 105, 263, 268, 279, 289, 290, 291, 295, 301,
334

Projected spatial derivative, 88
Projection tensor, 76–77

screen, 105
Propagation direction. 155
Propagation equations, 66, 108

acceleration, 134
expansion, 119
geometric optics, 154, 155
intensity multipoles, 295
number density, 107
photon multipoles, 292
polarization, 302
radiation energy density, 295
shear, 132, 280
vorticity, 124
Weyl tensor, 133, 280

Propagation
of images, 160
of spatial inhomogeneities, 266
speed, 262
vector, 153

Proper motion, 185, 187, 190, 197
Proper time, 184

coordinate, 130
Protons, 234
Pullback, 31

Quadrupole, 283
Quark–hadron transition, 228
Quantum

creation of the universe, 512
fields, 18
fluctuations, 14, 310, 316
geometry, 527–528
gravity era, 226, 533
theory 13 Gyr ago and now, 12

Quantum field theory (QFT), 117–118, 543
Quantum gravity, 14, 511–514
Quasars (QSO), 11, 14, 332, 339
Quintessence, 19, 373–374

extended, 380

Radar (distance), 207, 540
Radiation, 99

and baryons, 103
and CDM, 275–276
energy density, 161, 295
era, 231
flux, 161–163
multipoles, 287–291

Radio
background, 304
surveys, 556

Radio sources
counts, 349
isotropy, 14
number density, 10

Randall–Sundrum brane-world, 383,
521–522

perturbations, 524–525
Range of applicability of description, 21
Ray 4-vector, 155
Raychaudhuri equation, 119, 210, 212, 222, 264,

271, 424
evaluated today, 123
first integral, 123
null, 160
perturbed, 249

Reciprocity relation, see Distance-duality relation
Recollapse to a future singularity, 213, 214, 366
Recombination, 236–237, 240, 241
Redshift, 9, 156–159, 183, 186, 436

contributions to, 158
FLRW, 158
linear relation, 157
major characteristic, 157
surveys, 14–15, 360

Redshift drift, 413
Redshift–distance formula, 399 (see also

Magnitude-redshift)
Redshift-space distortions, 323–324
Re-entering the horizon, 310
Refocusing of past light-cone, 145, 167
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Regge–Wheeler gauge, 407
Reheating, 227, 237, 241
Reionization, 237–238

redshift, 360
Relative

distance, 80
position vectors, 79–80, 124, 209
velocity, 80

Relative entropy perturbations, 315
Relativistic magnetohydrodynamics, 113–115
Repeated indices, 29
Representative length, 62, 83
Resolution of big bang singularity, 529–530
Rest-frame energy, 104
Rest-mass

density, 90
current 4-vector, 90

Ricci
identity, 54, 86, 136
rotation coefficients, 52, 135
scalar, 44, 378

Ricci curvature
of 3-space, 127
tensor, 38, 48, 65, 427, 436

Riemann tensor, 37, 48, 427, 428 (see Curvature
tensor)

symmetries, 86, 87
Riemannian

curvature, 44
geometry, 39–47
manifold, 42
metric, 39, 42
normal coordinates, 37

Robertson–Walker (RW) metric, 44, 541
observational coordinates, 186
spacetime, 395
and kinetic theory, 109

Rotating fluids, 128–131, 456
Rotation (lensing), 338
Rotation curves, 318
Running of the spectral index, 359

Sachs–Wolfe effect, 242, 356, 358, 364
plateau, 358

Saha equation, 236, 237
Sasaki–Mukhanov variable, 258, 278
Scalar curvature singularities, 145
Scalar fields, 18–19, 115–117, 255, 373–375, 380,

382
energy condition violation, 242
inhomogeneities, 267, 278, 315
kinetic dominated, 116
non-standard, 375
potential dominated, 116

Scalar perturbations, 252, 289–290, 295–297, 303,
311–313

Scalar product, 39
Scalars, 31

conservation, 61
Scalar–tensor theories, 378, 380–382, 517,

539–540
Scale factor, 203, 204, 561
Scale-invariant, 308, 358, 360
Schrödinger equation, 515
Schwarzschild solution, 330, 426, 429–431, 491
Screen-projection tensor, 105
Screen space, 159, 334
SDSS, 14–16, 171, 181, 194, 236, 244, 323, 348, 353,

360, 361, 389, 406
Second fundamental form, 54, 67
Second law of thermodynamics, 538
Sectional curvature, 49
Seeding structure formation, 239, 241
Selection effects, 171, 546
Self-similar models, 448, 473, 489, 493–492
Shear of null rays, 160, 184, 338
Shear tensor (fluid), 81, 82
Shearfree

expansion of dust, 125, 151
reference frame, 433

Shell-crossing singularity, 397
Shock fronts, 329
Sign of spatial curvature, 394
Silent universes, 502
Silk damping, 273, 356

scale, 354
Singularities, 143–147

classification, 145–147
FLRW models, 213

Singularity avoidance
alternative gravity, 122
cosmological constant, 121
inhomogeneity, 122
rotation, 122
violation of energy condition, 122

Singularity theorems
basic, 120
FLRW, 121
Hawking-Penrose, 144–145

SKA, 15, 238, 362
Skew 2-tensor, 78
Slow-roll inflation, 240, 245, 278, 313

parameters, 242, 244
Small universe, 8, 174, 176, 177, 181, 190, 209–210,

367–368, 557, 559
Smoothing scale, 322
SNIa – see Supernovae
Soliton solutions, 498
Solutions with no symmetries, 451

Szekeres–Szafron models, 451
Stephani’s models, 451

Sound horizon at decoupling, 325, 354
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Source
evolution, 399–400
luminosity, 163
spectrum, 168

Spacelike hypersurfaces, 454
Space of cosmological models, 439–454
Spaces of constant curvature, 49, 205
Spacetime (definition), 20

symmetry of, 41–42
time orientable, 40

Spacetime homogeneous geometries, 449
Spatial correlation function, 309
Spatial curvature, 256, 359

sign of, 171, 394, 558
Spatial gradient

of energy density, 134, 266
of expansion, 134, 266

Spatial isotropy, 190
Spatial homogeneity, 43, 171, 201, 206

and CMB, 282–287
not directly observable, 183
testing, 346–350, 411–415

Spatially homogeneous models, 23, 449–450,
456–487

Spatial inhomogeneities, 266
Spatially inhomogeneous models, 450–452
Special initial conditions, 238, 547
Specific entropy, 95
Specific flux, 168
Specific intensity, 167–169

independent of distance, 168
Spectral index, 168, 359, 360
Special or general initial conditions?, 546–548
Speculative era, 14
Speed of light, 173, 540, 541

varying, 540–543
Speed of sound, 93, 116, 255, 264, 273, 274, 275,

278, 373
Spherically symmetric, 43, 193

inhomogeneous models, 22, 495–496
observational coordinates, 185

Spin-0 gravitational degree of freedom, 382, 384
Spin connection, 527
Spiral galaxies, 319
Standard candles, 6, 10, 352
Standard model,

cosmology, 4, 201, 555
particle physics, 89, 228–229, 390, 543, 544

Standard rulers, 352–354
Static

FLRW universe models, 120
star, 120

Statistical spatial homogeneity, 190
Steady state universe, 10, 122, 217, 347
Stephani–Barnes family, 501
Stiff matter, 99

Stokes brightness parameters, 300–301
Stress tensor, total, 101
String inflation, 525–526
String theory, 383, 516–518, 540,550

landscape, 540, 549
Strings (cosmic), see Cosmic strings
Strong energy condition, 94, 100

violation, 241–242
Strong equivalence principle (SEP), 59
Strong interaction, 229
Strong lensing, 339
Strong nuclear force, 543, 545
Structure constants, 43, 462–463, 465
Structure formation, 149, 249, 307–316, 385, 386,

409–410, 417, 556
seeding, 239, 241

Sub-Hubble sub-horizon scales, 272, 310, 386
Submanifold, 27
Sunyaev–Zel’dovich effect, 356, 410, 412
Super-Hubble super-horizon scales, 257, 262, 280,

310, 312–313, 314, 321, 345, 377, 386, 525
Supergravity, 517, 518, 525, 526
Superconductivity, 390
Superluminal motion, 391

no signals faster than light, 93
Supernovae (SNIa), 10–11, 65, 186, 188, 196, 317,

343, 352–355, 359, 374, 376, 384–385, 389, 392,
395, 400, 403–406, 409, 411–412, 414–416, 432,
437–441, 489, 500–501, 545

Superspace, 514
Superstrings, 517
Supersymmetry, 226, 228, 517
Surface layers, 428
Surface mass density, 333, 337, 338
Swiss cheese models, 23, 423–424, 431, 491–493

and observations, 439
matching conditions, 429–430

Symmetrization, 32
symmetric part of tensor, 32, 33

Symmetry breaking, 118
Symmetry of spacetime, 41–42

cosmological models, 447–452
symmety group, 43

Symmetry preserved, 455
Symplectic measure, 550
Synchronous comoving coordinates, 396, 425
Synchronous gauge, 251, 257
Synge’s ‘g-method’, 100, 495
Szekeres–Szafron family, 498–501

Hubble diagram, 500

Tachyonic instability, 517
Tachyons, 391
Tangent bundle, 30

space, 28–30
vectors, 28–29

Temperature, 95, 231, 232
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of photons, 230, 237
Temperature anisotropies of the CMB, 282, 292–294,

297
and spatial homogeneity, 282–287
correlation function, 293
power spectrum, 293, 297, 298–299

Tensor equations, 33, 56–57, 60
Tensor perturbations, 252, 279–280, 291, 303,

316–317
Tensor-to-scalar ratio, 317, 360
Tensor–vector–scalar (TeVeS) theory, 320, 343, 382
Tensors, 31

antisymmetric part, 33
contraction, 33
covariant, 32
derivatives of, 34
product of, 33
symmetric part, 33

Testable physics, 5, 9, 176–177, 351, 447, 489, 514,
530–531, 534, 539, 548, 551–553, 557–558

Testing
cosmological gravity, 342–343, 380
small universes, 367–368

Testing the standard model, 345
background, 351–355
perturbations, 355–363

Tetrads, 51, 134–138 (see also Orthonormal tetrads)
Thermal history, 226–238
Thomson scattering, 103, 108, 109–110, 170, 237,

238, 294–295, 298
Tidal forces, 39, 58, 537
Tight coupling, 276, 298

breakdown, 299
Tilted Bianchi II models, 475–477
Time, choices of, 129–130
Time delay (lensing), 338, 341
Time derivative (comoving), 63, 75

projected, 78
Time dilation effect, 157
Time drift of redshift, 414
Time scale, 10
Time varying gravitational constant, 8
Timelike Ricci eigenvector, 448
Timelike vector, 40
Time-reversed Big Bang, 394
Tolman model, 219, 220
Top-hat window function, 322
Topological defects, 118, 329
Topology, 26, 207–208
Torsion, 37
Torus topology, 207
Total anisotropic stress, 285
Total energy density, 212
Total intensity, 296
Total intensity brightness, 300
Total momentum density, 285

Tracker potentials, 374
Transfer function, 296, 321, 322, 356
Transient universe, 533
Transverse velocities, 185, 187, 190, 195–196

and anisotropy, 195
Truncation of hierarchy, 108
Tully–Fisher relation, 318
Tunneling process, 244–245

Ultraviolet corrections, 383
Ultraviolet cutoff, 308
Uncertainty

about ultimate issues, 560
increases with redshift, 196
levels of, 196

Uniform curvature gauge, 257
Uniform density gauge, 257
Uniform thermal histories, 348, 456
Unimodular gravity, 371–372
Uniqueness of Universe, 3, 307, 534, 547, 560
Universe

as context for life, 542, 545
evolving, 10–11
expansion of, 10
homogeneity of, 13
is currently accelerating, 370
isotropic about us, 201
may or may not have a beginning, 533
probability, 547
size of, 6
steady state, 10
uniqueness of, 3, 547

Unphysical exact solutions, 99–100
Unverifiable claims, 177

Vacuum boundary, 473
Vacuum energy, 99, 371, 373, 392

nongravitating, 371
Variance (cosmic), 308, 356

of mass fluctuations, 322
Variational principle, 67

non-commutation with symmetry, 67
Varying ‘constants’, 539–540

varying-α theories, 542
varying-c theories, 540–543
varying-G theories, 381, 540

Varying speed of light (VSL) cosmologies, 540–543
Vector field, 30

commutator of, 30
Vector perturbations, 252, 261–262, 269, 274, 277,

279, 290–291, 303
Vector potential, 35
Vectors, 28–29

covariant, 30
spacelike, timelike or null, 40

Vector–tensor theories, 382–383
Velocity dominated singularities, 146, 504



622 Index

Velocity perturbations, 263, 275, 489
Volume-expansion gradient, 263
Viscosity coefficient, 96
Viscous eras, 219
Visible universe, 555–556
Visual horizon, 8, 173, 175–177, 351, 557
Visual limit sphere, 176
VLBI, 196
Voids in the universe, 431

size of, 404
Volume, 61
Volume element, 46, 61

kinetic theory, 107
Vorticity

origin of, 328–329
relation to time, 83
tensor, 81, 82
vector, 82
conservation, 86, 124–125, 335

Warm dark matter, 228
Warped geometry, 525
Wave equation, 112, 114, 133, 261, 316, 519, 520

for shear, 280
Wave function of universe, 515, 516, 549
Weak energy condition, 93

Weak equivalence principle, 57, 381
Weak force, 544
Weak interactions, 233
Weak lensing, 319, 331, 339–340, 362–363, 556

and neutrino masses, 341
surveys, 182

Weakening of gravity, 376, 383
Weyl tensor, 47, 65, 87, 94–95, 132–133, 138,

279–281, 334, 338, 377, 436, 442–443, 537
electric part, 87, 132
magnetic part, 87, 132
Petrov type, 48

Wheeler–DeWitt equation, 514–516, 528–529
Whimper singularity, 481
Wiltshire’s models, 431–432, 439
WIMPs – weakly interacting massive particles,

228–229
WMAP, 176, 244, 299, 325, 354, 356, 358, 359, 363,

385, 389, 405

X-ray background, 304

Zel’dovich approximation, 328
Zero shear surfaces, 130
Zero-point fluctuations, 310


	Cover
	Relativistic Cosmology
	Title
	Copyright
	Contents
	Preface
	PART 1: FOUNDATIONS
	1: The nature of cosmology
	1.1 The aims of cosmology
	1.2 Observational evidence and its limitations
	1.3 A summary of current observations
	1.4 Cosmological concepts
	1.5 Cosmological models
	1.6 Overview

	2: Geometry
	2.1 Manifolds
	2.2 Tangent vectors and 1-forms
	2.3 Tensors
	2.4 Lie derivatives
	2.5 Connections and covariant derivatives
	2.6 The curvature tensor
	2.7 Riemannian geometry
	2.8 General bases and tetrads
	2.9 Hypersurfaces

	3: Classical physics and gravity
	3.1 Equivalence principles, gravity and local physics
	3.2 Conservation equations
	3.3 The field equations in relativity and their structure
	3.4 Relation to Newtonian theory


	PART 2: RELATIVISTIC COSMOLOGICAL MODELS
	4: Kinematics of cosmological models
	4.1 Comoving coordinates
	4.2 The fundamental 4-velocity
	4.3 Time derivatives and the acceleration vector
	4.4 Projection to give three-dimensional relations
	4.5 Relative position and velocity
	4.6 The kinematic quantities
	4.7 Curvature and the Ricci identities for the 4-velocity
	4.8 Identities for the projected covariant derivatives

	5: Matter in the universe
	5.1 Conservation laws
	5.2 Fluids
	5.3 Multiple fluids
	5.4 Kinetic theory
	5.5 Electromagnetic fields
	5.6 Scalar fields
	5.7 Quantum field theory

	6: Dynamics of cosmological models
	6.1 The Raychaudhuri–Ehlers equation
	6.2 Vorticity conservation
	6.3 The other Einstein field equations
	6.4 The Weyl tensor and the Bianchi identities
	6.5 The orthonormal 1+3 tetrad equations
	6.6 Structure of the 1+3 system of equations
	6.7 Global structure and singularities
	6.8 Newtonian models and Newtonian limits

	7: Observations in cosmological models
	7.1 Geometrical optics and null geodesics
	7.2 Redshifts
	7.3 Geometry of null geodesics and images
	7.4 Radiation energy and flux
	7.5 Specific intensity and apparent brightness
	7.6 Number counts
	7.7 Selection and detection issues
	7.8 Background radiation
	7.9 Causal and visual horizons

	8: Light-cone approach to relativistic cosmology
	8.1 Model-based approach
	8.2 Direct observational cosmology
	8.3 Ideal cosmography
	8.4 Field equations: determining the geometry
	8.5 Isotropic and partially isotropic observations
	8.6 Implications and opportunities


	PART 3: THE STANDARD MODEL AND EXTENSIONS
	9: Homogeneous FLRW universes
	9.1 FLRW geometries
	9.2 FLRW dynamics
	9.3 FLRW dynamics with barotropic fluids
	9.4 Phase planes
	9.5 Kinetic solutions
	9.6 Thermal history and contents of the universe
	9.7 Inflation
	9.8 Origin of FLRW geometry
	9.9 Newtonian case

	10: Perturbations of FLRW universes
	10.1 The gauge problem in cosmology
	10.2 Metric-based perturbation theory
	10.3 Covariant nonlinear perturbations
	10.4 Covariant linear perturbations

	11: The cosmic background radiation
	11.1 The CMB and spatial homogeneity: nonlinear analysis
	11.2 Linearized analysis of distribution multipoles
	11.3 Temperature anisotropies in the CMB
	11.4 Thomson scattering
	11.5 Scalar perturbations
	11.6 CMB polarization
	11.7 Vector and tensor perturbations
	11.8 Other background radiation

	12: Structure formation and gravitational lensing
	12.1 Correlation functions and power spectra
	12.2 Primordial perturbations from inflation
	12.3 Growth of density perturbations
	12.4 Gravitational lensing
	12.5 Cosmological applications of lensing

	13: Confronting the Standard Model with observations
	13.1 Observational basis for FLRW models
	13.2 FLRW observations: probing the background evolution
	13.3 Almost FLRW observations: probing structure formation
	13.4 Constraints and consistency checks
	13.5 Concordance model and further issues

	14: Acceleration from dark energy or modified gravity
	14.1 Overview of the problem
	14.2 Dark energy in an FLRW background
	14.3 Modified gravity in a RW background
	14.4 Constraining effective theories
	14.5 Conclusion

	15: ‘Acceleration’ from large-scale inhomogeneity?
	15.1 Lemaître–Tolman–Bondi universes
	15.2 Observables and source evolution
	15.3 Can we fit area distance and number count observations?
	15.4 Testing background LTB with SNIa and CMB distances
	15.5 Perturbations of LTB
	15.6 Observational tests of spatial homogeneity
	15.7 Conclusion: status of the Copernican Principle

	16: ‘Acceleration’ from small-scale inhomogeneity?
	16.1 Different scale descriptions
	16.2 Cosmological backreaction
	16.3 Specific models: almost FLRW
	16.4 Inhomogeneous models
	16.5 Importance of backreaction effects?
	16.6 Effects on observations
	16.7 Combination of effects: altering cosmic concordance?
	16.8 Entropy and coarse-graining


	PART 4: ANISOTROPIC AND INHOMOGENEOUS MODELS
	17: The space of cosmological models
	17.1 Cosmological models with symmetries
	17.2 The equivalence problem in cosmology
	17.3 The space of models and the role of symmetric models

	18: Spatially homogeneous anisotropic models
	18.1 Kantowski–Sachs universes: geometry and dynamics
	18.2 Bianchi I universes: geometry and dynamics
	18.3 Bianchi geometries and their field equations
	18.4 Bianchi universe dynamics
	18.5 Evolution of particular Bianchi models
	18.6 Cosmological consequences
	18.7 The Bianchi degrees of freedom

	19: Inhomogeneous models
	19.1 LTB revisited
	19.2 Swiss cheese revisited
	19.3 Self-similar models
	19.4 Models with a G3 acting on S2
	19.5 G2 cosmologies
	19.6 The Szekeres–Szafron family
	19.7 The Stephani–Barnes family
	19.8 Silent universes
	19.9 General dynamics of inhomogeneous models
	19.10 Cosmological applications


	PART 5: BROADER PERSPECTIVES
	20: Quantum gravity and the start of the universe
	20.1 Is there a quantum gravity epoch?
	20.2 Quantum gravity effects
	20.3 String theory and cosmology
	20.4 Loop quantum gravity and cosmology
	20.5 Physics horizon
	20.6 Explaining the universe – the question of origins

	21: Cosmology in a larger setting
	21.1 Local physics and cosmology
	21.2 Varying ‘constants’
	21.3 Anthropic question: fine-tuning for life
	21.4 Special or general? Probable or improbable?
	21.5 Possible existence of multiverses
	21.6 Why is the universe as it is?

	22: Conclusion: our picture of the universe
	22.1 A coherent view?
	22.2 Testing alternatives: probing the possibilities
	22.3 Limits of cosmology


	Appendix: Some useful formulae
	A.1 Constants and units
	A.2 1+3 covariant equations
	A.3 Frequently used acronyms

	References
	Index

