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XX

Prologue

Alice was nervous. Would Bob receive the message correctly? They were playing
a new cell phone version of Truth or Dare, and Bob had picked Truth. Alice was
given a list of three questions and had selected one to ask him. But Bob was
far from the cell tower that was sending her message to him. Her message was
bouncing off of buildings and arriving at Bob’s phone like multiple echoes. Would
Bob’s phone be able to figure out the message? Would she be able to receive his
response?



PREFACE

The working title of this book was Channel Equalization for Everyone. Channel
equalization for everyone? Well, for high school students, channel equalization
provides a simple, interesting example of how mathematics and physics can be
used to solve real-world problems. It also introduces them to the way engineers
think, perhaps inspiring them to pursue a degree in engineering. Similar reasoning
applies to first-year undergraduate engineering students.

For senior undergraduate students and graduate students in electrical engineer-
ing, channel equalization is a useful topic in communications. Data rates on wireless
and wireline connections continue to rise, as do information densities on storage de-
vices. Packing more and more digital symbols in time or space ultimately leads to
intersymbol interference, requiring some form of equalization. Each new communi-
cations air interface or data storage device poses its own challenges, keeping channel
equalization a topic of research as well.

So how can one book be used to teach channel equalization to such different
audiences? Each chapter is divided into the following sections.

1. The Idea: The idea is described at a level suitable for junior/senior high
school students and first-year undergraduate students with a background in
algebra.

2. More Details: More information is provided that is intended for senior under-
graduate students but is perhaps more suitable for first-year graduate students
more comfortable with many variables in algebra. Differential calculus and
complex numbers are used in a few places. A little bit of probability theory

XXi



xxii PREFACE

is introduced as needed. A set of equations is sometimes written in matrix
form, but linear algebra concepts such as matrix inverses are not used.

3. The Math: The idea is described in more general, mathematical terms suitable
for second-year graduate students with a background in calculus, communi-
cation theory, linear algebra, and probability theory. To avoid getting lost
in the math, the simple case of time-division multiplexing is considered with
single transmit and receive antennas. Performance results are provided along
with simulation notes.

4. More Math: The idea is described in even more general terms, considering
symbols multiplexed in parallel (e.g., code-division multiplexing (CDM) and
orthogonal frequency division multiplexing (OFDM)), multiple transmit an-
tennas, and multiple receive antennas. More sophisticated noise models are
also considered.

5. An Example: The idea is applied to a cellular communications system.

6. The Literature: Bibliographic sources are given as well as helpful references
on advanced topics for further exploration.

Homework problems are also provided, corresponding to the first three sections.

Thus, a guest lecture for a junior/senior-level high school math class or first-
year undergraduate introductory engineering course can be created from the first
sections of several chapters. The first and second sections can be used to develop
a series of lectures or an entire course for senior undergraduate students. The
remaining sections of each chapter provide the basis for a graduate course and a
foundation for those performing research.

The scope of the book is primarily the understanding of coherent equalization
and the use of digital signal processing (we assume the signal is initially filtered and
sampled). Parameter estimation is briefly touched on in the last chapter, and other
areas such as blind equalization and performance analysis are not addressed. Basic
digital communication theory is introduced where needed, but certain aspects such
as system design for a particular channel are not addressed. Specific mathematical
tools are not described in detail, as such descriptions are available elsewhere. By
keeping the book focused, the hope is that insights and understanding will not get
lost. Such an understanding is important when designing equalization algorithms,
which often involves taking short cuts to keep costs down while maintaining per-
formance.

The book integrates concepts that are often studied separately. Multiple receive
antennas are often studied separately in the array processing literature. Multiple
transmit antennas are sometimes considered separately in the MIMO literature.
Multiple parallel channels are considered in the multiuser detection literature.

My hope is that the reader will discover the joy of solving the puzzle of channel
equalization.

G. E. BOTTOMLEY

Raleigh, Novth Carolina
February 2011
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CHAPTER 1

INTRODUCTION

In this chapter we will define the problem we are solving and give mathematical
models of the problem, based on the physical laws of nature. Before we do this,
let’s jump in with an example.

Alice and Bob

Alice has just sent Bob a question in a game of Truth or Dare. The question is
represented by two digital symbols (s; and s;) as shown in Table 1.1. After sending
an initial symbol sg, the symbols are sent one at a time. Each is modified as it
travels along a direct path to the receiver, so that it gets multiplied by —10. The
symbols also travel along a second path, bouncing off a building, as shown in Fig.
1.1. The signal along this path gets multiplied by 9 and delayed so that it arrives
at the same time as the next symbol arrives along the direct path. There is also
noise which is added to the received signal.
At Bob’s phone, the received values can be modeled as

rr = —10s;1 +9s0+m
—10s9 + 951 + n4. (11)

I

T2

Suppose the actual received values are
T = 1, Ty = —T7. (1.2)
Channel Equalization for Wireless Communications: From Concepts to Detailed 1

Mathematics, First Edition. Gregory E. Bottomley.
© 2011 Institute of Electrical and Electronics Engineers, Inc. Published 2011 by John Wiley & Sons, Inc.



2 INTRODUCTION

Table 1.1 Possible messages

Index Representation Message
81 82
1 +1 -1 “Do you like classical music?”
2 -1-1 “Do you like soccer?”
3 +1 +1 “Do you like me?”
\ g,

Figure 1.1 Dispersive scenario.

Which message was sent? How would you figure it out? Would it help if symbol sq
were known or thought to be +17 Think about different approaches for determining
the transmitted symbols. Try them out. Do they give the same answer? Do they
give valid answers (the sequence s; = —1 sy = +1 is not in the table)?

1.1 THE IDEA

Channel equalization is about solving the problem of intersymbol interference (IS1).
What is ISI? First, information can be represented as digital symbols. Letters
and words on computers are represented using the symbols 0 and 1. Speech and
music are represented using integers by sampling the signal, as shown in Fig. 1.2.
These numbers can be converted into base 2. Thus, the number 6 becomes 110
(0x1+41x2+1x4). There are different ways of mapping the symbols 0 and 1
into values for transmission. One mapping is to represent 0 with +1 and 1 with
—1. Thus, 110 is transmitted as using the series —1 —1 +1. The symbols 0 and 1
are often referred to as Boolean values. The transmitted values are called modem
symbols or simply symbols.

ISI is the interference between symbols that can occur at the receiver. In the
Alice and Bob example, we saw that one symbol was interfered by a previous symbol
due to a second signal path. This is a problem in cell phone communications, and
we will refer to it as the dispersive channel scenario. A cell tower transmitter sends
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-4

Figure 1.2 Sampling and digitizing speech.

a series or packet of digital symbols to a cell phone. The transmitted signal travels
through the air, often bouncing off of walls and buildings, before arriving at the cell
phone receiver. The receiver’s job is to figure out what symbols were sent. This is
an example of the channel equalization problem.

To solve this problem, we would like a mathematical model of what is happening.
The model should be based on the laws of physics. Cell phone signals are transmit-
ted using electromagnetic (radio) waves. The signal travels through the air, along
a path to the receiver. From the laws of physics, the effect of this “channel” is
multiplication by a channel coefficient. Thus, if s is the transmitted symbol, then
cs is the received symbol, where ¢ is a channel coeflicient. To keep things simple,
we will assume ¢ is a real number (e.g., —10), though in practice it is a complex
number with real and imaginary parts (amplitude and phase).

Sometimes the channel is dispersive, so that the signal travels along multiple
paths with different path lengths, as illustrated in Fig. 1.1. The first path goes
directly from the transmitter to the receiver and has channel coeflicient ¢ = —10.
The second path bounces off a building, so it is longer, which delays the signal like
an echo. It has channel coefficient d = 9. 'There is also noise present. The overall
mathematical model of the received signal values is given in (1.1). The portion of
the received signal containing the transmitted symbols is illustrated in Fig. 1.3.

Notice that the model includes terms nj, ns to model random noise. The laws
of physics tell us that electrons bounce around randomly, more so at higher tem-
peratures. We call this thermal noise. Such noise adds to the received signal.
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Figure 1.3 Received signal example.

While we don’t know the noise values, we do know that they are usually small.
In fact, physics tells us that the likelihood of noise taking on a particular value is
given by the histogram in Fig. 1.4. Such noise is called Gaussian, named after
the scientist Gauss. The average noise value is 0. The average of the square of
a noise value is denoted o2 (the average of n? or n2). We call the average of the
square energy or power (energy per sample). We will assume we know this power.
If needed, it would be estimated in practice. One more assumption regarding the
noise terms. We will assume different noise values are unrelated (uncorrelated).
Thus, knowing n; would tell us nothing about n,.

1.2 MORE DETAILS

How well an equalizer performs depends on how large the noise power is, relative
to the signal power. A useful measure of this is the signal-to-noise ratio (SNR). It
is defined as the ratio of signal power (S) to noise power (N), i.e., S/N. If we are
told that the noise power is 62 = 100, we just need to figure out the signal power
S.

We can use the model for 7 in (1.1) to determine S. The input signal power S
is the average of the signal component (~10s, + 9s1)2, averaged over the possible
values of s; and s3. This turns out to be 181, which can be computed one of two
ways. One way is to consider all possible combinations of s; and s;. For example,
the combination 51 = +1 and s = +1 gives a signal term of —10(+1) +9(+1) = -1
which has power (—1)2 = 1. Assuming all combinations are possible!, the average
power becomes

S = (1/D)[(-1)? + (-19)% + (19)* + 1] = 181. (1.3)

Another way to compute S is to use the fact that s; and ss are assumed to be
unrelated. When two terms are unrelated, their powers add. The power in —10s;

IThis is not quite true, because one combination does not occur according to Table 1.1. However,
for most practical systems, this aspect can be ignored.
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Figure 1.4 Noise histogram for noise power o> = 1.

is the average of {(—10)(+1)]? and [(—10)(—1)]?, which is 100. We could have used
the property that the average of cs is ¢? times the average of s2. 'The power in 9s;
is 81, so the total signal power is 181. Thus, the input SNR is

SNR. = 181/100 = 1.81. (1.4)

It is common to express SNR. in units of decibels, abbreviated dB. These units are
obtained by taking the base 10 logarithm and then multiplying by 10. Thus, the
SNR of 1.81 becomes 10log,,(1.81) = 2.6 dB.

We will be interested in two extremes: low input SNR and high input SNR.
When input SNR is low, performance is limited by noise. When input SNR is high,
performance is limited by ISI.

1.2.1 General dispersive and MIMO scenarios

In general, we can write the received values in terms of channel coeflicients ¢ and
d, keeping in mind that we know the values for ¢ and d. Thus, for the dispersive
scenario, we have

Tm = CSm + dSm_1 +nm; m=1,2 etc., (1.5)
where the noise power is 62. The corresponding SNR is

SNR = (¢ + d?)/o?. (1.6)
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A block diagram of this scenario is given in Fig. 1.5.

c
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Figure 1.5 Dispersive scenario block diagram.

We will also consider a second ISI scenario, the multiple-input multiple-output
(MIMO) scenario, illustrated in Fig. 1.6. Two symbols (s; and s;) are transmitted,
each from a different transmit antenna. Both are received at two receive antennas.
There is only a single, direct path from each transmit antenna to each receive
antenna. The two received values are modeled as

ry = —10s1 +9s9 +nq
Ty = 751 — 652+ no. (1.7)

Thus, we have ISI from another symbol transmitted at the same time on the same
channel. In this case we have two input SNRs, one for each symbol. For each
symbol, signal power is the sum of the squares of the channel coefficients associated
with that symbol. Thus,

SNR(1) = ((~10)*>+7?)/100 = 1.49 = 1.7 dB (1.8)
SNR(2) = (9%+ (-6)?)/100 = 1.17 = 0.7 dB. (1.9)

In general, the MIMO scenario can be modeled as

rr = c¢s;+dso+m
ry = e$1+ fs2+ no. (1.10)

This is sometimes written in matrix form as
T c d s n
[]=1e 7[5 ]+[m] (1.11)

or simply
r=Hs+n. (1.12)
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Figure 1.6 MIMO scenario.

The corresponding SNR values are

SNR(1) (e +e?)/o? (1.13)
SNR(2) = (d*>+ f%)/o% (1.14)

1.2.2 Use of complex numbers

Finally, in radio applications, the received values are actually complex numbers,
with real and imaginary parts. We refer to the real part as the in-phase (I) compo-
nent and the imaginary part as the quadrature (Q) component. At the transmitter,
the I component is used to modulate a cosine waveform, and the Q component is
used to modulate the negative of a sine waveform. These two waveforms are or-
thogonal (do not interfere with one another), so it is convenient to use complex
numbers, as the real and imaginary parts are kept separate. Also, the arithmetic
of complex numbers corresponds to the phase shift relationship between sine and
cosine.

We can send one bit on the I component (the I bit) as +1 or —1 and one bit on
the Q component (the Q bit) as +j or —j, where j (i is often used in mathematics
textbooks) indicates the Q component and behaves like /—1. This leads to a
constellation of four possible symbol values: 14 4,14+ j, —1 —j, and +1 — 5. This
is shown in Fig. 1.7 and is called Quadrature Phase Shift Keying (QPSK).

1.3 THE MATH

In this section, a model is developed for the transmitter and channel, and sources of
ISI at the receiver are discussed. To keep the math simple, we consider time-division
multiplexing (TDM), in which symbols are transmitted sequentially in time. There
is only one transmit antenna and one receive antenna, which is sometimes referred
to as single-input single-output (SISO). A block diagram showing the system and
notation is given in Fig. 1.8. A notation table is given at the end of the book.
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Figure 1.8 Systein block diagram showing notation.

We will use a complex, baseband equivalent of the system. A radio signal can
be written as the sum of cosine component and a sine component, i.e.,

z(t) = ur () V2cos(2n fot) — u;(t)V2sin(2n f.t), (1.15)

where f, is the carrier frequency in Hertz (cycles per second). The two components
are orthogonal (occupy different signal dimensions) under normal assumptions. The
V2 is included so that the power is the average of u2(t) + uf(t). We can rewrite
(1.15) as

Re{u(t)V2exp(j2nf.t)}, (1.16)
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where u(t) = u,(t) + ju;(t) is the complex envelope of the radio signal. We can
model the system at the complex envelope level, referred to as complex baseband,
rather than having to include the carrier frequency term.

We will assume the receiver radio extracts the complex envelope from the received
signal. For example, the real part of the complex envelope can be obtained by
multiplying by v/2cos(2m f.t) and using a baseband filter that passes the signal.
Mathematically,

Yr(t) = 2(t) V2 cos(27 fot) = up(t)2 cos? (2m fot) — ui(t)25in(27 fot) cos(27 fet).
(1.17)
Using the fact that cos?(A) = 0.5(1 + cos(2A)), we obtain

Yr(t) = ur(t) + up(t) cos(2m2 fot) — u;(t)2sin(27 fot) cos(2n fot) (1.18)

A filter can be used to eliminate the second and third terms on the right-hand side
(r.h.s.). Similarly, the imaginary part of the complex envelope can be obtained by
multiplying by v/2sin(2nx f.t) and using a baseband filter that passes the signal.

Notice that we have switched to a continuous time waveform u(t). Thus, when
we send symbols one after another, we have to explain how we transition from
one symbol to the next. We will see that each discrete symbol has a pulse shape
associated with it, which explains how the symbol gets started and finishes up in
time.

1.3.1 Transmitter

At the transmitter, modem symbols are transmitted sequentially as

z(t) = VEs Y s(m)p(t - ml), (1.19)

m=—o0
where
e FE; is the average received energy per symbol,

e s(m) is the complex (modem) symbol transmitted during symbol period m,
and

e p(t) is the symbol waveform or pulse shape (usually purely real).

The symbols are normalized so that E{|s(m)|?} = 1, where E{-} denotes expected
value.? The pulse shape is also normalized so that [*_|p(t)|? dt = 1.

In (1.19) we have assumed a continuous (infinite) stream of symbols. In practice,
a block of Ny symbols is usually transmitted as a packet. Usually N is sufficiently
large that the infinite model is reasonable for most symbols in the block. Theoret-
ically, symbols on the edge of the block should be treated differently. However, in
most cases, it is reasonable (and simpler) to treat all the symbols the same.

In general, a symbol can be one of M possible values, drawn from the set S =
{Sj;7 = 1...M}. These M possible complex symbol values can have different

2In this case, expectation is taken over all possible symbol values.
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phases (phase modulation) and/or different amplitudes (amplitude modulation).
For good receiver performance, we would like these symbol values to be as different
from one another as possible for a given average symbol power. Note that with
M possible symbol values, we can transmit log,(M) bits (e.g., 3 bits have M = 8
possible combinations)

Modulation is typically Gray-mapped Quadrature Amplitude Modulation (QAM),
such as Quadrature Phase Shift Keying (QPSK) (illustrated in Fig. 1.7) and 16-
QAM (illustrated in Fig. 1.9). These can be viewed as Binary Phase Shift Key-
ing (BPSK) and 4-ary Amplitude Shift Keying (4-ASK) on the in-phase (I) and
quadrature (Q) axes. The 4-ASK constellation, illustrated in Fig. 1.10, conveys
two modem bits: a most significant bit (MSB) and a least significant bit (LSB).
The MSB has better distance properties, giving it a lower error rate than the LSB.

Q

® ® & ®

® © ] e
—t—+ |
1 3

& & ® %

Figure 1.9 16-QAM.

As for pulse shaping, root-Nyquist pulse shapes are typically used, which have
the property that their sampled autocorrelation function is given by

oC

Rp(mT) 2 / p(t + mI)p*(t) dt = §(m), (1.20)

-0

where superscript “*” denotes complex conjugation and §(m) is the Kronecker
delta function (1 for m = 0 and O for other integer values of m). (The pulse
shape p(t) is typically purely real.) Such pulse shaping prevents ISI at the receiver
when the channel is not dispersive and the receiver initially filters the signal using
a filter matched to the pulse shape (see Chapter 2). Sometimes partial-response
pulse shaping is used, in which ISI is intentionally introduced at the transmitter to
enable higher data rates.
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Figure 1.10 4-ASK with Gray mapping.

A commonly used root-Nyquist pulse shape is root-raised cosine. Its autocorre-
lation function is given by

_ (sin(xt/T) cos(Bnt/T)
m = (M) (PG (20

where 3 is the rolloff. The RRC waveform and its autocorrelation function are
shown in Fig. 1.11 for a rolloff of 0.22 (22% excess bandwidth).

1.3.2 Channel

The transmitted signal passes through a communications channel on the way to
the receive antenna of a particular device. We can model this aspect of the channel
as a linear filter and characterize this filter by its impulse response. The actual,
physical channel may consist of hundreds of paths on a continuum of path delays.
Fortunately, for an arbitrary channel, the channel response can be modeled as a
finite-impulse-response (FIR) filter, using a tap-spacing that meets the Nyquist
sampling criterion (sampling rate at least twice the bandwidth) for the transmitted
signal (typically between 1 and 2 samples per symbol period). The accuracy of this
model depends on how many tap delays are used.

Regulatory bodies typically limit the amount of bandwidth a wireless signal
is allowed to occupy. Thus, the channel is bandlimited. Theoretically, for root-
Nyquist pulse shaping, the radio bandwidth must be at least as large as the symbol
rate (baud rate) (the baseband equivalent bandwidth is half the baud rate, giving a
Nyquist sampling period of one symbol period). Conversely, for a given bandwidth,
the symbol rate with root-Nyquist pulse shaping is limited to the radio bandwidth
or twice the baseband bandwidth. This limit in symbol rate is sometimes referred
to as the Nyquist rate.

However, in most systems, a slightly larger bandwidth is used, giving rise to the
notion of excess bandwidth. When excess bandwidth is low, it is reasonable to
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Figure 1.11 Raised cosine function.

approximate the channel with a symbol-spaced channel model, especially when the
channel is highly dispersive (signal energy spread out in time due to the channel).

Consider an example in which the transmitter uses RRC pulse shaping with
rolloff 0.22. The Nyquist sampling period is 1/1.22 or 0.82 symbol periods. Thus,
for an arbitrary channel, we would need a tap spacing of 0.827" for smaller. As
most simulation programs work with a sampling rate that is a power of 2 times
the symbol rate, a convenient tap spacing would be 0.757". If the channel is well-
modeled with a single tap at delay 0, the received signal (after filtering with a RRC
filter) would give us the raised cosine function shown in Fig. 1.11. To recover the
symbol at time 0, we would sample at time 0, where the raised cosine function is
at its maximum. Notice that when recovering the next symbol, we would sample
at time 1, and the effect of the symbol at time 0 would be 0 (no IS1). In fact, we
can see that when recovering any other symbol, the effect of symbol 0 would be 0,
as the zero crossings are symbol-spaced relative to the peak.

Suppose, instead, that the channel is well-modeled by two taps 0.757 apart.
An example with path coefficients 0.5 and 0.5 is shown in Fig. 1.12 (the x axis
is normalized so that the peak occurs at time 0). Relative to Fig. 1.11, we see
that the symbol is spread out more in time, or dispersed. Hence, the channel is
considered dispersive. Observe that when recovering the next symbol at time 1,
there is ISI from symbol 0.
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Figure 1.12  Effect of dispersion due to two, 0.75T-spaced, equal amplitude paths on
raised cosine with 0.22 rolloff.

Another aspect of the channel is noise, which can be modeled as an additive
term to the received signal. Characterization of the noise is discussed in the next
subsection.

Putting these two aspects together, the received signal can be modeled as

L-1

r(t) Y gex(t — ) + n(t), (1.22)

=0

where L is the number of taps or (resolvable) paths, g, is the medium response or
path coefficient for the ¢th path, and 7, is the path delay for the fth path. Note
that we use |= to emphasize that this is a model. This means we think of n(t) as a
stochastic process rather than a particular realization of the noise.

By substituting (1.19) into (1.22), we obtain the following model for the received
signal:

r(t) = VEs i h(t — mT)s(m) + n(t), (1.23)

m=—00

where

L-1
h(t) = gep(t — 0) (1.24)
=0
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is the “channel” response, which includes the symbol waveform at the transmitter
as well as the medium response.

1.3.2.1 Noise and interference models The term n(t) models noise. Here we will
assume this noise is additive, white Gaussian noise (AWGN). Such noise is implicitly
assumed to have zero mean, i.e.,

m,(t) 2 E{n(t)} = 0. (1.25)

The term “white” noise means two things. First, it means that different samples
of the noise are uncorrelated. It also means that its moments are not a function of
time. That is, the covariance function is given by

Cn(ts,t2) £ E{[n(t:) — ma(t)]ln"(t2) = my(t2)]} = Nodp(ts —t2),  (1.26)

where 6p(7) denotes the Dirac delta function (a unity-area impulse at 7 = 0).

Another implicit assumption with AWGN is that it is proper, also referred to
as circular.  This has to do with the relation between the real and imaginary
parts of an arbitrary noise sample n(tg) = n = n, + jn;. With circular noise,
the real and imaginary components of n(fy) are uncorrelated and have the same
distribution. With AWGN, this distribution is assumed to be Gaussian, which is a
good model for thermal noise. A circular, complex Gaussian random variable (r.v.)
has probability density function (PDF)

e 2
falz) = %Noexp{-f#nl} ) (1.27)

where m,, is the mean, assumed to be zero, and Ny is the one-sided power spectral
density of the original radio signal (noise on the I and Q components has variance
0% = Ny/2). If we write n = n, + jn;, where n, and n; are real random variables,
then n, is Gaussian with PDF

~(z - m,)?
(@) = \/”1_N”exp{ (= + )} (1.28)

and has cumulative distribution function (CDF)

2

F,, (z) & Pr{n, <z} / ﬁ exp {%;} da (1.29)

= 1—(1/2)erfc<\/;g_vz), (1.30)
where o
erfc(y) £ —\/%/y e ¥ du (1.31)

and erfc(—y) = 2 — erfe(y). There are tables and software routines for evaluating
the erfc function,

Bandwidth (BW) limitations and the presence of noise limit the rate informa-
tion can be reliably transmitted. For Gaussian noise, Shannon showed that the
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information rate (in bits per second) is limited by the capacity (C) of the channel,
which is given by
C = BWIlog,(1 + SNR). (1.32)

The area of information theory includes the development of modulation and coding
procedures that approach this limit. For our purposes, it is important to note
that increasing the symbol rate beyond the Nyquist rate and using equalization to
address the resulting ISI has its limits.

1.3.3 Receiver

At the receiver, the medium-filtered, noisy signal is processed to detect which mes-
sage was sent. One way to do this is to first detect the modem symbols (demodula-
tion). The term “equalization” is usually reserved for a form of demodulation that
directly addresses ISI in some way.

Based on our system model, there are several sources of ISI at the receiver.

1. Interference from different symbol periods. Symbols sent before are after a
particular symbol can interfere because of

(a) the transmit pulse shape,
(b) a dispersive medium, and/or

(c) the receive filter response.

2. Interference from different transmitters. Symbols sent from other transmitters
are either

{a) also intended for the receiver (MIMO scenario) or

(b} intended for another receiver or another user (cochannel interference).

In a single-path channel, such interference can be synchronous (time-aligned)
or asynchronous.

Noise and ISI cause the receiver to make errors. For example, it can detect the
incorrect modem symbol, which can give rise to an incorrect bit value. This may
lead to incorrect detection of which message was sent. In later chapters, we will
compare receivers based on their bit error rate (BER), which will be defined as the
probability that a detected bit value is in error. It will be measured by counting
the fraction of bits that are in error (e.g., a +1 was transmitted and the received
detected a —1). Other useful measures of performance are symbol error rate (SER)
and frame erasure rate (FER). The latter refers to the probability that a message
or frame is in error.

Throughout this book, we will focus on coherent forms of equalization, in which it
is assumed that the medium response can be estimated to determine the amplitude
and phase effects of the medium. This is typically done by transmitting some known
reference (pilot) symbols. We will not consider noncoherent forms, which only work
for certain modulation schemes. Also, we will not consider blind equalization, in
which there are no pilot symbols being transmitted.
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1.4 MORE MATH

In this section, more elaborate system models and scenarios are considered. Addi-
tional sources of ISI at the receiver are identified.

The system model is extended by considering several multiplicities. The trans-
mitter multiplexes multiple symbols in parallel, such as code-division multiplexing
(CDM) and orthogonal frequency-division multiplexing (OFDM) of symbols. TDM
can be viewed as a special case in which the number of symbols sent in parallel is
one.

Multiple transmit and receive antennas are also introduced, covering the cases of
cochannel interference and MIMO. This also introduces the notion of code-division
multiple access (CDMA) and time-division multiple access (TDMA), in which dif-
ferent transmitters access the channel using different spreading codes or different
time slots.

1.4.1 Transmitter

We assume there are N; transmit antennas. At transmit antenna ¢, modem symbols
are transmitted in parallel using K parallel multiplexing channels (PMCs). For
CDM, K is the number of spreading codes in use; for OFDM, K is the number of
subcarriers. TDM can be viewed as a special case of CDM in which K = 1.

The transmitted signal is given by

K-1 0
2@(t) = Y VEP (k) Y s (m)al),(t — m1), (1.33)

where
. Es(i)(k) is the average received symbol energy on PMC k of transmit antenna
)
. sfj)(m) is the (modem) symbol transmitted on PMC k of transmit antenna ¢
during symbol period m, and
. afi)m(t) is the symbol waveform for the symbol transmitted on PMC k of
transmit antenna ¢ during symbol period m.

Symbols are normalized so that E{|s§:) (m)|?} = 1. The symbol waveforms are also
normalized so that [ |a§;)m(t)|2dt = 1. A block diagram is shown in Fig. 1.13
for the case of a single transmitter (transmitter superscript ¢ has been omitted).

1.41.1 TDM For TDM, symbols are sent one at a time (K = 1), and the symbol
waveform is simply

i () = p(t), (1.34)

where p(t) is the symbol pulse shape. Notice that the symbol waveform is the same
for each symbol period m.
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Figure 1.13  Transmitter block diagram showing parallel mmltiplexing channels.

1412 CDM For CDM, symbols are sent in parallel on different spreading wave-
forms. The symbol waveform is formed from a spreading code or sequence of “chip”
values, i.e.,

ad) () = (1/V/No) Z ¢ (Mp(t — nT), (1.35)

where

e N, is the number of chips used (the spreading factor),

. c;c)m(n) is the nth chip value for the spreading code for symbol transmitted
on spreading code k of transmit antenna 4 during symbol period m, and

o p(t) is the chip pulse shape.

Chip values are assumed to have unity average energy and are typically unity-
amplitude QPSK symbols. For transmitter i, the spreading codes are typically
orthogonal when time-aligned, i.e.,

N.—1
3 (e e (n) = Ned(ky — ). (1.36)

n=0

A commonly used set of orthogonal sequences is the Walsh/Hadamard or Walsh
code set. There are K codes of length K, where K = 2¥a and alpha is the order.
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For K = 1 (order 0), the single Walsh code is +1. Higher-order code sets can be
generated as rows of a matrix W(a) which is formed order-recursively using

W(a) = [ V"gég - R _V“,'é‘(’a‘_lf) ] (1.37)

The K = 4 Walsh codes for N, = 4 are given in Table 1.2.

Table 1.2 Walsh codes of length 4

Index Code
0 +1 +1 +1 +1
1 +1 -1 +1 -1
2 +1 +1 -1 -1
3 +1 -1 -1 +1

In cellular communication systems, spreading sequences are formed by scram-
bling a set of Walsh codes with a pseudo-random QPSK scrambling sequence that
is much longer than the symbol period, so that each symbol period uses a different
set of orthogonal spreading sequences. This is referred to as longcode scrambling.
Using the same orthogonal codes for each symbol period is referred to as short codes.
For good performance in possibly dispersive channels, scrambled Walsh codes are
used. We will assume longcode scrambling throughout, as use of short codes is a
special case in which a}cl!)m (t) is the same for each m.

Now we have two ways to view TDM. As suggested earlier, we can think of TDM
as a special case of CDM in which one symbol is sent at a time, so that K = 1,
N=11.=1T, c;:)m(n) =1, and (1.34) holds. This is the most common way to
think of TDM.

However, sometimes it is useful to think of TDM as sending K > 1 symbols
in parallel using special spreading codes. For example, we can think of TDM as
sending K = 4 symbols in parallel using the codes in Table 1.3.

Table 1.3 TDM codes of length 4

Index Code
0 1000
1 0100
2 0010
3 0001

1.4.1.3 OFDM For OFDM, symbols are sent in parallel on different subcarri-
ers. The symbol waveform is similar in structure to CDM, except the “spreading
sequences” are related to complex sinusoidal functions. While there are different
forms of OFDM, we will consider a form in which each symbol period can be di-
vided into a cyclic prefix (CP) or guard interval followed by a main block (MB).
An example is given in Fig. 1.14.
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Figure 1.14 OFDM symbol block.

The symbol waveform can be expressed as

N.-1
al).(t) = (1/v/Ne) > e(m)p(t — nTe)a(t — mT), (1.38)

n=0
where
e N.— Ncp + Npp is the number of nonzero chips in the symbol waveform,
e N¢p is the number of chips in the cyclic prefix,
e Nypp is the number of chips in the main block,

® ci(n) is the nth unity-amplitude chip value for the symbol transmitted on
subcarrier k, independent of transmit antenna i,

e p(t) is the chip pulse shape, and
e aft) is a rectangular windowing function.

The first Nop values are the cyclic prefix values and the remaining Ny p values
are the main block values. The total symbol period is given by T = N.T..

A reasonable approximation is to ignore the windowing effects at the edges of
each symbol period. The symbol waveform simplifies to

N.—1

ol () ~ (1/VNe) 3 ex(m)p(t — nT), (1.39)
n=0

which we recognize as the same form as CDM with short codes. Thus, the CDM
model can be used to obtain results for both CDM and OFDM. The difference is
the particular spreading sequences used.

With OFDM, the main block sequences are given by

Je(n) = exp (j2rkn/K), n=0 ... Nyg— 1. (1.40)
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The K = 4 main block sequences of length Nasp = 4 are given in Table 1.4. Similar
to CDM, the main block sequences are orthogonal when time aligned, i.e.,

Nars-1
> iy (n)ew,(n) = Napd(ky — ks). (1.41)

n=()

They have an additional property in that a circular shift of the sequence is
equivalent to applying a phase shift to the original sequence. Specifically,

fitlnot) = exp(j2rk(n - £)/K)
exp (—j2nkl/K) exp (j2rkn/K)
exp (—j2nkl/K) fr(n). (1.42)

where © denotes subtraction modulus Nysp. This property implies that the se-
quences are also orthogonal with circular shifts of one another, i.e.,

Nuyp-—1
Czl (n)ck2 (n D f) = NN[B(S(kl — k‘z), (143)

n=0

where @ denotes modular addition using modulus Nysg. We will see in the next
chapter that the use of a cyclic prefix and discarding of certain receive samples
makes delayed versions of the symbol appear as circular shifts. This allows orthog-
onality to be preserved in a dispersive channel. (From a CDM point of view, the
CP makes interference a function of periodic crosscorrelations, which are “perfect”
in this case.)

Table 1.4 Main block OFDM sequences of length 4

Index Subcarrier chip sequence

0 41 +1 +1 +1
1 41 +j —1 ~j
2 41 -1 +1 -1
3 41 —F —1 +j

The CP is obtained by repeating the last Nop chip values and pre-appending
them. Thus, the overall chip sequence is given by

_J fe(Nyp—Nep+n—1), 0<n<Ngp-—1
ck(n)_{ fe(n = Nep), Nep<n<Ne-1 (1.44)

Though less common, it is possible to have a CP in a CDM system. In this
case, a windowing function (¢t} would not be used. A CP can also be used when
transmitting a block of T'DM symbols. The uplink of the Long Term Evolution
(LTE) system [Dah08] can be intérpreted as a form of 1DM with a cyclic prefix.
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1.4.2 Channel

The model used in the previous section is extended to allow for multiple transmit
and receive antennas. The received vector (N, receive antennas) can be modeled

as
Ny L-1

S gzt~ ) +n(t), (1.45)

i=1 ¢=0

where gy) is a vector of medium response coeflicients, one per receive antenna.
Also, unless otherwise indicated, all vectors are column vectors.

In general, the medium responses from transmit antennas in different locations
will have different path delays. We can handle this case by modeling all possible
path delays and setting some of the coefficient vectors to zero.

By substituting (1.33) into (1.45), we obtain the following model for the received
signal:

Ny K-
r(t) ;Z\/ ES (k Z h) (t — mT)sy) (m) +n(?), (1.46)

k=0 m=-00
where
h{) (¢ Z glald) (¢ — 7o) (1.47)
=0

is the channel response.

1.4.2.1 Noise and interference models Here the noise model is extended for mul-
tiple receive antennas, and more general noise models are considered. We will still
assume the noise has zero mean, i.e.,

m,(t) 2 E{n(t)} = 0, (1.48)

where boldface is used for column vectors. All vectors are N, x 1.

The noise may be colored, meaning that there may be correlation from one time
instance to another as well as from one antenna to another, and the covariance
function may be a function of time. For multiple receive antennas, the correlation
is defined as

Cr(t1,t2) £ E{[n(t:) — ma(t1)][n(t2) ~ mu(t2)]"}, (1.49)

where superscript “H” denotes conjugate transpose (Hermitian transpose). If ¢; =
t; + 7 and the correlation depends on both ¢ and 7, then it is considered nonsta-
tionary. If it only depends on 7, it is stationary and is then written as C, (7).

We will still assume the noise is proper, also known as circular. With circular
Gaussian noise, the I and Q components of n(t) are uncorrelated and have the same
autocorrelation function, i.e.,

E{n (t)n;(t2)} = E{ni(t1)ni(t2)} = (0.5)Cn(ts, t2) (1.50)
E{n-(t1)n{(t2)} = E{ni(t1)n;(t2)} =0. (1.51)
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A sample of the noise n = n(ty) is a complex Gaussian random vector. Assuming
stationary noise, the noise vector has probability density function (PDF)

fa(x) = Wén(o—)'exp{(x—mn)HCT—ll(o)(x—mn)}, (1.52)

where m,, is the mean, assumed to be zero, C,,(0) is the noise correlation function
at zero lag, sometimes called the spatial covariance, and | - | denotes determinant
of a matrix.
When we assume AWGN, we will assume the noise is uncorrelated across receive
antennas, so that
C, (1) = NoXop(r). (1.53)

where I is the identity matrix.

1.4.2.2 Scenarios In discussing approaches and the literature, it helps to consider

two scenarios. In the first scenario, there is a set of symbols during a given symbol
period, and each symbol in the set interferes with all other symbols in the set (but
not symbols from other symbol periods). We will call this the MIMO/Cochannel
scenario as it includes the following.

1. MIMO scenario. In TDM and CDM, this occurs if the transmit pulse is root-
Nyquist, the medium is not dispersive, and the receiver uses a filter matched
to the transmit pulse and samples at the appropriate time. In the CDM case,
we will assume that codes transmitted from the same antenna are orthogonal.
In OFDM, the medium can be dispersive as long as the delay spread is less
than the length of the cyclic prefix. If there are NV; transmit antennas, then
a set of Ny symbols interfere with one another.

2. Synchronous cochannel scenario. This is similar to the MIMO case, except
that the different transmitted streams are intended for different users. Also,
the transmitters may be at different locations. For TDMA and CDMA, in
addition to the requirements for TDM and CDM in the MIMO case, the dif-
ferent transmitted signals are assumed to be synchronized to arrive at the
receiver at the same time. For CDMA, an example of this is the synchronous
uplink. For OFDM, the synchronization must be close enough so that subcar-
riers remain orthogonal, even if transmitted from different antennas. Again,
there are N; symbols that interfere with one another. In the CDMA case,
nonorthogonal codes are typically assumed in the synchronous uplink, so that
there are Ny K symbols interfering with one another. However, in this case,
it is usually assumed that K = 1, giving N; interfering symbols.

In the nondispersive case, the channel coefficients are typically assumed to be in-
dependently fading (fading channel) or nonfading and unity (AWGN channel).

With these assumptions, the received sample vector corresponding to the set of
symbols interfering with one another can be modeled as

r = HAs +n, (1.54)

where n is a vector of Gaussian r.v.s with zero mean and covariance C,. While
C,, = Nyl in this specific case, we will allow other values for C,, to keep the model
general.
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As for the other terms, we have stacked the symbols from different transmitters
into one symbol vector s. Matrix A is a diagonal matrix given by

A = diag{E" E® ..}, (1.55)

where the index k has been dropped. The N; x N; matrix H is the channel matrix.
For example, in the TDM and CDM cases, it can be shown that the ith column of
H is given by

h; =g, (1.56)

The model in (1.54) is also appropriate in other scenarios. It can be used to
model the entire block of received data when there is ISI between symbol periods.
It can also be used to model a window or sub-block of data of a few symbol periods
when there is IST between symbol periods. If all symbols are included in s, then H
can have more columns than rows. Sometimes we move the symbols at the edges
of the sub-block out of s and fold them into n, changing C,,. This gives H fewer
columns.

In the second scenario, not all symbols interfere with one another. In addition,
there is a structure to how symbols interfere with one another, because we will
assume the interference is due to a dispersive medium, partial response pulse shap-
ing, or asynchronous transmission of different transmitters. Thus, for TDM, each
symbol experiences interference from a window of symbols in time. For TDM with
MIMO, a sub-block of N; symbols experiences interference from a window of sub-
blocks in time. In CDM, a sub-block of K symbols experience interference from a
window of symbol sub-blocks in time. We will call this the dispersive/asynchronous
scenario. Note that asynchronous transmission can be modeled as a dispersive
channel in which different paths have zero energy depending on the transmitter.

In this scenario, we usually assume the block size is large, so that using (1.54)
to design a block equalizer would lead to large matrices. However, if we were to
use (1.54), we would see that the channel matrix H has nonzero elements along the
middle diagonals and zeros along the outer diagonals.

1.4.3 Receiver

At the receiver, there are several sources of ISI. For the CDM case, the sources are
the same as the TDM case, with an additional source being ISI from other symbols
sent in parallel. In the CDM case, this can be due to the symbol waveform (chip
pulse shape not root-Nyquist or spreading codes not orthogonal) or the medium
response (dispersive). Typically the spreading waveforms are orthogonal (after chip
pulse matched filtering), so that ISI from symbols in parallel is due to a dispersive
medium response.

For the OFDM case, the cyclic prefix is used to avoid ISI from symbols sent in
parallel as well as symbols sent sequentially. We will see in the next chapter that
this is achieved by discarding part of the received signal before performing matched
filtering.

For both CDM and OFDM, ISI between symbols in parallel can result from time
variation of the medium response (not included in our model). If the variation is
significant within a symbol period, orthogonality is lost.
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The receiver may have multiple receive antennas. We will assume that the fad-
ing medium coeflicients are different on the different receive antennas. Common
assumptions are uncorrelated fading at the mobile terminal and some correlation
(e.g., 0.7) at the base station. Such an array of antennas is sometimes called a
diversity array. By contrast, if the fading is completely correlated (magnitude of
the complex correlation is one), it is sometimes called a phased array. In this case,
the medium coefficients on one antenna are phased-rotated versions of the medium
coefficients on another antenna. The phase depends on the direction of arrival.

1.5 AN EXAMPLE

The examples in the remainder of the book will be wireless communications exam-
ples, specifically radio communications such as cellular communications. In such
systems, there are several standard models used for the medium response. In this
section we will discuss some of the standard models and provide a set of reference
models for performance results in other chapters.

One is the static channel, in which the channel coefficients do not change with
time. A special case is the AWGN channel, which implies not only that AWGN is
present, but that there is a single path (L = 1, 79 = 0 and go = 1). This model
makes sense when there are no scattering objects nearby and nothing is in motion.
Thus, there is a Line of Sight (LLOS) between the transmitter and receiver.

Another one-tap channel is the flat fading channel for which L = 1, 7 = 0 and
go is a complex Gaussian random variable with unity power, i.e.,

The channel coefhicient is random because it is the result of the signal bouncing off
of objects (scatterers) and adding at the receiver either constructively or destruc-
tively. If there is are many signal paths, the central limit theorem tells us that the
coefficient should be Gaussian.

The fading is referred to as Rayleigh fading because the magnitude of the medium
coefficient is Rayleigh distributed. The phase is uniformly distributed. This model
makes sense when the delay spread of the actual channel (maximum path delay mi-
nus minimum path delay) is much smaller than the symbol (I'DM) or chip (CDM,
OFDM) period. The random channel coefficient changes with motion of the trans-
mitter, environment, and/or receiver.

A block fading model will be assumed, for which the random fading value re-
mains constant for a block of data then changes to an independent value for each
subsequent block of data. Such a model is realistic when short bursts of data are
transmitted.

We will also consider static and fading dispersive channels for which L > 1. All
models will have fixed values for the path delays. The dispersive static channel will
be specified in terms of fixed values for the medium coefficients. For the dispersive
fading channel, each medium coefficient is a complex, Gaussian random variable.
We can collect medium coeflicients from different path delays into a vector g =
lgo ... gr_1]T, where superscript 1" denotes transpose. We will assume these
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coeflicients are uncorrelated, so that

E{gg”} = Diag{ay,...,ar-1}, (1.58)

where ay is the average path strength or power for the £th path. The path strengths
are assumed normalized so that they sum to one. For example, a channel with two
paths of relative strengths 0 and —3 dB would have path strengths of 0.666 and
0.334.

So what are realistic values for the path delays and average path strengths?
Propagation theory tells use that path strengths tend to exponentially decay with
delay, so that their relative strengths follow a decaying line in log units. Sometimes
there is a large reflecting object in the distance, giving rise to a second set of path
delays starting at an offset delay relative to the first set. The Typical Urban (TU)
channel model is based on this.

What about path delays? In wireless channels, the reality is often that there
is a continuum of path delays. From a Nyquist point of view, we can show that
such a channel can be accurately modeled using Nyquist-spaced path delays. The
Nyquist spacing depends on the bandwidth of the signal relative to the symbol rate.
If the pulse shape has zero excess bandwidth, then a symbol-spaced channel model
is highly accurate. In practical systems, there is usually some excess bandwidth,
so the use of a symbol-spaced channel model is an approximation. Sometimes the
approximation is reasonable. Otherwise, a fractionally spaced channel model is
used, in which the path delay spacing exceeds the Nyquist spacing. Typically, 7'/2
(TDM) or T,,/2 (CDM,OFDM) spacing is used.

Though not considered here, other fading channel models exist. Sometimes one
of the medium coeflicients vectors is modeled as having a Rice distribution, which
is complex Gaussian with a nonzero mean. This models a strong LOS path. Also,
in addition to block fading, time-correlated fading models exist which capture how
the fading changes gradually with time.

The medium response models can be extended to multiple receive antennas. For
the flat static channel, L = 1, 79 = 0 and gy = a, where a is a vector of unity-
magnitude complex numbers. The angles of these numbers depend on the direction
of arrival and the configuration of the receive antennas. For the flat fading channel,
L =1, 19 =0 and g is a set of uncorrelated complex Gaussian random variables
with unity power. Note that this implies E; is the average receive symbol energy
per antenna.

For the dispersive static channel, we will specify fixed values for the medium
coefficients. For the dispersive fading channel, we will specify relative average
powers for the medium coeflicients.

In CDM and OFDM, the Nyquist criterion is applied to the chip rate and the chip
pulse shape excess bandwidth. In CDM systems, the amount of excess bandwidth
depends on the particular system, though it is usually fairly small. Experience
suggests that fractionally spaced models are needed with light dispersion, whereas
chip-spaced models are sufficiently accurate when there is heavy dispersion. For
OFDM, chip-spaced models are usually sufficient.
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1.5.1 Reference system and channel models

In later chapters, we will use simulation to compare different equalization ap-
proaches for a TDM system. Notes on how these simulations were performed are
given in Appendix A. Most results will be for QPSK. The pulse shape is root-raised
cosine with rolloff (3) 0.22 (22% excess bandwidth).

The following channel models will be used.

TwoTS Dispersive medium with two, nonfading symbol-spaced paths with relative
powers 0 and —1 dB (sum of path energies normalized to unity) and angles 0
and 90 degrees.

TwoF$S Dispersive medium with two, nonfading half-symbol-spaced paths with
relative powers 0 and —1 dB (sum of path energies normalized to unity) and
angles 0 and 90 degrees.

TwoTSfade Similar to the TwoTS channel, except that each path experiences
independent, Rayleigh fading, i.e., each path is a complex Gaussian random
variable. The variances of the random variables are set so that E{gfg} = 1},
and the relative average powers are 0 and —1 dB.

1.6 THE LITERATURE

The general system model and its notation are based on [Wan06b, Ful09]. Real and
complex Gaussian random variables are addressed in a number of places, including
[Wha71].

Digital communications background material, including modulation, channel
modeling, and performance analysis, can be found in [Pro89, Pro01]. The notion of
Nyquist rate for distortionless transmission is developed in [Nyq28|. Nyquist rate
is the result of the fact that if one is given bandwidth B and time duration T, there
are 21'W independent dimensions or degrees of freedom [Nyq28, Shad9]. Sending
more symbols than independent dimensions leads to ISI. The notion of channel
capacity is developed in [Shad8, Sha49].

Cellular communications is described in [Lee95, Rap96]. Background material
on OFDM and CDMA can be found in [Sch05, Dah08]. For OFDM, use of the
FFT can found in [Wei71], and application to mobile radio communications is
discussed in {Cim85]. Using a cyclic prefix in CDM systems is considered in [Bau02].
Information on the discrete Fourier transform can be found in standard signal
processing textbooks, such as [Rob87].

While modeling the channel as linear is fairly general, the assumption of Rayleigh
or Rice fading is particular to wireless communications. Accurate modeling is
important, because equalization design is usually targeted to particular scenarios
for which reliable communications is desirable. In the literature, channel modeling
information can be found for

e wireless (radio) communications [Tur72, Suz77),

e wireline communications {twisted pair) [Fis95],
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optical communications over fiber [Aza02],

o underwater acoustic communications [Sin09],

¢ underwater optical communications [Jar08], and
¢ magnetic recording [Kum94, Pro98|.

OFDM equalization when the delay spread exceeds the length of the cyclic prefix
is considered in [Van98]. We will not consider it further, though results for the CDM
case are applicable by redefining the spreading sequences. Equalization when the
channel varies within a symbol period is considered in [Je099, Wan06a]. We will
not consider it further.

PROBLEMS

The idea

1.1 Suppose a transmitted symbol, either +1 or -1, passes through a channel,
which multiplies the symbol by —10 and introduces a very small amount of noise.
Suppose the received value is 8.

a) What most likely is the transmitted symbol?

b) What most likely is the noise value?

¢) What is the other possible noise value?

1.2 Suppose a transmitted symbol, either +1 or —1, passes through a channel,
which multiplies the current symbol by 1, adds the previous symbol multiplied by 2,
and introduces a very small amount of noise. Suppose you know that the previous
symbol is —1 and the current received value is —1. What most likely is the current
symbol?

1.3 Suppose a transmitted symbol s, either +1 or —1, passes through a channel
which scales the symbol by 5 and adds —10 and introduces a very small amount of
noise. Suppose the current received value is —3. What most likely is the current
symbol?

1.4 Suppose a transmitted symbol s, either +1 or —1, passes through a nonlinear
channel, which produces 20s? + 10s, and introduces a very small amount of noise.
Suppose the current received value is +9. What most likely is the current symbol?

More details

1.5 Suppose we have the MIMO scenario in whichc=1,d=0,e=0,and f = 1.
Also, suppose the two received values are r; = —1.2 and ry = —0.8.

a) What most likely was the symbol s17

b) What most likely was the symbol so?

1.6 Suppose we have the MIMO scenario in whichc=1,d=0,e =2, and f = 1.
Also, suppose the two received values are ry = —1.2 and r9 = —0.8.
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a) What most likely was the symbol 517
b) Assuming you detected sy correctly, what most likely was the symbol 557

1.7 Suppose we have the dispersive scenario in which ¢ =4, d = 2, ro = 2.1, and
r1 is not available.
a) Each symbol can take one of two values. For each of the four combinations
of s; and sq, determine the corresponding noise value for ns.
b) Which combination corresponds to the smallest magnitude noise value?

1.8 Suppose we have the dispersive scenario in which ¢ = —2 and d = 0. Suppose
QPSK is sent and 7 = —1.8 4+ j2.3.

a) What most likely is the I component of 517

b) What most likely is the Q component of s17?

1.9 Sometimes we want to send two bits in one symbol period. One way to do
this is to send one of four possible symbol values: —3, —1, +1 or +3. Consider
the mapping 00 = —3, 01 = —1, 10 = +1 and 11 = +3. At the receiver, when
mistakes are made due to noise, they typically involve mistaking a symbol for one
if its nearest neighbors. For example, —3 is detected as —1, its nearest neighbor.

a) When —3 is mistaken as —1, how many bit errors are made?

b) When —1 is mistaken as +1, how many bit errors are made?

c¢) What is the average signal power, assuming each symbol is equi-likely to
occur?

d) Suppose the symbol passes through a channel, which multiplies the symbol
by —10 and introduces a very small amount of noise. Suppose the received
value is —11. What most likely was the transmitted symbol? What were
the transmitted bits?

1.10 Suppose we change the mapping to 00 = -3, 01 = -1, 11 = +1 and
10 = +3, referred to as Gray-mapping.

a) When ~1 is mistaken as +1, how many bit errors are made?

b) Is there a case where a nearest neighbor mistake causes two bit errors?

The math

1.11 Consider a TDM transmitter using a root-Nyquist pulse shape. The signal
passes through a single-path medium with delay 7y = 0. Suppose the receiver
initially filters the received signal using v(q1") = [~ r(7)p*(7 — ¢T — tq) dr.

a) For ty) = 0, how many symbols does v(¢g1") depend on?

b) For ty = T'/2, how many symbols does v(¢7") depend on?

¢) For ty =T, how many symbols does v(¢1’) depend on?

d) Suppose the medium consists of two paths, with path delays 0 and T

seconds. Now how many symbols does v(¢7") depend on for ¢y = 07

1.12 Suppose the pulse shape is a rectangular pulse shape, so that p(t) is 1/7" on
the interval [0,7") and zero otherwise.

a) What is Rp(7)?

b) Is this pulse shape root-Nyquist?
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c) Suppose the receiver initially filters the received signal using v(qT") =
ff; r(7)p* (7 — ¢I') dr. How many symbols does v(g1’) depend on?

d) Suppose the receiver initially filters the received signal using v(¢gl’) =
f_oooo r(T)p*(t — ¢TI —T/2) dr. How many symbols does v(q7T") depend on?

1.13 Consider BPSK, in which a detect static can be modeled as z E vEps + n,
where s is +1 or —1 and n is a Gaussian random variable with zero mean and
variance Ny/2. Derive (A.8).
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CHAPTER 2

MATCHED FILTERING

In this chapter, we explore matched filtering (MF). Some might argue that MF is
not really a form of equalization. However, MF provides a reference for the case
of no ISI, and it can be used as a building block in certain forms of equalization.
Also, if we assume that ISI is perfectly subtracted, MF provides a commonly used
bound on performance.

2.1 THE IDEA

Matched filtering is about collecting signal energy. Consider the dispersive scenario,
illustrated in Fig. 2.1. Suppose we are interested in detecting (determining) the
value of s1. There are two copies of s, one in 71 and one in r;. We would like to
combine these two copies to get a clearer picture of s;. We will call the combined
value the decision variable because we will use the combined value to decide what
symbol was sent.

Since the channel coefficients can be positive or negative, we can’t simply add the
two copies together. However, if we multiply each copy by its channel coefficient,
we ensure that the sign of the channel coefficient is removed. We also give more
weight to stronger copies, which is a good strategy in dealing with the noise. Thus,
we would form the decision variable z; given by

1 = —101‘1 +91"2. (21)

Channel Equalization for Wireless Communications: From Concepts to Detailed 31
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Notice that there is some delay involved, as we can’t form z; until both r; and
ro have arrived. Thus, at time & = 2, we multiply delayed received value r; by
¢ = —10 and add it to ro multiplied by d = 9 to form z;. The overall receiver is
shown in Fig. 2.2.

¢ X So (5 Y2 % s
+ Ll
d x s, 84 ) Sy

| | | y

[ [ [

ry 1"2 |'3

Figure 2.1 Received signal for matched filtering.

y

delay + sign(*) —»

0

Figure 2.2 Matched filtering block diagram.

How do we determine s; from 2,7 Since s; is +1 or —1, we can simply look at
the sign of z,. If z9 is positive, then we detect a +1; otherwise, we detect a —1.

Let’s try it out on the Alice and Bob example from Chapter 1. Recall that ry =1
and ry = —7. So, the matched filter output for s; would be

2 = —10(1) + 9(~7) = —73, (2.2)

giving a detected value of §; = —1. Alas, the true value happens to be s; = +1, so
a symbol error is made. In general, MF works well when we’re more worried about
noise than about ISI.
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2.2 MORE DETAILS

So how well will MF work on average? In this section we will explore performance.
We start with the Alice and Bob example. Let’s substitute the model equations for
r; and 7o from (1.1) into (2.1), which gives

zy = 181s; — 90sg — 90s, + [*10711 + 971.2]. (23)

The first term on the right-hand side (r.h.s.) is the desired symbol (s1) term. We
want this term to be large in magnitude, relative to the other terms. The second
and third terms are ISI terms, interference from the previous and next symbols.
Sometimes these terms are large (e.g., when sy and s, have the same sign) and
sometimes small (e.g., when sy and sp have opposite signs). The last term is the
noise term. Like the ISI term, it can be big or small.

It is useful to have a measure or figure-of-merit that indicates how well the re-
ceiver is performing. A commonly used measure is signal-to-noise-plus-interference
ratio (SINR). SINR is defined as the ratio of the signal power to the sum of the
interference and noise powers, i.e., S/(I+N). For MF, we are interested in output
SINR (the SINR of z;, the output of MF).

To compute SINR, we need to add up the power of the ISI and noise terms. Since
the symbol values and noise values are unrelated (uncorrelated), we can simply add
the power of the individual terms (recall power is the average of the square). From
(2.3), output SINR is given by

(181)2

SINR =
902 + 907 + (10 + 92)100

=0.955 = —0.2 dB. (2.4)

As 0 dB corresponds to S = I + N, a negative SINR (in dB) means the signal power
is less than the impairment power (sum of interference and noise powers).

So, could we have done better by just using ry or ry alone? If we could only use
one received value to detect s;, we would pick 7, as it has the stronger copy of s;.
Recall that r; is modeled as

r1 = —10sy + 9s¢ + ny. (2.5)
Using one-tap MF, we would form
1 = —10ry. (2.6)
To analyze performance, we can substitute the model (2.5) into (2.6), obtaining
11 = 100s; — 908y — 10n;. (2.7)
Applying our definition for SINR, the output SINR in this case would be
SINR. = (100%)/(90% + 10%(100)) = 0.5525 = —2.6 dB, (2.8)

which is less than the MF output SINR of 0.955 (—0.2 dB). Thus, MF does better
by taking advantage of all copies of the symbol of interest. The noise and ISI powers
add, whereas the signal amplitudes add (the signal power is more than the sums of
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the individual symbol copy powers). We say the noise and ISI add noncoherently
(sometimes constructively, sometimes destructively), whereas the symbol copies add
coherently (constructively).

Sometimes we want an upper bound or upper limit on the SINR after equaliza-
tion. To obtain this bound, we imagine an ideal situation in which we perfectly
remove ISI before matched filtering. In this case, the output SINR would be the
output SNR, which would be
(181)?

SINFMEs = g2 92)100

~1.81 = 2.6 dB. (2.9)

We will see that output SINR values for other equalizers will be less than this value.

2.2.1 General dispersive scenario
In general, for the dispersive scenario, the MF decision variable for s, is given by
21 = cry +drg. (2.10)
Substituting the model equations for ry and 7o from (1.5) into (2.10) gives
21 = (2 4+ d¥)sy + cd(so + s2) + (cnq + dng). (2.11)

The resulting output SINR is

(@ + d)? 1
SINR. = = 2.12
2cd)? + (> + d?)o?  fa+0?/(c2+d?)’ (212)
where 2 2
fro2ed % <1 (2.13)

(2 +d?)?  2c2d? +ct +d*

We can rewrite this as

fr

L E— 2.14
f fi+05+05/2 (2.14)
where
fi=d2/c (2.15)
Let’s assume that c? is bigger than d?, so that f; and f» are positive fractions (less
than 1).

Now consider using only ry to detect s2. Recall that ro can be modeled as
1 = cs1 + dsp + ny. (2.16)
Applying one-tap MF in this case gives
Y1 = ery = c2sq + edsy + cny. (2.17)
The resulting output SINR is

ct 1
SINR = = . 2.18
Ad? + 202 fL +a2/c? ( )
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Now compare the output SINR expressions for MF (2.12) and for using just one
received value (2.18). As we've expressed the SINRs with the same numerator, we
need only compare the denominators. Smaller is better. As for the first terms in
the denominators, we see that fo < f; from (2.14). As for the second terms in the
denominators, 02/(c? + d?) is smaller than ¢%/c?. Thus, the MF output SINR is
larger. So in terms of SINR, it is better to collect energy from different copies of a
symbol rather than using just one copy.

2.2.2 MIMO scenario

For the MIMO scenario, there are two matched filters, one for each symbol.

Y1 = cr; t+ers
yo = dri+ fra. (2.19)

The resulting output SINR values are

(c? +¢e%)?
SN = T et (@ F o (2.20)
SINR, = @+ ) (2.21)

(ed)? + (ef)? + (d® + f*)o?

2.3 THE MATH

With matched filtering and certain other demodulation approaches, symbols are
detected one at a time. Such approaches are sometimes referred to as one-shot
detectors or single-symbol detectors. In the multiuser detection literature, they
are a form of single-user detection.

The matched filter can be derived in several ways. Here we will explore two of
those ways: maximum-likelihood detection (MLD) and maximum-SNR estimation.
Partial matched filtering and whitened matched filtering are then discussed, as these
are commonly assumed as front-end processors in receiver design. A brief discussion
of the matched filter bound is given, as well as matched filtering in colored noise.
Then, performance results for reference channels are provided.

2.3.1 Maximum-likelihood detection

Assume a single symbol is transmitted. From (1.23), the received signal can be
modeled as

r(t) E VEh(t) s + n(t), (2.22)

where s is the symbol, E is the energy per symbol, h(t) is the channel response,
and n(t) is AWGN. The channel response models the transmit pulse shaping and
the medium response and is assumed to be known.

Detection theory includes the study of how best to determine the value of s given
the received signal r(¢). Here we will define “best’ as the value that minimizes the
probability that a symbol error is made. With traditional detection theory, one first
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converts the continuous-time r(¢) into a set of one or more discrete variables referred
to as statistics. Each statistic is the result of integrating r(¢) with a particular basis
function. A set of sufficient statistics is one in which no pertinent information is lost
in reducing the continuous time r(t) into the set of statistics. Once these statistics
are obtained, MLD involves finding the hypothetical value for s that maximizes the
likelihood of what is observed (the statistics).

We are going to take a less rigorous approach which leads to the same result in
a more intuitive way. Let’s hypothesize a value of s, denoted S;. Also, suppose for
the moment we only have a single sample of r(t) to work with, r(t;). With MLD,
we want to find the value of S; that maximizes the likelihood of r(t;) given that
§ = S]’.

From our model, we know that r(¢;) is complex Gaussian with mean h(ty)s.
Because r(t1) is a continuous r.v., its “likelihood” will refer to its PDF value. The
PDF value conditioned on s = S; is given by

— - 5. 2
;jlv(;exp{ Ir(t1) 5]'\]7(:/Es_h(t1)| }

(2.23)

Now suppose we have a second sample r(¢2). It will have a similar likelihood form.
Since the noise on these two samples are uncorrelated (white noise assumption),
the likelihood of both occurring is simply the product of their likelihoods.
Maximizing the likelihood is equivalent to maximizing the log-likelihood. The
product of two likelihoods becomes the sum of two log likelihoods. Thus, given two
received samples 7(f1) and r(t2), we want to select S; to maximize ‘

“Ir(ts) = S;VEWPE | —Ir(ta) = S,vEeh(ta)P
N() N() '

(2.24)

Notice we dropped terms independent of S;. If we keep sampling r(t), our summa-
tion will become an integral, giving the log-likelihood function (LLF)

LLF(S;) = (l/No)/ —|r(t) — S;v/ E h(t)|?dt. (2.25)
Expanding the square and dropping terms unrelated to S; gives
LLF(S;) = 2Re{S;z} — S(0)|S;[?, (2.26)
where
z= (\/ES/NQ)/ h*(t)r(t) dt (2.27)
S(0) = (E./No) / R*(&)h(t + £T) dt. (2.28)

Observe that z includes a correlation of r(t) with f(t) = h(t), where correlation
of a(t) to b(t) is defined as the integral of b*(t)a(t). Intuitively, a correlation in-
volves mathematically determining how similar two waveforms are. Thus, MLD
requires the use of a correlation receiver with a correlation function “matched” to
the symbol’s received waveform (f(t) = h(t)).
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The correlation in (2.27) can be interpreted as a convolution of r(r) with g(t) =
h*(—7) evaluated at ¢ = 0. As convolution is referred to as filtering and filter
response g(t) is matched to the signal waveform, we also refer to formation of z as
matched filtering.

Observe that 2.26 also includes the term S(0)|S;{2. For M-PSK modulation, |5;|*
is 1 for all j. Thus, when searching for the S; to maximizes the LLF, this term
can be omitted. As for S(€), we will see this again in Chapter 6 when developing
maximum likelihood sequence detection.

2.3.2 Output SNR and error rate performance

Let’s examine output SNR of the matched filter. First, consider BPSK, for which
§; is either +1 or —1. From (2.26), we see that only the real part of z would be
used. Substituting (2.22) into (2.27) and taking the real part gives the following
model

= VEs s +n, (2.29)

where n is AWGN with variance No/2. We've replaced E, with F (energy-per-bit)
to emphasize that a symbol represents one bit. From this model, it is straightfor-
ward to compute the output SNR as

E,

SNR, = m

= 2F4/ Ny, (2.30)
where subscript o emphasizes that it is output SNR.

The decision variable z, has two PDFs, shown in Fig. 2.3, depending on the value
of s. It can be shown that if both possibilities are equi-likely, then the probability
of bit error P, is minimized using the decision rule:

b = sign(zr). (2.31)

This is equivalent to using a detection threshold of 0, such that § = +1 if z > 0.
Note that P is also referred to as modem bit error rate (BER). We will use the
terms interchangeably.

Without loss of generality, consider the case s = +1. The probability of error is
then

P, = Pr{z, <=0b=+1} =Pr{n < -V Ep}

0.5 erfc(v/ Ep/No) = 0.5 erfc(1/0.5 SNR,). (2.32)

Thus, we see that BER is directly related to SNR; the larger the output SNR the
better. '

A more common definition of output SINR is the total signal power in complex-
valued z divided by the total impairment (noise plus interference) power in z
(summed over real and imaginary parts). This “complex-variable SINR” (still real-
valued) definition assumes that all the signal power will be used properly. In the
BPSK example above, the output SINR would then be E,/Ny (Es/Np in general).
We will use the term SINR to denote the complex-variable SINR as opposed to the
real-variable (z;) SINR.

Il
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With T'DM, the channel response for symbol s(m) is h(t —m7"). Thus, the decision
variables z(m) are obtained by correlating to

Fm(t) = folt — mT) = h(t — mT). (2.33)

We can interpret this as matched filtering using filter response g(t) = h*(—7) and
sampling the output every T’ seconds. Thus, to obtain z(m) for different m, we
filter with a common filter response and sample the result at different times.

2.3.4 Maximum SNR

Does MF maximize output SNR? We will show that it does. Thus, another way
to derive the matched filter is to find the linear receiver filter that maximizes the
output SNR. Also, we saw in the previous section that for MF, error performance
depends directly on the output SNR. This is true in general. Thus, maximizing
output SNR will allow us to minimize bit or symbol error rate.

Consider filtering the complex received signal r{t) to produce the real decision
variable for BPSK symbol s(0), denoted z,. Instead of working with a filter impulse
response and a convolutional integral, it is more convenient to work with a complex
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correlation function f(t) and a decision variable given by

2z =Re { /_ O; F(r) dt} . (2.34)

We want to find f(t) that maximizes the SNR of z,.
We start by substituting the model for r(t) from (2.22) into (2.34, giving

5 k Re{/:f*(t) [VEeh(t) o] dt+/_Zf*(t)n(t) dt}
L Aste. (2.35)

Let E denote the variance of e. Since n(t) is zero-mean, complex Gaussian and the
filtering is linear, e is a real Gaussian random variable with zero mean. The output
SNR is given by

SNR, = A%/F. (2.36)

Next, we determine E as a function of f(t). Let’s take a closer look at e. We will
use the facts that for complex numbers z = a+jb and y = c+jd, Re{z*y} = ac+bd
and |z|? = a® + b?. First, from (2.35),

e o] e o)
e= / frt)n.(t) dt + / Ji{®)n;(t) dt = e1 + eq, (2.37)
—o0 —o0
where subscripts r and 7 denote real and imaginary parts. As a result, E becomes
E=E{e’} = (No/2) [ ISP dt. (2.38)
—00

Observe that E depends on the energy in f(t), not its shape in time.
Now let’s look at the signal power, A2. From (2.35),

A2 = B, ( /_ Z Re{f*(H)h(1)} dt)Q. (2.39)

where we’ve replaced E; with Fj because we are considering BPSK. Substituting
(2.38) and (2.39) into (2.36) gives

(J22, el (On(0)} di)’
[ATOEr .

It is convenient at this point to introduce a form of the Schwartz inequality, which

states
/ Re{a* (t)b(t)} dt < \/ / la(t)[? dt \/ b()I? dt, (2.41)

where equality is achieved when a(t) = b(t). Applying the inequality to (2.40) gives

TS NF @1 dt [25, R(8)]? dt
S [F@)? dt ’

SNR, = (2E3/No) (2.40)

SNR, < (2E3/No)

(2.42)
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which simplifies to
o0

SNR, < (2Ep/No) / |R(2)|? dt. (2.43)

-0

Output SNR. is maximized when equality is achieved, which occurs when

£() = h(2). (2.44)

The resulting output SNR is
e o)
SNR,, = (2Ep/No) / |R(2)|? dt. (2.45)

A similar analysis of QPSK would reveal that the matched filter response would
be the same. In general, for an arbitrary modulation, we can define a complex
decision variable z such that

- / T o dt (2.46)

As discussed before, we usually determine the SNR. of resulting complex decision
variable, rather than just the real part.

2.3.4.1 Final detection Once we have the decision variable z, we need to deter-

mine the detected symbol 5. Here we will consider the more general case in which s
is one of M possible values, drawn from set S. With ML symbol detection (which
minimizes symbol error rate), we find the hypothetical value of s, denoted Sj, that
maximizes the likelihood of z given s = §;. As z is a continuous r.v., we will use
its PDF for likelihood. Mathematically,

5 =arg mmax Pr{z|s = S}, (2.47)

where “arg” means taking the argument (the S; value).
We can model complex-valued z as

2 As+e, (2.48)

where e is complex, Gaussian noise with PDF given in (1.27). Thus, z is complex
Gaussian with mean As. While MF leads to a value for A that is purely real and
positive, let’s consider the general case where A is some arbitrary complex number.
The likelihood of z given s = S is then

1 — AS;|?
Pr{z|s = S;} = g7 P { |2 l } . (2.49)

2
202

where the real and imaginary parts of e both have variance o2. Since the likelihood
function is positive and increasing, we can maximize over its log instead and ignore
terms that do not depend on Sj. As a result, (2.49) becomes

3 — — — 12 — i _ |2
§ = argmax |z — AS;|° = arg min |z — AS;|°. (2.50)
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Thus, in the complex plane, we want to find the possible symbol value such that
AS; is closest, in Euclidean distance, to z. In general, we will denote the operation
in (2.50) as

§ = detect(z, A), (2.51)

where
detect(z, A) £ arg glgé |z — AS;|%. (2.52)

Thus, the detect function has two inputs: the decision variable z and the amplitude
reference A.
For BPSK, S = {+1, —1}, and (2.50) simplifies to

§ = sign(Re{A*z}). (2.53)

Multiplication by A* can be omitted if A is purely real and positive. For QPSK,
the 1 bit can be detected using (2.53) and the Q bit is detected using

§ = sign(Im{A"z}). (2.54)
For Gray-coded QAM, s can be expressed as
s =s1+jsq, - (255)

where s; and sg are v M-ary ASK symbols. These can be detected separately
using the real and imaginary parts of A*z. Using the complex-variable definition
of output SINR. gives
SNR, = (Es/Np) / [R(t)|?dt. (2.56)
-0
With QAM and multiple bits per ASK symbol, ML symbol detection uses thresh-
olds that are different than minimum-BER bit detection [Sim05]. However, the
differences are only significant at low SNR, where QAM is typically not used.

2.3.5 Partial MF

In practical receiver designs, it is convenient to work with a set of digital signal
samples, rather than the continuous-valued, continuous-time waveform r(t). Such
digital samples can be easily stored in a digital memory devices and processed using
digital signal processing devices. While it is often not necessary to model the effects
of digitizing the sample values, it is important to consider how often the received
signal is sampled and what filtering occurs prior to sampling.

In the remaining chapters, we will focus primarily on equalization designs oper-
ating on the sampled output of a front-end filter matched to the pulse shape (TDM)
or chip pulse shape (CDM, OFDM). Such a front-end filter is often used in practice
for & number of reasons.

1. It reduces the bandwidth of the signal, reducing the sampling rate needed to
meet the Nyquist criterion.

2. It suppresses signals in adjacent frequency bands, sometimes called blocking
signals, reducing the number of bits per sample needed.
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3. The processing of converting the radio signal to baseband often involves a
chain of filtering operations that, with possibly some additional baseband
filtering, have the effect of matching to the pulse shape.

Such a front end is also convenient in that it allows straightforward, compact for-
mulations of equalizer filter designs in discrete time.

With partial MF, we match to the pulse shape and then sample with sampling
phase t, and sample period 7. This gives a sequence of received samples

v(gly) & / r(r)p*(r — q1s — ty) dr, (2.57)

—00

which can be modeled as

v(gly) E VE: Y h(qTs — mT + to)s(m) + i(qly), (2.58)
where
. L-1
h(t) = Y geRy(t — 7o) (2.59)

£=0

We can interpret (2.57) as correlating r(7) to a copy of the pulse shape centered at
ql' — s.

We will refer to I~z(t) as the “net” response, which includes the pulse shape at
the transmitter, the medium response, and the initial receiver front-end filter. We
will usually assume that ¢, = 0, as a nonzero t,, can be folded into the medium
path delays. However, we should keep in mind that this implies some form of ideal
synchronization to the path delays or modeling the channel with path delays aligned
to the sampling instances.

When the sample period equals the symbol period (75 = T'), equalization using
v(gT’) is considered a form of symbol-spaced equalization. When the sample period
is less than the symbol period, typically of the form 1 = 7°/Q for integer Q > 1,
we are using a form of fractionally spaced equalization.

2.3.6 Fractionally spaced MF

Suppose we use partial MF to obtain received samples. For a MF receiver, we would
complete the matched filtering process by then matching to the medium response.
Specifically, for symbol my, we would form decision variable

L-1

2mg) = Y _ giv(moT + 7). (2.60)
=0

Observe that this requires having samples at times mgT" + 7ll.

When do we need fractionally spaced MF? First consider a nondispersive chan-
nel (one path). If the receive filter is perfectly matched to the pulse shape and the
receive filter is sampled at the correct time (perfect timing, t, = 7), then frac-
tionally spaced MF is not needed. The matched filtering is completed by matching
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to the medium response (multiplying by the conjugate of the single path, medium
coefficient).

If timing is not ideal (9 # 70), then the single-path medium response must be
modeled by an equivalent, multi-tap medium response with tap delays correspond-
ing to the sample times. The subsequent filtering effectively interpolates to the ideal
sampling time. From a Nyquist sampling point of view, the samples must be frac-
tionally spaced when the signal has excess bandwidth (usually the case). Whether
fractionally spaced or symbol-spaced, the noise samples may be correlated depend-
ing on the pulse shape used. However, with MF we do not need to account for this
correlation as long as the noise was originally white, the front-end filter was truly
matched to the pulse shape, and we use medium response coefficients to complete
the matching operation.

The story is similar for a dispersive channel. If the paths are symbol-spaced, the
receive filter perfectly matched to the pulse shape, and the filter output is sampled
at the path delays (perfect timing), then symbol-spaced MF is sufficient. Symbol-
spaced MF can also be used when there is zero excess bandwidth. Otherwise,
fractionally spaced MF is needed.

2.3.7 Whitened MF

Another front end that allows discrete-time formulations is whitened matched fil-
tering (WMF). The idea is to perform a matched filter front end. This produces
one “sample” per symbol. However, the noise that was white at the input is often
correlated across samples. Such noise correlation can be accounted for in the re-
ceiver design, but the design process is usually simpler if the noise is white. This
can be achieved (though not always easily) by whitening the samples.

If the pulse shape is root-Nyquist and a symbol-spaced channel model is used,
then performing partial MF to the pulse shape and sampling once per symbol period
gives uncorrelated noise samples. Further matching to the symbol-spaced medium
response would simply be undone by the whitening filter. Thus, in this specific
example, partial MF and whitened MF are equivalent. (We will use this fact in
Chapter 6 to relate the direct-form and Forney-form processing metrics.)

However, in general PMF and WMF are not equivalent. For fractionally spaced
path delays, matching to the medium response requires fractionally spaced PMF
samples. The subsequent whitening operation is on symbol-spaced results, so that
the symbol-spaced whitening does not undo the fractionally spaced matching.

The advantage of the WMF is that only one sample per symbol is needed for fur-
ther processing and the noise samples are uncorrelated. The disadvantage is that it
requires accurate medium response estimation, which typically involves partial MF
anyway. Also, computation of the WMF introduces a certain amount of additional
complexity. When the symbol waveform is time-varying, these computations can
be more complex. Use with CDM systems complicated things further.

In the remainder of this book, we will focus on the partial MF front end. In the
reference section of Chapter 6, references are given which provide more details on
the design of the WMF. While we will not use this front end directly, it is good to
be aware of it, particularly when reading the literature.
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2.3.8 The matched filter bound (MFB)

For an uncoded system, a bound on equalization modem performance can be ob-
tained by assuming ISI is absent (only one symbol was sent) and MF is used. The
output SINR is an upper bound on SINR and the probability of symbol error is
a lower bound on symbol error rate (SER). Often ML symbol detection is used
and the corresponding detected bits are used as a bound on bit error rate (BER).
Strictly speaking, this is a pseudo-bound on BER, as SNR-dependent thresholding
operations should be applied to minimize BER using the MF decision variables
[Sim05]. However, the difference between the pseudo-bound and the true bound
are usually small, so that the pseudo-bound is used instead. In this book, we will
use the pseudo-bound.

An advantage of the pseudo-bound is that often closed form expressions can be
obtained. For example, for BPSK and a static one-path channel, we can use (2.42)
and (2.32) to determine the BER pseudo-bound.

2.3.9 MF in colored noise

Sometimes we wish to considered a colored noise model, which can be used to model
interfering signals. Here we simply give results without derivation.
When the noise colored, the LLF becomes

LLF(S / / —~ 8;v/Esh(t) ] L(ty, t2)
x [r ta) — Sj\/E;h(tQ)] dtydts. (2.61)
where C;(t1,t;) is defined by
/ / Crltr, 82)C (b2, ts) dta = Sp(t1 — t3) (2.62)

and ép(z) is the Dirac delta function. Expanding the square and dropping terms
unrelated to S; in (2.61) gives

LLF(S;) = 2Re{S; z} — S(0)|S;|?, (2.63)
where
/ / tl,tz) (te) dt1dts (2.64)
S(é) = (Es)/ / h* (tl)cn_l(tl,tg)h(tz + ZT) dtydty. (2.65)
We can rewrite z as o
z= *(t)r(t) dt, (2.66)
where o
10 = [ citnont) do. (2.67)
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We can interpret f(t) as the correlation function for colored noise and g(t) = f*(—t)
as the matched filter in colored noise response (also called the generalized matched
filter response).

For the TDM case, the channel response for s{(m) is h(t — mT), so that

Fmlt) = /_ " Oty — mT, )h(ts — mT) dts. (2.68)

Unlike the AWGN case, fr,(t) does not necessarily equal fo(t —mT'), which is given
by

f() (t - mT)

o0
/ CL(t1,t — mT)h(ty) dt,
—o0

o0
/ C;l(ti — mT,t — mT)h(ty — mT) dt1,  (2.69)
unless it happens that C;(t; — mT,t — mT) = C; (t; — mT,t) for all m (i.e.,
C;(t1,t2) is periodic in t2 with period T'). Thus, we can no longer filter with a
common filter response and simply sample at different times.

2.3.10 Performance results

Simulation was used to generate results for both the matched filter and the matched
filter bound. General notes on simulation can be found in Appendix A.

Matched filter results were generated using 20 realizations of 1000 symbols each.?
Simulation results for the matched filter bound were generated using 20,000 real-
izations of 1 symbol each. Reference results are provided using (A.8).

Results were generated for QPSK and root-raised-cosine pulse shaping (rolloff
0.22). First consider the Two'TS channel defined in Chapter 1 (two symbol-spaced
paths with relative powers 0 and —1 dB and angles 0 and 90 degrees). BER. vs.
Ey /Ny is shown in Fig. 2.4. Observe that the matched filter experiences a “floor”
in that performance stops getting better with higher Ep/N, towards the right side
of the plot.

By contrast, the matched filter bound shows no flooring. In fact, it agrees with
the reference result for an AWGN channel. This is because the matched filter
collects all the signal energy and ISI is perfectly removed (set to zero in this case).

Next consider the TwoFS channel (two fractionally spaced paths with relative
powers 0 and —1 dB and angles 0 and 90 degrees). Also consider two variations, in
which the angle of the second path is 0 degrees or 180 degrees. Simulated matched
filter bound results are shown in Fig. 2.5. Observe that performance depends
on the angle of the second path. This is because the two images of a particular
symbol are no longer orthogonal, but interact either constructively (second angle
= 0 degrees) or destructively (second angle = 180 degrees) or neither (second angle
= 90 degrees).

In general, we would like to plot BER vs.received Ep /Ny (not transmitted Ep/Ny).
For the two-tap channel, by choosing the path angles to be 90 degrees apart, we

3Slightly more than 1000 symbols were generated so that the middle 1000 symbols experienced
the same level of ISI.
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Figure 2.4 BER vs. E,/Np for QPSK, root-raised-cosine pulse shaping (0.22 rolloff),
static, two-tap. symbol-spaced channel, with relative path strengths 0 and —1 dB, and path
angles (0 and 90 degrees.

ensure that the channel does not give a gain in Ej, as we normalize the path
coefficients so their powers sum to one. Thus, by defining T'woFS as having paths
90 degrees apart, we do not have to account for any channel gain. For consistency,
the T'woTS channel is also defined as having two paths, 90 degrees apart.

In certain cases, the transmitted E, may be the same for each bit, but the
received FEp may be different, even when the channel is static. An example is CDM,
in which different symbols use different symbol waveforms that interact differently
with a dispersive channel. In this case, we would like to plot BER vs. average
received Ep/Ny. For traditional TDM, the symbol waveforms are time shifts of a
common waveform, so that they interact with a static channel the same way. If the
channel block fading or time-varying, then we need to average over the fading. For
a static channel and TDM case considered in this section, the Ep/Ny is the same
for all symbols (average = individual SNR).

Notice that when the paths create orthogonal copies of a bit, we can simply
account for the energy in each copy and then use analytical results for an AWGN
channel to determine matched filter bound performance. Analytical MFB results
are also possible when nonorthogonal copies are created.
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-Figure 2.5 BER vs. E,/Ng for QPSK, root-raised-cosine pulse shaping (0.22 rolloff),
static, two-tap, half-symbol-spaced channel, with relative path strengths 0 and ~1 dB, and
path angles 0 and 0/90/180 degrees.

2.4 MORE MATH

In this section, the more general system model is considered. We introduce the
notions of chip-level and despread-level matched filtering, depending on the order
of the matching operations. While this terminology is more commonly used for
CDM systems, we will also use it for OFDM systems for consistency, even though
time-domain and frequency-domain matched filtering may be more appropriate
terms. Partial MF and the matched filter bound are revisited. Finally, we consider
matched filtering in colored (nonwhite) noise and the notion of group matched
filtering.

The derivation of the matched filter is similar in the more general case, only now
the problem is in terms of a vector of filters. Also, the filter vector may be different
for each symbol period, so that (2.46) becomes

. o0 . H
A = [ [, 0] s (270)

—

where iy, ko, and my are indices for a particular symbol. SNR is maximized when

£0.(6) =h{) (). (2.71)
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Let’s take a closer look. Recall from (1.35) and (1.47) that

B0 = 3 g0l ¢ - ). (272)
£=0

where

ad (&) = (1/V/N,) Z @ (n)p(t - nTy). (2.73)

n=(

Substituting (1.35) into (1.47) gives

L-1
) (1) = (1/VNe Z ()Y glp(t — mp — nl). (2.74)

n=0 =0

Observe that the symbol channel response can be written as a sum of chip values
(spreading) and a chip channel response Ze —0 g(’) (t —7¢—nl,). The chip channel
response consists of the medium response and the pulse shape.

When we perform matched filtering, we can match to the components of the
symbol channel response in any order. We can see this by substituting (2.71) and
(2.74) into (2.70), giving

N.-1 *L 1
) = [T Y [ ] S [6) - et a
- n={(} £=0

(1/v/N.) i [;;;"mu ] eli) (), (2.75)

where
_ L1 oH
e(ln)(n) _ E [gl(fl”)} V(T[ + n’]‘c) (276)
£=0
v(t) = /—00 r(T)p*(r — t) dt. (2.77)

We can interpret (2.75) as a correlation or despreading operation, correlating a set
of chip estimates to the chip sequence. Specifically, despreading is performed using
e{®)(n), which can be interpreted as an estimate of the chip at time n. Notice that
el™)(n) is obtained by using v(t) and matching to the medium response. The signal
v{t) is obtained by matching to the chip pulse shape. Thus, we have divided the
matched filtering operation into three stages: matching to the chip pulse shape,
matching to the medium response, and matching to the spreading chip sequence.

The matched filter for the CDM case is also referred to as the Rake receiver.
This particular ordering can be called a chip-level Rake receiver, because we first
match to the chip pulse shape (matching to the medium response occurs after chip
pulse matching).
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With despread-level Rake reception, matching to the medium response occurs
after despreading. This form is also obtained by substituting (2.74) in (2.70), giving

- *L—l 1 H
2 (mg) = / (1//Ne )Z [0,m]" 3 6] 5t - o - )
- n=0 £=0
L-1

_ O] o) 978
= Z g( xk(;,mo(T[)’ ( . )
£=0
where
X0 = (1N, Z [, () w)] vt - ). (2.79)
So, despreading is performed first, producing xg)”’mn)(t) for t = 79,7 ... TL_1.

These despread values are then combined to form the decision variable. Thus, we
have divided the matched filtering operation into three stages: matching to the
chip pulse shape, matching to the spreading chip sequence, and matching to the
medium response.

For OFDM, the correlation in (2.75) includes correlation to the cyclic prefix
portion of the symbol waveform. Thus, the matched filter would normally match
to the overall OFDM symbol waveform. However, to avoid ISI within and between
blocks of symbols, it is common to discard a portion of the received signal. For a
particular symbol, we can think of this as discarding two portions of the symbol.
One is the portion of the symbol corresponding to the cyclic prefix of the earliest
arriving path (the part interfered by the previous symbol). The other is the portion
of the signal that spills into the next block (the cyclic prefix of the earliest arriving
path for the next symbol period). As long as the delay spread of the medium
response is less than or equal to the length of the cyclic prefix, orthogonality between
symbol periods is achieved. The circular shift orthogonality property of the OFDM
chip sequences maintains orthogonality within a symbol period despite dispersion.
We'll take a closer look at this in the next subsection

2.4.1 Partial MF

Both chip-level and despread-level Rake reception performed initial filtering matched
to the chip pulse shape. While only certain samples are needed, a reasonable re-
ceiver design is to perform uniform sampling and only use what is needed. Matching
to the chip pulse shape and sampling gives

D0

vt = [ x(op*(r - aLi) dr, (2.80)
—00

which can be modeled as

Ny K—-1

vl =33 VEO (k) f: h) (qTs — mT +to)s{) (m) + B(¢Ty), (2.81)

i=1 k=0 m=-—00
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where

B0~ (VRS e nty) (282

n=()

L1
Z geRp(t —7¢). (2.83)

£=0

h(t)

While the notation is a little sloppy, it should be clear when we are referring to the
chip-level net response h(t) and the symbol-specific net response h( 9 m(t)-

Similar to Rake reception, we will consider chip-level and despread level equal-
ization. With chip-level equalization, we will initially process the received signal
to produce chip samples v(g1;). Instead of matching to the medium response,
we will apply some other form of processing to suppress ISI. With despread-level
equalization, we will initially process the received signal to produce despread values

x;clll;ym“)(q:l:s) given by

K6 = (/VFD) S (e, @] viaZa—nLD).  (284)

n={

Instead of then matching to the medium response, other processing will be used.
Both chip-level and despread-level equalization can be symbol-spaced (I = T¢) or
fractionally spaced (1 = 1./Q).

There is a third form of equalization, symbol-level equalization . With this form,
we perform full matched filtering first, then work with the z,(cf:’)(m“) values. In the
multiuser detection literature, this form of equalization is often found.

The choice of chip-level, despread-level, or symbol-level equalization depends
on differences in complexity as well as flexibility and legacy issues. The different
forms are not quite equivalent in performance, though they are often close. In the
subsequent chapters, we will see examples of each.

2411 OFDM Let’s revisit the OFDM case. Assuming one transmit antenna,
one receive antenna, equal-energy symbols, partial MF to the chip pulse, sampling
once per chip (15 = 1), a chip-spaced channel response (1 = £1;), and aligned
sampling (¢ty = 79) (2.81) becomes

K-1 >}
vinl) b VEJ/Ne Y, Y sk(m) ch deR OT. — mN,I.)
k=0 m=—o00 n=0 =0
+ n(nle)
K-1 o N.~1 L-1
E  VE/N, > sk(m) Y e(n) ) ged((n — 6T, — mNT)
k=0 m=— n=0 =0
n(nly). (2.85)

An example for N, = 6,Ncp = 2, Nyyp = 4, and L = 3 is shown in Fig. 2.6.
Consider the symbol period my = 0. Let’s assume a worst-case delay spread
in which L = Ngp + 1. Symbol energy is present in samples n = 0 through
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icPicPiMBIMB|MB{MB|CP|CP|MB|MB|MB|MB CP|CPiMBIMB]MB|MB!

{CPi CPiMB|MB|MB;MB|CP| CP|MB|MB|MB|MB|CP | CPMB! MBiMBMB!
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i i

keep

Figure 2.6 OFDM example.

n=N,—1+L-1= N.+ Ncp — 1. Interference from the previous block (m = —1)
is present in samples n = 0 through n = L—2 = Ngp—1. Interference from the next
block (m = 1) is present in samples n = N, throughn = N+ L—1= N.+Ngp—1.
If we discard the samples with interblock interference at both edges, we are left with
Ny samples, n = Neop through n = N, — 1. Renumbering these j = 0 through
7= Nump — 1, (2.85) becomes

K-1 L-1
v(GT.) | VEs/Ne D sk(0) > geck(j — €) +a(( — Nop)Te). (2.86)
k=0 £=0

where cg(n) = for n < 0. Keep in mind that discarding samples is discarding
symbol energy. Specifically, instead of having F; energy per symbol, we now have
Es(NmB/(Nmp + Ncp).

From (1.44), we can rewrite this as

K-1 L-1
v(iTe) E VE/Ne Y sk(0) ) gefi(i©0) + #((j — Nop)Te), (2.87)
k=0 £=0

where & denotes modular subtraction using modulus Njsp. Using the circular shift
property in (1.42), we obtain

K-1
v(jle) | VEs/Ne Y hisk(0)fe(5) + (G — Nop)Te), (2.88)

k=0

where
L-1
hy = Zgg exp (—j2nke/K). (2.89)
=0
This resembles the CDM case for a nondispersive channel, allowing us to obtain
a decision variable using a single despreading operation. For the specific symbol
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k = ky, we have
Nap—1
2k, = (1/VNus) Y. frGwGET), (2.90)
Jj=0

which can be modeled as

2, (\/M)(l/\/N_Aw)l:z_:sk(o)hk Nglf;(j)fk(j) +ug
= p
= @hk(,sk(,(0)+uk, (2.91)
where
E, = (#’ZBNC;) E;, (2.92)

and ug is complex, Gaussian noise with zero mean and variance Ny. We used the
orthogonality property in (1.42), which removed ISI from other symbols in the same
symbol period (k # ko). To complete the matched filtering operation, we would
multiply by \/E_sh,’;“.

In this example, we saw that for OFDM, by keeping a certain Np;p samples
of the partial matched filter, completing the matched filtering operations leads to
complete elimination of ISI. Keep in mind that we assumed the delay spread was
no more than the length of the CP.

2.4.2 The matched filter bound

When different symbols use different symbol waveforms, there is a MFB for each
symbol. These symbol-specific bounds can be quite different, depending on how
the medium response interacts with the transmit symbol waveform.

Often an average of the bound is taken, as it provides a bound on the average
SINR or error rate. Ideally, to obtain the average SINR or average error rate,
averaging should be performed after determining the SINR or error rate for each
symbol waveform. In practice, a looser bound is often used based on assuming that
each symbol waveform has ideal properties. For example, for CDM, we can assume
the spreading sequence has an idealized autocorrelation function, in that the corre-
lation of the sequence with a shift of itself is zero. As a result, the autocorrelation
function for the symbol waveform is simply the chip pulse shape autocorrelation
function. This provides a looser bound on the average SINR or error rate.

This looser bound is not a bound on the individual symbol MFBs. The idealized
autocorrelation function is only ideal when one must consider performance over a
variety of medium responses. For a given medium response, performance is best
for the symbol waveform that is most closely matched to the medium response.
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2.4.3 MF in colored noise

Here we consider MF for the case of multiple receive antennas. The LLF corre-
sponding to sfcl)(m) =8;is

. H
LLF(S. / / - r(tl)—Sj\/Eshfé),n(tl)] Cy 't t2)
x [r(t2 —sj,/Esh;fln(tz)] dtydts, (2.93)

where C;,!(t1,t2) is defined by

/ / tl, tg (tz, t3) dts = I(SD(tl - t;;). (294)
Expanding the square and dropping terms unrelated to S; in (2.93) gives
LLF(S;) = 2Re{S; 2} — S(0)|S; %, (2.95)

where

Z““_/ / [ 0] C' (0, t)r(e) drdty (2.96)

/ / [ C;l(tl,tg)hg)mw(tg) dtvdty.  (2.97)
‘We can rewrite z as
2= / [£, (t)] r(t) dt, (2.98)
—00
where ~
£ (1) = / C;(tr, ), (1) dt. (2.99)

2.4.4 Group matched filtering

When ISI is severe, the matched filter bound for error rate is fairly loose. A tighter
bound can be obtained by thinking of a group of G symbols as one, M%-valued
supersymbol. One then assumes that one supersymbol was transmitted and deter-
mines an error rate, assuming matched filtering to each symbol followed by some
form of joint symbol detection. To obtain a true bound on symbol error rate, one
would use MAP symbol detection as described in Chapter 7. To obtain a true bound
on bit error rate, MAP bit detection would need to be used. While closed form
expressions are difficult to obtain in these cases, the error rate can be determined
via simulation. The larger the group, the tighter the bound.

An approximate bound can be obtained by using maximum likelihood sequence
estimation (MLSD), described in Chapter 6, to obtain a symbol or bit error rate.
MLSD would give a true bound on supersymbol error rate. The matched filter
decision variables for G symbols can be collected into a vector z. This vector has a
model similar to (1.54), so that

z = HAs + u, (2.100)
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where the elements of H can be determined from the system model. Note that the
elements in w may be correlated. Similar to (2.52), the MLSD solution is given by

§ = arg max [z— HAq)?C !z - HAq], (2.101)
qe (¢

where SC denotes the set of all possible symbol vectors s.

2.5 AN EXAMPLE

Consider the Long Term Evolution (LTE) cellular system [Dah08]. This is an
evolution of a 3G system, providing higher data rates. On the downlink (base
station to mobile device), OFDM is used. Let’s consider a single transmit antenna
and single receive antenna. We will assume a front-end filter (partially) matched to
p(t), which is approximately the same as matching to p(t)a(t). Let’s also assume
that the delay spread is less than or equal to the length of the cyclic prefix.

These assumptions give us the classic OFDM receiver scenario. In [Wei71] it
is shown that for a particular symbol period, by discarding the portions of the
received signal corresponding to the cyclic prefix of the earliest arriving path, ISI
from symbols within the same symbol period as well as symbols form other symbol
periods is avoided. As a result, MF makes sense and the matched filter decision
variables can be generated using a Discrete Fourier Transform (DFT), which can
be implemented efficiently using a Fast Fourier Transform (FFT).

2.6 THE LITERATURE

An interesting history of MF can be found in [Kai98], which attributes the first
(classified) publication of the idea (applied to radar) to [Nor43]. An early tutorial
on MF is {Tur60a]. The development of the log-likelihood function for a continuous
time signal is based on the more rigorous development in [Wha71]. In [V'1r68],
several rigorous approaches for obtaining a sufficient statistic for detection are pro-
vided, giving rise to the matched filter. The expression for MF in colored noise is
based on [V'IT68], though a development from maximizing SNR can be found in
[Wha71]. Details regarding the WMF can be found in [For72]. MF given discrete-
time received signal samples is considered in [Mey94].

The use of the Schwartz inequality to derive the matched filter can be found in
[Tur60a]. The complex form of the Schwartz inequality can be found in [Sch05].

With multiple receive antennas, spatial matched filtering has a long history
[Bre59]. MF in a purely spatial dimension is referred to as mazimal ratio com-
bining (MRC). To reduce complexity, a subset of antenna signals can be combined
[Mol03], referred to as generalized selection diversity.

Much work has been done to find closed-form expressions for the MFB for various
channel models. Here we give a few examples for cellular communications channels.
Analysis for fading channels usually employs the characteristic function approach
[Tur60b, Tur62]. MFB error rate averaged over fading medium coefficients is derived
for channels with two paths in [Maz91] and for those with more than two paths in
[Kaa94, Lin95]. The MFB for rapidly varying channels (variation within a symbol
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period) is examined in [Baa0l, Chi01]. Sufficient statistics for such channels is
considered in [Han99]. A technique to address numerical issues when analytically
evaluating the MFB is given in [Wel03].

In spread-spectrum communications (e.g., CDMA), the MF is commonly referred
to as the Rake receiver [Pri58, Tur80]. A Rake receiver with two receive antennas
is sometimes referred to as a 2-D Rake [Nag94]. MF in rapidly varying channels is
examined in [Say99]. The need for fractionally spaced sampling in CDMA receivers
is discussed in {Kim00a, Man01, Hor02].

PROBLEMS

The idea

2.1 Consider the Alice and Bob example. Suppose instead that r; = —1 and
9 = 4.

a) What is the value of 2; for MF?

b) What is the detected value of s1?

2.2 Consider the Alice and Bob example. Suppose we have 73 but not r3, and
we want to detect so.

a) What is the equation for z» for MF?

b) If ry = —12, what is the resulting detected value for 557

2.3  For the Alice and Bob example, suppose we detect s» using the decision
statistic zo = —9r; — 10r2. Models for the two received values are given in (1.1).
Substitute the received value models into the expression for the decision statistic.

a) What is the signal term?

b) What is the ISI term?

¢) What is the noise term?

More details

2.4 Consider the dispersive scenario for which ¢ = 1, d = 0.5, and ¢2 = 10.
a) What is the input SNR?
b) What is the output SINR of z; with MF?

2.5 Consider the Alice and Bob example. Suppose we have ro but not r3, and
we want to detect ss.

a) What is the equation for zo for MF?

b) What is the equation for the SINR of 257

c) If r, = —12, what is the resulting detected value for 557

2.6 Consider the dispersive scenario for which ¢ = a (a is between 0 and 1),
d = /1 — a2, and the noise power is 2.

a) What is the input SNR?

b) What is the output SINR of z; with MF?

¢) As a goes from 0 towards 1, what happens to output SINR?
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2.7 Suppose we have the MIMO scenario in which ¢ = 1, d = 0, e = 2, and
f = 1. Also, suppose the two received values are 7y = —1.2 and 79 = —0.8. The
noise power is o2 = 100.

a) What is the value of the MF decision variable z; for 5,7

b) What is the SINR of 2,7

¢) What is the value of the MF decision variable z; for so7

d) What is the SINR of 2,7

2.8 Suppose we have the dispersive scenario in which ¢ = —2 and d = 1. Suppose
QPSK is sent and 71 = -3+ 7 and ro = 2 + §3.

a) What is the value for the MF decision variable for s;7

b) What most likely is the I component of 5,7

¢) What most likely is the Q component of s;7

The math

2.9 Consider a BPSK system with root-Nyquist pulse shaping. Suppose the
medium consists of a single path with delay 179 = 0 and coeflicient gy. There is
also AWCN with one-sided PSD Ny. Assume the receiver uses a matched filter.
a) Express the amplitude of the decision variable in terms of Ey, Ny, and gq.
b) What is the variance of the noise on the decision variable?
¢) What is the output SNR?
d) If go = 3 and Ep/Ny = 0.1, what is the probability of a bit error in terms
of the erfc function? If possible, evaluate this to get a numerical result as
well.

2.10 Consider a BPSK system with root-Nyquist pulse shaping. Suppose the
medium consists of a two paths with delays 7 = 0, 7, = 1" and coeflicients g, and
g1- There is also AWGN with one-sided PSD Nj. Assume the transmitter sends
only one symbol and the receiver uses a matched filter.
a) Express the amplitude of the decision variable in terms of Ep, Ny, and go.
b) What is the variance of the noise on the decision variable?
c) What is the output SNR?
d) If go =3, g1 = 2 and Ep/Ny = 0.1, what is the probability of a bit error
in terms of the erfc function? If possible, evaluate this to get a numerical
result as well.

2.11 Consider a BPSK system with root-Nyquist pulse shaping. Suppose the
transmitter sends each symbol twice before sending the next symbol (i.e., s = 51,
$4 = 8y, etc.). Suppose the medium consists of one path with delay 79 = 0 and
coeflicient gy. There is also AWGN with one-sided PSD Ny. Assume the receiver
uses a matched filter.

a) Express the matched filter for s; in terms of r(t), p(t), T', and go.

b) Express the amplitude of the decision variable in terms of Ey, Ny, and go.

c) What is the variance of the noise on the decision variable?

d) What is the output SNR?



CHAPTER 3

ZERO-FORCING DECISION FEEDBACK
EQUALIZATION

Decision feedback equalization (DFE) uses past symbol decisions (detected values)
to remove ISI from previous symbols. In this chapter we will consider a zero-forcing
strategy, in which ISI from future symbols is avoided. Assuming the detected
values are correct, ISI from past symbols is also avoided. Thus, ISI is forced to
zero. This is not necessarily the best strategy, but it is a useful starting point
for understanding more sophisticated strategies. In Chapter 5, we will examine
other strategies, including Minimum Mean-Square Estimation (MMSE) DFE and
Maximum Likelihood (ML) DFE.

3.1 THEIDEA

Let’s assume we have a detected or known value for sy. Next we want to determine
§1 using ry, which can be modeled as
r1 = —10s8; + 9s¢ + ny. (3.1
Since we have an idea of what s( is, we can subtract its influence on ry, giving
y1 =11 — 930, (3.2)
which, assuming 8y = sy, can be modeled as
y1 = —10s1 +ny. (3.3)
Channel Equalization for Wireless Communications: From Concepts to Detailed 57
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If we only use y; to detected s; (we ignore the copy of sy in r3), then we have forced
the ISI to zero.

Second, to ensure that the coeflicient in front of s; is positive, we need to multiply
by a number with the same sign of the channel coefficient in front of s;. Instead of
—10, let’s use —1/10, giving the decision variable

Z2] = —O.1y1 = —0.1[7‘1 — 9.§()]. (34)
The detected symbol value is then
§1 = sign{z }. (3.5)

Now we can detect s, using ro and so on.

We can understand how DFE works graphically in Fig. 3.1. There are two copies
of s1, one in r; and one in ry. The copy in r; has interference from sy, which is
removed through subtraction. The copy in ro has interference from s,, which is
avoided by not using ry. We call this approach zero-forcing (ZF), because we have
forced the ISI to be zero (assuming our value for §; is correct). A block diagram of
the ZF DFE is given in Fig. 3.2.

=
& X .. g 84 8; &3 &
+
d x . L 81 s, s3| .
W 1
| | | .
I ]
ry T ry

Figure 3.1 Recceived signal for DFE.

Let’s try it out on the Alice and Bob example. Recall that 1 = 1 and ro = —7.
Suppose we are told that § = +1, which happens to be the correct value. The
DFE output for s; would be

7 =—0.1[1-9(+1)] = 0.8, (3.6)

giving a detected value of §(1) = +1. The true value happens to be s(1) = +1, so
the detected value is correct. To detect so we form

29 = —0.1yy = —0.1[=7 — 9(+1)] = 1.6, (3.7)

giving §(2) = +1. This detected value is also correct, as the true value happens to
be s(2) = +1. Thus, if we start with a correct value for 8y, we detect correct values
for the remaining symbols.
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1/c

r, Z, — s,
—> + sign(*) >
A
A
sm-1
delay |«
d
Figure 3.2 ZF DFE block diagram.
Now suppose we are told §g = —1, the incorrect value. Then,
z1 = —0.1[1 -9(-1)] = —1.0, (3.8)
giving a detected value of (1) = —1, which is incorrect. Then,
zg = ~0.1ye = —0.1[-7 - 9(~1)] = —0.2, (3.9)
giving §(2) = —1, which is also incorrect. Thus, if we start with an incorrect value

for 3y, we detect incorrect values for the remaining symbols. This is called error
propagation.

3.2 MORE DETAILS

So how well does the ZF DFE work in general? It depends. If we have high
input SNR (performance is limited by ISI) and the decisions are all correct (IS is
completely removed), then it works well. However, sometimes we make an incorrect
decision. This causes an incorrect subtraction of ISI for the next symbol, increasing
the chances of making a second incorrect decision, and so on.

How does it compare to MF? If performance is noise limited (low input SNR), we
actually do worse than MF because we don’t collect all the signal energy together.
Instead, we only keep the signal energy in r; (—10s;) and treat the term 9s; in rg
as a nuisance to be subtracted later. Thus, at low SNR, MF will perform better.
However, at high SNR, performance is limited by ISI. If the detected values are
correct most of the time, ISI is reduced and DFE will perform better than MF.

We can determine an upper bound on output SINR by assuming correct sub-
traction of ISL. In this case, 1 can be modeled as

y1 = —10s1 + ny. (3.10)
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The decision variable for s; is then given by 23 = —0.1y;, which can be modeled as
z1 = 51 + 0.1n;. (3.11)

Assuming a noise power of 100, the resulting output SINR is 1.0, which is greater
than the MF output SINR. of 0.955. Thus, in this case, we expect the ZF DFE to
perform better at high SNR (when decisions are mostly correct).

We can also determine a lower bound on output SINR by assuming incorrect
subtraction of ISI. When we subtract the incorrect value, we essentially double the
value (e.g., +1 — (—1) = 2). The model for y; becomes

mn = —1081 + 9(28()) +nq. (312)
The decision variable for s; is then given by 2z; = —0.1y;, which can be modeled as
z1 = 81 + 1.850 + 0.1n,. (3.13)

The resulting output SINR is 0.236, which is much lower.

Is zero-forcing the best strategy? While it eliminates ISI, it doesn’t account for
the loss of signal energy by ignoring the second copy of the symbol of interest in rs.
It turns out that we can use future samples to recover some of this loss. However,
then we can’t entirely eliminate ISI. This will be explored in Chapter 5.

In the general dispersive scenario, for s.,, we form the decision variable

Ym = Tm — dSm_; (3.14)

and detect sy using
8m = sign{cym}. (3.15)

The upper bound on output SINR . is then
SINR. < ¢?/o?. (3.16)

What about the MIMO scenario? In this case there is no sg to get things started.
If d or e were zero, then we could detect one symbol by itself and then use it to
detect the other one. It turns out there is a way to derive an equivalent MIMO
channel for which d or e is zero and the two equivalent noise values are uncorrelated.

It is alright to work with linear combinations of r; and 79, as long as the two
linear combinations are independent (not the same combination or a scaled version
of it). For the first combination, let’s consider 1 = r; — gro. We want to pick g so
that y; doesn’t depend on sy (allowing us to detect s; using y; first). Recall, the
models for 1 and rqy are

1 = cs1tdsz+my (3.17)
Ty = es1+ fs2+ no. (3.18)

Notice that if we multiply 7o by d/f and subtract it from r;, we eliminate sy from
the model of ry. Thus, we set g = d/f. The resulting model for x; is

z1=(c— de/f)sy + (0)82 + uq, (319)
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where
Uy =ny — (d/f)nz (320)

Can we simply keep 7 as is? No. The reason is that noise on z; (u1) is now
correlated with the noise on ry (ng). Specifically,

E{uina} = E{niny — (d/f)n3} = —(d/f)o* # 0. (3.21)

So let’s consider a second combination of the form zg = ry + hry, which can be
modeled as

T = (6 + hC)S1 + (f + hd)SQ + ug, (3.22)

where
uy = ng + hny. (3.23)

We want to pick h such that u; and uy are uncorrelated. Setting the correlation to
Zero gives

E{uiup} = E{(ny — (d/f)n2)(ny + hny)} = ho® - (d/f)o? =0, (3.24)

which implies that we should set h = d/f.
Putting this together in matrix form, we obtain

1 —(d
< [ @ @) ]n (3.25)
which can be modeled as
x | Cs +u, (3.26)

where the elements of u are uncorrelated and have power (1 + (d/f)?)o? and

C:AH:[ZZ‘Z% f+?12/f]. (3.27)

Success. Our channel matrix is now triangular. Note, we could have scaled the
elements in A by 1/1/(1 + (d/f)?) to force the elements in u to have power o2.
Instead, we allowed the signal and noise powers to increase, maintaining the same
SNR.

Now we detect sy first, using y;. We can then detect s5 using

y2 = x2 — (e +dc/ f)é. (3.28)
As for SINR, the SINR for detecting s, is
(c—de/f)?
SINR; = ——+— =2 3.29
S ECTIE: (3:29)
For detecting s5, an upper bound on SINR is given by
2/ £\2
SINR, < I +4/J) (3.30)

1+ @/ )
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3.3 THE MATH

We start, this section by determining when a zero-forcing solution is possible. The
basic equations for ZF DFE are then given.

A full zero-forcing solution is only possible in a few special cases. This is because
the pulse shape is typically bandlimited, making it nonzero for many symbol periods
in both the future and the past. Even if the pulse shape is root-Nyquist and
partial MF is employed, ISI from future symbol periods occurs if fractionally spaced
equalization is employed or the medium path delays are fractionally spaced.

As we will consider the more general case in Chapter 5, we will focus on a special
case for which full ZF is possible. Specifically, we will assume the following.

1. The channel can be modeled with symbol-spaced paths (7, = £T').

2. Root-Nyquist pulse shaping is used at the transmitter, and partial MF is used
at the receiver (Rp(¢1") = §(q)).

3. The sampling phase is aligned with the first tap delay of the channel (tg = 79).
4. Symbol-spaced sampling is used (1 = 1").

With these simplifying assumptions, the received samples (r,, = v(mT)) can be
modeled as

L-1
Tm = \/E_‘s Z GeSm—t + Um, (3.31)
=0
where u,, is zero-mean, complex Gaussian r.v. with variance Nj.

The traditional block diagram for DFE is given in Fig. 3.3. The received signal
is processed by a feedforward filter (FFF). The output of a feedback filter (FBF) is
then subtracted, removing ISI from past symbol periods. The result is a decision
variable, which is used by a decision device or detector (DET) to determine a
detected symbol value.

We have divided the FFF into two filters: a front-end filter matched to the pulse
shape (partial MF or PMF) and a forward filter (FF). Also, because the FF is
linear, the DFE can be formulated with the FBF being applied prior to the FF, as
shown in Fig. 3.4. This formulation is convenient as it decouples the forward and
backward filter designs under the design assumptions to be used.

The FBF subtracts the influence of past symbols on r,,, giving

L1
Ym = Tm — Z ge8(m — £), (3.32)
=1
which can be modeled as
L-1
Ym E V Esgosm + Z gels(m — €) — §(m — )] + um. (3.33)
=1

We will assume that the past symbol decisions are correct, simplifying (3.33) to

Ym i: V Esgosm + tUm. (3.34)
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Because there is no ISI and u,, is complex Gaussian, we can use MLD to obtain

8m = detect{ym, vV Esgo)- (3.35)
FFF
» PMF— FF + » DET >
FBF
Figure 3.3 Traditional DFE.
— PMF|—{ + FF DET >

FBF

Figure 3.4 Alternative DFE.

3.3.1 Performance resultg

We will defer ZF DFE results until Chapter 5. When available, ZF DFE results
will be labeled Minimum ISI (MISI), which is a broader category of DFE that does
not necessarily force ISI to zero.

3.4 MORE MATH

We start by considering when a ZF strategy is possible in our extended system
model. The introduction of multiple receive antennas increases the opportunities
for a ZF strategy. Two scenarios are then explored in more detail.

For a truly ZF solution, we need to be able to avoid or cancel ISI from future
symbol blocks as well as symbols within the current symbol block. We will make
similar assumptions as in the previous section: chip-spaced paths, root-Nyquist
chip pulse shaping, ideal sampling, and chip-spaced samples.

For CDM with orthogonal codes, having a one-path channel would keep symbols
orthogonal, but such a channel model is usually not reasonable. With multiple
paths, ZF is possible if we only use the received samples that depend on the present
and past symbol period symbols. However, this is a heavy cost in signal energy. If
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the number of receive antennas exceeds the number of active codes, then we can
tolerate ISI from the next symbol period, allowing us to use more received samples.
This is usually not the case. With MIMO (same codes used on both transmit
antennas), a ZF solution is possible if the number of receive antennas meets or
exceeds the number of transmit antennas.

For OFDM, ISI from future symbol periods is avoidable as long as the delay
spread is less than the length of the CP (assuming the CP is discarded). ISI
within a symbol period is avoided due the properties of the symbol waveforms.
However, with MIMO, there is ISI between symbols transmitted from different
transmit antennas but sharing the same subcarrier frequency. Like the CDM case,
a ZF solution is possible if the number of receive antennas equals or exceeds the
number of transmit antennas.

Note: It is possible to use a CP with CDM. A rectangular windowing function
would normally not be used, and the chip pulse shape would be root-Nyquist. As
in the OFDM case, inter-block interference would be avoided by discarding the CP,
as long as the delay spread is not too large.

As for TDM, the possibility of multiple receive antennas provides additional flex-
ibility in achieving a zero-forcing solution. In fact, multiple zero-forcing approaches
become possible.

In the remainder of this section, we will focus on two scenarios. The first is
TDM with multiple transmit (cochannel) and receive antennas and dispersion. The
second is the MIMO scenario (no dispersion), which is also of interest for both CDM
and OFDM.

3.4.1 Dispersive scenario and TDM

We will continue with the assumptions of the previous section, but introduce mul-
tiple transmit and receive antennas. The model in (3.31) becomes

N,
rm >V E(’ g5 (m — ) + up, (3.36)
i=1

where u., is a vector of uncorrelated, zero-mean, complex Gaussian r.v.s with vari-
ance Ny.
The FBF removes ISI from previous symbol periods, producing

N, L-—
Ym=Tm— Y Z ges®(m - ), (3.37)
i=1 ¢=1

which, assuming the previous decisions are correct, can be modeled as

Ym E Z g(,s ) +up,. (3.38)

i=1

Notice that we have assumed that we are detecting all symbols from all transmit-
ters. Often we are only interested in symbols from one transmitter. The other
transmitters generate interference, which is referred to as cochannel interference.
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In the later chapter on MMSE equalization, we consider addressing cochannel in-
terference by modeling it as some form of noise.

If the number of receive antennas is equal to the number of transmitters (N, =
N¢), then we can obtain zero-forcing solution by solving the set of equations

Ny
Ym ~ Z g()s(') (m) (3.39)

i=1
for the s (m) values. We can write these equations in the form
y = Hs, (3.40)

where we’ve collected all the symbols into one column vector. The zero-forcing
solution is then
§=Hy. (3.41)

Notice that we had just enough equations to solve for the symbols. If we have fewer
equations, zero-forcing is not possible.

If N, > N, then we have more equations than unknowns (H is no longer a
square matrix). We could simply discard some extra equations, but this would
not be the best strategy. To reduce the number of equations, we introduce spatial
matched filtering for each symbol:

z=H"y. (3.42)

This allows us to collect signal energy and reduce the number of equations to the
number of unknowns. The symbol estimates are then given by

$=MHH) 'z = HH)Hy. (3.43)

Is this the only choice when N, > N;7 Actually not. Recall that there is a
copy of 8., in ym41. Before we sacrificed this copy to avoid ISI from future symbol
blocks. However, if N, > 2NV;, then we have enough equations that we could use
Ym+1 as well.

3.4.2 MIMO/cochannel scenario

Recall that in the MIMO/cochannel scenario, the received sample vector corre-
sponding to a particular PMC can be modeled as

x = HAs + n, (3.44)

where n is a vector of Gaussian r.v.s with zero-mean and covariance C,, and s is the
set of symbols transmitted from different transmitters. We will assume C,, = Nyl
and A = E,I. Let’s initially assume N, = N, so that H is a square matrix.

With ZF DFE, we first need to triangularize the problem. Using QR decomposi-
tion, we can write H as QR, where Q is orthonormal (Q~! = Q) and R is upper
triangular. Substituting H = QR . into (3.44) and multiplying both sides by QF
gives

r=VERs+e, (3.45)
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where r = Q"x. Because Q is orthonormal, e is complex Gaussian with zero mean
and covariance Nyl

Since R is upper triangular, we can detect sx with no ISI. We then subtract the
influence of sx on the r and detect sx_1. The process continues until all symbols
have been detected. Mathematically,

K-1

Yeo = Tko — E R(k()) k)gk (346)
k=ku+1
8k, = detect(yk,, v EsR(ko, ko)), (3.47)

where R(r,c) denotes the element in row r and column c of R.
Now suppose N, > N;. To reduce the number of equations, we initially perform
matched filtering, giving

y = Hx, (3.48)
which can be modeled as
y = VE,(H'H)s + Hn. (3.49)

Notice that the noise on y is no longer uncorrelated, but now has covariance
NyHHH. So, before performing QR factorization, we need to whiten the noise.
"This can be done by multiplying by square matrix F¥, which can be obtained by
Cholesky decomposition of (HYH)~!, i.e., FF¥ = (HTH)"!.

3.5 AN EXAMPLE

In practice, the ZF DFE is usually not used, as it tends to enhance the noise. Thus,
we will wait until Chapter 5 to discuss an example.

3.6 THE LITERATURE

As DFE is revisited in Chapter 5, we will only mention references related specifically
to this chapter.

The idea of connecting the FBF prior to the FF can be found in [Ari92]. In
synchronous CDMA, triangularization and ZF DFE is developed in [Due93].

For block equalization, Cholesky factorization is applied to triangularize the
channel after matched filtering in [Cro92]. In [Kal95], Cholesky factorization is
motivated by the desire to whiten the noise after matched filtering.

PROBLEMS

The idea

3.1 Consider the Alice and Bob example. Suppose instead that , = —1 and
ro = 4. Also, sy = +1.
a) What is the value of z; with ZF DFE?
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b) What is the detected value of 517
c) What is the value of z with ZF DFE?
d) What is the detected value of s,7

3.2 Suppose the received samples can be modeled as r; = 2s; + sp + n1 and
T9 = 285 + 81 + ng. Also, sg = +1, r; = 3.1, and ry = —1.01. The noise power is
0?=0.1.
a) Using ZF DFE, what are the detected values for s, and s,?
b) Do you think the detected values are correct? Why?
¢) Suppose the noise power is 02 = 100. Do you think the detected values
are correct?

3.3 Suppose the received samples can be modeled as r; = 2s; + sy + n; and
r9 = 289 + 81 + ng. Also, g5 = 10, sy = +1, r; = 8, and ry = —20.

a) Using ZF DFE, what are the detected values for s; and so7

b) Do you think the detected values are correct? Why?

More details

3.4 Consider the MIMO scenario in which c=10,d=7,e=9%and f = 6.
a) What is the matrix A that triangularizes the channel while maintaining
the noise power?
b) What is the matrix C that is the new channel matrix?
c) Ifry =9 and rp = 11, what is the detected value for s; using triangular-
ization?
d) Using ZF DFE, what is the detected value for 5,7

3.5 For the general dispersive scenario, determine the SINR lower bound when a
decision error is made.

3.6 For the general MIMO scenario, determine the SINR lower bound for s, when
a decision error is made on ;.

3.7 For the general MIMO scenario, suppose we want to detect sq first, instead
of s1.
a) If we first replace r; with y; = ry — gra, what should g be set to make y;
independent of s;7
b) What is the resulting noise u; in terms of ny and ny?
c) If we then replace ro with y3 = ro + hry, what should & be set to so that
the resulting noise is uncorrelated with u;?
d) What is the resulting channel matrix C?

The math

3.8 For the general dispersive scenario (rpy, = ¢Sm + dSm—1 + ), determine the
input SNR such that MF and ZF DFE have the same performance (same output
SINR),

a) assuming the ZF DFE makes no decision errors.
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b)

assuming the ZF DFE makes a decision error half of the time, at random.

3.9 Consider the received sample model in (3.31). Also, suppose transmission
starts with symbol s(0) (there are no symbols s(m) for negative m) and assume we
do not know s(0).

a)

b)

<)

Suppose the receiver has access to 7y, 71, and so on. Is a zero-forcing
strategy possible? If not, how many initial symbols would need be known
to make ZF possible?
Suppose the receiver has access to 71, 72, and so on. Is a zero-forcing
strategy possible? If not, how many initial symbols would need be known
to make ZF possible?
Suppose the receiver has access to rr, rp41, and so on. Is a zero-forcing
strategy possible? If not, how many initial symbols would need be known
to make ZF possible?

3.10 Consider the received sample model in (3.31). Also, suppose transmission
starts with symbol s(0) (there are no symbols s(m) for negative m) and ends with
symbol s(N,). The receiver has access to ry through ry,. Assume we do not know

5(0).
a)

b)

Suppose the medium response consists of two paths. Which would give
better ZF DFE performance (running the DFE forward in time), having
the first path larger or the second path larger?

Suppose you could run the ZF DFE either forwards in time or backwards
in time. If the second path is larger, which direction would you use and
why?



CHAPTER 4

LINEAR EQUALIZATION

With linear equalization, we detect a symbol by forming a weighted combination
of received values. How does it work? Nearby received values contain copies of
interfering symbols, which can be used to cancel or reduce ISI.

4.1 THE IDEA

We found that matched filtering collects signal energy, but also interference from
adjacent symbols. This is illustrated in Fig. 4.1, where the circles indicate desired
symbol terms (for s;) and the octagon-like shapes indicate interference from ad-
Jjacent symbols. We would like to subtract the contributions from these adjacent
symbols, but we don’t know their values. However, we have copies of these symbols
present in other received values. As shown by squares in Fig. 4.1, there is a copy of
the previous symbol s; in r; and a copy of the next symbol s3 in r4. By multiplying
these received values by certain numbers (called weights) and adding them to the
matched filter value, we can cancel interference from adjacent symbols.

Problem solved? Not quite. In canceling ISI from s; using 71, we introduce ISI
from sy as well as noise n;. Similarly, canceling ISI from s3 using 74 introduces
ISI from s4 and noise ny. So now what? Well, we can use rg to cancel the ISI
from sg and 75 to cancel the ISI from s4. This introduces more ISI terms, requiring
us to continue to introduce more received values. Are we fighting a losing battle?
Channel Equalization for Wireless Communications: From Concepts to Detailed 69
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P’

Figure 4.1 Rcceived signal for linear equalization.

Fortunately, the answer is no. By scaling the received values by appropriate weights,
we can improve our figure-of-merit, output SINR.

In detecting s, let’s first look at the copy of s; in 3. The model for r3 and the
next sample, ry4, is

ry = —1033 + 982 + ng (41)
rg = —10s4 + 9s3 + ng. {4.2)

If we use r3, we will introduce the ISI term —10s3. However, there is a copy of s3
in r4 that we can use to cancel the ISI. If we try to completely cancel the ISI from
s3, a zero-forcing strategy, we need to multiply r4 by 10/9 = 1.11 and add it to r,
giving

yo =713+ 1.11ry. (43)

This can be modeled as
yo = 959 + 0s3 + (—11.1)34 + [n;; + 1.1171,4]. (44)

Notice that we traded the term —10s3 in (4.1) for the term —11.1s4 in (4.4), in-
creasing ISI (we also increased the number of noise terms). Thus, we made things
worse.

This suggests we only use the copy of sp present in ry, the larger copy. It turns
out we have flexibility in selecting the weight for r9, as long as it has the same sign
as ¢ = —10. Let’s use —1/10, so that

Zo = —0.17‘2, (45)
which can be modeled as
29 = 89 + uog, (46)
where
Ug = —0.931 ot 0.1112. (47)

Notice that by using —1/10 for the weight, the model has a coefficient of 1 in front
of so. We refer to this as unity gain. It allows us to think of 29 as an unbiased
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estimate of symbol s2. Unbiased means that the average value of the estimate is

the true value. It is also an example of a soft symbol estimate because it can take

on values other than +1 and —1, which are referred to as hard symbol estimates.
Now, let’s look at using r1, which can be modeled as

ry = —10s1 + 9sy + n1. (4.8)

To cancel interference from s; on z2, we would multiply r; by —0.09 and add it to
z9. This would give

Zo = —0.179 — 0.0914, (4.9)
which can be modeled as
Z9 = S$9 + Ua, (410)
where
iy = —0.81sp + (—0.09n1 — 0.1ns). (4.11)

Compared to (4.7), we have traded the ISI term —0.9s; for the term —0.81sy,
reducing ISI! As long as the additional noise term is not too large, we win. We can
continue the process, using ry to cancel interference from sg and so on. A block
diagram of linear equalization is given in Fig. 4.2.

L delay fm1

" sign(*) —

Figure 4.2 LE block diagram.

Recall that we were attempting a zero-forcing strategy, forcing ISI from adjacent
symbols to be zero. In this case we ended up with a partial ZF solution, because
it forced ISI from s; to zero, but did not force ISI from sy to be zero. If we were
allowed to use 7y, we could also force ISI from s to be zero, but have ISI from s_;.
However, the ISI power would continue to get smaller. Thus, in the limit of using
more and more past values, the solution would be fully zero forcing.

Partial zero forcing is not the best strategy for linear equalization because it
does not necessarily minimize ISI power. Also, both partial and full zero forcing
ignore the fact that more and more noise terms are being added in.
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4.1.1 Minimum mean-square error

A better strategy is to minimize the sum of IST and noise. This is referred to as the
minimum mean-square error (MMSE) strategy. Consider using r; and 7o to detect
s2. With the partial ZF strategy, we used ry to fully cancel the ISI from s;. In
doing so, we introduced ISI from s, as well as an additional noise term, n;. With
the MMSE approach, we use 1 to partially cancel ISI from s;. While this leaves
some ISI from s;, it also reduces the ISI from sg and the noise from n;.

Let’s look at the math. Suppose we are going to decide s using decision variable
22 that is the weighted sum of r; and 7. Specifically,

29 = wyry + wars. (4.12)
To see what happens to the ISI and noise, recall that

ry = —10s1 + 9s9 + 1y
19 = — 1082 + 98y + no. (4.13)

Substituting (4.13) in (4.12) gives

zo = wi(—10sy + 9sy + n1) + wa(—10s9 + 9s1 + ny)
= —10wssz + (—10wy + Yws)sy + Ywi sy + wing + wans. (4.14)

We can think of z9 in (4.14) as an estimate of s;. Consider the error in the
estimate, defined as

€2 = Zp— 892
= (—10w2 - 1)82 + ('—1011)1 + 911)2)81 + 9wy sy + wing + wono. (415)

We would like this error to be as small as possible. However, there are trade-offs.
To make the sy term small, we want ws close to —0.1. To make the s; term small,
we want —10w, + 9w, close to zero. To make the rest of the terms small, we want
w; and wy to be close to zero. We cannot make all of these things happen at the
same time!

What we can do is minimize the sum of all these terms in some way. For good
performance, it turns out that it is good to minimize the average (mean) of the
power (square) of the error (e2). This gives it the name minimum mean-square
error (MMSE).

‘0 do this, we need some additional facts.

1. The average of as; is a® times the average of s3.

2. While symbols, such as sy, can be either +1 or —1, the square value is always
1. Thus, the average of the s7 is 1.

3. While the noise terms, such as n;, are random, we were told that the average
of their squared values is o2 = 100.

With these facts, the average power of es, denoted Es, is given by

By = (wa(=10) — 1)*(1) + (wa(9) + w1 (=10))*(1) + (w19)*(1) + (w} + w3)(100).
(4.16)
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Notice that E2 (MSE) depends on two variables, w; and ws. We can plot Ey versus
these two variables to find the values that minimize F;. Rather than forming a
three-dimensional plot, we can plot FEq vs. wy for different values of wo, as shown
in Fig. 4.3. MSE is minimized to a value of 0.603 when w; = —0.0127 and
wy = —0.0397. This is called the MMSE solution. While we have found the
solution with trial and error, there are mathematical techniques that allow us to
find the solution by solving a set of equations (see next section).

So far, we have used r; and r3 to detect s3. Normally, we would use a sliding
window of data samples, so that r9 and r3 would be used to detect s3. In this case,
we would find that we could reuse the weights, weighting ro with —0.0127 and r3
with —0.0397. Similarly, we could use the same weights when detecting s; using r¢
and r;. However, if we only have ry and ry to work with, then we would need to
determine a new set of weights for detecting s;.

Returning to the detection problem, using MMSE linear equalization to detect
s1-and s9 using only ry and rs gives the decision variable values and detected values
in Table 4.1.

MSE
P
T

05 |-

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

Figure 4.3 MSE vs. w for various values of w, for LE.

Table 4.1 Example of MMSE LE decision variables

Decision Variable Value Detected Symbol

21 —0.18914 -1
22 0.26488 +1
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What if we could use ry as well? There is a copy of ss that would be helpful.
However, there is an even larger copy of s3. With the zero-forcing strategy, we
found it best not to use r3 because of the larger copy of s;. However, with the
MMSE strategy, it turns out that r3 is useful. We will explore this more in the
next chapter.

4.2 MORE DETAILS

So far we have explored partial zero-forcing and MMSE. For partial zero-forcing, a
better approach would be to minimize ISI, accounting for ISI not canceled. This
approach is explored in the Problems section. As for the MMSE solution, here we
provide more details. Then a maximum SINR solution is developed. It is shown
that the MMSE solution also maximizes SINR. Results are then generalized for the
dispersive and MIMO scenarios.

4.2.1 Minimum mean-square error solution

Consider the MMSE solution. In (4.16), we found that the MSE for the dispersive
channel example is given by

Ey = (wy(=10) — 1) 4 (wa(9) + w; (—10)) + (w19)* + (w? + w)100.  (4.17)

We used trial-and-error plots to find the weights that minimized MSE.

There is another way to find such weights. In the plots, we were looking for the
minimum of the MSE. At the minimum, the instantaneous slope of the curve is
zero. From differential calculus, we know that the instantaneous slope is given by
the derivative. Thus, we can take the derivative of E2 with respect to each weight
and set the derivatives to zero.

For this particular example, it will help to recall the following facts from differ-
ential calculus.

1. 'The derivative of az? + bz + ¢ with respect to (w.r.t.) z is 2az + b.
2. The derivative of (azx + d)? w.r.t. = is 2a(az + d).

3. When we take the derivative w.r.t. one variable, we treat the other variable
as a constant.

Using these facts, we can take the derivative of Ey w.r.t. w; and ws and set the
results to zero. This gives

0 0 + 2(—10) (ws(9) + w1 (—10)) + 2(w;9) + 2(w;)100 (4.18)
0 = 2(—10)(wz(—10) — 1) + 2(9)(wa(9) + w1 (—10)) + 0 + 2(w,)100. (4.19)

I

Solving these two equations gives wq = —0.0127 and wy = —0.0397. Substituting
these results into the MSE equations gives an MSE of 0.603.
As for computing SINR, substituting (4.13) into (4.14) gives

29 = 1U2("10)52 -+ (w;(—-lO) -+ w29)81 + w1989 + winy + wano. (4.20)
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The first term is the signal term and has average power
S = w2100. (4.21)

For the MMSE solution, w, = —0.0397 and S is 0.16. Notice that in (4.20), the
coefficient in front of sy is —10ws = 0.397 # 1. Thus, the MMSE solution gives a
biased estimate of the symbol.

The remaining terms are interference and noise, which we call impairment. The
impairment has power

I+ N = (w;(—10) 4+ w29)? + w281 + (w? + w3)100. (4.22)

Notice that this is a general expression, for any weight values. Substituting the
MMSE weights gives an SINR of 0.657, as expected.

Like the ZF DFE, if we only use r; and r; to detect s; we will not do as well
as MF at low SNR, as MF would also collect the copy of sy in 73. With partial
ZF linear equalization, we avoided r3 to avoid ISI from future symbols. With the
MMSE strategy, we don’t need to avoid r3 or other future received samples. So,
we should use as many future received values as we can. As you might suspect, at
low SNR, MMSE linear equalization behaves like matched filtering, as the weights
tend to be a scaled version of the MF weights.

4.2.2 Maximum SINR solution

We have seen that error performance, at least when noise is the only impairment, is
related to output SINR. Thus, another reasonable strategy is to maximize output
SINR. To do this, we need to minimize the sum of the ISI and noise powers.
Consider using 7y and 79 to detect s,. Like the ZF solution, we can weight 79
by —1/10, so that _
2y = unr1 — 0.17‘2, (423)

where w; is the weight for r; to be optimized. Substituting the models for ry and’
o into (4.23), we can model z; using (4.6), except now

Uy = (wl(—IO) — 0.9)51 + w1989 + wing — 0.1ns. (424)

Now we need to find wy.

From (4.6), notice that the signal power is 1, independent of w;. Thus, to
maximize SINR, we simply need to minimize the power in ws, denoted U,. This
power is given by

Us

Il

(w1(—10) — 0.9)% + 81w? + (w? +0.01)100
281w} + 18w, + 1.81. (4.25)

This is plotted in Fig. 4.4. Observe that it is minimized at w; = —0.032028, which
results in Uy = 1.5217. Thus, the SINR is 1/1.5217 or 0.657. By comparison, the
partial ZF solution has a higher U; = 2.4661, which gives a lower SINR of 0.406.
Observe that the unity-gain maximum SINR approach (SINR = 0.657) performs
the same as the MMSE approach described earlier (SINR = 0.657). Coincidence?
No. Let’s revisit the MMSE weight solution. If we divide each weight by 10|w; ]|, we
get the same solution as the unity-gain max SINR solution. As scaling the weights
doesn’t affect SINR, we discover that the MMSE solution also maximizes SINR!
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Figure 4.4 Example of I + N vs. wy.

4.2.3 General dispersive scenario

For the partial ZF solution, the general models for 75 and r; are

To = cSg + dsy + ng (4.26)
r1 = cs1 +dsy + ny. (4.27)
'To obtain unity gain, we set wy = 1/c. To eliminate ISI from sy, we set wy = —d/c?.
The resulting SINR is
° (4.8
SINRpzr = . 4.28
[& +(1+ %) 0]

For the unity-gain max-SINR solution, instead of plotting I + N to determine
the best value for w;, we can use differential calculus to take the derivative of I +
N with respect to (w.r.t) w; and set it to zero. We then solve for w;. Recall that
the derivative w.r.t. z of az? + bz + ¢ is 2azx + b. Applying this to (4.25) gives

2(281)w; + 18 = 0, (4.29)

which can be solved to give w; = —0.032028.
In general, using (4.23), the decision variable zo can be modeled as

zp = wacse + (wad + wic)s1 + (wing + wang). (4.30)
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To obtain the unity-gain max SINR solution directly, we want the coefficient in
front of s; to be 1. This is achieved by setting wy = 1/¢, so that

zo = so + (d/c + wic)sy + (wing + (1/c)ng). (4.31)
The impairment power is given by
Ny = (¢ + o2)w? + 2w, + (4% + 0?) /2. (4.32)
Setting the derivative w.r.t. wy to zero and solving for w gives
. —d
T2 +o?
For the MMSE solution, we start with (4.30). Substituting models for r; and
9, the error es = 25 — sy can be modeled as

wy (4.33)

€2 — (wgc — 1)82 + (lUQd + w1C)$1 + (w1n1 + wznz). (434)
The MSE is the power in e3, which is
By = (’U}QC - 1)2 + (’w2d + w10)2 + (wf + wg)az. (435)

To find the MMSE weights, we take the derivative of Fy w.r.t. w; and set it to
zero. We do the same w.r.t. wy. This gives two equations in two unknowns, which
can be written in matrix form as

Rw = h, (4.36)
where
A +d*+o° cd w 0
R= cd E+d2+02 | w:[wé]7 and h:{c]. (4.37)
The solution to this set of equations is
—c? 2 2 2
wi = e wp = 2t d AT (4.38)

(2 +d? +02)2 ~ c2d?’ (A +d? + 02)? — 2d?¥’

and the resulting MSE is given by
A+ d*+o?)

MSE=w'Rw—-2w’h+1=1-—
woRw = swih (2 +d? +02)2 — c2d?’

(4.39)

where superscript “I™ denotes transpose (turns a column vector into a row vector).
The minimum ISI solution can be obtained by setting 2 to zero.

The elements in R have a special interpretation. The diagonal elements are the
average received sample power, i.e., the average of rZ or r2. Specifically, the average
received signal power is the desired signal power (c® + d?) and the average noise
power (02). The off-diagonal elements are the average of the product of adjacent
received values, i.e., the average of ryry. Specifically, using the models,

E{T‘]TQ} = E{(C.52 +dsy + nz)(csl + dsg + nl)} (440)
= E{025231 + cdsasy + csong + dcs%

+ d2818() + d81n1 + nacsy + ngdS() + ngnl}. (441)
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We now need a couple properties of taking the average or expected value:
1. the average of the sum is the sum of the averages, and

2. the average of a product is the product of the averages if the two quantities
are unrelated or uncorrelated.

The first property allows us to sum the averages of the individual terms. The second
property makes most of those terms zero, as s;, $2, n; and ny are unrelated to one
another. The only nonzero term is the fourth term, giving

E{rire} = cd. (4.42)

We refer to averages of products of received samples as received sample correlations.
In matrix form,
R = E{rrT}, (4.43)

where r = [r; 72]7. Thus, we can alternatively express the equalization weights as
a function of received sample correlations (used to form R) and channel coefficients
(used to form h).

The SINR for the MMSE solution has a nice form. It helps to use matrices and
vectors to derive this form. The decision variable can be written as

2z =wlr. (4.44)

The impairment (interference plus noise) can be written as the total received signal
minus the desired signal term, i.e.,

U =r — hSz. (445)
Using the property that x”y = yTx, the impairment power is then

I+N E{(wTu)?} (4.46)

E{wTuu"w}. (4.47)

Il

Substituting (4.45) and using the fact that E{az} = aE{z} for a nonrandom number
a, we obtain

I+N

E{wT(r — hsy)(r — hsy)Tw} (4.48)
wl [E{rr"} — E{sor}h” — hE{sorT} + E{s%}hhT] w. (4.49)

Using (4.43) and the fact that E{sor} = h, this simplifies to

I+N = wT[R-hh7] (4.50)
= w/Rw — [w'h]% (4.51)

Now, for the case of MMSE weights, (4.36) holds, so that
I+N = wlh—[wTh)% (4.52)
As for the signal power, the signal term in r is hss, so that

S = (wTh)? (4.53)
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and SINR. becomes
wTh
1—-wTh'
Thus, once we solve for the weights, computing SINR is straightforward.
Why express things in matrix and vector form? Besides compactness, any results
we derive hold for more general cases. For example, suppose we weighted ten
received values with ten weights to form z5. The SINR expression we derived could
still be used, except that w and h would have 10 elements in each instead of 2.

SINR = (4.54)

4.2.4 General MIMO scenario

For the MIMO scenario, a full ZF solution is possible. It can be obtained by solving
the set of equations
r ~ HS. (4.55)

This is also the solution to minimizing ISI (with a minimum value of zero). If
there are more receive antennas than transmit antennas (H has more rows than
columns), then one can first multiply both sides by H?.

The MMSE weights for detecting s,, using w;(m)ry + we(m)r2 can be obtained
by solving the set of equations

Rw(m) = h(m), (4.56)
where
2, 12 4 2
R = N[ ‘ +(¢iie+0 e2+;£g+cr2 ]’ w(m) = [ Zggmg ]’
h(l) = [ c ] , and h(2) = [ ¢ ] . (4.57)
The MSE for detecting s, is
wT (m)Rw(m) — 2w’ (m)h(m) + 1, (4.58)
and the SINR is r
SINR — % (m)h(m) (4.59)

1—wT{(m)h(m)

4.3 THE MATH

First, the MMSE solution for the weights is developed, assuming partial matched
filtering at the front end. A less common ML formulation is developed and shown
to be equivalent to the MMSE solution in terms of modem performance. The ML
formulation will become important in Chapter 7, when soft information is discussed.
Finally, other design criteria are briefly discussed.
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4.3.1 MMSE solution

Assuming partial matched filtering at the front end, recall from (2.58) and (2.59)
that the received samples can be modeled as

v(gly) = VEs Y kgl — mT)s(m) + a(qly), (4.60)
where
B L-1
h(t) = ) geRy(t — o). (4.61)

=0

Suppose we are detecting s(my) using samples v(moT + d;15),7 =0,...,J — 1.
Notice that the delay d; is a relative delay, relative to mgT'. The relative delays d;
are parameters to be optimized as part of the design. We can collect these samples
into a vector v, which can be modeled as

vEVE, i hp,s(m) + n, (4.62)

m=—-o0

where the jth row of h,, is given by

hm(5) = h(d;Ts + (mo — m)T). (4.63)
From (4.61), we have
L-1
hm(5) = Z geRp(d; 15 + (mo — m)T — 7). (4.64)
£=0
Observe that hy,(j) = h(d;Te), which is independent of mg. Thus, we can replace
h,,, with h, where
h = [h(doT}) ... h(dy_1T))T. (4.65)

With MMSE linear equalization, we form a decision variable
2(my) = wiv, (4.66)

which is then used to detect s{(my) using

If

§(my) detect(z(my), A(my)) (4.67)

A(mo) = w'hp, =w'h. (4.68)
The weight vector w is designed to minimize the cost function
F = E{|z(mqg) — s(m)|*}, (4.69)

where expectation if over the noise and symbol realizations.
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To obtain the MMSE solution, we substitute (4.66) into (4.69), which gives

F = E{(s(mo) — 2(mq))(s(mo) — z(my))"}
= E{}s(mo)|* — 2(mo)s*(mao) — z(mo)*(mo)s(mo) + z(mo)z(mo)*}
= 1-wE{vs*(m)} — E{s(mo)v7}w + wHE{vvH}w

= 1-wHip—-pw - wiRw, (4.70)

where
p 2 E{vs(mo)} (4.71)
R 2 E{w}. (4.72)

The vector p can be interpreted as the correlation of the data vector to the symbol
of interest. The matrix R can be interpreted as a data correlation matrix, the
correlation of v to itself.

Notice that it is important that v have zero mean. Otherwise, p will depend
on the true symbol value, which we do not know. Since v is zero mean, the data
correlation matrix R is also the data covariance matrix C,,. Note, if v had a known,
nonzero mean, we could simply remove it first.

Substituting (4.62) into (4.71) and (4.72) gives

p = VE hy,, =vE,h (4.73)
oo
R = C,=E, Y hghf+NR,, (4.74)
m=—oo
where
Rn(.fhj?) = Rp(dles - djoS)- (4'75)

To determine the MMSE solution, we take the derivative of F' with respect to
the real and imaginary parts of each element in w and set the derivatives equal to
zero. This can be written compactly as

—2p + 2Rw =0, (4.76)

where 0 is a column vector of all zeros. From (4.76), we see that the MMSE weight
vector can be obtained by solving the set of equations

Rw = p. (4.77)
Substituting (4.73) and (4.74), we obtain
C,w =+E, h. (4.78)

which is independent of mg. Thus, the same weights can be used for all symbol
periods. Also, from (4.68), A(my) is also independent of my. Keep in mind, we
defined the processing delay d; as a relative delay, relative to myT. Thus, the
elements in v will change with different my.
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4.3.2 ML solution

One can also use a maximum-likelihood (ML) design approach to weight design.
Similar to Chapter 2, we can design the weights to obtain a log-likelihood function
(LLF) for each symbol. Unlike Chapter 2, we will assume that multiple symbols are
transmitted, giving rise to ISI. Lo obtain a linear solution, we will approximate the
ISI as a form of noise. Specifically, the symbols are approximated as being complex
Gaussian random variables, so that the ISI appears as colored Gaussian noise. The
ML formulation leads to a linear filter that can be interpreted as a matched filter
in colored noise.

As in the MMSE formulation, we assume a partial MF front end. Samples are
collected into a vector v which can be modeled according to (4.62). At this point,
we rewrite (4.62) in terms of a signal component (assume s(my) is the symbol of
interest) and impairment (noise plus interference) component, giving

v = VEshs(mg) +u, (4.79)
where
mpy—1 o0
u=vVE, Y hps(m)+VE; Y hps(m)+n. (4.80)
m=—00 mo+1

We approximate u as complex Gaussian with zero mean and covariance

C, = E{uu} = E,C; + NyCy, (4.81)
where
mo—1 o)
Ci=E, Y hyhfl+E > h,hl (4.82)
m=—00 mo+1

The elements in C; and C,, in the j;th row and jsth column are given by

0
Cilid) = Y. hm(i)hn()
m=-—o00,m¥mg
L-~1 L-1 e}
=3 gng, Y, Rpldily—mT —70,)Ry(d;Ts ~ml'—1g,) (4.83)
£, =04£,=0 m=—00,m#0}

Cn(j1,d2) = Rp((j1 — j2)Ts). (4.84)

Observe that by assuming an infinite stream of symbols, the elements in C,, are
independent of my,.

Assuming Gaussian impairment, the likelihood of v given s(mg) = S; is then
given by

1 . _ 5
e o {—(v — VEhS)HC (v — \/Esth)} , (4.85)
giving the LLF
LLE(S;) = —(v — VEhS;)7 C; (v — VE;hS;). (4.86)
Expanding the square and dropping terms unrelated to §; gives

LLF(S;) = 2Re{S} zm,} — Sma (0)}S;1%, (4.87)
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where
Zme = VEIC,lv (4.88)
Smo(0) = EhYC]'h (4.89)

We can write 2z, as the output of a linear equalizer, giving
— wH
z(mg) =w'v, (4.90)
where w is the solution to the set of equations

C.w = /E;h. (4.91)

Observe that the weights are the same for each symbol period. The amplitude
reference is

A(mo) = VEswh, (4.92)

which is also independent of mq.

We see that the ML solution is similar to the MMSE solution, except that C,
has been replaced by C,. Using the matrix inversion lemma, it is possible to show
that these weight vector solutions are equivalent in the sense that one is a positively
scaled version of the other.

4.3.3 Output SINR

A useful measure of performance is output SINR. We can compute SINR using the
model in (4.79) and (4.80). Given a weight vector w, the signal and impairment
powers are given by

s = |wHVER]?

= EJw!hp (4.99)
I+N = E{wfu}?}
= wiE{uu}w
= wiC,w. (4.94)
The resulting SINR is then
ESIWHBI2
==__ 4.9
SINR = e (4.95)

Keep in mind that the relationship between this SINR and performance depends
on how well we use the signal energy present in the complex plane. For ideal
receivers, the term w¥h will be purely real, giving a purely real amplitude reference.
Sometimes, in practical situations, this term is not purely real even though it is
assumed to be. In this case, a more sophisticated computation of SINR is needed.

Now let’s evaluate SINR for the ML solution. From (4.91), the weight vector
can be expressed as

wwmr = VE;C; 'h. (4.96)
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Substituting (4.96) into (4.95) gives
EZh¥Cy R
EhHC;'C,Chlh
= EhC;'h=E,wiih (4.97)

SINRML =

We can also compute output SNR. (ignoring ISI) by keeping only the noise com-
ponent of C,,. For the special case of root-Nyquist pulse shaping, symbol-spaced
paths, and aligned symbol-spaced samples, the output SNR becomes

L-1

SNR, = (E,/No) Y _ |gel*. (4.98)
=0

Observe that this is the same as the input SNR, the input E,/N; times the sum of
the path energies.

For MMSE linear equalization, we should get the same output SINR. However,
with MMSE linear equalization, we usually compute C, instead of C,. We can
express SINR in terms of C, by extending (4.54) to

" N
SINRMMSE E_S_V_V_Mﬁl\@g_
I - wimsgh
E.hfC;h

= ___3_:__9117. (499)
1-hiC;'h

We can also use (4.95) to evaluate cutput SINR for other forms of demodulation.
For example, for MF, (2.60) shows that the processing delays are the path delays
and the weight vector is the set of path coefficients, i.e.

wMr = V Esg, (4.100)

where
g=lg0 ... gr1]". (4.101)

We have added a scaling by /E; to be consistent with the MMSE and ML equal-
ization forms.
Using (4.95), the SINR for the MF is

E,|g"h|?

SINR)MF = .
) giC.g

(4.102)
For the special case of root-Nyquist pulse shaping, symbol-spaced paths, and aligned
symbol-spaced samples, the output SNR becomes

L-1
SNRyp = (Es/No) ) _ lgel*. (4.103)
=0

Observe that this is the same output SNR. for ML and MMSE linear equalization.
This implies that if there is no ISI (only one symbol transmitted), then ML and
MMSE linear equalization reduces to matched filtering. In general, if the noise
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power is much larger than the ISI, ML, and MMSE linear equalization will behave
like matched filtering. At the other extreme, if the noise power is negligible, ML
and MMSE linear equalization will tend towards a minimum ISI solution, trying to
“undo” the channel.

The expression in (4.95) can also be used to derive a bound on DFE output
SINR, which involves assuming perfect decision feedback. We will explore this in
the next chapter.

4.3.4 Other design criteria

While the focus has been on the MMSE and ML criteria, other criteria can be used
in the design of linear equalizers. Criteria which lead to designs that do not perform
as well are the following.

Zero-forcing (ZF) We have already seen examples of full ZF and partial ZF.

Minimum ISI When full ZF is not possible, minimum ISI is better than partial
ZF.

Minimum noise This is included for completeness. It leads to matched filtering.

Minimum distortion The idea here is to minimize the worst case ISI realization.
If ¢, are the symbol coeflicients after equalization, then the idea is to minimize

Zm,m;ém” |Cm|.

Note that the MMSE solution tends towards the minimum noise solution (matched
filtering) at low SNR and the minimum ISI solution at high SNR.

The following criterion lead to designs with equivalent performance to the MMSE
design.

Max SINR We showed by example how this criterion leads to a design with the
same performance as the MMSE design.

Other criteria which lead to better performance, if measured in terms of error
rate, are

Minimum symbol error rate and
Minimum bit error rate.

The design procedures are more difficult, as the discrete nature of the ISI must be
accounted for. However, the gains in performance are typically small because of
the solution being constrained to be linear.

4.3.5 Fractionally spaced linear equalization

LE is fractionally spaced when the sampling period T is less than the symbol period
T. A common approach is to sample at twice the symbol rate (1; = 0.57"). Another
option is to sample at four times the symbol rate but not use all the samples for a
given symbol, giving an effective spacing of 0.757".
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There are many similarities with fractionally spaced MF. Consider the case of
a nondispersive channel (one path), a receive filter perfectly matched to the pulse
shape, and a receive filter sampled at the correct time (perfect timing). Unlike the
MF case, we also need the pulse shape to be root-Nyquist for a one-tap LE to be
sufficient. In this case, LE becomes equivalent to MF. If the pulse shape is not
root-Nyquist, then multi-tap LE is needed. A fractionally spaced LE is needed if
there is excess signal bandwidth. Unlike MF, possible noise sample correlation due
to pulse MF and sampling needs to be accounted for.

The story is similar for a dispersive channel. If the paths are symbol-spaced, the
receive filter is root-Nyquist and perfectly matched to the pulse shape, and the filter
output is sampled at the path delays (perfect timing), then symbol-spaced LE is
sufficient. Symbol-spaced LE can also be used when there is zero excess bandwidth.
Otherwise, fractionally spaced MF is needed. If the excess bandwidth is small, the
loss due to symbol-spaced LE may be acceptable.

4.3.6 Performance results

Results were generated for QPSK with root-Nyquist pulse shaping. In Fig. 4.5,
BER vs. Ey/N, is shown for the two-tap, symbol-spaced channel with relative
path strengths 0 and —1 dB and angles 0 and 90 degrees (Twol'S). Results are
provided for the matched filter, the analytical matched filter bound (REF), MISI
linear equalization, and MMSE linear equalization. The LE results correspond to
31 symbol-spaced taps centered on the first signal path.

Observe the following.

1. MMSE LE performs better than MISI LE as expected. At high SNR, the
performance becomes similar, as ISI dominates and MMSE focuses more and
more on ISI.

2. At low SNR, MMSE LE, MF, and the MFB become similar, as noise domi-
nates.

3. At low SNR, MISI LE performs worse than the MF, because MISI LE focuses
on ISI when noise is the real problem.

Results for fractionally spaced equalization and for fading channels are given in
Chapter 6.

4.4 MORE MATH

In this section we consider the extended system model. We briefly discuss full
zero-forcing, which is not always possible. Then, we focus on the MMSE and ML
solutions. In the CDM case, this leads to equalization weights that depend on the
spreading codes, which change every symbol period. A simpler solution is consid-
ered based on averaging out the dependency of certain quantities on the spreading
codes. More approximate models of ISI are examined as a way of simplifying linear
equalizer design. Finally, the ideas of block, sub-block, and group linear equaliza-
tion are examined.
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BER

Eb/NO (dB)

Figure 4.5 BER vs. E;/Ng for QPSK, root-raised-cosine pulse shaping (0.22 rolloff),
static, two-tap, symbol-spaced channel, with relative path strengths 0 and —1 dB, and path
angles 0 and 90 degrees, LE results.

4.4.1 ZF solution

In Chapter 3, we explored zero-forcing (ZF) solutions for decision feedback equal-
ization. ZF linear equalization solutions are similar, except that we don’t subtract
the influence of past symbols first. Thus, we need additional degrees of freedom to
cancel past symbols as well.

We won’t dig into the ZF solution. The advantage of this solution is that the
noise power or covariance function does not need to be known or estimated. The
disadvantage is that performance suffers at low to moderate SNR values. When we
consider block equalization, which also applies to the MIMO/cochannel scenario,
we will return to the ZF solution.

4.4.2 MMSE solution

In the previous section, we learned that if the decision variable can be written in
the form of (4.66), then the MMSE weight solution can be obtained by solving
(4.77), where R and p are defined in (4.72) and (4.71), respectively. Expressions
for R and p were obtained by using a model for the received samples.

In this section, we will use the extended system model to obtain more general
expressions for R and p. The weights will be applied to chip samples, so the result
will be a chip-level equalizer. Recall from (1.23) that after partial MF, the received
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samples can be modeled as

v(gl) FEZ\/E“) Z h{" (qTs —mT)s (m) +h(gLy), (4.104)

i=1 k=0 m=-—oc
where
N.—1
hY (&) = (1/VN) D 2 (mhD(t - nT). (4.105)
n=0

Suppose we detect sg"’)(m(.) using samples v(moT + A;T5) for j=0,...,J - 1.
We can stack these vectors into one column vector v = [v(moT+ A1) ... v{imeT+
Angs-113)]T. This vector has N, J rows, which can be viewed as J row sets of N,
rows each. Each row set can be modeled using (4.60) with ¢1s = mo1'+ A;1,. The
decision variable is given by

2 (mg) = whv = Zw v(moT + A;TY), (4.106)

J=0

where we have divided up w into a weight vector per processing delay, i.e., w =

WP (Ag) ... wI(Aj_1)]T. The decision variable 2, “)(m(,) is then used to detect
sfc”)(mn) using
a(io) —~ d (10) Alw)
85 (ma) etect(zy, "’ (mo), A" (ma)) (4.107)
A (mo) = Wthii’.)m” (4.108)
o o T o 7T
B 2 [[hg}m(Aon)] [hfjﬁm(A J_ITS)] ] . (4.109)

Substituting the new model equations into the definitions of R and p give

p = [PT(Ay) ... pT(da-1)|T (4.110)
C(Ao, Ap) ... C(Ao,Ay1)
R = C,(my) = ; : , (4111
C(Aj_1,40) ... C(Aj_1,A51)
where
p(d;) = VEM (k) h“:'im,(A-'m
= VEQ®) (1/VN. Zc&')m”n hO(d1, —nly)  (4.112)
n=>0
N, K-1 . oc o o
CU(Aj17Aj2) = ZZE\E”(I‘;) E h;:)m(]lf['s_mT)(hg)m)H(_]?Ts_mT)
i=1 k=0 m=—oo
+  NoRy (5115 — j2156)L (4.113)

What does it all mean? Notice that p depends on B (A;T%), which depends

ko,mao
( io)

on values of c;.” (n) for the current symbol period, my. Also, R depends on
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values of flg)m (¢) from all symbol periods, though prajc.tica.lly the values in a window
around mg would be the most influential. Thus, the weights may depend on my,
the symbol period, and kg, the PMC. For CDM, this means that there will be a
different weight solution for each symbol being detected. For OFDM, the values of
cg)m(n) are the same for different values of m and i. Thus, there will be a weight
vector for each subcarrier k. This set of weight vectors can be reused for different
symbol periods m.

The MMSE weight solution is obtained by solving (4.77), which can be written

as
Cy(mo)w = ( ES® (ko )) h{) (4.114)
where
= (i0) (i0) T (i0) 71"
hko,m() - [hko m(.(AOTS)] et [hko mo (AJ—IIS)] . (4115)

4.4.3 WML solution

The ML formulation for the general case is similar to the ML formulation for the
TDM case. As before, the end result is that C, is replace with C, in the weight
solution. Specifically, the ML weights are given by

Cu(mo)w = (\/Eg’“ (ko)) h{ | (4.116)

, P H
Cu(mo) = Cy(mo) = B (k0B [BEr,,] (4.117)

ko, mo ko,mo

where

4.4.4 Other forms for the CDM case

Let’s look a bit closer at the CDM case. Using (4.36) and (4.112), we can write
(4.106) as

zl(;:,)( o) = p"Rlv (4.118)
- Z[iﬁflm. Fm) [fom]” oy, (1.119)

where
- ) . T . 7
0 (nT,) = v/ ES (ko) [h(’”)(AOTS —nTc)] [h("))(AJ_lTS -nTc)]
(4.120)
and ES (ky) = E{(ko)/N, is the energy per chip for code ky. Observe that
there is despreading being performed in (4.119). Also, there appears to be multiple

weight vectors, one for each chip period.
We can rewrite these equations as

o) = VEE ) 3 I e, (4.121)

n=0
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where eﬁf{,',)(n) can be interpreted as a chip estimate during symbol period mg

for transmitter i;. We can stack these estimates into an N, x 1 vector e;l?L(J)) =

o)) ... e (N, — 1)]T, which is obtained by

e=WHy, (4.122)

where
W = C;lﬁ‘(iu) (4123)
Rl — [f(i.,)(o) . FG (N, — 1)]_ (4.124)

We can interpret the operation in (4.122) as a matrix equalizer (matrix multiply),
in which the nth column of W is a weight vector used to obtain an estimate of the
nth chip transmitted from transmitter iy, during symbol period my.

While the elements of F®) do not depend on ky or my, the elements of C,, do.
As a result, the entries in W will be code-specific , a function of the spreading codes
used during symbol period my.

We can trade performance for reduced complexity by approximating C, with
its average, averaged over the possible spreading codes. Then W would be the
same for each symbol period, requiring fewer weight computations. However, even
with code-averaging, we would still need a separate weight vector for each chip
period. We can reduce complexity further by constraining the equalizer to use a
sliding window of receive samples when computing different chip estimates. Such a
form of equalization is called transversal equalization. Specifically, when forming
eﬁf{},)(nn), we use

v(moT +noTe +d;T5), §=0, ... ,J—1, (4.125)

where d; is a relative processing delay, relative to both the symbol period and the
chip period within the symbol. Complexity is reduced because with code averaging,
the weight vector is the same for each chip period ny and each symbol period myg.

Before performing code averaging, let’s look at the code-specific transversal so-
lution. To obtain the weight vector for forming e%‘(’,) (no), we can use the analysis
above, assume

Aj = TL()CI‘C + dst, (4126)
and examine the ngth column of W in (4.123) (denoted w). From (4.123),

Co(mo)w = £ (ny1). (4.127)

where C,(my) is a JN, x JN, matrix of the form given in (4.111) and (4.113) and
£(0)(nT,) is defined in (4.120). From (4.120) and (4.126), we see that () (ny1?)
is really independent of ny and can be denoted f(%).

‘The elements of () are code-independent, but the elements of C,(mg) are not.
To obtain a code-averaged solution, we average C,(myp) over the spreading codes
and use the result in (4.127) to solve for the weights. Thus,

C,w = fl), (4.128)
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where
C(do,do) ... C(do,ds-1)
C, = : : (4.129)
C(ds-1,do) ... C(dj_1,ds_1)
Ny
Cu(dj,d;,) = > EDCH(d;,,dj,) + No(Ry(s — G2 L)1 (4.130)
i=1
. L-1L-1
Cgl)(djudj;) = Z Z geng X
£y,=0£,=0

X0
> Rp(nle+dj,Ts — 70,) Ry(nTe + dj, Ty — 72,).(4.131)

n=-—0oo

The code-averaged ML solution is similar, except that in (4.131) the term n =0
is excluded from the summation when 7 = 4. It can be shown that the ML and
MMSE weight solutions are equivalent at the modem level in that one is a scaled
version of the other (and the scaling factor is a positive, real number).

4.4.4.1 Despread-level linear equalization ML and MMSE solutions can also be
developed at the despread level. Code-averaged versions are also possible. Because
of linearity, the ML code-averaged chip-level transversal weight vector will be the
same at the chip level and despread level.

4.4.4.2 Symbol-level linear equalization Linear equalization can also be formu-
lated at the symbol level, using the matched filter outputs of each symbol. Linear
multiuser detection is often formulated this way. However, this form is not amenable
to code averaging. To obtain a code averaged form for a particular symbol, one
would need to sample the matched filter output for that symbol at multiple pro-
cessing delays d;.

4.4.5 Other forms for the OFDM case

For the OFDM case, a despread-level equalizer makes sense. After discarding the
cyclic prefix portion of the received signal (for the earliest path) and matching to
the symbol waveform, ISI between subcarriers is eliminated (assuming the cyclic
prefix is sufficiently long). There remains IST among symbols on the same subcarrier
transmitted from different transmitters. The block form below can then be used.

4.4.6 Simpler models

So far, we have used a fairly accurate model of interference, modeling the fact
that it is made up of a sequence of symbols convolved with symbol waveforms
and medium responses. We haven’t yet taken full advantage of the fact that the
interfering symbols can only take on certain values (we will do that in Chapters
6 and 7). Instead the symbols are approximated as complex, Gaussian random
variables. Thus, our model so far is equivalent to modeling interference as colored
noise, which in general is nonstationary. The interference is nonstationary in the
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sense that its distribution depends on where you sample (aligned with a symbol vs.
inbetween two symbols). The interference is actually cyclostationary, in that the
distribution changes periodically over time (it is the same at times ¢ and t + T').

It is possible to consider simpler models, particularly for symbols from trans-
mitters that aren’t transmitting symbols of interest. These models include the
following.

White, stationary noise. Interference is folded into the AWGN term, increasing
the value of Ny. If this is applied to all ISI, we end up with matched filtering.

Colored, stationary noise. This model captures the fact that interference sam-
ples are correlated in time, due to the bandlimited symbol waveform and the
medium response. If only the effect of the symbol waveform is modeled, the
difference between this model and the white noise model is typically small.
However, if the medium response is accounted for and the medium response is
highly dispersive, then the model can be significantly different from the white
noise model. In essence, we are replacing the sequence of Gaussian interfering
symbols with a white, stationary Gaussian noise. The symbol waveform and
medium color that noise.

4.4.7 Biock and sub-block forms

So far, we have assumed we will detect symbols one at a time. At the other extreme,
we can detect a whole block of symbols all at once. Such an approach is called block
equalization. 'There is also something inbetween, in which we detect a sub-block
of symbols. The sub-block corresponds to the symbols taken from certain symbol
periods, certain PMCs, and certain transmit antennas. For example, they could
correspond to all symbols within a certain symbol period.

With both block and sub-block equalization, the received signal vectors to be
processed can be stacked into a vector r which can be modeled using (1.54), i.e.,

r =HAs +n, (4.132)

where n is a vector of zero-mean, complex r.v.s with covariance C,,. Unlike the
purely MIMO scenario, the symbols in s do not necessarily correspond to symbols
from different transmitters during the same symbol period. We would like H to
have more rows than columns, so symbols at the edge of the sub-block may be
folded into n.

To achieve pure zero-forcing, we need H to have at least as many rows as there
are columns. The decision variable vector is given by

z = (AH"HA) 'AHYr. (4.133)

Notice we need AHPHA to be full rank. Observe that if H is square and full rank,
then (4.133) simplifies to
z=A"H !r. (4.134)

The solution in (4.133) has several interpretations. One is that it is a least-
squares estimate of s, in that it minimizes the sum of the squares of the difference
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between z and s. This is in contrast to MMSE LE, which minimizes the expected
value of the sum of the squares.

Another interpretation is that (4.133) is the unconstrained ML estimate of s.
This means that if we ignore the constraint that the elements of s can only take
on certain values (the signal alphabet), then ML detection leads to a Euclidean
distance metric, which is minimized with the least-squares solution.

For MMSE equalization, we don’t have any requirements on the number of rows
of H. The decision variable vector is given by

z=HIHHAY + C,) 'r. (4.135)

With sub-block equalization, the sub-block often corresponds to a set of symbol
periods and the received samples processed correspond to a window of samples. In
this case, it is common to either 1) only keep the detected values for a subset of
the symbols in the sub-block (the middle ones), or 2) model symbols at the edge of
the sub-block as colored noise.

4.4.8 Group linear equalization

As in Chapter 2, we can consider a group of symbols as one supersymbol. With
group linear equalization, we will use MLD to sort out symbols within a group and
linear equalization to suppress symbols outside the group. For TDM, a group can
be G consecutive symbols. For example, the first two symbols can form the first
group or supersymbol, the next two symbols can form the second group, and so on.
It is also possible to use overlapping groups and only keep results for the middle
symbols. For CDM and OFDM, it is natural to group symbols in parallel together
(G = K in this case). As MLD performs better than LE; it is best to group symbols
together that strongly interfere with one another.

With group detection, an ML formulation makes more sense. The impairment
covariance matrix consists of noise and interference terms, where the interference
terms contain contributions from the symbols outside the group. There is a weight
vector per symbol within the group, giving rise to G decision variables. These
variables are used together to jointly detect the members of the group using, for
example, (2.101).

4.5 AN EXAMPLE

Here we consider the High Speed Downlink Packet Access (HSDPA) system, an
evolution of the WCDMA 3G system [Dah98]. A similar system is (HDR) [Ben00],
an evolution of IS-95 (US CDMA) now referred to as 1X-EVDO (the 1X refers to
the bandwidth being the same as IS-95). On the downlink of both these systems,
CDM is used to achieve high data rates. In a dispersive channel, orthogonality is
lost between spreading codes, making ISI a problem.

MMSE or ML linear equalization can be used to obtain reasonable receiver per-
formance. To reduce complexity without significant change in performance, code
averaging can be used. Code-averaged transversal linear equalizers for CDM sys-
tems have been developed at the chip-level [Gha98, Jar01, Fra02, Kra02] and de-
spread level [Gha98, Bot00, Tan00, Fra02, Mud04].
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4.6 THE LITERATURE

A survey of early work on linear equalization can be found in [Luc73, Bel79]. Early
work on LE for cochannel interference suppression can be found in [Geo65].

According to {Mon84], LE with multiple receive antennas is considered as early
as [Bra70]. In [Bal92], an MF front end is used to collapse the multiple streams
of data into one (symbol-level equalization). Cochannel interference can be sup-
pressed by modeling it as spatially colored noise [Win84, Cla94]. To avoid temporal
processing (multiple processing delays), multiple antennas can be used to suppress
IST due to dispersion (as well as cochannel interference) [Won96]. A mix of tempo-
ral and spatial processing to suppress ISI from dispersion is also possible [Fuj99].
Different forms of interference suppression result, depending on what aspects of the
interference are known or estimated (amplitude, channel response, symbol values)
[Aff02, Han04].

As for different criteria, development of minimum distortion linear equalization
is provided in [Pro89]. Work on minimum BER linear equalization can be found
in [Wan00]. Block linear equalization for TDM is considered in [Cro92] and is
extended to include cochannel interference suppression in [Gin99].

When the number of processing delays is limited, different strategies can be
used to select the delays. Such strategies apply to both LE and the forward filter
of DFE, so literature on both is discussed here. One strategy is to find a set of
delays that minimizes MSE [Rag93b, Lee01] or maximizes SNR. (or an approxi-
mation to it [Ari97] (DFE)). An order-recursive approach can be used, in which
processing delays are added one at a time to maximize SNR or an approximation to
it [Kha05, Zhi05] (LE), [Sui06, Kut07] (LE, DFE). Another approach is to find the
locations that have the largest weight magnitudes [Bun89] (DFE) or are expected
to have the largest weight magnitudes [Lee04] (LE, DFE). Another is a mirroring
approach [Kut05, Ful09], which can be related to approximate inverse channel fil-
tering [Ful09]. This approach is similar to the idea of placing fingers where copies
of interfering symbols are present [Has02, Sou]. A matching pursuit-based strategy
is proposed in [Zhi05]. Strategies for addressing dispersive cochannel interference
are discussed in [Ari99].

Sometimes the cochannel interference can be better modeled as noncircular (im-
proper) noise. For example, BPSK interference occupies only one dimension in
the complex plane. When this occurs, there are two, equivalent approaches for
formulating the linear equalization problem. One is linear conjugate linear (LCL)
filtering [Bro69], also known as widely linear filtering [Pic95], in which the equalizer
processes both the received signal and its conjugate. The other is to break apart the
complex received signal into its real and imaginary components [Bro69]. Such filter-
ing has been applied to BPSK cochannel interference [Yo097] and GMSK cochannel
interference in GSM [Ger03, Mey06]. In this latter context it is sometimes called
single antenna interference cancellation (SAIC) because it allows interference sup-
pression similar to that obtained with two receive antennas but without the need
for a second antenna. Such filtering can also be applied to CDMA systems employ-
ing BPSK [Buz01], including early versions of the US CDMA (IS-95) standard that
employ BPSK with QPSK spreading [Bot03b].
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Another aspect of cochannel interference is its cyclostationarity. We saw cyclo-
stationarity in the formation of the data covariance matrix, which depends on the
path delays of the interfering symbols. Cyclostationarity of cochannel interference
is addressed in [Ree90, Pet91, Gar93]. Suppression of narrowband interference in a
wideband system is discussed in [Mil88, Gel98].

In CDMA systems, early work focused on multiuser detection in the MIMO/co-
channel scenario. The ZF solution for the synchronous CDMA case (referred to as
the decorrelating receiver) is proposed in [Sch79] and developed in [Lup89]. The
MMSE solution can be found in [Mad94].

For the dispersive/asynchronous case, early work focused on the CDMA uplink
(different channel per user/code). Work on ZF LE is found for the asynchronous
case in [Lup90] and for the dispersive case in [Zvo96a, Zvo96b]. The MMSE solution
can be found in [Xie90a]. When the spreading codes of other users are unknown,
code averaging can be applied [Won98, Won99|. Sub-block linear equalization us-
ing a sliding window is described in [Wij92, Rup94, Wij96, Jun97]. Block linear
equalization is examined in [Kle96]. Linear multiuser detection in rapidly varying
channels is addressed in [Say98]. Linear equalization with continuous-time signals
is considered for CDMA in [Mon%4, Yo096].

Later, the dispersive case was considered for the CDMA downlink (same chan-
nel per user/code). Early work in [Bot93] uses a maximum-SINR approach to
despread-level transversal linear equalization to determine the weight solution. ZF
and MMSE block equalization at the chip level are considered in [Kle97]. In re-
maining work, transversal equalization is considered at the chip level [Gha98, Jar01,
Fra02, Kra02] and despread level [Gha98, Bot00, Tan00, Fra02, Mud04]. The chip
level solution is formulated in terms of MMSE estimation of the transmitted com-
posite chip values (summed over all users). The despread level solution is formulated
in terms of ML [Bot00] or MMSE [Gha98, Tan00, Fra02, Mud04] estimation of the
symbol. In [Jar01], ML block equalization is also considered.

Some form of code averaging is considered in all downlink work cited as a way to
simplify receiver design. With code averaging, expressions for the weights involve
infinite sums, which have a closed form expression for certain chip pulse shapes
[Jat04]. Equivalence of MMSE and ML solutions is shown in [Had04].

Group linear equalization has been studied primarily for CDMA systems. In
[Sch96], ZF LE is used to suppress interference from symbols outside the group.
Code averaging can be used in designing the LE in the MIMO/cochannel [Gra03,
Mai05] and dispersive/asynchronous scenarios [Bot10a].

PROBLEMS

The idea

4.1 Consider the Alice and Bob example. Suppose instead that ry = —1 and
9 = 4.

a) What is the value of z; and §; with partial ZF LE?

b) What is the value of 2; and §; with MMSE LE?
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4.2 If we had ry to work with as well, what would be the partial zero-forcing
linear equalization weight for r so that ISI from s is canceled when detecting s,?

4.3 Consider the Alice and Bob example (ry = 1, r = —7). Suppose the noise
power is o2 = 1 instead.

a) What would the MMSE LE weights be?

b) What is the value of z5 and §2 with MMSE LE?

4.4 Consider the Alice and Bob example (r; = 1, r = —7). Suppose the noise
power is o2 = 1000 instead.

a) What would the MMSE LE weights be?

b) What is the value of zo and §; with MMSE LE?

More details

4.5 In the dispersive scenario with ¢ = —10 and d = 9, suppose the max-SINR
weights for detecting so are scaled by -10.

a) Calculate the new output SINR.

b) Did the SINR get better, worse, or stay the same?

¢) Can we still detect so by taking the sign of 297

4.6 A better approach to the partial ZF approach is to minimize ISI.
a) If wy = —0.1, determine w; to minimize ISI when detecting s;.
b) What is the resulting SINR?
c) Is the SINR bigger or smaller than the partial ZF SINR?
d) Is the SINR bigger or smaller than the MMSE SINR?

4.7 In the dispersive scenario, consider detecting s; using r, and rs, setting
w9 = 1/e¢, and choosing w; to minimize ISI in 2.

a) Find the general expression for wy.

b) As the noise power goes to 0, what happens to w;?

c) Show that if the noise power is zero, the SINR is the same as the MMSE
solution SINR.

4.8 In the dispersive scenario with ¢ = —10 and d = 9, consider MMSE detection
of s using 7 and 7.
a) Find the MMSE solution for w; and ws.
b) Forr; =1, ro = —7, what is the value of the decision variable for 517
c) What is the detected value for 5,7

4.9 Using the model for the received values for the general dispersive scenario,
show that the average of r? is ¢ + d? + o2.
4.10 Consider the MIMO scenario in which ¢ =10, d =7,e =9, and f = 6.

a) What are the MMSE weights for detecting s27

b) What is the output SINR?

c) Ifry =9 and ro = 11, what is the detected value for 557
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The math

4.11 Consider the general dispersive case, with channel coefficients ¢ and d.
a) Find the general expression for the MMSE weights for detecting s1 using
r; and ro.
b) As the noise power goes to 0, what happens to w2?
c) As the noise power becomes much larger than the ISI power d?, show that
MMSE weights are proportional to the MF weights.

4.12 Show that the ML and MMSE weight solutions are equivalent (within a
scaling factor). Use the following version of the matrix inversion lemma:

[A+BCD]!=A"! - A"'B[C™! + DAT'B|"'DA™L. (4.136)
4.13 Using the model in (4.79), show that the SINR expressions in (4.97) and

(4.99) are equivalent. You will need the matrix inversion lemma from the previous
problem.
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CHAPTER 5

MMSE AND ML DECISION FEEDBACK
EQUALIZATION

Decision feedback equalization (DFE) uses past symbol decisions (detected values)
to remove ISI from previous symbols. MMSE and ML DFE perform a trade-off
between collecting signal energy and introducing ISI from future symbols.

5.1 THE IDEA
Consider detection of symbol s;. Recall that there are two copies of s1, one is
and one in 72. Specifically,

—10s7 + 9sg + ny
—10s5 + 983 + no. (5.1)

™

Ii

T2

In Chapter 3, we used r; to detect sy, subtracting ISI from sy first. We avoided
ISI from future symbols by ignoring the copy of s; in r;. We would like to take
advantage of the copy of s; in ro. In Chapter 4, with linear equalization, we
examined the MMSE strategy. We can use that strategy here as well.

As in Chapter 3, we first remove the influence of sy on ry, giving

Y1 =11 — 930, (5.2)

which, assuming 8y = sg, can be modeled as
y1 = —10s81 + my. (5.3)
Channel Equalization for Wireless Communications: From Concepts to Detailed 99
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In addition, we are also going to remove the influence of sy on ry. Recall that 7o
can be modeled as

ry = —10s3 + 951 + ng (5.4)

As there is no influence of s on ry, we simply get
y2=712-0, (5.5)
which can be modeled as
yo = —10s2 + 95y + na. (5.6)

We now wish to estimate s; using a weighted combination of y; and y,. Specif-
ically,

21 = wy1 + waya. (57)

Substituting (5.3) and (5.6) in (5.7) gives

2y = wl(—1051 +nq)+ wg(—-1052 + 951 + ng)
= —10wsgss + (—10w; + Yws)sy + wing + weng. (5.8)

Similar to the previous chapter, we can think of z; as an estimate of s;. Consider
the error in the estimate, defined as

€1 = 21— 8
= —10wysq + (—101,01 + 9wy — 1)81 + winy + wena. (59)

To make this error small, we will minimize the average (mean) of the power (square)
of the error (e1). Hence the name minimum mean-square error (MMSE).
Recall from the previous chapter the following facts.

1. The average of as; is a® times the average of s?.

2. While symbols, such as s, can be either +1 or —1, the square value is always
1. Thus, the average of the square value is 1.

3. While the noise terms, such as n;, are random, we were told that the average
of their squared values is ¢? = 100.

With these facts, the average power in ez, denoted Es, is given by

Ey = (w2(—10))2(1) + (w2(9) + w1 (=10) = 1)2(1) + (w19)%(1) + w?} (100) + w3 (100).
(5.10)
As in the previous chapter, E; (MSE) depends on w; and ws. In Fig. 5.1, we plot
E5 vs. w; for different values of wy. MSE is minimized to a value of 0.4158 when
wy = —0.04158 and we = 0.01871. This is the MMSE solution for the feedforward
filter for s;. Notice that unlike the ZF DFE solution, w, is not zero in this case. A
block diagram is given in Fig. 5.2.
Another strategy which gives the same performance is the ML strategy. This
strategy is discussed more in later sections.
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Figure 5.1 MSE vs. w; for various values of w, for DFE for s;.

5.2 MORE DETAILS

From the previous section, the MSE as a function of the weights is given by
Ey = (w1(—10) + wa(9) — 1)? + (w1 (-10))% 4 (w? + w2)100. (5.11)

Similar to the previous chapter, we can take the derivative of Fy w.r.t. each weight
and set the derivatives to zero. This gives

0 = 0+ 2(—10)(wa(9) + w1 (—10) — 1)(1) + 2(9)(w19)(1) + 2wy (100)(5.12)
0 = 2(-10)(w2(—10))(1) + 2(9)(w2(9) + w1 (—-10) — 1)(1)
+ 040 + 2wy(100). (5.13)
Solving this set of equations for the MMSE weights gives w; = —0.04158 and
wq = 0.01871.

With a traditional DFE, the feedforward filter would use r; and ro when forming
21, then use ry and ry to form 2,. Thus, a sliding window of received values are
used. In this case, the weights turn out to be the same.

However, suppose we only have r; and ry to work with. In this special case,
we find that the MSE for s, is minimized to a value of 0.5 when w; = 0 and
wy = —0.05. Observe that in this case, w; = 0. This makes sense, because after
subtracting the influence of s; and sy, there is no signal term in y;; there is only
noise that is unrelated with the noise in rs.
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Figure 5.2 MMSE DFE block diagram.

Let’s revisit the Alice and Bob example. Recall that r; = 1 and r, = —7.
Suppose we are told that 5§y = +1, the correct value. The MMSE DFE output for
$, would be

21 = (—0.04158)(1 — 9(+1)) + (0.01871)(~7) = 0.202, (5.14)

giving a detected value of §(1) = +1, the correct value. To detect so using only r;
and ro, we form

25 = (0)(1) + (~0.05)(~7 ~ 9(++1)) = 0.35, (5.15)

giving §(2) = +1, the correct value. Thus, if we start with a correct value for 3,
we get the correct values for the remaining symbols.

Now suppose we are told § = —1, the incorrect value. We will find (see the
Problems) that we get §; = —1 and 8 = +1. Thus, we can still have an error
propagation problem. However, it is not as bad, as this time we detect sy correctly.
In general, we expect the MMSE approach to perform better than the ZF approach.

As with the ZF DFE, we can compute an upper bound on SINR, assuming past
decisions are correct. Substituting model expressions into (5.7) gives

21 = ’ll)2(—10)82 + (w1 (—10) + w29)s1 + w19(s0 — §u) + wing + wang. (5.16)
The second term is the signal term and has average power
S = (10w, + 9w,)2. (5.17)

The third term is zero due to our assumption of correct past decisions. The re-
maining terms are impairment and have power

[+N=w}100 + (w} + w})100. (5.18)
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Notice that this is a general expression, for any weight values. Substituting the
MMSE weights gives an SINR of 1.405. Observe that this is larger than the SINR
for MMSE LE (0.65714), showing that if the detected values are correct, it is better
to remove them than to linearly suppress them. Also, 1.405 is larger than the upper
bound for ZF DFE (1.0), showing that MMSE performs better than ZF. This is
because MMSE collects signal energy from both images rather than just one. It is
still less than the matched filter bound of 1.81, as expected.

For the general dispersive case, assuming sy = sy, the estimation error on 2; can
be modeled as

e1 = (cwy + dws — 1)s1 + cwass + [wing + wang). (5.19)
The average power in ey, denoted E,, is given by
E; = (cwy + dwy — 1) + (cwy)? + (w? + wi)o?. (5.20)

As in the previous chapter, we can take the derivative of E; (MSE) w.r.t. w; and
woy and set them to zero. This gives a set of equations of the form (4.36) where

| 2 +0? cd Jec
R= cd c2+d2+02]’ h—[d]- (5.21)

As before, R can be interpreted as a matrix of data correlations, only now it is the
data correlations for y; and ys, which have sy removed.
The solution to this set of equations is
2 d2 2y d2
w = e td ro)ed (5.22)
(2 +d2 + 02)(c? + 0%) — c2d
d 2 2y 2d
wy = (o) —c . (5.23)
(2 +d2 + a?)(c? + a?) — c2d

For the MIMO case, we need to rethink the triangularization process. Recall the
first step, when we eliminated sy from 7 by forming z1 = vy — (d/f)re. What we
were really doing is detecting s, using a form of ZF linear equalization with weights
wy =1 and wy = (d/f). We would do better if we used the MMSE linear equalizer
as described in the previous chapter.

Recall the second step, in which we formed xo with noise uncorrelated with z4,
subtracted the influence of s; on x5 used 3;, then detected ss. We still need to
form x5 with noise uncorrelated with z;. Let w; and ws be the weights used in the
first step to form y,, i.e.,

1 = unry + wera. (5.24)

Let’s form z, as before, using
To =719 + hry. (5.25)

As before, we determine h such that the noise on z1 and x5 are uncorrelated. This
gives

E{ujuz} = E{(win; + wens)(hny + no)} = hwio? + wia? =0, (5.26)
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which implies
h = w2 /w;. (5.27)
Now that we have x5, we can subtract the influence of s; used the detected value.

However, z; now has a copy of sy as well. So, now we need to also subtract the
influence of s; on z;. We can then use the result to detect s2 with a weighted sum:

29 = wsys + way4, (5.28)

where
yz = 1 — (wic+ wae)dy (5.29)
ya = z2-(e+hc)dr. (5.30)

This looks like another MMSE linear equalization design problem. Thus, we can
use MMSE linear equalization design, with models for y; and y4, to determine good
values for wy and wy (see the Problems).

5.3 THE MATH

Similar to Chapter 4, MMSE and ML formulations are given. Other design cri-
teria are not discussed, as they would be the same as in the previous chapter.
Performance results are also provided.

5.3.1 MMSE solution

With MMSE DFE, the received signal is initially processed by a partial MF, pro-
ducing received sample vectors. These sample vectors are processed by a forward
filter, which collects signal energy and suppresses ISI from future symbol periods.
The FBF removes ISI from past symbol periods. Unlike the chapter on ZF DFE,
we allow for arbitrary pulse shaping, fractionally spaced sampling, and arbitrary
path delays.

The design of the MMSE FBF is similar to the design of the ZF FBF. Detected
symbols are modulated and channel filtered and then subtracted from the received
samples. Design of the MMSE forward filter is similar to the design of the MMSE
linear equalizer. The only difference is that the FF works on modified received
samples, modified to remove ISI from past symbol blocks. This simply changes
the computation of the data correlation matrix R. Compared to the ZF FF, the
MMSE FF works on future samples in addition to the current sample. Like matched
filtering, this allows better collection of symbol energy.

Assuming partial matched filtering at the front end, recall from (1.23) and (2.59)
that the received samples can be modeled as

v(qly) F VE, Y. h(ql, — mI)s(m) + i(qly), (5.31)

m=—o0

where

L-1
h(t) = ) geRp(t — o). (5.32)

=0
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Suppose we are detecting s{mg) using samples y(moT" + d;15),5=0,...,J — L.
The sample y(moT + d;15) is obtained from v(my1" + d;T,) by removing ISI from
past blocks using detected symbol values. Specifically,

my—1
y(mol +d; 1) = v(mol' + dj15) — VE, Y h(gls —mT)3(m),  (5.33)

m=—oc
which, assuming correct detections, can be modeled as
y(qTs) F VEs Z B(‘ﬂ:s — mT)s(m) + i(qTs). (5.34)
m=maqg
We can collect these samples into a vector y, which can be modeled as
o0
YEVE: Y hps(m)+n, (5.35)
m=maq
where the rth row of h,, is given by
B (r) = h(d, T, + (mo — m)T). (5.36)
With MMSE DFE, we form the decision variable
2(mg) = wilv, (5.37)
which is then used to detect s(mg) using
§(mg) = detect(z(mq), A(mo)) (5.38)
A(mg) = wh,,, =w'h, (5.39)

where h is defined in (4.65). The weight vector w is designed to minimize the cost
function
F = E{|s(mo) — z(m0)’}, (5.40)

where expectation if over the noise and symbol realizations.
The development is similar to that in Chapter 4, so that the weight solution ends
up being the solution to the set of equations

Rw = p, (5.41)

where
P £ E{ys"(mo)} (5.42)
R 2 E{yy"}. (5.43)

Using (5.34), it is straightforward to show that

p = VEshy, =+vE;h (5.44)
oc

R = Cy=E, ) hphf+NRn, (5.45)

m=mg
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where the elements of R, are given in (4.75). Thus, the MMSE weight solution is
given by

C,w = VE; h. (5.46)

As with MMSE linear equalization, the weight solution w and A(my) are indepen-
dent of which symbol is being equalized (my). As with MMSE linear equalization,
the processing delay d; is a relative delay, relative to mgT'. Thus, the elements in
y will change with different my,.

5.3.2 ML solution

As we saw with linear equalization, the ML solution is similar to the MMSE solu-
tion, except that C, is replaced with C,,, where

C, =C, — E; hh'. (5.47)

5.3.3 Output SINR

The output SINR and SNR expressions have the same form as the expressions for
linear equalization. The only different is that the data and impairment covariance
matrices exclude ISI removed via subtraction. That assumes the ISI was removed
correctly. In practice, errors are made, so that the output SINR expressions give a
bound on SINR. (SINR assuming perfect ISI subtraction).

5.3.4 Fractionally spaced DFE

DFE is fractionally spaced when the forward filter sampling period T is less than
the symbol period 1. The spacing of the feedback filter depends on whether it
removes ISI before the forward filter (same spacing as forward filter) or after the
forward filter (symbol-spaced). The story is basically the same as for fractionally
spaced LE (see previous chapter).

5.3.5 Performance results

Similar to the previous chapter, we consider QPSK, root-Nyquist pulse shaping,
and the two-tap, symbol-spaced channel with relative path strengths 0 and —1 dB
and angles 0 and 90 degrees (T'woT'S). In Fig. 5.3, BER vs. Ey/Ny is shown for the
matched filter, the analytical matched filter bound (REF), MISI DFE, and MMSE
DFE. The LE results are for 31 taps placed symmetrically about the first path
for the symbol of interest. The MISI DFE results are for 1 FF tap placed on the
first signal path. In this special case, ISI can be perfectly removed (assumed ideal
decision feedback), so that the MISI solution becomes the ZF solution discussed in
Chapter 3. The MMSE DFE results are for 16 taps, placed on the first path of the
symbol of interest and the first path of the next 15 future symbols. For both MISI
(ZF) and MMSE DFE, a single feedback tap is used for the symbol prior to the
symbol of interest.
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Figure 5.3 BER vs. E,/Ng for QPSK, root-raised-cosine pulse shaping (0.22 rolloff),
static, two-tap, symbol-spaced channel, with relative path strengths 0 and —1 dB, and path
angles 0 and 90 degrees, DFE results.

The observations for MMSE and MISI DFE parallel those for MMSE and MISI
LE we saw in the previous chapter.

1. MMSE DFE performs better than MISI DFE. At high SNR, the performance
becomes similar, as ISI dominates.

2. At low SNR, MMSE DFE, MF and the MFB become similar, as noise domi-
nates.

3. At low SNR, MISI DFE performs worse than the MF, because MISI DFE
focuses on ISI when noise is the real problem.

MMSE LE and MMSE DFE are compared in Fig. 5.4. At high SNR, MMSE
DFE performs better because most of the time it perfectly subtracts ISI from past
symbols. The combining weights focus on signal energy collection and suppression
of ISI from future symbols only. The combining weights for MMSE LE must also
try to suppress ISI from past symbols.

At low SNR, the MMSE DFE makes decision errors, which affect future decisions.
This problem is referred to as error propagation. As a result, performance is worse
than MMSE LE, which suppresses past symbol ISI through filtering.

Results for fractionally spaced equalization and for fading channels are given in
Chapter 6.
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5.4 MORE MATH

In Chapter 3, we explored the zero-forcing (ZF) solution. Here we will focus on the
MMSE and ML formulations. We will also discuss simpler ways of modeling ISI,
which lead to simpler equalizer formulations. Discussions of block and sub-block
forms are given, and group DFE is briefly examined.

5.4.1 MMSE solution

The formulation in the more general case is similar to that for MMSE linear equal-
ization, except that ISI from past symbol blocks is removed. As in the previous
chapter, a chip-level formulation is used. In summary, the decision variable is
formed using

20 (mg) = why, (5.48)
where
y = [y (doTs) ... ¥y (dyrT)]T (5.49)
Nl K-1 mp—1
y(gls) = v(Iy) - \/E(’) ) Y B, (a7 —mT)E (m). (5.50)
1-1 k: 0 m=—oc

Notice we have assumed all transmitted symbols are being detected. Often we are
only interested in symbols from one transmitter. We will consider this case later.

ror o "W
; ; ; : MMSE LE —X—

MMSE DFE —O—
REF

BER

10'2 ..

Eb/NO (dB)

Figure 5.4 BER vs. E,/Np for QPSK, root-raised-cosine pulse shaping (0.22 rolloff),
static. two-tap. symbol-spaced chaunel, with relative path strengths 0 and —1 dB, and path
angles 0 and 90 degrees, MMSE LE and DFE results.
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The decision variable is used to detect s('”)(mo) using

50 (mg) = detect(z\) (ma), AL (ma)) (5.51)
A (mo) = wHRED (5.52)
R = [b{) (doTy) ... B (1) (5.53)

The MMSE FF weights are given by (4.114), using (4.115) and

N; K-1

Cylj) = Y > ED(k Z B (dj, 15 — mT) (B, (dj, T, — mT))#
=1 k=0 m=myg
+NoRy(dj, Ty — dj, T)L (5.54)

As with MMSE linear equalization, we can consider code-averaging and transver-
sal equalization to reduce complexity. In the transversal case, because ISI from past
blocks is removed, the R matrix will be different for each chip period ng. Thus, ng
weight vectors will still be needed. However, these vectors will be the same for each
symbol period my. Thus, a time-varying transversal equalizer results, in which the
weight vectors are periodically time-varying.

5.4.2 ML solution

As we saw with linear equalization, the ML solution is similar to the MMSE solu-
tion, except that C, is replaced with C,,, where

C, = C, — E, hh#, (5.55)

5.4.3 Simpler models

With linear equalization, we noted that simpler models of some subset of interfer-
ing symbols could be used, such as a white, stationary noise model or a colored,
stationary noise model. Here we add a third model.

Colored, nonstationary noise. With this model, we think of the interfering
symbol values as complex, Gaussian r.v.s, rather than discrete quantities.
Symbols modeled this way are not detected and subtracted with the FBF.
Instead, they are treated as an additional form of noise.

Such a model is useful for modeling interference from other transmitters or other
PMC symbols.

5.4.4 Block and sub-block forms

As with linear equalization, block and sub-block forms are possible. With sub-block
equalization, a sub-block of past symbols is removed before detecting a sub-block
of current symbols. An example would be CDM, in which the K symbols sent in
parallel using K spreading codes could be used to define a sub-block.
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5.4.5 Group decision feedback equalization

As with linear equalization, group DFE is possible. The approach is similar, except
that the ISI from groups already detected is subtracted rather than suppressed
linearly.

5.5 AN EXAMPLE

US TDMA is sometimes used to refer to the second generation (2G) cellular system
also known as IS-54, IS-136, American Digital Cellular (ADC), or digital AMPS
(D-AMPS) [Rai91, Goo91]. The modulation is 7/4-shift Differential Quadrature
Phase Shift Keying (DQPSK)(2 bits per symbol), and root-Nyquist pulse shaping
is employed. The symbol rate is 24.3 kbaud, giving a large symbol period (41.2 us)
relative to typical delay spreads. In [Pro91] a variety of equalization approaches
are reviewed, and a DFE design is developed. DFE with multiple receive antennas
is considered in [Li99].

Because of the long symbol period, path delays are on the order of a fraction of
a symbol period. Because of the ringing of the pulse shape, this causes ISI between
both future and past symbols. Fortunately the pulse shape ringing dies out quickly,
so that a DFE with a small number of forward filter and feedback filter taps makes
sense.

If the receiver is not in motion, the decision error rate at typical SNR operating
levels is low enough that error propagation is not severe. However, if the receiver
is moving quickly (in a vehicle), the fading can change rapidly within a burst of
data. Such fading can cause decision errors which then propagate. Bidirectional
equalization techniques have been developed to address this issue [Ari92, Nag95,
Hig89]. Another option, maximum likelihood sequence detection, is discussed in
the next chapter.

5.6 THE LITERATURE

Early work on DFE can be found in [Aus67]. An early survey of the DFE lit-
erature is given in [Bel79]. In [Sme97] it is shown that with the perfect decision
feedback assumption, the FFF and FBF filters can be optimized separately. While
we have focused on ZF and MMSE designs for the FF, a WMF design can also be
used [Ci095]. DFE with multiple receive antennas is explored in [Mon71, Mon84],
considering self-interference as well as cochannel interference.

DFE works well when the channel is minimum phase. Roughly speaking, this
means that the energy is concentrated in the earlier arriving path delays. Thus,
for a two-path channel, the channel is minimum phase when the first tap is larger.
When the channel is minimum phase, the FF collects more of the signal energy.

If the channel is or might be nonminimum phase, there are several solutions.
One solution is bidirectional equalization, in which the received signal samples are
equalized forward in time, backward in time, or both. Equalization is performed
either forward or backward, depending on an MSE measure after training [Ari92]
or after equalizing a little bit of the data [Nag95]. According to [Nag95|, equalizing
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both directions and then selecting the direction with smaller errors was proposed in
[Hig89]. This approach can be refined to select (arbitrate) the direction separately
for each symbol using a local Euclidean distance metric [Nel05]. (Replacing the local
metric with MLSD [Bot08] leads to a form of assisted MLSD, which is discussed in
the next chapter.) Decoder feedback can improve the arbitration process [Oh07].

Another solution is to apply linear pre-filtering to convert the channel to min-
imum phase. As the DFE is usually designed assuming white noise, the pre-filter
should be an all-pass filter so as not to color the noise. Early work on pre-filtering
for DFE can be found in [Mar73]. More references on pre-filtering are given in the
next chapter.

We have assumed sufficient taps in the FF. If the number of taps is limited, then
various tap selection approaches can be used. These are discussed in the previous
chapter.

A number of solutions have been proposed to address error propagation. One
approach is to improve the feedback using the following.

1. Erase unreliable decisions [Chi98, Fan99].

2. Use a soft MMSE symbol estimate [Ger00, ArsOla]. This can be related to
neural network processing [Ger00].

3. Use multiple hard symbol values when the decision variable is small in magni-
tude [Dah88]. This can be done by having multiple DFEs, each feeding bac