
Java for the 

Beginning Programmer



Java for the 

Beginning Programmer

by Jeff Heaton

Heaton Research, Inc.
St.  Louis



Java for the Beginning ProgrammerIV

Java for the Beginning Programmer, First Edition

First printing

Publisher: Heaton Research, Inc

Author: Jeff Heaton

Editor: Mary McKinnis

ISBN’s for all Editions:
0-9773206-1-8, Softcover
0-9773206-4-2, Adobe PDF e-book

Copyright © 2006 by Heaton Research Inc., 1734 Clarkson Rd. #103, Chesterfield, MO 
63017-4976.  World rights reserved.  The author(s) created reusable code in this publication 
expressly for reuse by readers.  Heaton Research, Inc.  grants readers permission to reuse 
the code found in this publication or downloaded from our website so long as (author(s)) are 
attributed in any application containing the reusable code and the source code itself is never 
redistributed, posted online by electronic transmission, sold or commercially exploited as a 
stand-alone product.  Aside from this specific exception concerning reusable code, no part of 
this publication may be stored in a retrieval system, transmitted, or reproduced in any way, 
including, but not limited to photo copy, photograph, magnetic, or other record, without prior 
agreement and written permission of the publisher.

Heaton Research and the Heaton Research logo are both registered trademarks of 
Heaton Research, Inc., in the United States and/or other countries.

TRADEMARKS: Heaton Research has attempted throughout this book to distinguish 
proprietary trademarks from descriptive terms by following the capitalization style used by 
the manufacturer.

The author and publisher have made their best efforts to prepare this book, so the con-
tent is based upon the final release of software whenever possible.  Portions of the manuscript 
may be based upon pre-release versions suppled by software manufacturer(s).  The author 
and the publisher make no representation or warranties of any kind with regard to the com-
pleteness or accuracy of the contents herein and accept no liability of any kind including but 
not limited to performance, merchantability, fitness for any particular purpose, or any losses 
or damages of any kind caused or alleged to be caused directly or indirectly from this book.  

Manufactured in the United States of America.

10 9 8 7 6 5 4 3 2 1



V

SOFTWARE LICENSE AGREEMENT: TERMS AND CONDITIONS
The media and/or any online materials accompanying this book that are available now 

or in the future contain programs and/or text files (the “Software”) to be used in connection 
with this book.  Heaton Research, Inc.  hereby grants to you a license to use and distribute 
software programs that make use of the compiled binary form of this book’s source code.  
You may not redistribute the source code contained in this book, without the written permis-
sion of Heaton Research, Inc.  Your purchase, acceptance, or use of the Software will consti-
tute your acceptance of such terms.

The Software compilation is the property of Heaton Research, Inc.  unless otherwise in-
dicated and is protected by copyright to Heaton Research, Inc.  or other copyright owner(s) 
as indicated in the media files (the “Owner(s)”).  You are hereby granted a license to use and 
distribute the Software for your personal, noncommercial use only.  You may not reproduce, 
sell, distribute, publish, circulate, or commercially exploit the Software, or any portion there-
of, without the written consent of Heaton Research, Inc.  and the specific copyright owner(s) 
of any component software included on this media.

In the event that the Software or components include specific license requirements or 
end-user agreements, statements of condition, disclaimers, limitations or warranties (“End-
User License”), those End-User Licenses supersede the terms and conditions herein as to 
that particular Software component.  Your purchase, acceptance, or use of the Software will 
constitute your acceptance of such End-User Licenses.

By purchase, use or acceptance of the Software, you further agree to comply with all 
export laws and regulations of the United States as such laws and regulations may exist from 
time to time.

SOFTWARE SUPPORT

Components of the supplemental Software and any offers associated with them may be 
supported by the specific Owner(s) of that material but they are not supported by Heaton Re-
search, Inc..  Information regarding any available support may be obtained from the Owner(s) 
using the information provided in the appropriate README files or listed elsewhere on the 
media.

Should the manufacturer(s) or other Owner(s) cease to offer support or decline to honor 
any offer, Heaton Research, Inc.  bears no responsibility.  This notice concerning support for 
the Software is provided for your information only.  Heaton Research, Inc.  is not the agent or 
principal of the Owner(s), and Heaton Research, Inc.  is in no way responsible for providing 
any support for the Software, nor is it liable or responsible for any support provided, or not 
provided, by the Owner(s).



Java for the Beginning ProgrammerVI

WARRANTY

Heaton Research, Inc.  warrants the enclosed media to be free of physical defects for 
a period of ninety (90) days after purchase.  The Software is not available from Heaton Re-
search, Inc.  in any other form or media than that enclosed herein or posted to www.heaton-
research.com.  If you discover a defect in the media during this warranty period, you may 
obtain a replacement of identical format at no charge by sending the defective media, postage 
prepaid, with proof of purchase to:

Heaton Research, Inc.
Customer Support Department
1734 Clarkson Rd #107
Chesterfield, MO 63017-4976

Web: www.heatonresearch.com
E-Mail: support@heatonresearch.com

After the 90-day period, you can obtain replacement media of identical format by send-
ing us the defective disk, proof of purchase, and a check or money order for $10, payable to 
Heaton Research, Inc..

DISCLAIMER

Heaton Research, Inc.  makes no warranty or representation, either expressed or im-
plied, with respect to the Software or its contents, quality, performance, merchantability, or 
fitness for a particular purpose.  In no event will Heaton Research, Inc., its distributors, or 
dealers be liable to you or any other party for direct, indirect, special, incidental, consequen-
tial, or other damages arising out of the use of or inability to use the Software or its contents 
even if advised of the possibility of such damage.  In the event that the Software includes an 
online update feature, Heaton Research, Inc.  further disclaims any obligation to provide this 
feature for any specific duration other than the initial posting.

The exclusion of implied warranties is not permitted by some states.  Therefore, the 
above exclusion may not apply to you.  This warranty provides you with specific legal rights; 
there may be other rights that you may have that vary from state to state.  The pricing of the 
book with the Software by Heaton Research, Inc.  reflects the allocation of risk and limitations 
on liability contained in this agreement of Terms and Conditions.

SHAREWARE DISTRIBUTION

This Software may contain various programs that are distributed as shareware.  Copy-
right laws apply to both shareware and ordinary commercial software, and the copyright 
Owner(s) retains all rights.  If you try a shareware program and continue using it, you are 
expected to register it.  Individual programs differ on details of trial periods, registration, and 
payment.  Please observe the requirements stated in appropriate files.



IX

This book is dedicated to all of my Java 

students.  Both students from traditional 

classrooms, as well as electronic.  



Java for the Beginning ProgrammerX

Acknowledgments

There are several people who I would like to thank.  First, I would like to thank my Java 
students over the years.  Much of this books material was developed for classroom teaching 
and improved over years of classroom use.  

I would like to thank Mary McKinnis for editing the book.  I would also like to thank 
Mary McKinnis for trying out the book examples and offering many helpful suggestions.  

I would like to thank my sister Carrie Spear for layout and formatting suggestions. 



XIII

Contents at a Glance
Introduction ......................................................................................................XXIX
Chapter 1:  Introduction to Java ......................................................................31
Chapter 2:  Installing, Compiling and Running ................................................41
Chapter 3:  Variables .........................................................................................69
Chapter 4:  Handling User Input .......................................................................91
Chapter 5:  Making Decisions ..........................................................................103
Chapter 6:  Methods and Functions .................................................................117
Chapter 7:  Mid Term .........................................................................................133
Chapter 8:  Mid Term Review ............................................................................143
Chapter 9:  Using Loops ....................................................................................155
Chapter 10:  Strings ..........................................................................................171
Chapter 11:  Arrays ...........................................................................................183
Chapter 12:  Using Arrays .................................................................................207
Chapter 13:  Object Oriented Programming .....................................................225
Chapter 14:  More Object Oriented ...................................................................243
Chapter 15:  GUI Programming .........................................................................263
Chapter 16:  Final Exam ....................................................................................275
Glossary ............................................................................................................287
Appendix A:  Downloading Examples ..............................................................297
Appendix B:  Final Exam Answers ....................................................................299
Appendix C:  Chapter Review Answers ............................................................313
Index .................................................................................................................329



XV

Contents
Introduction ......................................................................................................XXIX
Chapter 1:  Introduction to Java ......................................................................31

Prerequisites ..............................................................................................31
Getting Started ...........................................................................................31
Types of Java Applications ........................................................................32
Java Console Application ...........................................................................32
Java GUI Application ..................................................................................34
Java Applet .................................................................................................34
Cross Platform ............................................................................................36
Chapter Review ..........................................................................................37
Review Questions .......................................................................................38

Chapter 2:  Installing, Compiling and Running ................................................41
Downloading Java and Installing Java .....................................................41
Setting up Java’s Path ...............................................................................51
Testing your Java Path ...............................................................................57
Compiling and Executing your Application ...............................................58
Creating a Directory ...................................................................................59
Enter your Application ................................................................................60
Compile your Application ...........................................................................62
Run your Application ..................................................................................63
Chapter Review ..........................................................................................64
Review Questions .......................................................................................65

Chapter 3:  Variables .........................................................................................69
Anatomy of a Java Program ......................................................................69
Import Statements .....................................................................................70
Single Line Comments ...............................................................................71
Multi Line Comments .................................................................................72
Class Declaration .......................................................................................72
Main Method ...............................................................................................73
Semicolon and Curly Brace Usage .............................................................73
Variables .....................................................................................................75
Numeric Data Types ...................................................................................76
String Data Types .......................................................................................78
Boolean Data Types ....................................................................................79
Data Type Sizes ..........................................................................................79
Constants ....................................................................................................80

Contents



Java for the Beginning ProgrammerXVI

Data Type Conversion .................................................................................80
Chapter Review ..........................................................................................85
Review Questions .......................................................................................87

Chapter 4:  Handling User Input .......................................................................91
How to Read Data from the User ...............................................................91
Additional Lines Needed ............................................................................92
Reading Numbers .......................................................................................94
Handling Bad Numbers ..............................................................................95
Displaying Data ..........................................................................................97
Chapter Review ..........................................................................................98
Review Questions .......................................................................................100

Chapter 5:  Making Decisions ..........................................................................103
Comparing Values ......................................................................................103
The Else Statement ....................................................................................107
If/Else Ladders ............................................................................................108
Using Logical AND and OR .........................................................................109
Using the Switch/Case Statement .............................................................111
Chapter Review ..........................................................................................112
Review Questions .......................................................................................114

Chapter 6:  Methods and Functions .................................................................117
Static Variables ..........................................................................................117
Instance Variables ......................................................................................119
Local Variables ...........................................................................................119
Functions and Methods ..............................................................................120
Create Your Own Function ..........................................................................120
Using Static Classes ...................................................................................124
How Arguments are Passed .......................................................................124
Chapter Review ..........................................................................................127
Review Questions .......................................................................................129

Chapter 7:  Mid Term .........................................................................................133
Chapter 8:  Mid Term Review ............................................................................143
Chapter 9:  Using Loops ....................................................................................155

Java Loop Types .........................................................................................157
The While Loop ...........................................................................................157
The Do/While Loop .....................................................................................158
The For Loop ...............................................................................................162
Nested Loops ..............................................................................................164
Chapter Review ..........................................................................................165



XVII

Review Questions .......................................................................................166
Chapter 10:  Strings ..........................................................................................171

What are Strings Made Of ..........................................................................171
Taking Sections of Strings .........................................................................173
Searching Strings .......................................................................................174
Removing a Single Character ....................................................................175
Removing all of the Spaces from a String .................................................176
Chapter Review ..........................................................................................177
Review Questions .......................................................................................178

Chapter 11:  Arrays ...........................................................................................183
Introducing Arrays ......................................................................................184
Creating Arrays ...........................................................................................184
Declare an Array .........................................................................................184
Instantiate an Array ....................................................................................185
Initializing an Array ....................................................................................185
Using Arrays ...............................................................................................186
Array Example Program .............................................................................188
Deleting a Student ......................................................................................197
Chapter Review ..........................................................................................202
Review Questions .......................................................................................203

Chapter 12:  Using Arrays .................................................................................207
Sorting Arrays .............................................................................................207
Implementing the Bubble Sort ...................................................................213
Adding Sorting to the Student List Example .............................................216
Chapter Review ..........................................................................................221
Review Questions .......................................................................................222

Chapter 13:  Object Oriented Programming .....................................................225
Objects of Your Own ...................................................................................225
Access Modifiers ........................................................................................225
Creating the Base Class .............................................................................226
Getters and Setters ....................................................................................227
Using Objects ..............................................................................................228
Subclassing Classes ..................................................................................229
Creating an Exception Class ......................................................................229
Creating the Student Class ........................................................................230
Using Subclasses .......................................................................................231
Understanding Interfaces ..........................................................................232
Chapter Review ..........................................................................................237



Java for the Beginning ProgrammerXVIII

Review Questions .......................................................................................239
Chapter 14:  More Object Oriented ...................................................................243

Updating the Student Class .......................................................................243
Integrating the Student Class ....................................................................247
Chapter Review ..........................................................................................259
Review Questions .......................................................................................260

Chapter 15:  GUI Programming .........................................................................263
Java GUI Applications ................................................................................263
What is Swing .............................................................................................263
Using Swing ................................................................................................264
Using Message Dialog Boxes .....................................................................264
Using Confirm Dialog Boxes ......................................................................266
Using Input Dialogs ....................................................................................267
Using Option Dialog Boxes .........................................................................268
Chapter Review ..........................................................................................270
Review Questions .......................................................................................271

Chapter 16:  Final Exam ....................................................................................275
Glossary ............................................................................................................287
Appendix A:  Downloading Examples ..............................................................297
Appendix B:  Final Exam Answers ....................................................................299
Appendix C:  Chapter Review Answers ............................................................313

Answers for Chapter 1 ...............................................................................313
Answers for Chapter 2 ...............................................................................313
Answers for Chapter 3 ...............................................................................314
Answers for Chapter 4 ...............................................................................315
Answers for Chapter 5 ...............................................................................316
Answers for Chapter 6 ...............................................................................317
Answers for Chapter 9 ...............................................................................318
Answers for Chapter 10 .............................................................................320
Answers for Chapter 11 .............................................................................321
Answers for Chapter 12 .............................................................................322
Answers for Chapter 13 .............................................................................323
Answers for Chapter 14 .............................................................................324
Answers for Chapter 15 .............................................................................325

Index .................................................................................................................329



XIX

Table of Figures
Figure 1.1: A Console Application ....................................................................33
Figure 1.2: Java GUI Application ......................................................................34
Figure 1.3: A Java Applet ..................................................................................35
Figure 1.4: A Java Application Running on Windows ......................................36
Figure 1.5: A Java Application Running on the Macintosh .............................37
Figure 2.1: Select Java Version to Download ..................................................42
Figure 2.2: Accept the License Agreement ......................................................43
Figure 2.3: Choose Windows Online Install ......................................................44
Figure 2.4: Run the Program you Downloaded ................................................45
Figure 2.5: Accept this License Agreement .....................................................46
Figure 2.6: Standard Install ..............................................................................47
Figure 2.7: Install Underway .............................................................................47
Figure 2.8: Accept Features ..............................................................................48
Figure 2.9: Browser Registration .....................................................................49
Figure 2.10: Installing Java ..............................................................................50
Figure 2.11: Install Complete ...........................................................................51
Figure 2.12: Get the Java Path .........................................................................52
Figure 2.13: Windows XP Control Panels .........................................................53
Figure 2.14: Classic Control Panels ..................................................................54
Figure 2.15: System Properties ........................................................................55
Figure 2.16: Environmental Variables ..............................................................56
Figure 2.17: Set the Path ..................................................................................57
Figure 2.18: Verify Java Works .........................................................................58
Figure 2.19: Create a Place to Put your First Application ................................60
Figure 2.20: Create your Source Code ..............................................................61
Figure 2.21: Enter your Source Code ................................................................61
Figure 2.22: View the Class File .......................................................................63
Figure 2.23: Run the Example ..........................................................................64
Figure 3.1: How indenting works .....................................................................75
Figure 9.1: The Loop as a Flowchart ................................................................156
Figure 9.2: A While Loop as a Flowchart ..........................................................159
Figure 9.3: A “do/while” Loop as a Flowchart .................................................160
Figure 11.1: Remove a Name, Step 1 ...............................................................199
Figure 11.2: Remove a Name, Step 2 ...............................................................199
Figure 11.3: Remove a Name, Step 3 ...............................................................200
Figure 11.4: Remove a Name, Step 4 ...............................................................200

Contents



Java for the Beginning ProgrammerXX

Figure 11.5: Remove a Name, Step 5 ...............................................................201
Figure 11.6: Remove a Name, Step 6 ...............................................................201
Figure 12.1: A Glass of Milk and a Glass of Orange Juice ...............................211
Figure 12.2: This Does Not Work! .....................................................................212
Figure 12.3: A Spare Glass is Needed ..............................................................212
Figure 12.4: The Swap is Made ........................................................................213
Figure 12.5: A Bubblesort Flowchart ................................................................214
Figure 15.1: A Swing Application .....................................................................264
Figure 15.2: A Message Dialog Box ..................................................................265
Figure 15.3: A Confirm Dialog Box ...................................................................266
Figure 15.4: An Input Dialog Box ......................................................................267
Figure 15.5: An Option Dialog Box ....................................................................268



XXIIIContents

Table of Tables
Table 3.1: Java Variable Types .........................................................................76
Table 5.1: Truth Table for x && y (AND) ............................................................110
Table 5.2: Truth Table for x || y (OR) ..................................................................111
Table 6.1: Sections of a Method  ......................................................................121
Table 6.2: The Difference Between a Class and an Object ..............................122
Table 6.3: The Difference Between by Reference and by Value ......................125
Table 6.4: Is it by Value or by Reference ..........................................................125
Table 9.1: Steps for a Typical Loop Application ...............................................155
Table 13.1: Java Access Modifiers ...................................................................226
Table 13.2: Attributes of the Policy Class .........................................................234
Table 13.3: Attributes of the TermLife Class ....................................................235



XXVContents

Table of Listings
Listing 2.1: Hello World! (HelloWorld.java) ......................................................62
Listing 3.1: Sample Java Program (UserInput.java) ........................................69
Listing 4.1: Read Data from the User (Hello.java) ............................................92
Listing 4.2: Input Numbers (InputNumbers.java) ............................................94
Listing 4.3: Handle Bad Numbers (BadNumbers.java) ....................................96
Listing 5.1: Are You Old Enough (OldEnough.java) ..........................................104
Listing 5.2: Compare a String (InvalidString.java) ..........................................105
Listing 5.3: Check for a Valid String (ValidString.java) ...................................106
Listing 5.4: Else Example (StringElse.java) ......................................................107
Listing 5.5: If/Else Ladder (NumberIf.java) ......................................................108
Listing 5.6: Using Switch/Case (NumberCase.java) ........................................111
Listing 6.1: Using a Static Variable (MyClassStatic.java) ................................117
Listing 6.2: Using a Static Class Variable (MyClassLevelStatic.java) .............118
Listing 6.3: Using an Instance Variable (MyClassInstance.java) ....................119
Listing 6.4: Using an Instance Variable (MyClassLocal.java) ..........................119
Listing 6.5: Using a Static Function (MyClassStaticFunction.java) ................122
Listing 6.6: Using a Nonstatic Method (MyClassNonStaticMethod.java) .......123
Listing 6.7: Passing by Value (MyClassArgument.java) ..................................124
Listing 6.8: By Value and By Reference (MethodCall.java) .............................126
Listing 9.1: A Typical While Loop (LoopExampleWhile.java) ...........................157
Listing 9.2: A While Loop (LoopExampleWhile2.java) ......................................158
Listing 9.3: A Do/While Loop (LoopExampleDoWhile.java) .............................161
Listing 9.4: A Simple Menu (LoopExampleMenu.java) ....................................161
Listing 9.5: For Loop (LoopExampleFor.java) ...................................................162
Listing 9.6: Another For Loop (LoopExampleFor2.java) ...................................163
Listing 9.7: A Nested Loop (NestedLoop.java) .................................................164
Listing 10.1: Get the Length of a String (StringLength.java) ...........................172
Listing 10.2: Get a String as Characters (GetChars.java) ................................172
Listing 10.3: Separate a String (SubString.java) .............................................173
Listing 10.4: Find the Space in a String (FindSpace1.java) .............................174
Listing 10.5: Find More Space in a String (FindSpace2.java) .........................175
Listing 10.6: Remove a Single Character (RemoveChar.java) .........................175
Listing 10.7: Remove all Space from a String (RemoveSpace.java) ...............176
Listing 11.1: A List Without Arrays (StudentList1.java) ...................................183
Listing 11.2: Declare an Array (StudentList2.java) ..........................................184
Listing 11.3: Instantiate an Array (StudentList3.java) .....................................185



Java for the Beginning ProgrammerXXVI

Listing 11.4: Initialize an Array (StudentList4.java) ........................................185
Listing 11.5: Print out a List of Students (StudentList5.java) .........................187
Listing 11.6: List Students with Loop (StudentList6.java) ..............................188
Listing 11.7: Array Example Program (StudentList7.java) ..............................188
Listing 11.8: Reading User Input ......................................................................193
Listing 12.1: The Bubble Sort (BubbleSort.java) ..............................................214
Listing 12.2: The Student List, with Bubble Sort (StudentList.java) ...............216
Listing 13.1: A Simple Person Holder Class (Person1.java) ............................227
Listing 13.2: Using Getters and Setters (Person.java) .....................................227
Listing 13.3: Test the Person Class (TestPerson.java) .....................................228
Listing 13.4: The TypeException (TypeException.java) ....................................229
Listing 13.5: The Student Class (Student.java) ................................................230
Listing 13.6: Test the Student Class (TestStudent.java) ..................................231
Listing 13.7: The Payable interface (Payable.java) ..........................................232
Listing 13.8: The Policy Base Class (Policy.java) .............................................233
Listing 13.9: The TermLife Class (TermLife.java)  ............................................234
Listing 13.10: The WholeLife Class (WholeLife.java) .......................................236
Listing 13.11: The insurance Application (InsuranceApp.java) ......................236
Listing 14.1: The Person Base Class (Person.java) ..........................................243
Listing 14.2: Creating the Student Class (Student2.java) ...............................244
Listing 14.3: The Final Version of the Student Class (Student.java) ...............246
Listing 14.3: Creating a Student List (StudentList.java) ..................................247
Listing 15.1: Creating a Message Dialog Box (MessageDialog.java) ..............265
Listing 15.2: A Confirm Dialog Box (ConfirmDialog.java) ................................266
Listing 15.3: An input Dialog Box (InputDialog.java) .......................................267
Listing 15.4: An Option Dialog (OptionDialog.java) ..........................................269



XXIXIntroduction

INTRODUCTION

Java for the Beginning Programmer teaches Java to someone with ab-
solutely no programming background.  This book focuses on core program-
ming topics such as variables, looping, subroutines, and program layout. 
This course focuses on real programming techniques, and not using an Inte-
grated Development Environment (IDE) to generate code. This course ends 
with an introduction to graphical user interface programming.

By focusing on core programming techniques, and not using an IDE to 
generate code, the programmer is given a solid foundation in the Java pro-
gramming language.  This book prepares the reader for more advanced Java 
study, or one of our other Java programming books.

Each chapter includes review questions and an assignment. This book 
can be used either as a college text book, or for independent reading.  This 
book was compiled from the author’s years of experience teaching the Java 
programming language. 

Prerequisites
There are none! This 
book starts from 
the very beginning



31Chapter 1: Introduction to Java

CHAPTER 1:  INTRODUCTION TO JAVA

Welcome to the book “Java for the Beginning Programmer”.  In this 
book  you will be introduced to the Java programming language.  This book 
will cover topics such as:

• Java Programming Syntax
• Basic Object Oriented Programming (OOP)
• Creating Console-Mode applications
• Java Programming Fundamentals

After you complete this book you will be ready to create basic Java ap-
plications or go on to a more advanced Java course or book.

Prerequisites
This book assumes no prior programming experience.  It is only as-

sumed that you know how to use a Windows/Mac computer and the Inter-
net.  A very basic knowledge of Algebra may also be useful.  All of the screen 
shots in this book were made using Windows XP.  Other systems, such as 
Mac or Linux will look slightly different.

Getting Started
The objective for the first chapter is to get a basic Java application en-

tered, compiled and executed.  You will be shown how to obtain and install 
Java.  You will then be shown how to enter your source code.  Finally, I will 
show you how to compile and execute your application.  These basic steps 
will be repeated through this book as you create and test applications of your 
own.  So it is very important that you understand this process.  To summa-
rize, the primary topics of Chapter 1 are:

 • Introduction to the Java Language
 • Compiling a Java Application
 • Running a Java Application
 • What is Java

Prerequisites
There are none! This 
book starts from 
the very beginning



Java for the Beginning Programmer32

Java is a programming language developed by Sun Microsystems.  The 
Java programming language can be obtained free-of-charge from Sun Mi-
crosystems’s website http://java.sun.com.  Java syntax builds upon C/C++ 
syntax.  If you are familiar with the C/C++ programming languages, Java will 
seem very familiar.

However, unlike C/C++, Java is very cross-platform.  By cross-platform, 
I mean that a Java program will run on many different operating systems.  
You could easily take a Java application and run it on a Windows, Mac OS-X, 
or a Linux based computer.  This often requires no change to the program 
or even recompiling.

Java is also Object Oriented.  If you have never programmed an object-
oriented language before, this will probably be one of the most difficult as-
pects of Java for you to learn.  Object Oriented programming will be dis-
cussed in Chapter 13.  In essence, Object Oriented programs are broken up 
into reusable objects.

Java provides several different application types to fit different program-
ming needs.  Next, I will explain the different types of Java applications.

Types of Java Applications
In this book you will learn to create several different types of Java ap-

plications.  These application types appear quite differently to the user.  Pick-
ing the correct application type is an important part of the Java development 
process.  There are three types of Java application:

 • Java Console Applications
 • Java GUI Applications
 • Java Applets

Most of what you learn in this class can be applied to any of the above 
application types.  However, there are some differences in the way you 
program each.  I will begin by explaining the differences and similarities 
between each of these.  This book will focus primarily on console applica-
tions. 

Java Console Application
A Java Console application can only display textual data.  Console ap-

plications resemble DOS based applications in that all interaction with the 
program is through keyboard and text output.  The mouse, and any use of 
multiple windows is not supported.

Learning Objective #1
There are three 
types of Java 
application: console, 
GUI and applet.



33Chapter 1: Introduction to Java

Console applications are good for applications that have limited interac-
tion with the user.  If a program must run in the background, away from the 
user, a console application is an ideal choice.  Console applications are also 
great for setting up quick tests to see how Java works.  The applications you 
develop in this book will be console applications.

Background applications are almost always written as console applica-
tions.  A background application is a program that runs, often for a long 
period of time, without user interaction.  Examples of background applica-
tions include:

 • Anti-virus programs that scan while the user is using the computer
 • Business Data processing/loading applications that process large vol-
umes of data

Figure 1.1 shows a Java Console application.

Figure 1.1: A Console Application

When to use a Console Application

 • Limited user interaction
 • Applications that run in the background
 • Quick test applications to try out techniques in Java 

Limitations of a Console Application

 • No mouse support
 • No graphical/window support
 • No additional windows

For some applications, you will need to interact with the user through 
Windows.  In these cases, you should choose a GUI application over a con-
sole application.

Console Applications
Look like command 
prompt or terminal 
windows.



Java for the Beginning Programmer34

Java GUI Application
Most applications used with windows are regular Graphical User Inter-

face, or GUI applications.  Java allows you to create a GUI application that 
takes advantage of a rich set of window and control types.  If you are going 
to create an application that the user works directly with, you will most likely 
want to create a GUI application.

This book will provide a brief introduction into Java applications that 
make use of Windows.  You will be shown how to do this using Java Swing.  
Swing is Java’s latest release of their windowing system for the Java lan-
guage.  Figure 1.2 shows a Java GUI Application.

Figure 1.2: Java GUI Application

When to use a GUI Application

 • Working directly with the user
 • Applications that must display graphical information 

Limitations of a GUI Application

 • More complex to setup than console application
 • Less convenient to run in the background

Java Applet
Java Applets allow you to imbed a program directly into a browser.  The 

user simply has to visit your website to view the applet.  Applets can be 
used to display graphics, animation and produce sound/music.  Applets can 
be very useful for displaying advertisements on web sites or providing a 
greater deal of interactivity than an HTML page alone can provide.

GUI Applications
Look like regular 
Windows applications.



35Chapter 1: Introduction to Java

Although applets can be used for a variety of multimedia purposes, they 
are rarely used for this purpose.  Macromedia Flash is the more common 
choice for animation/multimedia web applications.  Additionally, Microsoft 
Internet Explorer, currently the most popular browser, does not include sup-
port for the latest version of Java applets, by default.  Due to these factors, 
the use of applets has become somewhat restricted in the last few years.  

Because an applet runs in the web browser, an applet cannot make 
changes to the user’s local computer.  This means that it is difficult for an 
applet to save any information entered by the user.  The applet does not have 
the option of saving files on the user’s computer.  The only thing that an ap-
plet can do with entered data is to submit it back to the website.

This book will not cover Java Applets.  Figure 1.3 shows a Java applet.

Figure 1.3: A Java Applet

When to use a Java Applet

 • When your application should run directly with a website
 • When your application enhances the use of a website
 • Applications that display animation that should be quickly accessed 
form a website 

Limitations of a Java Applet

 • Applets cannot save data to the user’s disk 
 • Applets can not make use of the latest Java technology on Internet 
Explorer.

Java Applet
Applets run from 
within an Internet 
browser.



Java for the Beginning Programmer36

Cross Platform
Java is also cross platform.  This means that a Java application can be 

run on a variety of computer systems, without any modification to the pro-
gram.  Java runs on many different platforms, but some of the more com-
mon ones include:

 • Microsoft Windows
 • Apple Macintosh
 • Linux
 • Cell phones and other embedded devices

Consider the program running in Figure 1.4.  This is a Java application 
running under Windows XP.  As you can see, it contains buttons, graphics 
and other features you would normally expect from a program.  This applica-
tion is written in Java, so it can run on systems other than Windows.  You can 
see this program running under Windows in Figure 1.4.

Figure 1.4: A Java Application Running on Windows

This exact same program can be run under the Macintosh.  This takes 
no changes at all.  I simply copied the application to a CD-ROM and loaded 
it onto a Mac.  The program runs and looks very similar to the Windows 
version, except that it more closely matches how a Macintosh application 
should look.  Java always attempts to match the look and feel of the operat-
ing system it is running on.  You can see the program running under Mac 
in Figure 1.5.

Cross Platform
Java runs on many  
different computer 
systems.

Learning Objective #2
Java is cross 
platform.



37Chapter 1: Introduction to Java

Figure 1.5: A Java Application Running on the Macintosh

You can download everything you will need to develop in Java for free.  
Java can be downloaded from Sun Microsystems’s site at http://java.sun.
com.  From this web page, choose the J2SE 5.0 option under the “Popular 
Downloads” section on the right side of your page.

Chapter Review
In this chapter you saw how to install a Java environment on your com-

puter.  This consisted of downloading NetBeans from Sun Microsystems 
and installing it.  You were shown how to create a project in NetBeans to 
hold your first application.

There are three types of Java applications that will be covered in this 
book.  Console Applications, which we saw in this chapter, communicate 
with text only.  Java GUI Applications can have Windows and Forms.  Applets 
are graphical applications that run inside of a web browser.

A very simple program was introduced to show how to execute a con-
sole mode application from NetBeans.  In the next class chapter, you will 
be shown how to create an application that makes decisions and processes 
data.



Java for the Beginning Programmer38

New Terms

Applet  A Java application that runs from within a web browser.

Console Application  A Java application that can only display text.

Cross Platform  The ability for a program to run on more than one type of 
computer system.

GUI Application  A Java application that uses Windows and the mouse.

Source Code  The instructions that a programmer enters to create an ap-
plication.  

Review Questions
1.  What do you call a programming language that will run on many different 
computer systems, such as Windows, Macintosh and Linux?

2.  Which company produced Java?

3.  Is Java Object Oriented or Cross platform?

4.  What other language does Java’s source code resemble?

5.  What other programming language is often used in place of applets?



39Chapter 1: Introduction to Java

Assignment #1
You are to write a program that will process insurance policies for a large life 
insurance company.  This program will be run nightly, and will sometimes 
process over 100,000 policies a night.  You must write this program, but first, 
your manager wants to know what sort of application you would like to use 
for this job.  Your choices are:

Java Console Application
Java Applet
Java GUI Application

Choose which application type you will use.  Explain why you chose this 
type.  Also explain why the other two were not suitable.  Your answer should 
not be longer than two paragraphs.



41Chapter 2: Installing, Compiling and Running

CHAPTER 2:  INSTALLING, COMPILING AND RUNNING

In Chapter 2 you will learn about:
• Installing Java
• Entering your First Program
• Running your First Program
• Installing Java

In this chapter you will learn how to install Java and create your first 
Java application.  Java installation is easy.  There are two steps to this.

 • Downloading and installing Java
 • Setting up Java’s path

You will be shown how to do this in the next sections.

Downloading Java and Installing Java
First you have to download Java.  Java can be downloaded free of charge 

from Sun Microsystems.  Type the following URL into a browser to be taken 
to Sun Microsystem's Java page.

http://java.sun.com/

Once you access Sun’s Java page you must make your way to the down-
load page.  Sun changes this page around from time to time, so the download 
instructions and screens shown here may not match 100%.  On the right side 
of the page you will likely see a section called “Popular Downloads”.  Select 
J2SE 5.0.  If there is a version later than 5.0, choose it.  This will take you to 
a page that looks similar to Figure 2.1.

Learning Objective #1
Download Java.



Java for the Beginning Programmer42

Figure 2.1: Select Java Version to Download

This allows you to select how you would like to download Java.  You 
have two choices.

 • NetBeans IDE + JDK
 • JDK

For this book we only need the JDK.  So select the second section (after 
the NetBeans section), as seen near the bottom of Figure 2.1.  Once you 
select your download you will be presented with the software license, which 
you must accept.  You can see the software license in Figure 2.2.

Which one?
Choose JDK.



43Chapter 2: Installing, Compiling and Running

Figure 2.2: Accept the License Agreement

Once you accept you will be taken to another page where you can choose 
how you download the Windows version.  There are two choices:

 • Windows Offline Installation
 • Windows Online Installation

Either of these installations will work just fine.  If you were going to 
install Java on a large number of machines it would make sense to download 
the off-line version and copy that file to each machine.  Installing to a single 
machine, as you are likely doing, the online version makes more sense.  The 
online version can resume downloads if anything goes wrong during the 
install.  Choose the online installation, when presented with Figure 2.3.

Which one?
It does not matter 
a great deal, but 
choose offline.



Java for the Beginning Programmer44

Figure 2.3: Choose Windows Online Install

The download will now begin.  Your web browser will display one or 
more “Security Warning” pages, such as seen in Figure 2.4.  Security warn-
ings come up whenever you are installing new software, and in this case, 
installing new software is exactly what we are doing.  Click the “Run” button.  
If you are using a browser other than Microsoft Internet Explorer, this but-
ton may be named “Open”.

Learning Objective #2
Install Java.



45Chapter 2: Installing, Compiling and Running

Figure 2.4: Run the Program you Downloaded

You will have to accept a second license agreement shown in Figure 2.5.  
Click “Next” to continue.



Java for the Beginning Programmer46

Figure 2.5: Accept this License Agreement

You will now be presented with some installation options, as seen in 
Figure 2.6.  Accept all of these by clicking “Next”.



47Chapter 2: Installing, Compiling and Running

Figure 2.6: Standard Install

The install program will now download the required files, as seen in 
Figure 2.7.  Wait for the progress bar to reach 100%.

Figure 2.7: Install Underway



Java for the Beginning Programmer48

Once the download completes you will be presented with the features 
you can choose from.  You should leave everything as it is and click “Next”, 
when you see Figure 2.8.

Figure 2.8: Accept Features

You will be asked with which browsers you wish to integrate Java, as 
seen in Figure 2.9.  You should leave everything checked and click next.  
This allows your browsers to make use of Java.



49Chapter 2: Installing, Compiling and Running

Figure 2.9: Browser Registration

Once you choose these options installation begins.  You can see the in-
stallation process in Figure 2.10.  Wait for the progress bar to reach 100%.



Java for the Beginning Programmer50

Figure 2.10: Installing Java

Once the bar reaches 100%, Java installation is complete.  You will now 
see Figure 2.11.  Click “Finish”.



51Chapter 2: Installing, Compiling and Running

Figure 2.11: Install Complete

You have now installed Java.  But you are not finished yet.  To use Java 
in this book, you must add Java to your system path.  This is covered in the 
next section.

Setting up Java’s Path
Once you install Java you must setup the path so that the computer can 

find Java.  To do this you must first obtain the path that Java is stored at.  
This path is a string such as “C:\Program Files\Java\jdk1.5.0_01\bin”.  The 
easiest way to get this path is to use Windows explorer.  Launch Windows 
Explorer (Either by pressing your Windows button and “E” at the same 
time, or by launching it from the “Start Menu”) then navigate to your Java 
BIN directory, as seen in Figure 2.12.  

Learning Objective #3
Setup Java’s path.



Java for the Beginning Programmer52

Figure 2.12: Get the Java Path

Once you reach the Java BIN directory, your path will be in the “Ad-
dress Bar”, as seen above.  Select this address and choose “Copy” from the 
“Edit” menu.  Your path has been saved to the clipboard.

Now you must bring up the control panel to insert this path.  Click the 
Windows XP Start button and choose “Control Panel”.  You may start in 
“Windows XP” mode, as seen in Figure 2.13.  Choose “Switch to Classic 
View”.



53Chapter 2: Installing, Compiling and Running

Figure 2.13: Windows XP Control Panels

Once you switch to Classic View you will see Figure 2.14.  Double click 
the “System” icon.

Control Panels
Switch to 
classic view.



Java for the Beginning Programmer54

Figure 2.14: Classic Control Panels

Double clicking the “System” icon will bring you to Figure 2.15.  Choose 
the “Advanced” tab.



55Chapter 2: Installing, Compiling and Running

Figure 2.15: System Properties

Click the “Environment Variables” button.  This will take you to Figure 
2.16.



Java for the Beginning Programmer56

Figure 2.16: Environmental Variables

This will allow you to see the user variables for your user account.  We 
will be adding a variable named PATH.  Make sure you add it to the top sec-
tion, and not the bottom.  

If there is no PATH already click “Add” and add the path, as seen in 
Figure 2.17.



57Chapter 2: Installing, Compiling and Running

Figure 2.17: Set the Path

If there is already a variable named path then select it and click “Edit”.  
You should then add the Java path onto the end of whatever is there.  Make 
sure to put a semicolon (;) at the end of whatever was there.  i.e., if there 
was already c:\;c:\windows.  You would modify it to be something such as 
c:\;c:\windows;C:\Program Files\Java\jdk1.5.0_01\bin

Now click OK.  You will have created a path to Java.  Now we will 
test it.

Testing your Java Path
Open a command prompt window.  This can be done from under the 

Windows XP Start button and then choosing “All Programs”, then “Acces-
sories”, then “Command Prompt”.  From the command prompt enter:

java -version

You should see the version of Java displayed.  Now enter:

javac -version

You should see the version again, and a long list of options.  Both of 
these commands should produce a screen similar to Figure 2.18.



Java for the Beginning Programmer58

Figure 2.18: Verify Java Works

If you did everything right, you should see something like above.  If you 
are getting errors, recheck the steps on setting the path.

Now that you have installed Java, you are ready to create your first Java 
application.

Compiling and Executing your Application
In this section you will create your first Java application.  It is very im-

portant that you know how to do this properly.  While reading this book you 
will create many Java applications.  Future sections will not re-explain how 
to do this, therefore it is important that you see how to do this now.  There 
are several steps:

 • Create a directory to contain your application
 • Enter your application
 • Compile your application
 • Run your application

This section will show you how to complete each of these steps.  We will 
begin with creating a directory.



59Chapter 2: Installing, Compiling and Running

Creating a Directory
First you must create a directory to hold your application.  Begin by 

opening a Command Prompt window.  Make sure that you are on your C: 
drive, or whatever hard drive you wish to use.  Do this by simply entering:

c:

Now create a directory to hold your projects:

md \JavaProjects

Now move into your new directory.

cd \JavaProjects

Then create a subdirectory for each chapter, such as:

md chapter1
md chapter2

Now enter chapter 2’s directory:

cd chapter2

If done correctly you should now see Figure 2.19.

Learning Objective #4
Create a place to 
store your Java 
programs.



Java for the Beginning Programmer60

Figure 2.19: Create a Place to Put your First Application

Now that you have a directory to hold your application, you must enter 
your application.

Enter your Application
For this book you will use Notepad to enter your application.  To do this 

enter the command:

notepad HelloWorld.java

Make sure you enter this exactly as I have it.  If you change which let-
ters are capital, you will run into problems! This will start up Notepad and 
allow you to enter your source code.  The source code is what makes up 
your program and is compiled into your final application.  Once you enter 
the above command you will see Notepad launch and ask if you want to cre-
ate a new file.  You should choose “Yes”, as seen in Figure 2.20.



61Chapter 2: Installing, Compiling and Running

Figure 2.20: Create your Source Code

If you use notepad to re-open this file later, you will not be prompted 
to create the file, the file will simply open.  Now that Notepad is open you 
should enter the application as seen in Figure 2.21.

Figure 2.21: Enter your Source Code



Java for the Beginning Programmer62

This program is shown in Listing 2.1.

Listing 2.1: Hello World! (HelloWorld.java)

public class HelloWorld
{
  public static void main(String args[])
  {
    System.out.println("Hello World");
  }
}

Once you have entered your program you will compile it, as shown in 
the next section.

One very important item to note is the class name.  The class name 
above, in Listing 2.1, is HelloWorld.  This must match the filename  
“HelloWorld.java”.

Compile your Application
Now I will show you how to compile your application.  To do this, return 

to the command prompt window and enter:

javac HelloWorld.java

This will compile your application.  Compiling is the process by which 
your source code is changed into a form that the computer can understand.  
This is also where you will see compile errors if you have entered anything 
incorrectly.  You can see a successful compile in  Figure 2.22.

Important
Notice the code line 
“class HelloWorld”; 
it must match 
the filename 
“HelloWorld.java”.

Learning Objective #5
Compile your 
program.



63Chapter 2: Installing, Compiling and Running

Figure 2.22: View the Class File

If you would like to see what the compiler created enter the command:

dir

This will show you a file called HelloWorld.class.  This is the compiled 
form of your program that can be executed.  You will see how to do this in 
the next section.

If you entered anything incorrectly, you will now get compile errors.  If 
you did get a compile error or two, compare your source code to Listing 2.2.  
Each compile error will have a line number, such as (22), which will indicate 
which line number caused the error.  For example, (22) would indicate an 
error on line number 22 of “HelloWorld.java”.

Run your Application
If you have compiled without errors, now you are ready to run, or ex-

ecute, your application.  This is done by entering the command:

java HelloWorld

Learning Objective #6
Run your program.



Java for the Beginning Programmer64

This will run your program and display “Hello World” as seen in Figure 
2.23.

Figure 2.23: Run the Example

Congratulations! You have created and executed your first Java applica-
tion.  

Chapter Review
In this chapter you learned download and instal Java.  You also had to 

setup the system path so that you could use Java from the command prompt.  
You then created your first application.  This consisted of creating a direc-
tory to hold that application, entering the application, compiling the applica-
tion, and then finally executing the application.



65Chapter 2: Installing, Compiling and Running

New Terms

.class  A file type that holds a compiled Java program/class.

.java  A file type that holds the source code for a Java program/class.

Compile  When java source code is converted into a form that the computer 
can easily understand.  This converts a .java file into a .class file.

Execute  To start and run your program.

java  The command to execute/run a Java application.  

javac  The command to compile a Java application.  

Notepad  A Windows application that can be used to edit source code.

Run  When your Java program begins execution.  Has the same meaning as 
execute.

Review Questions
1.  What is the command to compile the source file “MyProgram.java”?

2.  What is contained in a .class file?

3.  What is the command to compile, and the command to run the Java 
source file “RunMe.java”?

4.  What is a program that can be used to edit Java source files?

5.  What must be done to a Java source file before it can be executed/ran?



Java for the Beginning Programmer66

Assignment #2
Create a program, named Assignment2.java that will display your name.  
This is primarily an exercise to make sure that you can compile and execute 
a Java application.  Make sure you can both compile and execute, as this 
procedure will be repeated many times in this book.  

Listing 2.1 will be helpful as a starting point,  but make sure you change the 
class name to “Assignment2”.



69Chapter 3: Variables

CHAPTER 3:  VARIABLES

In Chapter 3 you will learn about:
• Java Program Structure
• Variables
• Conversions
• Displaying Data
• Formatting Numbers
• Java Program Structure

In the last chapter we created a simple Java application.  This program 
did no more than display Hello World.  Yet you were probably wondering 
what was behind up the Java source code that you entered to create the 
program.  In the next section you will be introduced to what makes up a Java 
source code file.

Anatomy of a Java Program
Source code is what you “type in” to create a program.  The compiler 

takes source code and creates a program from it that the computer can ex-
ecute.  As a programmer, it will be your job to create this source code.  We 
used some simple source code in the previous section,  now lets take a look 
at a slightly more complex program and see what goes into its source code.

Listing 3.1 shows a simple Java application that asks you what your name 
is, and then says hello to you.

Listing 3.1: Sample Java Program (UserInput.java)

import java.io.*;

public class UserInput
{

  /**
   * Main entry point for example.
   * @param args Not used.
   */
  public static void main(String args[])
  {
    try
    {

Learning Objective #1
Structure of a 
Java program.



Java for the Beginning Programmer70

      BufferedReader userInput = 
        new BufferedReader(
        new InputStreamReader(System.in));

      System.out.print("What is your name? ");
      String str = userInput.readLine();
      System.out.println("Hello " + str);
    }
    catch(IOException e)
    {
      System.out.println(“IO Exception”);
    }
  }
}

We will examine this program from the top, beginning with the import 
statements.

Import Statements
Look at the top of Listing 3.1, and you will see an import line.  Import 

lines allow you to use information from other packages.  Packages hold 
many source files together.  When you have a large project it makes sense 
to break it up into smaller packages.  In this book we will not create projects 
larger than a few files, and as a result, will not be using packages.  However, 
Java provides many built-in packages, which we will make use of, using im-
port statements. 

The next line is the import statement.

import java.io.*;

Import statements are very important in Java.  They allow you to use 
classes from other packages.  These packages may be packages you have 
created, or they may be Java system packages.  In the case of the above im-
port line, we are using a Java system package named “io”.  The * on the end 
specifies that we want to import all of the classes from io.

There are actually two ways you can import.  You can import every 
class in a package, such as I just demonstrated.  Or you can only import the 
classes you are going to actually use.  If you examine the above program, 
you will see that we are using three classes: BufferedReader, InputStream, 
and IOException.  We are also using System, but its automatically available  
without the need for an import.  To import these three classes one by one, 
you would use the following lines of code:

Learning Objective #2
Import statements 
let you use 
other classes.



71Chapter 3: Variables

import java.io.BufferedReader;
import java.io.InputStream;
import java.io.IOException;

Both of the two methods accomplish exactly the same thing; they will 
import the necessary classes.  It is no less efficient to import all of the class-
es compared to just the classes you need.  So which should you use? This is 
a controversial topic that has been the topic of debate among experienced 
Java programmers.  Ultimately it just comes down to looks, and individual 
style.  Some programmers think the single line looks better, some like seeing 
every class you use listed.  This is the point at which a student in one of my 
face-to-face classes would always ask me, well Jeff, which do you prefer?

I will answer that, and I am sure I will get more than a few emails of 
disapproval.  I have seen that as programs grow the number of import state-
ments can get huge if you have each listed.  It then becomes hard to main-
tain and its not really adding anything to the program.  Because of this, I 
always use “.*” imports.

Single Line Comments
Comments are lines of code that do not affect how the program runs.  

Comments contain notes from the programmer, and can be in any format the 
programmer chooses.  These notes make the program clearer and easier to 
understand.  A single line comment can appear anywhere in source code and 
starts with //.  A single line comment ends with the line.  You can begin the 
next line with a single line comment as well.  The following is an example of 
a single line comment.

// this is a comment

If you wanted to, you could also create several lines of comments.

// Comment line 1
// Comment line 2
// Comment line 3

It is always a good idea to add comments to make your program source 
code easier to understand.

Single line comments can also coexist with regular code, on the same 
line. Consider the following line of code:

Learning Objective #3
Comments help 
others (and you) 
know what your 
program is doing.



Java for the Beginning Programmer72

System.out.println("Hello"); // print out "Hello"

As you can see, the left side of the line is actual code, that will execute.  
The right side of the line, beginning with //, is a comment.  Using a single 
line comment in this way can be useful to explain individual lines of code.

Multi Line Comments
You can also create a multi line comment.  These comments can span for 

many lines and allows completely free-form text to be inserted into the com-
ment.  A multi line comment begins with /* and ends with */.  The following 
shows an example of a multi line comment.

/*
Line 1
Line 2
Line 3
*/

Both single and multi line comments greatly add to the readability of 
your program -- both for yourself and other programmers.

Class Declaration
Usually every Java source file defines one single class.  Classes are the 

basic building block of Java programs.  Very large applications may have 
hundreds, if not thousands, of classes.  For now, you can think of a class as 
a program.  Nearly every program in this book will consist of only one class.  
However, when we reach Chapter 13, you will learn how to create a program 
that has more than one class.

Classes are declared using the “class” statement.  For example, the fol-
lowing class statement declares a class named UserInput.

public class UserInput

Inside of the classes are methods.  These methods contain the actions 
to be carried out by the program.  The most important method is the main 
method.Learning Objective #4

The main method 
is where the 
program begins.  



73Chapter 3: Variables

Main Method
The main method is where your program begins execution.  The main 

method must be declared in a very strict format.  The following shows how 
the main method should look.

public static void main(String args[])
{
// put main method actions here
}

Here you can see the main method being declared.  The main method 
is public, so that everything can access it.  Whenever you create a main 
method, which is once for every one of your Java applications, you should 
copy this main method header.  There is little you can change about it.  You 
will learn the exact meaning of the other parts of the main method when we 
study methods, in Chapter 6.

Semicolon and Curly Brace Usage
As you have been looking through these examples, it may be somewhat 

confusing as to when semicolons are used and when curly braces are used.  
You probably have also noticed that not all source code lines are left justi-
fied.  The program code is indented.  These three topics will be discussed 
in this section.

Semicolon Usage

If you have never worked with a language that requires semicolon ter-
minated lines, it can be a confusing idea.  In Java, the semicolon ends an 
idea.  So if you were going to print “Hello World”, such as follows.

System.out.println("Hello World");

You would use a semicolon.  The idea of this line has ended, it has done 
its job, and the next line is a new idea.  However, consider an if-statement.

if(i<10)
{
  System.out.println("Hello");
}

Learning Objective #5
Use semicolons 
on lines that 
“end an idea”.



Java for the Beginning Programmer74

The if-statement does NOT have a semicolon.  The idea of the if-state-
ment is not yet done, the lines that follow will only be executed if the if-state-
ment is true.

Here is a very simple rule-of-thumb, which is almost always true.  To 
determine if a line should have a semicolon, look at the next line.  If the 
next line is an open curly brace then the line should NOT have a semicolon.  
There are exceptions to this rule, but it generally holds true.

The case where this rule does not work is when you begin to leave out 
curly braces as a shortcut.  This is discussed in the next section.

When Curly Braces are not Needed

If there is just one line of code in an if-statement, while-loop, for-loop or 
do/while loop you can leave off the curly braces.  For example consider the 
following if statement.

if( i<10 )
  System.out.println("i is less than 10");
else
  System.out.println("i is not less than 10");

Because there is only one line in the code block, the curly braces can 
be omitted.  If you add another line of code to either block, that block must 
now use curly braces.

Indenting Code

You have probably noticed that the code examples that I give you are 
indented.  This makes the source code much easier to read than if the entire 
file were left-justified.  The rules for indenting are pretty simple.  It is based 
on where curly braces are located, or could have been located.  Consider the 
following program, which is indented, shown in Figure 3.1.



75Chapter 3: Variables

Figure 3.1: How indenting works

You will notice that there are four levels of indention.  The first level is 
left justified and is denoted by my left most vertical line above.  Then, each 
time there is an opening curly brace the indention level goes over by one.  
A closing curly brace will bring it back by one.  Did you notice my dashed 
vertical line? The if-statement does not have a curly brace, but it could have.  
Because of this, we indent to the fourth level.

Variables
Variables are used to hold information while the program is processing 

it.  Java uses nine variable types to hold different types of data.  These nine 
types are summarized in Table 3.1.



Java for the Beginning Programmer76

Table 3.1: Java Variable Types

Data Type Purpose
boolean Used to store yes/no or true/false type information.  Very 

common.
char Used to store single char information.  For example gender 

(i.e.  ‘m’ or ‘f’ ).  Very common.
byte Used to hold information that is normally represented as a 

byte of computer memory.  Small values, less than 128.
short Used to hold small numbers (<32,767) that require no 

decimal places.
int Used to hold most numbers that do not require decimal 

places.  Very common.
long Used to hold very large numbers that do not require deci-

mal places.
float Used to hold numbers that require decimal places.
double Used to hold large/precise numbers that require decimal 

places.  Very common.
String Used to hold non-numeric values, such as a person’s 

name.  Very common.

In normal programming practice you will use some of the variable data 
types much more often than others.  The common data types are listed above.  
For now, you should focus primarily on the ones listed as very common.

Java data types can be broken into three groups, which all share similar 
characteristics.

 • Numeric Data Types
 • String Data Types
 • Boolean Data Types

I will now explain each of these three groups, beginning with the nu-
meric data types.

Numeric Data Types
Numeric data types are used to hold numbers.  Within the numeric data 

types there are two subgroups:

 • Integer Data Types
 • Floating Point Data Types

Learning Objective #6
Use the right 
variable type for 
the right purpose.  



77Chapter 3: Variables

Integer data types cannot have decimal places.  If you try to assign a 
number, with decimal places, to an integer data type, the decimal places will 
drop off, no rounding will occur.  Floating point data types can hold decimal 
places.

Java defines two integer data types: int and long.  The only difference 
between int and long are the size of numbers they can hold.  Usually you will 
use int, unless you need to hold a really large number.  The sizes of all data 
types are summarized later in this section.

Java defines two floating point data types: float and double.  The only 
difference between float and double are the size of numbers they can hold.  
Usually you will use double, as it can be handled most efficiently by Java.  
The sizes of all data types are summarized later in this section.

The following code block defines an int and assigned a value of 10 to 
the int.

int i;
i = 10;

The above code demonstrates how a variable of any data type can be 
defined.  First, the data type, in this case int is specified.  Secondly, the name 
of the variable, in this case “i” is specified.  Finally, a semicolon ends the line.  
The above two lines can also be combined as follows:

int i = 10;

To print out a numeric data type use the println method, as follows:

System.out.println("The value of i is " + i );

Mathematical operations can easily be performed on numerical data 
types.  The symbols + and - are used to add and subtract.  The symbols / and 
* are used to multiply and divide.  For example, to add five to ”i” you would 
use the following code.

i = i + 1;



Java for the Beginning Programmer78

There are also two shortcut operators ++ and - - that both add and sub-
tract one.  For example, to increase “i” by one use the following code;

i++;

The shortcuts += and -= can also be used to add and subtract a number 
from a variable.  For example, to increase “i” by five use the following code.

i+=5;

String Data Types

If you need to hold textual data you should use a string data type.  For 
example, to create a String named str and assign it to the text “Java”, you 
would use the following code.

String str;
str = "Java";

Just as with numeric data types these two steps can be combined as 
follows.

String str = "Java";

You can use the + operator with a string, just like numeric types, how-
ever, it has a different effect.  Adding two strings attach, or concatenate, 
them together.  For example, the following block of code would print out 
 “HelloWorld”.

String str = "Hello";
str = str + "World";
System.out.println(str);

The statement str = str + “World” attaches “World” to the end of str.

Important
Know when to use 
a numeric data 
type.  (i.e.  a social 
security or zip code 
should NOT be a 
numeric data type).

Important
Did you notice that 
the string  “Java” 
is enclosed by 
quotes? Literal 
strings, such as 
this, must always be 
enclosed in quotes.



79Chapter 3: Variables

Important: You should only use a numeric data type when it makes sense 
to perform mathematical operations on the value (i.e.  adding or subtracting 
from it).  Otherwise, the data type used should be String.  For example, a 
social security number should be a string because there is no value in add-
ing or subtracting from a social security number.

Boolean Data Types
The final data type group is boolean.  Boolean data types can hold only 

two values: true and false.  A boolean is created much like any other variable 
in Java.

boolean done;
done = false;

Here a boolean named “done” is created and assigned to a value of 
false.

Data Type Sizes
Each numeric data type can hold a different sized number, the lengths 

of each datatype are summarized in Table 3.2.

Table 3.2: Numeric Datatype Sizes

Datatype Signed Range
char n/a 16 bits
byte yes -128 to +127 (8 bits)
short yes -32,768 to +32,767
int yes -2,147,483,648 to 2,147,483,647 (32 bits)
long yes -9,223,372,036,854,775,808 to +9,223,372,03

6,854,775,807 (64 bits)
float yes Float.NEGATIVE_INFINITY to Float.POSI-

TIVE_INFINITY (32 bits)
double yes Double.NEGATIVE_INFINITY to Double.

POSITIVE_INFINITY (64 bits)

Java does not specify a maximum size for Strings, this is defined by your 
computer system.  However, strings can become very large, if needed, up 

into the megabyte size range.

Important
You should only 
use a numeric data 
type when it makes 
sense to perform 
mathematical 
operations on 
the value.



Java for the Beginning Programmer80

Constants
You can also designate a variable as constant.  A constant variable may 

not change its values.  Constants are useful to define common numbers, 
such as pi.  To create a constant variable put the keyword final in front of the 
variable.  For example, the following line creates a pi constant.

final double pi = 3.14159265;
 

Data Type Conversion
Earlier in this chapter we saw how you can create both string and nu-

meric data types.  Often you will need to convert between the two.  Consider 
an example where you have a string that contains 1001.

String str = "1001";

Now you would like to add 5 to the string.  If you use the following line 
of code, you might not get what you expect.

str = str + 5;

What would str now contain? Would it contain “1006”? No it would not! It 
would actually contain “10015”.  This is because anything added to a string is 
concatenated.  Which means it is simply tacked on to the end.  To properly 
perform this operation you would have to convert str to an integer, perform 
the addition, then convert it back to a string.  I will now show you how to 
perform this conversion.  There are actually three conversion types that you 
will often do with numeric and string variables.

 • Convert a string to a numeric
 • Convert a numeric to string
 • Convert a numeric to a different numeric

I will begin by showing you how to convert a string to a numeric.

Learning Objective #7
Know how to 
convert data types.  



81Chapter 3: Variables

Converting String to Numeric

Converting a string to a numeric is a very common operation to per-
form.  Anytime you read data from the user it always is given to you in string 
form.  No matter if you are using a console application or one of the more 
advanced GUI, data always comes in string form.  Often, you will need to 
convert this user input into numeric form so that you can properly process 
the data.  The following lines of code would convert our string, containing 
“1001” into an integer.

String str = "1001";
int i = Integer.parseInt(str);

By using the function “Integer.parseInt” you pass in str as an argument 
and the function returns an integer.  Now that “i” contains an integer you can 
easily add 5 to it as follows.

i = i + 5;

The variable “i” will now contain 1006.

You may be wondering what would happen if you pass an invalid num-
ber into Integer.parseInt.  For example, what would happen if you passed 
in the string “Java”? You might be able to guess the answer from the last 
section.  What happens when a method or function is given data that it 
cannot handle? An exception is thrown! In this case, an exception named 
NumberFormatException is thrown.  In the case of NumberFormatException, 
Java does NOT require us to catch it.  

However, if you do not catch it, any invalid number that you might en-
counter is going to cause your program to crash.  Because of this you should 
catch the NumberFormatException, especially if you are reading user input.  
You should NEVER assume that your user will give you valid data! The fol-
lowing code would prompt the user for a number and display an error if they 
provide an invalid number.

try
{
// display a prompt to the user
  System.out.print("Please enter a number>");

// create a stream to read from the user
  BufferedReader userInput = new BufferedReader(



Java for the Beginning Programmer82

    new InputStreamReader(System.in));

// read a line of text from the user
  String str = userInput.readLine();

// attempt to convert the user's input into 
// an integer
  int i = Integer.parseInt(str);
}
catch(IOException e)
{
  System.out.println("An IO exception occured.");
}
catch(NumberFormatException e)
{
  System.out.println("Enter a valid number!!");
}

The above block of code brings together several concepts we have 
learned.  First a BufferedReader stream is created to read the string from 
the user.  Next, a line of input is read from the user and converted to an int.  
Finally the user’s input is converted into an integer.

Did you notice the catch blocks? There are two of them.  Two catch 
blocks are required because two different exceptions can occur.  First, the 
readLine function could throw an IOException. Secondly, the Integer.par-
seInt function could throw a NumberFormatException.  When you have 
more than one exception type you are allowed to “stack” catch blocks like 
this.

Now that you have seen how to convert a string to an integer, you may 
be wondering about the other Java data types, such as short or double.  You 
should be able to infer the correct function call from the data type.  For ex-
ample, to convert a double, you would use Double.parseDouble.  Each of the 
function calls are summarized here.

 • byte: Byte.parseByte(str)
 • double: Double.parseDouble(str)
 • float: Float.parseFloat(str)
 • int: Integer.parseInt(str)
 • long: Long.parseLong(str)
 • short: Short.parseShort(str)

Important
Use Integer.parseInt 
not Int.parseInt.

Learning Objective #8
Know how to trap 
an invalid number 
exception.



83Chapter 3: Variables

Important: The int type is inconsistent with the others.  To convert to an 
int, you use Integer.parseInt, not Int.parseInt.  Do not be confused by this, it 
is just an unfortunate inconsistency in the Java language.

Now that you have seen how to convert a string to a numeric, lets exam-
ine the opposite conversion.

Converting Numeric to String

Converting a numeric to a string is much easier than the reverse opera-
tion.  You have already been converting numeric variables to strings, you 
just might not have been aware of it.  Anytime you print out a variable with 
System.out.println, you are converting a numeric into a string.

int i = 1000;
System.out.println("The value of i is: " + i );

Here the value of “i” was converted to a string, attached to the end of the 
constant string and the result was printed out.  So if you just want to convert 
to a string and not display the result, add to an empty constant string (“”) and 
assign the result to a string.

int i = 1001;
String str = "" + i;

Now “i”” has been converted to a string named str.  This will work just 
as well for all of the numeric data types.

Converting Numeric to Numeric

Sometimes you may want to convert one numeric type to another nu-
meric type.  So long as the target numeric type is larger than the source 
numeric type, this is okay.  For example, assigning an int into a long is fine.

long l;
int i;

i = 10;
l = i;



Java for the Beginning Programmer84

Because a long is larger than an int, this is fine.  You would not lose data 
making such a copy.  However, if you try to copy a long into an int, you will 
run into a problem.

long l;
int i;
l = 10;
i = l;

Now you will be given an error.  You are trying to copy a long into an int.  
Of course we know that the number 10 would fit into the int just fine.  How-
ever, Java makes no such distinction.  If Java sees that the type on the left of 
an = is smaller than the type on the right, a compile error results.

If you really want to copy a long into an int you must tell Java that you 
really want to be doing this, and you do not mind that the result might not 
fit.  You do this with a type-cast.

long l;
int i;
l = 10;
i = (int)l;

Now you are converting the “l” variable into an int before it is assigned 
to “i”.  This will compile just fine.  If you ever get an error converting from 
one numeric type to another just use a type-cast to convert the right side of 
the = to the correct type.

This same technique works on floating point numbers.  You can also use 
it to strip the decimal places from a floating point number.  For example, the 
following code would strip the decimal places from the double variable d.

double d;
d = 10.5;
d = (double)((int)d);
System.out.println("The value of d is " + d );



85Chapter 3: Variables

The above code would display 10.  Do you see how this is happening? 
First the double variable d is converted to an int.  This conversion causes d 
to lose all decimal places.  The result is truncated, not rounded.  But then, 
the result is converted back into a double, so that it can be assigned back 
into d.

Chapter Review
In this chapter you learned about how a Java program is structured.  

You learned what the major parts of the Java source files are for.  You were 
also introduced to variables.  Variables allow the program to hold values 
while it processes data.  Variables are very important to programming, and 
it is very important that you understand how they work.

You learned the difference between strings and numbers.  You saw that 
strings hold text data and numbers can perform mathematical operations.  
You can also convert between Strings and numbers.  Java supports many dif-
ferent types of variables.  Some can hold bigger numbers than others.

You learned about comments and how they can make your program eas-
ier to understand.  Java supports both single-line and multi-line comments.  
Single line comments begin with a //.  Multi line comments are between a 
beginning /* and an ending */.



Java for the Beginning Programmer86

New Terms

boolean  A primitive datatype that holds true or false.

Boolean class  A holder class for the boolean primitive datatype.

char  A primitive data type that holds single characters.  To hold multiple 
characters, see the String class.

Comment  A note that is placed in the program by the programmer.  The 
comment has no effect on the way that the program runs.  Comments can 
be single line or multi-line.

byte  A Java primitive data type that holds very small numbers that would 
fit into a single byte.

Byte class  A holder class for the byte primitive datatype.

Constant  A variable that holds a fixed value and cannot be changed.  Java 
constants always start with the keyword final.

double  A Java primitive datatype that can hold floating point numbers.  The 
double datatype is larger than the float datatype.  

Double class  A holder class for the double primitive datatype.

final  The Java keyword that designates a variable as constant.

float  A Java primitive data type that holds floating point numbers.  The float 
datatype is smaller than the double datatype.

Float class  A holder class for the float primitive datatype.

indent  Java source code is indented to make it appear clearer.

int  A Java primitive datatype used to hold numbers.  The int datatype is 
smaller than the long datatype, but larger than the short datatype.

Integer class  A holder class for the integer primitive datatype.

long  A Java primitive datatype used to hold numbers.  The long datatype is 
larger than the int datatype.

Long class  A holder class for the long primitive datatype.

Primitive Data Type  A datatype that is not a class.  Java’s primitive datatypes 
are: char, byte, short, int, long, float, double and boolean.  

short  A Java primitive datatype that holds numbers.  The short datatype is 
smaller than the int datatype.



87Chapter 3: Variables

Short class  A holder class for the short primitive datatype.

String  A Java class that can hold text data.

Type Cast  To convert from one datatype to another.  A cast is usually de-
noted by the desired datatype in parenthesis, such as (int).

Review Questions
1.  What is the primary difference between double and long?

2.  What datatype would you use to store the number of students in a class?

3.  What datatype would you use to store someone’s hourly wage (i.e.  
$12.50)?

4.  Is String a primitive data type? Why or why not?

5.  What is the purpose of the final keyword?



Java for the Beginning Programmer88

Assignment #3
You must correct the following program.  This program is attempting to add 
the numbers “2” and “3”, but it is currently displaying “23”.  It should display 
“5”.  Correct the program so that the numbers “2” and “3” are properly con-
verted before they are added.

public class Assignment3

{
  public static void main(String args[])
  {
    String str1 = "1";
    String str2 = "2";

    System.out.println(“Result:” + (str1+str2) );
  }
}



91Chapter 4: Handling User Input

CHAPTER 4:  HANDLING USER INPUT

In Chapter 4 you will learn about:
• Reading from the User
• Reading Strings
• Reading Numbers
• Error Handling

The programs that we have looked at so far do not prompt the user 
for any information.  The program simply executes to completion and then 
quits.  Now I will show you how to create an application that is able to prompt 
the user for information, and process that information.

There are many different ways that input can be gathered from the user.  
The most common two methods are the keyboard and mouse.  In this chap-
ter we will learn how to receive input from the user, using the keyboard.  
The user will be allowed to enter a line of text, right on the console window.  
This line of text will be returned to the Java program for processing.  

How to Read Data from the User
I will begin by showing you a simple program that will read data from 

the user.  This program will only read the data from the user in text form.  If 
you want to read data from the user in numeric form, you will have to first 
read the data as a string, and then convert it to numeric form.  This tech-
nique will be discussed later in this chapter.

However, before we see how to input numbers, we will start with input-
ting strings.  Inputting a string in Java is not as straightforward as you might 
think.  Java provides no direct command to prompt for a line of text from the 
user.  Because of this, some extra setup must be done, on our part, to enable 
Java to read lines of text from the user.

Java does not require too much additional code to read from the user.  
This additional code is the same for each program you write, so you will be 
able to copy the code, presented in Listing 4.1, to any program that needs to 
read lines of text from the console.  

I will now show you an example program that reads lines of text from 
the user.  This program will demonstrate what needs to be added to a Java 
program to read lines of text from the user.  First, we will examine a simple 
program that prompts the user for their name, and then says “Hello” to that 
user.  Listing 4.1 shows this program.



Java for the Beginning Programmer92

Listing 4.1: Read Data from the User (Hello.java)

import java.io.*;

public class Hello
{
  public static void main(String args[])
  {
    try
    {
      InputStreamReader inputStreamReader = 
        new InputStreamReader ( System.in );
      BufferedReader in = 
        new BufferedReader ( inputStreamReader );
      System.out.print("What is your name? ");
      String name = in.readLine();
      System.out.println("Hello " + name );
    }
    catch(IOException e)
    {
    }
  }
}

You will notice that it takes quite a few extra lines to actually accept input 
from the user.  Most of them you do not need to be directly concerned with 
how they work.  The line that actually reads the input is the first line below:

String name = in.readLine();
System.out.println(“Hello “ + name );

The above lines wait for a user to enter something and then press en-
ter.  What ever string the user enters will be placed into the string named 
“name”.  Then, after the user enters their name, the program displays the 
word “Hello” followed by the user’s name.

Additional Lines Needed
In addition to the two lines just discussed, there are quite a few addi-

tional lines of program code that are necessary to make this program work.  
While these lines do not directly interact with the user, they are quite neces-
sary.  I will now show you what they are for, so that you can include them in 
your own programs.

Learning Objective #1
Read strings 
from the user.



93Chapter 4: Handling User Input

Try and Catch Blocks

If you look at Listing 4.1 you will see that there is a try and catch block.  
Try/catch blocks are used to handle errors.  If any error occurs in the mid-
dle of the try block, the program immediately executes the catch block.  If 
no error occurs, the catch block will not be executed.

The general form of a try/catch block is shown here.

try
{
  // program code that may cause an error
}
catch(Exception e)
{
  // program code to be executed if an error occurs
}

If you are going to have a catch block, you must have a try block.  It 
makes no sense for them to exist separately.  If an error occurs anywhere 
within the try block, the program will immediately leave the try block and 
execute the code in the catch block.

This allows the program to continue executing, even though an error 
has occurred.  Usually, you will insert some code to display an error mes-
sage to the user when the catch block is executed.

You may be wondering, what error could possibly happen while reading 
data from the keyboard.  In reality, there is no error that can occur.  Howev-
er, because readLine is a part of the Input/Output system of Java, you must 
register to handle the error, even though it cannot actually happen.

Setting up to Read User Input

In addition to the try/catch block, you must also setup a few objects to 
allow your program to read from the user.  These objects are created by us-
ing the following two lines:

InputStreamReader inputStreamReader = 
  new InputStreamReader ( System.in );
BufferedReader in = 
  new BufferedReader ( inputStreamReader );

Reusable Code
These lines can 
be added to any 
program that 
needs to read 
from the user.



Java for the Beginning Programmer94

These lines deal with Java’s Input/Output system and allow you to read 
data from the user line by line.  It is not important that you understand how 
these two lines work.  You simply need to be aware that they must be in-
cluded in any program that needs to read user input from the console key-
board.

Once you have executed these two lines you will be left with an object 
named “in”.  This object is used to call the readLine method.

Reading Numbers
In the last example you saw how to read a string.  Now I will show you 

how to read a number.  It is necessary to read a number if you want to per-
form any sort of mathematical operation on what the user has entered.

Probably the easiest way to read a number is to first read a String, and 
then convert it to a number.  Java provides several methods to convert from 
a string to a numeric type.  Which method you use depends on the type of 
number you want.

 • byte: Byte.parseByte(str)
 • double: Double.parseDouble(str)
 • float: Float.parseFloat(str)
 • int: Integer.parseInt(str)
 • long: Long.parseLong(str)
 • short: Short.parseShort(str)

For this example we will input a number, in miles, and convert that num-
ber into kilometers.  Listing 4.2 shows this example program.

Listing 4.2: Input Numbers (InputNumbers.java)

import java.io.*;

public class InputNumbers
{
  public static void main(String args[])
  {
    try
    {
      InputStreamReader inputStreamReader = 
        new InputStreamReader ( System.in );
      BufferedReader in = 
        new BufferedReader ( inputStreamReader );
      System.out.print("Enter a length in miles? ");

Learning Objective #2
Read numbers 
from the user.



95Chapter 4: Handling User Input

      String miles = in.readLine();
      double dMiles = Double.parseDouble(miles);
      double dKilometers = 1.609344 *dMiles;
      System.out.println("That is " + dKilometers + 
        " kilometers.");
    }
    catch(IOException e)
    {
    }
  }
}

As you can see from the above program it is very similar to the previous 
example where a string was entered into the program.

However, once the string has been read into the variable “miles”, the 
string is converted into a double.  The string is converted into a double, 
rather than an long, because doubles can have decimal places.

To convert the string into a double, the following line of code is used.

double dMiles = Double.parseDouble(miles);

To convert the number of miles into Kilometers the miles are multiplied 
by 1.609344.  You may want to define a constant, using the final keyword, to 
hold this number. 

Handling Bad Numbers
We now have a useful program to convert miles into Kilometers.  How-

ever, the program has one fatal flaw.  What happens if you enter an invalid 
number into it? What happens if you enter something such as “one1one”, or 
some other nonsense string.  Try it and see.

If you enter a non-valid number your program will crash with a 
NumberFormatException.

You do not want your program to behave in this way.  A properly de-
signed program should never throw an exception and crash.

To keep from crashing as a result of a bad number, you must add an addi-
tional catch block to your program to handle the NumberFormatException.  
Listing 4.3 shows how to do this.

Learning Objective #3
Handling bad 
numbers, without 
crashing the 
program.



Java for the Beginning Programmer96

Listing 4.3: Handle Bad Numbers (BadNumbers.java)

import java.io.*;

public class BadNumbers
{
  public static void main(String args[])
  {
    try
    {
      InputStreamReader inputStreamReader = 
        new InputStreamReader ( System.in );
      BufferedReader in = 
        new BufferedReader ( inputStreamReader );
      System.out.print("Enter a length in miles? ");
      String miles = in.readLine();
      double dMiles = Double.parseDouble(miles);
      double dKilometers = 1.609344 *dMiles;
      System.out.println("That is " + dKilometers + 
        " kilometers.");
    }
    catch(NumberFormatException e)
    {
      System.out.println(
        "You entered an invalid number.");
    }
    catch(IOException e)
    {
    }
  }
}

The above program is nearly the same as the last example, except that 
four additional lines are added.  These four lines will handle the exception, 
caused by an invalid number.

catch(NumberFormatException e)
{
  System.out.println(
    "You entered an invalid number.");
}



97Chapter 4: Handling User Input

The above catch block will handle any exception of the type 
NumberFormatException.  The parseDouble method will throw this type of 
exception if it is passed an invalid number.  By adding this catch block, your 
program is able to display an error, rather than crashing.

Very Important! In this example, we already had a catch block.  But we 
needed to add a new catch block for a new exception type.  You can add as 
many catch blocks onto a try block as you need.  Add one catch block for 
every type of exception that you need to handle.

Displaying Data
We have seen that there are two different ways to display data to the 

console window.  The following two methods both display data to the con-
sole window.

System.out.print
System.out.println

But what exactly is the difference between these two methods?  First, 
we will look at what System.out.println does.  Consider the following two 
lines of code.

System.out.println("Hello");
System.out.println("World");

These two lines would produce the following output.

Hello
World

Now consider if we were to use print instead of println.  Consider the 
following two lines of code that use print.

System.out.print("Hello");
System.out.print("World");

If you executed the above two lines of code you would get a different 
output.  These two lines of code would produce the following output.

HelloWorld

Learning Objective #4
Know the difference 
between println 
and print.



Java for the Beginning Programmer98

As you can see, System.out.println moves to a new line.  Whereas Sys-
tem.out.print does not move to a new line.  

Chapter Review
In this chapter you learned how to read input from the user.  All input 

from the user is read initially as a string.  If you need to read data from the 
user in other formats, you must first read the data as a string, and then 
convert it to the appropriate type.  Java provides many different methods to 
convert strings into other data types.

You also learned about try/catch blocks.  Try/catch blocks are used to 
handle errors in Java programs.  The try block is used to enclose code that 
you suspect may throw an exception.  If an exception is thrown in code that 
is not inside of a try block, your program will crash.  A properly designed 
program should never crash.  If an error is detected by the try block, the 
program will immediately execute the catch.



99Chapter 4: Handling User Input

New Terms

BufferedStreamReader  A Java class that is used to read data from a de-
vice.  For this book, it is used only to read data from the keyboard.

catch  The catch-block allows the Java program to handle its own errors, 
and not simply terminate when an exception happens.  When an exception 
occurs inside of a try-block, the code inside of the catch-block is executed 
to handle that error.

crash  When a program stops in an unplanned manor.  Usually the crash is 
the result of an exception that was not caught.

Exception  An exception occurs in Java when an error occurs.  Exceptions, 
if not caught, will cause the program to crash.

InputStreamReader  A Java class that is used to read data from a device.  
For this book, it is used only to read data from the keyboard.

NumberFormatException  An exception that occurs when a non-number 
string is passed to one of the parse functions.  For example, the string “182g” 
would produce this exception if used with Integer.parseInt.

Numeric Datatype  A datatype that holds numbers, and can have math-
ematical operations performed on it.

print  A Java method that will display a line of text, but not move to the next 
line.

println  A Java method that will display a line of text, and will move to the 
next line.

readLine  A Java method that prompts the user to enter a line of text.  The 
user is allowed to enter text until the user presses the ENTER key.

String Datatype  A datatype that holds text information.  You cannot pre-
form mathematical operations on the String.

System  A Java class that provides many important methods and variables 
for interacting with the computer system.

System.in The standard input.  This variable is used to receive keyboard 
input from the user.

System.out  The standard output.  This variable is used to display data on 
the console.



Java for the Beginning Programmer100

try  The try block encloses code that might cause an exception.  If an excep-
tion does happen in a try block, the try block’s catch block executes.

Review Questions
1.  How do you read a number from the user?

2.  What is the difference between print and println?

3.  What happens if a “bad number” is passed to a method such as Integer.
parseInt?

4.  How do you handle “bad numbers” properly in a Java program?

5.  What is the purpose of a try/catch block?



101Chapter 4: Handling User Input

Assignment #4
Write a program that will accept a number of miles from the user.  This value 
should accept decimal places (i.e.  1.5 miles).  Convert the number of miles 
into kilometers.  Display the number of kilometers with decimal places (i.e.  
3.445 kilometers).  You do not have to round, display as many decimal places 
as Java gives you.

Note: 1 mile = 1.609344 kilometers.



103Chapter 5: Making Decisions

CHAPTER 5:  MAKING DECISIONS

In Chapter 5 you will learn about:
• Comparing Values
• If/Else Statements
• And/Or
• Switch/Case

So far we have only accepted data from the user and displayed that data.  
Sometimes the data was processed slightly before being redisplayed, but no 
decisions were made based on that data.  In this chapter you will see how 
your program can make decisions based on the data that the user enters.

Comparing Values
For your program to make decisions, it must compare values.  In this 

chapter I will show you how to compare different types of values.

Comparing a Numeric Value

First I will show you how to compare a variable to a numeric value.  This 
is done by simply using ==.  For example, if you wanted to compare the vari-
able “i”, you could use the following lines of code.

int i=5;
if( i==5 )
{
  System.out.println("i contains the value 5");
}

Very important! Notice how I used the == to compare the value of “i”.  
This is how you compare values in Java.  A single = means assign the value, 
such as:

i=5;

The above statement will assign the value of 5 to i.  Do not confuse the 
assignment (=) with the comparison (==).

Learning Objective #1
Learn to compare 
numeric values.

Important
Always compare 
numbers with double 
equal (==), not 
single equal (=).



Java for the Beginning Programmer104

Now lets look at a complete example.  Listing 5.1 shows a program that 
compares to see if a variable is above a certain number or not.

Listing 5.1: Are You Old Enough (OldEnough.java)

import java.io.*;

class OldEnough
{
  public static void main(String args[])
  {
    try
    {
      InputStreamReader inputStreamReader = 
        new InputStreamReader ( System.in );
      BufferedReader in = 
        new BufferedReader ( inputStreamReader );
      System.out.print("How old are you? ");
      String age = in.readLine();
      int iAge = Integer.parseInt(age);
      if( iAge>=18 )
      {
        System.out.println(
"You are old enough to vote in the United States.");
      }
      if( iAge<18 )
      {
        System.out.println(
          "You are not old enough to vote in" +
          " the United States");
      }
    }
    catch(NumberFormatException e)
    {
      System.out.println("That is not a valid age.");
    }
    catch(IOException e)
    {
    }
  }
}



105Chapter 5: Making Decisions

This program will prompt the user to see how old they are.  If the user is 
18 or over, the user will be informed that they are old enough to vote in the 
United States.  If the user is below 18 years, the user will be informed that 
they are not old enough to vote in the United States.

This program does this by using the “if statement” to check the age of 
the user.

if( iAge>=18 )
{
  System.out.println(
"You are old enough to vote in the United States.");
}

Notice the if statement.  It names the variable to compare and what to 
compare it against.  Here we are checking to see if the variable “iAge” is 
greater than, or equal to, the value 18.  

Comparing a String Value

Comparing a string is somewhat different than comparing a number.  
You may be tempted to use == to compare a string.  This will not work prop-
erly, even though it will compile correctly.  Consider Listing 5.2.

Listing 5.2: Compare a String (InvalidString.java)

import java.io.*;

class InvalidString
{
  public static void main(String args[])
  {
    try
    {
      InputStreamReader inputStreamReader = 
        new InputStreamReader ( System.in );
      BufferedReader in = 
        new BufferedReader ( inputStreamReader );
      System.out.print(
        "What is your favorite color? ");

      String color = in.readLine();

      if( color=="red" )
        System.out.println(
          "My favorite color is red too!");

Learning Objective #2
Learn to compare 
two strings, always 
use .equals, not ==.

WRONG!!!
This is wrong! Never 
use == to compare 
two strings.



Java for the Beginning Programmer106

    }
    catch(IOException e)
    {
    }
  }
}

This example program will not work.  It does not properly compare two 
strings.  This is a very confusing aspect of Java, but unfortunately you can-
not use the double equal (==) to compare two strings.  Using == asks Java if 
the two strings occupy the same location in memory.  Normally you really 
don’t care if two strings are at the same location in memory, so using == with 
strings is unsuitable.  

To properly compare two strings you must use the “equals” method of 
the String class.  Listing 5.3 shows the same program that we just examined, 
only using the “equals” method.

Listing 5.3: Check for a Valid String (ValidString.java)

import java.io.*;

class ValidString
{
  public static void main(String args[])
  {
    try
    {
      InputStreamReader inputStreamReader = 
        new InputStreamReader ( System.in );
      BufferedReader in = 
        new BufferedReader ( inputStreamReader );
      
      System.out.print(
        "What is your favorite color? ");

      String color = in.readLine();

      if( color.equals("red") )
        System.out.println(
          "My favorite color is red too!");

    }
    catch(IOException e)
    {
    }
  }
}

Correct!
Always use “.equals” 
to compare 
two strings.



107Chapter 5: Making Decisions

The Else Statement
The “else” statement can be combined with the “if” statement.  The 

“else” statement specifies what to do if the “if” statement is not true.  If you 
create an if/else block, then you are guaranteed that at least one part of it 
will execute.  If the “if” part is true, it will be executed.  If the “if” part is not 
true, then the “else” part will be executed.  The general format of an if/else 
statement is as follows.

if( a==1 )
{
  // this part will be executed if a is 1
}
else
{
  // this part will be executed if a is not 1
}

Now lets look at an example that uses an if/else statement.  Listing 5.4 
shows a modified version of the favorite color program we just examined.  
Listing 5.4 shows an example of using else.

Listing 5.4: Else Example (StringElse.java)

import java.io.*;

class StringElse
{
  public static void main(String args[])
  {
    try
    {
      InputStreamReader inputStreamReader = 
        new InputStreamReader ( System.in );
      BufferedReader in = 
        new BufferedReader ( inputStreamReader );
      System.out.print(
        "What is your favorite color? ");

      String color = in.readLine();

      if( color.equals("red") )
      {
        System.out.println(

Learning Objective #3
Learn to use the 
if/else combination.



Java for the Beginning Programmer108

          "My favorite color is red too!");
      }
      else
      {
        System.out.println("I guess " + color + 
          " is okay, but I like red better.");
      }

    }
    catch(IOException e)
    {
    }
  }
}

This program will prompt the user for their favorite color.  If the user 
chooses “red” as their favorite color, the program will agree with them.  Oth-
erwise the program will state that the user’s color is okay, but it prefers red.  
This is done with the else statement.  

If/Else Ladders
As you saw in the last section you can connect “if” statements with “else” 

statements.  You can connect these into long ladders.  This allows you to 
process several different options.  Listing 5.5 shows an if/else ladder.  

Listing 5.5: If/Else Ladder (NumberIf.java)

import java.io.*;

class NumberIf
{
  public static void main(String args[])
  {
    try
    {
      InputStreamReader inputStreamReader = 
        new InputStreamReader ( System.in );
      BufferedReader in = 
        new BufferedReader ( inputStreamReader );
      System.out.print(
        "Enter a number between 1 and 5? ");
      String num = in.readLine();
      int number = Integer.parseInt(num);

      if( number==1 )
      {



109Chapter 5: Making Decisions

        System.out.println("You entered One.");
      }
      else if( number==2 )
      {
        System.out.println("You entered Two.");
      }
      else if( number==3 )
      {
        System.out.println("You entered Three.");
      }
      else if( number==4 )
      {
        System.out.println("You entered Four.");
      }
      else if( number==5 )
      {
        System.out.println("You entered Five.");
      }
      else
      {
        System.out.println(
       "You did not enter a number between 1 and 5.");
      }
    }
    catch(NumberFormatException e)
    {
      System.out.println(
        "You must enter a valid number.");
    }
    catch(IOException e)
    {
    }
  }
}

This program asks you to enter a number.  For numbers 1-5 it will print 
out the word form of the number.  For example it will print out “one” if you 
enter “1”.  This is done with an if/else ladder.  

Using Logical AND and OR
You can create “compound if statements” that make even more intel-

ligent decisions, using AND and OR.  First we will look at how to use AND.  
In Java, logical AND is represented by &&.  



Java for the Beginning Programmer110

Using If Statements with AND

First, we will consider if statements that make use of AND.  For ex-
ample, say you wanted to create an if statement that would only process if x 
were in the range between 10 and 100.  You could do this with an if-statement 
using an AND.  The following if-statement would do this.

if( (x>=10) && (x<=100) )
{
  System.out.println(" x is between 10 and 100");
}

The above if-statement would be read “if x is greater than or equal to 10 
and x is less than or equal to 100”, do this.  

For the AND statement to be true, both sides must be true.  Table 5.1 
summarizes the AND statement.

Table 5.1: Truth Table for x && y (AND)

x y x && y
false false false
false true false
true false false
true true true

Using If Statements with OR

Now we will consider if statements that make use of OR.  For example, 
say you wanted to create an if statement that would only process if x were 
equal to 10 or 100.  You could do this with an if-statement using an OR.  The 
following if-statement would do this.

if( (x==10) || (x==100) )
{
  System.out.println(" x is either 10 or 100");
}

The above if-statement would be read “if x is equal to 10 or x is equal to 
100”, do this.  

For the OR statement to be true, both one-side must be true.  Table 5.2 
summarizes the OR statement.

Learning Objective #4
Learn to use 
AND and OR.



111Chapter 5: Making Decisions

Table 5.2: Truth Table for x || y (OR)

x y x || y
false false false
false true true
true false true
true true true

By using both AND and OR you can create if statements that make more 
complex decisions.

Using the Switch/Case Statement
You can also use switch/case statements in place of the if/else ladder.  

Switch/case statements only work with integers, they do not work with 
strings.  So if you want to compare a string, you will have to use an if/else 
ladder.

A switch/case contains a switch statement with many cases inside of it.  
Each case specifies what should be done when the case statement's number 
is passed to the switch statement.  Finally a default, at the end, specifies what 
to do if none of the cases matched.

Listing 5.6 shows the number program, from the last section, rewritten 
as a switch/case program.

Listing 5.6: Using Switch/Case (NumberCase.java)

import java.io.*;

class NumberCase
{
  public static void main(String args[])
  {
    try
    {
      InputStreamReader inputStreamReader = 
        new InputStreamReader ( System.in );
      BufferedReader in = 
        new BufferedReader ( inputStreamReader );
      System.out.print(
        "Enter a number between 1 and 5? ");
      String num = in.readLine();
      int number = Integer.parseInt(num);

      switch( number )
      {

Learning Objective #5
Learn to use 
switch/case.

Important
Switch/case will not 
work with strings 
or floating point.



Java for the Beginning Programmer112

        case 1:
          System.out.println("You entered One.");
          break;
        case 2:
          System.out.println("You entered Two.");
          break;
        case 3:
          System.out.println("You entered Three.");
          break;
        case 4:
          System.out.println("You entered Four.");
          break;
        case 5:
          System.out.println("You entered Five.");
          break;
        default:
          System.out.println(
    "You did not enter a number between 1 and 5.");
          break;
      }
    }
    catch(NumberFormatException e)
    {
      System.out.println(
        "You must enter a valid number.");
    }
    catch(IOException e)
    {
    }
  }
}

As you can see there is a case for each of the numbers to be compared.  
At the end there is a default that specifies what to do if none of the cases 
match.  

Very important! Notice how each of the cases ends with a “break” state-
ment?  This is required to cause your program to exit the switch block.  If 
you leave out the break, the program will begin executing the next case, and 
keep on going, until it hits a break.

Chapter Review
In this chapter we saw how programs can make decisions.  You saw that 

programs use “if statements” to make decisions.  An “if statement” allows 
the program to check the value of something and perform a task, if the value 
is what is expected.

Important
Make sure to end 
each case statement 
with a break, or 
it will execute 
the next case 
statement as well.



113Chapter 5: Making Decisions

You can also use “else” statements in conjunction with “if” statements.  
These “else” statements specify an action to take if the “if” statement failed 
to execute.  Using these “else” statements, you can create long if/else lad-
ders.  These ladders allow your program to do many comparisons in a row.  

If you are comparing a numeric value you can use a switch/case in place 
of the if/else ladder.  It is important to remember that switch/case state-
ments cannot be used on strings.  If you want to compare a string to many 
different values, you must use an if/else ladder.  You can also place a “de-
fault” statement at the end of the switch/case.  The “default” statement will 
be executed if none of the cases match.



Java for the Beginning Programmer114

New Terms

case  A case statement occurs inside of a switch statement.  There is one 
case statement for each decision that the switch/case can make.

default  If none of the case statements are executed, and a default statement 
is provided, the default statement will be executed.

else  The else statement works with the if statement.  If the if statement does 
not execute, then the else statement will be executed.

equals  The equals method can be used to compare two strings.  For ex-
ample str.equals(“Java”) compares str to “Java”.

equalsIgnoreCase  The equalsIgnoreCase method can be used to compare 
two strings, without regard to case.  For example str.equalsIgnoreCase(“Java”) 
compares str to “JAVA” would be true.

if  The if statement allows Java to make decisions and compare variables.

if/else Ladder  A series of if/else statements together is called an if/else 
ladder.  If/else laddres are often replaced with switch/case statements.

switch  Switch statements are used to compare a variable to any of the pro-
vided case statements.  If no case statement matches, the default statement 
(if provided) will be executed.

Review Questions
1.  What are if/else ladders often replaced with?

2.  If no case statement matches what happens?

3.  How do you compare two strings in Java? 

4.  Is it possible to make it through an if/else statement and execute neither 
the if or else body?

5.  How do you use a switch/case with a String?



115Chapter 5: Making Decisions

Assignment #5
Write a program that will input three things about the user.

 • The user’s name
 • The user’s age
 • The user’s country of citizenship

You must now determine if the user is eligible to vote in your country.  If 
the user is, then notify them, using their name, that they are old enough to 
vote.

Note: For the United States, check to see if the user enters USA as the coun-
try of citizenship, and the age is 18 or greater.  If it is, then notify the user 
that they are old enough to vote.  For example, if the user enters USA, a 
name of “Jeff” and 21, the program would respond.

Hello Jeff, you are eligible to vote in the USA.

If I had entered Jeff, 21 and the United Kingdom, the program would re-
spond:

Hello Jeff, you are not eligible to vote in the United 
States.  

Of course, if you are using a country other than the USA, your output will 
follow that countries voting age requirements.



117Chapter 6: Methods and Functions

CHAPTER 6:  METHODS AND FUNCTIONS

In Chapter 6 you will learn about:
• Variable Scope
• Functions
• Methods
• By Reference/By Value
• Instance Variables
• Variable Scope

In the Chapter 3 we learned about variables.  You saw that there were 
different variable data types.  There are also different variable scope types.  
But what exactly is scope? Variable scope refers to what can access a vari-
able and what cannot access a variable.  There are three levels of scope for 
variables in Java.

 • Static Variables
 • Instance Variables
 • Local Variables

You will find that you commonly use all three types of variable scope 
types.  It is important to understand the difference between them.  In this 
section I will show you how all three variable types work.  I will begin with 
static variables.

Static Variables
Static variables always retain their values.  Static local variables will hold 

their values between method or function calls.  Static class-level variables 
will hold their values across all instances of a class.  First I will show you an 
example of a static local variable.  Listing 6.1 shows using a local variable.

Listing 6.1: Using a Static Variable (MyClassStatic.java)

public class MyClassStatic
{
  static int x = 0;

  public static void myMethod()
  {    
    System.out.println( "Value of x:" + x );

Learning Objective #1
Understand static 
variables.



Java for the Beginning Programmer118

    x++;
  }

  public static void main(String args[])
  {
    myMethod();
    myMethod();
    myMethod();
  }
}

If you were to run this program the output would be the numbers 0,1 
and 2 all on separate lines.  The keyword static in front of the local variable 
x is causing it to hold its value between method calls.  This is not normal 
behavior for local variables, as you will see later in this section.

Static variables can also be class level, as the following example shows.  
Listing 6.2 shows an example of using a class level static variable.

Listing 6.2: Using a Static Class Variable (MyClassLevelStatic.java)

public class MyClassLevelStatic
{
  static int x = 0;

  public static void myMethod()
  {
    System.out.println( "Value of x:" + x );
    x++;
  }

  public static void main(String args[])
  {
    x = 10;
    myMethod();
    myMethod();
    myMethod();
  }
}

If you were to run the above program the output would be 10,11 and 12 
all on separate lines.  The variable x is declared outside of any method or 
function, because of this, it is class level and can be accessed from anywhere 
in the class.  The variable is also static, so it can be accessed from both static 
and nonstatic methods.  When x is assigned to 10 in the main method, that 
x is the same x that is increased by myMethod.



119Chapter 6: Methods and Functions

Instance Variables
Instance variables are declared outside of a function or method.  In-

stance variables can be accessed anywhere in the class in which they were 
declared.  A new set of instance variables is created for each class instance 
created.  Consider the following example in Listing 6.3.

Listing 6.3: Using an Instance Variable (MyClassInstance.java)

class MyClassInstance
{
  public int x = 0;

  public static void main(String args[])
  {
    MyClassInstance myclass1 = new MyClassInstance();
    MyClassInstance myclass2 = new MyClassInstance();

    myclass1.x = 10;
    myclass2.x = 15;

    System.out.println(
      "Current value of myclass1.x is ",myclass1.x);
  }
}

This program will print out 10.  There are two instances of MyClass 
created, named myclass1 and myclass2.  Each of these two instances have 
their own copy of the instance variables, and as a result each have their own 
unique x variable.  If x were to have been declared static, they would have 
been the same variable.  A static x would have caused 15 to be printed out.

Local Variables
Local variables are declared inside of a method.  These local variables 

can only be accessed from within the method.  Unless the local variable is 
declared static, the local variable will lose its value when the method returns.  
When programming Java, most of the time you will create nonstatic local 
variables, like I am about to show you.  Listing 6.4 shows local variables.

Listing 6.4: Using an Instance Variable (MyClassLocal.java)

public class MyClassLocal
{
  public static void myMethod()
  {
    int x = 0;
    System.out.println( "Value of x:" + x );

Learning Objective #2
Understand local 
variables.



Java for the Beginning Programmer120

    x++;
  }

  public static void main(String args[])
  {
    myMethod();
    myMethod();
    myMethod();
  }
}

This program would display the number 0 three times.  The variable x is 
local.  Each time the method is called x is reset to zero.  As you can see this 
is very different from the static local variable used earlier in this section.

Functions and Methods
You have already seen functions and methods in previous chapters.  In-

stead of using existing functions and methods, now we will now focus on how 
to create your own functions and methods.  You may have already heard of 
functions and methods from other programming languages.  Java methods 
are often known by different names in other programming languages.  Some 
programming languages will refer to methods as subroutines, functions or 
sub-programs.

Regardless of what term methods go by their role is the same.  A meth-
od or function allows you to take a commonly used piece of code and reuse 
it.  If you are writing a program to manage an address book you will likely 
need to sort data at some point.  You would likely isolate the sorting logic in 
a single method named “sort”.  Methods and functions are nearly the same.  
The only difference between a function and a method is:

 • Methods do not return a value
 • Functions do return a value

 

Create Your Own Function
First lets see what a function looks like.  The following function accepts 

two integers and returns an integer.  The return value will be the greater of 
the two integers passed in.

public static int max(int x,int y)
{
  if( x>y )
    return x;
  else
    return y;
}

Learning Objective #3
Understand 
the difference 
between methods 
and functions.



121Chapter 6: Methods and Functions

Consider the following sections of the above method.  They are sum-
marized in Table 6.1.

Table 6.1: Sections of a Method 

The return type:  int

The parameters: x & y, both int’s

Returns: The two return statements

The modifiers: static and public 

Calling the above method would be very easy.  To assign the variable “i” 
to the maximum of 10 and 100, you would do the following.

int i = max(10,100);

A function without a return type is called a method.  Consider the fol-
lowing method.  

public static void printName()
{
  System.out.println("Java");
}

It looks just like a function except the return type is void, which means 
no return type.

Your Own Static Methods

Using static on a method or function causes it to operate at the class 
level.  Normally a method operates at the instance, or object, level.  If you 
have not worked with object oriented design, understanding the difference 
between instance and class level may be somewhat confusing.  First, make 
sure you know the difference between a class and an object.



Java for the Beginning Programmer122

Table 6.2: The Difference Between a Class and an Object

Class A class is a type of something, you do not use the class 
directly.  (i.e.  Toyota™ Rav4™) A class name usually starts 
with an uppercase letter.

Object An object is one instance of a class.  (i.e.  my blue Toyo-
ta™ Rav4™) A object name usually starts with a lowercase 
letter.

Most of the methods and functions that we have examined this far have 
always been static.  But what exactly does static method or function mean? 
First lets examine a program that makes use of a static function.  The fol-
lowing program has one method that will return the value passed to it mul-
tiplied by ten.  This class creates a method named multiply.  Notice that the 
multiply method is static, just like the main method.  This means that the 
main method can call the multiply function without having to instantiate the 
MyClass class.  Listing 6.5 shows a static method.

Listing 6.5: Using a Static Function (MyClassStaticFunction.java)

public class MyClassStaticFunction
{
  public static int multiply(int i)
  {
    return(i*5);
  }

  public static void main(String args[])
  {
    int j = 5;
    j = multiply(j);
    System.out.println(j);
  }
}

Because multiply is declared static you do not need to use new to cre-
ate a new instance of the class.  You can simply access the multiply method 
directly from the main method.  While this does make it easier to call a 
method, it prevents the method from using any instance variables.  Static 
methods may not access nonstatic instance variables.  This is a fairly big 
limitation, and as a result most methods are declared nonstatic.

Learning Objective #4
Understand the 
difference between a 
class and an object.

Class
A class is a “type 
of” something.

Object
An object is an 
instance of a class.



123Chapter 6: Methods and Functions

Your Own Nonstatic Methods

Most of the functions and methods that you will create as a Java pro-
grammer will not be static.  Static methods and functions cannot access in-
stance variables, therefore, sometimes it is best to instantiate the class, and 
then use it by calling a nonstatic method.  Listing 6.6 instantiates and uses a 
nonstatic method.

Listing 6.6: Using a Nonstatic Method (MyClassNonStaticMethod.java)

public class MyClassNonStaticMethod
{
  public int total; // instance variable

  public void add(int i)
  {
    total = total + i;
  }

  public static void main(String args[])
  {
    MyClassNonStaticMethod myObject =  
       new MyClassNonStaticMethod();
    MyClassNonStaticMethod myOtherObject =  
       new MyClassNonStaticMethod();

    myObject.add(5);
    myOtherObject.add(3);
    myObject.add(10);
    myObject.add(10);

    System.out.println("Total myObject is:" +  
      myObject.total );
    System.out.println("Total myOtherObject is:" +  
      myOtherObject.total );
  }
}

As you can see, there are two object instances created: myObject and 
myOtherObject.  This causes two separate instances of the total instance 
variable to be kept.  The add methods, when called will add the number to 
their object’s instance of x.  As a result this program prints out 15 and 13.  



Java for the Beginning Programmer124

Using Static Classes
Java contains a very useful class named Math.  We have already used 

the Math class to obtain random numbers.  What is very unique about the 
Math class is that every method is static.  It is illegal to instantiate the Math 
class.  For example, the following program is incorrect.

Important:  DON’T DO THIS! It is illegal to instantiate the Math class.

public static void main(String args[])
{
  Math m = new Math(); // Never do this!
  System.out.println(m.max(1,2));
}

If you would like to use the max method of Math, simply call it directly.

public static void main(String args[])
{
  System.out.println(Math.max(1,2));
}

As you can see the max function is called directly from the Math class.  
This sort of call can be made on static functions/methods.

How Arguments are Passed
If you have worked with other programming languages you have likely 

heard of passing variables “by reference” or “by value”.  If you are not famil-
iar with these terms, the meaning refers to what happens to the value of a 
method or function’s arguments when that function ends.  Consider Listing 
6.7.

Listing 6.7: Passing by Value (MyClassArgument.java)

public class MyClassArgument
{
  public static void myMethod(int i)
  {
    i++;
  }

  public static void main(String args[])
  {
    int i = 10;

Learning Objective #5
Know how to call 
static classes.

Important
Do not use new with 
the Math class.



125Chapter 6: Methods and Functions

    myMethod(i);
    System.out.println("The value of i is " + i );
  }

}

What value would be printed out? The variable “i” was passed to my-
Method and then increased by one.  Would the program print out 10 or 11? 
That depends on if “i” was passed by reference or by value.  Table 6.3 sum-
marizes the differences between by reference and by value.

Table 6.3: The Difference Between by Reference and by Value

by reference Any changes made to the argument inside of the 
method or function are reflected outside the method or 
function as well.

by value A copy of the variable is made for the method, so any 
changes made to the argument inside of the method 
or function are not kept when the method or function 
returns.

Usually variables are passed by value in Java.  When a non-object vari-
able, such as an int, is passed to a method or function it is by value.  So in 
the above example, myMethod would have no effect on the variable 1.  The 
value 10 would be printed.  Java does not allow you to choose when a vari-
able is passed by reference or by value.  It is governed by a set of rules.  
These rules are shown in Table 6.4.

Table 6.4: Is it by Value or by Reference

Type By Value or by Reference
Primitive data types (i.e.  ints) by value

Object References by value

Objects by reference

Arrays by reference

Learning Objective #6
Know the difference 
between “by value” 
and “by refernce”.

By Value
By value arguments 
do not change 
the value of the 
calling variable.

By Reference
By reference 
arguments do  
change the value of 
the calling variable.



Java for the Beginning Programmer126

Some of these terms may not be familiar to you.  Arrays will be covered 
in Chapter 6.  Primitive data types are all of the built in non-object types 
supported by Java.  Java supports eight primitive data types: byte, short, int, 
long, char, float, double and boolean.

It is important to understand the difference between an object and an 
object reference.  An object is the actual memory image of the object.  You 
can not directly access an object in Java, you must access it through object 
references.  Objects in Java are always passed by reference, but their object 
references are always passed by value.  To see the difference consider List-
ing 6.8.

Listing 6.8: By Value and By Reference (MethodCall.java)

import javax.swing.*;

public class MethodCall
{

  static void changeValue(JButton button)
  {
// Change the text of the button, this 
// new value is reflected outside of the
// call to "changeValue"
    button.setText("New value");
  }

  static void changeReference(JButton button)
  {
// Create a new button, and assign its 
// reference to "button". This change is
// not reflected outside of the call 
// to "changeValue"
    button = new JButton("New value");
  }

  static void changePrimitive(int i)
  {
    i = i + 1;
  }

  /**
   * Main entry point for example.
   * @param args Not used.
   */
  public static void main(String args[])
  {
    // setup the variables



127Chapter 6: Methods and Functions

    JButton button1 = new JButton("Old Value");
    JButton button2 = new JButton("Old Value");
    int var = 5;

    // call the methods
    changeValue(button1);
    changeReference(button2);
    changePrimitive(var);

    // display the new values
    System.out.println("Button1:" + 
      button1.getText());
    System.out.println("Button2:" + 
      button2.getText());
    System.out.println("Primitive variable:" + var);
  }
}

In this example two object references are created button1 and button2.  
These references both point to two separate JButton objects.  We will see 
more about JButton in Chapter 10.  For now we only care about a text string 
that it holds.  To change this text string you have to call JButton’s setText 
method.  If you want to get the text string back, you have to call JButton’s 
getText method.  This will allow you to see the difference between a modifi-
cation to an object reference and a modification to the object itself.

When the button parameter is passed to “changeReference” and “chan-
geValue”, the button is passed by reference.  Buttons are always passed 
by reference, because they are objects.  However, inside of each method, 
you have the opportunity to change the button.  The method changeValue 
changes the actual object, as it calls the setText method to change the ob-
ject.  Changes made by changeValue will be reflected outside of changeVal-
ue.  The method changeReference will only change the reference, and its 
changes will not be reflected outside of the changeReference method.

Chapter Review
This chapter showed you how to create your own Java methods.  You 

were shown how to create both static and nonstatic methods.  Additionally, 
the difference between static and non static variables was explored.  Most of 
the functions and methods you create will be nonstatic.

Variables can be of different scopes.  This chapter showed you three 
different scopes that variables can be local variables, instance variables, and 
static instance variables.  Local variables can only be accessed from within 
the method or function they were created in.  Instance variables can be ac-
cessed from anywhere inside of the class.  Static instance variables can be 
accessed from anywhere in the class, but they do not have a unique value for 
each instance.  When you create instance variables, they will be nonstatic.



Java for the Beginning Programmer128

New Terms

By Reference  Variables can be passed to methods and functions “by refer-
ence”.  If this is the case, then changes made to the argument in the method 
will remain after the method terminates.

By Value  Variables can be passed to methods and functions “by value”.  If 
this is the case, then changes made to the argument in the method will not 
remain after the method terminates.

Class  A class is an object data type provided by Java or the program.  

Function  A reusable block of code that can be called from elsewhere in the 
program.  A function returns a value.

Instance Function  A function that is not declared static.  To access an 
instance function the class must have been instantiated with the “new” op-
erator.

Instance Method  A method that is not declared static.  To access an in-
stance function the class must have been instantiated with the “new” opera-
tor.

Instance Variable  A variable that is not declared static.  To access an in-
stance variable the class must have been instantiated with the “new” opera-
tor.

Local Variable  A variable that is local to a method or function.  Any value 
assigned to the variable only has meaning in the method, and will lose its 
value when the method returns.

Method  A reusable block of code that can be called from elsewhere in the 
program.  A method does not return a value.

Object  An instance of a class.

static  A Java keyword that can be applied to a variable, method, function or 
other Java construct.

Static Function  A function that is declared static.  A static function can be 
accessed either through an instance or directly through the class.

Static Method  A method that is  declared static.  A static function can be 
accessed either through an instance or directly through the class.



129Chapter 6: Methods and Functions

Static Variable  A variable that is declared static.  A static variable can be 
accessed either through an instance or directly through the class, if it is 
declared at the class level.  If the static variable is declared in a function or 
method, then it will hold its value, even after the method terminates.

Review Questions
1.  Is there anything wrong with the following class?

public class MyClass
{
  public void test()
  {
    System.out.println("Test");
  }
  
  public static void main(String args[])
  {
    test();
  }
}

2.  What will be the output of this program? Why?

public class MyClass
{
  public static void test(int i)
  {
    i = i + 1;
  }
  
  public static void main(String args[])
  {
    int i = 10;
    test(i);
    System.out.println("i is " + i );
  }
}

3.  What is the effect of placing the keyword “static” in front of a local vari-
able?



Java for the Beginning Programmer130

4.  Do the terms class and object mean the same thing? If not, what is the 
difference.  

5.  Can the main method access instance variables directly?



131Chapter 6: Methods and Functions

Assignment #6
Write a program, named Assignment6, that contains two instance variables 
named total and itemCount.  These two variables will keep track of a total 
and number of items.

You should provide two methods.  The first method, named clear will clear 
the total and item count.  The second method, named add, will accept num-
bers to be added to the total.  

Finally, you will provide two functions.  The first, named “getTotal” will re-
turn the total.  The second, named “getAverage” will return the average.  

You should test your program with the following numbers.  You can test 
your program by calling “add” in the main method.

17

22

48

22

1

5

What is the average? What is the total?



133Chapter 7: Mid Term

CHAPTER 7:  MID TERM

Chapter 7 contains an example Mid Term Exam.  Some questions will 
have more than one correct answer.  Chapter 8 contains the answers, and a 
review of the correct answer.  

1.  Which of the following is a valid main method?

 A> public static void main(String args[])

 B> static void main(String args[])

 C> public static void main()

 D> public static int main(String args[])

2.  Which company created Java?

 A> Microsoft

 B> Oracle

 C> IBM

 D> Sun Microsystems



Java for the Beginning Programmer134

3.  How do you usually read a number from the user?

 A> Use the readNumber method.

 B> Use the inputNumber method.

 C> Use readLine to read in a string, and then convert that string to a   
  number.

  

4.  What does the command “javac” do?

 A> It compiles a Java program.

 B> It runs a Java program.   

 C> It allows you to edit a Java program.

5.  Given the following method declaration, what does "void" mean?   
public void test()

 A> The statement “void” means that this method does not return any  
  thing.

 B> It means that this method will return a variable of type void.

 C> It means that this method should no longer be used.

 



135Chapter 7: Mid Term

6.  Can a static method can access nonstatic instance variables?

 A> Yes

 B> No

7.  Which of the following would you most likely store inside of a String?

 A> The name of your father.

 B> The year that a person was born.

 C> The price of butter.

8.  Which of the following variable types can hold decimal places? (i.e.  3.13).
Choose all correct answers

 A> byte

 B> short

 C> int

 D> long

 E> float

 F> double

  



Java for the Beginning Programmer136

9.  Java programs must be compiled before they are run.

 A> True

 B> False

10.  What happens when an Exception occurs inside of a try block, and there is 
a catch block that handles this sort of exception?

 A> The program terminates (crashes)

 B> An error message is displayed and the program continues.

 C> The program executes the catch block.

11.  Which of the following variable types can be used with a switch/case 
block? 
There may be more than one correct answer.

 A> String

 B> int

 C> double

 D> byte

 E> short



137Chapter 7: Mid Term

12.  Which of the following would you most likely store inside of an int?

 A> The name of your mother.

 B> The price of a pound of cheese.

 C> The number of rooms in your home.

13.  What happens when you compile a computer program?

 A> The program is deleted.

 B> Your program begins running.

 C> The source code is converted to a form that the computer can  
  easily understand, and execute.

14.  What is a .class file?

 A> It is what the compiler produces.

 B> You edit this file and put your Java source code here.

 C> Java does not use .class files.



Java for the Beginning Programmer138

15.  What is the proper way to compare two strings: str1 and str2?

 A>  if( str1==str2 )

 B>  if( str1=str2)

 C>  if( str1.equals(str2) )

16.  What does the Java import statement do?

 A>  Displays a line of text.

 B>  Not a valid Java statement.

 C>  Allows your program to use other classes.

17.  Are Java variable names case sensitive?

 A>  Yes.

 B>  No

18.  What should be at the end of each case statement?

 A> break;

 B> end case

 C> end if



139Chapter 7: Mid Term

19.  Which of the following makes use of Java’s single-line comment?

 A> # Comment line 1

  #comment line 2

 B> // Comment line 1

  // Comment line 2

 C> -- Comment line 1

  -- Comment line 2     

 D> /* Comment line 1

  Comment line 2 */

20.  Which of the following are valid types of Java applications? 
Choose all that are correct.

 A> Console Application.

 B> Java Applet

 C> Mini Java application.



Java for the Beginning Programmer140

21.  What is true of packages and classes?

 A> Neither packages nor classes exist in Java, those words are  
  meaningless.

 B> Classes are placed inside of packages for larger projects.

 C> Packages are placed inside of classes for larger projects.

 

22.  What happens when you pass a bad number (i.e.  “33jj2”) to the Integer.
parseInt method?

 A> A NumberFormatException is thrown.

 B> The method would return 0.

 C> The method would return -1.

 D> The method would return null.

23.  If the variable str contains a string and the variable d contains a double, 
how do you convert str into a double?

 A> d = str;

 B> d = val(str);

 C> d = Double.parseDouble(str);



141Chapter 7: Mid Term

24.  What is the name of the first method that is executed? This is where your 
program begins.

 A> start

 B> startup

 C> main

25.  What can usually replace an if/else ladder?

 A> Nothing, they are required.

 B> A switch/case block. 

 C> A stair/case block.

 



143Chapter 8: Mid Term Review

CHAPTER 8:  MID TERM REVIEW

Chapter 8 is a review the correct answers for the midterm exam, that 
was presented in Chapter 7.  

1.  Which of the following is a valid main method?

 A> public static void main(String args[])

 B> static void main(String args[])

 C> public static void main()

 D> public static int main(String args[])

Correct answer: A
The syntax for a Java main method is very specific.  It must be static, void and 
accept an array of string arguments.

2.  Which company created Java?

 A> Microsoft

 B> Oracle

 C> IBM

 D> Sun Microsystems

Correct answer: D
Sun Microsystems is the company that created Java.



Java for the Beginning Programmer144

3.  How do you usually read a number from the user?

 A> Use the readNumber method.

 B> Use the inputNumber method.

 C> Use readLine to read in a string, and then convert that string to a 
number.  

Correct answer: C
Input from the user always comes in String form.  So read it as a string and 
convert to a number.

4.  What does the command “javac” do?

 A> It compiles a Java program.

 B> It runs a Java program.   

 C> It allows you to edit a Java program.

Correct answer: A
The command javac compiles a .java file into a .class file.  

5.  Given the following method declaration, what does “void” mean?   
public void test()

 A> The statement “void” means that this method does not return any-
thing.

 B> It means that this method will return a variable of type void.

 C> It means that this method should no longer be used.

Correct answer: A
The keyword void, in this case, means that there is no return value.  It means 
that test is a method, not a function.



145Chapter 8: Mid Term Review

6.  Can a static method can access nonstatic instance variables?

 A> Yes

 B> No

Correct answer: B
Static methods cannot access nonstatic(or instance) variables.

7.  Which of the following would you most likely store inside of a String?

 A> The name of your father.

 B> The year that a person was born.

 C> The price of butter.

Correct answer: A
The year a person was born would likely be an int, and the price of butter would 
be a float or double.  Strings store text.



Java for the Beginning Programmer146

8.  Which of the following variable types can hold decimal places? (i.e.  3.13).
Choose all correct answers

 A> byte

 B> short

 C> int

 D> long

 E> float

 F> double

Correct answers: E and F
The float and double datatypes can hold decimal places.  The others, listed here, 
do not hold decimal places.

9.  Java programs must be compiled before they are run.

 A> True

 B> False

Correct Answer: A
Java programs must be compiled before they are run.  There is no way to run 
Java source code.



147Chapter 8: Mid Term Review

10.  What happens when an Exception occurs inside of a try block, and there is 
a catch block that handles this sort of exception?

 A> The program terminates(crashes)

 B> An error message is displayed and the program continues.

 C> The program executes the catch block.

Correct answer: C
When an exception occurs in a try block, the program does not crash.  The only 
error message that will be displayed is one that the program might have in the 
catch block, and it is NOT required that you put an error message in the catch 
block.  So C is the only correct answer.

11.  Which of the following variable types can be used with a switch/case 
block? 
There may be more than one correct answer.

 A> String

 B> int

 C> double

 D> byte

 E> short

Correct answers: B,D and E
Only numeric non-floating point datatypes can be used with the switch/case 
statements.  Strings are not allowed either.



Java for the Beginning Programmer148

12.  Which of the following would you most likely store inside of an int?

 A> The name of your mother.

 B> The price of a pound of cheese.

 C> The number of rooms in your home.

Correct answer: C
You don’t have half, or fractional, rooms in your house.  So you want a whole 
number, which an int is perfect for.

13.  What happens when you compile a computer program?

 A> The program is deleted.

 B> Your program begins running.

 C> The source code is converted to a form that the computer can eas-
ily understand, and execute.

Correct answer: C
Your program is not deleted.  Additionally, you can’t run the program until its 
compiled, so C is the only logical choice.

14.  What is a .class file?

 A> It is what the compiler produces.

 B> You edit this file and put your Java source code here.

 C> Java does not use .class files.

Correct answer: A
Java programs are stored in .class files.  These files are created when you com-
pile your application.



149Chapter 8: Mid Term Review

15.  What is the proper way to compare two strings: str1 and str2?

 A>  if( str1==str2 )

 B>  if( str1=str2)

 C>  if( str1.equals(str2) )

Correct answer: C
You should never compare two strings with = or double equal (==).  You should 
always use String.equals.

16.  What does the Java import statement do?

 A>  Displays a line of text.

 B>  Not a valid Java statement.

 C>  Allows your program to use other classes.

Correct answer: C
Allows your program to use other classes provided by Java, third party libraries, 
or other parts of your program.

17.  Are Java variable names case sensitive?

 A>  Yes.

 B>  No

Correct answer: A
Yes, Java variable names are case sensitive.



Java for the Beginning Programmer150

18.  What should usually be at the end of each case statement?

 A> break;

 B> end case

 C> end if

Correct answer: A
Each case should generally always have a break, unless you are grouping sev-
eral of them together.

19.  Which of the following makes use of Java’s single-line comment?

 A> # Comment line 1

  #comment line 2

 B> // Comment line 1

  // Comment line 2

 C> -- Comment line 1

  -- Comment line 2     

 D> /* Comment line 1

  Comment line 2 */

Correct answer: B
Single line comments in Java start with //



151Chapter 8: Mid Term Review

20.  Which of the following are valid types of Java applications? 
Choose all that are correct.

 A> Console Application.

 B> Java Applet

 C> Mini Java application.

Correct answers: A and B
There is no such thing as a Mini Java application.

21.  What is true of packages and classes?

 A> Neither packages nor classes exist in Java, those words are mean-
ingless.

 B> Classes are placed inside of packages for larger projects.

 C> Packages are placed inside of classes for larger projects.

Correct answer: B
A large program can organize its classes into packages. 



Java for the Beginning Programmer152

22.  What happens when you pass a bad number (i.e.  “33jj2”) to the Integer.
parseInt method?

 A> A NumberFormatException is thrown.

 B> The method would return 0.

 C> The method would return -1.

 D> The method would return null.

Correct answer: A
Java throws a NumberFormatException when an invalid number is parsed.

23.  If the variable str contains a string and the variable d contains a double, 
how do you convert str into a double?

 A> d = str;

 B> d = val(str);

 C> d = Double.parseDouble(str);

Correct answer: C
To convert a string to a double, use the Double.parseDouble function.



153Chapter 8: Mid Term Review

24.  What is the name of the first method that is executed? This is where your 
program begins.

 A> start

 B> startup

 C> main

Correct answer: C
The main method is where Java starts an application.

25.  What can usually replace an if/else ladder?

 A> Nothing, they are required.

 B> A switch/case block.

 C> A stair/case block.

Correct answer: B
Switch/case can usually replace if/else ladders.



155Chapter 9: Using Loops

CHAPTER 9:  USING LOOPS

In Chapter 9 you will learn about:
• For Loop
• While Loop
• Do/While Loop
• What are loops for

Computers are great at repetitive operations.  If you teach a computer 
how to write a paycheck for one single employee, it is not much more com-
plex to modify your program to produce paychecks for 100 employees.

To make a computer perform a task over and over you must use a loop.  
There are many different kinds of loops in Java, but they all accomplish 
essentially the same thing.  Loops allow programs to repeat the same opera-
tion many times.

Consider the following steps, summarized in Table 9.1.

Table 9.1: Steps for a Typical Loop Application

Step 1 Set the variable employeeNumber to 1

Step 2 Print the paycheck for employeeNumber

Step 3 Increase employeeNumber by 1

Step 4 If the employee number is less than or equal to 100 go to 
step 2

This is a very simple loop.  It will print paychecks for 100 employees.  
As you can see step 1 begins by setting the variable to the first employee.  
Loops will often have a control variable, such as this, that count up as the 
loop executes.  For this loop, the variable employeeNumber is counting up.

Step 2 prints the paycheck for each employee.  Next, the employee num-
ber is increased by one.  Step 4 checks to make sure that the employee num-
ber has not gone too high, and if not goes back to step 2 to repeat the loop.

As you can see, the loop will continue executing until we have reached 
employee number 100.  Figure 9.1 shows this same loop, expressed as a flow 
chart.



Java for the Beginning Programmer156

Figure 9.1: The Loop as a Flowchart

�����

�������������������

��������������

������������������

������

����

��

���

������������������

��������

�������������������



157Chapter 9: Using Loops

Java Loop Types
Java contains a total of three different loop types.  Multiple loop types 

are not really needed, Java could have gotten by with only one loop type.  
However, having three different loop types allows you to choose a loop that 
works well for your intended use.

The three loop types Java contains are:

 • While
 • Do/While
 • For

I will now show you how each of the loop types work.

The While Loop
First we will look at the “while” loop.  The “while” loop will keep repeat-

ing a section of code until a condition is met.  First, I will show you how to 
construct a “while” loop.

Constructing the While Loop

A While loop looks very similar to an “if statement”.  There is a condi-
tion, which must be “true” for the While loop to execute.  Additionally, there 
is a block of code that will be executed so long as the “while” condition is 
true.  Listing 9.1 shows what a typical “while loop” would look like.

Listing 9.1: A Typical While Loop (LoopExampleWhile.java)

public class LoopExampleWhile
{
  public static void main(String args[])
  {
    int i = 1;

    while( i<=10 )
    {
      System.out.println("Loop:" + i );
      i = i + 1;
    }
  }
}

As you can see, the “while” loop contains an expression, in this case 
“i<=10”.  The “while” loop will repeatedly execute its body so long as i is less 
than 10.

Learning Objective #1
The while loop will 
execute so long as 
its condition is true.



Java for the Beginning Programmer158

When to use the While Loop

The while loop is probably the most commonly used of the Java loops.  
If you are ever unsure of what loop type to use, choose the while loop.  As 
you will see in the next two sections, the other loop types are used for more 
specific purposes.

The Do/While Loop
The “do/while” loop is very similar to the “while” loop.  The only differ-

ence is where the decision to continue looping is made.  The “while” loop 
makes the decision at the beginning, whereas the “do/while” loop makes 
the decision at the end.

When would this make a difference? This will be examined in the next 
section.

When the Decision is Made

If the decision to is made at the top of the loop, such as the While loop, 
then your loop could end up executing zero times.  It is possible to create a 
“while” loop that will execute zero times.  Consider Listing 9.2.

Listing 9.2: A While Loop (LoopExampleWhile2.java)

public class LoopExampleWhile2
{
  public static void main(String args[])
  {
    int i = 11;

    while( i<=10 )
    {
      System.out.println("Loop:" + i );
      i = i + 1;
    }
  }
}

How many times will the above source code execute? None! This is be-
cause the variable “i” starts out with a value of 11.  The while loop will ex-
ecute so long as the variable “i” is less than 10.  Since the variable “i” started 
out greater than 10, the loop will never execute.

However, because a “do/while” loop makes the decision after the loop, 
your loop is guaranteed to execute a least once.

Consider Figure 9.2, which shows the flowchart of a While loop.

Learning Objective #2
The do/while 
loop is like the 
while loop, except 
that it executes 
at least once.



159Chapter 9: Using Loops

Figure 9.2: A While Loop as a Flowchart

�����

����

�����

����������

���������

���������������

���
��

As you can see from the above figure, the decision to keep looping is 
made before any other action is taken.  Figure 9.3 shows a “do/while” loop.



Java for the Beginning Programmer160

Figure 9.3: A “do/while” Loop as a Flowchart

�����

����

�����

����������

���������

���������������

���

��

As you can see from the above figure, the decision to keep looping is 
made after the loop prints out its current number.  Because of this, you can 
be sure that the loop will execute at least once.

Now I will show you how to construct a “do/while” loop.



161Chapter 9: Using Loops

Constructing the Do/While Loop

The “do/while” loop looks very similar to the while loop.  Listing 9.3 
shows a “do/while” loop.

Listing 9.3: A Do/While Loop (LoopExampleDoWhile.java)

public class LoopExampleDoWhile
{
  public static void main(String args[])
  {
    int i = 1;

    do
    {
      System.out.println("Loop:" + i );
      i = i + 1;
    } while( i<=10 );
  }
}

When to use the Do/While Loop

The “do/while” loop is probably the least commonly used of the Java 
loops.  The “do/while” loop should only be used when you want to make 
sure the loop executes once, or if you don’t know the value ahead of time.  
Consider the following example, where you do not know the value ahead of 
time.  Listing 9.4 shows a simple menu application.

Listing 9.4: A Simple Menu (LoopExampleMenu.java)

import java.io.*;

public class LoopExampleMenu
{
  public static void main(String args[])
  {
    InputStreamReader inputStreamReader =  
      new InputStreamReader ( System.in );
    BufferedReader stdin =  
      new BufferedReader ( inputStreamReader );
    String response;

    try
    {
      do



Java for the Beginning Programmer162

      {
        System.out.println(“A> Menu option a”);
        System.out.println(“B> Menu option b”);
        System.out.println(“C> Menu option c”);
        System.out.println(“Q> Quit”);
        System.out.print("Select>");
        response = stdin.readLine();
      } while( !response.equals("q") &&  
          !response.equals("Q") );
    }
    catch(IOException e)
    {
    }
  }
}

Here you are presenting a list of menu items to the user.  The “do/while” 
loop keeps displaying the menu until you quit.  Here a do while makes sense, 
because you do not know what the user has typed yet while you are display-
ing the menu.  Also, you will want to display the menu at least once.  No 
decision on quitting the “do/while” loop is made until the very end on the 
while line.  And here we say to quit if the user has entered either a lowercase 
or capital letter Q.

The For Loop
The “for” loop is perhaps the most complex of the Java loops.  It is also 

commonly used, so it is important that you understand the “for” loop.  A 
“for” loop is good when you know a specific range of numbers you want to 
count through, for example one through one hundred.  I will now show you 
how to construct a “for” loop.

Constructing the For Loop

Listing 9.5 shows a “for” loop that will count from 1 to 10.

Listing 9.5: For Loop (LoopExampleFor.java)

public class LoopExampleFor
{
  public static void main(String args[])
  {
    for(int i=1;i<=10;i++)
    {
      System.out.println("Count:" + i );
    }
  }
}

Learning Objective #3
The for loop will 
loop over a range 
of numbers.



163Chapter 9: Using Loops

The “for” loop has three distinct parts.  First, the variable is set.

int i = 1;

This assigns the value of 1 to the variable “i”.  This is the starting value 
for the loop.  Next the range of the loop is defined.

i<=10

This says that the loop will stop when the variable “i” is no longer less 
than or equal to ten.  This means that the loop will count up to 10.  Finally, 
the counter says what steps to count.

i++

This says that the variable “i” will be increased by one each time.  If you 
wanted to count by two’s you would use:

i+=2

You can also count backwards.  Lets look at an example of a “for” loop 
that counts backwards.  Listing 9.6 shows just such a loop.

Listing 9.6: Another For Loop (LoopExampleFor2.java)

public class LoopExampleFor2
{
  public static void main(String args[])
  {
    for(int i=10;i>=1;i--)
    {
      System.out.println("Count:" + i );
    }
  }
}



Java for the Beginning Programmer164

Here you can see that the “for” loop would count backwards.  The loop 
begins at ten and counts back, so long as the variable is greater than or equal 
to 1.

When to use the For Loop

“For” loops are used when you know the range you need to count 
through.  For example, if you know you need to count from one to ten, a 
“for” loop is an ideal choice.

Nested Loops
It is also possible to place one loop inside of another.  For example, con-

sider the following nested loop in Listing 9.7.

Listing 9.7: A Nested Loop (NestedLoop.java)

public class NestedLoop
{
  public static void main(String args[] )
  {
    for( int outer = 1; outer<=10; outer ++ )
    {
      for( int inner = 1; inner<outer ; inner ++ )
      {
        System.out.print( " " + inner );
   }
   System.out.println("");
 }
  }
}

If this program were run, it would produce the following output.

 1
 1 2
 1 2 3
 1 2 3 4
 1 2 3 4 5
 1 2 3 4 5 6
 1 2 3 4 5 6 7
 1 2 3 4 5 6 7 8
 1 2 3 4 5 6 7 8 9

Learning Objective #4
Placing one 
loop inside of 
another creates 
a nested loop.



165Chapter 9: Using Loops

To understand why this output is produced, first look at the “outer” loop.  
The outer loop will execute 10 times.  This will cause there to be 10 rows.  
Next the inner loop is executed for each time the outer loop is executed.  
Each time through the inner loop will count up the outer loop.  This is why 
you see just one number the first time, two the second, and so on.  

Chapter Review
In this chapter you learned how to use loops.  Loops are used to execute 

a block of code repeatedly.  Java supports three kinds of loops.  While loops 
are the most simple and will execute so long as a condition is true.  “do/
while” loops are just like a while loop except that they decide late, and thus 
will execute at least once.  “For” loops are good for when you want to count 
within a specific range.  Finally, you learned about nested loops.  Nested 
loops are loops that are contained within other loops. 



Java for the Beginning Programmer166

New Terms

break  If a break is placed inside of a case statement, the execution for that 
case statement ends.  If a break is placed inside of a loop, the loop termi-
nates.

continue  The continue statement causes the current loop to jump back 
to the top of the loop, without processing the rest of the code in the loop’s 
body.

Do/While Loop  The “do/while” loop is one of Java’s three loop types.  The 
“do/while” loop will execute its body one or more times so long as a condi-
tion is true.  The main difference between the while and do/while loops is 
that the do/while is guaranteed to execute at least once.

For Loop  The for loop is one of Java’s three loop types.  The “for” loop will 
execute its body over a range of values, so long as a condition is true.  The 
“for” loop may execute zero times, if its condition is not true.

Loop  A loop is a block of code that is executed until a condition is no longer 
true.

Nested Loop  A nested loop is a loop that is placed inside of another loop.

While Loop  The while loop is one of Java’s three loop types.  The while loop 
will execute its body one or more times so long as a condition is true.  The 
main difference between the while and do/while loops is that the while is 
not guaranteed to execute at least once.

Review Questions
1.  What will be the output from the following loop?

for( int i = 1; i<10; i++ )
{
  System.out.println( i );
}

2.  What will be the output from the following loop?

int i = 2;
while( i<20 )
{
 System.out.println( i );
 i = i + 5;
}



167Chapter 9: Using Loops

3.  What will be the output from the following loop?

int i = 100;
do
{
  System.out.println( i );
  i = i + 1;
} while( i<10 );

4.  Write a loop (for, while or do/while) that will count from 2 to 10 by twos.

5.  Rewrite the following “for” loop as a while loop.

for( int i = 1; i<=10; i++ )
{
  System.out.println( i );
}



Java for the Beginning Programmer168

Assignment #7
Write a program, named Assignment8, that will prompt the user for a height 
and width.  The program should then display a rectangle, using the * char-
acter, that matches the specified dimensions.

For example, the program might be ran as follows:

Enter the width? 4
Enter the height? 3

****
****
****

Hint: A nested loop would be a great way to solve this assignment.



171Chapter 10: Strings

CHAPTER 10:  STRINGS

In Chapter 10 you will learn about:
• Strings
• Parsing Strings
• Searching Strings
• Substrings

Strings are a very important concept in any programming language.  
Strings are variables that can hold textual data.  We have already seen 
strings in previous chapters.  However, in this chapter we will see how to 
process strings.

You may be wondering what exactly I mean by string processing.  String 
processing means taking text, often entered by a user, and changing its ap-
pearance.  A very simple example of this might be a website that prompts 
users for their first and last name.  Many users, especially inexperienced typ-
ists, may enter their name in either all lower case, or perhaps all upper case.  
You could end up with several names improperly capitalized.

 • jeff heaton
 • John Smith
 • JANE SMITH

You would not want to store a list of names like this.  It does not look 
very professional to have the names entered like this.  You can’t just ask 
your users to enter their names with a consistent capitalization scheme, as 
users rarely do what they are told.  The way to handle this is to have the 
computer modify each of the user names, stored as a string, into the correct 
capitalization rules.

In this chapter you will learn how to do that.  You will learn to no longer 
think of a string as a block of characters/words but rather as individual char-
acters that you can directly manipulate.

What are Strings Made Of
A string is made up of individual characters.  That’s actually where the 

name string comes from, a string of characters.  Each character in a string 
has an index.  This is a number that identifies this character’s position.  
Think of it as a street address.  Consider the string “Java is Fun”.  Listing 
10.1 shows a program that counts the number of characters in this string.



Java for the Beginning Programmer172

Listing 10.1: Get the Length of a String (StringLength.java)

public class StringLength
{
  public static void main(String args[])
  {
    String str = "Java is Fun";
    System.out.println( str.length() );
  }
}

As you can see from the above program, a string is created that contains 
the text “Java is Fun”.  The program then calls a method called length.  All 
strings have this method available.  These methods will give you information 
about the string.  The length method will return 11, which is the number of 
characters in the string “Java is Fun”.  Count the characters yourself, make 
sure you see 11.  Make sure you count the spaces!

There are also methods that allow you to get to the individual characters 
of a string.  Consider Listing 10.2.

Listing 10.2: Get a String as Characters (GetChars.java)

public class GetChars
{
  public static void main(String args[])
  {
    String str = "Java is Fun";
    for( int i=0; i<str.length(); i++ )
      System.out.println("Character #" + 
      i + " is " + str.charAt(i) );
  }
}

Notice the example displayed here.  Look at the For loop.  The For loop 
is a little different than most loops that we have seen before.  This For loop 
starts counting at 0, and it is counting forward (because of i++).  However, 
look at when the loop stops.  It will stop when the variable “i” is no longer 
less than the string’s length.  You don’t have to count up to a fixed number, 
you can use a method, such as length, to tell the For loop how far to go.

Very Important! Notice how the loop starts at zero? String’s always start 
at position zero.

Learning Objective #1
Get the length 
of a string.

Very Important
An array index 
always starts at 
zero in Java.



173Chapter 10: Strings

The output from this program is as follows:

Character #0 is J
Character #1 is a
Character #2 is v
Character #3 is a
Character #4 is
Character #5 is i
Character #6 is s
Character #7 is
Character #8 is F
Character #9 is u
Character #10 is n

Here you can see how the string is made up, there are 11 indices, rang-
ing from zero through ten.  Index nine, for example, contains the letter “u”.

This is the purpose of the charAt method.  For any index that you give 
charAt, it will return the character at that index.

Very Important! Don’t give charAt too large of a value.  If you have a 
string of length 5 then only index values 0,1,2,3 and 4 are valid.  If you re-
quest index 5 or higher, an exception will be thrown and your program will 
crash.

Taking Sections of Strings
In the last section we saw that a string is made up of individual charac-

ters.  In this section we will see that you can access parts of these strings 
and make new strings.

Consider again the string “Java is Fun”.  What if we wanted to create a 
new string that just contained the word “is”?  If you look at the above output, 
you will see that the word “is” takes up index positions 5 through 6.  Java pro-
vides a method to allow you to grab a string that ranges between two index 
positions.  This method, named substring, is used in Listing 10.3.

Listing 10.3: Separate a String (SubString.java)

public class SubString
{
  public static void main(String args[])
  {
    String str = "Java is Fun";
    String newstr = str.substring(5,7);
    System.out.println( newstr );
  }
}

Learning Objective #2
Obtain substrings 
of the string.



Java for the Beginning Programmer174

The above program uses substring to grab everything from index posi-
tion 5 through index position 7.  You may have expected index position 6 to 
have been the end, since the variable “is” only takes up character positions 5 
and 6.  However, substring does not include the ending character.

Very Important! The substring method does not return the ending char-
acter of its range.  Calling substring(5,7) grabs every character from 5 up to, 
but not including, 7.

Also very important! If you request characters outside of the range of 
the string, an out of bounds exception will be thrown.  For example if the 
string contains “Test” and you call substring(10,20) an error will occur be-
cause character position 10 is invalid in a four character long string like 
“Test”.

Searching Strings
Often, you will need to search a string.  For example, if you wanted to re-

move all of the spaces from a string, you would have to search for the spaces, 
and remove them.  Java provides a method that will show you what index a 
character is at.  For example, if you searched the string “Java is Fun” for the 
first space, the index 4 would be returned.

The following example searches for, and displays, the index of the first 
space in the string.  This is shown in Listing 10.4.

Listing 10.4: Find the Space in a String (FindSpace1.java)

public class FindSpace1
{
  public static void main(String args[])
  {
    String str = "Java is Fun";
    int i = str.indexOf(“ “);
    System.out.println( "The space is at: "+i );
  }
}

As you can see, the above program calls a method called indexOf.  This 
method returns the index of the first space.  If it doesn’t find what it is look-
ing for, indexOf will return a value of “-1”.

When this program is executed it will display “4”.

Sometimes you may want to find the second, third, or some other space 
in a string.  To do this you can provide indexOf with a starting index.  For 
example, the following code searches for the first space, after index 5.  List-
ing 10.5 shows this.

Very Important
Don’t request out 
of bounds positions 
from substring and 
charAt.  It will result 
in an exception 
being thrown.

Learning Objective #3
Search a string.



175Chapter 10: Strings

Listing 10.5: Find More Space in a String (FindSpace2.java)

public class FindSpace2
{
  public static void main(String args[])
  {
    String str = "Java is Fun";
    int i = str.indexOf(" ",5);
    System.out.println( "The space is at: "+i );
  }
}

The above code displays a “7”.  This is because the search for the space 
does not start until index position 5.

Now that you understand how to use some of the string methods, lets 
use them together to do more complex operations on strings.

Removing a Single Character
First we will write a method of our own to remove a single character 

from a string.  This method will take a string and an index, and remove that 
index character from the string.  This program is shown in Listing 10.6.

Listing 10.6: Remove a Single Character (RemoveChar.java)

public class RemoveChar
{
  public static String removeChar(String str,int i)
  {
    String first = str.substring(0,i);
    String last = str.substring(i+1,str.length());
    str = first+last;
    return str;
  }

  public static void main(String args[])
  {
    String str = "Java is Fun";
    str = removeChar(str,5);
    System.out.println(str);
  }
}

When executed, the above program will output “Java s Fun”.  This is 
because the program removes the fifth character from the string.  But how 
exactly does it do this?



Java for the Beginning Programmer176

The removeChar method first breaks the string into two smaller strings.  
The first string, named “first” will contain everything in the string before 
the character to be removed.  In this case, it will contain “Java “.  The sec-
ond string, named “last” will contain everything after the character to be 
removed, in this case “s Fun”.  Finally the two strings are combined and 
returned.  The resulting string is the same as the original, only with the 
specified character removed.

Removing all of the Spaces from a String
Now we will tie together everything from this chapter and see a string 

example that uses most of the methods covered in this chapter.  This pro-
gram will take a string and remove all of the spaces from that string.  Listing 
10.7 shows this program.

Listing 10.7: Remove all Space from a String (RemoveSpace.java)

public class RemoveSpace
{
  public static String removeChar(String str,int i)
  {
    String first = str.substring(0,i);
    String last = str.substring(i+1,str.length());
    str = first+last;
    return str;
  }

  public static String removeSpace(String str)
  {
    int i=0;
    while( i<str.length() )
    {
      if( str.charAt(i)== ' ' )
      {
        str = removeChar(str,i);
      }
      else
      {
        i++;
      }
    }
    return str;
  }

  public static void main(String args[])
  {



177Chapter 10: Strings

    String str = "Now is the time for all good men to 
come to the aid of their country.";
    str = removeSpace(str);
    System.out.println(str);
  }
}

The above program is made up of two primary methods.  The first, 
named “removeChar”, was first introduced in the previous section.  This 
method will remove a single character from the specified string.

The second method, named “removeSpace”, is called to remove all 
spaces from a string.  It does this by looping over every character in the 
string.  The while loop begins at position 0 and continues to the length of 
the string.

Each character in the string is compared to see if it is a space.  If a char-
acter is found to be a space, then it is passed to removeChar to be removed.  
Once the while loop has reached the last character in the string, there is 
nothing more to check.  At this point the program returns the new string, 
with the spaces removed.

There are many additional programs you can create to modify strings.  
For example you may want to create a program that takes phone numbers, 
such as they are formatted in the United States of America, an reformat 
them to only numbers.  For example (314) 555-1212 would be reformatted 
to 3145551212.

Chapter Review
In this chapter you saw how to process strings in Java.  Java makes many 

methods available to you to process strings.  The charAt method allows you 
to access individual characters.  The indexOf method will search the string 
for occurrences of other strings or characters.  The substring method will 
break the string up into smaller substrings.

A string is used to hold textual values.  A string is really just a collection 
of characters.  By using the charAt method you can easily access the charac-
ters that make up a string.  Each character in a string has a numeric index.  
All strings start with index 0.



Java for the Beginning Programmer178

New Terms

charAt  The charAt function is a part of the String class.  It is used to obtain 
an individual character inside of a string, at a specific index.

Character  A character is the building block of the string.  Individual charac-
ters, which usually correspond to keys on the keyboard, make up strings.

indexOf  The indexOf function is a part of the String class.  It is used to 
search the string for substrings or characters.

length  The length function is a part of the String class.  It is used to obtain 
the length of a string.  

Parse  Parsing is the process where the computer processes a string and 
converts it into a form that the computer can understand.  For example, 
parsing a telephone number would likely involve removing any hyphen and 
parenthesis characters form the string and leaving only digits.

substr  The substr function is a part the String class.  It is used to break the 
string into smaller “substrings”.

String  A String is a Java datatype that holds text information.  A string is 
made up of individual characters.

Review Questions
1.  What will be the output from the following code?

String str = "Hello World"
System.out.println( str.subString(2,2) );

2.  What will be the output from the following code?

String str = "Java";
System.out.println( str.charAt(1) );

3.  What will be the output from the following code?

String str = "Hello World";
System.out.println( str.indexOf(' ') );



179Chapter 10: Strings

4.  What is the difference between a string and a character? What would you 
store in a string? A character?

5.  What is the result of running the following code?

String str = "Java";
System.out.println( str.charAt(4) );



Java for the Beginning Programmer180

Assignment #8
Write a program that will prompt the user for a USA phone number in the 
form (xxx) xxx-xxxx.  Parse this 10-digit phone number to just a 10 digit 
string.

For example, the program might be executed as follows:

What is your phone number? (314) 555-1212
That has been parsed to: 3145551212



183Chapter 11: Arrays

CHAPTER 11:  ARRAYS

In Chapter 11 you will learn about:
• Using Arrays
• Creating Arrays
• Looping Over Arrays

In this Chapter you will learn about arrays.  First, let's look at exactly 
what an array is.  An array is a single type, such as a string.  However, rather 
than just one string value, an array can hold many values.  Let me show you a 
simple example of when you might need an array.  Consider a program that 
holds a list of all of the students in my class, as seen in Listing 11.1.

Listing 11.1: A List Without Arrays (StudentList1.java)

public class StudentList1
{
  public static void main(String args[])
  {
    // first enter all students
    String student1 = "Smith, John";
    String student2 = "Jones, Bill";
    String student3 = "Thomson, Jerry";

    // second print out all students
    System.out.println( student1 );
    System.out.println( student2 );
    System.out.println( student3 );
  }
}

As you can see, this very simple program creates a new String variable 
for each student added.  There are several problems with this.  For one, you 
have to know how many students you are going to have when the program is 
created and compiled.  For a program to be useful, it must adapt its number 
of variables as you add new students.  This is what arrays are for.  You can 
create a single variable, named studentList, and add new students into this 
list.  



Java for the Beginning Programmer184

Introducing Arrays
Arrays allow you to create a single variable that contains a set number 

of entries.  You can then access these variables with a numeric address.  You 
can think of these addresses much like street addresses.  Consider a small 
town that has a Main Street with 20 houses on it.  There is one entity, named 
Main Street, but there are 20 addresses: 1 Main Street, 2 Main Street, 3 
Main Street, and so on.  This is exactly how an array works.

I will begin with how an array is created.

Creating Arrays
Arrays have individual types, such as string, int, etc.  If you declare an 

array to be of type “String”, then this is an array of strings.  If you declare an 
array to hold int’s then this string will hold int’s.  You can’t mix and match.  If 
you create an array of type “String”, you can’t put an int into the array.

Note: When you become more advanced with Object Oriented Program-
ming, there are ways that you can store more than one type of variable in an 
array.  However, this is beyond the scope of this book.

There are three steps involved in creating an array.

 • Declare the Array
 • Instantiate the Array
 • Initialize the Array

I will now show you how to perform each of these operations.

Declare an Array
The first step in creating an array is to declare that array.  In this step 

you are assigning the array its type and name.  Nothing else about the array 
is communicated in this step.  Listing 11.2 shows a program that declares an 
array that will hold strings.

Listing 11.2: Declare an Array (StudentList2.java)

public class StudentList2
{
  public static void main(String args[])
  {
    String studentList[];
  }
}

Learning Objective #1
How to create 
an array.

Learning Objective #2
Declare an array.



185Chapter 11: Arrays

As you can see, the above program declares an array of strings.  This 
looks almost the same as when we declare a string, except for the [] on the 
end of the string name.  This indicates that this is an array.  Now, rather than 
one single string you may have many strings.  How many? Well, at this point 
zero.  Just declaring the array is not enough.  You should not start using the 
array until after you have instantiated it.  Instantiating an array is when you 
define the length of the array.

Very Important! You must instantiated an array before you use it.  If use 
the array before it is instantiated, an exception will be thrown.

Instantiate an Array
I will now show you how to instantiate an array.  Instantiating an array 

is where the array size is defined.  The following program builds on the last 
program by adding a line to instantiate the array.  This program is shown in 
Listing 11.3.

Listing 11.3: Instantiate an Array (StudentList3.java)

public class StudentList3
{
  public static void main(String args[])
  {
    String studentList[];
    studentList = new String[3];
  }
}

As you can see, one additional line was added to this program from the 
list.  Here it looks as if we are assigning a value to the studentList variable.  
In a way, that is what we are doing.  We are creating a new array and assign-
ing it to the studentList variable.  The array has now been created, and using 
the array will no longer throw an exception.  The next step is to put some 
values into the array.

Initializing an Array
Once the array has been created, it does not yet hold any useful data.  

In the case of an array of strings, the array holds only empty strings.  If the 
array were a numeric type, it would hold only zeros at this point.  Now, we 
must put some initial values into the array.  This step is called initialization.  
Listing 11.4 shows the student list program modified to initialize the array.

Listing 11.4: Initialize an Array (StudentList4.java)

public class StudentList4
{
  public static void main(String args[])

Learning Objective #3
Instantiate an array.

Learning Objective #4
Initialize an array.



Java for the Beginning Programmer186

  {
    String studentList[];
    studentList = new String[3];
    studentList[0] = "Smith, John";
    studentList[1] = "Jones, Bill";
    studentList[2] = "Thomson, Jerry";
  }
}

As you can see, the program has been modified to store some values in 
the array.  Notice how the array is indexed.  You use the value [1] to access 
array element 1.  You can put any number you like in there to specify which 
number you want in the array.  However, you must be careful to not use a 
value that is larger than the size of the array.  If you use too large of a value, 
an exception will be thrown and your program will crash.

You should also notice which array elements I used.  I used index 0,1 
and 2.  This is an array of size 3.  So the only valid elements are 0,1 and 2.  
Using element 3 would thrown an exception.

Very Important! Arrays always begin at index 0 and run to one before 
the size of an array.  For example an array of size 5 would have valid ele-
ments from 0 through 4.  Using array element 5 would throw an exception.

Now that I have shown you how to create an array, it is time to see how 
to make use of them.

Using Arrays
In the previous section you saw how to create an array.  Arrays can be-

come very powerful when you use them to access large amounts of data.  By 
allowing you to specify an index you can do many things with arrays that you 
could not with regular variables.  As you will see later in this section you can 
use a loop to process all elements of the array.  This allows you to quickly 
implement a global array operation, like printing out the array, with only a 
few lines of code.

I will begin by showing you how to access individual array elements.

Accessing Array Elements

Array elements can be accessed in much the same way as they are ini-
tialized.  Just as the following line initializes array index 0.

studentList[0] = "Smith, John";

So too, does the following line print out the value of array index 0.

Very Important
Arrays always start 
at index zero.



187Chapter 11: Arrays

System.out.println( studentList[0] );

As you can see you use array element just like any other string.  The 
only difference is you must always specify which index you want to use.

Listing 11.5 shows the how to print out the three students.

Listing 11.5: Print out a List of Students (StudentList5.java)

public class StudentList5
{
  public static void main(String args[])
  {
    String studentList[];
    studentList = new String[3];
    studentList[0] = "Smith, John";
    studentList[1] = "Jones, Bill";
    studentList[2] = "Thomson, Jerry";

    // now print the students
    System.out.println( studentList[0] );
    System.out.println( studentList[1] );
    System.out.println( studentList[2] );
  }
}

As you can see this program prints out each of the students.  However, 
this program prints them out each with a separate println.  What if there 
were 100 students? If there were, we would need 100 println’s.  There is a 
much better way to do this, which only requires one println.  I will show you 
how to do this in the next section.

Using Loops with Arrays

As you have seen in previous sections, you can access individual array 
elements using the []’s.  So far we have only accessed elements with fixed 
numbers, such as studentList[2].  This is only the beginning.  You can also 
access array elements with variables, for example studentList[i].  If i held 
the value 2, then this would access array element 2.

In the last section we modified the student list program to print out the 
students.  However, this print section requires one println for each student.  
This would not be efficient if we had a large number of students.  Also, what 
if we only had 2 students? The program would have to be modified to handle 
this new number of students.  Listing 11.6 shows a version of this program 
that uses a “for loop” to print out the students.

Learning Objective #5
Using loops 
with arrays.



Java for the Beginning Programmer188

Listing 11.6: List Students with Loop (StudentList6.java)

public class StudentList6
{
  public static void main(String args[])
  {
    String studentList[];
    studentList = new String[3];
    studentList[0] = "Smith, John";
    studentList[1] = "Jones, Bill";
    studentList[2] = "Thomson, Jerry";

    // now print the students
    for( int i=0;i<3;i++ )
    {
      System.out.println( studentList[i] );
    }
  }
}

As you can see the students are now printed out with a for loop.  Now no 
matter how many students you have, you can print them all out with the four 
lines occupied by the for loop.

Array Example Program
Now we will begin developing a more complex version of the student 

list.  This is a lengthy example that will be developed in stages over the next 
three chapters.  This will be a student list program that allows students to be 
added, removed and listed from an array.  The version of this program for 
this chapter is shown in Listing 11.7.

Listing 11.7: Array Example Program (StudentList7.java)

import java.io.*;

public class StudentList7
{
  // used to read from the user
  static BufferedReader in; 

  // how many students are there currently
  static int studentCount;

  // the student list
  static String studentList[];



189Chapter 11: Arrays

  public static void addStudent()
  {
    System.out.println("");
    System.out.println("*** Add Student ***");
    if( studentCount >24 )
    {
      System.out.println(
        "There are already 25 students, "+
        "which is the most you can have.");
      return;
    }

    System.out.print("Enter student’s first name> ");
    String first = readInput();
    System.out.print("Enter student’s last  name> ");
    String last = readInput();

    String name = last + ", " + first;
    studentList[studentCount] = name;
    studentCount = studentCount + 1;

  }

  public static void deleteStudent()
  {
    System.out.println("");
    System.out.println("*** Delete Student ***");
    if( studentCount == 0 )
    {
      System.out.println(
        "There are no students yet, "+
        "no one to delete.");
      return;
    }

    for(int i=0; i<studentCount; i++ )
    {
      System.out.println( (i+1) + ":" + 
        studentList[i] );
    }

    System.out.print(
      "Which student number do you wish to delete> ");
    String str = readInput();
    int number = 0;



Java for the Beginning Programmer190

    try
    {
      number = Integer.parseInt( str );
    }
    catch( NumberFormatException e)
    {
      System.out.println(
        "You did not enter a valid number.");
      return;
    }

    if( number<1 )
    {
      System.out.println(
        "Student number must be at least 1.");
      return;
    }

    if( number>studentCount )
    {
      System.out.println(
        "Student number must be less than " + 
        studentCount );
      return;
    }

    // now actually delete that student
    int i = number-1;
    while( i<studentCount )
    {
      studentList[i] = studentList[i+1];
      i = i + 1;
    }

    studentCount = studentCount - 1;

  }

  public static void listStudents()
  {
    System.out.println("");
    System.out.println("*** List Students ***");
    if( studentCount == 0 )
    {
      System.out.println(
        "There are no students yet.");



191Chapter 11: Arrays

      return;
    }

    for(int i=0; i<studentCount; i++ )
    {
      System.out.println( studentList[i] );
    }
  }

  // a simple method that inputs a line from 
  // the user and returns it
  public static String readInput()
  {
    try
    {
      String input = in.readLine();
      input = input.trim();
      return input;
    }
    catch(IOException e)
    {
    }
    return “”;// an error occured
  }

  public static void main(String args[])
  {
    // setup the variables
    InputStreamReader inputStreamReader = 
      new InputStreamReader ( System.in );
    in = new BufferedReader ( inputStreamReader );
    studentList = new String[25];
    studentCount = 0;

    // now display the main menu
    boolean done = false;

    while( done==false )
    {
      // print 25 blank lines to clear the screen
      for(int i=0;i<25;i++)
      {
        System.out.println(“”);
      }



Java for the Beginning Programmer192

      System.out.println(
        "*** Student List Main Menu ***");
      System.out.println("A> Add Student");
      System.out.println("D> Delete Student");
      System.out.println("L> List Students");
      System.out.println("Q> Quit program");
      System.out.print("Choose> ");

      // prompt the user
      String input = readInput();
      input = input.toUpperCase();
      char ch = input.charAt(0);
      switch( ch )
      {
        case 'A':
          addStudent();
          break;
        case 'D':
          deleteStudent();
          break;
        case 'L':
          listStudents();
          break;
        case 'Q':
          done = true;
          break;
        default:
          System.out.println(
            "Please choose a valid choice!");
      }
      System.out.println("");
      System.out.print("[Press any Enter/Return]");
      readInput();
    }
  }
}

This is the longest program that we have seen yet! But don’t worry, it 
is built upon what we have already learned.  If you remember all the topics 
from the previous sections, you probably already understand much of this 
program does.  In the next few sections, I will review what each part of the 
program is for.



193Chapter 11: Arrays

The readInput Method

This program makes use of several methods.  One such method is the 
readInput method.  This method will read a single line of input from the user 
and return that line as a string.  The readInput method is shown in Listing 
11.8.

Listing 11.8: Reading User Input

public static String readInput()
{
  try
  {
    String input = in.readLine();
    input = input.trim();
    return input;
  }
  catch(IOException e)
  {
  }
  return "";// an error occurred
}

As you can see from the above method, a string is returned.  This meth-
od reads a line of text from the user, just as we have seen before, using the 
readLine method.  However, by placing this code inside of a method, we do 
not have to reproduce the try/catch block every place that we want to read a 
line of text from the user.  This is one of the main features of methods.  They 
allow us to take several lines of commonly used code and isolate them inside 
of the method.  These methods can then be reused.

This method also calls the trim method.  This will remove any blank 
spaces that the user may enter at the end of the input.  Finally, the string 
that the user has entered is returned.  Using the method is very easy.  Now 
anytime you want to read a line of text from the user you simply use the fol-
lowing line of code:

String str = readInput();

This also makes the program much shorter, and easier to read.  Now you 
can insert this one line rather than setting up the entire try/catch block.



Java for the Beginning Programmer194

The Main Method

The main method does two things.  First, it sets up the static instance 
variables, and secondly it performs the main loop.  In this section we will 
examine how the static instance variables are setup, in the next section we 
will examine the main loop.

The main method begins with the following lines.

    // setup the variables
    InputStreamReader inputStreamReader = 
      new InputStreamReader ( System.in );
    in = new BufferedReader ( inputStreamReader );
    studentList = new String[25];
    studentCount = 0;

First, the input stream is setup.  This is the same as in any program 
that has required user input, except that the “in” variable is now a static 
class-level variable, declared near the top of Listing 11.7.  This allows it to be 
accessed anywhere in the program.  If you need to review reading from the 
user, refer to Chapter 4.  Next, the studentList variable is set to an array of 
size 25.  Finally, the student count is set to zero.  The studentCount variable 
will always contain the number of students

The Main Loop

The main loop of the program displays the main menu and prompts the 
user for which option they would like to perform.  The main loop begins with 
the following lines of code.

// now display the main menu
boolean done = false;

while( done==false )
{
  // print 25 blank lines to clear the screen
  for(int i=0;i<25;i++)
  {
    System.out.println("");
  }



195Chapter 11: Arrays

First, a while loop is started with the “done” variable.  The while loop 
will continue so long as the “done” variable is false, which it was just set to.  
The program will loop, displaying the main menu, until done is false.  This 
allows the program to keep running after the user has chosen one of the 
main menu options.  Once the user finally chooses “Quit”, the done variable 
will be set to true, and the program will terminate.

The main loop also displays 25 blank lines.  This clears off anything that 
was on the screen previously, and makes the main menu more clear.

Next, the program displays the main menu to the user and prompts for 
a choice, as seen here.

System.out.println("*** Student List Main Menu ***");
System.out.println("A> Add Student");
System.out.println("D> Delete Student");
System.out.println("L> List Students");
System.out.println("Q> Quit program");
System.out.print("Choose> ");

// prompt the user
String input = readInput();
input = input.toUpperCase();
char ch = input.charAt(0);
switch( ch )
{
  case 'A':
    addStudent();
    break;
  case 'D':
    deleteStudent();
    break;
  case 'L':
    listStudents();
    break;
  case 'Q':
    done = true;
    break;
  default:
    System.out.println(
      "Please choose a valid choice!");
}



Java for the Beginning Programmer196

First, the main menu is displayed.  Then the user is prompted for a line 
of text.  That line of text is converted to uppercase, otherwise we would have 
to compare against both ‘A’ and ‘a’ for add user.  By converting the string to 
upper case we are only comparing against ‘A’.  Next we use a switch/case 
to decide which option the user wants to do.  Each of the menu options has 
a method that carries it out.  The switch/case decides which method needs 
to be called.

Adding a Student

Adding a student is somewhat simple.  The addStudent method is shown 
here.

public static void addStudent()
{
  System.out.println("");
  System.out.println("*** Add Student ***");
  if( studentCount >24 )
  {
    System.out.println(
      "There are already 25 students, " +
      "which is the most you can have.");
    return;
  }

  System.out.print("Enter student's first name> ");
  String first = readInput();
  System.out.print("Enter student's last  name> ");
  String last = readInput();

  // put in "Lastname, First" format.
  String name = last + ", " + first; 
  studentList[studentCount] = name;
  studentCount = studentCount + 1;

}

First the method checks to see if there are already 25 students.  If there 
are, an error is displayed, and the method returns.  Then the program 
prompts the user for the first and last name of the student.  The first and last 
name are then combined into the form “Heaton, Jeff”.

Next the student is added to the first available array element, and the 
student count is increased.



197Chapter 11: Arrays

Deleting a Student
Deleting a student is somewhat more complex.  This is done in several 

parts:

 • Display a list of all students
 • Prompt user for which student to delete
 • Make sure the user entered a valid student
 • Actually delete the student

To display a list of all students the following code is used

    System.out.println("");
    System.out.println("*** Delete Student ***");
    if( studentCount == 0 )
    {
      System.out.println(
        "There are no students yet, "+
        "no one to delete.");
      return;
    }

    for(int i=0; i<studentCount; i++ )
    {
      System.out.println( (i+1) + ":" + 
        studentList[i] );
    }

First, a check is performed to see if there are any students.  If there are 
no students, then there is nothing to display.  If this is the case, the program 
will exit with an error message.

Next, the program loops through all students and displays each student, 
with a student number.  The student number is the array index of that stu-
dent plus one.  We add one to the student number so that there is no student 
with the student number of zero.  This is done mainly for looks.  Most people 
are used to seeing lists that start with one, not zero.

Then, the method prompts the user for the student number to delete 
and validates that student number.

System.out.print("Which student number do you wish to 
delete> ");
String str = readInput();



Java for the Beginning Programmer198

int number = 0;

try
{
  number = Integer.parseInt( str );
}
catch( NumberFormatException e)
{
  System.out.println(
    "You did not enter a valid number.");
  return;
}

if( number<1 )
{
  System.out.println(
    "Student number must be at least 1.");
  return;
}

if( number>studentCount )
{
  System.out.println(
    "Student number must be less than " + 
    studentCount );
  return;
}

As you can see, the student number is first read in as a string.  The 
string is then converted to an int.  The NumberFormat exception is caught, 
just in case the user enters an invalid number.  The number is checked to 
see if it is below 1 or above the total number of students.  Either of these is 
an error and causes the method to return.

Finally, we actually delete the student.  This is done with the following 
lines of code.

// now actually delete that student
int i = number-1;
while( i<studentCount )
{
  studentList[i] = studentList[i+1];
  i = i + 1;
}

studentCount = studentCount - 1;



199Chapter 11: Arrays

Let me explain how this deletes a user, then I will show the same pro-
cess more visually.  The variable “i” is assigned to the array element that 
you want to delete.  Remember, we added one to every array element to 
show the user, so we need to subtract one to balance that.  If the user said 
to delete student 1, the first student, that is really array element 0, the first 
array element.

Then the program starts at the student to be deleted, and copies the 
next student to that position.  This process is repeated for each student in 
the list.  Consider the following students, in an array, as shown in Figure 
11.1.

Figure 11.1: Remove a Name, Step 1

We are now going to delete the second student, who has array index 
1.  The first time through the while loop, the variable “i” will have the value 
1.  This will cause array element 2 (i+1) to be copied to array element 1 (i).  
This is shown in Figure 11.2.

Figure 11.2: Remove a Name, Step 2



Java for the Beginning Programmer200

This results in the array looking like Figure 11.3.

Figure 11.3: Remove a Name, Step 3

Now the variable “i” is incremented to 2.  The same process is repeated, 
and element 3(i+1) will be copied to element 2 (i).  This is shown in Figure 
11.4.

Figure 11.4: Remove a Name, Step 4

This results in the array looking like Figure 11.5.



201Chapter 11: Arrays

Figure 11.5: Remove a Name, Step 5

The loop is now done, the studentCount variable is decreased by one, 
giving us the following list of students.  This is seen in Figure 11.6.

Figure 11.6: Remove a Name, Step 6

Listing the Students

The last operation that we will examine is listing the students.  This is 
probably the simplest of the operations.  The listStudents method is shown 
here.

  public static void listStudents()
  {
    System.out.println("");
    System.out.println("*** List Students ***");
    if( studentCount == 0 )
    {
      System.out.println(



Java for the Beginning Programmer202

        "There are no students yet.");
      return;
    }

    for(int i=0; i<studentCount; i++ )
    {
      System.out.println( studentList[i] );
    }
  }

This method begins by checking to see if there are any students.  If 
there are none, that is displayed and the method exits.  If there are students 
then the method loops over the entire array and displays each student.  The 
students are displayed in the order they were added.  In the next chapter, we 
will learn to alphabetize them.

Chapter Review
In this chapter you learned about arrays.  Arrays allow you to store 

many values under a single variable name.  This allows you to loop over the 
variables and perform other operations on the array list.

Arrays are always of a given type.  Arrays are accessed by numeric in-
dexes.  These indexes start at zero and end one short of the size of an array.  
For example, an array of size 5 would have indexes 0,1,2,3 and 4.  If you were 
to try to access array element 5, an exception would be thrown.

In this chapter the “StudentList” example was demonstrated.  This ex-
ample program will be built upon in the next three class chapters.  In this 
chapter you saw how to add, delete and list the students.  This program used 
many previously learned techniques and showed how a complex program is 
built upon simple parts.



203Chapter 11: Arrays

New Terms

array  An array is a list of objects or primitive datatypes.  Arrays start at 
index zero.

Declare  A variable, or array, is declared when its name and type are given.  
For example “int i;” declares a variable of type “int”, named “i”.

index  An index is a number that references a character position or array 
element.  Both character positions and array elements start at index zero.

Instantiate  An array or object is instantiated when the object is actually 
allocated using the “new” operator.  An array or object must be declared 
before it can be instantiated.

Initialize  An array or object is initialized when it is assigned a value.  An 
array must be instantiated before it can be initialized.

Review Questions
1.  What are the three steps necessary to use an array?

2.  The following code would like to create an array of size 10 and set every 
array element to 5.  Does it accomplish this?

public class MyClass 
{
  public static void main(String args[]) 
  {
    int a[] = new int[10];
    for(int i = 0; <10; i++ )
      a[i] = 5;
  }
}

3.  What does the following code try to do? Is it correct?

public class MyClass 
{
  public static void main(String args[]) 
  {
    int a[] = new int[10];



Java for the Beginning Programmer204

    a[10] = 10;
  }
}

4.  What must be done to remove one single element of an array?

5.  What index do arrays start at?



205Chapter 11: Arrays

Assignment #9
Write a program that will prompt the user for student scores between 0 and 
100.  Keep track of how many students have scored in each of the 10% bands.  
Display the number of students in each “band”.

For example, the program might be ran as follows:

Enter a score(0-100, q to quit)? 200
Invalid score
Enter a score(0-100, q to quit)? 100
Enter a score(0-100, q to quit)? 95
Enter a score(0-100, q to quit)? 80
Enter a score(0-100, q to quit)? 82
Enter a score(0-100, q to quit)? 45
Enter a score(0-100, q to quit)? q

* * Score Summary * *

2 students scored between 90 and 100.
2 students scored between 80 and 89.
0 students scored between 70 and 79.
0 students scored between 60 and 69.
0 students scored between 50 and 59.
1 students scored between 40 and 49.
0 students scored between 30 and 39.
0 students scored between 20 and 29.
0 students scored between 10 and 19.
0 students scored between 0 and 9.



207Chapter 12: Using Arrays

CHAPTER 12:  USING ARRAYS

In Chapter 12 you will learn about:
• Using Arrays
• Bubble Sorting
• Extending the Student List Example

In this chapter we will build upon the last chapter by introducing  a 
more complex example of using an array.  You will be shown how to sort an 
array.

Sorting Arrays
Arrays store lists of items.  However, often a list must be in a specific 

order.  Consider the student list example in the last chapter.  As you added 
more and more students to it the list gets harder to read because it is in no 
specific order.  Whichever student was entered first, comes first.  This would 
become very cumbersome if we had a large number of students in this list.

Introducing the Bubble Sort

There are many different ways to sort arrays.  One of the most basic is 
the bubble sort.  The bubble sort works by going over the list and looking 
at two items at a time.  If these two items need to be swapped, then they are 
swapped.  This continues until the bubble sort makes it through without 
performing any swaps.  Lets look at an example of how this works.  Consider 
the following names in unsorted order.

0:John
1:George
2:Simon
3:Alice
4:Betty

Learning Objective #1
Understand the 
bubble sort.



Java for the Beginning Programmer208

As you can see these names are not in alphabetical order.  To implement 
the bubble sort, we look at the first two names at location 0 and 1.  Are they 
in the right order? No they are not.  So we swap them, and are left with:

0:George
1:John
2:Simon
3:Alice
4:Betty

Now we continue, we look at locations 1 and 2.  Are they in the right or-
der? Yes they are.  What about 2 and 3? No they are not.    So we swap them, 
and are left with:

0:George
1:John
2:Alice
3:Simon
4:Betty

Continuing onward.  Are locations 3 and 4 in the right order? No they 
are not.  So we swap them, and are left with:

0:George
1:John
2:Alice
3:Betty
4:Simon

We have reached the end, now we start all over.  Are locations 0 and 1 
in order.  They are, but how about 1 and 2.  No they are not.    So we swap 
them, and are left with:

0:George
1:Alice
2:John
3:Betty
4:Simon



209Chapter 12: Using Arrays

Continuing on, how about 2 and 3? No, not in order.    So we swap them, 
and are left with:

0:George
1:Alice
2:Betty
3:John
4:Simon

Continuing on, how about 3 and 4? They are in order.  We are at the end 
again.  Start from the top.  Are 0 and 1 in order? No they are not.    So we 
swap them, and are left with:

0:Alice
1:George
2:Betty
3:John
4:Simon

Continuing on, how about 1 and 2? Not in order.    So we swap them, and 
are left with:

0:Alice
1:Betty
2:George
3:John
4:Simon

Now how about 2 and 3.  They are in order.  How about 3 and 4? They 
are in order too.  Time to start from the top again.

Locations 0 and 1 are in order, so are 1 and 2, so are 2 and 3, and guess 
what! So is 3 and 4.  We made it through one pass with no swaps, that means 
we’re done, the array has been sorted.

Now that we have seen how the bubble sort works, we need to imple-
ment it as a program.



Java for the Beginning Programmer210

Alphabetizing Strings

Before we can begin sorting strings we must see how we can check and 
see if two strings are in order.  This is not hard, as the String class provides 
a method to allow us to do this.  This method works similar to the equals 
method, but in addition to telling us if the two strings are equal, this method 
will also tell us what order the two strings are in.  This method is called 
“compareTo”.  The “compareTo” method is called like this.

if( strA.compareTo(strB)==0 )
{
  System.out.println(“These two strings are equal.”);
}

If the compareTo method returns a zero, the two strings are equal.  
There are three values the compareTo method can return:

 • 0 if the two strings are equal
 • a number less than 0, if strA comes before strB
 • a number greater than 0, if strB comes before strA

Therefore, using the method “compareTo” we can easily determine if 
two strings are in order.  If the two strings are in order, compareTo will re-
turn a value less than zero.

There is another issue we need to deal with.  That is, how can we swap 
two strings.  Given the following array:

str[0] = "First";
str[1] = "Third";
str[2] = "Second";
str[3] = "Fourth";
str[4] = "Fifth";

What command would swap elements 1 and 2? You can’t just use the 
following:

str[1] = str[2]; 
str[2] = str[1];

Learning Objective #2
Learn to alphabetize 
strings.



211Chapter 12: Using Arrays

This may seem logical, but as soon as you execute str[1] = str[2], the 
array would look like this:

str[0] = "First";
str[1] = "Second";
str[2] = "Second";
str[3] = "Fourth";
str[4] = "Fifth";

This is no good.  What happened to “Third”? You just copied over it, its 
gone now and its not coming back.  So you see you can’t just copy when you 
want to swap two strings.  So how do we swap two strings? Consider this 
real-world example.  Look at figure 12.1, we have a glass of milk and a glass 
of orange juice.

Figure 12.1: A Glass of Milk and a Glass of Orange Juice

We want to swap them.  We want the milk in the OJ’s glass and vise 
versa.  How can we do it? We can’t just pour one glass into the other and 
expect it to work, much like we just tried with the array.  Figure 12.2 shows 
how well that works!



Java for the Beginning Programmer212

Figure 12.2: This Does Not Work!

So how can it be done? What are we missing? Figure 12.3 shows.

Figure 12.3: A Spare Glass is Needed

We need a third glass.  Using this third glass allows us to pour the milk 
into the third glass, then pour the OJ into the old milk glass, and finally pour 
the extra glass into the old OJ glass.  Figure 12.4 shows this.



213Chapter 12: Using Arrays

Figure 12.4: The Swap is Made

The program is no different.  What we need is a temporary variable to 
hold the value during the swap, like so:

int temp = str[1];
str[1] = str[2]; 
str[2] = temp;

As you can see, str[1] is first copied into a temp variable.  Next str[2] is 
copied into str[1].  Finally the temp variable is copied to str[2].  This com-
pletes the swap.

Implementing the Bubble Sort
Now I will show you how to implement a bubble sort.  First we will 

examine the flowchart of a bubble sort.  This flowchart is shown in Figure 
12.5.

Learning Objective #3
Learn to swap 
two strings.



Java for the Beginning Programmer214

Figure 12.5: A Bubblesort Flowchart

�����

����

������������

���������

��������������������

���

������������

��������������������

����������������������

������

���������������������������

������������������������

��������

�����������������

��

��

���

���

���

��

As you can see, the array is processed, swapping unordered pairs, until 
the program makes it through without making any swaps.  Once the pro-
gram makes no swaps the list is sorted.

Now I will show you how to implement this in Java code.  Listing 12.1 
shows the bubble sort.

Listing 12.1: The Bubble Sort (BubbleSort.java)

class BubbleSort
{
  public static void bubbleSort(String data[],int 
size)
  {
    boolean done = false;
    int index;



215Chapter 12: Using Arrays

    while (done == false)
    {
      done = true;
      for (index=1 ; index < size;index++)
      {
        if (data[index].compareTo(data[index-1])<0)
        {
          // swap data[index] and data[index-1]
          String temp          = data[index];
          data[index]   = data[index-1];
          data[index-1] = temp;
          done = false;
        }
      }
    }
  }

  public static void main(String args[])
  {
    String str[] = new String[5];

    // unsorted array
    str[0]="John";
    str[1]="George";
    str[2]="Simon";
    str[3]="Alice";
    str[4]="Betty";

    // now bubble sort
    bubbleSort(str,5);

    // display the results
    for(int i=0;i<5;i++)
      System.out.println(str[i]);
  }
}

The program begins by filling the array with unsorted values.  Then 
the bubbleSort method is called and the array is displayed.  The resulting 
names are in alphabetical order.

If you examine the bubbleSort method you can see how it works.  First a 
“done” variable is established.  The “done” variable will remain false so long 
as at least one swap was made.  To do this the “done” variable is first set to 
true, and then is set to false when the first swap occurs.  If no swap occurs, 
the done variable remains true, and the loop exists.



Java for the Beginning Programmer216

Inside of the “while loop” a “for loop” is used to process every pair in the 
array.  Each pair is checked, and if they are out of order, a swap occurs.

Adding Sorting to the Student List Example
Now we will add the bubble sort to the student example program.  There 

really is very little modification to do.  Listing 12.2 shows the completed ap-
plication.

Listing 12.2: The Student List, with Bubble Sort (StudentList.java)

import java.io.*;

public class StudentList
{
  // used to read from the user
  static BufferedReader in; 

  // how many students are there currently
  static int studentCount;
  
  // the student list
  static String studentList[];

  public static void bubbleSort(String data[],
    int size)
  {
    boolean done = false;
    int index;

    while (done == false)
    {
      done = true;
      for (index=1 ; index < size;index++)
      {
        if (data[index].compareTo(data[index-1])<0)
        {
          // swap data[index] and data[index-1]
          String temp          = data[index];
          data[index]   = data[index-1];
          data[index-1] = temp;
          done = false;
        }
      }
    }
  }



217Chapter 12: Using Arrays

  public static void addStudent()
  {
    System.out.println("");
    System.out.println("*** Add Student ***");
    if( studentCount >24 )
    {
      System.out.println(
        "There are already 25 students, " +
        "which is the most you can have.");
      return;
    }

    System.out.print("Enter student’s first name> ");
    String first = readInput();
    System.out.print("Enter student’s last  name> ");
    String last = readInput();

    String name = last + ", " + first;
    studentList[studentCount] = name;
    studentCount = studentCount + 1;

    bubbleSort(studentList,studentCount);

  }

  public static void deleteStudent()
  {
    System.out.println("");
    System.out.println("*** Delete Student ***");
    if( studentCount == 0 )
    {
      System.out.println(
        "There are no students yet, "+
        "no one to delete.");
      return;
    }

    for(int i=0; i<studentCount; i++ )
    {
      System.out.println( (i+1) + ":" + 
        studentList[i] );
    }

    System.out.print(
      "Which student number do you wish to delete> ");
    String str = readInput();



Java for the Beginning Programmer218

    int number = 0;

    try
    {
      number = Integer.parseInt( str );
    }
    catch( NumberFormatException e)
    {
      System.out.println(
        "You did not enter a valid number.");
      return;
    }

    if( number<1 )
    {
      System.out.println(
        "Student number must be at least 1.");
      return;
    }

    if( number>studentCount )
    {
      System.out.println(
        "Student number must be less than " + 
        studentCount );
    }

    // now actually delete that student
    int i = number-1;
    while( i<studentCount )
    {
      studentList[i] = studentList[i+1];
      i = i + 1;
    }

    studentCount = studentCount - 1;

  }

  public static void listStudents()
  {
    System.out.println("");
    System.out.println("*** List Students ***");
    if( studentCount == 0 )
    {
      System.out.println(



219Chapter 12: Using Arrays

        "There are no students yet.");
      return;
    }

    for(int i=0; i<studentCount; i++ )
    {
      System.out.println( studentList[i] );
    }
  }

  // a simple method that inputs a line from 
  // the user and returns it
  public static String readInput()
  {
    try
    {
      String input = in.readLine();
      input = input.trim();
      return input;
    }
    catch(IOException e)
    {
    }
    return "";// an error occured
  }

  public static void main(String args[])
  {
    // setup the variables
    InputStreamReader inputStreamReader = 
      new InputStreamReader ( System.in );
    in = new BufferedReader ( inputStreamReader );
    studentList = new String[25];
    studentCount = 0;

    // now display the main menu
    boolean done = false;

    while( done==false )
    {
      // print 25 blank lines to clear the screen
      for(int i=0;i<25;i++)
      {
        System.out.println(“”);
      }



Java for the Beginning Programmer220

      System.out.println(
        "*** Student List Main Menu ***");
      System.out.println("A> Add Student");
      System.out.println("D> Delete Student");
      System.out.println("L> List Students");
      System.out.println("Q> Quit program");
      System.out.print(“Choose> “);

      // prompt the user
      String input = readInput();
      input = input.toUpperCase();
      char ch = input.charAt(0);
      switch( ch )
      {
        case 'A':
          addStudent();
          break;
        case 'D':
          deleteStudent();
          break;
        case 'L':
          listStudents();
          break;
        case 'Q':
          done = true;
          break;
        default:
          System.out.println(
            "Please choose a valid choice!");
      }
      System.out.println("");
      System.out.print("[Press any Enter/Return]");
      readInput();
    }
  }
}

As you can see, I added the bubbleSort method near the top.  This is 
exactly the same bubbleSort method that was shown in the last listing.  The 
only other change needed, is for the list to be resorted whenever a name is 
added.  This is accomplished by adding a call to bubbleSort at the end of the 
addUser method.



221Chapter 12: Using Arrays

Chapter Review
In this chapter you were shown an application of arrays.  You saw how 

the bubble sort works and how to use it.  The bubble sort works by looping 
over all element pairs in an array and swapping any elements that are out 
of order.  This repeats until the bubble sort makes it through without swap-
ping, once this happens the sort is done.

You saw how to compare two values.  The compareTo method is used 
to do this.  Given strA.compareTo(strB), compareTo returns 0 if the two 
strings are equal, a number less than 0, if strA comes before strB, or a num-
ber greater than 0, if strB comes before strA.

You were shown how to swap two variables.  You can’t just assign one 
variable to the other.  You must use a temporary variable to hold one value 
during the swap.



Java for the Beginning Programmer222

New Terms

Bubble Sort  A bubble sort is a method by which a list of items can be 
sorted.  The bubble sort swaps pairs of items until the list is sorted.

compareTo  The compareTo function is a part of the String class.  It de-
termines the placement of two strings.  For example strA.compareTo(strB) 
would return 0 if the two strings are equal, a number less than 0, if strA 
comes before strB.  Or a number greater than 0, if strB comes before strA

Swap  A swap occurs when the contents of two variables must be exchanged.  
To properly swap two variables, a third, temporary variable is needed.

Temporary Variable  A temporary variable is a variable that is used as a 
place holder for something for a very short time.  A temporary variable is 
almost always a local variable.

Review Questions
1.  How do you swap the values of two variables?

2.  Describe how the bubble sort works.

3.  Write out the bubble sort steps to sort the following list of numbers.

4 2 3 5 1

4.  What would the following code display?

String strA = "A";
String strB = "B";

System.out.println( strA.compareTo(strB) );

5.  What role does the temporary variable play in a bubble sort?



223Chapter 12: Using Arrays

Assignment #10
Write a program, named Assignment11, that will prompt the user to enter a 
number of names.  Then display the sorted result.

For example, the program might be ran as follows:

Enter a name (q to quit)? John
Enter a name (q to quit)? Paul
Enter a name (q to quit)? Jim
Enter a name (q to quit)? q

Sorted results:

Jim
John
Paul



225Chapter 13: Object Oriented Programming

CHAPTER 13:  OBJECT ORIENTED PROGRAMMING

In Chapter 13 you will learn about:
• Object Oriented Programming
• Access Levels
• Getters and Setters
• Interfaces
• Insurance Example

In this chapter you will learn the basics of Object Oriented Program-
ming.  

Objects of Your Own
We have used objects in many of our programs so far.  Anytime you use 

a String, you are using an object.  However, we have yet to use any objects 
that we have created ourselves.  In this chapter we will see how to create 
objects of our own.

Access Modifiers
You have already seen access modifiers.  The most commonly used ac-

cess modifier is public, which means that the variable or method can be ac-
cessed from anywhere.  There are actually four access modifiers, of which 
public is one.

 • public
 • private
 • protected
 • (default)

Each of these access modifiers behave differently.  It is important to 
note the last access modifier, you don’t actually type the word “default” into 
the Java application.  That just means that no access modifier was provided 
at all.  For example, the following int declaration uses the default access 
modifier:

int i;

Learning Objective #1
Understand the Java 
access modifiers.



Java for the Beginning Programmer226

Do not assume that just because you did not specify an access modifier 
that it defaults to public or some other.  No access modifier, is actually its 
own access modifier--which is called the “default” access modifier.  If you 
had wanted to declare the above int as public, you should have used the fol-
lowing statement.

public int i;

The meaning of each access modifier is given in Table 13.1.

Table 13.1: Java Access Modifiers

Access Modifier Description
public Any other object’s methods can access this variable 

or method.
private Only methods in this class can access this variable or 

method.
protected Only methods in this class, subclasses of this object 

can access the variable or method.
(default) Other method’s objects can access this method or 

variable if they are in the same package.

You may have noticed that I referred to a subclass of a class.  This will 
be explained later in this chapter.

Creating the Base Class
To begin with, we will create a base class called “Person”.  This class is 

designed to be able to hold a person.  It will contain only very basic informa-
tion about this person.

 • The person’s first name
 • The person’s last name

Listing 13.1 shows a really simple form of this class.

Important
You never put 
the word default 
in for the default 
access.  To declare 
“i” with default 
access just use:
int i;



227Chapter 13: Object Oriented Programming

Listing 13.1: A Simple Person Holder Class (Person1.java)

public class Person1
{
  public String first; // the person’s first name
  public String last; // the person’s last name
}

You will notice that this class has no main method.  As a result this 
class can not be run, it will have to be used by another class that has a main 
method.  This is the usual structure of a Java program.  There will be many 
classes that make up the application, but only one will have a main method.  
A program, regardless of how many classes it has, will generally have only 
one main method.  After all, you can only start from one place!

I will show you a main method that will take advantage of Person1 in a 
moment, but first, lets look at Person1.  Person1, unfortunately, violates one 
of the key rules of object oriented programming.  It has public instance level 
variables.

In object oriented programming you should never expose something 
as internal to a class as an instance variable.  You should setup “gate keep-
ers”.  These “gate keepers” will get the value of first and last for you.  They 
will also set the value of first and last for you.  The following shows how the 
Person class should actually be implemented.

Getters and Setters
The proper way to access instance variables is to use getters and setters.  

To do this, first, make all of your instance variables private, which means 
that only the class can access them.  Then create a public method called 
getVariableName and setVariableName.  The getVariableName method, 
called the getter, will return the value of the variable.  The setVariableName 
method, called the setter, will set the value of variableName.  Listing 13.2 
shows the Person class with getters and setters.

Listing 13.2: Using Getters and Setters (Person.java)

public class Person
{
  private String first; // the person’s first name
  private String last; // the person’s last name

  public void setFirst(String theFirst)
  {
    first = theFirst;
  }

Learning Objective #2
Understand getters 
and setters.



Java for the Beginning Programmer228

  public String getFirst()
  {
    return first;
  }

  public void setLast(String theLast)
  {
    last = theLast;
  }

  public String getLast()
  {
    return last;
  }
}

As you can see both the “first” and “last” variables are declared as pri-
vate.  This means that they can only be accessed from within the Person 
class.  But this is okay because we provide getters and setters to allow other 
classes to both get the value of first and last, as well as set the value of first 
and last.

The two getters, named “getFirst” and “getLast” both return the value 
of first and last.  The two setters, named “setFirst” and “setLast” both set the 
value of first and last.

Using Objects
Next I will show you how to make use of your newly created object.  The 

following class, shown in Listing 13.3 shows how to use the Person class.

Listing 13.3: Test the Person Class (TestPerson.java)

public class TestPerson
{
  public static void main(String args[])
  {
    Person personA = new Person();
    Person personB = new Person();
    
    personA.setFirst("John");
    personA.setLast("Smith");
    
    personB.setFirst("Jimmy");
    personB.setLast("Jones");
    
    // now display the two



229Chapter 13: Object Oriented Programming

    System.out.println( personA.getLast() + ", " +
      personA.getFirst() );
    System.out.println( personB.getLast() + ", " + 
      personB.getFirst() );
  }
}

As you can see, the above class creates two Person objects.  Notice how 
the getters and setters are used.  Each object, personA and personB, have 
their own first and last names.  First the setters are used to give the ob-
jects their values.  Then the getters are used when the objects are to be 
displayed.

Subclassing Classes
In the previous example you saw how to create a basic object, with get-

ters and setters.  While this is the basic construct of object oriented pro-
gramming, there is much more to object oriented programming than that.  
Next, I will show you how to subclass an object.

Creating an Exception Class
First we will create an exception class.  We have seen that exceptions are 

thrown when things go wrong.  This time, we’re going to create an exception 
of our own.  This exception is called TypeException.  It will occur when the 
Student class, which will be created in the next section, is given an invalid 
type.  The valid types for student are: Freshman, Sophomore, Junior, Senior 
and Graduate.  If the type is set to anything other than one of these types, the 
TypeException will be thrown.  Listing 13.4 shows the TypeException.

Listing 13.4: The TypeException (TypeException.java)

public class TypeException extends Exception
{
  TypeException(String message)
  {
    super(message);
  }
}

The TypeException is a subclass of the “Exception” class.  You can see 
this by examining the class line.  Notice the “extends Exception”? This in-
dicates that the TypeException class is a subclass of the “Exception” class.  
This class will be used in the next section.

Learning Objective #3
Understand 
how to create an 
exception class.



Java for the Beginning Programmer230

When you subclass from another class you inherit all of the methods 
and properties of that class.  By inheriting from the “Exception” class the 
new “TypeException” class can function as an exception.

Creating the Student Class
Now that the person and exception classes have been created, it is time 

to create the student class.  The student class is a child, or subclass, of the 
person class.  That is the Student will be the child of Person, and Person will 
be the parent class of Student.  You can create other children of Person, for 
example you might want to create an Instructor class that also subclasses 
Person.  Listing 13.5 shows the Student class.

Listing 13.5: The Student Class (Student.java)

public class Student extends Person
{
  private int studentNumber;
  private String type;

  public void setStudentNumber(int theStudentNumber)
  {
    studentNumber = theStudentNumber;
  }

  public int getStudentNumber()
  {
    return studentNumber;
  }

  public void setType(String theType)
  throws TypeException
  {
    if( !theType.equalsIgnoreCase("Freshman") &&
        !theType.equalsIgnoreCase("Sophomore") &&
        !theType.equalsIgnoreCase("Junior") &&
        !theType.equalsIgnoreCase("Graduate") &&
        !theType.equalsIgnoreCase("Senior") )
      throw new TypeException(
        "Invalid type: must be Freshman, Sophomore, "           
        +"Junior, Senior or Graduate");
    type = theType;
  }

  public String getType()
  {



231Chapter 13: Object Oriented Programming

    return type;
  }
}

The subclass Student inherits everything from Person.  As a result of 
this, the Student class contains a “first” and “last” name attributes.  It also 
includes the two new attributes from the Student class: studentNumber and 
type.  The “type” attribute specifies what type of student this is, namely: 
Freshman, Sophomore, Junior, Senior or Graduate.

The setter for the “type” attribute also validates that you are setting it 
to one of the accepted types.  If you are not, the TypeException is thrown.  
Also notice the “throws” statement just below the setType method header.  
Any exceptions that you throw in a method must be listed on the “throws” 
statement.

Using Subclasses
Now that we have created the “Student” class, we should write a short 

class to test it.  This class, named “TestStudent,” is shown in Listing 13.6.

Listing 13.6: Test the Student Class (TestStudent.java)

public class TestStudent
{
  public static void main(String args[])
  {
    Student student = new Student();
    try
    {
      student.setFirst("John");
      student.setLast("Smith");
      student.setStudentNumber(1);
      student.setType("Freshman");

      // now print it
      System.out.println(
          "Student: first=" + student.getFirst() +
          "last=" + student.getLast() +
          "studentNumber=" + 
          student.getStudentNumber() +
          "type=" + student.getType() );

      // now cause an exception
      student.setType("Unknown");
    }
    catch(TypeException e)
    {
      System.out.println("Error:" + e.getMessage() );
    }
  }
}

Learning Objective #4
Understand how to 
create subclasses.



Java for the Beginning Programmer232

This program creates a new student, named “John Smith”.  First, the 
student is created with a valid type.  Then the student is displayed.  Finally, 
the program sets the type to an invalid value and causes the TypeException 
to be thrown.  The “Student” class will be used in the next chapter.

Understanding Interfaces
In addition to classes Java also contains interfaces.  In this section you 

will be introduced to the concept of interfaces, as well as what they are used 
for.

What is an Interface

An interface is a class template.  It defines all of the methods that are 
made available by that class.  Why would you want to use an interface? Let 
me give you a real-world example.

You read about a new car in the news paper.  It sounds like everything 
you’ve been looking for, so you rush out to your local car dealer and take a 
test drive.  But wait.  Sure you’ve been driving your last car for 5 years, but 
do you know how to drive this new one? After all, you’ve never sat behind 
the wheel of this car before, how do you know you can drive it? You know 
you can drive it because all cars follow a standard, in how they are operated.  
You know that you will turn the key, shift into reverse or drive, hit the pedal 
and go.  It doesn’t matter if its an electric car, hybrid car, or even a jet car.  If 
it supports the “standard car interface”, you can drive it!

This is what an interface is.  You create a interface that specifies meth-
ods and tells how to operate a class.  Then ANY class that supports this 
interface must be operated in the same way.  Even if your program has never 
seen a class that supports a known interface, your program can support that 
class.

Implementing an Interface

To demonstrate interfaces I will show you a simple insurance applica-
tion.  I will create an interface named Payable.  This interface means that the 
class knows how to pay a claim.  The Payable interface is shown in Listing 
13.7.

Listing 13.7: The Payable interface (Payable.java)

interface Payable
{
  public double getBenefit();
}



233Chapter 13: Object Oriented Programming

As you can see, the Payable interface defines one method.  This method, 
named “getBenefit,” will get the “death benefit” for this life insurance policy.  
There are many different life insurance policies, and they all calculate the 
“death benefit” a little different, this will not matter.  You know that if the 
Policy class supports the Payable interface, you can support it.

Using Interfaces

I will now show you how to construct a simple application that supports 
the Payable interface.  We will begin by creating a “Policy” base class.  This 
class will be the parent class for many different types of life insurance poli-
cies.  This class is shown in Listing 13.8.

Listing 13.8: The Policy Base Class (Policy.java)

public class Policy
{
  private double face;
  private double premium;
  private String insured;
  private String beneficiary;

  public double getFace()
  {
          return face;
  }

  public void setFace(double d)
  {
          face = d;
  }

  public double getPremium()
  {
          return premium;
  }

  public void setPremium(double d)
  {
          premium = d;
  }

  public String getInsured()
  {
          return insured;
  }



Java for the Beginning Programmer234

  public void setInsured(String s)
  {
          insured = s;
  }

  public String getBeneficiary()
  {
          return beneficiary;
  }

  public void setBeneficiary(String s)
  {
          beneficiary = s;
  }
}

The policy class is pretty simple.  It supports several attributes, which 
all life insurance policies share.  The attributes are shown in Table 13.2.

Table 13.2: Attributes of the Policy Class

Property Description
face The face value of the insurance policy (i.e.  $100,000).
premium The amount of money that the owner pays per month 

for the policy (i.e.  $35).
insured The person who’s life is insured.
beneficiary The person who will be paid when the insured dies.

For this example, there will be two classes, for two different life insur-
ance product.  The first, is the term life object.  The TermLife class is shown 
in Listing 13.9

Listing 13.9: The TermLife Class (TermLife.java) 

public class TermLife extends Policy implements  
      Payable
{
   private String begin;
   private String end;

   public void setBegin(String s)
   {
           begin = s;



235Chapter 13: Object Oriented Programming

   }

   public String getBegin()
   {
           return begin;
   }

   public void setEnd(String s)
   {
           end = s;
   }

   public String getEnd()
   {
           return end;
   }

  public double getBenefit()
  {
          return(getFace());
  }
}

Term life insurance is a very simple, common type of life insurance.  It is 
bought for a term, a number of years, and during that time period, if the in-
sured dies, the face amount of the policy will be paid to the beneficiary.  The 
additional attributes defined by this subclass of policy are shown in Table 
13.3.

Table 13.3: Attributes of the TermLife Class

Property Description
begin The beginning date of the term that this policy is valid for.
end The ending date of the term that this policy is valid for.

The term life class also implements the Payable interface.  As a result 
it must include a getBenefit method.  For term life, the benefit is always 
the face amount, and as a result, the getBenefit method returns the face 
amount.



Java for the Beginning Programmer236

In addition to term life, there is also whole life.  Whole life insurance 
builds up a cash value over the life of the policy.  This cash value is usually 
added to the death benefit.  Listing 13.10 shows the whole life class.

Listing 13.10: The WholeLife Class (WholeLife.java)

public class WholeLife extends Policy 
  implements Payable
{
  private double cashValue;

  public double getCashValue()
  {
    return cashValue;
  }

  public void setCashValue(double d)
  {
    cashValue = d;
  }

  public double getBenefit()
  {
          return(getCashValue() + getFace());
  }
}

As you can see, the WholeLife class extends Policy and adds a cash-
Value attribute.  The getBenefit method returns the cash value plus the face 
amount.

Because both WholeLife and TermLife implement the payable interface, 
they can be used interchangeably by code that uses the Payable interface.  
Listing 13.11 shows a program that does this.

Listing 13.11: The insurance Application (InsuranceApp.java)

public class InsuranceApp
{

  public static void main(String args[])
  {
    System.out.println("Insurance App");

    TermLife policy1 = new TermLife();
    policy1.setInsured("John Smith");
    policy1.setBeneficiary("Jeff Heaton");
    policy1.setFace(100000);



237Chapter 13: Object Oriented Programming

    WholeLife policy2 = new WholeLife();
    policy2.setInsured("Jane Smith");
    policy2.setBeneficiary("Jeff Heaton");
    policy2.setFace(100000);
    policy2.setCashValue(1000);

    cutCheck(policy1);
    cutCheck(policy2);

  }

  public static void cutCheck(Payable policy)
  {
          System.out.println(
            "The amount of:" + policy.getBenefit() );
  }
}

As you can see two policies are created named policy1 and policy2.  
Policy1 is a term life, whereas policy2 is whole life.  A method is created 
named cutCheck, which could be used to write out a check for the amount 
the policy is payable for.  Notice how cutCheck accepts an object of type 
Payable? This allows it to work with either the term or whole life policy.  The 
method “cutCheck” is called for both policies and prints out the payable 
amount for each.

Chapter Review
In this chapter you were introduced to object oriented programming.  

Java is an object oriented language, so a basic understanding of object ori-
ented programming is necessary to be effective with Java.  This chapter only 
scratches the surface of object oriented programming.  An entire book could 
easily be devoted to object oriented programming.

You saw that you can create your own classes.  These classes can con-
tain data.  Data stored in classes should be accessible by getters and setters.  
The instance variables themselves should be private.  You should implement 
a public get method to read the attribute, and a public set method to set the 
value of the attribute.

Classes can subclass other classes.  When you subclass another class 
you inherit all of the other classes attributes and methods.  The class that 
you subclassed becomes your parent class.  Subclassing another class does 
not affect the parent class.



Java for the Beginning Programmer238

Exceptions are how Java reports errors.  You can also create exceptions 
of your own.  Exceptions are subclasses of the Exception class.  Once you 
have created your own exception type, you can throw this exception when 
something goes wrong in your application.  This allows you to communicate 
application specific error messages.

Interfaces allow you to publish common methods that your class sup-
ports.  Any other class that supports this interface must have the interface 
methods.  By guaranteeing all classes that implement this class will have the 
required methods, you can be sure that those classes will be supported as 
well.



239Chapter 13: Object Oriented Programming

New Terms

Child Class  A child class is a class that inherits from a parent, or base, 
class.  Has the same meaning as subclass.

Default Access When something has default access, other method’s ob-
jects can access this method or variable if they are in the same package.

getter  A getter is a public function used to access the value of a non-public 
class level variable.

interface  An interface is like a class, except it only defines methods and 
functions.  The methods and functions are only defined, not actually created.  
Then any class that implements the interface must also implement the meth-
ods and functions defined by the interface.

Parent Class  A parent class has one, or more, subclasses.

private  When something has private access, only methods in this class can 
access this variable or method.

protected  When something has protected access, only subclasses of this 
object can access the variable or method.

public  When something has public access, any other object’s methods can 
access this variable or method.

setter  A setter is a public method used to change the value of a non-public 
class level variable.

Subclass  A subclass is a class that inherits from a parent, or base, class.  
Has the same meaning as child class.

Review Questions
1.  Write the line of code that will declare an “int”, named “i” that has default 
access.

2.  Assume a parent and child class are in the same package.  Does the child 
inherit from the parent, or does the parent inherit from the child? 

3.  When inheritance occurs in the same package, which access modifiers 
will be inherited?



Java for the Beginning Programmer240

4.  Write the getters and setters for the following variable: 

private int myVariable;

5.  What is wrong with the following code?

interface MyInterface
{
  public int myfunction();
}

public class MyClass implements MyInterface
{
  public int myOtherFunction();
}



241Chapter 13: Object Oriented Programming

Assignment #11
Write a simple class that will hold a computer’s record.  You should store, 
the name of the computer, how many MEGs of RAM, how many GIGs on 
the hard drive, and the number of CD-ROM drives.  Create this class and 
provide all necessary getters and setters.



243Chapter 14: More Object Oriented 

CHAPTER 14:  MORE OBJECT ORIENTED

In Chapter 14 you will learn about:
• More Object Oriented Programming
• Using Objects in the Student List Example

In this chapter we will build upon the last chapter by making use of the 
Student class.  Many changes will be made to the StudentList class to make 
it object oriented.  You will see how to take a non-object oriented program 
and turn it into an Object Oriented Program.

Updating the Student Class
To create this new program we will begin by creating a base class for 

the students.  This base class will define a person, and the student class will 
become a child class of person.  Let’s look at the base class.

Base Class

The base class for Student is the Person class.  The Person class used in 
this chapter is the same Person class used in Chapter 13.  The person class, 
that we will create, is shown in Listing 14.1.

Listing 14.1: The Person Base Class (Person.java)

public class Person
{
  private String first; // the person's first name
  private String last; // the person's last name

  public void setFirst(String theFirst)
  {
    first = theFirst;
  }

  public String getFirst()
  {
    return first;
  }

  public void setLast(String theLast)
  {
    last = theLast;

Learning Objective #1
Learn to create 
a base class.



Java for the Beginning Programmer244

  }

  public String getLast()
  {
    return last;
  }
}

Now that the “Person” base class has been created, I will show you how 
to create the “Student” class. I will show you several versions of the “Stu-
dent” class that take advantage of several of Java’s object oriented features.

This is the same “Person” base class that was developed in Chapter 13. 
For more information on the “Person” class refer to Chapter 13.  

Adding a toString Function

One very handy feature of Java is the toString method.  You can add a 
toString method to your own classes.  This will allow your class to be printed 
using a single System.out.println.  A toString method, is nothing more than 
a function you create, with the name “toString”.  However, naming it “to-
String”, gives this function some special properties.  Namely, it allows the 
object to represent itself as a string. 

Listing 14.2 shows the Student class with a toString method.

Listing 14.2: Creating the Student Class (Student2.java)

public class Student2 extends Person
{
  private int studentNumber;
  private String type;

  public void setStudentNumber(int theStudentNumber)
  {
    studentNumber = theStudentNumber;
  }

  public int getStudentNumber()
  {
    return studentNumber;
  }

  public void setType(String theType)
  throws TypeException
  {
    if( !theType.equalsIgnoreCase("Freshman") &&
        !theType.equalsIgnoreCase("Sophomore") &&

Learning Objective #2
Create a toString 
function.



245Chapter 14: More Object Oriented 

        !theType.equalsIgnoreCase("Junior") &&
        !theType.equalsIgnoreCase("Graduate") &&
        !theType.equalsIgnoreCase("Senior") )
      throw new TypeException(
        "Invalid type: must be Freshman, Sophomore, "
        +"Junior, Senior or Graduate");
    type = theType;
  }

  public String getType()
  {
    return type;
  }

  public String toString()
  {
    return(getLast() + ", " + getFirst() + 
    ",student number: " + studentNumber + ", " + 
    type );
  }
}

As you can see, the “toString” method returns a String in the form that 
you would want this object printed.  For example, if you were to execute the 
following code.

Student2 student = new Student2();
student.setLast("Heaton");
student.setFirst("Jeff");
student.setType("Graduate");
student.setNumber(1001);
System.out.println(student);

The above code would print out:

Heaton, Jeff,student number:1001, Graduate

This is very handy, as you can print out the entire object with one Sys-
tem.out.println call.

If the toString function is NOT required, or if you do not provide a to-
String function a number, which corresponds to where your object is stored 
in memory, will be displayed.



Java for the Beginning Programmer246

A toString method would not be required for an object that has no way 
of being represented as a string. For example an object that holds a sound 
or an image, could not easily be represented as a String. 

Adding a compareTo Function

You can also implement a compareTo method.  This will allow the stu-
dent objects to be sorted.  For this example, we want student objects to be 
sorted first by last name and secondly by first name.  Adding a compareTo 
method will allow this to be done.  Listing 14.3 shows the student class with 
a compareTo method.  This is the final version of the Student class, which 
will be used in this book.

Listing 14.3: The Final Version of the Student Class (Student.java)

public class Student extends Person
{
  private int studentNumber;
  private String type;

  public void setStudentNumber(int theStudentNumber)
  {
    studentNumber = theStudentNumber;
  }

  public int getStudentNumber()
  {
    return studentNumber;
  }

  public void setType(String theType)
  throws TypeException
  {
    if( !theType.equalsIgnoreCase("Freshman") &&
        !theType.equalsIgnoreCase("Sophomore") &&
        !theType.equalsIgnoreCase("Junior") &&
        !theType.equalsIgnoreCase("Graduate") &&
        !theType.equalsIgnoreCase("Senior") )
      throw new TypeException(
        "Invalid type: must be Freshman, Sophomore, "
        +" Junior, Senior or Graduate");
    type = theType;
  }

  public String getType()
  {
    return type;
  }

Learning Objective #3
Create a compareTo 
function.



247Chapter 14: More Object Oriented 

  public String toString()
  {
    return(getLast() + ", " + getFirst() + 
    ",student number: " + studentNumber + ", " + 
    type );
  }

  public int compareTo(Student student)
  {
    int i = getLast().compareTo(student.getLast());
    if( i==0 )
      return getFirst().compareTo(student.getFirst());
    else
      return i;
  }
}

A compareTo method always compares the object itself, to the object 
passed in. For example, the following line of code compares “str1” to “str2”.

if( str1.compareTo(str2) )

As you can see, the compareTo method first compares the last names.  If 
the last names are the same, then the first names are compared.  If the first 
and last names happen to be equal then the other object is considered to be 
the same, and the “compareTo” method will return 0.  For more information 
on the return values of compareTo, see Chapter 10.

Integrating the Student Class
Now the student list example will be modified to use objects.  This is not 

as big of a change as it might seem.  The student list was previously made 
up of strings.  Since the Student object can now be displayed like a string, 
because it has a toString method, much of the code remains the same.  

The new StudentList example, which uses objects, is shown in Listing 
14.3.

Listing 14.3: Creating a Student List (StudentList.java)

import java.io.*;

public class StudentList
{
  // used to read from the user
  static BufferedReader in;   
  
  // how many students are there currently

Important
You are not required 
to include toString 
and compareTo 
functions in your 
programs, but it is 
usualy a good idea.



Java for the Beginning Programmer248

  static int studentCount;

  // the student list
  static Student studentList[];

  public static void bubbleSort(Student data[],
    int size)
  {
    boolean done = false;
    int index;

    while (done == false)
    {
      done = true;
      for (index=1 ; index < size;index++)
      {
        if (data[index].compareTo(data[index-1])<0)
        {
          // swap data[index] and data[index-1]
          Student temp          = data[index];
          data[index]   = data[index-1];
          data[index-1] = temp;
          done = false;
        }
      }
    }
  }

  public static void addStudent()
  {
    System.out.println("");
    System.out.println("*** Add Student ***");
    if( studentCount >24 )
    {
      System.out.println(
        "There are already 25 students, " +
        "which is the most you can have.");
      return;
    }

    System.out.print("Enter student’s first name> ");
    String first = readInput();
    System.out.print("Enter student’s last  name> ");
    String last = readInput();
    System.out.print(



249Chapter 14: More Object Oriented 

      "Enter student’s type(i.e.  Freshman> ");
    String type = readInput();
    System.out.print("Enter student’s number> ");
    String n = readInput();

    Student student = new Student();

    try
    {
      int num = Integer.parseInt(n);
      student.setStudentNumber(num);
      student.setFirst(first);
      student.setLast(last);
      student.setType(type);
    }
    catch(NumberFormatException e)
    {
      System.out.println(
        "You did not enter a valid student number.");
      return;
    }
    catch(TypeException e)
    {
      System.out.println(e.getMessage());
      return;
    }

    studentList[studentCount] = student;
    studentCount = studentCount + 1;

    bubbleSort(studentList,studentCount);

  }

  public static void deleteStudent()
  {
    System.out.println("");
    System.out.println("*** Delete Student ***");
    if( studentCount == 0 )
    {
      System.out.println(
        "There are no students yet, no one to "+
        "delete.");
      return;
    }



Java for the Beginning Programmer250

    for(int i=0; i<studentCount; i++ )
    {
      System.out.println( (i+1) + ":" + 
        studentList[i] );
    }

    System.out.print(
      "Which student number do you wish to delete> ");
    String str = readInput();
    int number = 0;

    try
    {
      number = Integer.parseInt( str );
    }
    catch( NumberFormatException e)
    {
      System.out.println(
        "You did not enter a valid number.");
      return;
    }

    if( number<1 )
    {
      System.out.println(
        "Student number must be at least 1.");
      return;
    }

    if( number>studentCount )
    {
      System.out.println(
        "Student number must be less than " + 
        studentCount );
    }

    // now actually delete that student
    int i = number-1;
    while( i<studentCount )
    {
      studentList[i] = studentList[i+1];
      i = i + 1;
    }

    studentCount = studentCount - 1;



251Chapter 14: More Object Oriented 

  }

  public static void listStudents()
  {
    System.out.println("");
    System.out.println("*** List Students ***");
    if( studentCount == 0 )
    {
      System.out.println(
        "There are no students yet.");
      return;
    }

    for(int i=0; i<studentCount; i++ )
    {
      System.out.println( studentList[i] );
    }
  }

  // a simple method that inputs a line 
  // from the user and returns it
  public static String readInput()
  {
    try
    {
      String input = in.readLine();
      input = input.trim();
      return input;
    }
    catch(IOException e)
    {
    }
    return "";// an error occured
  }

  public static void main(String args[])
  {
    // setup the variables
    InputStreamReader inputStreamReader = 
      new InputStreamReader ( System.in );
    in = new BufferedReader ( inputStreamReader );
    studentList = new Student[25];
    studentCount = 0;

    // now display the main menu



Java for the Beginning Programmer252

    boolean done = false;

    while( done==false )
    {
      // print 25 blank lines to clear the screen
      for(int i=0;i<25;i++)
      {
        System.out.println("");
      }

      System.out.println(
        "*** Student List Main Menu ***");
      System.out.println("A> Add Student");
      System.out.println("D> Delete Student");
      System.out.println("L> List Students");
      System.out.println("Q> Quit program");
      System.out.print("Choose> ");

      // prompt the user
      String input = readInput();
      input = input.toUpperCase();
      char ch = input.charAt(0);
      switch( ch )
      {
        case 'A':
          addStudent();
          break;
        case 'D':
          deleteStudent();
          break;
        case 'L':
          listStudents();
          break;
        case 'Q':
          done = true;
          break;
        default:
          System.out.println(
            "Please choose a valid choice!");
      }
      System.out.println("");
      System.out.print("[Press any Enter/Return]");
      readInput();
    }
  }
}



253Chapter 14: More Object Oriented 

Now I will show you how each section of this program functions.  I will 
begin with the “main” method.

The Main Method

The main method does two things.  First it sets up the static instance 
variables, and secondly it performs the main loop.  In this section we will 
examine how the static instance variables and the main loop are setup.

The main method begins with the following lines:

    // setup the variables
    InputStreamReader inputStreamReader =  
      new InputStreamReader ( System.in );
    in = new BufferedReader ( inputStreamReader );
    studentList = new Student[25];
    studentCount = 0;

First the input stream is setup.  This is the same for any program that 
requires user input, except that the “in” variable is now a static instance 
variable, in this example.  This allows it to be accessed anywhere in the pro-
gram.  If you need to review reading from the user, refer to Chapter 4.

Next the studentList variable is set to an array of size 25 Student objects.  
Finally, the student count is set to zero.  The studentCount variable will al-
ways contain the number of students

The Main Loop

The main loop of the program displays the main menu and prompts the 
user for which option they would like to perform.  The main loop begins with 
the following lines of code.

// now display the main menu
boolean done = false;

while( done==false )
{
  // print 25 blank lines to clear the screen
  for(int i=0;i<25;i++)
  {
    System.out.println("");
  }



Java for the Beginning Programmer254

First, a while loop is started with the “done” variable.  The while loop 
will continue so long as the “done” variable is false, which is was just set to.  
The program will loop, displaying the main menu, until done is false.  This al-
lows the program to keep running after the user has chosen one of the main 
menu options.  Once the user finally chooses Quit, the done variable will be 
set to true, and the program will terminate.

The main loop also displays 25 blank lines.  This clears off anything that 
was previously on the screen, and makes the main menu more clear.

Next the program displays the main menu to the user and prompts for 
a choice, as seen here.

System.out.println("*** Student List Main Menu ***");
System.out.println("A> Add Student");
System.out.println("D> Delete Student");
System.out.println("L> List Students");
System.out.println("Q> Quit program");
System.out.print(“Choose> ");

// prompt the user
String input = readInput();
input = input.toUpperCase();
char ch = input.charAt(0);
switch( ch )
{
  case 'A':
    addStudent();
    break;
  case 'D':
    deleteStudent();
    break;

First the main menu is displayed.  Then the user is prompted for a line 
of text.  That line of text is converted to uppercase, otherwise we would have 
to compare against both ‘A’ and ‘a’ for add user.  Next, we use a switch/case 
to decide which option the user wants to do.  Each of the menu options has 
a method that carries it out.  The switch case decides which method needs 
to be called.

Adding a Student

To add a student, a new Student object is created and then added to the 
list.  The add a student method begins as shown here:



255Chapter 14: More Object Oriented 

System.out.println("");
System.out.println("*** Add Student ***");
if( studentCount >24 )
{
  System.out.println(
    "There are already 25 students, " +
    "which is the most you can have.");
  return;
}

System.out.print("Enter student's first name> ");
String first = readInput();
System.out.print("Enter student's last  name> ");
String last = readInput();
System.out.print(
  "Enter student's type(i.e.  Freshman> ");
String type = readInput();
System.out.print("Enter student's number> ");
String n = readInput();

First the method checks to see if there are already 25 students.  If there 
are, an error is displayed, and the method returns.  Then the program 
prompts the user for the first and last name of the student.  The user is also 
prompted for the student type and number.  No validation is done yet.  Even-
tually the program will validate to ensure that proper first and last names, as 
well as student numbers were entered.

Next, a Student object is created.

Student student = new Student();

try
{
  int num = Integer.parseInt(n);
  student.setStudentNumber(num);
  student.setFirst(first);
  student.setLast(last);
  student.setType(type);
}
catch(NumberFormatException e)
{
  System.out.println(
    "You did not enter a valid student number.");
  return;
}



Java for the Beginning Programmer256

catch(TypeException e)
{
  System.out.println(e.getMessage());
  return;
}

The student number is converted from a string to an int.  If this is an in-
valid number, then the exception is caught and an error message is printed.  
The rest of the attributes of the student object are set and if an invalid type is 
chosen, an exception is thrown and an error message displayed.

Once the student object has been setup, it is added to the list of stu-
dents.

studentList[studentCount] = student;
studentCount = studentCount + 1;

bubbleSort(studentList,studentCount);

The student is added to the last array element, pointed to by student-
Count.  Next, studentCount is increased by one.  Finally, bubbleSort is called 
to reorder the list.  The bubbleSort method works just as it does before, only 
it uses Student objects rather than Strings.  And because Student objects 
have a compareTo, just like String, the ONLY change require was changing 
all of the String objects to Student objects.

Deleting a Student

Deleting a student is somewhat more complex.  This is done in several 
parts:

 • Display a list of all students
 • Prompt user for which student to delete
 • Make sure the user entered a valid student
 • Actually delete the student

To display a list of all students the following code is used:

    System.out.println("");
    System.out.println("*** Delete Student ***");



257Chapter 14: More Object Oriented 

    if( studentCount == 0 )
    {
      System.out.println(
        "There are no students yet, "+
        "no one to delete.");
      return;
    }

    for(int i=0; i<studentCount; i++ )
    {
      System.out.println( (i+1) + ":" + 
        studentList[i] );
    }

First, a check is performed to see if there are any students.  If there are 
no students, then there is nothing to display.  If this is the case, the program 
will exit with an error message.

Next, the program loops through all students and displays each student, 
with a student number.  The student number is the array index of that stu-
dent plus one.  We add one to the student number so that there is no student 
with the student number of zero.  This is done mainly for looks.  People are 
used to seeing lists that start with one, not zero.

Then, the method prompts the user for the student number to delete 
and validates that student number.

System.out.print("Which student number do you wish to 
delete> ");
String str = readInput();
int number = 0;

try
{
  number = Integer.parseInt( str );
}
catch( NumberFormatException e)
{
  System.out.println(
    "You did not enter a valid number.");
  return;
}

if( number<1 )
{



Java for the Beginning Programmer258

  System.out.println(
    "Student number must be at least 1.");
  return;
}

if( number>studentCount )
{
  System.out.println(
    "Student number must be less than " 
    + studentCount );
}

As you can see, the student number is first read in as a string.  This 
string is then converted to an int.  The NumberFormat exception is caught, 
just in case the user enters an invalid number.  The number is checked to 
see if it is below 1 or above the total number of students.  Either of these is 
an error and causes the method to return.

Finally, we actually delete the student.  This is done with the following 
lines of code.

// now actually delete that student
int i = number-1;
while( i<studentCount )
{
  studentList[i] = studentList[i+1];
  i = i + 1;
}

studentCount = studentCount - 1;

Let me explain how this deletes a user (to see a more visual description 
refer back to Chapter 11).  The variable “i” is assigned to the array element 
that you want to delete.  Remember, we added one to every array element 
to show the user, so we need to subtract one to balance that.  If the user said 
to delete student 1, the first student, that is really array element 0, the first 
array element.

Listing the Students

The last operation that we will examine is listing the students.  This is 
probably the simplest of the operations.  The listStudents method is shown 
here.



259Chapter 14: More Object Oriented 

  public static void listStudents()
  {
    System.out.println("");
    System.out.println("*** List Students ***");
    if( studentCount == 0 )
    {
      System.out.println(
        "There are no students yet.");
      return;
    }

    for(int i=0; i<studentCount; i++ )
    {
      System.out.println( studentList[i] );
    }
  }

This method begins by checking to see if there are any students.  If 
there are none, that is displayed and the method exits.  Next, the method 
loops over the entire array and displays each student.  The students are dis-
played in the order they were added.  

The data for each student is displayed by using the “toString” function 
that was created earlier for the “Student” class.  As you can see, the students 
are displayed simply by passing each student object, which is an array ele-
ment, to the “println” method.  As previously discussed, this automatically 
calls the “toString” function.

Chapter Review
In this chapter we modified the student list example to use objects.  This 

required some changes to both the Student class and the StudentList class 
as well.  The Student class was enhanced to include both a toString and 
compareTo method.  The “toString” method allows the student object to 
be quickly converted to a string for printing.  The compareTo method com-
pares this Student object to another object to determine which one comes 
first alphabetically.  In the case of the Student class, we sort first by last 
name, and secondly, by first name.



Java for the Beginning Programmer260

New Terms

compareTo  A function, which the programmer can optionally provide, that 
is used to compare the class to another class.

toString A function, which the programmer can optionally provide, that is 
used to convert the object into a String.

Review Questions
1.  Briefly describe what the purpose of the toString function is.

2.  Briefly describe what the purpose of the compareTo function is.  

3.  What is the connection between the bubble sort and the compareTo func-
tion? 

4.  Is it REQUIRED that each class that you create contain both a toString 
and compareTo function?

5.  What is printed out for an object that has no toString function?



261Chapter 14: More Object Oriented 

Assignment #12
Extend the computer class that you created in Assignment #12.  You should 
extend the class to include a toString and a compareTo function.  The toString 
function should print out all information on the computer.  The compareTo 
function should compare two computer's names.

 



263Chapter 15: GUI Programming 

CHAPTER 15:  GUI PROGRAMMING

In Chapter 15 you will learn about:
• What is Swing?
• Java GUI Applications
• Displaying Data to the User
• Reading Data from the User

So far our applications have been text only.  In this chapter you will see 
how to interact with the user with windows.

Java GUI Applications
So far we have only seen text based console applications.  However, 

most of the applications that you use everyday are not text based console 
applications.  Most applications these days are GUI applications.  GUI stands 
for Graphical User Interface.  By GUI applications I mean that they take 
advantage of such visual items as:

 • Menu Bars
 • Multiple Windows
 • Icons
 • Toolbars
 • Multi-Font Display

Java is quite capable of creating these types of applications.  In this book 
I will show you only the beginnings of how to create such applications.  

To create a GUI application you must use a part of Java called Swing.

What is Swing
Swing allows Java to create graphical applications.  Swing applications 

can use all of the graphical elements that make up most applications today.  
Figure 15.1 shows a Swing application written in Java.



Java for the Beginning Programmer264

Figure 15.1: A Swing Application

This application makes use of many features in Swing.  As you can see 
this application contains many of the features you would normally see in a 
Windows application.  

Using Swing
In this book you will learn to use Swing.  I will focus on the dialog boxes 

provided by JOptionPane.  These dialog boxes can be broken up into four 
groups.

 • Confirmation Dialog Boxes
 • Input Dialog Boxes
 • Message Dialog Boxes
 • Option Dialog Boxes

Confirmation dialog boxes ask the user to confirm things, in a yes/no 
fashion.  For example, “Delete the file yes/no”.  Input dialog boxes prompt 
the user for a line of text.  Message Dialog Boxes are used to display infor-
mation to the user.  Option Dialog Boxes combine features of the previous 
three dialog box types.

I will now show you how each of these dialog box types work.

Using Message Dialog Boxes
Message Dialog Boxes are used to present information to the user.  Fig-

ure 15.2 shows a simple Message Dialog Box.

Learning Objective #1
Learn to use 
message dialogs.



265Chapter 15: GUI Programming 

Figure 15.2: A Message Dialog Box

Creating a Message Dialog Box is very easy.  Listing 15.1 shows the 
program used to create the Message Dialog Box shown in Figure 15.2.

Listing 15.1: Creating a Message Dialog Box (MessageDialog.java)

import javax.swing.*;

public class MessageDialog
{
  public static void main(String args[])
  {
    JOptionPane.showMessageDialog(
      null,
      "Hello World",
      "My Swing Application",
      JOptionPane.ERROR_MESSAGE);
  }
}

As you can see, the Message Dialog Box is displayed using the JOp-
tionPane.showMessageDialog method.  There are four parameters that are 
passed to this method.  The first, which is null in this case, specifies the par-
ent window of this message box.  For this book, this parameter will always 
be null.  The next parameter, “Hello World,” specifies the text that will be 
displayed for this dialog box.  The third parameter, “My Swing Application,” 
specifies the title of the dialog box.  The fourth parameter specifies what 
icon will be displayed.  In this case we are using the ERROR_MESSAGE 
icon.  You can choose from any of the following:

 • ERROR_MESSAGE
 • INFORMATION_MESSAGE
 • WARNING_MESSAGE
 • QUESTION_MESSAGE
 • PLAIN_MESSAGE

By specifying different icon types you can customize the look of the 
dialog box to suit the purpose it is being used for.



Java for the Beginning Programmer266

Using Confirm Dialog Boxes
The dialog box used in the last section can display data to the user.  

However, the user can not interact with the dialog box in any way.  The user 
simply clicks “OK” and the dialog box goes away.  Confirm Dialog Boxes 
allow a limited degree of interactivity with the user.  Figure 15.3 shows a 
Confirm Dialog Box.

Figure 15.3: A Confirm Dialog Box

As you can see, this dialog box contains more than one button.  The user 
is allowed to click either the “Yes” or “No” button.  Using a Confirm Dialog 
Box you can quickly prompt the user for yes/no questions.  The code used 
to produce Figure 15.3 is shown in Listing 15.2.

Listing 15.2: A Confirm Dialog Box (ConfirmDialog.java)

import javax.swing.*;

public class ConfirmDialog
{
  public static void main(String args[])
  {
    int i = JOptionPane.showConfirmDialog(null,
      "Do you like the color red?",
      "My Swing Application",
      JOptionPane.YES_NO_OPTION);

    if( i==JOptionPane.YES_OPTION )
    {
      JOptionPane.showMessageDialog(
        null,
        "Good, I like it too!",
        "My Swing Application",
        JOptionPane.ERROR_MESSAGE);
    }
    else
    {
      JOptionPane.showMessageDialog(

Learning Objective #2
Learn to use 
confirm dialogs.



267Chapter 15: GUI Programming 

        null,
        "Why? It is a very nice color!",
        "My Swing Application",
        JOptionPane.ERROR_MESSAGE);
    }
  }
}

Confirm Dialog Boxes are good for when you do not need to input any 
textual data from the user.  You just need to ask a yes/no question.  In the 
next section we will see how you can use Input Dialog Boxes to prompt the 
user for information.

Using Input Dialogs
We already saw that console programs can input a line of text.  Inputting 

a single line of text from the user with a Swing application can be done with 
an Input Dialog Box.  Input Dialog Boxes display a line to tell the user what 
to enter, then an OK and Cancel button.  Figure 15.4 shows a simple Input 
Dialog Box.

Figure 15.4: An Input Dialog Box

As you can see, the Input Dialog Box can prompt the user to input text 
information.  Just like any string, if you want numeric information, convert 
the string to a number using Integer.parseInt, or a similar function.  Listing 
15.3 shows the Java code used to create this dialog box.

Listing 15.3: An input Dialog Box (InputDialog.java)

import javax.swing.*;

public class InputDialog
{
  public static void main(String args[])
  {
     String name = JOptionPane.showInputDialog(null,
       "Please enter your name?",

Learning Objective #3
Learn to use 
input dialogs.



Java for the Beginning Programmer268

       "My Swing Application",
       JOptionPane.QUESTION_MESSAGE);

     JOptionPane.showMessageDialog(
        null,
        “Hello “ + name,
        “My Swing Application”,
        JOptionPane.INFORMATION_MESSAGE);
  }
}

As you can see the showMessageDialog method accepts four param-
eters.  The first specifies the parent window, since there is none, we pass in 
null.  The second is the prompt to display.  The third is the title of the dialog 
box.  The third is the icon to display.  You can chose from any of the icon 
types previously mentioned.

The string that the user entered is returned.  For this program we dis-
play the name that the user entered.

Another important point of the Input Dialog Box is what happens when 
the user clicks the cancel button.  If the user clicks the cancel button than 
“null” is returned for the string.  Because of this it is very important to check 
for “null” when the Input Dialog Box returns.

Using Option Dialog Boxes
We have already seen the Confirm Dialog Box that allows you to ask 

the user Yes/No questions.  What happens if you have more answers than 
just Yes/No.  If you need more answers, you can use the Option Dialog Box.  
Figure 15.6 shows an Option Dialog Box.

Figure 15.5: An Option Dialog Box

Important
Input dialogs will 
return null if the 
user clicks cancel.

Learning Objective #4
Learn to use 
option dialogs.



269Chapter 15: GUI Programming 

As you can see the above dialog box looks very similar to the Confirm 
Dialog Box.  The main difference is that rather than just having “Yes” and 
“No”, you can choose from additional options such as “Red”, “Green”, etc.  
Option Dialog Boxes allow you to specify what the answers are.  Listing 
15.4 shows the Java code that was used to produce the above Option Dialog 
Box.

Listing 15.4: An Option Dialog (OptionDialog.java)

import javax.swing.*;

public class OptionDialog
{
  public static void main(String args[])
  {

    Object[] options = { "Red", "Green", "Blue", "Oth-
er" };

    int color = JOptionPane.showOptionDialog(
      null,
      "What is your favorite color?",
      "My Swing Application",
      JOptionPane.DEFAULT_OPTION,
      JOptionPane.QUESTION_MESSAGE,
      null,
      options,
      options[0]);

     JOptionPane.showMessageDialog(
        null,
        "You entered " + options[color],
        "My Swing Application",
        JOptionPane.INFORMATION_MESSAGE);
  }
}

As shown above, the showOptionDialog method accepts eight param-
eters.  These additional parameters allow the programmer to control its ap-
pearance.  The first parameter specifies the parent window, since there is 
no parent window, this parameter is null.  The second parameter specifies 
the prompt that is to be displayed to the user.  This tells the user what they 
are entering.  The third parameter specifies he name of the application.  The 
fourth specifies options for the option box.  The fifth parameter specifies 
the icon type to be used, which uses the same options as already shown in 
previous dialog boxes.  The sixth parameter specifies a custom icon to use.  



Java for the Beginning Programmer270

There is none, so we provide a null. This parameter accepts any Java Icon 
object.  The seventh parameter specifies the list of options, which is an array 
of strings.  The eight parameter specifies which of the options should be the 
default option.

Chapter Review
In this chapter you learned how to create graphical applications.  Java 

provides common dialog boxes that you can use for common functions.  
Java’s common dialog boxes are the message, confirm, input and Option 
Dialog Box.  The Message Dialog Box displays messages to the user.  The 
Confirm Dialog Box asks the user a yes/no question.  The Input Dialog Box 
allows the user to enter a line of text.  The Option Dialog Box allows the user 
to select from a predefined set of choices.



271Chapter 15: GUI Programming 

New Terms

GUI  Graphical User Interface (GUI) applications use windows, menus and 
other graphical elements to communicate with the user.

Confirm Dialog Box A Confirm Dialog Box prompts the user with Yes/No 
or Yes/No/Cancel options.

Input Dialog Box An Input Dialog Box allows the user to enter text.

Message Dialog Box A Message Dialog Box displays a message to the 
user.

Option Dialog Box An Option Dialog Box presents the user with several 
options.

Swing Swing is a set of classes that Java makes available to the user to 
implement GUI applications.

Review Questions
1.  Describe what a Confirm Dialog Box might be used for.

2.  Describe what an Input Dialog Box might be used for.  

3.  Describe what a Message Dialog Box might be used for.  

4.  Describe what an Option Dialog Box might be used for.

5.  What is happens if the user clicks cancel for the Input Dialog Box?



Java for the Beginning Programmer272

Assignment #13
Write a simple program, named Assignment14, that will prompt the user for 
the length and width of a rectangle.  Display the area of that rectangle.  This 
application should be implemented as a GUI application.

 



275Chapter 16: Final Exam

CHAPTER 16:  FINAL EXAM

Chapter 16 contains an example Final Exam.  Some questions will have 
more than one correct answer.  Appendix B contains the answers, and a 
review of the correct answer.  

1.  A while loop will execute at least once?

 A> True

 B> False 

 

2.  Which of the following commands is used to run a Java application?

 A> run

 B> javac

 C> java

 D> execute

  

3.  You would like to use Java to display a chart on a website.  What do you use?

 A> Console Application

 B> GUI Application

 C> Java Applet



Java for the Beginning Programmer276

4.  Which of the following Java data types could be used to hold the number 
3.5? (more than one may be correct)

 A> float

 B> double    

 C> int

5.  How do you compare stra to strb, assuming both are strings?

 A> if( stra==strb )

 B> if( stra.equals(strb) )

 C> if( stra = strb )

6.  A switch/case is often used to replace an if/else ladder.

 A> True

 B> False



277Chapter 16: Final Exam

7.  Which of the following would you most likely store inside of a String?

 A> The name of your father.

 B> The year that a person was born.

 C> The price of butter.

8.  Which of the following variable types can not hold decimal places? (i.e.  
3.31). (more than one may be correct)

 A> byte

 B> short     

 C> int     

 D> long

 E> float

 F> double



Java for the Beginning Programmer278

9.  What numbers would the following loop count through?

for(int i=0;i<10;i++)

 

 A> 0,1,2,3,4,5,6,7,8,9,10     

 B> 1,2,3,4,5,6,7,8,9,10

 C> 0,1,2,3,4,5,6,7,8,9

 D> 1,2,3,4,5,6,7,8,9

10.  What happens when an Exception occurs inside of a try block, and there is 
a catch block that handles this sort of exception?

 A> The program terminates(crashes)

 B> An error message is displayed and the program continues.

 C> The program executes the catch block.

11.  Which index item(i.e.  array[index item]) do arrays start with?

 A> 0   

 B> 1

 C> double



279Chapter 16: Final Exam

12.  How do you know when a bubble sort is done?

 A> It is done when you reach the last element of an array

 B> It is done when it finds the first pair of elements that does not need 
to be swapped.

 C> It is done when it makes it through the array with no swaps.  
   

13.  What is true of instance variables in properly written Object Oriented 
Program (OOP) programs?

 A> They should be only accessed through getters/setters  

 B> Nothing is wrong with public variables.

 C> Public variables are okay, but you must make them static as well.

14.  What would be the output of the following? 

String str=”Java”;
System.out.println( str.charAt(0) );
 

 A> Nothing, it would throw an out of bounds error.

 B> J

 C> a



Java for the Beginning Programmer280

15.  How far would the following loop count? 

for(int i=1;i<10;i++)
 

 A> 0 to 10.

 B> From 1 to 9.

 C> From 0 to 9.

16.  What does the Java import statement do?

 A> Displays a line of text.

 B> Not a valid Java statement.

 C> Allows your program to use other classes.

17.  Are Java variable names case sensitive?

 A> Yes.

 B> No.



281Chapter 16: Final Exam

18.  What is the output of the following? 

String str = "Java";
System.out.println( str.length() );

 A> 1

 B> 2

 C> 3

 D> 4

 E> Nothing, an exception would be thrown.



Java for the Beginning Programmer282

19.  Which of the following makes use of Java’s single-line comment?

 A> 

  # Comment line 1

  #comment line 2

 B>

  // Comment line 1

  // Comment line 2

 C>

  -- Comment line 1

  -- Comment line 2

 D> 

  /* Comment line 1

  Comment line 2 */

  

20.  How do you create an array of 10 int’s?

 A> int x[] = new int[10];

 B> int x() = new int(10);

 C> int x[10];



283Chapter 16: Final Exam

21.  Is the following code correct (i.e.  will not throw an exception)?  

int x[];
x = new int[10];
x[10] = 5;

 A> Yes.

 B> No.

22.  What happens when you pass a bad number (i.e.  “33jj2”) to the Integer.
parseInt method?

 A> A NumberFormatException is thrown.

 B> The method would return 0.

 C> The method would return -1.

 D> The method would return null.

23.  If the variable str contains a string and the variable d contains a double, 
how do you convert str into a double?

 A> d = str;

 B> d = val(str);

 C> d = Double.parseDouble(str);

 



Java for the Beginning Programmer284

24.  What is the purpose of the substr method of the String class?

 A> It subtracts a string.

 B> It gets the length of the string.

 C> It can be used to break the string into smaller pieces 

25.  How large is the following array? String str[15]

 A> Not valid, you don’t declare a string in Java with a length.

 B> 15     

 C> 14



287Glossary

GLOSSARY

.class  A file type that holds a compiled Java program/class.  (Chapter 2)

.java  A file type that holds the source code for a Java program/class.  (Chap-
ter 2)

A

Applet  A Java application that runs from within a web browser.  (Chapter 
1)

array  An array is a list of objects or primitive datatypes.  Arrays start at 
index zero.  (Chapter 11)

B

boolean  A primitive datatype that holds true or false.  (Chapter 3)

Boolean class  A holder class for the boolean primitive datatype.  (Chapter 
3)

break  If a break is placed inside of a case statement, the execution for that 
case statement ends.  If a break is placed inside of a loop, the loop termi-
nates.  (Chapter 9)

Bubble Sort  A bubble sort is a method by which a list of items can be 
sorted.  The bubble sort swaps pairs of items until the list is sorted.  (Chap-
ter 12)

BufferedStreamReader  A Java class that is used to read data from a de-
vice.  For this book, it is used only to read data from the keyboard.  (Chapter 
4)

By Reference  Variables can be passed to methods and functions “by refer-
ence”.  If this is the case, then changes made to the argument in the method 
will remain after the method terminates.  (Chapter 6)

By Value  Variables can be passed to methods and functions “by value”.  If 
this is the case, a copy of the variable is passed to the method or function, 
this then changes made to the argument in the method will not remain after 
the method terminates.  (Chapter 6)

byte  A Java primitive data type that holds very small numbers that would fit 
into a single byte.  (Chapter 3)



Java for the Beginning Programmer288

Byte class  A holder class for the byte primitive datatype.  (Chapter 3)

C

case  A case statement occurs inside of a switch statement.  There is one 
case statement for each decision that the switch/case will make.  (Chapter 
5)

catch  The catch-block allows the Java program to handle its own errors, 
and not simply terminate when an exception happens.  When an exception 
occurs inside of a try-block, the code inside of the catch-block is executed to 
handle that error.  (Chapter 4)

char  A primitive data type that holds single characters.  To hold multiple 
characters, see the String class.  (Chapter 3)

Character  A character is the building block of the String.  Individual char-
acters, which usually correspond to keys on the keyboard, make up strings.  
(Chapter 10)

charAt  The charAt function is a part of the String class.  It is used to obtain 
an individual character inside of a string.  (Chapter 10)

Child Class  A child class is a class that inherits from a parent, or base, 
class.  Has the same meaning as subclass.  (Chapter 13)

Class  A class is an object data type provided by Java or the program.  (Chap-
ter 6)

Comment  A note that is placed in the program by the programmer.  The 
comment has no effect on the way that the program runs.  Comments can 
be single line or multi-line.  (Chapter 3)

compareTo  The compareTo function is a part of the String class.  It deter-
mines the placement of two strings.  For example, strA.compareTo(strB) 
would return 0 if the two strings are equal, a number less than 0, if strA 
comes before strB.  Or a number greater than 0, if strB comes before strA.  
(Chapter 12)

Compile  When java source code is compiled into a form that the computer 
can easily understand.  This converts a .java file into a .class file.  (Chapter 
2)

Confirm Dialog Box A confirm dialog box prompts the user with Yes/No or 
Yes/No/Cancel options. (Chapter 15)

Console Application  A Java application that can only display text.(Chapter 
1)



289Glossary

Constant  A variable that holds a fixed value and cannot be changed.  Java 
constants always start with the keyword final.  (Chapter 3)

continue  The continue statement causes the current loop to jump back to 
the top of the loop, without processing the rest of the code in the loop’s body.  
(Chapter 9)

crash  When a program stops in an unplanned manner.  Usually the crash is 
the result of an exception that was not caught.  (Chapter 4)

Cross Platform  The ability for a program to run on more than one type of 
computer system.  (Chapter 1)

D

Declare  A variable, or array, is declared when its name and type are given.  
For example int i declares a variable of type “int”, named “i”.  (Chapter 11)

default  If none of the case statements are executed, and a default statement 
is provided, the default statement will be executed.  (Chapter 5)

Default Access When something has default access, other method’s ob-
jects can access this method or variable if they are in the same package.  
(Chapter 13)

Do/While Loop  The do/while loop is one of Java’s three loop types.  The 
do/while loop will execute its body one or more times so long as a condition 
is true.  The main difference between the while and do/while loops is that 
the do/while is guaranteed to execute at least once.  (Chapter 9)

double  A Java primitive datatype that can hold floating point numbers.  The 
double datatype is larger than the float datatype.  (Chapter 3)

Double class  A holder class for the double primitive datatype.  (Chapter 
3)

E

else  The else statement works with the if statement.  If the if statement does 
not execute, then the else statement will be executed.  (Chapter 5)

equals  The equals method can be used to compare two strings.  For ex-
ample str.equals(“Java”) compares str to “Java”.  (Chapter 5)

equalsIgnoreCase  The equalsIgnoreCase method can be used to compare 
two strings, without regard to case.  For example str.equalsIgnoreCase(“Java”) 
compares str to “Java,” “JaVa” etc.  (Chapter 5)



Java for the Beginning Programmer290

Exception  An exception occurs in Java when an error occurs.  Exceptions, 
if not caught, will cause the program to crash.  (Chapter 4)

Execute  When your Java program begins execution.  Execute has the same 
meaning as run.  (Chapter 2)

F

final  The Java keyword that designates a variable as constant.  (Chapter 3)

float  A Java primitive data type that holds floating point numbers.  The float 
datatype is smaller than the double datatype.  (Chapter 3)

Float class  A holder class for the float primitive datatype.  (Chapter 3)

For Loop  The for loop is one of Java’s three loop types.  The for loop will 
execute its body over a range of values, so long as a condition is true.  The 
for loop may execute zero times, if its condition is is not true.  (Chapter 9)

Function  A reusable block of code that can be called from elsewhere in the 
program.  A function returns a value.  (Chapter 6)

G

getter  A getter is a public function used to access the value of a non-public 
class level variable.  (Chapter 13)

GUI  Graphical User Interface (GUI) applications use windows, menus and 
other graphical elements to communicate with the user.  (Chapter 15)

GUI Application  A Java application that uses Windows and the mouse.  
(Chapter 1)

H,I

if  The if statement allows Java to make decisions and compare variables.  
(Chapter 5)

if/else Ladder  A series of if/else statements together is called a if/else lad-
der.  If/else ladders are often replaced with switch/case statements.  (Chap-
ter 5)

indent  Java source code is indented to make it appear clearer.  (Chapter 3)

index  An index is a number that references a character position or array 
element.  Both character positions and array elements start at index zero.  
(Chapter 11)



291Glossary

indexOf  The indexOf function is a part of the String class.  It is used to 
search the string for substrings or characters.  (Chapter 10)

Initialize  An array or object is initialized when it is assigned a value.  An 
array must be instantiated before it can be initialized.  (Chapter 11)

Input Dialog Box An input dialog box allows the user to enter text.  (Chap-
ter 15)

InputStreamReader  A Java class that is used to read data from a device.  
For this book, it is used only to read data from the keyboard.  (Chapter 4)

Instance Function  A function that is not declared static.  To access an 
instance function the class must have been instantiated with the “new” op-
erator.  (Chapter 6)

Instance Method  A method that is not declared static.  To access an in-
stance function the class must have been instantiated with the “new” opera-
tor.  (Chapter 6)

Instance Variable  A variable that is not declared static.  To access an in-
stance variable the class must have been instantiated with the “new” opera-
tor.  (Chapter 6)

Instantiate  An array or object is instantiated when the object is actually 
allocated using the “new” operator.  An array or object must be declared 
before it can be instantiated.  (Chapter 11)

int  A Java primitive datatype used to hold numbers.  The int datatype is 
smaller than the long datatype, but larger than the short datatype.  (Chapter 
3)

Integer class  A holder class for the integer primitive datatype.  (Chapter 
3)

interface  An interface is like a class, except it only defines methods and 
functions.  The methods and functions are only defined, not actually created.  
Then any class that implements the interface must also implement the meth-
ods and functions defined by the interface.  (Chapter 13)

J

java  The command to execute/run a Java application.  (Chapter 2)

javac  The command to compile a Java application.  (Chapter 2)

K,L



Java for the Beginning Programmer292

length  The length function is a part of the String class.  It is used to obtain 
the length of a string.  (Chapter 10)

Local Variable  A variable that is local to a method or function.  Any value 
assigned to the variable only has meaning in the method, and will lose its 
value when the method returns.  (Chapter 6)

long  A Java primitive datatype used to hold numbers.  The long datatype is 
larger than the int datatype.  (Chapter 3)

Long class  A holder class for the long primitive datatype.  (Chapter 3)

Loop  A loop is a block of code that is executed until a condition is no longer 
true.  (Chapter 9)

M

Message Dialog Box A message dialog box displays a message to the user.  
(Chapter 15)

Method  A reusable block of code that can be called from elsewhere in the 
program.  A method does not return a value.  (Chapter 6)

N

Nested Loop  A nested loop is a loop that is placed inside of another loop.  
(Chapter 9)

NumberFormatException  An exception that occurs when a non-number 
string is passed to one of the parse functions.  For example, the string “182g” 
would produce this exception if used with Integer.parseInt.  (Chapter 4)

Numeric Datatype  A datatype that holds numbers, and can have math-
ematical operations performed on it.  (Chapter 4)

O

Object  An instance of a class.  (Chapter 6)

Option Dialog Box An option dialog box presents the user with several op-
tions.  (Chapter 15)

P

Parent Class  A parent class has one, or more, subclasses.  (Chapter 13)



293Glossary

Parse  Parsing is the process where the computer processes a string and 
converts it into a form that the computer can understand.  For example, 
parsing a telephone number would likely involve removing any hyphen and 
parenthesis characters form the string and leaving only digits.  (Chapter 
10)

Primitive Data Type  A datatype that is not a class.  Java’s primitive datatypes 
are: char, byte, short, int, long, float, double and boolean.  (Chapter 3)

print  A Java method that will display a line of text, but not move to the next 
line.  (Chapter 4)

println  A Java method that will display a line of text, and will move to the 
next line.  (Chapter 4)

private  When something has private access only methods in this class can 
access this variable or method.  (Chapter 13)

protected  When something has protected access only subclasses of this 
object can access the variable or method.  (Chapter 13)

public  When something has public access any other object’s methods can 
access this variable or method.  (Chapter 13)

R,S

readLine  A Java method that prompts the user to enter a line of text.  The 
user is allowed to enter text until the user presses the ENTER key.  (Chapter 
4)

setter  A setter is a public method used to change the value of a non-public 
class level variable.  (Chapter 13)

short  A Java primitive datatype that holds numbers.  The short datatype is 
smaller than the int datatype.  (Chapter 3)

Short class  A holder class for the short primitive datatype.  (Chapter 3)

Source Code  The instructions that a programmer enters to create an ap-
plication.  (Chapter 1)

static  A Java keyword that can be applied to a variable, method, function 
or other Java construct.  See “Static Function”, “Static Method”, or “Static 
Variable”. (Chapter 6)

Static Function  A function that is declared static.  A static function can be 
accessed either through an instance or directly through the class.  (Chapter 
6)



Java for the Beginning Programmer294

Static Method  A method that is  declared static.  A static function can be 
accessed either through an instance or directly through the class.  (Chapter 
6)

Static Variable  A variable that is declared static.  A static variable can be 
accessed either through an instance or directly through the class, if it is 
declared at the class level.  If the static variable is declared in a function or 
method, then it will hold its value, even after the method terminates.  (Chap-
ter 6)

String  A String is a Java datatype that holds text information.  A String is 
made up of individual characters.  (Chapter 10)

String Datatype  A datatype that holds text information.  You cannot pre-
form mathematical operations on the String.  (Chapter 4)

Subclass  A subclass is a class that inherits from a parent, or base, class.  
Subclass has the same meaning as child class.  (Chapter 13)

substr  The substr function is a part the String class.  It is used to break the 
string into smaller “substrings”.  (Chapter 10)

Swap  A swap occurs when the contents of two variables must be ex-
changed.  To properly swap two variables, a third, temporary variable is 
needed.  (Chapter 12)

Swing is a set of classes that Java makes available to the user to implement 
GUI applications.  (Chapter 15)

switch  Used to compare a variable to any of the provided case statements.  
If no case statement matches, the default statement(if provided) will be ex-
ecuted.  (Chapter 5)

System  A Java class that provides many important methods and variables 
for interacting with the computer system.  (Chapter 4)

System.in The standard input.  This variable is used to receive keyboard 
input from the user.  (Chapter 4)

System.out  The standard output.  This variable is used to display data on 
the console.  (Chapter 4)

T

Temporary Variable  A temporary variable is a variable that is used as a 
place holder for something for a very short time.  A temporary variable is 
almost always a local variable.  (Chapter 12)



295Glossary

toString A programmer can provide a toString method, which is used to 
convert the object to a String. This allows an object, such as “obj” to be 
printed to the screen using a simple System.out.println call.  (Chapter 12)

try  The try-block encloses code that might cause an exception.  If an ex-
ception does happen in a try block, the try block’s catch-block is execute.  
(Chapter 4)

Type Cast  To convert from one datatype to another.  A cast is usually de-
noted by the desired datatype in parenthesis, such as (int).  (Chapter 3)

U,V,W,X,Y,Z

While Loop  The while loop is one of Java’s three loop types.  The while loop 
will execute its body one or more times so long as a condition is true.  The 
main difference between the while and do/while loops is that the while is 
not guaranteed to execute at least once.  (Chapter 9)



297Appendix A: Downloading Examples

APPENDIX A:  DOWNLOADING EXAMPLES

This book contains many source code examples.  You do not need to 
retype any of these examples, they all can be downloaded from the Internet.  
Simply go to the site:

http://www.heatonresearch.com/download/

This site will give you more information on how to download the ex-
ample programs.



299Appendix B: Final Exam Answers

APPENDIX B:  FINAL EXAM ANSWERS

1.  A while loop will execute at least once?

 A> True

 B> False 

Correct answer: B
The only loop that will execute at least once is the do/while loop.  The for or 
while loop may execute zero times if the condition is not initially true.

2.  Which of the following commands is used to run a Java application?

 A> run

 B> javac

 C> java

 D> execute

Correct answer: C

The java command will run a Java program.  The javac command will com-
pile a Java program.  The run and execute commands do not exist for Java.



Java for the Beginning Programmer300

3.  You would like to use Java to display a chart on a website.  What do you use?

 A> Console Application

 B> GUI Application

 C> Java Applet

Correct answer: C

Because this application is going to be run from the web, an applet is best.  Oth-
erwise, if not for the web, a GUI application would have been used.

4.  Which of the following Java data types could be used to hold the number 
3.5? (more than one may be correct)

 A> float

 B> double    

 C> int

Correct answers: A, B

The datatypes float and double are the only datatypes listed that support float-
ing point.



301Appendix B: Final Exam Answers

5.  How do you compare stra to strb, assuming both are strings?

 A> if( stra==strb )

 B> if( stra.equals(strb) )

 C> if( stra = strb )

Correct answer: B

Never use = or == to compare two strings

6.  A switch/case is often used to replace an if/else ladder.

 A> True

 B> False

Correct answer: A

Switch/case can often be used to replace a if/else ladder, for integer values.

7.  Which of the following would you most likely store inside of a String?

 A> The name of your father.

 B> The year that a person was born.

 C> The price of butter.

Correct answer: A

Strings are used to store text, which the name of your father would be.



Java for the Beginning Programmer302

8.  Which of the following variable types can not hold decimal places? (i.e.  
3.31).(more than one may be correct)

 A> byte

 B> short     

 C> int     

 D> long

 E> float

 F> double

Correct answer: A, B, C, D

Of the listed datatypes only float and double allow decimal places.

9.  What numbers would the following loop count through?

for(int i=0;i<10;i++)

 

 A> 0,1,2,3,4,5,6,7,8,9,10     

 B> 1,2,3,4,5,6,7,8,9,10

 C> 0,1,2,3,4,5,6,7,8,9

 D> 1,2,3,4,5,6,7,8,9

Correct answer: C

This loop starts at zero and goes up through 9.

10.  What happens when an Exception occurs inside of a try block, and there is 



303Appendix B: Final Exam Answers

a catch block that handles this sort of exception?

 A> The program terminates(crashes)

 B> An error message is displayed and the program continues.

 C> The program executes the catch block.

Correct answer: C

If an exception happens in a try block the catch block will be executed.

11.  Which index item(i.e.  array[index item]) do arrays start with?

 A> 0   

 B> 1

 C> double

Correct answer: A

In Java arrays, the starting array index is zero.



Java for the Beginning Programmer304

12.  How do you know when a bubble sort is done?

 A> It is done when you reach the last element of an array

 B> It is done when it finds the first pair of elements that does not need 
to be swapped.

 C> It is done when it makes it through the array with no swaps.  

Correct answer: C

A bubble sort is done when there are no more swaps to be made.

   

13.  What is true of instance variables in properly written Object Oriented 
Program (OOP) programs?

 A> They should be only accessed through getters/setters  
   

 B> Nothing is wrong with public variables.

 C> Public variables are okay, but you must make them static 
as well.

Correct answer: A

All class variables should be accessed through getters/setters.



305Appendix B: Final Exam Answers

14.  What would be the output of the following? 

String str=”Java”;
System.out.println( str.charAt(0) );
 

 A> Nothing, it would throw an out of bounds error.

 B> J

 C> a

Correct answer: B

The above code displays the first character of the string, which is “J”.

15.  How far would the following loop count? 

for(int i=1;i<10;i++)
 

 A> 0 to 10.

 B> From 1 to 9.

 C> From 0 to 9.

Correct answer: B

The above loop will count from 1 to 9.



Java for the Beginning Programmer306

16.  What does the Java import statement do?

 A> Displays a line of text.

 B> Not a valid Java statement.

 C> Allows your program to use other classes.

Correct answer: C

The import statement allows your program to use other classes.

17.  Are Java variable names case sensitive?

 A> Yes.

 B> No.

Correct answer: A

Yes, Java is case sensitive.



307Appendix B: Final Exam Answers

18.  What is the output of the following? 

String str = "Java";
System.out.println( str.length() );

 A> 1

 B> 2

 C> 3

 D> 4

 E> Nothing, an exception would be thrown.

Correct answer: D

The string “Java” is 4 characters long.



Java for the Beginning Programmer308

19.  Which of the following makes use of Java’s single-line comment?

 A> 

  # Comment line 1

  #comment line 2

 B>

  // Comment line 1

  // Comment line 2

 C>

  -- Comment line 1

  -- Comment line 2

 D> 

  /* Comment line 1

  Comment line 2 */

Correct answers: B

The single line comment in Java is //, answer D is an example of the multi-line 
comment. 

  



309Appendix B: Final Exam Answers

20.  How do you create an array of 10 int’s?

 A> int x[] = new int[10];

 B> int x() = new int(10);

 C> int x[10];

Correct answers: A

Answer A has the correct syntax to create an array.

21.  Is the following code correct (i.e.  will not throw an exception)?  

int x[];
x = new int[10];
x[10] = 5;

 A> Yes.

 B> No.

Correct answers: B

The code creates a 10 length array.  This array ranges from 0 to 9.  So accessing 
element 10 is out of bounds and will throw an exception.



Java for the Beginning Programmer310

22.  What happens when you pass a bad number (i.e.  “33jj2”) to the Integer.
parseInt method?

 A> A NumberFormatException is thrown.

 B> The method would return 0.

 C> The method would return -1.

 D> The method would return null.

Correct answer: A

If Java cannot parse the number, a NumberFormatException will be thrown.

23.  If the variable str contains a string and the variable d contains a double, 
how do you convert str into a double?

 A> d = str;

 B> d = val(str);

 C> d = Double.parseDouble(str);

Correct answer: C

To convert to a double use Double.parseDouble

 



311Appendix B: Final Exam Answers

24.  What is the purpose of the substr method of the String class?

 A> It subtracts a string.

 B> It gets the length of the string.

 C> It can be used to break the string into smaller pieces 

Correct answer: C

Substring takes substrings of a string, thus breaking it into smaller pieces.

25.  How large is the following array? String str[15]

 A> Not valid, you don’t declare a string in Java with a length.

 B> 15     

 C> 14

Correct answer: A

The proper way to create a string array of size 15 is:

String str[] = new String[15];



313Appendix C: Chapter Review Answers

APPENDIX C:  CHAPTER REVIEW ANSWERS

Answers for Chapter 1

1.  What do you call a programming language that will run on many 
different computer systems, such as Windows, Macintosh and 
Linux?

Cross Platform.

2.  Which company produced Java?

Sun Microsystems.

3.  Is Java Object Oriented or Cross platform?

Java is both object oriented and cross platform.

4.  What other language does Java’s source code resemble?  

Java’s source code resembles C and C++ source code.

5.  What other programming language is often used in place of ap-
plets?

Flash is often used in place of applets.

Answers for Chapter 2

1.  What is the command to compile the source file “MyProgram.
java”.

javac MyProgram.java



Java for the Beginning Programmer314

2.  What is contained in a .class file.

Compiled Java code that is ready to be executed.

3.  What is the command to compile, and the command to run the 
Java source file “RunMe.java”.

javac RunMe.java
java RunMe

4.  What is a program that can be used to edit Java source files?

Notepad, or any text editor can be used to edit Java source files.

5.  What must be done to a Java source file before it can be ex-
ectued/ran?

Java source files must first be compiled, before they can be ran.

Answers for Chapter 3

1.  What is the primary difference between double and long?

A double allows for a floating point, a long does not.

2.  What datatype would you use to store the number of students in 
a class?

A short, int or byte.  Because the number of students would not require floating 
point.

3.  What datatype would you use to store someone’s hourly wage 
(i.e.  $12.50)?

To store an hourly wage use float or double, because it will need decimal plac-
es.



315Appendix C: Chapter Review Answers

4.  Is String a primitive data type? Why or why not?

A string is NOT a primitive datatype.  It is an object because a string has meth-
ods and properties (i.e.  str.length() ).

5.  What is the purpose of the final keyword?

Putting the final keyword in front of  a variable makes the variable constant.

Answers for Chapter 4

1.  How do you read a number from the user?

First read a string, then convert the string to a number.

2.  What is the difference between print and println?

The println method prints a line and carriage return.  The print method prints 
only the line, no carriage return.

3.  What happens if a “bad number” is passed to a method such as 
Integer.parseInt?

A bad number will cause the parse function to throw an InvalidNumberExcep-
tion.

4.  How do you handle “bad numbers” properly in a Java program?

The proper way to handle a “bad number” is to put the parse function inside of 
a try/catch and catch the NumberFormatException.

5.  What is the purpose of a try/catch block?

The try/catch block allows you to catch exceptions that would have otherwise 
crashed your program.



Java for the Beginning Programmer316

Answers for Chapter 5

1.  What are if/else ladders often replaced with?

If/else ladders can often be replaced by switch/case blocks.

2.  If no case statement matches what happens?

If there is a default, then that is executed, otherwise execution leaves the switch 
statement.

3.  How do you compare two strings in Java? 

To compare strA and strB use strA.equals(strB)

4.  Is it possible to make it through an if/else statement and execute 
neither the if nor else body?

No, that is not possible.

5.  How do you use a switch/case with a String?

You can’t.



317Appendix C: Chapter Review Answers

Answers for Chapter 6

1.  Is there anything wrong with the following class?

public class MyClass
{
  public void test()
  {
    System.out.println(“Test”);
  }
  
  public static void main(String args[])
  {
    test();
  }
}

Yes, it is trying to call a non-static method (test) from the static method (main).  
You can’t call a non-static method from a static method.

2.  What will be the output of this program? Why?

public class MyClass
{
  public static void test(int i)
  {
    i = i + 1;
  }
  
  public static void main(String args[])
  {
    int i = 10;
    test(i);
    System.out.println(“i is “ + i );
  }
}

It will output “i is 10”.  This is because the method test only modifies the local 
variable “i” and is not reflected back in main.



Java for the Beginning Programmer318

3.  What is the effect of placing the keyword “static” in front of a lo-
cal variable?

It will cause the local variable to keep its value, even between function calls.

4.  Do the terms class and object mean the same thing? If not, what 
is the difference.  

No a class is a type of something, an object is an instance of a class.

5.  Can the main method access instance variables directly?

No, because instance variables are not static.

Answers for Chapter 9

1.  What will be the output from the following loop?

for( int i = 1; i<10; i++ )
{
  System.out.println( i );
}

1
2
3
4
5
6
7
8
9



319Appendix C: Chapter Review Answers

2.  What will be the output from the following loop?

int i = 2;
while( i<20 )
{
 System.out.println( i );
 i = i + 5;
}

2
7
12
17

3.  What will be the output from the following loop?

int i = 100;
do
{
  System.out.println( i );
  i = i + 1;
} while( i<10 );

It will output 100.

4.  Write a loop (for, while or do/while) that will count from 2 to 10 
by twos.

for( int i=2;i<=10;i++)
{
  System.out.println( i );
}

5.  Rewrite the following for loop as a while loop.

for( int i = 1; i<=10; i++ )
{
  System.out.println( i );
}



Java for the Beginning Programmer320

Rewritten as...

int i = 1;
while( i<=10 )
{
  System.out.println( i );
  i++;
}

Answers for Chapter 10

1.  What will be the output from the following code?

String str = “Hello World”
System.out.println( str.subString(2,2) );

Nothing.  This displays everything from 2 up to but not including 2.

2.  What will be the output from the following code?

String str = “Java”;
System.out.println( str.charAt(1) );

The letter a.

3.  What will be the output from the following code?

String str = “Hello World”;
System.out.println( str.indexOf(‘ ‘) );

The number five.

4.  What is the difference between a string and a character? What 
would you store in a string? A character?

A string is a series of characters.  A character might store a gender, such as m 
or f.  A string would store someone’s name.



321Appendix C: Chapter Review Answers

5.  What is the result of running the following code?

String str = “Java”;
System.out.println( str.charAt(4) );

This would throw an out of bounds error.  The valid indexes for the string are 
0 to 3.

Answers for Chapter 11

1.  What are the three steps necessary to use an array?

Declare, instantiate and initialize.

2.  The following code would like to create an array of size 10 and 
set every array element to 5.  Does it accomplish this?

public class MyClass 
{
  public static void main(String args[]) 
  {
    int a[] = new int[10];
    for(int i = 0; <10; i++ )
      a[i] = 5;
  }
}

Yes, it succeeds.

3.  What does the following code try to do? Is it correct?

public class MyClass 
{
  public static void main(String args[]) 
  {
    int a[] = new int[10];
    a[10] = 10;
  }
}

This code trys to set the last element of an array to 10.  This is incorrect, be-
cause the array is 10 in length.  So valid ranges are from 0 to 9.



Java for the Beginning Programmer322

4.  What must be done to remove one single element of an array?

A loop should be used to copy the element after the one to be deleted. For ex-
ample, if the array were of length 5, and you wanted to delete element 3, you 
would first copy element 4 to 3, then copy element 5 to 4.  Finally, you would 
decrease the variable, that holds the size of the array, by one.

5.  What index do arrays start at?

zero

Answers for Chapter 12

1.  How do you swap the values of two variables?

Copy the first variable to a temp variable.  Then copy the second variable to the 
first.  Finally copy the temp variable to the second variable.

2.  Describe how the bubble sort works.

The bubble sort examines a list pair-by-pair.  If a pair is out of order, its mem-
bers are swapped.  This continues until the bubble sort makes it through with 
no swaps.

3.  Write out the bubble sort stepwise results when sorting the fol-
lowing list of numbers?

4 2 3 5 1

The following steps are necessary.

2 4 3 5 1, end of first round
2 3 4 5 1, end of second round
2 3 4 1 5, end of third round
2 3 1 4 5, end of fourth round
2 1 3 4 5, end of fifth round
1 2 3 4 5, sorted on sixth round



323Appendix C: Chapter Review Answers

4.  What would the following code display?

String strA = “A”;
String strB = “B”;

System.out.println( strA.compareTo(strB) );

A value less than zero.

5.  What role does the temporary variable play in a bubble sort?

It holds one value out of the way to avoid copying over it.

Answers for Chapter 13

1.  Write the line of code that will declare an “int”, named “i” that 
has default access.

int i;

2.  Assume a parent and child class are in the same package.  Does 
the child inherit from the parent, or does the parent inherit from the 
child? 

The child inherits from the parent.

3.  When inheritance occurs in the same package, which access 
modifiers will be inherited?

public, default and protected.



Java for the Beginning Programmer324

4.  Write the getters and setters for the following variable:

private int myVariable;

public int getMyVariable()
{
  return myVariable;
}

public void setMyVariable(int i)
{
  myVariable = i;
}

5.  What is wrong with the following code?

interface MyInterface
{
  public int myfunction();
}

public class MyClass implements MyInterface
{
  public int myOtherFunction();
}

The MyClass class implements the MyInterface interface, but does not imple-
ment the myFunction function.

Answers for Chapter 14

1.  Briefly describe what the purpose of the toString function is.

The toString function returns the object formatted as a string.  It is often used 
to display the object.



325Appendix C: Chapter Review Answers

2.  Briefly describe what the purpose of the compareTo function is.  

The compareTo method is used to compare two objects and determine their 
order.

3.  What is the connection between the bubble sort and the compareTo 
function? 

The compareTo method lets the bubble sort know what order to place the objects 
in.

4.  Is it REQUIRED that each class that you create contain both a 
toString and compareTo function?

No.  However, if you wish to sort objects of this type you should provide a 
“compareTo”.  If you wish to display your object as a String, you should provide 
a toString.  However, neither are required. 

5.  What is printed out for an object that has no toString function?

A number that corresponds to where the object is stored in memory.

Answers for Chapter 15

1.  Describe what a confirm dialog box might be used for.

To ask the user a yes/no type question.

2.  Describe what an input dialog box might be used for.  

To ask the user to input a string.

3.  Describe what a message dialog box might be used for.  

To display a message to the user.



Java for the Beginning Programmer326

4.  Describe what an option dialog box might be used for.

To present several choices to the user.

5.  What happens if the user clicks cancel for the input dialog?

A null is returned.



329Index

INDEX

.class 63,65

.java 60-63

A
Access Modifiers 225-226
Alphabetize 210
Animation 34-35
Applet 32,34-35,139
Array 126,143,172,183-188,194,196-197,199-

200,202-204,207,209-211,214-
216,221,253,256-259

B
Base Class 233
boolean 76,79,86,126,191,194,214,216,219,248
break 112,138,150,166
Bubble Sort 207-209,213-216,221-222
By Reference 117
By Value 117,124-126
byte 79,82,86,94,126,135-136

C
case See Switch/Case Block
catch See Try/Catch Block
char 76,79,86,126
charAt() 172-174,176-179,192,195,220,252
Classes 62-63,65,72,226-227,229-232
Command Prompt 33,57,59,62
Comment 71-72,85-86,139
Compile 31,58,60,62-63,65-

66,69,84,105,134,136-137,144,146,148
Confirm Dialog Box 264,266-267,271
Console Application 32-34,37-39,81,139,151
Constant 80,83,86
Crash 81,95,97-99,136,147,173
Curly Braces 73-75 

D
Declare 72-73,118-119,122,184-185,203

Directory 51-52,58-60
Do/While Loop 74,155,158,161
Double Class 82,84

E
else 107-109,114
Environmental Variables 55-57
equals 105-107,114,138,149
equalsIgnoreCase() 114,230
ERROR_MESSAGE 265
Exception 81-82,92-93,95-100,136,140,147,15

2,173,229-230
Exception Class 229-230

F
final See Constant.
float 76-77,79,82,84,86,94,111,126,135
Float class 82,84
For Loop 155,162-164,166,172,187-188
Function 120-123
getter 225,227-229,237

G
GUI 32-34,37-39,81,263

H,I
if 103-106
if/else Ladder 108-109,111,113-114,141
Indenting Source Code 73-75
indexOf() 174-175
INFORMATION_MESSAGE 265
Initializing Arrays 184-186
Input Dialog Box 264,267-268
InputStreamReader 92-94,99
Instance Variable 117,119,122-123,127-

128,130-131,135,145,194,227,237
Instantiate 122-124,128,184-185
int 76-77,79,82
Integer Class 82,84



Java for the Beginning Programmer330

interface 225,232-233,235-236,238-240,263
Internet Explorer 35
IOException 82

J
J2SE 37
javac 57,62,65,134
JDK 42,51 

K
Keyboard 32,91,93-94,99

L
length() 172-173,175-178,185
License Agreement 43
Linux 31-32,36
Local Variable 117-120,127-129
long 76-77,79,82
Long Class 82,84,87
Loop 74,155-168,172,177,183,186-188,194-

195,197,199,201-202,215-216,221,253-
254,257

M
Mac 31-32,35-38
Main Method 72-73,118,122,130-

131,133,143,153
Math Class 124
Message Dialog Box 264-265
Method 120-123

N
Nested Loop 164-166
NumberFormatException 95-

97,99,140,152,283
Numeric Data Type 76-80
Numeric Datatype 79

O
Object 121-122

P
Parent Class 230,233,237
Parsing 171,175-177

PLAIN_MESSAGE 265
Primitive Data Type 86-87
print() 97-98
println() 62,97-98
private 225,227-228,230,233-234,236-237,239-

240,243-244
protected 225
public 225

Q
QUESTION_MESSAGE 265

R
readLine() 82,92-96,99
Return Type 121,231

S
Scope 117,127
Semicolon 57,73-74
setter 225,227-229,231,237
short 76-77,79,82
Short class 82,87
showMessageDialog() 265-266
Sort 120,207-210,213-217,220-223,246,248-

249,256
Source Code 31,38,60-63,65,69,71,73-

74,86,137,146,148
static 117-124,126-129,133,135
Static Function 122,124
Static Method 118,121-123,127-128,135
Static Variable 117-118,127
String 78-79,171-177
Subclass 226,229-231,235
substr() 171
Substring 171
Sun Microsystems 32,37,41,133
Swap 207-211,213-216,221-222
Swing 34,126,263-269
switch See Switch/Case
Switch/Case 103,111,113-

114,136,141,147,153,196
System Path 51

T
Temporary Variable 213



331Index

toString() 244-247
trim() 191,193,219
try See Try/Catch Block
Try/Catch Block 92-93,95-96
Type Cast 84

U,V,W,X,Y,Z
WARNING_MESSAGE 265
While Loop 74,155,157-159,161,165-

167,177,195,199,216
Windows XP 31,36,52-53

mutation  216-290
mutation level  219
simulated annealing  36, 108, 212-220, 243-297
step value  333
StreamInputSynapse  79
StreamOutputSynapse  79
supervised training  36, 107-118, 123, 125, 152, 

162-166, 268
Synapse  79, 143-152
Synchronizing Threads  135


	Introduction
	Chapter 1:  Introduction to Java
	Prerequisites
	Getting Started
	Types of Java Applications
	Java Console Application
	Java GUI Application
	Java Applet
	Cross Platform
	Chapter Review
	Review Questions

	Chapter 2:  Installing, Compiling and Running
	Downloading Java and Installing Java
	Setting up Java’s Path
	Testing your Java Path
	Compiling and Executing your Application
	Creating a Directory
	Enter your Application
	Compile your Application
	Run your Application
	Chapter Review
	Review Questions

	Chapter 3:  Variables
	Anatomy of a Java Program
	Import Statements
	Single Line Comments
	Multi Line Comments
	Class Declaration
	Main Method
	Semicolon and Curly Brace Usage
	Variables
	Numeric Data Types
	String Data Types
	Boolean Data Types
	Data Type Sizes
	Constants
	Data Type Conversion
	Chapter Review
	Review Questions

	Chapter 4:  Handling User Input
	How to Read Data from the User
	Additional Lines Needed
	Reading Numbers
	Handling Bad Numbers
	Displaying Data
	Chapter Review
	Review Questions

	Chapter 5:  Making Decisions
	Comparing Values
	The Else Statement
	If/Else Ladders
	Using Logical AND and OR
	Using the Switch/Case Statement
	Chapter Review
	Review Questions

	Chapter 6:  Methods and Functions
	Static Variables
	Instance Variables
	Local Variables
	Functions and Methods
	Create Your Own Function
	Using Static Classes
	How Arguments are Passed
	Chapter Review
	Review Questions

	Chapter 7:  Mid Term
	Chapter 8:  Mid Term Review
	Chapter 9:  Using Loops
	Java Loop Types
	The While Loop
	The Do/While Loop
	The For Loop
	Nested Loops
	Chapter Review
	Review Questions

	Chapter 10:  Strings
	What are Strings Made Of
	Taking Sections of Strings
	Searching Strings
	Removing a Single Character
	Removing all of the Spaces from a String
	Chapter Review
	Review Questions

	Chapter 11:  Arrays
	Introducing Arrays
	Creating Arrays
	Declare an Array
	Instantiate an Array
	Initializing an Array
	Using Arrays
	Array Example Program
	Deleting a Student
	Chapter Review
	Review Questions

	Chapter 12:  Using Arrays
	Sorting Arrays
	Implementing the Bubble Sort
	Adding Sorting to the Student List Example
	Chapter Review
	Review Questions

	Chapter 13:  Object Oriented Programming
	Objects of Your Own
	Access Modifiers
	Creating the Base Class
	Getters and Setters
	Using Objects
	Subclassing Classes
	Creating an Exception Class
	Creating the Student Class
	Using Subclasses
	Understanding Interfaces
	Chapter Review
	Review Questions

	Chapter 14:  More Object Oriented
	Updating the Student Class
	Integrating the Student Class
	Chapter Review
	Review Questions

	Chapter 15:  GUI Programming
	Java GUI Applications
	What is Swing
	Using Swing
	Using Message Dialog Boxes
	Using Confirm Dialog Boxes
	Using Input Dialogs
	Using Option Dialog Boxes
	Chapter Review
	Review Questions

	Chapter 16:  Final Exam
	Glossary
	Appendix A:  Downloading Examples
	Appendix B:  Final Exam Answers
	Appendix C:  Chapter Review Answers
	Answers for Chapter 1
	Answers for Chapter 2
	Answers for Chapter 3
	Answers for Chapter 4
	Answers for Chapter 5
	Answers for Chapter 6
	Answers for Chapter 9
	Answers for Chapter 10
	Answers for Chapter 11
	Answers for Chapter 12
	Answers for Chapter 13
	Answers for Chapter 14
	Answers for Chapter 15

	Index
	Figure 1.1: A Console Application
	Figure 1.2: Java GUI Application
	Figure 1.3: A Java Applet
	Figure 1.4: A Java Application Running on Windows
	Figure 1.5: A Java Application Running on the Macintosh
	Figure 2.1: Select Java Version to Download
	Figure 2.2: Accept the License Agreement
	Figure 2.3: Choose Windows Online Install
	Figure 2.4: Run the Program you Downloaded
	Figure 2.5: Accept this License Agreement
	Figure 2.6: Standard Install
	Figure 2.7: Install Underway
	Figure 2.8: Accept Features
	Figure 2.9: Browser Registration
	Figure 2.10: Installing Java
	Figure 2.11: Install Complete
	Figure 2.12: Get the Java Path
	Figure 2.13: Windows XP Control Panels
	Figure 2.14: Classic Control Panels
	Figure 2.15: System Properties
	Figure 2.16: Environmental Variables
	Figure 2.17: Set the Path
	Figure 2.18: Verify Java Works
	Figure 2.19: Create a Place to Put your First Application
	Figure 2.20: Create your Source Code
	Figure 2.21: Enter your Source Code
	Figure 2.22: View the Class File
	Figure 2.23: Run the Example
	Figure 3.1: How indenting works
	Figure 9.1: The Loop as a Flowchart
	Figure 9.2: A While Loop as a Flowchart
	Figure 9.3: A “do/while” Loop as a Flowchart
	Figure 11.1: Remove a Name, Step 1
	Figure 11.2: Remove a Name, Step 2
	Figure 11.3: Remove a Name, Step 3
	Figure 11.4: Remove a Name, Step 4
	Figure 11.5: Remove a Name, Step 5
	Figure 11.6: Remove a Name, Step 6
	Figure 12.1: A Glass of Milk and a Glass of Orange Juice
	Figure 12.2: This Does Not Work!
	Figure 12.3: A Spare Glass is Needed
	Figure 12.4: The Swap is Made
	Figure 12.5: A Bubblesort Flowchart
	Figure 15.1: A Swing Application
	Figure 15.2: A Message Dialog Box
	Figure 15.3: A Confirm Dialog Box
	Figure 15.4: An Input Dialog Box
	Figure 15.5: An Option Dialog Box
	Table 3.1: Java Variable Types
	Table 5.1: Truth Table for x && y (AND)
	Table 5.2: Truth Table for x || y (OR)
	Table 6.1: Sections of a Method 
	Table 6.2: The Difference Between a Class and an Object
	Table 6.3: The Difference Between by Reference and by Value
	Table 6.4: Is it by Value or by Reference
	Table 9.1: Steps for a Typical Loop Application
	Table 13.1: Java Access Modifiers
	Table 13.2: Attributes of the Policy Class
	Table 13.3: Attributes of the TermLife Class
	Listing 2.1: Hello World! (HelloWorld.java)
	Listing 3.1: Sample Java Program (UserInput.java)
	Listing 4.1: Read Data from the User (Hello.java)
	Listing 4.2: Input Numbers (InputNumbers.java)
	Listing 4.3: Handle Bad Numbers (BadNumbers.java)
	Listing 5.1: Are You Old Enough (OldEnough.java)
	Listing 5.2: Compare a String (InvalidString.java)
	Listing 5.3: Check for a Valid String (ValidString.java)
	Listing 5.4: Else Example (StringElse.java)
	Listing 5.5: If/Else Ladder (NumberIf.java)
	Listing 5.6: Using Switch/Case (NumberCase.java)
	Listing 6.1: Using a Static Variable (MyClassStatic.java)
	Listing 6.2: Using a Static Class Variable (MyClassLevelStatic.java)
	Listing 6.3: Using an Instance Variable (MyClassInstance.java)
	Listing 6.4: Using an Instance Variable (MyClassLocal.java)
	Listing 6.5: Using a Static Function (MyClassStaticFunction.java)
	Listing 6.6: Using a Nonstatic Method (MyClassNonStaticMethod.java)
	Listing 6.7: Passing by Value (MyClassArgument.java)
	Listing 6.8: By Value and By Reference (MethodCall.java)
	Listing 9.1: A Typical While Loop (LoopExampleWhile.java)
	Listing 9.2: A While Loop (LoopExampleWhile2.java)
	Listing 9.3: A Do/While Loop (LoopExampleDoWhile.java)
	Listing 9.4: A Simple Menu (LoopExampleMenu.java)
	Listing 9.5: For Loop (LoopExampleFor.java)
	Listing 9.6: Another For Loop (LoopExampleFor2.java)
	Listing 9.7: A Nested Loop (NestedLoop.java)
	Listing 10.1: Get the Length of a String (StringLength.java)
	Listing 10.2: Get a String as Characters (GetChars.java)
	Listing 10.3: Separate a String (SubString.java)
	Listing 10.4: Find the Space in a String (FindSpace1.java)
	Listing 10.5: Find More Space in a String (FindSpace2.java)
	Listing 10.6: Remove a Single Character (RemoveChar.java)
	Listing 10.7: Remove all Space from a String (RemoveSpace.java)
	Listing 11.1: A List Without Arrays (StudentList1.java)
	Listing 11.2: Declare an Array (StudentList2.java)
	Listing 11.3: Instantiate an Array (StudentList3.java)
	Listing 11.4: Initialize an Array (StudentList4.java)
	Listing 11.5: Print out a List of Students (StudentList5.java)
	Listing 11.6: List Students with Loop (StudentList6.java)
	Listing 11.7: Array Example Program (StudentList7.java)
	Listing 11.8: Reading User Input
	Listing 12.1: The Bubble Sort (BubbleSort.java)
	Listing 12.2: The Student List, with Bubble Sort (StudentList.java)
	Listing 13.1: A Simple Person Holder Class (Person1.java)
	Listing 13.2: Using Getters and Setters (Person.java)
	Listing 13.3: Test the Person Class (TestPerson.java)
	Listing 13.4: The TypeException (TypeException.java)
	Listing 13.5: The Student Class (Student.java)
	Listing 13.6: Test the Student Class (TestStudent.java)
	Listing 13.7: The Payable interface (Payable.java)
	Listing 13.8: The Policy Base Class (Policy.java)
	Listing 13.9: The TermLife Class (TermLife.java) 
	Listing 13.10: The WholeLife Class (WholeLife.java)
	Listing 13.11: The insurance Application (InsuranceApp.java)
	Listing 14.1: The Person Base Class (Person.java)
	Listing 14.2: Creating the Student Class (Student2.java)
	Listing 14.3: The Final Version of the Student Class (Student.java)
	Listing 14.3: Creating a Student List (StudentList.java)
	Listing 15.1: Creating a Message Dialog Box (MessageDialog.java)
	Listing 15.2: A Confirm Dialog Box (ConfirmDialog.java)
	Listing 15.3: An input Dialog Box (InputDialog.java)
	Listing 15.4: An Option Dialog (OptionDialog.java)



