

Lewis
iPhone and iPad Apps for Absolute Beginners

Companion
eBook
Available

Trim: 7.5 x 9.25 spine = 0.75" 336 page count

Learn how to build Java-based BlackBerry
applications from scratch

Get started building your very own
iPhone and iPad apps

iPhone and iPad Apps for
Absolute Beginners

Dr. Rory Lewis
Foreword by Ben Easton	 COMPANION	eBOOK	 SEE	LAST	PAGE	FOR	DETAILS	ON	$10	eBOOK	VERSION

US $29.99

Shelve in
Mobile Computing

User level:
Beginnerwww.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

this print for content only—size & color not accurate

 CYAN
 MAGENTA

 YELLOW
 BLACK
 PANTONE 123 C

 SPOT Gloss

ISBN 978-1-4302-2700-7

9 781430 227007

52999

Apple’s iPhone and iPad are incredibly popular and desirable devices, and
part of the reason for their popularity is the wonderful assortment of apps

available for Apple’s iTunes App Store. So how do you go about creating your
own apps for the App Store? If you’ve ever dreamed of the perfect iPhone or
iPad app but never thought you could write your own, then open this book
and get started! iPhone and iPad Apps for Absolute Beginners will teach you to:

•	 set	up	your	computer	for	iPhone	and	iPad	application	development

•	 make	small	changes	to	existing	apps	before	creating	your	own	
custom	apps

•	 give	your	applications	style	–	making	them	enjoyable	to	use	and	
easy	to	navigate

•	 take	advantage	of	numerous	Apple	innovations,	such	as	the	multi-
touch	screen	and	accelerometer

•	 use	shortcuts	and	cheat	sheets	to	create	powerful	apps	the	easy	way

With reasonable commitment and computer savvy, anybody – from the absolute
beginner on up – can create simple applications for the iPhone and iPad, and this
book will show you how. Dr. Rory Lewis walks you through the steps required
to getting your first applications up and running. His style of presentation cuts
through the fog of jargon and misinformation that surrounds iPhone/iPad appli-
cation development, and he provides simple, step-by-step instructions, comple-
mented by a plentiful array of detailed screenshots and illustrations, practical ex-
amples, and accompanying online videos that enable you to follow along.

The iPhone is the hottest gadget of this generation, and with the release of
the iPad, Apple has done it again! This larger and more powerful multi-touch,
multi-task wonder device advances the innovative design and functionality of
the iPhone, putting users more naturally and vividly in the driver seat of their
own creative processes. This book is the guide to the fundamentals of iPhone
and iPad application development in a language anyone can understand, es-
pecially dreamers.

RE
LA

TE
D

	T
IT

LE
S

 SPOT Mate

 SPOT Gloss

 SPOT Mate

 SPOT Gloss

 SPOT Mate SPOT Matte

 i

iPhone and iPad Apps
for Absolute Beginners

■ ■ ■

Dr. Rory Lewis

ii

iPhone and iPad Apps for Absolute Beginners

Copyright © 2010 by Dr. Rory Lewis

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-2700-7

ISBN-13 (electronic): 978-1-4302-2701-4

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

President and Publisher: Paul Manning
Lead Editor: Ben Renow-Clark
Technical Reviewer: Kristian Besley
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan
Parkes, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editors: Fran Parnell and Debra Kelly
Copy Editor: Jim Compton
Compositor: MacPS, LLC
Indexer: Potomac Indexing, LLC
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-
mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For
more information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty.
Although every precaution has been taken in the preparation of this work, neither the
author(s) nor Apress shall have any liability to any person or entity with respect to any
loss or damage caused or alleged to be caused directly or indirectly by the information
contained in this work.

The source code for this book is available to readers at www.apress.com.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

 iii

To Adrian and Eunice Lewis: Love you, Granny, and I miss you so much, Pops.

—Dr. Rory Lewis

iv

Contents at a Glance

■Contents at a Glance... iv

■Contents .. v

■Foreword: About the Author ... ix

■About the Contributing Authors... xii

■About the Technical Reviewer.. xiii

■Acknowledgments...xiv

■Preface ...xv

■Chapter 1: Before We Get Started.. 1

■Chapter 2: Blast-Off!.. 17

■Chapter 3: What’s Next? .. 53

■Chapter 4: An Introduction to the Code ... 71

■Chapter 5: Buttons & Labels with Multiple Graphics..................................... 93

■Chapter 6: Switch View with Multiple Graphics .. 125

■Chapter 7: Dragging, Rotating, and Scaling .. 209

■Chapter 8: Table Views, Navigation, and Arrays ... 235

■Chapter 9: MapKit.. 261

■Index.. 313

 v

Contents

■Contents at a Glance... iv
■Contents .. v
■Foreword: About the Author ... ix
■About the Contributing Authors... xii
■About the Technical Reviewer.. xiii
■Acknowledgments...xiv
■Preface ...xv

■Chapter 1: Before We Get Started.. 1

Necessities and Accessories ..1
What I Won’t Teach You ..6

Computer Science: A Broad and Diverse Landscape...6
What You Will Learn..9
How Does This All Work? ..10

Our Road Map: Using Xcode and Interface Builder ..12
■Chapter 2: Blast-Off!.. 17

helloWorld_002 – a Navigation-based Application...38
helloWorld_003 – Modifying a Navigation-based App..48

■Chapter 3: What’s Next? .. 53
§I: THE ROAD AHEAD...54

Introducing Chapter 4—An Introduction to the Code ..54
Introducing Chapter 5—Buttons & Labels with Multiple Graphics ..55
Introducing Chapter 6—Switch View with Multiple Graphics..56
Introducing Chapter 7—Dragging, Rotating, and Scaling ...58
Introducing Chapter 8—Table Views, Navigation, and Arrays...59
Introducing Chapter 9—MapKit ...60

§II: THE iPHONE AND THE iPAD ...60
§III: A LOOK UNDER THE HOOD..66

You’ve Said “Hello!” … but now, INDIO! ...67

■ CONTENTS

vi

■Chapter 4: An Introduction to the Code ... 71
004_helloWorld: Buttons with Graphics..72
Digging the Code...89

Nibs, Zibs, and Xibs ...89
Methods ...90

■Chapter 5: Buttons & Labels with Multiple Graphics..................................... 93
helloWorld_005: a View-Based Application ..93

Preliminaries..94
Xcode – Beginning a New Project..97
Understanding IBOutlets ..99
Pointers..101
Properties: Management & Control..103
Adding IBActions..105
Coding the Implementation File ...106
Providing for Synthesis ..108
Interface Builder: Making the Connections..110
Final Step: File’s Owner & uiImageView ..118

Digging the Code...122
IBOutlets and IBActions ...122
More About Pointers ..123

In the Chapter Ahead ..124
■Chapter 6: Switch View with Multiple Graphics .. 125

einSwitch_001—a Window-Based Application..128
Preliminaries..128
Name your Project “einSwitch01”...133
Create the 1st UIViewController Subclass ...137
Create the Ein1Controller...138
Check Header and Implementation Files ...139
Create the Ein2Controller...139
Make Sure Images Are Embedded...140
Save Einstein2View.xib..141
Drag the Images into Xcode...142
Assign your Icon in the “plist” ...143
Code the AppViewDelegate..144
Working SwitchView..146
SwitchViewController and AppDelegate ..148
SwitchViewController Header File ...152
Ready for Lazy Load—Implementation File...155
A Note about Comments and Lazy Loads ..156
Copy Contents of SwitchViewController.txt ...158
A Note about Apple’s Boilerplate Implementation File...159
Working on the .xib Files ...161
Select the File’s Owner..163

■ CONTENTS

 vii

Drag a View onto the Screen ...163
Start Working on the Einstein#View.xib Files ..167
Repeat Process for Second Image...171

einSwitch_002—a Tab-Bar Application ...176
einSwitch_003—a Window-Based Application..191
Digging … Your Brain...207

■Chapter 7: Dragging, Rotating, and Scaling .. 209
DragRotateAndScale—a View-Based Application ..210

Preliminaries..211
Starting the DragRotateAndScale App ...211
Creating a Custom UIImageView Subclass ..213
Overriding – initWithImage in TransformView.m ...215
Creating Touch-Handling Stubs ...216
Translating in touchesMoved...218
Making Use of TransformView ...220
Creating a TransformView ...220
Preparing TransformView for Rotation and Scaling...225
Helper Methods..226
Adding to “-touchesBegan”...227
Modifying -touchesMoved ...229

Digging the Code...232
■Chapter 8: Table Views, Navigation, and Arrays ... 235

How Shall We Proceed?..238
Table Views and Navigation Stacks..238
Food: Following the App Store Model ...239

Starting the Food App ..239
Adding the Category Names Array in RootViewController.h ..241
Creating the Categories Array in -viewDidLoad ..242
Setting Up Table View Data Source Methods ..243
Table View Delegation ...244
Setting up FoodTableViewController..245
Creating the Convenience Constructor for the FoodTableViewController ..248
Data Source and Delegation for the FoodTableViewController ..249
Creating the FoodViewController Class..250
The FoodViewController Header File..251
The FoodViewController Convenience Constructor..252
Setting Up FoodViewController, -viewDidLoad, and the (.xib) ...252
Icon File ...254
Testing the App..255

Digging the Code...257
Memory Management..257
Reuse Identifiers ..259

■Chapter 9: MapKit.. 261

■ CONTENTS

viii

A Little about Frameworks..262
Important Things to Know...263
Preinstalled MapKit Apps..263

Find Locations..264
Get Directions ..265
See Which Way You’re Facing ...266
See Traffic..267
Search for a Location...268

Cool and Popular MapKit Apps to Inspire You...270
MapKit_01: A View-Based Application..271

Possible Prepping for the App..271
Preliminaries...273
A New View-Based Template..273

Adding the Annotation File...274
It’s Already Working!..275
Check It Out—the iPad Simulator..276
Make It Look a Little Bit Better ..277
Dealing with the Implementation...278
Coding the myPos.h File ..284
The myPos.m File...285
The AppDelegate Files ...286
Connect MapView with MKMapView ...287

Digging My Students’ MapKit Code ..290
Parsing to MapKit from the Internet...290
MapKit Parsing...293
Three MapKit Final Projects: CS-201 iPhone Apps, Objective-C..295

Zoom Out … Seeing the Big Picture...310

■Index.. 313

 ix

Foreword: About the Author

"Rory and I met in L.A. in 1983. He reminds me of one of my favorite film
characters, Buckaroo Banzai—always going in six directions at once. If you stop
him and ask what he's doing, he'll answer comprehensively and with amazing
detail. Disciplined, colorful, and friendly, he has the uncanny ability to explain
the highly abstract in simple, organic terms. He always accomplishes what he
sets out to do, and he'll help you do the same.

Why you’ll relate to Dr. Lewis
While attending Syracuse University as a computer-engineering student, Rory scrambled to pass his
classes and make money to support his wife and two young daughters. In 1990, he landed a choice on-
campus job as a proctor in the computer labs in the LC Smith College of Engineering. Even though he
was struggling with subjects in the Electrical Engineering program, he was always there at the Help
Desk. It was a daunting experience for Rory because his job was only to help his fellow students with
computer lab equipment questions, but he invariably found his classmates asking deeper and harder
questions: “Dude, did you understand the calculus assignment? Can you help me?!”

These students assumed that, because Rory was the proctor, he
knew the answers. Afraid and full of self-doubt, he sought a way
to help them without revealing his inadequacies. Rory learned
to start with: “Let’s go back to the basics. Remember that last
week the professor presented us with an equation…?” By going
back to the fundamentals, restating and rebranding them, Rory
began to develop a technique that would, more often than not,
lead to working solutions. By the time his senior year rolled
around, there was often a line of students waiting at the Help
Desk on the nights Rory worked.

Fast-Forward 17 Years
Picture a long-haired, wacky professor walking through the campus of the University of Colorado
at Colorado Springs, dressed in a stunning contrast of old-school and drop-out. As he walks into
the Engineering Building, he is greeted by students and faculty who smile and say hearty hellos,
all the while probably shaking their heads at his tweed jacket, Grateful Dead t-shirt, khaki pants,
and flip flops. As he walks down the hall of the Computer Science Department, there’s a line of
students standing outside his office. Reminiscent of the line of students that waited for him at the
Help Desk in those early years as a proctor in the computer lab, they turn and greet him, “Good
morning, Dr. Lewis!” Many of these students at UC-Colorado Springs are not even in his class, but
they know that Dr. Lewis will see them and help them anyway.

■ FOREWORD: ABOUT THE AUTHOR

x

Past—Present—Future
Dr. Lewis holds three academic degrees. He earned a Bachelor of Science in Computer
Engineering from Syracuse University. Syracuse’s LC Smith College of Engineering is one of the
country’s top schools. It is there that Intel, AMD, and Microsoft send their top employees to study
for their PhDs.

Upon completing his BS (with emphasis on the mathematics of electronic circuitry in
microprocessors), he went across the quad to the Syracuse University School of Law. During his
first summer at law school, Fulbright & Jaworski, the nation’s most prolific law firm, recruited
Rory to work in its Austin office, where some of the attorneys specialize in high-tech intellectual-
property patent litigation. As part of his clerking experience, Lewis worked on the infamous AMD
v. Intel case; he helped assess the algorithms of the mathematics of microprocessor electrical
circuitry for the senior partners.

During his second summer in law school, Skjerven, Morrill, MacPherson, Franklin, & Friel—the
other firm sharing the work on the AMD v. Intel case—recruited Rory to work with them at their
Silicon Valley branches (San Jose and San Francisco). After immersing himself in law for several
years and receiving his JD at Syracuse, Lewis realized his passion was for the mathematics of
computers, not the legal ramifications of hardware and software. He preferred a learning and
creative environment rather than the fighting and arguing intrinsic in law.

After three years away from academia, Rory Lewis moved south to pursue his PhD in Computer
Science at the University of North Carolina at Charlotte. There, he studied under Dr. Zbigniew W.
Ras, known worldwide for his innovations in data mining algorithms and methods, distributed
data mining, ontologies, and multimedia databases. While studying for his PhD, Lewis taught
computer science courses to computer engineering undergraduates, as well as e-commerce and
programming courses to MBA students.

Upon receiving his PhD in Computer Science, Rory accepted a tenure-track position in Computer
Science at the University of Colorado at Colorado Springs, where his research is in the
computational mathematics of neurosciences. Most recently, he co-wrote a grant proposal on the
mathematical analysis of the genesis of epilepsy with respect to the hypothalamus. However,
with the advent of Apple’s revolutionary iPhone and its uniquely flexible platform—and market—
for mini-applications, games, and personal computing tools, he grew excited and began
experimenting and programming for his own pleasure. Once his own fluency was established,
Lewis figured he could teach a class on iPhone apps that would include non-engineers. With his
insider knowledge as an iPhone beta tester, he began to integrate the parameters of the proposed
iPad platform into his lesson plans—even before the official release in April 2010.

The class was a resounding success and the feedback was overwhelmingly positive, from students
and colleagues alike. When approached about the prospect of converting his course into a book
to be published by Apress, Dr. Lewis jumped at the opportunity. He happily accepted an offer to
convert his course outlines, class notes, and videos into the book you are now holding in your
hands.

Why Write This Book?
The reasons Dr. Lewis wrote this book are the same reasons he originally decided to create a class
for both engineering and non-engineering majors: the challenge and the fun! According to Lewis,
the iPhone and iPad are “...some of the coolest, most powerful, and most technologically advanced
tools ever made—period!”

He is fascinated by the fact that, just under the appealing touch screen of high-resolution images
and fun little icons, the iPhone and iPad are programmed in Objective-C, an incredibly difficult
and advanced language. More and more, Lewis was approached by students and colleagues who
wanted to program apps for the iPhone and would ask his opinion on their ideas. It seemed that,

■ FOREWORD: ABOUT THE AUTHOR

 xi

with every new update of the iPhone, not to mention the advent of the expanded interface of the
iPad, the floodgates of interest in programming apps were thrown wider and wider. Wonderful
and innovative ideas just needed the proper channel to flow into the appropriate format and then
out to the world.

Generally speaking, however, the people who write books about Objective-C write for people who
know Java, C#, or C++ at an advanced level. So, because there seemed to be no help for the
average person who, nevertheless, has a great idea for an iPhone/iPad app, Dr. Lewis decided to
launch such a class. He realized it would be wise to use his own notes for the first half of the
course, and then to explore the best existing resources he could find.

As he forged ahead with this plan, Lewis was most impressed with Beginning iPhone 3
Development: Exploring the iPhone SDK. This best-selling instructional book from Apress was
written by Dave Mark and Jeff Lamarche. Lewis concluded that their book would provide an
excellent, high-level target for his lessons...a “stepping stones” approach to comprehensive and
fluent programming for all Apple’s multi-touch devices.

After Dr. Lewis’s course had been successfully presented, and during a subsequent conversation
with a representative from Apress, Lewis happened to mention that he’d only started using that
book about half-way through the semester, as he had to bring his non-engineering students up to
speed first. The editor suggested converting his notes and outlines into a primer—an
introductory book tuned to the less-technical programming crowd. At that point, it was only a
matter of time and details—like organizing and revising Dr. Lewis’s popular instructional videos
to make them available to other non-engineers excited to program their own iPhone and/or iPad
apps.

So, that’s the story of how a wacky professor came to write this book. We hope you are inspired to
take this home and begin. Arm yourself with this knowledge and begin now to change your life!

Ben Easton

Author, Teacher, Editor

■ FOREWORD: ABOUT THE AUTHOR

xii

About the Contributing
Authors

Ben Easton is a graduate of Washington & Lee University and has
a B.A. in Philosophy. His eclectic background includes music,
banking, sailing, hang gliding, and retail. Most of his work has
involved education in one form or another. Ben taught school for
17 years, mostly middle-school mathematics. More recently, his
experience as a software trainer and implementer reawakened his
long-time affinity for technical subjects. As a freelance writer, he
has written several science fiction stories and screenplays, as well
as feature articles for magazines and newsletters. Ben resides in
Austin, Texas, and is currently working on his first novel.

Kyle Roucis is a student at the University of Colorado at Colorado
Springs pursuing degrees in Computer Science and Game Design
and Development. Kyle was Dr. Lewis’ teaching assistant for CS
201, which was the class that tested all the apps and tutorial
methodologies presented in this book. Kyle graded many students’
attempts to write code from the lessons in this book and
contributed wonderful suggestions as to how Dr. Lewis should
change the way he presented certain topics. Kyle has been
developing applications for the iPhone and iPod Touch since the
SDK was first released in June of 2007. Most of his work has been
iPhone contracting work as well as game and entertainment app

development. Kyle lives in Colorado Springs and hopes to create his own game studio with an
emphasis on iPhone, iPad and Mac game programming.

■ FOREWORD: ABOUT THE AUTHOR

 xiii

About the Technical
Reviewer

Kristian Besley is a web developer and programmer. He currently works in education and
specializes in games, interactivity, and dynamic content using mainly Flash, PHP, and .NET. He
also lectures on interactive media.

Kristian has worked as a freelance producer for numerous clients including the BBC, JISC, Welsh
Assembly Government, Pearson Education, and BBC Cymru.

He has written a number of books for Friends of ED, such as the Foundation Flash series, Flash
MX Video, Flash ActionScript for Flash 8, and Learn Programming with Flash MX. He was also a
proud contributor to the amazing Flash Math Creativity books and has written for Computer Arts
magazine.

Kristian currently resides with his family in Swansea, Wales, and is a proud fluent Welsh speaker.

■ FOREWORD: ABOUT THE AUTHOR

xiv

Acknowledgments

When I arrived in America in 1981 at the age of 20, I had no experience, money, or the knowledge
to even use an American payphone. Since then it’s been a wonderful road leading to this book
and my life as an Assistant Professor at two University of Colorado campuses. I am such a lucky
man to have met so many wonderful people.

First, to my wife, Kera, who moved mountains to help with graphics, meals, dictations, keeping
me working, and sustaining a nominal level of sanity in our house. Thank you, Kera.

To my mother, Adeline, who was always there to encourage me, even in the darkest of times
when I almost dropped out of Electrical Engineering. To my sister, Vivi, who keeps me grounded,
and my late brother Murray, a constant reminder of how precious life is. To Keith and Nettie
Lewis who helped me figure out those American payphones. To Ben Easton, Brian Bucci, and
Dennis Donahue, all of whom invited me into their families when I had nobody.

A special thanks to Dr. Zbigniew Ras, my PhD advisor, who became like a father to me, and to Dr.
Terry Boult, my mentor and partner in the Bachelor of Innovation program at UCCS.

Last but not least, to Clay Andres at Apress—he walked me through this process and risked his
reputation by suggesting to a bunch of really intelligent people that I could author such a book as
this.

Many thanks to you all.

■ FOREWORD: ABOUT THE AUTHOR

 xv

Preface

What This Book Will Do For You
Let me get this straight: you want to learn how to program for the iPhone or the iPad, and you
consider yourself to be pretty intelligent—but whenever you read computer code or highly
technical instructions, your brain seems to shut down. Do your eyes glaze over when reading gnarly
instructions? Does a little voice in your head chide you, “How about that! Your brain shut down six
lines ago, but you’re still scanning the page—pretending you’re not as dense as you feel. Great!”

See if you can relate to this…you’re having an issue with something pretty technical and you
decide to Google it and troubleshoot the problem. You open the top hit—and somebody else has
asked the exact same question! You become excited as the page loads, but, alas, it’s only a bulletin
board (a chat site for all those geeks who yap at one another in unintelligible code). You see your
question followed by…but it’s too late! Your brain has already shut down, and you feel the
tension and frustration as knots in your belly.

Sound familiar?

Yes? Then this book’s for you! My guess is that you’re probably standing in a bookstore or in the
airport, checking out a magazine stand for something that might excite. Because you’re reading
this in some such upscale place, you can probably afford an iPhone, a Mac, a car, and plane
tickets. You’re probably intrigued by the burgeoning industry of handhelds and the geometric
rate at which memory and microprocessors are evolving…how quickly ideas can be turned into
startlingly new computing platforms, into powerful software applications, into helpful tools and
clever games…perhaps even into greenbacks! And now you are wondering if you can get in on the
action—using your intellect and technical savvy to serve the masses.

How do I know this about you?

Easy! Through years of teaching students to program, I know that if you’re still reading this, then
you’re both intelligent enough and sufficiently driven to step onto the playing field of
programming, especially for a device as sweet as the iPhone or as sexy as the iPad. If you identify
with and feel connected to the person I’ve described above, then I know you. We were introduced
to one another long ago.

You are an intelligent person who may have mental spasms when reading complex code—even if
you have some background in programming. And even if you do have a pretty strong background
in various programming languages, you are a person who simply wants an easy, on-point, no-
frills strategy to learn how to program the iPhone and iPad. No problem! I can guide you through
whatever psychological traffic jams you typically experience and help you navigate around any
technical obstacles, real or imagined. I’ve done this a thousand times with my students, and my
methodology will work for you, too.

■ PREFACE

xvi

The Approach I Take
I don’t try and explain everything in minute detail. Nor do I expect you to know every line of code
in your iPhone/iPad application at this stage. What I will do is show you, step by step, how to
accomplish key actions. My approach is simultaneously comprehensive and easy-going, and I
take pride in my ability to instruct students and interested learners along a wide spectrum of
knowledge and skill sets.

Essentially, I will lead you, at your own pace, to a point where you can code, upload, and perhaps
sell your first iPhone/iPad app, simple or complex. Good news: the most downloaded apps are not
complex. The most popular ones are simple, common-sense tools for life…finding your car in a
parking lot, or making better grocery lists, or tracking your fitness progress. However, when you
complete this book, you may want to graduate to other books in the Apress and Friends of ED
series. You have quite a few options here, and down the road I’ll advise you regarding the best
ways to move forward. Right now, though, you may want to read a little about me so you will feel
confident in taking me on as your immediate guide in this exciting app-venture.

May you experience great joy and prosperity as you enter this amazing and magical world.

Peace!

Rory A. Lewis, PhD, JD

news:the

1

1

 Chapter

Before We Get Started
This introductory chapter will make sure that you have all the required tools and
accessories to proceed fully and confidently. Some of you may already be solid on these
points and feel ready to jump right in. If so, you may want to jump ahead to Chapter 2
and start immediately on your first program.

It will behoove you, though, to understand why I teach certain things and skip others.
For those of you who have never done it, programming in Objective-C is quite a
challenge—even for my engineering students who know Java, C, and C#. Nevertheless,
with the appropriate preparation and mindset you will accomplish this.

So I urge you to read on. The time you will invest in this chapter will be well worth it in
peace of mind and confidence. Chapter 1 will help structure the way that your brain will
file all the rich content that is to come.

Necessities and Accessories
In order to program for the iPhone and/or iPad, and to follow along with the exercises,
tutorials, and examples presented in this book, you’ll need to pay attention to certain
minimal requirements:

 Intel-based Macintosh running Leopard (OS X … 10.5.3 or later)

 If it was bought after 2006, you’re OK.

 You don’t need the latest revved up Mac. If you haven’t bought
one yet, I suggest you get a basic, no-frills MacBook.

 If you do own an older Mac, then add some RAM. Make an
appointment at the Genius Bar at an Apple Store and ask them
to increase the RAM as much as possible.

 Become a registered developer via the iPhone/iPad Software
Development Kit (SDK).

1

CHAPTER 1: Before We Get Started 2

 If you are a student, it’s likely that your professor has already
taken care of this, and you may already be registered under your
professor’s name.

 If you are not a student, then you will need to follow these steps
to sign up.

1. Go to http://developer.apple.com/programs/iphone/, which will bring

you to a page similar to the one shown in Figure 1–1. Click the Enroll

Now button.

Figure 1–1. Click the Enroll Now button.

2. Click the Continue button as illustrated in Figure 1–2.

Figure 1–2. Click the Continue button.

http://developer.apple.com/programs/iphone

CHAPTER 1: Before We Get Started 3

3. Most people reading this book will select the “I need to create a new

account for …” option (arrow 1 in Figure 1–3). Next, click the Continue

button as illustrated by arrow 2 in Figure 1–3. (If you already have an

existing account, then you have been through this process before; go

ahead with the process beginning with the “I currently have an Apple ID ...”

option, and I’ll meet you at step 6, where we will log onto the iPhone/iPad

development page and download the SDK.)

Figure 1–3. Click the “I need to create an Apple ID …” option to proceed.

4. You are probably going to be enrolling as an individual, so click the

Individual link as illustrated in Figure 1–4. If you are enrolling as a

company, click the Company option to the right and follow the

appropriate steps; I’ll meet you at step 6.

Figure 1–4. Click the Individual option.

CHAPTER 1: Before We Get Started 4

5. From here you will enter all your information as shown in Figure 1–5 and

pay your fee of $99.00 for the Standard Program. This provides all the

tools, resources, and technical support you will need. (If you’re reading

this book, you really do not want to buy the Enterprise program at $299,

as it is for commercial in-house applications.) After paying, save your

Apple ID and Username; then receive and interact with your

confirmation email appropriately.

Figure 1–5. Enter all your information accordingly.

6. Use your Apple ID to log into the main iPhone/iPad development page.

Scroll down to the bottom of the page and download the SDK as

illustrated in Figure 1–6. Extract the necessary icons onto your dock.

Included with the Apple SDK that you’ve now downloaded is Apple’s

integrated development environment (IDE). This is a programming

platform that contains a suite of tools, sub-applications, and boilerplate

code that all enable us to do our jobs more easily. We will use Xcode,

Interface Builder, and the iPhone/iPad Simulator extensively, so I advise

you to bring these icons to your dock to save yourself tons of time

searching for them.

CHAPTER 1: Before We Get Started 5

Figure 1–6. Having logged in as a Registered Apple Developer, you can now scroll down to the bottom of the
page and download the SDK.

7. Bring Xcode to your dock. by choosing Macintosh HD ➤ Developer ➤

Applications ➤ Xcode.app and dragging it onto your dock as illustrated

in Figure 1–7. In the same way, bring Interface Builder to your dock by

choosing Macintosh HD ➤ Developer ➤ Applications ➤ Interface

Builder.app and dragging it. Finally, bring the iPhone/iPad Simulator to

your dock by choosing Macintosh HD ➤ Developer ➤ Platforms ➤

iPhone/iPad Simulator Platform and dragging it.

Figure 1–7. Xcode, Interface Builder, and the iPhone/iPad Simulator—locked and loaded, ready to roll!

CHAPTER 1: Before We Get Started 6

NOTE: Whenever I say “iPhone” or “iPad,” I am referring to any iPhone or iPad OS device. This
includes the iPod touch.

What I Won’t Teach You
With your Xcode, Interface Builder, and iPhone/iPad Simulator tools installed and ready
to access easily, you’re ready to roll. But wait! You need to know where we’re going.

First, though, let me say something about where we won’t be going—what I will not be
covering. I will not attempt to teach you how every line of code works. Instead, I will take
a subsystem approach, indicating which pieces or sections of code will serve you in
which situations.

While this book is designed to impart to you, the reader and programmer, a
comprehensive understanding and ability, we will be dealing in molecules rather than
atoms or subatomic particles. The emphasis will be on how to recognize general
attributes, behaviors, and relationships of code so that you need not get bogged down
in the symbol-by-symbol minutiae. I will get you to a place where you can choose those
areas in which you may want to specialize.

Computer Science: A Broad and Diverse Landscape
Consider this analogy: suppose that the iPhone/iPad is a car. Most of us drive cars in
the same way that we use computers. Just as I would not attempt to teach you how
every part of the car works if I were giving you driving lessons, I would not—and will
not—approach iPhone and iPad programming with fundamental computer engineering
as the first step.

Even great mechanics who work on cars every day rarely know the fundamental physics
and electronics behind the modern internal combustion engine, not to mention all the
auxiliary systems; they can drive a car, diagnose what’s wrong with it when it needs
servicing, and use their tools and machines (including computers) to repair and tune it
optimally. Similarly, clever programmers who create the apps for the iPhone and iPad
rarely know the fundamental coding and circuit board designs at the root of the Apple
platforms. But they can use these devices, they can envision a new niche in the broad
spectrum of applications needs, and they can use their tools and applications—residing
on their desktops and laptops—to design, code, and deliver them to the market.

To continue with this analogy, programming the iPhone or iPad is like playing with the
engine of your car—customizing it to do the things you want it to do. Apple has
designed a computing engine every bit as fantastic as a V8 motor. Apple has also
provided a pretty cool chassis in which we can modify and rebuild our computing
engine. There are restrictions on how we can “pimp” our iPhone/iPad cars, and, for
those of you who have never pimped a car, I will demonstrate how to maximize creative
possibilities while honoring these restrictions.

CHAPTER 1: Before We Get Started 7

I’m going to show you, without too much detail, how to swap oil filters, tires, seats, and
windows to convert it into an off-road car, a hot rod, a racing car, or a car that can get
us through the jungle. When you’ve mastered this book, you will know how to focus on
and modify the engine, the transmission, the steering, the power train, the fuel efficiency,
or the stereo system of the car.

Why Purgatory Exists In Objective-C
My Assumption: you’ve never worked on a car, and you’ve never gotten grease on your
hands, and you want to pimp one of the world’s most powerful automobiles—with a
complex V8 engine. I’m going to show you exactly how to do this, and we’re going to
have fun doing it!

First, you need to know a little about how we even came to have the souped-up car with
the V8—that is, the iPad. In 1971, Steve Jobs and Steve Wozniak met, and five years
later they formed Apple, producing one of the first commercially successful personal
computers. In 1979, Jobs visited Xerox PARC (Palo Alto Research Center), and secured
the Xerox Alto's features into their new project called the Lisa. Although the Alto was not
a commercial product, it was the first personal computer to use the desktop metaphor
and graphical user interface (GUI). The Lisa was the first Apple product with a mouse
and a GUI.

In early 1985, Jobs lost a power struggle with the Board of Directors at Apple, resigned
from the company, and founded NeXT, which eventually bought out Apple in 1997.
During his time at NeXT, Steve Jobs changed some critical features of the code on the
Macintosh (Mac) to talk in a new language, a very intense but beautiful language called
Objective-C. The power of this language was in its ability to efficiently use objects.
Rather than reprogramming code that was used in one portion of the application,
Objective-C reused these objects. Jobs’ brain was on overdrive at the time, and this
incredible code took this new language of Objective-C to new heights. His inspiration
was fused into the guts of the Mac by creating a metalanguage we call Cocoa. A
metalanguage is a language used to analyze or define another language. As I’ve
indicated, Objective-C is a very challenging beast, and you can think of Cocoa as the
linguistic taming of the beast, or at least the caging of the beast.

As an “absolute beginner” to the world of programming, you cannot be expected to be
concerned with the subtleties of coding language distinctions. I am simply giving you an
overview here so that you will have a rough historical context in which to place your own
experience. The main point I’m making here is that Objective-C and Cocoa are very
powerful tools, and both are relevant to the programming of the iPhone/iPad.

Houston, We Have a Problem
This is the essence of the challenge that intrigued me, and led to the design of my
original course. How can one teach non-engineering students, perhaps like you,
something that even the best engineering students struggle with? At the university level,

CHAPTER 1: Before We Get Started 8

we typically have students first take introductory programming classes, and then
proceed to introductory object-oriented programming, such as C# or C++.

That being said, we are going to dive head on into Objective-C! At times, I’m going to
put blindfolds onto you; at other times, I’m going to cushion the blows. There will be
times when you may need to reread pages or rewind video examples a few times— so
that you can wrap your head around a difficult concept.

How We’ll Visit Purgatory Every Now and Again
There are specific places in my courses where I know that half the class will immediately
get it, a quarter will have to sweat over it before they get it, and the remaining quarter
will struggle and give up. This third group will typically transfer out of engineering and
take an easier curriculum. I know where these places are, and I’m not going to tell you.
I’ll repeat that. I will not tell you.

Don’t worry, I won’t allow you to disturb a hornet’s nest (of Objective-C issues) and get
stung to death. Nor will I mark off those concepts that you may find difficult. I’m not
going to explain this now. Just accept it! If you just relax and follow my lead, you’ll get
through this book with flying colors.

When you do find yourself in one of those tough spots, persevere. You can always
reread the section or rewind the video examples. In this iPhone and iPad programming
adventure, it won’t serve you to skip it. There are only about three of these critical
areas in the book, and I’ve made them as easy as I can. There are also blogs and
discussion boards you can access in order to discuss problems and share your
thoughts with others.

Looking Forward … Beginning iPhone 3 Development: Exploring the
iPhone SDK
Down the line, some of you may want to continue your iPhone and iPad programming
adventure by reading Dave Mark and Jeff Lamarche’s book, Beginning iPhone 3
Development (Apress, 2009). Remember the analogy of becoming a mechanic for an
automobile with a V8 engine mounted on a basic chassis? Their book presumes that the
readers know what a carburetor is, know what a piston is, and that they can mount
racing tires and super fly rims on their friends’ pimped-up wheels.

In other words, they assume that you understand the fundamentals of object-oriented
programming: that you know what objects, loops, and variables are, and that you are
familiar with the Objective-C programming language.

On the other hand, I assume that you don’t know, for example, what a “class” is, or what
a “member” or “void” is. I imagine that you have no idea how memory management
works on an iPhone/iPad and, furthermore, that you never had an interest – until now –
in understanding an array, or an SDK.

CHAPTER 1: Before We Get Started 9

What You Will Learn
When students start a challenging class, I have found that it works wonders to have
them create something real cool, and with relative ease. At each stage of this process, I
will typically present an example that you can read, see, and digest right away. Later on,
we will return to analyze some of the early steps and go into more detail. I will explain
how we accomplished some task or action the first time without even knowing it. Then,
by comparing the first time through with subsequent modifications, you will learn how to
tweak the program a little here, a little there. This way, you’ll stay on track—motivated
and inspired to absorb the next new batch of tricks, lessons, and methods.

Creating Cool and Wacky Apps: Why I Teach This Way
You’ve heard the bit about how we best remember things: doing is better than seeing,
which is better than hearing, and so on. Well, I know that students love humor—and
guess what! We remember funny stories and lessons much better than we remember
dull and boring ones. I have found that, without exception, when students work on code
that is fun and wacky, they tend to spend much more time solving it.

The more we apply ourselves mentally toward the solution of a problem, the more
neural connections are made in our brains. The more neurons we connect, the more
we remember and—most importantly—the less apt we are to waste time on ineffective
methods.

The more time we spend on a particular topic, the more chance there is that you will
experience gut feelings about whether a particular methodology for solving a project is
on track or not. So, as we proceed, be aware that I am employing humor to burn
computer science and Objective-C concepts and methods into your brain without your
exerting any conscious effort.

It is common for my students to contact me after receiving a difficult homework
assignment. First, they’ll send me a tweet asking if they can Skype me. One particular
night, I was playing chess with a colleague when I received a tweet asking if I were
available. “Of course,” I responded. I warned my colleague, also a professor at the
University of North Carolina, that students whom he knew were about to appear on
Skype. When they buzzed in, sure enough: four of my electrical engineering students,
wide-eyed and smiling. “Hey, Dr. Lewis, we finally got it, but Dude! The last method you
assigned---.”

When we finished our conversation, and I turned off my Mac, it was 12:30 am. My
colleague asked, “Rory, I never called a professor this late in the evening—much less
after midnight! Shouldn’t they ask these questions during office hours?!” He was
probably right, but after thinking about it for a minute I replied, “I’m just happy that
they’re working on my wacky assignment!” As we set up the next chess game, he
murmured something about how I might be comfortable in the insanity ward.

The point is that I want you to read this entire book. I want you to work all the examples
and to feel elation as you complete each assignment! I have done everything I can to

CHAPTER 1: Before We Get Started 10

make this book enjoyable. If you choose to engage with the ideas contained herein, this
book will change your life!

By the way, successfully navigating these lessons will make you a certified geek.
Everybody around you will sense your growing ability and will witness your
transformation; as a result, they will seek you out to request that you write apps for
them.

Evangelizing to Your Grandmother … What You Coded Is Crucial!
It’s important that you not let complex code turn you inside-out. Just two minutes ago, a
student walked into my office—so confused that he couldn’t even tell me what it was he
didn’t know. He said something like, “My second order array worked fine in-line, but not
as a class or a method.” I said, “No, that’s too complex! Here’s an easier way of saying
it …”

I described how he had a long line of “stuff” going in one end and being spat out the
other – and it worked really well. But, when he put it in a method, he couldn’t see the
start of the long line of stuff; when he put it in a class, he couldn’t see any of the stuff!”

“Wow! I know what I did wrong, Dr. Lewis. Thank you!” Now, as I type this, he’s
explaining it to his two buddies who came in yesterday and tried to ask the same
question. Don’t worry, the confusion that drove these questions – such as the
distinctions between “classes” and “methods,” and other coding entities, will be
covered later in this book. All in good time!

If you can keep your feet on the ground and transform complex things into simpler
ideas, then you can remember them—and master them. Grasp this concept, and you
will be able to convert your far out ideas into code—and who knows where that will take
you! This is why I am so determined to impart to you the ability to convert things your
grandmother wants to be able to do into iPhone and iPad programming language.

How Does This All Work?
Before we start our first program in Chapter 2, it’s critical that you are able to step back
and know where we’ve been, where we are now, and where we will go next. Looking at
Figure 1–8, you can see a gray strip containing two icons that represent Mac OSX and
the SDK, which includes Interface Builder and Xcode. These will be explained in detail
later; 90 percent of this book deals with the items in this strip.

CHAPTER 1: Before We Get Started 11

Figure 1–8. The iPhone and iPad app programming landscape. Mac OS X 10.5.3 or later is housing the iPhone and
iPad SDK. I will teach you how to use the SDK’s Xcode and the Interface Builder to create apps. Once you create
an app, there are four ways to run it: using iPhone/iPad Simulator, with your iPhone attached to your Mac, with
your iPad attached to your Mac, or downloaded via iTunes to a third-party iPhone/iPad.

The blue band in the middle is where we are presently. To the left of this area is where
you’ve been. You have a Mac (purchased after 2006 and running Mac OS X 10.5.3 or
higher), and we’ve just walked through the process of downloading the iPhone and iPad
SDK (Figures 1–1 thru 1–6). We have also extracted Interface Builder, Xcode, and the
iPhone/iPad Simulator and positioned them onto your dock (Figure 1–7). That’s where
we are now.

In Chapter 2, we will start using Xcode and Interface Builder to turn you into a bona-fide
geek! We’re going to run all the programs we make by compiling them to one of several
possible locations, the icons for which are to the right of the central blue area. The
primary location will be the iPhone/iPad Simulator. The secondary locations will be your
local iPhone and/or your local iPad. Lastly, we could use iTunes to upload your iPhone
and/or iPad App to the App Store where people can purchase it or download it for free.
This is where we are going.

The two central objects in Figure 1–8, as you now know, are where we will spend the
vast majority of our time within this book. We’ll be using Xcode to type in code, just like
the serious geeks do. I’ll show you how to operate all its features such as file
management, compilation, debugging, and error reporting. Interface Builder is the cool
way Apple allows us to drag and drop objects onto our iPhone/iPad apps. If you want a
button, for instance, you simply drag and drop it where you want it to be located on the
virtual iPhone or iPad.

Essentially, we’ll use Xcode to manage, write, run, and debug your app—to create the
content and functionality. We’ll use Interface Builder to drag and drop items onto your
interface until it looks like the colorful and cool application you envisioned—to give it the
style, look, and feel that suits your artistic tastes.

CHAPTER 1: Before We Get Started 12

After we integrate all the interface goodies with the code we wrote in Xcode, we might
get advanced and tweak the parameters dealing with memory management and
efficiency. But that’s jumping too far ahead in our story.

Our Road Map: Using Xcode and Interface Builder
Very often authors of programming books do the same old thing. They first present a
very simple, ubiquitous “Hello World” application and then throttle the user with intense
code that loses a great many readers and students straight away. Utilizing Objective-C
(being run in Cocoa) along with the iPhone and iPad SDK, I’ve had to really rethink this
introductory process. I have identified three challenges here.

 Teaching you “Hello World” and then going into advanced
technologies and APIs would be counter-productive.

 It makes no sense to randomly choose one of the many ways to say
Hello to the world from your iPhone or iPad. They are all going to be
necessary to have in your toolkit at a later date.

 Trying to write a simple “Hello World” application in Objective-C is
more involved than the beginner is ready for, unless we break up the
process into stages or layers.

My solution to overcoming these issues is simple. I’ll show you how to say Hello to the
world from your iPhone/iPad in not one, not two, but quite a few different ways. Each
time, we’ll go a little bit deeper, and we’ll have a blast as we do so.

Each time you travel down the road into the land of Xcode, you are immediately asked
what type of vehicle you’d like to drive. A Jeep? A race car? A convertible? By focusing
on basics, I am going to show you how to “drive” in Xcode. The objective here will be to
gain competence and confidence in whatever style of vehicle we must access. So, let’s
take a look at exactly what these different vehicles have to offer. Here I would like you to
follow along with me.

Getting Ready For Your First iPhone/iPad Project
Assuming that you have already downloaded the SDK and installed Interface Builder,
Xcode, and the iPhone/iPad Simulator, open up your Mac and click the Xcode icon on
your dock. Your screen should look similar to Figure 1–9. Up pops the Welcome to
Xcode window; it includes all your iPhone and iPad resources.

CHAPTER 1: Before We Get Started 13

Figure 1–9. After clicking the Xcode icon, you will see the “Welcome to Xcode” screen. Keep the “Show at
Launch” option checked.

Look at the bottom-left corner of the pop-up window and make sure you keep the Show
at Launch option checked. There are many valuable resources here that you will find
handy. I suggest that, after you have completed Chapter 4, you take a little time and
explore these resources—give them a test drive, so to speak. This practice will open all
kinds of creative doors for you.

Without actually starting a new project, let’s walk up to the showroom floor and check
out some of the models we might be driving. To open a new project in Xcode, enter
Command + Shift + N simultaneously. This three-key shortcut, depicted in Figure 1–10
as (N), will open a window that showcases the different types of vehicles that you
can drive in the land of Xcode.

Figure 1–10 displays the six vehicle models: Navigation-based Application, Open GL ES
Application, Tab Bar Application, Utility Application, View-based Application, and
Window-based Application.

Early on, most of our travel in Xcode will be by one of the latter two styles shown.
Switching back to computer terms, View-based Application and Window-based
Application are the structures we will utilize in the basic development cycle for the
iPhone/iPad. It is here that we will access cool gadgets and components.

Don’t worry, I haven’t forgotten our goal of creating a simple “Hello World” application.
We will say Hello to the world while using a number of the six options, and you will
become familiar with each.

CHAPTER 1: Before We Get Started 14

Figure 1–10. When choosing a template for a new project, you will have a choice of six “vehicle” styles.

The Accompanying Screencasts
All figures shown in this book have been captured from my screen as I write the code—
in a screencast. For example, the helloWorld_001 example in Chapter 2 is located at
http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_Movies/002_helloWorld_
002.htm.

It is not necessary to view the aforementioned screencast, since I have included all the
instructions in Chapter 2. However, I’ve heard students say that it’s fun to retrace what
they heard in the lesson. These video examples tend to be rather condensed. If you
would like to follow along with the screencasts, please note these recommendations:

 Stop the video when I get ahead of you. Rewind it and get back on
track with me.

 After you can complete the project in full, save the screencast to
another folder. Then, go through it again with fewer stops until you can
master it … and compile it.

 For the competitive among you, perhaps a goal is to execute the code
in time with me as I go. Generally though, I want you to feel good and
comfortable with programming at a high level. It would behoove you to
practice this for all the examples in the book.

http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_Movies/002_helloWorld_

CHAPTER 1: Before We Get Started 15

The Accompanying PDFs
I also provide a PDF version of the keynote slides that I give to my students at the
University of Colorado. These PDFs—which are not required, but merely supplemental—
show all the slides from this chapter. There are also links for those of you who want to
probe deeper into subject matter that is not covered in this book.

NOTE: You can access videos and supplementary materials at the www.apress.com web site.

Pretending Not to Know: The Art of De-Obfuscation
Before we begin in earnest, I want to reiterate that I am going to show you how to
program while knowing only the essentials. As we move forward, I will explain concepts
a little deeper. However, I will only do this once we’ve gotten your head wrapped around
the easy concepts. This is a new way of teaching, and I have had great success with it.

You may think I’ve completely lost my mind, but I ask you to follow my instructions
anyway. If you have a question that I don’t appear to address, trust me that it’s not
important at the time. We will cover it down the road!

How We’ll Travel Through Each Step
This book is completely inclusive. Even though I provide video tutorials for the exercises
in this book, you don’t need any of it. You can read this book alone, without any Internet
connection, and everything you need can be found within these pages.

So, now that you’ve finished checking your system parameters, signed up as an official
Apple developer, downloaded the SDK, extracted the essential tools, and configured
your dock, it is time to advance to Chapter 2 and create some code.

Turn the page!

http://www.apress.com

CHAPTER 1: Before We Get Started 16

17

17

 Chapter

Blast-Off!
The first program we shall attempt, as mentioned in Chapter 1, will be a basic and

generic “Hello World” application. I need to clarify, though, that as regarding most things

in the Objective-C context, it will not necessarily be simple.

Our first adventure with this new set of tools will be saying “Hello” to the world from the

View-based Application template in Xcode. Later, we will say “Hello” to the world from

the Navigation-based Application template, first in a very basic way and then with some

modifications.

Besides the information I present here in this book, including various screenshots, I also

offer you screencasts, which are available at my website. In this chapter we will work

through three examples, and you can access the screencasts at these links:

http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_Movies/001_helloWorld_001.htm

http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_Movies/002_helloWorld_002.htm

http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_Movies/003_helloWorld_003.htm

1. Before opening Xcode, first close all open programs so that you will be

able to optimize your processing capabilities and focus your undivided

attention on this new material. Press Command + Tab and then

Command + Q to close everything until only the Finder remains on your

screen. Find and click the Xcode icon in your Dock to open it. You will

be presented with the Xcode “Welcome” screen discussed in Chapter 1.

See Figure 2–1.

2

http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_Movies/001_helloWorld_001.htm
http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_Movies/002_helloWorld_002.htm
http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_Movies/003_helloWorld_003.htm

CHAPTER 2: Blast-Off! 18

Figure 2–1. Click the Xcode icon in your Dock to open it. You will be presented with the “Welcome to Xcode”
frame, as discussed in Chapter 1.

2. Now, open a new project in Xcode. The two ways to accomplish this are

by using keyboard shortcuts or by clicking your mouse. I strongly

suggest that you use keyboard shortcuts. These will save you time and

make you feel like a pro. Be aware that the best way to not get work as

an iPhone and iPad App developer is to use your mouse for functions

that can be done via shortcuts. Using your keyboard, press Command +

Shift + N at the same time. These three keystrokes appear in Figure 2–2
as N. (Using your mouse to open a new project, you would choose

File ➤ New Project.) Your screen should show the New Project wizard as

depicted in Figure 2–2.

CHAPTER 2: Blast-Off! 19

Figure 2–2. Select the View-based Application template for your new project.

NOTE: My View-based Application template icon was highlighted by default; yours may not be.
Regardless, click on it, and save the new project to your desktop as helloWorld_001.

3. As soon as you save this project to your desktop, Xcode instantiates the

item helloWorld_001 as indicated by the name on the top of the window

(see Figure 2–3). If this looks a bit complicated, stay cool … don’t freak

out! This is Apple’s way of arranging all the goodies that you will

eventually use to write complex apps. For now, just follow along and try

to set aside all the questions you may be asking. As shown in Figure 2–

3, double-click to open up the Classes folder. (Don’t ask yourself what

“Classes” means yet. Just open the folder. In due time, you’ll know

plenty about classes.)

CHAPTER 2: Blast-Off! 20

Figure 2–3. Click the indicated icon to open the Classes folder.

4. As you can see in Figure 2–4, Xcode has created four files, each starting

with a prefix identical to the name of our project, helloWorld_001. We

are going to select what is called the interface file; it has the name of our

project followed by ViewController.h. Joining these together creates

the file helloWorld_001ViewController.h. At this point, don’t worry

about the .h extension. Later, I’ll explain all the gory details about what

we’re doing, and it’ll make more sense. Next step!

Figure 2–4. Open the Interface file. This is what your screen looks like before you write your two lines of code.

CHAPTER 2: Blast-Off! 21

5. In Figure 2–4, you probably noticed several lines of code in green; these

are internal comments, from one coder or programmer to another.

These comments are “invisible” to the computer and because we are

presently interested in code that talks to the computer, focus on the line

immediately following these comments:

#import <UIKit/UIKit.h>

This line of code imports something we call the UIKit framework. It

provides your application with goodies and shortcuts that make it easier

to manage your user interface. This command brings in code that is

organized into classes, which you can think of as preprogrammed

packets of sub-routines. As a result of the presence of the UIKit, you

don’t have to write or rewrite a lot of fundamental technical code, but

can instead take advantage of certain ready-to-go interface packages to

help you design your app. These classes facilitate in the presenting of

data to the user and in the responding to user input.

NOTE: When naming things in code, we will represent “User Interface” with the
initials UI.

After that line, we see:

 @interface helloWorld_001ViewController : UIViewController {

There are two things to note here. First, the @ symbol tells the innermost part of
Xcode, which transforms your code into action, that it’s got something essential
and important to announce. In fact, we call any statement beginning with @ a
“directive.” This @interface directive tells Xcode that we have interface stuff to tell
it concerning “helloWorld_001,” and that the particulars will be enclosed within
brackets {}.

But look at your screen, right after the opening bracket, {. It’s empty! We’re not
saying anything yet —right? We know what we want to do, though, and that is
to say “Hello” to the world from inside our iPhone/iPad. Now that we’ve got the
compiler’s attention with the @interface directive, we want to tell it that we first
want our Interface Builder outlet, IBOutlet, to say something … and that
something will be written on a UILabel.

NOTE: In our code, we will represent “Interface Builder” with the initials IB.

I want you to do this now by typing the following on the line below the

open bracket:

IBOutlet UILabel *label;

CHAPTER 2: Blast-Off! 22

Don’t forget the semicolon “;” at the end of the line. This symbol tells

the compiler that you’re finished talking to it for the moment. Don’t

worry about the * in front of the word “label.” We’ll get into this later.

Thus, your code should look like this – with the boldfaced line indicating

your insertion. Also, you can refer to Figure 2–5.

//
// helloWorld_001ViewController.h
// helloWorld_001
//
// Created by Rory Lewis on 6/13/09.
// Copyright __MyCompanyName__ 2009. All rights reserved.
//

#import <UIKit/UIKit.h>

@interface helloWorld_001ViewController : UIViewController {
 IBOutlet UILabel *label;
}

@end

Figure 2–5. This is a view of your file after you’ve entered the new code.

NOTE: If you want to know more of the technical details, that’s great! Go to the slide show at
http://www.rorylewis.com.

http://www.rorylewis.com

CHAPTER 2: Blast-Off! 23

6. Now that you have written your first line of code, we need to instruct the

compiler about one more thing here. Specifically, we want to have the

button on our iPhone or iPad screen use methods that Apple has

already coded for us. We want to add an IBAction, to which we will

refer as “hello.” To accomplish this, insert the following line after the

closing bracket.

- (IBAction)hello:(id)sendr;

Again, make sure that you remember to put the semicolon at the end of

the line, and don’t worry about the hyphen (minus sign). I’ll get to that

later.

Next, highlight the line exactly as shown in Figure 2–6. Using your

keyboard, enter Command + C. This useful shortcut is depicted in

Figure 2–6 as C, and it will copy the highlighted text into the clipboard,

a short-term memory cache. (You can also use your mouse to copy this

line, by choosing Edit ➤ Copy.)

This is what your file should look like now.

//
// helloWorld_001ViewController.h
// helloWorld_001
//
// Created by Rory Lewis on 6/13/09.
// Copyright __MyCompanyName__ 2009. All rights reserved.
//

#import <UIKit/UIKit.h>

@interface helloWorld_001ViewController : UIViewController {
 IBOutlet UILabel *label;
}

- (IBAction)hello:(id)sendr;

@end

CHAPTER 2: Blast-Off! 24

Figure 2–6. Copy your action code by highlighting the indicated line and using the shortcut.

7. Now that you are finished with this file, save it by using the shortcut

Command + S, highlighted in Figure 2–7 as S. This is the preferred

method of saving—rather than using your mouse.

Figure 2–7. Save your file by using the indicated shortcut.

CHAPTER 2: Blast-Off! 25

8. As you can see in Figure 2–8, we are finished working on the file named

helloWorld_001ViewController.h. Now, we want to work on a different

file, helloWorld_001ViewController.m. This file has an identical name –

except for the one letter extension!

Figure 2–8. Add to your new View-Based Application file by pasting the saved line of code (from the previous file)
into the indicated area.

Let me talk a little bit about the difference between these two files: one

with the .h suffix, the other with the .m suffix.

The ViewController manages the interactions your code has with the

display, and it manages the user’s interactions with your code. It

contains a view, but it is not a view itself. The ViewController is a class,

of which you only have a minimal understanding so far. What I want you

to get, though, is that every class consists of two parts: the header (.h)

file and the implementation (.m) file.

I want you to read this next part aloud, and I don’t care if you’re in the

bookstore! OK? “We tell the computer in a header file what types of

commands we will execute in the implementation file.”

Now, let’s say it again in context to our code: “We tell the computer in

the helloWorld_001ViewController.h file what types of commands we

will execute in the helloWorld_001ViewController.m file.”

Well, admit it – that wasn’t so bad!

CHAPTER 2: Blast-Off! 26

Because you have now handled the first half of this arrangement, let’s

move to the implementation file and execute the commands that we

have announced. To do this, we open helloWorld_001ViewController.m,

and then we scroll down past the green lines – i.e., all of the comments.

I want you to use the shortcut Command + V to paste the copied line

from the last step in our dealings with the header file:

- (IBAction)hello:(id)sendr;

Refer to Figure 2–6, if necessary. This shortcut is shown in Figure 2–7 as

V. (Of course, you can use your mouse to paste it by choosing Edit ➤

Paste, but you really should get into the habit of using keystroke

shortcuts!)

//
// helloWorld_001ViewController.m
// helloWorld_001
//
// Created by Rory Lewis on 6/13/09.
// Copyright __MyCompanyName__ 2009. All rights reserved.
//

#import "helloWorld_001ViewController.h"

@implementation helloWorld_001ViewController
- (IBAction)hello:(id)sendr;

9. As you can see in Figure 2–9, I want you to delete the semicolon at the

end of the line that you just pasted, which consisted of us declaring an

action.

Figure 2–9. Delete the semicolon as seen in my red dot from the screen flow.

CHAPTER 2: Blast-Off! 27

Now that we’re in the implementation file, we don’t want to declare an

action, we want to implement. Here is what the code looks like before

you insert the actions that do this:

//
// helloWorld_001ViewController.m
// helloWorld_001
//
// Created by Rory Lewis on 6/13/09.
// Copyright __MyCompanyName__ 2009. All rights reserved.
//

#import "helloWorld_001ViewController.h"

@implementation helloWorld_001ViewController
- (IBAction)hello:(id)sendr

10. Having deleted the semicolon after the “sendr” term, you are now ready

to insert a command to accomplish our objective. We want to link the

label you created (in step 6) to the means by which we may provide text

to the screen. Enter this code immediately after “sendr”:

{label.text = @“Hello World!”;}

Hit Return after the opening bracket, and then hit Return again after the

semicolon. Your file should now look like this:

//
// helloWorld_001ViewController.m
// helloWorld_001
//
// Created by Rory Lewis on 6/13/09.
// Copyright __MyCompanyName__ 2009. All rights reserved.
//

#import "helloWorld_001ViewController.h"

@implementation helloWorld_001ViewController
- (IBAction)hello:(id)sendr{
 label.text = @"Hello World!";
}

Refer to Figure 2–10 to see the results.

CHAPTER 2: Blast-Off! 28

Figure 2–10. Replace the semicolon with an “open” bracket, input your code, and then on the following line enter
a “close” bracket.

11. Now, using the shortcut Command + S, save the implementation file.

See Figure 2–11.

Figure 2–11. Save your implementation file.

CHAPTER 2: Blast-Off! 29

12. Now, it’s time to open Interface Builder. Rather than opening the

application and then searching for the file we need, we will just double-

click on that file to automatically launch Interface Builder. The file that

we need is in the Resources folder. Once you have opened that folder,

you will see the ViewController.xib file.

We pronounce this as the View Controller Nib File. I say this because it’s

important to know a little jargon. When a programmer says, “Open your

view controller nib file,” that means you open the Resources folder and

then open the ViewController.xib file.

The name we gave to the project will precede the text in the

ViewController.xib file. We named our project helloWorld_001, so

Interface Builder will insert that before ViewController.xib, giving the

full name of helloWorld_001ViewController.xib, as depicted in Figure

2–12. Now, click on helloWorld_001ViewController.xib to open IB.

Figure 2–12. Click on “helloWorld_001ViewController.xib” to open Interface Builder.

13. Once Interface Builder opens, it will look something like Figure 2–13.

Before I ask you to arrange your windows to resemble the placement

that I have in mine, we need to first make sure that your Library is open.

Use the shortcut L (or go to Tools, then Library) to accomplish this.

See if the “Library” window, probably located on the left side, is indeed

on your screen.

CHAPTER 2: Blast-Off! 30

Figure 2–13. Once Interface Builder opens, make sure that your Library window is open.

We want to drag a label onto what the general public calls your View

window. I will use the same name in this book, although it’s not really

accurate. If you are interested in the technically correct way of saying

this, in geekspeak, you might say: let’s drag a label onto our “Hello

World 001 View Controller nib” file. In Figure 2–13, this file is

represented by a frame (or window) that has the label “View” in its

header.

If you like, click on the markers or boundaries of the label and make it

larger by stretching it out. Then, in the Label Attributes window (to the

right), delete the default text “Label” from the top field. I’m having you

do this so that you can then enter “Hello World!”

Also note that you can center the text by selecting the Center button in

the Layout row (four rows below the Text row).

CHAPTER 2: Blast-Off! 31

14. Now, scan the other options and parameters that are available in this

window. There are many opportunities here to tweak the look of your

apps. The more attention you pay to details, the better the UI, the more

sophisticated and clever you appear, and the more likely your creations

are to be on the list of “Most Downloaded Apps!” Now, drag a button

onto your View window. You may want to expand the frame by clicking,

holding, and dragging a lower corner, as shown in Figure 2–14. We want

to create more space here to accommodate more text. We want the

user to press this button, which will produce a label that says “Hello

World!” This means that we need to communicate to the user to press

the button. So we need enough room to enter the text: “Press Me.”

Figure 2–14. Drag a button onto your View window.

15. As depicted in Figure 2–15, you now want to enter the words “Press

Me” into the Title field attribute of your Button Attributes window. We

also want to align both the button and the label with each other and

center them in context to the screen. We do this by selecting the Ruler

tab, which controls size and alignment; it is located at the upper-right

side of this window. Once it is selected, go down to the Alignment row

and select the Align Vertical Centers icon (second from the right), and

then go down one row and click the Align Horizontal Center in Container

tab at the very right. This centers both the label and the button with

each other, as well as with the interface.

CHAPTER 2: Blast-Off! 32

Figure 2–15. Enter the text “Press Me” in the title field of your Button Attributes frame.

16. Go to the helloWorld_001ViewController.xib window as depicted in

Figure 2–16, which contains three icons: File’s Owner, First Responder,

and View. Go to the File’s Owner icon and connect it to the label by

holding down the Control key (represented by ^) and clicking the File's

Owner icon. Then drag your mouse cursor to the text label in the View

window, as depicted in Figure 2–16. Notice that a “fishing line” is being

drawn from the File’s Owner icon to your Text Label. This indicates that

the connection that you desire to create is working. (If there were no

line, it would mean that you had not established the connection.) As you

near the vicinity of the Text Label, you will notice a black option box

extend from the Text Label, containing the word “Label.” Recall that,

back in step 5, we referred to code that appeared as *label. Well, now

you are seeing the mechanism to which it pointed. This is exactly where

we want to connect our File’s Owner—the Label. So drag that fishing

line right onto the word “Label” in the black drop-down box, as depicted

in Figure 2–16.

CHAPTER 2: Blast-Off! 33

Figure 2–16. Drag a connection from the “File’s Owner” icon.

17. Take a deep breath and think about what you just did. Let’s see if we

can connect some of the pieces of this puzzle. I want you to pause for a

moment, and go look at four figures—carefully, and then come back to

this passage.

First, go to Figure 2–5, and then go to Figure 2–10. Be thinking of the

word “label.” Then, jump forward slightly to Figures 2–17 and 2–18 …

still thinking of “label.” Okay? See you soon.

CHAPTER 2: Blast-Off! 34

Figure 2–17. Connect the File’s Owner to your Text Label.

Okay … finished? What did you notice?

I’m hoping that you saw signposts on the trail that are leading us to our

destination, which you just glimpsed in Figure 2–18.

Do you remember how, in Step 10, you entered {label.text = @"Hello
World!";}, and then, in Step 16, you connected the File’s Owner icon to

the Text Label? Do you recall how you changed that Text Label to say

“Hello World!”? You’re probably saying, “Okay, I kinda get that, Dr.

Lewis, but you forgot about Figure 2–5!”

You began this chain of events way back in Step 5, which gave rise to

Figure 2–5. You attached a deep connection between the Outlet and the

Label when you entered the line IBOutletUILabel *label; … and the

rest of the pieces fell into place from there. I know this probably didn’t

completely connect the dots in your head, but I’m quite satisfied if it at

least connected some of them.

So, we’re standing in the Forest of Objective-C, and you’ve seen traces

of some interesting connectivity as you reviewed your path. Now that

you’ve been debriefed, we have one more juicy detail we need to clarify

and then take care of. Here’s a hint … what about the button that says

Press Me?

CHAPTER 2: Blast-Off! 35

Figure 2–18. (left) The “Press Me” button presented on the iPhone view of the iPad Simulator; (right) the result of
pressing the button is displayed on the regular view - iPhone Simulator.

18. Just as you made a connection in step 16, from the File’s Owner icon to

your Text Label, you now need to connect your button that has the text

“Press Me” to the File’s Owner. Go to the Button icon and connect it to

the File's Owner by holding down Control on your keypad (represented

as ^ in the screenshot) and clicking on the Button icon. Now, drag your

mouse cursor to the File’s Owner, as depicted in Figure 2–19. Again,

you will see your “fishing line” being drawn from the Button icon to your

File’s Owner. This indicates that the connection is working.

CHAPTER 2: Blast-Off! 36

Figure 2–19. In Interface Builder, note the connection between the File’s Owner icon and the View window.

19. As you near the vicinity of the File’s Owner icon, you will notice a black

option box appear with the word “hello.” Do you remember, back in

Step 6, when you entered – (IBAction)hello:(id)sendr?

Well … guess who’s comin’ to dinner! Mr. Hello is saying, “Don’t you

think you should pull that fishing line toward me? Remember – it is I

who will tell that label guy out there to say Hello World!”

Therefore, you should keep on dragging that line until it connects to the

“hello” label in the black drop-down box, as shown in Figure 2–20.

Save your work: S.

Figure 2–20. In Interface Builder, open the “Events” drop-down list from the File’s Owner icon.

CHAPTER 2: Blast-Off! 37

20. The final step is compiling the code. You will do this by entering
(Command + Run), as depicted in Figure 2–21. Your computer converts

all your code to machine language, and then to ones and zeros, and

then back to a language that makes sense on your iPhone and iPad

Simulator … and, of course, your iPhone and iPad.

Figure 2–21. Return to Xcode, and use the indicated shortcut to compile your code.

After compiling is complete, test your app. Push the “Press Me” button,

and you will see your result. Figure 2–22 shows the iPad Simulator in full

(2x) view mode, before and after pushing the button.

You have just completed your first iPhone and iPad application. Congratulations!

CHAPTER 2: Blast-Off! 38

Figure 2–22. (left) Beautiful button in the iPad full screen mode; (right) Click it … Hello World!

helloWorld_002 – a Navigation-based Application
In your first program, ”helloWorld_001,” you said “Hello” to the world from the View-

based Application template in Xcode. Now, it’s time for your second example,

helloWorld_002, which will be created via the Navigation-based Application template in

Xcode.

Before we get started with the next method, you need to save helloWorld_001 in a folder

of your choice that is not on the desktop. Create a folder in your Documents folder

called My Programs, and then save the file named helloWorld_001 there by dragging it

to that folder. Now, with a fresh, clean empty desktop, close all programs. Press

Command + Tab and then Command + Q to close everything until only the Finder is left

on your screen.

Now, just as you did in the first example, launch Xcode and open a new project by using

your keyboard shortcut: N. Your screen should show the New Project wizard as

depicted in Figure 2–23. You may, however, find that your View-based Application

template was highlighted by default, because of the last example. Now, though, click on

the Navigation-based Application icon, and save the new file to your desktop as

“helloWorld_002.”

CHAPTER 2: Blast-Off! 39

Figure 2–23. Open Xcode, select the Navigation-based Application template, and then save a new project file to
your desktop.

1. Once you save this project to your desktop, Xcode instantiates a file

named helloWorld_002 with a group called Classes, just as you saw in

the first example … see Figure 2–24. In this navigation-based template,

we see that it consists of two pairs of subfiles: an AppDelegate header

and main, along with a RootViewController header and main. Then,

when you click on the RootViewController.h (header) file, you will see it

has what we call a subclass of UITableViewController, which handles all

the cool things necessary for displaying tables in an iPhone/iPad app.

Tables are actually used much more than most users probably realize.

Because we use tables for so many apps, I thought you should also

learn how to say “Hello World!” in this context. In fact, right now, we

have everything we need to call up a blank table.

CHAPTER 2: Blast-Off! 40

Figure 2–24. Open the Classes folder and click on the RootViewController.m file to examine the pre-existing
boilerplate code.

Recall that, at the end of the first example (Figure 2–22), we compiled

our code by entering . We saw how the computer converted all that

code you’d entered into a working application. Well, we’re going to do

that again, right here, without having entered a single line of code.

Within Xcode, go ahead and enter . Refer to Figure 2–25.

Figure 2–25. Within Xcode, we use the shortcut to compile and run our program—even though we haven’t
entered a single line of code!

CHAPTER 2: Blast-Off! 41

As you can see in Figure 2–26, compiling a generic bit of ready-made

code may be possible, but it lacks anything specific. The table view is

laid out – but, of course, the computer has no idea what we want it to

say or display. We must tell it!

Figure 2–26. Running the program calls up the iPhone and iPad Simulator, from which we see a perfectly formed
Table with absolutely nothing in it!

2. The iPhone/iPad Simulator has some powerful structures that have been

prepared ahead of time, and we are seeing one of the typical projections

via the Navigation-based Application template. What do you think is

causing this to happen?

The answer: the UITableViewController. This contains code that we will

eventually examine, but right now just file it under unsolved mysteries.

There is something we need to accomplish here, though. We want to

use one row of the table to say “Hello World!” Let’s do it.

3. First, quit the iPhone/iPad Simulator by entering Q. This will take you

back into Xcode to the RootViewController implementation file, which is

where you will enter your code (see Figure 2–27).

CHAPTER 2: Blast-Off! 42

Figure 2–27. By using the indicated shortcut, we exit the Simulator and go back into Xcode, so that we may
begin entering our new code.

When you first open up RootViewController.m, there are a lot of green

statements. Some of these comments refer to canned functions, which

the guys at Apple have kindly programmed, knowing that, at times,

these will come in handy for us programmers. We won’t be using any

yet, but later on we will.

One thing we will do is go to the section that has to do with the number

of rows in our table. You will make a simple change there to achieve our

objective in this exercise. Refer to Figure 2–28.

CHAPTER 2: Blast-Off! 43

Figure 2–28. The red circle highlights the place where you change the default value 0 to 1.

4. Scroll down in the RootViewController.m file until we get to the code

that determines how many rows we will have in our app’s table. In this

simple app, we only need to have one line of output, so you will have to

ask it to return not zero, which is the default number of rows, but one.

The red circle in Figure 2–28 indicates the place to make this change.

So, delete the 0, and replace it with 1.

Change this:

// Customize the number of rows in the table view.
- (NSInteger)tableView UITableView

*)tableViewnumberOfRowsInSection:(NSInteger)section {
return 0;
}

to this:

- // Customize the number of rows in the table view-
(NSInteger)tableView:(UITableView
*)tableViewnumberOfRowsInSection:(NSInteger)section {

return 1;
}

5. Now, I want you to add a little code that will change the properties of

that one row we want to manipulate. We want to say “Hello World!” in

that one row. Below the line on which you entered return 1 in the

previous step, we see a green commented section: “Customize the
appearance of table view cells.”

CHAPTER 2: Blast-Off! 44

Scroll down to where it says, “Configure the cell,” as shown in Figure 2–

29. Highlight that line and delete it.

Figure 2–29. Delete this line of default code so that you can insert the desired command.

6. Now, in that same place, I want you to type:

[cell.textLabelsetText”@"Hello World!"];

This command says we need a cell that has the Apple code required to

insert text into a label. Furthermore, we want the words “Hello World!”

to populate the cell. Here is the full code:

- // Customize the appearance of table view cells- (UITableViewCell
*)tableView:(UITableView *)tableViewcellForRowAtIndexPath:(NSIndexPath
*)indexPath {

staticNSString *CellIdentifier =”@"Ce”l";

UITableViewCell *cell = [tableViewdequeueReusableCellWithIdentifier:CellIdentifier];
if (cell == nil) {
cell = [[[UITableViewCellalloc]
initWithStyle:UITableViewCellStyleDefaultreuseIdentifier:CellIdentifier] autorelease];
 }

 [cell.textLabelsetText”@"Hello World!"];
return cell;

You will be prompted to save your work upon entering the shortcut for

compiling and running your new code (). Refer to Figure 2–30. Hit

Return.

CHAPTER 2: Blast-Off! 45

Figure 2–30. Upon entering the shortcut to compile the new code, you will be prompted to save your work.

7. Once this crucial step is complete, we will see a table that contains one

row with the desired text: “Hello World!” See Figures 2–31 to 2–34.

Great job! You have now written your second iPhone and iPad application.

Figure 2–31. Voilà … success!

CHAPTER 2: Blast-Off! 46

Figure 2–32. Our result is a simple and handsome table view with “Hello World!” on the top row, seen in iPad’s
embedded iPhone View.

CHAPTER 2: Blast-Off! 47

Figure 2–33. Click on “Hello World!” and the top row becomes active.

CHAPTER 2: Blast-Off! 48

Figure 2–34. Here we see the top row highlighted and active, as seen in iPad’s normal full screen mode.

helloWorld_003 – Modifying a Navigation-based App
In our final example for this chapter, you will repeat the steps you took for the previous

app, helloWorld_002, and make some simple modifications. Select the Navigation-

based Application template once again, and name your project helloWorld_003.

1. Scroll down in the RootViewController.m file, and, just as you did for

helloWorld_002, enter this line of code:

[cell.textLabelsetText:@"Hello World!"];

At this point, the complete RootView Controller file looks like this:

// Customize the appearance of table view cells.
- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath {

CHAPTER 2: Blast-Off! 49

 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:CellIdentifier] autorelease];
 }
 [cell.textLabel setText:@"Hello World!"];
 return cell;
}

2. Now, I want you to center the text. To accomplish this, you can either

type the following code directly, or you can copy and paste the line you

just inserted above itself … and then edit it to appear as follows:

[[cell textLabel] setTextAlignment:UITextAlignmentCenter];

The file should now appear as:

// Customize the appearance of table view cells.
- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:CellIdentifier] autorelease];
 }

 [[cell textLabel] setTextAlignment:UITextAlignmentCenter];
 [cell.textLabel setText:@"Hello World!"];
 return cell;
}

In essence, this command is calling out, “Hey, cell with text label, [cell
textLabel], listen to the directions being issued by your superior,

setTextAlignment, and obey the User Interface text alignment command

we’ve just given it.”

To our output row of text it means, “Center it up, buddy!”

3. But hold on, we’re not done yet. For this little exercise, I also want you

to make the text editable, to a degree. We’ll put up an Edit button that,

when pressed, will give the user the ability to delete our “Hello World!”

text.

How do we do this? Back in step 4 of example 2, I mentioned that there

are many functions that we programmers are, at times, not using. Well,

this is one time that we will dip into that area to make a change.

CHAPTER 2: Blast-Off! 50

I introduced the idea of comments earlier, telling you that these are in

green and that they include or introduce information or functions that are

invisible to the processor. Earlier, the comments we considered were

denoted by the double slash symbol, //. There is another style of

comments that is bound by /* at the beginning of the content and */ at

the end of the content.

Go toward the top and you will see the code saying “Uncomment the

following line to display an Edit button in the navigation bar …” It looks

like this:

/*
- (void)viewDidLoad {
 [super viewDidLoad];

 // Uncomment the following line to display an Edit button in the navigation bar for
this view controller.
 // self.navigationItem.rightBarButtonItem = self.editButtonItem;
}
*/

4. You need to delete the two comment markers: /* and */, and then delete

the line comments starting with the // so the section now appears like

this:

- (void)viewDidLoad {
 [super viewDidLoad];

Excellent! Now, let’s go through the remaining steps similar to the way

you proceeded in helloWorld_002, starting with saving your work on the

RootView Controller file. Using your shortcuts, save and compile the

code.

Congratulations! You have just finished your third iPhone/iPad app!

Figure 2–35 reveals the crisp results of your hard work.

CHAPTER 2: Blast-Off! 51

Figure 2–35. With these simple modifications, you get a nice clean table view with centered text on the top row,
along with an Edit button.

As simple as this is, consider the mechanisms that have been pre-coded to allow this

functionality, which you have unleashed by making a few basic changes to the file.

Clicking on the Edit button triggers the display of the red and white button; it also

causes the text on the original button to read “Done.” See figure 2–36.

CHAPTER 2: Blast-Off! 52

Figure 2–36. Clicking the Edit button activates the “Delete” command, represented by the red and white button.
The button now reads Done.

53

53

 Chapter

What’s Next?
Now that you’ve gotten your feet wet, programming your first three iPhone and iPad
apps, I want you to ask yourself: Where do I go from here? The answer to that question
is what this chapter is all about.

I intentionally held off on this orientation until you had a little programming under your
belt. With the taste of the code fresh in your mind, you are now poised to appreciate the
sequence and the variety of challenges ahead. Read on!

Figure 3–1. The author with iPhone and iPad Apps for Absolute Beginners displayed on both devices.

To help you get better oriented, I have divided this overview chapter into three sections.
In Section One (§I), I explain why I have chosen the road map set forth in Chapters 4
through 9, and I give you a brief description of each chapter.

3

CHAPTER 3: What’s Next? 54

In Section Two (§II), I discuss the relationship between the iPhone and the iPad (Figure
3–1), and how this may affect your approach to the upcoming material and related
exercises, perhaps giving you a new perspective on your own creative priorities and
objectives.

In Section Three (§III), we venture under the hood of the hardware, and we consider
some deeper structures implied by the code that runs these devices. It isn’t imperative
that you read either §II or §III immediately, but I suggest you at least scan §III—even if
you don’t think you’re absorbing it all. Just let your eyes flow over the text. You’ll
probably find that you benefit from a quick glance back here from time to time.

§I: THE ROAD AHEAD
I based the iPhone/iPad class that I run at the University of Colorado on the six most
common components of all iPhone/iPad apps: navigation, actions (with single and
multiple outlets), switching views, touches and gestures, tables, and maps. Here is the
schedule of how these elements are addressed.

Chapter 4: An Introduction to the Code

Buttons & Graphics

Chapter 5: Buttons & Labels with Multiple Graphics

IBOutlets & UILabels

Chapter 6: Switch View with Multiple Graphics

Three Different Approaches

Chapter 7: Dragging, Rotating & Scaling

Touches, Gestures, and Events

Chapter 8: Table Views, Navigation, and Arrays

Designing a Series of Linked Tables

Chapter 9: MapKit

Annotations, Map Views & Map Controls

Introducing Chapter 4—An Introduction to the Code
In Chapter 4, I will have you do what I have my regular students do: help me learn your
name. You are going to manipulate a picture of yourself to work with and learn about
buttons and graphics. If you don’t have a picture of yourself, you are welcome to
download the picture I use in the example (Figure 3–2). By the time you are done, we will
have moved from the “Hello World!” stage of coding to the placing of buttons that
control graphics. In this chapter, we will use buttons and graphics that interact with one
view only.

CHAPTER 3: What’s Next? 55

Our work with buttons and labels will stir up some juicy questions, and I will do my best
to address the more pressing ones. For instance, the geeky guys who developed Cocoa
Touch, the underlying code that controls how humans interact with the iPhone and the
iPad, used a concept they called the Model-View-Controller (MVC). An essential part of
this model is the code that makes up the Graphic User Interface (GUI, pronounced
“gooey”). The GUI is the way that users relate to, talk to, and communicate with the
computer. We delve into the MVC components in the third section of the present
chapter, §III: A Look Under the Hood.

Figure 3–2. Hello, I’m Dr. Lewis.

Introducing Chapter 5—Buttons & Labels with Multiple
Graphics
Buttons and graphics that interact with one view are fun, but how do we have a button
interact with more than one view? It’s really not about making a graphic program
interact with multiple views; it’s about configuring your program, whatever it is (a map, a
game, code for calculations), to efficiently and effortlessly jump between various views.
This concept is important for all your future programming, and your experience in this
chapter will serve you well for the remainder of the book.

CHAPTER 3: What’s Next? 56

Chapter 5 is not only a step up in terms of the complexity of coding, but we will also
transition to more technical language. Don’t worry, though—you’ll be OK! Everything is
laid out with discrete steps and humorous analogies. You will see that we perform a
little visual sleight of hand by taking a picture of a scene and then superimposing
another picture onto it (see Figure 3–3). This technique is used all the time in games,
and some of the related ideas will be touched on in our discussion of INDIO at the end
of this chapter.

Figure 3–3. The iPad image of the overlay of views: “Hello World, I’m back!”

Introducing Chapter 6—Switch View with Multiple
Graphics
This is the longest chapter in the book because we work through three examples that do
the same thing, but in three different ways. Chapter 6 is all about tabs and switching views
with tabs—something that is standard in nearly every iPhone and iPad app I’ve ever seen
(see Figure 3–4). In the first example, we code the graphics the long way. In the second
example, we see how the no-brainer way works so easily—yet how it also fails to educate
us or let us experience the code underlying tabs and switching views. Thus, we utilize the
third example to compose a hybrid of these two approaches; you gain the experience and
stamina of one method and the time-saving shortcuts of the other.

CHAPTER 3: What’s Next? 57

Your success in Chapter 6 will advance you from the novice stage to that of a legitimate
programmer-in-progress. By tackling some difficult coding issues, you will have earned
respect in the iPhone/iPad programming community. The good news is that you will be
ready and able for the next step, for you will have followed the path I have prepared on
the basis of my previous teaching experience.

A big part of my philosophy is that we prepare ourselves for future challenges by
mentally stretching and visualizing. This requires or involves organizing our abstractions
into pieces we can manipulate and repurpose, in whatever new context comes along.
This is a flexibility dance! So, begin now to breathe into these future exercises and
challenges, and to appreciate that they are not just about displaying random images at
the push of a button.

It’s vital that you see that each picture stands for a different part of your code, which
gives the user of your app access to a new view, a new set of options, or a new level of
the program. We use pictures at this part of the learning process because it’s easier
than code. It also makes troubleshooting far easier; if the image doesn’t do what it’s
supposed to do, you know that your “switching” code is the problem.

Be prepared to be catapulted into the programming stratosphere!

Figure 3–4. Seamlessly switching in the iPad’s full view. Not a single line of code!

CHAPTER 3: What’s Next? 58

Introducing Chapter 7—Dragging, Rotating, and Scaling
Leveraging the power of Multi-Touch on the iPhone and iPad can be pretty awesome,
and that is what we begin to learn in this chapter. Creating an image that will rotate,
scale, and move with an intuitive flick of your fingers will confirm just how powerful these
devices are. (see Figure 3–5.)

Think about it. Before the iPad or iPhone, we used a mouse and the keyboard. Now it’s
all about touching. There is an old acronym that some of you probably know:
WYSIWYG. It stands for “what you see is what you get,” when a word processing
document is printed the way you expect. Now, in the Apple world of Multi-Touch, we
see a new paradigm forming— one that reflects that touching the screen in certain ways
accomplishes some natural and logical task in an easy and intuitive manner. The
computer will say to you, as the genie said to Aladdin, “Your touch is my command!”

In Chapter 7, I will introduce you to the code that interacts with the different kinds of
touches and gestures users will employ when they run your app. If you are like my past
students, you will delight in learning the grammar that directs the images to move
according to our touches, swipes, pinches, drags, etc.

Figure 3–5. The examples work on both the iPhone and iPad.

CHAPTER 3: What’s Next? 59

Introducing Chapter 8—Table Views, Navigation, and
Arrays
Table Views and navigation are essential elements in the vast majority of apps. Ever
wonder how the App Store makes those really cool lists of apps? Ever need to keep a list
of items on hand, but you aren’t sure which application to use? Worry no more! You will
be creating a table view application capable of switching among multiple views (see Figure
3–6). Can’t find what you want on the App Store? Make it for yourself—and others!

While this all sounds warm and fuzzy, there is a problem. To get beyond the essentials
of table views and navigation, you will need to get your head wrapped around a
notorious programming beast: the array.

Due to the degree of difficulty with this programming concept, it is generally conceded
that arrays should never be taught to beginners. I was not going to include this chapter
in the book, but because so many of my students wanted to utilize tables in their final
projects, I had to rethink my strategy. I decided to teach my students, and you readers
of this book, how to work with and control arrays with very little understanding as to how
they actually work.

Therefore, I want you to consider Chapter 8 as an optional chapter. When we get there, I
will walk you through the process of deciding whether you even want to learn arrays,
and then I actually urge you to go directly to Chapter 9. Let’s cross that bridge when we
come to it.

Figure 3–6. Table views created in Chapter 8.

CHAPTER 3: What’s Next? 60

Introducing Chapter 9—MapKit
Chapter 9 is my favorite, and I predict you will find it the most enjoyable as well. By the
time you get there, you’ll know the basics well enough to start enjoying MapKit—the
code we use to interact with maps on the iPhone and iPad. We’ll find our location in the
world and realize how tiny but how very smart we are (Figure 3–7). Creating our own
annotations, map views, and map controls are just a few of the delights in store!

I will also take you on a tour of some excellent existing apps that use the mapping
functions, in the hopes of inspiring you and stirring up ideas for future creations. In that
vein, I will share some of my students’ projects that vividly demonstrate how quickly and
impressively it is possible to apply the knowledge acquired in this course to produce
apps with a decent level of sophistication.

Figure 3–7. The MapKit app we’ll build in Chapter 9.

§II: THE iPHONE AND THE iPAD
Right off the bat, let’s understand what the iPad is all about. In fact, let’s think about
what all the Apple geeks were doing after the iPad was launched. Within the first 24

CHAPTER 3: What’s Next? 61

hours of the iPad’s release, chances are many of the Mac-heads were scratching their
heads and complaining. “What’s in it for me? There’s nothing new here. This really
sucks!” This crowd was tuned into the fact that, with their Macs and their iPhones, they
had everything they needed already, and many of them quickly concluded that the iPad
wouldn’t be serving any immediate need.

Well, then, who is the target audience for the iPad?

Knowing why the iPad was developed, and for whom, will help you understand which
kind and style of apps have the greatest chance at succeeding. I spent close to two
years following the events that led up to the introduction of the iPad—from initial
speculation, to whether it would be called the iTablet or the iSlate, to mid-release
reports and news updates—everything.

NOTE: The target market of the iPad is NOT the Mac user. Nor is the target market the average
iPhone user.

Believe it or not, the iPad design is aimed at older users who are new to the computer
world and who don’t want to spend more than $1,000. These are people who have just
figured out how to turn the computer on and off and use e-mail! The iPad is also
targeted at young students in an attempt to outdo the Kindle. One of the iPad’s primary
goals is to make the purchase of textbooks obsolete by offering a digital bookstore, in
the same manner that iTunes offers music. So there you have it: older and younger
generations of users are the target markets, instead of the standard set of geeks that
normally goes for high-tech devices.

In this book, I present you with the knowledge and techniques to create applications
that work with the iPhone and the iPad. The app images in this book include the iPad
Simulator, which inherently implies the iPhone Simulator. Be sure to check out the
various figures that contain images of results, and study the differences between the
iPad and the iPhone. It will be important to know how the iPad does differ from the
iPhone.

Do Apps Run on Both the iPad and the iPhone?
All the apps illustrated in this book run on both the iPad and the iPhone. I know this
because I personally tested them—not only on the simulators, but also on my actual
devices. Some of the images could have been made with larger (higher resolution) files
had they been of apps coded exclusively for the iPad, but I chose to keep everything
compatible with both devices.

The best way to tell if a future app you create works for both the iPhone and iPad is to
simply plug in your iPad to your Mac; iTunes will display the apps that work on the iPad
(Figure 3–8).

CHAPTER 3: What’s Next? 62

Figure 3–8. This shows the author’s iPhone apps that iTunes says are compatible with iPad.

NOTE: Some of the apps featured on the iPad—in the normal view—look a little fuzzy; this is
because the images are being stretched beyond their optimal 100% size. For those of you
interested in programming apps exclusively for the iPad, you will need to make sure your image
resolutions stay at or below 100%.

More Screen Space
The physical dimensions of the iPad are a little more than twice the height of the iPhone,
and slightly more than triple the width, but the depth is increased by only 1.1 millimeters!
The result is a roughly six-fold increase in the surface area, at practically the same
depth, so this is truly a much bigger device that still possesses an extremely slender and
light body. The physical dimensions are not, however, the same as the display
dimensions.

NOTE: The iPhone display contains 320 x 480 pixels; the iPad display contains 768 x 1024
pixels. This gives the iPad a relative increase in usable screen space over the iPhone of just over
five times.

This extra space has very important implications. Most obviously, quite a bit more
information can be presented to the user at any given time. This means the

CHAPTER 3: What’s Next? 63

organizational mindset that programmers are using on their existing iPhone apps may
not always translate directly to the new, relatively expansive platform. Also, it turns out
that migration from iPhone to iPad involves classes—preprogrammed sub-routines—
that are not shared between the devices, and accomplishing this may require some
specialization inside applications. Handling the user interface changes and application
programming interface (API) differences will be addressed a little later. Right now let’s
consider the implications of the increased real estate the iPad boasts.

The iPad has the ability to run iPhone applications without changing the code one iota.
Moreover, the iPad can run these applications at double their original size using a
magnification function. This makes the migration process nearly painless for current
iPhone developers. However, we are dealing with much more here than an oversized
iPhone! There are numerous legitimate improvements over the iPhone that went into this
newer device—not just incremental change, but quantum change. Because of this, we
want to leverage these improvements and knock the socks off our future users.

More screen space means more information and more eye candy. A user can now see
multiple pieces of data at once without having to navigate through the application. More
room for videos, pictures, text, or game graphics means more flexibility and longevity for
your app. The iPad structure supports all of the same features of the iPhone, including
UIKit, Core Graphics, Media Kit, and OpenGL ES. Simply put, these are tool kits from
which a bunch of different applications can be built. The increased processing power
and larger screen size, however, mean that the iPad—and therefore your apps—can do
significantly more with the same set of tools.

This increase in screen area, with improved high-resolution multi-touch sensors, also
means more space for the user to interact with your application—with finer articulation.
Complex gestures can now be used to navigate and manipulate an application in ways
that are impossible on the relatively small iPhone screen. Keep this in mind as your
application begins to take shape.

NOTE: Users can now use their entire hand, or even both hands, to interact with elements in an
application.

What gestures make sense here? What kinds of input could trigger this or that? In
addition to the increased ability to support input from key gestures that stand for
shortcut commands, the large screen size makes toolbars and accessory views
possible. Providing the user with a toolbar is no longer taboo, and this may actually be
encouraged to help your users leverage the increased interface of the iPad.

When you take all of these changes collectively, it behooves us to carefully consider our
applications’ designs. The creativity you and your fellow programmers wield must not
only take advantage of the ability to display greater quantities of information in an easy-
to-read, intuitive format, it must border on a total reorganization and transformation of
the user experience.

CHAPTER 3: What’s Next? 64

Master-Detail
One of the central features of the iPad, not found on the iPhone, is the master–detail
interface. It’s been around for a while on Mac operating systems, and now it has
blossomed in a new form. Master-detail is an interface layer that sits on top of a list or a
table and acts as an intermediate stage in place of a “Go back” or “Go to” button. On
the iPhone, either the master or the detail can be seen, one at a time, but never both at
the same time. This dual-purpose layer can serve the user in the e-mail realm, for
instance, with the master as inbox and the detail as individual letter, or in countless
other contexts as a table of contents and selected data. As you can see in this image
from Apple (Figure 3–9), the iPad presents the master-detail in either orientation.

Figure 3–9. Note how the master-detail sits on top of an individual e-mail in the portrait orientation, but side-by-
side in the landscape orientation.

User Interface on iPad
Some applications will scale up from the iPhone without problems. However, these
applications are likely to be in the minority, as the input capabilities and display space of
the iPad completely change an application’s fundamental character. To accommodate
this, we need to bring some specialized user interface design needs into the picture in
order to present your application on both platforms.

NOTE: Be aware that although the iPad can enlarge images on an iPhone, my testing of iPad
apps (as of April 3, 2010) showed that large images would not convert seamlessly to an iPhone
application.

CHAPTER 3: What’s Next? 65

The new interface elements introduced with the iPad allow for highly stylized and
powerful data flow and interaction within an application. The smart folks at Apple have
done most of the work for you, providing incredibly rich and easy-to-use interface
elements that let you focus on the functionality of your application.

Checking the Platform
That’s all fine and good, but obviously there are some things that the iPad can do that
the iPhone cannot—and vice versa. We already know there are additional classes the
iPad uses that the iPhone will not recognize. So what must we do to make our
application behave correctly depending on which device it is currently running? This is,
unfortunately, not as straightforward as one would hope, but it can be done.

For this reason, we are not going to worry about checking the current platform. Instead,
we will just change the nib files to do what we need them to do on the iPad. Don’t
worry—nibs and Interface Builder work exactly the same way for the iPad as for iPhone.

However, if you absolutely must know, there are a variety of techniques used to check
the current platform of an application. These all involve checking for the existence of
platform specific classes, functions, or features. For example, you could check the width
of the screen to determine the platform. An iPhone app will return a screen width of 320
pixels, while an app written for the iPad will return a screen width of 768 pixels. Clearly,
if the returned screen width is less than 768, we know we are working on an iPhone or,
perhaps, an iPod Touch. Of course, there are other ways of checking the current
platform. You can also check a function called UI_INTERFACE_IDIOM().This function can
return either UIInterfaceIdiomPhone or UIInterfaceIdiomPad. These examples are pretty
self-explanatory, I hope, and can be used to accurately determine the device. Of the
many different techniques to determine the current platform, you will learn to use the
one that is the most convenient in the given context.

NOTE: As stated previously, each device can do certain things the other can’t. The iPad can’t
make phone calls, take photographs, or record video. Case by case thought should be applied to
apps regarding location-aware services and accelerometer functions—for although both devices
are portable and shakable, size may matter!

Compatibility
The release of iPhone OS 3.2 has changed a lot of basic functionality we are all used to
on our iPhones and iPod Touches. However, not everyone will be using 3.2, so we need
to make sure our applications are compatible with previous versions, specifically 3.1.2
and 3.1.3. Fortunately, doing so is quite simple. In your new iPhone OS 3.2 project, you
need only set the “Base SDK” in your project settings to 3.1.2 or 3.1.3 and run your
application.

CHAPTER 3: What’s Next? 66

NOTE: As we all know, the downside of rapid technological advance is that we must always be
prepared for a new upgrade to come along. Thus, regardless of present compatibility, an upgrade
may be needed six months hence. The instructions here should still work by setting the SDK
version to the latest one.

If you want to run your application in the iPad Simulator to see what it looks like, click on
the pop-up button in the upper left corner of Xcode. From there, choose iPhone
Simulator 3.2 (or higher). This will automatically move your application into the iPad
Simulator. While your application is running in the iPad Simulator, you can zoom in on
the action by pressing the 2x button in the lower right-hand corner of the Simulator.
Additionally, you can zoom even further by opening the Window menu, hovering your
mouse over the Scale item, and then choosing your desired zoom scale.

§III: A LOOK UNDER THE HOOD
Thus far, we’ve gone through three examples where we said “Hello world!” from inside
the iPhone/iPad. The first example was from the View-Based Application template; the
next two (related) examples were built from the Navigation-Based Application template.
Most importantly, we’ve had an opportunity to tinker around with Xcode, Interface
Builder, and the iPhone and iPad Simulators.

Indeed, the most important aspect of Chapter 2 was familiarizing you with the creative
process in the context of programming apps: go in with an idea and come out with a
tangible, working product. Several times I asked you to ignore heavy-duty code that I
judged would be distracting or daunting. You may have also noticed that when you did
try to understand some of this thicker code, it made sense in a weird, wonderful, chaotic
way. Well, as we progress forward, we are going to make the “chaos” of the unknown
less unsettling.

Before dealing with this issue, let me also put you at ease that when it comes to
Objective-C, our programming language, I have yet to meet a single advanced
programmer who actually knows every symbol and command. Just as in other
industries, people tend to get very knowledgeable in their specific domains and
specialize (e.g., integrating Google Maps to a game or an app).

An analogy I like goes like this: Car mechanics used to be able to strip an engine down
completely and then build it back up—presumably better than it was. Nowadays, car
mechanics are very specialized, with only a handful knowing how to completely strip
down and rebuild a specific modern-day car. We get an expert in Ford hybrid engines,
or an expert in the Toyota Prius electrical circuitry, or a specialist in the drum brakes that
stop big rigs and so on. There is nothing wrong with this!

This is similar to how you are proceeding. You have just gotten your hands greasy and
dirty by successfully programming three apps. And now, if all goes according to plan,
you are going to walk toward the future brimming with confidence. I know from
experience that confidence in my students can be derailed if they are intimidated or

CHAPTER 3: What’s Next? 67

blown away by too much complexity or technicality. I have found that students can
handle bumps in the road if they know where they are going, and if they know that the
rough stretches won’t get too scary or dangerous.

You’ve Said “Hello!” … but now, INDIO!
We can divide most iPhone and iPad apps into four different functions: Interaction,
Navigation, Data, and I/O (Input/Output). We have seen enough apps to know that we
can interact with them; we can navigate from one screen to another; we can manipulate
and utilize data; and, we can provide input (type, paste, speak) and receive output
(images, sounds, text, fun!).

Before we zoom in again to approach a program from any one of these specific areas,
we need to first have a better grasp of how these different aspects of iPhone/iPad
programming work, look, and behave. We also need to learn about their limitations and
the pros and cons in terms of the projected or desired user experience. And, because of
the differences discussed above, whether the app is for the iPhone or the iPad.

As you gain a working knowledge of where any limitations and barriers exist, your
journey through these four domains, all parts of a vast “forest,” will be more powerful
and productive. A very important part of my job is to show you how to conduct yourself
safely through the Forest of INDIO. Some sections of the forest are more daunting than
others, but the good news is that you will be getting a nice, high-level view, as from a
helicopter! After our aerial tour, we will parachute down to the forest floor, open Xcode,
and continue to explore the paths, the watering holes, and the short cuts—to mark off
the unnecessary sections and to be on the lookout for wild animals.

Model-View-Controller
As mentioned previously, the programmers who developed Cocoa Touch used a
concept known as the Model-View-Controller (MVC) as the foundation for iPhone and
iPad app code. Here is the basic idea.

Model: This holds the data and classes that make your application run. It is the part of
the program where you might find sections of code I told you to ignore. This code can
also hold objects that represent items you may have in your app (e.g., pinballs, cartoon
figures, names in databases, appointments in your calendar).

View: This is the combination of all the goodies users see when they use your app. This
is where your users interact with buttons, sliders, controls, and other experiences they
can sense and appreciate. Here you may have a main view that is made up of a number
of other views.

Controller: The controller links the model and the view together while always keeping
track of what the user is doing. Think of this as the structural plan—the backbone—of
the app. This is how we coordinate what buttons the user presses and, if necessary,
how to change one view for another, all in response to the user’s input, reactions, data,
etc.

CHAPTER 3: What’s Next? 68

Figure 3–10. The model, the view, and the controller (MVC)

Consider the following example that illustrates how you can use the MVC concept to
divide the functionality of your iPhone/iPad app into three distinct categories. Figure 3–
10 shows a representation of your app; I’ve called it “MVC Explained.” You can see that
the VIEW displays a representation—a label—of “Your very cool fantastic App Includes 3
layers: A, B and C.”

In the CONTROLLER section of the app, we see the three individual layers separated
out, Layer “A,” Layer “B,” and Layer “C.” Depending on which control mechanism the
user clicks in the VIEW domain, the display the user sees, the CONTROLLER returns the
appropriate response—the next view from the three prepared layers.

Your app will probably utilize data of some type, and this information will be stored in
the MODEL section of your program. The data could be phone numbers, players’
scores, GPS locations on a map, and so on.

As the user interacts with the VIEW section of the app, it may have to retrieve data from
your database. Let’s say your data contains the place your user parked her car. When
the user hits a particular button in your program, it may retrieve the GPS data from the
MODEL. If it’s a moving target, it may also track changes in the user’s position in
relation to a car in the parking lot. Lastly, the CONTROLLER may change the state (or
mode) of your data. Maybe one state shows telephone numbers, while another shows
GPS positions or the top ten scores in a game. The CONTROLLER is also where
animation takes place. What happens in the animation can affect and perhaps change
the state in your Model. This could be done by using various tools, such as UIKit
objects, to control and animate each layer, state, etc.

CHAPTER 3: What’s Next? 69

If this sounds complicated, bear in mind that you’ve already done much of this without
even knowing it! In Example 1, you had the user press a button and up popped a label
saying “Hello World!” This shows how you have already built an interaction with a
ViewController. We will be delving further into these possibilities, of course. In Chapter 4,
we will venture deeper into the Interaction quadrant of the Forest of INDIO, and allow the
user to add and delete table view items.

When we do this, I will do my best to keep you focused on the big picture when it comes
to interactions … via Navigation. Our goal will be to have the user move from less-
specific information to more specific information with each new view.

CHAPTER 3: What’s Next? 70

71

71

 Chapter

An Introduction
to the Code
Before examining specific pieces of code and the way we will create the apps set forth

in this chapter, we need to spend a moment assessing our approach. We will be going

through the material in this chapter a little differently than in the previous chapters.

I have included short bursts of information about each step, but without the details of

the previous instructions. You will see many similarities between the functions and

methods we are going to use in this next program and ones we utilized previously. If you

need to go back and look at the detailed instructions, that is perfectly OK. It is for the

sake of streamlining and saving space that I am giving fewer detailed instructions on the

oft-repeated steps.

Another difference is that, after you have completed the upcoming program, we will do a

code review. This section will appear after each major example throughout the

remainder of the book, and we will call it “Digging the Code.” In these reviews, we will

go over some of the code we have written, and I will reference familiar code and explain

processes in more detail. Here, I will begin to introduce you to more technical terms that

you will use in future chapters and in correspondence with other programmers.

Consider this analogy: Thus far, I have taught you how to get into a car, turn the ignition,

press on the accelerator, and steer as you move forward. In this chapter, I will guide you

with similar directions, but in a different model of automobile on the way to a new

destination—with fewer detailed instructions. After we get to our destination, I will open

the hood and show you how, when you pressed the accelerator, it pumped gasoline into

the engine, or how, when you pressed the brakes, it activated the disc brakes. By

Chapter 8, we will go into the amount of gasoline being squirted into the pistons by the

carburetors, and we will discuss how the brake pads heat up when going at a particular

speed, and so on. Guess what—you’ll be able to handle it!

So let’s get on with the next application. Be ready to go back with me to review lines of

your input as we focus on certain portions of the code, and as we look at how it all

works together.

4

CHAPTER 4: An Introduction to the Code 72

004_helloWorld: Buttons with Graphics
As indicated in Chapter 3, we will now embark on a journey in which we will explore the

four categories of iPhone and iPad apps, abbreviated as INDIO: Interaction, Navigation,

Data, and I/O. Our fourth example is very similar to the elementary “Hello World!”

programs we have been creating so far, except that it shows how to do something that

is not as intuitive as it may seem at first glance—how to handle buttons and graphics.

One of the ways I make sure I learn the names of all my students is to have them include

photographs of themselves in one of the exercises. The students are told they must

paste the pictures as the background to a simple “Hello World!” app. Invariably, they all

think this is far too easy for them. It turns out that not only is there a struggle with sizing

and placing the images on their apps, but then they also hide their code with the picture

once they have it on there.

In this project, I have created a picture just as I ask my students to do, and I have placed it

as a type of wallpaper. So when they place their faces in the appropriate spot, their

photographs say “Hello” to me and tell me who they are. This exercise goes step by step

through this process so that you can do the same thing with your photo. It will get a little

tricky at times, so follow along carefully. Try not to fall into the trap of thinking that you can

skip steps because you’ve already practiced on a significant portion of the initial code.

Take a deep breath, relax, and go through each step. You will learn some valuable tools

in this exercise. Everything you need is right here in this book: screenshots and step-by-

step instructions. I want to remind you that all the screenshots are directly from my

screencast, available at:

http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_Movies/002_helloWorld_002.htm

1. As always, let’s start with a clean, uncluttered desktop. Close all

programs using the Command + Tab and Command + Q shortcuts until

only the Finder remains open.

You will see that I have created a picture of myself to use as an example

in this app. So, whenever you see my photo in the book, you will want to

see a photo of yourself there. Use any program you want to create an

image that is 320 pixels in width by 480 pixels in height. If it is not

exactly in conformity with the size as depicted in Figure 4–1, your

iPhone may give you all kinds of zany effects, including not displaying

the image at all. For good practice, just accept that you need to keep

full images sized to 320 × 480. Later, when we have bars on the top, it

will all change. For now, let’s get 320 × 480 into your brain.

http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_Movies/002_helloWorld_002.htm

CHAPTER 4: An Introduction to the Code 73

Figure 4–1. Create an image of yourself in a photo-editor that can save it as a .png file.

As you can see in the screenshot, I have used Photoshop. You can copy

all the parameters exactly from Figure 4–1 to help make sure that your

photo will fit correctly into your app. Save the picture to your desktop as

a .png file named helloworld.png. We do this because iPhones talk to

.png files—not to .jpg or anything else. Don’t question it. Just accept it.

You need to use a program that can create, edit, and save .png files.

If you do not have Photoshop, or a similarly powerful editing application,

and you plan to program iPhones/iPads with graphics, I strongly

suggest that you invest in a copy. Once your image is created and

saved to your desktop, quit Photoshop (or equivalent). At this point, you

should have a beautiful, empty desktop, except for the image.

2. Let’s start by opening a View-based Application in Xcode. Open Xcode,

and then enter N to open a new program file. In Figure 4–2, you can

see that my View-based Application icon was highlighted by default. If

yours is not, then click on it.

CHAPTER 4: An Introduction to the Code 74

Figure 4–2. After entering N, create a View-based Application.

3. Save your View-based Application to the desktop as helloWorld_004.

See Figure 4–3.

Figure 4–3. Save your View-based Application to your desktop as helloWorld_004.

CHAPTER 4: An Introduction to the Code 75

4. As shown in Figure 4–4, once you save your project to your desktop,

Xcode instantiates a project named helloWorld_004, as indicated by the

name on the top of the window. (If you’re not already familiar with the

term instantiate, see “Digging the Code” at the end of this chapter.) By

clicking on the root file of your helloWorld_004, you can see the plist

file, the AppDelegate files, and the ViewController files. These files are

going to be your friends, and, as we move through each new example,

you we will get to know them better and better.

Figure 4–4. This is the view of your helloWorld_004ViewController file before you’ve entered your new code.

Looking at the files, we see that some end with .h and others end with

.m. The .m represents implementation files, and the .h represents header
files. At this point, you should know that header files contain classes,

types, functions, and constant declarations. In contrast, implementation

files contain the lines that use already coded material we have declared.

In this exercise we’ll be using the .h files. This is enough for now, so

let’s move on to the next step.

5. Just as we did back in the very first exercise, after opening the interface

file, let’s scroll down past #import <UIKit/UIKit.h>, which is the

command that imports the UIKit framework. Keep scrolling, past

@interface helloWorld_004ViewController : UIViewController {

and then hit Return to make space for the code that you will enter in the

next step.

6. As before, add onto the line that is below the open bracket (the {

character) the following command:

CHAPTER 4: An Introduction to the Code 76

IBOutlet UILabel *label;

This adds an Outlet to a label, just as we did in previous examples. Do

not forget the semicolon (;) at the end of the line, as this tells the

compiler you’re done talking to it for the moment.

7. We now need to add an action to a button. Enter the close bracket (})

and write the following:

- (IBAction)hello:(id)sendr;

Make sure to put the semicolon at the end of this line. In the following

code, you see what your file should look like.

//
// helloWorld_004ViewController.h
// helloWorld_004
//
// Created by Rory Lewis on 6/13/09.
// Copyright __MyCompanyName__ 2009. All rights reserved.
//

#import <UIKit/UIKit.h>

@interface helloWorld_004ViewController : UIViewController {
 IBOutlet UILabel *label;
}

- (IBAction)hello:(id)sendr;

@end

After selecting the line

- (IBAction)hello:(id)sendr;

copy it by highlighting and using the shortcut C.

8. Save your file by entering S. Figure 4–5.

CHAPTER 4: An Introduction to the Code 77

Figure 4–5. Save your work by entering S.

9. Now that we have set up our header file, we want to move to our

implementation file: helloWorld_004ViewController.m. This file manages

how your code interacts with the display. Open this file, scroll down past

the green comment lines, and insert the line that you just copied, by

clicking in the correct location and using the shortcut V.

#import "helloWorld_004ViewController.h"

@implementation helloWorld_004ViewController
*** THIS IS WHERE YOU PASTE ***

10. Delete the semicolon at the end of the line you just pasted and replace it

with an open bracket as shown in Figure 4–6.

CHAPTER 4: An Introduction to the Code 78

Figure 4–6. This is the implementation file after you insert the copied line of code and enter an open bracket “{”
in place of the deleted semicolon.

#import "helloWorld_004ViewController.h"

@implementation helloWorld_004ViewController
- (IBAction)hello:(id)sendr{

11. After you delete the semicolon and replace it with an open bracket, go

to the next line and enter this code

label.text = @"OK I'm repeating myself!";

followed by a close bracket on the line below that. Refer to Figure 4–7.

CHAPTER 4: An Introduction to the Code 79

Figure 4–7. Enter the command that will generate the text “OK I’m repeating myself!” Then, save your file by
using the indicated shortcut.

#import "helloWorld_004ViewController.h"

@implementation helloWorld_004ViewController
- (IBAction)hello:(id)sendr{
label.text = @"OK I'm repeating myself!";
}

12. Now, save your work on this interface file (S).

13. Click the Resources folder. I want you to activate it so that you can save

your image file there. See Figure 4–8.

CHAPTER 4: An Introduction to the Code 80

Figure 4–8. Click on the Resources folder.

14. Locate your helloworld.png image on your desktop and drag it into the

Resources folder. I’d like you to get into the habit of saving your images

here. It’s a good habit that will help you to stay organized. Later on, if

you begin working with huge, image-driven files, you may want to create

your own Images folder. For now, drop your images into the Resources

folder.

15. Check the box that states: “Copy items into your destination group’s

folder.” Doing so ensures that even if you change the location of your

folder or delete the image, this image will still appear in your application

file because Xcode has made a copy of it in your Resources folder.

For example, right now you have the image stored on your desktop. If

you delete it from there, or send this folder to the Internet or an iPhone,

without checking this box, then it will not be a part of your program.

Checking this box guarantees that the helloworld.png you’re putting

into the Resources folder will be wherever the program is. To complete

this step, click the Add button or hit your Return key.

16. Once you have opened the Resources folder, double-click on the nib file,

as shown in Figure 4–9. As you know already, this is the file that ends

with .xib—specifically the helloWorld_004ViewController.xib file—and

opening a nib file automatically opens up Interface Builder, which is how

and where we visually control our app. We want to do this because it’s

time to connect pictures, buttons, and labels to the code you’ve been

writing.

CHAPTER 4: An Introduction to the Code 81

Figure 4–9. We want to open Interface Builder, so click on your nib file.

17. We need to have some wallpaper of your image that lies underneath all

the buttons and labels we will be including in our app. This means that

we need a place where the image can reside. In Interface Builder, you

can place images on the Image Views. Scroll down in your Library until

you see the Image View icon. Drag one onto your View frame, as shown

in Figure 4–10.

Figure 4–10. Drag the Image View icon onto your empty View frame.

CHAPTER 4: An Introduction to the Code 82

18. We want to connect your helloworld.png to your image view so that it

will appear. The way that you do this is go to the Information tab of the

File Attributes window, open the drop-down window, and select your

saved image.

We need to make sure that your image, helloworld.png, appears in your

View frame. If the image that you prepared earlier doesn’t display

properly, you need to stop right now and carefully go through all these

steps again.

If there is a problem at this point, potential reasons might be that the

image file was not properly saved into your Resources folder, or that it

was not saved in the proper format, as a .png file.

19. Go back to your Library, scroll down to the Label icon, and drag it onto

your image. You can place it anywhere you like. I chose to place it on

my head. See Figure 4–11.

Figure 4–11. Click in the Label option to drag a label onto the image.

20. Just as we did in previous exercises, we want to remove the default

label. So delete the text that’s already there. Also, go to the color box

and give it a click; we want to change it to a different color. See Figure

4–12.

CHAPTER 4: An Introduction to the Code 83

Figure 4–12. Remove the default text inside the Text field, which is at the top of the Label Attributes frame, and
then insert “OK I’m repeating myself!”

You can change the color of the text inside the label to any color you

want. I chose to change mine to white because my hair is brown. If your

hair is blonde, for instance, you may want to select a darker color for

contrast.

21. We want to expand the label to be of sufficient size to hold our text.

Drag one of the dots (size indicators) on the label to get to a size you

believe will hold the text, which in my case is “OK I’m repeating myself!”

22. As shown in Figure 4–13, we now need to drag a button onto the view.

When a user presses the button, it will display the label.

CHAPTER 4: An Introduction to the Code 84

Figure 4–13. Drag a button onto the View frame.

23. As shown in Figure 4–14, we also want to change the button’s default

text. On the Button Attributes tab, change the text in the Title field to

“Press Me.”

Figure 4–14. Delete the default text in the Title field, and then enter “Press Me.”

CHAPTER 4: An Introduction to the Code 85

24. On the Attributes frame, you can also adjust the transparency so that we

can partially see through the button. Go to the bottom of the window

and change the Alpha slider to a level that looks right to you. This effect

is illustrated in Figure 4–15.

Figure 4–15. The semi-transparent button has been selected along with the label in order to adjust alignment and
placement.

25. With both the button and label selected, line them up by choosing a

Placement option at the bottom of the View Size frame.

26. Next, hold down the key while you click and drag the File’s Owner

icon to the Label. Interface Builder will display the now-familiar “fishing

line” to demonstrate the relationship. See Figure 4–16.

Figure 4–16. Command()-drag the File’s Owner icon to the Label.

CHAPTER 4: An Introduction to the Code 86

27. As shown in Figure 4–17, establish the connection between the File’s

Owner and the Label by choosing from the drop-down menu.

Figure 4–17. Establish a connection between the File’s Owner and the Label by selecting from the Outlets drop-
down menu: label.

28. Now, hold down the key while you click and drag from the Button to

the File’s Owner icon, as shown in Figure 4–18. Once these elements

are connected, the pull-down menu appears and you can select the text

“OK I’m repeating myself!” Save your project (S), and exit Interface

Builder (Q).

Figure 4–18. Command()-drag from the Button to the File’s Owner icon. After you are presented with a drop-
down menu in which you select your desired message, save (S) the file and quit (Q) Interface Builder.

CHAPTER 4: An Introduction to the Code 87

29. Finally, enter so that you can run the code. When your program

launches, you will see your picture (or mine) overlaid by a

semitransparent button. Follow the directions … push the button and

check out the result. Figure 4–19 shows the iPhone Simulator, while

Figures 4–20 and 4–21 demonstrate the iPad Simulator.

Congratulations! You have integrated user/programmer interaction with some cool

graphics. You’ve also been able to get through this with fewer instructions from me.

Well Done!

Figure 4–19. Click the button, and … it works!

CHAPTER 4: An Introduction to the Code 88

Figure 4–20. This is the iPad Simulator view in iPhone view mode – before the button gets pressed.

Figure 4–21. Here is the iPad Simulator in full (2x) view mode – before the button gets pressed. The “1x” button
at the lower-right will change the view to the one in Figure 4–20.

CHAPTER 4: An Introduction to the Code 89

Digging the Code
In this new section of the chapter, we will be examining several concepts that have been

mentioned but that are probably still shrouded in some degree of mystery. This is an

opportunity to read along without definitive understanding. I hereby give you permission

to partially “get it.” Of course, if you happen to attain full comprehension of the subject

matter in all its details, let me be the first to commend you. Meanwhile, see if holding on

more loosely doesn’t, in fact, give you a firmer grasp on the big picture.

Nibs, Zibs, and Xibs
These “items” are basically all the same thing, but different people refer to them in

different ways. At a recent conference in Denver, “360iDev for iPhone Developers,” it

was interesting to hear how so many presenters referred to .xib files as “nibs” or “zibs.”

Most programmers prefer to say “nib” files. No matter how we refer to them, it’s

important for us to understand what’s going on with these files. What are they? Do we

need them? Do you need to know how they work?

Do you recall, from step 16, how we opened Interface Builder? That’s right – it

happened automatically when you clicked on a nib file. Once it opened, you saw that the

file contained all the code associated with our buttons and images, and that, in fact, this

information is stored there. That way, when you run the app, all the objects and all the

links associated with the objects are integrated properly, and they can then “magically”

come together and give the user the experience that you envisioned.

It turns out that nib files, when examined at the level of Cocoa or Objective-C, contain all

the information necessary to activate the UI files, transforming these into a graphical

iPhone or iPad work of art. It’s also possible to join separate nib files together to create

more complex interactions, and you’ll see this in the next chapter.

All the information that resides in these files is put there so that it can create an instance
of the buttons, the labels, the pictures, and so forth that you’ve entered. This collection

of commands is plonked down and saved into your nib files to become the UI. The code

and the commands taken together become real, and they are sensed by the user – seen

or heard, or even felt.

We sometimes use the term instantiate in a similar fashion. For example, when you first

save a new project, the computer instantiates – makes real and shows you the evidence

for – a project entity by virtue of assigning it a body of subfiles, as it were. In

helloWorld_004, you saw how the project was instantly given “arms and legs” … two

AppDelegate files and two ViewController files.

We say we’ve “created an instance of” something when we’ve told the computer how

and when to grab some memory and set it aside for some particular process or

collection of processes such that, when the parameters are all met, the user has an

experience of this data (i.e., whatever was assigned in memory). Sometimes we refer to

these collections or files of descriptions and commands as classes, methods, or objects.

In this code-digging session, these terms might seem to run together and appear as

CHAPTER 4: An Introduction to the Code 90

synonyms, but this is not the case. As you read on, you will come to understand each

term as a distinct coding tool or apparatus, each to be employed in a particular

situation, relating to other entities in a grammatically correct way.

When we say that you created an instance of the buttons and labels in your nib file, what

we’re really saying is that, when you run your code, a specific portion of your computer’s

memory, known by its address, will take care of things in order to generate the UI – the

user experience – you have designed. Each time your application is launched on an

iPhone or iPad, the interface is recreated by the orchestrated commands residing in your

nib files.

Consider the nib file associated with the action depicted in Figure 4–13. You dragged a

button from the Library into the View window, and thus you created an instance of this

button. If somebody were to ask you what that means, you might look them in the eye,

with a piercing and enigmatic look, and say, “By creating an instance of this button, I

have instructed the computer to set aside memory in the appropriate .xib file, which,

upon the launching of my app, will appear and interact with the user, precisely as I have
intended.”

Methods
The next concept I would like to explore a little more deeply is that of methods. As I did

with nibs, I am only going to give you a high-level look at this time. You’ve already used

methods pretty extensively, so I’m simply going to tell you what you did.

Looking at Figures 4–18 through 4–21, recall how you -dragged from the button to the

File’s Owner icon and, when the pull-down menu appeared, you selected the statement

“OK I’m repeating myself!” Guess what—that was done with methods!

Looking way back to step 7, I want you to understand that when you copied and pasted

the command

- (IBAction)hello:(id)sendr;

you were instructing the computer to associate an action with a button. The first symbol

in this piece of code is a minus sign (–). It means that IBAction is something we call an

instance method. On the other hand, if you had entered a plus sign (+) there, as in +
(IBAction), we would have called it a class method. One symbol announces (to the

processor) an instance, while another symbol announces a class. What these two

statements have in common, though, is the method: IBAction. Furthermore, just by the

name alone, we see that this is an action that will be performed in Interface Builder.

Meanwhile, let’s look at what we know about instances. Back in step 9, I remarked that

we had finished our work on the header file, and that it was time to work on the

implementation file, helloWorld_004ViewController.m. This is the file that manages the

code, and that is why you were instructed to open it. I had you insert a line of code in

this (.m) file by virtue of copying and pasting from the header file: -
(IBAction)hello:(id)sendr;

CHAPTER 4: An Introduction to the Code 91

#import "helloWorld_004ViewController.h"

@implementation helloWorld_004ViewController
- (IBAction)hello:(id)sendr;
@end

You deleted the semicolon at the end of that line and replaced it with an open bracket

({). The important issue here is that the (.m) file then contained the commands for the

object, and that these go in between the “@implementation" section and the final “@end"

command. Our method then appeared like this:

#import "helloWorld_004ViewController.h"

@implementation helloWorld_004ViewController
- (IBAction)hello:(id)sendr{

}

@end

But wait – I really haven’t explained the term method yet. OK, see if this helps. Methods

are the packets of code that the computer executes when a particular input is received

and must be processed—such as the pressing of a button.

Consider this analogy: a programmer says, “Here comes an app that will assist you in

drawing a nice, pretty house.” That is a header type of announcement. Then, the

programmer enters specific instructions for how the house will be constructed, how it

will sit on/against the landscape, what kind of weather is in the background, and so on.

“Draw a slightly curving horizon line one third from the bottom of the display, and

midway on this place a rectangle that is 4 × 7, on top of which is a trapezoid with a base

length of …,” and so on. These specific, how-to instructions belong in the

implementation file, for they describe the actual actions – the method – of drawing the

house.

So, to connect your button to a method named “hello,” you added this code:

- (IBAction)hello:(id)sendr;

This created an instance of your hello method. Then, you created a place in memory to

execute the code inside your hello method.

To summarize:

1. You first dragged a button from the Library into the document window

and created an instance of that button.

2. You then -dragged from the button to the File’s Owner icon and

connected the button to the hello method listed in the pull-down menu.

3. The moment you entered the code – (IBAction)hello:(id)sendr; you

created this “hello” instance method:

CHAPTER 4: An Introduction to the Code 92

 The (-) means that IBAction is an instance method.

 (IBAction) is the returned type.

 hello is the method name.

 (id) is the argument type

 sendr is the argument name

That’s all we’ll do with methods for now. We’ll be repeating these steps of creating and

using methods in the chapters ahead, and as you practice, the concept will become

clearer and clearer.

93

93

 Chapter

Buttons & Labels with
Multiple Graphics
In this chapter, we’ll tackle our fifth program together, and it’s time to quicken the pace

a bit. As in Chapter 4, you’ll be able to simply view the screen shots and implement the

code if you remember most of the details—steps that have been described repeatedly in

the previous examples. There will be fewer figures pertaining to each step, yet more

procedures; we will be using the short bursts of information introduced in Chapter 4.

Also, as in Chapter 4, once you have completed the program, we will do a code review

in the “Digging the Code” section. Initially, we will cover some of the same aspects and

concepts we discussed in this section in Chapter 4, and then we will zoom in on some

of the new code. Not only will we go a little deeper, but we will also expand our horizons

to consider other computing concepts that link up to this deeper level of analysis.

You will probably also notice a change of style in Chapter 5, for we will be moving away

from the “elementary” language used in previous chapters. So, let’s pick up the pace—a

little faster, a little more advanced, and using more of the technical nomenclature. Again,

if you don’t grasp every concept and technique fully, that is perfectly okay! Relax and

enjoy this next example.

helloWorld_005: a View-Based Application
In this example, we continue to delve deeper into INDIO—Interaction, Navigation, Data,

and I/O (input/output). Our code will retrieve two images, by different means, which will

interact with the user. This exercise gets us closer to the I/O aspect of INDIO, which we

have not quite wrapped our heads around because, simply put, we’re not there yet.

Like a digital warrior, you are striding along a path into the forest of Objective-C, to a

place where you will need to be accustomed to vaulting over rivers, hunting tigers,

building fires in the rain, and so forth. So far, you’ve learned to start a fire with flint and

steel—in dry weather, and you’ve gotten pretty good at hopping over streams. This

5

CHAPTER 5: Buttons & Labels with Multiple Graphics 94

lesson will teach you to vault over wider streams and, once there, to hunt tigers. Soon,

you’ll be equipped to fight the legendary demons of I/O in the daunting realm of INDIO.

Right this second—feel good about yourself! You are already quite deep into the

Forest of Objective-C. If you lose your way, remember that you can refer to the “map”

at this link:

http://www.rorylewis.com

Preliminaries
As usual, let’s begin with a clean desktop and only four icons: your Macintosh HD and

three image files (shown as icons in Figure 5–1). As I’m sure you have gathered by now, I

think it’s essential to have an uncluttered desktop, and I want to encourage you to

continually hone your organizational mindset. Using our familiar shortcuts, close all

programs.

Figure 5–1. Create three .png image files: a bottom layer, a top layer, and a desktop icon. Save them all to a
beautiful, clean desktop.

You are welcome to download these images (from www.apress.com), which will become

key building blocks of this project, but we really want to encourage you to find and

prepare images of your own. That way, you’ll have more passion about this assignment.

You have two basic choices at this point: download our images here, or prepare your

own. Assuming that you are willing to go through the effort of creating three distinct

photo files of your own choosing, pay attention to the following guidelines.

The size of the first picture will be the iPhone standard of 320 pixels in width by 480

pixels in height. This will be the bottom layer of two images, so we’ll call it the

background layer. Our background, then, is a photograph of the stairs leading out the

back of the Engineering building, here at UC-Colorado Springs. We will use this picture

http://www.rorylewis.com
http://www.apress.com

CHAPTER 5: Buttons & Labels with Multiple Graphics 95

as a backdrop for a picture of my wife, Kera. When the program is run, the background

will display and, once a button is clicked, up will pop the photo of Kera at the top of the

stairs. How nice—Kera Lewis has decided to return to University!

This is our scenario then: You see a familiar background, and then somebody (or

something) unusual or unexpected suddenly appears. This background picture needs to

be 320 × 480 pixels, and it needs to be saved as a .png file (Figure 5–2).

Figure 5–2. This is the background image – or bottom layer.

In order to create the second image, which we’ll call the top layer, copy the background

layer photo. Then crop this copy to create an image with these exact dimensions: 320 ×

299 pixels. Yes, I know the height is a strange number—trust me! Now you have a

roughly square copy of the bottom two-thirds of your background photo.

Next, paste onto this a partial image—probably a cut-out of some interesting or unusual

object. This will yield something like the image in (Figure 5–3): Kera Lewis, in front of the

background scene. This modified top layer will, of course, be saved as a .png file.

CHAPTER 5: Buttons & Labels with Multiple Graphics 96

Figure 5–3. This is the modified top-layer image, which will overlay the background.

Thus, you will end up with a prepared top layer that consists of the bottom section of the

original background photo, with some interesting person or object pasted over it. You

can probably guess that we’re going to program the computer to start with the

background image, and then, with some user input, insert the top layer—with bottom

edges matching up flush, of course. This will give the illusion that our interesting guest,

or object, suddenly materialized out of nowhere. Our top layer will not affect the space

near the upper part of the background; we are reserving this region for the text that we

will also direct the computer to insert. We go this route because the iPhone and iPad do

not support .png transparency.

The third image file is an icon of your choice. As in the previous chapter, you may want

to customize your icon. In my case, I took a portion of the photograph of my wife’s face

and put it into my “icon” file (Figure 5–4).

Figure 5–4. This is the image for the screen icon … a lovely face!

CHAPTER 5: Buttons & Labels with Multiple Graphics 97

Recall that icons for the iPhone/iPad have a recommended size of 320 × 480 pixels.

Make sure to be mindful of these dimensions. Once you have all three of these images—

the bottom layer, the top layer, and the icon—save them onto your desktop.

Xcode – Beginning a New Project
With the preliminaries out of the way, let’s start building the application:

1. Start by opening Xcode and entering N. In the New Project window,

select the View-based Application template, as illustrated in Figure 5–5.

You may be thinking that a view-based application template is usually

used to help us design an application with a single view, and that we

should pick another option—because we’ve just made two views, the

image of the stairs and the modified image of the stairs with my wife in

it. This reasoning would appear to be sound because navigation-based

applications yield data hierarchically, using multiple screens. That

choice would seem to be the right one for this project, except that this is

actually not the case here.

Figure 5–5. Enter N and select View-based Application from the New Project window.

CHAPTER 5: Buttons & Labels with Multiple Graphics 98

We will be dealing with only one perspective onto which we will

superimpose an image, not a view. If we were going to have portions of

our code in one navigation pane, and other portions of our code in other

navigation panes, then we probably would choose a navigation-based

application. In this current project, though, we are going to manipulate

one view in which we will superimpose images, rather than navigate

from one pane to another. In essence, we’ll be playing tricks with a

single view.

2. Save your View-based Application to your desktop as

“helloWorld_005.” See Figure 5–6. This is going to be the last of our

“Hello World!” apps. I’d like to suggest that, once you’ve completed this

program, you save all of these in a Hello World folder inside your Code

folder. You will probably find yourself going back to these folders at

some point to review the code.

Figure 5–6. Save your View-based Application to your Desktop as helloWorld_005.

Later in the book, when we go into the details of Objective-C and

Cocoa, there is a good chance that you’ll scratch your head and say,

“Damn—that sounds complicated, but I know I did this before. I want to

go back and see how I connected these files in those ‘Hello World!’

exercises I did at the beginning of this book.”

As I hope you are now beginning to see, Xcode instantiates a project

named helloWorld_005 (see Figure 5–7). Click on your helloWorld_005

root file in the Overview—Groups & Files section, and then let’s pause

for a second.

CHAPTER 5: Buttons & Labels with Multiple Graphics 99

Do you see the folders named “Classes,” “Other Resources,”

“Resources,” and so on? As mentioned earlier, we’re moving on from

our elementary language and I will be throwing out some technical

jargon that is more specific.

Figure 5–7. After you save the project, Xcode instantiates a project named helloWorld_005, as indicated by the
name at the top of the window.

Instead of saying, “Open the Classes folder,” I might say, “Click the

‘disclosure triangle’ next to the Classes folder.” This, as you may have

gathered, is the small triangle pointing to the right that, when clicked,

rotates to point downward and reveals the files within a folder. Knowing

this nomenclature can even come in handy—like at a cocktail party or to

win a bet with one of your fellow programmers! So if you’ve never heard

of that little arrow being referred to as the ‘disclosure triangle’—hey—

you’re slowly morphing into a geek!

Understanding IBOutlets
You now see two AppDelegate files and two ViewController files. Previous chapters

have already discussed the .m and .h extensions in detail. We’re going to do what we

and most Cocoa and Objective-C programmers do—start off by programming the

header files. In geekspeak, you’d say, “Open the header.” If anybody were to ask you

what you mean, you’d say, “Click on the disclosure triangle in your Classes file and open

the file with extension ViewController.h!”

CHAPTER 5: Buttons & Labels with Multiple Graphics 100

You’ve already programmed four previous header files, so you should be accustomed to

just flying over this portion of your code. But this time, we’re going to put on the brakes

and think about what we’re doing. For all our previous examples, we’ve only had to use

one IBOutlet, a thing that allows us to interact with the user. Let’s get more technical

and specific, for that statement is too elementary. Let’s dig deeper into what an

IBOutlet is so that, when we get to the “Going Back and Digging That Code” section,

you’ll be able to really understand it.

Open your helloWorld_005ViewController.h file and read the following code. Let’s see

if we can find our way to a deeper understanding of these elements:

#import <UIKit/UIKit.h>

@interface testViewController : UIViewController {

}

@end

Look at the first line: #import <UIKit/UIKit.h>. This is what permits us to use the

IBOutlet keyword. We use #import to import the UIKit, which is the user interface (UI)

framework inside the huge body of core chunks of code called IPhoneRuntime, which is

a stripped-down version of the OS X operating system found on a Mac. Of course,

IPhoneRuntime is smaller, so it can fit onto an iPhone or an iPad.

When we import the UIKit framework, it delivers to our toolbox the ability to use tons of

code Apple has already written for us—called classes—one of which is the very cool and

popular class that you’ve already used: IBOutlet. The IBOutlet keyword is a special

directive called an “instance variable” that tells Interface Builder to display items that

you want to appear on your user’s iPhone or iPad. In turn, Interface Builder uses these

“hints” to tell the compiler that you’ll be connecting objects to your .xib files. Interface

Builder doesn’t connect these outlets to anything, but it tells the compiler that you will

be adding them.

In our exercise, we’ll be using two IBOutlets—one dealing with our text and the other

with our image. To recap: in previous examples, we’ve only had to use one IBOutlet,

but in this example we will need two. One IBOutlet will be used for our text (something

like “Hello World, I’m back!”), and one will be used for the top layer image of Kera

(Figure 5–3).

Keeping inventory of what we’ll be using: 1) the background image of the stairs, 2) the

top-layer image of my wife, and 3) the text of what she will be “saying” upon her return

to the campus.

We now know that we need two IBOutlets. We can start by focusing inside the

brackets that follow @interface testViewController : UIViewController. Our code will

need to appear as follows.

#import <UIKit/UIKit.h>

@interface testViewController : UIViewController {
IBOutlet

CHAPTER 5: Buttons & Labels with Multiple Graphics 101

IBOutlet
}

@end

As you can see, we have no code here yet—just placeholders, but we know what’s

coming: two IBOutlets. We now know for what purpose each will be utilized; one will

produce text for what Kera says, and the other will produce a picture that is

superimposed on top of the background.

We know that when we shoot text out onto the iPhone or iPad screen we use the

UILabel class. This class draws multiple lines of static text. Therefore, go ahead and

type in UILabel next to your first IBOutlet, as shown in the following code. Now,

consider what we will need for the second IBOutlet. We know that we want to impose

the top layer image as shown in Figure 5–3.

A good idea here would be to use the UIImageView class because it provides us with

code written by Apple that can display either single images or a series of animated

images. With this said, enter the UIImageView class next to your second IBOutlet.

#import <UIKit/UIKit.h>

@interface testViewController : UIViewController {
IBOutlet UILabel
IBOutlet UIImageView
}

@end

Pointers
Now that we have the means to push text and an image onto the screen of the

iPhone/iPad, we need to specify which text and which image. We sometimes use

predefined code, created by the folks at Apple, that does what it does by virtue of

referencing or pointing to our resources—that is, our text and images. As you are

beginning to see, this is the context in which we will be using pointers.

In previous examples, we told you not to worry about that star thing (*). Well, now it’s

time to take a look. Let’s focus for a moment on how these (*) things—pointers—do

what they do. At the end of the chapter, in “Digging the Code,” we’ll get into it even

more, but here’s an introduction.

We need an indirect way to get our text and picture onto the screen. We say “indirect”

because you will not be writing the code to accomplish this—you will use Apple’s code to

retrieve these. You will call up pre-existing classes, and then these classes will call up your

text and your image. That is why we say this is an indirect means of obtaining your stuff.

Consider this little analogy. Suppose you make a citizen’s arrest of a burglar who broke

into your house. You call the police and when they arrive, you point to the criminal and

say, “Here’s the thief!” Then, the policeman, not you, takes the criminal away to deal

with the accused.

CHAPTER 5: Buttons & Labels with Multiple Graphics 102

Now, you want to display text on your iPhone/iPad. You call UILabel, and when it

“arrives,” you point to your words and say, “Here’s the text.” Then, the UILabel, not you,

deals with the text.

You will do likewise when you want to display an image on your iPhone/iPad. You call

UIImageView, and when it “arrives,” you point to your photograph or picture and say,

“Here’s the image.” Then, the UIImageView code, not you, deals with the picture.

Perhaps you’re asking yourself what the names of these pointers are, or need to be. The

good news is that you can give them whatever names you want. Let’s point the UILabel

to *label and the UIImageView to a pointer with the name of *uiImageView.

#import <UIKit/UIKit.h>

@interface testViewController : UIViewController {
IBOutlet UILabel *label;
IBOutlet UIImageView *uiImageView;
}

@end

Some of the clever people at Apple describe their reasoning for creating and coding

IBOutlets as giving a hint to Interface Builder as to what it should “expect” to do when

you tell it to lay out your interface.

 One IBOutlet whispers into Interface Builder’s ear that the UILabel

class is to use text indicated by the *label pointer.

 The other IBOutlet whispers into Interface Builder’s ear that the

UIImageView class is to use the image referenced by the *uiImageView

pointer.

But we’re not done yet. After we tell Interface Builder what to expect, we need to tell

your Mac’s microprocessor—through the compiler—that an important event is about to

descend upon it. One of the most important things your compiler wants to know is when

an object is coming its way. This is because objects are independent masses of

numbers and symbols that weigh upon the microprocessor and put significant demands

on it, and so the processor needs to be told by you, the programmer, when it needs to

catch the object and put it into a special place in memory.

Objects can come in a wide variety of flavors—as conceptually different as bird, guru,

soccer, and house. So, to allow the processor to handle its job when the time comes,

we need to inform it that each object we will be using in our code has two specific and

unique parameters or features: property and type.

Don’t freak out! Providing this information is really easy, and it consists of two steps.

The first step is what we just covered: we give the compiler a head’s up about objects

we will be using by defining their two specific and unique features, property and type.

The second step is this: when the microprocessor receives this data, it utilizes this

information by synthesizing it.

CHAPTER 5: Buttons & Labels with Multiple Graphics 103

To restate:

1. First, we declare that our object has a property with a specific type.

2. Second, we instruct the computer to implement—or synthesize—this

information.

We tell the compiler about our object by declaring it, including specific descriptive

parameters. Then, we give the compiler the go-ahead to implement our object by telling

it to synthesize the object.

But how do we do this declaring and implementing? We use tools in our code called

directives. We signal directives by inserting “@” before stating our directive. This means

that to declare what property our object has we put the “@” symbol in front of the word

“property” to make it a property directive: @property.

When we see @property in our code, we know it’s a property directive. Similarly, when

we want to tell the compiler to process and synthesize, that is to do its stuff on our

object, we put the “@” symbol in front of our synthesis statement: @synthesize.

Saying the exact same thing we said before, but translated into geekspeak, we get:

1. The @property directive declares that our object has a property with a

specific type.

2. The @synthesize directive implements the methods we declared in the

@property directive.

Easy, huh? OK, just two more points now, and then we’ll get back to our code.

The first elaboration I want to make regarding step 1 is that we also need to specify

whether this property will be read-only or read-write. In other words, we need to specify

whether it will always stay the same or whether it can mutate into something new. In

geekspeak, we call this “mutability.” For the most part, we will use Apple code to handle

the mutability of properties with respect to our objects.

Properties: Management & Control
In order to instruct the Apple code to handle the mutability property, we’ll designate the

property as “nonatomic.” To apply this term meaningfully, try contrasting “nonatomic”

with “atomic.” Recall that “atomic” means powerful, and it implies the ability to go into

the microscopic world and to effect change. Therefore, “nonatomic” must mean not-so-

powerful, more superficial, and unmanipulable.

If we designate a property (such as mutability) as nonatomic, we are basically saying,

“Apple, please handle our mutability and related stuff—I really don’t care. I’ll take your

word for it!” At a later date, you may want to take direct control of this property, and

then you would designate it as “atomic.” At this time, though, we will use the more

relaxed approach and let Apple handle the microscopic business. So, when it’s time to

choose one or the other designation, just use nonatomic!

CHAPTER 5: Buttons & Labels with Multiple Graphics 104

The second elaboration I want to make regarding Step 1 deals with memory
management. We need to address the issue of how to let the iPhone/iPad know, when

we store an object, whether it shall be read only or read-write. In other words, we need

to be able to communicate to the computer the nature of the memory associated with

an object—in terms of who gets to change it, when, and how. Generally speaking, we

will want to control this information, and keep it in our own hands—that is, to retain it. As

you move through the remaining exercises in this book, we are going to keep the code

in our own hands; we will retain the right to manage our memory.

We can summarize the addition of these details to the property directives, and how we

would modify the code, as follows:

 The @property (nonatomic, retain) directive says the following:

 Mutability should be nonatomic. Apple, please handle this!

 Memory Management is something we want to retain. We will

maintain control.

 The @synthesize directive implements the methods we declared in the

@property directive.

We have one more layer of complexity to add to this mix. We add those directives in two

different files. We define the @property directive with a statement in the header file, and

then we implement it by using the @synthesize directive in our implementation file.

 Header File: helloWorld_005_ViewController.h

 @property (nonatomic, retain) “our stuff”

 Implementation File: helloWorld_005_ViewController.m

 The @synthesize “our stuff” defined in @property.

We will need to write two of these for each of our two IBOutlets: one for the text, and

the other for the picture. And, because we’re still in the header file, we need to repeat

this when we synthesize it in the implementation file.

OK, time to go ahead and enter your code:

#import <UIKit/UIKit.h>h

@interface testViewController : UIViewController {
IBOutlet UILabel *label;
IBOutlet UIImageView *uiImageView;
}

@property (nonatomic, retain)
@property (nonatomic, retain)

@end

Yes, that seemed like a lot of explanation just to say: @property (nonatomic, retain).

Remember, though, that we’re deep in the trenches … we’re telling the computer that

CHAPTER 5: Buttons & Labels with Multiple Graphics 105

we want Apple to take care of mutability, but that we want to retain control of the

memory. Later, we will synthesize these commands in the implementation file, for both

IBOutlets.

IBOutlets? Remember them? Oh yeah—let’s return to that part of your program.

The IBOutlet for the text is UILabel with pointer *label, so enter the code for the text:

IBOutlet UILabel *label;

The result will look like this:

#import <UIKit/UIKit.h>

@interface testViewController : UIViewController {
 IBOutlet UILabel *label;
 IBOutlet UIImageView *uiImageView;
}

@property (nonatomic, retain) IBOutlet UILabel *label;
@property (nonatomic, retain)

@end

The IBOutlet for the picture is UIImageView with pointer *uiImageView, so enter the code

for the picture:

IBOutlet UIImageView *uiImageView;

The result will look like this:#import <UIKit/UIKit.h>

@interface testViewController : UIViewController {
 IBOutlet UILabel *label;
 IBOutlet UIImageView *uiImageView;
}

@property (nonatomic, retain) IBOutlet UILabel *label;
@property (nonatomic, retain) IBOutlet UIImageView *uiImageView;

@end

Are we done with the header file yet? Not quite. We need to add our IBActions. We’ve

handled our IBOutlets, both of them, but now we’re going to utilize an IBAction for

something we really need here. Can you guess?

Adding IBActions
Yes, we need a button! So let’s make an IBAction for a button. We could “go deep”

again, into the code for the IBAction, but this has been a challenging section. Let’s save

the technical part of this element for “Digging the Code.”

CHAPTER 5: Buttons & Labels with Multiple Graphics 106

Meanwhile, just enter the new code that is highlighted here. See if you can anticipate the

functions of the different pieces—or parameters—and we’ll see how close you are later.

#import <UIKit/UIKit.h>

@interface testViewController : UIViewController {
 IBOutlet UILabel *label;
 IBOutlet UIImageView *uiImageView;
}

@property (nonatomic, retain) IBOutlet UILabel *label;
@property (nonatomic, retain) IBOutlet UIImageView *uiImageView;

- (IBAction)buttonPressed:(id)sender;

@end

Before exiting, copy (C) the IBAction line:

 - (IBAction)buttonPressed:(id)sender;

and save your work by entering S. Of course, saving your work as you go is always a

good idea!

Do you recall the reason for doing this? We just copied the IBAction method (for our button)

so you can paste it into the implementation file, to save time as we always like to do.

OK, we’re done with our header file! Go out now, and take a break.

Coding the Implementation File
Now that you’re back from your much deserved break, let’s continue. It’s time to open

up the helloWorld_005ViewController.m implementation file.

1. Use V to paste the line of code that you copied at the end of the

previous section:

- (IBAction)buttonPressed:(id)sender;

The result should look like this:

#import "helloWorld_005ViewController.h"

@implementation helloWorld_005ViewController

- (IBAction)buttonPressed:(id)sender;

In the header file, we told the computer that we are going to do some

action(s) when a button is pressed. Now that we’ve pasted this set of

commands into the implementation file, we replace the “;” with a set of

brackets. It is inside these brackets that we will tell the computer what

needs to be implemented when the button is pressed.

CHAPTER 5: Buttons & Labels with Multiple Graphics 107

#import "helloWorld_005ViewController.h"

@implementation helloWorld_005ViewController

- (IBAction)buttonPressed:(id) sender{

}

2. Before we get into the code that will spring into action each time the

user presses the button, we need to take care of the second half of the

synthesis we began in the previous section. Do you remember how we

defined our @property directive with a statement in the header file, and

how we left the corresponding @synthesize directive for our

implementation file? Specifically, we had to have one @property

directive for the UILabel and another for the UIImageView, as follows:

@property (nonatomic, retain) IBOutlet UILabel *label;
@property (nonatomic, retain) IBOutlet UIImageView *uiImageView;

What this means is that we merely need to have an @synthesize

statement for both the pointers, one for the UILabel and another for the

UIImageView. We named the pointer for the UILabel named label, and

we named the pointer for the UIImageView named uiImageView.

We can put them both on the same line, so let’s do it:

#import "helloWorld_005ViewController.h"

@implementation helloWorld_005ViewController
@synthesize label, uiImageView;

(IBAction)buttonPressed:(id) sender{

}

We’ve used a simple overlay of photograph and text to get you partially familiarized with

a terribly difficult concept. Hey—if your head is spinning, don’t feel bad! Wrapping your

brain around pointers, objects, and synthesis is not trivial. Unfortunately, there is no way

around it in an iPhone/iPad app programming lesson. In the class in which I taught this

exact assignment, there were a couple of computer science students with backgrounds

in C++, C#, and Java who had a more difficult time than some of the liberal arts students

in the class who just faithfully accepted that:

 The @property directive declares that our object has a property with a

specific type.

 The @synthesize directive implements the methods we declared in the

@property directive.

The advanced students had so much stuff in their heads that it took some of them

longer than the newbies to accept these two statements. We’ll be going over these

points again and again, so let’s move on for now. These ideas can ferment in the back of

your brains, and tomorrow these will make more sense.

CHAPTER 5: Buttons & Labels with Multiple Graphics 108

Providing for Synthesis
When the user runs this app and presses the button, the image of my wife, Kera, will

appear instantly on top of the background staircase. She is going to “say” something via

the embedded text. How about, “Hello World, I’m back!”

1. To accomplish this, we need to associate the label instance variable

with a text property assigned with our desired text as follows:

#import "helloWorld_005ViewController.h"

@implementation helloWorld_005ViewController
@synthesize label, uiImageView;

- (IBAction)buttonPressed:(id) sender{
label.text = @"Hello World, I'm back!";
}

2. Having completed the task of coding for the text, we now need to add

the code that will cause the image of Kera to appear. For this, we will

use a class method called imageNamed that will display the kera.png

image, the top-layer photo we prepared at the beginning of this project.

Enter the line bolded in the following code, immediately under the code

you just entered for the text.

#import "helloWorld_005ViewController.h"

@implementation helloWorld_005ViewController
@synthesize label, uiImageView;

- (IBAction)buttonPressed:(id) sender{
label.text = @"Hello World, I'm back!";
UIImage *imageSource = [UIImage imageNamed: @"kera.png"];
}

NOTE: : On the corresponding video segment, instead of entering this line of code, one of us
inadvertently typed:

“ui”Image *imageSource = [UIImage imageNamed: @"kera.png"];

This, of course, caused an error. We went back and subsequently changed it to reflect the
correct code as just shown. For fun, however, we kept this mistake on the video to illustrate how
to see a “fail,” go back, find it, and correct it.

3. Our pointer’s name for the image is uiImageView, but right now the

kera.png image file is in UIImage’s assigned pointer called imageSource.

We need to assign this pointer to the image of uiImageView as shown in

the following code:

#import "helloWorld_005ViewController.h"

CHAPTER 5: Buttons & Labels with Multiple Graphics 109

@implementation helloWorld_005ViewController
@synthesize label, uiImageView;

- (IBAction)buttonPressed:(id) sender{

label.text = @"Hello World, I'm back!";

UIImage *imageSource = [UIImage imageNamed: @"kera.png"];
uiImageView.image = imageSource;
}

If this doesn’t quite make sense at the moment, that’s OK. There sure

are a lot of entities with “image” as part of their name, object, or

association, and it is confusing. We’ll be examining this topic more

thoroughly in Chapter 7, so, right now, don’t lose any sleep over it!

Figure 5–8 illustrates how your code should appear at this point.

Figure 5–8. This is how your code should appear, after you’ve completed the Synthesize and Button actions.

Now save your work by entering S, and give yourself a pat on the

back. You have worked through the header and implementation files at

a much deeper level than in previous chapters. Even though you have

walked through some of these technical functions before, you braved

them again while remaining open to a deeper understanding. Also, you

tackled a very difficult concept: synthesis.

CHAPTER 5: Buttons & Labels with Multiple Graphics 110

Interface Builder: Making the Connections
Our code is finished. Now, we just need to place all of our images into the Resources

folder, assign the icon, and then move to Interface Builder and hook things up. No
problem!

1. So that the pointers that you have just coded have something to which

to refer, you need to place some files at the appropriate address.

Therefore, drag your first image (i.e., bottom layer photo) into the

Resources folder.

NOTE: : When the folder highlights, it means the object is selected. Focus on where your cursor
is—that is the point at which the folder will react. Once it highlights, drop the object in by
releasing the mouse.

2. After dropping the image into the Resources folder, you will be prompted

to define whether the image will always be associated with its position

on your desktop or will be embedded with the code and carried along

with the application file, as shown in Figure 5–9.

We want it to be embedded, of course, so click the “Copy the items into

destination’s group folder” box. Also, click on the “Recursively create

groups for any added folders” box. Then click Add (or press Enter).

Figure 5–9. Click in the “Copy items into destination group’s folder (if needed)” box to ensure that all related
images follow along with the code. Also, click in the “Recursively create groups for any added folders” box.

3. Because these actions need to be applied to all three of our images,

move the other two into the “Resources” folder just as you did this one.

CHAPTER 5: Buttons & Labels with Multiple Graphics 111

4. We created an icon image file called icon.png. We want this one to show

up on the iPhone/iPad, rather than the generic one. To do this, double-

click on the info.plist file in the Resources folder, as shown in Figure 5–10,

and then double-click on the Icon file Value cell. In that space, enter the

name of your icon file: icon.png. Now, save your work.

Figure 5–10. Associate your custom icon with the info.plist.

The plist (property list), by the way, is another area that we will explore

later. For now, we’re ready to move on to Interface Builder in order to

connect and associate various pieces of our puzzle.

5. Remember that our top-layer image will be placed over the base layer

when the user pushes the button. Therefore, we want to handle the base

layer in the same manner as in the previous chapter when you used a

wallpaper image of yourself. Scroll down in your Library to the Cocoa

Touch item folder and locate the Image View icon. Drag one onto your

View frame. Refer to Figure 5–11.

Figure 5–11. Open Interface Builder and drag an Image View onto the View frame.

CHAPTER 5: Buttons & Labels with Multiple Graphics 112

6. We want to connect 320_480_stair.png to our Image View so that it will

appear. Go to the Information tab of the Image View Attributes window,

open the drop-down window, and select the image as shown in Figure

5–12.

Figure 5–12. Assign the 320_480_Stair.png file to the Image field at the top of the Image View Attributes
frame.

7. Earlier, we decided that when the user presses the button, Kera Lewis

should appear and announce, “Hello World, I’m back!” We decided that

the method we would employ would be a label instance variable—with a

text property assigned with “Hello World, I’m back!” as follows:

#import "helloWorld_005ViewController.h"

@implementation helloWorld_005ViewController
@synthesize label, uiImageView;

- (IBAction)buttonPressed:(id) sender{
label.text = @"Hello World, I'm back!";
UIImage *imageSource = [UIImage imageNamed: @"kera.png"];
uiImageView.image = imageSource;

}

CHAPTER 5: Buttons & Labels with Multiple Graphics 113

So, drag out a label that will be our instance variable, and we will assign

the text “Hello World, I’m back!” onto the Base View. When you put it

there, repeat the way that you adjusted the size in the earlier

assignments, which is to widen it so it can fit this text. And, as you’ve

done before, center the text and change its color to white in the

Properties frame.

We want the picture and the text to appear when a button is pressed—so

we need a button. Go ahead and drag one onto your base layer, and, in

its title field enter “Guess who’s on campus?” as shown in Figure 5–13.

When users see a button asking this question, they will be compelled to

press it. When they do, we want Kera to appear saying, “Hello World,

I’m back!”

Figure 5–13. Drag a Button onto the background layer “View” frame.

You may want to adjust the size of the button as we’ve done before. Of

course, we don’t want the button to be like some blob on top of the

picture; we want it to look pretty cool and show some of the underlying

image. While still in the Image View Attributes window, scroll down and

shift the Alpha slider to about 0.30.

CHAPTER 5: Buttons & Labels with Multiple Graphics 114

8. Again, we’re using two IBOutlets, and each category “whispers”

something to Interface Builder. One says that we want a UILabel class

to use text to which the pointer *label points; the other says that the

UIImageView class will put up an image located at a place to which the

pointer *uiImageView points.

Well, what have we done so far in Interface Builder? We’ve installed the

background image and inserted a button that will trigger these two

IBOutlets. Now, recall that, earlier, you entered

 - (IBAction)buttonPressed:(id) sender

in the implementation file. This line, in fact, invoked our two friends, the

label, with

label.text = @"Hello World, I'm back!";

and the image, with

UIImage *imageSource = [UIImage imageNamed: @"kera.png"];

In fact, while working in the header file earlier, you set this all up by

declaring the label with

IBOutlet UILabel *label

and declaring the image with

IBOutlet UIImageView *uiImageView

Then, you synthesized it correctly with your two “@property” statements

for the label:

@property (nonatomic, retain)

IBOutlet UILabel *label

and for the image:

@property (nonatomic, retain)

IBOutlet UIImageView *uiImageView

Also, you synthesized it with

@synthesize label, uiImageView

So, that means we’re ready for action. Because we’ve just created the

button that will call our two friends, all we need to do now is create the

image and the label, then associate them with the appropriate pieces of

the code.

CHAPTER 5: Buttons & Labels with Multiple Graphics 115

When the button is pressed, the kera.png image has to arrive. On what

does it arrive? It’s carried onto the screen by way of an Image View.

Therefore, drag an Image View onto the screen, as shown in Figure 5–14.

Figure 5–14. From the Cocoa Touch—Data Views tab, select and drag an Image View onto your work space.

9. After you have dragged an Image View onto the screen, we want to

place it flush to the bottom edge of the iPhone/iPad screen. We don’t

want the image floating in the middle of the screen, but instead to

appear as if it’s projecting from the bottom. Once you’ve dragged the

image to the screen, just let it go. We have not yet configured the size or

placement of the image. That’s next!

Go to the Image View Application dialogue frame and then click on the

View tab. Here, you will see that the alignment option of Center is

checked by default. We want to change that to Bottom, as illustrated in

Figure 5–15.

Before moving onto the next step, take a minute to align the label and

button with one another, and in context to the center of the screen.

CHAPTER 5: Buttons & Labels with Multiple Graphics 116

Figure 5–15. Position the UIImageView onto the View screen, flush with the bottom.

10. As depicted in Figure 5–16, you now want to connect the File’s Owner

to the Label. You’ll do this just as you’ve done in the past—by

+dragging from your File’s Owner icon to the button.

Figure 5–16. Select the File’s Owner icon to begin establishing the various connections.

11. Once you get to the label, select the Label selection on the black drop-

down menu, as shown in Figure 5–17.

CHAPTER 5: Buttons & Labels with Multiple Graphics 117

Figure 5–17. Once you get to the button, select the “label” option from the pull-down menu.

In earlier exercises, you blindly connected to whichever selection I

asked you. However, as I mentioned before, here in Chapter 5 we’re

digging a little deeper into the code. So without getting completely

buried in compiler details, I just want you to get a taste of some

beautiful aspects of the code as it makes selections and connections in

Interface Builder. Earlier, we associated the UILabel with a pointer

called *label. We also made a pointer called *uiImageView that directed

the UIImageView:

#import <UIKit/UIKit.h>

@interface testViewController : UIViewController {
IBOutlet UILabel *label;
IBOutlet UIImageView *uiImageView;
}

@end

So, we connect the File’s Owner to the User Interface called label.

There’s actually a lot more that goes on here, but, for now, it’s important

that you see how we associate the label and the image view by virtue

of connecting them with the previous lines of code.

12. After selecting the “label” option, perform another drag from the

Button to your File’s Owner as shown in Figure 5–18, and then select

the buttonPressed option. Again, in the past we just skipped over what

this meant, but let’s see if we can get some ganglia to twitch with

excitement as we consider these connections.

CHAPTER 5: Buttons & Labels with Multiple Graphics 118

Figure 5–18. Select the buttonPressed option.

Final Step: File’s Owner & uiImageView
Earlier, you wrote the following code:

#import <UIKit/UIKit.h>

@interface testViewController : UIViewController {
IBOutlet UILabel *label;
IBOutlet UIImageView *uiImageView;
}

@property (nonatomic, retain) IBOutlet UILabel *label;
@property (nonatomic, retain) IBOutlet UIImageView *uiImageView;

- (IBAction)buttonPressed:(id)sender;

@end

Before you exited, I suggested that you copy the line

 -(IBAction)buttonPressed:(id)sender;

Then, you opened your implementation file and pasted this line in place. You replaced

the semicolon with brackets, within which you inserted all the stuff you wanted the

button to do when pressed by the user.

#import "helloWorld_005ViewController.h"

@implementation helloWorld_005ViewController
@synthesize label, uiImageView;

- (IBAction)buttonPressed:(id) sender{
label.text = @"Hello World I'm back!";
UIImage *imageSource = [UIImage imageNamed: @"kera.png"];
uiImageView.image = imageSource;

}

CHAPTER 5: Buttons & Labels with Multiple Graphics 119

In a broad sense, I want you to see that the two items to be invoked, the Label and the

Image, are inside buttonPressed, and that you connected the stuff inside the brackets to

the Button.

We’ve already connected the Label, so all we have left to do is to connect the File’s

Owner with the second of the two items: our picture. Here we go …

1. We now need to drag from the File’s Owner icon to the Image View

and connect it to the uiImageView option in the drop-down menu, as

shown in Figure 5–19. Save your work (S); quit Interface Builder (Q).

Figure 5–19. Connect the File’s Owner icon with the uiImageView in the pull-down menu.

2. Enter O to run the code.

3. Press the button that reads “Guess who’s on campus?” As shown in

Figure 5–20, my lovely wife, Kera, magically appears, and she says,

“Hello World, I’m back!”

Figure 5–20. The top-layer image and text appear when the button is pressed.

CHAPTER 5: Buttons & Labels with Multiple Graphics 120

In Figure 5–21, you can see that the iPad view of the iPhone Simulator correctly displays

our base image. The button is just begging for the user to push it … to find out who is

on campus.

Figure 5–21. The iPad Simulator displays the iPhone-sized images in sharp detail.

CHAPTER 5: Buttons & Labels with Multiple Graphics 121

As you can see in Figure 5–22, the same image is portrayed at the “2x” enlargement –

which is actually four times the area. Note the button in the lower right now reads “1x”,

for the only zooming option open to the user now is to return to the original size that was

fitted, for the purposes of this exercise, primarily for the iPhone (320 x 480 pixels).

Figure 5–22. By pressing the “2x” button in the lower right-hand corner, you can see the Simulator gives this
expanded view. Note that the button label changes to give the reducing option: “1x.”

CHAPTER 5: Buttons & Labels with Multiple Graphics 122

The final image for this exercise, Figure 5–23, shows the enlarged version of the

overlay with accompanying text. Kera announces her return to university life at the

click of a button.

Figure 5–23. The iPad image of the resultant overlay of views: “Hello World, I’m back!”

Congratulations! This was your most demanding program so far. We delved into several

technical areas in the code, but you survived. If you’d like, we can dig even further. Or, if

you’d rather not, skip the “Digging the Code” section and proceed to the next chapter.

Digging the Code
In this section, let’s zoom into some of the key components that we encountered earlier

in this chapter. I want to talk a little more about IBOutlets and IBActions – specifically

how these include keywords … and even quasi-keywords. We’ll also touch on pointers

and their relationship to addresses in the code.

IBOutlets and IBActions
Earlier, we worked with IBOutlet and IBAction keywords, and now we’re going to talk

about a couple of related concepts. Strictly speaking, these are considered by many

programmers to be “quasi-keywords.”

CHAPTER 5: Buttons & Labels with Multiple Graphics 123

The Appkit of Objective-C has converted original C language preprocessor directives,

such as #define, into usable preprocessor directives. In geekspeak, we would

pronounce this as “pound-define.”

NOTE: In the US, the “#” sign is often called the “pound” sign, especially in Objective-C and
other programming contexts. In the United Kingdom, it is referred to as the “hash” character.
Many iPhone/iPad developers have recently begun to refer to the #define preprocessor
directive simply as the “define directive.”

The #define preprocessor directive tells the computer to substitute one thing for

another. That’s an easy concept, right? For example, if I were to program the computer

to substitute “100” every time it sees an instance of your name, our code in C would

look like this:

#define yourName 100

This would tell the computer to substitute “100” each time it processes yourName – a

variable that recognizes instances of your actual name.

Back to Xcode now, and our topic. In this context, the IBOutlet and IBAction quasi-

keywords aren’t really defined to be anything. In other words, they don’t do anything

substantial for the compiler, which is the core of the computer.

Quasi-keywords are flags, though, and they are important in the communication with the

Interface Builder. When it sees the IBOutlet and IBAction quasi-keywords, it gets some of

its internal code ready to perform specific tasks. It gets itself ready to deal with instance

variables and all the hooks and connections that we make in that programming arena.

More About Pointers
It’s difficult for many programming students to understand the concept of “pointers”—

also sometimes known as the concept of indirection. It’s not easy to explain this idea

because it’s one of the most sophisticated features of the C programming language.

Earlier in this chapter, I presented the analogy of seeing a criminal doing something, and

then calling the police and pointing the police to where he is—so they, not you, can arrest

the criminal. This analogy works for many students, but now let’s go a little deeper.

If you were to ask a Computer Science professor what a “pointer” is, he would probably

say something like “Pointers hold the address of a variable or a method.”

“The address?” you ask. Well, consider this new analogy in the way of explanation.

Have you ever seen a movie in which a detective or some frantic couple is traveling all

over the place, looking for clues to the treasure map, or the missing painting, or the

kidnapped daughter? Sometimes they will spot a fingerprint, or a receipt, or even an

envelope with a piece of paper containing a cryptic message—and these take the

people one step closer to their goal – of finding the missing objects themselves.

CHAPTER 5: Buttons & Labels with Multiple Graphics 124

We can call these pointers; they indicate the next place to go – for the solution of the

given problem. They don’t necessarily give the ultimate address, at which everything is

handled and resolved, but they give us intermediate addresses or places to continue

our work.

Thus, what the professor of Computer Science means is that pointers do not actually

contain the items to which they direct us; they contain the locations within the code—

the addresses—of the desired objects or actions or entities. This important feature

makes the C-family of languages very powerful.

This simple idea makes it very efficient to turn complex tasks into easy ones. Pointers

can pass values to types and arguments to functions, represent huge masses of

numbers, and manipulate how we manage memory in a computer. Many of you are

perhaps thinking that pointers are similar to variables in the world of algebra. Exactly!

In our first analogy, a pointer enabled an unarmed citizen to arrest a dangerous criminal

by using indirection—that is, by calling the police to come and solve the problem. (Yes,

the term “indirection” is an odd choice given that we are actually being directed toward

the goal.)

Consider the following example where we use a pointer to direct us to the amount you

have in your bank balance. To do this, let’s define a variable called bankBalance as follows:

int bankBalance = $1,000;

Now, let’s throw another variable into the mix and call it int_pointer. This will allow us

to use indirection to indirectly connect to the value of bankBalance by the declaration:

int *int_pointer;

The star, or asterisk, tells the family of C-languages that our variable int_pointer is

allowed to indirectly access the integer value of the amount of money in our variable

(placeholder): bankBalance.

To close, I want to remind you, and to acknowledge, that our digging around here is not

an exhaustive or rigorous exploration into these topics … just a fun tangent into some

related ideas. At this point, there is no reason for you to be bothered if you don’t fully

understand pointers. Seeds have been planted and that’s what counts for now!

In the Chapter Ahead
In Chapter 6, we will move into the next level of complexity: switch view applications. We will

examine how a team of characters or roles within your code will work together to direct an

outcome, or series of outcomes, that will give the user the sense of seamless flow.

You will learn about delegators and switch view controllers, classes and subclasses, and

“lazy loads.” We will get into the nitty-gritty of the .xib files, examine the concept of

memory deallocation, and learn about imbedded code comments. It’s getting curioser

and curioser …

Onward to the next chapter!

125

125

 Chapter

Switch View
with Multiple Graphics
In this chapter, we will explore one of the most remarkable aspects of the iPhone: its
unique ability to switch seamlessly between one view and another. We have all seen the
wonderful iPhone and iPad ads on television, in which a person’s fingers direct an
amazing flow of vivid images, within interactive applications, and cause one view to just
slide or roll directly into another, giving the impression of performance art. The concept
behind this is what Apple calls Switch View methodology. As a professor of computer
science, I have learned of several pitfalls regarding the teaching—and learning—of the
Switch View methodology.

I intend to take advantage of the interesting variety of results that I have experienced as I
have presented my students with some of the shortcuts those smart people at Apple
have given us. As I introduce new concepts and techniques, I will be contrasting several
tried-and-true pathways to the goal of creating an app with the capabilities I’ve
described. Specifically, you will become familiar with the Tab Bar application template; it
creates an Xcode SDK that lays everything out for a simple tab bar look and feel. For our
goal of coding switch views with multiple graphics, you will barely have to program
anything—the boilerplate code within the template does most of the work!

Ironically, this “easier and softer way” was a disaster for some of my students. I now
realize that when too many shortcuts are taken, without due exploration of the
underlying code, some programming students get confused. I knew that implementing
switch views in Objective-C was by no means a trivial undertaking, and I had originally
supplied my class with a way of simply pulling levers via the Tab Bar Application
template. When this didn’t have the positive results I had hoped for, I went back to the
drawing board.

I held a Saturday workshop in which I divided the lesson into three sections—each of
which would be a variation on my original plan. Each of the three alternative methods
would use the same two pictures as depicted in Figure 6–1.

6

CHAPTER 6: Switch View with Multiple Graphics 126

NOTE: One thing you may have noticed already is that this is a chapter. This is due to the
point I just made – that this is actually a three-in-one chapter. Because it really will be instructive to
show you the long, detailed way; the short, no-brainer way; and the combination way … to meet
the same basic objective, I decided to keep this all in the same chapter. Nevertheless, I expect you
to pace yourself … Please treat Chapter 6 as a long sub-chapter, followed
by a short sub-chapter, then followed by a medium sub-chapter.

As you can see, there are three ways in which we will accomplish our switch view
objectives in this chapter. In each scenario, we will start with the first view – a photo of my
grandfather as a handsome young bachelor, and then switch to the second view – of my
grandfather and grandmother, both of whom raised me as their son. When I was a child,
he was a larger than life figure, my first hero, and thus I’ve labeled this exercise with the
nickname of another “smart guy,” by which I apparently called him on occasion: Einstein.

The first way we will accomplish the switch view (left) has the "YOU" there because you,
my good friend, will be writing the code. Note that the buttons/tabs are a bluish color,
which is how you will create them.

The second way (middle) is represented with an icon of XCODE that takes us from the
one picture to the next. This pathway is where you build the app using the no-brainer
Tab View Application template. Note that the tab keys are not bluish in color, but black,
since that is the default in the boilerplate code within this utility.

The third way to switch the views (right) represents a combination of the two other
approaches. Note that we will use the ready-made black tabs, but there will be areas
that you will personally build and customize. This path is a bridge approach, a morph
between YOU and Xcode.

So that was how we proceeded on that Saturday morning workshop, and it worked like
a charm. One more thought about this three-way agenda: every student still expressed a
preference for a given method, but there was unanimous appreciation for the
presentation of all three in a side-by-side lesson.

CHAPTER 6: Switch View with Multiple Graphics 127

Figure 6–1. Left, the “long way”; middle, the “no-brainer”; right, the “combination”

Before We Begin
There are three more points to note before we begin:

Point 1: Don't become too comfortable. Something I realized on the Saturday
sessions was that students would gloss over steps they thought were the same, but
which were slightly different. So please pay careful attention to steps that may seem
familiar to you.

Point 2: Get over using the same pictures. After the weekend was over, one student
complained, "Dr. Lewis, the pictures are boring. Can't we use our material?" My response
to her was, "We're all using the same 'boring' pictures so you can better focus on the
mechanics of how these three approaches to creating Switch Views work.” If we keep
these two pieces of the puzzle nice and consistent, then we’ll be able to stay on task.

Point 3: The three versions and their screencasts. It may be instructive to first see me
go through all three methodologies on three separate screencasts. I will walk you
through them here in detail, explaining parts that I purposefully skip over in the
screencasts for the sake of expediency. Go ahead, then, and check out the three videos.
I will meet you back here. Note also the “Correct Code” links for each exercise provided
here for your future reference:

1. From Scratch: einSwitch_001

Video: http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_
Movies/006_einSwitch_001.htm

Correct Code:
http://www.rorylewis.com/cCode/006a_einswitch01.zip

http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_
http://www.rorylewis.com/cCode/006a_einswitch01.zip

CHAPTER 6: Switch View with Multiple Graphics 128

2. Tab-Bar: einSwitch_002

Video: http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_
Movies/007_einSwitch_002.htm

Correct Code: http://www.rorylewis.com/xCode006b_enswitch02.zip

3. Custom Tab-Bar: einSwitch_003

Video: http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_
Movies/008_einSwitch_003.htm

Correct Code: http://www.rorylewis.com/xCode006c_enswitch03.zip

OK … take a deep breath, turn off your cell phone, and calm yourself. The next part of
our journey will earn you some bragging rights within the Xcode community. Soon
enough, you’ll be able to say, “Yeah, I code in Objective-C to perform switch views. I
can do it the long way, the short way, or by customizing templates. Move aside!”

einSwitch_001—a Window-Based Application
Go back for a moment, if you will, and recall the analogy of the automobile showroom,
with six different body styles. As you see from this heading, we are hopping into one of
our more versatile and sturdy vehicles: the window-based application. Although we will
drive to the same destination in each section of this three-part chapter, we will do a little
car hopping. Don’t let this distract you; instead, let this be an adventure in test-driving
different models.

Preliminaries
As always, let us start off with a clean desktop. Then we will prepare for this first
example by adding four items to our desktops to join the ever-present Macintosh HD
icon: three .png image files and a text file. As shown in Figure 6–2, download these from
the zip file located at http://www.rorylewis.com/xCode/006_Chapter
6h_EinSwitch01.zip. Once you have downloaded the zip file, you may need to go to
your Downloads folder.

Figure 6–2. Your downloaded zip file will most likely default to your Downloads folder.

http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_
http://www.rorylewis.com/xCode006b_enswitch02.zip
http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_
http://www.rorylewis.com/xCode006c_enswitch03.zip
http://www.rorylewis.com/xCode/006_Chapter

CHAPTER 6: Switch View with Multiple Graphics 129

After you have located the zip file, drag it onto your desktop, as shown in Figure 6–3.
Double-click on the file to access the 006_Chapter_6hEinSwitch01 folder and extract the
four items onto your desktop, as shown in Figures 6–3 and 6–4.

Figure 6–3. Extract 006_Chapter_6hEinSwitch01.zip from your Downloads folder and move it to your desktop.

Figure 6–4. Make a note of the four files located in the 06_Chapte_6hEinSwitch01.zip folder.

NOTE: I changed the desktop image in Figures 6–3 and 6–4 because the dark background
blended into the black background inside the folder. Don’t let this confuse you.

CHAPTER 6: Switch View with Multiple Graphics 130

The first two items are the black and white photographs of my grandfather, alone and
with his bride. As I stated in Point 2, I really want you to use these images I have
supplied, for it will make the rest of the chapter flow more easily and be less distracting.
One less variable to worry about!

The third item in the 006_Chapter_6hEinSwitch01.zip file is the icon image for our app,
with smaller dimensions of course. Once you have all three of these images: the bottom
layer – my grandfather as a bachelor (Figure 6–5), the top layer – grandpa and his bride
(Figure 6–6), and the icon (Figure 6–7), save them on your desktop.

Figure 6–5. We’ll use this image as the bottom layer of our switch view app.

CHAPTER 6: Switch View with Multiple Graphics 131

Figure 6–6. Here is the top layer image, a smart switch!

Figure 6–7. This smaller image is for the screen icon.

The fourth item in the zip file is the SwitchViewController.txt document, which has
boilerplate code that you will see again and again. In this chapter, you will be directed to
copy and paste portions of this text into your code to manage certain functions. We will
go over it all, and I will explain it to you at length, but, at this point in your coding
journey, just save it conveniently on your desktop.

CHAPTER 6: Switch View with Multiple Graphics 132

At the point when we do insert this ready-made code, we call it a Lazy Load. You can
see what it looks like below … mark this page. I will be referring back to this code in a
little while—when it is time to copy and paste it.

#import "SwitchViewController.h"
#import "Ein1Controller.h"
#import "Ein2Controller.h"

@implementation SwitchViewController
@synthesize ein1Controller;
@synthesize ein2Controller;

- (void)viewDidLoad
{
Ein1Controller *ein1Controller = [[Ein1Controller alloc]
 initWithNibName:@"Einstein1View"
bundle:nil];
 self.ein1Controller = ein1Controller;
 [self.view insertSubview:ein1Controller.view atIndex:0];
 [ein1Controller release];
}

- (IBAction)switchViews:(id)sender
{
 // Lazy load - we load the Einstein2View nib the first time the button
 is pressed
 if (self.ein2Controller == nil)
 {
 Ein2Controller *ein2Controller =
 [[Ein2Controller alloc] initWithNibName:@"Einstein2View"
 bundle:nil];
 self.ein2Controller = ein2Controller;
 [ein2Controller release];
 }

 if (self.ein1Controller.view.superview == nil)
 //This is with no animation
 {
 [ein2Controller.view removeFromSuperview];
 [self.view insertSubview:ein1Controller.view atIndex:0];
 }
 else
 {
 [ein1Controller.view removeFromSuperview];
 [self.view insertSubview:ein2Controller.view atIndex:0];
 }
}

-(id)initWithNibName:(NSString *)nibNameOrNil
 bundle:(NSBundle *)nibBundleOrNil {
 if (self = [super initWithNibName:nibNameOrNil
 bundle:nibBundleOrNil]) {

 }
 return self;
}

CHAPTER 6: Switch View with Multiple Graphics 133

-(BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)
interfaceOrientation {
return (interfaceOrientation == UIInterfaceOrientationPortrait);
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 if (self.ein1Controller.view.superview == nil)
 self.ein1Controller = nil;
 else
 self.ein1Controller = nil;
}

- (void)dealloc {
 [ein2Controller release];
 [ein1Controller release];
 [super dealloc];
}

@end

NOTE: Before we move on, you need to DELETE the 06_Chapter_6hEinSwitch01 folder.
You've taken the three images and one file out of it, so it’s empty. Now delete it. This is critical. If
you open up Xcode and save one of your files with the same name as the one above, there will
be mass confusion. Drag the empty 06_Chapter_6hEinSwitch01 folder to the trash now,
along with the original zip file item, if you haven’t already deleted that.

Name your Project “einSwitch01”
Open Xcode and enter N, as shown in Figure 6–8; this will open the New Project
window, in which you will click the Window-based Application template. As you know,
your default may not be set to this option, so make sure you enable it. Name your new
program “einSwitch01,” as shown in Figure 6–9; then save your Window-Based
Application to your desktop by selecting S. I am going to be quite strict about the
naming protocol here because we will have three similar applications that will have very
similar labels. Your code will “expect” items to be named as I have named them.

CHAPTER 6: Switch View with Multiple Graphics 134

Figure 6–8. Enter N to open a new Window-based Application.

Figure 6–9. Save your new Window-based Application as “EinSwitch01” to your desktop by entering S.

CHAPTER 6: Switch View with Multiple Graphics 135

A ROAD MAP: HOW SHALL WE PROCEED?

NOTE: You may jump ahead to the Create the first UIViewController Subclass section and skip
this slight digression. Because this is the most complex code you will have encountered so far,
we will use a road map. Most students find this useful—just as we all do when it comes to large-
scale projects.

Let's sit back and draw out a road map. This project is going to allow a person to switch between two
views, each of which contains a photograph of my grandpa at different stages in his life. Look at Figure
6–10 to see a diagram of an analogy that I hope you will find useful. The top-level character,
einSwitchAppDelegate, tells SwitchViewController when to activate. The second-level character tells the
Ein#Controllers to use their .xib tools to hold up their respective photos. You can also see how we use
Xcode to program einSwitchAppDelegate and SwitchViewController and then how we use Interface Builder
to work with the two Ein#Controllers and the .xib files.

Figure 6–10. Here is a road map of the einSwitch001 application.

Here’s a summary:

Head Honcho Delegator: Delegates work to the Switch View Controller

Switch View Controller: Tells which Controller to appear on the screen

Einstein 1 Controller: Carries the 1st photo

Einstein 2 Controller: Carries the 2nd photo

CHAPTER 6: Switch View with Multiple Graphics 136

Unfortunately, we cannot use the aforementioned nomenclature. In Objective-C, as in many other
computer languages, we need to use a special style of designation: camelCase. Referring to the “hump” in
the middle, that’s the name for the way geeky coders write compound words or phrases. The first letter is
usually not capitalized, the elements are joined without spaces, and each element's initial letter is
capitalized within the compound. As some of you now realize, we have already been using this
nomenclature throughout the book. It’s a very easy pattern, and you’ll catch on immediately.

For example, if you were to write code that gets a map from a Google parser, you might call it
getMapFromGoogleParser. This is a personal thing, and it’s up to you … but try to be consistent. I will
typically use lower case for the first word as long as it’s not a proper noun (for example, the name of a city
or a person) or a Class. Using these basic guidelines, let’s rename the players in our code.

In essence, follow Apple's lead in their naming of entities. In general, when making up your own names,
letTheFirstLetterNotBeCapitalized! Here are the names we’ll use:

einSwitchAppDelegate: Delegates work to the Switch View Controller

SwitchViewController: Tells which Assistant Controller to appear on the screen

Ein1Controller: Carries the bottom layer photo

Ein2Controller: Carries the top layer photo

Now that we’ve named our characters, we need to define the tools the carriers use to hold up those
pictures. They will pick up and present the photographs with nib (.xib) files, which we’ve come to love.
This is what we have then:

 einSwitchAppDelegate

 SwitchViewController

 Ein1Controller

 Nib file: Einstein1ViewwxibbEin2Controller

 Nib file: Einstein2View.xib

The last step in identifying all the files we will need is to remember that each of those files needs both a
header and an implementation file, as shown in Figure 6–11. Redrawing our road map we have:

 einSwitchAppDelegate.h and einSwitchAppDelegate.m

 SwitchViewControllerr.h and SwitchViewController.m

 Ein1Controller.h and Ein1Controller.m

 Einstein1View.xib

 Ein2Controller.h and Ein2Controller.m

 Einstein2View.xib

CHAPTER 6: Switch View with Multiple Graphics 137

Figure 6–11. Each of these needs its own header (.h) file and implementation (.m) file.

Cool, huh?! Now we need to create them. Specifically, we need to create three Cocoa Touch sub-classes
called SwitchViewController, Ein1Controller, and Ein2Controller, and we will also create
each player’s header and implementation files. Then, we need to make two nib files:
Einstein1View.xib and Einstein2View.xib.

Create the 1st UIViewController Subclass
Once you have saved your window-based application as einSwitch01 to your desktop,
click the Classes folder in your Groups and Files sidebar. Enter N to open up the New
File dialog window, as shown in Figure 6–12. Select the Cocoa Touch Class item in the
iPhone OS sidebar, and then click the UIViewController subclass icon. Check the Also
Create “SwitchViewController.h” box, and then click Finish to save the file as
SwitchViewController.m. See Figure 6–13.

Figure 6–12. Create the first of three Cocoa Touch UIViewController subclasses.

CHAPTER 6: Switch View with Multiple Graphics 138

Figure 6–13. Save the file as “SwitchViewController.m.” Remember to check the box Also Create
“SwitchViewController.h.”

In this chapter’s other projects, we will select the With XIB for User Interface option, but
right now we are going to build our nib files from scratch. Once you’ve done it here, you
will feel good knowing what happens when you let Apple build the nib files. This way,
you can always make a change and add your own bells and whistles when you want. On
the other hand, if you always have this key file built for you, you won’t ever get to know
what’s going on under the hood.

According to our road map …

 einSwitchAppDelegate.h and einSwitchAppDelegate.m Done

 SwitchViewController.h and SwitchViewController.m Doing Now

 Ein1Controller.h and Ein1Controller.m

 Einstein1View.xib

 Ein2Controller.h and Ein2Controller.m

 Einstein2View.xib

Create the Ein1Controller
Here, we repeat what we have just done to create the second and third of the three
Cocoa Touch UIViewController subclasses. We name them Ein1Controller and
Ein2Controller. Remember—these two aforementioned characters are the
subordinates of SwitchViewController, and they will present the photos to the user of
your app. If you can do this on your own, go ahead now and try it. If not, just read along
and follow me. You’ll see that we’re just repeating these steps again.

Once you have saved SwitchViewController, enter N to open the New File dialog
window. Select the Cocoa Touch icon in the iPhone OS sidebar, click on the
UIViewController subclass icon, press Return (or select the next button), and then save it
as Ein1Controller. See Figure 6–14.

CHAPTER 6: Switch View with Multiple Graphics 139

Figure 6–14. Create the second of the three Cocoa Touch UIViewController subclasses.

According to our road map …

 einSwitchAppDelegate.h and einSwitchAppDelegate.m Done

 SwitchViewController.h and SwitchViewController.m Done

 Ein1Controller.h and Ein1Controller.m Doing Now

 Einstein1View.xib

 Ein2Controller.h and Ein2Controller.m

 Einstein2View.xib

Check Header and Implementation Files
Quickly check to see that both the header and implementation files have been created
for Ein1Controller. This step may seem redundant, but often we forget to check all the
appropriate boxes, such as the one to create the .h file. If I can help you get into the
habit of double-checking this requirement here, you will save time in the long run. Once
you proceed and write actions to one file without the other, it can be a real drag trying to
recreate matching files down the road.

Also, while we are here, let’s quickly review the relationship between an item’s header
and implementation files. Recall from Chapter 1 that all classes consist of two parts: a
header (.h) file and an implementation (.m) file. Do you remember how I asked you to
read aloud the following phrase? “We inform the computer in our header files about the
types of commands we will have it execute in the implementation files.” This is still the
case, but now I’d like you to add a little phrase in front: “Each class is a product of its
header (.h) and implementation (.m) files. We inform the computer in our header files

about the types of commands we will have it execute in the implementation files.”

First, we inform; then, we execute!

Create the Ein2Controller
Once you have saved Ein1Controller, select N to open a new window in your Classes
folder to open up the New File dialog window. Select the Cocoa Touch icon in the

CHAPTER 6: Switch View with Multiple Graphics 140

iPhone OS sidebar, click on the UIViewController subclass icon, press Return (or select
the next button), and then save it as Ein2Controller. See Figure 6–15.

Figure 6–15. Create the third of the three Cocoa Touch UIViewController subclasses.

According to our road map …

 einSwitchAppDelegate.h and einSwitchAppDelegate,m Done

 SwitchViewController.h and SwitchViewController.m Done

 Ein1Controller.h and Ein1Controller.m Done

 Einstein1View.xib

 Ein2Controller.h and Ein2Controller.m Doing Now

 Einstein2View.xib

Make Sure Images Are Embedded
We created the einSwitchAppDelegate.h and einSwitchAppDelegate.m files when we
created the Window-based app at the very beginning of this example. We have just
finished creating the Cocoa Touch UIViewController subclasses and named them
SwitchViewController, Ein1Controller, and Ein2Controller. At this point, we have
created all the characters in our play, but we still need to equip some of them with the
tools they will use to display the bottom and top layer photographs – i.e. our switch view
images.

For this, we will create two sets of tools, .xib files, that each of our helpers will use. In
the New File dialog, go to your Resources folder, give it a click, enter N, and select the
User Interface folder. Then, select the View XIB icon, as shown in Figure 6–16. Now we
create the next nib file. Save the first of your two .xib files, Einstein1View.xib as shown
in Figure 6–17, and immediately enter N to create your next nib file, Einstein2View.xib.
Again, select the User Interface folder in the New File dialog, and then select the View
XIB icon.

CHAPTER 6: Switch View with Multiple Graphics 141

Figure 6–16. Select the View XIB option to create the first of your two nib files.

Figure 6–17. Save the first of your two nib files, “Einstein1View.xib.”

Before moving on through the Objective-C forest, let’s take a break and see where we are:

 einSwitchAppDelegate.h and einSwitchAppDelegate.m Done

 SwitchViewController.h and SwitchViewController.m Done

 Ein1Controller.h and Ein1Controller.m Done

 Einstein1View.xib Done

 Ein2Controller.h and Ein2Controller.m Done

 Einstein2View.xib Doing Next

Save Einstein2View.xib
Save Einstein2View.xib as shown in Figure 6–18, and check that your Resources folder
contains both the .xib files you have created. Now, as we glance at our road map, we
see that we have come a long way:

 einSwitchAppDelegate.h and einSwitchAppDelegate.m Done

 SwitchViewController.h and SwitchViewController.m Done

 Ein1Controller.h and Ein1Controller.m Done

 Einstein1View.xib Done

 Ein2Controller.h and Ein2Controller.m Done

 Einstein2View.xib Done

CHAPTER 6: Switch View with Multiple Graphics 142

So, you’re looking at this list and thinking that we’ve got all our characters now, and we
can start to code. Right?! Hmm … not so fast. Do you see what is missing?

Figure 6–18. Save the second of your two nib files, Einstein2View.xib.

We do indeed have all our characters and their tools, but we lack some essential
materials. We need to insert three items into our Resources folder: the top and bottom
layer photos, as well as the icon image.

Drag the Images into Xcode
As you did in Chapter 5, Step 7, drag your first image into the Resources folder. Make
sure, as you did before, to check the “Copy items into destination’s group folder (if
needed)” box, as well as the “Recursively create groups for any added folders” box.
Then, click Add or press Return. Similarly, drag the second image into the Resources
folder, and grab the icon image while you’re at it.

As some of you may not know, you can multi-select by click-dragging and boxing in all
the desired items, by control-clicking (non-adjacent items), or by shift-clicking (adjacent
items) the first and last items desired (in a list). See Figures 6–19 and 6–20.

CHAPTER 6: Switch View with Multiple Graphics 143

Figure 6–19. Save the first of your two image files, einstein01.png.

Figure 6–20. Save the second of your two image files, einstein02.png.

Assign your Icon in the “plist”
As you did before, you need to associate the icon image with this project. Open up the
Info.plist file in the Resources folder and double-click the Icon file Value cell. In that

CHAPTER 6: Switch View with Multiple Graphics 144

space, type in the name of your icon file, icon.png, as shown in Figure 6–21. Now, save
your work by entering S.

Figure 6–21. Assign your icon file in the Information Property List: the “plist.”

Code the AppViewDelegate
OK! We’ve created all the players, we’ve associated all the files, and we’ve associated
the icon file with the program. This means only one thing my fellow geeks! We’re ready
to code!

Let’s go back to the Classes folder, as shown in Figure 6–22, and do what we always
do: open the application’s delegate header file. As we do this, let’s review what we now
know about how the file structures are created. When Xcode instantiates our project, it
creates the role that’s going to delegate and preside over the other files,
EinSwitch01AppDelegate (see Figure 6–11). In the instantiation process, we saw how the
system creates both a header (.h) and an implementation file (.m) for our AppDelegate,
and it places the program name right before the phrase AppDelegate.

To summarize, because we named our program EinSwitch01, Xcode then automatically
labeled our AppDelegate file EinSwitch01AppDelegate. Furthermore, within this file, the
system generated the two more specific files: EinSwitch01AppDelegate.h and
EinSwitch01AppDelegate.m.

Go to your Classes folder, then, and open up your EinSwitch01AppDelegate.h file. It
should look as follows:

#import <UIKit/UIKit.h>

@interface EinSwitch01AppDelegate NSObject <UIApplicationDelegate>{
UIWindow *window;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;

@end

CHAPTER 6: Switch View with Multiple Graphics 145

Figure 6–22. Prepare to insert new code into the EinSwitch01AppDelegate.h file.

At this point, we could easily do what we did in the past: enter the three lines of code we
want to add … and move on in blindness. But this time, we’re going to open the hood
on our car and examine the engine. I am not going to overload you with too much
information. I don’t expect you to remember everything. My goal is to challenge you
here, and to see if you can make sense of some of the details of the code.

Going back to Figure 6–10, you will notice that EinSwitch01AppDelegate communicates
with and delegates work to SwitchViewController. The SwitchViewController.h file needs
to have all the goodies and stuff that the SwitchViewController.m needs to have in order to
tell the SwitchViewController which pawn will display its image. We provide this by
adding the SwitchViewController class that we created (see Figures 6–12 and 6–13).

Recall that when we add a class, we put the @ symbol in front of it to get the computer’s
attention. We will insert what is called an @class precompiler directive that announces
our intention to call the SwitchViewController in the implementation file. These @class
compiler directives tell the compiler that a class (of whatever type we’re interested in
creating) will be accessible for our use. Some programmers call this a forward
declaration because we’re giving the compiler a head’s up before the class is declared
in the implementation file. Therefore, we add @class SwitchViewController right after
the #import code as follows:

#import <UIKit/UIKit.h>

@class SwitchViewController;

@interface EinSwitch01AppDelegate : NSObject <UIApplicationDelegate> {
 UIWindow *window;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;

@end

CHAPTER 6: Switch View with Multiple Graphics 146

We now know that when we code the implementation file that corresponds with this
header file, to delegate work to the SwitchViewController, it will have the ability to do
so. Cool!

Next, we move to the IBOutlet for the UIWindow portion of the code: the user interface
window and its associated pointer window. We need to create an IBOutlet for all of the
SwitchViewController bells and whistles. Therefore, after the UIWindow *window section,
add SwitchViewController *switchViewController into the code. Once this is done, we
can add an @ property directive and take care of the IBOutlet:

#import <UIKit/UIKit.h>

@class SwitchViewController;

@interface EinSwitch01AppDelegate : NSObject <UIApplicationDelegate> {
 UIWindow *window;
 SwitchViewController *switchViewController;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;

@end

Working SwitchView
To address the property directive line, we shall use a shortcut. Highlight and copy this
entire line

@property (nonatomic, retain) IBOutlet UIWindow *window;

and then paste it below itself. Then, highlight and copy this line:

SwitchViewController *switchViewController

See Figure 6–23.

Figure 6–23. Copy your SwitchViewController *switchViewController code.

As shown in Figure 6–24, paste the

CHAPTER 6: Switch View with Multiple Graphics 147

SwitchViewController *switchViewController;

code by entering (V) over the highlighted

IBOutlet UIWindow *window;

portion of the code you just inserted.

#import <UIKit/UIKit.h>

@class SwitchViewController;

@interface EinSwitch01AppDelegate : NSObject <UIApplicationDelegate> {
 UIWindow *window;
 SwitchViewController *switchViewController;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet SwitchViewController *switchViewController;

@end

Figure 6–24. Paste your SwitchViewController *switchViewController code.

Remember that the @property directive declares that our object has a property with a
specific type, while the @synthesize directive, which we are just about to address, puts
into play the methods we declared in the @property directive. Save your work on the
header file and move on to the implementation file, eEinSwitch01AppDelegate.m. See
Figure 6–25.

CHAPTER 6: Switch View with Multiple Graphics 148

Figure 6–25. Save your header file. It’s time to move onto the implementation file!

SwitchViewController and AppDelegate
In the Classes folder, scroll down to the corresponding implementation file,
EinSwitch01AppDelegate.m, and open it. As shown in Figure 6–26, you will see that it
looks as follows.

#import "EinSwitch01AppDelegate.h"

@implementation EinSwitch01sAppDelegate

@synthesize window;
- (void)applicationDidFinishLaunching:(UIApplication *)application {
// Override point for customization after application launch
 [windowmakeKeyAndVisible];
}
- (void)dealloc {
 [windowrelease];
 [superdealloc];
}
@end

CHAPTER 6: Switch View with Multiple Graphics 149

Figure 6–26. Open the implementation file.

As you can see, Apple has been kind enough to import the header file of the
AppDelegate on which we have been working, EinSwitch01AppDelegate.h. Therefore, all
the shout-outs we asked it to send this implementation file will be in here. Hmm … let’s
think about this for a second.

What other shout-outs or notices do we need here? If you go back to Figure 6–10, then
you may recall that EinSwitch01AppDelegate orders the SwitchViewController to tell its
subordinates to do specific actions—like hold up photographs of our subject. Thus, we
need to also import all the shout-outs of the SwitchViewController.h, as seen here:

#import "EinSwitch01AppDelegate.h"
#import "SwitchViewController.h"

@implementation EinSwitch01AppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(UIApplication *)application {

 // Override point for customization after application launch
 [window makeKeyAndVisible];
}
- (void)dealloc {
 [window release];
 [super dealloc];
}
@end

Note that the following line has code that Apple automatically instantiated for us:

 @implementation EinSwitch01AppDelegate

This line has been something that we have skipped over in the past, but let’s consider it
now. One way that we can think of this, or pronounce this, is: “In this implementation

CHAPTER 6: Switch View with Multiple Graphics 150

file, we hereby realize those commands and directives that were announced and defined
in the EinSwitch01AppDelegate header file.

NOTE: I often use the concept “realize” to deal with the term “instantiate.” When the computer
automatically instantiates a role or piece of the program structure, it is creating an object (i.e.,
making that character real).

What else do we need to insert here? Recall that the @property directive, which is
always located in the header file, declares that our object has a property with a specific
type. In contrast, the @synthesize directive, located in the implementation file, notifies
the compiler about these directives. Recall, too, that we had an @property directive

@property (nonatomic, retain) IBOutlet UIWindow *window

for the window IBOutlet. Then we added another @property directive for the
SwitchViewController IBOutlet:

 @property (nonatomic, retain) IBOutlet SwitchViewController *switchViewController

The @synthesize directive for the window is done for us already by Apple, but we need
to add the missing element, the @synthesize directive for the switchViewController. Let’s
do this as illustrated in the following code:

#import "EinSwitch01AppDelegate.h"
#import "SwitchViewController.h"

@implementation EinSwitch01AppDelegate

@synthesize window, switchViewController;

- (void)applicationDidFinishLaunching:(UIApplication *)application {

 // Override point for customization after application launch
 [window makeKeyAndVisible];
}

- (void)dealloc {
 [window release];
 [super dealloc];
}

@end

Cool, huh? I hope you are beginning to see the logic behind adding these statements.
Now, look at the next line:

(void)applicationDidFinishLaunching:(UIApplication *)application

and right-click on the applicationDidFinishLaunching portion. Scroll down and click on
the Find Selected Text Documentation option. This will take you to a place where we
have not yet ventured in this book, a wonderful little rabbit hole that leads to the Apple
documentation of Xcode and Objective-C. Whatever portion of the code you do not

CHAPTER 6: Switch View with Multiple Graphics 151

know in the months and years to come—no problem, just check it out in the Apple
documentation.

By clicking on it, we see that it states – in part – the following:

applicationDidFinishLaunching:
Tells the delegate when the application has finished launching.
- (void)applicationDidFinishLaunching:(UIApplication *)application
Parameters
application
The delegating application object.
Discussion
This method is the ideal place for the delegate to perform various initialization
 and configuration tasks, especially restoring the application to the previous state
 and setting up the initial windows and views of the application…

What this is basically saying is: “Hey, I wrote this out for you without you having to really
deal with it. If you really must know, it’s where your delegates perform various
initialization and configuration tasks.”

Right below this, inside the brackets, Apple has indeed handled the initialization and
configuration of an essential task: [window makeKeyAndVisible]. This bit of code causes
the UIWindow to become visible and makes it the "first responder" of touches by the user
when your app is run on the iPhone/iPad.

We need something else here, though. Can you think of it? We also need to make sure
that the character that the Head Honcho Delegate is ordering around, the
SwitchViewController, is visible to the user. We do this by adding a subview. The code
that accomplishes this is [window addSubview:switchViewController.view].

As the name suggests, this procedure adds a view to switchViewController’s
subviews. What’s going on here is that, when switchViewController tells its
subordinates to display the photographs of my grandpa, we want to add a view to a
window as its subview. So, we’re really asking switchViewController for the view it
controls, which, when handled, displays the window to the user and enables it to accept
touches and other input. Insert that line as shown here:

#import "EinSwitch01AppDelegate.h"
#import "SwitchViewController.h"

@implementation EinSwitch01AppDelegate

@synthesize window, switchViewController;

- (void)applicationDidFinishLaunching:(UIApplication *)application {

 // Override point for customization after application launch
 [window addSubview:switchViewController.view];
 [window makeKeyAndVisible];
}

- (void)dealloc {
 [window release];
 [super dealloc];
}

CHAPTER 6: Switch View with Multiple Graphics 152

@end

Our last step here is to deallocate the memory of all these actors in our play. Apple
knows it has to deallocate the memory of various windows, and, for safety, it also
performs a “super-deallocation.” Just accept it for now … we’re close to brain overload
here.

We need to deallocate the memory we are using for … what? Hmm. Have a guess. The
one item to which we have been continually referring in this section? The
switchViewController?

Yes. Let’s do it!

#import "EinSwitch01AppDelegate.h"
#import "SwitchViewController.h"

@implementation EinSwitch01AppDelegate

@synthesize window, switchViewController;

- (void)applicationDidFinishLaunching:(UIApplication *)application {

 // Override point for customization after application launch
 [window addSubview:switchViewController.view];
 [window makeKeyAndVisible];
}

- (void)dealloc {
 [window release];
 [switchViewController release];
 [super dealloc];
}

@end

Now enter S to save your work. Holy implementation file, Batman! You’re done!

You have taken care of the EinSwitch01AppDelegate in terms of both its header and its
implementation files. Referring back to Figure 6–10, we see that we have created the
code for the einSwitchAppDelegate—represented by the chess queen!

Whew - time for a break!

SwitchViewController Header File
Continuing with our chess metaphor, you can tell yourself that you are finished working
with the AppDelegate file—the queen. Now it’s time to focus on her immediate
subordinate, the SwitchViewController. As you know, this figure, represented by the
knight, has the role of commanding either of its underlings to hold up its image. In the
steps ahead, we will deal with the header (.h) file and the implementation (.m) file of the
SwitchViewController.

CHAPTER 6: Switch View with Multiple Graphics 153

Now we need code that tells the Ein1Controller to displays its photograph of our
subject; then we can tell the Ein2Controller to display its photograph. So, scroll down
in your Classes folder and open up the header file: SwitchViewController.h. We first
need to make sure that the precompiler will even know who the Ein#Controllers are.
See Figure 6–27. Remember that the @ symbol gets the computer’s attention for the
establishment of a specific relationship, and we use the @class precompiler directive to
do this.

#import <UIKit/UIKit.h>
@class Ein1Controller;
@class Ein2Controller;

@interface SwitchViewController : UIViewController {

}

@end

Figure 6–27. Copy the @class precompiler directive for Ein1Controller in order to create one for Ein2Controller.

Next, we need to make sure that the implementation file will know who these
Ein#Controllers are … that they even exist. In technical terms, we say that we need to
declare the instance variables that we need to use throughout the class. This is done
inside the brackets, immediately following the directive @interface
SwitchViewController: UIViewController.

We do this by using a pointer—yes, the asterisk, which, thus far, I’ve been telling you to
ignore. Well, it’s time to consider it. We need to tell the implementation file to reserve a
place in memory for Ein1Controller and Ein2Controller, and we do this by using a
pointer … for each of the subordinate roles:

CHAPTER 6: Switch View with Multiple Graphics 154

#import <UIKit/UIKit.h>
@class Ein1Controller;
@class Ein2Controller;

@interface SwitchViewController : UIViewController {
 Ein1Controller *ein1Controller;
 Ein2Controller *ein2Controller;
 }
@end

Next, we need to use the @property directive to define these variables as properties, and
we do this with the same code we’ve used many times before:

@property (retain, nonatomic) Ein#Controller *ein#Controller

making sure to do it individually for each Ein#Controller that presents the user with a
photograph of my grandfather. We do this as follows:

#import <UIKit/UIKit.h>
@class Ein1Controller;
@class Ein2Controller;

@interface SwitchViewController : UIViewController {
 Ein1Controller *ein1Controller;
 Ein2Controller *ein2Controller;
}

@property (retain, nonatomic) Ein1Controller *ein1Controller;
@property (retain, nonatomic) Ein2Controller *ein2Controller;

@end

Our next item to address is that we need an action of some type to switch views. We’ve
called this an instance before, and we will still do so. Technically, we say: “We need an
instance method (and use the “minus” sign) to advertise to the implementation file that
we will be incorporating an IBAction.” In other words, it will “shout out” to the
implementation file that a method in your code needs to be triggered, or called into
action, and that these commands will be implemented in Interface Builder.

We need to give this new action that’s going to switch views a name, so let’s call it …
hmm … switchViews! Yeah! Thus, we will enter this code:

-(IBAction)switchViews:

This segment of our code, in turn, needs to point to a specific construct or role, and we
use (id) for this purpose. Finally, we will need to add the “sender” component that will
trigger the event.

Thus, our latest code insertion is

(IBAction)switchViews:(id)sender

By the way, remember that we generally follow up all these lines of code with a
semicolon, to alert the computer that we are finished with that line.

#import <UIKit/UIKit.h>
@class Ein1Controller;

CHAPTER 6: Switch View with Multiple Graphics 155

@class Ein2Controller;

@interface SwitchViewController : UIViewController {
 Ein2Controller *ein2Controller;
 Ein1Controller *ein1Controller;
}
@property (retain, nonatomic) Ein2Controller *ein2Controller;
@property (retain, nonatomic) Ein1Controller *ein1Controller;

-(IBAction)switchViews:(id)sender;

@end

As shown in Figure 6–28, it’s time to enter S to save your work. You’re done with that
file … Scooby-Dooby-Doo! Now, we move on to the implementation file. Well done!

Figure 6–28. Once SwitchViewController.h is complete, save it, and go to the Lazy Load!

Ready for Lazy Load—Implementation File
In the Classes folder, go to the SwitchViewController’s implementation file,
SwitchViewController.m, and click it open. When you open it, you will see all the basic
code we’ve seen before, which Apple automatically and conveniently instantiates for us.
As shown in Figure 6–29, the details of this code are invisible to the compiler because
each set of classes is placed inside a comment. I think now is a good time to address
the nature and function of comments—in the context of coding apps.

CHAPTER 6: Switch View with Multiple Graphics 156

Figure 6–29. SwitchViewController’s implementation file is loaded with code that’s associated with comments.

NOTE: If you are knowledgeable about comments and lazy loads, skip this section and go to
Step 16. If you're not sure, stay with us here and read on.

A Note about Comments and Lazy Loads
We know that Xcode uses, and is based on, the programming language Objective-C,
and that applications are run by virtue of code getting compiled into ones and zeroes
that microprocessors understand. In Objective-C, as in other languages—particularly the
C language it’s based on, our preprocessor supports two styles of comments. These
comments, in essence, make things invisible to the innards of the machine.

We have already examined and discussed the double forward slash signal: //, after
which comments can be inserted—and which prohibits the compiler from seeing those
comments. These are called BCPL-style comments. There is also the slash-asterisk: /*
and the asterisk-slash: */, between which comments can be placed. These are known as
C-style comments. For example, we might see something like this:

/* This is material that will be “invisible“ to the compiler. */

Apple knows that, most of the time, we will use at least one of the classes, so it inserts
comments for our convenience as follows:

CHAPTER 6: Switch View with Multiple Graphics 157

#import "SwitchViewController.h"

@implementation SwitchViewController

/*
 // The designated initializer. Override if you create the controller
programmatically and want to perform customization that is not appropriate
 for viewDidLoad.
- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil {
 if (self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil]) {
 // Custom initialization
 }
 return self;
}
*/

/*
// Implement viewDidLoad to do additional setup after loading the view, typically
 from a nib.
- (void)viewDidLoad {
 [super viewDidLoad];
}
*/

/*
// Override to allow orientations other than the default portrait orientation.
- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)
interfaceOrientation {
 // Return YES for supported orientations
 return (interfaceOrientation == UIInterfaceOrientationPortrait);
}
*/

- (void)didReceiveMemoryWarning {
 // Releases the view if it doesn't have a superview.
 [super didReceiveMemoryWarning];

 // Release any cached data, images, etc that aren't in use.
}
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
}
- (void)dealloc {
 [super dealloc];
}
@end

Going further into this brief tangent on comments would not serve us at this time. I
wanted you to take a quick peek, though, so that you would have some appreciation for
where and how some of the details are hidden away. I want you to realize that there are
some very successful iPhone/iPad app developers out there who do not understand all
the gobbledy-gook in the example above. However, a good developer does know how
to utilize these comment styles when the need arises—and even how to beg, borrow,
and steal other developers’ work along these lines.

mailto:@implementationSwitchViewController/*//Thedesignatedinitializer.Overrideifyoucreatethecontroller%ED%AF%80%ED%B0%81programmaticallyandwanttoperformcustom
mailto:@implementationSwitchViewController/*//Thedesignatedinitializer.Overrideifyoucreatethecontroller%ED%AF%80%ED%B0%81programmaticallyandwanttoperformcustom
mailto:@implementationSwitchViewController/*//Thedesignatedinitializer.Overrideifyoucreatethecontroller%ED%AF%80%ED%B0%81programmaticallyandwanttoperformcustom
mailto:@implementationSwitchViewController/*//Thedesignatedinitializer.Overrideifyoucreatethecontroller%ED%AF%80%ED%B0%81programmaticallyandwanttoperformcustom
mailto:@implementationSwitchViewController/*//Thedesignatedinitializer.Overrideifyoucreatethecontroller%ED%AF%80%ED%B0%81programmaticallyandwanttoperformcustom
mailto:@implementationSwitchViewController/*//Thedesignatedinitializer.Overrideifyoucreatethecontroller%ED%AF%80%ED%B0%81programmaticallyandwanttoperformcustom

CHAPTER 6: Switch View with Multiple Graphics 158

At the beginning of this chapter, I mentioned that we would be dumping—into the
implementation file—one of the most widely used, generic, boilerplate chunks of code
that loads views onto the iPhone or iPad. This method is called a Lazy Load. This
process has this name for a number of reasons. First, we are somewhat lazy for using it!
True enough.

Second, it’s lazy in terms of memory management. This is OK for smaller programs, but
as we move to creating larger applications, we will need to get more sophisticated. We
will probably use Shark and other tools to fix “memory leaks,” which are often caused by
lazy loads. Don’t worry, though! You can still create excellent (and lucrative) apps that
rely on a lazy load.

Copy Contents of SwitchViewController.txt
Earlier in this chapter you downloaded the 006_Chapter_6hEinSwitch01.zip file. Inside
this zip file, you found and copied the SwitchViewController.txt file to your desktop.
Now it’s time to open this file and to select all the contents by entering A. Once the
entire file is selected and highlighted, make a copy by entering C. See Figure 6–30.

Figure 6–30. Click the SwitchViewController.txt file on your desktop, click inside the window, select all by
entering A, and then copy the highlighted text by entering C.

CHAPTER 6: Switch View with Multiple Graphics 159

With your Lazy Load copied onto your clip board, open the implementation file,
SwitchViewController.m, enter A to select all of its contents, and then, without doing
anything else, immediately paste the copied text by entering V, as shown in Figure 6–31.
Then, enter S to save your “work.”

Figure 6–31. Open the SwitchViewController.m file and paste your lazy load into it by entering A and, then
immediately, V.

Guess what? You’re done with the code for that particular character of our play! You
can now move directly to the next step, if you like, and start connecting everything in
your nib files. That would be perfectly acceptable.

NOTE: Following is a brief review of the boilerplate Lazy Load. If this doesn’t interest you at this
time, it will be fine to go directly to the Select the File’s Owner section.

A Note about Apple’s Boilerplate Implementation File
You don’t have to memorize it, or understand every symbol, but I do want you to come
away with at least a vague understanding of how this all works. The first portion of this
file is code I programmed for you, which I included in the Lazy Load. I simply imported
and synthesized the two Ein#Controller.h header files as follows:

#import "SwitchViewController.h"
#import "Ein1Controller.h"
#import "Ein2Controller.h"

@implementation SwitchViewController
@synthesize ein1Controller;
@synthesize ein2Controller;

// We’ve done the above about 7 times already, so I figured you’d be cool

CHAPTER 6: Switch View with Multiple Graphics 160

 with me inserting the import
// and synthesis files for you. The next piece of code in here is the
 (void)viewDidLoad.

- (void)viewDidLoad
{
 Ein1Controller *ein1Controller = [[Ein1Controller alloc]

 initWithNibName:@"Einstein1View" bundle:nil];
 self.ein1Controller = ein1Controller;
 [self.view insertSubview:ein1Controller.view atIndex:0];
 [ein1Controller release];
}

The - (void)viewDidLoad method, given to us by Apple, is called after the
SwitchViewController view is loaded into memory. You may recall that this method, or
process, is called (or activated) regardless of whether the views were stored in .xib files
or created programmatically via the loadView method. Right now, give all this code a
simple and friendly nod of acknowledgement. You will find yourself cutting and pasting
this stuff as you do further work, and I want to help you make sure that your .xib files
properly load. Moving on, the next method we view is the essence of the Lazy Load:

- (IBAction)switchViews:(id)sender
{
 // Lazy load - we load the Einstein2View nib the first time the button
 is pressed
 if (self.ein2Controller == nil)
 {
 Ein2Controller *ein2Controller =
 [[Ein2Controller alloc] initWithNibName:@"Einstein2View"
bundle:nil];
 self.ein2Controller = ein2Controller;
 [ein2Controller release];
 }

 if (self.ein1Controller.view.superview == nil)
 //This is with no animation
 {
 [ein2Controller.view removeFromSuperview];
 [self.view insertSubview:ein1Controller.view atIndex:0];
 }
 else
 {
 [ein1Controller.view removeFromSuperview];
 [self.view insertSubview:ein2Controller.view atIndex:0];
 }
}

Can you gather what is going on with this portion of the code? You can see that we first
command the computer to load our second photograph and then, depending on
whether the other one is loaded or not, we swap them around—according to when the
user presses the button to switch views. Apple provides us with the next set of methods.
These initialize the nib files, enable the screen to use certain tools (such as “auto-
rotate,” if the user rotates the iPhone), receive memory warnings (if the user starts to run
out of memory), and deallocate memory once the user is done with the app.

CHAPTER 6: Switch View with Multiple Graphics 161

// Initialization code
- (id)initWithNibName:(NSString *)nibNameOrNil
 bundle:(NSBundle *)nibBundleOrNil {
 if (self = [super initWithNibName:nibNameOrNil
 bundle:nibBundleOrNil]) {
 }
 return self;
}
- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)
interfaceOrientation {
 // Return YES for supported orientations
 return (interfaceOrientation == UIInterfaceOrientationPortrait);
}
- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning]; // Releases the view if it doesn't
 have a superview
 // Release anything that's not essential, such as cached data
 if (self.ein1Controller.view.superview == nil)
 self.ein1Controller = nil;
 else
 self.ein1Controller = nil;
}
- (void)dealloc {
 [ein2Controller release];
 [ein1Controller release];
 [super dealloc];
}
@end

This brief overview is sufficient given your level of understanding. Meanwhile it’s worth
mentioning that, at a recent conference, I heard a husband and wife team, who are
making about $50K/month, admit to hundreds of iPhone developers that they barely
understand Apple’s boilerplate implementation code. The key, as you may be gathering,
is that they are clever enough to know where to paste the names of their views! For
instance, do you see where I inserted Einstein1View and so forth in the
(void)viewDidLoad method? Very good!

Let’s go to Interface Builder and connect everything up. We’re almost done!

Working on the .xib Files
As indicated by Figure 6–32, go to the Resources folder and open the MainWindow.xib
file. As always, this will open Interface Builder.

CHAPTER 6: Switch View with Multiple Graphics 162

Figure 6–32. Go to the Resources folder and open the MainWindow.xib file.

Once Interface Builder is open, go to your Library window by entering L. Navigate to
the Controllers folder in Cocoa Touch and drag a View Controller into your Document
window, as shown in Figure 6–33.

NOTE: The Document window is the window that holds your documents. It is not the open
window of your desktop.

Figure 6–33. Drag a View Controller (top left icon) into your Document window.

CHAPTER 6: Switch View with Multiple Graphics 163

Select the File’s Owner
With the View Controller still activated (if it isn’t, click on it once), have a look in the
Inspector window and note that, by default, it is associated with a generic
UIViewController. We really don’t want that, though. We want our View Controller
interacting with the code that we programmed for our own creation—a character that we
have named SwitchViewController. So, click on the drop-down menu and select
SwitchViewController, which will be associated with this View Controller in the
Document window. Refer to Figure 6–34.

Figure 6–34. Select SwitchViewController to associate it with the View Controller in the Document window.

Drag a View onto the Screen
Scroll down to the Windows, Views & Bars folder in your Library and drag a view onto
your screen as shown in Figure 6–35. We are doing this because we need views for the
SwitchViews that we are generating. We could make our own buttons to switch between
the different views, but we’ve already done this. You know how to do that. So, I thought
it would be nice to use one of the pre-coded buttons that is in the Windows, Views &
Bars folder. Go ahead then and drag a Toolbar onto your screen, and place it at the
bottom of the workspace. Refer to Figure 6–36. We now want to give the button on the
toolbar a name. Click on it, and call it Switch Views, as demonstrated in Figure 6–37.

CHAPTER 6: Switch View with Multiple Graphics 164

Figure 6–35. Drag a view onto your screen.

Figure 6–36. Drag a toolbar onto your screen and place it at the bottom of the workspace.

Figure 6–37. Name the button “Switch Views.”

CHAPTER 6: Switch View with Multiple Graphics 165

We need to connect the mechanism inside the Switch Views button to the code we have
now associated with the SwitchViewController. Control-drag from the Switch Views
button downward to the Switch View Controller icon. At this point, your screen should
look similar to Figure 6–38.

Figure 6–38. Control-drag from the Switch Views button downwards to the Switch View Controller icon.

Now we want to connect the Switch Views button to the appropriate option. As you drag
over the Switch View Controller icon, the Sent Actions black drop-down menu opens,
and you can select the switchViews option, as shown in Figure 6–39.

Figure 6–39. Connect the Switch Views button to the switchViews option.

CHAPTER 6: Switch View with Multiple Graphics 166

What is going on here? Remember, back in Step 14, when we created an action that
would advertise that we have a switch view? It looked like this:

-(IBAction)switchViews:(id)sender

 The code we’re seeing here, in the drop-down menu, is a result of that code. I have
bolded it below to jog your memory.

#import <UIKit/UIKit.h>
@class Ein1Controller;
@class Ein2Controller;

@interface SwitchViewController : UIViewController {
 Ein2Controller *ein2Controller;
 Ein1Controller *ein1Controller;
}

@property (retain, nonatomic) Ein2Controller *ein2Controller;
@property (retain, nonatomic) Ein1Controller *ein1Controller;

-(IBAction)switchViews:(id)sender;

Now we have connected the SwitchViewController to the View Controller, and that is
why we see the file in the drop-down menu. We connect the code that we have
previously entered to the button so that, when the user presses the Switch Views button
on the toolbar, it invokes and runs this code.

Now, we want to connect the Ein1Controller to the SwitchViewController. So … start
to control-drag from the Ein1Controller to the View Controller that houses your
SwitchViewController.

NOTE: We start with one of the images present on the screen, and, as we decided in the Lazy
Load if statements, we make Ein1Controller the active subordinate in charge of this initial
display. See Figure 6–40.

CHAPTER 6: Switch View with Multiple Graphics 167

Figure 6–40. Control-drag from the Ein1Controller to the Switch View Controller icon.

Again, as you drag your cursor over the View Controller, you will see a black drop-down
menu appear with SwitchViewController in it. Connect the fishing line to it, and then let
go, as shown in Figure 6–41. Now, enter S to save your work.

Figure 6–41. In the drop-down menu, select the SwitchViewController option.

Start Working on the Einstein#View.xib Files
We’re almost done!

CHAPTER 6: Switch View with Multiple Graphics 168

In reference to our network of characters depicted in Figure 6–10, we have everything
working except for the two nib files, Einstein1View.xib and Einstein2View.xib. We have
referred to these nib files as the tools that the Ein#Controllers use to hold up and display
their respective photographs of my grandpa.

Let’s open up Einstein1View.xib as shown in Figure 6–42. Both of these nibs are doing
one thing, and one thing only, and that is holding up an image. Hence, it makes perfect
sense that the first thing we do here is to drag in an Image View from the Data Views
folder in our Library, as shown in Figure 6–43. We need to associate a specific image file
with the Image View that we’ve just dragged onto the screen. As depicted in Figure 6–
44, go to the property inspector and, after clicking on the pull-down menu, select
einstein01.png, the image file to be associated with the Image View of the first of the
two Ein#Controllers.

Figure 6–42. Begin work on the nib files by selecting the Einstein1View.xib file.

Figure 6–43. Of course, images need Image Views.

CHAPTER 6: Switch View with Multiple Graphics 169

Figure 6–44. Associate the first image, einstein01.png, with the Image View.

Now, we need to address the toolbar button and make sure we assign the correct action
to it. First, click the File’s Owner icon as shown in Figure 6–45. Watch out here. For
some reason, students forget that, before changing the label of the File's Owner icon,
they need to first click on it.

Figure 6–45. Click the File’s Owner icon.

Once the icon is selected, go up to the Inspector Box. Once you get to the label, choose
the Label option on the black drop-down menu, as shown in Figure 6–46.

CHAPTER 6: Switch View with Multiple Graphics 170

Figure 6–46. Connect the Ein1Controller to the File’s Owner.

Do you recall how we entered code that directed the Ein#Controllers to use nib files to
display their images? Well, we need to make clear that the guy who controls everything
here, the File’s Owner, is indeed Ein1Controller. Click the File’s Owner icon and then
associate it, via the drop-down menu in the property box, with Ein1Controller, as
shown in Figure 6–46.

Now, we need to control-drag from the File’s Owner icon to the View icon. When you
control-drag over the View icon, a drop-down menu appears with View as an option.
Point to this option and then release. See Figures 6–47 and 6–48. With this done, we
have completed working on the Einstein1View.xib file. Enter S to save your work, and
then enter Q to quit Interface Builder in order to return to Xcode.

CHAPTER 6: Switch View with Multiple Graphics 171

Figure 6–47. Connect the File’s Owner icon with the View.

Figure 6–48. Connect the File’s Owner with the View option in the View.

Repeat Process for Second Image
We need to repeat the same steps shown in Figures 6–42 thru 6–48 in order to connect
the second photograph, with both my grandparents, to Ein2Controller. Begin this final
series of actions by opening the Einstein2View.xib file and going back into Interface
Builder, as shown in Figure 6–49.

CHAPTER 6: Switch View with Multiple Graphics 172

Just as for the first image, we need an Image View to house the second photograph. So,
drag it onto the screen of the Einstein2View.xib, and, as we did before, click on the
File’s Owner icon, and associate it with the code in the Ein2Controller. Control-drag
the File’s Owner icon of this second character to its View. Recall that when you control-
drag over the View icon, a drop-down menu appears with View as an option. Point to
this option and then release. With this done, we have completed working on the
Einstein2View.xib file. Enter S to save your work, and enter Q to quit Interface
Builder in order to return to Xcode.

Figure 6–49. Repeat the process for the second image.

You are done. Congratulations!

Enter to run the code. Pressing the button changes the picture … by switching the
views … just as you programmed it to do. Well done! What you have just accomplished
is really one of the most essential, non-trivial benchmarks of iPhone/iPad programming.
By virtue of the fact that you can now code a Switch View app—to show one portion of
code in one view and another portion of code in another view—you are immediately
elevated beyond the novice level of programming. Figures 6–50 thru 6–54 show the
fruits of your labor.

CHAPTER 6: Switch View with Multiple Graphics 173

Figure 6–50. Click the Switch Views button.

Figure 6–51. Hooray, our app works!

CHAPTER 6: Switch View with Multiple Graphics 174

Figure 6–52. We see the initial image, the bachelor, in the iPad’s iPhone View.

Figure 6–53. This is the initial image in 2x mode.

CHAPTER 6: Switch View with Multiple Graphics 175

Figure 6–54. Here we see the switched view, the happy couple, in the iPad mode.

Remember, we've only done the first of the three Switch Views examples!

1. From Scratch: einSwitch_001

Video: http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_
Movies/006_einSwitch_001.htm

Correct Code:
http://www.rorylewis.com/xCode/006a_einSwitch01.zip

2. Tab-Bar: einSwitch_002

Video: http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_
Movies/007_einSwitch_002.htm

Correct Code:
http://www.rorylewis.com/xCode/006b_einSwitch02.zip

3. Custom Tab-Bar: einSwitch_003

Video: http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_
Movies/008_einSwitch_003.htm

Correct Code:
http://www.rorylewis.com/xCode/006c_einSwitch013.zip

Holy cow! You should feel good about this accomplishment.

http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_
http://www.rorylewis.com/xCode/006a_einSwitch01.zip
http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_
http://www.rorylewis.com/xCode/006b_einSwitch02.zip
http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_
http://www.rorylewis.com/xCode/006c_einSwitch013.zip

CHAPTER 6: Switch View with Multiple Graphics 176

The hardest of our three exercises is behind us! Most people never do switch views this
way. They do it the no-brainer way. Boy, is this next example going to be easy for you!

So come on—let’s go for the no-brainer Switch View app. Check out how easy it is
compared to what you’ve just done.

einSwitch_002—a Tab-Bar Application
As always, let us start off with a clean desktop. All you should have on your desktop are
the einstein01.png and einstein02.png images from the 006_Chapter_6hEinSwitch01.zip
you downloaded for the previous example. Delete, or just file away in your Resources
folder, the 57 × 57 pixel icon and the Lazy Load text file. Save the two images on your
desktop so that it is organized like mine, as shown Figure 6–55.

Figure 6–55. A clean desktop at the start of the einSwitch002 example. We see only three icons: Mac HD and two
image files.

1. Open Xcode and enter N as shown in Figure 6–56. This will open the

New Project window in which you will click on the Tab Bar Application

template. Name this project einSwitch002, as shown in Figure 6–57.

CHAPTER 6: Switch View with Multiple Graphics 177

Figure 6–56. After entering N, create a Tab Bar Application.

Figure 6–57. Name it “einSwitch002” and save it to your Desktop by entering S.

2. Open up your Resources folder. Go back to the desktop and select both

of your images and drag them into your Resources folder as shown in

Figure 6–58. While in the Resources folder, open up the MainWindow.xib

file as shown in Figure 6–59.

Figure 6–58. Drag the two image files into your Resources folder.

CHAPTER 6: Switch View with Multiple Graphics 178

Figure 6–59. Open the MainWindow.xib file.

3. We will first work on the Main View, and then the Second View. Double-

click on the MainWindow.xib file, which will automatically open Interface

Builder. Once it opens, start by taking out the default text of the Tab Bar

Controller frame, as shown in Figure 6–60.

Once you've deleted all the default text, bring in a UIImageView from

your Library, as shown in Figure 6–61. Once this object is placed in the

screen, and while it is still active, go to your Image View Attributes

window and select the einstein01.png file from your two choices, as

shown in Figure 6–62.

CHAPTER 6: Switch View with Multiple Graphics 179

Figure 6–60. Remove all of the default text from the Tab Bar Controller frame.

Figure 6–61. Drag in a UIImageView from your Library.

CHAPTER 6: Switch View with Multiple Graphics 180

Figure 6–62. Select the einstein01.png file from your two choices.

4. Click the bottom-left black tab labeled "First," and then immediately go

to your Tab Bar Item Attributes window. Click on the Title cell to delete

the default title “First,” and then enter Einstein01, as shown in Figures

6–63 and 6–64. You may have to click twice in the cell to place your

cursor properly.

You know … it probably took you several hours to get to this point in the

first example, coding this all from scratch. This is a bit easier, isn’t it?

Figure 6–63. Delete the left tab’s default name.

CHAPTER 6: Switch View with Multiple Graphics 181

Figure 6–64. Enter the left tab’s new label: Einstein01.

5. Click on the right-side black tab labeled “Second,” and then

immediately go to your Tab Bar Item Attributes window. Click on the

Title cell to delete the default title "Second," and then enter Einstein02,
as shown in Figures 6–65 and 6–66.

Hit Return. Save it and go back to Xcode.

Figure 6–65. Click the Second tab button in order to repeat the steps.

CHAPTER 6: Switch View with Multiple Graphics 182

Figure 6–66. After deleting the default, enter the left-hand tab’s new label: Einstein02.

NOTE: When you start a Tab Bar application, the first View is called the Main View, and then
those that follow are called the second, third, and so on. We've just connected the dots for the
first View: the Main View. If we want the user to click on a tab that leads to another view, such as
the second photo (both grandparents), we need to configure that View here.

6. Double click on the SecondView.xib file in your Resources folder as

shown in Figure 6–67. As you did before, delete all the text on your

Second View. See Figure 6–68.

CHAPTER 6: Switch View with Multiple Graphics 183

Figure 6–67. Double click on the SecondView.xib file in your Resources folder.

Figure 6–68. Delete all the default text in your Second View.

CHAPTER 6: Switch View with Multiple Graphics 184

Drag in a UIImageView from your Library as shown in Figure 6–69 and

place it inside the View frame.

Figure 6–69. Place a UIImageview on the Second View.

While the screen is still active, go to your Image View Attributes window

and select the einstein02.png image file, as shown in Figures 6–70 and

6–71.

Save your work by entering S, and then return to Xcode.

Figure 6–70. Select the einstein02.png file from your two choices.

CHAPTER 6: Switch View with Multiple Graphics 185

Figure 6–71. Save your work by entering S.

7. Go back to Xcode, open up your Classes folder, open a file, and Enter

 so we can run it as shown in Figure 6–72.

CHAPTER 6: Switch View with Multiple Graphics 186

I know … you hate me for making you do the first example. If you had

known that this no-brainer method was this easy, you would never have

agreed to proceed with that one. Take it from me, though: students who

depended on this simple path were not equipped to make any changes

to their tabs or to be effectively creative.

Wait until the next example, einSwitch003. It is a hybrid of sorts, and

you will love it!

Figure 6–72. Open up Xcode and run your code by entering .

As you can see in Figure 6–73, the no-brainer method yields very decent

results. The initial image is displayed—and the Einstein01 tab is

highlighted.

CHAPTER 6: Switch View with Multiple Graphics 187

Figure 6–73. Without a letter of code, our Tab Bar app appears with beautiful black tabs.

Figure 6–74 illustrates the switched view by virtue of clicking the other

tab, Einstein02. The second image appears, thanks to the boilerplate

code you activated.

Figure 6–74. These beautiful tabs work just fine—and they switch views without any coding!

CHAPTER 6: Switch View with Multiple Graphics 188

In Figure 6–75, we see the same nice results: the initial image is

displayed and the Einstein01 tab is highlighted, but in the iPad mode …

with the iPhone view activated.

Figure 6–75. The black tabs look very cool in the iPad’s iPhone View.

Figure 6–76 demonstrates that the iPad mode has no problem switching

the view; the Einstein02 tab is highlighted, and we see both

grandparents.

CHAPTER 6: Switch View with Multiple Graphics 189

Figure 6–76. Even with black and white images, the iPad has a sophisticated look.

Figure 6–77 shows the 2x magnification of the initial image. The

resolution is crisp as the Einstein01 tab is highlighted.

Figure 6–77. The No-Brainer Tab Bar app works beautifully in the iPad’s full view.

CHAPTER 6: Switch View with Multiple Graphics 190

The final variation is depicted in Figure 6–78. The no-brainer method

appears to have done its job … and, of course, with minimal effort.

Realize, though, that having completed the first exercise, your

knowledge extends far beyond this simple two-tab project.

Possibilities are endless!

Figure 6–78. Seamlessly switching in the iPad’s full view. Not a single line of code!

OK, we've completed two of the three switch view examples:

1. From Scratch: einSwitch_001

Video: http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_
Movies/006_einSwitch_001.htm

Correct code: http://www.rorylewis.com/xCode/006a_einSwitch01.zip

2. Tab-Bar: einSwitch_002

Video: http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_
Movies/007_einSwitch_002.htm

Correct code: http://www.rorylewis.com/xCode/006b_einSwitch02.zip

3. Custom Tab-Bar: einSwitch_003

http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_
http://www.rorylewis.com/xCode/006a_einSwitch01.zip
http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_
http://www.rorylewis.com/xCode/006b_einSwitch02.zip

CHAPTER 6: Switch View with Multiple Graphics 191

Video: http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_
Movies/008_einSwitch_003.htm

Correct code: http://www.rorylewis.com/xCode/006c_einSwitch03.zip

You've seen how easy the “no-brainer” method was, and you really appreciate it
because the first approach was a royal pain. In this third iteration, I will show you how to
tweak things a little bit. Your creative brain will connect the dots and find it relatively
easy to make minor adjustments because now you understand the logic under the hood.

einSwitch_003—a Window-Based Application
The preliminary actions to take for einSwitch_003 are identical to einSwitch_002. The
only items on your desktop will be the einstein01.png and the einstein02.png image
files from the 006_Chapter_6hEinSwitch01.zip you downloaded for einSwitch_001. Your
desktop should be organized like mine, as shown in Figure 6–79.

Figure 6–79. Your desktop at the start: Mac HD and two image files.

1. Open Xcode and enter N as shown in Figure 6–80; this will open the

New Project window, in which you will click the Window-Based

Application template. Name this project “einSwitch003,” as shown in

Figure 6–81.

http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_
http://www.rorylewis.com/xCode/006c_einSwitch03.zip

CHAPTER 6: Switch View with Multiple Graphics 192

Figure 6–80. After entering N, select the Window-based Application template.

Figure 6–81. Name your new project “einSwitch003,” and save it to your desktop by entering S.

CHAPTER 6: Switch View with Multiple Graphics 193

2. One of the first things we need to do is go to the Classes folder. Click it

open, and then open the header file by clicking open

einSwitch003AppDelegate.h. Let’s take a look at some of the places

where modifications and customizing of the existing code might

potentially serve us.

We need to bring in as much of the cool stuff that made the no-brainer methodology
work while still being able to keep control over things.

Let’s take a look at some boilerplate code that some clever Apple programmers have
written, a chunk of code that is encapsulated in a Class Reference called the
UITabBarController. It has all the code prewritten that displays tabs for selecting
between different modes and for displaying the views for that mode. The
UITabBarController class inherits from the code you programmed yourself in the first
example, specifically the UIViewController class. Tab bar controllers have their own
view made accessible through the view property.

See Figure 6–82 for a diagram that depicts how the views are assembled in the tab bar
interface. We can change the look and feel of the tab bar, and toolbar views can change,
but the views that manage these do not change.

Figure 6–82. Apple’s UITabBarController diagram. This arrangement looks simple at first, but trying to implement
it can be quite complex … unless you have already completed this chapter’s first example!

So rather than struggling with this now, we will do three things:

1. Adopt the UITabBarControlleDelegate by inserting it into our

@interface einSwitch003AppDelegate : declaration.

CHAPTER 6: Switch View with Multiple Graphics 194

2. Add in a new declaration of UITabBarController *tabBarController

after the UIWindow *window declaration, but before the } bracket.

3. Add a UITabBarController outlet.

Once you have added these three steps, as shown in the boldface code

below, enter S to save. These are shown in Figure 6–83.

#import <UIKit/UIKit.h>

@interface einSwitch003AppDelegate : NSObject <UIApplicationDelegate,
 UITabBarControllerDelegate> {
 UITabBarController *tabBarController;
 UIWindow *window;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet UITabBarController *tabBarController;

@end

Figure 6–83. After adding a UITabBarController outlet, save your work by entering S.

CHAPTER 6: Switch View with Multiple Graphics 195

4. We now need to code the implementation file. The first things we’ll do

here are

a. Synthesize our tabBarController

b. Add a subview View controller

c. Release the tabBarController

Once you have added these three steps, as shown in the boldface code

following, your result should appear as in Figure 6–84. After this is all

done, enter S to save your work.

#import "einSwitch003AppDelegate.h"

@implementation einSwitch003AppDelegate

@synthesize window;
@synthesize tabBarController;

- (void)applicationDidFinishLaunching:(UIApplication *)application {

 [window addSubview:tabBarController.view];
 [window makeKeyAndVisible];
}

- (void)dealloc {
 [window release];
 [tabBarController release];
 [super dealloc];
}

Figure 6–84. After you synthesize the tabBarController, add a subview, and release the tabBarController,
save your work by entering S.

CHAPTER 6: Switch View with Multiple Graphics 196

5. When we used the no-brainer method for the Tab Bar Application in

einSwitch_002, it added all kinds of bells and whistles, files that we now

need to add here. Let’s think about this for a second. The challenge is

this:

How can we figure out what files we need to add, but that, as yet, we do not have?

In the future, when you get to this crucial point, ask yourself: “How many views does my
iPad/iPhone application need?” You may have eight different views in your program.
This means you would have to add eight new views. We have two photographs, so we
only need to add two views. We do this by going to the Classes folder, entering N, and
selecting the UIViewController subclass, as shown in Figure 6–85. Make sure that you
select the option “With XIB for user interface,” as shown in Figure 6–86.

Figure 6–85. In your Classes folder, enter N and select the UIViewController subclass.

CHAPTER 6: Switch View with Multiple Graphics 197

Figure 6–86. Make sure you select the option to automatically make the nib file.

Being incredibly creative, we shall name the first View Controller implementation file,
FirstViewController.m, as shown in Figure 6–87.

Figure 6–87. Name the first UIViewController subclass—with XIB—FirstViewController.m.

Now, we need to create and name the second View Controller. So, go back to your
Classes folder, enter N, and select the UIViewController subclass as shown. Again,
make sure that you check the option “With XIB for user interface.” Save it as
SecondViewController.m, as shown in Figure 6–88.

CHAPTER 6: Switch View with Multiple Graphics 198

Figure 6–88. Name the second UIViewController subclass—with XIB—SecondViewController.m.

6. It’s a very good habit to keep all your nib files in your Resources folder.

However, the two automatically created nib files you just created are still

in the Classes folder. Let’s move them into your Resources folder, as

demonstrated in Figure 6–89.

Figure 6–89. Drag the two new nib files into the Resources folder.

The next item on the agenda is to move our image files into the

Resources folder. Go to your desktop, select both of our photographs,

and drag them into your Resources folder, as illustrated in Figure 6–90.

Make sure that, when you drop them into your Resources folder, you

check the “Copy items into destination group’s folder (if needed)” box.

See Figure 6–91.

CHAPTER 6: Switch View with Multiple Graphics 199

Figure 6–90. Drag the two image files, einstein01.png and einstein02.png, into the Resources folder.

Figure 6–91. Don’t forget to check “Copy items into destination group’s folder (if needed)”!

CHAPTER 6: Switch View with Multiple Graphics 200

TIP: This is (perhaps) the last time I will remind you of this. From here on, YOU will remember
this!

7. It’s time to edit the ViewControllers. From your Resources folder, open

the FirstViewController.xib file. When Interface Builder opens, drag an

Image View onto your screen, as shown in Figure 6–92. Of course, we

want the first image to show in the first View Controller. To accomplish

this, go to your Image View Attributes Inspector and, in the Image drop-

down menu, select einstein01.png, as shown in Figure 6–93. After this

is done, enter S to save. Then, enter Q to get out of Interface Builder

and return to Xcode.

Figure 6–92. Drag an Image View onto your screen.

Figure 6–93. Select einstein01.png from the drop-down menu.

CHAPTER 6: Switch View with Multiple Graphics 201

Of course, we need to repeat this entire process for the second View

Controller file. So, open SecondViewController.xib, and then drag an

Image View onto your screen. From the image drop-down menu, select

einstein02.png. As before, enter S to save, and then Q to exit

Interface Builder.

8. As indicated in Figure 6–94, go to the Resources folder and click

MainWindow.xib. The first thing we need to do is to drag a Tab Bar

Controller from the Library, into your Main Window frame, as shown in

Figure 6–95.

Figure 6–94. From the Resources folder, open the MainWindow.xib file.

Figure 6–95. Drag a Tab Bar Controller from the Library into your MainWindow frame.

CHAPTER 6: Switch View with Multiple Graphics 202

9. Next, we need to connect our Tab Bar to the EinSwitch_003 App

Delegate. Control-drag from the EinSwitch_003 App Delegate to the

Tab Bar Controller, as shown in Figure 6–96. As you pull in toward the

Tab Bar Controller, the black drop-down menu appears with the option

of one outlet being the tabBarController, which is exactly what we

want. See Figure 6–97.

Figure 6–96. Control-drag from the EinSwitch_003 App Delegate to the Tab Bar Controller.

Figure 6–97. There is only one option in the Outlets menu; select tabBarController.

This is where we see that we have the best of both worlds: 1) We have

control of what’s under the hood, and 2) We have the luxury of having

most of the code pre-written by Apple!

CHAPTER 6: Switch View with Multiple Graphics 203

10. If this were a larger, more complex program, we could have connected

with other controllers that, for example, change the icon pictures based

upon where a user is in a game, or what language a user prefers within

an app. There could be a million reasons why your program or game

may need to have flexibility in the type of tab bar look and feel.

Remember that, in the “no-brainer” approach, we had very few options.

Here, though, with things looking still very much easier than in the first

example, we see that control-dragging from one icon to another is

relatively easy and intuitive.

We’re getting close to the end of our journey! Now, we want to connect

our View Controllers to the correct nibs & UIViewControllers.

We first need to expand the contents of our icons. Click your View

Mode's middle button, located on the top left-hand side of your

MainWindow.xib (Figure 6–98).

Figure 6–98. Select the middle button in the View Mode to expand the contents of the
Tab Bar Controller.

Select the first View Controller, labeled “Selected View Controller

(Item1),” as shown in Figure 6–99, and give it a click.

CHAPTER 6: Switch View with Multiple Graphics 204

Figure 6–99. Select the first View Controller: Selected View Controller (Item1).

Then immediately go to your View Controller Attributes inspector, and

connect it to the FirstViewController nib file, as shown in Figure 6–100.

Figure 6–100. Select the FirstViewController nib.

CHAPTER 6: Switch View with Multiple Graphics 205

Next, we need to connect the UIViewController. Go to the View

Controller Attributes window and click on the Identity tab. Then, from

the drop-down menu, as shown in Figure 6–101, select

FirstViewController.

Figure 6–101. Select FirstViewController from the drop-down menu.

11. Connecting the second View Controller will be done in the same way. Of

course, you will make sure to select the second, not the first, View

Controller. Select it from the MainWindow.xib, as shown in Figure 6–102.

[

Figure 6–102. Select the second View Controller, shown as View Controller (item2).

CHAPTER 6: Switch View with Multiple Graphics 206

With the View Controller Attributes tab still open, select SecondViewController

from the drop-down menu, as shown in Figure 6–103.

Figure 6–103. Choose SecondViewController from the Class drop-down menu.

Our last action, before running the code, is to choose the

FirstViewController nib and enter S to save all of your work, as

shown in Figure 6–104. Then, enter Q and go back to Xcode to

compile your code.

Wow—you did it! Figure 6–105 shows the result.

Figure 6–104. Select the SecondViewController.xib, and save your work by entering S.

CHAPTER 6: Switch View with Multiple Graphics 207

Figure 6–105. With your expanded understanding, and your willingness to use a few ready-made tools, the result
is SUCCESS! Switch view programming is now within your grasp.

Digging … Your Brain
Years ago, when I was learning how to program in C as a struggling electrical engineer
at Syracuse University, I practiced these steps again and again. It took me literally two
weeks of 6–10 hours per day to become fluent in the C programming language; I worked
with handmade objects, classes, and methods that would run a larger operating system.
It was a semester-end project.

Over the break, I repeated the whole program again, referring to my notes often. I then
created a scorecard and made a dash each time I looked at my notes. When I went
through the program the third time, I think it took me about 5 hours or so. I forget how
many times I redid the code, from scratch, but I was eventually able to code the entire
program in just under an hour without making a single reference to my notes. Most of
the time, it was my terrible typing that held me up.

Yes, I am recommending that you do the same with this Switch View app. Take all the
items off your desktop, except for the four files with which we started. If you are willing
to try this, I bet that—by your fifth time through—you will be looking at your notes fewer
than 10 times. I am also confident that, after 10 to 15 practice runs, you will be able to
code the whole thing, as I do, in less than five minutes—without reading any notes!

I know this may sound extreme to some of you, but my main point is that practice does
indeed make perfect. This is true in the mental realm as much as it is in the physical one.
I know you’ve heard this before: A mind is a terrible thing to waste.

The more committed you are now, the more assured your future success!

CHAPTER 6: Switch View with Multiple Graphics 208

209

209

 Chapter

Dragging, Rotating, and
Scaling
In this chapter, we’ll be tackling our ninth programming exercise together. This app

will be one of your first to include an advanced feature of iPhone and iPad apps: the

ability to drag, rotate, and scale objects on the screen with your fingers. This is just

one of the unique features of the iPhone and iPad that have contributed to their

phenomenal success.

The ability to interact directly with items on the screen—in an easy and intuitive way—is

very important for your application. Capitalizing on this integral feature, by

accommodating these natural actions, is what we’re after in this chapter. We will

consider these interactions from the underside of the application—in the same way that

mechanics raise a car off the ground hydraulically to gain fuller access to the engine and

transmission. After we tune the car up and activate these bells and whistles according to

our design, and hand the customer the keys to his shiny new car, he will have no choice

but to get in and say “Aaah, this multi-touch transmission is so fine—so smooth!” We, as

developers and programmers, must know how to generate these capabilities … and

experiences—at the source. So how do these components work?

The simple answer is mathematics; the complex answer is trigonometry. Matrix math

and transforms make this kind of object and image manipulation possible. Now that

you’re on the verge of becoming an advanced iPhone and iPad programmer, you’re in

full geekdom at this point, and you can cope with looking deep inside the machine.

Breathe it in. Embrace it!

Let’s take a look at some of the guts of the iPhone OS, then, and get started. Our first

consideration is “multi-touch.” What does that mean? Why is it such a big deal?

NOTE: As I move through the chapter, I sometimes seem to be referring only to the iPhone, but
be aware that I include the iPad by implication – just as I include the iPod touch.

7

CHAPTER 7: Dragging, Rotating, and Scaling 210

Back in the early days of hand-held computing, a person would use a plastic pen-like

object called a stylus to interact with the device. This stylus was somewhat bothersome

and tended to rebel, occasionally going on strike or getting lost. Runaway styluses were

epidemic!

Well, the innovation of the multi-touch screen made this accessory obsolete. Multi-touch

rendered the stylus irrelevant, for this super-sensitive surface tracks the touch of one’s

fingers, which, thankfully, tend to stay close at hand! OK, so that’s the origin of the

“touch” part of the name. What about the prefix, “multi-”? That is pretty straightforward,

too, for humans generally have ten fingers, or digits. Although people tend to use only

one at a time for pointing, some clever engineers realized that we could create or

represent a host of new actions if we would just consider using some of those other

fingers as well.

Thus, Multi-Touch was the term given to this platform (now patented), implying that a

combination of simultaneous inputs is possible—and maybe also desirable. This

immediately expanded the palette of choices, allowing for complex gestures and subtle

interfacing. This was a big deal—and it still is a big deal!

The ingenuity and flexibility of this sexy, lightweight device—a tool that can be directed

so quickly and intuitively with one’s fingers—caught on, as you know, even before it hit

the shelves. Multi-Touch is only one of the reasons that the iPhone and iPad are so

popular, but it is our focus for this chapter.

Some of you are probably thinking, “Nice history lesson - but what’s your point?”

Basically, that it’s OK to be excited about our work, and to acknowledge how cool it is.

The hardware for which we are creating our apps is radical and magical, and I want you

to harness your excitement and wonder, and live up to this standard. I’m here to help

you translate that into something astounding and new—something your users have not

imagined yet.

The first step toward this creative challenge is to interpret your users’ input and decode

their gestures. Of course, to do this elegantly, you need to understand how Multi-Touch

input works. In this chapter, we will tell the iPhone and iPad processors what to do when

the user pinches, or swipes, or taps the screen. Only upon understanding the input

conventions can you begin to speak the touch-based language of your users.

DragRotateAndScale—a View-Based Application
As I mentioned in Chapter 3, the programming exercises in Chapters 7–9 are designed

to continue the trend of advancement over the material in the earlier chapters. As with

previous chapters, we have made available supplemental videos for these exercises, but

you can program all of these apps without referring to the screencasts.

However, because the apps in these final three chapters are considerably more complex

than earlier examples, you may want to audit some of them to give yourself some extra

perspective. If you do check these out, you will see me, or a teaching assistant, zooming

along at a pretty good clip. Don’t hesitate to pause, stop, or rewind as many times as

you need to in order to become comfortable with the coding sequences.

CHAPTER 7: Dragging, Rotating, and Scaling 211

Something else to be aware of is that in the screencasts we use a lot of boilerplate code.

We just paste the ready-made components directly into the apps in progress. But here,

in the book, we go line by line through all of the code. So, check out the screencasts …

and then set aside a big block of time to go through this app, step by step.

When you’re done, try to build it on your own. Then keep on doing it, again and again,

until you don’t have to make a single reference to the book. You’ll find the screencast at
http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_Movies/009_Drag%20and%20
Rotate.htm

 Preliminaries
As you did in Chapter 6, please download and extract images and code for this chapter.

If you need refreshing on how to do this, review Figures 6–2 thru 6–4. As usual, start off

with a spotlessly clean desktop. Then, open a browser and navigate to

http://rorylewis.com/xCode/009_DragRotateAndScale.zip and download its contents

to your desktop. Then, extract the files onto your desktop.

There will be four text files, one image file, and a folder containing the final working code

for DragRotateAndScale (in the event you encounter trouble coding it yourself). The

image file is the image I used in the example—of my puppy Shaka. The text files consist

of sections of boilerplate code from which I will ask you to copy and paste various

pieces. You are welcome to use these files in any of your future programs that involve

touches. You’ll find Translate.rtf, HelperFunctions.rtf, TranslateRotateScale.rtf, and

ViewController.rtf.

Once you have extracted all the files, remember to delete the

009_DragRotateAndScale.zip and 009_DragRotateAndScale folders. Also, file the

DragRotateAndScale Xcode to a safe place, for if you leave it on your desktop it will be

overwritten and conflict with your exercise code. Monkeys will start writing

Shakespeare, and the world will collapse and disappear … all because you did not file it

away. After you follow these directions, you will have five files on your desktop.

Starting the DragRotateAndScale App
To start our DragRotateAndScale application, we need to make a new project in Xcode as

we’ve always done. Open Xcode and select the View-based Application template item (as

shown in Figure 7–1).

http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_Movies/009_Drag%20and%20
http://rorylewis.com/xCode/009_DragRotateAndScale.zip

CHAPTER 7: Dragging, Rotating, and Scaling 212

Figure 7–1. Create a new View-based application to start the DragRotateAndScale project.

Make sure the Product menu is set to iPhone before continuing. Name the project

DragRotateAndScale and click the Save button, as shown in Figure 7–2.

Figure 7–2. Name and save the project.

CHAPTER 7: Dragging, Rotating, and Scaling 213

Next, choose and prepare an image file as your main object for this exercise. Choose

whatever is appealing, and save it on your desktop. By the way, we have chosen a

smaller image than earlier exercises have used (100 × 100 pixels), to allow for

manipulating and sizing.

Copy the handy image file into the project’s folder, as shown in Figure 7–3. Click the usual

boxes and radio buttons to ensure proper management of this image file down the road.

Figure 7–3. Copy your desired image into the Xcode project. The image used in the example is 100 × 100 pixels.

Creating a Custom UIImageView Subclass
We are going to add a new file to our project: a UIImageView subclass called

TransformView. This class will intercept touch events and change their transforms

accordingly. We are making TransformView a UIImageView subclass so that we can

assign an image to our instance and then see it rendered on the screen. Technically, a

UIView subclass can do what we want, but, for this example, we want to focus on the

transforms and not worry about custom drawing code for a UIView subclass.

Creating a custom view isn’t strictly necessary for this application, but we will do it

anyway—to flex our subclassing muscles. The DragRotateAndScaleViewController could

technically do everything we need to make this application work, without the need for a

custom UIView subclass, but subclassing makes the code simpler and more robust. Thus,

we select a new Objective-C class in the New File window, as shown in Figure 7–4.

CHAPTER 7: Dragging, Rotating, and Scaling 214

Figure 7–4. Create a new Objective-C class file.

In the header file, TransformView.h, make sure the superclass—that is, the statement

after the colon (:)—is specified as UIImageView. We do this so we’ll be able to assign an

image quickly and easily. Your header file should look like the one in Figure 7–5.

Figure 7–5. The TransformView class, a subclass of UIImageView

CHAPTER 7: Dragging, Rotating, and Scaling 215

//

// TransformView.h

#import <UIKit/UIKit.h>

@interface TransformView : UIImageView
{

}

@end

Overriding – initWithImage in TransformView.m
For the implementation file, TransformView.m, we want to handle the creation of our view

a little differently than normal. UIImageViews do not handle touch input by default, and

they therefore reject any touch input they receive. This would not serve us! We want our

view to handle not only touch input, but multiple touches.

To do this, we override the method (id) initWithImage:(UIImage*)image. Inside of our

override, we will insert the lines [self setUserInteractionEnabled:YES] and [self
setMultipleTouchEnabled:YES]. Of course, we end each line with a semicolon.

The first line will allow our view to respond to touch events. The second will allow

TransformView to receive multiple touch events, which we’ll need if we’re going to

enable users to pinch and spread their fingers to scale and rotate. Your code should

look like Figure 7–6.

Figure 7–6. Enable TransformView to process multiple events.

CHAPTER 7: Dragging, Rotating, and Scaling 216

//
// TransformView.m

#import "TransformView.h"

@implementation TransformView

- (id) initWithImage:(UIImage *)image
{
 if (self = [super initWithImage:image])
 {
 [self setUserInteractionEnabled:YES];
 [self setMultipleTouchEnabled:YES];
 }

 return self;
}

@end

Creating Touch-Handling Stubs
Now we want to begin the process of creating the pieces of code that define the extent

to which the users’ touches affect the images and other interface parameters. To do

this, we override various methods whose names literally start with the term “touches.”

These touches methods are called into action whenever a user touches the device,

moves a touch, or stops touching the device. The four “reversal” methods we will add

are these:

- (void) touchesBegan:(NSSet*)touches withEvent:(UIEvent*)event
- (void) touchesMoved:(NSSet*)touches withEvent:(UIEvent*)event
- (void) touchesEnded:(NSSet*)touches withEvent:(UIEvent*)event
- (void) touchesCancelled:(NSSet*)touches withEvent:(UIEvent*)event

NOTE: You can see these methods overridden as stubs in Figure 7–7. A stub is a skeleton of a
boilerplate set of code made to be easily adaptable to your code as a timesaving device. In our
case, pasting these four stubs is an efficient means of programming when a touch begins,
moves, ends, or is canceled.

Note that touchesCancelled:withEvent: calls, or refers, to –touchesEnded:withEvent:.

This is because we generally want a cancelled touch to behave as though the user had

ended that touch. “Cancelled” is what we call any user input (in this case a touch) that is

called off by performing the identical input; for example, a button is pushed ON, but then

pushed again OFF. An “ended” touch is an intentional input that is the cessation, or

stopping, of an ongoing touch, or swipe, which proceeds for more than just an instant.

This distinction may not always apply, but it’s a good approach for our purposes.

CHAPTER 7: Dragging, Rotating, and Scaling 217

Figure 7–7. The lines of stub code dealing with overriding defaults are inserted.

NOTE: We are not even going to attempt to have you understand every word of the touches
code. It’s enough to know that whenever you deal with touch-related code, and you are trying to
decide which default code to keep and which to delete, you can forget your worrying and use
these lines of ready-made and adaptable code known as “stubs.” Do not think too much about
this; just use it!

We may not end up adding details in all of our touches methods, but we want to

override them all anyway. This is so that we are in complete control—so that we claim

administrative ownership of the touches at all times. It is simply good practice.

//
// TransformView.m

#import "TransformView.h"

@implementation TransformView

- (id) initWithImage:(UIImage *)image
{
 if (self = [super initWithImage:image])
 {
 [self setUserInteractionEnabled:YES];
 [self setMultipleTouchEnabled:YES];
 }

 return self;
}

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{

CHAPTER 7: Dragging, Rotating, and Scaling 218

}

- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{

}

- (void) touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{

}

- (void) touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event
{
 [self touchesEnded:touches withEvent:event];
}
@end

Translating in touchesMoved
Let’s start on the section of our code that will allow for moving the image around—in

other words, the code that enables us to drag objects. This means that, for now, we are

going to zero in on one line of code: -touchesMoved:withEvent:.

For the time being, the other touches methods will remain unchanged. Your

touchesMoved method should look like Figure 7–8.

Figure 7–8. With this added code, the user can now move the TransformView image with one finger.

- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{
 CGPoint newTouch = [[touches anyObject] locationInView:[self~CCC
 superview]];

CHAPTER 7: Dragging, Rotating, and Scaling 219

 CGPoint lastTouch = [[touches anyObject]
previousLocationInView:[self~CCC
 superview]];

 float xDif = newTouch.x - lastTouch.x;
 float yDif = newTouch.y - lastTouch.y;

 CGAffineTransform translate = CGAffineTransformMakeTranslation(xDif,~CCC
 yDif);
 [self setTransform: CGAffineTransformConcat([self transform],~CCC
 translate)];
}

Let’s step through this code and see if we can determine what’s really happening.

First of all, what is this CGPoint business? CGPoint is core code that has been

programmed for us by the clever people at Apple; it is the part of the program in the

CoreGraphics module that describes a point in 2D space, with members x and y. Finger

touches by the user result in CGPoints when their location is appropriate and

requested—by the nature of the application.

This information can yield the distance between the two points using some very simple

math. Now, take a look at the call to [[touches anyObject] locationInView:[self
superview]]. This code grabs a touch object from the NSSet of touches and requests its

location in this object’s superview. In other words, we are simply asking for the location

of the touch in relation to the superview.

This is different than one might expect. Why are we asking about the position in the

superview and not about the position in the TransformView itself? Because we want to

know where to move the TransformView in the superview. Thus, we get the current and

previous positions of the touch in the superview.

NOTE: The IPad and iPhone keep track of which view is currently being shown by treating it as a
window instance. The instances are arranged in a pyramid order with the top-level view instance
called the content view, which is the root of all the other views, called subviews. The parent of
any view to which one is attending, at a given point of time, is referred to as its superview.

The next two lines work together to calculate the difference between the old position

and the new position on the x- and y-axes.

The following line creates a translation out of the position difference, storing this

translation as a temporary CGAffineTransform. That’s a big term, but it simply means a

matrix that stores the change in position for the view. Since the “translation” matrix is

relative, we have to add it to our current transform. We do this on the last line of

highlighted code, concatenating (merging or combining) the view’s “current” transform

and the “translation” transform to get a transform that holds our new position. Once we

have that new transform, we set the view’s transform to the new one.

CHAPTER 7: Dragging, Rotating, and Scaling 220

Making Use of TransformView
So, our TransformView is ready for its first test run. We need to make an instance

somewhere and add it as a subview to something else. Our

DragRotateAndScaleViewController is where this is done. Moving into the

DragRotateAndScaleViewController header file, all we need to do here is import our

TransformView.h file, as you can see in Figure 7–9.

Figure 7–9. Import the TransformView.h header file.

//
// DragRotateAndScaleViewController.h

#import <UIKit/UIKit.h>
#import "TransformView.h"

@interface DragRotateAndScaleViewController : UIViewController {

}

@end

Creating a TransformView
In the DragRotateAndScaleViewController implementation file, we want to create a

TransformView and make it visible to the user. We want to make sure the view is ready,

so we perform this action in the viewDidLoad method override. Your code should come

out looking like Figure 7–10.

CHAPTER 7: Dragging, Rotating, and Scaling 221

Figure 7–10. Now we can see and move our TransformView. We’re almost there!

- (void)viewDidLoad
{
 [super viewDidLoad];

 TransformView* theTouchView = [[TransformView alloc] initWithImage:[UIImage~CCC
 imageNamed:@"Shaka.png"]];
 [theTouchView setFrame:CGRectMake(110, 180, [theTouchView frame].size.width,~CCC
 [theTouchView frame].size.height)];
 [[self view] addSubview:theTouchView];
 [theTouchView release];
}

Let’s see how close you are as you analyze these lines and predict what we are creating

and defining. In the first bolded line, we begin by creating a new TransformView object,

passing it a UIImage object with the name of the image we dragged in at the beginning

of the process. This will call the method override we wrote earlier, allowing the

TransformView to take touch input.

Next, we set the frame of the TransformView in order to position it initially within the

view. The numbers were derived from the dimensions of the iPhone and the dimensions

of the image, 100 × 100 pixels.

The third line of code adds the TransformView as a subview to the self view, so that our

TransformView will be drawn.

The last line sends a release call—for memory management purposes.

That ought to do it! We should be able to run the code at this point and be able to move

the TransformView around—just by touching and dragging. Figure 7–11 shows the first

step of testing the TransformView, which is to select the appropriate platform on which

to simulate the app.

CHAPTER 7: Dragging, Rotating, and Scaling 222

Figure 7–11. Make sure the executable is set to the iPhone Simulator.

Figure 7–12 demonstrates the iPhone Simulator loaded with your single image. I need to

be able to move the image – so, touch and drag your photo. Yes, this is a simple test,

but Rome wasn’t built in a day.

Figure 7–12. Touch and drag to move your image around!

CHAPTER 7: Dragging, Rotating, and Scaling 223

Having controlled the image with the simulated fingertip, let’s switch over to the other

platform. Figure 7–13 shows the frame in which to switch the executable to select the

iPad Simulator. You need the TransformView to function there as well as it does on the

iPhone.

Figure 7–13. Let’s test our code on the iPad Simulator.

Figure 7–14 depicts the iPad Simulator in a normal view mode, which expands the

relative size of the image so that it continues to occupy a proportional amount of the

screen. Touch it and drag it to prove the fluency of the iPad platform.

And, because there is also an embedded iPhone view within the iPad Simulator

executable, we need to test that as well. Figure 7–15 shows that option, vividly

demonstrating the relative sizes of the identical image in these two modes.

CHAPTER 7: Dragging, Rotating, and Scaling 224

Figure 7–14. You will see your image moving in a normal iPad view.

Figure 7–15. In the embedded iPhone view, we see the image appear to shrink back to its normal size.

CHAPTER 7: Dragging, Rotating, and Scaling 225

Preparing TransformView for Rotation and Scaling
Excellent—we’re on a roll! Let’s keep going.

Your application looks pretty cool so far, but it can be made even better by allowing the

user to zoom and rotate the picture. This requires more complex computation and touch

monitoring. As you already know, we must track two concurrent touches and determine

their relative positions. To accomplish this, we need to modify our TransformView

header file.

In the TransformView.h file, we are going to add two UITouch* fields: firstTouch and

secondTouch. These touch objects will track the distance and angle between the touch

points that fall on this view. Additionally, we will add method prototypes for the helper

methods that we will be using to calculate the transform changes, as you can see in

Figure 7–16.

Figure 7–16. Modify the TransformView.m implementation file to track two touches.

//
// TransformView.h

#import <UIKit/UIKit.h>

@interface TransformView : UIImageView
{
 UITouch* firstTouch;
 UITouch* secondTouch;
}

- (float) angleBetweenThisPoint:(CGPoint)firstPoint ~CCC
andThisPoint:(CGPoint)secondPoint;

CHAPTER 7: Dragging, Rotating, and Scaling 226

- (float) distanceBetweenThisPoint:(CGPoint)firstPoint andThisPoint:~CCC
(CGPoint)secondPoint;

@end

We declare the instance variables for the class: two UITouch objects that will be used to

track the user’s touch inputs. At the bottom, you will see the prototypes for the helper

methods we will use to change the transform.

You might be asking, “Why even bother with passing CGPoints to the helper functions?

Why not use UITouch* instead?” Because we may decide at some later date to change

the way touch input is handled, potentially off-setting or changing the touch positions

from their real positions (for whatever reason). That would require us to change our

helper code, which is not ideal. Instead, the helper code should always function in the

same manner while the calling code changes the input if needed.

Helper Methods
Now that we have our instance variables and method prototypes, we can build out the

implementation file. These helper methods could have been declared in a private

interface, but that would have been overkill for this type of application.

Inside the TransformView.m file, create the helper methods as shown in Figure 7–17.

Figure 7–17. Bring in your “helper methods” from the downloaded helperFunctions.rtf file.

- (float) distanceBetweenThisPoint:(CGPoint)firstPoint andThisPoint:
(CGPoint)secondPoint
{
 float xDif = firstPoint.x - secondPoint.x;
 float yDif = firstPoint.y - secondPoint.y;

 float dist = ((xDif * xDif) + (yDif * yDif));

 return sqrt(dist);
}

- (float) angleBetweenThisPoint:(CGPoint)firstPoint andThisPoint:(CGPoint)secondPoint

CHAPTER 7: Dragging, Rotating, and Scaling 227

{
 float xDif = firstPoint.x - secondPoint.x;
 float yDif = firstPoint.y - secondPoint.y;

 return atan2(xDif, yDif);
}

Fortunately, these “helper methods” are relatively straightforward. They simply calculate

the distance and the angle in radians, respectively, between the two touches -. These

will be used by our touches methods to create scaling and rotation transforms that will

be applied to the TransformView.

The –distanceBetweenThisPoint:[*]andThisPoint: term finds the x and y position

differences between the two points and utilizes the good old Pythagorean Theorem to

calculate the straightline distance between the points.

Similarly, –angleBetweenThisPoint:[*]andThisPoint: finds the angle from the first point

to the second point in relation to the x-axis, returning the result in radians.

Adding to “-touchesBegan”
We’ll start with the easier part of this next section of our code. You will need to add

some code to touchesBegan:withEvent: in order to track our touches. This looks pretty

daunting, but you’re beginning to operate at a pretty advanced level … and, for some,

this’ll be a cakewalk.

We are still in the implementation file, TransformView.m, and we are going to rewrite our

touches methods to handle multiple touches and to utilize our helper functions in order

to change the transform.

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 //Single touch
 if ([touches count] == 1)
 {
 if (!firstTouch)
 {
 firstTouch = [[touches anyObject] retain];
 }
 else if (!secondTouch)
 {
 secondTouch = [[touches anyObject] retain];
 }
 }
 //Multiple touch
 if ([touches count] == 2)
 {
 NSArray* theTouches = [touches allObjects];
 [firstTouch release];
 [secondTouch release];
 firstTouch = nil;
 secondTouch = nil;

CHAPTER 7: Dragging, Rotating, and Scaling 228

 firstTouch = [[theTouches objectAtIndex:0] retain];
 secondTouch = [[theTouches objectAtIndex:1] retain];
 }
}

All right … see if you can tell what’s happening here. First, we check to see if there is

only one touch—by checking the count of touches. If there is only one touch, we direct

the computer to hold onto it—in memory—for later use, in whichever field we aren’t

already using.

If there are two touches, we grab all of the touches from the set, release our previous

touches, and set the fields to the first two touches in the array of touches. This approach

gives us the two touch objects we need and it ignores any extraneous touches. Easy,

huh?

Copy this code from the TranslateRotateScale.rtf file that you downloaded at the

beginning of the chapter and saved to your desktop, as shown in Figure 7–18. Then,

paste these lines into the implementation file.

Figure 7–18. Grab the new touch code from the downloaded TranslateRotateScale.rtf file.

CHAPTER 7: Dragging, Rotating, and Scaling 229

Modifying -touchesMoved
Take a deep breath. Relax! The next chunk of code may look intimidating, but it’s actually

quite simple. We’ll walk through it together, and you’ll see exactly what’s happening.

This code modifies the -touchesMoved:[*]withEvent: method, and it also utilizes our

helper methods. We use the data from the touches and helper methods to create

transforms that are concatenated with the current transform.

- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{
 if ([touches count] == 1)
 {
 CGPoint newTouch = [[touches anyObject] locationInView:[self superview]];
 CGPoint lastTouch = [[touches anyObject] previousLocationInView:
 [self superview]];

 float xDif = newTouch.x - lastTouch.x;
 float yDif = newTouch.y - lastTouch.y;

 CGAffineTransform translate = CGAffineTransformMakeTranslation(xDif, yDif);
 [self setTransform: CGAffineTransformConcat([self transform], translate)];
 }
 else if ([touches count] == 2 && firstTouch && secondTouch)
 {
 //Rotate
 float newAngle = [self angleBetweenThisPoint:[firstTouch locationInView:
 [self superview]]

 andThisPoint:[secondTouch locationInView:[self superview]]];
 float oldAngle = [self angleBetweenThisPoint:
 [firstTouch previousLocationInView:[self superview]]

 andThisPoint:[secondTouch previousLocationInView:[self superview]]];

 CGAffineTransform rotation = CGAffineTransformMakeRotation(oldAngle - newAngle);

 [self setTransform: CGAffineTransformConcat([self transform], rotation)];

 //Scale
 float newDistance = [self distanceBetweenThisPoint:
 [firstTouch locationInView:[self superview]]

 andThisPoint:[secondTouch locationInView:[self superview]]];
 float oldDistance = [self distanceBetweenThisPoint:
 [firstTouch previousLocationInView:[self superview]]
 andThisPoint:[secondTouch previousLocationInView:[self superview]]];

 float ratio = newDistance / oldDistance;

 CGAffineTransform scale = CGAffineTransformMakeScale(ratio, ratio);
 [self setTransform: CGAffineTransformConcat([self transform], scale)];
 }
}

CHAPTER 7: Dragging, Rotating, and Scaling 230

First, we direct the computer to check whether only one touch moved. If that is the case,

then we call forth exactly the same code we had for translation before. It doesn’t get

much easier than that!

If there are two touches, however, we begin calculating the rotation and scaling

transforms. The rotation calculation is started by using our helper method to find the

angle between the current touch points. We follow that by finding the angle between the

old touch points. A rotation transform is made by finding the difference between the two

angles. This creates a relative rotation transform that, just like before, needs to be

concatenated with the current transform.

Next, we calculate the appropriate scaling that needs to be done based on the position

of the touches. We use our helper method to find the distance between the touch points

for both the current touches and the previous touches. We then find the ratio of the new

distance to the old distance. This gives us a scaling factor by which we will scale the

current transform. Using this factor, we create a relative scale transform and

subsequently concatenate it with the current transform.

See? I told you it wasn’t that bad! You can show this code to your friends and watch

their jaws punch a hole in the floor while you flash them your knowing smile.

Running this code now allows the user to drag the image with one finger or rotate and

scale it with a pinch gesture, as shown in Figure 7–19 and Figure 7–20.

Figure 7–19. Drag, rotate, and scale your image.

CHAPTER 7: Dragging, Rotating, and Scaling 231

Figure 7–20. It works smoothly on the iPad!

You’re done! Check out your draggable, rotatable, and scalable custom UIImageView

subclass!

So, how is this approach useful? Where should it be used and what are some things to

watch for? As we discussed earlier, this is a very intuitive and friendly interface, even for

users who are new to the iPhone/iPad. This approach should be considered for any

application that has objects that sport lots of detail and benefit from direct user

interaction.

NOTE: With the current code, a user can actually shrink an image so small that it cannot be
pinched and spread in order to return it to a useful size. Some limit on a scaling factor should be
considered for this reason. It is also possible for the user to move an image completely off the
screen, so positional constraints are recommended.

CHAPTER 7: Dragging, Rotating, and Scaling 232

Digging the Code
We will now focus on one of the concepts I mentioned earlier only in passing: event-
handling. The four lines of code that follow deal with related events and the methods by

which we want the computer to deal with these events.

- (void) touchesBegan:(NSSet*)touches withEvent:(UIEvent*)event
- (void) touchesMoved:(NSSet*)touches withEvent:(UIEvent*)event
- (void) touchesEnded:(NSSet*)touches withEvent:(UIEvent*)event
- (void) touchesCancelled:(NSSet*)touches withEvent:(UIEvent*)event

In order to dig this code, we first need to remind ourselves what methods and

arguments are. These four touch methods are called event-handling methods.

Explaining an event-handling method is a bit tricky because it’s a very abstract tool – like

using a time warp in order to advise Thomas Jefferson about drafting The Declaration of
Independence on a computer. So before we talk about these four event-handling

methods, let’s take a close look at how a generic event-handling method works.

Suppose you hear your phone ring. You know that somebody from the outside world is

calling you. Do you:

A) pick up the phone and say, “Hello?”

B) pick up the phone and say “Sorry—I need to call you back.”

 or …

C) let the phone ring through to voicemail?

These are event-handling methods. You have different methods of handling a phone

call, and choosing one depends on several factors: who is calling, what you are doing,

how tired you are, how hungry you are, and so forth.

Bearing this analogy in mind, the lines we’re examining are event-handling methods for

handling a touch from the user who is operating your iPhone or iPad app. The

programmers at Apple have created event-handling methods that make it easy for you

to decide whether you are going to pick up the phone, answer it, and so on.

In our case though, we want to handle four different kinds of events. These touch events

are events that are propagated through the responder chain. What’s a responder chain?

Here’s another analogy.

The phone rings, but you don’t want to answer it. You ask somebody (brother, sister,

mother) to pick up the phone for you. What they do with the phone is totally up to

them—because you gave up your chance to answer the phone. That is how the

responder chain works: events come in and objects can either handle the events

(answer the phone yourself) or continue to pass the event down the responder chain (tell

someone else to pick up the phone).

Along these same lines you may see the term first responder in Interface Builder or some

of the Apple documentation. This is the first object in the responder chain, and the first

responder always gets the first opportunity with generated events. In the phone

CHAPTER 7: Dragging, Rotating, and Scaling 233

example, you would be the first responder, since you were given the opportunity to

handle the phone call first. Most controls without targets (such as a button that does not

have its target set) send their actions to the first responder by default.

When a touch is placed on the device, the window uses “hit testing” to determine which

view the touch was in and then passes the touch event information down the responder

chain. If a view’s userInteractionEnabled property is set to NO, the event will continue

down the responder chain until a view is able to handle that event. A touch and its

associated view are linked for the lifetime of the touch. This means that, even if the

touch moves off the view that received the touch initially, that view is still in charge of

that touch and no other views will receive touch information about that touch … no

matter where it moves.

The generated events hold information on the touches that triggered them, as well as a

timestamp, the event’s type, and the event’s subtype, all of which can be accessed

through corresponding properties.

New to iPhone OS 3.0 are motion events that are triggered similarly to touch events.

They are targeted events that default to the first responder. The event object for a

motion may have its subtype set to UIEventTypeMotionShake, which provides an easy

way to detect shake events. The types and subtypes of a UIEvent object provide lots of

useful information that can help to determine how an incoming event should be handled.

Cocoa Touch, the view system of the iPhone OS, works according to a hierarchy. That

is, views handle drawing themselves and their subviews. When a call like [[self view]
addSubview:aView]; is made, a view is made a subview of self’s view.

Pretty simple, right? Well, each view has a transform that describes the view’s location,

rotation, scaling, and other factors relative to that view’s superview. This is exactly what

we need in order to make our custom view scale, rotate, and move around in its

superview, whenever a touch is sensed and identified.

We can change the transform in many ways, but, for the most part, we only need to deal

with distances and angles between touches to do everything we need. The structure

CGAffineTransform is used to store and manipulate the transforms of views. Now that

you’re in the world of advanced programming, you should be comfortable using the C-

style calls for CGAffineTransform. Take some time to peruse the documentation on

CGAffineTransform and take a look at the view programming guides to get an Apple-

approved in-depth description of how all this stuff works.

Gesture Support and the iPad
The iPad SDK contains two never-before-seen commands (3Tap.plist and

LongPress.plist) that are nowhere to be found in any iPhone SDK up to 3.1. What do

3Tap and LongPress do? Exactly what their names say. The iPad will recognize three

quick taps and an extended long press—different from the one already used for copy

and paste.

My prediction is that a primary use of the iPad in future years will be as a textbook

medium; students will be able to write notes on their ebooks and display them on their

CHAPTER 7: Dragging, Rotating, and Scaling 234

iPads. Bear in mind that we already allow a swipe to delete messages and emails, just

like pressing the Delete key. When a student is writing notes on an iPad etext, maybe a

swipe will be a neat way to erase some of the contents, just like using a pencil eraser.

235

 Chapter

Table Views, Navigation,
and Arrays
To teach or not to teach … arrays, that was the question. In my original plan for this
book, I had decided to not teach arrays, for a couple of reasons:

1. They are difficult for computer science majors—let alone absolute

beginners.

2. They are considered boring.

3. They are even more complex placed in the context of Objective-C.

But I needed to teach arrays! Students in my iPhone/iPad class wanted to write Final
Projects that utilized tables – which required the use of arrays – and I realized just how
essential they were.

To help you decide whether to read this chapter, I want you to consider three things.

1. Why I was not going to teach this chapter.

2. Why you may want to skip this chapter.

3. Why I decided to teach it after all … and to teach it my way!

Why I was not going to teach this chapter:

I have had many conversations with colleagues about what takes place when computer
science students first come into contact with arrays. My experience is that
understanding arrays has nothing to do with being smart. Often I see my brightest and
most diligent students struggle and stumble as they plunge into the jungle of arrays.
Conversely, I see students who have no business walking the halls of the Computer and
Engineering Building grasp the concept as if it were their native language. One student
who struggled with the “Hello World” chapters actually nailed arrays!

8

CHAPTER 8: Table Views, Navigation, and Arrays 236

Why you may want to skip this chapter:

One thing I’m clear about is this: you don’t have to know arrays to be a successful
programmer. At a recent conference on programming the iPhone and the iPad, I
attended a presentation by a very cool team of programmers about their new apps. One
guy was talking about this goofy game in which users throw things into a garbage can.

The company consists of two guys in their mid-50s. They have 11 games and make
over $20,000 per month. Get this—two years ago they were interior designers who had
never programmed before. After they gave their talk, they opened the floor to questions.
When asked about the mechanics of how they processed their arrays, they gave this
response to a full room of several hundred high-tech geeks:

“We don’t know anything about arrays. We just use stubs and
boilerplate ins and outs—and then we pray!”

Why I decided to teach it after all … and to teach it my way!

In the early stages of this book, I stayed on the fence regarding this topic. I knew that at
some point, though, I would have to decide, and my publishers would want to know as
well. To array or not to array!

From the students’ point of view, this fork in the road was tough as well, but because of
the requirements of academia, it looked to most of them something like Figure 8–1. For
most of my students, Option 1—give up and drop out of engineering—was really no
option at all. And if they landed in my class, my objective was, of course, to lead them
to Option 2—become committed enough to learn the material.

Figure 8–1. The traditional options for dealing with arrays: 1) Give up, drop out of engineering, and go home, or 2)
get committed and do whatever it takes to learn this torturous material!

CHAPTER 8: Table Views, Navigation, and Arrays 237

Figure 8–2 illustrates my take on the “Arrays” conundrum. You can see that it consists of
three options—the added one being a blend of the classical dichotomy:

1. Avoidance: “Arrays—who needs ‘em! I’m outta here! Chapter 9,

“MapKit,” here I come!”

2. Lewis’s Array Method: I will present specific boilerplate code, by which

you’ll learn where and how to insert functioning arrays into your code. In

this pragmatic approach, you’ll get a basic introduction to what arrays

are and learn a few helpful tricks. Because I will have simplified the

technical aspects in a major way, you’ll end up with only a taste about

how arrays function. Still, your code will work, and you’ll feel really

clever!

3. Learn Arrays Completely: There’s a good reason why Dave Mark and

Jeff LaMarche waited until their advanced book, More iPhone 3
Development : Tackling iPhone SDK 3 (Apress, 2010), to teach arrays.

They referred to this area of programming as “ … the Devil …”

Figure 8–2. Lewis’s take on the issue of arrays: 1) Avoid the issue altogether, 2) Trust in Dr. Lewis’s pragmatic
approach and learn a few helpful tricks here and there, or 3) Go to Chapter 4 of Dave and Jeff’s advanced book
and shake hands with the Devil!

CHAPTER 8: Table Views, Navigation, and Arrays 238

How Shall We Proceed?
If you’re still here—and haven’t skipped ahead to Chapter 9, or put the book away
entirely—then I am assuming you are willing to go along with the program for this next
part of our journey. It is important that I communicate two caveats:

 You will, at times, think that I’m not giving you enough details about
arrays.

 You will, at times, think that I’m giving you too many details about
arrays.

In other words, please show the same awesome flexibility and patience that you have
demonstrated up to this point in our give and take partnership. Trust me! Fair enough?

OK—then let’s get down to business.

Table Views and Navigation Stacks
To understand how arrays are used in iPhone/iPad apps you need to understand the
role of table views and navigation stacks, very powerful and helpful pieces of the iPhone
OS. So far, we have talked only a little about tables. These are commonly used to show
lists of items, and they allow the user to select and organize those items.

When you need to list things to buy from the grocery store, for instance, what steps do
you take to prepare? First, you find a piece of paper, and then you list all of the things
you need. A table view acts just like that piece of paper: it organizes the items in a list
so that you can easily find anything you need.

Using table views to display lists is only part of the picture, though. A navigation stack
lets us move between table views and even between “normal” views.

Let’s keep our subject simple for as long as we can. Right now then, I want you to keep
in mind five things about table views:

1. A table view is nothing more than a list of stuff, a list of data.

2. In the iPhone/iPad, a table view contains the code for a view object—

the thing that displays your table’s data on the iPhone’s/iPad’s screen.

3. The UITableViewCell controls every row in a table view. Don’t question

this; just accept it.

4. A table view does not store your table’s data. It stores only code—to

display the rows that are currently visible on the user’s iPad/iPhone

screen.

5. Table views involve at least two chunks of data:

a. Information about which types of data are present and how these
are to be configured—by the UITableViewDelegate object;

CHAPTER 8: Table Views, Navigation, and Arrays 239

b. Information about how specific data is arranged and displayed—
by the UITableViewDataSource object protocol.

Similarly, arrays are just lists of stuff—and happens that table views are great at
displaying and organizing arrays. But I first need to run by you a thought that vaguely
describes how an array works:

An array is an ordered collection of objects, starting at zero, which can
store any number of objects.

Imagine a vending machine filled with a wide variety of goodies, numbered A1 to H6
from top left to bottom right. You see a snack that looks too tempting to pass up, so you
enter that snack’s number and receive your delicious treat. The number used to access
your candy, identifying its position in the sequence, is called an index. We use indexes
(or “indices”) to find objects in an array in the same way we would get candy from a
vending machine. One important distinction is that an object remains in an array—even
after you find it using its index. The candy, fortunately, does not stay in the vending
machine!

Let’s imagine that it is your job to report the kinds of candies available in the vending
machine. But you can’t just look in and count. Instead, the glass has been replaced with
a big sheet of opaque plastic, and all the numbers have been removed.

You are therefore playing the role of the table view. First, you need to know how many
goodies are in the machine. Fortunately, the vending machine already has a read-out that
tells you this, and that read out is what will appear on the screen of your iPad or iPhone.

Food: Following the App Store Model
For this example, we are going to use arrays, views, and tables to make a very simple
app. It will be built upon the master-detail paradigm and use table views to display
delicious dinner entrees! Our approach will be very similar to the way that the App Store
presents choices on the iPhone/iPad. We will seek to implement a pattern in which the
user starts in a table view that presents categories, moves on to a list of all of the items
in a selected category, and finally navigates to a page with detailed information about a
specific choice.

We will use our boilerplate code that can be used to form arrays, and we will use stubs
in other applications that produce results similar to the App Store interface just
described.

Starting the Food App
As usual, we open up Xcode and begin a new project using our shortcut, or by selecting
the option from the File drop-down menu, as demonstrated in Figure 8–3. Choose the
Navigation-based Application template, as shown in Figure 8–4.

CHAPTER 8: Table Views, Navigation, and Arrays 240

Figure 8–3. Start a new project in Xcode. You are right – I didn’t use the usual shortcut … I just wanted to see if
you were awake!

Figure 8–4. Select a Navigation-based Application.

Make sure the images we’re going to use are in the Xcode project, as in Figure 8–5.

CHAPTER 8: Table Views, Navigation, and Arrays 241

Figure 8–5. Copy the images into the Xcode project. Don’t forget the icon file. Note that these images look like
they’re being dropped into the Resources folder, but they’re actually en route to the Other Sources folder.

The images can be found on the book’s download page at www.apress.com website,
along with all of the source code for this project. Drag and drop the images into the
Other Sources folder, and make sure to check the Copy Into box. When your screen
looks like Figure 8–6, you’re ready to go.

Figure 8–6. Our project is ready to go.

Adding the Category Names Array in RootViewController.h
At this point we’re still just setting up your table—in the same way that you would set up
a list or an Excel chart. We have not yet begun the boilerplate stuff.

In order to populate the list of category names, we need to be able to store them inside
the RootViewController. So, we need to move into the RootViewController.h file and

http://www.apress.com

CHAPTER 8: Table Views, Navigation, and Arrays 242

set up a field to hold the categories. We also need to make sure our RootViewController
can drill down on the information the user wants by creating a new View Controller. To
do this, we add an import line and a new field in the header, as shown in Figure 8–7.

Figure 8–7. Import the FoodTableViewController.h file and create the categories array.

Add the line #import “FoodTableViewController.h” at the top of the header file. This
instruction will import a class that we will create in a later step, but we’re putting it in
here now since we’re already where we need to be.

Next, add a field to the class with the line NSArray* categories. This array will hold the
category names for use in the table view:

//
// RootViewController.h

#import <UIKit/UIKit.h>
#import "FoodTableViewController.h"

@interface RootViewController : UITableViewController
{
 NSArray* categories;
}

@end

Creating the Categories Array in -viewDidLoad
Moving into the RootViewController implementation file, we need to set up how the
category names are going to be displayed. First, we need to create our category names
and hold onto them for later. We will store our array of names in the Categories field that
we previously created.

In RootViewController.m, we override the -viewDidLoad method to set up what we need.
First, as always, we call [super viewDidLoad] to let the superclass respond to the
loaded view as normal. We create the array with all of the names we want and set

CHAPTER 8: Table Views, Navigation, and Arrays 243

“categories” equal to that new array. Note the @ symbols and the nil item at the end;
those are important!

On the next line, we set the title of the View Controller so that when the navigation
controller needs to display a title, “Categories” will be displayed. This title is displayed at
the top of the table view in the navigation bar. The code looks like this:

- (void)viewDidLoad
{
 [super viewDidLoad];

 categories = [[NSArray alloc] initWithObjects:@"Chicken", @"Beef", @"Pork",
 @"Fish", @"Vegetarian", @"Really, Really Healthy Food", nil];
 [self setTitle:@"Categories"];
}

Setting Up Table View Data Source Methods
The UITableView class uses delegation and data source objects in order to get data to
display and handle input from the user. The methods we are most interested in for the
data source, which is already linked to the RootViewController, are the following:

-(NSInteger)numberOfSectionsInTableView:(UITableView*)tableView

-(NSInteger)tableView:(UITableView*)tableView numberOfRowsInSection:(NSInteger)section

-(UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:
(NSIndexPath *)indexPath

These are not the only data source methods, but they are the methods we will be using
in this exercise. Let’s start with -numberOfSectionsInTableView. This method returns the
number of sections in the argument table view. Sections break up the table into chunks,
each presenting information based on that section. Make sure you have “return 1;” in
this method, because that tells the table view that it only has one section. This means
that everything will be displayed together. Here’s the code:

-(NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 return 1;
}

Next, for –tableView:numberOfRowsInSection, I want you to remember something for all
your future table view adventures:

We return the number of items we want to display.

In this case we want to display all of the items in the categories array, and the code for
this method is

return [categories count]

This asks the categories array for the number of items it contains and returns that
number to the table view for the number of items it will display:

CHAPTER 8: Table Views, Navigation, and Arrays 244

-(NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{
 return [categories count];
}

Finally, we need to override –tableView:cellForRowAtIndexPath: for our data source
methods. This method creates a UITableViewCell, modifies that cell to display the
appropriate data, and then returns that cell to the table view for display. We want to
change the text of the cell to display the category names we created earlier. To do this,
we need to create a cell with a reuse identifier, change it, and then return it.

NOTE: What is a reuse identifier? To learn about these little gems, check out the “Digging the
Code” section at the end of the chapter.

it regarding the topic of data source methods! Here’s the revised code:

- (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:
(NSIndexPath *)indexPath
{

 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:
CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 }

 NSString* text = [categories objectAtIndex:[indexPath row]];
 [[cell textLabel] setText:text];

 return cell;
}

Table View Delegation
Next, we need to set up delegation in the RootViewController for our table view.
Delegation tells the table view what to do when the user taps on an item in the table.
We’ll use

-(void)tableView:(UITableView*)TableViewdidSelectRowAtIndexPath:
(NSIndexPath*)indexPath

as our method to accomplish this.

The first line in this method simply creates a pointer to an array, which we initially set to
nil. We do this so that our later check will fail if the user does not hit a row that we
support. A switch statement comes afterward; it determines which row the user picked.
If it is one of the rows we support, namely rows 0 (the first row), 1 (the second row), …

CHAPTER 8: Table Views, Navigation, and Arrays 245

or 5 (the sixth and last row), we set the array pointer we made before to an array that
holds the data we want to display in the next view controller.

We then check to see if the array pointer has been set to something other than nil. In this
world, “nil” will always evaluate as False, while any object will evaluate as True. If the
array is valid, we create a new FoodTableViewController with the array and push that
new controller onto the navigation stack. After all of this, we have the table view deselect
the row that was selected, asking it to animate itself to make the deselection process.

You’ll notice that all of the names in the array assignments that we make in this method
are identical to the names of the images used in the project. This is no accident. We use
the items in the arrays to get those images later.

The code for our delegation method looks like this:

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath
 *)indexPath
{

 NSArray* names = nil;

 switch ([indexPath row])
 {
 case 0:
 names = [NSArray arrayWithObjects:@"Chicken Marsala",
 @"White Chicken Chilli", @"Sweet and Sour Chicken", nil];
 break;
 case 1:
 names = [NSArray arrayWithObjects:@"Beef Stew",
 @"Sloppy Joes", @"Stuffed Peppers", nil];
 break;
 case 5:
 names = [NSArray arrayWithObjects:@"Big Mac",
 @"Twinkie", @"KFC", @"Blooming Onion", nil];
 break;
 default:
 break;
 }

 if (names)
 {
 FoodTableViewController* ftvc = [FoodTableViewController
 foodTableViewControllerWithFoodNames:names];
 [[self navigationController] pushViewController:ftvc animated:YES];
 }

 [tableView deselectRowAtIndexPath:indexPath animated:YES];
}

Setting up FoodTableViewController
We need to create the next level of detail for our application. The first level was
categories of foods, but now we want more detail … in this case, food choices within a
category. We do this by creating a new view controller, our FoodTableViewController, to

CHAPTER 8: Table Views, Navigation, and Arrays 246

display more specific information (Figure 8–8). When adding the new file, be sure to
make FoodTableViewController a UITableViewController subclass using the checkbox
on the file template Options section, as shown in Figure 8–9.

Figure 8–8. Add a new file to the Food project.

Figure 8–9. Make the FoodTableViewController a UIViewController subclass by checking the
UITableViewController Subclass box.

Once you have named and saved your new FoodTableViewController class, as shown in
Figure 8–10, open up the FoodTableViewController.h file. Within this file, we’re going to
add some code that’s very similar to the RootViewController.h code, but with a few
tweaks. First, insert the #import” FoodTableViewController.h” line. This will import the
FoodViewController class once we are underway.

CHAPTER 8: Table Views, Navigation, and Arrays 247

Next, we want to make a new field: NSArray* names. This array will hold the food names
for this table view controller. This array functions very much the same as the categories
array from the RootViewController. However, we need to make the names array visible
to other classes so that the RootViewController can pass the data the
FoodTableViewController needs. To do this, we create a property with the line
@property(nonatomic, retain) NSArray* names. This allows us to call setNames: on an
instance of this class. We will also create a “convenience constructor” named
foodTableViewControllerWithFoodNames.

What in the world is a convenience constructor?! Why would we bother making one?
Well, a convenience constructor creates an object, usually taking some initialization
parameters, and does the work of memory management for us. This means that calling
the convenience constructor does not require us to release the object when we are done
using it. So not only can we create an object with defined starting data, but we also
don’t have to worry about tracking its lifetime to avoid memory leaks. Additionally,
convenience constructors are really easy to make!

NOTE: See “Digging the Code” to learn more about memory management.

You may remember from Chapter 4 that the plus sign, “+,” in front of the convenience
constructor makes that method a class method. If not, just remember that this means
we can simply ask the class to create a new instance for us instead of having to alloc
and init the object ourselves.

Figure 8–10. Name and save the new FoodTableViewController class.

//
// FoodTableViewController.h

#import <UIKit/UIKit.h>
#import "FoodViewController.h"

@interface FoodTableViewController : UITableViewController
{
 NSArray* names;
}

+ (FoodTableViewController*) foodTableViewControllerWithFoodNames:(NSArray*)foodNames;

CHAPTER 8: Table Views, Navigation, and Arrays 248

@property (nonatomic, retain) NSArray* names;

@end

Creating the Convenience Constructor for the
FoodTableViewController
Inside FoodTableViewController.m we will start by creating the meat of the convenience
constructor we declared in the header. But first, we need to add the line @synthesize
names; so that our property is available to us. Next, we prepare for our convenience
constructor by making a C compiler directive (a special way of making something really
easy to change and use) that will be called FoodTableViewControllerNibName. A few
spaces later, we will define this directive to be @FoodTableViewController, since that is
the name of the .xib file we want this view controller to use.

Why are we doing this? We will use this name with our convenience constructor. By
creating this directive in the implementation file, we hide how our convenience
constructor works and make sure that the right .xib file is used to build this view

controller. In short, it makes creating a new FoodTableViewController easier by not
requiring a nib name when called from elsewhere.

After we make our directive, we want to insert our convenience constructor code. You
can simply copy and paste the declaration from the header into the implementation file,
remove the semicolon at the end, add brackets, and we’re ready to start filling it out!

The first thing we do in the convenience constructor is create a new
FoodTableViewController instance using the –initWithNibName:bundle method, passing
our directive name as the first parameter, and “nil” as the second. This keeps the
implementation and nib name hidden from prying eyes and makes this method very
easy to use.

Before we return the instance, however, we want to set the names of the controller to
the names that the user passed to the convenience constructor. We call the property we
established in the header to set the names. We then call return [theController
autorelease] to make sure the caller does not have to worry about memory
management for this instance.

That’s it. We’re done with the convenience constructor!

/
// FoodTableViewController.m

#import "FoodTableViewController.h"

#define FoodTableViewControllerNibName
@"FoodTableViewController"

@implementation FoodTableViewController

@synthesize names;

CHAPTER 8: Table Views, Navigation, and Arrays 249

+ (FoodTableViewController*) foodTableViewControllerWithFoodNames:(NSArray*)foodNames
{
 FoodTableViewController* retController = [[FoodTableViewController alloc]
 initWithNibName:FoodTableViewControllerNibName bundle:nil];
 [retController setNames:foodNames];
 return [retController autorelease];
}

Data Source and Delegation for the
FoodTableViewController
Our table view won’t do very much at this point, for we haven’t told it what to display.
Just as before, we need to set up our data source and delegate methods. And just as
before, we want to return 1; for –numberOfSectionsInTableView: and similarly return
[names count]; for –tableView:numberOfRowsInSections. That’s all pretty
straightforward and functions exactly like the code from RootViewController. And as
you might expect after all of this, for –tableView:cellForRowAtIndexPath: all we have to
do is change categories to names and we are done with data source methods for
FoodTableViewController:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 return 1;
}

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{
 return [names count];
}

- (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:
(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:
CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 }

 NSString* text = [names objectAtIndex:[indexPath row]];
 [[cell textLabel] setText:text];

 return cell;
}

On to delegation! Of course, for delegation we will have to change a lot more to do what
we need in FoodTableViewController. Inside –tableView:didSelectRowAtIndexPath: we
need to create the next level of detail and pass it some information. That next level is our
FoodViewController, which we will create in the next step. For now, though, we will
assume it is completed and use a convenience constructor we will create later.

CHAPTER 8: Table Views, Navigation, and Arrays 250

We first create a string that will be used to get the image for the next level of detail.
However, we can’t just use the name from the names array; we have to add the extension
before UIImage will load the image for which we are looking.

So, we use the NSString method +stringWithFormat: passing@%@%@, to return the name
from the array, and the extension we want to use, in this case @“.png”. The %@ token for
the first argument is used to denote that an object goes in that position. Since we are
passing NSStrings for both positions, this has the effect of concatenating the strings
together, which is precisely what we are after.

WHAT DO THE @%@%@ SYMBOLS MEAN?

The answer to that is out of the scope of this book. If you really want to know the meaning of the %@
symbols, though, consider this. In format strings, @‘%’ character announces a placeholder for a value,
with the characters that follow determining the kind of value expected, and how to format it. For example,
a format string of "%d houses" expects an integer value to be substituted for the format expression
'%d’. NSString supports the format characters defined for the ANSI C function print(f), plus ‘@’ for
any object. If the object responds to the description withLocale: message, NSString sends that
message to retrieve the text representation; otherwise, it sends a description message.

Next, we pass the string we made to the convenience constructor for the FoodViewController we want
to make. Once we have called the convenience constructor we push the new FoodViewController onto
the navigation stack, and we ask this push to be animated. Finally, as before, we deselect the row and set
animated: YES, thereby finishing the delegate methods for FoodTableViewController.

- (NSInteger)tableView:(UITableView *)tableView didSelectRowAtIndexPath:
(NSIndexPath *)indexPath
{
 NSString *text = [NSString stringWithFormat:@"%@%@", [names objectAtIndex:
[indexPath row]], @".png"];
 FoodViewController* retController = [FoodTableController
 foodViewControllerWithImageNamed:text];
 [[self navigationController] pushViewController:retController animated:YES];
}

Creating the FoodViewController Class
The FoodViewController is still missing. This is the last piece of the application and the
class handling the highest level of detail in our navigation-based app. When adding the
new file for the FoodViewController, be sure to uncheck the “UITableViewController
subclass” checkbox on the file template chooser, as shown in Figure 8–11. Instead, we
are going to use a simple view to show the food when the view controller is loaded.

CHAPTER 8: Table Views, Navigation, and Arrays 251

Figure 8–11. Create the FoodViewController, and make sure the “UITableViewController subclass” box is not
checked.

The FoodViewController Header File
Open the FoodViewController.h header file. We first want to add a few fields that should
be pretty straightforward by now. Add a UIImageView* field and an NSString* field,
and name these fields imageView and imageName, respectively. The UIImageView will be
an IBOutlet to which we will link later. This image view will display the image of the
food the user has selected. The NSString field will hold onto the desired image name
until it is needed. We will make properties for both of these fields. Make sure to put
“IBOutlet” in front of the UIImageView.

Another task that we must handle is to declare the convenience constructor. This class
method takes a single NSString argument, as shown here:

//
// FoodViewController.h
#import <UIKit/UIKit.h>

@interface FoodViewController : UIViewController
{
 UIImageView* imageView;
 NSString* imageName;
}
+ (FoodViewController*) foodViewControllerWithImageNamed:(NSString*)name;

@property (nonatomic, assign) IBOutlet UIImageView* imageView;
@property (nonatomic, copy) NSString* imageName;
@end

CHAPTER 8: Table Views, Navigation, and Arrays 252

The FoodViewController Convenience Constructor
There are only two things we need to do in the FoodViewController implementation file:
create the convenience constructor, and load an image for when the view loads.

Let’s start with the constructor. Just like before, we start by creating a directive with the
name of the nib called FoodViewControllerNibName,with the appropriate nib name. Next,
we need to make sure we have all of our properties synthesized. Copying and pasting
the method signature should get us started on our convenience constructor.

The first line in the convenience constructor creates the FoodViewController instance
that we will return, passing the directive to –initWithNibName:bundle. The image name
is then set through a “property method call,” a sub-routine that helps manage resources
efficiently. Finally, the newly created instance is sent an autorelease message, and the
result from that message is returned.

//
// FoodViewController.m

#import "FoodViewController.h"

#define FoodViewControllerNibName
@"FoodViewController"

@implementation FoodViewController

@synthesize imageView;
@synthesize imageName;

+ (FoodViewController*) foodViewControllerWithImageNamed:(NSString*)name
{
 FoodViewController* retController = [[FoodViewController alloc]
 initWithNibName:FoodViewControllerNibName bundle:nil];
 [retController setImageName:name];
 return [retController autorelease];
}

Setting Up FoodViewController, -viewDidLoad, and the
(.xib)
The last bit of code we need is to override –viewDidLoad in FoodViewController.m. All we
need to do is add a few lines of code. The image for the UIImageView outlet that was
created in the header needs a photo to display. So we simply create a UIImage with the
class method call of +imageNamed. This creates an image with the data from the file with
the passed name. Setting this image on the UIImageView will make it visible. We also
don’t need imageName anymore, now that the image has been loaded, so we release it.

- (void) viewDidLoad
{
 [imageView setImage:[UIImage imageNamed:imageName]];
 [imageName release];
}

CHAPTER 8: Table Views, Navigation, and Arrays 253

Finally, open the FoodViewController.xib file, as shown in Figure 8–12, for we have
some familiar moves to arrange our view.

Figure 8–12. Open the FoodViewController.xib file.

Drag a UIImageView onto the View, as indicated in Figure 8–13, and resize it to occupy
the entire space. Right-click and drag from the File’s Owner icon to the new
UIImageView, as in Figure 8–14. Then, connect the imageView outlet, as shown in Figure
8–15.

Figure 8–13. Place a UIImageView in the view, and make sure it is sized correctly.

CHAPTER 8: Table Views, Navigation, and Arrays 254

Figure 8–14. Right-click and drag from the File’s Owner icon …

Figure 8–15. … over to the UIImageView and select the imageView option in the Outlets drop-down menu.

Icon File
Our food-browsing app is done! But what good is an app with no icon? The icon draws
the user to run your app, to buy your app. It is the user’s first and last impression of your
app. With this in mind, let’s set an icon for this project.

The icon, a .png image of 52 × 52 pixels, has already been added to our arsenal of
images in the “Resources” folder. So, open the Food Info.plist file and set the Icon
File entry to the name you wish to use as an icon. Refer to Figure 8–16.

By the way, the extension, usually .png, does not need to be included in the name.

Figure 8–16. In the Info.plist, set the icon file’s name.

CHAPTER 8: Table Views, Navigation, and Arrays 255

Testing the App
Congratulations! You are finished with Chapter 8’s exercise!

So let’s test-drive it. Running the “Food” application allows the user to select categories
of dishes, to scan specific dishes in a category, and to view a picture of the dish, in all
its mouth-watering glory. Figures 8–17 through 8–20 show the sequence from the
menus to viewing a selected entree.

With the power of UIKit, specifically UINavigationController, the drill-down navigation
interface is provided with virtually no code on our part. The folks at Apple built UIKit with
a lot of helpful classes and pieces of code that significantly reduce the amount of work
required to produce a powerful and polished application in a short period of time.

Nice going!

Figure 8–17. A pretty fair menu of choices represented at the Category level.

CHAPTER 8: Table Views, Navigation, and Arrays 256

Figure 8–18. Within the Chicken category, we see several entrees.

Figure 8–19. Here is a detailed image of one selection in the iPad Simulator “2x” magnification … Mmm,
chicken!

CHAPTER 8: Table Views, Navigation, and Arrays 257

Figure 8–20. Here is the same image seen after clicking the “1x” button at the lower-right in the iPad Simulator
mode.

Digging the Code
Two general concepts caught my fancy as good destinations for our end-of-chapter
detour this time around. The first topic, memory management, is obviously a central and
important aspect of computers and programming, and I hope you find this piece
edifying. The second topic, reuse identifiers, is at first obscure and odd, but I think you’ll
see that it’s a sort of table space recycling.

Memory Management
Why do we want to release the imageName object when we are done using it? How many
objects can we make? What do I do if I don’t want an object anymore? Memory
management on the iPhone and iPad is a critical and challenging issue. The iPhone is a
very small device compared to your average desktop computer. This makes the
available memory on an iPhone comparably small, and we must take every step we can
to make sure we use as little memory as possible. The iPad has considerably more
memory than the iPhone, but memory management is still crucial. There are three
concepts in the arena of memory management that I want you to wrap your brain
around: retain, release, and autorelease.

CHAPTER 8: Table Views, Navigation, and Arrays 258

Imagine if you will a piece of paper in a busy restaurant. One of the chefs walks over to
the paper and jots something down, something he needs to know. Before he leaves,
however, he adds this line to the top of the note: “Don’t throw this away. I need it!”
Several other chefs and kitchen staff walk by and also write things down on this piece of
paper, and they add their own requests to keep the important piece of paper. Through
the course of the day and evening, these busy people return and, one by one, scratch
off their notes and requests. Finally, the last chef comes by and scratches off her
particular line of notes. She notices that no one claims to need the paper anymore, and
she proceeds to throw the paper away.

This is exactly how retain and release work. Retain tells an object: “Hey, stick around, I
still need you for something.” Release tells an object: “I don’t need you anymore.” The
retain and release mechanisms create a count that is increased and decreased,
respectively, depending on an object’s ongoing usefulness. This official count is called
the retain count. It keeps track of how many things need the object to stick around. In
the example above, the retain count would be the total number of signatures on the
paper. When an object’s retain count reaches zero—meaning that no one needs that
object anymore—the object is deallocated; that is, thrown away.

Those are the basics of memory management on the iPhone and iPad. Is that all? Well,
not quite. We also need to understand what kinds of conventions are in place for
memory management in Objective-C. Fortunately, these are pretty easy and, if you
follow them, they will never steer you wrong. The first rule is that methods containing
any of the following terms are “owning” references: alloc, init, copy, new. Methods
containing any of those words return an object with a retain count of +1. This means that
YOU (that’s right, you!) are responsible for calling release on that object when you are
done with it, to reduce the object’s retain count back to zero. Any method that does not
contain any of those words is an autoreleased object, so you do not need to track its
retain count or worry about it. In fact, you should never attempt to release an
autoreleased object returned from such a method unless you first send it a retain
message.

Autorelease works by releasing objects at some time in the future. Let’s say you just
called alloc/init on an object, but you aren’t sure how long you need to hold onto this
object. As I just explained, these commands are owning references and, therefore, it is
your job to signal their release. Because you often aren’t sure of how long to hold on,
you instead send this object an autorelease message. This makes sure that release is
eventually called on this object, but you can still use it for a short period of time. Exactly
how long depends on many things. If you know you need the object for an extended
period, you should really retain it instead.

We are not out of the woods quite yet. There are some other conventions about
modifying an object’s retain count that we haven’t yet covered. Most containers (all
Cocoa containers, at any rate) retain their contents. Any methods with the words “add,”
“remove,” or “set” typically change the retain count of the objects that are sent to them.
For example, the –addObject: method of NSMutableArray retains the object passed as
an argument. This means that if we don’t need the object around anymore, we want to
send that object a release method to relinquish ownership. If you’ve been keeping up,

CHAPTER 8: Table Views, Navigation, and Arrays 259

you will know that the object added to the array will still stick around since it started with
a 1 retain count, was added to the array for a retain count of 2, and then we released it,
returning its retain count to 1.

See? Memory management isn’t that bad! A few simple rules and you’re golden.
Remember: alloc/init/copy/new in methods return owning references and require a
release when you are done using the object. Methods without alloc/init/copy/new
return autoreleased objects, and this means they will be discarded sometime in the
future. If you need to use an autoreleased object for a long time, make sure to retain
(and subsequently release) that object. On that note, remember to retain autoreleased
objects when you are creating your own methods.

Reuse Identifiers
A reuse identifier lets the table view reuse old cells without having to make more. It’s a
clever technique used by efficiency-minded programmers that makes table views fast
and easy to use. And, yes, it is digital recycling!

Once we have a viable cell, we need to change its text label. We grab the text that will
be used from our “categories” array, since that array holds the text we want to display.
We call objectAtIndex: to access our array, passing it [indexPath row] for the index.
This gets the object that we need for the row in the table (that the table view is trying to
display). We then set the cell’s Text Label text to the text we got from the “categories”
array, and then we return the cell to be displayed.

Yes, I know, it’s a whirlwind of variables, exchanges, counts, and releases. You’ll catch
on, though. Remember: this is just a quick tour—a bit of dessert after a tasty chapter!

CHAPTER 8: Table Views, Navigation, and Arrays 260

261

261

 Chapter

MapKit
I have been looking forward to writing this chapter on MapKit since the time I first

conceived this book. This is the last chapter, and our journey together is almost over. It

is fitting that we finish with a bang, and I am confident that this subject will not

disappoint you.

During the course of this chapter, you will see that some of the coolest and most

successful apps are based upon what we call the MapKit framework. The biggest

reason I saved the best for last is that this topic requires as much foundation as possible

in order to not overwhelm the student. Teaching this course to a lecture hall full of eager,

and mostly novice, programmers, I have learned the hard way that when I succumbed to

the students’ enthusiasm and tried to teach MapKit midway through the semester, I led

the entire class into a brick wall.

Even though MapKit provides us the means to write powerful and vivid apps, it also

demands that we be quite aware of what methods, classes, and frameworks are.

Originally, the scope of this book didn’t include covering all of those concepts, but there

was no way I could leave out MapKit!

So, before we begin, we need to sit back and look at a few things. MapKit, as a toolbox, is

a very challenging set of utilities and devices, but I will show you some basics and teach

you how to use them to successfully and creatively navigate the example in this chapter.

We will first talk about frameworks and classes. Next, we will see what MapKit can

already do without your having to program anything. Then we will jump in at the deep

end to see what other programmers have done using MapKit, and glean what we can

from them. After honing your understanding of methods, and once you have acquired a

decent grasp of frameworks, classes, and other Apple goodies contained in MapKit,

we’ll tackle—gently—the exercise.

In the latter half of the chapter, I will serve you an extended dessert in the “Digging My

Students’ MapKit Code” section. Rather than finishing with an eclectic mix of technical

references, I will instead present three of my students’ efforts in MapKit-related projects.

I am hopeful that when you see what these representative students were able to

accomplish, shortly after they passed my class, you will feel even more inspired to set

your course for the next challenge.

9

CHAPTER 9: MapKit 262

My objective, then, is to get each of you to a place where you can say: I have
programmed a basic iPad MapKit app, and I understand how to move forward with
confidence into more advanced territory.

A Little about Frameworks
When Steve Jobs was fired from Apple, he formed a business called NeXT. His

company produced beautiful, black, streamlined computers in the early ‘90s that made

me drool with envy, for a few of my professors owned a NeXT computer. The most

profound aspect of this outfit was not that they cranked out these black, streamlined

boxes, but rather that they utilized a language called Objective-C. Jobs found that, even

though it was difficult to program in this complex language, the code it produced was

able to “talk to” the microprocessor elegantly. So what’s this got to do with MapKit?!
What NeXT did was create frameworks of complex Objective-C code that you can look

at as tools that a carpenter might have in his toolbox. When we use MapKit, we are

actually bringing in to our own code a framework of map-related tools—just as a

carpenter may have one set of tools for cabinetry and another set, specially made for

intricate furniture. These tools will differ greatly from the kinds of tools that a roofing

carpenter may use.

To this end, we will bring into Xcode two frameworks that we have not used before. It

will be almost as if you had been learning techniques as a flooring and cabinetry

carpenter in Chapters 1-8, but today we are going to the hardware store to get outfitted

for our next gig: audio-video installations in walls and ceilings. Thus, before we head on

to the next program, we are going to have to go buy two brand-new tools. One of our

new tools, the CoreLocation framework, shows us where we are geographically. The

other tool, MapKit, enables us to interact with maps in a multiplicity of ways.

As you know, the way users interact with the iPad and iPhone is completely different

from anything seen before. Before the advent of these slick devices, 99% of all

interactions we had with computers were based upon the mouse and keyboard. As you

have been learning, though, from the examples that you’ve programmed, we have used

unique methods and classes to jump between screens and to sense when a user is

pinching, tapping, or scrolling on the screen. To this already formidable set of tools, we

are now going to add CoreLocation and MapKit frameworks.

Most of the programming we have explored has been relatively transparent. In this

chapter, it won’t be so transparent. For example, we will have to really maintain our

focus in order to keep track of how MapKit knows where we are—on a map. We’ll look

into how it follows our finger interactions and how it knows where we are in terms of the

various screens and views associated with maps.

One of the central areas of iPad/iPhone app development is event handling. This is the

part that confused most of my students when we got to this lesson, and I will do my

best to keep you from wandering off into the briar patch. If I do a decent job of

introducing the concepts of frameworks and classes to you, then you will not be

burdened by having to think too much about event handling. You can get an idea of the

CHAPTER 9: MapKit 263

scope of this topic by considering that while part of your app is keeping track of

interacting with a map and with a GPS satellite, another portion of your code has to

always be looking at when the user is going to direct the program to a new event.

Important Things to Know
There are three important things to know about the foundation of map-related applications

in the iPad and iPhone arena. Apps rely on three important tools: MapKit, CoreLocation,

and the MKAnnotationView class reference. As I have indicated, we are not going to involve

ourselves with how these sophisticated tools work so much as to practice the art of

deciding when to reach for which tool in your newly expanded toolbox.

Among other things, these tools allow us to display maps in our applications, to use

annotations, to work with something called Geocoding (which works with longitude and

latitude), and to interact with our location (via CoreLocation).

When we want to interact effortlessly with Google Maps, we will use the Apple-provided

MapKit framework. When we want to get our location or do cool things using GPS-

satellite technology (with Google Maps), we will use the CoreLocation framework.

Finally, when we want to place pins on a map, create references, draw chevron marks,

or insert an image of your dog showing where he is on a map, we will call these

annotations and, thus, use MKAnnotationView.

Preinstalled MapKit Apps
So that you can take maximum advantage of the new ideas presented in this chapter,

and be prepared to stretch and expand into a new level of creativity, we will first go on a

little tour of existing apps, preinstalled on the iPad and iPhone. It is important that you

become familiar with these so that you can more easily add bells and whistles to your

own creations—on top of these ready-made “map apps,” as described at Apple.com.

CHAPTER 9: MapKit 264

Find Locations
The Find Locations app (see Figure 9–1), preinstalled on iPhone 3GS and iPad, finds

your location quickly and accurately via GPS, Wi-Fi, and cellular towers. Drop a pin to

mark your location or share it with others via email or MMS.

Figure 9–1. Find Locations—a powerful zooming map function on the iPhone/iPad.

CHAPTER 9: MapKit 265

Get Directions
Shown in Figure 9–2, the preinstalled Get Directions app lets you view a list of turn-by-

turn directions or follow a highlighted map route and track your progress with GPS. You

specify whether you’d like walking or driving directions, or see what time the next train

or bus leaves with public transit directions.

Figure 9–2. Get Directions – use this in conjunction with, or in lieu of, the visual map (with highlighted route).

CHAPTER 9: MapKit 266

See Which Way You’re Facing
In the preinstalled See Which Way You’re Facing app, shown in Figure 9–3, a built-in

digital compass rotates maps so that they always match the direction you’re facing. You

can also use the compass on its own.

Figure 9–3. See which way you’re facing – shows your orientation with built-in compass (on Model 3GS).

CHAPTER 9: MapKit 267

See Traffic
The preinstalled iPhone app See Traffic, illustrated in Figure 9–4, shows you live traffic

information, indicating traffic speed along your route in easy-to-read green, red, and

yellow highlights.

Figure 9–4. See Traffic—one of many possibilities when running ‘Maps’ on iPhone/iPad.

CHAPTER 9: MapKit 268

Search for a Location
In the Search For A Location mode, shown in Figure 9–5, you can find locations by

address or by keyword. For example, search for “coffee” to see every cafe near you.

When you find what you’re looking for, tap the phone number to call (on the iPhone), tap

the web address to open the website in Safari, or add it to Contacts for future reference.

Figure 9–5. The Search For A Location mode is a quick and powerful capability that brings specific destination
information to your fingertips.

CHAPTER 9: MapKit 269

Change Your View

The preinstalled Change Your View app, shown in Figure 9–6, lets you switch between

map view, satellite view, hybrid view, and street view. You can double-tap or pinch to

zoom in and out.

Figure 9–6. The Change Your View mode is a standard feature of ‘Maps’ on iPhone/iPad.

CHAPTER 9: MapKit 270

Cool and Popular MapKit Apps to Inspire You
I found that it really helped my students when, after showing them the prebuilt apps, we

spent some time to review some super-cool third-party MapKit apps … to inspire them

and get their brains storming. So, imagine you are sitting with us and taking this brief

tour as well. Here are nine MapKit apps that caught my eye, some of which I use

regularly.

 MapMyRide: This is a MapKit app I use all the time. I simply turn it on

and start riding around on my bike. It tracks my speed, time, and

mileage, as well as the elevation I ride. It then takes into account my

age, gender, and body weight, and it tells me how many calories I

burned. [On a good day, I can almost burn off two doughnuts!] The

point is that this application calculates all these things while I’m just

riding along huffing and puffing! When I get home, I can see the route

on my computer. It does most of its work by using and manipulating

preinstalled MapKit apps.

 QuikMaps: This is a do-it-yourself map app that allows you to doodle

on the map. It integrates with a number of places, including your

website, Google Earth, or even your GPS.

 360 Cities—The World In Virtual Reality: This shows 360-degree

panoramas of over 50 world cities and 6000 panoramas. It is the

perfect technology for real estate agents, tour guides, and

adventurers.

 Cool Maps—7 Wonders of the World: This shows the seven wonders

of the ancient world, and the seven wonders of the modern world,

including natural wonders, underwater wonders, strange wonders, and

local wonders. I am impressed with how slick the programmers have

made the touch and feel of the app.

 Blipstar: This app converts Internet business URL addresses to their

corresponding brick–and-mortar stores, presented on a cool map.

 Twitter Spy: This app lets people see where the person who is

tweeting them is currently located. Yep—wacky and crazy, but true.

 Geo IP Tool: This app displays the longitude and latitude information

of businesses on the Web, and then shows you the best ways to get

there.

 Map Tunneling Tool: This one is just funny and clever. Imagine where

you would come out if you began digging a hole straight down—from

wherever. Is the answer always China?

 Tall Eye: This app shows you where you will go if you walk directly, in

a straight line, around the earth, starting at one point and staying on a

specific bearing all the way around.

CHAPTER 9: MapKit 271

MapKit_01: A View-Based Application
For your final exercise, you are going to begin with some boilerplate code that suits our

basic requirements, and you will then modify it from there. I will tour you through some

of the same building blocks and files that you’ve seen throughout this book, and I will be

challenging you to see what areas of the code are pretty much the same as what you’ve

encountered and what areas are different – given the nature of this application.

The ability to recognize patterns and to see structures just under the surface is a

powerful aptitude that we all have, but we programmers cultivate ours to a heightened

degree. So, be on the lookout for phrases, statements, suffixes, prefixes – grammatical

hooks, as it were – that you can build on, modify, and/or revise. Play a little game: see if

you can anticipate some of the moves I will have you take.

Possible Prepping for the App
We are going to consider a wide variety of components that we may want to build in to

our app. Before that, though, I want to make sure we are all on the same page with

terminology. We programmers need to recall some basic earth science and geography

so that our code will be as effective as possible.

When we direct the computer to animate a pin dropping down, with annotations, onto a

specific location, giving “longitude” and “latitude,” we need to know what these terms

really mean. Lines of latitude are the imaginary lines that circle the globe “horizontally,”

running east to west (or west to east). These invisible lines are measured in degrees,

minutes, and seconds, north or south of the Equator. The Equator is the elliptical locus

of points on the Earth’s surface midway between the poles, which themselves are real
points physically—defined by the Earth’s rotation on its axis. Lines of latitude are often

referred to as parallels. The North Pole is 90 degrees north latitude; the South Pole is 90

degrees south latitude.

Lines of longitude, on the other hand, which are often called meridians, are imaginary

“vertical” lines (ellipses) always crossing through the North and South Poles. They are

also measured in degrees, minutes, and seconds, east or west of the Prime Meridian, an

arbitrary standard that runs through Greenwich, England. Unlike the Equator, which

goes all the way around the world—360 degrees, the Prime Meridian (0 degrees

longitude) is a semi-circle (semi-ellipse), extending from the North Pole to the South

Pole; the other half of the arc is called the International Date Line, and it is defined as

180 degrees east and/or 180 degrees west longitude.

For our Chapter 9 app, the example I have used to demonstrate the “pin drop” on

location is my office at the University of Colorado at Colorado Springs. You, of course,

can use any location you choose. You may want to use your own address, or a well-

known landmark. To do this, you must get the latitude and longitude values of that

location,—most likely from Google Maps or a direct GPS reading. There are many sites

on the Internet, too, where you can find these coordinates; Figure 9–7 illustrates one of

them, www.batchgeocode.com.

http://www.batchgeocode.com

CHAPTER 9: MapKit 272

Figure 9–7. http://www.batchgeocode.com/lookup is one of many Internet sites where one can enter an address
and receive its longitudinal and latitudinal coordinates.

Here’s a thought … let’s start at the end of our process and think backwards for a

minute. Go ahead and jump forward in this chapter for a sneak peek at what the app will

look like—what results it will return if all goes well. In Figure 9–25, you will see a picture

of a hybrid map showing a red pin that’s sitting on top of a building. That’s the

Engineering Building at the University of Colorado at Colorado Springs, and the pin is

located right above my office. The next picture has what we call an annotation, which is

the text. “Dr. Rory Lewis” is the title, and “University of Colorado at Colorado Springs” is

the subtitle.

Later in the tutorial, you will see that we need to be careful about what is the title and

what is the subtitle. We control the color of the pin, and we decide on the style of

animation—how the pin drops onto the map image.

In Figure 9–27, we zoom way out and see a super high-level view—from space. This

allows us to see huge regions, but we obviously lose detail. This shows, too, the

difference between the user’s current location (blue dot) and a highlighted location (red

pin). Interestingly, the iPad Simulator assumes the user is in Cupertino, CA—the location

of Apple’s headquarters.

This is a good place for me to remind you of the title of this book: iPhone and iPad Apps for
Absolute Beginners. Take a deep breath! Even if I were meeting your greatest expectations

of teaching you the most you’ve ever been taught, and even if you were meeting your

greatest expectations of yourself—learning so much complexity in such a short time, you

would still not become an expert in this challenging area of MapKit code! My humble goal

here is not fluency, but reasonable familiarity and a sense of what lies ahead.

http://www.batchgeocode.com/lookup

CHAPTER 9: MapKit 273

If that sounds right, let’s get on with it.

Preliminaries
As in previous chapters, please download and extract images and code for this chapter.

Navigate to http://www.rorylewis.com/xCode/011_MapKit_01.zip and download its

contents. Then, extract the files onto your beautifully clean desktop.

The zip file contains several folders of content: MapKit_01.xcodeproj, Classes, and

build, and some individual files: MapKit_01ViewController.xib, MapKit_01-Info.plist,

MainWindow.xib, MapKit_01_Prefix.pch, and main.m.

Once you have extracted all the files, remember to delete the 011_MapKit_01.zip and

MapKit_01 folders. We don’t want any of your files to be overwritten and conflict with

your exercise code.

To view the screencast of this chapter’s exercise, go to

http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_Movies/011_MapKit.htm.

A New View-Based Template
1. Open Xcode and enter N, as shown in Figure 9–8, and click on the

View-based Application template. Call it MapKit_01 and save it to your

desktop. A folder bearing that name appears on the desktop.

2. The first thing we need to do is add two frameworks: CoreLocation and

MapKit. Right-click on the Frameworks folder, click Add and then Existing

Frameworks, and then, in the drop-down menu that appears, select both

CoreLocation and MapKit Framework, as shown in Figure 9–9.

Figure 9–8. Select the View-based Application icon, and save your new file to your desktop.

http://www.rorylewis.com/xCode/011_MapKit_01.zip
http://www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_Movies/011_MapKit.htm

CHAPTER 9: MapKit 274

Figure 9–9. Select the CoreLocation and MapKit frameworks.

Adding the Annotation File
3. The next thing we need is a means to control our annotation. For that,

we will create a UIViewController subclass that will control all the

characteristics we want to display on this annotation. Click the Classes

folder and enter N as shown in Figure 9–10. Because this controller will

be in charge of controlling annotations for your position, name it

“myPos.”

Make sure that your options are not checked. These include Targeted

for iPad, UITableViewController Subclass, and XIB Interface. This will

automatically create a myPos header file and implementation file in your

Classes folder once you hit the Next button or Return.

CHAPTER 9: MapKit 275

Figure 9–10. Create a new UIViewController subclass, and name it “myPos.”

It’s Already Working!
Believe it or not, we already have enough to show a map working in our iPad or iPhone.

As I mentioned in the introduction to this chapter, Apple programmers have included an

enormous amount of complex Objective-C code in the two frameworks that we

imported.

4. To examine the details, let’s open up your nib file by going into the

Resources folder and opening up the MapKit_01ViewController.xib file.

Click on it as shown in Figure 9–11.

Figure 9–11. Open up the MapKit_01ViewController.xib file to see how the frameworks can already implement a
working map.

CHAPTER 9: MapKit 276

Check It Out—the iPad Simulator
5. After opening up Interface Builder, drag a Map View object from the

Library and drop it onto the View. Then go to your Inspector and click

Show User Location. With this done, click S to save, and then go back

to your Classes folder in Xcode. Click in any file and hit Return, and

the iPad Simulator will appear, showing a map of the world. Shortly

thereafter, a blue marker will drop on Cupertino, CA, as a representation

of your “current” location.

NOTE: Because you are not operating on an actual iPad or iPhone, the simulator

pretends that your Geocode Location is that of Apple’s headquarters in Cupertino, CA,

the heart of Silicon Valley. Once your app—at this stage of development—is put on a

real iPad or iPhone, the GPS system in your device will use the CoreLocation framework

you imported in Step 2 to get your actual location.

Your screen might look slightly different initially because, by default, it

will show the iPhone screen embedded in your iPad simulator. To make

the screen in your iPad look exactly like my screen in Figure 9–12,

simply click the Enlarge button at the bottom-right corner of the inset

screen of your iPad.

Figure 9–12. You already have a working map appearing in the iPad simulator.

CHAPTER 9: MapKit 277

Make It Look a Little Bit Better
Even though we have a map appearing in our iPad that shows that our CoreLocation

framework is working, we want to make it look a lot better than this. Specifically, we

would like it to show the location of a point of our choosing, and we’re going to want to

have a pin drop down too, and include an annotation in which a title and subtitle explain

something about our location. This information will appear in a little black box when the

user clicks on the pinhead, of whatever color we choose.

6. We will start by declaring our classes, methods, and outlets in our

ViewController.h file and then implementing them in our

ViewController.m file. At that point, we will make some adjustments to

the myPos and AppDelegate files.

7. Open up your header file by clicking on MapKit_01ViewController.h as

shown in Figure 9–13. The first thing we need to do is tell our app that

we have imported the MapKit framework; we do this by inserting

#import <MapKit/MapKit.h> right under the line #import
<UIKit/UIKit.h>. The next thing we will do is tell the header file that we

will be using the MKMapViewDelegate protocol. This protocol defines a set

of optional methods that our app will use to receive map update

records.

8. Now we also need to add an outlet with a pointer to the MKMapView

class. We do that by typing in IBOutlet MKMapView *mapView, which

declares an object of type MKMapView. The last thing we need to do is

define the @property, by entering

@property (nonatomic, retain) IBOutlet MKMapView *mapView;

@end

Your code, at this point, should look as follows:

#import <UIKit/UIKit.h>
#import <MapKit/MapKit.h>

@class MyPos;

@interface MapKit_01ViewController : UIViewController <MKMapViewDelegate>
{
 IBOutlet MKMapView *mapView;
}

@property (nonatomic, retain) IBOutlet MKMapView *mapView;

@end

CHAPTER 9: MapKit 278

Figure 9–13. Coding our ViewController header file.

Dealing with the Implementation
As mentioned in the introduction to this chapter, controlling and working with the MapKit

and CoreLocation frameworks is not a trivial matter. Daunting as these areas can be, I

could not leave them out of this book. We proceed on the basis that you have learned

by now to look for familiar patterns, integrate what you can, and just follow directions

when things get a bit dicey!

NOTE: What we are going to do in our implementation file is synthesize our property and release
it in the dealloc method.

9. As shown in Figure 9–14, we now copy the dealloc statement from the

bottom of the implementation file, MapKit_01ViewController.m. We are

going to paste it at the top of the file, immediately below the synthesize

statement you just wrote. Then add a release for the mapView property,

as shown in Figure 9–15.

The reason I asked you to put it right at the top is that I now want you to

delete everything below it, down to the viewDidLoad method. See Figure

9–16.

CHAPTER 9: MapKit 279

Figure 9–14. Copy the dealloc statement from the bottom of the implementation file.

Figure 9–15. Paste it at the top of the file, just below the synthesize mapView statement. Also, add a release for
the mapView property.

CHAPTER 9: MapKit 280

Figure 9–16. The next step is deleting boilerplate implementation code all the way down to the (void)viewDidLoad
{ line.

Let’s think about this … We need to add the viewDidLoad method, within which we will

set the map type and enable zooming, scrolling, and so on. In our case, we will set the

map type to a Hybrid map. If you prefer, though, you may choose to use a Satellite map

or a Street map.

At this point, we will bring in the location I requested of you in the prep section—some

place of interest or personal significance. If you don’t have a preference, you can go

ahead and use mine, as shown in the code that follows.

CHAPTER 9: MapKit 281

10. The first thing we do is set all the coordinate regions to zeros. Then we

enter coordinates of our place of interest—which, for me, is my office at

the University of Colorado at Colorado Springs. I enter

Region.center.latitude = 38.893432; (the positive value denotes north

of the Equator) and region.center.longitude = -104.800161; (the

negative sign denotes west of the Prime Meridian). Related to these

parameters, we need to set the latitude and longitude Delta = 0.01f. If

your math or physics is rusty, recall that “delta” refers to the change, or

difference, between two values. Finally, for the viewDidLoad, I have

chosen to animate the pin when it drops by using the code [mapView
setRegion:region animated:YES]. Refer to Figure 9–17.

11. The next action is to set the view controller class as the delegate, the

role that will handle the interaction between the frameworks of our

mapView. We do this with [mapView setDelegate:self].

Regarding the dropped pin and the attached label, we need to make the Annotation

Object the holder of the information of our coordinates. Our Annotation View is the type

of view associated with the Annotation Object. Our Annotation Object needs to comply

with all the rules we will set forth in our MKAnnotation Protocol. In order to create this

Annotation Object, we must define a new class, which we did when we created the

myPos classes.

12. We now need to instantiate this myPos object and add it to our map. To

do this, we add the delegate function that will display the annotations on

to our map. We start by having myPos name a pointer we’ll call “ann.”

Next, we set the title, and in my case I chose to use my name. So, we

get ann.title = @"Dr. Rory Lewis". We handle the subtitle similarly:

ann.subtitle = @"University of Colorado at Colorado Springs". We

also want the pin to drop in the center of the map: ann.coordinate =
region.center. Reference all of the above with [mapView
addAnnotation:ann].

At this point, we will take advantage of a boilerplate method of code that most MapKit

maps use.

NOTE: We seldom change these chunks of code, and by the time you read this book, this next
set of code may be part of a new function or a new class. The reason is that when people start
using the same piece of code over and over, referring to it as “boilerplate code,” that’s about the
time Apple decides to make a new class or function out of it, and sets it to a specific name.

For now, I have included this boilerplate code in the Downloads folder for this app. This

code does two things:

CHAPTER 9: MapKit 282

 It creates a delegate method that manages our annotation during

zooming and scrolling. In other words, it keeps track of where we

are—even when the user scrolls, zooms in, or zooms out of our map.

 It creates a static identifier, which controls our “queue meaning.” If it

can’t dequeue our annotation, it will allocate one that we choose. I

have also included code that changes the pin color to red. Also, I have

allowed callout views.

Make sure your - (BOOL)shouldAutorotateToInterfaceOrientation is activated along

with your - (void)didReceiveMemoryWarning. Your code should now look like this:

#import "MapKit_01ViewController.h"
#import "MyPos.h"

@implementation MapKit_01ViewController

@synthesize mapView;

- (void)dealloc
{
 [mapView release];
 [super dealloc];
}

- (void)viewDidLoad
{
 [super viewDidLoad];

 [mapView setMapType:MKMapTypeStandard];
 [mapView setZoomEnabled:YES];
 [mapView setScrollEnabled:YES];

 MKCoordinateRegion region = { {0.0, 0.0 }, { 0.0, 0.0 } };
 region.center.latitude = 38.893432 ;
 region.center.longitude = -104.800161;
 region.span.longitudeDelta = 0.01f;
 region.span.latitudeDelta = 0.01f;
 [mapView setRegion:region animated:YES];

 [mapView setDelegate:self];

 MyPos *ann = [[MyPos alloc] init];
 ann.title = @"Dr. Rory Lewis";
 ann.subtitle = @"University of Colorado at Colorado Springs";
 ann.coordinate = region.center;
 [mapView addAnnotation:ann];

}

- (MKAnnotationView *)mapView:(MKMapView *)mV viewForAnnotation:
(id <MKAnnotation>)annotation
{
 MKPinAnnotationView *pinView = nil;
 if(annotation != mapView.userLocation)
 {

CHAPTER 9: MapKit 283

 static NSString *defaultPinID = @"com.invasivecode.pin";
 pinView = (MKPinAnnotationView *)[mapView
 dequeueReusableAnnotationViewWithIdentifier:defaultPinID];
 if (pinView == nil)
 pinView = [[[MKPinAnnotationView alloc]
 initWithAnnotation:annotation reuseIdentifier:defaultPinID] autorelease];

 pinView.pinColor = MKPinAnnotationColorRed;
 pinView.canShowCallout = YES;
 pinView.animatesDrop = YES;
 }
 else
 {
 [mapView.userLocation setTitle:@"I am here"];
 }

 return pinView;
}

- (BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation
{
 return (interfaceOrientation == UIInterfaceOrientationPortrait);
}

- (void)didReceiveMemoryWarning
{
 [super didReceiveMemoryWarning];
}

- (void)viewDidUnload
{

}

@end

Figure 9–17. Adding coordinates, parameters, and our region setting.

CHAPTER 9: MapKit 284

Coding the myPos.h File
13. The first thing we do after opening the myPos.h file is replace the import

line #import <UIKit/UIKit.h> with #import
<Foundation/Foundation.h>. We do this because the foundation

framework pulls in all of our foundation framework classes. The next

thing we do is to add MapKit by entering #import
<MapKit/MKAnnotation.h>.

14. We set our CLLocation Class Reference to incorporate the geographical

coordinates and altitude of our device, as seen in Figure 9–18. We do

that with this line:

CLLocationCoordinate2D coordinate; NSString *title; NSString *subtitle

15. Finally, we create “@property” statements for the location, title, and

subtitle, as shown in the code that follows. Once you have made these

additions, save your work. See Figure 9–19.

#import <Foundation/Foundation.h>
#import <MapKit/MKAnnotation.h>

@interface MyPos : NSObject <MKAnnotation>
{
 CLLocationCoordinate2D coordinate;
 NSString *title;
 NSString *subtitle;
}

@property (nonatomic, assign) CLLocationCoordinate2D coordinate;
@property (nonatomic, copy) NSString *title;
@property (nonatomic, copy) NSString *subtitle;

@end

CHAPTER 9: MapKit 285

Figure 9–18. Incorporate the geographical coordinates and altitude of our device.

Figure 9–19. Your “myPos” header file should look like this before you save it.

The myPos.m File
16. Here we simply synthesize our coordinate, title, and subtitle with an

@synthesize statement that includes coordinate, title, and subtitle.

Then, release the title and subtitle in our dealloc (deallocation)

statement. Once done, your file should look similar to Figure 9–20. Save

your work on this file.

CHAPTER 9: MapKit 286

Figure 9–20. This is how your myPos implementation file looks before you save it.

The AppDelegate Files
As you can see by studying Figure 9–21, we don’t have to do anything with the

AppDelegate header file. Everything we need is already there. We will, however, add a

little bit to the AppDelegate implementation file.

17. Open MapKit_01AppDelegate.m. First, we need to override the point for

customization after our app launches. We do this with

[windowaddSubview:viewController.view] and [window
makeKeyAndVisible]. Make sure that your dealloc statement deallocates

both the viewController and the window.

NOTE: For some reason, when I set my app to default to the iPad platform, it did not dealloc as
expected. I am operating on beta version, so this might be a minor error. Nevertheless, it is
always a great idea to check on this parameter. See Figure 9–22.

18. Save your work, and then go to the Resources folder.

CHAPTER 9: MapKit 287

Figure 9–21. The AppDelegate header file is perfect. Don’t change anything!

Figure 9–22. The AppDelegate implementation file. Get in the habit of checking your dealloc statements.

Connect MapView with MKMapView
19. As shown in Figure 9–23, go to the Resources folder to open up your nib

file. In Interface Builder, connect the mapView of your File’s Owner to

your MKMapView, as shown in Figure 9–24.

CHAPTER 9: MapKit 288

20. Then, go back to Xcode and compile. The iPad simulation will appear,

and a pin will drop down onto the top of my office—or the different

location you chose. The pin will be red, and if you click on the pinhead,

it will display the annotation. As shown in Figures 9–25 through 9–27,

you can go back and forth between the iPad view and the iPhone view.

Figure 9–23. In the Resources folder, click on the MapKit_01ViewController.xib file so you can make the
connections and get this app running!

Figure 9–24. Connect the mapView of your File’s Owner to your MKMapView.

CHAPTER 9: MapKit 289

Congratulations! Once again, you have successfully implemented an app of fair

complexity, regardless of the fact that you started with a body of code that you

modified. As you compare your own Simulator to the images ahead, bask in the glow of

accomplishment.

Then, perhaps after a brief rest, I hope you will venture forward to see if some student

examples in the “Digging My Students’ MapKit Code” section whet your appetite for

further development and challenge.

Figure 9–25. The pin immediately comes down onto our set coordinates.

Figure 9–26. Clicking on the Pin, our annotation opens up. Here we have the view of the iPad Simulator set to
the embedded iPhone view.

CHAPTER 9: MapKit 290

Figure 9–27. Zooming out we see how far away we are from our “current location,” which, on the iPad simulator,
defaults to Apple’s headquarters in Cupertino, CA.

Digging My Students’ MapKit Code
When people come up to me and say, “Hey, Dr. Lewis, I have this really great idea for a

new app ...,” it is amazing how often it involves using the MapKit framework. We have

seen how fun and sexy this stuff is, and now you have likely gathered that delving into

the code can turn into quite a complexity.
As a final buffet of tasty, high-calorie, high-tech fun and flash, I am going to share some

final project scenarios with you. I certainly hope you actively follow along here, but I also

want to honor the fact that you’re done. You already succeeded in making it to the end

of Chapter 9. So remember, this section here is like one of those “bonus feature” DVDs

that Hollywood loves to include—at no extra cost. Relax and enjoy!

Parsing to MapKit from the Internet
A little background: I presented my class the MapKit session very much as I laid out the

first example of this chapter. Then we moved into one of the coolest things there is with

MapKit—the ability to parse, or read live info from, the ether. This feature allows users to

“see” the info on their map. I’ll explain this to a degree before I present three student

final projects.

CHAPTER 9: MapKit 291

One of the most intriguing things we can do with MapKit is get real live information from

the Internet and configure it in a way that makes the Google Map on the user’s iPhone

come alive with live information (weather, traffic, geographical phenomena, taxis, planes,

and so on). For example, one of the most popular apps for the San Francisco Bay Area

is a program demonstrated in iPhone Cool Projects (Wolfgang Ante, et al., Apress, 2009)

(see Figure 9–28) called “Routesy Bay Area San Francisco Muni and BART,” written by

Steven Peterson.

Peterson parses all the data from the BART (Bay Area Rapid Transit,

http://www.bart.gov/) web server that keeps track of how close to schedule all its

trains are, where they are, and their speeds. The app parses all this data and makes it

useful and relevant to users at their specific locations in the San Francisco Bay Area. In

Figure 9–29, you will see their app’s red icon, and then several iPhone images. The left

one shows all the places a user can catch buses and trains. The middle picture uses the

same code we used in our example with core location to show a user’s current location

with a blue icon, and where a requested station is. The right image reports to the user

the relevant information on the best train given the context, the timing, and so on. The

app provides data for the next three trains that will be arriving at the train station nearest

the user.

In essence, the MapKit code on the iPhone is, among other things, a parsing utility. It

retrieves live information from a server that most people don’t even know exists, and it

puts a stream of data to a novel and useful purpose.

Because of the immediate and practical results that users of Peterson’s app, and others

like it, can reap, I figured this would be a perfect theme to round out this book. I’ll first

go over some of my “Parsing with MapKits” lecture notes, and then I will show you

several solid final projects created by my students on that basis.

With my students’ blessing, the code for their projects can be downloaded from my

website, as shown below. This gives you the opportunity to have the code on your Mac

while I point out how you can modify it, learn the key features from it, or just put it on

your iPad and show the guys at the bar these cool apps. Enjoy!

http://www.bart.gov

CHAPTER 9: MapKit 292

Figure 9–28. Apress’s iPhone Cool Projects.

Figure 9–29. App icon and examples of three action screens—parsing app: “Routesy Bay Area San Francisco
Muni and BART.”

The code for these three student Final Projects is located as follows:

 Stephen A. Moraco (Son):
http://www.rorylewis.com/xCode/011b_TrafficCam.zip

 Stephen M. Moraco (Father):
http://www.rorylewis.com/xCode/011a_APRSkit.zip

 Satish Rege: http://www.rorylewis.com/xCode/011c_MyTraffic.zip

http://www.rorylewis.com/xCode/011b_TrafficCam.zip
http://www.rorylewis.com/xCode/011a_APRSkit.zip
http://www.rorylewis.com/xCode/011c_MyTraffic.zip

CHAPTER 9: MapKit 293

MapKit Parsing
Remember that this is digging deep into the code at a level that is outside the scope of

the book. However, all the instructions that follow can be seen in my students’ code,

which you are welcome to download. For now, just read along and see if you can follow

their pattern of parsing, creating delegate objects, and so forth.

Before we look at their actual apps, consider a hypothetical scenario: Imagine that there

is a Grateful Dead Server that broadcasts an update on every Deadhead’s geographical

location—at least those who allow themselves to be visible on the grid. This hypothetical

app allows a (serious) fan of the Grateful Dead to locate all the other Deadheads nearby

at any time. These fans can meet and share bootlegs, hang out, and generally relate on

a plane that other Grateful Dead disciples can appreciate.

Starting Point: If we were to create such an app, just as in the “Routesy” example, we

would allow users to see where they are by bringing up the Attributes Inspector and

turning on a Shows User Location switch. We would create a controller called

DeadHeadsView that creates an instance of a parser we’ll call Gratefuldead. Then, we

would make it set itself as the delegate so it receives the feedback and calls a

getGratefuldead data method.

Getting Data from Web: As our parser sifts through the XML on the Grateful Dead

Server, we would want it to grab Gratefuldead element data and create an instance of

each Gratefuldead object. So, for each instance it creates, it calls back to us with an

addGratefuldead method. We would need to implement our Gratefuldead and Parser

methods on our deadHeadsViewcontroller. We might find that it’s easier to think of our

GratefuldeadParser.h this way:

+ (id)GratefuldeadParser; // this creates it
- (void)getGratefuldeadData; // this activates it

Add Methods to View Controller: Before adding implementation methods on our

DeadHeadsView controller, we would need to implement the protocol with

GratefuldeadParser Delegate and import its header file #import
<GratefuldeadParser.h>. At this point, we’d be finished with the header, and we’d move

to the implementation file.

First, we’d copy the two implementation methods from GratefuldeadParser.h and paste

these two methods after the @synthesize statement:

@implementation DeadHeadsViewC0ntroller

@synthesize deadView

- (void)getGratefuldeadData:(Gratefuldead *)Gratefuldead;
-(void)parserFinished

Test the Parser Feed: To test the Grateful Dead Server, we would see if we could log

some messages. Let’s separate the two methods, delete the semicolons, add brackets,

and then enter “log” as shown:

- (void)getGratefuldeadData Gratefuldead *)Gratefuldead {
NSLog(@”Hippie Message”);

CHAPTER 9: MapKit 294

}

-(void)parserFinished{
NSLog(@”located a Dead Head at %@”, Gratefuldead.place”);
}

Start the Parser Method: Having implemented our delegate methods, we would need

to do three things:

1. Code the parser method. Put it into a method we could call

(void)viewWillAppear. This would get called on by a view controller

when its view is about to be displayed. If we were to do it this way, note

that we would always want to call in our - (void)viewWillAppear

method.

2. Create an instance of our parser that we would call GratefuldeadParser.

With this, we’d get GratefuldeadParser *parser =
[GratefuldeadParser gratefuldeadParser]. We want to make ourselves

the delegate, which means that, now, GratefuldeadParser
parser.delegate = self.

3. Two actions in this step: first, tell the parser to get the Gratefuldead

data:

[parser getGratefuldeadData];

Second, handle its import:

 #import "GratefuldeadParser.h"

Then, when the - (void)viewWillAppear is invoked, it would create an

instance of GratefuldeadParser. As it receives the locations of all the

Deadheads, it shows us where they are!

Do you recall how we made sure that the user of the app would appear on the map as a

blue dot? I want you to think of the blue dot as just an annotation view. When it is added

to the deadView, it essentially asks its delegate for the location of itself.

NOTE: If we return anything other than nil, then our annotation view, instead of

the blue one, will be used and then return that view.

So, looking at this, we return nil when the annotation does not equal the user’s current

location.

- (MKAnnotationView *)deadView:(MKDeadView *)deadView
 viewForAnnotation:(id <MKAnnotation>)annotation {
MKAnnotationView *view = nil;
return view;

CHAPTER 9: MapKit 295

But here’s the thing; we do not want to return nil for our Gratefuldead locations.

Conversely, we want to do cool things when our annotation is not equal to the deadView
userLocation property, which itself is an annotation:

if(annotation != deadView.userLocation) {

 // THIS IS WHERE WE DO OUR COOL STUFF
 // BECAUSE IT’S A DEADHEAD, NOT THE USER
 }

At this point we use the dequeueReusableAnnotationViewWithIdentifier, delegate

method which is available for reuse the instant they are off screen. It has a handy way of

storing your annotations in a separate data structure and then automatically adding and

removing them from your map as the user’s events require it. Note that

dequeueReusableAnnotationViewWithIdentifier is about getting the reusable annotation

view from the map, and it has nothing to do with adding or removing annotations:

GratefuldeadAnnotation *eqAnn = (GratefuldeadAnnotation*)annotation;
view = [self.deadView dequeueReusableAnnotationViewWithIdentifier:@"GratefuldeadLoc"];
 if(nil == view) {
 view = [[[MKPinAnnotationView alloc] initWithAnnotation:eqAnn
 reuseIdentifier:@"GratefuldeadLoc"]
autorelease];
}

The annotation view goes and looks in its reuse queue to see if there are any views that

can be reused if (nil == view) { … If there are none, it returns nil - which means we

need to create a new one view = [[[MKPinAnnotationView alloc]
initWithAnnotation:eqAnn.

There are many creative ways to make your annotations appear and be animated with

chevrons, bells and whistles, Grateful Dead beads, and so on. You can check out what’s

out there to make the iCandy portion of your annotations, just as you wish.

In this regard, at this point of writing your code the most important step is to review your

code for errors using your NSLog debugger; this will determine whether it connects to a

server of your choice. Once that is done, it becomes an issue of parsing the XML. Then,

the last step is to shop for iCandy for the annotations.

Three MapKit Final Projects: CS-201 iPhone Apps,
Objective-C
Following are three apps that draw heavily on parsing information from the Internet. The

first two come from a father and son, both named Stephen Moraco, which completely

confused me in the lecture hall, and the third is from Satish Rege. They were kind

enough to write unedited bios as to why they took the class, and they included exact

lecture notes and apps shown in this book, and what they got out of the course.

CHAPTER 9: MapKit 296

Biographical Info—Examples 1 & 2

Stephen A. Moraco (Son)

Stephen M. Moraco (Father)

Steve A. (Figure 9–30) is in his senior year in high school. He has been concurrently

enrolled at UCCS and has taken courses for dual credit (both high school and college). I,

Stephen M. (Figure 9–31), am a professional software engineer working for Agilent

Technologies, Inc. Both of us have iPhones and have an interest in learning to write

applications for the iPhone. The UCCS course caught our attention as a way we could

learn this together. In fact, we really enjoyed Dr. Lewis' CS201 classes, in which we

toured the iPhone SDK and practiced writing a number of applications. The discussions

in class and then between the two of us as we were driving home always had us excited

about things we could do with the iPhone. Our final projects came from these

discussions. Dr. Lewis, thank you for offering this course. It provided, in our case, a

wonderful time of shared learning. We couldn't have had a more enjoyable time.

Figure 9–30. Stephen A. Moraco (Son)

Figure 9–31. Stephen M. Moraco (Father)

Final Project—Example 1
Stephen M. Moraco’s app is one that is close to his heart. Being an amateur radio

hobbyist, he decided to parse Bob Bruning’s WB4APR site, where Bob had developed

an Automatic Position Reporting System (APRS). Very much like the example I gave in

class, locating Deadheads, Stephen, the father, made an app that can locate all the

Amateur Radio Operators that are within a user-specified distance from where they are

at the time. I will not go over all of Stephen’s code because you can download it and go

over it carefully. The portions I think you should take note of are as follows: His

APRSmapViewController header file sets out the road map with 3 IBOutlets, 1 IBAction,

and a ViewController:

CHAPTER 9: MapKit 297

@property (nonatomic, retain) IBOutlet MKMapView *mapView;
@property (nonatomic, retain) APRSwebViewController *webBrowserController;
@property (nonatomic, retain) IBOutlet UISegmentedControl *ctlMapTypeChooser;
@property (nonatomic, retain) IBOutlet UIActivityIndicatorView *aiActivityInd;

-(IBAction)selectMapMode:(id)sender;

In the APRSkit_MoracoDadAppDelegate implementation file, he uses the following code to

give the user a chance to log in, the results of which are shown in Figure 9–32. The

particulars of this step are seen in the - (void)applicationDidFinishLaunching method,

which also houses the distance (radius) from the user that the system will search for

matches:

- (void)applicationDidFinishLaunching:(UIApplication *)application {

 NSLog(@"MapAPRS_MoracoDadAppDelegate:applicationDidFinishLaunching - ENTRY");
 // Override point for customization after app launch

 [window addSubview:[navigationController view]];
 [window makeKeyAndVisible];

 // preload our applcation defaults
 NSUserDefaults *upSettings = [NSUserDefaults standardUserDefaults];
 NSString *strDefaultCallsign = [upSettings stringForKey:kCallSignKey];
 if(strDefaultCallsign == nil)
 {
 strDefaultCallsign = strEmptyString;
 }
 self.callSign = strDefaultCallsign;
 //[strDefaultCallsign release];

 NSString *strDefaultSitePassword = [upSettings stringForKey:kSitePasswordKey];
 if(strDefaultSitePassword == nil)
 {
 strDefaultSitePassword = strEmptyString;
 }
 self.sitePassword = strDefaultSitePassword;

 NSString *strDefaultDistanceInMiles = [upSettings
stringForKey:kDistanceInMilesKey];
 if(strDefaultDistanceInMiles == nil)
 {
 strDefaultDistanceInMiles = @"30";
 }
 self.distanceInMiles = strDefaultDistanceInMiles;
 //[strDefaultSitePassword release];
 // INCORRECT DECR [upSettings release];
}

CHAPTER 9: MapKit 298

Figure 9–32. CS-201 Final Project—Stephen M. Moraco’s APRS set-up screen where users enter their Amateur
Radio call signs and passwords.

One of the first things Stephen did when he went to the website was make a list of all

the attributes in the XML feed. The following list shows what he saw.

Column-1 was the call sign, CALLSIGN

Column-2 was the URL to Message traffic if available

Column-3 was the URL to Weather page if available

Column-4 was the Latitude

Column-5 was the Longitude

Column-6 was the distance from me (in miles)

Column-7 was the DD:HH:MM:SS of last report

To account for this data, he made eight pointers in his APRSstationParser.m file. Note

that he has an extra one for possible unknown columns.

NSString *kCallSignCol = @"Callsign";
NSString *kMsgURLCol = @"MsgURL";
NSString *kWxURLCol = @"WxURL";
NSString *kLatitudeCol = @"Lat";
NSString *kLongitudeCol = @"Long";
NSString *kDistanceCol = @"Distance";

CHAPTER 9: MapKit 299

NSString *kLastReportCol = @"LastReport";
NSString *kUnknownCol = @"???";// re didn't recognize column #

Then, in the same file, he made case statements:

case 1:
 m_strColumnName = kCallSignCol;
 break;
 case 2:
 m_strColumnName = kMsgURLCol;
 break;
 case 3:
 m_strColumnName = kWxURLCol;
 break;
 case 4:
 m_strColumnName = kLatitudeCol;
 break;
 case 5:
 m_strColumnName = kLongitudeCol;
 break;
 case 6:
 m_strColumnName = kDistanceCol;
 break;
 case 7:
 m_strColumnName = kLastReportCol;
 break;
 default:
 m_strColumnName = kUnknownCol;
 break;

Also, in the APRSkit_MoracoDadAppDelegate implementation file, the -
(void)recenterMap method scans all annotations to determine geographical center and,

just as we did in this chapter’s exercise, to calculate the region of map to display.

Stephen does likewise after his three if statements. An image of the pins dropping is

shown in Figure 9–33.

- (void)recenterMap {
 NSLog(@" - APRSpinViewController:recenterMap - ENTRY");
 NSArray *coordinates = [self.mapView
valueForKeyPath:@"annotations.coordinate"];
 CLLocationCoordinate2D maxCoord = {-90.0f, -180.0f};
 CLLocationCoordinate2D minCoord = {90.0f, 180.0f};
 for(NSValue *value in coordinates) {
 CLLocationCoordinate2D coord = {0.0f, 0.0f};
 [value getValue:&coord];
 if(coord.longitude > maxCoord.longitude) {
 maxCoord.longitude = coord.longitude;
 }
 if(coord.latitude > maxCoord.latitude) {
 maxCoord.latitude = coord.latitude;
 }
 if(coord.longitude < minCoord.longitude) {
 minCoord.longitude = coord.longitude;
 }
 if(coord.latitude < minCoord.latitude) {
 minCoord.latitude = coord.latitude;
 }

CHAPTER 9: MapKit 300

 }

It should be noted that in the APRSstation class, Stephen represents the details parsed

from the APRS, which sets the location of the pins.

#import <CoreLocation/CoreLocation.h>

@interface APRSstation : NSObject {
 NSString *m_strCallsign;
 NSDate *m_dtLastReport;
 NSNumber *m_nDistanceInMiles;
 NSString *m_strMsgURL;
 NSString *m_strWxURL;
 NSString *m_strTimeSinceLastReport;
 CLLocation *m_locPosition;
 int m_nInstanceNbr;
}

@property(nonatomic, copy) NSString *callSign;
@property(nonatomic, copy) NSNumber *distanceInMiles;
@property(nonatomic, retain) NSDate *lastReport;
@property(nonatomic, copy) NSString *timeSinceLastReport;
@property(nonatomic, copy) NSString *msgURL;
@property(nonatomic, copy) NSString *wxURL;
@property(nonatomic, retain) CLLocation *position;

@end

Figure 9–33. CS-201 Final Project—Stephen M. Moraco’s Animated pins drop down within the specified radius of
the user’s location. Here on the iPad simulator, the pins drop in the surrounding areas of Apple Headquarters.

CHAPTER 9: MapKit 301

Another really cool thing Stephen did was to distinguish between those amateur radio

stations that have their own websites and those that do not. For the ones that have web

sites, on the annotation view he includes a chevron which, when clicked, yields the web

page. See Figures 9–34 and 9–35. This code is seen directly under the switch cases in

the APRSstationParser.m file.

Figure 9–34. CS-201 Final Project—Stephen M. Moraco’s app provides Annotations to appear when one clicks on
a pin and where a linked website is on the APRS server, a blue chevron appears where one may click to go to the
amateur radio station’s website. In this case, amateur radio station KJ6EXD-7 does have a website.

CHAPTER 9: MapKit 302

Figure 9–35. CS-201 Final Project—Stephen M. Moraco’s App showing the KJ6EXD-7 website embedded in the iPad.

In the APRSmapViewController implementation file, Stephen includes, among other things, a

bare-bones methodology to switch between map, satellite, and hybrid views. An example of

this is seen when we show the closest radio station to the user, which, in simulator mode is

Apple Headquarters. See Figure 9–36, where the view is in Hybrid mode.
-(IBAction)selectMapMode:(id)sender
{
 UISegmentedControl *scChooser = (UISegmentedControl *)sender;
 int nMapStyleIdx = [scChooser selectedSegmentIndex];
 NSLog(@"APRSmapViewController:selectMapMode - New Style=%d",nMapStyleIdx);

 switch (nMapStyleIdx) {
 case 0:
 self.mapView.mapType = MKMapTypeStandard;
 break;
 case 1:
 self.mapView.mapType = MKMapTypeSatellite;
 break;
 case 2:
 self.mapView.mapType = MKMapTypeHybrid;
 break;
 default:
 NSLog(@"APRSmapViewController:selectMapMode - Unknown Selection?!");
 break;
 }
}

CHAPTER 9: MapKit 303

Figure 9–36. CS-201 Final Project—Stephen M. Moraco’s App showing the closest amateur radio station to Apple
Headquarters in the Hybrid map view

Finally, as a nice finishing touch that I always encourage students to complete, Stephen

included a nice About page in the AboutView nib. See Figure 9–37.

Figure 9–37. CS-201 Final Project—Stephen M. Moraco’s App showing his “About Page” -- totally cool!

CHAPTER 9: MapKit 304

NOTE: In order to run the code, you will need to have a password and username.

You have two options here: 1) Acquire your own or 2) Download any of these 3

apps, which are essentially the same.

 http://itunes.apple.com/us/app/pocketpacket/id336500866?mt=8
 http://itunes.apple.com/us/app/ibcnu/id314134969?mt=8
 http://itunes.apple.com/us/app/aprs/id341511796?mt=8

Final Project—Example 2
Stephen A. Moraco is a gifted high school student who attended my class. His app

parses the National Weather Cam network at http://www.mhartman-wx.com/wcn/. This

can be seen in the TrafficCamParser implementation file static NSString *strURL
=http://www.mhartman-wx.com/wcn/wcn_db.txt. See Figure 9–38.

Figure 9–38. CS-201 Final Project—Stephen A. Moraco’s App starts off with hundreds of pins plummeting from
the sky as they fill up a specified area around the user’s “current” location at Apple Headquarters.

He found that he needed to use an adapter to filter out bad meta tags in the

<HEAD></HEAD> sections. There was so much extraneous matter on the server that it was

crashing the code. To take care of this, he had to make rules to replace “^” with

</field><field>, replace
's with blank space, replace "(" and
")
" with </field><field>, start and end with <CAM><field> and </field></CAM>

http://itunes.apple.com/us/app/pocketpacket/id336500866?mt=8
http://itunes.apple.com/us/app/ibcnu/id314134969?mt=8
http://itunes.apple.com/us/app/aprs/id341511796?mt=8
http://www.mhartman-wx.com/wcn
http://www.mhartman-wx.com/wcn/wcn_db.txt

CHAPTER 9: MapKit 305

and remove tags, remove nonbreaking spaces. I’ve added numbering to help

you see the start of each line, as the word wrap confuses me, too!
1. NSString *strNoParaQueryResults = [strQueryResults

stringByReplacingOccurrencesOfString:@"("
withString:@"</field><field>"];

2. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@")
" withString:@"</field><field>"];

3. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@"" withString:@""];

4. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@" " withString:@""];

5. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@">" withString:@">"];

6. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@"width=150" withString:@"width=\"150\""];

7. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@"height=100" withString:@"height=\"100\""];

8. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@"width=100" withString:@"width=\"100\""];

9. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@"height=150" withString:@"height=\"150\""];

10. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@"border=0" withString:@"border=\"0\""];

11. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@"\"\"" withString:@"\""];

12. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@".jpg " withString:@".jpg\" "];

13. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@"&" withString:@"and"];

14. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@"" withString:@""];

15. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@"</b<" withString:@"<"];

The TrafficCamAnnotation.h header files used is straightforward and simple, using the +
(id)annotationWithCam:(TrafficCam *)Cam; and - (id)initWithCam:(TrafficCam
*)Cam; pointers as described earlier for my hypothetical GratefuldeadParser.h. In this

case, + (id)annotationWithCam:(TrafficCam *)Cam; creates parsed file and -
(id)initWithCam:(TrafficCam *)Cam; initializes it. The result of all this hard work, taking

care of the non-useful code, can be seen in clean annotation. See Figure 9–39.

#import <MapKit/MapKit.h>
#import <CoreLocation/CoreLocation.h>

@class TrafficCam;

@interface TrafficCamAnnotation : NSObject <MKAnnotation> {
 CLLocationCoordinate2D Coordinate;
 NSString *Title;
 NSString *Subtitle;
 TrafficCam *Cam;

CHAPTER 9: MapKit 306

}

@property(nonatomic, assign) CLLocationCoordinate2D coordinate;
@property(nonatomic, retain) NSString *title;
@property(nonatomic, retain) NSString *subtitle;
@property(nonatomic, retain) TrafficCam *cam;

+ (id)annotationWithCam:(TrafficCam *)Cam;
- (id)initWithCam:(TrafficCam *)Cam;

@end

Figure 9–39. CS-201 Final Project—Stephen A. Moraco’s App zoomed into the Colorado Springs area. The
annotation of North Academy at Shrider appears because the author clicked on that intersection.

Stephen also found he could not automatically use the camera video views. Working

around this ended up being a non-trivial task in TrafficCamSettingsViewController.m.

One example was to allow orientations other than the default portrait orientation:
BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrientation
{
 // Return YES for supported orientations
 return (interfaceOrientation == UIInterfaceOrientationPortrait);
}

He had to arrange this code in order to have beautifully spaced video cam images fitting

nicely in the screen, as illustrated in Figure 9–40.

CHAPTER 9: MapKit 307

Figure 9–40. CS-201 Final Project—Stephen A. Moraco’s App zoomed into the Colorado Springs area. The
annotation of North Academy at Shrider Appears because the author clicked on that intersection.

Biographical Info—Example 3, Satish Rege
Why do I want to be an iPhone developer? Simple—the iPhone imparts the computing,

the communicating, and the multimedia experience of a large computing system in the

palm of your hand. It provides rich resources and user interface primitives to express

creative capabilities in a synergistic way. These iPhone properties attracted me to want

to learn iPhone development tools to express my own ideas. Rory’s course was an

excellent introduction that covered a multitude of iPhone capabilities and made them

easy to master.

Figure 9–41. Satish Rege

CHAPTER 9: MapKit 308

Final Project—Example 3
Satish (Figure 9–41) was always able to come up with eloquent and simple code for all

his homework assignments. When I would grade the weekly assignments, Satish had

the knack of always being able to put into 20 lines of code what others would often take

three times as much to do the same thing. For his final project, Satish’s app allows one

to look up ahead at the traffic at intersections to come, and, if there is a traffic jam at

one intersection, to recommend another.

At least in theory, that is how it works. Satish saves a lot of heartache by starting at one

location he knew would be a tough intersection: I-25Northbound. He focused on

controller implementation files and then he rotates back and forth from there depending

on your location in Colorado Springs. He has 27 cases for the 27 cameras in Colorado

Springs. Simple, elegant, … beautiful.

Figure 9–42 shows the list. Figures 9–43 and 9–44 show two examples of the traffic

views.

//Choose the camera depending on your co-ordinate

 switch (cameraCordinate) {
 case 1:
 url = [NSURL
URLWithString:@"http://www.springsgov.com/trafficeng/bImage.ASP?camID=17"]; //Camera
- S Academy/ I-25 North
 break;
 case 2:
 url = [NSURL
URLWithString:@"http://www.springsgov.com/trafficeng/bImage.ASP?camID=18"]; //Camera
- HWY 85/87/I-25 N
 break;

>>>>>>
>>>>>>
>>>>>>
 case 26:
 url = [NSURL
URLWithString:@"http://www.springsgov.com/trafficeng/bImage.ASP?camID=33"]; //
Camera - Monument/ I-25 N
 break;
 case 27:
 url = [NSURL
URLWithString:@"http://www.springsgov.com/trafficeng/bImage.ASP?camID=49"]; //Camera
- CountyLine/ I-25 SE
 break;

http://www.springsgov.com/trafficeng/bImage.ASP?camID=17
http://www.springsgov.com/trafficeng/bImage.ASP?camID=18
http://www.springsgov.com/trafficeng/bImage.ASP?camID=33
http://www.springsgov.com/trafficeng/bImage.ASP?camID=49

CHAPTER 9: MapKit 309

Figure 9–42. CS-201 Final Project—Rege’s app selects the traffic lights closest to the user as he or she is driving
down the street.

Figure 9–43. CS-201 Final Project—Rege’s traffic monitoring app showing the embedded camera view.

CHAPTER 9: MapKit 310

Figure 9–44. CS-201 Final Project—Satish Rege’s app showing another embedded camera view.

Zoom Out … Seeing the Big Picture
It’s important to know where we came from, where we are now, and where we are going

next. Not to get too metaphysical on you, but this chapter is a bit of a metaphor for our

lives. Where were you 5 years ago? Last year? One day before you bought this book?

Where do you intend to be 6 months from now?

That’s why this subject is so popular. People love to know where they are! People love

to know, love to be shown, how to get from “here” to “there.”

You know how men stereotypically refuse to stop and ask for directions? I know I do—

because I should just know where I’m going. When GPS came on the scene, I was

impressed. But when Apple included one, by way of ‘Maps,’ in my first iPhone, I was

totally blown away. All of a sudden, I had the ability to consult the oracle and maintain

my male ego at the same time!

That’s power, and that’s authority … and that’s the revolution you’ve joined. Now that

you have completed this book, and successfully navigated through these exercises—

some easier, some tougher—you are well on your way in the world of programming.

As I stated earlier, my goals for you in this chapter were humble. As in any really

challenging and worthwhile pursuit, practice makes perfect. If you are exhausted, but

CHAPTER 9: MapKit 311

still excited about these ideas and possibilities, then I count that as full success—for you

and for myself.

Some of you are maybe thinking about topics that we did not cover in this book: the

accelerometer, cameras/videos, peer-to-peer protocol, RSS feeds, mail clients/POP

servers, etc. If these areas interest you, my hope is that your mind is already racing off in

these new directions. That means you do know where you are, and that you know where

you want to go. Life is good!

CHAPTER 9: MapKit 312

313

313

Index

■ Symbols
* (asterisk) for pointers, 101. See also

pointers

@ (at sign) for directives, 103

%@ token, 250

character, naming, 123

; semicolon, at line end, 22

/* … */ for comments, 50, 156

// for comments, 50, 156

■ A
actions, 122–23

adding to buttons, 23, 105–6

add- methods, 258

Adobe Photoshop, as valuable, 73

alloc- methods, 258

alpha. See transparency

annotations, 272

app icons, 254

Apple (company), 7

Apple documentation, 150

Apple’s boilerplate implementation code,

159, 281

applicationDidFinishLaunching

method, 150

apps (applications)

checking current platform of, 65

INDIO functions, 67

iPad/iPhone compatibility, 61

preinstalled MapKit apps, 263–69

programming landscape, 10

argument type (methods), 92

arrays, 235, 239, 247

* (asterisk) for pointers, 101. See also

pointers

@ (at sign) for directives, 103

autorelease messages, 252, 258

■ B
background image, 94

BCPL-style comments. See // for comments

Blipstar app, 270

boilerplate implementation code, 159, 281

buttons

adding actions to, 23, 105–6

changing default text for, 84

■ C
C-style comments. See /* … */ for

comments

camelCase style, 136

cancelled touch events, handling, 216

canned functions, 42

capitalization style (camelCase style), 136

CGAffineTransform structure, 219, 233

CGPoint, 219

Change Your View app, 269

class methods, 90, 247

@class precompilers directive, 145

classes, 100

clipboard, 23

Cocoa language, 7

Cocoa Touch, 233

color of labels, changing, 82

comments, 21, 156

compatibility

iPad and iPhone apps, 61

operating system versions, 65

computer science, about, 6

content view, 219

controller (in MVC concept), 67

convenience constructors, 247–49, 252

declaring, 251

Cool Maps app, 270

“Copy items into your destination group’s

folder” checkbox, 80

Index 314

copy- methods, 258

CoreGraphics module, 219

creating an instance. See instantiation

■ D
deallocating memory, 152, 258

#define preprocessor, 123

delegation, 244, 249

dequeueReusableAnnotationViewWith-

Identifier method, 295

directives, 103

disclosure triangle, 99

Document window, 162

documentation, 150

■ E
ended touch events, handling, 216

Enterprise Program, iPhone/iPad SDK, 4

event-handling methods, 232, 262

■ F
File’s Owner, 33, 35

files

nibs. See nib files

saving images in Resources folder, 80

Find Locations app, 264

first responder, 232

folders

dragging files into, 110

opening (clicking disclosure triangle), 99

forward directives, 145

frameworks, 262

full-size images, defined, 72

■ G
Gep IP Tool app, 270

gestures, iPad screen size and, 63

Get Directions app, 265

Google Maps. See MapKit framework

graphics

background image, 94

full-size, defined, 72

icon file, 254

saving in Resources folder, 80

■ H
character, naming, 123

header (.h) files, 26, 75

checking, importance of, 139

relationship with .m files, 26, 139

Hello World applications (examples), 17–52

with graphics, 72–88

as view-based application, 93–122

helper methods, 227

hit testing, 233

■ I
IBAction class. See actions

IBOutlet. See outlets

icon file, 254

, 111, 143

image views, 81, 101, 115, 213

placing on screen, 115

images

background image, 94

full-size, defined, 72

icon file, 254

saving in Resources folder, 80

implementation (.m) files, 26, 75

checking, importance of, 139

relationship with header (.h) files, 26, 139

@implementation directive, 149

#import statement, 21

indexes (indices), 239

INDIO functions (mnemonic), 67

indirection, about, 123. See also pointers

, 111, 143

init- methods, 258

instance methods, 90

instantiation, about, 89, 150

Interface Builder, launching, 29

@interface directive, 21

interface, iPad, 64

interface file, 20

iPad, about, 60–66

master–detail interface, 64

screen space, 62

user interface, 64

iPad apps

compatibility with iPhone, 61

INDIO functions, 67

iPad platform, different from iPhone, 65

iPad Simulator, 276

iPhone apps

Index 315

compatibility with iPad, 61

INDIO functions, 67

iPhone OS versions, 65

iPhone platform, different from iPad, 65

iPhone/iPad Software Development Kit

(SDK), 1–6

IPhoneRuntime system, 100

■ J
Jobs, Steve, 7

■ K
keyboard shortcuts, using, 18

■ L
labels

adding outlets to, 21

changing color of, 82

changing default text for, 31

replacing default text of, 82

latitude, defined, 271

lazy loading, 132, 158

Library window, 30

longitude, defined, 271

LongPress command (iPad), 233

■ M
.m (implementation) files, 26, 75

checking, importance of, 139

relationship with .h (header) files, 26, 139

Main View, tab-bar applications, 182

Map Tunneling Tool app, 270

MapKit framework, 261–310

amateur radio operators program, 296–

304

getting live information to, 290–95

national weather program, 304–7

preinstalled apps, 263–69

traffic jam program, 308–10

view-based application with, 271–90

MapMyRide app, 270

master–detail interface, 64

memory, deallocating, 152, 258

memory management, 104, 257–59

convenience constructors, 247

lazy loading, 132, 158

meridians, defined, 271

methods, 90–92

model (in MVC concept), 67

Model-View-Controller (MVC) concept, 67

motion events, 233

moving UI objects, 218–24

multi-selecting, 142

Multi-Touch, 209

processing multiple touch events, 215

rotation and scaling, 225–26

applying scaling factor minimum, 231

translation, 218–24

MVC (Model-View-Controller) concept, 67

My Programs folder, 38

■ N
names, using camelCase style, 136

navigation stack, 245

Navigation-based Application template, 38

navigation-based applications, 97

new- methods, 258

New Project wizard, 18, 38

NeXT (company), 7, 262

nib files, 29, 89

building from scratch, 138

opening, 80, 89

where to store, 198

nonatomic properties, 103

NSArray. See arrays

numberOfSectionsInTableView method, 243,

249

■ O
object properties, 102

nonatomic, 103

plists. See plists

read-only vs. read-write, 103

object types, 102

Objective-C language, 7, 262

Apple documentation on, 150

learning, 66

objects, 102

opening folders, with disclosure triangle, 99

opening nib files, 80, 89

outlets, 99, 122–23

adding to labels, 21

Index 316

■ P
parsing to MapKit framework, 290–95

pen stylus (as interface tool), 210

%@ token, 250

Photoshop, as valuable, 73

platform, checking current, 65

plists (property lists), 111

pointers, 101–3, 123–24

character, naming, 123

practice makes perfect, 207

programming landscape, 10

project icons, 254

project templates, 13

projects, creating new, 12, 18

properties, object, 102

nonatomic, 103

plists. See plists

read-only vs. read-write, 103

@property directives, 103, 104, 147

■ Q
, 123

QuikMaps app, 270

■ R
read-only properties, 103

read-write properties, 103

receiving touch events, 215

“Recursively create groups for any added

folders” checkbox, 110

registered developer, becoming, 1–6

release (memory management), 258

remove- methods, 258

resizing UI objects, 225–26

applying scaling factor minimum, 231

Resources folder

saving images in, 80

saving nib files in, 198

responder chain, 232

responding to touch events, 215

retain (memory management), 258

retain count, 258

return type (methods), 92

reuse identifiers, 259

rotating UI objects, 225–26

Routesy Bay Area San Francisco Muni and

BART program, 291

Ruler tab (buttons), 32

■ S
saving

images, in Resources folder, 80

nib files, in Resources folder, 198

project files, 24

scaling UI objects, 225–26

applying scaling factor minimum, 231

screen space, iPad, 62

screencasts (with this book), 14

Search for a Location app, 268

See Traffic app, 267

See Which Way You’re Facing app, 266

; semicolon, at line end, 22

set- methods, 258

setNames: method, 247

size

full-size images, 72

iPad screen, 62

of labels, changing, 83

of UI objects, changing, 225–26, 231

/* … */ for comments, 50, 156

// for comments, 50, 156

Standard Program, iPhone/iPad SDK, 4

static identifiers, 282

stopped touch event, handling, 216

stylus (as interface tool), 210

subviews, 151, 219

super-deallocation, 152

superview, defined, 219

superview locations, obtaining, 219

switch statements, 244

switch view applications, 125–207

, 176–91

using window-based application, 128–

76, 191–207

@synthesize directive, 103, 104, 107, 147

■ T
, 176–91

tab bar controllers, 193

table views, 238–57

data source methods, 243

delegation, 244, 249

reuse identifiers, 259

tables, 39

tableView

cellForRowAtIndexPath method, 244, 249

numberOfRowsInSection method, 243,

249

Index 317

Tall Eye app, 270

360 Cities app, 270

3Tap command (iPad), 233

Title attribute (buttons), 32

touch events. See Multi-Touch

touches methods, 216–19, 232

touchesBegan method, 227

touchesMoved method, 218–24, 229–31

transform, view, 233

translating UI objects, 218–24

transparency, button, 85

turning UI objects, 225–26

Twitter Spy app, 270

types, object, 102

■ U
UI_INTERFACE_IDIOM() function, 65

UIEventTypeMotionShake class, 233

UIImageView class, 213. See image views

UIKit framework, 21, 100, 255

UINavigationController class, 255

UITabBarController class, 193

UITableViewController class, 41

UITouch objects, 226

user interface, iPad, 64

userInteractionEnabled property (views), 233

■ V
versions of iPhone OS, 65

view (in MVC concept), 67, 68

view-based applications, 97

with MapKit, 271–90

navigation-based applications vs., 97

view controller nib file, 29

building from scratch, 138

view transforms, 233

View window, 31

views, tab-bar applications, 182

■ W
Welcome to Xcode window, 12, 17

window-based applications

, 135

switch view applications, 128–76,

191–207

Wozniak, Steve, 7

■ X
Xcode, Apple documentation on, 150

Xcode project templates, 13

Xcode Welcome window, 12, 17

.xib files, 29, 89

building from scratch, 138

opening, 80, 89

saving in Resources folder, 198

Index 318

	7Summits
	COVER
	Contents at a Glance
	Contents
	Chapter 1: Before We Get Started
	Chapter 2: Blast-Off!
	Chapter 3: What's Next?
	Chapter 4: An Introduction to the Code
	Chapter 5: Buttons & Labels with Multiple Graphics
	Chapter 6: Switch View with Multiple Graphics
	Chapter 7: Dragging, Rotating and Scaling
	Chapter 8: Table Views, Navigation and Arrays
	Chapter 9: MapKit

	INDEX

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

