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Foreword

From First Edition

A senior-level undergraduate course entitled “Vibration and Flutter” was taught
for many years at Georgia Tech under the quarter system. This course dealt with
elementary topics involving the static and/or dynamic behavior of structural ele-
ments, both without and with the influence of a flowing fluid. The course did not
discuss the static behavior of structures in the absence of fluid flow because this is
typically considered in courses in structural mechanics. Thus, the course essentially
dealt with the fields of structural dynamics (when fluid flow is not considered) and
aeroelasticity (when it is).

As the name suggests, structural dynamics is concerned with the vibration and
dynamic response of structural elements. It can be regarded as a subset of aero-
elasticity, the field of study concerned with interaction between the deformation of
an elastic structure in an airstream and the resulting aerodynamic force. Aeroelastic
phenomena can be observed on a daily basis in nature (e.g., the swaying of trees in
the wind and the humming sound that Venetian blinds make in the wind). The most
general aeroelastic phenomena include dynamics, but static aeroelastic phenomena
are also important. The course was expanded to cover a full semester, and the
course title was appropriately changed to “Introduction to Structural Dynamics and
Aeroelasticity.”

Aeroelastic and structural-dynamic phenomena can result in dangerous static
and dynamic deformations and instabilities and, thus, have important practical con-
sequences in many areas of technology. Especially when one is concerned with the
design of modern aircraft and space vehicles—both of which are characterized by
the demand for extremely lightweight structures—the solution of many structural
dynamics and aeroelasticity problems is a basic requirement for achieving an oper-
ationally reliable and structurally optimal system. Aeroelastic phenomena can also
play an important role in turbomachinery, civil-engineering structures, wind-energy
converters, and even in the sound generation of musical instruments.

xix



xx Foreword

Aeroelastic problems may be classified roughly in the categories of response
and stability. Although stability problems are the principal focus of the material pre-
sented herein, it is not because response problems are any less important. Rather,
because the amplitude of deformation is indeterminate in linear stability problems,
one may consider an exclusively linear treatment and still manage to solve many
practical problems. However, because the amplitude is important in response prob-
lems, one is far more likely to need to be concerned with nonlinear behavior when
attempting to solve them. Although nonlinear equations come closer to representing
reality, the analytical solution of nonlinear equations is problematic, especially in
the context of undergraduate studies.

The purpose of this text is to provide an introduction to the fields of structural
dynamics and aeroelasticity. The length and scope of the text are intended to be
appropriate for a semester-length, senior-level, undergraduate course or a first-year
graduate course in which the emphasis is on conventional aircraft. For curricula that
provide a separate course in structural dynamics, an ample amount of material has
been added to the aeroelasticity chapters so that a full course on aeroelasticity alone
could be developed from this text.

This text was built on the foundation provided by Professor Pierce’s course
notes, which had been used for the “Vibration and Flutter” course since the 1970s.
After Professor Pierce’s retirement in 1995, when the responsibility for the course
was transferred to Professor Hodges, the idea was conceived of turning the notes
into a more substantial text. This process began with the laborious conversion of
Professor Pierce’s original set of course notes to LaTeX format in the fall of 1997.
The authors are grateful to Margaret Ojala, who was at that time Professor Hodges’s
administrative assistant and who facilitated the conversion. Professor Hodges then
began the process of expanding the material and adding problems to all chapters.
Some of the most substantial additions were in the aeroelasticity chapters, partly
motivated by Georgia Tech’s conversion to the semester system. Dr. Mayuresh J.
Patil,1 while he was a Postdoctoral Fellow in the School of Aerospace Engineering,
worked with Professor Hodges to add material on aeroelastic tailoring and unsteady
aerodynamics mainly during the academic year 1999–2000. The authors thank
Professor David A. Peters of Washington University for his comments on the
section that treats unsteady aerodynamics. Finally, Professor Pierce, while enjoying
his retirement and building a new house and amid a computer-hardware failure
and visits from grandchildren, still managed to add material on the history of
aeroelasticity and on the k and p-k methods in the early summer of 2001.

Dewey H. Hodges and G. Alvin Pierce
Atlanta, Georgia
June 2002

1 Presently, Dr. Patil is Associate Professor in the Department of Aerospace and Ocean Engineering
at Virginia Polytechnic and State University.
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Addendum for Second Edition

Plans for the second edition were inaugurated in 2007, when Professor Pierce was
still alive. All his colleagues at Georgia Tech and in the technical community at large
were saddened to learn of his death in November 2008. Afterward, plans for the
second edition were somewhat slow to develop.

The changes made for the second edition include additional material along
with extensive reorganization. Instructors may choose to omit certain sections
without breaking the continuity of the overall treatment. Foundational material
in mechanics and structures was somewhat expanded to make the treatment
more self-contained and collected into a single chapter. It is hoped that this new
organization will facilitate students who do not need this review to easily skip it, and
that students who do need it will find it convenient to have it consolidated into one
relatively short chapter. A discussion of stability is incorporated, along with a review
of how single-degree-of-freedom systems behave as key parameters are varied.
More detail is added for obtaining numerical solutions of characteristic equations
in structural dynamics. Students are introduced to finite-element structural models,
making the material more commensurate with industry practice. Material on control
reversal in static aeroelasticity has been added. Discussion on numerical solution
of the flutter determinant via MathematicaTM replaces the method presented in
the first edition for interpolating from a set of candidate reduced frequencies. The
treatment of flutter analysis based on complex eigenvalues is expanded to include
an unsteady-aerodynamics model that has its own state variables. Finally, the role
of flight-testing and certification is discussed. It is hoped that the second edition
will not only maintain the text’s uniqueness as an undergraduate-level treatment of
the subject, but that it also will prove to be more useful in a first-year graduate course.

Dewey H. Hodges
Atlanta, Georgia
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1 Introduction

“Aeroelasticity” is the term used to denote the field of study concerned with the
interaction between the deformation of an elastic structure in an airstream and
the resulting aerodynamic force. The interdisciplinary nature of the field is best
illustrated by Fig. 1.1, which originated with Professor A. R. Collar in the 1940s. This
triangle depicts interactions among the three disciplines of aerodynamics, dynamics,
and elasticity. Classical aerodynamic theories provide a prediction of the forces
acting on a body of a given shape. Elasticity provides a prediction of the shape of an
elastic body under a given load. Dynamics introduces the effects of inertial forces.
With the knowledge of elementary aerodynamics, dynamics, and elasticity, students
are in a position to look at problems in which two or more of these phenomena
interact. The field of flight mechanics involves the interaction between aerodynamics
and dynamics, which most undergraduate students in an aeronautics/aeronautical
engineering curriculum have studied in a separate course by their senior year. This
text considers the three remaining areas of interaction, as follows:

� between elasticity and dynamics (i.e., structural dynamics)
� between aerodynamics and elasticity (i.e., static aeroelasticity)
� among all three (i.e., dynamic aeroelasticity)

Because of their importance to aerospace system design, these areas are also ap-
propriate for study in an undergraduate aeronautics/aeronautical engineering cur-
riculum. In aeroelasticity, one finds that the loads depend on the deformation (i.e.,
aerodynamics) and that the deformation depends on the loads (i.e., structural me-
chanics/dynamics); thus, one has a coupled problem. Consequently, prior study of all
three constituent disciplines is necessary before a study in aeroelasticity can be un-
dertaken. Moreover, a study in structural dynamics is helpful in developing concepts
that are useful in solving aeroelasticity problems, such as the modal representation.

It is of interest that aeroelastic phenomena played a major role throughout the
history of powered flight. The Wright brothers utilized controlled warping of the
wings on their Wright Flyer in 1903 to achieve lateral control. This was essential to
their success in achieving powered flight because the aircraft was laterally unstable
due to the significant anhedral of the wings. Earlier in 1903, Samuel Langley made

1
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Figure 1.1. Schematic of the field of aeroelasticity

two attempts to achieve powered flight from the top of a houseboat on the Potomac
River. His efforts resulted in catastrophic failure of the wings caused by their being
overly flexible and overloaded. Such aeroelastic phenomena, including torsional
divergence, were major factors in the predominance of the biplane design until the
early 1930s, when “stressed-skin” metallic structural configurations were introduced
to provide adequate torsional stiffness for monoplanes.

The first recorded and documented case of flutter in an aircraft occurred in 1916.
The Handley Page O/400 bomber experienced violent tail oscillations as the result of
the lack of a torsion-rod connection between the port and starboard elevators—an
absolute design requirement of today. The incident involved a dynamic twisting of
the fuselage to as much as 45 degrees in conjunction with an antisymmetric flapping
of the elevators. Catastrophic failures due to aircraft flutter became a major design
concern during the First World War and remain so today. R. A. Frazer and W. J.
Duncan at the National Physical Laboratory in England compiled a classic document
on this subject entitled, “The Flutter of Aeroplane Wings” as R&M 1155 in August
1928. This small document (about 200 pages) became known as “The Flutter Bible.”
Their treatment for the analysis and prevention of the flutter problem laid the
groundwork for the techniques in use today.

Another major aircraft-design concern that may be classified as a static-
aeroelastic phenomenon was experienced in 1927 by the Bristol Bagshot, a twin-
engine, high-aspect-ratio English aircraft. As the speed was increased, the aileron
effectiveness decreased to zero and then became negative. This loss and reversal
of aileron control is commonly known today as “aileron reversal.” The incident
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was successfully analyzed and design criteria were developed for its prevention by
Roxbee Cox and Pugsley at the Royal Aircraft Establishment in the early 1930s.
Although aileron reversal generally does not lead to a catastrophic failure, it can be
dangerous and therefore is an essential design concern. It is of interest that during
this period of the early 1930s, it was Roxbee Cox and Pugsley who proposed the
name “aeroelasticity” to describe these phenomena, which are the subject of this
text.

In the design of aerospace vehicles, aeroelastic phenomena can result in a full
spectrum of behavior from the near benign to the catastrophic. At the near-benign
end of the spectrum, one finds passenger and pilot discomfort. One moves from
there to steady-state and transient vibrations that slowly cause an aircraft structure
to suffer fatigue damage at the microscopic level. At the catastrophic end, aeroelastic
instabilities can quickly destroy an aircraft and result in loss of human life without
warning. Aeroelastic problems that need to be addressed by aerospace system de-
signers can be mainly static in nature—meaning that inertial forces do not play a
significant role—or they can be strongly influenced by inertial forces. Although not
the case in general, the analysis of some aeroelastic phenomena can be undertaken
by means of small-deformation theories. Aeroelastic phenomena may strongly affect
the performance of an aircraft, positively or negatively. They also may determine
whether its control surfaces perform their intended functions well, poorly, or even
in the exact opposite manner of that which they are intended to do. It is clear then
that all of these studies have important practical consequences in many areas of
aerospace technology. The design of modern aircraft and space vehicles is charac-
terized by the demand for extremely lightweight structures. Therefore, the solution
of many aeroelastic problems is a basic requirement for achieving an operationally
reliable and structurally optimal system. Aeroelastic phenomena also play an im-
portant role in turbomachinery, in wind-energy converters, and even in the sound
generation of musical instruments.

The most commonly posed problems for the aeroelastician are stability prob-
lems. Although the elastic moduli of a given structural member are independent of
the speed of the aircraft, the aerodynamic forces strongly depend on it. It is there-
fore not difficult to imagine scenarios in which the aerodynamic forces “overpower”
the elastic restoring forces. When this occurs in such a way that inertial forces have
little effect, we refer to this as a static-aeroelastic instability—or “divergence.” In
contrast, when the inertial forces are important, the resulting dynamic instability is
called “flutter.” Both divergence and flutter can be catastrophic, leading to sudden
destruction of a vehicle. Thus, it is vital for aircraft designers to know how to design
lifting surfaces that are free of such problems. Most of the treatment of aeroelasticity
in this text is concerned with stability problems.

Much of the rest of the field of aeroelasticity involves a study of aircraft response
in flight. Static-aeroelastic response problems constitute a special case in which
inertial forces do not contribute and in which one may need to predict the lift
developed by an aircraft of given configuration at a specified angle of attack or
determine the maximum load factor that such an aircraft can sustain. Also, problems
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of control effectiveness and aileron reversal fall in this category. When inertial forces
are important, one may need to know how the aircraft reacts in turbulence or in gusts.
Another important phenomenon is buffeting, which is characterized by transient
vibration induced by wakes behind wings, nacelles, or other aircraft components.

All of these problems are treatable within the context of a linear analysis. Math-
ematically, linear problems in aeroelastic response and stability are complementary.
That is, instabilities are predictable from examining the situations under which ho-
mogeneous equations possess nontrivial solutions. Response problems, however,
are generally based on the solution of inhomogeneous equations. When the sys-
tem becomes unstable, a solution to the inhomogeneous equations ceases to exist,
whereas the homogeneous equations and boundary conditions associated with a
stable conguration do not have a nontrivial solution.

Unlike the predictions from linear analyses, in actual aircraft, it is possible for
self-excited oscillations to develop, even at speeds less than the flutter speed. More-
over, large disturbances can “bump” a system that is predicted to be stable by linear
analyses into a state of large oscillatory motion. Both situations can lead to steady-
state periodic oscillations for the entire system, called “limit-cycle oscillations.” In
such situations, there can be fatigue problems leading to concerns about the life of
certain components of an aircraft as well as passenger comfort and pilot endurance.
To capture such behavior in an analysis, the aircraft must be treated as a nonlinear
system. Although of great practical importance, nonlinear analyses are beyond the
scope of this textbook.

The organization of the text is as follows. The fundamentals of mechanics are
reviewed in Chapter 2. Later chapters frequently refer to this chapter for the for-
mulations embodied therein, including the dynamics of particles and rigid bodies
along with analyses of strings and beams as examples of simple structural elements.
Finally, the behavior of single-degree-of-freedom systems is reviewed along with a
physically motivated discussion of stability.

To describe the dynamic behavior of conventional aircraft, the topic of struc-
tural dynamics is introduced in Chapter 3. This is the study of dynamic properties of
continuous elastic configurations, which provides a means of analytically represent-
ing a flight vehicle’s deformed shape at any instant of time. We begin with simple
systems, such as vibrating strings, and move up in complexity to beams in torsion
and finally to beams in bending. The introduction of the modal representation and
its subsequent use in solving aeroelastic problems is the main emphasis of Chapter 3.
A brief introduction to the methods of Ritz and Galerkin is also included.

Chapter 4 addresses static aeroelasticity. The chapter is concerned with static
instabilities, steady airloads, and control-effectiveness problems. Again, we begin
with simple systems, such as elastically restrained rigid wings. We move to wings
in torsion and swept wings in bending and torsion and then finish the chapter with
a treatment of swept composite wings undergoing elastically coupled bending and
torsional deformation.

Finally, Chapter 5 discusses aeroelastic flutter, which is associated with dynamic-
aeroelastic instabilities due to the mutual interaction of aerodynamic, elastic, and
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inertial forces. A generic lifting-surface analysis is first presented, followed by illus-
trative treatments involving simple “typical-section models.” Engineering solution
methods for flutter are discussed, followed by a brief presentation of unsteady-
aerodynamic theories, both classical and modern. The chapter concludes with an
application of the modal representation to the flutter analysis of flexible wings, a
discussion of the flutter-boundary characteristics of conventional aircraft, and an
overview of how structural dynamics and aeroelasticity impact flight tests and cer-
tification. It is important to note that central to our study in the final two chapters
are the phenomena of divergence and flutter, which typically result in catastrophic
failure of the lifting surface and may lead to subsequent destruction of the flight
vehicle.

An appendix is included in which Lagrange’s equations are derived and illus-
trated, as well as references for structural dynamics and aeroelasticity.



2 Mechanics Fundamentals

Although to penetrate into the intimate mysteries of nature and thence to learn the
true causes of phenomena is not allowed to us, nevertheless it can happen that a
certain fictive hypothesis may suffice for explaining many phenomena.

—Leonard Euler

As discussed in Chapter 1, both structural dynamics and aeroelasticity are built on
the foundations of dynamics and structural mechanics. Therefore, in this chapter, we
review the fundamentals of mechanics for particles, rigid bodies, and simple struc-
tures such as strings and beams. The review encompasses laws of motion, expressions
for energy and work, and background assumptions. The chapter concludes with a
brief discussion of the behavior of single-degree-of-freedom systems and the notion
of stability.

The field of structural dynamics addresses the dynamic deformation behavior
of continuous structural configurations. In general, load-deflection relationships are
nonlinear, and the deflections are not necessarily small. In this chapter, to facilitate
tractable, analytical solutions, we restrict our attention to linearly elastic systems
undergoing small deflections—conditions that typify most flight-vehicle operations.

However, some level of geometrically nonlinear theory is necessary to arrive at
a set of linear equations for strings, membranes, helicopter blades, turbine blades,
and flexible rods in rotating spacecraft. Among these problems, only strings are
discussed herein. Indeed, linear equations of motion for free vibration of strings
cannot be obtained without initial consideration and subsequent careful elimination
of nonlinearities.

The treatment goes beyond material generally presented in textbooks when
it delves into the modeling of composite beams. By virtue of the inclusion of this
section, readers obtain more than a glimpse of the physical phenomena associated
with these evermore pervasive structural elements to the point that such beams can
be treated in a simple fashion suitable for use in aeroelastic tailoring (see Chapter 4).
The treatment follows along with the spirit of Euler’s quotation: in mechanics, we
seek to make certain assumptions (i.e., fictive hypotheses) that although they do
not necessarily provide knowledge of true causes, they do afford us a mathematical
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model that is useful for analysis and design. The usefulness of such models is only
as good as can be validated against experiments or models of higher fidelity. For
example, defining a beam as a slender structural element in which one dimension is
much larger than the other two, we observe that many aircraft wings do not have the
geometry of a beam. If the aspect ratio is sufficiently large, however, a beam model
may suffice to describe the overall behavioral characteristics of a wing.

2.1 Particles and Rigid Bodies

The simplest dynamical systems are particles. The particle is idealized as a “point-
mass,” meaning that it takes up no space even though it has nonzero mass. The
position vector of a particle in a Cartesian frame can be characterized in terms of
its three Cartesian coordinates—for example, x, y, and z. Particles have velocity
and acceleration but they do not have angular velocity or angular acceleration.
Introducing three unit vectors, î, ĵ, and k̂, which are regarded as fixed in a Cartesian
frame F , one may write the position vector of a particle Q relative to a point O fixed
in F as

pQ = xî + yĵ + zk̂ (2.1)

The velocity of Q in F can then be written as a time derivative of the position vector
in which one regards the unit vectors as fixed (i.e., having zero time derivatives) in
F , so that

vQ = ẋî + ẏĵ + żk̂ (2.2)

Finally, the acceleration of Q in F is given by

aQ = ẍî + ÿĵ + z̈k̂ (2.3)

2.1.1 Newton’s Laws

An inertial frame is a frame of reference in which Newton’s laws are valid. The only
way to ascertain whether a particular frame is sufficiently close to being inertial is
by comparing calculated results with experimental data. These laws may be stated
as follows:

1st Particles with zero resultant force acting on them move with constant velocity
in an inertial frame.

2nd The resultant force on a particle is equal to its mass times its acceleration in an
inertial frame. In other words, this acceleration is defined as in Eq. (2.3), with
the frame F being an inertial frame.

3rd When a particle P exerts a force on another particle Q, Q simultaneously exerts
a force on P with the same magnitude but in the opposite direction. This law is
often simplified as the sentence: “To every action, there is an equal and opposite
reaction.”
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2.1.2 Euler’s Laws and Rigid Bodies

Euler generalized Newton’s laws to systems of particles, including rigid bodies. A
rigid body B may be regarded kinematically as a reference frame. It is easy to show
that the position of every point in B is determined in a frame of reference F if (a)
the position of any point fixed in B, such as its mass center C, is known in the frame
of reference F ; and (b) the orientation of B is known in F .

Euler’s first law for a rigid body simply states that the resultant force acting on
a rigid body is equal to its mass times the acceleration of the body’s mass center in
an inertial frame. Euler’s second law is more involved and may be stated in several
ways. The two ways used most commonly in this text are as follows:

� The sum of torques about the mass center C of a rigid body is equal to the time
rate of change in F of the body’s angular momentum in F about C, with F being
an inertial frame.

� The sum of torques about a point O that is fixed in the body and is also inertially
fixed is equal to the time rate of change in F of the body’s angular momentum
in F about O, with F being an inertial frame. We subsequently refer to O as a
“pivot.”

Consider a rigid body undergoing two-dimensional motion such that the mass
center C moves in the x-y plane and the body has rotational motion about the z axis.
Assuming the body to be “balanced” in that the products of inertia Ixz = Iyz = 0,
Euler’s second law can be simplified to the scalar equation

TC = IC θ̈ (2.4)

where TC is the moment of all forces about the z axis passing through C, IC is the
moment of inertia about C, and θ̈ is the angular acceleration in an inertial frame of
the body about z. This equation also holds if C is replaced by O.

2.1.3 Kinetic Energy

The kinetic energy K of a particle Q in F can be written as

K = m
2

vQ · vQ (2.5)

where m is the mass of the particle and vQ is the velocity of Q in F . To use this
expression for the kinetic energy in mechanics, F must be an inertial frame.

The kinetic energy of a rigid body B in F can be written as

K = m
2

vC · vC + 1
2
ωB · IC · ωB (2.6)

where m is the mass of the body, IC is the inertia tensor of B about C, vC is the
velocity of C in F , and ωB is the angular velocity of B in F . In two-dimensional
motion of a balanced body, we may simplify this to

K = m
2

vC · vC + IC

2
θ̇2 (2.7)
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where IC is the moment of inertia of B about C about z, θ̇ is the angular velocity
of B in F about z, and z is an axis perpendicular to the plane of motion. A similar
equation also holds if C is replaced by O, a pivot, such that

K = IO

2
θ̇2 (2.8)

where IO is the moment of inertia of B about an axis z passing through O. To use
these expressions for kinetic energy in mechanics, F must be an inertial frame.

2.1.4 Work

The work W done in a reference frame F by a force F acting at a point Q, which may
be either a particle or a point on a rigid body, may be written as

W =
∫ t2

t1
F · vQdt (2.9)

where vQ is the velocity of Q in F , and t1 and t2 are arbitrary fixed times. When there
are contact and distance forces acting on a rigid body, we may express the work done
by all such forces in terms of their resultant R, acting at C, and the total torque T of
all such forces about C, such that

W =
∫ t2

t1
(R · vC + T · ωB) dt (2.10)

The most common usage of these formulae in this text is the calculation of virtual
work (i.e., the work done by applied forces through a virtual displacement).

2.1.5 Lagrange’s Equations

There are several occasions to make use of Lagrange’s equations when calculating
the forced response of structural systems. Lagrange’s equations are derived in the
Appendix and can be written as

d
dt

(
∂L

∂ξ̇i

)
− ∂L

∂ξi
= �i (i = 1, 2, . . .) (2.11)

where L = K − P is called the “Lagrangean”—that is, the difference between the
total kinetic energy, K, and the total potential energy, P, of the system. The general-
ized coordinates are ξi ; the term on the right-hand side, �i , is called the “generalized
force.” The latter represents the effects of all nonconservative forces, as well as any
conservative forces that are not treated in the total potential energy.

Under many circumstances, the kinetic energy can be represented as a function
of only the coordinate rates so that

K = K(ξ̇1, ξ̇2, ξ̇3, . . .) (2.12)

The potential energy P consists of contributions from strain energy, discrete springs,
gravity, applied loads (conservative only), and so on. The potential energy is a
function of only the coordinates themselves; that is

P = P(ξ1, ξ2, ξ3, . . .) (2.13)
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Figure 2.1. Schematic of vibrating string

Thus, Lagrange’s equations can be written as

d
dt

(
∂K

∂ξ̇i

)
+ ∂ P

∂ξi
= �i (i = 1, 2, . . .) (2.14)

2.2 Modeling the Dynamics of Strings

Among the continuous systems to be considered in other chapters, the string is the
simplest. Typically, by this time in their undergraduate studies, most students have
had some exposure to the solution of string-vibration problems. Here, we present for
future reference a derivation of the governing equation, the potential energy, and the
kinetic energy along with the virtual work of an applied distributed transverse force.

2.2.1 Equations of Motion

A string of initial length �0 is stretched in the x direction between two walls separated
by a distance � > �0. The string tension, T(x, t), is considered high, and the transverse
displacement v(x, t) and slope β(x, t) are eventually regarded as small. At any given
instant, this system can be illustrated as in Fig. 2.1. To describe the dynamic behavior
of this system, the forces acting on a differential length dx of the string can be
illustrated by Fig. 2.2. Note that the longitudinal displacement u(x, t), transverse
displacement, slope, and tension at the right end of the differential element are

Figure 2.2. Differential element of string showing displacement components and tension force
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represented as a Taylor series expansion of the values at the left end. Because the
string segment is of a differential length that can be arbitrarily small, the series is
truncated by neglecting terms of the order of dx2 and higher.

Neglecting gravity and any other applied loads, two equations of motion can
be formed by resolving the tension forces in the x and y directions and setting
the resultant force on the differential element equal to its mass mdx times the
acceleration of its mass center. Neglecting higher-order differentials, we obtain the
equations of motion as

∂

∂x
[T cos(β)] = m

∂2u
∂t2

∂

∂x
[T sin(β)] = m

∂2v

∂t2
(2.15)

where for a string homogeneous over its cross section

m =
∫ ∫
A

ρdA = ρ A (2.16)

is the mass per unit length. From Fig. 2.2, ignoring second and higher powers of dx
and letting ds = (1 + ε)dx where ε is the elongation, we can identify

cos(β) = 1
1 + ε

(
1 + ∂u

∂x

)

sin(β) = 1
1 + ε

∂v

∂x

(2.17)

Noting that cos2(β) + sin2(β) = 1, we can find the elongation ε as

ε = ∂s
∂x

− 1 =
√(

1 + ∂u
∂x

)2

+
(

∂v

∂x

)2

− 1 (2.18)

Finally, considering the string as homogeneous, isotropic, and linearly elastic, we
can write the tension force as a linear function of the elongation, so that

T = EAε (2.19)

where EA is the constant longitudinal stiffness of the string. This completes the
system of nonlinear equations that govern the vibration of the string. To develop
analytical solutions, we must simplify these equations.

Let us presuppose the existence of a static-equilibrium solution of the string
deflection so that

u(x, t) = u(x)

v(x, t) = 0

β(x, t) = 0

ε(x, t) = ε(x)

T(x, t) = T(x)

(2.20)



12 Mechanics Fundamentals

We then find that such a solution exists and that if u(0) = 0

T(x) = T0

ε(x) = ε0 = T0

EA
= δ

�0

u(x) = ε0x

(2.21)

where T0 and ε0 are constants and δ = � − �0 is the change in the length of the string
between its stretched and unstretched states.

If the steady-state tension T0 is sufficiently high, the perturbation deflections
about the static-equilibrium solution are very small. Thus, we can assume

u(x, t) = u(x) + û(x, t)

v(x, t) = v̂(x, t)

β(x, t) = β̂(x, t)

ε(x, t) = ε(x) + ε̂(x, t)

T(x, t) = T(x) + T̂(x, t)

(2.22)

where the ˆ( ) quantities are taken to be infinitesimally small. Furthermore, from the
second of Eqs. (2.17), we can determine β̂ in terms of the other quantities; that is

β̂ = 1
1 + ε0

∂v̂

∂x
(2.23)

Substituting the perturbation expressions of Eqs. (2.22) and (2.23) into Eqs. (2.15)
while ignoring all squares and products of the ˆ( ) quantities, we find that the equations
of motion can be reduced to two linear partial differential equations

EA
∂2û
∂x2

= m
∂2û
∂t2

T0

1 + ε0

∂2v̂

∂x2
= m

∂2v̂

∂t2

(2.24)

Thus, the two nonlinear equations of motion in Eqs. (2.15) for the free vibration
of a string have been reduced to two uncoupled linear equations: one for longitudinal
vibration and the other for transverse vibrations. Because it is typically true that
EA� T0, longitudinal motions have much smaller amplitudes and much higher
natural frequencies; thus, they are not usually of interest. Moreover, the fact that
EA� T0 leads to the observations that ε0 � 1 and δ � �0 (see Eqs. 2.21). Thus, the
transverse motion is governed by

T0
∂2v̂

∂x2
= m

∂2v̂

∂t2
(2.25)
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For convenience, we drop the ˆ( )s and the subscript, thereby yielding the usual
equation for string vibration found in texts on vibration

T
∂2v

∂x2
= m

∂2v

∂t2
(2.26)

This is called the one-dimensional “wave equation,” and it governs the structural
dynamic behavior of the string in conjunction with boundary conditions and initial
conditions. The fact that the equation is of second order both temporally and spatially
indicates that two boundary conditions and two initial conditions need to be specified.
The boundary conditions at the ends of the string correspond to zero displacement,
as described by

v(0, t) = v(�, t) = 0 (2.27)

where it is noted that the distinction between �0 and � is no longer relevant. The
general solution to the wave equation with these homogeneous boundary conditions
comprises a simple eigenvalue problem; the solution, along with a treatment of the
initial conditions, is in Section 3.1.

2.2.2 Strain Energy

To solve problems involving the forced response of strings using Lagrange’s equa-
tion, we need an expression for the strain energy, which is caused by extension of
the string, viz.

P = 1
2

∫ �0

0
EAε2dx (2.28)

where, as before

ε = ∂s
∂x

− 1 =
√(

1 + ∂u
∂x

)2

+
(

∂v

∂x

)2

− 1 (2.29)

and the original length is �0. To pick up all of the linear terms in Lagrange’s equa-
tions, we must include all terms in the energy up through the second power of
the unknowns. Taking the pertinent unknowns to be perturbations relative to the
stretched but undeflected string, we can again write

ε(x, t) = ε(x) + ε̂(x, t)

u(x, t) = u(x) + û(x, t)

v(x, t) = v̂(x, t)

(2.30)

For EAequal to a constant, the strain energy is

P = EA
2

∫ �0

0

(
ε2 + 2εε̂ + ε̂2)dx (2.31)

From Eqs. (2.21), we know that T = T0 and ε = ε0, where T0 and ε0 are constants.
Thus, the first term of P is a constant and can be ignored. Because T0 = EAε0, the
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strain energy simplifies to

P = T0

∫ �0

0
ε̂ dx + EA

2

∫ �0

0
ε̂2 dx (2.32)

Using Eqs. (2.29) and (2.30), we find that the longitudinal strain becomes

ε̂ = ∂û
∂x

+ 1
2(1 + ε0)

(
∂v̂

∂x

)2

+ · · · (2.33)

where the ellipsis refers to terms of third and higher degree in the spatial partial
derivatives of û and v̂. Then, when we drop all terms that are of third and higher
degree in the spatial partial derivatives of û and v̂, the strain energy becomes

P = T0

∫ �0

0

∂û
∂x

dx + T0

2(1 + ε0)

∫ �0

0

(
∂v̂

∂x

)2

dx + EA
2

∫ �0

0

(
∂û
∂x

)2

dx + · · · (2.34)

Assuming û (0) = û (�0) = 0, we find that the first term vanishes. Because perturba-
tions of the transverse deflections are the unknowns in which we are most interested,
and because perturbations of the longitudinal displacements are uncoupled from
these and involve oscillations with much higher frequency, we do not need the last
term. This leaves only the second term. As before, noting that ε0 � 1 and dropping
the ˆ and subscripts for convenience, we obtain the potential energy for a vibrating
string

P = T
2

∫ �

0

(
∂v

∂x

)2

dx (2.35)

as found in vibration texts.
In any continuous system—whether a string, beam, plate, or shell—we may ac-

count for an attached spring by regarding it as an external force and thus determining
its contribution to the generalized forces. Such attached springs may be either dis-
crete (i.e., at a point) or distributed. Conversely, we may treat them as added parts
of the system by including their potential energies (see Problem 5). Be careful to not
count forces twice; the same is true for any other entity as well.

2.2.3 Kinetic Energy

To solve problems involving the forced response of strings using Lagrange’s equa-
tion, we also need the kinetic energy. The kinetic energy for a differential length of
string is

dK = m
2

[(
∂u
∂t

)2

+
(

∂v

∂t

)2
]

dx (2.36)

Recalling that the longitudinal displacement u was shown previously to be less
significant than the transverse displacement v and to uncouple from it for small-
perturbation motions about the static-equilibrium state, we may now express the
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kinetic energy of the whole string over length � as

K = 1
2

∫ �

0
m
(

∂v

∂t

)2

dx (2.37)

2.2.4 Virtual Work of Applied, Distributed Force

To solve problems involving the forced response of strings using Lagrange’s equa-
tion, we also need a general expression for the virtual work of all forces not accounted
for in the potential energy. These applied forces and moments are identified most
commonly as externally applied loads, which may or may not be a function of the
response. They also include any dissipative loads, such as those from dampers. To
determine the contribution of distributed transverse loads, denoted by f (x, t), the
virtual work may be computed as the work done by applied forces through a virtual
displacement, viz.

δW =
∫ �

0
f (x, t)δv(x, t)dx (2.38)

where the virtual displacement δv also may be thought of as the Lagrangean variation
of the displacement field. Such a variation may be thought of as an increment of the
displacement field that satisfies all geometric constraints.

2.3 Elementary Beam Theory

Now that we have considered the fundamental aspects of structural dynamics analysis
for strings, these same concepts are applied to the dynamics of beam torsional and
bending deformation. The beam has many more of the characteristics of typical
aeronautical structures. Indeed, high-aspect-ratio wings and helicopter rotor blades
are frequently idealized as beams, especially in conceptual and preliminary design.
Even for low-aspect-ratio wings, although a plate model may be more realistic, the
bending and torsional deformation can be approximated by use of beam theory with
adjusted stiffness coefficients.

2.3.1 Torsion

In an effort to retain a level of simplicity that promotes tractability, the St. Venant
theory of torsion is used and the problem is idealized to the extent that torsion
is uncoupled from transverse deflections. The torsional rigidity, denoted by GJ ,
is taken as given and may vary with x. For homogeneous and isotropic beams,
GJ = GJ , where G denotes the shear modulus and J is a constant that depends only
on the geometry of the cross section. To be uncoupled from bending and other types
of deformation, the x axis must be along the elastic axis and also must coincide with
the locus of cross-sectional mass centroids. For isotropic beams, the elastic axis is
along the locus of cross-sectional shear centers.

For such beams, J can be determined by solving a boundary-value problem
over the cross section, which requires finding the cross-sectional warping caused by
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Figure 2.3. Beam undergoing torsional deformation

torsion. Although analytical solutions for this problem are available for simple cross-
sectional geometries, solving for the cross-sectional warping and torsional stiffness
is, in general, not a trivial exercise and possibly requires a numerical solution of
Laplace’s equation over the cross section. Moreover, when the beam is inhomo-
geneous with more than one constituent material and/or when one or more of the
constituent materials is anisotropic, we must solve a more involved boundary-value
problem over the cross-sectional area. For additional discussion of this point, see
Section 2.4.

Equation of Motion. The beam is considered initially to have nonuniform properties
along the x axis and to be loaded with a known, distributed twisting moment r(x, t).
The elastic twisting deflection, θ , is positive in a right-handed sense about this axis, as
illustrated in Fig. 2.3. In contrast, the twisting moment, denoted by T, is the structural
torque (i.e., the resultant moment of the tractions on a cross-sectional face about
the elastic axis). Recall that an outward-directed normal on the positive x face is
directed to the right, whereas an outward-directed normal on the negative x face is
directed to the left. Thus, a positive torque tends to rotate the positive x face in a
direction that is positive along the x axis in the right-hand sense and the negative
x face in a direction that is positive along the −x axis in the right-hand sense, as
depicted in Fig. 2.3. This affects the boundary conditions, which are discussed in
connection with applications of the theory in Chapter 3.

Letting ρ Ipdx be the polar mass moment of inertia about the x axis of the
differential beam segment in Fig. 2.4, we can obtain the equation of motion by
equating the resultant twisting moment on both segment faces to the rate of change
of the segment’s angular momentum about the elastic axis. This yields

T + ∂T
∂x

dx − T + r(x, t)dx = ρ Ipdx
∂2θ

∂t2
(2.39)

Figure 2.4. Cross-sectional slice of beam undergoing torsional deformation
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or

∂T
∂x

+ r(x, t) = ρ Ip
∂2θ

∂t2
(2.40)

where the polar mass moment of inertia is

ρ Ip =
∫ ∫
A

ρ
(
y2 + z2) dA (2.41)

Here, A is the cross section of the beam, y and z are cross-sectional Cartesian
coordinates, and ρ is the mass density of the beam. When ρ is constant over the
cross section, then ρ Ip = ρ Ip, where Ip is the polar area moment of inertia per unit
length. In general, however, ρ Ip may vary along the x axis.

The twisting moment can be written in terms of the twist rate and the St. Venant
torsional rigidity GJ as

T = GJ
∂θ

∂x
(2.42)

Substituting these expressions into Eq. (2.40), we obtain the partial-differential
equation of motion for the nonuniform beam given by

∂

∂x

(
GJ

∂θ

∂x

)
+ r(x, t) = ρ Ip

∂2θ

∂t2
(2.43)

Strain Energy. The strain energy of an isotropic beam undergoing pure torsional
deformation can be written as

U = 1
2

∫ �

0
GJ

(
∂θ

∂x

)2

dx (2.44)

This is also an appropriate expression of torsional strain energy for a composite
beam without elastic coupling.

Kinetic Energy. The kinetic energy of a beam undergoing pure torsional deforma-
tion can be written as

K = 1
2

∫ �

0
ρ Ip

(
∂θ

∂t

)2

dx (2.45)

Virtual Work of Applied, Distributed Torque. The virtual work of an applied dis-
tributed twisting moment r(x, t) on a beam undergoing torsional deformation may
be computed as

δW =
∫ �

0
r(x, t)δθ(x, t)dx (2.46)

where δθ is the variation of θ(x, t), the angle of rotation caused by twist. Note that δθ

may be thought of as an increment of θ(x, t) that satisfies all geometric constraints.
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Figure 2.5. Schematic of beam for bending dynamics

2.3.2 Bending

As in the case of torsion, the beam is initially treated as having nonuniform properties
along the x axis. The x axis is taken as the line of the individual cross-sectional
neutral axes associated with pure bending in and normal to the plane of the diagram
in Fig. 2.5. For simplicity, however, we consider only uncoupled bending in the x-y
plane, thus excluding initially twisted beams from the development. The bending
deflections are denoted by v(x, t) in the y direction. The x axis is presumed to be
straight, thus excluding initially curved beams. We continue to assume for now that
the properties of the beam allow the x axis to be chosen so that bending and torsion
are both structurally and inertially uncoupled. Therefore, in the plane(s) in which
bending is taking place, the loci of both shear centers and mass centers must also
coincide with the x axis. Finally, the transverse beam displacement, v, is presumed
small to permit a linearly elastic representation of the deformation.

Equation of Motion. A free-body diagram for the differential-beam segment shown
in Fig. 2.6 includes the shear force, V, and the bending moment, M. Recall from our
previous discussion on torsion that an outward-directed normal on the positive x face
is directed to the right, and an outward-directed normal is directed to the left on the
negative x face. By this convention, V is the resultant of the transverse shear stresses

Figure 2.6. Schematic of differential beam segment
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in the positive y direction (upward in Fig. 2.6) on a positive x cross-sectional face
and in the negative y direction on a negative x cross-sectional face. In other words,
a positive shear force tends to displace the positive x face upward and the negative
x face downward, as depicted in Fig. 2.6. The bending moment, M, is the moment of
the longitudinal stresses about a line parallel to the z axis (perpendicular to the plane
of the diagram in Fig. 2.6) at the intersection between the cross-sectional plane and
the neutral surface. Thus, a positive bending moment tends to rotate the positive x
face positively about the z axis (in the right-handed sense) and the negative x face
negatively about the zaxis. This affects the boundary conditions, which are examined
in detail in connection with applications of the theory in Chapter 3. The distributed
loading (with units of force per unit length) is denoted by f (x, t). The equation of
motion for transverse-beam displacements can be obtained by setting the resultant
force on the segment equal to the mass times the acceleration, which yields

f (x, t)dx − V +
(

V + ∂V
∂x

dx
)

= mdx
∂2v

∂t2
(2.47)

and leads to

∂V
∂x

+ f (x, t) = m
∂2v

∂t2
(2.48)

where m is the mass per unit length, given by ρ A for homogeneous cross sections.
We must also consider the moment equation. We note here that the cross-sectional
rotational inertia about the z axis will be ignored because it has a small effect. Taking
a counterclockwise moment as positive, we sum the moments about the point a to
obtain

−M +
(

M + ∂ M
∂x

dx
)

+
(

V + ∂V
∂x

dx
)

dx +
(

f − m
∂2v

∂t2

)
(dx)2

2
= 0 (2.49)

which, after we neglect the higher-order differentials (i.e., higher powers of dx),
becomes

∂ M
∂x

+ V = 0 (2.50)

Recall that the bending moment is proportional to the local curvature; therefore

M = EI
∂2v

∂x2
(2.51)

where EI may be regarded as the effective bending stiffness of the beam at a
particular cross section and hence may vary with x. Note that for isotropic beams,
calculation of the bending rigidity is a straightforward integration over the cross
section, given by

EI =
∫ ∫
A

Ey2dA (2.52)
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where E is the Young’s modulus. When the beam is homogeneous the Young’s
modulus may be moved outside the integration so that EI = EI where I is the cross-
sectional area moment of inertia about the z axis for a particular cross section. Here,
the origin of the y and z axes is at the sectional centroid. However, when one or more
of the constituent materials is anisotropic, determination of the effective bending
rigidity becomes more difficult to perform rigorously. For additional discussion of
this point, see Section 2.4.

Substitution of Eq. (2.51) into Eq. (2.50) and of the resulting equation into
Eq. (2.48) yields the partial differential equation of motion for a spanwise nonuni-
form beam as

∂2

∂x2

(
EI

∂2v

∂x2

)
+ m

∂2v

∂t2
= f (x, t) (2.53)

Strain Energy. The strain energy of an isotropic beam undergoing pure bending
deformation can be written as

U = 1
2

∫ �

0
EI

(
∂2v

∂x2

)2

dx (2.54)

This is also an appropriate expression for the bending strain energy for a composite
beam without elastic coupling.

Kinetic Energy. The kinetic energy of a beam undergoing bending deformation can
be written as

K = 1
2

∫ �

0
m
(

∂v

∂t

)2

dx (2.55)

just as for a vibrating string. For a spanwise nonuniform beam, m may vary with x.

Virtual Work of Applied, Distributed Force. The virtual work of an applied dis-
tributed force f (x, t) on a beam undergoing bending deformation may be computed
as

δW =
∫ �

0
f (x, t)δv(x, t)dx (2.56)

just as for a vibrating string.

2.4 Composite Beams

Recall that the x axis (i.e., the axial coordinate) for homogeneous, isotropic beams
is generally chosen as the locus of cross-sectional shear centers. This choice is fre-
quently denoted as the “elastic axis” because it structurally uncouples torsion from
both transverse shearing deformation and bending. Thus, transverse forces acting
through this axis do not twist the beam. However, even for spanwise uniform com-
posite beams, when transverse shear forces act through any axis defined as the locus
of a cross-sectional property, it is still possible that these forces will twist the beam
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because bending-twist coupling may be present. For the type of composite-beam
analysis presented herein, we still choose the x axis to be along the locus of shear
centers; but, for composite beams, this choice uncouples only torsion and transverse
shear deformation. Therefore, although transverse shear forces acting through the
x axis do not directly induces twist, the bending moment induced by the shear force
still induces twist when bending-twist coupling is present.

2.4.1 Constitutive Law and Strain Energy for Coupled Bending and Torsion

A straightforward way to introduce such coupling in the elementary beam equations
presented previously is to alter the “constitutive law” (i.e., the relationship between
cross-sectional stress resultants and the generalized strains). So, we change

{
T

M

}
=
[

GJ 0

0 EI

]⎧⎪⎪⎨
⎪⎪⎩

∂θ

∂x
∂2v

∂x2

⎫⎪⎪⎬
⎪⎪⎭ (2.57)

to {
T

M

}
=
[

GJ −K

−K EI

]⎧⎪⎪⎨
⎪⎪⎩

∂θ

∂x
∂2v

∂x2

⎫⎪⎪⎬
⎪⎪⎭ (2.58)

where EI is the effective bending stiffness, GJ is the effective torsional stiffness, and
K is the effective bending-torsion coupling stiffness (with the same dimensions as
EI and GJ ). Whereas EI and GJ are strictly positive, K may be positive, negative,
or zero. A positive value of K implies that when the beam is loaded with an upward
vertical force at the tip, the resulting positive bending moment induces a positive (i.e.,
nose-up) twisting moment. Values of GJ , EI, and K are best found by cross-sectional
codes such as VABS,TM a commercially available computer program developed at
Georgia Tech (Hodges, 2006).

Now, given Eq. (2.58), it is straightforward to write the strain energy as

U = 1
2

∫ �

0

⎧⎪⎪⎨
⎪⎪⎩

∂θ

∂x
∂2v

∂x2

⎫⎪⎪⎬
⎪⎪⎭

T [
GJ −K

−K EI

]⎧⎪⎪⎨
⎪⎪⎩

∂θ

∂x
∂2v

∂x2

⎫⎪⎪⎬
⎪⎪⎭dx (2.59)

where the 2 × 2 matrix must be positive-definite for physical reasons. This means
that of necessity, K2 < EI GJ .

2.4.2 Inertia Forces and Kinetic Energy for Coupled Bending and Torsion

In general, there is also inertial coupling between bending and torsional deflections.
This type of coupling stems from d, the offset of the cross-sectional mass centroid
from the x axis shown in Fig. 2.7 and given by

md = −
∫ ∫
A

ρ z dA (2.60)
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Figure 2.7. Cross section of beam for coupled bending and torsion

so that the acceleration of the mass centroid is

aC =
(

∂2v

∂t2
+ d

∂2θ

∂t2

)
ĵ (2.61)

For inhomogeneous beams, the offset d may be defined as the distance from the x
axis to the cross-sectional mass centroid, positive when the mass centroid is toward
the leading edge from the x axis.

Similarly, if one neglects rotary inertia of the cross-sectional plane about the z
axis, the angular momentum of the cross section about C is

HC =
(

ρ Ip
∂θ

∂t
+ md

∂v

∂t

)
k̂ (2.62)

where, for beams in which the material density varies over the cross section, we may
calculate the cross-sectional mass polar moment of inertia as

ρ Ip =
∫ ∫
A

ρ
(
y2 + z2)dA (2.63)

The kinetic energy follows from similar considerations and can be written di-
rectly as

K = 1
2

∫ �

0

[
m
(

∂v

∂t

)2

+ 2md
∂θ

∂t
∂v

∂t
+ ρ Ip

(
∂θ

∂t

)2
]

dx (2.64)

2.4.3 Equations of Motion for Coupled Bending and Torsion

Using the coupled constitutive law and inertia forces, the partial differential equa-
tions of motion for coupled bending and torsion of a composite beam become

ρ Ip
∂2θ

∂t2
+ md

∂2v

∂t2
− ∂

∂x

(
GJ

∂θ

∂x
− K

∂2v

∂x2

)
= r(x, t)

m
(

∂2v

∂t2
+ d

∂2θ

∂t2

)
+ ∂2

∂x2

(
EI

∂2v

∂x2
− K

∂θ

∂x

)
= f (x, t)

(2.65)

where we see the structural coupling through K and the inertial coupling through d.
Of course, we may simplify these equations for isotropic beams undergoing

coupled bending and torsion simply by setting K = 0.
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Figure 2.8. Character of static-equili-
brium positions

2.5 The Notion of Stability

Consider a structure undergoing external loads applied quasistatically. In such a
case, static equilibrium is maintained as the elastic structure deforms. If now at
any level of the external force a “small” external disturbance is applied, and the
structure reacts by simply performing oscillations about the deformed equilibrium
state, the equilibrium state is said to be stable. This disturbance can be in the form
of deformation or velocity; by “small,” we mean “as small as desired.” As a result of
this latter definition, it is more appropriate to say that the equilibrium is stable for a
small disturbance. In addition, we stipulate that when the disturbance is introduced,
the level of the external forces is kept constant. Conversely, if the elastic structure
either (a) tends to and remains in the disturbed position, or (b) diverges from the
equilibrium state, the equilibrium is said to be unstable. Some authors prefer to
distinguish these two conditions and call the equilibrium “neutrally stable” for case
(a) and “unstable” for case (b). When either of these two cases occurs, the level of
the external forces is referred to as “critical.”

This is illustrated using the system shown in Fig. 2.8. This system consists of a
ball of weight W resting at different points on a surface with zero curvature normal to
the plane of the figure. Points of zero slope on the surface denote positions of static
equilibrium (i.e., points A, B, and C). Furthermore, the character of equilibrium
at these points is substantially different. At A, if the system is disturbed through
infinitesimal disturbances (i.e., small displacements or small velocities), it simply
oscillates, about the static-equilibrium position A. Such an equilibrium position
is called stable for small disturbances. At point B, if the system is disturbed, it
tends to move away from the static-equilibrium position B. Such an equilibrium
position is called unstable for small disturbances. Finally, at point C, if the system is
disturbed, it tends to remain in the disturbed position. Such an equilibrium position
is called neutrally stable or indifferent for small disturbances. The expression “for
small disturbances” is used because the definition depends on the small size of the
perturbations and is the foundational reason we may use linearized equations to
conduct the analysis. If the disturbances are allowed to be of finite magnitude, then
it is possible for a system to be unstable for small disturbances but stable for large
disturbances (i.e., point B, Fig. 2.9a) or stable for small disturbances but unstable
for large disturbances (i.e., point A, Fig. 2.9b).1

1 Portions of section 2.5 including figures 2.8 and 2.9 are excerpted from Simitses and Hodges (2006)
and (2010), used with permission.
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Figure 2.9. Character of static-equilibrium positions for finite disturbances

2.6 Systems with One Degree of Freedom

The behavior of systems with one degree of freedom is of interest in its own right.
Through the various forms of modal approximations, such as the Ritz and Galerkin
methods (see Section 3.5), the behavior of complex systems frequently can be re-
duced to a set of equations each having the form of a single-degree-of-freedom
system. Therefore, it is worthwhile to explore the various types of behavior we
associate with such systems.

Consider a particle of mass m, restrained by a spring with elastic constant k and
a damper with damping constant c, and forced with a function f (t) (Fig. 2.10). The
governing equation can be written

mẍ + cẋ + kx = f (t) (2.66)

where x(t) is the single unknown, typically a displacement or rotation but not limited
to such. Here, the mass m, the damping c, and the stiffness kare the system parameters
and f (t) is a forcing function. Our interest in this system is limited for now in two
special cases: (1) unforced motion, with f (t) as identically zero; and (2) harmonically
forced motion.

2.6.1 Unforced Motion

Eq. (2.66) for unforced motion is given by

mẍ + cẋ + kx = 0 (2.67)

Figure 2.10. Single-degree-of-freedom system
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An exhaustive treatment of this equation is beyond the scope of this text. Suffice it to
say that for our purposes, we are concerned with the qualitative aspects of the motion
for various combinations of parameter values. We are interested in both positive and
negative stiffness and damping. To facilitate exploration of the behavior, we define
the natural frequency ω such that k = mω2, divide the equation by m, and introduce
the damping ratio ζ so that c = 2mζω. Then, the equation of motion reduces to

ẍ + 2ζωẋ + ω2x = 0 (2.68)

another advantageous step is to introduce dimensionless time ψ = ωt , derivatives
with respect to which are denoted by ( )′. With this, Eq. (2.68) becomes

x′′ + 2ζ x′ + x = 0 (2.69)

We are mostly concerned about the response of systems with small damping
ratios, in which ζ < 1. For this case, the general solution is

x(ψ) = e−ζψ
[
a cos

(√
1 − ζ 2ψ

)
+ b sin

(√
1 − ζ 2ψ

)]
x′(ψ) = e−ζψ

[
(b
√

1 − ζ 2 − ζa) cos
(√

1 − ζ 2ψ
)

− (ζb + a
√

1 − ζ 2) sin
(√

1 − ζ 2ψ
)] (2.70)

The responses caused by arbitrary initial displacement and velocity can be con-
structed by combining the responses to unit initial displacement and unit initial
velocity. For the first, we let x(0) = 1 and x′(0) = 0, which together imply that a = 1
and b = ζ/

√
1 − ζ 2. For the second, we let x(0) = 0 and x′(0) = 1, which together

imply a = 0 and b = 1/
√

1 − ζ 2. In all cases, the displacement and velocity both
exhibit an oscillatory character with a decaying amplitude for ζ > 0 and a growing
amplitude for ζ < 0. Positive damping leads to a decaying response signal (Fig. 2.11)
and negative damping to a growing response signal (Fig. 2.12).

Actual mechanical systems always have positive stiffness. However, with the
advent of active materials, it is possible to have a negative effective stiffness. Also,
in the field of aeroelasticity, aerodynamics can contribute a negative stiffening effect
that possibly overpowers the positive stiffness from the structure or the support.
When a system has a negative effective stiffness, the response can be written as

x(ψ) = e−ζ t
[
a cosh

(
t
√

1 + ζ 2
)

+ b sinh
(

t
√

1 + ζ 2
)]

(2.71)

This function is only slightly affected by the sign of ζ and the initial conditions. Typ-
ical results are shown in Fig. 2.13. Response for negative stiffness is nonoscillatory
divergent motion. Damping makes little difference when the stiffness is negative,
although response is slightly larger for negative damping. In summary, when in-
stabilities are encountered, the system response is divergent and may be either
nonoscillatory or oscillatory.
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Figure 2.11. Response for system with positive k and x(0) = x′(0) = 0.5, ζ = 0.04

2.6.2 Harmonically Forced Motion

We now consider the case of harmonically forced motion, where f (t) is a harmonic
function of the form f (t) = kAcos(�t). The response to harmonically excited mo-
tion is a subject worthy of study, but we hardly “scratch the surface” in this brief
discussion. For the present purpose, we consider the equation of motion written as

mẍ + cẋ + kx = kAcos(�t) (2.72)

Dividing through by m, we find

ẍ + 2ζωẋ + ω2x = Aω2 cos(�t) = Aω2ei�t (2.73)
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Figure 2.12. Response for system with positive k and x(0) = x′(0) = 0.5, ζ = −0.04
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Figure 2.13. Response for system with negative k and x(0) = 1, x′(0) = 0, ζ = −0.05, 0,
and 0.05.

with X as a complex variable and the actual displacement being found as the real
part of x. Considering only the steady-state part of the response, we may assume

x = Xei�t (2.74)

Substitution of Eq. (2.74) into Eq. (2.73) yields

X
A

= G(i�) = 1

1 − (
�
ω

)2 + 2iζ �
ω

(2.75)

where G(i�) is the frequency response. This form allows us to write the solution as

x = A|G(i�)| cos(�t − φ) (2.76)

where |G(i�)| is known as the magnification factor, given by

|G(i�)| = 1√
4
(

�
ω

)2
ζ 2 +

[
1 − (

�
ω

)2
]2

(2.77)

and plotted in Fig. 2.14. The phase angle

φ = tan−1

(
2ζ �

ω

1 − (
�
ω

)2

)
(2.78)

shows the delay between the peaks in f (t) at t = 2nπ/�, and the peaks in x(t) at
t = φ/� + 2nπ/� for n = 0, 1, . . . .

Now, as an example, we may consider a harmonic forcing function f (t) with
A= 1 plotted along with x(t) for a particular choice ζ and �/ω in Fig. 2.15. Here,
the phase lag is noticeable as the response peaks are shifted approximately 43.45
degrees to the right.
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Figure 2.14. Magnification factor |G(i�)| versus �/ω for various values of ζ for a harmonically
excited system

Harmonically forced systems also may exhibit a large and possibly dangerous
response in the case of resonance, where the driving frequency � is very near ω. For
undamped systems, the response grows as

A
2

[t sin(ωt) + cos(ωt)] (2.79)

whereas the response amplitude reaches 1/(2ζ ) for lightly damped systems.

2.7 Epilogue

In this chapter, we laid out the foundational theories of mechanics that are needed
for an introductory treatment of structural dynamics and aeroelasticity. It is hoped

200 400 600 800 1000
t, degrees

3

2

1

1

2

3

x t , f t

Figure 2.15. Excitation f (t) (solid line) and response x(t) (dashed line) versus �t (in degrees)
for ζ = 0.1 and �/ω = 0.9 for a harmonically excited system
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that students find it helpful to be able to refer to these treatments as they are applied
throughout the remainder of the text. Structural dynamics and aeroelasticity analyses
of realistic aircraft structural elements may require more sophisticated theories, such
as plate and shell theory and full three-dimensional finite-element analysis; however,
such treatments are beyond the scope of this text.

Problems

1. Show that the equation of motion for longitudinal vibration of a uniform beam
is the same as that for a string, viz.

EA
∂2u
∂x2

= m
∂2u
∂t2

2. Show that the strain energy for longitudinal deformation of a beam is the same
as that for a string, viz.

P =
∫ �

0
EA

(
∂u
∂x

)2

dx

3. Show that the kinetic energy for longitudinal deformation of a beam is the same
as that for a string, viz.

K =
∫ �

0
m
(

∂u
∂t

)2

dx

4. Show that Eqs. (2.65) are the equations of motion for coupled bending-torsion
behavior of a composite beam.
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O students, study mathematics, and do not build without foundations. . . .
—Leonardo da Vinci

The purpose of this chapter is to convey to students a small introductory portion of
the theory of structural dynamics. Much of the theory to which the students will be
exposed in this treatment was developed by mathematicians during the time between
Newton and Rayleigh. The grasp of this mathematical foundation is therefore a goal
that is worthwhile in its own right. Moreover, as implied by the da Vinci quotation,
a proper use of this foundation enables the advance of technology.

Structural dynamics is a broad subject, encompassing determination of natural
frequencies and mode shapes (i.e., the so-called free-vibration problem), response
due to initial conditions, forced response in the time domain, and frequency response.
In the following discussion, we deal with all except the last category. For response
problems, if the loading is at least in part of aerodynamic origin, then the response is
said to be aeroelastic. In general, the aerodynamic loading then will depend on the
structural deformation, and the deformation will depend on the aerodynamic load-
ing. Linear aeroelastic problems are considered in subsequent chapters, and linear
structured dynamics problems are considered in the present chapter. Other impor-
tant phenomena, such as limit-cycle oscillations of lifting surfaces, must be treated
with sophisticated nonlinear-analysis methodology; however, they are beyond the
scope of this text.

The value of structural dynamics to the general study of aeroelastic phenomena is
its ability to provide a means of quantitatively describing the deformation pattern at
any instant in time for a continuous structural system in response to external loading.
Although there are many methods of approximating the structural-deformation
pattern, several of the widely used methods are reducible to what is called a “modal
representation” as long as the underlying structural modeling is linear. The purpose
of this chapter is to establish the concept of modal representation and show how it
can be used to describe the dynamic behavior of continuous elastic systems. Also
included is an introductory treatment of the Ritz and Galerkin methods, techniques
that use assumed modes or similar sets of functions to obtain approximate solutions in

30
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a simple way. Indeed, both methods are close relatives of the finite element method,
a widely used approximate method that can accurately analyze realistic structural
configurations. Only the basics of applying the finite element method to beams are
covered herein; details of this method are in books that offer a more advanced
perspective on structural analysis, several of which are listed in the references.

The analytical developments presented in this chapter are conceptually similar
to the methods of analysis conducted on complete flight vehicles. In an effort to
maintain analytical simplicity, the continuous structural configurations to be exam-
ined are all uniform and one-dimensional. Although such structures may appear
impractical relative to conventional aircraft, they exhibit structural dynamic prop-
erties and representations that are essentially the same as those of full-scale flight
vehicles.

3.1 Uniform String Dynamics

To more easily understand a mathematical description of the mechanics associated
with the structural dynamics of continuous elastic systems, the classical “vibrating-
string problem” is first considered. Although the free-vibration of a string can be
described by the linear second-order partial differential equation in one dimen-
sion derived in Chapter 2 (see Eq. 2.26), it is typically descriptive of the more
complex linearly elastic systems of aerospace vehicles. After the fundamental con-
cepts are reviewed for the string, other components that are more representative
of these vehicles are discussed. Although the free vibration of a string can be ana-
lyzed using equations of motion of the same form as those governing uniform beam
extensional and torsional vibrations, the string is chosen as our first example pri-
marily because—in contrast to the behavior of the other structures—string behavior
can be visualized easily. Moreover, typically by this time in their undergraduate
studies, most students have had some exposure to the solution of string-vibration
problems.

3.1.1 Standing Wave (Modal) Solution

The wave equation governing transverse vibration of a nonuniform string was de-
rived in Eq. (2.26) for uniform strings. Here, we repeat it for convenience, with a
slight generalization

T
∂2v

∂x2
= m(x)

∂2v

∂t2
(3.1)

Here, the mass distribution m(x) is allowed to vary along the string. This partial
differential equation of motion with two independent variables may be reduced
to two ordinary differential equations by making a “separation of variables.” The
dependent variable of transverse displacement is represented by

v(x, t) = X(x)Y(t) (3.2)
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This product form is now substituted into the wave equation, Eq. (3.1). To simplify
the notation, let ( )′ and ˙( ) denote ordinary derivatives with respect to x and t . Thus,
the wave equation becomes

TX ′′(x)Y(t) = m(x)X(x)Ÿ(t) (3.3)

Rearranging terms as

TX ′′(x)
m(x)X(x)

= Ÿ(t)
Y(t)

(3.4)

we observe that the left-hand side of this equation is a function of only the single
independent variable x and the right-hand side is a function of only t . The presence of
m(x) reflects material density and/or geometry that varies along the string, whereas
constant T is consistent with approximations used in deriving Eq. (3.1). Because
each side of the equation is a function of different independent variables, the only
way that the equality can be valid is for each side to be equal to a common constant.
Let this constant be −ω2, so that

TX ′′(x)
m(x)X(x)

= Ÿ(t)
Y(t)

= −ω2 (3.5)

This yields two ordinary differential equations, given by

TX ′′(x) + m(x)ω2 X(x) = 0

Ÿ(t) + ω2Y(t) = 0
(3.6)

Both of these equations are linear, ordinary differential equations. The second of the
two equations has constant coefficients and is the governing equation for a harmonic
oscillator with frequency ω. Because the first equation has a variable coefficient m(x)
in its second term, however, it can be solved in closed form only in special cases.

Specifically, when the mass per unit length m is a constant, the first of Eqs. (3.6)
has a familiar solution. In this case, it is expedient to introduce

α2 = mω2

T
(3.7)

so that the two ordinary differential equations are of the same form; that is

X ′′(x) + α2 X(x) = 0

Ÿ(t) + ω2Y(t) = 0
(3.8)

Because the general solutions to these linear, second-order differential equations
are well known, they are written without any further justification as

X(x) = Asin(αx) + Bcos(αx)

Y(t) = C sin (ωt) + Dcos (ωt)
(3.9)

where

ω = α

√
T
m

(3.10)

Recall that these solutions are only valid when α �= 0.
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The boundary conditions on the string are given in Eqs. (2.27). The boundary
condition on the left end of the string, where x = 0, can be written as

v(0, t) = X(0)Y(t) = 0 (3.11)

which is satisfied when

X(0) = 0 (3.12)

so that

B = 0 (3.13)

The boundary condition on the right end is

v(�, t) = X(�)Y(t) = 0 (3.14)

which is satisfied when

X(�) = 0 (3.15)

and so

Asin(α�) = 0 (3.16)

If A= 0, the displacement is identically zero for all x and t . Although this is an
acceptable solution, it is of little interest and therefore is referred to as a “trivial
solution.” Of more concern is when

sin(α�) = 0 (3.17)

This relationship is called the “characteristic equation” and has a denumerably
infinite set of solutions known as “eigenvalues.” These solutions can be written as

αi = iπ
�

(i = 1, 2, . . .) (3.18)

where, recalling that α �= 0 is a requirement for this solution, we must exclude the
root corresponding to i = 0. To ascertain whether a nontrivial α = 0 solution exists,
we must return to the first of Eqs. (3.8) and determine whether a nontrivial solution
exists with α = 0 that also satisfies all the boundary conditions—that is, whether
there is a nontrivial solution to X ′′ = 0 for which X(0) = X(�) = 0. Obviously, there
is no such solution for this problem. Solutions associated with α = 0 are addressed
in more detail when we consider problems for which rigid-body modes may exist.

Therefore, for each integer value of the index i , there is an eigenvalue αi and
an associated solution Xi , called the “eigenfunction.” It contributes to the general
solution based on the corresponding value of Yi . Thus, its total contribution can be
written as

vi (x, t) = Xi (x)Yi (t) (3.19)
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where

Xi (x) = Ai sin(αi x)

Yi (t) = Ci sin (ωi t) + Di cos (ωi t)
(3.20)

The constants Ai , Ci , and Di may have different numerical values for each eigenvalue;
thus, they are subscripted with the index. The most general solution for the string
displacement would have contributions associated with all the eigenvalues. Thus,
the general solution can be written as a sum of the complete set as

v(x, t) =
∞∑

i=1

vi (x, t)

=
∞∑

i=1

sin
(

iπx
�

)
[Ei sin (ωi t) + Fi cos (ωi t)]

(3.21)

where

ωi = iπ
�

√
T
m

(3.22)

Note that the original constants were combined as

Ei = Ai Ci

Fi = Ai Di

(3.23)

Close inspection of this total string displacement indicates that at any given
instant, the transverse deflection is represented by summation over a denumerably
infinite set of shapes. Each shape is of indeterminate amplitude and is associated
with a particular eigenfunction; these shapes are also called “mode shapes” in the
field of structural dynamics. They are represented here by φi (x). Thus, for transverse
deflection of a string, the mode shapes may be written as

φi (x) = sin
(

iπx
�

)
(3.24)

or any constant times φi (x). It can be observed from this function (Fig. 3.1) that
the higher the mode number i , the more crossings of the zero axis on the interval
0 < x < �. These crossings are sometimes referred to as “nodes.” The trend of in-
creasing numbers of nodes with an increase in the mode number is generally true in
structural dynamics.

In the previous solution for the total displacement, each mode shape is multiplied
by a function of time. This multiplier is called the “generalized coordinate” and is
represented here by ξi (t). For this specific problem, the generalized coordinates are

ξi (t) = Ei sin (ωi t) + Fi cos (ωi t) (3.25)

and thus are seen to be simple harmonic functions of time with frequencies ωi .
Because there were no external loads applied to the string, the preceding result is
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Figure 3.1. First three mode shapes for vibrating string

called the “homogeneous solution.” Had there been an external loading, the resulting
time dependency of the generalized coordinates would reflect it.

Thus, the total string displacement can be written as a sum of “modal” contri-
butions of the form

v(x, t) =
∞∑

i=1

φi (x)ξi (t) (3.26)

This expression can be interpreted as a weighted sum of the mode shapes, each of
which has a modal amplitude (i.e., the generalized coordinate) that is a function of
time. For the homogeneous solution obtained here, this time dependency is simple
harmonic at a frequency that is unique for each mode or eigenvalue. These are called
the “natural frequencies” of the modes, or “modal frequencies,” and are represented
by ωi . For the string, they are

ωi = iπ
�

√
T
m

i = 1, 2, . . . ,∞ (3.27)

with the lowest frequencies given by the lowest mode numbers. Indeed, just as the
increase in the number of nodes with the mode number is generally true, so it is with
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the natural frequency. When the physical and geometric parameters of the problem
are expressed in any consistent1 set of units, the units of the natural frequency are
rad/sec. Division by 2π converts the units of frequency into “cycles per second,” or
Hertz. The inverse of the natural frequency in Hertz is the period of the oscillatory
motion.

To summarize what has been accomplished in solving the wave equation, it may
be said that the string displacement as a function of both x and t can be represented
as a sum of modal contributions. Each mode in this representation is a structural
dynamic property of the given system (i.e., string) and can be described completely
by mode shape and modal frequency. Such “modes of vibration” can be formulated
for any linearly elastic structure that is a conservative system. This statement includes
two restrictions that must be observed for a modal representation: (1) linearity, which
is satisfied here by the linear wave equation; and (2) the system must be conservative,
which means that there can be no addition or dissipation of energy in free vibration.
A typical violation of the second restriction is the existence of damping, such as
structural or aerodynamic damping. When damping is present, it can be adequately
treated as an external loading. Mode shapes are determined only by the solution of
homogeneous equations and, in general, they are real only for self-adjoint equations.

3.1.2 Orthogonality of Mode Shapes

A most significant property of the mode shapes derived for the string is that they form
a set of orthogonal mathematical functions. If the mass distribution is nonuniform
along x, then the mode shapes are no longer sin(iπx/�); instead, they must be found
by solving the first of Eqs. (3.6). The resulting mode shapes, however, may not be
expressible in closed form. Nonetheless, they are orthogonal but with respect to the
mass distribution as a weighting function. In such a case, this condition of functional
orthogonality can be described analytically as

∫ �

0
m(x)φi (x)φ j (x) dx = 0 (i �= j)

�= 0 (i = j)

(3.28)

To prove that the mode shapes obtained for the string problem are orthogonal, an
individual modal contribution given by

vi (x, t) = φi (x)ξi (t) (3.29)

where φi (x) is a normalized solution of the first of Eqs. (3.6). Substituting vi (x, t)
into the governing differential equation (i.e., wave equation), we obtain

T
∂2vi

∂x2
= m

∂2vi

∂t2
(3.30)

1 For example, with SI units, one has the units of T as N, m as kg/m, and � as m. With English units,
one has the units of T as lb, m as slugs/ft, and � as ft.
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or

Tφ′′
i (x)ξi (t) = m(x)φi (x)ξ̈i (t) (3.31)

Because the general (i.e., homogeneous) solution for the generalized coordinate is
a simple harmonic function, then we may write

ξ̈i = −ω2
i ξi (3.32)

Thus, the wave equation becomes

Tφ′′
i (x)ξi (t) = −m(x)φi (x)ω2

i ξi (t) (3.33)

so that

Tφ′′
i (x) = −m(x)φi (x)ω2

i (3.34)

If this procedure is repeated by substituting the jth modal contribution into the wave
equation, a similar result

Tφ′′
j (x) = −m(x)φ j (x)ω2

j (3.35)

is obtained. After multiplying Eq. (3.34) by φ j and Eq. (3.35) by φi , subtracting, and
integrating the result over the length of the string, we obtain

(
ω2

i − ω2
j

) ∫ �

0
m(x)φi (x)φ j (x)dx = T

∫ �

0

[
φi (x)φ′′

j (x) − φ′′
i (x)φ j (x)

]
dx (3.36)

The integral on the right-hand side can be integrated by parts using∫ b

a
udv = uv

∣∣∣∣
b

a
−
∫ b

a
vdu (3.37)

by letting

u = φi du = φ′
i dx

v = φ′
j dv = φ′′

j dx
(3.38)

for the first term and

u = φ j du = φ′
j dx

v = φ′
i dv = φ′′

i dx
(3.39)

for the second. The result becomes

(
ω2

i − ω2
j

) ∫ �

0
m(x)φi (x)φ j (x)dx

= T
(
φiφ

′
j − φ′

iφ j
)∣∣�

0
− T

∫ �

0
(φ′

iφ
′
j − φ′

iφ
′
j )dx = 0

(3.40)

Every term on the right-hand side is zero: the first and second because the mode
shape is zero at both ends by virtue of the boundary conditions given by Eqs. (2.27),
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and the integral because of cancellation. It may now be concluded that when i �= j ,
because ωi �= ω j , it follows that

∫ �

0
m(x)φi (x)φ j (x)dx = 0 (3.41)

This relationship thus demonstrates that the mode shapes for a string that is fixed at
both ends form an orthogonal set of functions. However, when i = j

∫ �

0
m(x)φ2

i (x)dx = Mi (3.42)

The value of this integral, Mi , is referred to as the “generalized mass” of the ith
mode. The numerical values of the generalized masses depend on the normalization
scheme used for the mode shapes φi (x).

This development is for a string of nonuniform mass per unit length and con-
stant tension force. It is important to note that it readily can be generalized to
more involved developments for beam torsional and bending deformation. In such
cases, the structural stiffnesses—which are analogous to the tension force in the
string problem—also may be nonuniform along the span. Although the struc-
tural stiffnesses may not be taken outside the integrals in such cases, the rest of
the development remains similar. See Problems 8(a) and 10(a) at the end of this
chapter.

For uniform strings and the mode shapes normalized as in Eq. (3.24), it is shown
easily for all i and j that the orthogonality condition and generalized mass, Eqs. (3.41)
and (3.42), respectively, reduce to

∫ �

0
φi (x)φ j (x)dx = 0 Mi = m�

2
only for m = const. (3.43)

3.1.3 Using Orthogonality

The property of orthogonality is useful in many aspects of structural-dynamics anal-
ysis. As an illustration, consider the response of an unforced uniform string to initial
conditions. In this case, there are no external loads on the string, but it is presumed
to have an initial deflection shape and an initial velocity distribution. Let these initial
conditions be represented as

v(x, 0) = f (x)

∂v

∂t
(x, 0) = g(x)

(3.44)

where both f (x) and g(x) must be compatible with the boundary conditions.
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Using Eq. (3.21), these initial conditions can be written in terms of the modal
representation as

v(x, 0) =
∞∑

i=1

Fi sin
(

iπx
�

)
= f (x)

∂v

∂t
(x, 0) =

∞∑
i=1

Ei iπ
�

√
T
m

sin
(

iπx
�

)
= g(x)

(3.45)

Both of these relationships are multiplied by sin ( jπx/�) dx and integrated over the
length of the string. The first relationship yields∫ �

0
f (x) sin

(
jπx
�

)
dx =

∞∑
i=1

Fi

∫ �

0
sin

(
iπx
�

)
sin

(
jπx
�

)
dx

= Fj

∫ �

0
sin2

(
jπx
�

)
dx

= Fj�

2

(3.46)

where the evaluation used the orthogonality property of the mode shapes, which
causes every term in the infinite sum to be zero except where i = j . The mass per
unit length is constant for this case and hence does not appear under the integral.
The second relationship can be reduced in a similar manner, so that∫ �

0
g(x) sin

(
jπx
�

)
dx =

∞∑
i=1

Ei iπ
�

√
T
m

∫ �

0
sin

(
iπx
�

)
sin

(
jπx
�

)
dx

= Ej jπ
�

√
T
m

∫ �

0
sin2

(
jπx
�

)
dx

= Ej jπ
2

√
T
m

(3.47)

This treatment of the initial conditions therefore permits a direct evaluation of
the unknown constants (Ei and Fi ) in the modal representation of the total string
displacement; that is

Ei = 2
iπ

√
m
T

∫ �

0
g(x) sin

(
iπx
�

)
dx

Fi = 2
�

∫ �

0
f (x) sin

(
iπx
�

)
dx

(3.48)

Thus, for the prescribed initial conditions given by f (x) and g(x), the resulting string
displacement can be described as

v(x, t) =
∞∑

i=1

sin
(

iπx
�

)
[Ei sin(ωi t) + Fi cos(ωi t)] (3.49)
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Figure 3.2. Initial shape of plucked string

Example: Response Due to Given Initial Shape. To further illustrate this proce-
dure, consider the case of the plucked string with zero initial velocity. Let the initial
shape be as shown in Fig. 3.2. If we assume the initial velocity to be zero, then
g(x) = 0 and Ei = 0 for all i . The string displacement becomes

v(x, t) =
∞∑

i=1

Fi sin
(

iπx
�

)
cos(ωi t) (3.50)

To evaluate the constants, Fi , the initial string shape is written as

f (x) = 2h
( x

�

)
0 ≤ x ≤ �

2

= 2h
(
1 − x

�

)
�
2 ≤ x ≤ �

(3.51)

Substitution of this function into the preceding integral yields

Fi = 4h
�2

[∫ �
2

0
x sin

(
iπx
�

)
dx +

∫ �

�
2

(� − x) sin
(

iπx
�

)
dx

]

= 8h
(iπ)2

sin
(

iπ
2

) (3.52)

It may be noted that sin(iπ/2) is zero for all even values of the index and that it is
either +1 or −1 for odd values. If desired, these constants can be written as

Fi =
⎧⎨
⎩

8h
(iπ)2

(−1)
i−1

2 (i odd)

0 (i even)
(3.53)

The fact that Fi = 0 for all even values of i is indicative of the symmetry of the
initial string displacement about the midpoint. That is, because the initial shape is
symmetric about x = �/2, no antisymmetric modes of vibration are thereby excited.
The total string displacement becomes

v(x, t) = 8h
π2

∞∑
i=1,3,...

(−1)
i−1

2

i2
sin

(
iπx
�

)
cos(ωi t) (3.54)

where

ωi = iπ
�

√
T
m

(3.55)
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It should be noted from this solution that the modal contributions to the total
displacement significantly decrease as the mode number (i.e., the index i) increases.
This can be observed by the dependence of Fi on i and is characteristic of almost all
structural-dynamics response problems; thus, it permits a truncation of the infinite
sum to a finite number of the lower-order modes. This solution indicates that the
string will vibrate forever, with the string periodically returning to its initial shape.
In actual systems, however, there are always dissipative phenomena that cause the
motion to die out in time. This is considered when we address aeroelastic flutter in
Chapter 5.

3.1.4 Traveling Wave Solution

In the preceding section, a modal solution was obtained for the string problem.
The solution depicted the total displacement as a summation of specific shapes as
measured relative to the ends of the string. Each shape had an amplitude that was,
in general, a function of time. When these individual modal contributions were of
constant amplitude at their modal frequency, they appeared as standing or fixed
waves along the string.

Another interpretation of the string response is now considered by examining
the solution obtained for a string with an initial displacement but zero initial velocity
and external loading. In this case, the Ei s were all zero so that the displacement was
written as

v(x, t) =
∞∑

i=1

sin
(

iπx
�

)
Fi cos

(√
T
m

iπ t
�

)
(3.56)

The Fi s can be determined from the initial shape, f (x), as

Fi = 2
�

∫ �

0
f (x) sin

(
iπx
�

)
dx (3.57)

It also may be noted that the initial shape can be represented by

v(x, 0) = f (x) =
∞∑

i=1

Fi sin
(

iπx
�

)
(3.58)

Equation (3.58) is known as the Fourier sine series representation of the function
f (x). Additional information on the Fourier series may be found in more advanced
textbooks on structural dynamics and applied mathematics. Now, to rewrite the
general solution for this problem, the two well-known identities

sin(α + β) = sin(α) cos(β) + cos(α) sin(β)

sin(α − β) = sin(α) cos(β) − cos(α) sin(β)
(3.59)

can be added to yield another identity as

sin(α) cos(β) = 1
2

[sin(α + β) + sin(α − β)] (3.60)
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This identity can be used to rewrite the general solution given by Eq. (3.56) as

v(x, t) = 1
2

∞∑
i=1

Fi

{
sin

[
iπ
�

(
x +

√
T
m

t

)]
+ sin

[
iπ
�

(
x −

√
T
m

t

)]}
(3.61)

Equation (3.58) gives the functional form of f (x) as an infinite sum of sine func-
tions with coefficients Fi . The two terms on the right-hand side of Eq. (3.61) are of
the same form as the sum in Eq. (3.58) and can be identified as having the func-
tional form of f (x) but with different arguments. It is therefore possible to rewrite
Eq. (3.61) as

v(x, t) = 1
2

[
f

(
x +

√
T
m

t

)
+ f

(
x −

√
T
m

t

)]
(3.62)

This is the principal result of the traveling-wave solution. In reality, it is mathemati-
cally identical to the previously given standing-wave solution in Eq. (3.56); the only
difference is point of view.

To illustrate how Eq. (3.62) represents traveling waves along the string, the two
arguments of the shape function are replaced by new spatial coordinates, the origins
of which are time dependent. The new coordinates are defined as

xL(x, t) ≡ x +
√

T
m

t

xR(x, t) ≡ x −
√

T
m

t

(3.63)

Equation (3.62) becomes

v(x, t) = 1
2

[ f (xL) + f (xR)] (3.64)

which indicates that the time-dependent string shape is the sum of two shapes of a
form identical to the initial shape but of one half its magnitude. Initially, at t = 0,
the origins of the xL and xR coincide with the x origin as

xL(x, 0) = 0 at x = 0

xR(x, 0) = 0 at x = 0
(3.65)

At any later time t > 0, the origins of xL and xR can be located by

xL(x, t) = 0 at x = −
√

T
m

t

xR(x, t) = 0 at x =
√

T
m

t

(3.66)

These results indicate that the xL coordinate system is moving to the left with a
speed

√
T/m and the xR coordinate system is moving to the right with the same

speed. These origin positions are indicated in Fig. 3.3. As a consequence of these
moving origins, the shape f (xL)/2 appears to propagate to the left and the shape
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Figure 3.3. Schematic of moving coordinate systems xL and xR

f (xR)/2 appears to propagate to the right. Both of these shapes will move at a
constant propagation speed of

V =
√

T
m

(3.67)

so that Eq. (3.62) may be written in the form

v(x, t) = 1
2

[ f (x + Vt) + f (x − Vt)] (3.68)

This is also called D’Alembert’s form of the equation.
When these shapes reach one of the walls, the deflection must go to zero to satisfy

the boundary conditions. This condition at each wall causes the shapes to be reflected
in the opposite direction. These reflections appear as inverted shapes propagating
away from the walls, again with the speed V = √

T/m. This reflected-wave behavior
is inherent to the Fourier sine series representation of f (x) given in Eq. (3.58).
Determination of the string displacement at times subsequent to t = 0 requires the
evaluation of f (x ± Vt) in Eq. (3.62). Although the function f (x) is defined only for
the range 0 ≤ x ≤ �, the arguments x + Vt and x − Vt significantly exceed this range.
The Fourier sine series for f (x), Eq. (3.58), possesses two distinct mathematical
properties that permit evaluation of the function throughout the extended range of
the argument and demonstrate the reflected-wave behavior.

First Property of f (x). Because all terms in the Fourier sine series for f (x) are odd
functions of x, f (x) must also be an odd function. This property can be described as

f (−x) = −f (x) (3.69)

It is immediately seen that this is a description of the reflected-wave behavior at the
x = 0 wall.

Second Property of f (x). Because all terms in the Fourier sine series for f (x) are
periodic in x with a period of 2�, then f (x) also must be periodic in x with a period
of 2�. This property can be described as

f (x) = f (x + 2n�) for n = 0,±1,±2, . . . (3.70)

This relationship, in conjunction with the previously noted “odd” functionality of
f (x), describes the reflected-wave behavior at the x = � wall.
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Figure 3.4. Example initial shape of wave

General Evaluation of f (x ± V t). These two properties can be applied simulta-
neously for the evaluation of f (x + Vt) and f (x − Vt) for any value of their
argument—say, x ± Vt . When this argument lies within the range

n� ≤ x ± Vt ≤ (n + 1)� (3.71)

where

n = 0,±1,±2, . . . (3.72)

then

f (x ± Vt) = (−1)n f
{

(−1)n
[

x ± Vt + (−1)n − 2n − 1
2

�

]}
(3.73)

We used Eq. (3.70) to reduce the range of motion, which was initially −∞ ≤ x ≤ +∞,
down to the range 0 ≤ x ≤ �, our physical space (i.e., where the string actually is
mounted).

Example of Traveling Wave. The initial string shape is given in Fig. 3.4. At subse-
quent times, the string shape appears as shown in Fig. 3.5. The absolute distance
each of the half shapes has traveled at time t is denoted by x. The faint lines are
the displacements associated with the two constituent waves after transformation
to bring them into the range 0 ≤ x ≤ �, and the bold line is the sum of these two
displacements. The displacement during the time �

√
m/T ≤ t ≤ 2�

√
m/T is a mirror

image of the progression revealed in Fig. 3.5 with a return to the original shape at
t = 2�

√
m/T. The motion is periodic thereafter with period 2�

√
m/T.

3.1.5 Generalized Equations of Motion

Once the free-vibration modes have been determined for a linear, conservative
system, it is a straightforward procedure to determine the system’s response to
any external loading. This is accomplished by treating each mode of vibration as a
dimensional degree of freedom whose scalar coordinate is the mode’s generalized
coordinate. For each of these modal degrees of freedom, a “generalized equation
of motion” can be formulated from Lagrange’s equations (see the Appendix and
Section 2.1.5). The generalized equations of motion for the string problem can be
formulated by substituting expressions for the potential and kinetic energies into
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Figure 3.5. Shape of traveling wave at various times

Lagrange’s equations; see Eq. (2.14), repeated here for convenience as

d
dt

(
∂K

∂ξ̇i

)
+ ∂ P

∂ξi
= �i (i = 1, 2, . . .) (3.74)

In the energy expressions, the string displacement is represented in terms of its
generalized coordinates and mode shapes as

v(x, t) =
∞∑

i=1

φi (x)ξi (t) (3.75)
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Because gravitational effects are being neglected, the potential energy of the
string consists of only the strain energy caused by extension of the string. Recalling
Section 2.2.2, we can express this as

P = T
2

∫ �

0

(
∂v

∂x

)2

dx (3.76)

In terms of the mode shapes as represented in Eq. (3.75), the total potential energy
then can be written as

P = T
2

∫ �

0

( ∞∑
i=1

φ′
iξi

)2

dx (3.77)

Before evaluating this integral, it should be noted that the square of a sum (as
appearing in the integrand) can be written in terms of a double sum. This can be
demonstrated by the following simple example:

(
3∑

i=1

ai

)2

= (a1 + a2 + a3)2

= a2
1 + a2

2 + a2
3 + 2a1a2 + 2a2a3 + 2a3a1

= a1 (a1 + a2 + a3) + a2 (a1 + a2 + a3) + a3 (a1 + a2 + a3)

= a1

3∑
i=1

ai + a2

3∑
i=1

ai + a3

3∑
i=1

ai

=
3∑

j=1

a j

3∑
i=1

ai =
3∑

i=1

3∑
j=1

ai a j

(3.78)

Thus, the potential energy becomes

P = T
2

∞∑
i=1

∞∑
j=1

ξiξ j

∫ �

0
φ′

iφ
′
j dx (3.79)

For the string, the mode shapes and their first derivatives are sinusoidal functions;
consequently, they form an orthogonal set.2 That is

∫ �

0
φ′

i (x)φ′
j (x)dx = 0 (i �= j) (3.80)

Thus, the potential energy relationship can be simplified to

P = T
2

∞∑
i=1

ξ 2
i

∫ �

0
φ′

i
2dx (3.81)

2 It is not true in general that the derivatives of mode-shape functions form an orthogonal set.
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The integral in this expression can be integrated by parts as∫ �

0
φ′

iφ
′
i dx = φ′

iφi

∣∣∣∣
�

0
−
∫ �

0
φi (x)φ′′

i (x)dx (3.82)

By virtue of the boundary conditions at both ends, the first term is zero. Substitution
of Eq. (3.34) into the last term (i.e., the integral) shows that

T
∫ �

0
φ′

i
2dx = ω2

i

∫ �

0
m(x)φ2

i dx = Miω
2
i (3.83)

where we recall that ωi is the natural frequency of the ith mode and that Mi is the
generalized mass (see Eq. [3.42]). (Note that the ith generalized mass depends on
the mode shape of the ith mode and on how that mode shape is normalized.) Thus,
the potential energy becomes

P = 1
2

∞∑
i=1

Miω
2
i ξ

2
i (3.84)

Recalling the kinetic energy from Eq. (2.37), repeated here for convenience as

K =
∫ �

0

[
m
2

(
∂v

∂t

)2
]

dx (3.85)

we may now use the modal representation to write

K = 1
2

∫ �

0
m

( ∞∑
i=1

φi ξ̇i

)2

dx (3.86)

With the double-sum notation, the kinetic energy simplifies to

K = 1
2

∫ �

0

∞∑
i=1

∞∑
j=1

φi ξ̇iφ j ξ̇ j m(x) dx

= 1
2

∞∑
i=1

∞∑
j=1

ξ̇i ξ̇ j

∫ �

0
m(x)φiφ j dx

(3.87)

Because the mode shapes are orthogonal functions where

∫ �

0
m(x)φi (x)φ j (x)dx =

{
0 (i �= j)
Mi �= 0 (i = j)

(3.88)

the total kinetic energy becomes

K = 1
2

∞∑
i=1

Mi ξ̇
2
i (3.89)

The “generalized equations of motion” now can be obtained by substitution of
the kinetic energy of Eq. (3.89) and the potential energy of Eq. (3.84) into Lagrange’s
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equations given as Eqs. (3.74). The resulting equations are then

Mi
(
ξ̈i + ω2

i ξi
) = �i (i = 1, 2, . . .) (3.90)

When using a modal representation, we may use equations of this form for the
dynamic analysis of any linearly elastic structure. The generalized mass and natural
frequencies, of course, will differ depending on whether the structure is a string, a
beam in torsion or bending, a plate or shell, or a complete aircraft. The left-hand
side of this equation has at least these terms regardless of the system being analyzed.
Kinetic and potential energies also may contain contributions from discrete elements
such as added particles, rigid bodies, or springs. Finally, additional terms could arise
from potential energy of conservative applied loads, such as gravity.

The right-hand side, conversely, is highly problem-dependent and is addressed
next. The case of a vibrating structure without external forces is a special case,
previously discussed in Section 3.1.3. When there are no external forces, �i = 0 for
all i . The resulting general solution of Eq. (3.90) is the same as that presented in
Section 3.1.3, which was obtained without reference to the generalized equations of
motion and yields results depending only on the initial conditions. When including an
entity such as a spring in the potential energy, we are enlarging the boundary of the
system to include a new element. However, when the same entity is included through
its contribution to the generalized forces, it is being treated as a source of external
forces, something external to the system. Despite this philosophical distinction, the
end result is the same (see Problem 5). Any effect that can be included in the
generalized equations of motion through potential energy can be included instead
through the generalized force. It is extremely important to not count the same effect
twice (e.g., including the same entity through both potential energy and generalized
forces).

3.1.6 Generalized Force

The generalized force, �i (t)—which appears on the right-hand side of the general-
ized equations of motion—represents the effective loading associated with all forces
and moments not accounted for in P, which includes any nonconservative forces
and moments. These forces and moments are most commonly identified as exter-
nally applied loads, which may or may not be a function of modal response. They
also include any dissipative loads such as those from dampers. To determine the
contribution of distributed loads, denoted by f (x, t), the virtual work is computed
from Eq. (2.38), repeated here for convenience as

δW =
∫ �

0
f (x, t)δv(x, t)dx (3.91)

The term δv(x, t) represents a variation of the displacement field, typically re-
ferred to as the “virtual displacement,” which can be written in terms of the
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Figure 3.6. Concentrated force acting on string

generalized coordinates and mode shapes as

δv(x, t) =
∞∑

i=1

φi (x)δξi (t) (3.92)

where δξi (t) is an arbitrary increment in the ith generalized coordinate. Thus, the
virtual work becomes

δW =
∫ �

0

∞∑
i=1

f (x, t)φi (x)δξi (t)dx

=
∞∑

i=1

δξi (t)
∫ �

0
f (x, t)φi (x)dx

(3.93)

Identifying the generalized force as

�i (t) =
∫ �

0
f (x, t)φi (x)dx (3.94)

we find that the virtual work reduces to

δW =
∞∑

i=1

�i (t) δξi (t) (3.95)

The loading f (x, t) in this development is a distributed load with units of force
per unit length. If instead this loading is concentrated at one or more points—say,
as Fc(t) with units of force acting at x = xc as shown in Fig. 3.6—then its functional
representation must include the Dirac delta function, δ(x − xc), which is similar to
the impulse function in the time domain. In this case, the distributed load can be
written as

f (x, t) = Fc(t)δ(x − xc) (3.96)

Recall that the Dirac delta function can be thought of as the limiting case of a
rectangular shape with area held constant and equal to unity as its width goes to
zero (Fig. 3.7). Thus, it may be defined by its integral property; for example, for
a < x0 < b ∫ b

a
δ(x − x0)dx = 1

∫ b

a
f (x)δ(x − x0)dx = f (x0)

(3.97)
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Figure 3.7. Approaching the Dirac delta function

As a consequence, this integral expression for the generalized force can be applied
to the concentrated load so that

�i (t) =
∫ �

0
Fc(t)δ(x − xc)φi (x)dx

= Fc(t)
∫ �

0
δ(x − xc)φi (x)dx

= Fc(t)φi (xc)

= Fc(t) sin
(

iπxc

�

)
(3.98)

3.1.7 Example Calculations of Forced Response

In this section, we present two examples of forced-response calculations. These
examples also appropriately are called “initial-value problems.” The first has zero
initial displacement and velocity; the second has nonzero initial displacement and
zero initial velocity.

Example: Calculation of Forced Response. An example of a dynamically loaded
uniform string is considered to illustrate the generalized force computation and
subsequent solution for the string displacement. The specific example is a uniformly
distributed load (in space) of simple harmonic amplitude (in time) shown in Fig. 3.8
with

f (x, t) = F sin(ωt) (3.99)
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Figure 3.8. Distributed force f (x, t) act-
ing on string

The initial string displacement and velocity are taken as zero. Computation of the
generalized force is simply

�i =
∫ �

0
F sin(ωt) sin

(
iπx
�

)
dx

= F�

iπ
sin(ωt)[1 − cos(iπ)]

(3.100)

Considering the even- and odd-indexed modes separately, we have

�i =
⎧⎨
⎩

2F�

iπ
sin(ωt) (i odd)

0 (i even)
(3.101)

With this equation, the generalized equations of motion become

Mi (ξ̈i + ω2
i ξi ) =

⎧⎨
⎩

2F�

iπ
sin(ωt) (i odd)

0 (i even)
(3.102)

Because the initial conditions on displacement and velocity are both identically zero,
that is

v(x, 0) = ∂v

∂t
(x, 0) = 0 (3.103)

it follows that the response is governed only by the generalized forces. Thus, the
even-indexed modes are not excited because their generalized forces are also zero.
For the odd-indexed modes, the general solution to their equation of motion is

ξi = Ai sin(ωi t) + Bi cos(ωi t) + Ci sin(ωt) (3.104)

Note that the first two terms correspond to the homogeneous portion of the solu-
tion, whereas the third term represents the particular solution. In this example, the
particular solution has the same form of time dependence as the generalized force.

To evaluate the constants Ai and Bi of the homogeneous solution, a procedure
can be followed that is similar to the one used in Section 3.1.2 for solution of
the homogeneous initial-condition problem. The initial displacement of the present
example can be written as

v(x, 0) =
∞∑

i=1,3,...

φi (x)ξi (0) =
∞∑

i=1,3,...

Bi sin
(

iπx
�

)
= 0 (3.105)
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Multiplying both sides of this relationship by sin( jπx/�)dx and integrating over x
from 0 to �, we obtain

∞∑
i=1,3,...

Bi

∫ �

0
sin

(
iπx
�

)
sin

(
jπx
�

)
dx = 0 (3.106)

Applying the orthogonality property of the sine functions in the integrand indicates
that

Bi = 0 (i odd) (3.107)

The same procedure can be applied to the initial velocity, where

∂v

∂t
(x, 0) =

∞∑
i=1,3,...

φi (x)ξ̇i (0) =
∞∑

i=1,3,...

(Aiωi + Ciω) sin
(

iπx
�

)
= 0 (3.108)

Again, this relationship can be multiplied by sin( jπx/�)dx and integrated over the
string length. The orthogonality property in this case yields

Ai = −ωCi

ωi
(i odd) (3.109)

Initial conditions of zero displacement and velocity thus require that the generalized
coordinates of the odd-indexed modes be written as

ξi = Ci

[
sin(ωt) − ω

ωi
sin (ωi t)

]
(i odd) (3.110)

The constants Ci of the particular solution can be determined by substitution of the
generalized coordinate back into the generalized equations of motion. This yields

Mi Ci
(
ω2

i − ω2) sin (ωt) = 2F�

iπ
sin (ωt) (3.111)

Using Eq. (3.42), we find that Mi = m�/2 for all i . Thus, Ci becomes

Ci = 4F

iπm
(
ω2

i − ω2
) (3.112)

Thus, the string displacement can be now written as the sum of contributions from
the odd-indexed modes. Recall that neither the excitation loading nor the initial
conditions excite the even-indexed modes. Thus

v(x, t) =
∞∑

i=1,3,...

ξi (t)φi (x)

= 4F
mπ

∞∑
i=1,3,...

[
sin(ωt) − ω

ωi
sin (ωi t)

i
(
ω2

i − ω2
)

]
sin

(
iπx
�

) (3.113)

When the forcing frequency coincides with one of the natural frequencies, an
interesting situation results. Considering only the time-dependent part of a typical
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Figure 3.9. String with concentrated
force at mid-span

term in the series of Eq. (3.113), that is

sin(ωt) − ω
ωi

sin (ωi t)

i
(
ω2

i − ω2
) (3.114)

we find that when ω → ωi , the term becomes indeterminate. To see what its value is
in the limit, we let ωi = ω + εi , which gives

sin(ωt) − ω
ω+εi

sin [(ω + εi ) t]

i
[
(ω + εi )

2 − ω2
] (3.115)

Invoking l’Hopital’s rule to take the limit as εi → 0, we obtain

sin(ωt) − ωt cos(ωt)
2iω2

(3.116)

The second term tends to infinity as time increases with a linearly increasing ampli-
tude. This phenomenon is called “resonance” and, because of its destructive nature,
should be avoided. That is, when a structure is excited using harmonic excitation, the
forcing frequency must not be too near any of the structure’s natural frequencies.

Example: Calculation of Forced Response with Nonzero-Initial Conditions. A sec-
ond example is considered to illustrate the treatment of a concentrated force and
initial conditions that are not identically zero. In this case, a concentrated step-
function force of magnitude F0 is applied to the center of the string, as illustrated in
Fig. 3.9. Recall that the unit-step function, 1(t), is defined by

1(t) = 0 (t < 0)

= 1 (t ≥ 0)
(3.117)

The initial shape of the string is given as

v(x, 0) = h sin
(

4πx
�

)
(3.118)

and the initial velocity as zero.
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The generalized force can be determined from the integral of a distributed
loading as

�i =
∫ �

0
f (x, t)φi (x)dx

=
∫ �

0
F01(t)δ

(
x − �

2

)
φi (x)dx

= F01(t)φi

(
�

2

)

= F01(t) sin
(

iπ
2

)
(3.119)

because

sin
(

iπ
2

)
= 0 (i even)

= (−1)
i−1

2 (i odd)
(3.120)

the generalized equations of motion become

Mi (ξ̈i + ω2
i ξi ) = 0 (i even)

Mi (ξ̈i + ω2
i ξi ) = F01(t)(−1)

i−1
2 (i odd)

(3.121)

The corresponding general solutions are

ξi = Ai sin (ωi t) + Bi cos (ωi t) (i even)

ξi = Ai sin (ωi t) + Bi cos (ωi t) + Ci (i odd)
(3.122)

Consider the finite, initial displacement

v(x, 0) =
∞∑

i=1

ξi (0)φi (x)

=
∞∑

i=2,4,...

Bi sin
(

iπx
�

)
+

∞∑
i=1,3,...

(Bi + Ci ) sin
(

iπx
�

)

= h sin
(

4πx
�

)
(3.123)

This last equality is multiplied by sin( jπx/�)dx and integrated over the length of the
string to yield

h
∫ �

0
sin

(
4πx
�

)
sin

(
jπx
�

)
dx =

∞∑
i=2,4,...

Bi

∫ �

0
sin

(
iπx
�

)
sin

(
jπx
�

)
dx

+
∞∑

i=1,3,...

(Bi + Ci )
∫ �

0
sin

(
iπx
�

)
sin

(
jπx
�

)
dx

(3.124)
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These integrals can be evaluated easily by noting the orthogonality property of the
sine functions. The result gives the following values for the constants Bi :

B4 = h

Bi = 0 (i even but �= 4) (3.125)

Bi = −Ci (i odd)

The initial velocity being zero requires that

∂v

∂t
(x, 0) =

∞∑
i=1

ξ̇i (0)φi (x) =
∞∑

i=1

ωi Ai sin
(

iπx
�

)
= 0 (3.126)

Multiplication by sin( jπx/�)dx and integration results in determining that Ai = 0
for all i . These results can be summarized by noting that ξi = 0 for all even values of
i except

ξ4 = h cos (ω4t) (3.127)

and for odd i

ξi = Ci [1 − cos (ωi t)] (i odd) (3.128)

The constants Ci can be determined by substitution of the odd generalized
coordinates back into the equations of motion

Mi Ciω
2
i = F0(−1)

i−1
2 t ≥ 0 (3.129)

Given that Mi = m�/2, this yields

Ci = 2�F0(−1)
i−1

2

T(iπ)2
(3.130)

so that the complete string displacement becomes

v(x, t) =
∞∑

i=1

ξi (t)φi (x)

= h cos (ω4t) sin
(

4πx
�

)
+ 2�F0

Tπ2

∞∑
i=1,3,...

(−1)
i−1

2

i2 [1 − cos (ωi t)] sin
(

iπx
�

)

(3.131)

Thus, the first term is the response due to initial displacement, and the sum over the
odd-indexed modes is the response due to the forcing function.

3.2 Uniform Beam Torsional Dynamics

Although vibrating strings are easy to visualize and exhibit many of the features of
vibrating aerospace structures, to analyze such structures, more realistic models are
needed. In this section, we apply the concepts related to the modal representation
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to the dynamics of beams in torsion. A beam is a structural member in which one
dimension is much larger than the other two. It is thus understandable to idealize the
twisting and bending of high-aspect-ratio wings and helicopter rotor blades in terms
of beam theory, especially in conceptual and preliminary design. Because many
behavioral characteristics of typical aeronautical structures are found in beams, the
torsion of beam-like lifting surfaces plays a vital role in both static and dynamic
aeroelasticity.

3.2.1 Equations of Motion

For free vibration of a beam in torsion, we specialize the equation of motion derived
in Section 2.3.1 by setting r(x, t) = 0 to obtain

∂

∂x

[
GJ (x)

∂θ

∂x

]
= ρ Ip(x)

∂2θ

∂t2
(3.132)

Other than the quantities that multiply the partial derivatives, this equation of motion
is similar to that for the dynamic behavior of a string. The difference is that the
stiffness coefficient GJ (x), unlike the tension in the string, may not be constant.
Specialization to the spanwise uniform case is undertaken to obtain a closed-form
solution. Properties varying with x are not an obstacle for application of the variety
of approximate methods discussed in Section 3.5, but here we are concerned with
obtaining closed-form solutions to aid in understanding the results. As shown when
we explore the boundary conditions in detail, there are more interesting possibilities
for the boundary conditions for beams in torsion than there are for the string.

As before, we apply separation of variables, by substituting

θ(x, t) = X(x)Y(t) (3.133)

into the partial differential equation of motion and arranging the terms so that
dependencies on x and t are separated across the equality. This yields[

GJ (x)X ′(x)
]′

ρ Ip(x)X(x)
= Ÿ(t)

Y(t)
(3.134)

Thus, each side must equal a constant—say, −ω2—so that[
GJ (x)X ′(x)

]′
ρ Ip(x)X(x)

= Ÿ(t)
Y(t)

= −ω2 (3.135)

Two ordinary differential equations then follow; namely

[GJ (x)X ′(x)]′ + ρ Ip(x)ω2 X(x) = 0

Ÿ(t) + ω2Y(t) = 0
(3.136)

The first of Eqs. (3.136) has variable coefficients in x and—except for certain special
cases such as spanwise uniformity—does not possess a closed-form solution. The
second, however, is the same as the second of Eqs. (3.6), the solution of which is well
known.
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Some specialization is necessary in order to proceed further. Therefore, we
consider only beams with spanwise uniform properties. Eqs. (3.136) then become

X ′′ + α2 X = 0

Ÿ + ω2Y = 0
(3.137)

where α2 = ρ Ipω
2/GJ . For α �= 0, the solutions can be written as

X(x) = Asin(αx) + Bcos(αx)

Y(t) = C sin (ωt) + Dcos (ωt)
(3.138)

To complete the solutions, constants A and B can be determined to within a mul-
tiplicative constant from the boundary conditions at the ends of the beam; C and
D can be found as a function of the initial beam deflection and rate of deflection.
Because the partial differential equations of motion governing both transverse vibra-
tion of uniform strings and torsional vibration of uniform beams are one-dimensional
wave equations, we rightfully can expect all of the previously discussed properties
of standing and traveling waves to exist here as well.

Note that the special case of α = 0 is an important special case with a different
set of general solutions. It is addressed in more detail in Section 3.2.3.

3.2.2 Boundary Conditions

For a beam undergoing pure torsion, one boundary condition is required at each end.
Mathematically, boundary conditions may affect θ as well as its partial derivatives,
such as ∂θ/∂x and ∂2θ/∂t2, at the ends of the beam. In the context of the separation
of variables, these conditions lead to corresponding conditions on X and/or X ′ at
the ends. These relationships are necessary and sufficient for determination of the
constants Aand B to within a multiplicative constant.

The nature of the boundary condition at an end stems from how that end is
restrained. When an end cross section is unrestrained, the tractions on it are identi-
cally zero. Conversely, the most stringent condition is a perfect clamp, which allows
no rotation of an end cross section. Although this is a common idealization, it is
practically impossible to achieve in practice.

Cases that only partially restrain an end cross section involve elastic and/or
inertial reactions. For example, an aircraft wing attached to a flexible support, such
as a fuselage, is not a perfect clamped condition; the root of the wing experiences
some rotation because of inherent flexibility at the point of attachment. A boundary
condition that is idealized in terms of a rotational spring may be used to create
a more realistic model for the support flexibility. Appropriate values for support
flexibility can be estimated from static tests. Boundary conditions involving inertial
reactions may stem from attached rigid bodies to model the effects of fuel tanks,
engines, armaments, and so on.
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Figure 3.10. Clamped end of a beam

In this section, we consider two boundary conditions of the “primitive” type and
two examples of derived boundary conditions that can be imposed at the ends of the
beam to determine the constants Aand B.

Clamped End. In this first primitive case (Fig. 3.10), the x = � end of the beam is
assumed to be clamped or rigidly attached to an immovable support. As a conse-
quence, there is no rotation due to elastic twist at this end of the beam, and the
boundary condition is

θ(�, t) = 0 = X(�)Y(t) (3.139)

which is identically satisfied when

X(�) = 0 (3.140)

Free End. For the second primitive case, we consider the x = � end cross section of
the beam to be free of stress (Fig. 3.11). Therefore, the twisting moment resultant
on the end cross section must be zero

T(�, t) = GJ (�)
∂ θ

∂x
(�, t) = 0 (3.141)

Because GJ (�) > 0, this specializes to

∂θ

∂x
(�, t) = X ′(�)Y(t) = 0 (3.142)

Thus, the specific condition to be satisfied is

X ′(�) = 0 (3.143)

Other Forms of End Restraint. In any cross section of a beam undergoing deforma-
tion, there is a set of tractions on the plane of a typical cross section; a traction is a
projection of the stress (three-dimensional) onto a surface (two-dimensional). From
tractions at a given cross section, we can define the resultant force and moment at
that station of the beam. When the end of a beam is connected to a rigid body, the

Figure 3.11. Free end of a beam
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Figure 3.12. Schematic of the x = � end of the
beam, showing the twisting moment T, and the
equal and opposite torque acting on the rigid body

body exerts forces and moments on the beam that are balanced by the distributed
traction on the end cross section. That is, the force and moment resultants on the
end cross section are reacted by equal and opposite forces and moments on the rigid
body. These facts, along with application of suitable laws of motion for the attached
body, allow us to determine the boundary conditions.

In the case of torsion, for any cross section, the resultant moment about x of
tractions caused by transverse shearing stress has the sense of a twisting moment, T,
given by

T ≡ GJ
∂θ

∂x
(3.144)

With x directed to the right and the outward-directed normal along the positive x
direction at the end of the beam where x = �, a positive twisting moment is directed
along x in the right-handed sense. To avoid coupling with transverse motion, we
stipulate that the mass center C of the attached rigid body lies on the x axis (i.e., the
elastic axis of the beam). The body has a mass moment of inertia IC about C so that
it contributes a concentrated rotational inertia effect on the beam. The free-body
diagram for the problem is then as shown in Fig. 3.12. By Newton’s third law, the
beam’s twisting moment produces an equal and opposite torque on the rigid body.

Recall that Euler’s second law for a rigid body is stated precisely in Section 2.1.2.
The only forces acting on the rigid body here3 are the contact forces from the beam.
So, the x component of the left-hand side of Euler’s law is the sum of all moments
acting on the body; that is (∑

Mc

)
x

≡ −T(�, t) (3.145)

where the sign in front of T is negative because of the free-body diagram and the sign
convention, which has moments acting on the body as positive in the same direction
as the rotation of the body—along x in the right-handed sense. The x component of
the right-hand side is the inertial time derivative of the inertial angular momentum
about C, here simply the moment of inertia times the angular acceleration:( F dHc

dt

)
x

≡ IC
∂2θ

∂t2
(�, t) (3.146)

where the left superscript on the left-hand side reflects the fact that the time deriva-
tive is taken in the inertial frame F , defined in Section 2.1.2. Euler’s law for this rigid

3 Recall that we normally ignore gravity for free-vibration problems.
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Figure 3.13. Schematic of the x = 0 end of the
beam, showing the twisting moment T, and the
equal and opposite torque acting on the rigid body

body is then expressed by equating these two very different quantities, yielding

−T(�, t) = IC
∂2θ

∂t2
(�, t) (3.147)

or

−GJ
∂θ

∂x
(�, t) = IC

∂2θ

∂t2
(�, t) (3.148)

This equation then expresses the boundary condition of a beam undergoing uncou-
pled torsional vibration with a rigid body attached at x = �.

When the body is attached to the x = 0 end, there is a subtle but important
difference. With x directed to the right and the outward-directed normal along the
negative x direction at the x = 0 end of the beam, a positive twisting moment is
directed along −x in the right-handed sense. The free-body diagram for the problem
is then as shown in Fig. 3.13. By Newton’s third law, the twisting moment produces
an equal and opposite torque on the rigid body, which is in the direction of a positive
rotation for the body. Therefore, Euler’s law (and the resulting boundary condition)
is written as

T(0, t) = IC
∂2θ

∂t2
(0, t) (3.149)

or

GJ
∂θ

∂x
(0, t) = IC

∂2θ

∂t2
(0, t) (3.150)

Thus, this equation expresses the boundary condition of a beam undergoing uncou-
pled torsional vibration with a rigid body attached at x = 0.

The following example illustrates a convenient way to think about the contri-
bution of a spring to the boundary of a beam undergoing only torsional rotation.
Consider a beam with an attached rigid body at its x = � end, such that the rigid
body is, in turn, restrained by a light torsional spring attached to the ground. The
rotational sign convention does not change; θ is always positive in the x direction
(i.e., to the right in the sense of the right-hand rule). The rigid body, because it is
attached to the end of the beam, rotates by θ(�, t). Thus, the rotational spring reacts
against that rotation, and the moment applied by the spring to the body is opposite
to the direction of the rotation (Fig. 3.14). The boundary condition for the beam
results from applying Euler’s second law to the rigid body, so that

−kθ(�, t) − T(�, t) = IC
∂2θ

∂t2
(�, t) (3.151)
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θ

θ

=

Figure 3.14. Example with rigid body and spring

If the body-spring mechanism is instead on the x = 0 end of the beam, then the
moment exerted by the spring is still in the same direction. However, what constitutes
a positive twisting moment on the beam has the opposite sense, and the boundary
condition changes to

−kθ(0, t) + T(0, t) = IC
∂2θ

∂t2
(0, t) (3.152)

Clearly, if the body is absent, one may set IC = 0. Then, the problem reduces
to the elastically restrained boundary condition, as shown in Fig. 3.15. The twisting
moment at the beam end must be equal and opposite to the spring reaction for any
finite rotation due to twist at the x = � end, so that

−T(�, t) = −GJ
∂θ

∂x
(�, t) = kθ(�, t) (3.153)

At the x = 0 end, however

T(0, t) = GJ
∂θ

∂x
(0, t) = kθ(0, t) (3.154)

To be useful for separation of variables, we must determine the corresponding
boundary condition on X. Thus, we write θ(x, t) as X(x)Y(t) as before, yielding

GJ X ′(�)Y(t) = −kX(�)Y(t) (3.155)

which requires that

GJ X ′(�) = −kX(�) (3.156)

Readers should verify that the same type of boundary condition at the other end
would yield

GJ X ′(0) = kX(0) (3.157)

where the sign change comes about by virtue of the switch in the direction noted
previously for a positive twisting moment.

Figure 3.15. Elastically restrained end of a
beam
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Figure 3.16. Inertially restrained end of a beam

Conversely, if the spring is absent, we may set k = 0, and the problem reduces
to the inertially restrained case with only a rigid body attached to the x = � end
(Fig. 3.16). The twisting moment at the beam end must be equal and opposite to the
inertial reaction of the concentrated inertia for any finite angular acceleration of the
end. Therefore

−GJ
∂θ

∂x
(�, t) = IC

∂2θ

∂t2
(�, t) (3.158)

Expressing this condition in terms of X(x), Y(t), and their derivatives, we find that

−GJ X ′(�)Y(t) = IC X(�)Ÿ(t) (3.159)

From separation of variables, it was determined from the second of Eqs. (3.137) that
for free vibration (i.e., no external forces), we may regard Y(t) as describing simple
harmonic motion; that is

Ÿ(t) = −ω2Y(t) = −α2GJ

ρ Ip
Y(t) (3.160)

Substitution into the preceding condition then yields

GJ X ′(�)Y(t) = α2 GJ

ρ Ip
IC X(�)Y(t) (3.161)

which requires that

ρ Ip X ′(�) = α2 IC X(�) (3.162)

As before, readers should verify that the same type of boundary condition at the
other end would yield

ρ Ip X ′(0) = −α2 IC X(0) (3.163)

It is appropriate to note that the use of Eq. (3.160) allows us to express Eq. (3.158)
as

GJ
∂θ

∂x
(�, t) = ω2 ICθ(�, t) (3.164)

with the caveat that this condition holds true only for simple harmonic motion.

3.2.3 Example Solutions for Mode Shapes and Frequencies

In this section, we consider several examples of the calculation of natural frequen-
cies and mode shapes of vibrating beams in torsion. We begin with the clamped-free



3.2 Uniform Beam Torsional Dynamics 63

θ
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Figure 3.17. Schematic of clamped-free beam undergoing torsion

case, often referred to as “cantilevered.” Next, we consider the free-free case, illus-
trating the concept of the rigid-body mode. Finally, we consider a case that requires
numerical solution of the transcendental characteristic equation: a beam clamped at
its root and restrained with a rotational spring at the tip.

Example Solution for Clamped-Free Beam. To illustrate the application of these
boundary conditions, consider the case of a uniform beam that is clamped at x = 0
and free at x = �, as shown in Fig. 3.17. The boundary conditions for this case are

X(0) = X ′(�) = 0 (3.165)

Recall that the general solution was previously determined as

θ(x, t) = X(x)Y(t) (3.166)

where X and Y are given in Eqs. (3.138). For α �= 0, the first of those equations has
the solution

X(x) = Asin(αx) + Bcos(αx) (3.167)

It is apparent that the boundary conditions lead to the following

X(0) = 0 requires B = 0

X ′(�) = 0 requires Aα cos(α�) = 0
(3.168)

If A= 0, a trivial solution is obtained, such that the deflection is identically zero.
Because α �= 0, a nontrivial solution requires that

cos(α�) = 0 (3.169)

This is called the “characteristic equation,” the solutions of which consist of a denu-
merably infinite set called the “eigenvalues” and are given by

αi� = (2i − 1)π
2

(i = 1, 2, . . .) (3.170)

The Y(t) portion of the general solution is observed to have the form of simple
harmonic motion, as indicated in Eq. (3.160), so that the natural frequency is

ω = α

√
GJ

ρ Ip
(3.171)
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Figure 3.18. First three mode shapes for clamped-free
beam vibrating in torsion

Because α can have only specific values, the frequencies also take on specific numer-
ical values given by

ωi = αi

√
GJ

ρ Ip
= (2i − 1)π

2�

√
GJ

ρ Ip
(3.172)

These are the natural frequencies of the beam. Associated with each frequency is a
“mode shape” as determined from the x-dependent portion of the general solution.
The mode shapes (or eigenfunctions) can be written as

φi (x) = sin(αi x) = sin
[

(2i − 1)πx
2�

]
(3.173)

or any constant times φi (x). The first three of these mode shapes are plotted in
Fig. 3.18. The zero derivative at the free end is indicative of the vanishing twisting
moment at the free end.

Example Solution for Free-Free Beam. A second example, which exhibits both
elastic motion as described previously and motion as a rigid body, is the case of a
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θ
= =

Figure 3.19. Schematic of free-free beam undergoing torsion

beam that is free at both ends, as shown in Fig. 3.19. The boundary conditions are

X ′(0) = X ′(�) = 0 (3.174)

From the general solution for X(x) in Eqs. (3.138), we find that for α �= 0

X ′(x) = Aα cos(αx) − Bα sin(αx) (3.175)

Thus, the condition at x = 0 requires that

Aα = 0 (3.176)

For A= 0, the condition at x = � requires that

sin(α�) = 0 (3.177)

because a null solution (θ ≡ 0) is obtained if B = 0. This characteristic equation is
satisfied by

αi� = iπ (i = 1, 2, . . .) (3.178)

and the corresponding natural frequencies become

ωi = iπ
�

√
GJ

ρ Ip
(3.179)

The associated mode shapes are determined from the corresponding X(x) as

φi (x) = cos(αi x) = cos
(

iπx
�

)
(3.180)

These frequencies and mode shapes describe the normal mode of vibration for the
elastic degrees of freedom of the free-free beam in torsion.

Now, if in the previous analysis the separation constant, α, is taken as zero, then
the governing ordinary differential equations are changed to

X ′′

X
= ρ Ip

GJ

Ÿ
Y

= 0 (3.181)

or

X ′′(x) = 0 and Ÿ(t) = 0 (3.182)

The general solutions to these equations can be written as

X(x) = ax + b

Y(t) = ct + d
(3.183)

The arbitrary constants, a and b, in the spatially dependent portion of the solution
again can be determined from the boundary conditions. For the present case of the
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free-free beam, the conditions are

X ′(0) = 0 requires a = 0

X ′(�) = 0 requires a = 0
(3.184)

Because both conditions are satisfied without imposing any restrictions on the con-
stant b, this constant can be anything, which implies that the torsional deflection can
be nontrivial for α = 0. From X(x) with a = 0, it is apparent that the corresponding
value of θ is independent of the coordinate x. This means that this motion for α = 0
is a “rigid-body” rotation of the beam.

The time-dependent solution for this motion, Y(t), also is different from that
obtained for the elastic motion. Primarily, the motion is not oscillatory; thus, the
rigid-body natural frequency is zero. The arbitrary constants, c and d, can be ob-
tained from the initial values of the rigid-body orientation and angular velocity. To
summarize the complete solution for the free-free beam in torsion, a set of general-
ized coordinates can be defined by

θ(x, t) =
∞∑

i=0

φi (x)ξi (t) (3.185)

where

φ0 = 1

φi = cos
(

iπx
�

)
(i = 1, 2, . . .)

(3.186)

The first three elastic mode shapes are plotted in Fig. 3.20. The zero derivative at both
ends is indicative of the vanishing twisting moment there. The natural frequencies
associated with these mode shapes are

ω0 = 0

ωi = iπ
�

√
GJ

ρ Ip
(i = 1, 2, . . .)

(3.187)

Note that the rigid-body generalized coordinate, ξ0(t), represents the radian measure
of the rigid-body rotation of the beam about the x axis.

A quick way to verify the existence of a rigid-body mode is to substitute ω = 0
and X = a constant into the differential equation, and boundary conditions for X.
A rigid-body mode exists if and only if all are satisfied. Caution: Do not try to argue
that there is a rigid-body mode because α = 0 satisfies the characteristic equation,
Eq. (3.177). To obtain that equation, we presupposed that α �= 0!

Example Solution for Clamped-Spring-Restrained Beam. A final example for
beam torsion is given by the system shown in Fig. 3.21. The beam is clamped at
the root (x = 0) end, and the other end is restrained with a rotational spring having
spring constant k = ζ GJ/�, where ζ is a dimensionless parameter. The boundary
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Figure 3.20. First three elastic mode shapes for free-free
beam vibrating in torsion

conditions on X are thus

X(0) = 0

GJ X ′(�) = −kX(�) = −GJ
�

ζ X(�) → �X ′(�) + ζ X(�) = 0
(3.188)

When these boundary conditions are substituted into the general solution found in
Eqs. (3.138), we see that the first condition requires that B = 0; the second condition,
along with the requirement for a nontrivial solution, leads to

ζ tan(α�) + α� = 0 (3.189)

Figure 3.21. Schematic of torsion problem with
spring
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Figure 3.22. Plots of tan(α�) and −α�/ζ versus α� for ζ = 5

This transcendental equation has a denumerably infinite set of roots that cannot be
found in closed form. However, as many of these roots as desired can be found using
numerical procedures found in commercially available software packages such as
Mathematica,TM Maple,TM and MATLAB.TM

To facilitate this sort of root-finding in general, we may need to specify initial
guesses for the values of α�. These can be found using graphical means by plotting,
for example, tan(α�) and −α�/ζ versus α� for a specified value of ζ = 5, as shown
in Fig. 3.22. The points where these curves intersect (indicated by dots in the figure)
are the solutions, the locations of which are seen to be approximately at α� = 2.6,
5.4, and 8.4. These values, when used as initial guesses in a root-finding application,
provide quick convergence to α1� = 2.65366, α2� = 5.45435, and α3� = 8.39135. As
an alternative approach for this particular example, we may solve Eq. 3.189 for ζ

and plot it versus α� to find the roots without iteration.
Thus, the roots of Eq. (3.189) are functions of ζ , and the first four such roots are

plotted versus ζ in Fig. 3.23. Denoting these roots by αi , with i = 1, 2, . . . , we obtain
the corresponding natural frequencies

ωi = αi

√
GJ

ρ Ip
(i = 1, 2, . . .) (3.190)

From the plots (and from Eq. 3.189), we note that as ζ tends toward zero, α1� tends
toward π/2, which means that the fundamental natural frequency is

ω1 = π

2�

√
GJ

ρ Ip
(ζ → 0) (3.191)

which is the natural frequency of a clamped-free beam in torsion (as shown herein).
We also can show that as ζ tends to infinity, α1� tends toward π so that the
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Figure 3.23. Plot of the lowest values of αi versus ζ for a clamped-spring-restrained beam in
torsion

fundamental natural frequency is

ω1 = π

�

√
GJ

ρ Ip
(ζ → ∞) (3.192)

which is the natural frequency of a clamped-clamped beam in torsion. Recalling the
similarity of the governing equations and boundary conditions, the determination of
the natural frequencies of a clamped-clamped beam in torsion follows directly from
the previous solution for natural frequencies of a string fixed at both ends.

To obtain the corresponding mode shapes, we take the solutions for αi and
substitute back into X, recalling that we can arbitrarily set A= 1 and that B = 0.
The resulting mode shape is

φi = sin(αi x) (i = 1, 2, . . .) (3.193)

The first three modes for ζ = 1 are shown in Fig. 3.24. As expected, neither the twist
angle nor its derivative are equal to zero at the tip. Close examination of Fig. 3.24
illustrates that for higher and higher frequencies, the spring-restrained ends behave
more and more like free ends.

3.2.4 Calculation of Forced Response

The formulation of initial-value problems for beams in torsion is almost identical
to that for strings, presented in Section 3.1.7. We first should determine the virtual
work done by the applied loads, such as a distributed twisting moment per unit
length discussed in Section 2.3.1. From this, we may find the generalized forces
associated with torsion. Once the generalized forces are known, we may solve the
generalized equations of motion, which are of the form in Eq. (3.90). The resulting
initial-value problem then can be solved by invoking orthogonality to obtain values
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Figure 3.24. First three mode shapes for clamped-spring-
restrained beam in torsion, ζ = 1

of the arbitrary constants in the general and particular solutions, as illustrated in the
examples in Section 3.1.7.

3.3 Uniform Beam Bending Dynamics

The free vibration of a beam in bending is often referred to as “transverse vibration.”
This type of motion differs from the transverse dynamics of strings and the torsional
dynamics of beams in that the governing equations of motion are of a different
mathematical form. Although these equations are different, their solutions are ob-
tained in a similar manner and exhibit similar physical characteristics. Again, we
start with the properties varying with x and specialize when we must. Observe that
whereas most aerospace structures experience combined or simultaneous bending
and torsional dynamic behavior, we have here chosen certain configuration variables
to uncouple these types of motion.

3.3.1 Equation of Motion

From Section 2.3.2, Eq. (2.53) is repeated here for convenience

∂2

∂x2

(
EI

∂2v

∂x2

)
+ m

∂2v

∂t2
= f (x, t) (3.194)
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In the following sections, we treat the special case of free vibration for which
f (x, t) = 0.

3.3.2 General Solutions

A solution to the equation of motion for the transverse vibrations of beams can be
obtained by a separation of the independent variables. This separation is denoted as

v(x, t) = X(x)Y(t) (3.195)

which, when substituted into the equation of motion, yields

(EI X ′′)′′

mX
= − Ÿ

Y
(3.196)

Because the dependencies on x and t were separated across the equality, each side
must equal a constant—say, ω2. The resulting ordinary differential equations then
become

(EI X ′′)′′ − mω2 X = 0

Ÿ + ω2Y = 0
(3.197)

For simplicity, we specialize the equations for the case of spanwise uniformity
of all properties so that the first of Eqs. (3.197) simplifies to

X ′′′′ = α4 X (3.198)

where

α4 = mω2

EI
(3.199)

is a constant.
For α �= 0, the general solution to the second of Eqs. (3.197) can be written as

in the cases for the string and beam torsion; namely

Y(t) = Asin(ωt) + Bcos(ωt) (3.200)

For α �= 0, the general solution to the spatially dependent equation can be
obtained by presuming a solution of the form

X(x) = exp(λx) (3.201)

Substitution of this assumed form into the fourth-order differential equation for
X(x) yields

λ4 − α4 = 0 (3.202)

which can be factored to

(λ − iα)(λ + iα)(λ − α)(λ + α) = 0 (3.203)

indicating a general solution of the form

X(x) = C1 exp(iαx) + C2 exp(−iαx) + C3 exp(αx) + C4 exp(−αx) (3.204)
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Rewriting the exponential functions as trigonometric and hyperbolic sine and cosine
functions yields an alternative form of the general solution as

X(x) = D1 sin(αx) + D2 cos(αx) + D3 sinh(αx) + D4 cosh(αx) (3.205)

Eventual determination of the constants Di (i = 1, 2, 3, and 4) and α requires spec-
ification of appropriate boundary conditions. To facilitate this procedure, this last
solution form can be rearranged to provide, in some cases, a slight advantage in the
algebra, so that

X(x) = E1[sin(αx) + sinh(αx)] + E2[sin(αx) − sinh(αx)]

+ E3[cos(αx) + cosh(αx)] + E4[cos(αx) − cosh(αx)]
(3.206)

To complete the solution, the constants Aand B can be determined from the initial
deflection and rate of deflection of the beam. The remaining four constants, Ci , Di ,
or Ei (i = 1, 2, 3, and 4), can be evaluated from the boundary conditions, which must
be imposed at each end of the beam. As was true for torsion, the important special
case of α = 0 is connected with rigid-body modes for beam bending and is addressed
in more detail in Section 3.3.4.

3.3.3 Boundary Conditions

For the beam-bending problem, it is necessary to impose two boundary conditions
at each end of the beam. Mathematically, boundary conditions may affect v and its
partial derivatives, such as ∂v/∂x, ∂2v/∂x2, ∂3v/∂x3, ∂2v/∂t2, and ∂3v/∂x∂t2. In the
context of the separation of variables, these conditions lead to corresponding con-
straints on some or all of the following at the ends: X, X ′, X ′′, and X ′′′. The resulting
four boundary conditions on X and its derivatives are necessary and sufficient for
determination of the four constants Ci , Di , or Ei (i = 1, 2, 3, and 4) to within a
multiplicative constant.

As with torsion, the nature of the boundary conditions at an end stems from
how that end is restrained. When an end cross section is unrestrained, the tractions
on it are identically zero. Again, the most stringent condition is a perfect clamp,
which for bending allows neither translation nor rotation of an end cross section.
Like the clamped-end condition in torsion, the clamped end in bending is a common
idealization, although nearly impossible to achieve in practice.

For the bending problem, a wide variety of cases that only partially restrain
an end cross section is possible. The cases typically involve elastic and/or inertial
reactions. A boundary condition that is idealized in terms of both translational and
rotational springs may be used to more realistically account for support flexibility.
Appropriate values for both translational and rotational flexibility of the support
can be estimated from static tests. Finally, we can use rigid bodies and springs in
combination to model attached hardware such as fuel tanks, engines, armaments,
and laboratory fixtures.
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Figure 3.25. Schematic of pinned-end condition

In this section, we consider the four “primitive” boundary conditions; four de-
rived boundary conditions involving individual elastic and inertial restraints; and
two examples of derived boundary conditions that involve combinations of v and its
partial derivatives that can be imposed at the ends of the beam for determination of
the four arbitrary constants of the general solution for X.

A boundary condition can be written as a linear relationship involving one or
more of the following: the beam deflection, its first three spatial partial derivatives,
and its first two temporal partial derivatives. Although it is not a mathematical
requirement, the particular combination of conditions to be specified at a beam
end should represent a physically realizable constraint. The various spatial partial
derivatives of the beam deflection can be associated with particular beam states at
any arbitrary point along the beam. There are four such states of practical interest:

1. Deflection = v(x, t) = X(x)Y(t)
2. Slope = β(x, t) = ∂v

∂x (x, t) = X ′(x)Y(t)

3. Bending Moment = M(x, t) = EI(x) ∂2v
∂x2 (x, t) = EI(x)X ′′(x)Y(t)

4. Shear = V(x, t) = − ∂
∂x

[
EI(x) ∂2v(x,t)

∂x2

]
= −[EI(x)X ′′(x)]′Y(t)

When relating these beam states, the positive convention for deflection and slope
is the same at both ends of the beam. In contrast, the sign conventions on shear
and bending moment differ at opposite beam ends, as illustrated by the free-body
differential beam element used to obtain the equation of motion (see Fig. 2.6).

The most common conditions that can occur at the beam ends involve vanish-
ing pairs of individual states. Typical of such conditions are the following classical
configurations (specialized for spanwise uniformity):

� Clamped or built-in end, which implies zero deflection and slope, is illustrated
in Fig. 3.10 and has v(�, t) = ∂v

∂x (�, t) = 0 so that X(�) = X ′(�) = 0.
� Free end, which corresponds to zero bending moment and shear, is illustrated

in Fig. 3.11 and has M(�, t) = V(�, t) = 0 so that X ′′(�) = X ′′′(�) = 0.
� Simply supported, hinged, or pinned end, which indicates zero deflection and

bending moment, is denoted by the triangular symbol in Fig. 3.25 and has
v(�, t) = M(�, t) = 0 so that X(�) = X ′′(�) = 0.

� Sliding end, which corresponds to zero shear and slope, is illustrated in Fig. 3.26
and has ∂v

∂x (�, t) = V(�, t) = 0 so that X ′(�) = X ′′′(�) = 0.

All of these conditions can occur in the same form at x = 0.
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Figure 3.26. Schematic of sliding-end condition

In addition to these zero-state conditions, we derive boundary conditions corre-
sponding to linear-constraint reactions associated with elastic and inertial elements.
The simplest of these are of the following four basic types:

� translational elastic constraint
� rotational elastic constraint
� translational inertia constraint
� rotational inertia constraint

Two additional examples are presented that are more involved because they entail
combinations of these four types.

Translational Elastic Constraint. Consider a beam undergoing bending with a trans-
lational spring with elastic constant k attached to the x = 0 end of a beam, as shown
in Fig. 3.27. Assuming that this end of the beam is deflected by the amount v(0, t),
then the spring tries to pull the end of the beam back to its original position by
exerting a downward force at the end, the magnitude of which is equal to kv(0, t).
Because the transverse-shear force at the left end (on the negative x face) is positive
down, the boundary condition becomes

V(0, t) = kv(0, t) (3.207)

Using the definition of the shear force, we obtain

− ∂

∂x

(
EI

∂2v

∂x2

)
(0, t) = kv(0, t) (3.208)

To be useful for separation of variables, we must make the substitution v(x, t) =
X(x)Y(t), yielding

[EI(0)X(0)′′]′ = −kX(0) (3.209)

Figure 3.27. Example beam undergoing bending with a spring at the x = 0 end
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Figure 3.28. Schematic of beam with translational spring at both ends

which further simplifies for a spanwise uniform beam to

EI X ′′′(0) = −kX(0) (3.210)

If the spring were at x = � instead, the direction of the spring force at x = �

would be the same (i.e., downward), but the shear force is positive upward because
this is the positive x face. Thus

V(�, t) = −kv(�, t) (3.211)

and

[EI(�)X(�)′′]′ = kX(�) (3.212)

which further simplifies for a spanwise uniform beam to

EI X ′′′(�) = kX(�) (3.213)

These conditions must be augmented by one additional condition at each end
because two are required. For example, consider a beam with translational springs
at both ends, as shown in Fig. 3.28. At each end, the other conditions for this case
would be that the bending moment is equal to zero.

Rotational Elastic Constraint. Consider now a beam with a rotational spring at the
right end, as depicted in Fig. 3.29. For a rotation of the end cross-sectional plane of
∂v/∂x at x = �, which is positive in the counterclockwise direction, the spring exerts
a moment in the opposite direction (i.e., clockwise). Because the bending moment at
the right end of the beam is positive in the counterclockwise direction, the boundary
condition then becomes

M(�, t) = −k
∂v

∂x
(�, t) (3.214)

Figure 3.29. Example of beam undergoing bending with a rotational spring at right end
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Figure 3.30. Schematic of beam with rotational springs at both ends

Using the definition of bending moment, we find

EI
∂2v

∂x2
(�, t) = −k

∂v

∂x
(�, t) (3.215)

The boundary condition on X then becomes

EI X ′′(�) = −kX ′(�) (3.216)

As with the shear force, the sign convention on bending moment differs at
the opposite end. Here, at the left end, the spring still exerts a clockwise moment;
however, the bending moment is also positive in the clockwise direction. Thus, we
may write

M(0, t) = k
∂v

∂x
(0, t)

EI
∂2v

∂x2
(0, t) = k

∂v

∂x
(0, t)

(3.217)

for the condition on v(x, t) and its partial derivatives and

EI X ′′(0) = kX ′(0) (3.218)

for that on X(x) and its derivatives. As before, one more condition is required at
each end. Consider, for example, a beam with rotational springs at both ends, shown
in Fig. 3.30. Here, it is necessary to set the shear forces at both ends equal to zero.

Translational and Rotational Inertia Constraints. The translational inertia con-
straint stems from the inertial reaction force associated with the translational motion
of either a rigid body or a particle attached to an end of a beam. Similarly, the ro-
tational inertia constraint results from the inertial reaction moment associated with
rotational motion of a rigid body attached to an end of a beam.

Consider the beam shown in Fig. 3.31, to which is attached a rigid body of mass
mc and mass moment of inertia about the mass center C equal to IC. The point
C is located on the x axis at x = 0, and the beam is assumed to be undergoing
bending deformation. The set of all contact forces exerted on the body by the
beam can be replaced by a single force applied at the point C, and the moment of
those contact forces about C. The resultant of all of those contact forces is simply
the shear force V(0, t); their moment about C is the bending moment M(0, t).
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Figure 3.31. Schematic of rigid body (a) attached to end of a beam, and (b) detached showing
interactions

Therefore, Euler’s first and second laws take on the form

V(0, t) = mc
∂2v

∂t2
(0, t)

M(0, t) = IC
∂2v

∂x∂t2
(0, t)

(3.219)

which in terms of v and its partial derivatives become, respectively,

− ∂

∂x

[
EI(0)

∂2v

∂x2
(0, t)

]
= mc

∂2v

∂t2
(0, t)

EI(0)
∂2v

∂x2
(0, t) = IC

∂2v

∂x∂t2
(0, t)

(3.220)

To determine the boundary conditions on X, we first substitute v(x, t) = X(x)Y(t)
as before, yielding

−[EI(0)X ′′(0)]′Y(t) = mc X(0)Ÿ(t)

EI(0)X ′′(0)Y(t) = IC X ′(0)Ÿ(t)
(3.221)

Recalling from the second of Eqs. (3.197) that Ÿ + ω2Y = 0, these relationships
simplify to

−[EI(0)X ′′(0)]′ = −mcω
2 X(0)

EI(0)X ′′(0) = − ICω2 X ′(0)
(3.222)

which, for a spanwise uniform beam, may be simplified to

mX ′′′(0) = mcα
4 X(0)

mX ′′(0) = − ICα4 X ′(0)
(3.223)

Eqs. (3.223) apply when a rigid body is attached to a free end. For a particle, we may
simply set IC = 0. Finally, at the opposite end of the beam, we need only change the
signs of the stress resultants, so that

−V(�, t) = mc
∂2v

∂t2
(0, t)

−M(�, t) = IC
∂3v

∂x∂t2
(0, t)

(3.224)
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Figure 3.32. Example with rigid body attached to the right end of beam undergoing bending

from which we may express boundary conditions on X for a spanwise uniform beam,
given by

mX ′′′(�) = −mcα
4 X(�)

mX ′′(�) = ICα4 X ′(�)
(3.225)

It is appropriate to note that the use of the second of Eqs. (3.225) allows us to
express Eqs. (3.197) as

V(�, t) = mcω
2v(0, t)

M(�, t) = ICω2 ∂v

∂x
(0, t)

(3.226)

subject to the restriction that these conditions hold true only for free vibration.

Other Boundary Configurations. We now turn our attention to two more examples,
which are only slightly more involved. First, we consider a beam with an attached
rigid body of mass mc and moment inertia about C given by IC. The body has a
mass center that is offset from the point of attachment (at x = �) by a distance e, as
shown in Fig. 3.32. (This is unlike the previous case in which the body mass center
C is located at x = � and thus has e = 0; see Fig. 3.31.) The body mass center C
is assumed to be on the x axis so that transverse vibrations do not excite torsional
vibrations and vice versa. The sum of all forces acting on the body is(∑

F
)

y
≡ −V(�, t) (3.227)

Euler’s first law says that this should be equated to the mass times the acceleration
of C. The acceleration of C in the y direction can be written as

aCy = ∂2v

∂t2
(�, t) + e

∂3v

∂t2∂x
(�, t) (3.228)

where the body’s angular acceleration about the z axis (normal to the plane of the
paper) is

αz = ∂3v

∂t2∂x
(�, t) (3.229)

Thus, Euler’s first law for the body is

−V(�, t) = mc

[
∂2v

∂t2
(�, t) + e

∂3v

∂t2∂x
(�, t)

]
(3.230)
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Figure 3.33. Example with mechanism attached to the left end of beam undergoing bending

The sum of the moments about C in the z direction(∑
MC

)
z
≡ −M(�, t) + eV(�, t) (3.231)

Euler’s second law says that this should be equated to the moment of inertia about
C times the angular acceleration about the z axis, so that

−M(�, t) + eV(�, t) = IC
∂3v

∂t2∂x
(�, t) (3.232)

Eqs. (3.230) and (3.232) can be combined to solve for V(�, t) and M(�, t), yielding

M(�, t) = −(IC + mce2)
∂3v

∂t2∂x
(�, t) − mce

∂2v

∂t2
(�, t)

V(�, t) = −mc

[
∂2v

∂t2
(�, t) + e

∂3v

∂t2∂x
(�, t)

] (3.233)

where the beam reactions are

M(�, t) ≡ EI(�)
∂2v

∂x2
(�, t)

V(�, t) ≡ − ∂

∂x

[
EI(�)

∂2v

∂x2
(�, t)

] (3.234)

The last example involves a mechanism attached to the left end of a beam with
a pinned connection to ground, as shown in Fig. 3.33. The massless rigid rod is of
length h and the particle has mass mc; this combination should be considered a rigid
body with mass mc and moment of inertia about the pivot mch2. The massless rod
is embedded in the left end of the beam and rotates with it. A positive rotation
of the x = 0 cross-sectional plane about the normal to the page (i.e., the z axis) is
counterclockwise and has the value

β(0, t) = ∂v

∂x
(0, t) (3.235)

This rotation results in the downward motion of the particle by the distance hβ(0, t)
and leads to the upward force exerted by the spring, khβ(0, t). Thus, this body has
a free-body diagram, as shown in Fig. 3.34. A rotation of the rigid body is positive
in the counterclockwise direction. Denoting the pivot as O, we find that the sum of
moments on the mechanism is(∑

MO

)
z
≡ M(0, t) − kh2 ∂v

∂x
(0, t) (3.236)
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Figure 3.34. Free-body diagram for example with mechanism attached to the left end of beam
undergoing bending

Here, Euler’s second law is applied about the pivot to avoid dealing with reaction
forces at O. This requires us to equate the sum of the moments about O to the
moment of inertia about O times the angular acceleration; viz.

M(0, t) − kh2 ∂v

∂x
(0, t) = mch2 ∂3v

∂t2∂x
(0, t) (3.237)

or

EI
∂2v

∂x2
(0, t) − kh2 ∂v

∂x
(0, t) = mch2 ∂3v

∂t2∂x
(0, t) (3.238)

The corresponding boundary condition on X at x = 0 is found to be

EI X ′′(0) − kh2 X ′(0) + mch2α4 EI
m

X ′(0) = 0 (3.239)

As always with bending problems, one other boundary condition applies at x = 0
for the configuration shown in Fig. 3.33—namely, v(0, t) = X(0) = 0.

3.3.4 Example Solutions for Mode Shapes and Frequencies

In this section, we consider several examples of the calculation of natural frequencies
and mode shapes of vibrating beams in bending. One of the simplest cases is the
pinned-pinned case, with which we begin. It is one of the few cases for beams in
bending for which a numerical solution of the characteristic equation is not required.
Next, we treat the important clamped-free case, followed by the case of a hinged-free
beam with a rotational restraint about the hinge. Finally, we consider the free-free
case, illustrating the concept of the rigid-body mode.

Example Solution for Pinned-Pinned Beam. Consider the pinned-pinned beam as
shown in Fig. 3.35. The horizontal rollers at the right end are placed there to indicate
that the resultant axial force in the beam is zero. Otherwise, the problem becomes
highly nonlinear because it then becomes necessary to take the axial force into
account, thereby significantly complicating the problem! The boundary conditions
reduce to conditions on X given by

X(0) = X ′′(0) = X(�) = X ′′(�) = 0 (3.240)
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Figure 3.35. Schematic of pinned-pinned beam

Substituting the first two boundary conditions into the general solution as found in
Eq. (3.205), we find that

D2 + D4 = 0

α2(−D2 + D4) = 0
(3.241)

Recall that the constant α cannot be zero. To consider the α = 0 case we must take
a solution in the form of a cubic polynomial, and the boundary conditions for this
case do not yield a nontrivial solution of that form. Therefore, D2 = D4 = 0, and the
solution for X becomes

X(x) = D1 sin(αx) + D3 sinh(αx) (3.242)

Using the last two of the boundary conditions, we obtain a set of homogeneous
algebraic equations in D1 and D3[

sin(α�) sinh(α�)

−sin(α�) sinh(α�)

]{
D1

D3

}
=
{

0

0

}
(3.243)

A nontrivial solution can exist only if the determinant of the coefficients is equal to
zero; therefore

2 sin(α�) sinh(α�) = 0 (3.244)

Because α �= 0, we know that the only way this characteristic equation can be satisfied
is for

sin(α�) = 0 (3.245)

which has a denumerably infinite set of roots given by

αi = iπ
�

(i = 1, 2, . . .) (3.246)

Although this is the same set of eigenvalues that we found for the string problem,
the relationship to the natural frequencies is quite different; viz.

ω2
i = EIα4

i

m
(3.247)

so that

ωi = α2
i

√
EI
m

=
(

iπ
�

)2
√

EI
m

= (iπ)2

√
EI
m�4

(3.248)
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Figure 3.36. Schematic of clamped-free beam

As observed in the cases of the string and beam torsion, there is associated
with the ith natural frequency a unique deformation shape called the mode shape
(or eigenfunction). Each mode shape can be obtained from the spatially dependent
portion of the solution by evaluating the function, Xi (x), for any known value of αi .
To find Xi , we substitute any value for αi back into either of the two scalar equations
represented by the matrix equation in Eq. (3.243). It is important to recognize that
the constants D1 and D3 now should be written as D1i and D3i . Using the first of
these equations along with the knowledge that sinh(αi�) �= 0, we find that D3i = 0,
leaving

Xi = D1i sin
(

iπx
�

)
(i = 1, 2, . . .) (3.249)

where D1i can be any nonzero constant. For example, choosing D1i = 1, we find the
mode shape to be

φi = sin
(

iπx
�

)
(i = 1, 2, . . .) (3.250)

which is the same mode shape as obtained previously for the vibrating string.

Example Solution for Clamped-Free Beam. Consider the clamped-free beam as
shown in Fig. 3.36, the boundary conditions of which reduce to conditions on X
given by

X(0) = X ′(0) = X ′′(�) = X ′′′(�) = 0 (3.251)

As in the previous example, we can show that this problem does not exhibit a
nontrivial solution for the case of α = 0. Thus, we use the form of the general solution
in Eq. (3.206) for which α �= 0. Along with the first two boundary conditions, this
yields

X(0) = 0 → E3 = 0

X ′(0) = 0 → E1 = 0
(3.252)

The remaining boundary conditions yield two homogeneous algebraic equations that
may be reduced to the form[

sinh(α�) + sin(α�) cosh(α�) + cos(α�)

cosh(α�) + cos(α�) sinh(α�) − sin(α�)

]{
E2

E4

}
=
{

0

0

}
(3.253)
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Table 3.1. Values of αi�, (2i − 1)π/2, and βi for
i = 1, . . . , 5 for the clamped-free beam

i αi � (2i − 1)π/2 βi

1 1.87510 1.57080 0.734096
2 4.69409 4.71239 1.01847
3 7.85476 7.85398 0.999224
4 10.9955 10.9956 1.00003
5 14.1372 14.1372 0.999999

It can be verified by applying Cramer’s method for their solution that a nontrivial
solution exists only if the determinant of the coefficients is equal to zero. This is
typical of all nontrivial solutions to homogeneous, linear, algebraic equations, and
here yields

sinh2(α�) − sin2(α�) − [cosh(α�) + cos(α�)]2 = 0 (3.254)

or, noting the identities

sin2(α�) + cos2(α�) = 1

cosh2(α�) − sinh2(α�) = 1
(3.255)

we obtain the characteristic equation as simply

cos(α�) cosh(α�) + 1 = 0 (3.256)

We cannot extract a closed-form exact solution for this transcendental equation.
However, numerical solutions are obtained easily. Most numerical procedures re-
quire initial estimates of the solution to converge. Because cosh(α�) becomes large
as its argument becomes large, we can argue that at least the largest roots will be
close to those of cos(α�) = 0, or αi� = (2i − 1)π/2. Indeed, the use of these values
as initial estimates yields a set of numerical values that approach the initial estimates
ever more closely as i increases. The values of αi� (i.e., dimensionless quantities) are
listed in Table 3.1. To six places, all values of αi� for i ≥ 5 are equal to (2i − 1)π/2.
The corresponding natural frequencies are given by

ωi = α2
i

√
EI
m

= (αi�)2

√
EI
m�4

(3.257)

To obtain the mode shapes, we substitute the values in Table 3.1 into either
of Eqs. (3.253). The resulting equation for the ith mode has one arbitrary constant
remaining (i.e., either E2i or E4i can be kept), which can be set equal to any number
desired to conveniently normalize the resulting mode shape φi . For example, nor-
malizing the solution by −E4i , which is equivalent to setting E4i = −1, we can show
that

φi = cosh(αi x) − cos(αi x) − βi [sinh(αi x) − sin(αi x)] (3.258)



84 Structural Dynamics

0.2 0.4 0.6 0.8 1

x

0.5

1

1.5

2
1

0.2 0.4 0.6 0.8 1

x

2
1.5

1
0.5

0.5
1

1.5
2

0.2 0.4 0.6 0.8 1

x

1
0.5

0.5
1

1.5
2

3

Figure 3.37. First three free-vibration mode shapes of a
clamped-free beam in bending

where

βi = − E2i

E4i
= cosh(αi�) + cos(αi�)

sinh(αi�) + sin(αi�)
(3.259)

The values of βi also are tabulated in Table 3.1. For this particular normalization

∫ �

0
φ2

i dx = �

φi (�) = 2(−1)i+1

(3.260)

the first of which is left to the reader to show (see Prob. 10d). The first three mode
shapes are depicted in Fig. 3.37. Note that as with previous results, the higher the
mode number, the more nodes (i.e., crossings of the zero-displacement line).

Example Solution for Spring-Restrained, Hinged-Free Beam. This sample prob-
lem for which modes of vibration are determined is for a uniform beam that is
hinged at the right-hand end and restrained there by a rotational spring with elastic
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==

Figure 3.38. Schematic of spring-restrained,
hinged-free beam

constant k = κ EI/�. The left-hand end is free, as illustrated in Fig. 3.38. The bound-
ary conditions for this case require that

X ′′(0) = 0

X ′′′(0) = 0

X(�) = 0

EI X ′′(�) = −kX ′(�) or �X ′′(�) = −κ X ′(�)

(3.261)

The spatially dependent portion of the general solution is used in the form of
Eq. (3.206). The two conditions of zero bending moment and shear at x = 0 re-
quire that

X ′′(0) = 0 → E4 = 0

X ′′′(0) = 0 → E2 = 0
(3.262)

The third boundary condition, that of zero displacement at x = �, can now be indi-
cated by

X(�) = E1 [sin(α�) + sinh(α�)] + E3 [cos(α�) + cosh(α�)] = 0 (3.263)

The fourth boundary condition, a rotational elastic constraint at x = �, can be written
as

�2 X ′′(�) + κ�X ′(�) = 0 (3.264)

so that

(α�)2 {E1 [−sin(α�) + sinh(α�)] + E3 [−cos(α�) + cosh(α�)]
}

+ κα�
{

E1 [cos(α�) + cosh(α�)] + E3 [−sin(α�) + sinh(α�)]
} = 0

(3.265)

This relationship can be rearranged as

E1

{
cos(α�) + cosh(α�) + α�

κ
[−sin(α�) + sinh(α�)]

}

+ E3

{
−sin(α�) + sinh(α�) + α�

κ
[− cos(α�) + cosh(α�)]

}
= 0

(3.266)

The simultaneous solution of Eqs. (3.263) and (3.266) for nonzero values of E1 and
E3 requires that the determinant of the 2×2 array formed by their coefficients must
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be zero. Setting the determinant formed from Eqs. (3.263) and (3.266) to zero, we
find

[sin(α�) + sinh(α�)]
{

sin(α�) − sinh(α�) + α�

κ
[cos(α�) − cosh(α�)]

}

+ [cos(α�) + cosh(α�)]
{

cos(α�) + cosh(α�) + α�

κ
[− sin(α�) + sinh(α�)]

}
= 0

(3.267)

After executing the indicated multiplications and applying the identities of
Eqs. (3.255), the relationship becomes(

α�

κ

)
[sin(α�) cosh(α�) − cos(α�) sinh(α�)] = 1 + cos(α�) cosh(α�) (3.268)

This is the characteristic equation. As in the previous example, it is a transcendental
equation that cannot be solved analytically. Note that for specified finite and nonzero
values of κ , we may calculate numerically a denumerably infinite set of the eigen-
values αi� (for i = 1, 2, . . .) by a suitable iterative procedure. For such an iterative
solution, we need initial estimates for the α�s. Note, however, that this equation is a
special case in which we may solve for κ as a function of α� without iteration.

In the limit as κ tends to infinity, we find eigenvalues in agreement with the
clamped-free case, as expected. In the limit as κ tends to zero, we can show that
a rigid-body mode exists. The next example illustrates a procedure by which we
may prove the existence of one or more rigid-body modes. It is important to note,
however, that it is incorrect to try to infer the existence of a rigid-body mode because
α� = 0 satisfies Eq. (3.268) in the limit as κ tends to zero; our general solution for X
is valid only when α �= 0.

For specified values of m, EI, �, and the stiffness parameter κ , the eigenvalues
can be used to determine the natural frequencies as

ωi = α2
i

√
EI
m

= (αi�)2

√
EI
m�4

(i = 1, 2, . . .) (3.269)

and the ith mode shape can be defined as

φi (x) = Xi (x)
E1i

= sin(αi x) + sinh(αi x) + βi [cos(αi x) + cosh(αi x)]

(3.270)

The modal parameter βi = E3i/E1i can be obtained from the zero-displacement
boundary condition at x = �, Eq. (3.263). When evaluated for the ith mode, βi

becomes

βi = E3i

E1i
= − sin(αi�) + sinh(αi�)

cos(αi�) + cosh(αi�)
(3.271)

numerical values of which can be found once αi� is known for specific values of κ .
A sample set of numerical results for this example is shown in Figs. 3.39 through

3.41. The first three mode shapes are shown for κ = 1 in Fig. 3.39. Fig. 3.40 shows the
variation of αi� versus κ for i = 1, 2, and 3, illustrating the fact that the frequencies of
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Figure 3.39. Mode shapes for first three modes of a
spring-restrained, hinged-free beam in bending; κ = 1,

ω1 = (1.24792)2
√

EI/(m�4), ω2 =
(4.03114)2

√
EI/(m�4), and ω3 = (7.13413)2

√
EI/(m�4)

the higher modes are much less sensitive to the spring constant than that of the first
mode. Indeed, the first mode frequency (proportional to the square of the smallest
plotted quantity in Fig. 3.40) tends to zero as κ tends toward zero in the limit.
This can be interpreted as the lowest-frequency mode transitioning to a rigid-body
mode, which exists only when the spring constant is identically zero. In the limit as κ

becomes infinite, in contrast, the eigenvalues tend toward those of the clamped-free
beam, as expected. Indeed, as Fig. 3.41 shows, when κ = 50 the mode shape starts

2 4 6 8 10
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3
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7

i

Figure 3.40. Variation of lowest eigenvalues αi� ver-
sus dimensionless spring constant κ
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Figure 3.41. Mode shape for fundamental
mode of the spring-restrained, hinged-
free beam in bending; κ = 50, ω1 =
(1.83929)2
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to look more like that of a clamped-free beam (with the fixity being on the right end
in this example).

Example Solution for Free-Free Beam. The case of a uniform beam that is uncon-
strained at both ends, Fig. 3.42, may be considered as a crude first approximation to
a freely flying vehicle. Their elastic and rigid dynamic properties are quite similar. In
both instances, these properties can be described in terms of a modal representation.

The boundary conditions for this case require that

X ′′(0) = X ′′′(0) = X ′′(�) = X ′′′(�) = 0 (3.272)

The spatially dependent portion of the general solution to be used here again involves
the sums and differences of the trigonometric and hyperbolic functions. Two of the
Ei s can be eliminated by applying the boundary conditions at x = 0 so that

X ′′(0) = 0 → E4 = 0

X ′′′(0) = 0 → E2 = 0
(3.273)

The conditions at x = � of zero bending moment and zero shear X ′′(�) = 0, and
X ′′′(�) = 0, respectively, yield the following relationships:

E1 [− sin(α�) + sinh(α�)] + E3 [− cos(α�) + cosh(α�)] = 0

E1 [− cos(α�) + cosh(α�)] + E3 [sin(α�) + sinh(α�)] = 0
(3.274)

Here again, the nontrivial solution to these equations requires that the determinant
of the E1 and E3 coefficients be zero. This relationship becomes

sinh2(α�) − sin2(α�) − [cosh(α�) − cos(α�)]2 = 0 (3.275)

which simplifies to

cos(α�) cosh(α�) = 1 (3.276)

= =

Figure 3.42. Schematic of free-free beam
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Table 3.2. Values of αi�, (2i + 1)π/2, and βi for
i = 1, . . . , 5 for the free-free beam

i αi � (2i + 1)π/2 βi

1 4.73004 4.71239 0.982502
2 7.85320 7.85398 1.00078
3 10.9956 10.9956 0.999966
4 14.1372 14.1372 1.00000
5 17.2788 17.2788 1.00000

For large α�, the roots tend to values that make cos(α�) = 0. Unlike the clamped-free
case, however, there is no root near π/2, and the first nonzero root occurs near 3π/2.
Indeed, the ith root is near (2i + 1)π/2. Thus, the roots of this characteristic equation
readily can be computed numerically to yield the eigenvalues αi� in Table 3.2. From
these numerical values, the natural frequencies can be found as

ωi = α2
i

√
EI
m

(3.277)

The mode shape associated with each eigenvalue can be defined as

φi (x) = Xi (x)
E3i

= cos(αi x) + cosh(αi x) − βi [sin(αi x) + sinh(αi x)]

(3.278)

The numerical value of the modal parameter βi = −E1i/E3i , also tabulated in Ta-
ble 3.2, can be obtained from either of the boundary conditions given in Eqs. (3.274).
Using the first of those equations as an example, we obtain

βi = − E1i

E3i
= cosh(αi�) − cos(αi�)

sinh(αi�) − sin(αi�)
(3.279)

It can be shown that the first of Eqs. (3.274) would yield the same result by using
the characteristic equation as an identity. The first three of these mode shapes are
shown in Fig. 3.43.

In addition to these modal properties that can be used to describe the elastic
behavior of the beam, there are also modal properties that describe the rigid be-
havior of the beam. These modes are associated with zero values of the separation
constant α. Recall that a similar result was obtained for torsional deflections of a
free-free beam. When α is zero, the governing ordinary differential equations for
beam bending, Eqs. (3.197), become

X ′′′′ = 0 Ÿ = 0 (3.280)

The general solutions to these equations can be written as

X = b x3

6
+ c x2

2
+ d x + e

Y = f t + g

(3.281)
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Figure 3.43. First three free-vibration elastic mode
shapes of a free-free beam in bending

where the arbitrary constants, b through e, in the spatially dependent portion of the
solution can be established from the boundary conditions. These conditions of zero
bending moment and shear at the ends of the beam yield the following:

X ′′(0) = 0 → c = 0

X ′′′(0) = 0 → b = 0

X ′′(�) = 0 → b� + c = 0

X ′′′(�) = 0 → b = 0

(3.282)

It is apparent that all four boundary conditions can be satisfied with b = c = 0.
Because no restrictions are placed on the constants d and e, they can be arbitrary.
Thus, a general description of the solution in this case is

X = d x + e (3.283)

An important characteristic of this solution is that no relationship has been estab-
lished between d and e. Therefore, they can be presumed to represent two inde-
pendent motions of the beam. As written previously, e represents a rigid vertical
translation of the beam because it is independent of x. The d x term, being linear
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in x, represents a rigid rotation of the beam about the left end. It can be shown
that when the rotational motion is taken to be about the mass centroid, it and the
translation are orthogonal with respect to one another and with respect to the elastic
modes. This suggests that the modal representation for these rigid-body degrees of
freedom can be described by

vrigid =
0∑

i=−1

φi (x)ξi (t) (3.284)

where

φ−1 = 1 and ξ−1(t) = translation

φ0 = x − �

2
and ξ0(t) = rotation angle

(3.285)

The time-dependent portion of the solution for these rigid-body motions is seen to
be aperiodic. This means that natural frequencies for both rigid-body modes are
zero. The two arbitrary constants contained in Y(t) can be evaluated from the initial
rigid-body displacement and velocity associated with the translation and rotation.
Thus, the complete solution for the free-free beam-bending problem can now be
written in terms of all of its modes as

v =
∞∑

i=−1

φi (x)ξi (t) (3.286)

This example provides a convenient vehicle for further discussion of symmetry.
It was already noted in the case of a vibrating string that systems exhibiting geo-
metric symmetry have two distinct types of mode shapes—namely, those that are
symmetric about the midpoint and those that are antisymmetric about the midpoint.
As can be seen in the results, this is indeed true for the modes of the free-free beam.
In particular, the rigid-body translation mode and the first and third elastic modes
are clearly symmetric about the midpoint of the beam, whereas the rigid-body rota-
tion mode and the second elastic mode are antisymmetric about the midpoint (see
Fig. 3.43).

This observation suggests that the symmetric mode shapes could be obtained by
calculating the mode shapes of a beam that is half the length of the original beam
and that has the sliding condition at one end and is free at the other. Similarly,
the antisymmetric modes could be obtained by calculating the mode shapes of a
beam with half the length of the original beam and that has one end pinned and the
other free. It also should be evident that a symmetric aircraft with high-aspect-ratio
wings, modeled as beams and attached to a rigid-body fuselage, could be represented
similarly in terms of the symmetric and antisymmetric modes of the combined body
and wing system. That is, we may model the whole system by considering only one
wing attached to a rigid body with half the mass and half the rotational inertia with
appropriate boundary conditions.
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3.3.5 Calculation of Forced Response

The formulation of initial-value problems for beams in bending is almost identical
to that for beams in torsion and for strings; see Sections 3.1.7 and 3.2.4, respectively.
We should first determine the virtual work done by the applied loads, such as a
distributed transverse force per unit length. From this, we may find the generalized
forces associated with bending. Once they are known, one may solve the generalized
equations of motion, which are in the form of Eq. (3.90). The resulting initial-
value problem then can be solved by invoking orthogonality to obtain values of
the arbitrary constants in the general and particular solutions, as illustrated in the
examples in Section 3.1.7.

3.4 Free Vibration of Beams in Coupled Bending and Torsion

In this section, the analytical treatment of coupled bending–torsion vibration of
composite beams is briefly considered. The treatment is restricted to uniform beams
and to the presentation of governing equations, sample boundary conditions, and
suggestions for solution.

3.4.1 Equations of Motion

First, we specialize Eqs. (2.65) for spanwise uniformity and free vibration, yielding

ρ Ip
∂2θ

∂t2
+ md

∂2v

∂t2
− GJ

∂2θ

∂x2
+ K

∂3v

∂x3
= 0

md
∂2θ

∂t2
+ m

∂2v

∂t2
+ EI

∂4v

∂x4
− K

∂3θ

∂x3
= 0

(3.287)

Because these are linear equations with constant coefficients, for free vibration we
may assume simple harmonic motion. In the spirit of separation of variables, the
solutions for v and θ are written as

v(x, t) = v(x) exp(iωt)

θ(x, t) = θ(x) exp(iωt)
(3.288)

with the mode shapes being of the form

v = v̂ exp(αx)

θ = θ̂ exp(αx)
(3.289)

which allows us to write the system of equations in matrix form as

[
EIα4 − mω2 −Kα3 − mdω2

Kα3 − mdω2 −GJα2 − ρ Ipω
2

]{
v̂

θ̂

}
=
{

0
0

}
(3.290)
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For there to be a nontrivial solution, the determinant of the coefficient matrix must
vanish, yielding

(EI GJ − K2)α6 + ρ Ip EIω2α4 − mGJω2α2 − (mρ Ip − m2d2)ω4 = 0 (3.291)

This cubic equation in α2 may be solved for arbitrary ω2. When d and K are nonzero,
finding the exact, closed-form solution “by hand” is problematic. However, with the
aid of symbolic computational tools such as MathematicaTM , we may easily extract
the six roots denoted here by αi for i = 1, 2, . . . , 6, as functions of ω2. Note that
αi+3 = −αi for i = 1, 2, and 3.

Therefore, when K, d �= 0, the solution for the mode shape may be written as

v = C1 exp(α1x) + C2 exp(α2x) + C3 exp(α3x)

+ C4 exp(−α1x) + C5 exp(−α2x) + C6 exp(−α3x)

θ = D1 exp(α1x) + D2 exp(α2x) + D3 exp(α3x)

+ D4 exp(−α1x) + D5 exp(−α2x) + D6 exp(−α3x)

(3.292)

where

Di = Ci

(
Kα3

i − mdω2

GJα2
i + ρ Ipω2

)
i = 1, 2, . . . , 6 (3.293)

Now, with six boundary conditions (i.e., three at each end), we may find six homo-
geneous algebraic equations for Ci . The condition for a nontrivial solution leads to
the characteristic equation for ω2. There is a denumerably infinite set of roots for ω2,
so that for any value determined for ω2, we may find any five of the Ci coefficients
in terms of the sixth and thus determine the mode shapes. In general, each mode
shape involves both v and θ . For small couplings (i.e., such that K2 � GJ EI and
md2 � ρ Ip), one “branch” of these roots is near the uncoupled bending frequencies
and the other is near the uncoupled torsional frequencies.

3.4.2 Boundary Conditions

The boundary conditions for coupled bending and torsion range from very simple to
somewhat complex, depending on the type of restraint(s) imposed on the ends. For
example, for a clamped end, we have v = ∂v/∂x = θ = 0, the same as for uncoupled
bending and torsion. Similarly, a free end has zero bending moment, shear force,
and twisting moment, respectively written as M = V = T = 0. Note the definitions
of M and T in Eqs. (2.58) and that V = −∂ M/∂x. Equations governing other re-
straints may be determined by appropriate kinematical or physical relationships.
For example, a pinned connection may imply specification of an axis about which
the moment vector (i.e., combination of bending and twisting moments) vanishes
and perpendicular to which components of the rotation vector (i.e., combination of
bending and twisting rotations) vanish. Relationships for both elastic and inertial
restraints may be developed using Euler’s laws, as in the uncoupled cases herein.
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The complexity of this class of problem provides excellent motivation for the
introduction of approximate methods, which is undertaken in the next section.

3.5 Approximate Solution Techniques

There are several popular methods that make use of a set of modes or other functions
to approximate the dynamic behavior of systems. In this section, without going
into detail about the theories associated with this subject, we illustrate within the
framework already established how we can use a truncated set of modes or another
set of functions to obtain an approximate solution. Details of the theories behind
modal approximation methods are found in texts that treat structural dynamics at
the graduate level. The two main approaches are (1) Galerkin’s method, applied
to ordinary or partial differential equations; and (2) the Ritz method, applied to
Lagrange’s equations or the principle of virtual work. These two methods yield
identical results in certain situations. Thus, if time is limited, it would be necessary to
discuss only one of the two methods to give students an introduction to the method
and an appreciation of results that can be obtained this way. The Ritz method is
preferred in the present context because of the ease with which it can be presented
within the framework of Lagrange’s equations. Nevertheless, both of these methods
are presented at a level suitable for undergraduate students.

3.5.1 The Ritz Method

Building on the previous treatment, we start with Lagrange’s equations, given by

d
dt

(
∂L

∂ξ̇i

)
− ∂L

∂ξi
= �i i = 1, 2, . . . , n (3.294)

where in the Lagrangean, L = K − P, the total kinetic energy is K, the total potential
energy is P, n is the number of generalized coordinates retained, the generalized
coordinates are ξi , and �i is the generalized force. Although it can be helpful, as
discussed herein, it is not necessary to make use of potential energy, which can
account only for conservative forces. The generalized force, however, can be used to
include the effects of any loads. So as not to count the same physical effects more than
once, the generalized force should include only those forces that are not accounted
for in the potential energy. The generalized forces stem from virtual work, which
can be written as

δW =
n∑

i=1

�iδξi (3.295)

where δξi is an arbitrary increment in the ith generalized coordinate.
Consider a beam in bending as an example. The total kinetic energy must include

that of the beam as well as any attached particles or rigid bodies. The contribution
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of the beam is

Kbeam = 1
2

∫ �

0
m
(

∂v

∂t

)2

dx (3.296)

where m is the mass per unit length of the beam. The total potential energy P =
U + V comprises the internal strain energy of the beam, denoted by U, plus any
additional potential energy, V, attributed to gravity, springs attached to the beam,
or applied static loads. All other loads, such as aerodynamic loads, damping, and
follower forces, must be accounted for in �i .

The strain energy for a beam in bending is given by

U = 1
2

∫ �

0
EI

(
∂2v

∂x2

)2

dx (3.297)

The expression for V varies depending on the problem being addressed, as does the
virtual work of all forces other than those accounted for in V. The virtual work of
an applied distributed force per unit length f (x, t) can be written as

δW =
∫ �

0
f (x, t)δv(x, t)dx (3.298)

where δv is an increment of v in which time is held fixed and f (x, t) is positive in the
direction of positive v.

To apply the Ritz method, we need to express P, K, and δW in terms of a series
of functions with one or more terms. For a beam in bending, this means that

v(x, t) =
n∑

i=1

ξi (t)φi (x) (3.299)

There are several characteristics that these “basis functions” φi must possess, as
follows:

1. Each function must satisfy at least all boundary conditions on displacement and
rotation (often called the “geometric” boundary conditions). It is not necessary
that they satisfy the force and moment boundary conditions, but satisfaction of
them may improve accuracy. However, it is not easy, in general, to find functions
that satisfy all boundary conditions.

2. Each function must be continuous and p times differentiable, where p is the
order of the highest spatial derivative in the Lagrangean. The pth derivative of
at least one function must be nonzero. Here, from Eq. (3.297), p = 2.

3. If more than one function is used, they must be chosen from a set of functions
that is complete. This means that any function on the interval 0 ≤ x ≤ � with the
same boundary conditions as the problem under consideration can be expressed
to any degree of accuracy as a linear combination of the functions in the set.
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Examples of complete sets of functions on the interval 0 ≤ x ≤ � include

1, x, x2, . . .

sin
(πx

�

)
, sin

(
2πx
�

)
, sin

(
3πx
�

)
, . . .

a set of mode shapes for any problem

Completeness also implies that there can be no missing terms between the lowest
and highest terms used in any series.

4. The set of functions must be linearly independent. This means that

n∑
i=0

aiφi (x) = 0 ⇒ ai = 0 for all i (3.300)

A set of functions that satisfies all of these criteria is said to be “admissible.”
By use of the series approximation, we reduced a problem with an infinite

number of degrees of freedom to one with n degrees of freedom. Instead of being
governed by a partial differential equation, the behavior of this system is now defined
by n second-order, ordinary differential equations in time. This reduction from
a continuous system modeled by a partial differential equation with an infinite
number of degrees of freedom to a system described by a finite number of ordinary
differential equations in time is sometimes called spatial discretization. The number
n is usually increased until convergence is obtained. (Note that if inertial forces are
not considered so that the kinetic energy is identically zero, then a system described
by an ordinary differential equation in a single spatial variable is reduced by the Ritz
method to a system described by n algebraic equations.)

Now, let us illustrate how the approximating functions are actually used. Let φi ,
i = 1, 2, . . . , ∞, be a complete set of p-times differentiable, linearly independent
functions that satisfy the displacement and rotation boundary conditions. Thus, U
can be written as

U = 1
2

n∑
i=1

n∑
j=1

ξiξ j

∫ �

0
EIφ′′

i φ′′
j dx (3.301)

The contributions of any springs that restrain the structure, as well as conservative
loads, must be added to obtain the full potential energy P.

The kinetic energy of the beam is

Kbeam = 1
2

n∑
i=1

n∑
j=1

ξ̇i ξ̇ j

∫ �

0
mφiφ j dx (3.302)

Contributions of any additional particles and rigid bodies must be added to obtain
the complete kinetic energy K.
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The virtual work must account for distributed and concentrated forces resulting
from all other sources, such as damping and aerodynamics. This can be written as

δW =
n∑

i=1

δξi

[∫ �

0
f (x, t)φi dx + Fc(x0, t)φi (x0)

]
(3.303)

where x0 is a value of x at which a concentrated force is located. Here, the first
term accounts for a distributed force f (x, t) on the interior of the beam, and the
second term accounts for a concentrated force on the interior (see Eq. 3.96). In
aeroelasticity, the loads f (x, t) and Fc(x0, t) may depend on the displacement in a
complicated manner.

The integrands in these quantities all involve the basis functions and their deriva-
tives over the length of the beam. Note that these integrals involve only known quan-
tities and often can be evaluated analytically. Sometimes they are too complicated to
undertake analytically, however, and they must be evaluated numerically. Numeri-
cal evaluation is often facilitated by nondimensionalization. Symbolic computation
tools such as MathematicaTM and MapleTM may be helpful in both situations.

With all such things considered, the equations of motion can be written in a form
that is quite common; viz.

[M]
{
ξ̈
}+ [C]

{
ξ̇
}+ [K] {ξ} = {F} (3.304)

where {ξ} is a column matrix of the generalized coordinates, {F} is a column matrix of
the generalized force terms that do not depend on ξi , (˙) is the time derivative of ( ),
[M] is the mass matrix, [C] is the gyroscopic/damping matrix, and [K] is the stiffness
matrix. The most important contribution to [M] is from the kinetic energy, and this
contribution is symmetric. The most important contribution to [K] is from the strain
energy of the structure and potential energy of any springs that restrain the motion
of the structure. There can be contributions to all terms in the equations of motion
from kinetic energy and virtual work. For example, there are contributions from
kinetic energy to [C] and [K] when there is a rotating coordinate system. Damping
makes contributions to [C] through the virtual work. Finally, because aerodynamic
loads, in general, depend on the displacement and its time derivatives, aeroelastic
analyses may contain terms in [M], [C], and [K] that stem from aerodynamic loads.

An interesting special case of this method occurs when the system is conser-
vatively loaded. The resulting method is usually referred to as the Rayleigh–Ritz
method, and many theorems can be proved about the convergence of approxima-
tions to the natural frequency. Indeed, one of the most powerful of such theorems
states that the approximate natural frequencies are always upper bounds; another
states that adding more terms to a given series always lowers the approximate natural
frequencies (i.e., making them closer to the exact values).

A further specialized case is the simplest approximation, in which only one term
is used. Then, an approximate expression for the lowest natural frequency can be
written as a ratio called the “Rayleigh quotient.” This simplest special case is of more
than merely academic interest: It is not at all uncommon that a rough estimate of
the lowest natural frequency is needed early in the design of flexible structures.
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Example: The Ritz Method Using Clamped-Free Modes. In the first example, we
consider a uniform, clamped-free beam that we modify by adding a tip mass of
mass μm�. The exact solution can be obtained easily for this modified problem
using the methodology described previously. However, it is desired here to illustrate
the Ritz method, and we already calculated the modes for a clamped-free beam
(i.e., without a tip mass) in Section 3.3.4. These mode shapes are solutions of an
eigenvalue problem; therefore, provided we do not omit any modes between the
lowest and highest mode number that we use, this set is automatically complete.
The set is also orthogonal and therefore linearly independent. Of course, these
modes automatically satisfy the boundary conditions on displacement and rotation
for our modified problem (because they are the same as for the clamped-free beam),
and they are infinitely differentiable. Hence, they are admissible functions for the
modified problem. Moreover, they satisfy the condition of zero moment at the free
end, which is a boundary condition for our modified problem. However, because
of the presence of the tip mass in the modified problem, the shear force—which
readers will recall is proportional to the third derivative of the displacement—does
not vanish as it does for clamped-free mode shapes.

The strain energy becomes

U = 1
2

n∑
i=1

n∑
j=1

ξiξ j

∫ �

0
EIφ′′

i φ′′
j dx (3.305)

Substituting the mode shapes of Eq. (3.258) into Eq. (3.305) and taking advantage
of orthogonality, we can simplify it to

U = �EI
2

n∑
i=1

ξ 2
i α4

i (3.306)

where αi is the set of constants in Table 3.1. Similarly, accounting for the tip mass,
the kinetic energy of which is

Ktip mass = 1
2
μm�

[
∂v

∂t
(�, t)

]2

= 1
2
μm�

n∑
i=1

n∑
j=1

ξ̇i ξ̇ jφi (�)φ j (�)

(3.307)

we obtain the total kinetic energy as

K = 1
2

n∑
i=1

n∑
j=1

ξ̇i ξ̇ j

[∫ �

0
mφiφ j dx + μm�φi (�)φ j (�)

]
(3.308)

With the use of the mode shapes in Eq. (3.258), we find that φi (�) = 2(−1)i+1;
therefore, the kinetic energy simplifies to

K = m�

2

n∑
i=1

n∑
j=1

ξ̇i ξ̇ j
[
δi j + 4μ(−1)i+ j ] (3.309)
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Table 3.3. Approximate values of ω1

√
m�4

EI
for

clamped-free beam with tip mass of μm� using n
clamped-free modes of Section 3.3.4, Eq. (3.258)

n μ = 1 μ = 10 μ = 100

1 1.57241 0.549109 0.175581
2 1.55964 0.542566 0.173398
3 1.55803 0.541748 0.173126
4 1.55761 0.541536 0.173055
5 1.55746 0.541458 0.173029
Exact 1.55730 0.541375 0.173001

where the Kronecker symbol δi j = 1 for i = j and δi j = 0 for i �= j . For free vibration,
there are no additional forces. Thus, Lagrange’s equations now can be written in
matrix form as

[M]
{
ξ̈
}+ [K] {ξ} = 0 (3.310)

where [`K`] is a diagonal matrix with the diagonal elements given by

Kii = EI�α4
i i = 1, 2, . . . , n (3.311)

and [M] is a symmetric matrix with elements given by

Mi j = m�
[
δi j + 4μ(−1)i+ j ] i, j = 1, 2, . . . , n (3.312)

Assuming ξ = ξ exp(iωt), we can write Eq. (3.310) as an eigenvalue problem of
the form [

[K] − ω2[M]
] {

ξ
} = 0 (3.313)

Results for the first modal frequency are shown in Table 3.3 and compared therein
with the exact solution. As we can see, the approximate solution agrees with the exact
solution to within engineering accuracy with only two terms. For contrast, results
for the second modal frequency are shown in Table 3.4; these results are not nearly
as accurate. Results for the higher modes (not shown) are even less accurate. This
is one of the problems with modal-approximation methods; fortunately, however,

Table 3.4. Approximate values of ω2

√
m�4

EI
for

clamped-free beam with tip mass of μm� using n
clamped-free modes of Section 3.3.4, Eq. (3.258)

n μ = 1 μ = 10 μ = 100

2 16.5580 15.8657 15.7867
3 16.3437 15.6191 15.5367
4 16.2902 15.5576 15.4744
5 16.2708 15.5353 15.4518
Exact 16.2501 15.5115 15.4277
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Table 3.5. Approximate values of ω1

√
m�4

EI
for

clamped-free beam with tip mass of μm� using
n polynomial functions

n μ = 1 μ = 10 μ = 100

1 1.55812 0.541379 0.173001
2 1.55733 0.541375 0.173001
3 1.55730 0.541375 0.173001
4 1.55730 0.541375 0.173001
5 1.55730 0.541375 0.173001
Exact 1.55730 0.541375 0.173001

aeroelasticians and structural dynamicists frequently are interested in only the lower-
frequency modes. Note that the one-term approximation (i.e., the Rayleigh quotient)
is within 1.1% for all values of μ displayed.

Example: The Ritz Method Using a Simple Power Series. As an alternative to using
the mode shapes of a closely related problem, let us repeat the previous solution
using a simple power series to construct a series of functions φi . Because the moment
vanishes at the free end where x = �, we can make the second derivative of all terms
proportional to � − x. To obtain a complete series, we can multiply this term by
a complete power series 1, x, x2, and so on. Thus, we then may write the second
derivative of the ith function as

φ′′
i = 1

�2

(
1 − x

�

) (x
�

)i−1
(3.314)

With the boundary conditions on displacement and rotation being φi (0) = φ′
i (0) = 0,

we then can integrate to find an expression for the ith function as

φi =
( x

�

)i+1 [2 + i − i
( x

�

)]
i (1 + i) (2 + i)

(3.315)

Because the chosen admissible functions have nonzero third derivatives at the tip,
they offer the possibility of satisfying the nonzero shear condition in combination
with one another. Such admissible functions are sometimes called “quasi-comparison
functions.”

In this case, the stiffness matrix becomes

Ki j = 2EI
�3 (i + j − 1) (i + j) (1 + i + j)

i, j = 1, 2, . . . , n (3.316)

and the mass matrix

Mi j = 2m�
[
3(i2 + j2) + 7i j + 23(i + j) + 40

]
i j (i + 1) (i + 2) ( j + 1) ( j + 2) (i + j + 3) (i + j + 4) (i + j + 5)

+ 4 μm�

i j (i + 1) (i + 2) ( j + 1) ( j + 2)
i, j = 1, 2, . . . , n

(3.317)

Results from this calculation are given in Tables 3.5 and 3.6 for the first two
modes. It is clear that these results are much better than those obtained with the
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Table 3.6. Approximate values of ω2

√
m�4

EI
for

clamped-free beam with tip mass of μm� using
n polynomial functions

n μ = 1 μ = 10 μ = 100

2 16.2853 15.5443 15.4605
3 16.2841 15.5371 15.4524
4 16.2505 15.5119 15.4280
5 16.2501 15.5116 15.4277
Exact 16.2501 15.5115 15.4277

clamped-free beam modes. It is not unusual for polynomial functions to provide
better results than those obtained with beam mode shapes. However, here it is worth
noting that the beam mode shapes are at a disadvantage for this problem. Unlike
the problem being solved (and the polynomials chosen), the beam mode shapes
are constrained to have zero shear force at the free end and thus are not quasi-
comparison functions for the problem with a tip mass. This one-term polynomial
approximation (i.e., the Rayleigh quotient) is within 0.05%, which is exceptionally
good given its simplicity.

It is sometimes suggested that the mode shapes of a closely related problem
are—at least, in some sense—superior to other approximate sets of functions. For
example, in the first example, we saw that the orthogonality of the modes used re-
sulted in a diagonal stiffness matrix, which provides a slight advantage in the ease of
computing the eigenvalues. However, for the low-order problems of the sort we are
discussing, that advantage is hardly noticeable. Indeed, symbolic computation tools
such as MathematicaTM and MapleTM are capable of calculating the eigenvalues for
problems of the size of this example in but a few seconds. Moreover, in some cases,
the simplicity of carrying out the integrals that result in approximate formulations is
a more important factor in deciding which set of functions to use in a standard im-
plementation of the Ritz method. Indeed, polynomial functions are generally much
easier to deal with analytically than free-vibration modes such as those illustrated in
Section 3.5.1, which frequently involve transcendental functions.

Alternatives to the standard Ritz method include the methods of Galerkin, fi-
nite elements, component mode synthesis, flexibility influence coefficients, methods
of weighted residuals, collocation methods, and integral equation methods. We in-
troduce Galerkin’s method and the finite element method in the next two sections.
Detailed descriptions of other approaches are found in more advanced texts on
structural dynamics and aeroelasticity.

3.5.2 Galerkin’s Method

Rather than making use of energy and Lagrange’s equation as in the Ritz method,
Galerkin’s method starts with the partial differential equation of motion. Let us
denote this equation by

L[v(x, t)] = 0 (3.318)
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whereL is an operator on the unknown function v(x, t) with maximum spatial partial
derivatives of the order q. For the structural dynamics problems addressed so far,
the operator L is linear and q = 2p, where p is the maximum order of spatial partial
derivative in the Lagrangean. It is important to note, however, that it is not true, in
general, that q = 2p; indeed, we do not need to consider the Lagrangean at all with
this method.

To apply Galerkin’s method, we need to express v(x, t) and, hence, the operator
L in terms of a series of functions with one or more terms. For a beam in bending,
for example, this means that, as before

v(x, t) =
n∑

j=1

ξ j (t)φ j (x) (3.319)

Relative to the basis functions used in the Ritz method, the characteristics that these
functions φi must possess for use in Galerkin’s method are more stringent, as follows:

1. Each function must satisfy all boundary conditions. Note that it is not easy, in
general, to find functions that satisfy all boundary conditions.

2. Each function must be at least q times differentiable. The qth derivative of at
least one function must be nonzero.

3. If more than one function is used, they must be chosen from a set of functions
that is complete.

4. The set of functions must be linearly independent.

Functions that satisfy all of these criteria are said to be “comparison functions.”
The original partial differential equation then is multiplied by φi and integrated over
the domain of the independent variable (e.g., 0 ≤ x ≤ �). Thus, a set of n ordinary
differential equations is obtained from the original partial differential equation.
(Note that if the original equation is an ordinary differential equation in x, then
Galerkin’s method yields n algebraic equations.)

Consider a beam in bending as an example. The equation of motion can be
written as in Eq. (3.194), with a slight change, as

∂2

∂x2

(
EI

∂2v

∂x2

)
+ m

∂2v

∂t2
− f (x, t) = 0 (3.320)

where EI is the flexural rigidity, m is the mass per unit length, and the boundary
conditions and loading term f (x, t) must reflect any attached particles or rigid bodies.
In aeroelasticity, the loads f (x, t) may depend on the displacement in a complicated
manner.

With all of the components as described herein considered, the discretized equa-
tions of motion can be written in the same form as in the Ritz method; that is

[M]
{
ξ̈
}+ [C]

{
ξ̇
}+ [K] {ξ} = {F} (3.321)

where {ξ} is a column matrix of the generalized coordinates, {F} is a column matrix
of the generalized force terms that do not depend on ξi , (˙) is the time derivative
of ( ), [M] is the mass matrix, [C] is the gyroscopic/damping matrix, and [K] is the
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stiffness matrix. As before, inertial forces contribute to [M], there are contributions
from the inertial forces to [C] and [K] when there is a rotating coordinate system,
and damping also contributes to [C]. Finally, because aeroelastic loads, in general,
depend on the displacement and its time derivatives, aerodynamics can contribute
terms to [M], [C], and [K].

Example: Galerkin’s Method for a Beam in Bending. Now, we illustrate how the
approximating functions are actually used. Let φi , i = 1, 2, . . . , ∞ be a complete
set of q-times differentiable, linearly independent functions that satisfy all of the
boundary conditions. Substituting Eq. (3.319) into Eq. (3.320), multiplying by φi (x),
and integrating over x from 0 to �, we obtain

∫ �

0
φi

⎡
⎣ n∑

j=1

ξ j (EIφ′′
j )′′ +

n∑
j=1

ξ̈ j mφ j − f (x, t)

⎤
⎦ dx = 0 i = 1, 2, . . . , n (3.322)

After reversing the order of integration and summation and integrating the first
term by parts, and taking into account that the functions φi satisfy all the boundary
conditions, this equation becomes

n∑
j=1

(
ξ j

∫ �

0
EIφ′′

i φ′′
j dx + ξ̈ j

∫ �

0
mφiφ j dx

)
−
∫ �

0
f φi dx = 0 i = 1, 2, . . . , n

(3.323)

When we compare the first two terms with the previous derivation by the Ritz
method, we see the close relationship between these approaches. Indeed, if the
starting partial differential equation is derivable from energy—which implies that
q = 2p—and the same approximating functions φi are used in both cases, the result-
ing discretized equations are the same.

Considering the clamped-free case, for example, we can develop a set of com-
parison functions by starting with

φ′′
i = 1

�2

(
1 − x

�

)2 (x
�

)i−1
(3.324)

With the boundary conditions on displacement and rotation being φi (0) = φ′
i (0) = 0,

we then can integrate to find an expression for the ith function as

φi =

(x
�

)1+i
{

6 + i2
(

1 − x
�

)2
+ i

[
5 − 6x

�
+
(x

�

)2
]}

i(1 + i)(2 + i)(3 + i)
(3.325)

Elements of the stiffness matrix are found as

Ki j =
∫ �

0
EIφ′′

i φ′′
j dx

= 24EI
�3 (i + j − 1) (i + j) (1 + i + j) (2 + i + j) (3 + i + j)

(3.326)
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Table 3.7. Approximate values of ωi

√
m�4

EI
for

i = 1, 2, and 3, for a clamped-free beam using
n polynomial functions

n Mode 1 Mode 2 Mode 3

1 3.53009 – –
2 3.51604 22.7125 –
3 3.51602 22.0354 66.2562
4 3.51602 22.0354 61.7675
5 3.51602 22.0345 61.7395
exact 3.51602 22.0345 61.6972

Similarly, the elements of the mass matrix are found as

Mi j =
∫ �

0
mφiφ j dx

= m�p1

p2

(3.327)

where

p1 = 30,240 + 28,512(i + j) + 9,672(i2 + j2) + 1,392(i3 + j3) + 72(i4 + j4)

+ 20,040i j + 4,520(i2 j + i j2) + 320(i3 j + i j3) + 520i2 j2

p2 = i(1 + i)(2 + i)(3 + i) j(1 + j)(2 + j)(3 + j)(3 + i + j)

(4 + i + j)(5 + i + j)(6 + i + j)(7 + i + j)
(3.328)

The fact that the governing equation is derivable from energy is reflected in the
symmetry of [M] and [K]. Results for free vibration (i.e., with f = 0) are given in
Table 3.7. As with the Ritz method, we see monotonic convergence from above and
accuracy comparable to that achieved via the Ritz method. However, unlike the Ritz
method, we do not always obtain results for free-vibration problems that converge
from above.

Example: Galerkin’s Method for a Beam in Bending Using an Alternative Form
of the Equation of Motion. Consider again a clamped-free beam. To obtain an
alternative equation of motion, we integrate the equation of motion twice and use
the boundary conditions of zero shear and bending moment to obtain an integro-
partial differential equation

EI
∂2v

∂x2
+
∫ �

x
(x − ζ )

[
f (ζ, t) − m

∂2v(ζ, t)
∂t2

]
dζ = 0 (3.329)

where ζ is a dummy variable. Although this equation of motion is somewhat more
complicated, it is only a second-order equation. Thus, it has only two boundary
conditions, which are zero displacement and slope at x = 0. Thus, a much simpler
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Table 3.8. Approximate values of ωi

√
m�4

EI
for

i = 1, 2, and 3 for a clamped-free beam using n
terms of a power series with a reduced-order
equation of motion

n Mode 1 Mode 2 Mode 3

1 7.48331 – –
2 3.84000 57.2822 –
3 3.44050 24.1786 188.677
4 3.52131 20.3280 69.3819
5 3.51698 22.0793 53.2558
6 3.51607 22.1525 61.0295
exact 3.51602 22.0345 61.6972

set of comparison functions can be used, such as a simple power series; that is

φi =
(x

�

)i+1
i = 1, 2, . . . , n (3.330)

We should not expect greater accuracy from this simple set of functions, but the
analytical effort is considerably less. Indeed, the elements of the stiffness matrix are

Ki j =
∫ �

0
EIφiφ

′′
j dx

= EI j( j + 1)
�(i + j + 1)

(3.331)

and the elements of the mass matrix are

Mi j =
∫ �

0
φi

∫ �

x
(ζ − x)mφ j (ζ )dζ dx

= m�3

(2 + i)(3 + i)(5 + i + j)

(3.332)

Note that these matrices are not symmetric. Moreover, the results presented in
Table 3.8 are not as accurate as those obtained in Table 3.7, and the convergence is
not monotonic from above.

The partial differential equations derived previously for free vibration of strings,
beams in torsion, and beams in bending can be derived from energy-based ap-
proaches, such as Hamilton’s principle. (The use of Hamilton’s principle is beyond
the scope of this text, but detailed treatments are found in numerous graduate-level
texts on structural dynamics.) In those cases, the Ritz and Galerkin’s methods give
the same results when used with the same approximating functions. As shown here,
however, Galerkin’s method provides a viable alternative to the Ritz method in
cases where the equations of motion are not of the form presented previously in this
chapter.
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Figure 3.44. Schematic of a nonuniform beam with distributed twisting moment per unit
length

3.5.3 The Finite Element Method

The finite element method is, by far, the most popular way of solving realistic
structural dynamics and aeroelasticity problems in industry. The name derives from
the breaking of a structure into a large number of small elements, modeling them
approximately, and connecting them together appropriately. Because of this way of
discretizing the geometry, it is possible to accurately capture modeling details that
other methods cannot.

In one sense, the finite element method can be regarded as a special case of Ritz
and Galerkin methods, one in which the generalized coordinates are themselves dis-
placements and/or rotations at points along the structure. It typically makes use of
polynomial shape functions over each of the finite elements into which the original
structure is broken. Equations based on the finite element method have the same
structure as Eq. (3.304); however, they are typically of large order, with n being
on the order of 102 to 107. What keeps the computational effort from being overly
burdensome is that the matrices have a narrow-banded structure, which allows spe-
cialized software to be used in solving the equations of motion that takes advantage
of this structure, reducing both memory and floating-point operations and resulting
in significant computational advantages.

Here, we present only a simple outline of the method as applied to beams in
torsion and in bending, leaving more advanced topics such as plates and shells to
textbooks devoted to the finite element method, such as those by Reddy (1993) and
Zienkiewicz and Taylor (2005).

Application to Beams in Torsion. Here, we use the finite element method to analyze
the behavior of a nonuniform beam in torsion. Similar to the application of the Ritz
method, we make use of Lagrange’s equation. Regardless of how finite elements are
derived, however, for a sufficiently fine mesh, the results should approach the exact
structural behavior. This development encompasses both forced response and free
vibration.

Consider a clamped-free beam subjected to a distributed torque r(x, t) as de-
picted in Fig. 3.44. Note that the x coordinate is along the beam. The strain energy
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θ3

Figure 3.45. Schematic of a nonuniform beam with internal torques discretized

of the system can be written as

U = 1
2

∫ �

0
GJ (x)

(
∂θ

∂x

)2

dx (3.333)

where GJ (x) is the torsional stiffness of the wing and θ(x, t) is the elastic twist. In the
finite-element approach, the beam is divided into n elements, as shown in Fig. 3.45.
Although there is no requirement to make the elements of constant stiffness, we do so
for convenience. Relaxation of this assumption is left as an exercise for readers (see
Problem 25). Element i is connected to two end nodes i and i + 1 with coordinates
xi and xi+1, respectively. Within element i , the torsional stiffness is assumed to be a
constant, GJ i . The discrete value of the twist at the node i is denoted θi . The twist
is linearly interpolated between the nodal values so that

θ(x, t) =
{

1 − z
z

}T {
θi (t)

θi+1(t)

}
(3.334)

where

z = x − xi

�i
(3.335)

with 0 ≤ z ≤ 1. The expression for θ(x, t) also can be written as

θ(x, t) = θi (t) + (x − xi )
�i

[θi+1(t) − θi (t)] (3.336)

where xi ≤ x ≤ xi+1 and �i = xi+1 − xi . Note that if all θi are zero except one, then
only the element immediately to the left (element i − 1) and immediately to the
right (element i) are affected (Fig. 3.46). Introducing this approximation into the
strain energy, Eq. (3.333), and integrating over the beam length yields

U = 1
2

{θ}T [K] {θ} (3.337)
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Figure 3.46. Assumed twist distribution for all nodal values equal to zero except θi

where the array {θ} stores the values of the twist at the nodes

{
θ(t)

}T = ⌊
θ1(t) θ2(t) · · · θn+1(t)

⌋
(3.338)

The resulting stiffness matrix [K] may be written as

[K] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GJ 1
�1

− GJ 1
�1

0 0 0 0 · · ·
− GJ 1

�1

GJ 1
�1

+ GJ 2
�2

− GJ 2
�2

0 0 0 · · ·
0 − GJ 2

�2

GJ 2
�2

+ GJ 3
�3

− GJ 3
�3

0 0 · · ·

0 0 − GJ 3
�3

GJ 3
�3

+ GJ 4
�4

− GJ 4
�4

. . .
. . .

0 0 0 − GJ 4
�4

GJ 4
�4

+ GJ 5
�5

. . .
. . .

0 0 0
. . .

. . .
. . .

. . .

...
...

...
. . .

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.339)

Note that we could add the potential energy of springs attached to ground at any
nodes to represent elastic restraints.

The kinetic energy may be written as

K = 1
2

∫ �

0
ρ Ip(x)

(
∂θ

∂t

)2

dx (3.340)

Using the same interpolation for θ(x, t) and a constant mass polar moment of inertia
per unit length in ρ Ipi in element i , we obtain a discretized kinetic energy of the
form

K = 1
2

{
θ̇
}T

[M]
{
θ̇
}

(3.341)



3.5 Approximate Solution Techniques 109

where the mass matrix [M] is given by

[M] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ Ip1 �1

3
ρ Ip1 �1

6 0 0 0 0 · · ·
ρ Ip1 �1

6
ρ Ip1 �1

3 + ρ Ip2 �2

3
ρ Ip2 �2

6 0 0 0 · · ·
0

ρ Ip2 �2

6
ρ Ip2 �2

3 + ρ Ip3 �3

3
ρ Ip3 �3

6 0 0 · · ·

0 0
ρ Ip3 �3

6
ρ Ip3 �3

3 + ρ Ip4 �4

3
ρ Ip4 �4

6

. . .
. . .

0 0 0
ρ Ip4 �4

6
ρ Ip4 �4

3 + ρ Ip5 �5

3

. . .
. . .

0 0 0
. . .

. . .
. . .

. . .

...
...

...
. . .

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.342)
We also could add concentrated inertia at any nodes to represent the inertia of any
attached rigid bodies.

The contribution of the applied torque r(x, t) comes into the analysis through the
generalized force, which may be extracted from the virtual work, given by Eq. (2.46)
and repeated here for convenience as

δW =
∫ �

0
r(x, t)δθ(x, t)dx (3.343)

Here, it is helpful to represent the twisting moment using the same shape functions
as for θ , viz.

r(x, t) = ri (t) + (x − xi )
�i

[ri+1(t) − ri (t)] (3.344)

with the array

{r}T = �r1 r2 · · · rn+1� (3.345)

representing the nodal values of the applied torque per unit span. The virtual work
then becomes

δW = {δθ}T [D]
{
r(t)

}
(3.346)

so that the generalized force then may be put into the form

{�} = [D]
{
r(t)

}
(3.347)
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with the loading matrix [D] given by

[D] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1
3

�1
6 0 0 0 0 · · ·

�1
6

�1
3 + �2

3
�2
6 0 0 0 · · ·

0 �2
6

�2
3 + �3

3
�3
6 0 0 · · ·

0 0 �3
6

�3
3 + �4

3
�4
6

. . .
. . .

0 0 0 �4
6

�4
3 + �5

3

. . .
. . .

0 0 0
. . .

. . .
. . .

. . .

...
...

...
. . .

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.348)

As for the boundary conditions, admissibility requires only that we satisfy the
geometric boundary conditions (see Section 3.5.1). If we consider, for example, a
clamped-free beam, we need only set θ1 = 0. The boundary condition at the free
end (i.e., zero twisting moment) is a “natural” (i.e., a force or moment) boundary
condition, not a geometric condition. Therefore, it need not be taken into account in
a solution by this approach. As a consequence, the first elements of column matrices
{θ} and {r} are removed; the reason the first element of the latter is removed is that
δθ1 = 0, in keeping with the requirement that the virtual displacements and rotations
must satisfy the geometric boundary conditions. This has the effect of removing the
first row and column from each of the matrices [M] and [K], and the first row from
[D].

The equations of motion now may be formed by use of Lagrange’s equation, as
with the Ritz method. Given the approximation of the twist field in Eq. (3.336), the
only unknowns of the problem are the nodal twist angles θi . Thus, the equations of
motion may be written as:

d
dt

(
∂K

∂{θ̇}
)

+ ∂U
∂ {θ} = {�} (3.349)

or

[M]
{
θ̈
}+ [K] {θ} = [D]

{
r(t)

}
(3.350)

Although the size of the system matrices in the finite element method can be very
large, these matrices possess important properties. First, as noted previously in the
discussion of the Ritz method (see Section 3.5.1), they are symmetric, which here is a
reflection of their having been derived from energy methods applied to conservative
systems. Second, they are banded; that is, the nonvanishing entries are concentrated
around the diagonals of the matrices. Third, [M] is positive definite and [K] is at
least positive semidefinite. In the absence of rigid-body modes, [K] is positive definite
because it results from the computation of the strain energy of the structure, itself a
positive-definite quantity when rigid-body motion is excluded.
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With these equations, we may look at several types of problems for the nonuni-
form beam in torsion. For example:

1. The static response of the beam may be found if {r} is not a function of time.
For this, we do not need the mass matrix [M]. Thus

[K] {θ} = [D] {r} (3.351)

2. The free-vibration characteristics of the beam may be found by setting r = 0,
assuming simple harmonic motion such that {θ} = {θ̂} exp(iωt) and solving the
eigenvalue problem

[K]
{
θ̂
} = ω2 [M]

{
θ̂
}

(3.352)

3. If {r(t)} has the form {r̂} exp(i�t) with {r̂} and � specified constants, the
steady-state response to harmonic excitation may be found by assuming {θ}(t) =
{θ̂} exp(i�t) and solving the algebraic equations[

[K] − �2 [M]
] {

θ̂
} = [D] {r̂} (3.353)

4. Finally, the forced response of the structure may be determined by numerical
integration of Eqs. (3.350) subject to appropriate initial conditions—that is,
specified values for θi (0) and θ̇i (0).

Complex structures including entire aircraft can be modeled with the finite
element method. The resulting discretized equations are similar to Eq. (3.350),
where {θ} is an array of nodal displacements and/or rotations,

{
r(t)

}
an array of

nodal forces and/or torques, [K] is a stiffness matrix characterizing the elastic be-
havior of the entire structure, and [M] is a mass matrix characterizing the iner-
tia properties of the entire structure. As the complexity of the model increases,
the various arrays increase in size. For the most general types of models, such as
those based on three-dimensional brick elements, hundreds of thousands of de-
grees of freedom or more may be required to accurately model a complete wing
structure.

As an illustrative example, results obtained for the tip rotation caused by
twisting of a beam with linearly varying GJ (x) with GJ (0) = GJ 0 = 2GJ (�),
r(x, t) = r = const., and constant values of GJ within each element are presented
in Table 3.9. The convergence is monotonic, and the answers are evidently upper
bounds.

Application to Beams in Bending. As another example of applying the finite ele-
ment method, we next turn to its application to beams in bending. The theory of
bending for beams was presented in terms of strain energy, kinetic energy, and vir-
tual work; this framework is sufficient for constructing a finite-element model for
nonuniform beams in bending. Again, strictly for simplicity, we assume the bending
stiffness and mass per unit length to be constants, respectively equal to EIi and mi

within element i . Allowing for linearly varying EI and m within each element is
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Table 3.9. Finite-element results for the tip
rotation caused by twist of a beam with linearly
varying GJ (x) such that GJ (0) = GJ 0 = 2GJ (�),
r(x, t) = r = const., and constant values of GJ
within each element

n
r�2

GJ 0

1 0.666667
2 0.628571
3 0.620491
4 0.617560
5 0.616184
6 0.615431
7 0.614976
exact 0.613706

left as an exercise for readers (see Problem 26). We consider a beam loaded with a
distributed force per unit length f (x, t) and a distributed bending moment per unit
length q(x, t) as shown in Fig. 3.47.

As with the beam in torsion, we now develop the stiffness matrix from the strain
energy. The strain energy is given by

U = 1
2

∫ �

0
EI

(
∂2v

∂x2

)2

dx (3.354)

where v(x, t) is represented in terms of nodal displacements vi (t) and rotations
βi (t). The latter is in the sense of the bending slope β(x, t) = ∂v(x, t)/∂x. When x is
between nodes i and i + 1, v(x, t) is approximated as

v(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2z3 − 3z2 + 1
z3 − 2z2 + z

3z2 − 2z3

z3 − z2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

T ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vi (t)
βi (t)

vi+1(t)
βi+1(t)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.355)

Figure 3.47. Schematic of a nonuniform beam with distributed force and bending moment
per unit length
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where

z = x − xi

�i
(3.356)

with 0 ≤ z ≤ 1. The four cubic polynomials in Eq. (3.355) are called “Hermite poly-
nomials.” They have the property that one of their values or derivatives at the ends
(i.e., where z = 0 or z = 1) is equal to unity whereas the other three are equal to
zero. This way, the element degrees of freedom are displacements or rotations at
the ends of the element. With this interpolation of v(x, t), the strain energy can be
written as

U = 1
2

{ξ}T [K] {ξ} (3.357)

where the degrees of freedom are arranged in the column matrix {ξ(t)} of length
2n + 2 so that

{
ξ(t)

} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1(t)
β1(t)
v2(t)
β2(t)

...
vn+1(t)
βn+1(t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.358)

and the stiffness matrix [K] has the form

[K] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12EI1

�3
1

6EI1

�2
1

− 12EI1

�3
1

6EI1

�2
1

0 0

6EI1

�2
1

4EI1
�1

− 6EI1

�2
1

2EI1
�1

0 0

− 12EI1

�3
1

− 6EI1

�2
1

12EI1

�3
1

+ 12EI2

�3
2

6EI2

�2
2

− 6EI1

�2
1

− 12EI2

�3
2

6EI2

�2
2

6EI1

�2
1

2EI1
�1

6EI2

�2
2

− 6EI1

�2
1

4EI1
�1

+ 4EI2
�2

− 6EI2

�2
2

2EI2
�2

0 0 − 12EI2

�3
2

− 6EI2

�2
2

12EI2

�3
2

− 6EI2

�2
2

0 0 6EI2

�2
2

2EI2
�2

− 6EI2

�2
2

4EI2
�2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.359)

for the two-element case. Note that the contributions from element 1 are all in the
upper-left 4×4 submatrix, whereas the contributions from element 2 are all in the
lower-right 4×4 submatrix. The two overlap at the 2×2 submatrix in the middle for
degrees of freedom associated with the node at the right end of element 1 and at
the left end of element 2. With this pattern in mind, it is a straightforward matter to
expand the matrix to an arbitrary number of elements.

The kinetic energy is given by

K = 1
2

∫ �

0
m
(

∂v

∂t

)2

dx (3.360)
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that with the specified interpolation can be written in discretized form as

K = 1
2

{
ξ̇
}T [M]

{
ξ̇
}

(3.361)

with the mass matrix given by

[M] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

13
35 �1m1

11
210 �2

1m1
9
70 �1m1 − 13

420 �2
1m1 0 0

11
210 �2

1m1
1

105 �3
1m1

13
420 �2

1m1 − 1
140 �3

1m1 0 0

9
70 �1m1

13
420 �2

1m1
13
35 (l1m1 + l2m2) − 11

210

(
l2
1 m1 − l2

2 m2
) 9

70 �2m2 − 13
420 �2

2m2

− 13
420 �2

1m1 − 1
140 �3

1m1 − 11
210

(
l2
1 m1 − l2

2 m2
) 1

105

(
m1�

3
1 + l3

2 m2
) 13

420 �2
2m2 − 1

140 �3
2m2

0 0 9
70 �2m2

13
420 �2

2m2
13
35 �2m2 − 11

210 �2
2m2

0 0 − 13
420 �2

2m2 − 1
140 �3

2m2 − 11
210 �2

2m2
1

105 �3
2m2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.362)

again for the two-element case. This pattern is the same as that of the stiffness matrix,
so it is also a straightforward matter to expand the mass matrix to an arbitrary number
of elements.

Finally, the contributions of the applied distributed force and bending moment
are determined using the virtual work. If we interpolate both f (x, t) and q(x, t) in
the same way that r(x, t) was treated for torsion, viz.

f (x, t) = fi (t) + (x − xi )
�i

[ fi+1(t) − fi (t)]

q(x, t) = qi (t) + (x − xi )
�i

[qi+1(t) − qi (t)]

(3.363)

with the arrays
{

f (t)
}

and
{
q(t)

}
representing the nodal values of the applied force

and bending moment per unit span

{ f }T = � f1 f2 · · · fn+1�
{q}T = �q1 q2 · · · qn+1�

(3.364)

the virtual work then becomes

δW = {δv}T [Df ]
{

f (t)
}+ {δβ}T [Dq]

{
q(t)

}
(3.365)

so that the generalized force may be put into the form

{�} = [Df ]
{

f (t)
}+ [Dq]

{
q(t)

}
(3.366)
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and loading matrices for the two-element case given by

[Df ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7
20�1

3
20�1 0

1
20�2

1
1

30�2
1 0

3
20�1

7
20 (�1 + �2) 3

20�2

− 1
30�2

1
1

20

(
�2

2 − �2
1

) 1
30�2

2

0 3
20�2

7
20�2

0 − 1
30�2

2 − 1
20�2

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[Dq] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
2 − 1

2 0

1
12�1 − 1

12�1 0

1
2 0 − 1

2

− 1
12�1

1
12 (�1 + �2) − 1

12�2

0 1
2

1
2

0 − 1
12�2

1
12�2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.367)

The contributions from element 1 are all in the upper-left 4 × 2 matrix; those from
element 2 are in the lower-right 4 × 2 matrix with overlap in the 2 × 1 matrix at the
center (i.e., the two middle rows of the middle column).

Because the approach is based on the Ritz method, only the geometric boundary
conditions need to be satisfied. For a clamped-free beam, this means v1 = β1 = 0,
so that the first two rows and columns must be removed from [M] and [K]. As
for the loading matrices, Df and Dq, the first two rows must be removed because
δv1 = δβ1 = 0. The accuracy of finite elements for beam bending is illustrated in
Problem 26.

3.6 Epilogue

In this chapter, we considered the free-vibration analysis and modal representa-
tion for flexible structures, along with methods for solving initial-value and forced-
response problems associated therewith. Moreover, the approximation techniques
of the Ritz method, the Galerkin method, and the finite element method were intro-
duced. This sets the stage for consideration of aeroelastic problems in Chapters 4 and
5. The static-aeroelasticity problem, addressed in Chapter 4, results from interaction
of structural and aerodynamic loads. These loads are a subset of those involved in
dynamic aeroelasticity, which includes inertial effects. One aspect of dynamic aeroe-
lasticity is flutter, which is discussed in Chapter 5, where it is shown that both the
modal representation and the modal approximation methods apply equally well to
both types of problems.
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Problems

1. By evaluating the appropriate integrals, prove that each function in the following
two sets of functions is orthogonal to all other functions in its set over the interval
0 ≤ x ≤ �:
(a) sin

( nπx
�

)
for n = 1, 2, 3, . . .

(b) cos
( nπx

�

)
for n = 0, 1, 2, . . .

Use of a table of integrals may be helpful.
2. Considering Eq. (3.54), plot the displacement at time t = 0 for a varying number

of retained modes, showing that as more modes are kept, the shape more closely
resembles the initial shape of the string given in Fig. 3.2.

3. Compute the propagation speed of elastic torsional deflections along prismatic,
homogeneous, isotropic beams with circular cross sections and made of
(a) aluminum (2014-T6)
(b) steel

Hint: Compare the governing wave equation with that for the uniform-string
problem, noting that for beams with a circular cross section, J = Ip.
Answers: (may vary slightly depending on properties used)
(a) 3,140 m/s
(b) 3,110 m/s

4. For a uniform string attached between two walls with no external loads, deter-
mine the total string deflection v(x, t) for an initial string deflection of zero and
an initial transverse velocity distribution given by

∂v

∂t
(x, 0) = V

[
1 − cos

(
2πx
�

)]

Answer: v(x, t) = −16V�

π2

√
m
T

∞∑
n=1,3,...

1
n2(n2 − 4)

sin
(nπx

�

)
sin (ωnt), where

ωn = nπ

�

√
T
m

5. Consider a uniform string of length � and mass per unit length m that has been
stretched between two walls with tension T. Transverse vibration of the string
is restrained at its midpoint by a linear spring with spring constant k. The spring
is unstretched when the string is undeflected. Write the generalized equation
of motion for the ith mode, giving particular attention to the writing of the
generalized force �i . As a check, derive the equation taking into account the
spring through the potential energy instead of through the generalized force.
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Answer: Letting ωi = iπ
�

√
T
m

, we find that the generalized equations of motion
are

ξ̈i + ω2
i ξi + 2k

m�
(−1)

i−1
2

∞∑
j=1,3,...

(−1)
j−1
2 ξ j = 0 i = 1, 3, . . . ,∞

ξ̈i + ω2
i ξi = 0 i = 2, 4, . . . ,∞

6. Consider a uniform string of length � with mass per unit length m that has been
stretched between two walls with tension T. Until the time t = 0, the string is
undeflected and at rest. At time t = 0, concentrated loads of magnitude F0 sin �t
are applied at x = �/3 and x = 2�/3 in the positive (up) and negative (down)
directions, respectively. In addition, a distributed force

F = F
[

1 − sin
(

3πx
�

)]
cos(�t)

is applied to the string. What is the total string displacement v(x, t) for time
t > 0?

Answer: Letting ωn = nπ

�

√
T
m

, we find that

v(x, t) =
∞∑

n=2,4,...

{
Cn

[
sin (�t) − �

ωn
sin (ωnt)

]
sin

(nπx
�

)}

+
∞∑

n=1,3,...

{
Dn [cos (�t) − cos (ωnt)] sin

(nπx
�

)}

where

Cn = 2F0

m� (ω2
n − �2)

[
sin

(nπ

3

)
− sin

(
2nπ

3

)]

Dn = 2F
m(ω2

n − �2)

(
2

nπ
− δn3

2

)

and where the Kronecker symbol δi j = 1 for i = j and δi j = 0 for i �= j .

7. Consider a uniform circular rod of length �, torsional rigidity GJ , and mass
moment of inertia per unit length ρ J . The beam is clamped at the end x = 0,
and it has a concentrated inertia IC at its other end where x = �.
(a) Determine the characteristic equation that can be solved for the torsional

natural frequencies for the case in which IC = ρ J�ζ , where ζ is a dimen-
sionless parameter.

(b) Verify that the characteristic equation obtained in part (a) approaches
that obtained in the text for the clamped-free uniform rod in torsion as ζ

approaches zero.
(c) Solve the characteristic equation obtained in part (a) for numerical values

of the first four eigenvalues, αi�, i = 1, 2, 3, and 4, when ζ = 1.
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(d) Solve the characteristic equation obtained in part (a) for the numerical
value of the first eigenvalue, α1�, when ζ = 1, 2, 4, and 8. Make a plot
of the behavior of the lowest natural frequency versus the value of the
concentrated inertia. Note that α1� versus ζ is the same in terms of
dimensionless quantities.

Answer:
(a) ζα� tan(α�) = 1

(c, d) Sample result: α1� = 0.860334 for ζ = 1

8. Consider a clamped-free beam undergoing torsion:
(a) Prove that the free-vibration mode shapes are orthogonal, regardless of

whether the beam is uniform.
(b) Given that the kinetic energy is

K = 1
2

∫ �

0
ρ Ip

(
∂θ

∂t

)2

dx

show that K can be written as

K = 1
2

∞∑
i=1

Mi ξ̇
2
i

where Mi is the generalized mass of the ith mode and ξi is the generalized
coordinate for the ith mode.

(c) Given that the potential energy is the internal (i.e., strain) energy; that is

P = 1
2

∫ �

0
GJ

(
∂θ

∂x

)2

dx

show that P can be written as

P = 1
2

∞∑
i=1

Miω
2
i ξ

2
i

where ωi is the natural frequency.
(d) Show that for a uniform beam and for φi as given in the text, Mi = ρ Ip�/2

for all i .

9. Consider a uniform free-free beam undergoing torsion:
(a) Given the mode shapes in the text, find an expression for P in terms of GJ ,

�, and the generalized coordinates.
(b) Given the mode shapes in the text, find an expression for K in terms of ρ Ip,

�, and the time derivatives of the generalized coordinates.
(c) Substitute results from parts (a) and (b) into Lagrange’s equations and

identify the resulting generalized masses.
Answer:

(a) P = 1
2

GJ
∞∑

i=1

(iπ)2

2�
ξ 2

i

(b) K = 1
2
ρ Ip�

(
ξ̇ 2

0 + 1
2

∞∑
i=1

ξ̇ 2
i

)

(c) M0 = ρ Ip�; Mi = 1
2ρ Ip� for i = 1, 2, . . .
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10. Consider a clamped-free beam undergoing bending:
(a) Prove that the free-vibration mode shapes are orthogonal, regardless of

whether the beam is uniform.
(b) Given the kinetic energy as

K = 1
2

∫ �

0
m
(

∂v

∂t

)2

dx

show that K can be written as

K = 1
2

∞∑
i=1

Mi ξ̇
2
i

where Mi is the generalized mass of the ith mode and ξi is the generalized
coordinate for the ith mode.

(c) Given that the potential energy is the internal (i.e., strain) energy; that is

P = 1
2

∫ �

0
EI

(
∂2v

∂x2

)2

dx

show that P can be written as

P = 1
2

∞∑
i=1

Miω
2
i ξ

2
i

where ωi is the natural frequency.
(d) Show that for a uniform beam and for φi as given in the text, Mi = m� for

all i .

11. Consider a uniform beam with the boundary conditions shown in Fig. 3.38
undergoing bending vibration:
(a) Using the relationships derived in the text, plot the square of characteristic

value (α1�)2, which is proportional to the fundamental frequency, versus κ

from 0 to 100. Check your results versus those given in Fig. 3.40.
(b) Plot the fundamental mode shape for values of κ of 0.01, 0.1, 1, 10, and 100.

Suggestion: use Eq. (3.270). Check your results for κ = 1 with those given
in Fig. 3.39; your results for κ = 100 will not differ significantly from those
in Fig. 3.41, in which κ = 50.

12. Find the free-vibration frequencies and plot the mode shapes for the first
five modes of a beam of length �, having bending stiffness EI and mass per
unit length m, that is free at its right end, and that has the sliding condition
(see Fig. 3.26) at its left end. Normalize the mode shapes to have unit de-
flection at the free end and determine the generalized mass for the first five
modes.
Answer: ω0 = 0, ω1 = 5.59332

√
EI/(m�4), ω2 = 30.2258

√
EI/(m�4), ω3 =

74.6389
√

EI/(m�4), ω4 = 138.791
√

EI/(m�4); M0 = m� and Mi = m�/4 for
i = 1, 2, . . . ,∞. As a sample of the mode shapes, the first elastic mode is
plotted in Fig. 3.48.
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Figure 3.48. First elastic mode shape for sliding-free beam (Note: the “zeroth” mode is a
rigid-body translation mode)

13. Consider the beam in Problem 12. Add to it a translational spring restraint at the
left end, having spring constant k = κ EI/�3. Find the first three free-vibration
frequencies and mode shapes for the cases in which κ takes on values of 0.01, 1,
and 100. Plot the mode shapes, normalizing them to have unit deflection at the
free end.
Answer: Sample results: A plot versus κ of (αi�)2 for i = 1, 2, and 3 is shown in

Fig. 3.49, and the first mode shape for κ = 1 is shown in Fig. 3.50.

14. Consider a beam that at its left end is clamped and at its right end is pinned with
a rigid body attached to it. Let the mass moment of inertia of the rigid body be
given by IC = μm�3 where C coincides with the pin (i.e., a pirot).
(a) Find the first two free-vibration frequencies for values of μ equal to 0.01,

0.1, 1, 10, and 100. Comment on the variation of the natural frequencies
versus μ.

5 10 15 20 25 30

5

10

15

20

25

30

i
2

Figure 3.49. Variation versus κ of (αi�)2

for i = 1, 2, and 3, for a beam that is free
on its right end and has a sliding bound-
ary condition spring-restrained in trans-
lation on its left end
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Figure 3.50. First mode shape for a beam
that is free on its right end and has a slid-
ing boundary condition spring-restrained
in translation on its left end with κ = 1

(b) Choose any normalization that is convenient and plot the first mode shape
for these same values of μ. Comment on the variation of the mode shapes
versus μ.

Answer:
(a) Sample result: ω1 = 1.99048

√
EI

m�4 for μ = 1.
(b) Sample result: The first mode shape for μ = 1 is shown in Fig. 3.51.

15. Consider a uniform clamped-free beam of length �, bending rigidity EI , and
mass per unit length m. Until time t = 0, the beam is undeflected and at rest. At
time t = 0, a transverse concentrated load of magnitude F cos(�t) is applied at
x = �.
(a) Write the generalized equations of motion.
(b) Determine the total beam displacement v(x, t) for time t > 0.
(c) For the case when � = 0, determine the tip displacement of the beam.

Ignoring those terms that are time dependent (they would die out in a real
beam because of dissipation), plot the tip displacement versus the number
of mode shapes retained in the solution up to five modes. Show the static
tip deflection from elementary beam theory on the plot. (This part of the
problem illustrates how the modal representation can be applied to static-
response problems.)

0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

0.1

0.12

0.14
1φ

Figure 3.51. First mode shape for a beam that is
clamped on its left end and pinned with a rigid body
attached on its right end with μ = 1
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Table 3.10. Approximate values of ω1

√
m�4

EI
for pinned-free

beam having a root rotational spring with spring constant of
κ EI/� using one rigid-body mode (x) and n − 1
clamped-free modes of Section 3.3.4, Eq. (3.258)

n κ = 1 κ = 10 κ = 100

1 1.73205 5.47723 17.3205
2 1.55736 2.96790 3.44766
3 1.55730 2.96784 3.44766
4 1.55730 2.96784 3.44766
5 1.55730 2.96784 3.44766
Exact 1.55730 2.96784 3.44766

Answer:
(a) The ith equation is

ξ̈i + ω2
i ξi = 2(−1)i+1 F

m�
cos(�t)

(b) With φi (x) given by Eq. (3.258), ωi = (αi�)2
√

EI
m�4 , and αi� as given in Ta-

ble 3.1, we find that

v(x, t) = 2F
m�

∞∑
i=1

(−1)i+1

ω2
i − �2

[cos(�t) − cos(ωi t)] φi (x)

(c) The result converges within engineering accuracy to F�3

3EI
using only a few

terms.

16. Consider a free-free beam with bending stiffness EI , mass per unit length m, and
length �. Applying the Ritz method, write the equations of motion for a system
that consists of the beam plus identical rigid bodies attached to the ends, where
each body has a moment of inertia IC and mass mc. Use as assumed modes those
of the exact solution of the free-free beam without the attached bodies, obtained
in the text. Note the terms that provide inertial coupling.

17. Consider a pinned-free beam with the rotation about the hinge restrained by
a light spring of modulus κ EI/�. Use a rigid-body rotation plus the set of
clamped-free modes as the assumed modes of the Ritz method. Compare the

Table 3.11. Approximate values of ω2

√
m�4

EI
for pinned-free

beam having a root rotational spring with spring constant of
κ EI/� using one rigid-body mode (x) and n − 1
clamped-free modes of Section 3.3.4, Eq. (3.258)

n κ = 1 κ = 10 κ = 100

2 22.8402 37.9002 103.173
3 16.2664 19.3632 21.6202
4 16.2512 19.3563 21.6200
5 16.2502 19.3559 21.6200
Exact 16.2501 19.3558 21.6200
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Table 3.12. Approximate values of ω1

√
m�4

EI
for pinned-free beam

having a root rotational spring with spring constant of κ EI/�
using one rigid-body mode (x) and n − 1 polynomials that satisfy
clamped-free beam boundary conditions

n κ = 1 κ = 10 κ = 100

1 1.73205 5.47723 17.3205
2 1.55802 2.97497 3.46064
3 1.55730 2.96784 3.44768
4 1.55730 2.96784 3.44766
Exact 1.55730 2.96784 3.44766

results for the first two modes using a varying number of terms for κ = 1, 10,
and 100.
Answer: See Tables 3.10 and 3.11.

18. Repeat Problem 17 using a set of polynomial admissible functions. Use one
rigid-body mode (x) and a varying number of polynomials that satisfy all the
boundary conditions of a clamped-free beam.
Answer: See Tables 3.12 and 3.13.

19. Consider a clamped-free beam of length � for which the mass per unit length
and bending stiffness vary according to

m = m0

(
1 − x

�
+ μ

x
�

)
EI = EI0

(
1 − x

�
+ κ

x
�

)
Using the comparison functions in Eq. (3.325), apply the Ritz method to de-
termine approximate values for the first three natural frequencies, varying the
number of terms from one to five. Let μ = κ = 1/2.
Answer: See Table 3.14.

20. Rework Problem 19 using the Ritz method and the set of polynomial admissible
functions (x/�)i+1, i = 1, 2, . . ., n
Answer: See Table 3.15.

Table 3.13. Approximate values of ω2

√
m�4

EI
for pinned-free beam

having a root rotational spring with spring constant of κ EI/�
using one rigid-body mode (x) and n − 1 polynomials that satisfy
clamped-free beam boundary conditions

n κ = 1 κ = 10 κ = 100

2 24.8200 41.1049 111.743
3 16.4047 19.7070 22.2338
4 16.2508 19.3565 21.6208
Exact 16.2501 19.3558 21.6200
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Table 3.14. Approximate values of ωi

√
m0�4

EI0
for a tapered,

clamped-free beam based on the Ritz method with n
polynomials that satisfy all the boundary conditions of a
clamped-free beam

n ω1

√
m0�4

EI0
ω2

√
m0�4

EI0
ω3

√
m0�4

EI0

1 4.36731 – –
2 4.31571 24.7653 –
3 4.31517 23.5267 69.8711
4 4.31517 23.5199 63.2441
5 4.31517 23.5193 63.2415
Exact 4.31517 23.5193 63.1992

21. Rework Problem 19 using Eq. (3.329) with f = 0 as the equation of motion and
the set of polynomial comparison functions (x/�)i+1, i = 1, 2, . . ., n.
Answer: See Table 3.16.

22. Consider a clamped-free beam to which is attached at spanwise location x = �r
a particle of mass μm�. Using a two-term Ritz approximation based on the
functions in Eq. (3.325), plot the approximate value for the fundamental natural
frequency as a function of r for μ = 1.
ans.: See Fig. 3.52.

23. Consider a clamped-free beam undergoing coupled bending and torsion. Set
up an approximate solution based on the Ritz method for the dimensionless
frequency parameter

λ2 = m�4ω2

EI

using the uncoupled bending and torsional mode shapes as assumed modes,
and with the parameters ρ Ip = 0.01m�2, md2 = 0.25ρ Ip, K2 = 0.25GJ EI, and
GJ/EI = 5. Answer these questions: How do the signs of d and K affect the
frequencies? How do they affect the predicted mode shapes?

Table 3.15. Approximate values of ωi

√
m0�4

EI0
for a tapered,

clamped-free beam based on the Ritz method with n terms of
the form (x/�)i+1, i = 1, 2, . . ., n

n ω1

√
m0�4

EI0
ω2

√
m0�4

EI0
ω3

√
m0�4

EI0

1 5.07093 – –
2 4.31883 33.8182 –
3 4.31732 23.6645 110.529
4 4.31523 23.6640 64.8395
5 4.31517 23.5226 64.7821
Exact 4.31517 23.5193 63.1992
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Table 3.16. Approximate values of ωi

√
m0�4

EI0
for a tapered,

clamped-free beam based on the Galerkin method applied to
Eq. (3.329) with n terms of the form (x/�)i+1, i = 1, 2, . . . , n

n ω1

√
m0�4

EI0
ω2

√
m0�4

EI0
ω3

√
m0�4

EI0

1 7.88811 – –
2 4.45385 54.5221 –
3 4.19410 24.3254 175.623
4 4.33744 21.4784 67.1265
5 4.31379 23.8535 53.6214
Exact 4.31517 23.5193 63.1992

24. Repeat Problem 23 using an appropriate power series for bending and for
torsion.

25. Develop a finite-element solution for the static twist of a clamped-free beam in
torsion, accounting for linearly varying GJ (x) within each element. Compare
results for the tip rotation caused by twisting, with identical loading and proper-
ties (i.e., GJ (0) = GJ 0 = 2GJ (�), r(x, t) = r = const.). Note that the results in
Section 3.5.3 approximate the linearly varying GJ as piecewise constant within
elements, whereas here you are to assume piecewise linearly varying GJ within
elements.
Answer: The results do not change; see Table 3.9.

26. Set up a finite-element solution for the dimensionless natural frequencies of a
beam in bending m(0)�4ω2/[EI(0)] from Section 3.5.3, accounting for linearly

0.0 0.2 0.4 0.6 0.8 1.0
r

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ω1

m 4

EI

Figure 3.52. Approximate fundamental frequency for a clamped-free beam with a particle of
mass m� attached at x = r�
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Table 3.17. Finite-element results for the natural frequencies
of a beam in bending with linearly varying EI(x), such that
EI(0) = EI0 = 2EI(�) and values of EI are taken as linear
within each element

n ω1

√
m0�4

EI0
ω2

√
m0�4

EI0
ω3

√
m0�4

EI0

1 4.31883 33.8182 –
2 4.31654 23.6457 75.9255
3 4.31549 23.5835 63.8756
4 4.31528 23.5430 63.6528
5 4.31522 23.5296 63.4128
6 4.31519 23.5244 63.3088
Exact 4.31517 23.5193 63.1992

varying EI(x) and m(x) within each element. Compare [M] and [K] matrices
obtained for the case developed in the text (i.e., piecewise constant EI and
m within elements) with those obtained for linearly varying within elements.
Tabulate dimensionless frequencies for the first three modes, assuming elements
of constant length, EI(�) = 0.5EI(0), and m(�) = 0.5m(0).
Answer: See Table 3.17.
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I discovered that with increasing load, the angle of incidence at the wing tips increased
perceptibly. It suddenly dawned on me that this increasing angle of incidence was
the cause of the wing’s collapse, as logically the load resulting from the air pressure
in a steep dive would increase faster at the wing tips than at the middle. The resulting
torsion caused the wings to collapse under the strain of combat maneuvers.

—A. H. G. Fokker in The Flying Dutchman, Henry Holt and Company, 1931

The field of static aeroelasticity is the study of flight-vehicle phenomena associated
with the interaction of aerodynamic loading induced by steady flow and the resulting
elastic deformation of the lifting-surface structure. These phenomena are character-
ized as being insensitive to the rates and accelerations of the structural deflections.
There are two classes of design problems that are encountered in this area. The first
and most common to all flight vehicles is the effects of elastic deformation on the air-
loads, as well as effects of airloads on the elastic deformation, associated with normal
operating conditions. These effects can have a profound influence on performance,
handling qualities, flight stability, structural-load distribution, and control effective-
ness. The second class of problems involves the potential for static instability of the
lifting-surface structure to result in a catastrophic failure. This instability is often
termed “divergence” and it can impose a limit on the flight envelope. Simply stated,
divergence occurs when a lifting surface deforms under aerodynamic loads in such
a way as to increase the applied load, and the increased load deflects the structure
further—eventually to the point of failure. Such a failure is not simply the result
of a load that is too large for the structure as designed; instead, the aerodynamic
forces actually interact with the structure to create a loss of effective stiffness. This
phenomenon is explored in more detail in this chapter.

The material presented in this chapter is an introduction to some of these static
aeroelastic phenomena. To illustrate clearly the mechanics of these problems and yet
maintain a low level of mathematical complexity, relatively simple configurations are
considered. The first items treated are rigid aerodynamic models that are elastically
mounted in a wind-tunnel test section; such elastic mounting is characteristic of most
load-measurement systems. The second aeroelastic configuration to be treated is

127
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Figure 4.1. Planform view of a wind-tunnel model on a torsionally elastic support

a uniform elastic lifting surface of finite span. Its static aeroelastic properties are
similar to those of most lifting surfaces on conventional flight vehicles.

4.1 Wind-Tunnel Models

In this section, we consider three types of mounting for wind-tunnel models: wall-
mounted, sting-mounted, and strut-mounted. Expressions for the aeroelastic pitch
deflections are developed for these simple models that, in turn, lead to a cursory
understanding of the divergence instability. Finally, we briefly return to the wall-
mounted model in this section to consider the qualitatively different phenomenon
of aileron reversal. All of these wing models are assumed to be rigid and two-
dimensional. That is, the airfoil geometry is independent of spanwise location, and
the span is sufficiently large that the lift and pitching moment do not depend on a
spanwise coordinate.

4.1.1 Wall-Mounted Model

Consider a rigid, spanwise-uniform model of a wing that is mounted to the side walls
of a wind tunnel in such a way as to allow the wing to pitch about the support axis, as
illustrated in Fig. 4.1. The support is flexible in torsion, which means that it restricts
the pitch rotation of the wing in the same way as a rotational spring would. We
denote the rotational stiffness of the support by k, as shown in Fig. 4.2. If we assume
the body to be pivoted about its support O, located at a distance xO from the leading
edge, moment equilibrium requires that the sum of all moments about O must equal
zero. Thus

Mac + L(xO − xac) − W
(
xO − xcg

)− kθ = 0 (4.1)
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Figure 4.2. Airfoil for wind-tunnel model

Were the support rigid, the angle of attack would be αr, positive nose-up. The
elastic part of the pitch angle is denoted by θ , which is also positive nose-up. The wing
angle of attack is then α ≡ αr + θ . In anticipation of using linear aerodynamics, we
assume the angle of attack, α, to be a small angle, such that sin(α) ≈ α and cos(α) ≈ 1.
It also is necessary to restrict the analysis to “thin” airfoils (i.e., small thickness to
chord and small camber). The treatment herein is restricted to incompressible flow,
but compressibility effects may be taken into account by means of Prandtl-Glauert
corrections to the airfoil coefficients. For this, the freestream Mach number must
remain less than roughly 0.8 to avoid transonic effects.

For linear aerodynamics, the lift for a rigid support is simply

Lrigid = qSCLα
αr (4.2)

whereas the lift for an elastic support is

L = qSCLα
(αr + θ) (4.3)

where q = 1
2ρ∞U2 is the freestream dynamic pressure (i.e., in the far field—often

denoted by q∞), U is the freestream air speed, ρ∞ is the freestream air density, S
is the planform area, and CLα

is the wing lift-curve slope. Note that L �= Lrigid; for
positive θ , L > Lrigid. We can express the moment of aerodynamic forces about the
aerodynamic center as

Mac = qScCMac (4.4)

If the angle of attack is small, CMac can be regarded as a constant. Note here that
linear aerodynamics implies that the lift-curve slope CLα

is a constant. A further
simplification may be that CLα

= 2π in accordance with two-dimensional thin-airfoil
theory. If experimental data or results from computational fluid dynamics provide
an alternative value, then it should be used.

Using Eqs. (4.3) and (4.4), the equilibrium equation, Eq. (4.1), can be expanded
as

qScCMac + qSCLα
(αr + θ) (xO − xac) − W

(
xO − xcg

) = kθ (4.5)
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Solving Eq. (4.5) for the elastic deflection, we obtain

θ = qScCMac + qSCLα
αr (xO − xac) − W

(
xO − xcg

)
k − qSCLα

(xO − xac)
(4.6)

When αr and q are specified, the total lift can be determined.
When the lift acts upstream of point O, an increase in lift increases α that, in

turn, increases lift. Thus, lift is a destabilizing influence counteracting the restraining
action of the spring when xO > xac. Recalling the discussion of stability in Section
2.5, when a system is perturbed from a state of equilibrium and tends to diverge
further from its equilibrium state, we say that the system is unstable. Such is the case
when the moment of the lift about point O exceeds the restoring moment from the
spring. This is one of the simplest examples of the static aeroelastic instability called
“divergence.” Now, from Eq. (4.6), we see that the aerodynamic center is forward of
the support point O when xac < xO, making it possible for the denominator to vanish
or for θ to blow up when q is sufficiently large. The denominator of the expression
for θ is a sort of effective stiffness, which decreases as q of increases. When the
denominator vanishes, divergence occurs. The divergence dynamic pressure—or
dynamic pressure at which divergence occurs—is then denoted by

qD = k
SCLα

(xO − xac)
(4.7)

From this, the divergence speed—or the air speed at which divergence occurs—can
be found as

UD =
√

2k
ρ∞SCLα

(xO − xac)
(4.8)

It is evident that when the aerodynamic center is coincident with the pivot, so
that xO = xac, the divergence dynamic pressure becomes infinite. Also, when the
aerodynamic center is aft of the pivot so that xO < xac, the divergence dynamic
pressure becomes negative. Because for physical reasons dynamic pressure must be
positive and finite, it is clear in either case that divergence is impossible.

To further pursue the character of this instability, consider the case of a symmet-
ric airfoil (CMac = 0). Furthermore, let xO = xcg so that the weight term drops out
of the equation for θ . From Eq. (4.7), we can let k = qDSCLα

(xO − xac); therefore,
θ can be written simply as

θ = αr
qD
q − 1

(4.9)

The lift is proportional to αr + θ . Thus, the change in lift divided by the rigid lift is
given by

�L
Lrigid

= θ

αr
=

q
qD

1 − q
qD

(4.10)

Both θ and �L/Lrigid clearly approach infinity as q → qD. Indeed, a plot of the latter
is given in Fig. 4.3 and shows the large change in lift caused by the aeroelastic effect.
The lift evidently starts from its “rigid” value—that is, the value it would have were
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Figure 4.3. Relative change in lift due to aeroelastic effect

the support rigid—and increases to infinity as q → qD. However, remember that
there are limitations on the validity of both expressions. Namely, the lift will not
continue to increase as stall is encountered. Moreover, because the structure will not
tolerate infinite deformation, failure takes place at some finite value of θ—generally
at a dynamic pressure well below the divergence dynamic pressure.

When the system parameters are within the bounds of validity for linear theory,
another fascinating feature of this problem emerges. We can invert the expression
for θ to obtain

1
θ

= qD

αr

(
1
q

− 1
qD

)
(4.11)

making it evident that 1/θ is proportional to 1/q (Fig. 4.4). Therefore, for a model
of this type, only two data points are needed to extrapolate the line down and to the
left until it intercepts the 1/q axis at a distance 1/qD from the origin. As shown in
the figure, the slope of this line also can be used to estimate qD. The form of this
plot is of great practical value because estimates of qD can be extrapolated from data
taken at speeds far below the divergence speed. This means that qD can be estimated
even when the values of the model parameters are not precisely known, thereby
circumventing the need to risk destruction of the model by testing all the way up to
the divergence boundary.

4.1.2 Sting-Mounted Model

A second configuration of potential interest is a rigid model mounted on an elastic
sting. A simplified version of this kind of model is shown in Figs. 4.5 through 4.7, in
which the sting is modeled as a uniform, elastic, clamped-free beam with bending
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α

Figure 4.4. Plot of 1/θ versus 1/q

stiffness EI and length λc, where λ is a dimensionless parameter. The model is
mounted in such a way as to have angle of attack of αr when the beam is undeformed.
Thus, as before, α = αr + θ , where θ is the nose-up rotation of the wing resulting
from bending of the sting, as shown in Fig. 4.6. Also in Fig. 4.6, we denote the tip
deflection of the beam as δ, although we do not need it for this analysis. Note the
equal and opposite directions on the force F0 and moment M0 at the trailing edge of
the wing in Fig. 4.7 versus at the tip of the sting in Fig. 4.6.

Figure 4.5. Schematic of a sting-mounted wind-tunnel model
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δ

θ

Figure 4.6. Detailed view of the clamped-free beam

From superposition, we can deduce the total bending slope at the tip of the sting
as the sum of contributions from the tip force F0 and tip moment M0, denoted by θF

and θM, respectively, so that

θ = θF + θM (4.12)

From elementary beam theory, these constituent parts can be written as

θF = F0(λc)2

2EI

θM = M0(λc)

EI

(4.13)

so that

F0 = 2EI θF

(λc)2

M0 = EI θM

λc

(4.14)

Two static aeroelastic equilibrium equations now can be written for the deter-
mination of θF and θM. Using Eqs. (4.3) and (4.4) for the lift and pitching moment,

α
-

Figure 4.7. Detailed view of the sting-mounted wing
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Figure 4.8. Schematic of strut-supported wind-tunnel model

the force equilibrium equation can be written as

qSCLα
(αr + θF + θM) − W − F0 = 0 (4.15)

and the sum of moments about the trailing edge yields

qScCMac + qSCLα
(αr + θF + θM) (c − xac) − W

(
c − xcg

)− M0 = 0 (4.16)

Substitution of Eqs. (4.14) into Eqs. (4.15) and (4.16), simultaneous solution for θF

and θM, and use of Eq. (4.12) yields

θ =
W
(
λ + 2 − 2rcg

)− 2qSCMac

qSCLα

− αr (λ + 2 − 2rac)

λ + 2 − 2rac − 2EI
λc2qSCLα

(4.17)

where rac = xac/c and rcg = xcg/c. Here again, the condition for divergence can be
obtained by setting the denominator to zero, so that

qD = 2EI
c2Sλ (λ + 2 − 2rac) CLα

(4.18)

However, unlike the previous example, we cannot make the divergence dynamic
pressure infinite or negative (thereby making divergence mathematically impos-
sible) by choice of configuration parameters because xac/c ≤ 1. For a given wing
configuration, we are left only with the possibility of increasing the sting’s bending
stiffness or decreasing λ to make the divergence dynamic pressure larger.

4.1.3 Strut-Mounted Model

A third configuration of a wind-tunnel mount is a strut system, as illustrated in
Figs. 4.8 and 4.9. The two linearly elastic struts have the same extensional stiffness, k,
and are mounted at the leading and trailing edges of the wing. The model is mounted
in such a way as to have an angle of attack of αr when the springs are both unde-
formed. Thus, as before, the angle of attack is α = αr + θ . As illustrated in Fig. 4.9,
the elastic part of the pitch angle, θ , can be related to the extension of the two struts as

θ = δ1 − δ2

c
(4.19)
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δ δ

Figure 4.9. Cross section of strut-supported wind-tunnel model

The sum of the forces in the vertical direction shows that

L− W − k(δ1 + δ2) = 0 (4.20)

The sum of the moments about the trailing edge yields

Mac + L(c − xac) − W(c − xcg) − kcδ1 = 0 (4.21)

Again, using Eqs. (4.3) and (4.4) for the lift and pitching moment, the simultaneous
solution of the force and moment equations yields

θ =
αr
(
1 − 2 xac

c

)+ 2 CMac
CLα

− W
qSCLα

(
1 − 2

xcg
c

)
kc

qSCLα
− (

1 − 2 xac
c

) (4.22)

As usual, the divergence condition is indicated by the vanishing of the denominator,
so that

qD = kc

SCLα

(
1 − 2 xac

c

) (4.23)

It is evident for this problem as specified that when the aerodynamic center is in
front of the mid-chord (as it is in subsonic flow), the divergence condition cannot
be eliminated. However, divergence can be eliminated if the leading-edge spring
stiffness is increased relative to that of the trailing-edge spring. This is left as an
exercise for readers (see Problem 5).

4.1.4 Wall-Mounted Model for Application to Aileron Reversal

Before leaving the wind-tunnel-type models discussed so far in this chapter, we
consider the problem of aileron reversal. “Aileron reversal” is the reversal of the
aileron’s expected response due to structural deformation of the wing. For exam-
ple, wing torsional flexibility can cause ailerons to gradually lose their effectiveness
as dynamic pressure increases; beyond a certain dynamic pressure that we call the
“reversal dynamic pressure,” they start to function in a manner that is opposite to
their intended purpose. The primary danger posed by the loss of control effectiveness
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U

β

α

Figure 4.10. Schematic of the airfoil section of a flapped two-dimensional wing in a wind
tunnel

is that the pilot cannot control the aircraft in the usual way. There are additional
concerns for aircraft, the missions of which depend on their being highly maneu-
verable. For example, when control effectiveness is lost, the pilot may not be able
to count on the aircraft’s ability to execute evasive maneuvers. This loss in control
effectiveness and eventual reversal is the focus of this section.

Consider the airfoil section of a flapped two-dimensional wing, shown in Fig. 4.10.
Similar to the model discussed in Section 4.1.1, the wing is pivoted and restrained by
a rotational spring with spring constant k. The main differences are that (1) a trailing-
edge flap is added such that the flap angle β can be arbitrarily set by the flight-control
system; and (2) we need not consider gravity to illustrate this phenomenon, so the
weight is not shown in the figure. Moment equilibrium for this system about the
pivot requires that

Mac + eL = kθ (4.24)

The lift and pitching moment for a two-dimensional wing can be written as
before; namely

L = qSCL

Mac = qcSCMac
(4.25)

When β �= 0, the effective camber of the airfoil changes, inducing changes in both
lift and pitching moment. For a linear theory, both α and β should be small angles,
so that

CL = CLα
α + CLβ

β

CMac = CM0 + CMβ
β

(4.26)

where, as before, the angle of attack is α = αr + θ . Note that CMβ
< 0; for conve-

nience, we assume a symmetric airfoil (CM0 = 0).
Note that we may most directly determine the divergence dynamic pressure by

writing the equilibrium equation without the inhomogeneous terms; that is

(k − eqSCLα
)θ = 0 (4.27)
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A nontrivial solution exists when the coefficient of θ vanishes, yielding the divergence
dynamic pressure as

qD = k
eSCLα

(4.28)

Clearly, the divergence dynamic pressure is unaffected by the aileron.
Conversely, the response is significantly affected by the aileron, as we now show.

We can solve the response problem by substituting Eqs. (4.25) into the moment-
equilibrium equation, Eq. (4.24), making use of Eqs. (4.26), and determining θ

to be

θ = qS
[
eCLα

αr + (
eCLβ

+ cCMβ

)
β
]

k − eqSCLα

(4.29)

We see that because of the flexibility of the model in pitch (representative of torsional
flexibility in a wing), θ is a function of β. We then find the lift as follows:

1. Substitute Eq. (4.29) into α = αr + θ to obtain α.
2. Substitute α into the first of Eqs. (4.26) to obtain the lift coefficient.
3. Finally, substitute the lift coefficient into the first of Eqs. (4.25) to obtain an

expression for the aeroelastic lift:

L =
qS

[
CLα

αr + CLβ

(
1 + cqSCLα CMβ

kCLβ

)
β
]

1 − eqSCLα

k

(4.30)

It is evident from the two terms in the coefficient of β in this expression that lift is a
function of β in two counteracting ways. Ignoring the effect of the denominator, we
see that the first term in the numerator that multiplies β is purely aerodynamic and
leads to an increase in lift with β because of a change in the effective camber. The
second term is aeroelastic. Recalling that CMβ

< 0, we see that as β is increased, the
effective change in the camber also induces a nose-down pitching moment that—
because the model is flexible in pitch—tends to decrease θ and in turn decrease lift.
At low speed, the purely aerodynamic increase in lift overpowers the aeroelastic
tendency to decrease the lift, so that the lift indeed increases with β (and the aileron
works as advertised). However, as dynamic pressure increases, the aeroelastic effect
becomes stronger; there is a point at which the net rate of change of lift with respect
to β vanishes so that

∂L
∂β

= 0 =
qSCLβ

(
1 + cqSCLα CMβ

kCLβ

)
1 − eqSCLα

k

(4.31)

Thus, we find that the dynamic pressure at which the reversal occurs is

qR = − kCLβ

cSCLα
CMβ

(4.32)

Notice that because CMβ
< 0, qR > 0. Obviously, a stiffer k gives a higher reversal

speed, and a model that is rigid in pitch (analogous to a torsionally rigid wing) will
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not undergo reversal. For dynamic pressures above qR (but still below the divergence
dynamic pressure), a positive β will actually decrease the lift.

Now let us consider the effect of both numerator and denominator. As discussed
previously, the divergence dynamic pressure also can be found by setting the denom-
inator of L or θ equal to zero, resulting in the same expression for qD as found in
Eq. (4.27). Equations (4.27) and (4.32) can be used to simplify the expression for the
lift in Eq. (4.30) to obtain

L =
qS

[
CLα

αr + CLβ

(
1 − q

qR

)
β
]

1 − q
qD

(4.33)

It is clear from this expression that the coefficient of β can be positive, negative, or
zero. Thus, a positive β could increase the lift, decrease the lift, or not change the lift
at all. The aileron’s lift efficiency, η, can be thought of as the aeroelastic (i.e., actual)
change in lift per unit change in β divided by the change in lift per unit change in β

that would result were the model not flexible in pitch; that is

η = change in lift per unit change in β for elastic wing
change in lift per unit change in β for rigid wing

Using this, we can easily find that

η =
1 − q

qR

1 − q
qD

(4.34)

which implies that the wing will remain divergence-free and control efficiency will
not be lost as long as q < qD ≤ qR. Obviously, were the model rigid in pitch, both qD

and qR would become infinite and η = 1.
Thinking unconventionally for the moment, let us allow the possibility of qR �

qD. This will result in aileron reversal at a low speed, of course. Although the
aileron now works opposite to the usual way at most operational speeds of the
aircraft, this type of design should not be ruled out on these grounds alone. Active
flight-control systems certainly can compensate for this. Moreover, we can obtain
considerably more (negative) lift for positive β in this unusual regime than positive
lift for positive β in the more conventional setting. This concept is a part of the design
of the Kaman “servo-flap rotor,” the blades of which have trailing-edge flaps that flap
up for increased lift. It also may have important implications for the design of highly
maneuverable aircraft. Exactly what other potential advantages and disadvantages
exist from following this strategy—particularly in this era of composite materials,
smart structures, and active controls—is not presently known and is the subject of
current research.

We revisit this problem in Section 4.2.5 from the point of view of a flexible beam
model for the wing.
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Figure 4.11. Uniform unswept clamped-free lifting surface

4.2 Uniform Lifting Surface

So far, our aeroelastic analyses focused on rigid wings with a flexible support. These
idealized configurations provide insight into the aeroelastic stability and response,
but practical analyses must take into account flexibility of the lifting surface. That be-
ing the case, in this section, we address flexible wings, albeit with simplified structural
representation.

Consider an unswept uniform elastic lifting surface as illustrated in Figs. 4.11
and 4.12. The lifting surface is modeled as a beam and, in keeping with historical
practice in the field of aeroelasticity, the spanwise coordinate along the elastic axis
is denoted by y. The beam is presumed to be built in at the root (i.e., y = 0, to
represent attachment to a wind-tunnel wall or a fuselage) and free at the tip (i.e.,
y = �). The y axis corresponds to the elastic axis, which may be defined as the line of
effective shear centers, assumed here to be straight. Recall that for isotropic beams,
a transverse force applied at any point along this axis results in bending with no
elastic torsional rotation about the axis. This axis is also the axis of twist in response
to a pure twisting moment applied to the wing. Because the primary concern here
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M 'ac

Figure 4.12. Cross section of spanwise uniform lifting surface

is the determination of the airload distributions, the only elastic deformation that
influences these loads is rotation due to twist about the elastic axis.

4.2.1 Steady-Flow Strip Theory

In Section 4.1, wings are assumed to be rigid and two-dimensional. That is, the airfoil
geometry including incidence angle is independent of spanwise location, and the
span is sufficiently large that lift and pitching moment are not functions of a spanwise
coordinate. In turning our attention to wings that can be modeled as isotropic beams,
the incidence angle now may be a function of the spanwise coordinate because of the
possibility of elastic twist. We need the distributed lift force and pitching moment
per unit span exerted by aerodynamic forces along a slender beam-like wing. At this
stage, however, we ignore the three-dimensional tip effects associated with wings of
finite length; the aerodynamic loads at a given spanwise location do not depend on
those at any other.

The total applied, distributed, twisting moment per unit span about the elastic
axis is denoted as M′(y), which is positive leading-edge-up and given by

M′ = M′
ac + eL′ − Nmgd (4.35)

where L′ and M′
ac are the distributed spanwise lift and pitching moment (i.e., the lift

and pitching moment per unit length), mg is the spanwise weight distribution (i.e.,
the weight per unit length), and N is the “normal load factor” for the case in which
the wing is level (i.e., the z axis is directed vertically upward). Thus, N can be written
as

N = L
W

= 1 + Az

g
(4.36)

where Az is the z component of the wing’s inertial acceleration, W is the total weight
of the aircraft, and L is the total lift.

The distributed aerodynamic loads can be written in coefficient form as

L′ = qcc�

M′
ac = qc2cmac

(4.37)
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where the freestream dynamic pressure, q, is

q = 1
2
ρ∞U2 (4.38)

Note that the sectional lift c� and moment cmac coefficients are written here in
lower case to distinguish them from lift and pitching moment coefficients for a two-
dimensional wing, which are normally written in upper case. Finally, the primes are
included with L′, M′, and M′

ac to reflect that these are distributed quantities (i.e., per
unit span).

The sectional lift and pitching-moment coefficients can be related to the angle of
attack α by an appropriate aerodynamic theory as some functions c�(α) and cmac(α),
where the functional relationship generally involves integration over the planform.
To simplify the calculation, the wing can be broken up into spanwise segments of
infinitesimal length, where the local lift and pitching moment can be estimated from
two-dimensional theory. This theory, commonly known as “strip theory,” frequently
uses a table for efficient calculation. Here, however, for small values of α, we may
use an even simpler form in which the lift–curve slope is assumed to be a constant
along the span, so that

c�(y) = aα(y) (4.39)

where a denotes the constant sectional lift–curve slope, and the sectional-moment
coefficient cmac(α) is assumed to be a constant along the span.

The angle of attack is represented by two components. The first is a rigid con-
tribution, αr, from a rigid rotation of the surface (plus any built-in twist, although
none is assumed to exist here). The second component is the elastic angle of twist
θ(y). Hence

α(y) = αr + θ(y) (4.40)

where, as is appropriate for strip theory, the contribution from downwash associated
with vortices at the wing tip is neglected. Therefore, associated with the angle of
attack at each infinitesimal section is a component of sectional-lift coefficient given
by strip theory as

c�(y) = a[αr + θ(y)] (4.41)

4.2.2 Equilibrium Equation

Because we are analyzing the static behavior of this wing, it is appropriate to simplify
the fundamental constitutive relationship of torsional deformation, Eq. (2.42), to
read

T = GJ
dθ

dy
(4.42)

where GJ is the effective torsional stiffness and T is the twisting moment about
the elastic axis. Now, a static equation of moment equilibrium about the elastic axis
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can be obtained by equating the rate of change of twisting moment to the negative
of the applied torque distribution. This is a specialization of Eq. (2.43) in which
time-dependent terms are ignored, yielding

dT
dy

= d
dy

(
GJ

dθ

dy

)
= −M′ (4.43)

Recognizing that uniformity implies GJ is constant over the length; substituting
Eqs. (4.37) into Eq. (4.35) to obtain the applied torque; and, finally, substituting the
applied torque and Eq. (4.42) for the internal torque into the equilibrium equation,
Eq. (4.43), we obtain

GJ
d2θ

dy2
= −qc2cmac − eqcc� + Nmgd (4.44)

Eq. (4.41) now can be substituted into the equilibrium equation to yield an in-
homogeneous, second-order, ordinary differential equation with constant coeffi
cients

d2θ

dy2
+ qcae

GJ
θ = − 1

GJ

(
qc2cmac + qcaeαr − Nmgd

)
(4.45)

A complete description of this equilibrium condition requires specification of the
boundary conditions. Because the surface is built in at the root and free at the tip,
these conditions can be written as

y = 0: θ = 0 (zero deflection)

y = �:
dθ

dy
= 0 (zero twisting moment)

(4.46)

Obviously, these boundary conditions are valid only for the clamped-free condition.
The boundary conditions for other end conditions for beams in torsion are given in
Section 3.2.2.

4.2.3 Torsional Divergence

If it is presumed that the configuration parameters of the uniform wing are known,
then it is possible to solve Eq. (4.45) to determine the resulting twist distribution and
associated airload. To simplify the notation, let

λ2 ≡ qcae

GJ

λ2αr ≡ 1

GJ

(
qc2cmac − Nmgd

) (4.47)

so that

αr = ccmac

ae
− Nmgd

qcae
(4.48)
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Note that λ2 and αr are independent of y because the wing is assumed to be uniform.
The static-aeroelastic equilibrium equation now can be written as

d2θ

dy2
+ λ2θ = −λ2 (αr + αr) (4.49)

The general solution to this linear ordinary differential equation is

θ = Asin(λy) + Bcos(λy) − (αr + αr) (4.50)

subject to the condition that λ �= 0. Applying the boundary conditions, we find that

θ(0) = 0: B = αr + αr

θ ′(�) = 0: A= B tan(λ�)
(4.51)

where ( )′ = d( )/dy. Thus, the elastic-twist distribution becomes

θ = (αr + αr) [tan(λ�) sin(λy) + cos(λy) − 1] (4.52)

Because θ is now known, the spanwise-lift distribution can be found using the
relationship

L′ = qca(αr + θ) (4.53)

It is important to note from the expression for elastic twist that θ becomes
infinite as λ� approaches π/2. This phenomenon is called “torsional divergence” and
depends on the numerical value of

λ =
√

qcae

GJ
(4.54)

Thus, it is apparent that there exists a value of the dynamic pressure q = qD, at which
λ� equals π/2, where the elastic twist theoretically becomes infinite. The value qD is
called the “divergence dynamic pressure” and is given by

qD = GJ
eca

( π

2�

)2
(4.55)

Noting now that we can write

λ� = π

2

√
q (4.56)

with

q = q
qD

(4.57)

the twist angle of the wing at the tip can be written as

θ(�) = (αr + αr) [sec(λ�) − 1]

= (αr + αr)
[
sec

(π

2

√
q
)

− 1
] (4.58)
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Figure 4.13. Plot of twist angle for the wing tip versus q for αr + αr = 1◦

where Eq. (4.48) now can be written as

αr = ccmac

ae
− 4�2 Nmgd

GJπ2q
(4.59)

Letting d be zero so that αr becomes independent of q, we can examine the behavior
of θ(�) versus q. Such a function is plotted in Fig. 4.13, where we see that the tip-twist
angle goes to infinity as q approaches unity. Note that the character of the plot in
Fig. 4.13 is similar to the prebuckling behavior of columns that have imperfections.
It is of practical interest to note that the tip-twist angle may become sufficiently large
to warrant concern about the structural integrity for dynamic pressures well below
qD. In practice, designers normally require the divergence dynamic pressure to be
outside of the vehicle’s flight envelope—perhaps by specifying an appropriate factor
of safety.

Because this instability occurs at a dynamic pressure that is independent of the
right-hand side of Eq. (4.49), as long as the right-hand side is nonzero, it seems
possible that the divergence condition could be obtained from the homogeneous
equilibrium equation

d2θ

dy2
+ λ2θ = 0 (4.60)

The general solution to this eigenvalue problem of the Sturm–Liouville type is

θ = Asin(λy) + Bcos(λy) (4.61)

for λ �= 0. Applying the boundary conditions, we obtain

θ(0) = 0: B = 0

θ ′(�) = 0: Aλ cos(λ�) = 0
(4.62)
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If A= 0 in the last condition, there is no deflection; this is a so-called trivial solu-
tion. Because λ �= 0, a nontrivial solution is obtained when cos(λ�) = 0. This is the
“characteristic equation” with solutions given by

λn� = (2n − 1)
π

2
(n = 1, 2, . . .) (4.63)

These values are called “eigenvalues.” This set of values for λn� corresponds to a set
of dynamic pressures

qn = (2n − 1)2
( π

2�

)2 GJ
eca

(n = 1, 2, . . .) (4.64)

The lowest of these values, q1, is equal to the divergence dynamic pressure, qD, pre-
viously obtained from the inhomogeneous equilibrium equation. This result implies
that there are nontrivial solutions of the homogeneous equation for the elastic twist.
In other words, even for cases in which the right-hand side of Eq. (4.49) is zero
(i.e., when αr + αr = 0), there is a nontrivial solution

θn = An sin(λn y) (4.65)

for each of these discrete values of dynamic pressure. Because An is undetermined,
the amplitude of θn is arbitrary, which means that the effective torsional stiffness is
zero whenever the dynamic pressure q = qn. The mode shape θ1 is the divergence
mode shape, which must not be confused with the twist distribution obtained from
the inhomogeneous equation.

If the elastic axis is upstream of the aerodynamic center, then e < 0 and λ is
imaginary in the preceding analysis. The characteristic equation for the divergence
condition becomes cosh(|λ|�) = 0. Because there is no real value of λ that satisfies
this equation, the divergence phenomenon does not occur in this case.

4.2.4 Airload Distribution

It has been observed that the spanwise-lift distribution can be determined as

L′ = qca(αr + θ) (4.66)

where we recall from Eq. (4.52) that

θ = (αr + αr) [tan(λ�) sin(λy) + cos(λy) − 1] (4.67)

and where αr is given in Eq. (4.48). If the lifting surface is a wind-tunnel model of
a wing and is fastened to the wind-tunnel wall, then the load factor, N, is equal to
unity and αr can be specified. The resulting computation of L′ is straightforward.

If, however, the lifting surface represents half the wing surface of a flying vehicle,
the computation of L′ is not as direct. Note that the constant αr is a function of N.
Thus, for a given value of αr, there is a corresponding distribution of elastic twist
and a particular airload distribution. This airload can be integrated over the vehicle
to obtain the total lift, L. Recall that N = L/W, where W is the vehicle weight. It
is thus apparent that the load factor, N, is related to the rigid angle of attack, αr,
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through the elastic twist angle, θ . For this reason, either of the two variables αr and
N can be specified; the other then can be obtained from the total lift L. Assuming a
two-winged vehicle with all the lift being generated from the wings, we find

L = 2
∫ �

0
L′ dy (4.68)

Substituting for L′ and αr as given herein yields

L = 2qca
∫ �

0

{
αr + (αr + αr) [tan(λ�) sin(λy) + cos(λy) − 1]

}
dy

= 2qca�

{
(αr + αr)

[
tan(λ�)

λ�

]
− αr

} (4.69)

Because N = L/W, this expression can be divided by the vehicle weight to yield
a relationship for N in terms of αr and αr. This relationship then can be solved
simultaneously with the preceding expression for αr, Eq. (4.48), in terms of αr and
N. In this manner, αr can be eliminated, providing either a relationship that expresses
N in terms of αr, given by

N =
2GJ (λ�)2

{
aeαr + ccmac

[
1 − λ�

tan(λ�)

]}

ae�
{

Weλ�
tan(λ�) + 2mg�d

[
1 − λ�

tan(λ�)

]} (4.70)

or a relationship that expresses αr in terms of N

αr = NW�e

2GJλ� tan(λ�)
+
[

1 − λ�

tan(λ�)

] [
Nmg�2d

GJ (λ�)2
− ccmac

ae

]
(4.71)

These relationships permit us to specify a constant αr and find N(q) or, alternatively,
to specify a constant N and find αr(q). We find that N(q) starts out at zero for q = 0.
Conversely, αr(q) starts out at infinity for q = 0. The limiting values as q → qD

depend on the other parameters. These equations can be used to find the torsional
deformation and the resulting airload distribution for a specified flight condition.

The calculation of the spanwise aeroelastic airload distribution is immensely
practical and is used in industry in two separate ways. First, it is used to satisfy a
requirement of aerodynamicists or performance engineers who need to know the
total force and moment on the flight vehicle as a function of altitude and flight
condition. In this instance, the dynamic pressure q (and altitude or Mach number)
and αr are specified, and the load factor N or total lift L is computed using Eq. (4.70).

A second requirement is that of structural engineers, who must ensure the struc-
tural integrity of the lifting surface for a specified load factor N and flight condition.
Such a specification normally is described by what is called a V-N diagram. For
the conditions of given load factor and flight condition, it is necessary for structural
engineers to know the airload distribution to conduct a subsequent loads and stress
analysis. When q (and altitude or Mach number) and N are specified, αr is then
determined from Eq. (4.71). Knowing q, αr, and N, we then use Eq. (4.48) to find αr.
The torsional deformation, θ , then follows from Eq. (4.67) and the spanwise-airload
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Figure 4.14. Rigid and elastic wing-lift distribu-
tions holding αr constant

distribution follows from Eq. (4.66). From this, the distributions of torsional and
bending moments along the wing can be found, leading directly to the maximum
stress in the wing, generally somewhere in the root cross section.

Observe that the overall effect of torsional flexibility on the unswept lifting
surface is to significantly change the spanwise-airload distribution. This effect can be
seen as the presence of the elastic part of the lift coefficient, which is proportional to
θ(y). Because this elastic torsional rotation generally increases as the distance from
the root (i.e., out along the span), so also does the resultant airload distribution.
The net effect depends on whether αr or N is specified. If αr is specified, as in the
case of a wall-mounted elastic wind-tunnel model (N = 1) or as in performance
computations, then the total lift increases with the additional load appearing in the
outboard region, as shown in Fig. 4.14.

In the other case, when N is specified by a structural engineer, the total lift (i.e.,
area under L′ versus y) is unchanged, as shown in Fig. 4.15. The addition of lift in
the outboard region must be balanced by a decrease inboard. This is accomplished
by decreasing αr as the surface is made more flexible.

Figure 4.15. Rigid and elastic wing-lift distribu-
tions holding total lift constant
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All of the preceding equations for torsional divergence and airload distribu-
tion were based on a strip-theory aerodynamic representation. A slight numerical
improvement in their predictive capability can be obtained if the two-dimensional
lift–curve slope, a, is replaced everywhere by the total (i.e., three-dimensional) lift–
curve slope. Although there is little theoretical justification for this modification, it
alters the numerical results in the direction of the exact answer. Also, it is important
to note that the lift distributions depicted in Figs. 4.14 and 4.15 cannot be generated
with strip-theory aerodynamics because strip theory fails to pick up the dropoff of
the airload to zero at the wing tip caused by three-dimensional effects. An aero-
dynamic theory at least as sophisticated as Prandtl’s three-dimensional lifting-line
theory must be used to capture that effect. In such a case, closed-form expressions
such as those of Eqs. (4.70) and (4.71) cannot be obtained; instead, it is necessary to
use numerical methods to find N as a function of αr or αr as a function of N.

4.2.5 Aileron Reversal

In Section 4.1.4, an example illustrating aileron reversal is presented based on a rigid,
two-dimensional wing with a flexible support. In this section, we examine the same
physical phenomenon using a torsionally flexible wing model. With the geometry
and boundary conditions of the uniform, torsionally flexible lifting surface as before,
we can derive the reversal dynamic pressure for a clamped-free wing. Two logical
choices are presented regarding the defining condition. One is to define reversal
dynamic pressure as that dynamic pressure at which the change of total lift with
respect to the aileron deflection is equal to zero. Another equally valid definition is
to define it as the dynamic pressure at which the change in root-bending moment with
respect to the aileron deflection is equal to zero. Finally, we look at the effectiveness
of ailerons for roll control—often termed the “roll effectiveness”—of a simplified
flying aircraft model.

Note that the presence of an aileron requires that we modify the sectional lift
and pitching moment coefficients, so that

c� = aα + c�β
β

cmac = cmβ
β

(4.72)

Using these coefficients and setting αr equal to zero, the sectional lift and pitching
moment are given by

L′ = qc
(
aθ + c�β

β
)

M′ = eL′ + qc2cmβ
β

(4.73)

where we assume that the aileron extends along the entire length of the wing. As-
suming the weight to have a negligible effect on the reversal condition, the modified
version of Eq. (4.49) is written as

d2θ

dy2
+ λ2θ = −λ2ψβ (4.74)
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where

ψ = e c�β
+ c cmβ

a e
(4.75)

and, as before

λ2 ≡ qcae
GJ

(4.76)

With the boundary conditions of a clamped-free beam, the solution for θ is given by

θ = −ψβ [1 − cos(λy) − sin(λy) tan(λ�)] (4.77)

The total lift for the uniform lifting surface then is obtained as

L =
∫ �

0
L′dy = qc�

e

[(
e c�β

+ c cmβ

) tan(λ�)
λ�

− c cmβ

]
β (4.78)

Therefore, from the first definition of aileron reversal

∂L
∂β

= 0 ⇒ tan (λ�)
λ�

= ccmβ

ccmβ
+ ec�β

(4.79)

which, given e/c and the sectional coefficients,1 may be solved numerically for λ�.
The smallest value of λ� denoted by λ1� yields the reversal dynamic pressure as

qR = (λ1�)2GJ
eca�2

(4.80)

We may refine the theoretical result by considering a simplified correction from
three-dimensional effects by use of a tip-loss factor, typically chosen as B = 0.97.
Instead of obtaining the total lift by integrating the sectional lift over the entire wing
length from y = 0 to y = �, we integrate only from y = 0 to y = B�.

Similarly, we may account for an aileron that does not extend over the entire
length of the wing. Suppose that the aileron starts at y = r� and extends to y = R�

with 0 ≤ r < R ≤ 1. This means that there are as many as three segments to be
analyzed. There is no inhomogeneous term for the segments between y = r� and
y = R�, so instead of Eq. (4.74), we write

d2θ1

dy2
+ λ2θ1 = 0 0 ≤ y ≤ r�

d2θ2

dy2
+ λ2θ2 = − λ2ψβ r� ≤ y ≤ R�

d2θ3

dy2
+ λ2θ3 = 0 R� ≤ y ≤ �

(4.81)

1 Estimated values of the airfoil coefficients may be obtained from experiment or from XFOIL,
a computer code based on a panel method for design and analysis of subsonic isolated airfoils
(see Drela, 1992).
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and obtain the resulting six arbitrary constants by imposing the six boundary
conditions

θ1(0) = 0

θ1(r�) = θ2(r�)

dθ1

dy
(r�) = dθ2

dy
(r�)

θ2(R�) = θ3(R�)

dθ2

dy
(R�) = dθ3

dy
(R�)

dθ3

dy
(�) = 0

(4.82)

Calculation of the reversal dynamic pressure from the second definition (i.e., the
one in terms of the root-bending-moment criterion) is left as an exercise for readers
(see Problem 20).

This treatment can be generalized easily to consider the roll effectiveness of
a complete aircraft model. Similar problems can be posed in the framework of
dynamics, in which the objective is, say, to predict the angular acceleration caused
by deflection of a control surface, or the time to change the orientation of the aircraft
from one roll angle to another. Depending on the aircraft and the maneuver, it may
be necessary to consider nonlinearities. Here, however, only a static, linear treatment
is included.

Consider a rolling aircraft with unswept wings, the right half of which is shown
in Fig. 4.16, with a constant roll rate denoted by p. As shown in Fig. 4.17, the wing
section has an incidence angle with respect to the freestream velocity of αr + θ(y). In
a roll maneuver with p > 0, the right wing moves upward while the left wing moves
downward. The right wing then “sees” an additional component of wind velocity
equal to py perpendicular to the freestream velocity and downward. As shown in
Fig. 4.17, because py � U, the angle of attack is reduced from the incidence angle
to αr + θ − py/U.

Some contributions to the lift and pitching moment are the same (opposite) on
both sides of the aircraft; these are referred to as symmetric (antisymmetric) com-
ponents. Separate problems can be posed in terms of symmetric and antisymmetric
parts, which are generally uncoupled from one another. In particular, we can treat
the roll problem as an antisymmetric problem noting that all symmetric components
cancel out in pure roll. Hence, we can discard them a priori. For example, in the
relationship

α = ���
0

αr + θ(y) − py
U

(4.83)

the first term, αr, drops out because of symmetry. Both θ(y) and the roll-rate term
are antisymmetric because θ and β have the opposite sense across the mid-plane of
the aircraft. The last term, which represents the increment in the angle of attack from
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y

x

Figure 4.16. Schematic of a rolling aircraft

the roll rate p based on the assumption of a small angle of attack, also is explicitly
antisymmetric.

Assuming c(y) to be a constant, c, we may write the governing differential
equation as

d2θ

dy2
+ λ2θ = λ2

( py
U

− βψ
)

(4.84)

with boundary conditions θ(0) = dθ/dy(�) = 0. The solution is given by

θ = p
Uλ

[λy − sec(λ�) sin(λy)] + ψβ[tan(λ�) sin(λy) + cos(λy) − 1] (4.85)

β

α θ

Figure 4.17. Section of right wing with positive aileron deflection
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Figure 4.18. Roll-rate sensitivity versus λ� for e = 0.25c, c�β
= 0.8, and cmβ

= −0.5, showing
the reversal point at λ� = 0.984774

Now, because the aircraft is in a steady-state rolling motion, the total rolling moment
must be equal to zero. Thus, ignoring the offset of the wing root from the mid-plane
of the aircraft, we may find the moment of the lift about the mid-plane of the aircraft
as ∫ �

0
yL′(y)dy =

∫ �

0
yqc

[
a
(
θ − py

U

)
+ c�ββ

]
dy (4.86)

which, when set equal to zero, can be solved for the constant roll rate p. (Note that
the three terms in Eq. [4.86] are the contributions toward the rolling moment due
to the elastic twist, the roll rate p, and the aileron deflection β, respectively.) This
result, written here in dimensionless form as p�/U, is given by

p�

U
= λ�

{
ccmβ

[
(λ�)2 − 2 sec(λ�) + 2

]− 2ec�β
[sec(λ�) − 1]

}
β

2ae[λ� − tan(λ�)]
(4.87)

which is proportional to β. At a certain dynamic pressure, we are unable to change
the roll rate by changing β. This dynamic pressure occurs when the sensitivity of the
roll rate to β vanishes; viz.

∂
(

p�

U

)
∂β

= λ�
{
ccmβ

[
(λ�)2 − 2 sec(λ�) + 2

]− 2ec�β
[sec(λ�) − 1]

}
2ae[λ� − tan(λ�)]

= 0 (4.88)

For specific values of e/c and the sectional airfoil coefficients c�β
and cmβ

, we may
numerically solve this equation for a set of roots for λ�. The lowest value is associated
the aileron reversal. Alternatively, we simply may plot the quantity in Eq. (4.88)
versus λ� until it changes sign, which is the reversal point.

For a specific case (i.e., e = 0.25c, c�β
= 0.8, and cmβ

= −0.5), the roll-rate sen-
sitivity is shown versus λ�, which is proportional to the speed U, in Fig. 4.18, which
shows the reversal point at λ� = 0.984774. Notice that the curve at low speed starts
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Figure 4.19. Contributions to rolling moment R (normalized) from the three terms of
Eq. (4.86)

as relatively flat and monotonically decreases until the reversal point is reached.
This shape is a typical result and shows the importance of static aeroelasticity in this
aspect of flight mechanics. It is also interesting to observe the relative contributions
to the rolling moment from the elastic twist, the rolling motion, and the aileron
deflections depicted in Fig. 4.19. At the reversal point, p vanishes, and the rolling
moment contributions from elastic twist and from aileron deflection exactly cancel
out one another.

4.2.6 Sweep Effects

To observe the effect of sweeping a wing aft or forward on the aeroelastic charac-
teristics, it is presumed that the swept geometry is obtained by rotating the surface
about the root of the elastic axis, as illustrated in Fig. 4.20. The aerodynamic re-
actions depend on the angle of attack as measured in the streamwise direction as

α = αr + θ (4.89)

where θ is the change in the streamwise angle of attack caused by elastic deformation.
To develop a kinematical relationship for θ , we introduce the unit vectors â1 and â2,
aligned with the y axis and the freestream, respectively. Another set of unit vectors,
b̂1 and b̂2, is obtained by rotating â1 and â2 by the sweep angle �, as shown in
Fig. 4.20, so that b̂1 is aligned with the elastic axis (i.e., the y axis). From Fig. 4.20,
we see that

b̂1 = cos(�)â1 + sin(�)â2

b̂2 = − sin(�)â1 + cos(�)â2

(4.90)

Observe that the total rotation of the local wing cross-sectional frame caused by
elastic deformation can be written as the combination of rotations caused by wing
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dw

dy θ

Figure 4.20. Schematic of swept wing (positive �)

torsion, θ about b̂1, and wing bending, dw/dy about b̂2, where w is the bending
deflection (positive up, which in Fig. 4.20 is out of the paper). Now, θ is the component
of this total rotation about â1; that is

θ =
(

θ b̂1 + dw
dy

b̂2

)
· â1

= θ cos(�) − dw
dy

sin(�)

(4.91)

From this relationship, it can be noted that as the result of sweep, the effective angle
of attack is altered by bending. This coupling between bending and torsion affects
both the static aeroelastic response of the wing in flight as well as the conditions
under which divergence occurs. Also, it can be observed that for combined bending
and torsion of a swept, elastic wing, the section in the direction of the streamwise
airflow exhibits a change in camber—a higher-order effect that is here neglected.

To facilitate direct comparison with the previous unswept results, to the extent
possible, the same structural and aerodynamic notation is retained as was used for
the unswept planform. To determine the total elastic deflection, two equilibrium
equations are required: one for torsional moment equilibrium as in the unswept case
and one for transverse force equilibrium (associated with bending). These equations
can be written as

d
dy

(
GJ

dθ

dy

)
= −qecaα − qc2cmac + Nmgd

d2

dy2

(
EI

d2w

dy2

)
= qcaα − Nmg

(4.92)
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In these equilibrium equations, a is used to denote the two-dimensional lift–curve
slope of the swept surface and cmac to represent the two-dimensional pitching-
moment coefficient of the swept surface. These aerodynamic constants are related
to their unswept counterparts by

a = a cos(�)

cmac = cmac cos2(�)
(4.93)

for moderate- to high-aspect-ratio surfaces. Substituting for a, α = αr + θ and, in
turn, the dependence of θ on θ and w from Eq. (4.91), specializing for spanwise
uniformity so that GJ and EI are constants, and letting ( )′ denote d( )/dy, we
obtain two coupled, ordinary differential equations for torsion and bending given by

θ
′′ + qeca

GJ
θ cos2(�) − qeca

GJ
w′ sin(�) cos(�)

= − 1

GJ

[
qecaαr cos(�) + qc2cmac cos2(�) − Nmgd

]
w′′′′ + qca

EI
w′ sin(�) cos(�) − qca

EI
θ cos2(�) = 1

EI
[qcaαr cos(�) − Nmg] (4.94)

Because the surface is built in at the root and free at the tip, the following boundary
conditions must be imposed on the solution:

y = 0: θ = 0 (zero torsional rotation)
w = 0 (zero deflection)
w′ = 0 (zero bending slope)

y = �: θ
′ = 0 (zero twisting moment)

w′′ = 0 (zero bending moment)
w′′′ = 0 (zero shear force)

(4.95)

Bending-torsion coupling is exhibited in Eqs. (4.94) through the term involving w in
the torsion equation and through the term involving θ in the bending equation.

There are two special cases of interest in which the coupling either vanishes or
is much simplified so that we can solve the equations analytically. The first is for the
case of vanishing sweep in which the uncoupled torsion equation (i.e., the first of
Eqs. [4.94]) is the same as previously discussed and clearly leads to solutions for
either the torsional divergence condition or the torsional deformation and air-
load distribution as discussed (see Sections 4.2.3 and 4.2.4, respectively). In the
latter case, once the torsional deformation is obtained, the solution for θ = θ can
be substituted into the bending equation (i.e., the second of Eqs. [4.94]). Integra-
tion of the resulting ordinary differential equation and application of the boundary
conditions lead to the shear force, bending moment, bending slope, and bending
deflection.

A second special case occurs when e = 0. In this case, torsional divergence does
not take place, and a polynomial solution for θ can be found from the θ equation and
boundary conditions. Substitution of this solution into the bending equation leads
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Λ
Figure 4.21. Divergence dynamic pressure versus �

to a fourth-order, ordinary differential equation for w with a polynomial forcing
function; note that the θ terms are now part of that forcing function. This equation
and accompanying boundary conditions can be solved for the bending deflection,
but the solution is not straightforward. Alternatively, to solve this equation for a
divergence condition, we need only the homogeneous part, which can be written as
a third-order equation in ζ = w′; namely

ζ ′′′ + qca

EI
ζ sin(�) cos(�) = 0 (4.96)

For the clamped-free boundary conditions ζ (0) = ζ ′(�) = ζ ′′(�) = 0, this equation
has a known analytical solution that yields a divergence dynamic pressure of

qD = −6.32970
EI

ac�3 sin(�) cos(�)
(4.97)

The minus sign implies that this bending-divergence instability takes place only for
forward-swept wings; that is, where � < 0.

Examination of Eqs. (4.94) illustrates that there are two ways in which the sweep
influences the aeroelastic behavior. One way is the loss of aerodynamic effectiveness,
as exhibited by the change in the second term of the torsion equations from

qeca

GJ
θ to

qeca

GJ
θ cos2(�) (4.98)

Note that this effect is independent of the direction of sweep. The second effect
is the influence of bending slope on the effective angle of attack (see Eq. 4.91),
which leads to bending-torsion coupling. This coupling has a strong influence on
both divergence and load distribution. The total effect of sweep depends strongly
on whether the surface is swept backward or forward. This can be illustrated by its
influence on the divergence dynamic pressure, qD, as shown in Fig. 4.21. It is apparent
that forward sweep causes the surface to be more susceptible to divergence, whereas
backward sweep increases the divergence dynamic pressure. Indeed, a small amount
of backward sweep (i.e., for the idealized case under consideration, depending on
e/� and GJ/EI , only 5 or 10 degrees) can cause the divergence dynamic pressure
to become sufficiently large that it ceases to be an issue. Specific cases are discussed
later in this section in conjunction with an approximate solution of the governing
equations.
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Λ

Λ>

Λ<Figure 4.22. Lift distribution for positive, zero,
and negative �

The overall effect of sweep on the aeroelastic-load distribution also strongly
depends on whether the surface is swept forward or backward. This is illustrated in
Fig. 4.22, which shows spanwise load distributions for an elastic surface for which the
total lift (or N) is held constant by adjusting αr. From the standpoint of structural
loads, it is apparent that the root bending moment is significantly greater for forward
sweep than for backward sweep at a given value of total lift.

The primary motivation for sweeping a lifting surface is to improve the vehicle
performance through drag reduction, although some loss in lifting capability may be
experienced. However, these aeroelastic considerations can have a significant impact
on design decisions. From an aeroelastic standpoint, forward sweep exacerbates
divergence instability and increases structural loads, whereas backward sweep can
alleviate these concerns. The advent of composite lifting surfaces enabled the use
of bending-twist elastic coupling to passively stabilize forward sweep, making it
possible to use forward-swept wings. Indeed, the X-29 could not have been flown
without a means to stabilize the wings against divergence. We discuss this further in
Section 4.2.7.

Exact Solution for Bending-Torsion Divergence. Extraction of the analytical solu-
tion of the set of coupled, ordinary differential equations in Eqs. (4.94) is compli-
cated. The exact analytical solution is obtained most easily by first converting the
coupled set of equations into a single equation governing the elastic component of
the angle of attack. For calculation of only the divergence dynamic pressure, we can
consider just the homogeneous parts of Eqs. (4.94):

θ
′′ + qeca

GJ
θ cos2(�) − qeca

GJ
w′ sin(�) cos(�) = 0

w′′′′ + qca

EI
w′ sin(�) cos(�) − qca

EI
θ cos2(�) = 0

(4.99)

To obtain a single equation, we differentiate the first equation with respect to y and
multiply it by cos(�). From this modified first equation, we subtract sin(�) times the
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second equation, replacing θ cos(�) − w′ sin(�) with θ , to obtain

θ ′′′ + qeca

GJ
cos2(�)θ ′ + qca

EI
sin(�) cos(�)θ = 0 (4.100)

Introducing a dimensionless axial coordinate η = y/�, this is equation can be written
as

θ ′′′ + qeca�2

GJ
cos2(�)θ ′ + qca�3

EI
sin(�) cos(�)θ = 0 (4.101)

where ( )′ now denotes d( )/dη. The boundary conditions can be derived from
Eqs. (4.95) as

θ(0) = θ ′(1) = θ ′′(1) + qeca�2

GJ
cos2(�)θ(1) = 0 (4.102)

Here, the first of Eqs. (4.99) and the final boundary condition from Eqs. (4.95) are
used to derive the third boundary condition.

The exact solution for Eqs. (4.101) and (4.102) was obtained by Diederich and
Budiansky (1948). Its behavior is complex, with multiple branches, and it is not
used easily in a design context. However, a simple approximation of one branch is
presented next and compared with plots of the exact solution.

Approximate Solution for Bending-Torsion Divergence. In view of the complexity
of the exact solution, it is fortunate that there are various approximate methods for
treating such equations, one of which is the application of the Ritz method to the
principle of virtual work (see Section 3.5). In this special case, the kinetic energy is
zero, and the resulting algebraic equations are a special case of the generalized equa-
tions of motion (see Section 3.1.5), termed “generalized equations of equilibrium.”
Determination of such an approximate solution is left as an exercise for readers
(see Problems 11–16).

Here, we consider instead an approximation of one branch of the analytical so-
lution for the bending-torsion divergence problem. Fortunately, the most important
branch from a physical point of view behaves simply. Indeed, if we define

τ = qeca�2

GJ
cos2(�)

β = qca�3

EI
sin(�) cos(�)

(4.103)

then, as shown by Diederich and Budiansky (1948), the divergence boundary can be
approximately represented within a certain range in terms of a straight line

τD = π2

4
+ 3π2

76
βD (4.104)

Note that for a wing rigid in bending, we have βD = 0 and, thus, τD = π2

4 , which is
the exact solution for pure torsional divergence. Also, for a torsionally rigid wing,
we have τD = 0 and, thus, βD = −19/3, which is very close to −6.3297, the exact
solution for bending divergence. For the cases in between, the error is quite small.
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Figure 4.23. τD versus βD for coupled bending-torsion divergence; solid lines (exact solution)
and dashed line (Eq. 4.104)

It is important to note that the sign of τ is driven by the sign of e, whereas the sign of
β is driven by the sign of �. The approximate solution in Eq. (4.104) is plotted along
with some branches of the exact solution in Fig. 4.23. Note the excellent agreement
between the straight-line approximation and the exact solution near the origin. Note
also that the intersections of the solution with the τD axis (where βD = 0) coincide
with the squares of the roots previously obtained in Section 4.2.3, Eq. (4.63), as
(2n − 1)2π2/4 for n = 1, 2, . . . , ∞ (i.e., π2/4, 9π2/4, . . .).

A more convenient way of depicting the behavior of the divergence dynamic
pressure is to plot τD versus a parameter that depends on only the configuration.
This can be accomplished by introducing the dimensionless parameter r , given by

r ≡ β

τ
= �

e
GJ

EI
tan(�) (4.105)

which can be positive, negative, or zero. Equation (4.104) can then be written as

τD = π2

4
+ 3π2r

76
τD (4.106)

Thus, we can solve for τD such that

τD = π2

4
(

1 − 3π2r
76

) (4.107)

or alternatively for qD, equal to

qD = GJπ2

4eca�2 cos2(�)
[
1 − 3π2

76
�
e

GJ
EI

tan(�)
] (4.108)

Several branches of the exact solution of Eqs. (4.101) and (4.102) for the smallest
absolute values of τD versus r are plotted as solid lines in Fig. 4.24. Note that there is
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Figure 4.24. τD versus r for coupled bending-torsion divergence; solid lines (exact solution)
and dashed lines (Eq. 4.107 and τD = −27r 2/4 in fourth quadrant)

at least one branch in all quadrants except the third, and there is only one branch in
the fourth quadrant. The approximate solutions for τD versus r from Eq. (4.107) are
plotted as dashed hyperbolae in the first, second, and fourth quadrants. Moreover,
as r becomes large, the solution in the fourth quadrant asymptotically approaches
the parabola τD = −27r2/4, also shown as a dashed curve. Note that as in Fig. 4.23,
the intersections of the roots with the τD axis are π2/4, 9π2/4, 25π2/4, and so on. The
configuration of any wing fixes the value of r . For positive e, we consider only positive
values of τD. Thus, we start from zero and proceed in the positive τD direction on
this plot (i.e., at constant r) to find the first intersection with a solid line. This value
of τD is the normalized dynamic pressure at which divergence occurs. In Fig. 4.25,
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Figure 4.25. τD versus r for coupled bending-torsion divergence; solid lines (exact solution)
and dashed lines (Eq. 4.107)
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an enlargement of these results in a more practical range is shown. It is easily seen
that the dashed lines in the first and second quadrants are close to the solid lines
when r < 1.5. Note that when e < 0, a negative value of τD leads to a positive value
of qD. In this case, we should proceed along a line of constant r in the negative τD

direction.
It is interesting that the approximate solution, despite its proximity to the exact

solution, exhibits a qualitatively different behavior mathematically. The approximate
solution exhibits an asymptotic behavior, with τD tending to plus infinity from the
left and to minus infinity from the right at the value of r that causes the denominator
to vanish—namely, when r = 76/(3π2) = 2.56680. If the approximate solution were
exact, mathematically it would mean that divergence is not possible at that value
of r . Moreover, physically it would mean that divergence is not possible for e > 0
and r ≥ 76/(3π2) [or for e < 0 and r ≤ 76/(3π2)]. Actually, however, the exact
solution exhibits an instability of the “limit-point” variety. For e > 0, this means that
divergence occurs for small and positive values of r . Moreover, as r is increased in the
first quadrant, τD also increases until a certain point is reached, at which two things
happen: (1) above this value of τD, the curve turns back to the left instead of reaching
an asymptote; and (2) any slight increase in r beyond this point causes the solution
to jump to a higher branch. This point is called a limit point. On the main branch
of the curve in the first quadrant, for example, the limit point is at r = 1.59768 and
τD = 10.7090. It is shown in the plot in Fig. 4.24 that any slight increase in r causes
the solution to jump from the lower branch—where its value is 10.7090—to a higher
branch, where its value is 66.8133, at which point τD is rapidly increasing with r . So,
although there is no value of r that results in an infinite exact value of the divergence
dynamic pressure, practically speaking, divergence in the vicinity of the limit-point
value of r is all but eliminated. Thus, it is sufficient for practical purposes to say that
divergence is not possible near those points where the approximate solution blows
up, and we may regard the approximate solution as sufficiently close to the exact
solution for design purposes. The limit point in the fourth quadrant is appropriate
for the situation in which e < 0—namely, when the aerodynamic center is behind
the elastic axis. There, the exact limit point is at r = 3.56595 and τD = −14.8345.
Note that the negative values of e and τD yield a positive qD. It is left to readers as
an exercise to explore this possibility further (see Problem 18).

Although there are qualitative differences, as noted, between the exact and ap-
proximate solutions, within the practical range of interest, this linear approximation
of the divergence boundary in terms of τD and βD is numerically accurate and leads
to a simple expression for the divergence dynamic pressure in terms of the structural
stiffnesses, e/�, and the sweep angle (i.e., Eq. [4.108]). This approximate formula
can be used in design to explore the behavior of the divergence dynamic pressure
as a function of the various configuration parameters therein. For the purpose of
displaying results for the divergence dynamic pressure when e > 0, it is convenient
to normalize qD with its value at zero sweep angle; namely

qD0 = π2GJ
4eca�2

(4.109)
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Figure 4.26. Normalized divergence dynamic pres-
sure for an elastically uncoupled, swept wing with
GJ/EI = 1.0 and e/� = 0.02

so that
qD

qD0

= 1 + tan2(�)

1 − 3π2

76
�
e

GJ
EI

tan(�)
(4.110)

Thus, for a wing structural design with given values of e, GJ , EI, and �, there are
values of sweep angle � for which the divergence dynamic pressure goes to infinity
or becomes negative, implying that divergence is not possible at those values of �.
Some values of � make the numerator infinite because tan(�) blows up, whereas
other values make the denominator vanish or switch signs. Therefore, within the
principal range of −90◦ ≤ � ≤ 90◦, we can surmise that divergence can take place
only for cases in which |�| �= 90◦ and 3π2r �= 76. Sign changes have the following
consequences: Divergence is possible only if −90◦ < � < �∞, where

tan (�∞) = 76EIe

3π2GJ�
(4.111)

Thus, Eq. (4.110) can be written as

qD

qD0

= 1 + tan2 (�)

1 − tan(�)
tan(�∞)

(4.112)

In other words, we avoid divergence by choosing � ≥ �∞, and the divergence dy-
namic pressure drops drastically as � is decreased below �∞. Because �∞ is likely to
be small, this frequently means that backswept wings are free of divergence and that
divergence dynamic pressure drops drastically for forward-swept wings. Because �∞
is the asymptotic value of � from the approximate solution, which is greater than
the limit-point value of � from the exact solution, we may surmise that the approx-
imate solution provides a conservative design. Figure 4.26 shows the behavior of
divergence dynamic pressure for a wing with GJ/EI = 1.0 and e/� = 0.02. The plot,
as expected, passes through unity when the sweep angle is zero. Because �∞ is very
small for this case, the divergence dynamic pressure goes to infinity for a very small
positive value of sweep angle. Thus, even a small angle of backward sweep can make
divergence impossible. Figure 4.27 shows the result of decreasing GJ/EI to 0.2 and
holding e/� constant. Because �∞ increases, the wing must be swept back farther
than in the previous case to avoid divergence.
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Figure 4.27. Normalized divergence dynamic pres-
sure for an elastically uncoupled, swept wing with
GJ/EI = 0.2 and e/� = 0.02

Because e can be positive, negative, or zero, qD0 also may be positive, negative,
or zero. Thus, by normalizing qD by qD0 , we may obfuscate the role of the sign of e
on qD. In such cases and perhaps others, it is more convenient to write Eq. (4.112)
in a form that does not depend on qD0 . One way to accomplish this is to eliminate
qD0 from the expression for qD using Eqs. (4.109) and (4.111), yielding

qDac�3

EI
= 19

[
1 + tan2 (�)

]
3 [tan(�∞) − tan(�)]

(4.113)

making it clearer that divergence occurs only when −90◦ < � < �∞, regardless of
the sign of e. This form of the formula also shows more explicitly that EI has a role
in the design of swept wings that are free of divergence.

4.2.7 Composite Wings and Aeroelastic Tailoring

Aeroelastic tailoring is the design of wings using the directional properties of com-
posite materials to optimize aeroelastic performance. The concept of aeroelastic
tailoring is relatively new and came into the forefront during the design of forward-
swept wings in the 1980s. Equation (4.112) shows that qD drops dramatically for
forward-swept, untailored wings. The low divergence speed was a major hurdle in
the design of wings with forward sweep. As discussed in this section, use of compos-
ite materials can help remove the disadvantages of forward sweep. Currently, aero-
elastic tailoring is an integral part of the design of composite wings and can be used
to improve performance in a variety of ways.

Composite materials are anisotropic, which implies different material charac-
teristics (e.g., stiffness) in different directions. A simple beam model is helpful in
developing an understanding of the behavior of composite wings. Such models may
exhibit bending-torsion elastic coupling. Analysis of beams with elastic coupling is
more involved, but it leads to helpful results.

Let us introduce such coupling in our beam equations. For anisotropic beams
with bending-torsion coupling, the “constitutive law” (i.e., the relationship between
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cross-sectional stress resultants and the generalized strains) changes from{
T
M

}
=
[

GJ 0
0 EI

]{
θ

′

w′′

}
(4.114)

to {
T
M

}
=
[

GJ −K
−K EI

]{
θ

′

w′′

}
(4.115)

where K is the bending-torsion coupling stiffness (with the same dimensions as EI
and GJ ) and ( )′ indicates the derivative with respect to y. A positive value of K
means that a positive bending deflection will be accompanied by a nose-up twist of
the wing, which is normally destabilizing for cases with the elastic axis behind the
aerodynamic center.

Using the coupled constitutive law, the equations of equilibrium become(
GJθ

′ − Kw′′
)′

= − qecaα − qc2cmac + Nmgd(
EIw′′ − Kθ

′)′′
= qcaα − Nmg

(4.116)

Consider again a wing that is clamped at the root and free at the tip, so that the
boundary conditions that must be imposed on the solution are

y = 0: θ = 0 (zero torsional rotation)
w = 0 (zero deflection)
w′ = 0 (zero bending slope)

y = �: T = 0 (zero twisting moment)
M = 0 (zero bending moment)
M′ = 0 (zero shear force)

(4.117)

For composite beams, the offsets d and e may be defined in a manner similar
to the way they were defined for isotropic beams: d is the distance from the y axis
to the cross-sectional mass centroid, positive when the mass centroid is toward the
leading edge from the y axis; and e is the distance from the y axis to the aerodynamic
center, positive when the aerodynamic center is toward the leading edge from the y
axis. Recall that for composite beams, the y axis must have different properties from
those it has for isotropic beams, and the term “elastic axis” has a different meaning.
For a spanwise uniform isotropic beam, the elastic axis is along the y axis and is
the locus of cross-sectional shear centers; transverse forces acting through this axis
do not twist the beam. For spanwise uniform composite beams with bending-twist
coupling, no axis can be defined as the locus of a cross-sectional property through
which transverse shear forces can act without twisting the beam. For such beams, we
must place the y axis along the locus of shear centers, a point in the cross section at
which transverse shear forces are structurally decoupled from the twisting moment.
Although transverse shear forces acting at the y axis do not directly induce twist, the
bending moment induced by the shear force still induces twist when K �= 0.
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We can now write the homogeneous part of the equations of equilibrium as

θ
′′ − K

GJ
w′′′ + qeca

GJ
θ cos(�) = 0

w′′′′ − K

EI
θ

′′′ − qca

EI
θ cos(�) = 0

(4.118)

Differentiating the first equation with respect to y and transforming the set of equa-
tions so that they are uncoupled in the highest derivative terms θ

′′′
and w′′′′, we

obtain

θ
′′′ + EI GJ

EI GJ − K2

qeca

GJ
θ ′ cos(�) − K EI

EI GJ − K2

qca

EI
θ cos(�) = 0

w′′′′ + K GJ

EI GJ − K2

qeca

GJ
θ ′ cos(�) − EI GJ

EI GJ − K2

qca

EI
θ cos(�) = 0

(4.119)

Multiplying the first equation by cos(�) and the second equation by sin(�) and
subtracting the second equation from the first, we obtain a single equation in terms
of θ = θ cos(�) − w′ sin(�) as

θ ′′′ + EI GJ

EI GJ − K2

qeca�2

GJ
cos2(�)

[
1 − K

EI
tan(�)

]
θ ′

+ EI GJ

EI GJ − K2

qca�3

EI
sin(�) cos(�)

[
1 − K

GJ

1
tan(�)

]
θ = 0

(4.120)

where ( )′ now denotes d( )/dη as in the parallel development for the elastically
uncoupled wing discribed previously.

The boundary conditions can be derived from Eqs. (4.117) as

θ(0) = θ ′(1) = θ ′′(1) + EI GJ

EI GJ − K2

qeca�2

GJ
cos2(�)

[
1 − K

EI
tan(�)

]
θ(1) = 0

(4.121)

The aeroelastic divergence problem with structural coupling has the same math-
ematical form as the problem without coupling, an approximate solution of which
is given in the previous section. We can see that the parameters τ and β can be
redefined as

τ = EI GJ

EI GJ − K2

qeca�2

GJ
cos2(�)

[
1 − K

EI
tan(�)

]

β = EI GJ

EI GJ − K2

qca�3

EI
sin(�) cos(�)

[
1 − K

GJ

1
tan(�)

] (4.122)

and, again, the divergence boundary can be expressed approximately in terms of the
line

τD = π2

4
+ 3π2

76
βD (4.123)
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Using the expressions for the parameters in the equation of the divergence boundary,
we have

qD = π2

4
EI GJ − K2

EI GJ

GJ
eca�2 cos2(�)

1{
1 − K

EI
tan(�) − 3π2

76
�
e

GJ
EI

[
tan(�) − K

GJ

]}
(4.124)

We can simplify this by introducing the dimensionless parameter

κ = K√
EI GJ

(4.125)

so that

qD = π2GJ (1 − κ2)

4eca�2 cos2(�)
{

1 − κ

√
GJ
EI

tan(�) − 3π2

76
�
e

GJ
EI

[
tan(�) − κ

√
EI
GJ

]} (4.126)

With Eq. (4.126), we may determine the divergence dynamic pressure with sufficient
accuracy to ascertain its trends versus sweep angle � and elastic-coupling parameter
κ . The formula shows that there is a strong relationship between these two quantities.

To illustrate the utility of this analysis, let us first normalize qD with the value it
would have at zero sweep angle and zero coupling—namely, qD0 , so that

qD

qD0

= (1 − κ2)
[
1 + tan2(�)

]
1 − κ

√
GJ
EI

tan(�) − 3π2

76
�
e

GJ
EI

[
tan(�) − κ

√
EI
GJ

] (4.127)

As before, when the denominator of the expression for divergence dynamic pres-
sure vanishes, it corresponds to infinite divergence dynamic pressure; crossing this
“boundary” means crossing from a regime in which divergence occurs to one in
which it does not. Setting the denominator to zero and solving for the tangent of the
sweep angle, we obtain

tan(�∞) =
1 + 3π2

76

√
GJ
EI

�
e κ

3π2

76
GJ
EI

�
e +

√
GJ
EI

κ

(4.128)

where �∞ is the sweep angle at which the divergence dynamic pressure goes to
infinity. With this definition, we can rewrite Eq. (4.127) as

qD

qD0

= (1 − κ2)
[
1 + tan2(�)

]
(

1 + 3π2

76

√
GJ
EI

�
e κ

) [
1 − tan(�)

tan(�∞)

] (4.129)

Again, divergence is possible only if −90◦ < � < �∞. Thus, because of the presence
of κ as an additional design parameter, designers can at least partially compensate
for the destabilizing effect of forward sweep by appropriately choosing κ < 0, which
for an increment of upward bending of the wing provides an increment of nose-down
twisting. There is a limit to how much coupling can be achieved, however, because
typically |κ| < 0.86.
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Figure 4.28. Normalized divergence dynamic pressure for an elastically coupled, swept wing
with GJ/EI = 0.2 and e/� = 0.02; κ = −0.4 (dots and dashes), κ = 0 (solid lines), κ = 0.4
(dashed lines)

There are two main differences between the designs of isotropic and compos-
ite wings. First, it is possible to achieve a much wider range of values for GJ/EI .
Second—and significantly more powerful—is the fact that composite wings can be
designed with nonzero values of κ . From Eq. (4.128), the value of �∞ is decreased
as κ is decreased, which means that the range of � over which divergence occurs
is decreased. To confirm this and the previous statement about positive κ being
destabilizing, Fig. 4.28 shows results for κ = −0.4, 0, and 0.4. It is clear that a com-
posite wing can be swept forward and still avoid divergence with a proper choice
(i.e., a sufficiently large and negative value) of κ . Because forward sweep has ad-
vantages for the design of highly maneuverable aircraft, this is a result of practical
importance. The sweep angles at which divergence becomes impossible, �∞, are
also somewhat sensitive to GJ/EI and e/�, as shown in Figs. 4.29 and 4.30. Ev-
idently, divergence-free, forward-swept wings may be designed with larger sweep
angles by decreasing torsional stiffness relative to bending stiffness and by decreas-
ing e/�.

4.3 Epilogue

In this chapter, we considered divergence and aileron reversal of simple wind-tunnel
models; torsional divergence, load redistribution, and aileron reversal in flexible-
beam representations of lifting surfaces; roll effectiveness of an airplane with wings
modeled as beams; the effects of sweep on coupled bending-torsion divergence; and
the role of aeroelastic tailoring. It is clear that aircraft design is strongly influenced
by aeroelastic considerations. In all of the cases explored in this chapter, the inertial
loads are inconsequential and therefore were neglected. In Chapter 5, inertial loads
are introduced into the aeroelastic analysis of flight vehicles, and the flutter problem
is explored.
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Figure 4.29. Sweep angle for which divergence dynamic pressure is infinite for a wing with
GJ/EI = 0.5; solid line is for e/� = 0.01; dashed line is for e/� = 0.04

Problems

1. Consider a rigid, wind-tunnel model of a uniform wing, which is pivoted in
pitch about the mid-chord and elastically restrained in pitch by a linear spring
with spring constant of 225 lb/in mounted at the trailing edge. The model has a
symmetric airfoil, a span of 3 feet, and a chord of 6 inches. The total lift–curve
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Figure 4.30. Sweep angle for which divergence dynamic pressure is infinite for a wing with
e/� = 0.02; solid line is for GJ/EI = 1.0; dashed line is for GJ/EI = 0.25
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slope is 6 per rad. The aerodynamic center is located at the quarter-chord, and
the mass centroid is at the mid-chord.
(a) Calculate the divergence dynamic pressure at sea level.
(b) Calculate the divergence airspeed at sea level.

Answers: qD = 150 lb/ft2; UD = 355 ft/sec

2. For the model in Problem 1, for a dynamic pressure of 30 lb/ft2, compute the
percentage change in lift caused by the aeroelastic effect.
Answer: 25%

3. For the model of Problem 1, propose design changes in the support system that
would double the divergence dynamic pressure by
(a) changing the stiffness of the restraining spring
(b) relocating the pivot point

Answers: (a) k = 450 lb/in; (b) xO = 2.513 in

4. For the model of Problem 1 as altered by the design changes of Problem 3,
calculate the percentage change in lift caused by the aeroelastic effect for a
dynamic pressure of 30 lb/ft2, a weight of 3 lb, αr = 0.5◦, and for
(a) the design change of Problem 3a
(b) the design change of Problem 3b

Answers: 11.11%; 17.91%

5. Consider a strut-mounted wing similar to the one discussed in Section 4.1.3,
except that the two springs may have different stiffnesses. Denoting the leading-
edge spring constant by k1 and the trailing-edge spring constant by k2, and assum-
ing that the aerodynamic center is at the quarter-chord, show that divergence
can be eliminated if k1/k2 ≥ 3.

6. Using Excel or a similar tool, plot a family of curves that depict the relationship of
the aileron-elastic efficiency, η, versus normalized dynamic pressure, q = q/qD,
for various values of R = qR/qD and 0 < q < 1. Make two plots on the following
scales to reduce confusion:
(a) Plot R < 1 using axes −3 < η < 3
(b) Plot R > 1 using axes −3 < η < 3

Hint: Do not compute values for the cases in which 1 < R < 1.1; Excel does not
handle these well and you may get confused. For some cases, you may want to
plot symbols only and nicely sketch the lines that form the curves.

Answer the following questions: Where does aileron reversal occur? If you had
to design a wing, what R would you try to match (or approach) and why? What
happens when qR = qD? How does the efficiency change as q approaches qR?
Why do you think this happens? What other pertinent features can you extract
from these plots? Explain how you came to these conclusions.

7. Consider a torsionally elastic (GJ = 8,000 lb in2) wind-tunnel model of a uni-
form wing, the ends of which are rigidly fastened to the wind-tunnel walls.
The model has a symmetric airfoil, a span of 3 feet, and a chord of 6 inches.
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The sectional lift-curve slope is 6 per rad. The aerodynamic center is located
at the quarter-chord, and both the mass centroid and the elastic axis are at the
mid-chord.
(a) Calculate the divergence dynamic pressure at sea level.
(b) Calculate the divergence airspeed at sea level.

Answers: (a) qD = 162.46 lb/ft2; (b) UD = 369.65 ft/sec

8. For the model in Problem 7, propose design changes in the model that would
double the divergence dynamic pressure by
(a) changing the torsional stiffness of the wing
(b) relocating the elastic axis

Answers: GJ = 16,000 lb in2; xea = 2.25 in

9. For the model of Problem 7, for a dynamic pressure of 30 lb/ft2, compute the
percentage increase in the sectional lift at mid-span caused by the aeroelastic
effect.
Answer: 28.09%

10. For the model in Problem 7, for a dynamic pressure of 30 lb/ft2, compute the
percentage increase in the total lift caused by the aeroelastic effect.
Answer: 18.58%

11. Consider a swept clamped-free wing, as described in Section 4.2.6. The governing
partial differential equations are given in Eqs. (4.94) and the boundary condi-
tions in Eqs. (4.95). An approximate solution is sought for a wing with a symmet-
ric airfoil, using a truncated set of assumed modes and the generalized equations
of equilibrium: a specialized version of the generalized equations of motion for
which all time-dependent terms are zero. Note that what is being asked for here
is equivalent to the application of the Ritz method to the principle of virtual
work (see Section 3.5). With the wing weight ignored, only structural and aero-
dynamic terms are involved. The structural terms of the generalized equations of
equilibrium are based on the potential energy (here, the strain energy) given by

P = 1
2

∫ �

0

(
EIw′′2 − 2Kw′′θ

′ + GJ θ
′2)

dy

and the bending and torsion deformation is represented in terms of a truncated
series, such that

w =
Nw∑
i=1

ηi�i (y)

θ =
Nθ∑

i=1

φi�i (y)

where Nw and Nθ are the numbers of assumed modes used to represent bending
and torsion, respectively; ηi and φi are the generalized coordinates associated
with bending and torsion, respectively; and �i and �i are the assumed mode
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shapes for bending and torsion, respectively. Determine the potential energy
in terms of the generalized coordinates using as assumed modes the uncoupled,
clamped-free, free-vibration modes of torsion and bending. For torsion

�i =
√

2 sin

[
π
(
i − 1

2

)
y

�

]

For bending, according to Eq. (3.258), �i is given as

�i = cosh(αi y) − cos(αi y) − βi [sinh(αi y) − sin(αi y)]

with αi and βi as given in Table 3.1.
12. Work Problem 11, but for assumed modes, instead of using the expressions

given therein, use

�i =
(

y
�

)i

�i =
(

y
�

)i+1

recalling that these functions are not orthogonal.
13. Work Problem 11, but use the finite element method to represent both bending

and torsion.
14. Referring to Problem 11, 12, or 13, starting with the virtual work of the aero-

dynamic forces as

δW =
∫ �

0

(
L′δw + M′δθ

)
dy

where L′ and M′ are the sectional lift and pitching-moment expressions used
to develop Eqs. (4.94), assuming a symmetric airfoil and using the given
deformation modes, find the generalized forces �i , i = 1, 2, . . ., N = Nw + Nθ .
As discussed in the text, generalized forces are the coefficients of the variations
of the generalized coordinates in the virtual-work expression. (Hint: Neglecting
the weight terms on the right-hand sides of Eqs. 4.92, we find L′ is the right-hand
side of the second of those equations, whereas M′ is the negative of the
right-hand side of the first and equal to eL′.)

15. Referring to Problems 14 and 11, 12, or 13, determine the generalized equations
of equilibrium in the form

[K]{ξ} = q
{
[A]{ξ} + {�0}

}
where q is the dimensionless dynamic pressure given by q/qD0 ; qD0 is the tor-
sional divergence dynamic pressure of the unswept clamped-free wing, given by
Eq. (4.55); {ξ} is the column matrix of all unknowns ηi = ηi/�, i = 1, 2, . . ., Nw ,
and φi , i = 1, 2, . . ., Nθ ; and {�0} is an N × 1 column matrix containing the parts
of the aerodynamic generalized forces that do not depend on any unknowns; and
N = Nw + Nθ . (Note that in application of the finite element, Nw = Nθ refers
to the number of finite elements, and N = 2Nw + Nθ .) The N × N matrices [K]
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and [A] are the stiffness and aerodynamic matrices, respectively. If Problem 11
is the basis for solution and elastic coupling is ignored, then the stiffness matrix
[K] is diagonal because the normal modes used to represent the wing structural
behavior are orthogonal with respect to the stiffness properties of the wing.

16. Referring to Problem 15, perform the following numerical studies:
a. Divergence: To determine the divergence dynamic pressure, write the

homogeneous generalized equations of equilibrium in the form

1
q

{ξ} = [K]−1[A]{ξ}

which is obviously an eigenvalue problem with 1/q as the eigenvalue.
After solving the eigenvalue problem, the largest 1/q provides the
lowest dimensionless critical divergence dynamic pressure qD = qD/qD0

at the sweep angle under consideration. By numerical experimentation,
determine Nw and Nθ to obtain the divergence dynamic pressure to within
plotting accuracy. Plot the divergence dynamic pressure versus sweep
angle for a range of values for the sweep angle −45◦ ≤ � ≤ 45◦ and values
of the dimensionless parameters e/� (0.05 and 0.1), EI/GJ (1 and 5),
and κ = 0,±0.5. Compare your results with those obtained in Eq. (4.129).
Comment on the accuracy of the approximate solution in the text versus
your Ritz or finite element solution. Which one should be more accurate?
Discuss the trends of divergence dynamic pressure that you see regarding
the sweep angle, stiffness ratio, and location of the aerodynamic center.

b. Response: For the response, you need to consider the inhomogeneous
equations, which should be put into the form

[[K] − q[A]] {ξ} = q {�0}
Letting αr = 1◦, obtain the response by solving the linear system of
equations represented in this matrix equation. Plot the response of the
wing tip (i.e., w and θ at y = �) for varying dynamic pressures up to
q = 0.95qD for the above values of e/�, EI/GJ , and κ with � = −25◦ and
0◦. Plot the lift, twist, and bending-moment distributions for the case with
the largest tip-twist angle. Comment on this result and on the trends of
static-aeroelastic response that you see regarding the sweep angle, stiffness
ratio, location of the aerodynamic center, and elastic coupling.

17. Consider the divergence of an unswept composite wing with κ = 0,
GJ/EI = 0.2, and e/� = 0.025. Using Eq. (4.126), determine the value of
κ , as defined by Eq. (4.125), needed to keep the divergence dynamic pressure
unchanged for forward-swept wings with various values of � < 0. Plot these
values of κ versus �.

18. Using the approximate formula found in Eq. (4.126), derive a formula for
qDac�3/EI analogous to Eq. (4.113) and use it to determine the divergence
dynamic pressure for swept composite wings when e < 0. Discuss the situations
in which we might encounter a negative value of e. Which sign of κ would you
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expect to be stabilizing in this case? Plot this normalized divergence dynamic
pressure for a swept composite wing with GJ/EI = 0.2 and e/� = −0.025
versus � for κ = 0 and ±0.4.

19. Consider the divergence of a swept composite wing. Show that the governing
equation and boundary conditions found in Eqs. (4.120) and (4.121) can be
written as a second-order, integro-differential equation of the form

θ ′′ + τθ − rτ

∫ 1

η

θ(ξ)dξ = 0

with boundary conditions θ(0) = θ ′(1) = 0 and with r = β/τ . Determine the
two simplest polynomial comparison functions for this reduced-order equation
and boundary conditions. Use Galerkin’s method to obtain one- and two-term
approximations to the divergence dynamic pressure τD versus r . Plot your
approximate solutions for the case in which GJ/EI = 0.2, e/� = 0.02, and
κ = −0.4, depicted in Fig. 4.28, and compare these with the approximate solu-
tion given in the text. For the two-term approximation, determine the limit point
for positive e, noting that the exact values are r = 1.59768 and τD = 10.7090.

Answer: The one-term approximation is

τD = 30
12 − 5r

The two-term approximation is

τD = 1260

282 − 105r ± √
3
√

15r(197r − 1,036) + 17,408

The approximate limit point in the first quadrant is at r = 1.61804 and
τD = 11.2394. Within plotting accuracy, the two-term approximation is
virtually indistinguishable from the exact solution when −10 ≤ τD ≤ 10.

20. Consider a uniform, torsionally flexible wing of length � with torsional stiffness
GJ and with the aileron extending from y = r� to y = R�.

(a) Find the expression that must be solved for λ� using the criterion for
aileron reversal that the change in root-bending moment with respect
to aileron deflection vanish. Use a tip-loss factor of B.

(b) Assuming that e = 0.25c, c�β
= 0.8, cmβ

= −0.5, and R = 1, and
considering both r = 0 and r = 0.5 and B = 0.97 and B = 1, find λ1�.
Discuss the effect of r and B.

(c) Determine λ1� from Eq. (4.79). Comparing this to your results for
the case of r = 0, R = 1, and B = 1, explain how it is possible for
the reversal dynamic pressure extracted from the bending-moment
criterion to be different from that extracted for the total lift criterion.

Answer: For example, when r = 0, R = 1, and B = 1: sec(λ�) =
e c�β

+ c cmβ

[
1 + (λ�)2

2

]
e c�β

+ c cmβ

; λ1� = 0.984774
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21. Consider a rigid body that represents the fuselage of a symmetric aircraft,
to which are attached uniform, torsionally flexible wings that have the same
properties as those in Problem 20. Assuming the aircraft is flying at constant
speed with a constant roll rate, develop solutions for the same sets of parameters
as asked for in Problem 20.



5 Aeroelastic Flutter

The pilot of the airplane . . . succeeded in landing with roughly two-thirds of his
horizontal tail surface out of action; some others have, unfortunately, not been so
lucky. . . . The flutter problem is now generally accepted as a problem of primary con-
cern in the design of current aircraft structures. Stiffness criteria based on flutter re-
quirements are, in many instances, the critical design criteria. . . . There is no evidence
that flutter will have any less influence on the design of aerodynamically controlled
booster vehicles and re-entry gliders than it has, for instance, on manned bombers.

—R. L. Bisplinghoff and H. Ashley in Principles of Aeroelasticity, John Wiley
and Sons, Inc., 1962

Chapter 3 addressed the subject of structural dynamics, which is the study of phe-
nomena associated with the interaction of inertial and elastic forces in mechanical
systems. In particular, the mechanical systems considered were one-dimensional,
continuous configurations that exhibit the general structural-dynamic behavior of
flight vehicles. If in the analysis of these structural-dynamic systems aerodynamic
loading is included, then the resulting dynamic phenomena may be classified as
aeroelastic. As observed in Chapter 4, aeroelastic phenomena can have a significant
influence on the design of flight vehicles. Indeed, these effects can greatly alter the
design requirements that are specified for the disciplines of performance, structural
loads, flight stability and control, and even propulsion. In addition, aeroelastic phe-
nomena can introduce catastrophic instabilities of the structure that are unique to
aeroelastic interactions and can limit the flight envelope.

Recalling the diagram in Fig. 1.1, we can classify aeroelastic phenomena as either
static or dynamic. Whereas Chapter 4 addressed only static aeroelasticity, in this
chapter, we examine dynamic aeroelasticity. Although there are many other dynamic
aeroelastic phenomena that could be treated, we focus entirely on the instability
called “flutter,” which generally leads to a catastrophic structural failure of a flight
vehicle. A formal definition of aeroelastic flutter is as follows: a dynamic instability
of a flight vehicle associated with the interaction of aerodynamic, elastic, and inertial
forces. From this definition, it is apparent that any investigation of flutter stability
requires an adequate knowledge of the system’s structural dynamic and aerodynamic
properties. To further elaborate, flutter is a self-excited and potentially destructive
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oscillatory instability in which aerodynamic forces on a flexible body couple with its
natural modes of vibration to produce oscillatory motions with increasing amplitude.
In such cases, the level of vibration will increase, resulting in oscillatory motion with
amplitude sufficiently large to cause structural failure.

Because of this, structures exposed to aerodynamic forces—including wings and
airfoils but also chimneys and bridges—must be carefully designed to avoid flutter.
In complex systems in which neither the aerodynamics nor the mechanical properties
are fully understood, the elimination of flutter can be guaranteed only by through
testing. Of the various phenomena that are categorized as aeroelastic flutter, lifting-
surface flutter is most often encountered and most likely to result in a catastrophic
structural failure. As a result, it is required that lifting surfaces of all flight vehicles
be analyzed and tested to ensure that this dynamic instability will not occur for any
condition within the vehicle’s flight envelope.

If the airflow about the lifting surface becomes separated during any portion
of an unstable oscillatory cycle of the angle of attack, the governing equations
become nonlinear and the instability is referred to as “stall flutter.” Stall flutter
most commonly occurs on turbojet compressor and helicopter rotor blades. Other
phenomena that result in nonlinear behavior include large deflections, mechanical
slop, and nonlinear control systems. Nonlinear phenomena are not considered in the
present treatment. Even with this obvious paring down of the problem, however, we
still find that linear-flutter analysis of clean lifting surfaces is complicated. Thus, we
can offer only a simplified discussion of the theory of flutter. Readers are urged to
consult the references for additional information on the subject.

This chapter begins by using the modal representation to set up a lifting-surface
flutter analysis as a linear set of ordinary differential equations. These are trans-
formed into an eigenvalue problem, and the stability characteristics are discussed in
terms of the eigenvalues. Then, as an example of this methodology, a two-degree-
of-freedom “typical-section” analysis is formulated using the simple steady-flow
aerodynamic model used in Chapter 4. The main shortcoming of this simple analysis
is the neglect of unsteady effects in the aerodynamic model. Motivated by the need to
consider unsteady aerodynamics in a meaningful but simple way, we then introduce
classical flutter analysis. Engineering solutions that partially overcome the shortcom-
ings of classical flutter analysis follow. To complete the set of analytical tools needed
for flutter analysis, two different unsteady-aerodynamic theories are outlined: one
suitable for use with classical flutter analysis and its derivatives; the other suitable
for eigenvalue-based flutter analysis. After illustrating how to approach the flutter
analysis of a flexible wing using the assumed-modes method, the chapter concludes
with a discussion of flutter-boundary characteristics.

5.1 Stability Characteristics from Eigenvalue Analysis

The lifting-surface flutter of immediate concern can be described by a linear set of
structural dynamic equations that include a linear representation of the unsteady
airloads in terms of the elastic deformations. The surface could correspond to a
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wing or stabilizer either with or without control surfaces. Analytical simulation of
the surface is sometimes made more difficult by the presence of external stores,
engine nacelles, landing gear, or internal fuel tanks. Although such complexities
complicate the analysis, they do not alter significantly the physical character of the
flutter instability. For this reason, the following discussion is limited to a “clean”
lifting surface.

When idealized for linear analysis, the nature of flutter is such that the flow over
the lifting surface creates not only steady components of lift and pitching moment
but also dynamic forces in response to small perturbations of the lifting-surface
motion. The wing airfoil at a local cross section undergoes pitch and plunge motions
from lifting-surface torsional and bending deformation, respectively. When a lifting
surface that is statically stable below its flutter speed is disturbed, the oscillatory
motions caused by those disturbances die out in time with exponentially decreasing
amplitudes. That is, we could say that the air provides damping for all such motions.
Above the flutter speed, however, rather than damping out the motions due to small
perturbations in the configuration, the air can be said to provide negative damping.
Thus, these oscillatory motions grow with exponentially increasing amplitudes. This
qualitative description of flutter can be observed in a general discussion of stability
characteristics based on complex eigenvalues.

Before attempting to conduct an analysis of flutter, it is instructive to first ex-
amine the possible solutions to a structural-dynamic representation in the presence
of airloads. We presume that a flight vehicle can be represented in terms of its
normal modes of vibration. We illustrate this with the lifting surface modeled as a
plate rather than a beam. This is more realistic for low-aspect-ratio wings but, in
the present framework, this increased realism presents little increase in complexity
because of the modal representation. For displacements w(x, y, t) in the z direction
normal to the plane of the planform (i.e., the x-y plane), the normal mode shapes can
be represented by φi (x, y) and the associated natural frequencies by ωi . A typical
displacement of the structure can be written as

w(x, y, t) =
n∑

i=1

ξi (t)φi (x, y) (5.1)

where ξi (t) is the generalized coordinate of the ith mode. For simplicity, both rigid-
body and elastic modes are included in this set without special notation to distinguish
them from one another. The set of generalized equations of motion for the flight
vehicle can be written as

Mi (ξ̈i + ω2
i ξi ) = �i (i = 1, 2, . . . , n) (5.2)

where Mi is the generalized mass associated with the mass distribution m(x, y) and
can be determined as

Mi =
∫ ∫

planform

m(x, y)φ2
i (x, y)dxdy (5.3)



178 Aeroelastic Flutter

The generalized force �i (t), associated with the external loading F(x, y, t), can be
evaluated as

�i (t) =
∫ ∫

planform

F(x, y, t)φi (x, y)dxdy (5.4)

Recall that of the set of natural frequencies ωi , any that are associated with rigid-body
modes are equal to zero.

To examine the stability properties of the flight vehicle, the only external loading
to be considered is from the aerodynamic forces, which can be represented as a linear
function of w(x, y, t) and its partial derivatives, plus a set of additional states that
may be needed to represent pertinent aspects of the flow field, such as the induced
flow or downwash. It is presumed that all other external disturbances have been
eliminated. Such external disturbances normally would include atmospheric gusts,
store-ejection reactions, and so forth. Recalling that the displacement can be repre-
sented as a summation of the modal contributions, the induced-pressure distribution,
�p(x, y, t), can be described as a linear function of the generalized coordinates,
their derivatives, and the flow-field states. Such a relationship can be written as

�p(x, y, t) =
n∑

j=1

[
a j (x, y)ξ j (t) + bj (x, y)ξ̇ j (t) + c j (x, y)ξ̈ j (t)

]+
N∑

j=1

dj (x, y)λ j (t)

(5.5)

where the λs are state variables associated with the flow field, sometimes called
“augmented” states or “lag” states, written here so as to have the same units as the
generalized coordinates. The number of these states is denoted by N ≥ 0, which
may be distinct from n. The corresponding generalized force of the ith mode now
can be determined from

�i (t) =
∫ ∫

planform

�p(x, y, t)φi (x, y)dxdy

=
n∑

j=1

ξ j (t)
∫ ∫

planform

a j (x, y)φi (x, y)dxdy

+
n∑

j=1

ξ̇ j (t)
∫ ∫

planform

bj (x, y)φi (x, y)dxdy

+
n∑

j=1

ξ̈ j (t)
∫ ∫

planform

c j (x, y)φi (x, y)dxdy

+
N∑

j=1

λ j (t)
∫ ∫

planform

dj (x, y)φi (x, y)dxdy

= ρ∞
U2

b2

⎡
⎣ n∑

j=1

(
ai jξ j + b

U
bi j ξ̇ j + b2

U2
ci j ξ̈ j

)
+

N∑
j=1

di jλ j

⎤
⎦

(5.6)
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Following the convention in some published work, we factored out the freestream
air density ρ∞ and U2/b2 from the aerodynamic generalized force expression.
Although not necessary, this step enables analysts to identify altitude effects more
readily. It also shows explicitly that all aerodynamic effects vanish in a vacuum
where ρ∞ vanishes. Moreover, the normalization involving powers of b/U—where
b is a reference semi-chord of the lifting surface—allows the matrices [a], [b], [c],
and [d] to have the same units, simplifying the equations in terms of dimensionless
variables that follow later. Any inhomogeneous terms in the generalized forces
can be eliminated by redefinition of the generalized coordinates so that they are
measured with respect to a different reference configuration. Thus, the generalized
equations of motion can be written as a homogeneous set of differential equations
when this form of the generalized force is included. They are

b2

U2

(
Mi ξ̈i + Miω

2
i ξi
)− ρ∞

b2

U2

n∑
j=1

ci j ξ̈ j − ρ∞
b
U

n∑
j=1

bi j ξ̇ j

− ρ∞
n∑

j=1

ai jξ j − ρ∞
N∑

j=1

di jλ j = 0 (i = 1, 2, . . . , n)

(5.7)

If N > 0, then N additional equations are needed for the λs. Such equations
generally have the form

N∑
j=1

Ai j λ̇ j + U
b

⎛
⎝λi −

n∑
j=1

Ei jξ j

⎞
⎠ = 0 (i = 1, 2, . . . , N) (5.8)

or

[A]{λ̇} + U
b

{{λ} − [E]{ξ}} = 0 (5.9)

Matrices [A] and [E] can be obtained from unsteady-aerodynamic theories as well
as from computational fluid dynamics or test data. Note that matrix [E] may be an
operator that differentiates {ξ} one or more times.

This system consists of n + N equations—that is, the number of structural modes
(including both elastic and rigid-body modes) plus the number of aerodynamic
states, respectively. The general solution to this set of linear ordinary differential
equations can be described as a simple exponential function of time because they
are homogeneous. The form of this solution is taken as

ξi (t) = ξ i exp(νt) λi (t) = λi exp(νt) (5.10)

Substituting this expression into Eqs. (5.7) and (5.8), we obtain a set of algebraic
equations, each term of which contains exp(νt). After factoring out this term, the
result is n + N simultaneous linear, homogeneous, algebraic equations for the ξs,
which may be written in matrix form as[

p2[`M`] + b2

U2
[`Mω2

`]
]

{ξ} − ρ∞
[

p2[c] + p[b] + [a]
] {ξ} − ρ∞[d]{λ} = {0}

[p[A] + [I]]
{
λ
}− [E]

{
ξ
} = {0} (5.11)
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where p = bν/U is the unknown dimensionless eigenvalue, and the symbol [`M`]
denotes a diagonal matrix with elements Mi . For a nontrivial solution of the general-
ized coordinate amplitudes, the determinant of the array formed by the coefficients
of ξ i and λi must be zero. It is apparent that this determinant is a polynomial of de-
gree 2n + N in p. The subsequent solution of this polynomial equation for p yields
2n + N roots consisting of nc complex conjugate pairs and nr real numbers where
2nc + nr = 2n + N. A typical complex root has the form

νk = Upk

b
= �k ± i�k k = 1, 2, . . . , nc (5.12)

whereas the roots νk with k = nc + 1, nc + 2, . . . , nc + nr are real. In other words,
any root can be written as νk so that, �k = 0 for nc < k ≤ nc + nr .

For each root pk, there are corresponding complex column matrices ξ
(k)
j , j =

1, 2, . . . , n, and λ
(k)
j , j = 1, 2, . . . , N. Thus, the solution for the displacement field

from the generalized equations of motion with the aerodynamic coupling can be
written as

w(x, y, t) =
nc+nr∑
k=1

{
wk(x, y) exp [(�k + i�k)t] + wk(x, y) exp [(�k − i�k)t]

}
(5.13)

where wk is the complex conjugate of wk. This expression for w(x, y, t) turns out to
be real, as expected. Each wk represents a unique linear combination of the mode
shapes of the structure; viz.

wk(x, y) =
n∑

i=1

ξ
(k)
i φi (x, y) (k = 1, 2, . . . , nc + nr ) (5.14)

Note that only the relative values of ξ
(k)
i can be determined unless the initial dis-

placement and rate of displacement are specified.
It is apparent from the general solution for w(x, y, t), Eq. (5.13), that the kth

component of the summation represents a simple harmonic oscillation that is modi-
fied by an exponential function. The nature of this dynamic response to any specified
initial condition is strongly dependent on the sign of each �k. Typical response be-
havior is illustrated in Fig. 5.1 for positive, zero, and negative values of �k when �k is
nonzero. We note that the negative of �k is sometimes called the “modal damping”
of the kth mode, and �k is called the “modal frequency.” It is also possible to classify
these motions from the standpoint of stability. The convergent oscillations when
�k < 0 are termed “dynamically stable” and the divergent oscillations for �k > 0
are “dynamically unstable.” The case of �k = 0 represents the boundary between
the two and is often called the “stability boundary.” If these solutions are for an
aeroelastic system, the dynamically unstable condition is called “flutter” and the
stability boundary corresponding to simple harmonic motion is called the “flutter
boundary.”

Recall from Eq. (5.13) that the total displacement is a sum of all modal con-
tributions. It is therefore necessary to consider all possible combinations of �k and
�k, where �k can be < 0, = 0, or > 0 and �k can be = 0 or �= 0. The corresponding
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Γ <0

Γ =0

Γ >0

Figure 5.1. Behavior of typical mode amplitude when �k �= 0

type of motion and stability characteristics are indicated in Table 5.1 for various
combinations of �k and �k. Although the primary concern here is in regard to the
dynamic instability referred to as flutter, for which �k �= 0, Table 5.1 shows that the
generalized equations of motion also can provide solutions to the static-aeroelastic
problem of divergence. This phenomenon is indicated by the unstable condition for
�k = 0, and the divergence boundary occurs when �k = �k = 0.

In many published works on flutter analysis, the method outlined in this sec-
tion based on determination of stability from complex eigenvalues is known as the

Table 5.1. Types of motion and stability characteristics for
various values of �k and �k

�k �k Type of motion Stability characteristic

< 0 �= 0 Convergent Oscillations Stable
= 0 �= 0 Simple Harmonic Stability Boundary
> 0 �= 0 Divergent Oscillations Unstable
< 0 = 0 Continuous Convergence Stable
= 0 = 0 Time Independent Stability Boundary
> 0 = 0 Continuous Divergence Unstable
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θ

θ

Figure 5.2. Schematic showing geometry of the wing section with pitch and plunge spring
restraints

“p method.” It is named for the dimensionless complex eigenvalue p = bν/U that
appears in Eq. (5.11); p is frequently termed a “reduced eigenvalue.” To provide an
accurate prediction of flutter characteristics, the p method must use an aerodynamic
theory that accurately represents the loads induced by transient motion of the lifting
surface. Depending on the theory, augmented aerodynamic states may or may not
be necessary; for example, the theory outlined in Section 5.5.2 uses them, whereas
the theory in the next section does not; rather it uses the simplest steady-flow theory
for which no claim of accuracy is made. The sole purpose of doing so is to illustrate
the use of the p method to analyze a simple configuration.

5.2 Aeroelastic Analysis of a Typical Section

In this section, we demonstrate the flutter analysis of a linear aeroelastic system. To
do this, a simple model is needed. In the older literature on aeroelasticity, flutter
analyses often were performed using simple, spring-restrained, rigid-wing models
such as the one shown in Fig. 5.2. These were called “typical-section models” and are
still appealing because of their physical simplicity. This configuration could represent
the case of a rigid, two-dimensional wind-tunnel model that is elastically mounted
in a wind-tunnel test section, or it could correspond to a typical airfoil section along
a finite wing. In the latter case, the discrete springs would reflect the wing structural
bending and torsional stiffnesses, and the reference point would represent the elastic
axis.

Of interest in such models are points P, C, Q, and T, which refer, respectively,
to the reference point (i.e., where the plunge displacement h is measured), the center
of mass, the aerodynamic center (i.e., presumed to be the quarter-chord in subsonic
thin-airfoil theory), and the three-quarter-chord (i.e., an important chordwise loca-
tion in thin-airfoil theory). The dimensionless parameters e and a (i.e., −1 ≤ e ≤ 1
and −1 ≤ a ≤ 1) determine the locations of the points C and P: when these parame-
ters are zero, the points lie on the mid-chord, and when they are positive (negative),
the points lie toward the trailing (leading) edge. In the literature, the chordwise
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offset of the center of mass from the reference point often appears in the equations
of motion. It is typically made dimensionless by the airfoil semi-chord b and denoted
by xθ = e − a. This so-called static-unbalance parameter is positive when the center
of mass is toward the trailing edge from the reference point. The rigid plunging and
pitching of the model is restrained by light, linear springs with spring constants kh

and kθ .
It is convenient to formulate the equations of motion from Lagrange’s equa-

tions. To do this, we need kinetic and potential energies, as well as the generalized
forces resulting from aerodynamic loading. We immediately can write the potential
energy as

P = 1
2

khh2 + 1
2

kθ θ
2 (5.15)

To deduce the kinetic energy, we need the velocity of the mass center C, which
can be found as

vC = vP + θ̇ b̂3 × b [(1 + a) − (1 + e)] b̂1 (5.16)

where the inertial velocity of the reference point P is

vP = −ḣî2 (5.17)

and thus

vC = −ḣî2 + bθ̇(a − e)b̂2 (5.18)

The kinetic energy then is given by

K = 1
2

mvC · vC + 1
2

IC θ̇2 (5.19)

where IC is the moment of inertia about C. By virtue of the relationship between b̂2

and the inertially fixed unit vectors î1 and î2, assuming θ to be small, we find that

K = 1
2

m
(
ḣ2 + b2x2

θ θ̇
2 + 2bxθ ḣθ̇

)+ 1
2

IC θ̇2

= 1
2

m
(
ḣ2 + 2bxθ ḣθ̇

)+ 1
2

IP θ̇2

(5.20)

where IP = IC + mb2x2
θ .

The generalized forces associated with the degrees of freedom h and θ are de-
rived easily from the work done by the aerodynamic lift through a virtual displace-
ment of the point Q and by the aerodynamic pitching moment about Q through a
virtual rotation of the model. The velocity of Q is

vQ = −ḣ î2 + b θ̇

(
1
2

+ a
)

b̂2 (5.21)

The virtual displacement of the point Q can be obtained simply by replacing the dot
over each unknown in Eq. (5.21) with a δ in front of it; that is

δpQ = −δh î2 + b δθ

(
1
2

+ a
)

b̂2 (5.22)
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where δpQ is the virtual displacement at Q. The angular velocity of the wing is θ̇ b̂3;
therefore, the virtual rotation of the wing is simply δθ b̂3. Hence, the virtual work of
the aerodynamic forces is

δW = L
[
−δh + b

(
1
2

+ a
)

δθ

]
+ M1

4
δθ (5.23)

and the generalized forces become

Qh = −L

Qθ = M1
4
+ b

(
1
2

+ a
)

L
(5.24)

It is clear that the generalized force associated with h is the negative of the lift,
whereas the generalized force associated with θ is the pitching moment about the
reference point P.

Lagrange’s equations (see the Appendix, Eqs. A.35) are specialized here for the
case in which the kinetic energy K depends on only q̇1, q̇2, . . .; therefore

d
dt

(
∂K
∂q̇i

)
+ ∂ P

∂qi
= Qi (i = 1, 2, . . . , n) (5.25)

Here, n = 2, q1 = h, and q2 = θ and the equations of motion become

m
(
ḧ + bxθ θ̈

)+ khh = −L

IP θ̈ + mbxθ ḧ + kθ θ = M1
4
+ b

(
1
2

+ a
)

L
(5.26)

For the aerodynamics, the steady-flow theory used previously gives

L = 2πρ∞bU2θ

M1
4

= 0
(5.27)

where, in accord with thin-airfoil theory, we have taken the lift–curve slope to be 2π .
Assuming this representation to be adequate for now, we can apply the p method
because the aerodynamic loads are specified for arbitrary motion. (We subsequently
consider more sophisticated aerodynamic theories.)

To simplify the notation, we introduce the uncoupled, natural frequencies at
zero airspeed, defined by

ωh =
√

kh

m
ωθ =

√
kθ

IP
(5.28)

Substituting Eqs. (5.27) into Eqs. (5.26), using the definitions in Eqs. (5.28), and
rearranging the equations of motion into matrix form, we obtain[

mb2 mb2xθ

mb2xθ IP

]{
ḧ
b

θ̈

}
+
[

mb2ω2
h 2πρ∞b2U2

0 IPω2
θ − 2

( 1
2 + a

)
πρ∞b2U2

]{
h
b

θ

}
=
{

0
0

}

(5.29)
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Note that the first equation was multiplied through by b and the variable h was
divided by b to make every term in both equations have the same units. Following
the p method as outlined previously, we now make the substitutions h = h exp(νt)
and θ = θ exp(νt), which yields[

mb2ν2 + mb2ω2
h mb2ν2xθ + 2πρ∞b2U2

mb2ν2xθ Ipω
2
θ + Ipν

2 − 2(a + 1
2 )πρ∞b2U2

]{
h
b

θ

}
=
{

0

0

}
(5.30)

Although this eigenvalue problem can be solved as it is written, it is more convenient
to introduce dimensionless variables to further simplify the problem. To this end,
we first let ν = pU/b, where p is the unknown dimensionless, complex eigenvalue;
divide all equations by mU2; and finally introduce the dimensionless parameters

r2 = IP
mb2 σ = ωh

ωθ

μ = m
ρ∞πb2 V = U

bωθ

(5.31)

Here, r is the dimensionless radius of gyration of the section about the reference
point P with r2 > x2

θ ; σ is the ratio of uncoupled plunge and pitch frequencies; μ is
the mass-ratio parameter reflecting the relative importance of the model mass to the
mass of the air affected by the model; and V is the dimensionless freestream speed
of the air, sometimes called the “reduced velocity.” As a result, the equations then
simplify to [

p2 + σ 2

V2 xθ p2 + 2
μ

xθ p2 r2 p2 + r2

V2 − 2
μ

(a + 1
2 )

]{
h
b

θ

}
=
{

0

0

}
(5.32)

For a nontrivial solution to exist, the determinant of the coefficient matrix must
be set equal to zero. There are typically two complex conjugate pairs of roots—for
example

p1 = bν1

U
= b

U
(�1 ± i�1)

p2 = bν2

U
= b

U
(�2 ± i�2)

(5.33)

A more convenient way to present these roots is to multiply them by the reduced
velocity V, yielding

Vp1 = b
U

(�1 ± i�1)
U

bωθ

= �1

ωθ

± i
�1

ωθ

Vp2 = b
U

(�2 ± i�2)
U

bωθ

= �2

ωθ

± i
�2

ωθ

(5.34)

This way, they are now tied to a specified system parameter ωθ instead of the varying
speed U.

For a given configuration and altitude, we must look at the behavior of the
complex roots as functions of V and find the smallest value of V to give divergent
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Figure 5.3. Plot of the modal frequency versus
V for a = −1/5, e = −1/10, μ = 20, r 2 = 6/25,
and σ = 2/5 (steady-flow theory)

oscillations in accordance with Table 5.1. That value is VF = UF/(bωθ ), where UF is
the flutter speed.

We may find the divergence speed by setting p = 0 in Eq. (5.32), which leads to
setting the coefficient of θ in the θ equation equal to zero and solving the resulting
expression for V. This value is the dimensionless divergence speed VD, given by

VD = UD

bωθ

= r
√

μ

1 + 2a
(5.35)

This is the same answer that we would obtain with analyses similar to those presented
in Chapter 4.

For looking at flutter, we consider a specific configuration defined by a = −1/5,
e = −1/10, μ = 20, r2 = 6/25, and σ = 2/5. The divergence speed for this configu-
ration is VD = 2.828 (or UD = 2.828 bωθ ). Plots of the imaginary and real parts of
the roots versus V are shown in Figs. 5.3 and 5.4, respectively. The negative of � is
the modal damping and � is the modal frequency. We consider first the imaginary
parts, �, as shown in Fig. 5.3. When V = 0, we expect the two dimensionless fre-
quencies to be near unity and σ for pitching and plunging oscillations, respectively.
Even at V = 0, these modes are lightly coupled because of the nonzero off-diagonal
terms proportional to xθ in the mass matrix. As V increases, the frequencies start to
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Figure 5.4. Plot of the modal damping
versus V for a = −1/5, e = −1/10, μ =
20, r 2 = 6/25, and σ = 2/5 (steady-flow
theory)
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approach one another, and their respective mode shapes exhibit increasing coupling
between plunge and pitch. Flutter occurs when the two modal frequencies coalesce,
at which point the roots become complex conjugate pairs. At this condition, both
modes are highly coupled pitch–plunge oscillations. The dimensionless flutter speed
is VF = UF/(bωθ ) = 1.843 and the flutter frequency is �F/ωθ = 0.5568. The real
parts, �, are shown in Fig. 5.4 and remain zero until flutter occurs. When flutter
occurs, the real part of one of the roots is positive and the other is negative.

Comparing results from this analysis with experimental data, we find that a few
elements of realism are at least qualitatively captured. For example, the analysis
predicts that flutter occurs at a value of V = VF < VD, which is correct for the
specified configuration. Furthermore, it shows a coalescence of the pitching and
plunging frequencies as V approaches VF , which is not only correct for the specified
configuration but also is frequently observed in connection with flutter analysis.
However, the previous analysis is deficient in its ability to accurately predict flutter
speed. Moreover, the damping of all modes below the flutter speed is predicted to
be zero, which is known to be incorrect. Finally, the steady-flow theory exhibits a
coalescence characterized by the two roots being exactly equal to one another at the
point of flutter. This condition is not met at all in data obtained from experiments
and flight testing.

These deficiencies in predictive capability stem from deficiencies in the aero-
dynamic theory. The steady-flow aerodynamic theory of Chapter 4 was used. Al-
though this aerodynamic theory has obvious deficiencies (e.g., linearity and two-
dimensionality), a most significant deficiency concerning flutter analysis is that it
neglects unsteady effects. To obtain an accurate prediction of flutter speed, it is
necessary to include unsteadiness in the aerodynamic theory; this demands a more
sophisticated aerodynamic theory.

Unfortunately, development of unsteady-aerodynamic theories is no small un-
dertaking. Unsteady-aerodynamic theories can be developed most simply when sim-
ple harmonic motion is assumed a priori. Although such limited theories cannot be
used in the p method of flutter analysis described in Section 5.1, they can be used
in classical flutter analysis, described in the next section. As will be shown, classi-
cal flutter analysis can predict the flutter speed and flutter frequency, but it cannot
predict values of modal damping and frequency away from the flutter condition. To
obtain a reasonable sense of modal damping and frequencies at points other than
the flutter condition, two approximate schemes are discussed in Section 5.4.

If these approximations turn out to be inadequate for predicting modal damping
and frequencies, we have no choice but to carry out a flutter analysis that does
not assume simple harmonic motion, which in turn requires a still more powerful
aerodynamic theory. One such approach that fits easily into the framework of Sec-
tion 5.1 is the finite-state theory of Peters et al. (1995). Such a theory not only
facilitates the calculation of subcritical eigenvalues; because it is a time-domain
model, it also can be used in control design.

Hence, in the following sections, we first look at classical flutter analysis and
the approximate techniques associated therewith and then turn to a more detailed



188 Aeroelastic Flutter

discussion of unsteady aerodynamics, including one theory that assumes simple
harmonic motion (i.e., the Theodorsen theory) and one that does not (i.e., the Peters
finite-state theory).

5.3 Classical Flutter Analysis

Until at least the late 1970s, the aircraft industry performed most lifting-surface
flutter analyses based on what is commonly called “classical flutter analysis” based
on the flutter determinant. The objective of such an analysis is to determine the flight
conditions that correspond to the flutter boundary. It was previously noted that the
flutter boundary corresponds to conditions for which one of the modes of motion
has a simple harmonic time dependency. Because this is considered to be a stability
boundary, it is implied that all modes of motion are convergent (i.e., stable) for less
critical flight conditions (i.e., lower airspeed). Moreover, all modes other than the
critical one are convergent at the flutter boundary.

The method of analysis is not based on solving the generalized equations of
motion as described in Section 5.1. Rather, it is presumed that the solution involves
simple harmonic motion. With such a solution specified, the equations of motion
are then solved for the flight condition(s) that yields such a solution. Whereas in
the p method we determine the eigenvalues for a set flight condition—the real parts
of which provide the modal damping—it is apparent that classical flutter analysis
cannot provide the modal damping for an arbitrary flight condition. Thus, it cannot
provide any definitive measure of flutter stability other than the location of the
stability boundary. Although this is the primary weakness of such a method, its
primary strength is that it needs only the unsteady airloads for simple harmonic
motion of the surface, which for a given level of accuracy are derived more easily
than those for arbitrary motion.

To illustrate classical flutter analysis, it is necessary to consider an appropriate
representation of unsteady airloads for simple harmonic motion of a lifting surface.
Because these oscillatory motions are relatively small in amplitude, it is sufficient
to use a linear-aerodynamic theory for the computation of these loads. These aero-
dynamic theories usually are based on linear potential-flow theory for thin airfoils,
which presumes that the motion and thickness of the wing structure create a small
disturbance in the flow field and that perturbations in the flow velocity are small rela-
tive to the freestream speed. For purposes of demonstration, it suffices to reconsider
the typical section of a two-dimensional lifting surface that is experiencing simulta-
neous translational and rotational motions, as illustrated in Fig. 5.2. The motion is
simple harmonic; thus, h and θ are represented as

h(t) = h exp(iωt)

θ(t) = θ exp(iωt)
(5.36)

where ω is the frequency of the motion. Although the h and θ motions are of the
same frequency, they are not necessarily in phase. This can be taken into account
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mathematically by representing the amplitude θ as a real number and h as a complex
number. Because a linear aerodynamic theory is to be used, the resulting lift, L, and
the pitching moment about P, denoted by M, where

M = M1
4
+ b

(
1
2

+ a
)

L (5.37)

also are simple harmonic with frequency ω, so that

L(t) = Lexp(iωt)

M(t) = M exp(iωt)
(5.38)

The amplitudes of these airloads can be computed as complex linear functions of
the amplitudes of motion as

L = −πρ∞b3ω2

[
�h(k, M∞)

h
b

+ �θ (k, M∞)θ

]

M = πρ∞b4ω2

[
mh(k, M∞)

h
b

+ mθ (k, M∞)θ

] (5.39)

Here, the freestream air density is represented as ρ∞ and the four complex func-
tions contained in the square brackets represent the dimensionless aerodynamic
coefficients for the lift and moment resulting from plunging and pitching. These
coefficients in general, are, functions of the two parameters k and M∞, where

k = bω

U
(reduced frequency)

M∞ = U
c∞

(freestream Mach number)
(5.40)

As in the case of steady airloads, compressibility effects are reflected here by the
dependence of the coefficients on M∞. The reduced frequency k is unique to unsteady
flows. This dimensionless frequency parameter is a measure of the unsteadiness of
the flow and normally has a value between zero and unity for conventional flight
vehicles. Also note that for any specified values of k and M∞, each coefficient can be
written as a complex number. As in the case of h relative to θ , the fact that lift and
pitching moment are complex quantities reflects their phase relationships relative
to the pitch angle (where we can regard θ as a real number, for convenience). The
speed at which flutter occurs corresponds to specific values of k and M∞ and must
be found by iteration. Examples of how this process can be carried out for one- and
two-degree-of-freedom systems are given in the following subsections.

5.3.1 One-Degree-of-Freedom Flutter

To illustrate the application of classical flutter analysis, a simple configuration is
treated first. This example is a one-degree-of-freedom aeroelastic system consisting
of a rigid two-dimensional wing that is permitted to rotate in pitch about a specified
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Figure 5.5. Schematic of the airfoil of a two-dimensional wing that is spring-restrained in pitch

reference point. This is a special case of the typical-section configuration shown in
Fig. 5.2 for which the plunge degree of freedom is equal to zero, as depicted in
Fig. 5.5. The system equations of motion reduce to one equation that can be written
as

IP θ̈ + kθ θ = M (5.41)

To be consistent with classical flutter analysis, the motion of the system is pre-
sumed to be simple harmonic as

θ = θ exp(iωt) (5.42)

The aerodynamic pitching moment, M, in the equation of motion is in response to
this simple harmonic pitching displacement. As previously discussed, this airload can
be described by

M = M exp(iωt) (5.43)

where

M = πρ∞b4ω2mθ (k, M∞)θ (5.44)

Substituting these simple harmonic functions into the equation of motion yields an
algebraic relationship between the coefficients of θ as

kθ − ω2 IP = πρ∞b4ω2mθ (k, M∞) (5.45)

Introducing the natural frequency of the system at zero airspeed

ωθ =
√

kθ

IP
(5.46)

and rearranging the algebraic relationship, we obtain the final equation to be solved
for the flight condition at the flutter boundary as

IP

πρ∞b4

[
1 −

(ωθ

ω

)2
]

+ mθ (k, M∞) = 0 (5.47)
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To solve this equation, it is presumed that the configuration parameters IP, ωθ , and b
are known. The unknown parameters that describe the motion and flight condition
are ω, ρ∞, k, and M∞. These four unknowns must be determined from the single
algebraic equation, Eq. (5.47). Because the aerodynamic coefficient, mθ (k, M∞), is
complex, it can be written as

mθ (k, M∞) = �[mθ (k, M∞)] + i�[mθ (k, M∞)] (5.48)

As a consequence, both the real and imaginary parts of the algebraic relationship
must be zero, thus providing two real equations to determine the four unknowns.
Therefore, two of the unknown parameters should be specified. A fixed altitude is
chosen that specifies the freestream atmospheric density, ρ∞. The second parameter
to be fixed is the Mach number, which can be given a temporary value of zero. This,
of course, implies that the flow is incompressible and the aerodynamic-moment
coefficient is then only a function of the reduced frequency. The governing algebraic
equation now can be written as

IP

πρ∞b4

[
1 −

(ωθ

ω

)2
]

+ �[mθ (k, 0)] + i�[mθ (k, 0)] = 0 (5.49)

Equating the imaginary part of the left-hand side to zero gives a relationship that
can be solved for the reduced frequency, kF , at the flutter boundary; that is

�[mθ (kF , 0)] = 0 (5.50)

With kF known, �[mθ (kF , 0)] can be numerically evaluated. Equating the real part
of the left-hand side to zero now enables the frequency, ωF , to be determined from(

ωθ

ωF

)2

= 1 + πρ∞b4�[mθ (kF , 0)]
IP

(5.51)

Now that kF and ωF have been determined, it is possible to compute the flutter speed
as

UF = bωF

kF
(5.52)

The flutter speed determined by the previous procedure corresponds to the
originally specified altitude and is based on an incompressible representation of
the airloads. After this speed has been determined, the speed of sound, c∞, at the
specified altitude can be used to find the flutter Mach number as

MF = UF

c∞
(5.53)

If this flutter Mach number is sufficiently small to justify the use of incompressible
aerodynamic coefficients, then the altitude–speed combination obtained is a point
on the flutter boundary. If the flutter Mach number is too high to validate the in-
compressible approximation, then the entire procedure should be repeated using
aerodynamic coefficients that are based on the initially computed flutter Mach num-
ber. Using the standard atmospheric model, which relates density and the speed of
sound, this iterative scheme converges to a flight condition on the flutter boundary.
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5.3.2 Two-Degree-of-Freedom Flutter

The analysis of multi-degree-of-freedom systems for determination of the flutter
boundary can be demonstrated adequately by the simple two-degree-of-freedom
configuration in Fig. 5.2. The equations of motion, already derived as Eqs. (5.26),
are repeated here as follows:

m
(
ḧ + bxθ θ̈

)+ khh = −L

IP θ̈ + mbxθ ḧ + kθ θ = M
(5.54)

where, as before

M = M1
4
+ b

(
1
2

+ a
)

L (5.55)

The next step in classical flutter analysis is to presume that the motion is simple
harmonic as represented by

h = h exp(iωt)

θ = θ exp(iωt)
(5.56)

The corresponding lift and moment can be written as

L = Lexp(iωt)

M = M exp(iωt)
(5.57)

Substituting these time-dependent functions into the equations of motion, we obtain
a pair of algebraic equations for the amplitudes of h and θ in the form

−ω2mh − ω2mbxθ θ + mω2
hh = −L

−ω2mbxθ h − ω2 IPθ + IPω2
θ θ = M

(5.58)

where we recall that

L = −πρ∞b3ω2

[
�h (k, M∞)

h
b

+ �θ (k, M∞) θ

]

M = πρ∞b4ω2

[
mh (k, M∞)

h
b

+ mθ (k, M∞) θ

] (5.59)

Substituting these lift and moment amplitudes into Eqs. (5.58) and then rearranging,
we obtain a pair of homogeneous, linear, algebraic equations for h and θ , given by{

m
πρ∞b2

[
1 −

(ωh

ω

)2
]

+ �h (k, M∞)
}

h
b

+
[

mxθ

πρ∞b2
+ �θ (k, M∞)

]
θ = 0

[
mxθ

πρ∞b2
+ mh (k, M∞)

]
h
b

+
{

IP

πρ∞b4

[
1 −

(ωθ

ω

)2
]

+ mθ (k, M∞)
}

θ = 0

(5.60)
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The coefficients in these equations that involve the inertia terms are symbolically
simplified by defining the dimensionless parameters used previously; namely

μ = m
πρ∞b2

(mass ratio)

r =
√

IP

mb2
(mass radius of gyration about P)

(5.61)

Using these parameters allows us to rewrite the previous two homogeneous equa-
tions in a simpler way:

{
μ

[
1 −

(ωh

ω

)2
]

+ �h

}
h
b

+ (μxθ + �θ ) θ = 0

(μxθ + mh)
h
b

+
{
μr2

[
1 −

(ωθ

ω

)2
]

+ mθ

}
θ = 0

(5.62)

The third step in the flutter analysis is to solve these algebraic equations for the
flight condition(s) for which the presumed simple harmonic motion is valid. This
result corresponds to the flutter boundary. If it is presumed that the configuration
parameters m, e, a, IP, ωh, ωθ , and b are known, then the unknown quantities h, θ ,
ω, ρ∞, M∞, and k describe the motion and flight condition. Because Eqs. (5.62) are
linear and homogeneous in h/b and θ , the determinant of their coefficients must be
zero for a nontrivial solution for the motion to exist. This condition can be written
as

∣∣∣∣∣∣
μ
[
1 − σ 2

(
ωθ

ω

)2
]

+ �h μxθ + �θ

μxθ + mh μr2
[
1 − (

ωθ

ω

)2
]

+ mθ

∣∣∣∣∣∣ = 0 (5.63)

The determinant in this relationship is called the “flutter determinant.” Note that
the parameter σ = ωh/ωθ was introduced so that a common term that is explicit in ω

is available—namely, ωθ/ω. Thus, expansion of the determinant yields a quadratic
polynomial in the unknown λ = (ωθ/ω)2.

To complete the solution for the flight condition at the flutter boundary, it
must be recognized that four unknowns remain: ωθ/ω, μ = m/(πρ∞b2), M∞, and
k = bω/U. The one equation available for their solution is the second-degree poly-
nomial characteristic equation from setting the determinant equal to zero. However,
because the aerodynamic coefficients are complex quantities, this complex equation
represents two real equations, wherein both the real and imaginary parts must be
identically zero for a solution to be obtained. This means that two of the four un-
knowns must be specified. A procedure to solve for and map the flutter boundary is
outlined as follows:

1. Specify an altitude, which fixes the parameter μ.
2. Specify an initial guess for M∞ of, say, zero.
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3. Recalling that setting the flutter determinant equal to zero yields a quadratic
equation in λ, use a root-finding application1 to find the value of k at which the
imaginary part of one of the two roots for λ vanishes, which is kF . This can be
carried out easily with computerized symbolic manipulation software such as
MathematicaTM or Maple.TM

4. Set ωθ/ωF = √
λ(kF ) using the root for which λ(kF ) is real.

5. Determine UF = bωF/kF and M∞F = UF/c∞.
6. Repeat steps 3–5 with the value of M∞F obtained in step 5 until converged values

are obtained for M∞F , kF , and UF for flutter at a given μ.
7. Repeat the entire procedure for various values of μ (i.e., an indication of the

altitude for a given aircraft) to determine the flutter boundary in terms of, say,
altitude versus M∞F , kF , and UF .

5.4 Engineering Solutions for Flutter

It was noted in the preceding section that the presumption of simple harmonic
motion in classical flutter analysis has both advantages and disadvantages. The prime
argument for specification of simple harmonic time dependency is, of course, its
correspondence to the stability boundary. Identification of the flight conditions along
this boundary requires the execution of a tedious, iterative process such as the one
outlined in Section 5.3. This type of solution can be attributed to Theodorsen (1934),
who presented the first comprehensive flutter analysis with his development of the
unsteady airloads on a two-dimensional wing in incompressible potential flow.

Although unsteady-aerodynamics analyses for simple harmonic motion are not
simple to formulate and execute, they are far more tractable than those for oscillatory
motions with varying amplitude. Since the work of Theodorsen, numerous unsteady-
aerodynamic formulations have been developed for simple harmonic motion of
lifting surfaces. These techniques have proven to be adequate for compressible flows
in both the subsonic and supersonic regimes. They also have been developed for
three-dimensional surfaces and, in some cases, with surface-to-surface interaction.
This availability of relatively accurate unsteady-aerodynamic theories for simple
harmonic motion was the stimulus for further development of flutter analyses beyond
that of the classical flutter analysis described in Section 5.3.

1 If one does not have ready access to a root-finding application, this step may be replaced by the
following four steps:

(a) Specify a set of trial k values—say, from 0.001 to 1.0.
(b) For each value of k (and the specified value of M∞), calculate the functions �h, �θ , mh, and mθ .
(c) Solve the flutter determinant, which is a quadratic equation with complex coefficients, for the

values of λ = (ωθ/ω)2 that correspond to each of the selected values of k. Note that these
roots are complex in general, the real part an approximation of (ωθ/ω)2 and the imaginary part
related to the damping of the mode.

(d) Interpolate to find the value of k at which the imaginary part of one of the roots becomes zero.
This can be done approximately by plotting the imaginary parts of both roots versus k, so that
the value of k at which one of the imaginary parts crosses the zero axis can be determined. This
value of k is an approximation of kF , making the value of λ real when k = kF .
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There are two other important considerations of practicing engineers. The first
is to obtain an understanding of the margin of stability at flight conditions in the
vicinity of the flutter boundary. The second—and possibly the more important—is
to obtain an understanding of the physical mechanism that causes the instability.
With this information, engineers can propose design variations that may alleviate
or even eliminate the instability. When a suitable unsteady-aerodynamic theory is
available, the p method can address these considerations. In this section, we examine
alternative ways that engineers have addressed these problems when unsteady-
aerodynamic theories that assume simple harmonic motion must be used.

5.4.1 The k Method

Subsequent to Theodorsen’s analysis of the flutter problem, numerous schemes
were devised to extract the roots of the “flutter determinant” and thereby identify
the stability boundary. Scanlan and Rosenbaum (1951) presented a brief overview
of these techniques as they were offered during the 1940s. It was fairly common
to include in the flutter analysis a parameter that simulated the effect of structural
damping. Observations at that time indicated that the energy removed per cycle
during a simple harmonic oscillation was nearly proportional to the square of the
amplitude but independent of the frequency. This behavior can be characterized by a
damping force that is proportional to the displacement but in phase with the velocity.

To incorporate this form of structural damping into the analysis of Section 5.3.2,
Eqs. (5.54) can be written as

m
(
ḧ + bxθ θ̈

)+ khh = −L+ Dh

IP θ̈ + mbxθ ḧ + kθ θ = M + Dθ

(5.64)

where the dissipative structural damping terms are

Dh = Dh exp(iωt)

= −ighmω2
hh exp(iωt)

Dθ = Dθ exp(iωt)

= −igθ IPω2
θ θ exp(iωt)

(5.65)

Proceeding as before, Eqs. (5.62) become{
μ

[
1 −

(ωh

ω

)2
(1 + igh)

]
+ �h

}
h
b

+ (μxθ + �θ ) θ = 0

(μxθ + mh)
h
b

+
{
μr2

[
1 −

(ωθ

ω

)2
(1 + igθ )

]
+ mθ

}
θ = 0

(5.66)

The damping coefficients gh and gθ have representative values from 0.01 to 0.05
depending on the structural configuration. Most early analysts who incorporated this
type of structural damping model into their flutter analyses specified the coefficient
values a priori with the intention of improving the accuracy of their results.
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Scanlan and Rosenbaum (1948) suggested that the damping coefficients be
treated as unknown together with ω. In this instance, the subscripts on g can be
removed. Writing σ = ωh/ωθ as before, and introducing

Z =
(ωθ

ω

)2
(1 + ig) (5.67)

we obtain the flutter determinant as∣∣∣∣∣μ
(
1 − σ 2 Z

)+ �h μxθ + �θ

μxθ + mh μr2 (1 − Z) + mθ

∣∣∣∣∣ = 0 (5.68)

which is a quadratic equation in Z. The two unknowns of this quadratic equation are
complex, denoted by

Z1,2 =
(

ωθ

ω1,2

)2

(1 + ig1,2) (5.69)

The computational strategy for solving Eq. (5.68) proceeds in a manner similar to
the one outlined for Eq. (5.63). The primary difference is that the numerical results
consist of two pairs of real numbers, (ω1, g1) and (ω2, g2), which can be plotted versus
airspeed U or a suitably normalized value such as U/(bωθ ) or “reduced velocity” 1/k.

Plots of the damping coefficients g1 and g2 versus airspeed can indicate the
margin of stability at conditions near the flutter boundary, where g1 or g2 is equal to
zero. These plots proved to be of such significance that the technique of incorporating
the unknown structural damping was initially called the “U-g method.” Recalling
that the methodology presumes simple harmonic motion throughout, the numerical
values of g1 and g2 that are obtained for each kcan be interpreted only as the required
damping coefficients (of the specified form) to achieve simple harmonic motion at
frequencies ω1 and ω2, respectively. The damping as modeled does not really exist;
it was introduced as an artifice to produce the desired motion—truly an artificial
structural damping.

The plots of frequency versus airspeed in conjunction with the damping plots
can, in many cases, provide an indication of the physical mechanism that leads to the
instability. The values of frequency along the U = 0 axis correspond to the coupled
modes of the original structural dynamic system. As the airspeed increases, the
individual behavior or interaction of these roots can indicate the transfer of energy
from one mode to another. Such observations could suggest a way to delay the onset
of the instability. To confirm identification of the modes of motion for any specified
reduced frequency, it is only necessary to substitute the corresponding eigenvalues,
ωi and gi , into the homogeneous equations of motion to compute the associated
eigenvector (h/b, θ). Because this is a complex number, it can provide the relative
magnitude and phase of the original deflections h and θ .

5.4.2 The p-k Method

The k method is still popular in industry largely because of its speed. Although it
provides significant advantages to the practicing aeroelastician, it is a mathematically
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improper formulation. The impropriety of imposing simple harmonic motion with
the introduction of artificial damping precipitated many heated discussions through-
out the industry. It has been argued that for conditions other than the g = 0 case,
the frequency and damping characteristics do not correctly represent the system
behavior. As a result, design changes that are made based on these characteristics
can lead to expensive and potentially dangerous results.

In 1971, Hassig presented definitive numerical results that clearly indicated that
the k method of flutter analysis can exhibit an improper coupling among the modes
of motion. His presentation utilized a simple form of unsteady aerodynamics in a
k method analysis, and then he compared the results with those from a p method
analysis. Recall that the p method presented in Section 5.1 is already established
as the most accurate solution. Here, we show how both k and p-k methods relate
to it.

In the p method, the general solution to the homogeneous modal equations of
motion given by Eqs. (5.7) can be written in terms of a dimensionless eigenvalue
parameter p = bν/U, where

ξi (t) = ξ i exp(νt) (5.70)

Substitution of this expression into Eqs. (5.7) yields n + N linear, homogeneous
equations for the n ξ i s and the N λs given as Eqs. (5.11). After eliminating the
λs using the second of Eqs. (5.11), we may rewrite the first of those equations
symbolically as

[
p2[`M`] + b2

U2
[`M`][`ω

2
`] − ρ∞[A(p)]

] {
ξ
} = 0 (5.71)

where [`M`] and [`ω2
`] are diagonal matrices with elements M1, M2, . . . , Mn and

ω2
1, ω2

2, . . . , ω
2
n, respectively; n is the number of modes; and the unsteady aerody-

namics operator matrix [A(p)] can be expressed in terms of the other matrices in
Eqs. (5.11)—namely, in terms of [a], [b], [c], [d], [A], and [E]. The complex matrix
[A(p)] is made up of so-called aerodynamic-influence coefficients (AICs). These
coefficients are functions of p and possibly of the Mach number, depending on the
sophistication of the aerodynamic theory.

If the λs are actually eliminated, then the problem, in general, cannot be ex-
pressed as a standard eigenvalue problem. This is not a serious obstacle, however,
because we can always solve Eqs. (5.11) as a standard eigenvalue problem. The
purpose here for eliminating the λs is only to provide a convenient segue into the
k and p-k methods and show explicitly the differences among the three methods.
The important thing to note is not the procedure used to obtain Eq. (5.71); rather,
it is the form of this equation that is most important at this stage. The coefficients
A(p) frequently can be determined or identified in other ways. This equation is
the basis for the p method in one of its usual forms. For a nontrivial solution of
the generalized coordinate amplitudes, the determinant of the coefficient matrix in
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Eq. (5.71) must be zero, so that∣∣∣∣p2[`M`] + b2

U2
[`M`][`ω

2
`] − ρ∞[A(p)]

∣∣∣∣ = 0 (5.72)

For a given speed and altitude, this flutter determinant can be solved for p. The
result typically yields a set of complex conjugate pairs and real roots, the former
represented as

p = γ k ± ik (5.73)

where k is the reduced frequency of Eqs. (5.40), γ is the rate of decay, given by

γ = 1
2π

ln
(

am+1

am

)
(5.74)

and where am and am+1 represent the amplitudes of successive cycles.
Application of the kmethod to this modal representation can be readily achieved

by letting p = ik in the preceding formulation. This yields a flutter determinant
comparable to Eq. (5.72) as∣∣∣∣−k2[`M`] + b2

U2
[`M`][`ω

2
`] − ρ∞[A(ik)]

∣∣∣∣ = 0 (5.75)

At selected values of reduced frequency and altitude, Eq. (5.75) can be solved for
the complex roots of b2/U2, denoted by λr + iλi . These roots may be interpreted as

λr + iλi =
(

b2

U2

)
(1 + ig) (5.76)

where g is the structural damping required to sustain simple harmonic motion. This
structural-damping parameter can be related to the rate of decay parameter of the
p method as

g ∼= 2γ (5.77)

This is a good approximation for small damping as in the case of flight vehicles. The
k method is posed easily as a standard eigenvalue problem, which is clear from
Eq. (5.75). This alone gives it a significant advantage over the classical flutter-
determinant method outlined in Section 5.3.

Another important aspect in making any correlation between the p and k meth-
ods is the matter of adequate inclusion of compressibility effects in the unsteady-
aerodynamic terms. In the p method, the flutter determinant is solved for selected
combinations of speed and altitude. Consequently, the appropriate Mach number
can be used for the aerodynamic terms at the outset of the computation. In contrast,
the k method preselects combinations of reduced frequency and altitude. As a result
of then computing the airspeed as an unknown, λr , the Mach number cannot be
accurately specified a priori. The result is that an iterative process similar to the one
described in Section 5.3 must be conducted to ensure that compressibility effects are
adequately incorporated in the k method.
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Figure 5.6. Comparison between p and
k methods of flutter analysis for a twin-
jet transport airplane (from Hassig [1971]
Fig. 1, used by permission)

Hassig applied the p and k methods of flutter analysis to a realistic aircraft
configuration. By incorporating the same unsteady-aerodynamic representation in
each analysis, he was able to make a valid comparison of the results. His observations
are typified by Fig. 5.6 (which is his Fig. 1). Note from this figure that not only is
the modal coupling wrongly predicted by the k method but also, more important,
the wrong mode is predicted to become unstable. The only consistently valid result
between the two analyses is that of the flutter speed for which g = γ = 0. Despite the
inconsistent modal coupling exhibited by the k method, it permits the use of simple
harmonic modeling of the unsteady aerodynamic terms. As previously mentioned,
the accuracy of simple harmonic airload predictions exceeds the accuracy of airload
predictions for transient motions. It is for this reason that a compromise between
the two models was suggested.

The p-k method is such a compromise. It is based on conducting a p-method
type of analysis with the restriction that the unsteady-aerodynamics matrix is for
simple harmonic motion. Using an arbitrary value of k in computing [A(ik)], we find
the flutter determinant to be

∣∣∣∣p2[M] + b2

U2
[M][ω2] − ρ∞[A(ik)]

∣∣∣∣ = 0 (5.78)

Given a set of initial guesses for k—say, k0 = bωi/U for the ith root—this equation
can be solved for p. Moreover, it can be posed as a standard eigenvalue problem
for p because p appears only in a simple way. The typical result is a set of complex



200 Aeroelastic Flutter

γ

γ

γ
π

=
⎛ ⎝⎜

⎞ ⎠⎟

Figure 5.7. Comparison between p and p-k
methods of flutter analysis for a twin-jet trans-
port airplane (from Hassig [1971] Fig. 2, used
by permission)

conjugate pairs of roots and possibly some real roots. Selecting one of the complex
roots and denoting the initial solution as

k1 = ∣∣�(p)
∣∣ γ1 = �(p)

k1
(5.79)

we can compute [A(ik1)]. Using this new matrix in Eq. (5.78) leads to another set of
ps, so that

k2 = ∣∣�(p)
∣∣ γ2 = �(p)

k2
(5.80)

Continual updating of the aerodynamic matrix in this way provides an iterative
scheme that is convergent for each of the roots, negative γ being a measure of the
modal damping. The earliest presentation of this technique was offered by Irwin and
Guyett in 1965. For low-order problems, it is straightforward to use a root-finding
procedure in which the determinant obtained from setting k = ∣∣�(p)

∣∣ is required to
vanish.

Hassig applied the p-k method to the configuration in Fig. 5.6. As illustrated
by Fig. 5.7 (which is his Fig. 2), the p-k method appears to yield approximately the
same result as the p method. This, of course, simply validates the convergence of the
scheme. Its greatest advantage is that it can utilize airloads that have been formulated
for simple harmonic motion. Another comparison offered by Hassig was between
the widely used k method and the p-k method for a horizontal stabilizer/elevator
configuration. This example of a strongly coupled system provided the results given
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Figure 5.8. Comparison between p-k and k
methods of flutter analysis for a horizontal
stabilizer with elevator (from Hassig [1971]
Fig. 3, used by permission)

in Fig. 5.8 (which is his Fig. 3). Here again, as in the k versus p comparison in
Fig. 5.6, widely differing conclusions can be drawn regarding the modal coupling. In
addition to the easily interpreted frequency and damping plots versus airspeed for
strongly coupled systems, a second advantage is offered by the p-k method regarding
computational effort. The k method requires numerous computer runs at constant
density to ensure matching of the Mach number with airspeed and altitude. The p-k
method does not have this requirement.

The accuracy of the p-kmethod depends on the level of damping in any particular
mode. It is left as an exercise for readers (see Problem 14) to show that the p-kmethod
damping is only a good approximation for the damping in lightly damped modes.
Fortunately, these are the modes about which we care the most. Methods presently
used in industry are described by Goodman (2001). Currently, most flutter analyses
in the aircraft industry are performed using k and/or p-k methods. Although the k
method remains popular because of its speed, when accuracy is important and the p
method is not feasible, industry users seem to favor the p-k method, especially those
who run the NASTRANTM aeroelasticity package.

5.5 Unsteady Aerodynamics

In Section 5.2, flutter analysis was conducted using an aerodynamic theory for steady
flow. The lift and pitching moment used were functions only of the instantaneous
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pitch angle, θ . On deeper investigation, however, it is easy to see that the angle of
attack is not simply equal to θ . For example, recalling that the airfoil reference point
is plunging with velocity ḣ, at least for small angles, we can justify modifying the
angle of attack to include the effect of plunge; viz.

α = θ + ḣ
U

(5.81)

where this follows from an argument similar to the one used in Section 4.2.5 regarding
the influence of aircraft roll on the wing’s angle of attack. However, we must be
cautious about such ad hoc reasoning because there may be other effects of the same
order that we are overlooking.

Indeed, there are other effects of equal importance that must be included. Fung
(1955) suggested an easy experiment to demonstrate that things are not so simple as
indicated by Eq. (5.81): Attempt to rapidly move a stick in a straight line through
water and notice the results. In the wake of the stick, there is a vortex pattern, with
vortices being shed alternately from each side of the stick. This shedding of vortices
induces a periodic force perpendicular to the stick’s line of motion, causing the stick
to tend to wobble back and forth in your hand. A similar phenomenon happens
with the motion of a lifting surface through a fluid and must be accounted for in
unsteady-aerodynamic theories.

We can observe that lift and pitching moment consist of two parts from two
physically different phenomena: noncirculatory and circulatory effects. Circulatory
effects are generally more important for aircraft wings. Indeed, in steady flight, it
is the circulatory lift that keeps the aircraft aloft. Vortices are an integral part of
the process of generation of circulatory lift. Basically, there is a difference in the
velocities on the upper and lower surfaces of an airfoil. Such a velocity profile can
be represented as a constant velocity flow plus a vortex. In a dynamic situation,
the strength of the vortex (i.e., the circulation) is changing with time, as are both
the magnitude and direction of the relative wind vector because of airfoil motion.
However, the circulatory forces of steady-flow theories do not include the effects of
the vortices shed into the wake. Restricting our discussion to two dimensions and
potential flow, we recall an implication of the Helmholtz theorem: The total vorticity
will always vanish within any closed curve surrounding a particular set of fluid
particles. Thus, if a clockwise vorticity develops about the airfoil, a counterclockwise
vortex of the same strength must be shed into the flow. As it moves along, this shed
vortex changes the flow field by inducing an unsteady flow back onto the airfoil.
This behavior is a function of the strength of the shed vortex and its distance away
from the airfoil. Thus, accounting for the effect of shed vorticity is, in general, a
complex undertaking and would necessitate knowledge of each vortex shed in the
flow. However, if we assume that the vortices shed in the flow move with the flow,
then we can estimate the effect of these vortices.

Noncirculatory effects, also called apparent mass and inertia effects, are sec-
ondary in importance. They are generated when the wing has nonzero acceleration
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so that it must carry with it some of the surrounding air. That air has finite mass,
which leads to inertial forces opposing its acceleration.

In summary, then, unsteady-aerodynamic theories need to account for at least
three separate physical phenomena, as follows:

1. Because of the airfoil’s unsteady motion relative to the air, the relative wind
vector is not fixed in space. This is only partly addressed by corrections such as
in Eq. (5.81). The changing direction of the relative wind changes the effective
angle of attack and thus changes the lift.

2. As Fung’s experiment shows, the airfoil motion disturbs the flow and causes a
vortex to be shed at the trailing edge. The downwash from this vortex, in turn,
changes the flow that impinges on the airfoil. This unsteady downwash changes
the effective angle of attack and thus changes the lift.

3. The motion of the airfoil accelerates air particles near the airfoil surface, thus
creating the need to account for the resulting inertial forces (although this
“apparent-inertia” effect is less significant than that of the shed vorticity). The
apparent-inertia effect does not change the angle of attack but it does, in general,
affect both lift and pitching moment.

Additional phenomena that may affect flutter but which are beyond the scope of
this text include three-dimensional effects, compressibility, airfoil thickness, flow
separation, and stall.

In this section, we present two types of unsteady-aerodynamic theories, both of
which are based on potential-flow theory and take into account the effects of shed
vorticity, the motion of the airfoil relative to the air, and the apparent-mass effects.
The simpler theory is appropriate for classical flutter analysis as well as for the k and
p-k methods. The other is a finite-state theory cast in the time domain, appropriate
for the eigenvalue analysis involved in the p method as well as for the time-domain
analysis required in control design.

5.5.1 Theodorsen’s Unsteady Thin-Airfoil Theory

Theodorsen (1934) derived a theory of unsteady aerodynamics for a thin (meaning
a flat-plate) airfoil undergoing small, simple harmonic oscillations in incompressible
flow. The derivation is based on linear potential-flow theory and is presented in
detail along with mathematical subtleties in the textbook by Bisplinghoff, Ashley,
and Halfman (1955). The lift contains both circulatory and noncirculatory terms,
whereas the pitching moment about the quarter-chord is entirely noncirculatory.
According to Theodorsen’s theory, the lift and pitching moment are given by

L = 2πρ∞UbC(k)
[

ḣ + Uθ + b
(

1
2

− a
)

θ̇

]
+ πρ∞b2 (ḧ + Uθ̇ − baθ̈

)

M1
4

= −πρ∞b3
[

1
2

ḧ + Uθ̇ + b
(

1
8

− a
2

)
θ̈

] (5.82)
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Figure 5.9. Plot of the real and imaginary parts of C(k) for k varying from zero, where
C(k) = 1, to unity

where the generalized forces are given in Eqs. (5.24). The function C(k) is a complex-
valued function of the reduced frequency k, given by

C(k) = H(2)
1 (k)

H(2)
1 (k) + i H(2)

0 (k)
(5.83)

where H(2)
n (k) are Hankel functions of the second kind, which can be expressed in

terms of Bessel functions of the first and second kind, respectively, as

H(2)
n (k) = Jn(k) − iYn(k) (5.84)

The function C(k) = F(k) + iG(k) is called Theodorsen’s function and is plotted
in Figs. 5.9 and 5.10. Note that C(k) is real and equal to unity for the steady case
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Figure 5.10. Plot of the real and imaginary parts of C(k) versus 1/k
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(i.e., k = 0). As k increases, we find that the imaginary part increases in magnitude
whereas the real part decreases. As k tends to infinity, C(k) approaches 1/2. However,
for practical situations, k rarely exceeds unity. Hence, the plot in Fig. 5.9 only extends
to k = 1. The large k behavior is shown in Fig. 5.10. When any harmonic function
is multiplied by C(k), its magnitude is reduced and a phase lag is introduced. An
example of this phenomenon is given herein.

A few things are noteworthy concerning Eqs. (5.82). First, in Theodorsen’s
theory, the lift-curve slope is equal to 2π . Thus, the first of the two terms in the
lift is the circulatory lift without the effect of shed vortices multiplied by C(k). The
multiplication by C(k) is a consequence of the theory having considered the effect
of shed vorticity. The noncirculatory terms (i.e., the second term in the lift as well
as the entire pitching-moment expression) depend on the acceleration and angular
acceleration of the airfoil and are mostly apparent-mass/apparent-inertia terms. The
circulatory lift is the more significant of the two terms in the lift. Note that the
coefficient of ḧ in the lift is the mass per unit length of the air contained in an
infinitely long circular cylinder of radius b. This quantity reflects how much air is
imparted an acceleration by motion of the airfoil.

For steady flow, the circulatory lift is linear in the angle of attack; however,
for unsteady flow, there is no single angle of attack because the flow direction
varies along the chordline as the result of the induced flow varying along the chord.
However, just so we can discuss the concept for unsteady flow, it is helpful to
introduce an effective angle of attack. For simple harmonic motion, it can be inferred
from Theodorsen’s theory that an effective angle of attack is

α = C(k)
[
θ + ḣ

U
+ b

U

(
1
2

− a
)

θ̇

]
(5.85)

As shown in Section 5.5.2 by comparison with the finite-state aerodynamic model
introduced therein, α is the angle of attack measured at the three-quarter chord
based on an averaged value of the induced flow over the chord. Recall that in the
case of steady-flow aerodynamics of two-dimensional wings, the angle of attack is
the pitch angle θ . Here, however, α depends on θ as well as on ḣ, θ̇ , and k. Because
of these additional terms and because of the behavior of C(k), we expect changes
in magnitude and phase between θ and α. These carry over into changes in the
magnitude and phase of the lift relative to that of θ . Indeed, the function C(k) is
sometimes called the lift-deficiency function because it reduces the magnitude of the
unsteady lift relative to the steady lift. It also introduces an important phase shift
between the peak values of pitching oscillations and corresponding oscillations in lift.

When we see the dots over h and θ in the lift and pitching-moment expressions,
it is tempting to think of them as time-domain equations. However, the presence of
C(k) is nonsensical in a time-domain equation. Therefore, Theodorsen’s theory with
the C(k) present must be recognized as valid only for simple harmonic motion.

Note that an approximation of Theodorsen’s theory in which C(k) is set equal to
unity is called a “quasi-steady” thin-airfoil theory. Such an approximation has value
only for cases in which k is restricted to be very small. For slow harmonic oscillations
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or slowly varying motion that is not harmonic, the quasi-steady theory may be used
in the time domain.

As an example to show the decrease in magnitude and change of phase, consider
that the dominant term in the lift is proportional to α. In the time domain, lift is real
and so are α and θ . However, when we regard θ as harmonic; viz.

θ = θ exp(iωt) (5.86)

then we must realize that to recover the time-domain behavior, we need

θ = �[θ exp(iωt)] (5.87)

Similarly, we must recover the time-domain behavior of α using the relationship

α = �[C(k)θ exp(iωt)] (5.88)

Now, assuming θ = 1 so that in the time domain θ = cos(ωt), we find that

α = �[C(k)θ exp(iωt)]

= �[C(k) exp(iωt)]

= F(k) cos(ωt) − G(k) sin(ωt)

= [
F2(k) + G2(k)

] 1
2 cos(ωt − φ)

= |C(k)| cos(ωt − φ)

(5.89)

where

tan(φ) = −G(k)
F(k)

(5.90)

Because |C(k)| < 1 and φ(k) > 0, having the amplitude of θ equal to unity implies
that α has an amplitude less than unity; having the peak of θ at t = 0 implies α has its
peak shifted to t = φ/ω. For example, when k = 1/3, C(k) = 0.649739 − 0.174712 i
so that |C(k)| = 0.672819, implying a magnitude reduction of nearly 33%, and φ =
15.0506 degrees.

Theodorsen’s theory may be used in classical flutter analysis. There, the reduced
frequency of flutter is not known a priori. We can find k at the flutter condition using
the method described in Section 5.3. Theodorsen’s theory also may be used in the k
and p-k methods, as described in Sections 5.4.1 and 5.4.2, respectively.

5.5.2 Finite-State Unsteady Thin-Airfoil Theory of Peters et al.

Although Theodorsen’s theory is an excellent choice for classical flutter analysis,
there are situations in which an alternative approach is needed. First, we frequently
need to calculate the modal damping in subcritical flight conditions. Second, there is
a growing interest in the active control of flutter, and design of controllers requires
that the system be represented in state-space form. To meet these requirements,
we need to represent the actual aerodynamic loads (which are in the frequency
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α

Figure 5.11. Schematic showing geometry of the zero-lift line, relative wind, and lift directions

domain in Theodorsen’s theory) in terms of time-domain differential equations.
Finite-state theories approximate the actual infinite-state aerodynamic model to
within engineering accuracy. One such approach is the finite-state, induced-flow
theory for inviscid, incompressible flow of Peters et al. (1995).

Consider a typical section of a rigid, symmetric wing (see Fig. 5.2) and the
additional vectorial directions defined in Fig. 5.11. To begin the presentation of this
theory, we first relate the three sets of unit vectors, as follows:

1. A set fixed in the inertial frame, î1 and î2, such that the air is flowing at velocity
−U î1

2. A set fixed in the wing, b̂1 and b̂2, with b̂1 directed along the zero-lift line toward
the leading edge and b̂2 perpendicular to b̂1

3. A set â1 and â2 associated with the local relative wind vector at the three-quarter
chord, such that â1 is along the relative wind vector and â2 is perpendicular to it,
in the assumed direction of the lift

The relationships among these unit vectors can be stated simply as{
b̂1

b̂2

}
=
[

cos(θ) sin(θ)
−sin(θ) cos(θ)

]{
î1

î2

}
(5.91)

and {
â1

â2

}
=
[

cos(α) −sin(α)
sin(α) cos(α)

]{
b̂1

b̂2

}
(5.92)

and î3 = â3 = b̂3 = b̂1 × b̂2.
Induced-flow theories approximate the effects of shed vortices based on changes

they cause in the flow field near the airfoil. Thus, the velocity field near the airfoil
consists of the freestream velocity plus an additional component to account for the
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induced flow. Although the induced flow varies throughout the flow field, we ap-
proximate its value near the airfoil as an average value along the chordline. Thus,
the local inertial velocity of the air is written approximately as −U î1 − λ0b̂2, where
λ0 is the average induced flow (perpendicular to the airfoil zero-lift line). Accord-
ing to classical thin-airfoil theory, we should calculate the angle of attack using the
instantaneous relative wind-velocity vector as calculated at T. To represent the
relative wind-velocity vector at T, we can write the relative wind vector (i.e.,
the velocity of the wing with respect to the air) as Wâ1 and set it equal to the
inertial velocity of T minus the inertial air velocity; that is

Wâ1 = vT − (−U î1 − λ0b̂2)

= vT + U î1 + λ0b̂2

(5.93)

where vT is the inertial velocity of the three-quarter chord, given by

vT = vP + θ̇ b̂3 × rPT (5.94)

and rPT is the position vector from P to T. Fig. 5.2 shows that

rPT =
[

b
2

+ (1 + a)b − 2b
]

b̂1 = b
(

a − 1
2

)
b̂1 (5.95)

Thus,

vT = vP + θ̇ b̂3 × b
(

a − 1
2

)
b̂1 (5.96)

The inertial velocity of the reference point P is

vP = −ḣî2 (5.97)

whereas θ̇ b̂3 is the inertial angular velocity of the wing. Carrying out the cross product
in Eq. (5.96), we obtain

vT = −ḣî2 + bθ̇

(
a − 1

2

)
b̂2 (5.98)

so that the relative wind can be written as

Wâ1 = U î1 − ḣî2 +
[

bθ̇

(
a − 1

2

)
+ λ0

]
b̂2 (5.99)

Alternatively, we may write the relative wind in terms of its components along b̂1

and b̂2; that is

Wâ1 = W cos(α)b̂1 − W sin(α)b̂2 (5.100)

where α is given by (see Fig. 5.11)

tan(α) = − â1 · b̂2

â1 · b̂1
(5.101)
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Using Eq. (5.99), we find that

Wâ1 · b̂1 = U cos(θ) − ḣ sin(θ)

Wâ1 · b̂2 = −U sin(θ) − ḣ cos(θ) + b
(

a − 1
2

)
θ̇ + λ0

(5.102)

Assuming small angles, we now may show that

α = θ + ḣ
U

+ b
U

(
1
2

− a
)

θ̇ − λ0

U

W = U + higher-order terms

(5.103)

According to this derivation, α is an effective angle of attack based on the relative
wind vector at the three-quarter chord, which, in turn, is based on the average value
of the induced flow λ0 over the wing chordline. Note that α is not equal to the pitch
angle θ . Because of the motion of the wing and the induced flow field, the relative
wind direction is not fixed in inertial space. Therefore, the effective angle of attack
depends on the pitch rate, the plunge velocity, and the induced flow. Moreover, the
lift is assumed to be perpendicular to the relative wind vector. This assumption is
adequate for the calculation of lift and pitching moment, which are both first-order
in the motion variables. However, sufficiently rapid plunge motion (e.g., as in the
flapping wings of an insect) can result in a value of α that is not small, and we
would need to make “small but finite” angle assumptions to calculate the drag (or
propulsive force equal to negative drag) that could be encountered in such situations.

The total lift and moment expressions including the noncirculatory forces are

L = πρ∞b2 (ḧ + Uθ̇ − baθ̈
)+ 2πρ∞Ub

[
ḣ + Uθ + b

(
1
2

− a
)

θ̇ − λ0

]

M1
4

= −πρ∞b3
[

1
2

ḧ + Uθ̇ + b
(

1
8

− a
2

)
θ̈

] (5.104)

Note the similarity between Eqs. (5.104) and (5.82). In particular, by studying the
circulatory lift in both lift equations, we then can see the basis for identifying α,
calculated as in the first of Eqs. (5.103) with the expression in Eq. (5.85).

The lift and pitching moment then are used to form the generalized forces from
Eqs. (5.24) and, in turn, are used in the structural equations in Eqs. (5.26). Even so,
these two equations are incomplete, having more than two unknowns. The induced-
flow velocity λ0 must be expressed in terms of the airfoil motion. The induced-flow
theory of Peters et al. does that, representing the average induced-flow velocity λ0

in terms of N induced-flow states λ1, λ2, . . . , λN as

λ0 ≈ 1
2

N∑
n=1

bnλn (5.105)

where the bn are found by the least-squares method. The induced-flow dynamics
then are derived from the assumption that the shed vortices stay in the plane of
the airfoil and travel downstream with the same velocity as the flow. Introducing a
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column matrix {λ} containing the values of λn, we can write the set of N first-order
ordinary differential equations governing {λ} as

[A]
{
λ̇
}+ U

b
{λ} = {c}

[
ḧ + Uθ̇ + b

(
1
2

− a
)

θ̈

]
(5.106)

where the matrices [A] and {c} can be derived for a user-defined number of induced-
flow states. The expressions of the matrices used here are given for N finite states as

[A] = [D] + {d}{b}T + {c}{d}T + 1
2
{c}{b}T (5.107)

where

Dnm = 1
2n n = m + 1

= − 1
2n n = m − 1

= 0 n �= m ± 1

(5.108)

bn = (−1)n−1 (N+n−1)!
(N−n−1)!

1
(n!)2 n �= N

= (−1)n−1 n = N
(5.109)

dn = 1
2 n = 1

= 0 n �= 1
(5.110)

and

cn = 2
n

(5.111)

The resulting aeroelastic model is in the time domain, in contrast to classical
flutter analysis, which is in the frequency domain (see Section 5.3). Thus, it can be
used for flutter analysis by the p method, as well as in the design of control systems
to alleviate flutter.

Results using the finite-state, induced-flow model (i.e., Eqs. 5.106 and 5.26 with
generalized forces given by Eqs. 5.24 with lift and pitching moment given by Eqs.
5.104) for the problem analyzed previously in Section 5.2 (recall that a = −1/5,
e = −1/10, μ = 20, r2 = 6/25, and σ = 2/5) are given here. These results are based
on use of N = 6 induced-flow states.2 The frequency and damping results are shown
in Figs. 5.12 and 5.13, respectively. As before, a frequency coalescence is observed
near the instability, but the flutter condition is marked by the crossing of the real
part of one of the roots into positive territory. The flutter speed obtained is VF =
UF/(bωθ ) = 2.165, and the flutter frequency is �F/ωθ = 0.6545. Although this value
of the flutter speed is close to that observed previously using the simpler theory, the
unsteady-aerodynamics theory produces complex roots for all V �= 0 so that there is
modal damping in all of the modes below the flutter speed. The equations contain
damping terms proportional to the velocity that account for the initial increase in

2 It should be noted that a larger number of induced-flow states is not necessary. The use of too many
may degrade the accuracy of the model because of ill-conditioning.
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Figure 5.12. Plot of the modal frequency versus U/(bωθ ) for a = −1/5, e = −1/10, μ = 20,
r 2 = 6/25, and σ = 2/5; solid lines: p method, aerodynamics of Peters et al.; dashed lines:
steady-flow aerodynamics

damping. At higher velocities, however, the destabilizing circulatory term (i.e., the
nonsymmetric term in the stiffness matrix that also is present in the steady-flow
theory) overcomes the damping caused by the unsteady terms, resulting in flutter.

It is left to readers as an exercise to show the equivalence of the theories of
Peters et al. and Theodorsen (see Problem 16).

5.6 Flutter Prediction via Assumed Modes

As previously noted, in industry it is now typical to use the finite element method as a
means to realistically represent aircraft structural dynamics. Although it is certainly
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Figure 5.13. Plot of the modal damping versus U/(bωθ ) for a = −1/5, e = −1/10, μ = 20,
r 2 = 6/25, and σ = 2/5; solid lines: p method, aerodynamics of Peters et al.; dashed lines:
steady-flow aerodynamics
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possible to conduct full finite-element flutter analyses, flutter analysis based on a
truncated set of the modes of the stucture is still helpful and relatively simple; for
those reasons alone, it often is done. In this section, we show how such an analysis
can be performed within the framework of the Ritz method, an explanation of which
is in Section 3.5.

Consider an unswept wing mounted to a wind-tunnel wall that is modeled as a
uniform cantilevered beam of length �. For the structural model, we adopt the same
notation used in Chapter 4. Thus, for a beam with bending rigidity EI and torsional
rigidity GJ , the strain energy becomes

U = 1
2

∫ �

0

[
EI

(
∂2w
∂y2

)2

+ GJ
(

∂θ

∂y

)2
]

dy (5.112)

To obtain the kinetic energy, we first consider the airfoil section shown in Fig.
4.12. Denoting the mass per unit volume of the material by ρ and noting that the
velocity of a typical point within the cross-sectional plane is

v = z
∂θ

∂t
î +

(
∂w
∂t

− x
∂θ

∂t

)
k̂ (5.113)

where î and k̂ are unit vectors in the x and z directions, respectively, we can write
the kinetic energy as

K = 1
2

∫ �

0

∫ ∫
A

ρ

[(
∂w
∂t

− x
∂θ

∂t

)2

+ z2
(

∂θ

∂t

)2
]

dx dzdy (5.114)

Straightforward evaluation of the cross-sectional integrals yields

K = 1
2

∫ �

0

[
m
(

∂w
∂t

)2

+ 2md
∂w
∂t

∂θ

∂t
+ mb2r2

(
∂θ

∂t

)2
]

dy (5.115)

where m is the mass per unit length, d is the offset of the mass centroid from the
elastic axis (i.e., positive when the mass centroid is toward the leading edge), b is the
semi-chord, and br is the cross-sectional mass radius of gyration about the elastic
axis.

Finally, we need the virtual work of the aerodynamic forces, which can be written
as

δW =
∫ �

0
[L′δw + (M′

ac + eL′) δθ ] dy (5.116)

where, as before, L′ and M′
ac are the distributed lift and pitching moment per unit

length of the wing.
Due to long-standing conventions in the literature of unsteady aerodynamics,

this notation is not compatible with what has been used so far in this chapter. Thus,
we rewrite these three expressions (i.e., strain energy, kinetic energy, and virtual
work) in terms of the notation of this chapter. In particular, we can show that the
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following replacements can be made for the notation used in Fig. 4.12:

d → −bxθ

e →
(

1
2

+ a
)

b

L′ → L′

M′
ac → M′

1
4

Thus, the strain energy is unchanged from before. The kinetic energy becomes

K = 1
2

∫ �

0

[
m
(

∂w
∂t

)2

− 2mbxθ

∂w
∂t

∂θ

∂t
+ mb2r2

(
∂θ

∂t

)2
]

dy (5.117)

and the virtual work becomes

δW =
∫ �

0

{
L′δw +

[
M′

1
4
+
(

1
2

+ a
)

bL′
]

δθ

}
dy (5.118)

A reasonable choice for the assumed modes is the set of uncoupled cantilevered-
beam, free-vibration modes for bending and torsion, such that

w(y, t) =
Nw∑
i=1

ηi (t)�i (y)

θ(y, t) =
Nθ∑

i=1

φi (t)�i (y)

(5.119)

where Nw and Nθ are the numbers of modes used to represent bending and torsion,
respectively; ηi and φi are the generalized coordinates associated with bending and
torsion, respectively; and �i and �i are the bending and torsion mode shapes,
respectively. Here, �i is given by

�i =
√

2 sin (γi y) (5.120)

where

γi = π
(
i − 1

2

)
�

(5.121)

and, according to Eq. (3.258), �i is given as

�i = cosh(αi y) − cos(αi y) − βi [sinh(αi y) − sin(αi y)] (5.122)

with αi and βi as given in Table 3.1.
The next step in the application of the Ritz method is to discretize spatially the

expressions for strain energy, kinetic energy, and virtual work. Because of the ortho-
gonality of both the bending and torsion modes, the strain energy simplifies to

U = 1
2

[
EI
�3

Nw∑
i=1

(αi�)4η2
i + GJ

�

Nθ∑
i=1

(γi�)2φ2
i

]
(5.123)
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Similarly, the kinetic energy is simplified considerably because of the ortho-
gonality of both the bending and torsion modes and can be written as

K = m�

2

⎛
⎝ Nw∑

i=1

η̇2
i + b2r2

Nθ∑
i=1

φ̇2
i − 2bxθ

Nθ∑
i=1

Nw∑
j=1

Ai j φ̇i η̇ j

⎞
⎠ (5.124)

where

Ai j = 1
�

∫ �

0
�i� j dy i = 1, 2, . . . , Nθ j = 1, 2, . . . , Nw (5.125)

Inertial coupling between bending and torsion motion is reflected by the term in-
volving Ai j , which is a fully populated matrix because the bending and torsion modes
are not orthogonal to one another.

The virtual-work expression

δW =
Nw∑
i=1

�wi δηi +
Nθ∑

i=1

�θi δφi (5.126)

can be used to identify the generalized forces. Thus

�wi =
∫ �

0
�i L′ dy

�θi =
∫ �

0
�i

[
M′

1
4
+
(

1
2

+ a
)

bL′
]

dy

(5.127)

where expressions for L′ and M′
1
4

can be found by taking expressions for L and M1
4

in Eqs. (5.82) or (5.104) and replacing h with −w and dots with partial derivatives
with respect to time. This we carry out for illustrative purposes using Theodorsen’s
theory, for which

L′ = 2πρ∞UbC(k)
[

Uθ − ∂w
∂t

+ b
(

1
2

− a
)

∂θ

∂t

]
+ πρ∞b2

(
U

∂θ

∂t
− ∂2w

∂t2
− ba

∂2θ

∂t2

)

M′
1
4

= −πρ∞b3
[

U
∂θ

∂t
− 1

2
∂2w
∂t2

+ b
(

1
8

− a
2

)
∂2θ

∂t2

]
(5.128)

Substituting Eqs. (5.119) into Eqs. (5.128), we obtain expressions for the generalized
forces that can be put easily into matrix form:{
�w

�θ

}
= −πρ∞b2�

[
[�] ba[A]T

ba[A] b2
(
a2 + 1

8

)
[�]

]{
η̈

φ̈

}

−πρ∞bU�

[
2C(k)[�] −b

[
1 + 2

( 1
2 − a

)
C(k)

]
[A]T

2b
( 1

2 + a
)

C(k)[A] b2
( 1

2 − a
) [

1 − 2
( 1

2 + a
)

C(k)
]

[�]

]{
η̇

φ̇

}

−πρ∞bU2�

[
[0] −2C(k)[A]T

[0] −b(1 + 2a)C(k)[�]

]{
η

φ

}
(5.129)
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where [�] denotes an identity matrix and [0] denotes a matrix of zeros. Because
of limitations inherent in the derivation of Theodorsen’s theory, this expression for
the generalized forces is valid only for simple harmonic motion. Note that the rect-
angular submatrices in this equation are also referred to as aerodynamic-influence
coefficients (AICs).

All that now remains in the application of the Ritz method is to invoke La-
grange’s equations to obtain the generalized equations of motion, which can be
written in matrix form as

m�

[
[�] −bxθ [A]T

−bxθ [A] b2r2[�]

]{
η̈

φ̈

}
+
⎡
⎣ EI

�3 [`B`] [0]

[0] GJ
�

[`T`]

⎤
⎦{η

φ

}
=
{

�w

�θ

}
(5.130)

where elements of the diagonal matrices [`B`] and [`T`] are given by

Bii = (αi�)4

Tii = (γi�)2
(5.131)

The appearance of diagonal matrices [`B`] and [`T`] in the stiffness matrix and the
appearances of � in the mass matrix and generalized forces are caused by the
orthogonality of the chosen basis functions �i and �i . Such a choice is not necessary
but it simplifies the discretized equations.

Following the methodology of classical flutter analysis in Section 5.3, we
set

η(t) = η exp(iωt)

φ(t) = φ exp(iωt)
(5.132)

where ω is the frequency of the simple harmonic motion. This leads to a flutter
determinant that can be solved by following steps similar to those outlined in Sec-
tion 5.3, the only difference being that there are now more degrees of freedom if
either Nw or Nθ exceeds unity.

Let us consider the case in which Nw = Nθ = 1. If we introduce dimensionless
constants similar to those in Section 5.3, the equations of motion can be put in the
form of Eqs. (5.62); that is

{
μ

[
1 −

(ωw

ω

)2
]

+ �w

}
η1

b
+ (−μxθ + �θ ) A11φ1 = 0

(−μxθ + mw) A11
η1

b
+
{
μr2

[
1 −

(ωθ

ω

)2
]

+ mθ

}
φ1 = 0

(5.133)
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Here, �w , �θ , mw , and mθ are defined in a manner similar to the quantities on the
right-hand side of Eqs. (5.39) with the loads from Theodorsen’s theory

�w = 1 − 2iC(k)
k

�θ = a + i
k

[
1 + 2

(
1
2

− a
)

C(k)
]

+ 2C(k)
k2

mw = a − 2i
( 1

2 + a
)

C(k)

k

mθ = a2 + 1
8

−
( 1

2 − a
) [

1 − 2
( 1

2 + a
)

C(k)
]

i

k
+ 2

( 1
2 + a

)
C(k)

k2

(5.134)

and the fundamental bending and torsion frequencies are

ωw = (α1�)2

√
EI
m�4

ωθ = π

2

√
GJ

mb2r2�2

(5.135)

Finally, the constant A11 = 0.958641. It is clear that these equations are in the same
form as those solved previously for the typical section and that the influence of wing
flexibility for this simplest two-mode case enters only in a minor way—namely, to
adjust the coupling terms by a factor of less than 5%.

The main purpose of this example is to demonstrate how the tools already
presented can be used to conduct a flutter analysis of a flexible wing. Addition of
higher modes certainly can affect the results, as can such things as spanwise variations
in the mass and stiffness properties and concentrated masses and inertias along the
wing. Incorporation of these additional features into the analysis would make the
analysis more suitable for realistic flutter calculations.

However, to fully capture the realism afforded by these and other important
considerations—such as aircraft with delta-wing configurations or very-low-aspect-
ratio-wings—a full finite-element analysis is necessary. Even in such cases, it is typical
that flutter analyses based on assumed modes give analysts a reasonably good idea of
the mechanisms of instability. Moreover, the full finite element method can be used
to obtain a realistic set of modes that, in turn, could be used in a Ritz-method analysis
instead of those used herein. This way, considerable realism can be incorporated into
the model without necessitating the model to be of large order. Present-day industry
practice uses both full finite-element models as well as assumed modes derived from
a full finite-element model.

As for the unsteady aerodynamics, in industry, the AIC matrices usually are com-
puted using panel codes based on unsteady potential flow, such as the doublet-lattice
method. The geometry of the panels, in general, is quite different from that of the
structural-finite elements. This gives rise to the need for transferring both motion and
loads between these two models. One approach for transferal uses a spline matrix that
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Figure 5.14. Plot of dimensionless flutter speed versus mass ratio for the case σ = 1/
√

10,
r = 1/2, xθ = 0, and a = −3/10

interpolates the displacements at structural-finite-element grid points to those at the
panels of the aerodynamics code and transfers loads on the panels to the nodes of the
finite elements. Methodology has been developed that fosters straightforward cou-
pling of structural and aerodynamic codes despite disparities in their meshes (Smith,
Cesnik, and Hodges, 1995). Similar procedures also can be used to couple finite-
element codes with more sophisticated computational fluid dynamics (CFD) codes.

5.7 Flutter Boundary Characteristics

The preceding sections describe procedures for the determination of the flutter
boundary in terms of altitude, speed, and Mach number. For a standard atmosphere,
any two of these conditions are sufficient to describe the flight condition. The final
flutter boundary is presented frequently in terms of a dimensionless flutter speed as
UF/(bωθ ). The parameter U/(bωθ ) sometimes is referred to as the reduced velocity,
although the reciprocal of the reduced frequency U/(bω) is also sometimes so des-
ignated. A useful presentation of this reduced flutter speed as a function of the mass
ratio, μ = m/(πρ∞b2), is illustrated in Fig. 5.14. It is immediately apparent that the
flutter speed increases in a nearly linear manner with increasing mass ratio. This re-
sult can be interpreted in either of two ways. For a given configuration, variations in μ

would correspond to changes in atmospheric density and, therefore, altitude. In such
a case, the mass ratio increases with increasing altitude. This implies that any flight
vehicle is more susceptible to aeroelastic flutter at low rather than higher altitudes.

A second interpretation of the mass ratio is related to its numerical value for
any fixed altitude. The value of μ depends on the type of flight vehicle, as re-
flected by the mass per unit span of the lifting surface, m. Table 5.2 lists vehicle
configurations and typical mass-ratio values for atmospheric densities between sea
level and 10,000 feet.
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Table 5.2. Variation of mass ratio for
typical vehicle types

Vehicle type μ = m
πρ∞b2

Gliders and Ultralights 5–15
General Aviation 10–20
Commercial Transports 15–30
Attack Aircraft 25–55
Helicopter Blades 65–110

The flutter boundary is sensitive to the dimensionless parameters. In Fig. 5.15,
for example, we see a dramatic change in the flutter speed versus the frequency
ratio σ = ωh/ωθ for a case with very small mass ratio. Even so, the significant drop
in the flutter speed for xθ = 0.2 around σ = 1.4 is of utmost practical importance.
There are certain frequency ratios at which the flutter speed becomes very small,
depending on the values of the other parameters. This dip is observed in the plot of
flutter speed versus frequency ratio for the wings of most high-performance aircraft,
which have relatively large mass ratios and positive static unbalances. The chordwise
offsets also have a strong influence on the flutter speed, as shown in Fig. 5.16. Indeed,
a small change in the mass-center location can lead to a large increase in the flut-
ter speed. The mass-center location, e, cannot be changed without simultaneously
changing the dimensionless radius of gyration, r ; however, the relative change in the
flutter speed for a small percentage change in the former is more than for a similar
percentage change in the latter. These facts led to a concept of mass-balancing wings
to alleviate flutter, similar to the way that control surfaces are mass-balanced. If the
center of mass is moved forward of the reference point, the flutter speed is generally
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Figure 5.15. Plot of dimensionless flutter speed versus frequency ratio for the case μ = 3,
r = 1/2, and a = −1/5, where the solid line is for xθ = 0.2 and the dashed line is for xθ = 0.1
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Figure 5.16. Plot of dimensionless flutter speed versus e for the case μ = 10, σ = 1/
√

2, and
r = 1/2; the solid line is for a = 0 and the dashed line is for a = 0.2

relatively high. Unfortunately, this is not easily accomplished; however, a large
change is not usually needed to ensure safety. Note that care must be exercised in
examining changes in other parameters caused by such changes in the mass distribu-
tion. For example, the torsional frequency may be altered significantly in the process
of changing the radius of gyration. Finally, we note that the flutter frequency for
bending-torsion flutter is somewhere between ωh and ωθ , where normally σ < 1;
however, situations arise in which the flutter frequency may exceed ωθ .

It is important to note that there are some combinations of the chordwise offset
parameters e and a for which the current simplified theories indicate that flutter is
not possible. The classic textbook by Bisplinghoff, Ashley, and Halfman (1955) clas-
sified the effects of the chordwise offsets e and a in terms of small and large σ . For
small σ , they noted that flutter can happen only when the mass center is behind the
quarter-chord (i.e., when e > −1/2); thus, it cannot happen when e ≤ −1/2. For large
σ , flutter can happen only when the elastic axis is in front of the quarter-chord (i.e.,
when a < −1/2); thus, it cannot happen when a ≥ −1/2. Moreover, for the typical-
section model in combination with the aerodynamic models presented herein, flutter
does not appear to happen for any combination of σ and r when the mass centroid,
elastic axis, and aerodynamic center all coincide (i.e., when e = a = −1/2). Even if
this prediction of the analysis is correct, practically speaking, it is difficult to achieve
coincidence of these points in wing design. Remember, however, that all of these
statements are made with respect to simplified models. We need to analyze real wings
in a design setting using powerful tools, such as NASTRANTM or ASTROSTM. In-
deed, bending-torsion flutter is a complicated phenomenon and it seems to defy all of
our attempts at generalization. Additional discussion of these phenomena, along with
a large body of solution plots, is found in Bisplinghoff, Ashley, and Halfman (1955).

The final flutter boundary can be presented in numerous ways for any given flight
vehicle. The manner in which it is illustrated depends on the engineering purpose
that it is intended to serve. One possible presentation of the flutter boundary is to
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Figure 5.17. Flight envelope for typical Mach 2 fighter

superpose it on the vehicle’s flight envelope. A typical flight envelope for a Mach 2
attack aircraft is illustrated in Fig. 5.17 with two flutter boundaries indicated by the
curves marked No. 1 and No. 2. The shaded region above the flutter boundaries, being
at higher altitudes, corresponds to stable flight conditions; below the boundaries,
flutter will be experienced. Flutter boundary No. 1 indicates that for a portion
of the intended flight envelope, the vehicle will experience flutter. Note that these
conditions of instability correspond to a flight Mach number near unity (i.e., transonic
flow) and high dynamic pressure. This observation can be generalized by stating that
a flight vehicle is more susceptible to aeroelastic flutter for conditions of (1) lower
altitude, (2) transonic flow, and (3) higher dynamic pressure.

If it is determined that the vehicle will experience flutter in any portion of its
intended flight envelope, it is necessary to make appropriate design changes to elim-
inate the instability for such conditions. These changes may involve alteration of the
inertial, elastic, or aerodynamic properties of the configuration; often, small varia-
tions in all three provide the best compromise. Flutter boundary No. 2 is indicative of
a flutter-safe vehicle. Note that at the minimum altitude-transonic condition, there
appears to be a safety margin with respect to flutter instability. All flight-vehicle spec-
ifications require such a safety factor, which is generally called the “flutter margin.”
Most specifications require that the margin be 15% over the limit-equivalent air-
speed. In other words, the minimum flutter speed at sea level should not be less that
1.15 times the airspeed for the maximum expected dynamic pressure as evaluated at
sea level.

5.8 Structural Dynamics, Aeroelasticity, and Certification3

So, with all of this background on theoretical methods, what are some of the ways
aeroelasticity and structural dynamics analyses are actually used? We must recall that

3 Rusak (2011), private comm.
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for every aircraft, there may be dozens to several hundred combinations of fuel and
payloads that must be verified as stable within the aircraft’s flight envelope before
clearance for flight is given. The use of computational results is crucial because
we cannot possibly test every combination of fuel and hardware mounted on the
fuselage and wings (e.g., stores, armaments, fuel tanks). Computational results then
become our main work tool for every go/no-go decision made in flight-testing and
ultimate airplane certification for flight.

To proceed with this monumental set of tasks, we first need to identify the most
critical combinations (i.e., those with the lowest flutter speeds). If possible, these
should be compared with previous experience in terms of computation and flight-
testing. Once the most critical configurations are identified, we set them aside for
special wind-tunnel and flight tests. In particular, we need to ascertain the flutter
mode’s shape, frequency ωF , speed UF , and severity g′ = dg/dU, all evaluated at
the flutter speed (i.e., where g vanishes). Identification of all four items allows us to
distinguish between various cases with comparable flutter speeds and, together with
previous experience, to decide about further needed ground and flight tests to verify
computations and flight clearance.

5.8.1 Ground-Vibration Tests

The purpose of structural dynamics experiments on the ground is to validate the fre-
quencies and mode shapes of a clean airplane or important airplane configurations.
To accomplish this, the airplane is equipped with strain gages and accelerometers
at the roots and tips of the wings, of the horizontal and vertical tails, and of the air-
plane nose. The airplane is placed on soft supports to mimic the airplanes free-free
structural dynamics. Vertical actuators (i.e., shakers) are used at the tips of the wing
and horizontal tail; both vertical and side shakers may be used at the tips of the nose
and vertical tail. There is a variety of signal analysis methods to identify natural fre-
quencies, mode shapes, and structural damping from the measurements. Generally,
the actuators have a bandwidth up to 30 Hz, and a sweep of actuation frequencies is
first conducted from 0.1 to 30 Hz to identify the symmetric and antisymmetric modes
in this range. Classical techniques, such as Fast Fourier Transformation (FFT) and
Power Spectral Density (PSD), are used for spectral analysis of unsteady elastic
deformation signals to identify the natural frequencies. At this point, we must con-
tinue to study details of the dynamic response at the natural bending and torsional
frequencies of interest for flutter or other aeroelastic phenomena. For each mode,
this entails the following:

1. Induce oscillatory motion of the mode at a certain natural frequency, measure
the response, and perform an FFT analysis to identify the resonance frequency
and structural damping of that mode.

2. Induce a step-function command from oscillatory motion to zero, measure the
decay rate, and infer the structural damping of that mode.

3. Induce an impulsive function, measure the decay rate, and infer structural damp-
ing of the mode.
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Now we are ready to compare experimentally measured frequencies and mode
shapes with detailed finite-element predictions. Using well-established techniques,
we tune our finite element model to yield frequencies and mode shapes that fit the
ground-vibration test data.

5.8.2 Wind Tunnel Flutter Experiments

The design of wind tunnel models that accurately represent the flutter situations of
a real airplane is a complex task—quite possibly an art! The main challenge is to
compose a small-scale version of the aircraft with tuned structural dynamics and a
sufficiently detailed geometry that correctly reflects the aircraft’s static and unsteady
aerodynamic behavior. For these tests, the model is supported by soft cables and
equipped with strain gages and accelerometers at the roots and tips of wings, at the
tips of horizontal and vertical tails, and on the nose. Flow turbulence is used to excite
the model aeroelastic modes. FFT and PSD analysis of the various measured model
deformations are used to estimate the flutter speed, frequency and severity.

The wind tunnel tests provide essential insight into the possible modes of flutter
of an airplane. The tests help verify computed results as well as identify unknown
aeroelastic phenomena related to the airplane configuration. However, it should be
recognized that unsteady flow phenomena are strongly governed by scale, so that
reduced frequency, flow Reynolds number, separation between vortices, and interac-
tions between shockwaves and boundary layers may not be correctly represented by
small-scale models. In such experiments, results may lead to an inaccurate prediction
of flutter occurrence in the full-scale airplane. In addition, testing of small-scale mod-
els in the wind tunnel provides benchmark cases for improving the computational
models and tuning the unsteady aerodynamics analysis codes.

5.8.3 Ground Roll (Taxi) and Flight Tests

A special experimental aircraft is equipped with the capability of making realtime
measurements of the amount of fuel, airspeed, Mach number, altitude, load factors,
and control surface deflections. The aircraft is also instrumented as in the ground-
vibration tests with strain gages and accelerometers. Special actuators are included to
operate the ailerons and elevators over a range of frequencies. A sweep of actuation
frequencies is first conducted to identify important modes. In addition, at certain
frequencies, responses to step and impulse commands are measured.

Ground Roll (Taxi) Measurements. Aircraft ground roll (taxi) provides the first
insight into an airplane’s aeroelastic response. The relatively rough runway excites
the airplane’s structural modes. In addition, here we conduct a sweep of frequencies
and FFT-PSD analyses of measurements and determine whether results match with
analysis predictions of aeroelastic behavior at near zero speeds. If they do not, we
must stop the test to correct and/or adjust the computational model until agreement
is found, and then flutter predictions are reevaluated. Only when results do agree,
may we then proceed to take off.
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Flight Tests. In this step, we take off and fly at the lowest speed at low altitude and
in level flight. We measure the airplane’s response to air turbulence and conduct
FFT and PSD analyses. We determine whether these results match our analytical
predictions for the tested speed. If they do not, we must again stop the test to correct
and/or adjust the computational model until we find agreement. When they do agree,
we then may proceed to activate the actuators for an impulse command. Next, we
determine whether there is sufficient damping. If there is, we conduct a sweep of
frequencies and conduct FFT and PSD analyses of frequencies and damping. If
these results match the analysis, then we may (cautiously!) activate actuators at the
calculated flutter frequency and conduct FFT and PSD analyses of the response.
When the damping measurements match theoretical predictions, then we activate
actuators for a step command. Next, we determine whether the response matches
the analysis. When it does, we then collect and store data in the form of U-g-g′

diagrams. Only if and when there is reasonable agreement with analyses we proceed
cautiously to perform maneuvers at various load factors at the same speed and
altitude. During each maneuver, we activate the actuators for an impulse command
to see whether there is sufficient damping. If there is, we move on to increase the load
factor until the complete set of specified load factors within the flight envelope is
tested.

If our computed predictions are in agreement with the results obtained at any
stage, only then is it safe to go to a higher speed (e.g., 25 knots faster) at the same
altitude. At this point we repeat all of the steps, collecting and storing data in the form
of U-g-g′ diagrams. We systematically and cautiously increase the speed up to its
maximum, checking at every increment to ensure that our analysis is valid. Similarly,
we systematically increase altitude to its maximum and repeat the regimen. We stop
(i.e., reduce speed to the previous safe speed) immediately whenever any one of the
following happens:

1. A modal damping coefficient g decreases below the level of damping required
by regulations (5% in a civil aircraft).

2. Oscillations in at least one measurement diverge and grow beyond preapproved
limits.

3. The dominant frequency deviates from its predicted value.

Thus, it is observed that the analysis of airplane flutter is strongly based on
theoretical studies. The theory is the work tool for analysis and decisions about
critical configurations and flight conditions. Ground vibration experiments are used
to tune the structural dynamics analysis to yield accurate structural modes, and wind
tunnel experiments to tune the unsteady aerodynamics code. Flutter flight tests are
extremely dangerous. Real-time measurements and various actuation techniques
are used to estimate the damping of the airplane at various flight altitudes, speeds,
and load factors and move from one point to another with much caution. Analysis,
ground experiments and flight tests always go together to provide full clearance for
flight without flutter problems.
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5.8.4 Flutter Flight Tests

In this step, we take off and fly at the lowest speed at low altitude and in level flight.
We then measure the response due to air turbulence and conduct FFT and PSD
analyses. We determine whether these results match our analytical predictions. If
they do not, we must again correct and/or adjust the model until we obtain agree-
ment. When they eventually agree, we then may proceed to activate the actuators
for an impulse command. Next, we determine whether there is sufficient damping.
If there is, we conduct a sweep of frequencies and conduct FFT and PSD analyses
of frequencies and damping. If these results match the analyses, then we may (cau-
tiously!) activate actuators at the calculated flutter frequency and conduct FFT and
PSD analyses of the response. When the damping measurements match the theo-
retical predictions, we activate actuators for a step command. Next, we determine
whether the response matches the analyses. When it does, we collect and store data
in the form of U − g − g′ diagrams. Only if and when there is reasonable agreement
with analyses may we proceed to perform a 2g maneuver at the same speed and
altitude. At this level of gs, we activate the actuators for an impulse command to see
whether there is sufficient damping. If there is, we move on to 3g, then 4g, and so
on, all at the same airspeed and altitude, until we have tested the complete set of
specified load factors within the flight envelope.

If our model is still in agreement with the results obtained at any stage, only then
is it safe to go to a higher speed (e.g., 25 knots faster) at the same altitude. At this
point, we repeat all of the steps and collect data in the form of U − g − g′ diagrams.
We systematically and cautiously increase the speed up to its maximum, checking
at every increment to ensure that our analysis is valid. Similarly, we systematically
increase altitude to its maximum and repeat the regimen. We stop (i.e., reduce
speed to the previous safe speed) immediately whenever any one of the following
happens:

1. There is even the slightest indication that the damping coefficient g decreases
below 2% (5% in a civil aircraft).

2. Oscillations in at least one of the measurements diverge and tend to grow beyond
preapproved limits.

3. The dominant frequency deviates from the predicted mode frequency.

Thus, it is observed that the analysis of flutter is strongly based on theoretical
studies. The theory is the work tool for analysis and decisions about critical config-
urations and flight conditions. Ground-vibration experiments are used to tune the
analysis to yield accurate structural-dynamics modes and wind-tunnel experiments
to tune the unsteady-aerodynamics code.

Flutter flight tests are extremely dangerous. Real-time measurements and vari-
ous actuation techniques are used to estimate the damping of the airplane at various
flight altitudes, speeds, and load factors, moving from one point to another with
caution. Analysis, ground experiments, and flight tests always go together to provide
full clearance for flight without any flutter problems.
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5.9 Epilogue

In this chapter, we consider the general problem of lifting-surface flutter. Several
types of flutter analysis were presented, including the p method, classical flutter
analysis, k method, and p-k method. The application of classical flutter analysis to
discrete one- and two-degree-of-freedom wind-tunnel models was presented. Stu-
dents were exposed to Theodorsen’s unsteady thin-airfoil theory along with the more
modern finite-state thin-airfoil theory of Peters et al. Application of the assumed-
modes method to construct a flutter analysis of a flexible wing was demonstrated as
well. The important parameters of the flutter problem were discussed, along with
current design practice, flight testing, and certification. With a good understanding
of the material presented herein, students should be sufficiently equipped to apply
these fundamentals to the design of flight vehicles.

Moreover, with appropriate graduate-level studies well beyond the scope of
material presented herein, students will be able to conduct research in the exciting
field of aeroelasticity. Current research topics are quite diverse. With the increased
sophistication of controls technology, it has become more common to attack flutter
problems by active control of flaps or other flight-control surfaces. These so-called
flutter-suppression systems provide alternatives to costly design changes. One type
of system for which flutter-suppression systems are an excellent choice is a military
aircraft that must carry weapons as stores. These aircraft must be free of flutter
within their flight envelope for different configurations, sometimes many different
configurations. At times, avoidance of flutter by design changes is simply beyond the
capability of designers for such complex systems. There is also a body of research
to determine in flight when a flutter boundary is being approached. This could be of
great value for situations in which damage had altered the properties of the aircraft
structure—perhaps unknown to the pilot—thus shifting the flutter (or divergence)
boundary and making the aircraft unsafe to operate within its original flight envelope.
Other current problems of interest to aeroelasticians include improved analysis
methodology for prediction of flutter, gust response, and limit-cycle oscillations;
design of control systems to improve gust response and limit-cycle oscillations; and
incorporation of aeroelastic analyses at an earlier stage of aircraft design.

Problems

1. Compute the flutter speed for the incompressible, one-degree-of-freedom flutter
problem with

mθ = i − 2
k

− 10i

IP = 50πρ∞b4 ωθ = 10 Hz b = 0.5 ft

Answer: UF = 405.6 ft/sec

2. According to Theodorsen’s theory, the circulatory lift is proportional to a quan-
tity that for simple harmonic motion can be shown to be equal to the effective
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angle of attack given by

α = C(k)
[
θ + ḣ

U
+ b

U

(
1
2

− a
)

θ̇

]

For a = −1/2 and simple harmonic motion such that θ = 1 and h =
bz [cos(φ) + i sin(φ)], find the amplitude and phase of α relative to θ and plot α

as a function of time for five periods for the following four cases:
(a) z = 0.1; φ = 0◦; k = 0.01
(b) z = 0.1; φ = 0◦; k = 1.0
(c) z = 0.1; φ = 90◦; k = 1.0
(d) z = 0.5; φ = 90◦; k = 1.0
Comment on the behavior of α for increasing k, changing the phase angle from 0
to 90 degrees, and increasing the plunge magnitude. Approximate Theodorsen’s
function as

C(k) = 0.01365 + 0.2808ik − k2

2

0.01365 + 0.3455ik − k2

Answer: (a) amplitude: 0.9931; phase lead: 2.01◦

Answer: (b) amplitude: 0.7988; phase lag: 37.0◦

Answer: (c) amplitude: 0.7229; phase lag: 37.3◦

Answer: (d) amplitude: 0.6008; phase lag: 52.7◦

3. Show that the coefficients used in a classical flutter analysis, if based on
Theodorsen’s theory, are

�h = 1 − 2iC(k)
k

�θ = − a − i
k

− 2C(k)
k2

− 2i
( 1

2 − a
)

C(k)

k

mh = −a + 2i
( 1

2 + a
)

C(k)

k

mθ = 1
8

+ a2 − i
( 1

2 − a
)

k
+ 2

( 1
2 + a

)
C(k)

k2
+ 2i

( 1
4 − a2

)
C(k)

k

4. Consider a two-dimensional rigid wing in incompressible flow with freestream
speed U and pivoted about the leading edge. The pitch motion is spring-
restrained with spring constant kθ = IPω2

θ . Use the exact C(k) and
(a) determine the flutter speed and flutter frequency for IP = 2,500πρ∞b4

(b) determine the minimum possible flutter speed and flutter frequency
Answer: (a) UF = 28.2279 bωθ and ωF = 1.13879 ωθ ; (b) UF = 24.7877 bωθ and

ωF = ωθ

5. Consider an incompressible, two-degree-of-freedom flutter problem in which
a = −1/5, e = −1/10, μ = 20, r2 = 6/25, and σ = 2/5. Compute the flutter speed
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and the flutter frequency using the classical flutter approach. For the aerody-
namic coefficients, use those of Theodorsen’s theory with C(k) approximated as
in Problem 2.
Answer: UF = 2.170 bωθ and ωF = 0.6443 ωθ

6. Consider an incompressible, two-degree-of-freedom flutter problem in which
a = −1/5, μ = 3, and r = 1/2. Compute the flutter speed and flutter frequency
for two cases xθ = e − a = 1/5 and xθ = e − a = 1/10, and let σ = 0.2, 0.4, 0.6,
0.8, and 1.0. Use the classical flutter approach and, for the aerodynamic coeffi-
cients, use those of Theodorsen’s theory with C(k) approximated as in Problem
2. Compare with the results in Fig. 5.15.

7. Set up the complete set of equations for flutter analysis by the p method using
the unsteady-aerodynamic theory of Peters et al. (1995), nondimensionalizing
Eqs. (5.106), and redefining λi as bωθλi .

8. Write a computer program using MATLABTM or MathematicaTM to set up the
solution of the equations derived in Problem 7.

9. Using the computer program written in Problem 8, solve for the dimensionless
flutter speed and flutter frequency for an incompressible, two-degree-of-freedom
flutter problem in which a = −1/3, e = −1/10, μ = 50, r = 2/5, and σ = 2/5.
Answer: UF = 2.807 bωθ and ωF = 0.5952 ωθ

10. Write a computer program using MATLABTM or MathematicaTM to set up the
solution of a two-degree-of-freedom flutter problem using the k method.

11. Use the computer program written in Problem 10 to solve a flutter problem
in which a = −1/5, e = −1/10, μ = 20, r2 = 6/25, and σ = 2/5. Plot the values
of ω1,2/ωθ and g versus U/(bωθ ) and compare your results with the quanti-
ties plotted in Figs. 5.12 and 5.13. Noting how the quantities plotted in these
two sets of figures are different, comment on the similarities and differences
observed in these plots and why those differences are there. Finally, explain
why your predicted flutter speed is the same as that determined by the classical
method.
Answer: See Figs. 5.18 and 5.19.

12. Show that the flutter determinant for the p-k method applied to the typical
section using Theodorsen aerodynamics can be expressed as

∣∣∣∣∣∣
p2 + σ 2

V2 − k2

μ
+ 2ikC(k)

μ

p2μxθ +k(i+ak)+[2+ik(1−2a)]C(k)
μ

p2μxθ+ak2−ik(1+2a)C(k)
μ

8μr2
(

p2+ 1
V2

)
+4i(1+2a)[2i−k(1−2a)]C(k)−k[k−4i+8a(i+ak)]

8μ

∣∣∣∣∣∣
13. Write a computer program using MATLABTM or MathematicaTM to set up the

solution of a two-degree-of-freedom flutter problem using the p-k method and
Theodorsen aerodynamics.

14. Use the computer program written in Problem 13 to solve a flutter problem in
which a = −1/5, e = −1/10, μ = 20, r2 = 6/25, and σ = 2/5. Plot the values of
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Figure 5.18. Plot of ω1,2/ωθ versus U/(bωθ ) using the k method and Theodorsen aerodynamics
with a = −1/5, e = −1/10, μ = 20, r 2 = 6/25, and σ = 2/5

the estimates of �1,2/ωθ and �1,2/ωθ versus U/(bωθ ) and compare your results
with the quantities plotted in Figs. 5.12 and 5.13. Explain why the estimated
damping from the p-k method sometimes differs from that of the p method.
Answer: See Figs. 5.20 and 5.21.
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Figure 5.19. Plot of g versus U/(bωθ ) using the k method and Theodorsen aerodynamics with
a = −1/5, e = −1/10, μ = 20, r 2 = 6/25, and σ = 2/5
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Figure 5.20. Plot of estimated value of �1,2/ωθ versus U/(bωθ ) using the p-k method with
Theodorsen aerodynamics (dashed lines) and the p method with the aerodynamics of Peters
et al. (solid lines) for a = −1/5, e = −1/10, μ = 20, r 2 = 6/25, and σ = 2/5

15. Write a computer program using MATLABTM or MathematicaTM to set up the
solution of a two-degree-of-freedom flutter problem using the p-k method and
the aerodynamics of Peters et al.

16. Using the computer programs of Problems 13 and 15, show that the p-k
method yields the same results regardless of whether Theodorsen’s theory or the

0.5 1.0 1.5 2.0 2.5

U

b ωθ
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Figure 5.21. Plot of estimated value of �1,2/ωθ versus U/(bωθ ) using the p-k method with
Theodorsen aerodynamics (dashed lines) and the p method with the aerodynamics of Peters
et al. (solid lines) for a = −1/5, e = −1/10, μ = 20, r 2 = 6/25, and σ = 2/5
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aerodynamic theory of Peters et al. is used, assuming a sufficiently large number
of inflow states is used in the latter. You may do this for the case a = −1/5,
e = −1/10, μ = 20, r2 = 6/25, and σ = 2/5. What does this imply about the two
theories?

17. Write a computer program to solve for the flutter speed of the problem set up
in Section 5.6. Exercise the code for the parameters of Problem 16 and examine
the sensitivity of the results to the number of modes assumed.

18. Repeat the derivation in Section 5.6 but use the finite element method.
19. Write a computer program based on Problem 18 and compare the answers

obtained with those of Problem 17 with one bending mode and one torsion
mode. Determine the sensitivity of the predicted flutter speed and frequency
to the number of elements and the number of elements required for results
converged to four significant figures.

20. Repeat Problem 18 but use the aerodynamic theory of Peters et al. with a set of
states located at points x = ri� with r1 < r2 < . . . < rm, where m is the number
of sets of aerodynamic states.

21. Write a computer program based on Problem 20. Determine the sensitivity of
the results to the number and values of parameters ri , in which the latter are
equally spaced along the span.

22. Comparing Eqs. (5.11) and (5.71), find an expression for [A(p)] in terms of
matrices [a], [b], [c], [d], [A], and [E] for the special case when the only de-
grees of freedom in the column matrix ξ are h/b and θ , and the unsteady-
aerodynamic theory is based on the theory of Peters et al. with six states. As-
suming simple harmonic motion, extract an approximation for C(k) from these
equations. Compare the real and imaginary parts of C(k) with those from the
approximation.



APPENDIX A

Lagrange’s Equations

A.1 Introduction

When we wish to use Newton’s laws to write the equations of motion of a particle or
a system of particles, we must be careful to include all the forces of the system. The
Lagrangean form of the equations of motion that we derive herein has the advantage
that we can ignore all forces that do no work (e.g., forces at frictionless pins, forces
at a point of rolling contact, forces at frictionless guides, and forces in inextensible
connections). In the case of conservative systems (i.e., systems for which the total
energy remains constant), the Lagrangean method gives us an automatic procedure
for obtaining the equations of motion provided only that we can write the kinetic
and potential energies of the system.

A.2 Degrees of Freedom

Before proceeding to develop the Lagrange equations, we must characterize our
dynamical systems in a systematic way. The most important property of this sort for
our present purpose is the number of independent coordinates that we must know
to completely specify the position or configuration of our system. We say that a
system has n degrees of freedom if exactly n coordinates serve to completely define
its configuration.

EXAMPLE 1 A free particle in space has three degrees of freedom because we
must know three coordinates—x, y, z, for example – to locate it.

EXAMPLE 2 A wheel that rolls without slipping on a straight track has one degree
of freedom because either the distance from some base point or the total angle
of rotation will enable us to locate it completely.

A.3 Generalized Coordinates

We usually think of coordinates as lengths or angles. However, any set of parameters
that enables us to uniquely specify the configuration of the system can serve as

231
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coordinates. When we generalize the meaning of the term in this manner, we call
these new quantities “generalized coordinates.”

EXAMPLE 3 Consider a bar rotating in a plane about a point O. The angle of
rotation with respect to some base line is suggested as an obvious coordinate
for specifying the position of the bar. However, the area swept over by the
bar would do equally well and therefore could be used as a generalized co-
ordinate.

If a system has n degrees of freedom, then n generalized coordinates are neces-
sary and sufficient to determine the configuration.

A.4 Lagrange’s Equations

In deriving these equations, we consider systems having two degrees of freedom and
hence are completely defined by two generalized coordinates q1 and q2. However,
the results are easily extended to systems with any number of degrees of freedom.

Suppose our system consists of n particles. For each particle, we can write by
Newton’s second law

Mi ẍi = Xi

Mi ÿi = Yi

Mi z̈i = Zi

(A.1)

where xi , yi , and zi are the rectangular Cartesian coordinates of the ith particle; Mi

is the mass; and Xi , Yi , and Zi are the resultants of all forces acting on it in the x, y,
and z directions, respectively.

If we multiply both sides of Eqs. (A.1) by δxi , δyi , and δzi , respectively, and add
the equations, we have

Mi (ẍiδxi + ÿiδyi + z̈iδzi ) = Xiδxi + Yiδyi + Ziδzi (A.2)

The right-hand side of this equation represents the work done by all of the forces
acting on the ith particle during the virtual displacements δxi , δyi , and δzi . Hence,
forces that do no work do not contribute to the right-hand side of Eq. (A.2) and may
be omitted from the equation. To obtain the corresponding equation for the entire
system, we sum both sides of Eq. (A.2) for all particles. Thus

n∑
i=1

Mi (ẍiδxi + ÿiδyi + z̈iδzi ) =
n∑

i=1

(Xiδxi + Yiδyi + Ziδzi ) (A.3)

Now, because our system is completely located in space if we know the two
generalized coordinates q1 and q2, we must be able to write xi , yi , and zi as well as
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their increments δxi , δyi , and δzi as functions of q1 and q2. Hence

xi = xi (q1, q2)

yi = yi (q1, q2)

zi = zi (q1, q2)

(A.4)

Differentiating Eq. (A.4) with respect to time gives

ẋi = ∂xi

∂q1
q̇1 + ∂xi

∂q2
q̇2

ẏi = ∂yi

∂q1
q̇1 + ∂yi

∂q2
q̇2

żi = ∂zi

∂q1
q̇1 + ∂zi

∂q2
q̇2

(A.5)

Similarly

δxi = ∂xi

∂q1
δq1 + ∂xi

∂q2
δq2

δyi = ∂yi

∂q1
δq1 + ∂yi

∂q2
δq2

δzi = ∂zi

∂q1
δq1 + ∂zi

∂q2
δq2

(A.6)

If we substitute these into Eq. (A.3) and rearrange the terms, we obtain

n∑
i=1

[
Mi

(
ẍi

∂xi

∂q1
+ ÿi

∂yi

∂q1
+ z̈i

∂zi

∂q1

)
δq1

+ Mi

(
ẍi

∂xi

∂q2
+ ÿi

∂yi

∂q2
+ z̈i

∂zi

∂q2

)
δq2

]

=
n∑

i=1

[(
Xi

∂xi

∂q1
+ Yi

∂yi

∂q1
+ Zi

∂zi

∂q1

)
δq1

+
(

Xi
∂xi

∂q2
+ Yi

∂yi

∂q2
+ Zi

∂zi

∂q2

)
δq2

]

(A.7)

From Eq. (A.5), we conclude that because xi , yi , and zi are functions of q1 and q2

but not of q̇1 and q̇2, then

∂ ẋi

∂q̇1
= ∂xi

∂q1

∂ ẋi

∂q̇2
= ∂xi

∂q2

∂ ẏi

∂q̇1
= ∂yi

∂q1

∂ ẏi

∂q̇2
= ∂yi

∂q2

∂ żi

∂q̇1
= ∂zi

∂q1

∂ żi

∂q̇2
= ∂zi

∂q2

(A.8)
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We substitute these relationships into the left-hand side of Eq. (A.7) to obtain

n∑
i=1

[
Mi

(
ẍi

∂ ẋi

∂q̇1
+ ÿi

∂ ẏi

∂q̇1
+ z̈i

∂ żi

∂q̇1

)
δq1

+ Mi

(
ẍi

∂ ẋi

∂q̇2
+ ÿi

∂ ẏi

∂q̇2
+ z̈i

∂ żi

∂q̇2

)
δq2

]

=
n∑

i=1

[(
Xi

∂xi

∂q1
+ Yi

∂yi

∂q̇1
+ Zi

∂zi

∂q1

)
δq1

+
(

Xi
∂xi

∂q2
+ Yi

∂yi

∂q2
+ Zi

∂zi

∂q2

)
δq2

]

(A.9)

Now, let us shift our attack on the problem and consider the kinetic energy of
the system. This is

K = 1
2

n∑
i=1

Mi
(
ẋ2

i + ẏ2
i + ż2

i

)
(A.10)

Now calculate ∂K
∂q̇1

and ∂K
∂q̇2

to obtain

∂K
∂q̇1

=
n∑

i=1

Mi

(
ẋi

∂ ẋi

∂q̇1
+ ẏi

∂ ẏi

∂q̇1
+ żi

∂ żi

∂q̇1

)
(A.11)

∂K
∂q1

=
n∑

i=1

Mi

(
ẋi

∂ ẋi

∂q1
+ ẏi

∂ ẏi

∂q1
+ żi

∂ żi

∂q1

)
(A.12)

We next calculate the time derivative of ∂xi
∂q1

, for which the chain rule gives

d
dt

(
∂xi

∂q1

)
= ∂2xi

∂q2
1

q̇1 + ∂2xi

∂q1∂q2
q̇2

= ∂

∂q1

(
∂xi

∂q1
q̇1 + ∂xi

∂q2
q̇2

)

= ∂

∂q1
(ẋi ) = ∂ ẋi

∂q1

(A.13)

Because from Eq. (A.8) we have

∂ ẋi

∂q̇1
= ∂xi

∂q1
(A.14)

we conclude from Eq. (A.13) that

d
dt

(
∂xi

∂q1

)
= ∂ ẋi

∂q1
(A.15)
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The following relationships can be proven in a similar manner:

d
dt

(
∂yi

∂q1

)
= ∂ ẏi

∂q1

d
dt

(
∂zi

∂q1

)
= ∂ żi

∂q1

(A.16)

Now let us use Eqs. (A.11), (A.12), (A.15), and (A.16) to calculate the function

d
dt

(
∂K
∂q̇1

)
− ∂K

∂q1
(A.17)

for which the result is

d
dt

(
∂K
∂q̇1

)
− ∂K

∂q1
=

n∑
i=1

Mi

(
ẍi

∂ ẋi

∂q̇1
+ ÿi

∂ ẏi

∂q̇1
+ z̈i

∂ żi

∂q̇1

)

+
n∑

i=1

Mi

[
ẋi

d
dt

(
∂ ẋi

∂q̇1

)
+ ẏi

d
dt

(
∂ ẏi

∂q̇1

)
+ żi

d
dt

(
∂ żi

∂q̇1

)]

−
n∑

i=1

Mi

(
ẋi

∂ ẋi

∂q1
+ ẏi

∂ ẏi

∂q1
+ żi

∂ żi

∂q1

)
(A.18)

From Eqs. (A.15) and (A.16), the second and third terms on the right-hand side of
Eq. (A.18) are equal and thus cancel, leaving

d
dt

(
∂K
∂q̇1

)
− ∂K

∂q1
=

n∑
i=1

Mi

(
ẍi

∂ ẋi

∂q̇1
+ ÿi

∂ ẏi

∂q̇1
+ z̈i

∂ żi

∂q̇1

)
(A.19)

A similar relationship holds for partial derivatives of K with respect to q2 and q̇2.
Hence, Eq. (A.9) can be written[

d
dt

(
∂K
∂q̇1

)
− ∂K

∂q1

]
δq1 +

[
d
dt

(
∂K
∂q̇2

)
− ∂K

∂q2

]
δq2

=
n∑

i=1

(
Xi

∂xi

∂q1
+ Yi

∂yi

∂q1
+ Zi

∂zi

∂q1

)
δq1

+
n∑

i=1

(
Xi

∂xi

∂q2
+ Yi

∂yi

∂q2
+ Zi

∂zi

∂q2

)
δq2

(A.20)

Because q1 and q2 are independent coordinates, they can be varied arbitrarily. Hence,
we can conclude that

d
dt

(
∂K
∂q̇1

)
− ∂K

∂q1
=

n∑
i=1

(
Xi

∂xi

∂q1
+ Yi

∂yi

∂q1
+ Zi

∂zi

∂q1

)

d
dt

(
∂K
∂q̇2

)
− ∂K

∂q2
=

n∑
i=1

(
Xi

∂xi

∂q2
+ Yi

∂yi

∂q2
+ Zi

∂zi

∂q2

) (A.21)
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The right-hand side of Eq. (A.20) is the work done by all of the forces on the
system when the coordinates of the ith particle undergo the small displacement δxi ,
δyi , and δzi due to changes δq1 and δq2 in the generalized coordinates q1 and q2. The
coefficients of δq1 and δq2 are known as the generalized forces Q1 and Q2 because
they are the quantities by which the variations of the generalized coordinates must
be multiplied to calculate the virtual work done by all the forces acting on the system.
Hence

Q1 =
n∑

i=1

(
Xi

∂xi

∂q1
+ Yi

∂yi

∂q1
+ Zi

∂zi

∂q1

)

Q2 =
n∑

i=1

(
Xi

∂xi

∂q2
+ Yi

∂yi

∂q2
+ Zi

∂zi

∂q2

) (A.22)

and Eqs. (A.21) can be written

d
dt

(
∂K
∂q̇1

)
− ∂K

∂q1
= Q1

d
dt

(
∂K
∂q̇2

)
− ∂K

∂q2
= Q2

(A.23)

This is one form of Lagrange’s equations of motion. They apply to any system that is
completely described by two and only two generalized coordinates, whether or not
the system is conservative. It can be shown by slightly more extended calculation
that they apply to systems of any finite number of degrees of freedom.

A.5 Lagrange’s Equations for Conservative Systems

If a system is conservative, the work done by the forces can be calculated from
the potential energy P. We define the change in potential energy during a small
displacement as the negative of the work done by the forces of the system during
the displacement. Because Q1δq1 + Q2δq2 is the work done by the forces, we have

δP = −Q1δq1 − Q2δq2 (A.24)

We have emphasized that q1 and q2 are independent and, hence, can be varied
arbitrarily. If δq2 = 0, we have δP = −Q1δq1 so that

Q1 = − ∂ P
∂q1

(A.25)

Similarly, it can be seen that

Q2 = − ∂ P
∂q2

(A.26)
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Figure A.1. Schematic for the mechanical system
of Example 5

Replacing Q1 and Q2 in Eqs. (A.23) by these expressions, we have

d
dt

(
∂K
∂q̇1

)
− ∂K

∂q1
+ ∂ P

∂q1
= 0

d
dt

(
∂K
∂q̇2

)
− ∂K

∂q2
+ ∂ P

∂q2
= 0

(A.27)

These are Lagrange’s equations of motion for a conservative system. As before, they
hold for systems of any finite number of degrees of freedom.

EXAMPLE 4 Find the equations of motion of a particle of weight W moving in
space under the force of gravity.
Solution: We need three coordinates to describe the position of the particle and
can therefore take x, y, and z as the generalized coordinates. Taking x and y in
the horizontal plane and z vertically upward with the origin at the earth’s surface
and taking the origin as the zero position for potential energy, we obtain

K = W
2g

(
ẋ2 + ẏ2 + ż2) P = Wz

∂K
∂ ẋ

= W
g

ẋ
∂K
∂ ẏ

= W
g

ẏ
∂K
∂ ż

= W
g

ż
∂K
∂x

= ∂K
∂y

= ∂K
∂z

= 0

d
dt

(
∂K
∂ ẋ

)
= W

g
ẍ

d
dt

(
∂K
∂ ẏ

)
= W

g
ÿ

d
dt

(
∂K
∂ ż

)
= W

g
z̈

∂ P
∂x

= ∂ P
∂y

= 0
∂ P
∂z

= W

(A.28)

Hence, Lagrange’s equation, Eq. (A.27), gives

W
g

ẍ = 0
W
g

ÿ = 0
W
g

z̈ + W = 0 (A.29)

Of course, these equations are more easily obtainable by the direct applica-
tion of Newton’s second law; this example merely illustrates the application of
Lagrange’s equations for a familiar problem.

EXAMPLE 5 Find the equation of motion of the sprung weight W sliding on a
smooth horizontal plane (Fig. A.1).
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Figure A.2. Schematic for the mechanical sys-
tem of Example 6

Solution: We may take x as the generalized coordinate and measure it from the
equilibrium position. Then

K = W
2g

ẋ2 P = k
2

x2

∂K
∂ ẋ

= W
g

ẋ
d
dt

(
∂K
∂ ẋ

)
= W

g
ẍ

∂K
∂x

= 0
∂ P
∂x

= kx

(A.30)

Lagrange’s equation, Eq. (A.27), gives

W
g

ẍ + kx = 0 (A.31)

as the equation of motion.

EXAMPLE 6 Obtain the equations of motion for the system shown in Fig. A.2.
The bar is weightless.
Solution: The coordinates x1 and x2 can be taken as generalized coordinates.
Take as the zero datum the configuration for which the bar is horizontal and the
spring is unstretched. Then

K = W
2g

ẋ2
1 + W

2g
ẋ2

2 P = Wx1 − Wx2 + 1
2

k(x2 − x1)2

∂K
∂ ẋ1

= W
g

ẋ1
∂K
∂ ẋ2

= W
g

ẋ2
∂K
∂x1

= ∂K
∂x2

= 0

d
dt

(
∂K
∂ ẋ1

)
= W

g
ẍ1

d
dt

(
∂K
∂ ẋ2

)
= W

g
ẍ2

∂ P
∂x1

= W − k(x2 − x1)
∂ P
∂x2

= −W + k(x2 − x1)

(A.32)

The Lagrange equations are

W
g

ẍ1 + W − k(x2 − x1) = 0

W
g

ẍ2 − W + k(x2 − x1) = 0

(A.33)

This is an example of a two-degree-of-freedom conservative system.
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A.6 Lagrange’s Equations for Nonconservative Systems

If the system is nonconservative, then, in general, there are some forces (i.e., conser-
vative) that are derivable from a potential function, P(q1, q2, . . .) and some forces
(i.e., nonconservative) that are not. Those forces for which a potential function does
not exist must be introduced by first determining their virtual work. The coefficient
of the virtual displacement δqi in the virtual-work expression is the generalized force,
here denoted by Qi (i = 1, 2, . . .). In this instance, it is convenient to introduce what
is called the Lagrangean as

L = K − P (A.34)

and write the general form of Lagrange’s equations as

d
dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= Qi (i = 1, 2, . . . , n) (A.35)

EXAMPLE 7 Rework Example 5 with a dashpot of constant c connected in parallel
with the spring.
Solution: The system with a dashpot is nonconservative. Hence, we use Lag-
range’s equations in the form of Eq. (A.35). The kinetic and potential energies
are the same as in Example 5. To calculate the Q for the dashpot force, use the
definition that Q is the coefficient by which the generalized coordinates must
be multiplied to obtain the work done. In any small displacement δx, the work
done by the dashpot force −cẋ is −cẋ δx. Hence, −cẋ is the generalized force
associated with the dashpot. The Lagrangean is

L = Wẋ2

2g
− kx2

2
(A.36)

and

Q = −cẋ (A.37)

Lagrange’s equation then becomes

W
g

ẍ + kx = −cẋ (A.38)
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bending-torsion aerodynamic, 154–167,
212–216

bending-torsion elastic, 4, 17, 18, 20–22, 29, 92,
93, 124, 157, 163–167
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