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XX 

Prologue 

Alice was nervous. Would Bob receive the message correctly? They were playing 
a new cell phone version of Truth or Dare, and Bob had picked Truth. Alice was 
given a list of three questions and had selected one to ask him. But Bob was 
far from the cell tower that was sending her message to him. Her message was 
bouncing off of buildings and arriving at Bob's phone like multiple echoes. Would 
Bob's phone be able to figure out the message? Would she be able to receive his 
response? 



PREFACE 

The working title of this book was Channel Equalization for Everyone. Channel 
equalization for everyone? Well, for high school students, channel equalization 
provides a simple, interesting example of how mathematics and physics can be 
used to solve real-world problems. It also introduces them to the way engineers 
think, perhaps inspiring them to pursue a degree in engineering. Similar reasoning 
applies to first-year undergraduate engineering students. 

For senior undergraduate students and graduate students in electrical engineer-
ing, channel equalization is a useful topic in communications. Data rates on wireless 
and wireline connections continue to rise, as do information densities on storage de-
vices. Packing more and more digital symbols in time or space ultimately leads to 
intersymbol interference, requiring some form of equalization. Each new communi-
cations air interface or data storage device poses its own challenges, keeping channel 
equalization a topic of research as well. 

So how can one book be used to teach channel equalization to such different 
audiences? Each chapter is divided into the following sections. 

1. The Idea: The idea is described at a level suitable for junior/senior high 
school students and first-year undergraduate students with a background in 
algebra. 

2. More Details: More information is provided that is intended for senior under-
graduate students but is perhaps more suitable for first-year graduate students 
more comfortable with many variables in algebra. Differential calculus and 
complex numbers are used in a few places. A little bit of probability theory 

xxi 
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is introduced as needed. A set of equations is sometimes written in matrix 
form, but linear algebra concepts such as matrix inverses are not used. 

3. The Math: The idea is described in more general, mathematical terms suitable 
for second-year graduate students with a background in calculus, communi-
cation theory, linear algebra, and probability theory. To avoid getting lost 
in the math, the simple case of time-division multiplexing is considered with 
single transmit and receive antennas. Performance results are provided along 
with simulation notes. 

4. More Math: The idea is described in even more general terms, considering 
symbols multiplexed in parallel (e.g., code-division multiplexing (CDM) and 
orthogonal frequency division multiplexing (OFDM)), multiple transmit an-
tennas, and multiple receive antennas. More sophisticated noise models are 
also considered. 

5. An Example: The idea is applied to a cellular communications system. 

6. The Literature: Bibliographic sources are given as well as helpful references 
on advanced topics for further exploration. 

Homework problems are also provided, corresponding to the first three sections. 
Thus, a guest lecture for a junior/senior-level high school math class or first-

year undergraduate introductory engineering course can be created from the first 
sections of several chapters. The first and second sections can be used to develop 
a series of lectures or an entire course for senior undergraduate students. The 
remaining sections of each chapter provide the basis for a graduate course and a 
foundation for those performing research. 

The scope of the book is primarily the understanding of coherent equalization 
and the use of digital signal processing (we assume the signal is initially filtered and 
sampled). Parameter estimation is briefly touched on in the last chapter, and other 
areas such as blind equalization and performance analysis are not addressed. Basic 
digital communication theory is introduced where needed, but certain aspects such 
as system design for a particular channel are not addressed. Specific mathematical 
tools are not described in detail, as such descriptions are available elsewhere. By 
keeping the book focused, the hope is that insights and understanding will not get 
lost. Such an understanding is important when designing equalization algorithms, 
which often involves taking short cuts to keep costs down while maintaining per-
formance. 

The book integrates concepts that are often studied separately. Multiple receive 
antennas are often studied separately in the array processing literature. Multiple 
transmit antennas are sometimes considered separately in the MIMO literature. 
Multiple parallel channels are considered in the multiuser detection literature. 

My hope is that the reader will discover the joy of solving the puzzle of channel 
equalization. 

G. E. BOTTOMLEY 

Raleigh, North Carolina 
FeJmtary 2011 
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CHAPTER 1 

INTRODUCTION 

In this chapter we will define the problem we are solving and give mathematical 
models of the problem, based on the physical laws of nature. Before we do this, 
let's jump in with an example. 

Alice and Bob 

Alice has just sent Bob a question in a game of Truth or Dare. The question is 
represented by two digital symbols (si and s2) as shown in Table 1.1. After sending 
an initial symbol so, the symbols are sent one at a time. Each is modified as it 
travels along a direct path to the receiver, so that it gets multiplied by —10. The 
symbols also travel along a second path, bouncing off a building, as shown in Fig. 
1.1. The signal along this path gets multiplied by 9 and delayed so that it arrives 
at the same time as the next symbol arrives along the direct path. There is also 
noise which is added to the received signal. 

At Bob's phone, the received values can be modeled as 

Π = — 10si+9so + rci 
r2 = - 1 0 s 2 + 9 s i + « 2 

Suppose the actual received values are 

ri = 1, r2 = - 7 . (1.2) 

Channel Equalization for Wireless Communications: From Concepts to Detailed 1 
Mathematics, First Edition. Gregory E. Bottomley. 
© 2011 Institute of Electrical and Electronics Engineers, Inc. Published 2011 by John Wiley & Sons, Inc. 
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2 INTRODUCTION 

Table 1.1 Possible messages 

Index Representation Message 
Si S2 

1 +1—1 "Do you like classical music?" 
2 - 1 - 1 "Do you like soccer?" 
3 + 1 + 1 "Do you like me?" 

Figure 1.1 Dispersive scenario. 

Which message was sent? How would you figure it out? Would it help if symbol So 
were known or thought to be +1? Think about different approaches for determining 
the transmitted symbols. Try them out. Do they give the same answer? Do they 
give valid answers (the sequence si = — 1 S2 = +1 is not in the table)? 

1.1 THE IDEA 

Channel equalization is about solving the problem of intersymbol interference (ISI). 
What is ISI? First, information can be represented as digital symbols. Letters 
and words on computers are represented using the symbols 0 and 1. Speech and 
music are represented using integers by sampling the signal, as shown in Fig. 1.2. 
These numbers can be converted into base 2. Thus, the number 6 becomes 110 
( 0 x 1 + 1 x 2 + 1 x 4 ) . There are different ways of mapping the symbols 0 and 1 
into values for transmission. One mapping is to represent 0 with +1 and 1 with 
— 1. Thus, 110 is transmitted as using the series —1 —1 +1. The symbols 0 and 1 
are often referred to as Boolean values. The transmitted values are called modem 
symbols or simply symbols. 

ISI is the interference between symbols that can occur at the receiver. In the 
Alice and Bob example, we saw that one symbol was interfered by a previous symbol 
due to a second signal path. This is a problem in cell phone communications, and 
we will refer to it as the dispersive channel scenario. A cell tower transmitter sends 
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Figure 1.2 Sampling and digitizing speech. 

a series or packet of digital symbols to a cell phone. The transmitted signal travels 
through the air, often bouncing off of walls and buildings, before arriving at the cell 
phone receiver. The receiver's job is to figure out what symbols were sent. This is 
an example of the channel equalization problem. 

To solve this problem, we would like a mathematical model of what is happening. 
The model should be based on the laws of physics. Cell phone signals are transmit-
ted using electromagnetic (radio) waves. The signal travels through the air, along 
a path to the receiver. From the laws of physics, the effect of this "channel" is 
multiplication by a channel coefficient. Thus, if s is the transmitted symbol, then 
cs is the received symbol, where c is a channel coefficient. To keep things simple, 
we will assume c is a real number (e.g., —10), though in practice it is a complex 
number with real and imaginary parts (amplitude and phase). 

Sometimes the channel is dispersive, so that the signal travels along multiple 
paths with different path lengths, as illustrated in Fig. 1.1. The first path goes 
directly from the transmitter to the receiver and has channel coefficient c = —10. 
The second path bounces off a building, so it is longer, which delays the signal like 
an echo. It has channel coefficient d = 9. There is also noise present. The overall 
mathematical model of the received signal values is given in (1.1). The portion of 
the received signal containing the transmitted symbols is illustrated in Fig. 1.3. 

Notice that the model includes terms n\, rii to model random noise. The laws 
of physics tell us that electrons bounce around randomly, more so at higher tem-
peratures. We call this thermal noise. Such noise adds to the received signal. 
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Figure 1.3 Received signal example. 

While we don't know the noise values, we do know that they are usually small. 
In fact, physics tells us that the likelihood of noise taking on a particular value is 
given by the histogram in Fig. 1.4. Such noise is called Gaussian, named after 
the scientist Gauss. The average noise value is 0. The average of the square of 
a noise value is denoted σ2 (the average of n\ or n2). We call the average of the 
square energy or power (energy per sample). We will assume we know this power. 
If needed, it would be estimated in practice. One more assumption regarding the 
noise terms. We will assume different noise values are unrelated (uncorrelated). 
Thus, knowing m would tell us nothing about n^. 

1.2 MORE DETAILS 

How well an equalizer performs depends on how large the noise power is, relative 
to the signal power. A useful measure of this is the signal-to-noise ratio (SNR). It 
is defined as the ratio of signal power (S) to noise power (N), i.e., S/N. If we are 
told that the noise power is σ2 = 100, we just need to figure out the signal power 
S. 

We can use the model for Ti in (1.1) to determine S. The input signal power S 
is the average of the signal component (—10s2 + 9si)2 , averaged over the possible 
values of s\ and Si. This turns out to be 181, which can be computed one of two 
ways. One way is to consider all possible combinations of s\ and «2- For example, 
the combination s\ — +1 and S2 = +1 gives a signal term of —10(+1) +9(+ l ) = —1 
which has power (—l)2 = 1. Assuming all combinations are possible1, the average 
power becomes 

S = ( l /4 ) [ ( - l ) 2 + (-19)2 + (19)2 + l2] = 181. (1.3) 

Another way to compute S is to use the fact that si and S2 are assumed to be 
unrelated. When two terms are unrelated, their powers add. The power in — lOsi 

1 This is not quite true, because one combination does not occur according to Table 1.1. However, 
for most practical systems, this aspect can be ignored. 
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Figure 1.4 Noise histogram for noise power σ2 = 1. 

is the average of [(-10)(+1)]2 and [(—10)(—l)]2, which is 100. We could have used 
the property that the average of cs is c2 times the average of s2. The power in 9s i 
is 81, so the total signal power is 181. Thus, the input SNR is 

SNR = 181/100= 1.81. (1.4) 

It is common to express SNR in units of decibels, abbreviated dB. These units are 
obtained by taking the base 10 logarithm and then multiplying by 10. Thus, the 
SNR of 1.81 becomes 101og10(1.81) = 2.6 dB. 

We will be interested in two extremes: low input SNR and high input SNR. 
When input SNR is low, performance is limited by noise. When input SNR is high, 
performance is limited by ISI. 

1.2.1 General dispersive and MIMO scenarios 

In general, we can write the received values in terms of channel coefficients c and 
d, keeping in mind that we know the values for c and d. Thus, for the dispersive 
scenario, we have 

rm = csm + dsm_i + nm; m = 1 , 2 , etc., (1.5) 

where the noise power is σ2. The corresponding SNR is 

SNR = (c2 + d2)/a2. (1.6) 
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A block diagram of this scenario is given in Fig. 1.5. 

■X x ► 

Γ T 
n„ 

Figure 1.5 Dispersivo scenario block diagram. 

We will also consider a second ISI scenario, the multiple-input multiple-output 
(MIMO) scenario, illustrated in Fig. 1.6. Two symbols {s\ and s2) are transmitted, 
each from a different transmit antenna. Both are received at two receive antennas. 
There is only a single, direct path from each transmit antenna to each receive 
antenna. The two received values are modeled as 

n — - lOsi +9s2 + n\ 
r2 = 7si - 6s2 + n2. (1.7) 

Thus, we have ISI from another symbol transmitted at the same time on the same 
channel. In this case we have two input SNRs, one for each symbol. For each 
symbol, signal power is the sum of the squares of the channel coefficients associated 
with that symbol. Thus, 

SNR(l) = ((-10)2 + 72)/100 = 1.49=1.7dB 
SNR(2) (92 + (-6)2)/100 = 1.17 = 0.7 dB. 

In general, the MIMO scenario can be modeled as 

(1.8) 
(1.9) 

n = csi + ds2 + ni 
r2 = esi+fs2+n2. (1.10) 

This is sometimes written in matrix form as 

[3] = [e ? ] [£ ] + [ $ ] 
or simply 

r = Hs + n. 

(1.11) 

(1.12) 
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Figure 1.6 MIMO scenario. 

The corresponding SNR values are 

SNR(l) = (c2+e2)/cr2 (1.13) 
SNR(2) = (d2 + / 2 ) / a 2 . (1.14) 

1.2.2 Use of complex numbers 

Finally, in radio applications, the received values are actually complex numbers, 
with real and imaginary parts. We refer to the real part as the in-phase (I) compo-
nent and the imaginary part as the quadrature (Q) component. At the transmitter, 
the I component is used to modulate a cosine waveform, and the Q component is 
used to modulate the negative of a sine waveform. These two waveforms are or-
thogonal (do not interfere with one another), so it is convenient to use complex 
numbers, as the real and imaginary parts are kept separate. Also, the arithmetic 
of complex numbers corresponds to the phase shift relationship between sine and 
cosine. 

We can send one bit on the I component (the I bit) as +1 or —1 and one bit on 
the Q component (the Q bit) as +j or —j, where j (i is often used in mathematics 
textbooks) indicates the Q component and behaves like y/—ï. This leads to a 
constellation of four possible symbol values: 1 + j , i+j, — 1 — j , and +1 — j . This 
is shown in Fig. 1.7 and is called Quadrature Phase Shift Keying (QPSK). 

1.3 THE MATH 

In this section, a model is developed for the transmitter and channel, and sources of 
ISI at the receiver are discussed. To keep the math simple, we consider time-division 
multiplexing (TDM), in which symbols are transmitted sequentially in time. There 
is only one transmit antenna and one receive antenna, which is sometimes referred 
to as single-input single-output (SISO). A block diagram showing the system and 
notation is given in Fig. 1.8. A notation table is given at the end of the book. 
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Figure 1.7 QPSK. 
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Figure 1.8 System block diagram showing notation. 

We will use a complex, baseband equivalent of the system. A radio signal can 
be written as the sum of cosine component and a sine component, i.e., 

x(t) = ur(t)y/2cos{2nfct) -Ui(t)\/2sm(2nfct), (1.15) 

where fc is the carrier frequency in Hertz (cycles per second). The two components 
are orthogonal (occupy different signal dimensions) under normal assumptions. The 
\pl is included so that the power is the average of uf.(t) + uf(t). We can rewrite 
(1.15) as 

Re{u(t)V2exp(j2nfct)}, (1.16) 
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where u(t) = ur(t) + j«i(i) is the complex envelope of the radio signal. We can 
model the system at the complex envelope level, referred to as complex baseband, 
rather than having to include the carrier frequency term. 

We will assume the receiver radio extracts the complex envelope from the received 
signal. For example, the real part of the complex envelope can be obtained by 
multiplying by y/2 cos(2nfct) and using a baseband filter that passes the signal. 
Mathematically, 

yr(t) = x(t)V2cos{2nfct) = ur(t)2cos2(2TT/CÍ) - Ui(t)2sm(2nfct)cos(2nfct). 
(1.17) 

Using the fact that cos2(^4) = 0.5(1 + cos(2A)), we obtain 

yr(t) = ur(t) + ur{t) cos{2n2fct) - Ui(t)2sm(2nfct)cos{2nfct) (1.18) 

A filter can be used to eliminate the second and third terms on the right-hand side 
(r.h.s.). Similarly, the imaginary part of the complex envelope can be obtained by 
multiplying by \/2sin(27r/ci) and using a baseband filter that passes the signal. 

Notice that we have switched to a continuous time waveform u(t). Thus, when 
we send symbols one after another, we have to explain how we transition from 
one symbol to the next. We will see that each discrete symbol has a pulse shape 
associated with it, which explains how the symbol gets started and finishes up in 
time. 

1.3.1 Transmitter 

At the transmitter, modem symbols are transmitted sequentially as 
oo 

x{t) = yrË~s Σ s(m)p(t - mT), (1.19) 
m=—oo 

where 

• Es is the average received energy per symbol, 

• s(m) is the complex (modem) symbol transmitted during symbol period m, 
and 

• p(t) is the symbol waveform or pulse shape (usually purely real). 

The symbols are normalized so that E{|s(m)|2} = 1, where E{·} denotes expected 
value.2 The pulse shape is also normalized so that J_ \p(t)\2 dt = 1. 

In (119) we have assumed a continuous (infinite) stream of symbols. In practice, 
a block of Ns symbols is usually transmitted as a packet. Usually Ns is sufficiently 
large that the infinite model is reasonable for most symbols in the block. Theoret-
ically, symbols on the edge of the block should be treated differently. However, in 
most cases, it is reasonable (and simpler) to treat all the symbols the same. 

In general, a symbol can be one of M possible values, drawn from the set S = 
{Sj\j = 1...M}. These M possible complex symbol values can have different 

2In this case, expectation is taken over all possible symbol values. 
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phases (phase modulation) and/or different amplitudes (amplitude modulation). 
For good receiver performance, we would like these symbol values to be as different 
from one another as possible for a given average symbol power. Note that with 
M possible symbol values, we can transmit log2(M) bits (e.g., 3 bits have M = 8 
possible combinations) 

Modulation is typically Gray-mapped Quadrature Amplitude Modulation (QAM), 
such as Quadrature Phase Shift Keying (QPSK) (illustrated in Fig. 1.7) and 16-
QAM (illustrated in Fig. 1.9). These can be viewed as Binary Phase Shift Key-
ing (BPSK) and 4-ary Amplitude Shift Keying (4-ASK) on the in-phase (I) and 
quadrature (Q) axes. The 4-ASK constellation, illustrated in Fig. 1.10, conveys 
two modem bits: a most significant bit (MSB) and a least significant bit (LSB). 
The MSB has better distance properties, giving it a lower error rate than the LSB. 

Figure 1.9 Ki-QAM. 

As for pulse shaping, root-Nyquist pulse shapes are typically used, which have 
the property that their sampled autocorrelation function is given by 

/

oc 

p(t + mT)p*{t) dt = <5(m), (1.20) 
-oo 

where superscript "*" denotes complex conjugation and S(m) is the Kronecker 
delta function (1 for m = 0 and 0 for other integer values of m). (The pulse 
shape p(t) is typically purely real.) Such pulse shaping prevents ISI at the receiver 
when the channel is not dispersive and the receiver initially filters the signal using 
a filter matched to the pulse shape (see Chapter 2). Sometimes partial-response 
pulse shaping is used, in which ISI is intentionally introduced at the transmitter to 
enable higher data rates. 
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Figure 1.10 4-ASK with Gray mapping. 

A commonly used root-Nyquist pulse shape is root-raised cosine. Its autocorre-
lation function is given by 

(sm(nt/T)\( cos(ßnt/T) \ 
Rp{t) ~ \ nt/T ) \\-{2βφγ) ■ ( L 2 1 ) 

where β is the rolloff. The RRC waveform and its autocorrelation function are 
shown in Fig. 1.11 for a rolloff of 0.22 (22% excess bandwidth). 

1.3.2 Channel 

The transmitted signal passes through a communications channel on the way to 
the receive antenna, of a particular device. We can model this aspect of the channel 
as a linear filter and characterize this filter by its impulse response. The actual, 
physical channel may consist of hundreds of paths on a continuum of path delays. 
Fortunately, for an arbitrary channel, the channel response can be modeled as a 
finite-impulse-response (FIR) filter, using a tap-spacing that meets the Nyquist 
sampling criterion (sampling rate at least twice the bandwidth) for the transmitted 
signal (typically between 1 and 2 samples per symbol period). The accuracy of this 
model depends on how many tap delays are used. 

Regulatory bodies typically limit the amount of bandwidth a wireless signal 
is allowed to occupy. Thus, the channel is bandlimited. Theoretically, for root-
Nyquist pulse shaping, the radio bandwidth must be at least as large as the symbol 
rate (baud rate) (the baseband equivalent bandwidth is half the baud rate, giving a 
Nyquist sampling period of one symbol period). Conversely, for a given bandwidth, 
the symbol rate with root-Nyquist pulse shaping is limited to the radio bandwidth 
or twice the baseband bandwidth. This limit in symbol rate is sometimes referred 
to as the Nyquist rate. 

However, in most systems, a slightly larger bandwidth is used, giving rise to the 
notion of excess bandwidth. When excess bandwidth is low, it is reasonable to 
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Figure 1.11 liaised cosine function. 

approximate the channel with a symbol-spaced channel model, especially when the 
channel is highly dispersive (signal energy spread out in time due to the channel). 

Consider an example in which the transmitter uses RRC pulse shaping with 
rolloff 0.22. The Nyquist sampling period is 1/1.22 or 0.82 symbol periods. Thus, 
for an arbitrary channel, we would need a tap spacing of 0.82'/' for smaller. As 
most simulation programs work with a sampling rate that is a power of 2 times 
the symbol rate, a convenient tap spacing would be 0.75T. If the channel is well-
modeled with a single tap at delay 0, the received signal (after filtering with a RRC 
filter) would give us the raised cosine function shown in Fig. 1.11. To recover the 
symbol at time 0, we would sample at time 0, where the raised cosine function is 
at its maximum. Notice that when recovering the next symbol, we would sample 
at time 1, and the effect of the symbol at time 0 would be 0 (no ISI). In fact, we 
can see that when recovering any other symbol, the effect of symbol 0 would be 0, 
as the zero crossings are symbol-spaced relative to the peak. 

Suppose, instead, that the channel is well-modeled by two taps 0.75T apart. 
An example with path coefficients 0.5 and 0.5 is shown in Fig. 1.12 (the x axis 
is normalized so that the peak occurs at time 0). Relative to Fig. 1.11, we see 
that the symbol is spread out more in time, or dispersed. Hence, the channel is 
considered dispersive. Observe that when recovering the next symbol at time 1, 
there is ISI from symbol 0. 
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Figure 1.12 Effect of dispersion due to two, 0.75T-spaced, equal amplitude patlis on 
raised (»sine with 0.22 rolloff. 

Another aspect of the channel is noise, which can be modeled as an additive 
term to the received signal. Characterization of the noise is discussed in the next 
subsection. 

Putting these two aspects together, the received signal can be modeled as 

L - l 

r{t) N Σ Stx(t - rÙ + n(t), (1.22) 

where L is the number of taps or (resolvable) paths, ge is the medium response or 
path coefficient for the fth path, and re is the path delay for the ¿th path. Note 
that we use |= to emphasize that this is a model. This means we think of n(i) as a 
stochastic process rather than a particular realization of the noise. 

By substituting (1.19) into (1.22), we obtain the following model for the received 
signal: 

oo 

r{t) \= v^ËT J2 h(t - mT)s{m) + n(t), (1.23) 
m= —oo 

where 
L - l 

h(t) = Y,9iP{t-n) (1.24) 

- -/ \ -

: I I : 
- , 

_ _ 
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is the "channel" response, which includes the symbol waveform at the transmitter 
as well as the medium response. 

1.3.2.1 Noise and interference models The term n(t) models noise. Here we will 
assume this noise is additive, white Gaussian noise (AWGN). Such noise is implicitly 
assumed to have zero mean, i.e., 

mn(i) = E{n( i )}=0 . (1.25) 

The term "white" noise means two things. First, it means that different samples 
of the noise are uncorrelated. It also means that its moments are not a function of 
time. That is, the covariance function is given by 

Cn(h,h) â Ε{[η(ίι) - mn{h)\[n*{t2) - m*n{t2)\) = Na6D(U - h), (1.26) 

where 5r>{r) denotes the Dirac delta function (a unity-area impulse at τ = 0). 
Another implicit assumption with AWGN is that it is proper, also referred to 

as circular. This has to do with the relation between the real and imaginary 
parts of an arbitrary noise sample n(i()) = n = nr + jn , . With circular noise, 
the real and imaginary components of n(io) are uncorrelated and have the same 
distribution. With AWGN, this distribution is assumed to be Gaussian, which is a 
good model for thermal noise. A circular, complex Gaussian random variable (r.v.) 
has probability density function (PDF) 

where mn is the mean, assumed to be zero, and TVo is the one-sided power spectral 
density of the original radio signal (noise on the I and Q components has variance 
σ2 = 7V()/2). If we write n — nr + jrii, where nr and n¿ are real random variables, 
then nr is Gaussian with PDF 

1 J-(x m, 12 
/„„ (x) = -== exp v Tl (1.28) 

V7r7V0 L Λ/0 J 

and has cumulative distribution function (CDF) 

Fnr(x)àpT{nr<x} = Γ — L ^ e x p í - í - l d a (1.29) 

= 1 - (l/2)erfc (-£=) , (1.30) 

where 
erfc(y) = -= / e'^du (1.31) 

and erfc(—y) = 2 — erfc(?/). There are tables and software routines for evaluating 
the erfc function, 

Bandwidth (BW) limitations and the presence of noise limit the rate informa-
tion can be reliably transmitted. For Gaussian noise, Shannon showed that the 
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information rate (in bits per second) is limited by the capacity (C) of the channel, 
which is given by 

C = BWlog2 ( 1 + SNR). ( 1.32) 

The area of information theory includes the development of modulation and coding 
procedures that approach this limit. For our purposes, it is important to note 
that increasing the symbol rate beyond the Nyquist rate and using equalization to 
address the resulting ISI has its limits. 

1.3.3 Receiver 

At the receiver, the medium-filtered, noisy signal is processed to detect which mes-
sage was sent. One way to do this is to first detect the modem symbols {demodula-
tion). The term "equalization" is usually reserved for a form of demodulation that 
directly addresses ISI in some way. 

Based on our system model, there are several sources of ISI at the receiver. 

1. Interference from different symbol periods. Symbols sent before are after a 
particular symbol can interfere because of 

(a) the transmit pulse shape, 

(b) a dispersive medium, and/or 

(c) the receive filter response. 

2. Interference from different transmitters. Symbols sent from other transmitters 
are either 

(a) also intended for the receiver (MIMO scenario) or 

(b) intended for another receiver or another user (cochannel interference). 

In a single-path channel, such interference can be synchronous (time-aligned) 
or asynchronous. 

Noise and ISI cause the receiver to make errors. For example, it can detect the 
incorrect modem symbol, which can give rise to an incorrect bit value. This may 
lead to incorrect detection of which message was sent. In later chapters, we will 
compare receivers based on their bit error rate (BER), which will be defined as the 
probability that a detected bit value is in error. It will be measured by counting 
the fraction of bits that are in error (e.g., a +1 was transmitted and the received 
detected a —1). Other useful measures of performance are symbol error rate (SER) 
and frame erasure rate (FER). The latter refers to the probability that a message 
or frame is in error. 

Throughout this book, we will focus on coherent forms of equalization, in which it 
is assumed that the medium response can be estimated to determine the amplitude 
and phase effects of the medium. This is typically done by transmitting some known 
reference (pilot) symbols. We will not consider noncoherent forms, which only work 
for certain modulation schemes. Also, we will not consider blind equalization, in 
which there are no pilot symbols being transmitted. 
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1.4 MORE MATH 

In this section, more elaborate system models and scenarios are considered. Addi-
tional sources of ISI at the receiver are identified. 

The system model is extended by considering several multiplicities. The trans-
mitter multiplexes multiple symbols in parallel, such as code-division multiplexing 
(CDM) and orthogonal frequency-division multiplexing (OFDM) of symbols. TDM 
can be viewed as a special case in which the number of symbols sent in parallel is 
one. 

Multiple transmit and receive antennas are also introduced, covering the cases of 
cochannel interference and MIMO. This also introduces the notion of code-division 
multiple access (CDMA) and time-division multiple access (TDMA), in which dif-
ferent transmitters access the channel using different spreading codes or different 
time slots. 

1.4.1 Transmitter 

We assume there are Nt transmit antennas. At transmit antenna i, modem symbols 
are transmitted in parallel using K parallel multiplexing channels (PMCs). For 
CDM, K is the number of spreading codes in use; for OFDM, K is the number of 
subcarriers. TDM can be viewed as a special case of CDM in which K = 1. 

The transmitted signal is given by 

K-i .—. oo 
* ( i )(0 = Σ ν £»°(*) Σ sf{m)a^m{t-mT), (1.33) 

k—0 m = - o c 

where 

• Es (k) is the average received symbol energy on PMC k of transmit antenna 
i, 

• sk (m) is the (modem) symbol transmitted on PMC k of transmit antenna, i 
during symbol period m, and 

• akm{t) is the symbol waveform for the symbol transmitted on PMC k of 
transmit antenna i during symbol period m. 

Symbols are normalized so that E{|sjj. (m)|2} = 1. The symbol waveforms are also 
normalized so that / f ° \ak

l
m(t)\2dt = 1. A block diagram is shown in Fig. 1.13 

for the case of a single transmitter (transmitter superscript i has been omitted). 

1.4.1.1 TDM For TDM, symbols are sent one at a time (K = 1), and the symbol 
waveform is simply 

eS?™(0=P(t). (1-34) 

where p(t) is the symbol pulse shape. Notice that the symbol waveform is the same 
for each symbol period m. 
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Figure 1.13 Transmitter block diagram showing parallel multiplexing channels. 

1.4.1.2 CDM For CDM, symbols are sent in parallel on different spreading wave-
forms. The symbol waveform is formed from a spreading code or sequence of "chip" 
values, i.e., 

J V . . - 1 

Ό ) = (1/VÑc) Σ l,L(»W - nTc), (1.35) 
n=0 

where 

• Nc is the number of chips used (the spreading factor), 

• c];. m(n) is the nth chip value for the spreading code for symbol transmitted 
on spreading code k of transmit antenna i during symbol period m, and 

• p(t) is the chip pulse shape. 

Chip values are assumed to have unity average energy and are typically unity-
amplitude QPSK symbols. For transmitter i, the spreading codes are typically 
orthogonal when time-aligned, i.e., 

J V „ - 1 

E( c ^ ,m(n) ]*^ ) , m (n) = JVcÄ(fc1-fc2). (1.36) 

A commonly used set of orthogonal sequences is the Walsh/Hadamard or Walsh 
code set. There are K codes of length K, where K = 2ka and alpha is the order. 
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For K = 1 (order 0), the single Walsh code is + 1 . Higher-order code sets can be 
generated as rows of a matr ix W ( a ) which is formed order-recursively using 

(1.37) 

The K = 4 Walsh codes for 7VC = 4 are given in Table 1.2. 

Table 1.2 Walsh codes of length 4 

Index Code 
~~Ö +1 + 1 + 1 + 1 

1 + 1 - 1 + 1 - 1 
2 + 1 + 1 - 1 - 1 
3 + 1 - 1 - 1 + 1 

In cellular communication systems, spreading sequences are formed by scram-
bling a set of Walsh codes with a pseudo-random QPSK scrambling sequence that 
is much longer than the symbol period, so that each symbol period uses a different 
set of orthogonal spreading sequences. This is referred to as longcode scrambling. 
Using the same orthogonal codes for each symbol period is referred to as short codes. 
For good performance in possibly dispersive channels, scrambled Walsh codes are 
used. We will assume longcode scrambling throughout, as use of short codes is a 
special case in which ak m{t) is the same for each m. 

Now we have two ways to view TDM. As suggested earlier, we can think of TDM 
as a special case of CDM in which one symbol is sent at a time, so that K = 1, 
N = 1, Tc = T, ck m{n) = 1, and (1.34) holds. This is the most common way to 
think of TDM. 

However, sometimes it is useful to think of TDM as sending K > 1 symbols 
in parallel using special spreading codes. For example, we can think of TDM as 
sending K = 4 symbols in parallel using the codes in Table 1.3. 

Table 1.3 TDM codes of length 4 

Index Code 
~~Ö 1 0 0 0 

1 0 1 0 0 
2 0 0 1 0 
3 0 0 0 1 

1.4.1.3 OFDM For OFDM, symbols are sent in parallel on different subcarri-
ers. The symbol waveform is similar in structure to CDM, except the "spreading 
sequences" are related to complex sinusoidal functions. While there are different 
forms of OFDM, we will consider a form in which each symbol period can be di-
vided into a cyclic prefix (CP) or guard interval followed by a main block (MB). 
An example is given in Fig. 1.14. 

W ( Q ) = W ( Q -
W(a-

W ( a - l ) 
- W ( a - l ) 
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CP CP MB MB MB MB 
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'CP 'MB 

Figure 1.14 OFDM symbol block. 

The symbol waveform can be expressed as 

Nc-1 

a k,m(t) (1/VK) Σ ck(n)p(t - nTc)a(t - mT), (1.38) 
n=0 

where 

• Nc — Nop + NMB is the number of nonzero chips in the symbol waveform, 

• Ncp is the number of chips in the cyclic prefix, 

• NMB is the number of chips in the main block, 

• Ck(ri) is the nth unity-amplitude chip value for the symbol transmitted on 
subcarrier k, independent of transmit antenna i, 

• p(t) is the chip pulse shape, and 

• a(t) is a rectangular windowing function. 

The first NQP values are the cyclic prefix values and the remaining NMB values 
are the main block values. The total symbol period is given by T = iVc7c. 

A reasonable approximation is to ignore the windowing effects at the edges of 
each symbol period. The symbol waveform simplifies to 

(0 
Zfc,m 

Nc-1 
(Í) » ( 1 / V ^ ) ] T cfc(n)p(t - nTc] (1.39) 

which we recognize as the same form as CDM with short codes. Thus, the CDM 
model can be used to obtain results for both CDM and OFDM. The difference is 
the particular spreading sequences used. 

With OFDM, the main block sequences are given by 

fk{n) = exp (j2nkn/K), n = 0 NK 1. (1.40) 
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The K = 4 main block sequences of length NMB = 4 are given in Table 1.4. Similar 
to CDM, the main block sequences are orthogonal when time aligned, i.e., 

NM„-1 

Σ cl(n)ck,(n) = NMB6(ki-k2). (1.41) 
n=(l 

They have an additional property in that a circular shift of the sequence is 
equivalent to applying a phase shift to the original sequence. Specifically, 

Λ ( η θ ί ) = exp (j2nk(n - g)/K) 
= exp(-j2nke/K)exp{j2nkn/K) 
= exp(-j2nke/K)fk(n). (1.42) 

where Θ denotes subtraction modulus NMB- This property implies that the se-
quences are also orthogonal with circular shifts of one another, i.e., 

N M „-1 
Σ cl1(n)ck2(n®e) = NMB6(kl-k2), (1.43) 

where ® denotes modular addition using modulus NMB- We will see in the next 
chapter that the use of a cyclic prefix and discarding of certain receive samples 
makes delayed versions of the symbol appear as circular shifts. This allows orthog-
onality to be preserved in a dispersive channel. (From a CDM point of view, the 
CP makes interference a function of periodic crosscorrelations, which are "perfect" 
in this case.) 

Table 1.4 Main block OFDM soquonc<*¡ of length 4 

Index 
0 
1 
2 
3 

Subcarrier chip sequence 
+ 1 + 1 + 1 + 1 
+1 +j - 1 -j 
+ 1 - 1 + 1 - 1 
+ 1 -j - 1 +j 

The CP is obtained by repeating the last NCP chip values and pre-appending 
them. Thus, the overall chip sequence is given by 

r,(r,\ - / HNMB - NCP + n - 1), 0 < Π < NCP - 1 Π 4 4 Λ 
Ck{n) - \ Λ(η - NOP), NCP<n<Nc-l ^lAA> 

Though less common, it is possible to have a CP in a CDM system. In this 
case, a windowing function a(t) would not be used. A CP can also be used when 
transmitting a block of TDM symbols. The uplink of the Long Term Evolution 
(LTE) system [Dah08] can be interpreted as a form of TDM with a cyclic prefix. 
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1.4.2 Channel 

The model used in the previous section is extended to allow for multiple transmit 
and receive antennas. The received vector (Nr receive antennas) can be modeled 
as 

N,. L-l 
r W H Σ Σ 8 ^ ι ( 0 ( ί - re) + n(í), (1.45) 

¿=i *=o 

where g¿ is a vector of medium response coefficients, one per receive antenna. 
Also, unless otherwise indicated, all vectors are column vectors. 

In general, the medium responses from transmit antennas in different locations 
will have different path delays. We can handle this case by modeling all possible 
path delays and setting some of the coefficient vectors to zero. 

By substituting (1.33) into (1.45), we obtain the following model for the received 
signal: 

Nt K-\ , . oo 

K O h Ê E V ^ W Σ ^m{t-rnT)sf{m)+n{t), (1.46) 
ΐ=1 fc=0 m = - o o 

where 

e=o 
is the channel response. 

1.4.2.1 Noise and interference models Here the noise model is extended for mul-
tiple receive antennas, and more general noise models are considered. We will still 
assume the noise has zero mean, i.e., 

mn( i ) 4 E{n(i)} = 0, (1.48) 

where boldface is used for column vectors. All vectors are J V r x l . 
The noise may be colored, meaning that there may be correlation from one time 

instance to another as well as from one antenna to another, and the covariance 
function may be a function of time. For multiple receive antennas, the correlation 
is defined as 

C„(í i , í 2 ) 4 E{[nft!) - m„(ti)][n(ta) - m n ( i 2 ) ] H } , (1.49) 

where superscript "H" denotes conjugate transpose (Hermitian transpose). If t\ = 
t2 + T and the correlation depends on both t2 and τ, then it is considered nonsta-
tionary. If it only depends on τ, it is stationary and is then written as C n ( r ) . 

We will still assume the noise is proper, also known as circular. With circular 
Gaussian noise, the I and Q components of n(i) are uncorrelated and have the same 
autocorrelation function, i.e., 

E{nr(Í!)n;(í2)} = E{ni(í1)n*(í2)} = (0.5)Cn(í1,í2) (1.50) 

E{n , . ( t iK( t 2 )} = E { n i ( i i K ( t 2 ) } = 0. (1-51) 

(1.47) 
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A sample of the noise n = n(£o) is a complex Gaussian random vector. Assuming 
stationary noise, the noise vector has probability density function (PDF) 

/n(x) = nN,\cn(0)\ e X p { ( X _ "»»^CñHOXx - m„)} , (1.52) 

where m n is the mean, assumed to be zero, Cn(0) is the noise correlation function 
at zero lag, sometimes called the spatial covariance, and | · | denotes determinant 
of a matrix. 

When we assume AWGN, we will assume the noise is uncorrelated across receive 
antennas, so that 

C „ ( T ) = Ν0Ιδο(τ). (1.53) 
where I is the identity matrix. 

1.4.2.2 Scenarios In discussing approaches and the literature, it helps to consider 
two scenarios. In the first scenario, there is a set of symbols during a given symbol 
period, and each symbol in the set interferes with all other symbols in the set (but 
not symbols from other symbol periods). We will call this the MIMO/Cochannel 
scenario as it includes the following. 

1. MIMO scenario. In TDM and CDM, this occurs if the transmit pulse is root-
Nyquist, the medium is not dispersive, and the receiver uses a filter matched 
to the transmit pulse and samples at the appropriate time. In the CDM case, 
we will assume that codes transmitted from the same antenna are orthogonal. 
In OFDM, the medium can be dispersive as long as the delay spread is less 
than the length of the cyclic prefix. If there are Nt transmit antennas, then 
a set of Nt symbols interfere with one another. 

2. Synchronous cochannel scenario. This is similar to the MIMO case, except 
that the different transmitted streams are intended for different users. Also, 
the transmitters may be at different locations. For TDMA and CDMA, in 
addition to the requirements for TDM and CDM in the MIMO case, the dif-
ferent transmitted signals are assumed to be synchronized to arrive at the 
receiver at the same time. For CDMA, an example of this is the synchronous 
uplink. For OFDM, the synchronization must be close enough so that subcar-
riers remain orthogonal, even if transmitted from different antennas. Again, 
there are Nt symbols that interfere with one another. In the CDMA case, 
nonorthogonal codes are typically assumed in the synchronous uplink, so that 
there are NtK symbols interfering with one another. However, in this case, 
it is usually assumed that K = 1, giving Nt interfering symbols. 

In the nondispersive case, the channel coefficients are typically assumed to be in-
dependently fading (fading channel) or nonfading and unity (AWGN channel). 

With these assumptions, the received sample vector corresponding to the set of 
symbols interfering with one another can be modeled as 

r f= HAs + n, (1.54) 

where n is a vector of Gaussian r.v.s with zero mean and covariance O^. While 
C n = 7V(|I in this specific case, we will allow other values for C n to keep the model 
general. 
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As for the other terms, we have stacked the symbols from different transmitters 
into one symbol vector s. Matrix A is a diagonal matrix given by 

A = diagi^i1) E™ . . . } , (1.55) 

where the index k has been dropped. The Nt x Nt matrix H is the channel matrix. 
For example, in the TDM and CDM cases, it can be shown that the ¿th column of 
H is given by 

h í = ¿ i ) . (1-56) 
The model in (1.54) is also appropriate in other scenarios. It can be used to 

model the entire block of received data when there is ISI between symbol periods. 
It can also be used to model a window or sub-block of data of a few symbol periods 
when there is ISI between symbol periods. If all symbols are included in s, then H 
can have more columns than rows. Sometimes we move the symbols at the edges 
of the sub-block out of s and fold them into n, changing C„. This gives H fewer 
columns. 

In the second scenario, not all symbols interfere with one another. In addition, 
there is a structure to how symbols interfere with one another, because we will 
assume the interference is due to a dispersive medium, partial response pulse shap-
ing, or asynchronous transmission of different transmitters. Thus, for TDM, each 
symbol experiences interference from a window of symbols in time. For TDM with 
MIMO, a sub-block of Nt symbols experiences interference from a window of sub-
blocks in time. In CDM, a sub-block of K symbols experience interference from a 
window of symbol sub-blocks in time. We will call this the dispersive/asynchronous 
scenario. Note that asynchronous transmission can be modeled as a dispersive 
channel in which different paths have zero energy depending on the transmitter. 

In this scenario, we usually assume the block size is large, so that using (1.54) 
to design a block equalizer would lead to large matrices. However, if we were to 
use (1.54), we would see that the channel matrix H has nonzero elements along the 
middle diagonals and zeros along the outer diagonals. 

1.4.3 Receiver 

At the receiver, there are several sources of ISI. For the CDM case, the sources are 
the same as the TDM case, with an additional source being ISI from other symbols 
sent in parallel. In the CDM case, this can be due to the symbol waveform (chip 
pulse shape not root-Nyquist or spreading codes not orthogonal) or the medium 
response (dispersive). Typically the spreading waveforms are orthogonal (after chip 
pulse matched filtering), so that ISI from symbols in parallel is due to a dispersive 
medium response. 

For the OFDM case, the cyclic prefix is used to avoid ISI from symbols sent in 
parallel as well as symbols sent sequentially. We will see in the next chapter that 
this is achieved by discarding part of the received signal before performing matched 
filtering. 

For both CDM and OFDM, ISI between symbols in parallel can result from time 
variation of the medium response (not included in our model). If the variation is 
significant within a symbol period, orthogonality is lost. 
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The receiver may have multiple receive antennas. We will assume that the fad-
ing medium coefficients are different on the different receive antennas. Common 
assumptions are uncorrelated fading at the mobile terminal and some correlation 
(e.g., 0.7) at the base station. Such an array of antennas is sometimes called a 
diversity array. By contrast, if the fading is completely correlated (magnitude of 
the complex correlation is one), it is sometimes called a phased array. In this case, 
the medium coefficients on one antenna are phased-rotated versions of the medium 
coefficients on another antenna. The phase depends on the direction of arrival. 

1.5 AN EXAMPLE 

The examples in the remainder of the book will be wireless communications exam-
ples, specifically radio communications such as cellular communications. In such 
systems, there are several standard models used for the medium response. In this 
section we will discuss some of the standard models and provide a set of reference 
models for performance results in other chapters. 

One is the static channel, in which the channel coefficients do not change with 
time. A special case is the AWGN channel, which implies not only that AWGN is 
present, but that there is a single path (L = 1, τ() = 0 and go = 1). This model 
makes sense when there are no scattering objects nearby and nothing is in motion. 
Thus, there is a Line of Sight (LOS) between the transmitter and receiver. 

Another one-tap channel is the flat fading channel for which L = 1, TO = 0 and 
<7o is a complex Gaussian random variable with unity power, i.e., 

E{ f t ) S ;} = l. (1.57) 

The channel coefficient is random because it is the result of the signal bouncing off 
of objects (scatterers) and adding at the receiver either constructively or destruc-
tively. If there is are many signal paths, the central limit theorem tells us that the 
coefficient should be Gaussian. 

The fading is referred to as Rayleigh fading because the magnitude of the medium 
coefficient is Rayleigh distributed. The phase is uniformly distributed. This model 
makes sense when the delay spread of the actual channel (maximum path delay mi-
nus minimum path delay) is much smaller than the symbol (TDM) or chip (CDM, 
OFDM) period. The random channel coefficient changes with motion of the trans-
mitter, environment, and/or receiver. 

A block fading model will be assumed, for which the random fading value re-
mains constant for a block of data then changes to an independent value for each 
subsequent block of data. Such a model is realistic when short bursts of data are 
transmitted. 

We will also consider static and fading dispersive channels for which L > 1. All 
models will have fixed values for the path delays. The dispersive static channel will 
be specified in terms of fixed values for the medium coefficients. For the dispersive 
fading channel, each medium coefficient is a complex, Gaussian random variable. 
We can collect medium coefficients from different path delays into a vector g = 
[<?o ■■■ 9L-I\T, where superscript T denotes transpose. We will assume these 
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coefficients are uncorrelated, so that 

E l g g " } = Diag{a„ , . . . , a¿_ i} , (1.58) 

where cti is the average path strength or power for the £th path. The path strengths 
are assumed normalized so that they sum to one. For example, a channel with two 
paths of relative strengths 0 and —3 dB would have path strengths of 0.666 and 
0.334. 

So what are realistic values for the path delays and average path strengths? 
Propagation theory tells use that path strengths tend to exponentially decay with 
delay, so that their relative strengths follow a decaying line in log units. Sometimes 
there is a large reflecting object in the distance, giving rise to a second set of path 
delays starting at an offset delay relative to the first set. The Typical Urban (TU) 
channel model is based on this. 

What about path delays? In wireless channels, the reality is often that there 
is a continuum of path delays. From a Nyquist point of view, we can show that 
such a channel can be accurately modeled using Nyquist-spaced path delays. The 
Nyquist spacing depends on the bandwidth of the signal relative to the symbol rate. 
If the pulse shape has zero excess bandwidth, then a symbol-spaced channel model 
is highly accurate. In practical systems, there is usually some excess bandwidth, 
so the use of a symbol-spaced channel model is an approximation. Sometimes the 
approximation is reasonable. Otherwise, a fractionally spaced channel model is 
used, in which the path delay spacing exceeds the Nyquist spacing. Typically, Γ/2 
(TDM) or Tc/2 (CDM,OFDM) spacing is used. 

Though not considered here, other fading channel models exist. Sometimes one 
of the medium coefficients vectors is modeled as having a Rice distribution, which 
is complex Gaussian with a nonzero mean. This models a strong LOS path. Also, 
in addition to block fading, time-correlated fading models exist which capture how 
the fading changes gradually with time. 

The medium response models can be extended to multiple receive antennas. For 
the flat static channel, L — 1, r0 = 0 and go = a, where a is a vector of unity-
magnitude complex numbers. The angles of these numbers depend on the direction 
of arrival and the configuration of the receive antennas. For the flat fading channel, 
L = 1, To = 0 and go is a set of uncorrelated complex Gaussian random variables 
with unity power. Note that this implies Es is the average receive symbol energy 
per antenna. 

For the dispersive static channel, we will specify fixed values for the medium 
coefficients. For the dispersive fading channel, we will specify relative average 
powers for the medium coefficients. 

In CDM and OFDM, the Nyquist criterion is applied to the chip rate and the chip 
pulse shape excess bandwidth. In CDM systems, the amount of excess bandwidth 
depends on the particular system, though it is usually fairly small. Experience 
suggests that fractionally spaced models are needed with light dispersion, whereas 
chip-spaced models are sufficiently accurate when there is heavy dispersion. For 
OFDM, chip-spaced models are usually sufficient. 
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1.5.1 Reference system and channel models 

In later chapters, we will use simulation to compare different equalization ap-
proaches for a TDM system. Notes on how these simulations were performed are 
given in Appendix A. Most results will be for QPSK. The pulse shape is root-raised 
cosine with rolloff (ß) 0.22 (22% excess bandwidth). 

The following channel models will be used. 

TwoTS Dispersive medium with two, nonfading symbol-spaced paths with relative 
powers 0 and — 1 dB (sum of path energies normalized to unity) and angles 0 
and 90 degrees. 

TwoFS Dispersive medium with two, nonfading half-symbol-spaced paths with 
relative powers 0 and — 1 dB (sum of path energies normalized to unity) and 
angles 0 and 90 degrees. 

TwoTSfade Similar to the TwoTS channel, except that each path experiences 
independent, Rayleigh fading, i.e., each path is a complex Gaussian random 
variable. The variances of the random variables are set so that £ { g H g } = 1}, 
and the relative average powers are 0 and —1 dB. 

1.6 THE LITERATURE 

The general system model and its notation are based on [Wan06b, Ful09]. Real and 
complex Gaussian random variables are addressed in a number of places, including 
[Wha71]. 

Digital communications background material, including modulation, channel 
modeling, and performance analysis, can be found in [Pro89, ProOl]. The notion of 
Nyquist rate for distortionless transmission is developed in [Nyq28]. Nyquist rate 
is the result of the fact that if one is given bandwidth B and time duration T, there 
are 2TW independent dimensions or degrees of freedom [Nyq28, Sha49]. Sending 
more symbols than independent dimensions leads to ISI. The notion of channel 
capacity is developed in [Sha48, Sha49]. 

Cellular communications is described in [Lee95, Rap96]. Background material 
on OFDM and CDMA can be found in [Sch05, Dah08]. For OFDM, use of the 
FFT can found in [Wei71], and application to mobile radio communications is 
discussed in [Cim85]. Using a cyclic prefix in CDM systems is considered in [Bau02]. 
Information on the discrete Fourier transform can be found in standard signal 
processing textbooks, such as [Rob87]. 

While modeling the channel as linear is fairly general, the assumption of Rayleigh 
or Rice fading is particular to wireless communications. Accurate modeling is 
important, because equalization design is usually targeted to particular scenarios 
for which reliable communications is desirable. In the literature, channel modeling 
information can be found for 

• wireless (radio) communications [Tur72, Suz77], 

• wireline communications (twisted pair) [Fis95], 
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• optical communications over fiber [Aza02], 

• underwater acoustic communications [Sin09], 

• underwater optical communications [Jar08], and 

• magnetic recording [Kum94, Pro98]. 

OFDM equalization when the delay spread exceeds the length of the cyclic prefix 
is considered in [Van98]. We will not consider it further, though results for the CDM 
case are applicable by redefining the spreading sequences. Equalization when the 
channel varies within a symbol period is considered in [Jeo99, Wan06a]. We will 
not consider it further. 

PROBLEMS 

The idea 

1.1 Suppose a transmitted symbol, either +1 or —1, passes through a channel, 
which multiplies the symbol by —10 and introduces a very small amount of noise. 
Suppose the received value is 8. 

a) What most likely is the transmitted symbol? 
b) What most likely is the noise value? 
c) What is the other possible noise value? 

1.2 Suppose a transmitted symbol, either +1 or —1, passes through a channel, 
which multiplies the current symbol by 1, adds the previous symbol multiplied by 2, 
and introduces a very small amount of noise. Suppose you know that the previous 
symbol is —1 and the current received value is —1. What most likely is the current 
symbol? 

1.3 Suppose a transmitted symbol s, either +1 or —1, passes through a channel 
which scales the symbol by 5 and adds —10 and introduces a very small amount of 
noise. Suppose the current received value is —3. What most likely is the current 
symbol? 

1.4 Suppose a transmitted symbol s, either +1 or —1, passes through a nonlinear 
channel, which produces 20s2 + 10s, and introduces a very small amount of noise. 
Suppose the current received value is +9. What most likely is the current symbol? 

More details 

1.5 Suppose we have the MIMO scenario in which c = 1, d 
Also, suppose the two received values are n = —1.2 and r2 

a) What most likely was the symbol s\ ? 
b) What most likely was the symbol S2? 

1.6 Suppose we have the MIMO scenario in which c = 1, d = 0, e = 2, and / = 1. 
Also, suppose the two received values are r\ = —1.2 and r2 = —0.8. 

0, e = 0, a n d / = 1. 
-0 .8 . 
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a) What most likely was the symbol si? 
b) Assuming you detected s\ correctly, what most likely was the symbol S2? 

1.7 Suppose we have the dispersive scenario in which c = 4, d = 2, Γ2 = 2.1, and 
ri is not available. 

a) Each symbol can take one of two values. For each of the four combinations 
of s 1 and S2, determine the corresponding noise value for n-¿. 

b) Which combination corresponds to thé smallest magnitude noise value? 

1.8 Suppose we have the dispersive scenario in which c = —2 and d = 0. Suppose 
QPSK is sent and rx = -1 .8 + j'2.3. 

a) What most likely is the I component of si ? 
b) What most likely is the Q component of si? 

1.9 Sometimes we want to send two bits in one symbol period. One way to do 
this is to send one of four possible symbol values: —3, —1, +1 or +3. Consider 
the mapping 00 = —3, 01 = —1, 10 = +1 and 11 = +3. At the receiver, when 
mistakes are made due to noise, they typically involve mistaking a symbol for one 
if its nearest neighbors. For example, —3 is detected as —1, its nearest neighbor. 

a) When —3 is mistaken as —1, how many bit errors are made? 
b) When —1 is mistaken as +1 , how many bit errors are made? 
c) What is the average signal power, assuming each symbol is equi-likely to 

occur? 
d) Suppose the symbol passes through a channel, which multiplies the symbol 

by —10 and introduces a very small amount of noise. Suppose the received 
value is —11. What most likely was the transmitted symbol? What were 
the transmitted bits? 

1.10 Suppose we change the mapping to 00 = —3, 01 = — 1, 11 = +1 and 
10 = +3, referred to as Gray-mapping. 

a) When —1 is mistaken as +1 , how many bit errors are made? 
b) Is there a case where a nearest neighbor mistake causes two bit errors? 

The math 

1.11 Consider a TDM transmitter using a root-Nyquist pulse shape. The signal 
passes through a single-path medium with delay τ0 = 0. Suppose the receiver 
initially filters the received signal using v(qT) = f τ{τ)ρ*(τ — qT — to) dr. 

a) For ¿o = 0, how many symbols does v(qT) depend on? 
b) For to = T/2, how many symbols does v(qT) depend on? 
c) For to = T, how many symbols does v{qT) depend on? 
d) Suppose the medium consists of two paths, with path delays 0 and T 

seconds. Now how many symbols does v(qT) depend on for i0 = 0? 

1.12 Suppose the pulse shape is a rectangular pulse shape, so that p(t) is \/T on 
the interval [0,7') and zero otherwise. 

a) What is ñ p ( r )? 
b) Is this pulse shape root-Nyquist? 
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c) Suppose the receiver initially filters the received signal using v(qT) = 
J^° τ{τ)ρ*{τ — qT) dr. How many symbols does v(qT) depend on? 

d) Suppose the receiver initially filters the received signal using v(qT) = 
/_oo r ( r )P*(T — ÇÏ'— 2/2) dr. How many symbols does v(qT) depend on? 

1.13 Consider BPSK, in which a detect static can be modeled as z \= y/Ë^s + n, 
where s is +1 or —1 and n is a Gaussian random variable with zero mean and 
variance ./Vo/2. Derive (A.8). 





CHAPTER 2 

MATCHED FILTERING 

In this chapter, we explore matched filtering (MF). Some might argue that MF is 
not really a form of equalization. However, MF provides a reference for the case 
of no ISI, and it can be used as a building block in certain forms of equalization. 
Also, if we assume that ISI is perfectly subtracted, MF provides a commonly used 
bound on performance. 

2.1 THE IDEA 

Matched filtering is about collecting signal energy. Consider the dispersive scenario, 
illustrated in Fig. 2.1. Suppose we are interested in detecting (determining) the 
value of s\. There are two copies of si, one in r\ and one in r2. We would like to 
combine these two copies to get a clearer picture of s\. We will call the combined 
value the decision variable because we will use the combined value to decide what 
symbol was sent. 

Since the channel coefficients can be positive or negative, we can't simply add the 
two copies together. However, if we multiply each copy by its channel coefficient, 
we ensure that the sign of the channel coefficient is removed. We also give more 
weight to stronger copies, which is a good strategy in dealing with the noise. Thus, 
we would form the decision variable z\ given by 

zi = - 1 0 n + 9 r 2 . (2.1) 

Channel Equalization for Wireless Communications: From Concepts to Detailed 3 1 
Mathematics, First Edition. Gregory E. Bottomley. 
(c) 2011 Institute of Electrical and Electronics Engineers, Inc. Published 2011 by John Wiley & Sons, Inc. 
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Notice that there is some delay involved, as we can't form Z\ until both r\ and 
Γ2 have arrived. Thus, at time k = 2, we multiply delayed received value r\ by 
c = —10 and add it to r<i multiplied by d = 9 to form z\. The overall receiver is 
shown in Fig. 2.2. 

Figure 2.1 Received signal for matched filtering. 

Figure 2.2 Matched filtering block diagram. 

How do we determine s\ from z\1 Since s\ is +1 or —1, we can simply look at 
the sign of zi- If 22 is positive, then we detect a +1 ; otherwise, we detect a —1. 

Let's try it out on the Alice and Bob example from Chapter 1. Recall that r\ — \ 
and Γ2 = —7. So, the matched filter output for s\ would be 

«i = -10( l ) + 9(-7) = - 7 3 , (2.2) 

giving a detected value of Si = —1. Alas, the true value happens to be s\ = +1, so 
a symbol error is made. In general, MF works well when we're more worried about 
noise than about 1ST. 



MORE DETAILS 3 3 

2.2 MORE DETAILS 

So how well will MF work on average? In this section we will explore performance. 
We start with the Alice and Bob example. Let's substitute the model equations for 
ri and r2 from (1.1) into (2.1), which gives 

zi = 181si - 90s0 - 90s2 + [-10m + 9n2]. (2.3) 

The first term on the right-hand side (r.h.s.) is the desired symbol (s\) term. We 
want this term to be large in magnitude, relative to the other terms. The second 
and third terms are ISI terms, interference from the previous and next symbols. 
Sometimes these terms are large (e.g., when So and s2 have the same sign) and 
sometimes small (e.g., when so and s2 have opposite signs). The last term is the 
noise term. Like the ISI term, it can be big or small. 

It is useful to have a measure or figure-of-merit that indicates how well the re-
ceiver is performing. A commonly used measure is signal-to-noise-plus-interference 
ratio (SINR). SINR is defined as the ratio of the signal power to the sum of the 
interference and noise powers, i.e., S/(I+N). For MF, we are interested in output 
SINR (the SINR of zu the output of MF). 

To compute SINR, we need to add up the power of the ISI and noise terms. Since 
the symbol values and noise values are unrelated (uncorrelated), we can simply add 
the power of the individual terms (recall power is the average of the square). From 
(2.3), output SINR is given by 

SINR = - ^ J~-T, ^ = 0.955 = -0 .2 dB. (2.4) 
90 2 +90 2 + (102+92)100 v ; 

As 0 dB corresponds to S = I + N, a negative SINR (in dB) means the signal power 
is less than the impairment power (sum of interference and noise powers). 

So, could we have done better by just using r\ or r2 alone? If we could only use 
one received value to detect si , we would pick r1 ; as it has the stronger copy of s\. 
Recall that r\ is modeled as 

rx = - lOsi + 9 s 0 + ηχ. (2.5) 

Using one-tap MF, we would form 

yi = - lOr i . (2.6) 

To analyze performance, we can substitute the model (2.5) into (2.6), obtaining 

yi = lOOsi - 90s,, - 10m. (2.7) 

Applying our definition for SINR, the output SINR in this case would be 

SINR = (1002)/(902 + 102(100)) = 0.5525 = -2.6 dB, (2.8) 

which is less than the MF output SINR of 0.955 (-0.2 dB). Thus, MF does better 
by taking advantage of all copies of the symbol of interest. The noise and ISI powers 
add, whereas the signal amplitudes add (the signal power is more than the sums of 
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the individual symbol copy powers). We say the noise and ISI add noncoherently 
(sometimes constructively, sometimes destructively), whereas the symbol copies add 
coherently (constructively). 

Sometimes we want an upper bound or upper limit on the SINR after equaliza-
tion. To obtain this bound, we imagine an ideal situation in which we perfectly 
remove ISI before matched filtering. In this case, the output SINR would be the 
output SNR, which would be 

SINRMFB = , i 1 8 1 L = 1-81 = 2.6 dB. (2.9) 
(102+92)100 v ' 

We will see that output SINR values for other equalizers will be less than this value. 

2.2.1 General dispersive scenario 

In general, for the dispersive scenario, the MF decision variable for s\ is given by 

zl=crl+dr2. (2.10) 

Substituting the model equations for r\ and r2 from (1.5) into (2.10) gives 

«i = (c2 + d2)si + cd(si) + s2) + (cni + dn2). (2.11) 

The resulting output SINR is 

(c2 + d2)2 1 
2(cd)2 + (c2 + d2)a2 h + a 2 / (c 2 + d2) ' y ' ' 

where 
^ 2c2d2 _ 2c2rf2 

12 (c2 + d2)2 2c2d2 + c4 + d4 y ' 
We can rewrite this as 

* = /1+oiW (2'14) 
where 

h=d2/c2. (2.15) 

Let's assume that c2 is bigger than d2, so that / i and f2 are positive fractions (less 
than 1). 

Now consider using only r-i to detect s2. Recall that r2 can be modeled as 

ri = csi + dsn + ni. (2-16) 

Applying one-tap MF in this case gives 

2/1 = cr\ = c2s\ + cdsn + cn\. (2-17) 

The resulting output SINR, is 

SINR = C = ^ ^ , , . (2.18) 
c¿d¿ + c¿a¿ / i + a'/c* 
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Now compare the output SINR expressions for MF (2.12) and for using just one 
received value (2.18). As we've expressed the SINRs with the same numerator, we 
need only compare the denominators. Smaller is better. As for the first terms in 
the denominators, we see that fa < fa from (2.14). As for the second terms in the 
denominators, a2/(c2 + d2) is smaller than a 2 /c 2 . Thus, the MF output SINR is 
larger. So in terms of SINR, it is better to collect energy from different copies of a 
symbol rather than using just one copy. 

2.2.2 MIMO scenario 

For the MIMO scenario, there are two matched filters, one for each symbol. 

2/1 = cri + er2 

2/2 = dn + fr2. 

The resulting output SINR values are 

(c2 + e2)2 
STNR. — ^ ; 

1 (cd)2 + (e / ) 2 + (c2 + β2)σ2 

SINR2 = , M . ,<i+/?:. „,. 

(2.19) 

(2.20) 

(2.21) 

2.3 THE MATH 

With matched filtering and certain other demodulation approaches, symbols are 
detected one at a time. Such approaches are sometimes referred to as one-shot 
detectors or single-symbol detectors. In the multiuser detection literature, they 
are a form of single-user detection. 

The matched filter can be derived in several ways. Here we will explore two of 
those ways: maximum-likelihood detection (MLD) and maximum-SNR estimation. 
Partial matched filtering and whitened matched filtering are then discussed, as these 
are commonly assumed as front-end processors in receiver design. A brief discussion 
of the matched filter bound is given, as well as matched filtering in colored noise. 
Then, performance results for reference channels are provided. 

2.3.1 Maximum-likelihood detection 

Assume a single symbol is transmitted. From (1.23), the received signal can be 
modeled as 

r(t) (= \/Wsh(t) s + n(t), (2.22) 

where s is the symbol, Es is the energy per symbol, h(t) is the channel response, 
and n(t) is AWGN. The channel response models the transmit pulse shaping and 
the medium response and is assumed to be known. 

Detection theory includes the study of how best to determine the value of s given 
the received signal r(t). Here we will define "best' as the value that minimizes the 
probability that a symbol error is made. With traditional detection theory, one first 
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converts the continuous-time r(t) into a set of one or more discrete variables referred 
to as statistics. Each statistic is the result of integrating r(i) with a particular basis 
function. A set of sufficient statistics is one in which no pertinent information is lost 
in reducing the continuous time r(t) into the set of statistics. Once these statistics 
are obtained, MLD involves finding the hypothetical value for s that maximizes the 
likelihood of what is observed (the statistics). 

We are going to take a less rigorous approach which leads to the same result in 
a more intuitive way. Let's hypothesize a value of s, denoted Sj. Also, suppose for 
the moment we only have a single sample of r(t) to work with, r(t\). With MLD, 
we want to find the value of Sj that maximizes the likelihood of r(t\) given that 
s = Sj. 

From our model, we know that r{t\) is complex Gaussian with mean h{t\)s. 
Because r{t\) is a continuous r.v., its "likelihood" will refer to its PDF value. The 
PDF value conditioned on s — Sj is given by 

1 f - | r f t i ) - 5 ^ ( * i ) l a \ ( 2 .23) 

Now suppose we have a second sample r(Í2). It will have a similar likelihood form. 
Since the noise on these two samples are uncorrelated (white noise assumption), 
the likelihood of both occurring is simply the product of their likelihoods. 

Maximizing the likelihood is equivalent to maximizing the log-likelihood. The 
product of two likelihoods becomes the sum of two log likelihoods. Thus, given two 
received samples r(ii) and r(<2), we want to select Sj to maximize 

-\r(t!) - SjVEMt!)]2
 + -\r{t2) - SjJWsh{h)\\ ( 2 2 4 ) 

Notice we dropped terms independent of Sj. If we keep sampling r(t), our summa-
tion will become an integral, giving the log-likelihood function (LLF) 

/

oo 
-\r(t) - Sj^/Wsh{t)\2dt. (2.25) 

-oo 

Expanding the square and dropping terms unrelated to Sj gives 

LLF(Sj) = 2Re{S*z} - S(0)\Sj\2, (2.26) 

where 

z = (s/K/Nn) / h*{t)r{t) dt (2.27) 
J — OO 

/
OO 

h*(t)h(t + £T)dt. (2.28) 
-oo 

Observe that z includes a correlation of r(t) with f(t) = h(t), where correlation 
of o(i) to b(t) is defined as the integral of b*(t)a(t). Intuitively, a correlation in-
volves mathematically determining how similar two waveforms are. Thus, MLD 
requires the use of a correlation receiver with a correlation function "matched" to 
the symbol's received waveform (f(t) = h(t)). 
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The correlation in (2.27) can be interpreted as a convolution of r(r) with g(t) = 
h*(—T) evaluated at t = 0. As convolution is referred to as filtering and filter 
response g(t) is matched to the signal waveform, we also refer to formation of z as 
matched filtering. 

Observe that 2.26 also includes the term S(0)\Sj\2. For M-PSK modulation, \Sj\2 

is 1 for all j . Thus, when searching for the Sj to maximizes the LLF, this term 
can be omitted. As for S(i), we will see this again in Chapter 6 when developing 
maximum likelihood sequence detection. 

2.3.2 Output SNR and error rate performance 

Let's examine output SNR. of the matched filter. First, consider BPSK, for which 
Sj is either +1 or — 1. From (2.26), we see that only the real part of z would be 
used. Substituting (2.22) into (2.27) and taking the real part gives the following 
model 

zr \= V ^ s + n, (2.29) 

where n is AWGN with variance N0/2. We've replaced Es with Eb (energy-per-bit) 
to emphasize that a symbol represents one bit. From this model, it is straightfor-
ward to compute the output SNR as 

SNR0 = - ^ - = 2Eb/Nn, (2.30) 

where subscript o emphasizes that it is output SNR. 
The decision variable zr has two PDFs, shown in Fig. 2.3, depending on the value 

of s. It can be shown that if both possibilities are equi-likely, then the probability 
of bit error Pb is minimized using the decision rule: 

6 = sign(zr). (2.31) 

This is equivalent to using a detection threshold of 0, such that S = +1 if z > 0. 
Note that Pb is also referred to as modem bit error rate (BER). We will use the 
terms interchangeably. 

Without loss of generality, consider the case s = +1 . The probability of error is 
then 

Pb = Pr{zr < = 0 | 6 = + l } = P r { n < -y/Wb} 

= 0.5 enc{s/Eb/Na) = 0.5 erfc^O.ö SNR0). (2.32) 

Thus, we see that BER is directly related to SNR; the larger the output SNR the 
better. 

A more common definition of output SINR is the total signal power in complex-
valued z divided by the total impairment (noise plus interference) power in z 
(summed over real and imaginary parts). This "complex-variable SINR" (still real-
valued) definition assumes that all the signal power will be used properly. In the 
BPSK example above, the output SINR would then be Eb/No (Es/No in general). 
We will use the term SINR to denote the complex-variable SINR as opposed to the 
real-variable (zr) SINR. 
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Figure 2.3 BPSK received PDFs. 

2.3.3 TDM 

With TDM, the channel response for symbol s(m) is h(t — mT). Thus, the decision 
variables z(m) are obtained by correlating to 

fm(t) = /o(i - mT) = h(t - mT). (2.33) 

We can interpret this as matched filtering using filter response g(t) = h*(—r) and 
sampling the output every T seconds. Thus, to obtain z(m) for different m, we 
filter with a common filter response and sample the result at different times. 

2.3.4 Maximum SNR 

Does MF maximize output SNR? We will show that it does. Thus, another way 
to derive the matched filter is to find the linear receiver filter that maximizes the 
output SNR. Also, we saw in the previous section that for MF, error performance 
depends directly on the output SNR. This is true in general. Thus, maximizing 
output SNR will allow us to minimize bit or symbol error rate. 

Consider filtering the complex received signal r(t) to produce the real decision 
variable for BPSK symbol s(0), denoted zr. Instead of working with a filter impulse 
response and a convolutional integral, it is more convenient to work with a complex 
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correlation function f(t) and a decision variable given by 

Zr = Reirr{t)r(t)dt\. (2.34) 

We want to find f(t) that maximizes the SNR of zr. 
We start by substituting the model for r(t) from (2.22) into (2.34, giving 

zT \= Reif f*(t)[y/Fsh(t)s]dt+ f f*(t)n(t)dt\ 

\= As + e. (2.35) 

Let E denote the variance of e. Since n(t) is zero-mean, complex Gaussian and the 
filtering is linear, e is a real Gaussian random variable with zero mean. The output 
SNR is given by 

SNR0 = A2/E. (2.36) 

Next, we determine E as a function of f(t). Let's take a closer look at e. We will 
use the facts that for complex numbers x — a+jb and y = c+jd, Re{x*y} = ac+bd 
and \x\2 = a2 + b2. First, from (2.35), 

/

oo />oo 

fr(t)nr{t) dt+ j fi(t)ni(t) dt = ei+ e2, (2.37) 
where subscripts r and i denote real and imaginary parts. As a result, E becomes 

/

OO 

| / ( t ) | 2 dt. (2.38) 
-oo 

Observe that E depends on the energy in f(t), not its shape in time. 
Now let's look at the signal power, A2. From (2.35), 

A2 = Eb( Γ Re{f*{t)h(t)} dt) . (2.39) 

where we've replaced Es with Eb because we are considering BPSK. Substituting 
(2.38) and (2.39) into (2.36) gives 

SNR0 = pft/ΛΓοΛ r j f { t W d t
 J- (2-4°) 

It is convenient at this point to introduce a form of the Schwartz inequality, which 
states 

ÍRe{a*{t)b(t)} dt< J f \a{t)\2 dt J Í \b(t)\2 dt, (2.41) 

where equality is achieved when a(t) = b(t). Applying the inequality to (2.40) gives 

f°° }f(t)\2dtr \h(t)\2 dt 
SNR0 < (2£b /Aro) J -°o l - /y j ) {f{^dt (2-42) 
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which simplifies to 

/
oo 

\h{t)\2 dt. (2.43) 
• O O 

Output SNR. is maximized when equality is achieved, which occurs when 

f(t) = h(t). (2.44) 

The resulting output SNR, is 

/
oo 

\h{t)\2 dt. (2.45) 
-oo 

A similar analysis of QPSK would reveal that the matched filter response would 
be the same. In general, for an arbitrary modulation, we can define a complex 
decision variable z such that 

/

oo 

f*(t)r(t) dt. (2.46) 
-oo 

As discussed before, we usually determine the SNR of resulting complex decision 
variable, rather than just the real part. 

2.3.4.1 Final detection Once we have the decision variable z, we need to deter-
mine the detected symbol s. Here we will consider the more general case in which s 
is one of M possible values, drawn from set S. With ML symbol detection (which 
minimizes symbol error rate), we find the hypothetical value of s, denoted Sj, that 
maximizes the likelihood of z given s = Sj. As z is a continuous r.v., we will use 
its PDF for likelihood. Mathematically, 

s = arg max Pr{z\s = Sj}, (2-47) 

where "arg" means taking the argument (the Sj value). 
We can model complex-valued z as 

z \= As + e, (2.48) 

where e is complex, Gaussian noise with PDF given in (1.27). Thus, z is complex 
Gaussian with mean As. While MF leads to a value for A that is purely real and 
positive, let's consider the general case where A is some arbitrary complex number. 
The likelihood of z given s — Sj is then 

Pr{^}^exp{^d!}. (2.49) 

where the real and imaginary parts of e both have variance σ\. Since the likelihood 
function is positive and increasing, we can maximize over its log instead and ignore 
terms that do not depend on Sj. As a result, (2.49) becomes 

s = arg max -1« - ASj\2 — arg min \z - ASj\2. (2.50) 
h£S h£S 
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Thus, in the complex plane, we want to find the possible symbol value such that 
ASj is closest, in Euclidean distance, to z. In general, we will denote the operation 
in (2.50) as 

s = detect(z, A), (2.51) 

where 
detect(«, A) = arg min \z - ASj\2. (2.52) 

Thus, the detect function has two inputs: the decision variable z and the amplitude 
reference A. 

For BPSK, S = { + 1, - 1 } , and (2.50) simplifies to 

s = sign(Re{yTz}). (2.53) 

Multiplication by A* can be omitted if A is purely real and positive. For QPSK, 
the I bit can be detected using (2.53) and the Q bit is detected using 

s = sign(Im{.4*z}). (2.54) 

For Gray-coded QAM, s can be expressed as 

s = s¡+jsQ, (2.55) 

where s¡ and SQ are \/M-ary ASK symbols. These can be detected separately 
using the real and imaginary parts of A*z. Using the complex-variable definition 
of output SINR. gives 

/

oo 

\h(t)\2dt. (2.56) 
■oo 

With QAM and multiple bits per ASK symbol, ML symbol detection uses thresh-
olds that are different than minimum-BER bit detection [Sim05]. However, the 
differences are only significant at low SNR, where QAM is typically not used. 

2.3.5 Partial MF 

In practical receiver designs, it is convenient to work with a set of digital signal 
samples, rather than the continuous-valued, continuous-time waveform r(i). Such 
digital samples can be easily stored in a digital memory devices and processed using 
digital signal processing devices. While it is often not necessary to model the effects 
of digitizing the sample values, it is important to consider how often the received 
signal is sampled and what filtering occurs prior to sampling. 

In the remaining chapters, we will focus primarily on equalization designs oper-
ating on the sampled output of a front-end filter matched to the pulse shape (TDM) 
or chip pulse shape (CDM, OFDM). Such a front-end filter is often used in practice 
for a number of reasons. 

1. It reduces the bandwidth of the signal, reducing the sampling rate needed to 
meet the Nyquist criterion. 

2. It suppresses signals in adjacent frequency bands, sometimes called blocking 
signals, reducing the number of bits per sample needed. 
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3. The processing of converting the radio signal to baseband often involves a 
chain of filtering operations that, with possibly some additional baseband 
filtering, have the effect of matching to the pulse shape. 

Such a front end is also convenient in that it allows straightforward, compact for-
mulations of equalizer filter designs in discrete time. 

With partial MF, we match to the pulse shape and then sample with sampling 
phase io and sample period Ts. This gives a sequence of received samples 

/

oo 

r{r)v*{T~qTs-ta)dT, (2.57) 
- O O 

which can be modeled as 

v(qTs) \= TJWS Σ ~h(lT° - m T + in)s(m) + ñ(qTa), (2.58) 
m— — oo 

where 
L - l 

~h(t) = ^gtRp(.t-Tt). (2.59) 
i=o 

We can interpret (2.57) as correlating r(r) to a copy of the pulse shape centered at 
qT — s. 

We will refer to h(t) as the "net" response, which includes the pulse shape at 
the transmitter, the medium response, and the initial receiver front-end filter. We 
will usually assume that i» = 0, as a nonzero i0, can be folded into the medium 
path delays. However, we should keep in mind that this implies some form of ideal 
synchronization to the path delays or modeling the channel with path delays aligned 
to the sampling instances. 

When the sample period equals the symbol period (Ts = Γ), equalization using 
v(qT) is considered a form of symbol-spaced equalization. When the sample period 
is less than the symbol period, typically of the form Ts = T/Q for integer Q > 1, 
we are using a form of fractionally spaced equalization. 

2.3.6 Fractionally spaced MF 

Suppose we use partial MF to obtain received samples. For a MF receiver, we would 
complete the matched filtering process by then matching to the medium response. 
Specifically, for symbol mo, we would form decision variable 

L - l 

*("*(>) = Σ 9¡v{mnT + re). (2.60) 

Observe that this requires having samples at times mnT + rell. 
When do we need fractionally spaced MF? First consider a nondispersive chan-

nel (one path). If the receive filter is perfectly matched to the pulse shape and the 
receive filter is sampled at the correct time (perfect timing, ί() = τ()), then frac-
tionally spaced MF is not needed. The matched filtering is completed by matching 
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to the medium response (multiplying by the conjugate of the single path, medium 
coefficient). 

If timing is not ideal (to φ To), then the single-path medium response must be 
modeled by an equivalent, multi-tap medium response with tap delays correspond-
ing to the sample times. The subsequent filtering effectively interpolates to the ideal 
sampling time. From a Nyquist sampling point of view, the samples must be frac-
tionally spaced when the signal has excess bandwidth (usually the case). Whether 
fractionally spaced or symbol-spaced, the noise samples may be correlated depend-
ing on the pulse shape used. However, with MF we do not need to account for this 
correlation as long as the noise was originally white, the front-end filter was truly 
matched to the pulse shape, and we use medium response coefficients to complete 
the matching operation. 

The story is similar for a dispersive channel. If the paths are symbol-spaced, the 
receive filter perfectly matched to the pulse shape, and the filter output is sampled 
at the path delays (perfect timing), then symbol-spaced MF is sufficient. Symbol-
spaced MF can also be used when there is zero excess bandwidth. Otherwise, 
fractionally spaced MF is needed. 

2.3.7 Whitened MF 

Another front end that allows discrete-time formulations is whitened matched fil-
tering (WMF). The idea is to perform a matched filter front end. This produces 
one "sample" per symbol. However, the noise that was white at the input is often 
correlated across samples. Such noise correlation can be accounted for in the re-
ceiver design, but the design process is usually simpler if the noise is white. This 
can be achieved (though not always easily) by whitening the samples. 

If the pulse shape is root-Nyquist and a symbol-spaced channel model is used, 
then performing partial MF to the pulse shape and sampling once per symbol period 
gives uncorrelated noise samples. Further matching to the symbol-spaced medium 
response would simply be undone by the whitening filter. Thus, in this specific 
example, partial MF and whitened MF are equivalent. (We will use this fact in 
Chapter 6 to relate the direct-form and Forney-form processing metrics.) 

However, in general PMF and WMF are not equivalent. For fractionally spaced 
path delays, matching to the medium response requires fractionally spaced PMF 
samples. The subsequent whitening operation is on symbol-spaced results, so that 
the symbol-spaced whitening does not undo the fractionally spaced matching. 

The advantage of the WMF is that only one sample per symbol is needed for fur-
ther processing and the noise samples are uncorrelated. The disadvantage is that it 
requires accurate medium response estimation, which typically involves partial MF 
anyway. Also, computation of the WMF introduces a certain amount of additional 
complexity. When the symbol waveform is time-varying, these computations can 
be more complex. Use with CDM systems complicated things further. 

In the remainder of this book, we will focus on the partial MF front end. In the 
reference section of Chapter 6, references are given which provide more details on 
the design of the WMF. While we will not use this front end directly, it is good to 
be aware of it, particularly when reading the literature. 
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2.3.8 The matched filter bound (MFB) 

For an uncoded system, a bound on equalization modem performance can be ob-
tained by assuming ISI is absent (only one symbol was sent) and MF is used. The 
output SINR is an upper bound on SINR. and the probability of symbol error is 
a lower bound on symbol error rate (SER). Often ML symbol detection is used 
and the corresponding detected bits are used as a bound on bit error rate (BER). 
Strictly speaking, this is a pseudo-bound on BER, as SNR-dependent thresholding 
operations should be applied to minimize BER using the MF decision variables 
[Sim05]. However, the difference between the pseudo-bound and the true bound 
are usually small, so that the pseudo-bound is used instead. In this book, we will 
use the pseudo-bound. 

An advantage of the pseudo-bound is that often closed form expressions can be 
obtained. For example, for BPSK and a static one-path channel, we can use (2.42) 
and (2.32) to determine the BER pseudo-bound. 

2.3.9 MF in colored noise 

Sometimes we wish to considered a colored noise model, which can be used to model 
interfering signals. Here we simply give results without derivation. 

When the noise colored, the LLF becomes 

LLF(S,0= / / -Ut^-Sj^fWMh)]* C-\h,t2) 
J — co J — oo L J 

x [r(i2) - Sjy/Ëlhfo)] dhdt2. (2.61) 

where C~l{ti,t2) is defined by 

/

OO /ΌΟ 

/ C n ( í 1 , í 2 )C- 1 ( í 2 , t : i ) dt2 = 5D{h - h) 
-oo J —oo 

(2.62) 

and Sp{x) is the Dirac delta function. Expanding the square and dropping terms 
unrelated to Sj in (2.61) gives 

LLF(Sj) = 2Re{S*z} - S(0)|S,|2 , (2.63) 

where 

/

oo />oo 
/ h*{h)C~l{tut2)r{h)dhdt2 (2.64) 

-oo J —oo 

/
OO rOO 

j h\h)C-\h,h)h{t2+eT)dhdt2. (2.65) 
-oo J —oo 

We can rewrite z as 

/
oo 

f*(t)r(t) dt, (2.66) 
-oo 

where 

/
oo 

C-\tut)h{h) dh. (2.67) 
-OO 
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We can interpret f(t) as the correlation function for colored noise and g(t) = f*(—t) 
as the matched filter in colored noise response (also called the generalized matched 
filter response). 

For the TDM case, the channel response for s(m) is h(t — mT), so that 

/

oo 

C~\h - τηΓ,ί)/ι(ί! - mT) dh. (2.68) 
- O O 

Unlike the AWGN case, fm(t) does not necessarily equal / n ( i - m T ) , which is given 
by 

/

OO 

C-^tut-mT^i^dh 
-OO 

/ O O 

C~l{h - mT, t - mT)h{h - mT) dh, (2.69) 
-oo 

unless it happens that C~l{t\ — mT,t — mT) — C~l{t\ — mT,t) for all m (i.e., 
C~l{t\,t2) is periodic in ti with period T). Thus, we can no longer filter with a 
common filter response and simply sample at different times. 

2.3.10 Performance results 

Simulation was used to generate results for both the matched filter and the matched 
filter bound. General notes on simulation can be found in Appendix A. 

Matched filter results were generated using 20 realizations of 1000 symbols each.3 

Simulation results for the matched filter bound were generated using 20,000 real-
izations of 1 symbol each. Reference results are provided using (A.8). 

Results were generated for QPSK and root-raised-cosine pulse shaping (rolloff 
0.22). First consider the TwoTS channel defined in Chapter 1 (two symbol-spaced 
paths with relative powers 0 and —1 dB and angles 0 and 90 degrees). BER vs. 
Eb/N0 is shown in Fig. 2.4. Observe that the matched filter experiences a "floor" 
in that performance stops getting better with higher ΕΙ,/NQ towards the right side 
of the plot. 

By contrast, the matched filter bound shows no flooring. In fact, it agrees with 
the reference result for an AWGN channel. This is because the matched filter 
collects all the signal energy and ISI is perfectly removed (set to zero in this case). 

Next consider the TwoFS channel (two fractionally spaced paths with relative 
powers 0 and —1 dB and angles 0 and 90 degrees). Also consider two variations, in 
which the angle of the second path is 0 degrees or 180 degrees. Simulated matched 
filter bound results are shown in Fig. 2.5. Observe that performance depends 
on the angle of the second path. This is because the two images of a particular 
symbol are no longer orthogonal, but interact either constructively (second angle 
= 0 degrees) or destructively (second angle = 180 degrees) or neither (second angle 
= 90 degrees). 

In general, we would like to plot BER vs. received Ε^,/Νο (not transmitted Ef,/Nn ) . 
For the two-tap channel, by choosing the path angles to be 90 degrees apart, we 

3Slightly more than 1000 symbols were generated so that the middle 1000 symbols experienced 
the same level of ISI. 
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Figure 2.4 BEI? vs. Ει,/Νο for QPSK, root-raised-cosine pulse shaping (0.22 rolloff), 
static, two-tap. symbol-spaced channel. with relative path strengths 0 and —1 dB, and path 
angles 0 and 00 degrees. 

ensure that the channel does not give a gain in Eb, as we normalize the path 
coefficients so their powers sum to one. Thus, by defining TwoFS as having paths 
90 degrees apart, we do not have to account for any channel gain. For consistency, 
the TwoTS channel is also defined as having two paths, 90 degrees apart. 

In certain cases, the transmitted Eb may be the same for each bit, but the 
received Eb may be different, even when the channel is static. An example is CDM, 
in which different symbols use different symbol waveforms that interact differently 
with a dispersive channel. In this case, we would like to plot BER vs. average 
received Eb/N^. For traditional TDM, the symbol waveforms are time shifts of a 
common waveform, so that they interact with a static channel the same way. If the 
channel block fading or time-varying, then we need to average over the fading. For 
a static channel and TDM case considered in this section, the Eb/No is the same 
for all symbols (average = individual SNR). 

Notice that when the paths create orthogonal copies of a bit, we can simply 
account for the energy in each copy and then use analytical results for an AWGN 
channel to determine matched filter bound performance. Analytical MFB results 
are also possible when nonorthogonal copies are created. 
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Figure 2.5 BER vs. Eb/N0 for QPSK, root-raised-cosine pulse shaping (0.22 rolloff), 
static, two-tap, half-symbol-spaced ehaimel, with relative path strengths 0 and —1 dB, and 
path angles 0 and 0/90/180 degrees. 

2.4 MORE MATH 

In this section, the more general system model is considered. We introduce the 
notions of chip-level and despread-level matched filtering, depending on the order 
of the matching operations. While this terminology is more commonly used for 
CDM systems, we will also use it for OFDM systems for consistency, even though 
time-domain and frequency-domain matched filtering may be more appropriate 
terms. Partial MF and the matched filter bound are revisited. Finally, we consider 
matched filtering in colored (nonwhite) noise and the notion of group matched 
filtering. 

The derivation of the matched filter is similar in the more general case, only now 
the problem is in terms of a vector of filters. Also, the filter vector may be different 
for each symbol period, so that (2.46) becomes 

4:;W= Γ ^ Ι , Μ Γ Φ ) ^ (2.70) 
where ¿o, fcoT and m(> are indices for a particular symbol. SNR is maximized when 

f£n« = h£nM· (2·71) 

Odeg 
90 deg X 

180 deg X 
REF - Θ -
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Let's take a closer look. Recall from (1.35) and (1.47) that 

^ ) = ΣΑΙη(ί-^), (2-72) 

where 
J V . . - 1 

«SnM = Q/VK) Σ <£1»Ρ(' - nTc)- (2-73) 
n=() 

Substituting (1.35) into (1.47) gives 

ΛΓ,.-Ι L-\ 

hi?ra(o = ( ΐ /^)Σ41(»)ΣΛ ί - τ ' - ' , ϊ ' ' ) · <2·74) 
Observe that the symbol channel response can be written as a sum of chip values 

(spreading) and a chip channel response ^,t=u &e r(t~~Tl~n'^c)■ The chip channel 
response consists of the medium response and the pulse shape. 

When we perform matched filtering, we can match to the components of the 
symbol channel response in any order. We can see this by substituting (2.71) and 
(2.74) into (2.70), giving 

(1/v̂ Vê) Σ K:l„H Σ Μ Ί P*(t-T(-nTc)r(t)dt 
■χ n=n c=o 

= WVK) £ [ Ä » ] e(ill)(n), (2-75) 

where 

L-\ H 

e(i"Hn) = £ [ g f ° ] v f a + "Tc) (2-76) 
£=<) 

/
oo 

Γ ( τ ) ρ · ( τ - ί ) ώ · (2.77) 
-oo 

We can interpret (2.75) as a correlation or despreading operation, correlating a set 
of chip estimates to the chip sequence. Specifically, despreading is performed using 
e('"'(n), which can be interpreted as an estimate of the chip at time n. Notice that 
e^l"\n) is obtained by using v(t) and matching to the medium response. The signal 
v(i) is obtained by matching to the chip pulse shape. Thus, we have divided the 
matched filtering operation into three stages: matching to the chip pulse shape, 
matching to the medium response, and matching to the spreading chip sequence. 

The matched filter for the CDM case is also referred to as the Rake receiver. 
This particular ordering can be called a chip-level Rake receiver, because we first 
match to the chip pulse shape (matching to the medium response occurs after chip 
pulse matching). 
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With despread-level Rake reception, matching to the medium response occurs 
after despreading. This form is also obtained by substituting (2.74) in (2.70), giving 

(l/y/Ñ¡) Σ R l » l Σ Μ ° ] P'(t-Tt-nTc)r(t)dt 
-°° n=() <=<) 

1=0 

where 

< L W - (l/\̂ VÔ) Σ [ Ä » ] * v(* - nïè)· (2-79) 
n=0 

So, despreading is performed first, producing x¡^"m )(i) for í = TO," . . . T ¿ _ I . 
These despread values are then combined to form the decision variable. Thus, we 
have divided the matched filtering operation into three stages: matching to the 
chip pulse shape, matching to the spreading chip sequence, and matching to the 
medium response. 

For OFDM, the correlation in (2.75) includes correlation to the cyclic prefix 
portion of the symbol waveform. Thus, the matched filter would normally match 
to the overall OFDM symbol waveform. However, to avoid ISI within and between 
blocks of symbols, it is common to discard a portion of the received signal. For a 
particular symbol, we can think of this as discarding two portions of the symbol. 
One is the portion of the symbol corresponding to the cyclic prefix of the earliest 
arriving path (the part interfered by the previous symbol). The other is the portion 
of the signal that spills into the next block (the cyclic prefix of the earliest arriving 
path for the next symbol period). As long as the delay spread of the medium 
response is less than or equal to the length of the cyclic prefix, orthogonality between 
symbol periods is achieved. The circular shift orthogonality property of the OFDM 
chip sequences maintains orthogonality within a symbol period despite dispersion. 
We'll take a closer look at this in the next subsection 

2.4.1 Partial MF 

Both chip-level and despread-level Rake reception performed initial filtering matched 
to the chip pulse shape. While only certain samples are needed, a reasonable re-
ceiver design is to perform uniform sampling and only use what is needed. Matching 
to the chip pulse shape and sampling gives 

vfoi;) /

OO 

r(r)p'(T-qTs)dT, (2.80) 
-oo 

which can be modeled as 

N, K-l 1 i t. IX — I I I_*J 

( ^ Ν Σ Σ ν ^ ' ί * ) Σ h < ^ T s - m r + ío )4 ¿ V) + ñ(</rs), (2.81) 
i=\ k=0 
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where 

É£>) = (l/^ëc^HMi-nYi) (2.82) 
n=(l 

L-l 

h(i) = Y^gtRp{t-Tt). (2.83) 
i=( l 

While the notation is a little sloppy, it should be clear when we are referring to the 
chip-level net response h(i) and the symbol-specific net response h¡¿ m(t)· 

Similar to Rake reception, we will consider chip-level and despread-level equal-
ization. With chip-level equalization, we will initially process the received signal 
to produce chip samples v(qTs). Instead of matching to the medium response, 
we will apply some other form of processing to suppress ISI. With despread-level 
equalization, we will initially process the received signal to produce despread values 
xfe,'.m„)(9'-,s) s i v e n b y 

n=() 

Instead of then matching to the medium response, other processing will be used. 
Both chip-level and despread-level equalization can be symbol-spaced (Ts = Tc) or 
fractionally spaced (Ts = Tc/Q). 

There is a third form of equalization, symbol-level equalization . With this form, 
we perform full matched filtering first, then work with the z¿ (mo) values. In the 
multiuser detection literature, this form of equalization is often found. 

The choice of chip-level, despread-level, or symbol-level equalization depends 
on differences in complexity as well as flexibility and legacy issues. The different 
forms are not quite equivalent in performance, though they are often close. In the 
subsequent chapters, we will see examples of each. 

2.4.1.1 OFDM Let's revisit the OFDM case. Assuming one transmit antenna, 
one receive antenna, equal-energy symbols, partial MF to the chip pulse, sampling 
once per chip (Ts = Tc),'a chip-spaced channel response (re — ÍTC), and aligned 
sampling (io = r0) (2.81) becomes 

K-\ oc N,.-l L-l 

v(nTc) \= s/Es/Nc Σ Σ S fc(m) Σ CkM Σ 9(Rp((n ~ Wc ~ mNcTc) 
fc=() m = - o o n=0 {=(> 

+ ñ(nTc) 
K - l oo JV,.-1 L - l 

h y/E,/Nc Σ Σ Sfc(m) Σ Cfc(") Σ »*((" - £)T' - mNcTc) 
fc=0 m = - o c n=0 f=() 

+ ñ(nTc). (2.85) 

An example for Nc = 6,NCP = 2, NMB = 4, and L = 3 is shown in Fig. 2.6. 
Consider the symbol period mo = 0. Let's assume a worst-case delay spread 

in which L = Ncp + 1. Symbol energy is present in samples n = 0 through 



MORE MATH 51 

Figure 2.6 OFDM example. 

n = Nc — 1+L—1 = NC + Ncp — 1. Interference from the previous block (m = — 1 ) 
is present in samples n = 0 through n = L—2 = Ncp — 1- Interference from the next 
block (m = 1) is present in samples n = Nc through n = Nc + L— 1 = Nc+Ncp — 1. 
If we discard the samples with interblock interference at both edges, we are left with 
NMB samples, n = Ncp through n = Nc — 1. Renumbering these j = 0 through 
j = NMB — 1) (2.85) becomes 

K-\ L-\ 
v(jTc) \= y/Es/Nc Σ sk(0) Σ 9tCkU -£)+ ñ ( ü - NCP)TC). (2.86) 

k=0 <=0 

where Ck{n) = for n < 0. Keep in mind that discarding samples is discarding 
symbol energy. Specifically, instead of having Es energy per symbol, we now have 
ES{NMB/(NMB + NCP). 

From (1.44), we can rewrite this as 

K-\ L-\ 
v(jTc) \= v/Es/7Vc J2 *fc(0) Σ StfkU ee) + ñ{(j - NCP)TC), (2.87) 

fc=0 £=() 

where Θ denotes modular subtraction using modulus NMB- Using the circular shift 
property in (1.42), we obtain 

K-i 
v(jTc) h y/E„/Nc Σ hksk(0)fk(j) + ñ((j - NCP)Tc), (2.88) 

fc=0 

where 
L-Ï 

hk = Y,9i exp {-j2nkt/K). (2.89) 

This resembles the CDM case for a nondispersive channel, allowing us to obtain 
a decision variable using a single despreading operation. For the specific symbol 
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k — ko, we have 

Λ Τ Λ , Β - 1 

(2.90) 

which can be modeled as 

κ-\ 
zk„ h (y/Ea/Nc)(l/y/Ñ¿¿) Σ sk(0)hk 

\= \/Ee/ifc„Sfc„(0) +wfc, 

Λ Γ Λ Ι Ο - 1 

£ fkU)fkU) 
3=0 

+ Uk 

(2.91) 

where 

E„ = NMI 

NMB + NCP 
Es, (2.92) 

and Uk is complex, Gaussian noise with zero mean and variance iV(). We used the 
orthogonality property in (1.42), which removed ISI from other symbols in the same 
symbol period (k φ fco). To complete the matched filtering operation, we would 
multiply by VËsh*ku. 

In this example, we saw that for OFDM, by keeping a certain NMB samples 
of the partial matched filter, completing the matched filtering operations leads to 
complete elimination of ISI. Keep in mind that we assumed the delay spread was 
no more than the length of the CP. 

2.4.2 The matched filter bound 

When different symbols use different symbol waveforms, there is a MFB for each 
symbol. These symbol-specific bounds can be quite different, depending on how 
the medium response interacts with the transmit symbol waveform. 

Often an average of the bound is taken, as it provides a bound on the average 
SINR or error rate. Ideally, to obtain the average SINR or average error rate, 
averaging should be performed after determining the SINR or error rate for each 
symbol waveform. In practice, a looser bound is often used based on assuming that 
each symbol waveform has ideal properties. For example, for CDM, we can assume 
the spreading sequence has an idealized autocorrelation function, in that the corre-
lation of the sequence with a shift of itself is zero. As a result, the autocorrelation 
function for the symbol waveform is simply the chip pulse shape autocorrelation 
function. This provides a looser bound on the average SINR or error rate. 

This looser bound is not a bound on the individual symbol MFBs. The idealized 
autocorrelation function is only ideal when one must consider performance over a 
variety of medium responses. For a given medium response, performance is best 
for the symbol waveform that is most closely matched to the medium response. 
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2.4.3 MF in colored noise 

Here we consider MF for the case of multiple receive antennas. The LLF corre-
sponding to s¿ (m) = Sj is 

/
°° f°° r , ... -i H 

/ - r t í O - S j V ^ h ^ í x ) C-\h,h) 
-oo J — oo L 

x [r(i2) - Sj V ^ h ^ m ( Í 2 ) ] dhdt2, (2.93) 

where C~1(ii,<2) is defined by 

/ OO / Ό Ο 

/ C„ ( t 1 , í 2 )C ; 1 ( í 2 , í 3 )d t2 = KD( í i - í : ! ) - (2.94) 
-oo V — oo 

Expanding the square and dropping terms unrelated to Sj in (2.93) gives 

LLF(Sj) = 2Re{5*2} - 5(0)|S^|2, (2.95) 

where 
/ OO /-OO JJ 

/ hfc,L(*i)| Cñ 1 ( í i , Í2 ) r ( í 2 )* iA2 (2.96) 
-OO J — OO L J 

/
oo /*oo ^ 

/ Κ Ι , ( ί ι ) C - ^ i i . t a J h g ^ ^ J d i x d i a . (2.97) 
-oo J — oo L J 

We can rewrite 2 as 

*=/~[θ)ΓΓ(ί)Λ, i2·98) 
J— OO L J 

where 

/

oo 

C - ^ . O h W j f O d f i . (2.99) 

- 0 0 

2.4.4 Group matched filtering 

When ISI is severe, the matched filter bound for error rate is fairly loose. A tighter 
bound can be obtained by thinking of a group of G symbols as one, MG-valued 
supersymbol. One then assumes that one supersymbol was transmitted and deter-
mines an error rate, assuming matched filtering to each symbol followed by some 
form of joint symbol detection. To obtain a true bound on symbol error rate, one 
would use MAP symbol detection as described in Chapter 7. To obtain a true bound 
on bit error rate, MAP bit detection would need to be used. While closed form 
expressions are difficult to obtain in these cases, the error rate can be determined 
via simulation. The larger the group, the tighter the bound. 

An approximate bound can be obtained by using maximum likelihood sequence 
estimation (MLSD), described in Chapter 6, to obtain a symbol or bit error rate. 
MLSD would give a true bound on supersymbol error rate. The matched filter 
decision variables for G symbols can be collected into a vector z. This vector has a 
model similar to (1.54), so that 

z |= HAs + u, (2.100) 



5 4 MATCHED FILTERING 

where the elements of H can be determined from the system model. Note that the 
elements in u may be correlated. Similar to (2.52), the MLSD solution is given by 

s = arg. max [z - HAq] H C" 1 [z - HAq], (2.101) 

where SG denotes the set of all possible symbol vectors s. 

2.5 AN EXAMPLE 

Consider the Long Term Evolution (LTE) cellular system [Dah08j. This is an 
evolution of a 3G system, providing higher data rates. On the downlink (base 
station to mobile device), OFDM is used. Let's consider a single transmit antenna 
and single receive antenna. We will assume a front-end filter (partially) matched to 
p(i), which is approximately the same as matching to p(t)a(t). Let's also assume 
that the delay spread is less than or equal to the length of the cyclic prefix. 

These assumptions give us the classic OFDM receiver scenario. In [Wei71] it 
is shown that for a particular symbol period, by discarding the portions of the 
received signal corresponding to the cyclic prefix of the earliest arriving path, ISI 
from symbols within the same symbol period as well as symbols form other symbol 
periods is avoided. As a result, MF makes sense and the matched filter decision 
variables can be generated using a Discrete Fourier Transform (DFT), which can 
be implemented efficiently using a Fast Fourier Transform (FFT). 

2.6 THE LITERATURE 

An interesting history of MF can be found in [Kai98], which attributes the first 
(classified) publication of the idea (applied to radar) to [Nor43]. An early tutorial 
on MF is [Tur60a]. The development of the log-likelihood function for a continuous 
time signal is based on the more rigorous development in [Wha71]. In [VTr68], 
several rigorous approaches for obtaining a sufficient statistic for detection are pro-
vided, giving rise to the matched filter. The expression for MF in colored noise is 
based on [VTr68], though a development from maximizing SNR can be found in 
[Wha71]. Details regarding the WMF can be found in [For72]. MF given discrete-
time received signal samples is considered in [Mey94]. 

The use of the Schwartz inequality to derive the matched filter can be found in 
[Tur60a]. The complex form of the Schwartz inequality can be found in [Sch05]. 

With multiple receive antennas, spatial matched filtering has a long history 
[Bre59]. MF in a purely spatial dimension is referred to as maximal ratio com-
bining (MRC). To reduce complexity, a subset of antenna signals can be combined 
[Mol03], referred to as generalized selection diversity. 

Much work has been done to find closed-form expressions for the MFB for various 
channel models. Here we give a few examples for cellular communications channels. 
Analysis for fading channels usually employs the characteristic function approach 
[Tur60b, Tur62]. MFB error rate averaged over fading medium coefficients is derived 
for channels with two paths in [Maz91] and for those with more than two paths in 
[Kaa94, Lin95]. The MFB for rapidly varying channels (variation within a symbol 
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period) is examined in [BaaOl, ChiOl]. Sufficient statistics for such channels is 
considered in [Han99]. A technique to address numerical issues when analytically 
evaluating the MFB is given in [Wel03]. 

In spread-spectrum communications (e.g., CDMA), the MF is commonly referred 
to as the Rake receiver [Pri58, Tur80]. A Rake receiver with two receive antennas 
is sometimes referred to as a 2-D Rake [Nag94]. MF in rapidly varying channels is 
examined in [Say99j. The need for fractionally spaced sampling in CDMA receivers 
is discussed in [KimOOa, ManOl, Hor02]. 

PROBLEMS 

The idea 

2.1 Consider the Alice and Bob example. Suppose instead that r\ — — 1 and 
r2 = 4. 

a) What is the value of z\ for MF? 
b) What is the detected value of s\1 

1.1 Consider the Alice and Bob example. Suppose we have ri but not rs, and 
we want to detect s^. 

a) What is the equation for 22 for MF? 
b) If Γ2 = —12, what is the resulting detected value for «2? 

2.3 For the Alice and Bob example, suppose we detect s<2 using the decision 
statistic z-i = — 9ri — 10Γ2· Models for the two received values are given in (1.1). 
Substitute the received value models into the expression for the decision statistic. 

a) What is the signal term? 
b) What is the ISI term? 
c) What is the noise term? 

More details 

2.4 Consider the dispersive scenario for which c = 1, d = 0.5, and σ2 = 10. 
a) What is the input SNR? 
b) What is the output SINR of zx with MF? 

2.5 Consider the Alice and Bob example. Suppose we have r2 but not r3, and 
we want to detect S2-

a) What is the equation for zi for MF? 
b) What is the equation for the SINR of 22? 
c) If Γ2 = —12, what is the resulting detected value for S2? 

2.6 Consider the dispersive scenario for which c = a (a is between 0 and 1), 
d = \ / l — a2, and the noise power is σ2. 

a) What is the input SNR? 
b) What is the output SINR of ζλ with MF? 
c) As a goes from 0 towards 1, what happens to output SINR? 
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2.7 Suppose we have the MIMO scenario in which c = 1, d = 0, e = 2, and 
/ = 1. Also, suppose the two received values are r\ — —1.2 and r2 = —0.8. The 
noise power is σ1 = 100. 

a) What is the value of the MF decision variable z\ for si? 
b) What is the SINK of zi? 
c) What is the value of the MF decision variable z2 for s2? 
d) What is the SINR of ¿2? 

2.8 Suppose we have the dispersive scenario in which c = —2 and d = 1. Suppose 
QPSK is sent and r\ = — 3 + j and r2 = 2 + j'3. 

a) What is the value for the MF decision variable for si? 
b) What most likely is the I component of «i? 
c) What most likely is the Q component of «i? 

The math 

2.9 Consider a BPSK system with root-Nyquist pulse shaping. Suppose the 
medium consists of a single path with delay To = 0 and coefficient po- There is 
also AWGN with one-sided PSD 7V(). Assume the receiver uses a matched filter. 

a) Express the amplitude of the decision variable in terms of Ef„ Nn, and p(). 
b) What is the variance of the noise on the decision variable? 
c) What is the output SNR? 
d) If po = 3 and Et/No = 0.1, what is the probability of a bit error in terms 

of the erfc function? If possible, evaluate this to get a numerical result as 
well. 

2.10 Consider a BPSK system with root-Nyquist pulse shaping. Suppose the 
medium consists of a two paths with delays To = 0, τχ = T and coefficients po and 
Pi. There is also AWGN with one-sided PSD iVo. Assume the transmitter sends 
only one symbol and the receiver uses a matched filter. 

a) Express the amplitude of the decision variable in terms of £¡,, No, and po. 
b) What is the variance of the noise on the decision variable? 
c) What is the output SNR? 
d) If po = 3, pi = 2 and Eb/Ntt = 0.1, what is the probability of a bit error 

in terms of the erfc function? If possible, evaluate this to get a numerical 
result as well. 

2.11 Consider a BPSK system with root-Nyquist pulse shaping. Suppose the 
transmitter sends each symbol twice before sending the next symbol (i.e., s2 = s\, 
Si = S;i, etc.). Suppose the medium consists of one path with delay To = 0 and 
coefficient p(). There is also AWGN with one-sided PSD ΛΌ. Assume the receiver 
uses a matched filter. 

a) Express the matched filter for si in terms of r(t), p(t), T, and po-
b) Express the amplitude of the decision variable in terms of Ef,, N», and po-
c) What is the variance of the noise on the decision variable? 
d) What is the output SNR? 



CHAPTER 3 

ZERO-FORCING DECISION FEEDBACK 
EQUALIZATION 

Decision feedback equalization (DFE) uses past symbol decisions (detected values) 
to remove ISI from previous symbols. In this chapter we will consider a zero-forcing 
strategy, in which ISI from future symbols is avoided. Assuming the detected 
values are correct, ISI from past symbols is also avoided. Thus, ISI is forced to 
zero. This is not necessarily the best strategy, but it is a useful starting point 
for understanding more sophisticated strategies. In Chapter 5, we will examine 
other strategies, including Minimum Mean-Square Estimation (MMSE) DFE and 
Maximum Likelihood (ML) DFE. 

3.1 THE IDEA 

Let's assume we have a detected or known value for s(). Next we want to determine 
si using r i , which can be modeled as 

ri = - 1 0 s i + 9 s o + ni . (3.1) 

Since we have an idea of what SQ is, we can subtract its influence on r j , giving 

0i = ri - 9So, (3-2) 

which, assuming So = so, can be modeled as 

i/i = —lOsi + rii- (3.3) 

Channel Equalization for Wireless Communications: From Concepts to Detailed 57 
Mathematics, First Edition. Gregory E. Bottomley. 
© 2011 Institute of Electrical and Electronics Engineers, Inc. Published 2011 by John Wiley & Sons, Inc. 



5 8 ZERO-FORCING DECISION FEEDBACK EQUALIZATION 

If we only use y\ to detected s\ (we ignore the copy of s\ in r-ι), then we have forced 
the ISI to zero. 

Second, to ensure that the coefficient in front of s\ is positive, we need to multiply 
by a number with the same sign of the channel coefficient in front of S\. Instead of 
— 10, let's use —1/10, giving the decision variable 

2 i = - 0 . 1 y i = - 0 . 1 [ n - 9 e o ] . (3.4) 

The detected symbol value is then 

s i=s ign{z i} . (3.5) 

Now we can detect S2 using ri and so on. 
We can understand how DFE works graphically in Fig. 3.1. There are two copies 

of si, one in r\ and one in r2. The copy in r\ has interference from so, which is 
removed through subtraction. The copy in ri has interference from S2, which is 
avoided by not using ri. We call this approach zero-forcing (ZF), because we have 
forced the ISI to be zero (assuming our value for So is correct). A block diagram of 
the ZF DFE is given in Fig. 3.2. 

Figure 3.1 Received signal for DFE. 

Let's try it out on the Alice and Bob example. Recall that r\ = 1 and ri = —7. 
Suppose we are told that so = +1 , which happens to be the correct value. The 
DFE output for s\ would be 

z1 = -0 .1 [1 - 9(+l)] = 0.8, (3.6) 

giving a detected value of s(l) = +1. The true value happens to be s(l) = +1 , so 
the detected value is correct. To detect «2 we form 

«2 = -0.1«/2 = -0 .1 [ -7 - 9(+l)] = 1.6, (3.7) 

giving s(2) = +1. This detected value is also correct, as the true value happens to 
be s(2) = +1. Thus, if we start with a correct value for so, we detect correct values 
for the remaining symbols. 
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Figure 3.2 ZF DFE block diagram. 

Now suppose we are told so = —1, the incorrect value. Then, 

«1 = - 0 . 1 [ l - 9 ( - l ) ] = -1.0, 

giving a detected value of s(l) — — 1, which is incorrect. Then, 

z2 = -O.I3/2 = -0 .1 [ -7 - 9 ( - l ) ] = -0.2, 

(3.8) 

(3.9) 

giving s(2) = — 1, which is also incorrect. Thus, if we start with an incorrect value 
for so, we detect incorrect values for the remaining symbols. This is called error 
propagation. 

3.2 MORE DETAILS 

So how well does the ZF DFE work in general? It depends. If we have high 
input SNR (performance is limited by ISI) and the decisions are all correct (ISI is 
completely removed), then it works well. However, sometimes we make an incorrect 
decision. This causes an incorrect subtraction of ISI for the next symbol, increasing 
the chances of making a second incorrect decision, and so on. 

How does it compare to MF? If performance is noise limited (low input SNR), we 
actually do worse than MF because we don't collect all the signal energy together. 
Instead, we only keep the signal energy in r\ (—lOsi) and treat the term 9si in r2 

as a nuisance to be subtracted later. Thus, at low SNR, MF will perform better. 
However, at high SNR, performance is limited by ISI. If the detected values are 
correct most of the time, ISI is reduced and DFE will perform better than MF. 

We can determine an upper bound on output SINR by assuming correct sub-
traction of ISI. In this case, y\ can be modeled as 

2/1 -lOsi + n\. (3.10) 
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The decision variable for si is then given by Z\ = —0.1j/i, which can be modeled as 

2 i = s i + 0 . 1 n i . (3.11) 

Assuming a noise power of 100, the resulting output SINR is 1.0, which is greater 
than the MF output SINR of 0.955. Thus, in this case, we expect the ZF DFE to 
perform better at high SNR (when decisions are mostly correct). 

We can also determine a lower bound on output SINR by assuming incorrect 
subtraction of ISI. When we subtract the incorrect value, we essentially double the 
value (e.g., +1 — (—1) = 2). The model for y\ becomes 

2/1 = -10s 1 +9(2s„) + ni . (3.12) 

The decision variable for si is then given by z\ = — O.lyi, which can be modeled as 

zi = s-i +1.8s()+0.1m. (3.13) 

The resulting output SINR is 0.236, which is much lower. 
Is zero-forcing the best strategy? While it eliminates ISI, it doesn't account for 

the loss of signal energy by ignoring the second copy of the symbol of interest in r2. 
It turns out that we can use future samples to recover some of this loss. However, 
then we can't entirely eliminate ISI. This will be explored in Chapter 5. 

In the general dispersive scenario, for sm, we form the decision variable 

ym=rm-dêm-i (3.14) 

and detect Sfc using 
sm = sign{cym}. (3.15) 

The upper bound on output SINR is then 

S I N R < C 2 / C T 2 . (3.16) 

What about the MIMO scenario? In this case there is no so to get things started. 
If d or e were zero, then we could detect one symbol by itself and then use it to 
detect the other one. It turns out there is a way to derive an equivalent MIMO 
channel for which d or e is zero and the two equivalent noise values are uncorrelated. 

It is alright to work with linear combinations of r\ and r2, as long as the two 
linear combinations are independent (not the same combination or a scaled version 
of it). For the first combination, let's consider X\ — n — <?r2. We want to pick g so 
that 2/1 doesn't depend on .s2 (allowing us to detect s\ using j/i first). Recall, the 
models for r\ and r2 are 

T\ = cs\+ds2 + n\ (3.17) 
r2 = esi + fs2 + n2. (3.18) 

Notice that if we multiply r2 by d/f and subtract it from r\, we eliminate s2 from 
the model of r\. Thus, we set g — d/f. The resulting model for x\ is 

xi = (c - de/f)si + (0)s2 + «i, (3.19) 
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where 
«i = m - (d/f)n2. (3.20) 

Can we simply keep r2 as is? No. The reason is that noise on x\ (u\) is now 
correlated with the noise on r2 («2)· Specifically, 

E{Uln2} = E{nxn2 - (d/f)n2
2} = -(d/f)a2 φ 0. (3.21) 

So let's consider a second combination of the form x2 = r2 + hr\, which can be 
modeled as 

x2 = (e + hc)s1 + (f + hd)s2 + u2, (3.22) 

where 
u2=n2 + hni. (3.23) 

We want to pick h such that u\ and u2 are uncorrelated. Setting the correlation to 
zero gives 

E{uiu2} = E{(m - (d/f)n2)(n2 + hm)} = ha2 - (d/f)a2 = 0, (3.24) 

which implies that we should set h = d/f. 
Putting this together in matrix form, we obtain 

1 -(d/f) 
(d/f) 1 

(3.25) 

which can be modeled as 
x \= Cs + u, (3.26) 

where the elements of u are uncorrelated and have power (1 + (d/f)2)a2 and 

C = A H c - de/f 0 
e + dc/f f + d2/f (3.27) 

Success. Our channel matrix is now triangular. Note, we could have scaled the 
elements in A by 1/^/(1 + (d/f)2) to force the elements in u to have power σ2. 
Instead, we allowed the signal and noise powers to increase, maintaining the same 
SNR. 

Now we detect si first, using y\. We can then detect s2 using 

y2 = X2 - (e + dc/f)s!. (3.28) 

As for SINR, the SINR for detecting si is 

(c-de/f)2 

(1 + ( d / / ) > 2 S I N R ! = , , . > : : ; „ , ■ ( ^ 

For detecting s2, an upper bound on SINR is given by 

SINR2 * (ΐ%//)>2· (3·3°) 
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3.3 THE MATH 

We start this section by determining when a zero-forcing solution is possible. The 
basic equations for ZF DFE are then given. 

A full zero-forcing solution is only possible in a few special cases. This is because 
the pulse shape is typically bandlimited, making it nonzero for many symbol periods 
in both the future and the past. Even if the pulse shape is root-Nyquist and 
partial MF is employed, ISI from future symbol periods occurs if fractionally spaced 
equalization is employed or the medium path delays are fractionally spaced. 

As we will consider the more general case in Chapter 5, we will focus on a special 
case for which full ZF is possible. Specifically, we will assume the following. 

1. The channel can be modeled with symbol-spaced paths (τ( = ÍT). 

2. Root-Nyquist pulse shaping is used at the transmitter, and partial MF is used 
at the receiver (Rp(qT) = 6(q)). 

3. The sampling phase is aligned with the first tap delay of the channel (in = TO). 

4. Symbol-spaced sampling is used (Ts = T). 

With these simplifying assumptions, the received samples (rm = v(mT)) can be 
modeled as 

L-l 
rm = \/E~s Σ 9esm-e + um, (3.31) 

where um is zero-mean, complex Gaussian r.v. with variance No. 
The traditional block diagram for DFE is given in Fig. 3.3. The received signal 

is processed by a feedforward filter (FFF). The output of a feedback filter (FBF) is 
then subtracted, removing ISI from past symbol periods. The result is a decision 
variable, which is used by a decision device or detector (DET) to determine a 
detected symbol value. 

We have divided the FFF into two filters: a front-end filter matched to the pulse 
shape (partial MF or PMF) and a forward filter (FF). Also, because the FF is 
linear, the DFE can be formulated with the FBF being applied prior to the FF, as 
shown in Fig. 3.4. This formulation is convenient as it decouples the forward and 
backward filter designs under the design assumptions to be used. 

The FBF subtracts the influence of past symbols on rm, giving 

L-l 
ym = rm-^2 ges(m - (.), (3.32) 

1=1 

which can be modeled as 
L-l 

Vm h V~Ës9oSm + Σ 9e\s{m - i) - s(m - ί)\ + um. (3.33) 
e=i 

We will assume that the past symbol decisions are correct, simplifying (3.33) to 

Um \= \/Esgnsm + um. (3.34) 
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Because there is no ISI and um is complex Gaussian, we can use MLD to obtain 

sm = detect(j/m, \fWsg0). (3.35) 

! F F F 

PMF —* Γ Γ + 
1 1 

* DET 

FBF 4 

Figure 3.3 Traditional DFE. 

PMF — ► + 
1 L 

► FF — ► DET 

FBF 4 

Figure 3.4 Alternative DFE. 

3.3.1 Performance results 

We will defer ZF DFE results until Chapter 5. When available, ZF DFE results 
will be labeled Minimum ISI (MISI), which is a broader category of DFE that does 
not necessarily force ISI to zero. 

3.4 MORE MATH 

We start by considering when a ZF strategy is possible in our extended system 
model. The introduction of multiple receive antennas increases the opportunities 
for a ZF strategy. Two scenarios are then explored in more detail. 

For a truly ZF solution, we need to be able to avoid or cancel ISI from future 
symbol blocks as well as symbols within the current symbol block. We will make 
similar assumptions as in the previous section: chip-spaced paths, root-Nyquist 
chip pulse shaping, ideal sampling, and chip-spaced samples. 

For CDM with orthogonal codes, having a one-path channel would keep symbols 
orthogonal, but such a channel model is usually not reasonable. With multiple 
paths, ZF is possible if we only use the received samples that depend on the present 
and past symbol period symbols. However, this is a heavy cost in signal energy. If 
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the number of receive antennas exceeds the number of active codes, then we can 
tolerate ISI from the next symbol period, allowing us to use more received samples. 
This is usually not the case. With MIMO (same codes used on both transmit 
antennas), a ZF solution is possible if the number of receive antennas meets or 
exceeds the number of transmit antennas. 

For OFDM, ISI from future symbol periods is avoidable as long as the delay 
spread is less than the length of the CP (assuming the CP is discarded). ISI 
within a symbol period is avoided due the properties of the symbol waveforms. 
However, with MIMO, there is ISI between symbols transmitted from different 
transmit antennas but sharing the same subcarrier frequency. Like the CDM case, 
a ZF solution is possible if the number of receive antennas equals or exceeds the 
number of transmit antennas. 

Note: It is possible to use a CP with CDM. A rectangular windowing function 
would normally not be used, and the chip pulse shape would be root-Nyquist. As 
in the OFDM case, inter-block interference would be avoided by discarding the CP, 
as long as the delay spread is not too large. 

As for TDM, the possibility of multiple receive antennas provides additional flex-
ibility in achieving a zero-forcing solution. In fact, multiple zero-forcing approaches 
become possible. 

In the remainder of this section, we will focus on two scenarios. The first is 
TDM with multiple transmit (cochannel) and receive antennas and dispersion. The 
second is the MIMO scenario (no dispersion), which is also of interest for both CDM 
and OFDM. 

3.4.1 Dispersive scenario and TDM 

We will continue with the assumptions of the previous section, but introduce mul-
tiple transmit and receive antennas. The model in (3.31) becomes 

N, , L - l 

rm μ £ Vs«0 Σ ëï)sii)(m -e) + um, (3.36) 
¿,=i <=o 

where um is a vector of uncorrelated, zero-mean, complex Gaussian r.v.s with vari-
ance No. 

The FBF removes ISI from previous symbol periods, producing 

ΛΓ, L - l 

ym = r m - ¿ ^ g £ e ( < > ( m - ¿ ) ) (3.37) 
t=i e=i 

which, assuming the previous decisions are correct, can be modeled as 

¿ = 1 

Notice that we have assumed that we are detecting all symbols from all transmit-
ters. Often we are only interested in symbols from one transmitter. The other 
transmitters generate interference, which is referred to as cochannel interference. 
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In the later chapter on MMSE equalization, we consider addressing cochannel in-
terference by modeling it as some form of noise. 

If the number of receive antennas is equal to the number of transmitters (Nr — 
Nt), then we can obtain zero-forcing solution by solving the set of equations 

N, 

ym«][>,s ( ¿ ) (m) (3-39) 

for the s'*) (m) values. We can write these equations in the form 

y = Hs, (3.40) 

where we've collected all the symbols into one column vector. The zero-forcing 
solution is then 

β = Η - ν · (3.41) 

Notice that we had just enough equations to solve for the symbols. If we have fewer 
equations, zero-forcing is not possible. 

If Nr > Nt, then we have more equations than unknowns (H is no longer a 
square matrix). We could simply discard some extra equations, but this would 
not be the best strategy. To reduce the number of equations, we introduce spatial 
matched filtering for each symbol: 

z = H H y . (3.42) 

This allows us to collect signal energy and reduce the number of equations to the 
number of unknowns. The symbol estimates are then given by 

s = ( Η ' Ή ) - ^ = ( Η ' Ή Γ ' Η ν (3.43) 

Is this the only choice when JVr > JVt? Actually not. Recall that there is a 
copy of sm in ym+i- Before we sacrificed this copy to avoid ISI from future symbol 
blocks. However, if Nr > 2Nt, then we have enough equations that we could use 
y m + i as well. 

3.4.2 MIMO/cochannel scenario 

Recall that in the MIMO/cochannel scenario, the received sample vector corre-
sponding to a particular PMC can be modeled as 

x μ HAs + n, (3.44) 

where n is a vector of Gaussian r.v.s with zero-mean and covariance C n and s is the 
set of symbols transmitted from different transmitters. We will assume C n — NttI 
and A = ESI. Let's initially assume Nr = Nt, so that H is a square matrix. 

With ZF DFE, we first need to triangularize the problem. Using QR decomposi-
tion, we can write H as QR, where Q is orthonormal ( Q _ 1 = QH) and R is upper 
triangular. Substituting H = Q R into (3.44) and multiplying both sides by Q H 

gives 
r (= v/ËjRs + e, (3.45) 
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where r = QHx. Because Q is orthonormal, e is complex Gaussian with zero mean 
and covariance iV()I. 

Since R is upper triangular, we can detect SK with no ISI. We then subtract the 
influence of SK on the r and detect SK-\- The process continues until all symbols 
have been detected. Mathematically, 

K-\ 
Vk„ = i-fe,, - Σ ñ(fcn,fc)Sfc (3.46) 

fc=fc„ + l 

Sk,, = detect(j/fc„,\/^rñ(fc(),fco)), (3.47) 

where R(r, c) denotes the element in row r and column c of R. 
Now suppose Nr > Nt. To reduce the number of equations, we initially perform 

matched filtering, giving 

which can be modeled as 

H " x , (3.48) 

y \= A / Ë T ( H H H ) S + H H n . (3.49) 

Notice that the noise on y is no longer uncorrelated, but now has covariance 
7V()HHH. So, before performing QR factorization, we need to whiten the noise. 
This can be done by multiplying by square matrix F H , which can be obtained by 
Cholesky decomposition of ( Η Η Η ) " \ i.e., F F H = ( H ^ H ) " 1 . 

3.5 AN EXAMPLE 

In practice, the ZF DFE is usually not used, as it tends to enhance the noise. Thus, 
we will wait until Chapter 5 to discuss an example. 

3.6 THE LITERATURE 

As DFE is revisited in Chapter 5, we will only mention references related specifically 
to this chapter. 

The idea of connecting the FBF prior to the FF can be found in [Ari92]. In 
synchronous CDMA, triangularization and ZF DFE is developed in [Due93]. 

For block equalization, Cholesky factorization is applied to triangularize the 
channel after matched filtering in [Cro92]. In [Kal95], Cholesky factorization is 
motivated by the desire to whiten the noise after matched filtering. 

PROBLEMS 

The idea 

3.1 Consider the Alice and Bob example. Suppose instead that r\ = —1 and 
Γ2 = 4. Also, so = +1. 

a) What is the value of ζλ with ZF DFE? 
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b) What is the detected value of «i? 
c) What is the value of z2 with ZF DFE? 
d) What is the detected value of s2? 

3.2 Suppose the received samples can be modeled as r\ = 2s\ + so + n\ and 
r2 = 2s2 + «i + n2. Also, s(, = +1 , r\ — 3.1, and r2 = —1.01. The noise power is 
σ2 = 0.1. 

a) Using ZF DFE, what are the detected values for s\ and s2? 
b) Do you think the detected values are correct? Why? 
c) Suppose the noise power is σ2 = 100. Do you think the detected values 

are correct? 

3.3 Suppose the received samples can be modeled as T\ = 2s\ + s» + n\ and 
r2 — 2s2 + si + n2. Also, σ2 = 10, s() = +1 , Γχ = 8, and r2 = -20. 

a) Using ZF DFE, what are the detected values for si and s2? 
b) Do you think the detected values are correct? Why? 

More details 

3.4 Consider the MIMO scenario in which c = 10, d = 7, e = 9 and / = 6. 
a) What is the matrix A that triangularizes the channel while maintaining 

the noise power? 
b) What is the matrix C that is the new channel matrix? 
c) If ri = 9 and r2 = 11, what is the detected value for s\ using triangular-

ization? 
d) Using ZF DFE, what is the detected value for s2? 

3.5 For the general dispersive scenario, determine the SINR lower bound when a 
decision error is made. 

3.6 For the general MIMO scenario, determine the SINR lower bound for s2 when 
a decision error is made on S\. 

3.7 For the general MIMO scenario, suppose we want to detect s2 first, instead 
of s\. 

a) If we first replace r\ with yi = n — pr2, what should g be set to make t/i 
independent of s\l 

b) What is the resulting noise u\ in terms of n\ and n2? 
c) If we then replace r2 with j / 2 = r2 + hr\, what should h be set to so that 

the resulting noise is uncorrelated with u\ ? 
d) What is the resulting channel matrix C? 

The math 

3.8 For the general dispersive SC6n&riO [Vrn — £^m -r dSm — \ + nm), determine the 
input SNR such that MF and ZF DFE have the same performance (same output 
SINR), 

a) assuming the ZF DFE makes no decision errors. 
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b) assuming the ZF DFE makes a decision error half of the time, at random. 

3.9 Consider the received sample model in (3.31). Also, suppose transmission 
starts with symbol s(0) (there are no symbols s(m) for negative m) and assume we 
do not know s(0). 

a) Suppose the receiver has access to r0, r j , and so on. Is a zero-forcing 
strategy possible? If not, how many initial symbols would need be known 
to make ZF possible? 

b) Suppose the receiver has access to r\, Γ2, and so on. Is a zero-forcing 
strategy possible? If not, how many initial symbols would need be known 
to make ZF possible? 

c) Suppose the receiver has access to r¿ , r^+1, and so on. Is a zero-forcing 
strategy possible? If not, how many initial symbols would need be known 
to make ZF possible? 

3.10 Consider the received sample model in (3.31). Also, suppose transmission 
starts with symbol s(0) (there are no symbols s(m) for negative m) and ends with 
symbol s(Ns). The receiver has access to rn through rjv · Assume we do not know 
e(0). 

a) Suppose the medium response consists of two paths. Which would give 
better ZF DFE performance (running the DFE forward in time), having 
the first path larger or the second path larger? 

b) Suppose you could run the ZF DFE either forwards in time or backwards 
in time. If the second path is larger, which direction would you use and 
why? 



CHAPTER 4 

LINEAR EQUALIZATION 

With linear equalization, we detect a symbol by forming a weighted combination 
of received values. How does it work? Nearby received values contain copies of 
interfering symbols, which can be used to cancel or reduce ISI. 

4.1 THE IDEA 

We found that matched filtering collects signal energy, but also interference from 
adjacent symbols. This is illustrated in Fig. 4.1, where the circles indicate desired 
symbol terms (for S2) and the octagon-like shapes indicate interference from ad-
jacent symbols. We would like to subtract the contributions from these adjacent 
symbols, but we don't know their values. However, we have copies of these symbols 
present in other received values. As shown by squares in Fig. 4.1, there is a copy of 
the previous symbol Si in τ-χ and a copy of the next symbol S3 in Γ4. By multiplying 
these received values by certain numbers (called weights) and adding them to the 
matched filter value, we can cancel interference from adjacent symbols. 

Problem solved? Not quite. In canceling ISI from si using r\, we introduce ISI 
from so as well as noise m. Similarly, canceling ISI from S3 using r^ introduces 
ISI from S4 and noise n^. So now what? Well, we can use τυ to cancel the ISI 
from So and r$ to cancel the ISI from S4. This introduces more ISI terms, requiring 
us to continue to introduce more received values. Are we fighting a losing battle? 

Channel Equalization for Wireless Communications: From Concepts to Detailed 6 9 
Mathematics, First Edition. Gregory E. Bottomley. 
© 2011 Institute of Electrical and Electronics Engineers, Inc. Published 2011 by John Wiley & Sons, Inc. 
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C X so S 1 ® 
d x M Θ (V ) S 3 

Figure 4.1 Rmiived signal for linear equalization. 

Fortunately, the answer is no. By scaling the received values by appropriate weights, 
we can improve our figure-of-merit, output SINR. 

In detecting S2, let's first look at the copy of S2 in r.v The model for r-¿ and the 
next sample, Γ4, is 

Γ4 

-10s:i + 9s 2 +n: i 
-10«4 + 9s.} + Π4-

(4.1) 
(4.2) 

If we use r;¡, we will introduce the ISI term — ΙΟβ^. However, there is a copy of S3 
in Γ4 that we can use to cancel the ISI. If we try to completely cancel the ISI from 
s,), a zero-forcing strategy, we need to multiply r± by 10/9 =1.11 and add it to r3, 
giving 

2/2 = ^ + 1.1^4. (4.3) 

This can be modeled as 

t/2 = 9s2 + 0s;i + ( - l l . l ) s 4 + [nr( + l . l ln 4 ] . (4.4) 

Notice that we traded the term —10s:! in (4.1) for the term —II.IS4 in (4.4), in-
creasing ISI (we also increased the number of noise terms). Thus, we made things 
worse. 

This suggests we only use the copy of S2 present in Γ2, the larger copy. It turns 
out we have flexibility in selecting the weight for Γ2, as long as it has the same sign 
as c = —10. Let's use —1/10, so that 

«2 -0.1r2, 

which can be modeled as 

where 

z2 = s2 + ui, 

«2 = —0.9si — 0.1n2. 

(4.5) 

(4.6) 

(4.7) 

Notice that by using —1/10 for the weight, the model has a coefficient of 1 in front 
of «2- We refer to this as unity gain. It allows us to think of 22 as an unbiased 
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estimate of symbol s2. Unbiased means that the average value of the estimate is 
the true value. It is also an example of a soft symbol estimate because it can take 
on values other than +1 and —1, which are referred to as hard symbol estimates. 

Now, let's look at using n , which can be modeled as 

ri = — lOsi + 9s() + n\. (4.8) 

To cancel interference from si on «2, we would multiply r\ by —0.09 and add it to 
z2. This would give 

z2 = - 0 . 1 r 2 - 0 . 0 9 n , (4.9) 

which can be modeled as 

¿2 = S2 + Ù2, (4.10) 

where 

«2 = -0.81s0 + (-0.09ni - 0.1n2). (4.11) 

Compared to (4.7), we have traded the ISI term —0.9si for the term —0.81soi 
reducing ISI! As long as the additional noise term is not too large, we win. We can 
continue the process, using rn to cancel interference from so and so on. A block 
diagram of linear equalization is given in Fig. 4.2. 

W, H 

'm 

Q 

| ► delay 

0 - + 

/m-1 

< 1 

- ^ · 

1 

< > -

sign(·) 

Figure 4.2 LE block diagram. 

Recall that we were attempting a zero-forcing strategy, forcing ISI from adjacent 
symbols to be zero. In this case we ended up with a partial ZF solution, because 
it forced ISI from Si to zero, but did not force ISI from s() to be zero. If we were 
allowed to use ro, we could also force ISI from s<) to be zero, but have ISI from s~\. 
However, the ISI power would continue to get smaller. Thus, in the limit of using 
more and more past values, the solution would be fully zero forcing. 

Partial zero forcing is not the best strategy for linear equalization because it 
does not necessarily minimize ISI power. Also, both partial and full zero forcing 
ignore the fact that more and more noise terms are being added in. 
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4.1.1 Minimum mean-square error 

A better strategy is to minimize the sum of ISI and noise. This is referred to as the 
minimum mean-square error (MMSE) strategy. Consider using r\ and r2 to detect 
«2- With the partial ZF strategy, we used r\ to fully cancel the ISI from s\. In 
doing so, we introduced ISI from s(l as well as an additional noise term, ri\. With 
the MMSE approach, we use r\ to partially cancel ISI from βχ. While this leaves 
some ISI from s\, it also reduces the ISI from SQ and the noise from n\. 

Let's look at the math. Suppose we are going to decide S2 using decision variable 
Z2 that is the weighted sum of r\ and r2 . Specifically, 

«2 = w i n + w2r2- (4-12) 

To see what happens to the ISI and noise, recall that 

rj = — lOsi + 9s() + n\ 
r2 = - 1 0 s 2 + 9 s i + n 2 . (4.13) 

Substituting (4.13) in (4.12) gives 

22 = w i ( - 1 0 s i + 9 s ( ) + ni) + w 2 ( - 1 0 s 2 + 9 s i + n 2 ) 
— —IOUI2S2 + (—lOwi + 9w2)si + 9wiS() + wini + W2"2- (4-14) 

We can think of z2 in (4.14) as an estimate of s2. Consider the error in the 
estimate, defined as 

e2 = 22 - s2 

= (-10u>2 - l)s2 + (-ΙΟΐϋχ + 9 U J 2 ) S I +9u>iS() + w\Tii + ω 2 η 2 . (4.15) 

We would like this error to be as small as possible. However, there are trade-offs. 
To make the ,$2 term small, we want u>2 close to —0.1. To make the si term small, 
we want — 10wi + 9w2 close to zero. To make the rest of the terms small, we want 
w\ and W2 to be close to zero. We cannot make all of these things happen at the 
same time! 

What we can do is minimize the sum of all these terms in some way. For good 
performance, it turns out that it is good to minimize the average (mean) of the 
power (square) of the error (e2). This gives it the name minimum mean-square 
error (MMSE). 

To do this, we need some additional facts. 

1. The average of asi is a2 times the average of Sj. 

2. While symbols, such as si, can be either +1 or — 1, the square value is always 
1. Thus, the average of the sf is 1. 

3. While the noise terms, such as n-¡, are random, we were told that the average 
of their squared values is σ2 = 100. 

With these facts, the average power of e2, denoted E2, is given by 

E2 = (w2(-10) - 1)2(1) + (w2(9) + W l ( -10) ) 2 ( l ) + (tB,9)2(l) + {w\ + w2)(100). 
(4.16) 
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Notice that £2 (MSE) depends on two variables, w\ and wi. We can plot £2 versus 
these two variables to find the values that minimize £2. Rather than forming a 
three-dimensional plot, we can plot E2 vs. w\ for different values of W2, as shown 
in Fig. 4.3. MSE is minimized to a value of 0.603 when w\ = —0.0127 and 
u¡2 = —0.0397. This is called the MMSE solution. While we have found the 
solution with trial and error, there are mathematical techniques that allow us to 
find the solution by solving a set of equations (see next section). 

So far, we have used r\ and Γ2 to detect S2. Normally, we would use a sliding 
window of data samples, so that r2 and r3 would be used to detect s.¡. In this case, 
we would find that we could reuse the weights, weighting r2 with —0.0127 and r-¿ 
with —0.0397. Similarly, we could use the same weights when detecting s\ using TQ 
and r j . However, if we only have r\ and r2 to work with, then we would need to 
determine a new set of weights for detecting «i. 

Returning to the detection problem, using MMSE linear equalization to detect 
Si and «2 using only r\ and r2 gives the decision variable values and detected values 
in Table 4.1. 

3 
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0 
-0.15 -0.1 -0.05 0 0.05 0.1 0.15 

w1 

Figure 4.3 MSE vs. w\ for various values of W2 for LE. 

Table 4.1 Example of MMSE LE decision variables 

Decision Variable Value Detected Symbol 
«i -0.18914 ^ 1 
22 0.26488 +1 
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What if we could use r-.ι, as well? There is a copy of s2 that would be helpful. 
However, there is an even larger copy of s,¡. With the zero-forcing strategy, we 
found it best not to use r,-¡ because of the larger copy of s;j. However, with the 
MMSE strategy, it turns out that r:i is useful. We will explore this more in the 
next chapter. 

4.2 MORE DETAILS 

So far we have explored partial zero-forcing and MMSE. For partial zero-forcing, a 
better approach would be to minimize ISI, accounting for ISI not canceled. This 
approach is explored in the Problems section. As for the MMSE solution, here we 
provide more details. Then a maximum SINR solution is developed. It is shown 
that the MMSE solution also maximizes SINR. Results are then generalized for the 
dispersive and MIMO scenarios. 

4.2.1 Minimum mean-square error solution 

Consider the MMSE solution. In (4.16), we found that the MSE for the dispersive 
channel example is given by 

E2 = (w2(-10) - l ) 2 + (w2(9) + wi(-10))2 + (W l9)2 + {w\ + w|)100. (4.17) 

We used trial-and-error plots to find the weights that minimized MSE. 
There is another way to find such weights. In the plots, we were looking for the 

minimum of the MSE. At the minimum, the instantaneous slope of the curve is 
zero. From differential calculus, we know that the instantaneous slope is given by 
the derivative. Thus, we can take the derivative of E2 with respect to each weight 
and set the derivatives to zero. 

For this particular example, it will help to recall the following facts from differ-
ential calculus. 

1. The derivative of ax2 + bx + c with respect to (w.r.t.) x is 2ax + b. 

2. The derivative of (ax + d)2 w.r.t. x is 2a(ax + d). 

3. When we take the derivative w.r.t. one variable, we treat the other variable 
as a constant. 

Using these facts, we can take the derivative of E2 w.r.t. w\ and ω2 and set the 
results to zero. This gives 

0 = 0 + 2(-10)(u)2(9)+wi(-10)) + 2(u>19)+2(w1)100 (4.18) 
0 = 2(-10)(w2(-10) - 1) + 2(9)(w2(9) + wi(-10)) + 0 + 2(w2)100. (4.19) 

Solving these two equations gives w\ = —0.0127 and w2 = —0.0397. Substituting 
these results into the MSE equations gives an MSE of 0.603. 

As for computing SINR, substituting (4.13) into (4.14) gives 

22 = W2(-10)S2 + (Wl(—10) + W29)si + Wl9S() + Wim + W2H2- (4.20) 
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The first term is the signal term and has average power 

S = w2100. (4.21) 

For the MMSE solution, w2 = -0.0397 and S is 0.16. Notice that in (4.20), the 
coefficient in front of s2 is — Ww2 — 0.397 φ 1. Thus, the MMSE solution gives a 
biased estimate of the symbol. 

The remaining terms are interference and noise, which we call impairment. The 
impairment has power 

I + N = ( ω ι ( - 1 0 ) + ω 2 9 ) 2 + ω281 + (ω2 + ω2)100. (4.22) 

Notice that this is a general expression, for any weight values. Substituting the 
MMSE weights gives an SINR of 0.657, as expected. 

Like the ZF DFE, if we only use r\ and r2 to detect s2 we will not do as well 
as MF at low SNR, as MF would also collect the copy of s2 in r3. With partial 
ZF linear equalization, we avoided r;j to avoid ISI from future symbols. With the 
MMSE strategy, we don't need to avoid Γ3 or other future received samples. So, 
we should use as many future received values as we can. As you might suspect, at 
low SNR, MMSE linear equalization behaves like matched filtering, as the weights 
tend to be a scaled version of the MF weights. 

4.2.2 Maximum SINR solution 

We have seen that error performance, at least when noise is the only impairment, is 
related to output SINR. Thus, another reasonable strategy is to maximize output 
SINR. To do this, we need to minimize the sum of the ISI and noise powers. 

Consider using r\ and r2 to detect s2. Like the ZF solution, we can weight r2 

by -1 /10, so that 
z2 = w m - O.lr-2, (4.23) 

where w\ is the weight for r\ to be optimized. Substituting the models for n and' 
r2 into (4.23), we can model z2 using (4.6), except now 

«2 = (wi(-10) - 0.9)si + wi9s0 + «Ί"ι - 0.1n2. (4.24) 

Now we need to find w\. 
From (4.6), notice that the signal power is 1, independent of w\. Thus, to 

maximize SINR, we simply need to minimize the power in u2, denoted U2. This 
power is given by 

U2 = (ωι (-10) - 0.9)2 + 81w2 + (ω2 +0.01)100 
= 281ω2 + 18wx + 1.81. (4.25) 

This is plotted in Fig. 4.4. Observe that it is minimized at Wi = —0.032028, which 
results in U2 = 1.5217. Thus, the SINR is 1/1.5217 or 0.657. By comparison, the 
partial ZF solution has a higher U2 = 2.4661, which gives a lower SINR of 0.406. 

Observe that the unity-gain maximum SINR approach (SINR = 0.657) performs 
the same as the MMSE approach described earlier (SINR = 0.657). Coincidence? 
No. Let's revisit the MMSE weight solution. If we divide each weight by 10|wi |, we 
get the same solution as the unity-gain max SINR solution. As scaling the weights 
doesn't affect SINR, we discover that the MMSE solution also maximizes SINR! 
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Figure 4.4 Example of I + N vs. wi. 

4.2.3 General dispersive scenario 

For the partial ZF solution, the general models for r2 and τ\ are 

r2 = cs2 + dsi + n2 

r\ = csi + <¿s() + ni . 
(4.26) 

(4.27) 

To obtain unity gain, we set w2 — Ve- T° eliminate ISI from si , we set wi = —d/c2. 
The resulting SINR is 

SINRPZF = 
[f + (i + f)-2] ' 

(4.28) 

For the unity-gain max-SINR solution, instead of plotting I + N to determine 
the best value for w\, we can use differential calculus to take the derivative of I + 
N with respect to (w.r.t) w\ and set it to zero. We then solve for w\. Recall that 
the derivative w.r.t. x of ax2 + bx + c is 2ax + b. Applying this to (4.25) gives 

2(281)wi + 18 = 0, 

which can be solved to give wi = —0.032028. 
In general, using (4.23), the decision variable z2 can be modeled as 

(4.29) 

22 = mies-i + {wid + w\c)s\ + (w\n\ + »2^2)· (4.30) 
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To obtain the unity-gain max SINR solution directly, we want the coefficient in 
front of s2 to be 1. This is achieved by setting w2 = 1/c, so that 

«2 = s2 + {d/c + wic)si + (ωιηι + (l/c)ri2). (4-31) 

The impairment power is given by 

Ñ2 = (c2 + a2)w\ + 2dw! + {d2 + a2)/c2. (4.32) 

Setting the derivative w.r.t. w\ to zero and solving for wi gives 

W l = 7 2 - ^ 2 - (4·33) 

For the MMSE solution, we start with (4.30). Substituting models for τ\ and 
r2, the error e2 = z2 — s2 can be modeled as 

e2 = {w2c - l)s2 + {w2d + wic)si + (wini + w2n2). (4-34) 

The MSE is the power in e2, which is 

E2 = (w2c - l ) 2 + (w2d + wie)2 + (w2 + w2
2)a2. (4.35) 

To find the MMSE weights, we take the derivative of E2 w.r.t. w\ and set it to 
zero. We do the same w.r.t. w2. This gives two equations in two unknowns, which 
can be written in matrix form as 

Rw = h, (4.36) 

where 

o _ Γ c2 + d2 + σ2 cd 

"■-[ cd c2+d2 + a2 

The solution to this set of equations is 

= -c2d cjc2 + d2+a2) 
Wl (c2 + d2 + σ2)2 - c2d2 ' W2 {c2+d2+σ2)2-c2d2, [ ' 

and the resulting MSE is given by 

MSE = w ^ R w - 2 w r h + x = ! - ^ I f 2 ) t ^ , 

[Z\], and h = [ 0 ] . (4.37) 

(4.39) 

where superscript "'Ρ' denotes transpose (turns a column vector into a row vector). 
The minimum ISI solution can be obtained by setting σ2 to zero. 

The elements in R have a special interpretation. The diagonal elements are the 
average received sample power, i.e., the average of r\ or r\. Specifically, the average 
received signal power is the desired signal power (c2 + d2) and the average noise 
power (σ2). The off-diagonal elements are the average of the product of adjacent 
received values, i.e., the average of r\r2. Specifically, using the models, 

E{nr 2 } = E { ( c s 2 + d s i + n 2 ) ( c s i + d s o + ni)} (4.40) 
= E{c s2s\ + cds2SQ + cs2ni + dcsx 

+ d2siSo + ds\ni + n2cs\ + n2dsn + n2n\). (4.41) 
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We now need a couple properties of taking the average or expected value: 

1. the average of the sum is the sum of the averages, and 

2. the average of a product is the product of the averages if the two quantities 
are unrelated or uncorrelated. 

The first property allows us to sum the averages of the individual terms. The second 
property makes most of those terms zero, as «i, s2> ni and «2 a r e unrelated to one 
another. The only nonzero term is the fourth term, giving 

Ε { Γ ! Γ 2 } = cd. (4.42) 

We refer to averages of products of received samples as received sample correlations. 
In matrix form, 

R = E{r r T } , (4.43) 

where r = \r\ r 2 ] T . Thus, we can alternatively express the equalization weights as 
a function of received sample correlations (used to form R) and channel coefficients 
(used to form h). 

The SINR for the MMSE solution has a nice form. It helps to use matrices and 
vectors to derive this form. The decision variable can be written as 

zi = w T r . (4.44) 

The impairment (interference plus noise) can be written as the total received signal 
minus the desired signal term, i.e., 

u2 = r — h.S2- (4.45) 

Using the property that x T y = y T x , the impairment power is then 

I + N = E{(wTu)2} (4.46) 
= E { w T u u T w } . (4.47) 

Substituting (4.45) and using the fact that E{aa:} = aE{a;} for a nonrandom number 
a, we obtain 

I + N = E { w T ( r - h s 2 ) ( r - h s 2 ) ' r w } (4.48) 

= w T [E{rrT} - E{s2r}hT - hE{s 2 r r } + E{s2,}hhT] w. (4.49) 

Using (4.43) and the fact that E{s2r} = h, this simplifies to 

I + N = w T [R - hh T ] (4.50) 

= w T R w - [w' rh]2. (4.51) 
Now, for the case of MMSE weights, (4.36) holds, so that 

I + N = w T h - [ w T h ] 2 . (4.52) 

As for the signal power, the signal term in r is hs2 , so that 

S = (w T h) 2 (4.53) 

 LINEAR EQUALIZATION 
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and SINR becomes 
w T h 

S I N R = - = - . (4.54) 
1 - w ' h 

Thus, once we solve for the weights, computing SINR. is straightforward. 
Why express things in matrix and vector form? Besides compactness, any results 

we derive hold for more general cases. For example, suppose we weighted ten 
received values with ten weights to form zi. The SINR expression we derived could 
still be used, except that w and h would have 10 elements in each instead of 2. 

4.2.4 General M I M O scenario 

For the MIMO scenario, a full ZF solution is possible. It can be obtained by solving 
the set of equations 

r « Hs. (4.55) 

This is also the solution to minimizing ISI (with a minimum value of zero). If 
there are more receive antennas than transmit antennas (H has more rows than 
columns), then one can first multiply both sides by H H . 

The MMSE weights for detecting sm using w\{m)r\ + W2(m)r2 can be obtained 
by solving the set of equations 

Rw(m) = h(m), (4.56) 

where 

■o . i c2 + d2 + σ2 de \ , ·, 
R = I de β2 + / 2 + σ 2 I ' W ^ 

w\(m 
W2{m 

h(l) = [ % ] , and h(2) = [ j } . (4.57) 

The MSE for detecting sm is 

w T (m)Rw( ro ) -2w T (m)h (m) + l, (4.58) 

and the SINR is 

4.3 T H E MATH 

S I N R = 1
w T f f h g . . (4.59) 

1 — w ' (m)h(m) 

First, the MMSE solution for the weights is developed, assuming partial matched 
filtering at the front end. A less common ML formulation is developed and shown 
to be equivalent to the MMSE solution in terms of modem performance. The ML 
formulation will become important in Chapter 7, when soft information is discussed. 
Finally, other design criteria are briefly discussed. 
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4.3.1 MMSE solution 

Assuming partial matched filtering at the front end, recall from (2.58) and (2.59) 
that the received samples can be modeled as 

v{qTs)^y/E¡ J2 h(qTa-mT)s{m)+ñ(qTa), (4.60) 
m= — oo 

where 

L-l 

h(t) = Y^gtRp{t-n). (4.61) 
t=n 

Suppose we are detecting s(mo) using samples v(moT 4- djTs),j = 0 , . . . , J — 1. 
Notice that the delay dj is a relative delay, relative to m^T. The relative delays dj 
are parameters to be optimized as part of the design. We can collect these samples 
into a vector v, which can be modeled as 

oc 

v h y/Fs Σ hms{m) + n, (4.62) 
m= — oo 

where the j th row of h m is given by 

hm{j) = h(djTs + (mo - m)T). (4.63) 

From (4.61), we have 

L-\ 
hmü) = Σ gtRp(djTs + (mn - m)T - re). (4.64) 

«=» 

Observe that hm¡,(j) — h(djTs), which is independent of mo- Thus, we can replace 
hm„ with h, where 

h = \h(d„Ts) ... h{dj-1T,))T. (4.65) 

With MMSE linear equalization, we form a decision variable 

z(m„) = w H v , (4.66) 

which is then used to detect s(mo) using 

s(rao) = detect(z(mo), A(m^)) (4-67) 
A{ma) = w Ä h m „ = w " h . (4.68) 

The weight vector w is designed to minimize the cost function 

F = E{ |2 (m 0 ) - s (m„) | 2 } , (4.69) 

where expectation if over the noise and symbol realizations. 
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To obtain the MMSE solution, we substitute (4.66) into (4.69), which gives 

F = E{(s(m0) - z(m(]))(s(m0) - z(m{)))*} 
= E{|s(m0)|2 - 2(mo)s*(m0) - z(mo)*(m())s(mo) + z(m(|)z(mo)*} 
= 1 - wHE{vs*(m„)} - E{s(m0)vH}w + w H E{vv H }w 
= 1 - w H p - p H w - w H R w , (4.70) 

where 

p â E{vS*(mo)} (4.71) 
R â E{vv H } . (4.72) 

The vector p can be interpreted as the correlation of the data vector to the symbol 
of interest. The matrix R can be interpreted as a data correlation matrix, the 
correlation of v to itself. 

Notice that it is important that v have zero mean. Otherwise, p will depend 
on the true symbol value, which we do not know. Since v is zero mean, the data 
correlation matrix R is also the data covariance matrix C„. Note, if v had a known, 
nonzero mean, we could simply remove it first. 

Substituting (4.62) into (4.71) and (4.72) gives 

p = y/Ë~ hmo = y/Ë7s h 
OO 

R — Ov = E$ 2^ h m h m + -NoR-ni 
m= — oo 

where 
Rn(ji,J2) = RP(dhTs - dhTs). (4.75) 

To determine the MMSE solution, we take the derivative of F with respect to 
the real and imaginary parts of each element in w and set the derivatives equal to 
zero. This can be written compactly as 

- 2 p + 2Rw = 0, (4.76) 

where 0 is a column vector of all zeros. From (4.76), we see that the MMSE weight 
vector can be obtained by solving the set of equations 

Rw = p. (4.77) 

Substituting (4.73) and (4.74), we obtain 

C„w = y/Wa h. (4.78) 

which is independent of mo. Thus, the same weights can be used for all symbol 
periods. Also, from (4.68), A(ni(,) is also independent of mo- Keep in mind, we 
defined the processing delay dj as a relative delay, relative to m^T. Thus, the 
elements in v will change with different mo-

(4.73) 

(4.74) 



8 2 LINEAR EQUALIZATION 

4.3.2 ML solution 

One can also use a maximum-likelihood (ML) design approach to weight design. 
Similar to Chapter 2, we can design the weights to obtain a log-likelihood function 
(LLF) for each symbol. Unlike Chapter 2, we will assume that multiple symbols are 
transmitted, giving rise to ISI. To obtain a linear solution, we will approximate the 
ISI as a form of noise. Specifically, the symbols are approximated as being complex 
Gaussian random variables, so that the ISI appears as colored Gaussian noise. The 
ML formulation leads to a linear filter that can be interpreted as a matched filter 
in colored noise. 

As in the MMSE formulation, we assume a partial MF front end. Samples are 
collected into a vector v which can be modeled according to (4.62). At this point, 
we rewrite (4.62) in terms of a signal component (assume s(m¡)) is the symbol of 
interest) and impairment (noise plus interference) component, giving 

v \= y/Ë~shs(mt)) + u, (4.79) 

where 
m,, — 1 oo 

u = s/Ws Σ hms(m) + \/Ws Σ hm«(m) + n. (4.80) 
m= — oo mn + 1 

We approximate u as complex Gaussian with zero mean and covariance 

Cu = E{uu f f} = EsCt + N„Cn, (4.81) 

where 
mu — l oo 

C4 = Es J2 h"*hm + Es Σ hmh"- (4·82) 
m = — oo m o l í 

The elements in Ci and Cn in the j i th row and j*2th column are given by 
oo 

Ci(j'l, h) = Σ hm{jl)h*m(J2) 
m=—οο,τη^τηο 

L~\ L - l oo 
= Σ Σ etiSU Σ WW' ~ m T - n^KidjTs - mT - r(2) (4.83) 

f 1 = ( ) i 2 = n m = - o o , m # 0 

Cn(h,J2) = Rp((ji-h)Ts). (4.84) 

Observe that by assuming an infinite stream of symbols, the elements in C u are 
independent of m,). 

Assuming Gaussian impairment, the likelihood of v given s(mo) = Sj is then 
given by 

_ i _ exp {-(v - ^hSjfC-'iv - ^FshSj)} , (4.85) 

giving the LLF 

LLF(Sj) = - ( v - y/ËOiSj^CZ1^ - y/Ë~shSj). (4.86) 

Expanding the square and dropping terms unrelated to Sj gives 

LLF(Sj) = 2Re{S;zm„} - S m o ( 0 ) | S / , (4.87) 
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where 

*mn = ν ^ ^ ^ ' ν (4.88) 

Smo(0) = Es^C^h. (4.89) 

We can write zmo as the output of a linear equalizer, giving 

«(mo) = w " v , (4.90) 

where w is the solution to the set of equations 

C„w = y/Wsh. (4.91) 

Observe that the weights are the same for each symbol period. The amplitude 
reference is 

¿(mo) = v ^ w H h , (4.92) 

which is also independent of m0. 
We see that the ML solution is similar to the MMSE solution, except that Cv 

has been replaced by Cu. Using the matrix inversion lemma, it is possible to show 
that these weight vector solutions are equivalent in the sense that one is a positively 
scaled version of the other. 

4.3.3 Output SINR 

A useful measure of performance is output SINR. We can compute SINR using the 
model in (4.79) and (4.80). Given a weight vector w, the signal and impairment 
powers are given by 

s = |wH[v^:h]i2 

= £ s | w H h | 2 (4.93) 
I + N = E{|wHu[2} 

= w H E{uu H }w 
= w H C u w. (4.94) 

The resulting SINR is then 

S I N R ^ i ^ ' 2 . (4.95) 

Keep in mind that the relationship between this SINR and performance depends 
on how well we use the signal energy present in the complex plane. For ideal 
receivers, the term w H h will be purely real, giving a purely real amplitude reference. 
Sometimes, in practical situations, this term is not purely real even though it is 
assumed to be. In this case, a more sophisticated computation of SINR is needed. 

Now let's evaluate SINR for the ML solution. From (4.91), the weight vector 
can be expressed as 

WML = v ^ C ^ h . (4.96) 
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Substituting (4.96) into (4.95) gives 

£/ sh Ou OuCvu h 
= EshHC-1h=Esw»hh (4.97) 

We can also compute output SNR (ignoring ISI) by keeping only the noise com-
ponent of C u . For the special case of root-Nyquist pulse shaping, symbol-spaced 
paths, and aligned symbol-spaced samples, the output SNR becomes 

L-\ 
SNR0 = ( £ s / i V n ) ^ | f t | 2 . (4.98) 

<=o 

Observe that this is the same as the input SNR, the input Es/N{) times the sum of 
the path energies. 

For MMSE linear equalization, we should get the same output SINR. However, 
with MMSE linear equalization, we usually compute C„ instead of Cu. We can 
express SINR in terms of C„ by extending (4.54) to 

CTMR — ^ « W M M S E " 
M I N K M M S E 

1 W M M S E ' 1 

= E ¿ " C ^ . (4.99) 

We can also use (4.95) to evaluate output SINR for other forms of demodulation. 
For example, for MF, (2.60) shows that the processing delays are the path delays 
and the weight vector is the set of path coefficients, i.e. 

WMF = v^Tg, (4-100) 

where 
g = [<?„... QL-if. (4.101) 

We have added a scaling by \/E~¡ to be consistent with the MMSE and ML equal-
ization forms. 

Using (4.95), the SINR for the MF is 

SINR)MF = „ " ' ■ (4.102) 
g " C u g 

For the special case of root-Nyquist pulse shaping, symbol-spaced paths, and aligned 
symbol-spaced samples, the output SNR becomes 

L - l 

SNR'MF = {E./N0) Σ Iftl2· (4·103) 
1=0 

Observe that this is the same output SNR, for ML and MMSE linear equalization. 
This implies that if there is no ISI (only one symbol transmitted), then ML and 
MMSE linear equalization reduces to matched filtering. In general, if the noise 
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power is much larger than the ISI, ML, and MMSE linear equalization will behave 
like matched filtering. At the other extreme, if the noise power is negligible, ML 
and MMSE linear equalization will tend towards a minimum ISI solution, trying to 
"undo" the channel. 

The expression in (4.95) can also be used to derive a bound on DFE output 
SINR, which involves assuming perfect decision feedback. We will explore this in 
the next chapter. 

4.3.4 Other design criteria 

While the focus has been on the MMSE and ML criteria, other criteria can be used 
in the design of linear equalizers. Criteria which lead to designs that do not perform 
as well are the following. 

Zero-forcing (ZF) We have already seen examples of full ZF and partial ZF. 

Minimum ISI When full ZF is not possible, minimum ISI is better than partial 
ZF. 

Minimum noise This is included for completeness. It leads to matched filtering. 

Minimum distortion The idea here is to minimize the worst case ISI realization. 
If cm are the symbol coefficients after equalization, then the idea is to minimize 
λ-,τη,τηφπι,, lc»»»l· 

Note that the MMSE solution tends towards the minimum noise solution (matched 
filtering) at low SNR and the minimum ISI solution at high SNR. 

The following criterion lead to designs with equivalent performance to the MMSE 
design. 

Max SINR We showed by example how this criterion leads to a design with the 
same performance as the MMSE design. 

Other criteria which lead to better performance, if measured in terms of error 
rate, are 

Minimum symbol error rate and 

Minimum bit error rate. 

The design procedures are more difficult, as the discrete nature of the ISI must be 
accounted for. However, the gains in performance are typically small because of 
the solution being constrained to be linear. 

4.3.5 Fractionally spaced linear equalization 

LE is fractionally spaced when the sampling period Ts is less than the symbol period 
T. A common approach is to sample at twice the symbol rate (Ts — 0.5Γ). Another 
option is to sample at four times the symbol rate but not use all the samples for a 
given symbol, giving an effective spacing of 0.75T. 
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There are many similarities with fractionally spaced MF. Consider the case of 
a nondispersive channel (one path), a receive filter perfectly matched to the pulse 
shape, and a receive filter sampled at the correct time (perfect timing). Unlike the 
MF case, we also need the pulse shape to be root-Nyquist for a one-tap LE to be 
sufficient. In this case, LE becomes equivalent to MF. If the pulse shape is not 
root-Nyquist, then multi-tap LE is needed. A fractionally spaced LE is needed if 
there is excess signal bandwidth. Unlike MF, possible noise sample correlation due 
to pulse MF and sampling needs to be accounted for. 

The story is similar for a dispersive channel. If the paths are symbol-spaced, the 
receive filter is root-Nyquist and perfectly matched to the pulse shape, and the filter 
output is sampled at the path delays (perfect timing), then symbol-spaced LE is 
sufficient. Symbol-spaced LE can also be used when there is zero excess bandwidth. 
Otherwise, fractionally spaced MF is needed. If the excess bandwidth is small, the 
loss due to symbol-spaced LE may be acceptable. 

4.3.6 Performance results 

Results were generated for QPSK with root-Nyquist pulse shaping. In Fig. 4.5, 
BER vs. Eb/Nu is shown for the two-tap, symbol-spaced channel with relative 
path strengths 0 and —1 dB and angles 0 and 90 degrees (TwoTS). Results are 
provided for the matched filter, the analytical matched filter bound (REF), MISI 
linear equalization, and MMSE linear equalization. The LE results correspond to 
31 symbol-spaced taps centered on the first signal path. 

Observe the following. 

1. MMSE LE performs better than MISI LE as expected. At high SNR, the 
performance becomes similar, as ISI dominates and MMSE focuses more and 
more on ISI. 

2. At low SNR,, MMSE LE, MF, and the MFB become similar, as noise domi-
nates. 

3. At low SNR, MISI LE performs worse than the MF, because MISI LE focuses 
on ISI when noise is the real problem. 

Results for fractionally spaced equalization and for fading channels are given in 
Chapter 6. 

4.4 MORE MATH 

In this section we consider the extended system model. We briefly discuss full 
zero-forcing, which is not always possible. Then, we focus on the MMSE and ML 
solutions. In the CDM case, this leads to equalization weights that depend on the 
spreading codes, which change every symbol period. A simpler solution is consid-
ered based on averaging out the dependency of certain quantities on the spreading 
codes. More approximate models of ISI are examined as a way of simplifying linear 
equalizer design. Finally, the ideas of block, sub-block, and group linear equaliza-
tion are examined. 
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Figure 4.5 BER vs. Et,/No for QPSK, root-raised-cosine pulse shaping (Ü.22 rolloff), 
static, two-tap, symbol-spaced channel, with relative path strengths 0 and —1 dB, and path 
angles 0 and 90 degrees, LE results. 

4.4.1 ZF solution 

In Chapter 3, we explored zero-forcing (ZF) solutions for decision feedback equal-
ization. ZF linear equalization solutions are similar, except that we don't subtract 
the influence of past symbols first. Thus, we need additional degrees of freedom to 
cancel past symbols as well. 

We won't dig into the ZF solution. The advantage of this solution is that the 
noise power or covariance function does not need to be known or estimated. The 
disadvantage is that performance suffers at low to moderate SNR values. When we 
consider block equalization, which also applies to the MIMO/cochannel scenario, 
we will return to the ZF solution. 

4.4.2 MMSE solution 

In the previous section, we learned that if the decision variable can be written in 
the form of (4.66), then the MMSE weight solution can be obtained by solving 
(4.77), where R and p are defined in (4.72) and (4.71), respectively. Expressions 
for R and p were obtained by using a model for the received samples. 

In this section, we will use the extended system model to obtain more general 
expressions for R and p. The weights will be applied to chip samples, so the result 
will be a chip-level equalizer. Recall from (1.23) that after partial MF, the received 
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samples can be modeled as 

N, K-\ ί » I r\ — Í ! ■ ' - ^ 

v(lTs) h E Σ V &W Σ ^mfoT« - mT)sf(m) + ñ(QTs), (4.104) 
¿=1 fc=() 

where 
N,.-l 

* # > ) = ( 1 / V ^ ) £<£>„,(«)£<'> ( t - n 2 ' e (4.105) 

Suppose we detect s^' (mo) using samples v(m()T + Δ/Γ8) for j — 0 , . . . , J — 1. 
We can stack these vectors into one column vector v = [v(m()T+A<)Ts) . . . v(moT+ 
A.NJ-ITS)]T. This vector has Nr J rows, which can be viewed as J row sets of Nr 

rows each. Each row set can be modeled using (4.60) with qTs = moT + AjTs. The 
decision variable is given by 

j - i 
zk"](m") = w " v = Σ w"(Aj)v(»noï' + Δ / j ; 

j = 0 

(4.106) 

where we have divided up w into a weight vector per processing delay, i.e., w = 
[wT(A()) . . . wT(Aj-i)]T. The decision variable z^' (mo) is then used to detect 
sk([ (mt)) using 

« t ' /V , , ) = de tec t^ 1 » ( m n ^ ' V , , ) ) 

w ^ l , 
(4.107) 

(4.108) 

ü(¿) A nk.m — [ h ^ ( A n T s ) ] T . . . [ h « m ( A J _ 1 ï ' s ) ] T (4.109) 

Substituting the new model equations into the definitions of R and p give 

P 

R 

[ρ τ (Δ 0 ) . . . p T (d A -

Cv(mo) 
Ο(Δο,Δο) . . . C(An,Aj_i) 

Ο ί Δ ^ , Δ , , ) .. ' . C(AJ-UAJ^) J 

(4.110) 

(4.111) 

where 

ρ(Δ,) = /Êf\kô) h^mii(AjTs) 

= y/EP(k) (l/^K) ¿ é^TCfiPidjT, -nTc) (4.112) 
n = 0 

JV, ftT-1 ex; 

0 „ ( Δ Λ , Δ Λ ) = Σ Σ £ ί 0 ( * ) Σ h ^ m 0 V r s - m ï ' ) ( h H ) H u 2 r s - m T ) 

+ NoRpWs - j2Ts)I. (4.113) 

What does it all mean? Notice that p depends on h¿"mn(AjTs), which depends 
on values of cj£" (ra) for the current symbol period, m(). Also, R depends on 
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values of hk m(f) from all symbol periods, though practically the values in a window 
around mo would be the most influential. Thus, the weights may depend on mo, 
the symbol period, and fco, the PMC. For CDM, this means that there will be a 
different weight solution for each symbol being detected. For OFDM, the values of 
ck m(") a r e * n e same for different values of m and i. Thus, there will be a weight 
vector for each subcarrier fc. This set of weight vectors can be reused for different 
symbol periods m. 

The MMSE weight solution is obtained by solving (4.77), which can be written 
as 

C ( m o ) w = (7£<io)(fco)) h l t L - (4.114) 

where 

h( i n ) 

fco."ID 
[^:L(^TS)]T . . . [ h ^ r a o ( A J _ 1 T . ) ] T ] T . (4.115) 

4.4.3 ML solution 

The ML formulation for the general case is similar to the ML formulation for the 
TDM case. As before, the end result is that C„ is replace with C„ in the weight 
solution. Specifically, the ML weights are given by 

Cu(mn)w = ( ν ^ < 0 ) ( * β ) ) h t m « ' (4.116) 

Cu(m„) = C„(m„) - EpHkofc^ [ h ^ ] " . (4.117) 
where 

4.4.4 Other forms for the C D M case 

Let's look a bit closer at the CDM case. Using (4.36) and (4.112), we can write 
(4.106) as 

4;;>'(mo) = p ^ R - V (4.118) 

= E l Ä J ' W ^ ' W j ^ C - ^ , (4.119) 
71=0 

where 

Î^\nTc) = \ A # 0 ) ( M i[h('r , )(AoTs - nTc)]T ... [h^(Aj^Ts - nTc)]T~\ 

(4.120) 
and Ec ' (fco) = E¡¡ (ko)/Nc is the energy per chip for code fco. Observe that 
there is despreading being performed in (4.119). Also, there appears to be multiple 
weight vectors, one for each chip period. 

We can rewrite these equations as 

^"»(mo) = y/Ep\ko) ¿ [ c ^ J ' W ^ W , (4-121) 
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where emj(n) can be interpreted as a chip estimate during symbol period m» 
for transmitter i(). We can stack these estimates into an Nc x 1 vector β^" = 
[e(m,}(0) ... e{^{Nc - l ) ] r , which is obtained by 

e = W H v , (4.122) 

where 

W = C " 1 ^ " ' (4.123) 

F(¿„) = [f(¿n)(0) . . . f( ¿")(iV c-l)l . (4.124) 

We can interpret the operation in (4.122) as a matrix equalizer (matrix multiply), 
in which the nth column of W is a weight vector used to obtain an estimate of the 
nth chip transmitted from transmitter ¿(> during symbol period mo. 

While the elements of F**"' do not depend on fco or mo, the elements of C„ do. 
As a result, the entries in W will be code-specific , a function of the spreading codes 
used during symbol period mo. 

We can trade performance for reduced complexity by approximating C„ with 
its average, averaged over the possible spreading codes. Then W would be the 
same for each symbol period, requiring fewer weight computations. However, even 
with code-averaging, we would still need a separate weight vector for each chip 
period. We can reduce complexity further by constraining the equalizer to use a 
sliding window of receive samples when computing different chip estimates. Such a 
form of equalization is called transversal equalization. Specifically, when forming 
em„ (no), we use 

v(m07' + n„Tc + djTs), j = 0, . . . , J - 1 , (4.125) 

where dj is a relative processing delay, relative to both the symbol period and the 
chip period within the symbol. Complexity is reduced because with code averaging, 
the weight vector is the same for each chip period no and each symbol period mo. 

Before performing code averaging, let's look at the code-specific transversal so-
lution. To obtain the weight vector for forming eS„(no), we can use the analysis 
above, assume 

Aj = nt)Tc + d/Fa, (4.126) 

and examine the noth column of W in (4.123) (denoted w). From (4.123), 

Cv(m0)w = ¥*\n0Tc). (4.127) 

where C„(mo) is a JNr x JNr matrix of the form given in (4.111) and (4.113) and 
f(i">(n7'c) is defined in (4.120). From (4.120) and (4.126), we see that f'io>(n0ï'c) 
is really independent of no and can be denoted f**"'. 

The elements of f'1"' are code-independent, but the elements of C„(mo) are not. 
To obtain a code-averaged solution, we average C„(mo) over the spreading codes 
and use the result in (4.127) to solve for the weights. Thus, 

C„w = f(i,l), (4.128) 
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where 

C(d(),d0) C(d 0 ,d j - i ) 

C(dj_ i ,d j_ i ) . 

Cv(dj1,dj2) 

. C(dj_i,do) 

^E^C^id^d^+NoiRpUi -j2T.)l 

(4.129) 

(4.130) 
»=i 
L - l ί , -1 

Σ Σ 8Ίβ2 x 

<ι=οί2=ο 

Σ Rp(nTc + dj^l's - Te^RpinTc + dhTs - rf2).(4.131) 

The code-averaged ML solution is similar, except that in (4.131) the term n = 0 
is excluded from the summation when i = ¿o- It can be shown that the ML and 
MMSE weight solutions are equivalent at the modem level in that one is a scaled 
version of the other (and the scaling factor is a positive, real number). 

4.4.4.1 Despread-level linear equalization ML and MMSE solutions can also be 
developed at the despread level. Code-averaged versions are also possible. Because 
of linearity, the ML code-averaged chip-level transversal weight vector will be the 
same at the chip level and despread level. 

4.4.4.2 Symbol-level linear equalization Linear equalization can also be formu-
lated at the symbol level, using the matched filter outputs of each symbol. Linear 
multiuser detection is often formulated this way. However, this form is not amenable 
to code averaging. To obtain a code averaged form for a particular symbol, one 
would need to sample the matched filter output for that symbol at multiple pro-
cessing delays dj. 

4.4.5 Other forms for the OFDM case 

For the OFDM case, a despread-level equalizer makes sense. After discarding the 
cyclic prefix portion of the received signal (for the earliest path) and matching to 
the symbol waveform, ISI between subcarriers is eliminated (assuming the cyclic 
prefix is sufficiently long). There remains ISI among symbols on the same subcarrier 
transmitted from different transmitters. The block form below can then be used. 

4.4.6 Simpler models 

So far, we have used a fairly accurate model of interference, modeling the fact 
that it is made up of a sequence of symbols convolved with symbol waveforms 
and medium responses. We haven't yet taken full advantage of the fact that the 
interfering symbols can only take on certain values (we will do that in Chapters 
6 and 7). Instead the symbols are approximated as complex, Gaussian random 
variables. Thus, our model so far is equivalent to modeling interference as colored 
noise, which in general is nonstationary. The interference is nonstationary in the 
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sense that its distribution depends on where you sample (aligned with a symbol vs. 
inbetween two symbols). The interference is actually cyclostationary, in that the 
distribution changes periodically over time (it is the same at times t and t + T). 

It is possible to consider simpler models, particularly for symbols from trans-
mitters that aren't transmitting symbols of interest. These models include the 
following. 

White, stationary noise. Interference is folded into the AWGN term, increasing 
the value of No. If this is applied to all ISI, we end up with matched filtering. 

Colored, stationary noise. This model captures the fact that interference sam-
ples are correlated in time, due to the bandlimited symbol waveform and the 
medium response. If only the effect of the symbol waveform is modeled, the 
difference between this model and the white noise model is typically small. 
However, if the medium response is accounted for and the medium response is 
highly dispersive, then the model can be significantly different from the white 
noise model. In essence, we are replacing the sequence of Gaussian interfering 
symbols with a white, stationary Gaussian noise. The symbol waveform and 
medium color that noise. 

4.4.7 Block and sub-block forms 

So far, we have assumed we will detect symbols one at a time. At the other extreme, 
we can detect a whole block of symbols all at once. Such an approach is called block 
equalization. There is also something inbetween, in which we detect a sub-block 
of symbols. The sub-block corresponds to the symbols taken from certain symbol 
periods, certain PMCs, and certain transmit antennas. For example, they could 
correspond to all symbols within a certain symbol period. 

With both block and sub-block equalization, the received signal vectors to be 
processed can be stacked into a vector r which can be modeled using (1.54), i.e., 

r \= HAs + n, (4.132) 

where n is a vector of zero-mean, complex r.v.s with covariance C n . Unlike the 
purely MIMO scenario, the symbols in s do not necessarily correspond to symbols 
from different transmitters during the same symbol period. We would like H to 
have more rows than columns, so symbols at the edge of the sub-block may be 
folded into n. 

To achieve pure zero-forcing, we need H to have at least as many rows as there 
are columns. The decision variable vector is given by 

z = ( Α Η Η Η Α ) Ά Η Η Γ . (4.133) 

Notice we need AH f f HA to be full rank. Observe that if H is square and full rank, 
then (4.133) simplifies to 

z = A _ 1 H _ 1 r . (4.134) 

The solution in (4.133) has several interpretations. One is that it is a least-
squares estimate of s, in that it minimizes the sum of the squares of the difference 
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between z and s. This is in contrast to MMSE LE, which minimizes the expected 
value of the sum of the squares. 

Another interpretation is that (4.133) is the unconstrained ML estimate of s. 
This means that if we ignore the constraint that the elements of s can only take 
on certain values (the signal alphabet), then ML detection leads to a Euclidean 
distance metric, which is minimized with the least-squares solution. 

For MMSE equalization, we don't have any requirements on the number of rows 
of H. The decision variable vector is given by 

z = H H ( H H H + C „ ) - 1 r . (4.135) 

With sub-block equalization, the sub-block often corresponds to a set of symbol 
periods and the received samples processed correspond to a window of samples. In 
this case, it is common to either 1) only keep the detected values for a subset of 
the symbols in the sub-block (the middle ones), or 2) model symbols at the edge of 
the sub-block as colored noise. 

4.4.8 Group linear equalization 

As in Chapter 2, we can consider a group of symbols as one supersymbol. With 
group linear equalization, we will use MLD to sort out symbols within a group and 
linear equalization to suppress symbols outside the group. For TDM, a group can 
be G consecutive symbols. For example, the first two symbols can form the first 
group or supersymbol, the next two symbols can form the second group, and so on. 
It is also possible to use overlapping groups and only keep results for the middle 
symbols. For CDM and OFDM, it is natural to group symbols in parallel together 
(G = K in this case). As MLD performs better than LE, it is best to group symbols 
together that strongly interfere with one another. 

With group detection, an ML formulation makes more sense. The impairment 
covariance matrix consists of noise and interference terms, where the interference 
terms contain contributions from the symbols outside the group. There is a weight 
vector per symbol within the group, giving rise to G decision variables. These 
variables are used together to jointly detect the members of the group using, for 
example, (2.101). 

4.5 AN EXAMPLE 

Here we consider the High Speed Downlink Packet Access (HSDPA) system, an 
evolution of the WCDMA 3G system [Dah98]. A similar system is (HDR) [BenOO], 
an evolution of IS-95 (US CDMA) now referred to as 1X-EVDO (the IX refers to 
the bandwidth being the same as IS-95). On the downlink of both these systems, 
CDM is used to achieve high data rates. In a dispersive channel, orthogonality is 
lost between spreading codes, making ISI a problem. 

MMSE or ML linear equalization can be used to obtain reasonable receiver per-
formance. To reduce complexity without significant change in performance, code 
averaging can be used. Code-averaged transversal linear equalizers for CDM sys-
tems have been developed at the chip-level [Gha98, JarOl, Fra02, Kra02] and de-
spread level [Gha98, BotOO, TanOO, Fra02, Mud04]. 
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4.6 THE LITERATURE 

A survey of early work on linear equalization can be found in [Luc73, Bel79]. Early 
work on LE for cochannel interference suppression can be found in [Geo65]. 

According to [Mon84], LE with multiple receive antennas is considered as early 
as [Bra70j. In [Bal92], an MF front end is used to collapse the multiple streams 
of data into one (symbol-level equalization). Cochannel interference can be sup-
pressed by modeling it as spatially colored noise [Win84, Cla94]. To avoid temporal 
processing (multiple processing delays), multiple antennas can be used to suppress 
ISI due to dispersion (as well as cochannel interference) [Won96]. A mix of tempo-
ral and spatial processing to suppress ISI from dispersion is also possible [Fuj99]. 
Different forms of interference suppression result, depending on what aspects of the 
interference are known or estimated (amplitude, channel response, symbol values) 
[Aff02, Han04]. 

As for different criteria, development of minimum distortion linear equalization 
is provided in [Pro89]. Work on minimum BER linear equalization can be found 
in [WanOO]. Block linear equalization for TDM is considered in [Cro92] and is 
extended to include cochannel interference suppression in [Gin99]. 

When the number of processing delays is limited, different strategies can be 
used to select the delays. Such strategies apply to both LE and the forward filter 
of DFE, so literature on both is discussed here. One strategy is to find a set of 
delays that minimizes MSE [Rag93b, LeeOl] or maximizes SNR, (or an approxi-
mation to it [Ari97] (DFE)). An order-recursive approach can be used, in which 
processing delays are added one at a time to maximize SNR, or an approximation to 
it [Kha05, Zhi05] (LE), [Sui06, Kut07] (LE, DFE). Another approach is to find the 
locations that have the largest weight magnitudes [Bun89] (DFE) or are expected 
to have the largest weight magnitudes [Lee04] (LE, DFE). Another is a mirroring 
approach [Kut05, Ful09], which can be related to approximate inverse channel fil-
tering [Ful09]. This approach is similar to the idea of placing fingers where copies 
of interfering symbols are present [Has02, Sou]. A matching pursuit-based strategy 
is proposed in [Zhi05|. Strategies for addressing dispersive cochannel interference 
are discussed in [Ari99]. 

Sometimes the cochannel interference can be better modeled as noncircular (im-
proper) noise. For example, BPSK interference occupies only one dimension in 
the complex plane. When this occurs, there are two, equivalent approaches for 
formulating the linear equalization problem. One is linear conjugate linear (LCL) 
filtering [Bro69], also known as widely linear filtering [Pic95], in which the equalizer 
processes both the received signal and its conjugate. The other is to break apart the 
complex received signal into its real and imaginary components [Bro69]. Such filter-
ing has been applied to BPSK cochannel interference [Yoo97] and GMSK cochannel 
interference in GSM [Ger03, Mey06]. In this latter context it is sometimes called 
single antenna interference cancellation (SAIC) because it allows interference sup-
pression similar to that obtained with two receive antennas but without the need 
for a second antenna. Such filtering can also be applied to CDMA systems employ-
ing BPSK [BuzOl], including early versions of the US CDMA (IS-95) standard that 
employ BPSK with QPSK spreading [Bot03b]. 
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Another aspect of cochannel interference is its cyclostationarity. We saw cyclo-
stationarity in the formation of the data covariance matrix, which depends on the 
path delays of the interfering symbols. Cyclostationarity of cochannel interference 
is addressed in [Ree90, Pet91, Gar93]. Suppression of narrowband interference in a 
wideband system is discussed in [Mil88, Gel98]. 

In CDMA systems, early work focused on multiuser detection in the MIMO/co-
channel scenario. The ZF solution for the synchronous CDMA case (referred to as 
the decorrelating receiver) is proposed in [Sch79] and developed in [Lup89]. The 
MMSE solution can be found in [Mad94]. 

For the dispersive/asynchronous case, early work focused on the CDMA uplink 
(different channel per user/code). Work on ZF LE is found for the asynchronous 
case in [Lup90] and for the dispersive case in [Zvo96a, Zvo96b]. The MMSE solution 
can be found in [Xie90a]. When the spreading codes of other users are unknown, 
code averaging can be applied [Won98, Won99]. Sub-block linear equalization us-
ing a sliding window is described in [Wij92, Rup94, Wij96, Jun97]. Block linear 
equalization is examined in [Kle96]. Linear multiuser detection in rapidly varying 
channels is addressed in [Say98]. Linear equalization with continuous-time signals 
is considered for CDMA in [Mon94, Yoo96]. 

Later, the dispersive case was considered for the CDMA downlink (same chan-
nel per user/code). Early work in [Bot93] uses a maximum-SINR approach to 
despread-level transversal linear equalization to determine the weight solution. ZF 
and MMSE block equalization at the chip level are considered in [Kle97]. In re-
maining work, transversal equalization is considered at the chip level [Gha98, JarOl, 
Fra02, Kra02] and despread level [Gha98, BotOO, TanOO, Fra02, Mud04]. The chip 
level solution is formulated in terms of MMSE estimation of the transmitted com-
posite chip values (summed over all users). The despread level solution is formulated 
in terms of ML [BotOO] or MMSE [Gha98, TanOO, Fra02, Mud04] estimation of the 
symbol. In [JarOl], ML block equalization is also considered. 

Some form of code averaging is considered in all downlink work cited as a way to 
simplify receiver design. With code averaging, expressions for the weights involve 
infinite sums, which have a closed form expression for certain chip pulse shapes 
[Jat04]. Equivalence of MMSE and ML solutions is shown in [Had04]. 

Group linear equalization has been studied primarily for CDMA systems. In 
[Sch96], ZF LE is used to suppress interference from symbols outside the group. 
Code averaging can be used in designing the LE in the MIMO/cochannel [Gra03, 
Mai05] and dispersive/asynchronous scenarios [BotlOa]. 

PROBLEMS 

The idea 

4.1 Consider the Alice and Bob example. Suppose instead that n = — 1 and 
r2 = 4. 

a) What is the value of zi and s<¿ with partial ZF LE? 
b) What is the value of z2 and s2 with MMSE LE? 
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4.2 If we had r» to work with as well, what would be the partial zero-forcing 
linear equalization weight for r» so that ISI from So is canceled when detecting s2l 

4.3 Consider the Alice and Bob example (n = 1, r2 = —7). Suppose the noise 
power is σ2 = 1 instead. 

a) What would the MMSE LE weights be? 
b) What is the value of z2 and s2 with MMSE LE? 

4.4 Consider the Alice and Bob example (r\ — 1, r2 = —7). Suppose the noise 
power is σ2 = 1000 instead. 

a) What would the MMSE LE weights be? 
b) What is the value of z2 and s2 with MMSE LE? 

More details 

4.5 In the dispersive scenario with c = —10 and d — 9, suppose the max-SINR 
weights for detecting s2 are scaled by -10. 

a) Calculate the new output SINR. 
b) Did the SINR get better, worse, or stay the same? 
c) Can we still detect s2 by taking the sign of ζ2Ί 

4.6 A better approach to the partial ZF approach is to minimize ISI. 
a) If w2 = —0.1, determine Wi to minimize ISI when detecting s2. 
b) What is the resulting SINR? 
c) Is the SINR bigger or smaller than the partial ZF SINR? 
d) Is the SINR bigger or smaller than the MMSE SINR? 

4.7 In the dispersive scenario, consider detecting si using r\ and r2, setting 
w2 = 1/c, and choosing w\ to minimize ISI in z2. 

a) Find the general expression for w\. 
b) As the noise power goes to 0, what happens to w\l 
c) Show that if the noise power is zero, the SINR is the same as the MMSE 

solution SINR. 

4.8 In the dispersive scenario with c = —10 and d = 9, consider MMSE detection 
of s i using r\ and r2. 

a) Find the MMSE solution for wi and w2. 
b) For r\ = 1, r2 — — 7, what is the value of the decision variable for βχ? 
c) What is the detected value for si? 

4.9 Using the model for the received values for the general dispersive scenario, 
show that the average of r\ is c2 + d2 + σ2. 

4.10 Consider the MIMO scenario in which c = 10, d = 7, e = 9, and / = 6. 
a) What are the MMSE weights for detecting s2l 
b) What is the output SINR? 
c) If ri = 9 and r2 = 11, what is the detected value for s2? 
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The math 

4.11 Consider the general dispersive case, with channel coefficients c and d. 
a) Find the general expression for the MMSE weights for detecting s\ using 

r\ and r?. 
b) As the noise power goes to 0, what happens to »2? 
c) As the noise power becomes much larger than the ISI power d?, show that 

MMSE weights are proportional to the MF weights. 

4.12 Show that the ML and MMSE weight solutions are equivalent (within a 
scaling factor). Use the following version of the matrix inversion lemma: 

[A + BCD]"1 = A"1 - A ^ B I C " 1 + D A ^ B ^ D A 1 . (4.136) 

4.13 Using the model in (4.79), show that the SINR expressions in (4.97) and 
(4.99) are equivalent. You will need the matrix inversion lemma from the previous 
problem. 





CHAPTER 5 

MMSE AND ML DECISION FEEDBACK 
EQUALIZATION 

Decision feedback equalization (DFE) uses past symbol decisions (detected values) 
to remove ISI from previous symbols. MMSE and ML DFE perform a trade-off 
between collecting signal energy and introducing ISI from future symbols. 

5.1 THE IDEA 

Consider detection of symbol si . Recall that there are two copies of si, one is r\ 
and one in r2. Specifically, 

r\ = — 10si+9so + ni 
r2 = -10s 2 +9s i + n2. (5.1) 

In Chapter 3, we used ri to detect «i, subtracting ISI from sn first. We avoided 
ISI from future symbols by ignoring the copy of si in r2. We would like to take 
advantage of the copy of Si in r2. In Chapter 4, with linear equalization, we 
examined the MMSE strategy. We can use that strategy here as well. 

As in Chapter 3, we first remove the influence of so on r\, giving 

2/1 = 7 · ! - 9s0, (5.2) 

which, assuming s0 = s0, can be modeled as 

3/1 = - l O s i + n i . (5.3) 
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In addition, we are also going to remove the influence of So on r2. Recall that Γ2 
can be modeled as 

r2 = - 1 0 s 2 + 9 s i + n 2 (5.4) 

As there is no influence of So on r2, we simply get 

y2 = r2- 0, (5.5) 

which can be modeled as 

j/2 = - 1 0 s 2 + 9 s i + n 2 . (5.6) 

We now wish to estimate si using a weighted combination of y\ and ?/2. Specif-
ically, 

z1 =wiyi+ W2V2- (5.7) 

Substituting (5.3) and (5.6) in (5.7) gives 

z\ = u>i(—lOsi + ni) + ω2(—10s2 + 9si + n2) 
= — 10w2s2 + (—lOwi + 9TO2)SI + W\n\ + ω2η2 . (5.8) 

Similar to the previous chapter, we can think of z\ as an estimate of s\. Consider 
the error in the estimate, defined as 

ei = z\- s1 

= — WW2S2 + (—10u>i + 9w2 — l)«i + wini + w2n2. (5.9) 

To make this error small, we will minimize the average (mean) of the power (square) 
of the error (ei). Hence the name minimum mean-square error (MMSE). 

Recall from the previous chapter the following facts. 

1. The average of asi is a? times the average of s\. 

2. While symbols, such as s\, can be either +1 or —1, the square value is always 
1. Thus, the average of the square value is 1. 

3. While the noise terms, such as n\, are random, we were told that the average 
of their squared values is σ2 = 100. 

With these facts, the average power in e2, denoted E2, is given by 

Ex = (w2(-10))2(l) + (ω2(9) + wi(-10) - 1)2(1) + (wi9)2(l) + ω2(100) + w|(100). 
(5.10) 

As in the previous chapter, E\ (MSE) depends on w\ and w2. In Fig. 5.1, we plot 
E2 vs. w\ for different values of w2. MSE is minimized to a value of 0.4158 when 
wi = -0.04158 and w2 = 0.01871. This is the MMSE solution for the feedforward 
filter for s\. Notice that unlike the ZF DFE solution, w2 is not zero in this case. A 
block diagram is given in Fig. 5.2. 

Another strategy which gives the same performance is the ML strategy. This 
strategy is discussed more in later sections. 
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Figure 5.1 MSE vs. w-¡ for various values of w^ for DFE for si. 

5.2 MORE DETAILS 

From the previous section, the MSE as a function of the weights is given by 

Ei = (wi(-10)+w2(9) - l ) 2 + (wi(-10))2 + (w2 + w2)100. (5.11) 

Similar to the previous chapter, we can take the derivative of 2J2 w.r.t. each weight 
and set the derivatives to zero. This gives 

0 = o + 2 ( - 1 0 ) ( w 2 ( 9 ) + w i ( - 1 0 ) - l)( l) + 2(9)(w19)(l)+2w1(100)(5.12) 
0 = 2(-10)(tu2(-10))(l) + 2(9)(to2(9) + u ; 1 ( - 1 0 ) - l ) ( l ) 

+ 0 + 0 + 2ω2(100). (5.13) 

Solving this set of equations for the MMSE weights gives w\ = —0.04158 and 
w2 = 0.01871. 

With a traditional DFE, the feedforward filter would use r\ and r2 when forming 
ζχ, then use r2 and r$ to form 22. Thus, a sliding window of received values are 
used. In this case, the weights turn out to be the same. 

However, suppose we only have r\ and r2 to work with. In this special case, 
we find that the MSE for s2 is minimized to a value of 0.5 when w\ = 0 and 
w2 = —0.05. Observe that in this case, wi = 0. This makes sense, because after 
subtracting the influence of s\ and s(), there is no signal term in y\\ there is only 
noise that is unrelated with the noise in r2. 
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Figure 5.2 MMSE DFE block diagram. 

Let's revisit the Alice and Bob example. Recall that r\ = 1 and r2 = —7. 
Suppose we are told that so = +1, the correct value. The MMSE DFE output for 
s i would be 

2, = (-0.04158)(1 - 9(+l)) + (0.01871)(-7) = 0.202, (5.14) 

giving a detected value of s(l) = +1, the correct value. To detect s2 using only r\ 
and r2, we form 

z2 = (0)(1) + (-0.05X-7 - 9(+l)) = 0.35, (5.15) 

giving s(2) = +1 , the correct value. Thus, if we start with a correct value for á"o, 
we get the correct values for the remaining symbols. 

Now suppose we are told Jo = —1, the incorrect value. We will find (see the 
Problems) that we get s\ = — 1 and s2 = +1 . Thus, we can still have an error 
propagation problem. However, it is not as bad, as this time we detect s2 correctly. 
In general, we expect the MMSE approach to perform better than the ZF approach. 

As with the ZF DFE, we can compute an upper bound on SINR, assuming past 
decisions are correct. Substituting model expressions into (5.7) gives 

Z\ = M>2(-10)S2 + (lt>l( —10) + W29)si + WI9(SQ — S()) + W\U\ + W2U2. (5.16) 

The second term is the signal term and has average power 

S = (-10wl+9w2)2. (5.17) 

The third term is zero due to our assumption of correct past decisions. The re-
maining terms are impairment and have power 

I + N = w|l00 + (wf + »1)100. (5.18) 
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Notice that this is a general expression, for any weight values. Substituting the 
MMSE weights gives an SINR of 1.405. Observe that this is larger than the SINR 
for MMSE LE (0.65714), showing that if the detected values are correct, it is better 
to remove them than to linearly suppress them. Also, 1.405 is larger than the upper 
bound for ZF DFE (1.0), showing that MMSE performs better than ZF. This is 
because MMSE collects signal energy from both images rather than just one. It is 
still less than the matched filter bound of 1.81, as expected. 

For the general dispersive case, assuming s"o = «o, the estimation error on z\ can 
be modeled as 

ei = [cw\ + dwi — \)s\ + CW2S2 + [wiTi\ + ω2«2]· (5.19) 

The average power in e\, denoted E%, is given by 

Ei = (c»i + dw2 - l ) 2 + (cw2)2 + {w\ + w2)a2. (5.20) 

As in the previous chapter, we can take the derivative of E\ (MSE) w.r.t. w\ and 
W2 and set them to zero. This gives a set of equations of the form (4.36) where 

R c2 + σ2 cd 
cd c2 +d2 + σ2 , h=[C

d]. (5.21) 

As before, R can be interpreted as a matrix of data correlations, only now it is the 
data correlations for y\ and yi, which have so removed. 

The solution to this set of equations is 

„, = c(c2 + d2 + a2)-cd2 

1 (c2 + d2 + a2){c2 + σ2) - c2d2 { ' 
d{c2 + σ2) - c2d 

W2 ~ (c2 + d2 + a2)(c2 + σ2) - c2d2 ' ( ' 

For the MIMO case, we need to rethink the triangularization process. Recall the 
first step, when we eliminated S2 from r\ by forming X\ = r\ — (d/f)r2- What we 
were really doing is detecting s\ using a form of ZF linear equalization with weights 
w\ = 1 and v>2 = (d/f). We would do better if we used the MMSE linear equalizer 
as described in the previous chapter. 

Recall the second step, in which we formed X2 with noise uncorrelated with x\, 
subtracted the influence of si on X2 used s\, then detected S2. We still need to 
form X2 with noise uncorrelated with x\. Let w\ and »2 be the weights used in the 
first step to form y\, i.e., 

x\ = w\T\ + ω2Γ2. (5-24) 

Let's form X2 as before, using 

x2 = r2 + hr1. (5.25) 

As before, we determine h such that the noise on x\ and X2 are uncorrelated. This 
gives 

E{«i«2} = E{(w)iTii + W2Ti2)(hni + TI2)} = hw\a2 + w2a2 = 0, (5.26) 
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which implies 
h = wl/wi. (5.27) 

Now that we have X2, we can subtract the influence of si used the detected value. 
However, x\ now has a copy of s^ as well. So, now we need to also subtract the 
influence of s\ on x\, We can then use the result to detect «2 with a weighted sum: 

«2 = viwVw + W42/4, (5.28) 

where 

2/3 = xi - (wic + w2e)si (5.29) 
2/4 — %2 — (e + hc)s\. (5.30) 

This looks like another MMSE linear equalization design problem. Thus, we can 
use MMSE linear equalization design, with models for y:i and 2/4, to determine good 
values for w-.t, and w\ (see the Problems). 

5.3 THE MATH 

Similar to Chapter 4, MMSE and ML formulations are given. Other design cri-
teria are not discussed, as they would be the same as in the previous chapter. 
Performance results are also provided. 

5.3.1 MMSE solution 

With MMSE DFE, the received signal is initially processed by a partial MF, pro-
ducing received sample vectors. These sample vectors are processed by a forward 
filter, which collects signal energy and suppresses ISI from future symbol periods. 
The FBF removes ISI from past symbol periods. Unlike the chapter on ZF DFE, 
we allow for arbitrary pulse shaping, fractionally spaced sampling, and arbitrary 
path delays. 

The design of the MMSE FBF is similar to the design of the ZF FBF. Detected 
symbols are modulated and channel filtered and then subtracted from the received 
samples. Design of the MMSE forward filter is similar to the design of the MMSE 
linear equalizer. The only difference is that the FF works on modified received 
samples, modified to remove ISI from past symbol blocks. This simply changes 
the computation of the data correlation matrix R. Compared to the ZF FF, the 
MMSE FF works on future samples in addition to the current sample. Like matched 
filtering, this allows better collection of symbol energy. 

Assuming partial matched filtering at the front end, recall from (1.23) and (2.59) 
that the received samples can be modeled as 

oc 

v{qTs) |= y/W, Σ M«7'» - m 7 ' ) s (m) + n{qTs), (5.31) 
m= — 00 

where 
£ - 1 

h(t) = ^gtRpit-Ti). (5.32) 



THE MATH 105 

Suppose we are detecting s(mg) using samples y(m.oT + djTs),j = 0 , . . . , J — 1. 
The sample y(mnT + djTs) is obtained from ν{πΐ(,Τ + djTs) by removing ISI from 
past blocks using detected symbol values. Specifically, 

m u - 1 
y{ni()T + djTg) = v(mnT + djTs) — \fEs VJ h(qTs — mT)s(m), (5.33) 

m = — oo 

which, assuming correct detections, can be modeled as 

y{qTs) h y/Ël Σ h(qTs - mT)s{m) + ñ(qTs). (5.34) 
m=mo 

We can collect these samples into a vector y, which can be modeled as 

oo 

y |= VË~S Σ hms(m) + n, (5.35) 
m=mc> 

where the rth row of h m is given by 

ftm(r) = h(drTs + (mo — m)T). (5.36) 

With MMSE DFE, we form the decision variable 

z{mn) = w H v , (5.37) 

which is then used to detect s(mo) using 

s(m()) = detect(z(mo), A(mo)) (5.38) 
A(mo) = w " h m o = w H h , (5.39) 

where h is defined in (4.65). The weight vector w is designed to minimize the cost 
function 

F = E{ | s (m 0 ) -z (mo) | 2 } , (5.40) 

where expectation if over the noise and symbol realizations. 
The development is similar to that in Chapter 4, so that the weight solution ends 

up being the solution to the set of equations 

Rw = p, (5.41) 

where 

p ^ E{yS*(m0)} (5.42) 

R ^ E{yy H } . (5.43) 

Using (5.34), it is straightforward to show that 

p = y/Ë~s hmo = y/Fs h (5.44) 
R = Cy = Es J2 hmh£+N()Rn, (5.45) 
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where the elements of R n are given in (4.75). Thus, the MMSE weight solution is 
given by 

C„w = y/Ίζ h. (5.46) 

As with MMSE linear equalization, the weight solution w and A(mo) are indepen-
dent of which symbol is being equalized (m()). As with MMSE linear equalization, 
the processing delay dj is a relative delay, relative to m^T. Thus, the elements in 
y will change with different mo. 

5.3.2 ML solution 

As we saw with linear equalization, the ML solution is similar to the MMSE solu-
tion, except that Cy is replaced with Cu, where 

C = C„ - Es h h " . (5.47) 

5.3.3 Output SINR 

The output SINR and SNR expressions have the same form as the expressions for 
linear equalization. The only different is that the data and impairment covariance 
matrices exclude ISI removed via subtraction. That assumes the ISI was removed 
correctly. In practice, errors are made, so that the output SINR expressions give a 
bound on SINR (SINR assuming perfect ISI subtraction). 

5.3.4 Fractionally spaced DFE 

DFE is fractionally spaced when the forward filter sampling period Ts is less than 
the symbol period T. The spacing of the feedback filter depends on whether it 
removes ISI before the forward filter (same spacing as forward filter) or after the 
forward filter (symbol-spaced). The story is basically the same as for fractionally 
spaced LE (see previous chapter). 

5.3.5 Performance results 

Similar to the previous chapter, we consider QPSK, root-Nyquist pulse shaping, 
and the two-tap, symbol-spaced channel with relative path strengths 0 and —1 dB 
and angles 0 and 90 degrees (TwoTS). In Fig. 5.3, BER vs. Eb/Nn is shown for the 
matched filter, the analytical matched filter bound (REF), MISI DFE, and MMSE 
DFE. The LE results are for 31 taps placed symmetrically about the first path 
for the symbol of interest. The MISI DFE results are for 1 FF tap placed on the 
first signal path. In this special case, ISI can be perfectly removed (assumed ideal 
decision feedback), so that the MISI solution becomes the ZF solution discussed in 
Chapter 3. The MMSE DFE results are for 16 taps, placed on the first path of the 
symbol of interest and the first path of the next 15 future symbols. For both MISI 
(ZF) and MMSE DFE, a single feedback tap is used for the symbol prior to the 
symbol of interest. 
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Figure 5.3 BER vs. Eb/N0 for QPSK, root-raised-cosine pulse shaping (0.22 rolloff), 
static, two-tap, symbol-spaced channel, with relative path strengths 0 and —1 dB, and path 
angles 0 and 90 degrees, DFE results. 

The observations for MMSE and MISI DFE parallel those for MMSE and MISI 
LE we saw in the previous chapter. 

1. MMSE DFE performs better than MISI DFE. At high SNR, the performance 
becomes similar, as ISI dominates. 

2. At low SNR, MMSE DFE, MF and the MFB become similar, as noise domi-
nates. 

3. At low SNR, MISI DFE performs worse than the MF, because MISI DFE 
focuses on ISI when noise is the real problem. 

MMSE LE and MMSE DFE are compared in Fig. 5.4. At high SNR, MMSE 
DFE performs better because most of the time it perfectly subtracts ISI from past 
symbols. The combining weights focus on signal energy collection and suppression 
of ISI from future symbols only. The combining weights for MMSE LE must also 
try to suppress ISI from past symbols. 

At low SNR, the MMSE DFE makes decision errors, which affect future decisions. 
This problem is referred to as error propagation. As a result, performance is worse 
than MMSE LE, which suppresses past symbol ISI through filtering. 

Results for fractionally spaced equalization and for fading channels are given in 
Chapter 6. 
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5.4 MORE MATH 

In Chapter 3, we explored the zero-forcing (ZF) solution. Here we will focus on the 
MMSE and ML formulations. We will also discuss simpler ways of modeling ISI, 
which lead to simpler equalizer formulations. Discussions of block and sub-block 
forms are given, and group DFE is briefly examined. 

5.4.1 MMSE solution 

The formulation in the more general case is similar to that for MMSE linear equal-
ization, except that ISI from past symbol blocks is removed. As in the previous 
chapter, a chip-level formulation is used. In summary, the decision variable is 
formed using 

41,")(fno) = w H y · (5 ·48) 
where 

y = [yT(d„Ts) . . . yT(dj„1Ts)]T (5.49) 
N, K-\ , . mo-1 

y{qTs) = v(Ts)-Y^J2s/E^(k) Σ \¿£m{qTs-mT)sf{m). (5.50) 

Notice we have assumed all transmitted symbols are being detected. Often we are 
only interested in symbols from one transmitter. We will consider this case later. 

-2 0 2 4 6 8 10 12 14 
Eb/NO (dB) 

Figure 5.4 BER vs. Eb/N0 for QPSK, root-raised-cosine pulse shaping (0.22 rolloff), 
static, two-tap. symbol-spaced channel, with relative path strengths 0 and - 1 dB. and path 
angles 0 and !)() degrees, MMSE LE and DFE results. 
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The decision variable is used to detect s¿" (mu) using 

s^\mo) = d e t ec t ^ " ' (m„) , A™(mo)) 

<'V«) = w»h^o 

¿ ^ = ^ „ . ( d o T . ) . . . h « m ( ^ - i ï i ) ] T 

The MMSE FF weights are given by (4.114), using (4.115) and 

N,, K-\ oo 
C„Üi. h) = Σ Σ WW Σ O « - ™T)&LidhTs - mT))H 

+ ^ 0 ^ ( ^ , 1 ' , - < ί Λ Τ , ) Ι . (5.54) 

As with MMSE linear equalization, we can consider code-averaging and transver-
sal equalization to reduce complexity. In the transversal case, because ISI from past 
blocks is removed, the R matrix will be different for each chip period UQ. Thus, no 
weight vectors will still be needed. However, these vectors will be the same for each 
symbol period mo. Thus, a time-varying transversal equalizer results, in which the 
weight vectors are periodically time-varying. 

5.4.2 ML solution 

As we saw with linear equalization, the ML solution is similar to the MMSE solu-
tion, except that Cy is replaced with C u , where 

Cu = Cy - Es hhH. (5.55) 

5.4.3 Simpler models 

With linear equalization, we noted that simpler models of some subset of interfer-
ing symbols could be used, such as a white, stationary noise model or a colored, 
stationary noise model. Here we add a third model. 

Colored, nonstationary noise. With this model, we think of the interfering 
symbol values as complex, Gaussian r.v.s, rather than discrete quantities. 
Symbols modeled this way are not detected and subtracted with the FBF. 
Instead, they are treated as an additional form of noise. 

Such a model is useful for modeling interference from other transmitters or other 
PMC symbols. 

5.4.4 Block and sub-block forms 

As with linear equalization, block and sub-block forms are possible. With sub-block 
equalization, a sub-block of past symbols is removed before detecting a sub-block 
of current symbols. An example would be CDM, in which the K symbols sent in 
parallel using K spreading codes could be used to define a sub-block. 

(5.51) 

(5.52) 

(5.53) 
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5.4.5 Group decision feedback equalization 

As with linear equalization, group DFE is possible. The approach is similar, except 
that the ISI from groups already detected is subtracted rather than suppressed 
linearly. 

5.5 AN EXAMPLE 

US TDMA is sometimes used to refer to the second generation (2G) cellular system 
also known as IS-54, IS-136, American Digital Cellular (ADC), or digital AMPS 
(D-AMPS) [Rai91, Goo91]. The modulation is π/4-shift Differential Quadrature 
Phase Shift Keying (DQPSK)(2 bits per symbol), and root-Nyquist pulse shaping 
is employed. The symbol rate is 24.3 kbaud, giving a large symbol period (41.2 μβ) 
relative to typical delay spreads. In [Pro91] a variety of equalization approaches 
are reviewed, and a DFE design is developed. DFE with multiple receive antennas 
is considered in [Li99]. 

Because of the long symbol period, path delays are on the order of a fraction of 
a symbol period. Because of the ringing of the pulse shape, this causes ISI between 
both future and past symbols. Fortunately the pulse shape ringing dies out quickly, 
so that a DFE with a small number of forward filter and feedback filter taps makes 
sense. 

If the receiver is not in motion, the decision error rate at typical SNR operating 
levels is low enough that error propagation is not severe. However, if the receiver 
is moving quickly (in a vehicle), the fading can change rapidly within a burst of 
data. Such fading can cause decision errors which then propagate. Bidirectional 
equalization techniques have been developed to address this issue [Ari92, Nag95, 
Hig89]. Another option, maximum likelihood sequence detection, is discussed in 
the next chapter. 

5.6 THE LITERATURE 

Early work on DFE can be found in [Aus67]. An early survey of the DFE lit-
erature is given in [Bel79]. In [Sme97] it is shown that with the perfect decision 
feedback assumption, the FFF and FBF filters can be optimized separately. While 
we have focused on ZF and MMSE designs for the FF, a WMF design can also be 
used [Cio95]. DFE with multiple receive antennas is explored in [Mon71, Mon84], 
considering self-interference as well as cochannel interference. 

DFE works well when the channel is minimum phase. Roughly speaking, this 
means that the energy is concentrated in the earlier arriving path delays. Thus, 
for a two-path channel, the channel is minimum phase when the first tap is larger. 
When the channel is minimum phase, the FF collects more of the signal energy. 

If the channel is or might be nonminimum phase, there are several solutions. 
One solution is bidirectional equalization, in which the received signal samples are 
equalized forward in time, backward in time, or both. Equalization is performed 
either forward or backward, depending on an MSE measure after training [Ari92] 
or after equalizing a little bit of the data [Nag95]. According to [Nag95], equalizing 
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both directions and then selecting the direction with smaller errors was proposed in 
[Hig89]. This approach can be refined to select (arbitrate) the direction separately 
for each symbol using a local Euclidean distance metric [Nel05]. (Replacing the local 
metric with MLSD [Bot08] leads to a form of assisted MLSD, which is discussed in 
the next chapter.) Decoder feedback can improve the arbitration process [Oh07]. 

Another solution is to apply linear pre-filtering to convert the channel to min-
imum phase. As the DFE is usually designed assuming white noise, the pre-filter 
should be an all-pass filter so as not to color the noise. Early work on pre-filtering 
for DFE can be found in [Mar73]. More references on pre-filtering are given in the 
next chapter. 

We have assumed sufficient taps in the FF. If the number of taps is limited, then 
various tap selection approaches can be used. These are discussed in the previous 
chapter. 

A number of solutions have been proposed to address error propagation. One 
approach is to improve the feedback using the following. 

1. Erase unreliable decisions [Chi98, Fan99]. 

2. Use a soft MMSE symbol estimate [GerOO, ArsOla]. This can be related to 
neural network processing [GerOO]. 

3. Use multiple hard symbol values when the decision variable is small in magni-
tude [Dah88]. This can be done by having multiple DFEs, each feeding back 
a different detected value. An accumulated error can be used to select which 
DFE to use for the final detected value and further decisions. This can be 
interpreted as a form of arbitration in which the two DFEs process data in 
the same direction. 

4. In a coded system, error propagation can be reduced by using decoder feed-
back to improve the decisions [Koh86, San96, Ari98]. 

In the MIMO/cochannel scenario, LE with multiple receive antennas combined 
with SIC has been proposed [AriOOb]. Ordering of detection is addressed in [Kim06]. 

In CDMA, there are a number of DFE forms employed in multiuser detection. 
The classic structure of feedforward and feedback filtering can be found in [Abd94, 
Due95]. Using tentative decisions for future symbol periods as well is discussed 
in [Xie90a]. A subset of the users can be suppressed linearly rather than being 
subtracted [Woo02]. 

A related approach found in the multiuser detection literature is successive in-
terference cancellation (SIC), in which symbols are detected one at a time. Early 
work can be found in [Den93]. Repeating the process, so that the first symbol ben-
efits from ISI removal as well, gives rise to multistage SIC. If we detect all symbols 
without ISI removal in the first stage, this gives rise to multistage parallel inter-
ference cancellation (PIC) [Div98]. Early work can be found in [Mas88]. Use of 
different nonlinearities in SIC and PIC is explored in [TanOla, Zha03]. A mixture 
of SIC and PIC can also be used [Kou98]. Note: If we remove the decision nonlin-
earity and use decision variables for subtraction, we end up with a form of block 
linear equalization in which the matrix equation of final decision variables is being 
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solved iteratively using Gauss/Seidel (SIC) [Jam96, Eld98] or Gauss/Jordan (PIC) 
[Eld98]. Forms of multistage PIC have been developed for TDM systems [ChaOl]. 

SIC can be combined with LE for suppressing other signals [Koh90, Yoo93]. 
Block DFE for CDMA can be found in [Kle93, Jun95b, Kle96]. 

In CDMA, code averaging in designing a time-invariant FF can be found in 
[Cho04]. Use of a periodically time-varying FF based on code averaging can be 
found in [BotlOa]. 

Group DFE has been examined primarily for CDMA systems [Var95, FaiOO]. 
Code averaging can be used to simplify group detection for CDM DFE [BotlOa]. 
When there are multiple receive antennas, signals can be grouped based on their 
spatial isolation [Pel07]. 

PROBLEMS 

The idea 

5.1 Consider the Alice and Bob example. Suppose instead that r\ = —1 and 
r2 — 4. Assume so = +1. 

a) What is the value of z\ and è\ with MMSE DFE? 

5.2 Consider the Alice and Bob example, MMSE DFE, and the case when SQ is 
the incorrect value (—1). 

a) What is the resulting decision variable for si (21)? 
b) What is the resulting decision variable for s2 (z2)? 

5.3 Consider an example similar to Alice and Bob, in which rm = sm + 0.5sm_i. 
When detecting si using z\ — w\r\ + tt>2r2, what is the MSE as a function of wi 
and u>2? 

More details 

5.4 Consider the MIMO scenario in which c — 10, d = 7, e = 9, and / — 6. 
a) What are the MMSE weights for detecting s\l 
b) What is the output SINR for sj? 
c) What is X2 in terms of r\ and r2? 

5.5 Consider the general dispersive scenario with σ2 = 10. 
a) With c = I, d = 0.2, use the MMSE DFE expressions in the text to 

determine the two forward weights and output S/(I + N). 
b) With c = 0.2, d = 1, use the MMSE DFE expressions in the text to 

determine the two forward weights and output S/(I + N). 
c) With c = 0.2, d = 1, what would the output S/(I + N) be if we ran an 

MMSE DFE backwards in time? 

5.6 For the general dispersive scenario, determine the SINR when a decision error 
is made in MMSE DFE. 

5.7 Consider the general MIMO case and (5.28). 



PROBLEMS 1 1 3 

a) Determine the model equations for y3 and 2/4. 
b) Determine expressions for the MMSE weights w^ and »4. 

The math 

5.8 Derive the FF weight expression for ML DFE. 

5.9 Derive the expression for output SINR for MMSE DFE, assuming perfect 
decisions. 

5.10 For the general dispersive scenario (rm = csm + dsm-\ + nm), determine 
the input SNR such that MF and MMSE DFE have the same performance (same 
output SINR), 

a) assuming the MMSE DFE makes no decision errors. 
b) assuming the MMSE DFE makes a decision error half of the time, at 

random. 





CHAPTER 6 

MAXIMUM LIKELIHOOD SEQUENCE 
DETECTION 

So far, we have either subtracted ISI using past decisions or suppressed ISI using 
copies of interfering symbols in other received values. Such approaches sacrifice 
signal energy to reduce ISI. It would be nice not to lose signal energy in the equal-
ization process. This is possible by using an approach that accounts for ISI rather 
than removing it. One such approach is maximum likelihood sequence detection 
(MLSD), which involves determining the symbol sequence that best explains the 
received signal. This approach is sometimes called maximum likelihood sequence 
estimation (MLSE). 

6.1 THE IDEA 

We know that the symbol values can only be +1 or —1. Thus, there are a finite 
number of possible symbol combinations. For each combination or hypothesis, 
we can predict what the received samples should be (e.g., r\, ί^), at least in the 
absence of noise. We can then compare them to the actual received values. When 
we consider the correct combination, the difference between predicted and actual 
received values should be small (just noise). Thus, we can form a metric that is 
the sum of the squares of these differences and find the symbol combination that 
minimizes this metric. 

Channel Equalization for Wireless Communications: From Concepts to Detailed 115 
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Mathematically, we form a metric 

M, = ( r 1 - f 1 ) 2 + ( r 2 - f 2 ) 2 + . . . , (6.1) 

where the subscript q indicates a particular symbol sequence hypothesis. This 
metric is referred to as the Euclidean distance metric, because it is related to the 
distance between two points in geometry. 

Let's try it for the Alice and Bob example. We form predicted values using 

h = - lOt t+Qfl , (6.2) 
f2 = -1092+9(7!. (6.3) 

For example, consider the hypothesis g() = +1 , q\ = — 1, and q2 = +1 (an incorrect 
hypothesis). Then 

h = - 10 ( -1 ) + 9 ( + l ) = 19 (6.4) 

f2 = - l 0 ( + l ) + 9 ( - l ) = -19 . (6.5) 

Recall that r\ = 1 and r2 — —7, so that the metric would be 

Mq = (1 - 19)2 + ( -7 - (-19))2 = 468. (6.6) 

We would then need to consider all other hypothetical symbol combinations. All 
combinations and their associated metrics are shown in Table 6.1. Observe that 
the metric is minimized for qn — +1 , qx = +1 and qi = +1. Thus, the detected 
symbol values would be s\ = +1 and s2 = +1· 

Table 6.1 Example of sequence metrics 

Index Hypothesis Metric 
9o 9i 92 

~ 1 +1 +1 +1 40 
2 +1 +1 - 1 680 
3 +1 - 1 +1 468 
4 +1 - 1 - 1 388 
5 - 1 +1 +1 436 
6 - 1 +1 - 1 1076 
7 - 1 - 1 +1 144 
8 - 1 - 1 - 1 64 

This approach is referred to as Maximum Likelihood Sequence Detection (MLSD). 
The "sequence detection" part of the name comes from the fact that we detect the 
entire symbol sequence together, rather than detecting symbols one at a time. The 
"maximum likelihood" part comes from the fact that the metric is related to the 
likelihood of noise values taking on certain values. Specifically, the log of the like-
lihood that a noise value n\ equals the number 7 is related to —72 or —49. The 
closer the number is to zero, the more likely the noise value. Thus, the highest 
log-likelihood value is —02 or 0. A block diagram for forming an MLSD metric is 
given in Fig. 6.1. Generation of the predicted received values is shown in Fig. 6.2. 

In our approach above, instead of maximizing the likelihood, we minimize the 
negative of the log-likelihood. For example, instead of maximizing — {r\ — f \ ) 2 , we 
minimize the Euclidean distance (r\ - r\)2. 
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Figure 6.1 MLSD block diagram. 

6.2 MORE DETAILS 

For the general dispersive case, we have 

cqm +dqm-i, (6.7) 

and, for ΛΓΓ received values, we obtain 

Ma 

Nr-l 

(6.8) 

Suppose we know s() = +1. We can think of this as a single possibility. When 
we receive r\, there are now two possibilities, corresponding to q\ = +1 and q\ = 
—1. When we receive r2 there are now four possibilities corresponding to the 
four possible combinations of q\ and q-¿. We can represent this growing number 
of possibilities with a tree, as shown in Fig. 6.3 (the tree is laying on its side). 
Each value of Mq corresponds to a different "path" from the base of the tree to 
the top. Notice that paths share segments in the tree. This suggests a sharing of 
computations. 

Specifically, we start by considering Γχ, which introduces two branches corre-
sponding to <7i = +1 and qi = — 1. Thus, we can form two partial or branch 
metrics: 

P(<7i = +1) = B ( r l l 9 i = +l,go = + l ) 
P(9 i = -1 ) = B(n ,g i = - l , 9 o = + l ) , 

(6.9) 
(6.10) 

where 

B{rm, qm = X, 9 m _ ! = Y) = (rm - cX - dY)2 (6.11) 
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»ft 

c — * 0 (7y-d 

<fe delay <7i delay <7o 

~Θ 0 ■<—d 

*ti 
Figure 6.2 MLSD generation of predicted received values. 

Next we process r2. The two branches now become four paths: 

P(<72 = +1,<?L = + 1 ) 

Pfe = +!,<?! = -1) 
P(92 = - l , 9 i = + l ) 
Λ«2 = -1 .9 ι = -1 ) 

P(<?i = +1) + ß(r2 ,92 = +1,91 = +1) (6.12) 
P(9i = -1 ) + B(r2,92 = +1 , ϊ ι = -1 ) (6.13) 
P{9i = +1) +ß ( r 2 , 92 = -1,91 = +1) (6.14) 
P(qi = -1 ) +B(r2,q2 = - 1 , 9 L = - 1 ) . (6.15) 

Notice that the path metric is the sum of a previous path metric (one branch long) 
and a second branch metric. We can think of the nodes in the tree as storing these 
path metrics. We can think of the branches as where the branch metrics are formed. 
If we continue this process, we will end up producing the final sequence metrics Mq. 
The best final metric will determine a path through the tree corresponding to the 
detected sequence. 

For the general MIMO case, metrics are formed for each combination of s\ and 
S2- The best metric determines the best combination. Specifically, 

n = 
h = 

M„ = 

C9i + dq2 

eqi + ÍQ2 
(n - Γ Χ ) 2 + ( Γ 2 - Γ 2 ) 2 . 

(6.16) 
(6.17) 
(6.18) 
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Figure 6.3 MLSD tree diagram. 

To get a tree structure, we need to first triangularize the channel. Using the 
same approach as for ZF DFE in Chapter 3, we can translate the system model to 
the form 

x\ — c\\S\ + ui (6.19) 

X2 = c 2 i s i +C22S2 + « 2 , (6.20) 

where «i and «2 are uncorrelated. We consider x\ first and form two branch metrics: 

P{.9i = +\) = B{xuqi = +l) (6.21) 
P(<?i = -1 ) = B ( n , 9 i = - 1 ) , (6.22) 

where 
B(xuqi=A) = {xi-cnA)2 (6.23) 

is the branch metric at iteration m = 1. 
Next we process x2. The two branches so far now become four paths: 

P(q2 = +hqi=+l) = P{qi=+l)+B{x2,q2 = +l,qi = +l) (6.24) 
Ρ ( « = +1,9ι = -1 ) = P(<7i = - l ) + B(z2,<72 = +l,<?i = - l ) (6.25) 
P(q2 = ~l,qi = +l) = P ( g i = + l ) + B(*2,i2 = - l , g i = + l ) (6-26) 
Ρ ( « = - 1 , 9 ι = - 1 ) = Ρ ( 9 ι = - 1 ) + β ( Χ ΐ , « 2 = - 1 , ϊ ι = - 1 ) , (6-27) 

where 
B(x2,q2 = A,qx=B) = (x2 - cnA - c22Bf (6.28) 

is the branch metric at iteration m = 2. Notice that the form of the branch metric 
changes with each iteration. Also, there really isn't a single starting point (a single 
s0 value in the dispersive scenario), though we can pretend there is one to draw the 
normal tree structure. 
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6.3 THE MATH 

Mathematically, MLSD tries to find the sequence of symbol values that maximizes 
the likelihood of the received signal. Let s denote the sequence of Ns transmitted 
symbols. Let SN" denote the set of all possible sequences. For M-ary modulation, 
there would be MN" possible sequences. Then, MLSD detects the sequence using 

s = arg max Pr{r(í) Ví|s = q}. (6.29) 

Our notation is a little sloppy in that we use P r { } to denote likelihood, which 
can be either a discrete probability (sum to one) or a PDF value (integrates to 
one). The key is that we are trying to find the hypothetical symbol sequence q that 
maximizes the conditional likelihood of the received signal. 

Before considering the SISO TDM scenario, we develop the Viterbi algorithm, 
an approach to reduce complexity of the tree search without sacrificing performance 
(at least when the channel coefficients are known). Then the SISO TDM scenario 
is examined. Certain approximate forms are introduced. Performance results are 
also provided. 

6.3.1 The Viterbi algorithm 

The Viterbi algorithm is a form of dynamic programming for efficiently performing 
the tree search without explicitly forming all possible paths through the tree. To 
understand how the Viterbi algorithm works, it helps to consider an analogous 
problem of the traveling salesperson. 

Suppose a traveling salesperson needs to get from point A to point F via airplane. 
As shown in Fig. 6.4,'there are flights from point A to point B or point C. From 
points B and C, there are flights to points D and E. Finally, from points D and E, 
there are flights to point F. 

Figure 6.4 Traveling salesperson problem. 

The salesperson wants to minimize the cost of travel. Ticket costs for each 
possible leg of the journey are shown in Fig. 6.4. We can use the tree search 
method to consider all possible routes. The tree search considering the first two 
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legs of the journey is shown in Fig. 6.5. Observe that there are two ways to end up 
at point D: via point B or via point C. We don't know yet whether we will travel 
through point D, but if we do, we can go ahead and figure out whether it will be 
via point B or point C. As travel via point C is 700 whereas travel via point B is 
400, we can eliminate the route to point D via point C. This route is marked with 
an X in Fig. 6.5. Similarly, of the two ways to get to point E, we can eliminate the 
route via point B, as it costs more. 

Such pruning of candidate paths is based on Bellman's law of optimality, which 
states that any segment of the optimal path will also be optimal. Thus, if the 
optimal path passes through D, then segment from A to D will also be optimal. 

Based on this principle, we can redraw the partial tree search in Fig. 6.5 as a 
trellis, shown in Fig. 6.6. At point D, there are two candidate paths with candidate 
metrics 400 (via B) and 700 (via C). We prune the path via C. A similar pruning 
occurs at point E. The next step would be to consider point C and two candidate 
paths: one via D (400 + 200 = 600) and one via E (600 + 200 = 800). Clearly, the 
path via D would be chosen. 

Figure 6.5 Traveling salesperson tree search. 

We can also build a trellis for MLSD. Consider the SISO TDM scenario in which 
the channel consists of two, symbol-spaced paths. BPSK and root-Nyquist pulse 
shaping is used at the transmitter, and the receiver performs filtering matched to 
the pulse shape. If the subsequent sampling is aligned with the path delays, then 
the resulting samples can be modeled as 

rm (= csm + dsm-i + nm. (6.30) 

The trellis for this example is shown in Fig. 6.7. Let's suppose we start with a 
known symbol s() = +1- Like the tree search, there are two paths corresponding to 
the two values for s\. We could compute the path and branch metrics according 
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Figure 6.6 Traveling salesperson trellis. 

to (6.9) and (6.11). Moving on to S2, consider S2 = +1 . There are two candidate 
paths with corresponding candidate path metrics: 

P(92 = + l ,9 i = + l ) = P(<7i=+l) + B(r2,<72 = + l ,9 i = + l ) (6.31) 
■P(<72 = +l ,9 i = - l ) = P(gi = - l ) + B(r2,g2 = + l , ? i = - l ) . (6.32) 

Suppose we determined that P(q2 = + l,<7i = +1) was the better candidate metric. 
We could then store a pointer to the q\ = +1 dot. Alternatively, we could create a 
path history, which stores previous values for symbols. Thus, in this case, we would 
store the detected value for the previous symbol q\ = +1. We would also need to 
store the path metric P = P(<?2 = + l ,9 i = +1), but we could discard the old path 
metrics P{q\ = +1) and P(qi = —1). A similar process is used for the case of 
s2 = —1. 

In 6.7, the "dots" correspond to possible values of one symbol. This is because 
we assumed ISI from only one symbol. In general, the dots are referred to as states, 
and the connecting line segments are referred to as "branches." For the model in 
(6.30), the states at iteration m — 1 would correspond to possible combinations 
of two symbols, sm_2 and sm_i . The states at iteration m would correspond to 
combinations of s7n—\ and sm. Notice that a branch connecting the two itera-
tions corresponds to a combination of three symbols, which is enough to form the 
Euclidean distance branch metric 

B(rm, qm = X, 9 m _! = Y, qm_2 = Z) = (rm - cX + dY + eZ)2. (6.33) 

Because the branch metric depends on one current symbol and two past symbols, 
we say that it has memory two. In general, if there are L symbol-spaced paths, the 
memory is L — 1. 

The resulting trellis is shown in Fig. 6.8. Notice that the trellis is not fully 
connected, as the value for sm_i must be consistent. Thus, the number of branches 
leaving a state, called the fan-out, is 2, and the number of branches entering a state, 
called the fan-in, is also 2. In the general SISO TDM case, the fan-out and fan-in 
will be M, the number of possible symbol values. 
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Figure 6.8 MLSD trellis diagram, three-path channel. 

We can continue the process until the last received value for a block of data is 
processed. At that point, we would use the best metric rule to determine the de-
tected symbol sequence. With this rule, we determine the best state by determining 
the best path metric. The best state determines the detected values for the last 
L — 1 symbols. Then, if we stored pointers to previous states, we would perform 
a traceback from the best state, following the pointers to determine the rest of the 
detected symbols. If we kept a path history, the path history for the best state 
would determine the rest of the detected symbol values. 

With the path memory approach, the path memory gets longer and longer as 
more received values are processed. To keep memory down to reasonable length, a 
decision depth can be used. After determining the path metrics for symbol k + D, 
the best state is determined. In the path history for the best state, the detected 
value for symbol k is taken as the final decision for symbol k. Thus, the path 
memory can be shortened to storing only the past D — 1 symbols. 
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Often, if the decision depth is large enough, there is no difference between this 
decision and the decision without a decision depth (i.e., infinite decision depth). If 
this is true, then finite decision depth will keep selecting symbols from the same 
path. Sometimes a consistency check is made. If the algorithm switches which path 
it is taking symbols from, then an error is declared. This is not always necessary, 
as error correction coding (see Chapter 8) can be used to correct errors made this 
way. 

Another practical issue is metric growth. As branch metrics are accumulated, 
the path metric may become too large to be represented by the computing device 
(overflow). One solution is metric renormalization, in which the same value is 
subtracted from each path metric at a certain iteration. 

We have assumed that the first symbol is known. If this is not the case, then we 
need to hypothesize different values for this symbol as well. 

6.3.1.1 Flow diagram A flow diagram of the Viterbi algorithm (assuming infinite 
decision depth) is shown in Fig. 6.9. Before we walk through the diagram, let's set 
up some assumptions and notation. 

We assume that the first and last symbols sent are «o and s^„_i. We have access 
to received samples that can be modeled as 

L - l 
rm \= 5 Z ctsm-e + nm. (6.34) 

e=u 
We also assume we have access to received samples at symbol periods m\ through 
rri2, which are not necessarily 0 and Ns — 1, respectively. 

To simplify the notation, we will denote the symbols that state i represents 
at current processing time m as qm(i) = \qm{i) . . . gm_(z,_2)(¿)]· T n e number of 
current states at processing time m is denoted Ns(m). At the beginning, for M-ary 
modulation, there will be between M and ML~l states, as m\ should be between 
0 and L — \ (ideally 0). In the "middle" of the processing, there will ML~l states, 
regardless of m. At the end of the processing, there will be between ML~l and M 
states, as m-2 should be between Ns — 1 and Ns + L — 2 (ideally Ns + L — 2). 

Continuing with notation, the path metric for current state i at processing time 
m is denoted Pm(i). The corresponding path history is denoted Qm(i), which keeps 
a list of hypothetical symbol values qk for k = m through k = 0. 

We start by initializing the "previous" path metrics at time m — m-y — 1 to zero, 
giving 

P m i _ 1 ( t ) = 0 , i = 0 . . . J V s ( m i - l ) - l . (6.35) 
Then we increment m by one so we can process the first received sample available. 
For each possible "current" state i, we would compute candidate metrics by adding 
a path metric for "previous" state j at time m — 1 to a branch metric. State j 
would be one of the states in set A(i), corresponding to valid state combinations. 
Thus, for a particular current state ¿n, we would compute the candidate metrics 

Cm(io, j) = Pm-i(j) + B(rm,in,j), (6.36) 

where 

B(rm,it),j) rm - C,)<?m(î<)) - Σ Cl1rn-(.{j) (6.37) 
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We would then identify the best candidate using 

jb = arg min Cm(io,j). (6.38) 

We would then store the path metric for state ¿o at time m, 

Pm(.ia) = Cm(ia,jb), (6·39) 

and update the path history 

Qm(io) = [qm(io),Qm-l(jb)\- (6 .40) 

This process would be repeated for each possible state i at time m. When finished, 
m would be incremented and overall process would be repeated. 

The last iteration would be at symbol period m^. After updating the path 
metrics and path histories, we would then determine which state has the best path 
metric: 

ib = arg min Pm(i)- (6-41) 
i=0 ... Ns(m) 

The detected values would then be determined from Qm{ib)· 
We can shorten the path history at iteration m by only storing symbol values 

from m — (L — 2) and earlier, as the current state determines symbol values for 
times m through m — (L — 2) and the previous state determines the symbol value 
for time m — (L — 1). 

6.3.2 SISO TDM scenario 

Now let's consider MLSD for the SISO TDM scenario. The MLSD solution is 
the hypothetical sequence of symbols that maximizes the likelihood of the received 
signal, given the transmitted sequence equals the hypothesized sequence. Unlike 
the LE and DFE formulations, we will not assume that the received signal has been 
pre-processed by a filter matched to the pulse shape. However, we will find that 
the result can be expressed in terms of such pre-processing. 

We basically follow the derivation given in [Ung74]. Let Sp denote the set of 
possible sequences. For a block of Ns symbols with M-ary modulation, there are 
MN' elements in the set. Using q to denote an hypothesized sequence, the MLSD 
solution is 

{s} = arg max Pr{r(í) Vt|s = q}. (6.42) 
qSSp 

Next we note that for a particular value of t = to, using model equations (1.27) and 
(1.23) gives 

Λ Γ , - 1 

Pr{r(i0)|s = q} = Pr{n(t„) = r(t0) - y/Ë~s ] Γ h(t0 - mT)q{m)} 
m=0 

1 r v n Í - I r fo ) - ν ^ Γ Σ ^ Γ ο 1 Ht - mT)q{m)\* 
~ nN0

eXP\ N0 

Since the noise is assumed white, the likelihood of multiple received values is simply 
the product of the individual likelihoods. Working in the log domain, we end up 
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Figure 6.9 Vitorbi algorithm flow diagram. 

with the sum of log-likelihoods. With continuous time, we end up with an integral, 
giving 

s — arg max 
V J - c 

J V . - l 

r(t) — y/Es 2_] h(t — mT)q{m) dt. (6.44) 

As such an integral gives an estimate of noise power when the hypothesis is correct 
and the noise power over an infinite bandwidth is infinite, we have to assume that 
the noise bandwidth is finite, though at least as large as the signal bandwidth. 
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Expanding the square, moving the integral inside the summations, and dropping 
terms independent of q gives 

N.-l N,-l N,-l 

s = arg max J2 2Re{q*(m)z(m)}- J^ J^ Q*(rn1)q(m2)S{ml - m2), (6.45) 
p m=0 mi=(lm2=fl 

where 

/

oo 
h* {t - mT)r{t) dt (6.46) 

- O O 

/ O O 

h*{t)h{t + er)dt. (6.47) 
-oc 

We recognize z(m) as the matched filter output for symbol s(m). The term S(£) 
for different values of i are referred to as the s-parameters. 

The double-summation term in (6.45) can be interpreted as summing the el-
ements of a Hermitian symmetric matrix /(mi,7712) {/(τη,2,τηϊ) = /*(mi,JTi2)). 
The first "trick" is to rewrite the summation as the sum of the diagonal elements 
plus twice the real part of the sum of the lower triangular elements (due to the 
Hermitian property). Mathematically, 

J V , - 1 J V » - 1 J V . - l Λ Τ , - l m - l 

Σ Σ /(™ι>™2)= Σ /κ™)+ Σ E2Re^(m'fc)}· (6·48) 
m i — 0*712=0 m=0 m=l k=Q 

The second "trick" is to rewrite the sum of the lower triangular elements as sums 
along the off-diagonals (m — k = 1, m - k = 2, etc.), giving 

Λ Γ „ - 1 N . - l J V „ - 1 Λ Γ , - l m 

Σ Σ /("Μ>η*2) = Σ /("»·"»)+ Σ ¿2Re{/(m,m-€)}· (6-49) 
τηι=0τ7Ζ2=0 m = 0 m = l ¿ = 1 

Applying these two steps to (6.45) gives 

Λ Γ , - 1 

s = arg max V^ B(m), (6.50) 
qeSp ¿—' 

m=0 

where branch metric B(m) is given by 

B(m) =Re{q*{m 2z{m) - S{0)q(m) - 2(1 - <5(m)) ¿ 5(£)?(m - -
e=i J 

(6.51) 
This gives us a tree-search form of MLSD. Note that for M-PSK, \q{m)\2 = 1 for 
all possible symbol values, so that the 5(0) term can be omitted. 

To be able to use the Viterbi algorithm, we need the channel to have finite 
memory. This is true if 

S{£) ^ 0, i > Ls - 1, (6.52) 
where Ls depends on the delay spread of the medium response as well as properties 
of the pulse shape p(i). For example, for root-Nyquist pulse shaping and a symbol-
spaced medium response (τ( — £T, I — 0, ...,L — 1), Ls = L. In this case, we can 



128 MAXIMUM LIKELIHOOD SEQUENCE DETECTION 

rewrite the branch metric in (6.51) as 

B ( m ) = R e 5*(m) 
min(m,L., — 1) 1 

2z(m) - S(0)q{m) - 2(1 - ¿(m)) ^ S(i)qi(m - C) \ 

(6.53) 
Now we can use the Viterbi algorithm. After an initial start-up phase, we end up 
with the Viterbi algorithm with memory Ls — 1. When processing z(m), we have 
current states defined by different values of qm = \q(m), q(m — 1 ) , . . . , q(m — (Ls — 
2)] and previous states defined by different values of qm_i = [q{m — l),q{m — 
2),...,q(m-(Ls-l)\. 

The branch metric in (6.53) is sometimes referred to as the Ungerboeck metric. 
Observe that the front-end signal processing consists of a matched filter. In 

practice, this can be implemented using the partial-MF samples and matching to 
the medium response, as shown in (2.60). 

Because we need only work with the set of Ns matched filter decision variables, 
this set sometimes referred to as a set of sufficient statistics. Here the term statistic 
means decision variable. Thus, another way to motivate the matched filter is that 
it provides a set of sufficient statistics for MLSD. 

6.3.2.1 Direct and Forney forms In the beginning of the chapter, we used a Eu-
clidean distance metric with a symbol-spaced medium response. We will call this 
form the "direct form." We can derive this result from the MLSD formulation. A 
symbol-spaced medium response implies 

L-l 

h{t) = Σ gtM* - itT), (6.54) 

where we have used l\ instead of Î to avoid confusion with index Í for the s-
parameters. Substituting (6.54) into (6.46) and (6.47) and assuming p(i) is root-
Nyquist, 

L-\ 
z{m)=Yjgtlv{{m + el)T) (6.55) 

£,=() 

L - l 

S(£) = Σ »<>.+/. (6·56) 

where v(t) is the partial matched filter signal defined in (2.60) and we define gi1 to 
be zero for t\ less than zero or greater than L — 1. 
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Consider the matched filter term on the r.h.s. of (6.45). Substituting (6.55) and 
defining m,\ = m + ίχ, we can rewrite this term as 

A ± J2 2Re{q*(m)z(m)} 
m = 0 
J V . - l L - l 

= Σ X ) 2 R e { g ' ( m ) f t > ( ( m + i1)7')} 
m=() f l = 0 

L - l ΛΓ,-1+ί, 

= Σ Σ Z R e í ^ g ' C m x - ^ M Í r m T ) } 
í i = O m i = 0 + í i 
JV.+L-2 

= £ 2 Re{v*(miï>(m17 ,)} ) (6.57) 

where 

w<j(mï') = 5 3 5<Ί<?(™ - ¿ i ) (6.58) 

and g(m) is defined to be zero for m < 0. 
Now consider the s-parameter term on the r.h.s. of (6.45). Substituting (6.56) 

and defining m = mi + i\ and ii = m — rri2, we can rewrite this term as 

N . - l N. , -1 

B = - 53 Σ 9*(mi)9(m2)S'(m1 -m2) 
mi=() m2=() 
N. , -1 JV.-l 1,-1 

m i = ( ) m 2 = 0 <i=0 
Ν , - 1 L - l Ν , - 1 + < ! 

= - 5 3 Σ Σ 3Íi9*(m _^)ffm-m2g(m2) 
m 2 = 0 f 1 = 0 m = í i 
L - l ΛΓ,-1+ίι m 

= "Σ Σ Σ 9*il(¡"{m-(.l)g(2q{m-Í2) 
ί 1 = ( ) m=£i £ 2 =m-(JV, , - l ) 

JV, + L - 2 

Σ 
L - l 

53;?;1<7*(m-¿i) 
¿1=0 m=0 

N, + L - 2 
■ Σ MmT)\2, 

L - l 

5 3 f l í 2 9 * ( m - ¿ 2 
¿2 = 0 

(6.59) 

where ge2 = 0 for £2 < 0 and <?(m — £2) = 0 for m — £2 < 0. 
We can add terms to the MLSD metric that do not depend on the hypothesized 

symbols. In particular, considering adding the term 

JV.+L-2 

53 \v{mT)\\ 
m=0 

(6.60) 
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Substituting (6.57) and (6.59) into (6.45) and adding the term (6.60) gives 

N,+L-2 
s = arg max YJ —\v{mT)—vq{mT)\2 

qeSp ; 
ra=0 

N. + L-2 
= arg min V^ \v(mT) - vq(mT)\2. (6.61) 

qeS,, ' 

Thus, for the case of root-Nyquist pulse shaping and symbol-spaced paths, we have 
written the MLSD receiver in terms of minimizing the Euclidean distance metric. 

The Euclidean distance metric can also be used in the more general case by pre-
processing the received signal with a matched filter followed by a whitening filter 
(makes the noise samples uncorrelated). The uncorrelated noise samples allow the 
Euclidean distance metric to be used, and the overall metric is referred to as the 
Forney metric. 

We can interpret the direct form as a special case of the Forney form [Li]. The 
Forney form uses the Euclidean distance metric operating after performing whitened 
matched filtering. When the channel is assumed to be symbol-spaced, the whitened 
matched filter reduces to a filter matched to pulse shape, giving r(m). 

6.3.3 Given statistics 

We formulated MLSD assuming we had r(i) for all t. Sometimes we are given a set 
of statistics to work with that may or may not be sufficient. However, we can still 
formulate a conditional MLSD solution, conditioned on the information available. 
The procedure is similar to that given for r(t) except that one typically works with 
discrete samples rather than a continuous time function. 

6.3.4 Fractionally spaced MLSD 

When working with r(i), MLSD is considered fractionally spaced if the medium re-
sponse is fractionally spaced, so that the front-end MF can be expressed as matching 
to the pulse shape followed by a fractionally spaced MF. Thus, if fractionally spaced 
samples are used to complete the matched filtering, then MLSD is considered frac-
tionally spaced. 

Whether fractionally spaced MLSD is needed depends on the excess bandwidth, 
the sample timing, and whether the channel is dispersive. See Chapter 2 on frac-
tionally spaced MF for more details. 

6.3.5 Approximate forms 

Here we consider three standard approximate MLSD forms, sometimes referred to 
as near-ML approaches. Unlike the Viterbi algorithm, which effectively performs 
an exhaustive search of all possible sequences, these approximate forms perform a 
nonexhaustive search tree search. However, they hopefully perform an intelligent 
search, so that performance losses are minimal. 
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6.3.5.1 M-algorithm With the M-algorithm, path pruning is applied at each stage 
of a tree search. Only M paths are kept. Steps shown in italics are only used in the 
case of a finite decision depth. At each iteration, the following steps are performed. 

1. Path Extension: Each path is extended, creating M M candidate paths (the 
second M is the number of possible symbol values). 

2. Detection of oldest symbol: The best candidate path is identified and the 
oldest symbol in its path history becomes a detected symbol value. 

3. Ambiguity check. Any candidate path whose oldest symbol value is not the 
same as the detected symbol value is discarded (this step is sometimes omit-
ted). 

4. Path history truncation: The path histories are truncated to remove the oldest 
symbol, now decided. 

5. Viterbi pruning: Any paths that correspond to the same Viterbi state are 
compared and the nonbest ones are discarded (this step is sometimes omitted). 

6. Path selection: Of the remaining candidate paths, only the M best are kept. 

Notice that the last step requires an additional sorting operation, which adds to 
complexity. 

The M-algorithm is considered a breadth-first approach, in that it prunes by 
comparing paths of the same length. 

6.3.5.2 T-algorithm The T-algorithm is similar to the M-algorithm, except that 
the number of paths kept is not fixed, but determined by which path metrics pass 
a threshold test. 

6.3.5.3 Sequential decoding Sequential decoding is a depth-first approach. The 
idea is to continue along a path in the tree as long as the metric growth is "rea-
sonable" in some sense. When this is not the case, a decision about which path to 
"extend" next must be made. This involves comparing paths of unequal length. 

6.3.6 Performance results 

Like previous chapters, we consider a static, two-tap, symbol-spaced channel with 
relative path strengths 0 and —1 dB and path angles 0 and 90 degrees. LE uses 
a 31-tap, symbol-spaced filter centered on the first signal path and DFE uses a 
16-tap, symbol-spaced filter whose first tap is aligned with the first signal path. 
QPSK and root-Nyquist pulse shaping are assumed, so that MLSD has 4 states 
and 16 branch metrics computed each iteration. Extra symbols are generated at 
the beginning and end of each block to be equalized to avoid edge effects for LE and 
DFE and to avoid having to implement metric and state-size transients for MLSD. 
This creates performance issues at the edges, which are addressed by starting the 
MLSD before the first symbol of interest and ending it after the final symbol of 
interest. 
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Modem BER as a function of Eb/Nt) (SNR.) is shown in Fig. 6.10. At low 
SNR, all receivers perform similarly, as performance is noise-limited. At high SNR, 
MLSD performs better than DFE and LE. DFE and LE try to remove ISI through 
filtering and/or subtraction. As a result, signal energy collection is sacrificed for ISI 
suppression. MLSD does not have to trade signal energy, as it accounts for what 
the channel does to the signal rather than trying to partially undo it in some way. 

-2 0 2 4 6 8 10 12 14 

Eb/NO (dB) 

Figure 6.10 BER vs. Eb/N0 for QPSK. root-raised-cosine pulse shaping (Ü.22 rolloff). 
static, two-tap. symbol-spaced channel, with relative path strengths 0 and —1 dB, and path 
angles 0 and 90 degrees, single feedback tap. 

6.3.6.1 Fractionally spaced equalization results We now consider a two-path, half-
chip spaced channel with relative path strengths 0 and —1 dB and path angles 0 
and 90 degrees. The LE results correspond to 61 7'/2-spaced taps centered on the 
first signal path. The DFE results use a 31-tap, T/2-spaced forward filter with the 
first tap aligned with the first signal path. Also, ISI from 3 past symbols is removed, 
which removes most of the ISI. The MLSD results use a fractionally spaced, ideal 
matched filter front end and Ls = 4 (ISI from 3 past symbols is accounted for). DFE 
and MLSD performance is slightly worse when only 2 past symbols are considered. 
Note that in both cases, due to the ringing of the pulse shape, ISI from even earlier 
symbols is still present, though small. While this was ignored, it could be included 
in the forward filter and matched filter designs, respectively. In the latter case, this 
residual ISI could be modeled as nonstationary noise, giving rise to a matched filter 
in colored noise. 

Results are provided in Fig. 6.11. Relative performance of the different equalizers 
is similar to the symbol-spaced case. However, unlike the previous symbol-spaced 
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results, DFE and MLSD complexity have increased due to the need for most feed-
back taps and a larger state space, respectively. Compared to the previous figure, 
performance of each equalizer improves due to the lower delay spread of the channel. 

HALF-SYMBOL-SPACED CHANNEL 

IQ'1 

LU 

m 

I Q 2 

10"3 

-2 0 2 4 6 8 10 12 
Eb/N0 (dB) 

Figure 6.11 BER vs. Eb/N0 for QPSK, root-raised-cosine pulse shaping (0.22 rolloff), 
static, two-tap, half-symbol-spaeed channel, with relative path strengths 0 and —1 dB, and 
path angles 0 and 90 degrees, 3 feedback taps. 

6.3.6.2 16-QAM results Let's return to the static, two-tap, symbol-spaced chan-
nel with relative path strengths 0 and —1 dB and path angles 0 and 90 degrees. 
Only now consider 16-QAM instead of QPSK. Modem BER is shown as a function 
oîEb/Nt) (SNR) in Fig. 6.12. Both analytical (REF) and simulated (MFB) results 
are provided, the latter created through perfect subtraction of ISI from the previous 
and subsequent symbols. 

Relative to the QPSK results in Fig. 6.10, we see that all curves have shifted 
right. This is because 16-QAM pays a penalty in sending more than one bit on 
each orthogonal dimension. Otherwise, trends are similar. 

6.3.6.3 Fading results Now we consider fading channels. Consider the two-path, 
symbol-spaced fading channel (TwoTSfade). Each path experiences independent 
fading with average relative powers 0 and —1 dB. The phase angle settings are nó 
longer important, as the fading introduces a random, uniformly distributed angle. A 
block fading channel model is used, in which 2000 fading realizations are generated. 
For each realization, 200 symbols (plus edge symbols) are transmitted through the 
channel, noise is added, and the resulting signal is demodulated. 

Matched filter bound results were generated one of two ways. One is a semi-
analytical approach (labeled REF). For each fading realization, a channel gain is 
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16-QAM 
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Figure 6.12 BER vs. Eb/N0 for 1G-QAM, root-raised-eosine pulso shaping (0.22 rolloff), 
static, two-tap. symbol-spaced channel, with relative path strengths 0 and —1 dB, and path 
angles 0 and !)() degrees, single feedback tap. 

determined by summing the squares of the path coefficients. While the gain is 
1.0 on average, it will take on random values. For each value, the channel gain 
is used to scale the Eb/N» prior to evaluating the analytical expression. As the 
analytical expression assumes no ISI, this gives the matched filter bound. Each 
fading realization gives a different error rate. These error rates can then be averaged 
in the simulator to determine an average error rate. Another way that matched 
filter bound results were generated was by performing perfect ISI subtraction prior 
to matched filtering (results labeled MFB). 

Results for the TwoTSfade channel are given in Fig. 6.13. Note that the z-axis is 
labeled average Eb/NO to emphasize that it is averaged over the fading. Compared 
to the TwoTS results, the performance is worse for all receivers. While the fading 
sometimes gives a higher SINR and sometimes a lower SINR, it is the lower SINR 
error rates that dominate performance. 

Compared to the static results, the gains of DFE over LE are smaller. This 
is because performance is dominated by the cases when both paths fade, so that 
the instantaneous SNR is lower and the performance differences between the two 
approaches are less. Also notice that MF has a lower floor with fading. 

With a fading channel, there are two reasons why certain fading realizations give 
larger BER. One reason is that there is significant ISI (the two paths have similar 
strengths). The other reason is that the total signal power is low (both paths fade 
down at the same time). One way to isolate these two effects is to consider a system 
with power control. 
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Figure 6.13 BER vs. Eb/N0 for QPSK, root-raised-eosine pulse shaping (0.22 rolloff), 
fading, two-tap, symbol-spaced channel, with relative path strengths 0 and —1 dB. 

Power control is sometimes used to mitigate variation due to fading. Here we 
will focus on signal power variation and the technique of target-C power control. 
When the signal fades down in power, the receiver tells the transmitter to use more 
power. The transmitter ensures that the signal power (summed over all signal 
paths) is kept constant at the receiver. Such a form of power control makes sense, 
for example, for a CDMA uplink, in which users share how much power they are 
allowed to create at the intended receiver. Here we assume an ideal form, which is 
simulated by normalizing the fading coefficients of each fading realization so that 
their powers instantaneously sum to one. Note that we have ignored the fact that 
the transmitter has a maximum transmit power, so that it may not always be able 
to maintain a certain power at the receiver. 

Results for the TwoTSfade channel with power control are given in Fig. 6.14. 
Compared to the results without power control, overall performance is better, as 
the signal power is not allowed to vary either up or down due to fading. However, 
performance is more improved for LE and DFE than for MF. This is because with 
power control, performance is ISI limited at high SNR, and LE and DFE mitigate 
the effects of ISI. Thus, with power control, the gains of equalization are larger. 

So far we have examined bit error rate, averaged over different fading realizations. 
Is this what we should look at? The answer depends on how the communication 
system is being used (the application) and how the system is designed. For example, 
consider speech and the GSM system. Speech is divided into short speech frames, 
which are encoded with a forward error correction (FEC) code. The system has 
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POWER CONTROL 
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Figure 6.14 BER vs. Eb/N0 for QPSK. root-raised-cosine pulse .shaping (0.22 rolloff), 
fading, two-tap, symbol-spaced channel, with relative path strengths 0 and —1 dB, target-C 
power control. 

an option of transmitting a speech frame by dividing it up into multiple time slots 
and sending each slot on a different carrier frequency, which hopefully experiences 
different fading and interference. The speech frame is recovered by collecting bits 
from multiple slots and passing them through an FEC decoder. The coding is 
designed so that the FEC decoder performance depends on the average SINR of 
the different slots. Thus, speech quality is directly related to average BER, averaged 
over different fading realizations. 

However, there are other applications and systems for which average BER isn't 
the best way to measure performance. For example, consider an indoor, LTE system 
in which a short packet (1 ms) is sent over a nondispersive channel. Rate adaptation 
is used, depending on the performance of the receiver. A convenient measure of 
output performance is the notion of output SINR, (we will define this shortly). So for 
the example considered, it makes more sense to examine the distribution of output 
SINR, which is related to the distribution of data rates that can be supported. For 
example, the median output SINR will determine the median data rate supported. 
The data rate supported translates into how fast data is transported, which impacts 
the overall delay experienced by the user (latency). 

How do we measure the output SINR of an equalizer? One approach is to use 
analytical expressions that relate performance to the input SNR, the channel co-
efficients, and the equalization approach. While such analysis is highly useful in 
gaining insight into the performance of a particular equalization approach, there 
are some limitations to such analyses. Analysis can be difficult, cumbersome, and 
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sometimes inaccurate when approximations are made. Only in special cases is per-
formance accurately predicted by a relatively simple analysis. An example is linear 
equalization of CDM signals with large spreading factors, in which SINR expres-
sions are easy to compute, and performance is related directly to SINR because ISI 
can be accurately modeled as Gaussian, similar to the noise. 

A second approach is to measure performance at the output of the equalizer and 
map the result to an effective SINR. Here we will measure symbol error rate. Using 
the relations in (A.6) and (A.7), we can determine an effective Es/Nn, which we 
will define as output SINR. In practice, these equations are used to generate a table 
of SINR and SER values. Interpolation of table values is then used to determine 
an effective SINR from a measured SER. 

This second approach also has limitations. One limitation is that enough symbols 
must be simulated at each fading realization to obtain an accurate estimate of SER. 
This can be challenging when the instantaneous SINR is high, so that few, if any, 
symbols are in error. This also gives rise to a granularity issue, as we can only 
measure error rates of the form 0, 1/NS, 2/Ns, etc., where Ns is the number of 
symbols simulated. These limitations can be overcome by ensuring that Ns is large 
so that the range of interesting SINR. values corresponds to many error events (recall 
the 100 error events rule). 

Effective SINR. results were obtained for the TwoTSfade channel by generating 
1000 symbols (plus edge symbols not counted) for each of 2000 fading realizations. 
In Fig. 6.15, cumulative distribution functions (CDFs) are provided for various 
receivers for a 6 dB average received Eb/Na level (9 dB Es/No). Recall that the 
CDF value (y-axis) is the probability that the effective SINR is less than or equal 
to a particular SINR value (z-axis). Thus, smaller is better. For the MFB, output 
SINR was determined via measurement rather than semi-analytically. 

Observe that equalization provides a rightward shift in the CDF, making smaller 
SINR values less likely (larger SINR values more likely). As expected, the MMSE 
DFE provides higher SINR values than the MMSE LE. While difficult to see, the 
CDFs cross at low SINR, so that the MMSE DFE has more lower SINR values due 
to error propagation. The MFB acts as a lower bound CDF. 

Results with power control are given in Fig. 6.16. Relative to the previous 
results, there is less variation in effective SINR (quicker transition from 0 to 1) as 
expected. For the MFB, power control ensures that the effective SINR is the same 
for each fading realization (9 dB). However, because we used measured results, we 
see a slight variation. Similar to the previous results, the MMSE DFE provides 
more higher SINR values than MMSE LE. At low SINR, there is no crossover, as 
power control and the high target value ensure few decision errors. 

Sometimes certain receivers work well under certain fading conditions, whereas 
other receivers work well under other conditions. Such behavior can be identified 
using a scatter plot, plotting the effective SINR of one receiver against the effective 
SINR of the other receiver. Scatter plots can also be useful in determining behaviors 
under different fading scenarios. 

In Fig. 6.17, a scatter plot of MMSE DFE effective SINR vs. MMSE LE effective 
SINR is given. While the simulation was run for 2000 fading realizations, only the 
first 1000 realizations are used to generate the scatter plot (making the individual 
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effective SINR (dB) 

Figure 6.15 Cumulative distribution function of effective SINR for QPSK, root-raised-
cosine pulse shaping (0.22 rolloff). fading, two-tap, symbol-spaced channel, with relative 
path strengths 0 and —1 dB, at fi dB average received Ει,/Νο-

points easier to see). The line y = x is drawn to make it easier to see when one 
equalizer is performing better than another. 

When signal power is heavily faded (left portion of plot), we see that often MMSE 
DFE performs worse than MMSE LE, due to decision error propagation. Moving 
to the right of the plot, signal power increases and MMSE DFE does better, as 
expected. At very high SINR, we see a "grid" of performance values. This is due to 
the granularity issue discussed earlier. Some of the grid points occur below the line 
of equal performance, indicating MMSE LE is performing better. However, recall 
that we have few error events in this situation. Thus, the occurrence of these points 
is probably due to not simulating enough symbols so as to accurately measure the 
average symbol error rate. Keep in mind that for a particular fading realization and 
particular symbol, different receivers can be better or worse than others, depending 
on the ISI and noise realizations. 

For completeness, a scatter plot for the power control case is given in Fig. 6.18. 
Observe that the power reduces the variability in SINR, avoiding low SINR values 
due to fading signal power. 

6.4 MORE MATH 

When symbols are sent in parallel, we end up with a vector form of the Viterbi 
algorithm in which s(m) becomes a vector of symbols s(m). With multiple receive 
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POWER CONTROL 

effective SINR (dB) 

Figure 6.16 Cumulative distribution function of effective SINR for QPSK, root-raised-
cosine pulse shaping (0.22 rolloff), fading, two-tap, symbol-spaced channel, with relative path 
strengths 0 and —1 dB, at. 6 dB target received E\,/No with ideal target-C power control. 

antennas, the received signal r(t) becomes a vector r ( i ) . Wi th these generalizations 
and assuming nonstat ionary noise, (6.44) becomes 

s = arg max 
q€S„ ' É 2 —— OO 

N.-l 

/•OO /■ 

Jti~—oo Jti 

r(i2) - y/E¡ Σ H(ía - m2T)q(m2) 

N.-l 
r ( i i ) - y/Wa *jT Η ( ί ι - m i T ) q ( m i ) 

mi=0 

ΤΠ2=0 

where R _ 1 ( í i , Í 2 ) is defined by 

dt\dt2 

/ R( í i , Í2)R- _ 1 ( Í2 , Í3)dÍ2 = lSD(ti - h 
J ¿2 — — OO 

(6.62) 

(6.63) 

Various forms can be derived, depending on the assumptions regarding H ( i ) and 
R ( í i , i 2 ) . For the Ungerboeck form, the matched filter ou tpu t for symbol period m 
becomes a vector and the s-parameters become matrices. 
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Figure 6.17 Scatter plot of MMSE DFE effective SINR vs. MMSE LE effective SINR 
for QPSK. root-raised-cosine pulse shaping (0.22 rolloff), fading, two-tap, symbol-spaced 
channel, with relative path strengths 0 and —1 dB, fi dB average received E¡,/No-
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Figure 6.18 Scatter plot of MMSE DFE effective SINR vs. MMSE LE effective SINR 
for QPSK, root-raised-eosine pulse shaping (0.22 rolloff), fading, two-tap, symbol-spaced 
channel, with relative path strengths 0 and —1 dB, 6 dB received Eb/No duo to target-C 
power control. 
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6.4.1 Block form 

Consider the situation in which a vector of received samples can be modeled as 

r \= Hs + n, (6.64) 

where n is zero-mean with covariance C n . ïf H is triangular, we can use a tree-
search approach. In the more general case, the MLSD solution can be found using 
a brute-force, block approach, i.e., using 

s = arg max (r — Hs m ) Cn (r — Hs„ 
s7„esN" 

by trying each possible value for s one at a time. 

(6.65) 

6.4.2 Sphere decoding 

The idea with sphere decoding is to reduce the search space in (6.65) to only those 
sequences that produce a predicted received vector that falls within a sphere of 
radius p from the actual received vector. As long as p is large enough to include at 
least one predicted value, the MLSD solution will be found. 

Sphere decoding has been explored extensively for the MIMO scenario. Consider 
the case of 3 x 3 MIMO after the channel has been triangularized, so that we have 
the model 

/in hi2 hr.i 
0 hl2 h-23 
0 0 hm 

x\ 
X2 
x-Λ h 

«1 
S2 
S.'j + 

n\ 
« 2 

m 
(6.66) 

The sphere decoder looks for all symbol sets such that 

P = |xi - / i n s i -/ii2s2-/ii:tS:)|2-|-|a;2-'i22S2-'i23S3|2 + |a;:)-/i.').'iS:i|2 < P2· (6.67) 

With a conventional tree search, we would start with x3 and consider all possible 
values of s.j. Then we would introduce X2 and S2 and so on. No pruning would 
occur. 

With sphere decoding, we can impose the radius constraint at each stage. This 
is because if the final metric must be within the radius, then so must the partially 
accumulated metrics. Thus, at the end of stage 1, we can check that 

R t /i:«s:j|2 < P1- (6.68) 

Any value of s.) for which this is not true can be eliminated. After the second stage, 
we check 

\Χ-Λ - hxiSii]2 + \x2 - h,22S2 - /i2.)S.'i|2 < p1 (6.69) 

and discard any paths for which this is not true. 
If we choose p too large, we won't get to discard anything and have to perform 

a full tree search. If we choose p too small, we risk discarding everything at the 
end and missing the MLSD solution. Even if we choose a reasonable value for p, 
we may not get much pruning, particularly in the early stages. Like the basic tree 
search method, we can use the M- and T-algorithms to obtain approximate forms. 



MORE MATH 143 

6.4.3 More approximate forms 

Complexity is often dominated by the number of path metrics maintained (num-
ber of states if the Viterbi algorithm is used) and the number of branch metrics 
computed. Complexity can be reduced by reducing these numbers (at the expense 
of performance). In explaining these approaches, we will assume the direct form 
(Euclidean distance) and the Viterbi algorithm. It should be noted that some of 
the approaches have issues with regards to the Ungerboeck form. 

6.4.3.1 Channel shortening One way to reduce the number of states in the Viterbi 
algorithm is to reduce the memory of the channel or at least the memory of the 
significant channel coefficients. This can be done by prefiltering the received signal 
using a filter that concentrates signal energy into a few taps. Such an approach 
is approximate because either noise coloration due to prefiltering is not accounted 
for properly (which would lead to the same state space size) or smaller channel 
coefficients at large lags are ignored. There has been more recent work on channel 
shortening with all-pass filters, avoiding the noise coloration issue. 

6.4.3.2 RSSE and DFSE Reduced state sequence estimation (RSSE) provides two 
approaches to reducing the number of Viterbi states: decision feedback sequence 
estimation (DFSE) and set partitioning (SP). Recall that with the Viterbi algo-
rithm, there are ML~l states. With DFSE, the state space is reduced by reducing 
the memory assumed by the Viterbi algorithm (reducing L). For example, consider 
16-QAM, root-Nyquist pulse shaping, and a channel with three, symbol-spaced 
taps. The Viterbi algorithm would normally use 162 = 256 states and compute 
163 = 4096 branch metrics each iteration. If we ignore the channel path with the 
largest delay, we would only have 16 states and 256 branch metrics. Instead of 
completely ignoring ISI from the largest delay path, we subtract it using the sym-
bol value stored in the path history (which depends on the previous state being 
considered). Thus, unlike DFE, the value subtracted may be different depending 
on the previous state being considered. 

With SP, the state space is reduced by grouping possible symbol values into 
sets, reducing the effective M. Consider the example of a two-tap, symbol-spaced 
channel with 16-QAM and root-Nyquist pulse shaping. The Viterbi algorithm 
would have 16 states and form 256 branch metrics. We can partition these states 
into sets. For example, we can form four sets of four symbol values each (M' = 4). 
For now, assume each set corresponds to a particular quadrant in the I/Q plane. 
(This is not the best partition, but it simplifies the explanation). With pure MLSD, 
there would be four parallel connections between each of these "super-states." With 
SP, a decision is made on the previous symbol, so that the four values in the set 
are reduced to one. This reduces the number of parallel connections to one. Thus, 
we would like symbols in the same set to be as far apart as possible, which is not 
the case when forming sets using quadrants in the I/Q plane. 

In practice, we can use a combination of these two approaches. How to form good 
set partitions and how to handle memory two or larger are described in [Eyu88]. 

6.4.3.3 Assisted MLD The idea with assisted MLD (AMLD) is to use a separate, 
simpler equalizer to "assist" the MLSD process by reducing the number of sequences 
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that need to be considered. As an example, consider M-QAM, root-Nyquist pulse 
shaping, and a channel consisting of two symbol-spaced paths. Suppose we first 
perform linear equalization. However, instead of selecting one value for each symbol, 
we keep the N best values, where N < M. Next we perform a reduced search 
Viterbi algorithm in which we only consider the N values kept for each symbol. 
This means we have NL~l states instead of M L _ 1 and NL branch metrics instead 
of ML. The parameter TV is a design parameter, allowing us to trade complexity 
and performance. For example, if M — 16 and N = 4, we reduce the number of 
states from 16 to 4 and the number of branch metrics from 256 to 16. While we 
have added the complexity of linear equalization, the overall complexity can still 
be reduced due to the reduced search. 

Various extensions are possible. The first equalization stage need not be linear 
equalization, though it should be relatively simple. Also, the first stage can actually 
consist of multiple sub-stages. For example, the first stage could be LE, keeping 
N\ < M best symbol values. The second stage could be a hybrid form (see next 
subsection) in which pairs of symbols are jointly detected, considering TVf combi-
nations and keeping only N2 possible pair values, where N2 < Nf. The reduced 
search Viterbi algorithm would then consider symbol pairs. 

Multiple stages can also be used in conjunction with centrólas. In the first stage, 
the 16-QAM constellation is approximated as QPSK using the centroid of each 
quadrant. One or more centroide can be kept for further consideration. In the 
second stage, the centroide are expanded into the four constellation points that 
they represent. 

6.4.3.4 Sub-block forms In previous chapters, we introduced the notions of group 
LE and group DFE. We revisit these here, but view them from an MLSD point 
of view. We can interpret group LE as a form of sub-block MLSD. By modeling 
the symbols in the sub-block as M-ary symbols and modeling the other symbols 
as being Gaussian (colored noise), we obtain an approximate form of MLSD. This 
gives us a hybrid form that is part MLSD (joint detection of symbols within the 
sub-block) and part LE (linear filtering prior to joint detection). We can do the 
same with DFE. 

6.5 AN EXAMPLE 

GSM is a 2G cellular system [Rai91, Goo91]. GSM employs Gaussian Minimum 
Shift Keying (GMSK) with a certain precoding. Using [Lau86], this form of GMSK 
can be approximated as a form of partial response BPSK [Jun94]. Thus, even in 
a nondispersive channel, there is ISI due to the transmit pulse shape which spans 
roughly 3 symbol periods. The modem bit rate is 270.833 kbaud (symbol period 3.7 
/is). To handle a delay spread of up to 7.4 μβ, the equalizer needs to handle ISI from 
4 previous symbols. With MLSD, this leads to 16 states in the Viterbi algorithm. 
In [Ave89], the Ungerboeck metric is used in a 32-state Viterbi algorithm (handles 
more dispersion). Joint detection of cochannel interference is considered in [Che98]. 
In [Ben94], the M-algorithm is used to reduce the complexity of a 16-state MLSD. 
Setting M between 4 and 6 provides performance comparable to full MLSD for the 
scenarios considered. The M algorithm is also used in [Jun95a]. 
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EDGE is an evolution of GSM that provides higher data rates through 8-PSK 
and partial response signaling. To maintain reasonable complexity, reduced state 
forms of MLSD (RSSE and DFSE) along with channel shortening prefiltering have 
been developed for EDGE [AriOOa, SchOl, Dha02, Ger02a]. 

MLSD is also an option for the second-generation (2G) cellular system known as 
US TDMA (see Chapter 5). The symbol rate is 24.3 kbaud, giving a large symbol 
period (41.2 //s) relative to typical delay spreads. It is reasonable to address ISI 
from at least one previous symbol, giving rise to at least a 4-state Viterbi algorithm. 
In [Cho96], use of 4 and 16 states are considered, and 16 states is found useful with 
symbol-spaced MLSD when there are two T/2-spaced paths and sampling is aligned 
with the first path. In [Jam97], fractionally spaced MLSD is considered using a 4-
state Viterbi algorithm. In [SunOO], 4-state MLSD is only used when needed. Joint 
detection of cochannel interference is considered in [Haf04]. 

6.6 THE LITERATURE 

MLSD and ML state detection were proposed in [Chan66]. We saw that MF gives 
sufficient statistics for MLSD, leading to the Ungerboeck form [Ung74]. Using a 
WMF leads to the Forney form [For72]. The two have been shown to be mathe-
matically equivalent [Bot98]. An early history of MLSD can be found in [Bel79]. 

Other front ends include a brick-wall bandlimited filter [Vac81] and a zero-forcing 
linear equalizer [Bar89]. In general, all MLSD receivers with access to the same 
data should be equivalent [Bar89]. 

With multiple receive antennas, the Ungerboeck metric has the same form, ex-
cept now there is a multichannel matched filter [Mod86]. The Forney metric be-
comes the sum of metrics from different antennas, sometimes called metric combin-
ing. When cochannel interference is modeled as spatially colored noise, the term 
interference rejection combining (IRC) is sometimes used [Bot99]. Multichannel 
MLSD has been applied to underwater acoustic channels [Sto93]. 

Treating cochannel interference as noise (suppressed linearly) can also be used 
with DFSE [AriOOa]. In [Che94], ISI due to partial response signaling is handled 
with MLSD whereas ISI due to time dispersion is handled with DFE. In the GSM 
system, cochannel interference can be treated as improper or noncircular noise in 
formulating an MLSD solution [Hoe06]. 

Extension of MLSD to time-varying channels can be found in [Bot98, Har97[. 
The Ungerboeck form requires channel prediction, motivating a partial Ungerboeck 
form that avoids this [Bot98]. 

MLSD decision can be made on some symbols based on thresholding [OdlOO]. 
This property can be integrated into the Viterbi algorithm to reduce the number 
of states at a particular iteration without loss of performance [Luo07[. 

Early work on MLSD for joint detection of multiple signals can be found in 
work on crosstalk in wireline communications [Ett76] and CDMA [Sch79, Ver86[. 
MLSD has been considered for joint detection of cochannel interference in TDMA 
[Wal95, MÍ195, Gra98] systems as well as in underwater acoustic communications 
[Sto96j. It has been combined with multiple receive antennas in [Mil95[. 
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For CDMA, the challenges of using WMF are discussed in [Wei96]. MLSD at 
chip level for MUD is discussed in [SimOl, Tan03]. 

The expectation-maximization (EM) algorithm [Dem77] has been used to de-
velop iterative approaches to MLSD that resemble PIC [Nel96, BorOO, RapOO]. 
Other iterative approaches are given in [Var90, Var91, Shi96]. Interior point meth-
ods are explored in [TanOlb]. 

While the Viterbi algorithm was originally developed for decoding convolutional 
codes [Vit67, Vit71], we focus on its use in equalization. A tutorial on the Viterbi 
algorithm can be found in [For73]. Bellman's law of optimality can be found control 
theory textbooks, such as [Bro82]. The practical issues of decision depth, metric 
renormalization, and initialization are discussed in [For73]. As for criteria for trace-
back, the best metric rule is shown superior in [Erf94]. 

The Viterbi algorithm can be modified to keep more than just the best path 
[For73]. This has motivated the generalized Viterbi algorithm [Has87] and the list 
Viterbi [Ses94a] A discussion of these approaches, along with extensions, can be 
found in [NH95]. 

Use of the Viterbi algorithm for MLSD is considered in [Kob71, For72]. A WMF 
front end is assumed. The Viterbi algorithm can be simplified when the channel is 
sparse [Dah89, Ben96, Abr98, Mcg98]. 

In the purely MIMO case, the metrics can be computed efficiently using an 
expanding tree algorithm, which is based on rewriting the metric as a sum of terms 
in which earlier terms depend on fewer symbols [Cro92]. Triangularization can 
also be used in conjunction with sphere decoding [Hoc03[. Sphere decoding can 
be combined with the Viterbi algorithm [Vik06[. Sphere decoding has also been 
studied for CDMA multiuser detection [Bru04]. 

The M-algorithm can be found in the decoding literature [And84]. The use of the 
M-algorithm and variations for equalization can be found in [Cla87, Ses89], though 
the discussion of [Ver74] in [Bel79] suggests such an approach. The steps of the 
M algorithm given in this chapter are merged from the steps given in [And84] and 
[Jun95a]. The T algorithm can be found in [Sim90]. More sophisticated breadth-
first pruning approaches can be found in [Aul99, Aul03]. Adapting the number of 
states with the time variation of the fading channel is considered in [Zam99, Zam02]. 
Use of sequential decoding algorithms [And84], such as the stack algorithm, for 
equalization can be found in [For73, Xie90b, Xio90, Dai94]. 

Early work on prefiltering or channel shortening is summarized in [Eyu88] and 
includes [Fal73]. A survey of blind channel shortening approaches can be found 
in [Mar05]. Channel shortening for EDGE is described in [AriOOa, SchOl, Dha02, 
Ger02a], including the use of all-pass channel shortening. 

Reduced-state sequence estimation (RSSE) is developed in [Eyu88]. The special 
case of decision feedback sequence estimation (DFSE) was independently developed 
in [Due89], where it is referred to as delayed DFSE (DDFSE). When unwhitened 
decision variables are used, there is a bias in the decisions made by the DFSE 
which can be somewhat corrected using tentative future symbol decisions [Haf98]. 
Extensions of these ideas can be found in [Kam96, KimOOb]. 

Recall that DFE is sensitive as to whether the channel is minimum phase or 
not. A similar sensitivity occurs with approximate MLSD forms, such as DFSE. 
When the channel is nonminimum phase, all-pass filtering can be used to convert 
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the channel to minimum phase without changing the noise correlation properties 
[Cla87, Abr98, Ger02b]. In [Bal97], to address stability concerns with the all-pass 
filter, the channel is converted to maximum phase and the M-algorithm is used to 
process the data backwards in time. Even without prefiltering, processing the data 
in time reverse can be helpful [Mcg97]. 

For the purely MIMO scenario, an iterative clustering approach has been ex-
plored, in which higher-order modulations are approximated with a few centroids 
in the earliest iterations [Rup04, Jon05, Cui05, Agg07, Jia08]. 

There has also been work on assisted MLD (AMLD), in which simpler equaliza-
tion approaches are used to initially prune the search space [Fan04, Lov05, Nam09]. 
Many of these approaches are based on a form of Chase decoding [Cha72], in which 
soft bit magnitudes are used to identify which bits need to be left undecided in the 
pruning process. Multistage group detection forms of AMLD have been developed. 
In serial forms, symbols are added to a single group one at a time, with pruning 
after each addition [Kan04, Jia05]. In a parallel form, group detection is applied to 
small groups, followed by pruning before combining small groups into larger groups 
with additional pruning [BotlOb]. 

As for sub-block forms, sub-block DFE is described in [WÍ192]. Sub-block LE 
can be found in [Bot08]. An approximate MLSD form uses MLSD per user with 
coupling [MilOl]. 

PROBLEMS 

The idea 

6.1 Consider the Alice and Bob example. Suppose instead that n = — 1 and 
r2 = 4. Assume «o is unknown. 

a) Form a table of metrics for all combinations of SQ, SI and «2-
b) Which metric is best? What is the detected sequence? 

6.2 Consider the Alice and Bob example. Suppose instead that n = — 1 and 
r-i = 4. Assume s() = +1. 

a) Form a table of metrics for all combinations of s\ and β2· 
b) Which metric is best? What is the detected sequence? 

6.3 Consider the Alice and Bob example. Suppose instead that r\ is missing and 
r2 = 4. 

a) Form a table of metrics for all combinations of si and si. 
b) Which metric is best? What is the detected sequence? 

More details 

6.4 Consider the Alice and Bob example. Suppose instead that r\ = — 1 and 
Γ2 = 4. Assume s» = +1 . Consider the MLSD tree. 

a) What are the two path metrics after processing r i? 
b) What are the four path metrics after processing Γ2? 
c) Which metric is best? What is the detected sequence? 
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6.5 Consider the MIMO scenario in which c = 10, d = 7, e = 9, and / = 6. The 
received values are r\ = 9 and ri = 11. 

a) Form a table of metrics for all combinations of S\ and Si. 
b) Which metric is best? What is the detected sequence? 

6.6 Consider triangularization of the channel matrix for the general MIMO case. 
a) Evaluate the new channel matrix for c = 10, d = 7, e = 9, and / = 6. 
b) If r\ = 9 and r<¿ = 11, use a tree search to produce a table of metrics for 

possible combinations of s\ and si- What is the detected sequence? 

The math 

6.7 Consider the general MIMO scenario and QPSK. Suppose c = W,d = 7+j7, 
e = 9 — j9, and / = 6. The received values are n = 15 + jlO and r2 = 20 — j2. 

a) Form a table for all 16 possible symbol combinations. What is the best 
combination? 

6.8 Consider the general MIMO scenario and QPSK. Suppose c = 10, d — 0, 
e = 9 — j9, and / = 6. The received values are r\ = 15 + j3 and ri = 20 — j2. 
Consider performing and MLSD tree search, starting with r\. 

a) What are the four metrics after the first stage? 
b) What are the sixteen metrics after the second stage? What is the detected 

sequence? 
c) Consider using the M-algorithm, with M = 2. What two values of si are 

kept after the first stage? What are the 8 final metrics and the detected 
sequence? 

6.9 Consider using the Viterbi algorithm for processing received values of the 
form rm — csm + dsm-\ + nm with QPSK symbols. Suppose a finite set of symbols, 
.so through s<) are transmitted. No symbols are sent either before or after. 

a) If we are given received values ro through r«, how many current states are 
needed in the first iteration? How many current states are needed in the 
last iteration? 

b) If we are given received values ro through rw, how many current states 
are needed in the last iteration? 

c) Suppose we know «o, which is a pilot symbol. If we are given received 
values r\ through rj), how many current states are needed in the first 
iteration? 

6.10 Consider using the Viterbi algorithm for processing received values of the 
form Tm — cSm ~\~ d*sm—i -f~ cSm_2 ~̂ ^ m ^*^^ QPSK symbols. Suppose a finite set of 
symbols, s(> through s» are transmitted. No symbols are sent either before or after. 

a) If we are given received values ro through r<j, how many current states are 
needed in the first iteration? How many current states are needed in the 
last iteration? 

b) If we are given received values rn through rio, how many current states 
are needed in the last iteration? 
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c) Suppose we know «o, which is a pilot symbol. If we are given received 
values r\ through rg, how many current states are needed in the first 
iteration? 

6.11 In the Viterbi algorithm, consider a particular current state. 
a) What part of each candidate metric is the same (in common)? 
b) What part of each candidate metric could be different? 
c) Can we determine which candidate will win without computing the part 

in common? 
d) Can we avoid computing the part in common and simply omit it? 





CHAPTER 7 

ADVANCED TOPICS 

In the previous chapter we considered MLSD, which provides one way to account for 
ISI rather than removing it and minimizes sequence error rate. In this chapter we 
consider another such approach, maximum a posteriori symbol detection (MAPSD), 
which minimizes symbol error rate. Next we introduce the notion of coding, in 
which additional symbols are transmitted to provide error detection and/or error 
correction at the receiver. To do this well, generation of soft information (reliability 
or confidence measures) in the equalization process is needed. Finally, we explore 
ways of performing equalization and decoding together, taking better advantage of 
the structure that the coding gives the received signal. 

7.1 THE IDEA 

We start with an introduction to MAP symbol detection. Extracting soft informa-
tion from different equalization approaches is discussed. The section ends with a 
discussion of joint demodulation and decoding. 

7.1.1 MAP symbol detection 

In the previous chapter, we took advantage of the fact that symbols can be only 
+1 or —1, allowing us to hypothesize symbol sequences and find the sequence that 
best fits the received data samples. Such an approach minimizes the chance of 
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detecting the wrong sequence. Suppose we have a different performance criterion. 
Suppose we want to minimize the chance of detecting the wrong symbol value for 
a particular symbol. Does MLSD minimize that as well? 

The answer is no. To minimize the chance of making a symbol error for «2, it 
is not enough to find the best sequence metric. We must consider all the sequence 
metrics and divide them into two groups: one corresponding to S2 = +1 and 
one corresponding to S2 = — 1. We use the first group to form a symbol metric 
associated with S2 = +1 (¿(«2 = +1)) and the second group to form a symbol 
metric associated with S2 = —1 (¿(«2 = —1))· The larger of these two metrics 
indicates which symbol value to use for the detected value. 

Consider the Alice and Bob example and suppose we wish to detect symbol 
S2- The sequence metrics are given in Table 6.1. Combinations 1, 3, 5, and 7 
correspond to the hypothesis S2 = +1. Combinations 2, 4, 6, and 8 correspond to 
the hypothesis S2 = — 1. 

So what do we use for the symbol metric? It turns out that we want to sum 
likelihoods of the different sequences, which ends up being the sum of exponentials, 
with exponents related to the sequence metrics. Specifically, the exponents are the 
negative of the sequence values divided by twice the noise power (200). Thus, 

e(-4O/200) + e(-4fi8/20O) + e(-436/200) + e(-144/20O) ¡j j ) 

0.8187 + 0.0963 + 0.1130 + 0.4868 = 1.5149 (7.2) 
e(-ii80/2(K)) + e(-:i88/200) + e(-l()76/200) + e(-64/200) (73 ) 

0.0334 + 0.1437 + 0.0046 + 0.7261 = 0.90783, (7.4) 

where e is Euler's number, approximately 2.71. Observe that the first metric is 
larger, so the detected value would be S2 = +1 . 

So where did this metric come from? It is related to the likelihood or probability 
that S2 takes on a certain value, given the two received values. Before obtaining 
the received values, we would assume the likelihood of S2 being +1 or —1 is 0.5. 
This is referred to as the a priori (Latin) or prior likelihood, sometimes denoted 
P{s2 = +1}. It is the likelihood prior to receiving the data (prior to the channel). 
The likelihood after receiving the data is referred to as the a posteriori likelihood, 
sometimes denoted P{s2 = +l|i"}. As the metric is related to the likelihood of the 
symbol taking on a certain value after obtaining the received samples, this form 
of equalization is referred to as Maximum a posteriori (MAP) symbol detection 
(MAPSD). We have to be careful, because the "S" in MAPSD refers to "symbol" 
whereas it refers to "sequence" in MLSD. 

There is a second aspect of MAPSD that needs to be mentioned. There is a way 
in the symbol metric to add prior information about the symbols. For example, 
suppose we are told that the probabilities associated with the symbol being +1 
and —1 are 0.7 and 0.3 (instead of 0.5 and 0.5). We can take advantage of this 
information by including it in the metric. 

In general, MAP approaches incorporate prior information whereas ML ap-
proaches do not. Thus, there exists MAP sequence detection which has a metric 
similar to MLSD, except there is a way to add prior information. Also, there 
exists ML symbol detection, in which prior information is not included. You may 
have noticed that our example above did not explicitly include prior information. 

L(s2 = +1) 

L(s2 = -1 ) 
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Traditionally, we still call it MAPSD, even though strictly speaking its ML sym-
bol detection. In general, ML detection can be viewed as a special case of MAP 
detection in which a symbol or sequence values are assumed equi-likely. 

7.1.2 Soft information 

So far, we have concentrated on recovering the binary symbols being transmitted. 
In reality, we are interested on underlying information being sent. Often a code is 
used that relates the information to the transmitted symbols. Consider the Alice 
and Bob example in Table 1.1, in which there are three possible messages. Notice 
that two binary symbols are used to represent the message. Because two binary 
symbols can represent up to four messages, there is one pattern that is not used 
(s\ = —1, S2 = +1). This fact can be used when decoding the message. 

In the Alice and Bob example, when we perform MAPSD, the detected values are 
Si = —1, S2 — +1 , an invalid combination. That means there is an error somewhere 
in the detected sequence. But where? To answer this question, we need to know 
more than just the detected symbol values. We need to know how confident we are 
of each symbol value. 

Soft information generation is about assigning a confidence level or likelihood to 
each symbol value. Ideally it is a function of the likelihood that a symbol equals 
a certain value, given the received signal (Pr{s2 = +1|τ~})- But wait a minute. In 
the previous subsection, we used symbol metrics related to symbol likelihoods in 
MAPSD. In fact, they were proportional to symbol likelihoods. Thus, if we are 
using MAPSD, then we can use the symbol metrics as the soft information! 

7.1.2.1 Using soft information But what do we do with the soft information? 
Consider the Alice and Bob example in Table 1.1. Suppose we use MAPSD and 
form the symbol metrics given in Table 7.1. Notice that the symbol metrics for the 
two symbol values do not add to one. That is because we used metrics proportional 
to a posteriori likelihoods. Though not necessary, we could normalize each pair by 
its sum to get likelihoods that add to one. 

To decode the message using the soft information, we form message metrics 
by multiplying the symbol metrics corresponding to a particular message. For 
example, to form a metric for message 1, we would multiply the symbol metrics 
L(s1 = +1) = 0.96975 and L(s2 = -1 ) = 0.90783, giving 0.8804. We would need to 
form metrics for all possible messages, as shown in Table 7.2. The decoded message 
is the one with the largest metric, in this case message 3, which is correct. 

Table 7.1 Examplo of MAPSD symbol metrics 

Symbol Metric Value 
L(s1 = +1) 0.96975 
L(si = -1) 1.4529 
LÍS2 = +1) 1.5149 
L(s2 = -1) 0.90783 
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Table 7.2 Example of message metrics formed from MAPSD metrics 

Message Symbol Sequence Message Metric 
Î +1 - 1 0.880 
2 - 1 - 1 1.319 
3 +1 +1 1.469 

Observe what happened. With MAPSD, we detected si = —1 and ¿2 = +1 , 
which is not a valid message. When we used soft information, we only considered 
valid messages and determined the message to be «i = +1 , S2 = +1> which is 
correct. Thus, we corrected the error that MAPSD made in s\. The soft information 
allowed us to indirectly find and correct the detection error. 

7.1.2.2 Soft information from other equalizers What if we aren't using MAPSD? 
Then how do we get soft information? For MF, DFE and LE, it turns out the 
decision variable can be interpreted as a scaled estimate of the log of the a posteriori 
likelihood that the symbol is +1 . The soft value for the symbol being a —1 is simply 
the negative of the decision variable. Because these are log values, decoding involves 
adding soft values rather than multiplying. With this approach, we don't have to 
worry about what the scaling factor is, as it won't change the result as long as the 
scaling is positive. 

As an example, suppose the decision variables are the values given in Table 4.1 
for MMSE LE. Then the message metric for message 1 would be (—0.18914) + 
(—0.26488) = —0.454. The message metrics for all possible messages are given in 
Table 7.3. Observe that despite errors in individual symbols, the correct message 
is decoded. 

Table 7.3 Example of message metrics formed from MMSE LE metrics 

Message Symbol Sequence Message Metric 
Ï +1 - 1 -0.454 
2 - 1 - 1 -0.0757 
3 +1 +1 0.0757 

What about soft information for MLSD? As the sequence metrics are related 
to log-likelihoods of sequences, one approach for obtaining soft information for a 
symbol, say S2, is to take the difference of two sequence metrics. The first sequence 
metric is the detected sequence metric. The second sequence metric is obtained by 
setting all the symbols to their detected values, except for symbol S2, which is set 
to the opposite of the detected value. For example, consider the sequence metrics 
given in Table 6.1. The detected sequence is s<) = +1 , S\ — +1 , and S2 = +1 
and has sequence metric 40. To obtain a soft value for si, we would consider the 
sequence s(> = +1, sj = —1, and S2 = +1 which has sequence metric 468. The 
soft value magnitude would be |468 — 40| or 428. The soft value sign would be the 
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detected value. Thus, the signed soft value would be +428. Similarly, the signed 
soft value for s2 would be +640. 

The approach just described is optimistic, in that it implicitly assumes the other 
detected symbol values are correct. This is why we only change one symbol value. 
More accurate soft information can be obtained by defining the second sequence 
metric as the best metric corresponding to the set of possible sequences for which 
52 is opposite to its detected value. 

What we're really doing is approximating the MAPSD approach for soft infor-
mation generation with the MLSD metrics. Specifically, we are assuming that for 
the set of sequences for which the s2 is the detected value, the detected sequence 
dominates. Similarly, for the set of sequences for which s^ is not the detected 
value, one sequence dominates. This notion of considering only dominant terms 
when forming soft information is referred to as dual maxima or simply dual-max. 

7.1.2.3 Coding In general, some form of forward error correction (FEC) encoding 
is used to protect the message symbols. One way to achieve this is to send additional 
symbols that are functions of the message symbols. This adds extra information 
or redundancy to the packet, which can be used to correct symbol errors during 
the decoding process. Coding is also used for forward error detection (FED). In 
general, some codes are designed for FEC and some for FED. However, they need 
not be used the way they were intended to be used. 

A simple example of a code for either FEC or FED is a parity check code. In 
the Alice and Bob example, we sent two symbols, si and s2. We could send a third 
symbol, S3 = S1S2· First, suppose the coding is used for FED. At the receiver, we 
would check whether S3 is equal to S1I2· If not, an error would be declared. (One 
way to handle such an error is to have the packet sent a second time.) Second, 
suppose the coding is used for FEC. At the receiver, we would use r\, r2 and 
r.-j to form soft information. For example, suppose the MMSE linear equalization 
decision variables have values z\ — —0.18914, 22 = 0.26488, and Z3 = 0.16822. 
In the decoding process, we would form message metrics for each possible metric. 
For example, message 1 has si = +1 and s2 = —1· The parity symbol would be 
53 = (+1)(—1) = —1. The message metric would be (+l)«i + (—1)22 + (—1)^3, 
which equals —0.622246. For messages 2 and 3, the message metrics would be 
0.092477 and 0.243956. We would declare the third message the detected message 
as it has the largest message metric. 

7.1.3 Joint demodulation and decoding 

With MLSD and MAPSD, we take advantage of the fact that the symbols can only 
take on the values +1 and —1. There is further signal structure that we can use 
to our advantage. We can use the fact that there are a finite number of possible 
messages or packet values. All symbol sequences are not possible. 

The best way to use this information would be to perform maximum likelihood 
packet detection (MLPD). Like MLSD, we consider all possible packet values (a 
subset of all possible symbol sequences) and form a metric for each one. The 
packet with the best metric is the detected packet value or message. 
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Let's look at the Alice and Bob example. From Table 1.1, we see that there are 
three messages encoded with two binary symbols. The combination si = — 1 and 
«2 = +1 is not a valid message. Thus, with MLPD, we would not consider that 
combination when forming metrics. In Table 6.1, we would not look at rows 3 and 
7. It turns out that in this case, we wouldn't have selected rows 3 or 7 anyway, 
because their metrics are too large. However, in the general case, there are times 
when the noise would cause the metrics in rows 3 or 7 to be the best. By using 
knowledge that these rows cannot occur, we would avoid making a packet error at 
such times. 

In general, MLPD is fairly complex, as there are usually a lot of possible packet 
values. As a result, a lower-complexity iterative approach has been developed, in 
which equalization and decoding are performed more than once, with each process 
feeding information to the other. This approach is referred to as turbo equalization. 

7.2 MORE DETAILS 

7.2.1 MAP symbol detection 

Notice that when we compute each metric, there is one term in the summation that 
is larger than the rest. To reduce complexity, we can approximate the summation 
by its largest term, i.e., 

L(s2 = +1) « e (-4 , l / l l l 0 ) = 0.8187 (7.5) 
L(s2 = -1 ) « e(-r ,4/1( , l , ) = 0.7261. (7.6) 

While the approximation is not that accurate in this example, it does lead to the 
same detected value. This approximation is referred to as the dual maxima approx-
imation. The name comes from the fact that there are two (dual) summations, and 
we keep the maximum exponent (closest to zero) in each case. The approximation 
works best at high SNR (low σ2). 

There is a numerical issue with MAPSD. At high SNR, σ2 becomes small, making 
the exponents negative numbers with large magnitudes. This makes the result 
close to zero, which may end up being represented by zero in a machine, such as a 
calculator or computer. This is sometimes called the underflow problem. 

How do we solve this? If we scale both symbol metrics by the same positive 
number, we don't change which one is bigger. In the example above, what if we 
scaled each metric by exp(40/100), where we've used the notation exp(a:) = ex. 
This would cause the largest term in the summation to be 1 and all other terms to 
be less than one. This would guarantee that at least one term would not underflow, 
which is enough to determine a detected value with MAPSD. 

However, if we perform the scaling after computing the individual terms, it would 
be too late. So, we use the fact that 

exp(o) exp(6) = exp(o + b). (7.7) 

Since we will ultimately negate the sequence metric, we need to subtract 40 from 
each sequence metric before forming the exponentials. In general, we would find the 
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minimum sequence metric and subtract it from all sequence metrics before forming 
symbol metrics. 

Revisiting the Alice and Bob example, we would take the sequence metrics in 
Table 6.1, identify 40 as the minimum value, and then subtract it from all sequence 
metrics, giving the normalized sequence metrics in Table 7.4. 

Table 7.4 Example of normalized sequence metrics 

Index Hypothesis Metric 
~WWW~ 

~ +1 +1 +1 Ö 
2 +1 +1 - 1 640 
3 +1 - 1 +1 428 
4 +1 - 1 - 1 348 
5 - 1 +1 +1 396 
6 - 1 +1 - 1 1036 
7 - 1 - 1 +1 104 
8 - 1 - 1 - 1 24 

It turns out for a lot of operating scenarios, MLSD and MAPSD provide similar 
performance in terms of sequence and symbol error rate. Only at very low SNR 
does each provide an advantage in terms of the error rate it minimizes. However, as 
we will see in the next section, MAPSD is helpful in understanding soft information 
generation. 

7.2.2 Soft information 

To explore soft information further, we start with the log-likelihood ratio, a common 
way of representing soft bit information. Then, an example of an encoder and 
decoder is introduced. Finally, the notion of joint demodulation and decoding is 
considered. 

7.2.2.1 The log-likelihood ratio Notice that we had two soft values when using 
MAPSD symbol metrics but only one soft value when using other forms of equal-
ization. This is because the other equalization approaches were producing a soft 
value proportional to the log of the ratio of the two bit likelihoods. We call this 
ratio the log-likelihood ratio (LLR). 

LLR™ = l o g U { S m = - i w J ( 7 · 8 ) 

= log(Pr{Sm = + l | r } ) - l o g ( P r { S m = - l | r } ) . (7.9) 

Here is a summary of the advantages of using LLRs. 

1. We only need to find something proportional to the likelihood, as any scaling 
factors divide out when taking the ratio. 

2. We only need to store one soft value per bit, rather than two. 

3. The sign of the LLR gives the detected symbol value. 
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Thus, for MAPSD, we can also form an LLR by taking the log of the ratio of the 
two symbol metrics. 

Now for an example. Referring to Table 7.1, the signed soft value for s% would be 
log(0.969975/1.4529) = -0.4043. Similarly, the signed soft value would be 0.5120 
for «2· 

How do we use LLRs in decoding? Because the likelihood of the symbol being 
+ 1 is in the numerator, we can think of the LLR as the log of the symbol metric 
for the symbol being +1. The symbol metric for the symbol being —1 is simply the 
negative of the LLR. As a result, we can perform decoding by correlating the soft 
values to the hypothetical message values. A correlation is obtained by forming 
products of corresponding values and summing. Thus, for the MAPSD case, the 
message metric for message 1 would be (+l)(-0.4043) + (-1)(0.5120) = -0.9163. 

7.2.2.2 The (7,4) Hamming code There are different kinds of FEC codes. One 
kind is a block code, in which the message symbols are divided up into blocks, and 
each block is encoded separately. For example, consider a Hamming code in which 4 
information bits (¿j, ¿2, ¿3 and ¿4) are encoded into 7 modem bits (a 7-bit codeword), 
sometimes called a (7,4) Hamming code. This is done by also transmitting 3 check 
bits (ci, C2 and C3), which are computed as 

C\ = ¿l¿2¿4 

C2 = íi¿3¿4 

C.-j = ¿2*3*4- ( 7 · 1 0 ) 

If no errors occur during detection, then the detected values will also satisfy these 
equations. Otherwise, an error will have been detected. Note that there can be 
errors in the check bits as well as the information bits. 

If we are sure only one error has occurred, there is a way to detect it without soft 
information. This particular Hamming code has the property that it can correct 
single errors using only the hard decisions. It works like this. We form a syndrome 
by forming products 

S i = Cl¿l¿2¿4 

Si = C2¿ii:s¿4 

S-Λ = C;iÍ2Í\iÍA· (7 .11) 

If there are no errors, then all three syndrome values should be +1 . Why? Consider 
Si. We know that ¿i¿2¿4 = Ci, so that ci¿i¿2¿4 should equal c\ which is always +1 . 
Similar arguments apply to the other syndromes. 

If one or more of the syndrome elements are —1, we know there has been an 
error. It turns out that the Hamming code is designed to tell us the location of 
the error, assuming only one error occurred. First, we need to think of the bits as 
having the positions shown in Table 7.5. Second, we need to map the +1 and —1 
syndrome values to 0 and 1, i.e., 

Bfc = ( l - S f c ) / 2 . (7.12) 

Third, we can determine the position of the error using 

p = Bi + 2B2 + 4B.S. (7.13) 
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While it seems like magic, it's really clever engineering by Richard Hamming. 

Table 7.5 (7,4) Hamming code bit positions 

Position Bit 
Ï c7 
2 C2 
3 ¿i 
4 c3 
5 ¿2 
6 ¿3 
7 ¿4 

Let's do an example. Suppose i\ = i2 = +1 and ¿3 = ¿4 = —1. From (7.10), 

ci = (+1)(+1)(-1) = - 1 
C2 = (+1)( -1) ( -1) = +1 
<* = (+1)( -1) ( -1) = +1 . (7.14) 

At the receiver, suppose there is a single error in ¿3, so that ¿3 = +1. All the other 
detected values are correct. When we form the syndrome, any equation which 
includes ¿3 will give —1. Thus, from (7.11), we will get 

St = +1 
s2 = -1 
S3 = - 1 . (7.15) 

Mapping these to Boolean values gives B\ = 0, Bi = 1 and B3 = 1. From (7.13), 
the error is in position 6 which, according to Table 7.5, indicates that ¿3 is in error. 
It worked! 

The above procedure is referred to as hard decision decoding. We can obtain 
better performance (fewer blocks in error) by using soft decision decoding. Equal-
ization would be used to generate soft information. For each of 16 valid messages, 
a message metric would be determined. The message with the largest metric would 
give the detected message. Depending on the soft information, it is possible to 
correct more than one error. 

Let's continue the earlier example. The information and check bits are i\ = ¿2 = 
+1, ¿3 = ¿4 = —1, c\ = —1, and C2 = c3 = +1. At the receiver, suppose the signed 
soft values for i\ through ¿4 and c\ through C3 are 9, — 3, — 1, 2, — 7, 8, 5. 
Notice that there are 2 errors (¿2 and ¿4). However, their soft values are small, 
which is helpful in decoding. All possible codewords are listed in Table 7.6 along 
with their soft decision decoding metrics. Observe that the largest decoding metric 
(the fourth possible message) corresponds to the correct set of bit values. 

In cellular communication systems, other codes are used for FEC, such as con-
volution^ codes, turbo codes, and low-density parity-check (LDPC) codes. They 
are usually characterized by a coding rate. The coding rate is the number of in-
formation bits that enter the coding process divided by the number of modem bits 
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Table 7.6 Example of message metrics for (7.4) Hamming code 

Message 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Information Bits 
+1 +1 +1 +1 
+1 +1 +1 - 1 
+1 +1 - 1 +1 
+ 1 + 1 - 1 - 1 
+ 1 - 1 +1 +1 
+1 - 1 +1 - 1 
+1 - 1 - 1 +1 
+1 - 1 - 1 - 1 
- 1 +1 +1 +1 
- 1 + 1 +1 - 1 
- 1 + 1 - 1 +1 
- 1 +1 - 1 - 1 
- 1 - 1 + 1 +1 
- 1 - 1 + 1 - 1 
- 1 - 1 - 1 + 1 
- 1 - 1 - 1 - 1 

Check Bits 

4-1 4-1 4-1 
- 1 - 1 - 1 
4-1 - 1 - 1 
- 1 4-1 4-1 
- 1 4-1 - 1 
4-1 - 1 4-1 
- 1 - 1 4-1 
4-1 4-1 - 1 
- 1 - 1 4-1 
4-1 4-1 - 1 
- 1 4-1 - 1 
4-1 - 1 4-1 
4-1 - 1 - 1 
- 1 4-1 4-1 
4-1 4-1 4-1 
- 1 - 1 - 1 

Message Metric 
13 
-3 

-11 
25 
23 
-1 
19 
7 

-7 
-19 

1 
-23 
-25 
11 
3 

-13 

that exit the coding process. Thus, if there are 400 information bits and we encode 
them into 600 modem bits, we are using a rate 2/3 code. In general, lower rate 
codes are more powerful, being able to correct more errors. 

7.2.3 Joint demodulation and decoding 

Let's consider joint demodulation and decoding for the case of MLSD and the (7,4) 
Hamming code. In Chapter 6, we introduced the notion of MLSD as a tree search, 
using the tree in Fig. 6.5. The branches of the tree corresponded to all possible 
symbol sequences. When we including the fact that the symbol sequences were 
generated with a code, we can immediately prune the tree and drop any branches 
that do not correspond to a valid codeword. 

For the (7,4) Hamming code, 7 bits are transmitted. With conventional MLSD, 
there would be 27 = 128 possible sequences. With joint demodulation and decoding, 
there would be only 24 = 16 possible sequences. We would form metrics for each 
possible sequence using a tree with 16 final branches. 

7.3 THE MATH 

7.3.1 MAP symbol detection 

MAPSD tries to find the symbol value that maximizes the conditional symbol likeli-
hood, conditioned on the received signal. How does this differ from MLSD? There 
are two main differences. First, MLSD tries to find a sequence value, not a symbol 
value. Second, MLSD tries to maximize the received signal likelihood, not a symbol 
likelihood. 

The implication of first difference is that MAPSD will focus on each symbol 
separately. As a result, it will minimize symbol error rate, as opposed to sequence 
error rate. Keep in mind that when detecting a particular symbol, MAPSD will 



THE MATH 161 

still take advantage of the entire received signal and the fact that other, discrete 
symbols are being sent. 

The implication of the second difference is that MAPSD will allow us to introduce 
prior information about the symbol likelihoods. Mathematically, MAPSD gives 

s(m) — arg max Pr{s(m) = q(m)\r(t) Vi}, (7-16) 
q(m,)eS 

where we use Pr{·} to denote likelihood, which can be either a discrete probability 
(sum to one) or a PDF value (integrates to one). 

Thus, we find the hypothetical symbol value q(m) that is most likely, given the 
received signal. Applying Bayes' rule, we can rewrite this as 

= a r g m a x Pr{r(«)Vtk(m) = g(m)}l>rMm) = g(m)} 
V ' g(m)es Pr{r(í)Ví} v ; 

Each of the three terms on the r.h.s. is discussed separately. 
It helps to start with the second term in the numerator. This term is the a priori 

or prior information regarding the symbol. If we knew that the possible symbol 
values are not equi-likely, we would introduce that information here. 

The first term in the numerator looks like the MLSD criterion, except the likeli-
hood of the received signal is conditioned on a single symbol, rather than a sequence. 
Thus, this first term is really an ML symbol detection metric. We will see later that 
this term can also include prior information, prior information about other symbols 
besides s(m). 

The term in the denominator is the likelihood of the received signal. As it is an 
unconditional likelihood, it will be the same for each value of q(m). Thus, we can 
ignore this term when performing the maximization operation. 

We can rewrite the first term in the numerator in a way that relates it to sequence 
detection. Let s m denote the subsequence of s that excludes s(m), and let qm 

denote a hypothetical value for s m . Also, let S^'~x denote the set of all possible 
subsequences for sm. Then, we can write 

Pr{r(i) Vt|« = q(m)} = £ Pr{r(i) Vt|«(m) = (?(m), sm = q m } 

xPr{s m = q m } . (7.18) 

Using this result and dropping the denominator term gives the MAP symbol metric 

P{s = q(m)\r(t) Vi} = £ Pr{r(t) Vt|e(m) = q(m),sm = q } m 

xPr{s(m) = 9(m)}Pr}sm = q m } . (7.19) 

Observe that the metric consists of the sum of a product of three terms. The first 
term is the MLSD metric for a particular sequence. However, it is only evaluated for 
sequences for which s(m) = q(m). The second and third terms give prior sequence 
likelihood information. Here is where prior information about other symbols can 
be introduced. 
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If we assume no prior information (all sequences equi-likely), then (7.19) simpli-
fies to 

P{s = h(m)\r{t) Vi} = ^ Pr{r(t) \/t\s(m) = h(m),sm = hm}, (7.20) 

where the common sequence likelihood has been dropped. Thus, when symbols are 
all equi-likely, MAPSD becomes ML symbol detection. 

Recall that MLSD had an efficient implementation, the Viterbi algorithm. MAPSD 
has a similar, efficient form, the BCJR algorithm. After introducing the BCJR al-
gorithm, certain approximate MAPSD forms are introduced. 

7.3.1.1 The BCJR algorithm To explain the BCJR algorithm, it helps to consider 
the three-path example used to explain the Viterbi algorithm. However, to make 
the notation closer to that used in the original explanation of the BCJR algorithm 
[Bah74], we rewrite (6.30) as 

rt μ cbt + dbt-i + efet_2 + nt, (7.21) 

where bt is a binary symbol (+1 or —1) and t is a discrete symbol period index. 
The trellis diagram is shown in Fig. 6.8, which is reproduced in Fig. 7.1 using the 
new notation. 

We assume we have a set of received samples from ί = 1 through t = r, de-
noted Y{. Consider detecting bit bt-i- MAPSD involves determining the larger 
of two conditional bit likelihoods: Pr{bÉ_i = +1|V7} and Pr{bs_i = -1 |Y7}. As 
computing these two quantities is similar, we will focus on the first. 

First, it is convenient to consider joint probabilities instead of conditional prob-
abilities. Here, and elsewhere, we will use the fact that for events A and B, 

PT(A, B) = Ρτ(Α\Β)Ρτ(Β) = Ρτ{Β)Ρτ{Α\Β), (7.22) 

where (A, B) denotes A and B. We can rewrite (7.22) as 

Ρτ{Α\Β) = Ρτ(Α,Β)/Ρτ{Β). (7.23) 

Using (7.23), we can write 

Pr{6 t_! = +1|*7} = Pri&t-j = +l ,y1
T}/Pr{y1

r} (7.24) 

The term in the denominator will be the same for both bit values and will not 
impact which one is larger, so we can drop it. This leaves us with computing the 
symbol metric 

P(bt-i = +1) = Pr{&(-i = +1 , Y{}- (7-25) 

Second, instead of writing the symbol likelihood directly in terms of the set of 
received samples Y{, we can write it in terms of intermediate quantities, state 
transition likelihoods. To do this, we need to set up some notation. As shown in 
Fig. 7.1, we use m! to identify a state value for the state at time t — 1, denoted 
S t_i. Similarly, we use m to identify a state value for the state at time t, denoted 
St. As there are four possible states at each time, the possible values for m' and m 
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Figure 7.1 MAPSD trellis diagram, three-path channel. 

are 0, 1,2, and 3. One possible transition is St-i = 0, St = 0. This corresponds to 
the sequence 6t-2 = +1> öt—i = +1 , bt = +1 . Notice from the trellis diagram that 
not all state transitions are possible, as the values for bt-i for states at times ί — 1 
and t must be consistent. 

Now we are ready to write the symbol metric in terms of state transition likeli-
hoods. Recall the fact from probability theory that 

Ρτ{Α} = Σ PI{A\BÍ}PI{BÍ} (7.26) 
i 

where the ß ; are independent and span the probability space. By defining the B¡ 
to be the state transitions, the symbol metric in (7.25) becomes 

3 3 

P(bt-i = +1) = Σ Σ ϊΜ5«-! = m'> S* = m< 6*-i = +1> yiT}· (7·27) 

Prom the trellis diagram, we see that half of the terms on the right-hand side will 
be zero, as the state transition and bt-i value are inconsistent. When they are 
consistent, we have the added requirement that bt-i = +1 . Thus, we can write 
(7.27) as 

3 3 

P(6t_! = + 1 ) = J2 ^ Pr{5t_i = m ' , S t = m,F1
T}Tr(m' ,m)/(m' ,m,+l) , 

τη'=0 m=0 
(7.28) 

where Tr(m', m) denotes a function based on the trellis that is 1 if the transition 
is valid and zero otherwise. The term I(m',m, +1) is 1 if the transition is valid 
and 6t_i = +1. While the term Tr(m',m) is redundant in this case, we will find it 
useful later. 
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Now we can focus on determining joint likelihoods of valid state transitions and 
the received samples, 

σ(πι', m) = Pr{S t_i = m', St = m, Y{}. (7.29) 

We can expand the set of received samples Υζ into three subsets: Y/ - 1 , rt, and 
Yt+\- Then (7.29) with some reordering and grouping of terms becomes 

a(m',m) =Pr{(5e = m , r t , y t ; i ) , ( 5 t _ 1 = m ' , y l
t - 1 ) } . (7.30) 

By defining 

A = (St = m,rt,Yt
T

+1) (7.31) 

B = (St-i = m1,Υ/"1) (7.32) 

and applying (7.22), we obtain 

q(m',m) = Pr{5 ( _, = m',Y^l}PT{St = m,rt,Yt
T

+1\St-i = m', Y/"1} 
= at-i(m')Pr{St = m,rt,Y?+1\St-i=m'}, (7.33) 

where 
at{m)è:PI{St = m,Y1

t}. (7.34) 

Notice that in the second term on the right-hand side, we dropped Y(~l in the 
conditioning term. This has to do with the Markov property of the signal model 
in (7.21). Specifically, if we are given the previous state S t_i, then the previous 
set of samples Y / - 1 tells us no additional information about St = m, r t , or Yf+1. 
Because the noise samples are assumed independent, the noise on Y"/-1 tells us 
nothing about the noise on r t,or Y^+i. While Y{~1 could tell us something about 
fe(_i, which affects St = m and rt, we are already given the value of bt-i by being 
given 5(_i. Thus, we can drop Yj t_1 term from the conditioning. 

Next, we define 

A = (Y^St-^m') (7.35) 
B = (St = m,rt\St-i = m') (7.36) 

and apply (7.22), giving 

a(m',m) = at-i{m')PT{St — m,rt\St-i = m'yPr{Yf+1\St-i = m',St = m,rt} 
= at-i(m')7t(m',m)PT{Yt

T
+1\St=m} 

= at-i{m')~tt(m',m)ßt(m), (7.37) 

where 

lt{m',m) â PT{St=m,rt\St-i=m'} (7.38) 
ßt(m) â Pr{Y;+l\St = m}. (7.39) 

Again, we have used the Markov property by dropping St-i = m' and rt from 
Pr{Y¿!J.1 \St-i = m', St = m, rt}. We now examine how to compute at(m), 7i(m', m), 
and ßt(m). 
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Let's start with the "gamma" term, 7t(m', m). By defining 

A = ( r t | 5 t _ 1 = m ' ) (7.40) 
B = {St = m|St_i = m') (7.41) 

and applying (7.22), we obtain 

7t(m', m) = Pr{r t |5 f_! = m', St = m}Pr{5t_i = m', 5 ( = m} (7.42) 

From the model in (7.21), this becomes 

, 1 Í \rt -cqt{m',m) - dqt-i{m',m) - eqt-2(m', m)\2 \ 

xPr{St_1 = m ' ,S t = m}, (7.43) 

where qt{m', m) is the hypothesized value for bt corresponding to the state transition 
from St-i = m' to S¡ = m. 

Thus, the gamma term consists of two parts. Notice that the first part is a 
likelihood of rt, conditioned on hypothesized values for the bit sequence. The log 
of this part, dropping the log of 1/(πΝη), gives the Euclidean distance metric used 
in MLSD. The second part is the a priori or prior likelihood of the state transition. 
Here is where prior information can be introduced, if available. Otherwise, this part 
will be the same for all valid state transitions (it is zero for invalid transitions). For 
the case of no prior information, we can redefine 

, , Λ _ π ν / / N / \n -cqt{m',m) - dqt-i(rn',m) - egt_2(m',m)|2 Ί 7t(m , m) = l r(m , m) exp i ^ '- ^ i '- ^ . 

(7.44) 
Notice we have ignored the common scaling by the valid state transition probabili-
ties and represented the fact that some are invalid by using the previously defined 
Tr(m', m) function. 

Next consider the "alpha" term, at{m). Splitting Y{ into F / - 1 and r t , using 
(7.26), and defining the B¡ to be all possible past state values, the expression in 
(7.34) becomes 

at(m) = Σ Pr{St = m,St-i = m',Y*-\rt}. (7.45) 
m'=() 

Now we can use (7.22) with 

A = (St = m,r t ) (7.46) 
B = (St-^m'tf-1), (7.47) 

so that (7.45) becomes 
:¡ 

at(m) = Σ Pr{St_i = m'rf-^PriSt = m,rt\St-i = τη',Κ/"1} 
m'=() 

3 
= Σ at-i(m')Pr{St = m,rt\St-i = m'} 

m'=i) 
:¡ 

= Σ a t - i (m')7t(m' ,m). (7.48) 
m'=(l 
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Notice we used the Markov property to drop Y*~ from the conditioning. 
We can interpret (7.48) as a recursive way of computing alpha terms at time t 

using alpha terms at time t — 1. To see how to get started, we substitute t = 1 into 
(7.48) and realize that Yj" is an empty set, giving 

:( 
Q l (m) = Σ PliS" = m ' b i ( m ' , m ) . (7.49) 

m'=() 

To keep the same form as (7.48), (7.49) implies 

an{m) â Pr{5n = m'}, (7.50) 

the initial state probabilities. If b\ is preceded by a set of known symbols, then the 
initial state probability for the state m! associated with those symbols would be 1 
and the remaining initial state probabilities would be zero. If b\ is preceded by a 
set of unknown symbols, then the initial state probabilities would all be equal to 
1/4. 

Thus, (7.48) and (7.50) define a forward recursion (start with t = 1 and increase 
t forward in time). Similarly, one can derive a backward recursion for computing 
the beta values (see homework problems). Specifically, 

:( 
ßt(m) = £ A + 1 ( m b ( m , m ) (7.51) 

m=() 

ßT(m) = Pr{5T = rh\ST-i = m). (7.52) 

If bT and 6T_! are known symbols, then ST is known and only one of the condi-
tional final state probabilities ßT(m) will be nonzero. If these last two symbols are 
unknown, then all conditional final state probabilities (for valid state transitions) 
will be equal to 1/4. 

It is common to implement (7.37) in the log domain, so that multiplies becomes 
additions. This is sometimes referred to as log-MAP. Notice that the log domain 
cannot be used throughout, due to the summations in alpha and beta recursions. 
Also notice that such conversions require knowing iVo or the SNR, so that expo-
nentials are formed properly. However, if we approximate these summations with 
the largest term in the summation (the maximum term), then log domain calcula-
tions can be used throughout (and we do not need to know N(t). This is sometimes 
referred to as the log-MAX approximation. Observe that in this case, the forward 
recursion becomes the Viterbi algorithm, in which the log of the alphas are the 
path metrics and the log of the gammas are the branch metrics. Unlike MLSD, the 
Viterbi algorithm must be run twice, once forward and once backward. 

Once the joint state transition/data probabilities have been computed, symbol 
likelihoods can be determined by summing the transition probabilities that corre-
spond to a particular symbol value. 

7.3.2 Soft information 

With M-ary modulation, bit-level soft information can be extracted from the sym-
bol metrics by summing the symbol metrics corresponding to a certain bit value. 
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If the BCJR algorithm is used, the bit likelihoods can be computed directly from 
the joint state transition/data probabilities by summing transition probabilities 
corresponding to a particular bit value. 

7.3.3 Joint demodulation and decoding 

With full joint demodulation and decoding, we would need to consider each possible 
codeword and form a sequence metric. This is usually highly complex, motivating 
approximate approaches. 

One popular approximate approach is turbo equalization. With turbo equaliza-
tion, the equalizer and decoder interact with one another, as illustrated in Fig. 7.2. 
The first time the equalizer runs, it assumes all symbol values are equi-likely. Soft 
bit values are passed to the decoder as usual, without adjustment. The decoder 
then performs decoding, but produces some additional information. It determines 
likelihoods associated with the modem bit values. These likelihoods are adjusted 
to capture only the information learned from the decoding process (the informa-
tion provided by the equalizer is removed). The adjusted or extrinsic information 
is then used by the equalizer to process the received samples a second time. The 

results are adjusted and then fed to the decoder for a second decoding process. The 
process continues for either a fixed number of iterations or until an error detection 
code determines that there are no errors. We have shown the adjustments as sub-
tractions, which assumes the soft bit information is in the form of a log-likelihood 
ratio (LLR). 

equalizer decoder 

+ H-

Figure 7.2 Turbo equalization. 

Turbo equalization was originally formulated for use with MAPSD. However, 
there have also been formulations with LE, referred to as linear turbo equalization. 

7.4 MORE MATH 

The basic mathematics have been covered previously. For systems in which symbols 
are sent in parallel (CDM, MIMO), a vector form of the MAP algorithm can be 
used. 

7.5 AN EXAMPLE 

The LTE downlink, which employs OFDM, is used as an example in Chapter 2. 
Here we consider the case in which two transmit and two receive antennas are used 
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to achieve spatial multiplexing (MIMO). Because subcarriers are orthogonal, we 
can use the simple MIMO model introduced in Chapter 1, in which the decision 
variables for a particular subcarrier collected over multiple receive antennas can be 
modeled as 

r f= Hs + n. (7.53) 

Unlike Chapter 1, we will assume complex-valued quantities. 
Let's consider MAPSD assuming no prior information about the two symbols. 

For symbol si, we need to form the MAP symbol metrics specified in (7.20). For 
the case of only two M-ary symbols drawn from a set S — {Sj\j = 1 . . . M}, this 
becomes 

M 

P{8l=Sj\r} = ^ P r { r | e 1 = S j ) e 2 = Sfc} (7.54) 
fc=l 

Assuming n is zero-mean Gaussian with covariance matrix Cn, then 

Pr{r|S l = Sjts2 = Sfc} = N) exp {(r - H s ^ C ^ r - HSj-.fc)} , (7.55) 

where Sjj. — [Sj Sk\T■ 
To compute soft information for a particular bit í>¿ included in s\, we divide 

the set of possible symbol values S into two subsets: the set B+ corresponding to 
bi = +1 and the set B¿~ corresponding to 6» = — 1. The log-likelihood ratio for 6¿ 
can then be determined using 

LLRi = log I 5 3 P{ S l = Sjlr} j - log j ^ P{ S l = Sj\r) J . (7.56) 

7.6 THE LITERATURE 

7.6.1 MAP symbol detection 

The relation between MAPSD and minimizing symbol error rate is pointed out in 
[Abe68j. A structure for MAPSD is given in [Gon68]. Fixed-lag (finite decision 
depth) MAPSD forms are developed in [Gon68, Abe70), and a parallel architecture 
is given in [Erf94]. Early work on MAPSD is surveyed in [Bel79]. Like MLSD, 
MAPSD can be formulated using an MF front end [Col05]. 

The BCJR algorithm is described in [Bah74]. It can be viewed as a special 
case of Pearl's belief-propagation algorithm [Mce98]. Like the Viterbi algorithm, 
reduced-complexity versions of the BCJR, algorithm exist. The log-MAX approx-
imate form that uses a forward and backward Viterbi algorithm is developed in 
[Vit98]. Reduced-state approximations have been proposed [ColOl, Vit07] as well 
as only considering a subset of symbols, treating the others as colored noise [P0088]. 

7.6.2 Soft information 

In wireless communications, typical FEC codes are convolutional codes (proposed 
in [Eli55] according to [Vit67]), turbo codes [Ber96], and, more recently, low-density 
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parity-check (LDPC) codes [Gal62]. Error detection is usually performed with a 
Cyclic Redundancy Code (CRC). 

For MLSD, a soft output Viterbi algorithm (SOVA) provides soft information. 
The two main approaches are given in [Bat87] and [Hag89]. These two can be 
made equivalent by adding a certain term to the latter [Fos98]. Performance of 
various soft information generation approaches are compared in [Han96j. With 
approximate MLSD approaches, paths corresponding to all possible bit values may 
not be present. One solution is to set the soft value to some maximum value [Nas96]. 
The term dual maxima is introduced in [Vit98]. 

Kaiman filtering can be used as a form of equalization for estimating soft bit 
values [Thi97]. 

7.6.3 Joint demodulation and decoding 

The classic reference for turbo equalization is [Dou95]. Turbo equalization for 
differential modulation can be found in [Hoe99, Nar99]. Channel estimation can 
also be included in the turbo equalization process [Ger97]. 

Linear turbo equalization is described in [LaoOl, Tüc02a, Tüc02b]. There is some 
evidence that using unadjusted feedback from the decoder can improve performance 
[Vog05]. 

So far we have considered structure provided by encoding. There may be further 
structure in the information bits as well. Using this information at the receiver is 
referred to as joint source/channel decoding [Hag95], and interesting performance 
gains are possible [Fin02]. 

Joint demodulation and decoding of CDMA signals is discussed in [Gia96]. Turbo 
equalization has been extended to joint detection of cochannel signals (multiuser 
detection) [Moh98, Ree98, Wan99]. 

PROBLEMS 

The idea 

7.1 Consider the Alice and Bob example and Table 6.1. 
a) Find the two symbol metrics for si 
b) What is the MAP symbol estimate for si? 
c) Does it agree with the MLSD estimate? 

7.2 Consider the Alice and Bob example and Table 6.1. 
a) Suppose the noise power is 0.01 instead of 100. Recompute the symbol 

metrics. 
b) If you observed a numerical issue, what was it? If not, try using a simple 

calculator. 

7.3 Consider the Alice and Bob example. Suppose instead that z\ = —4 and 
zi = 3. 

a) What are the detected symbol values? 
b) Do the detected symbol values correspond to a valid message? 
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c) What are the three soft decision decoding metrics? 
d) What is the detected message number? 

7.4 Consider the Alice and Bob example. Suppose instead that z\ = —3 and 
¿2 = 4. 

a) What are the detected symbol values? 
b) Do the detected symbol values correspond to a valid message? 
c) What are the three soft decision decoding metrics? 
d) What is the detected message number? 

7.5 Consider the simple parity check code in which s;¡ = s\S2- Suppose we decide 
to use this code for error correction in the Alice and Bob example. Suppose the 
signed soft values are —1,3, — 2. 

a) Using Table 1.1, create a table of valid messages including values for s\, 
«2, and su. Assume that s(i = +1 is a known symbol. 

b) Using soft decision decoding, add to the table decoding metrics for each 
possible message, using ζχ, Z2, and z,-j. 

c) Identify the decoded message. 

7.6 Consider the Alice and Bob example. Suppose instead that r\ = — 1 and 
Γ2 = 4. Assume s(> = +1. 

a) Form a table of message metrics for only valid combinations of s\ and s2-
b) Which metric is best? What is the detected sequence? 

7.7 Consider the Alice and Bob example. Suppose instead that r\ = — 1 and 
Γ2 = 4. Assume s() = +1 . Suppose a parity check symbol s3 = s\s2 was also 
transmitted and r.i = 2. 

a) Form a table of message metrics for only valid combinations of s\, s2, and 
s.-j. 

b) What is the detected message number? 

More details 

7.8 Consider the Alice and Bob example and suppose we know that so = +1 
because it is a pilot symbol. 

a) Find the two symbol metrics for s2 using Table 6.1. 
b) Did the MAPSD detected value for s2 change? 
c) Compute the ratio of the symbol metrics, with the larger one in the numer-

ator. Do the same for the case when s» was not known. What happened 
to the ratio when we added the information that so = +1? 

7.9 Consider the Alice and Bob example. Using the normalized sequence metrics 
in Table 7.4, compute the two symbol metrics for S2-

7.10 Consider the Alice and Bob example. Suppose instead that r\ = — 1 and 
r2 = 4. Assume SQ = +1. Consider the MLSD tree, except only valid message 
branches are allowed. 

a) What are the two path metrics after processing Γχ? 
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b) What are the three path metrics after processing r2? 
c) What is the detected message number? 

7.11 Consider the MIMO scenario in which c = 10, d = 7, e = 9 and / = 6. The 
received values are r\ = 9 and r^ = 11. Assume only the messages in Table 1.1 are 
allowed. 

a) Form a table of metrics for only valid combinations of s\ and s?. 
b) What is the detected message number? 

The math 

7.12 To derive the recursive formula for the beta values in the BCJR algorithm, 
a) How should the B¡ values be defined when using (7.26)? 
b) How should A and B be defined to use (7.22)? 

7.13 Consider an arbitrary, 4-ary modulation. 
a) How many symbol likelihoods are there? 
b) With 2-ary modulation, it is possible to store one, signed soft value by 

forming the LLR. For 4-ary modulation, how could one store fewer symbol 
likelihoods? 

7.14 Consider the general MIMO scenario (channel coefficients c, d, e, and / ) 
with M-ary symbols. 

a) How many sequence metrics are there? 
b) How many symbol likelihoods total need to be computed for MAPSD of 

both symbols? 
c) How many sequence metrics are used to compute each symbol likelihood 

value? 

7.15 Consider using the BCJR algorithm for processing received values of the 
form rm = csm + eism_i +nm with QPSK symbols. Suppose a finite set of symbols, 
«o through sç, are transmitted. No symbols are sent either before or after. Suppose 
So and s» are pilot symbols. 

a) What would be the first received value we would want to process? 
b) What would be the last received value we would want to process? 

7.16 Consider using the BCJR. algorithm for processing received values of the 
form rm = csm + dsm-\ + esm-i + nm with QPSK symbols. Suppose a finite set of 
symbols, so through sg are transmitted. No symbols are sent either before or after. 
Suppose so and so are pilot symbols. 

a) What would be the first received value we would want to process? 
b) What would be the last received value we would want to process? 





CHAPTER 8 

PRACTICAL CONSIDERATIONS 

So far, we've assumed we have a model of the received signal and that we know the 
parameters of that model. In practice, we don't know these parameters. Now what 
do we do? In this chapter we will briefly explore various answers to that question. 
It really takes another book to cover all the practical aspects of equalizer design 
and dig into the details. In this chapter, we will touch on some high level concepts 
and give some simple examples. 

Another consideration is which equalization approach to select. Should we always 
select the one with the best performance? What about complexity? Here we will 
give some guidance on how to make this choice. 

8.1 THE IDEA 

So far, we have assumed we know some things about the received signal. Specifically, 
we assume we know 

1. the channel response (channel coefficients c and d and delays 0 and 1 symbol 
periods), 

2. the noise power (<r2) (when needed), and 

3. the packet or frame timing (which receive value corresponds to which symbol). 

Channel Equalization for Wireless Communications: From Concepts to Detailed 173 
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In practice, we have to estimate these quantities or related quantities. As these 
parameters change with time, we need to adapt the equalizer over time, giving rise 
to adaptive equalization. 

To understand what options we have, let's assume we are building an MMSE 
linear equalizer. One option is to estimate the channel response and noise power 
and use them to compute the weights. We refer to such an approach as indirect 
adaptation of the equalizer, because we adaptively estimate one set of parameters 
(channel response and noise power) and then use them to calculate another set of 
parameters (equalization weights). 

How would we estimate the channel response and noise power? It depends on the 
particular way signals are transmitted. Often known symbols are sent, referred to as 
pilot symbols. These symbols may be clustered together into a synchronization word 
or training sequence, which can occur at the beginning of set of data (preamble) or 
in the middle of the data (midamble). The receiver searches for this known pattern. 
Finding it gives us the packet or frame timing. We can then estimate the channel 
response as follows. Suppose the known symbols are s«, si and s2 and suppose we 
have determined that we only need to estimate two channel coefficients, c and d. 
We can estimate these using 

c = (0 .5) ( S l r 1 +s 2 r 2 ) (8.1) 
d = (0 .5)(sori+sir 2) . (8.2) 

These operations are correlations (weighted summations), as they correlate the 
received samples to the known symbol values. Why does it work? Let's substitute 
the models for r\ and r2 and see what happens to c. Using the fact that s^ = 1, 
we obtain 

c = (0.5)[«i(csi+dsii+ ni) + s 2 ( c s 2 + d s i + n 2 ) ] (8.3) 
= c + 0.5d(siSo + s2si) + 0.5(«ini + s2n2). (8.4) 

The first term on the right is what we want, the true value c. The second term 
is interference from the delayed path. It would be nice if this were zero. Because 
we are transmitting known symbol values, we can select their values such that 
siso + s2«i is zero! The third term is a noise term which has power (1/2)σ2. This 
is half the noise power of a single received sample because we have used two received 
values to estimate c. 

In general, if we have Ns +1 known symbols and use Ns received values, the noise 
on the channel estimate has power (1/Ns)a2. Thus, while the channel estimate is 
noisy, it can be made much less noisy than the received signal. 

Once we have channel estimates, we can obtain a noise power estimate by sub-
tracting an estimate of the signal and estimating power. Specifically, we have 

σ2 = (0.5)[(n - cs! - ds())2 + (r2 - cs2 - ¿Sl)2}. (8.5) 

Thus, with indirect adaptation, we estimate the channel response and noise power 
from the received samples and use these estimates to form the equalization weights. 
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8.2 MORE DETAILS 

In this section, we will explore parameter estimation in more detail and examine 
radio aspects. 

8.2.1 Parameter estimation 

In the previous section, we introduced the notion of indirect adaptation, in which 
intermediate parameters are estimated and used to compute linear equalization 
weights. Another option is to estimate the weights directly, referred to as direct 
adaptation. One way to do this is with an adaptive filtering approach that adap-
tively learns the best set of weights. An example is the least-mean squares (LMS) 
algorithm. Using known or detected symbols, it forms an error signal at symbol 
period m given by 

em = s m - h H r m + i»i(m)rm_1], (8.6) 

where we've added index m to the weights to show that they change in time. Ideally, 
we would like this error to be as small as possible. This can be achieved by updating 
the weights for the next symbol period using 

w2(m+l) = w2{m) + ßrmem (8.7) 
w i ( m + l ) = wi (m)+ / u r r n _ ie m . (8.8) 

The quantity μ is a step size, which determines how fast we adapt the weights. 
When we are tracking rapid changes, we want μ to be large. When the error is 
mostly due to noise, we want μ to be small, to minimize changing the weights from 
their optimum values. 

Returning to indirect adaptation, there are actually two types. Consider again 
MMSE LE. Recall that the weights can be obtained by solving a set of equations 
Rw = h, where R can be interpreted as a data correlation matrix. With parametric 
estimation of R, we estimate the channel response and noise power and use them 
to form a data correlation matrix. The term parametric is used because we form 
the data correlation values using a parametric model of the received samples and 
estimate its parameters. 

Another option is to estimate R directly form the received samples. For example, 

E{rir2} « (1/4)(Γ!Γ2 + r2r3 + r3r4 + r4r5). (8.9) 

This approach is also indirect adaptation, but it is nonparametric in the sense that 
we do not need a model of the received samples to determine the data correlation 
values. 

Parametric and nonparametric approaches also exist for channel estimation. In 
general, particular tracking approaches are based on a model of the channel coeffi-
cient's behavior over time. 

The overall set of design choices for adaptive MMSE LE is summarized in Figure 
8.1. Note that the channel response h can also be computed using a parametric or 
nonparametric approach. 
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adaptive MMSE linear equalization 

direct adaptation indirect adaptation 

parametric estimation nonparametric estimation 

Figure 8.1 Design choiera for adaptive MMSE LE. 

Which adaptation approach we should use depends on several things. First, it 
depends on the transmit signal structure. Some systems are designed with a certain 
adaptation approach in mind. For example, periodic placement of pilot symbol 
clusters is convenient for indirect adaptation, as the channel can be estimated at 
each pilot symbol cluster and interpolated over the intervening intervals. A second 
consideration is performance, which tends to favor indirect adaptation. When the 
channel is varying rapidly, it can be easier to track the channel coefficients rather 
than the equalizer weights. A third consideration is complexity, which tends to 
favor direct adaptation. 

So far, we've focused on MMSE linear equalization. For DFE, we can use direct 
or indirect adaptation to determine the forward filter and backward filter weights. 
For MLSD, MAPSD, and MAPPD, we can use channel estimation and noise power 
estimation (for MAPSD and MAPPD) to obtain the necessary parameters. 

8.2.1.1 Channel quality In addition to parameters needed to equalize the received 
signal, one may also need to estimate channel quality. While there are various 
definitions of channel quality, we are interested in the definition that includes the 
effects of the equalizer. For example, channel quality could be defined as the output 
SINR of a linear equalizer. 

Estimating channel quality is important because the receiver may need to feed 
back such information to the transmitter, in essence telling the transmitter how 
well the equalizer is doing (or will do in the future). This information can be used 
at the transmitter to adapt the transmit power (power control) or the data rate 
(rate adaptation). 

8.2.2 Equalizer selection 

So we have learned about MF, LE, DFE, MLSD, MAPSD, and MAPPD. Which 
one should we build? There is no easy answer, but there are basically two things 
to consider: performance and complexity. Complexity translates into cost, size and 
power consumption of the device you are building. Performance translates into 
coverage (at which locations will the receiver work) for services like speech and 
data rate (how fast the data is sent) for services like Internet web browsing. In 
general, the better an equalizer performs, the more complex it is. Thus, there is a 
trade-off between performance and complexity. 
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One extreme is to be given a limit on complexity (e.g., cost) and then design the 
equalizer that optimizes performance for that cost. Another extreme is to be told 
a performance requirement (e.g., bit error rate) and then design an equalizer that 
minimizes cost while still meeting that requirement. 

Alas, life is rarely so simple. As for cost, there is usually some flexibility. As for 
performance, there is usually a number of performance requirements. Sometimes 
there is a limiting performance requirement, such that if that one is met, the other 
ones will be met as well. 

So where do these requirements come from? Some come from a standardization 
organization which sets performance requirements for standard-compliant devices. 
Some come from the industry, such as cellular operators, which want good perform-
ing cell phones in their network. Then there is the need to be competitive with 
other companies who make devices with equalizers. Whether their devices perform 
much better or much worse than yours can have an impact on which devices get 
purchased (or not, if other features are more important). 

Back to equalizer selection. One useful tool in the selection process is to compare 
the performance of different equalization approaches in scenarios of interest. There 
are often channel conditions and services of interest identified by standardization 
bodies, the customer, or you. There is also usually an operating point, such as an 
acceptable error rate for speech frames. If a much more complicated equalizer gives 
a very small gain in performance at the operating point, then it may not be worth 
the effort. 

8.2.3 Radio aspects 

In addition, there are radio aspects we have not considered. To understand these, 
we have to think of the received samples as complex numbers, with a real and 
imaginary part. Thus, each number is a vector in the complex plane as shown in 
Fig. 8.2. The horizontal axis corresponds to the real part, also referred to as the 
in-phase (I) component. The vertical axis corresponds to the imaginary part, also 
referred to as the quadrature (Q) component. We can also think in terms of polar 
coordinates, with amplitude and phase. 

One radio aspect is frequency offset. Like commercial radio stations, the receiver 
must tune to the proper radio channel. If it is slightly off, a frequency offset is 
introduced. If the offset is small, it can be modeled as multiplication by a complex 
sinusoid: 

rm = [COS(2K f0mT) + j sm(2n fomT)][csk + dsm_i] + n m , (8.10) 

where f0 is the frequency offset in cycles per second (or Hertz) and T is the symbol 
period. We can think of this as introducing a constant rotation in the complex 
plane, with the phase changing linearly with time. Automatic frequency control or 
AFC is used to estimate this offset and de-rotate the received samples to remove 
the frequency offset. 

Another radio aspect is phase noise. It can be modeled as a time-varying addi-
tional phase term to the sinusoids for frequency offset, giving 

rm = [cos(2nf0mT+e(mT))+jsm(2nfomTs+e(mT))\[csm+dsm-1]+nm, (8.11) 
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Figure 8.2 Complex plane. 

where θ(πιΤ) is the phase noise. While the phase noise is random, it usually varies 
slowly with time and can often be folded into the channel coefficients, giving rise 
to time-varying channel coefficients. It can also be dealt with as part of AFC using 
an approach that tracks phase and frequency error in time. In the complex plane, 
the phase noise introduces a phase offset. 

A third radio aspect is I/Q imbalance. With this problem, either the real part 
or imaginary part has been scaled by an unknown multiplier. Thus, if rfc should be 
a + jb, instead it is ka + jb, where k is the unknown multiplier. The radio front 
end is designed to make k as close to one as possible. 

A fourth radio aspect is DC offset. With direct conversion receivers, sometimes 
the local copy of the carrier frequency used for mixing leaks into the signal path. 
This gives rise to a constant term being added to the received signal. This problem 
is called direct-current (DC) offset because it is analogous to power generation, 
which can be DC or AC (alternating current). 

Another practical aspect is sampling and quantization. An analog-to-digital 
(A/D) convertor is typically used to sample the partial MF signal and represent 
the samples with a finite number of bits. 

8.3 THE MATH 

We will use this section to explore a particular aspect of parameter estimation, 
channel coefficient estimation. We will assume some initial filtering and sampling 
of the signal, giving us r(mTs). 
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8.3.1 Time-invariant channel and training sequence 

Consider the case in which the channel does not change with time (at least over the 
data burst being demodulated), and we wish to estimate the channel using only a 
set of contiguous pilot symbols. If we select received values that only depend on 
the training sequence, then we can model a vector of them as 

r = Sg + n, (8.12) 

where matrix S depends on the training sequence symbols, the path delays, and 
possibly the pulse shape, g is a vector of channel coefficients corresponding to 
different path delays, and n is noise. 

One approach, introduced earlier, is correlation channel estimation, in which 
the correlation of the received signal to the training sequence at the path delay of 
interest gives an estimate of the channel coefficient. Sometimes the first and last 
few symbols of the training sequence are not used, so that the channel estimate is 
not influenced by unknown, traffic symbols and the autocorrelation properties can 
be made perfect (the channel coefficient of one path is not interfered by the channel 
coefficient of another path). 

Another common approach is least-squares channel estimation. The idea is to 
find the channel coefficients that best predict the received samples corresponding to 
the training sequence. Here "best" means that the sum of the magnitude-squares 
of the differences between the received samples and the predicted samples is mini-
mized. The predicted samples correspond to convolving the pilot symbols with the 
estimated channel. The result, mathematically, is 

g = (S H S)^ 1 S H r . (8.13) 

The least-squares approach ensures that different paths don't interfere with one 
another, even if the autocorrelation properties of the training sequence are not 
perfect. 

The least-squares approach is a special case of maximum likelihood channel esti-
mation in which the noise is assumed to be white. If noise or interference is modeled 
as colored noise, then the noise covariance (if known or estimated) can be used to 
improve channel estimation. 

So far, we have implicitly treated the channel coefficients as unknown, determin-
istic (nonrandom) quantities. Alternatively, we can treat them as random quanti-
ties with a certain distribution. A popular approach is MMSE channel estimation, 
which requires knowledge of the mean and covariance of the set of channel coef-
ficients, independent of the distribution of the coefficients. Assuming the channel 
coefficients have zero mean and covariance C9, the MMSE estimate is given by 

g = C 9 S H ( S C 9 S " + CI l ) - 1 r . (8.14) 

If the coefficients are modeled with a Gaussian distribution, then MMSE channel 
estimation corresponds to MAP channel estimation. MAP channel estimation is a 
more general approach, as it allows for other distributions to be used. 
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8.3.2 Time-varying channel and known symbol sequence 

Next consider the case of a time-varying channel and assume we know all the 
transmitted symbols. For simplicity, we assumed a symbol-spaced receiver and 
consider a single path channel with time-varying coefficient g{qT). We can model 
a vector of symbol-spaced received values r as 

r = Sg + n, (8.15) 

where S is a diagonal matrix with the known symbol values, g is a vector of the 
channel coefficient value at different times, and n is a vector of noise values. 

8.3.2.1 Filtering With the filtering approach, we use some or all of the received 
samples to estimate the channel coefficient at each moment in time. Using all the 
samples for each estimate, the vector of coefficient estimates is obtained by a matrix 
multiplication, i.e., 

g = W f / r , (8.16) 

where different columns of matrix W correspond to filters for estimating the channel 
coefficient at different times. 

Similar to MMSE linear equalization, MMSE channel estimation (also known as 
Wiener filtering) estimates the channel at time mT using 

g ( m ï ' ) = w H r , (8.17) 

where 

w = C ; 1 p = (SC f lSH + C n ) - 1 p (8.18) 
C 9 = E{gg"} (8.19) 

p = E{rg*(kT)}. (8.20) 

The values for Cg and p depend on how correlated the channel coefficient is from 
one symbol period to the next. 

The correlation between the channel coefficient at time mT and (m+d)T becomes 
small as |ef| becomes large. As a result, it is reasonable to only use received values 
in the vicinity of mT when estimating the channel at time mT. This gives rise to 
a transversal Wiener filter. Except at the edges, the coefficients are the same for 
different values of m. 

A simpler transversal filtering approach is the moving average filter. With this 
approach, the channel coefficient at time mT is estimated using 

N 
g{mT) = Σ s*{m)r{m'T), (8.21) 

<7=-N 

where the number of filter taps is 2N + 1. 

8.3.2.2 Recursive channel tracking For recursive channel tracking, it is more con-
venient to define the channel coefficient as its conjugate, so that 

r(mT) = g*(mT)s(m) + n(mT). (8.22) 
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With recursive channel tracking, we track the channel coefficient by updating it as 
we go along in time. 

For example, with exponential "filtering" (also known as an alpha tracker), we 
update the coefficient estimate using 

g((m + l)T) = ag(mT) + (1 - a)r*{mT)s{mT), (8.23) 

where parameter a is between 0 and 1. Another example is LMS tracking, men-
tioned earlier, which would use 

g((m + 1)T) = g(mT) + μs(m)(τ·(m7,) - g*(mT)s{mT))*, (8.24) 

where parameter μ is a step size controlling the rate of tracking. 
All channel tracking algorithms are based on a model of how the channel co-

efficient changes over time. The LMS tracker is implicitly based on a first-order 
model, the random walk model, i.e., 

g{(m + 1)T) = g(mT) + age(mT), (8.25) 

where e(mT) is a sequence of uncorrelated, complex Gaussian random values with 
unity variance. More advanced tracking algorithms have been developed by as-
suming more advanced models, such as second-order models. These advanced al-
gorithms are particularly useful when the channel changes rapidly. 

A classic model used in signal processing is the Kaiman filter model. It has the 
form 

x(m + 1) = F(m)x(m) 4- G(m)e(m) (8.26) 
r*{mT) = hH(m)x(m) + n*(mT). (8.27) 

where x(m) is an internal state vector. Notice that the random walk model is a 
special case for which x(m) = g(mT), F(m) = 1, G(m) = 1, and h(m) = s(m). In 
more sophisticated channel models, the state vector x(m) includes other quantities, 
such as the derivative the channel coefficient. 

The Kaiman filter is an MMSE recursive approach for estimating the state vector. 
It has the update equations 

x ( m + l ) = F(m)x(m)+k(m)( r (mT)-5*(mr)s (m2 ' ) )* (8.28) 

P(m + 1) 

where 

„ / N Λ , , ^ P m h m h " m p m \ 
= F(m) P(ro) - , „ / . „ / ,, ) ; , F w (m) v ; V hH{m)P{m)h(m) + alJ y ' 
+ G(m)G H (m) , (8.29) 

Irfmï F(m)P(m)h(m) 
k ( m ) = h « ( m ) P ( m ) h ( m ) + f f r ( 8 · 3 0 ) 

The vector k(m) is referred to as the Kaiman gain vector. 

8.3.3 Time-varying channel and partially known symbol sequence 

Sometimes the transmitter sends periodic clusters of pilot symbols, with unknown 
traffic symbols in between. One approach is to still use only the pilot symbols. 
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When the clusters are far apart, it makes sense to estimate the channel at the 
clusters and then interpolate those estimates to obtain channel estimates where the 
traffic symbols are. Standard interpolation approaches include linear interpolation 
and Wiener interpolation. 

Another approach is to use both pilot and traffic symbols. For example, with 
recursive channel tracking, the channel is estimated at time mT, and then symbol 
s(m) is detected and treated as a known symbol for purposes of updating the 
channel coefficient. This is referred to as decision-directed tracking. 

8.3.4 Per-survivor processing 

Instead of detected symbol values, we can use hypothesized symbol values for chan-
nel estimation. With MLSD and per-survivor processing (PSP), we keep different 
channel models for each state in the Viterbi algorithm. Each state corresponds to 
a different hypothetical symbol sequence. We can use the hypothetical symbol val-
ues to track the channel coefficients. Strictly speaking, the Viterbi algorithm is no 
longer equivalent to a tree search. Thus, we can generalize PSP to include keeping 
a channel model for each hypothetical symbol sequence kept in a tree search. Also, 
PSP can be used to estimate other parameters besides channel coefficients. 

8.4 MORE PRACTICAL ASPECTS 

In this section, we consider additional practical aspects. 

8.4.1 Acquisition 

When the receiver begins processing the received signal, it must determine roughly 
if a signal is present and where it is located in time and other dimensions. This 
is often done by correlating the received signal to a known transmitted symbol 
pattern at different relative delays. If one were to plot the magnitude square of the 
correlation as a function of delay, one would obtain the power-delay profile (PDP). 
The peak value in the PDP can be thresholded to see if a signal is present. The 
delay at which the peak occurs gives an initial estimate of signal timing (see next 
subsection). Sometimes the frequency reference of the receiver is not very accurate, 
so that the receiver must search for the signal in both time and frequency. 

8.4.2 Timing 

Another practical aspect is timing. In addition to packet or frame timing (knowing 
which symbol is which), there is symbol timing (a special case of sample timing). 
Consider the case of a single-tap channel and a single-tap, linear equalizer. In this 
case, we would like to filter the received signal with a filter matched to the symbol 
waveform and sample at the point at which the received symbol waveform and 
matching waveform are aligned. In practice, we have to estimate that timing. 

Timing and channel estimation are somewhat intertwined. For a single-path 
channel, estimating the absolute path delay of the first path is equivalent to es-
timating the arrival of the first symbol (which includes both frame and symbol 
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timing). Symbol timing usually refers to figuring out where to sample each symbol, 
without necessarily knowing which symbol is being sampled. 

The notion of symbol timing is less clear when the channel is dispersive, as there 
is no one sample that corresponds to one symbol. However, we can introduce the 
broader notion of sample timing. For example, the receiver may initially filter and 
sample the signal four times per symbol period We may wish to use a fractionally 
spaced equalizer with two samples per symbol period. Thus, we need to decide 
whether to keep the even or odd samples. 

Interestingly, if we use a linear, multi-tap equalizer with enough Nyquist-spaced 
taps, we don't have to worry as much about sample timing, as the equalizer will 
effectively interpolate the received signal and re-sample at the desired location. 
We just need to have the equalizer taps roughly centered about the ideal sampling 
point. The Nyquist spacing usually implies more than one sample per symbol. This 
is why fractionally spaced equalization has a reputation for being robust to timing. 

In wireless channels, the channel typically consists of many, closely spaced paths 
(a fraction of a symbol period apart). It is usually considered impractical to es-
timate all the actual path delays and path coefficients. Instead, we try to find a 
simpler, equivalent channel model with a minimal number of path delays. Ideally, 
this would be a fractionally spaced channel model, where the tap spacing depends 
on the bandwidth of the signal. Sometimes a symbol-spaced model is used as a 
reasonable approximation. 

8.4.3 Doppler 

The Doppler effect occurs when there is motion. For example, if a cell phone 
transmitter is moving towards a cell phone tower receiver, the transmitter signal 
will appear compressed in time at the receiver. One result is that the carrier 
frequency appears to have shifted to a higher value. Another result is that the 
symbols arrive faster than expected, so that the symbol timing shifts earlier and 
earlier in time. 

Fortunately, for typical cellular communication systems, the dominant effect is 
the shift in frequency. As a result, the Doppler effect can be approximated as a 
frequency shift or Doppler shift. The change in timing is slow enough that it can 
be handled by traditional timing algorithms. 

When there is multipath propagation, then the Doppler effect is different for each 
path, depending on where the scatterer is relative to the moving object. This gives 
rise to a range of Doppler values, called the Doppler spread. If the path delays are 
all about the same, relative to the symbol period, then we can think of the channel 
as having one path coefficient that is Rayleigh fading. The Doppler spread tells 
us how this path coefficient changes with time. This is important when designing 
channel estimation algorithms that track the channel coefficient over time. 

8.4.4 Channel Delay Estimation 

As discussed earlier, we can model a multipath channel, which may have a con-
tinuum of path delays, with a sparse set of equivalent paths. Acquisition and 
timing operations usually tell us roughly where the paths should be. The PDP 
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from acquisition can be used to determine path delays, if needed. Depending on 
the equalization approach, the path delays may be determined by the processing 
delays, for example the tap locations of a linear equalizer. 

8.4.5 Pilot symbol and traffic symbol powers 

In certain systems, the channel is estimated from a pilot signal (known symbols) 
with a different power level than the traffic signal (unknown symbols to be detected). 
If the power relation between these two signals is known, then it is straightforward 
to estimate the channel response for the traffic signal by scaling the channel response 
estimate for the pilot signal. If the power relation is not known, then it may need to 
be estimated, depending on the equalization approach. This can be done by either 
estimating the ratio of the two powers or estimating the two powers separately. If 
done separately, it corresponds to estimating E¡ {k) using the notation of Chapter 
1. In CDM systems, this is referred to as code power estimation, as the pilot and 
traffic signals are often multiplexed onto different spreading codes. 

8.4.6 Pilot symbols and multi-antenna transmission 

With multi-antenna transmission, pilot symbols are sent from different transmit 
antennas. One approach is to send different pilot symbols from each transmit 
antenna so that the channel from each transmit antenna to each receive antenna can 
be estimated. If the multiple antennas are used to transmit the same traffic symbols, 
then it is also possible to bundle the pilot symbols with the traffic symbols, so that 
if weighted copies of the traffic signal are sent from the different transmit antennas 
(e.g., beamforming), then the pilot symbols pass through the same beamforming. 

8.5 AN EXAMPLE 

Here we consider channel estimation for various cellular systems. For GSM/EDGE, 
the channel can be estimated using a set of pilot symbols transmitted in the middle 
of a burst of data (midamble). The length of the burst is short enough that the 
channel can be considered static (not changing) over the burst (at least for most 
scenarios). 

For the US TDMA system, the burst of data is much longer. While there is a 
set of pilot symbols at the beginning of the burst to get started, the channel must 
be tracked as it changes over the data portion of the burst. 

For CDMA systems, it is common to employ a pilot channel, a stream of pilot 
symbols sent on a particular spreading code. The channel can be estimated and 
tracked using this continuous stream of pilot symbols. 

For OFDM systems, pilot symbols are transmitted at different times and on 
different subcarriers. This provides channel measurements in time and frequency 
which can be used to estimate the channel for other subcarriers and other times. 
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8.6 THE LITERATURE 

The idea of providing a "transmitted reference" for channel estimation and coherent 
demodulation can be found in [Rus64, Wal64, Hin65]. The approach has evolved 
to transmitting periodic pilot symbols, known as Pilot Symbol Assisted Modula-
tion (PSAM) [Cav91]. The section on channel estimation and tracking is based 
on [ArsOlb, Bot03a]. How to divide energy between pilot and traffic symbols is 
examined in [Wal64, Hin65, Bus66]. An overview of sequence design for channel 
estimation can be found in [CheOO, Tong04]. 

For ML detection of the traffic symbols, MMSE channel estimation using the 
transmitted reference should be employed [Rus64j. MMSE channel estimation also 
arises out of the estimator-correlator receiver for ML detection in the absence of a 
transmitted reference [Pri56, Kai60j. For MLSD, per-survivor processing is devel-
oped in [Ses94b, Rah95j. The fact that the Viterbi algorithm and the tree search 
are no longer equivalent is shown in [Chu96j. 

A survey of A/D conversion approaches is provided in [Wal99]. Quantization of 
soft information is examined in [Rag93a, Ony93]. 

Adaptive equalization designs for the US TDMA system can be found in [Pro91J. 

PROBLEMS 

The idea 

8.1 It was shown that when estimating c, one would like the property that S\ So + 
s2Si is zero. Given that so = +1 and si = —1, what is the value of s2 to achieve 
this? 

8.2 Consider estimated d. 
a) Substitute the models for r¡ and r2 into the expression for d 
b) What is the property of so, si and s2 such that the main path doesn't 

interfere with estimating dl 
c) Is it the same property that prevents the delayed path from interfering 

with estimating c? 

8.3 Consider noise power estimation. 
a) Substitute the models for n and r2 into the expression for σ2. Assume 

that c = c and d = d and simplify the expression as much as possible. 
b) Does the result make sense? Why? 

8.4 Consider the case where we only need a one-tap equalizer (wi = 0) and 
direct adaptation. The error signal in the LMS algorithm simplifies to em — êm — 
W2{m)rm. Suppose rm is positive. 

a) What IS Srn . 
b) If w2 is positive but too large, what is the sign of em? 
c) When w2 is updated, will it be made larger or smaller? 

8.5 Consider MMSE DFE and determining the weights for the forward filter. 
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a) Suppose channel estimates and a noise power estimate are used to deter-
mine weights. Is this direct or indirect adaptation? 

b) Suppose the LMS algorithm is used to adapt the weights. Is this direct or 
indirect adaptation? 

More details 

8.6 Consider estimating three channel coefficients: c, d, and e such that rm = 
csm + dsm-i + esm-2- Suppose We have four known symbols, «n through s;¡, and 
we plan on using Γ2 and r,¡ to estimate the channel coefficients. 

a) Give the equations for c, d, and ê in terms of ri and r%. 
b) What properties of the known symbols must be satisfied so that paths 

don't interfere with one another in channel estimation. 
c) Given So = +1 and s\ = —1, can these properties be met? If so, what 

values for S2 and s.-¡ work? 

8.7 Consider MMSE DFE and determining the weights for the forward filter. 
a) Suppose channel estimates and a noise power estimate are used to form a 

data correlation matrix, which is then used to determine weights. Is this 
parametric or nonparametric? 

b) Suppose data correlations are estimated directly from the received samples. 
These data correlation estimates are used to determine weights. Is this 
parametric or nonparametric? 

8.8 Suppose QPSK symbols are being sent through a single-path channel with 
coefficient c = 1. 

a) Copy the constellation diagram from Fig. 1.7. In practice, one would 
receive one of these four points plus noise. 

b) Add the lines y = x and y = —x to the diagram. If we think of the 
diagram as possible received values, these lines divide up the diagram into 
four regions, determining which symbol we would detect if the received 
value fell into that region. Notice that the constellation points are midway 
between two lines. 

c) Now, suppose there is an unknown phase error that rotates the signal 22.5 
degrees counterclockwise. If there were no noise, would the receiver make 
an error? 

d) Now, suppose there is an unknown phase error that rotates the signal 50 
degrees counter clockwise. If there were no noise, would the receiver make 
an error? 

e) Now, suppose there is an unknown phase error that rotates the signal 10 
degrees counter clockwise. If 1 + j is transmitted and there is noise, the 
receiver will sometimes make mistakes. Which mistaken value will the 
receiver decide more often, 1 — j or — 1 + p. 

8.9 Suppose QPSK symbols are being sent through a single-path channel with 
coefficient c = 1. Also, suppose there is I/Q imbalance, so that the real part is 
scaled by 0.8. 
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a) Draw the new received constellation points due to I/Q imbalance. 
b) If the symbol 1 + j is sent and the symbol is detected incorrectly, what is 

the most likely value of the incorrect symbol? 
c) With random symbols being sent, which bit will have more errors, the one 

on the I channel or the one on the Q channel? 

The math 

8.10 Suppose QPSK symbols are being sent through a single-path channel with 
coefficient c = 1. Also, suppose there is I/Q imbalance, so that the real part is 
scaled by 0.8. 

a) Draw the new received constellation points due to I/Q imbalance. 
b) If the symbol 1 + j is sent and the symbol is detected incorrectly, what is 

the most likely value of the incorrect symbol? 
c) With random symbols being sent, which bit will have more errors, the one 

on the I channel or the one on the Q channel? 

8.11 Suppose QPSK symbols are being sent through a single-path channel with 
coefficient c = 1. Also, suppose there is frequency offset of 25 degrees per symbol 
period. 

a) Assume the accumulated phase offset is 0 degrees at time m = 1. Draw 
the constellation points at that time and label them 1, 2, 3, and 4. These 
labels correspond to certain bit combinations. 

b) Draw the received constellation points at time m = 2. Label the four 
points. 

c) Assume the received values are not corrected, so that frequency offset must 
be handled by changing the possible symbol values. Give an equation for 
the possible symbol values as a function of m. 

8.12 Suppose pilot symbols are used to estimate the channel response, which 
is then used to determine equalization parameters. Suppose the pilot symbols 
have a different energy per symbol than the traffic symbols. Consider the following 
equalization approaches: MF, ZF DFE, MISI LE, MMSE LE, MMSE DFE, MLSD. 

a) Which of these approaches require us to know the power relation between 
the pilot symbols and the traffic symbols. Assume all symbols are QPSK. 

b) What is your answer if the traffic symbols are 16-QAM? 

8.13 Show that for QPSK symbols and tracking of a single channel coefficient, 
LMS channel tracking and exponential filtering are equivalent. What is the rela-
tionship between μ and a? 

8.14 Research the Doppler effect and the equations that govern it. Show, math-
ematically, how the Doppler effect can be approximated by a frequency shift. 



1 8 8 PRACTICAL CONSIDERATIONS 

Epilogue 

Thanks to your help, Bob received the message correctly. What did Bob answer? 
Was Alice able to receive it? You decide. 



APPENDIX A 

SIMULATION NOTES 

Performance evaluation and comparison are often obtained through Monte Carlo 
simulation. The purpose of this appendix is to briefly share information that the 
author has found useful on writing computer simulation programs. Most of the 
information is probably available in the literature, though the author has not at-
tempted to track down the appropriate references. 

In simulating the transmitter, it is useful to develop a Gray-coded QAM modu-
lator that can handle QPSK, 16-QAM, 64-QAM, etc. M-QAM can be obtained by 
forming \/M-ASK symbols on the I and Q branches. Thus, we focus on TV-ASK 
(TV = \ /M). Let the "modulation" bits in a symbol be denoted mi, m2, etc., where 
mi is the "weakest" bit (highest error rate in AWGN). There are K = log(TV) 
bits. Using symbol values ±1 , ±3, etc., symbol values can be generating in an 
order-recursive way as 

ΪΊ = mi (A.l) 
Tk = 2fc-1mfc + mfcTfc_i, k = 2,...,K, (A.2) 

where τη& take on values ±1 and Ta is the ASK symbol. In forming a QAM symbol, 
the power needs to be normalized to 1/2 by multiplying by l / v 2 P , where P is the 
average power in Τχ· It is straightforward to show that P = (1/3)(TV2 — 1) for 
TV-ASK. 

At the receiver, a similar order-recursive demodulation can be performed. If z 
is the ASK decision variable, normalized to the form z = s + re, where s is ± 1 , ±3, 
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etc., then the bits in Boolean form (6*, — 0,1) can be detected as follows 

zK = z, bK = {zK < 0) (A.3) 
zk = mfc+i(zfc+i -fhk+i2k), bk = (zk < 0), k = K - 1 , . . . , 1. (A.4) 

where the modulation form is obtained from the Boolean form using rhk = —2bk + 1. 
Also, the expression a < 0 is 1 if true and 0 if false. 

While the pulse shape p(t) is continuous in time, it is typically modeled with a 
discrete-time, sampled form, using 4 or 8 samples per symbol period. Here we will 
use 8 samples per symbol period. To speed simulation up, it is sometimes possible to 
avoid modeling p(t) and to work with only one sample per symbol period. Consider 
the following assumptions. 

• The transmitter uses root-Nyquist pulse shaping. 

• The channel consists of symbol-spaced paths. 

• The noise is AWGN. 

• The receiver initially filters the received signal with a filter that performs a 
sliding correlation of the received signal with the pulse shape. 

• The output of the receive filter is sampled once a symbol, and the sampling 
point is aligned with the point where only one symbol affects the sample. 

With these assumptions, the received samples can be modeled as 

v(mTs) = ^2ges(m- t) + ñ(m), (A.5) 
t=a 

where ñ(m) is the corresponding noise sample after filtering and sampling. Observe 
that because of its Nyquist properties, the pulse shape p(t) is not present. By 
simulating v{mTs) directly, we avoid the need to model the pulse shape and to 
generate multiple samples per symbol period. 

A commonly used "trick" to speed up simulations is to use the same transmitted 
signal and same noise realization to evaluate several SNR levels. This is done by 
looping over the SNR levels of interest and adding different scaled versions of the 
transmitted signal to the noise. (One can also add different scaled versions of the 
noise to the transmitted signal, as long as receiver algorithms are insensitive to 
scaling.) This can be done after the receive filter, if the transmitted signal and 
noise signal are filtered separately. 

It is important to "calibrate" a new simulation tool to make sure it is working 
properly. One way this is done is by comparing performance results to known re-
sults. To verify M-QAM modulation and demodulation, it is convenient to evaluate 
symbol error rate (SER). The decision variable z can be modeled as z = As + n, 
where n is real Gaussian noise with variance Na/2. From [Pro89], the SER for 
TV-ASK is given by 
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where JA = A2/No- For the M-QAM symbol formed from two iV-ASK symbols, 
the SER is 

P . = 1 - (1 - PA)2, (A.7) 

where JA is 0.5£8/ΛΓ(). 
Another useful calibration approach is to examine bit error rate (BER).. For 

QPSK, the probability of a bit error is [Pro89] 

Pb = 0.5 erfc (y£*/M)), (A.8) 

where Et, is the energy per bit (Eb = Es/2 for QPSK). For 16-QAM, there are two 
"strong" bits (most significant bits or MSBs) and two "weak" bits (least significant 
bits or LSBs). The two strong bits have lower error probabilities than the two weak 
bits. Using standard, fixed detection thresholds for symbol detection (as opposed 
to thresholds that depend on SNR [Sim05], the probabilities of bit error are given 
by |Cho02] 

P M 

rb,LSB 

erfc 

2 erfc 

2Eb 
5JVn 

+ erfc 18^6 
5 Nn 

2Eb\ ( nSEb] l ßÖEb 

5ÎVÔ +erfC VT^; "erfC [Ηπ 
Pb = (l/2)(Pb¡MSB + Pb¡LSB). 

(A.9) 

(A.10) 

(A.ll) 

It is important to run the simulation long enough so that accurate performance 
results are obtained. For example, in measuring SER (or BER), a commonly used 
rule of thumb is to ensure there are 100 error events. So, to measure SER in the 
region of 10% SER, one would need to simulate 1000 symbols. Often a fixed number 
of symbols are simulated, and it is understood that the results at high SNR (lower 
SER values) are less accurate. 

A.l FADING CHANNELS 

The wireless channel experiences multipath propagation, with the signal being scat-
tered and reflected by various objects. When the path delays are approximately the 
same (relative to a symbol or chip period), the paths add constructively sometimes, 
destructively other times, giving rise to signal fading. With enough paths, the fad-
ing channel coefficient can be modeled as a zero-mean, complex Gaussian random 
variable. Sometimes there is a line-of-sight (LOS) much stronger path, giving rise 
to fading with a Rice distribution. 

The fading response changes as the transmitter, scatterers, and/or receiver move. 
Assuming scatterers form a ring around the receiver, we end up with a certain 
autocorrelation function and spectrum known as the Jakes' spectrum. When a 
system employs short, widely separated transmission bursts, we can approximate 
the time-varying channel with a block fading channel, in which the fading channel 
coefficient is constant during a burst and independent from burst to burst. 

The results in this book were generated using a block, Raleigh fading channel 
model. The simulation software generates a transmitted signal, fading realization, 
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and noise realization. The corresponding received signal is then processed by one 
or more equalization methods. The fading coefficients are not time-varying, but 
remain constant for the duration of the transmitted signal. The process then repeats 
with a different, independent fading realization. 

To obtain a representative set of fading realizations within a reasonable simula-
tion time, the number of transmitted symbols is usually not very large. To achieve 
good averaging over symbol and noise realizations, the symbols and noise are also 
regenerated with each new fading realization. 

The number of fading realizations to generate depends somewhat on the channel 
and what aspect of the receiver is being studied. To obtain a good variety of fading 
situations, a minimum of 1000 or 2000 fading realizations are recommended. To 
obtain good agreement with analytical results, as much as 10,000 realizations may 
be needed. 

A.2 MATCHED FILTER AND MATCHED FILTER BOUND 

Simulating the matched filter is straightforward, as the received signal is convolved 
with the time-reversed conjugate of the channel response and sampled at the ap-
propriate times. 

As for the MFB, closed-form analytical expressions can be used (we will label 
these REF). One can also simulate the MFB (we will label these (MFB)). One way 
is to generate an isolated symbol, surrounded by empty symbol periods. This is 
the approach used in Chapter 2. Another way is perfectly subtract ISI from adja-
cent symbols before applying MF. This latter approach is useful when simulating 
fading channels, so that multiple symbols can be easily simulated for each fading 
realization. 

Sometimes we want to quantify performance in terms of an output SINR even 
though we measure an error rate, such as symbol error rate. This is particularly 
true when practical receiver aspects are considered as well as when nonlinear re-
ceivers are used. We can introduce the notion of an effective output SINR (effective 
output Es/N{)). We can compute this by measuring error rate and using analytical 
relationships between error rate and Es/No to determine the effective ES/NQ. 

A.3 SIMULATION CALIBRATION 

It is important to calibrate one's simulator with independently generated results. 
This was done for linear equalization by generating equivalent results for the chan-
nels considered in [ProOl]. For these results, the linear equalizer uses 31 symbol-
spaced taps centered on the first signal path. For consistency, 31 taps are used for 
all symbol-spaced LE results in the remainder of this book. 
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194 NOTATION 

Variable Meaning 
alc m M Symbol waveform 

A Amplitude 
k ( m ' ° ) ' ™k(m) Transmitted modem bits 
B{m), B(rm,i,j) Viterbi algorithm branch metric 

ce Channel coefficient 
c¡¿ m(nXc) Symbol chip sequence value 
C n ( t i , Í2) Covariance function for n(i) 

dj Equalization processing delay 
Ei, Energy per bit 

E{c\ E{c\k) Energy per chip 
Es, E(

s
i}, E¡i](k) Energy per symbol 
/c Carrier frequency 
fo Frequency offset 

fn(x) Probability density function for n 
F„(x) Cumulative distribution function for n 

ge, gi Medium response coefficient(s) 
h(t), hk m(t) Channel response including symbol waveform and medium response 

i Transmit antenna index 
j \ / — l j processing delay index; symbol value index 
J Number of processing delays 
k Parallel multiplexing channel index 
K Number of parallel multiplexing channels from common transmitter 
i Path delay index, s-parameter index 
L Number of path delays 
m Modem symbol period index 
M Number of possible symbol values (M-ary modulation) 
Mq MLSD metric 
n Chip index 

nm Noise value (after filtering and sampling) 
n(i) Noise waveform 
Nc Number of chips per symbol period (spreading factor in CDM) 

NCP Number of chips in the cyclic prefix (OFDM) 
NMB Number of chips in the main block (OFDM) 

Nr Number of receive antennas 
Ns Number of symbols 
Nt Number of transmit antennas 
No One-sided noise power spectral density 
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Variable Meaning 

p(t) Pulse shape 
Pb Probability of bit error 

Pm(i) Viterbi algorithm path metric 
Ps Probability of symbol error 

Pr{·} Likelihood (probability or pdf function) 
q Receive sample index 

qm, q(m), qm(i), q Hypothesized symbol values 
Q Number of samples per chip period 

Qm(i) Viterbi algorithm path history 
r(t), r(i) Received signal waveform 

r m Received signal sample (after filtering and sampling) 
RP(T) Pulse autocorrelation function 

s m , s(m), s¿ (m) Modem symbol 
s(m), s Hard or soft decision detected symbol(s) 

S Set of possible symbol values 
Sm The mth possible symbol value in set S 

S(() Viterbi algorithm s-parameter 
Sp Set of possible symbol sequences 

S(£) S-parameters 
t Time 

v(qTs) Received signal after filtering and sampling 
w, Wj Equalization weight vector 
x ' ' ' ( i ) Transmit signal 

zm, z(m), z¿ (m) Decision variable 
re Path delay 
σ2 Noise variance 
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