


Lecture Notes in Computer Science 6937
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany





Luca Cardelli William Shih (Eds.)

DNA Computing and
Molecular Programming
17th International Conference, DNA 17
Pasadena, CA, USA, September 19-23, 2011
Proceedings

13



Volume Editors

Luca Cardelli
Microsoft Research
7JJ Thomson Avenue, Cambridge CB3 0FB, UK
E-mail: luca@microsoft.com

William Shih
Dana-Farber Cancer Institute
Department of Biological Chemistry and Molecular Pharmacology
44 Binney Street, Boston, MA 02115, USA
E-mail: william.shih@wyss.harvard.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-23637-2 e-ISBN 978-3-642-23638-9
DOI 10.1007/978-3-642-23638-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011935217

CR Subject Classification (1998): F.1, F.2.2, J.3, E.1, I.2, G.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

This volume contains the papers presented at DNA 17: the 17th International
Conference on DNA Computing and Molecular Programming held during Septem-
ber 19-23, 2011 in Pasadena, California, USA.

This conference provides a forum for presenting results in the emerging field of
biomolecular computation, with an emphasis on DNA as a material for carrying
out information processing and material construction on the nanometer scale.
Attending scientists have diverse backgrounds but share an interest in practical
and theoretical issues relevant for sustaining a trend of exponentially increasing
complexity in programmed biomolecular systems.

The conference is held under the auspices of the International Society for
Nanoscale Science, Computation, and Engineering (ISNSCE). The DNA 17 Pro-
gram Committee received 45 paper submissions, of which 12 were selected for
oral presentation and inclusion in the proceedings, and an additional 11 for oral
presentation; many of the remaining submissions were selected for poster pre-
sentations, along with other submissions where a poster-only request was made.

The scientific program included tutorials by Dave Doty (“Theory of Algorith-
mic Self-Assembly with DNA Tiles”), David Soloveichik (“The Programming
Language of Chemical Kinetics, and How to Discipline Your DNA Molecules
Using Strand Displacement Cascades”), and Eric Klavins (“Specification and
Control of Stochastic Biochemical Systems”), as well as an all-day wet lab tu-
torial organized by Elisa Franco, Jongmin Kim, and Josh Bishop (“Genelets:
Synthetic In Vitro Transcriptional Circuits”).

In addition to contributed talks and poster sessions, five plenary talks were
given by Vincent Danos (“Cooperative Assembly Systems”), Yamuna Krishnan
(“An Autonomous DNA Nanodevice Captures pH Maps of Living Cells in Cul-
ture and In Vivo”), Niles Lehman (“A Highly Cooperative Network of RNA
Molecules”), Jack Lutz (“The Computer Science of Molecular Programming”),
and Hao Yan (“Designer DNA Architectures for Bionanotechnology”).

Four discussion panels were also held during the conference: Visions for
DNA Computing and Molecular Programming (Luca Cardelli, Eric Klavins,
Nadrian Seeman, Erik Winfree), Hard Problems in DNA Computing and Molec-
ular Programming (Anne Condon, Vincent Danos, Jack Lutz, John Reif), Ap-
plications of DNA Computing and Molecular Programming (Andy Ellington,
Yamuna Krishnan, Niles Pierce, Hao Yan), and Interfaces to DNA Computing
and Molecular Programming (Deborah Fygenson, Kurt Gothelf, Niles Lehman,
Paul Rothemund).

The editors would like to thank the members of the Program Committee and
the reviewers for their hard work in reviewing papers and providing comments
to the authors. They also thank the members of the Organizing Committee
and Steering Committee, and particularly Erik Winfree and Natasha Jonoska,



VI Preface

the respective Committee Chairs, for invaluable advice. The organizers would
like to thank the administrative and computer support provided by Lucinda
Acosta, Kevin Wong, Briana Ticehurst, Trity Pourbahrami, John Lilley, and
Gary Waters. Finally, we would like to thank all the sponsors of the conference,
authors, attendees, and supporting staff for making the conference successful
and enjoyable.

July 2011 Luca Cardelli
William Shih



Organization

DNA 17 was organized by the California Institute of Technology, in coopera-
tion with the International Society for Nanoscale Science, Computation, and
Engineering (ISNSCE).

Steering Committee

Natasha Jonoska (Chair) University of South Florida, USA
Leonard Adleman University of Southern California, USA
Luca Cardelli Microsoft Research Cambridge, UK
Anne Condon University of British Columbia, Canada
Masami Hagiya University of Tokyo, Japan
Lila Kari University of Western Ontario (UWO), Canada
Chengde Mao Purdue University, USA
Giancarlo Mauri University of Milan, Italy
Satoshi Murata Tohoku University, Japan
John Reif Duke University, USA
Grzegorz Rozenberg University of Leiden, The Netherlands
Nadrian Seeman New York University, USA
Andrew Turberfield Oxford University, UK
Erik Winfree California Institute of Technology, USA

Organizing Committee

Erik Winfree (Chair) California Institute of Technology, USA
Niles Pierce California Institute of Technology, USA
Damien Woods California Institute of Technology, USA
David Doty California Institute of Technology, USA

Program Committee

Luca Cardelli (Co-chair) Microsoft Research Cambridge, UK
William Shih (Co-chair) Harvard Medical School, Dana-Farber Cancer

Institute, Wyss Institute, USA
Anne Condon University of British Columbia, Canada
David Doty University of Western Ontario, Canada
Shawn Douglas Harvard University, USA
Andrew Ellington The University of Texas at Austin, USA
Max Garzon The University of Memphis, USA
Masami Hagiya University of Tokyo, Japan
Natasha Jonoska University of South Florida, USA
Ming-Yang Kao Northwestern University, USA



VIII Organization

Lila Kari University of Western Ontario, Canada
Eric Klavins University of Washington, USA
Satoshi Kobayashi University of Electro-Communications, Japan
Dongsheng Liu Tsinghua University, China
Chengde Mao Purdue University, USA
Satoshi Murata Tohoku University, Japan
Jacques Nicolas INRIA/IRISA, France
Pekka Orponen Aalto University, Finland
John Reif Duke University, USA
Yannick Rondelez The University of Tokyo, Japan
Yasubumi Sakakibara Keio University, Japan
Georg Seelig University of Washington, USA
Friedrich Simmel Technical University Munich, Germany
David Soloveichik California Institute of Technology, USA
Darko Stefanovic University of New Mexico, USA
Fumiaki Tanaka University of Tokyo, Japan
Andrew Turberfield University of Oxford, UK
Erik Winfree California Institute of Technology, USA
Damien Woods California Institute of Technology, USA
Hao Yan Arizona State University, USA
Bernard Yurke Boise State University, USA
Byoung-Tak Zhang Seoul National University, Korea
David Zhang Harvard University, USA

Referees

Bishop, Josh Chandran, Harish Chen, Yi
Conway, Nicholas Cui, Bo Fanning, Leigh
Garg, Sudhanshu Gopalkrishnan, Nikhil Gu, Hongzhou
Hamada, Shogo Kawamata, Ibuki Kim, Byoung-Hee
Kobayashi, Satoshi Masson, Benoit Oishi, Kevin
Olah, Mark Sadat, Sayem Schaeffer, Joseph
Schaus, Thomas Schmidt, Thorsten Semenov, Oleg
Simjour, Amir Zhang, Chuan

Sponsoring Institutions

The Donna and Benjamin M. Rosen Center for Bioengineering at Caltech
The United States National Science Foundation (NSF) Computer and Informa-
tion Science and Engineering (CISE) directorate
The California Institute of Technology



Table of Contents

Invited Talks

Cooperative Assembly Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Vincent Danos, Heinz Koeppl, and John Wilson-Kanamori

The Computer Science of Molecular Programming . . . . . . . . . . . . . . . . . . . 21
Jack H. Lutz

An Autonomous DNA Nanodevice Captures pH Maps of Living Cells
in Culture and in Vivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Sunaina Surana, Souvik Modi, and Yamuna Krishnan

Cooperation in an All-RNA Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Nilesh Vaidya, Jessica Mellor, and Niles Lehman

Designer DNA Architectures for Bionanotechnology . . . . . . . . . . . . . . . . . . 33
Hao Yan

Contributed Papers

An Improved DNA-Sticker Addition Algorithm and Its Application to
Logarithmic Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Mark G. Arnold

Graph-Theoretic Formalization of Hybridization in DNA Sticker
Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Robert Brijder, Joris J.M. Gillis, and Jan Van den Bussche

Localized Hybridization Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Harish Chandran, Nikhil Gopalkrishnan, Andrew Phillips, and
John Reif

Less Haste, Less Waste: On Recycling and Its Limits in Strand
Displacement Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Anne Condon, Alan Hu, Ján Maňuch, and Chris Thachuk

One-Dimensional Staged Self-assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Erik D. Demaine, Sarah Eisenstat, Mashhood Ishaque, and
Andrew Winslow

Computing Maximal Kleene Closures That Are Embeddable in a Given
Constrained DNA Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Stavros Konstantinidis and Nicolae Santean



X Table of Contents

Modelling, Simulating and Verifying Turing-Powerful Strand
Displacement Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Matthew R. Lakin and Andrew Phillips

Synthesizing Small and Reliable Tile Sets for Patterned DNA
Self-assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Tuomo Lempiäinen, Eugen Czeizler, and Pekka Orponen

Multivalent Random Walkers — A Model for Deoxyribozyme
Walkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Mark J. Olah and Darko Stefanovic

Exact Shapes and Turing Universality at Temperature 1 with a Single
Negative Glue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Matthew J. Patitz, Robert T. Schweller, and Scott M. Summers

Autonomous Resolution Based on DNA Strand Displacement . . . . . . . . . . 190
Alfonso Rodŕıguez-Patón, Iñaki Sainz de Murieta, and Petr Sośık

Multiple Molecular Spiders with a Single Localized Source—
The One-Dimensional Case (Extended Abstract) . . . . . . . . . . . . . . . . . . . . . 204

Oleg Semenov, Mark J. Olah, and Darko Stefanovic

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217



Cooperative Assembly Systems�

Vincent Danos1,��, Heinz Koeppl2, and John Wilson-Kanamori1

1 LFCS, School of Informatics, University of Edinburgh
vdanos@inf.ed.ac.uk

2 ETH Zurich

Abstract. Several molecular systems form large-scale objects. One would
like to understand their assembly and how this assembly is regulated. As a
first step, we investigate the phase transition structure of a class of bipar-
tite cooperative assembly systems. We characterize which of these systems
have a (probabilistic) equilibrium and find an explicit form for their local
energy (�2). We obtain, under additional limitations on cooperativity, the
average dynamics of some partial observables (�4). Combining both steps,
we obtain conditions for the phase transition to a large cluster (�5).

Numerous intracelullar molecular systems (post-synaptic densities, bacterial
chemotaxis sensors, or focal adhesion complexes) form extensive structures which
are somewhat intermediate between traditional signalling complexes and large-
scale objects more familiar from statistical physics. One would like to understand
the specific regulation controlling their assembly and how this regulation relates
to theirs processing information.

As a first step, this paper investigates a class of bipartite cooperative as-
sembly systems and examines whether one can obtain conditions for criticality,
defined here as appearance of a large cluster. We characterize which of these
systems have a probabilistic equilibrium and find an explicit form for their asso-
ciated (local) energy functional. Then, drawing on recent ideas from rule-based
model reduction [7], we obtain under additional conditions limiting the type of
cooperativity further, a differential system describing the average dynamics of
some partial observables appearing in the energy functional. This gives us in
particular their average steady state concentrations (as implicit functions of the
cooperativity parameters). By combining both steps, we can derive a critical-
ity condition for the appearance of a large cluster. The said condition uses the
mean reproduction rate of a suitable branching process (this is standard in the
statistical physics litterature [5]).

This improves on earlier work considering the non-cooperative case [10]. Sec-
tion 3 incorporates numerical experiments - using a recent implementation KaSim
of the Kappa rule-based modeling language. The example model is described in
the Appendix. Simulation files and further useful information can be found here.

� This paper is an invited contribution to the Proceedings of the 17th International
Conference on DNA Computing and Molecular Programming (2011).

�� Corresponding author.

L. Cardelli and W. Shih (Eds.): DNA 17, LNCS 6937, pp. 1–20, 2011.
� Springer-Verlag Berlin Heidelberg 2011



2 V. Danos, H. Koeppl, and J. Wilson-Kanamori

1 The Cooperative Assembly Model

The assembly model we study considers only two types of agents or nodes, A
and B - although some of the conclusions we attain are clearly generalizable.
We suppose each agent is equipped with a set of identical sites, namely, agents
of type A have vA sites of type a, and agents of type B have vB sites of type b.
This is only to make the model tractable and carries no deep meaning.

Sites of type a and b can bind according to rules which we describe below, and
we call the resulting objects site graphs, to insist that linking is done via the use
of sites and not directly on nodes, as with usual graphs. One can think of sites
as domains of proteins, or DNA domains, or other media as used in DNA-based
programmable chemistry, as long as elements glue along well-defined interfaces
(see eg [13]) and steric problems are not a concern. Saying that sites are identical
means that the rules will not distinguish various occurrences of a or b. We refer
to vA, vB as the valences of A, B, and assume vA, vB > 0. We write nA for the
total number of agents of type A, and nB for that of type B, assume nA, nB > 0;
we write G(nA, nB) for the set of bipartite site graphs with nA, nB nodes of type
A, B, and x0 for the unique site graph in G(nA, nB) which has no links. This
site graph will serve as our origin and we will assign energy zero to it.

The rules are as follows. For each pair 0 ≤ i < vA, 0 ≤ j < vB, we assume a
reversible association rule, r(i, j), whereby one can bind a pair of nodes of types
A, B, and respective degrees i and j, via a pair of free sites a, b; or unbind an
already existing bond. We write γ+

i,j , γ−
i,j > 0 respectively for the association

and dissociation rate of r(i, j). These are the rates at which the corresponding
rule is applied to one instance. This defines a continuous-time Markov chain in
the usual fashion. We set Γ i,j = γ−

i,j/γ+
i,j ∈ R+, and write Γ for the associated

vA × vB matrix.
As sites of same type cannot bind, every site graph reachable from x0 is bipar-

tite (Fig. 3), and so is in G(nA, nB). Conversely, every site graph in G(nA, nB)
can be reached from the totally disconnected state x0 (hence from any other one,
by symmetry of the transitions) by creating all the needed connexions. Hence,
the continuous-time Markov chain underpinning the dynamics is irreducible and
positive-recurrent, and, its state space G(nA, nB) being finite, it has a unique
invariant probability.

Note that, as soon as vA, vB ≥ 2, the dynamics can build polymers, meaning
connected site graphs the size of which is only bounded by the total number of
available nodes N = nA + nB (Fig. 3).

Depending on the definition of an instance of a rule, the set of graphs reachable
from x0 might include double AB bonds, which we call ‘alkenes’ in this paper.
The model, presented in the appendix, allows double bonds because the Kappa
rules are shorter to write, but as this complicates things a bit on the theory
side, we suppose here that rules can only bind sites from nodes that are not
yet sharing an edge. We will see in �3 that the discrepancy in simulations is
negligible (Fig. 4)).



Cooperative Assembly Systems 3

2 Equilibrium

Throughout the paper we write log(x) for the natural logarithm,
(

n
m

)
for the

binomial coefficient, [m;n] = m!
(

n
m

)
for the number of injections of m into n,

where m, n ≥ 0, and
(

n
n1···nk

)
with ni ≥ 0, n1 + · · ·+nk = n for the multinomial

coefficient.
Recall Stirling’s formula log n! ∼ n log n− n, from which follows that:

log
(

n
n1···nk

) ∼ nH(ni/n)

where H(p) = −∑
i pi log pi is the Shannon entropy of a probability p with finite

support. We will use this later in this section.
Our first step is to characterize the models for which the invariant probability

is an equilibrium (aka has detailed balance), as when it is the case, this will give
us a computational handle on the behaviour of the system.

Proposition 1. Γ has an equilibrium iff Γ = ΓAΓ t
B for some ΓA ∈ R

v(A)
+ ,

ΓB ∈ R
v(B)
+ .

Proof. Consider two states x, y in G(nA, nB) such that there exists a (one-step)
transition from x to y (and therefore from y to x, by reversibility of rules).

Without loss of generality, suppose y is obtained from x by adding a bond
between nodes u, v of respective types A and B.

Both u, v have a definite degree in x, say i and j, and there is therefore only
one rule the application of which underlies this transition, namely r(i, j). The
ratio of the backward and forward rates is given by:

ρ(x, y) =
Γi,j

(vA − i)(vB − j)
(1)

Indeed, in order to bind nodes u, v of x, one has to choose one of the vA − i
free sites of u, and the same for v. As i < vA, and j < vB the above formula is
always defined.

By connectedness of the transition graph, over G(nA, nB), we know that there
is at most one energy function V which describes the equilibrium (it might not
exist but it is unique), up to an additive constant.

Setting V (x0) = 0 (which one can always do as energy is defined to an additive
constant), we know that if V exists, it must verify:

V (x) =
∑

(z,z′)∈φ:x0→x

log ρ(z, z′) (2)

where φ is a sequence of successive transitions leading from x0 to x. For V to
be consistent, we need this definition to be independent of the choice of φ. It
is enough to show that two successive bindings on the same node u obtain the
same ΔV , as this is the only case where to instances of rules interact in a non
trivial way (up to reversibility).



4 V. Danos, H. Koeppl, and J. Wilson-Kanamori

So, suppose u : A has degree i in x and gets bound successively to v1 : B
of degree j1, to obtain the intermediate y, and then to v2 : B of degree j2, to
obtain z. (As we do not allow alkene formation, v1 �= v2.)

The product of the rate ratios ρ(x, y1)ρ(y1, z) along the two transitions is:

Γi,j1Γi+1,j2

(vA − i)(vB − j1)(vA − i− 1)(vB − j2)

Path-independence forces the above to be constant under exchanging the roles
of v1 and v2, which leads to the following simple constraint (note that the de-
nominator does not depend on the order):

Γi,j1Γi+1,j2 = Γi,j2Γi+1,j1

and by symmetry (exchanging the roles of A and B):

Γi1,jΓi2,j+1 = Γi1,j+1Γi2,j

It is easy to see that the above two equations hold iff:

Γ0,0Γi,j = Γi,0Γ0,j

and the statement follows, eg with ΓA(i) = Γi,0Γ0,0
− 1

2 , ΓB(j) = Γ0,jΓ0,0
− 1

2 . �

There are a few remarks worth making here: first, allowing for alkenes would
not add any further constraints on the rates; second, the equilibrium condition
is reminiscent of the condition derived on an earlier paper for the validity of a
static analysis of reachability based on views [2] - it forces a simple multiplicative
form of the dependency of Γ s in the degrees i, j; third, the condition above does
not constrain rate constants but only their ratios Γi,j , thus, it is always possible
to multiply jointly γ+

i,j and γ−
i,j by an arbitrary positive scalar, without altering

the equilibrium or its existence.
We suppose from now on that Γ satisfies the equilibrium condition.
The proof above, in the case the equilibrium condition is fulfilled, gives an

explicit expression for the energy:

Proposition 2. Supposing Γ has an equilibrium, the underlying energy is:

V (x) =
∑

u∈x

log

∏
0≤i<d(u) Γτ(u)(i)

[d(u); vτ(u)]
(3)

with τ(u) ∈ {A, B} the type of node u in x, vτ(u) its valence, and d(u) its degree.

Proof. We prove the formula by induction on the number of bonds in x.
If there are none, then x = x0 and V (x0) = 0.
Suppose now this is true for x, and add a bond in x between nodes u : A

and v : B with respective degrees i, j. The difference of energy incurred by this
addition is:

V (y)− V (x) = log
Γτ(u)(d(u))

(vτ(u) − d(u))
+ log

Γτ(v)(d(v))
(vτ(v) − d(v))

which is indeed equal to log ρ(x, y) as in Eq.1. �



Cooperative Assembly Systems 5

As said earlier, the dynamics decribed by Γ will drive the system to the invariant
probability with support G(nA, nB) associated to the energy V (x):

pV (x) =
e−V (x)

∑
y∈G(nA,nB) e−V (y)

Note that the above calculations hold more generally for any set of homogeneous
agents as long as their association/dissociation rules are limited to depend only
on the degree of the bindees.

2.1 Energy, Entropy

In this subsection, we work out some constraints on the dynamics implied by
the specific format of the potential V , which we have constructed above.

We write [Ai; x] for the number of embeddings into x of a single agent A
with degree i, Ai(x) := [Ai; x]/i! for the number of occurrences of Ai in x, and
A(x), B(x) for the associated degree vector ; that is to say A(x) ∈ R

v(A) has ith
component Ai(x), and similarly for B(x) ∈ R

v(B).
It is easy to see that we can rewrite Eq.3 for V as:

V (x) =
∑

0<i≤vA

εA(i)Ai(x) +
∑

0<i≤vB

εB(i)Bi(x) (4)

with ετ ∈ R
v(τ) defined component-wise as:

ετ (i) :=
∑

0≤j<i log
Γτ (j)
vτ − j

We can write succintly V (x) = 〈εA,A(x)〉+〈εB ,B(x)〉. As a consequence, xs with
the same A(x) and B(x) are equally likely at equilibrium. In particular swapping
links, or permuting nodes of the same type, leaves the energy unchanged. The
set of such graphs form an equivalence class. The distinguished state x0 belongs
to a singleton class (for generic values of ετ (i) that is) which is labelled by the
degree vectors 0, 0.

As
∑

iAi(x) =
∑

jBj(x) is the total number of bound a or b sites in x, the
log of the cardinality of the class of x, or the class entropy, is:

S(x) = log(
∑

iAi(x))! + log
(

nA

A(x)

)
+ log

(
nB

B(x)

)
(5)

This way to look at energy, invites one to think of ετ (i) as setting the
penalty/reward for a node of type τ to acquire degree i. We mention in passing
that the idea of using a flexible syntax of local energy functionals in model-
ing biomolecular interactions has a long tradition, which was recently revived
in Refs. [14, 12]. See Ref. [3] for a similar investigation in the case of ordinary
chemical reactions (aka Petri nets).



6 V. Danos, H. Koeppl, and J. Wilson-Kanamori

2.2 Cooperativity

The first question we can ask is that of cooperativity. The assembly rules manifest
cooperativity if adding a bond to an already busy agent results in a smaller
change of potential ΔV than would adding it to an agent less busy [16]. Adding
a bond on a pair Ai, Bj , i < vA, j < vB, results in a difference of potential:

ΔV = εA(i + 1)− εA(i) + εB(j + 1)− εB(i)
= log ΓA(i)ΓB(j)/(vA − i)(vB − j)

as follows from the definition above.
Hence it is energetically more advantageous to add an (i, j) bond than an

(i′, j′) iff:
Γ (i, j)
Γ (i′, j′)

=
ΓA(i)
ΓA(i′)

ΓB(j)
ΓB(j′)

≤ vA − i

vA − i′
vB − j

vB − j′

The conclusion is that it is not enough, in order to have cooperativity, to suppose
that Γτ (i) is a decreasing function of the degree i (that would be Γτ (i)/Γτ (i′) ≤
1 when i > i′); instead we need to assume that Γτ (i) decreases faster than
(vτ − i)/(vτ − i′) (which is already ≤ 1, again supposing i > i′). In particular,
a system of rules where Γ s are constant will be anti-cooperative, if slightly.
However, as ∂v((v − i)/(v − i′)) = (i − i′)/(v − i′)2 ≥ 0, when i > i′, the larger
v, the weaker the effect.

2.3 Bond Displacement

Here is another question we can investigate. Suppose x is a site graph, u1, u1

are nodes in x of the same type τ , and respective degrees i1 > 0, i2 < vτ . We
can define a new site graph y = (u1, u2) · x by giving one link of u1 to u2.

Lemma 1. Suppose x is a site graph and y = (u1, u2) · x is obtained by bond
displacement, then, the induced difference of potential ΔV := V (y)− V (x) and
entropy ΔS := S(y)− S(x) are:

ΔV = log
Γτ (i2)

Γτ (i1 − 1)
+ log

vτ − i1 + 1
vτ − i2

ΔS = logni1ni2 − log (ni1−1 + 1)(ni2+1 + 1) if i2 + 1 �= i1 − 1
= logni1ni2 − log (nk + 2)(nk + 1) if k = i2 + 1 = i1 − 1

Proof. The bond displacement preserves the total number of links, as well as the
degrees of nodes not of type τ . So, in Eq.5, only the τ -side multinomial in S is
changed. The expression for ΔV is an easy computation. �

From the expression for ΔS, we see that if the target degrees i1 − 1, i2 + 1
have lower counts in x than the source degrees i1 and i2, then ΔS ≥ 0, mean-
ing the class cardinality increases. Purely based on this entropic contribution,
bigger classes, which get a higher probability, will tend to have uniform degree
distribution.



Cooperative Assembly Systems 7

What about the energy contribution? Supposing Γτ (i) = Γ is constant, we
see from the expression for ΔV above, that:

ΔV = log(vτ − i1 + 1)− log(vτ − i2)
ΔV ≤ 0 iff i2 < i1

Hence states where degree differences between nodes of type τ are > 1 will be
penalized. Purely based on this energy contribution (and Γτ (i) constant), graphs
where the degree vector is concentrated will be favoured at equilibrium.1

The question now is which of the opposite forces wins asymptotically in N =
nA + nB the total number of nodes.2

2.4 A Rough Estimate of B(x) given A(x)

Suppose, to lighten up the notation, that the Γ -constant type is B. Suppose
further that the A(x) distribution is fixed, which also fixes the total number of
links as

∑
i iBi(x) =

∑
j jAj(x). We will discuss this latter assumption, which

is key, later in �3.
Set pi := Bi(x)/nB for the probability that a randomly chosen B in x has

degree i. Write qi :=
∑

i≤k≤vB
pk, the probability that such a B has degree ≥ i

(a non-increasing sequence).
The asymptotic entropic contribution, given A(x), is, up to an additive con-

stant:
S(B(x)) =

(
nB

B

) ∼ nBH(p) ≤ nB log vB

On the other hand the energy contribution, again given A(x), and using the ΓB

constant assumption, is, up to an additive constant:

−V (B(x)) =
∑

0≤i≤vB
Bi(x) log[i; vB ]

= nB

∑
0≤i≤vB

pi log[i; vB]
= nB

∑
1≤k≤vB

qk log(vB − k + 1)
= q1nB log vB + q2nB log(vB − 1) + · · ·

The likeliest B(x) will minimize the free energy V (B(x)) − S(B(x)), given the
total number of links. One sees that, asymptotically, and assuming the q1 ∼ 1,
which is definitely going to be the case near criticality, the entropy contribution
is trumped by the energy one. See Figs. 1, 2 for concrete examples.

So, in this constant case, it seems reasonable (and all the more reasonable
when vB is high) to neglect the entropic contribution, and approximate the
equilibrium distribution for the degree of nodes of type B by the following two-
valued distribution which minimizes the potential V given a fixed number of
links

∑
iBi:

1 As ∂vτ exp(−ΔV ) = (i1 − 1 − i2)/(v − i1 + 1)2 has the same sign as ΔV , higher
valences will increase the degree distribution concentration of nodes of type τ .

2 As an aside, we can observe that the ΔV of bond displacement proves that the dis-
tribution of degrees on τs with constant Γτ is not a per site independent distribution
- given that all other sites of a node u are free, it will be far likelier that a given site
of u is bound.



8 V. Danos, H. Koeppl, and J. Wilson-Kanamori

Fig. 1. We observe B(x) along a simulation with parameters: γ−
i,j = 2, γ+

i,j = 0.1,
nA = 1000, nB = 1500, vA = 3, vB = 2. Note that B0 rapidly becomes negligible.

Fig. 2. We observe now A(x) along a simulation with the same parameters as above
in Fig. 1. Again A0 rapidly becomes negligible, and wee see that the distribution
concentrates on degrees 2 and 3, as in the estimate of �2.4.



Cooperative Assembly Systems 9

- pq = 1− r/nB and pq+1 = r/nB

- where q, r ∈ N are unique such that
∑

iBi = qnB + r, 0 ≤ r < nB.

Thus, the V -minimal assignment obtained by Euclidean division of the total
number of bonds by the total number of nodes, will serve as an estimate of the
true one.

Encouragingly, simulations in Figs. 1, 2, where both ΓA, ΓB are constant
seem to agree with our estimate. On the A-side, we see that As concentrates on
degrees 2 and 3, and the sampled value A = (0, 10, 210, 780) compares well with
the estimate Â = (0, 0, 230, 770), which we can use since ΓA is constant. On the
B-side, Bs concentrate on degrees 1 and 2, and we get B = (15, 201, 1284) which
again compares well with B̂ = (0, 231, 1269), if slightly less so, which is expected
as the valence of B is lower. Nevertheless, as the reader can tell, the estimate is
not at all rigorous, and has to be seen with caution. Caution not withstanding,
we will use this in �5.

3 Simulations

We now look more closely at simulations of some of our assembly systems. As
in �2, we choose vA = 3, vB = 2 (enough to assemble polymers of unbounded
size given unboundedly many nodes). Perfect matchings are reachable only if
the stochiometry is 2nA = 3nB; this is the stickiest the system can get, all other
things being equal, as in this case all sites are used to form a bond. Eg if we pick
nA, nB = 100, 150, we get an equilibrium probability on G(100, 150) of which a
typical sample looks as in Fig. 3, indeed almost a perfect matching.

We pick parametrizations where γ+ is constant and γ− only depends on A’s
degree. Hence, Γ (i, j) = Γ (i) does not depend on j and the conditions for
equilibrium given in �2 are clearly satisfied. As ΓB is constant, the additional
assumption introduced in �2.4 also is. We choose ΓA(i) as a monotonic function
of i to simulate both cooperativity and anti-cooperativity (with the provision
discussed in �2.2). We see in the resulting simulations in Fig. 5 that alkenes are
extremely rare, and that, unsurprisingly, the cooperative case is ‘stickier’ (has a
higher edge count).

Another thing one sees, is that, clearly, there is no good way to talk about
a deterministic steady state of such systems, as for large populations, the state
space accessible to probabilistic equilibrium is always increasing. This does not
prevent, however, local features of this distribution to take quasi-deterministic
values in the limit. Indeed, looking again at Fig. 5, one notices that, numerically,
A(x) reaches a quasi-deterministic value. As the number of nodes increases, the
effect is reinforced (not shown).

So it is natural to assume constant values for large times for A(x) and B(x).
The question remains as to how to get these values. One obvious way to do this
is by simulation, measuring their average long-term values. But, this limits us to
concrete examples. In the next section, assuming ΓB constant, we show how to
derive an equation, the solution of which gives the steady state value of A(x).



10 V. Danos, H. Koeppl, and J. Wilson-Kanamori

Fig. 3. A long-term snapshot from the above system with parameters: γ−
i,j = 2, γ+

i,j =
1, nA = 100, nB = 150. One sees that the graph alternates. With this set of parameters,
we are well past criticality, as we have just one connected site graph.

Fig. 4. The total alkenes stays very low with cooperative parameters: γ−
0 = 5γ−

1 =
50γ−

2 , nA = 1000, nB = 1500, γ+
i,j = 0.1



Cooperative Assembly Systems 11

(a) anti-cooperative: γ−
0 = 0.2γ−

1 = 0.02γ−
2 (b) cooperative: γ−

0 = 5γ−
1 = 50γ−

2

Fig. 5. Parameters specific to the cooperative and anti-cooperative cases are indicated
in the caption. In both cases, γ+(i) = 0.1 is kept constant, and one only varies γ−(i),
while nA = 1000, nB = 1500.

4 Deterministic Equilibrium for A(x)

Our next step is to write down a differential equation which describes the average
evolution of the A(x) and B(x). This is part of a generic process of fragmentation
of rule-based models described in Ref. [6,1,7]. The presentation in �4.1-2 is self-
contained. In this simple case, there is a shortcut to the answer, so the reader
not interested in the machinery can jump directly to �4.3.

4.1 Fragmentation

We have to consider consumption terms caused by the forward rules r(i, j) and
the backward ones r�(i, j), as well as their production terms. We will write
simply Ai, Bj (where previously we wrote Ai(x), Bj(x)), and Ai◦Bj for the
‘bond observable’, namely a pair of an Ai and a Bj joined by a (unique) bond.
This implies i, j > 0, as in our convention, indexes i, j include the bond itself
(eg, A1◦B1 denotes a bond between an A and a B which have no other bond).

We can decompose the event horizon of x ∈ G(nA, nB) (that is to say the set
of all events that are possible at x) depending on:

- the rule the event is a event of, and
- whether the event increases/decreases the number of Ais (indicated by a ±
sign below).

The second column in the tables below records the count of the total number of
consumption/productions pairs where an Ai occurrence and an event intersect,
meaning that the event modifies the said occurrence. Note that by convention
here we produce/consume occurrences (events are defined as in �2’s definition of
applying a rule) not matchings, as this is simpler in our symmetric setting.



12 V. Danos, H. Koeppl, and J. Wilson-Kanamori

For the consumptions:

Rule 	 collision pairs conditions on i, j
r(i, j) (vA − i)(vB − j)AiBj 0 ≤ i, j < vA, vB

r�(i− 1, j − 1) Ai◦Bj 0 < i, j ≤ vA, vB

For the productions:

Rule 	 production pairs conditions on i, j
r(i− 1, j − 1) (vA − i + 1)(vB − j + 1)Ai−1Bj−1 0 < i, j ≤ vA, vB

r�(i, j) Ai+1◦Bj+1 0 ≤ i, j < vA, vB

As the number of collision/production pairs involving Ai multiplied by the rule
rate constant gives the average number of modifications of Ai per time unit, we
can write the general differential equation for Ai:

A′
i = −1i<vA

∑

0≤j<vB

γ+
i,j(vA − i)(vB − j)AiBj

− 1i>0

∑

0<j≤vB

γ−
i−1,j−1Ai◦Bj

+ 1i>0

∑

0<j≤vB

γ+
i−1,j−1(vA − i + 1)(vB − j + 1)Ai−1Bj−1

+ 1i<vA

∑

0≤j<vB

γ−
i,jAi+1◦Bj+1

(6)

We get similar equations for the Bjs, but we are not interested in those.3

4.2 Additional Assumption

The problem with the equations above is that they do not form a self-consistent
system. Some terms require the knowledge of the ‘bond observables’ Ai◦Bj which
one can a priori only infer from the knowledge of x. Following the general frag-
mentation procedure at this stage, would need writing a similar ODE for the
Ai◦Bjs. This is possible. But the problem is that one can now have an event
centered on a given bond between u, v of type A, B (whether to create it or to
delete it) which intersects other bond observables attached to u and v. Thus, the
time derivative of Ai◦Bj will contain ternary terms of the form Ai◦Bj◦Ak, etc.
It is easy to show that this procedure generates unboundedly many observables.
So if we want some handle on the eventual mean values of A, B, we need to do
something else.

Suppose γ−
i,j = γ−

i , and γ+
i,j = γ+

i do not depend on j, we can rewrite the
ODE above self-consistently:

A′
i = 1{i<vA} · (γ−

i (i + 1)Ai+1 − γ+
i (vA − i)Ain

f
b )

+ 1{i>0} · (−γ−
i−1iAi + γ+

i−1(vA − i + 1)Ai−1n
f
b )

(7)

3 For the reader familiar with fragmentation, as the graph is bipartite there is no
approximation in expressing [Ai, Bj ; x] as [Ai; x] × [Bj ; x].



Cooperative Assembly Systems 13

where we have written nf
b for the the number of free sites of type b in x (not to

be confused with the number of free B’s, written B0) which satisfies:

nf
b = vBnB −

∑

0≤j≤vB

jBj = vAnA −
∑

0≤i≤vA

iAi (8)

This simplified differential system, indexed by 0 ≤ i ≤ vA is now indeed self-
consistent as every variable, including nf

b which using Eq.8 can also be expressed
in terms of the Ais, and thus, there is no longer a need to look back at x to
understand the implied dynamics (even the Bjs are not needed).

To see in details how the terms of the equation above simplify, consider the
following:

∑

0≤j<vB

γ+
i,j(vA − i)(vB − j)AiBj = γ+

i (vA − i)Ain
f
b

∑

0<j≤vB

γ−
i−1,j−1Ai◦Bj = γ−

i−1

∑

0<j≤vB

Ai◦Bj = γ−
i−1iAi

∑

0<j≤vB

γ+
i−1,j−1(vA − i + 1)(vB − j + 1)Ai−1Bj−1 = γ+

i−1(vA − i + 1)Ai−1n
f
b

∑

0≤j<vB

γ−
i,jAi+1◦Bj+1 = γ−

i

∑

0≤j<vB

Ai+1◦Bj+1 = γ−
i (i + 1)Ai+1

Note that our new assumption, which will hold onwards, γ±
i,j = γ±

i , evidently
entails the equilibrium existence condition of Th.1. It would be enough to sup-
pose γ−

i,j = γ−
i to obtain self-consistency, but with a more complex ODE, which

does not look very tractable. It is worth noting that our additional assumption
breaks the symmetry between As and Bs; in particular, we are not able to write
at the same time a self-consistent ODE system for the Bjs, unless we suppose
that γ−

i,j does not depend on i either (which takes us back to the simpler case
treated in Ref. [4]).

4.3 Deterministic Steady State

Putting everything together we obtain:

Proposition 3. The deterministic steady state value of Ai, 0 ≤ i ≤ vA, assum-
ing γ±

i,j = γ±
i , is given by the following system of equations with parameters nA,

nB, and Γi, 0 ≤ i ≤ vA:

nA =
∑

0≤i≤vA

Ai

nf
b = vBnB −

∑

0≤i≤vA

iAi

Ai =
(

vA

i

) ∏

0≤k<i

Γ−1
k · (nf

b )i · A0

(9)



14 V. Danos, H. Koeppl, and J. Wilson-Kanamori

Proof. If we write α−
i = γ−

i (i + 1), and α+
i = γ+

i (vA − i)nf
b , and set A′

i = 0 in
Eq.7, we get the following systems of equations:

α−
0 A1 = α+

0 A0

α−
i−1Ai + α+

i Ai = α−
i Ai+1 + α+

i−1Ai−1

α−
vA−1AvA = α+

vA−1AvA−1

which implies Ai+1 =α+
i /α−

i Ai =(vA− i)/(i+1) · Γ−1
i · nf

b ·Ai for 0≤ i < vA. �

Note that there is a shortcut to derive the above equations, by saying directly
that, at equilibrium, one must have γ−

i (i + 1)Ai+1 = γ+
i (vA − i)nf

b Ai, that is to
say the likelihood that an Ai+1-link breaks has to equal the likelihood that one
is created.

We can rescale this equations by making all quantities relative to the total
node population N ; this needs modifying the ‘volume’ of the system and replac-
ing Γi with Γi/N .

Writing a = nA/N , b = nB/N , ai = Ai/N and:

Ki :=

∏
0≤k<i Γk/N

(
vA

i

)

we obtain the scale-less steady state equations, with unkowns ai, for 0 < i ≤ vA:

Ki · ai = (a −
∑

0<k≤vA

ak) · (vBb−
∑

0≤k≤vA

kak)i (10)

The solutions ai give us the mean long-term values Ai = Nai, which is what we
wanted. We cannot solve this equation in closed form, but we can solve them
much faster numerically than by averaging many simulations.

5 Criticality

We would like now to understand under which conditions a giant cluster will
appear at equilibrium with high probability (that is to say with a probability
that tends to 1 as N →∞).

As said earlier, graphs in G(nA, nB) with the same ai statistics are equally
likely. As we assume that these ais are the solutions to Eq.10 above (deterministic
approximation), we can interpret ai as the probability that a given node of
type A has i neighbours, and we are in the familiar situation of a fixed degree
distribution random graph model (aka Molloy-Reed [11,5]); except for the slight
simplification that our graphs are all bipartite, so there is no need to condition
out self-loops (we still have multiple edges or ‘alkenes’ which we neglect).

Let us write μ for
∑

iai =
∑

jbj . We can think of the exploration of a con-
nected component in terms of a branching process. We start from a bound b,



Cooperative Assembly Systems 15

which is linked to an Ai with probability αi, and therefore gives us (i− 1) more
bound as to follow (because we just used one); each of these as give a Bj with
probability βj , and so (j − 1) new bound bs.

Now αi is proportional to iAi, because an A node is picked with a probability
proportional to its degree. In other words, αi := iAi/

∑
i iAi = iai/μ, and,

likewise, βj := jBj/
∑

j jBj = jbj/μ. So the mean number of bound b sites
discovered, starting with one, and completing one cycle is given by:

ν =
∑

i≤vA,j≤vB
aibji(i− 1)j(j − 1)/μ2

=
∑

i≤vA
aii(i− 1)/μ ·∑j≤vB

bjj(j − 1)/μ

Introducing p(Ai) = Nai/nA, p(Bj) = Nbj/nB, the probabilities that an A has
degree i, and a B degree j, one can rewrite the above as:4

ν =
N2

μ2nAnB

∑
i≤vA

p(Ai)i(i− 1) ·∑j≤vB
p(Bj)j(j − 1)

=
N 2

nAnB

θAθB

μ2

where θA, θB are the so-called second factorial moments of the A and B degree
distributions.

Whenever a branching law has finite mean, we know by a classical result [8,
Th 6.1 8.1] that: 1) there is a non-zero probability for the associated branching
process to never extinguish iff ν > 1, and 2) the population in the kth generation,
here the number of bound b sites, grows geometrically as νk. This means that,
asymptotically, the exploration described above will discover an infinite cluster
if ν > 1. So the criticality condition reads (using notations a = nA/N , b = nB/N
introduced earlier in �4.3):

θAθB > μ2ab (11)

Observe that all quantities involved are scale-less and have an interesting prob-
abilistic interpretation. First, a and b are the probabilities that a node has re-
spective types A and B, so a + b = 1 and ab is the variance of the ‘composition’
of the initial state. The higher it is, the less critical the system. Second, μ is half
the mean degree. Finally, θA, θB are variance-like quantities that measure the
noise on their respective degree distributions.

Be that as it may, using Eq.10, ie numerically solving it, we can compute θA

from the ais. This also gives the total number of links, hence
∑

iBi. This is all
we need to use the estimate of �2.4, and compute θB. Indeed, the estimate says
that B has degree q with probability 1− ρ, and degree q + 1 with probability ρ,
with

∑
iBi = (q + ρ)nB. In which case q(q− 1) ≤ θB = q(q− 1+2ρ) ≤ q(q +1),

with q the integer part (rounded below) of the average degree
∑

i iBi/nB = μ/b
of a node of type B.

4 Earlier in �2 we have written simply pi for p(Bi).



16 V. Danos, H. Koeppl, and J. Wilson-Kanamori

References

1. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the differ-
ential semantics of rule-based models: Exact and automated model reduction. In:
Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science,
LICS 2010, Edinburgh, United Kingdom, July 11-14, pp. 362–381 (2010)

2. Danos, V., Feret, J., Fontana, W., Krivine, J.: Abstract interpretation of cellular
signalling networks. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008.
LNCS, vol. 4905, pp. 83–97. Springer, Heidelberg (2008)

3. Danos, V., Oury, N.: Equilibrium and termination II: the case of Petri nets (2010)
(to appear in MSCS)

4. Danos, V., Schumacher, L.J.: How liquid is biological signalling? Theoretical Com-
puter Science 410(11), 1003–1012 (2009)

5. Durrett, R.: Random graph dynamics, vol. 20. CUP (2007)
6. Feret, J., Danos, V., Harmer, R., Krivine, J., Fontana, W.: Internal coarse-graining

of molecular systems. PNAS 106(16), 6453–6458 (2009)
7. Harmer, R., Danos, V., Feret, J., Krivine, J., Fontana, W.: Intrinsic Information

carriers in combinatorial dynamical systems. Chaos 20(3), 037108 (2010)
8. Harris, T.: The theory of branching processes. Dover (1989)
9. Koeppl, H., Hafner, M., Danos, V.: Rule-based modeling for protein-protein inter-

action networks - the Cyanobacterial circadian clock as a case study. In: WCSB
2009 Proceedings, pp. 87–91 (2009)

10. Koeppl, H., Schumacher, L.J., Danos, V.: A statistical analysis of receptor cluster-
ing using random graphs. In: WCSB 2009 Proceedings, pp. 95–99 (2009)

11. Molloy, M., Reed, B.: A critical point for random graphs with a given degree
sequence. Random Structures & Algorithms 6(2-3), 161–180 (1995)

12. Ollivier, J., Shahrezaei, V., Swain, P.: Scalable rule-based modelling of allosteric
proteins and biochemical networks. PLoS Computational Biology 6(11) (2010)

13. Qian, L., Winfree, E.: Scaling up digital circuit computation with dna strand dis-
placement cascades. Science 332(6034), 1196 (2011)

14. Saiz, L., Vilar, J.: Stochastic dynamics of macromolecular-assembly networks.
Molecular Systems Biology 2(1) (2006)

15. Sneddon, M., Faeder, J., Emonet, T.: Efficient modeling, simulation and coarse-
graining of biological complexity with nfsim. Nature Methods (2010)

16. Williamson, J.R.: Cooperativity in macromolecular assembly. Nat. Chem.
Biol. 4(8), 458–465 (2008)

A Distinguishing Sites - Compilation to Kappa

The model described below uses the KaSim simulator. (For a general and concise
example of rule-based modelling, a possible entry point is Ref. [9].) There are
other rule-based simulators such as the recent NFsim which one could use to do
this just as well [15].

As KaSim does not know indistinguishable sites, in order to experiment nu-
merically with our models, we need to understand how to design equivalent ones
where all sites are locally distinguished. This is an interesting question in its own
right, which we deal with now.



Cooperative Assembly Systems 17

For the purpose of the discussion we will call site graphs where sites of a given
node have distinct types concrete, and those where, as we have done so far, we
allow many sites of a same node to be of the same type, we will call abstract.
Two concrete graphs which only differ by permutations of sites local to nodes
will be said to be equivalent. This defines an equivalence relation on concrete
site graphs, the class of which are the abstract ones.

For definiteness, in our concrete graphs, we will choose (a1, . . . , avA) for the
sites of nodes of type A, and (b1, . . . , bvB) for those of nodes of type B.

In order to define the dynamics on concrete site graphs, we replace the ab-
stract reversible rule r(i, j) with a set R(i, j) of concrete reversible rules which
enumerate all possibilities in the following way. We choose first a pair of a free
a and a free b to be bound by the rule, and then, among the remaining sites, we
choose the i bound as, the j bound bs.

Thus |R(i, j)| = vAvB ·
(
vA−1

i

)(
vB−1

j

)
, where the −1 in the ‘choose’ terms

comes from the fact that we already have chosen one a or b, namely the one we
want to bind in the concrete rule of interest.

Note that
∑

i,j<vA ,vB
|R(i, j)| = vAvB2vA−12vB−1, so, unsurprisingly, the con-

crete rule set is exponentially larger than the original one, vAvB, in the valence
of A and B.

Let a pair of unconnected nodes with degrees i < vA, j < vB be given in a
concrete site graph. Exactly (vA − i)(vB − j) forward rules in R(i, j) apply to
this pair, and they apply uniquely (ie with a unique match). Indeed the only
choice remaining in a concrete site graph, is that of the free sites. All choices
lead to different concrete graphs, but the same abstract one. Similarly, given a
pair of connected nodes with degrees i ≤ vA, j ≤ vB , exactly one backward rule
in R(i, j) applies, namely the one that breaks the (unique) connexion between
the nodes.

Pick x, y abstract site graphs connected via an r(i, j) transition, and a con-
crete c above x. By the considerations above, the rate at which c jumps in y
(meaning to some concrete graph in the equivalence class y) is γ+(i, j)(vA −
i)(vB − j), while the reverse rate at which some c′ over y jumps in x is γ−(i, j).

Hence, the dynamics of the concrete transition system is identical to the one
we have used in our theoretical investigation (one says sometimes that the quo-
tient is a strong stochastic bisimulation of continuous-time Markov chains), and
we can safely use it to explore the behaviour of our models in a numerical way.
We can now turn to the description of our concrete model.

B The Numerical Model

Our working model can be obtained here, the simulator KaSim here. The specific
instance below is parametrized as is the cooperative model run in Fig. 5(b).

B.1 Agents, Parameters and Initial State

We start by declaring agents and the main parameters, including a fictitious
volume parameter to be able to rescale simulations easily.



18 V. Danos, H. Koeppl, and J. Wilson-Kanamori

%agent: B(b1,b2)

%agent: A(a1,a2,a3)

%var: ’vol’ 100

%var: ’k_on’ 0.1/’vol’

%var: ’k_off’ 2

%var: ’k_off_vee’ 1/5 * ’k_off’

%var: ’k_off_tee’ 1/50 * ’k_off’

%var: ’n_A’ (1000 * ’vol’)

%var: ’n_B’ (1500 * ’vol’)

Then we define the initial state (written x0 earlier).

%init: ’n_A’ (A(a1,a2,a3))

%init: ’n_B’ (B(b1,b2))

B.2 Rules

Now we need the interaction rules. From the preceding subsection, and since we
have assumed that rules have no dependency in the degree of B, we expect to
have to write vAvB2vA−1 = 24 reversible rules (so 48 KaSim rules). Note that
all rates uses the parameters defined earlier for more flexibility.

’b1-a1-11’ B(b1), A(a1,a2!_,a3!_) -> B(b1!0), A(a1!0,a2!_,a3!_)@ ’k_on’

’b1-a1-10’ B(b1), A(a1,a2!_,a3 ) -> B(b1!0), A(a1!0,a2!_,a3 )@ ’k_on’

’b1-a1-01’ B(b1), A(a1,a2 ,a3!_) -> B(b1!0), A(a1!0,a2 ,a3!_)@ ’k_on’

’b1-a1-00’ B(b1), A(a1,a2 ,a3 ) -> B(b1!0), A(a1!0,a2 ,a3 )@ ’k_on’

’b1 a1-11’ B(b1!0), A(a1!0,a2!_,a3!_) -> B(b1), A(a1,a2!_,a3!_)@ ’k_off_tee’

’b1 a1-10’ B(b1!0), A(a1!0,a2!_,a3 ) -> B(b1), A(a1,a2!_,a3 )@ ’k_off_vee’

’b1 a1-01’ B(b1!0), A(a1!0,a2 ,a3!_) -> B(b1), A(a1,a2 ,a3!_)@ ’k_off_vee’

’b1 a1-00’ B(b1!0), A(a1!0,a2 ,a3 ) -> B(b1), A(a1,a2 ,a3 )@ ’k_off’

’b1-a2-11’ B(b1), A(a2,a1!_,a3!_) -> B(b1!0), A(a2!0,a1!_,a3!_)@ ’k_on’

’b1-a2-10’ B(b1), A(a2,a1!_,a3 ) -> B(b1!0), A(a2!0,a1!_,a3 )@ ’k_on’

’b1-a2-01’ B(b1), A(a2,a1 ,a3!_) -> B(b1!0), A(a2!0,a1 ,a3!_)@ ’k_on’

’b1-a2-00’ B(b1), A(a2,a1 ,a3 ) -> B(b1!0), A(a2!0,a1 ,a3 )@ ’k_on’

’b1 a2-11’ B(b1!0), A(a2!0,a1!_,a3!_) -> B(b1), A(a2,a1!_,a3!_)@ ’k_off_tee’

’b1 a2-10’ B(b1!0), A(a2!0,a1!_,a3 ) -> B(b1), A(a2,a1!_,a3 )@ ’k_off_vee’

’b1 a2-01’ B(b1!0), A(a2!0,a1 ,a3!_) -> B(b1), A(a2,a1 ,a3!_)@ ’k_off_vee’

’b1 a2-00’ B(b1!0), A(a2!0,a1 ,a3 ) -> B(b1), A(a2,a1 ,a3 )@ ’k_off’

’b1-a3-11’ B(b1), A(a3,a1!_,a2!_) -> B(b1!0), A(a3!0,a1!_,a2!_)@ ’k_on’

’b1-a3-10’ B(b1), A(a3,a1!_,a2 ) -> B(b1!0), A(a3!0,a1!_,a2 )@ ’k_on’

’b1-a3-01’ B(b1), A(a3,a1 ,a2!_) -> B(b1!0), A(a3!0,a1 ,a2!_)@ ’k_on’

’b1-a3-00’ B(b1), A(a3,a1 ,a2 ) -> B(b1!0), A(a3!0,a1 ,a2 )@ ’k_on’

’b1 a3-11’ B(b1!0), A(a3!0,a1!_,a2!_) -> B(b1), A(a3,a1!_,a2!_)@ ’k_off_tee’

’b1 a3-10’ B(b1!0), A(a3!0,a1!_,a2 ) -> B(b1), A(a3,a1!_,a2 )@ ’k_off_vee’

’b1 a3-01’ B(b1!0), A(a3!0,a1 ,a2!_) -> B(b1), A(a3,a1 ,a2!_)@ ’k_off_vee’

’b1 a3-00’ B(b1!0), A(a3!0,a1 ,a2 ) -> B(b1), A(a3,a1 ,a2 )@ ’k_off’



Cooperative Assembly Systems 19

’b2-a1-11’ B(b2), A(a1,a2!_,a3!_) -> B(b2!0), A(a1!0,a2!_,a3!_)@ ’k_on’

’b2-a1-10’ B(b2), A(a1,a2!_,a3 ) -> B(b2!0), A(a1!0,a2!_,a3 )@ ’k_on’

’b2-a1-01’ B(b2), A(a1,a2 ,a3!_) -> B(b2!0), A(a1!0,a2 ,a3!_)@ ’k_on’

’b2-a1-00’ B(b2), A(a1,a2 ,a3 ) -> B(b2!0), A(a1!0,a2 ,a3 )@ ’k_on’

’b2 a1-11’ B(b2!0), A(a1!0,a2!_,a3!_) -> B(b2), A(a1,a2!_,a3!_)@ ’k_off_tee’

’b2 a1-10’ B(b2!0), A(a1!0,a2!_,a3 ) -> B(b2), A(a1,a2!_,a3 )@ ’k_off_vee’

’b2 a1-01’ B(b2!0), A(a1!0,a2 ,a3!_) -> B(b2), A(a1,a2 ,a3!_)@ ’k_off_vee’

’b2 a1-00’ B(b2!0), A(a1!0,a2 ,a3 ) -> B(b2), A(a1,a2 ,a3 )@ ’k_off’

’b2-a2-11’ B(b2), A(a2,a1!_,a3!_) -> B(b2!0), A(a2!0,a1!_,a3!_)@ ’k_on’

’b2-a2-10’ B(b2), A(a2,a1!_,a3 ) -> B(b2!0), A(a2!0,a1!_,a3 )@ ’k_on’

’b2-a2-01’ B(b2), A(a2,a1 ,a3!_) -> B(b2!0), A(a2!0,a1 ,a3!_)@ ’k_on’

’b2-a2-00’ B(b2), A(a2,a1 ,a3 ) -> B(b2!0), A(a2!0,a1 ,a3 )@ ’k_on’

’b2 a2-11’ B(b2!0), A(a2!0,a1!_,a3!_) -> B(b2), A(a2,a1!_,a3!_)@ ’k_off_tee’

’b2 a2-10’ B(b2!0), A(a2!0,a1!_,a3 ) -> B(b2), A(a2,a1!_,a3 )@ ’k_off_vee’

’b2 a2-01’ B(b2!0), A(a2!0,a1 ,a3!_) -> B(b2), A(a2,a1 ,a3!_)@ ’k_off_vee’

’b2 a2-00’ B(b2!0), A(a2!0,a1 ,a3 ) -> B(b2), A(a2,a1 ,a3 )@ ’k_off’

’b2-a3-11’ B(b2), A(a3,a1!_,a2!_) -> B(b2!0), A(a3!0,a1!_,a2!_)@ ’k_on’

’b2-a3-10’ B(b2), A(a3,a1!_,a2 ) -> B(b2!0), A(a3!0,a1!_,a2 )@ ’k_on’

’b2-a3-01’ B(b2), A(a3,a1 ,a2!_) -> B(b2!0), A(a3!0,a1 ,a2!_)@ ’k_on’

’b2-a3-00’ B(b2), A(a3,a1 ,a2 ) -> B(b2!0), A(a3!0,a1 ,a2 )@ ’k_on’

’b2 a3-11’ B(b2!0), A(a3!0,a1!_,a2!_) -> B(b2), A(a3,a1!_,a2!_)@ ’k_off_tee’

’b2 a3-10’ B(b2!0), A(a3!0,a1!_,a2 ) -> B(b2), A(a3,a1!_,a2 )@ ’k_off_vee’

’b2 a3-01’ B(b2!0), A(a3!0,a1 ,a2!_) -> B(b2), A(a3,a1 ,a2!_)@ ’k_off_vee’

’b2 a3-00’ B(b2!0), A(a3!0,a1 ,a2 ) -> B(b2), A(a3,a1 ,a2 )@ ’k_off’

B.3 Observables

Finally we need to define observables, so that the simulator understands what
to plot. Here we observe A; B would be done similarly.

%var: ’A0’ A(a1,a2,a3)

%var: ’a1’ A(a1!_,a2,a3)

%var: ’a2’ A(a1,a2!_,a3)

%var: ’a3’ A(a1,a2,a3!_)

%var: ’A1’ ’a1’ + ’a2’ + ’a3’

%var: ’a1a2’ A(a1!_,a2!_,a3)

%var: ’a1a3’ A(a1!_,a2,a3!_)

%var: ’a2a3’ A(a1,a2!_,a3!_)

%var: ’A2’ ’a1a2’ + ’a1a3’ + ’a2a3’

%var: ’A3’ A(a1!_,a2!_,a3!_)



20 V. Danos, H. Koeppl, and J. Wilson-Kanamori

%plot: ’A0’

%plot: ’A1’

%plot: ’A2’

%plot: ’A3’

Finally, we observe ‘alkenes’ to get a sense of their frequency (very low as we
have seen in the main text).

%var: ’Ba1a2’ B(b1!1,b2!2),A(a1!1,a2!2)

%var: ’Ba2a1’ B(b1!1,b2!2),A(a1!2,a2!1)

%var: ’Ba1a3’ B(b1!1,b2!2),A(a1!1,a3!2)

%var: ’Ba3a1’ B(b1!1,b2!2),A(a1!2,a3!1)

%var: ’Ba2a3’ B(b1!1,b2!2),A(a2!1,a3!2)

%var: ’Ba3a2’ B(b1!1,b2!2),A(a2!2,a3!1)

%var: ’alkene’ ’Ba1a2’+ ’Ba2a1’ + ’Ba1a3’ + ’Ba3a1’ + ’Ba2a3’ + ’Ba3a2’

%plot: ’alkene’

This completes the definition of our example model. Each of the above modules
can be written as a separate file which again increases clarity and flexibility.



The Computer Science of Molecular

Programming

Jack H. Lutz�

Department of Computer Science
Iowa State University
Ames, IA 50011, USA
lutz@cs.iastate.edu

Abstract. Computer science has its historical roots in mathematical
logic and electrical engineering. However it quickly evolved into a sep-
arate discipline with its own methods for describing and controlling as-
pects of reality not addressed by its predecessors. This talk will examine
ways in which computer science concepts–including abstraction, mod-
ularity, state, universality, concurrency, safety, specifications, verifica-
tion, complexity, and randomness–are contributing to the development
of molecular programming.

� This research was supported in part by National Science Foundation Grant 0652569.

L. Cardelli and W. Shih (Eds.): DNA 17, LNCS 6937, p. 21, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



L. Cardelli and W. Shih (Eds.): DNA 17, LNCS 6937, pp. 22–31, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

An Autonomous DNA Nanodevice Captures pH Maps of 
Living Cells in Culture and in Vivo 

Sunaina Surana, Souvik Modi, and Yamuna Krishnan* 

National Centre for Biological Sciences, Tata Institute of Fundamental Research,  
UAS-GKVK, Bellary Road, Bangalore: 560065, India 

yamuna@ncbs.res.in 

Abstract. DNA nanomachines are assemblies that rely on molecular inputs that are 
processed or transduced into measurable outputs. Though DNA nanotechnology 
has created a gamut of molecular devices, an outstanding challenge has been the 
demonstration of functionality and relevance of these devices in living systems. 
The I-switch is a DNA nanodevice that, in response to protons, changes its 
conformation to produce a fluorescence resonance energy transfer (FRET) signal. 
We show that this rationally designed molecular device is capable of measuring 
spatiotemporal pH changes associated with endosomes as they undergo 
maturation in living cells in culture. Furthermore, we show that the nanomachine 
retains its autonomous functionality as it maps the same biological process in cells 
of a living organism like C. elegans. This demonstration of the quantitative 
functionality of an artificially designed scaffold positions DNA nanodevices as 
powerful tools to interrogate biological phenomena. 

Keywords: I-switch, pH sensor, hemocytes, coelomocytes. 

1   Introduction 

Structural DNA nanotechnology utilizes the specificity and versatility of DNA as a 
building block to artificially fabricate functionally exciting nanoarchitectures [1-3]. 
These architectures are either self-assembled static scaffolds, or dynamic nanomachines 
that change conformation in response to external triggers. DNA nanomachines, due to 
their programmability and ability to respond to a repertoire of environmental cues, 
possess potential to function as powerful tools to interrogate biological phenomena. 
Examples include molecular beacons, hybridization-powered molecular motors, DNA 
walkers and tweezers and aptamer-based switches [1-3]. Despite the existence of a 
gamut of molecular architectures, functional validation of such artificially designed 
DNA nanodevices within a biological system has remained elusive. 

We describe here the construction and working of an autonomous DNA 
nanomachine that undergoes a conformational change in response to changes in 
proton concentration. This nanodevice, called the I-switch, consists of two B-DNA 
duplexes connected to each other by a hinge, and carrying terminal cytosine-rich 
single-strand overhangs [4]. On acidification of the medium, the cytosine-rich 
                                                           
* Corresponding author. 



An Autonomous DNA Nanodevice Captures pH Maps of Living Cells in Culture and in Vivo 23 

overhangs protonate [5] and cause a conformational change in the assembly that is 
pH-reversible. Opening and closing of the I-switch is monitored by means of 
fluorescence resonance energy transfer (FRET). Thus, the switch functions as an 
AND gate requiring two inputs simultaneously to undergo a computation: wavelength 
of light corresponding to the excitation of the donor fluorophore, and environmental 
protons, which toggle the I-switch. Presence of both inputs is sufficient to generate an 
output from the device in the form of wavelength of emission of the acceptor 
fluorophore. Absence of either fails to elicit a photonic output.  

Given the dearth of demonstration of functionality of rationally designed artificial 
DNA nanomachines outside of the in vitro context, the I-switch presents good 
potential to establish the relevance of synthetic DNA nanodevices in living systems. 
The biological contexts chosen to study functionality of the I-switch were an in 
cellulo system, namely isolated Drosophila hemocytes [6], and an in vivo system, 
coelomocytes of the multicellular model organism Caenorhabditis elegans [7]. Both 
hemocytes and coelomocytes possess scavenging activity and are known to 
internalize a variety of negatively charged macromolecules from their environment 
via the anionic ligand binding receptor (ALBR) pathway. This property has led to 
these cells being used as systems to study endocytosis in cellulo and in vivo, 
respectively [6,7]. Hence, we chose endosomal maturation along the ALBR pathway 
in these two systems to probe functionality of the I-switch. Our studies revealed that 
this rationally designed DNA nanodevice is internalized by these cells via receptor-
mediated endocytosis. Once inside, it retains its autonomous functionality both in 
cellulo and in vivo with quantitative precision. It has highest sensitivity in the pH 
regime ~5.3 – 6.8 and is thus capable of mapping spatiotemporal pH changes 
associated with endosomal maturation [4,8]. This dynamic regime, which coincides 
well with the pH regimes of most physiological processes, positions the I-switch to 
track other pH-correlated biological processes in a variety of systems. 

2   Materials and Methods 

2.1   Sample Preparation 

The I-switch was made by mixing the DNA oligonucleotides O1, O2 and O3 shown 
in Table 1 in equimolar ratios, heating at 90˚C for 5 min, and then slowly cooling to 
room temperature @ 5˚C per 15 minutes. This sample preparation was carried out 
with oligonucleotide concentrations of 5 μM, in 10 mM phosphate buffer of pH 5.5, 
in the presence of 100 mM KCl. Samples were equilibrated at 4˚C overnight. 
Fluorescently labeled I-switch was prepared in a similar manner with fluorophore-
labeled oligonucleotides. 

2.2   In cellulo Studies 

Drosophila hemocytes were isolated and maintained from third instar larvae as 
previously described [6]. Cells were washed with Medium 1 prior to labeling. For pH 
measurement experiments, cells were imaged live, after chasing the probes for the 
stated time points. The pH standard curve was generated in cells by briefly fixing 
cells (for 1 min) with 2.5% paraformaldehyde and then adding 10 μM of the 



24 S. Surana, S. Modi, and Y. Krishnan 

ionophore nigericin along with Medium 1 buffered to appropriate pH (ranging from  
5 - 7). All the wide-field images were acquired using a Nikon inverted microscope 
equipped with 60×, 1.4 NA objectives, a mercury arc illuminator and a cooled CCD 
camera controlled by Metamorph software. Three sets of images were taken 
corresponding to (I) image at donor emission wavelength upon donor excitation 
(donor image), (II) image at acceptor emission wavelength (acceptor FRET) upon 
donor excitation and (III) image at acceptor emission wavelength (acceptor image) 
acceptor excitation [4].  

Table 1. Sequences of oligonucleotides used 

Name Sequence 

O1 5 -CCCCAACCCCAATACATTTTACGCCTGGTGCC-3  

O2 5′-CCGACCGCAGGATCCTATAAAACCCCAACCCC-3′ 

O3 5′-TTATAGGATCCTGCGGTCGGAGGCACCAGGCGTAAAATGTA-3′ 

O1-488 5 -Alexa 488-CCCCAACCCCAATACATTTTACGCCTGGTGCC-3  

O2-647 5′-CCGACCGCAGGATCCTATAAAACCCCAACCCC-Alexa 647-3′ 
 

2.3   In vivo Studies 

Strains used were the wild type C. elegans isolate from Bristol (strain N2), cdIs131, 
cdIs66 and pwIs50. Trafficking of I-switch was determined by performing 
colocalization studies of GFP and I-switch in transgenics expressing GFP-fusion 
proteins of endosomal markers. For pH measurements, I-switch was diluted in 
Medium 1 and microinjected in the body cavity and images acquired after the stated 
time points. pH was clamped using clamping buffer of the appropriate pH (ranging 
from 5-7) containing 100 μM nigericin and 100 μM monensin [8]. Images were 
acquired on a Nikon inverted microscope as described above. 

3   Results 

3.1   Design of the I-Switch 

The DNA nanomachine, called the I-switch, has three component DNA 
oligonucleotides, O1, O2 and O3, where O1 and O2 are hybridized to adjacent 
sequences on O3, leaving a single base gap in the middle. This base gap acts as the 
fulcrum of the nanomachine. The pH-responsive elements in this assembly are 
cytosine-rich tracts present as single-stranded overhangs on the 5′ and 3′ ends of O1 
and O2, respectively [4]. At acidic pH, these cytosines form CH+.C non-Watson Crick 
base pairs, driving the formation of an intramolecular I-motif [5] that yields the ′closed 
state′ of the I-switch. At neutral pH, the I-motif dissociates and entropy as well as 
electrostatic repulsion between the duplex arms drives the formation of the ′open′ 
linear conformation (Figure 1a). Thus, the I-switch is a second order nanolever that 



An Autonomous DNA Nanodevice Captures pH Maps of Living Cells in Culture and in Vivo 25 

functions as an AND gate, which requires the presence of protons and donor excitation 
wavelength of light which is transduced to an output, namely light of wavelength of 
acceptor emission. The output is monitored by attaching donor (Alexa 488) and 
acceptor (Alexa 647) fluorophores that undergo fluorescence resonance energy transfer 
(FRET) to O1 and O2 respectively. Hence, the assembly shows high FRET at pH 5 and 
low FRET at pH 7. Thus, when a solution of the doubly labeled I-switch (IA488/A647) is 
excited at the donor excitation wavelength (488 nm), the donor/acceptor (D/A) ratio 
shows a characteristic sigmoidal profile as a function of pH (Figure 1b). Thus, the I-
switch can function as a pH sensor in the linear regime of the curve, where each unique 
D/A value corresponds to a unique pH value. 

a.

 

b.

0.5

0.1

1

pH

0.5

0.1

1

pH
 

Fig. 1. Schematics showing (a) The structure and working of I-switch. (b) Profile of 
donor/acceptor (D/A) ratios as a function of increasing pH. The box indicates the pH-sensitive 
regime of the device.  

3.2   I-Switch and Endocytosis in Drosophila Hemocytes 

Cellular processes such as endocytosis show a characteristic change in pH associated 
with vesicle maturation, that is, as an endosome matures from the early endosome to 
the lysosome, via the late endosome, it is accompanied by acidification, which is in 
the regime of ~6 to 6.2 in early endosomes, to pH 5.5 in late endosomes and pH 5 in 
lysosomes [9]. Such acidification is necessary for proper recycling of receptors and 
trafficking of a ligand and nutrient [10]. Since the pH profile of the I-switch shows 
good correlation with the pH regime of endosomal maturation, we investigated the 
capacity of this DNA nanodevice to map pH changes accompanying endosomal 
maturation first in cultured cells.  



26 S. Surana, S. Modi, and Y. Krishnan 

Drosophila hemocytes are macrophages that are known to be involved in engulfing 
a host of foreign molecules. The robust endocytic capabilities of these cells have led 
to their use as an in cellulo system to study endocytic dynamics. Hemocytes possess 
anionic ligand binding receptors (ALBR), a family of receptors that are known to bind 
to negatively charged molecules with high affinity and endocytose them [6]. We 
therefore chose this system to validate the functionality of the I-switch and map 
spatiotemporal pH changes along the ALBR-mediated endocytic pathway. Drosophila 
hemocytes were incubated with a mixture of 80 nM I-switch labelled with Bodipy 
TMR (IBTMR) and fluorescein isothiocyanate (FITC)-conjugated dextran (FITC-
dextran) (1 mg ml-1), a marker of the endosomal fluid phase. Importantly, the I-switch 
was found to be localized in distinct punctate structures ~1 µm in size. When these 
images were overlayed with co-internalized FITC–dextran images, these puncta were 
found to co-localize, indicating that the I-switch was indeed marking endosomes.  

In order to establish functionality of a sensor, it is first essential to assess its 
performance quantitatively in cellulo. Performance of a sensor, and consequently its 
integrity, is reflected by the fold change of its donor/acceptor (D/A) ratio in the 
dynamic regime. Fold change corresponds to the value obtained by dividing the D/A 
ratio at the higher end of the dynamic regime to that obtained at the lower end (pH 7 
and 5, respectively). To measure the fold change in cellulo for the I-switch, hemocytes 
were clamped at pH 5 and pH 7. Cells, pulsed with doubly labelled I-switch (IA488/A647), 
were fixed and treated with an externally added buffer containing the ionophore 
nigericin, which equilibrates the intracellular pH to that of the external buffer. After the 
pH is clamped, the cells were imaged and D/A ratios calculated. The profile of D/A 
ratios at pH 5 are highly characteristic and different from those at pH 7. Importantly, 
these profiles yield a fold change of ~5.4 from pH 5 to pH 7. This matches very well 
with the in vitro fold change, which is ~5.5 in this regime (Figure 2a). 

Given that the I-switch retains its performance in terms of its fold change, we 
proceeded to study its pH-sensitive response over the entire dynamic range. pH was 
clamped at intermediate values in the dynamic regime, and D/A values plotted as a 
function of pH. This yields the in cellulo pH profile of the I-switch, which shows 
excellent correspondence with the in vitro pH profile (Figure 2b), indicating that the 
I-switch recapitulates its closing and opening characteristics inside cells both 
qualitatively and quantitatively.  

Since the functionality of the switch in cultured cells has been established, it can 
now be used to map spatiotemporal pH changes along the endocytic pathway in real 
time. Cells, pulsed with IA488/A647, were chased for 5 min, 1 h and 2 h, which 
correspond with previously known residence times of ligands in the early endosome, 
the late endosome and the lysosome, respectively [6]. After imaging, a histogram of 
D/A ratios of all endosomes revealed that there is gradual acidification of endosomes 
as they mature (Figure 2c). More importantly, the spread in D/A ratios becomes 
markedly less from early endosomes to late endosomes to lysosomes, where pH is 
known to be tightly regulated. These D/A values were then converted into pH values 
using the standard in cellulo calibration curve. These values revealed the pH of the 
early endosome to be ~5.9 ± 0.15 for the early endosome, pH ~5.45 ± 0.13 for the late 
endosome and pH ~5.0 ± 0.16 upon maturation to the lysosome (Table 2). These 
studies also revealed that there is rapid acidification early in the endosomal 
maturation process where a sharp decrease in D/A is observed over a period of 30 min 



An Autonomous DNA Nanodevice Captures pH Maps of Living Cells in Culture and in Vivo 27 

followed by a slower decrease over 2 h, suggesting that early endosomes in this 
pathway rapidly acidify to form the late endosome, which then slowly matures to the 
lysosome. Thus the I-switch is capable of reporting spatiotemporal pH changes 
efficiently where variation in pH is a well-defined correlate of molecular processes 
associated with endosome maturation. 

In vitro

In cellulo
0

1

2

3

4

5

6

F
o

ld
 c

h
an

g
e 

in
D

/A
 r

at
io

a.

4.0 4.8 5.6 6.4 7.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 
 pH

N
o

rm
al

iz
ed

 D
/A

 r
at

io

b.

 
5 mins5 mins 60 mins60 mins 120 mins

5

7

120 mins
5

7

5

7

c.

Time point Mean pH ± s.e.m.

5 min 5.9 ± 0.15

60 min 5.45 ± 0.13 

120 min 5.0 ± 0.16 

Time point Mean pH ± s.e.m.

5 min 5.9 ± 0.15

60 min 5.45 ± 0.13 

120 min 5.0 ± 0.16 

Table 2

 

Fig. 2. Spatio-temporal mapping of endosomal pH changes in living cells in culture using the I-
switch. (a) In vitro and in cellulo fold change in D/A ratios of IA488/A647 at pH 7 to pH 5. (b) 
Standard calibration curve of IA488/A647 in cellulo (grey) and in vitro (black) showing normalized 
D/A ratios versus pH. Error bars indicate s.d. (n ≥ 35 endosomes). (c) Pseudocolour D/A map 
of hemocytes pulsed with IA488/A647 at the indicated chase times. Scale bar: 5 μm. Table 2 shows 
mean endosomal pH (± s.e.m.) at various times in endosomes of the ALBR pathway in 
hemocytes. 

3.3   I-Switch and Endocytosis in Caenorhabditis elegans Coelomocytes 

Given the established functionality of the I-switch in cultured cells, we proceeded to 
investigate its functionality in vivo. To this end, we chose the transparent nematode 
Caenorhabditis elegans. This multicellular model organism has six large oblong 
scavenger cells, called coelomocytes, located in the pseudocoelomic cavity that 
continuously endocytose macromolecules from the body cavity [7]. Negatively 
charged macromolecules were shown to be engulfed by the activity of ALBRs present 
on the surface of coelomocytes [8]. The scavenging activity of these cells has been 
exploited to study endocytosis in the nematode [7], facilitating the use of these cells 
as an in vivo system to explore the functionality of the present DNA nanomachine. 

To study whether the native I-switch marks coelomocytes in C. elegans, Alexa 647 
labelled I-switch (IA647) was injected in the pseudocoelom of 1-day-old wild type 



28 S. Surana, S. Modi, and Y. Krishnan 

hermaphrodites. After 1 h, it was seen that the I-switch specifically marks a set of six 
cells, localizing in bright punctate structures of ~0.8 μm size. These puncta were 
confirmed to be endosomes of the ALBR pathway within coelomocytes [8]. 

To establish the in vivo integrity of the I-switch in coelomocytes, the intra-
coelomocyte pH was clamped using clamping buffer containing nigericin and 
monensin. After imaging, the D/A ratios were calculated and fold change determined. 
It was found that the in vivo fold change (~5) also shows remarkable correspondence 
to the in vitro fold change (~5.2) (Figure 3a). Furthermore, when the in vivo pH 
calibration curve is generated between pH 5 and pH 7, it matches well with the in 
vitro curve. The in vivo pH response curve of the I-switch shows a sigmoidal profile 
with highest dynamic range in the pH regime 5.3 – 6.6 (Figure 3b). Thus, even on 
traversing the in cellulo to in vivo boundary, the integrity of the I-switch is not 
compromised and it retains its autonomous functionality. 

To follow acidification during endosomal maturation of the ALBR pathway, it is 
necessary to first determine the temporal regimes corresponding to each stage of 
endosomal maturation along the pathway, that is, determine the residence times of  
 

In vitro
In vivo

0

1

2

3

4

5

F
o

ld
 c

h
an

g
e 

in
D

/A
 r

at
io

a.

4.8 5.2 5.6 6.0 6.4 6.8 7.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
al

iz
ed

 D
/A

 r
at

io

pH

b.

 
5 mins5 mins 17 mins17 mins 60 mins

5

7

60 mins
5

7

5

7

c.

Time point Mean pH ± s.e.m.

5 min 6.4 ± 0.12

17 min 6.0 ± 0.09

60 min 5.4 ± 0.03

Time point Mean pH ± s.e.m.

5 min 6.4 ± 0.12

17 min 6.0 ± 0.09

60 min 5.4 ± 0.03

Table 3

 

Fig. 3. Spatio-temporal mapping of endosomal pH changes in coelomocytes using the I-switch. 
(a) In vitro and in vivo fold change in D/A ratios of IA488/A647 at pH 7 to pH 5. (b) pH calibration 
curve of IA488/A647 in vivo (grey) and in vitro (black) showing normalized D/A ratios versus pH. 
Error bars indicate s.e.m. (n ≥ 50 endosomes). (c) Representative pseudocolour D/A images of 
IA488/A647 labeled coelomocytes in wild type hermaphrodites at indicated times. Scale bar: 10 
μm. Table 3 indicates mean endosomal pH (± s.e.m.) at various times in coelomocytes of wild 
type hermaphrodites. 



An Autonomous DNA Nanodevice Captures pH Maps of Living Cells in Culture and in Vivo 29 

internalized I-switch in the early endosome, the late endosome and the lysosome. 
Therefore, time-course experiments were performed with IA647 in hermaphrodites 
expressing green fluorescent protein (GFP) fused to well-known endocytic 
compartment markers in the coelomocytes. Markers employed for this purpose were 
RAB-5 for the early endosome, RAB-7 for the late endosome/lysosome and LMP-1 
for the lysosome [11-13]. Injection of IA647 in GFP::RAB-5 expressing transgenic 
showed that the I-switch is resident in the early endosome maximally at 5 min. After 
15 min, the early endosomes quickly mature into late endosomes, as evidenced by 
the steep drop in co-localization between the I-switch and GFP::RAB-5 and increase 
in co-localization between GFP::RAB-7. By 60 min, ~90% of the I-switch is resident 
in the lysosome, showing high co-localization with LMP-1::GFP. Thus, the 5 min, 17 
min and 60 min time points were chosen for pH measurements in the early endosome, 
the late endosome and the lysosome, respectively. 

Next, IA488/A647 was injected in wild type hermaphrodites, and pH measurements 
made at the stated time points. D/A ratios of a population of endosomes at each stage 
show gradual acidification with each step. Notably, the decrease in the spread in D/A 
ratios and thus pH, as we proceed from the early endosomes to the late endosomes 
and then on to the lysosomes, is seen here as well (Figure 3c). This is consistent with 
other studies in the literature that have measured pH heterogeneity at different 
endosomal stages [9], as well as in cellulo measurements of the same with the I-
switch. These D/A ratios indicate a mean pH of ~6.4 ± 0.12 in the early endosome, 
~6.0 ± 0.09 in the late endosome and ~5.4 ± 0.03 in the lysosome (Table 3). 

4   Discussion 

We demonstrate the successful operation of an artificially designed DNA nanomachine 
inside living cells in culture as well as within a living organism without compromising 
its efficiency. It recapitulates its sensing properties qualitatively as well as 
quantitatively in cellulo as well as in vivo. Given the high fidelity of the overall pH 
performance of the I-switch in cultured cells as well as in vivo, it is possible to 
effectively map spatiotemporal pH changes associated with endosomal maturation of 
the ALBR-mediated pathway that it marks in hemocytes and coelomocytes. 

Significantly, because the by-products of one cycle of the nanomachine are water 
and salt, it is non-toxic and does not perturb its own processivity, as well as the living 
system under investigation. The I-switch has highest pH sensitivity between pH 5.5 
and 6.8 and offers complementary information to that obtained through the use of 
small-molecule fluorescent pH probes. The I-switch is a FRET-based sensor that is 
ratiometric and utilizes photostable, bright fluorophores. Most importantly, with 
conventional pH probes based on GFP [14] or small molecules [15] one is limited by 
a fixed wavelength, but with the I-switch, which is an artificially designed DNA 
scaffold, one can incorporate fluorophores of any wavelength that form an appropriate 
FRET pair. It can therefore be used to track multiple proteins tagged with fluorescent 
proteins. This property thus positions it as a powerful probe to study events in a 
variety of fluorescent protein expressing backgrounds. Its autonomous functionality 
also ensures that it can be employed in a variety of mutant backgrounds, thus helping 
to elucidate molecular and genetic pathways. The response of the I-switch is on 



30 S. Surana, S. Modi, and Y. Krishnan 

timescales of 1–2 min [4], allowing it to be used as a reporter of fine spatial and 
temporal pH changes associated with biological processes that occur on longer 
timescales. Many other physiological phenomena such as apoptosis, chemotaxis, viral 
infection [10], embryogenesis, vesicular recycling and neurodegeneration [16] are 
known to be modulated by maintenance of pH homeostasis and are compatible with 
the pH range in which the I-switch is sensitive. Because of its high sensitivity in this 
pH regime, the I-switch is poised to effectively capture fine changes in pH associated 
with these pH-correlated phenomena. 

It is not at all obvious that functionality in vitro should imply functionality in 
cellulo or in vivo due to the astounding increase in molecular complexity encountered 
by the nanodevice as it traverses the in vitro to in cellulo to in vivo boundaries. Thus 
the quantitative preservation of DNA nanodevice function in complex biological 
environments is highly encouraging. This opens up possibilities for these systems as 
test beds for other DNA molecular devices [17] that can be designed to interrogate a 
variety of processes that track molecularly complex phenomena, thus paving the way 
for the successful application of DNA nanostructures in biological systems. 

Acknowledgements. We thank Prof. Satyajit Mayor and Dr. Sandhya P. Koushika for 
valuable comments and suggestions, Vidhya Rangaraju, Jaffar M. Bhat, Swetha M.G. 
and Debanjan Goswami for technical input and assistance, Central Imaging Facility at 
NCBS, the Caenorhabditis Genetics Center (funded by NIH-NCRR) for nematode 
strains, DBT and the Nanoscience and Technology Initiative of DST for funding. S.S. 
and S.M. acknowledge the CSIR and YK acknowledges the Innovative Young 
Biotechnologist Award and Wellcome Trust-DBT India Alliance for fellowships. 

References 

1. Shih, W.: Biomolecular self-assembly: dynamic DNA. Nat. Mater. 7, 98–100 (2008) 
2. Bath, J., Turberfield, A.J.: DNA Nanomachines. Nat. Nanotech. 2, 275–284 (2007) 
3. Krishnan, Y., Simmel, F.: Nucleic acid based molecular devices. Angew. Chem. Int. 

Ed. 50, 3124–3156 (2011) 
4. Modi, S., et al.: A DNA nanomachine that maps spatial and temporal pH changes inside 

living cells. Nat. Nanotech. 4, 325–330 (2009) 
5. Guéron, M., Leroy, J.L.: The i-motif in nucleic acids. Curr. Opin. Struct. Biol. 10, 326–

331 (2000) 
6. Guha, A., Sriram, V., Krishnan, K.S., Mayor, S.: Shibire mutations reveal distinct 

dynamin-independent and -dependent endocytic pathways in primary cultures of 
Drosophila hemocytes. J. Cell Sci. 116, 3373–3386 (2003) 

7. Fares, H., Greenwald, I.: Genetic analysis of endocytosis in Caenorhabditis elegans: 
Coelomocyte Uptake Defective mutants. Genetics 159, 133–145 (2001) 

8. Surana, S., Bhat, J.M., Koushika, S.P., Krishnan, Y.: An autonomous DNA nanomachine 
maps spatiotemporal pH changes in a multicellular living organism. Nat. Commun. 2, 340 
(2011), doi:10.1038/ncomms1340 

9. Overly, C.C., Lee, K.D., Berthiaumet, E., Hollenbeck, P.J.: Quantitative measurement of 
intraorganelle pH in the endosomal-lysosomal pathway in neurons by using ratiometric 
imaging with pyranine. Proc. Natl. Acad. Sci. USA 92, 3156–3160 (1995) 

10. Mukherjee, S., Ghosh, R.N., Maxfield, F.R.: Endocytosis. Physiol. Rev. 77, 759–803 (1997) 



An Autonomous DNA Nanodevice Captures pH Maps of Living Cells in Culture and in Vivo 31 

11. Bucci, C., et al.: The small GTPase rab5 functions as a regulatory factor in the early 
endocytic pathway. Cell 70, 715–728 (1992) 

12. Chavrier, P., Parton, R.G., Hauri, H.P., Simons, K., Zerial, M.: Localization of low 
molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62, 
317–329 (1990) 

13. Kostich, M., Fire, A., Fambrough, D.M.: Identification and molecular-genetic 
characterization of a LAMP/CD68-like protein from Caenorhabditis elegans. J. Cell 
Sci. 113, 2595–2606 (2000) 

14. Miesenbock, G., De Angelis, D.A., Rothman, J.E.: Visualizing secretion and synaptic 
transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998) 

15. Ohkuma, S., Poole, B.: Fluorescence probe measurement of the intralysosomal pH in 
living cells and the perturbation of pH by various agents. Proc. Natl Acad. Sci. USA 75, 
3327–3331 (1978) 

16. Lee, S.-K., Li, W., Ryu, S.-E., Rhim, T.Y., Ahnn, J.: Vacuolar (H 

+
 )-ATPases in 

Caenorhabditis elegans: What can we learn about giant H 

+
 pumps from tiny worms? 

Biochim. Biophys. Acta 1797, 1687–1695 (2010) 
17. Bhatia, D., Surana, S., Chakraborty, S., Koushika, S.P., Krishnan, Y.: A synthetic 

icosahedral DNA-based host-cargo complex for functional in vivo imaging. Nat. 
Commun. 2, 339 (2011), doi:10.1038/ncomms1337 



L. Cardelli and W. Shih (Eds.): DNA 17, LNCS 6937, p. 32, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Cooperation in an All-RNA Network 

Nilesh Vaidya, Jessica Mellor, and Niles Lehman 

Department of Chemistry, Portland State University, Portland, OR, USA 

The discovery of catalytic RNA molecules (ribozymes) capable of catalyzing a 
significant number of diverse chemical reactions suggests that an RNA world 
preceded the DNA-RNA-Protein world we know today. The self-replication of RNA 
molecules would be the central process of the RNA world.However, a single self-
replicating RNA would not sustain information on its own if it surpassed the “error 
threshold” leadingto an error catastrophe (1). On the other hand, a cooperative 
network of RNA replicators would be able to accumulate, preserve and process 
information.In the current work, we used a collection of RNA fragments that 
covalently assemble into an Azoarcus group I ribozyme (2) to explore the ability of 
RNA replicators to form a cooperative catalytic network. Three different constructs of 
the Azoarcus ribozyme with different internal guide sequences (IGS) – GUG 
(canonical), GAG, and GCG – were designed that are capable of a minimal amount of 
self-assembly when broken into two fragments. Here, self-assembly depends on a 
mismatch with non-complementary sequences, CGU, CAU and CUU, respectively, to 
be recognized by IGS via autocatalysis. Yet when all three constructs are present in 
the same reaction vessel, concomitant assembly of all three covalent ribozymes is 
enhanced through an interdependent reaction network. Analysis of these reactions 
indicates that each system is capable of guiding its own reproduction weakly, along 
with providing enhanced catalytic support for the reproduction of other constructs 
through matched and mismatched IGS-tag interactions. The resulting RNA population 
was observed to evolve over time based on genotyping of more than 50 individual 
RNAs for various time-points. The unequal catalytic rates of various assembly 
reactions favor the assembly of one construct over the others. However, the 
cooperation among all three constructs help all constructs to assemble demonstrating 
that this RNA networkmeets many of the requirements of an all RNA hypercycle as 
envisioned by Eigen (1). Also, when co-incubated with non-interacting (i.e., selfish) 
yet efficient self-assembly systems, the cooperative assembly outcompetes the selfish 
self-assembly systems, demonstrating the ability of a cooperative organization to 
possess an evolutionary advantage (3). 

References 

1. Eigen, M., Schuster, P.: The Hypercycle: A principle of natural self-organization. Die 
Naturwissenschaften 64, 541–565 (1977) 

2. Hayden, et al.: Systems chemistry on ribozyme self-construction: Evidence for anabolic 
autocatalysis in a recombination network. Angew. Chem. Int. Ed. 47, 8424–8428 (2008) 

3. Nowak, M., Highfield, R.: SuperCooperators: Altruism, Evolution, and Why We Need 
Each Other to Succeed. Free Press (2011) 



L. Cardelli and W. Shih (Eds.): DAN 17, LNCS 6937, p. 33, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Designer DNA Architectures for Bionanotechnology 

Hao Yan 

Department of Chemistry and Biochemistry & 
The Biodesign Institute 

Arizona State University 
Tempe, AZ 

hao.yan@asu.edu 

The central task of nanotechnology is to control motions and organize matter with 
nanometer precision. To achieve this, scientists have investigated a large variety of 
materials including inorganic materials, organic molecules, and biological polymers 
as well as different methods that can be sorted into so-called “bottom-up” and “top-
down” approaches. Among all of the remarkable achievements made, the success of 
DNA self-assembly in building programmable nanopatterns has attracted broad 
attention. Self-assembling DNA nanostructures assembled in this fashion can be 
modified in a number of ways to contain functional materials with useful biological 
and electronic properties. This ‘bottom-up’ type of approach has enormous value in 
the development of “molecular printboards” with resolution exceeding current 
nanolithographic methods. This talk will discuss some of our recent progress in using 
DNA as an information-coding polymer for bionanotechnology applications. 
Specifically, I will discuss our strategy of engineering 3D DNA origami architectures 
with complex curvatures and discuss perspectives of how to scale up DNA origami 
nano-constructions. I will use DNA directed self-assembly of hetero-elements as 
examples to demonstrate potential of structural DNA nanotechnology in practical 
applications ranging from biophysics to nano-theronostics to energy transfers.  



An Improved DNA-Sticker Addition Algorithm

and Its Application to Logarithmic Arithmetic

Mark G. Arnold

Lehigh University, Bethlehem, PA 18015

Abstract. The sticker model of computation, implemented using robotic
processing of DNA,manipulates in parallel many bitstrings, called strands,
that are contained in a limited number of tubes. Prior sticker-addition
algorithms are patterned on digital-electronic full-adders that generate
carry bits, each of which must be saved in the strand, which involves wast-
ing the strand or using a clear operation (whose biochemical implemen-
tation may be problematic). This paper proposes a new sticker-addition
algorithm which does not need to record the carry bits. Instead, which
tube holds a particular strand implicitly describes whether or not a carry
is required. The speed and number of tubes needed are about half that
needed by the prior approach. An example is given for real-valued Euclid-
ian norms using the Logarithmic Number System.

Keywords: DNA arithmetic, sticker system, addition, Logarithmic
Number System (LNS).

1 Introduction

Roweis et al. [20] proposed a simple model, called the sticker system, for massively-
parallel manipulation of k-bit wide strings (called strands) that are contained in
a finite set of containers (called tubes). This model can be implemented using
robotic processing of DNA with parallelism possibly approaching the Avogadro
constant if the reliability of biochemical processing allows each value to be rep-
resented by a single molecule of DNA. Even if redundant molecules are required
for reliability, the potential for parallelism exceeds what is currently possible with
electronic supercomputers [14]. Despite promising theoretical performance, such
DNA supercomputers based on the sticker model have not been realized over the
past decade. Beyond the obvious technological challenges of robotic manipula-
tion of DNA in solution, is the perception that the sticker model is so simple as
to be cumbersome and inefficient for applications that bear any resemblance to
those on actual supercomputers, in which arithmetic often dominates. This paper
offers significant improvement to sticker arithmetic, which might make numeric
supercomputer-like code more feasible with the sticker model, and thereby en-
courage implementors to persue further developments of sticker hardware.

In the sticker system, each strand consists of a long single-stranded DNA
molecule, together with “stickers” (short complementary DNA molecules de-
signed to hybridize at only a particular position along the long strand). The
distinction between the bit ‘0’ and the bit ‘1’ for an arbitrary bit position along

L. Cardelli and W. Shih (Eds.): DNA 17, LNCS 6937, pp. 34–48, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Improved DNA-Sticker Addition 35

a particular strand is whether a sticker is present. Since, in theory, that sticker
can only hybridize at one place on the strand, introduction of enough sticker
molecules that represent a particular bit will cause that bit to become ‘1’ in ev-
ery strand. Alternatively, a probe molecule, which can later be filtered out from
a tube, but that also includes the same complementary DNA bases as a particu-
lar sticker allows strands to be separated into two different tubes, depending on
whether or not that specific sticker is present. (The probe cannot stick if there is
already a sticker at the specific location of interest; if the sticker is not present,
the strand will be filtered out with the probe at the position of interest; it is
assumed the probes can be melted off and and filtered away without disturbing
the normal stickers, thereby returning the selected strands to their original for-
mat.) Retesting the same bit (“refinery” model) improves reliability[20]. Further
including the obvious operation of combining (pouring) the contents of tubes
together gives three fundamental operations for the sticker model which have
realistic O(1) biochemical implementations:

– set(t, i): Make bit position i equal to 1 for every strand of tube t.
– separate(t1, t0, t, i) strands of tube t into two tubes (t1 and t0) based on a

particular bit position, i. The order t1, t0 is like that of an if else.
– combine(t1, t0): Pour tube t0 into the tube t1.

Another operation, clear(t, i), which removes the sticker from a specified posi-
tion in every strand (making the bit position, i, equal to 0) is normally included
among the primitives as it makes conventional Boolean logic much easier; how-
ever, its biochemcial implementation is perhaps problematic [13]. Omitting the
clear operation still allows for complicated feedforward computations; however,
all intermediate results must be written into a fresh bit. The more intermediate
results required, the longer the strand must be. Sticker algorithms with fewer
intermediate result bits are therefore desirable. To see the cost influence of num-
ber of tubes, nt, and number of bits, k, consider a rudimentary model for the
total mass, mt. A particular tube might contain all the stickers, which means
there is a mimimum mass of water per bit needed to act as a solvent in every
tube–even if some of the time certain tubes contain no stickers. Let’s say water
is 5mk per bit per tube, where mk is the mass per bit of nucleic acids for all
strands and stickers. Assume the mass of the MEMS microrobotic components
[8,7] is similar to the water it must hold, giving

mt = k(nt(5mk + 5mk) + mk) = mkk(10nt + 1) ≈ 10ntmkk. (1)

The algorithms for the DNA sticker system originally focused on non-numeric
applications (typically graph problems with NP-complete solutions on conven-
tional computers) [20,13,22]. In contrast to more sophisticated models of DNA
computing [1], the sticker model does not need enzymes, and, in theory, allows
the constituent molecules to be recycled. In contrast to more recent proposals
for autonomous DNA- and molecular-based computation (i.e., digital-circuit cas-
cades using strand displacement [19]), the sticker model requires conventional
computers (or digital-logic controllers) to sequence the robotic biochemical oper-
ations that implement each step [5]. As such, the sticker model is a candidate for a



36 M.G. Arnold

kind of (as yet unachieved) supercomputer architecture. One could view a sticker
computer and a Graphics Processing Unit (GPU) as being quite analogous: each
sticker is like a thread—independent data being processed concurrently by one
(kernel) program. Both stickers and GPU hardware need to be attached to con-
ventional computers to be useful. The distinction is that the sticker computer
has only these slow, very elementary, single-bit biochemical operations compared
to the fast 32-bit electronic floating-point operations of a GPU. What makes up
for this is that there are massively more strands possible with stickers than there
are threads possible on the largest GPU supercomputers.

There are three aspects where one could make a distinction between sequential
and parallel processing: at the bit level, at the tube level and at the strand
level. In the sticker model, bit processing is always sequential; strand processing
is always in parallel; tube processing might be either way. Just like electronic
microprocessors may or may not have parallel datapath elements (e.g., busses)
that can process independent variables in parallel, the sticker model may or may
not have parallel tubes that can process independent sets of strands in parallel.
In other words, at a given moment in time, distinct tubes might have different
commands (like set and separate) occuring at the same instant, provided the
digital controller can issue simultaneous commands, and the robotic system can
execute them simultaneously. This paper will consider both tube-serial and tube-
parallel versions of the sticker method.

Many early proposals for DNA-based arithmetic used techniques more in-
volved than the sticker system. Guarnieri et al. [10,11] proposed a one-pot ap-
proach for adding two non-negative integers, with the limitation that the input
format is different than the output format. Yurke et al. [24] described a technique
in which input integers are given on separate strands. Barua [4] showed how the
integers could have the same input and output DNA structure. LaBean et al.
[16] describe self-organized weaving of three-helix DNA complexes to create a
sum, which in a complicated computation leaves a record of intermediate results.
Most authors have considered integer (rather than real) arithmetic; an exception
is de Santis et al. [9], who describes representing one very-high-precision floating-
point number with DNA strands. Section 6 of this paper has the opposite goal:
representing a huge (Avogadro-sized) set of low-precision real numbers.

Recently, there has been interest in developing computer-arithmetic algo-
rithms [23,12] using the simple tube-parallel sticker system. Having operations
such as addition, multiplication and division available on a sticker-based com-
puter opens up a larger set of possible applications, for example, Chang et al.
[6] use sticker-based subtraction and division similar to [23,12] in cryptanalysis
of RSA public-key ciphers.

Addition is the foundation of most arithmetic algorithms, and in binary, in-
teger addition itself is normally built from 1-bit wide adders (so called “full
adders”) that have three inputs (two data bits and a carry input). Section 2
reviews sticker-addition algorithms in the sticker literature [23,12,6] that follow
prior-art practices for digital-electronic full-adder design that generate carry bits
for each bit position in the input. With the sticker method, this approach either



Improved DNA-Sticker Addition 37

requires that an intermediary bit be recorded in the strand for every input bit
[6] or that a single carry bit must be set and cleared many times during the
bit-sequential processing required to add two numbers [23,12]. Because the bio-
chemical basis for the clear operation is problematic, algorithms that reuse a
single carry bit will be more difficult to implement in the lab; yet it becomes quite
cumbersome to record every carry for algorithms that need multiple additions
(even algorithms as simple as n-bit multiplication need O(n2) carries).

This paper proposes a new sticker-addition algorithm, given in Section 3,
which does not need to record the carry bits. Instead, the carry bit is implicitly
described by which tube a particular strand is in at each stage of the algorithm.
With this novel approach, the speed (number of biochemical steps) and cost
(number of tubes needed) of sticker-based addition are improved significantly
compared to prior approaches. Section 4 gives a short example to illustrate the
operation of the new algorithms with two-bit inputs. Section 5 considers a sim-
plification possible when adding a constant. Because the proposed algorithms
produce only the final sum bits and no intermediate results, more extensive
algorithms can fit into reasonable-sized strands without needing the clear op-
eration. Section 6 gives a brief overview of such an algorithm, where the novel
integer-valued addition algorithm proposed here improves a sticker computation
for the real-valued Euclidian norm using the Logarithmic Number System [21],
which transforms difficult operations, like multiplication, to now much simplified
integer addition. Section 7 presents conclusions.

2 Prior Algorithms

In electronic digital design, a gate with an n-bit input needs a truth table with
2n entries. In the sticker system, this can be implemented by separating strands
into 2n tubes based on these n bits. A näıve way to translate conventional digital
designs into the sticker system is to realize the truth tables for common two-
input gates with sticker code, and synthesize larger gates from such two-input
primitives. In the following code1:

function xor(t,o,i,j)
{
separate(t+1, t, t, i);
separate(t+3, t+1, t+1, j);
separate(t+2, t, t, j);
combine(t+1,t+2);
set(t+1,o);
combine(t,t+3);
clear(t,o);
combine(t,t+1);

}
1 The syntax given is compatible with the JavaScript simulator at
www.xlnsresearch.com/sticker.htm except that the separate() operation
used in this paper is called separate3() in the simulator.



38 M.G. Arnold

arguments t, o, i and j on the sticker system’s digital-electronic controller allow
us to describe the algorithm in a generic-enough way that it may be reused in
many applications. Here we assume clear is permitted. This two-input exclusive-
OR needs four tubes (numbered t through t+3). Let o be the bit position within
the strand of the output bit, and i and j be the bit positions of the two input
bits. Assume tube t contains all input strands at the beginning and all output
strands at the end. After the separate operations, tube numbers t through t+3
(often called T00 through T11 in the literature [12]) correspond to the individual
lines of the exclusive-OR truth table. In theory, each tube needs a set or clear,
depending on the output listed in the truth table. Combining all tubes whose
output bit is 1 and similarly all tubes whose output bit is 0 means the equivalent
may be accomplished with a single set and a single clear. Combining those two
tubes together forms a single tube (numbered t) of all output strands. Only four
tubes are required for an arbitrarly complex algorithm; the disadvantage is that
it is very slow (eight steps which take seven units of time if tube parallelism is
allowed for the last two separates). Similar code allows implementation of other
two-input gates, like and. Combining these and reusing two intermediate result
bits (c-1 and c) many times allows us to create a full adder with four tubes that
requires about eighty time-steps:

function fulladdgate(t,c,o,i,j)
{
xor(t, c, i, j);
xor(t, o, c, c-1);
and(t, c-1, c, c-1);
and(t, c, i, j);
xor(t, c-1, c-1, c);

}

Tube-steps (number-of-tubes multiplied by time-steps) are a measure of algo-
rithm cost. In this case, we need 4 · 80 = 320 tube-steps. The inefficiency of this
approach is why [23,12,6] have increased the number of tubes used in exchange
for significant increase in speed. In particular, instead of conceptualizing the
problem as being composed of two-input gates, the prior sticker adders have im-
plemented the full-adder as a 3-input function requiring 23 tubes. Fig. 1 shows
how the eight tubes are used by the prior algorithms ([23,12,6] assume tube
parallelism) for nine time steps. Fig. 1 shows each tube as a circle: the columns
represent distinct tubes; the rows represent distinct times. A shaded circle is
a tube that is unused at the time shown; an unshaded circle with two labeled
arrows coming out is a separate; an unshaded circle with two unlabeled arrows
coming in is a combine. The set and clear are described inside each circle as
cc, cs, sc and ss corresponding to the four possible patterns of bits required,
where the left bit is the carry and the right bit is the sum, e.g., sc sets the carry
and clears the sum. Fig. 1 needs 72 tube steps, of which 34 are unused, i.e.,
53 percent utilization. Although the algorithm of [23,12,6] is a significant im-
provement over the 320 time steps required by the näıve approach, it does come
with the drawback of doubling the number of tubes (which may be significant in



Improved DNA-Sticker Addition 39

                t    t+1  t+2  t+3  t+4  t+5  t+6  t+7

0 1

0 1 0 1 0 1

0 1

0 1

0 1

cc sccs cs cs sc sc ss

Fig. 1. Prior addition algorithm [12] needs eight tubes and uses clear

algorithms that perform additions in distinct tubes concurrently, as illustrated
in Section 6). The algorithm proposed in the next section does not use as many
tubes as [23,12,6], cuts the number of time steps to less than one half, does not
use clear, and does not need intermediate results.

3 Novel Algorithm

Instead of using tube number t as the only input tube for the algorithm, the
novel idea in this paper is to define the input to the full adder as coming from
two tubes that contain distinct strands. Tube t, similar to the earlier examples,
contains strands for which there is not currently a carry required; tube t+2
contains different strands where previous processing indicates a carry is required.
Another way of looking this is to say: if a particular strand were input via tube
t+2, the resulting sum would be one more than if the same strand had been
input via tube t. Likewise, this algorithm uses both tubes t and t+2 as outputs:
the output in tube t is correct as is (for as many bits as have been processed);
the output in tube t+2 needs to have a carry added to its next most significant
place. In the novel algorithm described below, the Greek-name comments and
the associated Greek letters in Fig. 2 a) help clarify the example in the next
section.



40 M.G. Arnold

function fulladd(t,o,i,j)
{
separate(t+1,t, t, i); //alpha
separate(t+2,t+1,t+2,i); //beta
separate(t+3,t+2,t+2,j); //gamma
separate(t+2,t+1,t+1,j); //delta
separate(t+1,t ,t ,j); //epsilon
set(t+1,o);
set(t+3,o);
combine(t, t+1);
combine(t+2,t+3);

}

Because of dependencies, the order of the last three (γ, δ and ε) separates needs
to be as shown if this algorithm is carried out on a tube-sequential machine; the
effect on a tube-parallel machine works the same regardless of how these are ar-
ranged. (Optimized compilation for parallel machines in light of dependences [15]
is a long-studied issue in computer science; the novel algorithm here is simple
enough to be optimized by hand.) As shown in Fig. 2 a), the novel algorithm needs
only four tubes during four time steps (16 tube-steps) with only five tube steps
unused (69 percent utilization). Fig. 2 has one additional notation: a circle with
two labeled arrows coming in is the destination of multiple separates from the
previous time—the tube-parallel model [20,5] assumes enough transducer/pump
hardware is available to allow this. Because Fig. 2 a) only needs four tubes, the
total number of tubes in an algorithm that performs concurrent additions in dis-
tinct sets of tubes will be half of that needed by the prior algorithm [23,12,6].
Furthermore, since tube t+3 is used only once, reallocating three unused tube-
steps and interleaving three distinct sets of tubes, as shown in Fig. 2 b), allows
three sets of values to be added concurrently using only nine tubes (three tubes,
12 tube-steps, and 92 percent utilization per sum, a significant improvement over
[23,12,6]). Section 6 describes an application that benefits from this.

4 Example

Performing an n-bit addition requires invoking fulladd n times on successive
input and output bit positions. If only a single addition is needed, t may be
fixed at 0, meaning the algorithm uses tubes 0 through 3. With n = 2, each
input number ranges between 0 to 2n − 1 = 3. These inputs are concatenated
together, along with an (n + 1)-bit field containing zeros that will be replaced
with the result of the addition (because no stickers are here at the start, clear
is not needed). In other words, the total length of the strand is 3n + 1. We use
underscore to distinguish between these three components of each strand. Like
[20,13,22], we start in tube number 0 with the set of all (22n = 16) possible input
combinations:



Improved DNA-Sticker Addition 41
 
 
 
 
 
  
                t    t+1  t+2  t+3  
 
 
 
 
 
 
 
 
 
 
                         a)      b) 
 
 
 
 

s 

0 1 

0 1 0   1 0  1

0  1

s

s

0 1

0 1 0   1
s

0 1

0 1 0   1
s

0 1

0 1 0   1 

s

s

s

0  1 

0  1

0  1

α 

γ 

β

ε δ

Fig. 2. New add is faster, and avoids clear: a) 4 tubes/sum, b) interleaved 3
tubes/sum

{0_0_0,0_0_1,0_0_2,0_0_3,0_1_0,0_1_1,0_1_2,0_1_3,

0_2_0,0_2_1,0_2_2,0_2_3,0_3_0,0_3_1,0_3_2,0_3_3}

Each left-most zero will become the sum of the adjacent data in each strand.
The code and Fig. 2 a) are re-used for all iterations; tube 2 is empty only during
the first (least-significant) iteration since we start with no carries. The first (α)
separate removes the strands with odd values in the first (right-most) input
from tube 0, leaving the even values ( 0 and 2) in tube 0:

{0_0_0,0_0_2,0_1_0,0_1_2,0_2_0,0_2_2,0_3_0,0_3_2}

This separate also puts the strands with odd values ( 1 and 3) into tube 1:

{0_0_1,0_0_3,0_1_1,0_1_3,0_2_1,0_2_3,0_3_1,0_3_3}

The second (β) and third (γ) separates do nothing on this iteration since tube
2 is empty. The fourth (δ) separate further subdivides the strands in tube 1: it
keeps the strands with even second inputs ( 0 or 2 ) in tube 1:

{0_0_1,0_0_3,0_2_1,0_2_3}

and puts the strands with odd values ( 1 or 3 ) for this second input in tube 2:

{0_1_1,0_1_3,0_3_1,0_3_3}

In other words, at this point, tube 1 contains strands with inputs whose sum will
be odd; tube 2 contains strands with inputs whose sum will be even. The fifth
(ε) separate transfers the strands from tube 0 whose second input is odd to
tube 1 (which already had other strands from a previous operation). The effect
of this is that the strands in tube 1 have inputs whose sum will be odd:

{0_0_1,0_0_3,0_1_0,0_1_2,0_2_1,0_2_3,0_3_0,0_3_2}



42 M.G. Arnold

which leaves tube 0 to hold the strands that have inputs whose sum will be even:

{0_0_0,0_0_2,0_2_0,0_2_2}

At this stage, tubes 0 and 2 have the correct low-order sum bit (0), and so
nothing has to be done with them. Tube 1 needs to have this low-order bit set,
giving:

{1_0_1,1_0_3,1_1_0,1_1_2,1_2_1,1_2_3,1_3_0,1_3_2}

The other set (for tube 3) does nothing in this case since tube 3 is empty. The
first combine operation merges tubes 0 and 1, producing in tube 0 the set of
strands that do not cause a carry into the next place:

{0_0_0,1_0_1,0_0_2,1_0_3,1_1_0,1_1_2,0_2_0,1_2_1,0_2_2,1_2_3,1_3_0,1_3_2}

The final combine (of the first iteration) merges tube 2 with the empty tube 3,
producing in tube 2 the set of strands for which there will be a carry into the
next place:

{0_1_1,0_1_3,0_3_1,0_3_3}

Because tube 2 is now not empty, the second iteration will be somewhat more
involved.

The first (α) separate of the second iteration looks at the most-significant
bit (of the two bits) for the first input in tube 0 (the one assuming no carries):
it puts strands where this bit is 0 (where the first input is < 2) into tube 0:

{0_0_0,1_0_1,1_1_0,0_2_0,1_2_1,1_3_0}

and puts strands where this bit is 1 (where the first input is ≥ 2) into tube 1:

{0_0_2,1_0_3,1_1_2,0_2_2,1_2_3,1_3_2}

The second (β) separate of this iteration also looks at the most-significant bit
for the first input, but in this case for the data in tube 2. This separate puts
strands where this bit is zero into tube 1 (merging with the data already there):

{0_0_2,1_0_3,0_1_1,1_1_2,0_2_2,1_2_3,0_3_1,1_3_2}

and leaves strands where this bit is 1 in tube 2:

{0_1_3,0_3_3}

The third (γ) separate of this iteration looks at the most-significant bit for the
second input in tube 2, and puts strands where this bit is zero into tube 2:

{0_1_3}

Also, it puts strands where this bit is 1 into tube 3:

{0_3_3}

The fourth (δ) separate looks at the most-significant bit for the second input in
tube 1, and puts strands where this most-significant bit is 1 into tube 2 (along
with the strands already in tube 2):



Improved DNA-Sticker Addition 43

{0_1_3,0_2_2,1_2_3,0_3_1,1_3_2}

leaving the other strands in tube 1:

{0_0_2,1_0_3,0_1_1,1_1_2}

The final (ε) separate looks at the most-significant bit for the second input in
tube 0, and puts strands where this most-significant bit is 1 into tube 1 (along
with the strands already in tube 1):

{0_0_2,1_0_3,0_1_1,1_1_2,0_2_0,1_2_1,1_3_0}

leaving the others in tube 0:

{0_0_0,1_0_1,1_1_0}

Next, we set (in this example, the most-significant) bit in the output of tube 1:

{2_0_2,3_0_3,2_1_1,3_1_2,2_2_0,3_2_1,3_3_0}

Also, we set the most-significant bit in the output of tube 3:

{2_3_3}

In the next-to-last step of the code, tubes 0 and 1 are combined into tube 0:

{0_0_0,1_0_1,2_0_2,3_0_3,1_1_0,2_1_1,3_1_2,2_2_0,3_2_1,3_3_0}

which is the correct set of sums (which would need no carry even if there were
an additional place). Finally, tubes 2 and 3 are combined into tube 2:

{0_1_3,0_2_2,1_2_3,0_3_1,1_3_2,2_3_3}

which is the correct set of modulo-4 sums (which would need a carry if there were
an additional place) Since this is final bit of the example, outside the iteration
listed in the code, a final set of bit 2 in tube 2 yields the correct n+1-bit sums:

{4_1_3,4_2_2,5_2_3,4_3_1,5_3_2,6_3_3}

Tubes 0 and 2 could be combined if required, or could be kept distinct (useful
if one of the inputs represents a two’s-complement value for a comparison). If
executed sequentially, the proposed n = 2 example requires 20 time steps; if
executed in tube-parallel fashion, this example requires 4n + 2 = 8 time steps
(the extra two steps occuring outside the main iteration to complete a single set
of (n + 1)-bit outputs–other applications, like modulo-2n addition or the com-
parision mentioned above, might require less). In contrast to our novel method,
Guo et al. [12] require 9n = 18 time steps for tube-parallel addition, with all of
the other disadvantages mentioned previously.

5 Adding Constants

There are situations when a constant binary number needs to be added to a
value encoded on the strands. Although one could use set and clear to place



44 M.G. Arnold

                t    t+1  t+2                   t    t+1  t+2

s

0 1 0  1
ss

0 1 0  1

Fig. 3. Half adders: (a) assuming constant bit is 0; (b) assuming constant bit is 1

the constant on all of the strands before invoking the above algorithm, this would
waste part of the strand. Instead, it would be better to compose the addition of
the constant out of a sequence of half adders. The number to which the constant
is added is represented by which tube the strand is in, as in the previous section.
There are two kinds of such half adders: one for when a particular bit of the
constant is 0, the other for when that bit of the constant is 1. Fig. 3 shows both
types of half adders, which both use three tubes and three time steps.

6 Logarithmic Number System

The Logarithmic Number System (LNS) [21] represents a real value (denoted by
upper-case X) with its base-b logarithm encoded as an n-bit fixed-point number
x = int(2f · logb(X))/2f , where the high n− f bits provide dynamic range and
the remaining f bits provide the precision. Typically, designers choose b = 2,
which makes LNS similar to Floating Point (FP). This paper will use the term
Floating-Point Operation Per Second (FLOPS) even though the operations are
being implemented by LNS. LNS has been most useful in applications where
modest n is acceptable, for example the GRAvity PipelinE (GRAPE) super-
computers [17] (which won the Gordon-Bell Prize) use n = 13 LNS to acceler-
ate N -body calculations. In LNS, powers, multiplication and division are very
easy, involving only integer shifting, addition and subtraction, which can be im-
plemented in O(n) time with the sticker system without intermediate results
because of the novel integer addition algorithm of Fig. 2. In contrast, conven-
tional multiplication (even with the improved addition algorithm proposed in
this paper) requires O(n2) time and intermediate bits for partial products.

Mitchell [18] suggested a very low-cost approach to approximating the base-2
logarithm and antilogarithm without needing a table or iteration. Of interest
here is Mitchell’s antilogarithm, which is based on the observation 2x ≈ x + 1 in
the range 0 ≤ x ≤ 1. This can be generalized as 2x ≈ 2int(x) · (frac(x) + 1).

As an example, suppose we would like to compute the Euclidian norm, R =√
X2 + Y 2, of the real (X, Y ), which is a simplified example similar to the grav-

itational force calculation at the heart of GRAPE. One approach for the norm
would be: take the logarithms of the numbers; shift them left (i.e., multiply each
of them by two); take the antilogarithms; add them in conventional fixed-point;



Improved DNA-Sticker Addition 45

take the logarithm of the sum; shift it right (i.e., divide by two); and take the
antilogarithm. This is cumbersome, and would require many intermediate bits in
the sticker system. In order to take advantage of LNS, it is better to keep numbers
in logarithmic format throughout the entire computation. The point then is how
addition operates if it is not done in fixed point. Given x ≈ logb(X) and y ≈
logb(Y ), we can compute the logarithm of the sum with logb(X+Y ) = y+sb(x−
y), where sb(z) = logb(1+bz) [21,17,3]. This function has the following properties:
sb(z) ≈ 0 for z < −f and sb(z) = sb(−z) + z. The latter means logb(X + Y ) =
max(x, y)+sb(−|x−y|); the former means logb(X +Y ) = max(x, y) for |x−y| ≥
f . The norm may be computed as r = logb(R) = max(x, y) + sb(−2|x − y|)/2.
(This paper considers only addition of positive reals, which is sufficient for the
norm; a sign bit [21] would allow negative reals and subtraction at about double
the cost.) For b = 2, it has been suggested to use parallel [2] or serial [3] digital-
electronic implementations of Mitchell’s method as an approximation for the
LNS addition function: s2(z) ≈ 2z ≈ 2int(z) · (frac(z) + 1) for −f < z < 0;
however, to the best of the author’s knowledge, LNS has never been used with
the sticker system.

Such LNS addition can be implemented with a novel sticker approach using
two phases. First, compute

z = x− y (2)

using four tubes with a full subtractor analogous to the full adder in Fig. 2 a).
This z is the only intermediate result required to be written into the strands.
Second, separate the strands into 2f different sets of tubes based on the bits of
int(z). Half of them deal with positive z and half with negative z. Each set of
tubes consists of three tubes, as required in Fig. 2 b). Included are two sets of
tubes to deal with extremely large (z ≥ f − 1) or small (z ≤ −f) cases. These
large and small cases are separated based on the high-order bits of int(z). The
remaining cases are separated based on the low-order bits of int(z). For example,
if f = 8, there are eight cases for negative z:

t45 = y +2−1 + 2−1 · frac(z), if int(z) = −1 (3)
t42 = y +2−2 + 2−2 · frac(z), if int(z) = −2 (4)
t39 = y +2−3 + 2−3 · frac(z), if int(z) = −3 (5)
t36 = y +2−4 + 2−4 · frac(z), if int(z) = −4 (6)
t33 = y +2−5 + 2−5 · frac(z), if int(z) = −5 (7)
t30 = y +2−6 + 2−6 · frac(z), if int(z) = −6 (8)
t27 = y +2−7 + 2−7 · frac(z), if int(z) = −7 (9)
t24 = y, if int(z) ≤ −8 (10)

where t45, t42 etc. actually need three tubes to compute the associated additions
using interleaving. Mathematically, the power-of-two constant and the shifted z
bits occupy distinct positions. This means the process starts using f+int(z) invo-
cations of fulladd; then it uses halfadd1 once (for the power-of-two constant);



46 M.G. Arnold

 

0.
08 0.
16

0.
33

0.
67 1.
37

2.
81

5.
760.08

0.67

5.76

0.1

1

10

100

0.
08 0.
16

0.
33

0.
67 1.
37

2.
81

5.
760.08

0.67

5.76

0.1

1

10

100

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Norm R =
√

X2 + Y 2 computed by: (2)–(18) LNS (left); FP (right)

finally, finishing the process with several invocations of halfadd0 (to deal with
the possibility of a succession of carries in what otherwise would be a zero result).
Because (3)–(10) are defined for negative z, we need to transform for the cases
of positive z:

t0 = x +20 − 2−1 · frac(z), if int(z) = 0 (11)
t3 = x +2−1 − 2−2 · frac(z), if int(z) = 1 (12)
t6 = x +2−2 − 2−3 · frac(z), if int(z) = 2 (13)
t9 = x +2−3 − 2−4 · frac(z), if int(z) = 3 (14)

t12 = x +2−4 − 2−5 · frac(z), if int(z) = 4 (15)
t15 = x +2−5 − 2−6 · frac(z), if int(z) = 5 (16)
t18 = x +2−6 − 2−7 · frac(z), if int(z) = 6 (17)
t21 = x, if int(z) ≥ 7 (18)

There are sixteen distinct sets of strands, being processed in parallel within
48 tubes. The proposed integer addition algorithm makes significant savings. It
eliminates 80 tubes compared to what would be needed if the Guo et al. adder
[12] were used. It also cuts the execution time roughly in half.

Since square and square root are implemented in LNS with trivial shifting
(i.e., which index that is passed from the digital controller to the fulladd, etc.
routines), this is all that is required to implement the norm (conventionally con-
sidered as four operations: two squares, one add and one square root). The time
for the norm will be around 8n, or 2n per conventional operation. Fig. 4 shows
norms computed via the novel LNS (2)–(18) and conventional FP approaches
seem identical, although the shorter LNS representation inherently has greater
relative error not visible at this scale. ([18,2,3] give error analyses.) This is ac-
ceptable in some scientific simulations, like GRAPE, because fast algorithms
(e.g., Barnes-Hut) often make approximations that overwhelm any arithmetic
issues of this scale [17]. Conventionally, sticker computation has used the set of
all possible input combinations [20] or some subset [13] chosen at random. The
inclusion of LNS capabilities allow such uniform inputs to be reshaped according



Improved DNA-Sticker Addition 47

to real-valued distributions, for example, instead of starting with a uniform grid
of stars in an N -body simulation, realistic-looking galaxies could be formed first
using formulae similar to the example.

Let’s say n = 16 (bigger than GRAPE) and we have an ideal sticker su-
percomputer that can process 6 · 1023 strands in a second (with microfluidic
droplets, rather than a macroscopic test tube, reaction rates may increase [7]
over previous assumptions [20]), making 10 zettaFLOPS, i.e., 104 faster than
the exaFLOPS electronic supercomputers predicted by decade’s end. [14] The
nucleic acids’ mass per bit, mk, would be about one kg. From (1), the proposed
LNS nt = 48-tube, k = 64-bit, mt = 3 · 104-kg DNA supercomputer might be
103 lighter than the “warehouse full of computers” [14] needed for conventional-
exaFLOPS. Of course, if a sticker supercomputer is ever realized, it is unlikely
to achieve ideal performance, but a speed-mass factor of 107 gives some margin
within the next decade for DNA supercomputers to outperform conventional
supercomputers for specialized LNS-based numerical applications, like GRAPE,
despite what may be overly optimistic estimates here. For comparison, the same
LNS (2)–(18) norm with a clear-less-Guo adder would be half the speed and
require nt = 128, k = 96, mt = 1.2 · 105—almost an order of magnitude in-
ferior speed-mass. An n = 16, f = 8 FP norm with a clear-less-Guo adder
needs similar nt (for FP add) but k ≈ 103 (for intermediate FP bits) with n-fold
slowdown—nearly two additional orders of magnitude worse speed-mass.

7 Conclusions

This paper described a new integer addition algorithm for the sticker model of
DNA computation. The proposed algorithm does not need to record the carry
bits, which otherwise would have to be saved in the strand (either wasting space
for intermediate bits or needing a clear operation with problematic biochemi-
cal implementation). Also, the proposed algorithm uses half the time and tubes
compared to prior approaches because it implicitly describes the carry by which
tube a particular strand is in. Further improvements are suggested for adding
constants and interleaving concurrent additions. The proposed integer addition
algorithm could improve any DNA-sticker arithmetic method (such as [6]), but
algorithms like n-bit integer multiplication will still need O(n2) intermediate
bits. In applications working with approximate real values, transforming to log-
arithmic representation allows multiplication, division and square root to be
substituted with operations that involve no intermediate bits. Using this LNS
approach (where different sums need to be computed in parallel by different sets
of tubes), an example real-valued Euclidian norm capitalizes on the cost savings
of the proposed integer addition. A back-of-the-envelope estimate indicates more
than a million-fold speed-mass advantage compared to conventional supercom-
puting. Of this, perhaps two or three orders of magnitude are from sticker-size,
tube and speed advantages of the proposed integer-addition and LNS algorithms.



48 M.G. Arnold

References

1. Adleman, L.: Molecular Computation of Solutions to Combinatorial Problems.
Science 266, 1021–1024 (1994)

2. Arnold, M.G.: LPVIP: A Low-Power ROM-Less ALU for Low-Precision LNS. In:
Macii, E., Paliouras, V., Koufopavlou, O. (eds.) PATMOS 2004. LNCS, vol. 3254,
pp. 675–684. Springer, Heidelberg (2004)

3. Arnold, M.G., Vouzis, P.: A Serial Logarithmic Number System ALU. In: Kuba-
tova, H. (ed.) 2007 EuroMicro DSD, pp. 151–154. IEEE Press, Los Alamitos (2007)

4. Barua, R.: Binary Arithmetic for DNA Computer. DNA Comp. 8, 124–132 (2002)
5. Carroll, S.: A Complete Programming Environment for DNA Computation. In:

Workshop Non-Silicon Comp. NSC-1, pp. 46–53 (2002)
6. Chang, W.-L., et al.: Fast Parallel Molecular Algorithms for DNA-Based Compu-

tation: Factoring Integers. IEEE Trans. Nanobiosci. 4, 149–163 (2005)
7. Chakrabarthy, K., et al.: Design Tools for Digital Microfluidic Biochips. IEEE

Trans. Comp.-Aid. Des 29, 1001–1017 (2010)
8. Cho, J.H., et al.: Reconfigurable Multi-Component Sensors Built from MEMS Pay-

loads Carried by Micro-Robots. In: Sensor App. Symp., pp. 15–19 (2010)
9. de Santis, F., et al.: A DNA ALU. WSEAS Trans. Bio. Biomed. 1, 436–440 (2004)

10. Guarnieri, F., et al.: Making DNA Add. Science 273, 220–223 (1996)
11. Guarnieri, F., Bancroft, C.: Use of a Horizontal Chain Reaction for DNA-based

Addition. DIMACS 44, 105–111 (1999)
12. Guo, P., Zhang, H.: DNA Implementation of Arithmetic Operations. In: 2009 Int.

Conf. Natural Comp., pp. 153–159 (2009)
13. Ignatova, Z., Martinez-Perez, I., Zimmermann, K.: DNA Computing Models, Sec-

tion 5.3. Springer, New York (2008)
14. Kogge, P.: Next-Generation Supercomputers. IEEE Spectrum 48(2), 48–54 (2011)
15. Kuck, D.: Structure of Computers and Computations. Wiley, New York (1978)
16. LaBean, T.H., Winfree, E., Reif, J.H.: Experimental Progress in Computation by

Self-Assembly of DNA Tilings. In: DNA Based Computers, pp. 123–140 (1999)
17. Makino, J., Taiji, M.: Scientific Simulations with Special-Purpose Computers—the

GRAPE Systems. Wiley, Chichester (1998)
18. Mitchell, J.N.: Computer Multiplication and Division using Binary Logarithms.

IEEE Trans. Elec. Computers EC-11, 512–517 (1962)
19. Qian, L., Winfree, E.: A Simple DNA Gate Motif for Synthesizing Large-scale

Circuits. J. R. Soc. Interface (2011), doi:10.1098/rsif.2010.0729
20. Roweis, S., et al.: A Sticker-Based Model for DNA Computation. J. Comp. Bio. 5,

615–629 (1996)
21. Swartzlander, E.E., Alexopoulos, A.G.: The Sign/Logarithm Number System.

IEEE Trans. Comput. C-24, 1238–1242 (1975)
22. Xu, J., Dong, Y., Wei, X.: Sticker DNA Computer Model-Part I: Theory. Chin.

Sci. Bull. 49, 772–780 (2004)
23. Yang, X.Q., Liu, Z.: DNA Algorithm of Parallel Multiplication Based on Sticker

Model. Comp. Engr. App. 43(16), 87–89 (2007)
24. Yurke, B., et al.: DNA Implementation of Addition in which the Input Strands are

Separate from the Operator Strands. Biosystem 52, 165–174 (1999)



Graph-Theoretic Formalization of Hybridization

in DNA Sticker Complexes

Robert Brijder, Joris J.M. Gillis�, and Jan Van den Bussche

Hasselt University and transnational University of Limburg

Abstract. Sticker complexes are a formal graph-based data model for a
restricted class of DNA complexes, motivated by potential applications
to databases. This data model allows for a purely declarative definition
of hybridization. We introduce the notion of terminating hybridization,
and characterize this notion in purely graph-theoretic terms. Terminating
hybridization can still produce results of exponential size. We indicate a
class of complexes where hybridization is guaranteed to be polynomially
bounded.

1 Introduction

Since Adleman’s experiment [2], DNA Computing has greatly evolved, and many
different modes of computation have been invented and investigated [3,21,6,25,
34,26,29,14,5,33,30,32,22]. A major goal throughout this evolution has been to
achieve autonomy of computation, and indeed this is a highly desirable feature
of computation in general.

At the same time, DNA Computing has also high potential for database appli-
cations [4,10,35,24]. Indeed, the nanoscale and relative indestructibility of single
DNA strands are very promising properties for database storage. Moreover, the
highly parallel mode of operation that can be achieved in DNA Computing is a
nice match with the bulk-processing nature of database computations.

Autonomy of computation is perhaps less crucial for databases, where indeed
traditionally a strict line is drawn between the data, and the query or update
operations performed on the data [15]. Also, in database theory [1], one expects
formal data models defined on the logical level, and declarative definitions of the
basic data manipulation operations.

In the present paper, in the context of a formal data model of DNA complexes,
we focus on hybridization, one of the cornerstone operations in DNA computing.
The data model is that of sticker complexes, a graph-theoretically defined for-
malization of DNA complexes of a limited format. Sticker complexes have been
shown in an earlier paper [16] to be adequate for database computations in DNA.
Indeed, while it is relatively straightforward to represent relational databases in
DNA, a good data model for database computation must also be able to rep-
resent all intermediate data structures needed to support database operations.

� Ph.D. Fellow of the Research Foundation Flanders (FWO).

L. Cardelli and W. Shih (Eds.): DNA 17, LNCS 6937, pp. 49–63, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



50 R. Brijder, J.J.M. Gillis, and J. Van den Bussche

Specifically, it has been shown that sticker complexes are adequate to support a
complete simulation of the operations of the relational algebra, which provides a
set of core operations in relational databases [15]. The intermediate data struc-
tures involved in the simulation of the relational algebra are quite complex as
they need to support the creation of circular strands.

The problem addressed in the present paper is to understand the well-
definedness and termination of the hybridization operation on sticker complexes.
Here we are considering hybridization as a database operation, like the Cartesian
product (related to the relational join). When we want to construct the Carte-
sian product U × V of two sets U and V , with U of size m and V of size n, we
need in principle n copies of every element of U , and m copies of every element
of V , so that we have enough “material” to construct the m × n-element set
{(u, v) | u ∈ U & v ∈ V }. When more copies are provided of some elements of
U or V , some duplicate pairs can be constructed, but no really new information
is generated. When hybridization has this behavior, we say it terminates.

The main result of this paper is to provide a purely graph-theoretic char-
acterization of termination of hybridization, which will also imply that termi-
nation is decidable for sticker complexes. This result emphasizes the restricted
nature of the sticker complex data model, since it is well known that termination
is undecidable for Turing-universal computation models [18]. The investigation
of computation models that are not computationally complete, and the corre-
sponding search for the right balance between sufficient expressive power and
low complexity, is one of the hallmarks of database theory [1].

We also investigate complexity issues related to DNA hybridization. Even
when hybridization in a given DNA complex terminates, depending on the struc-
ture of the complex, an exponential amount of material may be required to
produce the complete result. This problem was already present in Adleman’s
solution to the Hamiltonian Path problem [17], and we show it can still occur
within the limited context of sticker complexes. Since such exponential behavior
is undesirable, and also not needed to support typical database operations, we
would like to avoid it.

We will show that the result of hybridization splits up, graph-theoretically, in
a number of connected components, and each component is polynomial in size.
Hence, the exponentiality is confined to the possible number of distinct com-
ponents. Furthermore, we identify a broad family of classes of DNA complexes,
called c-bounded complexes, within which hybridization is guaranteed to require
only a polynomial amount of resources.

2 Related Work

In one of the first papers on DNA computing, Reif already defined a formal data
structure of DNA complexes [23]. Our data structures are simpler in an effort to
avoid unrealistic or otherwise complicated and unmanageable secondary struc-
tures. (Reif avoids these by invoking an oracle for feasibility.) Our simplification
is that single strands are either all-positive or all-negative, and moreover, nega-
tive strands have length at most two. The short negative strands can be thought



Graph-Theoretic Formalization of Hybridization in DNA Sticker Complexes 51

of as stickers; thus the name “sticker complexes”. Our previous work showed
that the restrictions of sticker complexes do not preclude interesting database
computations. An important feature of our model, which is lacking in Reif’s, is
the formal distinction between the structural content of a complex, and the com-
plex as used in reactions, with multiples of each connected component present
in surplus quantities.

The use of short stickers in DNA computing originates with Roweis et al. [26],
where stickers were used to turn bits on or off. We use stickers to bind strands
together so that possibly complex secondary structures are formed.

The present work also fits in a recent trend of integrating formal methods
(such as process calculi in computational systems biology [7]) with DNA com-
puting [8, 20]. Yet the formalisms we use are different from process calculi and
comprise mainly set theory, graph theory, and logic-based query languages. The
computational power of hybridization in various models of formal languages has
been intensively studied, e.g., [21, 34].

Last but not least, our formal model of hybridization is strikingly comparable
in spirit to the model of Jonoska, McColm and Staninska [19]. That paper in-
troduces the notion of a “pot type”; for the purpose of hybridization, the model
of pot types and our model of sticker complexes are roughly equivalent. It was
shown that weak satisfiability is decidable in polynomial time. Using our own
terminology as introduced in Section 4, a complex is weakly satisfiable if it ad-
mits at least one “finished” component. In contrast, we show that termination
is decidable in polynomial time. Termination is a stronger property than weak
satisfiability; a terminating complex is weakly satisfiable, but a complex may
be weakly satisfiable without terminating. (Jonoska et al. also consider stronger
notions of satisfiability, but these do not relate to termination.)

3 The Sticker-Complex Data Model

From the outset we assume a finite alphabet Σ. As customary in formal models
of DNA computing [21], each letter represents a domain, i.e., a string over the
DNA alphabet {A, C, G, T}. The set of resulting domains must form a set of
DNA codewords [11, 27, 31]. This should always be kept in mind.

The alphabet Σ is matched with its negative version Σ̄ = {ā | a ∈ Σ}, disjoint
from Σ. Thus there is a bijection between Σ and Σ̄, which is called complemen-
tarity and is denoted by overlining; we also set ¯̄a = a so complementarity is
symmetric. Obviously, ā stands for the Watson-Crick complement of the DNA
sequence represented by a. The elements of Σ are called positive symbols and
the elements of Σ̄ are called negative symbols.

We recall some fundamental definitions from our previous paper [16], suitably
simplified according to the focus of the present paper. The simplifications are
only for the purpose of presentation, and our results can be adapted to the orig-
inal data model, which provides facilities for immobilizing and blocking specific
pieces of a complex.

The overall structure of a DNA complex is abstracted in the notion of pre-
complex. Formally, a pre-complex is a 4-tuple (V, L, λ, μ) where



52 R. Brijder, J.J.M. Gillis, and J. Van den Bussche

1. V is a finite set of nodes;
2. L ⊆ V × V is a finite set of directed edges without self-loops (i.e., (v, v) is

not in L for all v ∈ V );
3. λ : V → Σ ∪ Σ̄ is a total function labeling the nodes;
4. μ ⊆ {{v, w} | v, w ∈ V and v �= w} is a partial matching on the nodes,

i.e., each node occurs in at most one pair in μ. Note that the pairs in μ are
unordered.

Let C be a pre-complex as above. A strand of C is simply a connected compo-
nent of the directed graph (V, L), so ignoring μ. The length of a strand is its
number of nodes. A sticker complex now is a pre-complex satisfying the following
restrictions:

1. Each node has at most one incoming and at most one outgoing edge. Thus,
each strand has the form of a chain or a cycle.

2. Strands are homogeneously labeled, in the sense that either all nodes are
labeled with positive symbols, or all with negative symbols. Naturally, a
strand with positive (negative) symbols is called a positive (negative) strand.

3. Every negative strand has length one or two; if it has length two, then it
must have a single edge (i.e., it cannot be a 2-cycle). Negative strands are
also referred to as “stickers”.

4. Matchings by μ only occur between complementarily labeled nodes: formally,
if {x, y} ∈ μ then λ(y) = λ(x).

In this way, the edges of a sticker complex indicate the sequence order within
strands, and the matching μ makes explicit where stickers have annealed to
positive strands.

We will also refer to sticker complexes simply as “complexes”.

Example 1. A simple example of a complex is depicted in Fig. 1. The alphabet
used is {a, b, c} with ā, b̄ and c̄ indicated in the figure as A, B and C, respectively.
We will use this convention of showing complementary symbols by capitalizing
the symbols, throughout the figures in this paper. The complex consists of ten
nodes x1, . . . , x10, labeled as follows:

node x : x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

label λ(x) : a b ā b̄ c̄ a b c a a

The nodes are organized in five strands: the negative strand ā of length 1, two
copies of the positive strand ab of length 2; the negative strand b̄c̄ of length 2;
and the positive strand caa of length 3. More formally, we have

L = {(x1, x2), (x4, x5), (x6, x7), (x8, x9), (x9, x10)}.
The matching μ contains the two unordered pairs {x2, x4} and {x5, x8}.
Remark 1. Because stickers are short, there is no need in our model to require
that annealed stickers run in complementary (5′–3′ vs 3′–5′) directions with



Graph-Theoretic Formalization of Hybridization in DNA Sticker Complexes 53

a

a b

B C

c a

A

a b

Fig. 1. Example of a sticker complex. Capitalized letters A, B, and C denote comple-
mented symbols a, b, and c. The dotted lines denote the matching µ.

B

a b

A B

ba

A
(i)

B

a b

A B

a

b

A

(ii)

Fig. 2. On the left of (i) and (ii), two different complexes; on the right of (i) and (ii),
a depiction of their respective plausible realizations in DNA (recall that each node in
the complex represents a DNA sequence, depicted here as thick blue lines)

respect to the positive strands they are annealed to. Indeed, for a sticker of length
one, the complementarity is already built into the label; stickers of length two can
fold so as to run in complementary direction. Fig. 2 gives an illustration. ��
Note that, in a complex, not all nodes that can be matched must be matched:
for example, in Fig. 1, the sticker ā is not annealed, but could anneal to the
four different nodes labeled a. Indeed, it is the hybridization operation, defined
below, that will perform all possible matchings.

Components and redundancy. We say that two strands s and s′ in a complex are
bonded if there exists some node v in s and some node v′ in s′ with {v, v′} ∈ μ.
When two strands are connected, possibly indirectly, by this bonding relation,
we say they belong to the same component. Thus, a component of a pre-complex
is a substructure formed by a maximal set of strands connected by the bonding
relation. Put another way, whereas a strand was defined as a connected compo-
nent ignoring μ, a component is a connected component not ignoring μ.

Example 2. The complex from Example 1 has three components: one consisting
of the single strand ā, one consisting of the single strand ab, and one formed by
the three strands ab, b̄c̄ and caa. ��
The intention of our model is that a complex defines the structural content
of a test tube. The test tube, however, will in practice hold copies in surplus
quantity of each component. Thus, each component of a complex stands for
possibly multiple occurrences. We formalize this intention using the notions of
subsumption, equivalence, and minimality.

A complex C is said to subsume a complex C ′ if for each component D′ of
C ′, there exists an component D in C that is isomorphic to D′. Two complexes



54 R. Brijder, J.J.M. Gillis, and J. Van den Bussche

C and C ′ are said to be equivalent if they subsume each other. A component D
of a complex C is called redundant if some other component of C is isomorphic
to D. Note that removing a redundant component from C yields a complex that
is still equivalent to C.

Remark 2. Isomorphism of sticker complexes can be decided in polynomial time
by depth-first search. Indeed, if C and C′ both consist of a single component, v is
a node of C, and v′ is a node of C′, then there is at most one isomorphism from
C to C′ mapping v to v′, and this isomorphism can be traced out by depth-first
search, following the chain or cycle shape of strands, and the partial matching μ.
Depth-first search is in linear time, which yields an isomorphism check for single
components in cubic time (try all combinations of v and v′). This algorithm then
easily extends to complexes C and C ′ with multiple components, by matching
the components of C to the components of C′. This efficient isomorphism check
is in contrast to the problem of general graph isomorphism, which is not known
to be decidable in polynomial time. We thus see that sticker complexes form a
restricted family of graphs.

4 Hybridization

We give a purely declarative definition of hybridization, in a few steps. We
define the two auxiliary notions of “hybridization extension” and “redundant
variation”. This will allow us to define the fundamental notion of “multiplying
hybridization extension (MHE)”. The final results of hybridization are then de-
fined as the “saturated” MHEs; those that consist only of “finished” components.

Let C = (V, L, λ, μ) and C ′ = (V ′, L′, λ′, μ′) be two complexes. We call C′ a
hybridization extension of C if V ′ = V , L′ = L, λ′ = λ, and μ′ is an extension
of μ, i.e., μ′ ⊇ μ. A complex C′ is said to have maximal matching if the only
hybridization extension of C ′ is C ′ itself.

Example 3. The complex from Example 1 does not have maximal matching; we
can properly extend it by adding the pair {x3, x9} to μ. Alternatively, instead
of x9, we could have taken x1, or x6, or x10. Thus the complex has, apart from
itself (which is a trivial hybridization extension), four different (non-equivalent)
hybridization extensions. These four extensions all have maximal matching, since
x3 is the only negatively labeled node that is not yet matched. ��
Let C and C′ again be complexes. We call C′ a redundant variation of C, simply
if C subsumes C ′. Note that C ′ may contain redundant components. Hence, the
recipe to produce a redundant variation is simply to take, for every component
of C, zero, one, or more copies.

Hybridization is now defined in terms of multiplying hybridization extensions
(MHEs), which, by applying redundant variations, account for the presence of
surplus copies of components participating in the hybridization. Let C and C′

again be two complexes. We call C ′ an MHE of C if C ′ is a hybridization exten-
sion of some redundant variation C′′ of C.

The notion of MHEs is invariant under equivalence, both on the input side as
on the output side:



Graph-Theoretic Formalization of Hybridization in DNA Sticker Complexes 55

A

a b

B C

c a a

A A

a

A

b

Fig. 3. Finished MHE components for the complex shown in Fig. 1

Proposition 1. Let C1 and C2 be two equivalent complexes.

1. A complex C ′ is an MHE of C1 if and only if C ′ is an MHE of C2.
2. C1 is an MHE of a complex C if and only if C2 is an MHE of C.

We are not quite finished with the notion of MHE, however. Indeed, an MHE
may have “unfinished” components. Formally, we call a component D of an
MHE unfinished if there exists another MHE in which D occurs bonded within a
larger component; otherwise it is called finished. An MHE without any unfinished
components is called saturated.

Example 4. None of the four hybridization extensions of the complex discussed
in Example 3 is saturated. Indeed, as long as a component has an unmatched
a, that component is unfinished because of we can add a copy of the sticker ā.
Specifically, we can finish the large component (consisting of the strands ab, b̄c̄,
and caa) by matching each unmatched a to a fresh copy of ā, yielding the finished
MHE component shown in Fig. 3 (left). Likewise we can finish the component
consisting of the single strand ab by matching the a to a copy of ā, as shown in
Fig. 3 (right). Finishing the component consisting of the single sticker ā can be
done in two ways: by bringing in a copy of the large component, we get the same
result as finishing that large component, and by bringing in a copy of the strand
ab, we get the same result as finishing that strand. We conclude that there are
precisely two distinct finished MHE components.

Example 5. A complex may have a large number of different finished MHE com-
ponents: exponentially many in the size of the complex. For example, consider
the complex Cn consisting of the following strands:

– a positive strand a . . . a of length n consisting of n nodes all labeled a;
– a sticker āb̄;
– a sticker āc̄.

Up to equivalence, there are precisely 2n finished MHE components for Cn. Each
possibility is obtained by annealing, to each node of the positive strand, a copy
of either the first or the second sticker. ��
We finally define:

Definition 1. Let C be a complex. The hybridization of C equals the disjoint
union of all finished MHE components for C.



56 R. Brijder, J.J.M. Gillis, and J. Van den Bussche

B A

a b a b a b

B A B A

Fig. 4. Illustration for Example 6

Termination. A fundamental issue regarding the above definition is that the
result of hybridization as defined may be infinite, as shown next.

Example 6. Consider the simple complex consisting of two strands ab and b̄ā
and no matchings. For any number n, using n copies of ab and n copies of b̄ā,
we can produce the MHE component shown in Fig. 4 for n = 3. This component
could also be finished, by matching the remaining a shown on the left with the
remaining ā on the right, effectively creating a ring structure. (As always, in the
figure, ā and b̄ are shown as A and B.) Different numbers n yield nonequivalent
(non-isomorphic) MHE components, thus the number of potential MHE compo-
nents is infinite. ��
Nature will compute the result of hybridization by composing MHE’s using the
available material in the test tube. When, for a given complex C, there are
actually infinitely many nonequivalent MHE’s, we say that hybridization does
not terminate for C, or shorter, that C is nonterminating; otherwise, we say
that hybridization terminates, or shorter, that C is terminating.

Example 7. So, the complex discussed in the previous example is nonterminat-
ing. In contrast, the example complex of Fig. 1 is terminating, as we have seen in
Example 4. Also the complexes Cn discussed in Example 5 are terminating. ��
In practice, when we have termination of hybridization, a test tube prepared
with sufficient quantities of each component of the complex holds, in principle,
sufficient material to produce all molecular species that can be the result of
hybridization. If sufficient quantities are present, adding even more material will
not yield new results. Of course, in practice, a test tube is always finite and the
hybridization reaction will, under normal conditions, always “terminate” (reach
equilibrium). But the point is that, when hybridization does not terminate for
a complex, adding ever more material can, in principle, result in ever more new
molecular species (MHE components) to be produced. In this sense, the potential
result of the hybridization is indeed infinite.

5 Deciding Termination

When designing DNA complexes for DNA computing, it is of course highly
desirable to recognize easily whether or not a given complex is terminating. Our
main result is the following.

Theorem 1. A complex is terminating if and only if its hybridization graph
does not contain an alternating cycle.



Graph-Theoretic Formalization of Hybridization in DNA Sticker Complexes 57

Corollary 1. Termination of hybridization is decidable in polynomial time.

We still need to define the relevant terms used in our theorem, i.e., “hybridization
graph” and “alternating cycle”. The Corollary will follow since the hybridization
graph has the same number of nodes as the given complex, and checking for the
presence of an alternating cycle can be done in polynomial time.

The hybridization graph of a complex is an instance of a “partitioned graph”.
A partitioned graph in general is a triple (V, π, E) where (V, E) is an undirected
graph and π is a partition of the node set V . Recall that an undirected graph
(V, E) consists of a set V of nodes and a set E ⊆ {{v, w} | v, w ∈ V and v �= w}
of unordered pairs of nodes (undirected edges). Recall that a partition of a set
V is a set of nonempty, pairwise disjoint subsets of V , called blocks, such that
their union equals V .

Now given a complex C, the hybridization graph for C is the partitioned graph
H = (V, π, E) defined as follows:

– V equals the set of nodes of C;
– π contains, for each component D of C, the set of nodes belonging to D as

a block;
– Let F ⊆ V be the set of “free” nodes of C; a node is called free if it is

not matched to another node by μ. Then E equals {{v, w} | v, w ∈ F and
λ(w) = λ(v)}.

Thus, whereas the matching μ in C represents the pairs of nodes that are al-
ready annealed, the set E contains the pairs of nodes that may still be annealed
(typically, in an MHE of C).

Example 8. The hybridization graph for the complex of Fig. 1 is shown in Fig. 5.
The blocks are depicted as hyperedges (closed curves enclosing the nodes belong-
ing to the same block). The undirected edges are shown as dashed lines. ��
The notion of alternating cycle can be defined in general in any partitioned graph
G = (V, π, E). A path in G is a sequence of nodes v1, . . . , vn such that for each
i with 1 ≤ i < n, we have either an

edge move: {vi, vi+1} ∈ E, or a
block move: vi �= vi+1 and they belong to a common block.

a b

B C

c a

A

a b a

Fig. 5. Example of a hybridization graph



58 R. Brijder, J.J.M. Gillis, and J. Van den Bussche

The path is said to be alternating if edge moves happen for each odd i, and
block moves happen for each even i (always for 1 ≤ i < n). When the path is
alternating, it is said to be an alternating cycle when n is odd and at least 3,
and vn = v1.

Example 9. Consider the hybridization graph for the complex of Fig. 1, as shown
in Fig. 5. We refer to the node identifiers given in Example 1. Two examples
of alternating paths are p1 = x3, x9, x1, x3 and p2 = x3, x1, x10, x3, x6, x7. Note
that p1 is not an alternating cycle; although it satisfies vn = v1, its length, 4, is
not odd. Indeed, this hybridization graph does not admit an alternating cycle,
since the only free node with a negative label, ā, is in a component by itself.

Example 10. Consider the complex discussed in Example 6. Its hybridization
graph has four nodes partitioned in two blocks. One block, corresponding to the
component ab, consists of two nodes x1 and x2 labeled a and b, respectively;
the second block, corresponding to the component b̄ā, consists of two nodes y1

and y2 labeled b̄ and ā, respectively. There are two undirected edges, namely,
{x1, y2} and {x2, y1}. This hybridization graph admits an alternating cycle in
the form of x1, y2, y1, x2, x1. ��
The above two examples are in line with Theorem 1. Indeed, the complex of Fig. 1
is terminating, and indeed its hybridization graph does not have an alternating
cycle; the complex of Example 6 is nonterminating, and indeed its hybridization
graph has an alternating cycle.

The only-if implication of Theorem 1 is relatively easy to prove. The proof
of the if-implication (omitted) involves a constructive characterization of MHE
components in the form of “hybridization templates”, which we present here.

We first need the following auxiliary notion. Let G = (V, E) and G′ = (V ′, E′)
be two undirected graphs, and let f : V → V ′ be a mapping. Then f is called
a semi-strong homomorphism from G to G′ if, for all u, v ∈ V , we have the
following:

– if {u, v} ∈ E then {f(u), f(v)} ∈ E′; and
– if {f(u), f(v)} ∈ E′ then {u, w} ∈ E for some w ∈ V , or {v, w} ∈ E for

some w ∈ V .

The first condition is the standard requirement for homomorphisms; the converse
of that condition would state the standard requirement for what is known in
universal algebra as a “strong” homomorphism. The second condition, however,
states only a weak converse (hence the name “semi-strong”), in the sense that if
there is an edge between f(u) and f(v), then either u or v have to be involved
in an edge, but not necessarily with each other.

Now let C = (V, L, λ, μ) be a complex with hybridization graph H = (V, π, E).
A hybridization template for C is a pair T = (t, f) where t = (V t, πt, Et) is a
partitioned graph and f is a semi-strong homomorphism from (V t, Et) to (V, E),
such that:

1. t is connected, i.e., there is a path between any two distinct nodes (using the
notion of path in partitioned graphs as defined earlier);



Graph-Theoretic Formalization of Hybridization in DNA Sticker Complexes 59

2. Et is a partial matching, i.e., each node of V t occurs in at most one edge in
Et; and

3. for each block q of πt there is a block q′ of π such that the restriction f |q of
f to q is a bijection from q to q′, i.e., f |q is injective and the image of f |q
equals q′.

From a hybridization template T = (t, f) for C, and C itself, we can construct
a sticker complex comp(T ) = (V T , LT , λT , μT ) as follows:

– V T = V t;
– LT = {(x, y) | x and y belong to a common block and (f(x), f(y)) ∈ L};
– λT (x) = λ(f(x));
– μT = Et∪{{x, y} | x and y belong to a common block and {f(x), f(y)} ∈ μ}.

Proposition 2. The MHE components are exactly the complexes of the form
comp(T ) with T a hybridization template.

The proof of Theorem 1 also invokes the following lemma which may be inter-
esting in its own right:

Lemma 1. Let H be a partitioned graph with c distinct blocks. If H admits no
alternating cycle, then the length of any alternating path in H is at most 4c+ 2.

6 Complexity Issues

Assume hybridization terminates for a given sticker complex C. Then two follow-
up questions come up related to the complexity of the result of hybridization.
How many finished MHE components can there be? And, how large can a single
finished MHE component become?

As we have already seen in Example 5, the number of finished MHE compo-
nents may well grow exponentially in the size of the complex. Also the size of
MHE components can grow exponentially (details omitted). Unlike Example 5,
however, the latter can only happen when the alphabet is allowed to grow with
the size of the complex. Usually, however, the alphabet is fixed by the application
setting. Indeed we show: (proof omitted)

Proposition 3. Over the class of terminating complexes over any fixed alpha-
bet, the size of the largest MHE component for a complex C grows only polyno-
mially in the size of C.

Interestingly, the proof of this proposition relies on the following counterpart
to Lemma 1. The two lemmas are complementary as Lemma 1 does not assume
anything about the alphabet, whereas Lemma 2 does not assume anything about
the complex.

Lemma 2. Let H be the hybridization graph of a complex over positive alphabet
Σ. Let s be the number of symbols in Σ. If H admits no alternating cycle, then
the length of any alternating path in H is at most 8s + 2.



60 R. Brijder, J.J.M. Gillis, and J. Van den Bussche

Remark 3. Since the number of possible graphs on a polynomial number of nodes
is singly-exponential, as a corollary to Proposition 3, we obtain that over the class
of terminating complexes over a fixed alphabet, the number of MHE components
for a complex C is bounded from above by 2nO(1)

, where n is the size of C.
Hence, Example 5 essentially illustrates the worst that can happen, i.e., double-
exponential or worse is impossible. ��
Our final result presents a restriction on classes of complexes, which we call “c-
bounded choice” (for a natural number c), so that hybridization is polynomial
on the class of c-bounded complexes. It remains to be investigated further how
practicable this restriction is, i.e., how many applications can be modeled using
sticker complexes that are c-bounded for some c. A positive indication is that
only 4-bounded complexes are needed to simulate the relational algebra; to verify
this we have inspected the procedures given in an earlier paper [16].

To define the notion of c-boundedness, we first need the notion of a “choice
node” of a complex. This is a free node having at least two neighbors in the
hybridization graph. Since the edges of the hybridization graph are solely defined
in terms of free nodes and their labels being complementary, we see the following,
for any label a ∈ Σ ∪ Σ̄: a node v labeled a is a choice node if and only if it is
free and there exist at least two free nodes labeled ā. Consequently, if there are
at least two free nodes labeled ā, then all free nodes labeled a are choice nodes;
in the other case, no node labeled a is a choice node.

Now for any natural number c, we say that a complex C has c-bounded choice,
or shorter, is c-bounded, if for each component D of C, the number of choice nodes
reachable by alternating paths from any node in D, is at most c. Here, naturally,
we say that a node w is reachable by an alternating path from a node v, if there
is an alternating path starting with v and ending with w. In particular, any node
is reachable from itself by an alternating path, since the length-one path v is a
trivial alternating path.

Example 11. Recall the complexes Cn discussed in Example 5. Recall that the
number of finished MHE components for Cn is 2n. Since there are two free ā-
nodes, the n nodes labeled a are all choice nodes. As these n nodes all belong
to a common component, the smallest c such that Cn is c-bounded is n. Hence,
there is no fixed c such that all Cn, for all n, are c-bounded.

Suppose now, we modify Cn to C′
n by removing the sticker āc̄. Then the a-

nodes are no longer choice nodes. The only remaining choice node C ′
n is the

ā-labeled node. Hence, each C′
n is 1-bounded. Now note that each C′

n has only
one finished component, obtained by annealing each a-node to the ā-node of a
fresh copy of the sticker āb̄. In particular, hybridization is not exponential on
the class of C ′

n complexes for all n. ��
The above example illustrates our result: (proof omitted)

Theorem 2. Let c be a natural number. Over the class of terminating, c-bounded
complexes over a fixed alphabet, the hybridization of any complex C has size poly-
nomial in the size of C.



Graph-Theoretic Formalization of Hybridization in DNA Sticker Complexes 61

Remark 4. Theorem 2 states that for c-bounded terminating complexes over a
fixed alphabet, the result of hybridization has polynomial size. By Definition 1
and Proposition 3, this is the same as saying that the number of finished MHE
components is polynomial. Note that it is not true that the number of unfinished
MHE components is polynomial. For example, for each number n, consider a
complex Un with two components: one is the strand a . . . a (n times), and the
other is the sticker ā. There are 2n−1 unfinished MHE components, by choosing
a strict subset of the n positive nodes, and annealing to each of them a copy of
the sticker. There is, however, a unique finished MHE component, obtaining by
annealing a copy of the sticker to all positive nodes.

Remark 5. There is no converse to Theorem 2 in the sense that, if the result
of hybridization has polynomial size over some class K of complexes over some
fixed alphabet, then the complexes in K must be c-bounded for some fixed c.
Take, for example, the class K consisting of all complexes Ln, for every number
n, where Ln consists of four components: a strand d . . . d of length 2n; a strand
a . . . a of length n; and two stickers āb̄ and āc̄. The size of Ln is 2n + n + 4, and
there are 2n finished MHE components for Ln, which is a number polynomial
in the size of Ln. Yet, the class K is not c-bounded for any fixed c, since Ln

contains n choice nodes.

7 Conclusion

A natural extension of our approach would be to account for probabilities or
error rates on the results produced (finished or unfinished) during hybrization. Of
course, error modeling in DNA computation, and secondary structure prediction,
are well-known research problems, e.g., [13, 9].

In previous work [16] two of us have defined a database-oriented DNA pro-
gramming language, called DNAQL, with the goal of understanding the database
side of DNA computing. Various open problems remain in connection with this
language, including guaranteeing well-definedness through a type system, and
understanding the expressive power.

Obviously, we would also like to see the sticker complex data model justified
physically (or understand what are the unrealistic aspects), either experimentally
or by simulation.

Acknowledgement. We thank the program committee for referring us to the
work of Jonoska et al. [19].

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Adleman, L.: Molecular computation of solutions to combinatorial problems. Sci-
ence 226, 1021–1024 (1994)

3. Amos, M.: Theoretical and Experimental DNA Computation. Springer, Heidelberg
(2005)



62 R. Brijder, J.J.M. Gillis, and J. Van den Bussche

4. Arita, M., Hagiya, M., Suyama, A.: Joining and rotating data with molecules. In:
Proceedings 1997 IEEE International Conference on Evolutionary Computation,
pp. 243–248 (1997)

5. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molec-
ular computer for logical control of gene expression. Nature 429, 423–429 (2004)

6. Boneh, D., Dunworth, C., Lipton, R., Sgall, J.: On the computational power of
DNA. Discrete Applied Mathematics 71, 79–94 (1996)

7. Cardelli, L.: Abstract machines of systems biology. In: Priami, C., Merelli, E.,
Gonzalez, P., Omicini, A. (eds.) Transactions on Computational Systems Biology
III. LNCS (LNBI), vol. 3737, pp. 145–168. Springer, Heidelberg (2005)

8. Cardelli, L.: Strand algebras for DNA computing. In: Deaton and Suyama [12], pp.
12–24

9. Chen, H.L., Kao, M.Y.: Optimizing tile concentrations to minimize errors and time
for DNA tile self-assembly systems. In: Sakakibara and Mi [28], pp. 13–24

10. Chen, J., Deaton, R., Wang, Y.Z.: A DNA-based memory with in vitro learning
and associative recall. Natural Computing 4(2), 83–101 (2005)

11. Condon, A., Corn, R., Marathe, A.: On combinatorial DNA word design. Journal
of Computational Biology 8(3), 201–220 (2001)

12. Deaton, R., Suyama, A. (eds.): DNA 15. LNCS, vol. 5877. Springer, Heidelberg
(2009)

13. Dimitrov, R., Zuker, M.: Prediction of hybridization and melting for double-
stranded nucleic acids. Biophysical Journal 87, 215–226 (2004)

14. Dirks, R., Pierce, N.: Triggered amplification by hybridization chain reaction. Pro-
ceedings of the National Academy of Sciences 101(43), 15275–15278 (2004)

15. Garcia-Molina, H., Ullman, J., Widom, J.: Database Systems: The Complete Book.
Prentice-Hall, Englewood Cliffs (2009)

16. Gillis, J., Van den Bussche, J.: A formal model of databases in DNA. In: Horimoto,
K., Nakatsui, M., Popov, N. (eds.) Algebraic and Numeric Biology 2010. LNCS,
Springer, Heidelberg (to appear, 2011) for a preprint, http://alpha.uhasselt.
be/~vdbuss/dnaql.pdf

17. Hartmanis, J.: On the weight of computations. Bulletin of the EATCS 55, 136–138
(1995)

18. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading (1979)

19. Jonoska, N., McColm, G., Staninska, A.: On stoichiometry for the assembly of
flexible tile DNA complexes. Natural Computing, January 23 (2010) (published
online)

20. Majumder, U., Reif, J.: Design of a biomolecular device that executes process
algebra. In: Deaton and Suyama [12], pp. 97–105

21. Paun, G., Rozenberg, G., Salomaa, A.: DNA Computing. Springer, Heidelberg
(1998)

22. Qian, L., Soloveichik, D., Winfree, E.: Efficient Turing-universal computation with
DNA polymers. In: Sakakibara and Mi [28], pp. 123–140.

23. Reif, J.: Parallel biomolecular computation: models and simulations. Algorith-
mica 25(2-3), 142–175 (1999)

24. Reif, J.H., LaBean, T.H., Pirrung, M., Rana, V.S., Guo, B., Kingsford, C., Wick-
ham, G.S.: Experimental construction of very large scale DNA databases with as-
sociative search capability. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS,
vol. 2340, pp. 231–247. Springer, Heidelberg (2002)



Graph-Theoretic Formalization of Hybridization in DNA Sticker Complexes 63

25. Rothemund, P.: A DNA and restriction enzyme implementation of Turing ma-
chines. In: Lipton, R., Baum, E. (eds.) DNA Based Computers: DIMACS Work-
shop, held April 4, pp. 75–120. American Mathematical Society, Providence (1996)

26. Roweis, S., Winfree, E., Burgoyne, R., Chelyapov, N., Goodman, M., Rothemund,
P., Adleman, L.: A sticker-based model for DNA computation. Journal of Compu-
tational Biology 5(4), 615–629 (1998)

27. Sager, J., Stefanovic, D.: Designing nucleotide sequences for computation: A survey
of constraints. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892,
pp. 275–289. Springer, Heidelberg (2006)

28. Sakakibara, Y., Mi, Y. (eds.): DNA 16 2010. LNCS, vol. 6518. Springer, Heidelberg
(2011)

29. Sakamoto, K., et al.: State transitions by molecules. Biosystems 52, 81–91 (1999)
30. Seelig, G., Soloveichik, D., Zhang, D., Winfree, E.: Enzyme-free nucleic acid logic

circuits. Science 315(5805), 1585–1588 (2006)
31. Shortreed, M., et al.: A thermodynamic approach to designing structure-free com-

binatorial DNA word sets. Nucleic Acids Research 33(15), 4965–4977 (2005)
32. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical

kinetics. In: PNAS 2010, March 4 (2010) (published online)
33. Soloveichik, D., Winfree, E.: The computational power of Benenson automata.

Theor. Comput. Sci. 244(2–3), 279–297 (2005)
34. Winfree, E., Yang, X., Seeman, N.: Universal computation via self-assembly of

DNA: Some theory and experiments. In: Landweber, L., Baum, E. (eds.) DNA
Based Computers II: DIMACS Workshop, held June 10-12, pp. 191–213. American
Mathematical Society, Providence (1998)

35. Yamamoto, M., Kita, Y., Kashiwamura, S., Kameda, A., Ohuchi, A.: Development
of DNA relational database and data manipulation experiments. In: Mao, C., Yoko-
mori, T. (eds.) DNA12. LNCS, vol. 4287, pp. 418–427. Springer, Heidelberg (2006)



Localized Hybridization Circuits

Harish Chandran1, Nikhil Gopalkrishnan1, Andrew Phillips2, and John Reif1

1 Department of Computer Science, Duke University
{harish,nikhil,reif}@cs.duke.edu

2 Microsoft Research
Andrew.Phillips@microsoft.com

Abstract. Molecular computing executed via local interactions of spa-
tially contiguous sets of molecules has potential advantages of (i) speed
due to increased local concentration of reacting species, (ii) generally
sharper switching behavior and higher precision due to single molecule
interactions, (iii) parallelism since each circuit operates independently
of the others and (iv) modularity and scalability due to the ability to
reuse DNA sequences in spatially separated regions. We propose detailed
designs for local molecular computations that involve spatially contigu-
ous molecules arranged on addressable substrates. The circuits act via
enzyme-free DNA hybridization reaction cascades. Our designs include
composable OR, AND and propagation Boolean gates, and techniques
to achieve higher degree fan-in and fan-out. A biophysical model of lo-
calized hybridization reactions is used to estimate the effect of locality
on reaction rates. We also use the Visual DSD simulation software in
conjunction with localized reaction rates to simulate a localized circuit
for computing the square root of a four bit number.

1 Introduction

Molecular computation (MC) is computation executed at the molecular scale.
Since the seminal work of Adleman[1], many DNA based computation schemes
have been proposed.

We will be discussing MCs that use strands of DNA to store state and execute
various reactions that involve DNA hybridization and DNA strand displacement
processes. DNA hybridization is the non-covalent binding of two complementary
DNA sequences to form a single duplex structure. DNA strand displacement is
the displacement of a single strand of DNA from a double helix by an incoming
strand with a longer complementary region to the template strand. The incom-
ing strand has a toehold, an empty single stranded region on the template strand
complementary to a subsequence of the incoming strand, to which it binds ini-
tially. It eventually displaces the outgoing strand via a kinetic process modeled
as a one-dimensional random walk. Strand displacement is a key process in DNA
nanoscience and many DNA nanosystems relying on DNA strand displacement
have been demonstrated, ranging from DNA walkers[2] to catalytic circuits[3][4]
to molecular detectors[5].

L. Cardelli and W. Shih (Eds.): DNA 17, LNCS 6937, pp. 64–83, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Localized Hybridization Circuits 65

1.1 Local versus Global MC

We distinguish two types of MC:

• A MC is local if its state is encoded by a spatially contiguous set of molecules
i.e., the state of each computing element is explicitly determined by the config-
uration of these molecules, and transitions of state are executed via interactions
between local computing elements. An example of a purely local MC is whiplash
PCR of Sakamoto et al.[6] in which the computation state is present within a
single molecule, and state transitions are executed via polymerization reactions
on that molecule. This paper gives a detailed description of a novel local MC
using only DNA hybridization and no enzymatic reactions.
• In contrast, a MC is global if the state of the device is spatially distributed

i.e., the state is determined by averaging the concentration and configuration
of spatially distributed molecules that define state, and transitions of state are
executed via multiple distributed interactions. An example of global MC is DNA
reaction networks such as seesaw gates of Qian and Winfree[7] where all elemen-
tary logical operations (e.g., logical AND and OR) are performed via a host of
diffusion based strand displacement interactions.

Note that other MC may combine local and global; for example the tile assembly
of Rothemund and Winfree[8] performs computation by incorporating molecules
into a growing assembly.

1.2 Motivation for Local MC

We discuss some potential advantages of local MC over global MC by also con-
sidering conventional computing devices. Decades of ingenious improvements
(e,g., digital behavior, locality of memory, and local parallelism) to the design
of conventional computing devices have allowed their performance to be vastly
improved, providing optimizations beyond the improvements due purely to fab-
rication technology. We aim in this paper to exploit key aspects of these designs
in our designs of local MCs.

Execution Speedup via Locality of Memory: In conventional computing
devices such as digital processors data is stored locally wherever possible and
only when the local memory limitations are exhausted is memory repositioned
in more distributed locations. Hence conventional computing devices exploit lo-
cality as a critical method to improve execution time for both memory access
and processing. It is reasonable that locality also be critical to the design of MC
devices.

In local MC, because the dominant interactions of a molecule involve a fixed
set of neighbors, we can preferentially speed up designed interactions over spuri-
ous ones. In contrast, in a global MC, such as a DNA hybridization circuit, the
speed of execution is severely limited by diffusion processes, which are stochas-
tic processes whose rates are governed by the mobility and concentration of the
molecules. In particular, the rate of hybridization of two complementary freely
floating DNA strands (of moderate length) in a dilute buffer solution is limited



66 H. Chandran et al.

by the frequency of collisions between these DNA strands, since these molecules
must first find each other by the much slower diffusion reaction prior to the sub-
sequent hybridization reaction that occurs after they contact each other[9], [10].
The rate of diffusion can be adjusted, but is ultimately limited by pragmatic con-
siderations. Note that in a global MC, such as a DNA hybridization circuit, the
mobility of molecules can be increased by increasing the temperature, but this is
limited to be at most the melting temperature of the hybridization. Alternately,
one can attempt in a global MC to increase the rate of collisions by increasing
the concentration of the molecules, but this also increases the rate of spurious
reactions (e.g., unintended hybridization and/or dehybridizations, etc), by the
same factor. Hence, ultimately the computation rate of such global MCs is lim-
ited by diffusion rates, not the local reaction rates. This implies that global MCs,
such as DNA hybridization networks which rely on diffusion at each step, may be
inherently slower than local MCs where the local concentration of the reacting
species results in collision rates that are several orders of magnitude larger.

Digital Behavior in Conventional Computing Devices: In conventional
digital computing machines the digital behavior of switches is a fundamental
building block and it is reasonable that they would also be critical to the design
of MC devices. Bi-stable devices that are used to simulate switches exhibit analog
behavior as they execute switching transitions. A sharper transition leads to
faster switching times. Greater activation energies for the switching transition
lead to increased robustness of the device. These two factors together decide
the digital behavior of the device. This sharp digital behavior seems likely to be
useful in incorporating variants of techniques (such as fault tolerance) perfected
for standard silicon based digital devices into the design of MC devices. There
are considerable differences in the digital behavior of local and global MC:

• Circuits implemented by local MC using spatially contiguous molecules ex-
hibit sharp switching behavior within the computing unit. In particular, the
state of each computing element is explicitly determined by the configuration of
these molecules, so is unambiguous and digital in nature.
• In contrast, circuits implemented by global MC such as DNA hybridization

reaction networks exhibit analog behavior that can be translated into digital
behavior only by applying thresholds. In particular, the state of a global MC
is determined by averaging the concentration and configuration of spatially dis-
tributed molecules that define state, and so is an analog value.

Local Parallelism in Conventional Computing Devices: Modern-day con-
ventional computing devices exploit parallel processing at many levels, both at the
local processor chip as well as in multi-core architectures, to allow computations
to progress along different computational paths in parallel. MC can exploit local
parallelism to allow multiple distinct local MCs to progress along different compu-
tational paths in parallel. For example, a plethora of programmable nanomanufac-
turing systems have been demonstrated[11][12]. These nanomanufacturing
systems require the state information to be stored locally so that different prod-
ucts can be assembled in parallel in different molecules. Even if only a single



Localized Hybridization Circuits 67

product is targeted, different instances of the same product might be at different
stages of manufacture at any given time. This requires the state information to
be stored locally and is ideally suited for local molecular computing. In contrast,
it is not evident how to implement this local control in a global MC.

Modularity: In conventional computing, devices generally contain multiple
identically designed computational units that act as modules in the overall archi-
tecture and considerably simplify the overall design. In MC, we can expect that
modularity will also be a critical aspect of the design and in large part relates
to DNA sequence reusability:

• Local MC involves interactions only with a fixed set of neighbors of each
molecule and this enables distinct namespaces across molecules and opens up
possibilities of sequence reuse in the system. In particular, since our local DNA
hybridization circuits are spatially separated and cannot directly interact, we
can reuse the same DNA sequences to build the same functionality (e.g., DNA
hybridization circuit for a given logical operation) on a different part of the
system using very few distinct DNA sequences in the overall design.
• Global MC on the other hand involves interactions among DNA strands

that can be present anywhere in the reacting vessel, which implies a single
global namespace for the sequences, and hence considerably limits DNA sequence
reusability.

1.3 Our Contribution and Paper Organization

We develop detailed designs to implement DNA circuits on fully addressable
DNA nanostructures such as a fully addressable lattice developed by Yan et
al.[13] or DNA origami developed by Rothemund[14]. In doing so we develop a
local molecular computing methodology to compute arbitrary Boolean functions.
Our circuits are designed carefully to place downstream gates close enough to
upstream gates to implement rapid signal transduction but far enough to mini-
mize leaks. We argue that our circuits will: (i) be faster than chemical reaction
networks due to increased local concentration of reacting species, (ii) exhibit
generally sharper switching behavior and higher precision due to single molecule
interactions, (iii) be highly parallel since each circuit operates independently of
the others which finds use in nanomanufacture (iv) be modular and scalable
due to the ability to reuse DNA sequences in spatially separated regions. We
estimate the effect of locality on reaction rates via a biophysical model of local-
ized hybridization reactions. We then use the Visual DSD simulation software
in conjunction with these localized reaction rates to simulate a localized circuit
for computing the square root of a four bit number.

1.4 Prior Work

In theory it is possible to perform arbitrary computations using DNA strands,
ignoring issues of errors, scale and time. Current experimental demonstrations
are far from this ideal. Synthetically designed DNA nanosystems currently can-
not be leveraged to perform computationally complex biochemical tasks. The



68 H. Chandran et al.

need is for DNA circuits that are autonomous, error-resilient, scalable, fast and
energy efficient. We review progress toward this goal over the past decade.

Catalytic DNA Circuits: Zhang et al.[3] argued that autonomous, scalable
circuits require signal amplification and proposed catalysis as a means of achiev-
ing amplification. Their entropy-driven catalytic gate achieved an auto-catalytic
exponential amplification of a DNA signal, as opposed to linear amplification[5].
The free energy for this reaction is a result of entropic gain due to dissociation of
weakly-bound DNA strands. At the same time, Yin et al.[4] also illustrated the
power of catalysis by demonstrating catalyzed formation of branched structures,
auto-catalytic exponential amplifiers, dendritic growth and bipedal walkers. All
these reactions were executed using an elementary hairpin motif with distinct
functional sequence domains, allowing the reaction network to be abstracted by
a simple visual symbolic language. These papers establish catalysis as a robust
paradigm for constructing amplifying DNA gates.

Composable DNA Gates: The next challenge is to integrate catalytic DNA
gates into large circuits. Qian and Winfree[15] proposed the simple and elegant
seesaw gate, a modification of the catalytic gate of Zhang et al.[3] to make
it composable. All toehold domains in the seesaw gate are identical, allowing
for modular design of the circuit and parallel synthesis of many gates. Using
the seesaw gates, Qian and Winfree[7] were able to demonstrate a non-trivial
computation using hundreds of gates. The key obstacle toward further scaling
up their circuit is the speed of operation. Since the seesaw gates are freely floating
in solution, the reaction rates are primarily limited by the time it takes for DNA
strands to encounter each other via diffusion. The authors take note of this issue
and suggest moving their circuits to origami to speed-up hybridization kinetics,
avoid cross talk and re-use sequences in spatially separate locations. This work
expands upon those ideas.

Two Domain Fork and Join Gates: Cardelli[16] developed designs for trans-
duction, fork and join gates using DNA strands limited to two domains. He an-
alyzed the power of systems composed of these 3 basic gates, proved that they
are equivalent to Petri nets and simulated various systems specified in this two
domain language. Our independently derived designs for AND, OR and PROP-
AGATION gates are similar to the fork and join gates described in this work.

Addressable DNA Substrates: We develop designs that implement DNA hy-
bridization circuits on fully addressable substrates. Much experimental progress
has been achieved in the area of addressable DNA substrates. Park et al.[17]
demonstrated a fully addressable lattice built out of the cross tile developed
by Yan et al.[13]. This was later extended to an 8 × 8 fully addressable lattice
by Pistol and Dwyer[18] using hierarchical assembly techniques. Rothemund[14]
developed the technique of DNA origami in which a long scaffold DNA strand
obtained from a viral genome is folded into the desired shape by the use of hun-
dreds of short synthetic DNA strands called staples. Each staple strand binds
to the scaffold strand at precisely two locations thereby localizing two distinct
points on the scaffold strand. Hundred such stapling events fold the scaffold



Localized Hybridization Circuits 69

into the desired shape. Origami has been widely used as a substrate to ar-
range various molecules[12][19] and has been extended to form three dimensional
shapes[20][21].

2 Design of DNA Hybridization Circuits on Addressable
DNA Substrates

We begin by designing two composable DNA hybridization driven gates that
perform AND and OR Boolean logic. An additional propagation gate serves as
a wire and propagates signal. The gates are implemented as a cascade of toehold
mediated strand displacement reactions. Each of these reactions is initiated via
a universal toehold binding domain (labeled T̃ ) whose sequence is the same
throughout the circuit. The specificity of strand displacement is conferred by
a set of specificity domains (labeled S̃i) that are unique to each gate. We assume
that there exists an irreversible downstream drain (not shown in the figures) for
each gate.

The gates can be precisely positioned on the fully addressable DNA substrate
by designing them as extensions of conventional substrate strands. The actual
positioning of the gates depends on the digital circuit being implemented. In
particular, gates that are connected to each other are placed close to each other.
In this sense, the localized DNA circuit mimics the topology of the actual dig-
ital circuit diagram. Each localized circuit structure contains one copy of each
gate in the circuit and operates by signaling across gates via single molecules,
eliminating the need for signal restoration.

Any boolean function can be implemented using purely AND and OR gates
by the use of dual rail logic, which uses two bits each to encode 0 and 1. The
propagation gate is used to control the relative positions of the AND and OR
gates on the substrate so that the circuit elements can function correctly without
steric interference.

2.1 Design of Logical Gates

Figure 1 illustrates how two hairpin motifs are used to achieve OR logic. For
input domains Si1 and Si2 we design motifs with the sequences Si1TSoT̃ S̃i1 T̃ and
Si2TSoT̃ S̃i2 T̃ respectively where S̃i1 and S̃i2 are the input recognition domains
and So is the output domain. In the presence of either the sequence TSi1 or TSi2 ,
one of the hairpins opens up to reveal the output So as illustrated in Figure 1.
Note that the reaction that opens the hairpin is irreversible in the presence of a
downstream gate that consumes So.

Figure 2 illustrates a two input AND gate complex consisting of a hairpin
motif and a protector strand. For input domains Si1 and Si2 , the hairpin mo-
tif has sequence Si2TSoT̃ S̃i2 T̃ S̃i1 T̃ and is hybridized to the protector that has
sequence Si1T . The sequences S̃i1 and S̃i2 are the input recognition domains
and So is the output domain. In the presence of the sequence TSi1 the protec-
tor is displaced out of the complex exposing a universal toehold domain T̃ . If the



70 H. Chandran et al.

Fig. 1. The OR gate computing the Boolean function Si1 + Si2 . It is implemented by
two green strands Si1TSoT̃ S̃i1 T̃ and Si2TSoT̃ S̃i2 T̃ . The inputs are TSi1 and TSi2 .
The presence of either of these input strands triggers the exposure of the output TSo

which is initially sequestered in a hairpin.

Fig. 2. The AND gate computing the Boolean function Si1 · Si2 . It is implemented by
a complex consisting of the green strand Si2TSoT̃ S̃i2 T̃ hybridized to the light green
strand Si1T . The inputs are TSi1 and TSi2 . The presence of both of these input strands
triggers the exposure of the output TSo which is initially sequestered in a hairpin.

Fig. 3. The Propagation gate enables the signal transduction Si → So. It is imple-
mented by a green strand SiTSoT̃ S̃iT̃ The input TSi triggers the exposure of the
output TSo which is initially sequestered in a hairpin.

Fig. 4. A degree two fan-out gate transducing input signal Si to two output signals
So1 and So2



Localized Hybridization Circuits 71

sequence TSi2 is also present, it initiates strand displacement via this newly
exposed toehold to reveal the output So as illustrated in Figure 2. Note that the
reaction that opens the hairpin is irreversible in the presence of a downstream
gate that consumes So.

Figure 3 illustrates a propagation gate, that act as a wire that propagates
signal. It can be thought of as an OR gate with one of the inputs hard wired to
a Boolean 0. In our implementation this is achieved by simply leaving out one
of the two motifs that make up the OR gate. By stringing together a series of
propagation gates, we can create signal transduction pathways between gates.

Circuits with gates that support a fan-in of 2 and a fan-out of 1 are capable of
computing any boolean function. However, supporting higher fan-in and fan-out
reduces the size of the circuit (number of gates) and simplifies the circuit. While
unlimited fan-in and fan-out is not practical for real physical systems, we show
how one may achieve a fixed small degree of fan-in and fan-out for our DNA
gates. A k degree fan-in OR gate can be achieved by using k hairpin motifs in
parallel. The degree of fan-in is restricted by the space available on the substrate.
Overcrowding or spreading the gate over a larger area may degrade performance.
The optimal arrangement would have to be experimentally determined. A k
degree fan-in AND gate can be achieved by using a hairpin motif with k − 1
protectors in serial. The switching speed of the multi-input AND gate is inversely
propositional to the degree of fan-in due to the serial nature of the AND gate.

A k degree fan-out from a signal Si can be implemented using k downstream
propagation gates transducing the signal Si to signals So1 , So2 , . . . Sok

using k−1
copies of a fuel strand SiT . Fuel strands can be tethered to the substrate to
achieve localized hybridization kinetics. A degree 2 fan-out gate is illustrated
in figure 4. The signal Si activates one of the k downstream propagation gates
whose output region Soi is consumed by an irreversible downstream drain. The
fuel strand now binds to the propagation gate using the newly exposed toehold T̃
and kicks off the signal Si which can now activate another propagation gate and
so on until all the k distinct propagation gates are serially activated. Once again,
transduction speed of the fanout logic is inversely propositional to the degree of
fan-out due to its serial nature. This rate might be improved by tethering the k
copies of the fuel strands near the propagation gates.

2.2 Compiling Boolean Circuits into DNA Hybridization Circuits

Converting a Boolean circuit into a DNA circuit involves two stages. First the
Boolean circuit is compiled into a dual-rail circuit that computes the same func-
tion. There may be several different dual-rail circuits that compute the same
function and we may wish to find an optimal one, based on characteristics like
small number of gates, uniform depth, balanced signal propagation delay across
all pathways (recalling that our DNA AND gates are slower than OR gates)
etc. We can compile the dual-rail Boolean circuit into a DNA circuit by us-
ing the AND, OR and propagation gate motifs. We optimize the placement of
these gates on our substrate, adding or deleting propagation gates as necessary.



72 H. Chandran et al.

The sequence design for the gate motifs is modular and we simply design all
binding domains so as to minimize spurious interactions. Techniques for domain
level sequence design have been discussed by Zhang[22].

In practice, we may incorporate further optimizations in designing our DNA
circuits rather than compiling them directly. For instance, we may wish to target
certain leaky portions of the circuit and make them more fault tolerant by, for
instance, replicating the circuit module and taking the majority. Such techniques
to increase robustness of circuits are well studied in the VLSI community and
it is likely that the algorithmic solutions found there may be translated simply
into DNA circuits because of the digital gate level abstraction that we provide.

2.3 Assembly of DNA Hybridization Circuits on Addressable DNA
Nanostructures

In this section we illustrate two methods to organize DNA circuits on addressable
DNA substrates by highly parallel synthesis that is experimentally feasible and
scales to large number of gates.

Pistol and Dwyer[18] have demonstrated the assembly of fully addressable
DNA lattices of size up to 8 × 8 using hierarchical assembly techniques. The
hierarchical assembly can be parallelized and has the potential to be scaled
beyond 8 × 8 lattices. We use this approach to organize our circuits on DNA
lattices. Each DNA gate motif is designed as an extension of one of the strands
that is part of the tile that assembles into a lattice. Since each tile in the finally
formed lattice is uniquely addressable, the motifs can be precisely and specifically
positioned on the lattice according to the circuit being implemented.

Rothemund[14] demonstrated the breakthrough DNA origami technique for
manufacturing large, fully addressable DNA nanostructures with high yield in a
single pot reaction. Each designed hybridization interaction in a DNA origami
structure is between a staple and a region of the scaffold. No staple-staple or
scaffold-scaffold interactions are designed. Thus, even if the relative concentra-
tions of the staples are imprecise, the final yield of the origami structure remains
high as long as an excess (about 10×) of staple strands is used. We use the same
approach to organize our circuits on DNA origami. Each DNA gate motif is an
extension of a staple strand. Since the surface of the origami is uniquely ad-
dressable, the motifs can be precisely and specifically positioned on the origami
according to the circuit being simulated.

The key cause for concern is that when annealed, the hairpin strands will
interact with each other rather than folding up into the required hairpin motif.
However, there is evidence that when annealed, dilute (≈ nM concentrations)
interacting strands undergo uni-molecular reactions and fold up into hairpin mo-
tifs rather than hybridizing with each other via bi-molecular reactions[23]. This
is explained by noting that the hairpin structure is stable at a higher temper-
ature than the intermolecular complex and as the system is cooled, the motifs
form hairpins first getting kinetically trapped in the non-optimal thermodynamic
state. It is unclear if this assumption holds when the strands are locally concen-
trated, for instance, by tethering them close to each other. To avoid this problem,



Localized Hybridization Circuits 73

we design our motifs such that their hairpin structure is stable at higher tem-
peratures than both the temperature at which they are stably incorporated into
the substrate and the temperature at which the bimolecular complex is stable.
When annealed, we expect the hairpin motif to form while the strands are dilute
and not yet tethered to the substrate, and then the motifs are incorporated into
the substrate.

Since the OR motifs are simply single stranded hairpins, this is easily achieved
by making the length of the specificity domain moderately longer than the length
by which the motif is tethered to the origami. In practice, the tether length could
be 16 bases while the length of the specificity domain could be 20 and the toehold
domain could be 5 bases, making the stem of the OR hairpin motif 25 bases long.
The AND motif is slightly more problematic since it is a two strand complex - a
protector strand hybridized to a hairpin motif. By choosing lengths of 20 and 5
bases for the specificity and toehold domains we can ensure that the protector-
hairpin complex is stable at a higher temperature than the temperature at which
the origami tether is stable. However, an upstream input to the AND motif would
have similar stability with the AND hairpin as the protector-hairpin complex as
both are bimolecular reactions. This difficulty can be overcome in one of two ways.
We can anneal the protector-hairpin complex separately, purify it and then add
it to the origami mix. While annealing the origami mix we take care to not heat
the sample above the melting temperature of the protector-hairpin complex. Al-
ternately, we design the AND motif as a single hairpin motif and cleave the motif
at the appropriate site after annealing by using a nicking enzyme. For this pur-
pose we can design the toehold sequence as the recognition domain of a nicking
enzyme which cleaves one of the strands of a double helix upstream of its recog-
nition site. Note that a single nicking enzyme would be sufficient to prepare all
protector-hairpin complexes and this process could be implemented in parallel.
Also, the restriction enzyme won’t nick the OR hairpin motifs as the correspond-
ing position in these structures is single stranded.

2.4 Reusing Sequences in Spatially Separated Circuits

In the circuits we have discussed thus far, each distinct circuit element (wires
and gates) is implemented by a distinct DNA sequence that is never reused. This
immediately places an upper bound on the complexity of the circuits since length
of DNA sequences constituting each type of circuit element is fixed. Moreover,
assigning distinct sequences to different copies of the same circuit element might
result in variance in their operational characteristics.

If the gates in a circuit are spatially separated into clusters such gates can
interact directly only with other members of the cluster they belong to, then
sequences can be reused across different clusters. Information is exchanged be-
tween clusters via signal transduction pathways. In the extreme case, one can
imagine a cluster to be a single gate and that each such gate is connected to
other gates via long signal transduction pathways. These pathways composed of
multiple propagation gates can also benefit from domain reuse. For example the
k long pathway W1 → W2 → W2 → . . . Wk can be replaced by an equivalent k



74 H. Chandran et al.

long pathway Wa →Wb →Wa → . . .Wb. Care should be taken when sequences
are reused in signal transduction pathways running close to each other or cross-
ing over one another. In such cases, signal flow across one pathway might initiate
a spurious signal flow across the other if pathways share same sequences. Such
problematic areas in the circuit can use unique sequences to minimize crosstalk.

Reusing DNA sequences to build the same functionality on a different part
of the DNA hybridization circuit allows us to build complex circuits with very
few distinct DNA sequences. Here we use the key property that our local DNA
hybridization circuits (for example a DNA hybridization circuit for a given logical
operation) are spatially separated and so cannot directly interact. While the
sequence domains that take part in circuit interactions are reused, the tether
sequences that position the elements on an addressable substrate can be distinct
(eg. in DNA origami) or can be reused (eg. in hierarchical assembly).

2.5 Functional Units and Architectures

We have discussed how to build digital circuits using DNA sequences on an ad-
dressable substrate. We can build complex circuits via a hierarchical method.
Small substrates can implement functional units that can be connected in a pre-
cise manner to synthesize computing architectures. The hierarchical assembly
process developed by Park et al.[24] can be directly applied to build such cir-
cuits using tile based assemblies. If origami is used as a substrate, then different
origami can be connected to each other via sticky ends to form larger assemblies.
One could also think of using a secondary scaffold to organize different origami
in a precise manner to enable information flow between them. One simple layout
for such architecture would be to have the computing elements in the middle of
the origami and connect them up to neighboring origami via long signal trans-
duction pathways that terminate at the edge of the origami. An advantage of
using such architectures is the ability to ”plug and play” various functional units.
For example, if we have designed and experimentally tested a set of functional
units, say an adder, subtracter and square rooter, then we can build circuits that
are composed of these functions by plugging these units into precise positions on
the assembly. These functional units could be designed to ensure that they can
communicate via the same signal transduction pathways for each input/output
bit so that they can be composed seamlessly.

3 Modeling and Simulations of Tethered Systems

In this section we investigate the speedups obtained in localized hybridization
circuits as follows: (i) We develop a simple biophysical model of tethered hy-
bridization and estimate values for a toehold binding speedup factor λ which
depends on parameters of the design of the tethers. Our biophysical model of
tethered hybridization closely follows the work of Genot et al.[25] and we use
data reported by Qian and Winfree[7] as a starting point for computing reac-
tion rates. (ii) Then we use the Visual DSD system[26] to model and simulate
a four bit square root circuit for various values of λ. We discuss some of the
shortcomings of this simple model in section 4.1.



Localized Hybridization Circuits 75

3.1 A Biophysical Model of Tethered Hybridization

Fig. 5. A biophysical model of substrate tethered
hybridization

Toehold exchange by strand
displacement is modeled by
Zhang and Winfree[27] as
a three stage process: toe-
hold binding, branch migra-
tion and toehold unbinding.
We study the effect of teth-
ering on a toehold exchange
reaction by considering the
effect of tethering on each of
these stages. Branch migra-
tion and toehold unbinding rates are unlikely to be affected by tethering since
they are local processes internal to the molecule. The rate and order of a toehold
binding reaction changes due to tethering and essentially becomes a unimolec-
ular reaction, taking place within a single macromolecule, with a larger rate
constant. We make the biophysics motivated assumption that the speedup in
the toehold binding rate constant is purely due to the effective concentration
of the incoming strand. Our analysis and assumptions closely follow the work
of Genot et al.[25]. We first calculate an approximate effective concentration
c for the incoming toehold strand under certain biophysical assumptions. The
new toehold binding rate constant k̃s is calculated as the product of the original
(diffusion-based) toehold binding rate ks and the effective concentration c of the
incoming strand.

We assume that the gates are tethered to their substrate via a short single
strand of DNA that has negligible persistence length and hence acts as a com-
pletely flexible hinge. The double stranded portions of the gates are much longer
than these tethers and are assumed to behave like stiff rods. Figure 5 illustrates
the interaction between an upstream gate tethered at P and a downstream gate
tethered at Q, a distance r away. The cube of side a illustrates the reaction vol-
ume, the volume within which the incoming toehold region must lie for toehold
binding reaction to occur. We assume that a is much smaller than r. We also
ignore the single stranded region at the end of the double stranded region of the
upstream gate and assume that the effective concentration for toehold binding
is approximately the concentration of the end of the double stranded region in
the reaction volume. The probability that the end of the double stranded region
lies within the reaction volume is given by: p = Va/Vs where Va = a3 is the
reaction volume and Vs = 2πr2a is the volume of the shell S of thickness a
that the end of the double stranded region can explore. Thus, p = a2/2πr2. The
effective concentration in particles/m3 is c = p/a3 = 1/2πr2a. We convert this
into molarity (moles per liter) by dividing by 1000Na where Na = 6.023× 1023

is Avogadro’s number. Thus c = 1/2000πr2aNa M. The rate constant for short
toehold binding in diffusion based systems is ks = 5 × 104 /M/s at 25◦C (see
[7] supplementary information). This gives a tethered toehold rate constant of
k̃s = ks × c /s.



76 H. Chandran et al.

r a λ

20 nm 5 nm λ1 = 1.32× 103 ≈ 103

10 nm 2 nm λ2 = 1.32× 104 ≈ 104

5 nm 1 nm λ3 = 1.06× 105 ≈ 105

The overall rate of any toehold bind-
ing reaction is the product of the scaled
rate constant k̃s and the operating con-
centration c0 of the assembled circuits in
solution according to mass action kinet-
ics. We approximate the kinetics of toe-
hold binding as a bimolecular reaction and for the purposes of simulation gen-
erate a pseduo-second order rate constant scaled by the operating concentration
c0, k̂s = k̃s/c0 = ks × c/c0 = ks × λ where λ is the pseudo-bimolecular rate
constant speedup. This effectively translates to a tethered toehold binding re-
action rate of k̃s × c0. For typical operating concentration of c0 = 100 nM,
λ = 1/2000πr2Naco = 2.64× 106/ar2 when a and r are expressed in nanome-
ters. The above table illustrates three values for λ based on different physically
feasible values for a and for the length of the double stranded region r.

3.2 Simulations of Tethered Hybridization Circuits using Visual
DSD

Visual DSD [26][28] is a tool for specification, compilation and simulation of
a wide class of toehold mediated DNA strand displacement reactions. Various
hybridization circuits based on toehold exchange can be specified as a program
in the DSD programming language along with rate constants for binding and
unbinding of toeholds and for branch migrations. These programs are compiled
into a set of reactions under one of four different semantics that allow modeling
of the reaction at different granularities. This set of reactions can then be sim-
ulated by either a deterministic ODE solver or a stochastic Gillespie molecular
simulation.

We used DSD to program a four bit square root circuit constructed out of
AND, OR, FAN-OUT and PROPAGATION gates described in the previous
section. As the current implementation of DSD does not allow for specification
of hairpins, we modeled our systems without hairpins but enforced necessary
locality by private name-spaces for different toeholds. This ensures that the
output strand that physically detaches from the gate (modeling the opening of
hairpins) attaches only to a very specific set of downstream gates via a private
toehold. This models locality of reactions at the logical level. To model the
kinetics of localized hybridization, we used rate constants reported by Qian and
Winfree[7] but multiplied the toehold binding rate constant by a factor λ derived
in the previous section. As noted earlier, localized hybridization circuits can
be thought of as series of uni-molecular reactions within a macromolecule that
changes state every time a reaction occurs. Our modifications to the toehold
binding rate constant and its modeling as pseudo second order rate constant are
consistent with this understanding. It is important to note that our simulation
methodology is based on an approximation using mass action kinetics. Refer to
section 4.1 for a discussion on alternate modeling approaches.



Localized Hybridization Circuits 77

Fig. 6. Example computation of (Si1 ·Si2 +
Si3 · Si4)→ So4 implemented by two AND
gates, an OR gate and a Propagation gate
indicated by green strands and complexes.
The addressable substrate is illustrated by
the gray rectangle and the points of ad-
dressability are illustrated by the yellow
dots. The gates are placed at specific loca-
tions, indicated by big black dots, such that
down stream gates are next to the their cor-
responding inputs from the upstream gates.

In particular, we set our toehold
binding rate constant to λ × 5 ×
10−5/nM/s, toehold unbinding rate
constant to 26/s and branch migra-
tion rate constant to 1/s. To validate
the chosen rate constants, the solution
based, non-localized, four bit square
root circuit experimentally demon-
strated by Qian and Winfree[7] was
simulated with these rate constants.
We also set λ = 1 and used reported
rate constants for threshold toehold
binding (2× 10−3/nM/s) and thresh-
old toehold unbinding (1.3/s). DSD
simulations with these rate constants
agreed well with experimental data re-
ported by Qian and Winfree[7]1.

As an initial test we implemented
the circuit illustrated in figure 6 in
DSD using our simulation methodol-
ogy1. The reaction graph for this sys-
tem is shown in figure 7. In addition
to using private toeholds to model lo-
cality as described previously, we also
used a common toehold with unmod-
ified binding rate constant for the in-
put strands, to model the diffusion of
inputs to the substrate.

Figure 8a shows the stochastic simulation of the circuit compiled with finite
semantics with unproductive reactions switched on, for different values of λ.
Finite semantics mode in DSD models the toehold exchange reactions as a three
step process of toehold binding, branch migration and toehold unbinding and
assigns specific rates to each process. Unproductive reactions occur when branch
migration does not follow after successful toehold binding. This happens when
the specificity domain of the incoming strand is different from the specificity
domain of the gate which is caused when multiple specificity domains share the
same toehold. For more details about the Visual DSD tool and the options it
offers see [28].

The simulations show marked improvement in overall reaction rates with in-
creasing λ but diminishing gains as λ increases beyond 1000. This can be at-
tributed to the fact that the overall reaction kinetics is governed by the rate
limiting step of input diffusion at higher λ.

1 Data and code available at
http://research.microsoft.com/dna/dna17localized.zip



78 H. Chandran et al.

Fig. 7. Reaction graph for the example circuit illustrated in figure 6 implementing the
Boolean function x1 · x2 + x3 · x4. Initial species are highlighted with darker borders.
Note that the input strands Tx1, Tx2, Tx3, Tx4 have a common universal toehold T
whose binding rate constant is set to 5×10−5/nM/s while the other toeholds are private
(for example Ta2 is private to domain a2) and their binding rate constants are set to
λ× 5× 10−5/nM/s.

(a) Simulation data for circuit imple-
menting x1 ·x2 +x3 ·x4 with inputs set to
x1 = 1, x2 = 1, x3 = 0, x4 = 0 for different
λ. Simulation time: 300 seconds. Simula-
tion carried out in finite mode with un-
productive options on. Inset shows longer
run of system for λ = 1.

(b) Simulation data for output LSB from
the square root circuit with input 1100 for
different λ. Simulation time: 600 seconds.
Simulation carried out in finite mode
with unproductive options on. Inset shows
longer run of system for λ = 1, 10.

Fig. 8. Simulation data

Encouraged by these results we programmed a four bit square root circuit us-
ing AND, OR and FAN-OUT gates described earlier. As before, we used private
toeholds with modified binding rate constants to model locality and used a uni-
versal toehold with standard rate constants to model diffusion of inputs. Figure
8b shows data from simulations using DSD in finite mode with unproductive
reactions switched on. We first simulated the four bit square root circuit for all



Localized Hybridization Circuits 79

input values with λ = 1 and found that the computation of the output LSB
for input 1100 was the slowest to 95% completion. Due to space consideration
and in the spirit of worst case analysis, we show the behavior of this signal at
different values of λ. More data from our simulations is available at this URL1.
As before, completion rates show dramatic improvements with increasing λ and
the overall kinetics is rate limited at higher λ by input diffusion (which roughly
takes 150 seconds at 100 nM).

4 Discussion

4.1 Refined Modeling and Simulations of Tethered Systems

All localized toehold binding interactions are assigned the same rate constant
in our simulations. However, there are two types of localized toehold binding,
one between regions on the same strand (resulting in hairpin formation) and
another between distinct strands. Our biophysical model only applies to the
latter case. A more careful analysis would include different binding rates in both
cases. The challenge of modeling and simulation of tethered systems is to model
uni-molecular reactions rather than the bimolecular reactions found in most
other conventional hybridizations reaction systems. Our biophysical model is
preliminary and ignores the worm-like chain behavior of single strands of DNA.
A more detailed model may give a better estimation of local concentrations.

Molecular circuits tend to leak: downstream hybridization cascades are some-
times set off by thermal noise even in the absence of upstream signals. Spurious
hybridization interactions, either due to unintended sequence complementarity
or unproductive interactions between complementary domains (e.g. universal
toehold binding), is another common problem. Sequence reuse can mitigate unin-
tended sequence complementarity while careful positioning of interfering strands
on the substrate can inhibit unproductive reactions. Nevertheless we expect leaks
and unproductive reactions to exist, and hence the need for a model of leak re-
actions in localized circuits. A fruitful approach may be to model the time to
failure of each gate as a random variable and use this to estimate the overall
leak rate. We discuss some error-tolerance mechanisms in section 4.4.

We simulate tethered systems using mass action kinetics. An alternate ap-
proach would be to model the entire network as a continuous time Markov chain
and estimate (or simulate) its expected time to completion where the times to
completion of toehold binding, branch migration and toehold unbinding could
be estimated via DNA molecular dynamics. Our preliminary simulations (data
not shown) under this regime indicates higher speedups in tethered systems.
Addressing these issues is beyond the scope of this paper and will be a part of
future work in tethered hybridization systems.

4.2 Optimizations

The circuits discussed thus far have only utilized one side of the addressable
surface. Suppose the substrate is addressable on both sides and the substrate is



80 H. Chandran et al.

stiff and dense enough to ensure that strands on one side cannot interact with
the strands on the other (note that these assumptions are true for certain DNA
origami). Then it is possible to use both sides of the substrate for implementing
different circuits. These circuits can still interact at the edges of the substrate
for signal transduction.

The output of simple circuits could be a Boolean value requiring just one
bit. The output of such computation can be detected via standard flurophore/
quencher protocols. But complex circuits might output multiple bits or com-
pute an integer requiring the detection of multiple bits. Though one can use
multiple flurophore/quencher pairs operating at various frequencies, it is quite
clear that this solution does not scale. One possible way to overcome this issue
is to implement the circuit for each bit of the output in different test tubes.
Once again, we can exploit the spatial separation of circuits to reuse the same
flurophore/quencher pair for every output bit.

To assemble large circuits on origami requires longer scaffolds. Naturally oc-
curring long scaffolds might be problematic since they might exhibit strong sec-
ondary structure or might interfere with the DNA sequences used for various
gates. If we use spatial separation to restrict ourselves to a small set of DNA
sequences, we might mitigate the latter problem. The former problem might be
solved by careful design of a synthetic scaffold.

4.3 Synchronous Computation and Nanomanufacture

The circuits described in this paper were asynchronous and used dual rail logic.
It is possible to achieve synchronous lock-step computation using AND gates.
For example, if we want one part of a circuit (say part B) to be activated only
after another part of the circuit (say part A) has finished its computation, then
each signal transduction pathway entering into B can be changed into the output
of the AND of that original pathway and a specific completion signal from part
A. Thus part B is locked unless part A is complete. Alternating this strategy
across two circuits allows them to proceed in a lock-step fashion.

This technique can be extended to nanomanufacture applications. We can
think of the entire process having two components, a fabricating nanomachine
like a DNA walker and a computing logic that governs the action of the fabricat-
ing device. The fabricating device and the computing logic can be operated in
the lock step fashion described earlier. The computation leading to this product
formation can be governed by the actual inputs to the circuit.

4.4 Possible Errors and Techniques to Mitigate Them

Errors with localized DNA circuits can broadly be classified into two types:
errors in organizing the gate motifs on the substrate and errors in operation. The
chief possible errors in organizing the motifs on the substrate are: (i) missing
motifs and (ii) damaged motifs due to incorrect folding, sequence truncation
or formation of spurious bimolecular complexes. Techniques to deal with these
kinds of errors are discussed in section 2.3.



Localized Hybridization Circuits 81

Errors in operation are chiefly due to: (i) leaks via spontaneous opening of
the hairpin motifs (ii) leaks via stacking induced strand displacement and (iii)
spurious toehold binding. Spontaneous opening of the hairpin motifs are likely to
be rare at our operation conditions, since the stem of the hairpin is 25 bases. We
refer to the end of the stem at the loop region as the head of the motif and the
other end as its tail. Stacking induced strand displacement is likely to occur via
head to tail stacking of motifs. The loop region is likely to sterically hinder such
stacking, destabilizing it. We will also experiment with carefully orienting the
motifs on the origami surface such that these stackings strain the motif tether
region and are hence sterically hindered. For instance the motifs likely to undergo
stacking could be oriented alongside each other. Since each motif has the same
toehold binding region, the output of one motif may bind to the toehold region
of a neighboring motif even if they are not designed to interact. This spurious
interaction is prevented from setting off downstream reactions by the mismatch
in the specificity domains. However, such reactions may block the toehold region
and slow down the operation of the circuit. This problem is present even with
the seesaw circuit of Qian and Winfree[7] but does not seem to significantly
affect their correct operation for moderate circuit sizes. The spurious toehold
interactions in our designs are restricted to the diameter of motifs reachable by
the tethered motif, in contrast to the seesaw circuits where it is a global problem.

In spite of these techniques, a certain level of leaks is unavoidable. If we
assume that every copy of the circuit on origami has a fixed independent failure
probability of ε, then we expect that out of N targeted copies of the circuit,
N(1 − ε) of them will function correctly. The final output of the circuit is the
consensus of the outputs across all copies of the circuit, with appropriately set
thresholds based on the failure rate. Alternately, we can implement standard
techniques in fault tolerance into our circuits. This correction of errors at the
logical level has been used with great success in building of semiconductor based
circuits and this provides inspiration in dealing with errors due to leaks.

5 Conclusions

Local bimolecular reactions have multiple advantages over global molecular com-
putation. In this paper we have developed detailed designs to implement DNA
circuits on fully addressable DNA nanostructures such as a fully addressable lat-
tice developed by Yan et al.[13] or DNA origami developed by Rothemund[14].
In doing so we developed a local molecular computing methodology to com-
pute arbitrary Boolean functions. Our circuits are designed carefully to place
downstream gates close enough to upstream gates to implement rapid signal
transduction but far enough to minimize leaks. We argued that our circuits will:
(i) be faster than chemical reaction networks due to increased local concentration
of reacting species, (ii) exhibit generally sharper switching behavior and higher
precision due to single molecule interactions, (iii) be highly parallel since each
circuit operates independently of the others which finds use in nanomanufacture



82 H. Chandran et al.

(iv) be modular and scalable due to ability to reuse DNA sequences in spatially
separated regions. A biophysical model of localized hybridization reactions was
used to estimate the effect of locality on reaction rates. We used the Visual DSD
simulation software in conjunction with these localized reaction rates to simulate
a localized circuit for computing the square root of a four bit number.

This effort is a first attempt at realizing enzyme-free localized hybridization
circuits. In light of the rapid growth of DNA nanotechnology, it is our hope
that the principles expounded in this paper will serve as a starting point for the
eventual realization of localized hybridization circuits in the laboratory.

Acknowledgments. We wish thank to Erik Winfree, David Zhang and Bernard
Yurke for useful discussions on the localized strand displacement process. We
thank anonymous referees for pointing out relevant prior work and critical sug-
gestions on modeling of tethered systems. We would also like to thank Sudhanshu
Garg for assisting in creating figures for a preliminary draft and Archana Ra-
mamoorthy for proof-reading. This work was supported by NSF EMT Grants
CCF-0829797 and CCF-0829798.

References

1. Adleman, L.: Molecular Computation of Solutions to Combinatorial Problems.
Science 266(5178), 1021–1024 (1994)

2. Sherman, W., Seeman, N.: A Precisely Controlled DNA Biped Walking Device.
Nano Letters 4, 1203–1207 (2004)

3. Zhang, D., Turberfield, A., Yurke, B., Winfree, E.: Engineering Entropy-Driven
Reactions and Networks Catalyzed by DNA. Science 318, 1121–1125 (2007)

4. Yin, P., Choi, H., Calvert, C., Pierce, N.: Programming Biomolecular Self-assembly
Pathways. Nature 451(7176), 318–322 (2008)

5. Dirks, R., Pierce, N.: Triggered Amplification by Hybridization Chain Reaction.
Proceedings of the National Academy of Sciences of the United States of Amer-
ica 101(43), 15275–15278 (2004)

6. Sakamoto, K., Kiga, D., Momiya, K., Gouzu, H., Yokoyama, S., Ikeda, S.,
Sugiyama, H., Hagiya, M.: State Transitions by Molecules. Biosystems, 81–91
(1999)

7. Qian, L., Winfree, E.: Scaling up Digital Circuit Computation with DNA Strand
Displacement Cascades. Science 332(6034), 1196–1201 (2011)

8. Rothemund, P., Winfree, E.: The Program-Size Complexity of Self-Assembled
Squares. In: Symposium on Theory of Computing, pp. 459–468 (2000)

9. Turberfield, A., Mitchell, J., Yurke, B., Mills, A., Blakey, M., Simmel, F.: DNA
Fuel for Free-Running Nanomachines. Physical Review Letters 90(11) (2003)

10. Seelig, G., Yurke, B., Winfree, E.: Catalyzed Relaxation of a Metastable DNA Fuel.
Journal of the American Chemical Society 128(37), 12211–12220 (2006)

11. He, Y., Liu, D.: Autonomous Multistep Organic Synthesis in a Single Isother-
mal Solution Mediated by a DNA Walker. Nature Nanotechnology 5(11), 778–782
(2010)

12. Gu, H., Chao, J., Xiao, S.-J., Seeman, N.: A Proximity-based Programmable DNA
Nanoscale Assembly Line. Nature 465(7295), 202–205 (2010)



Localized Hybridization Circuits 83

13. Yan, H., Park, S.H., Finkelstein, G., Reif, J., LaBean, T.: DNA-Templated Self-
Assembly of Protein Arrays and Highly Conductive Nanowires. Science 301(5641),
1882–1884 (2003)

14. Rothemund, P.: Folding DNA to Create Nanoscale Shapes and Patterns. Na-
ture 440, 297–302 (2006)

15. Qian, L., Winfree, E.: A Simple DNA Gate Motif for Synthesizing Large-scale
Circuits. DNA Computing, 70–89 (2009)

16. Cardelli, L.: Two-Domain DNA Strand Displacement. DCM, 47–61 (2010)
17. Park, S.-H., Yin, P., Liu, Y., Reif, J., LaBean, T., Yan, H.: Programmable DNA

Self-assemblies for Nanoscale Organization of Ligands and Proteins. Nano Let-
ters 5, 729–733 (2005)

18. Pistol, C., Dwyer, C.: Scalable, Low-cost, Hierarchical Assembly of Programmable
DNA Nanostructures. Nanotechnology 18, 125305–125309 (2007)

19. Lin, C., Liu, Y., Yan, H.: Self-Assembled Combinatorial Encoding Nanoarrays for
Multiplexed Biosensing. Nano Letters 7(2), 507–512 (2007)

20. Douglas, S., Dietz, H., Liedl, T., Hogberg, B., Graf, F., Shih, W.: Self-assembly of
DNA into Nanoscale Three-dimensional Shapes. Nature 459(7245), 414–418 (2009)

21. Dietz, H., Douglas, S., Shih, W.: Folding DNA into Twisted and Curved Nanoscale
Shapes. Science 325(5941), 725–730 (2009)

22. Zhang, D.: Towards Domain-Based Sequence Design for DNA Strand Displacement
Reactions. DNA 16, 162–175 (2010)

23. Dirks, R., Bois, J., Schaeffer, J., Winfree, E., Pierce, N.: Thermodynamic Analysis
of Interacting Nucleic Acid Strands. SIAM Review 49, 65–88 (2007)

24. Park, S.H., Pistol, C., Ahn, S.J., Reif, J., Lebeck, A., LaBean, C.D.T.: Finite-Size,
Fully Addressable DNA Tile Lattices Formed by Hierarchical Assembly Proce-
dures. Angewandte Chemie International Edition 45(5), 735–739 (2006)

25. Genot, A., Zhang, D., Bath, J., Turberfield, A.: Remote Toehold: A Mechanism for
Flexible Control of DNA Hybridization Kinetics. Journal of American Chemical
Society 133(7), 2177–2182 (2011)

26. Phillips, A., Cardelli, L.: A Programming Language for Composable DNA Circuits.
Journal of The Royal Society Interface 6(11), 419–436 (2009)

27. Zhang, D.Y., Winfree, E.: Control of DNA Strand Displacement Kinetics Using
Toehold Exchange. Journal of the American Chemical Society 131(48), 17303–
17314 (2009)

28. Lakin, M., Youssef, S., Cardelli, L., Phillips, A.: Abstractions for DNA Circuit
Design. Journal of The Royal Society Interface (in press, 2011)



Less Haste, Less Waste: On Recycling and Its Limits in
Strand Displacement Systems

Anne Condon, Alan Hu, Ján Maňuch, and Chris Thachuk

The Department of Computer Science,
University of British Columbia, Vancouver, British Columbia, V6T 1Z4

Abstract. We study the potential for molecule recycling in chemical reaction
systems and their DNA strand displacement realizations. Recycling happens when
a product of one reaction is a reactant in a later reaction. Recycling has the ben-
efits of reducing consumption, or waste, of molecules and of avoiding fuel de-
pletion. We present a binary counter that recycles molecules efficiently while
incurring just a moderate slowdown compared to alternative counters that do
not recycle strands. This counter is an n-bit binary reflecting Gray code counter
that advances through 2n states. In the strand displacement realization of this
counter, the waste—total number of nucleotides of the DNA strands consumed—
is O(n3), while alternative counters have Ω(2n) waste. We also show that our
n-bit counter fails to work correctly when Θ(n) copies of the species that rep-
resent the state (bits) of the counter are present initially. The proof applies more
generally to show that a class of chemical reaction systems, in which all but one
reactant of each reaction are catalysts, are not capable of computations longer
than 1

2
n2 steps when there are at least n copies.

1 Introduction

DNA strand displacement systems support simulation of logic circuits and DNA walk-
ers, and can in principle support general purpose computation in an energy-efficient
manner [4, 7, 8, 10, 15–18, 20]. The computations typically consume strands at all re-
action steps. Catalyst strands are an exception in that they are not consumed during the
course of a reaction, but are recycled to perform the same operation multiple times.

Can strand displacement systems recycle strands in more general ways? We show
that the answer is yes: we describe chemical reaction system computations, and their
strand displacement realizations, where recycling of strands significantly reduces waste
and avoids fuel depletion while incurring just a moderate slowdown relative to compa-
rable computations that do not recycle strands. Thus our title: less haste, less waste. Our
recycling computations are binary counters—simple and yet fundamental constructs in
computation. A new feature of our strand displacement constructions is a mutex syn-
chronization primitive, which ensures that reactions proceed atomically in the sense
that all products of one reaction have been released before the next starts. The second
contribution of the paper is to demonstrate a limit to recycling: recycling is not possible
in certain classes of strand displacement systems that should work correctly even when
many copies of the initial state of the system are present in the same environment.

L. Cardelli and W. Shih (Eds.): DNA 17, LNCS 6937, pp. 84–99, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



On Recycling and Its Limits in Strand Displacement Systems 85

The rest of this introduction illustrates the concept of strand recycling and gives an
overview of our results and related work. Sections 2 and 3 then provide the technical
details of the strand-recycling counters and the limits of recycling.

1.1 On the Potential for Strand Recycling

We illustrate the concept of recycling using a 3-bit counter that is specified as a chemical
reaction system—details of a strand displacement implementation are in Section 2. The
counter follows the sequence of bit values shown in the left column of Fig. 1(a). The
counter is a binary reflecting Gray code counter [13]. A Gray code counter advances
in such a way that exactly one bit changes at each step. A binary reflecting Gray code
counter gets its name from the following property: if the states of the counter are written
in a column starting from 0n0n−1 . . . 01 and a line is drawn just below row 2i−1, where
bit i changes from 0i to 1i, then in the next 2i−1 rows the values of the low order i− 1
bits are the reflection of those above the line. For example, consider bits b2 and b1 of
the 3-bit sequence in Fig. 1(a): the last four rows are a reflection of the first four rows.
We call the resulting sequence of states the Gray code sequence.

Fig. 1(b) gives the chemical reaction system for this counter, which we call GRAY.
The state of the 3-bit GRAY counter is determined by three signal molecules, one per
bit. Presence of a single copy of signal 0i denotes that the ith bit has value 0 while pres-
ence of a single copy of 1i denotes that the ith bit has value 1. The initial counter state is
030201 and the reactions ensure that exactly one of 0i and 1i is present at any time. The
counter advances through application of the three reversible chemical reactions (1-3)
of Fig. 1(b). Each row of the table in Fig. 1(a) lists the reaction needed to produce the
subsequent row; for example, the counter advances from 030211 to 031211 via reaction
(2) in the forward direction (2-for).

In realizing these reactions with strand displacement systems (see Section 2), addi-
tional strands that are not shown in the chemical reaction system are consumed and pro-
duced; we call these additional strands transformers. For example, transformers might
serve to ensure that all reactants are available before any product is produced, or may
be side-products of a reaction that have no further use. Suppose that a set of strands
T f

i is consumed and a set T r
i is produced when reaction (i) takes place in the forward

direction; conversely T r
i is consumed and T f

i is produced when reaction (i) takes place
in the reverse direction.

The key point is that in most of the rows, the signal molecules and transformer
strands that are consumed were produced by reactions of earlier rows and are thus recy-
cled. For example, in the third step the counter advances from state 031211 to 031201,
uses reaction (1) in the reverse direction (1-rev) and consumes the signal molecule 01

and the set of transformer strands T r
1 that were produced in the first step, thereby re-

cycling T r
1 . Only in the three rows 030201, 131201 and 031201—precisely those rows

when a reaction occurs for the first time—the molecules consumed are not produced
in earlier rows. In contrast, a chemical reaction system for a standard binary counter
produces waste molecules at every step and these waste molecules are never recycled
in subsequent steps.

Recycling in DNA strand displacement systems offers the potential of supporting
energy-efficient DNA computations in which the waste, or number of strands consumed,



86 A. Condon et al.

(a) (b)

b3 b2 b1 Reaction Consumed Produced

03 02 01 (1-for) T f
1 T r

1

03 02 11 (2-for) T f
2 T r

2

03 12 11 (1-rev) T r
1 T f

1

03 12 01 (3-for) T f
3 T r

3

13 12 01 (1-for) T f
1 T r

1

13 12 11 (2-rev) T r
2 T f

2

13 02 11 (1-rev) T r
1 T f

1

13 02 01

(1) 01 � 11

(2) 02 + 11 � 12 + 11

(3) 03 + 12 + 01 � 13 + 12 + 01

Fig. 1. (a) Enumeration of counter states (left three columns), reaction that advances the state
from one row to the next and its direction—forward (for) or reverse (rev)—and sets of transformer
molecules consumed and produced. (b) Chemical reaction system for a three-bit binary reflecting
Gray code counter. Species that appear on just one side of the reaction are shown in boldface
and correspond to the bit that changes value as a result of the reaction. To ensure correctness,
additional “catalyst” species appear on both sides and the corresponding bits are unchanged. At
any step, only one reaction is applicable to advance the counter, although since the reactions are
reversible the counter could also retreat to its previous value.

is logarithmic in the length of the computation. Systems that recycle strands do not use
fuel, i.e., large concentrations of certain transformer species that bias reactions in one
direction, and so are not prone to problems of fuel depletion or fuel leakage. However,
such advantages come at a price: our counter proceeds somewhat more slowly—is less
hasty—than comparable fuel-driven strand displacement counters. The slowdown is due
in part to the fact that reactions are used in both directions. Thus, our GRAY counter
is not biased to advance towards the final state but rather performs an unbiased random
walk, both advancing and retreating, ultimately reaching the final state. We also describe
a counter, GRAY-FO that uses reactions in which the reactions are of fixed order, i.e.,
the maximum number of reactants and products in any reaction are fixed, independent
of the number of counter bits.

Table 1 summarizes properties of our counters and compares with another counter,
which we call QSW, based on work of Qian et al. [9] (see Section 1.3). The properties
considered are (i) order or max number of reactants or products of chemical reactions
that describe the counter, (ii) waste or total number of nucleotides needed to implement
the counter and (iii) haste or expected time for the counter to reach a designated final
state from its initial state, when the volume equals the waste. Our n-bit binary reflecting
Gray code counter, GRAY, uses reactions of order Θ(n), generates only Θ(n3) waste
and uses expected time Θ(n322n) to reach the final state. Our GRAY-FO counter im-
proves on the GRAY counter in that the reaction order is Θ(1). The QSW counter also
has reaction order Θ(1) and has expected time Θ(22n), which is somewhat better than
the expected time needed by our counters. However, the QSW counter generates Θ(2n)
waste, exponentially worse than our counters. All three counters are deterministic in
that they advance and retreat through a predetermined linear ordering of states.



On Recycling and Its Limits in Strand Displacement Systems 87

Table 1. Comparison of n-bit counter implementations. The GRAY and GRAY-FO counters are
described in Section 2. The QSW counter is based on the simulation of stack machines by strand
displacement reactions of Qian et al. [9].

Properties GRAY GRAY-FO QSW [9]

Reaction order Θ(n) Θ(1) Θ(1)
Consumption (waste) Θ(n3) Θ(n3) Θ(2n)
Exp. Time (haste) Θ(n322n) Θ(n322n) Θ(22n)

1.2 On the Limits of Strand Recycling

The proof that our n-bit GRAY counter advances correctly through 2n states assumes
that only single copies of initial species are present. In Section 3, we show that if Θ(n)
copies of the initial species are present, then the counter does not advance properly in a
very strong sense: the final state of the counter can be reached in just O(n2) chemical
reactions, rather than using the intended sequence of 2n reactions. More generally, un-
der some restrictions on the allowable chemical reaction systems, we prove that in any
realization of the system with Ω(|S|) copies of the initial species, any species of the
system can be generated in O(|S|2) reaction steps, where S is the number of distinct
species. In particular, if the waste of such a chemical reaction system is logarithmic
in the length of a valid computation, the system does not work correctly when many
copies of the initial reactants are present.

1.3 Related Work

In related work, Qian et al. [9] showed how to simulate a stack machine using strand dis-
placements systems. A binary counter can be implemented via a stack machine; we call
such a counter a QSW (Qian-Soloviechik-Winfree) counter and we compare its proper-
ties and resources with our counters in Table 1. Details are provided in Section 2.6.

Cardelli [1, 6] has shown how primitives that support concurrent models of com-
putation, such as fork and join gates, can be implemented using strand displacement
systems. Many of our techniques are similar to those of Cardelli’s constructions: for
example, our signal strands share a common toehold while the long domains are dis-
tinct, and we do not use branched structures. To effect an abstract chemical reaction
with i reactants and i products, we use cascading of strand exchanges whereby the re-
actants are first absorbed (by transformer molecules) and products are then released by
further strand exchanges. This order of events is similar to an i-way join followed by an
i-way fork of Cardelli; it is similar also to the strand displacement realizations of i-way
molecular reactions of Qian et al. [9]. A new feature of our constructions is the use of
a mutex strand to ensure that the (k + 1)th reaction of a deterministic computation does
not proceed until all products of the kth reaction have been produced.

Building on models of Winfree and Rothemund [12, 19], Reif et al. [11] studied a
tile-based graph assembly model in which tiles may both adhere to and be removed
from a tile assembly. In their self-destructible graph assembly model, the removal of
tiles allows for the possibility of tile reuse. The authors demonstrate that tile reuse is
possible in an abstract tile model, via a PSPACE-hardness result. Doty et al. [2] showed
a negative result on tile reuse for an irreversible variant of the model of Reif et al.



88 A. Condon et al.

Kharam et al. [5] describe a DNA binary counter in which bit values are represented
using relative concentrations of pairs of molecules. This is very different than our work
in this paper, where the values of bits (0 and 1) are represented by the absence or pres-
ence of certain signal molecules.

2 GRAY: A Binary Reflecting Gray Code Counter

Here we describe the chemical reaction system and strand displacement implementa-
tion of our GRAY counter, provide a proof of its correctness, and analyze its expected
time (haste) and space usage (waste). We show how it can be modified to use only bi-
molecular reactions, resulting in our fixed-order GRAY counter: GRAY-FO. We also
compare our counters to the QSW counter.

2.1 Chemical Reaction System for the GRAY Counter

We generalize the 3-bit GRAY counter in Section 1.1 in the obvious manner to n-bits.
The counter state is represented by n signal molecules, one per bit. Presence of signal
molecule bi denotes that the ith bit has value bi, for b = 0 or b = 1. Initially, the state
is 0n . . . 0201. Each possible state of the counter represents a value in the Gray code
sequence. The counter is described abstractly by the following chemical reactions:

(gc-1) 01 � 11

(gc-i) 0i + 1i−1 + 0i−2 + ... + 01 � 1i + 1i−1 + 0i−2 + ... + 01, 2 ≤ i ≤ n

Lemma 1. The above chemical reaction system ensures the GRAY counter, when in
state v, can only advance to state vnext, or retreat to state vprev, corresponding to the next
or previous value in the Gray code sequence, respectively, if each reaction is atomic,
and all initial signal molecules exist as single copies.

Proof. First, observe that at any state of the system, for each i, exactly one of the signals
0i and 1i is present (in an unbound state). Hence, at any state of the system only two
reactions can be applied: (gc-1) and (gc-i), where i is the smallest index such that signal
1i−1 is present. Indeed, the reactions (gc-j), where 2 ≤ j < i, cannot be applied as,
by the definition of i, signal 0j−1 is present, and hence, 1j−1 is not present. Similarly,
the reactions (gc-j), where j > i, cannot be applied as signal 1i−1 is present, and
hence, 0i−1 is not present. It follows that at any state of the system, the system can only
progress in the forward or the backward directions. ��

2.2 Strand Displacement Implementation of the GRAY Counter

A strand displacement implementation of the GRAY counter requires a means to sim-
ulate the chemical reaction equations. Furthermore, the correctness of the counter is
predicated on the assumption that each chemical reaction is atomic. Qian et al. [9] pro-
posed a construction—hereafter called the QSW construction—that is capable of simu-
lating bi-molecular, and higher-order, chemical reactions. Specifically, the construction
can exchange a set of signals (the reactants) for another set of signals (the products)



On Recycling and Its Limits in Strand Displacement Systems 89

through a sequence of strand displacement events. Unfortunately, the construction is
not atomic, since some product signals can start initiating other reactions before before
all product signals are produced. However, the strand displacements do occur in a fixed
order and all reactant signals are consumed before any product signal is produced. We
exploit this fact to simulate atomicity.

In particular, we borrow the concept of transactions from digital computation—a
group of operations either completes or does not complete in its entirety. We achieve this
with the use of a simple synchronization primitive: a mutex. The state of our counter is
only defined when the mutex is available. This is analogous to processes blocking when
attempting to read a memory location currently being written to by another. Let μ denote
a single copy of a signal molecule representing the mutex. In any sequence of strand
displacements representing a chemical reaction, μ is the first reactant to be consumed
and the last product to be produced. Therefore only one reaction (transaction) can be in
progress at any given time. When μ is next available, either all strand displacements in
the sequence took place and the counter is in a new state—the transaction succeeded—
or the counter is in the same state and the configuration of all molecules is exactly
the same prior to the reaction beginning—the transaction failed. Since each reaction is
implemented as a transaction, they appear atomic.

We will use only one type of toehold, and therefore we will not label toeholds in
the figures below. All signals in the QSW construction are of the same form: a nega-
tive recognition domain −d, followed by a toehold t, followed by a positive recognition
domain +d. The construction also uses auxiliary strands consisting of a single domain
and a single toehold, and one (saturated) template strand initially bound to signal and
auxiliary strands. We refer to the saturated template complex and associated auxiliary
strands, collectively, as a transformer. An example of the signal molecules and the trans-
former associated with the forward direction of the reaction 01 � 11 is given in Fig. 2.

As previously discussed, the reaction can only initiate if the signal molecule μ is
present, and can only complete if all other reactants—in this case 01, assuming a for-
ward reaction—are available. An example of the sequence of strand displacements for
the reaction 01 � 11 is given in Fig. 3. The reaction proceeds from top to bottom in
the forward direction and from bottom to top in the backwards direction.

The transformers that implement the ith reaction (gc-i) are a straightforward gen-
eralization of the first reaction. As before, the μ signal must initiate the first strand

−
μ

+
μ

−
0
1

+
01

−

11
−

μ

−
μ
∗−

1
∗

1
+
0
∗

1
+
μ
∗

+
μ +

01
−
11

+
1
1

−
μ

+
μ

Fig. 2. An example of signal molecules (top two left strands) and the transformer, consisting
of auxiliary strands (top two right strands) and a saturated template strand (bottom complex)
associated with the forward direction of 01 � 11. In this and later figures, the Watson-Crick
complement of a domain x is denoted by x∗. The state of the system shown is 01.



90 A. Condon et al.

−
μ

+
μ

−
0
1

+
01

−

11

−

μ

−

μ
∗−

1
∗

1
+
0
∗

1
+
μ
∗

+
μ +

01
−

11

+
1
1

−

μ

+
μ

−

μ
∗−

1
∗

1
+
0
∗

1
+
μ
∗

−
μ

+
μ +

01
−

11

+
1
1

−

μ

+
μ

−

μ
∗−

1
∗

1
+
0
∗

1
+
μ
∗

−
μ

+
μ

−
0
1

+
01

−

11

+
1
1

−

μ

+
μ

−

μ
∗−

1
∗

1
+
0
∗

1
+
μ
∗

−
μ

+
μ

−
0
1

+
01

−

11
−

μ

+
μ

−

μ
∗−

1
∗

1
+
0
∗

1
+
μ
∗

−
μ

+
μ

−
0
1

+
01

−

11
−

μ

+
μ

+
01

−

11

+
1
1

−

μ

+
μ

Fig. 3. The sequence of strand displacement events for the reaction 01 � 11

displacement, and is not produced until the last strand displacement. The number of
required intermediate strand displacement reactions is dependent on the number of re-
actants and products. Specifically, the ith reaction requires 2i + 2 strand displacements
to complete. An example of the transformer for the ith reaction is given in Fig. 4.

2.3 Correctness

In the reactions of our counter, strand displacement should only happen when the toe-
hold of the invading strand first binds to a free toehold, following which a domain of the
invading strand displaces the bound domain of the strand being released. The invading
and released domains should be identical. We say that such a strand displacement is
legal. Illegal strand displacements can arise when the invading domain is different from
the released domain; we call such displacements mismatched domain displacements.
Illegal strand displacements can also arise due to blunt-end displacement, i.e., displace-
ments where invading and released domains are identical but domain displacement is
not preceded by the binding of a free toehold, or when more than one invading domain
strand displaces the strand being released. The next lemma shows correctness of the
GRAY counter, assuming that only legal strand displacements can occur.



On Recycling and Its Limits in Strand Displacement Systems 91

−
μ

+
μ

−
0
i

+
0i

−
1
i
−

1 +
1i−1

−
0
i
−

2 +
0i−2

. . .
−
0
1

+
01

−

1i
−

1i−1
−

0i−2

. . .
−

01
−

μ

−

μ
∗−

0
∗

1

. . .

−

0
∗

i−2
−

1
∗

i−1
−

1
∗

i

+
0
∗

1

. . .

+
0
∗

i−2
+
1
∗

i−1
+
0
∗

i

+
μ
∗

+
μ +

0i
+
1i−1

+
0i−2

+
01

−

1i

+
1
i

−

1i−1 +
1
i
−

1

−

0i−2 +
0
i
−

2

−

01

+
0
1

−

μ

+
μ

Fig. 4. An example of the signal molecules and the transformer for the ith reaction. The counter
is in state bn . . . bi+10i1i−10i−2 . . . 01.

Lemma 2. The above strand displacement implementation of the GRAY counter en-
sures all chemical reactions occur as transactions, and therefore appear atomic, as-
suming all initial signal molecules exist as single copies and all strand displacements
are legal.

Proof. We argue by induction on the sequence of chemical reactions. Prior to any chem-
ical reaction beginning, we require the following invariant to hold: (i) for each digit,
there is exactly one available signal which denotes its value, (ii) all template strands of
all transformers are saturated, and require the mutex signal μ to initiate the first strand
displacement, and (iii) there is exactly one available copy of μ. The invariant is trivially
satisfied for the base case, when no reaction has yet occurred. Suppose the first i−1 re-
actions appear atomic, and the invariant is satisfied. Without loss of generality, suppose
the next attempted reaction involves the kth transformer.

Because we assume that all strand displacements are legal, no auxiliary strand or sig-
nal molecule representing the value of a digit can displace any strand in any transformer.
Since there is exactly one available copy of the mutex signal, μ, that strand alone can
initiate a reaction. Suppose the reaction is in the forward direction, as the reverse direc-
tion is symmetric. The signal μ must initiate the first strand displacement by binding to
the left end of the kth transformer’s template strand. This begins the transaction. Note
that there is another copy of μ sequestered at the right end of the template. When the
signal μ is once again produced, there are two cases to consider.
Case 1. If the copy on the right end of the transformer is released, then the transaction
succeeded and the counter is in a new state. Furthermore, the invariant is preserved as (i)
exactly k signals that represent k different digits were consumed and exactly k signals
corresponding to the same k digits were produced; (ii) the kth transformer is saturated,
and only a μ signal strand can initiate a new reaction on the right end of the template,
and (iii) exactly one signal μ was produced as the final strand displacement.
Case 2. Otherwise, the original copy of μ was released, the transaction failed, and the
counter is in the same state, satisfying the invariant, as any intermediate strand displace-
ments must have been reversed prior to the original μ signal molecule being released.

Importantly, whether or not a transaction succeeds, while one is in progress no other
reaction can be initiated since no μ signal is available. Thus, all reactions are imple-
mented as transactions and appear atomic. ��



92 A. Condon et al.

We assume that blunt end displacement and displacement of a single strand by mul-
tiple strands do not occur; we do not know how to design strands so as to prevent
such illegal displacements. However, we can ensure that the probability of mismatched
domain errors is low by ensuring that the energy barrier of a mismatched strand dis-
placement is high. Briefly, the rate at which one domain d displaces another domain d′

is 2−Ω(eb(d,d′)), where eb(d, d′) is the energy barrier required for d to displace d′. More
concretely, suppose that all domains have the same length. We consider a simple energy
model in which eb(d, d′) = |d|− l, where l is the length of the longest subsequence that
is common to both d and d′. Intuitively, if the bases in the longest common subsequence
of d and d′ form base pairs, then the energy barrier is the total number of base pairs lost
when d displaces d′.

To ensure that the energy barrier between any pair of distinct domains is sufficiently
high, we can use an error correcting code of Schulman and Zukerman [14]. They show
how to construct a set of 2Θ(n) domains (i.e., binary strings in their code) of equal length
Θ(n) such that the energy barrier between any pair of domains is at least cn, for any
given constant c. For our n-bit counter, we use a polynomial number of words in such a
code for our signal domains (specifically, as explained in Lemma 3 the GRAY counter
uses Θ(n) domains, and as explained in Section 2.5, the GRAY-FO counter uses Θ(n2)
domains). We choose a sufficiently large constant c, so that the rate of mismatched
domain displacements is at most 2−c′n, where c′ is a constant that depends on c but is
independent of n.

Since the expected time of the unbiased random walk that simulates our counter
is Θ(n322n) (see the end of Section 2.4), the walk completes within time 23n with
probability 1 − 2Θ(n). By choosing c so that 2−c′n < 2−4n, we can conclude the
probability of mismatched displacements occurring before the unbiased random walk
that simulates our counter is completed is an exponentially small function of n.

2.4 Waste and Haste Analysis of the GRAY Counter

Here we analyze the waste—the total number of nucleotide bases of all species con-
sumed and haste—expected time—of the GRAY counter as it advances from initial
to final states. We assume single copies of the initial signal, transformer, and mutex
species. To analyze waste we first count the number of bases required for all initial
signal, transformer, and mutex molecules.

Lemma 3. The total number of nucleotide bases needed for a single copy of each initial
signal, transformer, and mutex molecule of the n-bit GRAY counter is Θ(n3).

Proof. Each signal species 0i and the initial mutex signal μ is composed of a toehold
and two long domains. The same is true of the molecules for states 1i and the se-
questered μ signals that are part of the initial transformer species. There is an auxiliary
transformer strand species consisting of one toehold and one long domain for each type
of signal species. As noted in Section 2.3, to avoid mismatched strand displacement, we
choose the Θ(n) domains of the signal species according to the Schulman and Zuker-
man code [14], and so they have length Θ(n). We choose the toehold length to be Θ(1).
Since the domain length dominates the toehold length, the total number of bases in all
signal species and auxiliary strands is Θ(n2).



On Recycling and Its Limits in Strand Displacement Systems 93

The template molecules in the sets T f
i and T r

i have Θ(i) domains, which dominate
their length, and thus the template molecules have length Θ(in). Thus, the total number
of bases in all transformer molecules in the system is

∑n
i=1 Θ(in) = Θ(n3). ��

The next lemma shows that just one copy of each signal, mutex, and transformer species
is sufficient for the GRAY counter to advance from its initial to final states. The proof
is omitted, but is straightforward.

Lemma 4. Advancement of the GRAY counter from its initial to final states requires
just one initial copy of the mutex μ, one initial copy of each signal species 0i, and one
initial copy of each transformer species T f

i , for each i, 1 ≤ i ≤ n.

In summary, just one copy of each signal, mutex, and transformer molecule is needed
for the counter. Moreover, the total number of bases of these molecules is dominated by
those in the transformers and is thus Θ(n3). Hence the waste is Θ(n3).

Next consider the expected time (haste) for the counter to progress from its initial to
final states. We assume that reactions occur in a volume of size Θ(n3), since this is the
total number of bases of species in the system. Each strand displacement step involves
interaction between two species and thus the rate of each strand displacement step is
1/Θ(n3).

First, consider the shortest path from the initial state to the final state. On this
path, each order-i reaction is applied 2n−i times and involves Θ(i) strand displace-
ments. Thus the total number of strand displacement steps along the shortest path is∑n

i=1 Θ(i)2n−i = Θ(2n).
Because each reaction is reversible, the system does not strictly follow the shortest

path but rather proceeds as an unbiased random walk along this path. The expected
number of steps for a random walk to reach one end of a length-Θ(2n) path from the
other is Θ((2n)2) = Θ(22n) [3]. Therefore, the expected number of strand displace-
ment steps is Θ(22n). Since each strand displacement step occurs at a rate of 1/Θ(n3),
the overall expected time—the haste—is Θ(n322n).

2.5 A Fixed Order Implementation of the GRAY Counter

An n-digit GRAY counter can perform a computation having length exponential in n,
while only generating waste polynomial in n. However, it relied on template strands
containing O(n) domains, each of length O(n), resulting in an overall length of O(n2)
bases. Synthesis of long nucleic acid strands is challenging, and the fidelity of syn-
thesized strands generally decreases as sequence length increases. For this reason, it is
desirable to bound the length of all strands in the system to O(n) bases. We now briefly
describe how a template strand from the GRAY counter consisting of 2i + 2 domains,
can be split into i + 1 template strands requiring 4 domains each, for any i > 1. The
overall waste will only be increased by a constant, resulting in the same volume, and
thus the same haste.

The transformation is straightforward and to simplify the description, we introduce
some notation. Consider the (gc-i) reaction of the GRAY counter which has i reactants
and i products:

0i + 1i−1 + 0i−2 + ... + 01 � 1i + 1i−1 + 0i−2 + ... + 01



94 A. Condon et al.

The previous implementation demonstrated that by using the QSW construction and
introducing a mutex molecule μ—thus creating an order i + 1 reaction—chemical re-
actions occur as transactions and therefore appear atomic. Specifically, μ is first con-
sumed, then 0i, then, 1i−1, and so on. Likewise, after all reactants are consumed, 1i

is first produced, then 1i−1, and so on, until finally μ is produced. We denote a strand
displacement implementation supporting a transaction of this type, which is initiated by
consuming a mutex α, and terminated when producing a mutex β, by:

[α + 0i + 1i−1 + 0i−2 + ... + 01 � 1i + 1i−1 + 0i−2 + ... + 01 + β]

In the case of the GRAY counter, α = β = μ. Our goal is to convert this order i + 1
reaction into a cascade of i+1 bi-molecular reactions, while preserving the appearance
of atomicity. Using the above notation, we implement the following reaction cascade:

[μ + 1i−1 � 1i−1 + α1
i ]

[α1
i + 0i−2 � 0i−2 + α2

i ]
...

[αi−2
i + 01 � 01 + αi−1

i ]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

catalysts checked in sequence

[αi−1
i + 0i � 1i + αi−1

i ]

[αi−1
i + 1i � 1i + μ]

}
the i-th bit flipped and the mutex signal released

The overall transaction has been split into a cascade of sub-transactions. Each sub-
transaction is implemented as a bi-molecular reaction using the QSW construction (see
Fig. 3). The first i − 1 sub-transactions check, in sequence, that all i − 1 catalysts are
present. The mutex signal μ is consumed during the first check. The last two trans-
actions will first perform the bit flip and then releases the mutex signal. Every sub-
transaction, except the (i− 1)-st and the i-th, produces a unique mutex that is required
to initiate the next sub-transaction in the cascade. Upon successful completion of the
first i sub-transactions in the cascade, the final sub-transactions occurs, producing the
original mutex signal μ, and thus finalizing the overall transaction. The implementation
works in the reverse direction in a similar way with the exception that the bit is flipped
first and the mutex signal μ is released only after the presence of all catalysts have been
verified. Using the above transformation for all higher-order reactions in the original
GRAY counter implementation results in a new, fixed order counter, GRAY-FO.

2.6 The QSW Counter

The stack machine construction of Qian et al. [9], which is based on strand displace-
ments systems, can be used to implement a binary counter. We call such a counter a
QSW (Qian-Soloviechik-Winfree) counter. An n-bit implementation advances deter-
ministically through 2n states and uses reactions of order 2 (some of which involve
polymer extension reactions that realize the stack). The transformer molecules used in
the strand displacement realizations of these reactions can serve as fuel, biasing the re-
action so that the counter advances. We analyze the biased version of the counter; the
unbiased version is slower. The expected number of reactions for the biased counter



On Recycling and Its Limits in Strand Displacement Systems 95

to advance to its final state is Θ(2n). Each reaction consumes a constant number of
molecules and so the overall expected consumption, or waste, is Θ(2n). The expected
time depends on the volume in which the reaction takes place. If all strands consumed
are initially present in the reaction volume, then the volume is Θ(2n) and thus each
step takes expected time Θ(2n), leading to an overall expected time of Θ(22n). Al-
ternatively, it may be possible that fuel concentrations could be replenished over the
course of the reaction and waste molecules removed, in which case the volume could
be as low as Θ(n) and the overall reaction time would be Θ(n2n). How to replenish
fuel or remove waste is not addressed by Qian et al.

3 Limits on Strand Recycling for Multiple-Copy Systems

In this section, we show that certain classes of chemical reaction systems that efficiently
recycle strands, or that can perform useful computations for time that significantly ex-
ceeds the number of signals, cannot work properly when multiple copies of the initial
species are present. In particular, our GRAY counters do not work in a multi-copy setting.

The underlying problem is the representation of the state of the system as specific
combinations of signals. If there are multiple copies of the system in the same reac-
tion vessel—as would typically occur in a laboratory setting—then the states of the
different copies may interfere with one another. To illustrate this point, we again con-
sider the 3-bit GRAY counter. Initially, in a single copy of the construction, the sig-
nals {03, 02, 01} denote the state 030201. Consider a two-copy system where the initial
set of present signals is duplicated, yielding the multiset {03, 03, 02, 02, 01, 01}. As in
the single copy case, assume reaction (1) occurs in the forward direction, followed
by reaction (2) in the forward direction. The resulting multiset of signal molecules is
{03, 03, 02, 12, 01, 11}. In the single copy case, we intend that reaction (1) in the re-
verse direction will occur next; however, given the current set of present signals in the
two-copy case, reaction (3) in the forward direction could instead occur, resulting in the
multiset {03, 13, 02, 12, 01, 11}. At this point, a copy of every signal species is present,
and any reaction can occur, in either direction. Furthermore, the single copy case re-
quired at least seven reactions to produce the final state 130201, whereas the two-copy
case can reach it in three. Crosstalk between the copies has broken the counter.

In the remainder of this section, we treat this problem formally. We define a chemical
reaction system to be a tuple C = 〈S,R, S0, send〉, where

– S is a set of (signal) molecule species.
– R is a set of reaction equations, where each R ∈ R is an ordered pair of sets of

signal molecules. Intuitively, a reaction equation R = (I, P ) consumes the signal
molecules in I as inputs and produces the signal molecules in P as products. Our
formalism is directional to allow modeling non-reversible reactions; a reversible
chemical reaction is modeled as two separate elements ofR, i.e., (I, P ) and (P, I).

– S0 is a multiset of signal molecules initially present.
– send ∈ S is a signal molecule denoting the end of computation1.

1 A computation may have multiple final states. To model this situation, we can let send be
produced in all final reactions, in addition to any other signals that may indicate the result of
the computation.



96 A. Condon et al.

An x-copy version of C, denoted C(x), is obtained by duplicating the initial multiset S0

x times, i.e., C(x) = 〈S,R, S
(x)
0 , send〉 where S

(x)
0 is a multiset consisting of x copies

of S0.
We formalize computations in C in the natural manner: Let ρ be a sequence of re-

actions R1, R2, . . . , Rm from R, where each Ri = (Ii, Pi). We define ρ to be a trace
of C if ρ induces a corresponding sequence of multisets S0, S1, . . . , Sm, with S0 be-
ing the multiset of initial signal molecules in C, and for all 1 ≤ i ≤ m, we have both
Ii ⊆ Si−1 and Si = Si−1−Ii+Pi. (We use “−” and “+” to denote multiset subtraction
and union.)

The next definitions help delineate the class of chemical reaction systems for the
main result of this section. For a reaction equation R = (I, P ), consider the signal
molecules in I −P . We dub these input signals proper. (The other signal molecules, in
I∩P , function as catalysts—they are necessary for the reaction, but not consumed.) We
define a set of reactions to be k-proper if k is the maximum number of proper inputs of
all reactions in the set. Note that the GRAY counter system is 1-proper. Let |S0| be the
number of distinct elements in the multiset S0.

Theorem 1. Let C = 〈S,R, S0, send〉 be a 1-proper chemical reaction system. If there
exists a trace that produces send in C, then for the x-copy chemical reaction system
C(x) with x ≥ |S|− |S0|, there exists a trace that produces send in at most (|S|− |S0|+
1)(|S| − |S0|)/2 steps.

Proof. Let ρ = R1, . . . , Rm be a sequence of reactions that produces send in the (single-
copy) system C, and S0, . . . , Sm be the corresponding sequence of multisets of signals.
Let S′ =

⋃
0≤j≤m Sj denote the set of all signals that occur in the computation. Obvi-

ously, S′ ⊆ S. Let k = |S′|− |S0| ≤ |S|− |S0| denote the number of molecule species
produced by ρ that were not present initially.

The proof is by construction, constructing a trace of the appropriate length for the
multi-copy system from the trace ρ for the single-copy system. The high-level structure
of the proof is as follows: First, we project out from ρ the k reactions, in order, that
first produce each of the new molecule species. From that sequence, we build a trace of
the multi-copy system that is the concatenation of k phases. Each phase adds one more
signal molecule to the multiset of signal molecules present, preserves the presence of
all signal molecules previously produced, and “consumes” one copy of the initial signal
molecules in S0. The ith phase is at most i reactions long, so the total length of the trace
is bounded by

∑k
i=1 i = (k + 1)k/2 ≤ (|S| − |S0|+ 1)(|S| − |S0|)/2.

We now formalize the construction of the k phases. Let s1, . . . , sk be the sequence of
signal molecule species from S′ − S0 in order of their first appearances in S1, . . . , Sm,
and let Rindex(sj) be the position in ρ where sj was first produced. In other words,
Rindex(sj) is the reaction that produced sj for the first time.

The k phases are constructed to maintain two invariants:

1. After the jth phase, the multiset of signal molecules contains at least one copy of
each signal molecule in {s1, . . . , sj}.

2. The trace constructed so far has not relied on the existence of more than j copies
of the initial signal molecules S0.



On Recycling and Its Limits in Strand Displacement Systems 97

The invariants are vacuously true initially (before any phases). Assuming they are true
after j−1 phases, we construct the jth phase as follows: the first reaction in the phase is
Rindex(sj), the reaction that produced sj for the first time. We know this reaction can be
applied because all of {s1, . . . , sj−1} are available, as well as the jth copy of S0. This
guarantees that the multiset now contains sj , and we have relied on only j copies of S0.
However, the reaction may have consumed its inputs. In particular, since the system is 1-
proper, the reaction consumed at most 1 input signal molecule. If the reaction consumed
0 molecules, or if the 1 molecule is in S0, the invariant is maintained and the phase ends.
Otherwise, the reaction consumed some sj′ , where j′ < j. To restore sj′ to the multiset,
we append the reaction Rindex(sj′ ) to the phase, which is guaranteed to be applicable by
the same reasoning. In turn, this reaction might consume an earlier molecule sj′′ , with
j′′ < j′, necessitating appending Rindex(sj′′ ) to the phase, etc. The sequence j, j′, j′′, . . .
is strictly decreasing, so it can have length at most j, which bounds the length of the
phase to be at most j reactions long. At the end of the phase, the invariants are preserved.

Concatenating the k phases produces a trace for the k-copy chemical reaction system
C(k), which produces all of {s1, . . . , sk} within (k + 1)k/2 reactions. Since k ≤ |S| −
|S0|, the result follows. ��
Note that Theorem 1 is much stronger than our intuitive notion of crosstalk short-
circuiting a computation. It states that with only a linear number of copies, any signal
molecule can be produced in at most a quadratic length computation.

We can formalize the intuitive notion of short-circuiting. A system C is x-copy-
tolerant if, for all s ∈ S, the length of the shortest trace to produce s in C and in C(x)

is the same. A system is copy-tolerant if it is x-copy-tolerant for all x.
With that definition, we have the following two corollaries based on the fact that if

a 1-proper chemical reaction system is |S|-copy-tolerant, then send can be computed in
C in the same number of steps as in C(|S|), which is polynomial in |S| by Theorem 1.

Corollary 1. For any 1-proper chemical reaction system C = 〈S,R, S0, send〉 that is
|S|-copy-tolerant, if there is a computation that produces a given signal species send in
C, then there is a computation that produces send in C in O(|S|2) steps.

Corollary 2. Let C = 〈S,R, S0, send〉 be a 1-proper, |S|-copy-tolerant chemical re-
action system. Then the haste of any computation of C is bounded by a polynomial
function of the waste.

4 Conclusions

In this paper we have introduced the concept of recycling, or molecule reuse, in strand
displacement systems and chemical reaction systems. Our n-bit GRAY counters effec-
tively use recycling to step through 2n states while consuming, or wasting, molecules
whose total number of bases is O(n3). Our GRAY counter strand displacement con-
structions also introduce the use of a mutex strand to ensure that higher-level chemical
reactions are executed atomically. Finally, we show limits to recycling: for example, sig-
nals representing the final state of our n-bit counter can be generated using just O(n2)
reactions when Θ(n) copies of the initial species share the same volume.



98 A. Condon et al.

One weakness of our counter construction is that the number of distinct domains
needed is polynomial in n, the number of bits of the counter. In contrast, a QSW binary
counter that is implemented via the stack machine of Qian et al. [9] uses just a con-
stant number of domains independent of n. Is it possible to construct an n-bit counter
that combines the best of the GRAY and QSW counters, i.e., generates waste that is
polynomial in n and uses O(1) distinct domains? More generally, can all computation
be realized by strand displacement systems whose waste and haste are within a (small)
polynomial factor of the space and time of the computation? Our negative result raises
the question as to whether there are alternative strand displacement realizations of cer-
tain chemical reaction system classes that generate little waste, say logarithmic in the
computation length, and that also behave correctly in the multi-copy setting. We will
investigate these questions in future work.

Acknowledgements. Thanks to Bonnie Kirkpatrick and to the anonymous reviewers
for their very helpful suggestions.

References

1. Cardelli, L.: Strand algebras for DNA computing. Natural Computing 10(1), 407–428 (2001)
2. Doty, D., Kari, L., Masson, B.: Negative interactions in irreversible self-assembly. In: Sakak-

ibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 37–48. Springer, Heidelberg
(2011)

3. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1. Wiley, Chich-
ester (1971)

4. Hongzhou, G., Chao, J., Xiao, S.-J., Seeman, N.C.: A proximity-based programmable DNA
nanoscale assembly line. Nature 465, 202–205 (2010)

5. Kharam, A., Jiang, H., Riedel, M., Parhi, K.: Binary counting with chemical reactions. In:
Proceedings of the 2011 Pacific Symposium on Biocomputing, pp. 302–313. World Scientific
Publishing, Singapore (2011)

6. Cardelli, L.: Two-domain DNA strand displacement. In: Proc. of Developments in Com-
putational Models (DCM 2010). Electronic Proceedings in Theoretical Computer Science,
vol. 26, pp. 47–61 (2010)

7. Lund, K., Manzo, A.T., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J., Taylor,
N., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.: Molecular robots guided
by prescriptive landscapes. Nature 465, 206–210 (2010)

8. Omabegho, T., Sha, R., Seeman, N.C.: A bipedal DNA brownian motor with coordinated
legs. Science 324(5923), 67–71 (2009)

9. Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with DNA
polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 123–140.
Springer, Heidelberg (2011)

10. Qian, L., Winfree, E.: A simple DNA gate motif for synthesizing large-scale circuits. In: J.
R. Soc. Interface (2011)

11. Reif, J.H., Sahu, S., Yin, P.: Complexity of graph self-assembly in accretive systems and
self-destructible systems. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892,
pp. 257–274. Springer, Heidelberg (2006)

12. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares.
In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing,
pp. 459–468 (2000)



On Recycling and Its Limits in Strand Displacement Systems 99

13. Savage, C.: A survey of combinatorial Gray codes. SIAM Review 39(4), 605–629 (1997)
14. Schulman, L.J., Zuckerman, D.: Asymptotically good codes correcting insertions, deletions,

and transpositions. IEEE Transactions on Information Theory 45, 2552–2557 (1999)
15. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic cir-

cuits. Science 314(5805), 1585–1588 (2006)
16. Shin, J.-S., Pierce, N.A.: A synthetic DNA walker for molecular transport. J. Am. Chem.

Soc. 126, 10834–10835 (2004)
17. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics.

Proc. Nat. Acad. Sci. USA 107(12), 5393–5398 (2010)
18. Venkataraman, S., Dirks, R.M., Rothemund, P.W.K., Winfree, E., Pierce, N.A.: An au-

tonomous polymerization motor powered by DNA hybridization. Nature Nanotech 2(8),
490–494 (2007)

19. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, Caltech (1998)
20. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand displacement reactions.

Nature Chemistry 3, 103–113 (2011)



One-Dimensional Staged Self-assembly

Erik D. Demaine1, Sarah Eisenstat1,
Mashhood Ishaque2, and Andrew Winslow2

1 MIT Computer Science and Artificial Intelligence Laboratory,
Cambridge, MA 02139, USA
{edemaine,seisenst}@mit.edu

2 Department of Computer Science, Tufts University,
Medford, MA 02155, USA

{mishaque,awinslow}@cs.tufts.edu

Abstract. We introduce the problem of staged self-assembly of one-
dimensional nanostructures, which becomes interesting when the ele-
ments are labeled (e.g., representing functional units that must be placed
at specific locations). In a restricted model in which each operation has
a single terminal assembly, we prove that assembling a given string of
labels with the fewest stages is equivalent, up to constant factors, to
compressing the string to be uniquely derived from the smallest possible
context-free grammar (a well-studied O(log n)-approximable problem).
Without this restriction, we show that the optimal assembly can be sub-
stantially smaller than the optimal context-free grammar, by a factor of
Ω(

√
n/ log n) even for binary strings of length n. Fortunately, we can

bound this separation in model power by a quadratic function in the
number of distinct glues or tiles allowed in the assembly, which is typi-
cally small in practice.

Keywords: context-free grammar, Wang tile, DNA computing, com-
plexity.

1 Introduction

Self-assembly is the study of how small particles (typically at the nanoscale,
where electrostatic forces overwhelm gravity) interact with each other to con-
glomerate into larger objects. In theoretical computer science, the standard
model is the tile assembly model [10] in which the system begins with infinitely
many copies of certain square tiles, each with specified glues on the four sides,
and tiles translate nondeterministically in the plane until they attach to each
other at matching glues. This model effectively enables performing computation,
but out of simple geometric parts, and at the cost of physical space resulting
from the assembly.

The most studied problem in the tile assembly model is to determine the
number of distinct tile types required to assemble a given shape (made out of
unit squares). An obvious upper bound is the area of the shape, but in many cases
fewer tiles suffice, by building computation into the construction. For example,

L. Cardelli and W. Shih (Eds.): DNA 17, LNCS 6937, pp. 100–114, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



One-Dimensional Staged Self-assembly 101

an n × n square requires Θ(log n/ log log n) distinct tile types (and glues), by
embedding a base-logn counter, while an n × 1 rectangle requires Θ(n) tile
types. The most general result is that any shape, scaled by a sufficiently large
factor, can be constructed from O(K/ log K) tile types (and glues), where K
is the Kolmogorov complexity of the shape [9]. Unfortunately, the scale factor
is polynomial in the running time of the Turing machine generating the shape,
which is at least the area of the shape. So this result does not directly address
the tile complexity of a specific shape, though it suggests that it is difficult to
characterize.

An alternate approach is offered by staged self-assembly [2] in which the sys-
tem’s tile set can change in a sequence of stages, in particular by an experimenter
mixing two systems together. In this model, it is possible to make any shape us-
ing a constant number of tile types (and glues); as a result, the main objectives
are to minimize both the number of mix operations (work for the experimenter)
and the number of stages that must be executed sequentially (makespan or wait
time). For example, both an n× n square and an n× 1 rectangle can be assem-
bled using O(1) tiles and glues and O(log n) mixes and stages. Again we lack a
general characterization of the number of mixes and stages required for a desired
2D shape.

Our personal communication with bioengineers suggests that the staged as-
sembly model is natural and practical, essentially exposing the experimenter’s
ability to perform actions as part of a computation/assembly. Furthermore, the
results are more practical, as it is difficult in practice to design many different
glues that attract only in pairs, without any attraction between unpaired glues.
Assembling a 1000×1 rectangle would be impractical without staging (requiring
1000 tile types and 999 distinct glues), but is extremely practical with staging
(requiring only 6 tile types, 3 distinct glues and 10 stages).

In this paper, we aim to characterize the resources required to staged-assemble
a one-dimensional object. Just making a 1×n rectangular shape is trivial, so this
direction has so far been overlooked. But in practice, experimenters often want
to build an object that not only takes on a desired shape but also carries out a
desired functionality. A typical example is to arrange nanodots or bioagents in
a particular pattern within a shape.1 We model this problem as constructing a
labeled shape, where each unit square has a label within a fixed alphabet, and
each tile type used to build the shape also has a label, which must match in
construction. Thus the input to the problem is a string of labels, and the goal
is to find a staged assembly with few glues, mixes, and stages. In fact we show
that four glues and O(log n) stages always suffice, so a single objective remains:
minimize the mixes.

The problem of computing a minimal tile assembly system that produces
a labeled shape has been studied previously. Heuristic approaches have been
developed to find the smallest tile set that uniquely assembles an input labeled
shape [6,4], and the problem of finding a minimum-size tile set has been shown
to be NP-hard [6].

1 Personal communication with Hyunmin Yi, 2008–2010.



102 E.D. Demaine et al.

We successfully characterize the number of mixes required to staged-assemble
a string in two natural situations. In the first setting (Section 4), we restrict
mixing operations to produce a single terminal assembly for use in the next mix.
This restriction seems to be common to all previous staged-assembly algorithms
[2], but we do not know it to be practically motivated. In the second setting
(Section 5.5), we allow multiple “parallel assemblies” resulting from a mix (a new
though natural idea), and consider the more natural restriction that the number
of glues is constant. In either setting, we show that the minimum number of mixes
is within a constant factor of the smallest context-free grammar that generates
exactly the given string. The latter problem is well-studied, has a polynomial-
time O(log n)-approximation algorithm based on Lempel-Ziv compression, and
likely has no o(log log n)-approximation [1,5,7,8].

We show that our relations are nearly tight by constructing a family of strings
(Section 5) showing a separation in power between (unrestricted) staged assem-
bly and context-free grammars. Specifically, an n-bit binary string can be as-
sembled using O(k) glues with O(k) mixes but requires a context-free grammar
of size Ω(k2), for a ratio of Ω(k). Our upper bound shows that the worst-case
separation is O(k2). As a function of n (with an unbounded number of glues),
we prove that the ratio is Ω(

√
n/ log n). In practice, small feature sizes make

the number of glues typically small, in which case context-free grammars are
actually a good approximation to optimal staged self-assemblies.

The labeled 1D staged self-assembly model offers a balance of tractability,
being easier than general staged assembly by reducing the dimension to 1, yet
harder (and more practical) by adding labels to the target shape. The connec-
tions we show to context-free-grammar compression illustrate that the problem
is difficult, yet for the case of many glues, still not fully understood. The ap-
proximation algorithm resulting from our study is simple and efficient, having
been implemented in an online web system,2 which is currently being considered
for practical use by the Tufts Department of Bioengineering, in a setting where
labeled 1D assemblies are of significant interest.

2 Context-Free Grammars

Definition 1. A context-free grammar (CFG) is defined as a 4-tuple (Σ, Γ, S, Δ)
where Σ is a set of terminal symbols, Γ is a set of non-terminal symbols, S is
a special element of Γ called the start symbol and Δ is a set of productions.

Each production consists of a left-hand side containing a single non-terminal
symbol, and a right-hand side containing a (non-empty) sequence of terminal and
non-terminal symbols. A CFG derives a string by repeated replacement of non-
terminal symbols with strings of terminal and non-terminal symbols according
to the productions in Δ, beginning with the single symbol S. The language of a
CFG is the set of derivable strings consisting solely of terminal symbols.

2 http://selfdisassembler.appspot.com/



One-Dimensional Staged Self-assembly 103

Definition 2. The size of a context-free grammar G, denoted |G|, is the total
number of symbols appearing on the right-hand sides of the productions in G.

Note that this definition counts the total number of symbols, so symbols ap-
pearing multiple times contribute to the count multiple times. In this paper
we consider only CFGs that are deterministic (with only one production per
left-hand side) and generate exactly one string.

Definition 3. A restricted context-free grammar (written RCFG) is a CFG
which is deterministic and has a language consisting of a single string.

For an RCFG G deriving a string s, the parse tree of G is the tree created
by beginning with a single node with label S (the start symbol), and adding
children to a leaf node for each production applied. The result is a tree where
each internal node is a non-terminal symbol, each leaf node is a terminal symbol,
and an in-order traversal of the leaves gives the string s.

Definition 4. The smallest grammar problem is the following: given an input
string s, find the smallest RCFG deriving s.

Any RCFG G has exactly one parse tree. Each internal node in the parse tree
has a corresponding non-terminal symbol from G. If we merge all such nodes
with the same non-terminal, the result is a directed acyclic graph (DAG) called
the parse DAG. See Figure 1 for an example of an RCFG and its parse tree and
parse DAG.

A → BC

B → DC
C → aa
D → cc

A

B

CD

a ac c

C

a a

A

B

CD

a ac c

Fig. 1. A restricted context-free grammar (RCFG) and its corresponding parse tree
and parse DAG

3 Staged Self-assembly

In this section we describe the 1D labeled staged self-assembly system model.
The model described here is a variant of the staged self-assembly model defined
in [2]. In this model, individual building blocks are 2D square-shaped tiles that
translate in the plane. Each tile has four sides (north, south, east, and west) and
has glues on its east and west sides. Each tile also has a label (a, b, c, . . .). We
denote a tile x1[x2]x3 where x1 is the west glue, x2 is the label, x3 is the east
glue (e.g., 1[a]2).

Tiles combine when the pair of glues on the west side of one tile and east side
of the other are complementary. We denote glue values by numbers (e.g., 1, 2, . . .),



104 E.D. Demaine et al.

and the complementary glues are denoted 1′, 2′, . . .. In this paper we use the
convention that east glues are always complementary (prime) glues. So a tile
1[a]2 actually has east glue 2′.

When tiles combine they create assemblies (and we consider tiles to be a
special case of assemblies). The labels of each individual tile combine to form
a label string of the assembly consisting of the labels of the combined tiles in
order. For example, 1[a]2 and 2[b]3 combine to form the assembly 1[ab]3. Note
that the east glue of 1[a]2 and west glue of 2[b]3 have disappeared: they are on
the interior of the assembly and are omitted for clarity. Assemblies can also be
combined to form larger assemblies. The size of an assembly is the number of
tiles it contains.

Initially each tile type exists in a separate bin. When bins are mixed, the
assemblies present in each bin are free to attach to each other. The products of
each mixing are terminal assemblies: assemblies that do not attach to any other
assemblies. All other assemblies produced during the mixing are assumed to be
filtered out before the bin is combined with other bins.

A self-assembly system instance is defined by the starting tiles and a mix
DAG defining bins and the orders in which they are mixed. The mix DAG is a
rooted DAG: a DAG with only one node (the root) without in-edges. where each
node represents a bin and the edges leaving it point to the bins whose contents
are mixed into this bin. Each leaf of the DAG is a bin of a single tile type.

Definition 5. A self-assembly system (SAS) is a one-dimensional labeled staged
self-assembly instance that produces a single goal assembly and is defined by a
mix DAG and a unique tile type for each leaf of the DAG.

Definition 6. The size of a SAS A (denoted |A|) is the number of edges in its
mix DAG.

The goal assembly produced by a SAS must appear in the bin corresponding
to the root node of the mix DAG. Reading the labels of an assembly from west
to east defines a string which we call the label string of the assembly. The label
string of the goal assembly is the string generated by the SAS.

In previous staged-assembly constructions [2], each bin has a single assembly
produced in it by mixing the contents of two other bins (which also contain single
items). However the model as defined does not require that each bin contains a
single assembly. A mix DAG in which one or more bins has multiple assemblies is
said to use bin parallelism. We distinguish a self-assembly system instance that
does not use bin parallelism as a single self-assembly system (SSAS).

Definition 7. A single self-assembly system (SSAS) is a SAS in which no bin
contains more than one distinct assembly.

Definition 8. The minimum SSAS problem is the following: given an input
string s, find a smallest SSAS generating an assembly with label string s.



One-Dimensional Staged Self-assembly 105

4 Equivalence between RCFGs and SSASs

In this section we show that converting between an RCFG G deriving a string s
and a SSAS instance A assembling a labeled assembly with label s is possible with
only a constant-factor scaling. As a result, any algorithm generating an O(f(n))-
approximation to either the minimum grammar problem or the minimum SSAS
problem implies an O(f(n))-approximation algorithm for the other.

4.1 Converting RCFGs to SSASs

Let G be an RCFG deriving a string s. We begin by converting G to an equivalent
RCFG G′ with at most two symbols on the right-hand side of each production
(such a CFG is called a binary CFG).

Recall that each rule is represented by a subtree of the parse DAG consisting
of a root node (the left-hand side symbol) and its children (the right-hand side
symbols). This subtree can obviously be converted into a binary tree which has
size at most twice the number of leaves, and is at most twice the size of the
original subtree. So each rule can be expanded to a set of binary rules with at
most twice as many symbols. As a result, G is at most doubled in size and thus
|G′| ≤ 2|G|.

Next we convert each production of G′ to a SSAS mixing. However, a problem
occurs if the same non-terminal appears as a right-hand side symbol in several
production rules. Recall that a production in the grammar specifies the left-to-
right order in which the right-hand side symbols appear, while the west-to-east
order in which assemblies attach is determined by their glues. To produce exactly
the assembly desired in a mixing requires combining its subassemblies with the
correct glues.

To resolve this issue, we construct several copies of every assembly: one for
each possible west/east glue pair. Since the grammar is binary, at most two
assemblies are mixed in each bin and so three glue pairs is enough to uniquely
specify the mixing product. Given a production A→ BC, we create six bins and
six mixings that assemble the six west/east glue pair combinations for A from
the six west/east glue pair combinations for B and C (see Table 1).

Lemma 1. A parse DAG for a binary RCFG G′ deriving string s can be con-
verted to a valid SSAS A of size at most 6|G′| that constructs an assembly with
label string s.

Table 1. The set of mixings to produce all necessary glue pair variations for assembly
A in the production A→ BC

A glues (1, 2) (1, 3) (2, 1) (2, 3) (3, 1) (3, 2)
B glues (1, 3) (1, 2) (2, 3) (2, 1) (3, 2) (3, 1)
C glues (3, 2) (2, 3) (3, 1) (1, 3) (2, 1) (1, 2)



106 E.D. Demaine et al.

Proof. We build the mix DAG of A in the following way: For each symbol (ter-
minal and non-terminal) create 6 bins for the glue-pair variants of the symbol.
For each production A → BC of G′, mix the 6 bins of B and C into the 6
bins of A as in Table 1. The resulting mix DAG has 6 bins for each symbol of
G′, each containing a unique glue-pair variant of an assembly with label string
corresponding to the string derived by the symbol in G′. Each edge of the parse
DAG of G′ is converted to 6 edges in the mix DAG of A, one for each glue-pair
variant. So |A| ≤ 6|G′|. ��
Theorem 1. Given an RCFG G deriving a string s, the algorithm described
in Section 4.1 computes a SSAS instance A with |A| ≤ 12|G| that produces an
assembly with label string s.

Proof. The algorithm converts G to a binary RCFG G′, and then converts G′

to a mix DAG for A. By Lemma 1, |A| ≤ 6|G′|. So |A| ≤ 6|G′| ≤ 12|G|. ��

4.2 Converting SSASs to RCFGs

Let A be a SSAS constructing an assembly with label string s. We perform a
(nearly) one-to-one mapping from the mix DAG of A to the parse DAG of a
grammar G. For each leaf bin of A, create a terminal symbol in G equal to the
label string of the tile in the bin. For each non-leaf bin of A, create a non-terminal
symbol in G. For each mixing in A combining the contents of bins b1, b2, . . . , bk

into bin B, create a production in G with B on the left-hand side and b1 through
bk on the right-hand side in the order they combine when mixed in B.

Theorem 2. For any SSAS A constructing an assembly with label string s, an
RCFG G deriving s can be constructed from A such that |G| = |A|.
Proof. The terminal symbols of G are equal to the label strings of their corre-
sponding tiles. Each mixing in A produces a single assembly with a label string
equal to the string derived by the corresponding non-terminal symbol in G, be-
cause the production orders the right-hand side symbols in the same order that
they combine in A. So the start symbol of G derives a string equal to the label
string of the assembly produces in the root of the mix DAG of A. So G derives
s. Each edge of the mix DAG of A causes a right-hand side symbol to appear in
a production of G. So |G| = |A|. ��

4.3 Approximation Equivalence

The conversions presented above in Sections 4.1 and 4.2 immediately imply that
approximation algorithms for either problem transfer to the other, at a constant-
factor loss.

Corollary 1. An O(f(n))-approximation algorithm for the smallest grammar
problem exists if and only if an O(f(n))-approximation algorithm for the mini-
mum SSAS problem exists.



One-Dimensional Staged Self-assembly 107

In practice this theorem makes computing efficient SSAS instances easier, as
several O(log n)-approximation algorithms to the minimum grammar problem
exist [1,7,8]. We have taken advantage of this fact to produce a software tool for
finding O(log n) approximations to the minimum SSAS problem in O(n) time
using the algorithm by Sakamoto [8].

This result also suggests that finding an improved approximation algorithm
for the minimum SSAS problem is unlikely. In 2002, Lehman showed that a
polynomial-time approximation algorithm for the smallest grammar problem
with factor o( log n

log log n
) would enable progress on “a difficult algebraic problem in

a well-studied area” [5].

5 Separation Between SASs and RCFGs

Now we show that the general 1D staged self-assembly model (SAS) is not equiv-
alent to RCFGs. The proof is constructive: we give a set of strings and describe
a set of SAS instances that produce assemblies with these label strings. We then
show that any CFG producing these strings is asymptotically larger than the
SAS instance producing the corresponding label string.

It might appear obvious that allowing bin parallelism should allow a reduc-
tion in the amount of work needed to construct an assembly. However, using
parallelism has two costs that make saving work difficult. First, for any mini-
mal SAS, no two assemblies in the same bin may share a common glue (this is
proven in Lemma 3). As a result, additional parallelism requires more unique
glues, which in turn requires more starting bins, and thus more work. Second,
since the goal of an assembly system is to construct a single goal assembly, bins
with parallelism must eventually be “collapsed” into a single bin with a single
object (otherwise the parallelism was extraneous). Collapsing bins with paral-
lelism involves adding tiles to join the various assemblies together, and since the
glues on each assembly are unique, creating and mixing the joining tiles requires
additional work proportional to the amount of parallelism in the bin.

5.1 A Set of Strings Sk

To derive an asymptotic bound between SASs and RCFGs, we use a special set
of strings that can be built by small SASs but require large RCFGs. Each string
consists of a sequence of interleavings of pairs of smaller strings. We will consider
only odd values of k for the remainder of the paper.

Let Binary(i, �) be the binary representation of i of length �. The following
is a function used to double every character in a string:

Double(b1b2b3 . . . bn) = b1b1b2b2b3b3 . . . bnbn

We define s1 ◦ s2 to be the concatenation of string s1 followed by s2. We wish
to encode a number of distinct “characters” in binary. To construct a suitably
hard-to-compress string, we want to ensure that the beginning and end of each
encoding are clearly delineated. To that end, we define the following strings for
all values of k and all values of i < 2k:



108 E.D. Demaine et al.

Definition 9. Ak,i = (01) ◦Double(Binary(i, 1 + �log k�)) ◦ (01).

Note that each such string has length 6 + 2�log k�.
We wish to use these characters to construct a string with a lot of structure (so

that it is efficiently constructible using a SAS) but minimal repetition (so that it
is not efficiently constructible using a CFG). To minimize repetition, we choose
a string with the property that no sequential pair of characters is repeated. We
define the following functions, which are permutations for 0 ≤ x < k:

πk,0(x) = 2x mod k πk,1(x) = 2x + 1 mod k

We use these two simple functions to construct a more complex permutation.

Definition 10. Say that the bits of Binary(i, �) are b1, . . . , b�. Then

Πk,�,i(j) = πk,b�
(πk,b�−1 (. . . πk,b2(πk,b1 (j)) . . .)).

Because k is odd, this function is a permutation for 0 ≤ j < k. In addition, as long
as 0 ≤ i < 2�, this function has the property that Πk,�,i(j) =

(
2� · j + i

)
mod k.

This means that for fixed values of k, �, and j, each value of i such that 0 ≤ i < k
will generate a different value of Πk,�,i(j).

This permutation can be used to ensure that no sequential pair of characters
is repeated. To do so, we construct pairs of characters as follows:

Ck,i,j = Ak,j ◦ (01)�log k� ◦Ak,k+Πk,�log k�,i(j) ◦ (01)�log k�.

We concenate these pairs to construct Pk,i = Ck,i,0 ◦Ck,i,1 ◦ . . . ◦Ck,i,k−1. Note
that the length of each Ck,i,j is 12 + 8�log k�, and therefore the length of each
Pk,i is (12 + 8�log k�) · k.

We concatenate each Pk,i to get the string we wish to compress:

Definition 11. Sk = 01 ◦ Pk,0 ◦ 01 ◦ Pk,1 ◦ 01 ◦ . . . ◦ 01 ◦ Pk,k−1 ◦ 01

In the next two subsections we give bounds on compressing Sk using both a
RCFG and a SAS.

5.2 A SAS Upper Bound for Sk

Now we describe a self-assembly system using bin parallelism that produces an
assembly with Sk as its label string. The system is broken down into several
subsystems described in this section. A diagram of the SAS for S3 is seen in
Figure 2.

Constructing Ak,i for all 0 ≤ i < 2k. Say that we are given 2k glue
pairs xi, yi, and that we want to assemble xi[Ak,i]yi. for each 0 ≤ i < 2k. In
addition, say that we are given three additional glues g0, g1, and g2 for use in
our construction. Let � = 1 + �log k�.

For each binary string s of length ≤ �, we construct two bins: Is and Fs. Let
s = t ◦ b, where b ∈ {0, 1}. Is will contain an assembly with glue g0 on the left,



One-Dimensional Staged Self-assembly 109

0[A3,0]1

rotating bin

fixed bin

7[1]1

2[0]8

11[1]3

6[0]10

9[1]5

4[0]12

9[1]1

2[0]10

7[1]3

4[0]8

11[1]5

6[0]12

permutation bin 1 (π0)

permutation bin 2 (π1)

1[0]7

8[1]2

3[0]9

10[1]4

5[0]11

12[1]6

renormalization bin

6[01]1 1[01]0

6[01]2

2[01]0

2[A3,1]3 4[A3,2]5

1[A3,3]2 3[A3,4]4 5[A3,5]6

Fig. 2. The mix DAG for a SAS generating an assembly with label string S3

glue g1 on the right, and the label Double(t) ◦ b. Fs will contain an assembly
with glue g0 on the left, glue g2 on the right, and the label Double(s). The
assembly in bin Is will be constructed by adding the tile g2[b]g1 to the assembly
in bin Ft. The assembly in bin Fs will be constructed by adding the tile g1[b]g2

to the assembly in bin Is.
To finish this construction, we add the constant-sized assemblies xi[01]g0

and g2[01]yi to the bin FBinary(i,�). This ensures that for 0 ≤ i < 2k, the bin
FBinary(i,�) contains an assembly with the label Ak,i. The total number of bins
required for this construction is Θ(k).

Fixed and Rotating Bins. The fixed bin contains the following set of tiles:

0[Ak,0]1, 2[Ak,1]3, . . . , (2k − 2)[Ak,k−1](2k − 1)

The rotating bin contains the following set of tiles:

1[Ak,k+0]2, 3[Ak,k+1]4, . . . , (2k − 1)[Ak,k+(k−1)](2k)



110 E.D. Demaine et al.

Permutation and Renormalization Bins. Permuting the assemblies in the
rotating bin is simulated by attaching permutation tiles to the east and west
ends of those assemblies. The permutations πk,0 and πk,1 are implemented as
two sets of 2k tiles, each set in a separate permutation bin. A third set of 2k
tiles are put in a renormalization bin used to solve a technical issue with the
permutation bins.

The permutation bin for πk,0 has tiles that replace the primal glues of assembly
i (2i+1 and 2i+2) with the dual glues of assembly πk,0(i) (2πk,0(i)+1+(2k+1)
and 2πk,0(i) + 2 + (2k + 1)) for all assemblies 0 ≤ i ≤ k − 1. The permutation
bin for πk,1 is constructed analogously. Each tile attaches to either the east or
west end of the assembly and correspondingly has the primal and dual glues on
its east and west sides. The tiles attaching to the east end of the assembly have
the label 0; the tiles attaching to the west end of the assembly have the label 1.

The renormalization bin has a pair of tiles for changing the dual glues of
assembly i ((2i+1)+(2k+1) and (2i+2)+(2k+1)) to its primal glues ((2i+1)
and (2i+2)). The tiles attaching to the east end of each assembly have the label
1; the tiles attaching to the west end of each assembly have the label 0.

Creating Interleaved Assemblies. The permutation and renormalization
bins are applied in a branching manner to produce all permutation sequences of
length �. First πk,0 and πk,1 are mixed separately with the rotating bin, then πk,0

and πk,1 are each mixed separately with the product of both of these mixings, etc.
After each mixing with a permutation bin, the renormalization bin is mixed with
the product. After all permutation sequences are created, the fixed bin is mixed
with each, creating single assemblies with label strings Pk,i for all 0 ≤ i < k.

Combining Interleaved Assemblies. The final step is to combine each as-
sembly with label Pk,i into a single assembly. Each assembly is contained in a
separate bin after its production, and has glue 0 on its west side and glue 2k
on its east side. To the assembly with label Pk,i, the tiles (2k + 1 + i)[1]0 and
(2k)[0](2k + 2 + i) are added. Then these assemblies are combined to produce a
single long assembly with glue (2k + 1) on the west side, and glue (3k + 1) on
the east. To finish off the assembly, two more tiles are added: (null)[0](2k + 1)
and (3k + 1)[1](null). This ensures that the final result is an assembly with the
label Sk and null glues on both ends.

Theorem 3. The SAS described in Section 5.2 has size O(k).

Proof. Break the SAS into the following sections:

1. Creating the a-bin and b-bin.
2. Creating the permutation and renormalization bins.
3. Creating the interleaved assemblies.
4. Combining interleave assemblies.

Item 1 requires O(k) edges to create a tile for each symbol in Ak or Bk respec-
tively and mixing them together. Item 2 requires O(k) edges to create three bins



One-Dimensional Staged Self-assembly 111

each with a pair of tiles for each c-buffered element of the b-bin. Item 3 requires
O(k) edges: this portion of the mix DAG resembles an upside-down tree and con-
tains no more than two leaves per permutation assembly. Item 4 requires O(1)
edges per assembly (and thus O(k) edges total) to add two location-specifying
tiles and combine it with the other assemblies into a single bin. In total k inter-
leave assemblies (one per shift) are created, so O(k) edges are in this portion of
the mix DAG. Combining interleave assemblies is done by adding at most two
tiles to each interleave assembly followed by combining them into a single bin.
A constant number of edges exist for each assembly, so O(k) edges exist in this
portion of the mix DAG. ��

5.3 An RCFG Lower Bound for Sk

The following definition and theorem are taken from [7].

Definition 12. As defined in [3], the size of the LZ-factorization of a string s
(denoted |LZ(s)|) is the number of elements generated by the LZ77 algorithm
without self-referencing.

Theorem 4. For an RCFG G generating a string s, |LZ(s)| ≤ |G|.
Lemma 2. All factors in the LZ-factorization of Sk have size < 16�log k�+26.

Proof. Assume, for the sake of contradiction, the LZ-factorization of Sk contains
some factor y of size ≥ 16�log k�+26. Then the factor is long enough that there
must be some i, j such that Ck,i,j is a substring of y. Let x be the part of the
string preceding y. Then by the definition of LZ factorization, y is a substring
of x, and therefore Ck,i,j is a substring of x.

Ck,i,j contains as a substring the string Ak,j . To ensure the correct parity
on runs of characters, the portion of x where Ak,j is found must have been
completely generated by some other Ak,j∗ . Then it must be that Ak,j = Ak,j∗ ,
and by Definition 9, it follows that j = j∗. So the portion of x where Ck,i,j is
found must have been completely generated by some other Ck,i∗ ,j , where i �= i∗.
Then Ak,k+Πk,�log k�,i(j) = Ak,k+Πk,�log k�,i∗ (j). By Definition 9, it follows that
k+Πk,�log k�,i(j) = k+Πk,�log k�,i∗ (j). Therefore, by Definition 10, i = i∗, which
gives us a contradiction. ��
Theorem 5. The smallest CFG that can be used to construct Sk has size Ω(k2).

Proof. By Lemma 2, the maximum length of an LZ factor is 16�log k�+29. The
sum of the lengths of the LZ factors is equal to |Sk| = Θ(k2 log k). Hence, the
number of LZ factors is Ω(k2). By Theorem 4, the size of the minimum grammar
must therefore be Ω(k2). ��

5.4 Asymptotic Separation of SASs and RCFGs for Sk

Separation refers to the minimum difference in size between an RCFG and a
SAS generating the same (label) string. Here we show the separation achieved
for the strings Sk, where k is the number of glues used to generate the label
string Sk by the SAS in Section 5.3 and n is the length of Sk.



112 E.D. Demaine et al.

Corollary 2. The strings Sk have separation Ω(k).

Proof. By Theorem 5, any RCFG generating Sk has size Ω(k2). By Theorem 3,
a self-assembly system of size O(k) exists that produces an assembly with label
string Sk. So the ratio of the size of any grammar generating Sk to the size of
some SAS instance is Ω(k). ��
Corollary 3. The strings Sk have separation Ω(

√
n/ log n).

Proof. The length of Sk is Θ(k2 log k). So k = Θ(
√

n/ log n). By Corollary 2,
the separation is Ω(k). So the separation is also Ω(

√
n/ logn). ��

Given that the number of glues is limited in practice, it is natural to consider
whether Ω(k) separation is possible for k glues where k � n. We show this is
possible for k = Θ(log n).

Definition 13. Define the recursive string Tk,t = 01 ◦ Tk,t−1 ◦ 01 ◦ Tk,t−1 ◦ 01,
where Tk,1 = Sk. The length of Tk,t is Θ(2t|Sk|) = Θ(2tk2 log k).

Theorem 6. The strings Tk,k have separation Ω(k) and use Θ(log n) glues.

Proof. Since Tk,k has Sk as a substring, any CFG generating Tk,k has size Ω(k2)
by Theorem 5. To construct a SAS to generate this string, we first use the
SAS described in Section 5.2 to generate an assembly a[Sk]b. We can then add
a constant number of tiles to get two assemblies c[1Sk0]e and e[1Sk0]d, which
when combined create the assembly c[1Sk01Sk0]d. We then add two more tiles
to construct the assembly a[01Sk01Sk01]b. This process can then be repeated
k times. In total O(k) additional work is performed, so the new SAS has size
O(k). The length n of the string is Θ(2kk2 log k), so k = Θ(log n). ��

5.5 Upper Bounds for Separation of SASs and RCFGs

The PSASs described in Section 5.2 constructing Sk used O(k) distinct glue
pairs to achieve a separation of Ω(k). We now show bounds on the worst-case
separation in terms of the number of glues k and the length of the string n.

Lemma 3. Given a minimal SAS A, any two distinct assemblies A1 and A2 in
the same bin must have different glues on either the west side or the east side.

Proof. For the sake of contradiction, say that there is a distinct pair of assem-
blies A1 and A2 with matching glues on both the west and east sides of the
assemblies. Because the accessible glues on both assemblies are identical, any
assembly which adheres to A1 must also adhere to A2, and vice versa. Hence,
for every superassembly of A1, there is a corresponding superassembly of A2 in
the same bin with the same accessible glues, but a different label sequence. Any
attempt to merge two such assemblies to create a single assembly results in an
infinite label sequence. So the SAS A cannot produce a single goal assembly,
violating the definition of a SAS. ��



One-Dimensional Staged Self-assembly 113

Corollary 4. Given a minimal SAS A using k glues to produce a string s, each
bin in A contains at most k2 distinct assemblies.

Lemma 4. Given a SAS A using k glues and generating an assembly with label
string s, an RCFG of size O(k2|A|) generating s can be constructed.

Proof. For each bin in A and each distinct assembly in that bin, construct one
bin in the SSAS B. By Corollary 4, the number of bins in B will be at most k2

times the number of bins in A.
Now consider what happens when � bins in A are simultaneously mixed to

produce a single bin c containing several assemblies. How many edges must we
add to B to ensure that each assembly in c is correctly constructed in B? To
determine this, we define G to be a directed graph with a node corresponding
to each glue and, for each distinct input assembly g1[s]g2, a directed edge from
g1 to g2. Then each distinct assembly in c corresponds to a source-sink pair in
G, and each possible way to construct that assembly corresponds to a path in
G from the source of the assembly to the sink of the assembly.

Say that there exist three glues g1, g2, g3 such that (g1, g2) and (g2, g3) are
edges in G but (g1, g3) is not an edge in G. Then we can mix the assembly
corresponding to the edge (g1, g2) with the assembly corresponding to the edge
(g2, g3) to get an assembly with glue g1 to the west and glue g3 to the east. This
is equivalent to adding the edge (g1, g3) to G. Each such mixing requires us to
add a constant number of nodes and edges to the mix DAG B, and increases the
number of edges in G by 1. The graph G can never have more than k2 edges, so
repeated mixings of this type add a total of O(k2) work to B. Hence, any mixing
of bins in A can be replaced by O(k2) binary mixes in B. As a result, |B| has
size O(k2|A|), and can therefore be converted to an RCFG with size O(k2|A|)
by Theorem 2. ��
Theorem 7. With respect to the total number of distinct glue pairs k, the sep-
aration for any string is O(k2).

Proof. Let A be a SAS using k glues that generates a string s. By Lemma 4, there
is an RCFG of size O(k2|A|) that generates s. So separation is at most O(k2). ��
Theorem 8. With respect to the length of the string n, the separation for any
binary string is O

(
(n/ log n)2/3

)
.

Proof. Let A be a SAS generating a string s of length n. Let k be the number
of glues used in A. Either k = O

(
(n/ logn)1/3

)
or k = ω

(
(n/ logn)1/3

)
. If

k = O
(
(n/ log n)1/3

)
then by Lemma 4 there is an RCFG of size O(k2|A|) =

O
(
(n/ logn)2/3 · |A|) generating s. So the separation is at most O

(
(n/ logn)2/3

)
.

Now suppose k is ω
(
(n/ log n)1/3

)
. Then |A| = ω

(
(n/ logn)1/3

)
. Lemma 2 of

Section 2.2 in [5] shows that there is an RCFG of size O(n/ log n) generating
s. Hence, the separation is o

(
(n/ logn)2/3

)
. So in both cases the separation is

O
(
(n/ logn)2/3

)
. ��



114 E.D. Demaine et al.

Acknowledgements. We thank Martin Demaine, André Schulz, Diane Sou-
vaine, and Hyunmin Yi for helpful discussions, and anonymous reviewers for
helpful suggestions.

References

1. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Rasala, A.,
Sahai, A., Shelat, A.: Approximating the smallest grammar: Kolmogorov complex-
ity in natural models. In: Proceedings of the 34th Annual ACM Symposium on
Theory of Computing, New York, NY, USA, pp. 792–801. ACM, New York (2002)

2. Demaine, E., Demaine, M., Fekete, S., Ishaque, M., Rafalin, E., Schweller, R.,
Souvaine, D.: Staged self-assembly: nanomanufacture of arbitrary shapes with O(1)
glues. Natural Computing 7, 347–370 (2008)

3. Farach, M., Thorup, M.: String matching in Lempel-Ziv compressed strings. Algo-
rithmica 20, 388–404 (1998)

4. Göös, M., Orponen, P.: Synthesizing minimal tile sets for patterned dna self-
assembly. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp.
71–82. Springer, Heidelberg (2011)

5. Lehman, E.: Approximation Algorithms for Grammar-Based Data Compression.
PhD thesis, MIT (2002)

6. Ma, X., Lombardi, F.: Synthesis of tile sets for dna self-assembly. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 27(5), 963–967
(2008)

7. Rytter, W.: Application of Lempel-Ziv Factorization to the Approximation of
Grammar-Based Compression. In: Apostolico, A., Takeda, M. (eds.) CPM 2002.
LNCS, vol. 2373, pp. 20–31. Springer, Heidelberg (2002), doi:10.1007/3-540-45452-
7 3.

8. Sakamoto, H.: A fully linear-time approximation algorithm for grammar-based
compression. Journal of Discrete Algorithms 3(2-4), 416–430 (2005)

9. Soloveichik, D., Winfree, E.: Complexity of Self-assembled Shapes. In: Ferretti, C.,
Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 344–354. Springer,
Heidelberg (2005)

10. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, Caltech (1998)



Computing Maximal Kleene Closures That Are
Embeddable in a Given Constrained DNA Language�

Stavros Konstantinidis and Nicolae Santean

Department of Mathematics and Computing Science, Saint Mary’s University,
Halifax, Nova Scotia, B3H 3C3 Canada

{s.konstantinidis,nic.santean}@smu.ca

Abstract. We consider the problem of characterizing nontrivial languages D that
are maximal with the property that D∗, the Kleene closure of D, is contained in the
subword closure of a given set S of words of some fixed length k. The subword
closure of S is simply the set of words for which all subwords of length k are
in S. We provide a deep structural characterization of these languages D, which
leads to polynomial time algorithms for computing such languages. This work is
motivated by the problem of encoding arbitrary data into a set of DNA molecules
such that all blocks of length k in these molecules satisfy the constraint S – eg,
they can form no stable bonds between them, or they have a desired g-c ratio.

Keywords: algorithm, automaton, code, DNA encodings, maximal, regular lan-
guage, subword closure.

1 Introduction

Given a set S of words of some fixed length k, the subword closure S⊗ of S is the set of
all words whose subwords of length k must be in S. This concept has been considered
in the context of coding for reliable DNA computing – see [11], [4], [5] – as well as
in state complexity considerations [1]. It was introduced in [11] to provide a structural
characterization of all maximal bond-free languages, which were previously introduced
in [10] as θ -k-codes. In these applications, the set S represents a subword constraint and
the fact that some language is a subset of S⊗ means that the language satisfies that con-
straint. In DNA computing, for instance, it is often desirable that no DNA molecules in
the test tube contain two short blocks of k pairwise complementary1 bases (nucleotides),
as this would allow a sufficiently strong bond to form between molecules – see Fig. 1.
In this case, the constraint S is a set of words of length k representing short molecules
that are not pairwise complementary, and the language S⊗ represents molecules (pos-
sibly arbitrarily long) such that there can be no sufficiently strong bonds between any
two of them. For example, the constraint

S = {aca,cac,caa,aac,aga,gaa,aag,agg,gga} (1)

� Research supported by NSERC.
1 Recall that there are four DNA bases, denoted as a,c,g, t, such that the Watson/Crick com-

plement of a is t, and vice versa, and the complement of c is g, and vice versa. If we write
θ(σ) for the complement of the base σ then, for a DNA word σ1 · · ·σn, the complement is
θ(σn) · · ·θ(σ1). For example, the complement of aggt is acct .

L. Cardelli and W. Shih (Eds.): DNA 17, LNCS 6937, pp. 115–129, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



116 S. Konstantinidis and N. Santean

5’-v--g-a-t-t-c-c--w-3’
| | | | | |

3’-z--c-t-a a-g-g--y-5’

Fig. 1. Two DNA molecules: 5′-vgattccw-3′ and 5′-yggaatcz-3′ . The symbols a,c,g,t represent
the four DNA bases (nucleotides), and v,w,y,z are arbitrary sequences of DNA bases. Vertical
bars represent chemical bonds between complementary nucleotides. The complementary parts
are 5′-gattcc-3′ and 5′-ggaatc-3′ . In terms of language theory, the words vgattccw and yggaatcz
contain two complementary subwords gattcc and ggaatc of length k = 6.

is such that no two words in S are complementary – for example, the complement tgt
of aca is not equal to any word in S. Then, the subword closure S⊗ contains arbitrarily
long words such that these words contain no two subwords of length at least three that
are complementary. For example, the word cac(aca)n is in S⊗, for all positive integers
n. The relevance of languages S⊗ in avoiding unwanted hybridizations during DNA
computations has been tested successfully in practice [13].

In [4] and [5], the authors consider the problem of encoding arbitrary sequences
of data blocks into the words of S⊗, for a given constraint S of some length k. More
specifically, if Δ m is the set of all words of length m over some alphabet Δ , for some
m≥ 1, the authors propose and implement a method for encoding Δ m onto some set of
words D with D∗ ⊆ S⊗. In practice, Δ could be any high level alphabet, and S⊗ could be
a bond-free DNA language (over the alphabet Σ = {a,c,g,t}). Then, the method ensures
that any data sequence v1v2v3 · · · , with vi ∈ Δ m, can be encoded onto a word w1w2w3 · · ·
in S⊗, which corresponds to a DNA molecule. Then, no two such molecules in the test
tube would form a sufficiently strong set of bonds. Another example of S could be a set
of words with a certain desirable g-c ratio. In this case, for any arbitrarily long w in S⊗,
if v is a subword of w of length k then v has the right g-c ratio.

In this paper, motivated by the above problems, but independently of the meaning
of the constraint S, we consider the problem of characterizing nontrivial languages D
whose words are of length at least k and are maximal with the property “D∗ ⊆ S⊗”
– the nontrivial requirement for D ensures that D∗ is of exponential density and has
a good encoding capability. We obtain a complete structural characterization of these
languages D, which leads to polynomial time algorithms for computing such languages,
and a better understanding of the encoding method in [4] and [5]. We note that the more
general question of computing maximal regular languages D such that D∗ ⊆ R, where R
is any regular language, has been solved recently in [12] using different tools. However,
these tools lead to an algorithm with an exponential number of steps.

Consider, for instance, the constraint S in (1), and assume for the sake of the example
that this constraint captures all requirements for reliable storage of data in the form of
single DNA strands. Depending on the choice made by a certain nondeterministic step,
our algorithm is capable of computing the following maximal D’s such that D∗ ⊆ S⊗

D1 = caa((ca)+a)∗(ca)∗ + cac(a(aca)∗c)∗a(aca)∗(λ + a)
D2 = aga(a(ggaa)∗ga)∗(λ + a(ggaa)∗gga) + agg((aag)+g)∗(aag)∗a,



Computing Maximal Kleene Closures 117

where we have used notation of regular expressions for the languages D1 and D2. In
fact, as customary with regular language algorithms, those D’s are represented in our
algorithms as finite automata and, then, one can easily compute, for any given �, the
set D(�) of all words in D of length �. If we need to encode sequences of n different
objects, we can pick an � such that D(�) contains at least n words w1, . . . ,wn of length
�. Then, any data sequence is encoded into a DNA word of the form wi1 wi2 · · · which is
in D(�)∗ and, hence, also in S⊗.

To take the above example further, assume that we want to store an 8-bit colour image
of size 1024×512 pixels into S⊗. One way to do this is to pick an appropriate subset2

D1(�) of S⊗, and to define 1024 single DNA strands w0,w1, . . . ,w1023, with each one
corresponding to one pixel row of the image. More specifically, each wi is of the form

wi = wi,0wi,1 · · ·wi,512

such that each wi, j is in D1(�), the word wi,0 encodes the row number (between 0 and
511), and each wi, j with j ≥ 1 encodes the colour of the pixel (i, j− 1).

In general, there might be several maximal D’s such that D∗ ⊆ S⊗. The problem of
computing “good” such D’s according to some criteria – e.g., large number of words in
D of some given length – is not addressed here, as it requires further research. As an
example, we note that the language D1 above contains nine words of length 11, and D2

contains only three words of length 11.
The paper is organized as follows. Section 2 contains the basic notation and termi-

nology about regular languages, automata and the subword closure operation. Section 3
deals with characterizing structurally nontrivial languages D whose words are of length
at least k and are maximal with “D∗ ⊆ S⊗”. Our characterization is used in Section 4 to
evaluate the encoding method of [4] and [5]. Moreover, this characterization is used in
Section 5 to obtain polynomial algorithms for constructing certain maximal languages
D. Finally, Section 6 contains a few concluding remarks and suggestions for future
research.

2 Basic Notation and Background

This section uses [14,16,15] as general references.

2.1 Words, Languages, Codes

For a set S, we denote by |S| the cardinality of S. We consider an arbitrary alphabet Σ
containing at least two symbols. The expressions Σ∗, λ , Σ+, |w| denote, respectively,
the set of all words over Σ , the empty word, the set of all nonempty words, and the
length of a word w. For an integer n ≥ 0, (w)n is the word consisting of n copies of
w. A prefix (resp. suffix, subword) of a word w is any word u such that w = ux (resp.
w = xu, w = xuy) for some words x,y. A subword of w is also called a factor, or infix,
of w. A language is any set of words. A word w is called an L-word if w ∈ L. As usual,
for any integer n ≥ 0, if L is a language then Ln is the language whose words consist

2 In this case, � should be such that D1(�) contains at least 512 elements.



118 S. Konstantinidis and N. Santean

of any n concatenated words from L. Also, L∗ is the union of Ln, for all n ≥ 0, and
L+ = L∗ −{λ}. For any word x and language L we use the notation x−1L = {z ∈ Σ∗ |
xz ∈ L}. In particular, if x is a prefix of some word w, then x−1w is the suffix z of w
such that w = xz. A language C is called a (uniquely decodable) code if, for every word
w ∈ C+, there is exactly one sequence of C-words whose concatenation is equal to w.
Any language whose words are of some fixed length is always a code (usually called
a uniform, or block, code). A language D is called nontrivial if it contains two words
w1,w2 such that w1w2 �= w2w1. Note that, in this case, the set {w1w2,w2w1} is a two-
element block code, and is a subset of D∗. A language L is called maximal with respect
to some property ‘P’, if any language L′ containing L and satisfying ‘P’ is equal to L.

2.2 Automata, Graphs, Cycles

A complete deterministic finite automaton is a quintuple M = (Σ ,K, δ ,s,F) such that
K is the state set, s is the start state, F is the set of final states and δ : K×Σ → K is the
transition function, which is extended as δ : K×Σ∗ →K in the usual way. If δ is partial
then M is not complete. In any case, we call it a DFA. A triple (p,σ ,q) with σ ∈ Σ
and δ (p,σ) = q is called a transition of M. In this case, we say that the transition is
going out of state p. The DFA M can be viewed as a directed labeled graph. A path of
M is a sequence (p0,σ1, p1, . . . ,σn, pn) such that (pi−1,σi, pi) is a transition of M, for
all i = 1, . . . ,n. In this case, the word σ1 · · ·σn is called the label of the path. The path is
accepting if p0 is the start state and pn is a final state. The language L(M) accepted by
M is the set of labels in all accepting paths of M. These languages constitute the class
of regular languages – see [16,15] for more information on regular languages.

The DFA M is called trim if every state of M occurs in some accepting path of M.
The size of M is |K|+ |T |, that is the number of states plus the number of transitions
in M. We note that if M is trim then |K| ≤ |T |+ 1 and, therefore, the size of M is
dominated by |T |. A state in an automaton is called a fork state if there at least two
transitions going out of that state. A cycle in the DFA is a path in which the first and last
states of the path are equal. The special cycle (p), where p is any state, is called trivial.
A strongly connected component (SCC), with respect to a DFA M, is a set C of states
that is maximal with the property that there is a path in M between any pair of states
in C . The component C is called nontrivial if there is at least one transition between
some states in C . For the sake of simplicity, we shall say that a component C contains
a transition (or a path) to mean that the DFA in which C exists contains that transition
(or path) with all states involved belonging to C .

2.3 The Subword Closure S⊗ and the DFA Trie(S)⊗

As mentioned before, any nonempty set S of words of length k, for some integer k > 0,
is called a subword constraint. It is used to define the language

S⊗ � {w ∈ Σ∗ | if u is a subword of w and |u|= k then u ∈ S}.

Two properties of S⊗ are the following: (1) If w ∈ S⊗ then every subword of w is in S⊗.
(2) If xu,vy ∈ S⊗ and |u|= |v|= k, then xuvy ∈ S⊗ if and only if uv ∈ S⊗.



Computing Maximal Kleene Closures 119

In [11] it is shown that every language S⊗ is regular via the DFA Trie(S)⊗, which
is defined as follows. First, let Trie(S) be the trie accepting the set S. Recall [3] this is
the complete DFA with states {[u] | u is a prefix of a word in S}∪{[sink]} such that [λ ]
is the start state and {[u] | u ∈ S} is the set of final states. We remark that the notation
[·] for states is only used to help the reader distinguish easily that u represents a word
and [u] represents a state. By extending this notation to sets of states, we can write that
the set of final states of Trie(S) is [S]. The transition function δ of Trie(S) is such that
δ ([u],σ) = [uσ ], when uσ is a prefix of S of length at most k, and with all the other
values of δ being [sink].

The DFA Trie(S)⊗ accepting S⊗ is obtained from the trie Trie(S) as follows [11] –
see also Fig. 2. The set of states is the same; the start state is the same; all states now
are final; the transition function δ⊗ of Trie(S)⊗ is the same as δ except as follows: for
each u ∈ S and σ ∈ Σ , if u ∈ Σu1 and u1σ ∈ S, then δ⊗([u],σ) = [u1σ ] – this ensures
that the last k symbols read drive the automaton to a state in [S].

Remark 1. A few useful properties of Trie(S)⊗ are the following.

– If ([u],σ1, p1, . . . ,σk, pk) is a path in Trie(S)⊗ and pk �= [sink] then the state pk must
be [σ1 · · ·σk].

sink0000 1010
1001 0110

0011 1100

0100

1000

0001

0101

0010

1011 1101 1110

0111 1111

0

1
1

1

00

1

1

0

0

0

1

0

0,1

0

1

1

0

1 0

1

Fig. 2. The part of Trie(S)⊗ involving only states [u], with u ∈ S, and the state [sink]



120 S. Konstantinidis and N. Santean

– If w ∈ S⊗ and |w| ≥ k then δ⊗([λ ],w) = δ⊗([x],w1) = [y], where x is the prefix of
w of length k, w1 = x−1w, and y is the suffix of w of length k.

– The DFA Trie(S)⊗ can be computed in linear time with respect to the size of S –
this size is the sum of the lengths of all words in that set.

– Any nontrivial SCC [Q] of Trie(S)⊗ is such that Q⊆ S.

Fig. 2 shows a part of the DFA Trie(S)⊗ accepting the language S⊗, where

S = {0001,0010,0100,0101,0111,1000,1011,1101,1110,1111}. (2)

For simplicity, in this example, we used the alphabet {0,1}.

3 Characterizing Maximal D’s with D∗ ⊆ S⊗

In this section we fix an arbitrary subword constraint S of some length k, that is, a
nonempty language S ⊆ Σ∗ with words of length k > 0. The first main problem is to
characterize structurally any nonempty language D whose words are of length at least
k and is maximal with the property “D∗ ⊆ S⊗”. It turns out (see Theorem 1) that, for
such a D, there is a nontrivial SCC [Q] of Trie(S)⊗, with Q ⊆ S, such that for all D-
words, their first k symbols drive the DFA Trie(S)⊗ to a certain set of states [X ]⊆ [Q],
the D-words get accepted at a set of states [Y ] ⊆ [Q] that depends on X and is denoted
as [Y ] = [Q>

X ], and Y has the property that, from any state [y] ∈ [Y ] and on input x, the
automaton Trie(S)⊗ gets to the state [x], for any x ∈ X – see Definition 1 and Fig. 3.

The second main problem is to characterize structurally any nontrivial language D
whose words are of length at least k and is maximal with the property “D∗ ⊆ S⊗”. The
characterization is the same as the one for a nonempty D with the additional requirement
that the strongly connected component [Q] contains a fork state – see Theorem 2. The
fact that D is nontrivial allows one to encode in D∗ – therefore also in S⊗ – arbitrary
data. Indeed, D being nontrivial means that it contains words w1,w2 with w1w2 �= w2w1,
which implies that {w1w2,w2w1}∗ ⊆ D∗ ⊆ S⊗. Then we can encode into S⊗ arbitrary
sequences from a set of data blocks {v1, . . . ,vn} as follows. Let

Cn = {w1w2,w2w1}�logn.

Each vi is encoded using a unique element of Cn. As C∗n ⊆ D∗, we can encode arbitrary
sequences of vi’s into S⊗, satisfying thus the constraint S. Typically, the set of data
blocks could be all words of length m over a certain data alphabet, where m is some
positive integer.

Definition 1. Let Q be a nonempty subset of S such that [Q] is a nontrivial strongly
connected component of Trie(S)⊗. For any nonempty subset X of Q, we define

Q>
X � {v ∈ Q | ∀x ∈ X : δ⊗([v],x) = [x]} = {v ∈Q | ∀x ∈ X : vx ∈ S⊗}.

Thus, [Q>
X ] is the set of states in [Q] for which any input word x∈X drives the automaton

Trie(S)⊗ to the state [x].



Computing Maximal Kleene Closures 121

x2

x1

x1

[x1]

[λ ]
[x2] [Y2]

x2

x2

. . .

x1

xm

xm

[xm]

xm

xm

L2

[Y1]

x1

L1

[Ym]

x2

Lm

Fig. 3. The sets of states [X ] = {[x1], . . . , [xm]} and [Y ] = [Q>
X ] = [Y1]∪ ·· · ∪ [Ym] are subsets of

some strongly connected component [Q] of Trie(S)⊗. Each node [Yi] in the diagram represents
one or more states in [Y ], and each language Li consists of the labels of all paths from [xi] to [Yi].
Then, the language 〈Q,X〉 is equal to ∪m

i=1xiLi.

Example 1. In Fig. 2, let Q = {0111,1111,1110,1101,1011}. Then,

Q>
{1011} = {1011,0111,1111}

and, for X = {0111,1011}, we have that

Q>
X = {0111,1111}.

The major structural observation for the desired languages D is that they can be ex-
pressed in terms of the sets

〈Q,X〉x � {w ∈ Σ∗ | δ⊗([x],w) ∈ [Q>
X ]}

for all x ∈ X , where [Q] is a strongly connected component of Trie(S)⊗ – thus, Q⊆ S –
and X ⊆ Q. Let

〈Q,X〉 �
⋃

x∈X

x〈Q,X〉x.

Obviously, the words of this language are of length at least k. This notation is also
important in the section on algorithmic considerations.

Example 2. In Fig. 2, for Q = {0111,1111,1110,1101,1011} and X = {0111,1011},
we have that

〈Q,X〉1011 = 1(λ + 11∗)(0111(λ + 11∗))∗ and

〈Q,X〉0111 = (λ + 11∗)(0111(λ + 11∗))∗,

where we have used notation of regular expressions for denoting languages.



122 S. Konstantinidis and N. Santean

Theorem 1. Let S be any subword constraint of some length k, and let D be any
nonempty language whose words are of length at least k. Then, D is maximal with
D∗ ⊆ S⊗ if and only if there are nonempty subsets X ,Y,Q of S such that

D = 〈Q,X〉= S⊗∩XΣ∗ ∩Σ∗Y,

and X ,Y ⊆ Q, [Q] is a nontrivial strongly connected component of Trie(S)⊗, Y = Q>
X ,

and X is maximal with “X ⊆ Q and Q>
X = Y ”.

Theorem 2. Let S be any subword constraint of some length k, and let D be any
nontrivial language whose words are of length at least k. Then, D is maximal with
D∗ ⊆ S⊗ if and only if there are nonempty subsets X ,Y,Q of S such that

D = 〈Q,X〉= S⊗∩XΣ∗ ∩Σ∗Y,

and X ,Y ⊆Q, [Q] is a nontrivial strongly connected component of Trie(S)⊗ containing
a fork state, Y = Q>

X , and X is maximal with “X ⊆ Q and Q>
X = Y”.

The proofs of the above results rely on a sequence of technical lemmata. The first one
gives a taste of what it means when D∗ ⊆ S⊗, without necessarily requiring that D is
maximal with this property.

Lemma 1. Let D be a nonempty language whose words are of length at least k.

1. If D∗ ⊆ S⊗ then D =
⋃

x∈X x(x−1D) and x(x−1D)y ⊆ S⊗, for all x,y ∈ X, where X
is the set of all prefixes of D of length k.

2. If there is a subset X of S and languages Dx, for all x ∈ X, such that D =
⋃

x∈X (xDx)
and xDxy⊆ S⊗, for all x,y ∈ X, then D∗ ⊆ S⊗.

Lemma 2. Let X ,Q be nonempty subsets of S such that X ⊆ Q and [Q] is a nontrivial
strongly connected component of Trie(S)⊗.

1. 〈Q,X〉∗ ⊆ S⊗.
2. 〈Q,X〉 = S⊗∩XΣ∗ ∩Σ∗Q>

X .
3. If Q>

X �= /0 then, for all x ∈ X, we have that 〈Q,X〉x �= /0.

Now we present the next major step to proving the desired theorem. We establish that
any D with D∗ ⊆ S⊗ must be a subset of some language of the form 〈Q,X〉. This result
allows us to focus on a strongly connected component of Trie(S)⊗ when we wish to
characterize structurally those D’s.

Lemma 3. If D is a nonempty language whose words are of length at least k and D∗ ⊆
S⊗, then

D ⊆ 〈Q,X〉,
for some nonempty subsets Q,X of S with X ⊆Q and [Q] a nontrivial strongly connected
component of Trie(S)⊗.

The last technical lemma before the proof of Theorem 1 deals with containment rela-
tionships between sets of the form Q>

X and P>
Z .



Computing Maximal Kleene Closures 123

Lemma 4. Let X ,Z,Q,P be nonempty subsets of S such that X ⊆Q, Z ⊆ P, [Q] and [P]
are nontrivial strongly connected components of Trie(S)⊗, and Q>

X �= /0.

1. If 〈Q,X〉 ⊆ 〈P,Z〉 then X ⊆ Z.
2. If Z ⊆ Q and 〈Q,X〉= 〈Q,Z〉 then X = Z.

Proof of Theorem 1. First we do the ‘only if’ part. So suppose that D is maximal with
D∗ ⊆ S⊗. Then, D ⊆ 〈Q,X〉 according to Lemma 3. At the same time, Lemma 2 says
that 〈Q,X〉∗ ⊆ S⊗. As D is maximal we have that, in fact, D = 〈Q,X〉. Let Y = Q>

X .
By Lemma 2, we have D = S⊗ ∩ XΣ∗ ∩ Σ∗Y. As D is nonempty, we have that Y is
nonempty as well.

It remains to show that X is maximal with “X ⊆ Q and Q>
X = Y ”. So suppose that

X ⊆ Z ⊆ Q and Q>
Z = Y . Then, we need to show that Z = X . For this it suffices to

show that 〈Q,X〉 = 〈Q,Z〉. In turn, this would follow by the maximality of D if we
show that D⊆ 〈Q,Z〉. So take any w ∈ D = 〈Q,X〉. Then, w = xw1 for some x ∈ X and
w1 ∈ 〈Q,X〉x, which implies δ⊗([x],w1) ∈ [Q>

X ] = [Q>
Z ]. Also, as x ∈ Z we have that

w1 ∈ 〈Q,Z〉x and, therefore xw1 ∈ 〈Q,Z〉, as required.

Now we do the ‘if’ part. By Lemma 2, we have D∗ ⊆ S⊗. To show that D is maximal,
we assume that D⊆ B and B∗ ⊆ S⊗, for some language B, and we deduce that B = D. By
Lemma 3, we have B⊆ 〈P,Z〉, where Z,P are nonempty subsets of S, Z ⊆ P, and [P] is a
nontrivial strongly connected component of Trie(S)⊗. This implies that 〈Q,X〉 ⊆ 〈P,Z〉.
It suffices to show that P = Q and X = Z. By Lemma 4, we get X ⊆ Z, so there is a state
belonging to both [Q] and [P]. This implies P = Q. Also, obviously Q>

Z = P>
Z . As X is

maximal with “X ⊆Q and Q>
X = Y ” and X ⊆ Z ⊆ Q, it suffices to show that Q>

Z = Q>
X .

First, by definition of Q>
X , X ⊆ Z implies Q>

Z ⊆ Q>
X . For the converse inclusion, take

any v∈Q>
X . Also, take any x∈ X . As x,v∈Q, there is a path from [x] to [v] having some

label w, which implies w ∈ 〈Q,X〉x. As δ⊗([λ ],xw) = [v], there is a word w′ such that
xw = w′v. So w′v ∈ 〈Q,X〉 and, therefore, w′v ∈ 〈Q,Z〉. Then, by Lemma 2, we have
w′v ∈ Σ∗Q>

Z ; hence, v ∈Q>
Z , as required. �

The next two lemmata are required for the proof of Theorem 2, which involves a fork
state in the strongly connected component [Q]. In particular, if [v] is a fork state with
transitions ([v],σ1, [x1]) and ([v],σ2, [x2]), then there is a path of length k−1 from some
state [u] to the fork state [v]. Moreover, the labels of the paths from [u] to [x1] and [x2]
are x1 and x2, and it turns out that 〈Q,{x1,x2}〉 is a nontrivial language.

Lemma 5. If [Q] is a nontrivial strongly connected component of Trie(S)⊗ then, for
every v ∈ Q and n≥ 1, there is u ∈ Q and a path of length n from [u] to [v].

Lemma 6. Let [Q] be a nontrivial strongly connected component of Trie(S)⊗.

1. If [Q] contains a fork state [v] having transitions to some distinct states [x1], [x2] ∈
[Q], then 〈Q,X〉 is a nontrivial language, where X = {x1,x2}.

2. There is a subset X of Q such that 〈Q,X〉 is nontrivial if and only if [Q] contains a
fork state.

Proof of Theorem 2. The ‘if’ part is simply a weaker form of the ‘if’ part in Theorem 1.
For the ‘only if’ part, we first apply Theorem 1: there are nonempty subsets X ,Y,Q of



124 S. Konstantinidis and N. Santean

S such that D = 〈Q,X〉 = S⊗ ∩XΣ∗ ∩Σ∗Y, and X ,Y ⊆ Q, [Q] is a nontrivial strongly
connected component of Trie(S)⊗, Y = Q>

X , and X is maximal with “X ⊆ Q and Q>
X =

Y”. It remains to show that [Q] contains a fork state. But this follows immediately from
Lemma 6. �

4 Connection with a Previous Method

In [4] and [5], in the context of encoding data into S⊗, the authors consider the problem
of constructing a nonempty set B such that B∗ ⊆ S⊗, using the following method.

1. Pick any nonempty subset Y of S.
2. Let SY = {v ∈ S | ∀y ∈Y : yv ∈ S⊗}.
3. Let BY = S⊗∩SY Σ∗ ∩Σ∗Y .

In that method, SY is the set of possible S-words that can be appended to any Y -word
without violating the constraint S. As expected, it can be shown that B∗Y ⊆ S⊗. However,
if we use a bad choice for Y then SY could be empty. Here we can evaluate the above
method using the tools developed in the previous section. Clearly the set Y should be
a subset of some Q such that [Q] is a strongly connected component of Trie(S)⊗. We
define the following analogue of Q>

X :

Q<
Y � {v ∈ Q | ∀y ∈Y : δ⊗([y],v) = [v]} = {v ∈ Q | ∀y ∈Y : yv ∈ S⊗}.

Then, the above set BY can be written as BY = S⊗ ∩Q<
Y Σ∗ ∩Σ∗Y. As expected there is

a strong connection between BY and 〈Q,X〉, where X = Q<
Y .

Lemma 7. Let X ,Y,Q be nonempty subsets of S such that X ,Y ⊆ Q and [Q] is a non-
trivial strongly connected component of Trie(S)⊗.

1. If Q>
X = Y then X ⊆ Q<

Y .
2. If Q<

Y = X then Y ⊆ Q>
X .

3. If X is maximal with “X ⊆Q and Q>
X = Y” then X = Q<

Y .
4. If Y is maximal with “Y ⊆ Q and Q<

Y = X” then Y = Q>
X .

5. X is maximal with “X ⊆ Q and Q>
X = Y ” if and only if Y is maximal with “Y ⊆ Q

and Q<
Y = X”.

Thus, in the method of [4] and [5] with the requirement that Y ⊆ Q, the constructed set
BY = S⊗∩Q<

Y Σ∗ ∩Σ∗Y has the following properties.

– As Y ⊆ Q>
X , we have BY ⊆ S⊗∩XΣ∗ ∩Σ∗Q>

X = 〈Q,X〉, where X = Q<
Y .

– If Y is chosen to be maximal with “Y ⊆ Q and Q<
Y = X ,” then Y = Q>

X ,

BY = S⊗∩XΣ∗ ∩Σ∗Q>
X

and, X is maximal with “X ⊆ Q and Q>
X = Y”. Therefore, BY would be maximal

with B∗Y ⊆ S⊗.



Computing Maximal Kleene Closures 125

5 Algorithmic Considerations for Maximal D’s with D∗ ⊆ S⊗

In this section we consider algorithms for the following problems.

(P1) Given a subword constraint S, compute a DFA accepting a nonempty language D
that is maximal with D∗ ⊆ S⊗.

(P2) Given a subword constraint S, compute a DFA accepting a nontrivial language D
that is maximal with D∗ ⊆ S⊗.

We deal with the above problems by considering the following subproblems, which
refer to a given Trie(S)⊗ and a given nontrivial SCC [Q] of Trie(S)⊗.

(SP1) Given a nonempty subset X of Q, compute the set Q>
X .

(SP2) Given nonempty subsets Z,Y of Q such that Q>
Z =Y , compute X such that Z ⊆ X

and X is maximal with “X ⊆ Q and Q>
X = Y ”.

(SP3) Given nonempty subsets X ,Y of Q compute a DFA accepting S⊗ ∩XΣ∗ ∩Σ∗Y .

We shall use the abbreviation T for Trie(S)⊗. We use a bijective encoding of Q onto
the set Q̄ = {0,1, . . . , |Q| − 1}, such that, for v ∈ Q, v̄ is the code of v in Q̄. Using
hashing techniques the encoding and decoding functions can be done in time O(1). As
customary, we realize any subset Z̄ of Q̄ as a Boolean array of size |Q| such that, for
any z ∈Q, we have that z ∈ Z if and only if the entry z̄ of the array is true. Thus, testing
for membership in Z takes time O(1).

5.1 Algorithm ASP1(T,Q,X) for (SP1), and the 2D Array BQ

A simple algorithm is to take any pair v ∈ Q and x ∈ X , and test whether δ⊗([v],x) �=
[sink]. If, for the current v, the test is true for all x ∈ X , then v is added in Q>

X . This
algorithm performs in time O(|Q||X |k) and space O(|Q|).

It turns out, however, that subproblem (SP1) needs to be solved repeatedly when we
are looking for maximal solutions in the original main problems. For this reason, we
shall need as a preprocessing step to compute a |Q|× |Q| Boolean array BQ such that
BQ[v̄, v̄′] is true if and only if δ⊗([v],v′) �= [sink]. This array can be computed in time
O(|Q|2k) and space O(|Q|2), as it involves |Q|2 steps and, in each step, we run the DFA
T on an input word of length k. Then, algorithm ASP1(T,Q,X) works as described
in the previous paragraph, but now the test δ⊗([v],x) �= [sink] is reduced to whether
BQ[v̄, x̄] is true. Hence, assuming that the array BQ is available, the algorithm runs in
time O(|Q||X |).

5.2 Algorithm ASP2(T,Q,Z,Y ) for (SP2)

Here we assume that Q>
Z = Y , and we compute X by initializing it to Z, and then by

repeatedly adding into X a new element from V = Q−X , provided that condition Q>
X =

Y remains true. In particular, the algorithm is as follows.

ASP2(T,Q,Z,Y)
X = Z; V = Q−X ;
while (V �= /0)



126 S. Konstantinidis and N. Santean

do
Pick v ∈V ;
Use ASP1(T,Q,X ∪{v}) to compute Y ′ = Q>

X∪{v};
if (Y ′ = Y ) X = X ∪{v};
V = V −{v};

return X ;

Lemma 8. The above algorithm computes in time O(|Q|2(|Q|− |Z|)) a subset X of Q
such that Z ⊆ X and X is maximal with “X ⊆ Q and Q>

X = Y ”.

In the subsection below on Problem (P1), we give an example of executing Algo-
rithm ASP2 based on input from Fig. 2.

5.3 Algorithm ASP3(T,Q,X ,Y ) for (SP3)

We assume that T = Trie(S)⊗ is given, as well as, the sets Q,X ,Y . The required DFA
T ′ accepting S⊗ ∩XΣ∗ ∩Σ∗Y can be constructed as follows by modifying T in linear
time in terms of the sizes of the given structures.

– The states of T ′ are [sink], all states in [Q], and all [z] with z a prefix of X .
– The start state is [λ ], and the set of final states is [Y ].
– The transitions of T ′ are all the transitions of T involving only the above states.

It is not difficult to see that, indeed, the automaton T ′ accepts exactly those words in S⊗
that end with a suffix in Y and begin with a prefix in X , as required.

5.4 Algorithm for Problem (P1)

We present now the algorithm for (P1), our first original main problem.

A1(S)
Compute T = Trie(S)⊗;
Compute the strongly connected components of T ;
Pick a nontrivial component [Q] – exit if none exists;
Compute the Boolean array BQ;
Compute two nonempty subsets Z,Y of Q such that Q>

Z = Y ;
Use ASP2(T,Q,Z,Y ) to compute a maximal X with Q>

X = Y ;
Use ASP3(T,Q,X ,Y ) to compute and return the DFA for S⊗∩XΣ∗ ∩Σ∗Y ;

Step 2 can be computed in linear time in terms of the size of Trie(S)⊗ – see [6]. Steps 3
and 5 are nondeterministic and allow for various possibilities. We show how to do Step 5
in time O(|Q|). We pick any z ∈ Q and let Z = {z}. We need to show that Y = Q>

Z is
not empty. By Lemma 5, there is some state [u] ∈ [Q] with a path of length k to [z]. As
[z] �= [sink], the label of that path must be equal to z. Hence, u ∈ Q>

Z . By the results
in the previous sections, it is easy to see that the above algorithm operates correctly as
described in the following theorem. Also, as the set Z is of cardinality 1, Step 6 of the
algorithm runs in time O(|Q|3).



Computing Maximal Kleene Closures 127

Theorem 3. Algorithm A1(S) computes, for any given subword constraint S of some
length k, a DFA accepting a nonempty language D whose words are of length at least
k, and D is maximal with D∗ ⊆ S⊗; or the algorithm reports that no such D exists. The
algorithm runs in time O(|Q|3 + |Q|2k) and space O(|Q|2k), where [Q] is any nontrivial
SCC of Trie(S)⊗ – if such exists.

Example 3. Going back to Fig. 2, for Q = {0111,1111,1110,1101,1011}, Step 5 of
Algorithm A1(S) can be performed by choosing, for instance, Z = {1011} and comput-
ing Y = Q>

{1011}= {1011,0111,1111}. Then in Step 6, the word 0111 will not be added

to Z, as δ⊗([1011],0111) = [sink]. On the other hand, the words 1101, 1110, 1111 will
be added to Z to obtain X = {1011,1101,1110,1111}with Q>

X = Y . Thus, the language

D = S⊗ ∩{1011,1101,1110,1111}Σ∗∩Σ∗{1011,0111,1111}

is maximal with D∗ ⊆ S⊗.

5.5 Algorithm for Problem (P2)

The desired algorithm is very similar to the one used for Problem (P1).

A2(S)
Compute T = Trie(S)⊗;
Compute the strongly connected components of T ;
Pick a component [Q] containing a fork state – exit if none exists;
Compute the Boolean array BQ;
Compute subsets Z,Y of Q such that |Z| ≥ 2 and Q>

Z = Y ;
Use ASP2(T,Q,Z,Y ) to compute a maximal X with Q>

X = Y ;
Use ASP3(T,Q,X ,Y ) to compute and return the DFA for S⊗∩XΣ∗ ∩Σ∗Y ;

For the correctness of the algorithm, we first note that there is a nontrivial language D
with D∗ ⊆ S⊗ if and only if there is a SCC of Trie(S)⊗ containing a fork state – the
‘only if’ part follows from Theorem 2 and the ‘if’ part from Lemmata 3 and 6. Thus, if
there is no fork state in some SCC, Step 3 correctly decides to terminate the algorithm.
On the other hand, if a fork state is found, then, according to Lemma 6, we can define
effectively a two-element subset Z of Q such that 〈Q,Z〉 is nontrivial. Then, in Step 6,
the algorithm attempts to add elements to Z in order to obtain a subset X of Q that is
maximal with Q>

X =Y . As before, the resulting set 〈Q,X〉= S⊗∩XΣ∗∩Σ∗Y is maximal
with 〈Q,X〉∗ ⊆ S⊗ and, of course, the set is also nontrivial as it contains the nontrivial
set 〈Q,Z〉. The time complexity of the above algorithm is the same as that of A1(S).

Theorem 4. Algorithm A2(S) computes, for any given subword constraint S of some
length k, a DFA accepting a nontrivial language D whose words are of length at least
k, and D is maximal with D∗ ⊆ S⊗; or the algorithm reports that no such D exits. The
algorithm runs in time O(|Q|3 + |Q|2k) and space O(|Q|2k), where [Q] is any SCC of
Trie(S)⊗ containing a fork state – if such exists.



128 S. Konstantinidis and N. Santean

Example 4. Again in Fig. 2, for Q = {0111,1111,1110,1101,1011},we see that [0111]
is a fork state with transitions going to states [1110], [1111]. Let Z = {1110,1111}.
Step 5 will compute Y = Q>

Z = Q and, then, Step 6 will find that no other words will be
added to Z, that is, X = Z. Thus, the language

D = S⊗ ∩{1110,1111}Σ∗∩Σ∗{0111,1111,1110,1101,1011}

is nontrivial and maximal with D∗ ⊆ S⊗.

6 Concluding Remarks

We have considered the problem of characterizing nontrivial languages D that are max-
imal with the property D∗ ⊆ S⊗. Our characterization is structural and nontrivial, and
leads to algorithmically polynomial solutions. The recent work of [12] solves the more
general problem of computing all maximal solutions of D∗ ⊆ R, for any given regular
language R using a brute force method of exponential time complexity. Is it possible
to dig deeper and combine the two approaches with the aim of computing efficiently
the more general problem? Is it possible to compute efficiently nontrivial D’s that are
maximal with the conjunctive property “D∗ ⊆ S⊗ and D is a code (or a prefix code)”?
Can we find the right tools for choosing “good”, according to some information theory
criteria, maximal D’s among the potentially many ones that exist in S⊗?

References

1. Campeanu, C., Konstantinidis, S.: State complexity of the subword closure operation with ap-
plications to DNA coding. International Journal of Foundations of Computer Science 19(5),
1099–1112 (2008)

2. Chen, J., Reif, J. (eds.): Preproceedings of DNA9, June 2003. Madison, Wisconsin (2003)
3. Crochemore, M., Hancart, C.: Automata for matching patterns. In: [14], pp. 399–462
4. Cui, B.: Encoding methods for DNA languages defined via the subword closure operation.

MSc Thesis, Dept. Math. and Computing Science, Saint Mary’s University, Canada (2007)
5. Cui, B., Konstantinidis, S.: DNA coding using the subword closure operation. In: [8], pp.

284–289.
6. Dasgupta, S., Papadimitriou, C.H., Vazirani, U.V.: Algorithms. McGraw-Hill, New York

(2006)
7. Ferretti, C., Mauri, G., Zandron, C. (eds.): DNA Computing, 10th International Workshop

on DNA Computing, DNA 10, Milan, Italy, Revised Selected Papers. In: Ferretti, C., Mauri,
G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384. Springer, Heidelberg (2005)

8. Demaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque, M., Rafalin, E., Schweller, R.T., Sou-
vaine, D.L.: Staged self-assembly: Nanomanufacture of arbitrary shapes with O(1) glues. In:
Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 1–14. Springer, Heidelberg
(2008)

9. Havel, I.M., Koubek, V. (eds.): MFCS 1992. LNCS, vol. 629. Springer, Heidelberg (1992)
10. Jonoska, N., Mahalingam, K.: Languages of DNA based code words. In: [2], pp. 58–68



Computing Maximal Kleene Closures 129

11. Kari, L., Konstantinidis, S., Sosík, P.: Bond-free languages: formalizations, maximality and
construction methods. In: [7], pp. 169–181

12. Kari, L., Seki, S.: Schema for parallel insertion and deletion. In: Gao, Y., Lu, H., Seki, S.,
Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 267–278. Springer, Heidelberg (2010)

13. Mahalingam, K.: Involution codes: with application to DNA strand design. PhD Thesis, De-
partment of Mathematics, University of South Florida, Florida, USA (2004)

14. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. I. Springer, Berlin
(1997)

15. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Berlin (2009)
16. Yu, S.: Regular Languages. In: [14], pp. 41–110.



Modelling, Simulating and Verifying
Turing-Powerful Strand Displacement Systems

Matthew R. Lakin and Andrew Phillips

Microsoft Research, Cambridge, CB3 0FB, UK
aphillip@microsoft.com

Abstract. We demonstrate how the DSD programming language can
be used to design a DNA stack machine and to analyse its behaviour.
Stack machines are of interest because they can efficiently simulate a
Turing machine. We extend the semantics of the DSD language to sup-
port operations on DNA polymers and use our stack machine design to
implement a non-trivial example: a ripple carry adder which can sum
two binary numbers of arbitrary size. We use model checking to verify
that the ripple carry adder executes correctly on a range of inputs. This
provides the first opportunity to assess the correctness and kinetic prop-
erties of DNA strand displacement systems performing Turing-powerful
symbolic computation.

1 Introduction

Biomolecular computation devices can interface directly with living tissue [1],
opening up exciting new possibilities for autonomous medical intervention at
the cellular level. The programmable nature of DNA makes it ideally suited as
a material to implement such biomolecular computers. As techniques for DNA
synthesis and manipulation continue to improve, we can look towards using DNA
to implement more sophisticated computational functions.

Classical work on computability theory has produced a number of equivalent
universal computational models, such as Turing machines [2] and stack machines.
Both of these paradigms are based on symbolic computation, where computation
proceeds via the manipulation of abstract mathematical symbols which denote
data values. These paradigms have the virtues of simplicity and compactness,
as simple data structures are modified in-place. Nucleic acids are excellent ma-
terials for implementing symbolic computation, because distinct symbols can be
straightforwardly represented as distinct, non-interfering nucleotide sequences,
and data structures can be directly realized in the physical structure of the DNA
species.

In this paper we study the design and analysis of biomolecular implementa-
tions of universal symbolic computation. Our chosen framework for molecular
computation is DNA strand displacement [3], which is an established technique
for the principled design of DNA computing systems. Our starting point is the
work of Qian et al. [4], who proposed a design of a stack machine using DNA
strand displacement. A stack machine consists of finitely many stacks (first-in,

L. Cardelli and W. Shih (Eds.): DNA 17, LNCS 6937, pp. 130–144, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Modelling, Simulating and Verifying 131

first-out memory storage) and a finite state machine which can add symbols to
(push), and remove symbols from (pop), the top of these stacks. In [4] the stack
data structures have a direct physical representation as DNA polymers which
can interact at one end only. This design is a simple and elegant translation of
a universal scheme for symbolic computation into DNA, which can be used to
efficiently simulate a Turing machine [2].

We tackle the formal design and analysis of universal DNA computers by en-
coding them in the DSD programming language [5]. This is a domain-specific
language with a well-defined operational semantics that reflects the key assump-
tions of strand displacement systems. DSD has previously been used to model a
range of strand displacement devices, including logic gates and chemical reaction
networks. However, previous versions of DSD did not support the formation of
extensible polymers, which are required to encode stack data structures in DNA.
Furthermore, the DSD simulation algorithm required all models to be compiled
to a fixed set of reactions and was therefore unable to simulate Turing-powerful
computation, which can generate potentially unbounded numbers of reactions.
Hence we extend the DSD semantics and simulation algorithm to support the
formation of linear hetropolymers.

This paper is structured as follows. Section 2 presents an extension of the DSD
language syntax and semantics [5] to model the formation of linear DNA het-
eropolymers, while Section 3 presents a stochastic simulation algorithm, based on
[6], for DNA strand displacement systems involving polymers. Section 4 presents
an encoding of a stack machine design in the DSD language which is optimised
for mechanical verification. Finally, Section 5 presents an implementation of a
classic circuit from digital electronics, a ripple carry adder, which computes the
sum of two binary numbers of arbitrary size, including results from stochastic
simulations and model-checking which provide evidence that the DNA imple-
mentation of the adder is correct. To our knowledge, this is the largest DNA
strand displacement system to be formally verified.

2 Polymers in DSD

The DSD language was introduced in [5] as a means of formalising the designs
of DNA strand displacement systems. Here we recap the basics and extend the
semantics to allow polymerisation reactions between complexes.

The syntax of the DSD language is defined in terms of domains M and domain
sequences S, L, R. A domain M represents a nucleotide sequence with explicit
information about the orientation of its 3’ and 5’ ends. We assume that distinct
domains are mapped to distinct, non-interfering nucleotide sequences using es-
tablished techniques [7]. A domain can be a long domain N or a short domain
N^ (shown in black in images). We assume that toeholds are sufficiently short to
hybridize reversibly (4–10nt) whereas long domains are sufficiently long to hy-
bridize irreversibly (>20nt). A domain sequence S is a concatenation of finitely
many domains with the same orientation, whereas domain sequences L and R can
potentially be empty. The complement S* of a domain sequence S is the domain
sequence that hybridizes with S via Watson-Crick complementarity.



132 M.R. Lakin and A. Phillips

Table 1. Graphical and textual syntax of the DSD programming language

Syntax Description Syntax Description
{S}

<S>

Lower strand with
sequence S

Upper strand with
sequence S

{L’}<L>[S]<R>{R’} Double stranded
complex [S] with
overhanging single
strands <L>, <R> and
{L’}, {R’}

C1:C2 Complexes joined by
lower strand

C1::C2 Complexes joined by
upper strand

Domain sequences are used to construct DNA species, as shown in Table 1. A
species can either be a single strand A or a complex C. A strand can either be an
upper strand <S> (drawn with the 3’ end towards the right) or a lower strand {S}
(drawn with the 3’ end towards the left). We assume that species are equal up
to rotation symmetry, so every upper strand has a corresponding lower strand,
and vice versa. Complexes are formed by joining one or more segments of the
form {L’}<L>[S]<R>{R’}, which consists of a double-stranded region [S] with
four overhanging strands. This represents an upper strand <L S R> bound to a
lower strand {L’ S* R’} by hybridization between S and S*. For compactness,
only the upper sequence of the double-stranded region is written explicitly, and
we omit empty overhanging strands. Complexes can be formed by concatenating
segments either along the lower strand, written C1:C2, or along the upper strand,
written C1::C2.

Systems D typically involve many species in parallel, written D1 | · · · | Dn. We
abbreviate K parallel copies of the same system D as K*D. The language also in-
cludes features for expressing the logical structure of the system: a domain N can
be restricted to the system D, written new N D, which represents the assumption
that N and N* do not appear outside of D. The language also supports module
definitions of the form X(m̃)=D, where m̃ is a list of module parameters and X(ñ)
is an instance of the module X with the parameters m̃ replaced by values ñ. We
assume a fixed collection of non-recursive module definitions. A key assumption
of the DSD language is that species only interact via complementary toeholds:
we enforce this by requiring that no long domain and its complement are si-
multaneously exposed. Finally, we note that the syntax of the DSD language is
constrained so that overhanging single strands are the only secondary structure
which a complex may possess, which rules out branching structures.

Figure 1 presents elementary reduction rules for the DSD language which
formalise basic strand displacement reactions. Rules (RB) and (RU) define the
binding of a strand to a complex via a complentary toehold, together with the
corresponding unbinding reaction since we assume that toeholds hybridize re-
versibly. The rates of these reactions are determined from the toehold N. Rule
(RC) accounts for the case when an overhanging toehold in the lower strand is
covered by the complementary toehold in the upper strand: this is irreversible as
the resulting long double-stranded segment is thermodynamically stable. Rules



Modelling, Simulating and Verifying 133

{L1’}<L1>[S1]<R1>{L’ N^* R’}
| <L N^ R>

RB,N+−→
RU ,N-←−

{L1’}<L1>[S1]<R1>:{L’}<L>[N^]<R>{R’}

{L’}<L>[S]<N^ R>{N^* R’}
RC ,N~−→ {L’}<L>[S N^]<R>{R’}

{L’}<L>[S1]<S R2>:<L1>[S S2]<R>{R’}
RM ,S~−→
RM ,S~←−

{L’}<L>[S1 S]<R2>:<L1 S>[S2]<R>{R’}

{L’}<L>[S1]<S R>:<L2>[S]<R2>{R’}
RD,S~−→ {L’}<L>[S1 S]<R>{R’} | <L2 S R2>

{L1’}<L1>[S1]<R1>{L’ N^* R’}
| {L2’}<L N^ R>[S2]<R2>{R2’}

RBP ,N+−→
RUP,N-←−

{L1’}<L1>[S1]<R1>{L’}:
<L>[N^]<R>{R’}::[S2]<R2>{R2’}

{L’}<L>[S1]<S R>:<L2>[S]<R2>{R’}::
{L3’}[S2]<R3>{R3’}

RDP,S~−→ {L’}<L>[S]<R>{R’} |
<L2 S R2>{L3’}[S2]<R3>{R3’}

Fig. 1. Elementary reduction rules of the DSD language with polymers. We let S~
denote the migration rate of a domain sequence S, and we let N+ and N- denote the
binding and unbinding rates, respectively, of a toehold N^. We assume that fst(R2) �=
fst(S2) for rule (RM). This ensures that branch migration is maximal along a given
sequence and that rules (RM) and (RD) are mutually exclusive.



134 M.R. Lakin and A. Phillips

(RM) and (RD) define branch migration and strand displacement reactions, re-
spectively. In each of these, the overhanging junction in the upper strand per-
forms a random walk which, in the case of rule (RD), completely displaces a
strand from the complex. Note that branch migration is a reversible process
whereas strand displacement is irreversible.

The final two rows in Figure 1 present additional reduction rules which do
not feature in previous published semantics for the DSD language [5]. These
rules permit complexes to interact with each other to form larger complexes
which we refer to as polymers. Rule (RBP) allows two complexes to bind on a
shared toehold to form a longer complex, and rule (RUP) allows the larger com-
plex to break apart when the toehold unbinds. Rule (RDP) extends the strand
displacement rule (RD) to the case where the displaced strand was previously
holding two complexes together. Note that the reduction rules ensure that the
only toeholds which may interact are located in the main trunk of the complex as
opposed to in the overhangs: this prevents the formation of branching structures
while permitting the growth of linear heteropolymers.

The rules presented in Figure 1 define the basic forms of reduction in the
extended DSD language. However, these reactions may take place within larger
contexts, so to complete the language semantics we require some additional
contextual rules. These include adding segments on either side of the reacting
segment, mirroring the species horizontally and vertically, and rotating them. We
omit the contexutal rules here for reasons of space. In the case of rule (RBP), we
note that the overhangs containing the complementary toeholds must appear at
the very ends of the complexes: in other words, polymers can only interact end-
to-end. This can be formalised by a careful choice of contextual rules which only
allow additional structure at one end of interacting complexes. This restriction
is necessary to prevent branching structures from arising dynamically.

3 Stochastic Simulation of Polymerising Systems

The standard Gillespie algorithm for exact stochastic simulation [8] requires
that the entire chemical reaction network (CRN) of all possible reactions be-
tween reachable chemical species must be known before the simulation begins.
However, in the case of DNA strand displacement systems with polymers we can-
not necessarily pre-compute the CRN because it may be infinite, as we could (in
principle) keep adding monomers to produce an ever-increasing polymer chain.

We avoid this problem by using the just-in-time simulation algorithm from [6].
This is an extension of the Gillespie algorithm in which compilation of species
interactions is interleaved with simulation steps. The just-in-time simulation
algorithm can be summarised as follows:

1. Compute the CRN of all possible initial reactions between the initial species
only, without recursively computing reactions involving the products of those
initial reactions.

2. Compute reaction propensities according to the Gillespie algorithm, and ran-
domly select the next reaction with probability proportional to its propensity.



Modelling, Simulating and Verifying 135

3. Execute the next reaction by modifying the species populations and incre-
menting the simulation time according to the Gillespie algorithm.

4. If executing the reaction produced any new species which have not yet been
seen in the system then compute any interactions between the new species
and the existing species in the system, and expand the CRN accordingly.

5. Repeat from step 2.

Thus we dynamically update the set of possible reactions as the simulation pro-
ceeds, rather than computing all possible reactions up front. Hence we compute
only the needed subgraph of the CRN. This can offer significant speedups when
the CRN is very large, and is the only feasible approach when the CRN is infi-
nite, as in the case of most polymerising systems. The stochastic simulation is
exact since all probabilities are computed exactly at each step.

4 Modelling Stack Machines in DSD

In this section we present a novel stack design which is a variant of the stack
encoding from [4]. Our design was formalised, visualised and analysed using the
Visual DSD tool1. Our primary goal in designing a new stack implementation is
to produce an encoding which is amenable to automated verification. Thus we
aim to eliminate speculative stack manipulation reactions and irreversible steps
in reaction gates which could occur at any time after the outputs are produced.

4.1 A Variant Stack Encoding

The stack design from [4] has the property that fuel monomers specific to the
various symbols that might be pushed onto the stack are continually interacting
with the stack, in the hope that the symbol strand itself may arrive to complete
the reaction, as in Figure 3 of [4]. Furthermore, that Figure shows that the fuel
strands which can deconstruct the stack are also continually interacting with the
stack, in the hope that other species may arrive to complete the reaction. This
means that there are always a large number of possible stack-based interactions,
and consequently the graph of possible states for these systems is very large
indeed, making it infeasible to perform analyses such as model checking on the
resulting CTMC.

In order to efficiently simulate a Turing machine, more than one stack is
needed for data storage. Thus we must assign a unique type to each stack so
that they can be correctly addressed. In our stack encoding, the stack []::1::0, of
type A, is represented by the following DNA complex. Note that we write the
top of the stack on the right-hand side in our textual notation, to match the
visualisations.

1 Visual DSD is available online at http://research.microsoft.com/dna .



136 M.R. Lakin and A. Phillips

In our encoding, a symbol 1 on stack A is represented by a bound upper
strand of the form <mOne mPushA T^ pPushA pOne>, which we refer to as the
push strand 1A. In this paper we use three kinds of symbol: a special bottom
symbol ⊥ which signals an attempt to pop from an empty stack and two symbols
corresponding to 1 and 0 respectively. Symbols are represented using a history-
free scheme similar to that used in [4], except that we separate the nucleotide
sequences on either side of the toehold into two long domains: one specific to
the stack type (A here) and one specific to the symbol in question. We restrict
ourselves to ASCII syntax, writing mX and pX for the negative (towards the 5’
end) and positive (towards the 3’ end) sequences, which were referred to as −X
and +X respectively in [4].

Each stack complex has a single exposed T^ toehold, which serves as the
initiation site for both push and pop reactions. The reaction to pop a symbol
from stack A is initiated by the pop strand PopA = <mPopA T^ pPopA> which
begins the clockwise sequence of reversible reactions shown in Figure 2. The fuel
species FA1–4 are assumed to be present in abundance. Overall, these reversible
reactions interconvert between the stack A = []::1 and the PopA strand, and
the stack A = [] and the 1A strand. The push reaction is initiated by a push
strand and is obtained as the reverse of the above reaction scheme, reading anti-
clockwise in Figure 2. When attempting to pop from an empty stack the reactions
proceed as in Figure 2, except that the resulting complex is not a valid stack
structure. The bottom strand ⊥A = <mBot mPushA T^ pPushA pBot> serves as
an error indicator, signalling that an attempt has been made to pop from an
empty stack.

Our stack design allows us to initiate pushing or popping by the interaction
of a single strand with a stable stack complex, without speculative binding and
unbinding reactions as in [4]. Furthermore, we can use a smaller set of backbone
monomers for each stack type: for a given stack type A we only require the four
fuel species FA1–4 from Figure 2 because any symbol can be joined to the main
backbone of the stack by the common pPushA domain. Hence the number of
domains required scales with the sum of the number of stacks and the number of
symbols, whereas in the encoding of [4] it scales with the product (because there
the separate nucleotide sequences denoting the stack and the symbol parts of the
<mOne mPushA T^ pPushA pOne> strand are merged so the strand has the form
<mOneA T^ pOneA>). In our design it is crucial that the pop strand employs the
history-free encoding from [4], so it can initiate a leftward displacement reaction
to break apart the polymer structure.

4.2 Implementing a Stack Machine in DNA

A stack machine consists of finitely many stacks along with a finite state control
program. Thus, a configuration of a stack machine consists of the current state
and the current contents of the stacks. As discussed above, the symbols in a
given stack are encoded in the nucleotide sequences of the overhanging single
strands attached to the polymer backbone of the corresponding stack complex.
We encode the current state of the machine by a single complex of the form



Modelling, Simulating and Verifying 137

Fig. 2. Example CRN for reversible stack manipulation reactions: pushing and popping
a non-empty stack

S1 = <H T^ pS1>, where we refer to H as the history domain and where pS1 is
a domain which informs us that the machine is currently in state 1. The history
domain is irrelevant when determining the current state of the system, and we
will see below why we allow state strands to have an arbitrary history domain.
We require that only one state strand is present in solution at any one time, so
there can be no confusion over the current state of the machine.

Stack manipulation operations are implemented as described in Section 4.1,
and we encode state transitions using chemical reaction gates. These accept
as input the current state strand and the output strand from the stack ma-
nipulation reaction occurring in that state and produce as output the state
strand and stack manipulation initiator strand corresponding to the next state
according to the stack machine program. Figure 3 presents the CRN for a re-
action gate implementing the reaction 1A + S1 −→ S3 + PopB , which assumes
that the symbol 1 has just been read from stack A in state 1, and the tran-
sition is to state 3 where we must pop from stack B. In the CRN, the bold
nodes denote the species initially present. This gate accepts the input strands
1A = <mOne mPushA T^ pPushA pOne> and S1 = <H T^ pS1> (where H is an
arbitrary history domain) and produces the output strands S3 = <mA T^ pS3>
and PopB = <mPopB T^ pPopB>. Here, the domain mA is a private history do-
main which is unique to this particular reaction gate. This allows us to use a long
fuel strand with multiple toeholds to eject both of the outputs and render the



138 M.R. Lakin and A. Phillips

Fig. 3. Example CRN for an irreversible stack machine transition. Nodes with a bold
outline indicate species required to be present initially.

complex unreactive in a single step. This helps to restrict the number of states
in the CTMC because the chemical reactions corresponding to different steps of
the stack machine computation are separated by these irreversible displacement
reactions. We are left with a final complex which we consider to be unreactive
because there is no other species in the system which can displace the entirety
of the long fuel strand. We do not add an extra toehold to the fuel strand to
completely seal off the complex because this can lead to unwanted interference
caused by fuel strands reacting with the stack monomers.

A stack machine terminates when it enters an accepting or rejecting state,
which can have no outgoing transitions. State transitions which enter one of
these states are implemented using a reaction gate similar to that from Figure 3,
except that in this case we can add an extra toehold to the fuel strand in order
to completely seal off the final complex without causing unwanted interference.
Reaction gates which implement transitions into an accepting or rejecting state
do not produce a strand to initiate another stack operation and this, together
with the fact that the fuel strand completely seals off the complex, means that all
chemical reactions in the system cease. Hence the CTMC has a well-defined ter-
minal state from which no reactions are possible. This makes it more convenient
to ask questions about the final state of the machine.

5 DSD Stack Machine Example: Ripple Carry Adder

As a non-trivial proof of concept we implemented a binary adder in DSD using
the stack machine encoding described above. Figure 4 presents the stack machine
program for a ripple carry adder which iteratively sums the corresponding bits



Modelling, Simulating and Verifying 139

from two binary numbers while maintaining a carry bit. The binary numbers
are stored in stacks by using different symbols to denote 0 and 1. States which
involve popping from a stack have three outgoing transitions (depending on
whether one, zero or bottom was popped) and states which involve pushing onto
a stack have just one outgoing transition. For the sake of clarity, the state graph
in Figure 4 omits a rejecting state along with the transitions into this state: the
missing transitions are from state 2 when 0 is popped from stack B, from states
3 and 4 when B = [] and from states 5, 6 and 7 when C = []. These transitions
signal an error when the two inputs are of different lengths or when the carry
bit is not present as expected.

The machine reads input from stacks A and B (without loss of generality
we assume that both inputs comprise the same number of bits) and takes its
carry bit from C (initially zero). For each pair of input bits the stack machine
implements a full adder and by iterating the loop we get the effect of a ripple
carry adder. When it terminates, the machine has written the sum of the two
inputs into X along with a carry-out bit in C. Due to the first-in, first-out nature
of the stack data structure, the endianness of the output in X is flipped relative
to that of the inputs, though this could be rectified by a subsequent reversing
operation if necessary.

5.1 Stochastic Simulation

Figure 5 presents an example2 of a stochastic simulation for 1-bit addition with
inputs A = []::1, B = []::0 and C = []::0. This plot was obtained using the
simulation algorithm described in Section 3. It shows which of the state strands
has population 1 at a given time during the run, which allows us to trace the
execution of the machine. Comparing the sequence of states from this timeline
with the state diagram from Figure 4 shows us that the machine did in fact
go through the expected sequence of states. Furthermore, the contents of the
output stacks at the end of this simulation run were X = []::1 and C = []::0,
which agrees with the truth table from Figure 4. Thus we have some preliminary
evidence that our stack machine program is working correctly.

The simulation plot from Figure 5 also gives us some information regarding
the kinetic behaviour of the stack machine implementation. In particular, we
observe that the machine spends far longer in states 6 and 10 than in any of the
other states. These bad kinetics are caused by the excess of reaction complexes
relative to the single stack complex. If a strand could bind either to a stack or
to a reaction complex, it will be far more likely to bind to the reaction complex
as they are present in excess. We can attenuate this effect to an extent in our
simulations by reducing the population of fuels. However, we must strike a bal-
ance between providing enough fuel to finish the computation and maintaining
reasonable kinetics. Furthermore, in general computations may be arbitrarily
long and we may not know the optimal amount of fuel in advance. This is not an

2 DSD and PRISM source code for the models discussed in Section 5 are available
online at http://research.microsoft.com/dna/dna17.zip.



140 M.R. Lakin and A. Phillips

Cin A B X Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Fig. 4. (Left) Truth table for a 1-bit full adder, which takes two bits and a carry bit as
input and produces an output bit and a carry output bit. (Right) State diagram for a
stack machine implementation of a ripple carry adder, where state 1 is the initial state.

Fig. 5. Example stochastic simulation plot showing the populations of state strands
during an execution of the ripple carry adder stack machine. The populations switch
between zero and one as the stack machine moves through the sequence states defined
by its program.

artefact of our stack machine encoding—the issue also exists with the original
design proposed in [4]. However, in that paper there was no stochastic simulation
available to observe the kinetic behaviour of the stack machine.

5.2 Model Checking

We used the PRISM model checker [9] to verify that the ripple carry adder,
given particular inputs, satisfies certain properties expressed as temporal logic
formulae. To demonstrate that the stack machine works correctly for given in-
puts, we used PRISM to check that the following properties hold of the CTMC
of the system. We give informal descriptions as well as example PRISM queries:

1. the system always goes through the correct sequence of state transitions
and eventually reaches a terminal state which contains the expected output
species (P=? [F(state_is_X & F( ... & F(state_is_Y & “deadlock”
& outputs_correct) ... )]);



Modelling, Simulating and Verifying 141

Input A Input B Output X Output C Result
MSB LSB Value MSB LSB Value LSB MSB Value Value

0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 1
0 0 0 1 0 2 0 1 0 2
0 0 0 1 1 3 1 1 0 3
0 1 1 0 0 0 1 0 0 1
0 1 1 0 1 1 0 1 0 2
0 1 1 1 0 2 1 1 0 3
0 1 1 1 1 3 0 0 1 4
1 0 2 0 0 0 0 1 0 2
1 0 2 0 1 1 1 1 0 3
1 0 2 1 0 2 0 0 1 4
1 0 2 1 1 3 1 0 1 5
1 1 3 0 0 0 1 1 0 3
1 1 3 0 1 1 0 0 1 4
1 1 3 1 0 2 1 0 1 5
1 1 3 1 1 3 0 1 1 6

Fig. 6. Table of verification results for all possible pairs of 2-bit inputs to the ripple
carry adder (with initial carry bit zero). Output values in boldface were computed
using PRISM and are known to be the final state of the system irrespective of which
particular trajectory the system follows.

2. there is always precisely one complex for each stack type (stack_X=1); and
3. there is always at most one state strand (state_strands<=1). This is not

an equality because the state strand may be bound to a reaction complex.

In the above examples, outputs_correct returns true if the state contains the
expected output species and state_is_X returns true if a state strand corre-
sponding to state X is present in solution. The “deadlock” label identifies a
terminal state of the CTMC and stack_X and state_strands return the popu-
lations of all stack complexes corresponding to stack X and the total population
of state strands, respectively. The temporal logic formula Fφ holds if the system
must eventually reach a state satisfying φ.

We used PRISM to verify the correctness of all possible pairs of 2-bit inputs
(with the initial carry bit set to zero). The results are presented in Figure 6. We
were able to show that all four properties listed above hold for all 16 different
input pairings, and that we observe the correct output species in the terminal
state in all cases. We similarly verified a larger system with two 8-bit inputs, to
show that the model checking approach can scale to larger inputs.

Finally, Figure 7 shows how the numbers of states and transitions in the
CTMC scale with the initial number of bits in the inputs stacks A and B.
Thanks to our reaction gate design we see linear increases in numbers of both
states and transitions with increasing input size.



142 M.R. Lakin and A. Phillips

Fig. 7. CTMC complexity metrics. Each point was calculated for a single pair of inputs
of that size: the values of the metrics are identical or very similar for different inputs
of the same size.

6 Related Work

Theoretical work on the computational power of stochastic chemical reaction net-
works has shown that chemical systems with polymerisation are Turing-powerful
[10,11] but also that finite stochastic chemical reaction networks can simulate
register machines (and hence Turing machines) with an arbitrarily small proba-
bility of error [12,13]. The trick here is to use the populations of certain species to
denote the numerical values stored in the registers. Jiang et al. [14] have demon-
strated how imperative code (which may include arithmetic and while-loops)
can be compiled down to stochastic chemical reactions, again using molecular
populations to store numerical values. This approach relies on a chemical clock
signal to synchronise operations, in order to minimise errors. It is believed that
this combination of features is sufficient to make the system Turing-powerful.

Turning to symbolic approaches, Rothemund [15] proposed a design for a
universal Turing machine which uses restriction enzymes and ligases to perform
operations on a tape encoded as a double-stranded DNA complex. We have
already cited the stack machine encoding proposed by Qian et al. [4] as the
inspiration for the work reported in this paper.

7 Discussion

From an experimental viewpoint, the main issue with the stack machine designs
presented in this paper and in [4] is that they call for a single complex to represent
each stack. This is problematic for a number of reasons: it is difficult to produce a
single complex with a given design in the lab and it introduces numerous points
of failure into the system. If one stack becomes corrupted or forms unwanted
secondary structure then the whole system fails. Thus it would be desirable



Modelling, Simulating and Verifying 143

to invent an alternative stack machine design in which there are many copies of
each stack complex (and many copies of the state strand) and the updates to the
stacks are synchronised, for example using a clock signal such as that proposed
in [14]. This would probably require a different scheme for representing stacks,
because the reversible stack manipulation primitives used above, and in [4],
mean that stack operations could be undone before the synchronisation actually
occurs.

We noted in Section 5.1 that increasing the initial populations of fuels, in
order to enable long-running computations, can have adverse effects on the sim-
ulation kinetics. In the model this can be addressed by using the constant
keyword of the DSD language to specify that the populations of certain species
(such as fuels) should be fixed throughout the simulation. In practice, a more
complex experimental setup would be required in which the population of fuels
can be replenished, either continually or at regular intervals. In principle, con-
stant replenishment of DNA fuel should allow long-running, or even unbounded,
computations (assuming that all computation steps are error-free).

In Section 5.2 we used model checking to provide some formal verification that
our stack machine examples work as expected. We were able to demonstrate some
scalability by similarly verifying the result of adding a pair of eight-bit inputs.
As shown in Figure 7, the size of the CTMC for our stack machine programs
varies linearly with the sizes of the inputs. This was a key goal which motivated
various design choices, such as the use of private history domains on the single
strands which denote the current state of the machine. In general, however, the
brute force approach to model checking does not scale to large systems with
many different species and large populations. It may be possible to exploit work
on modular model checking [16] to avoid this problem.

Another limitation of model checking is that it only verifies properties of the
collection of starting species. We were able to verify that all 2-bit inputs are
summed correctly, but we cannot derive a proof that the ripple carry adder
works correctly for all input sizes. We would probably need to use an interactive
theorem prover to prove such results mechanically. This would require formalis-
ing the DSD language in said theorem prover, which could be a valuable exercise
in itself.

Acknowledgements. We thank Dave Parker for help using PRISM, and Erik
Winfree and Lulu Qian for useful discussions on the stack machine design from [4].

References

1. Venkataraman, S., Dirks, R.M., Ueda, C.T., Pierce, N.A.: Selective cell death medi-
ated by small conditional RNAs. Proc. Natl. Acad. Sci. U S A 107(39), 16777–16782
(2010)

2. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Mathematical Society s2-42(1), 230–265 (1937)

3. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement
reactions. Nat. Chem. 3, 103–113 (2011)



144 M.R. Lakin and A. Phillips

4. Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with
DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518,
pp. 123–140. Springer, Heidelberg (2011)

5. Phillips, A., Cardelli, L.: A programming language for composable DNA circuits.
J. R. Soc. Interface 6(suppl 4), S419–S436 (2009)

6. Paulevé, L., Youssef, S., Lakin, M.R., Phillips, A.: A generic abstract machine for
stochastic process calculi. In: Proc. CMSB 2010, pp. 43–54. ACM, New York (2010)

7. Zhang, D.Y.: Towards domain-based sequence design for DNA strand displacement
reactions. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp.
162–175. Springer, Heidelberg (2011)

8. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 115, 1716–1733 (2001)

9. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

10. Bennett, C.H.: The thermodynamics of computation—a review. Int. J. Theor.
Phys. 21(12), 905–939 (1982)

11. Cardelli, L., Zavattaro, G.: Turing universality of the biochemical ground form.
Math. Struct. Comp. Sci. 20(1), 45–73 (2010)

12. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochas-
tic chemical reaction networks. Nat. Comput. 7, 615–633 (2008)

13. Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical
reaction networks. In: Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E.
(eds.) Algorithmic Bioprocesses, pp. 543–584. Springer, Heidelberg (2009)

14. Jiang, H., Riedel, M.D., Parhi, K.K.: Synchronous sequential computation with
molecular reactions. In: Design Automation Conference, San Diego, California,
USA, June 5–10 (2011)

15. Rothemund, P.W.K.: A DNA and restriction enzyme implementation of Turing
machines. In: Lipton, R.J., Baum, E.B. (eds.) DNA Based Computers: DIMACS
Workshop, held April 4, pp. 75–120. American Mathematical Society, Providence
(1996)

16. Kupferman, O., Vardi, M.Y.: An automata-theoretic approach to modular model
checking. ACM T. Progr. Lang. Sys. 22(1), 87–128 (2000)



Synthesizing Small and Reliable Tile Sets for

Patterned DNA Self-assembly

Tuomo Lempiäinen, Eugen Czeizler, and Pekka Orponen

Department of Information and Computer Science
Helsinki Institute for Information Technology HIIT

Aalto University School of Science
P.O. Box 15400, FI-00076 Aalto, Finland
firstname.lastname@aalto.fi

Abstract. We consider the problem of finding, for a given 2D pattern of
colored tiles, a minimal set of tile types self-assembling to this pattern in
the abstract Tile Assembly Model of Winfree (1998). This Patterned self-
Assembly Tile set Synthesis (PATS) problem was first introduced by Ma
and Lombardi (2008), and subsequently studied by Göös and Orponen
(2011), who presented an exhaustive partition-search branch-and-bound
algorithm (briefly PS-BB) for it. However, finding the true minimal tile
sets is very time consuming, and PS-BB is not well-suited for finding
small but not necessarily minimal solutions. In this paper, we modify
the basic partition-search framework by using a heuristic to optimize the
order in which the algorithm traverses its search space. We find that by
running several parallel instances of the modified algorithm PS-H, the
search time for small tile sets can be shortened considerably. We also
introduce a method for computing the reliability of a tile set, i.e. the
probability of its error-free self-assembly to the target tiling, based on
Winfree’s analysis of the kinetic Tile Assembly Model (1998). We present
data on the reliability of tile sets found by the algorithms and find that
also here PS-H constitutes a significant improvement over PS-BB.

1 Introduction

Self-assembly of nanostructures templated on synthetic DNA has been proposed
by several authors as a potentially ground-breaking technology for the manufac-
ture of next-generation circuits, devices, and materials [4,9,14,16]. Also labora-
tory techniques for synthesizing the requisite 2D DNA template lattices, many
based on Rothemund’s [12] DNA origami tiles, have recently been demonstrated
by many groups [6,10].

In order to support the manufacture of aperiodic structures, such as electronic
circuit designs, these DNA templates need to be addressable. When the template
is constructed as a tiling from a family of DNA origami (or other kinds of) tiles,
one can view the base tiles as being “colored” according to their different func-
tionalities, and the completed template implementing a desired color pattern.
Now a given target pattern can be assembled from many different families of

L. Cardelli and W. Shih (Eds.): DNA 17, LNCS 6937, pp. 145–159, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



146 T. Lempiäinen, E. Czeizler, and P. Orponen

base tiles, and it is clearly advantageous to try to minimize the number of tile
types needed and/or maximize the probability that they self-assemble to the
desired pattern, given some model of tiling errors.

The task of minimizing the number of DNA tile types required to implement
a given 2D pattern was identified by Ma and Lombardi [8], who formulated it
as a combinatorial optimization problem, the Patterned self-Assembly Tile set
Synthesis (PATS) problem. Ma and Lombardi proposed two greedy heuristics for
solving the task, and subsequently Göös and Orponen [3] presented an exhaustive
partition-search branch-and-bound algorithm for it. While the search algorithm
presented in [3], which we denote here as PS-BB, is somewhat successful in
finding minimal tile sets for small patterns, the size of the search space grows
so rapidly that it seems to hit a complexity barrier at approximately pattern
sizes of 7×7 tiles. In practice one would of course not need to find an absolutely
minimal tile set for a given pattern, but any reasonably small solution set would
suffice. However, when the algorithm PS-BB fails to find a minimal solution, it
does not seem to yield very good approximate solutions either.

In the present work, we approach the task of finding small but not necessarily
minimal tile sets for a given 2D pattern by tailoring the basic partition-search
framework of [3] towards this goal. Instead of a systematic branch-and-bound
pruning and traversal of the complete search space, we apply a heuristic that
attempts to optimize the order of the directions in which the space is explored.
The new algorithm, denoted PS-H, is described in more detail below in Sect. 3.

It is well known in the heuristic optimization community [2,7] that when
the runtime distribution of a randomized search algorithm has a large variance,
it is with high probability more efficient to run several independent short runs
(“restarts”) of the algorithm than a single long run. Correspondingly, we investi-
gate the efficiency of the PS-H search method for a number of parallel executions
ranging from 1 to 32, and note that indeed this number has a significant effect
on the success rate of the algorithm in finding small tile sets. Also these results
are discussed below in Sect. 3.

Given the inherently stochastic nature of the DNA self-assembly process, it is
also of interest to assess the reliability of a given tile set, i.e. the probability of
its error-free self-assembly to the desired target tiling. In Sect. 4 we introduce a
method for estimating this quantity, based on Winfree’s analysis of the kinetic
Tile Assembly Model [15]. We present empirical data on the reliability of tile
sets found by the PS-BB and PS-H algorithms and find that also here the PS-H
algorithm constitutes a significant improvement over the PS-BB method.

2 The PATS Problem and the PS-BB Algorithm

2.1 The Abstract Tile Assembly Model [11,15]

Let D = {N, E, S, W} be the set of four functions Z
2 → Z

2 corresponding to the
four cardinal directions. Let Σ be a finite set of glue types and s : Σ × Σ → N

a glue strength function such that s(σ, σ′) > 0 only if σ = σ′. A tile type t ∈ Σ4

is a quadruple (σN (t), σE(t), σS(t), σW (t)) and a (tile) assembly A is a partial



Synthesizing Small and Reliable Tile Sets for Patterned DNA Self-assembly 147

mapping from Z
2 to Σ4. A tile assembly system (TAS) T = (T,S, s, τ) consists

of a finite set T of tile types, a seed assembly S, a glue strength function s and
a temperature τ ∈ Z

+ (we use τ = 2).
Now consider a TAS T = (T,S, s, τ). Assembly A produces directly assembly

A′, denoted A →T A′, if there exists a site (x, y) ∈ Z
2 and a tile t ∈ T such

that A′ = A ∪ {((x, y), t)}, where the union is disjoint, and
∑

D

s(σD(t), σD−1 (A(D(x, y))) ≥ τ ,

where D ranges over those directions in D for which A(D(x, y)) is defined. That
is, a new tile can be adjoined to an assembly A if the new tile shares a common
boundary with tiles that bind it into place with total strength at least τ .

Let →∗
T be the reflexive transitive closure of →T . A TAS T produces an

assembly A if S →∗
T A. Denote by ProdT the set of all assemblies produced

by T . A TAS T is deterministic if for any assembly A ∈ ProdT and for every
(x, y) ∈ Z

2 there exists at most one t ∈ T such that A can be extended with t
at site (x, y). Then the pair (ProdT ,→∗

T ) forms a partially ordered set, which
is a lattice if and only if T is deterministic. The maximal elements in ProdT ,
i.e. the assemblies A for which there do not exist any A′ satisfying A →T A′,
are called terminal assemblies. Denote by Term T the set of terminal assemblies
of T . If all assembly sequences S →T A1 →T A2 →T · · · terminate and
TermT = {P} for some assembly P , then T uniquely produces P .

2.2 The PATS Problem

Let the dimensions m and n be fixed. A mapping from [m] × [n] ⊆ Z
2 onto [k]

defines a k-coloring or a k-colored pattern. To build a given pattern, we start with
boundary tiles in place for the west and south borders of the m by n rectangle
and keep extending this assembly by tiles with strength-1 glues.

Definition 1 (Pattern self-Assembly Tile set Synthesis (PATS) [8])

Given: A k-coloring c : [m]× [n]→ [k].
Find: A tile assembly system T = (T,S, s, 2) such that

P1. The tiles in T have glue strength 1.
P2. The domain of S is [0, m]×{0}∪{0}× [0, n] and all the terminal assemblies

have domain [0, m]× [0, n].
P3. There exists a tile coloring d : T → [k] such that each terminal assembly

A ∈ Term T satisfies d(A(x, y)) = c(x, y) for all (x, y) ∈ [m]× [n].

Finding minimal solutions (in terms of |T |) to the PATS problem has been
described as NP-hard in [8]. Without loss of generality, we consider only TASs
T in which every tile type participates in some terminal assembly of T .

In the literature, the seed assembly of a TAS is often taken to be a single seed
tile [11] whereas we consider an L-shaped seed assembly. The boundaries can
always be self-assembled using m + n + 1 different tiles with strength-2 glues,
but we wish to make a clear distinction between the complexity of constructing
the boundaries and the complexity of the 2D pattern itself.



148 T. Lempiäinen, E. Czeizler, and P. Orponen

2.3 The PS-BB Algorithm

The partition-search branch-and-bound (PS-BB) algorithm for the PATS prob-
lem proposed in [3], and based partly on ideas from [8], performs an exhaustive
search in the lattice of partitions of the ambient rectangle [m] × [n]. For each
candidate partition P , the algorithm executes a polynomial-time test (details
omitted in the present summary) to see if it is constructible, i.e. whether it can
be produced by some deterministic TAS T . If so, then the algorithm proceeds
to consider coarsenings of P — these correspond to smaller tile systems — if
not, then the algorithm backtracks. The search starts with the trivial partition
which places each of the m ·n sites in different classes, corresponding to an initial
tile set that contains a distinct tile type for each of the tile sites in [m]× [n].

Let us now review some of the basic notions of the PS-BB algorithm in more
detail. In the following, a PATS instance is assumed to be given by a fixed
k-colored pattern c : [m]× [n]→ [k].

The Search Space. Let X be the set of partitions of the set [m]× [n]. Partition
P is coarser than partition P ′ (or P ′ is a refinement of P ), denoted P � P ′, if

∀p′ ∈ P ′ : ∃p ∈ P : p′ ⊆ p .

Now, (X,�) is a partially ordered set, and in fact, a lattice. Note that P � P ′

implies |P | ≤ |P ′|.
The coloring c induces a partition P (c) = {c−1(i) | i ∈ [k]} of the set [m]×[n].

In addition, since every (deterministic) solution T = (T,S, s, 2) of the PATS
problem uniquely produces some assembly A, we associate with T a partition
P (T ) = {A−1(t) | t ∈ A([m] × [n])}. Here, |P (T )| = |T | in case all tiles in
T are used in the terminal assembly. Now the condition P3 in the definition of
PATS is equivalent to requiring that a TAS T satisfies

P (c) � P (T ) .

A partition P ∈ X is constructible if P = P (T ) for some deterministic TAS T
with properties P1 and P2. Hence the PATS problem can be rephrased using
partitions as the fundamental search space.

Proposition 1. A minimal solution to the PATS problem corresponds to a par-
tition P ∈ X such that P is constructible, P (c) � P , and |P | is minimal.

Schematically, the PS-BB algorithm performs an exhaustive top-to-bottom search
in the lattice (X,�) as illustrated in Fig. 1(a). The algorithm also involves sev-
eral bounding heuristics for pruning the branches of the search, but discussion
of these is omitted here for lack of space (see [3]).

For example, the 2-colored pattern in Fig. 1(b) defines a 2-part partition A.
The 7-part partition M in Fig. 1(c) is a refinement of A (A � M) and in fact,
M is constructible (see Fig. 2(b)) and corresponds to a minimal solution of the
PATS problem defined by the pattern A.



Synthesizing Small and Reliable Tile Sets for Patterned DNA Self-assembly 149

I

P(c)

mn

mn-1

mn-2

3

2

1

(a) (b)

1 6 7 2 2

2 1 5 3 1

1 6 2 7 2

2 7 1 5 3

1 5 4 6 1

6 2 2 1 6

7 7 1 6 7

(c)

Fig. 1. (a) The search lattice (X,�). The search starts with the initial partition I of
size |I | = mn (top) and considers the constructible partitions (crosses) in the upper
sublattice of refinements of partition P (c) (bottom). (b) Partition A. (c) A partition
M that is a refinement of A with |M | = 7 parts.

DeterminingConstructibility. For lack of space, we shall omit the polynomial-
time algorithm for testing whether a given partition P is constructible (see [3]),
except for the mention of the following key notion.

Definition 2. Given a partition P of the set [m] × [n], a most general tile
assignment (MGTA) is a function (“tile map”) f : P → Σ4 such that

A1. f is consistent: when sites in [m]× [n] are assigned tile types according to
f , any two adjacent sites have matching glues along their common side.

A2. f is minimally constrained: any g : P → Σ4 satisfying A1 satisfies also:1

f(p1)D1 = f(p2)D2 =⇒ g(p1)D1 = g(p2)D2 ,

for all partition classes p1, p2 ∈ P and directions D1, D2 ∈ D.

As an illustration, a most general tile assignment f : I → Σ4 for the initial
partition I = {{a} | a ∈ [m] × [n]} is presented in Fig. 2(a) and a MGTA for
the partition of Fig. 1(c) in Fig. 2(b).

Given a partition P ∈ X and a tile map f : P → Σ4, tile map g : P → Σ4 is
obtained from f by merging glues a and b if for all (p, D) ∈ P ×D we have

g(p)D =

{
a, if f(p)D = b

f(p)D, otherwise
.

A most general tile assignment for a partition P ∈ X can be found as follows. One
starts with a map f0 : P → Σ4 that assigns to each tile edge a unique glue type.
Next, one considers all pairs of adjacent sites in [m]×[n] and makes their common
sides matching by merging the corresponding glues. This process generates a
sequence of tile maps f0, f1, f2, . . . , fN = f and ends after N ≤ 2mn steps.

Lemma 1. [3] The above algorithm generates a most general tile assignment.
1 For brevity we write f(p)D instead of σD(f(p)).



150 T. Lempiäinen, E. Czeizler, and P. Orponen

3 1
2

0
1 5
6

4
5 8
9

7
8 11
12

10
11 14
15

13

18 16
17

2
16 19
20

6
19 21
22

9
21 23
24

12
23 25
26

15

29 27
28

17
27 30
31

20
30 32
33

22
32 34
35

24
34 36
37

26

40 38
39

28
38 41
42

31
41 43
44

33
43 45
46

35
45 47
48

37

51 49
50

39
49 52
53

42
52 54
55

44
54 56
57

46
56 58
59

48

62 60
61

50
60 63
64

53
63 65
66

55
65 67
68

57
67 69
70

59

73

3

18

29

40

51

62

73 71
72

61
71 74
75

64
74 76
77

66
76 78
79

68
78 80
81

72 75 77 79 81

70

3 1
2

0
1 3
0

2
3 3
4

0
3 3
0

2
3 3
0

2

3 3
0

2
3 1
2

0
1 5
2

4
5 3
0

0
3 1
2

0

3 1
2

0
1 3
0

2
3 3
0

2
3 3
4

0
3 3
0

2

3 3
0

2
3 3
4

0
3 1
2

0
1 5
2

4
5 3
0

0

3 1
2

0
1 5
2

4
5 1
2

2
1 3
0

2
3 1
2

0

1 3
0

2
3 3
0

2
3 3
0

2
3 1
2

0
1 3
0

2

3 3
4

0
3 3
4

0
3 1
2

0
1 3
0

2
3 3
4

4 4 2 0 4

0

3

3

3

3

3

1

3

1 3
0

2
3 3
4

0

3 3
0

2

1 5
2

4

5 3
0

0
3 1
2

0

5 1
2

2

(a) (b) (c)

Fig. 2. (a) A MGTA for the constructible initial partition I (with a seed assembly in
place). (b) Finished assembly for the pattern from Fig. 1(b). The tile set to construct
this assembly is given in (c).

3 A New Algorithm for Small Tile Sets

Whereas the pruning procedures of the PS-BB algorithm try to reduce the size
of the search space in a “balanced” way, our new PS-H algorithm attempts
to “greedily” optimize the order in which the coarsenings of a partition are
explored, in the hope of being directly lead to close-to-optimal solutions. Such
opportunism may be expected to pay off in case the success probability of the
greedy exploration is sufficiently high, and the process is restarted sufficiently
often, or equivalently several runs are explored in parallel.

The basic heuristic idea is to try to minimize the effect that a merge opera-
tion has on other partition classes than those which are combined. This can be
achieved by prefering to merge classes already having as many common glues as
possible. In this way one hopes to extend the number of steps the search takes
before it runs into a conflict. For example, when merging classes p1 and p2 such
that f(p1)N = f(p2)N and f(p1)E = f(p2)E , the glues on the W and S edges
of all other classes are unaffected. This way, the search avoids proceeding to a
partition which is not constructible after the merge operation is completed. Sec-
ondarily, we prefer merging classes which already cover a large number of sites
in [m]× [n]. That is, one tries to grow a small number of large classes instead of
growing all the classes at an equal rate.

Definition 3. Given a partition P and a MGTA f for P , the number of com-
mon glues between classes p, q ∈ P is defined by G : P × P → {0, 1, 2, 3, 4},

G(p, q) =
∑

D∈D
g(f(p)D, f (q)D) ,

where g(σ, σ′) = 1 if σ = σ′ and 0 otherwise, for σ, σ′ ∈ Σ.

Except for the bounding function, the PS-BB algorithm allows an arbitrary
ordering {pi, qi}, i = 1, . . . , N , for the children (coarsenings) P [pi, qi] of a con-
structible partition P .2 In the PS-H algorithm, we choose the ordering using the
following heuristic. First form the set
2 P [p, q] denotes the partition obtained from P by merging classes p, q ∈ P into one.



Synthesizing Small and Reliable Tile Sets for Patterned DNA Self-assembly 151

H := {{p, q} | p, q ∈ P, p �= q, ∃k ∈ P (c) : p, q ⊆ k}
of class pairs of same color. Then, repeat the following process until H is empty.

H1. Set K := H .
H2. Optimize the number of common glues:

K := {{p, q} ∈ K |G(p, q) ≥ G(u, v) for all {u, v} ∈ K}.
H3. Optimize the size of the larger class:

K := {{p, q} ∈ K | max{|p|, |q|} ≥ max{|u|, |v|} for all {u, v} ∈ K}.
H4. Optimize the size of the smaller class:

K := {{p, q} ∈ K | min{|p|, |q|} ≥ min{|u|, |v|} for all {u, v} ∈ K}.
H5. Pick some pair {p, q} ∈ K at random and visit the partition P [p, q].
H6. Remove {p, q} from H : H := H � {{p, q}}.

The PS-H algorithm also omits the pruning process utilized by the PS-BB algo-
rithm. That way, it aims to get to the small solutions quickly by reducing the
computational resources used in a single merge operation.

Since step H5 above leaves room for randomization, the PS-H algorithm per-
forms differently with different seeds. While some of the randomized runs may
lead to small solutions quickly, others may get sidetracked into worthless ex-
panses of the solution space. We make the best of this situation by running sev-
eral instances of the algorithm in parallel, or equivalently, restarting the search
several times with a different random seed. The notation PS-Hn denotes the
heuristic partition search algorithm with n parallel search threads. The solution
of the PS-Hn algorithm is the smallest solution found by any of the n threads.

Results. Our implementation of the PS-H algorithm is based on the DFS im-
plementation of the PS-BB algorithm used in [3], and we provide results on the
PS-Hn algorithm for n = 1, 2, 4, 8, 16 and 32. We consider several different fi-
nite 2-colored input patterns, two of which are classical examples of structured
patterns: the discrete Sierpinski triangle (Fig. 3(a)), and the binary counter
(Fig. 3(b)). Furthermore, we introduce a 2-colored “tree” pattern of size 23× 23
(Fig. 3(c)) as well as a 15-colored pattern of size 20× 10 based on a CMOS full
adder design (Fig. 3(d), [1]). The Sierpinski triangle and binary counter patterns
are known to have a minimal solution of four tiles, while the minimal solutions
for the tree and the full adder patterns are unknown.

Figure 4 presents the evolution of the “current best solution” as a function
of time for the (a) 32 × 32 and (c) 64 × 64 Sierpinski patterns. To allow fair
comparison, Figs. 4(b) and 4(d) present the same data with respect to the total
processing time taken by all the parallelly running instances. The experiments
were repeated 21 times and the median of the results is depicted. In 37% of
all the runs conducted, the PS-H algorithm is able to find the optimal 4-tile
solution for the 32× 32 Sierpinski pattern in less than 30 seconds. The similar
percentage for the 64 × 64 Sierpinski pattern is 34% in one hour. Remarkably,
the algorithm performs only from 1030 to 1035 and from 4102 to 4107 merge
steps before arriving at the optimal solution for the 32×32 and 64×64 patterns,



152 T. Lempiäinen, E. Czeizler, and P. Orponen

(a) (b) (c)

(d)

Fig. 3. (a) The 32 × 32 Sierpinski triangle pattern. (b) The 32 × 32 binary counter
pattern. (c) The 23× 23 “tree” pattern. (d) A CMOS full adder design that induces a
15-color 20× 10 pattern.

respectively. In other words, the search rarely needs to backtrack. In contrast,
the smallest solutions found by the PS-BB algorithm are 42 tiles, reached after
1.4 · 106 merge steps, and 95 tiles, reached after 5.9 · 106 merge steps.

In Fig. 5 we present the corresponding results for the 32× 32 binary counter
and the 23 × 23 tree patterns. The size of the smallest solutions found by the
PS-H32 algorithm were 20 (cf. 307 by PS-BB) and 25 (cf. 192 by PS-BB) tiles,
respectively. In the case of the tree pattern, the parallelization brings significant
advantage over a single run. Finally, Figs. 6(a)–6(b) show the results for the
20 × 10 15-color CMOS full adder pattern. In this case, the improvement over
the previous PS-BB algorithm is less clear. The PS-H32 algorithm is able to find
a solution of 58 tiles, whereas the PS-BB algorithm gives a solution of 69 tiles.

4 Reliability of Tile Sets

The Kinetic Tile Assembly Model. In this section, we assess the reliability
of the tile sets produced by the PS-BB and PS-H algorithms, using the kinetic
Tile Assembly Model (kTAM), which has been proposed by Winfree [15] as a
kinetic counterpart of the aTAM.



Synthesizing Small and Reliable Tile Sets for Patterned DNA Self-assembly 153

 0

 200

 400

 600

 800

 1000

 0  5  10  15  20

S
iz

e 
of

 th
e 

sm
al

le
st

 ti
le

 s
et

 fo
un

d

Wall clock time in seconds

32x32 Sierpinski triangle pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(a)

 0

 200

 400

 600

 800

 1000

 0  50  100  150  200  250  300  350  400

S
iz

e 
of

 th
e 

sm
al

le
st

 ti
le

 s
et

 fo
un

d

Total processing time in seconds

32x32 Sierpinski triangle pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(b)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  200  400  600  800  1000  1200

S
iz

e 
of

 th
e 

sm
al

le
st

 ti
le

 s
et

 fo
un

d

Wall clock time in seconds

64x64 Sierpinski triangle pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(c)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  5000  10000  15000  20000

S
iz

e 
of

 th
e 

sm
al

le
st

 ti
le

 s
et

 fo
un

d

Total processing time in seconds

64x64 Sierpinski triangle pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(d)

Fig. 4. Evolution of the smallest tile set as a function of time. The time axes measure
(a), (c) wall clock time and (b), (d) wall clock time × the number of parallel instances.

The kTAM simulates two types of reactions: association of tiles to the as-
sembly (forward reaction), and dissociation (reverse reaction). In the first type,
any tile can attach to the assembly at any position, even if only a weak bond is
formed; the rate of this reaction, rf , is proportional to the concentration of free
tiles in the solution. In the second type, any tile can detach from the assembly,
with rate rr,b where b ∈ {0, . . . , 4}, which is exponentially correlated with the
total strength of the bonds between the tile and the assembly. Thus, tiles which
are connected to the assembly by fewer or weaker bonds, i.e. incorrect “sticky
end” matches, are more prone to dissociation than those which are strongly
connected by several bonds (well paired sticky end sequences).

In order to easily represent and scale the system, the free parameters involved
in the formulas of rf and rr,b are re-distributed into just two dimensionless pa-
rameters, Gmc and Gse. The first is dependent on the initial tile concentration,
while the second is dependent on the assembly temperature: rf = k̂fe

−Gmc and
rr,b = k̂fe

−bGse where k̂f = e3kf is adjusted in order to take into consideration
possible entropic factors, such as orientation or location of the tiles.



154 T. Lempiäinen, E. Czeizler, and P. Orponen

 0

 200

 400

 600

 800

 1000

 0  5  10  15  20

S
iz

e 
of

 th
e 

sm
al

le
st

 ti
le

 s
et

 fo
un

d

Wall clock time in seconds

32x32 binary counter pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(a)

 0

 200

 400

 600

 800

 1000

 0  50  100  150  200  250  300  350  400

S
iz

e 
of

 th
e 

sm
al

le
st

 ti
le

 s
et

 fo
un

d

Total processing time in seconds

32x32 binary counter pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(b)

 0

 100

 200

 300

 400

 500

 0  2  4  6  8  10

S
iz

e 
of

 th
e 

sm
al

le
st

 ti
le

 s
et

 fo
un

d

Wall clock time in seconds

23x23 tree pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(c)

 0

 100

 200

 300

 400

 500

 0  20  40  60  80  100

S
iz

e 
of

 th
e 

sm
al

le
st

 ti
le

 s
et

 fo
un

d

Total processing time in seconds

23x23 tree pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(d)

Fig. 5. Evolution of the smallest tile set as a function of time. The time axes measure
(a), (c) wall clock time and (b), (d) wall clock time × the number of parallel instances.

Computing the Reliability of a Tile Set. The probability of errors in the
assembly process can be made arbitrarily low, at the cost of reduced speed,
by choosing appropriate physical conditions [15]. However, we would like to be
able to compare the error probability of different tile sets producing the same
finite pattern, under the same physical conditions. Given the amount of time the
assembly process is allowed to take, we define the reliability of a tile set to be the
probability that the assembly process of the tile system in question completes
without any incorrect tiles being present in the terminal configuration. In the
following, we present a method for computing the reliability of a tile set, based
on Winfree’s analysis of the kTAM and the notion of kinetic trapping in [15].

We call the west and south edges of a tile its input edges. First, we derive the
probability of the correct tile being frozen at a particular site under the condition
that the site already has correct tiles on its input edges. Let M1

ij and M2
ij be the

number of tile types having one mismatching and two mismatching glue types,
respectively, between them and the correct tile type for site (i, j) ∈ [m] × [n].



Synthesizing Small and Reliable Tile Sets for Patterned DNA Self-assembly 155

 0

 50

 100

 150

 200

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

S
iz

e 
of

 th
e 

sm
al

le
st

 ti
le

 s
et

 fo
un

d

Wall clock time in seconds

20x10 CMOS full adder 15-colour pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(a)

 0

 50

 100

 150

 200

 0  1  2  3  4  5  6  7  8

S
iz

e 
of

 th
e 

sm
al

le
st

 ti
le

 s
et

 fo
un

d

Total processing time in seconds

20x10 CMOS full adder 15-colour pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(b)

Fig. 6. Evolution of the smallest tile set as a function of time. The time axes measure
(a) wall clock time and (b) wall clock time × the number of parallel instances.

Now, for a deterministic tile set T , the total number of tiles is |T | = 1+M1
ij+M2

ij

for all i and j. Given that a site has correct tiles on its input edges, a tile is
correct for that site if and only if it has two matches on its input edges.

In what follows, we assume correct tiles are attached at sites (i − 1, j) and
(i, j − 1). The model for kinetic trapping [15] gives four distinct cases in the
situation preceding the site (i, j) being frozen by further growth: (E) An empty
site, with “off-rate” |T |rf . (C) The correct tile, with off-rate rr,2. (A) A tile
with one match, with off-rate rr,1. (I) A tile with no matches, with off-rate rr,0.
Additionally, we have two sink states FC and FI, which represent frozen correct
and frozen incorrect tiles, respectively. The rate of a site being frozen is equal
to the rate of growth r∗ = rf − rr,2. Let pS(t) denote the probability of the site
being in state S after t seconds for all S ∈ {E, C, A, I, FC, FI}. To compute the
frozen distribution, we write rate equations for the model of kinetic trapping:

Mp(t) :=

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

−|T |rf rr,2 rr,1 rr,0 0 0
rf −rr,2 − r∗ 0 0 0 0

M1
ijrf 0 −rr,1 − r∗ 0 0 0

M 2
ijrf 0 0 −rr,0 − r∗ 0 0
0 r∗ 0 0 0 0
0 0 r∗ r∗ 0 0

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

pE(t)
pC(t)
pA(t)
pI(t)

pFC(t)
pFI(t)

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

= ṗ(t) ,

where p(0) = [1 0 0 0 0 0]T. To compute the probability of the site being
frozen with the correct tile, pFC(∞), we make use of the steady state of the
related flow problem [15]:

Mp(∞) = [1 0 0 0 pFC(∞) pFI(∞)]T = ṗ(∞) ,

which gives us a system of linear equations. This system has a single solution



156 T. Lempiäinen, E. Czeizler, and P. Orponen

pFC(∞) =
1

r∗+rr,2

1
r∗+rr,2

+
M1

ij

r∗+rr,1
+

M2
ij

r∗+rr,0

= Pr(Ci,j |Ci−1,j ∩ Ci,j−1) ,

where Ci,j denotes the correct tile being frozen on site (i, j).
The assembly process can be thought of as a sequence of tile addition steps

(a1, a2, . . . , aN ) where ak = (ik, jk), k = 1, 2, . . . , N denotes a tile being frozen
on site (ik, jk). Due to the fact that the assembly process of the tile systems we
consider proceeds uniformly from south-west to north-east, {(ik−1, jk), (ik, jk−
1)} ⊆ {a1, a2, . . . , ak−1} for all ak = (ik, jk). We assume that tiles elsewhere
in the configuration do not affect the probability. Now we can compute the
probability of a finite-size pattern of size N assembling without any errors, i.e.
the reliability of that pattern:

Pr(correct pattern) = Pr(Ca1 ∩ Ca2 ∩ · · · ∩ CaN )
= Pr(Ca1)Pr(Ca2 |Ca1) · · ·Pr(CaN |Ca1 ∩ Ca2 ∩ · · · ∩ CaN−1)

=
∏

i,j

Pr(Ci,j |Ci−1,j ∩ Ci,j−1) .

We have computed the probability in terms of Gmc and Gse. Given the desired
assembly speed, we want to minimize the error probability by choosing values for
Gmc and Gse appropriately. If the assembly process is allowed to take t seconds,
the needed assembly speed for an m×n pattern is approximately r∗ =

√
m2+n2

t
.

Pr(Ci,j |Ci−1,j ∩ Ci,j−1) =
1

r∗+rr,2

1
r∗+rr,2

+
M1

ij

r∗+rr,1
+

M2
ij

r∗+rr,0

≈ 1
1 + M1

ij
r∗+rr,2

r∗+rr,1

.

For small error probability and 2Gse > Gmc > Gse,

Pr(¬Ci,j |Ci−1,j ∩ Ci,j−1) ≈M1
ij

r∗ + rr,2

r∗ + rr,1
≈M1

ije
−(Gmc−Gse) =: M1

ije
−�G .

From r∗ = rf − rr,2 = k̂f(e−Gmc − e−2Gse) we can derive

Gse = −1
2

log(e−Gmc − r∗

k̂f

) .

Now we can write �G as a function of Gmc:

�G(Gmc) = Gmc −Gse = Gmc +
1
2

log(e−Gmc − r∗

k̂f

) .

We find the maximum of�G and the minimal error probability by differentation:

Gmc = − log(2
r∗

k̂f

) .

Thus, if the assembly time is t seconds, the maximal reliability is achieved at

Gmc = − log(2
√

m2 + n2

tk̂f

) , Gse = −1
2

log(
√

m2 + n2

tk̂f

) .



Synthesizing Small and Reliable Tile Sets for Patterned DNA Self-assembly 157

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000  3500  4000

R
el

ia
bi

lit
y

Pattern size

4-tile solution

1 s
30 s

3 min
15 min

1 h

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000

R
el

ia
bi

lit
y

Solution size

One hour assembly time

PS-BB 10%, 90% fractiles
PS-BB mean

PS-H 10%, 90% fractiles
PS-H mean

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000

R
el

ia
bi

lit
y

Solution size

One day assembly time

PS-BB 10%, 90% fractiles
PS-BB mean

PS-H 10%, 90% fractiles
PS-H mean

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000

R
el

ia
bi

lit
y

Solution size

One week assembly time

PS-BB 10%, 90% fractiles
PS-BB mean

PS-H 10%, 90% fractiles
PS-H mean

(d)

Fig. 7. (a) Reliability of the minimal tile set as a function of pattern size for the
Sierpinski pattern, using several different assembly times. (b)–(d) Reliability of the
solutions for the 32× 32 Sierpinski pattern found by the PS-H and PS-BB algorithms,
allowing assembly time of one hour, one day and one week.

Results. In the following, we present results on computing the reliability of
tile sets using the above method. We assume the assembly process takes place
in room temperature (298 K). As a result, we use the value kf = Afe

−Ef/RT ≈
6 · 105 /M/sec for the forward reaction rate.

Figure 7(a) shows the reliability of the 4-tile solution to the Sierpinski pattern
as a function of pattern size, using five distinct assembly times. As is expected,
the longer the assembly time, the better the reliability.

We also applied the method for computing the reliability to the tile sets found
by the partition search algorithms. Our results show that the heuristic described
in Sect. 3 improves not only the size of the tile sets found, but also the reliability
of those tile sets. This can be easily understood by considering the following:
the reliability of a tile set is largely determined by the number of tile types that



158 T. Lempiäinen, E. Czeizler, and P. Orponen

have the same glue as some other tile type on either one of their input edges.
Since the heuristic prefers merging class pairs with common glues, it reduces the
number of such tile types effectively.

Figures 7(b)–7(d) present the reliability of the tile sets found by the PS-H
and PS-BB algorithms for the 32×32 Sierpinski triangle pattern, using assembly
times of one hour, one day (24 hours) and one week. The runs were repeated
100 times; the mean reliability of each tile set size as well as the 10th and 90th
percentiles are shown.

As for reliability, we expect a large set of runs of the PS-BB algorithm to
produce a somewhat decent sample of all the possible tile sets for a pattern.
Based on this, large and small tile sets seem to have a high reliability while
medium-size tile sets are clearly more unreliable on average. This observation
reduces the problem of finding reliable tile sets back to the problem of finding
small tile sets. However, it is important to note that artifacts of the algorithm
may have an effect on the exact reliability of the tile sets found.

5 Conclusion

We presented a new algorithm, PS-H, for addressing the problem of finding small
tile sets that have a high probability of self-assembling a given target pattern.
Our results show that for most patterns, the new algorithm is able to find signif-
icantly smaller solutions in a reasonable amount of time compared to the earlier
PS-BB algorithm. Also the reliability of the tile sets produced by the PS-H al-
gorithm clearly exceeds that of the tile sets produced by the PS-BB algorithm.

In work not presented here for lack of space, we have explored the PATS
problem also using the artificial intelligence technique of answer set program-
ming (ASP) [5]. ASP is a declarative logic programming paradigm for solving
difficult combinatorial search problems. In ASP, a problem is described as a logic
program, and an answer set solver is then used to compute stable models (an-
swer sets) for the logic program. Using the answer set solver Smodels [13], we
considered finding minimal solutions for several patterns such as the Sierpinski
triangle, the binary counter, and the full adder. Based on our results, we con-
clude that the ASP approach performs rather well when considering patterns
with a small minimal solution. For example, the Smodels system was able to
find the minimal four tile solutions even for the 100 × 100 Sierpinski triangle
and the 100× 100 binary counter patterns. However, for patterns with a larger
minimal solution, the running time seems to increase dramatically.

References

1. Czeizler, E., Lempiäinen, T., Orponen, P.: A design framework for carbon nanotube
circuits affixed on DNA origami tiles. In: Proc. 8th Ann. Conf. Foundations of
Nanoscience, pp. 186–187 (2011)

2. Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126, 43–62 (2001)



Synthesizing Small and Reliable Tile Sets for Patterned DNA Self-assembly 159

3. Göös, M., Orponen, P.: Synthesizing minimal tile sets for patterned DNA self-
assembly. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp.
71–82. Springer, Heidelberg (2011)

4. Kim, K.N., Sarveswaran, K., Mark, L., Lieberman, M.: DNA origami as self-
assembling circuit boards. In: Calude, C.S., Hagiya, M., Morita, K., Rozenberg,
G., Timmis, J. (eds.) UC 2010. LNCS, vol. 6079, pp. 56–68. Springer, Heidelberg
(2010)

5. Lifschitz, V.: What is answer set programming? In: Proc. 23rd Natl. Conf. Artificial
Intelligence, pp. 1594–1597 (2008)

6. Liu, W., Zhong, H., Wang, R., Seeman, N.C.: Crystalline two-dimensional DNA-
origami arrays. Angewandte Chemie International Edition 50(1), 264–267 (2011)

7. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.
Information Processing Letters 47(4), 173–180 (1993)

8. Ma, X., Lombardi, F.: Synthesis of tile sets for DNA self-assembly. IEEE Trans.
CAD of Integrated Circuits and Systems 27, 963–967 (2008)

9. Maune, H.T., Han, S., Barish, R.D., Bockrath, M., Goddard III, W.A., Rothemund,
P.W.K., Winfree, E.: Self-assembly of carbon nanotubes into two-dimensional ge-
ometries using DNA origami templates. Nature Nanotechnology 5, 61–66 (2010)

10. Rajendran, A., Endo, M., Katsuda, Y., Hidaka, K., Sugiyama, H.: Programmed
two-dimensional self-assembly of multiple DNA origami jigsaw pieces. ACS
Nano 5(1), 665–671 (2011)

11. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares. In: Proc. 32nd Ann. ACM Theory of Computing, pp. 459–468 (2000)

12. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Na-
ture 440, 297–302 (2006)

13. Syrjänen, T., Niemelä, I.: The Smodels system. In: Logic Programming and Non-
monotonic Reasoning, pp. 434–438. Springer, Heidelberg (2001)

14. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of
two-dimensional DNA crystals. Nature 394 (1998)

15. Winfree, E.: Simulations of Computing by Self-Assembly. Technical Report CSTR
1998.22, California Institute of Technology (1998)

16. Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: DNA-templated
self-assembly of protein arrays and highly conducive nanowires. Science 301 (2003)



Multivalent Random Walkers — A Model for
Deoxyribozyme Walkers

Mark J. Olah and Darko Stefanovic

Department of Computer Science, University of New Mexico
MSC01 1130, 1 University of New Mexico, Albuquerque, NM 87131

Abstract. We propose a stochastic model for molecular transport at the nanoscale
that describes the motion of two-dimensional molecular assemblies called mul-
tivalent random walkers (MVRWs). This walker model is an abstract descrip-
tion of the motion of multipedal molecular assemblies, called molecular spiders,
which use deoxyribozyme legs to move over a surface covered with substrate
DNA molecules, cleaving them to produce shorter product DNA molecules as
they go. In this model a walker has a rigid inert body and several flexible en-
zymatic legs. A walker moves over a surface of fixed chemical sites. Each site
has one of several molecular species displayed, and walker legs can bind to and
unbind from these sites to move over the surface. Additionally, the enzymatic ac-
tivity of the legs allows them to catalyze irreversible chemical changes to the sites,
thereby permanently modifying the state of the surface. We describe a MVRW
system as a continuous-time Markov process, where all state transitions in the
process correspond to chemical reactions of the legs with the sites. We model
the kinetics of the leg reactions by considering the constrained diffusion of the
walker body and unattached leg. Through kinetic Monte Carlo simulations, we
show that the irreversibility of the enzymatic action of the legs can bias the motion
of walkers and cause them to move superdiffusively over significant distances.

1 Introduction

Nature at the nanoscale is different from our familiar macroscopic experience in many
ways, the most fundamental of which is the stochastic character of motion and events.
At this scale, all objects experience random collisions with molecules that transfer sig-
nificant energy, effectively randomizing momentum and leading to diffusive motion.
Diffusive motion is often not desirable as it becomes a limiting factor in the transfer
of material and information in chemical computational systems. However, nanoscale
walkers have the potential to move in purposeful, directed ways by expending energy
to bias their otherwise diffusive motion, thus providing a mechanism for superdiffusive
motion.

Recently a new class of molecular walker based on DNA has been synthetically con-
structed. These molecular spiders [11] consist of a rigid, inert body and several deoxyri-
bozyme (i.e., catalytic single-stranded DNA) legs that act as enzymes and attach to and
cleave complementary single-stranded DNA substrates (at a sepecific ribonucleotide
impurity). When the substrates are arrayed as nanoscale tracks and paths on a surface
the walker can move along such tracks by binding, cleaving, and unbinding from the

L. Cardelli and W. Shih (Eds.): DNA 17, LNCS 6937, pp. 160–174, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Multivalent Random Walkers — A Model for Deoxyribozyme Walkers 161

time
Substrate 

Product (Cleaved) 

Unbound leg

Bound leg

Fig. 1. A molecular spider moves over a surface covered with fixed chemical substrate sites as
legs bind and unbind to the sites

track sites [8]. As shown in Fig. 1, when the legs enzymatically modify a bound site by
cleaving the substrate they leave behind a shorter product DNA sequence. The product
remains complementary to the lower part of the leg. Thus, the legs can walk back over
the product sites, albeit at a different rate than that for the substrates, and they can no
longer modify the product sites.

In order to understand how molecular spiders move, we have developed the multiva-
lent random walker (MVRW) model. The model describes spiders in a 2-dimensional
environment of chemical sites. The motion of the spiders is modeled as a continuous-
time Markov process, where each transition in the Markov process corresponds to a
chemical reaction between a leg and a surface-bound site.

In this work we describe the model in detail, and briefly discuss our Monte Carlo
simulation methods. We explain that when there is a residency-time bias between mod-
ified and unmodified sites, the walker motion is biased in the direction of unmodified
sites. Through simulation we show that this bias causes the walker to move superdiffu-
sively, even in opposition to a force.

2 The Multivalent Random Walker Model

At the single-molecule level, chemical kinetics are stochastic in nature. Each individ-
ual reaction can be viewed as a transition between two different chemical states of the
system as a whole. Accordingly, chemical systems at the single-molecule level can be
modeled as continuous-time stochastic processes [9]. A key assumption in such stochas-
tic models is that the system reaches a physical equilibrium (i.e., it is well mixed) in
between successive chemical reactions. This makes the system Markovian, and it makes
determining the rates of chemical reactions tractable, as the exact position and momen-
tum of particles do not need to be part of the system state, and the state space of the
system remains discrete. In the 1970’s Gillespie popularized the use of Monte Carlo
methods for numerical simulation of stochastic chemical kinetics [3].

Inspired by this approach to chemical kinetics, the MVRW model describes the mo-
tion of the molecular spider as a discrete-state, continuous-time Markov process where
each transition corresponds to a chemical reaction. In our case, this is a reaction of a leg
binding, unbinding, or cleaving sites on the surface, but under the restrictions imposed
by the attachment of the legs to a common body. In between reactions, the walker and
its legs are assumed to reach a physical equilibrium over all feasible positions. By com-
puting the distribution of the spider’s body location after each step, we can accurately
model the chemical reactions and how their rates are affected by the spatial constraints
imposed by the spiders’ geometry and the pattern of sites on the surface.



162 M.J. Olah and D. Stefanovic

2.1 The State Space of the Walker and the Environment

In the MVRW model, the state of the Markov process is defined by the state of the
walker and the state of the environment. Walkers are two-dimensional (2D), with a
point body to which are attached k flexible legs. Each leg has length � and a reactive
site at the end called the foot. The walkers move in an environment of fixed chemical
sites. The environment is defined by a (countable) set S ⊂ R

2 of sites and a finite set
Σ of species. Each site has a single species associated with it, but the species can be
changed by the action of the walker legs. Thus, the state of the environment is defined
by a mapping π : S→ Σ that assigns a species to each site. The state of the walker is
completely described by the state of its k feet. A foot is either attached to a site in S or
is detached. No two feet may be attached to the same site. The state of the walker is
represented by the number of detached legs 0 ≤ d ≤ k, and the set A ⊂ S of attached
sites. Thus the state of the MVRW system is defined by the triple (π,d,A).

2.2 State Transitions

There are three types of state transitions corresponding to the three types of chemi-
cal reactions that can take place: binding (association), unbinding (dissociation), and
catalytic transformation (cleavage). While the model can accommodate more general
leg-site chemistries, we focus on the chemistry of the deoxyribozyme-based molecu-
lar spiders. In this system, there are two species Σ = {S,P}, a substrate and a product
(cleaved) oligonucleotide. A leg (L) can reversibly bind to each species to form a leg-
substrate (LS) or leg-product (LP) complex. Additionally, an LS complex can undergo
catalysis, transforming the leg into a product before eventually unbinding. These re-
actions and the relevant rates are defined in Eq. 1. Note that we take kcat = kcat(S) to
encompass the rate of cleavage as well as the subsequent dissociation, and we assume
this process is irreversible.

L + S
k+(S)−−−→←−−−
k−(S)

LS
kcat(S)−−−→ L+ P

L + P
k+(P)−−−→←−−−
k−(P)

LP

(1)

Of the three types of state transitions, dissociation and cleavage are both unimolecular
reactions and, as in the Gillespie model of chemical kinetics, each individual LS or LP
pair will dissociate or cleave according to the rates k−(S), k−(P), and kcat. However, the
association reactions are more complicated as they are bimolecular and their propensity
depends on the likelihood of the leg being proximate to the chemical site, so that it may
bind. This likelihood, in turn, depends on the position of the body and the unattached
legs.

2.3 The Equilibrium Body Distribution

The states of the environment and the walker have been defined to capture only the
parts of the system that remain fixed in between reaction events, but that change after



Multivalent Random Walkers — A Model for Deoxyribozyme Walkers 163

region of feasible sites

(a)

��
� �

body’s feasible positions

�

�

�

region of feasible sites

(b)

chemical sites

body’s feasible positions

Fig. 2. The feasible body positions F for spiders in 1D (a) and 2D (b) are indicated in dark
blue. We assume all legs have a maximum length � and the body positions cannot violate these
constraints. In light blue we show the region of feasible sites. These are the sites that can be
reached by an unattached leg from some feasible body position.

a reaction. Notice that the states are discrete, and that the body position is not part of
the system state. In this way, the state transitions correspond directly to the chemical
reactions and not to the physical motion of the walker body and legs. We assume that
non-reactive processes, such as solvent collisions and molecular vibrations, occur on
much faster timescales than the chemical reactions so that they come to an equilibrium
in between state transitions.

First, let us consider the diffusion of the body. In between reaction events, the body
will move in a constrained diffusion. Let random variable BBB give the 2D coordinates of
the spider’s body. We assume the legs are flexible with a maximum length � and do not
become tangled. Thus, the body will be constrained to be within distance � from each
site with an attached foot, so that P [BBB = ppp ] = 0 if there is any attached site sss ∈ A such
that ‖ppp− sss‖> �.

We call all values of ppp that satisfy ‖ppp−sss‖≤ � for all sss∈A the feasible body positions,
as it is possible the body is in that position when a reaction finally occurs. The set of all
feasible positions is denoted F , and is illustrated as dark blue in Fig. 2.

The exact distribution of BBB at equilibrium will be a Boltzmann distribution over the
feasible positions ppp ∈ F according to the energy E(ppp) at each of those positions,

P [BBB = ppp ] = pBBB(ppp) =
e−β E(ppp)

∫
F e−β E(ppp)d ppp

. (2)

In Eq. 2, β = 1/kBT , where kB is Boltzmann’s constant and T is absolute temperature.
We are not concerned with temperature variation, so T will be constant.

2.4 Leg-Site Interactions

The kinetics of the bimolecular reaction of leg-site binding is controlled by two factors:
the probability of the leg being proximate to a site, and the probability that the leg and



164 M.J. Olah and D. Stefanovic

site molecules have enough energy to surmount a reaction energy barrier while they
are proximate. These probabilities are controlled by the diffusion of the reactants and
the activation energy barrier of the reaction [6]. Depending on which of these two pro-
cesses is rate-limiting, there are two different types of kinetics for the leg-site binding
reactions. If the energy barrier is relatively low, the leg is likely to react with one of the
first few sites it comes in contact with. Thus, the leg will be more likely to react with
sites closer to where it had previously been attached. Because the diffusion to new sites
is the limiting factor in the reaction this situation is called diffusion-limited. On the other
hand, if the energy barrier is higher, the probability of gaining enough kinetic energy
from thermal fluctuations will be the limiting factor. This situation is called reaction-
limited. The leg will diffuse around until there is enough energy to react, and because
the leg is constrained to move over a small area, it will quickly reach an equilibrium
distribution over sites.

At present we consider the reaction-limited case. Under these conditions, we can
assume that the probability of a leg attaching to a site is proportional to the probability
that the body is in a position that is less than distance � from the site. We define a
function

fL(ppp) =

{
1 ‖ppp‖ ≤ �

0 otherwise
,

that determines if a site at position ppp is feasible from the origin.
Now, because the body has a distribution over feasible positions, some sites can only

be reached from a portion of the feasible body positions. For any site sss, we can define
the probability for leg i being proximate to sss when it reacts as

P [ i proximate to sss ] =
∫

F
pB(ppp) fL(sss− ppp)d ppp. (3)

Any site with non-zero probability of being reached is called a feasible site and this
defines the region of feasible sites shown in Fig. 2 in light blue. Sites outside the feasible
region have a rate of 0 for attachment to a leg. If a leg is proximate to a site, there is a a
constant rate per unit time at which the particular leg-site binding will occur. This rate is
a function of the diffusion rates, leg structure, and chemical free energy barriers, but as
these are constants we ignore the details and just assume that the rate is k+(π(sss)) when
the site sss has species π(sss). Then the rate of attachment for unattached leg i to feasible
site sss is k+(π(sss))P [ i proximate to sss ]. Together with the much simpler rates for the uni-
molecular dissociation and cleavage reactions, which are independent of body and leg
diffusion, this enables us to model all of the reactions that lead to state transitions in the
model.

2.5 Effect of Forces on Walkers

The MVRW model can also model the effect of forces on the body of the walker. This
is an advantage of modeling the body’s distribution as a Boltzmann distribution deter-
mined by the energy of the spider at each feasible position. Consider the original energy
function E(ppp). Under the effect of a force fff , the new energy of position ppp becomes,

Ẽ(ppp) = E(ppp)− fff · (ppp− ppp000). (4)



Multivalent Random Walkers — A Model for Deoxyribozyme Walkers 165

x̂

ŷ

−0.0x̂pN −2.5x̂pN −5.0x̂pN

Fig. 3. The equilibrium body distribution for a walker under several different forces: −0.0x̂xx pN,
−2.5x̂xxpN, and −5.0x̂xxpN. As the force increases the energy of positions in the +x̂xx direction be-
come higher, and their probability decreases. The body is drawn at the distribution mean, and the
color and size of sites indicates their effective rate for attachment reactions

Because the probability is determined by a Boltzmann distribution, the absolute value of
the energy doesn’t matter, so any ppp000 reference point will do for determining the energy
of the positions.

The new energy Ẽ will give a new equilibrium distribution whose probability mass
is shifted in the direction of the applied force. The effect of forces on the body’s equi-
librium position, and the propensity for each of the feasible sites is shown graphically
in Fig. 3.

3 Simulation

The MVRW model takes the form of a discrete-space, continuous-time Markov process
(CTMP). Let Ω be the set of states for the MVRW process, and recall that, as described
in Section 2.1, each state ω ∈ Ω can be defined as a triple (π ,d,A). Then, given set-
tings for the relevant model parameters and a suitable start state ω0 = (π0,d0,A0), the
MVRW Markov process is described by X(t), where for each t ∈ [0,∞), X(t) is a ran-
dom variable over Ω giving the distribution for the state of the process at that time.
A full characterization of the Markov process would involve analytic estimates for the
probability distributions X(t). However, this is both infeasible and unnecessary for our
purposes.

3.1 Monte Carlo Simulation

A more tractable way to analyze CTMP’s is though the Monte Carlo approach. A Monte
Carlo simulation generates a function x : [0,tmax]→Ω , called a realization of X(t). At
each time t, x(t) is a sample of the random variable X(t).

Discrete-state Markov processes must jump instantaneously from one state to the
next, hence such processes are often called jump Markov processes [4]. A jump Markov
process can be described by a transition rate function Q, where Q(ω1→ ω2)≥ 0 gives
the rate of transition (jumping) from state ω1 to state ω2. This function, and an initial



166 M.J. Olah and D. Stefanovic

0 R

r1 r2 r3 rk

α(b)Current State: sn

r1 r2 r3 rk

(a)

z1 z2 z3 zk

Fig. 4. (a) At step n of the KMC algorithm, the system is in state sn, and we must choose sn+1 from
amongst the k possible next states {zi}ki=1 according to their respective transition rates {ri}ki=1. (b)
We can select the next state with a single random number α ∼ Uniform((0,R)), where R = ∑ri

is the total rate. This example shows the next state chosen to be z2.

start state ω0, completely determine the Markov process X(t). For jump Markov pro-
cesses, Monte Carlo simulation can be carried out exactly, because a realization x(t)
will be a piecewise constant function, consisting of jumps to a sequence of states {si}
at a sequence of jump times {ti}, so that x(t) = si for t ∈ [ti,ti+1).

There are two main uses for Monte Carlo simulations of Markov processes. The
first is to estimate the equilibrium distribution of Markov processes with a limiting
distribution. In this approach the state sequence {si} becomes an unbiased sampling
from a distribution that would otherwise be hard to sample from. The second use is to
estimate the dynamic or kinetic properties of a Markov process as it evolves from its
initial state. In this case we are interested in how an out-of-equilibrium Markov process
behaves as it evolves according to the transition function Q.

To study the MVRW model we use both types of Monte Carlo simulations. At the
timescales of chemical reactions we use the kinetic Monte Carlo algorithm to sim-
ulate the dynamics of the MVRW Markov processes, obtaining traces of individual
spiders moving stochastically according to transition rates. In contrast, at the physical
timescales we use the Metropolis-Hastings algorithm to sample from the equilibrium
distribution of the body’s position as it moves by constrained diffusion in the feasible
region F .

3.2 The Kinetic Monte Carlo Algorithm

The kinetic Monte Carlo (KMC) method refers to a rejection-free method of generating
exact realizations of a jump Markov process by starting at some fixed initial state and
evolving the system state and time according to the transition rates of the model [13].
Let X(t) be a Markov process over state space Ω with transition rate function Q. Given
an initial state s0, the KMC algorithm evolves the system state through time. After the
n-th step of the algorithm, the system will be in state sn at time tn. The task of the KMC
algorithm is to stochastically choose sn+1 and tn+1 according to the transition rates, Q.
Let Z = {s′ ∈ Ω |Q(sn→ s′) > 0} be the set of transitions from state sn with non-zero
rate. We assume that |Z| = k is finite and non-zero, and thus we can enumerate it as
Z = {zi}k

i=1, and define rates {ri}k
i=1, with ri = Q(sn → zi). Let the total rate of all

transitions be R = ∑k
i=1 ri. This situation is illustrated in Figure 4a.

The probability of the process moving to state zi at step n+1 is given by the ratio ri/R.
We can choose a next state z∗ ∈ Z by selecting a random number α ∼ Uniform([0,R))



Multivalent Random Walkers — A Model for Deoxyribozyme Walkers 167

and choosing z∗= z j , where j is the smallest integer satisfying ∑ j
i=1 ri > α. This process

is depicted in Figure 4b.
Finally, the algorithm decides how much time should elapse until the transition to

z∗. From our current state, all of the possible transitions in Z occur stochastically with
constant rate per unit time. Thus, the time τi until the transition to zi will be exponen-
tially distributed, τi ∼ Exp(ri). We are interested only in the probability distribution for
the minimum of these times, τ∗ = min{τ1, . . . ,τk}. The exponential distribution has the
convenient property that τ∗ will also be exponentially distributed, as

P [min{τ1, . . . ,τk}> t ] = P

[
k∧

i=1

τi > t

]

=
k

∏
i=1

P [ τi > t ] =
k

∏
i=1

e−tri = e−t ∑ ri = e−tR.

Thus, we see that τ∗ ∼ Exp(R). Sampling from the exponential distribution is particu-
larly easy, as τ∗ =− lnβ/R for β ∼ Uniform((0,1)).

At this point, the KMC algorithm records the next state sn+1 = z∗ and the new time
tn+1 = tn + τ∗, and then the process repeats until N simulation steps have been made.

3.3 Metropolis-Hastings Distributions

The MVRW model assumes that the body and unattached legs come to an equilibrium
distribution in between reaction steps. In Section 2.4 we explain how the transition
rates for binding reactions are computed given a probability distribution pBBB(ppp) over
body locations, and a probability distribution pL(d) for the leg’s distance from the body.
Overall, the rate at which unbound leg i binds to site sss is given by Eq. 3.

With knowledge of pBBB, we can estimate the rates ri→sss using Monte Carlo integration.
If PPP1, . . . ,PPPn ∼ BBB are samples from BBB, they can be used as an unbiased estimator for a
function f of the body’s position [7],

∫

F
f (ppp)pBBB(ppp)d ppp =

〈
1
n

n

∑
i=1

f (PPPi)

〉

.

The distribution pBBB is defined in Eq. 2. The denominator in this function,

Z =
∫

F
e−β E(ppp)d ppp, (5)

is called the partition function, and is difficult to compute making sampling directly
from pBBB difficult. The Metropolis-Hastings (MH) algorithm [10, 5] allows pBBB to be
sampled without knowledge of Z.

The MH algorithm samples from pBBB by starting with any Markov process on the
distribution domain, R

2, transforming that Markov process into an ergodic discrete-
time Markov chain that has pBBB as an equilibrium distribution. This Markov chain is
defined by transition probabilities Q̃ where Q̃(ppp1→ ppp2) = Q(ppp1→ ppp2)α, and

α = min

{
1,

pBBB(ppp2)Q(ppp2→ ppp1)
pBBB(ppp1)Q(ppp1→ ppp2)

}
. (6)



168 M.J. Olah and D. Stefanovic

p(x) = P[X = x]

X

x0

x1

x2

x3

x4

Fig. 5. The Metropolis-Hastings algorithm samples from probability distribution p(x), by simu-
lating a Markov chain with an equilibrium distribution equal to p(x). The algorithm generates a
sequence of points {xi}N

i=0 by using the current point to draw a new candidate point, and choosing
to accept or reject that point with probability α . In this figure a red cross represents a rejected
point, and a labeled black point represents an accepted point.

The MH algorithm can simulate the Markov process under Q̃ without ever construct-
ing a rate table explicitly. Also, because the definition of α has pBBB in the numerator and
denominator, the partition function Z will cancel eliminating the need to compute it.
Together these considerations make the MH algorithm an efficient and effective means
of sampling from pBBB.

The result of the MH algorithm is a sequence of values {pppi}N
i=0. At step i, the simu-

lation has value pppi and it uses this to draw a candidate value ppp∗ ∼ q(ppp) = Q(pppi→ ppp).
If Eq. 2 is written as pBBB(ppp) = f (ppp)/Z, then we calculate f (ppp∗) and with Eq. 6 get

α = min

{
1,

f (ppp∗)Q(ppp∗ → pppi)
f (pppi)Q(pppi→ ppp∗)

}
.

With probability α we choose to accept the point and set pppi+1 = ppp∗, otherwise we
reject this candidate value and try again. We repeat this until we have generated N
values. This procedure is illustrated in Figure 5. The sequence of values returned will
include an initial period before the chain reaches equilibrium. The initial points are
highly dependent on the starting value, and thus are not an unbiased sample. Typically
these points are dropped. Depending on the nature of the distribution and the application
a threshold can be set so that subsequent points are independent of the starting value
with high probability [2].

4 Preliminary Results

We used our KMC algorithm to simulate 100 realizations of the MVRW Markov pro-
cess for several different parameter values. The walkers were simulated until time
tmax = 3.0×106 s. In our experiment the walker started at the origin on a semi-infinite
track. The track is 3 sites wide and sites are on a 1.0nm× 1.0nm grid, as shown in
Fig. 6. The walkers experienced a force in the −x̂ direction that essentially opposed the
direction of highest substrate gradient. The simulations parameters are summarized in



Multivalent Random Walkers — A Model for Deoxyribozyme Walkers 169

Table 1. Parameters used in simulations

Parameter Description

k = 4 Number of legs
� = 2.5nm Length of each leg
k+(S) = k+(P) = 1.0×103 s−1 On rate for leg binding
k−(P) = 1.0s−1 Off rate for products
k−(S) = 0.0s−1 Off rate for substrates
kcat ∈ {1.0s−1,0.01s−1} Catalysis rate
f ∈ {0.00pN,0.05pN,0.10pN,0.50pN} Force in the −x̂xx direction
T = 300.0K Absolute temperature

−0.10x̂ pN

x̂

ŷ

Fig. 6. An example configuration of a MVRW simulation. The walker has three attached legs.
Light gray sites represent products, dark gray are substrates. Each attached leg forms a circular
constraint on the body’s position, defining the feasible region in orange. The body’s distribution
is shown within this feasible region, and the color and size of surrounding sites represents their
effective rate for attachment reactions.

Table 1. The only parameters varied were the force and the catalysis rate. The exper-
iments with kcat = 1.0s−1 have no effective difference between substrate and product,
so walkers can only be expected to move diffusively (at least in the absence of any
force). However, the walkers with kcat = 0.01s−1 will experience significantly slower
detachment from substrates than from products, producing a residency-time bias.

To quantify the diffusive properties of the walker we estimated moments of several
random variables relevant to the walker motion. One of the defining characteristics of
diffusive motion is that the mean-squared displacement,

〈‖ppp‖2
〉
, of a walker increases

as a power law with exponent α = 1. Eq. 7 defines various forms of anomalous diffusion
when 0≤ α ≤ 2, where d = 2 is the dimension and D is the diffusion constant.

〈‖ppp(t)‖2〉 = (2dD)tα ,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

α = 0 stationary

0 < α < 1 subdiffusive

α = 1 diffusive

1 < α < 2 superdiffusive

α = 2 ballistic or linear

. (7)

In Fig. 7(a) we show the mean-squared displacement of the walkers on a log-log plot
where power laws are straight lines. We show reference lines for the power laws



170 M.J. Olah and D. Stefanovic

10−1 100 101 102 103 104 105 106 107

Time t (s)

100

101

102

103

104

105

106

107

〈‖
p(

t)
‖2 〉

kcat:1.00 force:0.00
kcat:1.00 force:0.05
kcat:1.00 force:0.10
kcat:1.00 force:0.50
kcat:0.01 force:0.00
kcat:0.01 force:0.05
kcat:0.01 force:0.10
kcat:0.01 force:0.50

〈‖p(t)‖2〉 ∝ t2

〈‖p(t)‖2〉 ∝ t

10−1 100 101 102 103 104 105 106 107

Time t (s)

0

5

10

15

20

25

30

35

〈W
(t
)〉(

pN
·n

m
)

kcat:1.00 force:0.00
kcat:1.00 force:0.05
kcat:1.00 force:0.10
kcat:1.00 force:0.50
kcat:0.01 force:0.00
kcat:0.01 force:0.05
kcat:0.01 force:0.10
kcat:0.01 force:0.50

(a) (b)

Fig. 7. (a) The mean squared displacement of walkers shows significant superdiffusion in walkers
with small kcat. (b) The work done by walkers against an opposing force. The walkers moving
under zero force always do zero work. Note that 〈W (t)〉 → 4.14pN ·nm = kBT , as t→ ∞.

corresponding to diffusive and ballistic motion. Clearly, the walkers with lower kcat

experience significant periods of superdiffusive motion, while the walkers with kcat =
1.0s−1 move mainly diffusively.

If we consider the work done against the opposing force, there is a significant amount
of work done on average for all of the walkers, but the maximum mean work is done
by walkers with lower kcat. In Sec. 5 we show that the lower values of kcat act to bias
the walker in the direction of uncleaved substrate, and this direction is essentially in
opposition to the force exerted on the walkers, allowing them to use this bias to do work
against the force. Eventually, however, all of the walkers move backwards into regions
of product sites, and end up effectively diffusing like the walkers with kcat = 1.0s−1

(Fig 7(b)).

5 Mechanism of Superdiffusive Motion

The results of Sec. 4 show that spiders can move superdiffusively in the direction of
new sites even in opposition to a force. Over significant spans of time, the walkers will
have effectively done work against the force as their motion is biased by the chemical
energy in the sites they cleave.

Molecular spiders operate by cleaving a substrate oligonucleotide, leaving behind a
shorter oligonucleotide product – an irreversible reaction. A molecular spider starting
on a substrate-covered surface is a system far from equilibrium, and consequently has
the potential to do useful work as it relaxes towards equilibrium. Under the parameters
of Table 1, there is as a residency-time bias between leg-substrate and leg-product bind-
ings for the walkers with kcat < 1.0s−1, because the leg-substrate bindings are much
longer lived than the leg-product bindings. When combined with a non-uniform local



Multivalent Random Walkers — A Model for Deoxyribozyme Walkers 171

distribution of substrates, the slower unbinding from substrates causes the walker to be
effectively biased in the direction higher substrate density.

When a leg binds to a site, it forms a constraint on the position of the body and
the actions of the other legs until a dissociation reaction occurs. According to Eq. 1,
the rate of detachment for a leg-substrate complex is kcat(S) + k−(S), versus k−(P)
for a leg-product complex. We define r = (kcat(S)+ k−(S))/k−(P). If r = 1, there is
effectively no difference between substrate and product; although the substrate sites are
transformed to products, they do not affect the behavior of the walker. This is equivalent
to a walker moving over an all-product surface – an equilibrium process. Thus, we can
expect the walker to undergo normal diffusion when r = 1. Indeed, this is what we see
in Fig. 7a, where the spiders with kcat = 1.0s−1 move diffusively with

〈‖ppp(t)‖2
〉

∝ t.
However, when 0 < r < 1, a leg-substrate bond lasts longer than a leg-product bond,

and substrates effectively act like anchors. A leg attached to a substrate restricts the
movement of the walker body and other legs until the substrate is cleaved, and the other
legs are constrained to attach to feasible sites close to the attached leg. If a free leg
attaches to a product, it will quickly detach and be free to attach again to another site.
If there are any other substrates in the local environment, one of the other free legs
will eventually find and attach to one. Thus, the legs are in some sense attracted to
substrates, but not because they specifically seek out the substrates or prefer them to
products. Instead, the bias is more subtle, caused by a combination of the residency-
time bias and the collective constraints on the legs imposed by the connection to a
common body. The legs eventually find the substrates simply because if they attach to
a product, they will quickly end up detaching and randomly choosing a new attachment
site again and again until they find a substrate. Note that this effect is only present when
the walker has more than one leg and has r < 1, so both of these properties are critical
for spiders to move superdiffusively.

This bias, however, also depends on the local availability of substrates. Once a leg
attaches to a substrate, the site will eventually be irreversibly transformed into a product.
Thus, while the legs (passively) seek out the substrates, they eventually will deplete
the local substrate supply. For a small environment with a limited number of sites,
substrates will all quickly be turned into products, at which point the system will be at
equilibrium and the walker will move diffusively. However, with larger environments
this march towards equilibrium takes a significant amount of time, and during this non-
equilibrium period there is potential for superdiffusive motion and for doing physical
work against a force.

Now, consider what happens when the local environment has a non-uniform distri-
bution of substrates. Suppose, as in Fig. 8, the walker has a single leg attached to a
substrate at site s with location x = 0. The local environment of feasible sites will then
consist of all sites within two leg lengths (2�) from x = 0. Suppose that all sites with
position x≥ 0 are substrates and all sites with position x < 0 are products. Now consider
what happens when the process is started. The initially attached leg will likely remain
attached to the substrate for some time if r < 1. During this time the other k− 1 legs
will be restricted to the feasible sites. Short lived product attachments mean that legs
will end up preferentially attached to substrates by the time the first leg cleaves and
detaches. At this point if most of the legs are on substrates, and all of the substrates are



172 M.J. Olah and D. Stefanovic

x = 0 2�−2�

x = 0 2�−2�

x = 0 2�−2�

t0

t1

t2

Fig. 8. A residency-time bias combined with a non-uniform local distribution of substrates can
lead to a directional bias. There is a boundary at x = 0 between substrates (blue) and products
(red). At time t0 a single leg is attached to a substrate, and the other legs can attach to any feasible
sites (shaded area). Because the leg-product pairs are short-lived, the legs are more likely to end
up attached to substrates at time t1. When the first leg detaches at time t2, the equilibrium position
and substrate boundary will move right.

feasible region

substrateproduct sea

feasible region

boundary

substrateproduct sea
boundary

(a)

(b)

Fig. 9. (a) The walker in a boundary state B where it is attached to substrates on the boundary
between visited and unvisited sites. The residency-time bias and non-uniform local distribution
of substrates gives the spider an outward bias. (b) The walker in the diffusive state D where it
moves over previously visited sites.

to the right, the spider’s equilibrium body position will move right. At the same time,
because the site at x = 0 is now a product, the boundary between the substrates and
products also moves right. Thus, the walker is biased towards moving right, and simul-
taneously shifts the biasing-inducing substrate/product boundary rightward as well. As
long as the walker stays attached to substrates by the boundary, it will tend to move
along with the boundary, causing the walker to move ballistically in the direction of
new substrates. However, there is still some probability that the walker detaches from
all substrates and moves backwards over previously visited sites. In this case, the walker
must move diffusively.

In previous work [12] we also observed significant periods of superdiffusive motion
in the simpler one-dimensional molecular spider models of Antal and Krapivsky [1].
For these models, we explained this superdiffusive motion by showing that the Markov
process can be viewed as consisting of two metastates: a boundary (B) state where
the walker is on the boundary between cleaved and uncleaved sites, and a diffusive
(D) state where the walker is moving over previously visited sites. The walker moves



Multivalent Random Walkers — A Model for Deoxyribozyme Walkers 173

ballistically in the B state and diffusively in the D state, and the overall motion depends
on how much time the walker spends in each of the metastates. Similarly, the initial
superdiffusive motion in the MVRW model for r < 1 can be understood as the walker
moving between a B and a D state as shown in Fig 9. The walker initially spends most
of its time in the B state, moving ballistically away from the origin in the direction
of unvisited sites, and in opposition to the force. However, the walker has a constant
probability of falling off the boundary and into the D state where it moves diffusively
over previously visited sites. In the D state, the force acts to bias the motion of the
walker backwards, and as the size of the region of cleaved products (the product sea)
grows, the spider takes increasingly long to return to the B state, and eventually becomes
on average stationary at some equilibrium position with mean work 〈W (t)〉 = kBT , as
observed in Fig 7a.

6 Discussion

Given the many potential nanoscale applications for molecular spiders, it is interesting
to see that the MVRW model predicts that walkers move superdiffusively over signifi-
cant times and distances, even in the presence of a force. This motion is not a product
of differing k+ rates, but is rather of a more subtle nature, emerging from the interaction
of a residency-time bias, local substrate anisotropy, and constraints imposed by multi-
ple legs attached to a single body. Walkers with r < 1 stay attached to substrate sites
longer than to product sites. The presence of a non-uniform local distribution of sub-
strates combined with the constrained diffusion imposed by the attached legs causes the
walker to move in the direction of highest substrate density, leading to superdiffusive
behavior when r < 1. This effect relies on the walker having multiple legs.

The ability of the MVRW model to stochastically incorporate the effect of force on
the walker kinetics is due to the separation of time scales between the very fast physical
motion and vibration of molecules and the much slower chemical reactions. Because
the body and unattached legs come to an equilibrium before reattaching, we can model
their motion together with the effect of a force using a Boltzmann distribution. This
assumption means that the body and unattached leg positions need not be part of the
MVRW model state, so our model remains discrete and can be simulated exactly.

Because of our choice to explicitly separate the timescales of the physical and chem-
ical events, the MVRW model uses Monte Carlo simulation separately for both equi-
librium and kinetic analysis of Markov processes. The MVRW model is a non-ergodic
Markov process describing a system significantly out of equilibrium, and we use ki-
netic Monte Carlo techniques to observe the simulated stochastic evolution of a walker
moving over the sites. This puts us in the position of a virtual experimenter, able to
run simulated traces of the spider’s motion and measure exactly any desired properties
of their motion. In contrast to this kinetic simulation, we use the Metropolis-Hastings
algorithm to study the equilibrium distribution of the walker’s body moving under the
constrained diffusion as enforced by the attached legs.

The superdiffusive motion of walkers in the MVRW model can be understood through
the decomposition of the process into a B metastate where the walker is on the boundary
between substrates and products and is moving ballistically, and a D metastate where



174 M.J. Olah and D. Stefanovic

the walker is moving diffusively over product sites. From a practical standpoint, the
duration of the superdiffusive effect and the magnitude of the work done against a force
can be increased by designing walkers that are less likely to move from the B to D
states. Future work will focus on the how the geometry of the walkers and their kinetic
properties can be optimized to increase the amount of time they spend in the B state
moving ballistically, hence maximizing their utility for faster than diffusion molecular
transport and communication.

Acknowledgments. This material is based upon work supported by the National Sci-
ence Foundation under grants 0533065 and 0829896.

References

1. Antal, T., Krapivsky, P.L.: Molecular spiders with memory. Physical Review E 76(2), 21121
(2007)

2. Geyer, C.J.: Practical Markov chain Monte Carlo. Statistical Science 7(4), 473–483 (1992)
3. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution

of coupled chemical reactions. Journal of Computational Physics 22, 403–434 (1976)
4. Gillespie, D.T.: Markov processes. Academic Press Inc., Boston (1992)
5. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications.

Biometrika 57(1), 97–109 (1970)
6. Henriksen, N.E., Hansen, F.Y.: Theories of Molecular Reaction Dynamics. Oxford University

Press, New York (2008)
7. Kalos, M.H., Whitlock, P.A.: Monte Carlo Methods. John Wiley & Sons, New York (1986)
8. Lund, K., Manzo, A.J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J., Taylor,

S., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.: Molecular robots guided by
prescriptive landscapes. Nature 465, 206–210 (2010)

9. McQuarrie, D.A.: Stochastic approach to chemical kinetics. Journal of Applied Probabil-
ity 4(3), 413–478 (1967)

10. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of
state calculations by fast computing machines. The Journal of Chemical Physics 21(6), 1087–
1092 (1953)

11. Pei, R., Taylor, S.K., Stefanovic, D., Rudchenko, S., Mitchell, T.E., Stojanovic, M.N.: Be-
havior of polycatalytic assemblies in a substrate-displaying matrix. Journal of the American
Chemical Society 39(128), 12693–12699 (2006)

12. Semenov, O., Olah, M.J., Stefanovic, D.: Mechanism of diffusive transport in molecular spi-
der models. Physical Review E 83(2), 021117 (2011)

13. Voter, A.: Introduction to the kinetic Monte Carlo method. In: Sickafus, K., Kotomin, E.,
Uberuaga, B. (eds.) Radiation Effects in Solids. Springer, Heidelberg (2007)



Exact Shapes and Turing Universality at

Temperature 1 with a Single Negative Glue

Matthew J. Patitz1,�, Robert T. Schweller1,�, and Scott M. Summers2

1 Department of Computer Science, University of Texas–Pan American,
Edinburg, TX, 78539, USA

{mpatitz,schwellerr}@cs.panam.edu
2 Department of Computer Science and Software Engineering,
University of Wisconsin–Platteville, Platteville, WI 53818, USA

summerss@uwplatt.edu

Abstract. Is Winfree’s abstract Tile Assembly Model (aTAM) “power-
ful?” Well, if certain tiles are required to “cooperate” in order to be able
to bind to a growing tile assembly (a.k.a., temperature 2 self-assembly),
then Turing universal computation and the efficient self-assembly of
N × N squares is achievable in the aTAM (Rotemund and Winfree,
STOC 2000). So yes, in a computational sense, the aTAM is quite pow-
erful! However, if one completely removes this cooperativity condition
(a.k.a., temperature 1 self-assembly), then the computational “power” of
the aTAM (i.e., its ability to support Turing universal computation and
the efficient self-assembly of N ×N squares) becomes unknown. On the
plus side, the aTAM, at temperature 1, is not only Turing universal but
also supports the efficient self-assembly N × N squares if self-assembly
is allowed to utilize three spatial dimensions (Fu, Schweller and Cook,
SODA 2011). In this paper, we investigate the theoretical “power” of a
seemingly simple, restrictive variant of Winfree’s aTAM in which (1) the
absolute value of every glue strength is 1, (2) there is a single negative
strength glue type and (3) unequal glues cannot interact (i.e., glue func-
tions must be “diagonal”). We call this abstract model of self-assembly
the restricted glue Tile Assembly Model (rgTAM). We achieve two posi-
tive results. First, we show that the tile complexity of uniquely producing
an N × N square in the rgTAM is O(log N). In our second result, we
prove that the rgTAM is Turing universal.

1 Introduction

Even in an overly-simplified model such as Winfree’s abstract Tile Assembly
Model (aTAM) [24], the theoretical power of algorithmic self-assembly is
formidable. Universal computation is achievable [24] and computable shapes
self-assemble as efficiently as the limits of algorithmic information theory will
allow [23, 21, 1]. However, these theoretical results all depend on an important

� This author’s research was supported in part by National Science Foundation Grant
CCF-1117672.

L. Cardelli and W. Shih (Eds.): DNA 17, LNCS 6937, pp. 175–189, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



176 M.J. Patitz, R.T. Schweller, and S.M. Summers

system parameter, the temperature τ , which specifies the minimum amount of
binding force that a tile must experience in order to permanently bind to an
assembly. The temperature τ is typically set to a value of 2 because at this
temperature (and above), the mechanism of “cooperation” is available, in which
the correct positioning of multiple tiles is necessary before certain additional
tiles can attach. However, in temperature 1 systems, where such cooperation is
unenforceable, despite the fact that they have been extensively explored [10, 5],
it remains an unproven conjecture that self-assembly at temperature τ < 2 is
incapable of universal computation. It is also widely conjectured (most notably
in [21]), although similarly unproven, that the efficient self-assembly of such
shapes even as simple as N ×N squares is impossible.

Given the seeming theoretical weakness of tile assembly at temperature 1, con-
trasted with its computational expressiveness at temperature 2, it seems natural
that experimentalists would focus their efforts on the latter. However, as is of-
ten the case, what seems promising in theory is not necessarily as promising in
practice. It turns out that in laboratory implementations of tile assembly sys-
tems [22,3,4], it has proven difficult to build true strength-2 glues in addition to
being able to strictly enforce the temperature threshold (e.g. many errors that
are due to “insufficient attachment” tend to occur in practice). Therefore, the
characterization of self-assembly at temperature 1 is of the utmost importance.

With the goal in mind of specifying a model of self-assembly that is closer
to the intersection of theoretical power and experimental plausibility, in this
paper, we propose “the aTAM at temperature τ = 1 + ε”. We introduce the
restricted glue Tile Assembly Model (rgTAM), which requires that (1) all glues
have strength −1, 0, or 1, (2) that there is only one glue type that exhibits −1
strength (i.e., a repulsive force equivalent in magnitude to the binding force of a
strength 1 glue), and (3) the glue function is diagonal, which means that a glue of
one type interacts only with other glues of the same type. Our goal in developing
the rgTAM is to study the “simplest” model of algorithmic self-assembly that
retains the computational and geometrical expressiveness of temperature 2 self-
assembly. In this paper, we achieve two positive results. First, we show that
the tile complexity of uniquely producing an N × N square in the rgTAM is
O(log N). In our second result, we prove that the rgTAM is Turing universal.

The use of glues possessing negative strength values has been investigated
within a variety of contexts [18, 7]. However, previous results have been much
less restrictive, allowing non-diagonal glue functions (meaning that glue types
can have interactions, perhaps of different strengths, with multiple different glue
types) and large magnitudes. Additionally, no explicit bound has been set on the
number of unique negative strength glue types. In order to help bridge the gap
between theory and experiment, we have proposed restrictions on the aTAM (in
the form of the rgTAM as stated above).

Various experimental implementations of the Tile Assembly Model have uti-
lized tiles created from DNA [22,3,4,25,17]. Moreover, several results have shown
that magnetic particles can be attached to DNA molecules [13, 19]. Since two
magnetized particles of the same polarity experience a repulsive force, the com-



Exact Shapes and Turing Universality at Temperature 177

bination of DNA tiles with attached magnetic particles is a natural prospect
for the implementation of negative strength glues. It should be possible to ad-
just the size, composition, and position of the magnetic particles to cause the
repulsive force experienced between two tiles to be roughly equal in magnitude
to the attractive force experienced by two strength 1 glues. (Note that utilizing
magnetic polarity for glues has previously been modeled in [16].) Also, the re-
quirement of only a single negative glue type allows for the attachment of the
same magnetized particle to any tile surface that needs to exhibit a −1 strength
glue.

The organization of this paper is as follows. In Section 2, we review the aTAM
and define the rgTAM, along with a few other definitions used in our subsequent
constructions. In Section 3, we prove that N×N squares efficiently self-assemble
in the rgTAM. In Section 4, we show how to simulate zig-zag systems (e.g., a
tile set that simulates a Turing machine on some input) in the rgTAM.

2 Preliminaries

In this paper, we work in the 2-dimensional discrete Euclidean space Z
2.

Let U2 = {(0, 1), (1, 0), (0,−1), (−1, 0)} be the set of all unit vectors, i.e.,
vectors of length 1 in Z

2. We write [X ]2 for the set of all 2-element subsets of
a set X . All graphs here are undirected graphs, i.e., ordered pairs G = (V, E),
where V is the set of vertices and E ⊆ [V ]2 is the set of edges. All logarithms
are base-2.

2.1 The Abstract Tile Assembly Model

We now give a brief and intuitive sketch of the Tile Assembly Model that is
adequate for reading this paper. More formal details and discussion may be
found in [24, 21, 20, 14].

Intuitively, a tile type t is a unit square that can be translated, but not
rotated, having a well-defined “side u” for each u ∈ U2. Each side u of t has a
“glue” of “color” colt(u) – a string over some fixed alphabet Σ – and “strength”
strt(u)–an integer–specified by its type t. Two tiles t and t′ that are placed at
the points a and a + u, respectively, interact with strength strt (u) if and only
if (colt (u) , strt (u)) = (colt′ (−u) , strt′ (−u)). If strt (u) > 0, those tiles bind
with that strength.

Given a set T of tile types, an assembly is a partial function α : Z
2 ��� T ,

with points x ∈ Z
2 at which α(x) is undefined interpreted to be empty space,

so that dom α is the set of points with tiles. α is finite if |dom α| is finite. For
assemblies α and α′, we say that α is a subconfiguration of α′, and write α � α′,
if dom α ⊆ dom α′ and α(x) = α′(x) for all x ∈ dom α.

A grid graph is a graph G = (V, E) in which V ⊆ Z
2 and every edge {a, b} ∈ E

has the property that a − b ∈ U2. The binding graph of an assembly α is the
grid graph Gα = (V, E), where V = dom α, and {m, n} ∈ E if and only if (1)
m − n ∈ U2, (2) colα(m) (n−m) = colα(n) (m− n), (3) strα(m) (n−m) =



178 M.J. Patitz, R.T. Schweller, and S.M. Summers

strα(n) (m− n), and (4) strα(m) (n−m) > 0. An assembly is τ -stable, where
τ ∈ N, if it cannot be broken up into smaller assemblies without breaking bonds
of total strength at least τ (i.e., if every cut of Gα cuts edges the sum of whose
strengths is at least τ). For the case of negative strength glues, we employ the
model of irreversible assembly as defined in [7].

Self-assembly begins with a seed assembly σ (typically assumed to be finite
and τ -stable) and proceeds asynchronously and nondeterministically, with tiles
adsorbing one at a time to the existing assembly in any manner that preserves
stability at all times.

A tile assembly system (TAS ) is an ordered triple T = (T, σ, τ), where T
is a finite set of tile types, σ is a seed assembly with finite domain, and τ is
the temperature. In subsequent sections of this paper, unless explicitly stated
otherwise, we assume that τ = 1 and σ consists of a single seed tile type placed
at the origin. An assembly sequence in a TAS T = (T, σ, 1) is a (possibly infinite)
sequence α = (αi | 0 ≤ i < k) of assemblies in which α0 = σ and each αi+1

is obtained from αi by the “τ -stable” addition of a single tile, where “τ -stable”
applies to the entire assembly. The result of an assembly sequence α is the
unique assembly res (α) satisfying dom res (α) =

⋃
0≤i<k dom αi and, for each

0 ≤ i < k, αi � res (α). If α = (αi | 0 ≤ i < k) is an assembly sequence in T
and m ∈ Z

2, then the α-index of m is iα(m) = min{i ∈ N |m ∈ dom αi }.
That is, the α-index of m is the time at which any tile is first placed at location
m by α. For each location m ∈ ⋃

0≤i<l dom αi, define the set of its input sides
INα(m) =

{
u ∈ U2

∣∣ m + u ∈ dom αiα and strαiα(m)(u) > 0
}
.

We write A[T ] for the set of all producible assemblies of T . An assembly α
is terminal, and we write α ∈ A�[T ], if no tile can be stably added to it. A
TAS T is directed, or produces a unique assembly, if it has exactly one terminal
assembly i.e., |A�[T ]| = 1. A set X strictly self-assembles if there is a TAS T
for which every assembly α ∈ A�[T ] satisfies dom α = X .

2.2 Restricted Glue and Zig-Zag Tile Assembly Systems and Path
Simulation

Restricted Glue Tile Assembly Systems. We say that a tile set T is glue
restricted if (1) the absolute value of every glue strength in T is at most 1, and
(2) there is a single negative-strength glue type. Intuitively, glue restricted tile
sets are as “close” as one can get to pure temperature one self-assembly in the
aTAM. Finally, a TAS T = (T, σ, 1) is glue restricted if T is glue restricted. In
this paper, for notational convenience, we will simply refer to a glue restricted
TAS as a restricted TAS, and the model as the restricted glue Tile Assembly
Model, or rgTAM.

Zig-Zag Tile Assembly Systems. A tile assembly system T = (T, σ, 2) is
called a zig-zag [5] tile assembly system if (1) T is directed, (2) there is a unique
assembly sequence α in T , withA�[T ] = {α = res (α)}, (3) for every x ∈ dom α,
(0, 1) �∈ INα(x) and (4) for every x ∈ dom α and every u ∈ U2, strα(x)(u) +
strα(x)(−u) < 4. Intuitively, zig-zag systems are those that grow exactly one



Exact Shapes and Turing Universality at Temperature 179

horizontal row at a time with successive rows being initiated at “opposite” ends
of the growing assembly. Zig-zag systems always add new rows to the north
(never to the south) and do not grow via a sequence of consecutive double bonds.
Zig-zag systems are capable of simulating universal Turing machines, and thus
universal computation [5].

Path Simulation. Let T = (T, σ, 2) be a zig-zag TAS with assembly sequence
α = (αi | 0 ≤ i < k). We say that a restricted TAS S = (S, σ′, 1) path simulates
T (at scale factor c) if S uniquely produces a single-tile-wide path of tiles that
is logically divided into segments of some fixed-length c ∈ N, where each such
sub-path of tiles corresponds to exactly one tile in T , and these sub-paths self-
assemble exactly in accordance with the unique assembly sequence of T . In more
formal terms, S path simulates T at scale factor c if there exists an assembly
sequence β = (βi | 0 ≤ j < l) in S such that, for all 0 ≤ i < k, the assembly
subsequence βic, . . . , β(i+1)c−1 in S corresponds to the single-tile extension that
yields αi and the binding graph of β = res (β) is a path. Note that the idea of
one tile assembly system simulating another has been studied in other contexts
as well [8, 5, 15].

3 Exact Shapes

The self-assembly of N × N squares has been studied extensively (see [1, 6, 21,
11,9,12]). Rothemund and Winfree conjectured in [21] that, for every N ∈ N, if
TN = (TN , σ, 1) uniquely produces SN = {0, 1, . . . , N − 1} × {0, 1, . . . , N − 1},
then |TN | ≥ 2N − 1. In what follows, we show that this bound does not hold for
restricted tile assembly systems.

Theorem 1. For all but finitely many N ∈ N, there exists a restricted TAS
T = (TN , σ, 1), such that SN strictly self-assembles in T , T is directed, and
|TN | = O(log N).

In what follows, we briefly sketch our construction for Theorem 1. Let n =
⌊

N−1
5

⌋
,

k = �log n	, K = 5 + 4k, n0 = 2k − n +
⌈

K
5

⌉
and x = N − (

K + 5
(
n− ⌈

K
5

⌉))
.

Intuitively, N is the dimension (length of one side) of the target square SN , n is
the number of count/increment row pairs that we will need in our construction,
k is the logical width of the counter, K is the actual width of the counter in our
construction, n0 is the initial value for the counter, 2k − 1 is the maximum value
of the counter and x is the number of rows on top of the counter that we need to
fill in with generic “filler” tiles. Although not necessarily surprising, it is worthy of
note–and easy to show–that x ≤ 9. In Figure 1, we show a high-level overview of
the terminal assembly produced by our construction (many details are omitted).

In our construction, we emulate the zig-zag counter of Rothemund and Win-
free [21]. We utilize three different binary counters in our construction, denoted
as the first, second and third counter and oriented vertically, horizontally and
vertically respectively. We will discuss the general behavior of our north-growing
zig-zag counter and highlight any subtle differences between the two other ver-
sions of it that we use in our construction.



180 M.J. Patitz, R.T. Schweller, and S.M. Summers

Fig. 1. The negative glue is denoted as a little red square. Positive glues are denoted as
little blue squares. Yellow represents filler tiles, grey either seed row tiles or “no carry”
tiles, orange represents copy tiles, light yellow represents “search for rightmost 0” tiles,
dark yellow represents “flip rightmost 0 to 1” tiles and green tiles represent logical
connections between the three different counters in our construction. Our construction
is simple: it merely assembles a ‘U’ shape via three counters and then fills in the
“interior” of the ‘U’ via generic filler tiles. In this example, N = 41, n = 8, k = 3,
K = 17, n0 = 4 and x = 4.

Fig. 2. We emulate “temperature-2” style cooperation by using geometry along with
the careful placement of the negative glue in order to ensure that only the “correct”
tile in a particular location of a path of tiles attaches and therefore can “know” if it
is supposed to be, for example, a ‘1’ or a ‘0’ bit. We use this technique extensively
throughout this paper.



Exact Shapes and Turing Universality at Temperature 181

The binary counter consists of a seed row, which encodes some number in
binary, on top of which some number of increment/copy row pairs self-assemble
in a zig-zag fashion. The top of the counter is capped off with a special cap
gadget.

1 0 0

1 cap row

Seed row

Comb teeth Comb teeth

Cap tile gadgets

2 cap rows

Fig. 3. The grey tiles encode the initial value
of the counter, denoted as n0. In this exam-
ple, n0 = 4. The cap gadgets (of various sizes)
are shown above the seed row as a combina-
tion of green and yellow tiles. The number of
cap tiles is x.

The Seed Row. The seed row is a
row of tiles that encodes the initial
value of the binary counter n0 using
k = �log n	 bits and has a horizontal
extent of K − 1. The counter starts
counting at this value and stops at
2k − 1. We encode the bits of n0 via
the careful placement of the negative
glue (denoted as a little red square
in all of our figures). The bit 0 is
encoded by positioning the negative
glue so that it is facing north in a
dent and a 1 is encoded by position-
ing the negative glue so that it is fac-
ing east in a dent; see Figure 3. This
bit encoding scheme is also used in
count rows whereas slightly different
encoding is used for copy rows. Off
the bottom of the seed row, teeth
of a “comb” attach in order to fill in
the bottom left corner of the square.
Each tooth has length K and self-
assembles to the south. The actual
length of the seed row–and hence the
actual width of our counter in this construction–is K.

1

1

0

0

Fig. 4. Copy rows copy the bits advertised on the north side of the previous increment
(or seed) row up for the next increment row. Copy rows encode each bit according to
the “mirror-image” of the encoding utilized by the seed and increment rows. The pink
square represents a negative glue that may or may not be present depending on whether
or not the copy row is the first copy row to appear in the counter. These negative glues
are used initiate the self-assembly of the second binary counter.

The Copy Rows. Copy rows self-assemble on top of increment rows (including
the seed row) from left to right and have horizontal extent K (the actual width of
the counter). Copy rows consist of a sequence of bit gadgets that utilize geometry



182 M.J. Patitz, R.T. Schweller, and S.M. Summers

and the careful placement of the unique negative (red) glue in order to emulate
cooperations (see Figure 2). In our construction, we have one bit gadget for
every bit in the binary representation of n0 (this information is encoded directly
into the bit gadget so that it knows which bit it is, e.g., most significant, least
significant, third, etc). The bit gadgets that comprise each copy row are shown
in Figure 4. In our construction, if a copy row reads a string of 1 bits, i.e., 2m−1
for some m ∈ N, it will terminate the counter and allow the cap gadget to attach.

The Increment Rows. Each increment row increments the value of the counter
by 1. Increment rows self-assemble from right to left (compared to left to right
for copy rows–hence the zig-zag nature of our counter). Similar to copy rows,
increment rows consist of a sequence of (a different type of) bit gadgets that
each know “which” bit they represent. The bit gadgets for increment rows are
shown in Figure 5.

0

1

CC

1

0

CN

1

1

NN

0

0

NN

Fig. 5. The increment row bit
gadgets read the bits of the pre-
vious copy row. The bit gad-
gets for increment rows emulate
the standard binary counter tile
types, such as those depicted in
Figure 1 of [21]. For each bit
in the binary representation of
n0, we have four types of bit
gadgets. The inputs are always
south (0 or 1 bit value) and east
(carry/no-carry).

The value of the final increment row in our
counter is 2k − 1 giving the counter an actual
height of 5

(
n− ⌈

K
5

⌉)
rows of tiles. The bit pat-

tern of 2k−1 is detected by the (final) copy row,
which terminates the counting. On top of the fi-
nal copy row of the counter, a special cap tile
gadget attaches, which is a path of tiles that fills
in–and smooths out–the top of the jagged zig-
zag counter. For each value of x (ranging from
1 to 9), we use a different cap tile gadget. The
top portion of Figure 3 shows the two types of
cap gadgets that we use in our construction–one
allows additional “comb teeth” (each of varying
height/length depending on x) to attach and the
other that simply caps the counter.

Completing the Square. After–and only
after–the first binary counter completes, may the
construction proceed. To the upper right corner
of the first binary counter, a green path of tiles
crawls down along the right side of the counter
toward the seed tile. This green path of tiles de-
tects the seed tile via the south-facing negative
glue in the lower rightmost tile in each orange

copy row. A south-facing negative glue tells the green path of tiles to “keep go-
ing.” Only the black seed tile type has an east-facing negative glue, which tells
the path to “stop” and build the seed row for the second (horizontal) counter.
Note that we do not encode any location information into these green tiles that
crawl down the right side of the first counter, which means that there are O(1)
such tiles.

The second binary counter (the base of the ‘U’ backbone) behaves similarly
to the first counter except its top (logically, its least significant bit) is completely



Exact Shapes and Turing Universality at Temperature 183

smooth so as to allow the seed row of the third and final (vertical) binary counter
to attach. Furthermore, the cap tile gadget for the second counter places one
more row of cap tiles on top of (actually, to the right of) the second counter
than the cap tile gadget did for the first counter to ensure that the terminal
structure is a square (see Figure for an example). The cap tile gadget for the
second counter also initiates the self-assembly of the seed row for the third binary
counter (see Figure 6).

One more cap 
tile than the first 
counter

Seed row
Cap tile gadget

Fig. 6. The cap tile gadget ensures
that there is one additional row of
cap tiles to compensate for the rela-
tive positions of the first two coun-
ters

The third (and final) vertical counter in
our construction completes the ‘U’-shaped
backbone of the construction. This counter
behaves similar to the first counter except
its right edge is completely smooth. We also
use a third type of cap tile gadget to form the
smooth top of the square. This third type of
cap gadget allows comb teeth (whose size de-
pends on x) to bind to its north side and also
shoots a path of green tiles off to the left and
back toward the first counter.

This green path of tiles is eventually
blocked by the first counter, but as this path
self-assembles to the left, it allows yellow
filler tiles to fill in the interior of the square
(see Figure 7 for an example) and comb teeth
to attach on top.

Tile Complexity. We use O(1) yellow filler
tiles that either attach on top of (or to the
right of) cap rows or fill in the interior of
the square. There are O(1) green tiles that
crawl down the right side of the first binary
counter. The yellow tiles that fill in the bot-

tom left corner of the square must grow to length O(K) = O(k) and stop for
which O(k) tile types suffice. Finally, we must encode the appropriate bit loca-
tion into every bit gadget of the seed row and every copy, increment and cap
tile gadget. Since there are O(1) types of bit gadgets for each row and k bit
locations in each of the three different counters that we use, the tile complexity
of our construction is dominated by O(k) = O(log N).

It is interesting to note that our construction is essentially a spanning tree,
much like the “2N − 1” construction of [21]. However, in our construction, we
are allowed to use a single negative glue type, which–in conjunction with some
clever use of geometry–allows us to emulate the cooperativity of “temperature
2” self-assembly. Furthermore, the longest simple path of tiles in Rothemund
and Winfree’s “2N − 1” construction is 2N − 1 = O(N) whereas the longest
simple path of tiles in our construction is O (N log N) but our construction
ensures that the length of every simple (un-blocked) path of tiles cannot exceed
O(log N) without encountering the negative glue.



184 M.J. Patitz, R.T. Schweller, and S.M. Summers

This path continues until it 
gets blocked by the first 
counter

Seed row

Cap tile gadget

Fig. 7. The cap gadget for the third counter shoots a path of green tiles in the
direction of–and is blocked by–the first counter. This green off-shoot not only allows
any necessary cap tiles to attach on its top but initiates the self-assembly of the interior
of the square via yellow filler tiles.

4 Turing Universality

In this section, we show that for every zig-zag TAS, there is a restricted tile
assembly system in the rgTAM that simulates it.

Theorem 2. For every, zig-zag TAS T = (T, σ, 2), there exists a restricted
TAS S = (S, γ, 1) such that S path simulates T at scale factor O(log |T |) with
|S| = O(|T |).
Our construction for Theorem 2 is very similar in spirit to [2] in that we are
essentially simulating a path using macro-tiles with geometrical bumps and dents
except our construction uses negative glues to prevent erroneous growth. The
remainder of this section is devoted to a brief, intuitive sketch of our construction
for Theorem 2.

Intuitively, S simulates T by logically converting each tile type t ∈ T into a
group (path) of tile types in S that self-assemble into a macro-tile. Let G be the
number of unique strength-1 north/south glues in T . Each macro-tile is a path of
2 �log G	+ 30 tiles and forms in its entirety before allowing the next macro-tile
to form, whence the scale factor in our construction is O (log G) = O(log |T |).
Moreover, we can use the fact that macro-tiles are all the same size in order to
easily compute the indices i−1 < i0 < · · · ik in the definition of path simulate.

As shown in Figure 8a, each t ∈ T has well-defined “input” and “output”
sides (for convenience, and without loss of generality, we fix the seed row as
growing from left to right), some of which may be the empty glue. The corre-
sponding macro-tiles are depicted in Figure 8b. We encode each north/south
glue in T as a unique (G + 1)-bit binary string (we also encode the empty glue
label, whence each glue is represented as a (G + 1)-bit binary string). We then
encode each binary string (representing a glue) as a path of bumps and dents
along the north and south side of the appropriate macro-tile(s). Into the bumps
and dents, we carefully place the negative glue type to either represent a ‘0’ or
a ‘1’ bit–similar to the construction for Theorem 1. Note that we do not rep-
resent the “east/west” or strength-2 “north/south” glues of T in this manner



Exact Shapes and Turing Universality at Temperature 185

left-to-right

right-to-left

seed row

(a) The set of
input/output
side combina-
tions (grouped
by input sides)
for a zig-zag
TAS. Note that
the right side
of a seed row
utilizes the
the rightmost
left-to-right
type.

( )

( )

( )

(b) Macro-tiles that simulate individual tiles
from the zig-zag TAS. The arrows show the di-
rection of growth and the schematic tiles on
the right show which directions are input and
output sides for each macro-tile (with those in
parenthesis represented by mirror images of the
macro-tiles). The purple tiles represent locations
at which a negative glue is placed in order to
tell the yellow path to “keep going” to the right–
similar to the green tiles in the construction of
Theorem 1 that crawl down the right side of the
first binary counter.

1 0

(c) Reading
one bit of
the glue
type.

Fig. 8. Details of the zig-zag simulation construction

because in this case we encode these glue types in T on the glues of the tiles
which serve as the beginning and ends (inputs and outputs) of the paths forming
the corresponding macro-tiles.

A macro-tile that represents a tile type t ∈ T that binds via two “input” sides
(e.g., south-east/south-west) self-assembles in two logical stages: reading the
input glues and unpacking the output glues. In what follows, we will discuss the
macro-tiles that represent tiles that have south/east input sides. The macro-tiles
that emulate tiles with south/west input sides are constructed similarly.

Reading the Input Glues. In the first stage of the self-assembly of a “south-
east input” macro-tile, an initial portion of its path crawls (either to the left or
to the right) across the top of an existing macro tile. In doing so, the growing
macro-tile path “reads” in, via a series of appropriate-placements of the negative
glue in bumps and dents, a binary string, which represents a glue type in T . The
method of “reading” a bit is depicted in Figure 8c and is similar to the technique
used in Theorem 1 (see also Figure 2).

For each 0 ≤ i < G + 1, we have a group of tile types that are responsible for
collecting the ith bit of a binary string as they assemble a path to the left while



186 M.J. Patitz, R.T. Schweller, and S.M. Summers

0x
2k

1x
2k

1x
2k+10x

2k+1

w

g(w)

x
2k

x
2k

?
2k+1

x
2k +1

x
2k +1

x
2k +1?

2k +1

?
2k +1?

2k +1?
2k +1

?
2k+1

?
2k+1

ë

Fig. 9. The tile types that read a binary string from the top of an existing macro-tile as
they self-assemble from right to left. For each i = 0, 1, . . . , G + 1, let xi ∈ {0, 1}i. Note
that the east input glue is implicitly encoded into the tile types shown here. The upper
right tile initiates the process of reading the input binary string. The upper left tile
completes the process by mapping a pair of south-east input glues to the corresponding
north-west output glues. Tiles for south-west input macro tiles are designed similarly.

“remembering” the previous 0 ≤ j < i bits (see Figure 10). Note that not every
tile type in the group that reads the ith bit needs to remember all G+1 bits. In
fact, it suffices for the group of tiles responsible for reading the ith bit to only
remember i bits. In order to do this, we use O

(
20 + 21 + · · ·+ 2i

)
= O

(
2i+1

)

unique tile types, i.e., O(1) tile types for each of the 2j j-bit binary strings,
whence we must have a total of O

(
2log(G+1)

)
= O(G) = O(|T |) unique tile

types to read a glue from the top of an existing macro-tile (these tile types for
a south-east input, north-west output macro-tile are shown in Figure 9). Once
all G + 1 bits have been collected, we have a group of O(G) unique tile types to
convert the east input glue, along with the south input glue, into the appropriate
output glue(s) for the macro-tile..

Unpacking the Output Glues. After the output glue(s) of a macro-tile have
been determined, the macro-tile path crawls back across itself and determines
when to “stop” via the purple tiles in Figure 8(b). Then the path crawls, once
again, back across itself and “unpacks” the north output glue (it does not have
to unpack the west output glue by the way we encode the east/west glue types
in T in macro-tiles). We accomplish this task in a manner that is similar to–but
essentially the opposite of–reading in a (G + 1)-bit binary string. To do this, we
use O (G) = O(|T |) unique tile types (these tile types for a south-east input,
north-west output macro tile are shown in Figure 11.

Finally, a macro-tile in S that represents a tile type t ∈ T that binds via
a single, strength-2, input(output) side does not perform any input reading or
output unpacking because we encode each strength-2 glue in T as a unique
strength-1 glue in S. Thus, when such a macro tile self-assembles, it does so in
a single logical stage. Our second main (universality) result is as follows.



Exact Shapes and Turing Universality at Temperature 187

_011_011

1100 1100

___1

___

___1

___0

a b

1100

___1

___1___1

__11

___ __11

__01

c d

1100

___1

___1___1___1

__11_011

_011_011_011_011

0011 ___

___1

___1

___1

___1

___1

___1

___1

Fig. 10. An example depicting the north side of a macro-tile being “read” by the
south side of another macro-tile. Here, the binary number being read is “0011”. The
northern macro-tile grows from right to left. Initially it has no information about the
simulated glue to the south, and as it passes each position representing a bit, due to
the configurations of the negative glue (pictured in red), it is able to place only one of
two tiles, thus reading either a 0 or 1. See Figures 9 and 11 for more detail.

1x
2k+1

0?
2k+1

1?
2k+1

0?
2k

1?
2k

1?
2k

0?
2k

0?
2k+1

1?
2k+1

0?
2k+1

1?
2k+1

x
2k+1

x
2k+1

0x
2k

1x
2k

1?
2k

0?
2k

1?
2k

0?
2k

x
2k

x
2k 0x

2k+10?
2k+1

1?
2k+1

ë g(w)

Fig. 11. The tile types that unpack a glue type into binary string as they self-assemble
from right to left. For each i = 0, 1, . . . , G + 1, let xi ∈ {0, 1}i. Note that the east
input glue is implicitly encoded into the tile types shown here. The upper right tile
initiates the process of unpacking the input binary string. The upper left tile marks the
completion of this process. Tiles for south-west input macro tiles are designed similarly.



188 M.J. Patitz, R.T. Schweller, and S.M. Summers

0 1 q2,1 0 1

Simulated transition:  q2,1 --> q5,0,R

0 1 q5,00 1

0 1 q4,1 0 1

Simulated transition:  q4,1 --> q1,1,L

0 1 q4,1 0 1

0 1q1,1 0 1

a b c

Fig. 12. Sketch of a zig-zag Turing machine. (a) Rows grow in alternating directions
(grey arrows) and are extended in width by one tile per row. Upward growth occurs
only at the end of each row. (b) Example of a TM transition which moves the head
to the right occurring in a row growing left-to-right. (c) Example of a TM transition
which moves the head to the left. Note that if this transition is encountered by a row
which is growing left-to-right, the transition will be skipped in that row (an effective
“no op”), and instead simulated by the next row which grows right-to-left.

Theorem 3. The rgTAM is Turing universal.

Proof. For every Turing machine M and w ∈ Σ∗, there exists a zig-zag TAS
TM(w) that simulates M on input w [5]. The basic idea is to design TM(w) so
that self-assembly proceeds in a “zig-zag” growth pattern. This means that self-
assembly proceeds according to a unique assembly sequence, which builds hori-
zontal rows of tiles (configurations of M) one at a time, alternating growth from
left-to-right and right-to-left. Figure 12 shows an example of a zig-zag Turing
machine construction.

By Theorem 2, we can simulate TM(w) with a restricted TAS in the rgTAM.

References

1. Adleman, L., Cheng, Q., Goel, A., Huang, M.-D.: Running time and program
size for self-assembled squares. In: Proceedings of the Thirty-Third Annual ACM
Symposium on Theory of Computing, pp. 740–748. ACM, New York (2001)

2. Adleman, L.M., Kari, J., Kari, L., Reishus, D., Sośık, P.: The undecidability of
the infinite ribbon problem: Implications for computing by self-assembly. SIAM
Journal on Computing 38(6), 2356–2381 (2009)

3. Barish, R.D., Schulman, R., Rothemund, P.W., Winfree, E.: An information-
bearing seed for nucleating algorithmic self-assembly. Proceedings of the National
Academy of Sciences 106(15), 6054–6059 (2009)

4. Chen, H.-L., Schulman, R., Goel, A., Winfree, E.: Reducing facet nucleation during
algorithmic self-assembly. Nano Letters 7(9), 2913–2919 (2007)

5. Cook, M., Fu, Y., Schweller, R.: Temperature 1 self-assembly: Deterministic as-
sembly in 3d and probabilistic assembly in 2d. In: Proceedings of the 22nd Annual
ACM-SIAM Symposium on Discrete Algorithms (2011)

6. Doty, D.: Randomized self-assembly for exact shapes. SIAM Journal on Comput-
ing 39(8), 3521–3552 (2010)

7. Doty, D., Kari, L., Masson, B.: Negative interactions in irreversible self-assembly.
In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 37–48.
Springer, Heidelberg (2011)



Exact Shapes and Turing Universality at Temperature 189

8. Doty, D., Lutz, J.H., Patitz, M.J., Summers, S.M., Woods, D.: Intrinsic univer-
sality in self-assembly. In: Proceedings of the 27th International Symposium on
Theoretical Aspects of Computer Science, pp. 275–286 (2009)

9. Doty, D., Patitz, M.J., Reishus, D., Schweller, R.T., Summers, S.M.: Strong fault-
tolerance for self-assembly with fuzzy temperature. In: Proceedings of the 51st
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2010), pp.
417–426 (2010)

10. Doty, D., Patitz, M.J., Summers, S.M.: Limitations of self-assembly at temperature
1. Theoretical Computer Science 412, 145–158 (2011)

11. Kao, M.-Y., Schweller, R.T.: Reducing tile complexity for self-assembly through
temperature programming. In: Proceedings of the 17th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2006), Miami, Florida, January 2006, pp.
571-580 (2007)

12. Kao, M.-Y., Schweller, R.T.: Randomized self-assembly for approximate shapes.
In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 370–384. Springer,
Heidelberg (2008)

13. Kinsella, J.M., Ivanisevic, A.: Enzymatic clipping of dna wires coated with mag-
netic nanoparticles. Journal of the American Chemical Society 127(10), 3276–3277
(2005)

14. Lathrop, J.I., Lutz, J.H., Summers, S.M.: Strict self-assembly of discrete Sierpinski
triangles. Theoretical Computer Science 410, 384–405 (2009)

15. Luhrs, C.: Polyomino-safe dna self-assembly via block replacement. DNA, 112–126
(2008)

16. Majumder, U., Reif, J.: A framework for designing novel magnetic tiles capable
of complex self-assemblies. In: Calude, C.S., Costa, J.F., Freund, R., Oswald, M.,
Rozenberg, G. (eds.) UC 2008. LNCS, vol. 5204, pp. 129–145. Springer, Heidelberg
(2008)

17. Mao, C., Sun, W., Seeman, N.C.: Designed two-dimensional DNA holliday junction
arrays visualized by atomic force microscopy. Journal of the American Chemical
Society 121(23), 5437–5443 (1999)

18. Reif, J., Sahu, S., Yin, P.: Complexity of graph self-assembly in accretive sys-
tems and self-destructible systems. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005.
LNCS, vol. 3892, pp. 257–274. Springer, Heidelberg (2006)

19. Rickwood, D., Lund, V.: Attachment of dna and oligonucleotides to magnetic par-
ticles: methods and applications. Fresenius’ Journal of Analytical Chemistry 330,
330–330 (1988), doi:10.1007/BF00469247

20. Rothemund, P.W.K.: Theory and experiments in algorithmic self-assembly, Ph.D.
thesis, University of Southern California (December 2001)

21. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares (extended abstract). In: STOC 2000: Proceedings of the Thirty-Second
Annual ACM Symposium on Theory of Computing, Portland, Oregon, United
States, pp. 459–468. ACM, New York (2000)

22. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of
DNA Sierpinski triangles. PLoS Biology 2(12), 2041–2053 (2004)

23. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM Journal
on Computing 36(6), 1544–1569 (2007)

24. Winfree, E.: Algorithmic self-assembly of DNA, Ph.D. thesis, California Institute
of Technology (June 1998)

25. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of
two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)



Autonomous Resolution Based on DNA Strand
Displacement

Alfonso Rodríguez-Patón1, Iñaki Sainz de Murieta1, and Petr Sosík1,2

1 Departamento de Inteligencia Artificial.
Universidad Politécnica de Madrid (UPM),

Campus de Montegancedo s/n, Boadilla del Monte 28660 Madrid, Spain
inaki.sainzdemurieta@gmail.com, arpaton@fi.upm.es

2 Institute of Computer Science, Silesian University
74601 Opava, Czech Republic

petr.sosik@fpf.slu.cz

Abstract. We present a computing model based on the technique of
DNA strand displacement which performs a chain of logical resolutions
with logical formulae in conjunctive normal form. The model is enzyme-
free and autonomous. Each clause of a formula is encoded in a sep-
arate DNA molecule: propositions are encoded assigning a strand to
each proposition p, and its complementary strand to the proposition
¬p; clauses are encoded comprising different propositions in the same
strand. The model allows to run logic programs composed of Horn clauses
by cascading resolution steps and, therefore, possibly function as an au-
tonomous programmable nano-device. This technique can be also used
to solve SAT. The resulting SAT algorithm has a linear time complex-
ity in the number of resolution steps, whereas its spatial complexity is
exponential in the number of variables of the formula.

1 Introduction

A construction of programmable biomolecular devices is one of the ultimate goals
on the crossroad of biotechnology, nanotechnology and computer science. Their
applications proposed so far in the literature include, among others, genetic engi-
neering [1], biomedicine and drug delivery [2] and programmed molecule pattern
formation [3]. Besides the input and output interface, i.e., the ability to sense
and act in the complex inter- or intracellular environment, the key part of such a
device is its internal logic controlling its behavior. Promising solutions for a phys-
ical implementation of logical operations with biomolecules were proposed in the
area of DNA computing. After initial years when the discipline studied mainly
combinatorial problems, another research line emerged, focusing on molecular
logic for automated nano-devices. We cite only a few contributions to this broad
topic, like for example the design of logic gates [4,5], DNA automata [6], as well
as theoretical models [7]. These selected papers share a common property: the
use of competitive hybridization commonly known as DNA strand displacement.
Two complementary single strands of nucleic acids are joined to form a double
helix under conditions of suitable temperature and pH.

L. Cardelli and W. Shih (Eds.): DNA 17, LNCS 6937, pp. 190–203, 2011.
© Springer-Verlag Berlin Heidelberg 2011



Autonomous Resolution Based on DNA Strand Displacement 191

A further step in the DNA-based logic are computing models that implement
logical inference. Several results demonstrating theoretical principles of DNA-
based inference were previously published, such as [8] based on the technique
of Whiplash PCR, [9] applying DNA self-assembly, or [10] which used plasmid
molecules and which presented also experimental results using human-assisted
protocol. Recently, in the work of Shapiro et al. in [11] applying a similar automa-
ton concept like the one previously proposed in [12], the authors developed and
tested a system able to perform autonomously simple logical deductions with
DNA molecules based on hairpin manipulation and unfolding. A few months
later, Rodríguez-Patón et al. [13] presented a brief sketch of another inference
model with DNA.

This article presents a DNA computing model based on strand displacement
of four-way junctions [14,15], that encodes logical formulae in conjunctive normal
form (CNF) and autonomously perform logical resolution of their clauses. Unlike
[11], the model presented here is enzyme-free and its implementation can be built
on the general protocol derived in [14,15]. Furthermore, as strand displacement
models demonstrate special qualities [16] described in detail in the next section,
our solution is partly scalable, time-responsive and energy-efficient.

We also demonstrate that our model is theoretically capable of solving the
boolean satisfiability problem (SAT). The SAT problem continued to be ap-
proached in DNA computing after Lipton’s work [17]. Most of the subsequent
proposals have still followed the approach of generating all the possible solutions
and then select the right ones using laboratory operations; improvements were
introduced changing the way the initial set of solutions is encoded, reducing the
number of laboratory steps [18,19,20]. Others have adapted classical SAT reso-
lution algorithms like Davis-Putnam [21,22] into a DNA algorithm, following a
constructive solution generation (instead of generating all and then selecting the
right ones). Here we propose an alternative approach: we encode the full formula
into DNA molecules representing clauses and let the system massively perform
parallel logical resolution operations between the clauses.

The rest of the paper is structured as follows: Section 2 includes a description
of the DNA strand displacement process, a quick review of the main concepts in
propositional logic and the principles of the proposed DNA model. Section 3 de-
scribes how the model performs the autonomous resolution. Section 4 shows how
the parallel application of multiple resolution steps, in combination with a few
laboratory operations, can solve the SAT Problem. Finally, Section 5 summarizes
the conclusions and future work.

2 Principles of the Model

Basic concepts of propositional logic used throughout the article are summarized
first:

Proposition. The minimal syntactic entity in propositional logic. A proposition
P can take values True or False. P = True is represented as P , whilst P =
False is represented as ¬P .



192 A. Rodríguez-Patón, I. Sainz de Murieta, and P. Sosík

Formula. A formula in propositional logic can be recursively defined as follows:
– Each propositional variable is a formula.
– If ϕ is a formula, then ¬ϕ is a formula.
– If ϕ and Ψ are formulas and ◦ is any binary connective, then (ϕ ◦ Ψ) is

a formula. Here ◦ could be ∨, ∧, →, or ↔.
Clause. A logical formula consisting of a disjunction of propositions.
Conjunctive Normal Form (CNF). A logical formula is defined in conjunc-

tive normal form iff it is expressed as a conjunction of clauses.
Logical Resolution. If C and C′ are clauses and p is a proposition, then any

assignment that satisfies both (C ∨ p) and (C′ ∨ ¬p) also satisfies (C ∨ C′).
Hypothetical Syllogism. Inference rule stating the following: if we have A→

B and B → C, we can deduce A→ C.
SAT. The Boolean Satisfiability Problem is the problem of determining whether

the variables of a given formula can be assigned values in such a way as to
make the formula evaluate to True.

Encoding

Our encoding is based on the idea that every proposition is assigned a single
nucleotide sequence denoting that A = True, whereas its logical complement
denoting A = False (or ¬A) is encoded with the complementary nucleotide
sequence. For example, if the proposition A = True is encoded with the DNA
sequence 5′ −ATAAGG− 3′, then A = False will be encoded with its comple-
mentary strand 3′−TATTCC−5′. This dual encoding feature allows the logical
resolution to be applied to different clauses in an autonomous way. The same
encoding principle is used, e.g., also in [13,18].

Clauses in conjunctive normal form (CNF) can be encoded comprising these
propositions into the same DNA strand, following the rules below (see Fig. 1):

– Propositions are named with capital letters from A to Z. Propositions be-
longing to the same clause are encoded in the same DNA strand and sorted
as follows: positive propositions in ascending order, starting from the 3’ end
of the strand; then negative propositions in descending order, finishing at
the 5’ end.

– Each proposition is annealed to a “cover” strand of same length with the
following structure:
• A toehold region will be located at the 3’ end when the cover anneals to

an affirmed proposition (E.g. ¬a′
T in Fig. 1), or at the 5’ end when the

cover anneals to a negated proposition (E.g. z′T in Fig. 1). In both cases
the toehold stays single stranded and does not anneal to the proposition
strand.
• In affirmed propositions, the cover strand anneals its 5’ non-toehold re-

gion with the 3’ region of the proposition strand. A free toehold region
stays single stranded at the 5’ end of the proposition strand (E.g. aT in
Fig. 1).



Autonomous Resolution Based on DNA Strand Displacement 193

Fig. 1. The DNA encoding of clauses with toehold regions

• In negated propositions, the cover strand anneals its 3’ non-toehold re-
gion with the 3’ region of the proposition strand. A free toehold region
stays single stranded at the 3’ end of the proposition strand (E.g. ¬zT

in Fig. 1).
• The cover strand of a given proposition P must be complementary to

the cover strand of ¬P .
– Each cover strand is labeled with a fluorophore reporter. It does not play

any role in the resolution mechanism but it will be required by the next steps
of the SAT resolution algorithm.

Concerning the detailed physical implementation of these abstract clause-
encoding sequences, there already exist several experimental implementations
of molecular logic based on strand displacement so that we can to a large extent
rely on the obtained results and properties. The pioneering work of Seelig et al.
[4] presented the construction of enzyme-free DNA logic gates based on strand
displacement. Their “dual-rail” representation can be considered as a base for
the physical encoding in our design in the sense that both a logical proposition
and its negation are represented by the presence of a certain DNA strand specie;
in our case, however, these species are mutually complementary. Later, build-
ing on the recent and general work [23], the article [16] introduced an improved
design of molecular circuits with the following declared properties: scalable, time-
responsive, energy-efficient and digital. We briefly summarize these properties
and note how they apply to our construction.

scalable: The preparation of the DNA strands can be done in a single test tube
instead of a separate tube for each DNA specie. This is only partly true in our
case: all cover strands with toeholds encoding propositions can be divided
into two groups, positive and negative, and each group can be prepared
together in a single test tube. However, the long DNA strands encoding
clauses of the initial program must be prepared separately since they may
contain mutually complementary parts.

time-responsive: After some initial computation, the system is still able to
react to changes of the input and accordingly re-compute the output. In our
design, some initial resolution steps can proceed in the mixture of DNA



194 A. Rodríguez-Patón, I. Sainz de Murieta, and P. Sosík

species encoding clauses, but when new species encoding new facts or rules
are added, new resolution steps will start, hence the system responds. How-
ever, whenever there are enough facts for refutation, then the specie corre-
sponding to the empty clause is irreversibly produced.

energy-efficient: If inputs are given ideally (i.e., with 0 concentration of un-
wanted species), then the system converts into steady state when outputs are
also ideal and the system is in an energetic equilibrium; this is true in our
design, too.

digital: The DNA reactions are able to perform signal restoration when the
concentration of DNA species encoding specific logic information is low, to
obtain a digital abstraction of analog concentration values. Such a property
is the subject of further research in our case since a large number of interme-
diate clauses can emerge during the resolution and some kind of “universal
signal restoration gate” would be needed.

3 Autonomous Resolution Using DNA

The resolution is perhaps the most studied propositional refutation system due
to its simplicity and importance in many automatic theorem proving procedures
[24]. The resolution principle states that, if C and C′ are clauses and p is a
proposition, then any assignment that satisfies both (C ∨ p) and (C′ ∨ ¬p) also
satisfies (C ∨C ′). Consequently, (C ∨p) and (C′∨¬p) is unsatisfiable if and only
if (C ∨C′) is unsatisfiable. Having a look at Fig. 2, we can see how resolution is
automatically performed between two clauses encoded as described in Section 2:
the molecules encoding clauses A ∨B and ¬B ∨ C merge together into another
molecule that encodes the resolvant clause, A ∨ C, which can be later used in
further resolution iterations. Although the resolvant contains an extra double
stranded region (formed by B and ¬B), it has no free toehold and cannot alter
computations reacting with other clauses.

The example depicted in Fig. 3 shows a resolution reaction of two unary
clauses, B and ¬B, in detail.

– In the first step, the toeholds of both cover strands anneal (¬b′T with b′T ),
and so do the toeholds of the proposition strands (¬b′T with b′T ). A Holliday
junction [25,26] is formed as result of both hybridizations.

– At this point, the junction starts a spontaneous branch migration in a ran-
dom walk [14,15].

– When the Holliday junction reaches the distal end of the double stranded
region, the strand exchange completes producing two stable duplexes: one of
them made with the cover strands, the other one with B and ¬B.

At the end of the process, B and ¬B form a fully hybridized double stranded
molecule; unlike in Figure 2, it contains no single stranded segments that encode
propositions, meaning that the formula B∧¬B is not satisfiable. This resolution
reaction has evolved into an empty clause, represented as Ø.



Autonomous Resolution Based on DNA Strand Displacement 195

Fig. 2. Basic resolution step. The clauses A∨B and ¬B∨C are resolved on B, producing
the resolvant clause A ∨ C.

This principle can be cascaded, as demonstrated in [23,16], resulting in more
complex logic steps as the hypothetical syllogism: if we have A→ B and B → C,
we can deduce A→ C. As every implication can be formulated as a disjunction,
we can rewrite the previous statement as follows: if we have ¬A∨B and ¬B∨C,
we can deduce ¬A∨C, which also matches the example of Figure 2. The model
also allows multiple iterations of the hypothetical syllogism.

Finally, consider a logic program consisting of a sequence of Horn clauses in
the form

(A1 ∧A2 ∧ · · · ∧An)→ B

which can be rewritten as

¬A1 ∨ ¬A2 ∨ · · · ∨ ¬An ∨B.

Each such clause (and, of course, each unary clause representing a fact) can be
encoded as a separate DNA specie as described above and then the autonomous
resolution can proceed, until the empty clause is eventually obtained, indicating
that the refutation process was successful. A detection of the empty clause is
described in the next section.



196 A. Rodríguez-Patón, I. Sainz de Murieta, and P. Sosík

Fig. 3. 4-way branch migration process that implements the resolution step of two
unary clauses B and ¬B

4 Boolean Satisfiability Problem (SAT)

The problem of satisfiability of boolean formulae in CNF was the first decision
problem proved to be NP-complete [27]. Given any boolean formula, we can
rewrite it to CNF in a way that both of them are equisatisfiable, and then
encode it using our model. Our algorithm will apply the resolution to all the
clauses and propositions, looking for potential refutations to the initial formula.

A resolution refutation of a non-satisfiable CNF formula ϕ is a sequence of
clauses C1 . . . Cs, where each Ci is either a clause of ϕ or it is inferred from
earlier clauses by the resolution rule, and Cs is the empty clause. If a refutation
can be derived from an initial formula, then the formula is unsatisfiable. We can
encode the initial formula following our DNA model, adding several copies of
each molecules to allow all the possible resolution reactions to be performed in
parallel.

Identifying the Empty Clause

The question now is, how our model will determine whether the empty clause
has been derived or not. For a better understanding of the process, let us review
some simple cases to understand the general rule:



Autonomous Resolution Based on DNA Strand Displacement 197

– Fig. 2 shows how our resolution model works for a satisfiable formula with
two binary clauses: (A ∨ B) ∧ (¬B ∨ C). When trying to derive an empty
clause, the logical resolution sequence would be the following1:
(A ∨B),(¬B ∨ C)
(A ∨ C)
We can see the expected logical output matches the DNA output of Fig. 2.
No refutation has been derived, thus the formula is satisfiable (SAT). At the
end of the reaction, all the molecules contain at least one cover strand.

– Fig. 3 shows how resolution works for the simplest unsatisfiable formula:
B ∧ ¬B. When trying to derive the empty clause, the logical resolution
sequence would be the following:
(B),(¬B)
/O
The reaction product in Figure 3 is a molecule containing no cover strands,
labeled as /O. It represents the last clause of the empty clause refutation.
Hence, the formula is unsatisfiable (UNSAT). The expected logical output
matches the DNA output in Fig. 3.

– Fig. 4 shows another simple case of unsatisfiable formula: ¬A∧(A∨B)∧¬B.
The logical resolution sequence would be the following:
¬A,(A ∨B),¬B

A, ¬A
/O
As in Fig. 3, we can see a molecule containing no cover strands, labeled as
/O. It matches the expected logical output detailed in the previous lines and
the formula is UNSAT.

– Fig. 5 shows a case of satisfiable formula: (A ∨ B) ∧ (¬B ∨ ¬A). When
trying to derive an empty clause, the logical resolution sequence would be
the following:
(A ∨B),(¬B ∨ ¬A)
(A ∨ ¬A)
TRUE
Although we can find a molecule containing no cover strands, it does not
represent an empty clause in this case. It is so because the second reaction
depicted in Figure 5 does not correspond to a resolution operation since the
annealed propositions belong to the same clause. This fact is still distin-
guishable looking at the structure of the final molecule (made of only cover
strands): two DNA strands are annealed in more than one proposition. This
differs from Fig. 4 where the empty clause molecule has a nick in the middle.

1 The first clause of each line is the output of applying resolution at the previous line.
Second clause of each line represents the new clause added to the sequence at that
step. First line contains the initial clauses.



198 A. Rodríguez-Patón, I. Sainz de Murieta, and P. Sosík

Fig. 4. Unsatisfiable formula: ¬A ∧ (A ∨ B) ∧ ¬B. The first resolution between the
clauses (A ∨ B) and ¬B yields the clause A. In the second reaction, A and ¬A are
resolved into the empty clause /O, meaning the formula is UNSAT.

At this stage we should be able to determine the satisfiability of any formula by
looking at the structure of output molecules composed only by non-cover strands
(if any). These molecules are easily distinguishable since each cover strand con-
tains a fluorescent marker. The empty clause corresponds to a non-fluorescent
double-stranded molecule with nicks between all parts encoding propositions.
However, there might be other molecules with the same length and structure,
resulting from non-resolution reactions, see Fig. 5. Comparing with Fig. 4, one
can see that the output molecules are almost identical except for the nick be-
tween ¬A and ¬B in Fig. 4, and if they occurred simultaneously, it would be
impossible to distinguish them by electrophoresis.



Autonomous Resolution Based on DNA Strand Displacement 199

Fig. 5. Satisfiable formula: (A∨B)∧(¬B∨¬A). The first resolution between the clauses
(A ∨ B) and (¬B ∨ ¬A) yields the clause (A ∨ ¬A) which is always True. Thus the
second hybridization does not represent a resolution operation, since the propositions
involved belong to the same clause, but the logic operation A ∨ ¬A which is always
true.

Therefore, we add to the 5’ end of each non-cover strand a few extra nu-
cleotides which will not bind to cover strands but instead it will form a single-
stranded sticky end. Its purpose is to increase the weight/size of the molecule
during electrophoresis and to allow the differentiation of these two cases. De-
note n the length of non-cover strands encoding propositions and k the length
of the extra single-stranded end. The empty clause produced by refutation of x



200 A. Rodríguez-Patón, I. Sainz de Murieta, and P. Sosík

propositions contains x double-stranded sequences, each of length n, since 2xn
nucleotides in total. Furthermore, it contains x + 1 single-stranded sticky ends,
each of the length k, hence (x + 1)k nucleotides in total. The sum is 2xn + (x +
1)k = x(2n + k) + k.

By a proper choice of n and k, it can be prevented that another molecule
encoding a non-empty clause would occupy the same place in the electrophoretic
band, but a more thorough analysis will be provided in an extended version of
the paper.

DNA Algorithm

We outline, step by step, our model to apply resolution to a set of CNF clauses
and determine whether the formula is satisfiable or not. Let n be the length of
non-cover strands encoding propositions and k the length of sticky ends.

1. Encode the clauses as DNA molecules, according to Section 2 and Fig. 1.
2. Mix all the clauses in the same dissolution and let all the possible resolution

reactions take place. If the formula is unsatisfiable, then the empty clause is
produced after at most v reactions cycles, v being the number of variables
(see the analysis bellow).

3. Filter the result using gel electrophoresis. If all the bands formed in the
gel show fluorescence, it means no empty clause has been generated by any
resolution reaction (as in Fig. 2), hence the formula is SAT. The process
ends here.

4. Otherwise, if there are bands without fluorescence and at least one of them
corresponds to the length of x(2n + k) + k nucleotides for x ≥ 1, then the
formula is UNSAT.

A quick analysis of time and space complexity of the algorithm can be provided:

– Step 1 (clause encoding) can be considered constant in time.
– Step 2 (massive parallel resolutions) would depend on the minimal number

of parallel resolution steps to derive the empty clause.
– Step 3 (gel electrophoresis) is another constant time operation.

Concerning the minimal number of the parallel resolution steps, it is equal to the
minimal depth of a refutation tree or, more generally, DAG (Directed Acyclic
Graph) for a given formula since any such DAG is a part of the resolution per-
formed by our algorithm. Assuming the regular tree resolution which is complete
(see, e.g., [28] for definitions), the depth of the tree is at most the number of
variables in the formula, see Theorem 3.1 in [28] and its proof. Therefore, the
time complexity of the algorithm is O(v) where v is the number of variables in
the original formula.

The spatial complexity of the algorithm depends generally on its Step 2, more
precisely on the size of the refutation, i.e., the number of occurrences of clauses.
It was proven already in [29] that even the size of general refutation (the smallest
refutation with no restrictions on the sequence of resolution steps) is exponential
in the number of variables of the formula, establishing the lower bound for our



Autonomous Resolution Based on DNA Strand Displacement 201

space complexity. Since our algorithm cannot generate more than all possible
clauses on v variables whose number is 3v (each variable is either affirmed or
negated or absent), the upper bound is asymptotically the same. Hence, the
space complexity of the algorithm measured as the number of different DNA
molecules is 2Θ(v).

5 Conclusions and Future Works

We have introduced a new DNA model for representation of logical formulas
in CNF which contains an implicit resolution mechanism that acts on any pair
of clauses containing complementary propositions. The model is based on the
strand displacement techniques and the resolution is completely autonomous,
except for the last detection step when a possibly human-assisted electrophore-
sis is performed. Our model is completely enzyme-free and its implementation
can be based on experimentally verified and general design derived in [14,15].
According to the properties examined in [16], the model can be characterized as
partly scalable, time-responsive and energy-efficient.

The first application of our model is the autonomous resolution including
the hypothetical syllogisms as its special case, and, by cascading the resolution
steps, the refutation proving technique for sentences in propositional logic. In
this way, the model could perhaps become a part of a programmable nano-
automaton sensitive to various inputs and running a logic program. The main
drawback we see in this sense is the detection step based on the electrophoresis,
when the output signal is analogue and its level can be low (it depends on the
presence of molecules of certain lengths which might be possibly present in low
concentrations).

Another application is the resolution of the SAT problem. We can theoretically
resolve any instance of SAT by applying multiple refutation technique in parallel,
trying to derive the empty clause. If no molecule is a potential candidate to be
the empty clause, we can automatically answer that the problem is SAT. An
interesting feature is that, if there are several refutations that derive the empty
clause, all of them are “registered” in the output. By examining this we can also
find the quickest way to determine the unsatisfiability.

This application to SAT is based on the assumption that all the original and
resolvent clauses are available during the whole reaction process. In practice,
however, some of them could be consumed during previous reactions. A deeper
analysis is needed to study this problem and possibly also the completeness of
an accordingly restricted form of refutation.

We have derived that our algorithm works in the time proportional to the
number v of logical variables in the original formula. This upper bound also
provides a stop condition for the Step 2 of the algorithm when after v steps the
correct solution can be detected. In contrast, the number of copies of clauses
to be processed (i.e., the number of distinct DNA molecules produced during
the algorithm and defining its space complexity) grows exponentially with the
number of variables in the formula.



202 A. Rodríguez-Patón, I. Sainz de Murieta, and P. Sosík

There is room for improvement of the presented model. It would be highly
desirable to achieve spatial conformations that significantly differ for the cases
of the empty clause and double implication, which would eliminate the need of
electrophoresis. We also need to include some kind of signal restoration at the
output, to be able to react to the presence of output molecules in low concen-
trations. These two goals are mutually interconnected and they aim at making
the output digital and autonomously connected to further biochemical processes.
Another improvement opportunity is a deep analysis of how the empty clause
refutation candidates are formed, checking how slight modifications in the way
we build clauses and sort the literals can affect the structure of the candidate
molecules.

Acknowledgments. Research was partially supported by project BACTO-
COM funded by grant from the European Commission under the VII Framework
Programme (FET Proactive area), by Comunidad de Madrid and UPM, by Span-
ish Ministerio de Ciencia e Innovación under project TIN2009-14421 and by the
Silesian University in Opava under the project SGS/7/2011.

The article has been made in connection with project IT4Innovations Centre
of Excellence, reg. no. CZ.1.05/1.1.00/02.0070 supported by Research and De-
velopment for Innovations Operational Programme financed by Structural Funds
of Europe Union and from the means of state budget of the Czech Republic.

References

1. Deans, T.L., Cantor, C.R., Collins, J.J.: A tunable genetic switch based on
RNAi and repressor proteins for regulating gene expression in mammalian cells.
Cell 130(2), 363–372 (2007)

2. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molec-
ular computer for logical control of gene expression. Nature 429, 423–429 (2004)

3. Basu, S., Gerchman, Y., Collins, C.H., Arnold, F.H., Weiss, R.: A synthetic mul-
ticellular system for programmed pattern formation. Nature 434(7037), 1130–1134
(2005)

4. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic
circuits. Science 314(5805), 1585–1588 (2006)

5. Frezza, B.M., Cockroft, S.L., Ghadiri, M.R.: Modular multi-level circuits from im-
mobilized DNA-based logic gates. J. Am. Chem. Soc. 129(48), 14875–14879 (2007)

6. Takahashi, K., Yaegashi, S., Kameda, A., Hagiya, M.: Chain reaction systems based
on loop dissociation of DNA. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS,
vol. 3892, pp. 347–358. Springer, Heidelberg (2006)

7. Cardelli, L.: Strand Algebras for DNA Computing. In: Deaton, R., Suyama, A.
(eds.) DNA 15. LNCS, vol. 5877, pp. 12–24. Springer, Heidelberg (2009)

8. Kobayashi, S.: Horn clause computation with DNA molecules. J. Comb. Optim. 3,
277–299 (1999)

9. Uejima, H., Hagiya, M., Kobayashi, S.: Horn clause computation by self-assembly of
DNA molecules. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340,
pp. 308–320. Springer, Heidelberg (2002)

10. Wasiewicz, P., Janczak, T., Mulawka, J.J., Plucienniczak, A.: The inference based
on molecular computing. Cybernetics and Systems: An International Journal 31(3),
283–315 (2000)



Autonomous Resolution Based on DNA Strand Displacement 203

11. Ran, T., Kaplan, S., Shapiro, E.: Molecular implementation of simple logic pro-
grams. Nature Nanotechnology 4(10), 642–648 (2009)

12. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.:
Programmable and autonomous computing machine made of biomolecules. Na-
ture 414(6862), 430–434 (2001)

13. Rodríguez-Patón, A., Larrea, J.M., Sainz de Murieta, I.: Inference with DNA
molecules. In: Calude, C.S., Hagiya, M., Morita, K., Rozenberg, G., Timmis, J.
(eds.) UC 2010. LNCS, vol. 6079, page 192. Springer, Heidelberg (2010)

14. Panyutin, I.G., Hsieh, P.: The kinetics of spontaneous dna branch migration. Pro-
ceedings of the National Academy of Sciences 91(6), 2021–2025 (1994)

15. Biswas, I., Yamamoto, A., Hsieh, P.: Branch migration through DNA sequence
heterology. Journal of Molecular Biology 279(4), 795–806 (1998)

16. Chiniforooshan, E., Doty, D., Kari, L., Seki, S.: Scalable, time-responsive, digital,
energy-efficient molecular circuits using DNA strand displacement. In: Sakakibara,
Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 25–36. Springer, Heidelberg
(2011)

17. Lipton, R.J.: DNA solution of hard computational problems. Science 268(5210),
542–545 (1995)

18. Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T.,
Hagiya, M.: Molecular computation by DNA hairpin formation. Science 288(5469),
1223–1226 (2000)

19. Manca, V., Zandron, C.: A clause string DNA algorithm for SAT. In: Jonoska, N.,
Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 172–181. Springer, Heidelberg
(2002)

20. Manca, V.: DNA and membrane algorithms for SAT. Fundamenta Informati-
cae 49(1), 205–221 (2002)

21. Ogihara, M.: Breadth first search 3SAT algorithms for DNA computers (1996)
22. Wang, X., Bao, Z., Hu, J., Wang, S., Zhan, A.: Solving the SAT problem using

a DNA computing algorithm based on ligase chain reaction. Biosystems 91(1),
117–125 (2008)

23. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemi-
cal kinetics. Proceedings of the National Academy of Sciences 107(12), 5393–5398
(2010)

24. Davis, M., Putnam, H.: A computing procedure for quantification theory. J.
ACM 7(3), 201–215 (1960)

25. Stahl, F.W.: The Holliday junction on its thirtieth anniversary.. Genetics 138(2),
241–246 (1994)

26. Liu, Y., West, S.C.: Happy Hollidays: 40th anniversary of the Holliday junction.
Nature Reviews Molecular Cell Biology 5(11), 937–944 (2004)

27. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC 1971: Pro-
ceedings of the Third Annual ACM Symposium on Theory of Computing, New
York, NY, USA, pp. 151–158 (1971)

28. Esteban, J.L., Torán, J.: Space Bounds for Resolution. Information and Computa-
tion 171(1), 84–97 (2001)

29. Haken, A.: The intractability of resolution. Theoretical Computer Science 39, 297–
308 (1985)



Multiple Molecular Spiders with a Single

Localized Source—The One-Dimensional Case

(Extended Abstract)

Oleg Semenov, Mark J. Olah, and Darko Stefanovic

Department of Computer Science, University of New Mexico

Abstract. Molecular spiders are nanoscale walkers made with DNA en-
zyme legs attached to a common body. They move over a surface of DNA
substrates, cleaving them and leaving behind product DNA strands,
which they are able to revisit. Simple one-dimensional models of spi-
der motion show significant superdiffusive motion when the leg-substrate
bindings are longer-lived than the leg-product bindings. This gives the
spiders potential as a faster-than-diffusion transport mechanism. How-
ever, analysis shows that single-spider motion eventually decays into an
ordinary diffusive motion, owing to the ever increasing size of the re-
gion of cleaved products. Inspired by cooperative behavior of natural
molecular walkers, we propose a model for multiple walkers moving col-
lectively over a one-dimensional lattice. We show that when walkers are
sequentially released from the origin, the collective effect is to prevent
the leading walkers from moving too far backwards. Hence there is an
effective outward pressure on the leading walkers that keeps them mov-
ing superdiffusively for longer times, despite the growth of the product
region.

1 Introduction

Molecular walkers are nanometer-sized molecules that move over surfaces with
tracks of chemical sites by means of chemical reactions. They provide a means
to transport chemicals by non-diffusive directed motion. Molecular walkers are
ubiquitous as a transport mechanism in biological systems [12], and many of the
complex regulatory cellular processes are controlled by the actions of molecular
walkers such as kinesin and dynein [7]. It has been demonstrated experimentally
that these cellular molecular walkers work in teams, wherein their collective ac-
tion leads to behaviors not possible for a single walker [3]. In addition, theoretical
models predict that collective cooperative or competitive behavior of walkers is
fundamentally different from the behavior of individual walkers [8, 6, 5].

Inspired by the potential for walker cooperation, we propose a model describ-
ing the collective behavior of teams of molecular walkers. Our model is based
on synthetic walkers called molecular spiders [10] (Sec. 2). Molecular spiders
have two or more enzymatic legs attached to a common body. The legs are
deoxyribozymes—catalytic sequences of single-stranded DNA that can cleave

L. Cardelli and W. Shih (Eds.): DNA 17, LNCS 6937, pp. 204–216, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Multiple Molecular Spiders with a Single Localized Source 205

complementary single-stranded DNA substrates. Spiders move over a surface
coated with substrates, attaching to, cleaving, and detaching from the substrate
sites. Spiders leave behind product strands, which are the lower portions of the
cleaved surface-bound substrates. Experiments have shown that this mechanism
allows spiders to move directionally over nanoscale tracks of regularly spaced
DNA substrates [9].

Antal and Krapivsky proposed a simple abstract model that describes spider
motion in one dimension (1D) as a continuous-time Markov process [2, 1]. We
call it the AK model, and describe it in Sec. 2.1. In previous work, we showed via
computer simulation and analytical arguments that walkers in the AK model can
move superdiffusively over significant times and distances [13]. However, analysis
shows that the AK walkers always eventually end up slowing down and moving
as an ordinary diffusive process. This can be explained by observing that spiders
move superdiffusively only when there is a difference in residency times between
substrates and products. When a walker is not attached to any substrates, its
motion is unbiased and diffusive. As a walker moves, it creates an increasingly
large region of products that is difficult to escape from, and diffusing within it
eventually consumes most of the walker’s time.

In this work, we propose that the collective action of many spiders simultane-
ously moving over a 1D surface can act to ameliorate the decay of the superdif-
fusive motion of certain (namely, leading) walkers. The exclusionary properties
of spiders act to limit the effective size of the product sea, and prevent the fur-
thermost walkers from moving too far backwards. In Sec. 3 we describe a model
for multiple spiders interacting on an infinite 1D lattice. Using Kinetic Monte
Carlo methods, we show that multi-spider systems exhibit significantly superdif-
fusive motion within the time bounds studied (Sec. 4). These preliminary results
indicate that multi-spider systems exhibit behavior not seen in single-spider sys-
tems, and this behavior has the potential to be used to perform useful tasks
in nanoscale computational and communication systems by providing a faster-
than-diffusion mechanism of transport.

2 Molecular Spiders

Walkers in our model are nearly identical (except for a detail that arises only in
multi-spider interactions, cf. Sec. 3) to the walkers of the AK model, which we
summarize here (see Refs. [1, 13] for a complete treatment).

A molecular spider has a rigid, chemically inert body (such as streptavidin)
and several flexible legs made of deoxyribozymes—enzymatic single-stranded
DNA that can bind to and cleave complementary strands of a DNA substrate
at the point of a designed ribonucleic base “impurity”. When a spider is placed
on a surface on which the appropriate DNA substrate has been deposited (or
nanoassembled), the legs bind to the substrate and catalyze its cleavage, creating
two product strands. The upper portion floats away in solution and we do not
consider it further. The lower portion remains on the surface, and, because it
is complementary to the lower part of the leg, there is some residual binding of



206 O. Semenov, M.J. Olah, and D. Stefanovic

the leg to the product, typically much weaker and shorter-lived than the leg-
substrate binding. The leg kinetics are described by the five reactions in Eq. 1
relating legs (L), substrates (S), and products (P), in which we have folded the
catalysis reaction and subsequent dissociation reactions into a single kcat rate:

L + S
k+
S−−→←−−

k−
S

LS kcat−−→ L + P

L + P
k+
P−−→←−−

k−
P

LP

(1)

2.1 The Antal-Krapivsky Model

The Antal-Krapivsky model [2,1] is a high-level abstraction. It represents molec-
ular spiders as a (very uncommon kind of) random walker. Each walker has k
legs (in the following results, k = 2), whose chemical activity is independent,
but whose motion is constrained by their attachment to a common body; in the
model, any two legs must be within distance s (in the following results, s = 2).
The legs walk over sites on a regular 1D lattice, where each site is either a
substrate or a product.

Mathematically, the AK model takes the form of a continuous-time Markov
process, where the states of the system are given by the state of the lattice sites,
and the state of the walker legs. All lattice sites are initially substrates and
are only transformed to products when a leg detaches from the substrate (via
catalysis). Thus the state of the lattice sites can be defined by the set P ⊂ Z

of product sites. The state of the walker is completely defined by the set F of
attached feet locations. Thus any state can be described as the pair (P, F ).

We call F a configuration of the legs. The gait of a spider is defined by what
configurations and what transitions between configurations are allowed in the
model. In any state (P, F ) ∈ Ω, all k legs are attached. Together with the
restriction that at most one leg may be attached to a site, this implies that

|F | = k. (2)

Additionally, the legs are constrained by their attachment to a common body.
If the spider has a point body with flexible, string-like legs of length s/2, then
any two feet can be separated by at most distance s, thus

max(F )−min(F ) ≤ s. (3)

The transitions in the process correspond to individual legs unbinding and re-
binding. When a spider is in configuration F , any foot i ∈ F can unbind and
move to a nearest-neighbor site j ∈ {i + 1, i − 1} to form a new configuration
F ′ = (F \ {i}) ∪ {j}, provided the new configuration does not violate one of
the constraints of Eqs. 2 and 3. A transition i → j is called feasible if it meets
these constraints. The feasible transitions determine the gait of the spider. The



Multiple Molecular Spiders with a Single Localized Source 207

nearest-neighbor hopping combined with the mutual exclusion of legs leads to a
shuffling gait, wherein legs can slide left or right if there is a free site, but legs
can never move over each other, and a leg with both neighboring sites occupied
cannot move at all. If the legs of such a spider were distinguishable, they would
always remain in the same left-to-right ordering.

The rate at which feasible transitions take place depends on the state of the
site i. If i is a product the transition rate is 1, but if i is a substrate the tran-
sition occurs at a slower rate r < 1. This is meant to model the realistically
slower dissociation rates from substrates, corresponding to chemical kinetics
where kcat/k−

P = r < 1. The effect of substrate cleavage is also captured in
the transition rules. If for state (P, F ), where i ∈ F \ P , the process makes the
feasible transition i → j, then the leg will cleave site i before leaving, and the
new state will have P ′ = P ∪ {i}.

The relation of the AK model to the chemistry of the spiders in Eq. 1 can be
understood if one assumes the chemical rates are given as in Eq. 4:

k+
S = k+

P =∞
k−
S = 0

k−
P = 1

kcat = r < 1

(4)

The infinitely fast on-rates account for all legs always being attached; when a
leg unbinds it will instantly rebind to some neighboring site. Thus the spider is
modeled as jumping from configuration F to configuration F ′.

2.2 Superdiffusive Motion of Single AK Spiders

To characterize the motion of spiders we use the notion of superdiffusion. Su-
perdiffusive motion can be quantified by analyzing the mean squared displace-
ment (MSD) of a spider as a function of time. For diffusion in a one-dimensional
space with diffusion constant D, the mean squared displacement is given by
Eq. 5.

msd(t) = 2Dtα

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

α = 0 stationary
0 < α < 1 subdiffusive
α = 1 diffusive
1 < α < 2 superdiffusive
α = 2 ballistic or linear

(5)

We say that the spider is moving instantaneously superdiffusively at a given time
t if

α(t) =
d(log10 msd(t))

d(log10 t)
> 1. (6)

Using Kinetic Monte Carlo simulations [4] of the Markov process we can estimate
the MSD for the spider process for different parameter values by averaging over



208 O. Semenov, M.J. Olah, and D. Stefanovic

many realizations x(t) of the process X(t), where each x(t) is a function from
t ∈ [0, tmax] to the state space Ω of the walker process, and x(t) ∼ X(t).

When r < 1, each spider process goes through three different regimes of mo-
tion defined by their instantaneous value for the exponent α of msd(t). Initially
spiders are at the origin and must wait for both legs to cleave a substrate before
they start moving at all and when t < 1/r the process is essentially stationary;
we call this largely unimportant period the initial period. After the spiders take
several steps, walkers with r < 1 show a sustained period of superdiffusive mo-
tion over many decades in time. We call this the superdiffusive period, and define
it as the period during which the instantaneous estimate of α > 1.1. The cutoff
of 1.1 is somewhat arbitrary but represents a threshold where spiders are moving
significantly superdiffusively, in contrast to spiders with r = 1, which never have
α > 1. Finally, all spiders as predicted by Antal and Krapivsky will decay to an
ordinary diffusion with α ≈ 1. This is called the diffusive period and is charac-
terized by walkers mainly moving over regions of previously cleaved products,
which makes the values of r irrelevant, since all walkers move with rate 1 over
product sites.

To explain this behavior we observe that spiders with s = 2 and k = 2 always
cleave all sites they move over since the AK model does not permit legs to
change their effective ordering on the surface, and hence the walkers move with
a shuffling gait consuming all products in the region they move over. This leads
to the formation of a sharp boundary between a contiguous region of products
called the product sea, and the remainder of the unvisited sites which are still
substrates. The product sea has boundaries on either end, and only when the
spider is at one of the boundaries can it be attached to substrates and hence
affected by the parameter r.

To explain this behavior, we consider boundary and diffusive states. When
the spider is in the boundary state, it moves ballistically towards unvisited sites;
when it is in the diffusive state, its motion is ordinary diffusive. The transitions
from the boundary state to diffusive state are independent of the previous state
of the system before it entered the boundary state. However, the transitions
from the diffusive state back to the boundary state depend on the size of the
product sea that the spider has left behind, and this size increases with time.
This explains the apparent superdiffusion at short times when the spider spends
more time in the boundary state, and the decay to ordinary diffusion at long
times, as the spider spends more and more of its time in the diffusive state.

There are two options to increase the superdiffusive effect of the spider motion:
(1) decrease the effective size of the product sea, and hence the time needed to
escape from it and return to the boundary; or (2) decrease the rate at which
spiders leave the boundary. Here we focus on option (1), by means of localized
release of spiders at the origin, which effectively fills the product sea with follower
spiders, preventing the leading spiders from moving too far backwards away
from the boundary. This works because spider legs cannot occupy the same site
at the same time, and spiders walk with a shuffling gait, sliding left or right
one site at a time, so a spider cannot jump over an adjacent spider. Thus, the



Multiple Molecular Spiders with a Single Localized Source 209

presence of multiple spiders will restrict the motion of the spiders around them,
potentially reducing the effective size of the product sea as seen by a walker
at the boundary. Thus by releasing many spiders sequentially at the origin we
can make the diffusive state of the leading spiders shorter and perhaps make
their transition into the boundary state independent of the number of sites they
have already cleaved; such a system would have the potential for asymptotically
superdiffusive motion.

3 Multiple Spiders Model

Here we consider a system with multiple k-legged spiders. The surface remains
exactly the same as in the AK model. Thus the state of the system can now
be described as X = (P, F1, F2, ..., FN ) where, by analogy with the AK model,
Fi ⊂ Z is a set describing the state of the ith spider and N is the total number
of spiders released onto the surface. As new spiders are released N grows with
time. All spiders are exactly the same and so parameters k = 2 and s = 2 apply
to all spiders:

|Fi| = k, for all i. (7)

max(Fi)−min(Fi) ≤ s, for all i. (8)

To extend the chemical exclusionary properties of spider legs to multi-spider
systems, we add the restriction that any site on the surface can be occupied by
only one leg of any spider:

Fi ∩ Fj = ∅, for all i, j. (9)

With multiple spiders on a single lattice, there are situations where a particular
spider is completely blocked from movement when other spiders occupy the sites
to its immediate left and right. Thus, to simplify the Markov process description,
we introduce a slight change to the gait of the walker with respect to the AK
model. When a leg detaches from a site i it can move not only to sites i− 1 and
i+1, but also back to site i. It chooses from any site in {i−1, i, i+1} with equal
probability, provided none of the new configurations violates the constraints of
Eqs. 7, 8, and 9. Thus, even if sites i − 1 and i + 1 are occupied, the leg has
somewhere to go. This change of the gait also makes the model more realistic, as
the enzymatic leg of a real spider can always rebind to the site it just dissociated
from.

All legs of all spiders move independently. As with a single spider, the con-
straints enforce that a leg is never detached for a finite amount of time, i.e., legs
hop to neighboring sites or step back onto the previous site infinitely fast.

We start all experiments from a symmetric configuration with two spiders
placed on the surface, one left of the origin with legs at {−3,−1} and the
other right of the origin with legs at {1, 3}. The initial set of products is P =
{−2,−1, 0, 1, 2}; all other sites are substrates. The pair of sites {0, 1} is the in-
jection point for new spiders. A new spider is released whenever the injection
point is unoccupied.



210 O. Semenov, M.J. Olah, and D. Stefanovic

4 Simulation Results for Multiple Spiders

Similarly to our single-spider experiments [13] we use the Kinetic Monte Carlo
method [4] to numerically sample traces of the multi-spider Markov process. We
vary the chemical-kinetics rate r to see how it influences the motion. In case
when r = 1 there is no effective difference between substrates and products.

4.1 Comparison of a Single AK Model Spider with a Single Spider
of the Current Model

Recall from Sec. 3 that the action of individual spiders in the multi-spider model
was modified to incorporate the possibility of a leg rebinding to the site it just
detached from. This is a realistic modification of the model for single spiders, but
as it represents a formal model change, we investigate its effects on the motion of
single walkers. We compare the results of the AK model with the modified model
permitting rebinding through KMC simulations, using k = 2, s = 2, and r = 0.1,
and show the msd(t) estimates in Fig. 1. These results show substantially the
same qualitative behavior. However, spiders with rebinding move at a constant-
factor slower pace than the original model, as the transitions which lead to a
rebinding do not move the walker in any direction. This effectively slower rate
needs to be taken into account when comparing the motion of spiders in the
multi-spider model to those in the AK model, but it does not fundamentally
change anything about the characteristics of spider motion.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Time

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

m
s
d
(t

)

r = 0.1

r = 0.1 rebind

time squared

diffusion

Fig. 1. Comparison of msd(t) for a single spider moving in the AK model and with the
modified model permitting rebinding of a leg to its previous site



Multiple Molecular Spiders with a Single Localized Source 211

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Time

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

m
s
d
(t

)
r=1.0

r=0.5

r=0.1

r=0.05

r=0.01

r=0.005

time squared

diffusion

Fig. 2. Mean squared displacement for the leading spider in multi-spider simulations.
Reference lines are shown for ordinary diffusion and ballistic motion.

4.2 Multiple Spiders Simulations

For each value of r ∈ {1, 0.5, 0.1, 0.05, 0.01, 0.005} we used our KMC algorithm
to simulate 1200 independent realizations of the multi-spider model described
in Sec. 3. We used these realizations to sample the number of spiders and the
position of each of the spiders at regularly spaced time intervals. We define the
position of a spider to be the mean of its attached leg positions (i.e.,

∑
Fk/2

for spider k). To ensure that each simulation trace provides a sample for each
measured time, we run each simulation until time is at least tmax = 106. We
choose the measurement time points to be equispaced for the independent axis
of the plots reported, so that for linear plots the successive time intervals have a
constant difference, and for log axes, the successive time intervals have a constant
ratio.

Observed Superdiffusion of the Leading Spiders. As discussed in Sec. 2.2,
it is known that single spiders show transient superdiffusive behavior [13]. Single
spiders with r < 1 move faster than ordinary diffusion for a significant time
and distance, but eventually slow down and move as an ordinary diffusion. The
leading spiders in the multi-spider model also initially move superdiffusively, but
they reach higher values of α and thus they are closer to ballistic motion than
single spiders at peak times; furthermore, the decay towards ordinary diffusion
appears to be incomplete. Fig. 2 shows the estimate of msd(t) for the leading
spider on a log-log plot for each measured r parameter value. In this plot, straight



212 O. Semenov, M.J. Olah, and D. Stefanovic

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Time

0.2

0.4

0.6

0.8

1.0

1.1

1.2

1.4

1.6

1.8

2.0

(t
)

r=1.0

r=0.5

r=0.1

r=0.05

r=0.01

r=0.005

Fig. 3. Finite difference approximation of α(t) for the leading spider in multi-spider
simulations. Horizontal lines define the threshold for ordinary diffusion at α = 1 and
our defined threshold for superdiffusion at α = 1.1.

lines correspond to power laws, that is, to Eq. 5, and the parameter α is given by
the slope. To show the instantaneous value of α, we use finite difference methods
to estimate α(t) (Eq. 6), and Fig. 3 shows the result of using the Savitzky-Golay
smoothing filter [11] on these estimates. Fig. 4 gives a comparison of α(t) for the
single spider of the AK Model and the leading spider of the multi-spiders model.

In Sec. 2.2 we explained that single spiders in the AK model have been ob-
served to have three distinct regimes of motion defined by their value of α(t).
There is an initial stationary regime before the walker starts moving, followed
by a superdiffusive regime spanning many decades in time, and finally a diffusive
regime as α(t) falls back to 1, where the walkers spend most of their time diffusing
in the product sea. In contrast, for the leading spiders in the multi-spider model,
the third regime is a gradual but incomplete shift towards diffusion. There is a
decrease in α(t) at longer times (Fig. 3), but, at least within the simulated time
bound of tmax = 106, the motion remains superdiffusive. Unlike for the single-
spider model, there are as yet no analytical results for the multi-spider model.
The true behavior at greater times thus remains a matter for speculation, but we
do notice a clearly different behavior than for single spiders within the simulated
times (Fig. 4). Also note that, as in the single-spider model, decreasing values
of r lead to increasingly superdiffusive behavior, but, unlike in the single-spider
model, even spiders with r = 1 move superdiffusively. This is not unexpected,
because even when r = 1 there is an exclusionary pressure exerted on the outer-
most spiders that prevents them from returning to the origin as would occur for



Multiple Molecular Spiders with a Single Localized Source 213

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Time

0.4

0.6

0.8

1.0

1.1

1.2

1.4

1.6

1.8

(t
)

single spider, r=0.05

leading spider of multiple spiders, r=0.05

Fig. 4. Comparison of finite difference approximation of α(t) for the leading spider in
multi-spider simulations and the single spider in simulations of the AK model

0 200000 400000 600000 800000 1000000
Time

0

100

200

300

400

500

600

700

#
 o

f 
s
p
id

e
rs

 r
e
le

a
s
e
d

r=1.0

r=0.5

r=0.1

r=0.05

r=0.01

r=0.005

Fig. 5. Number of released spiders for multi-spider simulations



214 O. Semenov, M.J. Olah, and D. Stefanovic

(a) (b)

Fig. 6. Average spider density at tmax, for r = 1 (a) and for r = 0.05 (b)

(a) (b)

Fig. 7. Average spider density plotted at several instants, for r = 1 (a) and for r = 0.05
(b)

single walkers with r = 1. However, as with the single spiders, when r < 1 we
see a much enhanced superdiffusive effect, something not possible for a walker
that does not transform sites irreversibly like the molecular spiders.

Number of Released Spiders. Spiders in the multi-spider model are released
at the origin whenever possible, so the number of spiders actually released by
time t is a random variable of interest, and estimates for its mean are shown in
Fig. 5 for each studied value of r.

We observe that the average number of spiders grows sublinearly. Thus, at-
tempts to release spiders are often unsuccessful, because of interference from
other spiders at the origin. This indicates that in one dimension spiders move
away from the origin relatively slowly.

Density of Spiders. The density of spiders gives some insight into why the
leading spiders move superdiffusively, even for r = 1, and why the number of
spiders added does not grow linearly. We measure the density of spiders as the



Multiple Molecular Spiders with a Single Localized Source 215

average probability for each site to be occupied by a spider at a particular time.
Shown in Fig. 6 is the spider density at time tmax. Clearly, spiders with r = 0.05
have spread out slightly farther, but both r-values show a much higher density
of spiders arround the origin where new spiders are released. The evolution of
this density through time can be seen in Fig. 7.

5 Discussion

Our analysis of the multi-spider model shows significant differences from the pre-
vious work on single spiders. The most fundamental difference is that (at least
within the times simulated) walkers for all values of r move superdiffusively
with α(tmax) > 1.1. However, as with the single-spider model, decreasing values
of r lead to increasingly superdiffusive behavior. This is an essential property of
molecular spiders that distinguishes them from many other types of molecular
walkers. The spider superdiffusion depends on there being a residency-time bias
between visited and unvisited sites (i.e., r < 1) and it also depends on the walk-
ers having more than one leg. Thus, even a single spider shows some cooperative
behavior between the two legs to enable an emergent superdiffusive effect. How-
ever, the interactions in the multi-spider model show an even more significant
effect, and this can be attributed to the cooperative collective behavior of the
swarm of walkers. The furthest walkers from the origin do all of the cleaving of
sites, but the internal walkers act to exert a “pressure” on the outermost walk-
ers, preventing them from moving backwards too far, and keeping their behavior
superdiffusive.

There are many possibilities for adding stronger interactions between spiders
that will potentially lead to even more pronounced emergent behaviors. How-
ever, the present work shows that even simple interactions, defined solely by an
exclusion property that prevents multiple walkers from binding to the same site
at once, can lead to motion that is faster than diffusion, at least over the finite
times simulated. These results can be used to design collective spider transport
systems that can perform useful tasks at the nanoscale.

Acknowledgments. This material is based upon work supported by the Na-
tional Science Foundation under grant 0829896.

References

1. Antal, T., Krapivsky, P.L.: Molecular spiders with memory. Physical Review
E 76(2), 021121 (2007)

2. Antal, T., Krapivsky, P.L., Mallick, K.: Molecular spiders in one dimension. Journal
of Statistical Mechanics: Theory and Experiment 2007(08), P08027 (2007)

3. Badoual, M., Julicher, F., Prost, J.: Bidirectional cooperative motion of molecular
motors. PNAS (10), 6696–6701 (2002)

4. Bortz, A.B., Kalos, M.H., Lebowitz, J.L.: A new algorithm for Monte Carlo simu-
lation of Ising spin systems. Journal of Computational Physics 17(1), 10–18 (1975)



216 O. Semenov, M.J. Olah, and D. Stefanovic

5. Campas, O., Kafri, Y., Zeldovich, K.B., Casademunt, J., Joanny, J.F.: Collec-
tive dynamics of interacting molecular motors. Physical Review Letters 97, 038101
(2006)

6. Frey, E., Parmeggiani, A., Franosch, T.: Collective phenomena in intracellular pro-
cesses. Genome Informatics 15(1), 46–55 (2004)

7. Hirokawa, N., Takemura, R.: Molecular motors and mechanisms of directional
transport in neurons. Nature Reviews: Neuroscience (6), 201–214 (2005)

8. Julicher, F., Ajdari, A., Prost, J.: Modeling molecular motors. Reviews of Modern
Physics 69(4), 1269–1281 (1997)

9. Lund, K., Manzo, A.J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J.,
Taylor, S., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.: Molecular
robots guided by prescriptive landscapes. Nature 465, 206–210 (2010)

10. Pei, R., Taylor, S.K., Stefanovic, D., Rudchenko, S., Mitchell, T.E., Stojanovic,
M.N.: Behavior of polycatalytic assemblies in a substrate-displaying matrix. Jour-
nal of the American Chemical Society (128), 12693–12699 (2006)

11. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes
in C++. Cambridge University Press, New York (2002)

12. Schliwa, M., Woehlke, G.: Molecular motors. Nature (422), 759–765 (2003)
13. Semenov, O., Olah, M.J., Stefanovic, D.: Mechanism of diffusive transport in molec-

ular spider models. Phys. Rev. E 83(2), 021117 (2011)



Author Index

Arnold, Mark G. 34

Brijder, Robert 49

Chandran, Harish 64
Condon, Anne 84
Czeizler, Eugen 145

Danos, Vincent 1
Demaine, Erik D. 100

Eisenstat, Sarah 100

Gillis, Joris J.M. 49
Gopalkrishnan, Nikhil 64

Hu, Alan 84

Ishaque, Mashhood 100

Koeppl, Heinz 1
Konstantinidis, Stavros 115
Krishnan, Yamuna 22

Lakin, Matthew R. 130
Lehman, Niles 32
Lempiäinen, Tuomo 145
Lutz, Jack H. 21

Maňuch, Ján 84
Mellor, Jessica 32
Modi, Souvik 22

Olah, Mark J. 160, 204
Orponen, Pekka 145

Patitz, Matthew J. 175
Phillips, Andrew 64, 130

Reif, John 64
Rodŕıguez-Patón, Alfonso 190

Sainz de Murieta, Iñaki 190
Santean, Nicolae 115
Schweller, Robert T. 175
Semenov, Oleg 204
Sośık, Petr 190
Stefanovic, Darko 160, 204
Summers, Scott M. 175
Surana, Sunaina 22

Thachuk, Chris 84

Vaidya, Nilesh 32
Van den Bussche, Jan 49

Wilson-Kanamori, John 1
Winslow, Andrew 100

Yan, Hao 33


	Cover
	Lecture Notes in Computer Science 6937
	DNA Computing andMolecular Programming
	ISBN 9783642236372
	Preface
	Organization
	Table of Contents
	Invited Talks
	Cooperative Assembly Systems
	The Cooperative Assembly Model
	Equilibrium
	Energy, Entropy
	Cooperativity
	Bond Displacement
	A Rough Estimate of B(x) given A(x)

	Simulations
	Deterministic Equilibrium for A(x)
	Fragmentation
	Additional Assumption 
	Deterministic Steady State

	Criticality
	References
	Distinguishing Sites - Compilation to Kappa
	The Numerical Model
	Agents, Parameters and Initial State
	Rules
	Observables


	The Computer Science of Molecular Programming
	An Autonomous DNA Nanodevice Captures pH Maps of Living Cells in Culture and $in Vivo$
	Introduction
	Materials and Methods
	Sample Preparation
	$In cellulo$ Studies
	$In vivo$ Studies

	Results
	Design of the I-Switch
	I-Switch and Endocytosis in $Drosophila$ Hemocytes
	I-Switch and Endocytosis in $Caenorhabditis elegans$ Coelomocytes

	Discussion
	References

	Cooperation in an All-RNA Network
	References

	Designer DNA Architectures for Bionanotechnology

	Contributed Papers
	An Improved DNA-Sticker Addition Algorithm and Its Application to Logarithmic Arithmetic
	Introduction
	Prior Algorithms
	Novel Algorithm
	Example
	Adding Constants
	Logarithmic Number System
	Conclusions
	References

	Graph-Theoretic Formalization of Hybridization in DNA Sticker Complexes
	Introduction
	Related Work
	The Sticker-Complex Data Model
	Hybridization
	Deciding Termination
	Complexity Issues
	Conclusion
	References

	Localized Hybridization Circuits
	Introduction
	Local versus Global MC
	Motivation for Local MC
	Our Contribution and Paper Organization
	Prior Work

	Design of DNA Hybridization Circuits on Addressable DNA Substrates
	Design of Logical Gates
	Compiling Boolean Circuits into DNA Hybridization Circuits
	Assembly of DNA Hybridization Circuits on Addressable DNA Nanostructures
	Reusing Sequences in Spatially Separated Circuits
	Functional Units and Architectures

	Modeling and Simulations of Tethered Systems
	A Biophysical Model of Tethered Hybridization
	Simulations of Tethered Hybridization Circuits using Visual DSD

	Discussion
	Refined Modeling and Simulations of Tethered Systems
	Optimizations
	Synchronous Computation and Nanomanufacture
	Possible Errors and Techniques to Mitigate Them

	Conclusions
	References

	Less Haste, LessWaste: On Recycling and Its Limits in Strand Displacement Systems
	Introduction
	On the Potential for Strand Recycling
	On the Limits of Strand Recycling
	Related Work

	GRAY: A Binary Reflecting Gray Code Counter
	Chemical Reaction System for the GRAY Counter
	Strand Displacement Implementation of the GRAY Counter
	Correctness
	Waste and Haste Analysis of the GRAY Counter
	A Fixed Order Implementation of the GRAY Counter
	The QSW Counter

	Limits on Strand Recycling for Multiple-Copy Systems
	Conclusions
	References

	One-Dimensional Staged Self-assembly
	Introduction
	Context-Free Grammars
	Staged Self-assembly
	Equivalence between RCFGs and SSASs
	Converting RCFGs to SSASs
	Converting SSASs to RCFGs
	Approximation Equivalence

	Separation Between SASs and RCFGs
	A Set of Strings Sk
	A SAS Upper Bound for Sk
	An RCFG Lower Bound for Sk
	Asymptotic Separation of SASs and RCFGs for Sk
	Upper Bounds for Separation of SASs and RCFGs

	References

	Computing Maximal Kleene Closures That Are Embeddable in a Given Constrained DNA Language
	Introduction
	Basic Notation and Background
	Words, Languages, Codes
	Automata, Graphs, Cycles
	The Subword Closure S and the DFA Trie(S)

	Characterizing Maximal D's with D*S
	Connection with a Previous Method
	Algorithmic Considerations for Maximal D's with D*S
	Algorithm ASP1(T,Q,X) for (SP1), and the 2D Array BQ
	Algorithm ASP2(T,Q,Z,Y) for (SP2)
	Algorithm ASP3(T,Q,X,Y) for (SP3)
	Algorithm for Problem (P1)
	Algorithm for Problem (P2)

	Concluding Remarks
	References

	Modelling, Simulating and Verifying Turing-Powerful Strand Displacement Systems
	Introduction
	Polymers in DSD
	Stochastic Simulation of Polymerising Systems
	Modelling Stack Machines in DSD
	A Variant Stack Encoding
	Implementing a Stack Machine in DNA

	DSD Stack Machine Example: Ripple Carry Adder
	Stochastic Simulation
	Model Checking

	Related Work
	Discussion
	References

	Synthesizing Small and Reliable Tile Sets for Patterned DNA Self-assembly
	Introduction
	The PATS Problem and the PS-BB Algorithm
	The Abstract Tile Assembly Model RoWi00,Winf98b
	The PATS Problem
	The PS-BB Algorithm

	A New Algorithm for Small Tile Sets
	Reliability of Tile Sets
	Conclusion
	References

	Multivalent Random Walkers —A Model for Deoxyribozyme Walkers
	Introduction
	The Multivalent Random Walker Model
	The State Space of the Walker and the Environment
	State Transitions
	The Equilibrium Body Distribution
	Leg-Site Interactions
	Effect of Forces on Walkers

	Simulation
	Monte Carlo Simulation
	The Kinetic Monte Carlo Algorithm
	Metropolis-Hastings Distributions

	Preliminary Results
	Mechanism of Superdiffusive Motion
	Discussion
	References

	Exact Shapes and Turing Universality at Temperature 1 with a Single Negative Glue
	Introduction
	Preliminaries
	The Abstract Tile Assembly Model
	Restricted Glue and Zig-Zag Tile Assembly Systems and Path Simulation

	Exact Shapes
	Turing Universality
	References

	Autonomous Resolution Based on DNA Strand Displacement
	Introduction
	Principles of the Model
	Autonomous Resolution Using DNA
	Boolean Satisfiability Problem (SAT)
	Conclusions and Future Works
	References

	Multiple Molecular Spiders with a Single Localized Source—The One-Dimensional Case
	Introduction
	Molecular Spiders
	The Antal-Krapivsky Model
	Superdiffusive Motion of Single AK Spiders

	Multiple Spiders Model
	Simulation Results for Multiple Spiders
	Comparison of a Single AK Model Spider with a Single Spider of the Current Model
	Multiple Spiders Simulations

	Discussion
	References


	Author Index

