The Zakon Series on Mathematical Analysis

Basic Concepts of Mathematics Mathematical Analysis I
Mathematical Analysis II

Mathematical Analysis
 Volume II

Elias Zakon
University of Windsor

Terms and Conditions

You may download, print, transfer, or copy this work, either electronically or mechanically, only under the following conditions.

If you are a student using this work for self-study, no payment is required. If you are a teacher evaluating this work for use as a required or recommended text in a course, no payment is required.

Payment is required for any and all other uses of this work. In particular, but not exclusively, payment is required if
(1) you are a student and this is a required or recommended text for a course;
(2) you are a teacher and you are using this book as a reference, or as a required or recommended text, for a course.
Payment is made through the website http://www.trillia.com. For each individual using this book, payment of US\$10 is required. A sitewide payment of US $\$ 300$ allows the use of this book in perpetuity by all teachers, students, or employees of a single school or company at all sites that can be contained in a circle centered at the location of payment with a radius of 25 miles (40 kilometers). You may post this work to your own website or other server (FTP, etc.) only if a sitewide payment has been made and it is noted on your website (or other server) precisely which people have the right to download this work according to these terms and conditions.

Any copy you make of this work, by any means, in whole or in part, must contain this page, verbatim and in its entirety.

Mathematical Analysis II
(c) 1977 Elias Zakon
(c) 2009 Bradley J. Lucier and Tamara Zakon

ISBN 978-1-931705-03-8
Published by The Trillia Group, West Lafayette, Indiana, USA
First published: December 18, 2009. This version released: December 18, 2009.
Technical Typist: Betty Gick. Copy Editor: John Spiegelman. Logo: Miriam Bogdanic.
The phrase "The Trillia Group" and the Trillia Group logo are trademarks of The Trillia Group
and may not be used without permission.
This book was prepared by Bradley J. Lucier and Tamara Zakon from a manuscript prepared by Elias Zakon. We intend to correct and update this work as needed. If you notice any mistakes in this work, please send e-mail to lucier@math.purdue.edu and they will be corrected in a later version.

Contents*

Preface ix
About the Author xi
Chapter 6. Differentiation on $E^{\boldsymbol{n}}$ and Other Normed Linear Spaces 1

1. Directional and Partial Derivatives 1
Problems on Directional and Partial Derivatives 6
2. Linear Maps and Functionals. Matrices 7
Problems on Linear Maps and Matrices 14
3. Differentiable Functions 16
Problems on Differentiable Functions 25
4. The Chain Rule. The Cauchy Invariant Rule 28
Further Problems on Differentiable Functions 33
5. Repeated Differentiation. Taylor's Theorem 35
Problems on Repeated Differentiation and Taylor Expansions 44
6. Determinants. Jacobians. Bijective Linear Operators 47
Problems on Bijective Linear Maps and Jacobians 55
7. Inverse and Implicit Functions. Open and Closed Maps 57
Problems on Inverse and Implicit Functions, Open and Closed Maps 67
8. Baire Categories. More on Linear Maps 70
Problems on Baire Categories and Linear Maps 76
9. Local Extrema. Maxima and Minima 79
Problems on Maxima and Minima 84
10. More on Implicit Differentiation. Conditional Extrema 87
Further Problems on Maxima and Minima 94
Chapter 7. Volume and Measure 97
11. More on Intervals in E^{n}. Semirings of Sets 97
Problems on Intervals and Semirings 104
12. \mathcal{C}_{σ}-Sets. Countable Additivity. Permutable Series 104
Problems on \mathcal{C}_{σ}-Sets, σ-Additivity, and Permutable Series 112

[^0]3. More on Set Families 115
Problems on Set Families 121
4. Set Functions. Additivity. Continuity 124
Problems on Set Functions 133
5. Nonnegative Set functions. Premeasures. Outer Measures 136
Problems on Premeasures and Related Topics 141
6. Measure Spaces. More on Outer Measures 147
Problems on Measures and Outer Measures 155
7. Topologies. Borel Sets. Borel Measures 160
Problems on Topologies, Borel Sets, and Regular Measures 165
8. Lebesgue Measure 168
Problems on Lebesgue Measure 172
9. Lebesgue-Stieltjes Measures 176
Problems on Lebesgue-Stieltjes Measures 178
10. Vitali Coverings 180
Problems on Vitali Coverings 190
11. Generalized Measures. Absolute Continuity 194
Problems on Generalized Measures 206
12. Differentiation of Set Functions 210
Problems on Differentiation of Set Functions 215
Chapter 8. Measurable Functions. Integration 217

1. Elementary and Measurable Functions 217
Problems on Measurable and Elementary Functions in (S, \mathcal{M}) 222
2. Measurability of Extended-Real Functions 224
Further Problems on Measurable Functions in (S, \mathcal{M}) 229
3. Measurable Functions in (S, \mathcal{M}, m) 231
Problems on Measurable Functions in (S, \mathcal{M}, m) 238
4. Integration of Elementary Functions 241
Problems on Integration of Elementary Functions 248
5. Integration of Extended-Real Functions 251
Problems on Integration of Extended-Real Functions 265
6. Integrable Functions. Convergence Theorems 267
Problems on Integrability and Convergence Theorems 277
7. Integration of Complex and Vector-Valued Functions 283
Problems on Integration of Complex and Vector-Valued Functions 291
8. Product Measures. Iterated Integrals 293
Problems on Product Measures and Fubini Theorems 302
9. Riemann Integration. Stieltjes Integrals 306
Problems on Riemann and Stieltjes Integrals 319
10. Integration in Generalized Measure Spaces 323
Problems on Generalized Integration 333
11. The Radon-Nikodym Theorem. Lebesgue Decomposition 336
Problems on Radon-Nikodym Derivatives and Lebesgue Decomposition 344
12. Integration and Differentiation 345
Problems on Differentiation and Related Topics 354
Chapter 9. Calculus Using Lebesgue Theory 357
13. L-Integrals and Antiderivatives 357
Problems on L-Integrals and Antiderivatives 367
14. More on L-Integrals and Absolute Continuity 372
Problems on L-Integrals and Absolute Continuity 384
15. Improper (Cauchy) Integrals 387
Problems on Cauchy Integrals 397
16. Convergence of Parametrized Integrals and Functions 402
Problems on Uniform Convergence of Functions and C-Integrals 412
Index 417

Preface

This is a multipurpose text. When taken in full, including the "starred" sections, it is a graduate course covering differentiation on normed spaces and integration with respect to complex and vector-valued measures. The starred sections may be omitted without loss of continuity, however, for a junior or senior course. One also has the option of limiting all to E^{n}, or taking Riemann integration before Lebesgue theory (we call it the "limited approach"). The proofs and definitions are so chosen that they are as simple in the general case as in the more special cases. In a nutshell, the basic ideas of measure theory are given in Chapter 7, $\S \S 1$ and 2 . Not much more is needed for the "limited approach."

In Chapter 6 (Differentiation), we have endeavored to present a modern theory, without losing contact with the classical terminology and notation. (Otherwise, the student is unable to read classical texts after having been taught the "elegant" modern theory.) This is why we prefer to define derivatives as in classical analysis, i.e., as numbers or vectors, not as linear mappings. The latter are used to define a modern version of differentials.

In Chapter 9, we single out those calculus topics (e.g., improper integrals) that are best treated in the context of Lebesgue theory.

Our principle is to keep the exposition more general whenever the general case can be handled as simply as the special ones (the degree of the desired specialization is left to the instructor). Often this even simplifies mattersfor example, by considering normed spaces instead of E^{n} only, one avoids cumbersome coordinate techniques. Doing so also makes the text more flexible.

Publisher's Notes

Text passages in blue are hyperlinks to other parts of the text.
Several annotations are used throughout this book:

* This symbol marks material that can be omitted at first reading.
\Rightarrow This symbol marks exercises that are of particular importance.

About the Author

Elias Zakon was born in Russia under the czar in 1908, and he was swept along in the turbulence of the great events of twentieth-century Europe.

Zakon studied mathematics and law in Germany and Poland, and later he joined his father's law practice in Poland. Fleeing the approach of the German Army in 1941, he took his family to Barnaul, Siberia, where, with the rest of the populace, they endured five years of hardship. The Leningrad Institute of Technology was also evacuated to Barnaul upon the siege of Leningrad, and there Zakon met the mathematician I. P. Natanson; with Natanson's encouragement, Zakon again took up his studies and research in mathematics.

Zakon and his family spent the years from 1946 to 1949 in a refugee camp in Salzburg, Austria, where he taught himself Hebrew, one of the six or seven languages in which he became fluent. In 1949, he took his family to the newly created state of Israel and he taught at the Technion in Haifa until 1956. In Israel he published his first research papers in logic and analysis.

Throughout his life, Zakon maintained a love of music, art, politics, history, law, and especially chess; it was in Israel that he achieved the rank of chess master.

In 1956, Zakon moved to Canada. As a research fellow at the University of Toronto, he worked with Abraham Robinson. In 1957, he joined the mathematics faculty at the University of Windsor, where the first degrees in the newly established Honours program in Mathematics were awarded in 1960. While at Windsor, he continued publishing his research results in logic and analysis. In this post-McCarthy era, he often had as his house-guest the prolific and eccentric mathematician Paul Erdős, who was then banned from the United States for his political views. Erdős would speak at the University of Windsor, where mathematicians from the University of Michigan and other American universities would gather to hear him and to discuss mathematics.

While at Windsor, Zakon developed three volumes on mathematical analysis, which were bound and distributed to students. His goal was to introduce rigorous material as early as possible; later courses could then rely on this material. We are publishing here the latest complete version of the last of these volumes, which was used in a two-semester class required of all Honours Mathematics students at Windsor.

Chapter 6

Differentiation on E^{n} and Other Normed Linear Spaces

§1. Directional and Partial Derivatives

In Chapter 5 we considered functions $f: E^{1} \rightarrow E$ of one real variable.
Now we take up functions $f: E^{\prime} \rightarrow E$ where both E^{\prime} and E are normed spaces. ${ }^{1}$

The scalar field of both is always assumed the same: E^{1} or C (the complex field). The case $E=E^{*}$ is excluded here; thus all is assumed finite.

We mostly use arrowed letters $\vec{p}, \vec{q}, \ldots, \vec{x}, \vec{y}, \vec{z}$ for vectors in the domain space E^{\prime}, and nonarrowed letters for those in E and for scalars.

As before, we adopt the convention that f is defined on all of E^{\prime}, with $f(\vec{x})=0$ if not defined otherwise.

Note that, if $\vec{p} \in E^{\prime}$, one can express any point $\vec{x} \in E^{\prime}$ as

$$
\vec{x}=\vec{p}+t \vec{u},
$$

with $t \in E^{1}$ and \vec{u} a unit vector. For if $\vec{x} \neq \vec{p}$, set

$$
t=|\vec{x}-\vec{p}| \text { and } \vec{u}=\frac{1}{t}(\vec{x}-\vec{p}) ;
$$

and if $\vec{x}=\vec{p}$, set $t=0$, and any \vec{u} will do. We often use the notation

$$
\vec{t}=\Delta \vec{x}=\vec{x}-\vec{p}=t \vec{u} \quad\left(t \in E^{1}, \vec{t}, \vec{u} \in E^{\prime}\right) .
$$

First of all, we generalize Definition 1 in Chapter 5, $\S 1$.

Definition 1.

Given $f: E^{\prime} \rightarrow E$ and $\vec{p}, \vec{u} \in E^{\prime}(\vec{u} \neq \overrightarrow{0})$, we define the directional derivative of f along \vec{u} (or \vec{u}-directed derivative of f) at \vec{p} by

$$
\begin{equation*}
D_{\vec{u}} f(\vec{p})=\lim _{t \rightarrow 0} \frac{1}{t}[f(\vec{p}+t \vec{u})-f(\vec{p})], \tag{1}
\end{equation*}
$$

[^1]if this limit exists in E (finite).
We also define the \vec{u}-directed derived function,
$$
D_{\vec{u}} f: E^{\prime} \rightarrow E
$$
as follows. For any $\vec{p} \in E^{\prime}$,
\[

D_{\vec{u}} f(\vec{p})= $$
\begin{cases}\lim _{t \rightarrow 0} \frac{1}{t}[f(\vec{p}+t \vec{u})-f(\vec{p})] & \text { if this limit exists } \\ 0 & \text { otherwise }\end{cases}
$$
\]

Thus $D_{\vec{u}} f$ is always defined, but the name derivative is used only if the limit (1) exists (finite). If it exists for each \vec{p} in a set $B \subseteq E^{\prime}$, we call $D_{\vec{u}} f$ (in classical notation $\partial f / \partial \vec{u}$) the \vec{u}-directed derivative of f on B.

Note that, as $t \rightarrow 0, \vec{x}$ tends to \vec{p} over the line $\vec{x}=\vec{p}+t \vec{u}$. Thus $D_{\vec{u}} f(\vec{p})$ can be treated as a relative limit over that line. Observe that it depends on both the direction and the length of \vec{u}. Indeed, we have the following result.
Corollary 1. Given $f: E^{\prime} \rightarrow E, \vec{u} \neq \overrightarrow{0}$, and a scalar $s \neq 0$, we have

$$
D_{s \vec{u}} f=s D_{\vec{u}} f
$$

Moreover, $D_{s \vec{u}} f(\vec{p})$ is a genuine derivative iff $D_{\vec{u}} f(\vec{p})$ is.
Proof. Set $t=s \theta$ in (1) to get

$$
s D_{\vec{u}} f(\vec{p})=\lim _{\theta \rightarrow 0} \frac{1}{\theta}[f(\vec{p}+\theta s \vec{u})-f(\vec{p})]=D_{s \vec{u}} f(\vec{p})
$$

In particular, taking $s=1 /|\vec{u}|$, we have

$$
|s \vec{u}|=\frac{|\vec{u}|}{|\vec{u}|}=1 \text { and } D_{\vec{u}} f=\frac{1}{s} D_{s \vec{u}} f .
$$

Thus all reduces to the case $D_{\vec{v}} f$, where $\vec{v}=s \vec{u}$ is a unit vector. This device, called normalization, is often used, but actually it does not simplify matters.

If $E^{\prime}=E^{n}\left(C^{n}\right)$, then f is a function of n scalar variables $x_{k}(k=1, \ldots, n)$ and E^{\prime} has the n basic unit vectors \vec{e}_{k}. This example leads us to the following definition.

Definition 2.

If in formula (1), $E^{\prime}=E^{n}\left(C^{n}\right)$ and $\vec{u}=\vec{e}_{k}$ for a fixed $k \leq n$, we call $D_{\vec{u}} f$ the partially derived function for f, with respect to x_{k}, denoted

$$
D_{k} f \text { or } \frac{\partial f}{\partial x_{k}},
$$

and the limit (1) is called the partial derivative of f at \vec{p}, with respect to x_{k}, denoted

$$
D_{k} f(\vec{p}), \text { or } \frac{\partial}{\partial x_{k}} f(\vec{p}), \text { or }\left.\frac{\partial f}{\partial x_{k}}\right|_{\vec{x}=\vec{p}}
$$

If it exists for all $\vec{p} \in B$, we call $D_{k} f$ the partial derivative (briefly, partial) of f on B, with respect to x_{k}.

In any case, the derived functions $D_{k} f(k=1, \ldots, n)$ are always defined on all of $E^{n}\left(C^{n}\right)$.

If $E^{\prime}=E^{3}\left(C^{3}\right)$, we often write x, y, z for x_{1}, x_{2}, x_{3}, and

$$
\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \text { for } D_{k} f \quad(k=1,2,3) .^{2}
$$

Note 1. If $E^{\prime}=E^{1}$, scalars are also "vectors," and $D_{1} f$ coincides with f^{\prime} as defined in Chapter $5, \S 1$ (except where $f^{\prime}= \pm \infty$). Explain!

Note 2. As we have observed, the \vec{u}-directed derivative (1) is obtained by keeping \vec{x} on the line $\vec{x}=\vec{p}+t \vec{u}$.

If $\vec{u}=\vec{e}_{k}$, the line is parallel to the k th axis; so all coordinates of \vec{x}, except x_{k}, remain fixed ($x_{i}=p_{i}, i \neq k$), and f behaves like a function of one variable, x_{k}. Thus we can compute $D_{k} f$ by the usual rules of differentiation, treating all $x_{i}(i \neq k)$ as constants and x_{k} as the only variable.

For example, let $f(x, y)=x^{2} y$. Then

$$
\frac{\partial f}{\partial x}=D_{1} f(x, y)=2 x y \text { and } \frac{\partial f}{\partial y}=D_{2} f(x, y)=x^{2}
$$

Note 3. More generally, given \vec{p} and $\vec{u} \neq \overrightarrow{0}$, set

$$
h(t)=f(\vec{p}+t \vec{u}), \quad t \in E^{1} .
$$

Then $h(0)=f(\vec{p})$; so

$$
\begin{aligned}
D_{\vec{u}} f(\vec{p}) & =\lim _{t \rightarrow 0} \frac{1}{t}[f(\vec{p}+t \vec{u})-f(\vec{p})] \\
& =\lim _{t \rightarrow 0} \frac{h(t)-h(0)}{t-0} \\
& =h^{\prime}(0)
\end{aligned}
$$

if the limit exists. Thus all reduces to a function h of one real variable.
For functions $f: E^{1} \rightarrow E$, the existence of a finite derivative ("differentiability") at p implies continuity at p (Theorem 1 of Chapter $5, \S 1$). But in the general case, $f: E^{\prime} \rightarrow E$, this may fail even if $D_{\vec{u}} f(\vec{p})$ exists for all $\vec{u} \neq \overrightarrow{0}$.

[^2]
Examples.

(a) Define $f: E^{2} \rightarrow E^{1}$ by

$$
f(x, y)=\frac{x^{2} y}{x^{4}+y^{2}}, \quad f(0,0)=0
$$

Fix a unit vector $\vec{u}=\left(u_{1}, u_{2}\right)$ in E^{2}. Let $\vec{p}=(0,0)$. To find $D_{\vec{u}} f(p)$, use the h of Note 3:

$$
h(t)=f(\vec{p}+t \vec{u})=f(t \vec{u})=f\left(t u_{1}, t u_{2}\right)=\frac{t u_{1}^{2} u_{2}}{t^{2} u_{1}^{4}+u_{2}^{2}} \text { if } u_{2} \neq 0,
$$

and $h=0$ if $u_{2}=0$. Hence

$$
D_{\vec{u}} f(\vec{p})=h^{\prime}(0)=\frac{u_{1}^{2}}{u_{2}} \text { if } u_{2} \neq 0
$$

and $h^{\prime}(0)=0$ if $u_{2}=0$. Thus $D_{\vec{u}}(\overrightarrow{0})$ exists for all \vec{u}. Yet f is discontinuous at $\overrightarrow{0}$ (see Problem 9 in Chapter 4, $\S 3$).
(b) Let

$$
f(x, y)= \begin{cases}x+y & \text { if } x y=0 \\ 1 & \text { otherwise }\end{cases}
$$

Then $f(x, y)=x$ on the x-axis; so $D_{1} f(0,0)=1$.
Similarly, $D_{2} f(0,0)=1$. Thus both partials exist at $\overrightarrow{0}$.
Yet f is discontinuous at $\overrightarrow{0}$ (even relatively so) over any line $y=a x$ $(a \neq 0)$. For on that line, $f(x, y)=1$ if $(x, y) \neq(0,0)$; so $f(x, y) \rightarrow 1$; but $f(0,0)=0+0=0$.

Thus continuity at $\overrightarrow{0}$ fails. (But see Theorem 1 below!)
Hence, if differentiability is to imply continuity, it must be defined in a stronger manner. We do it in $\S 3$. For now, we prove only some theorems on partial and directional derivatives, based on those of Chapter 5.
Theorem 1. If $f: E^{\prime} \rightarrow E$ has a \vec{u}-directed derivative at $\vec{p} \in E^{\prime}$, then f is relatively continuous at \vec{p} over the line

$$
\vec{x}=\vec{p}+t \vec{u} \quad\left(\overrightarrow{0} \neq \vec{u} \in E^{\prime}\right) .
$$

Proof. Set $h(t)=f(\vec{p}+t \vec{u}), t \in E^{1}$.
By Note 3, our assumption implies that h (a function on E^{1}) is differentiable at 0 .

By Theorem 1 in Chapter 5, $\S 1$, then, h is continuous at 0 ; so

$$
\lim _{t \rightarrow 0} h(t)=h(0)=f(\vec{p}),
$$

i.e.,

$$
\lim _{t \rightarrow 0} f(\vec{p}+t \vec{u})=f(\vec{p})
$$

But this means that $f(\vec{x}) \rightarrow f(\vec{p})$ as $\vec{x} \rightarrow \vec{p}$ over the line $\vec{x}=\vec{p}+t \vec{u}$, for, on that line, $\vec{x}=\vec{p}+t \vec{u}$.

Thus, indeed, f is relatively continuous at \vec{p}, as stated.
Note that we actually used the substitution $\vec{x}=\vec{p}+t \vec{u}$. This is admissible since the dependence between x and t is one-to-tone (Corollary 2(iii) of Chapter 4, §2). Why?
Theorem 2. Let $E^{\prime} \ni \vec{u}=\vec{q}-\vec{p}, \vec{u} \neq \overrightarrow{0}$.
If $f: E^{\prime} \rightarrow E$ is relatively continuous on the segment $I=L[\vec{p}, \vec{q}]$ and has a \vec{u}-directed derivative on $I-Q$ (Q countable), then

$$
\begin{equation*}
|f(\vec{q})-f(\vec{p})| \leq \sup \left|D_{\vec{u}} f(\vec{x})\right|, \quad \vec{x} \in I-Q \tag{2}
\end{equation*}
$$

Proof. Set again $h(t)=f(\vec{p}+t \vec{u})$ and $g(t)=\vec{p}+t \vec{u}$.
Then $h=f \circ g$, and g is continuous on E^{1}. (Why?)
As f is relatively continuous on $I=L[\vec{p}, \vec{q}]$, so is $h=f \circ g$ on the interval $J=[0,1] \subset E^{1}$ (cf. Chapter 4, $\S 8$, Example (1)).

Now fix $t_{0} \in J$. If $\vec{x}_{0}=\vec{p}+t_{0} \vec{u} \in I-Q$, our assumptions imply the existence of

$$
\begin{aligned}
D_{\vec{u}} f\left(\vec{x}_{0}\right) & =\lim _{t \rightarrow 0} \frac{1}{t}\left[f\left(\vec{x}_{0}+t \vec{u}\right)-f\left(\vec{x}_{0}\right)\right] \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left[f\left(\vec{p}+t_{0} \vec{u}+t \vec{u}\right)-f\left(\vec{p}+t_{0} \vec{u}\right)\right] \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left[h\left(t_{0}+t\right)-h\left(t_{0}\right)\right] \\
& =h^{\prime}\left(t_{0}\right) . \quad \text { (Explain!) }
\end{aligned}
$$

This can fail for at most a countable set Q^{\prime} of points $t_{0} \in J$ (those for which $\vec{x}_{0} \in Q$).

Thus h is differentiable on $J-Q^{\prime}$; and so, by Corollary 1 in Chapter $5, \S 4$,

$$
|h(1)-h(0)| \leq \sup _{t \in J-Q^{\prime}}\left|h^{\prime}(t)\right|=\sup _{\vec{x} \in I-Q}\left|D_{\vec{u}} f(\vec{x})\right|
$$

Now as $h(1)=f(\vec{p}+\vec{u})=f(\vec{q})$ and $h(\overrightarrow{0})=f(\vec{p})$, formula (2) follows.
Theorem 3. If in Theorem $2, E=E^{1}$ and if f has a \vec{u}-directed derivative at least on the open line segment $L(\vec{p}, \vec{q})$, then

$$
\begin{equation*}
f(\vec{q})-f(\vec{p})=D_{\vec{u}} f\left(\vec{x}_{0}\right) \tag{3}
\end{equation*}
$$

for some $\vec{x}_{0} \in L(\vec{p}, \vec{q})$.

The proof is as in Theorem 2, based on Corollary 3 in Chapter 5, $\S 2$ (instead of Corollary 1 in Chapter 5, §4).

Theorems 2 and 3 are often used in "normalized" form, as follows.
Corollary 2. If in Theorems 2 and 3 , we set

$$
r=|\vec{u}|=|\vec{q}-\vec{p}| \neq 0 \text { and } \vec{v}=\frac{1}{r} \vec{u}
$$

then formulas (2) and (3) can be written as

$$
|f(\vec{q})-f(\vec{p})| \leq|\vec{q}-\vec{p}| \sup \left|D_{\vec{v}} f(\vec{x})\right|, \quad \vec{x} \in I-Q,
$$

and

$$
f(\vec{q})-f(\vec{p})=|\vec{q}-\vec{p}| D_{\vec{v}} f\left(\vec{x}_{0}\right)
$$

for some $\vec{x}_{0} \in L(\vec{p}, \vec{q})$.
For by Corollary 1,

$$
D_{\vec{u}} f=r D_{\vec{v}} f=|\vec{q}-\vec{p}| D_{\vec{v}} f ;
$$

so $\left(2^{\prime}\right)$ and $\left(3^{\prime}\right)$ follow.

Problems on Directional and Partial Derivatives

1. Complete all missing details in the proof of Theorems 1 to 3 and Corollaries 1 and 2 .
2. Complete all details in Examples (a) and (b). Find $D_{1} f(\vec{p})$ and $D_{2} f(\vec{p})$ also for $\vec{p} \neq 0$. Do Example (b) in two ways: (i) use Note 3; (ii) use Definition 2 only.
3. In Examples (a) and (b) describe $D_{\vec{u}} f: E^{2} \rightarrow E^{1}$. Compute it for $\vec{u}=(1,1)=\vec{p}$.

In (b), show that f has no directional derivatives $D_{\vec{u}} f(\vec{p})$ except if $\vec{u} \| \vec{e}_{1}$ or $\vec{u} \| \vec{e}_{2}$. Give two proofs: (i) use Theorem 1; (ii) use definitions only.
4. Prove that if $f: E^{n}\left(C^{n}\right) \rightarrow E$ has a zero partial derivative, $D_{k} f=0$, on a convex set A, then $f(\vec{x})$ does not depend on x_{k}, for $\vec{x} \in A$. (Use Theorems 1 and 2.)
5. Describe $D_{1} f$ and $D_{2} f$ on the various parts of E^{2}, and discuss the relative continuity of f over lines through $\overrightarrow{0}$, given that $f(x, y)$ equals:
(i) $\frac{x y}{x^{2}+y^{2}}$;
(ii) the integral part of $x+y$;
(iii) $\frac{x y}{|x|}+x \sin \frac{1}{y}$;
(iv) $x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$;
(v) $\sin (y \cos x)$;
(vi) x^{y}.
(Set $f=0$ wherever the formula makes no sense.)
\Rightarrow 6. Prove that if $f: E^{\prime} \rightarrow E^{1}$ has a local maximum or minimum at $\vec{p} \in E^{\prime}$, then $D_{\vec{u}} f(\vec{p})=0$ for every vector $\vec{u} \neq \overrightarrow{0}$ in E^{\prime}.
[Hint: Use Note 3, then Corollary 1 in Chapter 5, §2.]
7. State and prove the Finite Increments Law (Theorem 1 of Chapter 5, §4) for directional derivatives. [Hint: Imitate Theorem 2 using two auxiliary functions, h and k.]
8. State and prove Theorems 4 and 5 of Chapter 5, §1, for directional derivatives.

§2. Linear Maps and Functionals. Matrices

For an adequate definition of differentiability, we need the notion of a linear map. Below, $E^{\prime}, E^{\prime \prime}$, and E denote normed spaces over the same scalar field, E^{1} or C.

Definition 1.

A function $f: E^{\prime} \rightarrow E$ is a linear map if and only if for all $\vec{x}, \vec{y} \in E^{\prime}$ and scalars a, b

$$
\begin{equation*}
f(a \vec{x}+b \vec{y})=a f(\vec{x})+b f(\vec{y}) ; \tag{1}
\end{equation*}
$$

equivalently, iff for all such \vec{x}, \vec{y}, and a

$$
f(\vec{x}+\vec{y})=f(x)+f(y) \text { and } f(a \vec{x})=a f(\vec{x}) .(\text { Verify! })
$$

If $E=E^{\prime}$, such a map is also called a linear operator.
If the range space E is the scalar field of E^{\prime}, (i.e., E^{1} or C,) the linear map f is also called a (real or complex) linear functional on E^{\prime}.

Note 1. Induction extends formula (1) to any "linear combinations":

$$
\begin{equation*}
f\left(\sum_{i=1}^{m} a_{i} \vec{x}_{i}\right)=\sum_{i=1}^{m} a_{i} f\left(\vec{x}_{i}\right) \tag{2}
\end{equation*}
$$

for all $\vec{x}_{i} \in E^{\prime}$ and scalars a_{i}.
Briefly: A linear map f preserves linear combinations.
Note 2. Taking $a=b=0$ in (1), we obtain $f(\overrightarrow{0})=0$ if f is linear.

Examples.

(a) Let $E^{\prime}=E^{n}\left(C^{n}\right)$. Fix a vector $\vec{v}=\left(v_{1}, \ldots, v_{n}\right)$ in E^{\prime} and set

$$
\left(\forall \vec{x} \in E^{\prime}\right) \quad f(\vec{x})=\vec{x} \cdot \vec{v}
$$

(inner product; see Chapter 3, $\S \S 1-3$ and $\S 9$).
Then

$$
\begin{aligned}
f(a \vec{x}+b \vec{y}) & =(a \vec{x}) \cdot \vec{v}+(b \vec{y}) \cdot \vec{v} \\
& =a(\vec{x} \cdot \vec{v})+b(\vec{y} \cdot \vec{v}) \\
& =a f(\vec{x})+b f(\vec{y}) ;
\end{aligned}
$$

so f is linear. Note that if $E^{\prime}=E^{n}$, then by definition,

$$
f(\vec{x})=\vec{x} \cdot \vec{v}=\sum_{k=1}^{n} x_{k} v_{k}=\sum_{k=1}^{n} v_{k} x_{k} .
$$

If, however, $E^{\prime}=C^{n}$, then

$$
f(\vec{x})=\vec{x} \cdot \vec{v}=\sum_{k=1}^{n} x_{k} \bar{v}_{k}=\sum_{k=1}^{n} \bar{v}_{k} x_{k},
$$

where \bar{v}_{k} is the conjugate of the complex number v_{k}.
By Theorem 3 in Chapter 4, $\S 3, f$ is continuous (a polynomial!).
Moreover, $f(\vec{x})=\vec{x} \cdot \vec{v}$ is a scalar (in E^{1} or C). Thus the range of f lies in the scalar field of E^{\prime}; so f is a linear functional on E^{\prime}.
(b) Let $I=[0,1]$. Let E^{\prime} be the set of all functions $u: I \rightarrow E$ that are of class $C D^{\infty}$ (Chapter 5, §6) on I, hence bounded there (Theorem 2 of Chapter 4, §8).

As in Example (C) in Chapter 3, $\S 10, E^{\prime}$ is a normed linear space, with norm

$$
\|u\|=\sup _{x \in I}|u(x)| .
$$

Here each function $u \in E^{\prime}$ is treated as a single "point" in E^{\prime}. The distance between two such points, u and v, equals $\|u-v\|$, by definition.

Now define a map D on E^{\prime} by setting $D(u)=u$ (derivative of u on I). As every $u \in E^{\prime}$ is of class $C D^{\infty}$, so is u^{\prime}.

Thus $D(u)=u^{\prime} \in E^{\prime}$, and so $D: E^{\prime} \rightarrow E^{\prime}$ is a linear operator. (Its linearity follows from Theorem 4 in Chapter $5, \S 1$.)
(c) Let again $I=[0,1]$. Let E^{\prime} be the set of all functions $u: I \rightarrow E$ that are bounded and have antiderivatives (Chapter 5, §5) on I. With norm $\|u\|$ as in Example (b), E^{\prime} is a normed linear space.

Now define $\phi: E^{\prime} \rightarrow E$ by

$$
\phi(u)=\int_{0}^{1} u
$$

with $\int u$ as in Chapter 5, $\S 5$. (Recall that $\int_{0}^{1} u$ is an element of E if $u: I \rightarrow E$.) By Corollary 1 in Chapter $5, \S 5, \phi$ is a linear map of E^{\prime} into
E. (Why?)
(d) The zero map $f=0$ on E^{\prime} is always linear. (Why?)

Theorem 1. A linear map $f: E^{\prime} \rightarrow E$ is continuous (even uniformly so) on all of E^{\prime} iff it is continuous at $\overrightarrow{0}$; equivalently, iff there is a real $c>0$ such that

$$
\left(\forall \vec{x} \in E^{\prime}\right) \quad|f(\vec{x})| \leq c|\vec{x}| .
$$

(We call this property linear boundedness.)
Proof. Assume that f is continuous at $\overrightarrow{0}$. Then, given $\varepsilon>0$, there is $\delta>0$ such that

$$
|f(\vec{x})-f(\overrightarrow{0})|=|f(\vec{x})| \leq \varepsilon
$$

whenever $|\vec{x}-\overrightarrow{0}|=|\vec{x}|<\delta$.
Now, for any $\vec{x} \neq \overrightarrow{0}$, we surely have

$$
\left|\frac{\delta \vec{x}}{2|\vec{x}|}\right|=\frac{\delta}{2}<\delta .
$$

Hence

$$
(\forall \vec{x} \neq \overrightarrow{0}) \quad\left|f\left(\frac{\delta \vec{x}}{2|\vec{x}|}\right)\right| \leq \varepsilon,
$$

or, by linearity,

$$
\frac{\delta}{2|\vec{x}|}|f(\vec{x})| \leq \varepsilon
$$

i.e.,

$$
|f(\vec{x})| \leq \frac{2 \varepsilon}{\delta}|\vec{x}|
$$

By Note 2, this also holds if $\vec{x}=\overrightarrow{0}$.
Thus, taking $c=2 \varepsilon / \delta$, we obtain

$$
\begin{equation*}
\left(\forall \vec{x} \in E^{\prime}\right) \quad f(\vec{x}) \leq c|\vec{x}| \quad \text { (linear boundedness). } \tag{3}
\end{equation*}
$$

Now assume (3). Then

$$
\left(\forall \vec{x}, \vec{y} \in E^{\prime}\right) \quad|f(\vec{x}-\vec{y})| \leq c|\vec{x}-\vec{y}| ;
$$

or, by linearity,

$$
\begin{equation*}
\left(\forall \vec{x}, \vec{y} \in E^{\prime}\right) \quad|f(\vec{x})-f(\vec{y})| \leq c|\vec{x}-\vec{y}| .^{1} \tag{4}
\end{equation*}
$$

Hence f is uniformly continuous (given $\varepsilon>0$, take $\delta=\varepsilon / c$). This, in turn, implies continuity at $\overrightarrow{0}$; so all conditions are equivalent, as claimed.

[^3]A linear map need not be continuous. ${ }^{2}$ But, for E^{n} and C^{n}, we have the following result.

Theorem 2.

(i) Any linear map on E^{n} or C^{n} is uniformly continuous.
(ii) Every linear functional on $E^{n}\left(C^{n}\right)$ has the form

$$
f(\vec{x})=\vec{x} \cdot \vec{v} \quad(\text { dot product })
$$

for some unique vector $\vec{v} \in E^{n}\left(C^{n}\right)$, dependent on f only.
Proof. Suppose $f: E^{n} \rightarrow E$ is linear; so f preserves linear combinations.
But every $\vec{x} \in E^{n}$ is such a combination,

$$
\vec{x}=\sum_{k=1}^{n} x_{k} \vec{e}_{k} \quad(\text { Theorem } 2 \text { in Chapter 3, } \S \S 1-3) .
$$

Thus, by Note 1,

$$
f(\vec{x})=f\left(\sum_{k=1}^{n} x_{k} \vec{e}_{k}\right)=\sum_{k=1}^{n} x_{k} f\left(\vec{e}_{k}\right) .
$$

Here the function values $f\left(\vec{e}_{k}\right)$ are fixed vectors in the range space E, say,

$$
f\left(\vec{e}_{k}\right)=v_{k} \in E \text {, }
$$

so that

$$
\begin{equation*}
f(\vec{x})=\sum_{k=1}^{n} x_{k} f\left(\vec{e}_{k}\right)=\sum_{k=1}^{n} x_{k} v_{k}, \quad v_{k} \in E . \tag{5}
\end{equation*}
$$

Thus f is a polynomial in n real variables x_{k}, hence continuous (even uniformly so, by Theorem 1).

In particular, if $E=E^{1}$ (i.e., f is a linear functional) then all v_{k} in (5) are real numbers; so they form a vector

$$
\vec{v}=\left(v_{1}, \ldots, v_{k}\right) \text { in } E^{n},
$$

and (5) can be written as

$$
f(\vec{x})=\vec{x} \cdot \vec{v} .
$$

The vector \vec{v} is unique. For suppose there are two vectors, \vec{u} and \vec{v}, such that

$$
\left(\forall \vec{x} \in E^{n}\right) \quad f(\vec{x})=\vec{x} \cdot \vec{v}=\vec{x} \cdot \vec{u} .
$$

Then

$$
\left(\forall \vec{x} \in E^{n}\right) \quad \vec{x} \cdot(\vec{v}-\vec{u})=0 .
$$

[^4]By Problem 10 of Chapter 3, $\S \S 1-3$, this yields $\vec{v}-\vec{u}=\overrightarrow{0}$, or $\vec{v}=\vec{u}$. This completes the proof for $E=E^{n}$.

It is analogous for C^{n}; only in (ii) the v_{k} are complex and one has to replace them by their conjugates \bar{v}_{k} when forming the vector \vec{v} to obtain $f(\vec{x})=\vec{x} \cdot \vec{v}$. Thus all is proved.

Note 3. Formula (5) shows that a linear map $f: E^{n}\left(C^{n}\right) \rightarrow E$ is uniquely determined by the n function values $v_{k}=f\left(\vec{e}_{k}\right)$.

If further $E=E^{m}\left(C^{m}\right)$, the vectors v_{k} are m-tuples of scalars,

$$
v_{k}=\left(v_{1 k}, \ldots, v_{m k}\right) .
$$

We often write such vectors vertically, as the n "columns" in an array of m "rows" and n "columns":

$$
\left(\begin{array}{cccc}
v_{11} & v_{12} & \ldots & v_{1 n} \tag{6}\\
v_{21} & v_{22} & \ldots & v_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
v_{m 1} & v_{m 2} & \ldots & v_{m n}
\end{array}\right)
$$

Formally, (6) is a double sequence of $m n$ terms, called an $m \times n$ matrix. We denote it by $[f]=\left(v_{i k}\right)$, where for $k=1,2, \ldots, n$,

$$
f\left(\vec{e}_{k}\right)=v_{k}=\left(v_{1 k}, \ldots, v_{m k}\right)
$$

Thus linear maps $f: E^{n} \rightarrow E^{m}$ (or $f: C^{n} \rightarrow C^{m}$) correspond one-to-one to their matrices $[f]$.

The easy proof of Corollaries 1 to 3 below is left to the reader.
Corollary 1. If $f, g: E^{\prime} \rightarrow E$ are linear, so is

$$
h=a f+b g
$$

for any scalars a, b.
If further $E^{\prime}=E^{n}\left(C^{n}\right)$ and $E=E^{m}\left(C^{m}\right)$, with $[f]=\left(v_{i k}\right)$ and $[g]=\left(w_{i k}\right)$, then

$$
[h]=\left(a v_{i k}+b w_{i k}\right) .
$$

Corollary 2. A map $f: E^{n}\left(C^{n}\right) \rightarrow E$ is linear iff

$$
f(\vec{x})=\sum_{k=1}^{n} v_{k} x_{k},
$$

where $v_{k}=f\left(\vec{e}_{k}\right)$.
Hint: For the "if," use Corollary 1. For the "only if," use formula (5) above.

Corollary 3. If $f: E^{\prime} \rightarrow E^{\prime \prime}$ and $g: E^{\prime \prime} \rightarrow E$ are linear, so is the composite $h=g \circ f$.

Our next theorem deals with the matrix of the composite linear map $g \circ f$. Theorem 3. Let $f: E^{\prime} \rightarrow E^{\prime \prime}$ and $g: E^{\prime \prime} \rightarrow E$ be linear, with

$$
E^{\prime}=E^{n}\left(C^{n}\right), E^{\prime \prime}=E^{m}\left(C^{m}\right), \text { and } E=E^{r}\left(C^{r}\right)
$$

If $[f]=\left(v_{i k}\right)$ and $[g]=\left(w_{j i}\right)$, then

$$
[h]=[g \circ f]=\left(z_{j k}\right),
$$

where

$$
\begin{equation*}
z_{j k}=\sum_{i=1}^{m} w_{j i} v_{i k}, \quad j=1,2, \ldots, r, k=1,2, \ldots, n \tag{7}
\end{equation*}
$$

Proof. Denote the basic unit vectors in E^{\prime} by

$$
e_{1}^{\prime}, \ldots, e_{n}^{\prime}
$$

those in $E^{\prime \prime}$ by

$$
e_{1}^{\prime \prime}, \ldots, e_{m}^{\prime \prime}
$$

and those in E by

$$
e_{1}, \ldots, e_{r}
$$

Then for $k=1,2, \ldots, n$,

$$
f\left(e_{k}^{\prime}\right)=v_{k}=\sum_{i=1}^{m} v_{i k} e_{i}^{\prime \prime} \text { and } h\left(e_{k}^{\prime}\right)=\sum_{j=1}^{r} z_{j k} e_{j},
$$

and for $i=1, \ldots m$,

$$
g\left(e_{i}^{\prime \prime}\right)=\sum_{j=1}^{r} w_{j i} e_{j} .
$$

Also,

$$
h\left(e_{k}^{\prime}\right)=g\left(f\left(e_{k}^{\prime}\right)\right)=g\left(\sum_{i=1}^{m} v_{i k} e_{i}^{\prime \prime}\right)=\sum_{i=1}^{m} v_{i k} g\left(e_{i}^{\prime \prime}\right)=\sum_{i=1}^{m} v_{i k}\left(\sum_{j=1}^{r} w_{j i} e_{j}\right) .
$$

Thus

$$
h\left(e_{k}^{\prime}\right)=\sum_{j=1}^{r} z_{j k} e_{j}=\sum_{j=1}^{r}\left(\sum_{i=1}^{m} w_{j i} v_{i k}\right) e_{j} .
$$

But the representation in terms of the e_{j} is unique (Theorem 2 in Chapter 3, $\S \S 1-3)$, so, equating coefficients, we get (7).

Note 4. Observe that $z_{j k}$ is obtained, so to say, by "dot-multiplying" the j th row of $[g]$ (an $r \times m$ matrix) by the k th column of $[f]$ (an $m \times n$ matrix).

It is natural to set

$$
[g][f]=[g \circ f],
$$

or

$$
\left(w_{j i}\right)\left(v_{i k}\right)=\left(z_{j k}\right),
$$

with $z_{j k}$ as in (7).
Caution. Matrix multiplication, so defined, is not commutative.

Definition 2.

The set of all continuous linear maps $f: E^{\prime} \rightarrow E$ (for fixed E^{\prime} and E) is denoted $L\left(E^{\prime}, E\right)$.

If $E=E^{\prime}$, we write $L(E)$ instead.
For each f in $L\left(E^{\prime}, E\right)$, we define its norm by

$$
\|f\|=\sup _{|\vec{x}| \leq 1}|f(\vec{x})| .^{3}
$$

Note that $\|f\|<+\infty$, by Theorem 1 .
Theorem 4. $L\left(E^{\prime}, E\right)$ is a normed linear space under the norm defined above and under the usual operations on functions, as in Corollary 1.

Proof. Corollary 1 easily implies that $L\left(E^{\prime}, E\right)$ is a vector space. We now show that $\|\cdot\|$ is a genuine norm.

The triangle law,

$$
\|f+g\| \leq\|f\|+\|g\|
$$

follows exactly as in Example (C) of Chapter 3, §10. (Verify!)
Also, by Problem 5 in Chapter 2, $\S \S 8-9, \sup |a f(\vec{x})|=|a| \sup |f(\vec{x})|$. Hence $\|a f\|=|a|\|f\|$ for any scalar a.

As noted above, $0 \leq\|f\|<+\infty$.
It remains to show that $\|f\|=0$ iff f is the zero map. If

$$
\|f\|=\sup _{|\vec{x}| \leq 1}|f(\vec{x})|=0
$$

then $|f(\vec{x})|=0$ when $|\vec{x}| \leq 1$. Hence, if $\vec{x} \neq \overrightarrow{0}$,

$$
f\left(\frac{\vec{x}}{|\vec{x}|}\right)=\frac{1}{|\vec{x}|} f(\vec{x})=0 .
$$

As $f(\overrightarrow{0})=0$, we have $f(\vec{x})=0$ for all $\vec{x} \in E^{\prime}$.
Thus $\|f\|=0$ implies $f=0$, and the converse is clear. Thus all is proved.

[^5]Note 5. A similar proof, via $f\left(\frac{\vec{x}}{|\vec{x}|}\right)$ and properties of lub, shows that

$$
\|f\|=\sup _{\vec{x} \neq 0}\left|\frac{f(\vec{x})}{|\vec{x}|}\right|
$$

and

$$
\left(\forall \vec{x} \in E^{\prime}\right) \quad|f(\vec{x})| \leq\|f\||\vec{x}| .
$$

It also follows that $\|f\|$ is the least real c such that

$$
\left(\forall \vec{x} \in E^{\prime}\right) \quad|f(\vec{x})| \leq c|\vec{x}| .
$$

Verify. (See Problem 3'.)
As in any normed space, we define distances in $L\left(E^{\prime}, E\right)$ by

$$
\rho(f, g)=\|f-g\|,
$$

making it a metric space; so we may speak of convergence, limits, etc., in it.
Corollary 4. If $f \in L\left(E^{\prime}, E^{\prime \prime}\right)$ and $g \in L\left(E^{\prime \prime}, E\right)$, then

$$
\|g \circ f\| \leq\|g\|\|f\| .
$$

Proof. By Note 5,

$$
\left(\forall \vec{x} \in E^{\prime}\right) \quad|g(f(\vec{x}))| \leq\|g\||f(\vec{x})| \leq\|g\|\|f\||\vec{x}| .
$$

Hence

$$
(\forall \vec{x} \neq \overrightarrow{0}) \quad\left|\frac{(g \circ f)(\vec{x})}{|\vec{x}|}\right| \leq\|g\|\|f\|,
$$

and so

$$
\|g\|\|f\| \geq \sup _{\vec{x} \neq 0} \frac{|(g \circ f)(\vec{x})|}{|\vec{x}|}=\|g \circ f\| .
$$

Problems on Linear Maps and Matrices

1. Verify Note 1 and the equivalence of the two statements in Definition 1.
2. In Examples (b) and (c) show that

$$
f_{n} \rightarrow f(\text { uniformly }) \text { on } I \text { iff }\left\|f_{n}-f\right\| \rightarrow 0,
$$

i.e., $f_{n} \rightarrow f$ in E^{\prime}.
[Hint: Use Theorem 1 in Chapter 4, §2.]
Hence deduce the following.
(i) If E is complete, then the map ϕ in Example (c) is continuous. [Hint: Use Theorem 2 of Chapter 5, $\S 9$, and Theorem 1 in Chapter 4, $\S 12$.]
(ii) The map D of Example (b) is not continuous. [Hint: Use Problem 3 in Chapter 5, §9.]
3. Prove Corollaries 1 to 3 .
$\mathbf{3}^{\prime}$. Show that

$$
\|f\|=\sup _{|\vec{x}| \leq 1}|f(\vec{x})|=\sup _{|\vec{x}|=1}|f(\vec{x})|=\sup _{\vec{x} \neq 0} \frac{|f(\vec{x})|}{|\vec{x}|} .
$$

[Hint: From linearity of f deduce that $|f(\vec{x})| \geq|f(c x)|$ if $|c|<1$. Hence one may disregard vectors of length <1 when computing sup $|f(\vec{x})|$. Why?]
4. Find the matrices $[f],[g],[h],[k]$, and the defining formulas for the linear maps $f: E^{2} \rightarrow E^{1}, g: E^{3} \rightarrow E^{4}, h: E^{4} \rightarrow E^{2}, k: E^{1} \rightarrow E^{3}$ if
(i) $f\left(\vec{e}_{1}\right)=3, f\left(\vec{e}_{2}\right)=-2$;
(ii) $g\left(\vec{e}_{1}\right)=(1,0,-2,4), g\left(\vec{e}_{2}\right)=(0,2,-1,1), g\left(\vec{e}_{3}\right)=(0,1,0,-1)$;
(iii) $h\left(\vec{e}_{1}\right)=(2,2), h\left(\vec{e}_{2}\right)=(0,-2), h\left(\vec{e}_{3}\right)=(1,0), h\left(\vec{e}_{4}\right)=(-1,1)$;
(iv) $k(1)=(0,1,-1)$.
5. In Problem 4, use Note 4 to find the product matrices $[k][f],[g][k]$, $[f][h]$, and $[h][g]$. Hence obtain the defining formulas for $k \circ f, g \circ k$, $f \circ h$, and $h \circ g$.
6. For $m \times n$-matrices (with m and n fixed) define addition and multiplication by scalars as follows:

$$
a[f]+b[g]=[a f+b g] \text { if } f, g \in L\left(E^{n}, E^{m}\right)\left(\text { or } L\left(C^{n}, C^{m}\right)\right) .
$$

Show that these matrices form a vector space over E^{1} (or C).
7. With matrix addition as in Problem 6, and multiplication as in Note 4, show that all $n \times n$-matrices form a noncommutative ring with unity, i.e., satisfy the field axioms (Chapter $2, \S \S 1-4$) except the commutativity of multiplication and existence of multiplicative inverses (give counterexamples!).

Which is the "unity" matrix?
8. Let $f: E^{\prime} \rightarrow E$ be linear. Prove the following statements.
(i) The derivative $D_{\vec{u}} f(\vec{p})$ exists and equals $f(\vec{u})$ for every $\vec{p}, \vec{u} \in E^{\prime}$ $(\vec{u} \neq \overrightarrow{0})$;
(ii) f is relatively continuous on any line in E^{\prime} (use Theorem 1 in $\S 1$);
(iii) f carries any such line into a line in E.
9. Let $g: E^{\prime \prime} \rightarrow E$ be linear. Prove that if some $f: E^{\prime} \rightarrow E^{\prime \prime}$ has a \vec{u} directed derivative at $\vec{p} \in E^{\prime}$, so has $h=g \circ f$, and $D_{\vec{u}} h(\vec{p})=g\left(D_{\vec{u}} f(\vec{p})\right)$. [Hint: Use Problem 8.]
10. A set A in a vector space $V(A \subseteq V)$ is said to be linear (or a linear subspace of V) iff $a \vec{x}+b \vec{y} \in A$ for any $\vec{x}, \vec{y} \in A$ and any scalars a, b. Prove the following.
(i) Any such A is itself a vector space.
(ii) If $f: E^{\prime} \rightarrow E$ is a linear map and A is linear in E^{\prime} (respectively, in E), so is $f[A]$ in E (respectively, so is $f^{-1}[A]$ in E^{\prime}).
11. A set A in a vector space V is called the span of a set $B \subseteq A(A=\operatorname{sp}(B))$ iff A consists of all linear combinations of vectors from B. We then also say that B spans A.

Prove the following:
(i) $A=\operatorname{sp}(B)$ is the smallest linear subspace of V that contains B.
(ii) If $f: V \rightarrow E$ is linear and $A=\operatorname{sp}(B)$, then $f[A]=\operatorname{sp}(f[B])$ in E.
12. A set $B=\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}\right\}$ in a vector space V is called a basis iff each $\vec{v} \in V$ has a unique representation as

$$
\vec{v}=\sum_{i=1}^{n} a_{i} \vec{x}_{i}
$$

for some scalars a_{i}. If so, the number n of the vectors in B is called the dimension of V, and V is said to be n-dimensional. Examples of such spaces are E^{n} and C^{n} (the \vec{e}_{k} form a basis!).
(i) Show that B is a basis iff it spans V (see Problem 11) and its elements \vec{x}_{i} are linearly independent, i.e.,

$$
\sum_{i=1}^{n} a_{i} \vec{x}_{i}=\overrightarrow{0} \text { iff all } a_{i} \text { vanish. }
$$

(ii) If E^{\prime} is finite-dimensional, all linear maps on E^{\prime} are uniformly continuous. (See also Problems 3 and 4 of $\S 6$.)
13. Prove that if $f: E^{1} \rightarrow E$ is continuous and $\left(\forall x, y \in E^{1}\right)$

$$
f(x+y)=f(x)+f(y)
$$

then f is linear; so, by Corollary $2, f(x)=v x$ where $v=f(1)$.
[Hint: Show that $f(a x)=a f(x)$; first for $a=1,2, \ldots$ (note: $n x=x+x+\cdots+x$, n terms); then for rational $a=m / n$; then for $a=0$ and $a=-1$. Any $a \in E^{1}$ is a limit of rationals; so use continuity and Theorem 1 in Chapter 4, §2.]

§3. Differentiable Functions

As we know, a function $f: E^{1} \rightarrow E\left(\right.$ on $\left.E^{1}\right)$ is differentiable at $p \in E^{1}$ iff, with
$\Delta f=f(x)-f(p)$ and $\Delta x=x-p$,

$$
f^{\prime}(p)=\lim _{x \rightarrow p} \frac{\Delta f}{\Delta x} \text { exists (finite). }
$$

Setting $\Delta x=x-p=t, \Delta f=f(p+t)-f(p)$, and $f^{\prime}(p)=v$, we may write this equation as

$$
\lim _{t \rightarrow 0}\left|\frac{\Delta f}{t}-v\right|=0
$$

or

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{1}{|t|}|f(p+t)-f(p)-v t|=0 \tag{1}
\end{equation*}
$$

Now define a map $\phi: E^{1} \rightarrow E$ by $\phi(t)=t v, v=f^{\prime}(p) \in E$.
Then ϕ is linear and continuous, i.e., $\phi \in L\left(E^{1}, E\right)$; so by Corollary 2 in $\S 2$, we may express (1) as follows: there is a map $\phi \in L\left(E^{1}, E\right)$ such that

$$
\lim _{t \rightarrow 0} \frac{1}{|t|}|\Delta f-\phi(t)|=0
$$

We adopt this as a definition in the general case, $f: E^{\prime} \rightarrow E$, as well.

Definition 1.

A function $f: E^{\prime} \rightarrow E$ (where E^{\prime} and E are normed spaces over the same scalar field) is said to be differentiable at a point $\vec{p} \in E^{\prime}$ iff there is a map

$$
\phi \in L\left(E^{\prime}, E\right)
$$

such that

$$
\lim _{\vec{t} \rightarrow \overrightarrow{0}} \frac{1}{|\vec{t}|}|\Delta f-\phi(\vec{t})|=0
$$

that is,

$$
\begin{equation*}
\lim _{\vec{t} \rightarrow \overrightarrow{0}} \frac{1}{|\vec{t}|}[f(\vec{p}+\vec{t})-f(\vec{p})-\phi(\vec{t})]=0 \tag{2}
\end{equation*}
$$

As we show below, ϕ is unique (for a fixed \vec{p}), if it exists.
We call ϕ the differential of f at \vec{p}, briefly denoted $d f$. As it depends on \vec{p}, we also write $d f(\vec{p} ; \vec{t})$ for $d f(\vec{t})$ and $d f(\vec{p}, \cdot)$ for $d f$.
Some authors write $f^{\prime}(\vec{p})$ for $d f(\vec{p}, \cdot)$ and call it the derivative at \vec{p}, but we shall not do this (see Preface). Following M. Spivak, however, we shall use " $\left[f^{\prime}(\vec{p})\right]$ " for its matrix, as follows.

Definition 2.

If $E^{\prime}=E^{n}\left(C^{n}\right)$ and $E=E^{m}\left(C^{m}\right)$, and $f: E^{\prime} \rightarrow E$ is differentiable at \vec{p}, we set

$$
\left[f^{\prime}(\vec{p})\right]=[d f(\vec{p}, \cdot)]
$$

and call it the Jacobian matrix of f at \vec{p}.
Note 1. In Chapter 5, $\S 6$, we did not define $d f$ as a mapping. However, if $E^{\prime}=E^{1}$, the function value

$$
d f(p ; t)=v t=f^{\prime}(p) \Delta x
$$

is as in Chapter $5, \S 6$.
Also, $\left[f^{\prime}(p)\right]$ is a 1×1 matrix with single term $f^{\prime}(p)$. (Why?) This motivated Definition 2.
Theorem 1 (uniqueness of df). If $f: E^{\prime} \rightarrow E$ is differentiable at \vec{p}, then the map ϕ described in Definition 1 is unique (dependent on f and \vec{p} only).
Proof. Suppose there is another linear map $g: E^{\prime} \rightarrow E$ such that

$$
\begin{equation*}
\lim _{\vec{t} \rightarrow \overrightarrow{0}} \frac{1}{|\vec{t}|}[f(\vec{p}+\vec{t})-f(\vec{p})-g(\vec{t})]=\lim _{\vec{t} \rightarrow \overrightarrow{0}} \frac{1}{|\vec{t}|}[\Delta f-g(\vec{t})]=0 . \tag{3}
\end{equation*}
$$

Let $h=\phi-g$. By Corollary 1 in $\S 2, h$ is linear.
Also, by the triangle law,

$$
|h(\vec{t})|=|\phi(\vec{t})-g(\vec{t})| \leq|\Delta f-\phi(\vec{t})|+|\Delta f-g(\vec{t})| .
$$

Hence, dividing by $|\vec{t}|$,

$$
\left|h\left(\frac{\vec{t}}{|\vec{t}|}\right)\right|=\frac{1}{|\vec{t}|}|h(\vec{t})| \leq \frac{1}{|\vec{t}|}|\Delta f-\phi(\vec{t})|+\frac{1}{|\vec{t}|}|\Delta f-g(\vec{t})|
$$

By (3) and (2), the right side expressions tend to 0 as $\vec{t} \rightarrow \overrightarrow{0}$. Thus

$$
\lim _{\vec{t} \rightarrow \overrightarrow{0}} h\left(\frac{\vec{t}}{|\vec{t}|}\right)=0 .
$$

This remains valid also if $\vec{t} \rightarrow \overrightarrow{0}$ over any line through $\overrightarrow{0}$, so that $\vec{t}||\vec{t}|$ remains constant, say $\vec{t} /|\vec{t}|=\vec{u}$, where \vec{u} is an arbitrary (but fixed) unit vector.

Then

$$
h\left(\frac{\vec{t}}{|\vec{t}|}\right)=h(\vec{u})
$$

is constant; so it can tend to 0 only if it equals 0 , so $h(\vec{u})=0$ for any unit vector \vec{u}.

Since any $\vec{x} \in E^{\prime}$ can be written as $\vec{x}=|\vec{x}| \vec{u}$, linearity yields

$$
h(\vec{x})=|\vec{x}| h(\vec{u})=0 .
$$

Thus $h=\phi-g=0$ on E^{\prime}, and so $\phi=g$ after all, proving the uniqueness of ϕ.

Theorem 2. If f is differentiable at \vec{p}, then
(i) f is continuous at \vec{p};
(ii) for any $\vec{u} \neq \overrightarrow{0}, f$ has the \vec{u}-directed derivative

$$
D_{\vec{u}} f(\vec{p})=d f(\vec{p} ; \vec{u}) .
$$

Proof. By assumption, formula (2) holds for $\phi=d f(\vec{p}, \cdot)$.
Thus, given $\varepsilon>0$, there is $\delta>0$ such that, setting $\Delta f=f(\vec{p}+\vec{t})-f(\vec{p})$, we have

$$
\begin{equation*}
\frac{1}{|\vec{t}|}|\Delta f-\phi(\vec{t})|<\varepsilon \text { whenever } 0<|\vec{t}|<\delta \tag{4}
\end{equation*}
$$

or, by the triangle law,

$$
\begin{equation*}
|\Delta f| \leq|\Delta f-\phi(\vec{t})|+|\phi(\vec{t})| \leq \varepsilon|\vec{t}|+|\phi(\vec{t})|, \quad 0<|\vec{t}|<\delta \tag{5}
\end{equation*}
$$

Now, by Definition 1, ϕ is linear and continuous; so

$$
\lim _{\vec{t} \rightarrow \overrightarrow{0}}|\phi(\vec{t})|=|\phi(\overrightarrow{0})|=0 .
$$

Thus, making $\vec{t} \rightarrow \overrightarrow{0}$ in (5), with ε fixed, we get

$$
\lim _{\vec{t} \rightarrow \overrightarrow{0}}|\Delta f|=0
$$

As \vec{t} is just another notation for $\Delta \vec{x}=\vec{x}-\vec{p}$, this proves assertion (i).
Next, fix any $\vec{u} \neq \overrightarrow{0}$ in E^{\prime}, and substitute $t \vec{u}$ for \vec{t} in (4).
In other words, t is a real variable, $0<t<\delta /|\vec{u}|$, so that $\vec{t}=t \vec{u}$ satisfies $0<|\vec{t}|<\delta$.

Multiplying by $|\vec{u}|$, we use the linearity of ϕ to get

$$
\varepsilon|\vec{u}|>\left|\frac{\Delta f}{t}-\frac{\phi(t \vec{u})}{t}\right|=\left|\frac{\Delta f}{t}-\phi(\vec{u})\right|=\left|\frac{f(\vec{p}+t \vec{u})-f(\vec{p})}{t}-\phi(\vec{u})\right| .
$$

As ε is arbitrary, we have

$$
\phi(\vec{u})=\lim _{t \rightarrow 0} \frac{1}{t}[f(\vec{p}+t \vec{u})-f(\vec{p})] .
$$

But this is simply $D_{\vec{u}} f(\vec{p})$, by Definition 1 in $\S 1$.
Thus $D_{\vec{u}} f(\vec{p})=\phi(\vec{u})=d f(\vec{p} ; \vec{u})$, proving (ii).
Note 2. If $E^{\prime}=E^{n}\left(C^{n}\right)$, Theorem 2(ii) shows that if f is differentiable at \vec{p}, it has the n partials

$$
D_{k} f(\vec{p})=d f\left(\vec{p} ; \vec{e}_{k}\right), \quad k=1, \ldots, n
$$

But the converse fails: the existence of the $D_{k} f(\vec{p})$ does not even imply continuity, let alone differentiability (see $\S 1$). Moreover, we have the following result.
Corollary 1. If $E^{\prime}=E^{n}\left(C^{n}\right)$ and if $f: E^{\prime} \rightarrow E$ is differentiable at \vec{p}, then

$$
\begin{equation*}
d f(\vec{p} ; \vec{t})=\sum_{k=1}^{n} t_{k} D_{k} f(\vec{p})=\sum_{k=1}^{n} t_{k} \frac{\partial}{\partial x_{k}} f(\vec{p}) \tag{6}
\end{equation*}
$$

where $\vec{t}=\left(t_{1}, \ldots, t_{n}\right)$.
Proof. By definition, $\phi=d f(\vec{p}, \cdot)$ is a linear map for a fixed \vec{p}.
If $E^{\prime}=E^{n}$ or C^{n}, we may use formula (3) of $\S 2$, replacing f and \vec{x} by ϕ and \vec{t}, and get

$$
\phi(\vec{t})=d f(\vec{p} ; \vec{t})=\sum_{k=1}^{n} t_{k} d f\left(\vec{p} ; \vec{e}_{k}\right)=\sum_{k=1}^{n} t_{k} D_{k} f(\vec{p})
$$

by Note 2.
Note 3. In classical notation, one writes Δx_{k} or $d x_{k}$ for t_{k} in (6). Thus, omitting \vec{p} and \vec{t}, formula (6) is often written as

$$
d f=\frac{\partial f}{\partial x_{1}} d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2}+\cdots+\frac{\partial f}{\partial x_{n}} d x_{n} .
$$

In particular, if $n=3$, we write x, y, z for x_{1}, x_{2}, x_{3}. This yields

$$
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z
$$

(a familiar calculus formula).
Note 4. If the range space E in Corollary 1 is $E^{1}(C)$, then the $D_{k} f(\vec{p})$ form an n-tuple of scalars, i.e., a vector in $E^{n}\left(C^{n}\right)$.

In case $f: E^{n} \rightarrow E^{1}$, we denote it by

$$
\nabla f(\vec{p})=\left(D_{1} f(\vec{p}), \ldots, D_{n} f(\vec{p})\right)=\sum_{k=1}^{n} \vec{e}_{k} D_{k} f(\vec{p})
$$

In case $f: C^{n} \rightarrow C$, we replace the $D_{k} f(\vec{p})$ by their conjugates $\overline{D_{k} f(\vec{p})}$ and set

$$
\nabla f(\vec{p})=\sum_{k=1}^{n} \vec{e}_{k} \overline{D_{k} f(\vec{p})}
$$

The vector $\nabla f(\vec{p})$ is called the gradient of $f(" \operatorname{grad} f ")$ at \vec{p}.
From (6) we obtain

$$
\begin{equation*}
d f(\vec{p} ; \vec{t})=\sum_{k=1}^{n} t_{k} D_{k} f(\vec{p})=\vec{t} \cdot \nabla f(\vec{p}) \tag{7}
\end{equation*}
$$

(dot product of \vec{t} by $\nabla f(\vec{p})$), provided $f: E^{n} \rightarrow E^{1}$ (or $f: C^{n} \rightarrow C$) is differentiable at \vec{p}.

This leads us to the following result.
Corollary 2. A function $f: E^{n} \rightarrow E^{1}\left(\right.$ or $\left.f: C^{n} \rightarrow C\right)$ is differentiable at \vec{p} iff

$$
\begin{equation*}
\lim _{\vec{t} \rightarrow \overrightarrow{0}} \frac{1}{|\vec{t}|}|f(\vec{p}+\vec{t})-f(\vec{p})-\vec{t} \cdot \vec{v}|=0 \tag{8}
\end{equation*}
$$

for some $\vec{v} \in E^{n}\left(C^{n}\right)$.
In this case, necessarily $\vec{v}=\nabla f(\vec{p})$ and $\vec{t} \cdot \vec{v}=d f(\vec{p} ; \vec{t}), \vec{t} \in E^{n}\left(C^{n}\right)$.
Proof. If f is differentiable at \vec{p}, we may set $\phi=d f(\vec{p}, \cdot)$ and $\vec{v}=\nabla f(\vec{p})$.
Then by (7),

$$
\phi(\vec{t})=d f(\vec{p} ; \vec{t})=\vec{t} \cdot \vec{v}
$$

so by Definition 1, (8) results.
Conversely, if some \vec{v} satisfies (8), set $\phi(\vec{t})=\vec{t} \cdot \vec{v}$. Then (8) implies (2), and ϕ is linear and continuous.

Thus by definition, f is differentiable at \vec{p}; so (7) holds.
Also, ϕ is a linear functional on $E^{n}\left(C^{n}\right)$. By Theorem 2(ii) in $\S 2$, the \vec{v} in $\phi(\vec{t})=\vec{t} \cdot \vec{v}$ is unique, as is ϕ.

Thus by (7), $\vec{v}=\nabla f(\vec{p})$ necessarily.
Corollary 3 (law of the mean). If $f: E^{n} \rightarrow E^{1}$ (real) is relatively continuous on a closed segment $L[\vec{p}, \vec{q}], \vec{p} \neq \vec{q}$, and differentiable on $L(\vec{p}, \vec{q})$, then

$$
\begin{equation*}
f(\vec{q})-f(\vec{p})=(\vec{q}-\vec{p}) \cdot \nabla f\left(\vec{x}_{0}\right) \tag{9}
\end{equation*}
$$

for some $\vec{x}_{0} \in L(\vec{p}, \vec{q})$.
Proof. Let

$$
r=|\vec{q}-\vec{p}|, \vec{v}=\frac{1}{r}(\vec{q}-\vec{p}), \text { and } r \vec{v}=(\vec{q}-\vec{p})
$$

By (7) and Theorem 2(ii),

$$
D_{\vec{v}} f(\vec{x})=d f(\vec{x} ; \vec{v})=\vec{v} \cdot \nabla f(\vec{x})
$$

for $\vec{x} \in L(\vec{p}, \vec{q})$. Thus by formula (3^{\prime}) of Corollary 2 in $\S 1$,

$$
f(\vec{q})-f(\vec{p})=r D_{\vec{v}} f\left(\vec{x}_{0}\right)=r \vec{v} \cdot \nabla f\left(\vec{x}_{0}\right)=(\vec{q}-\vec{p}) \cdot \nabla f\left(\vec{x}_{0}\right)
$$

for some $\vec{x}_{0} \in L(\vec{p}, \vec{q})$.
As we know, the mere existence of partials does not imply differentiability. But the existence of continuous partials does. Indeed, we have the following theorem.

Theorem 3. Let $E^{\prime}=E^{n}\left(C^{n}\right)$.
If $f: E^{\prime} \rightarrow E$ has the partial derivatives $D_{k} f(k=1, \ldots, n)$ on all of an open set $A \subseteq E^{\prime}$, and if the $D_{k} f$ are continuous at some $\vec{p} \in A$, then f is differentiable at \vec{p}.

Proof. With \vec{p} as above, let

$$
\phi(\vec{t})=\sum_{k=1}^{n} t_{k} D_{k} f(\vec{p}) \text { with } \vec{t}=\sum_{k=1}^{n} t_{k} \vec{e}_{k} \in E^{\prime}
$$

Then ϕ is continuous (a polynomial!) and linear (Corollary 2 in §2).
Thus by Definition 1, it remains to show that

$$
\lim _{\vec{t} \rightarrow \overrightarrow{0}} \frac{1}{|\vec{t}|}|\Delta f-\phi(\vec{t})|=0
$$

that is,

$$
\begin{equation*}
\lim _{\vec{t} \in \overrightarrow{0}} \frac{1}{|\vec{t}|}\left|f(\vec{p}+\vec{t})-f(\vec{p})-\sum_{k=1}^{n} t_{k} D_{k} f(\vec{p})\right|=0 . \tag{10}
\end{equation*}
$$

To do this, fix $\varepsilon>0$. As A is open and the $D_{k} f$ are continuous at $\vec{p} \in A$, there is a $\delta>0$ such that $G_{\vec{p}}(\delta) \subseteq A$ and simultaneously (explain this!)

$$
\left(\forall \vec{x} \in G_{\vec{p}}(\delta)\right) \quad\left|D_{k} f(\vec{x})-D_{k} f(\vec{p})\right|<\frac{\varepsilon}{n}, k=1, \ldots, n .
$$

Hence for any set $I \subseteq G_{\vec{p}}(\delta)$

$$
\begin{equation*}
\sup _{\vec{x} \in I}\left|D_{k} f(\vec{x})-D_{k} f(\vec{p})\right| \leq \frac{\varepsilon}{n} . \quad \text { (Why?) } \tag{11}
\end{equation*}
$$

Now fix any $\vec{t} \in E^{\prime}, 0<|\vec{t}|<\delta$, and let $\vec{p}_{0}=\vec{p}$,

$$
\vec{p}_{k}=\vec{p}+\sum_{i=1}^{k} t_{i} e_{i}, \quad k=1, \ldots, n
$$

Then

$$
\vec{p}_{n}=\vec{p}+\sum_{i=1}^{n} t_{i} \vec{e}_{i}=\vec{p}+\vec{t}
$$

$\left|\vec{p}_{k}-\vec{p}_{k-1}\right|=\left|t_{k}\right|$, and all \vec{p}_{k} lie in $G_{\vec{p}}(\delta)$, for

$$
\left|\vec{p}_{k}-\vec{p}\right|=\left|\sum_{i=1}^{k} t_{i} e_{i}\right|=\sqrt{\sum_{i=1}^{k}\left|t_{i}\right|^{2}} \leq \sqrt{\sum_{i=1}^{n}\left|t_{i}\right|^{2}}=|\vec{t}|<\delta
$$

as required.

As $G_{p}(\delta)$ is convex (Chapter $4, \S 9$), the segments $I_{k}=L\left[\vec{p}_{k-1}, \vec{p}_{k}\right]$ all lie in $G_{\vec{p}}(\delta) \subseteq A$; and by assumption, f has all partials there.

Hence by Theorem 1 in $\S 1, f$ is relatively continuous on all I_{k}.
All this also applies to the functions g_{k}, defined by

$$
\begin{equation*}
\left(\forall \vec{x} \in E^{\prime}\right) \quad g_{k}(\vec{x})=f(\vec{x})-x_{k} D_{k} f(\vec{p}), \quad k=1, \ldots, n . \tag{12}
\end{equation*}
$$

(Why?) Here

$$
D_{k} g_{k}(\vec{x})=D_{k} f(\vec{x})-D_{k} f(\vec{p})
$$

(Why?)
Thus by Corollary 2 in $\S 1$, and (11) above,

$$
\begin{aligned}
\left|g_{k}\left(\vec{p}_{k}\right)-g_{k}\left(\vec{p}_{k-1}\right)\right| & \leq\left|\vec{p}_{k}-\vec{p}_{k-1}\right| \sup _{x \in I_{k}}\left|D_{k} f(\vec{x})-D_{k} f(\vec{p})\right| \\
& \leq \frac{\varepsilon}{n}\left|t_{k}\right| \leq \frac{\varepsilon}{n}|\vec{t}|,
\end{aligned}
$$

since

$$
\left|\vec{p}_{k}-\vec{p}_{k-1}\right|=\left|t_{k} \vec{e}_{k}\right| \leq|\vec{t}|,
$$

by construction.
Combine with (12), recalling that the k th coordinates x_{k}, for \vec{p}_{k} and \vec{p}_{k-1}, differ by t_{k}; so we obtain

$$
\begin{align*}
\left|g_{k}\left(\vec{p}_{k}\right)-g_{k}\left(\vec{p}_{k-1}\right)\right| & =\left|f\left(\vec{p}_{k}\right)-f\left(\vec{p}_{k-1}\right)-t_{k} D_{k} f(\vec{p})\right| \\
& \leq \frac{\varepsilon}{n}|\vec{t}| . \tag{13}
\end{align*}
$$

Also,

$$
\begin{aligned}
\sum_{k=1}^{n}\left[f\left(\vec{p}_{k}\right)-f\left(\vec{p}_{k-1}\right)\right] & =f\left(\vec{p}_{n}\right)-f\left(\vec{p}_{0}\right) \\
& =f(\vec{p}+\vec{t})-f(\vec{p})=\Delta f(\text { see above })
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left|\Delta f-\sum_{k=1}^{n} t_{k} D_{k} f(\vec{p})\right| & =\left|\sum_{k=1}^{n}\left[f\left(\vec{p}_{k}\right)-f\left(\vec{p}_{k-1}\right)-t_{k} D_{k} f(\vec{p})\right]\right| \\
& \leq n \cdot \frac{\varepsilon}{n}|\vec{t}|=\varepsilon|\vec{t}| .
\end{aligned}
$$

As ε is arbitrary, (10) follows, and all is proved.
Theorem 4. If $f: E^{n} \rightarrow E^{m}$ (or $f: C^{n} \rightarrow C^{m}$) is differentiable at \vec{p}, with $f=\left(f_{1}, \ldots, f_{m}\right)$, then $\left[f^{\prime}(\vec{p})\right]$ is an $m \times n$ matrix,

$$
\begin{equation*}
\left[f^{\prime}(\vec{p})\right]=\left[D_{k} f_{i}(\vec{p})\right], \quad i=1, \ldots, m, k=1, \ldots, n . \tag{14}
\end{equation*}
$$

Proof. By definition, $\left[f^{\prime}(\vec{p})\right]$ is the matrix of the linear map $\phi=d f(\vec{p}, \cdot)$, $\phi=\left(\phi_{1}, \ldots, \phi_{m}\right)$. Here

$$
\phi(\vec{t})=\sum_{k=1}^{n} t_{k} D_{k} f(\vec{p})
$$

by Corollary 1.
As $f=\left(f_{1}, \ldots, f_{m}\right)$, we can compute $D_{k} f(\vec{p})$ componentwise by Theorem 5 of Chapter $5, \S 1$, and Note 2 in $\S 1$ to get

$$
\begin{aligned}
D_{k} f(\vec{p}) & =\left(D_{k} f_{1}(\vec{p}), \ldots, D_{k} f_{m}(\vec{p})\right) \\
& =\sum_{i=1}^{m} e_{i}^{\prime} D_{k} f_{i}(\vec{p}), \quad k=1,2, \ldots, n
\end{aligned}
$$

where the e_{i}^{\prime} are the basic vectors in $E^{m}\left(C^{m}\right)$. (Recall that the \vec{e}_{k} are the basic vectors in $E^{n}\left(C^{n}\right)$.)

Thus

$$
\phi(\vec{t})=\sum_{i=1}^{m} e_{i}^{\prime} \phi_{i}(\vec{t}) .
$$

Also,

$$
\phi(\vec{t})=\sum_{k=1}^{n} t_{k} \sum_{i=1}^{m} e_{i}^{\prime} D_{k} f_{i}(\vec{p})=\sum_{i=1}^{m} e_{i}^{\prime} \sum_{k=1}^{n} t_{k} D_{k} f_{i}(\vec{p}) .
$$

The uniqueness of the decomposition (Theorem 2 in Chapter 3, §§1-3) now yields

$$
\phi_{i}(\vec{t})=\sum_{k=1}^{n} t_{k} D_{k} f_{i}(\vec{p}), \quad i=1, \ldots, m, \quad \vec{t} \in E^{n}\left(C^{n}\right)
$$

If here $\vec{t}=\vec{e}_{k}$, then $t_{k}=1$, while $t_{j}=0$ for $j \neq k$. Thus we obtain

$$
\phi_{i}\left(\vec{e}_{k}\right)=D_{k} f_{i}(\vec{p}), \quad i=1, \ldots, m, k=1, \ldots, n .
$$

Hence

$$
\phi\left(\vec{e}_{k}\right)=\left(v_{1 k}, v_{2 k}, \ldots, v_{m k}\right),
$$

where

$$
v_{i k}=\phi_{i}\left(\vec{e}_{k}\right)=D_{k} f_{i}(\vec{p})
$$

But by Note 3 of $\S 2, v_{1 k}, \ldots, v_{m k}$ (written vertically) is the k th column of the $m \times n$ matrix $[\phi]=\left[f^{\prime}(\vec{p})\right]$. Thus formula (14) results indeed.

In conclusion, let us stress again that while $D_{\vec{u}} f(\vec{p})$ is a constant, for a fixed $\vec{p}, d f(\vec{p}, \cdot)$ is a mapping

$$
\phi \in L\left(E^{\prime}, E\right)
$$

especially "tailored" for \vec{p}.

The reader should carefully study at least the "arrowed" problems below.

Problems on Differentiable Functions

1. Complete the missing details in the proofs of this section.
2. Verify Note 1. Describe $\left[f^{\prime}(\vec{p})\right]$ for $f: E^{1} \rightarrow E^{m}$, too. Give examples.
\Rightarrow 3. A map $f: E^{\prime} \rightarrow E$ is said to satisfy a Lipschitz condition (L) of order $\alpha>0$ at \vec{p} iff

$$
(\exists \delta>0)\left(\exists K \in E^{1}\right)\left(\forall \vec{x} \in G_{\neg \vec{p}}(\delta)\right) \quad|f(\vec{x})-f(\vec{p})| \leq K|\vec{x}-\vec{p}|^{\alpha} .
$$

Prove the following.
(i) This implies continuity at \vec{p} (but not conversely; see Problem 7 in Chapter 5, §1).
(ii) L of order >1 implies differentiability at \vec{p}, with $d f(\vec{p}, \cdot)=0$ on E^{\prime}.
(iii) Differentiability at \vec{p} implies L of order 1 (apply Theorem 1 in $\S 2$ to $\phi=d f$).
(iv) If f and g are differentiable at \vec{p}, then

$$
\lim _{\vec{x} \rightarrow \vec{p}} \frac{1}{|\Delta \vec{x}|}|\Delta f||\Delta g|=0
$$

4. For the functions of Problem 5 in $\S 1$, find those \vec{p} at which f is differentiable. Find

$$
\nabla f(\vec{p}), d f(\vec{p}, \cdot), \text { and }\left[f^{\prime}(\vec{p})\right] .
$$

[Hint: Use Theorem 3 and Corollary 1.]
$\Rightarrow 5$. Prove the following statements.
(i) If $f: E^{\prime} \rightarrow E$ is constant on an open globe $G \subset E^{\prime}$, it is differentiable at each $\vec{p} \in G$, and $d f(\vec{p}, \cdot)=0$ on E^{\prime}.
(ii) If the latter holds for each $\vec{p} \in G-Q$ (Q countable), then f is constant on G (even on \bar{G}) provided f is relatively continuous there.
[Hint: Given $\vec{p}, \vec{q} \in G$, use Theorem 2 in $\S 1$ to get $f(\vec{p})=f(\vec{q})$.]
6. Do Problem 5 in case G is any open polygon-connected set in E^{\prime}. (See Chapter 4, §9.)
\Rightarrow 7. Prove the following.
(i) If $f, g: E^{\prime} \rightarrow E$ are differentiable at \vec{p}, so is

$$
h=a f+b g,
$$

for any scalars a, b (if f and g are scalar valued, a and b may be vectors); moreover,

$$
d(a f+b g)=a d f+b d g
$$

i.e.,

$$
d h(\vec{p} ; \vec{t})=a d f(\vec{p} ; \vec{t})+b d g(\vec{p} ; \vec{t}), \quad \vec{t} \in E^{\prime} .
$$

(ii) In case $f, g: E^{m} \rightarrow E^{1}$ or $C^{m} \rightarrow C$, deduce also that

$$
\nabla h(\vec{p})=a \nabla f(\vec{p})+b \nabla g(\vec{p})
$$

$\Rightarrow 8$. Prove that if $f, g: E^{\prime} \rightarrow E^{1}(C)$ are differentiable at \vec{p}, then so are

$$
h=g f \text { and } k=\frac{g}{f} .
$$

(the latter, if $f(\vec{p}) \neq 0$). Moreover, with $a=f(\vec{p})$ and $b=g(\vec{p})$, show that
(i) $d h=a d g+b d f$ and
(ii) $d k=(a d g-b d f) / a^{2}$.

If further $E^{\prime}=E^{n}\left(C^{n}\right)$, verify that
(iii) $\nabla h(\vec{p})=a \nabla g(\vec{p})+b \nabla f(\vec{p})$ and
(iv) $\nabla k(\vec{p})=(a \nabla g(\vec{p})-b \nabla f(\vec{p})) / a^{2}$.

Prove (i) and (ii) for vector-valued g, too.
[Hints: (i) Set $\phi=a d g+b d f$, with a and b as above. Verify that

$$
\Delta h-\phi(\vec{t})=g(\vec{p})(\Delta f-d f(\vec{t}))+f(\vec{p})(\Delta g-d g(\vec{t}))+(\Delta f)(\Delta g) .
$$

Use Problem 3(iv) and Definition 1.
(ii) Let $F(\vec{t})=1 / f(\vec{t})$. Show that $d F=-d f / a^{2}$. Then apply (i) to $g F$.]
\Rightarrow 9. Let $f: E^{\prime} \rightarrow E^{m}\left(C^{m}\right), f=\left(f_{1}, \ldots, f_{m}\right)$. Prove that
(i) f is linear iff all its m components f_{k} are;
(ii) f is differentiable at \vec{p} iff all f_{k} are, and then $d f=\left(d f_{1}, \ldots, d f_{m}\right)$. Hence if f is complex, $d f=d f_{\text {re }}+i \cdot d f_{\mathrm{im}}$.
10. Prove the following statements.
(i) If $f \in L\left(E^{\prime}, E\right)$ then f is differentiable on E^{\prime}, and $d f(\vec{p}, \cdot)=f$, $\vec{p} \in E^{\prime}$.
(ii) Such is any first-degree monomial, hence any sum of such monomials.
11. Any rational function is differentiable in its domain.
[Hint: Use Problems 10(ii), 7, and 8. Proceed as in Theorem 3 in Chapter 4, §3.]
12. Do Problem 8(i) in case g is only continuous at \vec{p}, and $f(\vec{p})=0$. Find $d h$.
13. Do Problem 8(i) for dot products $h=f \cdot g$ of functions $f, g: E^{\prime} \rightarrow$ $E^{m}\left(C^{m}\right)$.
14. Prove the following.
(i) If $\phi \in L\left(E^{n}, E^{1}\right)$ or $\phi \in L\left(C^{n}, C\right)$, then $\|\phi\|=|\vec{v}|$, with \vec{v} as in $\S 2$, Theorem 2(ii).
(ii) If $f: E^{n} \rightarrow E^{1}\left(f: C^{n} \rightarrow C^{1}\right)$ is differentiable at \vec{p}, then

$$
\|d f(\vec{p}, \cdot)\|=|\nabla f(\vec{p})| .
$$

Moreover, in case $f: E^{n} \rightarrow E^{1}$,

$$
|\nabla f(\vec{p})| \geq D_{\vec{u}} f(\vec{p}) \quad \text { if }|\vec{u}|=1
$$

and

$$
|\nabla f(\vec{p})|=D_{\vec{u}} f(\vec{p}) \quad \text { when } \vec{u}=\frac{\nabla f(\vec{p})}{|\nabla f(\vec{p})|}
$$

thus

$$
|\nabla f(\vec{p})|=\max _{|\vec{u}|=1} D_{\vec{u}} f(\vec{p})
$$

[Hints: Use the equality case in Theorem 4(c') of Chapter 3, $\S \S 1-3$. Use formula (7), Corollary 2, and Theorem 2(ii).]
15. Show that Theorem 3 holds even if
(i) $D_{1} f$ is discontinuous at \vec{p}, and
(ii) f has partials on $A-Q$ only (Q countable, $\vec{p} \notin Q$), provided f is continuous on A in each of the last $n-1$ variables.
[Hint: For $k=1$, formula (13) still results by definition of $D_{1} f$, if a suitable δ has been chosen.]
*16. Show that Theorem 3 and Problem 15 apply also to any $f: E^{\prime} \rightarrow E$ where E^{\prime} is n-dimensional with basis $\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ (see Problem 12 in $\S 2)$ if we write $D_{k} f$ for $D_{\vec{u}_{k}} f$.
[Hints: Assume $\left|\vec{u}_{k}\right|=1,1 \leq k \leq n$ (if not, replace \vec{u}_{k} by $\vec{u}_{k} /\left|\vec{u}_{k}\right|$; show that this yields another basis). Modify the proof so that the \vec{p}_{k} are still in $G_{\vec{p}}(\delta)$. Caution: The standard norm of E^{n} does not apply here.]
17. Let $f_{k}: E^{1} \rightarrow E^{1}$ be differentiable at $p_{k}(k=1, \ldots, n)$. For $\vec{x}=$ $\left(x_{1}, \ldots, x_{n}\right) \in E^{n}$, set

$$
F(\vec{x})=\sum_{k=1}^{n} f_{k}\left(x_{k}\right) \text { and } G(\vec{x})=\prod_{k=1}^{n} f_{k}\left(x_{k}\right)
$$

Show that F and G are differentiable at $\vec{p}=\left(p_{1}, \ldots, p_{n}\right)$. Express $\nabla F(\vec{p})$ and $\nabla G(\vec{p})$ in terms of the $f_{k}^{\prime}\left(p_{k}\right)$.
[Hint: In order to use Problems 7 and 8 , replace the f_{k} by suitable functions defined on E^{n}. For $\nabla G(\vec{p})$, "imitate" Problem 6 in Chapter 5, §1.]

§4. The Chain Rule. The Cauchy Invariant Rule

To generalize the chain rule (Chapter 5, $\S 1$), we consider the composite $h=g \circ f$ of two functions, $f: E^{\prime} \rightarrow E^{\prime \prime}$ and $g: E^{\prime \prime} \rightarrow E$, with $E^{\prime}, E^{\prime \prime}$, and E as before.
Theorem 1 (chain rule). If

$$
f: E^{\prime} \rightarrow E^{\prime \prime} \text { and } g: E^{\prime \prime} \rightarrow E
$$

are differentiable at \vec{p} and $\vec{q}=f(\vec{p})$, respectively, then

$$
h=g \circ f
$$

is differentiable at \vec{p}, and

$$
\begin{equation*}
d h(\vec{p}, \cdot)=d g(\vec{q}, \cdot) \circ d f(\vec{p}, \cdot) \tag{1}
\end{equation*}
$$

Briefly:"The differential of the composite is the composite of differentials."
Proof. Let $U=d f(\vec{p}, \cdot), V=d g(\vec{q}, \cdot)$, and $\phi=V \circ U$.
As U and V are linear continuous maps, so is ϕ. We must show that $\phi=$ $d h(\vec{p}, \cdot)$.

Here it is more convenient to write $\Delta \vec{x}$ or $\vec{x}-\vec{p}$ for the " \vec{t} " of Definition 1 in $\S 3$. For brevity, we set (with $\vec{q}=f(\vec{p})$)

$$
\begin{align*}
w(\vec{x})=\Delta h-\phi(\Delta \vec{x})=h(\vec{x})-h(\vec{p})-\phi(\vec{x}-\vec{p}), & \vec{x} \in E^{\prime}, \tag{2}\\
u(\vec{x})=\Delta f-U(\Delta \vec{x})=f(\vec{x})-f(\vec{p})-U(\vec{x}-\vec{p}), & \vec{x} \in E^{\prime} \tag{3}\\
v(\vec{y})=\Delta g-V(\Delta \vec{y})=g(\vec{y})-g(\vec{q})-V(\vec{y}-\vec{q}), & \vec{y} \in E^{\prime \prime} . \tag{4}
\end{align*}
$$

Then what we have to prove (see Definition 1 in $\S 3$) reduces to

$$
\begin{equation*}
\lim _{\vec{x} \rightarrow \vec{p}} \frac{w(\vec{x})}{|\vec{x}-\vec{p}|}=0 \tag{5}
\end{equation*}
$$

while the assumed existence of $d f(\vec{p}, \cdot)=U$ and $d g(\vec{q}, \cdot)=V$ can be expressed as

$$
\lim _{\vec{x} \rightarrow \vec{p}} \frac{u(\vec{x})}{|\vec{x}-\vec{p}|}=0
$$

and

$$
\lim _{\vec{y} \rightarrow \vec{q}} \frac{v(\vec{y})}{|\vec{y}-\vec{q}|}=0, \quad \vec{q}=f(\vec{p})
$$

From (2) and (3), recalling that $h=g \circ f$ and $\phi=V \circ U$, we obtain

$$
\begin{align*}
w(\vec{x}) & =g(f(\vec{x}))-g(\vec{q})-V(U(\vec{x}-\vec{p})) \\
& =g(f(\vec{x}))-g(\vec{q})-V(f(\vec{x})-f(\vec{p})-u(\vec{x})) . \tag{6}
\end{align*}
$$

Using (4), with $\vec{y}=f(\vec{x})$, and the linearity of V, we rewrite (6) as

$$
\begin{aligned}
w(\vec{x}) & =g(f(\vec{x}))-g(\vec{q})-V(f(x)-f(p))-V(u(x)) \\
& =v(f(\vec{x}))+V(u(\vec{x}))
\end{aligned}
$$

(Verify!) Thus the desired formula (5) will be proved if we show that

$$
\lim _{\vec{x} \rightarrow \vec{p}} \frac{V(u(\vec{x}))}{|\vec{x}-\vec{p}|}=0
$$

and

$$
\lim _{\vec{x} \rightarrow \vec{p}} \frac{v(f(\vec{x}))}{|\vec{x}-\vec{p}|}=0
$$

Now, as V is linear and continuous, formula (5^{\prime}) yields (6^{\prime}). Indeed,

$$
\lim _{\vec{x} \rightarrow \vec{p}} \frac{V(u(\vec{x}))}{|\vec{x}-\vec{p}|}=\lim _{\vec{x} \rightarrow \vec{p}} V\left(\frac{u(\vec{x})}{|\vec{x}-\vec{p}|}\right)=V(0)=0
$$

by Corollary 2 in Chapter $4, \S 2$. (Why?)
Similarly, ($5^{\prime \prime}$) implies ($6^{\prime \prime}$) by substituting $\vec{y}=f(\vec{x})$, since

$$
|f(\vec{x})-f(\vec{p})| \leq K|\vec{x}-\vec{p}|
$$

by Problem 3(iii) in §3. (Explain!) Thus all is proved.
Note 1 (Cauchy invariant rule). Under the same assumptions, we also have

$$
\begin{equation*}
d h(\vec{p} ; \vec{t})=d g(\vec{q} ; \vec{s}) \tag{7}
\end{equation*}
$$

if $\vec{s}=d f(\vec{p} ; \vec{t}), \vec{t} \in E^{\prime}$.
For with U and V as above,

$$
d h(\vec{p}, \cdot)=\phi=V \circ U
$$

Thus if

$$
\vec{s}=d f(\vec{p} ; \vec{t})=U(\vec{t})
$$

we have

$$
d h(\vec{p} ; \vec{t})=\phi(\vec{t})=V(U(\vec{t}))=V(\vec{s})=d g(\vec{q} ; \vec{s}),
$$

proving (7).

Note 2. If

$$
E^{\prime}=E^{n}\left(C^{n}\right), E^{\prime \prime}=E^{m}\left(C^{m}\right), \text { and } E=E^{r}\left(C^{r}\right)
$$

then by Theorem 3 of $\S 2$ and Definition 2 in $\S 3$, we can write (1) in matrix form,

$$
\left[h^{\prime}(\vec{p})\right]=\left[g^{\prime}(\vec{q})\right]\left[f^{\prime}(\vec{p})\right],
$$

resembling Theorem 3 in Chapter 5, $\S 1$ (with f and g interchanged). Moreover, we have the following theorem.
Theorem 2. With all as in Theorem 1, let

$$
E^{\prime}=E^{n}\left(C^{n}\right), E^{\prime \prime}=E^{m}\left(C^{m}\right)
$$

and

$$
f=\left(f_{1}, \ldots, f_{m}\right)
$$

Then

$$
D_{k} h(\vec{p})=\sum_{i=1}^{m} D_{i} g(\vec{q}) D_{k} f_{i}(\vec{p}) ;
$$

or, in classical notation,

$$
\begin{equation*}
\frac{\partial}{\partial x_{k}} h(\vec{p})=\sum_{i=1}^{m} \frac{\partial}{\partial y_{i}} g(\vec{q}) \cdot \frac{\partial}{\partial x_{k}} f_{i}(\vec{p}), \quad k=1,2, \ldots, n . \tag{8}
\end{equation*}
$$

Proof. Fix any basic vector \vec{e}_{k} in E^{\prime} and set

$$
\vec{s}=d f\left(\vec{p} ; \vec{e}_{k}\right), \quad \vec{s}=\left(s_{1}, \ldots, s_{m}\right) \in E^{\prime \prime}
$$

As f is differentiable at \vec{p}, so are its components f_{i} (Problem 9 in $\S 3$), and

$$
s_{i}=d f_{i}\left(\vec{p} ; \vec{e}_{k}\right)=D_{k} f_{i}(\vec{p})
$$

by Theorem 2(ii) in $\S 3$. Using also Corollary 1 in $\S 3$, we get

$$
d g(\vec{q} ; \vec{s})=\sum_{i=1}^{m} s_{i} D_{i} g(\vec{q})=\sum_{i=1}^{m} D_{k} f_{i}(\vec{p}) D_{i} g(\vec{q}) .
$$

But as $\vec{s}=d f\left(\vec{p} ; \vec{e}_{k}\right)$, formula (7) yields

$$
d g(\vec{q} ; \vec{s})=d h\left(\vec{p} ; \vec{e}_{k}\right)=D_{k} h(\vec{p})
$$

by Theorem 2(ii) in $\S 3$. Thus the result follows.
Note 3. Theorem 2 is often called the chain rule for functions of several variables. It yields Theorem 3 in Chapter 5 , $\S 1$, if $m=n=1$.

In classical calculus one often speaks of derivatives and differentials of variables $y=f\left(x_{1}, \ldots, x_{n}\right)$ rather than those of mappings. Thus Theorem 2 is stated as follows.

Let $u=g\left(y_{1}, \ldots, y_{m}\right)$ be differentiable. If, in turn, each

$$
y_{i}=f_{i}\left(x_{1}, \ldots, x_{n}\right)
$$

is differentiable for $i=1, \ldots, m$, then u is also differentiable as a composite function of the n variables x_{k}, and ("simplifying" formula (8)) we have

$$
\frac{\partial u}{\partial x_{k}}=\sum_{i=1}^{m} \frac{\partial u}{\partial y_{i}} \frac{\partial y_{i}}{\partial x_{k}}, \quad k=1,2, \ldots, n
$$

It is understood that the partials

$$
\frac{\partial u}{\partial x_{k}} \text { and } \frac{\partial y_{i}}{\partial x_{k}} \text { are taken at some } \vec{p} \in E^{\prime}
$$

while the $\partial u / \partial y_{i}$ are at $\vec{q}=f(\vec{p})$, where $f=\left(f_{1}, \ldots, f_{m}\right)$. This "variable" notation is convenient in computations, but may cause ambiguities (see the next example).

Example.

Let $u=g(x, y, z)$, where z depends on x and y :

$$
z=f_{3}(x, y)
$$

Set $f_{1}(x, y)=x, f_{2}(x, y)=y, f=\left(f_{1}, f_{2}, f_{3}\right)$, and $h=g \circ f$; so

$$
h(x, y)=g(x, y, z) .
$$

By (8^{\prime}),

$$
\frac{\partial u}{\partial x}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial x}+\frac{\partial u}{\partial z} \frac{\partial z}{\partial x}
$$

Here

$$
\frac{\partial x}{\partial x}=\frac{\partial f_{1}}{\partial x}=1 \text { and } \frac{\partial y}{\partial x}=0
$$

for f_{2} does not depend on x. Thus we obtain

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial u}{\partial x}+\frac{\partial u}{\partial z} \frac{\partial z}{\partial x} \tag{9}
\end{equation*}
$$

(Question: Is $(\partial u / \partial z)(\partial z / \partial x)=0$?)
The trouble with (9) is that the variable u "poses" as both g and h. On the left, it is h; on the right, it is g.

To avoid this, our method is to differentiate well-defined mappings, not "variables." Thus in (9), we have the maps

$$
g: E^{3} \rightarrow E \text { and } f: E^{2} \rightarrow E^{3}
$$

with f_{1}, f_{2}, f_{3} as indicated. Then if $h=g \circ f$, Theorem 2 states (9) unambiguously as

$$
D_{1} h(\vec{p})=D_{1} g(\vec{q})+D_{3} g(\vec{q}) \cdot D_{1} f(\vec{p})
$$

where $\vec{p} \in E^{2}$ and

$$
\vec{q}=f(\vec{p})=\left(p_{1}, p_{2}, f_{3}(\vec{p})\right) .
$$

(Why?) In classical notation,

$$
\frac{\partial h}{\partial x}=\frac{\partial g}{\partial x}+\frac{\partial g}{\partial z} \frac{\partial f_{3}}{\partial x}
$$

(avoiding the "paradox" of (9)).
Nonetheless, with due caution, one may use the "variable" notation where convenient. The reader should practice both (see the Problems).

Note 4. The Cauchy rule (7), in "variable" notation, turns into

$$
\begin{equation*}
d u=\sum_{i=1}^{m} \frac{\partial u}{\partial y_{i}} d y_{i}=\sum_{k=1}^{n} \frac{\partial u}{\partial x_{k}} d x_{k} \tag{10}
\end{equation*}
$$

where $d x_{k}=t_{k}$ and $d y_{i}=d f_{i}(\vec{p} ; \vec{t})$.
Indeed, by Corollary 1 in $\S 3$,

$$
d h(\vec{p} ; \vec{t})=\sum_{k=1}^{n} D_{k} h(\vec{p}) \cdot t_{k} \text { and } d g(\vec{q} ; \vec{s})=\sum_{i=1}^{m} D_{i} g(\vec{q}) \cdot s_{i} .
$$

Now, in (7),

$$
\vec{s}=\left(s_{1}, \ldots, s_{m}\right)=d f(\vec{p} ; \vec{t})
$$

so by Problem 9 in $\S 3$,

$$
d f_{i}(\vec{p} ; \vec{t})=s_{i}, \quad i=1, \ldots, m
$$

Rewriting all in the "variable" notation, we obtain (10).
The "advantage" of (10) is that $d u$ has the same form, independently of whether u is treated as a function of the x_{k} or of the y_{i} (hence the name "invariant" rule). However, one must remember the meaning of $d x_{k}$ and $d y_{i}$, which are quite different.

The "invariance" also fails completely for differentials of higher order ($\S 5)$.
The advantages of the "variable" notation vanish unless one is able to "translate" it into precise formulas.

Further Problems on Differentiable Functions

1. For $E=E^{r}\left(C^{r}\right)$ prove Theorem 2 directly.
[Hint: Find

$$
D_{k} h_{j}(\vec{p}), \quad j=1, \ldots, r,
$$

from Theorem 4 of $\S 3$, and Theorem 3 of $\S 2$. Verify that

$$
D_{k} h(\vec{p})=\sum_{j=1}^{r} e_{j} D_{k} h_{j}(\vec{p}) \text { and } D_{i} g(\vec{q})=\sum_{j=1}^{r} e_{j} D_{i} g_{j}(\vec{q})
$$

where the e_{j} are the basic unit vectors in E^{r}. Proceed.]
2. Let $g(x, y, z)=u, x=f_{1}(r, \theta), y=f_{2}(r, \theta), z=f_{3}(r, \theta)$, and

$$
f=\left(f_{1}, f_{2}, f_{3}\right): E^{2} \rightarrow E^{3} .
$$

Assuming differentiability, verify (using "variables") that

$$
d u=\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y+\frac{\partial u}{\partial z} d z=\frac{\partial u}{\partial r} d r+\frac{\partial u}{\partial \theta} d \theta
$$

by computing derivatives from (8^{\prime}). Then do all in the mapping notation for $H=g \circ f, d H(\vec{p} ; \vec{t})$.
3. For the specific functions f, g, h, and k of Problems 4 and 5 of $\S 2$, set up and solve problems analogous to Problem 2, using
(a) $k \circ f$;
(b) $g \circ k$;
(c) $f \circ h$;
(d) $h \circ g$.
4. For the functions of Problem 5 in $\S 1$, find the formulas for $d f(\vec{p} ; \vec{t})$. At which \vec{p} does $d f(\vec{p}, \cdot)$ exist in each given case? Describe it for a chosen \vec{p}.
5. From Theorem 2, with $E=E^{1}(C)$, find

$$
\nabla h(\vec{p})=\sum_{k=1}^{n} D_{k} g(\vec{q}) \nabla f_{k}(\vec{p}) .
$$

6. Use Theorem 1 for a new solution of Problem 7 in $\S 3$ with $E=E^{1}(C)$. [Hint: Define F on E^{\prime} and G on $E^{2}\left(C^{2}\right)$ by

$$
F(\vec{x})=(f(\vec{x}), g(\vec{x})) \text { and } G(\vec{y})=a y_{1}+b y_{2} .
$$

Then $h=a f+b g=G \circ F$. (Why?) Use Problems 9 and 10(ii) of §3. Do all in "variable" notation, too.]
7. Use Theorem 1 for a new proof of the "only if" in Problem 9 in $\S 3$.
[Hint: Set $f_{i}=g \circ f$, where $g(\vec{x})=x_{i}$ (the i th "projection map") is a monomial. Verify!]
8. Do Problem 8(i) in $\S 3$ for the case $E^{\prime}=E^{2}\left(C^{2}\right)$, with

$$
f(\vec{x})=x_{1} \text { and } g(\vec{x})=x_{2} .
$$

(Simplify!) Then do the general case as in Problem 6 above, with

$$
G(\vec{y})=y_{1} y_{2}
$$

9. Use Theorem 2 for a new proof of Theorem 4 in Chapter 5, $\S 1$. (Proceed as in Problems 6 and 8 , with $E^{\prime}=E^{1}$, so that $D_{1} h=h^{\prime}$.) Do it in the "variable" notation, too.
10. Under proper differentiability assumptions, use formula (8^{\prime}) to express the partials of u if
(i) $u=g(x, y), x=f(r) h(\theta), y=r+h(\theta)+\theta f(r)$;
(ii) $u=g(r, \theta), r=f(x+f(y)), \theta=f(x f(y))$;
(iii) $u=g\left(x^{y}, y^{z}, z^{x+y}\right)$.

Then redo all in the "mapping" terminology, too.
11. Let the map $g: E^{1} \rightarrow E^{1}$ be differentiable on E^{1}. Find $|\nabla h(\vec{p})|$ if $h=g \circ f$ and
(i) $f(\vec{x})=\sum_{k=1}^{n} x_{k}, \vec{x} \in E^{n}$;
(ii) $f=\left(f_{1}, f_{2}\right), f_{1}(\vec{x})=\sum_{k=1}^{n} x_{k}, f_{2}(\vec{x})=|\vec{x}|^{2}, \vec{x} \in E^{n}$.
12. (Euler's theorem.) A map $f: E^{n} \rightarrow E^{1}$ (or $C^{n} \rightarrow C$) is called homogeneous of degree m on G iff

$$
\left(\forall t \in E^{1}(C)\right) \quad f(t \vec{x})=t^{m} f(\vec{x})
$$

when $\vec{x}, t \vec{x} \in G$. Prove the following statements.
(i) If so, and f is differentiable at $\vec{p} \in G$ (an open globe), then

$$
\vec{p} \cdot \nabla f(\vec{p})=m f(\vec{p})
$$

*(ii) Conversely, if the latter holds for all $\vec{p} \in G$ and if $\overrightarrow{0} \notin G$, then f is homogeneous of degree m on G.
(iii) What if $\overrightarrow{0} \in G$?
[Hints: (i) Let $g(t)=f(t \vec{p})$. Find $g^{\prime}(1)$. (iii) Take $f(x, y)=x^{2} y^{2}$ if $x \leq 0, f=0$ if $x>0, G=G_{0}(1)$.]
13. Try Problem 12 for $f: E^{\prime} \rightarrow E$, replacing $\vec{p} \cdot \nabla f(\vec{p})$ by $d f(\vec{p} ; \vec{p})$.
14. With all as in Theorem 1, prove the following.
(i) If $E^{\prime}=E^{1}$ and $\vec{s}=f^{\prime}(p) \neq \overrightarrow{0}$, then $h^{\prime}(p)=D_{\vec{s}} g(\vec{q})$.
(ii) If \vec{u} and \vec{v} are nonzero in E^{\prime} and $a \vec{u}+b \vec{v} \neq \overrightarrow{0}$ for some scalars a, b, then

$$
D_{a \vec{u}+b \vec{v}} f(\vec{p})=a D_{\vec{u}} f(\vec{p})+b D_{\vec{v}} f(\vec{p}) .
$$

(iii) If f is differentiable on a globe $G_{\vec{p}}$, and $\vec{u} \neq \overrightarrow{0}$ in E^{\prime}, then

$$
D_{\vec{u}} f(\vec{p})=\lim _{\vec{x} \rightarrow \vec{u}} D_{\vec{x}}(\vec{p})
$$

[Hints: Use Theorem 2(ii) from §3 and Note 1.]
15. Use Theorem 2 to find the partially derived functions of f, if
(i) $f(x, y, z)=(\sin (x y / z))^{x}$;
(ii) $f(x, y)=\log _{x}|\tan (y / x)|$.
(Set $f=0$ wherever undefined.)

§5. Repeated Differentiation. Taylor's Theorem

In $\S 1$ we defined \vec{u}-directed derived functions, $D_{\vec{u}} f$ for any $f: E^{\prime} \rightarrow E$ and any $\vec{u} \neq \overrightarrow{0}$ in E^{\prime}.

Thus given a sequence $\left\{\vec{u}_{i}\right\} \subseteq E^{\prime}-\{\overrightarrow{0}\}$, we can first form $D_{\vec{u}_{1}} f$, then $D_{\vec{u}_{2}}\left(D_{\vec{u}_{1}} f\right)$ (the \vec{u}_{2}-directed derived function of $D_{\vec{u}_{1}} f$), then the \vec{u}_{3}-directed derived function of $D_{\vec{u}_{2}}\left(D_{\vec{u}_{1}} f\right)$, and so on. We call all functions so formed the higher-order directional derived functions of f.

If at each step the limit postulated in Definition 1 of $\S 1$ exists for all \vec{p} in a set $B \subseteq E^{\prime}$, we call them the higher-order directional derivatives of f (on B).

If all \vec{u}_{i} are basic unit vectors in $E^{n}\left(C^{n}\right)$, we say "partial" instead of "directional."

We also define $D_{\vec{u}}^{1} f=D_{\vec{u}} f$ and

$$
\begin{equation*}
D_{\vec{u}_{1} \vec{u}_{2} \ldots \vec{u}_{k}}^{k} f=D_{\vec{u}_{k}}\left(D_{\vec{u}_{1} \vec{u}_{2} \ldots \vec{u}_{k-1}}^{k-1} f\right), \quad k=2,3, \ldots, \tag{1}
\end{equation*}
$$

and call $D_{\vec{u}_{1} \vec{u}_{2} \ldots \vec{u}_{k}}^{k} f$ a directional derived function of order k. (Some authors denote it by $D_{\vec{u}_{k} \vec{u}_{k-1} \ldots \vec{u}_{1}}^{k} f$.)

If all \vec{u}_{i} equal \vec{u}, we write $D_{\vec{u}}^{k} f$ instead.
For partially derived functions, we simplify this notation, writing $12 \ldots$ for $\vec{e}_{1} \vec{e}_{2} \ldots$ and omitting the " k " in D^{k} (except in classical notation):

$$
D_{12} f=D_{\vec{e}_{1} \vec{e}_{2}}^{2} f=\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}, D_{11} f=D_{\vec{e}_{1} \vec{e}_{1}}^{2} f=\frac{\partial^{2} f}{\partial x_{1}^{2}}, \text { etc. }
$$

We also set $D_{\vec{u}}^{0} f=f$ for any vector \vec{u}.

Example.

(A) Define $f: E^{2} \rightarrow E^{1}$ by

$$
f(0,0)=0, \quad f(x, y)=\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} .
$$

Then

$$
\frac{\partial f}{\partial x}=D_{1} f(x, y)=\frac{y\left(x^{4}+4 x^{2} y^{2}-y^{4}\right)}{\left(x^{2}+y^{2}\right)^{2}}
$$

whence $D_{1} f(0, y)=-y$ if $y \neq 0$; and also

$$
D_{1} f(0,0)=\lim _{x \rightarrow 0} \frac{f(x, 0)-f(0,0)}{x}=0 . \quad(\text { Verify }!)
$$

Thus $D_{1} f(0, y)=-y$ always, and so $D_{12} f(0, y)=-1 ; D_{12} f(0,0)=-1$. Similarly,

$$
D_{2} f(x, y)=\frac{x\left(x^{4}-4 x^{2} y^{2}-y^{4}\right)}{\left(x^{2}+y^{2}\right)^{2}}
$$

if $x \neq 0$ and $D_{2} f(0,0)=0$. Thus $(\forall x) D_{2} f(x, 0)=x$ and so

$$
D_{21} f(x, 0)=1 \text { and } D_{21} f(0,0)=1 \neq D_{12} f(0,0)=-1 .
$$

The previous example shows that we may well have $D_{12} f \neq D_{21} f$, or more generally, $D_{\vec{u} \vec{v}}^{2} f \neq D_{\vec{v} \vec{u}}^{2} f$. However, we obtain the following theorem.
Theorem 1. Given nonzero vectors \vec{u} and \vec{v} in E^{\prime}, suppose $f: E^{\prime} \rightarrow E$ has the derivatives

$$
D_{\vec{u}} f, D_{\vec{v}} f, \text { and } D_{\vec{u} \vec{v}}^{2} f
$$

on an open set $A \subseteq E^{\prime}$.
If $D_{\vec{u} \vec{v}}^{2} f$ is continuous at some $\vec{p} \in A$, then the derivative $D_{\vec{v} \vec{u}}^{2} f(\vec{p})$ also exists and equals $D_{\vec{u} \vec{v}}^{2} f(\vec{p})$.
Proof. By Corollary 1 in $\S 1$, all reduces to the case $|\vec{u}|=1=|\vec{v}|$. (Why?)
Given $\varepsilon>0$, fix $\delta>0$ so small that $G=G_{\vec{p}}(\delta) \subseteq A$ and simultaneously

$$
\begin{equation*}
\sup _{\vec{x} \in G}\left|D_{\vec{u} \vec{v}}^{2} f(\vec{x})-D_{\vec{u} \vec{v}}^{2} f(\vec{p})\right| \leq \varepsilon \tag{2}
\end{equation*}
$$

(by the continuity of $D_{\vec{u} \vec{v}}^{2} f$ at \vec{p}).
Now $\left(\forall s, t \in E^{1}\right)$ define $H_{t}: E^{1} \rightarrow E$ by

$$
H_{t}(s)=D_{\vec{u}} f(\vec{p}+t \vec{u}+s \vec{v}) .
$$

Let

$$
I=\left(-\frac{\delta}{2}, \frac{\delta}{2}\right)
$$

If $s, t \in I$, the point $\vec{x}=\vec{p}+t \vec{u}+s \vec{v}$ is in $G_{\vec{p}}(\delta) \subseteq A$, since

$$
|\vec{x}-\vec{p}|=|t \vec{u}+s \vec{v}|<\frac{\delta}{2}+\frac{\delta}{2}=\delta .
$$

Thus by assumption, the derivative $D_{\vec{u} \vec{v}}^{2} f(\vec{p})$ exists. Also,

$$
\begin{aligned}
H_{t}^{\prime}(s) & =\lim _{\Delta s \rightarrow 0} \frac{1}{\Delta s}\left[H_{t}(s+\Delta s)-H_{t}(s)\right] \\
& =\lim _{\Delta s \rightarrow 0} \frac{1}{\Delta s}\left[D_{\vec{u}} f(\vec{x}+\Delta s \cdot \vec{v})-D_{\vec{u}} f(\vec{x})\right]
\end{aligned}
$$

But the last limit is $D_{\vec{u} \vec{v}}^{2} f(\vec{x})$, by definition. Thus, setting

$$
h_{t}(s)=H_{t}(s)-s D_{\vec{u} \vec{v}}^{2} f(\vec{p}),
$$

we get

$$
\begin{aligned}
h_{t}^{\prime}(s) & =H_{t}^{\prime}(s)-D_{\vec{u} \vec{v}}^{2} f(\vec{p}) \\
& =D_{\vec{u} \vec{v}}^{2} f(\vec{x})-D_{\vec{u} \vec{v}}^{2} f(\vec{p}) .
\end{aligned}
$$

We see that h_{t} is differentiable on I, and by (2),

$$
\sup _{s \in I}\left|h_{t}^{\prime}(s)\right| \leq \sup _{\vec{x} \in G}\left|D_{\vec{u} \vec{v}}^{2} f(\vec{x})-D_{\vec{u} \vec{v}}^{2} f(\vec{p})\right| \leq \varepsilon
$$

for all $t \in I$. Hence by Corollary 1 of Chapter $5, \S 4$,

$$
\left|h_{t}(s)-h_{t}(0) \leq|s| \sup _{\sigma \in I}\right| h_{t}^{\prime}(\sigma)|\leq|s| \varepsilon .
$$

But by definition,

$$
h_{t}(s)=D_{\vec{u}} f(\vec{p}+t \vec{u}+s \vec{v})-s D_{\vec{u} \vec{v}}^{2} f(\vec{p})
$$

and

$$
h_{t}(0)=D_{\vec{u}} f(\vec{p}+t \vec{u}) .
$$

Thus

$$
\begin{equation*}
\left|D_{\vec{u}} f(\vec{p}+t \vec{u}+s \vec{v})-D_{\vec{u}} f(\vec{p}+t \vec{u})-s D_{\vec{u} \vec{v}}^{2} f(\vec{p})\right| \leq|s| \varepsilon \tag{3}
\end{equation*}
$$

for all $s, t \in I$.
Next, set

$$
G_{s}(t)=f(\vec{p}+t \vec{u}+s \vec{v})-f(\vec{p}+t \vec{u})
$$

and

$$
g_{s}(t)=G_{s}(t)-s t \cdot D_{\vec{u} \vec{v}}^{2} f(\vec{p}) .
$$

As before, one finds that $(\forall s \in I) g_{s}$ is differentiable on I and that

$$
g_{s}^{\prime}(t)=D_{\vec{u}} f(\vec{p}+t \vec{u}+s \vec{v})-D_{\vec{u}} f(\vec{p}+t \vec{u})-s D_{\vec{u} \vec{v}}^{2} f(\vec{p})
$$

for $s, t \in I$. (Verify!)
Hence by (3),

$$
\sup _{t \in I}\left|g_{s}^{\prime}(t)\right| \leq|s| \varepsilon
$$

Again, by Corollary 1 of Chapter 5, $\S 4$,

$$
\left|g_{s}(t)-g_{s}(0)\right| \leq|s t| \varepsilon
$$

or by the definition of g_{s} (assuming $s, t \in I-\{0\}$ and dividing by $s t$),

$$
\left|\frac{1}{s t}[f(\vec{p}+t \vec{u}+s \vec{v})-f(\vec{p}+t \vec{u})]-D_{\vec{u} \vec{v}}^{2} f(\vec{p})-\frac{1}{s t}[f(\vec{p}+s \vec{v})-f(\vec{p})]\right| \leq \varepsilon
$$

(Verify!) Making $s \rightarrow 0$ (with t fixed), we get, by the definition of $D_{\vec{v}} f$,

$$
\left|\frac{1}{t} D_{\vec{v}} f(\vec{p}+t \vec{u})-\frac{1}{t} D_{\vec{v}} f(\vec{p})-D_{\vec{u} \vec{v}}^{2} f(\vec{p})\right| \leq \varepsilon
$$

whenever $0<|t|<\delta / 2$.
As ε is arbitrary, we have

$$
D_{\vec{u} \vec{v}}^{2} f(\vec{p})=\lim _{t \rightarrow 0} \frac{1}{t}\left[D_{v} f(\vec{p}+t \vec{u})-D_{\vec{v}} f(\vec{p})\right]
$$

But by definition, this limit is the derivative $D_{\vec{v} \vec{u}}^{2} f(\vec{p})$. Thus all is proved.
Note 1. By induction, the theorem extends to derivatives of order >2. Thus the derivative $D_{\vec{u}_{1} \vec{u}_{2} \ldots \vec{u}_{k}}^{k} f$ is independent of the order in which the \vec{u}_{i} follow each other if it exists and is continuous on an open set $A \subseteq E^{\prime}$, along with appropriate derivatives of order $<k$.

If $E^{\prime}=E^{n}\left(C^{n}\right)$, this applies to partials as a special case.
For E^{n} and C^{n} only, we also formulate the following definition.

Definition 1.

Let $E^{\prime}=E^{n}\left(C^{n}\right)$. We say that $f: E^{\prime} \rightarrow E$ is m times differentiable at $\vec{p} \in E^{\prime}$ iff f and all its partials of order $<m$ are differentiable at \vec{p}.

If this holds for all \vec{p} in a set $B \subseteq E^{\prime}$, we say that f is m times differentiable on B.

If, in addition, all partials of order m are continuous at \vec{p} (on B), we say that f is of class $C D^{m}$, or continuously differentiable m times there, and write $f \in C D^{m}$ at \vec{p} (on B).

Finally, if this holds for all natural m, we write $f \in C D^{\infty}$ at \vec{p} (on B, respectively).

Definition 2.

Given the space $E^{\prime}=E^{n}\left(C^{n}\right)$, the function $f: E^{\prime} \rightarrow E$, and a point $\vec{p} \in E^{\prime}$, we define the mappings

$$
d^{m} f(\vec{p}, \cdot), \quad m=1,2, \ldots
$$

from E^{\prime} to E by setting for every $\vec{t}=\left(t_{1}, \ldots, t_{n}\right)$

$$
\begin{align*}
& d^{1} f(\vec{p} ; \vec{t})=\sum_{i=1}^{n} D_{i} f(\vec{p}) \cdot t_{i}, \\
& d^{2} f(\vec{p} ; \vec{t})=\sum_{j=1}^{n} \sum_{i=1}^{n} D_{i j} f(\vec{p}) \cdot t_{i} t_{j}, \tag{4}\\
& d^{3} f(\vec{p} ; \vec{t})=\sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} D_{i j k} f(\vec{p}) \cdot t_{i} t_{j} t_{k}, \quad \text { and so on. }
\end{align*}
$$

We call $d^{m} f(\vec{p}, \cdot)$ the mth differential (or differential of order m) of f at \vec{p}. By our conventions, it is always defined on $E^{n}\left(C^{n}\right)$ as are the partially derived functions involved.

If f is differentiable at \vec{p} (but not otherwise), then $d^{1} f(\vec{p} ; \vec{t})=d f(\vec{p} ; \vec{t})$ by Corollary 1 in $\S 3 ; d^{1} f(\vec{p}, \cdot)$ is linear and continuous (why?) but need not satisfy Definition 1 in $\S 3$.

In classical notation, we write $d x_{i}$ for t_{i}; e.g.,

$$
d^{2} f=\sum_{j=1}^{n} \sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} d x_{i} d x_{j} .
$$

Note 2. Classical analysis tends to define differentials as above in terms of partials. Formula (4) for $d^{m} f$ is often written symbolically:

$$
\begin{equation*}
d^{m} f=\left(\frac{\partial}{\partial x_{1}} d x_{1}+\frac{\partial}{\partial x_{2}} d x_{2}+\cdots+\frac{\partial}{\partial x_{n}} d x_{n}\right)^{m} f, \quad m=1,2, \ldots \tag{5}
\end{equation*}
$$

Indeed, raising the bracketed expression to the m th "power" as in algebra (removing brackets, without collecting "similar" terms) and then "multiplying" by f, we obtain sums that agree with (4). (Of course, this is not genuine multiplication but only a convenient memorizing device.)

Example.

(B) Define $f: E^{2} \rightarrow E^{1}$ by

$$
f(x, y)=x \sin y
$$

Take any $\vec{p}=(x, y) \in E^{2}$. Then

$$
\begin{gathered}
D_{1} f(x, y)=\sin y \text { and } D_{2} f(x, y)=x \cos y \\
D_{12} f(x, y)=D_{21} f(x, y)=\cos y, \\
D_{11} f(x, y)=0, \text { and } D_{22} f(x, y)=-x \sin y \\
D_{111} f(x, y)=D_{112} f(x, y)=D_{121} f(x, y)=D_{211} f(x, y)=0, \\
D_{221} f(x, y)=D_{212} f(x, y)=D_{122} f(x, y)=-\sin y, \text { and }
\end{gathered}
$$

$$
D_{222} f(x, y)=-x \cos y ; \text { etc. }
$$

As is easily seen, f has continuous partials of all orders; so $f \in C D^{\infty}$ on all of E^{2}. Also,

$$
\begin{aligned}
d f(\vec{p} ; \vec{t}) & =t_{1} D_{1} f(\vec{p})+t_{2} D_{2} f(\vec{p}) \\
& =t_{1} \sin y+t_{2} x \cos y .
\end{aligned}
$$

In classical notation,

$$
\begin{aligned}
d f & =d^{1} f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y \\
& =\sin y d x+x \cos y d y \\
d^{2} f & =\frac{\partial^{2} f}{\partial x^{2}} d x^{2}+2 \frac{\partial^{2} f}{\partial x \partial y} d x d y+\frac{\partial^{2} f}{\partial y^{2}} d y^{2} \\
& =2 \cos y d x d y-x \sin y d y^{2} ; \\
d^{3} f & =-3 \sin y d x d y^{2}-x \cos y d y^{3} ;
\end{aligned}
$$

and so on. (Verify!)
We can now extend Taylor's theorem (Theorem 1 in Chapter 5, §6) to the case $E^{\prime}=E^{n}\left(C^{n}\right)$.

Theorem 2 (Taylor). Let $\vec{u}=\vec{x}-\vec{p} \neq \overrightarrow{0}$ in $E^{\prime}=E^{n}\left(C^{n}\right)$.
If $f: E^{\prime} \rightarrow E$ is $m+1$ times differentiable on the line segment

$$
I=L[\vec{p}, \vec{x}] \subset E^{\prime}
$$

then

$$
f(\vec{x})-f(\vec{p})=\sum_{i=1}^{m} \frac{1}{i!} d^{i} f(\vec{p} ; \vec{u})+R_{m},
$$

with

$$
\begin{equation*}
\left|R_{m}\right| \leq \frac{K_{m}}{(m+1)!}, K_{m} \in E^{1} \tag{6}
\end{equation*}
$$

and

$$
0 \leq K_{m} \leq \sup _{\vec{s} \in I}\left|d^{m+1} f(\vec{s} ; \vec{u})\right| .
$$

Proof. Define $g: E^{1} \rightarrow E^{\prime}$ and $h: E^{1} \rightarrow E$ by $g(t)=\vec{p}+t \vec{u}$ and $h=f \circ g$.
As $E^{\prime}=E^{n}\left(C^{n}\right)$, we may consider the components of g,

$$
g_{k}(t)=p_{k}+t u_{k}, \quad k \leq n .
$$

Clearly, g_{k} is differentiable, $g_{k}^{\prime}(t)=u_{k}$.

By assumption, so is f on $I=L[\vec{p}, \vec{x}]$. Thus, by the chain rule, $h=f \circ g$ is differentiable on the interval $J=[0,1] \subset E^{1}$; for, by definition,

$$
\vec{p}+t \vec{u} \in L[\vec{p}, \vec{x}] \text { iff } t \in[0,1] .
$$

By Theorem 2 in $\S 4$,

$$
\begin{equation*}
h^{\prime}(t)=\sum_{k=1}^{n} D_{k} f(\vec{p}+t \vec{u}) \cdot u_{k}=d f(\vec{p}+t \vec{u} ; \vec{u}), \quad t \in J . \tag{7}
\end{equation*}
$$

(Explain!)
By assumption (and Definition 1), the $D_{k} f$ are differentiable on I. Hence, by (7), h^{\prime} is differentiable on J. Reapplying Theorem 2 in $\S 4$, we obtain

$$
\begin{aligned}
h^{\prime \prime}(t) & =\sum_{j=1}^{n} \sum_{k=1}^{n} D_{k j} f(\vec{p}+t \vec{u}) \cdot u_{k} u_{j} \\
& =d^{2} f(\vec{p}+t \vec{u} ; \vec{u}), \quad t \in J .
\end{aligned}
$$

By induction, h is $m+1$ times differentiable on J, and

$$
\begin{equation*}
h^{(i)}(t)=d^{i} f(\vec{p}+t \vec{u} ; \vec{u}), \quad t \in J, \quad i=1,2, \ldots, m+1 . \tag{8}
\end{equation*}
$$

The differentiability of $h^{(i)}(i \leq m)$ implies its continuity on $J=[0,1]$.
Thus h satisfies Theorem 1 of Chapter 5 , $\S 6$ (with $x=1, p=0$, and $Q=\emptyset$); hence

$$
\begin{align*}
h(1)-h(0) & =\sum_{i=1}^{m} \frac{h^{(i)}(0)}{i!}+R_{m}, \\
\left|R_{m}\right| & \leq \frac{K_{m}}{(m+1)!}, \quad K_{m} \in E^{1}, \tag{9}\\
K_{m} & \leq \sup _{t \in J}\left|h^{(m+1)}(t)\right| .
\end{align*}
$$

By construction,

$$
h(t)=f(g(t))=f(\vec{p}+t \vec{u}) ;
$$

so

$$
h(1)=f(\vec{p}+\vec{u})=f(\vec{x}) \text { and } h(0)=f(\vec{p}) .
$$

Thus using (8) also, we see that (9) implies (6), indeed.
Note 3. Formula (3') of Chapter 5, $\S 6$, combined with (8), also yields

$$
\begin{aligned}
R_{m} & =\frac{1}{m!} \int_{0}^{1} h^{(m+1)}(t) \cdot(1-t)^{m} d t \\
& =\frac{1}{m!} \int_{0}^{1} d^{m+1} f(\vec{p}+t \vec{u} ; \vec{u}) \cdot(1-t)^{m} d t .
\end{aligned}
$$

Corollary 1 (the Lagrange form of R_{m}). If $E=E^{1}$ in Theorem 2, then

$$
\begin{equation*}
R_{m}=\frac{1}{(m+1)!} d^{m+1} f(\vec{s} ; \vec{u}) \tag{10}
\end{equation*}
$$

for some $\vec{s} \in L(\vec{p}, \vec{x})$.
Proof. Here the function h defined in the proof of Theorem 2 is real; so Theorem 1^{\prime} and formula (3^{\prime}) of Chapter 5 , $\S 6$ apply. This yields (10). Explain!
Corollary 2. If $f: E^{n}\left(C^{n}\right) \rightarrow E$ is m times differentiable at \vec{p} and if $\vec{u} \neq \overrightarrow{0}$ $\left(\vec{p}, \vec{u} \in E^{n}\left(C^{n}\right)\right)$, then the derivative $D_{\vec{u}}^{m} f(\vec{p})$ exists and equals $d^{m} f(\vec{p} ; \vec{u})$.

This follows as in the proof of Theorem 2 (with $t=0$). For by definition,

$$
\begin{aligned}
D_{\vec{u}} f(\vec{p}) & =\lim _{s \rightarrow 0} \frac{1}{s}[f(\vec{p}+s \vec{u})-f(\vec{p})] \\
& =\lim \frac{1}{s}[h(s)-h(0)] \\
& =h^{\prime}(0)=d f(\vec{p} ; \vec{u})
\end{aligned}
$$

by (7). Induction yields

$$
D_{\vec{u}}^{m} f(\vec{p})=h^{(m)}(0)=d^{m}(\vec{p} ; \vec{u})
$$

by (8). (See Problem 3.)

Example.

(C) Continuing Example (B), fix

$$
\vec{p}=(1,0)
$$

thus replace (x, y) by $(1,0)$ there. Instead, write (x, y) for \vec{x} in Theorem 2. Then

$$
\vec{u}=\vec{x}-\vec{p}=(x-1, y) ;
$$

so

$$
u_{1}=x-1=d x \text { and } u_{2}=y=d y
$$

and we obtain

$$
\begin{aligned}
d f(\vec{p} ; \vec{u})= & D_{1} f(1,0) \cdot(x-1)+D_{2} f(1,0) \cdot y \\
= & (\sin 0) \cdot(x-1)+(1 \cdot \cos 0) \cdot y \\
= & y \\
d^{2} f(\vec{p} ; \vec{u})= & D_{11} f(1,0) \cdot(x-1)^{2}+2 D_{12} f(1,0) \cdot(x-1) y \\
& +D_{22} f(1,0) \cdot y^{2} \\
= & (0) \cdot(x-1)^{2}+2(\cos 0) \cdot(x-1) y-(1 \cdot \sin 0) \cdot y^{2} \\
= & 2(x-1) y
\end{aligned}
$$

and for all $\vec{s}=\left(s_{1}, s_{2}\right) \in I$,

$$
\begin{aligned}
d^{3} f(\vec{s} ; \vec{u})= & D_{111} f\left(s_{1}, s_{2}\right) \cdot(x-1)^{3}+3 D_{112} f\left(s_{1}, s_{2}\right) \cdot(x-1)^{2} y \\
& +3 D_{122} f\left(s_{1}, s_{2}\right) \cdot(x-1) y^{2}+D_{222} f\left(s_{1}, s_{2}\right) \cdot y^{3} \\
= & -3 \sin s_{2} \cdot(x-1) y^{2}-s_{1} \cos s_{2} \cdot y^{3} .
\end{aligned}
$$

Hence by (6) and Corollary 1 (with $m=2$), noting that $f(\vec{p})=f(1,0)=$ 0 , we get

$$
\begin{align*}
f(x, y) & =x \cdot \sin y \\
& =y+(x-1) y+R_{2}, \tag{11}
\end{align*}
$$

where for some $\vec{s} \in I$,

$$
R_{2}=\frac{1}{3!} d^{3} f(\vec{s} ; \vec{u})=\frac{1}{6}\left[-3 \sin s_{2} \cdot(x-1) y^{2}-s_{1} \cos s_{2} \cdot y^{3}\right] .
$$

As $\vec{s} \in L(\vec{p}, \vec{x})$, where $\vec{p}=(1,0)$ and $\vec{x}=(x, y), s_{1}$ is between 1 and x; so

$$
\left|s_{1}\right| \leq \max (|x|, 1) \leq|x|+1
$$

Finally, since $\left|\sin s_{2}\right| \leq 1$ and $\left|\cos s_{2}\right| \leq 1$, we obtain

$$
\left|R_{2}\right| \leq \frac{1}{6}[3|x-1|+(|x|+1)|y|] y^{2} .
$$

This bounds the maximum error that arises if we use (11) to express $x \sin y$ as a second-degree polynomial in $(x-1)$ and y. (See also Problem 4 and Note 4 below.)

Note 4. Formula (6), briefly

$$
\Delta f=\sum_{i=1}^{m} \frac{d^{i} f}{i!}+R_{2}
$$

generalizes formula (2) in Chapter 5, $\S 6$.
As in Chapter 5, $\S 6$, we set

$$
P_{m}(\vec{x})=f(\vec{p})+\sum_{i=1}^{m} \frac{1}{i!} d^{i} f(\vec{p} ; \vec{x}-\vec{p})
$$

and call P_{m} the mth Taylor polynomial for f about \vec{p}, treating it as a function of n variables x_{k}, with $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$.

When expanded as in Example (C), formula (6) expresses $f(\vec{x})$ in powers of

$$
u_{k}=x_{k}-p_{k}, \quad k=1, \ldots, n,
$$

plus the remainder term R_{m}.

If $f \in C D^{\infty}$ on some $G_{\vec{p}}$ and if $R_{m} \rightarrow 0$ as $m \rightarrow \infty$, we can express $f(\vec{x})$ as a convergent power series

$$
f(\vec{x})=\lim _{m \rightarrow \infty} P_{m}(\vec{x})=f(\vec{p})+\sum_{i=1}^{\infty} \frac{1}{i!} d^{i} f(\vec{p} ; \vec{x}-\vec{p}) .
$$

We then say that f admits a Taylor series about \vec{p}, on $G_{\vec{p}}$.

Problems on Repeated Differentiation and Taylor Expansions

1. Complete all details in the proof of Theorem 1. What is the motivation for introducing the auxiliary functions h_{t} and g_{s} in this particular way?
2. Is symbolic "multiplication" in Note 2 always commutative? (See Example (A).) Why was it possible to collect "similar" terms

$$
\frac{\partial^{2} f}{\partial x \partial y} d x d y \text { and } \frac{\partial^{2} f}{\partial y \partial x} d y d x
$$

in Example (B)? Using (5), find the general formula for $d^{3} f$. Expand it!
3. Carry out the induction in Theorem 2 and Corollary 2. (Use a suitable notation for subscripts: $k_{1} k_{2} \ldots$ instead of $j k \ldots$)
4. Do Example (C) with $m=3$ (instead of $m=2$) and with $\vec{p}=(0,0)$. Show that $R_{m} \rightarrow 0$, i.e., f admits a Taylor series about \vec{p}.

Do it in the following two ways.
(i) Use Theorem 2.
(ii) Expand $\sin y$ as in Problem 6(a) in Chapter 5, $\S 6$, and then multiply termwise by x.
Give an estimate for R_{3}.
5. Use Theorem 2 to expand the following functions in powers of $x-3$ and $y+2$ exactly (choosing m so that $R_{m}=0$).
(i) $f(x, y)=2 x y^{2}-3 y^{3}+y x^{2}-x^{3}$;
(ii) $f(x, y)=x^{4}-x^{3} y^{2}+2 x y-1$;
(iii) $f(x, y)=x^{5} y-a x y^{5}-x^{3}$.
6. For the functions of Problem 15 in $\S 4$, give their Taylor expansions up to R_{2}, with

$$
\vec{p}=\left(1, \frac{\pi}{4}, 1\right)
$$

in case (i) and

$$
\vec{p}=\left(e, \frac{\pi}{4} e\right)
$$

in (ii). Bound R_{2}.
7. (Generalized Taylor theorem.) Let $\vec{u}=\vec{x}-\vec{p} \neq \overrightarrow{0}$ in E^{\prime} (E^{\prime} need not be E^{n} or C^{n}); let $I=L[\vec{p}, \vec{x}]$. Prove the following statement:

If $f: E^{\prime} \rightarrow E$ and the derived functions $D_{\vec{u}}^{i} f(i \leq m)$ are relatively continuous on I and have \vec{u}-directed derivatives on $I-Q$ (Q countable), then formula (6) and Note 3 hold, with $d^{i} f(\vec{p} ; \vec{u})$ replaced by $D_{\vec{u}}^{i} f(\vec{p})$.
[Hint: Proceed as in Theorem 2 without using the chain rule or any partials or components. Instead of (8), prove that $h^{(i)}(t)=D_{\vec{u}}^{i} f(\vec{p}+t \vec{u})$ on $J-Q^{\prime}, Q^{\prime}=g^{-1}[Q]$.]
8. (i) Modify Problem 7 by setting

$$
\vec{u}=\frac{\vec{x}-\vec{p}}{|\vec{x}-\vec{p}|} .
$$

Thus expand $f(\vec{x})$ in powers of $|\vec{x}-\vec{p}|$.
(ii) Deduce Theorem 2 from Problem 7, using Corollary 2.
9. Given $f: E^{2}\left(C^{2}\right) \rightarrow E, f \in C D^{m}$ on an open set A, and $\vec{s} \in A$, prove that $\left(\forall \vec{u} \in E^{2}\left(C^{2}\right)\right)$

$$
d^{i} f(\vec{s} ; \vec{u})=\sum_{j=0}^{i}\binom{i}{j} u_{1}^{j} u_{2}^{i-j} D_{k_{1} \ldots k_{i}} f(\vec{s}), \quad 1 \leq i \leq m,
$$

where the $\binom{i}{j}$ are binomial coefficients, and in the j th term,

$$
k_{1}=k_{2}=\cdots=k_{j}=2
$$

and

$$
k_{j+1}=\cdots=k_{i}=1 .
$$

Then restate formula (6) for $n=2$.
[Hint: Use induction, as in the binomial theorem.]
\Rightarrow 10. Given $\vec{p} \in E^{\prime}=E^{n}\left(C^{n}\right)$ and $f: E^{\prime} \rightarrow E$, prove that $f \in C D^{1}$ at \vec{p} iff f is differentiable at \vec{p} and

$$
(\forall \varepsilon>0)(\exists \delta>0)\left(\forall \vec{x} \in G_{\vec{p}}(\delta)\right) \quad\left\|d^{1} f(\vec{p}, \cdot)-d^{1} f(\vec{x}, \cdot)\right\|<\varepsilon,
$$

with norm $\|\|$ as in Definition 2 in $\S 2$. (Does it apply?)
[Hint: If $f \in C D^{1}$, use Theorem 2 in $\S 3$. For the converse, verify that

$$
\varepsilon \geq\left|d^{1} f(\vec{p} ; \vec{t})-d^{1} f(\vec{x} ; \vec{t})\right|=\left|\sum_{k=1}^{n}\left[D_{k} f(\vec{p})-D_{k} f(\vec{x})\right] t_{k}\right|
$$

if $\vec{x} \in G_{\vec{p}}(\delta)$ and $|\vec{t}| \leq 1$. Take $\vec{t}=\vec{e}_{k}$, to prove continuity of $D_{k} f$ at \vec{p}.]
11. Prove the following.
(i) If $\phi: E^{n} \rightarrow E^{m}$ is linear and $[\phi]=\left(v_{i k}\right)$, then

$$
\|\phi\|^{2} \leq \sum_{i, k}\left|v_{i k}\right|^{2}
$$

(ii) If $f: E^{n} \rightarrow E^{m}$ is differentiable at \vec{p}, then

$$
\|d f(\vec{p}, \cdot)\|^{2} \leq \sum_{i, k}\left|D_{k} f_{i}(\vec{p})\right|^{2} .
$$

(iii) Hence find a new converse proof in Problem 10 for $f: E^{n} \rightarrow E^{m}$.

Consider $f: C^{n} \rightarrow C^{m}$, too.
[Hints: (i) By the Cauchy-Schwarz inequality, $|\phi(\vec{x})|^{2} \leq|\vec{x}|^{2} \sum_{i, k}\left|v_{i k}\right|^{2}$. (Why?) (ii) Use part (i) and Theorem 4 in §3.]
12. (i) Find $d^{2} u$ for the functions of Problem 10 in $\S 4$, in the "variable" and "mapping" notations.
(ii) Do it also for

$$
u=f(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}
$$

and show that $D_{11} f+D_{22} f+D_{33} f=0$.
(iii) Does the latter hold for $u=\arctan \frac{y}{x}$?
13. Let $u=g(x, y), x=r \cos \theta, y=r \sin \theta$ (passage to polars).

Using "variables" and then the "mappings" notation, prove that if g is differentiable, then
(i) $\frac{\partial u}{\partial r}=\cos \theta \frac{\partial u}{\partial x}+\sin \theta \frac{\partial u}{\partial y}$ and
(ii) $|\nabla g(x, y)|^{2}=\left(\frac{\partial u}{\partial r}\right)^{2}+\left(\frac{1}{r} \frac{\partial u}{\partial \theta}\right)^{2}$.
(iii) Assuming $g \in C D^{2}$, express $\frac{\partial^{2} u}{\partial r \partial \theta}, \frac{\partial^{2} u}{\partial r^{2}}$, and $\frac{\partial^{2} u}{\partial \theta^{2}}$ as in (i).
14. Let $f, g: E^{1} \rightarrow E^{1}$ be of class $C D^{2}$ on E^{1}. Verify (in "variable" notation, too) the following statements.
(i) $D_{11} h=a^{2} D_{22} h$ if $a \in E^{1}$ (fixed) and

$$
h(x, y)=f(a x+y)+g(y-a x) .
$$

(ii) $x^{2} D_{11} h(x, y)+2 x y D_{12} h(x, y)+y^{2} D_{22} h(x, y)=0$ if

$$
h(x, y)=x f\left(\frac{y}{x}\right)+g\left(\frac{y}{x}\right) .
$$

(iii) $D_{1} h \cdot D_{21} h=D_{2} h \cdot D_{11} h$ if

$$
h(x, y)=g(f(x)+y)
$$

Find $D_{12} h$, too.
15. Assume $E^{\prime}=E^{n}\left(C^{n}\right)$ and $E^{\prime \prime}=E^{m}\left(C^{m}\right)$. Let $f: E^{\prime} \rightarrow E^{\prime \prime}$ and $g: E^{\prime \prime} \rightarrow E$ be twice differentiable at $\vec{p} \in E^{\prime}$ and $\vec{q}=f(\vec{p}) \in E^{\prime \prime}$, respectively, and set $h=g \circ f$.

Show that h is twice differentiable at \vec{p}, and

$$
d^{2} h(\vec{p} ; \vec{t})=d^{2} g(\vec{q} ; \vec{s})+d g(\vec{q} ; \vec{v}),
$$

where $\vec{t} \in E^{\prime}, \vec{s}=d f(\vec{p} ; \vec{t})$, and $\vec{v}=\left(v_{1}, \ldots, v_{m}\right) \in E^{\prime \prime}$ satisfies

$$
v_{i}=d^{2} f_{i}(\vec{p} ; \vec{t}), \quad i=1, \ldots, m .
$$

Thus the second differential is not invariant in the sense of Note 4 in $\S 4$. [Hint: Show that

$$
D_{k l} h(\vec{p})=\sum_{j=1}^{m} \sum_{i=1}^{m} D_{i j} g(\vec{q}) D_{k} f_{i}(\vec{p}) D_{l} f_{j}(\vec{p})+\sum_{i=1}^{m} D_{i} g(\vec{q}) D_{k l} f_{i}(\vec{p}) .
$$

Proceed.]
16. Continuing Problem 15, prove the invariant rule:

$$
d^{r} h(\vec{p} ; \vec{t})=d^{r} g(\vec{q} ; \vec{s}),
$$

if f is a first-degree polynomial and g is r times differentiable at \vec{q}. [Hint: Here all higher-order partials of f vanish. Use induction.]

§6. Determinants. Jacobians. Bijective Linear Operators

We assume the reader to be familiar with elements of linear algebra. Thus we only briefly recall some definitions and well-known rules.

Definition 1.

Given a linear operator $\phi: E^{n} \rightarrow E^{n}$ (or $\phi: C^{n} \rightarrow C^{n}$), with matrix

$$
[\phi]=\left(v_{i k}\right), \quad i, k=1, \ldots, n,
$$

we define the determinant of $[\phi]$ by

$$
\begin{align*}
\operatorname{det}[\phi]=\operatorname{det}\left(v_{i k}\right) & =\left|\begin{array}{cccc}
v_{11} & v_{12} & \ldots & v_{1 n} \\
v_{21} & v_{22} & \ldots & v_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
v_{n 1} & v_{n 2} & \ldots & v_{n n}
\end{array}\right| \tag{1}\\
& =\sum(-1)^{\lambda} v_{1 k_{1}} v_{2 k_{2}} \ldots v_{n k_{n}}
\end{align*}
$$

where the sum is over all ordered n-tuples $\left(k_{1}, \ldots, k_{n}\right)$ of distinct integers $k_{j}\left(1 \leq k_{j} \leq n\right)$, and

$$
\lambda= \begin{cases}0 & \text { if } \prod_{j<m}\left(k_{m}-k_{j}\right)>0 \text { and } \\ 1 & \text { if } \prod_{j<m}\left(k_{m}-k_{j}\right)<0\end{cases}
$$

Recall (Problem 12 in $\S 2$) that a set $B=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ in a vector space E is a basis iff
(i) B spans E, i.e., each $\vec{v} \in E$ has the form

$$
\vec{v}=\sum_{i=1}^{n} a_{i} \vec{v}_{i}
$$

for some scalars a_{i}, and
(ii) this representation is unique.

The latter is true iff the \vec{v}_{i} are independent, i.e.,

$$
\sum_{i=1}^{n} a_{i} \vec{v}_{i}=\overrightarrow{0} \Longleftrightarrow a_{i}=0, i=1, \ldots, n
$$

If E has a basis of n vectors, we call $E n$-dimensional (e.g., E^{n} and C^{n}).
Determinants and bases satisfy the following rules.
(a) Multiplication rule. If $\phi, g: E^{n} \rightarrow E^{n}$ (or $C^{n} \rightarrow C^{n}$) are linear, then

$$
\operatorname{det}[g] \cdot \operatorname{det}[\phi]=\operatorname{det}([g][\phi])=\operatorname{det}[g \circ \phi]
$$

(see $\S 2$, Theorem 3 and Note 4).
(b) If $\phi(\vec{x})=\vec{x}$ (identity map), then $[\phi]=\left(v_{i k}\right)$, where

$$
v_{i k}= \begin{cases}0 & \text { if } i \neq k \text { and } \\ 1 & \text { if } i=k\end{cases}
$$

hence $\operatorname{det}[\phi]=1$. (Why?) See also the Problems.
(c) An n-dimensional space E is spanned by a set of n vectors iff they are independent. If so, each basis consists of exactly n vectors.

Definition 2.

For any function $f: E^{n} \rightarrow E^{n}$ (or $f: C^{n} \rightarrow C^{n}$), we define the f-induced Jacobian map $J_{f}: E^{n} \rightarrow E^{1}\left(J_{f}: C^{n} \rightarrow C\right)$ by setting

$$
J_{f}(\vec{x})=\operatorname{det}\left(v_{i k}\right),
$$

where $v_{i k}=D_{k} f_{i}(\vec{x}), \vec{x} \in E^{n}\left(C^{n}\right)$, and $f=\left(f_{1}, \ldots, f_{n}\right)$.
The determinant

$$
J_{f}(\vec{p})=\operatorname{det}\left(D_{k} f_{i}(\vec{p})\right)
$$

is called the Jacobian of f at \vec{p}.
By our conventions, it is always defined, as are the functions $D_{k} f_{i}$.
Explicitly, $J_{f}(\vec{p})$ is the determinant of the right-side matrix in formula (14) in §3. Briefly,

$$
J_{f}=\operatorname{det}\left(D_{k} f_{i}\right)
$$

By Definition 2 and Note 2 in $\S 5$,

$$
J_{f}(\vec{p})=\operatorname{det}\left[d^{1} f(\vec{p}, \cdot)\right] .
$$

If f is differentiable at \vec{p},

$$
J_{f}(\vec{p})=\operatorname{det}\left[f^{\prime}(\vec{p})\right] .
$$

Note 1. More generally, given any functions $v_{i k}: E^{\prime} \rightarrow E^{1}(C)$, we can define a map $f: E^{\prime} \rightarrow E^{1}(C)$ by

$$
f(\vec{x})=\operatorname{det}\left(v_{i k}(\vec{x})\right) ;
$$

briefly $f=\operatorname{det}\left(v_{i k}\right), i, k=1, \ldots, n$.
We then call f a functional determinant.
If $E^{\prime}=E^{n}\left(C^{n}\right)$ then f is a function of n variables, since $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. If all $v_{i k}$ are continuous or differentiable at some $\vec{p} \in E^{\prime}$, so is f; for by (1), f is a finite sum of functions of the form

$$
(-1)^{\lambda} v_{i k_{1}} v_{i k_{2}} \ldots v_{i k_{n}}
$$

and each of these is continuous or differentiable if the $v_{i k_{i}}$ are (see Problems 7 and 8 in §3).

Note 2. Hence the Jacobian map J_{f} is continuous or differentiable at \vec{p} if all the partially derived functions $D_{k} f_{i}(i, k \leq n)$ are.

If, in addition, $J_{f}(\vec{p}) \neq 0$, then $J_{f} \neq 0$ on some globe about \vec{p}. (Apply Problem 7 in Chapter $4, \S 2$, to $\left|J_{f}\right|$.)

In classical notation, one writes

$$
\frac{\partial\left(f_{1}, \ldots, f_{n}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)} \text { or } \frac{\partial\left(y_{1}, \ldots, y_{n}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}
$$

for $J_{f}(\vec{x})$. Here $\left(y_{1}, \ldots, y_{n}\right)=f\left(x_{1}, \ldots, x_{n}\right)$.
The remarks made in $\S 4$ apply to this "variable" notation too. The chain rule easily yields the following corollary.
Corollary 1. If $f: E^{n} \rightarrow E^{n}$ and $g: E^{n} \rightarrow E^{n}\left(\right.$ or $\left.f, g: C^{n} \rightarrow C^{n}\right)$ are differentiable at \vec{p} and $\vec{q}=f(\vec{p})$, respectively, and if

$$
h=g \circ f,
$$

then

$$
\begin{equation*}
J_{h}(\vec{p})=J_{g}(\vec{q}) \cdot J_{f}(\vec{p})=\operatorname{det}\left(z_{i k}\right), \tag{i}
\end{equation*}
$$

where

$$
z_{i k}=D_{k} h_{i}(\vec{p}), \quad i, k=1, \ldots, n
$$

or, setting

$$
\begin{aligned}
\left(u_{1}, \ldots, u_{n}\right) & =g\left(y_{1}, \ldots, y_{n}\right) \text { and } \\
\left(y_{1}, \ldots, y_{n}\right) & =f\left(x_{1}, \ldots, x_{n}\right)(\text { "variables" })
\end{aligned}
$$

we have
(ii)

$$
\frac{\partial\left(u_{1}, \ldots, u_{n}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}=\frac{\partial\left(u_{1}, \ldots, u_{n}\right)}{\partial\left(y_{1}, \ldots, y_{n}\right)} \cdot \frac{\partial\left(y_{1}, \ldots, y_{n}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}=\operatorname{det}\left(z_{i k}\right)
$$

where

$$
z_{i k}=\frac{\partial u_{i}}{\partial x_{k}}, \quad i, k=1, \ldots, n
$$

Proof. By Note 2 in $\S 4$,

$$
\left[h^{\prime}(\vec{p})\right]=\left[g^{\prime}(\vec{q})\right] \cdot\left[f^{\prime}(\vec{p})\right] .
$$

Thus by rule (a) above,

$$
\operatorname{det}\left[h^{\prime}(\vec{p})\right]=\operatorname{det}\left[g^{\prime}(\vec{q})\right] \cdot \operatorname{det}\left[f^{\prime}(\vec{p})\right]
$$

i.e.,

$$
J_{h}(\vec{p})=J_{g}(\vec{q}) \cdot J_{f}(\vec{p})
$$

Also, if $\left[h^{\prime}(\vec{p})\right]=\left(z_{i k}\right)$, Definition 2 yields $z_{i k}=D_{k} h_{i}(\vec{p})$.
This proves (i), hence (ii) also.
In practice, Jacobians mostly occur when a change of variables is made. For instance, in E^{2}, we may pass from Cartesian coordinates (x, y) to another system (u, v) such that

$$
x=f_{1}(u, v) \text { and } y=f_{2}(u, v)
$$

We then set $f=\left(f_{1}, f_{2}\right)$ and obtain $f: E^{2} \rightarrow E^{2}$,

$$
J_{f}=\operatorname{det}\left(D_{k} f_{i}\right), \quad k, i=1,2 .
$$

Example (passage to polar coordinates).
Let $x=f_{1}(r, \theta)=r \cos \theta$ and $y=f_{2}(r, \theta)=r \sin \theta$.

Then using the "variable" notation, we obtain $J_{f}(r, \theta)$ as

$$
\begin{aligned}
\frac{\partial(x, y)}{\partial(r, \theta)}=\left|\begin{array}{cc}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right| & =\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right| \\
& =r \cos ^{2} \theta+r \sin ^{2} \theta=r
\end{aligned}
$$

Thus here $J_{f}(r, \theta)=r$ for all $r, \theta \in E^{1} ; J_{f}$ is independent of θ.
We now concentrate on one-to-one (invertible) functions.
Theorem 1. For a linear map $\phi: E^{n} \rightarrow E^{n}\left(\right.$ or $\left.\phi: C^{n} \rightarrow C^{n}\right)$, the following are equivalent:
(i) ϕ is one-to-one;
(ii) the column vectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ of the matrix $[\phi]$ are independent;
(iii) ϕ is onto $E^{n}\left(C^{n}\right)$;
(iv) $\operatorname{det}[\phi] \neq 0$.

Proof. Assume (i) and let

$$
\sum_{k=1}^{n} c_{k} \vec{v}_{k}=\overrightarrow{0}
$$

To deduce (ii), we must show that all c_{k} vanish.
Now, by Note 3 in $\S 2, \vec{v}_{k}=\phi\left(\vec{e}_{k}\right)$; so by linearity,

$$
\sum_{k=1}^{n} c_{k} \vec{v}_{k}=\overrightarrow{0}
$$

implies

$$
\phi\left(\sum_{k=1}^{n} c_{k} \vec{e}_{k}\right)=\overrightarrow{0}
$$

As ϕ is one-to-one, it can vanish at $\overrightarrow{0}$ only. Thus

$$
\sum_{k=1}^{n} c_{k} \vec{e}_{k}=\overrightarrow{0}
$$

Hence by Theorem 2 in Chapter $3, \S \S 1-3, c_{k}=0, k=1, \ldots, n$, and (ii) follows.
Next, assume (ii); so, by rule (c) above, $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is a basis.
Thus each $\vec{y} \in E^{n}\left(C^{n}\right)$ has the form

$$
\vec{y}=\sum_{k=1}^{n} a_{k} \vec{v}_{k}=\sum_{k=1}^{n} a_{k} \phi\left(\vec{e}_{k}\right)=\phi\left(\sum_{k=1}^{n} a_{k} \vec{e}_{k}\right)=\phi(\vec{x}),
$$

where

$$
\vec{x}=\sum_{k=1}^{n} a_{k} \vec{e}_{k}(\text { uniquely })
$$

Hence (ii) implies both (iii) and (i). (Why?)
Now assume (iii). Then each $\vec{y} \in E^{n}\left(C^{n}\right)$ has the form $\vec{y}=\phi(\vec{x})$, where

$$
\vec{x}=\sum_{k=1}^{n} x_{k} \vec{e}_{k}
$$

by Theorem 2 in Chapter 3, $\S \S 1-3$. Hence again

$$
\vec{y}=\sum_{k=1}^{n} x_{k} \phi\left(\vec{e}_{k}\right)=\sum_{k=1}^{n} x_{k} \vec{v}_{k}
$$

so the \vec{v}_{k} span all of $E^{n}\left(C^{n}\right)$. By rule (c) above, this implies (ii), hence (i), too. Thus (i), (ii), and (iii) are equivalent.

Also, by rules (a) and (b), we have

$$
\operatorname{det}[\phi] \cdot \operatorname{det}\left[\phi^{-1}\right]=\operatorname{det}\left[\phi \circ \phi^{-1}\right]=1
$$

if ϕ is one-to-one (for $\phi \circ \phi^{-1}$ is the identity map). Hence $\operatorname{det}[\phi] \neq 0$ if (i) holds.
For the converse, suppose ϕ is not one-to-one. Then by (ii), the \vec{v}_{k} are not independent. Thus one of them is a linear combination of the others, say,

$$
\vec{v}_{1}=\sum_{k=2}^{n} a_{k} \vec{v}_{k}
$$

But by linear algebra (Problem 13(iii)), $\operatorname{det}[\phi]$ does not change if \vec{v}_{1} is replaced by

$$
\vec{v}_{1}-\sum_{k=2}^{n} a_{k} \vec{v}_{k}=\overrightarrow{0}
$$

Thus $\operatorname{det}[\phi]=0$ (one column turning to $\overrightarrow{0}$). This completes the proof.
Note 3. Maps that are both onto and one-to-one are called bijective. Such is ϕ in Theorem 1. This means that the equation

$$
\phi(\vec{x})=\vec{y}
$$

has a unique solution

$$
\vec{x}=\phi^{-1}(\vec{y})
$$

for each \vec{y}. Componentwise, by Theorem 1, the equations

$$
\sum_{k=1}^{n} x_{k} v_{i k}=y_{i}, \quad i=1, \ldots, n
$$

have a unique solution for the x_{k} iff $\operatorname{det}\left(v_{i k}\right) \neq 0$.
Corollary 2. If $\phi \in L\left(E^{\prime}, E\right)$ is bijective, with E^{\prime} and E complete, then $\phi^{-1} \in L\left(E, E^{\prime}\right)$.
Proof for $E=E^{n}\left(C^{n}\right) .{ }^{1}$ The notation $\phi \in L\left(E^{\prime}, E\right)$ means that $\phi: E^{\prime} \rightarrow E$ is linear and continuous.

As ϕ is bijective, $\phi^{-1}: E \rightarrow E^{\prime}$ is linear (Problem 12).
If $E=E^{n}\left(C^{n}\right)$, it is continuous, too (Theorem 2 in §2).
Thus $\phi^{-1} \in L\left(E, E^{\prime}\right)$.
Note. The case $E=E^{n}\left(C^{n}\right)$ suffices for an undergraduate course. (The beginner is advised to omit the "starred" §8.) Corollary 2 and Theorem 2 below, however, are valid in the general case. So is Theorem 1 in $\S 7$.
Theorem 2. Let E, E^{\prime} and ϕ be as in Corollary 2. Set

$$
\left\|\phi^{-1}\right\|=\frac{1}{\varepsilon} .
$$

Then any map $\theta \in L\left(E^{\prime}, E\right)$ with $\|\theta-\phi\|<\varepsilon$ is one-to-one, and θ^{-1} is uniformly continuous.
Proof. By Corollary $2, \phi^{-1} \in L\left(E, E^{\prime}\right)$, so $\left\|\phi^{-1}\right\|$ is defined and >0 (for ϕ^{-1} is not the zero map, being one-to-one).

Thus we may set

$$
\varepsilon=\frac{1}{\left\|\phi^{-1}\right\|}, \quad\left\|\phi^{-1}\right\|=\frac{1}{\varepsilon}
$$

Clearly $\vec{x}=\phi^{-1}(\vec{y})$ if $\vec{y}=\phi(\vec{x})$. Also,

$$
\left|\phi^{-1}(\vec{y})\right| \leq \frac{1}{\varepsilon}|\vec{y}|
$$

by Note 5 in $\S 2$. Hence

$$
|\vec{y}| \geq \varepsilon\left|\phi^{-1}(\vec{y})\right|,
$$

i.e.,

$$
\begin{equation*}
|\phi(\vec{x})| \geq \varepsilon|\vec{x}| \tag{2}
\end{equation*}
$$

for all $\vec{x} \in E^{\prime}$ and $\vec{y} \in E$.
Now suppose $\phi \in L\left(E^{\prime}, E\right)$ and $\|\theta-\phi\|=\sigma<\varepsilon$.
Obviously, $\theta=\phi-(\phi-\theta)$, and by Note 5 in $\S 2$,

$$
|(\phi-\theta)(\vec{x})| \leq\|\phi-\theta\||\vec{x}|=\sigma|\vec{x}| .
$$

[^6]Thus for every $\vec{x} \in E^{\prime}$,

$$
\begin{align*}
|\theta(\vec{x})| & \geq|\phi(\vec{x})|-|(\phi-\theta)(\vec{x})| \\
& \geq|\phi(\vec{x})|-\sigma|\vec{x}| \tag{3}\\
& \geq(\varepsilon-\sigma)|\vec{x}|
\end{align*}
$$

by (2). Therefore, given $\vec{p} \neq \vec{r}$ in E^{\prime} and setting $\vec{x}=\vec{p}-\vec{r} \neq \overrightarrow{0}$, we obtain

$$
\begin{equation*}
|\theta(\vec{p})-\theta(\vec{r})|=|\theta(\vec{p}-\vec{r})|=|\theta(\vec{x})| \geq(\varepsilon-\sigma)|\vec{x}|>0 \tag{4}
\end{equation*}
$$

(since $\sigma<\varepsilon$).
We see that $\vec{p} \neq \vec{r}$ implies $\theta(\vec{p}) \neq \theta(\vec{r})$; so θ is one-to-one, indeed.
Also, setting $\theta(\vec{x})=\vec{z}$ and $\vec{x}=\theta^{-1}(\vec{z})$ in (3), we get

$$
|\vec{z}| \geq(\varepsilon-\sigma)\left|\theta^{-1}(\vec{z})\right| ;
$$

that is,

$$
\begin{equation*}
\left|\theta^{-1}(\vec{z})\right| \leq(\varepsilon-\sigma)^{-1}|\vec{z}| \tag{5}
\end{equation*}
$$

for all \vec{z} in the range of θ (domain of θ^{-1}).
Thus θ^{-1} is linearly bounded (by Theorem 1 in $\S 2$), hence uniformly continuous, as claimed.

Corollary 3. If $E^{\prime}=E=E^{n}\left(C^{n}\right)$ in Theorem 2 above, then for given ϕ and $\delta>0$, there always is $\delta^{\prime}>0$ such that

$$
\|\theta-\phi\|<\delta^{\prime} \text { implies }\left\|\theta^{-1}-\phi^{-1}\right\|<\delta .
$$

In other words, the transformation $\phi \rightarrow \phi^{-1}$ is continuous on $L(E), E=$ $E^{n}\left(C^{n}\right)$.
Proof. First, since $E^{\prime}=E=E^{n}\left(C^{n}\right), \theta$ is bijective by Theorem 1(iii), so $\theta^{-1} \in L(E)$.

As before, set $\|\theta-\phi\|=\sigma<\varepsilon$.
By Note 5 in $\S 2$, formula (5) above implies that

$$
\left\|\theta^{-1}\right\| \leq \frac{1}{\varepsilon-\sigma}
$$

Also,

$$
\phi^{-1} \circ(\theta-\phi) \circ \theta^{-1}=\phi^{-1}-\theta^{-1}
$$

(see Problem 11).
Hence by Corollary 4 in $\S 2$, recalling that $\left\|\phi^{-1}\right\|=1 / \varepsilon$, we get

$$
\left\|\theta^{-1}-\phi^{-1}\right\| \leq\left\|\phi^{-1}\right\| \cdot\|\theta-\phi\| \cdot\left\|\theta^{-1}\right\| \leq \frac{\sigma}{\varepsilon(\varepsilon-\sigma)} \rightarrow 0 \text { as } \sigma \rightarrow 0
$$

Problems on Bijective Linear Maps and Jacobians

1. (i) Can a functional determinant $f=\operatorname{det}\left(v_{i k}\right)$ (see Note 1) be continuous or differentiable even if the functions $v_{i k}$ are not?
(ii) Must a Jacobian map J_{f} be continuous or differentiable if f is?

Give proofs or counterexamples.
$\Rightarrow \mathbf{2}$. Prove rule (b) on determinants. More generally, show that if $f(\vec{x})=\vec{x}$ on an open set $A \subseteq E^{n}\left(C^{n}\right)$, then $J_{f}=1$ on A.
3. Let $f: E^{n} \rightarrow E^{n}\left(\right.$ or $\left.C^{n} \rightarrow C^{n}\right), f=\left(f_{1}, \ldots, f_{n}\right)$.

Suppose each f_{k} depends on x_{k} only, i.e.,

$$
f_{k}(\vec{x})=f_{k}(\vec{y}) \text { if } x_{k}=y_{k},
$$

regardless of the other coordinates x_{i}, y_{i}. Prove that $J_{f}=\prod_{k=1}^{n} D_{k} f_{k}$. [Hint: Show that $D_{k} f_{i}=0$ if $i \neq k$.]
4. In Corollary 1 , show that

$$
J_{h}(\vec{p})=\prod_{k=1}^{n} D_{k} f_{k}(\vec{p}) \cdot J_{g}(\vec{q})
$$

if f also has the property specified in Problem 3. Then do all in "variables," with $y_{k}=y_{k}\left(x_{k}\right)$ instead of f_{k}.
5. Let $E^{\prime}=E^{1}$ in Note 1. Prove that if all the $v_{i k}$ are differentiable at p, then $f^{\prime}(p)$ is the sum of n determinants, each arising from $\operatorname{det}\left(v_{i k}\right)$, by replacing the terms of one column by their derivatives.
[Hint: Use Problem 6 in Chapter 5, §1.]
6. Do Problem 5 for partials of f, with $E^{\prime}=E^{n}\left(C^{n}\right)$, and for directionals $D_{\vec{u}} f$, in any normed space E^{\prime}. (First, prove formulas analogous to Problem 6 in Chapter 5, $\S 1$; use Note 3 in $\S 1$.) Finally, do it for the differential, df (\vec{p}, \cdot).
7. In Note 1 of $\S 4$, express the matrices in terms of partials (see Theorem 4 in §3). Invent a "variable" notation for such matrices, imitating Jacobians (Corollary 3).
8. (i) Show that

$$
\begin{aligned}
& \quad \frac{\partial(x, y, z)}{\partial(r, \theta, \alpha)}=-r^{2} \sin \alpha \\
& \text { if } \\
& \begin{array}{l}
x=r \cos \theta, \\
y=r \sin \theta \sin \alpha, \text { and } \\
z=r \cos \alpha
\end{array}
\end{aligned}
$$

Figure 27
(This transformation is passage to polars in E^{3}; see Figure 27, where $r=O P, \varangle X O A=\theta$, and $\varangle A O P=\alpha$.)
(ii) What if $x=r \cos \theta, y=r \sin \theta$, and $z=z$ remains unchanged (passage to cylindric coordinates)?
(iii) Same for $x=e^{r} \cos \theta, y=e^{r} \sin \theta$, and $z=z$.
9. Is $f=\left(f_{1}, f_{2}\right): E^{2} \rightarrow E^{2}$ one-to-one or bijective, and is $J_{f} \neq 0$, if
(i) $f_{1}(x, y)=e^{x} \cos y$ and $f_{2}(x, y)=e^{x} \sin y$;
(ii) $f_{1}(x, y)=x^{2}-y^{2}$ and $f_{2}(x, y)=2 x y$?
10. Define $f: E^{3} \rightarrow E^{3}$ (or $C^{3} \rightarrow C^{3}$) by

$$
f(\vec{x})=\frac{\vec{x}}{1+\sum_{k=1}^{3} x_{k}}
$$

on

$$
A=\left\{\vec{x} \mid \sum_{k=1}^{3} x_{k} \neq-1\right\}
$$

and $f=\overrightarrow{0}$ on $-A$. Prove the following.
(i) f is one-to-one on A (find f^{-1} !).
(ii) $J_{f}(\vec{x})=\frac{1}{\left(1+\sum_{k=1}^{3} x_{k}\right)^{4}}$.
(iii) Describe $-A$ geometrically.
11. Given any sets A, B and maps $f, g: A \rightarrow E^{\prime}, h: E^{\prime} \rightarrow E$, and $k: B \rightarrow A$, prove that
(i) $(f \pm g) \circ k=f \circ k \pm g \circ k$, and
(ii) $h \circ(f \pm g)=h \circ f+h \circ g$ if h is linear.

Use these distributive laws to verify that

$$
\phi^{-1} \circ(\theta-\phi) \circ \theta^{-1}=\phi^{-1}-\theta^{-1}
$$

in Corollary 3.
[Hint: First verify the associativity of mapping composition.]
12. Prove that if $\phi: E^{\prime} \rightarrow E$ is linear and one-to-one, so is $\phi^{-1}: E^{\prime \prime} \rightarrow E^{\prime}$, where $E^{\prime \prime}=\phi\left[E^{\prime}\right]$.
13. Let $\vec{v}_{1}, \ldots, \vec{v}_{n}$ be the column vectors in $\operatorname{det}[\phi]$. Prove that $\operatorname{det}[\phi]$ turns into
(i) $c \cdot \operatorname{det}[\phi]$ if one of the \vec{v}_{k} is multiplied by a scalar c;
(ii) $-\operatorname{det}[\phi]$, if any two of the \vec{v}_{k} are interchanged (consider λ in formula (1)).

Furthermore, show that
(iii) $\operatorname{det}[\phi]$ does not change if some \vec{v}_{k} is replaced by $\vec{v}_{k}+c \vec{v}_{i}(i \neq k)$;
(iv) $\operatorname{det}[\phi]=0$ if some \vec{v}_{k} is $\overrightarrow{0}$, or if two of the \vec{v}_{k} are the same.

§7. Inverse and Implicit Functions. Open and Closed Maps

I. "If $f \in C D^{1}$ at \vec{p}, then f resembles a linear map (namely $d f$) at \vec{p}." Pursuing this basic idea, we first make precise our notion of " $f \in C D^{1}$ at \vec{p}."

Definition 1.

A map $f: E^{\prime} \rightarrow E$ is continuously differentiable, or of class $C D^{1}$ (written $f \in C D^{1}$), at \vec{p} iff the following statement is true:

Given any $\varepsilon>0$, there is $\delta>0$ such that f is differentiable on the globe $\bar{G}=\overline{G_{\vec{p}}(\delta)}$, with

$$
\|d f(\vec{x}, \cdot)-d f(\vec{p}, \cdot)\|<\varepsilon \quad \text { for all } \vec{x} \in \bar{G} .^{1}
$$

By Problem 10 in $\S 5$, this definition agrees with Definition 1 of $\S 5$, but is no longer limited to the case $E^{\prime}=E^{n}\left(C^{n}\right)$. See also Problems 1 and 2 below.

We now obtain the following result.
Theorem 1. Let E^{\prime} and E be complete. If $f: E^{\prime} \rightarrow E$ is of class $C D^{1}$ at \vec{p} and if $d f(\vec{p}, \cdot)$ is bijective ((6), then f is one-to-one on some globe $\bar{G}=\overline{G_{\vec{p}}(\delta)}$.

Thus f "locally" resembles $d f(\vec{p}, \cdot)$ in this respect.
Proof. Set $\phi=d f(\vec{p}, \cdot)$ and

$$
\left\|\phi^{-1}\right\|=\frac{1}{\varepsilon}
$$

(cf. Theorem 2 of $\S 6$).
By Definition 1, fix $\delta>0$ so that for $\vec{x} \in \bar{G}=\overline{G_{\vec{p}}(\delta)}$.

$$
\|d f(\vec{x}, \cdot)-\phi\|<\frac{1}{2} \varepsilon .
$$

Then by Note 5 in $\S 2$,

$$
\begin{equation*}
(\forall \vec{x} \in \bar{G})\left(\forall \vec{u} \in E^{\prime}\right) \quad|d f(\vec{x}, \vec{u})-\phi(\vec{u})| \leq \frac{1}{2} \varepsilon|\vec{u}| . \tag{1}
\end{equation*}
$$

Now fix any $\vec{r}, \vec{s} \in \vec{G}, \vec{r} \neq \vec{s}$, and set $\vec{u}=\vec{r}-\vec{s} \neq \overrightarrow{0}$. Again, by Note 5 in $\S 2$,

$$
|\vec{u}|=\left|\phi^{-1}(\phi(\vec{u}))\right| \leq\left\|\phi^{-1}\right\||\phi(\vec{u})|=\frac{1}{\varepsilon}|\phi(\vec{u})| ;
$$

[^7]\[

$$
\begin{equation*}
0<\varepsilon|\vec{u}| \leq|\phi(\vec{u})| . \tag{2}
\end{equation*}
$$

\]

By convexity, $\bar{G} \supseteq I=L[\vec{s}, \vec{r}]$, so (1) holds for $\vec{x} \in I, \vec{x}=\vec{s}+t \vec{u}, 0 \leq t \leq 1$. Noting this, set

$$
h(t)=f(\vec{s}+t \vec{u})-t \phi(\vec{u}), \quad t \in E^{1} .
$$

Then for $0 \leq t \leq 1$,

$$
\begin{aligned}
h^{\prime}(t) & =D_{\vec{u}} f(\vec{s}+t \vec{u})-\phi(\vec{u}) \\
& =d f(\vec{s}+t \vec{u} ; \vec{u})-\phi(\vec{u}) .
\end{aligned}
$$

(Verify!) Thus by (1) and (2),

$$
\begin{aligned}
\sup _{0 \leq t \leq 1}\left|h^{\prime}(t)\right| & =\sup _{0 \leq t \leq 1}|d f(\vec{s}+t \vec{u} ; \vec{u})-\phi(\vec{u})| \\
& \leq \frac{\varepsilon}{2}|\vec{u}| \leq \frac{1}{2}|\phi(\vec{u})|
\end{aligned}
$$

(Explain!) Now, by Corollary 1 in Chapter 5, §4,

$$
|h(1)-h(0)| \leq(1-0) \cdot \sup _{0 \leq t \leq 1}\left|h^{\prime}(t)\right| \leq \frac{1}{2}|\phi(\vec{u})|
$$

As $h(0)=\vec{s}$ and

$$
h(1)=f(\vec{s}+\vec{u})-\phi(\vec{u})=f(\vec{r})-\phi(\vec{u}),
$$

we obtain (even if $\vec{r}=\vec{s}$)

$$
\begin{equation*}
|f(\vec{r})-f(\vec{s})-\phi(\vec{u})| \leq \frac{1}{2}|\phi(\vec{u})| \quad(\vec{r}, \vec{s} \in \bar{G}, \vec{u}=\vec{r}-\vec{s}) . \tag{3}
\end{equation*}
$$

But by the triangle law,

$$
|\phi(\vec{u})|-|f(\vec{r})-f(\vec{s})| \leq|f(\vec{r})-f(\vec{s})-\phi(\vec{u})| .
$$

Thus

$$
\begin{equation*}
|f(\vec{r})-f(\vec{s})| \geq \frac{1}{2}|\phi(\vec{u})| \geq \frac{1}{2} \varepsilon|\vec{u}|=\frac{1}{2} \varepsilon|\vec{r}-\vec{s}| \tag{4}
\end{equation*}
$$

by (2).
Hence $f(\vec{r}) \neq f(\vec{s})$ whenever $\vec{r} \neq \vec{s}$ in \bar{G}; so f is one-to-one on \bar{G}, as claimed.

Corollary 1. Under the assumptions of Theorem 1 , the maps f and f^{-1} (the inverse of f restricted to \bar{G}) are uniformly continuous on \bar{G} and $f[\bar{G}]$, respectively.

Proof. By (3),

$$
\begin{aligned}
|f(\vec{r})-f(\vec{s})| & \leq|\phi(\vec{u})|+\frac{1}{2}|\phi(\vec{u})| \\
& \leq|2 \phi(\vec{u})| \\
& \leq 2\|\phi\||\vec{u}| \\
& =2\|\phi\||\vec{r}-\vec{s}| \quad(\vec{r}, \vec{s} \in \bar{G}) .
\end{aligned}
$$

This implies uniform continuity for f. (Why?)
Next, let $g=f^{-1}$ on $H=f[\bar{G}]$.
If $\vec{x}, \vec{y} \in H$, let $\vec{r}=g(\vec{x})$ and $\vec{s}=g(\vec{y})$; so $\vec{r}, \vec{s} \in \bar{G}$, with $\vec{x}=f(\vec{r})$ and $\vec{y}=f(\vec{s})$. Hence by (4),

$$
|\vec{x}-\vec{y}| \geq \frac{1}{2} \varepsilon|g(\vec{x})-g(\vec{y})|,
$$

proving all for g, too.
Again, f resembles ϕ which is uniformly continuous, along with ϕ^{-1}.
II. We introduce the following definition.

Definition 2.

A map $f:(S, \rho) \rightarrow\left(T, \rho^{\prime}\right)$ is closed (open) on $D \subseteq S$ iff, for any $X \subseteq D$ the set $f[X]$ is closed (open) in T whenever X is so in S.

Note that continuous maps have such a property for inverse images (Problem 15 in Chapter 4, §2).
Corollary 2. Under the assumptions of Theorem $1, f$ is closed on \bar{G}, and so the set $f[\bar{G}]$ is closed in E.

Similarly for the map f^{-1} on $f[\bar{G}]$.
Proof for $E^{\prime}=E=E^{n}\left(C^{n}\right)$ (for the general case, see Problem 6). Given any closed $X \subseteq \bar{G}$, we must show that $f[X]$ is closed in E.

Now, as \bar{G} is closed and bounded, it is compact (Theorem 4 of Chapter $4, \S 6$).
So also is X (Theorem 1 in Chapter 4, $\S 6$), and so is $f[X]$ (Theorem 1 of Chapter 4, §8).

By Theorem 2 in Chapter 4, $\S 6, f[X]$ is closed, as required.
For the rest of this section, we shall set $E^{\prime}=E=E^{n}\left(C^{n}\right)$.
Theorem 2. If $E^{\prime}=E=E^{n}\left(C^{n}\right)$ in Theorem 1, with other assumptions unchanged, then f is open on the globe $G=G_{\vec{p}}(\delta)$, with δ sufficiently small. ${ }^{2}$

We first prove the following lemma.

[^8]Lemma. $f[G]$ contains a globe $G_{\vec{q}}(\alpha)$ where $\vec{q}=f(\vec{p})$.
Proof. Indeed, let

$$
\alpha=\frac{1}{4} \varepsilon \delta,
$$

where δ and ε are as in the proof of Theorem 1. (We continue the notation and formulas of that proof.)

Fix any $\vec{c} \in G_{\vec{q}}(\alpha)$; so

$$
|\vec{c}-\vec{q}|<\alpha=\frac{1}{4} \varepsilon \delta .
$$

Set $h=|f-\vec{c}|$ on E^{\prime}. As f is uniformly continuous on \bar{G}, so is h.
Now, \bar{G} is compact in $E^{n}\left(C^{n}\right)$; so Theorem 2(ii) in Chapter 4, $\S 8$, yields a point $\vec{r} \in \bar{G}$ such that

$$
\begin{equation*}
h(\vec{r})=\min h[\bar{G}] . \tag{6}
\end{equation*}
$$

We claim that \vec{r} is in G (the interior of \bar{G}).
Otherwise, $|\vec{r}-\vec{p}|=\delta$; for by (4),

$$
\begin{align*}
2 \alpha=\frac{1}{2} \varepsilon \delta=\frac{1}{2} \varepsilon|\vec{r}-\vec{p}| & \leq|f(\vec{r})-f(\vec{p})| \\
& \leq|f(\vec{r})-\vec{c}|+|\vec{c}-f(\vec{p})| \tag{7}\\
& =h(\vec{r})+h(\vec{p}) .
\end{align*}
$$

But

$$
h(\vec{p})=|\vec{c}-f(\vec{p})|=|\vec{c}-\vec{q}|<\alpha ;
$$

and so (7) yields

$$
h(\vec{p})<\alpha<h(\vec{r}),
$$

contrary to the minimality of $h(\vec{r})$ (see (6)). Thus $|\vec{r}-\vec{p}|$ cannot equal δ.
We obtain $|\vec{r}-\vec{p}|<\delta$, so $\vec{r} \in G_{\vec{p}}(\delta)=G$ and $f(\vec{r}) \in f[G]$. We shall now show that $\vec{c}=f(\vec{r})$.

To this end, we set $\vec{v}=\vec{c}-f(\vec{r})$ and prove that $\vec{v}=\overrightarrow{0}$. Let

$$
\vec{u}=\phi^{-1}(\vec{v}),
$$

where

$$
\phi=d f(\vec{p}, \cdot),
$$

as before. Then

$$
\vec{v}=\phi(\vec{u})=d f(\vec{p} ; \vec{u}) .
$$

With \vec{r} as above, fix some

$$
\vec{s}=\vec{r}+t \vec{u} \quad(0<t<1)
$$

with t so small that $\vec{s} \in G$ also. Then by formula (3),

$$
|f(\vec{s})-f(\vec{r})-\phi(t \vec{u})| \leq \frac{1}{2}|t \vec{v}| ;
$$

also,

$$
|f(\vec{r})-\vec{c}+\phi(t \vec{u})|=(1-t)|\vec{v}|=(1-t) h(\vec{r})
$$

by our choice of \vec{v}, \vec{u} and h. Hence by the triangle law,

$$
h(\vec{s})=|f(\vec{s})-\vec{c}| \leq\left(1-\frac{1}{2} t\right) h(\vec{r}) .
$$

(Verify!)
As $0<t<1$, this implies $h(\vec{r})=0$ (otherwise, $h(\vec{s})<h(\vec{r})$, violating (6)).
Thus, indeed,

$$
|\vec{v}|=|f(\vec{r})-\vec{c}|=0,
$$

i.e.,

$$
\vec{c}=f(\vec{r}) \in f[G] \quad \text { for } \vec{r} \in G .
$$

But \vec{c} was an arbitrary point of $G_{\vec{q}}(\alpha)$. Hence

$$
G_{\vec{q}}(\alpha) \subseteq f[G],
$$

proving the lemma.
Proof of Theorem 2. The lemma shows that $f(\vec{p})$ is in the interior of $f[G]$ if $\vec{p}, f, d f(\vec{p}, \cdot)$, and δ are as in Theorem 1.

But Definition 1 implies that here $f \in C D^{1}$ on all of G (see Problem 1).
Also, $d f(\vec{x}, \cdot)$ is bijective for any $\vec{x} \in G$ by our choice of G and Theorems 1 and 2 in $\S 6$.

Thus f maps all $\vec{x} \in G$ onto interior points of $f[G]$; i.e., f maps any open set $X \subseteq G$ onto an open $f[X]$, as required.

Note 1. A map

$$
f:(S, \rho) \underset{\text { onto }}{\longleftrightarrow}\left(T, \rho^{\prime}\right)
$$

is both open and closed ("clopen") iff f^{-1} is continuous-see Problem 15(iv)(v) in Chapter $4, \S 2$, interchanging f and f^{-1}.

Thus $\phi=d f(\vec{p}, \cdot)$ in Theorem 1 is "clopen" on all of E^{\prime}.
Again, f locally resembles $d f(\vec{p}, \cdot)$.
III. The Inverse Function Theorem. We now further pursue these ideas.

Theorem 3 (inverse functions). Under the assumptions of Theorem 2, let g be the inverse of $f_{G}\left(f\right.$ restricted to $\left.G=G_{\vec{p}}(\delta)\right)$.

Then $g \in C D^{1}$ on $f[G]$ and $d g(\vec{y}, \cdot)$ is the inverse of $d f(\vec{x}, \cdot)$ whenever $\vec{x}=g(\vec{y}), \vec{x} \in G$.

Briefly: "The differential of the inverse is the inverse of the differential."
Proof. Fix any $\vec{y} \in f[G]$ and $\vec{x}=g(\vec{y})$; so $\vec{y}=f(\vec{x})$ and $\vec{x} \in G$. Let $U=$ $d f(\vec{x}, \cdot)$.

As noted above, U is bijective for every $\vec{x} \in G$ by Theorems 1 and 2 in $\S 6$; so we may set $V=U^{-1}$. We must show that $V=d g(\vec{y}, \cdot)$.

To do this, give \vec{y} an arbitrary (variable) increment $\Delta \vec{y}$, so small that $\vec{y}+\Delta \vec{y}$ stays in $f[G]$ (an open set by Theorem 2).

As g and f_{G} are one-to-one, $\Delta \vec{y}$ uniquely determines

$$
\Delta \vec{x}=g(\vec{y}+\Delta \vec{y})-g(\vec{y})=\vec{t},
$$

and vice versa:

$$
\Delta \vec{y}=f(\vec{x}+\vec{t})-f(\vec{x}) .
$$

Here $\Delta \vec{y}$ and \vec{t} are the mutually corresponding increments of $\vec{y}=f(\vec{x})$ and $\vec{x}=g(\vec{y})$. By continuity, $\vec{y} \rightarrow \overrightarrow{0}$ iff $\vec{t} \rightarrow \overrightarrow{0} .^{3}$

As $U=d f(\vec{x}, \cdot)$,

$$
\lim _{\vec{t} \rightarrow \overrightarrow{0}} \frac{1}{|\vec{t}|}|f(\vec{x}+\vec{t})-f(\vec{t})-U(\vec{t})|=0
$$

or

$$
\begin{equation*}
\lim _{\vec{t} \rightarrow \overrightarrow{0}} \frac{1}{|\vec{t}|}|F(\vec{t})|=0 \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
F(\vec{t})=f(\vec{x}+\vec{t})-f(\vec{t})-U(\vec{t}) \tag{9}
\end{equation*}
$$

As $V=U^{-1}$, we have

$$
V(U(\vec{t}))=\vec{t}=g(\vec{y}+\Delta \vec{y})-g(\vec{y})
$$

So from (9),

$$
\begin{aligned}
V(F(\vec{t})) & =V(\Delta \vec{y})-\vec{t} \\
& =V(\Delta \vec{y})-[g(\vec{y}+\Delta \vec{y})-g(\vec{y})]
\end{aligned}
$$

that is,

$$
\begin{equation*}
\frac{1}{|\Delta \vec{y}|}|g(\vec{y}+\Delta \vec{y})-g(\vec{y})-V(\Delta \vec{y})|=\frac{\mid V(F(\vec{t}) \mid}{|\Delta \vec{y}|}, \quad \Delta \vec{y} \neq \overrightarrow{0} \tag{10}
\end{equation*}
$$

Now, formula (4), with $\vec{r}=\vec{x}, \vec{s}=\vec{x}+\vec{t}$, and $\vec{u}=\vec{t}$, shows that

$$
|f(\vec{x}+\vec{t})-f(\vec{x})| \geq \frac{1}{2} \varepsilon|\vec{t}|
$$

[^9]i.e., $|\Delta \vec{y}| \geq \frac{1}{2} \varepsilon|\vec{t}|$. Hence by (8),
$$
\frac{|V(F(\vec{t}))|}{|\Delta \vec{y}|} \leq \frac{\mid V(F(\vec{t}) \mid}{\frac{1}{2} \varepsilon|\vec{t}|}=\frac{2}{\varepsilon}\left|V\left(\frac{1}{|\vec{t}|} F(\vec{t})\right)\right| \leq \frac{2}{\varepsilon}\|V\| \frac{1}{|\vec{t}|}|F(\vec{t})| \rightarrow 0 \text { as } \vec{t} \rightarrow \overrightarrow{0}
$$

Since $\vec{t} \rightarrow \overrightarrow{0}$ as $\Delta \vec{y} \rightarrow \overrightarrow{0}$ (change of variables!), the expression (10) tends to 0 as $\Delta \vec{y} \rightarrow \overrightarrow{0}$.

By definition, then, g is differentiable at \vec{y}, with $d g(\vec{y}, \cdot)=V=U^{-1}$.
Moreover, Corollary 3 in $\S 6$, applies here. Thus

$$
\left(\forall \delta^{\prime}>0\right)\left(\exists \delta^{\prime \prime}>0\right) \quad\|U-W\|<\delta^{\prime \prime} \Rightarrow\left\|U^{-1}-W^{-1}\right\|<\delta^{\prime} .
$$

Taking here $U^{-1}=d g(\vec{y}, \cdot)$ and $W^{-1}=d g(\vec{y}+\Delta \vec{y})$, we see that $g \in C D^{1}$ near \vec{y}. This completes the proof.

Note 2. If $E^{\prime}=E=E^{n}\left(C^{n}\right)$, the bijectivity of $\phi=d f(\vec{p}, \cdot)$ is equivalent to

$$
\operatorname{det}[\phi]=\operatorname{det}\left[f^{\prime}(\vec{p})\right] \neq 0
$$

(Theorem 1 of $\S 6$).
In this case, the fact that f is one-to-one on $G=G_{\vec{p}}(\delta)$ means, componentwise (see Note 3 in $\S 6$), that the system of n equations

$$
f_{i}(\vec{x})=f\left(x_{1}, \ldots, x_{n}\right)=y_{i}, \quad i=1, \ldots, n
$$

has a unique solution for the n unknowns x_{k} as long as

$$
\left(y_{1}, \ldots, y_{n}\right)=\vec{y} \in f[G] .
$$

Theorem 3 shows that this solution has the form

$$
x_{k}=g_{k}(\vec{y}), \quad k=1, \ldots, n
$$

where the g_{k} are of class $C D^{1}$ on $f[G]$ provided the f_{i} are of class $C D^{1}$ near \vec{p} and $\operatorname{det}\left[f^{\prime}(\vec{p})\right] \neq 0$. Here

$$
\operatorname{det}\left[f^{\prime}(\vec{p})\right]=J_{f}(\vec{p})
$$

as in $\S 6$.
Thus again f "locally" resembles a linear map, $\phi=d f(\vec{p}, \cdot)$.
IV. The Implicit Function Theorem. Generalizing, we now ask, what about solving n equations in $n+m$ unknowns $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$? Say, we want to solve

$$
\begin{equation*}
f_{k}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)=0, \quad k=1,2, \ldots, n \tag{11}
\end{equation*}
$$

for the first n unknowns (or variables) x_{k}, thus expressing them as

$$
x_{k}=H_{k}\left(y_{1}, \ldots, y_{m}\right), \quad k=1, \ldots, n
$$

with $H_{k}: E^{m} \rightarrow E^{1}$ or $H_{k}: C^{m} \rightarrow C$.
Let us set $\vec{x}=\left(x_{1}, \ldots, x_{n}\right), \vec{y}=\left(y_{1}, \ldots, y_{m}\right)$, and

$$
(\vec{x}, \vec{y})=\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)
$$

so that $(\vec{x}, \vec{y}) \in E^{n+m}\left(C^{n+m}\right)$.
Thus the system of equations (11) simplifies to

$$
f_{k}(\vec{x}, \vec{y})=0, \quad k=1, \ldots, n,
$$

or

$$
f(\vec{x}, \vec{y})=\overrightarrow{0},
$$

where $f=\left(f_{1}, \ldots, f_{n}\right)$ is a map of $E^{n+m}\left(C^{n+m}\right)$ into $E^{n}\left(C^{n}\right) ; f$ is a function of $n+m$ variables, but it has n components f_{k}; i.e.,

$$
f(\vec{x}, \vec{y})=f\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)
$$

is a vector in $E^{n}\left(C^{n}\right)$.
Theorem 4 (implicit functions). Let $E^{\prime}=E^{n+m}\left(C^{n+m}\right), E=E^{n}\left(C^{n}\right)$, and let $f: E^{\prime} \rightarrow E$ be of class $C D^{1}$ near

$$
(\vec{p}, \vec{q})=\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{m}\right), \quad \vec{p} \in E^{n}\left(C^{n}\right), \vec{q} \in E^{m}\left(C^{m}\right)
$$

Let $[\phi]$ be the $n \times n$ matrix

$$
\left(D_{j} f_{k}(\vec{p}, \vec{q})\right), \quad j, k=1, \ldots, n
$$

If $\operatorname{det}[\phi] \neq 0$ and if $f(\vec{p}, \vec{q})=\overrightarrow{0}$, then there are open sets

$$
P \subseteq E^{n}\left(C^{n}\right) \text { and } Q \subseteq E^{m}\left(C^{m}\right)
$$

with $\vec{p} \in P$ and $\vec{q} \in Q$, for which there is a unique map

$$
H: Q \rightarrow P
$$

with

$$
f(H(\vec{y}), \vec{y})=\overrightarrow{0}
$$

for all $\vec{y} \in Q$; furthermore, $H \in C D^{1}$ on Q.
Thus $\vec{x}=H(\vec{y})$ is a solution of (11) in vector form.
Proof. With the above notation, set

$$
F(\vec{x}, \vec{y})=(f(\vec{x}, \vec{y}), \vec{y}), \quad F: E^{\prime} \rightarrow E^{\prime} .
$$

Then

$$
F(\vec{p}, \vec{q})=(f(\vec{p}, \vec{q}), \vec{q})=(\overrightarrow{0}, \vec{q})
$$

since $f(\vec{p}, \vec{q})=\overrightarrow{0}$.
As $f \in C D^{1}$ near (\vec{p}, \vec{q}), so is F (verify componentwise via Problem 9(ii) in $\S 3$ and Definition 1 of $\S 5$).

By Theorem $4, \S 3, \operatorname{det}\left[F^{\prime}(\vec{p}, \vec{q})\right]=\operatorname{det}[\phi] \neq 0$ (explain!).
Thus Theorem 1 above shows that F is one-to-one on some globe G about (\vec{p}, \vec{q}).

Clearly G contains an open interval about (\vec{p}, \vec{q}). We denote it by $P \times Q$ where $\vec{p} \in P, \vec{q} \in Q ; P$ is open in $E^{n}\left(C^{n}\right)$ and Q is open in $E^{m}\left(C^{m}\right) .^{4}$

By Theorem 3, $F_{P \times Q}(F$ restricted to $P \times Q)$ has an inverse

$$
g: A \underset{\text { onto }}{\longleftrightarrow} P \times Q
$$

where $A=F[P \times Q]$ is open in E^{\prime} (Theorem 2), and $g \in C D^{1}$ on A. Let the map $u=\left(g_{1}, \ldots, g_{n}\right)$ comprise the first n components of g (exactly as f comprises the first n components of F).

Then

$$
g(\vec{x}, \vec{y})=(u(\vec{x}, \vec{y}), \vec{y})
$$

exactly as $F(\vec{x}, \vec{y})=(f(\vec{x}, \vec{y}), \vec{y})$. Also, $u: A \rightarrow P$ is of class $C D^{1}$ on A, as g is (explain!).

Now set

$$
H(\vec{y})=u(\overrightarrow{0}, \vec{y}) ;
$$

here $\vec{y} \in Q$, while

$$
(\overrightarrow{0}, \vec{y}) \in A=F[P \times Q],
$$

for F preserves \vec{y} (the last m coordinates). Also set

$$
\alpha(\vec{x}, \vec{y})=\vec{x} .
$$

Then $f=\alpha \circ F$ (why?), and

$$
f(H(\vec{y}), \vec{y})=f(u(\overrightarrow{0}, \vec{y}), \vec{y})=f(g(\overrightarrow{0}, \vec{y}))=\alpha(F(g(\overrightarrow{0}, \vec{y}))=\alpha(\overrightarrow{0}, \vec{y})=\overrightarrow{0}
$$

by our choice of α and g (inverse to F). Thus

$$
f(H(\vec{y}), \vec{y})=\overrightarrow{0}, \quad \vec{y} \in Q
$$

as desired.
Moreover, as $H(\vec{y})=u(\overrightarrow{0}, \vec{y})$, we have

$$
\frac{\partial}{\partial y_{i}} H(\vec{y})=\frac{\partial}{\partial y_{i}} u(\overrightarrow{0}, \vec{y}), \quad \vec{y} \in Q, i \leq m
$$

As $u \in C D^{1}$, all $\partial u / \partial y_{i}$ are continuous (Definition 1 in $\S 5$); hence so are the $\partial H / \partial y_{i}$. Thus by Theorem 3 in $\S 3, H \in C D^{1}$ on Q.

[^10]Finally, H is unique for the given P, Q; for

$$
\begin{aligned}
f(\vec{x}, \vec{y})=\overrightarrow{0} & \Longrightarrow(f(\vec{x}, \vec{y}), \vec{y})=(\overrightarrow{0}, \vec{y}) \\
& \Longrightarrow F(\vec{x}, \vec{y})=(\overrightarrow{0}, \vec{y}) \\
& \Longrightarrow g(F(\vec{x}, \vec{y}))=g(\overrightarrow{0}, \vec{y}) \\
& \Longrightarrow(\vec{x}, \vec{y})=g(\overrightarrow{0}, \vec{y})=(u(\overrightarrow{0}, \vec{y}), \vec{y}) \\
& \Longrightarrow \vec{x}=u(\overrightarrow{0}, \vec{y})=H(\vec{y}) .
\end{aligned}
$$

Thus $f(\vec{x}, \vec{y})=\overrightarrow{0}$ implies $\vec{x}=H(\vec{y})$; so $H(\vec{y})$ is the only solution for \vec{x}.
Note 3. H is said to be implicitly defined by the equation $f(\vec{x}, \vec{y})=\overrightarrow{0}$. In this sense we say that $H(\vec{y})$ is an implicit function, given by $f(\vec{x}, \vec{y})=\overrightarrow{0}$.

Similarly, under suitable assumptions, $f(\vec{x}, \vec{y})=\overrightarrow{0}$ defines \vec{y} as a function of \vec{x}.

Note 4. While H is unique for a given neighborhood $P \times Q$ of (\vec{p}, \vec{q}), another implicit function may result if $P \times Q$ or (\vec{p}, \vec{q}) is changed.

For example, let

$$
f(x, y)=x^{2}+y^{2}-25
$$

(a polynomial; hence $f \in C D^{1}$ on all of E^{2}). Geometrically, $x^{2}+y^{2}-25=0$ describes a circle.

Figure 28

Solving for x, we get $x= \pm \sqrt{25-y^{2}}$. Thus we have two functions:

$$
H_{1}(y)=+\sqrt{25-y^{2}}
$$

and

$$
H_{2}(y)=-\sqrt{25-y^{2}} .
$$

If $P \times Q$ is in the upper part of the circle, the resulting function is H_{1}. Otherwise, it is H_{2}. See Figure 28.
V. Implicit Differentiation. Theorem 4 only states the existence (and uniqueness) of a solution, but does not show how to find it, in general.

The knowledge itself that $H \in C D^{1}$ exists, however, enables us to use its derivative or partials and compute it by implicit differentiation, known from calculus. ${ }^{5}$

[^11]
Examples.

(a) Let $f(x, y)=x^{2}+y^{2}-25=0$, as above.

This time treating y as an implicit function of $x, y=H(x)$, and writing y^{\prime} for $H^{\prime}(x)$, we differentiate both sides of $x^{2}+y^{2}-25=0$ with respect to x, using the chain rule for the term $y^{2}=[H(x)]^{2}$.

This yields $2 x+2 y y^{\prime}=0$, whence $y^{\prime}=-x / y$.
Actually (see Note 4), two functions are involved: $y= \pm \sqrt{25-x^{2}}$; but both satisfy $x^{2}+y^{2}-25=0$; so the result $y^{\prime}=-x / y$ applies to both.

Of course, this method is possible only if the derivative y^{\prime} is known to exist. This is why Theorem 4 is important.
(b) Let

$$
f(x, y, z)=x^{2}+y^{2}+z^{2}-1=0, \quad x, y, z \in E^{1}
$$

Again f satisfies Theorem 4 for suitable x, y, and z.
Setting $z=H(x, y)$, differentiate the equation $f(x, y, z)=0$ partially with respect to x and y. From the resulting two equations, obtain $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

Problems on Inverse and Implicit Functions, Open and Closed Maps

1. Discuss: In Definition $1, \bar{G}$ can equivalently be replaced by $G=G_{\vec{p}}(\delta)$ (an open globe).
2. Prove that if the set D is open (closed) in (S, ρ), then the map $f: S \rightarrow T$ is open (closed, respectively) on D iff $f_{D}(f$ restricted to $D)$ has this property as a map of D into $f[D]$.
[Hint: Use Theorem 4 in Chapter 3, §12.]
3. Complete the missing details in the proofs of Theorems 1-4.
$\mathbf{3}^{\prime}$ Verify footnotes 2 and 3.
4. Show that a map $f: E^{\prime} \rightarrow E$ may fail to be one-to-one on all of E^{\prime} even if f satisfies Theorem 1 near every $\vec{p} \in E^{\prime}$. Nonetheless, show that this cannot occur if $E^{\prime}=E=E^{1}$.
[Hints: For the first part, take $E^{\prime}=C, f(x+i y)=e^{x}(\cos y+i \sin y)$. For the second, use Theorem 1 in Chapter 5, $\S 2$.]
4^{\prime}. (i) For maps $f: E^{1} \rightarrow E^{1}$, prove that the existence of a bijective $d f(p, \cdot)$ is equivalent to $f^{\prime}(p) \neq 0$.
(ii) Let

$$
f(x)=x+x^{2} \sin \frac{1}{x}, \quad f(0)=0
$$

Show that $f^{\prime}(0) \neq 0$, and $f \in C D^{1}$ near any $p \neq 0$; yet f is not one-to-one near 0 . What is wrong?
5. Show that a map $f: E^{n}\left(C^{n}\right) \rightarrow E^{n}\left(C^{n}\right), f \in C D^{1}$, may be bijective even if $\operatorname{det}\left[f^{\prime}(\vec{p})\right]=0$ at some \vec{p}, but then f^{-1} cannot be differentiable at $\vec{q}=f(\vec{p})$.
[Hint: For the first clause, take $f(x)=x^{3}, p=0$; for the second, note that if f^{-1} is differentiable at \vec{q}, then Note 2 in $\S 4$ implies that $\operatorname{det}[d f(\vec{p}, \cdot)] \cdot \operatorname{det}\left[d f^{-1}(\vec{q} \cdot \cdot)\right]=1 \neq$ 0 , since $f \circ f^{-1}$ is the identity map.]
6. Prove Corollary 2 for the general case of complete E^{\prime} and E.
[Outline: Given a closed $X \subseteq \bar{G}$, take any convergent sequence $\left\{\vec{y}_{n}\right\} \subseteq f[X]$. By Problem 8 in Chapter $4, \S 8, f^{-1}\left(\vec{y}_{n}\right)=\vec{x}_{n}$ is a Cauchy sequence in X (why?). By the completeness of $E^{\prime},(\exists \vec{x} \in X) \vec{x}_{n} \rightarrow \vec{x}$ (Theorem 4 of Chapter 3, §16). Infer that $\lim \vec{y}_{n}=f(\vec{x}) \in f[X]$, so $f[X]$ is closed. $]$
7. Prove that "the composite of two open (closed) maps is open (closed)." State the theorem precisely. Prove it also for the uniform Lipschitz property.
8. Prove in detail that $f:(S, \rho) \rightarrow\left(T, \rho^{\prime}\right)$ is open on $D \subseteq S$ iff f maps the interior of D into that of $f[D]$; that is, $f\left[D^{0}\right] \subseteq(f[D])^{0}$.
9. Verify by examples that f may be:
(i) closed but not open;
(ii) open but not closed.
[Hints: (i) Consider $f=$ constant. (ii) Define $f: E^{2} \rightarrow E^{1}$ by $f(x, y)=x$ and let

$$
D=\left\{(x, y) \in E^{2} \left\lvert\, y=\frac{1}{x}\right., x>0\right\} ;
$$

use Theorem 4(iii) in Chapter 3, $\S 16$ and continuity to show that D is closed in E^{2}, but $f[D]=(0,+\infty)$ is not closed in E^{1}. However, f is open on all of E^{2} by Problem 8. (Verify!)]
10. Continuing Problem 9(ii), define $f: E^{n} \rightarrow E^{1}$ (or $C^{n} \rightarrow C$) by $f(\vec{x})=$ x_{k} for a fixed $k \leq n$ (the " k th projection map"). Show that f is open, but not closed, on $E^{n}\left(C^{n}\right)$.
11. (i) In Example (a), take $(p, q)=(5,0)$ or $(-5,0)$. Are the conditions of Theorem 4 satisfied? Do the conclusions hold?
(ii) Verify Example (b).
12. (i) Treating z as a function of x and y, given implicitly by

$$
f(x, y, z)=z^{3}+x z^{2}-y z=0, \quad f: E^{3} \rightarrow E^{1}
$$

discuss the choices of P and Q that satisfy Theorem 4. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
(ii) Do the same for $f(x, y, z)=e^{x y z}-1=0$.
13. Given $f: E^{n}\left(C^{n}\right) \rightarrow E^{m}\left(C^{m}\right), n>m$, prove that if $f \in C D^{1}$ on a globe G, f cannot be one-to-one.
[Hint for $f: E^{2} \rightarrow E^{1}:$ If, say, $D_{1} f \neq 0$ on G, set $F(x, y)=(f(x, y), y)$.]
14. Suppose that f satisfies Theorem 1 for every \vec{p} in an open set $A \subseteq E^{\prime}$, and is one-to-one on A (cf. Problem 4). Let $g=f_{A}^{-1}$ (restrict f to A and take its inverse). Show that f and g are open and of class $C D^{1}$ on A and $f[A]$, respectively.
15. Given $\vec{v} \in E$ and a scalar $c \neq 0$, define $T_{\vec{v}}: E \rightarrow E$ ("translation by \vec{v} ") and $M_{c}: E \rightarrow E$ ("dilation by c "), by setting

$$
T_{\vec{v}}(\vec{x})=\vec{x}+\vec{v} \text { and } M_{c}(\vec{x})=c \vec{x}
$$

Prove the following.
(i) $T_{\vec{v}}$ and $T_{\vec{v}}^{-1}\left(=T_{-\vec{v}}\right)$ are bijective, continuous, and "clopen" on E; so also are M_{c} and $M_{c}^{-1}\left(=M_{1 / c}\right)$.
(ii) Similarly for the Lipschitz property on E.
(iii) If $G=G_{\vec{q}}(\delta) \subset E$, then $T_{\vec{v}}[G]=G_{\vec{q}+\vec{v}}(\delta)$, and $M_{c}[G]=G_{c \vec{q}}(|c \delta|)$.
(iv) If $f: E^{\prime} \rightarrow E$ is linear, and $\vec{v}=f(\vec{p})$ for some $\vec{p} \in E^{\prime}$, then $T_{\vec{v}} \circ f=f \circ T_{\vec{p}}^{\prime}$ and $M_{c} \circ f=f \circ M_{c}^{\prime}$, where $T_{\vec{p}}^{\prime}$ and M_{c}^{\prime} are the corresponding maps on E^{\prime}. If, further, f is continuous at \vec{p}, it is continuous on all of E^{\prime}.
[Hint for (iv): Fix any $\vec{x} \in E^{\prime}$. Set $\vec{v}=f(\vec{x}-\vec{p}), g=T_{\vec{v}} \circ f \circ T_{\vec{p}-\vec{x}}^{\prime}$. Verify that $g=f, T_{\vec{p}-\vec{x}}^{\prime}(\vec{x})=\vec{p}$, and g is continuous at \vec{x}.]
16. Show that if $f: E^{\prime} \rightarrow E$ is linear and if $f\left[G^{*}\right]$ is open in E for some $G^{*}=G_{\vec{p}}(\delta) \subseteq E^{\prime}$, then
(i) f is open on all of E^{\prime};
(ii) f is onto E.
[Hints: (i) By Problem 8, it suffices to show that the set $f[G]$ is open, for any globe G (why?). First take $G=G_{\overrightarrow{0}}(\delta)$. Then use Problems 7 and 15 (i)-(iv), with suitable \vec{v} and c.
(ii) To prove $E=f\left[E^{\prime}\right]$, fix any $\vec{y} \in E$. As $f=G_{\overrightarrow{0}}(\delta)$ is open, it contains a globe $G^{\prime}=G_{\overrightarrow{0}}(r)$. For small $c, c \vec{y} \in G^{\prime} \subseteq f\left[E^{\prime}\right]$. Hence $\vec{y} \in f\left[E^{\prime}\right]$ (Problem 10 in §2).]
17. Continuing Problem 16, show that if f is also one-to-one on G^{*}, then

$$
f: E^{\prime} \underset{\text { onto }}{\longleftrightarrow} E
$$

$f \in L\left(E^{\prime}, E\right), f^{-1} \in L\left(E, E^{\prime}\right), f$ is clopen on E^{\prime}, and f^{-1} is so on E.
[Hints: To prove that f is one-to-one on E^{\prime}, let $f(\vec{x})=f\left(\vec{x}^{\prime}\right)=\vec{y}$ for some $\vec{x}, \vec{x}^{\prime} \in E^{\prime}$. Show that
$(\exists c, \varepsilon>0) \quad c \vec{y} \in G_{\overrightarrow{0}}(\varepsilon) \subseteq f\left[G_{\overrightarrow{0}}(\delta)\right]$ and $f(c \vec{x}+\vec{p})=f\left(c \vec{x}^{\prime}+\vec{p}\right) \in f\left[G_{\vec{p}}(\delta)\right]=f\left[G^{*}\right]$.
Deduce that $c \vec{x}+\vec{p}=c \vec{x}^{\prime}+\vec{p}$ and $\vec{x}=\vec{x}^{\prime}$. Then use Problem 15(v) in Chapter 4, $\S 2$, and Note 1.]
18. A map

$$
f:(S, \rho) \underset{\text { onto }}{\longleftrightarrow}\left(T, \rho^{\prime}\right)
$$

is said to be bicontinuous, or a homeomorphism, (from S onto T) iff both f and f^{-1} are continuous. Assuming this, prove the following.
(i) $x_{n} \rightarrow p$ in S iff $f\left(x_{n}\right) \rightarrow f(p)$ in T;
(ii) A is closed (open, compact, perfect) in S iff $f[A]$ is so in T;
(iii) $B=\bar{A}$ in S iff $f[B]=\overline{f[A]}$ in T;
(iv) $B=A^{0}$ in S iff $f[B]=(f[A])^{0}$ in T;
(v) A is dense in B (i.e., $A \subseteq B \subseteq \bar{A} \subseteq S$) in (S, ρ) iff $f[A]$ is dense in $f[B] \subseteq\left(T, \rho^{\prime}\right)$.
[Hint: Use Theorem 1 of Chapter 4, $\S 2$, and Theorem 4 in Chapter 3, $\S 16$, for closed sets; see also Note 1.]
19. Given $A, B \subseteq E, \vec{v} \in E$ and a scalar c, set

$$
A+\vec{v}=\{\vec{x}+\vec{v} \mid \vec{x} \in A\} \text { and } c A=\{c \vec{x} \mid \vec{x} \in A\} .
$$

Assuming $c \neq 0$, prove that
(i) A is closed (open, compact, perfect) in E iff $c A+\vec{v}$ is;
(ii) $B=\bar{A}$ iff $c B+\vec{v}=\overline{c A+\vec{v}}$;
(iii) $B=A^{0}$ iff $c B+\vec{v}=(c A+\vec{v})^{0}$;
(iv) A is dense in B iff $c A+\vec{v}$ is dense in $c B+\vec{v}$.
[Hint: Apply Problem 18 to the maps $T_{\vec{v}}$ and M_{c} of Problem 15, noting that $A+\vec{v}=$ $T_{\vec{v}}[A]$ and $\left.c A=M_{c}[A].\right]$
20. Prove Theorem 2 , for a reduced δ, assuming that only one of E^{\prime} and E is $E^{n}\left(C^{n}\right)$, and the other is just complete.
[Hint: If, say, $E=E^{n}\left(C^{n}\right)$, then $f[\bar{G}]$ is compact (being closed and bounded), and so is $\bar{G}=f^{-1}[f[\bar{G}]]$. (Why?) Thus the Lemma works out as before, i.e., $f[G] \supseteq G_{\vec{q}}(\alpha)$.

Now use the continuity of f to obtain a globe $G^{\prime}=G_{\vec{p}}\left(\delta^{\prime}\right) \subseteq G$ such that $f\left[G^{\prime}\right] \subseteq G_{\vec{q}}(\alpha)$. Let $g=f_{G}^{-1}$, further restricted to $G_{\vec{q}}(\alpha)$. Apply Problem $15(\mathrm{v})$ in Chapter $4, \S 2$, to g, with $S=G_{\vec{q}}(\alpha), T=E^{\prime}$.]

*§8. Baire Categories. More on Linear Maps

We pause to outline the theory of so-called sets of Category I or Category II, as introduced by Baire. It is one of the most powerful tools in higher analysis. Below, (S, ρ) is a metric space.

Definition 1.

A set $A \subseteq(S, \rho)$ is said to be nowhere dense (in S) iff its closure \bar{A} has no interior points (i.e., contains no globes): $(\bar{A})^{0}=\emptyset$.

Equivalently, the set A is nowhere dense iff every open set $G^{*} \neq \emptyset$ in S contains a globe \bar{G} disjoint from A. (Why?)

Definition 2.

A set $A \subseteq(S, \rho)$ is meagre, or of Category I (in S), iff

$$
A=\bigcup_{n=1}^{\infty} A_{n},
$$

for some sequence of nowhere dense sets A_{n}.
Otherwise, A is said to be nonmeagre or of Category II.
A is residual iff $-A$ is meagre, but A is not.

Examples.

(a) \emptyset is nowhere dense.
(b) Any finite set in a normed space E is nowhere dense.
(c) The set N of all naturals in E^{1} is nowhere dense.
(d) So also is Cantor's set P (Problem 17 in Chapter 3, §14); indeed, P is closed $(P=\bar{P})$ and has no interior points (verify!), so $(\bar{P})^{0}=P^{0}=\emptyset$.
(e) The set R of all rationals in E^{1} is meagre; for it is countable (see Chapter $1, \S 9$), hence a countable union of nowhere dense singletons $\left\{r_{n}\right\}$, $r_{n} \in R$. But R is not nowhere dense; it is even dense in E^{1}, since $\bar{R}=E^{1}$ (see Definition 2, in Chapter 3, §14). Thus a meagre set need not be nowhere dense. (But all nowhere dense sets are meagre - why?)

Examples (c) and (d) show that a nowhere dense set may be infinite (even uncountable). Yet, sometimes nowhere dense sets are treated as "small" or "negligible," in comparison with other sets. Most important is the following theorem.

Theorem 1 (Baire). In a complete metric space (S, ρ), every open set $G^{*} \neq \emptyset$ is nonmeagre. Hence the entire space S is residual.

Proof. Seeking a contradiction, suppose G^{*} is meagre, i.e.,

$$
G^{*}=\bigcup_{n=1}^{\infty} A_{n}
$$

for some nowhere dense sets A_{n}. Now, as A_{1} is nowhere dense, G^{*} contains a closed globe

$$
\bar{G}_{1}=\overline{G_{x_{1}}\left(\delta_{1}\right)} \subseteq-A_{1} .
$$

Again, as A_{2} is nowhere dense, G_{1} contains a globe

$$
\bar{G}_{2}=\overline{G_{x_{2}}\left(\delta_{2}\right)} \subseteq-A_{2}, \quad \text { with } 0<\delta_{2} \leq \frac{1}{2} \delta_{1}
$$

By induction, we obtain a contracting sequence of closed globes

$$
\bar{G}_{n}=\overline{G_{x_{n}}\left(\delta_{n}\right)}, \quad \text { with } 0<\delta_{n} \leq \frac{1}{2^{n}} \delta_{1} \rightarrow 0
$$

As S is complete, so are the \bar{G}_{n} (Theorem 5 in Chapter $3, \S 17$). Thus, by Cantor's theorem (Theorem 5 of Chapter $4, \S 6$), there is

$$
p \in \bigcap_{n=1}^{\infty} \bar{G}_{n} .
$$

As $G^{*} \supseteq \bar{G}_{n}$, we have $p \in G^{*}$. But, as $\bar{G}_{n} \subseteq-A_{n}$, we also have $(\forall n) p \notin A_{n}$; hence

$$
p \notin \bigcup_{n=1}^{\infty} A_{n}=G^{*}
$$

(the desired contradiction!).
We shall need a lemma based on Problems 15 and 19 in $\S 7$. (Review them!) Lemma. Let $f \in L\left(E^{\prime}, E\right), E^{\prime}$ complete. Let $G=G_{\overrightarrow{0}}(1)$ be the unit globe in E^{\prime}. If $\overline{f[G]}$ (closure of $f[G]$ in E) contains a globe $G_{0}=G_{0}(r) \subset E$, then $G_{0} \subseteq f[G]$.

Note. Recall that we "arrow" only vectors from E^{\prime} (e.g., $\overrightarrow{0}$), but not those from E (e.g., 0).
Proof of lemma. Let $A=f[G] \cap G_{0} \subseteq G_{0}$. We claim that A is dense in G_{0}; i.e., $G_{0} \subseteq \bar{A}$. Indeed, by assumption, any $q \in G_{0}$ is in $\overline{f[G]}$. Thus by Theorem 3 in Chapter 3, $\S 16$, any G_{q} meets $f[G] \cap G_{0}=A$ if $q \in G_{0}$. Hence

$$
\left(\forall q \in G_{0}\right) \quad q \in \bar{A},
$$

i.e., $G_{0} \subseteq \bar{A}$, as claimed.

Now fix any $q_{0} \in G_{0}=G_{0}(r)$ and a real $c(0<c<1)$. As A is dense in G_{0},

$$
A \cap G_{q_{0}}(c r) \neq \emptyset ;
$$

so let $q_{1} \in A \cap G_{q_{0}}(c r) \subseteq f[G]$. Then

$$
\left|q_{1}-q_{0}\right|<c r, \quad q_{0} \in G_{q_{1}}(c r)
$$

As $q_{1} \in f[G]$, we can fix some $\vec{p}_{1} \in G=G_{0}(1)$, with $f\left(\vec{p}_{1}\right)=q_{1}$. Also, by Problems 19(iv) and 15(iii) in $\S 7, c A+q_{1}$ is dense in $c G_{0}+q_{1}=G_{q_{1}}(c r)$. But $q_{0} \in G_{q_{1}}(c r)$. Thus

$$
G_{q_{0}}\left(c^{2} r\right) \cap\left(c A+q_{1}\right) \neq \emptyset
$$

so let $q_{2} \in G_{q_{0}}\left(c^{2} r\right) \cap\left(c A+q_{1}\right)$, so $q_{0} \in G_{q_{2}}\left(c^{2} r\right)$, etc.
Inductively, we fix for each $n>1$ some $q_{n} \in G_{q_{0}}\left(c^{n} r\right)$, with

$$
q_{n} \in c^{n-1} A+q_{n-1},
$$

i.e.,

$$
q_{n}-q_{n-1} \in c^{n-1} A .
$$

As $A \subseteq f\left[G_{0}(1)\right]$, linearity yields

$$
q_{n}-q_{n-1} \in f\left[c^{n-1} G_{0}(1)\right]=f\left[G_{0}\left(c^{n-1}\right)\right], \quad n>1
$$

Thus for each $n>1$, there is $\vec{p}_{n} \in G_{0}\left(c^{n-1}\right)$, (i.e., $\left|\vec{p}_{n}\right|<c^{n-1}$) such that $f\left(\vec{p}_{n}\right)=q_{n}-q_{n-1}$. Now, as $\left|\vec{p}_{n}\right|<c^{n-1}$ and $0<c<1$,

$$
\sum_{1}^{\infty}\left|\vec{p}_{n}\right|<+\infty
$$

so by the completeness of $E^{\prime}, \sum \vec{p}_{n}$ converges in E^{\prime} (Theorem 1 in Chapter 4, $\S 13)$. Let $\vec{p}=\sum_{k=1}^{\infty} \vec{p}_{k}$; then

$$
\begin{aligned}
f(\vec{p}) & =f\left(\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \vec{p}_{k}\right)=\lim _{n \rightarrow \infty} f\left(\sum_{k=1}^{n} \vec{p}_{k}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(\vec{p}_{k}\right) \quad \text { for } f \in L\left(E^{\prime}, E\right) .
\end{aligned}
$$

But $f\left(\vec{p}_{k}\right)=q_{k}-q_{k-1}(k>1)$, and $f\left(\vec{p}_{1}\right)=q_{1}$; so

$$
\sum_{k=1}^{n} f\left(\vec{p}_{k}\right)=q_{1}+\sum_{k=2}^{n}\left(q_{k}-q_{k-1}\right)=q_{n} .
$$

Thus

$$
f(\vec{p})=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(\vec{p}_{k}\right)=\lim _{n \rightarrow \infty} q_{n}=q_{0} \cdot{ }^{1}
$$

Moreover, $\left|\vec{p}_{k}\right|<c^{k-1}(k \geq 1)$. Thus

$$
|\vec{p}| \leq \sum_{k=1}^{\infty}\left|\vec{p}_{k}\right|<\sum_{k=1}^{\infty} c^{k-1}=\frac{1}{1-c}
$$

i.e.,

$$
\vec{p} \in G_{\overrightarrow{0}}\left(\frac{1}{1-c}\right) .
$$

But $q_{0}=f(\vec{p})$; so

$$
q_{0} \in f\left[G_{\overrightarrow{0}}\left(\frac{1}{1-c}\right)\right] .
$$

[^12]As $q_{0} \in G_{0}(r)$ was arbitrary, we have

$$
G_{0}(r) \subseteq f\left[G_{0}\left(\frac{1}{1-c}\right)\right]
$$

or by linearity,

$$
G_{0}(r(1-c)) \subseteq f\left[G_{0}(1)\right]=f[G]
$$

This holds for any $c \in(0,1)$. Hence

$$
f[G] \supseteq \bigcup_{0<c<1} G_{0}(r(1-c))=G_{0}(r) . \quad(\text { Verify! })
$$

Thus all is proved.
We can now establish an important result due to S . Banach.
Theorem 2 (Banach). Let $f \in L\left(E^{\prime}, E\right)$, with E^{\prime} complete. Then $f\left[E^{\prime}\right]$ is meagre in E or $f\left[E^{\prime}\right]=E$, according to whether $f\left[G_{\overrightarrow{0}}(1)\right]$ is or is not nowhere dense. ${ }^{2}$
Proof. If $f\left[G_{0}(1)\right]$ is nowhere dense in E, so also is $f\left[G_{0}(n)\right], n>0$. (Verify by Problems 15 and 19 in $\S 7$.) But then

$$
f\left[E^{\prime}\right]=f\left[\bigcup_{n=1}^{\infty} G_{0}(n)\right]=\bigcup_{n=1}^{\infty} f\left[G_{\overrightarrow{0}}(n)\right]
$$

is a countable union of nowhere dense sets, hence meagre, by definition.
Now suppose $f\left[G_{\overrightarrow{0}}(1)\right]$ is not nowhere dense; so $\overline{f\left[G_{\overrightarrow{0}}(1)\right]}$ contains some $G_{q}(r) \subseteq E$. We may assume $q \in f\left[G_{\overrightarrow{0}}(1)\right]$ (if not, replace q by a close point from $\left.f\left[G_{\overrightarrow{0}}(1)\right]\right)$. Then $q=f(\vec{p})$ for some $\vec{p} \in G_{\overrightarrow{0}}(1)$. The latter implies

$$
|-\vec{p}|=|\vec{p}|=\rho(\vec{p}, \overrightarrow{0})<1 ;
$$

so

$$
G_{-\vec{p}}(1) \subseteq G_{\overrightarrow{0}}(2)
$$

Also, as $\overline{f\left[G_{\overrightarrow{0}}(1)\right]} \supseteq G_{q}(r)$, translation by $-q=f(-\vec{p})$ yields

$$
\overline{f\left[G_{\overrightarrow{0}}(1)\right]}+f(-\vec{p}) \supseteq G_{q}(r)-q=G_{0}(r),
$$

i.e.,

$$
G_{0}(r) \subseteq \overline{f\left[G_{-\vec{p}}(1)\right]} \subseteq \overline{f\left[G_{\overrightarrow{0}}(2)\right]}
$$

Hence $\overline{f\left[G_{\overrightarrow{0}}(1)\right]} \supseteq G_{0}\left(\frac{1}{2} r\right)$ (why?); so, by the Lemma

$$
\begin{equation*}
f\left[G_{\overrightarrow{0}}(1)\right] \supseteq G_{0}\left(\frac{1}{2} r\right) \text { in } E . \tag{1}
\end{equation*}
$$

[^13]This implies $f\left[G_{\overrightarrow{0}}(2 n)\right] \supseteq G_{0}(n r)$, and so

$$
f\left[E^{\prime}\right] \supseteq \bigcup_{n=1}^{\infty} G_{0}(n r)=E,
$$

i.e., $f\left[E^{\prime}\right]=E$, as required. Thus the theorem is proved.

Theorem 3 (Open map principle). Let $f \in L\left(E^{\prime}, E\right)$, with E^{\prime} and E complete. Then the map f is open on E^{\prime} iff $f\left[E^{\prime}\right]=E$, i.e., iff f is onto E.
Proof. If $f\left[E^{\prime}\right]=E$, then by Theorem $1, f\left[E^{\prime}\right]$ is nonmeagre in E, as is E itself. Thus by Theorem $2, f\left[G_{\overrightarrow{0}}(1)\right]$ is not nowhere dense, and (1) follows as before. Hence by Problems 15 (iii) and 19 in $\S 7, f\left[G_{\vec{p}}\right] \supseteq$ some G_{q} whenever $q=f(\vec{p})$. (Why?) Therefore, $G_{\vec{p}} \subseteq A \subseteq E^{\prime}$ implies

$$
G_{f(\vec{p})} \subseteq f\left[G_{\vec{p}}\right] \subseteq f[A] ;
$$

i.e., f maps any interior point $\vec{p} \in A$ into such a point of $f[A]$. By Problem 8 in $\S 7, f$ is open on E^{\prime}.

Conversely, if so, then $f\left[E^{\prime}\right]$ is an open set $\neq \emptyset$ in E, a complete space; so by Theorems 1 and $2, f\left[E^{\prime}\right]$ is nonmeagre and equals E. (See also Problem 16(ii) in §7.)

Note 1. Theorem 3 holds even if f is not one-to-one.
Note 2. If in Theorem 3, however, f is bijective, it is open on E^{\prime}, and so $f^{-1} \in L\left(E, E^{\prime}\right)$ by Note 1 in $\S 7$. (This is the promised general proof of Corollary 2 in §6.)

Theorem 4 (Banach-Steinhaus uniform boundedness principle). Let E^{\prime} be complete. Let \mathcal{N} be a family of maps $f \in L\left(E^{\prime}, E\right)$ such that

$$
\begin{equation*}
\left(\forall x \in E^{\prime}\right)\left(\exists k \in E^{1}\right)(\forall f \in \mathcal{N}) \quad|f(\vec{x})|<k . \tag{2}
\end{equation*}
$$

(" \mathcal{N} is bounded at each $\vec{x} . "$)
Then \mathcal{N} is "norm-bounded," i.e.,

$$
\left(\exists K \in E^{1}\right)(\forall f \in \mathcal{N}) \quad\|f\|<K,
$$

with \| \| as in §2.
Proof. It suffices to show that \mathcal{N} is "uniformly" bounded on some globe,

$$
\begin{equation*}
\left(\exists c \in E^{1}\right)\left(\exists G=G_{\vec{p}}(r)\right)(\forall f \in \mathcal{N})(\forall \vec{x} \in G) \quad|f(\vec{x})| \leq c . \tag{3}
\end{equation*}
$$

For then $|\vec{x}-\vec{p}| \leq r$ implies

$$
2 c>|f(\vec{x})-f(\vec{p})|=|f(\vec{x}-\vec{p})|,
$$

or (setting $\vec{x}-\vec{p}=r \vec{y})|\vec{y}|<1$ implies

$$
(\forall f \in \mathcal{N}) \quad|f(\vec{y})|<\frac{2 c}{r} \quad \text { (why?); }
$$

so

$$
(\forall f \in \mathcal{N}) \quad\|f\|=\sup _{|\vec{y}| \leq 1}|f(\vec{y})|<\frac{2 c}{r}
$$

Thus, seeking a contradiction, suppose (3) fails and assume its negation:

$$
\begin{equation*}
\left(\forall c \in E^{1}\right)\left(\forall G=G_{\vec{p}}(r)\right)(\exists f \in \mathcal{N})\left(\exists \vec{x} \in G=G_{\vec{p}}(r)\right) \quad|f(\vec{x})|>c \tag{4}
\end{equation*}
$$

Then for $c=1$, we can fix some $f_{1} \in \mathcal{N}$ and $G_{\vec{x}_{1}}\left(r_{1}\right)$ such that $0<r_{1}<1$ and

$$
\left|f_{1}\left(\vec{x}_{1}\right)\right|>1
$$

By the continuity of the norm $\|$, we can choose r_{1} so small that

$$
\left(\forall \vec{x} \in \overline{G_{\vec{x}_{1}}\left(r_{1}\right)}\right) \quad|f(\vec{x})|>1
$$

Again by (4), we fix $f_{2} \in \mathcal{N}$ and $\vec{x}_{2} \in G_{\vec{x}_{1}}\left(r_{1}\right)$ such that $\left|f_{2}\right|>2$ on some globe

$$
\overline{G_{\vec{x}_{2}}\left(r_{2}\right)} \subseteq G_{\vec{x}_{1}}\left(r_{1}\right),
$$

with $0<r_{2}<1 / 2$. Inductively, we thus form a contracting sequence of closed globes

$$
\overline{G_{\vec{x}_{n}}\left(r_{n}\right)}, \quad 0<r_{n}<\frac{1}{n}
$$

and a sequence $\left\{f_{n}\right\} \subseteq \mathcal{N}$, such that

$$
(\forall n) \quad\left|f_{n}\right|>n \text { on } \overline{G_{\vec{x}_{n}}\left(r_{n}\right)} \subseteq E^{\prime}
$$

As E^{\prime} is complete, so are the closed globes $\overline{G_{\vec{x}_{n}}\left(r_{n}\right)} \subseteq E^{\prime}$. Also, $0<r_{n}<$ $1 / n \rightarrow 0$. Thus by Cantor's theorem (Theorem 5 of Chapter 4, $\S 6$), there is

$$
\vec{x}_{0} \in \bigcap_{n=1}^{\infty} \overline{G_{\vec{x}_{n}}\left(r_{n}\right)} .
$$

As \vec{x}_{0} is in each $\overline{G_{\vec{x}_{n}}\left(r_{n}\right)}$, we have

$$
(\forall n) \quad\left|f_{n}\left(\vec{x}_{0}\right)\right|>n ;
$$

so \mathcal{N} is not bounded at \vec{x}_{0}, contrary to (2). This contradiction completes the proof.

Note 3. Complete normed spaces are also called Banach spaces.

Problems on Baire Categories and Linear Maps

1. Verify the equivalence of the various formulations in Definition 1. Discuss: A is nowhere dense iff it is not dense in any open set $\neq \emptyset$.
2. Verify Examples (a) to (e). Show that Cantor's set P is uncountable. [Hint: Each $p \in P$ corresponds to a "ternary fraction," $p=\sum_{n=1}^{\infty} x_{n} / 3^{n}$, also written $0 . x_{1}, x_{2}, \ldots, x_{n}, \ldots$, where $x_{n}=0$ or $x_{n}=2$ according to whether p is to the left,
or to the right, of the nearest "removed" open interval of length $1 / 3^{n}$. Imitate the proof of Theorem 3 in Chapter 1, $\S 9$, for uncountability. See also Chapter 1, $\S 9$, Problem 2(ii).]
3. Complete the missing details in the proof of Theorems 1 to 4 .
4. Prove the following.
(i) If $B \subseteq A$ and A is nowhere dense or meagre, so is B.
(ii) If $B \subseteq A$ and B is nonmeagre, so is A.
[Hint: Assume A is meagre and use (i)).]
(iii) Any finite union of nowhere dense sets is nowhere dense. Disprove it for infinite unions.
(iv) Any countable union of meagre sets is meagre.
5. Prove that in a discrete space (S, ρ), only \emptyset is meagre.
[Hint: Use Problem 8 in Chapter 3, $\S 17$, Example 7 in Chapter 3, §12, and our present Theorem 1.]
6. Use Theorem 1 to give a new proof for the existence of irrationals in E^{1}. [Hint: The rationals R are a meagre set, while E^{1} is not.]
7. What is wrong about this "proof" that every closed set $F \neq \emptyset$ in a complete space (S, ρ) is residual: "By Theorem 5 of Chapter 3, $\S 17, F$ is complete as a subspace. Thus by Theorem 1, F is residual." Give counterexamples!
8. We call K a \mathcal{G}_{δ}-set and write $K \in \mathcal{G}_{\delta}$ iff $K=\bigcap_{n=1}^{\infty} G_{n}$ for some open sets $G_{n}{ }^{3}$
(i) Prove that if K is a \mathcal{G}_{δ}-set, and if K is dense in a complete metric space (S, ρ), i.e., $\bar{K}=S$, then K is residual in S.
[Hint: Let $F_{n}=-G_{n}$. Verify that $(\forall n) G_{n}$ is dense in S, and F_{n} is nowhere dense. Deduce that $-K=-\bigcap G_{n}=\bigcup F_{n}$ is meagre. Use Theorem 1.]
(ii) Infer that R (the rationals) is not a \mathcal{G}_{δ}-set in E^{1} (cf. Example (c)).
9. Show that, in a complete metric space (S, ρ), a meagre set A cannot have interior points.
[Hint: Otherwise, A would obtain a globe G. Use Theorem 1 and Problem 4(ii).]
10. (i) A singleton $\{p\} \subseteq(S, \rho)$ is nowhere dense if S clusters at p; otherwise, it is nonmeagre in S (being a globe, and not a union of nowhere dense sets).
(ii) If $A \subseteq S$ clusters at each $p \in A$, any countable set $B \subseteq A$ is meagre in S.

[^14]11. (i) Show that if $\emptyset \neq A \in \mathcal{G}_{\delta}$ (see Problem 8) in a complete space (S, ρ), and A clusters at each $p \in A$, then A is uncountable.
(ii) Prove that any nonempty perfect set (Chapter $3, \S 14$) in a complete space is uncountable.
(iii) How about R (the rationals) in E^{1} and in R as a subspace of E^{1} ? What is wrong?
[Hints: (i) The subspace (\bar{A}, ρ) is complete (why?); so A is nonmeagre in \bar{A}, by Problem 8. Use Problem 10(ii). (ii) Use Footnote 3.]
12. If G is open in (S, ρ), then $\bar{G}-G$ is nowhere dense in S.
[Hint: $\bar{G}-G=\bar{G} \cap(-G)$ is closed; so
$$
\overline{(\bar{G}-G)^{0}}=(\bar{G}-G)^{0}=(\bar{G} \cap-G)^{0}=\emptyset
$$
by Problem 15 in Chapter 3, §12 and Problem 15 in Chapter 3, §16.]
13. ("Simplified" uniform boundedness theorem.) Let $f_{n}:(S, \rho) \rightarrow\left(T, \rho^{\prime}\right)$ be continuous for $n=1,2, \ldots$, with S complete. If $\left\{f_{n}(x)\right\}$ is a bounded sequence in T for each $x \in S$, then $\left\{f_{n}\right\}$ is uniformly bounded on some open $G \neq \emptyset$:
$$
(\forall p \in T)(\exists k)(\forall n)(\forall x \in G) \quad \rho^{\prime}\left(p, f_{n}(x)\right) \leq k .
$$
[Outline: Fix $p \in T$ and $(\forall n)$ set
$$
F_{n}=\left\{x \in S \mid(\forall m) n \geq \rho^{\prime}\left(p, f_{m}(x)\right)\right\} .
$$

Use the continuity of f_{m} and of ρ^{\prime} to show that F_{n} is closed in S, and $S=\bigcup_{n=1}^{\infty} F_{n}$. By Theorem $1, S$ is nonmeagre; so at least one F_{n} is not nowhere dense - call it F, so $(\bar{F})^{0}=F^{0} \neq \emptyset$. Set $G=F^{0}$ and show that G is as required.]
14. Let $f_{n}:(S, \rho) \rightarrow\left(T, \rho^{\prime}\right)$ be continuous for $n=1,2, \ldots$ Show that if $f_{n} \rightarrow f$ (pointwise) on S, then f is continuous on $S-Q$, with Q meagre in S.
[Outline: $(\forall k, m)$ let

$$
A_{k m}=\bigcup_{m=n}^{\infty}\left\{x \in S \left\lvert\, \rho^{\prime}\left(f_{n}(x), f_{m}(x)\right)>\frac{1}{k}\right.\right\} .
$$

By the continuity of ρ^{\prime}, f_{n} and $f_{m}, A_{k m}$ is open in S. (Why?) So by Problem 12, $\bigcup_{m=1}^{\infty}\left(\overline{A_{k m}}-A_{k m}\right)$ is meagre for $k=1,2, \ldots$

Also, as $f_{n} \rightarrow f$ on $S, \bigcap_{m=1}^{\infty} A_{k m}=\emptyset$. (Verify!) Thus

$$
(\forall k) \quad \bigcap_{m=1}^{\infty} \overline{A_{k m}} \subseteq \bigcup_{m=1}^{\infty}\left(\overline{A_{k m}}-A_{k m}\right) .
$$

(Why?) Hence the set $Q=\bigcup_{k=1}^{\infty} \bigcap_{m=1}^{\infty} \overline{A_{k m}}$ is meagre in S.
Moreover, $S-Q=\bigcap_{k=1}^{\infty} \bigcup_{m=1}^{\infty}\left(-A_{k m}\right)^{0}$ by Problem 16 in Chapter 3, $\S 16$. Deduce that if $p \in S-Q$, then

$$
(\forall \varepsilon>0)\left(\exists m_{0}\right)\left(\exists G_{p}\right)\left(\forall n, m \geq m_{0}\right)\left(\forall x \in G_{0}\right) \quad \rho^{\prime}\left(f_{m}(x), f_{n}(x)\right)<\varepsilon .
$$

Keeping m fixed, let $n \rightarrow \infty$ to get

$$
(\forall \varepsilon>0)\left(\exists m_{0}\right)\left(\exists G_{p}\right)\left(\forall m \geq m_{0}\right)\left(\forall x \in G_{p}\right) \quad \rho^{\prime}\left(f_{m}(x), f(x)\right) \leq \varepsilon
$$

Now modify the proof of Theorem 2 of Chapter $4, \S 12$, to show that this implies the continuity of f at each $p \in S-Q$.]

§9. Local Extrema. Maxima and Minima

We say that $f: E^{\prime} \rightarrow E^{1}$ has a local maximum (minimum) at $\vec{p} \in E^{\prime}$ iff $f(\vec{p})$ is the largest (least) value of f on some globe G about \vec{p}; more precisely, iff

$$
(\forall \vec{x} \in G) \quad \Delta f=f(\vec{x})-f(\vec{p})<0(>0) .
$$

We speak of an improper extremum if we only have $\Delta f \leq 0(\geq 0)$ on G. In any case, all depends on the sign of Δf.

From Problem 6 in $\S 1$, recall the following necessary condition.
Theorem 1. If $f: E^{\prime} \rightarrow E^{1}$ has a local extremum at \vec{p} then $D_{\vec{u}} f(\vec{p})=0$ for all $\vec{u} \neq \overrightarrow{0}$ in E^{\prime}.

In the case $E^{\prime}=E^{n}\left(C^{n}\right)$, this means that $d^{1} f(\vec{p}, \cdot)=0$ on E^{\prime}.
(Recall that $d^{1} f(\vec{p} ; \vec{t})=\sum_{k=1}^{n} D_{k} f(\vec{p}) t_{k}$. It vanishes if the $D_{k} f(\vec{p})$ do.)
Note 1. This condition is only necessary, not sufficient. For example, if $f(x, y)=x y$, then $d^{1} f(\overrightarrow{0}, \cdot)=0$; yet f has no extremum at $\overrightarrow{0}$. (Verify!)

Sufficient conditions were given in Theorem 2 of $\S 5$, for $E^{\prime}=E^{1}$. We now take up $E^{\prime}=E^{2}$.
Theorem 2. Let $f: E^{2} \rightarrow E^{1}$ be of class $C D^{2}$ on a globe $G=G_{\vec{p}}(\delta)$. Suppose $d^{1} f(\vec{p}, \cdot)=0$ on E^{2}. Set $A=D_{11} f(\vec{p}), B=D_{12} f(\vec{p})$, and $C=D_{22} f(\vec{p})$.

Then the following statements are true.
(i) If $A C>B^{2}$, f has a maximum or minimum at \vec{p}, according to whether $A<0$ or $A>0$.
(ii) If $A C<B^{2}$, f has no extremum at \vec{p}.

The case $A C=B$ is unresolved.
Proof. Let $\vec{x} \in G$ and $\vec{u}=\vec{x}-\vec{p} \neq \overrightarrow{0}$.
As $d^{1} f(\vec{p}, \cdot)=0$, Theorem 2 in $\S 5$, yields

$$
\Delta f=f(\vec{x})-f(\vec{p})=R_{1}=\frac{1}{2} d^{2} f(\vec{s} ; \vec{u}),
$$

with $\vec{s} \in L(\vec{p}, \vec{x}) \subseteq G$ (see Corollary 1 of $\S 5$). As $f \in C D^{2}$, we have $D_{12} f=$ $D_{21} f$ on G (Theorem 1 in $\S 5$). Thus by formula (4) in $\S 5$,

$$
\begin{equation*}
\Delta f=\frac{1}{2} d^{2} f(\vec{s} ; \vec{u})=\frac{1}{2}\left[D_{11} f(\vec{s}) u_{1}^{2}+2 D_{12} f(\vec{s}) u_{1} u_{2}+D_{22} f(\vec{s}) u_{2}^{2}\right] . \tag{1}
\end{equation*}
$$

Now, as the partials involved are continuous, we can choose $G=G_{\vec{p}}(\delta)$ so small that the sign of expression (1) will not change if \vec{s} is replaced by \vec{p}. Then the crucial sign of Δf on G coincides with that of

$$
\begin{equation*}
D=A u_{1}^{2}+2 B u_{1} u_{2}+C u_{2}^{2} \tag{2}
\end{equation*}
$$

(with A, B, and C as stated in the theorem).
From (2) we obtain, by elementary algebra,

$$
\begin{align*}
& A D=\left(A u_{1}+B u_{2}\right)^{2}+\left(A C-B^{2}\right) u_{2}^{2} \tag{3}\\
& C D=\left(C u_{1}+B u_{2}\right)^{2}+\left(A C-B^{2}\right) u_{2}^{2}
\end{align*}
$$

Clearly, if $A C>B^{2}$, the right-side expression in (3) is >0; so $A D>0$, i.e., D has the same sign as A.

Hence if $A<0$, we also have $\Delta f<0$ on G, and f has a maximum at \vec{p}. If $A>0$, then $\Delta f>0$, and f has a minimum at \vec{p}.

Now let $A C<B^{2}$. We claim that no matter how small $G=G_{\vec{p}}(\delta), \Delta f$ changes sign as \vec{x} varies in G, and so f has no extremum at \vec{p}.

Indeed, we have $\vec{x}=\vec{p}+\vec{u}, \vec{u}=\left(u_{1}, u_{2}\right) \neq \overrightarrow{0}$. If $u_{2}=0$, (3) shows that D and Δf have the same sign as $A(A \neq 0)$.

But if $u_{2} \neq 0$ and $u_{1}=-B u_{2} / A$ (assuming $A \neq 0$), then D and Δf have the sign opposite to that of A; and \vec{x} is still in G if u_{2} is small enough (how small?).

One proceeds similarly if $C \neq 0$ (interchange A and C, and use (3^{\prime}).
Finally, if $A=C=0$, then by (2), $D=2 B u_{1} u_{2}$ and $B \neq 0$ (since $A C<B^{2}$). Again D and Δf change sign as $u_{1} u_{2}$ does; so f has no extremum at \vec{p}. Thus all is proved.

Briefly, the proof utilizes the fact that the trinomial (2) is sign-changing iff its discriminant $B^{2}-A C$ is positive, i.e., $\left|\begin{array}{ll}A & B \\ B & C\end{array}\right|<0$.

Note 2. Functions $f: C \rightarrow E^{1}$ (of one complex variable) are likewise covered by Theorem 2 if one treats them as functions on E^{2} (of two real variables).

Functions of \boldsymbol{n} variables. Here we must rely on the algebraic theory of socalled symmetric quadratic forms, i.e., polynomials $P: E^{n} \rightarrow E^{1}$ of the form

$$
P(\vec{u})=\sum_{j=1}^{n} \sum_{i=1}^{n} a_{i j} u_{i} u_{j},
$$

where $\vec{u}=\left(u_{i}, \ldots, u_{n}\right) \in E^{n}$ and $a_{i j}=a_{j i} \in E^{1}$.
We take for granted a theorem due to J. J. Sylvester (see S. Perlis, Theory of Matrices, 1952, p. 197), which may be stated as follows.

Let $P: E^{n} \rightarrow E^{1}$ be a symmetric quadratic form,

$$
P(\vec{u})=\sum_{j=1}^{n} \sum_{i=1}^{n} a_{i j} u_{i} u_{j} .
$$

(i) $P>0$ on all of $E^{n}-\{\overrightarrow{0}\}$ iff the following n determinants A_{k} are positive:

$$
A_{k}=\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \tag{4}\\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\ldots & \ldots \ldots \ldots \ldots & \ldots \\
a_{k 1} & a_{k 2} & \ldots & a_{k k}
\end{array}\right|, \quad k=1,2, \ldots, n
$$

(ii) We have $P<0$ on $E^{n}-\{\overrightarrow{0}\}$ iff $(-1)^{k} A_{k}>0$ for $k=1,2, \ldots, n$.

Now we can extend Theorem 2 to the case $f: E^{n} \rightarrow E^{1}$. (This will also cover $f: C^{n} \rightarrow E^{1}$, treated as $f: E^{2 n} \rightarrow E^{1}$.) The proof resembles that of Theorem 2.

Theorem 3. Let $f: E^{n} \rightarrow E^{1}$ be of class $C D^{2}$ on some $G=G_{\vec{p}}(\delta)$. Suppose $d f(\vec{p}, \cdot)=0$ on E^{n}. Define the A_{k} as in (4), with $a_{i j}=D_{i j} f(\vec{p}), i, j, k \leq n$. Then the following statements hold.
(i) f has a local minimum at \vec{p} if $A_{k}>0$ for $k=1,2, \ldots, n$.
(ii) f has a local maximum at \vec{p} if $(-1)^{k} A_{k}>0$ for $k=1, \ldots, n$.
(iii) f has no extremum at \vec{p} if the expression

$$
P(\vec{u})=\sum_{j=1}^{n} \sum_{i=1}^{n} a_{i j} u_{i} u_{j}
$$

is >0 for some $\vec{u} \in E^{n}$ and <0 for others (i.e., P changes sign on E^{n}).
Proof. Let again $\vec{x} \in G, \vec{u}=\vec{x}-\vec{p} \neq \overrightarrow{0}$, and use Taylor's theorem to obtain

$$
\begin{equation*}
\Delta f=f(\vec{x})-f(\vec{p})=R_{1}=\frac{1}{2} d^{2} f(\vec{s} ; \vec{u})=\sum_{j=1}^{n} \sum_{i=1}^{n} D_{i j} f(\vec{s}) u_{i} u_{j} \tag{5}
\end{equation*}
$$

with $\vec{s} \in L(\vec{x}, \vec{p})$.
As $f \in C D^{2}$, the partials $D_{i j} f$ are continuous on G. Thus we can make G so small that the sign of the last double sum does not change if \vec{s} is replaced by \vec{p}. Hence the sign of Δf on G is the same as that of $P(\vec{u})=\sum_{j=1}^{n} \sum_{i=1}^{n} a_{i j} u_{i} u_{j}$, with the $a_{i j}$ as stated in the theorem.

The quadratic form P is symmetric since $a_{i j}=a_{j i}$ by Theorem 1 in $\S 5$. Thus by Sylvester's theorem stated above, one easily obtains our assertions (i) and (ii). Indeed, they are immediate from clauses (i) and (ii) of that theorem.

Now, for (iii), suppose $P(\vec{u})>0>P(\vec{v})$, i.e.,

$$
\sum_{j=1}^{n} \sum_{i=1}^{n} a_{i j} u_{i} u_{j}>0>\sum_{j=1}^{n} \sum_{i=1}^{n} a_{i j} v_{i} v_{j} \quad \text { for some } \vec{u}, \vec{v} \in E^{n}-\{\overrightarrow{0}\} .
$$

If here \vec{u} and \vec{v} are replaced by $t \vec{u}$ and $t \vec{v}(t \neq 0)$, then $u_{i} u_{j}$ and $v_{i} v_{j}$ turn into $t^{2} u_{i} u_{j}$ and $t^{2} v_{i} v_{j}$, respectively. Hence

$$
P(t \vec{u})=t^{2} P(\vec{u})>0>t^{2} P(\vec{v})=P(t \vec{v}) .
$$

Now, for any $t \in(0, \delta /|\vec{u}|)$, the point $\vec{x}=\vec{p}+t \vec{u}$ lies on the \vec{u}-directed line through \vec{p}, inside $G=G_{\vec{p}}(\delta)$. (Why?) Similarly for the point $\vec{x}^{\prime}=\vec{p}+t \vec{v}$.

Hence for such \vec{x} and \vec{x}^{\prime}, Taylor's theorem again yields formulas analogous to (5) for some $\vec{s} \in L(\vec{p}, \vec{x})$ and $\vec{s}^{\prime} \in L\left(\vec{p}, \vec{x}^{\prime}\right)$ lying on the same two lines. It again follows that for small δ,

$$
f(\vec{x})-f(\vec{p})>0>f\left(\vec{x}^{\prime}\right)-f(\vec{p}),
$$

just as $P(\vec{u})>0>P(\vec{v})$.
Thus Δf changes sign on $G_{\vec{p}}(\delta)$, and (iii) is proved.
Note 3. Still unresolved are cases in which $P(\vec{u})$ vanishes for some $\vec{u} \neq \overrightarrow{0}$, without changing its sign; e.g., $P(\vec{u})=\left(u_{1}+u_{2}+u_{3}\right)^{2}=0$ for $\vec{u}=(1,1,-2)$. Then the answer depends on higher-order terms of the Taylor formula. In particular, if $d^{1} f(\vec{p}, \cdot)=d^{2} f(\vec{p}, \cdot)=0$ on E^{n}, then $\Delta f=R_{2}=\frac{1}{6} d^{3} f(\vec{p} ; \vec{s})$, etc.

Note 4. The largest or least value of f on a set A (sometimes called the absolute maximum or minimum) may occur at some noninterior (e.g., boundary) point $\vec{p} \in A$, and then fails to be among the local extrema (where, by definition, a globe $G_{\vec{p}} \subseteq A$ is presupposed). Thus to find absolute extrema, one must also explore the behaviour of f at noninterior points of A.

By Theorem 1, local extrema can occur only at so-called critical points \vec{p}, i.e., those at which all directional derivatives vanish (or fail to exist, in which case $D_{\vec{u}} f(\vec{p})=0$ by convention).

In practice, to find such points in $E^{n}\left(C^{n}\right)$, one equates the partials $D_{k} f$ $(k \leq n)$ to 0 . Then one uses Theorems 2 and 3 or other considerations to determine whether an extremum really exists.

Examples.

(A) Find the largest value of

$$
f(x, y)=\sin x+\sin y-\sin (x+y)
$$

on the set $A \subseteq E^{2}$ bounded by the lines $x=0, y=0$ and $x+y=2 \pi$. We have

$$
D_{1} f(x, y)=\cos x-\cos (x+y) \text { and } D_{2} f(x, y)=\cos y-\cos (x+y)
$$

Inside the triangle A, both partials vanish only at the point $\left(\frac{2 \pi}{3}, \frac{2 \pi}{3}\right)$ at which $f=\frac{3}{2} \sqrt{3}$. On the boundary of A (i.e., on the lines $x=0, y=0$ and $x+y=2 \pi), f=0$. Thus even without using Theorem 2, it is evident that f attains its largest value,

$$
f\left(\frac{2 \pi}{3}, \frac{2 \pi}{3}\right)=\frac{3}{2} \sqrt{3}
$$

at this unique critical point.
(B) Find the largest and the least value of

$$
f(x, y, z)=a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}-\left(a x^{2}+b y^{2}+c z^{2}\right)^{2}
$$

on the condition that $x^{2}+y^{2}+z^{2}=1$ and $a>b>c>0$.
As $z^{2}=1-x^{2}-y^{2}$, we can eliminate z from $f(x, y, z)$ and replace f by $F: E^{2} \rightarrow E^{1}$:
$F(x, y)=\left(a^{2}-c^{2}\right) x^{2}+\left(b^{2}-c^{2}\right) y^{2}+c^{2}-\left[(a-c) x^{2}+(b-c) y^{2}+c\right]^{2}$.
(Explain!) For F, we seek the extrema on the disc $\bar{G}=\bar{G}_{0}(1) \subset E^{2}$, where $x^{2}+y^{2} \leq 1$ (so as not to violate the condition $x^{2}+y^{2}+z^{2}=1$).

Equating to 0 the two partials

$$
\begin{aligned}
& D_{1} F(x, y)=2 x(a-c)\left\{(a+c)-2\left[(a-c) x^{2}+(b-c) y^{2}+c\right]^{2}\right\}=0 \\
& D_{2} F(x, y)=2 y(b-c)\left\{(b+c)-2\left[(a-c) x^{2}+(b-c) y^{2}+c\right]^{2}\right\}=0
\end{aligned}
$$

and solving this system of equations, we find these critical points inside G :
(1) $x=y=0(F=0)$;
(2) $x=0, y= \pm 2^{-\frac{1}{2}}\left(F=\frac{1}{4}(b-c)^{2}\right)$; and
(3) $x= \pm 2^{-\frac{1}{2}}, y=0\left(F=\frac{1}{4}(a-c)^{2}\right)$.
(Verify!)
Now, for the boundary of \bar{G}, i.e., the circle $x^{2}+y^{2}=1$, repeat this process: substitute $y^{2}=1-x^{2}$ in the formula for $F(x, y)$, thus reducing it to

$$
h(x)=\left(a^{2}-b^{2}\right) x^{2}+b^{2}+\left[(a-b) x^{2}+b\right]^{2}, \quad h: E^{1} \rightarrow E^{1}
$$

on the interval $[-1,1] \subset E^{1}$. In $(-1,1)$ the derivative

$$
h^{\prime}(x)=2(a-b) x\left(1-2 x^{2}\right)
$$

vanishes only when
(4) $x=0(h=0)$, and
(5) $x= \pm 2^{-\frac{1}{2}}\left(h=\frac{1}{4}(a-b)^{2}\right)$.

Finally, at the endpoints of $[-1,1]$, we have
(6) $x= \pm 1(h=0)$.

Comparing the resulting function values in all six cases, we conclude that the least of them is 0 , while the largest is $\frac{1}{4}(a-c)^{2}$. These are the desired least and largest values of f, subject to the conditions stated. They are attained, respectively, at the points

$$
(0,0, \pm 1),(0, \pm 1,0),(\pm 1,0,0), \text { and }\left(\pm 2^{-\frac{1}{2}}, 0, \pm 2^{-\frac{1}{2}}\right)
$$

Again, the use of Theorems 2 and 3 was redundant. ${ }^{1}$ However, we suggest as an exercise that the reader test the critical points of F by using Theorem 2.

Caution. Theorems 1 to 3 apply to functions of independent variables only. In Example (B), x, y, z were made interdependent by the imposed equation

$$
x^{2}+y^{2}+z^{2}=1
$$

(which geometrically limits all to the surface of $G_{\overrightarrow{0}}(1)$ in E^{3}), so that one of them, z, could be eliminated. Only then can Theorems 1 to 3 be used.

Problems on Maxima and Minima

1. Verify Note 1.

$\mathbf{1}^{\prime}$. Complete the missing details in the proof of Theorems 2 and 3.
2. Verify Examples (A) and (B). Supplement Example (A) by applying Theorem 2.
3. Test f for extrema in E^{2} if $f(x, y)$ is
(i) $\frac{x^{2}}{2 p}+\frac{y^{2}}{2 q}(p>0, q>0)$;
(ii) $\frac{x^{2}}{2 p}-\frac{y^{2}}{2 q}(p>0, q>0)$;
(iii) $y^{2}+x^{4}$;
(iv) $y^{2}+x^{3}$.
4. (i) Find the maximum volume of an interval $A \subset E^{3}$ (see Chapter 3, $\S 7$) whose edge lengths x, y, z have a prescribed sum: $x+y+z=a$.
(ii) Do the same in E^{4} and in E^{n}; show that A is a cube.

[^15](iii) Hence deduce that
$$
\sqrt[n]{x_{1} x_{2} \cdots x_{n}} \leq \frac{1}{n} \sum_{1}^{n} x_{k} \quad\left(x_{k} \geq 0\right)
$$
i.e., the geometric mean of n nonnegative numbers is \leq their arithmetic mean.
5. Find the minimum value for the sum $f(x, y, z, t)=x+y+z+t$ of four positive numbers on the condition that $x y z t=c^{4}$ (constant).
[Answer: $x=y=z=t=c ; f_{\text {max }}=4 c$.]
6. Among all triangles inscribed in a circle of radius R, find the one of maximum area.
[Hint: Connect the vertices with the center. Let x, y, z be the angles at the center. Show that the area of the triangle $=\frac{1}{2} R^{2}(\sin x+\sin y+\sin z)$, with $z=2 \pi-(x+y)$.]
7. Among all intervals $A \subset E^{3}$ inscribed in the ellipsoid
$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$
find the one of largest volume.
[Answer: the edge lengths are $\frac{2 a}{\sqrt{3}}, \frac{2 b}{\sqrt{3}}, \frac{2 c}{\sqrt{3}}$.]
8. Let $P_{i}=\left(a_{i} \cdot b_{i}\right), i=1,2,3$, be 3 points in E^{2} forming a triangle in which one angle (say, $\measuredangle P_{1}$) is $\geq 2 \pi / 3$.

Find a point $P=(x, y)$ for which the sum of the distances,

$$
P P_{1}+P P_{2}+P P_{3}=\sum_{i=1}^{3} \sqrt{\left(x-a_{i}\right)^{2}+\left(y-b_{i}\right)^{2}}
$$

is the least possible.
[Outline: Let $f(x, y)=\sum_{i=1}^{3} \sqrt{\left(x-a_{i}\right)^{2}+\left(y-b_{i}\right)^{2}}$.
Show that f has no partial derivatives at P_{1}, P_{2}, or P_{3} (and so P_{1}, P_{2}, and P_{3} are critical points at which an extremum may occur), while at other points P, partials do exist but never vanish simultaneously, so that there are no other critical points.

Indeed, prove that $D_{1} f(P)=0=D_{2} f(P)$ would imply that

$$
\sum_{i=1}^{3} \cos \theta_{i}=0=\sum_{1}^{3} \sin \theta_{i}
$$

where θ_{i} is the angle between $\overline{P P_{i}}$ and the x-axis; hence

$$
\sin \left(\theta_{1}-\theta_{2}\right)=\sin \left(\theta_{2}-\theta_{3}\right)=\sin \left(\theta_{3}-\theta_{1}\right) \quad(\text { why } ?)
$$

and so $\theta_{1}-\theta_{2}=\theta_{2}-\theta_{3}=\theta_{3}-\theta_{1}=2 \pi / 3$, contrary to $\measuredangle P_{1} \geq 2 \pi / 3$. (Why?)
From geometric considerations, conclude that f has an absolute minimum at P_{1}.
(This shows that one cannot disregard points at which f has no partials.)]
9. Continuing Problem 8 , show that if none of $\measuredangle P_{1}, \measuredangle P_{2}$, and $\measuredangle P_{3}$ is \geq $2 \pi / 3$, then f attains its least value at some P (inside the triangle) such that $\measuredangle P_{1} P P_{2}=\measuredangle P_{2} P P_{3}=\measuredangle P_{3} P P_{1}=2 \pi / 3$.
[Hint: Verify that $D_{1} f=0=D_{2} f$ at P.
Use the law of cosines to show that $P_{1} P_{2}>P P_{2}+\frac{1}{2} P P_{1}$ and $P_{1} P_{3}>P P_{3}+\frac{1}{2} P P_{1}$.
Adding, obtain $P_{1} P_{3}+P_{1} P_{2}>P P_{1}+P P_{2}+P P_{3}$, i.e., $f\left(P_{1}\right)>f(P)$. Similarly, $f\left(P_{2}\right)>f(P)$ and $f\left(P_{3}\right)>f(P)$.

Combining with Problem 8, obtain the result.]
10. In a circle of radius R inscribe a polygon with $n+1$ sides of maximum area.
[Outline: Let $x_{1}, x_{2}, \ldots, x_{n+1}$ be the central angles subtended by the sides of the polygon. Then its area A is

$$
\frac{1}{2} R^{2} \sum_{k=1}^{n+1} \sin x_{k}
$$

with $x_{n+1}=2 \pi-\sum_{k=1}^{n} x_{k}$. (Why?) Thus all reduces to maximizing

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{k=1}^{n} \sin x_{k}+\sin \left(2 \pi-\sum_{k=1}^{n} x_{k}\right),
$$

on the condition that $0 \leq x_{k}$ and $\sum_{k=1}^{n} x_{k} \leq 2 \pi$. (Why?)
These inequalities define a bounded set $D \subset E^{n}$ (called a simplex). Equating all partials of f to 0 , show that the only critical point interior to D is $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$, with $x_{k}=\frac{2 \pi}{n+1}, k \leq n$ (implying that $x_{n+1}=\frac{2 \pi}{n+1}$, too). For that \vec{x}, we get

$$
f(\vec{x})=(n+1) \sin [2 \pi /(n+1)] .
$$

This value must be compared with the "boundary" values of f, on the "faces" of the simplex D (see Note 4).

Do this by induction. For $n=2$, Problem 6 shows that $f(\vec{x})$ is indeed the largest when all x_{k} equal $\frac{2 \pi}{n+1}$. Now let D_{n} be the "face" of D, where $x_{n}=0$. On that face, treat f as a function of only $n-1$ variables, x_{1}, \ldots, x_{n-1}.

By the inductive hypothesis, the largest value of f on D_{n} is $n \sin (2 \pi / n)$. Similarly for the other "faces." As $n \sin (2 \pi / n)<(n+1) \sin 2 \pi /(n+1)$, the induction is complete.

Thus, the area A is the largest when the polygon is regular, for which

$$
\left.A=\frac{1}{2} R^{2}(n+1) \sin \frac{2 \pi}{n+1} .\right]
$$

11. Among all triangles of a prescribed perimeter $2 p$, find the one of maximum area.
[Hint: Maximize $p(p-x)(p-y)(p-z)$ on the condition that $x+y+z=2 p$.]
12. Among all triangles of area A, find the one of smallest perimeter.
13. Find the shortest distance from a given point $\vec{p} \in E^{n}$ to a given plane $\vec{u} \cdot \vec{x}=c$ (Chapter 3, §§4-6). Answer:

$$
\pm \frac{\vec{u} \cdot \vec{p}-c}{|\vec{u}|}
$$

[Hint: First do it in E^{3}, writing (x, y, z) for \vec{x}.]

§10. More on Implicit Differentiation. Conditional Extrema

I. Implicit differentiation was sketched in $\S 7$. Under suitable assumptions (Theorem 4 in $\S 7$), one can differentiate a given system of equations,

$$
\begin{equation*}
g_{k}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)=0, \quad k=1,2, \ldots, n \tag{1}
\end{equation*}
$$

treating the x_{j} as implicit functions of the y_{i} without seeking an explicit solution of the form

$$
x_{j}=H_{j}\left(y_{1}, \ldots, y_{m}\right) .
$$

This yields a new system of equations from which the partials $D_{i} H_{j}=\frac{\partial x_{j}}{\partial y_{i}}$
can be found directly.
We now supplement Theorem 4 in $\S 7$ (review it!) by showing that this new system is linear in the partials involved and that its determinant is $\neq 0$. Thus in general, it is simpler to solve than (1).

As in Part IV of §7, we set

$$
(\vec{x}, \vec{y})=\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) \text { and } g=\left(g_{1}, \ldots, g_{n}\right)
$$

replacing the f of $\S 7$ by g. Then equations (1) simplify to

$$
\begin{equation*}
g(\vec{x}, \vec{y})=\overrightarrow{0} \tag{2}
\end{equation*}
$$

where $g: E^{n+m} \rightarrow E^{n}\left(\right.$ or $\left.g: C^{n+m} \rightarrow C^{n}\right)$.
Theorem 1 (implicit differentiation). Adopt all assumptions of Theorem 4 in §7, replacing f by g and setting $H=\left(H_{1}, \ldots, H_{n}\right)$,

$$
D_{j} g_{k}(\vec{p}, \vec{q})=a_{j k}, \quad j \leq n+m, \quad k \leq n .
$$

Then for each $i=1, \ldots, m$, we have n linear equations,

$$
\begin{equation*}
\sum_{j=1}^{n} a_{j k} D_{i} H_{j}(\vec{q})=-a_{n+i, k}, \quad k \leq n \tag{3}
\end{equation*}
$$

with

$$
\operatorname{det}\left(a_{j k}\right) \neq 0, \quad(j, k \leq n)
$$

that uniquely determine the partials $D_{i} H_{j}(\vec{q})$ for $j=1,2, \ldots, n$.
Proof. As usual, extend the map $H: Q \rightarrow P$ of Theorem 4 in $\S 7$ to $H: E^{m} \rightarrow$ E^{n} (or $C^{m} \rightarrow C^{n}$) by setting $H=\overrightarrow{0}$ on $-Q$.

Also, define $\sigma: E^{m} \rightarrow E^{n+m}\left(C^{m} \rightarrow C^{n+m}\right)$ by

$$
\begin{equation*}
\sigma(\vec{y})=(H(\vec{y}), \vec{y})=\left(H_{1}(\vec{y}), \ldots, H_{n}(\vec{y}), y_{1}, \ldots, y_{m}\right), \quad \vec{y} \in E^{m}\left(C^{m}\right) \tag{4}
\end{equation*}
$$

Then σ is differentiable at $\vec{q} \in Q$, as are its $n+m$ components. (Why?) Since $\vec{x}=H(\vec{y})$ is a solution of (2), equations (1) and (2) become identities when \vec{x} is replaced by $H(\vec{y})$. Also, $\sigma(\vec{q})=(H(\vec{q}), \vec{q})=(\vec{p}, \vec{q})$ since $H(\vec{q})=\vec{p}$. Moreover,

$$
g(\sigma(\vec{y}))=g(H(\vec{y}), \vec{y})=\overrightarrow{0} \text { for } \vec{y} \in Q
$$

i.e., $g \circ \sigma=\overrightarrow{0}$ on Q.

Now, by assumption, $g \in C D^{1}$ at (\vec{p}, \vec{q}); so the chain rule (Theorem 2 in $\S 4)$ applies, with f, \vec{p}, \vec{q}, n, and m replaced by $\sigma, \vec{q},(\vec{p}, \vec{q}), m$, and $n+m$, respectively.

As $h=g \circ \sigma=\overrightarrow{0}$ on Q, an open set, the partials of h vanish on Q. So by Theorem 2 of $\S 4$, writing σ_{j} for the j th component of σ,

$$
\begin{equation*}
\overrightarrow{0}=\sum_{j=1}^{n+m} D_{j} g(\vec{p}, \vec{q}) \cdot D_{i} \sigma_{j}(\vec{q}), \quad i \leq m \tag{5}
\end{equation*}
$$

By (4), $\sigma_{j}=H_{j}$ if $j \leq n$, and $\sigma_{j}(\vec{y})=y_{i}$ if $j=n+i$. Thus $D_{i} \sigma_{j}=D_{i} H_{j}$, $j \leq n$; but for $j>n$, we have $D_{i} \sigma_{j}=1$ if $j=n+i$, and $D_{i} \sigma_{j}=0$ otherwise. Hence by (5),

$$
\overrightarrow{0}=\sum_{j=1}^{n} D_{j} g(\vec{p}, \vec{q}) \cdot D_{i} H_{j}(\vec{q})+D_{n+i} g(\vec{p}, \vec{q}), \quad i=1,2, \ldots, m
$$

As $g=\left(g_{1}, \ldots, g_{n}\right)$, each of these vector equations splits into n scalar ones:

$$
\begin{equation*}
0=\sum_{j=1}^{n} D_{j} g_{k}(\vec{p}, \vec{q}) \cdot D_{i} H_{j}(\vec{q})+D_{n+i} g_{k}(\vec{p}, \vec{q}), \quad i \leq m, k \leq n . \tag{6}
\end{equation*}
$$

With $D_{j} g_{k}(\vec{p}, \vec{q})=a_{j k}$, this yields (3), where $\operatorname{det}\left(a_{j k}\right)=\operatorname{det}\left(D_{j} g_{k}(\vec{p}, \vec{q})\right) \neq 0$, by hypothesis (see Theorem 4 in $\S 7$).

Thus all is proved.
Note 1. By continuity (Note 1 in $\S 6$), we have $\operatorname{det}\left(D_{j} g_{k}(\vec{x}, \vec{y})\right) \neq 0$ for all (\vec{x}, \vec{y}) in a sufficiently small neighborhood of (\vec{p}, \vec{q}). Thus Theorem 1 holds also with (\vec{p}, \vec{q}) replaced by such (\vec{x}, \vec{y}). In practice, one does not have to memorize (3), but one obtains it by implicitly differentiating equations (1).
II. We shall now apply Theorem 1 to the theory of conditional extrema.

Definition 1.

We say that $f: E^{n+m} \rightarrow E^{1}$ has a local conditional maximum (minimum) at $\vec{p} \in E^{n+m}$, with constraints

$$
g=\left(g_{1}, \ldots, g_{n}\right)=\overrightarrow{0}
$$

$\left(g: E^{n+m} \rightarrow E^{n}\right)$ iff in some neighborhood G of \vec{p} we have

$$
\Delta f=f(\vec{x})-f(\vec{p}) \leq 0 \quad(\geq 0, \text { respectively })
$$

for all $\vec{x} \in G$ for which $g(\vec{x})=\overrightarrow{0}$.
In $\S 9$ (Example (B) and Problems), we found such conditional extrema by using the constraint equations $g=\overrightarrow{0}$ to eliminate some variables and thus reduce all to finding the unconditional extrema of a function of fewer (independent) variables.

Often, however, such elimination is cumbersome since it involves solving a system (1) of possibly nonlinear equations. It is here that implicit differentiation (based on Theorem 1) is useful.

Lagrange invented a method (known as that of multipliers) for finding the critical points at which such extrema may exist; to wit, we have the following:

Given $f: E^{n+m} \rightarrow E^{1}$, set

$$
\begin{equation*}
F=f+\sum_{k=1}^{n} c_{k} g_{k} \tag{7}
\end{equation*}
$$

where the constants c_{k} are to be determined and g_{k} are as above.
Then find the partials $D_{j} F(j \leq n+m)$ and solve the system of $2 n+m$ equations

$$
\begin{equation*}
D_{j} F(\vec{x})=0, \quad j \leq n+m, \quad \text { and } \quad g_{k}(\vec{x})=0, \quad k \leq n, \tag{8}
\end{equation*}
$$

for the $2 n+m$ "unknowns" $x_{j}(j \leq n+m)$ and $c_{k}(k \leq n)$, the c_{k} originating from (7).

Any \vec{x} satisfying (8), with the c_{k} so determined is a critical point (still to be tested). The method is based on Theorem 2 below, where we again write (\vec{p}, \vec{q}) for \vec{p} and (\vec{x}, \vec{y}) for \vec{x} (we call it "double notation").
Theorem 2 (Lagrange multipliers). Suppose $f: E^{n+m} \rightarrow E^{1}$ is differentiable at

$$
(\vec{p}, \vec{q})=\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{m}\right)
$$

and has a local extremum at (\vec{p}, \vec{q}) subject to the constraints

$$
g=\left(g_{1}, \ldots, g_{n}\right)=\overrightarrow{0},
$$

with g as in Theorem 1, $g: E^{n+m} \rightarrow E^{n}$. Then

$$
\begin{equation*}
\sum_{k=1}^{n} c_{k} D_{j} g_{k}(\vec{p}, \vec{q})=-D_{j} f(\vec{p}, \vec{q}), \quad j=1,2, \ldots, n+m,{ }^{1} \tag{9}
\end{equation*}
$$

for certain multipliers c_{k} (determined by the first n equations in (9)).

[^16]Proof. These n equations admit a unique solution for the c_{k}, as they are linear, and

$$
\operatorname{det}\left(D_{j} g_{k}(\vec{p}, \vec{q})\right) \neq 0 \quad(j, k \leq n)
$$

by hypothesis. With the c_{k} so determined, (9) holds for $j \leq n$. It remains to prove (9) for $n<j \leq n+m$.

Now, since f has a conditional extremum at (\vec{p}, \vec{q}) as stated, we have

$$
\begin{equation*}
f(\vec{x}, \vec{y})-f(\vec{p}, \vec{q}) \leq 0 \quad(\text { or } \geq 0) \tag{10}
\end{equation*}
$$

for all $(\vec{x}, \vec{y}) \in P \times Q$ with $g(\vec{x}, \vec{y})=\overrightarrow{0}$, provided we make the neighborhood $P \times Q$ small enough.

Define H and σ as in the previous proof (see (4)); so $\vec{x}=H(\vec{y})$ is equivalent to $g(\vec{x}, \vec{y})=\overrightarrow{0}$ for $(\vec{x}, \vec{y}) \in P \times Q$.

Then, for all such (\vec{x}, \vec{y}), with $\vec{x}=H(\vec{y})$, we surely have $g(\vec{x}, \vec{y})=\overrightarrow{0}$ and also

$$
f(\vec{x}, \vec{y})=f(H(\vec{y}), \vec{y})=f(\sigma(\vec{y})) .
$$

Set $h=f \circ \sigma, h: E^{m} \rightarrow E^{1}$. Then (10) reduces to

$$
h(\vec{y})-h(\vec{q}) \leq 0 \text { (or } \geq 0) \quad \text { for all } \vec{y} \in Q
$$

This means that h has an unconditional extremum at \vec{q}, an interior point of Q. Thus, by Theorem 1 in $\S 9$,

$$
D_{i} h(\vec{q})=0, \quad i=1, \ldots, m .
$$

Hence, applying the chain rule (Theorem 2 of $\S 4$) to $h=f \circ \sigma$, we get, much as in the previous proof,

$$
\begin{align*}
0 & =\sum_{j=1}^{n+m} D_{j} f(\vec{p}, \vec{q}) D_{i} \sigma_{j}(\vec{q}) \tag{11}\\
& =\sum_{j=1}^{n} D_{j} f(\vec{p}, \vec{q}) D_{i} H_{j}(\vec{q})+D_{n+i} f(\vec{p}, \vec{q}), \quad i \leq m
\end{align*}
$$

(Verify!)
Next, as g by hypothesis satisfies Theorem 1, we get equations (3) or equivalently (6). Multiplying (6) by c_{k}, adding and combining with (11), we obtain

$$
\begin{aligned}
\sum_{j=1}^{n}\left[D_{j} f(\vec{p}, \vec{q})+\sum_{k=1}^{n}\right. & \left.c_{k} D_{j} g_{k}(\vec{p}, \vec{q})\right] D_{i} H_{j}(\vec{q}) \\
& +D_{n+i} f(\vec{p}, \vec{q})+\sum_{k=1}^{n} c_{k} D_{n+i} g_{k}(\vec{p}, \vec{q})=0, \quad i \leq m
\end{aligned}
$$

(Verify!) But the square-bracketed expression is 0 ; for we chose the c_{k} so as to satisfy (9) for $j \leq n$. Thus all simplifies to

$$
\sum_{k=1}^{n} c_{k} D_{n+i} g_{k}(\vec{p}, \vec{q})=-D_{n+i} f(\vec{p}, \vec{q}), \quad i=1,2, \ldots, m
$$

Hence (9) holds for $n<j \leq n+m$, too, and all is proved.
Remarks. Lagrange's method has the advantage that all variables (the x_{k} and y_{i}) are treated equally, without singling out the dependent ones. Thus in applications, one uses only F, i.e., f and $g($ not H).

One can also write $\vec{x}=\left(x_{1}, \ldots, x_{n+m}\right)$ for $(\vec{x}, \vec{y})=\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ (the "double" notation was good for the proof only).

On the other hand, one still must solve equations (8).
Theorem 2 yields only a necessary condition (9) for extrema with constraints. There also are various sufficient conditions, but mostly one uses geometric and other considerations instead (as we did in $\S 9$). Therefore, we limit ourselves to one proposition (using "single" notation this time).

Theorem 3 (sufficient conditions). Let

$$
F=f+\sum_{k=1}^{n} c_{k} g_{k},
$$

with $f: E^{n+m} \rightarrow E^{1}, g: E^{n+m} \rightarrow E^{n}$, and c_{k} as in Theorem 2.
Then f has a maximum (minimum) at $\vec{p}=\left(p_{1}, \ldots, p_{n+m}\right)$ (with constraints $g=\left(g_{1}, \ldots, g_{n}\right)=\overrightarrow{0}$) whenever F does. (A fortiori, this is the case if F has an unconditional extremum at \vec{p}.)
Proof. Suppose F has a maximum at \vec{p}, with constraints $g=\overrightarrow{0}$. Then

$$
0 \geq F(\vec{x})-F(\vec{p})=f(\vec{x})-f(\vec{p})+\sum_{k=1}^{n} c_{k}\left[g_{k}(\vec{x})-g_{k}(\vec{p})\right]
$$

for those \vec{x} near \vec{p} (including $\vec{x}=\vec{p}$) for which $g(\vec{x})=\overrightarrow{0}$.
But for such $\vec{x}, g_{k}(\vec{x})=g_{k}(\vec{p})=0, c_{k}\left[g_{k}(\vec{x})-g_{k}(\vec{p})\right]=0$, and so

$$
0 \geq F(\vec{x})-F(\vec{p})=f(\vec{x})-f(\vec{p}) .
$$

Hence f has a maximum at \vec{p}, with constraints as stated.
Similarly, $\Delta F=\Delta f$ in case F has a conditional minimum at \vec{p}.

Example 1.

Find the local extrema of

$$
f(x, y, z, t)=x+y+z+t
$$

on the condition that

$$
g(x, y, z, t)=x y z t-a^{4}=0
$$

with $a>0$ and $x, y, z, t>0$. (Note that inequalities do not count as "constraints" in the sense of Theorems 2 and 3.) Here one can simply eliminate $t=a^{4} /(x y z)$, but it is still easier to use Lagrange's method.

Set $F(x, y, z, t)=x+y+z+t+c x y z t$. (We drop a^{4} since it will anyway disappear in differentiation.) Equations (8) then read

$$
0=1+c y z t=1+c x z t=1+c x y t=1+c x y z, \quad x y z t-a^{4}=0
$$

Solving for x, z, t and c, we get $c=-a^{-3}, x=y=z=t=a$.
Thus $F(x, y, z, t)=x+y+z+t-x y z t / a^{3}$, and the only critical point is $\vec{p}=(a, a, a, a)$. (Verify!)

By Theorem 3, one can now explore the sign of $F(\vec{x})-F(\vec{p})$, where $\vec{x}=(x, y, z, t)$. For \vec{x} near \vec{p}, it agrees with the sign of $d^{2} F(\vec{p}, \cdot)$. (See proof of Theorem 2 in §9.) We shall do it below, using yet another device, to be explained now.

Elimination of dependent differentials. If all partials of F vanish at \vec{p} (e.g., if \vec{p} satisfies (9)), then $d^{1} F(\vec{p}, \cdot)=0$ on E^{n+m} (briefly $d F \equiv 0$).

Conversely, if $d^{1} f(\vec{p}, \cdot)=0$ on a globe $G_{\vec{p}}$, for some function f on n independent variables, then

$$
D_{k} f(\vec{p})=0, \quad k=1,2, \ldots, n,
$$

since $d^{1} f(\vec{p}, \cdot)$ (a polynomial!) vanishes at infinitely many points if its coefficients $D_{k} f(\vec{p})$ vanish. (The latter fails, however, if the variables are interdependent.)

Thus, instead of working with the partials, one can equate to 0 the differential $d F$ or $d f$. Using the "variable" notation and the invariance of $d f$ (Note 4 in $\S 4$), one then writes $d x, d y, \ldots$ for the "differentials" of dependent and independent variables alike, and tries to eliminate the differentials of the dependent variables. We now redo Example 1 using this method.

Example 2.

With f and g as in Example 1, we treat t as the dependent variable, i.e., an implicit function of x, y, z,

$$
t=a^{4} /(x y z)=H(x, y, z)
$$

and differentiate the identity $x y z t-a^{4}=0$ to obtain

$$
0=y z t d x+x z t d y+x y t d z+x y z d t
$$

so

$$
\begin{equation*}
d t=-t\left(\frac{d x}{x}+\frac{d y}{y}+\frac{d z}{z}\right) . \tag{12}
\end{equation*}
$$

Substituting this value of $d t$ in $d f=d x+d y+d z+d t=0$ (the equation for critical points), we eliminate $d t$ and find:

$$
\left(1-\frac{t}{x}\right) d x+\left(1-\frac{t}{y}\right) d y+\left(1-\frac{t}{z}\right) d z \equiv 0 .
$$

As x, y, z are independent variables, this identity implies that the coefficients of $d x, d y$, and $d z$ must vanish, as pointed out above. Thus

$$
1-\frac{t}{x}=1-\frac{t}{y}=1-\frac{t}{z}=0
$$

Hence $x=y=z=t=a$. (Why?) Thus again, the only critical point is $\vec{p}=(a, a, a, a)$.

Now, returning to Lagrange's method, we use formula (5) in $\S 5$ to compute

$$
\begin{equation*}
d^{2} F=-\frac{2}{a}(d x d y+d x d z+d z d t+d x d t+d y d z+d y d t) \tag{13}
\end{equation*}
$$

(Verify!)
We shall show that this expression is sign-constant (if $x y z t=a^{4}$), near the critical point \vec{p}. Indeed, setting $x=y=z=t=a$ in (12), we get $d t=-(d x+d y+d z)$, and (13) turns into

$$
\begin{aligned}
-\frac{2}{a}[d x d y+d x d z+ & \left.d y d z-(d x+d y+d z)^{2}\right] \\
& =\frac{1}{a}\left[d x^{2}+d y^{2}+d z^{2}+(d x+d y+d z)^{2}\right]=d^{2} F
\end{aligned}
$$

This expression is >0 (for $d x, d y$, and $d z$ are not all 0). Thus f has a local conditional minimum at $\vec{p}=(a, a, a, a)$.

Caution; here we cannot infer that $f(\vec{p})$ is the least value of f under the imposed conditions: $x, y, z>0$ and $x y z t=a^{4}$.

The simplification due to the Cauchy invariant rule (Note 4 in §4) makes the use of the "variable" notation attractive, though caution is mandatory.

Note 2. When using Theorem 2, it suffices to ascertain that some n equations from (9) admit a solution for the c_{k}; for then, renumbering the equations, one can achieve that these become the first n equations, as was assumed. This means that the $n \times(n+m)$ matrix $\left(D_{j} g_{k}(\vec{p}, \vec{q})\right)$ must be of rank n, i.e., contains an $n \times n$-submatrix (obtained by deleting some columns), with a nonzero determinant.

In the Problems we often use r, s, t, \ldots for Lagrange multipliers.

Further Problems on Maxima and Minima

1. Fill in all details in Examples 1 and 2 and the proofs of all theorems in this section.
2. Redo Example (B) in $\S 9$ by Lagrange's method.
[Hint: Set $F(x, y, z)=f(x, y, z)-r\left(x^{2}+y^{2}+z^{2}\right), g(x, y, z)=x^{2}+y^{2}+z^{2}-1$. Compare the values of f at all critical points. ${ }^{2}$]
3. An ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

is cut by a plane $u x+v y+w z=0$. Find the semiaxes of the sectionellipse, i.e., the extrema of

$$
\rho^{2}=[f(x, y, z)]^{2}=x^{2}+y^{2}+z^{2}
$$

under the constraints $g=\left(g_{1}, g_{2}\right)=\overrightarrow{0}$, where

$$
g_{1}(x, y, z)=u x+v y+w z \text { and } g_{2}(x, y, z)=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}-1 .
$$

Assume that $a>b>c>0$ and that not all $u, v, w=0$.
[Outline: By Note 2, explore the rank of the matrix

$$
\left(\begin{array}{ccc}
x / a^{2} & y / b^{2} & z / c^{2} \tag{14}\\
u & v & z
\end{array}\right) .
$$

(Why this particular matrix?)
Seeking a contradiction, suppose all its 2×2 determinants vanish at all points of the section-ellipse. Then the upper and lower entries in (14) are proportional (why?); so $x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=0$ (a contradiction!).

Next, set

$$
F(x, y, z)=x^{2}+y^{2}+z^{2}+r\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}\right)+2 s(u x+v y+w z) .
$$

Equate $d F$ to 0 :

$$
\begin{equation*}
x+\frac{r x}{a^{2}}+s u=0, \quad y+\frac{r y}{b^{2}}+s v=0, \quad z+\frac{r z}{c^{2}}+s w=0 . \tag{15}
\end{equation*}
$$

Multiplying by x, y, z, respectively, adding, and combining with $g=\overrightarrow{0}$, obtain $r=$ $-\rho^{2}$; so, by (15), for $a, b, c \neq \rho$,

$$
x=\frac{-s u a^{2}}{a^{2}-\rho^{2}}, \quad y=\frac{-s v b^{2}}{b^{2}-\rho^{2}}, \quad z=\frac{-s w c^{2}}{c^{2}-\rho^{2}} .
$$

Find s, x, y, z, then compare the ρ-values at critical points.]

[^17]4. Find the least and the largest values of the quadratic form
$$
f(\vec{x})=\sum_{i, k=1}^{n} a_{i k} x_{i} x_{k} \quad\left(a_{i k}=a_{k i}\right)
$$
on the condition that $g(\vec{x})=|\vec{x}|^{2}-1=0\left(f, g: E^{n} \rightarrow E^{1}\right)$.
[Outline: Let $F(\vec{x})=f(\vec{x})-t\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right)$. Equating $d F$ to 0 , obtain
\[

$$
\begin{align*}
& \left(a_{11}-t\right) x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=0, \\
& a_{21} x_{1}+\left(a_{22}-t\right) x_{2}+\ldots+a_{2 n} x_{n}=0, \tag{16}\\
& \ldots \ldots+\cdots \cdots+\cdots \cdots+\cdots+\cdots \cdots \cdots \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+\left(a_{n n}-t\right) x_{n}=0 .
\end{align*}
$$
\]

Using Theorem 1(iv) in $\S 6$, derive the so-called characteristic equation of f,

$$
\left|\begin{array}{cccc}
a_{11}-t & a_{12} & \ldots & a_{1 n} \tag{17}\\
a_{21} & a_{22}-t & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{2 n} & \ldots & a_{n n}-t
\end{array}\right|=0,
$$

of degree n in t. If t is one of its n roots (known to be real ${ }^{3}$), then equations (16) admit a nonzero solution for $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$; by replacing \vec{x} by $\vec{x} /|\vec{x}|$ if necessary, \vec{x} satisfies also the constraint equation $g(\vec{x})=|\vec{x}|^{2}-1=0$. (Explain!) Thus each root t of (17) yields a critical point $\vec{x}_{t}=\left(x_{1}, \ldots, x_{n}\right)$.

Now, to find $f\left(\vec{x}_{t}\right)$, multiply the k th equation in (16) by $x_{k}, k=1, \ldots, n$, and add to get

$$
0=\sum_{i, k=1}^{n} a_{i k} x_{i} x_{k}-t \sum_{k=1}^{n} x_{k}^{2}=f\left(\vec{x}_{t}\right)-t .
$$

Hence $f\left(\vec{x}_{t}\right)=t$.
Thus the values of f at the critical points \vec{x}_{t} are simply the roots of (17). The largest (smallest) root is also the largest (least) value of f on $S=\left\{\vec{x} \in E^{n}| | \vec{x} \mid=1\right\}$. (Explain!)]
5. Use the method of Problem 4 to find the semiaxes of
(i) the quadric curve in E^{2}, centered at $\overrightarrow{0}$, given by $\sum_{i, k=1}^{2} a_{i k} x_{i} x_{k}=$ 1 ; and
(ii) the quadric surface $\sum_{i, k=1}^{3} a_{i k} x_{i} x_{k}=1$ in E^{3}, centered at $\overrightarrow{0}$.

Assume $a_{i k}=a_{k i}$.
[Hint: Explore the extrema of $f(\vec{x})=|\vec{x}|^{2}$ on the condition that

$$
\left.g(\vec{x})=\sum_{i, k} a_{i k} x_{i} x_{k}-1=0 .\right]
$$

6. Using Lagrange's method, redo Problems $4,5,6,7,11,12$, and 13 of $\S 9$.
7. In E^{2}, find the shortest distance from $\overrightarrow{0}$ to the parabola $y^{2}=2(x+a)$.

[^18]8. In E^{3}, find the shortest distance from $\overrightarrow{0}$ to the intersection line of two planes given by the formulas $\vec{u} \cdot \vec{x}=a$ and $\vec{v} \cdot \vec{x}=b$ with \vec{u} and \vec{v} different from $\overrightarrow{0}$. (Rewrite all in coordinate form!)
9. In E^{n}, find the largest value of $|\vec{a} \cdot \vec{x}|$ if $|\vec{x}|=1$. Use Lagrange's method.
*10. (Hadamard's theorem.) If $A=\operatorname{det}\left(x_{i k}\right)(i, k \leq n)$, then
$$
|A| \leq \prod_{i=1}^{n}\left|\vec{x}_{i}\right|
$$
where $\vec{x}_{i}=\left(x_{i 1}, x_{i 2}, \ldots, x_{i n}\right)$.
[Hints: Set $a_{i}=\left|\vec{x}_{i}\right|$. Treat A as a function of n^{2} variables. Using Lagrange's method, prove that, under the n constraints $\left|\vec{x}_{i}\right|^{2}-a_{i}^{2}=0, A$ cannot have an extremum unless $A^{2}=\operatorname{det}\left(y_{i k}\right)$, with $y_{i k}=0($ if $i \neq k)$ and $y_{i i}=a_{i}^{2}$.]

Chapter 7

Volume and Measure

Our intuitive idea of "volume" is rather vague. We just tend to assume that "bodies" in space (i.e., in E^{3}) somehow have numerically expressed "volumes," but it remains unclear which sets in E^{3} are "bodies" and how volume is defined.

We also intuitively assume that volumes behave "additively." That is, if a body is split into disjoint parts, then the volume of the whole equals the sum of the volumes of the parts. Similarly for "areas" in E^{2}. In elementary calculus, that is often just taken for granted.

The famous mathematician Henri Lebesgue (1875-1941) extended the idea of "volume" to a large, strictly defined family of sets in E^{n}, called Lebesguemeasurable sets, thus giving rise to what is called measure theory. Its basic idea remains that of additivity, precisely formulated and proved. Modern theory has still more generalized these ideas. In this text, we have so far defined "volumes" for intervals in E^{n} only. Thus it is natural to take intervals as our starting point. This will also lead to the important idea of a semiring of sets and its extension: a ring of sets.

§1. More on Intervals in $\boldsymbol{E}^{\boldsymbol{n}}$. Semirings of Sets

I. As a prologue, we turn to intervals in E^{n} (Chapter 3, $\S 7$).

Theorem 1. If A and B are intervals in E^{n}, then
(i) $A \cap B$ is an interval (\emptyset counts as an interval);
(ii) $A-B$ is the union of finitely many disjoint intervals (but need not be an interval itself).

Proof. The easy proof for E^{1} is left to the reader.
An interval in E^{2} is the cross-product of two line intervals.
Let

$$
A=X \times Y \text { and } B=X^{\prime} \times Y^{\prime}
$$

where X, Y, X^{\prime}, and Y^{\prime} are intervals in E^{1}. Then (see Figure 29)

$$
A \cap B=(X \times Y) \cap\left(X^{\prime} \times Y^{\prime}\right)=\left(X \cap X^{\prime}\right) \times\left(Y \cap Y^{\prime}\right)
$$

and

$$
A-B=\left[\left(X-X^{\prime}\right) \times Y\right] \cup\left[\left(X \cap X^{\prime}\right) \times\left(Y-Y^{\prime}\right)\right]
$$

see Problem 8 in Chapter 1, $\S \S 1-3$.
As the theorem holds in E^{1},

$$
X \cap X^{\prime} \text { and } Y \cap Y^{\prime}
$$

are intervals in E^{1}, while

$$
X-Y^{\prime} \text { and } Y-Y^{\prime}
$$

are finite unions of disjoint line intervals. (In Figure 29 they are just intervals, but in general they are not.)

It easily follows that $A \cap B$ is an interval in E^{2}, while $A-B$ splits into finitely many such intervals. (Verify!) Thus the theorem holds in E^{2}.

Finally, for E^{n}, use induction. An interval in E^{n} is the cross-product of an interval in E^{n-1} by a line interval. Thus if the theorem holds in E^{n-1}, the same argument shows that it holds in E^{n}, too. (Verify!)

This completes the inductive proof.
Actually, Theorem 1 applies to many other families of sets (not necessarily intervals or sets in E^{n}). We now give such families a name.

Definition 1.

A family \mathcal{C} of arbitrary sets is called a semiring iff
(i) $\emptyset \in \mathcal{C}$ (\emptyset is a member), and
(ii) for any sets A and B from \mathcal{C}, we have $A \cap B \in \mathcal{C}$, while $A-B$ is the union of finitely many disjoint sets from \mathcal{C}.

Briefly: \mathcal{C} is a semiring iff it satisfies Theorem 1.
Note that here \mathcal{C} is not just a set, but a whole family of sets. Recall (Chapter $1, \S \S 1-3$) that a set family (family of sets) is a set \mathcal{M} whose members are other sets. If A is a member of \mathcal{M}, we call A an \mathcal{M}-set and write $A \in \mathcal{M}$ (not $A \subseteq \mathcal{M})$.

Sometimes we use index notation:

$$
\mathcal{M}=\left\{X_{i} \mid i \in I\right\},
$$

briefly

$$
\mathcal{M}=\left\{X_{i}\right\}
$$

where the X_{i} are \mathcal{M}-sets distinguished from each other by the subscripts i varying over some index set I.

A set family $\mathcal{M}=\left\{X_{i}\right\}$ and its union

$$
\bigcup_{i} X_{i}
$$

are said to be disjoint iff

$$
X_{i} \cap X_{j}=\emptyset \text { whenever } i \neq j
$$

Notation:

$$
\bigcup X_{i}(\text { disjoint })
$$

In our case, $A \in \mathcal{C}$ means that A is a \mathcal{C}-set (a member of the semiring \mathcal{C}). The formula

$$
(\forall A, B \in \mathcal{C}) \quad A \cap B \in \mathcal{C}
$$

means that the intersection of two \mathcal{C}-sets in a \mathcal{C}-set itself.
Henceforth, we will often speak of semirings \mathcal{C} in general. In particular, this will apply to the case $\mathcal{C}=\{$ intervals $\}$. Always keep this case in mind!

Note 1. By Theorem 1, the intervals in E^{n} form a semiring. So also do the half-open and the half-closed intervals separately (same proof!), but not the open (or closed) ones. (Why?)

Caution. The union and difference of two \mathcal{C}-sets need not be a \mathcal{C}-set. To remedy this, we now enlarge \mathcal{C}.

Definition 2.

We say that a set A (from \mathcal{C} or not) is \mathcal{C}-simple and write

$$
A \in \mathcal{C}_{s}^{\prime}
$$

iff A is a finite union of disjoint \mathcal{C}-sets (such as $A-B$ in Theorem 1).
Thus \mathcal{C}_{s}^{\prime} is the family of all \mathcal{C}-simple sets.
Every \mathcal{C}-set is also a \mathcal{C}_{s}^{\prime}-set, i.e., a \mathcal{C} simple one. (Why?) Briefly:

$$
\mathcal{C} \subseteq \mathcal{C}_{s}^{\prime}
$$

If \mathcal{C} is the set of all intervals, a \mathcal{C}-simple set may look as in Figure 30.

Figure 30

Theorem 2. If \mathcal{C} is a semiring, and if A and B are \mathcal{C}-simple, so also are

$$
A \cap B, A-B \text {, and } A \cup B
$$

In symbols,

$$
\left(\forall A, B \in \mathcal{C}_{s}^{\prime}\right) \quad A \cap B \in \mathcal{C}_{s}^{\prime}, A-B \in \mathcal{C}_{s}^{\prime}, \quad \text { and } A \cup B \in \mathcal{C}_{s}^{\prime}
$$

We give a proof outline and suggest the proof as an exercise. Before attempting it, the reader should thoroughly review the laws and problems of Chapter 1, §§1-3.
(1) To prove $A \cap B \in \mathcal{C}_{s}^{\prime}$, let

$$
A=\bigcup_{i=1}^{m} A_{i}(\text { disjoint }) \text { and } B=\bigcup_{k=1}^{n} B_{k}(\text { disjoint })
$$

with $A_{i}, B_{k} \in \mathcal{C}$. Verify that

$$
A \cap B=\bigcup_{k=1}^{n} \bigcup_{i=1}^{m}\left(A_{i} \cap B_{k}\right)(\text { disjoint })
$$

and so $A \cap B \in \mathcal{C}_{s}^{\prime}$.
(2) Next prove that $A-B \in \mathcal{C}_{s}^{\prime}$ if $A \in \mathcal{C}_{s}^{\prime}$ and $B \in \mathcal{C}$.

Indeed, if

$$
A=\bigcup_{i=1}^{m} A_{i}(\text { disjoint })
$$

then

$$
A-B=\bigcup_{i=1}^{m} A_{i}-B=\bigcup_{i=1}^{m}\left(A_{i}-B\right)(\text { disjoint })
$$

Verify and use Definition 2.
(3) Prove that

$$
\left(\forall A, B \in \mathcal{C}_{s}^{\prime}\right) \quad A-B \in \mathcal{C}_{s}^{\prime}
$$

we suggest the following argument.
Let

$$
B=\bigcup_{k=1}^{n} B_{k}, \quad B_{k} \in \mathcal{C}
$$

Then

$$
A-B=A-\bigcup_{k=1}^{n} B_{k}=\bigcap_{k=1}^{n}\left(A-B_{k}\right)
$$

by duality laws. But $A-B_{k}$ is \mathcal{C}-simple by step (2). Hence so is

$$
A-B=\bigcap_{k=1}^{m}\left(A-B_{k}\right)
$$

by step (1) plus induction.
(4) To prove $A \cup B \in \mathcal{C}_{s}^{\prime}$, verify that

$$
A \cup B=A \cup(B-A)
$$

where $B-A \in \mathcal{C}_{s}^{\prime}$, by (3).
Note 2. By induction, Theorem 2 extends to any finite number of \mathcal{C}_{s}^{\prime}-sets. It is a kind of "closure law."

We thus briefly say that \mathcal{C}_{s}^{\prime} is closed under finite unions, intersections, and set differences. Any (nonempty) set family with these properties is called a set ring (see also $\S 3$).

Thus Theorem 2 states that if \mathcal{C} is a semiring, then \mathcal{C}_{s}^{\prime} is a ring.
Caution. An infinite union of \mathcal{C}-simple sets need not be \mathcal{C}-simple. Yet we may consider such unions, as we do next.

In Corollary 1 below, \mathcal{C}_{s}^{\prime} may be replaced by any set $\operatorname{ring} \mathcal{M}$.
Corollary 1. If $\left\{A_{n}\right\}$ is a finite or infinite sequence of sets from a semiring \mathcal{C} (or from a ring \mathcal{M} such as \mathcal{C}_{s}^{\prime}), then there is a disjoint sequence of \mathcal{C}-simple sets (or \mathcal{M}-sets) $B_{n} \subseteq A_{n}$ such that

$$
\bigcup_{n} A_{n}=\bigcup_{n} B_{n}
$$

Proof. Let $B_{1}=A_{1}$ and for $n=1,2, \ldots$,

$$
B_{n+1}=A_{n+1}-\bigcup_{k=1}^{n} A_{k}, \quad A_{k} \in \mathcal{C}
$$

By Theorem 2, the B_{n} are \mathcal{C}-simple (as are A_{n+1} and $\bigcup_{k=1}^{n} A_{k}$). Show that they are disjoint (assume the opposite and find a contradiction) and verify that $\bigcup A_{n}=\bigcup B_{n}$: If $x \in \bigcup A_{n}$, take the least n for which $x \in A_{n}$. Then $n>1$ and

$$
x \in A_{n}-\bigcup_{k=1}^{n-1} A_{k}=B_{n}
$$

or $n=1$ and $x \in A_{1}=B_{1}$.
Note 3. In Corollary 1, $B_{n} \in \mathcal{C}_{s}^{\prime}$, i.e., $B_{n}=\bigcup_{i=1}^{m_{n}} C_{n i}$ for some disjoint sets $C_{n i} \in \mathcal{C}$. Thus

$$
\bigcup_{n} A_{n}=\bigcup_{n} \bigcup_{i=1}^{m_{n}} C_{n i}
$$

is also a countable disjoint union of \mathcal{C}-sets.
II. Recall that the volume of intervals is additive (Problem 9 in Chapter 3, $\S 7)$. That is, if $A \in \mathcal{C}$ is split into finitely many disjoint subintervals, then $v A$ (the volume of A) equals the sum of the volumes of the parts.

We shall need the following lemma.
Lemma 1. Let $X_{1}, X_{2}, \ldots, X_{m} \in \mathcal{C}$ (intervals in E^{n}). If the X_{i} are mutually disjoint, then
(i) $\bigcup_{i=1}^{m} X_{i} \subseteq Y \in \mathcal{C}$ implies $\sum_{i=1}^{m} v X_{i} \leq v Y$; and
(ii) $\bigcup_{i=1}^{m} X_{i} \subseteq \bigcup_{k=1}^{p} Y_{k}\left(\right.$ with $\left.Y_{k} \in \mathcal{C}\right)$ implies $\sum_{i=1}^{m} v X_{i} \leq \sum_{k=1}^{p} v Y_{k}$.

Proof. (i) By Theorem 2, the set

$$
Y-\bigcup_{i=1}^{m} X_{i}
$$

is \mathcal{C}-simple; so

$$
Y-\bigcup_{i=1}^{m} X_{i}=\bigcup_{j=1}^{q} C_{j}
$$

for some disjoint intervals C_{j}. Hence

$$
Y=\bigcup X_{i} \cup \bigcup C_{j}(\text { all disjoint })
$$

Thus by additivity,

$$
v Y=\sum_{i=1}^{m} v X_{i}+\sum_{j=1}^{q} v C_{j} \geq \sum_{i=1}^{m} v X_{i}
$$

as claimed.
(ii) By set theory (Problem 9 in Chapter $1, \S \S 1-3$),

$$
X_{i} \subseteq \bigcup_{k=1}^{p} Y_{k}
$$

implies

$$
X_{i}=X_{i} \cap \bigcup_{k=1}^{p} Y_{k}=\bigcup_{k=1}^{p}\left(X_{i} \cap Y_{k}\right)
$$

If it happens that the Y_{k} are mutually disjoint also, so certainly are the smaller intervals $X_{i} \cap Y_{k}$; so by additivity,

$$
v X_{i}=\sum_{k=1}^{p} v\left(X_{i} \cap Y_{k}\right) .
$$

Hence

$$
\sum_{i=1}^{m} v X_{i}=\sum_{i=1}^{m} \sum_{k=1}^{p} v\left(X_{i} \cap Y_{k}\right)=\sum_{k=1}^{p}\left[\sum_{i=1}^{m} v\left(X_{i} \cap Y_{k}\right)\right] .
$$

But by (i),

$$
\sum_{i=1}^{m} v\left(X_{i} \cap Y_{k}\right) \leq v Y_{k}(\text { why? })
$$

so

$$
\sum_{i=1}^{m} v X_{i} \leq \sum_{k=1}^{p} v Y_{k}
$$

as required.
If, however, the Y_{k} are not disjoint, Corollary 1 yields

$$
\bigcup Y_{k}=\bigcup B_{k}(\text { disjoint })
$$

with

$$
Y_{k} \supseteq B_{k}=\bigcup_{j=1}^{m_{k}} C_{k j}(\text { disjoint }), \quad C_{k j} \in \mathcal{C}
$$

By (i),

$$
\sum_{j=1}^{m_{k}} v C_{k j} \leq v Y_{k}
$$

As

$$
\bigcup_{i=1}^{m} X_{i} \subseteq \bigcup_{k=1}^{p} Y_{k}=\bigcup_{k=1}^{p} B_{k}=\bigcup_{k=1}^{p} \bigcup_{j=1}^{m_{k}} C_{k j}(\text { disjoint })
$$

all reduces to the previous disjoint case.
Corollary 2. Let $A \in \mathcal{C}_{s}^{\prime}\left(\mathcal{C}=\right.$ intervals in $\left.E^{n}\right)$. If

$$
A=\bigcup_{i=1}^{m} X_{i}(\text { disjoint })=\bigcup_{k=1}^{p} Y_{k}(\text { disjoint })
$$

with $X_{i}, Y_{k} \in \mathcal{C}$, then

$$
\sum_{i=1}^{m} v X_{i}=\sum_{k=1}^{p} v Y_{k}
$$

(Use part (ii) of the lemma twice.)
Thus we can (and do) unambiguously define $v A$ to be either of these sums.

Problems on Intervals and Semirings

1. Complete the proof of Theorem 1 and Note 1.
$\mathbf{1}^{\prime}$. Prove Theorem 2 in detail.
2. Fill in the details in the proof of Corollary 1.
$\mathbf{2}^{\prime}$. Prove Corollary 2.
3. Show that, in the definition of a semiring, the condition $\emptyset \in \mathcal{C}$ is equivalent to $\mathcal{C} \neq \emptyset$.
[Hint: Consider $\emptyset=A-A=\bigcup_{i=1}^{m} A_{i}\left(A, A_{i} \in \mathcal{C}\right)$ to get $\emptyset=A_{i} \in \mathcal{C}$.]
4. Given a set S, show that the following are semirings or rings.
(a) $\mathcal{C}=\{$ all subsets of $S\}$;
(b) $\mathcal{C}=\{$ all finite subsets of $S\}$;
(c) $\mathcal{C}=\{\emptyset\}$;
(d) $\mathcal{C}=\{\emptyset$ and all singletons in $S\}$.

Disprove it for $\mathcal{C}=\{\emptyset$ and all two-point sets in $S\}, S=\{1,2,3, \ldots\}$. In (a)-(c), show that $\mathcal{C}_{s}^{\prime}=\mathcal{C}$. Disprove it for (d).
5. Show that the cubes in $E^{n}(n>1)$ do not form a semiring.
6. Using Corollary 2 and the definition thereafter, show that volume is additive for \mathcal{C}-simple sets. That is,

$$
\text { if } A=\bigcup_{i=1}^{m} A_{i}(\text { disjoint }) \text { then } v A=\sum_{i=1}^{m} v A_{i} \quad\left(A, A_{i} \in \mathcal{C}_{s}^{\prime}\right) .
$$

7. Prove the lemma for \mathcal{C}-simple sets. [Hint: Use Problem 6 and argue as before.]
8. Prove that if \mathcal{C} is a semiring, then \mathcal{C}_{s}^{\prime} (\mathcal{C}-simple sets) $=\mathcal{C}_{s}$, the family of all finite unions of \mathcal{C}-sets (disjoint or not).
[Hint: Use Theorem 2.]

§2. \mathcal{C}_{σ}-Sets. Countable Additivity. Permutable Series

We now want to further extend the definition of volume by considering countable unions of intervals, called \mathcal{C}_{σ}-sets (\mathcal{C} being the semiring of all intervals in E^{n}).

We also ask, if A is split into countably many such sets, does additivity still hold? This is called countable additivity or σ-additivity (the σ is used whenever countable unions are involved).

We need two lemmas in addition to that of $\S 1$.

Lemma 1. If B is a nonempty interval in E^{n}, then given $\varepsilon>0$, there is an open interval C and a closed one A such that

$$
A \subseteq B \subseteq C
$$

and

$$
v C-\varepsilon<v B<v A+\varepsilon
$$

Proof. Let the endpoints of B be

$$
\bar{a}=\left(a_{1}, \ldots, a_{n}\right) \text { and } \bar{b}=\left(b_{1}, \ldots, b_{n}\right) .
$$

For each natural number i, consider the open interval C_{i}, with endpoints

$$
\left(a_{1}-\frac{1}{i}, a_{2}-\frac{1}{i}, \ldots, a_{n}-\frac{1}{i}\right) \text { and }\left(b_{1}+\frac{1}{i}, b_{2}+\frac{1}{i}, \ldots, b_{n}+\frac{1}{i}\right) .
$$

Then $B \subseteq C_{i}$ and

$$
v C_{i}=\prod_{k=1}^{n}\left[b_{k}+\frac{1}{i}-\left(a_{k}-\frac{1}{i}\right)\right]=\prod_{k=1}^{n}\left(b_{k}-a_{k}+\frac{2}{i}\right) .
$$

Making $i \rightarrow \infty$, we get

$$
\lim _{i \rightarrow \infty} v C_{i}=\prod_{k=1}^{n}\left(b_{k}-a_{k}\right)=v B
$$

(Why?) Hence by the sequential limit definition, given $\varepsilon>0$, there is a natural i such that

$$
v C_{i}-v B<\varepsilon,
$$

or

$$
v C_{i}-\varepsilon<v B .
$$

As C_{i} is open and $\supseteq B$, it is the desired interval C.
Similarly, one finds the closed interval $A \subseteq B$. (Verify!)
Lemma 2. Any open set $G \subseteq E^{n}$ is a countable union of open cubes A_{k} and also a disjoint countable union of half-open intervals.
(See also Problem 2 below.)
Proof. If $G=\emptyset$, take all $A_{k}=\emptyset$.
If $G \neq \emptyset$, every point $p \in G$ has a cubic neighborhood

$$
C_{p} \subseteq G,
$$

centered at p (Problem 3 in Chapter 3, §12). By slightly shrinking this C_{p}, one can make its endpoints rational, with p still in it (but not necessarily its center), and make C_{p} open, half-open, or closed, as desired. (Explain!)

Choose such a cube C_{p} for every $p \in G$; so

$$
G \subseteq \bigcup_{p \in G} C_{p}
$$

But by construction, G contains all C_{p}, so that

$$
G=\bigcup_{p \in G} C_{p} .
$$

Moreover, because the coordinates of the endpoints of all C_{p} are rational, the set of ordered pairs of endpoints of the C_{p} is countable, and thus, while the set of all $p \in G$ is uncountable, the set of distinct C_{p} is countable. Thus one can put the family of all C_{p} in a sequence and rename it $\left\{A_{k}\right\}$:

$$
G=\bigcup_{k=1}^{\infty} A_{k}
$$

If, further, the A_{k} are half-open, we can use Corollary 1 and Note 3, both from $\S 1$, to make the union disjoint (half-open intervals form a semiring!).

Now let \mathcal{C}_{σ} be the family of all possible countable unions of intervals in E^{n}, such as G in Lemma 2 (we use \mathcal{C}_{s} for all finite unions). Thus $A \in \mathcal{C}_{\sigma}$ means that A is a \mathcal{C}_{σ}-set, i.e.,

$$
A=\bigcup_{i=1}^{\infty} A_{i}
$$

for some sequence of intervals $\left\{A_{i}\right\}$. Such are all open sets in E^{n}, but there also are many other \mathcal{C}_{σ}-sets.

We can always make the sequence $\left\{A_{i}\right\}$ infinite (add null sets or repeat a term!).

By Corollary 1 and Note 3 of $\S 1$, we can decompose any \mathcal{C}_{σ}-set A into countably many disjoint intervals. This can be done in many ways. However, we have the following result.
Theorem 1. If

$$
A=\bigcup_{i=1}^{\infty} A_{i}(\text { disjoint })=\bigcup_{k=1}^{\infty} B_{k}(\text { disjoint })
$$

for some intervals A_{i}, B_{k} in E^{n}, then

$$
\sum_{i=1}^{\infty} v A_{i}=\sum_{k=1}^{\infty} v B_{k} \cdot{ }^{1}
$$

[^19]Thus we can (and do) unambiguously define either of these sums to be the volume $v A$ of the \mathcal{C}_{σ}-set A.

Proof. We shall use the Heine-Borel theorem (Problem 10 in Chapter 4, $\S 6$; review it!).

Seeking a contradiction, let (say)

$$
\sum_{i=1}^{\infty} v A_{i}>\sum_{k=1}^{\infty} v B_{k}
$$

so, in particular,

$$
\sum_{k=1}^{\infty} v B_{k}<+\infty
$$

As

$$
\sum_{i=1}^{\infty} v A_{i}=\lim _{m \rightarrow \infty} \sum_{i=1}^{m} v A_{i}
$$

there is an integer m for which

$$
\sum_{i=1}^{m} v A_{i}>\sum_{k=1}^{\infty} v B_{k}
$$

We fix that m and set

$$
2 \varepsilon=\sum_{i=1}^{m} v A_{i}-\sum_{k=1}^{\infty} v B_{k}>0
$$

Dropping "empties" (if any), we assume $A_{i} \neq \emptyset$ and $B_{k} \neq \emptyset$.
Then Lemma 1 yields open intervals $Y_{k} \supseteq B_{k}$, with

$$
v B_{k}>v Y_{k}-\frac{\varepsilon}{2^{k}}, \quad k=1,2, \ldots
$$

and closed ones $X_{i} \subseteq A_{i}$, with

$$
v X_{i}+\frac{\varepsilon}{m}>v A_{i}
$$

so

$$
\begin{aligned}
2 \varepsilon=\sum_{i=1}^{m} v A_{i}-\sum_{k=1}^{\infty} v B_{k} & <\sum_{i=1}^{m}\left(v X_{i}+\frac{\varepsilon}{m}\right)-\sum_{k=1}^{\infty}\left(v Y_{k}-\frac{\varepsilon}{2^{k}}\right) \\
& =\sum_{i=1}^{m} v X_{i}-\sum_{k=1}^{\infty} v Y_{k}+2 \varepsilon .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\sum_{i=1}^{m} v X_{i}>\sum_{k=1}^{\infty} v Y_{k} \tag{1}
\end{equation*}
$$

(Explain in detail!)
Now, as

$$
X_{i} \subseteq A_{i} \subseteq A=\bigcup_{k=1}^{\infty} B_{k} \subseteq \bigcup_{k=1}^{\infty} Y_{k}
$$

each of the closed intervals X_{i} is covered by the open sets Y_{k}.
By the Heine-Borel theorem, $\bigcup_{i=1}^{m} X_{i}$ is already covered by a finite number of the Y_{k}, say,

$$
\bigcup_{i=1}^{m} X_{i} \subseteq \bigcup_{k=1}^{p} Y_{k}
$$

The X_{i} are disjoint, for even the larger sets A_{i} are. Thus by Lemma 1(ii) in $\S 1$,

$$
\sum_{i=1}^{m} v X_{i} \leq \sum_{k=1}^{p} v Y_{k} \leq \sum_{k=1}^{\infty} v Y_{k}
$$

contrary to (1). This contradiction completes the proof.
Corollary 1. If

$$
A=\bigcup_{k=1}^{\infty} B_{k}(\text { disjoint })
$$

for some intervals B_{k}, then

$$
v A=\sum_{k=1}^{\infty} v B_{k} .
$$

Indeed, this is simply the definition of $v A$ contained in Theorem 1.
Note 1. In particular, Corollary 1 holds if A is an interval itself. We express this by saying that the volume of intervals is σ-additive or countably additive. This also shows that our previous definition of volume (for intervals) agrees with the definition contained in Theorem 1 (for \mathcal{C}_{σ}-sets).

Note 2. As all open sets are \mathcal{C}_{σ}-sets (Lemma 2), volume is now defined for any open set $A \subseteq E^{n}$ (in particular, for $A=E^{n}$).
Corollary 2. If A_{i}, B_{k} are intervals in E^{n}, with

$$
\bigcup_{i=1}^{\infty} A_{i} \subseteq \bigcup_{k=1}^{\infty} B_{k}
$$

then provided the A_{i} are mutually disjoint,

$$
\begin{equation*}
\sum_{i=1}^{\infty} v A_{i} \leq \sum_{k=1}^{\infty} v B_{k} \tag{2}
\end{equation*}
$$

The proof is as in Theorem 1 (but the B_{k} need not be disjoint here).
Corollary 3 (" σ-subadditivity" ${ }^{2}$ of the volume). If

$$
A \subseteq \bigcup_{k=1}^{\infty} B_{k}
$$

where $A \in \mathcal{C}_{\sigma}$ and the B_{k} are intervals in E^{n}, then

$$
v A \leq \sum_{k=1}^{\infty} v B_{k} .
$$

Proof. Set

$$
A=\bigcup_{i=1}^{\infty} A_{i}(\text { disjoint }), A_{i} \in \mathcal{C}
$$

and use Corollary 2.
Corollary 4 ("monotonicity" ${ }^{2}$). If $A, B \in \mathcal{C}_{\sigma}$, with

$$
A \subseteq B
$$

then

$$
v A \leq v B .
$$

("Larger sets have larger volumes.")
This is simply Corollary 3 , with $\bigcup_{k} B_{k}=B$.
Corollary 5. The volume of all of E^{n} is ∞ (we write ∞ for $+\infty$).
Proof. We have $A \subseteq E^{n}$ for any interval A.
Thus, by Corollary $4, v A \leq v E^{n}$.
As $v A$ can be chosen arbitrarily large, $v E^{n}$ must be infinite.
Corollary 6. For any countable set $A \subset E^{n}, v A=0$. In particular, $v \emptyset=0$.
Proof. First let $A=\{\bar{a}\}$ be a singleton. Then we may treat A as a degenerate interval $[\bar{a}, \bar{a}]$. As all its edge lengths are 0 , we have $v A=0$.

Next, if $A=\left\{\bar{a}_{1}, \bar{a}_{2}, \ldots\right\}$ is a countable set, then

$$
A=\bigcup_{k}\left\{\bar{a}_{k}\right\} ;
$$

so

$$
v A=\sum_{k} v\left\{\bar{a}_{k}\right\}=0
$$

by Corollary 1.

[^20]Finally, \emptyset is the degenerate open interval (\bar{a}, \bar{a}); so $v \emptyset=0$.
Note 3. Actually, all these propositions hold also if all sets involved are \mathcal{C}_{σ}-sets, not just intervals (split each \mathcal{C}_{σ}-set into disjoint intervals!).

Permutable Series. Since σ-additivity involves countable sums, it appears useful to generalize the notion of a series.

We say that a series of constants,

$$
\sum a_{n}
$$

is permutable iff it has a definite (possibly infinite) sum obeying the general commutative law:

Given any one-one map

$$
u: N \stackrel{\text { onto }}{\longleftrightarrow} N
$$

($N=$ the naturals), we have

$$
\sum_{n} a_{n}=\sum_{n} a_{u_{n}}
$$

where $u_{n}=u(n)$.
(Such are all positive and all absolutely convergent series in a complete space E; see Chapter 4, §13.) If the series is permutable, the sum does not depend on the choice of the map u.

Thus, given any $u: N \stackrel{\text { onto }}{\longleftrightarrow} J$ (where J is a countable index set) and a set

$$
\left\{a_{i} \mid i \in J\right\} \subseteq E
$$

(where E is E^{*} or a normed space), we can define

$$
\sum_{i \in J} a_{i}=\sum_{n=1}^{\infty} a_{u_{n}}
$$

if $\sum_{n} a_{u_{n}}$ is permutable.
In particular, if

$$
J=N \times N
$$

(a countable set, by Theorem 1 in Chapter $1, \S 9$), we call

$$
\sum_{i \in J} a_{i}
$$

a double series, denoted by symbols like

$$
\sum_{n, k} a_{k n} \quad(k, n \in N) .
$$

Note that

$$
\sum_{i \in J}\left|a_{i}\right|
$$

is always defined (being a positive series).
If

$$
\sum_{i \in J}\left|a_{i}\right|<\infty
$$

we say that $\sum_{i \in J} a_{i}$ converges absolutely.
For a positive series, we obtain the following result.

Theorem 2.

(i) All positive series in E^{*} are permutable.
(ii) For positive double series in E^{*}, we have

$$
\begin{equation*}
\sum_{n, k=1}^{\infty} a_{n k}=\sum_{n=1}^{\infty}\left(\sum_{k=1}^{\infty} a_{n k}\right)=\sum_{k=1}^{\infty}\left(\sum_{n=1}^{\infty} a_{n k}\right) \tag{3}
\end{equation*}
$$

Proof. (i) Let

$$
s=\sum_{n=1}^{\infty} a_{n} \text { and } s_{m}=\sum_{n=1}^{m} a_{n} \quad\left(a_{n} \geq 0\right) .
$$

Then clearly

$$
s_{m+1}=s_{m}+a_{m+1} \geq s_{m}
$$

i.e., $\left\{s_{m}\right\} \uparrow$, and so

$$
s=\lim _{m \rightarrow \infty} s_{m}=\sup _{m} s_{m}
$$

by Theorem 3 in Chapter 3, $\S 15$.
Hence s certainly does not exceed the lub of all possible sums of the form

$$
\sum_{i \in I} a_{i},
$$

where I is a finite subset of N (the partial sums s_{m} are among them). Thus

$$
\begin{equation*}
s \leq \sup \sum_{i \in I} a_{i} \tag{4}
\end{equation*}
$$

over all finite sets $I \subset N$.
On the other hand, every such $\sum_{i \in I} a_{i}$ is exceeded by, or equals, some s_{m}. Hence in (4), the reverse inequality holds, too, and so

$$
s=\sup \sum_{i \in I} a_{i} .
$$

But $\sup \sum_{i \in I} a_{i}$ clearly does not depend on any arrangement of the a_{i}. Therefore, the series $\sum a_{n}$ is permutable, and assertion (i) is proved.

Assertion (ii) follows similarly by considering sums of the form $\sum_{i \in I} a_{i}$, where I is a finite subset of $N \times N$, and showing that the lub of such sums equals each of the three expressions in (3). We leave it to the reader.

A similar formula holds for absolutely convergent series (see Problems).

Problems on \mathcal{C}_{σ}-Sets, σ-Additivity, and Permutable Series

1. Fill in the missing details in the proofs of this section.
$\mathbf{1}^{\prime}$. Prove Note 3.
2. Show that every open set $A \neq \emptyset$ in E^{n} is a countable union of disjoint half-open cubes.
[Outline: For each natural m, show that E^{n} is split into such cubes of edge length 2^{-m} by the hyperplanes

$$
x_{k}=\frac{i}{2^{m}} \quad i=0, \pm 1, \pm 2, \ldots ; k=1,2, \ldots, n
$$

and that the family \mathcal{C}_{m} of such cubes is countable.
For $m>1$, let $C_{m 1}, C_{m 2}, \ldots$ be the sequence of those cubes from \mathcal{C}_{m} (if any) that lie in A but not in any cube $C_{s j}$ with $s<m$.

As A is open, $x \in A$ iff $x \in$ some $C_{m j}$.]
3. Prove that any open set $A \subseteq E^{1}$ is a countable union of disjoint (possibly infinite) open intervals.
[Hint: By Lemma 2, $A=\bigcup_{n}\left(a_{n}, b_{n}\right)$. If, say, $\left(a_{1}, b_{1}\right)$ overlaps with some (a_{m}, b_{m}), replace both by their union. Continue inductively.]
4. Prove that \mathcal{C}_{σ} is closed under finite intersections and countable unions.
5. (i) Find $A, B \in \mathcal{C}_{\sigma}$ such that $A-B \notin \mathcal{C}_{\sigma}$.
(ii) Show that \mathcal{C}_{σ} is not a semiring.
[Hint: Try $A=E^{1}, B=R$ (the rationals).]
Note. In the following problems, J is countably infinite, $a_{i} \in E$ (E complete).
6. Prove that

$$
\sum_{i \in J}\left|a_{i}\right|<\infty
$$

iff for every $\varepsilon>0$, there is a finite set

$$
F \subset J \quad(F \neq \emptyset)
$$

such that

$$
\sum_{i \in I}\left|a_{i}\right|<\varepsilon
$$

for every finite $I \subset J-F$.
[Outline: By Theorem 2, fix $u: N \stackrel{\text { onto }}{\longleftrightarrow} J$ with

$$
\sum_{i \in J}\left|a_{i}\right|=\sum_{n=1}^{\infty}\left|a_{u_{n}}\right| .
$$

By Cauchy's criterion,

$$
\sum_{n=1}^{\infty}\left|a_{u_{n}}\right|<\infty
$$

iff

$$
(\forall \varepsilon>0)(\exists q)(\forall n>m>q) \quad \sum_{k=m}^{n}\left|a_{u_{k}}\right|<\varepsilon .
$$

Let $F=\left\{u_{1}, \ldots, u_{q}\right\}$. If I is as above,

$$
(\exists n>m>q) \quad\left\{u_{m}, \ldots, u_{n}\right\} \supseteq I
$$

so

$$
\left.\sum_{i \in I}\left|a_{i}\right| \leq \sum_{k=m}^{n}\left|a_{u_{k}}\right|<\varepsilon .\right]
$$

7. Prove that if

$$
\sum_{i \in J}\left|a_{i}\right|<\infty
$$

then for every $\varepsilon>0$, there is a finite $F \subset J(F \neq \emptyset)$ such that

$$
\left|\sum_{i \in J} a_{i}-\sum_{i \in K} a_{i}\right|<\varepsilon
$$

for each finite $K \supset F(K \subset J)$.
[Hint: Proceed as in Problem 6, with $I=K-F$ and q so large that

$$
\left.\left|\sum_{i \in J} a_{i}-\sum_{i \in F} a_{i}\right|<\frac{1}{2} \varepsilon \quad \text { and } \quad\left|\sum_{i \in F} a_{i}\right|<\frac{1}{2} \varepsilon .\right]
$$

8. Show that if

$$
J=\bigcup_{n=1}^{\infty} I_{n}(\text { disjoint })
$$

then

$$
\sum_{i \in J}\left|a_{i}\right|=\sum_{n=1}^{\infty} b_{n}, \text { where } b_{n}=\sum_{i \in I_{n}}\left|a_{i}\right| .
$$

(Use Problem 8^{\prime} below.)
8^{\prime}. Show that

$$
\sum_{i \in J}\left|a_{i}\right|=\sup _{F} \sum_{i \in F}\left|a_{i}\right|
$$

over all finite sets $F \subset J(F \neq \emptyset)$.
[Hint: Argue as in Theorem 2.]
9. Show that if $\emptyset \neq I \subseteq J$, then

$$
\sum_{i \in I}\left|a_{i}\right| \leq \sum_{i \in J}\left|a_{i}\right|
$$

[Hint: Use Problem 8^{\prime} and Corollary 2 of Chapter 2, §§8-9.]
10. Continuing Problem 8, prove that if

$$
\sum_{i \in J}\left|a_{i}\right|=\sum_{n=1}^{\infty} b_{n}<\infty
$$

then

$$
\sum_{i \in J} a_{i}=\sum_{n=1}^{\infty} c_{n} \text { with } c_{n}=\sum_{i \in I_{n}} a_{i}
$$

[Outline: By Problem 9,

$$
\begin{gathered}
(\forall n) \quad \sum_{i \in I_{n}}\left|a_{i}\right|<\infty ; \\
c_{n}=\sum_{i \in I_{n}} a_{i}
\end{gathered}
$$

so
and

$$
\sum_{n=1}^{\infty} c_{n}
$$

converge absolutely.
Fix ε and F as in Problem 7. Choose the largest $q \in N$ with

$$
F \cap I_{q} \neq \emptyset
$$

(why does it exist?), and fix any $n>q$. By Problem $7,(\forall k \leq n)$
$(\forall k \leq n)\left(\exists\right.$ finite $\left.F_{k} \mid J \supseteq F_{k} \supseteq F \cap I_{q}\right)$

$$
\left(\forall \text { finite } H_{k} \mid I_{k} \supseteq H_{k} \supseteq F_{k}\right) \quad\left|\sum_{i \in H_{k}} a_{i}-\sum_{k=1}^{n} c_{k}\right|<\frac{1}{2} \varepsilon .
$$

(Explain!) Let

$$
K=\bigcup_{k=1}^{n} H_{k}
$$

so

$$
\left|\sum_{k=1}^{n} c_{k}-\sum_{i \in J} a_{i}\right|<\varepsilon
$$

and $K \supset F$. By Problem 7,

$$
\left|\sum_{i \in K} a_{i}-\sum_{i \in J} a_{i}\right|<\varepsilon
$$

Deduce

$$
\left|\sum_{k=1}^{n} c_{k}-\sum_{i \in J} a_{i}\right|<2 \varepsilon
$$

Let $n \rightarrow \infty$; then $\varepsilon \rightarrow 0$.]
11. (Double series.) Prove that if one of the expressions

$$
\sum_{n, k=1}^{\infty}\left|a_{n k}\right|, \quad \sum_{n=1}^{\infty}\left(\sum_{k=1}^{\infty}\left|a_{n k}\right|\right), \quad \sum_{k=1}^{\infty}\left(\sum_{n=1}^{\infty}\left|a_{n k}\right|\right)
$$

is finite, so are the other two, and

$$
\sum_{n, k} a_{n k}=\sum_{n}\left(\sum_{k} a_{n k}\right)=\sum_{k}\left(\sum_{n} a_{n k}\right)
$$

with all series involved absolutely convergent.
[Hint: Use Problems 8 and 10, with $J=N \times N$,

$$
I_{n}=\{(n, k) \in J \mid k=1,2, \ldots\} \text { for each } n ;
$$

so

$$
b_{n}=\sum_{k=1}^{\infty}\left|a_{n k}\right| \text { and } c_{n}=\sum_{k=1}^{\infty} a_{n k} .
$$

Thus obtain

$$
\sum_{n, k} a_{n k}=\sum_{n} \sum_{k} a_{n k} .
$$

Similarly,

$$
\left.\sum_{n, k} a_{n k}=\sum_{k} \sum_{n} a_{n, k} \cdot\right]
$$

§3. More on Set Families ${ }^{1}$

Lebesgue extended his theory far beyond \mathcal{C}_{σ}-sets. For a deeper insight, we shall consider set families in more detail, starting with set rings. First, we rephrase and supplement our former definition of that notion, given in $\S 1$.

Definition 1.

A family \mathcal{M} of subsets of a set S is a ring or set ring (in S) iff
(i) $\emptyset \in \mathcal{M}$, i.e., the empty set is a member; and
(ii) \mathcal{M} is closed under finite unions and differences:

$$
(\forall X, Y \in \mathcal{M}) \quad X \cup Y \in \mathcal{M} \text { and } X-Y \in \mathcal{M}
$$

[^21](For intersections, see Theorem 1 below.)
If \mathcal{M} is also closed under countable unions, we call it a σ-ring (in S). Then
$$
\bigcup_{i=1}^{\infty} X_{i} \in \mathcal{M}
$$
whenever
$$
X_{i} \in \mathcal{M} \text { for } i=1,2, \ldots
$$

If S itself is a member of a ring (σ-ring) \mathcal{M}, we call \mathcal{M} a set field (σ-field), or a set algebra (σ-algebra), in S.

Note that S is only a member of $\mathcal{M}, S \in \mathcal{M}$, not to be confused with \mathcal{M} itself.

The family of all subsets of S (the so-called power set of S) is denoted by 2^{S} or $\mathcal{P}(S)$.

Examples.

(a) In any set $S, 2^{S}$ is a σ-field. (Why?)
(b) The family $\{\emptyset\}$, consisting of \emptyset alone, is a σ-ring; $\{\emptyset, S\}$ is a σ-field in S. (Why?)
(c) The family of all finite (countable) subsets of S is a ring (σ-ring) in S.
(d) For any semiring $\mathcal{C}, \mathcal{C}_{s}^{\prime}$ is a ring (Theorem 2 in $\S 1$). Not so for \mathcal{C}_{σ} (Problem 5 in §2).

Theorem 1. Any set ring is closed under finite intersections.
A σ-ring is closed under countable intersections.
Proof. Let \mathcal{M} be a σ-ring (the proof for rings is similar).
Given a sequence $\left\{A_{n}\right\} \subseteq \mathcal{M}$, we must show that $\bigcap_{n} A_{n} \in \mathcal{M}$.
Let

$$
U=\bigcup_{n} A_{n}
$$

By Definition 1,

$$
U \in \mathcal{M} \text { and } U-A_{n} \in \mathcal{M}
$$

as \mathcal{M} is closed under these operations. Hence

$$
\bigcup_{n}\left(U-A_{n}\right) \in \mathcal{M}
$$

and

$$
U-\bigcup_{n}\left(U-A_{n}\right) \in \mathcal{M}
$$

or, by duality,

$$
\bigcap_{n}\left[U-\left(U-A_{n}\right)\right] \in \mathcal{M}
$$

i.e.,

$$
\bigcap_{n} A_{n} \in \mathcal{M}
$$

Corollary 1. Any set ring (field, σ-ring, σ-field) is also a semiring.
Indeed, by Theorem 1 and Definition 1 , if \mathcal{M} is a ring, then $\emptyset \in \mathcal{M}$ and

$$
(\forall A, B \in \mathcal{M}) \quad A \cap B \in \mathcal{M} \text { and } A-B \in \mathcal{M} .
$$

Here we may treat $A-B$ as $(A-B) \cup \emptyset$, a union of two disjoint \mathcal{M}-sets. Thus \mathcal{M} has all properties of a semiring.

Similarly for σ-rings, fields, etc.
In $\S 1$ we saw that any semiring \mathcal{C} can be enlarged to become a ring, \mathcal{C}_{s}^{\prime}. More generally, we obtain the following result.
Theorem 2. For any set family \mathcal{M} in a space $S\left(\mathcal{M} \subseteq 2^{S}\right)$, there is a unique "smallest" set ring \mathcal{R} such that

$$
\mathcal{R} \supseteq \mathcal{M}
$$

("smallest" in the sense that

$$
\mathcal{R} \subseteq \mathcal{R}^{\prime}
$$

for any other ring \mathcal{R}^{\prime} with $\left.\mathcal{R}^{\prime} \supseteq \mathcal{M}\right)$.
The \mathcal{R} of Theorem 2 is called the ring generated by \mathcal{M}. Similarly for σ-rings, fields, and σ-fields in S.
Proof. We give the proof for σ-fields; it is similar in the other cases.
There surely are σ-fields in S that contain \mathcal{M}; e.g., take 2^{S}. Let $\left\{\mathcal{R}_{i}\right\}$ be the family of all possible σ-fields in S such that $\mathcal{R}_{i} \supseteq \mathcal{M}$. Let

$$
\mathcal{R}=\bigcap_{i} \mathcal{R}_{i}
$$

We shall show that this \mathcal{R} is the required "smallest" σ-field containing \mathcal{M}.
Indeed, by assumption,

$$
\mathcal{M} \subseteq \bigcap_{i} \mathcal{R}_{i}=\mathcal{R}
$$

We now verify the σ-field properties for \mathcal{R}.
(1) We have that

$$
(\forall i) \quad \emptyset \in \mathcal{R}_{i} \text { and } S \in \mathcal{R}_{i}
$$

(for \mathcal{R}_{i} is a σ-field, by assumption). Hence

$$
\emptyset \in \bigcap_{i} \mathcal{R}_{i}=\mathcal{R}
$$

Similarly, $S \in \mathcal{R}$. Thus

$$
\emptyset, S \in \mathcal{R}
$$

(2) Suppose

$$
X, Y \in \mathcal{R}=\bigcap_{i} \mathcal{R}_{i}
$$

Then X, Y are in every \mathcal{R}_{i}, and so is $X-Y$. Hence $X-Y$ is in

$$
\bigcap_{i} \mathcal{R}_{i}=\mathcal{R}
$$

Thus \mathcal{R} is closed under differences.
(3) Take any sequence

$$
\left\{A_{n}\right\} \subseteq \mathcal{R}=\bigcap_{i} \mathcal{R}_{i}
$$

Then all A_{n} are in each $\mathcal{R}_{i} . \bigcup_{n} A_{n}$ is in each \mathcal{R}_{i}; so

$$
\bigcup_{n} A_{n} \in \mathcal{R}
$$

Thus \mathcal{R} is closed under countable unions.
We see that \mathcal{R} is indeed a σ-field in S, with $\mathcal{M} \subseteq \mathcal{R}$. As \mathcal{R} is the intersection of all \mathcal{R}_{i} (i.e., all σ-fields $\supseteq \mathcal{M}$), we have

$$
(\forall i) \quad \mathcal{R} \subseteq \mathcal{R}_{i} ;
$$

so \mathcal{R} is the smallest of such σ-fields.
It is unique; for if \mathcal{R}^{\prime} is another such σ-field, then

$$
\mathcal{R} \subseteq \mathcal{R}^{\prime} \subseteq \mathcal{R}
$$

(as both \mathcal{R} and \mathcal{R}^{\prime} are "smallest"); so

$$
\mathcal{R}=\mathcal{R}^{\prime}
$$

Note 1. This proof also shows that the intersection of any family $\left\{\mathcal{R}_{i}\right\}$ of σ-fields is a σ-field. Similarly for σ-rings, fields, and rings.
Corollary 2. The ring \mathcal{R} generated by a semiring \mathcal{C} coincides with

$$
\mathcal{C}_{s}=\{\text { all finite unions of } \mathcal{C} \text {-sets }\}
$$

and with

$$
\mathcal{C}_{s}^{\prime}=\{\text { disjoint finite unions of } \mathcal{C} \text {-sets }\} .
$$

Proof. By Theorem 2 in $\S 1, \mathcal{C}_{s}^{\prime}$ is a ring $\supseteq \mathcal{C}$; and

$$
\mathcal{C}_{s}^{\prime} \subseteq \mathcal{C}_{s} \subseteq \mathcal{R}
$$

(for \mathcal{R} is closed under finite unions, being a ring $\supseteq \mathcal{C}$).
Moreover, as \mathcal{R} is the smallest ring $\supseteq \mathcal{C}$, we have

$$
\mathcal{R} \subseteq \mathcal{C}_{s}^{\prime} \subseteq \mathcal{C}_{s} \subseteq \mathcal{R}
$$

Hence

$$
\mathcal{R}=\mathcal{C}_{s}^{\prime}=\mathcal{C}_{s},
$$

as claimed.
It is much harder to characterize the σ-ring generated by a semiring. The following characterization proves useful in theory and as an exercise. ${ }^{2}$
Theorem 3. The σ-ring \mathcal{R} generated by a semiring \mathcal{C} coincides with the smallest set family \mathcal{D} such that
(i) $\mathcal{D} \supseteq \mathcal{C}$;
(ii) \mathcal{D} is closed under countable disjoint unions;
(iii) $J-X \in \mathcal{D}$ whenever $X \in \mathcal{D}, J \in \mathcal{C}$, and $X \subseteq J$.

Proof. We give a proof outline, leaving the details to the reader.
(1) The existence of a smallest such \mathcal{D} follows as in Theorem 2. Verify!
(2) Writing briefly $A B$ for $A \cap B$ and A^{\prime} for $-A$, prove that

$$
(A-B) C=A-\left(A C^{\prime} \cup B C\right)
$$

(3) For each $I \in \mathcal{D}$, set

$$
\mathcal{D}_{I}=\{A \in \mathcal{D} \mid A I \in \mathcal{D}, A-I \in \mathcal{D}\} .
$$

Then prove that if $I \in \mathcal{C}$, the set family \mathcal{D}_{I} has the properties (i)-(iii) specified in the theorem. (Use the set identity (2) for property (iii).)

Hence by the minimality of $\mathcal{D}, \mathcal{D} \subseteq \mathcal{D}_{I}$. Therefore,

$$
(\forall A \in \mathcal{D})(\forall I \in \mathcal{C}) \quad A I \in \mathcal{D} \text { and } A-I \in \mathcal{D}
$$

(4) Using this, show that \mathcal{D}_{I} satisfies (i)-(iii) for any $I \in \mathcal{D}$.

Deduce

$$
\mathcal{D} \subseteq \mathcal{D}_{I}
$$

so \mathcal{D} is closed under finite intersections and differences.
Combining with property (ii), show that \mathcal{D} is a σ-ring (see Problem 12 below).

[^22]By its minimality, \mathcal{D} is the smallest σ-ring $\supseteq \mathcal{C}$ (for any other such σ-ring clearly satisfies (i)-(iii)).

Thus $\mathcal{D}=\mathcal{R}$, as claimed.

Definition 2.

Given a set family \mathcal{M}, we define (following Hausdorff)
(a) $\mathcal{M}_{\sigma}=\{$ all countable unions of \mathcal{M}-sets $\}$ (cf. \mathcal{C}_{σ} in $\S 2$);
(b) $\mathcal{M}_{\delta}=\{$ all countable intersections of \mathcal{M}-sets $\}$.

We use \mathcal{M}_{s} and \mathcal{M}_{d} for similar notions, with "countable" replaced by "finite."

Clearly,

$$
\mathcal{M}_{\sigma} \supseteq \mathcal{M}_{s} \supseteq \mathcal{M}
$$

and

$$
\mathcal{M}_{\delta} \supseteq \mathcal{M}_{d} \supseteq \mathcal{M}
$$

Why?
Note 2. Observe that \mathcal{M} is closed under finite (countable) unions iff

$$
\mathcal{M}=\mathcal{M}_{s}\left(\mathcal{M}=\mathcal{M}_{\sigma}\right)
$$

Verify! Interpret $\mathcal{M}=\mathcal{M}_{d}\left(\mathcal{M}=\mathcal{M}_{\sigma}\right)$ similarly.
In conclusion, we generalize Theorem 1 in $\S 1$.

Definition 3.

The product

$$
\mathcal{M} \dot{\times} \mathcal{N}
$$

of two set families \mathcal{M} and \mathcal{N} is the family of all sets of the form

$$
A \times B
$$

with $A \in \mathcal{M}$ and $B \in \mathcal{N}$.
(The dot in $\dot{\varnothing}$ is to stress that $\mathcal{M} \dot{\times} \mathcal{N}$ is not really a Cartesian product.)
Theorem 4. If \mathcal{M} and \mathcal{N} are semirings, so is $\mathcal{M} \dot{\times} \mathcal{N}$.
The proof runs along the same lines as that of Theorem 1 in $\S 1$, via the set identities

$$
(X \times Y) \cap\left(X^{\prime} \times Y^{\prime}\right)=\left(X \cap X^{\prime}\right) \times\left(Y \cap Y^{\prime}\right)
$$

and

$$
(X \times Y)-\left(X^{\prime} \times Y^{\prime}\right)=\left[\left(X-X^{\prime}\right) \times Y\right] \cup\left[\left(X \cap X^{\prime}\right) \times\left(Y-Y^{\prime}\right)\right]
$$

The details are left to the reader.
Note 3. As every ring is a semiring (Corollary 1), the product of two rings (fields, σ-rings, σ-fields) is a semiring. However, see Problem 6 below.

Problems on Set Families

1. Verify Examples (a), (b), and (c).
$\mathbf{1}^{\mathbf{\prime}}$. Prove Theorem 1 for rings.
2. Show that in Definition $1 " \emptyset \in \mathcal{M}$ " may be replaced by " $\mathcal{M} \neq \emptyset$." [Hint: $\emptyset=A-A$.]
\Rightarrow 3. Prove that \mathcal{M} is a field (σ-field) iff $\mathcal{M} \neq \emptyset, \mathcal{M}$ is closed under finite (countable) unions, and

$$
(\forall A \in \mathcal{M}) \quad-A \in \mathcal{M}
$$

[Hint: $A-B=-(-A \cup B) ; S=-\emptyset$.]
4. Prove Theorem 2 for set fields.
*4'. Does Note 1 apply to semirings?
5. Prove Note 2.
$\mathbf{5}^{\prime}$. Prove Theorem 3 in detail.
6. Prove Theorem 4 and show that the product $\mathcal{M} \dot{\times} \mathcal{N}$ of two rings need not be a ring.
[Hint: Let $S=E^{1}$ and $\mathcal{M}=\mathcal{N}=2^{S}$. Take A, B as in Theorem 1 of $\S 1$. Verify that $A-B \notin \mathcal{M} \dot{\times} \mathcal{N}$.
$\Rightarrow 7$. Let $\mathcal{R}, \mathcal{R}^{\prime}$ be the rings (σ-rings, fields, σ-fields) generated by \mathcal{M} and \mathcal{N}, respectively. Prove the following.
(i) If $\mathcal{M} \subseteq \mathcal{N}$, then $\mathcal{R} \subseteq \mathcal{R}^{\prime}$.
(ii) If $\mathcal{M} \subseteq \mathcal{N} \subseteq \mathcal{R}$, then $\mathcal{R}=\mathcal{R}^{\prime}$.
(iii) If

$$
\mathcal{M}=\left\{\text { open intervals in } E^{n}\right\}
$$

and

$$
\mathcal{N}=\left\{\text { all open sets in } E^{n}\right\}
$$

then $\mathcal{R}=\mathcal{R}^{\prime}$.
[Hint: Use Lemma 2 in $\S 2$ for (iii). Use the minimality of \mathcal{R} and \mathcal{R}^{\prime}.]
8. Is any of the following a semiring, ring, σ-ring, field, or σ-field? Why?
(a) All infinite intervals in E^{1}.
(b) All open sets in a metric space (S, ρ).
(c) All closed sets in (S, ρ).
(d) All "clopen" sets in (S, ρ).
(e) $\left\{X \in 2^{S} \mid-X\right.$ finite $\}$.
(f) $\left\{X \in 2^{S} \mid-X\right.$ countable $\}$.
\Rightarrow 9. Prove that for any sequence $\left\{A_{n}\right\}$ in a ring \mathcal{R}, there is
(a) an expanding sequence $\left\{B_{n}\right\} \subseteq \mathcal{R}$ such that

$$
(\forall n) \quad B_{n} \supseteq A_{n}
$$

and

$$
\bigcup_{n} B_{n}=\bigcup_{n} A_{n} ; \text { and }
$$

(b) a contracting sequence $C_{n} \subseteq A_{n}$, with

$$
\bigcap_{n} C_{n}=\bigcap_{n} A_{n} .
$$

(The latter holds in semirings, too.)
[Hint: Set $B_{n}=\bigcup_{1}^{n} A_{k}, C_{n}=\bigcap_{1}^{n} A_{k}$.]
$\Rightarrow \mathbf{1 0}$. The symmetric difference, $A \triangle B$, of two sets is defined

$$
A \triangle B=(A-B) \cup(B-A)
$$

Inductively, we also set
and

$$
\underset{k=1}{n+1} A_{k}=\left(\bigwedge_{k=1}^{n} A_{k}\right) \triangle A_{n+1} .
$$

Show that symmetric differences
(i) are commutative,
(ii) are associative, and
(iii) satisfy the distributive law:

$$
(A \triangle B) \cap C=(A \cap C) \triangle(B \cap C)
$$

[Hint for (ii): Set $A^{\prime}=-A, A-B=A \cap B^{\prime}$. Expand $(A \triangle B) \triangle C$ into an expression symmetric with respect to A, B, and C.]
11. Prove that \mathcal{M} is a ring iff
(i) $\emptyset \in \mathcal{M}$;
(ii) $(\forall A, B \in \mathcal{M}) A \triangle B \in \mathcal{M}$ and $A \cap B \in \mathcal{M}$ (see Problem 10); equivalently,
(ii') $A \triangle B \in \mathcal{M}$ and $A \cup B \in \mathcal{M}$.
[Hint: Verify that

$$
A \cup B=(A \triangle B) \triangle(A \cap B)
$$

and

$$
A-B=(A \cup B) \triangle B
$$

while

$$
A \cap B=(A \cup B) \triangle(A \triangle B) .]
$$

12. Show that a set family $\mathcal{M} \neq \emptyset$ is a σ-ring iff one of the following conditions holds.
(a) \mathcal{M} is closed under countable unions and proper differences $(X-Y$ with $X \supseteq Y$);
(b) \mathcal{M} is closed under countable disjoint unions, proper differences, and finite intersections; or
(c) \mathcal{M} is closed under countable unions and symmetric differences (see Problem 10).
[Hints: (a) $X-Y=(X \cup Y)-Y$, a proper difference.
(b) $X-Y=X-(X \cap Y)$ reduces any difference to a proper one; then

$$
X \cup Y=(X-Y) \cup(Y-X) \cup(X \cap Y)
$$

shows that \mathcal{M} is closed under all finite unions; so \mathcal{M} is a ring. Now use Corollary 1 in $\S 1$ for countable unions.
(c) Use Problem 11.]
13. From Problem 10, treating \triangle as addition and \cap as multiplication, show that any set $\operatorname{ring} \mathcal{M}$ is an algebraic ring with unity, i.e., satisfies the six field axioms (Chapter 2, $\S \S 1-4$), except $\mathrm{V}(\mathrm{b})$ (existence of multiplicative inverses).
14. A set family \mathcal{H} is said to be hereditary iff

$$
(\forall X \in \mathcal{H})(\forall Y \subseteq X) \quad Y \in H
$$

Prove the following.
(a) For every family $\mathcal{M} \subseteq 2^{S}$, there is a "smallest" hereditary ring $\mathcal{H} \supseteq \mathcal{M}(\mathcal{H}$ is said to be generated by $\mathcal{M})$. Similarly for σ-rings, fields, and σ-fields.
(b) The hereditary σ-ring generated by \mathcal{M} consists of those sets which can be covered by countably many \mathcal{M}-sets.
15. Prove that the field (σ-field) in S, generated by a ring (σ-ring) \mathcal{R}, consists exactly of all \mathcal{R}-sets and their complements in S.
16. Show that the ring \mathcal{R} generated by a set family $\mathcal{C} \neq \emptyset$ consists of all sets of the form

$$
\triangle_{k=1}^{n} A_{k}
$$

(see Problem 10), where each $A_{k} \in \mathcal{C}_{d}$ (finite intersection of \mathcal{C}-sets). [Outline: By Problem 11, \mathcal{R} must contain the family (call it \mathcal{M}) of all such $\triangle_{k=1}^{n} A_{k}$. (Why?) It remains to show that \mathcal{M} is a ring $\supseteq \mathcal{C}$.

Write $A+B$ for $A \triangle B$ and $A B$ for $A \cap B$; so each \mathcal{M}-set is a "sum" of finitely many "products"

$$
A_{1} A_{2} \cdots A_{n}
$$

By algebra, the "sum" and "product" of two such "polynomials" is such a polynomial itself. Thus

$$
(\forall X, Y \in \mathcal{M}) \quad X \triangle Y \text { and } X \cap Y \in \mathcal{M}
$$

Now use Problem 11.]
17. Use Problem 16 to obtain a new proof of Theorem 2 in $\S 1$ and Corollary 2 in the present section.
[Hints: For semirings, $\mathcal{C}=\mathcal{C}_{d}$. (Why?) Thus in Problem 16, $A_{k} \in \mathcal{C}$.
Also,

$$
(\forall A, B \in \mathcal{C}) \quad A \triangle B=(A-B) \cup(B-A)
$$

where $A-B$ and $B-A$ are finite disjoint unions of \mathcal{C}-sets. (Why?)
Deduce that $A \triangle B \in \mathcal{C}_{s}^{\prime}$ and, by induction,

$$
\triangle_{k=1}^{n} A_{k} \in \mathcal{C}_{s}^{\prime} ;
$$

so $\mathcal{R} \subseteq \mathcal{C}_{s}^{\prime} \subseteq \mathcal{R} .($ Why?)]
18. Given a set A and a set family \mathcal{M}, let

$$
A \cap \mathcal{M}
$$

be the family of all sets $A \cap X$, with $X \in \mathcal{M}$; similarly,
$\mathcal{N} \cup(\mathcal{M}-A)=\{$ all sets $Y \cup(X-A)$, with $Y \in \mathcal{N}, X \in \mathcal{M}\}$, etc.
Show that if \mathcal{M} generates the ring \mathcal{R}, then $A \cap \mathcal{M}$ generates the ring

$$
\mathcal{R}^{\prime}=A \cap \mathcal{R} .
$$

Similarly for σ-rings, fields, σ-fields.
[Hint for rings: Prove the following.
(i) $A \cap \mathcal{R}$ is a ring.
(ii) $\mathcal{M} \subseteq \mathcal{R}^{\prime} \cup\left(\mathcal{R} \dot{-} A\right.$), with \mathcal{R}^{\prime} as above.
(iii) $\mathcal{R} \cup(\mathcal{R} \doteq A)$ is a ring (call it $\mathcal{N})$.
(iv) By (ii), $\mathcal{R} \subseteq \mathcal{N}$, so $A \cap \mathcal{R} \subseteq A \cap \mathcal{N} \subseteq \mathcal{R}^{\prime}$.
(v) $A \cap \mathcal{R} \supseteq \mathcal{R}^{\prime}($ for $A \cap \mathcal{R} \supseteq A \cap \mathcal{M})$.

Hence $\mathcal{R}^{\prime}=A \cap \mathcal{R}$.]

§4. Set Functions. Additivity. Continuity

I. The letter " v " in $v A$ may be treated as a certain function symbol that assigns a numerical value (called "volume") to the set A. So far we have defined such "volumes" for all intervals, then for \mathcal{C}-simple sets, and even for \mathcal{C}_{σ}-sets in E^{n}.

Mathematically this means that the volume function v has been defined first on \mathcal{C} (the intervals), then on \mathcal{C}_{s}^{\prime} (\mathcal{C}-simple sets), and finally on \mathcal{C}_{σ}.

Thus we have a function v which assigns values ("volumes") not just to single points, as ordinary "point functions" do, but to whole sets, each set being treated as one thing.

In other words, the domain of the function v is not just a set of points, but a set family $\left(\mathcal{C}, \mathcal{C}_{s}^{\prime}\right.$, or $\left.\mathcal{C}_{\sigma}\right)$.

The "volumes" assigned to such sets are the function values (for \mathcal{C} and \mathcal{C}_{s}^{\prime}-sets they are real numbers; for \mathcal{C}_{σ}-sets they may reach $+\infty$). This is symbolized by

$$
v: \mathcal{C} \rightarrow E^{1}
$$

or

$$
v: \mathcal{C}_{\sigma} \rightarrow E^{*}
$$

more precisely,

$$
v: \mathcal{C}_{\sigma} \rightarrow[0, \infty],
$$

since volume is nonnegative.
It is natural to call v a set function (as opposed to ordinary point functions). As we shall see, there are many other set functions. The function values need not be real; they may be complex numbers or vectors. This agrees with our general definition of a function as a certain set of ordered pairs (Definition 3 in Chapter 1, $\S \S 4-7$); e.g.,

$$
v=\left(\begin{array}{cccc}
A & B & C & \cdots \\
v A & v B & v C & \cdots
\end{array}\right) .
$$

Here the domain consists of certain sets A, B, C, \ldots This leads us to the following definition.

Definition 1.

A set function is a mapping

$$
s: \mathcal{M} \rightarrow E
$$

whose domain is a set family \mathcal{M}.
The range space E is assumed to be E^{1}, E^{*}, C (the complex field), E^{n}, or another normed space. Thus s may be real, extended real, complex, or vector valued.

To each set $X \in \mathcal{M}$, the function s assigns a unique function value denoted $s(X)$ or $s X$ (which is an element of the range space E).

We say that s is finite on a set family $\mathcal{N} \subseteq \mathcal{M}$ iff

$$
(\forall X \in \mathcal{N}) \quad|s X|<\infty ;
$$

briefly, $|s|<\infty$ on \mathcal{N}. (This is automatic if s is complex or vector valued.)

We call s semifinite if at least one of $\pm \infty$ is excluded as function value, e.g., if $s \geq 0$ on \mathcal{M}; i.e.,

$$
s: \mathcal{M} \rightarrow[0, \infty] .
$$

(The symbol ∞ stands for $+\infty$ throughout.)

Definition 2.

A set function

$$
s: \mathcal{M} \rightarrow E
$$

is called additive (or finitely additive) on $\mathcal{N} \subseteq \mathcal{M}$ iff for any finite disjoint union $\bigcup_{k} A_{k}$, we have

$$
\sum_{k} s A_{k}=s\left(\bigcup_{k} A_{k}\right)
$$

provided $\bigcup_{k} A_{k}$ and all the A_{k} are \mathcal{N}-sets.
If this also holds for countable disjoint unions, s is called σ-additive (or countably additive or completely additive) on \mathcal{N}.

If $\mathcal{N}=\mathcal{M}$ here, we simply say that s is additive (σ-additive, respectively).

Note 1. As $\bigcup A_{k}$ is independent of the order of the A_{k}, σ-additivity presupposes and implies that the series

$$
\sum s A_{k}
$$

is permutable ($\S 2$) for any disjoint sequence

$$
\left\{A_{k}\right\} \subseteq \mathcal{N}
$$

(The partial sums do exist, by our conventions (2*) in Chapter 4, §4.)
The set functions in the examples below are additive; v is even σ-additive (Corollary 1 in $\S 2$).

Examples (b)-(d) show that set functions may arise from ordinary "point functions."

Examples.

(a) The volume function $v: \mathcal{C} \rightarrow E^{1}$ on $\mathcal{C}\left(=\right.$ intervals in $\left.E^{n}\right)$, discussed above, is called the Lebesgue premeasure (in E^{n}).
(b) Let $\mathcal{M}=\left\{\right.$ all finite intervals $\left.I \subset E^{1}\right\}$.

Given $f: E^{1} \rightarrow E$, set

$$
(\forall I \in \mathcal{M}) \quad s I=V_{f}[\bar{I}],
$$

the total variation of f on the closure of I (Chapter $5, \S 7$).
Then $s: \mathcal{M} \rightarrow[0, \infty]$ is additive by Theorem 1 of Chapter $5, \S 7$.
(c) Let \mathcal{M} and f be as in Example (b).

Suppose f has an antiderivative (Chapter 5 , §5) on E^{1}. For each interval X with endpoints $a, b \in E^{1}(a \leq b)$, set

$$
s X=\int_{a}^{b} f
$$

This yields a set function $s: \mathcal{M} \rightarrow E$ (real, complex, or vector valued), additive by Corollary 6 in Chapter $5, \S 5$.
(d) Let $\mathcal{C}=\left\{\right.$ all finite intervals in $\left.E^{1}\right\}$.

Suppose

$$
\alpha: E^{1} \rightarrow E^{1}
$$

has finite one-sided limits

$$
\alpha(p+) \text { and } \alpha(p-)
$$

at each $p \in E^{1}$. The Lebesgue-Stieltjes $(L S)$ function

$$
s_{\alpha}: \mathcal{C} \rightarrow E^{1}
$$

(important for Lebesgue-Stieltjes integration) is defined as follows.
Set $s_{\alpha} \emptyset=0$. For nonvoid intervals, including $[a, a]=\{a\}$, set

$$
\begin{aligned}
& s_{\alpha}[a, b]=\alpha(b+)-\alpha(a-), \\
& s_{\alpha}(a, b]=\alpha(b+)-\alpha(a+), \\
& s_{\alpha}[a, b)=\alpha(b-)-\alpha(a-), \text { and } \\
& s_{\alpha}(a, b)=\alpha(b-)-\alpha(a+),
\end{aligned}
$$

For the properties of s_{α} see Problem 7 ff ., below.
(e) Let $m X$ be the mass concentrated in the part X of the physical space S. Then m is a nonnegative set function defined on

$$
2^{S}=\{\text { all subsets } X \subseteq S\}(\S 3)
$$

If instead $m X$ were the electric load of X, then m would be sign changing.
II. The rest of this section is redundant for a "limited approach."

Lemmas. Let $s: \mathcal{M} \rightarrow E$ be additive on $\mathcal{N} \subseteq \mathcal{M}$. Let

$$
A, B \in \mathcal{N}, A \subseteq B
$$

Then we have the following.
(1) If $|s A|<\infty$ and $B-A \in \mathcal{N}$, then

$$
s(B-A)=s B-s A(\text { "subtractivity"). }
$$

(2) If $\emptyset \in \mathcal{N}$, then $s \emptyset=0$ provided $|s X|<\infty$ for at least one $X \in \mathcal{N}$.
(3) If \mathcal{N} is a semiring, then $s A= \pm \infty$ implies $|s B|=\infty$. Hence

$$
|s B|<\infty \Rightarrow|s A|<\infty
$$

If further s is semifinite then

$$
s A= \pm \infty \Rightarrow s B= \pm \infty
$$

(same sign).

Proof.

(1) As $B \supseteq A$, we have

$$
B=(B-A) \cup A(\text { disjoint }) ;
$$

so by additivity,

$$
s B=s(B-A)+s A .
$$

If $|s A|<\infty$, we may transpose to get

$$
s B-s A=s(B-A),
$$

as claimed.
(2) Hence

$$
s \emptyset=s(X-X)=s X-s X=0
$$

if $X, \emptyset \in \mathcal{N}$, and $|s X|<\infty$.
(3) If \mathcal{N} is a semiring, then

$$
B-A=\bigcup_{k=1}^{n} A_{k}(\text { disjoint })
$$

for some \mathcal{N}-sets A_{k}; so

$$
B=A \cup \bigcup_{k=1}^{n} A_{k}(\text { disjoint })
$$

By additivity,

$$
s B=s A+\sum_{k=1}^{n} s A_{k}
$$

so by our conventions,

$$
|s A|=\infty \Rightarrow|s B|=\infty
$$

If, further, s is semifinite, one of $\pm \infty$ is excluded. Thus $s A$ and $s B$, if infinite, must have the same sign. This completes the proof.

In $\S \S 1$ and 2 , we showed how to extend the notion of volume from intervals to a larger set family, preserving additivity. We now generalize this idea.
Theorem 1. If

$$
s: \mathcal{C} \rightarrow E
$$

is additive on \mathcal{C}, an arbitrary semiring, there is a unique set function

$$
\bar{s}: \mathcal{C}_{s} \rightarrow E,
$$

additive on \mathcal{C}_{s}, with $\bar{s}=s$ on \mathcal{C}, i.e.,

$$
\bar{s} X=s X \text { for } X \in \mathcal{C}
$$

We call \bar{s} the additive extension of s to $\mathcal{C}_{s}=\mathcal{C}_{s}^{\prime}$ (Corollary 2 in $\S 3$).
Proof. If $s \geq 0(s: \mathcal{C} \rightarrow[0, \infty])$, proceed as in Lemma 1 and Corollary 2, all of $\S 1$.

The general proof (which may be omitted or deferred) is as follows.
Each $X \in \mathcal{C}_{s}^{\prime}$ has the form

$$
X=\bigcup_{i=1}^{m} X_{i}(\text { disjoint }), \quad X_{i} \in \mathcal{C}
$$

Thus if \bar{s} is to be additive, the only way to define it is to set

$$
\bar{s} X=\sum_{i=1}^{m} s X_{i} .
$$

This already makes \bar{s} unique, provided we show that

$$
\sum_{i=1}^{m} s X_{i}
$$

does not depend on the particular decomposition

$$
X=\bigcup_{i=1}^{m} X_{i}
$$

(otherwise, all is ambiguous).
Then take any other decomposition

$$
X=\bigcup_{k=1}^{n} Y_{k}(\text { disjoint }), \quad Y_{k} \in \mathcal{C}
$$

Additivity implies

$$
(\forall i, k) \quad s X_{i}=\sum_{k=1}^{n} s\left(X_{i} \cap Y_{k}\right) \text { and } s Y_{k}=\sum_{i=1}^{m} s\left(X_{i} \cap Y_{k}\right) .
$$

(Verify!) Hence

$$
\sum_{i=1}^{m} s X_{i}=\sum_{i, k} s\left(X_{i} \cap Y_{k}\right)=\sum_{k=1}^{n} s Y_{k}
$$

Thus, indeed, it does not matter which particular decomposition we choose, and our definition of \bar{s} is unambiguous.

If $X \in \mathcal{C}$, we may choose (say)

$$
X=\bigcup_{i=1}^{1} X_{i}, \quad X_{1}=X
$$

so

$$
\bar{s} X=s X_{1}=s X
$$

i.e., $\bar{s}=s$ on \mathcal{C}, as required.

Finally, for the additivity of \bar{s}, let

$$
A=\bigcup_{k=1}^{m} B_{k}(\text { disjoint }), \quad A, B_{k} \in \mathcal{C}_{s}^{\prime} .
$$

Here we may set

$$
B_{k}=\bigcup_{i=1}^{n_{k}} C_{k i}(\text { disjoint }), \quad C_{k i} \in \mathcal{C}
$$

Then

$$
A=\bigcup_{k, i} C_{k i}(\text { disjoint })
$$

so by our definition of \bar{s},

$$
\bar{s} A=\sum_{k, i} s C_{k i}=\sum_{k=1}^{m}\left(\sum_{i=1}^{n_{k}} s C_{k i}\right)=\sum_{k=1}^{m} \bar{s} B_{k},
$$

as required.
Continuity. We write $X_{n} \nearrow X$ to mean that

$$
X=\bigcup_{n=1}^{\infty} X_{n}
$$

and $\left\{X_{n}\right\} \uparrow$, i.e.,

$$
X_{n} \subseteq X_{n+1}, \quad n=1,2, \ldots
$$

Similarly, $X_{n} \searrow X$ iff

$$
X=\bigcap_{n=1}^{\infty} X_{n}
$$

and $\left\{X_{n}\right\} \downarrow$, i.e.,

$$
X_{n} \supseteq X_{n+1}, \quad n=1,2, \ldots
$$

In both cases, we set

$$
X=\lim _{n \rightarrow \infty} X_{n}
$$

This suggests the following definition.

Definition 3.

A set function $s: \mathcal{M} \rightarrow E$ is said to be
(i) left continuous (on \mathcal{M}) iff

$$
s X=\lim _{n \rightarrow \infty} s X_{n}
$$

whenever $X_{n} \nearrow X$ and $X, X_{n} \in \mathcal{M}$;
(ii) right continuous iff

$$
s X=\lim _{n \rightarrow \infty} s X_{n}
$$

whenever $X_{n} \searrow X$, with $X, X_{n} \in \mathcal{M}$ and $\left|s X_{j}\right|<\infty$.
Thus in case (i),

$$
\lim _{n \rightarrow \infty} s X_{n}=s \bigcup_{n=1}^{\infty} X_{n}
$$

if all X_{n} and $\bigcup_{n=1}^{\infty} X_{n}$ are \mathcal{M}-sets.
In case (ii),

$$
\lim _{n \rightarrow \infty} s X_{n}=s \bigcap_{n=1}^{\infty} X_{n}
$$

if all X_{n} and $\bigcap_{n=1}^{\infty} X_{n}$ are in \mathcal{M}, and $\left|s X_{1}\right|<\infty$.
Note 2. The last restriction applies to right continuity only. (We choose simply to exclude from consideration sequences $\left\{X_{n}\right\} \downarrow$, with $\left|s X_{1}\right|=\infty$; see Problem 4.)
Theorem 2. If $s: \mathcal{C} \rightarrow E$ is σ-additive and semifinite on \mathcal{C}, a semiring, then s is both left and right continuous (briefly, continuous).
Proof. We sketch the proof for rings; for semirings, see Problem 1.
Left continuity. Let $X_{n} \nearrow X$ with $X_{n}, X \in \mathcal{C}$ and

$$
X=\bigcup_{n=1}^{\infty} X_{n}
$$

If $s X_{n}= \pm \infty$ for some n, then (Lemma 3)

$$
s X=s X_{m}= \pm \infty \text { for } m \geq n
$$

since $X \supseteq X_{m} \supseteq X_{n}$; so

$$
\lim s X_{m}= \pm \infty=s X
$$

as claimed.
Thus assume all $s X_{n}$ finite; so $s \emptyset=0$, by Lemma 2 .
Set $X_{0}=\emptyset$. As is easily seen,

$$
X=\bigcup_{n=1}^{\infty} X_{n}=\bigcup_{n=1}^{\infty}\left(X_{n}-X_{n-1}\right)(\text { disjoint })
$$

and

$$
(\forall n) \quad X_{n}-X_{n-1} \in \mathcal{C}(\text { a ring })
$$

Also,

$$
(\forall m \geq n) \quad X_{m}=\bigcup_{n=1}^{m}\left(X_{n}-X_{n-1}\right)(\text { disjoint })
$$

(Verify!) Thus by additivity,

$$
s X_{m}=\sum_{n=1}^{m} s\left(X_{n}-X_{n-1}\right)
$$

and by the assumed σ-additivity,

$$
\begin{aligned}
s X=s \bigcup_{n=1}^{\infty}\left(X_{n}-X_{n-1}\right) & =\sum_{n=1}^{\infty} s\left(X_{n}-X_{n-1}\right) \\
& =\lim _{m \rightarrow \infty} \sum_{n=1}^{m} s\left(X_{n}-X_{n-1}\right)=\lim _{m \rightarrow \infty} s X_{m}
\end{aligned}
$$

as claimed.
Right continuity. Let $X_{n} \searrow X$ with $X, X_{n} \in \mathcal{C}$,

$$
X=\bigcap_{n=1}^{\infty} X_{n}
$$

and

$$
\left|s X_{1}\right|<\infty
$$

As $X \subseteq X_{n} \subseteq X_{1}$, Lemma 3 yields that

$$
(\forall n) \quad\left|s X_{n}\right|<\infty
$$

and $|s X|<\infty$.
As

$$
X=\bigcap_{k=1}^{\infty} X_{k}
$$

we have

$$
(\forall n) \quad X_{n}=X \cup \bigcup_{k=n+1}^{\infty}\left(X_{k-1}-X_{k}\right)(\text { disjoint })
$$

(Verify!) Thus by σ-additivity,

$$
(\forall n) \quad s X_{n}=s X+\sum_{k=n+1}^{\infty} s\left(X_{k-1}-X_{k}\right),
$$

with $|s X|<\infty,\left|s X_{n}\right|<\infty$ (see above).
Hence the sum

$$
\sum_{k=n+1}^{\infty} s\left(X_{k-1}-X_{k}\right)=s X_{n}-s X
$$

is finite. Therefore, it tends to 0 as $n \rightarrow \infty$ (being the "remainder term" of a convergent series). Thus $n \rightarrow \infty$ yields

$$
\lim _{n \rightarrow \infty} s X_{n}=s X+\lim \sum_{k=n+1}^{\infty} s\left(X_{k-1}-X_{k}\right)=s X
$$

as claimed.

Problems on Set Functions

1. Prove Theorem 2 in detail for semirings.
[Hint: We know that

$$
X_{n}-X_{n-1}=\bigcup_{i=1}^{m_{n}} Y_{n i}(\text { disjoint })
$$

for some $Y_{n i} \in \mathcal{C}$, so

$$
\bar{s}\left(X_{n}-X_{n-1}\right)=\sum_{i=1}^{m_{n}} s Y_{n i},
$$

with \bar{s} as in Theorem 1.]
2. Let s be additive on \mathcal{M}, a ring. Prove that s is also σ-additive provided s is either
(i) left continuous, or
(ii) finite on \mathcal{M} and right-continuous at \emptyset; i.e.,

$$
\lim _{n \rightarrow \infty} s X_{n}=0
$$

when $X_{n} \searrow \emptyset\left(X_{n} \in \mathcal{M}\right)$.
[Hint: Let

$$
A=\bigcup_{n} A_{n}(\text { disjoint }), \quad A, A_{n} \in \mathcal{M}
$$

Set

$$
X_{n}=\bigcup_{k=1}^{n} A_{k}, Y_{n}=A-X_{n}
$$

Verify that $X_{n}, Y_{n} \in \mathcal{M}, X_{n} \nearrow A, Y_{n} \searrow \emptyset$.
In case (i),

$$
s A=\lim s X_{n}=\sum_{k=1}^{\infty} s A_{k}
$$

(Why?)
For (ii), use the Y_{n}.]
3. Let

$$
\mathcal{M}=\left\{\text { all intervals in the rational field } R \subset E^{1}\right\}
$$

Let

$$
s X=b-a
$$

if a, b are the endpoints of $X \in \mathcal{M}(a, b \in R, a \leq b)$. Prove that
(i) \mathcal{M} is a semiring;
(ii) s is continuous;
(iii) s is additive but not σ-additive; thus Problem 2 fails for semirings.
[Hint: R is countable. Thus each $X \in \mathcal{M}$ is a countable union of singletons $\{x\}=$ $[x, x]$; hence $s X=0$ if s were σ-additive.]
$\mathbf{3}^{\prime}$. Let $N=\{$ naturals $\}$. Let

$$
\mathcal{M}=\{\text { all finite subsets of } N \text { and their complements in } N\} .
$$

If $X \in \mathcal{M}$, let $s X=0$ if X is finite, and $s X=\infty$ otherwise. Show that
(i) \mathcal{M} is a set field;
(ii) s is right continuous and additive, but not σ-additive.

Thus Problem 2(ii) fails if s is not finite.
4. Let

$$
\mathcal{C}=\left\{\text { finite and infinite intervals in } E^{1}\right\} .
$$

If a, b are the endpoints of an interval $X\left(a, b \in E^{*}, a<b\right)$, set

$$
s X= \begin{cases}b-a, & a<b, \\ 0, & a=b\end{cases}
$$

Show that s is σ-additive on \mathcal{C}, a semiring.
Let

$$
X_{n}=(n, \infty) ;
$$

so $s X_{n}=\infty-n=\infty$ and $X_{n} \searrow \emptyset$. (Verify!) Yet

$$
\lim s X_{n}=\infty \neq s \emptyset
$$

Does this contradict Theorem 2?
5. Fill in the missing proof details in Theorem 1.
6. Let s be additive on \mathcal{M}. Prove the following.
(i) If \mathcal{M} is a ring or semiring, so is

$$
\mathcal{N}=\{X \in \mathcal{M}| | s X \mid<\infty\}
$$

if $\mathcal{N} \neq \emptyset$.
(ii) If \mathcal{M} is generated by a set family \mathcal{C}, with $|s|<\infty$ on \mathcal{C}, then $|s|<\infty$ on \mathcal{M}.
[Hint: Use Problem 16 in §3.]
$\Rightarrow 7$. (Lebesgue-Stieltjes set functions.) Let α and s_{α} be as in Example (d). Prove the following.
(i) $s_{\alpha} \geq 0$ on \mathcal{C} iff $\alpha \uparrow$ on E^{1} (see Theorem 2 in Chapter 4, $\S 5$).
(ii) $s_{\alpha}\{p\}=s_{\alpha}[p, p]=0$ iff α is continuous at p.
(iii) s_{α} is additive.
[Hint: If

$$
A=\bigcup_{i=1}^{n} A_{i}(\text { disjoint })
$$

the intervals A_{i-1}, A_{i} must be adjacent. For two such intervals, consider all cases like

$$
(a, b] \cup(b, c),[a, b) \cup[b, c], \text { etc. }
$$

Then use induction on n.]
(iv) If α is right continuous at a and b, then

$$
s_{\alpha}(a, b]=\alpha(b)-\alpha(b)
$$

If α is continuous at a and b, then

$$
s_{\alpha}[a, b]=s_{\alpha}(a, b]=s_{\alpha}[a, b)=s_{\alpha}(a, b) .
$$

(v) If $\alpha \uparrow$ on E^{1}, then s_{α} satisfies Lemma 1 and Corollary 2 in $\S 1$ (same proof), as well as Lemma 1, Theorem 1, Corollaries 1-4, and Note 3 in $\S 2$ (everything except Corollaries 5 and 6).
[Hint: Use (i) and (iii). For Lemma 1 in $\S 2$, take first a half-open $B=(a, b]$; use the definition of a right-side limit along with Theorems 1 and 2 in Chapter 4, $\S 5$, to prove

$$
(\forall \varepsilon>0)(\exists c>b) \quad 0 \leq \alpha(c-)-\alpha(b+)<\varepsilon
$$

then set $C=(a, c)$. Similarly for $B=[a, b)$, etc. and for the closed interval $A \subseteq B$.
(vi) If $\alpha(x)=x$ then $s_{\alpha}=v$, the volume (or length) function in E^{1}.
8. Construct LS set functions (Example (d)), with $\alpha \uparrow$ (see Problem 7(v)), so that
(i) $s_{\alpha}[0,1] \neq s_{\alpha}[1,2]$;
(ii) $s_{\alpha} E^{1}=1$ (after extending s_{α} to \mathcal{C}_{σ}-sets in E^{1});
(ii') $s_{\alpha} E^{1}=c$ for a fixed $c \in(0, \infty)$;
(iii) $s_{\alpha}\{0\}=1$ and $s_{\alpha}[0,1]>s_{\alpha}(0,1]$.

Describe s_{α} if $\alpha(x)=[x]$ (the integral part of x).
[Hint: See Figure 16 in Chapter 4, §1.]
9. For an arbitrary $\alpha: E^{1} \rightarrow E^{1}$, define $\sigma_{\alpha}: \mathcal{C} \rightarrow E^{1}$ by

$$
\sigma_{\alpha}[a, b]=\sigma_{\alpha}(a, b]=\sigma_{\sigma}[a, b)=\sigma_{\alpha}(a, b)=\alpha(b)-\alpha(a)
$$

(the original Stieltjes method). Prove that σ_{α} is additive but not σ additive unless α is continuous (for Theorem 2 fails).

§5. Nonnegative Set functions. Premeasures. Outer Measures

We now concentrate on nonnegative set functions

$$
m: \mathcal{M} \rightarrow[0, \infty]
$$

(we mostly denote them by m or μ). Such functions have the advantage that

$$
\sum_{n=1}^{\infty} m X_{n}
$$

exists and is permutable (Theorem 2 in §2) for any sets $X_{n} \in \mathcal{M}$, since $m X_{n} \geq$ 0 . Several important notions apply to such functions (only). They "mimic" $\S \S 1$ and 2.

Definition 1.

A set function

$$
m: \mathcal{M} \rightarrow[0, \infty]
$$

is said to be
(i) monotone (on \mathcal{M}) iff

$$
m X \leq m Y
$$

whenever

$$
X \subseteq Y \text { and } X, Y \in \mathcal{M}
$$

(ii) (finitely) subadditive (on \mathcal{M}) iff for any finite union

$$
\bigcup_{k=1}^{n} Y_{k,},
$$

we have

$$
\begin{equation*}
m X \leq \sum_{k=1}^{m} m Y_{k} \tag{1}
\end{equation*}
$$

whenever $X, Y_{k} \in \mathcal{M}$ and

$$
X \subseteq \bigcup_{k=1}^{n} Y_{k}(\text { disjoint or } n o t) ;
$$

(iii) σ-subadditive (on \mathcal{M}) iff (1) holds for countable unions, too.

Recall that $\left\{Y_{k}\right\}$ is called a covering of X iff

$$
X \subseteq \bigcup_{k} Y_{k}
$$

We call it an \mathcal{M}-covering of X if all Y_{k} are \mathcal{M}-sets. We now obtain the following corollary.

Corollary 1. Subadditivity implies monotonicity.
Take $n=1$ in formula (1).
Corollary 2. If $m: \mathcal{C} \rightarrow[0, \infty]$ is additive (σ-additive) on \mathcal{C}, a semiring, then m is also subadditive (σ-subadditive, respectively), hence monotone, on \mathcal{C}.

The proof is a mere repetition of the argument used in Lemma 1 in $\S 1$.
Taking $n=1$ in formula (ii) there, we obtain finite subadditivity.
For σ-subadditivity, one only has to use countable unions instead of finite ones.

Note 1. The converse fails: subadditivity does not imply additivity.
Note 2. Of course, Corollary 2 applies to rings, too (see Corollary 1 in $\S 3$).

Definition 2.

A premeasures is a set function

$$
\mu: \mathcal{C} \rightarrow[0, \infty]
$$

such that

$$
\emptyset \in \mathcal{C} \text { and } \mu \emptyset=0
$$

(\mathcal{C} may, but need not, be a semiring.)

A premeasure space is a triple

$$
(S, \mathcal{C}, \mu)
$$

where \mathcal{C} is a family of subsets of S (briefly, $\mathcal{C} \subseteq 2^{S}$) and

$$
\mu: \mathcal{C} \rightarrow[0, \infty]
$$

is a premeasure. In this case, \mathcal{C}-sets are also called basic sets.
If

$$
A \subseteq \bigcup_{n} B_{n}
$$

with $B_{n} \in \mathcal{C}$, the sequence $\left\{B_{n}\right\}$ is called a basic covering of A, and

$$
\sum_{n} \mu B_{n}
$$

is a basic covering value of $A ;\left\{B_{n}\right\}$ may be finite or infinite.

Examples.

(a) The volume function v on $\mathcal{C}\left(=\right.$ intervals in $\left.E^{n}\right)$ is a premeasure, as $v \geq 0$ and $v \emptyset=0 .\left(E^{n}, \mathcal{C}, v\right)$ is the Lebesgue premeasure space.
(b) The LS set function s_{α} is a premeasure if $\alpha \uparrow$ (see Problem 7 in $\S 4$). We call it the α-induced Lebesgue-Stieltjes $(L S)$ premeasure in E^{1}.

We now develop a method for constructing σ-subadditive premeasures. (This is a first step toward achieving σ-additivity; see $\S 4$.)

Definition 3.

For any premeasure space (S, \mathcal{C}, μ), we define the μ-induced outer measure m^{*} on $2^{S}(=$ all subsets of $S)$ by setting, for each $A \subseteq S$,

$$
\begin{equation*}
m^{*} A=\inf \left\{\sum_{n} \mu B_{n} \mid A \subseteq \bigcup_{n} B_{n}, B_{n} \in \mathcal{C}\right\} \tag{2}
\end{equation*}
$$

i.e., $m^{*} A$ (called the outer measure of A) is the glb of all basic covering values of A.

If $\mu=v, m^{*}$ is called the Lebesgue outer measure in E^{n}.
Note 3. If A has no basic coverings, we set $m^{*} A=\infty$. More generally, we make the convention that $\inf \emptyset=+\infty$.

Note 4. By the properties of the glb, we have

$$
(\forall A \subseteq S) \quad 0 \leq m^{*} A
$$

If $A \in \mathcal{C}$, then $\{A\}$ is a basic covering; so

$$
m^{*} A \leq \mu A
$$

In particular, $m^{*} \emptyset=\mu \emptyset=0$.
Theorem 1. ${ }^{1}$ The set function m^{*} so defined is σ-subadditive on 2^{S}.
Proof. Given

$$
A \subseteq \bigcup_{n} A_{n} \subset S
$$

we must show that

$$
m^{*} A \leq \sum_{n} m^{*} A_{n}
$$

This is trivial if $m^{*} A_{n}=\infty$ for some n. Thus assume

$$
(\forall n) \quad m^{*} A_{n}<\infty
$$

and fix $\varepsilon>0$.
By Note 3, each A_{n} has a basic covering

$$
\left\{B_{n k}\right\}, \quad k=1,2, \ldots
$$

(otherwise, $m^{*} A_{n}=\infty$). By properties of the glb, we can choose the $B_{n k}$ so that

$$
(\forall n) \quad \sum_{k} \mu B_{n k}<m^{*} A_{n}+\frac{\varepsilon}{2^{n}}
$$

(Explain from (2)). The sets $B_{n k}$ (for all n and all k) form a countable basic covering of all A_{n}, hence of A. Thus by Definition 3,

$$
m^{*} A \leq \sum_{n}\left(\sum_{k} \mu B_{n k}\right) \leq \sum_{n}\left(m^{*} A_{n}+\frac{\varepsilon}{2^{n}}\right) \leq \sum^{n} m^{*} A_{n}+\varepsilon .
$$

As ε is arbitrary, we can let $\varepsilon \rightarrow 0$ to obtain the desired result.
Note 5. In view of Theorem 1, we now generalize the notion of an outer measure in S to mean any σ-subadditive premeasure defined on all of 2^{S}.

By Note $4, m^{*} \leq \mu$ on \mathcal{C}, not $m^{*}=\mu$ in general. However, we obtain the following result.

Theorem 2. With m^{*} as in Definition 3, we have $m^{*}=\mu$ on \mathcal{C} iff μ is σ-subadditive on \mathcal{C}. Hence, in this case, m^{*} is an extension of μ.
Proof. Suppose μ is σ-subadditive and fix any $A \in \mathcal{C}$. By Note 4,

$$
m^{*} A \leq \mu A
$$

We shall show that

$$
\mu A \leq m^{*} A
$$

[^23]too, and hence $\mu A=m^{*} A$.
Now, as $A \in \mathcal{C}, A$ surely has basic coverings, e.g., $\{A\}$. Take any basic covering:
$$
A \subseteq \bigcup_{n} B_{n}, \quad B_{n} \in \mathcal{C}
$$

As μ is σ-subadditive,

$$
\mu A \leq \sum_{n} \mu B_{n}
$$

Thus μA does not exceed any basic covering values of A; so it cannot exceed their glb, $m^{*} A$. Hence $\mu=m^{*}$, indeed.

Conversely, if $\mu=m^{*}$ on \mathcal{C}, then the σ-subadditivity of m^{*} (Theorem 1) implies that of μ (on \mathcal{C}). Thus all is proved.

Note 6. If, in (2), we allow only finite basic coverings, then the μ-induced set function is called the μ-induced outer content, c^{*}. It is only finitely subadditive, in general.

In particular, if $\mu=v$ (Lebesgue premeasure), we speak of the Jordan outer content in E^{n}. (It is superseded by Lebesgue theory but still occurs in courses on Riemann integration.)

We add two more definitions related to the notion of coverings.

Definition 4.

A set function $s: \mathcal{M} \rightarrow E\left(\mathcal{M} \subseteq 2^{S}\right)$ is called σ-finite iff every $X \in \mathcal{M}$ can be covered by a sequence of \mathcal{M}-sets X_{n}, with

$$
\left|s X_{n}\right|<\infty \quad(\forall n) .
$$

Any set $A \subseteq S$ which can be so covered is said to be σ-finite with respect to s (briefly, (s) σ-finite).

If the whole space S can be so covered, we say that s is totally σ-finite.
For example, the Lebesgue premeasure v on E^{n} is totally σ-finite.

Definition 5.

A set function $s: \mathcal{M} \rightarrow E^{*}$ is said to be regular with respect to a set family \mathcal{A} (briefly, \mathcal{A}-regular) iff for each $A \in \mathcal{M}$,

$$
\begin{equation*}
s A=\inf \{s X \mid A \subseteq X, X \in \mathcal{A}\} \tag{3}
\end{equation*}
$$

that is, $s A$ is the glb of all $s X$, with $A \subseteq X$ and $X \in \mathcal{A}$.
These notions are important for our later work. At present, we prove only one theorem involving Definitions 3 and 5 .

Theorem 3. For any premeasure space (S, \mathcal{C}, μ), the μ-induced outer measure m^{*} is \mathcal{A}-regular whenever

$$
\mathcal{C}_{\sigma} \subseteq \mathcal{A} \subseteq 2^{S} .
$$

Thus in this case,

$$
\begin{equation*}
(\forall A \subseteq S) \quad m^{*} A=\inf \left\{m^{*} X \mid A \subseteq X, X \in \mathcal{A}\right\} \tag{4}
\end{equation*}
$$

Proof. As m^{*} is monotone, $m^{*} A$ is surely a lower bound of

$$
\left\{m^{*} X \mid A \subseteq X, X \in \mathcal{A}\right\}
$$

We must show that there is no greater lower bound.
This is trivial if $m^{*} A=\infty$.
Thus let $m^{*} A<\infty$; so A has basic coverings (Note 3). Now fix any $\varepsilon>0$. By formula (2), there is a basic covering $\left\{B_{n}\right\} \subseteq \mathcal{C}$ such that

$$
A \subseteq \bigcup_{n} B_{n}
$$

and

$$
m^{*} A+\varepsilon>\sum_{n} \mu B_{n} \geq \sum_{n} m^{*} B_{n} \geq m^{*} \bigcup_{n} B_{n}
$$

(m^{*} is σ-subadditive!)
Let

$$
X=\bigcup_{n} B_{n}
$$

Then X is in \mathcal{C}_{σ}, hence in \mathcal{A}, and $A \subseteq X$. Also,

$$
m^{*} A+\varepsilon>m^{*} X
$$

Thus $m^{*} A+\varepsilon$ is not a lower bound of

$$
\left\{m^{*} X \mid A \subseteq X, X \in \mathcal{A}\right\}
$$

This proves (4).

Problems on Premeasures and Related Topics

1. Fill in the missing details in the proofs, notes, and examples of this section.
2. Describe m^{*} on 2^{S} induced by a premeasure $\mu: \mathcal{C} \rightarrow E^{*}$ such that each of the following hold.
(a) $\mathcal{C}=\{S, \emptyset\}, \mu S=1$.
(b) $\mathcal{C}=\{S, \emptyset$, and all singletons $\} ; \mu S=\infty, \mu\{x\}=1$.
(c) \mathcal{C} as in (b), with S uncountable; $\mu S=1$, and $\mu X=0$ otherwise.
(d) $\mathcal{C}=\{$ all proper subsets of $S\} ; \mu X=1$ when $\emptyset \subset X \subset S ; \mu \emptyset=0$.
3. Show that the premeasures

$$
v^{\prime}: \mathcal{C}^{\prime} \rightarrow[0, \infty]
$$

induce one and the same (Lebesgue) outer measure m^{*} in E^{n}, with $v^{\prime}=v($ volume, as in §2):
(a) $\mathcal{C}^{\prime}=\{$ open intervals $\} ;$
(b) $\mathcal{C}^{\prime}=\{$ half-open intervals $\}$;
(c) $\mathcal{C}^{\prime}=\{$ closed intervals $\}$;
(d) $\mathcal{C}^{\prime}=\mathcal{C}_{\sigma}$;
(e) $\mathcal{C}^{\prime}=\{$ open sets $\} ;$
(f) $\mathcal{C}^{\prime}=\{$ half-open cubes $\}$.
[Hints: (a) Let m^{\prime} be the v^{\prime}-induced outer measure; let $\mathcal{C}=\{$ all intervals $\}$. As $\mathcal{C}^{\prime} \subseteq \mathcal{C}, m^{\prime} A \geq m^{*} A$. (Why?) Also,

$$
(\forall \varepsilon>0)\left(\exists\left\{B_{k}\right\} \subseteq \mathcal{C}\right) \quad A \subseteq \bigcup_{k} B_{k} \text { and } \sum v B_{k} \leq m^{*} A+\varepsilon
$$

(Why?) By Lemma 1 in §2,

$$
\left(\exists\left\{C_{k}\right\} \subseteq \mathcal{C}^{\prime}\right) \quad B_{k} \subseteq C_{k} \text { and } v B_{k}+\frac{\varepsilon}{2^{k}}>v^{\prime} C_{k}
$$

Deduce that $m^{*} A \geq m^{\prime} A, m^{*}=m^{\prime}$. Similarly for (b) and (c). For (d), use Corollary 1 and Note 3 in $\S 1$. For (e), use Lemma 2 in $\S 2$. For (f), use Problem 2 in §2.]
$\mathbf{3}^{\prime}$. Do Problem 3(a)-(c), with m^{*} replaced by the Jordan outer content c^{*} (Note 6).
4. Do Problem 3, with v and m^{*} replaced by the LS premeasure and outer measure. (Use Problem 7 in §4.)
5. Show that a set $A \subseteq E^{n}$ is bounded iff its outer Jordan content is finite.
6. Find a set $A \subseteq E^{1}$ such that
(i) its Lebesgue outer measure is $0\left(m^{*} A=0\right)$, while its Jordan outer content $c^{*} A=\infty$;
(ii) $m^{*} A=0, c^{*} A=1$ (see Corollary 6 in $\S 2$).
7. Let

$$
\mu_{1}, \mu_{2}: \mathcal{C} \rightarrow[0, \infty]
$$

be two premeasures in S and let m_{1}^{*} and m_{2}^{*} be the outer measures induced by them.

Prove that if $m_{1}^{*}=m_{2}^{*}$ on \mathcal{C}, then $m_{1}^{*}=m_{2}^{*}$ on all of 2^{S}.
8. With the notation of Definition 3 and Note 6, prove the following.
(i) If $A \subseteq B \subseteq S$ and $m^{*} B=0$, then $m^{*} A=0$; similarly for c^{*}. [Hint: Use monotonicity.]
(ii) The set family

$$
\left\{X \subseteq S \mid c^{*} A=0\right\}
$$

is a hereditary set ring, i.e., a ring \mathcal{R} such that

$$
(\forall B \in \mathcal{R})(\forall A \subseteq B) \quad A \in \mathcal{R} .
$$

(iii) The set family

$$
\left\{X \subseteq S \mid m^{*} X=0\right\}
$$

is a hereditary σ-ring.
(iv) So also is

$$
\mathcal{H}=\{\text { those } X \subseteq S \text { that have basic coverings }\} ;
$$

thus \mathcal{H} is the hereditary σ-ring generated by \mathcal{C} (see Problem 14 in $\S 3)$.
9. Continuing Problem 8(iv), prove that if μ is σ-finite (Definition 4), so is m^{*} when restricted to \mathcal{H}.

Show, moreover, that if \mathcal{C} is a semiring, then each $X \in \mathcal{H}$ has a basic covering $\left\{Y_{n}\right\}$, with $m^{*} Y_{n}<\infty$ and with all Y_{n} disjoint.
[Hint: Show that

$$
X \subseteq \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} B_{n k}
$$

for some sets $B_{n k} \in \mathcal{C}$, with $\mu B_{n k}<\infty$. Then use Note 4 in $\S 5$ and Corollary 1 of §1.]
10. Show that if

$$
s: \mathcal{C} \rightarrow E^{*}
$$

is σ-finite and additive on \mathcal{C}, a semiring, then the σ-ring \mathcal{R} generated by \mathcal{C} equals the σ-ring \mathcal{R}^{\prime} generated by

$$
\mathcal{C}^{\prime}=\{X \in \mathcal{C}| | s X \mid<\infty\}
$$

(cf. Problem 6 in $\S 4$).
[Hint: By σ-finiteness,

$$
(\forall X \in \mathcal{C})\left(\exists\left\{A_{n}\right\} \subseteq \mathcal{C}\left|\left|s A_{n}\right|<\infty\right) \quad X \subseteq \bigcup_{n} A_{n}\right.
$$

so

$$
X=\bigcup_{n}\left(X \cap A_{n}\right), \quad X \cap A_{n} \in \mathcal{C}^{\prime}
$$

(Use Lemma 3 in §4.)

Thus $(\forall X \in \mathcal{C}) X$ is a countable union of \mathcal{C}^{\prime}-sets; so $\mathcal{C} \subseteq \mathcal{R}^{\prime}$. Deduce $\mathcal{R} \subseteq \mathcal{R}^{\prime}$. Proceed.]
11. With all as in Theorem 3, prove that if A has basic coverings, then

$$
\left(\exists B \in \mathcal{A}_{\delta}\right) \quad A \subseteq B \text { and } m^{*} A=m^{*} B
$$

[Hint: By formula (4),

$$
(\forall n \in N)\left(\exists X_{n} \in \mathcal{A} \mid A \subseteq X_{n}\right) \quad m^{*} A \leq m X_{n} \leq m^{*} A+\frac{1}{n} .
$$

(Explain!) Set

$$
B=\bigcap_{n=1}^{\infty} X_{n} \in \mathcal{A}_{\delta} .
$$

Proceed. For \mathcal{A}_{δ}, see Definition 2(b) in §3.]
12. Let (S, \mathcal{C}, μ) and m^{*} be as in Definition 3. Show that if \mathcal{C} is a σ-field in S, then

$$
(\forall A \subseteq S)(\exists B \in \mathcal{C}) \quad A \subseteq B \text { and } m^{*} A=\mu B
$$

[Hint: Use Problem 11 and Note 3.]
$\Rightarrow{ }^{*}$ 13. Show that if

$$
s: \mathcal{C} \rightarrow E
$$

is σ-finite and σ-additive on \mathcal{C}, a semiring, then s has at most one σ additive extension to the σ-ring \mathcal{R} generated by \mathcal{C}.
(Note that s is automatically σ-finite if it is finite, e.g., complex or vector valued.)
[Outline: Let

$$
s^{\prime}, s^{\prime \prime}: \mathcal{R} \rightarrow E
$$

be two σ-additive extensions of s. By Problem $10, \mathcal{R}$ is also generated by

$$
\mathcal{C}^{\prime}=\{X \in \mathcal{C}| | s X \mid<\infty\}
$$

Now set

$$
\mathcal{R}^{*}=\left\{X \in \mathcal{R} \mid s^{\prime} X=s^{\prime \prime} X\right\} .
$$

Show that \mathcal{R}^{*} satisfies properties (i)-(iii) of Theorem 3 in $\S 3$, with \mathcal{C} replaced by \mathcal{C}^{\prime}; so $\mathcal{R}=\mathcal{R}^{*}$.]
14. Let $m_{n}^{*}(n=1,2, \ldots)$ be outer measures in S such that

$$
(\forall X \subseteq S)(\forall n) \quad m_{n}^{*} X \leq m_{n+1}^{*} X
$$

Set

$$
\mu^{*}=\lim _{n \rightarrow \infty} m_{n}^{*}
$$

Show that μ^{*} is an outer measure in S (see Note 5).
15. An outer measure m^{*} in a metric space (S, ρ) is said to have the Carathéodory property (CP) iff

$$
m^{*}(X \cup Y) \geq m^{*} X+m^{*} Y
$$

whenever $\rho(X, Y)>0$, where

$$
\rho(X, Y)=\inf \{\rho(x, y) \mid x \in X, y \in Y\} .
$$

For such m^{*}, prove that

$$
m^{*}\left(\bigcup_{k} X_{k}\right)=\sum_{k} m^{*} X_{k}
$$

if $\left\{X_{k}\right\} \subseteq 2^{S}$ and

$$
\rho\left(X_{i}, X_{k}\right)>0 \quad(i \neq k) .
$$

[Hint: For finite unions, use the CP, subadditivity, and induction. Deduce that

$$
(\forall n) \quad \sum_{k=1}^{n} m^{*} X_{k} \leq m^{*} \bigcup_{k=1}^{\infty} X_{k} .
$$

Let $n \rightarrow \infty$. Proceed.]
16. Let (S, \mathcal{C}, μ) and m^{*} be as in Definition 3, with ρ a metric for S. Let μ_{n} be the restriction of μ to the family \mathcal{C}_{n} of all $X \in \mathcal{C}$ of diameter

$$
d X \leq \frac{1}{n}
$$

Let m_{n}^{*} be the μ_{n}-induced outer measure in S.
Prove that
(i) $\left\{m_{n}^{*}\right\} \uparrow$ as in Problem 14;
(ii) the outer measure

$$
\mu^{*}=\lim _{n \rightarrow \infty} m_{n}^{*}
$$

has the CP (see Problem 15), and

$$
\mu^{*} \geq m^{*} \text { on } 2^{S}
$$

[Outline: Let $\rho(X, Y)>\varepsilon>0(X, Y \subseteq S)$.
If for some $n, X \cup Y$ has no basic covering from \mathcal{C}_{n}, then

$$
\mu^{*}(X \cup Y) \geq m_{n}^{*}(X \cup Y)=\infty \geq \mu^{*} X+\mu^{*} Y,
$$

and the CP follows. (Explain!)
Thus assume

$$
\left(\forall n>\frac{1}{\varepsilon}\right)(\forall k)\left(\exists B_{n k} \in \mathcal{C}_{n}\right) \quad X \cup Y \subseteq \bigcup_{k=1}^{\infty} B_{n k} .
$$

One can choose the $B_{n k}$ so that

$$
\sum_{k=1}^{\infty} \mu B_{n k} \leq m_{n}^{*}(X \cup Y)+\varepsilon
$$

(Why?) As

$$
d B_{n k} \leq \frac{1}{n}<\varepsilon
$$

some $B_{n k}$ cover X only, others Y only. (Why?) Deduce that

$$
\left(\forall n>\frac{1}{\varepsilon}\right) \quad m_{n}^{*} X+m_{n}^{*} Y \leq \sum_{k=1}^{\infty} \mu_{n} B_{n k} \leq m_{n}^{*}(X \cup Y)+\varepsilon
$$

Let $\varepsilon \rightarrow 0$ and then $n \rightarrow \infty$.
Also, $m^{*} \leq m_{n}^{*} \leq \mu^{*}$. (Why?)]
17. Continuing Problem 16, suppose that

$$
\begin{aligned}
(\forall \varepsilon>0)(\forall n, k)(\forall B \in \mathcal{C}) & \left(\exists B_{n k} \in \mathcal{C}_{n}\right) \\
& B \subseteq \bigcup_{k=1}^{\infty} B_{n k} \text { and } \mu B+\varepsilon \geq \sum_{k=1}^{\infty} \mu B_{n k}
\end{aligned}
$$

Show that

$$
m^{*}=\lim _{n \rightarrow \infty} \mu_{n}^{*}=\mu^{*}
$$

so m^{*} itself has the $C P$.
[Hints: It suffices to prove that $m^{*} A \geq \mu^{*} A$ if $m^{*} A<\infty$. (Why?)
Now, given $\varepsilon>0, A$ has a covering

$$
\left\{B_{i}\right\} \subseteq \mathcal{C}
$$

such that

$$
m^{*} A+\varepsilon \geq \sum \mu B_{i}
$$

(Why?) By assumption,

$$
(\forall n) \quad B_{i} \subseteq \bigcup_{k=1}^{\infty} B_{n k}^{i} \in \mathcal{C}_{n} \text { and } \mu B_{i}+\frac{\varepsilon}{2^{i}} \geq \sum_{k=1}^{\infty} \mu B_{n k}^{i}
$$

Deduce that

$$
m^{*} A+\varepsilon>\sum \mu B_{i} \geq \sum_{i=1}^{\infty}\left(\sum_{k=1}^{\infty} \mu B_{n k}^{i}-\frac{\varepsilon}{2^{i}}\right)=\sum_{i, k} \mu B_{n k}^{i}-\varepsilon \geq m_{n}^{*} A-\varepsilon
$$

Let $\varepsilon \rightarrow 0$; then $n \rightarrow \infty$.]
18. Using Problem 17 , show that the Lebesgue and Lebesgue-Stieltjes outer measures have the CP.

§6. Measure Spaces. More on Outer Measures ${ }^{1}$

I. In $\S 5$, we considered premeasure spaces, stressing mainly the idea of σ subadditivity (Note 5 in $\S 5$). Now we shall emphasize σ-additivity.

Definition 1.

A premeasure

$$
m: \mathcal{M} \rightarrow[0, \infty]
$$

is called a measure (in S) iff \mathcal{M} is a σ-ring (in S), and m is σ-additive on \mathcal{M}.

If so, the system

$$
(S, \mathcal{M}, m)
$$

is called a measure space; $m X$ is called the measure of $X \in \mathcal{M} ; \mathcal{M}$-sets are called m-measurable sets.

Note that m is nonnegative and $m \emptyset=0$, as m is a premeasure (Definition 2 in §5).
Corollary 1. Measures are σ-additive, σ-subadditive, monotone, and continuous.

Proof. Use Corollary 2 in $\S 5$ and Theorem 2 in $\S 4$, noting that \mathcal{M} is a σ ring.

Corollary 2. In any measure space (S, \mathcal{M}, m), the union and intersection of any sequence of m-measurable sets is m-measurable itself. So also is $X-Y$ if $X, Y \in \mathcal{M}$.

This is obvious since \mathcal{M} is a σ-ring.
As measures and other premeasures are understood to be ≥ 0, we often write

$$
m: \mathcal{M} \rightarrow E^{*}
$$

for

$$
m: \mathcal{M} \rightarrow[0, \infty] .
$$

We also briefly say "measurable" for " m-measurable."
Note that $\emptyset \in \mathcal{M}$, but not always $S \in \mathcal{M}$.

Examples.

(a) The volume of intervals in E^{n} is a σ-additive premeasure, but not a measure since its domain (the intervals) is not a σ-ring.
(b) Let $\mathcal{M}=2^{S}$. Define

$$
(\forall X \subseteq S) \quad m X=0
$$

[^24]Then m is trivially a measure (the zero-measure). Here each set $X \subseteq S$ is measurable, with $m X=0$.
(c) Let again $\mathcal{M}=2^{S}$. Let $m X$ be the number of elements in X, if finite, and $m X=\infty$ otherwise.

Then m is a measure ("counting measure"). Verify!
(d) Let $\mathcal{M}=2^{S}$. Fix some $p \in S$. Let

$$
m X= \begin{cases}1 & \text { if } p \in X \\ 0 & \text { otherwise }\end{cases}
$$

Then m is a measure (it describes a "unit mass" concentrated at p).
(e) A probability space is a measure space (S, \mathcal{M}, m), with

$$
S \in \mathcal{M} \text { and } m S=1
$$

In probability theory, measurable sets are called events; $m X$ is called the probability of X, often denoted by $p X$ or similar symbols.

In Examples (b), (c), and (d),

$$
\mathcal{M}=2^{S}(\text { all subsets of } S)
$$

More often, however,

$$
\mathcal{M} \neq 2^{S}
$$

i.e., there are nonmeasurable sets $X \subseteq S$ for which $m X$ is not defined.

Of special interest are sets $X \in \mathcal{M}$, with $m X=0$, and their subsets. We call them m-null or null sets. One would like them to be measurable, but this is not always the case for subsets of X.

This leads us to the following definition.

Definition 2.

A measure $m: \mathcal{M} \rightarrow E^{*}$ is called complete iff all null sets (subsets of sets of measure zero) are measurable.

We now develop a general method for constructing complete measures.
II. From $\S 5$ (Note 5) recall that an outer measure in S is a σ-subadditive premeasure defined on all of 2^{S} (even if it is not derived via Definition 3 in $\S 5$). ${ }^{2}$ In Examples (b), (c), and (d), m is both a measure and an outer measure. (Why?)

An outer measure

$$
m^{*}: 2^{S} \rightarrow E^{*}
$$

[^25]need not be additive; but consider this fact:
Any set $A \subseteq S$ splits S into two parts: A itself and $-A$.
It also splits any other set X into $X \cap A$ and $X-A$; indeed,
$$
X=(X \cap A) \cup(X-A)(\text { disjoint })
$$

We want to single out those sets A for which m^{*} behaves "additively," i.e., so that

$$
m^{*} X=m^{*}(X \cap A)+m^{*}(X-A)
$$

This motivates our next definition.

Definition 3.

Given an outer measure $m^{*}: 2^{S} \rightarrow E^{*}$ and a set $A \subseteq S$, we say that A is m^{*}-measurable iff all sets $X \subseteq S$ are split "additively" by A; that is,

$$
\begin{equation*}
(\forall X \subseteq S) \quad m^{*} X=m^{*}(X \cap A)+m^{*}(X-A) \tag{1}
\end{equation*}
$$

As is easily seen (see Problem 1), this is equivalent to

$$
\begin{equation*}
(\forall X \subseteq A)(\forall Y \subseteq-A) \quad m^{*}(X \cup Y)=m^{*} X+m^{*} Y \tag{2}
\end{equation*}
$$

The family of all m^{*}-measurable sets is usually denoted by \mathcal{M}^{*}. The system $\left(S, \mathcal{M}^{*}, m^{*}\right)$ is called an outer measure space.

Note 1. Definition 3 applies to outer measures only. For measures, " m measurable" means simply "member of the domain of m " (Definition 1).

Note 2. In (1) and (2), we may equivalently replace the equality sign (=) by (\geq). Indeed, X is covered by

$$
\{X \cap A, X-A\}
$$

and $X \cup Y$ is covered by $\{X, Y\}$; so the reverse inequality (\leq) anyway holds, by subadditivity.

Our main objective is to prove the following fundamental theorem.
Theorem 1. In any outer measure space

$$
\left(S, \mathcal{M}^{*}, m^{*}\right)
$$

the family \mathcal{M}^{*} of all m^{*}-measurable sets is a σ-field in S, and m^{*}, when restricted to \mathcal{M}^{*}, is a complete measure (denoted by m and called the m^{*}-induced measure; so $m^{*}=m$ on \mathcal{M}^{*}).

We split the proof into several steps (lemmas).

Lemma 1. \mathcal{M}^{*} is closed under complementation:

$$
\left(\forall A \in \mathcal{M}^{*}\right) \quad-A \in \mathcal{M}^{*}
$$

Indeed, the measurability criterion (2) is same for A and $-A$ alike.
Lemma 2. \emptyset and S are \mathcal{M}^{*}-sets. So are all sets of outer measure 0.
Proof. Let $m^{*} A=0$. To prove $A \in \mathcal{M}^{*}$, use (2) and Note 2.
Thus take any $X \subseteq A$ and $Y \subseteq-A$. Then by monotonicity,

$$
m^{*} X \leq m^{*} A=0
$$

and

$$
m^{*} Y \leq m^{*}(X \cup Y)
$$

Thus

$$
m^{*} X+m^{*} Y=0+m^{*} Y \leq m^{*}(X \cup Y)
$$

as required.
In particular, as $m^{*} \emptyset=0, \emptyset$ is m^{*}-measurable $\left(\emptyset \in \mathcal{M}^{*}\right)$.
So is S (the complement of \emptyset) by Lemma 1.
Lemma 3. \mathcal{M}^{*} is closed under finite unions:

$$
\left(\forall A, B \in \mathcal{M}^{*}\right) \quad A \cup B \in \mathcal{M}^{*} .
$$

Proof. This time we shall use formula (1). By Note 2, it suffices to show that

$$
(\forall X \subseteq S) \quad m^{*} X \geq m^{*}(X \cap(A \cup B))+m^{*}(X-(A \cup B))
$$

Fix any $X \subseteq S$; as $A \in \mathcal{M}^{*}$, we have

$$
\begin{equation*}
m^{*} X=m^{*}(X \cap A)+m^{*}(X-A) \tag{3}
\end{equation*}
$$

Similarly, as $B \in \mathcal{M}^{*}$, we have (replacing X by $X-A$ in (1))

$$
\begin{align*}
m^{*}(X-A) & =m^{*}((X-A) \cap B)+m^{*}(X-A-B) \\
& =m^{*}(X \cap-A \cap B)+m^{*}(X-(A \cup B)) \tag{4}
\end{align*}
$$

since

$$
X-A=X \cap-A
$$

and

$$
X-A-B=X-(A \cup B)
$$

Combining (4) with (3), we get

$$
\begin{equation*}
m^{*} X=m^{*}(X \cap A)+m^{*}(X \cap-A \cap B)+m^{*}(X-(A \cup B)) \tag{5}
\end{equation*}
$$

Now verify that

$$
(X \cap A) \cup(X \cap-A \cap B) \supseteq X \cap(A \cup B)
$$

As m is subadditive, this yields

$$
m^{*}(X \cap A)+m^{*}(X \cap-A \cap B) \geq m^{*}(X \cap(A \cup B))
$$

Combining with (5), we get

$$
m^{*} X \geq m^{*}(X \cap(A \cup B))+m^{*}(X-(A \cup B))
$$

so that $A \cup B \in \mathcal{M}^{*}$, indeed.
Induction extends Lemma 3 to all finite unions of \mathcal{M}^{*}-sets.
Note that by Problem 3 in $\S 3, \mathcal{M}^{*}$ is a set field, hence surely a ring. Thus Corollary 1 in $\S 1$ applies to it. (We use it below.)
Lemma 4. Let

$$
X_{k} \subseteq A_{k} \subseteq S, \quad k=0,1,2, \ldots
$$

with all A_{k} pairwise disjoint.
Let $A_{k} \in \mathcal{M}^{*}$ for $k \geq 1$. (A_{0} and the X_{k} need not be \mathcal{M}^{*}-sets.) Then

$$
\begin{equation*}
m^{*}\left(\bigcup_{k=0}^{\infty} X_{k}\right)=\sum_{k=0}^{\infty} m^{*} X_{k} \tag{6}
\end{equation*}
$$

Proof. We start with two sets, A_{0} and A_{1}; so

$$
A_{1} \in \mathcal{M}^{*}, A_{0} \cap A_{1}=\emptyset, X_{0} \subseteq A_{0}, \text { and } X_{1} \subseteq A_{1}
$$

As $A_{0} \cap A_{1}=\emptyset$, we have $A_{0} \subseteq-A_{1}$; hence also $X_{0} \subseteq-A_{1}$.
Since $A_{1} \in \mathcal{M}^{*}$, we use formula (2), with

$$
X=X_{1} \subseteq A_{1} \text { and } Y=X_{0} \subseteq-A
$$

to obtain

$$
m^{*}\left(X_{0} \cup X_{1}\right)=m^{*} X_{0}+m^{*} X_{1}
$$

Thus (6) holds for two sets.
Induction now easily yields

$$
(\forall n) \quad \sum_{k=0}^{n} m^{*} X_{k}=m^{*}\left(\bigcup_{k=0}^{n} X_{k}\right) \leq m^{*}\left(\bigcup_{k=0}^{\infty} X_{k}\right)
$$

by monotonicity of m^{*}. Now let $n \rightarrow \infty$ and pass to the limit to get

$$
\sum_{k=0}^{\infty} m^{*} X_{k} \leq m^{*}\left(\bigcup_{k=0}^{\infty} X_{k}\right)
$$

As $\bigcup X_{k}$ is covered by the X_{k}, the σ-subadditivity of m^{*} yields the reverse inequality as well. Thus (6) is proved.

Proof of Theorem 1. As we noted, \mathcal{M}^{*} is a field. To show that it is also closed under countable unions (a σ-field), let

$$
U=\bigcup_{k=1}^{\infty} A_{k}, \quad A_{k} \in \mathcal{M}^{*}
$$

We have to prove that $U \in \mathcal{M}^{*}$; or by (2) and Note 2,

$$
\begin{equation*}
(\forall X \subseteq U)(\forall Y \subseteq-U) \quad m^{*}(X \cup Y) \geq m^{*} X+m^{*} Y \tag{7}
\end{equation*}
$$

We may safely assume that the A_{k} are disjoint. (If not, replace them by disjoint sets $B_{k} \in \mathcal{M}^{*}$, as in Corollary 1 of $\S 1$.)

To prove (7), fix any $X \subseteq U$ and $Y \subseteq-U$, and let

$$
X_{k}=X \cap A_{k} \subseteq A_{k},
$$

$A_{0}=-U$, and $X_{0}=Y$, satisfying all assumptions of Lemma 4. Thus by (6), writing the first term separately, we have

$$
\begin{equation*}
m^{*}\left(Y \cup \bigcup_{k=1}^{\infty} X_{k}\right)=m^{*} Y+\sum_{k=1}^{\infty} m^{*} X_{k} \tag{8}
\end{equation*}
$$

But

$$
\bigcup_{k=1}^{\infty} X_{k}=\bigcup_{k=1}^{\infty}\left(X \cap A_{k}\right)=X \cap \bigcup_{k=1}^{\infty} A_{k}=X \cap U=X
$$

(as $X \subseteq U$). Also, by σ-subadditivity,

$$
\sum m^{*} X_{k} \geq m^{*} \bigcup X_{k}=m^{*} X
$$

Therefore, (8) implies (7); so \mathcal{M}^{*} is a σ-field.
Moreover, m^{*} is σ-additive on \mathcal{M}^{*}, as follows from Lemma 4 by taking

$$
X_{k}=A_{k} \in \mathcal{M}^{*}, A_{0}=\emptyset .
$$

Thus m^{*} acts as a measure on \mathcal{M}^{*}.
By Lemma 2, m^{*} is complete; for if X is "null" ($X \subseteq A$ and $m^{*} A=0$), then $m^{*} X=0$; so $X \in \mathcal{M}^{*}$, as required.

Thus all is proved.
We thus have a standard method for constructing measures: From a premeasure

$$
\mu: \mathcal{C} \rightarrow E^{*}
$$

in S, we obtain the μ-induced outer measure

$$
m^{*}: 2^{S} \rightarrow E^{*}(\S 5)
$$

this, in turn, induces a complete measure

$$
m: \mathcal{M}^{*} \rightarrow E^{*}
$$

But we need more: We want m to be an extension of μ, i.e.,

$$
m=\mu \text { on } \mathcal{C}
$$

with $\mathcal{C} \subseteq \mathcal{M}^{*}$ (meaning that all \mathcal{C}-sets are m^{*}-measurable). We now explore this question.
Lemma 5. Let (S, \mathcal{C}, μ) and m^{*} be as in Definition 3 of $\S 5$. Then for a set $A \subseteq S$ to be m^{*}-measurable, it suffices that

$$
\begin{equation*}
m^{*} X \geq m^{*}(X \cap A)+m^{*}(x-A) \quad \text { for all } X \in \mathcal{C} \tag{9}
\end{equation*}
$$

Proof. Assume (9). We must show that (9) holds for any $X \subseteq S$, even not a \mathcal{C}-set.

This is trivial if $m^{*} X=\infty$. Thus assume $m^{*} X<\infty$ and fix any $\varepsilon>0$.
By Note 3 in $\S 5, X$ must have a basic covering $\left\{B_{n}\right\} \subseteq \mathcal{C}$ so that

$$
X \subseteq \bigcup_{n} B_{n}
$$

and

$$
\begin{equation*}
m^{*} X+\varepsilon>\sum \mu B_{n} \geq \sum m^{*} B_{n} \tag{10}
\end{equation*}
$$

(Explain!)
Now, as $X \subseteq \bigcup B_{n}$, we have

$$
X \cap A \subseteq \bigcup B_{n} \cap A=\bigcup\left(B_{n} \cap A\right)
$$

Similarly,

$$
X-A=X \cap-A \subseteq \bigcup\left(B_{n}-A\right)
$$

Hence, as m^{*} is σ-subadditive and monotone, we get

$$
\begin{align*}
m^{*}(X \cap A)+m^{*}(X-A) & \leq m^{*}\left(\bigcup\left(B_{n} \cap A\right)\right)+m^{*}\left(\bigcup\left(B_{n}-A\right)\right) \tag{11}\\
& \leq \sum\left[m^{*}\left(B_{n} \cap A\right)+m^{*}\left(B_{n}-A\right)\right]
\end{align*}
$$

But by assumption, (9) holds for any \mathcal{C}-set, hence for each B_{n}. Thus

$$
m^{*}\left(B_{n} \cap A\right)+m^{*}\left(B_{n}-A\right) \leq m^{*} B_{n}
$$

and (11) yields

$$
m^{*}(X \cap A)+m^{*}(X-A) \leq \sum\left[m^{*}\left(B_{n} \cap A\right)+m^{*}\left(B_{n}-A\right)\right] \leq \sum m^{*} B_{n}
$$

Therefore, by (10),

$$
m^{*}(X \cap A)+m^{*}(X-A) \leq m^{*} X+\varepsilon
$$

Making $\varepsilon \rightarrow 0$, we prove (10) for any $X \subseteq S$, so that $A \in \mathcal{M}^{*}$, as required.
Theorem 2. Let the premeasure

$$
\mu: \mathcal{C} \rightarrow E^{*}
$$

be σ-additive on \mathcal{C}, a semiring in S. Let m^{*} be the μ-induced outer measure, and

$$
m: \mathcal{M}^{*} \rightarrow E^{*}
$$

be the m^{*}-induced measure. Then
(i) $\mathcal{C} \subseteq \mathcal{M}^{*}$ and
(ii) $\mu=m^{*}=m$ on \mathcal{C}.

Thus m is a σ-additive extension of μ (called its Lebesgue extension) to \mathcal{M}^{*}.
Proof. By Corollary 2 in $\S 5, \mu$ is also σ-subadditive on the semiring \mathcal{C}. Thus by Theorem 2 in $\S 5, \mu=m^{*}$ on \mathcal{C}.

To prove that $\mathcal{C} \subseteq \mathcal{M}^{*}$, we fix $A \in \mathcal{C}$ and show that A satisfies (9), so that $A \in \mathcal{M}^{*}$.

Thus take any $X \in \mathcal{C}$. As \mathcal{C} is a semiring, $X \cap A \in \mathcal{C}$ and

$$
X-A=\bigcup_{k=1}^{n} A_{k}(\text { disjoint })
$$

for some sets $A_{k} \in \mathcal{C}$. Hence

$$
\begin{align*}
m^{*}(X \cap A)+m^{*}(X-A) & =m^{*}(X \cap A)+m^{*} \bigcup_{k=1}^{n} A_{k} \tag{12}\\
& \leq m^{*}(X \cap A)+\sum_{k=1}^{n} m^{*} A_{k}
\end{align*}
$$

As

$$
X=(X \cap A) \cup(X-A)=(X \cap A) \cup \bigcup A_{k}(\text { disjoint })
$$

the additivity of μ and the equality $\mu=m^{*}$ on \mathcal{C} yield

$$
m^{*} X=m^{*}(X \cap A)+\sum_{k=1}^{n} m^{*} A_{k}
$$

Hence by (12),

$$
m^{*} X \geq m^{*}(X \cap A)+m^{*}(X-A)
$$

so by Lemma $5, A \in \mathcal{M}^{*}$, as required.

Also, by definition, $m=m^{*}$ on \mathcal{M}^{*}, hence on \mathcal{C}. Thus

$$
\mu=m^{*}=m \text { on } \mathcal{C}
$$

as claimed.
Note 3. In particular, Theorem 2 applies if

$$
\mu: \mathcal{M} \rightarrow E^{*}
$$

is a measure (so that $\mathcal{C}=\mathcal{M}$ is even a σ-ring).
Thus any such μ can be extended to a complete measure m (its Lebesgue extension) on a σ-field

$$
\mathcal{M}^{*} \supseteq \mathcal{M}
$$

via the μ-induced outer measure (call it μ^{*} this time), with

$$
\mu^{*}=m=\mu \text { on } \mathcal{M} .
$$

Moreover,

$$
\mathcal{M}^{*} \supseteq \mathcal{M} \supseteq \mathcal{M}_{\sigma}
$$

(see Note 2 in $\S 3$); so μ^{*} is \mathcal{M}-regular and \mathcal{M}^{*}-regular (Theorem 3 of $\S 5$).
Note 4. A reapplication of this process to m does not change m (Problem 16).

Problems on Measures and Outer Measures

1. Show that formulas (1) and (2) are equivalent.
[Hints: (i) Assume (1) and let $X \subseteq A, Y \subseteq-A$.
As X in (1) is arbitrary, we may replace it by $X \cup Y$. Simplifying, obtain (2) on noting that $X \cap A=X, X \cap-A=\emptyset, Y \cap A=\emptyset$, and $Y \cap-A=Y$.
(ii) Assume (2). Take any X and substitute $X \cap A$ and $X-A$ for X and Y in (2).]
2. Given an outer measure space $\left(S, \mathcal{M}^{*}, m^{*}\right)$ and $A \subseteq S$, set

$$
A \cap \mathcal{M}^{*}=\left\{A \cap X \mid X \in \mathcal{M}^{*}\right\}
$$

(all sets of the form $A \cap X$ with $X \in \mathcal{M}^{*}$).
Prove that $A \cap \mathcal{M}^{*}$ is a σ-field in A, and m^{*} is σ-additive on it.
[Hint: Use Lemma 4, with $X_{k}=A \cap A_{k} \in A \cap \mathcal{M}^{*}$.]
3. Prove Lemmas 1 and 2 , using formula (1).
$\mathbf{3}^{\prime}$. Prove Corollary 1.
4. Verify Examples (b), (c), and (d). Why is m an outer measure as well? [Hint: Use Corollary 2 in $\S 5$.]
5. Fill in all details (induction, etc.) in the proofs of this section.
6. Verify that m^{*} is an outer measure and describe \mathcal{M}^{*} under each of the following conditions.
(a) $m^{*} A=1$ if $\emptyset \subset A \subseteq S ; m^{*} \emptyset=0$.
(b) $m^{*} A=1$ if $\emptyset \subset A \subset S ; m^{*} S=2 ; m^{*} \emptyset=0$.
(c) $m^{*} A=0$ if $A \subseteq S$ is countable; $m^{*} A=1$ otherwise (S is uncountable).
(d) $S=N$ (naturals); $m^{*} A=1$ if A is infinite; $m^{*} A=\frac{n}{n+1}$ if A has n elements.
7. Prove the following.
(i) An outer measure m^{*} is \mathcal{M}^{*}-regular (Definition 5 in $\S 5$) iff

$$
(\forall A \subseteq S)\left(\exists B \in \mathcal{M}^{*}\right) \quad A \subseteq B \text { and } m^{*} A=m B
$$

B is called a measurable cover of A.
[Hint: If

$$
m^{*} A=\inf \left\{m X \mid A \subseteq X \in \mathcal{M}^{*}\right\},
$$

then

$$
(\forall n)\left(\exists X_{n} \in \mathcal{M}^{*}\right) \quad A \subseteq X_{n} \text { and } m X_{n} \leq m^{*} A+\frac{1}{n} .
$$

Set $B=\bigcap_{n=1}^{\infty} X_{n}$.]
(ii) If m^{*} is as in Definition 3 of $\S 5$, with $\mathcal{C} \subseteq \mathcal{M}^{*}$, then m^{*} is \mathcal{M}^{*} regular.
8. Show that if m^{*} is \mathcal{M}^{*}-regular (Problem 7), it is left continuous.
[Hints: Let $\left\{A_{n}\right\} \uparrow$; let B_{n} be a measurable cover of A_{n}; set

$$
C_{n}=\bigcap_{k=n}^{\infty} B_{k} .
$$

Verify that $\left\{C_{n}\right\} \uparrow, B_{n} \supseteq C_{n} \supseteq A_{n}$, and $m C_{n}=m^{*} A_{n}$.
By the left continuity of m (Theorem 2 in $\S 4$),

$$
\lim m^{*} A_{n}=\lim m C_{n}=m \bigcup_{n=1}^{\infty} C_{n} \geq m^{*} \bigcup_{n=1}^{\infty} A_{n} .
$$

Prove the reverse inequality as well.]
9. Continuing Problems $6-8$, verify the following.
(i) In 6(a), with $S=N, m^{*}$ is \mathcal{M}^{*}-regular, but not right continuous. Hint: Take $A_{n}=\{x \in N \mid x \geq n\}$.
(ii) In 6(b), with $S=N, m^{*}$ is neither \mathcal{M}^{*}-regular nor left continuous.
(iii) In $6(\mathrm{~d}), m^{*}$ is not \mathcal{M}^{*}-regular; yet it is left continuous. (Thus Problem 8 is not a necessary condition.)
10. In Problem 2, let n^{*} be the restriction of m^{*} to 2^{A}. Prove the following.
(a) n^{*} is an outer measure in A.
(b) $A \cap \mathcal{M}^{*} \subseteq \mathcal{N}^{*}=\left\{n^{*}\right.$-measurable sets $\}$.
(c) $A \cap \mathcal{M}^{*}=\mathcal{N}^{*}$ if $A \in \mathcal{M}^{*}$, or if m^{*} is \mathcal{M}^{*}-regular (see Problem 7) and finite.
(d) n^{*} is \mathcal{N}^{*}-regular if m^{*} is \mathcal{M}^{*}-regular.
11. Show that if m^{*} is \mathcal{M}^{*}-regular and finite, then $A \subseteq S$ is m^{*} measurable iff

$$
m S=m^{*} A+m^{*}(-A) .
$$

[Hint: Assume the latter. By Problem 7,

$$
(\forall X \subseteq S)\left(\exists B \in \mathcal{M}^{*}, B \supseteq X\right) \quad m^{*} X=m B ;
$$

so

$$
m^{*} A=m^{*}(A \cap B)+m^{*}(A-B) .
$$

Similarly for $-A$. Deduce that

$$
m^{*}(A \cap B)+m^{*}(A-B)+m^{*}(B-A)+m^{*}(-A-B)=m S=m B+m(-B) ;
$$

hence

$$
m^{*} X=m B \geq m^{*}(B \cap A)+m^{*}(B-A) \geq m^{*}(X \cap A)+m^{*}(X-A),
$$

so $A \in \mathcal{M}^{*}$.]
12. Using Problem 15 in $\S 5$, prove that if m^{*} has the $C P$ then each open set $G \subseteq S$ is in \mathcal{M}^{*}.
[Outline: Show that

$$
(\forall X \subseteq G)(\forall Y \subseteq-G) \quad m^{*}(X \cup Y) \geq m^{*} X+m^{*} Y,
$$

assuming $m^{*} X<\infty$. (Why?) Set

$$
D_{0}=\{x \in X \mid \rho(x,-G) \geq 1\}
$$

and

$$
D_{k}=\left\{x \in X \left\lvert\, \frac{1}{k+1} \leq \rho(x,-G)<\frac{1}{k}\right.\right\}, \quad k \geq 1 .
$$

Prove that

$$
\begin{equation*}
X=\bigcup_{k=0}^{\infty} D_{k} \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho\left(D_{k}, D_{k+2}\right)>0 ; \tag{ii}
\end{equation*}
$$

so by Problem 15 in $\S 5$,

$$
\sum_{n=0}^{\infty} m^{*} D_{2 n}=m^{*} \bigcup_{n=0}^{\infty} D_{2 n} \leq m^{*} \bigcup_{n=0}^{\infty} D_{n}=m^{*} X<\infty
$$

Similarly,

$$
\sum_{n=0}^{\infty} m^{*} D_{2 n+1} \leq m^{*} X<\infty
$$

Hence

$$
\sum_{n=0}^{\infty} m^{*} D_{n}<\infty
$$

so

$$
\lim _{n \rightarrow \infty} \sum_{k=n}^{\infty} m^{*} D_{k}=0
$$

(Why?) Thus

$$
(\forall \varepsilon>0)(\exists n) \quad \sum_{k=n}^{\infty} m^{*} D_{k}<\varepsilon
$$

Also,

$$
X=\bigcup_{k=0}^{\infty} D_{k}=\bigcup_{k=0}^{n-1} D_{k} \cup \bigcup_{k=n}^{\infty} D_{k}
$$

so

$$
m^{*} X \leq m^{*} \bigcup_{k=0}^{n-1} D_{k}+\sum_{k=n}^{\infty} m^{*} D_{k}<m^{*} \bigcup_{k=0}^{n-1} D_{k}+\varepsilon
$$

Adding $m^{*} Y$ on both sides, get
(iii)

$$
m^{*} X+m^{*} Y \leq m^{*} \bigcup_{k=0}^{n-1} D_{k}+m^{*} Y+\varepsilon
$$

Moreover,

$$
\rho\left(\bigcup_{k=0}^{n-1} D_{k}, Y\right)>0
$$

for $Y \subseteq-G$ and

$$
\rho\left(D_{k},-G\right) \geq \frac{1}{k+1} .
$$

Hence by the CP,

$$
m^{*} Y+\sum_{k=0}^{n-1} m^{*} D_{k}=m^{*}\left(Y \cup \bigcup_{k=0}^{n-1} D_{k}\right)<m^{*}(Y \cup X)
$$

(Why?) Combining with (iii), obtain

$$
m^{*} X+m^{*} Y \leq m^{*}(X \cup Y)+\varepsilon
$$

Now let $\varepsilon \rightarrow 0$.]
$\Rightarrow 13$. Show that if $m: \mathcal{M} \rightarrow E^{*}$ is a measure, there is $P \in \mathcal{M}$, with

$$
m P=\max \{m X \mid X \in \mathcal{M}\}
$$

[Hint: Let

$$
k=\sup \{m X \mid X \in \mathcal{M}\}
$$

in E^{*}. As $k \geq 0$, there is a sequence $r_{n} \nearrow k, r_{n}<k$. (If $k=\infty$, set $r_{n}=n$; if $k<\infty, r_{n}=k-\frac{1}{n}$.) By lub properties,

$$
(\forall n)\left(\exists X_{n} \in \mathcal{M}\right) \quad r_{n}<m X_{n} \leq k,
$$

with $\left\{X_{n}\right\} \uparrow($ Problem 9 in $\S 3)$. Set

$$
P=\bigcup_{n=1}^{\infty} X_{n}
$$

Show that

$$
\left.m P=\lim _{n \rightarrow \infty} m X_{n}=k .\right]
$$

\Rightarrow^{*} 14. Given a measure $m: \mathcal{M} \rightarrow E^{*}$, let
$\overline{\mathcal{M}}=\{$ all sets of the form $X \cup Z$ where $X \in \mathcal{M}$ and Z is m-null $\}$.
Prove that $\overline{\mathcal{M}}$ is a σ-ring $\supseteq \mathcal{M}$.
[Hint: To prove that

$$
(\forall A, B \in \overline{\mathcal{M}}) \quad A-B \in \overline{\mathcal{M}}
$$

suppose first $A \in \mathcal{M}$ and B is "null," i.e., $B \subseteq U \in \mathcal{M}, m U=0$.
Show that

$$
A-B=X \cup Z
$$

with $X=A-U \in \mathcal{M}$ and $Z=A \cap U-B$ m-null (Z is shaded in Figure 31).
Next, if $A, B \in \overline{\mathcal{M}}$, let $A=X \cup Z$,
$B=X^{\prime} \cup Z^{\prime}$, where $X, X^{\prime} \in \mathcal{M}$ and Z, Z^{\prime} are m-null. Hence

$$
\begin{aligned}
A-B & =(X \cup Z)-B \\
& =(X-B) \cup(Z-B) \\
& =(X-B) \cup Z^{\prime \prime},
\end{aligned}
$$

where

$$
Z^{\prime \prime}=Z-B
$$

is m-null. Also, $B=X^{\prime} \cup Z^{\prime}$ implies

$$
X-B=\left(X-X^{\prime}\right)-Z^{\prime} \in \overline{\mathcal{M}}
$$

Figure 31
by the first part of the proof.
Deduce that

$$
A-B=(X-B) \cup Z^{\prime \prime} \in \overline{\mathcal{M}}
$$

(after checking closure under unions).]
\Rightarrow^{*} 15. Continuing Problem 14 , define $\bar{m}: \overline{\mathcal{M}} \rightarrow E^{*}$ by setting $\bar{m} A=m X$ whenever $A=X \cup Z$, with $X \in \mathcal{M}$ and $Z m$-null. (Show that $\bar{m} A$ does not depend on the particular representation of A as $X \cup Z$.)

Prove the following.
(i) \bar{m} is a complete measure (called the completion of m), with $\bar{m}=m$ on \mathcal{M}.
(ii) \bar{m} is the least complete extension of m; that is, if $n: \mathcal{N} \rightarrow E^{*}$ is another complete measure, with $\mathcal{M} \subseteq \mathcal{N}$ and $n=m$ on \mathcal{M}, then $\overline{\mathcal{M}} \subseteq \mathcal{N}$ and $n=\bar{m}$ on $\overline{\mathcal{M}}$.
(iii) $m=\bar{m}$ iff m is complete.
16. Show that if $m: \mathcal{M}^{} \rightarrow E^{*}$ is induced by an \mathcal{M}^{*}-regular outer measure μ^{*}, then m equals its Lebesgue extension m^{\prime} and completion \bar{m} (see Problem 15).
[Hint: By Definition 3 in $\S 5, m$ induces an outer measure m^{*}. By Theorem 3 in $\S 5$,

$$
m^{*} A=\inf \left\{m X \mid A \subseteq X \in \mathcal{M}^{*}\right\}=\mu^{*} A
$$

(for μ^{*} is \mathcal{M}^{*}-regular).
As $m^{*}=\mu^{*}$, we get $m^{\prime}=m$. Also, $m=\bar{m}$, by Problem 15(iii).]
17. Prove that if a measure $\mu: \mathcal{M} \rightarrow E^{}$ is σ-finite (Definition 4 in $\S 5$), with $S \in \mathcal{M}$, then its Lebesgue extension $m: \mathcal{M}^{*} \rightarrow E^{*}$ equals its completion $\bar{\mu}$ (see Problem 15).
[Outline: It suffices to prove $\mathcal{M}^{*} \subseteq \overline{\mathcal{M}}$. (Why?)
To start with, let $A \in \mathcal{M}^{*}, m A<\infty$. By Problem 12 in $\S 5$,

$$
(\exists B \in \mathcal{M}) \quad A \subseteq B \text { and } m^{*} A=m A=m B<\infty ;
$$

so

$$
m(B-A)=m B-m A=0 .
$$

Also,

$$
(\exists H \in \mathcal{M}) \quad B-A \subseteq H \text { and } \mu H=m(B-A)=0 .
$$

Thus $B-A$ is μ-null; so $B-A \in \overline{\mathcal{M}}$. (Why?) Deduce that

$$
A=B-(B-A) \in \overline{\mathcal{M}} .
$$

Thus $\overline{\mathcal{M}}$ contains any $A \in \mathcal{M}^{*}$ with $m A<\infty$. Use the σ-finiteness of μ to show

$$
\left.\left(\forall x \in \mathcal{M}^{*}\right)\left(\exists\left\{A_{n}\right\} \subseteq \mathcal{M}^{*}\right) \quad m A_{n}<\infty \text { and } X=\bigcup_{n} A_{n} \in \overline{\mathcal{M}} .\right]
$$

§7. Topologies. Borel Sets. Borel Measures

I. Our theory of set families leads quite naturally to a generalization of metric spaces. As we know, in any such space (S, ρ), there is a family \mathcal{G} of open sets, and a family \mathcal{F} of all closed sets. In Chapter 3, $\S 12$, we derived the following two properties.
(i) \mathcal{G} is closed under any (even uncountable) unions and under finite intersections (Chapter 3, $\S 12$, Theorem 2). Moreover,

$$
\emptyset \in \mathcal{G} \text { and } S \in \mathcal{G} .
$$

(ii) \mathcal{F} has these properties, with "unions" and "intersections" interchanged (Chapter 3, §12, Theorem 3). Moreover, by definition,

$$
A \in \mathcal{F} \text { iff }-A \in \mathcal{G}
$$

Now, quite often, it is not so important to have distances (i.e., a metric) defined in S, but rather to single out two set families, \mathcal{G} and \mathcal{F}, with properties (i) and (ii), in a suitable manner. For examples, see Problems 1 to 4 below. Once \mathcal{G} and \mathcal{F} are given, one does not need a metric to define such notions as continuity, limits, etc. (See Problems 2 and 3.) This leads us to the following definition.

Definition 1.

A topology for a set S is any set family $\mathcal{G} \subseteq 2^{S}$, with properties (i).
The pair (S, \mathcal{G}) then is called a topological space. If confusion is unlikely, we simply write S for (S, \mathcal{G}).
\mathcal{G}-sets are called open sets; their complements form the family \mathcal{F} (called cotopology) of all closed sets in $S ; \mathcal{F}$ satisfies (ii) (the proof is as in Theorem 3 of Chapter 3, §12).

Any metric space may be treated as a topological one (with \mathcal{G} defined as in Chapter $3, \S 12$), but the converse is not true. Thus (S, \mathcal{G}) is more general.

Note 1. By Problem 15 in Chapter 4, $\S 2$, a map

$$
f:(S, \rho) \rightarrow\left(T, \rho^{\prime}\right)
$$

is continuous iff $f^{-1}[B]$ is open in S whenever B is open in T.
We adopt this as a definition, for topological spaces S, T.
Many other notions (neighborhoods, limits, etc.) carry over from metric spaces by simply treating G_{p} as "an open set containing p." (See Problem 3.)

Note 2. By (i), \mathcal{G} is surely closed under countable unions. Thus by Note 2 in $\S 3$,

$$
\mathcal{G}=\mathcal{G}_{\sigma}
$$

Also, $\mathcal{G}=\mathcal{G}_{d}$ and

$$
\mathcal{F}_{\delta}=\mathcal{F}=\mathcal{F}_{s},
$$

but not

$$
\mathcal{G}=\mathcal{G}_{\delta} \text { or } \mathcal{F}=\mathcal{F}_{\sigma}
$$

in general.
\mathcal{G} and \mathcal{F} need not be rings or σ-rings (closure fails for differences). But by Theorem 2 in $\S 3, \mathcal{G}$ and \mathcal{F} can be "embedded" in a smallest σ-ring. We name it in the following definition.

Definition 2.

The σ-ring \mathcal{B} generated by a topology \mathcal{G} in S is called the Borel field in S. (It is a σ-field, as $S \in \mathcal{G} \subseteq \mathcal{B}$.)

Equivalently, \mathcal{B} is the least σ-ring $\supseteq \mathcal{F}$. (Why?)
\mathcal{B}-sets are called Borel sets in (S, \mathcal{G}).
As \mathcal{B} is closed under countable unions and intersections, we have not only

$$
\mathcal{B} \supseteq \mathcal{G} \text { and } \mathcal{B} \supseteq \mathcal{F},
$$

but also

$$
\mathcal{B} \supseteq \mathcal{G}_{\delta}, \mathcal{B} \supseteq \mathcal{F}_{\sigma}, \mathcal{B} \supseteq \mathcal{G}_{\delta \sigma}\left[\text { i.e., }\left(\mathcal{G}_{\delta}\right)_{\sigma}\right], \mathcal{B} \supseteq \mathcal{F}_{\sigma \delta}, \text { etc. }
$$

Note that

$$
\mathcal{G}_{\delta \delta}=\mathcal{G}_{\delta}, \mathcal{F}_{\sigma \sigma}=\mathcal{F}_{\sigma}, \text { etc. }(\text { Why? })
$$

II. Special notions apply to measures in metric and topological spaces.

Definition 3.

A measure $m: \mathcal{M} \rightarrow E^{*}$ in (S, \mathcal{G}) is called topological iff $\mathcal{G} \subseteq \mathcal{M}$, i.e., all open sets are measurable; m is a Borel measure iff $\mathcal{M}=\mathcal{B}$.

Note 3. If $\mathcal{G} \subseteq \mathcal{M}$ (a σ-ring), then also $\mathcal{B} \subseteq \mathcal{M}$ since \mathcal{B} is, by definition, the least σ-ring $\supseteq \mathcal{G}$.

Thus m is topological iff $\mathcal{B} \subseteq \mathcal{M}$ (hence surely $\mathcal{F} \subseteq \mathcal{M}, \mathcal{G}_{\delta} \subseteq \mathcal{M}, \mathcal{F}_{\sigma} \subseteq \mathcal{M}$, etc.).

It also follows that any topological measure can be restricted to \mathcal{B} to obtain a Borel measure, called its Borel restriction.

Definition 4.

A measure $m: \mathcal{M} \rightarrow E^{*}$ in (S, \mathcal{G}) is called regular iff it is regular with respect to $\mathcal{M} \cap \mathcal{G}$, the measurable open sets; i.e.,

$$
(\forall A \in \mathcal{M}) \quad m A=\inf \{m X \mid A \subseteq X \in \mathcal{M} \cap \mathcal{G}\}
$$

If m is topological $(\mathcal{G} \subseteq \mathcal{M})$, this simplifies to

$$
\begin{equation*}
m A=\inf \{m X \mid A \subseteq X \in \mathcal{G}\} \tag{1}
\end{equation*}
$$

i.e., m is \mathcal{G}-regular (Definition 5 in $\S 5$).

Definition 5.

A measure m is strongly regular iff for any $A \in \mathcal{M}$ and $\varepsilon>0$, there is an open set $G \in \mathcal{M}$ and a closed set $F \in \mathcal{M}$ such that

$$
\begin{equation*}
F \subseteq A \subseteq G, \text { with } m(A-F)<\varepsilon \text { and } m(G-A)<\varepsilon \tag{2}
\end{equation*}
$$

thus A can be "approximated" by open supersets and closed subsets, both measurable. As is easily seen, this implies regularity.

A kind of converse is given by the following theorem.
Theorem 1. If a measure $m: \mathcal{M} \rightarrow E^{*}$ in (S, \mathcal{G}) is regular and σ-finite (see Definition 4 in $\S 5$), with $S \in \mathcal{M}$, then m is also strongly regular.
Proof. Fix $\varepsilon>0$ and let $m A<\infty$.
By regularity,

$$
m A=\inf \{m X \mid A \subseteq X \in \mathcal{M} \cap \mathcal{G}\}
$$

so there is a set $X \in \mathcal{M} \cap \mathcal{G}$ (measurable and open), with

$$
A \subseteq X \text { and } m X<m A+\varepsilon
$$

Then

$$
m(X-A)=m X-m A<\varepsilon
$$

and X is the open set G required in (2).
If, however, $m A=\infty$, use σ-finiteness to obtain

$$
A \subseteq \bigcup_{k=1}^{\infty} X_{k}
$$

for some sets $X_{k} \in \mathcal{M}, m X_{k}<\infty$; so

$$
A=\bigcup_{k}\left(A \cap X_{k}\right) .
$$

Put

$$
A_{k}=A \cap X_{k} \in \mathcal{M}
$$

(Why?) Then

$$
A=\bigcup_{k} A_{k}
$$

and

$$
m A_{k} \leq m X_{k}<\infty
$$

Now, by what was proved above, for each A_{k} there is an open measurable $G_{k} \supseteq A_{k}$, with

$$
m\left(G_{k}-A_{k}\right)<\frac{\varepsilon}{2^{k}}
$$

Set

$$
G=\bigcup_{k=1}^{\infty} G_{k}
$$

Then $G \in \mathcal{M} \cap \mathcal{G}$ and $G \supseteq A$. Moreover,

$$
G-A=\bigcup_{k} G_{k}-\bigcup_{k} A_{k} \subseteq \bigcup_{k}\left(G_{k}-A_{k}\right)
$$

(Verify!) Thus by σ-subadditivity,

$$
m(G-A) \leq \sum_{k} m\left(G_{k}-A_{k}\right)<\sum_{k=1}^{\infty} \frac{\varepsilon}{2^{k}}=\varepsilon
$$

as required.
To find also the closed set F, consider

$$
-A=S-A \in \mathcal{M}
$$

As shown above, there is an open measurable set $G^{\prime} \supseteq-A$, with

$$
\varepsilon>m\left(G^{\prime}-(-A)\right)=m\left(G^{\prime} \cap A\right)=m\left(A-\left(-G^{\prime}\right)\right) .
$$

Then

$$
F=-G^{\prime} \subseteq A
$$

is the desired closed set, with $m(A-F)<\varepsilon$.
Theorem 2. If $m: \mathcal{M} \rightarrow E^{*}$ is a strongly regular measure in (S, \mathcal{G}), then for any $A \in \mathcal{M}$, there are measurable sets $H \in \mathcal{F}_{\sigma}$ and $K \in \mathcal{G}_{\delta}$ such that

$$
\begin{equation*}
H \subseteq A \subseteq K \text { and } m(A-H)=0=m(K-A) \tag{3}
\end{equation*}
$$

hence

$$
m A=m H=m K
$$

Proof. Let $A \in \mathcal{M}$. By strong regularity, given $\varepsilon_{n}=1 / n$, one finds measurable sets

$$
G_{n} \in \mathcal{G} \text { and } F_{n} \in \mathcal{F}, \quad n=1,2, \ldots,
$$

such that

$$
F_{n} \subseteq A \subseteq G_{n}
$$

and

$$
\begin{equation*}
m\left(A-F_{n}\right)<\frac{1}{n} \text { and } m\left(G_{n}-A\right)<\frac{1}{n}, \quad n=1,2, \ldots \tag{4}
\end{equation*}
$$

Let

$$
H=\bigcup_{n=1}^{\infty} F_{n} \text { and } K=\bigcap_{n=1}^{\infty} G_{n} .
$$

Then $H, K \in \mathcal{M}, H \in \mathcal{F}_{\sigma}, K \in \mathcal{G}_{\delta}$, and

$$
H \subseteq A \subseteq K
$$

Also, $F_{n} \subseteq H$ and $G_{n} \supseteq K$.
Hence

$$
A-H \subseteq A-F_{n} \text { and } K-A \subseteq G_{n}-A
$$

so by (4),

$$
m(A-H)<\frac{1}{n} \rightarrow 0 \text { and } m(K-A)<\frac{1}{n} \rightarrow 0
$$

Finally,

$$
m A=m(A-H)+m H=m H
$$

and similarly $m A=m K$.
Thus all is proved.

Problems on Topologies, Borel Sets, and Regular Measures

1. Show that \mathcal{G} is a topology in S (in (a)-(c), describe \mathcal{B} also), given
(a) $\mathcal{G}=2^{S}$;
(b) $\mathcal{G}=\{\emptyset, S\}$;
(c) $\mathcal{G}=\{\emptyset$ and all sets in S, containing a fixed point $p\}$; or
(d) $S=E^{*} ; \mathcal{G}$ consists of all possible unions of sets of the form (a, b), $(a, \infty]$, and $[-\infty, b)$, with $a, b \in E^{1}$.
2. (S, ρ) is called a pseudometric space (and ρ is a pseudometric) iff the metric laws (i)-(iii) of Chapter 3, $\S 11$ hold, but (i') is weakened to

$$
\rho(x, x)=0
$$

(so that $\rho(x, y)$ may be 0 even if $x \neq y$).
(a) Define "globes," "interiors," and "open sets" (i.e., \mathcal{G}) as in Chapter $3, \S 12$; then show that \mathcal{G} is a topology for S.
(b) Let $S=E^{2}$ and

$$
\rho(\bar{x}, \bar{y})=\left|x_{1}-y_{1}\right|,
$$

where $\bar{x}=\left(x_{1}, x_{2}\right)$ and $\bar{y}=\left(y_{1}, y_{2}\right)$. Show that ρ is a pseudometric but not a metric (the Hausdorff properly fails!).
3. Define "neighborhood," "interior," "cluster point," "closure," and "function limit" for topological spaces. Specify some notions (e.g., "diameter," "uniform continuity") that do not carry over (they involve distances).
4. In a topological space (S, \mathcal{G}), define

$$
\mathcal{G}^{0}=\mathcal{G}, \mathcal{G}^{1}=\mathcal{G}_{\delta}, \mathcal{G}^{2}=\mathcal{G}_{\delta \sigma}, \ldots
$$

and

$$
\mathcal{F}^{0}=\mathcal{F}, \mathcal{F}^{1}=\mathcal{F}_{\sigma}, \mathcal{F}^{2}=\mathcal{F}_{\sigma \delta}, \mathcal{F}^{3}=\mathcal{F}_{\sigma \delta \sigma}, \text { etc. }
$$

(Give an inductive definition.) Then prove by induction that
(a) $\mathcal{G}^{n} \subseteq \mathcal{B}, \mathcal{F}^{n} \subseteq \mathcal{B}$;
(b) $\mathcal{G}^{n-1} \subseteq \mathcal{G}^{n}, \mathcal{F}^{n-1} \subseteq \mathcal{F}^{n}$;
(c) $(\forall X \subseteq S) X \in \mathcal{F}^{n}$ iff $-X \in \mathcal{G}^{n}$;
(d) $\left(\forall X, Y \in \mathcal{F}^{n}\right) X \cap Y \in \mathcal{F}^{n}, X \cup Y \in \mathcal{F}^{n}$; same for \mathcal{G}^{n};
(e) $\left(\forall X \in \mathcal{G}^{n}\right)\left(\forall Y \in \mathcal{F}^{n}\right) X-Y \in \mathcal{G}^{n}$ and $Y-X \in \mathcal{F}^{n}$.
[Hint: $X-Y=X \cap-Y$.]
5. For metric and pseudometric spaces (see Problem 2) prove that

$$
\mathcal{F}^{n} \subseteq \mathcal{G}^{n+1} \text { and } \mathcal{G}^{n} \subseteq \mathcal{F}^{n+1}
$$

(cf. Problem 4).
$\left[\right.$ Hint for $\mathcal{F} \subseteq \mathcal{G}_{\delta}$: Let $F \in \mathcal{F}$. Set

$$
G_{n}=\bigcup_{p \in F} G_{p}\left(\frac{1}{n}\right) ;
$$

so

$$
(\forall n) \quad F \subseteq G_{n} \in \mathcal{G} .
$$

Hence

$$
F \subseteq \bigcap_{n} G_{n} \in \mathcal{G}_{\delta} .
$$

Also,

$$
\bigcap_{n} G_{n}=\bar{F}=F
$$

by Theorem 3 in Chapter 3, $\S 16$. Hence deduce that

$$
(\forall F \in \mathcal{F}) \quad F \in \mathcal{G}_{\delta},
$$

so $\mathcal{F} \subseteq \mathcal{G}_{\delta}$; hence $\mathcal{G} \subseteq \mathcal{F}_{\sigma}$ by Problem 4(c). Now use induction.]
6. If m is as in Definition 5, then prove the following.
(i) m is regular.
(ii) $(\forall A \in \mathcal{M}) m A=\sup \{m X \mid A \supseteq X \in \mathcal{M} \cap \mathcal{F}\}$.
(iii) The latter implies strong regularity if $m<\infty$ and $S \in \mathcal{M}$.
7. Let $\mu: \mathcal{B} \rightarrow E^{*}$ be a Borel measure in a metric space (S, ρ). Set

$$
(\forall A \subseteq S) \quad n^{*} A=\inf \{\mu X \mid A \subseteq X \in \mathcal{G}\}
$$

Prove that
(i) n^{*} is an outer measure in S;
(ii) $n^{*}=\mu$ on \mathcal{G};
(iii) the n^{*}-induced measure, $n: \mathcal{N}^{*} \rightarrow E^{*}$, is topological (so $\mathcal{B} \subseteq \mathcal{N}^{*}$);
(iv) $n \geq \mu$ on \mathcal{B};
(v) $(\forall A \subseteq S)\left(\exists H \in \mathcal{G}_{\delta}\right) A \subseteq H$ and $\mu H=n^{*} A$.
[Hints: (iii) Using Problem 15 in $\S 5$ and Problem 12 in $\S 6$, let

$$
\rho(X, Y)>\varepsilon>0, \quad U=\bigcup_{x \in X} G_{x}\left(\frac{1}{2} \varepsilon\right), \quad V=\bigcup_{y \in Y} G_{y}\left(\frac{1}{2} \varepsilon\right)
$$

Verify that $U, V \in \mathcal{G}, U \supseteq X, V \supseteq Y, U \cap V=\emptyset$.
By the definition of n^{*},

$$
(\exists G \in \mathcal{G}) \quad G \supseteq X \cup Y \text { and } n^{*} G \leq n^{*}(X \cup Y)+\varepsilon ;
$$

also, $X \subseteq G \cap U$ and $Y \subseteq G \cap V$. Thus by (ii),

$$
n^{*} X \leq \mu(G \cap U) \text { and } n^{*} Y \leq \mu(G \cap V)
$$

Hence
$n^{*} X+n^{*} Y \leq \mu(G \cap U)+\mu(G \cap V)=\mu((G \cap U) \cup(G \cap V)) \leq \mu G=n^{*} G \leq n^{*}(X \cup Y)+\varepsilon$.
Let $\varepsilon \rightarrow 0$ to get the CP: $n^{*} X+n^{*} Y \leq n^{*}(X \cup Y)$.
(iv) We have $(\forall A \in \mathcal{B})$

$$
n A=n^{*} A=\inf \{\mu X \mid A \subseteq X \in \mathcal{G}\} \geq \inf \{\mu X \mid A \subseteq X \in \mathcal{B}\}=\mu A
$$

(Why?)
(v) Use the hint to Problem 11 in §5.]
8. From Problem 7 with $m=\mu$, prove that if

$$
A \subseteq G \in \mathcal{G}
$$

with $m G<\infty$ and $A \in \mathcal{B}$, then $m A=n A$.
[Hint: A, G, and $(G-A) \in \mathcal{B}$. By Problem 7 (iii), $\mathcal{B} \subseteq N^{*}$ and n is additive on \mathcal{B}; so by Problem 7(ii)(iv),

$$
n A=n G-n(G-A) \leq m G-m(G-A)=m A \leq n A .
$$

Thus $m A=n A$. Explain all!]
9. Let m, n, and n^{*} be as in Problems 7 and 8 . Suppose

$$
S=\bigcup_{n=1}^{\infty} G_{n}
$$

with $G_{n} \in \mathcal{G}$ and $m G_{n}<\infty$ (this is called σ^{0}-finiteness).
Prove that
(i) $m=n$ on \mathcal{B}, and
(ii) m and n are strongly regular.
[Hints: Fix $A \in \mathcal{B}$. Show that

$$
A=\bigcup A_{n}(\text { disjoint })
$$

for some Borel sets $A_{n} \subseteq G_{n}$ (use Corollary 1 in $\S 1$). By Problem 8, $m A_{n}=n A_{n}$ since

$$
A_{n} \subseteq G_{n} \in \mathcal{G}
$$

and $m G_{n}<\infty$. Now use σ-additivity to find $m A=n A$.
(ii) Use \mathcal{G}-regularity, part (i), and Theorem 1.]
10. Continuing Problems 8 and 9 , show that n is the Lebesgue extension of m (see Theorem 2 in $\S 6$ and Note 3 in $\S 6$).

Thus every σ^{0}-finite Borel measure m in (S, ρ) and its Lebesgue extension are strongly regular.
[Hint: m induces an outer measure m^{*}, with $m^{*}=m$ on \mathcal{B}. It suffices to show that $m^{*}=n^{*}$ on 2^{S}. (Why?)

So let $A \subseteq S$. By Problem 7(v),

$$
(\exists H \in \mathcal{B}) A \subseteq H \text { and } n^{*} A=m H=m^{*} H .
$$

Also,

$$
(\exists K \in \mathcal{B}) A \subseteq K \text { and } m^{*} A=m K
$$

(Problem 12 in $\S 5$). Deduce that

$$
n^{*} A \leq n(H \cap K)=m(H \cap K) \leq m H=n^{*} A
$$

and

$$
\left.n^{*} A=m(H \cap K)=m^{*} A .\right]
$$

§8. Lebesgue Measure

We shall now consider the most important example of a measure in E^{n}, due to Lebesgue. This measure generalizes the notion of volume and assigns "volumes" to a large set family, the "Lebesgue measurable" sets, so that "volume" becomes a complete topological measure. For "bodies" in E^{3}, this measure agrees with our intuitive idea of "volume."

We start with the volume function $v: \mathcal{C} \rightarrow E^{1}$ ("Lebesgue premeasure") on the semiring \mathcal{C} of all intervals in $E^{n}(\S 1)$. As we saw in $\S \S 5$ and 6 , this premeasure induces an outer measure m^{*} on all subsets of E^{n}; and m^{*}, in turn, induces a measure m on the σ-field \mathcal{M}^{*} of m^{*}-measurable sets. These sets are, by definition, the Lebesgue-measurable (briefly L-measurable) sets; m^{*} and m so defined are the (n-dimensional) Lebesgue outer measure and Lebesgue measure.

Theorem 1. Lebesgue premeasure v is σ-additive on \mathcal{C}, the intervals in E^{n}. Hence the latter are Lebesgue measurable $\left(\mathcal{C} \subseteq \mathcal{M}^{*}\right)$, and the volume of each interval equals its Lebesgue measure:

$$
v=m^{*}=m \text { on } \mathcal{C} .
$$

This follows by Corollary 1 in $\S 2$ and Theorem 2 of $\S 6$.
Note 1. As \mathcal{M}^{*} is a σ-field ((\S)), it is closed under countable unions, countable intersections, and differences. Thus

$$
\mathcal{C} \subseteq \mathcal{M}^{*} \text { implies } \mathcal{C}_{\sigma} \subseteq \mathcal{M}^{*} ;
$$

i.e., any countable union of intervals is L-measurable. Also, $E^{n} \in \mathcal{M}^{*}$.

Corollary 1. Any countable set $A \subset E^{n}$ is L-measurable, with $m A=0$.
The proof is as in Corollary 6 of $\S 2$.
Corollary 2. The Lebesgue measure of E^{n} is ∞.
Prove as in Corollary 5 of $\S 2$.

Examples.

(a) Let

$$
R=\left\{\text { rationals in } E^{1}\right\} .
$$

Then R is countable (Corollary 3 of Chapter $1, \S 9$); so $m R=0$ by Corollary 1 . Similarly for R^{n} (rational points in E^{n}).
(b) The measure of an interval with endpoints a, b in E^{1} is its length, $b-a$. Let

$$
R_{o}=\{\text { all rationals in }[a, b]\} ;
$$

so $m R_{o}=0$. As $[a, b]$ and R_{o} are in \mathcal{M}^{*} (a σ-field), so is

$$
[a, b]-R_{o},
$$

the irrationals in $[a, b]$. By Lemma 1 in $\S 4$, if $b>a$, then

$$
m\left([a, b]-R_{o}\right)=m([a, b])-m R_{o}=m([a, b])=b-a>0=m R_{o} .
$$

This shows again that the irrationals form a "larger" set than the rationals (cf. Theorem 3 of Chapter 1, $\S 9$).
(c) There are uncountable sets of measure zero (see Problems 8 and 10 below).

Theorem 2. Lebesgue measure in E^{n} is complete, topological, and totally σ finite. That is,
(i) all null sets (subsets of sets of measure zero) are L-measurable;
(ii) so are all open sets $\left(\mathcal{M}^{*} \supseteq \mathcal{G}\right)$, hence all Borel sets $\left(\mathcal{M}^{*} \supseteq \mathcal{B}\right)$; in particular, $\mathcal{M}^{*} \supseteq \mathcal{F}, \mathcal{M}^{*} \supseteq \mathcal{G}_{\delta}, \mathcal{M}^{*} \supseteq \mathcal{F}_{\sigma}, \mathcal{M}^{*} \supseteq \mathcal{F}_{\sigma \delta}$, etc.;
(iii) each $A \in \mathcal{M}^{*}$ is a countable union of disjoint sets of finite measure.

Proof. (i) This follows by Theorem 1 in $\S 6$.
(ii) By Lemma 2 in $\S 2$, each open set is in \mathcal{C}_{σ}, hence in \mathcal{M}^{*} (Note 1). Thus $\mathcal{M}^{*} \supseteq \mathcal{G}$. But by definition, the Borel field \mathcal{B} is the least σ-ring $\supseteq \mathcal{G}$. Hence $\mathcal{M}^{*} \supseteq \mathcal{B}^{*}$.
(iii) As E^{n} is open, it is a countable union of disjoint half-open intervals,

$$
E^{n}=\bigcup_{k=1}^{\infty} A_{k}(\text { disjoint })
$$

with $m A_{k}<\infty$ (Lemma 2 in $\S 2$). Hence

$$
\left(\forall A \subseteq E^{n}\right) \quad A \subseteq \bigcup A_{k} ;
$$

so

$$
A=\bigcup_{k}\left(A \cap A_{k}\right)(\text { disjoint }) .
$$

If, further, $A \in \mathcal{M}^{*}$, then $A \cap A_{k} \in \mathcal{M}^{*}$, and

$$
m\left(A \cap A_{k}\right) \leq m A_{k}<\infty .(\text { Why? })
$$

Note 2. More generally, a σ-finite set $A \in \mathcal{M}$ in a measure space (S, \mathcal{M}, μ) is a countable union of disjoint sets of finite measure (Corollary 1 of $\S 1$).

Note 3. Not all L-measurable sets are Borel sets. On the other hand, not all sets in E^{n} are L-measurable (see Problems 6 and 9 below.)

Theorem 3.

(a) Lebesgue outer measure m^{*} in E^{n} is \mathcal{G}-regular; that is,

$$
\begin{equation*}
\left(\forall A \subseteq E^{n}\right) \quad m^{*} A=\inf \{m X \mid A \subseteq X \in \mathcal{G}\} \tag{1}
\end{equation*}
$$

$\left(\mathcal{G}=\right.$ open sets in $\left.E^{n}\right)$.
(b) Lebesgue measure m is strongly regular (Definition 5 and Theorems 1 and 2, all in §7).

Proof. By definition, $m^{*} A$ is the glb of all basic covering values of A. Thus given $\varepsilon>0$, there is a basic covering $\left\{B_{k}\right\} \subseteq \mathcal{C}$ of nonempty sets B_{k} such that

$$
\begin{equation*}
A \subseteq \bigcup B_{k} \text { and } m^{*} A+\frac{1}{2} \varepsilon \geq \sum_{k} v B_{k} \tag{2}
\end{equation*}
$$

(Why? What if $m^{*} A=\infty$?)
Now, by Lemma 1 in $\S 2$, fix for each B_{k} an open interval $C_{k} \supseteq B_{k}$ such that

$$
v C_{k}-\frac{\varepsilon}{2^{k+1}}<v B_{k} .
$$

Then (2) yields

$$
m^{*} A+\frac{1}{2} \varepsilon \geq \sum_{k}\left(v C_{k}-\frac{\varepsilon}{2^{k+1}}\right)=\sum_{k} v C_{k}-\frac{1}{2} \varepsilon
$$

so by σ-subadditivity,

$$
\begin{equation*}
m \bigcup_{k} C_{k} \leq \sum_{k} m C_{k}=\sum_{k} v C_{k} \leq m^{*} A+\varepsilon \tag{3}
\end{equation*}
$$

Let

$$
X=\bigcup_{k} C_{k} .
$$

Then X is open (as the C_{k} are). Also, $A \subseteq X$, and by (3),

$$
m X \leq m^{*} A+\varepsilon .
$$

Thus, indeed, $m^{*} A$ is the $g l b$ of all $m X, A \subseteq X \in \mathcal{G}$, proving (a).
In particular, if $A \in \mathcal{M}^{*}$, (1) shows that m is regular (for $m^{*} A=m A$). Also, by Theorem 2, m is σ-finite, and $E^{n} \in \mathcal{M}^{*}$; so (b) follows by Theorem 1 in $\S 7$.

Definition.

Given $A \subseteq E^{n}$ and $\bar{p} \in E^{n}$, let $\bar{p}+A$ or $A+\bar{p}$ denote the set of all points of the form

$$
\bar{x}+\bar{p}, \quad \bar{x} \in A .
$$

We call $A+\bar{p}$ the translate of A by \bar{p}.
Theorem 4. Lebesgue outer measure m^{*} and Lebesgue measure m in E^{n} are translation invariant. That is,
(i) $\left(\forall A \subseteq E^{n}\right)\left(\forall \bar{p} \in E^{n}\right) m^{*} A=m^{*}(A+\bar{p})$;
(ii) if A is L-measurable, so is $A+\bar{p}$, and $m A=m(A+\bar{p})$.

See also Problem 7 in $\S 10$.
Proof. (i) If A is an interval with endpoints \bar{a} and \bar{b}, then $A+\bar{p}$ is the interval with endpoints $\bar{a}+\bar{p}$ and $\bar{b}+\bar{p}$. (Verify!)

Hence the edge lengths of A and $A+\bar{p}$ are the same,

$$
\ell_{k}=b_{k}-a_{k}=\left(b_{k}+p_{k}\right)-\left(a_{k}+p_{k}\right), \quad k=1,2, \ldots, n .
$$

Thus

$$
m A=v A=\prod_{k=1}^{n} \ell_{k}=m(A+\bar{p})
$$

so the theorem holds for intervals.

In the general case, $m^{*} A$ is the glb of all basic covering values of A. But a basic covering consists of intervals that, when translated by \bar{p}, cover $A+\bar{p}$ and retain the same volumes, as was shown above.

Hence any covering value for A is also one for $A+\bar{p}$, and conversely (since A, in turn, is a translate of $A+\bar{p}$ by $-\bar{p})$.

Thus the basic covering values of A and of $A+\bar{p}$ are the same, with one and the same glb. Hence

$$
m^{*} A=m^{*}(A+\bar{p}),
$$

as claimed.
(ii) Now let $A \in \mathcal{M}^{*}$. We must show that

$$
A+\bar{p} \in \mathcal{M}^{*}
$$

i.e., that

$$
(\forall X \subseteq A+\bar{p})(\forall Y \subseteq-(A+\bar{p})) \quad m^{*} X+m^{*} Y=m^{*}(X \cup Y)
$$

Thus fix $X \subseteq A+\bar{p}$ and $Y \subseteq-(A+\bar{p})$.
As is easily seen, $X-\bar{p} \subseteq A$ and $Y-\bar{p} \subseteq-A$ (translate all by $-\bar{p}$). Since $A \in \mathcal{M}^{*}$, we get

$$
m^{*}(X-\bar{p})+m^{*}(Y-\bar{p})=m^{*}((X \cup Y)-\bar{p}) .
$$

(Why?) But by (i), $m^{*} X=m^{*}(X-\bar{p}), m^{*} Y=m^{*}(Y-\bar{p})$, and

$$
m^{*}(X \cup Y)=m^{*}((X \cup Y)-\bar{p}) .
$$

Hence

$$
m^{*} X+m^{*} Y=m^{*}(X \cup Y)
$$

and so $A+\bar{p} \in \mathcal{M}^{*}$.
Now, as $m^{*}=m$ on \mathcal{M}^{*}, (i) yields $m A=m(A+\bar{p})$, proving (ii) also.

Problems on Lebesgue Measure

1. Fill in all details in the proof of Theorems 3 and 4.
$\mathbf{1}^{\prime}$. Prove Note 2.
2. From Theorem 3 deduce that

$$
\left(\forall A \subseteq E^{n}\right)\left(\exists B \in \mathcal{G}_{\delta}\right) \quad A \subseteq B \text { and } m^{*} A=m B
$$

[Hint: See the hint to Problem 7 in §5.]
3. Review Problem 3 in $\S 5$.
4. Consider all translates

$$
R+p \quad\left(p \in E^{1}\right)
$$

of

$$
R=\left\{\text { rationals in } E^{1}\right\} .
$$

Prove the following.
(i) Any two such translates are either disjoint or identical.
(ii) Each $R+p$ contains at least one element of $[0,1]$.
[Hint for (ii): Fix a rational $y \in(-p, 1-p)$, so $0<y+p<1$. Then $y+p \in R+p$, and $y+p \in[0,1]$.]
5. Continuing Problem 4, choose one element $q \in[0,1]$ from each $R+p$. Let Q be the set of all q so chosen.

Call a translate of $Q, Q+r$, "good" iff $r \in R$ and $|r|<1$. Let U be the union of all "good" translates of Q.

Prove the following.
(a) There are only countably many "good" $Q+r$.
(b) All of them lie in $[-1,2]$.
(c) Any two of them are either disjoint or identical.
(d) $[0,1] \subseteq U \subseteq[-1,2]$; hence $1 \leq m^{*} U \leq 3$.
[Hint for (c): Suppose

$$
y \in(Q+r) \cap\left(Q+r^{\prime}\right) .
$$

Then

$$
y=q+r=q^{\prime}+r^{\prime} \quad\left(q, q^{\prime} \in Q, r, r^{\prime} \in R\right) ;
$$

so $q=q^{\prime}+\left(r^{\prime}-r\right)$, with $\left(r^{\prime}-r\right) \in R$.
Thus $q \in R+q^{\prime}$ and $q^{\prime}=0+q^{\prime} \in R+q^{\prime}$. Deduce that $q=q^{\prime}$ and $r=r^{\prime}$; hence $\left.Q+r=Q+r^{\prime}.\right]$
6. Show that Q in Problem 5 is not L-measurable.
[Hint: Otherwise, by Theorem 4, each $Q+r$ is L-measurable, with $m(Q+r)=m Q$. By $5(\mathrm{a})(\mathrm{c}), U$ is a countable disjoint union of "good" translates.

Deduce that $m U=0$ if $m Q=0$, or $m U=\infty$, contrary to $5(\mathrm{~d})$.]
7. Show that if $f: S \rightarrow T$ is continuous, then $f^{-1}[X]$ is a Borel set in S whenever $X \in \mathcal{B}$ in T.
[Hint: Using Note 1 in $\S 7$, show that

$$
\mathcal{R}=\left\{X \subseteq T \mid f^{-1}[X] \in \mathcal{B} \text { in } S\right\}
$$

is a σ-ring in T. As \mathcal{B} is the least σ-ring $\supseteq \mathcal{G}, \mathcal{R} \supseteq \mathcal{B}$ (the Borel field in T.]
8. Prove that every degenerate interval in E^{n} has Lebesgue measure 0, even if it is uncountable. Give an example in E^{2}. Prove uncountability. [Hint: Take $\bar{a}=(0,0), \bar{b}=(0,1)$. Define $f: E^{1} \rightarrow E^{2}$ by $f(x)=(0, x)$. Show that f is one-to-one and that $[\bar{a}, \bar{b}]$ is the f-image of $[0,1]$. Use Problem 2 of Chapter $1, \S 9$.]
9. Show that not all L-measurable sets are Borel sets in E^{n}.
[Hint for E^{2} : With $[\bar{a}, \bar{b}]$ and f as in Problem 8, show that f is continuous (use the sequential criterion). As $m[\bar{a}, \bar{b}]=0$, all subsets of $[\bar{a}, \bar{b}]$ are in \mathcal{M}^{*} (Theorem 2(i)), hence in \mathcal{B} if we assume $\mathcal{M}^{*}=\mathcal{B}$. But then by Problem 7, the same would apply to subsets of $[0,1]$, contrary to Problem 6.

Give a similar proof for $E^{n}(n>1)$.
Note: In E^{1}, too, $\mathcal{B} \neq \mathcal{M}^{*}$, but a different proof is necessary. We omit it.]
10. Show that Cantor's set P (Problem 17 in Chapter 3, $\S 14$) has Lebesgue measure zero, even though it is uncountable.
[Outline: Let

$$
U=[0,1]-P ;
$$

so U is the union of open intervals removed from $[0,1]$. Show that

$$
m U=\frac{1}{2} \sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}=1
$$

and use Lemma 1 in §4.]
11. Let $\mu: \mathcal{B} \rightarrow E^{*}$ be the Borel restriction of Lebesgue measure m in E^{n} (§7). Prove that
(i) μ in incomplete;
(ii) m is the Lebesgue extension (* and completion, as in Problem 15 of $\S 6$) of μ.
[Hints: (i) By Problem 9, some μ-null sets are not in \mathcal{B}. (ii) See the proof (end) of Theorem 2 in $\S 9$ (the next section).]
12. Prove the following.
(i) All intervals in E^{n} are Borel sets.
(ii) The σ-ring generated by any one of the families \mathcal{C} or \mathcal{C}^{\prime} in Problem 3 of $\S 5$ coincides with the Borel field in E^{n}.
[Hints: (i) Any interval arises from a closed one by dropping some "faces" (degenerate closed intervals). (ii) Use Lemma 2 from $\S 2$ and Problem 7 of §3.]
13. Show that if a measure $m^{\prime}: \mathcal{M}^{\prime} \rightarrow E^{}$ in E^{n} agrees on intervals with Lebesgue measure $m: \mathcal{M}^{*} \rightarrow E^{*}$, then the following are true.
(i) $m^{\prime}=m$ on \mathcal{B}, the Borel field in E^{n}.
(ii) If m^{\prime} is also complete, then $m^{\prime}=m$ on \mathcal{M}^{*}.
[Hint: (i) Use Problem 13 of $\S 5$ and Problem 12 above.]
14. Show that globes of equal radius have the same Lebesgue measure.
[Hint: Use Theorem 4.]
15. Let $f: E^{n} \rightarrow E^{n}$, with

$$
f(\bar{x})=c \bar{x} \quad(0<c<\infty) .
$$

Prove the following.
(i) $\left(\forall A \subseteq E^{n}\right) m^{*} f[A]=c^{n} m^{*} A$ ($m^{*}=$ Lebesgue outer measure).
(ii) $A \in \mathcal{M}^{*}$ iff $f[A] \in \mathcal{M}^{*}$.
[Hint: If, say, $A=(\bar{a}, \bar{b}]$, then $f[A]=(c \bar{c}, c \bar{b}]$. (Why?) Proceed as in Theorem 4, using f^{-1} also.]
16. From Problems 14 and 15 show that
(i) $m G_{\bar{p}}(c r)=c^{n} \cdot m G_{\bar{p}}(r)$;
(ii) $m G_{\bar{p}}(r)=m \bar{G}_{\bar{p}}(r)$;
(iii) $m G_{\bar{p}}(r)=a \cdot m I$, where I is the cube inscribed in $G_{\bar{p}}(r)$ and

$$
a=\left(\frac{1}{2} \sqrt{n}\right)^{n} \cdot m G_{\overline{0}}(1) .
$$

[Hints: (i) $f\left[G_{\overline{0}}(r)\right]=G_{\overline{0}}(c r)$. (ii) Prove that

$$
m G_{\bar{p}} \leq m \bar{G}_{\bar{p}} \leq c^{n} m G_{\bar{p}}
$$

if $c>1$. Let $c \rightarrow 1$.]
17. Given $a<b$ in E^{1}, let $\left\{r_{n}\right\}$ be the sequence of all rationals in $A=[a, b]$. Set $(\forall n)$

$$
\delta_{n}=\frac{b-a}{2^{n+1}}
$$

and

$$
G_{n}=\left(a_{n}, b_{n}\right)=(a, b) \cap\left(r_{n}-\frac{1}{2} \delta_{n}, r_{n}+\frac{1}{2} \delta_{n}\right) .
$$

Let

$$
P=A-\bigcup_{n=1}^{\infty} G_{n}
$$

Prove the following.
(i) $\sum_{n=1}^{\infty} \delta_{n}=\frac{1}{2}(b-a)=\frac{1}{2} m A$.
(ii) P is closed; $P^{o}=\emptyset$, yet $m P>0$.
(iii) The G_{n} can be made disjoint (see Problem 3 in $\S 2$), with $m P$ still >0.
(iv) Construct such a $P \subseteq A\left(P=\bar{P}, P^{o}=\emptyset\right)$ of prescribed measure $m P=\varepsilon>0$.
18. Find an open set $G \subset E^{1}$, with $m G<m \bar{G}<\infty$.
[Hint: $G=\bigcup_{n=1}^{\infty} G_{n}$ with G_{n} as in Problem 17.]
*19. If $A \subseteq E^{n}$ is open and convex, then $m A=m \bar{A}$.
[Hint: Let first $\overline{0} \in A$. Argue as in Problem 16.]

§9. Lebesgue-Stieltjes Measures

Let

$$
\alpha: E^{1} \rightarrow E^{1}
$$

be a nondecreasing function $(\alpha \uparrow)$. Consider the Lebesgue-Stieltjes set function s_{α} (Example (d) in §4).

As we noted in Problem 7 of $\S 4, s_{\alpha} \geq 0$ when $\alpha \uparrow$; for then

$$
s_{\alpha}(a, b)=\alpha(b-)-\alpha(a+) \geq 0
$$

Similarly for other intervals. Also, $\emptyset \in \mathcal{C}$ and $s_{\alpha} \emptyset=0$ by definition.
Thus s_{α} is a premeasure on \mathcal{C} (finite intervals in E^{1}), called the α-induced Lebesgue-Stieltjes $(L S)$ premeasure in E^{1}.

The outer measure m_{α}^{*} induced by $s_{\alpha}(\S 5)$ is called the α-induced $L S$ outer measure; its restriction to the family \mathcal{M}_{α}^{*} of m_{α}^{*}-measurable (or $L S$-measurable) sets is the α-induced $L S$ measure on E^{1}, denoted m_{α}.

Recall that, by our definitions, premeasures, outer measures, and measures are all nonnegative.

Note 1. No generality is lost by assuming that α is right continuous (if not, replace it by the right-continuous function $\beta \uparrow$, with $\beta(x)=\alpha(x+))$. Similarly, one achieves left continuity by setting $\beta(x)=\alpha(x-)$.

Note 2. If α is right continuous, one often restricts s_{α} to the family \mathcal{C}^{*} of all half-open intervals (for motivation, see Problem 7(iv) in §4). This does not affect m_{α}^{*} or m_{α} (Problem 3^{\prime} in $\S 5$), and simplifies the proof of additivity

$$
s_{\alpha}(a, b]+s_{\alpha}(b, c]=\alpha(b)-\alpha(a)+\alpha(c)-\alpha(b)=\alpha(c)-\alpha(a)=s_{\alpha}(a, c] .
$$

Recall that both \mathcal{C} and \mathcal{C}^{*} are semirings (Note 1 in $\S 1$).
Theorem 1. The LS premeasure s_{α} is σ-additive on the semiring \mathcal{C} of all finite intervals in E^{1}.

Hence (by Theorem 2 in $\S 6$) all such intervals are LS-measurable $\left(\mathcal{C} \subseteq \mathcal{M}_{\alpha}^{*}\right)$, and

$$
m_{\alpha} A=s_{\alpha} A
$$

for any such interval A.
Proof. As is easily seen, s_{α} is additive (Problem 7 of $\S 4$).
It also satisfies Lemma 1 of $\S 1$ and Lemma 1 in $\S 2$ (Problem 7(v) in §4).
The proof of σ-additivity is then quite analogous to that of Theorem 1 of $\S 2$; we omit its repetition.

The rest is immediate by Theorem 2 of $\S 6$.

Similarly, the proofs of Theorems 2 and 3 (but not 4) of $\S 8$ carry over to LS measures. Thus $L S$ measures are complete, topological, totally σ-finite and strongly regular.

As in $\S 8$, it follows that singletons and countable sets are measurable, but their LS measure need not be 0 (Problem 8(iii) in §4).

Also, $E^{1} \in \mathcal{M}_{\alpha}^{*}$, but $m_{\alpha} E^{1}$ may be finite (Problem 8(ii)(ii') in $\left.\S 4\right)$.
Since the proofs are the same as in $\S 8$, we omit them.
Note, however, the following facts.
(i) For singletons, $m_{\alpha}\{p\}=0$ iff α is continuous at p (Problem 7(ii) in §4).
(ii) Hence

$$
m_{\alpha}[a, b]=m_{\alpha}(a, b]=m_{\alpha}[a, b)=m_{\alpha}(a, b)=\alpha(b)-\alpha(a)
$$

iff α is continuous at a and b (Problem 7(iv) in $\S 4$).
(iii) LS measures need not be translation invariant (Problem 8(i) of §4).
(iv) If $\alpha(x)=x$ on E^{1}, then $m_{\alpha}^{*}=m^{*}\left(=\right.$ Lebesgue outer measure in $\left.E^{1}\right)$.

Thus Lebesgue measure is a special case of $L S$ measure.
The latter is a kind of "weighted length." Imagine that mass is distributed along the line, with $\alpha(x)$ equal to the mass of

$$
(-\infty, x] .
$$

For simplicity, assume that α is right-continuous (cf. Notes 1 and 2). Then the mass of $(a, b]$ is

$$
\alpha(b)-\alpha(a),
$$

and p is a "point mass" iff

$$
m_{\alpha}\{p\}>0 .
$$

Our next theorem shows that LS measures practically exhaust all topological measures in E^{1} of any importance. We shall use Notes 1 and 2 above.
Theorem 2. Let $m: \mathcal{M} \rightarrow E^{}$ be a topological measure in E^{1}, finite on \mathcal{C}^{*} (half-open intervals). Then there is an $L S$ measure m_{α} such that

$$
m_{\alpha}=m
$$

on the Borel field \mathcal{B} in E^{1}.
If m is also complete, then $m_{\alpha}=m$ on all of \mathcal{M}_{α}^{*}.
Proof. Define α as follows:

$$
\alpha(x)=\left\{\begin{aligned}
m(0, x] & \text { if } x \geq 0 \\
-m(x, 0] & \text { if } x<0 .
\end{aligned}\right.
$$

Clearly, $\alpha \uparrow$ on E^{1}. Also, the right continuity of m (Theorem 2 of $\S 4$) implies that of α. (Verify!)

Thus α induces an LS measure m_{α}, with

$$
m_{\alpha}(a, b]=s_{\alpha}(a, b]=\alpha(b)-\alpha(a)
$$

(Problem 7(iv) in $\S 4$). We claim that $m_{\alpha}=m$ on \mathcal{B}.
First, consider any $(a, b] \in \mathcal{C}^{*}$. If $0 \leq a \leq b$, then

$$
m(a, b]=m(0, b]-m(0, a]=\alpha(b)-\alpha(a)=m_{\alpha}(a, b] .
$$

Similarly in the cases $a<0 \leq b$ and $a \leq b<0$. Thus

$$
m_{\alpha}=m(\text { finite }) \text { on } \mathcal{C}^{*}
$$

By Problem 13 in $\S 5$,

$$
m_{\alpha}=m \text { on } \mathcal{B}
$$

the σ-ring generated by \mathcal{C}^{*} (Problem 12 of $\S 8$). Thus m and m_{α} have the same restriction to \mathcal{B} (call it μ).

Now, by Note 3 in $\S 6, \mu$ induces an outer measure μ^{*}.
As $\mathcal{B} \supseteq \mathcal{C}_{\sigma}^{*}$, both μ^{*} and m_{α}^{*} are \mathcal{B}-regular, by Theorem 3 in $\S 5$. Thus

$$
\left(\forall A \subseteq E^{1}\right) \quad m_{\alpha}^{*}(A)=\inf \{\mu X \mid A \subseteq X \in B\}=\mu^{*} A
$$

i.e., $m_{\alpha}^{*}=\mu^{*}$, and so m_{α} is the restriction of both m_{α}^{*} and μ^{*} to measurable sets. Hence m_{α} is the Lebesgue extension of μ, by definition.

By Problem 17 in $\S 6, m_{\alpha}=\bar{\mu}$ is the "least" complete extension of μ. Thus if m is complete, it is an extension of m_{α}; so $m=m_{\alpha}$ on \mathcal{M}_{α}^{*}, as claimed.

Problems on Lebesgue-Stieltjes Measures

1. Do Problems 7 and 8 in $\S 4$ and Problem 3^{\prime} in $\S 5$, if not done before.
2. Prove in detail Theorems 1 to 3 in $\S 8$ for LS measures and outer measures.
3. Do Problem 2 in $\S 8$ for LS-outer measures in E^{1}.
4. Prove that $f: E^{1} \rightarrow(S, \rho)$ is right (left) continuous at p iff

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(p) \text { as } x_{n} \searrow p\left(x_{n} \nearrow p\right)
$$

[Hint: Modify the proof of Theorem 1 in Chapter 4, §2.]
5. Fill in all proof details in Theorem 2.
[Hint: Use Problem 4.]
6. In Problem 8 (iv) of $\S 4$, describe m_{α}^{*} and M_{α}^{*}.
7. Show that if $\alpha=c$ (constant) on an open interval $I \subseteq E^{1}$ then

$$
(\forall A \subseteq I) \quad m_{\alpha}^{*}(A)=0
$$

Disprove it for nonopen intervals I (give a counterexample).
8. Let $m^{\prime}: \mathcal{M} \rightarrow E^{*}$ be a topological, translation-invariant measure in E^{1}, with $m^{\prime}(0,1]=c<\infty$. Prove the following.
(i) $m^{\prime}=c m$ on the Borel field \mathcal{B}. (Here $m: \mathcal{M}^{*} \rightarrow E^{*}$ is Lebesgue measure in E^{1}.)
(ii) If m^{\prime} is also complete, then $m^{\prime}=c m$ on \mathcal{M}^{}.
(iii) If $0<c<\infty$, some set $Q \subset[0,1]$ is not m^{\prime}-measurable.
${ }^{*}$ (iv) If $\mathcal{M}^{\prime}=\mathcal{B}$, then cm is the completion of m^{\prime} (Problem 15 in $\S 6$).
[Outline: (i) By additivity and translation invariance,

$$
m^{\prime}(0, r]=c m(0, r]
$$

for rational

$$
r=\frac{n}{k}, \quad n, k \in N
$$

(first take $r=n$, then $r=\frac{1}{k}$, then $r=\frac{n}{k}$).
By right continuity (Theorem 2 in $\S 4$), prove it for real $r>0$ (take rationals $\left.r_{i} \searrow r\right)$.

By translation, $m^{\prime}=c m$ on half-open intervals. Proceed as in Problem 13 of $\S 8$.
(iii) See Problems 4 to 6 in $\S 8$. Note that, by Theorem 2, one may assume $m^{\prime}=m_{\alpha}$ (a translation-invariant $L S$ measure). As $m_{\alpha}=\mathrm{cm}$ on half-open intervals, Lemma 2 in $\S 2$ yields $m_{\alpha}=c m$ on \mathcal{G} (open sets). Use \mathcal{G}-regularity to prove $m_{\alpha}^{*}=$ cm^{*} and $\mathcal{M}_{\alpha}^{*}=\mathcal{M}^{*}$.]
*9. (LS measures in E^{n}.) Let

$$
\mathcal{C}^{*}=\left\{\text { half-open intervals in } E^{n}\right\}
$$

For any map $G: E^{n} \rightarrow E^{1}$ and any $(\bar{a}, \bar{b}] \in \mathcal{C}^{*}$, set

$$
\begin{aligned}
\Delta_{k} G(\bar{a}, \bar{b}] & =G\left(x_{1}, \ldots, x_{k-1}, b_{k}, x_{k+1}, \ldots, x_{n}\right) \\
& -G\left(x_{1}, \ldots, x_{k-1}, a_{k}, x_{k+1}, \ldots, x_{n}\right), \quad 1 \leq k \leq n .
\end{aligned}
$$

Given $\alpha: E^{n} \rightarrow E^{1}$, set

$$
s_{\alpha}(\bar{a}, \bar{b}]=\Delta_{1}\left(\Delta_{2}\left(\cdots\left(\Delta_{n} \alpha(\bar{a}, \bar{b}]\right) \cdots\right)\right) .
$$

For example, in E^{2},

$$
s_{\alpha}(a, b]=\alpha\left(b_{1}, b_{2}\right)-\alpha\left(b_{1}, a_{2}\right)-\left[\alpha\left(a_{1}, b_{2}\right)-\alpha\left(a_{1}, a_{2}\right)\right] .
$$

Show that s_{α} is additive on \mathcal{C}^{*}. Check that the order in which the Δ_{k} are applied is immaterial. Set up a formula for s_{α} in E^{3}.
[Hint: First take two disjoint intervals

$$
(\bar{a}, \bar{q}] \cup(\bar{p}, \bar{b}]=(\bar{a}, \bar{b}],
$$

as in Figure 2 in Chapter 3, $\S 7$. Then use induction, as in Problem 9 of Chapter 3, $\S 7$.
10. If s_{α} in Problem 9 is nonnegative, and α is right continuous in each variable x_{k} separately, we call α a distribution function, and s_{α} is called the α-induced $L S$ premeasure in E^{n}; the $L S$ outer measure m_{α}^{} and measure

$$
m_{\alpha}: \mathcal{M}_{\alpha}^{*} \rightarrow E^{*}
$$

in E^{n} (obtained from s_{α} as shown in $\S \S 5$ and 6) are said to be induced by α.

For $s_{\alpha}, m_{\alpha}^{*}$, and m_{α} so defined, redo Problems 1-3 above.

*§10. Vitali Coverings

Lebesgue measure m leads to an interesting analogue of the Heine-Borel theorem. Below, m^{*} is Lebesgue outer measure in E^{n}. We start with some definitions.

Definition 1.

A sequence $\left\{I_{k}\right\}$ of sets in a metric space (S, ρ) converges to a point p $\left(I_{k} \rightarrow p\right)$ iff

$$
p \in \bigcap_{k=1}^{\infty} I_{k}
$$

and

$$
\lim _{k \rightarrow \infty} d I_{k}=0
$$

where $d I_{k}=$ diameter of I_{k}.

Definition 2.

A family \mathcal{K} of nonempty sets in (S, ρ) is a Vitali covering (V-covering) of a set $A \subseteq(S, \rho)$ iff for each $p \in A$ there is a sequence $\left\{I_{k}\right\} \subseteq \mathcal{K}$, with $I_{k} \rightarrow p$.
We then also say that \mathcal{K} covers A in the Vitali sense (V-sense).
Theorem 1 (Vitali). If a set \mathcal{K} of nondegenerate cubes (or globes) in E^{n} covers A in the V-sense, then

$$
m^{*}\left(A-\bigcup_{k} I_{k}\right)=0
$$

for some disjoint sequence $\left\{I_{k}\right\} \subseteq \mathcal{K}$.
Proof. We give the proof for cubes (it is similar for globes).
First, suppose $A \subseteq I^{o}$ for some open cube I^{o}. Then A is also covered in the V-sense by the subfamily $\mathcal{K}^{\circ} \subseteq \mathcal{K}$ of those cubes that lie in I^{o}. (Why?) We also
assume that $A \nsubseteq \bigcup I_{j}$ for any disjoint finite sequence $\left\{I_{j}\right\} \subseteq \mathcal{K}$ (otherwise, all is trivial). Finally, we assume that all cubes in \mathcal{K} are closed; for other kinds of cubes, the theorem then easily follows (see Problem 3 below).

We claim that

$$
\begin{equation*}
\left(\forall \text { disjoint cubes } I_{1}, \ldots, I_{h} \in \mathcal{K}^{o}\right)\left(\exists I \in \mathcal{K}^{o}\right) \quad I \cap \bigcup_{j=1}^{h} I_{j}=\emptyset . \tag{1}
\end{equation*}
$$

Indeed, as

$$
A \nsubseteq \bigcup_{j=1}^{h} I_{j}
$$

there is some

$$
\bar{p} \in A-\bigcup_{j=1}^{h} I_{j} .
$$

By assumption, all I_{j} are closed; so

$$
-\bigcup_{j=1}^{h} I_{j}
$$

is open. Hence there is a globe

$$
G_{\bar{p}}(\delta) \subseteq-\bigcup_{j=1}^{h} I_{j} .
$$

As \mathcal{K}° is a V-covering, it contains a sequence $I_{i} \rightarrow \bar{p}, d I_{i} \rightarrow 0$; so there is $I=I_{i} \in \mathcal{K}^{o}$ with $\bar{p} \in I$ and $d I<\delta$. Therefore,

$$
I \subseteq G_{\bar{p}}(\delta) \subseteq-\bigcup_{j=1}^{h} I_{j}
$$

so

$$
I \cap \bigcup_{j=1}^{h} I_{j}=\emptyset
$$

as claimed.
Now, using induction, suppose we have already fixed k disjoint cubes I_{j} in \mathcal{K}^{o}. By (1), there are cubes $I \in \mathcal{K}^{o}$ with

$$
I \cap \bigcup_{j=1}^{k} I_{j}=\emptyset .
$$

Let δ_{k} be the lub of their diameters. As all $I \in \mathcal{K}^{o}$ lie in I^{o},

$$
\delta_{k}=\sup \left\{d I \mid I \in \mathcal{K}^{o}, I \subseteq-\bigcup_{j=1}^{k} I_{j}\right\} \leq d I^{o}<\infty
$$

Hence by properties of the lub, we find a cube $I_{k+1} \in \mathcal{K}^{o}$ such that
and $d I_{k+1}>\frac{1}{2} \delta_{k}$.

$$
I_{k} \subseteq-\bigcup_{j=1}^{k} I_{j}
$$

In this way, taking $k=1,2, \ldots$, we select a disjoint sequence $\left\{I_{k}\right\} \subseteq \mathcal{K}^{o}$ with $d I_{k+1}>\frac{1}{2} \delta_{k}$ for all k. We shall show that

$$
m^{*}\left(A-\bigcup_{k=1}^{\infty} I_{k}\right)=0
$$

in four steps.
(I) Let ℓ_{k} be the edge length of I_{k}; so $d I_{k}=\ell_{k} \sqrt{n}$. (Why?)

Enclose each I_{k} in a cube J_{k} with the same center and with edge length

$$
(4 n+1) \ell_{k}
$$

Then

$$
\begin{align*}
\left(\forall \bar{x} \in I_{k}\right)\left(\forall \bar{y} \notin J_{k}\right) & \\
\rho(\bar{x}, \bar{y})>2 n \ell_{k} & \geq 2 \ell_{k} \sqrt{n} \tag{2}\\
& =2 d I_{k}>\delta_{k-1} .
\end{align*}
$$

(See Figure 32, where $n=2$.) Also,

$$
m J_{k}=(4 n+1)^{n} m I_{k}
$$

(II) As the I_{k} lie in I^{o}, the σ-additivity of m yields ${ }^{\text {Figure }} 32$

$$
\begin{aligned}
\sum_{k=1}^{\infty} m J_{k} & =(4 n+1)^{n} \sum_{k=1}^{\infty} m I_{k} \\
& =(4 n+1)^{n} m \bigcup_{k=1}^{\infty} I_{k} \\
& \leq(4 n+1)^{n} m I^{o}<\infty .
\end{aligned}
$$

Thus the series $\sum m J_{k}$ converges; so its "remainder" tends to 0 :

$$
\lim _{r \rightarrow \infty} \sum_{k=r}^{\infty} m J_{k}=0
$$

Also, $m J_{k} \rightarrow 0$. But by definition,

$$
\delta_{k}<2 d I_{k+1}<2 d J_{k+1}=2 \sqrt{n}\left(m J_{k+1}\right)^{1 / n} \quad(n \text { fixed }) .
$$

Hence $\lim _{k \rightarrow \infty} \delta_{k}=0$, too.
(III) Now, seeking a contradiction, suppose

$$
m^{*}\left(A-\bigcup_{k=1}^{\infty} I_{k}\right)>0
$$

Then as

$$
\lim _{r \rightarrow \infty} \sum_{k=r}^{\infty} m J_{k}=0
$$

there is r such that

$$
m \bigcup_{k=r}^{\infty} J_{k} \leq \sum_{k=r}^{\infty} m J_{k}<m^{*}\left(A-\bigcup_{k=1}^{\infty} I_{k}\right) .
$$

Hence

$$
A-\bigcup_{k=1}^{\infty} I_{k} \nsubseteq \bigcup_{k=r}^{\infty} J_{k}
$$

(Why?) Thus there is

$$
\bar{p} \in A-\bigcup_{k=1}^{\infty} I_{k}
$$

not in

$$
\bigcup_{k=r}^{\infty} J_{k},
$$

so that

$$
\begin{equation*}
(\forall k \geq r) \quad \bar{p} \neq J_{k}, \bar{p} \in A \text {, and } \bar{p} \in-\bigcup_{k=1}^{\infty} I_{k} \subseteq-\bigcup_{k=r}^{\infty} I_{k} . \tag{3}
\end{equation*}
$$

As

$$
-\bigcup_{k=1}^{r} I_{k} \in \mathcal{G}
$$

we find (as before) a cube $K \in \mathcal{K}^{o}$ such that $\bar{p} \in K$ and

$$
K \cap \bigcup_{k=1}^{r} I_{k}=\emptyset
$$

Also, as $\delta_{k} \rightarrow 0$, we have $\delta_{k}<d K$ for large k. But by our choice of the δ_{k}, this implies

$$
K \cap \bigcup_{j=1}^{k} I_{j} \neq \emptyset
$$

for large k (why?), whereas

$$
K \cap \bigcup_{j=1}^{r} I_{j}=\emptyset
$$

as shown above.
Thus there is a least $k>r$, call it q, such that

$$
K \cap I_{q} \neq \emptyset
$$

and $\delta_{q}<d K \leq \delta_{q-1}$.
By (3), $\bar{p} \notin J_{q}$. As

$$
K \cap I_{q} \neq \emptyset
$$

let $\bar{x} \in K \cap I_{q}$. Since $\bar{x}, \bar{p} \in K$,

$$
\rho(\bar{x}, \bar{p}) \leq d K<\delta_{q-1}
$$

But as $\bar{x} \in I_{q}$ and $\bar{p} \notin J_{k}$, we have

$$
\rho(\bar{x}, \bar{p})>\delta_{q-1}
$$

by (2).
This contradiction proves the theorem for bounded sets A.
(IV) If A is not bounded, use Lemma 2 in $\S 2$ to find a sequence $\left\{K_{i}\right\}$ of disjoint half-open intervals with

$$
\bigcup K_{i}=E^{n} \supseteq A .
$$

Let

$$
A_{i}=A \cap K_{i}^{o}
$$

where K_{i}^{o} is the open interval with the same endpoints; so $m K_{i}=m K_{i}^{o}$ and $m\left(K_{i}-K_{i}^{o}\right)=0$.

Set

$$
Z=\bigcup_{i=1}^{\infty}\left(K_{i}-K_{i}^{o}\right)
$$

so $m Z=0$ and

$$
\bigcup_{i=1}^{\infty} K_{i}^{o}=E^{n}-Z
$$

(Why?) As $A_{i}=A \cap K_{i}^{o}$, we have

$$
\begin{equation*}
\bigcup_{i=1}^{\infty} A_{i}=A \cap \bigcup_{i=1}^{\infty} K_{i}^{o}=A \cap\left(E^{n}-Z\right)=A-Z \tag{4}
\end{equation*}
$$

Clearly, each A_{i} is covered in the V-sense by those \mathcal{K}-cubes that lie in K_{i}^{o}. Thus as shown above,

$$
(\forall i) \quad m^{*}\left(A-\bigcup_{j} I_{i j}\right)=0
$$

for disjoint cubes $I_{i j} \subseteq K_{i}^{o}$. That is,

$$
(\forall i) \quad \bigcup_{j} I_{i j} \cup Z_{i} \supseteq A_{i},
$$

where

$$
Z_{i}=A_{i}-\bigcup_{j} I_{i j}
$$

and $m Z_{i}=0$. Hence by (4),

$$
\bigcup_{i=1}^{\infty} \bigcup_{j} I_{i j} \cup \bigcup_{i} Z_{i} \supseteq \bigcup_{i} A_{i}=A-Z
$$

so that

$$
m^{*}\left(A-\bigcup_{i, j} I_{i j}\right)=0
$$

Rearranging the $I_{i j}$ in a single sequence $\left\{I_{k}\right\}$, we complete the proof.
Theorem 2. If $m^{*} A<\infty$ in Theorem 1, then for every $\varepsilon>0$ there is a finite disjoint sequence $\left\{I_{k}\right\} \subseteq \mathcal{K}$ such that

$$
m^{*}\left(A-\bigcup_{k} I_{k}\right)<\varepsilon
$$

Proof. Fix $\varepsilon>0$. As $m^{*} A<\infty$, the \mathcal{G}-regularity of m^{*} (Theorem 3 of $\S 8$) yields an open $G \supseteq A$ such that

$$
m G<m^{*} A+\varepsilon
$$

Clearly, A is covered in the V-sense by the subfamily \mathcal{K}^{o} of those \mathcal{K}-sets that lie in G. Thus by Theorem 1,

$$
m^{*}\left(A-\bigcup I_{k}\right)=0
$$

for a disjoint sequence $\left\{I_{k}\right\} \subseteq \mathcal{K}^{o}$. Also,

$$
\bigcup I_{k} \subseteq G
$$

and so

$$
\sum m I_{k}=m \bigcup I_{k} \leq m G<\infty
$$

Thus $\sum m I_{k}$ converges; so

$$
\sum_{k=r}^{\infty} m I_{k}<\varepsilon
$$

for large r.
On the other hand,

$$
A-\bigcup_{k=1}^{r} I_{k} \subseteq\left(A-\bigcup_{k=1}^{\infty} I_{k}\right) \cup \bigcup_{k=r}^{\infty} I_{k}
$$

Hence

$$
m^{*}\left(A-\bigcup_{k=1}^{r} I_{k}\right) \leq m^{*}\left(A-\bigcup_{k=1}^{\infty} I_{k}\right)+m^{*} \bigcup_{k=r}^{\infty} I_{k} \leq 0+\sum_{k=r}^{\infty} m I_{k}<\varepsilon
$$

as required.
As an application, we obtain the following important theorem.
Theorem 3 (Lebesgue). If $f: E^{1} \rightarrow E^{1}$ is monotone, it is differentiable almost everywhere ("a.e."), i.e., on $E^{1}-Z$ for some Z of Lebesgue measure zero.

We sketch the proof in a few steps (lemmas). These lemmas anticipate a more general approach to be taken in $\S 12$, with the notation in the following definition.

Definition 3.

Let $m=$ Lebesgue measure and

$$
\overline{\mathcal{K}}=\left\{\text { all cubes } I \subset E^{n} \text { with } m I>0\right\} .
$$

Let

$$
s: \mathcal{M}^{\prime} \rightarrow[0, \infty], \quad \mathcal{M}^{\prime} \supseteq \overline{\mathcal{K}},
$$

be another measure in E^{n}, finite on $\overline{\mathcal{K}}$.
For any natural $r>0$, and $\bar{p} \in E^{n}$, we set

$$
g_{r}(\bar{p})=\inf \left\{\left.\frac{s I}{m I} \right\rvert\, \bar{p} \in I \in \overline{\mathcal{K}}, d I<\frac{1}{r}\right\}
$$

and

$$
h_{r}(\bar{p})=\sup \left\{\left.\frac{s I}{m I} \right\rvert\, \bar{p} \in I \in \overline{\mathcal{K}}, d I<\frac{1}{r}\right\} ;
$$

furthermore, we denote

$$
\underline{D} s(\bar{p})=\sup _{r} g_{r}(\bar{p}) \text { and } \bar{D} s(\bar{p})=\inf _{r} h_{r}(\bar{p}) .
$$

Clearly, $\left\{g_{r}\right\} \uparrow,\left\{h_{r}\right\} \downarrow$, and

$$
0 \leq \underline{D} s=\lim _{r \rightarrow \infty} g_{r} \leq \lim _{r \rightarrow \infty} h_{r}=\bar{D} s
$$

at each $\bar{p} \in E^{n}$. (Why?)
We also write $J(\bar{D} s>i)$ for

$$
\{\bar{x} \in J \mid \bar{D} s(\bar{x})>i\}
$$

$J(\underline{D} s=a)$ for

$$
\{\bar{x} \in J \mid \underline{D} s(\bar{x})=a\}
$$

etc.
Lemma 1. With the above notation, $0 \leq \underline{D} s \leq \bar{D} s<\infty$ a.e. on E^{n}.
Proof Outline. Fix any open set $J \subset E^{n}$, with $m J<\infty$ and $s J<\infty$ (e.g., an open cube in $\overline{\mathcal{K}}$).

For $i=1,2, \ldots$ set

$$
A_{i}=J(\bar{D} s>i)
$$

and

$$
\mathcal{K}_{i}=\left\{I \in \overline{\mathcal{K}} \mid I \subseteq J, \frac{s I}{m I}>i\right\} .
$$

Verify that \mathcal{K}_{i} is a V-covering of A_{i}; so there is a disjoint sequence $\left\{I_{k}\right\} \subseteq \mathcal{K}_{i}$, with

$$
m^{*}\left(A_{i}-\bigcup I_{k}\right)=0
$$

and

$$
\bigcup I_{k} \subseteq J
$$

Hence (cf. Problem 3 below)

$$
m^{*} A_{i} \leq m \bigcup I_{k}=\sum m I_{k} \leq \frac{1}{i} \sum s I_{k}=\frac{1}{i} s \bigcup I_{k} \leq \frac{s J}{i}, \quad i=1,2, \ldots
$$

It follows that

$$
m^{*} \bigcap_{i=1}^{\infty} A_{i}=0
$$

(Why?) But

$$
\bigcap_{i=1}^{\infty} A_{i}=J(\bar{D} s=\infty) .
$$

(Why?) This implies that

$$
m^{*} J(\bar{D} s=\infty)=0
$$

and so $\bar{D} s<\infty$ on J, except for a null set.
But by Lemma 2 in $\S 2$, all of E^{n} is a countable union of such sets J (open cubes). Thus $\bar{D} s<\infty$ on $E^{n}-Z$, where Z is a countable union of null sets: $m Z=0$.

As $0 \leq \underline{D} s \leq \bar{D} s$ on all of E^{n}, we have

$$
0 \leq \underline{D} s \leq \bar{D} s<\infty \quad \text { a.e. on } E^{n}
$$

as claimed.
Lemma 2. With the same notation, $\underline{D} s=\bar{D}$ s a.e. on E^{n}.
Proof Outline. With J as in the previous proof, let

$$
H=J(\bar{D} s>\underline{D} s)
$$

Then H is a countable union of sets

$$
H_{u v}=J(\bar{D} s>v>u>\underline{D} s)
$$

over rational u, v. Thus it suffices to show that all such $H_{u v}$ are m-null.
Let Q be one of them; so $Q \subseteq J$ and

$$
m^{*} Q \leq m J<\infty
$$

Hence given $\varepsilon>0$, there is an open set $G \subseteq J$ with $G \supseteq Q$ and

$$
m G<m^{*} Q+\varepsilon .
$$

(Why?) We fix this G and set

$$
\mathcal{K}=\left\{I \in \overline{\mathcal{K}} \mid I \subseteq G, \frac{s I}{m I}<u\right\} .
$$

By the definition of $\underline{D} s, \mathcal{K}$ is a V-covering of Q (verify!); so by Problem 3,

$$
m^{*}\left(Q \cap \bigcup I_{k}^{o}\right)=m^{*} Q
$$

for a disjoint sequence

$$
\left\{I_{k}\right\} \subseteq \mathcal{K}, \quad \bigcup I_{k} \subseteq G
$$

Let

$$
G^{\prime}=\bigcup_{k=1}^{\infty} I_{k}^{o}
$$

(an open set), and $Q_{o}=Q \cap G^{\prime}$; so

$$
m^{*} Q=m^{*} Q_{o} \leq m G^{*} \leq m G<m^{*} Q+\varepsilon
$$

(Explain!)
Next, let

$$
\mathcal{K}^{\prime}=\left\{I \in \overline{\mathcal{K}} \mid I \subseteq G^{\prime}, \frac{s I}{m I}>v\right\}
$$

It is a V-covering of Q_{o} (why?); so

$$
m^{*}\left(Q_{o}-\bigcup I_{k}^{\prime}\right)=0
$$

for a disjoint sequence $\left\{I_{k}^{\prime}\right\} \subseteq \mathcal{K}^{\prime}$. Verify that

$$
\begin{aligned}
u \cdot\left(m^{*} Q+\varepsilon\right) & >u \cdot m G^{\prime}=u \cdot \sum m I_{k}^{o} \\
& \geq \sum s I_{k}^{o}=s G^{\prime} \\
& \geq \sum s I_{k}^{\prime} \\
& \geq v \cdot \sum m I_{k}^{\prime}=v \cdot m \bigcup I_{k}^{\prime} \\
& \geq v \cdot m^{*}\left(Q_{o} \cap \bigcup I_{k}^{\prime}\right)=v \cdot m^{*} Q_{o}=v \cdot m^{*} Q
\end{aligned}
$$

Thus

$$
(\forall \varepsilon>0) \quad u \cdot\left(m^{*} Q+\varepsilon\right) \geq v \cdot m^{*} Q
$$

Making $\varepsilon \rightarrow 0$, we get

$$
u \cdot m^{*} Q \geq v \cdot m^{*} Q
$$

As $u<v, m^{*} A$ must be 0 . This is the desired result.
Proof of Theorem 3. To fix ideas, let $f \uparrow$.
Let $s=m_{f}$ be the f-induced LS measure in $E^{1}(\S 9)$ so that

$$
s[p, x]=f(x+)-f(p-) .
$$

By Lemmas 1 and 2 , it suffices to show that f is differentiable at every $p \in E^{1}$, with

$$
\underline{D} s(p)=\bar{D} s(p) \neq \infty .
$$

Fix any such p and set

$$
q=\underline{D} s(p)=\bar{D} s(p) \neq \infty .
$$

Then f is continuous at p; for otherwise,

$$
f(p+)-f(p-)>0,
$$

whence

$$
\bar{D} s(p)=\infty
$$

(Why?) Also, by Definition 3, given $\varepsilon>0$, there is a natural r such that

$$
q-\varepsilon<g_{r}(p) \leq h_{r}(p)<q+\varepsilon
$$

Let

$$
x \in G_{\neg p}\left(\frac{1}{r}\right)
$$

If $x>p$, then

$$
\Delta x=x-p=m[p, x],
$$

and by continuity,

$$
\begin{aligned}
\Delta f=f(x)-f(p) & \leq f(x+)-f(p) \\
& =f(x+)-f(p-)=s[p, x] \\
& \leq \Delta x \cdot h_{r}(p)<\Delta x(q+\varepsilon) .
\end{aligned}
$$

Also, if $x>y>p$, then

$$
\Delta f \geq f(y+)-f(p-)=s[p, y] \geq \Delta y \cdot g_{r}(p)>\Delta y(q-\varepsilon)
$$

where

$$
\Delta y=y-p=m[p, y] .
$$

Making $y \nearrow x$, with x fixed, we get

$$
(q-\varepsilon) \Delta x \leq \Delta f<(q+\varepsilon) \Delta x .
$$

Similarly in the case $x<p$.
Thus with $\varepsilon \rightarrow 0$, we obtain

$$
f^{\prime}(p)=\lim _{x \rightarrow p} \frac{\Delta f}{\Delta x}=q \neq \infty
$$

Problems on Vitali Coverings

1. Prove Theorem 1 for globes, filling in all details.
[Hint: Use Problem 16 in $\S 8$.]
\Rightarrow 2. Show that any (even uncountable) union of globes or nondegenerate cubes $J_{i} \subset E^{n}$ is L-measurable.
[Hint: Include in \mathcal{K} each globe (cube) that lies in some J_{i}. Then Theorem 1 represents $\cup J_{i}$ as a countable union plus a null set.]
2. Supplement Theorem 1 by proving that

$$
m^{*}\left(A-\bigcup I_{k}^{o}\right)=0
$$

and

$$
m^{*} A=m^{*}\left(A \cap \bigcup I_{k}^{o}\right) ;
$$

here $I^{o}=$ interior of I.
4. Fill in all proof details in Lemmas 1 and 2. Do it also for $\overline{\mathcal{K}}=\{$ globes $\}$.
5. Given $m Z=0$ and $\varepsilon>0$, prove that there are open globes

$$
G_{k}^{*} \subseteq E^{n}
$$

with

$$
Z \subset \bigcup_{k=1}^{\infty} G_{k}^{*}
$$

and

$$
\sum_{k=1}^{\infty} m G_{k}^{*}<\varepsilon
$$

[Hint: Use Problem 3(f) in $\S 5$ and Problem 16(iii) from §8.]
6. Do Problem 3 in $\S 5$ for
(i) $\mathcal{C}^{\prime}=\{$ open globes $\}$, and
(ii) $\mathcal{C}^{\prime}=\left\{\right.$ all globes in $\left.E^{n}\right\}$.
[Hints for (i): Let $m^{\prime}=$ outer measure induced by $v^{\prime}: \mathcal{C}^{\prime} \rightarrow E^{1}$. From Problem 3(e) in $\S 5$, show that

$$
\left(\forall A \subseteq E^{n}\right) \quad m^{\prime} A \geq m^{*} A .
$$

To prove $m^{\prime} A \leq m^{*} A$ also, fix $\varepsilon>0$ and an open set $G \supseteq A$ with

$$
m^{*} A+\varepsilon \geq m G \text { (Theorem } 3 \text { of } \S 8 \text {). }
$$

Globes inside G cover A in the V-sense (why?); so

$$
A \subseteq Z \cup \bigcup G_{k}(\text { disjoint })
$$

for some globes G_{k} and null set Z. With G_{k}^{*} as in Problem 5,

$$
\left.m^{\prime} A \leq \sum\left(m G_{k}+m G_{k}^{*}\right) \leq m G+\varepsilon \leq m^{*} A+2 \varepsilon .\right]
$$

7. Suppose $f: E^{n} \stackrel{\text { onto }}{\longleftrightarrow} E^{n}$ is an isometry, i.e., satisfies

$$
|f(\bar{x})-f(\bar{y})|=|\bar{x}-\bar{y}| \quad \text { for } \bar{x}, \bar{y} \in E^{n} .
$$

Prove that
(i) $\left(\forall A \subseteq E^{n}\right) m^{*} A=m^{*} f[A]$, and
(ii) $A \in \mathcal{M}^{*}$ iff $f[A] \in \mathcal{M}^{*}$.
[Hints: If A is a globe of radius r, so is $f[A]$ (verify!); thus Problems 14 and 16 in $\S 8$ apply. In the general case, argue as in Theorem 4 of $\S 8$, replacing intervals by globes (see Problem 6). Note that f^{-1} is an isometry, too.]
7^{\prime}. From Problem 7 infer that Lebesgue measure in E^{n} is rotation invariant. (A rotation about \bar{p} is an isometry f such that $f(\bar{p})=\bar{p}$.)
8. A V-covering \mathcal{K} of $A \subseteq E^{n}$ is called normal iff
(i) $(\forall I \in K) 0<m \bar{I}=m I^{o}$, and
(ii) for every $\bar{p} \in A$, there is some $c \in(0, \infty)$ and a sequence

$$
I_{k} \rightarrow \bar{p} \quad\left(\left\{I_{k}\right\} \subseteq \mathcal{K}\right)
$$

such that

$$
(\forall k)\left(\exists \text { cube } J_{k} \supseteq I_{k}\right) \quad c \cdot m^{*} I_{k} \geq m J_{k}
$$

(We then say that \bar{p} and $\left\{I_{k}\right\}$ are normal; specifically, c-normal.)
Prove Theorems 1 and 2 for any normal \mathcal{K}. [Hints: By Problem 21 of Chapter 3, $\S 16, d I=d \bar{I}$.

First, suppose \mathcal{K} is uniformly normal, i.e., all $\bar{p} \in A$ are c-normal for the same c. In the general case, let

$$
A_{i}=\{\bar{x} \in A \mid \bar{x} \text { is } i \text {-normal }\}, \quad i=1,2, \ldots ;
$$

so \mathcal{K} is uniform for A_{i}. Verify that $A_{i} \nearrow A$.
Then select, step by step, as in Theorem 1, a disjoint sequence $\left\{I_{k}\right\} \subseteq \mathcal{K}$ and naturals $n_{1}<n_{2}<\cdots<n_{i}<\cdots$ such that

$$
(\forall i) \quad m^{*}\left(A_{i}-\bigcup_{k=1}^{n_{i}} I_{k}\right)<\frac{1}{i} .
$$

Let

$$
U=\bigcup_{k=1}^{\infty} I_{k} .
$$

Then

$$
(\forall i) \quad m^{*}\left(A_{i}-U\right)<\frac{1}{i}
$$

and

$$
A_{i}-U \nearrow A-U .
$$

(Why?) Thus by Problems 7 and 8 in $\S 6$,

$$
\left.m^{*}(A-U) \leq \lim _{i \rightarrow \infty} \frac{1}{i}=0 .\right]
$$

9. A V-covering $\overline{\mathcal{K}}^{*}$ of E^{n} is called universal iff
(i) $\left(\forall I \in \overline{\mathcal{K}}^{*}\right) 0<m \bar{I}=m I^{o}<\infty$, and
(ii) whenever a subfamily $\mathcal{K} \subseteq \overline{\mathcal{K}}^{*}$ covers a set $A \subseteq E^{n}$ in the V-sense, we have

$$
m^{*}\left(A-\bigcup I_{k}\right)=0
$$

for a disjoint sequence

$$
\left\{I_{k}\right\} \subseteq \mathcal{K}
$$

Show the following.
(a) $\overline{\mathcal{K}}^{*} \subseteq \mathcal{M}^{*}$.
(b) Lemmas 1 and 2 are true with $\overline{\mathcal{K}}$ replaced by any universal $\overline{\mathcal{K}}^{*}$. (In this case, write $\underline{D}^{*} s$ and $\bar{D}^{*} s$ for the analogues of $\underline{D} s$ and $\bar{D} s$.)
(c) $\underline{D} s=\underline{D}^{*} s=\bar{D}^{*} s=\bar{D} s$ a.e.
[Hints: (a) By (i), $I=\bar{I}$ minus a null set $Z \subseteq \bar{I}-I^{o}$.
(c) Argue as in Lemma 2, but set

$$
Q=J\left(\underline{D}^{*} s>u>v>\underline{D} s\right)
$$

and

$$
\mathcal{K}^{\prime}=\left\{I \in \overline{\mathcal{K}}^{*} \mid I \subseteq G^{\prime}, \frac{s I}{m I}>v\right\}
$$

to prove a.e. that $\underline{D}^{*} s \leq \underline{D} s$; similarly for $\underline{D} s \leq D^{*} s$.
Throughout assume that $s: \mathcal{M}^{\prime} \rightarrow E^{*}\left(\mathcal{M}^{\prime} \supseteq \overline{\mathcal{K}} \cup \overline{\mathcal{K}}^{*}\right)$ is a measure in E^{n}, finite on $\overline{\mathcal{K}} \cup \overline{\mathcal{K}}^{*}$.]
10. Continuing Problems 8 and 9 , verify that
(a) $\overline{\mathcal{K}}=\{$ nondegenerate cubes $\}$ is a normal and universal V-covering of E^{n};
(b) so also is $\overline{\mathcal{K}}^{o}=\left\{\right.$ all globes in $\left.E^{n}\right\}$;
(c) $\overline{\mathcal{C}}=\{$ nondegenerate intervals $\}$ is normal.

Note that $\overline{\mathcal{C}}$ is not universal. ${ }^{1}$
11. Continuing Definition 3, we call q a derivate of s, and write $q \sim D s(\bar{p})$, iff

$$
q=\lim _{k \rightarrow \infty} \frac{s I_{k}}{m I_{k}}
$$

for some sequence $I_{k} \rightarrow \bar{p}$, with $I_{k} \in \overline{\mathcal{K}}$.
Set

$$
D_{\bar{p}}=\left\{q \in E^{*} \mid q \sim D s(\bar{p})\right\}
$$

and prove that

$$
\underline{D} s(\bar{p})=\min D_{\bar{p}} \text { and } \bar{D} s(\bar{p})=\max D_{\bar{p}} .
$$

[^26]12. Let \mathcal{K}^{*} be a normal V-covering of E^{n} (see Problem 8). Given a measure s in E^{n}, finite on $\mathcal{K}^{*} \cup \overline{\mathcal{K}}$, write
$$
q \sim D^{*} s(\bar{p})
$$
iff
$$
q=\lim _{k \rightarrow \infty} \frac{s I_{k}}{m I_{k}}
$$
for some normal sequence $I_{k} \rightarrow \bar{p}$, with $I_{k} \in \mathcal{K}^{*}$.
Set
$$
D_{\bar{p}}^{*}=\left\{q \in E^{*} \mid q \sim D^{*} s(\bar{p})\right\}
$$
and then
$$
\underline{D}^{*} s(\bar{p})=\inf D_{\bar{p}}^{*} \text { and } \bar{D}^{*} s(\bar{p})=\sup D_{\bar{p}}^{*}
$$

Prove that

$$
\underline{D} s=\underline{D}^{*} s=\bar{D}^{*} s=\bar{D} s \text { a.e. on } E^{n} .
$$

[Hint: $E^{n}=\bigcup_{i=1}^{\infty} E_{i}$, where

$$
E_{i}=\left\{\bar{x} \in E^{n} \mid \bar{x} \text { is } i \text {-normal }\right\} .
$$

On each E_{i}, \mathcal{K}^{*} is uniformly normal. To prove $\underline{D} s=\underline{D}^{*} s$ a.e. on E_{i}, "imitate" Problem 9(c). Proceed.]

*§11. Generalized Measures. Absolute Continuity

I. We now return to general set functions $s: \mathcal{M} \rightarrow E$, with E as in Definition 1 of $\S 4$.

Definition 1.

A set function $s: \mathcal{M} \rightarrow E$ is a generalized measure in a set S, and (S, \mathcal{M}, s) is a generalized measure space, iff s is σ-additive and semifinite (i.e., $s \neq+\infty$ or $s \neq-\infty$) on \mathcal{M}, a σ-ring in S, and $s \emptyset=0$.

We call s a signed measure iff $E \subseteq E^{*}$ (i.e., s is real or extended real); if $s \geq 0$ then s is a measure; s may also be complex $(E=C)$ or vector valued.

Definition 2.

Given a set function $s: \mathcal{M} \rightarrow E$, we define its total variation

$$
v_{s}: \mathcal{M} \rightarrow[0, \infty]
$$

by

$$
(\forall A \in \mathcal{M}) \quad v_{s} A=\sup \sum_{i}\left|s X_{i}\right|
$$

taking the sup over all countable disjoint subfamilies $\left\{X_{i}\right\} \subseteq \mathcal{M}$ with $\bigcup_{i} X_{i} \subseteq A$.

Note 1. If \mathcal{M} is a σ-ring, we may equivalently require that

$$
\bigcup X_{i}=A
$$

with $\left\{X_{i}\right\}$ a disjoint sequence in \mathcal{M} (add the term $X_{o}=A-\bigcup_{i} X_{i}$ if necessary). ${ }^{1}$
Corollary 1. If s and v_{s} are as in Definition 2, then
(i) v_{s} is monotone on \mathcal{M}, and
(ii) $|s A| \leq v_{s} A$ for every $A \in \mathcal{M}$.

Proof. For (i), let $A \subseteq B, A, B \in \mathcal{M}$. Take any disjoint sequence $\left\{X_{i}\right\} \subseteq \mathcal{M}$, with

$$
\bigcup X_{i} \subseteq A \subseteq B
$$

By definition,

$$
\sum_{i}\left|s X_{i}\right| \leq v_{s} B .
$$

Thus $v_{s} B$ is an upper bound of all such sums, with $\bigcup X_{i} \subseteq A$. Hence

$$
v_{s} A=\operatorname{lub} \sum\left|s X_{i}\right| \leq v_{s} B,
$$

proving (i).
To prove (ii), just let $\left\{X_{i}\right\}$ consist of A alone.
Theorem 1. If $s: \mathcal{M} \rightarrow E$ is a generalized measure, then v_{s} is a measure on \mathcal{M}.
Proof. By definition, $v_{s} \geq 0$ on \mathcal{M}, a σ-ring, and $v_{s} \emptyset=0$. (Why?) It remains to prove σ-additivity.

Thus let

$$
A=\bigcup_{n} A_{n}(\text { disjoint }),
$$

with $A, A_{n} \in \mathcal{M}$. To show that

$$
v_{s} A=\sum_{n} v_{s} A_{n}
$$

take any \mathcal{M}-partition $\left\{X_{i}\right\}$ of A. Then

$$
\text { (} \forall i) \quad X_{i}=X_{i} \cap A=X_{i} \cap \bigcup_{n} A_{n}=\bigcup_{n}\left(X_{i} \cap A_{n}\right) \text { (disjoint). }
$$

[^27]Similarly,

$$
(\forall n) \quad A_{n}=\bigcup_{i}\left(A_{n} \cap X_{i}\right) ;
$$

so by definition,

$$
(\forall n) \quad \sum_{i}\left|s\left(A_{n} \cap X_{i}\right)\right| \leq v_{s} A_{n} .
$$

Hence as

$$
X_{i}=\bigcup_{n}\left(X_{i} \cap A_{n}\right)
$$

we get

$$
\begin{aligned}
\sum_{i}\left|s X_{i}\right|=\sum_{i}\left|s \bigcup_{n}\left(A_{n} \cap X_{i}\right)\right| & =\sum_{i}\left|\sum_{n} s\left(A_{n} \cap X_{i}\right)\right| \\
& \leq \sum_{n, i}\left|s\left(A_{n} \cap X_{i}\right)\right| \leq \sum_{n} v_{s} A_{n}
\end{aligned}
$$

As $\left\{X_{i}\right\}$ was an arbitrary \mathcal{M}-partition of A,

$$
v_{s} A=\sup \sum\left|s X_{i}\right| \leq \sum_{n} v_{s} A_{n}
$$

It remains to show that

$$
\sum_{n} v_{s} A_{n} \leq v_{s} A
$$

This is trivial if $v_{s} A=\infty$.
Thus let $v_{s} A<\infty$. Then

$$
(\forall n) \quad v_{s} A_{n} \leq v_{s} A<\infty
$$

by Corollary 1(i). Now fix $\varepsilon>0$. By properties of lub, each A_{n} has an \mathcal{M} partition,

$$
A_{n}=\bigcup_{k} X_{n k}
$$

such that

$$
v_{s} A_{n}-\frac{\varepsilon}{2^{n}}<\sum_{k}\left|s X_{n k}\right|
$$

All $X_{n k}$ combined (for all n and k) form an \mathcal{M}-partition of A. Thus by definition,

$$
v_{s} A \geq \sum_{n} \sum_{k}\left|s X_{n k}\right| \geq \sum_{n}\left(v_{s} A_{n}-\frac{\varepsilon}{2^{n}}\right) \geq \sum_{n} v_{s} A_{n}-\varepsilon .
$$

With $\varepsilon \rightarrow 0$, we get

$$
\sum_{n} v_{s} A_{n} \leq v_{s} A
$$

as required.

Definition 3.

Given

$$
s: \mathcal{M} \rightarrow E \text { and } t: \mathcal{M}^{\prime} \rightarrow E^{\prime},{ }^{2}
$$

we say that s is
(i) t-continuous (written $s \ll t$) iff

$$
v_{t} X=0 \Longrightarrow|s X|=0 \quad\left(X \in \mathcal{M}^{\prime}\right) ;
$$

(ii) absolutely t-continuous (or absolutely continuous with respect to $t)$ iff

$$
v_{t} X \rightarrow 0 \Longrightarrow s X \rightarrow 0
$$

i.e.,

$$
(\forall \varepsilon>0)(\exists \delta>0)\left(\forall X \in \mathcal{M}^{\prime}\right) \quad v_{t} X<\delta \Longrightarrow|s X|<\varepsilon ;
$$

(iii) t-finite iff

$$
v_{t} X<\infty \Longrightarrow|s X|<\infty \quad\left(X \in \mathcal{M}^{\prime}\right)
$$

Corollary 2. If two set functions $s, u: \mathcal{M} \rightarrow E$ are t-continuous (absolutely t-continuous) so are $s \pm u$, and so is $k s$ for any k from the scalar field of $E .^{3}$

The proof is left to the reader. (Use Definition 3(i)(ii), quantified formula.)
Theorem 2. Let $s: \mathcal{M} \rightarrow E$ and $t: \mathcal{M}^{\prime} \rightarrow E^{\prime}$.
(i) If $s \ll t$, then $v_{s} \ll t$.
(ii) If, in addition, s and t are generalized measures and v_{s} is t-finite, then both v_{s} and s are absolutely t-continuous.
(iii) $v_{s} \ll t$ implies $s \ll t$ (which is obvious).

Proof. Fix $A \in \mathcal{M}$ and any disjoint sequence $X_{i} \in \mathcal{M}$, with

$$
\bigcup X_{i} \subseteq A
$$

If $v_{t} A=0$, then (Corollary 1)

$$
(\forall i) \quad v_{t} X_{i}=0 ;
$$

[^28]so by the t-continuity of $s,\left|s X_{i}\right|=0$, and hence $\sum\left|s X_{i}\right|=0$. As this holds for any such sum, we also have
$$
v_{s} A=\sup \sum\left|s X_{i}\right|=0
$$
whenever $v_{t} A=0$. This proves assertion (i).
Now, let s and t be as in (ii); so v_{s} and v_{t} are measures by Theorem 1. Suppose v_{s} is not absolutely t-continuous. Then
$$
(\exists \varepsilon>0)(\forall \delta>0)\left(\exists X \in \mathcal{M}^{\prime}\right) \quad v_{t} X<\delta \text { and } v_{s} X \geq \varepsilon
$$
(Why?) Taking
$$
\delta_{n}=2^{-n}
$$
fix $(\forall n)$ a set $X_{n} \in \mathcal{M}^{\prime}$, with
$$
v_{t} X_{n}<2^{-n} \text { and } v_{s} X_{n} \geq \varepsilon
$$

Let

$$
Y_{n}=\bigcup_{k=n}^{\infty} X_{k} \text { and } Y=\bigcap_{n=1}^{\infty} Y_{n}
$$

so $Y, Y_{n} \in \mathcal{M}^{\prime}, Y_{n} \searrow Y$, and

$$
v_{t} Y_{n} \leq \sum_{k=n}^{\infty} v_{t} X_{k}<\sum_{k=n}^{\infty} 2^{-k} \leq 2^{1-n}
$$

Thus by Theorem 2 in $\S 4$ (right continuity),

$$
v_{t} Y=\lim _{n \rightarrow \infty} v_{t} Y_{n} \leq \lim _{n \rightarrow \infty} 2^{1-n}=0
$$

Hence by the t-continuity of v_{s} (see (i)),

$$
v_{s} Y=0<\varepsilon .
$$

On the other hand, as $Y_{n} \supseteq X_{n}$, we have

$$
v_{s} Y_{n} \geq v_{s} X_{n} \geq \varepsilon
$$

Also, $v_{t} Y_{n} \leq 2^{1-n}$ implies $v_{s} Y_{n}<\infty\left(v_{s}\right.$ is t-finite $)$. Hence

$$
v_{s} Y=\lim _{n \rightarrow \infty} v_{s} Y_{n} \geq \varepsilon
$$

a contradiction. Thus v_{s} is absolutely t-continuous.
So is s; for by Corollary 1(ii), we have

$$
(\forall \varepsilon>0)(\exists \delta>0)\left(\forall X \in \mathcal{M}^{\prime}\right) \quad v_{t} X<\delta \Longrightarrow|s X| \leq v_{s} X<\varepsilon
$$

proving (ii).

Note 2. Absolute t-continuity always implies t-continuity. ${ }^{4}$
II. Special notions apply to signed measures. First of all, we have the following definition.

Definition 4.

A set $A \subseteq S$ in a signed measure space (S, \mathcal{M}, s) is called positive (negative) iff $s X \geq 0$ ($s X \leq 0$, respectively) whenever

$$
A \supseteq X, X \in \mathcal{M}
$$

We set

$$
\mathcal{M}^{+}=\{X \in \mathcal{M} \mid X \text { is positive }\}
$$

and

$$
\mathcal{M}^{-}=\{X \in \mathcal{M} \mid X \text { is negative }\}
$$

The easy proof of Lemmas 1 and 2 is left to the reader.
Lemma 1. In any signed measure space, \mathcal{M}^{+}and \mathcal{M}^{-}are σ-rings.
Lemma 2. If s, t are signed measures on \mathcal{M}, then
(i) so is $k s\left(k \in E^{1}\right)$;
(ii) so also are $s \pm t$, provided s or t is finite on \mathcal{M}.

Note 3. Lemma 2 applies to generalized measures $s, t: \mathcal{M} \rightarrow E$ as well.
Lemma 3. Let $s: \mathcal{M} \rightarrow E^{*}$ be a signed measure. Let $A \in \mathcal{M}, 0<s A<\infty$. Then A has a subset $Q \in \mathcal{M}^{+}$such that

$$
0<s A \leq s Q<\infty
$$

Proof. If $A \in \mathcal{M}^{+}$, take $Q=A$.
Otherwise, A has subsets of negative measure. Let then n_{1} be the least natural for which there is a set $A_{1} \in \mathcal{M}$, with

$$
A_{1} \subseteq A \text { and } s A_{1}<-\frac{1}{n_{1}}
$$

(why does such n_{1} exist?); then

$$
s\left(A-A_{1}\right)>s A>0 .
$$

Now, if $A-A_{1} \in \mathcal{M}^{+}$, take $Q=A-A_{1}$. If not, let n_{2} be the least natural for which there is $A_{2} \in \mathcal{M}$, with

$$
A_{2} \subseteq A-A_{1} \text { and } s A_{2}<-\frac{1}{n_{2}}
$$

[^29]Again, if

$$
A-\bigcup_{i=1}^{2} A_{i}
$$

is positive, put

$$
Q=A-\bigcup_{i=1}^{2} A_{i}
$$

If not, let n_{3} be the least natural for which there is $A_{3} \in \mathcal{M}$, with

$$
A_{3} \subseteq A-\bigcup_{i=1}^{2} A_{i}
$$

and

$$
s A_{3}<-\frac{1}{n_{3}}
$$

Continuing, we either find the desired Q at some step or obtain a sequence $\left\{A_{k}\right\} \subseteq \mathcal{M}$ such that

$$
\begin{equation*}
(\forall k \in N) \quad s A_{k}<-\frac{1}{n_{k}} \text { and } A_{k+1} \subseteq A-\bigcup_{i=1}^{k} A_{i} \tag{1}
\end{equation*}
$$

(so the A_{k} are disjoint). In the latter case, let

$$
Q=A-\bigcup_{k=1}^{\infty} A_{k}
$$

SO

$$
A=Q \cup \bigcup_{k=1}^{\infty} A_{k}(\text { disjoint })
$$

and

$$
s Q+\sum_{k} s A_{k}=s A
$$

As $|s A|<\infty$ (by assumption), $\sum s A_{k}$ converges. By (1), then,

$$
\sum_{k} \frac{1}{n_{k}} \leq \sum_{k}\left(-s A_{k}\right)<\infty
$$

Therefore,

$$
\lim _{k \rightarrow \infty} \frac{1}{n_{k}}=0
$$

i.e.,

$$
\lim _{k \rightarrow \infty} n_{k}=\infty
$$

Also, as $s A_{k}<0$ and $s A>0$, we have

$$
s Q=s A-\sum s A_{k}>s A>0
$$

Now, given $\varepsilon>0$, choose k so large that

$$
\varepsilon>\frac{1}{n_{k}-1} .
$$

As

$$
Q \subseteq A-\bigcup_{i=1}^{k} A_{i}
$$

our definition of the n_{k} implies that Q can have no subsets $X \in \mathcal{M}$, with

$$
s X<-\varepsilon<-\frac{1}{n_{k}-1} .
$$

(Why?) As ε is arbitrary, Q has no subsets of negative measure.
Thus $Q \in \mathcal{M}^{+}, Q \subseteq A$, and

$$
0<s A \leq s Q<\infty
$$

as required.
The following theorem is named after the mathematician Hans Hahn.
Theorem 3 (Hahn decomposition theorem). In any signed measure space (S, \mathcal{M}, s), there is a positive set $P \subseteq S$ whose complement is negative. Moreover, P or $-P$ can be chosen from \mathcal{M}, according to whether $s \neq \infty$ or $s \neq-\infty$ on \mathcal{M}.

If $S \in \mathcal{M}$, both P and $-P$ can be made s-measurable:

$$
P \in \mathcal{M}^{+} \text {and }-P \in \mathcal{M}^{-} .
$$

Proof. By definition, s is semifinite; so $s \neq \infty$ or $s \neq-\infty$ on \mathcal{M}; say, $s \neq+\infty$.
As \mathcal{M}^{+}is a σ-ring (Lemma 1), the restriction of s to \mathcal{M}^{+}is a measure, with

$$
0 \leq s<\infty
$$

on \mathcal{M}^{+}. Thus by Problem 13 in $\S 6$, we fix a set $P \in \mathcal{M}^{+}$such that

$$
s P=\max \left\{s X \mid X \in \mathcal{M}^{+}\right\}<\infty .
$$

By Lemma 3, $s P=\max s X$, even on all of \mathcal{M}.
It remains to show that $-P$ is negative. Suppose it is not. Then $-P$ has a subset $Y \in \mathcal{M}$, with $s Y>0$; so

$$
Y \cap P=\emptyset \text { and } Y \cup P \in \mathcal{M} .
$$

By additivity,

$$
s(Y \cup P)=s Y+s P>s P
$$

contrary to the maximality of $s P$. This contradiction settles the case $s \neq+\infty$.
In case $s \neq-\infty$, consider $-s$, which by Lemma 2 is likewise a signed measure, with $-s \neq+\infty$. By what was proved above, there is a set $P^{\prime} \in \mathcal{M}$ that is positive for $-s$ (hence negative for s), and whose complement is positive for s.

Finally, if $S \in \mathcal{M}$, then $P \in \mathcal{M}$ implies

$$
S-P=-P \in \mathcal{M}
$$

so both P and $-P$ are in \mathcal{M}. Thus all is proved.
Note 4. The set P in Theorem 3 is not unique. However, if $P^{\prime} \in \mathcal{M}^{+}$is another such set, then

$$
s\left(P-P^{\prime}\right)=0=s\left(P^{\prime}-P\right)
$$

i.e., any two such sets can differ by a set of measure 0 only. Indeed,

$$
P-P^{\prime} \subseteq P \text { and } P-P^{\prime} \subseteq-P^{\prime}
$$

so $s\left(P-P^{\prime}\right)$ is both ≥ 0 and ≤ 0. Thus $s\left(P-P^{\prime}\right)=0$. Similarly for $P^{\prime}-P$.
Theorem 4 (Jordan decomposition). Every signed measure $s: \mathcal{M} \rightarrow E^{*}$ is the difference of two measures,

$$
s=s^{+}-s^{-} \quad\left(s^{+}, s^{-} \geq 0\right)
$$

with s^{+}or s^{-}bounded on \mathcal{M}.
Proof. Suppose $s \neq+\infty$ on \mathcal{M}. Then by Theorem 3, there is a set $P \in \mathcal{M}^{+}$ such that $-P$ is negative and $s P<\infty$. Now define, for all sets $A \in \mathcal{M}$,

$$
\begin{equation*}
s^{+} A=s(A \cap P) \quad \text { and } s^{-} A=-s(A-P) \tag{2}
\end{equation*}
$$

By additivity,

$$
s A=s(A \cap P)+s(A-P)=s^{+} A-s^{-} A
$$

so $s=s^{+}-s^{-}$on \mathcal{M}, as required. Moreover,

$$
s^{+} A=s(A \cap P) \geq 0
$$

since $A \cap P \subseteq P$ and P is positive. Similarly,

$$
s^{-} A=-s(A-P) \geq 0
$$

since $A-P \subseteq-P$ and $-P$ is negative. Thus $s^{+}, s^{-} \geq 0$ on \mathcal{M}, a σ-ring.
The σ-additivity of s^{+}and s^{-}easily follows from that of s (we leave the proof to the reader). Thus s^{+}and s^{-}are measures.

Finally, by (2),

$$
s^{+} A=s(A \cap P) \leq s P<\infty
$$

for all $A \in \mathcal{M}$ (for

$$
s P=\max \{s X \mid X \in \mathcal{M}\}
$$

see the proof of Theorem 3). Thus s^{+}is bounded, and all is proved.
The case $s \neq-\infty$ is similar.
Note 5. For any set $X \subseteq A(X \in \mathcal{M})$, we have

$$
s X=s^{+} X-s^{-} X \leq s^{+} X \leq s^{+} A,
$$

for s^{+}and s^{-}are ≥ 0 and monotone. Thus $s^{+} A$ is an upper bound of

$$
\{s X \mid A \supseteq X \in \mathcal{M}\} .
$$

By (2), this bound is reached when $X=A \cap P$; so it is a maximum. Similarly for s^{-}; thus
(3) $s^{+} A=\max \{s X \mid A \supseteq X \in \mathcal{M}\}$ and $s^{-} A=\max \{-s X \mid A \supseteq X \in \mathcal{M}\}$.

Note 6. The decomposition is not unique, for we also have

$$
s=\left(s^{+}+m\right)-\left(s^{-}+m\right)
$$

for any finite measure m on \mathcal{M}. However, it becomes unique if we add condition (3). When so defined, s^{+}and s^{-}are called the Jordan components of s.

Note 7. Formula (2) shows that

$$
(-s)^{+}=s^{-} \text {and }(-s)^{-}=s^{+} .
$$

Corollary 3. With s, s^{+}, and s^{-}as in (3), we have the following.
(i) $v_{s}=s^{+}+s^{-}$; hence if s is a measure $\left(s^{-}=0\right)$, then

$$
s=v_{s}=s^{+} .
$$

(ii) v_{s} is finite (t-finite, t-continuous, absolutely t-continuous) iff s^{+}and s^{-} are, i.e., iff s is.

Proof. We give only an outline here.
(i) Take any \mathcal{M}-partition

$$
A=\bigcup X_{i}(\text { disjoint })
$$

Setting

$$
m=s^{+}+s^{-},
$$

verify that

$$
\left|s X_{i}\right| \leq m X_{i}
$$

and

$$
\sum\left|s X_{i}\right| \leq \sum m X_{i}=m \bigcup X_{i}=m A
$$

Thus $m A$ is an upper bound of sums

$$
\sum\left|s X_{i}\right| .
$$

This bound is reached when $X_{1}=A \cap P, X_{2}=A-P(P$ as in (2)).
(ii) Use Theorem 2, Corollary 2, and Definition 3. Note that $v_{s} \geq|s|, s^{+}$, and s^{-}.

Corollary 4. A t-finite signed measure s is absolutely t-continuous iff it is t-continuous.

In particular, this applies to finite measures.
Corollary 4 follows from Theorem 2 and Note 2, by Corollary 3.
III. If $E=E^{n}\left(C^{n}\right)$, the function

$$
s: \mathcal{M} \rightarrow E
$$

has n real (complex) components

$$
s_{1}, \ldots, s_{n}
$$

as defined in Chapter 4, $\S 3$. As in Theorem 2 of Chapter 4, $\S 3$, one easily obtains the following.
Theorem 5. A set function $s: \mathcal{M} \rightarrow E^{n}\left(C^{n}\right)$ is t-continuous (absolutely t continuous, additive, σ-additive) iff its n components are. Hence a complex set function s is t-continuous (etc.) iff its real and imaginary parts are.

For σ-additivity, one can argue as follows. Let

$$
A=\bigcup_{i=1}^{\infty} A_{i}(\text { disjoint })
$$

with $A, A_{i} \in \mathcal{M}$. Use Theorem 2 in Chapter $3, \S 15$, with $\bar{p}=s A$ and

$$
\bar{x}_{m}=\sum_{i=1}^{m} s A_{i}
$$

to get $p_{k}=s_{k} A$, and

$$
x_{m k}=\sum_{i=1}^{m} s_{k} A_{i}, \quad k=1, \ldots, n
$$

Theorem 6. A generalized measure $s: \mathcal{M} \rightarrow E^{n}\left(C^{n}\right)$ is t-continuous iff it is absolutely t-continuous. It is always bounded on \mathcal{M}, as is v_{s}.
Proof. As $s: \mathcal{M} \rightarrow E^{n}$ is σ-additive, so is each of its components s_{k}, by Theorem 5. Thus each s_{k} is a finite (real) signed measure, with

$$
s_{k}=s_{k}^{+}-s_{k}^{-},
$$

as in Theorem 4. Here the measures s_{k}^{+}and s_{k}^{-}are both finite (as s is).
Thus by Problem 13 in $\S 6$, they are bounded, say, $s_{k}^{+} \leq K_{1}$ and $s_{k}^{-} \leq K_{2}$ on \mathcal{M}. Hence by Corollaries 1 and 3 ,

$$
\left|s_{k}\right| \leq v_{s_{k}}=s_{k}^{+}+s_{K}^{-} \leq K_{1}+K_{2}
$$

that is, $v_{s_{k}}$ is bounded on $\mathcal{M}(k=1,2, \ldots, n)$. Hence so are s and v_{s}, for

$$
|s| \leq v_{s} \leq \sum_{k} v_{s_{k}}
$$

(see Problem 4(iii)).
Now, as v_{s} is finite, it is certainly t-finite. Thus by Theorem 2 and Note 2, s is t-continuous iff it is absolutely t-continuous.

This settles the case $E=E^{n}$, hence also $E=C=E^{2}$. The case $E=C^{n}$ is analogous.
IV. Completion of a Generalized Measure. From Problems 14 and 15 of $\S 6$, recall that every measure m has a completion \bar{m}. A similar construction, which we now describe, applies to generalized measures $s: \mathcal{M} \rightarrow E$.

Given such an s, let $\overline{\mathcal{M}}$ be the family of all sets $X \cup Z$, where $X \in \mathcal{M}$ and Z is v_{s}-null, i.e., $Z \subseteq U$ for some $U \in \mathcal{M}, v_{s} U=0$ (note that v_{s} is a measure here, by Theorem 2). That is,

$$
\overline{\mathcal{M}}=\left\{X \cup Z \mid X \in \mathcal{M}, Z \subseteq U, U \in \mathcal{M}, v_{s} U=0\right\}
$$

We now define $\bar{s}: \overline{\mathcal{M}} \rightarrow E$ by setting

$$
\bar{s} A=s X
$$

whenever $A=X \cup Z$, with X and Z as above.
As in Problems 14 and 15 of $\S 6$, it follows that $\overline{\mathcal{M}}$ is a σ-ring $\supseteq \mathcal{M}$, and that \bar{s} is a σ-additive extension of s, hence a generalized measure. We call \bar{s} the completion of s. It is complete in the sense that $\overline{\mathcal{M}}$ contains all v_{s}-null sets (but it may miss some subsets of X with $s X=0$). If $s \geq 0$ (a measure), then $s=v_{s}$; so our present definitions agree with Problem 15 in $\S 6$. We use these ideas in the following part.
V. Signed Lebesgue-Stieltjes (LS) Measures. Motived by Theorem 3 in Chapter $5, \S 7$, we shall say that a function

$$
\alpha: E^{1} \rightarrow E^{1}
$$

is of bounded variation on E^{1} iff

$$
\alpha=g-h
$$

with $g \uparrow$ and $h \uparrow$ on all of E^{1}.
Then g and h induce two LS measures m_{g} and m_{h} in E^{1}.
Let μ_{g} and μ_{h} be their restrictions to the Borel field \mathcal{B} in E^{1}. Then

$$
\sigma_{\alpha}^{*}=\mu_{g}-\mu_{h}
$$

is finite for sets $X \in \mathcal{B}$ inside any finite interval $I \subset E^{1}$ (as μ_{g} and μ_{h} are finite on intervals).

By Lemma $2, \sigma_{\alpha}^{*}$ is a signed measure on the \mathcal{B}-sets in I. Moreover, σ_{α}^{*} does not depend on the particular choice of $g \uparrow$ and $h \uparrow(g-h=\alpha)$ on I. For if also $\alpha=u-v(u \uparrow, v \uparrow)$ on E^{1}, set

$$
\sigma_{\alpha}^{\prime}=\mu_{u}-\mu_{v}
$$

Then for any $(x, y] \subseteq I$,

$$
\sigma_{\alpha}^{\prime}(x, y]=\alpha(y+)-\alpha(x+)=\sigma_{\alpha}^{*}(x, y] \quad(\text { verify }) ;
$$

so by Problem 13 in $\S 5, \sigma_{\alpha}^{\prime}=\sigma_{\alpha}^{*}$ on \mathcal{B}-sets in I.
Thus σ_{α}^{*} is uniquely determined by α. Its completion

$$
s_{\alpha}=\overline{\sigma_{\alpha}^{*}}
$$

is the α-induced Lebesgue-Stieltjes ($L S$) signed measure in I.
If further μ_{g} or μ_{h} is finite on all of \mathcal{B}, the same process defines a signed LS measure in all of E^{1}.

Problems on Generalized Measures

1. Complete the proofs of Theorems 1, 4, and 5.
$\mathbf{1}^{\prime}$. Do it also for the lemmas and Corollary 3.
2. Verify the following.
(i) In Definition 2, one can equivalently replace "countable $\left\{X_{i}\right\}$ " by "finite $\left\{X_{i}\right\}$."
(ii) If \mathcal{M} is a ring, Note 1 holds for finite sequences $\left\{X_{i}\right\}$.
(iii) If $s: \mathcal{M} \rightarrow E$ is additive on \mathcal{M}, a semiring, so is v_{s}.
[Hint: Use Theorem 1 from §4.]
3. For any set functions s, t on \mathcal{M}, prove that
(i) $v_{|s|}=v_{s}$, and
(ii) $v_{s t} \leq a v_{t}$, provided st is defined and

$$
a=\sup \{|s X| \mid X \in \mathcal{M}\} .
$$

4. Given $s, t: \mathcal{M} \rightarrow E$, show that
(i) $v_{s+t} \leq v_{s}+v_{t}$;
(ii) $v_{k s}=|k| v_{s}(k$ as in Corollary 2); and
(iii) if $E=E^{n}\left(C^{n}\right)$ and

$$
s=\sum_{k=1}^{n} s_{k} \bar{e}_{k}
$$

then

$$
v_{s_{k}} \leq v_{s} \leq \sum_{k=1}^{n} v_{s k}
$$

[Hints: (i) If

$$
A \supseteq \bigcup X_{i}(d i s j o i n t),
$$

with $A_{i}, X_{i} \in \mathcal{M}$, verify that

$$
\begin{gathered}
\left|(s+t) X_{i}\right| \leq\left|s X_{i}\right|+\left|t X_{i}\right|, \\
\sum\left|(s+t) X_{i}\right| \leq v_{s} A+v_{t} A, \text { etc.; }
\end{gathered}
$$

(ii) is analogous.
(iii) Use (ii) and (i), with $\left|\bar{e}_{k}\right|=1$.]
5. If $g \uparrow, h \uparrow$, and $\alpha=g-h$ on E^{1}, can one define the signed LS measure s_{α} by simply setting $s_{\alpha}=m_{g}-m_{h}$ (assuming $\left.m_{h}<\infty\right)$?
[Hint: the domains of m_{g} and m_{h} may be different. Give an example. How about taking their intersection?]
6. Find an LS measure m_{α} such that α is continuous and one-to-one, but m_{α} is not m-finite ($m=$ Lebesgue measure).
[Hint: Take

$$
\alpha(x)= \begin{cases}\frac{x^{3}}{|x|}, & x \neq 0, \\ 0, & x=0,\end{cases}
$$

and

$$
\left.A=\bigcup_{n=1}^{\infty}\left(n, n+\frac{1}{n^{2}}\right] \cdot\right]
$$

7. Construct complex and vector-valued LS measures $s_{\alpha}: \mathcal{M}_{\alpha}^{*} \rightarrow E^{n}\left(C^{n}\right)$ in E^{1}.
8. Show that if $s: \mathcal{M} \rightarrow E^{n}\left(C^{n}\right)$ is additive and bounded on \mathcal{M}, a ring, so is v_{s}.
[Hint: By Problem 4(iii), reduce all to the real case.
Use Problem 2. Given a finite disjoint sequence $\left\{X_{i}\right\} \subseteq \mathcal{M}$, let $U^{+}\left(U^{-}\right)$be the union of those X_{i} for which $s X_{i} \geq 0\left(s X_{i}<0\right.$, respectively). Show that

$$
\left.\sum s X_{i}=s U^{+}-s U^{-} \leq 2 \sup |s|<\infty .\right]
$$

9. For any $s: \mathcal{M} \rightarrow E^{*}$ and $A \in \mathcal{M}$, set

$$
s^{+} A=\sup \{s X \mid A \supseteq X \in \mathcal{M}\}
$$

and

$$
s^{-} A=\sup \{-s X \mid A \supseteq X \in \mathcal{M}\}
$$

Prove that if s is additive and bounded on \mathcal{M}, a ring, so are s^{+}and s^{-}; furthermore,

$$
\begin{aligned}
s^{+} & =\frac{1}{2}\left(v_{s}+s\right) \geq 0 \\
s^{-} & =\frac{1}{2}\left(v_{s}-s\right) \geq 0 \\
s & =s^{+}-s^{-}, \text {and } \\
v_{s} & =s^{+}+s^{-}
\end{aligned}
$$

[Hints: Use Problem 8. Set

$$
s^{\prime}=\frac{1}{2}\left(v_{s}+s\right) .
$$

Then $(\forall X \in \mathcal{M} \mid X \subseteq A)$

$$
\begin{aligned}
2 s X=s A+s X-s(A-X) & \leq s A+(|s X|+|s(A-X)|) \\
& \leq s A+v_{s} A=2 s^{\prime} A
\end{aligned}
$$

Deduce that $s^{+} A \leq s^{\prime} A$.
To prove also that $s^{\prime} A \leq s^{+} A$, let $\varepsilon>0$. By Problems 2 and 8 , fix $\left\{X_{i}\right\} \subseteq \mathcal{M}$, with

$$
A=\bigcup_{i=1}^{n} X_{i}(\text { disjoint })
$$

and

$$
v_{s} A-\varepsilon<\sum_{i=1}^{n}\left|s X_{i}\right|
$$

Show that

$$
2 s^{\prime} A-\varepsilon=v_{s} A+s A-\varepsilon \leq s U^{+}-s U^{-}+s \bigcup_{i=1}^{n} X_{i}=2 s U^{+}
$$

and

$$
\left.2 s^{+} A \geq 2 s U^{+} \geq 2 s^{\prime} A-\varepsilon .\right]
$$

10. Let

$$
\mathcal{K}=\{\text { compact sets in a topological space }(S, \mathcal{G})\}
$$

(adopt Theorem 2 in Chapter 4, $\S 7$, as a definition). Given

$$
s: \mathcal{M} \rightarrow E, \quad \mathcal{M} \subseteq 2^{S},
$$

we call s compact regular (CR) iff

$$
\begin{aligned}
& (\forall \varepsilon>0)(\forall A \in \mathcal{M})(\exists F \in \mathcal{K})(\exists G \in \mathcal{G}) \\
& \quad F, G \in \mathcal{M}, F \subseteq A \subseteq G, \text { and } v_{s} G-\varepsilon \leq v_{s} A \leq v_{s} F+\varepsilon .
\end{aligned}
$$

Prove the following.
(i) If $s, t: \mathcal{M} \rightarrow E$ are CR , so are $s \pm t$ and $k s$ (k as in Corollary 2).
(ii) If s is additive and CR on \mathcal{M}, a semiring, so is its extension to the ring \mathcal{M}_{s} (Theorem 1 in $\S 4$ and Theorem 4 of $\S 3$).
(iii) If $E=E^{n}\left(C^{n}\right)$ and $v_{s}<\infty$ on \mathcal{M}, a ring, then s is CR iff its components s_{k} are, or in the case $E=E^{1}$, iff s^{+}and s^{-}are (see Problem 9).
[Hint for (iii): Use (i) and Problem 4(iii). Consider $v_{s}(G-F)$.]
11. (Aleksandrov.) Show that if $s: \mathcal{M} \rightarrow E$ is CR (see Problem 10) and additive on \mathcal{M}, a ring in a topological space S, and if $v_{s}<\infty$ on \mathcal{M}, then v_{s} and s are σ-additive, and v_{s} has a unique σ-additive extension \bar{v}_{s} to the σ-ring \mathcal{N} generated by \mathcal{M}.

The latter holds for s, too, if $S \in \mathcal{M}$ and $E=E^{n}\left(C^{n}\right)$.
[Proof outline: The σ-additivity of v_{s} results as in Theorem 1 of $\S 2$ (first check Lemma 1 in $\S 1$ for v_{s}).

For the σ-additivity of s, let

$$
A=\bigcup_{i=1}^{\infty} A_{i}(\text { disjoint }), \quad A, A_{i} \in \mathcal{M}
$$

then

$$
\left|s A-\sum_{i=1}^{r-1} s A_{i}\right| \leq \sum_{i=r}^{\infty} v_{s} A_{i} \rightarrow 0
$$

as $r \rightarrow \infty$, for

$$
\sum_{i=1}^{\infty} v_{s} A_{i}=v_{s} \bigcup_{i=1}^{\infty} A_{i}<\infty
$$

(Explain!) Now, Theorem 2 of $\S 6$ extends v_{s} to a measure on a σ-field

$$
\mathcal{M}^{*} \supseteq \mathcal{N} \supseteq \mathcal{M}
$$

(use the minimality of \mathcal{N}). Its restriction to \mathcal{N} is the desired \bar{v}_{s} (unique by Problem 15 in $\S 6$).

A similar proof holds for s, too, if $s: \mathcal{M} \rightarrow[0, \infty)$. The case $s: \mathcal{M} \rightarrow E^{n}\left(C^{n}\right)$ results via Theorem 5 and Problem 10(iii) provided $S \in \mathcal{M}$; for then by Corollary 1, $v_{s} S<\infty$ ensures the finiteness of v_{s}, s^{+}, and s^{-}even on \mathcal{N}.]
12. Do Problem 11 for semirings \mathcal{M}.
[Hint: Use Problem 10(ii).]

*§12. Differentiation of Set Functions

In the proof of Theorem 3 in $\S 10$ and the lemmas of that section, we saw the connection between quotients of the form

$$
\frac{\Delta f}{\Delta x}=\frac{f(x)-f(p)}{x-p}
$$

and those of the form

$$
\frac{s I}{m I}
$$

where m is Lebesgue measure and s is another suitable measure. With this in mind, we now use quotients $s I / m I$ for forming derivatives of set functions.

Below, m is Lebesgue measure in E^{n};

$$
\overline{\mathcal{K}}=\{\text { nondegenerate cubes }\} .
$$

Definition 1.

Assume the set function

$$
s: \mathcal{M}^{\prime} \rightarrow E \quad\left(\mathcal{M}^{\prime} \supseteq \overline{\mathcal{K}}\right)
$$

in E^{n} and that $q \in E$.
(i) We say that q is the derivative of s at a point $\bar{p} \in E^{n}$ iff

$$
q=\lim _{k \rightarrow \infty} \frac{s I_{k}}{m I_{k}}
$$

for all sequences $\left\{I_{k}\right\} \subseteq \overline{\mathcal{K}}$, with $I_{k} \rightarrow \bar{p}$ (see Definition 1 in $\S 10$), Notation:

$$
q=s^{\prime}(\bar{p})=\frac{d}{d m} s(\bar{p}) .
$$

If, in addition, $|q|<\infty$, we say that s is differentiable at \bar{p}.
If

$$
q=\lim _{k \rightarrow \infty} \frac{s I_{k}}{m I_{k}}
$$

for at least one such sequence $I_{k} \rightarrow \bar{p}$, we call q a derivate of s at \bar{p} and write

$$
q \sim D s(\bar{p})
$$

If $s^{\prime}(\bar{p})$ exists, it is the unique derivate of s at \bar{p}.
(ii) In case E is E^{*} or E^{1}, we admit infinite derivates and derivatives.

For any set function

$$
s: \mathcal{M}^{\prime} \rightarrow E^{*}
$$

(measure or not) with

$$
\mathcal{M}^{\prime} \supseteq \overline{\mathcal{K}}
$$

we also define

$$
\underline{D} s(\bar{p}) \text { and } \bar{D} s(\bar{p})
$$

exactly as in Definition 3 of $\S 10$.
Equivalently, $\underline{D} s(\bar{p})$ is the least and $\bar{D} s(\bar{p})$ is the largest derivate of s at \bar{p} (Problem 11 in $\S 10$). This shows that if $E=E^{*}$ or $E=E^{1}$, derivates exist at every \bar{p}.

Note 1. Hence $q=s^{\prime}(\bar{p})$ in E^{*} iff

$$
q=\underline{D} s(\bar{p})=\bar{D} s(\bar{p})
$$

Note 2. We treat $\underline{D} s, \bar{D} s$, and s^{\prime} as functions on points of E^{n}. Thus they are point functions, even though s is a set function.

The easy proofs of Theorems 1 and 2 (with $\overline{\mathcal{K}}$ and $\mathcal{M}^{\prime} \supseteq \overline{\mathcal{K}}$ as above) are left to the reader.
Theorem 1. If $s, t: \mathcal{M}^{\prime} \rightarrow E$ are differentiable at \bar{p}, so are $s \pm t$ and $k s$ for any scalar k. (If s, t are scalar valued, k may be a vector.) Moreover,

$$
(s \pm t)^{\prime}=s^{\prime} \pm t^{\prime} \text { and }(k s)^{\prime}=k s^{\prime} \text { at } \bar{p}
$$

(See also Problem 7.)

Theorem 2. A set function $s: \mathcal{M}^{\prime} \rightarrow E^{r}\left(C^{r}\right)$ is differentiable at \bar{p} iff its components $s_{1}, s_{2}, \ldots, s_{r}$ are; and then

$$
s^{\prime}=\left(s_{1}^{\prime}, \ldots, s_{r}^{\prime}\right)=\sum_{i=1}^{r} \bar{e}_{i} s_{i}^{\prime} \quad \text { at } \bar{p}
$$

In particular, for complex functions,

$$
s^{\prime}=s_{\mathrm{re}}^{\prime}+i \cdot s_{\mathrm{im}}^{\prime} \quad \text { at } \bar{p}
$$

The process described in Definition 1 will be called Lebesgue differentiation or $\overline{\mathcal{K}}$-differentiation, as opposed to " Ω-differentiation," defined next. ${ }^{1}$

[^30]
Definition 2.

Let μ^{*} be a \mathcal{G}-regular (§5) outer measure in a metric space (S, ρ); recall that

$$
\mathcal{G}=\{\text { all open sets in } S\} .
$$

Let $\mu: \mathcal{M} \rightarrow E^{*}$ be the μ^{*}-induced (§6) measure in S.
A countable (two-indexed) set family

$$
\Omega=\left\{U_{n}^{i}\right\} \subseteq \mathcal{M} \quad(i, n=1,2, \ldots)
$$

is called a network in S (with respect to μ and ρ) iff
(i*) the space

$$
S=\bigcup_{n=1}^{\infty} U_{n}^{i}(\text { disjoint }), \quad i=1,2, \ldots
$$

with

$$
0<\mu U_{n}^{i}<\infty, \quad i, n=1,2, \ldots ;^{2}
$$

(ii*) each U_{n}^{i+1} is a subset of some U_{r}^{i} (the U_{n}^{i} decrease as i increases);
(iii*) for each $p \in S$, there is a sequence

$$
\left\{I_{k}\right\} \subseteq \Omega
$$

with $I_{k} \rightarrow p$; that is,

$$
p \in \bigcap_{k=1}^{\infty} I_{k}
$$

and $d I_{k} \rightarrow 0\left(d I_{k}=\right.$ diameter of I_{k} in $\left.(S, \rho)\right)$.
Now, given any set function

$$
s: \mathcal{M}^{\prime} \rightarrow E \quad\left(\mathcal{M}^{\prime} \supseteq \Omega\right)
$$

we define derivatives, derivates (also $\bar{D} s$ and $\underline{D} s$ if $E \subseteq E^{*}$), and differentiability exactly as in Definition 1, replacing $\overline{\mathcal{K}}$ by Ω, and Lebesgue measure m by μ.

Note that these derivates and derivatives depend not only on μ and ρ but also on the choice of Ω. To stress this, one might write $s_{\mu_{\Omega}}^{\prime}$ and $D_{\mu_{\Omega}} s$ for s^{\prime} and $D s$, respectively. Mostly, however, no confusion is caused by simply writing s^{\prime} and $D s$ (and we shall do so).

A network for E^{n} is suggested in the "hint" to Problem 2 of $\S 2$. See also Note 3.

[^31]Theorems 1 and 2 carry over to Ω-differentiation, with the same proofs. We shall also need a substitute for the Vitali theorem (Theorem 1 of $\S 10$). It is quite simple.

Definition 3.

Let Ω be as in Definition 2. A set family $\mathcal{N} \subseteq \Omega$ is called an Ω-covering of $A \subseteq(S, \rho)$ iff

$$
A \subseteq \bigcup \mathcal{N}
$$

where $\bigcup \mathcal{N}$ is defined to be $\bigcup_{X \in \mathcal{N}} X$.
Theorem 3. Let \mathcal{N} be an Ω-covering of $A \subseteq S$. Then there is a disjoint sequence

$$
\left\{I_{k}\right\} \subseteq \mathcal{N}
$$

with

$$
A \subseteq \bigcup_{k} I_{k}
$$

so that

$$
\mu^{*}\left(A-\bigcup_{k} I_{k}\right)=0
$$

and

$$
\mu^{*} A=\mu^{*}\left(A \cap \bigcup_{k} I_{k}\right)
$$

Proof. As $\mathcal{N} \subseteq \Omega, \mathcal{N}$ consists of some of the U_{n}^{i}. For each i, let

$$
\mathcal{N}^{i}=\left\{U_{n}^{i} \in \mathcal{N} \mid n=1, \ldots\right\},
$$

i.e., \mathcal{N}^{i} consists of all $U_{n}^{i} \in \mathcal{N}$ with that particular index i.

Now, by Definition 2(i*) (ii*), any two U_{n}^{i} are either disjoint, or one contains the other. (Why?) Thus to construct $\left\{I_{k}\right\}$, start with all the (disjoint) \mathcal{N}^{1}-sets (if $\mathcal{N}^{1} \neq \emptyset$). Then add those $U_{n}^{2} \in \mathcal{N}^{2}$ that are not subsets of any set from \mathcal{N}^{1} and hence are disjoint from such sets. Next, add those $U_{n}^{3} \in \mathcal{N}^{3}$ that are not subsets of any set chosen from \mathcal{N}^{1} or \mathcal{N}^{2}, and so on.

All U_{n}^{i} so chosen form a disjoint subfamily $\mathcal{K} \subseteq \mathcal{N}$ that covers all of A, as

$$
A \subseteq \bigcup \mathcal{N}=\bigcup \mathcal{K} .
$$

(Why?)
\mathcal{K} is countable (as Ω is); so we can put it in a sequence $\left\{I_{k}\right\}$, with

$$
A \subseteq \bigcup_{k} I_{k}(\text { disjoint })
$$

as required.

We can now prove our main result for $\overline{\mathcal{K}}$ - and Ω-differentiation alike.

Theorem 4.

(i) If $s: \mathcal{M}^{\prime} \rightarrow E^{*}\left(E^{r}, C^{r}\right)$ is a generalized measure in E^{n}, finite on $\overline{\mathcal{K}}$, then s is differentiable a.e. on E^{n} (under Lebesgue measure m).
(ii) Similarly for Ω-differentiation in (S, ρ), provided s is finite on Ω and regular. ${ }^{3}$

Proof. Via components and the Jordan decomposition (Theorem 4 of §11), all reduces to the case where s is a measure (≥ 0). Then the proof for $\overline{\mathcal{K}}$ differentiation is as in Lemmas 1 and 2 in $\S 10$. (Verify!)

For Ω-differentiation, the proof of Lemma 1 in $\S 10$ still works, with $\overline{\mathcal{K}}$ coverings replaced by Ω-coverings.

In the proof of Lemma 2, after choosing rationals $v>u$, we choose Q, $G \supseteq Q$, the Ω-covering

$$
\mathcal{K}=\left\{I \in \Omega \mid I \subseteq G, \frac{s I}{\mu I}<u\right\}
$$

of Q, and the sequence $\left\{I_{k}\right\} \subseteq \mathcal{K}$, as before. (In selecting G, we use the \mathcal{G}-regularity of μ^{*}; the I_{k} need not be cubes here, of course.)

Then, however, instead of forming the set Q_{o}, we use the regularity of s to select an open set $G^{\prime} \in \mathcal{M}^{\prime}$ with

$$
G^{\prime} \supseteq \bigcup_{k} I_{k} \supseteq Q
$$

and

$$
s G^{\prime}-\varepsilon \leq s \bigcup I_{k} \leq \sum s I_{k}
$$

The set family

$$
\mathcal{K}^{\prime}=\left\{I \in \Omega \mid I \subseteq G^{\prime}, \frac{s I}{\mu I}>v\right\}
$$

is then an Ω-covering of Q (why?); so we find a disjoint sequence $\left\{I_{k}^{\prime}\right\} \subseteq \mathcal{K}^{\prime}$ with

$$
Q \subseteq \bigcup I_{k}^{\prime} \subseteq G^{\prime} \subseteq G
$$

and obtain

$$
\begin{aligned}
u \cdot\left(\mu^{*} Q+\varepsilon\right) \geq u \cdot \mu G & \geq u \cdot \sum_{k} \mu I_{k} \geq \sum_{k} s I_{k} \geq s G^{\prime}-\varepsilon \geq \sum_{k} s I_{k}^{\prime}-\varepsilon \\
& \geq v \cdot \sum_{k} \mu I_{k}^{\prime}-\varepsilon=v \cdot \mu \bigcup I_{k}^{\prime}-\varepsilon \geq v \cdot \mu^{*} Q-\varepsilon
\end{aligned}
$$

[^32]Thus

$$
(\forall \varepsilon>0) \quad u \cdot\left(\mu^{*} Q+\varepsilon\right) \geq v \cdot \mu^{*} Q-\varepsilon .
$$

The rest is as in Lemma 2 of $\S 10$.
Note 3. If $\mu^{*}=m^{*}, \overline{\mathcal{K}}$-derivatives equal Ω-derivatives a.e. for a regular s (Problem 6). One may use Ω in E^{n}, thus avoiding Theorem 1 of $\S 10$ (Problem 13).

Problems on Differentiation of Set Functions

1. Complete the proofs of Theorems 1 to 4 in detail. Verify Note 1.
2. Verify that the hint for Problem 2 in $\S 2$ describes a network for E^{n} (see Note 3).
3. Show that the measure μ in Definition 2 is necessarily topological. [Hint: Any $G \in \mathcal{G}$ is a countable union of Ω-sets. Why?]
4. (i) Show that the derivates of s at \bar{p} form exactly the set $D_{\bar{p}}^{\prime}$ of all cluster points of sequences $s I_{k} / m I_{k}$ with $I_{k} \rightarrow \bar{p}$ and $\left\{I_{k}\right\} \subseteq \overline{\mathcal{K}}$. Do the same considering sequences $s I_{k} / \mu I_{k}$ with $I_{k} \rightarrow \bar{p}$ and $\left\{I_{k}\right\} \subseteq \Omega$.
(ii) Do Problem 11 in $\S 10$ for Ω-differentiation. Must s be regular here?
5. Verify that if

$$
(\forall I \in \Omega) \quad \mu \bar{I}=\mu I^{o},
$$

then Theorem 4 holds for Ω-differentiation even if s is not regular. [Hint: The proof of Lemma 2 of $\S 10$ holds unchanged.]
6. Prove Note 3 assuming that (i) s is regular, or (ii) $(\forall I \in \Omega) \mu \bar{I}=\mu I^{o}$ (see Problem 5).
[Hint: Imitate Problem $9(\mathrm{~b})$ in $\S 10$ and the " Ω " part in the proof of Theorem 4.]
7. Prove for $\overline{\mathcal{K}}$ - and Ω-differentiation that if

$$
s=t \pm u \quad\left(s, t, u: \mathcal{M}^{\prime} \rightarrow E^{*}\right)
$$

and if u is differentiable at p, then $\bar{D} s=\bar{D} t \pm u^{\prime}$ and $\underline{D} s=\underline{D} t \pm u^{\prime}$ at p.
8. In Theorem 4 show that $\underline{D} s=\bar{D} s$ a.e. even if s is not finite on all of $\overline{\mathcal{K}}(\Omega)$.
[Hint: For $s \geq 0$, Lemma 1 in $\S 10$, still holds. For signed measures, use Problem 7, noting that s^{+}or s^{-}is finite, hence differentiable a.e.]
9. Prove that if f and $s=m_{f}$ are as in the proof of Theorem 3 in $\S 10$, then s and f are differentiable at the same points in E^{1}, and $s^{\prime}=f^{\prime}$ there.
[Hint: Use Note 1, Definition 1, and Chapter 5, §1, Problem 9, considering one-sided derivatives, f_{+}^{\prime} and f_{-}^{\prime}.]
10. Given a universal V-covering $\overline{\mathcal{K}}^{*}$ (see Problem 9 in $\S 10$), develop $\overline{\mathcal{K}}^{*}$ differentiation as in Definition 1, replacing $\overline{\mathcal{K}}$ by $\overline{\mathcal{K}}^{*}$ and writing $s^{\prime *}$, $\underline{D}^{*} s, \ldots$ for $s^{\prime}, \underline{D} s$, etc.

Extend Theorems 1-4 and Problem 7 to $\overline{\mathcal{K}}^{*}$-differentiation. Under the assumptions of Theorem 4, show that $s^{\prime *}=s^{\prime}$ a.e. on E^{n} (use Problem 9 in $\S 10$).
11. Given a normal V-covering \mathcal{K}^{*} of E^{n} (Problem 8 in $\S 10$), develop \mathcal{K}^{*} differentiation along the lines of Problem 12 in $\S 10$ (admitting normal sequences $\left\{I_{k}\right\}$ only). Do the same questions as in Problem 10, for \mathcal{K}^{*}-differentiation.
12. Describe what changes if, in Problem 11, we drop the normality restriction on sequences $I_{k} \rightarrow \bar{p}$ (call it strong \mathcal{K}^{*}-differentiation; write $D^{* *} s$, $s^{* *}$, etc.).

Show that

$$
\underline{D}^{* *} s \leq \underline{D}^{*} s \leq \bar{D}^{*} s \leq \bar{D}^{* *} s
$$

on E^{n}, and so the existence of $s^{\prime * *}$ implies that of $s^{\prime *}$.
However the proof of Lemmas 1 and 2 in $\S 10$ fails for $\underline{D}^{* *} s$ and $\bar{D}^{* *} s$ (at what step?). So does the proof of Theorem 4. What about Theorems 1 and 2 ?

Chapter 8

Measurable Functions. Integration

§1. Elementary and Measurable Functions

From set functions, we now return to point functions

$$
f: S \rightarrow\left(T, \rho^{\prime}\right)
$$

whose domain D_{f} consists of points of a set S. The range space T will mostly be E, i.e., E^{1}, E^{*}, C, E^{n}, or another normed space. We assume $f(x)=0$ unless defined otherwise. (In a general metric space T, we may take some fixed element q for 0 .) Thus D_{f} is all of S, always.

We also adopt a convenient notation for sets:

$$
\text { " } A(P) \text { " for " }\{x \in A \mid P(x)\} . "
$$

Thus

$$
\begin{aligned}
& A(f \neq a)=\{x \in A \mid f(x) \neq a\}, \\
& A(f=g)=\{x \in A \mid f(x)=g(x)\}, \\
& A(f>g)=\{x \in A \mid f(x)>g(x)\}, \text { etc. }
\end{aligned}
$$

Definition 1.

A measurable space is a set $S \neq \emptyset$ together with a set ring \mathcal{M} of subsets of S, denoted (S, \mathcal{M}).

Henceforth, (S, \mathcal{M}) is fixed.

Definition 2.

An \mathcal{M}-partition of a set A is a countable set family $\mathcal{P}=\left\{A_{i}\right\}$ such that
with $A, A_{i} \in \mathcal{M} .{ }^{1}$

$$
A=\bigcup_{i} A_{i}(\text { disjoint })
$$

We briefly say "the partition $A=\bigcup A_{i}$."

[^33]An \mathcal{M}-partition $\mathcal{P}^{\prime}=\left\{B_{i k}\right\}$ is a refinement of $\mathcal{P}=\left\{A_{i}\right\}$ (or \mathcal{P}^{\prime} refines \mathcal{P}, or \mathcal{P}^{\prime} is finer than \mathcal{P}) iff

$$
(\forall i) \quad A_{i}=\bigcup_{k} B_{i k}
$$

i.e., each $B_{i k}$ is contained in some A_{i}.

The intersection $\mathcal{P}^{\prime} \cap \mathcal{P}^{\prime \prime}$ of $\mathcal{P}^{\prime}=\left\{A_{i}\right\}$ and $\mathcal{P}^{\prime \prime}=\left\{B_{k}\right\}$ is understood to be the family of all sets of the form

$$
A_{i} \cap B_{k}, \quad i, k=1,2, \ldots
$$

It is an \mathcal{M}-partition that refines both \mathcal{P}^{\prime} and $\mathcal{P}^{\prime \prime}$.

Definition 3.

A map (function) $f: S \rightarrow T$ is elementary, or \mathcal{M}-elementary, on a set $A \in \mathcal{M}$ iff there is an \mathcal{M}-partition $\mathcal{P}=\left\{A_{i}\right\}$ of A such that f is constant ($f=a_{i}$) on each A_{i}.

If $\mathcal{P}=\left\{A_{1}, \ldots, A_{q}\right\}$ is finite, we say that f is simple, or \mathcal{M}-simple, on A.

If the A_{i} are intervals in E^{n}, we call f a step function; it is a simple step function if \mathcal{P} is finite. ${ }^{2}$

The function values a_{i} are elements of T (possibly vectors). They may be infinite if $T=E^{*}$. Any simple map is also elementary, of course.

Definition 4.

A map $f: S \rightarrow\left(T, \rho^{\prime}\right)$ is said to be measurable (or \mathcal{M}-measurable) on a set A in (S, \mathcal{M}) iff

$$
f=\lim _{m \rightarrow \infty} f_{m} \quad \text { (pointwise) on } A
$$

for some sequence of functions $f_{m}: S \rightarrow T$, all elementary on A. (See Chapter $4, \S 12$ for "pointwise.")

Note 1. This implies $A \in \mathcal{M}$, as follows from Definitions 2 and 3. (Why?)
Corollary 1. If $f: S \rightarrow\left(T, \rho^{\prime}\right)$ is elementary on A, it is measurable on A.
Proof. Set $f_{m}=f, m=1,2, \ldots$, in Definition 4. Then clearly $f_{m} \rightarrow f$ on A.

Corollary 2. If f is simple, elementary, or measurable on A in (S, \mathcal{M}), it has the same property on any subset $B \subseteq A$ with $B \in \mathcal{M}$.

[^34]Proof. Let f be simple on A; so $f=a_{i}$ on $A_{i}, i=1,2, \ldots, n$, for some finite \mathcal{M}-partition, $A=\bigcup_{i=1}^{n} A_{i}$.

If $A \supseteq B \in \mathcal{M}$, then

$$
\left\{B \cap A_{i}\right\}, \quad i=1,2, \ldots, n
$$

is a finite \mathcal{M}-partition of B (why?), and $f=a_{i}$ on $B \cap A_{i}$; so f is simple on B.
For elementary maps, use countable partitions.
Now let f be measurable on A, i.e.,

$$
f=\lim _{m \rightarrow \infty} f_{m}
$$

for some elementary maps f_{m} on A. As shown above, the f_{m} are elementary on B, too, and $f_{m} \rightarrow f$ on B; so f is measurable on B.

Corollary 3. If f is elementary or measurable on each of the (countably many) sets A_{n} in (S, \mathcal{M}), it has the same property on their union $A=\bigcup_{n} A_{n}$.
Proof. Let f be elementary on each A_{n} (so $A_{n} \in \mathcal{M}$ by Note 1).
By Corollary 1 of Chapter 7, $\S 1$,

$$
A=\bigcup A_{n}=\bigcup B_{n}
$$

for some disjoint sets $B_{n} \subseteq A_{n}\left(B_{n} \in \mathcal{M}\right)$.
By Corollary 2, f is elementary on each B_{n}; i.e., constant on sets of some \mathcal{M}-partition $\left\{B_{n i}\right\}$ of B_{i}.

All $B_{n i}$ combined (for all n and all i) form an \mathcal{M}-partition of A,

$$
A=\bigcup_{n} B_{n}=\bigcup_{n, i} B_{n i}
$$

As f is constant on each $B_{n i}$, it is elementary on A.
For measurable functions f, slightly modify the method used in Corollary 2.

Corollary 4. If $f: S \rightarrow\left(T, \rho^{\prime}\right)$ is measurable on A in (S, \mathcal{M}), so is the composite map $g \circ f$, provided $g: T \rightarrow\left(U, \rho^{\prime \prime}\right)$ is relatively continuous on $f[A]$.
Proof. By assumption,

$$
f=\lim _{m \rightarrow \infty} f_{m} \text { (pointwise) }
$$

for some elementary maps f_{m} on A.
Hence by the continuity of g,

$$
g\left(f_{m}(x)\right) \rightarrow g(f(x)),
$$

i.e., $g \circ f_{m} \rightarrow g \circ f$ (pointwise) on A.

Moreover, all $g \circ f_{m}$ are elementary on A (for $g \circ f_{m}$ is constant on any partition set, if f_{m} is).

Thus $g \circ f$ is measurable on A, as claimed.
Theorem 1. If the maps $f, g, h: S \rightarrow E^{1}(C)$ are simple, elementary, or measurable on A in (S, \mathcal{M}), so are $f \pm g$, fh, $|f|^{a}($ for real $a \neq 0)$ and f / h (if $h \neq 0$ on A).

Similarly for vector-valued f and g and scalar-valued h.
Proof. First, let f and g be elementary on A. Then there are two \mathcal{M} partitions,

$$
A=\bigcup A_{i}=\bigcup B_{k}
$$

such that $f=a_{i}$ on A_{i} and $g=b_{k}$ on B_{k}, say.
The sets $A_{i} \cap B_{k}$ (for all i and k) then form a new \mathcal{M}-partition of A (why?), such that both f and g are constant on each $A_{i} \cap B_{k}$ (why?); hence so is $f \pm g$.

Thus $f \pm g$ is elementary on A. Similarly for simple functions.
Next, let f and g be measurable on A; so

$$
f=\lim f_{m} \text { and } g=\lim g_{m} \text { (pointwise) on } A
$$

for some elementary maps f_{m}, g_{m}.
By what was shown above, $f_{m} \pm g_{m}$ is elementary for each m. Also,

$$
f_{m} \pm g_{m} \rightarrow f \pm g \text { (pointwise) on } A
$$

Thus $f \pm g$ is measurable on A.
The rest of the theorem follows quite similarly.
If the range space is E^{n} (or C^{n}), then f has n real (complex) components f_{1}, \ldots, f_{n}, as in Chapter 4, $\S 3$ (Part II). This yields the following theorem.
Theorem 2. A function $f: S \rightarrow E^{n}\left(C^{n}\right)$ is simple, elementary, or measurable on a set A in (S, \mathcal{M}) iff all its n component functions $f_{1}, f_{2}, \ldots, f_{n}$ are.
Proof. For simplicity, consider $f: S \rightarrow E^{2}, f=\left(f_{1}, f_{2}\right)$.
If f_{1} and f_{2} are simple or elementary on A then (exactly as in Theorem 1), one can achieve that both are constant on sets $A_{i} \cap B_{k}$ of one and the same \mathcal{M}-partition of A. Hence $f=\left(f_{1}, f_{2}\right)$, too, is constant on each $A_{i} \cap B_{k}$, as required.

Conversely, let

$$
f=\bar{c}_{i}=\left(a_{i}, b_{i}\right) \text { on } C_{i}
$$

for some \mathcal{M}-partition

$$
A=\bigcup C_{i} .
$$

Then by definition, $f_{1}=a_{i}$ and $f_{2}=b_{i}$ on C_{i}; so both are elementary (or simple) on A.

In the general case (E^{n} or C^{n}), the proof is analogous.
For measurable functions, the proof reduces to limits of elementary maps (using Theorem 2 of Chapter 3, $\S 15$). The details are left to the reader.

Note 2. As $C=E^{2}$, a complex function $f: S \rightarrow C$ is simple, elementary, or measurable on A iff its real and imaginary parts are.

By Definition 4, a measurable function is a pointwise limit of elementary maps. However, if \mathcal{M} is a σ-ring, one can make the limit uniform. Indeed, we have the following theorem.
Theorem 3. If \mathcal{M} is a σ-ring, and $f: S \rightarrow\left(T, \rho^{\prime}\right)$ is \mathcal{M}-measurable on A, then

$$
f=\lim _{m \rightarrow \infty} g_{m}(\text { uniformly }) \text { on } A
$$

for some finite elementary maps g_{m}.
Thus given $\varepsilon>0$, there is a finite elementary map g such that $\rho^{\prime}(f, g)<\varepsilon$ on A. ${ }^{3,4}$

The proof will be given in $\S 2$ for $T=E^{*}$. The general case is sketched in Problem 7 of $\S 2$. Meanwhile, we take the theorem for granted and use it below.
Theorem 4. If \mathcal{M} is a σ-ring in S, if

$$
f_{m} \rightarrow f(\text { pointwise }) \text { on } A
$$

$\left(f_{m}: S \rightarrow\left(T, \rho^{\prime}\right)\right)$, and if all f_{m} are \mathcal{M}-measurable on A, so also is $f .{ }^{4}$
Briefly: A pointwise limit of measurable maps is measurable (unlike continuous maps; cf. Chapter 4, §12).
Proof. By the second clause of Theorem 3, each f_{m} is uniformly approximated by some elementary map g_{m} on A, so that, taking $\varepsilon=1 / m, m=1,2, \ldots$,

$$
\begin{equation*}
\rho^{\prime}\left(f_{m}(x), g_{m}(x)\right)<\frac{1}{m} \quad \text { for all } x \in A \text { and all } m \tag{1}
\end{equation*}
$$

Fixing such a g_{m} for each m, we show that $g_{m} \rightarrow f$ (pointwise) on A, as required in Definition 4.

Indeed, fix any $x \in A$. By assumption, $f_{m}(x) \rightarrow f(x)$. Hence, given $\delta>0$,

$$
(\exists k)(\forall m>k) \quad \rho^{\prime}\left(f(x), f_{m}(x)\right)<\delta .
$$

Take k so large that, in addition,

$$
(\forall m>k) \quad \frac{1}{m}<\delta .
$$

[^35]Then by the triangle law and by (1), we obtain for $m>k$ that

$$
\begin{aligned}
\rho^{\prime}\left(f(x), g_{m}(x)\right) & \leq \rho^{\prime}\left(f(x), f_{m}(x)\right)+\rho^{\prime}\left(f_{m}(x), g_{m}(x)\right) \\
& <\delta+\frac{1}{m}<2 \delta
\end{aligned}
$$

As δ is arbitrary, this implies $\rho^{\prime}\left(f(x), g_{m}(x)\right) \rightarrow 0$, i.e., $g_{m}(x) \rightarrow f(x)$ for any (fixed) $x \in A$, thus proving the measurability of f.

Note 3. If

$$
\mathcal{M}=\mathcal{B}(=\text { Borel field in } S)
$$

we often say "Borel measurable" for \mathcal{M}-measurable. If
$\mathcal{M}=\left\{\right.$ Lebesgue measurable sets in $\left.E^{n}\right\}$,
we say "Lebesgue (L) measurable" instead. Similarly for "Lebesgue-Stieltjes (LS) measurable."

Problems on Measurable and
 Elementary Functions in (S, \mathcal{M})

1. Fill in all proof details in Corollaries 2 and 3 and Theorems 1 and 2.
2. Show that $\mathcal{P}^{\prime} \cap \mathcal{P}^{\prime \prime}$ is as stated at the end of Definition 2.
3. Given $A \subseteq S$ and $f, f_{m}: S \rightarrow\left(T, \rho^{\prime}\right), m=1,2, \ldots$, let

$$
H=A\left(f_{m} \rightarrow f\right)
$$

and

$$
A_{m n}=A\left(\rho^{\prime}\left(f_{m}, f\right)<\frac{1}{n}\right)
$$

Prove that
(i) $H=\bigcap_{n=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{m=k}^{\infty} A_{m n}$;
(ii) $H \in \mathcal{M}$ if all $A_{m n}$ are in \mathcal{M} and \mathcal{M} is a σ-ring.
[Hint: $x \in H$ iff

$$
(\forall n)(\exists k)(\forall m \geq k) \quad x \in A_{m n} .
$$

Why?]
$\mathbf{3}^{\mathbf{\prime}}$. Do Problem 3 for $T=E^{*}$ and $f= \pm \infty$ on H.
[Hint: If $f=+\infty, A_{m n}=A\left(f_{m}>n\right)$.]
$\Rightarrow 4$. Let $f: S \rightarrow T$ be \mathcal{M}-elementary on A, with \mathcal{M} a σ-ring in S. Show the following.
(i) $A(f=a) \in \mathcal{M}, A(f \neq a) \in \mathcal{M}$.
(ii) If $T=E^{*}$, then

$$
A(f<a), A(f \geq a), A(f>a), \text { and } A(f \geq a)
$$

are in \mathcal{M}, too.
(iii) $(\forall B \subseteq T) A \cap f^{-1}[B] \in \mathcal{M}$.
[Hint: If

$$
A=\bigcup_{i=1}^{\infty} A_{i}
$$

and $f=a_{i}$ on A_{i}, then $A(f=a)$ is the countable union of those A_{i} for which $a_{i}=a$.]
5. Do Problem 4(i) for measurable f.
[Hint: If $f=\lim f_{m}$ for elementary maps f_{m}, then

$$
H=A(f=a)=A\left(f_{m} \rightarrow a\right) .
$$

Express H as in Problem 3, with

$$
A_{m n}=A\left(h_{m}<\frac{1}{n}\right),
$$

where $h_{m}=\rho^{\prime}\left(f_{m}, a\right)$ is elementary. (Why?) Then use Problems 4(ii) and 3(ii).]
\Rightarrow 6. Given $f, g: S \rightarrow\left(T, \rho^{\prime}\right)$, let $h=\rho^{\prime}(f, g)$, i.e.,

$$
h(x)=\rho^{\prime}(f(x), g(x))
$$

Prove that if f and g are elementary, simple, or measurable on A, so is h.
[Hint: Argue as in Theorem 1. Use Theorem 4 in Chapter 3, §15.]
\Rightarrow 7. A set $B \subseteq\left(T, \rho^{\prime}\right)$ is called separable (in T) iff $B \subseteq \bar{D}$ (closure of D) for a countable set $D \subseteq T$.

Prove that if $f: S \rightarrow T$ is \mathcal{M}-measurable on A, then $f[A]$ is separable in T.
[Hint: $f=\lim f_{m}$ for elementary maps f_{m}; say,

$$
f_{m}=a_{m i} \text { on } A_{m i} \in \mathcal{M}, \quad i=1,2, \ldots
$$

Let D consist of all $a_{m i}$ ($m, i=1,2, \ldots$); so D is countable (why?) and $D \subseteq T$. Verify that

$$
(\forall y \in f[A])(\exists x \in A) \quad y=f(x)=\lim f_{m}(x),
$$

with $f_{m}(x) \in D$. Hence

$$
(\forall y \in f[A]) \quad y \in \bar{D},
$$

by Theorem 3 of Chapter 3, §16.]
\Rightarrow 8. Continuing Problem 7 , prove that if $B \subseteq \bar{D}$ and $D=\left\{q_{1}, q_{2}, \ldots\right\}$, then

$$
(\forall n) \quad B \subseteq \bigcup_{i=1}^{\infty} G_{q_{i}}\left(\frac{1}{n}\right)
$$

[Hint: If $p \in B \subseteq \bar{D}$, any $G_{p}\left(\frac{1}{n}\right)$ contains some $q_{i} \in D$; so

$$
\rho^{\prime}\left(p, q_{i}\right)<\frac{1}{n}, \text { or } p \in G_{q_{i}}\left(\frac{1}{n}\right)
$$

Thus

$$
\left.(\forall p \in B) \quad p \in \bigcup_{i=1}^{\infty} G_{q_{i}}\left(\frac{1}{n}\right) \cdot\right]
$$

9. Prove Corollaries 2 and 3 and Theorems 1 and 2, assuming that \mathcal{M} is a semiring only.
10. Do Problem 4 for \mathcal{M}-simple maps, assuming that \mathcal{M} is a ring only.

§2. Measurability of Extended-Real Functions

Henceforth we presuppose a measurable space (S, \mathcal{M}), where \mathcal{M} is a σ-ring in S. Our aim is to prove the following basic theorem, which is often used as a definition, for extended-real functions $f: S \rightarrow E^{*}$.

Theorem 1. A function $f: S \rightarrow E^{*}$ is measurable on a set $A \in \mathcal{M}$ iff it satisfies one of the following equivalent conditions (hence all of them):

$$
\begin{aligned}
\left(\mathrm{i}^{*}\right)\left(\forall a \in E^{*}\right) A(f>a) \in \mathcal{M} ; & \left(\mathrm{ii}^{*}\right)\left(\forall a \in E^{*}\right) A(f \geq a) \in \mathcal{M} ; \\
\left(\mathrm{iii}^{*}\right)\left(\forall a \in E^{*}\right) A(f<a) \in \mathcal{M} ; \quad & \left(\mathrm{iv}^{*}\right)\left(\forall a \in E^{*}\right) A(f \leq a) \in \mathcal{M}
\end{aligned}
$$

We first prove the equivalence of these conditions by showing that (i^{*}) \Rightarrow $\left(\mathrm{ii}^{*}\right) \Rightarrow\left(\mathrm{iii}^{*}\right) \Rightarrow\left(\mathrm{iv}^{*}\right) \Rightarrow\left(\mathrm{i}^{*}\right)$, closing the "circle."
$\left(\mathrm{i}^{*}\right) \Rightarrow\left(\mathrm{ii}^{*}\right)$. Assume ($\left.\mathrm{i}^{*}\right)$. If $a=-\infty$,

$$
A(f \geq a)=A \in \mathcal{M}
$$

by assumption. If $a=+\infty$,

$$
A(f \geq a)=A(f=\infty)=\bigcap_{n=1}^{\infty} A(f>n) \in \mathcal{M}
$$

by $\left(\mathrm{i}^{*}\right)$. And if $a \in E^{1}$,

$$
A(f \geq a)=\bigcap_{n=1}^{\infty} A\left(f>a-\frac{1}{n}\right)
$$

(Verify!) By (i*),

$$
A\left(f>a-\frac{1}{n}\right) \in \mathcal{M}
$$

so $A(f \geq a) \in \mathcal{M}$ (a σ-ring!).
$\left(\mathrm{ii}^{*}\right) \Rightarrow$ (iii*). For (ii*) and $A \in \mathcal{M}$ imply

$$
A(f<a)=A-A(f \geq a) \in \mathcal{M}
$$

$\left(\mathrm{iii}^{*}\right) \Rightarrow\left(\mathrm{iv}^{*}\right)$. If $a \in E^{1}$,

$$
A(f \leq a)=\bigcap_{n=1}^{\infty} A\left(f<a+\frac{1}{n}\right) \in \mathcal{M}
$$

What if $a= \pm \infty$?
(iv*) \Rightarrow (i*). Indeed, (iv*) and $A \in \mathcal{M}$ imply

$$
A(f>a)=A-A(f \leq a) \in \mathcal{M}
$$

Thus, indeed, each of (i^{*}) to (iv^{*}) implies the others. To finish, we need two lemmas that are of interest in their own right.

Lemma 1. If the maps $f_{m}: S \rightarrow E^{*}(m=1,2, \ldots)$ satisfy conditions (i*)(iv*), so also do the functions

$$
\sup f_{m}, \inf f_{m}, \varlimsup f_{m}, \text { and } \underline{\lim } f_{m},
$$

defined pointwise, i.e.,

$$
\left(\sup f_{m}\right)(x)=\sup f_{m}(x)
$$

and similarly for the others.
Proof. Let $f=\sup f_{m}$. Then

$$
A(f \leq a)=\bigcap_{m=1}^{\infty} A\left(f_{m} \leq a\right) . \quad(\text { Why? })
$$

But by assumption,

$$
A\left(f_{m} \leq a\right) \in \mathcal{M}
$$

$\left(f_{m}\right.$ satisfies $\left.\left(\mathrm{iv}^{*}\right)\right)$. Hence $A(f \leq a) \in \mathcal{M}$ (for \mathcal{M} is a σ-ring).
Thus sup f_{m} satisfies (i*)-(iv*).
So does $\inf f_{m}$; for

$$
A\left(\inf f_{m} \geq a\right)=\bigcap_{m=1}^{\infty} A\left(f_{m} \geq a\right) \in \mathcal{M}
$$

(Explain!)
So also do $\underline{\lim } f_{m}$ and $\overline{\lim } f_{m}$; for by definition,

$$
\underline{\lim } f_{m}=\sup _{k} g_{k},
$$

where

$$
g_{k}=\inf _{m \geq k} f_{m}
$$

satisfies (i^{*})-(iv*), as was shown above; hence so does $\sup g_{k}=\underline{\lim } f_{m}$.
Similarly for $\varlimsup f_{m}$.
Lemma 2. If f satisfies $\left(\mathrm{i}^{*}\right)-\left(\mathrm{iv} \mathrm{i}^{*}\right)$, then

$$
f=\lim _{m \rightarrow \infty} f_{m}(\text { uniformly }) \text { on } A
$$

for some sequence of finite functions f_{m}, all \mathcal{M}-elementary on A.
Moreover, if $f \geq 0$ on A, the f_{m} can be made nonnegative, with $\left\{f_{m}\right\} \uparrow$ on A.
Proof. Let $H=A(f=+\infty), K=A(f=-\infty)$, and

$$
A_{m k}=A\left(\frac{k-1}{2^{m}} \leq f<\frac{k}{2^{m}}\right)
$$

for $m=1,2, \ldots$ and $k=0, \pm 1, \pm 2, \ldots, \pm n, \ldots$.
By (i*)-(iv*),

$$
H=A(f=+\infty)=A(f \geq+\infty) \in \mathcal{M}
$$

$K \in \mathcal{M}$, and

$$
A_{m k}=A\left(f \leq \frac{k-1}{2^{m}}\right) \cap A\left(f<\frac{k}{2^{m}}\right) \in \mathcal{M}
$$

Now define

$$
(\forall m) \quad f_{m}=\frac{k-1}{2^{m}} \text { on } A_{m k},
$$

$f_{m}=m$ on H, and $f_{m}=-m$ on K. Then each f_{m} is finite and elementary on A since

$$
(\forall m) \quad A=H \cup K \cup \bigcup_{k=-\infty}^{\infty} A_{m k}(\text { disjoint })
$$

and f_{m} is constant on H, K, and $A_{m k}$.
We now show that $f_{m} \rightarrow f$ (uniformly) on H, K, and
hence on A.

$$
J=\bigcup_{k=-\infty}^{\infty} A_{m k}
$$

Indeed, on H we have

$$
\lim f_{m}=\lim m=+\infty=f
$$

and the limit is uniform since the f_{m} are constant on H.
Similarly,

$$
f_{m}=-m \rightarrow-\infty=f \text { on } K
$$

Finally, on $A_{m k}$ we have

$$
(k-1) 2^{-m} \leq f<k 2^{-m}
$$

and $f_{m}=(k-1) 2^{-m}$; hence

$$
\left|f_{m}-f\right|<k 2^{-m}-(k-1) 2^{-m}=2^{-m}
$$

Thus

$$
\left|f_{m}-f\right|<2^{-m} \rightarrow 0
$$

on each $A_{m k}$, hence on

$$
J=\bigcup_{k=-\infty}^{\infty} A_{m k}
$$

By Theorem 1 of Chapter $4, \S 12$, it follows that $f_{m} \rightarrow f$ (uniformly) on J. Thus, indeed, $f_{m} \rightarrow f$ (uniformly) on A.

If, further, $f \geq 0$ on A, then $K=\emptyset$ and $A_{m k}=\emptyset$ for $k \leq 0$. Moreover, on passage from m to $m+1$, each $A_{m k}(k>0)$ splits into two sets. On one, $f_{m+1}=f_{m}$; on the other, $f_{m+1}>f_{m}$. (Why?)

Thus $0 \leq f_{m} \nearrow f$ (uniformly) on A, and all is proved.
Proof of Theorem 1. If f is measurable on A, then by definition, $f=\lim f_{m}$ (pointwise) for some elementary maps f_{m} on A.

By Problem 4(ii) in §1, all f_{m} satisfy (i*)-(iv*). Thus so does f by Lemma 1, for here $f=\lim f_{m}=\overline{\lim } f_{m}$.

The converse follows by Lemma 2. This completes the proof.
Note 1. Lemmas 1 and 2 prove Theorems 3 and 4 of $\S 1$, for $f: S \rightarrow E^{*}$. By using also Theorem 2 in $\S 1$, one easily extends this to $f: S \rightarrow E^{n}\left(C^{n}\right)$. Verify!

Corollary 1. If $f: S \rightarrow E^{*}$ is measurable on A, then

$$
\left(\forall a \in E^{*}\right) \quad A(f=a) \in \mathcal{M} \text { and } A(f \neq a) \in \mathcal{M}
$$

Indeed,

$$
A(f=a)=A(f \geq a) \cap A(f \leq a) \in \mathcal{M}
$$

and

$$
A(f \neq a)=A-A(f=a) \in \mathcal{M}
$$

Corollary 2. If $f: S \rightarrow\left(T, \rho^{\prime}\right)$ is measurable on A in (S, \mathcal{M}), then

$$
A \cap f^{-1}[G] \in \mathcal{M}
$$

for every globe $G=G_{q}(\delta)$ in $\left(T, \rho^{\prime}\right)$.
Proof. Define $h: S \rightarrow E^{1}$ by

$$
h(x)=\rho^{\prime}(f(x), q) .
$$

Then h is measurable on A by Problem 6 in $\S 1$. Thus by Theorem 1,

$$
A(h<\delta) \in \mathcal{M}
$$

But as is easily seen,

$$
A(h<\delta)=\left\{x \in A \mid \rho^{\prime}(f(x), q)<\delta\right\}=A \cap f^{-1}\left[G_{q}(\delta)\right]
$$

Hence the result.

Definition.

Given $f, g: S \rightarrow E^{*}$, we define the maps $f \vee g$ and $f \wedge g$ on S by

$$
(f \vee g)(x)=\max \{f(x), g(x)\}
$$

and

$$
(f \wedge g)(x)=\min \{f(x), g(x)\}
$$

similarly for $f \vee g \vee h, f \wedge g \wedge h$, etc.
We also set

$$
f^{+}=f \vee 0 \text { and } f^{-}=-f \vee 0 .
$$

Clearly, $f^{+} \geq 0$ and $f^{-} \geq 0$ on S. Also, $f=f^{+}-f^{-}$and $|f|=f^{+}+f^{-}$. (Why?) We now obtain the following theorem.
Theorem 2. If the functions $f, g: S \rightarrow E^{*}$ are simple, elementary, or measurable on A, so also are $f \pm g, f g, f \vee g, f \wedge g, f^{+}, f^{-}$, and $|f|^{a}(a \neq 0)$.
Proof. If f and g are finite, this follows by Theorem 1 of $\S 1$ on verifying that

$$
f \vee g=\frac{1}{2}(f+g+|f-g|)
$$

and

$$
f \wedge g=\frac{1}{2}(f+g-|f-g|)
$$

on S. (Check it!)
Otherwise, consider

$$
A(f=+\infty), A(f=-\infty), A(g=+\infty), \text { and } A(g=-\infty)
$$

By Theorem 1, these are \mathcal{M}-sets; hence so is their union U.
On each of them $f \vee g$ and $f \wedge g$ equal f or g; so by Corollary 3 in $\S 1, f \vee g$ and $f \wedge g$ have the desired properties on U. So also have $f^{+}=f \vee 0$ and $f^{-}=-f \vee 0$ (take $g=0$).

We claim that the maps $f \pm g$ and $f g$ are simple (hence elementary and measurable) on each of the four sets mentioned above, hence on U.

For example, on $A(f=+\infty)$,

$$
f \pm g=+\infty(\text { constant })
$$

by our conventions $\left(2^{*}\right)$ in Chapter $4, \S 4$. For $f g$, split $A(f=+\infty)$ into three sets $A_{1}, A_{2}, A_{3} \in \mathcal{M}$, with $g>0$ on $A_{1}, g<0$ on A_{2}, and $g=0$ on A_{3}; so $f g=+\infty$ on $A_{1}, f g=-\infty$ on A_{2}, and $f g=0$ on A_{3}. Hence $f g$ is simple on $A(f=+\infty)$.

For $|f|^{a}$, use $U=A(|f|=\infty)$. Again, the theorem holds on U, and also on $A-U$, since f and g are finite on $A-U \in \mathcal{M}$. Thus it holds on $A=(A-U) \cup U$, by Corollary 3 in $\S 1$.

Note 2. Induction extends Theorem 2 to any finite number of functions.
Note 3. Combining Theorem 2 with $f=f^{+}-f^{-}$, we see that $f: S \rightarrow E^{*}$ is simple (elementary, measurable) iff f^{+}and f^{-}are. We also obtain the following result.
Theorem 3. If the functions $f, g: S \rightarrow E *$ are measurable on $A \in \mathcal{M}$, then $A(f \geq g) \in \mathcal{M}, A(f<g) \in \mathcal{M}, A(f=g) \in \mathcal{M}$, and $A(f \neq g) \in \mathcal{M}$.
(See Problem 4 below.)

Further Problems on Measurable Functions in (S, \mathcal{M})

1. In Theorem 1, give the details in proving the equivalence of (i*)-(iv*).
2. Prove Note 1.

2'. Prove that $f=f^{+}-f^{-}$and $|f|=f^{+}+f^{-}$.
3. Complete the proof of Theorem 2, in detail.
$\Rightarrow 4$. Prove Theorem 3 .
[Hint: By our conventions, $A(f \geq g)=A(f-g \geq 0)$ even if g or f is $\pm \infty$ for some $x \in A$. (Verify all cases!) By Theorems 1 and $2, A(f-g \geq 0) \in \mathcal{M}$; so $A(f \geq g) \in \mathcal{M}$, and $A(f<g)=A-A(f \geq g) \in \mathcal{M}$. Proceed.]
5. Show that the measurability of $|f|$ does not imply that of f.
[Hint: Let $f=1$ on Q and $f=-1$ on $A-Q$ for some $Q \notin \mathcal{M}(Q \subset A)$; e.g., use Q of Problem 6 in Chapter 7, §8.]
$\Rightarrow \mathbf{6}$. Show that a function $f \geq 0$ is measurable on A iff $f_{m} \nearrow f$ (pointwise) on A for some finite simple maps $f_{m} \geq 0,\left\{f_{m}\right\} \uparrow$.
[Hint: Modify the proof of Lemma 2, setting $H_{m}=A(f \geq m)$ and $f_{m}=m$ on H_{m}, and defining the $A_{m k}$ for $1 \leq k \leq m 2^{m}$ only.]
$\Rightarrow 7$. Prove Theorem 3 in $\S 1$.
[Outline: By Problems 7 and 8 in $\S 1$, there are $q_{i} \in T$ such that

$$
(\forall n) \quad f[A] \subseteq \bigcup_{i=1}^{\infty} G_{q_{i}}\left(\frac{1}{n}\right)
$$

Set

$$
A_{n i}=A \cap f^{-1}\left[G_{q_{i}}\left(\frac{1}{n}\right)\right] \in \mathcal{M}
$$

by Corollary 2 ; so $\rho^{\prime}\left(f(x), q_{i}\right)<\frac{1}{n}$ on $A_{n i}$.

By Corollary 1 in Chapter 7, $\S 1$,

$$
A=\bigcup_{i=1}^{\infty} A_{n i}=\bigcup_{i=1}^{\infty} B_{n i}(\text { disjoint })
$$

for some sets $B_{n i} \in \mathcal{M}, B_{n i} \subseteq A_{n i}$. Now define $g_{n}=q_{i}$ on $B_{n i}$; so $\rho^{\prime}\left(f, g_{n}\right)<\frac{1}{n}$ on each $B_{n i}$, hence on A. By Theorem 1 in Chapter $4, \S 12, g_{n} \rightarrow f$ (uniformly) on A.]
\Rightarrow 8. Prove that $f: S \rightarrow E^{1}$ is \mathcal{M}-measurable on A iff $A \cap f^{-1}[B] \in \mathcal{M}$ for every Borel set B (equivalently, for every open set B) in E^{1}. (In the case $f: S \rightarrow E^{*}$, add: "and for $B=\{ \pm \infty\} . "$)
[Outline: Let

$$
\mathcal{R}=\left\{X \subseteq E^{1} \mid A \cap f^{-1}[X] \in \mathcal{M}\right\} .
$$

Show that \mathcal{R} is a σ-ring in E^{1}.
Now, by Theorem 1, if f is measurable on A, \mathcal{R} contains all open intervals; for

$$
A \cap f^{-1}[(a, b)]=A(f>a) \cap A(f<b)
$$

Then by Lemma 2 of Chapter $7, \S 2, \mathcal{R} \supseteq \mathcal{G}$, hence $\mathcal{R} \supseteq \mathcal{B}$. (Why?)
Conversely, if so,

$$
\left.(a, \infty) \in \mathcal{R} \Rightarrow A \cap f^{-1}[(a, \infty)] \in \mathcal{M} \Rightarrow A(f>a) \in \mathcal{M} .\right]
$$

\Rightarrow 9. Do Problem 8 for $f: S \rightarrow E^{n}$.
[Hint: If $f=\left(f_{1}, \ldots, f_{n}\right)$ and $B=(\bar{a}, \bar{b}) \subset E^{n}$, with $\bar{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $\bar{b}=$ $\left(b_{1}, \ldots, b_{n}\right)$, show that

$$
f^{-1}[B]=\bigcap_{k=1}^{n} f_{k}^{-1}\left[\left(a_{k}, b_{k}\right)\right]
$$

Apply Problem 8 to each $f_{k}: S \rightarrow E^{1}$ and use Theorem 2 in $\S 1$. Proceed as in Problem 8.]
10. Do Problem 8 for $f: S \rightarrow C^{n}$, treating C^{n} as $E^{2 n}$.
11. Prove that $f: S \rightarrow\left(T, \rho^{\prime}\right)$ is measurable on A in (S, \mathcal{M}) iff
(i) $A \cap f^{-1}[G] \in \mathcal{M}$ for every open globe $G \subseteq T$, and
(ii) $f[A]$ is separable in T (Problem 7 in $\S 1$).
[Hint: If so, proceed as in Problem 7 (without assuming measurability of f) to show that $f=\lim g_{n}$ for some elementary maps g_{n} on A. For the converse, use Problem 7 in $\S 1$ and Corollary 2 in §2.]
12. (i) Show that if all of T is separable (Problem 7 in $\S 1$), there is a sequence of globes $G_{k} \subseteq T$ such that each nonempty open set $B \subseteq T$ is the union of some of these G_{k}.
(ii) Show that E^{n} and C^{n} are separable.
[Hints: (i) Use the $G_{q_{i}}\left(\frac{1}{n}\right)$ of Problem 8 in $\S 1$, putting them in one sequence. (ii) Take $D=R^{n} \subset E^{n}$ in Problem 7 of $\S 1$.]
13. Do Problem 11 with "globe $G \subseteq T$ " replaced by "Borel set $B \subseteq T$." [Hints: Treat f as $f: A \rightarrow T^{\prime}, T^{\prime}=f[A]$, noting that

$$
A \cap f^{-1}[B]=A \cap f^{-1}\left[B \cap T^{\prime}\right] .
$$

By Problem 12, if $B \neq \emptyset$ is open in T, then $B \cap T^{\prime}$ is a countable union of "globes" $G_{q} \cap T^{\prime}$ in $\left(T^{\prime}, \rho^{\prime}\right)$; see Theorem 4 in Chapter 3, §12. Proceed as in Problem 8, replacing E^{1} by T.]
14. A map $g:\left(T, \rho^{\prime}\right) \rightarrow\left(U, \rho^{\prime \prime}\right)$ is said to be of Baire class $0\left(g \in \mathbf{B}_{0}\right)$ on $D \subseteq T$ iff g is relatively continuous on D. Inductively, g is of Baire class $n\left(g \in \mathbf{B}_{n}, n \geq 1\right)$ iff $g=\lim g_{m}$ (pointwise) on D for some maps $g_{m} \in \mathbf{B}_{n-1}$. Show by induction that Corollary 4 in $\S 1$ holds also if $g \in \mathbf{B}_{n}$ on $f[A]$ for some n.

§3. Measurable Functions in (S, \mathcal{M}, m)

I. Henceforth we shall presuppose not just a measurable space (§1) but a measure space (S, \mathcal{M}, m), where $m: \mathcal{M} \rightarrow E^{*}$ is a measure on a σ-ring $\mathcal{M} \subseteq 2^{S}$.

We saw in Chapter 7 that one could often neglect sets of Lebesgue measure zero on E^{n}-if a property held everywhere except on a set of Lebesgue measure zero, we said it held "almost everywhere." The following definition generalizes this usage.

Definition 1.

We say that a property $P(x)$ holds for almost all $x \in A$ (with respect to the measure m) or almost everywhere (a.e. (m)) on A iff it holds on $A-Q$ for some $Q \in \mathcal{M}$ with $m Q=0$.

Thus we write

$$
f_{n} \rightarrow f(\text { a.e. }) \text { or } f=\lim f_{n}(\text { a.e. }(m)) \text { on } A
$$

iff $f_{n} \rightarrow f$ (pointwise) on $A-Q, m Q=0$. Of course, "pointwise" implies "a.e." (take $Q=\emptyset$), but the converse fails.

Definition 2.

We say that $f: S \rightarrow\left(T, \rho^{\prime}\right)$ is almost measurable on A iff $A \in \mathcal{M}$ and f is \mathcal{M}-measurable on $A-Q, m Q=0$.

We then also say that f is m-measurable (m being the measure involved) as opposed to \mathcal{M}-measurable.

Observe that we may assume $Q \subseteq A$ here (replace Q by $A \cap Q$).
*Note 1. If m is a generalized measure (Chapter 7, $\S 11$), replace $m Q=0$ by $v_{m} Q=0\left(v_{m}=\right.$ total variation of $\left.m\right)$ in Definitions 1 and 2 and in the following proofs.

Corollary 1. If the functions

$$
f_{n}: S \rightarrow\left(T, \rho^{\prime}\right), \quad n=1,2, \ldots
$$

are m-measurable on A, and if

$$
f_{n} \rightarrow f(\text { a.e. }(m))
$$

on A, then f is m-measurable on A.
Proof. By assumption, $f_{n} \rightarrow f$ (pointwise) on $A-Q_{0}, m Q_{0}=0$. Also, f_{n} is \mathcal{M}-measurable on

$$
A-Q_{n}, m Q_{n}=0, \quad n=1,2, \ldots
$$

(The Q_{n} need not be the same.)
Let

$$
Q=\bigcup_{n=0}^{\infty} Q_{n}
$$

so

$$
m Q \leq \sum_{n=0}^{\infty} m Q_{n}=0
$$

By Corollary 2 in $\S 1$, all f_{n} are \mathcal{M}-measurable on $A-Q$ (why?), and $f_{n} \rightarrow f$ (pointwise) on $A-Q$, as $A-Q \subseteq A-Q_{0}$.

Thus by Theorem 4 in $\S 1, f$ is \mathcal{M}-measurable on $A-Q$. As $m Q=0$, this is the desired result.

Corollary 2. If $f=g($ a.e. $(m))$ on A and f is m-measurable on A, so is g. Proof. By assumption, $f=g$ on $A-Q_{1}$ and f is \mathcal{M}-measurable on $A-Q_{2}$, with $m Q_{1}=m Q_{2}=0$.

Let $Q=Q_{1} \cup Q_{2}$. Then $m Q=0$ and $g=f$ on $A-Q$. (Why?)
By Corollary 2 of $\S 1, f$ is \mathcal{M}-measurable on $A-Q$. Hence so is g, as claimed.

Corollary 3. If $f: S \rightarrow\left(T, \rho^{\prime}\right)$ is m-measurable on A, then

$$
f=\lim _{n \rightarrow \infty} f_{n}(\text { uniformly }) \text { on } A-Q(m Q=0)
$$

for some maps f_{n}, all elementary on $A-Q$.
(Compare Corollary 3 with Theorem 3 in $\S 1$).
Quite similarly all other propositions of $\S 1$ carry over to almost measurable (i.e., m-measurable) functions. Note, however, that the term "measurable" in $\S \S 1$ and 2 always meant " \mathcal{M}-measurable." This implies m-measurability (take $Q=\emptyset$), but the converse fails. (See Note 2, however.)

We still obtain the following result.

Corollary 4. If the functions

$$
f_{n}: S \rightarrow E^{*} \quad(n=1,2, \ldots)
$$

are m-measurable on a set A, so also are

$$
\sup f_{n}, \inf f_{n}, \varlimsup f_{n}, \text { and } \lim f_{n} .
$$

(Use Lemma 1 of $\S 2$).
Similarly, Theorem 2 in $\S 2$ carries over to m-measurable functions.
Note 2. If m is complete (such as Lebesgue measure and LS measures) then, for $f: S \rightarrow E^{*}\left(E^{n}, C^{n}\right), m$ - and \mathcal{M}-measurability coincide (see Problem 3 below).
II. Measurability and Continuity. To study the connection between these notions, we first state two lemmas, often treated as definitions.
Lemma 1. A map $f: S \rightarrow E^{n}\left(C^{n}\right)$ is \mathcal{M}-measurable on A iff

$$
A \cap f^{-1}[B] \in \mathcal{M}
$$

for each Borel set (equivalently, open set) B in $E^{n}\left(C^{n}\right)$.
See Problems 8-10 in $\S 2$ for a sketch of the proof.
Lemma 2. A map $f:(S, \rho) \rightarrow\left(T, \rho^{\prime}\right)$ is relatively continuous on $A \subseteq S$ iff for any open set $B \subseteq\left(T, \rho^{\prime}\right)$, the set $A \cap f^{-1}[B]$ is open in (A, ρ) as a subspace of (S, ρ).
(This holds also with"open" replaced by "closed.")
Proof. By Chapter 4, $\S 1$, footnote $4, f$ is relatively continuous on A iff its restriction to A (call it $g: A \rightarrow T$) is continuous in the ordinary sense.

Now, by Problem $15(\mathrm{iv})(\mathrm{v})$ in Chapter 4 , $\S 2$, with S replaced by A, this means that $g^{-1}[B]$ is open (closed) in (A, ρ) when B is so in $\left(T, \rho^{\prime}\right)$. But

$$
g^{-1}[B]=\{x \in A \mid f(x) \in B\}=A \cap f^{-1}[B] .
$$

(Why?) Hence the result follows.
Theorem 1. Let $m: \mathcal{M} \rightarrow E^{*}$ be a topological measure in (S, ρ). If $f: S \rightarrow$ $E^{n}\left(C^{n}\right)$ is relatively continuous on a set $A \in \mathcal{M}$, it is \mathcal{M}-measurable on A.
Proof. Let B be open in $E^{n}\left(C^{n}\right)$. By Lemma 2,

$$
A \cap f^{-1}[B]
$$

is open in (A, ρ). Hence by Theorem 4 of Chapter 3, $\S 12$,

$$
A \cap f^{-1}[B]=A \cap U
$$

for some open set U in (S, ρ).

Now, by assumption, A is in \mathcal{M}. So is U, as \mathcal{M} is topological $(\mathcal{M} \supseteq \mathcal{G})$. Hence

$$
A \cap f^{-1}[B]=A \cap U \in \mathcal{M}
$$

for any open $B \subseteq E^{n}\left(C^{n}\right)$. The result follows by Lemma 1 .
Note 3. The converse fails. For example, the Dirichlet function (Example (c) in Chapter 4, §1) is L-measurable (even simple) but discontinuous everywhere.

Note 4. Lemma 1 and Theorem 1 hold for a map $f: S \rightarrow\left(T, \rho^{\prime}\right)$, too, provided $f[A]$ is separable, i.e.,

$$
f[A] \subseteq \bar{D}
$$

for a countable set $D \subseteq T$ (cf. Problem 11 in $\S 2$).
*III. For strongly regular measures (Definition 5 in Chapter 7, $\S 7$), we obtain the following theorem.
Theorem 2 (Luzin). Let $m: \mathcal{M} \rightarrow E^{}$ be a strongly regular measure in (S, ρ). Let $f: S \rightarrow\left(T, \rho^{\prime}\right)$ be m-measurable on A.

Then given $\varepsilon>0$, there is a closed set $F \subseteq A(F \in \mathcal{M})$ such that

$$
m(A-F)<\varepsilon
$$

and f is relatively continuous on F.
(Note that if $T=E^{*}, \rho^{\prime}$ is as in Problem 5 of Chapter 3, $\S 11$.)
Proof. ${ }^{1}$ By assumption, f is \mathcal{M}-measurable on a set

$$
H=A-Q, m Q=0
$$

so by Problem 7 in $\S 1, f[H]$ is separable in T. We may safely assume that f is \mathcal{M}-measurable on S and that all of T is separable. (If not, replace S and T by H and $f[H]$, restricting f to H, and m to \mathcal{M}-sets inside H; see also Problems 7 and 8 below.)

Then by Problem 12 of $\S 2$, we can fix globes G_{1}, G_{2}, \ldots in T such that
(1) each open set $B \neq \emptyset$ in T is the union of a subsequence of $\left\{G_{k}\right\}$.

Now let $\varepsilon>0$, and set

$$
S_{k}=S \cap f^{-1}\left[G_{k}\right]=f^{-1}\left[G_{k}\right], \quad k=1,2, \ldots
$$

By Corollary 2 in $\S 2, S_{k} \in \mathcal{M}$. As m is strongly regular, we find for each S_{k} an open set

$$
U_{k} \supseteq S_{k}
$$

[^36]with $U_{k} \in \mathcal{M}$ and
$$
m\left(U_{k}-S_{k}\right)<\frac{\varepsilon}{2^{k+1}} .
$$

Let $B_{k}=U_{k}-S_{k}, D=\bigcup_{k} B_{k}$; so $D \in \mathcal{M}$ and

$$
\begin{equation*}
m D \leq \sum_{k} m B_{k} \leq \sum_{k} \frac{\varepsilon}{2^{k+1}} \leq \frac{1}{2} \varepsilon \tag{2}
\end{equation*}
$$

and

$$
U_{k}-B_{k}=S_{k}=f^{-1}\left[G_{k}\right] .
$$

As $D=\bigcup B_{k}$, we have

$$
(\forall k) \quad B_{k}-D=B_{k} \cap(-D)=\emptyset .
$$

Hence by (2^{\prime}),

$$
\begin{aligned}
(\forall k) \quad f^{-1}\left[G_{k}\right] \cap(-D) & =\left(U_{k}-B_{k}\right) \cap(-D) \\
& =\left(U_{k} \cap(-D)\right)-\left(B_{k} \cap(-D)\right)=U_{k} \cap(-D) .
\end{aligned}
$$

Combining this with (1), we have, for each open set $B=\bigcup_{i} G_{k_{i}}$ in T,

$$
\begin{equation*}
f^{-1}[B] \cap(-D)=\bigcup_{i} f^{-1}\left[G_{k_{i}}\right] \cap(-D)=\bigcup_{i} U_{k_{i}} \cap(-D) . \tag{3}
\end{equation*}
$$

Since the $U_{k_{i}}$ are open in S (by construction), the set (3) is open in $S-D$ as a subspace of S. By Lemma 2, then, f is relatively continuous on $S-D$, or rather on

$$
H-D=A-Q-D
$$

(since we actually substituted S for H in the course of the proof). As $m Q=0$ and $m D<\frac{1}{2} \varepsilon$ by (2),

$$
m(H-D)<m A-\frac{1}{2} \varepsilon .
$$

Finally, as m is strongly regular and $H-D \in \mathcal{M}$, there is a closed \mathcal{M}-set

$$
F \subseteq H-D \subseteq A
$$

such that

$$
m(H-D-F)<\frac{1}{2} \varepsilon .
$$

Since f is relatively continuous on $H-D$, it is surely so on F. Moreover,

$$
A-F=(A-(H-D)) \cup(H-D-F)
$$

so

$$
m(A-F) \leq m(A-(H-D))+m(H-D-F)<\frac{1}{2} \varepsilon+\frac{1}{2} \varepsilon=\varepsilon
$$

This completes the proof.
${ }^{*}$ Lemma 3. Given $[a, b] \subset E^{1}$ and disjoint closed sets $A, B \subseteq(S, \rho)$, there always is a continuous map $g: S \rightarrow[a, b]$ such that $g=a$ on A and $g=b$ on B.

Proof. If $A=\emptyset$ or $B=\emptyset$, set $g=b$ or $g=a$ on all of S.
If, however, A and B are both nonempty, set

$$
g(x)=a+\frac{(b-a) \rho(x, A)}{\rho(x, A)+\rho(x, B)}
$$

As A is closed, $\rho(x, A)=0$ iff $x \in A$ (Problem 15 in Chapter 3, $\S 14$); similarly for B. Thus $\rho(x, A)+\rho(x, B) \neq 0$.

Also, $g=a$ on $A, g=b$ on B, and $a \leq g \leq b$ on S.
For continuity, see Chapter 4, $\S 8$, Example (e).
${ }^{*}$ Lemma 4 (Tietze). If $f:(S, \rho) \rightarrow E^{*}$ is relatively continuous on a closed set $F \subseteq S$, there is a function $g: S \rightarrow E^{*}$ such that $g=f$ on F,

$$
\inf g[S]=\inf f[F], \sup g[S]=\sup f[F]
$$

and g is continuous on all of S.
(We assume E^{*} metrized as in Problem 5 of Chapter 3, $\S 11$. If $|f|<\infty$, the standard metric in E^{1} may be used.)
Proof Outline. First, assume $\inf f[F]=0$ and $\sup f[F]=1$. Set

$$
A=F\left(f \leq \frac{1}{3}\right)=F \cap f^{-1}\left[\left[0, \frac{1}{3}\right]\right]
$$

and

$$
B=F\left(f \geq \frac{2}{3}\right)=F \cap f^{-1}\left[\left[\frac{2}{3}, 1\right]\right] .
$$

As F is closed in S, so are A and B by Lemma 2. (Why?)
As $B \cap A=\emptyset$, Lemma 3 yields a continuous map $g_{1}: S \rightarrow\left[0, \frac{1}{3}\right]$, with $g_{1}=0$ on A, and $g_{1}=\frac{1}{3}$ on B. Set $f_{1}=f-g_{1}$ on F; so $\left|f_{1}\right| \leq \frac{2}{3}$, and f_{1} is continuous on F.

Applying the same steps to f_{1} (with suitable sets $A_{1}, B_{1} \subseteq F$), find a continuous map g_{2}, with $0 \leq g_{2} \leq \frac{2}{3} \cdot \frac{1}{3}$ on S. Then $f_{2}=f_{1}-g_{2}$ is continuous, and $0 \leq f_{2} \leq\left(\frac{2}{3}\right)^{2}$ on F.

Continuing, obtain two sequences $\left\{g_{n}\right\}$ and $\left\{f_{n}\right\}$ of real functions such that each g_{n} is continuous on S,

$$
0 \leq g_{n} \leq \frac{1}{3}\left(\frac{2}{3}\right)^{n-1}
$$

and $f_{n}=f_{n-1}-g_{n}$ is defined and continuous on F, with

$$
0 \leq f_{n} \leq\left(\frac{2}{3}\right)^{n}
$$

there $\left(f_{0}=f\right)$.
We claim that

$$
g=\sum_{n=1}^{\infty} g_{n}
$$

is the desired map.
Indeed, the series converges uniformly on S (Theorem 3 of Chapter 4, §12). As all g_{n} are continuous, so is g (Theorem 2 in Chapter 4, $\S 12$). Also,

$$
\left|f-\sum_{k=1}^{n} g_{k}\right| \leq\left(\frac{2}{3}\right)^{n} \rightarrow 0
$$

on F (why?); so $f=g$ on F. Moreover,

$$
0 \leq g_{1} \leq g \leq \sum_{n=1}^{\infty} \frac{1}{3}\left(\frac{2}{3}\right)^{n}=1 \text { on } S
$$

Hence $\inf g[S]=0$ and $\sup g[S]=1$, as required.
Now assume

$$
\inf f[F]=a<\sup f[F]=b \quad\left(a, b \in E^{1}\right)
$$

Set

$$
h(x)=\frac{f(x)-a}{b-a}
$$

so that $\inf h[F]=0$ and $\sup h[F]=1$. (Why?)
As shown above, there is a continuous map g_{0} on S, with

$$
g_{0}=h=\frac{f-a}{b-a}
$$

on $F, \inf g_{0}[S]=0$, and $\sup g_{0}[S]=1$. Set

$$
a+(b-a) g_{0}=g
$$

Then g is the required function. (Verify!)
Finally, if $a, b \in E^{*}(a<b)$, all reduces to the bounded case by considering $H(x)=\arctan f(x)$.
Theorem 3 (Fréchet). Let $m: \mathcal{M} \rightarrow E^{}$ be a strongly regular measure in (S, ρ). If $f: S \rightarrow E^{*}\left(E^{n}, C^{n}\right)$ is m-measurable on A, then

$$
f=\lim _{i \rightarrow \infty} f_{i}(\text { a.e. }(m)) \text { on } A
$$

for some sequence of maps f_{i} continuous on S. (We assume E^{*} to be metrized as in Lemma 4.)
Proof. We consider $f: S \rightarrow E^{*}$ (the other cases reduce to E^{1} via components).
Taking $\varepsilon=\frac{1}{i}(i=1,2, \ldots)$ in Theorem 2, we obtain for each i a closed \mathcal{M}-set $F_{i} \subseteq A$ such that

$$
m\left(A-F_{i}\right)<\frac{1}{i}
$$

and f is relatively continuous on each F_{i}. We may assume that $F_{i} \subseteq F_{i+1}$ (if not, replace F_{i} by $\bigcup_{k=1}^{i} F_{k}$).

Now, Lemma 4 yields for each i a continuous map $f_{i}: S \rightarrow E^{*}$ such that $f_{i}=f$ on F_{i}. We complete the proof by showing that $f_{i} \rightarrow f$ (pointwise) on the set

$$
B=\bigcup_{i=1}^{\infty} F_{i}
$$

and that $m(A-B)=0$.
Indeed, fix any $x \in B$. Then $x \in F_{i}$ for some $i=i_{0}$, hence also for $i>i_{0}$ (since $\left\{F_{i}\right\} \uparrow$). As $f_{i}=f$ on F_{i}, we have

$$
\left(\forall i>i_{0}\right) \quad f_{i}(x)=f(x),
$$

and so $f_{i}(x) \rightarrow f(x)$ for $x \in B$. As $F_{i} \subseteq B$, we get

$$
m(A-B) \leq m\left(A-F_{i}\right)<\frac{1}{i}
$$

for all i. Hence $m(A-B)=0$, and all is proved.

Problems on Measurable Functions in (S, \mathcal{M}, m)

1. Fill in all proof details in Corollaries 1 to 4.
$\mathbf{1}^{\prime}$. Verify Notes 3 and 4.
2. Prove Theorems 1 and 2 in $\S 1$ and Theorem 2 in $\S 2$, for almost measurable functions.
3. Prove Note 2.
[Hint: If $f: S \rightarrow E^{*}$ is \mathcal{M}-measurable on $B=A-Q(m Q=0, Q \subseteq A)$, then $A=B \cup Q$ and

$$
\left(\forall a \in E^{*}\right) \quad A(f>a)=B(f>a) \cup Q(f>a) .
$$

Here $B(f>a) \in \mathcal{M}$ by Theorem 1 in $\S 2$, and $Q(f>a) \in \mathcal{M}$ if m is complete. For $f: S \rightarrow E^{n}\left(C^{n}\right)$, use Theorem 2 of $\left.\S 1.\right]$
*4. Show that if m is complete and $f: S \rightarrow\left(T, \rho^{\prime}\right)$ is m-measurable on A with $f[A]$ separable in T, then f is \mathcal{M}-measurable on A.
[Hint: Use Problem 13 in §2.]
*5. Prove Theorem 1 for $f: S \rightarrow\left(T, \rho^{\prime}\right)$, assuming that $f[A]$ is separable in T.
6. Given $f_{n} \rightarrow f$ (a.e.) on A, prove that $f_{n} \rightarrow g$ (a.e.) on A iff $f=g$ (a.e.) on A.
7. Given $A \in \mathcal{M}$ in (S, \mathcal{M}, m), let m_{A} be the restriction of m to

$$
\mathcal{M}_{A}=\{X \in \mathcal{M} \mid X \subseteq A\}
$$

Prove that
(i) $\left(A, \mathcal{M}_{A}, m_{A}\right)$ is a measure space (called a subspace of (S, \mathcal{M}, m));
(ii) if m is complete, topological, σ-finite or (strongly) regular, so is m_{A}.
8. (i) Show that if $D \subseteq K \subseteq\left(T, \rho^{\prime}\right)$, then the closure of D in the subspace $\left(K, \rho^{\prime}\right)$ is $K \cap \bar{D}$, where \bar{D} is the closure of D in $\left(T, \rho^{\prime}\right)$.
[Hint: Use Problem 11 in Chapter 3, §16.]
(ii) Prove that if $B \subseteq K$ and if B is separable in $\left(T, \rho^{\prime}\right)$, it is so in $\left(K, \rho^{\prime}\right)$.
[Hint: Use Problem 7 from §1.]
*9. Fill in all proof details in Lemma 4.
10. Simplify the proof of Theorem 2 for the case $m A<\infty$.
[Outline: (i) First, let f be elementary, with $f=a_{i}$ on $A_{i} \in \mathcal{M}, A=\bigcup_{i} A_{i}$ (disjoint), $\sum m A_{i}=m A<\infty$. Given $\varepsilon>0$,

$$
(\exists n) \quad m A-\sum_{i=1}^{n} m A_{i}<\frac{1}{2} \varepsilon .
$$

Each A_{i} has a closed subset $F_{i} \in \mathcal{M}$ with $m\left(A_{i}-F_{i}\right)<\varepsilon / 2 n$. (Why?) Now use Problem 17 in Chapter 4, $\S 8$, and set $F=\bigcup_{i=1}^{n} F_{i}$.
(ii) If f is \mathcal{M}-measurable on $H=A-Q, m Q=0$, then by Theorem 3 in $\S 1$, $f_{n} \rightarrow f$ (uniformly) on H for some elementary maps f_{n}. By (i), each f_{n} is relatively continuous on a closed \mathcal{M}-set $F_{n} \subseteq H$, with $m H-m F_{n}<\varepsilon / 2^{n}$; so all f_{n} are relatively continuous on $F=\bigcap_{n=1}^{\infty} \bar{F}_{n}$. Show that F is the required set.]
11. Given $f_{n}: S \rightarrow\left(T, \rho^{\prime}\right), n=1,2, \ldots$, we say that
(i) $f_{n} \rightarrow f$ almost uniformly on $A \subseteq S$ iff

$$
(\forall \delta>0)(\exists D \in \mathcal{M} \mid m D<\delta) \quad f_{n} \rightarrow f \text { (uniformly) on } A-D ;
$$

(ii) $f_{n} \rightarrow f$ in measure on A iff

$$
\begin{aligned}
(\forall \delta, \sigma>0)(\exists k)(\forall n>k)\left(\exists D_{n} \in \mathcal{M} \mid\right. & \left.m D_{n}<\delta\right) \\
& \rho^{\prime}\left(f, f_{n}\right)<\sigma \text { on } A-D_{n} .
\end{aligned}
$$

Prove the following.
(a) $f_{n} \rightarrow f$ (uniformly) implies $f_{n} \rightarrow f$ (almost uniformly), and the latter implies both $f_{n} \rightarrow f$ (in measure) and $f_{n} \rightarrow f$ (a.e.).
(b) Given $f_{n} \rightarrow f$ (almost uniformly), we have $f_{n} \rightarrow g$ (almost uniformly) iff $f=g$ (a.e.); similarly for convergence in measure.
(c) If f and f_{n} are \mathcal{M}-measurable on A, then $f_{n} \rightarrow f$ in measure on A iff

$$
(\forall \sigma>0) \quad \lim _{n \rightarrow \infty} m A\left(\rho^{\prime}\left(f, f_{n}\right) \geq \sigma\right)=0
$$

12. Assuming that $f_{n}: S \rightarrow\left(T, \rho^{\prime}\right)$ is m-measurable on A for $n=1,2, \ldots$, that $m A<\infty$, and that $f_{n} \rightarrow f$ (a.e.) on A, prove the following.
(i) Lebesgue's theorem: $f_{n} \rightarrow f$ (in measure) on A (see Problem 11).
(ii) Egorov's theorem: $f_{n} \rightarrow f$ (almost uniformly) on A.
[Outline: (i) f_{n} and f are \mathcal{M}-measurable on $H=A-Q, m Q=0$ (Corollary 1), with $f_{n} \rightarrow f$ (pointwise) on H. For all i, k, set

$$
H_{i}(k)=\bigcap_{n=i}^{\infty} H\left(\rho^{\prime}\left(f_{n}, f\right)<\frac{1}{k}\right) \in \mathcal{M}
$$

by Problem 6 in $\S 1$. Show that $(\forall k) H_{i}(k) \nearrow H$; hence

$$
\lim _{i \rightarrow \infty} m H_{i}(k)=m H=m A<\infty ;
$$

so

$$
(\forall \delta>0)(\forall k)\left(\exists i_{k}\right) \quad m\left(A-H_{i_{k}}(k)\right)<\frac{\delta}{2^{k}},
$$

proving (i), since

$$
\left(\forall n>i_{k}\right) \quad \rho^{\prime}\left(f_{n}, f\right)<\frac{1}{k} \text { on } H_{i_{k}}(k)=A-\left(A-H_{i_{k}}(k)\right) \text {. }
$$

(ii) Continuing, set $(\forall k) D_{k}=H_{i_{k}}(k)$ and

$$
D=A-\bigcap_{k=1}^{\infty} D_{k}=\bigcup_{k=1}^{\infty}\left(A-D_{k}\right)
$$

Deduce that $D \in \mathcal{M}$ and

$$
m D \leq \sum_{k=1}^{\infty} m\left(A-H_{i_{k}}(k)\right)<\sum_{k=1}^{\infty} \frac{\delta}{2^{k}}=\delta .
$$

Now, from the definition of the $H_{i}(k)$, show that $f_{n} \rightarrow f$ (uniformly) on $A-D$, proving (ii).]
13. Disprove the converse to Problem 12(i).
[Outline: Assume that $A=[0,1)$; for all $0 \leq k$ and all $0 \leq i<2^{k}$, set

$$
g_{i k}(x)= \begin{cases}1 & \text { if } \frac{i-1}{2^{k}} \leq x<\frac{i}{2^{k}} \\ 0 & \text { otherwise }\end{cases}
$$

Put the $g_{i k}$ in a single sequence by

$$
f_{2^{k}+i}=g_{i k}
$$

Show that $f_{n} \rightarrow 0$ in L measure on A, yet for no $x \in A$ does $f_{n}(x)$ converge as $n \rightarrow \infty$.]
14. Prove that if $f: S \rightarrow\left(T, \rho^{\prime}\right)$ is m-measurable on A and $g: T \rightarrow\left(U, \rho^{\prime \prime}\right)$ is relatively continuous on $f[A]$, then $g \circ f: S \rightarrow\left(U, \rho^{\prime \prime}\right)$ is m-measurable on A.
[Hint: Use Corollary 4 in §1.]

§4. Integration of Elementary Functions

In Chapter 5, integration was treated as antidifferentiation. Now we adopt another, measure-theoretical approach.

Lebesgue's original theory was based on Lebesgue measure (Chapter 7, §8). The more general modern treatment develops the integral for functions $f: S \rightarrow$ E in an arbitrary measure space. Henceforth, (S, \mathcal{M}, m) is fixed, and the range space E is E^{1}, E^{*}, C, E^{n}, or another complete normed space. Recall that in such a space, $\sum_{i}\left|a_{i}\right|<\infty$ implies that $\sum a_{i}$ converges and is permutable (Chapter 7, §2).

We start with elementary maps, including simple maps as a special case. ${ }^{1}$

Definition 1.

Let $f: S \rightarrow E$ be elementary on $A \in \mathcal{M}$; so $f=a_{i}$ on A_{i} for some \mathcal{M}-partition

$$
A=\bigcup_{i} A_{i}(\text { disjoint })
$$

(Note that there may be many such partitions.)
We say that f is integrable (with respect to m), or m-integrable, on A iff

$$
\sum\left|a_{i}\right| m A_{i}<\infty
$$

(The notation " $\left|a_{i}\right| m A_{i}$ " always makes sense by our conventions (2^{*}) in Chapter 4, §4.) If m is Lebesgue measure, then we say that f is Lebesgue integrable, or L-integrable.

We then define $\int_{A} f$, the m-integral of f on A, by

$$
\begin{equation*}
\int_{A} f=\int_{A} f d m=\sum_{i} a_{i} m A_{i} \tag{1}
\end{equation*}
$$

[^37](The notation " $d m$ " is used to specify the measure m.)
The "classical" notation for $\int_{A} f d m$ is $\int_{A} f(x) d m(x)$.
Note 1. The assumption
$$
\sum\left|a_{i}\right| m A_{i}<\infty
$$
implies
$$
(\forall i) \quad\left|a_{i}\right| m A_{i}<\infty ;
$$
so $a_{i}=0$ if $m A_{i}=\infty$, and $m A_{i}=0$ if $\left|a_{i}\right|=\infty$. Thus by our conventions, all "bad" terms $a_{i} m A_{i}$ vanish. Hence the sum in (1) makes sense and is finite.

Note 2. This sum is also independent of the particular choice of $\left\{A_{i}\right\}$. For if $\left\{B_{k}\right\}$ is another \mathcal{M}-partition of A, with $f=b_{k}$ on B_{k}, say, then $f=a_{i}=b_{k}$ on $A_{i} \cap B_{k}$ whenever $A_{i} \cap B_{k} \neq \emptyset$. Also,

$$
(\forall i) \quad A_{i}=\bigcup_{k}\left(A_{i} \cap B_{k}\right) \text { (disjoint); }
$$

so

$$
(\forall i) \quad a_{i} m A_{i}=\sum_{k} a_{i} m\left(A_{i} \cap B_{k}\right),
$$

and hence (see Theorem 2 of Chapter 7, $\S 2$, and Problem 11 there)

$$
\sum_{i} a_{i} m A_{i}=\sum_{i} \sum_{k} a_{i} m\left(A_{i} \cap B_{k}\right)=\sum_{k} \sum_{i} b_{k} m\left(A_{i} \cap B_{k}\right)=\sum_{k} b_{k} m B_{k}
$$

(Explain!)
This makes our definition (1) unambiguous and allows us to choose any \mathcal{M}-partition $\left\{A_{i}\right\}$, with f constant on each A_{i}, when forming integrals (1).
Corollary 1. Let $f: S \rightarrow E$ be elementary and integrable on $A \in \mathcal{M}$. Then the following statements are true.
(i) $|f|<\infty$ a.e. on $A{ }^{2}$
(ii) f and $|f|$ are elementary and integrable on any \mathcal{M}-set $B \subseteq A$, and

$$
\left|\int_{B} f\right| \leq \int_{B}|f| \leq \int_{A}|f|
$$

(iii) The set $B=A(f \neq 0)$ is σ-finite (Definition 4 in Chapter 7, $\S 5$), and

$$
\int_{A} f=\int_{B} f
$$

[^38](iv) If $f=a$ (constant) on A,
$$
\int_{A} f=a \cdot m A
$$
(v) $\int_{A}|f|=0$ iff $f=0$ a.e. on A.
(vi) If $m Q=0$, then
$$
\int_{A} f=\int_{A-Q} f
$$
(so we may neglect sets of measure 0 in integrals).
(vii) For any k in the scalar field of $E, k f$ is elementary and integrable, and
$$
\int_{A} k f=k \int_{A} f
$$

Note that if f is scalar valued, k may be a vector. If $E=E^{*}$, we assume $k \in E^{1}$.

Proof.

(i) By Note $1,|f|=\left|a_{i}\right|=\infty$ only on those A_{i} with $m A_{i}=0$. Let Q be the union of all such A_{i}. Then $m Q=0$ and $|f|<\infty$ on $A-Q$, proving (i).
(ii) If $\left\{A_{i}\right\}$ is an \mathcal{M}-partition of $A,\left\{B \cap A_{i}\right\}$ is one for B. (Verify!) We have $f=a_{i}$ and $|f|=\left|a_{i}\right|$ on $B \cap A_{i} \subseteq A_{i}$.

Also,

$$
\sum\left|a_{i}\right| m\left(B \cap A_{i}\right) \leq \sum\left|a_{i}\right| m A_{i}<\infty
$$

(Why?) Thus f and $|f|$ are elementary and integrable on B, and (ii) easily follows by formula (1).
(iii) By Note $1, f=0$ on A_{i} if $m A_{i}=\infty$. Thus $f \neq 0$ on A_{i} only if $m A_{i}<\infty$. Let $\left\{A_{i_{k}}\right\}$ be the subsequence of those A_{i} on which $f \neq 0$; so

$$
(\forall k) \quad m A_{i_{k}}<\infty .
$$

Also,

$$
B=A(f \neq 0)=\bigcup_{k} A_{i_{k}} \in \mathcal{M}(\sigma \text {-finite }) .
$$

By (ii), f is elementary and integrable on B. Also,

$$
\int_{B} f=\sum_{k} a_{i_{k}} m A_{i_{k}},
$$

while

$$
\int_{A} f=\sum_{i} a_{i} m A_{i}
$$

These sums differ only by terms with $a_{i}=0$. Thus (iii) follows.
The proof of (iv)-(vii) is left to the reader.
Note 3. If $f: S \rightarrow E^{*}$ is elementary and sign-constant on A, we also allow that

$$
\int_{A} f=\sum_{i} a_{i} m A_{i}= \pm \infty
$$

Thus here $\int_{A} f$ exists even if f is not integrable. Apart from claims of integrability and σ-finiteness, Corollary 1(ii)-(vii) hold for such f, with the same proofs.

Example.

Let m be Lebesgue measure in E^{1}. Define $f=1$ on R (rationals) and $f=0$ on $E^{1}-R$; see Chapter 4, $\S 1$, Example (c). Let $A=[0,1]$.

By Corollary 1 in Chapter $7, \S 8, A \cap R \in \mathcal{M}^{*}$ and $m(A \cap R)=0$. Also, $A-R \in \mathcal{M}^{*}$.

Thus $\{A \cap R, A-R\}$ is an \mathcal{M}^{*}-partition of A, with $f=1$ on $A \cap R$ and $f=0$ on $A-R$.

Hence f is elementary and integrable on A, and

$$
\int_{A} f=1 \cdot m(A \cap R)+0 \cdot m(A-R)=0 .
$$

Thus f is L-integrable (even though it is nowhere continuous).
Theorem 1 (additivity).
(i) If $f: S \rightarrow E$ is elementary and integrable or elementary and nonnegative on $A \in \mathcal{M}$, then

$$
\begin{equation*}
\int_{A} f=\sum_{k} \int_{B_{k}} f \tag{2}
\end{equation*}
$$

for any \mathcal{M}-partition $\left\{B_{k}\right\}$ of A.
(ii) If f is elementary and integrable on each set B_{k} of a finite \mathcal{M}-partition

$$
A=\bigcup_{k} B_{k}
$$

it is elementary and integrable on all of A, and (2) holds again.
Proof. (i) If f is elementary and integrable or elementary and nonnegative on $A=\bigcup_{k} B_{k}$, it is surely so on each B_{k} by Corollary 2 of $\S 1$ and Corollary 1(ii) above.

Thus for each k, we can fix an \mathcal{M}-partition $B_{k}=\bigcup_{i} A_{k i}$, with f constant $\left(f=a_{k i}\right)$ on $A_{k i}, i=1,2, \ldots$ Then

$$
A=\bigcup_{k} B_{k}=\bigcup_{k} \bigcup_{i} A_{k i}
$$

is an \mathcal{M}-partition of A into the disjoint sets $A_{k i} \in \mathcal{M}$.
Now, by definition,

$$
\int_{B_{k}} f=\sum_{i} a_{k i} m A_{k i}
$$

and

$$
\int_{A} f=\sum_{k, i} a_{k i} m A_{k i}=\sum_{k}\left(\sum_{i} a_{k i} m A_{k i}\right)=\sum_{k} \int_{B_{k}} f
$$

by rules for double series. This proves formula (2).
(ii) If f is elementary and integrable on $B_{k}(k=1, \ldots, n)$, then with the same notation, we have

$$
\sum_{i}\left|a_{k i}\right| m A_{k i}<\infty
$$

(by integrability); hence

$$
\sum_{k=1}^{n} \sum_{i}\left|a_{k i}\right| m A_{k i}<\infty
$$

This means, however, that f is elementary and integrable on A, and so clause (ii) follows.

Caution. Clause (ii) fails if the partition $\left\{B_{k}\right\}$ is infinite.

Theorem 2.

(i) If $f, g: S \rightarrow E^{*}$ are elementary and nonnegative on A, then

$$
\int_{A}(f+g)=\int_{A} f+\int_{A} g
$$

(ii) If $f, g: S \rightarrow E$ are elementary and integrable on A, so is $f \pm g$, and

$$
\int_{A}(f \pm g)=\int_{A} f \pm \int_{A} g
$$

Proof. Arguing as in the proof of Theorem 1 of $\S 1$, we can make f and g constant on sets of one and the same \mathcal{M}-partition of A, say, $f=a_{i}$ and $g=b_{i}$ on $A_{i} \in \mathcal{M}$; so

$$
f \pm g=a_{i} \pm b_{i} \text { on } A_{i}, \quad i=1,2, \ldots
$$

In case (i), $f, g \geq 0$; so integrability is irrelevant by Note 3, and formula (1) yields

$$
\int_{A}(f+g)=\sum_{i}\left(a_{i}+b_{i}\right) m A_{i}=\sum_{i} a_{i} m A_{i}+\sum b_{i} m A_{i}=\int_{A} f+\int_{A} g
$$

In (ii), we similarly obtain

$$
\sum_{i}\left|a_{i} \pm b_{i}\right| m A_{i} \leq \sum\left|a_{i}\right| m A_{i}+\sum_{i}\left|b_{i}\right| m A_{i}<\infty .
$$

(Why?) Thus $f \pm g$ is elementary and integrable on A. As before, we also get

$$
\int_{A}(f \pm g)=\int_{A} f \pm \int_{A} g
$$

simply by rules for addition of convergent series. (Verify!)
Note 4. As we know, the characteristic function C_{B} of a set $B \subseteq S$ is defined

$$
C_{B}(x)= \begin{cases}1, & x \in B \\ 0, & x \in S-B\end{cases}
$$

If $g: S \rightarrow E$ is elementary on A, so that

$$
g=a_{i} \text { on } A_{i}, 1,2, \ldots,
$$

for some \mathcal{M}-partition

$$
A=\bigcup A_{i}
$$

then

$$
g=\sum_{i} a_{i} C_{A_{i}} \text { on } A
$$

(This sum always exists for disjoint sets A_{i}. Why?) We shall often use this notation.

If m is Lebesgue measure in E^{1}, the integral

$$
\int_{A} g=\sum_{i} a_{i} m A_{i}
$$

has a simple geometric interpretation; see Figure 33. Let $A=[a, b] \subset E^{1}$; let g be bounded and nonnegative on E^{1}. Each product $a_{i} m A_{i}$ is the area of a rectangle with base A_{i} and al-

Figure 33 titude a_{i}. (We assume the A_{i} to be
intervals here.) The total area,

$$
\int_{A} g=\sum_{i} a_{i} m A_{i}
$$

can be treated as an approximation to the area under some curve $y=f(x)$, where f is approximated by g (Theorem 3 in $\S 1$). Integration historically arose from such approximations.

Integration of elementary extended-real functions. Note 3 can be extended to sign-changing functions as follows.

Definition 2.

If

$$
f=\sum_{i} a_{i} C_{A_{i}} \quad\left(a_{i} \in E^{*}\right)
$$

on

$$
A=\bigcup_{i} A_{i} \quad\left(A_{i} \in \mathcal{M}\right)
$$

we set

$$
\begin{equation*}
\int_{A} f=\int_{A} f^{+}-\int_{A} f^{-} \tag{3}
\end{equation*}
$$

with

$$
f^{+}=f \vee 0 \geq 0 \text { and } f^{-}=(-f) \vee 0 \geq 0 ;
$$

see $\S 2$.
By Theorem 2 in $\S 2, f^{+}$and f^{-}are elementary and nonnegative on A; so

$$
\int_{A} f^{+} \text {and } \int_{A} f^{-}
$$

are defined by Note 3, and so is

$$
\int_{A} f=\int_{A} f^{+}-\int_{A} f^{-}
$$

by our conventions $\left(2^{*}\right)$ in Chapter $4, \S 4$.
We shall have use for formula (3), even if

$$
\int_{A} f^{+}=\int_{A} f^{-}=\infty ;
$$

then we say that $\int_{A} f$ is unorthodox and equate it to $+\infty$, by convention; cf. Chapter 4, §4. (Other integrals are called orthodox.) Thus for elementary and (extended) real functions, $\int_{A} f$ is always defined. (We further develop this idea in $\S 5$.)

Note 5. With f as above, we clearly have

$$
f^{+}=a_{i}^{+} \text {and } f^{-}=a_{i}^{-} \text {on } A_{i},
$$

where

$$
a_{i}^{+}=\max \left(a_{i}, 0\right) \text { and } a_{i}^{-}=\max \left(-a_{i}, 0\right) .
$$

Thus

$$
\int_{A} f^{+}=\sum a_{i}^{+} \cdot m A_{i} \text { and } \int_{A} f^{-}=\sum a_{i}^{-} \cdot m A_{i}
$$

so that

$$
\begin{equation*}
\int_{A} f=\int_{A} f^{+}-\int_{A} f^{-}=\sum_{i} a_{i}^{+} \cdot m A_{i}-\sum_{i} a_{i}^{-} \cdot m A_{i} . \tag{4}
\end{equation*}
$$

If $\int_{A} f^{+}<\infty$ or $\int_{A} f^{-}<\infty$, we can subtract the two series termwise (Problem 14 of Chapter 4, §13) to obtain

$$
\int_{A} f=\sum_{i}\left(a_{i}^{+}-a_{i}^{-}\right) m A_{i}=\sum_{i} a_{i} m A_{i}
$$

for $a_{i}^{+}-a_{i}^{-}=a_{i}$. Thus formulas (3) and (4) agree with our previous definitions. ${ }^{3}$

Problems on Integration of Elementary Functions

1. Verify Note 2.
$\mathbf{1}^{\prime}$. Prove Corollary 1(iv)-(vii).
2. Prove that $\int_{A} f=0$ if $m A=0$ or $f=0$ on A. Disprove the converse by examples.
3. Find a primitive F for $f=C_{R}$ in our example. Show that

$$
\int_{[0,1]} f d m=F(1)-F(0) .
$$

4. Fill in the proof details in Theorem 2.
[Hint: Use comparison test for series.]
$\Rightarrow \mathbf{5}$. Show that if f and g are elementary and nonnegative with $f \geq g$ on A, then

$$
\int_{A} f \geq \int_{A} g \geq 0
$$

[Hint: As in Theorem 2, let

$$
f=\sum_{i} a_{i} C_{A_{i}} \text { and } g=\sum_{i} b_{i} C_{A_{i}} .
$$

Then $f \geq g \geq 0$ implies $a_{i} \geq b_{i} \geq 0$.]

[^39]$\Rightarrow \mathbf{6}$. Prove that if f and g are elementary and (extended) real on A, then
$$
\int_{A}(f \pm g)=\int_{A} f \pm \int_{A} g
$$
provided
(i) $\int_{A} f$ or $\int_{A} g$ is finite, or
(ii) $\int_{A} f, \int_{A} g$, and $\int_{A} f \pm \int_{A} g$ are all orthodox.
[Outline: As in Theorem 2, let
$$
f=\sum_{i} a_{i} C_{A_{i}} \text { and } g=\sum_{i} b_{i} C_{A_{i}},
$$
so
$$
f \pm g=a_{i} \pm b_{i} \text { on } A_{i} .
$$

Now, if

$$
\left|\int_{A} f\right|<\infty,
$$

then by Problem 14 in Chapter 4, $\S 13$, and formula (4), $\sum a_{i} m A_{i}$ converges $a b$ solutely; so its termwise addition to any other series does not affect the absolute convergence or divergence of the latter, i.e., the finiteness or infiniteness of its positive and negative parts. For example,

$$
\sum_{i}\left(a_{i} \pm b_{i}\right)^{+} m A_{i}=\infty
$$

iff

$$
\sum b_{i}^{+} m A_{i}=\infty .
$$

Thus if

$$
\int_{A} g= \pm \infty,
$$

then

$$
\int_{A}(f \pm g)=\int_{A} g= \pm \infty=\int_{A} f \pm \int_{A} g .
$$

If both

$$
\int_{A} f, \int_{A} g \neq \pm \infty,
$$

Theorem 2(ii) applies. In the orthodox infinite case, a similar proof works on noting that either the positive or the negative parts of both series are finite if

$$
\int_{A} f \pm \int_{A} g
$$

is orthodox, too. (Verify!)]
7. Show that if f is elementary and nonnegative on A and

$$
\int_{A} f>p \in E^{*}
$$

then there is an elementary and nonnegative map g on A such that

$$
\int_{A} f \geq \int_{A} g>p
$$

$g=0$ on $A(f=0)$, and

$$
f>g \text { on } A-A(f=0) .
$$

[Hints: Let

$$
B=A(f=\infty)
$$

and

$$
C=A-B
$$

so $B, C \in \mathcal{M}$ (Corollary 2 in $\S 2$). For all $n>0$, define

$$
g_{n}=n \text { on } B
$$

and

$$
g_{n}=\left(1-\frac{1}{n}\right) f \text { on } C ;
$$

so g_{n} is elementary and nonnegative on A and

$$
f>g_{n} \text { on } A-A(f=0) .(\text { Why? })
$$

By Theorem 1 and Corollary 1(iv)(vii),

$$
\int_{A} g_{n}=\int_{B} g_{n}+\int_{C} g_{n}=\int_{B}(n)+\int_{C}\left(1-\frac{1}{n}\right) f=n \cdot m B+\left(1-\frac{1}{n}\right) \int_{C} f .
$$

Deduce that

$$
\lim _{n \rightarrow \infty} \int_{A} g_{n}=\int_{B} f+\int_{C} f=\int_{A} f>p ;
$$

so

$$
(\exists n) \quad \int_{A} g_{n}>p
$$

Take $g=g_{n}$ for that n.]
8. Show that if $E=E^{*}$, Theorem 1(i) holds also if $\int_{A} f$ is infinite but orthodox.
9. (i) Prove that if f is elementary and integrable on A, so is $-f$, and

$$
\int_{A}(-f)=-\int_{A} f
$$

(ii) Show that this holds also if f is elementary and (extended) real and $\int_{A} f$ is orthodox.

§5. Integration of Extended-Real Functions

We shall now define integrals for arbitrary functions $f: S \rightarrow E^{*}$ in a measure space $(S, \mathcal{M}, m) .{ }^{1}$ We start with the case $f \geq 0$.

Definition 1.

Given $f \geq 0$ on $A \in \mathcal{M}$, we define the upper and lower integrals,

$$
\bar{\int} \text { and } \underline{\int}
$$

of f on A (with respect to m) by

$$
\bar{\int}_{A} f=\bar{\int}_{A} f d m=\inf _{h} \int_{A} h
$$

over all elementary maps $h \geq f$ on A, and

$$
\begin{equation*}
\underline{\int}_{A} f=\underline{\int-A}_{A} f d m=\sup _{g} \int_{A} g \tag{1"}
\end{equation*}
$$

over all elementary and nonnegative maps $g \leq f$ on A.
If f is not nonnegative, we use $f^{+}=f \vee 0$ and $f^{-}=(-f) \vee 0(\S 2)$, and set

$$
\begin{align*}
& \bar{\int}_{A} f=\bar{\int}_{A} f d m=\bar{\int}_{A} f^{+}-{\underline{\int_{A}}}_{A} f^{-} \text {and } \\
& \underline{\int}_{A} f=\underline{\int}_{A} f d m=f_{A} f^{+}-\int_{A} f^{-} . \tag{1}
\end{align*}
$$

By our conventions, these expressions are always defined. The integral $\bar{\int}_{A} f$ (or $\left.\int_{A} f\right)$ is called orthodox iff it does not have the form $\infty-\infty$ in (1), e.g., if $f \geq 0$ (i.e., $f^{-}=0$), or if $\int_{A} f<\infty$. An unorthodox integral equals $+\infty$.

We often write \int for $\bar{\int}$ and call it simply the integral (of f), even if

$$
\int_{A} f \neq \int_{A} f .^{2}
$$

"Classical" notation is $\int_{A} f(x) d m(x)$.

[^40]
Definition 2.

The function f is called integrable (or m-integrable, or Lebesgue integrable, with respect to m) on A, iff

$$
\bar{\int}_{A} f d m=\underline{\int}_{A} f d m \neq \pm \infty
$$

The process described above is called (abstract) Lebesgue integration as opposed to Riemann integration (B. Riemann, 1826-1866). The latter deals with bounded functions only and allows h and g in (1^{\prime}) and ($1^{\prime \prime}$) to be simple step functions only (see $\S 9$). It is inferior to Lebesgue theory.

The values of

$$
\bar{\int}_{A} f d m \text { and } \int_{A} f d m
$$

depend on m. If m is Lebesgue measure, we speak of Lebesgue integrals, in the stricter sense. If m is Lebesgue-Stieltjes measure, we speak of $L S$-integrals, and so on.

Note 1. If f is elementary and (extended) real, our present definition of

$$
\bar{\int}_{A} f
$$

agrees with that of $\S 4$. For if $f \geq 0, f$ itself is the least of all elementary and nonnegative functions

$$
h \geq f
$$

and the greatest of all elementary and nonnegative functions

$$
g \leq f
$$

Thus by Problem 5 in $\S 4$,

$$
\int_{A} f=\min _{h \geq f} \int_{A} h=\max _{g \leq f} \int_{A} g
$$

i.e.,

$$
\int_{A} f=\bar{\int}_{A} f={\underline{\int_{A}}}_{A} f
$$

If, however, $f \nsupseteq 0$, this follows by Definition 2 in $\S 4$. This also shows that for elementary and (extended) real maps,

$$
\bar{\int}_{A} f=\int_{A} f \text { always. }
$$

(See also Theorem 3.)

Note 2. By Definition 1,

$$
\underline{\int}_{A} f \leq \bar{\int}_{A} f \text { always }
$$

For if $f \geq 0$, then for any elementary and nonnegative maps g, h with

$$
g \leq f \leq h
$$

we have

$$
\int_{A} g \leq \int_{A} h
$$

by Problem 5 in $\S 4$. Thus

$$
\int_{A} f=\sup _{g} \int_{A} g
$$

is a lower bound of all such $\int_{A} h$, and so

$$
\underline{\int}_{A} f \leq \operatorname{glb} \int_{A} h=\bar{\int}_{A} f .
$$

In the general formula (1), too,

$$
\underline{\int}_{A} f \leq \bar{\int}_{A} f
$$

since

$$
\underline{\int}_{A} f^{+} \leq \bar{\int}_{A} f^{+} \text {and }{\underline{\int_{A}}}_{A} f^{-} \leq \bar{\int}_{A} f^{-}
$$

Theorem 1. For any functions $f, g: S \rightarrow E^{*}$ and any set $A \in \mathcal{M}$, we have the following results. ${ }^{3}$
(a) If $f=a$ (constant) on A, then

$$
\bar{\int}_{A} f={\underline{\int_{A}}} f=a \cdot m A .
$$

(b) If $f=0$ on A or $m A=0$, then

$$
\bar{\int}_{A} f={\underline{\int_{A}}}_{A} f=0 .
$$

(c) If $f \geq g$ on A, then

$$
\bar{\int}_{A} f \geq \bar{\int}_{A} g \text { and }{\underline{\int_{A}}}_{A} f{\underline{\int_{A}}}_{A} g .
$$

[^41](d) If $f \geq 0$ on A, then
$$
\bar{\int}_{A} f \geq 0 \text { and }{\underline{\int_{A}}}_{A} f \geq 0
$$

Similarly if $f \leq 0$ on A.
(e) If $0 \leq p<\infty$, then

$$
\bar{\int}_{A} p f=\overline{\int_{A}} f \text { and }{\underline{\int_{A}}}_{A} p f=p{\underline{\int_{A}}}_{A}
$$

(e') We have

$$
\bar{\int}_{A}(-f)=-{\underline{\int_{A}}}_{A} f \text { and }{\underline{\int_{A}}}_{A}(-f)=-\bar{\int}_{A} f
$$

if one of the integrals involved in each case is orthodox. Otherwise,

$$
\bar{\int}_{A}(-f)=\infty={\underline{\int_{A}}}_{A} f \text { and }{\underline{\int_{A}}}(-f)=\infty=\bar{\int}_{A} f
$$

(f) If $f \geq 0$ on A and

$$
A \supseteq B, B \in \mathcal{M}
$$

then

$$
\bar{\int}_{A} f \geq \bar{\int}_{B} f \text { and }{\underline{\int_{A}}}_{A} f \geq{\underline{\int_{B}}}_{B} f
$$

(g) We have

$$
\left|\bar{\int}_{A} f\right| \leq \bar{\int}_{A}|f| \text { and }\left|\int_{A} f\right| \leq \bar{\int}_{A}|f|
$$

(but not

$$
\left|\int_{A} f\right| \leq \underline{\int}_{A}|f|
$$

in general).
(h) If $f \geq 0$ on A and $\bar{\int}_{A} f=0\left(\right.$ or $f \leq 0$ and $\left.\underline{\int}_{A} f=0\right)$, then $f=0$ a.e. on A.

Proof. We prove only some of the above, leaving the rest to the reader.
(a) This following by Corollary 1 (iv) in $\S 4$.
(b) Use (a) and Corollary 1(v) in $\S 4$.
(c) First, let

$$
f \geq g \geq 0 \text { on } A
$$

Take any elementary and nonnegative map $H \geq f$ on A. Then $H \geq g$ as well; so by definition,

$$
\overline{\int_{A}} g=\inf _{h \geq g} \int_{A} h \leq \int_{A} H
$$

Thus

$$
\bar{\int}_{A} f \leq \int_{A} H
$$

for any such H. Hence also

$$
\bar{\int}_{A} g \leq \inf _{H \geq f} \int_{A} H=\bar{\int}_{A} f
$$

Similarly,

$$
\underline{\int}_{A} f \geq{\underline{\int_{A}}} g
$$

if $f \geq g \geq 0$.
In the general case, $f \geq g$ implies

$$
f^{+} \geq g^{+} \text {and } f^{-} \leq g^{-} .(\text {Why? })
$$

Thus by what was proved above,

$$
\bar{\int}_{A} f^{+} \geq \bar{\int}_{A} g^{+} \text {and }{\underline{\int_{A}}} f^{-} \leq \underline{\int}_{A} g^{-}
$$

Hence

$$
\bar{\int}_{A} f^{+}-\underline{\int}_{A} f^{-} \geq \bar{\int}_{A} g^{+}-\underline{\int}_{A} g^{-}
$$

i.e.,

$$
\bar{\int}_{A} f \geq \bar{\int}_{A} g
$$

Similarly, one obtains

$$
{\underline{\int_{A}}}_{A} f \geq{\underline{\int_{A}}}_{A} g
$$

(d) It is clear that (c) implies (d).
(e) Let $0 \leq p<\infty$ and suppose $f \geq 0$ on A. Take any elementary and nonnegative map

$$
h \geq f \text { on } A .
$$

By Corollary 1(vii) and Note 3 of $\S 4$,

$$
\int_{A} p h=p \int_{A} h
$$

for any such h. Hence

$$
\overline{\int_{A}} p f=\inf _{h} \int_{A} p h=\inf _{h} p \int_{A} h=p \int_{A} f
$$

Similarly,

$$
\int_{A} p f=p \int_{A} f
$$

The general case reduces to the case $f \geq 0$ by formula (1).
(e^{\prime}) Assertion (e^{\prime}) follows from (1) since

$$
(-f)^{+}=f^{-}, \quad(-f)^{-}=f^{+}
$$

and $-(x-y)=y-x$ if $x-y$ is orthodox. (Why?)
(f) Take any elementary and nonnegative map

$$
h \geq f \geq 0 \text { on } A .
$$

By Corollary 1(ii) and Note 3 of $\S 4$,

$$
\int_{B} h \geq \int_{A} h
$$

for any such h. Hence

$$
\overline{\int_{B}} f=\inf _{h} \int_{B} h \leq \inf _{h} \int_{A} h=\overline{\int_{A}} f .
$$

Similarly for $\underline{\int}$.
(g) This follows from (c) and (e^{\prime}) since $\pm f \leq|f|$ implies

$$
\bar{\int}_{A}|f| \geq \bar{\int}_{A} f \geq \int_{A} f
$$

and

$$
\bar{\int}_{A}|f| \geq \bar{\int}_{A}(-f) \geq-\int_{A} f \geq-\bar{\int}_{A} f
$$

For (h) and later work, we need the following lemmas.

Lemma 1. Let $f: S \rightarrow E^{*}$ and $A \in \mathcal{M}$. Then the following are true.
(i) If

$$
\int_{A} f<q \in E^{*},
$$

there is an elementary and (extended) real map

$$
h \geq f \text { on } A,
$$

with

$$
\int_{A} h<q .
$$

(ii) If

$$
\int_{A} f>p \in E^{*}
$$

there is an elementary and (extended) real map

$$
g \leq f \text { on } A,
$$

with

$$
\int_{A} g>p
$$

moreover, g can be made elementary and nonnegative if $f \geq 0$ on A.
Proof. If $f \geq 0$, this is immediate by Definition 1 and the properties of glb and lub.

If, however, $f \nsupseteq 0$, and if

$$
q>\int_{A} f=\bar{\int}_{A} f^{+}-\underline{\int}_{A} f^{-},
$$

our conventions yield

$$
\infty>\int_{A} f^{+} .(\text {Why? })
$$

Thus there are $u, v \in E^{*}$ such that $q=u+v$ and

$$
0 \leq \int_{A} f^{+}<u<\infty
$$

and

$$
-\int_{A} f^{-}<v
$$

To see why this is so, choose u so close to $\bar{\int}_{A} f^{+}$that

$$
q-u>-\int_{A} f^{-}
$$

and set $v=q-u$.
As the lemma holds for positive functions, we find elementary and nonnegative maps h^{\prime} and $h^{\prime \prime}$, with

$$
\begin{gathered}
h^{\prime} \geq f^{+}, h^{\prime \prime} \leq f^{-} \\
\int_{A} h^{\prime}<u<\infty \text { and } \int_{A} h^{\prime \prime}>-v .
\end{gathered}
$$

Let $h=h^{\prime}-h^{\prime \prime}$. Then

$$
h \geq f^{+}-f^{-}=f
$$

and by Problem 6 in $\S 4$,

$$
\int_{A} h=\int_{A} h^{\prime}-\int_{A} h^{\prime \prime} \quad\left(\text { for } \int_{A} h^{\prime} \text { is finite! }\right) .
$$

Hence

$$
\int_{A} h>u+v=q
$$

and clause (i) is proved in full.
Clause (ii) follows from (i) by Theorem 1(e^{\prime}) if

$$
\int_{A} f<\infty
$$

(Verify!) For the case $\underline{\int}_{A} f=\infty$, see Problem 3.
Note 3. The preceding lemma shows that formulas (1^{\prime}) and ($1^{\prime \prime}$) hold (and might be used as definitions) even for sign-changing f, g, and h.
Lemma 2. If $f: S \rightarrow E^{*}$ and $A \in \mathcal{M}$, there are \mathcal{M}-measurable maps g and h, with

$$
g \leq f \leq h \text { on } A
$$

such that

$$
\bar{\int}_{A} f=\bar{\int}_{A} h \text { and } \underline{\int}_{A} f=\underline{\int}_{A} g .
$$

We can take $g, h \geq 0$ if $f \geq 0$ on A.
Proof. If

$$
\int_{A} f=\infty
$$

the constant map $h=\infty$ satisfies the statement of the theorem.
If

$$
-\infty<\bar{\int}_{A} f<\infty
$$

let

$$
q_{n}=\bar{\int}_{A} f+\frac{1}{n}, \quad n=1,2, \ldots
$$

so

$$
q_{n} \rightarrow \bar{\int}_{A} f<q_{n}
$$

By Lemma 1, for each n there is an elementary and (extended) real (hence measurable) map $h_{n} \geq f$ on A, with

$$
q_{n} \geq \int_{A} h_{n} \geq \bar{\int}_{A} f
$$

Let

$$
h=\inf _{n} h_{n} \geq f .
$$

By Lemma 1 in $\S 2, h$ is \mathcal{M}-measurable on A. Also,

$$
(\forall n) \quad q_{n}>\int_{A} h_{n} \geq \bar{\int}_{A} h \geq \bar{\int}_{A} f
$$

by Theorem 1(c). Hence

$$
\bar{\int}_{A} f=\lim _{n \rightarrow \infty} q_{n} \geq \bar{\int}_{A} h \geq \bar{\int}_{A} f
$$

so

$$
\bar{\int}_{A} f=\bar{\int}_{A} h
$$

as required.
Finally, if

$$
\bar{\int}_{A} f=-\infty
$$

the same proof works with $q_{n}=-n$. (Verify!)
Similarly, one finds a measurable map $g \leq f$, with

$$
\underline{\int}_{A} f=\underline{\int}_{A} g .
$$

Proof of Theorem $\mathbf{1}(\mathrm{h})$. If $f \geq 0$, choose $h \geq f$ as in Lemma 2. Let

$$
D=A(h>0) \text { and } A_{n}=A\left(h>\frac{1}{n}\right) ;
$$

so

$$
D=\bigcup_{n=1}^{\infty} A_{n} \text { (why?), }
$$

and $D, A_{n} \in \mathcal{M}$ by Theorem 1 of $\S 2$. Also,

$$
0=\bar{\int}_{A} f=\bar{\int}_{A} h \geq \int_{A_{n}}\left(\frac{1}{n}\right)=\frac{1}{n} m A_{n} \geq 0 .
$$

Thus $(\forall n) m A_{n}=0$. Hence

$$
m D=m \bigcup_{n=1}^{\infty} A_{n}=m A(h>0)=0
$$

so $0 \leq f \leq h \leq 0$ (i.e., $f=0$) a.e. on A.
The case $f \leq 0$ reduces to $(-f) \geq 0$.
Corollary 1. If

$$
\int_{A}|f|<\infty,{ }^{4}
$$

then $|f|<\infty$ a.e. on A, and $A(f \neq 0)$ is σ-finite.
Proof. By Lemma 1, fix an elementary and nonnegative $h \geq|f|$ with

$$
\int_{A} h<\infty
$$

(so h is elementary and integrable).
Now, by Corollary 1(i)-(iii) in $\S 4$, our assertions apply to h, hence certainly to f.

Theorem 2 (additivity). Given $f: S \rightarrow E^{*}$ and an \mathcal{M}-partition $\mathcal{P}=\left\{B_{n}\right\}$ of $A \in \mathcal{M}$, we have

$$
\begin{equation*}
\text { (a) } \bar{\int}_{A} f=\sum_{n} \bar{\int}_{B_{n}} f \quad \text { and } \quad \text { (b) } \underline{\int}_{A} f=\sum_{n}{\underline{\int_{B_{n}}}} f \tag{2}
\end{equation*}
$$

provided

$$
\int_{A} f\left(\underline{\int}_{A} f, \text { respectively }\right)
$$

is orthodox, or \mathcal{P} is finite.
Hence if f is integrable on each of finitely many disjoint \mathcal{M}-sets B_{n}, it is so on

$$
A=\bigcup_{n} B_{n}
$$

and formulas (2)(a)(b) apply.

[^42]Proof. Assume first $f \geq 0$ on A. Then by Theorem 1(f), if one of

$$
\bar{\int}_{B_{n}} f=\infty
$$

so is $\bar{\int}_{A} f$, and all is trivial. Thus assume all $\int_{B_{n}} f$ are finite.
Then for any $\varepsilon>0$ and $n \in N$, there is an elementary and nonnegative map $h_{n} \geq f$ on B_{n}, with

$$
\int_{B_{n}} h_{n}<\int_{B_{n}} f+\frac{\varepsilon}{2^{n}}
$$

(Why?) Now define $h: A \rightarrow E^{*}$ by $h=h_{n}$ on $B_{n}, n=1,2, \ldots$.
Clearly, h is elementary and nonnegative on each B_{n}, hence on A (Corollary 3 in $\S 1$), and $h \geq f$ on A. Thus by Theorem 1 of $\S 4$,

$$
\bar{\int}_{A} f \leq \int_{A} h=\sum_{n} \int_{B_{n}} h_{n} \leq \sum_{n}\left(\int_{B_{n}} f+\frac{\varepsilon}{2^{n}}\right) \leq \sum_{n} \bar{\int}_{B_{n}} f+\varepsilon
$$

Making $\varepsilon \rightarrow 0$, we get

$$
\bar{\int}_{A} f \leq \sum_{n} \bar{\int}_{B_{n}} f
$$

To prove also

$$
\bar{\int}_{A} f \geq \sum_{n} \bar{\int}_{B_{n}} f
$$

take any elementary and nonnegative map $H \geq f$ on A. Then again,

$$
\int_{A} H=\sum_{n} \int_{B_{n}} H \geq \sum_{n} \bar{\int}_{B_{n}} f .
$$

As this holds for any such H, we also have

$$
\bar{\int}_{A} f=\inf _{H} \int_{A} H \geq \sum_{n} \bar{\int}_{B_{n}} f
$$

This proves formula (a) for $f \geq 0$. The proof of (b) is quite similar.
If $f \nsupseteq 0$, we have

$$
\bar{\int}_{A} f=\bar{\int}_{A} f^{+}-\underline{\int}_{A} f^{-}
$$

where by the first part of the proof,

$$
\bar{\int}_{A} f^{+}=\sum_{n} \bar{\int}_{B_{n}} f^{+} \text {and } \underline{\int}_{A} f^{-}=\sum_{n}{\underline{\int_{B_{n}}}} f^{-}
$$

If

$$
\int_{A} f
$$

is orthodox, one of these sums must be finite, and so their difference may be rearranged to yield

$$
\bar{\int}_{A} f=\sum_{n}\left(\int_{B_{n}} f^{+}-{\underline{\int_{B_{n}}}} f^{-}\right)=\sum_{n} \bar{\int}_{B_{n}} f
$$

proving (a). Similarly for (b).
This rearrangement works also if \mathcal{P} is finite (i.e., the sums have a finite number of terms). For, then, all reduces to commutativity and associativity of addition, and our conventions (2^{*}) of Chapter $4, \S 4$. Thus all is proved.

Corollary 2. If $m Q=0(Q \in \mathcal{M})$, then for $A \in \mathcal{M}$

$$
\bar{\int}_{A-Q} f=\bar{\int}_{A} f \text { and }{\underline{\int_{A-Q}}} f={\underline{\int_{A}}} f .
$$

For by Theorem 2,

$$
\bar{\int}_{A} f=\bar{\int}_{A-Q} f+\bar{\int}_{A \cap Q} f
$$

where

$$
\bar{\int}_{A \cap Q} f=0
$$

by Theorem 1(b).
Corollary 3. If

$$
\bar{\int}_{A} f\left(o r \underline{\int}_{A} f\right)
$$

is orthodox, so is

$$
\bar{\int}_{X} f\left({\int_{X}}^{f}\right)
$$

whenever $A \supseteq X, X \in \mathcal{M}$.
For if

$$
\bar{\int}_{A} f^{+}, \bar{\int}_{A} f^{-}, \underline{\int}_{A} f^{+}, \text {or } \underline{\int}_{A} f^{-} \text {is finite }
$$

it remains so also when A is reduced to X (see Theorem 1(f)). Hence orthodoxy follows by formula (1).

Note 4. Given $f: S \rightarrow E^{*}$, we can define two additive (by Theorem 2) set functions \bar{s} and \underline{s} by setting for $X \in \mathcal{M}$

$$
\bar{s} X=\bar{\int}_{X} f \text { and } \underline{s} X={\underline{\int_{X}}}_{X} f
$$

They are called, respectively, the upper and lower indefinite integrals of f, also denoted by

$$
\bar{\int} f \text { and } \int f
$$

(or \bar{s}_{f} and \underline{s}_{f}).
By Theorem 2 and Corollary 3, if

$$
\bar{\int}_{A} f
$$

is orthodox, then \bar{s} is σ-additive (and semifinite) when restricted to \mathcal{M}-sets $X \subseteq A$. Also,

$$
\bar{s} \emptyset=\underline{s} \emptyset=0
$$

by Theorem 1(b).
Such set functions are called signed measures (see Chapter 7, §11). In particular, if $f \geq 0$ on S, \bar{s} and \underline{s} are σ-additive and nonnegative on all of \mathcal{M}, hence measures on \mathcal{M}.
Theorem 3. If $f: S \rightarrow E^{*}$ is m-measurable (Definition 2 in $\S 3$) on A, then

$$
\bar{\int}_{A} f=\underline{\int}_{A} f
$$

Proof. First, let $f \geq 0$ on A. By Corollary 2, we may assume that f is \mathcal{M}-measurable on A (drop a set of measure zero). Now fix $\varepsilon>0$.

Let $A_{0}=A(f=0), A_{\infty}=A(f=\infty)$, and

$$
A_{n}=A\left((1+\varepsilon)^{n} \leq f<(1+\varepsilon)^{n+1}\right), \quad n=0, \pm 1, \pm 2, \ldots
$$

Clearly, these are disjoint \mathcal{M}-sets (Theorem 1 of $\S 2$), and

$$
A=A_{0} \cup A_{\infty} \cup \bigcup_{n=-\infty}^{\infty} A_{n}
$$

Thus, setting

$$
g= \begin{cases}0 & \text { on } A_{0} \\ \infty & \text { on } A_{\infty}, \text { and } \\ (1+\varepsilon)^{n} & \text { on } A_{n}(n=0, \pm 1, \pm 2, \ldots)\end{cases}
$$

and

$$
h=(1+\varepsilon) g \text { on } A
$$

we obtain two elementary and nonnegative maps, with

$$
g \leq f \leq h \text { on } A . \text { (Why?) }
$$

By Note 1,

$$
\underline{\int}_{A} g=\overline{\int_{A}} g
$$

Now, if $\int_{A} g=\infty$, then

$$
\bar{\int}_{A} f \geq{\underline{\int_{A}}}_{A} f \geq \int_{A} g
$$

yields

$$
\bar{\int}_{A} f \geq{\underline{\int_{A}}}_{A} f=\infty
$$

If, however, $\int_{A} g<\infty$, then

$$
\int_{A} h=\int_{A}(1+\varepsilon) g=(1+\varepsilon) \int_{A} g<\infty
$$

so g and h are elementary and integrable on A. Thus by Theorem 2(ii) in $\S 4$,

$$
\int_{A} h-\int_{A} g=\int_{A}(h-g)=\int_{A}((1+\varepsilon) g-g)=\varepsilon \int_{A} g .
$$

Moreover, $g \leq f \leq h$ implies

$$
\int_{A} g \leq \underline{\int}_{A} f \leq \bar{\int}_{A} f \leq \int_{A} h
$$

so

$$
\left|\bar{\int}_{A} f-\underline{\int-}_{A} f\right| \leq \int_{A} h-\int_{A} g \leq \varepsilon \int_{A} g .
$$

As ε is arbitrary, all is proved for $f \geq 0$.
The case $f \nsupseteq 0$ now follows by formula (1), since f^{+}and f^{-}are \mathcal{M} measurable (Theorem 2 in §2).

Problems on Integration of Extended-Real Functions

1. Using the formulas in (1) and our conventions, verify that
(i) $\bar{\int}_{A} f=+\infty$ iff $\bar{\int}_{A} f^{+}=\infty$;
(ii) $\underline{\int}_{A} f=\infty$ iff $\underline{\int}_{A} f^{+}=\infty$; and
(iii) $\bar{\int}_{A} f=-\infty$ iff $\int_{A} f^{-}=\infty$ and $\bar{\int}_{A} f^{+}<\infty$.
(iv) Derive a condition similar to (iii) for $\int_{A} f=-\infty$.
(v) Review Problem 6 of Chapter 4, $\S 4$.
2. Fill in the missing proof details in Theorems 1 to 3 and Lemmas 1 and 2.
3. Prove that if $\int_{A} f=\infty$, there is an elementary and (extended) real map $g \leq f$ on A, with $\int_{A} g=\infty$.
[Outline: By Problem 1, we have

$$
\underline{\int}_{A} f^{+}=\infty .
$$

As Lemmas 1 and 2 surely hold for nonnegative functions, fix a measurable $F \leq f^{+}$ ($F \geq 0$), with

$$
\int_{A} F=\underline{\int}_{A} f^{+}=\infty .
$$

Arguing as in Theorem 3, find an elementary and nonnegative map $g \leq F$, with

$$
(1+\varepsilon) \int_{A} g=\int_{A} F=\infty
$$

so $\int_{A} g=\infty$ and $0 \leq g \leq F \leq f^{+}$on A.
Let

$$
A_{+}=A(F>0) \in \mathcal{M}
$$

and

$$
A_{0}=A(F=0) \in \mathcal{M}
$$

(Theorem 1 in $\S 2$). On A_{+},

$$
g \leq F \leq f^{+}=f(\text { why? }),
$$

while on $A_{0}, g=F=0$; so

$$
\int_{A_{+}} g=\int_{A} g=\infty(\text { why? }) .
$$

Now redefine $g=-\infty$ on A_{0} (only). Show that g is then the required function.]
4. For any $f: S \rightarrow E^{*}$, prove the following.
(a) If $\bar{\int}_{A} f<\infty$, then $f<\infty$ a.e. on A.
(b) If $\int_{A} f$ is orthodox and $>-\infty$, then $f>-\infty$ a.e. on A.
[Hint: Use Problem 1 and apply Corollary 1 to f^{+}; thus prove (a). Then for (b), use Theorem 1(e^{\prime}).]
$\Rightarrow 5$. For any $f, g: S \rightarrow E^{*}$, prove that
(i) $\bar{\int}_{A} f+\bar{\int}_{A} g \geq \bar{\int}_{A}(f+g)$, and
(ii) $\underline{\int}_{A}(f+g) \geq \underline{\int}_{A} f+\underline{\int}_{A} g$ if $\left|\underline{\int}_{A} g\right|<\infty$.
[Hint: Suppose that

$$
\bar{\int}_{A} f+\bar{\int}_{A} g<\bar{\int}_{A}(f+g)
$$

Then there are numbers

$$
u>\bar{\int}_{A} f \text { and } v>\bar{\int}_{A} g
$$

with

$$
u+v \leq \bar{\int}_{A}(f+g)
$$

(Why?) Thus Lemma 1 yields elementary and (extended) real maps $F \geq f$ and $G \geq g$ such that

$$
u>\bar{\int}_{A} F \text { and } v>\bar{\int}_{A} G
$$

As $f+g \leq F+G$ on A, Theorem 1(c) of $\S 5$ and Problem 6 of $\S 4$ show that

$$
\bar{\int}_{A}(f+g) \leq \int_{A}(F+G)=\int_{A} F+\int_{A} G<u+v
$$

contrary to

$$
u+v \leq \bar{\int}_{A}(f+g)
$$

Similarly prove clause (ii).]
6. Continuing Problem 5, prove that

$$
\bar{\int}_{A}(f+g) \geq \bar{\int}_{A} f+\underline{\int-A}_{A} g \geq \underline{\int-}_{A}(f+g) \geq \underline{\int}_{A} f+\underline{\int}_{A} g
$$

provided $\left|\underline{\int}_{A} g\right|<\infty$.
[Hint for the second inequality: We may assume that

$$
\bar{\int}_{A}(f+g)<\infty \text { and } \bar{\int}_{A} f>-\infty .
$$

(Why?) Apply Problems 5 and 4(a) to

$$
\bar{\int}_{A}((f+g)+(-g)) .
$$

Use Theorem 1(e^{\prime}).]
7. Prove the following.
(i) $\bar{\int}_{A}|f|<\infty$ iff $-\infty<\underline{\int}_{A} f \leq \bar{\int}_{A} f<\infty$.
(ii) If $\bar{\int}_{A}|f|<\infty$ and $\bar{\int}_{A}|g|<\infty$, then

$$
\left|\bar{\int}_{A} f-\bar{\int}_{A} g\right| \leq \bar{\int}_{A}|f-g|
$$

and

$$
\left|\int_{A} f-\underline{\int}_{A} g\right| \leq \bar{\int}_{A}|f-g| .
$$

[Hint: Use Problems 5 and 6.]
8. Show that any signed measure \bar{s}_{f} (Note 4) is the difference of two measures: $\bar{s}_{f}=\bar{s}_{f+}-\bar{s}_{f-}$.

§6. Integrable Functions. Convergence Theorems

I. Some important theorems apply to integrable functions.

Theorem 1 (linearity of the integral). If $f, g: S \rightarrow E^{*}$ are integrable on a set $A \in \mathcal{M}$ in (S, \mathcal{M}, m), so is

$$
p f+q g
$$

for any $p, q \in E^{1}$, and

$$
\int_{A}(p f+q g)=p \int_{A} f+q \int_{A} g
$$

in particular,

$$
\int_{A}(f \pm g)=\int_{A} f \pm \int_{A} g
$$

Proof. By Problem 5 in $\S 5$,

$$
\bar{\int}_{A} f+\bar{\int}_{A} g \geq \bar{\int}_{A}(f+g) \geq{\underline{\int_{A}}}_{A}(f+g) \geq{\underline{\int_{A}}}_{A} f+{\underline{\int_{A}}}_{A} g
$$

(Here

$$
\bar{\int}_{A} f, \underline{\int}_{A} f, \bar{\int}_{A} g, \text { and }{\underline{\int_{A}}}_{A}
$$

are finite by integrability; so all is orthodox.)
As

$$
\bar{\int}_{A} f={\underline{\int_{A}}}_{A} f \text { and } \bar{\int}_{A} g={\underline{\int_{A}}} g
$$

the inequalities turn into equalities, so that

$$
\int_{A} f+\int_{A} g=\bar{\int}_{A}(f+g)=\underline{\int}_{A}(f+g)
$$

Using also Theorem $1(\mathrm{e})\left(\mathrm{e}^{\prime}\right)$ from $\S 5$, we obtain the desired result for any $p, q \in E^{1}$.

Theorem 2. A function $f: S \rightarrow E^{*}$ is integrable on A in (S, \mathcal{M}, m) iff
(i) it is m-measurable on A, and
(ii) $\bar{\int}_{A} f$ (equivalently $\left.\bar{\int}_{A}|f|\right)$ is finite.

Proof. If these conditions hold, f is integrable on A by Theorem 3 of $\S 5$.
Conversely, let

$$
\bar{\int}_{A} f={\underline{\int_{A}}}_{A} f \neq \pm \infty
$$

Using Lemma 2 in $\S 5$, fix measurable maps g and $h(g \leq f \leq h)$ on A, with

$$
\int_{A} g=\int_{A} f=\int_{A} h \neq \pm \infty
$$

By Theorem 3 in $\S 5, g$ and h are integrable on A; so by Theorem 1 ,

$$
\int_{A}(h-g)=\int_{A} h-\int_{A} g=0 .
$$

As

$$
h-g \geq h-f \geq 0
$$

we get

$$
\int_{A}(h-f)=0,
$$

and so by Theorem 1 (h) of $\S 5, h-f=0$ a.e. on A.
Hence f is almost measurable on A, and

$$
\int_{A} f \neq \pm \infty
$$

by assumption. From formula (1), we then get

$$
\int_{A} f^{+} \text {and } \int_{A} f^{-}<\infty
$$

and hence

$$
\int_{A}|f|=\int_{A}\left(f^{+}+f^{-}\right)=\int_{A} f^{+}+\int_{A} f^{-}<\infty
$$

by Theorem 1 and by Theorem 2 of $\S 2$. Thus all is proved.

Simultaneously, we also obtain the following corollary.
Corollary 1. A function $f: S \rightarrow E^{*}$ is integrable on A iff f^{+}and f^{-}are.
Corollary 2. If $f, g: S \rightarrow E^{*}$ are integrable on A, so also are

$$
f \vee g, f \wedge g,|f|, \text { and } k f \text { for } k \in E^{1}
$$

with

$$
\int_{A} k f=k \int_{A} f
$$

Exercise!
For products $f g$, this holds if f or g is bounded. In fact, we have the following theorem.

Theorem 3 (weighted law of the mean). Let f be m-measurable and bounded on A. Set

$$
p=\inf f[A] \text { and } q=\sup f[A] .
$$

Then if g is m-integrable on A, so is $f g$, and

$$
\int_{A} f|g|=c \int_{A}|g|
$$

for some $c \in[p, q]$.
If, further, f also has the Darboux property on A (Chapter 4, §9), then $c=f\left(x_{0}\right)$ for some $x_{0} \in A$.

Proof. By assumption,

$$
\left(\exists k \in E^{1}\right) \quad|f| \leq k
$$

on A. Hence if $\int_{A}|g|=0$,

$$
\left|\int_{A} f\right| g\left|\left|\leq \int_{A}\right| f g\right| \leq k \int_{A}|g|=0
$$

so any $c \in[p, q]$ yields

$$
\int_{A} f|g|=c \int_{A}|g|=0 .
$$

If, however, $\int_{A}|g| \neq 0$, the number

$$
c=\left(\int_{A} f|g|\right) / \int_{A}|g|
$$

is the required constant.
Moreover, as f and g are m-measurable on A, so is $f g$; and as

$$
\left|\int_{A} f g\right| \leq|c| \int_{A}|g|<\infty
$$

$f g$ is integrable on A by Theorem 2.
Finally, if f has the Darboux property and if $p<c<q$ (with p, q as above), then

$$
f(x)<c<f(y)
$$

for some $x, y \in A$ (why?); hence by the Darboux property, $f\left(x_{0}\right)=c$ for some $x_{0} \in A$.

If, however,

$$
c \leq \inf f[A]=p,
$$

then

$$
(f-c)|g| \geq 0
$$

and

$$
\int_{A}(f-c)|g|=\int_{A} f|g|-c \int_{A}|g|=0(\text { why? })
$$

so by Theorem $1(\mathrm{~h})$ in $\S 5, f-c=0$ a.e. on A. Then surely $f\left(x_{0}\right)=c$ for some $x_{0} \in A$ (except the trivial case $m A=0$). This also implies $c \in f[A] \in[p, q]$.

Proceed similarly in the case $c \geq q$.
Corollary 3. If f is integrable on $A \in \mathcal{M}$, it is so on any $B \subseteq A(B \in \mathcal{M})$.
Proof. Apply Theorem 1(f) in $\S 5$, and Theorem 3 of $\S 5$, to f^{+}and f^{-}.
II. Convergence Theorems. If $f_{n} \rightarrow f$ on A (pointwise, a.e., or uniformly), does it follow that

$$
\int_{A} f_{n} \rightarrow \int_{A} f ?
$$

To give some answers, we need a lemma.
Lemma 1. If $f \geq 0$ on $A \in \mathcal{M}$ and if

$$
{\underline{\int_{A}}}_{A} f p \in E^{*}
$$

there is an elementary and nonnegative map g on A such that

$$
\int_{A} g>p
$$

and $g<f$ on A except only at those $x \in A$ (if any) at which

$$
f(x)=g(x)=0
$$

(We then briefly write $g \subset f$ on A.)

Proof. By Lemma 1 in $\S 5$, there is an elementary and nonnegative map $G \leq f$ on A, with

$$
\underline{\int}_{A} f \geq \int_{A} G>p .
$$

For the rest, proceed as in Problem 7 of $\S 4$, replacing f by G there.
Theorem 4 (monotone convergence). If $0 \leq f_{n} \nearrow f$ (a.e.) on $A \in \mathcal{M}$, i.e.,

$$
0 \leq f_{n} \leq f_{n+1} \quad(\forall n)
$$

and $f_{n} \rightarrow f$ (a.e.) on A, then

$$
\bar{\int}_{A} f_{n} \nearrow \bar{\int}_{A} f
$$

Proof for \mathcal{M}-measurable f_{n} and f on $A .{ }^{1}$ By Corollary 2 in $\S 5$, we may assume that $f_{n} \nearrow f$ (pointwise) on A (otherwise, drop a null set).

By Theorem 1(c) of $\S 5,0 \leq f_{n} \nearrow f$ implies

$$
0 \leq \int_{A} f_{n} \leq \int_{A} f
$$

and so

$$
\lim _{n \rightarrow \infty} \int_{A} f_{n} \leq \int_{A} f
$$

The limit, call it p, exists in E^{*}, as $\left\{\int_{A} f_{n}\right\} \uparrow$. It remains to show that

$$
p \geq \bar{\int}_{A} f=\underline{\int}_{A} f .
$$

(We know that

$$
\bar{\int}_{A} f=\underline{\int}_{A} f
$$

by the assumed measurability of f; see Theorem 3 in $\S 5$.)
Suppose

$$
\underline{\int}_{A} f>p
$$

Then Lemma 1 yields an elementary and nonnegative map $g \subset f$ on A, with

$$
p<\int_{A} g .
$$

Let

$$
A_{n}=A\left(f_{n} \geq g\right), \quad n=1,2, \ldots
$$

[^43]Then $A_{n} \in \mathcal{M}$ and

$$
A_{n} \nearrow A=\bigcup_{n=1}^{\infty} A_{n}
$$

For if $f(x)=0$, then $x \in A_{1}$, and if $f(x)>0$, then $f(x)>g(x)$, so that $f_{n}(x)>g(x)$ for large n; hence $x \in A_{n}$.

By Note 4 in $\S 5$, the set function $s=\int g$ is a measure, hence continuous by Theorem 2 in Chapter 7, $\S 4$. Thus

$$
\int_{A} g=s A=\lim _{n \rightarrow \infty} s A_{n}=\lim _{n \rightarrow \infty} \int_{A_{n}} g
$$

But as $g \leq f_{n}$ on A_{n}, we have

$$
\int_{A_{n}} g \leq \int_{A_{n}} f_{n} \leq \int_{A} f_{n}
$$

Hence

$$
\int_{A} g=\lim \int_{A_{n}} g \leq \lim \int_{A} f_{n}=p
$$

contrary to $p<\int_{A} g$. This contradiction completes the proof.
Lemma 2 (Fatou). If $f_{n} \geq 0$ on $A \in \mathcal{M}(n=1,2, \ldots)$, then

$$
\bar{\int}_{A} \underline{\lim } f_{n} \leq \underline{\lim } \bar{\int}_{A} f_{n}
$$

Proof. Let

$$
g_{n}=\inf _{k \geq n} f_{k}, \quad n=1,2, \ldots ;
$$

so $f_{n} \geq g_{n} \geq 0$ and $\left\{g_{n}\right\} \uparrow$ on A. Thus by Theorem 4 ,

$$
\bar{\int}_{A} \lim g_{n}=\lim \bar{\int}_{A} g_{n}=\underline{\lim } \bar{\int}_{A} g_{n} \leq \underline{\lim } \bar{\int}_{A} f_{n}
$$

But

$$
\lim _{n \rightarrow \infty} g_{n}=\sup _{n} g_{n}=\sup _{n} \inf _{k \geq n} f_{k}=\underline{\lim } f_{n} .
$$

Hence

$$
\bar{\int}_{A} \underline{\lim } f_{n}=\bar{\int}_{A} \lim g_{n} \leq \underline{\lim } \int_{A} f_{n}
$$

as claimed.

Theorem 5 (dominated convergence). Let $f_{n}: S \rightarrow E$ be m-measurable on $A \in \mathcal{M}(n=1,2, \ldots)$. Let

$$
f_{n} \rightarrow f(\text { a.e. }) \text { on } A .
$$

Then

$$
\lim _{n \rightarrow \infty} \int_{A}\left|f_{n}-f\right|=0
$$

provided that there is a map $g: S \rightarrow E^{1}$ such that

$$
\int_{A} g<\infty
$$

and

$$
(\forall n) \quad\left|f_{n}\right| \leq g \text { a.e. on } A .
$$

Proof. Neglecting null sets, we may assume that

$$
\left|f_{n}\right| \leq g<\infty
$$

on A and $f_{n} \rightarrow f$ (pointwise) on A; so $|f| \leq g$ and

$$
\left|f_{n}-f\right| \leq\left|f_{n}\right|+|f| \leq 2 g
$$

on A. As $|f|<\infty$, we have

$$
\left|f_{n}-f\right| \rightarrow 0
$$

on A. Hence, setting

$$
h_{n}=2 g-\left|f_{n}-f\right| \geq 0,
$$

we get

$$
2 g=\lim _{n \rightarrow \infty} h_{n}=\underline{\lim } h_{n} .
$$

We may also assume that g is measurable on A. (If not, replace it by a measurable $G \geq g$, with

$$
\int_{A} G=\int_{A} g<\infty,
$$

by Lemma 2 in $\S 5$.) Then all

$$
h_{n}=2 g-\left|f_{n}-f\right|
$$

are measurable (even integrable) on A.

Thus by Lemma 2,

$$
\begin{aligned}
\int_{A} 2 g=\int_{A} \underline{\lim } h_{n} & \leq \underline{\lim } \int_{A}\left(2 g-\left|f_{n}-f\right|\right) \\
& =\underline{\lim }\left(\int_{A} 2 g+\int_{A}\left(-\left|f_{n}-f\right|\right)\right) \\
& =\int_{A} 2 g+\underline{\lim }\left(-\int_{A}\left|f_{n}-f\right|\right) \\
& =\int_{A} 2 g-\overline{\lim } \int_{A}\left|f_{n}-f\right|
\end{aligned}
$$

(See Problems 5 and 8 in Chapter 2, §13.)
Canceling $\int_{A} 2 g$ (finite!), we have

$$
0 \leq-\varlimsup \int_{A}\left|f_{n}-f\right|
$$

Hence

$$
0 \geq \overline{\lim } \int_{A}\left|f_{n}-f\right| \geq \underline{\lim } \int_{A}\left|f_{n}-f\right| \geq 0
$$

as $\left|f_{n}-f\right| \geq 0$. This yields

$$
0=\overline{\lim } \int_{A}\left|f_{n}-f\right|=\underline{\lim } \int_{A}\left|f_{n}-f\right|=\lim \int_{A}\left|f_{n}-f\right|,
$$

as required.
Note 1. Theorem 5 holds also for complex and vector-valued functions (for $\left|f_{n}-f\right|$ is real).

In the extended-real case, Theorems $1(\mathrm{~g})$ in $\S 5$ and Theorems 1 and 2 in $\S 6$ yield

$$
\left|\int_{A} f_{n}-\int_{A} f\right|=\left|\int_{A}\left(f_{n}-f\right)\right| \leq \int_{A}\left|f_{n}-f\right| \rightarrow 0
$$

i.e.,

$$
\int_{A} f_{n} \rightarrow \int_{A} f
$$

Moreover, f is integrable on A, being measurable (why?), with

$$
\int_{A}|f| \leq \int_{A} g<\infty
$$

For complex and vector-valued functions, this will follow from $\S 7$. Observe that Theorem 5, unlike Theorem 4, requires the m-measurability of the f_{n}.

Note 2. Theorem 5 fails if there is no "dominating"

$$
g \geq\left|f_{n}\right| \text { with } \int_{A} g<\infty,
$$

even if f and the f_{n} are integrable.

Example.

Let m be Lebesgue measure in $A=E^{1}, f=0$, and

$$
f_{n}= \begin{cases}1 & \text { on }[n, n+1] \\ 0 & \text { elsewhere }\end{cases}
$$

Then $f_{n} \rightarrow f$ and $\int_{A} f_{n}=1$; so

$$
\lim _{n \rightarrow \infty} \int_{A} f_{n}=1 \neq 0=\int_{A} f
$$

The trouble is that any

$$
g \geq f_{n} \quad(n=1,2, \ldots)
$$

would have to be ≥ 1 on $B=[1, \infty)$; so

$$
\int_{A} g \geq \int_{B} g=1 \cdot m B=\infty
$$

instead of $\int_{A} g<\infty$.
This example also shows that $f_{n} \rightarrow f$ alone does not imply

$$
\int_{A} f_{n} \rightarrow \int_{A} f
$$

Theorem 6 (absolute continuity of the integral). Given $f: S \rightarrow E$ with

$$
\bar{\int}_{A}|f|<\infty
$$

and $\varepsilon>0$, there is $\delta>0$ such that

$$
\bar{\int}_{X}|f|<\varepsilon
$$

whenever

$$
m X<\delta \quad(A \supseteq X, X \in \mathcal{M})
$$

Proof. By Lemma 2 in $\S 5$, fix $h \geq|f|$, measurable on A, with

$$
\int_{A} h=\bar{\int}_{A}|f|<\infty .
$$

Neglecting a null set, we assume that $|h|<\infty$ on A (Corollary 1 of $\S 5$). Now, $(\forall n)$ set

$$
g_{n}(x)= \begin{cases}h(x), & x \in A_{n}=A(h<n) \\ 0, & x \in-A_{n}\end{cases}
$$

Then $g_{n} \leq n$ and g_{n} is measurable on A. (Why?)
Also, $g_{n} \geq 0$ and $g_{n} \rightarrow h$ (pointwise) on A.
For let $\varepsilon>0$, fix $x \in A$, and find $k>h(x)$. Then

$$
(\forall n \geq k) \quad h(x) \leq n \text { and } g_{n}(x)=h(x) .
$$

So

$$
(\forall n \geq k) \quad\left|g_{n}(x)-h(x)\right|=0<\varepsilon
$$

Clearly, $g_{n} \leq h$. Hence by Theorem 5

$$
\lim _{n \rightarrow \infty} \int_{A}\left|h-g_{n}\right|=0
$$

Thus we can fix n so large that

$$
\int_{A}\left(h-g_{n}\right)<\frac{1}{2} \varepsilon .
$$

For that n, let

$$
\delta=\frac{\varepsilon}{2 n}
$$

and take any $X \subseteq A(X \in \mathcal{M})$, with $m X<\delta$.
As $g_{n} \leq n$ (see above), Theorem 1(c) in $\S 5$ yields

$$
\int_{X} g_{n} \leq \int_{X}(n)=n \cdot m X<n \delta=\frac{1}{2} \varepsilon .
$$

Hence as $|f| \leq h$ and

$$
\int_{X}\left(h-g_{n}\right) \leq \int_{A}\left(h-g_{n}\right)<\frac{1}{2} \varepsilon
$$

(Theorem 1(f) of §5), we obtain

$$
\bar{\int}_{X}|f| \leq \int_{X} h=\int_{X}\left(h-g_{n}\right)+\int_{X} g_{n}<\frac{1}{2} \varepsilon+\frac{1}{2} \varepsilon=\varepsilon
$$

as required.

Problems on Integrability and Convergence Theorems

1. Fill in the missing details in the proofs of this section.
2. (i) Show that if $f: S \rightarrow E^{*}$ is bounded and m-measurable on A, with $m A<\infty$, then f is m-integrable on A (Theorem 2) and

$$
\int_{A} f=c \cdot m A
$$

where $\inf f[A] \leq c \leq \sup f[A]$.
(ii) Prove that if f also has the Darboux property on A, then

$$
\left(\exists x_{0} \in A\right) \quad c=f\left(x_{0}\right) .
$$

[Hint: Take $g=1$ in Theorem 3.]
(iii) What results if $A=[a, b]$ and $m=$ Lebesgue measure?
3. Prove Theorem 4 assuming that the f_{n} are measurable on A and that

$$
(\exists k) \quad \int_{A} f_{k}>-\infty
$$

instead of $f_{n} \geq 0$.
[Hint: As $\left\{f_{n}\right\} \uparrow$, show that

$$
(\forall n \geq k) \quad \int_{A} f_{n}>-\infty
$$

If

$$
(\exists n) \quad \int_{A} f_{n}=\infty,
$$

then

$$
\int_{A} f=\lim \int_{A} f_{n}=\infty .
$$

Otherwise,

$$
(\forall n \geq k)\left|\int_{A} f_{n}\right|<\infty ;
$$

so f_{n} is integrable. (Why?) By Corollary 1 in $\S 5$, assume $\left|f_{n}\right|<\infty$. (Why?) Apply Theorem 4 to $h_{n}=f_{n}-f_{k}(n \geq k)$, considering two cases:

$$
\left.\int_{A} h<\infty \text { and } \int_{A} h=\infty .\right]
$$

4. Show that if $f_{n} \nearrow f$ (pointwise) on $A \in \mathcal{M}$, there are \mathcal{M}-measurable maps $F_{n} \geq f_{n}$ and $F \geq f$ on A, with $F_{n} \nearrow F$ (pointwise) on A, such that

$$
\int_{A} F=\bar{\int}_{A} f \text { and } \int_{A} F_{n}=\bar{\int}_{A} f_{n} .
$$

[Hint: By Lemma 2 of $\S 5$, fix measurable maps $h \geq f$ and $h_{n} \geq f_{n}$ with the same integrals. Let

$$
F_{n}=\inf _{k \geq n}\left(h \wedge h_{k}\right), \quad n=1,2, \ldots
$$

and $F=\sup _{n} F_{n} \leq h$. (Why?) Proceed.]
5. For $A \in \mathcal{M}$ and any (even nonmeasurable) functions $f, f_{n}: S \rightarrow E^{*}$, prove the following.
(i) If $f_{n} \nearrow f$ (a.e.) on A, then

$$
\bar{\int}_{A} f_{n} \nearrow \bar{\int}_{A} f
$$

provided

$$
(\exists n) \bar{\int}_{A} f_{n}>-\infty .
$$

(ii) If $f_{n} \searrow f$ (a.e.) on A, then

$$
\underline{\int}_{A} f_{n} \searrow \underline{\int}_{A} f
$$

provided

$$
(\exists n) \underline{\int}_{A} f_{n}<\infty .
$$

[Hint: Replace f, f_{n} by F, F_{n} as in Problem 4. Then apply Problem 3 to F_{n}; thus obtain (i). For (ii), use (i) and Theorem $1\left(\mathrm{e}^{\prime}\right)$ in $\S 5$. (All is orthodox; why?)]
6. Show by examples that
(i) the conditions

$$
\bar{\int}_{A} f_{n}>-\infty \text { and }{\underline{\int_{A}}}_{A} f_{n}<\infty
$$

in Problem 5 are essential; and
(ii) Problem 5(i) fails for lower integrals. What about 5(ii)?
[Hints: (i) Let $A=(0,1) \subset E^{1}, m=$ Lebesgue measure, $f_{n}=-\infty$ on ($0, \frac{1}{n}$), $f_{n}=1$ elsewhere.
(ii) Let $\mathcal{M}=\left\{E^{1}, \emptyset\right\}, m E^{1}=1, m \emptyset=0, f_{n}=1$ on $(-n, n), f_{n}=0$ elsewhere. If $f=1$ on $A=E^{1}$, then $f_{n} \rightarrow f$, but not

$$
\underline{\int}_{A} f_{n} \rightarrow \underline{\int}_{A} f .
$$

Explain!]
7. Given $f_{n}: S \rightarrow E^{*}$ and $A \in \mathcal{M}$, let

$$
g_{n}=\inf _{k \geq n} f_{k} \text { and } h_{n}=\sup _{k \geq n} f_{k} \quad(n=1,2, \ldots) .
$$

Prove that
(i) $\bar{\int}_{A} \underline{\lim } f_{n} \leq \underline{\lim } \bar{\int}_{A} f_{n}$ provided $(\exists n) \bar{\int}_{A} g_{n}>-\infty$; and
(ii) $\underline{\int}_{A} \varlimsup f_{n} \leq \varlimsup \underline{\int}_{A} f_{n}$ provided $(\exists n) \underline{\int}_{A} h_{n}<\infty$.
[Hint: Apply Problem 5 to g_{n} and h_{n}.]
(iii) Give examples for which

$$
\bar{\int}_{A} \underline{\lim } f_{n} \neq \underline{\lim } \bar{\int}_{A} f_{n} \text { and } \underline{\int_{A}} \overline{\lim } f_{n} \neq \overline{\lim } \int_{A} f_{n}
$$

(See Note 2).
8. Let $f_{n} \geq 0$ on $A \in \mathcal{M}$ and $f_{n} \rightarrow f$ (a.e.) on A. Let $A \supseteq X, X \in \mathcal{M}$. Prove the following.
(i) If

$$
\int_{A} f_{n} \rightarrow \int_{A} f<\infty
$$

then

$$
\bar{\int}_{X} f_{n} \rightarrow \bar{\int}_{X} f
$$

(ii) This fails for sign-changing f_{n}.
[Hints: If (i) fails, then

$$
\underline{\lim } \bar{\int}_{X} f_{n}<\bar{\int}_{X} f \text { or } \underline{\lim } \bar{\int}_{X} f_{n}>\bar{\int}_{X} f .
$$

Find a subsequence of

$$
\left\{\bar{\int}_{X} f_{n}\right\} \text { or }\left\{\bar{\int}_{A-X} f_{n}\right\}
$$

contradicting Lemma 2 .
(ii) Let $m=$ Lebesgue measure; $A=(0,1), X=\left(0, \frac{1}{2}\right)$,

$$
f_{n}= \begin{cases}n & \text { on }\left(0, \frac{1}{2 n}\right], \\ -n & \text { on } \left.\left(1-\frac{1}{2 n}, 1\right) \cdot\right]\end{cases}
$$

$\Rightarrow 9$. (i) Show that if f and g are m-measurable and nonnegative on A, then

$$
(\forall a, b \geq 0) \quad \int_{A}(a f+b g)=a \int_{A} f+b \int_{A} g .
$$

(ii) If, in addition, $\int_{A} f<\infty$ or $\int_{A} g<\infty$, this formula holds for any $a, b \in E^{1}$.
[Hint: Proceed as in Theorem 1.]
$\Rightarrow 10$. If

$$
f=\sum_{n=1}^{\infty} f_{n}
$$

with all f_{n} measurable and nonnegative on A, then

$$
\int_{A} f=\sum_{n=1}^{\infty} \int_{A} f_{n}
$$

[Hint: Apply Theorem 4 to the maps

$$
g_{n}=\sum_{k=1}^{n} f_{k} \nearrow f .
$$

Use Problem 9.]
11. If

$$
q=\sum_{n=1}^{\infty} \int_{A}\left|f_{n}\right|<\infty
$$

and the f_{n} are m-measurable on A, then

$$
\sum_{n=1}^{\infty}\left|f_{n}\right|<\infty \text { (a.e.) on } A
$$

and $f=\sum_{n=1}^{\infty} f_{n}$ is m-integrable on A, with

$$
\int_{A} f=\sum_{n=1}^{\infty} \int_{A} f_{n}
$$

[Hint: Let $g=\sum_{n=1}^{\infty}\left|f_{n}\right|$. By Problem 10,

$$
\int_{A} g=\sum_{n=1}^{\infty} \int_{A}\left|f_{n}\right|=q<\infty ;
$$

so $g<\infty$ (a.e.) on A. (Why?) Apply Theorem 5 and Note 1 to the maps

$$
g_{n}=\sum_{k=1}^{n} f_{k} ;
$$

note that $\left|g_{n}\right| \leq g$.]
12. (Convergence in measure; see Problem 11(ii) of $\S 3)$.
(i) Prove Riesz' theorem: If $f_{n} \rightarrow f$ in measure on $A \subseteq S$, there is a subsequence $\left\{f_{n_{k}}\right\}$ such that $f_{n_{k}} \rightarrow f$ (almost uniformly), hence (a.e.), on A.
[Outline: Taking

$$
\sigma_{k}=\delta_{k}=2^{-k},
$$

pick, step by step, naturals

$$
n_{1}<n_{2}<\cdots<n_{k}<\cdots
$$

and sets $D_{k} \in \mathcal{M}$ such that $(\forall k)$

$$
m D_{k}<2^{-k}
$$

and

$$
\rho^{\prime}\left(f_{n_{k}}, f\right)<2^{-k}
$$

on $A-D_{k}$. (Explain!) Let

$$
E_{n}=\bigcup_{k=n}^{\infty} D_{k}
$$

$m E_{n}<2^{1-n}$. (Why?) Show that

$$
(\forall n)(\forall k>n) \quad \rho^{\prime}\left(f_{n_{k}}, f\right)<2^{1-n}
$$

on $A-E_{n}$. Use Problem 11 in §3.]
(ii) For maps $f_{n}: S \rightarrow E$ and $g: S \rightarrow E^{1}$ deduce that if

$$
f_{n} \rightarrow f
$$

in measure on A and

$$
(\forall n) \quad\left|f_{n}\right| \leq g \text { (a.e.) on } A
$$

then

$$
|f| \leq g \text { (a.e.) on } A
$$

[Hint: $f_{n_{k}} \rightarrow f$ (a.e.) on A.]
13. Continuing Problem 12(ii), let

$$
f_{n} \rightarrow f
$$

in measure on $A \in \mathcal{M}\left(f_{n}: S \rightarrow E\right)$ and

$$
(\forall n) \quad\left|f_{n}\right| \leq g \text { (a.e.) on } A,
$$

with

$$
\int_{A} g<\infty .
$$

Prove that

$$
\lim _{n \rightarrow \infty} \bar{\int}_{A}\left|f_{n}-f\right|=0
$$

Does

$$
\int_{A} f_{n} \rightarrow \int_{A} f ?
$$

[Outline: From Corollary 1 of $\S 5$, infer that $g=0$ on $A-C$, where

$$
C=\bigcup_{k=1}^{\infty} C_{k}(\text { disjoint })
$$

$m C_{k}<\infty$. (We may assume $g \mathcal{M}$-measurable on A. Why?) Also,

$$
\infty>\int_{A} g=\int_{A-C} g+\int_{C} g=0+\sum_{k=1}^{\infty} \int_{C_{k}} g
$$

so the series converges. Hence

$$
(\forall \varepsilon>0)(\exists p) \quad \int_{A} g-\varepsilon<\sum_{k=1}^{p} \int_{C_{k}} g=\int_{H} g
$$

where

$$
H=\bigcup_{k=1}^{p} C_{k} \in \mathcal{M}
$$

and $m H<\infty$. As $\left|f_{n}-f\right| \leq 2 g$ (a.e.), we get
(1) $\int_{A}\left|f_{n}-f\right| \leq \bar{\int}_{A}\left|f_{n}-f\right| \leq \bar{\int}_{H}\left|f_{n}-f\right|+\int_{A-H} 2 g<\bar{\int}_{H}\left|f_{n}-f\right|+2 \varepsilon$.
(Explain!)
As $m H<\infty$, we can fix $\sigma>0$ with

$$
\sigma \cdot m H<\varepsilon .
$$

Also, by Theorem 6 , fix δ such that

$$
2 \int_{X} g<\varepsilon
$$

whenever $A \supseteq X, X \in \mathcal{M}$ and $m X<\delta$.
As $f_{n} \rightarrow f$ in measure on H, we find \mathcal{M}-sets $D_{n} \subseteq H$ such that

$$
\left(\forall n>n_{0}\right) \quad m D_{n}<\delta
$$

and

$$
\left|f_{n}-f\right|<\sigma \text { on } A_{n}=H-D_{n}
$$

(We may use the standard metric, as $|f|$ and $\left|f_{n}\right|<\infty$ a.e. Why?) Thus from (1), we get

$$
\begin{aligned}
\bar{\int}_{A}\left|f_{n}-f\right| & \leq \bar{\int}_{H}\left|f_{n}-f\right|+2 \varepsilon \\
& =\bar{\int}_{A_{n}}\left|f_{n}-f\right|+\overline{\int_{D_{n}}}\left|f_{n}-f\right|+2 \varepsilon \\
& <\int_{A_{n}}\left|f_{n}-f\right|+3 \varepsilon \\
& \leq \sigma \cdot m H+3 \varepsilon<4 \varepsilon
\end{aligned}
$$

for $n>n_{0}$. (Explain!) Hence

$$
\overline{\lim }_{A}\left|f_{n}-f\right|=0
$$

See also Problem 7 in $\S 5$ and Note 1 of $\S 6$ (for measurable functions) as regards

$$
\left.\lim \bar{\int}_{A} f_{n} .\right]
$$

14. Do Problem 12 in $\S 3$ (Lebesgue-Egorov theorems) for $T=E$, assuming

$$
(\forall n) \quad\left|f_{n}\right| \leq g(\text { a.e. }) \text { on } A
$$

with

$$
\int_{A} g<\infty
$$

(instead of $m A<\infty$).
[Hint: With $H_{i}(k)$ as before, it suffices that

$$
\lim _{i \rightarrow \infty} m\left(A-H_{i}(k)\right)=0
$$

(Why?) Verify that

$$
(\forall n) \quad \rho^{\prime}\left(f_{n}, f\right)=\left|f_{n}-f\right| \leq 2 g \text { (a.e.) on } A,
$$

and

$$
(\forall i, k) \quad A-H_{i}(k) \subseteq A\left(2 g \geq \frac{1}{k}\right) \cup Q(m Q=0)
$$

Infer that

$$
(\forall i, k) \quad m\left(A-H_{i}(k)\right)<\infty .
$$

Now, as $(\forall k) H_{i}(k) \searrow \emptyset$ (why?), right continuity applies.]

§7. Integration of Complex and Vector-Valued Functions

I. First we consider functions $f: S \rightarrow E^{n}\left(C^{n}\right)$. For such functions, it is natural (and easy) to define integration "componentwise" as follows. ${ }^{1}$

Definition 1.

A function $f: S \rightarrow E^{n}$ is said to be integrable on $A \in \mathcal{M}$ iff its n (real) components, f_{1}, \ldots, f_{n}, are. In this case, we define

$$
\begin{equation*}
\int_{A} f=\int_{A} f d m=\left(\int_{A} f_{1}, \int_{A} f_{2}, \ldots, \int_{A} f_{n}\right)=\sum_{k=1}^{n} \bar{e}_{k} \cdot \int_{A} f_{k}, \tag{1}
\end{equation*}
$$

where the \bar{e}_{k} are basic unit vectors (as in Chapter 3, $\S \S 1-3$, Theorem 2).

[^44]In particular, a complex function f is integrable on A iff its real and imaginary parts (f_{re} and f_{im}) are. Then we also say that $\int_{A} f$ exists. ${ }^{2}$ By (1), we have

$$
\begin{equation*}
\int_{A} f=\left(\int_{A} f_{\mathrm{re}}, \int_{A} f_{\mathrm{im}}\right)=\int_{A} f_{\mathrm{re}}+i \int_{A} f_{\mathrm{im}} \tag{2}
\end{equation*}
$$

If $f: S \rightarrow C^{n}$, we use (1), with complex components f_{k}.
With this definition, integration of functions $f: S \rightarrow E^{n}\left(C^{n}\right)$ reduces to that of $f_{k}: S \rightarrow E^{1}(C)$, and one easily obtains the same theorems as in $\S \S 4-6$, as far as they make sense for vectors.
Theorem 1. A function $f: S \rightarrow E^{n}\left(C^{n}\right)$ is integrable on $A \in \mathcal{M}$ iff it is m-measurable on A and $\int_{A}|f|<\infty$.
(Alternate definition!)
Proof. Assume the range space is E^{n}.
By our definition, if f is integrable on A, then its components f_{k} are. Thus by Theorem 2 and Corollary 1, both in $\S 6$, for $k=1,2, \ldots, n$, the functions f_{k}^{+}and f_{k}^{-}are m-measurable; furthermore,

$$
\int_{A} f_{k}^{+} \neq \pm \infty \text { and } \int_{A} f_{k}^{-} \neq \pm \infty
$$

This implies

$$
\infty>\int_{A} f_{k}^{+}+\int_{A} f_{k}^{-}=\int_{A}\left(f_{k}^{+}+f_{k}^{-}\right)=\int_{A}\left|f_{k}\right|, \quad k=1,2, \ldots, n .
$$

Since $|f|$ is m-measurable by Problem 14 in $\S 3(|\cdot|$ is a continuous mapping from E^{n} to E^{1}), and

$$
|f|=\left|\sum_{k=1}^{n} \bar{e}_{k} f_{k}\right| \leq \sum_{k=1}^{n}\left|\bar{e}_{k}\right|\left|f_{k}\right|=\sum_{k=1}^{n}\left|f_{k}\right|,
$$

we get

$$
\int_{A}|f| \leq \int_{A} \sum_{1}^{n}\left|f_{k}\right|=\sum_{1}^{n} \int_{A}\left|f_{k}\right|<\infty
$$

Conversely, if f satisfies

$$
\int_{A}|f|<\infty
$$

then

$$
(\forall k)\left|\int_{A} f_{k}\right|<\infty
$$

[^45]Also, the f_{k} are m-measurable if f is (see Problem 2 in $\S 3$). Hence the f_{k} are integrable on A (by Theorem 2 of $\S 6$), and so is f.

The proof for C^{n} is analogous.
Similarly for other theorems (see Problems 1 to 4 below). We have already noted that Theorem 5 of $\S 6$ holds for complex and vector-valued functions. So does Theorem 6 in $\S 6$. We prove another such proposition (Lemma 1) below.
II. Next we consider the general case, $f: S \rightarrow E$ (E complete). We now adopt Theorem 1 as a definition. (It agrees with Definition 1 of $\S 4$. Verify!) Even if $E=E^{*}$, we always assume $|f|<\infty$ a.e.; thus, dropping a null set, we can make f finite and use the standard metric on E^{1}.

First, we take up the case $m A<\infty$.
Lemma 1. If $f_{n} \rightarrow f$ (uniformly) on $A(m A<\infty)$, then

$$
\int_{A}\left|f_{n}-f\right| \rightarrow 0
$$

Proof. By assumption,

$$
(\forall \varepsilon>0)(\exists k)(\forall n>k) \quad\left|f_{n}-f\right|<\varepsilon \text { on } A ;
$$

so

$$
(\forall n>k) \quad \int_{A}\left|f_{n}-f\right| \leq \int_{A}(\varepsilon)=\varepsilon \cdot m A<\infty
$$

As ε is arbitrary, the result follows.
Our goal is to prove results on linearity (Theorem 2) and additivity (Theorem 3) for general E; for a "limited approach," see Problem 2 for $E=E^{n}\left(C^{n}\right)$.
*Lemma 2. If

$$
\int_{A}|f|<\infty \quad(m A<\infty)
$$

and

$$
f=\lim _{n \rightarrow \infty} f_{n}(\text { uniformly }) \text { on } A-Q(m Q=0)
$$

for some elementary maps f_{n} on A, then all but finitely many f_{n} are elementary and integrable on A, and

$$
\lim _{n \rightarrow \infty} \int_{A} f_{n}
$$

exists in E; further, the latter limit does not depend on the sequence $\left\{f_{n}\right\}$.
Proof. By Lemma 1,

$$
(\forall \varepsilon>0)(\exists q)(\forall n, k>q) \quad \int_{A}\left|f_{n}-f\right|<\varepsilon \text { and } \int_{A}\left|f_{n}-f_{k}\right|<\varepsilon .
$$

(The latter can be achieved since

$$
\left.\lim _{k \rightarrow \infty} \int_{A}\left|f_{n}-f_{k}\right|=\int_{A}\left|f_{n}-f\right|<\varepsilon .^{3}\right)
$$

Now, as

$$
\left|f_{n}\right| \leq\left|f_{n}-f\right|+|f|,
$$

Problem 7 in $\S 5$ yields

$$
(\forall n>k) \quad \int_{A}\left|f_{n}\right| \leq \int_{A}\left|f_{n}-f\right|+\int_{A}|f|<\varepsilon+\int_{A}|f|<\infty .
$$

Thus f_{n} is elementary and integrable for $n>k$, as claimed. Also, by Theorem 2 and Corollary 1(ii), both in §4,

$$
(\forall n, k>q) \quad\left|\int_{A} f_{n}-\int_{A} f_{k}\right|=\left|\int_{A}\left(f_{n}-f_{k}\right)\right| \leq \int_{A}\left|f_{n}-f_{k}\right|<\varepsilon .
$$

Thus $\left\{\int_{A} f_{n}\right\}$ is a Cauchy sequence. As E is complete,

$$
\lim \int_{A} f_{n} \neq \pm \infty
$$

exists in E, as asserted.
Finally, suppose $g_{n} \rightarrow f$ (uniformly) on $A-Q$ for some other elementary and integrable maps g_{n}. By what was shown above, $\lim \int_{A} g_{n}$ exists, and

$$
\left|\lim \int_{A} g_{n}-\lim \int_{A} f_{n}\right|=\left|\lim \int_{A}\left(g_{n}-f_{n}\right)\right| \leq \lim \int_{A}\left|g_{n}-f_{n}-0\right|=0
$$

by Lemma 1 , as $g_{n}-f_{n} \rightarrow 0$ (uniformly) on A. Thus

$$
\lim \int_{A} g_{n}=\lim \int_{A} f_{n}
$$

and all is proved.
This leads us to the following definition.

*Definition 2.

If $f: S \rightarrow E$ is integrable on $A \in \mathcal{M}(m A<\infty)$, we set

$$
\int_{A} f=\int_{A} f d m=\lim _{n \rightarrow \infty} \int_{A} f_{n}
$$

for any elementary and integrable maps f_{n} such that $f_{n} \rightarrow f$ (uniformly) on $A-Q, m Q=0$.

[^46]Indeed, such maps exist by Theorem 3 of $\S 1$, and Lemma 2 excludes ambiguity.
*Note 1. If f itself is elementary and integrable, Definition 2 agrees with that of $\S 4$. For, choosing $f_{n}=f(n=1,2, \ldots)$, we get

$$
\int_{A} f=\int_{A} f_{n}
$$

(the latter as in §4).
*Note 2. We may neglect sets on which $f=0$, along with null sets. For if $f=0$ on $A-B(A \supseteq B, B \in \mathcal{M})$, we may choose $f_{n}=0$ on $A-B$ in Definition 2. Then

$$
\int_{A} f=\lim \int_{A} f_{n}=\lim \int_{B} f_{n}=\int_{B} f .
$$

Thus we now define

$$
\int_{A} f=\int_{B} f
$$

even if $m A=\infty$, provided $f=0$ on $A-B$, i.e.,

$$
f=f C_{B} \text { on } A
$$

$\left(C_{B}=\right.$ characteristic function of $\left.B\right)$, with $A \supseteq B, B \in \mathcal{M}$, and $m B<\infty$.
If such a B exists, we say that f has m-finite support in A.
*Note 3. By Corollary 1 in $\S 5$,

$$
\int_{A}|f|<\infty
$$

implies that $A(f \neq 0)$ is σ-finite. Neglecting $A(f=0)$, we may assume that

$$
A=\bigcup B_{n}, m B_{n}<\infty, \text { and }\left\{B_{n}\right\} \uparrow
$$

(if not, replace B_{n} by $\bigcup_{k=1}^{n} B_{k}$); so $B_{n} \nearrow A$.
*Lemma 3. Let $\phi: S \rightarrow E$ be integrable on A. Let $B_{n} \nearrow A, m B_{n}<\infty$, and set

$$
f_{n}=\phi C_{B_{n}}, \quad n=1,2, \ldots
$$

Then $f_{n} \rightarrow \phi$ (pointwise) on A, all f_{n} are integrable on A, and

$$
\lim _{n \rightarrow \infty} \int_{A} f_{n}
$$

exists in E. Furthermore, this limit does not depend on the choice of $\left\{B_{n}\right\}$.
Proof. Fix any $x \in A$. As $B_{n} \nearrow A=\bigcup B_{n}$,

$$
\left(\exists n_{0}\right)\left(\forall n>n_{0}\right) \quad x \in B_{n} .
$$

By assumption, $f_{n}=\phi$ on B_{n}. Thus

$$
\left(\forall n>n_{0}\right) \quad f_{n}(x)=\phi(x) ;
$$

so $f_{n} \rightarrow \phi$ (pointwise) on A.
Moreover, $f_{n}=\phi C_{B_{n}}$ is m-measurable on A (as ϕ and $C_{B_{n}}$ are); and

$$
\left|f_{n}\right|=|\phi| C_{B_{n}}
$$

implies

$$
\int_{A}\left|f_{n}\right| \leq \int_{A}|\phi|<\infty
$$

Thus all f_{n} are integrable on A.
As $f_{n}=0$ on $A-B_{n}(m B<\infty)$,

$$
\int_{A} f_{n}
$$

is defined. Since $f_{n} \rightarrow \phi$ (pointwise) and $\left|f_{n}\right| \leq|\phi|$ on A, Theorem 5 in $\S 6$, with $g=|\phi|$, yields

$$
\int_{A}\left|f_{n}-\phi\right| \rightarrow 0
$$

The rest is as in Lemma 2, with our present Theorem 2 below (assuming m finite support of f and g), replacing Theorem 2 of $\S 4$. Thus all is proved.

*Definition 3.

If $\phi: S \rightarrow E$ is integrable on $A \in \mathcal{M}$, we set

$$
\int_{A} \phi=\int_{A} \phi d m=\lim _{n \rightarrow \infty} \int_{A} f_{n}
$$

with the f_{n} as in Lemma 3 (even if ϕ has no m-finite support).
Theorem 2 (linearity). If $f, g: S \rightarrow E$ are integrable on $A \in \mathcal{M}$, so is

$$
p f+q g
$$

for any scalars p, q. Moreover,

$$
\int_{A}(p f+q g)=p \int_{A} f+q \int_{A} g
$$

Furthermore if f and g are scalar valued, p and q may be vectors in E.
*Proof. For the moment, f, g denotes mappings with m-finite support in A.
Integrability is clear since $p f+q g$ is measurable on A (as f and g are), and

$$
|p f+q g| \leq|p||f|+|q||g|
$$

yields

$$
\int_{A}|p f+q g| \leq|g| \int_{A}|f|+|q| \int_{A}|g|<\infty
$$

Now, as noted above, assume that

$$
f=f C_{B_{1}} \text { and } g=g C_{B_{2}}
$$

for some $B_{1}, B_{2} \subseteq A\left(m B_{1}+m B_{2}<\infty\right)$. Let $B=B_{1} \cup B_{2}$; so

$$
f=g=p f+q g=0 \text { on } A-B
$$

additionally,

$$
\int_{A} f=\int_{B} f, \int_{A} g=\int_{B} g, \text { and } \int_{A}(p f+q g)=\int_{B}(p f+q g) .
$$

Also, $m B<\infty$; so by Definition 2,

$$
\int_{B} f=\lim \int_{B} f_{n} \text { and } \int_{B} g=\lim \int_{B} g_{n}
$$

for some elementary and integrable maps

$$
f_{n} \rightarrow f \text { (uniformly) and } g_{n} \rightarrow g \text { (uniformly) on } B-Q, m Q=0 .
$$

Thus

$$
p f_{n}+q g_{n} \rightarrow p f+q g \text { (uniformly) on } B-Q .
$$

But by Theorem 2 and Corollary 1(vii), both of $\S 4$ (for elementary and integrable maps),

$$
\int_{B}\left(p f_{n}+q g_{n}\right)=p \int_{B} f_{n}+q \int_{B} g_{n} .
$$

Hence

$$
\begin{aligned}
\int_{A}(p f+q g)= & \int_{B}(p f+q g)=\lim \int_{B}\left(p f_{n}+q g_{n}\right) \\
& =\lim \left(p \int_{B} f_{n}+q \int_{B} g_{n}\right)=p \int_{B} f+q \int_{B} g=p \int_{A} f+q \int_{A} g
\end{aligned}
$$

This proves the statement of the theorem, provided f and g have m-finite support in A. For the general case, we now resume the notation f, g, \ldots for any functions, and extend the result to any integrable functions.

Using Definition 3, we set

$$
A=\bigcup_{n=1}^{\infty} B_{n},\left\{B_{n}\right\} \uparrow, m B_{n}<\infty
$$

and

$$
f_{n}=f C_{B_{n}}, g_{n}=g C_{B_{n}}, \quad n=1,2, \ldots
$$

Then by definition,

$$
\int_{A} f=\lim _{n \rightarrow \infty} \int_{A} f_{n} \text { and } \int_{A} g=\lim _{n \rightarrow \infty} \int_{A} g_{n}
$$

and so

$$
p \int_{A} f+q \int_{A} g=\lim _{n \rightarrow \infty}\left(p \int_{A} f_{n}+q \int_{A} g_{n}\right) .
$$

As f_{n}, g_{n} have m-finite supports, the first part of the proof yields

$$
p \int_{A} f_{n}+q \int_{A} g_{n}=\int_{A}\left(p f_{n}+q g_{n}\right) .
$$

Thus as claimed,

$$
p \int_{A} f+q \int_{A} g=\lim \int_{A}\left(p f_{n}+q g_{n}\right)=\int_{A}(p f+q g) .
$$

Similarly, one extends Corollary 1(ii)(iii)(v) of $\S 4$ first to maps with m-finite support, and then to all integrable maps. The other parts of that corollary need no new proof. (Why?)

Theorem 3 (additivity).
(i) If $f: S \rightarrow E$ is integrable on each of n disjoint \mathcal{M}-sets A_{k}, it is so on their union

$$
A=\bigcup_{k=1}^{n} A_{k}
$$

and

$$
\int_{A} f=\sum_{k=1}^{n} \int_{A_{k}} f
$$

(ii) This holds for countable unions, too, if f is integrable on all of A.
*Proof. Let f have m-finite support: $f=f C_{B}$ on $A, m B<\infty$. Then

$$
\int_{A} f=\int_{B} f \text { and } \int_{A_{k}} f=\int_{B_{k}} f
$$

where

$$
B_{k}=A_{k} \cap B, \quad k=1,2, \ldots, n
$$

By Definition 2, fix elementary and integrable maps f_{i} (on A) and a set Q ($m Q=0$) such that $f_{i} \rightarrow f$ (uniformly) on $B-Q$ (hence also on $B_{k}-Q$), with

$$
\int_{A} f=\int_{B} f=\lim _{i \rightarrow \infty} \int_{B} f_{i} \text { and } \int_{A_{k}} f=\lim _{i \rightarrow \infty} \int_{B_{k}} f_{i}, \quad k=1,2, \ldots, n .
$$

As the f_{i} are elementary and integrable, Theorem 1 in $\S 4$ yields

$$
\int_{A} f_{i}=\int_{B} f_{i}=\sum_{k=1}^{n} \int_{B_{k}} f_{i}=\sum_{k=1}^{n} \int_{A_{k}} f_{i} .
$$

Hence

$$
\int_{A} f=\lim _{i \rightarrow \infty} \int_{B} f_{i}=\lim _{i \rightarrow \infty} \sum_{k=1}^{n} \int_{B_{k}} f_{i}=\sum_{k=1}^{n}\left(\lim _{i \rightarrow \infty} \int_{A_{k}} f_{i}\right)=\sum_{k=1}^{n} \int_{A_{k}} f
$$

Thus clause (i) holds for maps with m-finite support. For other functions, (i) now follows quite similarly, from Definition 3. (Verify!)

As for (ii), let f be integrable on

$$
A=\bigcup_{k=1}^{\infty} A_{k}(\text { disjoint }), \quad A_{k} \in \mathcal{M}
$$

In this case, set $g_{n}=f C_{B_{n}}$, where $B_{n}=\bigcup_{k=1}^{n} A_{k}, n=1,2, \ldots$ By clause (i), we have

$$
\begin{equation*}
\int_{A} g_{n}=\int_{B_{n}} g_{n}=\sum_{k=1}^{n} \int_{A_{k}} g_{n}=\sum_{k=1}^{n} \int_{A_{k}} f \tag{3}
\end{equation*}
$$

since $g_{n}=f$ on each $A_{k} \subseteq B_{n}$.
Also, as is easily seen, $\left|g_{n}\right| \leq|f|$ on A and $g_{n} \rightarrow f$ (pointwise) on A (proof as in Lemma 3). Thus by Theorem 5 in $\S 6$,

$$
\int_{A}\left|g_{n}-f\right| \rightarrow 0 .
$$

As

$$
\left|\int_{A} g_{n}-\int_{A} f\right|=\left|\int_{A}\left(g_{n}-f\right)\right| \leq \int_{A}\left|g_{n}-f\right|,
$$

we obtain

$$
\int_{A} f=\lim _{n \rightarrow \infty} \int_{A} g_{n},
$$

and the result follows by (3).

Problems on Integration of Complex and Vector-Valued Functions

1. Prove Corollary 1(iii)-(vii) in $\S 4$ componentwise for integrable maps $f: S \rightarrow E^{n}\left(C^{n}\right)$.
2. Prove Theorems 2 and 3 componentwise for $E=E^{n}\left(C^{n}\right)$.
$\mathbf{2}^{\prime}$. Do it for Corollary 3 in $\S 6$.
3. Prove Theorem 1 with

$$
\int_{A}|f|<\infty
$$

replaced by

$$
\int_{A}\left|f_{k}\right|<\infty, \quad k=1, \ldots, n
$$

4. Prove that if $f: S \rightarrow E^{n}\left(C^{n}\right)$ is integrable on A, so is $|f|$. Disprove the converse.
5. Disprove Lemma 1 for $m A=\infty$.
*6. Complete the proof of Lemma 3.
*7. Complete the proof of Theorem 3.
*8. Do Problem 1 and 2^{\prime} for $f: S \rightarrow E$.
*9. Prove formula (1) from definitions of Part II of this section.
$\Rightarrow 10$. Show that

$$
\left|\int_{A} f\right| \leq \int_{A}|f|
$$

for integrable maps $f: S \rightarrow E$. See also Problem 14.
[Hint: If $m A<\infty$, use Corollary 1(ii) of $\S 4$ and Lemma 1. If $m A=\infty$, "imitate" the proof of Lemma 3.]
11. Do Problem 11 in $\S 6$ for $f_{n}: S \rightarrow E$. Do it componentwise for $E=$ $E^{n}\left(C^{n}\right)$.
12. Show that if $f, g: S \rightarrow E^{1}(C)$ are integrable on A, then ${ }^{4}$

$$
\left|\int_{A} f g\right|^{2} \leq \int_{A}|f|^{2} \cdot \int_{A}|g|^{2}
$$

In what case does equality hold? Deduce Theorem 4(c') in Chapter 3, $\S \S 1-3$, from this result.
[Hint: Argue as in that theorem. Consider the case

$$
\left.\left(\exists t \in E^{1}\right) \quad \int_{A}|f-t g|=0 .\right]
$$

13. Show that if $f: S \rightarrow E^{1}(C)$ is integrable on A and

$$
\left|\int_{A} f\right|=\int_{A}|f|
$$

then

$$
(\exists c \in C) \quad c f=|f| \quad \text { a.e. on } A \text {. }
$$

[^47][Hint: Let $a=\int_{A} f$. The case $a=0$ is trivial. If $a \neq 0$, let
$$
c=\frac{|a|}{a} ;|c|=1 ; \quad c a=|a| .
$$

Let $r=(c f)_{\text {re }}$. Show that $r \leq|c f|=|f|$,

$$
\begin{gathered}
\left|\int_{A} f\right|=\int_{A} c f=\int_{A} r \leq \int_{A}|f|=\left|\int_{A} f\right| \\
\int_{A}|f|=\int_{A} r=\int_{A}(c f)_{\mathrm{re}}
\end{gathered}
$$

$(c f)_{\text {re }}=|c f|$ (a.e.), and $c f=|c f|=|f|$ a.e. on $\left.A.\right]$
14. Do Problem 10 for $E=C$ using the method of Problem 13.
15. Show that if $f: S \rightarrow E$ is integrable on A, it is integrable on each \mathcal{M}-set $B \subseteq A$. If, in addition,

$$
\int_{B} f=0
$$

for all such B, show that $f=0$ a.e. on A. Prove it for $E=E^{n}$ first. [Hint for $E=E^{*}: A=A(f>0) \cup A(f \leq 0)$. Use Theorems 1(h) and 2 from §5.]
16. In Problem 15 , show that

$$
s=\int f
$$

is a σ-additive set function on

$$
\mathcal{M}_{A}=\{X \in \mathcal{M} \mid X \subseteq A\}
$$

(Note 4 in $\S 5$); s is called the indefinite integral of f in A.

§8. Product Measures. Iterated Integrals

Let (X, \mathcal{M}, m) and (Y, \mathcal{N}, n) be measure spaces, with $X \in \mathcal{M}$ and $Y \in \mathcal{N}$. Let \mathcal{C} be the family of all "rectangles," i.e., sets

$$
A \times B
$$

with $A \in \mathcal{M}, B \in \mathcal{N}, m A<\infty$, and $n B<\infty$.
Define a premeasure $s: \mathcal{C} \rightarrow E^{1}$ by

$$
s(A \times B)=m A \cdot n B, \quad A \times B \in \mathcal{C}
$$

Let p^{*} be the s-induced outer measure in $X \times Y$ and

$$
p: \mathcal{P}^{*} \rightarrow E^{*}
$$

the p^{*}-induced measure (" p roduct measure," $p=m \times n$) on the σ-field \mathcal{P}^{*} of all p^{*}-measurable sets in $X \times Y$ (Chapter 6, §§5-6).

We consider functions $f: X \times Y \rightarrow E^{*}$ (extended-real).
I. We begin with some definitions.

Definitions.

(1) Given a function $f: X \rightarrow Y \rightarrow E^{*}$ (of two variables x, y), let f_{x} or $f(x, \cdot)$ denote the function on Y given by

$$
f_{x}(y)=f(x, y)
$$

it arises from f by fixing x.
Similarly, f^{y} or $f(\cdot, y)$ is given by $f^{y}(x)=f(x, y)$.
(2) Define $g: X \rightarrow E^{*}$ by

$$
g(x)=\int_{Y} f(x, \cdot) d n
$$

and set

$$
\int_{X} \int_{Y} f d n d m=\int_{X} g d m
$$

also written

$$
\int_{X} d m(x) \int_{Y} f(x, y) d n(y)
$$

This is called the iterated integral of f on Y and X, in this order.
Similarly,

$$
h(y)=\int_{X} f^{y} d m
$$

and

$$
\int_{Y} \int_{X} f d m d n=\int_{Y} h d n
$$

Note that by the rules of $\S 5$, these integrals are always defined.
(3) With f, g, h as above, we say that f is a Fubini map or has the Fubini properties (after the mathematician Fubini) iff
(a) g is m-measurable on X and h is n-measurable on Y;
(b) f_{x} is n-measurable on Y for almost all x (i.e., for $x \in X-Q$, $m Q=0) ; f^{y}$ is m-measurable on X for $y \in Y-Q^{\prime}, n Q^{\prime}=0$; and
(c) the iterated integrals above satisfy

$$
\int_{X} \int_{Y} f d n d m=\int_{Y} \int_{X} f d m d n=\int_{X \times Y} f d p
$$

(the main point).

For monotone sequences

$$
f_{k}: X \times Y \rightarrow E^{*} \quad(k=1,2, \ldots)
$$

we now obtain the following lemma.
Lemma 1. If $0 \leq f_{k} \nearrow f$ (pointwise) on $X \times Y$ and if each f_{k} has Fubini property (a), (b), or (c), then f has the same property.
Proof. For $k=1,2, \ldots$, set

$$
g_{k}(x)=\int_{Y} f_{k}(x, \cdot) d n
$$

and

$$
h_{k}(y)=\int_{X} f_{k}(\cdot, y) d m
$$

By assumption,

$$
0 \leq f_{k}(x, \cdot) \nearrow f(x, \cdot)
$$

pointwise on Y. Thus by Theorem 4 in $\S 6$,

$$
\int_{Y} f_{k}(x, \cdot) \nearrow \int_{Y} f(x, \cdot) d n
$$

i.e., $g_{k} \nearrow g$ (pointwise) on X, with g as in Definition 2.

Again, by Theorem 4 of $\S 6$,

$$
\int_{X} g_{k} d m \nearrow \int_{X} g d m
$$

or by Definition 2,

$$
\int_{X} \int_{Y} f d n d m=\lim _{k \rightarrow \infty} \int_{X} \int_{Y} f_{k} d n d m
$$

Similarly for

$$
\int_{Y} \int_{X} f d m d n
$$

and

$$
\int_{X \times Y} f d p
$$

Hence f satisfies (c) if all f_{k} do.
Next, let f_{k} have property (b); so $(\forall k) f_{k}(x, \cdot)$ is n-measurable on Y if $x \in X-Q_{k}\left(m Q_{k}=0\right)$. Let

$$
Q=\bigcup_{k=1}^{\infty} Q_{k}
$$

so $m Q=0$, and all $f_{k}(x, \cdot)$ are n-measurable on Y, for $x \in X-Q$. Hence so is

$$
f(x, \cdot)=\lim _{k \rightarrow \infty} f_{k}(x, \cdot)
$$

Similarly for $f(\cdot, y)$. Thus f satisfies (b).
Property (a) follows from $g_{k} \rightarrow g$ and $h_{k} \rightarrow h$.
Using Problems 9 and 10 from $\S 6$, the reader will also easily verify the following lemma.

Lemma 2.

(i) If f_{1} and f_{2} are nonnegative, p-measurable Fubini maps, so is a $f_{1}+b f_{2}$ for $a, b \geq 0$.
(ii) If, in addition,

$$
\int_{X \times Y} f_{1} d p<\infty \text { or } \int_{X \times Y} f_{2} d p<\infty
$$

then $f_{1}-f_{2}$ is a Fubini map, too.
Lemma 3. Let $f=\sum_{i=1}^{\infty} f_{i}$ (pointwise), with $f_{i} \geq 0$ on $X \times Y$.
(i) If all f_{i} are p-measurable Fubini maps, so is f.
(ii) If the f_{i} have Fubini properties (a) and (b), then

$$
\int_{X} \int_{Y} f d n d m=\sum_{i=1}^{\infty} \int_{X} \int_{Y} f_{i} d n d m
$$

and

$$
\int_{Y} \int_{X} f d m d n=\sum_{i=1}^{\infty} \int_{Y} \int_{X} f_{i} d m d n
$$

II. By Theorem 4 of Chapter $7, \S 3$, the family \mathcal{C} (see above) is a semiring, being the product of two rings,

$$
\{A \in \mathcal{M} \mid m A<\infty\} \text { and }\{B \in \mathcal{N} \mid n B<\infty\}
$$

(Verify!) Thus using Theorem 2 in Chapter 7, $\S 6$, we now show that p is an extension of $s: \mathcal{C} \rightarrow E^{1}$.
Theorem 1. The product premeasure s is σ-additive on the semiring \mathcal{C}. Hence
(i) $\mathcal{C} \subseteq \mathcal{P}^{*}$ and $p=s<\infty$ on \mathcal{C}, and
(ii) the characteristic function C_{D} of any set $D \in \mathcal{C}$ is a Fubini map.

Proof. Let $D=A \times B \in \mathcal{C}$; so

$$
C_{D}(x, y)=C_{A}(x) \cdot C_{B}(y)
$$

(Why?) Thus for a fixed $x, C_{D}(x, \cdot)$ is just a multiple of the \mathcal{N}-simple map C_{B}, hence n-measurable on Y. Also,

$$
g(x)=\int_{Y} C_{D}(x, \cdot) d n=C_{A}(x) \cdot \int_{Y} C_{B} d n=C_{A}(x) \cdot n B
$$

so $g=C_{A} \cdot n B$ is \mathcal{M}-simple on X, with

$$
\int_{X} \int_{Y} C_{D} d n d m=\int_{X} g d m=n B \int_{X} C_{A} d m=n B \cdot m A=s D .
$$

Similarly for $C_{D}(\cdot, y)$, and

$$
h(y)=\int_{X} C_{D}(\cdot, y) d m
$$

Thus C_{D} has Fubini properties (a) and (b), and for every $D \in \mathcal{C}$

$$
\begin{equation*}
\int_{X} \int_{Y} C_{D} d n d m=\int_{Y} \int_{X} C_{D} d m d n=s D \tag{1}
\end{equation*}
$$

To prove σ-additivity, let

$$
D=\bigcup_{i=1}^{\infty} D_{i}(\text { disjoint }), D_{i} \in \mathcal{C}
$$

so

$$
C_{D}=\sum_{i=1}^{\infty} C_{D_{i}}
$$

(Why?) As shown above, each $C_{D_{i}}$ has Fubini properties (a) and (b); so by (1) and Lemma 3,

$$
s D=\int_{X} \int_{Y} C_{D} d n d m=\sum_{i=1}^{\infty} \int_{X} \int_{Y} C_{D_{i}} d n d m=\sum_{i=1}^{\infty} s D_{i}
$$

as required.
Assertion (i) now follows by Theorem 2 in Chapter 7, $\S 6$. Hence

$$
s D=p D=\int_{X \times Y} C_{D} d p
$$

so by formula (1), C_{D} also has Fubini property (c), and all is proved.
Next, let \mathcal{P} be the σ-ring generated by the semiring \mathcal{C} (so $\mathcal{C} \subseteq \mathcal{P} \subseteq \mathcal{P}^{*}$).

Lemma 4. \mathcal{P} is the least set family \mathcal{R} such that
(i) $\mathcal{R} \supseteq \mathcal{C}$;
(ii) \mathcal{R} is closed under countable disjoint unions; and
(iii) $H-D \in \mathcal{R}$ if $D \in \mathcal{R}$ and $D \subseteq H, H \in \mathcal{C}$.

This is simply Theorem 3 in Chapter 7 , $\S 3$, with changed notation.
Lemma 5. If $D \in \mathcal{P}(\sigma$-generated by $\mathcal{C})$, then C_{D} is a Fubini map.
Proof. Let \mathcal{R} be the family of all $D \in \mathcal{P}$ such that C_{D} is a Fubini map. We shall show that \mathcal{R} satisfies (i)-(iii) of Lemma 4 , and so $\mathcal{P} \subseteq \mathcal{R}$.
(i) By Theorem 1, each $C_{D}(D \in \mathcal{C})$ is a Fubini map; so each $D \in \mathcal{C}$ is in \mathcal{R}.
(ii) Let

$$
D=\bigcup_{i=1}^{\infty} D_{i}(\text { disjoint }), \quad D_{i} \in \mathcal{R}
$$

Then

$$
C_{D}=\sum_{i=1}^{\infty} C_{D_{i}}
$$

and each $C_{D_{i}}$ is a Fubini map. Hence so is C_{D} by Lemma 3. Thus $D \in \mathcal{R}$, proving (ii).
(iii) We must show that C_{H-D} is a Fubini map if C_{D} is and if $D \subseteq H, H \in \mathcal{C}$. Now, $D \subseteq H$ implies

$$
C_{H-D}=C_{H}-C_{D}
$$

(Why?) Also, by Theorem $1, H \in \mathcal{C}$ implies

$$
\int_{X \times Y} C_{H} d p=p H=s H<\infty
$$

and C_{H} is a Fubini map. So is C_{D} by assumption. So also is

$$
C_{H-D}=C_{H}-C_{D}
$$

by Lemma 2(ii). Thus $H-D \in \mathcal{R}$, proving (iii).
By Lemma 4 , then, $\mathcal{P} \subseteq \mathcal{R}$. Hence $(\forall D \in \mathcal{P}) C_{D}$ is a Fubini map.
We can now establish one of the main theorems, due to Fubini.
Theorem 2 (Fubini I). Suppose $f: X \times Y \rightarrow E^{*}$ is \mathcal{P}-measurable on $X \times Y$ (\mathcal{P} as above) rom. Then f is a Fubini map if either
(i) $f \geq 0$ on $X \times Y$, or
(ii) one of

$$
\int_{X \times Y}|f| d p, \int_{X} \int_{Y}|f| d n d m, \text { or } \int_{Y} \int_{X}|f| d m d n
$$

is finite. ${ }^{1}$
In both cases,

$$
\begin{equation*}
\int_{X} \int_{Y} f d n d m=\int_{Y} \int_{X} f d m d n=\int_{X \times Y} f d p \tag{2}
\end{equation*}
$$

Proof. First, let

$$
f=\sum_{i=1}^{\infty} a_{i} C_{D_{i}} \quad\left(a_{i} \geq 0, D_{i} \in \mathcal{P}\right)
$$

i.e., f is \mathcal{P}-elementary, hence certainly p-measurable. (Why?) By Lemmas 5 and 2, each $a_{i} C_{D_{i}}$ is a Fubini map. Hence so is f (Lemma 3). Formula (2) is simply Fubini property (c).

Now take any \mathcal{P}-measurable $f \geq 0$. By Lemma 2 in $\S 2$,

$$
f=\lim _{k \rightarrow \infty} f_{k} \text { on } X \times Y
$$

for some sequence $\left\{f_{k}\right\} \uparrow$ of \mathcal{P}-elementary maps, $f_{k} \geq 0$. As shown above, each f_{k} is a Fubini map. Hence so is f by Lemma 1. This settles case (i).

Next, assume (ii). As f is \mathcal{P}-measurable, so are f^{+}, f_{-}, and $|f|$ (Theorem 2 in $\S 2$). As they are nonnegative, they are Fubini maps by case (i).

So is $f=f^{+}-f^{-}$by Lemma 2(ii), since $f^{+} \leq|f|$ implies

$$
\int_{X \times Y} f^{+} d p<\infty
$$

by our assumption (ii). (The three integrals are equal, as $|f|$ is a Fubini map.)
Thus all is proved.
III. We now want to replace \mathcal{P} by \mathcal{P}^{*} in Lemma 5 and Theorem 2. This works only under certain σ-finiteness conditions, as shown below.
Lemma 6. Let $D \in \mathcal{P}^{*}$ be σ-finite, i.e.,

$$
D=\bigcup_{i=1}^{\infty} D_{i}(\text { disjoint })
$$

for some $D_{i} \in \mathcal{P}^{*}$, with $p D_{i}<\infty(i=1,2, \ldots) .{ }^{2}$

[^48]Then there is a $K \in \mathcal{P}$ such that $p(K-D)=0$ and $D \subseteq K$.
Proof. As \mathcal{P} is a σ-ring containing \mathcal{C}, it also contains \mathcal{C}_{σ}. Thus by Theorem 3 of Chapter $7, \S 5, p^{*}$ is \mathcal{P}-regular.

For the rest, proceed as in Theorems 1 and 2 in Chapter 7, $\S 7$.
Lemma 7. If $D \in \mathcal{P}^{*}$ is σ-finite (Lemma 6), then C_{D} is a Fubini map.
Proof. By Lemma 6,

$$
(\exists K \in \mathcal{P}) \quad p(K-D)=0, D \subseteq K
$$

Let $Q=K-D$, so $p Q=0$, and $C_{Q}=C_{K}-C_{D}$; that is, $C_{D}=C_{K}-C_{Q}$ and

$$
\int_{X \times Y} C_{Q} d p=p Q=0
$$

As $K \in \mathcal{P}, C_{K}$ is a Fubini map. Thus by Lemma 2(ii), all reduces to proving the same for C_{Q}.

Now, as $p Q=0, Q$ is certainly σ-finite; so by Lemma 6 ,

$$
(\exists Z \in \mathcal{P}) \quad Q \subseteq Z, p Z=p Q=0
$$

Again C_{Z} is a Fubini map; so

$$
\int_{X} \int_{Y} C_{Z} d n d m=\int_{X \times Y} C_{Z} d p=p Z=0
$$

As $Q \subseteq Z$, we have $C_{Q} \leq C_{Z}$, and so

$$
\begin{align*}
\int_{X} \int_{Y} C_{Q} d n d m & =\int_{X}\left[\int_{Y} C_{Q}(x, \cdot) d n\right] d m \tag{3}\\
& \leq \int_{X}\left[\int_{Y} C_{Z}(x, \cdot) d n\right] d m=\int_{X \times Y} C_{Z} d p=0
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\int_{Y} \int_{X} C_{Q} d m d n=\int_{Y}\left[\int_{X} C_{Q}(\cdot, y) d m\right] d n=0 \tag{4}
\end{equation*}
$$

Thus setting

$$
g(x)=\int_{Y} C_{Q}(x, \cdot) d n \text { and } h(y)=\int_{X} C_{Q}(\cdot, y) d m
$$

we have

$$
\int_{X} g d m=0=\int_{Y} h d n .
$$

Hence by Theorem 1(h) in $\S 5, g=0$ a.e. on X, and $h=0$ a.e. on Y. So g and h are "almost" measurable (Definition 2 of $\S 3$); i.e., C_{Q} has Fubini property (a).

Similarly, one establishes (b), and (3) yields Fubini property (c), since

$$
\int_{X} \int_{Y} C_{Q} d n d m=\int_{Y} \int_{X} C_{Q} d m d n=\int_{X \times Y} C_{Q} d p=0
$$

as required.
Theorem 3 (Fubini II). Suppose $f: X \times Y \rightarrow E^{*}$ is \mathcal{P}^{*}-measurable ${ }^{3}$ on $X \times Y$ and satisfies condition (i) or (ii) of Theorem 2.

Then f is a Fubini map, provided f has σ-finite support, i.e., f vanishes outside some σ-finite set $H \subseteq X \times Y$.
Proof. First, let

$$
f=\sum_{i=1}^{\infty} a_{i} C_{D_{i}} \quad\left(a_{i}>0, D_{i} \in \mathcal{P}^{*}\right)
$$

with $f=0$ on $-H$ (as above).
As $f=a_{i} \neq 0$ on A_{i}, we must have $D_{i} \subseteq H$; so all D_{i} are σ-finite. (Why?) Thus by Lemma 7, each $C_{D_{i}}$ is a Fubini map, and so is f. (Why?)

If f is \mathcal{P}^{*}-measurable and nonnegative, and $f=0$ on $-H$, we can proceed as in Theorem 2, making all f_{k} vanish on $-H$. Then the f_{k} and f are Fubini maps by what was shown above.

Finally, in case (ii), $f=0$ on $-H$ implies

$$
f^{+}=f^{-}=|f|=0 \text { on }-H .
$$

Thus f^{+}, f^{-}, and f are Fubini maps by part (i) and the argument of Theorem 2.

Note 1. The σ-finite support is automatic if f is p-integrable (Corollary 1 in $\S 5$), or if p or both m and n are σ-finite (see Problem 3). The condition is also redundant if f is \mathcal{P}-measurable (Theorem 2; see also Problem 4).

Note 2. By induction, our definitions and Theorems 2 and 3 extend to any finite number q of measure spaces

$$
\left(X_{i}, \mathcal{M}_{i}, m_{i}\right), \quad i=1, \ldots, q
$$

One writes

$$
p=m_{1} \times m_{2}
$$

if $q=2$ and sets

$$
m_{1} \times m_{2} \times \cdots \times m_{q+1}=\left(m_{1} \times \cdots \times m_{q}\right) \times m_{q+1}
$$

[^49]Theorems 2 and 3 with similar assumptions then state that the order of integrations is immaterial.

Note 3. Lebesgue measure in E^{q} can be treated as the product of q onedimensional measures. Similarly for $L S$ product measures (but this method is less general than that described in Problems 9 and 10 of Chapter 7, $\S 9$).
IV. Theorems 2(ii) and 3(ii) hold also for functions

$$
f: X \times Y \rightarrow E^{n}\left(C^{n}\right)
$$

if Definitions 2 and 3 are modified as follows (so that they make sense for such maps): In Definition 2, set

$$
g(x)=\int_{Y} f_{x} d n
$$

if f_{x} is n-integrable on Y, and $g(x)=0$ otherwise. Similarly for $h(y)$. In Definition 3, replace "measurable" by "integrable."

For the proof of the theorems, apply Theorems 2(i) and 3(i) to $|f|$. This yields

$$
\int_{Y} \int_{X}|f| d m d n=\int_{X} \int_{Y}|f| d n d m=\int_{X \times Y}|f| d p
$$

Hence if one of these integrals is finite, f is p-integrable on $X \times Y$, and so are its q components. The result then follows on noting that f is a Fubini map (in the modified sense) iff its components are. (Verify!) See also Problem 12 below.
V. In conclusion, note that integrals of the form

$$
\int_{D} f d p \quad\left(D \in \mathcal{P}^{*}\right)
$$

reduce to

$$
\int_{X \times Y} f \cdot C_{D} d p
$$

Thus it suffices to consider integrals over $X \times Y$.

Problems on Product Measures and Fubini Theorems

1. Prove Lemmas 2 and 3.
$\mathbf{1}^{\prime}$. Show that $\{A \in \mathcal{M} \mid m A<\infty\}$ is a set ring.
2. Fill in all proof details in Theorems 1 to 3 .
$\mathbf{2}^{\prime}$. Do the same for Lemmas 5 to 7 .
3. Prove that if m and n are σ-finite, so is $p=m \times n$. Disprove the converse by an example.
[Hint: $\left(\bigcup_{i} A_{i}\right) \times\left(\bigcup_{j} B_{j}\right)=\bigcup_{i, j}\left(A_{i} \times B_{j}\right)$. Verify! $]$
4. Prove the following.
(i) Each $D \in \mathcal{P}$ (as in the text) is (p) σ-finite.
(ii) All \mathcal{P}-measurable maps $f: X \times Y \rightarrow E^{*}$ have σ-finite support.
[Hints: (i) Use Problem 14(b) from Chapter 7, $\S 3$. (ii) Use (i) for \mathcal{P}-elementary and nonnegative maps first.]
5. (i) Find $D \in \mathcal{P}^{*}$ and $x \in X$ such that $C_{D}(x, \cdot)$ is not n-measurable on Y. Does this contradict Lemma 7 ?
[Hint: Let $m=n=$ Lebesgue measure in $E^{1} ; D=\{x\} \times Q$, with Q nonmeasurable.]
(ii) Which \mathcal{C}-sets have nonzero measure if $X=Y=E^{1}, m^{*}$ is as in Problem 2(b) of Chapter 7, $\S 5$ (with $S=X$), and n is Lebesgue measure?
5^{\prime}. Let $m=n=$ Lebesgue measure in $[0,1]=X=Y$. Let

$$
f_{k}= \begin{cases}k(k+1) & \text { on }\left(\frac{1}{k+1}, \frac{1}{k}\right] \text { and } \\ 0 & \text { elsewhere }\end{cases}
$$

Let

$$
f(x, y)=\sum_{k=1}^{\infty}\left[f_{k}(x)-f_{k+1}(x)\right] f_{k}(y)
$$

the series converges. (Why?) Show that
(i) $(\forall k) \int_{X} f_{k}=1$;
(ii) $\int_{X} \int_{Y} f d n d m=1 \neq 0=\int_{Y} \int_{X} f d m d n$.

What is wrong? Is $f \mathcal{P}$-measurable?
[Hint: Explore

$$
\left.\int_{X} \int_{Y}|f| d n d m .\right]
$$

6. Let $X=Y=[0,1], m$ as in Example (c) of Chapter 7, $\S 6,(S=X)$ and $n=$ Lebesgue measure in Y.
(i) Show that $p=m \times n$ is a topological measure under the standard metric in E^{2}.
(ii) Prove that $D=\{(x, y) \in X \times Y \mid x=y\} \in \mathcal{P}^{*}$.
(iii) Describe \mathcal{C}.
[Hints: (i) Any subinterval of $X \times Y$ is in \mathcal{P}^{*}; (ii) D is closed. Verify!]
7. Continuing Problem 6, let $f=C_{D}$.
(i) Show that

$$
\int_{Y} \int_{X} f d n d m=0 \neq 1=\int_{Y} \int_{X} f d m d n
$$

What is wrong?
[Hint: D is not σ-finite; for if

$$
D=\bigcup_{i=1}^{\infty} D_{i}
$$

at least one D_{i} is uncountable and has no finite basic covering values (why?), so $p^{*} D_{i}=\infty$.]
(ii) Compute $p^{*}\{(x, 0) \mid x \in X\}$ and $p^{*}\{(0, y) \mid y \in Y\}$.
8. Show that $D \in \mathcal{P}^{*}$ is σ-finite iff

$$
D \subseteq \bigcup_{i=1}^{\infty} D_{i}(\text { disjoint })
$$

for some sets $D_{i} \in \mathcal{C}$.
[Hint: First let $p^{*} D<\infty$. Use Corollary 1 from Chapter 7, §1.]
9. Given $D \in \mathcal{P}, a \in X$, and $b \in Y$, let

$$
D_{a}=\{y \in Y \mid(a, y) \in D\}
$$

and

$$
D^{b}=\{x \in X \mid(x, b) \in D\}
$$

(See Figure 34 for $X=Y=E^{1}$.)
Prove that

Figure 34
(i) $D_{a} \in \mathcal{N}, D^{b} \in \mathcal{M}$;
(ii) $C_{D}(a, \cdot)=C_{D_{a}}, n D_{a}=\int_{Y} C_{D}(a, \cdot) d n, m D^{b}=\int_{X} C_{D}(\cdot, b) d m$.
[Hint: Let

$$
\mathcal{R}=\left\{Z \in \mathcal{P} \mid Z_{a} \in \mathcal{N}\right\} .
$$

Show that \mathcal{R} is a σ-ring $\supseteq \mathcal{C}$. Hence $\mathcal{R} \supseteq \mathcal{P} ; D \in \mathcal{R} ; D_{a} \in \mathcal{N}$. Similarly for D^{b}.]
$\Rightarrow \mathbf{1 0}$. Let $m=n=$ Lebesgue measure in $E^{1}=X=Y$. Let $f: E^{1} \rightarrow[0, \infty)$ be m-measurable on X. Let

$$
H=\left\{(x, y) \in E^{2} \mid 0 \leq y<f(x)\right\}
$$

and

$$
G=\left\{(x, y) \in E^{2} \mid y=f(x, y)\right\}
$$

(the "graph" of f). Prove that
(i) $H \in \mathcal{P}^{*}$ and

$$
p H=\int_{X} f d m
$$

($=$ "the area under f ");
(ii) $G \in \mathcal{P}^{*}$ and $p G=0$.
[Hints: (i) First take $f=C_{D}$, and elementary and nonnegative maps. Then use Lemma 2 in $\S 2$ (last clause). Fix elementary and nonnegative maps $f_{k} \nearrow f$, assuming $f_{k}<f$ (if not, replace f_{k} by $\left(1-\frac{1}{k}\right) f_{k}$). Let

$$
H_{k}=\left\{(x, y) \mid 0 \leq y<f_{k}(x)\right\} .
$$

Show that $H_{k} \nearrow H \in \mathcal{P}^{*}$.
(ii) Set

$$
\phi(x, y)=y-f(x) .
$$

Using Corollary 4 of $\S 1$, show that ϕ is p-measurable on E^{2}; so $G=E^{2}(\phi=0) \in \mathcal{P}^{*}$. Dropping a null set (Lemma 6), assume $G \in \mathcal{P}$. By Problem 9(ii),

$$
\left(\forall x \in E^{1}\right) \quad \int_{Y} C_{G}(x, \cdot) d n=n G_{x}=0,
$$

as $G_{x}=\{f(x)\}$, a singleton.]
11. Let

$$
f(x, y)=\phi_{1}(x) \phi_{2}(y) .
$$

Prove that if ϕ_{1} is m-integrable on X and ϕ_{2} is n-integrable on Y, then f is p-integrable on $X \times Y$ and

$$
\int_{X \times Y} f d p=\int_{X} \phi_{1} \cdot \int_{Y} \phi_{2} .
$$

${ }^{*}$ 12. Prove Theorem 3(ii) for $f: X \times Y \rightarrow E$ (E complete).
[Outline: If f is \mathcal{P}^{*}-simple, use Lemma 7 above and Theorem 2 in $\S 7$.
If

$$
f=\sum_{k=1}^{\infty} a_{k} C_{D_{k}}, \quad D_{k} \in \mathcal{P}^{*},
$$

let

$$
H_{k}=\bigcup_{i=1}^{k} D_{i}
$$

and $f_{k}=f C_{H_{k}}$, so the f_{k} are \mathcal{P}^{*}-simple (hence Fubini maps), and $f_{k} \rightarrow f$ (pointwise) on $X \times Y$, with $\left|f_{k}\right| \leq|f|$ and

$$
\int_{X \times Y}|f| d p<\infty
$$

(by assumption). Now use Theorem 5 from $\S 6$.

Let now f be \mathcal{P}^{*}-measurable; so

$$
f=\lim _{k \rightarrow \infty} f_{k} \text { (uniformly) }
$$

for some \mathcal{P}^{*}-elementary maps g_{k} (Theorem 3 in $\S 1$). By assumption, $f=f C_{H}$ (H σ-finite); so we may assume $g_{k}=g_{k} C_{H}$. Then as shown above, all g_{k} are Fubini maps. So is f by Lemma 1 in $\S 7$ (verify!), provided $H \subseteq D$ for some $D \in \mathcal{C}$.

In the general case, by Problem 8,

$$
H \subseteq \bigcup_{i} D_{i}(\text { disjoint }), D_{i} \in \mathcal{C}
$$

Let $H_{i}=H \cap D_{i}$. By the previous step, each $f C_{H_{i}}$ is a Fubini map; so is

$$
f_{k}=\sum_{i=1}^{k} f C_{H_{i}}
$$

(why?), hence so is $f=\lim _{k \rightarrow \infty} f_{k}$, by Theorem 5 of $\S 6$. (Verify!)]
13. Let $m=$ Lebesgue measure in $E^{1}, p=$ Lebesgue measure in $E^{s}, X=$ $(0, \infty)$, and

$$
Y=\left\{\bar{y} \in E^{s}| | \bar{y} \mid=1\right\} .
$$

Given $\bar{x} \in E^{s}-\{\overline{0}\}$, let

$$
r=|\bar{x}| \text { and } \bar{u}=\frac{\bar{x}}{r} \in Y
$$

Call r and \bar{u} the polar coordinates of $\bar{x} \neq \overline{0}$.
If $D \subseteq Y$, set

$$
n^{*} D=s \cdot p^{*}\{r \bar{u} \mid \bar{u} \in D, 0<r \leq 1\} .
$$

Show that n^{*} is an outer measure in Y; so it induces a measure n in Y. Then prove that

$$
\int_{E^{s}} f d p=\int_{X} r^{s-1} d m(r) \int_{Y} f(r \bar{u}) d n(\bar{u})
$$

if f is p-measurable and nonnegative on E^{s}.
[Hint: Start with $f=C_{A}$,

$$
A=\{r \bar{u} \mid \bar{u} \in H, a<r<b\},
$$

for some open set $H \subseteq Y$ (subspace of E^{s}). Next, let $A \in \mathcal{B}$ (Borel set in Y); then $A \subseteq \mathcal{P}^{*}$. Then let f be p-elementary, and so on.]

§9. Riemann Integration. Stieltjes Integrals

I. In this section, \mathcal{C} is the family of all intervals in E^{n}, and m is an additive finite premeasure on $\mathcal{C}\left(\right.$ or $\left.\mathcal{C}_{s}\right)$, such as the volume function v (Chapter 7, §§1-2).

By a \mathcal{C}-partition of $A \in \mathcal{C}$ (or $A \in \mathcal{C}_{s}$), we mean a finite family

$$
\mathcal{P}=\left\{A_{i}\right\} \subset \mathcal{C}
$$

such that

$$
A=\bigcup_{i} A_{i}(\text { disjoint })
$$

As we noted in $\S 5$, the Riemann integral,

$$
R \int_{A} f=R \int_{A} f d m
$$

of $f: E^{n} \rightarrow E^{1}$ can be defined as its Lebesgue counterpart,

$$
\int_{A} f
$$

with elementary maps replaced by simple step functions ("C -simple" maps.) Equivalently, one can use the following construction, due to J. G. Darboux.

Definitions.

(a) Given $f: E^{n} \rightarrow E^{*}$ and a \mathcal{C}-partition

$$
\mathcal{P}=\left\{A_{1}, \ldots, A_{q}\right\}
$$

of A, we define the lower and upper Darboux sums, \underline{S} and \bar{S}, of f over \mathcal{P} (with respect to m) by
(1) $\quad \underline{S}(f, \mathcal{P})=\sum_{i=1}^{q} m A_{i} \cdot \inf f\left[A_{i}\right]$ and $\bar{S}(f, \mathcal{P})=\sum_{i=1}^{q} m A_{i} \cdot \sup f\left[A_{i}\right] .{ }^{1}$
(b) The lower and upper Riemann integrals (" R-integrals") of f on A (with respect to m) are

$$
\left.\begin{array}{l}
R{\underline{\int_{A}}} f=R{\underline{\int_{A}}}_{A} f d m=\sup _{\mathcal{P}} \underline{S}(f, \mathcal{P}) \text { and } \tag{2}\\
R \bar{\int}_{A} f=R \bar{\int}_{A} f d m=\inf _{\mathcal{P}} \bar{S}(f, \mathcal{P}),{ }^{2}
\end{array}\right\}
$$

where the "inf" and "sup" are taken over all \mathcal{C}-partitions \mathcal{P} of A.
(c) We say that f is Riemann-integrable (" R-integrable") with respect to m on A iff f is bounded on A and

$$
R{\underline{\int_{A}}}_{A} f=R \bar{\int}_{A} f
$$

[^50]We then set

$$
R \int_{A} f=R \int_{A} f=R \bar{\int}_{A} f d m=R \int_{A} f d m
$$

and call it the Riemann integral (" R-integral") of f on A. "Classical" notation:

$$
R \int_{A} f(\bar{x}) d m(\bar{x}) .
$$

If $A=[a, b] \subset E^{1}$, we also write

$$
R \int_{a}^{b} f=R \int_{a}^{b} f(x) d m(x)
$$

instead.
If m is Lebesgue measure (or premeasure) in E^{1}, we write " $d x$ " for "dm(x)."

For Lebesgue integrals, we replace " R " by " L," or we simply omit " R." If f is R -integrable on A, we also say that

$$
R \int_{A} f
$$

exists (note that this implies the boundedness of f); note that

$$
R \underline{\int}_{A} f \text { and } R \bar{\int}_{A} f
$$

are always defined in E^{*}.
Below, we always restrict f to a fixed $A \in \mathcal{C}\left(\right.$ or $\left.A \in \mathcal{C}_{s}\right) ; \mathcal{P}, \mathcal{P}^{\prime}, \mathcal{P}^{\prime \prime}, \mathcal{P}^{*}$, and \mathcal{P}_{k} denote \mathcal{C}-partitions of A.

We now obtain the following result for any additive $m: \mathcal{C} \rightarrow[0, \infty)$.
Corollary 1. If \mathcal{P} refines $\mathcal{P}^{\prime}(\S 1)$, then

$$
\underline{S}\left(f, \mathcal{P}^{\prime}\right) \leq \underline{S}(f, \mathcal{P}) \leq \bar{S}(f, \mathcal{P}) \leq \bar{S}\left(f, \mathcal{P}^{\prime}\right)
$$

Proof. Let $\mathcal{P}^{\prime}=\left\{A_{i}\right\}, \mathcal{P}=\left\{B_{i k}\right\}$, and

$$
(\forall i) \quad A_{i}=\bigcup_{k} B_{i k}
$$

By additivity,

$$
m A_{i}=\sum_{k} m B_{i k}
$$

Also, $B_{i k} \subseteq A_{i}$ implies

$$
\begin{aligned}
f\left[B_{i k}\right] & \subseteq f\left[A_{i}\right] ; \\
\sup f\left[B_{i k}\right] & \leq \sup f\left[A_{i}\right] ; \text { and } \\
\inf f\left[B_{i k}\right] & \geq \inf f\left[A_{i}\right] .
\end{aligned}
$$

So setting

$$
a_{i}=\inf f\left[A_{i}\right] \text { and } b_{i k}=\inf f\left[B_{i k}\right],
$$

we get

$$
\begin{aligned}
\underline{S}\left(f, \mathcal{P}^{\prime}\right)=\sum_{i} a_{i} m A_{i} & =\sum_{i} \sum_{k} a_{i} m B_{i k} \\
& \leq \sum_{i, k} b_{i k} m B_{i k}=\underline{S}(f, \mathcal{P})
\end{aligned}
$$

Similarly,

$$
\bar{S}\left(f, \mathcal{P}^{\prime}\right) \leq \bar{S}(f, \mathcal{P})
$$

and

$$
\underline{S}(f, \mathcal{P}) \leq \bar{S}(f, \mathcal{P})
$$

is obvious from (1).
Corollary 2. For any \mathcal{P}^{\prime} and $\mathcal{P}^{\prime \prime}$,

$$
\underline{S}\left(f, \mathcal{P}^{\prime}\right) \leq \bar{S}\left(f, \mathcal{P}^{\prime \prime}\right) .
$$

Hence

$$
R{\underline{\int_{A}}}_{A} f \leq R \bar{\int}_{A} f
$$

Proof. Let $\mathcal{P}=\mathcal{P}^{\prime} \cap \mathcal{P}^{\prime \prime}$ (see $\S 1$). As \mathcal{P} refines both \mathcal{P}^{\prime} and $\mathcal{P}^{\prime \prime}$, Corollary 1 yields

$$
\underline{S}\left(f, \mathcal{P}^{\prime}\right) \leq \underline{S}(f, \mathcal{P}) \leq \bar{S}(f, \mathcal{P}) \leq \bar{S}\left(f, \mathcal{P}^{\prime \prime}\right) .
$$

Thus, indeed, no lower sum $\underline{S}\left(f, \mathcal{P}^{\prime}\right)$ exceeds any upper sum $\bar{S}\left(f, \mathcal{P}^{\prime \prime}\right)$.
Hence also

$$
\sup _{\mathcal{P}^{\prime}} \underline{S}\left(f, \mathcal{P}^{\prime}\right) \leq \inf _{\mathcal{P}^{\prime \prime}} \bar{S}\left(f, \mathcal{P}^{\prime \prime}\right)
$$

i.e.,

$$
R \underline{-}_{A} f \leq R \bar{\int}_{A} f
$$

as claimed.

Lemma 1. A map $f: A \rightarrow E^{1}$ is R-integrable iff f is bounded and, moreover,

$$
\begin{equation*}
(\forall \varepsilon>0)(\exists \mathcal{P}) \quad \bar{S}(f, \mathcal{P})-\underline{S}(f, \mathcal{P})<\varepsilon . \tag{3}
\end{equation*}
$$

Proof. By formulas (1) and (2),

$$
\underline{S}(f, \mathcal{P}) \leq R \underline{\int}_{A} f \leq R \bar{\int}_{A} f \leq \bar{S}(f, \mathcal{P}) .
$$

Hence (3) implies

$$
\left|R \bar{\int}_{A} f-R{\underset{\sim}{A}}_{A} f\right|<\varepsilon
$$

As ε is arbitrary, we get

$$
R \bar{\int}_{A} f=R \underline{\int}_{A} f
$$

so f is R -integrable.
Conversely, if so, definitions (b) and (c) imply the existence of \mathcal{P}^{\prime} and $\mathcal{P}^{\prime \prime}$ such that

$$
\underline{S}\left(f, \mathcal{P}^{\prime}\right)>R \int_{A} f-\frac{1}{2} \varepsilon
$$

and

$$
\bar{S}\left(f, \mathcal{P}^{\prime \prime}\right)<R \int_{A} f+\frac{1}{2} \varepsilon
$$

Let \mathcal{P} refine both \mathcal{P}^{\prime} and $\mathcal{P}^{\prime \prime}$. Then by Corollary 1 ,

$$
\begin{aligned}
\bar{S}(f, \mathcal{P})-\underline{S}(f, \mathcal{P}) & \leq \bar{S}\left(f, \mathcal{P}^{\prime \prime}\right)-\underline{S}\left(f, \mathcal{P}^{\prime}\right) \\
& <\left(R \int_{A} f+\frac{1}{2} \varepsilon\right)-\left(R \int_{A} f-\frac{1}{2} \varepsilon\right)=\varepsilon
\end{aligned}
$$

as required.
Lemma 2. Let f be \mathcal{C}-simple; say, $f=a_{i}$ on A_{i} for some \mathcal{C}-partition $\mathcal{P}^{*}=$ $\left\{A_{i}\right\}$ of A (we then write

$$
f=\sum_{i} a_{i} C_{A_{i}}
$$

on A; see Note 4 of $\S 4$).
Then

$$
\begin{equation*}
R \underline{\int}_{A} f=R \overline{\int_{A}} f=\underline{S}\left(f, \mathcal{P}^{*}\right)=\bar{S}\left(f, \mathcal{P}^{*}\right)=\sum_{i} a_{i} m A_{i} . \tag{4}
\end{equation*}
$$

Hence any finite \mathcal{C}-simple function is R-integrable, with $R \int_{A} f$ as in (4).

Proof. Given any \mathcal{C}-partition $\mathcal{P}=\left\{B_{k}\right\}$ of A, consider

$$
\mathcal{P}^{*} \cap \mathcal{P}=\left\{A_{i} \cap B_{k}\right\} .
$$

As $f=a_{i}$ on $A_{i} \cap B_{k}\left(\right.$ even on all of $\left.A_{i}\right)$,

$$
a_{i}=\inf f\left[A_{i} \cap B_{k}\right]=\sup f\left[A_{i} \cap B_{k}\right]
$$

Also,

$$
A=\bigcup_{i, k}\left(A_{i} \cap B_{k}\right)(\text { disjoint })
$$

and

$$
(\forall i) \quad A_{i}=\bigcup_{k}\left(A_{i} \cap B_{k}\right) ;
$$

so

$$
m A_{i}=\sum_{k} m\left(A_{i} \cap B_{k}\right)
$$

and

$$
\underline{S}(f, \mathcal{P})=\sum_{i} \sum_{k} a_{i} m\left(A_{i} \cap B_{k}\right)=\sum_{i} a_{i} m A_{i}=\underline{S}\left(f, \mathcal{P}^{*}\right)
$$

for any such \mathcal{P}.
Hence also

$$
\sum_{i} a_{i} m A_{i}=\sup _{\mathcal{P}} \underline{S}(f, \mathcal{P})=R{\underline{\int_{A}}}_{A} f .
$$

Similarly for $R \bar{\int}_{A} f$. This proves (4).
If, further, f is finite, it is bounded (by max $\left|a_{i}\right|$) since there are only finitely many a_{i}; so f is R-integrable on A, and all is proved.

Note 1. Thus \underline{S} and \bar{S} are integrals of \mathcal{C}-simple maps, and definition (b) can be restated:

$$
R \int_{A} f=\sup _{g} R \int_{A} g \text { and } R \bar{\int}_{A} f=\inf _{h} R \int_{A} h
$$

taking the sup and \inf over all \mathcal{C}-simple maps g, h with

$$
g \leq f \leq h \text { on } A
$$

(Verify by properties of glb and lub!)
Therefore, we can now develop R-integration as in $\S \S 4-5$, replacing elementary maps by \mathcal{C}-simple maps, with $S=E^{n}$. In particular, Problem 5 in $\S 5$ works out as before.

Hence linearity (Theorem 1 of $\S 6$) follows, with the same proof. One also obtains additivity (limited to \mathcal{C}-partitions). Moreover, the R-integrability of f and g implies that of $f g, f \vee g, f \wedge g$, and $|f|$. (See the Problems.)

Theorem 1. If $f_{i} \rightarrow f$ (uniformly) on A and if the f_{i} are R-integrable on A, so also is f. Moreover,

$$
\lim _{i \rightarrow \infty} R \int_{A}\left|f-f_{i}\right|=0 \text { and } \lim _{i \rightarrow \infty} R \int_{A} f_{i}=R \int_{A} f
$$

Proof. As all f_{i} are bounded (definition (c)), so is f, by Problem 10 of Chapter $4, \S 12$.

Now, given $\varepsilon>0$, fix k such that

$$
(\forall i \geq k) \quad\left|f-f_{i}\right|<\frac{\varepsilon}{m A} \quad \text { on } A
$$

Verify that

$$
(\forall i \geq k)(\forall \mathcal{P}) \quad\left|\underline{S}\left(f-f_{i}, \mathcal{P}\right)\right|<\varepsilon \text { and }\left|\bar{S}\left(f-f_{i}, \mathcal{P}\right)\right|<\varepsilon ;
$$

fix one such f_{i} and choose a \mathcal{P} such that

$$
\bar{S}\left(f_{i}, \mathcal{P}\right)-\underline{S}\left(f_{i}, \mathcal{P}\right)<\varepsilon,
$$

which one can do by Lemma 1 . Then for this \mathcal{P},

$$
\bar{S}(f, \mathcal{P})-\underline{S}(f, \mathcal{P})<3 \varepsilon
$$

(Why?) By Lemma 1 , then, f is R -integrable on A.
Finally,

$$
\begin{aligned}
\left|R \int_{A} f-R \int_{A} f_{i}\right| & \leq R \int_{A}\left|f-f_{i}\right| \\
& \leq R \int_{A}\left(\frac{\varepsilon}{m A}\right)=m A\left(\frac{\varepsilon}{m A}\right)=\varepsilon
\end{aligned}
$$

for all $i \geq k$. Hence the second clause of our theorem follows, too.
Corollary 3. If $f: E^{1} \rightarrow E^{1}$ is bounded and regulated (Chapter 5, §10) on $A=[a, b]$, then f is R-integrable on A.

In particular, this applies if f is monotone, or of bounded variation, or relatively continuous, or a step function, on A.

Proof. By Lemma 2, this applies to \mathcal{C}-simple maps.
Now, let f be regulated (e.g., of the kind specified above).
Then by Lemma 2 of Chapter $5, \S 10$,

$$
f=\lim _{i \rightarrow \infty} g_{i} \quad \text { (uniformly) }
$$

for finite \mathcal{C}-simple g_{i}.
Thus f is R -integrable on A by Theorem 1 .
II. Henceforth, we assume that m is a measure on a σ-ring $\mathcal{M} \supseteq \mathcal{C}$ in E^{n}, with $m<\infty$ on \mathcal{C}. (For a reader who took the "limited approach," it is now time to consider $\S \S 4-6$ in full.) The measure m may, but need not, be Lebesgue measure in E^{n}.
Theorem 2. If $f: E^{n} \rightarrow E^{1}$ is R-integrable on $A \in \mathcal{C}$, it is also Lebesgue integrable (with respect to m as above) on A, and

$$
L \int_{A} f=R \int_{A} f
$$

Proof. Given a \mathcal{C}-partition $\mathcal{P}=\left\{A_{i}\right\}$ of A, define the \mathcal{C}-simple maps

$$
g=\sum_{i} a_{i} C_{A_{i}} \text { and } h=\sum_{i} b_{i} C_{A_{i}}
$$

with

$$
a_{i}=\inf f\left[A_{i}\right] \text { and } b_{i}=\sup f\left[A_{i}\right] .
$$

Then $g \leq f \leq h$ on A with

$$
\underline{S}(f, \mathcal{P})=\sum_{i} a_{i} m A_{i}=L \int_{A} g
$$

and

$$
\bar{S}(f, \mathcal{P})=\sum_{i} b_{i} m A_{i}=L \int_{A} h
$$

By Theorem 1(c) in §5,

$$
\underline{S}(f, \mathcal{P})=L \int_{A} g \leq L \underline{\int}_{A} f \leq L \overline{\int_{A}} f \leq L \int_{A} h=\bar{S}(f, \mathcal{P}) .
$$

As this holds for any \mathcal{P}, we get

$$
\begin{equation*}
R \underline{\int_{A}} f=\sup _{\mathcal{P}} \underline{S}(f, \mathcal{P}) \leq L{\underline{\int_{A}}}_{A} \leq L \bar{\int}_{A} f=\inf _{\mathcal{P}} \bar{S}(f, \mathcal{P})=R \overline{\int_{A}} f . \tag{5}
\end{equation*}
$$

But by assumption,

$$
R{\underline{\int_{A}}}_{A} f=R \bar{\int}_{A} f
$$

Thus these inequalities become equations:

$$
R \int_{A} f=\underline{\int}_{A} f=\bar{\int}_{A} f=R \int_{A} f
$$

Also, by definition (c), f is bounded on A; so $|f|<K<\infty$ on A. Hence

$$
\left|\int_{A} f\right| \leq \int_{A}|f| \leq K \cdot m A<\infty .^{3}
$$

Thus

$$
\underline{\int}_{A} f=\bar{\int}_{A} f \neq \pm \infty
$$

i.e., f is Lebesgue integrable, and

$$
L \int_{A} f=R \int_{A} f
$$

as claimed.
Note 2. The converse fails. For example, as shown in the example in $\S 4$, $f=C_{R}(R=$ rationals $)$ is L-integrable on $A=[0,1]$.

Yet f is not R-integrable.
For \mathcal{C}-partitions involve intervals containing both rationals (on which $f=1$) and irrationals (on which $f=0$). Thus for any \mathcal{P},

$$
\underline{S}(f, \mathcal{P})=0 \text { and } \bar{S}(f, \mathcal{P})=1 \cdot m A=1 .
$$

(Why?) So

$$
R \bar{\int}_{A} f=\inf \bar{S}(f, \mathcal{P})=1
$$

while

$$
R \underline{\int}_{A} f=0 \neq R \bar{\int}_{A} f
$$

Note 3. By Theorem 1, any $R \int_{A} f$ is also a Lebesgue integral. Thus the rules of §§5-6 apply to R-integrals, provided that the functions involved are R-integrable. For a deeper study, we need a few more ideas.
Definitions (continued).
(d) The mesh $|\mathcal{P}|$ of a \mathcal{C}-partition $\mathcal{P}=\left\{A_{1}, \ldots, A_{q}\right\}$ is the largest of the diagonals $d A_{i}$:

$$
|\mathcal{P}|=\max \left\{d A_{1}, d A_{2}, \ldots, d A_{q}\right\}
$$

Note 4. For any $A \in \mathcal{C}$, there is a sequence of \mathcal{C}-partitions \mathcal{P}_{k} such that
(i) each P_{k+1} refines P_{k} and
(ii) $\lim _{k \rightarrow \infty}\left|P_{k}\right|=0$.

[^51]To construct such a sequence, bisect the edges of A so as to obtain 2^{n} subintervals of diagonal $\frac{1}{2} d A$ (Chapter $3, \S 7$). Repeat this with each of the subintervals, and so on. Then

$$
\left|P_{k}\right|=\frac{d A}{2^{k}} \rightarrow 0
$$

Lemma 3. Let $f: A \rightarrow E^{1}$ be bounded. Let $\left\{\mathcal{P}_{k}\right\}$ satisfy (i) of Note 4. If $P_{k}=\left\{A_{1}^{k}, \ldots, A_{q_{k}}^{k}\right\}$, put

$$
g_{k}=\sum_{i=1}^{q_{k}} C_{A_{i}^{k}} \inf f\left[A_{i}^{k}\right]
$$

and

$$
h_{k}=\sum_{i=1}^{q_{k}} C_{A_{i}^{k}} \sup f\left[A_{i}^{k}\right] .
$$

Then the functions

$$
g=\sup _{k} g_{k} \text { and } h=\inf _{k} h_{k}
$$

are Lebesgue integrable on $A,{ }^{4}$ and

$$
\begin{equation*}
\int_{A} g=\lim _{k \rightarrow \infty} \underline{S}\left(f, \mathcal{P}_{k}\right) \leq R{\int_{A}}_{A} \leq R \bar{\int}_{A} f \leq \lim _{k \rightarrow \infty} \bar{S}\left(f, \mathcal{P}_{k}\right)=\int_{A} h \tag{6}
\end{equation*}
$$

Proof. As in Theorem 2, we obtain $g_{k} \leq f \leq h_{k}$ on A with

$$
\int_{A} g_{k}=\underline{S}\left(f, \mathcal{P}_{k}\right)
$$

and

$$
\int_{A} h_{k}=\bar{S}\left(f, \mathcal{P}_{k}\right)
$$

Since \mathcal{P}_{k+1} refines \mathcal{P}_{k}, it also easily follows that

$$
\begin{equation*}
g_{k} \leq g_{k+1} \leq \sup _{k} g_{k}=g \leq f \leq h=\inf _{k} h_{k} \leq h_{k+1} \leq h_{k} . \tag{7}
\end{equation*}
$$

(Verify!)
Thus $\left\{g_{k}\right\} \uparrow$ and $\left\{h_{k}\right\} \downarrow$, and so

$$
g=\sup _{k} g_{k}=\lim _{k \rightarrow \infty} g_{k} \text { and } h=\inf _{k} h_{k}=\lim _{k \rightarrow \infty} h_{k} .
$$

Also, as f is bounded,

$$
\left(\exists K \in E^{1}\right) \quad|f|<K \text { on } A .
$$

[^52]The definition of g_{k} and h_{k} then implies

$$
(\forall k) \quad\left|g_{k}\right| \leq K \text { and }\left|h_{k}\right| \leq K \text { (why?), }
$$

with

$$
\int_{A}(K)=K \cdot m A<\infty
$$

The g_{k} and h_{k} are measurable (even simple) on A, with $g_{k} \rightarrow g$ and $h_{k} \rightarrow h$.
Thus by Theorem 5 and Note 1, both from $\S 6, g$ and h are Lebesgue integrable, ${ }^{5}$ with

$$
\int_{A} g=\lim _{k \rightarrow \infty} \int_{A} g_{k} \text { and } \int_{A} h=\lim _{k \rightarrow \infty} \int_{A} h_{k}
$$

As

$$
\int_{A} g_{k}=\underline{S}\left(f, \mathcal{P}_{k}\right) \leq R{\underline{\int_{A}}}_{A} f
$$

and

$$
\int_{A} h_{k}=\bar{S}\left(f, \mathcal{P}_{k}\right) \geq R \bar{\int}_{A} f
$$

passage to the limit in equalities yields (6). Thus the lemma is proved.
Lemma 4. With all as in Lemma 3, let B be the union of the boundaries of all intervals from all \mathcal{P}_{k}. Let $\left|\mathcal{P}_{k}\right| \rightarrow 0$. Then we have the following.
(i) If f is continuous at $p \in A$, then $h(p)=g(p)$.
(ii) The converse holds if $p \in A-B$.

Proof. For each k, p is in one of the intervals in \mathcal{P}_{k}; call it $A_{k p}$.
If $p \in A-B, p$ is an interior point of $A_{k p}$; so there is a globe

$$
G_{p}\left(\delta_{k}\right) \subseteq A_{k p}
$$

Also, by the definition of g_{k} and h_{k},

$$
g_{k}(p)=\inf f\left[A_{k p}\right] \text { and } h_{k}=\sup f\left[A_{k p}\right] .
$$

(Why?)
Now fix $\varepsilon>0$. If $g(p)=h(p)$, then

$$
0=h(p)-g(p)=\lim _{k \rightarrow \infty}\left[h_{k}(p)-g_{k}(p)\right] ;
$$

so

$$
(\exists k) \quad\left|h_{k}(p)-g_{k}(p)\right|=\sup f\left[A_{k p}\right]-\inf f\left[A_{k p}\right]<\varepsilon .
$$

As $G_{p}\left(\delta_{k}\right) \subseteq A_{k p}$, we get

$$
\left(\forall x \in G_{p}\left(\delta_{k}\right)\right) \quad|f(x)-f(p)| \leq \sup f\left[A_{k p}\right]-\inf f\left[A_{k p}\right]<\varepsilon
$$

[^53]proving continuity (clause (ii)).
For (i), given $\varepsilon>0$, choose $\delta>0$ so that
$$
\left(\forall x, y \in A \cap G_{p}(\delta)\right) \quad|f(x)-f(y)|<\varepsilon
$$

Because

$$
(\forall \delta>0)\left(\exists k_{0}\right)\left(\forall k>k_{0}\right) \quad\left|\mathcal{P}_{k}\right|<\delta
$$

for $k>k_{0}, A_{k p} \subseteq G_{p}(\delta)$. Deduce that

$$
\left(\forall k>k_{0}\right) \quad\left|h_{k}(p)-g_{k}(p)\right| \leq \varepsilon .
$$

Note 5. The Lebesgue measure of B in Lemma 4 is zero; for B consists of countably many "faces" (degenerate intervals), each of measure zero.
Theorem 3. $A \operatorname{map} f: A \rightarrow E^{1}$ is R-integrable on A (with $m=$ Lebesgue measure) iff f is bounded on A and continuous on $A-Q$ for some Q with $m Q=0$.

Note that relative continuity on $A-Q$ is not enough-take $f=C_{R}$ of Note 2.

Proof. If these conditions hold, choose $\left\{\mathcal{P}_{k}\right\}$ as in Lemma 4.
Then by the assumed continuity, $g=h$ on $A-Q, m Q=0$.
Thus

$$
\int_{A} g=\int_{A} h
$$

(Corollary 2 in $\S 5$).
Hence by formula (6), f is R -integrable on A.
Conversely, if so, use Lemma 1 with

$$
\varepsilon=1, \frac{1}{2}, \ldots, \frac{1}{k}, \ldots
$$

to get for each k some \mathcal{P}_{k} such that

$$
\bar{S}\left(f, \mathcal{P}_{k}\right)-\underline{S}\left(f, \mathcal{P}_{k}\right)<\frac{1}{k} \rightarrow 0 .
$$

By Corollary 1 , this will still hold if we refine each \mathcal{P}_{k}, step by step, so as to achieve properties (i) and (ii) of Note 4 as well. Then Lemmas 3 and 4 apply.

As

$$
\bar{S}\left(f, \mathcal{P}_{k}\right)-\underline{S}\left(f, \mathcal{P}_{k}\right) \rightarrow 0
$$

formula (6) shows that

$$
\int_{A} g=\lim _{k \rightarrow \infty} \underline{S}\left(f, \mathcal{P}_{k}\right)=\lim _{k \rightarrow \infty} \bar{S}\left(f, \mathcal{P}_{k}\right)=\int_{A} h .
$$

As h and g are integrable on A,

$$
\int_{A}(h-g)=\int_{A} h-\int_{A} g=0 .
$$

Also $h-g \geq 0$; so by Theorem 1 (h) in $\S 5, h=g$ on $A-Q^{\prime}, m Q^{\prime}=0$ (under Lebesgue measure). Hence by Lemma $4, f$ is continuous on

$$
A-Q^{\prime}-B
$$

with $m B=0$ (Note 5).
Let $Q=Q^{\prime} \cup B$. Then $m Q=0$ and

$$
A-Q=A-Q^{\prime}-B
$$

so f is continuous on $A-Q$. This completes the proof.
Note 6. The first part of the proof does not involve B and thus works even if m is not the Lebesgue measure. The second part requires that $m B=0$.

Theorem 3 shows that R-integrals are limited to a.e. continuous functions and hence are less flexible than L-integrals: Fewer functions are R-integrable, and convergence theorems ($\S 6$, Theorems 4 and 5) fail unless $R \int_{A} f$ exists.
III. Functions $\boldsymbol{f}: \boldsymbol{E}^{\boldsymbol{n}} \rightarrow \boldsymbol{E}^{\boldsymbol{s}}\left(\boldsymbol{C}^{\boldsymbol{s}}\right)$. For such functions, R-integrals are defined componentwise (see $\S 7$). Thus $f=\left(f_{1}, \ldots, f_{s}\right)$ is R -integrable on A iff all f_{k} ($k \leq s$) are, and then

$$
R \int_{A} f=\sum_{k=1}^{s} \bar{e}_{k} R \int_{A} f_{k}
$$

A complex function f is R -integrable iff f_{re} and f_{im} are, and then

$$
R \int_{A} f=R \int_{A} f_{\mathrm{re}}+i R \int_{A} f_{\mathrm{im}}
$$

Via components, Theorems 1 to 3, Corollaries 3 and 4, additivity, linearity, etc., apply.
IV. Stieltjes Integrals. Riemann used Lebesgue premeasure v only. But as we saw, his method admits other premeasures, too.

Thus in E^{1}, we may let m be the $L S$ premeasure s_{α} or the $L S$ measure m_{α}, where $\alpha \uparrow$ (Chapter 7, $\S 5$, Example (b), and Chapter 7, $\S 9$).

Then

$$
R \int_{A} f d m
$$

is called the Riemann-Stieltjes (RS) integral of f with respect to α, also written

$$
R \int_{A} f d \alpha \quad \text { or } \quad R \int_{a}^{b} f(x) d \alpha(x)
$$

(the latter if $A=[a, b]$); f and α are called the integrand and integrator, respectively.

If $\alpha(x)=x, m_{\alpha}$ becomes the Lebesgue measure, and

$$
R \int f(x) d \alpha(x)
$$

turns into

$$
R \int f(x) d x \text {. }
$$

Our theory still remains valid; only Theorem 3 now reads as follows.
Corollary 4. If f is bounded and a.e. continuous on $A=[a, b]$ (under an $L S$ measure m_{α}) then

$$
R \int_{a}^{b} f d \alpha
$$

exists. The converse holds if α is continuous on A.
For by Notes 5 and 6 , the "only if" in Theorem 3 holds if $m_{\alpha} B=0$. Here B consists of countably many endpoints of partition subintervals. But (see Chapter 7, §9) $m_{\alpha}\{p\}=0$ if α is continuous at p. Thus the later implies $m_{\alpha} B=0$.

RS-integration has been used in many fields (e.g., probability theory, physics, etc.), but it is superseded by LS-integration, i.e., Lebesgue integration with respect to m_{α}, which is fully covered by the general theory of $\S \S 1-8$.

Actually, Stieltjes himself used somewhat different definitions (see Problems 10-13), which amount to applying the set function σ_{α} of Problem 9 in Chapter $7, \S 4$, instead of s_{α} or m_{α}. We reserve the name "Stieltjes integrals," denoted

$$
S \int_{a}^{b} f d \alpha
$$

for such integrals, and " $R S$-integrals" for those based on m_{α} or s_{α} (this terminology is not standard).

Observe that σ_{α} need not be ≥ 0. Thus for the first time, we encounter integration with respect to sign-changing set functions. A much more general theory is presented in $\S 10$ (see Problem 10 there).

Problems on Riemann and Stieltjes Integrals

1. Replacing " \mathcal{M} " by " \mathcal{C}," and "elementary and integrable" or "elementary and nonnegative" by "C-simple," prove Corollary 1(ii)(iv)(vii) and Theorems 1(i) and 2(ii), all in §4, and do Problem 5-7 in §4, for Rintegrals.
2. Verify Note 1.
$\mathbf{2}^{\prime}$. Do Problems 5-7 in $\S 5$ for R-integrals.
3. Do the following for R-integrals.
(i) Prove Theorems 1(a)-(g) and 2, both in $\S 5$ (\mathcal{C}-partitions only).
(ii) Prove Theorem 1 and Corollaries 1 and 2, all in $\S 6$.
(iii) Show that definition (b) can be replaced by formulas analogous to formulas $\left(1^{\prime}\right),\left(1^{\prime \prime}\right)$, and (1) of Definition 1 in $\S 5$.
[Hint: Use Problems 1 and 2^{\prime}.]
4. Fill in all details in the proof of Theorem 1, Lemmas 3 and 4, and Corollary 4.
5. For $f, g: E^{n} \rightarrow E^{s}\left(C^{s}\right)$, via components, prove the following.
(i) Theorems 1-3 and
(ii) additivity and linearity of R-integrals.

Do also Problem 13 in $\S 7$ for R-integrals.
6. Prove that if $f: A \rightarrow E^{s}\left(C^{s}\right)$ is bounded and a.e. continuous on A, then

$$
R \int_{A}|f| \geq\left|R \int_{A} f\right| .
$$

For $m=$ Lebesgue measure, do it assuming R-integrability only.
7. Prove that if $f, g: A \rightarrow E^{1}$ are R-integrable, then
(i) so is f^{2}, and
(ii) so is $f g$.
[Hints: (i) Use Lemma 1. Let $h=|f| \leq K<\infty$ on A. Verify that

$$
\left(\inf h\left[A_{i}\right]\right)^{2}=\inf f^{2}\left[A_{i}\right] \text { and }\left(\sup h\left[A_{i}\right]\right)^{2}=\sup f^{2}\left[A_{i}\right] ;
$$

so

$$
\begin{aligned}
\sup f^{2}\left[A_{i}\right]-\inf f^{2}\left[A_{i}\right] & =\left(\sup h\left[A_{i}\right]+\inf h\left[A_{i}\right]\right)\left(\sup h\left[A_{i}\right]-\inf h\left[A_{i}\right]\right) \\
& \leq\left(\sup h\left[A_{i}\right]-\inf h\left[A_{i}\right]\right) 2 K
\end{aligned}
$$

(ii) Use

$$
f g=\frac{1}{4}\left[(f+g)^{2}-(f-g)^{2}\right]
$$

(iii) For $m=$ Lebesgue measure, do it using Theorem 3.]
8. Prove that if $m=$ the volume function v (or LS function s_{α} for a continuous α), then in formulas (1) and (2), one may replace A_{i} by \bar{A}_{i} (closure of A_{i}).
[Hint: Show that here $m A=m \bar{A}$,

$$
R \int_{A} f=R \int_{\bar{A}} f,
$$

and additivity works even if the A_{i} have some common "faces" (only their interiors being disjoint).]
9. (Riemann sums.) Instead of \underline{S} and \bar{S}, Riemann used sums

$$
S(f, \mathcal{P})=\sum_{i} f\left(x_{i}\right) d m A_{i}
$$

where $m=v$ (see Problem 8) and x_{i} is arbitrarily chosen from $\overline{A_{i}}$.
For a bounded f, prove that

$$
r=R \int_{A} f d m
$$

exists on $A=[a, b]$ iff for every $\varepsilon>0$, there is $\mathcal{P}_{\varepsilon}$ such that

$$
|S(f, \mathcal{P})-r|<\varepsilon
$$

for every refinement

$$
\mathcal{P}=\left\{A_{i}\right\}
$$

of $\mathcal{P}_{\varepsilon}$ and any choice of $x_{i} \in \overline{A_{i}}$.
[Hint: Show that by Problem 8, this is equivalent to formula (3).]
10. Replacing m by the σ_{α} of Problem 9 of Chapter 7 , $\S 4$, write $S(f, \mathcal{P}, \alpha)$ for $S(f, \mathcal{P})$ in Problem 9, treating Problem 9 as a definition of the Stieltjes integral,

$$
S \int_{a}^{b} f d \alpha \quad\left(\text { or } S \int_{a}^{b} f d \sigma_{\alpha}\right)
$$

Here $f, \alpha: E^{1} \rightarrow E^{1}$ (monotone or not; even $f, \alpha: E^{1} \rightarrow C$ will do).
Prove that if $\alpha: E^{1} \rightarrow E^{1}$ is continuous and $\alpha \uparrow$, then

$$
S \int_{a}^{b} f d \alpha=R \int_{a}^{b} f d \alpha
$$

the $R S$-integral.
11. (Integration by parts.) Continuing Problem 10, prove that

$$
S \int_{a}^{b} f d \alpha
$$

exists iff

$$
S \int_{a}^{b} \alpha d f
$$

does, and then

$$
S \int_{a}^{b} f d \alpha+S \int_{a}^{b} \alpha d f=K
$$

where

$$
K=f(b) \alpha(b)-f(a) \alpha(a)
$$

[Hints: Take any \mathcal{C}-partition $\mathcal{P}=\left\{A_{i}\right\}$ of $[a, b]$, with

$$
\overline{A_{i}}=\left[y_{i-1}, y_{i}\right],
$$

say. For any $x_{i} \in \bar{A}_{i}$, verify that

$$
S(f, \mathcal{P}, \alpha)=\sum f\left(x_{i}\right)\left[\alpha\left(y_{i}\right)-\alpha\left(y_{i-1}\right)\right]=\sum f\left(x_{i}\right) \alpha\left(y_{i}\right)-\sum f\left(x_{i}\right) \alpha\left(y_{i-1}\right)
$$

and

$$
K=\sum f\left(x_{i}\right) \alpha\left(y_{i}\right)-\sum f\left(x_{i-1}\right) \alpha\left(y_{i-1}\right)
$$

Deduce that
$K-S(f, \mathcal{P}, \alpha)=S\left(\alpha, \mathcal{P}^{\prime}, f\right)=\sum \alpha\left(x_{i}\right)\left[f\left(x_{i}\right)-f\left(y_{i}\right)\right]-\sum \alpha\left(x_{i-1}\right)\left[f\left(y_{i}\right)-f\left(x_{i-1}\right)\right] ;$
here \mathcal{P}^{\prime} results by combining the partition points x_{i} and y_{i}, so it refines \mathcal{P}.
Now, if $S \int_{a}^{b} \alpha d f$ exists, fix $\mathcal{P}_{\varepsilon}$ as in Problem 9 and show that

$$
\left|K-S(f, \mathcal{P}, \alpha)-S \int_{a}^{b} \alpha d f\right|<\varepsilon
$$

whenever \mathcal{P} refines $\left.\mathcal{P}_{\varepsilon}.\right]$
12. If $\alpha: E^{1} \rightarrow E^{1}$ is of class $C D^{1}$ on $[a, b]$ and if

$$
S \int_{a}^{b} f d \alpha
$$

exists (see Problem 10), it equals

$$
R \int_{a}^{b} f(x) \alpha^{\prime}(x) d x
$$

[Hints: Set $\phi=f \alpha^{\prime}, \mathcal{P}=\left\{A_{i}\right\}, \overline{A_{i}}=\left[a_{i-1}, a_{i}\right]$. Then

$$
S(\phi, \mathcal{P})=\sum f\left(x_{i}\right) \alpha^{\prime}\left(x_{i}\right)\left(a_{i}-a_{i-1}\right), \quad x_{i} \in \overline{A_{i}}
$$

and (Corollary 3 in Chapter 5, §2)

$$
S(f, \mathcal{P}, \alpha)=\sum f\left(x_{i}\right)\left[\alpha\left(a_{i}\right)-\alpha\left(a_{i-1}\right)\right]=\sum f\left(x_{i}\right) \alpha^{\prime}\left(q_{i}\right), \quad q_{i} \in A_{i} .
$$

As f is bounded and α^{\prime} is uniformly continuous on $[a, b]$ (why?), deduce that $(\forall \varepsilon>0)\left(\exists \mathcal{P}_{\varepsilon}\right)\left(\forall \mathcal{P}\right.$ refining $\left.\mathcal{P}_{\varepsilon}\right)$

$$
|S(\phi, \mathcal{P})-S(f, \mathcal{P}, \alpha)|<\frac{1}{2} \varepsilon \text { and }\left|S(f, \mathcal{P}, \alpha)-S \int_{a}^{b} f d \alpha\right|<\frac{1}{2} \varepsilon .
$$

Proceed. Use Problem 9.]
13. (Laws of the mean.) Let $f, g, \alpha: E^{1} \rightarrow E^{1} ; p \leq f \leq q$ on $A=[a, b]$; $p, q \in E^{1}$. Prove the following.
(i) If $\alpha \uparrow$ and if

$$
S \int_{a}^{b} f d \alpha
$$

exists, then $(\exists c \in[p, q])$ such that

$$
S \int_{a}^{b} f d \alpha=c[\alpha(b)-\alpha(a)]
$$

Similarly, if

$$
R \int_{a}^{b} f d \alpha
$$

exists, then $(\exists c \in[p, q])$ such that

$$
R \int_{a}^{b} f d \alpha=c[\alpha(b+)-\alpha(a-)]
$$

(i') If f also has the Darboux property on A, then $c=f\left(x_{0}\right)$ for some $x_{0} \in A$.
(ii) If α is continuous, and $f \uparrow$ on A, then

$$
S \int_{a}^{b} f d \alpha=[f(b) \alpha(b)-f(a) \alpha(a)]-S \int_{a}^{b} \alpha d f
$$

exists, and $(\exists z \in A)$ such that

$$
\begin{aligned}
S \int_{a}^{b} f d \alpha & =f(a) S \int_{a}^{z} d \alpha+f(b) S \int_{z}^{b} d \alpha \\
& =f(a)[\alpha(z)-\alpha(a)]+f(b)[\alpha(b)-\alpha(z)]
\end{aligned}
$$

(ii') If g is continuous and $f \uparrow$ on A, then $(\exists z \in A)$ such that

$$
R \int_{a}^{b} f(x) g(x) d x=p \cdot R \int_{a}^{z} g(x) d x+q \cdot R \int_{z}^{b} g(x) d x
$$

If $f \downarrow$, replace f by $-f$. (See also Corollary 5 in Chapter 9, $\S 1$.)
[Hints: (i) As $\alpha \uparrow$, we get

$$
p[\alpha(b)-\alpha(a)] \leq S \int_{a}^{b} f d \alpha \leq q[\alpha(b)-\alpha(a)] .
$$

(Why?) Now argue as in $\S 6$, Theorem 3 and Problem 2.
(ii) Use Problem 11, and apply (i) to $\int \alpha d f$.
(ii') By Theorem 2 of Chapter $5, \S 10, g$ has a primitive $\beta \in C D^{1}$. Apply Problem 12 to $S \int_{a}^{b} f d \beta$.]

§10. Integration in Generalized Measure Spaces

Let (S, \mathcal{M}, s) be a generalized measure space. By Note 1 in $\S 3$, a map f is s-measurable iff it is v_{s}-measurable. This naturally leads us to the following
definition.

Definition 1.

A map $f: S \rightarrow E$ is s-integrable on a set A iff it is v_{s}-integrable on A. (Recall that v_{s}, the total variation of s, is a measure.)

Note 1. Here the range spaces of f and s are assumed complete and such that $f(x) s A$ is defined for $x \in S$ and $A \in \mathcal{M}$. Thus if s is vector valued, f must be scalar valued, and vice versa. Later, if a factor p occurs, it must be such that $p f(x) s A$ is defined, i.e., at least two of $p, f(x)$, and $s A$ are scalars.

Note 2. If s is a measure (≥ 0), then $v_{s}=s^{+}=s$ (Corollary 3 in Chapter 7, §11); so our present definition agrees with the previous ones (as in Theorem 1 of $\S 7$).
Lemma 1. If m^{\prime} and $m^{\prime \prime}$ are measures, with $m^{\prime} \geq m^{\prime \prime}$ on \mathcal{M}, then

$$
\int_{A}|f| d m^{\prime} \geq \int_{A}|f| d m^{\prime \prime}
$$

for all $A \in \mathcal{M}$ and any $f: S \rightarrow E$.
Proof. First, take any elementary and nonnegative map $g \geq|f|$,

$$
g=\sum_{i} C_{A_{i}} a_{i} \text { on } A .
$$

Then (§4)

$$
\int_{A} g d m^{\prime}=\sum a_{i} m^{\prime} A_{i} \geq \sum a_{i} m^{\prime \prime} A_{i}=\int_{A} g d m^{\prime \prime}
$$

Hence by Definition 1 in $\S 5$,

$$
\int_{A}|f| d m^{\prime}=\inf _{g \geq|f|} \int_{A} g d m^{\prime} \geq \inf _{g \geq|f|} \int_{A} g d m^{\prime \prime}=\int_{A}|f| d m^{\prime \prime}
$$

as claimed.

Lemma 2.

(i) If $s: \mathcal{M} \rightarrow E^{n}\left(C^{n}\right)$ with $s=\left(s_{1}, \ldots, s_{n}\right)$, and if f is s-integrable on $A \in \mathcal{M}$, then f is s_{k}-integrable on A for $k=1,2, \ldots, n$.
(ii) If s is a signed measure and f is s-integrable on A, then f is integrable on A with respect to both s^{+}and s^{-}(with s^{+}and s^{-}as in formula (3) in Chapter 7, §11).

Note 3. The converse statements hold if f is \mathcal{M}-measurable on A.
Proof.
(i) If $s=\left(s_{1}, \ldots, s_{n}\right)$, then (Problem 4 of Chapter $\left.7, \S 11\right)$

$$
v_{s} \geq v_{s_{k}}, \quad k=1, \ldots, n
$$

Hence by Definition 1 and Lemma 1, the s-integrability of f implies

$$
\infty>\int_{A}|f| d v_{s} \geq \int_{A}|f| d v_{s_{k}}
$$

Also, f is v_{s}-measurable, i.e., \mathcal{M}-measurable on $A-Q$, with

$$
0=v_{s} Q \geq v_{s_{k}} Q \geq 0
$$

Thus f is s_{k}-integrable on $A, k=1, \ldots, n$, as claimed.
(ii) If $s=s^{+}-s^{-}$, then by Theorem 4 in Chapter 7, $\S 11$, and Corollary 3 there, s^{+}and s^{-}are measures (≥ 0) and $v_{s}=s^{+}+s^{-}$, so that both

$$
v_{s} \geq s^{+}=v_{s^{+}} \text {and } v_{s} \geq s^{-}=v_{s^{-}} .
$$

Thus the desired result follows exactly as in part (i) of the proof.
We leave Note 3 as an exercise.

Definition 2.

If f is s-integrable on $A \in \mathcal{M}$, we set
(i) in the case $s: \mathcal{M} \rightarrow E^{*}$,

$$
\int_{A} f d s=\int_{A} f d s^{+}-\int_{A} f d s^{-}
$$

with s^{+}and s^{-}as in formula (3) of Chapter 7, $\S 11 ;{ }^{1}$
(ii) in the case $s: \mathcal{M} \rightarrow E^{n}\left(C^{n}\right)$,

$$
\int_{A} f d s=\sum_{k=1}^{n} \vec{e}_{k} \int_{A} f d s_{k}
$$

with \vec{e}_{k} as in Theorem 2 of Chapter 3, $\S \S 1-3$;
(iii) if $s: \mathcal{M} \rightarrow C$,

$$
\int_{A} f d s=\int_{A} f d s_{\mathrm{re}}+i \cdot \int_{A} f d s_{\mathrm{im}} .
$$

(See also Problems 2 and 3.)
Note 4. If s is a measure, then

$$
s=s^{+}=s_{\mathrm{re}}=s_{1}
$$

and

$$
0=s^{-}=s_{\mathrm{im}}=s_{2} ;
$$

[^54]so Definition 2 agrees with our previous definitions. Similarly for $s: \mathcal{M} \rightarrow$ $E^{n}\left(C^{n}\right)$.

Below, s, t, and u are generalized measures on \mathcal{M} as in Definition 2, while $f, g: S \rightarrow E$ are functions, with E a complete normed space, as in Note 1.

Theorem 1. The linearity, additivity, and σ-additivity properties (as in §7, Theorems 2 and 3) also apply to integrals

$$
\int_{A} f d s
$$

with s as in Definition 2.
Proof. (i) Linearity: Let $f, g: S \rightarrow E$ be s-integrable on $A \in \mathcal{M}$. Let p, q be suitable constants (see Note 1).

If s is a signed measure, then by Lemma 2(ii) and Definitions 1 and $2, f$ is integrable with respect to v_{s}, s^{+}, and s^{-}. As these are measures, Theorem 2 in $\S 7$ shows that $p f+q g$ is integrable with respect to v_{s}, s^{+}, and s^{-}, and by Definition 2,

$$
\begin{aligned}
\int_{A}(p f+q g) d s & =\int_{A}(p f+q g) d s^{+}-\int_{A}(p f+q g) d s^{-} \\
& =p \int_{A} f d s^{+}+q \int_{A} g d s^{+}-p \int_{A} f d s^{-}-q \int_{A} g d s^{-} \\
& =p \int_{A} f d s+q \int_{A} g d s
\end{aligned}
$$

Thus linearity holds for signed measures. Via components, it now follows for $s: \mathcal{M} \rightarrow E^{n}\left(C^{n}\right)$ as well. Verify!
(ii) Additivity and σ-additivity follow in a similar manner.

Corollary 1. Assume f is s-integrable on A, with s as in Definition 2.
(i) If f is constant $(f=c)$ on A, we have

$$
\int_{A} f d s=c \cdot s A
$$

(ii) If

$$
f=\sum_{i} a_{i} C_{A_{i}}
$$

for an \mathcal{M}-partition $\left\{A_{i}\right\}$ of A, then

$$
\int_{A} f d s=\sum_{i} a_{i} s A_{i} \text { and } \int_{A}|f| d s=\sum_{i}\left|a_{i}\right| s A_{i}
$$

(both series absolutely convergent).
(iii) $|f|<\infty$ a.e. on $A .^{2}$
(iv) $\int_{A}|f| d v_{s}=0$ iff $f=0$ a.e. on A.
(v) The set $A(f \neq 0)$ is $\left(v_{s}\right) \sigma$-finite (Definition 4 in Chapter 7, $\left.\S 5\right)$.
(vi) $\int_{A} f d s=\int_{A-Q} f d s$ if $v_{s} Q=0$ or $f=0$ on $Q(Q \in \mathcal{M})$.
(vii) f is s-integrable on any \mathcal{M}-set $B \subseteq A$.

Proof.

(i) If $s=s^{+}-s^{-}$is a signed measure, we have by Definition 2 that

$$
\int_{A} f d s=\int_{A} f d s^{+}-\int_{A} f d s^{-}=c\left(s^{+} A-s^{-} A\right)=c \cdot s A
$$

as required.
For $s: \mathcal{M} \rightarrow E^{n}\left(C^{n}\right)$, the result now follows via components. (Verify!)
(ii) As $f=a_{i}$ on A_{i}, clause (i) yields

$$
\int_{A_{i}} f d s=a_{i} s A_{i}, \quad i=1,2, \ldots
$$

Hence by σ-additivity,

$$
\int_{A} f d s=\sum_{i} \int_{A_{i}} f d s=\sum_{i} a_{i} s A_{i}
$$

as claimed.
Clauses (iii), (iv), and (v) follow by Corollary 1 in $\S 5$ and Theorem 1(b)(h) there, as v_{s} is a measure; (vi) is proved as $\S 5$, Corollary 2. We leave (vii) as an exercise.

Theorem 2 (dominated convergence). If

$$
f=\lim _{i \rightarrow \infty} f_{i}(\text { pointwise })
$$

on $A-Q\left(v_{s} Q=0\right)$ and if each f_{i} is s-integrable on A, so is f, and

$$
\int_{A} f d s=\lim _{i \rightarrow \infty} \int_{A} f_{i} d s
$$

all provided that

$$
(\forall i) \quad\left|f_{i}\right| \leq g
$$

for some map g with $\int_{A} g d v_{s}<\infty$.
Proof. If s is a measure, this follows by Theorem 5 in $\S 6$. Thus as v_{s} is a measure, f is v_{s}-integrable (hence s-integrable) on A, as asserted.

[^55]Next, if $s=s^{+}-s^{-}$is a signed measure, Lemma 2 shows that f and the f_{i} are s^{+}and s^{-}-integrable as well, with

$$
\int_{A}\left|f_{i}\right| d s^{+} \leq \int_{A}\left|f_{i}\right| d v_{s} \leq \int_{A} g d v_{s}<\infty
$$

similarly for

$$
\int_{A}\left|f_{i}\right| d s^{-}
$$

As s^{+}and s^{-}are measures, Theorem 5 of $\S 6$ yields

$$
\int_{A} f d s=\int_{A} f d s^{+}-\int_{A} f d s^{-}=\lim \left(\int_{A} f_{i} d s^{+}-\int_{A} f_{i} d s^{-}\right)=\lim \int_{A} f_{i} d s
$$

Thus all is proved for signed measures.
In the case $s: \mathcal{M} \rightarrow E^{n}\left(C^{n}\right)$, the result now easily follows by Definition 2(ii)(iii) via components.
Theorem 3 (uniform convergence). If $f_{i} \rightarrow f$ (uniformly) on $A-Q\left(v_{s} A<\right.$ $\infty, v_{s} Q=0$), and if each f_{i} is s-integrable on A, so is f, and

$$
\int_{A} f d s=\lim _{i \rightarrow \infty} \int_{A} f_{i} d s
$$

Proof. Argue as in Theorem 2, replacing $\S 6$, Theorem 5, by $\S 7$, Lemma 1.
Our next theorem shows that integrals behave linearly with respect to measures.
Theorem 4. Let $t, u: \mathcal{M} \rightarrow E^{*}\left(E^{n}, C^{n}\right)$, with $v_{t}<\infty$ on $\mathcal{M},{ }^{3}$ and let

$$
s=p t+q u
$$

for finite constants p and q. Then the following statements are true.
(a) If t and u are generalized measures, so is s.
(b) If, further, f is \mathcal{M}-measurable on a set A and is both t - and u-integrable on A, it is also s-integrable on A, and

$$
\int_{A} f d s=p \int_{A} f d t+q \int_{A} f d u
$$

Proof. We consider only assertion (b) for $s=t+u$; the rest is easy.
First, let f be \mathcal{M}-elementary on A. By Corollary 1(ii), we set

$$
\int_{A} f d t=\sum_{i} a_{i} t A_{i} \text { and } \int_{A} f d u=\sum_{i} a_{i} u A_{i} .
$$

[^56]Also, by integrability,

$$
\infty>\int_{A}|f| d v_{t}=\sum\left|a_{i}\right| v_{t} A_{i} \text { and } \infty>\int_{A}|f| d v_{u}=\sum_{i}\left|a_{i}\right| v_{u} A_{i} .
$$

Now, by Problem 4 in Chapter 7, $\S 11$,

$$
v_{s}=v_{t+u} \leq v_{t}+v_{u}
$$

so

$$
\begin{aligned}
\int_{A}|f| d v_{s} & =\sum_{i}\left|a_{i}\right| v_{s} A_{i} \\
& \leq \sum_{i}\left|a_{i}\right|\left(v_{t} A_{i}+v_{u} A_{i}\right)=\int_{A}|f| d v_{t}+\int_{A}|f| d v_{u}<\infty
\end{aligned}
$$

As f is also \mathcal{M}-measurable (even elementary), it is s-integrable on A (by Definition 1), and

$$
\int_{A} f d s=\sum_{i} a_{i} s A_{i}=\sum_{i} a_{i}\left(t A_{i}+u A_{i}\right)=\int_{A} f d t+\int_{A} f d u
$$

as claimed.
Next, suppose f is \mathcal{M}-measurable on A and $v_{u} A<\infty$. By assumption, $v_{t} A<\infty$, too; so

$$
v_{s} A \leq v_{t} A+v_{u} A<\infty
$$

Now, by Theorem 3 in $\S 1$,

$$
f=\lim _{i \rightarrow \infty} f_{i} \text { (uniformly) }
$$

for some \mathcal{M}-elementary maps f_{i} on A. By Lemma 2 in $\S 7$, for large i, the f_{i} are integrable with respect to both v_{t} and v_{u} on A. By what was shown above, they are also s-integrable, with

$$
\int_{A} f_{i} d s=\int_{A} f_{i} d t+\int_{A} f_{i} d u
$$

With $i \rightarrow \infty$, Theorem 3 yields the result.
Finally, let $v_{u} A=\infty$. By Corollary 1(v), we may assume (as in Lemma 3 of $\S 7$) that $A_{i} \nearrow A$, with $v_{u} A_{i}<\infty$, and $v_{t} A_{i}<\infty$ (since $v_{t}<\infty$, by assumption). Set

$$
f_{i}=f C_{A_{i}} \rightarrow f \text { (pointwise) }
$$

on A, with $\left|f_{i}\right| \leq|f|$. (Why?)
As $f_{i}=f$ on A_{i} and $f_{i}=0$ on $A-A_{i}$, all f_{i} are both t - and u-integrable on A (for f is). Since $v_{t} A_{i}<\infty$ and $v_{u} A_{i}<\infty$, the f_{i} are also s-integrable (as
shown above), with

$$
\int_{A} f_{i} d s=\int_{A_{i}} f_{i} d s=\int_{A_{i}} f_{i} d t+\int_{A_{i}} f_{i} d u=\int_{A} f_{i} d t+\int_{A} f_{i} d u
$$

With $i \rightarrow \infty$, Theorem 2 now yields the result.
To complete the proof of (b), it suffices to consider, along similar lines, the case $s=p t$ (or $s=q u$). We leave this to the reader.

For (a), see Chapter 7, $\S 11$.
Theorem 5. If f is s-integrable on A, so is $|f|$, and

$$
\left|\int_{A} f d s\right| \leq \int_{A}|f| d v_{s}
$$

Proof. By Definition 1, and Theorem 1 of $\S 1, f$ and $|f|$ are \mathcal{M}-measurable on $A-Q, v_{s} Q=0$, and

$$
\int_{A}|f| d v_{s}<\infty
$$

so $|f|$ is s-integrable on A.
The desired inequality is immediate by Corollary 1 (ii) if f is elementary.
Next, exactly as in Theorem 4, one obtains it for the case $v_{s} A<\infty$, and then for $v_{s} A=\infty$. We omit the details.

Definition 3.

We write

$$
" d s=g d t \text { in } A "
$$

or

$$
" s=\int g d t \text { in } A "
$$

iff g is t-integrable on A, and

$$
s X=\int_{X} g d t
$$

for $A \supseteq X, X \in \mathcal{M}$.
We then call s the indefinite integral of g in $A . \quad\left(\int_{X} g d t\right.$ may be interpreted as in Problems 2-4 below.)

Lemma 3. If $A \in \mathcal{M}$ and

$$
d s=g d t \text { in } A
$$

then

$$
d v_{s}=|g| d v_{t} \text { in } A
$$

Proof. By assumption, g and $|g|$ are v_{t}-integrable on X, and

$$
s X=\int_{X} g d t
$$

for $A \supseteq X, X \in \mathcal{M}$. We must show that

$$
v_{s} X=\int_{X}|g| d v_{t}
$$

for such X.
This is easy if $g=c$ (constant) on X. For by definition,

$$
v_{s} X=\sup _{\mathcal{P}} \sum_{i}\left|s X_{i}\right|,
$$

over all \mathcal{M}-partitions $\mathcal{P}=\left\{X_{i}\right\}$ of X. As

$$
s X_{i}=\int_{X_{i}} g d t=c \cdot t X_{i},
$$

we have

$$
v_{s} X=\sup _{\mathcal{P}} \sum_{i}|c|\left|t X_{i}\right|=|c| \sup _{\mathcal{P}} \sum_{i}\left|t X_{i}\right|=|c| v_{t} X ;
$$

so

$$
v_{s} X=\int_{X}|g| d v_{t} .
$$

Thus all is proved for constant g.
Hence by σ-additivity, the lemma holds for \mathcal{M}-elementary maps g. (Why?)
In the general case, g is t-integrable on X, hence \mathcal{M}-measurable and finite on $X-Q, v_{t} Q=0$. By Corollary 1(iii), we may assume g finite and measurable on X; so

$$
g=\lim _{k \rightarrow \infty} g_{k} \text { (uniformly) }
$$

on X for some \mathcal{M}-elementary maps g_{k}, all integrable on X, with respect to v_{t} (and t).

Let

$$
s_{k}=\int g_{k} d t
$$

in X. By what we just proved for elementary and integrable maps,

$$
v_{s_{k}} X=\int_{X}\left|g_{k}\right| d v_{t}, \quad k=1,2, \ldots .
$$

Now, if $v_{t} X<\infty$, Theorem 3 yields

$$
\int_{X}|g| d v_{t}=\lim _{k \rightarrow \infty} \int_{X}\left|g_{k}\right| d v_{t}=\lim _{k \rightarrow \infty} v_{s_{k}} X=v_{s} X
$$

(see Problem 6). Thus all is proved if $v_{t} X<\infty$.
If, however, $v_{t} X=\infty$, argue as in Theorem 4 (the last step), using the left continuity of v_{s} and of

$$
\int|g| d v_{t}
$$

Verify!

Theorem 6 (change of measure). If f is s-integrable on $A \in \mathcal{M}$, with

$$
d s=g d t \text { in } A
$$

then (subject to Note 1) fg is t-integrable on A and

$$
\int_{A} f d s=\int_{A} f g d t
$$

(Note the formal substitution of " $g d t$ " for " $d s$.")
Proof. The proof is easy if f is constant or elementary on A (use Corollary 1(ii)). We leave this case to the reader, and next we assume g is bounded and $v_{t} A<\infty$.

By s-integrability, f is \mathcal{M}-measurable and finite on $A-Q$, with

$$
0=v_{s} Q=\int_{Q}|g| d v_{t}
$$

by Lemma 3. Hence $0=g=f g$ on $Q-Z, v_{t} Z=0$. Therefore,

$$
\int_{Q} f g d t=0=\int_{Q} f d s
$$

for $v_{s} Q=0$. Thus we may neglect Q and assume that f is finite and \mathcal{M} measurable on A.

As $d s=g d t$, Definition 3 and Lemma 3 yield

$$
v_{s} A=\int_{A}|g| d v_{t}<\infty
$$

Also (Theorem 3 in Chapter 8, §1),

$$
f=\lim _{k \rightarrow \infty} f_{k} \quad \text { (uniformly) }
$$

for elementary maps f_{k}, all v_{s}-integrable on A (Lemma 2 in $\S 7$). As g is bounded, we get on A

$$
f g=\lim _{k \rightarrow \infty} f_{k} g \quad \text { (uniformly). }
$$

Moreover, as the theorem holds for elementary and integrable maps, $f_{k} g$ is t-integrable on A, and

$$
\int_{A} f_{k} d s=\int_{A} f_{k} g d t, \quad k=1,2, \ldots
$$

Since $v_{s} A<\infty$ and $v_{t} A<\infty$, Theorem 3 shows that $f g$ is t-integrable on A, and

$$
\int_{A} f d s=\lim _{k \rightarrow \infty} \int_{A} f_{k} d s=\lim _{k \rightarrow \infty} \int_{A} f_{k} g d t=\int_{A} f g d t .
$$

Thus all is proved if $v_{t} A<\infty$ and g is bounded on A.
In the general case, we again drop a null set to make f and g finite and \mathcal{M}-measurable on A. By Corollary 1(v), we may again assume $A_{i} \nearrow A$, with $v_{t} A_{i}<\infty(\forall i)$.

Now for $i=1,2, \ldots$ set

$$
g_{i}= \begin{cases}g & \text { on } A_{i}(|g| \leq i) \\ 0 & \text { elsewhere }\end{cases}
$$

Then each g_{i} is bounded,

$$
g_{i} \rightarrow g \text { (pointwise) }
$$

and

$$
\left|g_{i}\right| \leq|g|
$$

on A. We also set $f_{i}=f C_{A_{i}}$; so $f_{i} \rightarrow f$ (pointwise) and $\left|f_{i}\right| \leq|f|$ on A. Then

$$
\int_{A} f_{i} d s=\int_{A_{i}} f_{i} d s=\int_{A_{i}} f_{i} g_{i} d t=\int_{A} f_{i} g_{i} d t
$$

(Why?) Since $\left|f_{i} g_{i}\right| \leq|f g|$ and $f_{i} g_{i} \rightarrow f g$, the result follows by Theorem 2.

Problems on Generalized Integration

Recall that in this section E is assumed to be a complete normed space.

1. Fill in the missing details in the proofs of this section. Prove Note 3.
2. Treat Corollary 1(ii) as a definition of

$$
\int_{A} f d s
$$

for $s: \mathcal{M} \rightarrow E$ and elementary and integrable f, even if $E \neq E^{n}\left(C^{n}\right)$. Hence deduce Corollary 1(i)(vi) for this more general case.
3. Using Lemma 2 in $\S 7$, with $m=v_{s}, s: \mathcal{M} \rightarrow E$, construct

$$
\int_{A} f d s
$$

as in Definition 2 of $\S 7$ for the case $v_{s} A \neq \infty$. Show that this agrees with Problem 2 if f is elementary and integrable. Then prove linearity for functions with v_{s}-finite support as in $\S 7$.
4. Define

$$
\int_{A} f d s \quad(s: \mathcal{M} \rightarrow E)
$$

also for $v_{s} A=\infty$.
[Hint: Set $m=v_{s}$ in Lemma 3 of $\S 7$.]
5. Prove Theorems 1 to 3 for the general case, $s: \mathcal{M} \rightarrow E$ (see Problem 4). [Hint: Argue as in §7.]
$\mathbf{5}^{\prime}$. From Problems 2-4, deduce Definition 2 as a theorem in the case $E=$ $E^{n}\left(C^{n}\right)$.
6. Let $s, s_{k}: \mathcal{M} \rightarrow E(k=1,2, \ldots)$ be any set functions. Let $A \in \mathcal{M}$ and

$$
\mathcal{M}_{A}=\{X \in \mathcal{M} \mid X \subseteq A\}
$$

Prove that if

$$
\left(\forall X \in \mathcal{M}_{A}\right) \quad \lim _{k \rightarrow \infty} s_{k} X=s X,
$$

then

$$
\lim _{k \rightarrow \infty} v_{s_{k}} A=v_{s} A
$$

provided $\lim _{k \rightarrow \infty} v_{s_{k}}$ exists.
[Hint: Using Problem 2 in Chapter 7, $\S 11$, fix a finite disjoint sequence $\left\{X_{i}\right\} \subseteq \mathcal{M}_{A}$. Then

$$
\sum_{i}\left|s X_{i}\right|=\sum_{i} \lim _{k \rightarrow \infty}\left|s_{k} X_{i}\right|=\lim _{k \rightarrow \infty} \sum_{i}\left|s_{k} X_{i}\right| \leq \lim _{k \rightarrow \infty} v_{s_{k}} A .
$$

Infer that

$$
v_{s} A \leq \lim _{k \rightarrow \infty} v_{s_{k}} A .
$$

Also,

$$
(\forall \varepsilon>0)\left(\exists k_{0}\right)\left(\forall k>k_{0}\right) \quad \sum_{i}\left|s_{k} X_{i}\right| \leq \sum_{i}\left|s X_{i}\right|+\varepsilon \leq v_{s} A+\varepsilon .
$$

Proceed.]
7. Let (X, \mathcal{M}, m) and (Y, \mathcal{N}, n) be two generalized measure spaces $(X \in$ $\mathcal{M}, Y \in \mathcal{N}$) such that $m n$ is defined (Note 1). Set

$$
\mathcal{C}=\left\{A \times B \mid A \in \mathcal{M}, B \in \mathcal{N}, v_{m} A<\infty, v_{n} B<\infty\right\}
$$

and $s(A \times B)=m A \cdot n B$ for $A \times B \in \mathcal{C}$.
Define a Fubini map as in $\S 8$, Part IV, dropping, however, $\int_{X \times Y} f d p$ from Fubini property (c) temporarily.

Then prove Theorem 1 in $\S 8$, including formula (1), for Fubini maps so modified.
[Hint: For σ-additivity, use our present Theorem 2 twice. Omit \mathcal{P}^{*}.]
8. Continuing Problem 7, let \mathcal{P} be the σ-ring generated by \mathcal{C} in $X \times Y$. Prove that $(\forall D \in \mathcal{P}) C_{D}$ is a Fubini map (as modified).
[Outline: Proceed as in Lemma 5 of §8. For step (ii), use Theorem 2 in $\S 10$ twice.]
9. Further continuing Problems 7 and 8, define

$$
(\forall D \in \mathcal{P}) \quad p D=\int_{X} \int_{Y} C_{D} d n d m .
$$

Show that p is a generalized measure, with $p=s$ on \mathcal{C}, and that

$$
(\forall D \in \mathcal{P}) \quad p D=\int_{X \times Y} C_{D} d p
$$

with the following convention: If $X \times Y \notin \mathcal{P}$, we set

$$
\int_{X \times Y} f d p=\int_{H} f d p
$$

whenever $H \in \mathcal{P}, f$ is p-integrable on H, and $f=0$ on $-H$.
Verify that this is unambiguous, i.e.,

$$
\int_{X \times Y} f d p
$$

so defined is independent of the choice of H.
Finally, let \bar{p} be the completion of p (Chapter 7, $\S 6$, Problem 15); let \mathcal{P}^{*} be its domain.

Develop the rest of Fubini theory "imitating" Problem 12 in $\S 8$.
10. Signed Lebesgue-Stieltjes $(L S)$ measures in E^{1} are defined as shown in Chapter 7, §11, Part V. Using the notation of that section, prove the following:
(i) Given a Borel-Stieltjes measure σ_{α}^{*} in an interval $I \subseteq E^{1}$ (or an LS measure $s_{\alpha}=\overline{\sigma^{*}}{ }_{\alpha}$ in I), there are two monotone functions $g \uparrow$ and $h \uparrow(\alpha=g-h)$ such that

$$
m_{g}=s_{\alpha}^{+} \text {and } m_{h}=s_{\alpha}^{-}
$$

both satisfying formula (3) of Chapter $7, \S 11$, inside I.
(ii) If f is s_{α}-integrable on $A \subseteq I$, then

$$
\int_{A} f d s_{\alpha}=\int_{A} f d m_{g}-\int_{A} f d m_{h}
$$

for any $g \uparrow$ and $h \uparrow$ (finite) such that $\alpha=g-h$.
[Hints: (i) Define s_{α}^{+}and s_{α}^{-}by formula (3) of Chapter 7, §11. Then arguing as in Theorem 2 in Chapter $7, \S 9$, find $g \uparrow$ and $h \uparrow$ with $m_{g}=s_{\alpha}^{+}$and $m_{h}=s_{\alpha}^{-}$.
(ii) First let $A=(a, b] \subseteq I$, then $A \in \mathcal{B}$. Proceed.]

*§11. The Radon-Nikodym Theorem. Lebesgue Decomposition

I. As you know, the indefinite integral

$$
\int f d m
$$

is a generalized measure. We now seek conditions under which a given generalized measure μ can be represented as

$$
\mu=\int f d m
$$

for some f (to be found). We start with two lemmas.
Lemma 1. Let $m, \mu: \mathcal{M} \rightarrow[0, \infty)$ be finite measures in S. Suppose $S \in \mathcal{M}$, $\mu S>0($ i.e., $\mu \not \equiv 0)$ and μ is m-continuous (Chapter 7, §11).

Then there is $\delta>0$ and a set $P \in \mathcal{M}$ such that $m P>0$ and

$$
(\forall X \in \mathcal{M}) \quad \mu X \geq \delta \cdot m(X \cap P)
$$

Proof. As $m<\infty$ and $\mu S>0$, there is $\delta>0$ such that

$$
\mu S-\delta \cdot m S>0
$$

Fix such a δ and define a signed measure (Lemma 2 of Chapter 7, §11)

$$
\Phi=\mu-\delta m
$$

so that

$$
\begin{equation*}
(\forall Y \in \mathcal{M}) \quad \Phi Y=\mu Y-\delta \cdot m Y \tag{1}
\end{equation*}
$$

hence

$$
\Phi S=\mu S-\delta \cdot m S>0
$$

By Theorem 3 in Chapter $7, \S 11$ (Hahn decomposition), there is a Φ-positive set $P \in \mathcal{M}$ with a Φ-negative complement $-P=S-P \in \mathcal{M}$.

Clearly, $m P>0$; for if $m P=0$, the m-continuity of μ would imply $\mu P=0$, hence

$$
\Phi P=\mu P-\delta \cdot m P=0
$$

contrary to $\Phi P \geq \Phi S>0$.

Also, $P \supseteq Y$ and $Y \in \mathcal{M}$ implies $\Phi Y \geq 0$; so by (1),

$$
0 \leq \mu Y-\delta \cdot m Y
$$

Taking $Y=X \cap P$, we get

$$
\delta \cdot m(X \cap P) \leq \mu(X \cap P) \leq \mu X
$$

as required.
Lemma 2. With m, μ, and S as in Lemma 1, let \mathcal{H} be the set of all maps $g: S \rightarrow E^{*}, \mathcal{M}$-measurable and nonnegative on S, such that

$$
\int_{X} g d m \leq \mu X
$$

for every set X from \mathcal{M}.
Then there is $f \in \mathcal{H}$ with

$$
\int_{S} f d m=\max _{g \in \mathcal{H}} \int_{S} g d m
$$

Proof. \mathcal{H} is not empty; e.g., $g=0$ is in \mathcal{H}. We now show that

$$
\begin{equation*}
(\forall g, h \in \mathcal{H}) \quad g \vee h=\max (g, h) \in \mathcal{H} . \tag{2}
\end{equation*}
$$

Indeed, $g \vee h$ is ≥ 0 and \mathcal{M}-measurable on S, as g and h are.
Now, given $X \in \mathcal{M}$, let $Y=X(g>h)$ and $Z=X(g \leq h)$. Dropping " $d m$ " for brevity, we have

$$
\int_{X}(g \vee h)=\int_{Y}(g \vee h)+\int_{Z}(g \vee h)=\int_{Y} g+\int_{Z} h \leq \mu Y+\mu Z=\mu X
$$

proving (2).
Let

$$
k=\sup _{g \in \mathcal{H}} \int_{S} g d m \in E^{*}
$$

Proceeding as in Problem 13 of Chapter 7, §6, and using (2), one easily finds a sequence $\left\{g_{n}\right\} \uparrow, g_{n} \in \mathcal{H}$, such that

$$
\lim _{n \rightarrow \infty} \int_{S} g_{n} d m=k
$$

(Verify!) Set

$$
f=\lim _{n \rightarrow \infty} g_{n} .
$$

(It exists since $\left\{g_{n}\right\} \uparrow$.) By Theorem 4 in $\S 6$,

$$
k=\lim _{n \rightarrow \infty} \int_{S} g_{n}=\int_{S} f
$$

Also, f is \mathcal{M}-measurable and ≥ 0 on S, as all g_{n} are; and if $X \in \mathcal{M}$, then

$$
(\forall n) \quad \int_{X} g_{n} \leq \mu X
$$

hence

$$
\int_{X} f=\lim _{n \rightarrow \infty} \int_{X} g_{n} \leq \mu X
$$

Thus $f \in \mathcal{H}$ and

$$
\int_{S} f=k=\sup _{g \in H} \int_{S} g
$$

i.e.,

$$
\int_{S} f=\max _{g \in \mathcal{H}} \int_{S} g \leq \mu S<\infty
$$

This completes the proof.
Note 1. As $\mu<\infty$ and $f \geq 0$, Corollary 1 in $\S 5$ shows that f can be made finite on all of S. Also, f is m-integrable on S.
Theorem 1 (Radon-Nikodym). If (S, \mathcal{M}, m) is a σ-finite measure space, if $S \in \mathcal{M}$, and if

$$
\mu: \mathcal{M} \rightarrow E^{n}\left(C^{n}\right)
$$

is a generalized m-continuous measure, then

$$
\mu=\int f d m \text { on } \mathcal{M}
$$

for at least one map

$$
f: S \rightarrow E^{n}\left(C^{n}\right)
$$

\mathcal{M}-measurable on S.
Moreover, if h is another such map, then $m S(f \neq h)=0$
The last part of Theorem 1 means that f is "essentially unique." We call f the Radon-Nikodym ($R N$) derivative of μ, with respect to m.
Proof. Via components (Theorem 5 in Chapter 7, $\S 11$), all reduces to the case

$$
\mu: \mathcal{M} \rightarrow E^{1}
$$

Then Theorem 4 (Jordan decomposition) in Chapter 7, §11, yields

$$
\mu=\mu^{+}-\mu^{-}
$$

where μ^{+}and μ^{-}are finite measures (≥ 0), both m-continuous (Corollary 3 from Chapter $7, \S 11$). Therefore, all reduces to the case $0 \leq \mu<\infty$.

Suppose first that m, too, is finite. Then if $\mu=0$, just take $f=0$.

If, however, $\mu S>0$, take $f \in \mathcal{H}$ as in Lemma 2 and Note $1 ; f$ is nonnegative, bounded, and \mathcal{M}-measurable on S,

$$
\int f \leq \mu<\infty,
$$

and

$$
\int_{S} f d m=k=\sup _{g \in \mathcal{H}} \int_{S} g d m .
$$

We claim that f is the required map.
Indeed, let

$$
\nu=\mu-\int f d m
$$

so ν is a finite m-continuous measure (≥ 0) on \mathcal{M}. (Why?) We must show that $\nu=0$.

Seeking a contradiction, suppose $\nu S>0$. Then by Lemma 1, there are $P \in \mathcal{M}$ and $\delta>0$ such that $m P>0$ and

$$
(\forall X \in \mathcal{M}) \quad \nu X \geq \delta \cdot m(X \cap P)
$$

Now let

$$
g=f+\delta \cdot C_{P}
$$

so g is \mathcal{M}-measurable and ≥ 0. Also,

$$
\begin{aligned}
(\forall X \in \mathcal{M}) \quad \int_{X} g=\int_{X} f+\delta \int_{X} C_{P} & =\int_{X} f+\delta \cdot m(X \cap P) \\
& \leq \int_{X} f+\nu(X \cap P) \\
& \leq \int_{X} f+\nu X=\mu X
\end{aligned}
$$

by our choice of δ and ν. Thus $g \in \mathcal{H}$. On the other hand,

$$
\int_{S} g=\int_{S} f+\delta \int_{S} C_{P}=k+\delta m P>k,
$$

contrary to

$$
k=\sup _{g \in \mathcal{H}} \int_{S} g .
$$

This proves that $\int f=\mu$, indeed.
Now suppose there is another map $h \in \mathcal{H}$ with

$$
\mu=\int h d m=\int f d m \neq \infty
$$

so

$$
\int(f-h) d m=0
$$

(Why?) Let

$$
Y=S(f \geq h) \text { and } Z=S(f<h)
$$

so $Y, Z \in \mathcal{M}$ (Theorem 3 of $\S 2$) and $f-h$ is sign-constant on Y and Z. Also, by construction,

$$
\int_{Y}(f-h) d m=0=\int_{Z}(f-h) d m
$$

Thus by Theorem 1(h) in $\S 5, f-h=0$ a.e. on Y, on Z, and hence on $S=Y \cup Z$; that is,

$$
m S(f \neq h)=0
$$

Thus all is proved for the case $m S<\infty$.
Next, let m be σ-finite:

$$
S=\bigcup_{k=1}^{\infty} S_{k}(\text { disjoint })
$$

for some sets $S_{k} \in \mathcal{M}$ with $m S_{k}<\infty$.
By what was shown above, on each S_{k} there is an \mathcal{M}-measurable map $f_{k} \geq 0$ such that

$$
\int_{X} f_{k} d m=\mu X
$$

for all \mathcal{M}-sets $X \subseteq S_{k}$. Fixing such an f_{k} for each k, define $f: S \rightarrow E^{1}$ by

$$
f=f_{k} \quad \text { on } S_{k}, \quad k=1,2, \ldots
$$

Then (Corollary 3 in $\S 1$) f is \mathcal{M}-measurable and ≥ 0 on S.
Taking any $X \in \mathcal{M}$, set $X_{k}=X \cap S_{k}$. Then

$$
X=\bigcup_{k=1}^{\infty} X_{k}(\text { disjoint })
$$

and $X_{k} \in \mathcal{M}$. Also,

$$
(\forall k) \quad \int_{X_{k}} f d m=\int_{X_{k}} f_{k} d m=\mu X_{k}
$$

Thus by σ-additivity (Theorem 2 in $\S 5$),

$$
\int_{X} f d m=\sum_{k=1}^{\infty} \int_{X_{k}} f d m=\sum_{k} \mu X_{k}=\mu X<\infty \quad(\mu \text { is finite! })
$$

Thus f is as required, and its "uniqueness" follows as before.

Note 2. By Definition 3 in $\S 10$, we may write

$$
" d \mu=f d m "
$$

for

$$
" \int f d m=\mu . "
$$

Note 3. Using Definition 2 in $\S 10$ and an easy "componentwise" proof, one shows that Theorem 1 holds also with m replaced by a generalized measure s. The formulas

$$
\mu=\int f d m \text { and } m S(f \neq h)=0
$$

then are replaced by

$$
\mu=\int f d s \text { and } v_{s} S(f \neq h)=0
$$

II. Theorem 1 requires μ to be m-continuous $(\mu \ll m)$. We want to generalize Theorem 1 so as to lift this restriction. First, we introduce a new concept.

Definition.

Given two set functions $s, t: \mathcal{M} \rightarrow E\left(\mathcal{M} \subseteq 2^{S}\right)$, we say that s is t singular $(s \perp t)$ iff there is a set $P \in \mathcal{M}$ such that $v_{t} P=0$ and

$$
\begin{equation*}
(\forall X \in \mathcal{M} \mid X \subseteq-P) \quad s X=0 \tag{3}
\end{equation*}
$$

(We then briefly say " s resides in P.")
For generalized measures, this means that

$$
(\forall X \in \mathcal{M}) \quad s X=s(X \cap P) .
$$

Why?
Corollary 1. If the generalized measures $s, u: \mathcal{M} \rightarrow E$ are t-singular, so is $k s$ for any scalar k (if s is scalar valued, k may be a vector).

So also are $s \pm u$, provided t is additive.
(Exercise! See Problem 3 below.)
Corollary 2. If a generalized measure $s: \mathcal{M} \rightarrow E$ is t-continuous $(s \ll t)$ and also t-singular $(s \perp t)$, then $s=0$ on \mathcal{M}.
Proof. As $s \perp t$, formula (3) holds for some $P \in \mathcal{M}, v_{t} P=0$. Hence for all $X \in \mathcal{M}$,

$$
s(X-P)=0(\text { for } X-P \subseteq-P)
$$

and

$$
\left.v_{t}(X \cap P)=0 \text { (for } X \cap P \subseteq P\right) .
$$

As $s \ll t$, we also have $s(X \cap P)=0$ by Definition 3(i) in Chapter 7, $\S 11$. Thus by additivity,

$$
s X=s(X \cap P)+s(X-P)=0
$$

as claimed.
Theorem 2 (Lebesgue decomposition). Let $s, t: \mathcal{M} \rightarrow E$ be generalized measures.

If v_{s} is t-finite (Definition 3(iii) in Chapter 7, §11), there are generalized measures $s^{\prime}, s^{\prime \prime}: \mathcal{M} \rightarrow E$ such that

$$
s^{\prime} \ll t \text { and } s^{\prime \prime} \perp t
$$

and

$$
s=s^{\prime}+s^{\prime \prime}
$$

Proof. Let v_{0} be the restriction of v_{s} to

$$
\mathcal{M}_{o}=\left\{X \in \mathcal{M} \mid v_{t} X=0\right\}
$$

As v_{s} is a measure (Theorem 1 of Chapter $7, \S 11$), so is v_{0} (for \mathcal{M}_{0} is a σ-ring; verify!).

Thus by Problem 13 in Chapter 7, $\S 6$, we fix $P \in \mathcal{M}_{0}$, with

$$
v_{s} P=v_{0} P=\max \left\{v_{s} X \mid X \in \mathcal{M}_{0}\right\}
$$

As $P \in \mathcal{M}_{0}$, we have $v_{t} P=0$; hence

$$
|s P| \leq v_{s} P<\infty
$$

(for v_{s} is t-finite).
Now define $s^{\prime}, s^{\prime \prime}, v^{\prime}$, and $v^{\prime \prime}$ by setting, for each $X \in \mathcal{M}$,

$$
\begin{align*}
s^{\prime} X & =s(X-P) ; \tag{4}\\
s^{\prime \prime} X & =s(X \cap P) ; \tag{5}\\
v^{\prime} X & =v_{s}(X-P) ; \tag{6}\\
v^{\prime \prime} X & =v_{s}(X \cap P) \tag{7}
\end{align*}
$$

As s and v_{s} are σ-additive, so are $s^{\prime}, s^{\prime \prime}, v^{\prime}$, and $v^{\prime \prime}$. (Verify!) Thus $s^{\prime}, s^{\prime \prime}: \mathcal{M} \rightarrow E$ are generalized measures, while v^{\prime} and $v^{\prime \prime}$ are measures (≥ 0).

We have

$$
(\forall X \in \mathcal{M}) \quad s X=s(X-P)+s(X \cap P)=s^{\prime} X+s^{\prime \prime} X
$$

i.e.,

$$
s=s^{\prime}+s^{\prime \prime}
$$

Similarly one obtains $v_{s}=v^{\prime}+v^{\prime \prime}$.

Also, by (5), since $X \cap P=\emptyset$,

$$
-P \supseteq X \text { and } X \in \mathcal{M} \Longrightarrow s^{\prime \prime} X=0
$$

while $v_{t} P=0$ (see above). Thus $s^{\prime \prime}$ is t-singular, residing in P.
To prove $s^{\prime} \ll t$, it suffices to show that $v^{\prime} \ll t$ (for by (4) and (6), $v^{\prime} X=0$ implies $\left.\left|s^{\prime} X\right|=0\right)$.

Assume the opposite. Then

$$
(\exists Y \in \mathcal{M}) \quad v_{t} Y=0
$$

(i.e., $Y \in \mathcal{M}_{0}$), but

$$
0<v^{\prime} Y=v_{s}(Y-P)
$$

So by additivity,

$$
v_{s}(Y \cup P)=v_{s} P+v_{s}(Y-P)>v_{s} P,
$$

with $Y \cup P \in \mathcal{M}_{0}$, contrary to

$$
v_{s} P=\max \left\{v_{s} X \mid X \in \mathcal{M}_{0}\right\} .
$$

This contradiction completes the proof.
Note 4. The set function $s^{\prime \prime}$ in Theorem 2 is bounded on \mathcal{M}. Indeed, $s^{\prime \prime} \perp t$ yields a set $P \in \mathcal{M}$ such that

$$
(\forall X \in \mathcal{M}) \quad s^{\prime \prime}(X-P)=0 ;
$$

and $v_{t} P=0$ implies $v_{s} P<\infty$. (Why?) Hence

$$
s^{\prime \prime} X=s^{\prime \prime}(X \cap P)+s^{\prime \prime}(X-P)=s^{\prime \prime}(X \cap P)
$$

As $s=s^{\prime}+s^{\prime \prime}$, we have

$$
\left|s^{\prime \prime}\right| \leq|s|+\left|s^{\prime}\right| \leq v_{s}+v_{s^{\prime}} ;
$$

so

$$
\left|s^{\prime \prime} X\right|=\left|s^{\prime \prime}(X \cap P)\right| \leq v_{s} P+v_{s^{\prime}} P .
$$

But $v_{s^{\prime}} P=0$ by t-continuity (Theorem 2 of Chapter 7, §11). Thus $\left|s^{\prime \prime}\right| \leq$ $v_{s} P<\infty$ on \mathcal{M}.

Note 5. The Lebesgue decomposition $s=s^{\prime}+s^{\prime \prime}$ in Theorem 2 is unique. For if also

$$
u^{\prime} \ll t \text { and } u^{\prime \prime} \perp t
$$

and

$$
u^{\prime}+u^{\prime \prime}=s=s^{\prime}+s^{\prime \prime},
$$

then with P as in Problem 3, $(\forall X \in \mathcal{M})$

$$
\begin{equation*}
s^{\prime}(X \cap P)+s^{\prime \prime}(X \cap P)=u^{\prime}(X \cap P)+u^{\prime \prime}(X \cap P) \tag{8}
\end{equation*}
$$

and $v_{t}(X \cap P)=0$. But

$$
s^{\prime}(X \cap P)=0=u^{\prime}(X \cap P)
$$

by t-continuity; so (8) reduces to

$$
s^{\prime \prime}(X \cap P)=u^{\prime \prime}(X \cap P)
$$

or $s^{\prime \prime} X=u^{\prime \prime} X$ (for $s^{\prime \prime}$ and $u^{\prime \prime}$ reside in P). Thus $s^{\prime \prime}=u^{\prime \prime}$ on \mathcal{M}.
By Note 4 , we may cancel $s^{\prime \prime}$ and $u^{\prime \prime}$ in

$$
s^{\prime}+s^{\prime \prime}=u^{\prime}+u^{\prime \prime}
$$

to obtain $s^{\prime}=u^{\prime}$ also.
Note 6. If $E=E^{n}\left(C^{n}\right)$, the t-finiteness of v_{s} in Theorem 2 is redundant, for v_{s} is even bounded (Theorem 6 in Chapter 7, $\S 11$).

We now obtain the desired generalization of Theorem 1.
Corollary 3. If (S, \mathcal{M}, m) is a σ-finite measure space $(S \in \mathcal{M})$, then for any generalized measure

$$
\mu: \mathcal{M} \rightarrow E^{n}\left(C^{n}\right)
$$

there is a unique m-singular generalized measure

$$
s^{\prime \prime}: \mathcal{M} \rightarrow E^{n}\left(C^{n}\right)
$$

and a ("essentially" unique) map

$$
f: S \rightarrow E^{n}\left(C^{n}\right)
$$

\mathcal{M}-measurable and m-integrable on S, with

$$
\mu=\int f d m+s^{\prime \prime}
$$

(Note 3 applies here.)
Proof. By Theorem 2 and Note 5, $\mu=s^{\prime}+s^{\prime \prime}$ for some (unique) generalized measures $s^{\prime}, s^{\prime \prime}: \mathcal{M} \rightarrow E^{n}\left(C^{n}\right)$, with $s^{\prime} \ll m$ and $s^{\prime \prime} \perp m$.

Now use Theorem 1 to represent s^{\prime} as $\int f d m$, with f as stated. This yields the result.

Problems on Radon-Nikodym Derivatives and Lebesgue Decomposition

1. Fill in all proof details in Lemma 2 and Theorem 1.
2. Verify the statement following formula (3). Also prove the following:
(i) If $P \in \mathcal{M}$ along with $-P \in \mathcal{M}$, then $s \perp t$ implies $t \perp s$;
(ii) $s \perp t$ iff $v_{s} \perp t$.
3. Prove Corollary 1.
[Hints: Here \mathcal{M} is a σ-ring. Suppose s and u reside in P^{\prime} and $P^{\prime \prime}$, respectively, and $v_{t} P^{\prime}=0=v_{t} P^{\prime \prime}$. Let $P=P^{\prime} \cup P^{\prime \prime} \in \mathcal{M}$. Verify that $v_{t} P=0$ (use Problem 8 in Chapter 7, §11). Then show that both s and u reside in P.]
4. Show that if $s: \mathcal{M} \rightarrow E^{*}$ is a signed measure in $S \in \mathcal{M}$, then $s^{+} \perp s^{-}$ and $s^{-} \perp s^{+}$.
5. Fill in all details in the proof of Theorem 2. Also prove the following:
(i) s^{\prime} and $v_{s^{\prime}}$ are absolutely t-continuous.
[Hint: Use Theorem 2 in Chapter 7, §11.]
(ii) $v_{s}=v_{s^{\prime}}+v_{s^{\prime \prime}}, v_{s^{\prime \prime}} \perp t$.
(iii) If s is a measure (≥ 0), so are s^{\prime} and $s^{\prime \prime}$.
6. Verify Note 3 for Theorem 1 and Corollary 3. State and prove both generalized propositions precisely.

*§12. Integration and Differentiation

I. We shall now link RN-derivatives (§11) to those of Chapter 7, $\S 12$.

Below, we use the notation of Definition 3 in Chapter 7, $\S 10$ and Definition 1 of Chapter 7, §12. (Review them!) In particular,

$$
m: \mathcal{M}^{*} \rightarrow E^{*}
$$

is Lebesgue measure in E^{n} (presupposed in such terms as "a.e.," etc.); s is an arbitrary set function. For convenience, we set

$$
s^{\prime}(\bar{p})=0
$$

and

$$
\int_{X} f d m=0
$$

unless defined otherwise; thus s^{\prime} and $\int_{X} f$ exist always.
We start with several lemmas that go back to Lebesgue.
Lemma 1. With the notation of Definition 3 of Chapter 7, $\S 10$, the functions

$$
\bar{D} s, \underline{D} s, \text { and } s^{\prime}
$$

are Lebesgue measurable on E^{n} for any set function

$$
s: \mathcal{M}^{\prime} \rightarrow E^{*} \quad\left(\mathcal{M}^{\prime} \supseteq \overline{\mathcal{K}}\right) .
$$

Proof. By definition,

$$
\bar{D} s(\bar{p})=\inf _{r} h_{r}(\bar{p}),
$$

where

$$
h_{r}(\bar{p})=\sup \left\{\left.\frac{s I}{m I} \right\rvert\, I \in \mathcal{K}_{\bar{p}}^{r}\right\}
$$

and

$$
\mathcal{K}_{\bar{p}}^{r}=\left\{I \in \overline{\mathcal{K}} \mid \bar{p} \in I, d I<\frac{1}{r}\right\}, \quad r=1,2, \ldots
$$

As is easily seen (verify!),

$$
\begin{equation*}
E^{n}\left(h_{r}>a\right)=\bigcup\left\{I \in \overline{\mathcal{K}} \left\lvert\, a<\frac{s I}{m I}\right., d I<\frac{1}{r}\right\}, \quad a \in E^{*} \tag{1}
\end{equation*}
$$

The right-side union is Lebesgue measurable by Problem 2 in Chapter 7, $\S 10$. Thus by Theorem 1 of $\S 2$, the function h_{r} is measurable on E^{n} for $r=1,2, \ldots$, and so is

$$
\bar{D} s=\inf _{r} h_{r}
$$

by Lemma 1 of $\S 2$ and Definition 3 in Chapter 7, $\S 10$. Similarly for $\underline{D} s$.
Hence by Corollary 1 in $\S 2$, the set

$$
A=E^{n}(\underline{D} s=\bar{D} s)
$$

is measurable. As $s^{\prime}=\bar{D} s$ on A, s^{\prime} is measurable on A and also on $-A$ (by convention, $s^{\prime}=0$ on $-A$), hence on all of E^{n}.

Lemma 2. With the same notation, let $s: \mathcal{M}^{\prime} \rightarrow E^{*}\left(\mathcal{M}^{\prime} \supseteq \overline{\mathcal{K}}\right)$ be a regular measure in E^{n}. Let $A \in \mathcal{M}^{*}$ and $B \in \mathcal{M}^{\prime}$ with $A \subseteq B$, and $a \in E^{1}$.

If

$$
\bar{D} s>a \quad \text { on } A,
$$

then

$$
a \cdot m A \leq s B
$$

Proof. Fix $\varepsilon>0$. By regularity (Definition 4 in Chapter 7, $\S 7$), there is an open set $G \supseteq B$, with

$$
s B+\varepsilon \geq s G
$$

Now let

$$
\mathcal{K}^{\varepsilon}=\{I \in \overline{\mathcal{K}} \mid I \subseteq G, s I \geq(a-\varepsilon) m I\}
$$

As $\bar{D} s>a$, the definition of $\bar{D} s$ implies that $\mathcal{K}^{\varepsilon}$ is a Vitali covering of A. (Verify!)

Thus Theorem 1 in Chapter 7, $\S 10$, yields a disjoint sequence $\left\{I_{k}\right\} \subseteq \mathcal{K}^{\varepsilon}$, with

$$
m\left(A-\bigcup_{k} I_{k}\right)=0
$$

and

$$
m A \leq m\left(A-\bigcup I_{k}\right)+m \bigcup I_{k}=0+m \bigcup I_{k}=\sum_{k} m I_{k}
$$

As

$$
\bigcup I_{k} \subseteq G \text { and } s B+\varepsilon \geq s G
$$

(by our choice of $\mathcal{K}^{\varepsilon}$ and G), we obtain

$$
s B+\varepsilon \geq s \bigcup_{k} I_{k}=\sum_{k} s I_{k} \geq(a-\varepsilon) \sum_{k} m I_{k} \geq(a-\varepsilon) m A
$$

Thus

$$
(a-\varepsilon) m A \leq s B+\varepsilon
$$

Making $\varepsilon \rightarrow 0$, we obtain the result.
Lemma 3. If

$$
t=s \pm u
$$

with $s, t, u: \mathcal{M}^{\prime} \rightarrow E^{*}$ and $\mathcal{M}^{\prime} \supseteq \overline{\mathcal{K}}$, and if u is differentiable at a point $\bar{p} \in E^{n}$, then

$$
\bar{D} t=\bar{D} s \pm u^{\prime} \text { and } \underline{D} t=\underline{D} s \pm u^{\prime} \text { at } \bar{p} .
$$

The proof, from definitions, is left to the reader (Chapter $7, \S 12$, Problem 7).
Lemma 4. Any m-continuous measure $s: \mathcal{M}^{*} \rightarrow E^{1}$ is strongly regular.
Proof. By Corollary 3 of Chapter $7, \S 11, v_{s}=s<\infty$ (s is finite!). Thus v_{s} is certainly m-finite.

Hence by Theorem 2 in Chapter $7, \S 11, s$ is absolutely m-continuous. So given $\varepsilon>0$, there is $\delta>0$ such that

$$
\left(\forall X \in \mathcal{M}^{*} \mid m X<\delta\right) \quad s X<\varepsilon
$$

Now, let $A \in \mathcal{M}^{*}$. By the strong regularity of Lebesgue measure m (Chapter $7, \S 8$, Theorem 3(b)), there is an open set $G \supseteq A$ and a closed $F \subseteq A$ such that

$$
m(A-F)<\delta \text { and } m(G-A)<\delta
$$

Thus by our choice of δ,

$$
s(A-F)<\varepsilon \text { and } s(G-A)<\varepsilon,
$$

as required.

Lemma 5. Let $s, s_{k}(k=1,2, \ldots)$ be finite m-continuous measures, with $s_{k} \nearrow s$ or $s_{k} \searrow s$ on \mathcal{M}^{*}.

If the s_{k} are a.e. differentiable, then

$$
\bar{D} s=\underline{D} s=\lim _{k \rightarrow \infty} s_{k}^{\prime} \text { a.e. }
$$

Proof. Let first $s_{k} \nearrow s$. Set

$$
t_{k}=s-s_{k}
$$

By Corollary 2 in Chapter $7, \S 11$, all t_{k} are m-continuous, hence strongly regular (Lemma 4). Also, $t_{k} \searrow 0$ (since $s_{k} \nearrow s$). Hence

$$
t_{k} I \geq t_{k+1} I \geq 0
$$

for each cube I; and the definition of $\bar{D} t_{k}$ implies that

$$
\bar{D} t_{k} \geq \bar{D} t_{k+1} \geq \underline{D} t_{k+1} \geq 0
$$

As $\left\{\bar{D} t_{k}\right\} \downarrow, \lim _{k \rightarrow \infty} \bar{D} t_{k}$ exists (pointwise). Now set

$$
A_{r}=E^{n}\left(\lim _{k \rightarrow \infty} \bar{D} t_{k} \geq \frac{1}{r}\right), \quad r=1,2, \ldots
$$

By Lemma 1 (and Lemma 1 in $\S 2$), $A_{r} \in \mathcal{M}^{*}$. Since

$$
\bar{D} t_{k} \geq \lim _{i \rightarrow \infty} \bar{D} t_{i} \geq \frac{1}{r}
$$

on A_{r}, Lemma 2 yields

$$
\frac{1}{r} m A_{r} \leq t_{k} A_{r}
$$

As $t_{k} \searrow 0$, we have

$$
\frac{1}{r} m A_{r} \leq \lim _{k \rightarrow \infty} t_{k} A_{r}=0
$$

Thus

$$
m A_{r}=0, \quad r=1,2, \ldots
$$

Also, as is easily seen,

$$
E^{n}\left(\lim _{k \rightarrow \infty} \bar{D} t_{k}>0\right)=\bigcup_{r=1}^{\infty} E^{n}\left(\lim _{k \rightarrow \infty} \bar{D} t_{k} \geq \frac{1}{r}\right)=\bigcup_{r=1}^{\infty} A_{r}
$$

and

$$
m \bigcup_{r=1}^{\infty} A_{r}=0
$$

Hence

$$
\lim _{k \rightarrow \infty} \bar{D} t_{k} \leq 0 \quad \text { a.e. }
$$

As

$$
\bar{D} t_{k} \geq \underline{D} t_{k} \geq 0
$$

(see above), we get

$$
\lim _{k \rightarrow \infty} \bar{D} t_{k}=0=\lim _{k \rightarrow \infty} \underline{D} t_{k} \quad \text { a.e. on } E^{n} .
$$

Now, as $t_{k}=s-s_{k}$ and as the s_{k} are differentiable, Lemma 3 yields

$$
\bar{D} t_{k}=\bar{D} s-s_{k}^{\prime} \text { and } \underline{D} t_{k}=\underline{D} s-s_{k}^{\prime} \quad \text { a.e. }
$$

Thus

$$
\lim _{k \rightarrow \infty}\left(\bar{D} s-s_{k}^{\prime}\right)=0=\lim \left(\underline{D} s-s_{k}^{\prime}\right),
$$

i.e.,

$$
\bar{D} s=\lim _{k \rightarrow \infty} s_{k}^{\prime}=\underline{D} s \quad \text { a.e. }
$$

This settles the case $s_{k} \nearrow s$.
In the case $s_{k} \searrow s$, one only has to set $t_{k}=s_{k}-s$ and proceed as before. (Verify!)

Lemma 6. Given $A \in \mathcal{M}^{*}, m A<\infty$, let

$$
s=\int C_{A} d m
$$

on \mathcal{M}^{*}. Then s is a.e. differentiable, and

$$
s^{\prime}=C_{A} \text { a.e. on } E^{n} .
$$

($C_{A}=$ characteristic function of A.)
Proof. ${ }^{1}$ First, let A be open and let $\bar{p} \in A$.
Then A contains some $G_{\bar{p}}(\delta)$ and hence also all cubes $I \in \overline{\mathcal{K}}$ with $d I<\delta$ and $\bar{p} \in I$.

Thus for such $I \in \overline{\mathcal{K}}$,

$$
s I=\int_{I} C_{A} d m=\int_{I}(1) d m=m I
$$

i.e.,

$$
\frac{s I}{m I}=1=C_{A}(\bar{p}), \quad \bar{p} \in A .
$$

Hence by Definition 1 of Chapter 7, $\S 12$,

$$
s^{\prime}(\bar{p})=1=C_{A}(\bar{p})
$$

if $\bar{p} \in A$; i.e., $s^{\prime}=C_{A}$ on A.

[^57]We claim that

$$
\bar{D} s=s^{\prime}=0 \quad \text { a.e. on }-A
$$

To prove it, note that

$$
s=\int C_{A} d m
$$

is a finite (why?) m-continuous measure on \mathcal{M}^{*}. By Lemma $4, s$ is strongly regular. Also, as $s I \geq 0$ for any $I \in \overline{\mathcal{K}}$, we certainly have

$$
\bar{D} s \geq \underline{D} s \geq 0
$$

(Why?) Now let

$$
\begin{equation*}
B=E^{n}(\bar{D} s>0)=\bigcup_{r=1}^{\infty} B_{r} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{r}=E^{n}\left(\bar{D} s \geq \frac{1}{r}\right), \quad r=1,2, \ldots \tag{3}
\end{equation*}
$$

We have to show that $m(B-A)=0$.
Suppose

$$
m(B-A)>0
$$

Then by (2), we must have $m\left(B_{r}-A\right)>0$ for at least one B_{r}; we fix this B_{r}. Also, by (3),

$$
\bar{D} s \geq \frac{1}{r} \text { on } B_{r}-A
$$

(even on all of B_{r}). Thus by Lemma 2,

$$
\begin{equation*}
0<\frac{1}{r} m\left(B_{r}-A\right) \leq s\left(B_{r}-A\right)=\int_{B_{r}-A} C_{A} d m \tag{4}
\end{equation*}
$$

But this is impossible. Indeed, as $C_{A}=0$ on $-A$ (hence on $B_{r}-A$), the integral in (4) cannot be >0. This refutes the assumption $m(B-A)>0$; so by (2),

$$
m\left(E^{n}(\bar{D} s>0)-A\right)=0
$$

i.e.,

$$
\bar{D} s=0=\underline{D} s \quad \text { a.e. on }-A .
$$

We see that

$$
s^{\prime}=0=C_{A} \quad \text { a.e. on }-A,
$$

and

$$
s^{\prime}=1=C_{A} \quad \text { on } A,
$$

proving the lemma for open sets A.

Now take any $A \in \mathcal{M}^{*}, m A<\infty$. As Lebesgue measure is regular (Chapter $7, \S 8$, Theorem $3(\mathrm{~b})$), we find for each $k \in N$ an open set $G_{k} \supseteq A$, with

$$
m\left(G_{k}-A\right)<\frac{1}{k} \text { and } G_{k} \supseteq G_{k+1}
$$

Let

$$
s_{k}=\int C_{G_{k}} d m
$$

Then $s_{k} \searrow s$ on \mathcal{M}^{*} (see Problem 5(ii) in §6). Also, by what was shown above, the s_{k} are differentiable, with $s_{k}^{\prime}=C_{G_{k}}$ a.e.

Hence by Lemma 5,

$$
\bar{D} s=\underline{D} s=\lim _{k \rightarrow \infty} C_{G_{k}}=C_{A} \text { (a.e.). }
$$

The lemma is proved.
Theorem 1. Let $f: E^{n} \rightarrow E^{*}\left(E^{r}, C^{r}\right)$ be m-integrable, at least on each cube in E^{n}. Then the set function

$$
s=\int f d m
$$

is differentiable, with $s^{\prime}=f$, a.e. on $E^{n} .^{2}$
Thus s^{\prime} is the $R N$-derivative of s with respect to Lebesgue measure m (Theorem 1 in §11).

Proof. As E^{n} is a countable union of cubes (Lemma 2 in Chapter 7, §2), it suffices to show that $s^{\prime}=f$ a.e. on each open cube J, with s differentiable a.e. on J.

Thus fix such a $J \neq \emptyset$ and restrict s and m to

$$
\mathcal{M}_{0}=\left\{X \in \mathcal{M}^{*} \mid X \subseteq J\right\} .
$$

This does not affect s^{\prime} on J; for as J is open, any sequence of cubes

$$
I_{k} \rightarrow \bar{p} \in J
$$

terminates inside J anyway.
When so restricted,

$$
s=\int f
$$

is a generalized measure in J; for \mathcal{M}_{0} is a σ-ring (verify!), and f is integrable on J. Also, m is strongly regular, and s is m-continuous.

[^58]First, suppose f is \mathcal{M}_{0}-simple on J, say,

$$
f=\sum_{i=1}^{q} a_{i} C_{A_{i}}
$$

say, with $0<a_{i}<\infty, A_{i} \in \mathcal{M}^{*}$, and

$$
J=\bigcup_{i=1}^{q} A_{i}(\text { disjoint })
$$

Then

$$
s=\int f=\sum_{i=1}^{q} a_{i} \int C_{A_{i}} .
$$

Hence by Lemma 6 above and by Theorem 1 in Chapter 7, $\S 12, s$ is differentiable a.e. (as each $\int C_{A_{i}}$ is), and

$$
s^{\prime}=\sum_{i=1}^{q} a_{i}\left(\int C_{A_{i}}\right)^{\prime}=\sum_{i=1}^{q} a_{i} C_{A_{i}}=f \text { (a.e.) }
$$

as required.
The general case reduces (via components and the formula $f=f^{+}-f^{-}$) to the case $f \geq 0$, with f measurable (even integrable) on J.

By Problem 6 in $\S 2$, then, we have $f_{k} \nearrow f$ for some simple maps $f_{k} \geq 0$. Let

$$
s_{k}=\int f_{k} \text { on } M_{0}, k=1,2, \ldots
$$

Then all s_{k} and $s=\int f$ are finite measures and $s_{k} \nearrow s$, by Theorem 4 in $\S 6$. Also, by what was shown above, each s_{k} is differentiable a.e. on J, with $s_{k}^{\prime}=f_{k}$ (a.e.). Thus as in Lemma 5,

$$
\bar{D} s=\underline{D} s=s^{\prime}=\lim _{k \rightarrow \infty} s_{k}^{\prime}=\lim f_{k}=f(\text { a.e.) on } J
$$

with $s^{\prime}=f \neq \pm \infty$ (a.e.), as f is integrable on J. Thus all is proved.
II. So far we have considered Lebesgue $(\overline{\mathcal{K}})$ differentiation. However, our results easily extend to Ω-differentiation (Definition 2 in Chapter $7, \S 12$).

The proof is even simpler. Thus in Lemma 1, the union in formula (1) is countable (as $\overline{\mathcal{K}}$ is replaced by the countable set family Ω); hence it is μ-measurable. In Lemma 2, the use of the Vitali theorem is replaced by Theorem 3 in Chapter 7, $\S 12$. Otherwise, one only has to replace Lebesgue measure m by μ on \mathcal{M}. Once the lemmas are established (reread the proofs!), we obtain the following.

Theorem 2. Let S, ρ, Ω, and $\mu: \mathcal{M} \rightarrow E^{*}$ be as in Definition 2 of Chapter 7, §12. Let $f: S \rightarrow E^{*}\left(E^{r}, C^{r}\right)$ be μ-integrable on each $A \in \mathcal{M}$ with $\mu A<\infty$.

Then the set function

$$
s=\int f d \mu
$$

is Ω-differentiable, with $s^{\prime}=f$, (a.e.) on S.
Proof. Recall that S is a countable union of sets $U_{n}^{i} \in \Omega$ with $0<\mu U_{n}^{i}<\infty$. As μ^{*} is \mathcal{G}-regular, each U_{n}^{i} lies in an open set $J_{n}^{i} \in \mathcal{M}$ with

$$
\mu J_{n}^{i}<\mu U_{n}^{i}+\varepsilon_{n}^{i}<\infty
$$

Also, f is μ-measurable (even integrable) on J_{n}^{i}. Dropping a null set, assume that f is \mathcal{M}-measurable on $J=J_{n}^{i}$.

From here, proceed exactly as in Theorem 1, replacing m by μ.
Both theorems combined yield the following result.
Corollary 1. If $s: \mathcal{M}^{\prime} \rightarrow E^{*}\left(E^{r}, C^{r}\right)$ is an m-continuous and m-finite generalized measure in E^{n}, then s is $\overline{\mathcal{K}}$-differentiable a.e. on E^{n}, and $d s=s^{\prime} d m$ (see Definition 3 in §10) in any $A \in \mathcal{M}^{*}(m A<\infty) .{ }^{3}$

Similarly for Ω-differentiation.
Proof. Given $A \in \mathcal{M}^{*}(m A<\infty)$, there is an open set $J \supseteq A$ such that

$$
m J<m A+\varepsilon<\infty .
$$

As before, restrict s and m to

$$
\mathcal{M}_{0}=\left\{X \in \mathcal{M}^{*} \mid X \subseteq J\right\} .
$$

Then by assumption, s is finite and m-continuous on \mathcal{M}_{0} (a σ-ring); so by Theorem 1 in §11,

$$
s=\int f d m
$$

on \mathcal{M}_{0} for some m-integrable map f on J.
Hence by our present Theorem $1, s$ is differentiable, with $s^{\prime}=f$ a.e. on J, and so

$$
s=\int f=\int s^{\prime} \text { on } \mathcal{M}_{0}
$$

This implies $d s=s^{\prime} d m$ in A.
For Ω-differentiation, use Theorem 2 .

[^59]Corollary 2 (change of measure). Let s be as in Corollary 1. Subject to Note 1 in $\S 10$, if f is s-integrable on $A \in \mathcal{M}^{*}(m A<\infty),{ }^{4}$ then $f s^{\prime}$ is m-integrable on A and

$$
\int_{A} f d s=\int_{A} f s^{\prime} d m
$$

Similarly for Ω-derivatives, with m replaced by μ.
Proof. By Corollary 1, $d s=s^{\prime} d m$ in A. Thus Theorem 6 of $\S 10$ yields the result.

Note 1. In particular, Corollary 2 applies to m-continuous signed LS measures $s=s_{\alpha}$ in E^{1} (see end of $\S 11$). If $A=[a, b]$, then s_{α} is surely finite on s_{α}-measurable subsets of A; so Corollaries 1 and 2 show that

$$
\int_{A} f d s_{\alpha}=\int_{A} f s_{\alpha}^{\prime} d m=\int_{A} f \alpha^{\prime} d m
$$

since $s_{\alpha}^{\prime}=\alpha^{\prime}$. (See Problem 9 in Chapter 7, §12.)
Note 2. Moreover, $s=s_{\alpha}$ (see Note 1) is absolutely m-continuous iff α is absolutely continuous in the stronger sense (Problem 2 in Chapter 4, §8).

Indeed, assuming the latter, fix $\varepsilon>0$ and choose δ as in Definition 3 of Chapter $7, \S 11$. Then if $m X<\delta$, we have

$$
X \subseteq \bigcup I_{k}(\text { disjoint })
$$

for some intervals $I_{k}=\left(a_{k}, b_{k}\right]$, with

$$
\delta>\sum m I_{k}=\sum\left(b_{k}-a_{k}\right)
$$

Hence

$$
|s X| \leq \sum\left|s I_{k}\right|<\varepsilon
$$

(Why?) Similarly for the converse. ${ }^{5}$

Problems on Differentiation and Related Topics

1. Fill in all proof details in this section. Verify footnote 4 and Note 2.
2. Given a measure $s: \mathcal{M}^{\prime} \rightarrow E^{*}\left(\mathcal{M}^{\prime} \supseteq \overline{\mathcal{K}}\right)$, prove that
(i) s is topological;
(ii) its Borel restriction σ is strongly regular; and
(iii) $\underline{D} s, \bar{D} s$, and s^{\prime} do not change if s or m are restricted to the Borel field \mathcal{B} in E^{n}; neither does this affect the propositions on $\overline{\mathcal{K}}$-differentiation proved here.

[^60][Hints: (i) Use Lemma 2 of Chapter 7, §2. (ii) Use also Problem 10 in Chapter 7, §7. (iii) All depends on $\overline{\mathcal{K}}$.]
3. What analogues to $2(\mathrm{i})$-(iii) apply to Ω-differentiation in E^{n} ? In (S, ρ) ?
4. (i) Show that any m-singular measure s in E^{n}, finite on $\overline{\mathcal{K}}$, has a zero derivative (a.e.).
(ii) For Ω-derivatives, prove that this holds if s is also regular.
[Hint for (i): By Problem 2, we may assume s regular (if not, replace it by σ). Suppose
$$
m E^{n}(\bar{D} s>0)>a>0
$$
and find a contradiction to Lemma 2.]
5. Give another proof for Theorem 4 in Chapter $7, \S 12$.
[Hint: Fix an open cube $J \in \overline{\mathcal{K}}$. By Problem 2(iii), restrict s and m to
$$
\mathcal{M}_{0}=\{X \in \mathcal{B} \mid X \subseteq J\}
$$
to make them finite. Apply Corollary 2 in $\S 11$ to s. Then use Problem 4, Theorem 1 of the present section, and Theorem 1 of Chapter 7, $\S 12$.

For Ω-differentiation, assume s regular; argue as in Corollary 1, using Corollary 2 of $\S 11$.
6. Prove that if

$$
F(x)=L \int_{a}^{x} f d m \quad(a \leq x \leq b),{ }^{6}
$$

with $f: E^{1} \rightarrow E^{*}\left(E^{n}, C^{n}\right) m$-integrable on $A=[a, b]$, then F is differentiable, with $F^{\prime}=f$, a.e. on A.
[Hint: Via components, reduce all to the case $f \geq 0, F \uparrow$ on A.
Let

$$
s=\int f d m
$$

on \mathcal{M}^{*}. Let $t=m_{F}$ be the F-induced LS measure. Show that $s=t$ on intervals in A; so $s^{\prime}=t^{\prime}=F^{\prime}$ a.e. on A (Problem 9 in Chapter 7, $\S 11$). Use Theorem 1.]

[^61]
Chapter 9

Calculus Using Lebesgue Theory

§1. L-Integrals and Antiderivatives

I. Lebesgue theory makes it possible to strengthen many calculus theorems. We shall start with functions on $E^{1}, f: E^{1} \rightarrow E$. (A reader who has omitted the "starred" part of Chapter $8, \S 7$, will have to set $E=E^{*}\left(E^{n}, C^{n}\right)$ throughout.)

By L-integrals of such functions, we mean integrals with respect to Lebesgue measure m in E^{1}. Notation:

$$
L \int_{a}^{b} f=L \int_{a}^{b} f(x) d x=L \int_{[a, b]} f
$$

and

$$
L \int_{b}^{a} f=-L \int_{a}^{b} f
$$

For Riemann integrals, we replace " L " by " R." We compare such integrals with antiderivatives (Chapter 5, $\S 5$), denoted

$$
\int_{a}^{b} f
$$

without the " L " or " R." Note that

$$
L \int_{[a, b]} f=L \int_{(a, b)} f
$$

etc., since $m\{a\}=m\{b\}=0$ here.
Theorem 1. Let $f: E^{1} \rightarrow E$ be L-integrable on $A=[a, b]$. Set

$$
H(x)=L \int_{a}^{x} f, \quad x \in A .
$$

Then the following are true.
(i) The function f is the derivative of H at any $p \in A$ at which f is finite and continuous. (At a and b, continuity and derivatives may be one-sided from within.)
(ii) The function H is absolutely continuous on $A ;{ }^{1}$ hence $V_{H}[A]<\infty$. ${ }^{2,3}$

Proof. (i) Let $p \in(a, b], q=f(p) \neq \pm \infty$. Let f be left continuous at p; so, given $\varepsilon>0$, we can fix $c \in(a, p)$ such that

$$
|f(x)-q|<\varepsilon \text { for } x \in(c, p)
$$

Then

$$
\begin{aligned}
(\forall x \in(c, p)) \quad\left|L \int_{x}^{p}(f-q)\right| & \leq L \int_{x}^{p}|f-q| \\
& \leq L \int_{x}^{p}(\varepsilon)=\varepsilon \cdot m[x, p]=\varepsilon(p-x)
\end{aligned}
$$

But

$$
\begin{aligned}
L \int_{x}^{p}(f-q) & =L \int_{x}^{p} f-L \int_{x}^{p} q \\
L \int_{x}^{p} q & =q(p-x), \quad \text { and } \\
L \int_{x}^{p} f & =L \int_{a}^{p} f-L \int_{a}^{x} f \\
& =H(p)-H(x)
\end{aligned}
$$

Thus

$$
|H(p)-H(x)-q(p-x)| \leq \varepsilon(p-x) ;
$$

i.e.,

$$
\left|\frac{H(p)-H(x)}{p-x}-q\right| \leq \varepsilon \quad(c<x<p) .
$$

Hence

$$
f(p)=q=\lim _{x \rightarrow p^{-}} \frac{\Delta H}{\Delta x}=H_{-}^{\prime}(p)
$$

If f is right continuous at $p \in[a, b)$, a similar formula results for $H_{+}^{\prime}(p)$. This proves clause (i).

[^62](ii) Let $\varepsilon>0$ be given. Then Theorem 6 in Chapter 8 , $\S 6$, yields a $\delta>0$ such that
\[

$$
\begin{equation*}
\left|L \int_{X} f\right| \leq L \int_{X}|f|<\varepsilon \tag{1}
\end{equation*}
$$

\]

whenever

$$
m X<\delta \text { and } A \supseteq X, X \in \mathcal{M}
$$

Here we may set

$$
X=\bigcup_{i=1}^{r} A_{i}(\text { disjoint })
$$

for some intervals

$$
A_{i}=\left(a_{i}, b_{i}\right) \subseteq A
$$

so that

$$
m X=\sum_{i} m A_{i}=\sum_{i}\left(b_{i}-a_{i}\right)<\delta
$$

Then (1) implies that

$$
\varepsilon>L \int_{X}|f|=\sum_{i} L \int_{A_{i}}|f| \geq \sum_{i}\left|L \int_{a_{i}}^{b_{i}} f\right|=\sum_{i}\left|H\left(b_{i}\right)-H\left(a_{i}\right)\right| .
$$

Thus

$$
\sum_{i}\left|H\left(b_{i}\right)-H\left(a_{i}\right)\right|<\varepsilon
$$

whenever

$$
\sum_{i}\left(b_{i}-a_{i}\right)<\delta
$$

and

$$
A \supseteq \bigcup_{i}\left(a_{i}, b_{i}\right)(\text { disjoint })
$$

(This is what we call "absolute continuity in the stronger sense.") By Problem 2 in Chapter 5, $\S 8$, this implies "absolute continuity" in the sense of Chapter 5, $\S 8$, hence $V_{H}[A]<\infty$.

Note 1. The converse to (i) fails: the differentiability of H at p does not imply the continuity of its derivative f at p (Problem 6 in Chapter 5, §2).

Note 2. If f is continuous on $A-Q$ (Q countable), Theorem 1 shows that H is a primitive (antiderivative): $H=\int f$ on $A .{ }^{4}$ Recall that " Q countable" implies $m Q=0$, but not conversely. Observe that we may always assume $a, b \in Q$.

[^63]We can now prove a generalized version of the so-called fundamental theorem of calculus, widely used for computing integrals via antiderivatives.
Theorem 2. If $f: E^{1} \rightarrow E$ has a primitive F on $A=[a, b]$, and if f is bounded on $A-P$ for some P with $m P=0$, then f is L-integrable on A, and

$$
\begin{equation*}
L \int_{a}^{x} f=F(x)-F(a) \quad \text { for all } x \in A \text {. } \tag{2}
\end{equation*}
$$

Proof. By Definition 1 of Chapter $5, \S 5, F$ is relatively continuous and finite on $A=[a, b]$, hence bounded on A (Theorem 2 in Chapter 4, $\S 8$).

It is also differentiable, with $F^{\prime}=f$, on $A-Q$ for a countable set $Q \subseteq A$, with $a, b \in Q$. We fix this Q along with P.

As we deal with A only, we surely may redefine F and f on $-A$:

$$
F(x)= \begin{cases}F(a) & \text { if } x<a \\ F(b) & \text { if } x>b\end{cases}
$$

and $f=0$ on $-A$. Then f is bounded on $-P$, while F is bounded and continuous on E^{1}, and $F^{\prime}=f$ on $-Q$; so $F=\int f$ on $E^{1} .{ }^{5}$

Also, for $n=1,2, \ldots$ and $t \in E^{1}$, set

$$
\begin{equation*}
f_{n}(t)=n\left[F\left(t+\frac{1}{n}\right)-F(t)\right]=\frac{F(t+1 / n)-F(t)}{1 / n} \tag{3}
\end{equation*}
$$

Then

$$
f_{n} \rightarrow F^{\prime}=f \quad \text { on }-Q ;
$$

i.e., $f_{n} \rightarrow f$ (a.e.) on $E^{1}($ as $m Q=0)$.

By (3), each f_{n} is bounded and continuous (as F is). Thus by Theorem 1 of Chapter $8, \S 3, F$ and all f_{n} are m-measurable on A (even on E^{1}). So is f by Corollary 1 of Chapter $8, \S 3$.

Moreover, by boundedness, F and f_{n} are L-integrable on finite intervals. So is f. For example, let

$$
|f| \leq K<\infty \text { on } A-P
$$

as $m P=0$,

$$
\int_{A}|f| \leq \int_{A}(K)=K \cdot m A<\infty
$$

proving integrability. Now, as

$$
F=\int f \text { on any interval }\left[t, t+\frac{1}{n}\right]
$$

[^64]Corollary 1 in Chapter 5, $\S 4$ yields

$$
\left(\forall t \in E^{1}\right) \quad\left|F\left(t+\frac{1}{n}\right)-F(t)\right| \leq \sup _{t \in-Q}\left|F^{\prime}(t)\right| \frac{1}{n} \leq \frac{K}{n}
$$

Hence

$$
\left|f_{n}(t)\right|=n\left|F\left(t+\frac{1}{n}\right)-F(t)\right| \leq K
$$

i.e., $\left|f_{n}\right| \leq K$ for all n.

Thus f and f_{n} satisfy Theorem 5 of Chapter 8 , $\S 6$, with $g=K$. By Note 1 there,

$$
\lim _{n \rightarrow \infty} L \int_{a}^{x} f_{n}=L \int_{a}^{x} f .
$$

In the next lemma, we show that also

$$
\lim _{n \rightarrow \infty} L \int_{a}^{x} f_{n}=F(x)-F(a)
$$

which will complete the proof.
Lemma 1. Given a finite continuous $F: E^{1} \rightarrow E$ and given f_{n} as in (3), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} L \int_{a}^{x} f_{n}=F(x)-F(a) \quad \text { for all } x \in E^{1} \tag{4}
\end{equation*}
$$

Proof. As before, F and f_{n} are bounded, continuous, and L-integrable on any $[a, x]$ or $[x, a]$. Fixing a, let

$$
H(x)=L \int_{a}^{x} F, \quad x \in E^{1} .
$$

By Theorem 1 and Note 2, $H=\int F$ also in the sense of Chapter 5, $\S 5$, with $F=H^{\prime}$ (derivative of H) on E^{1}.

Hence by Definition 2 the same section,

$$
\int_{a}^{x} F=H(x)-H(a)=H(x)-0=L \int_{a}^{x} F
$$

i.e.,

$$
L \int_{a}^{x} F=\int_{a}^{x} F,
$$

and so

$$
\begin{aligned}
L \int_{a}^{x} f_{n}(t) d t & =n \int_{a}^{x} F\left(t+\frac{1}{n}\right) d t-n \int_{a}^{x} F(t) d t \\
& =n \int_{a+1 / n}^{b+1 / n} F(t) d t-n \int_{a}^{x} F(t) d t
\end{aligned}
$$

(We computed

$$
\int F(t+1 / n) d t
$$

by Theorem 2 in Chapter 5 , $\S 5$, with $g(t)=t+1 / n$.) Thus by additivity,

$$
\begin{equation*}
L \int_{a}^{x} f_{n}=n \int_{a+1 / n}^{x+1 / n} F-n \int_{a}^{x} F=n \int_{x}^{x+1 / n} F-n \int_{a}^{a+1 / n} F . \tag{5}
\end{equation*}
$$

But

$$
n \int_{x}^{x+1 / n} F=\frac{H\left(x+\frac{1}{n}\right)-H(x)}{\frac{1}{n}} \rightarrow H^{\prime}(x)=F(x)
$$

Similarly,

$$
\lim _{n \rightarrow \infty} n \int_{a}^{a+1 / n} F=F(a)
$$

This combined with (5) proves (4), and hence Theorem 2, too.
We also have the following corollary.
Corollary 1. If $f: E^{1} \rightarrow E^{*}\left(E^{n}, C^{n}\right)$ is R-integrable on $A=[a, b]$, then

$$
\begin{equation*}
(\forall x \in A) \quad R \int_{a}^{x} f=L \int_{a}^{b} f=F(x)-F(a) \tag{6}
\end{equation*}
$$

provided F is primitive to f on $A .{ }^{6}$
This follows from Theorem 2 by Definition (c) and Theorem 2 of Chapter $8, \S 9$.

Caution. Formulas (2) and (6) may fail if f is unbounded, or if F is not a primitive in the sense of Definition 1 of Chapter 5, §5: We need $F^{\prime}=f$ on $A-Q, Q$ countable ($m Q=0$ is not enough!). Even R-integrability (which makes f bounded and a.e. continuous) does not suffice if

$$
F \neq \int f
$$

For examples, see Problems 2-5.
Corollary 2. If f is relatively continuous and finite on $A=[a, b]$ and has a bounded derivative on $A-Q(Q$ countable $)$, then f^{\prime} is L-integrable on A and

$$
\begin{equation*}
L \int_{a}^{x} f^{\prime}=f(x)-f(a) \quad \text { for } x \in A . \tag{7}
\end{equation*}
$$

This is simply Theorem 2 with F, f, P replaced by f, f^{\prime}, Q, respectively.

[^65]Corollary 3. If in Theorem 2 the primitive

$$
F=\int f
$$

is exact on some $B \subseteq A$, then

$$
\begin{equation*}
f(x)=\frac{d}{d x} L \int_{a}^{x} f, \quad x \in B \tag{8}
\end{equation*}
$$

(Recall that $\frac{d}{d x} F(x)$ is classical notation for $F^{\prime}(x)$.)
Proof. By (2), this holds on $B \subseteq A$ if $F^{\prime}=f$ there.
II. Note that under the assumptions of Theorem 2,

$$
L \int_{a}^{x} f=F(x)-F(a)=\int_{a}^{x} f
$$

Thus all laws governing the primitive $\int f$ apply to $L \int f$. For example, Theorem 2 of Chapter 5 , $\S 5$, yields the following corollary.
Corollary 4 (change of variable). Let $g: E^{1} \rightarrow E^{1}$ be relatively continuous on $A=[a, b]$ and have a bounded derivative on $A-Q$ (Q countable $)$.

Suppose that $f: E^{1} \rightarrow E$ (real or not) has a primitive on $g[A]$, exact on $g[A-Q]$, and that f is bounded on $g[A-Q]$.

Then f is L-integrable on $g[A]$, the function

$$
(f \circ g) g^{\prime}
$$

is L-integrable on A, and

$$
\begin{equation*}
L \int_{a}^{b} f(g(x)) g^{\prime}(x) d x=L \int_{p}^{q} f(y) d y \tag{9}
\end{equation*}
$$

where $p=g(a)$ and $q=g(b)$.
For this and other applications of primitives, see Problem 9. However, often a direct approach is stronger (though not simpler), as we illustrate next.
Lemma 2 (Bonnet). Suppose $f: E^{1} \rightarrow E^{1}$ is ≥ 0 and monotonically decreasing on $A=[a, b]$. Then, if $g: E^{1} \rightarrow E^{1}$ is L-integrable on A, so also is $f g$, and

$$
\begin{equation*}
L \int_{a}^{b} f g=f(a) \cdot L \int_{a}^{c} g \quad \text { for some } c \in A . \tag{10}
\end{equation*}
$$

Proof. The L-integrability of $f g$ follows by Theorem 3 in Chapter $8, \S 6$, as f is monotone and bounded, hence even R-integrable (Corollary 3 in Chapter 8, §9).

Using this and Lemma 1 of the same section, fix for each n a \mathcal{C}-partition

$$
\mathcal{P}_{n}=\left\{A_{n i}\right\} \quad\left(i=1,2, \ldots, q_{n}\right)
$$

of A so that

$$
\begin{equation*}
(\forall n) \quad \frac{1}{n}>\bar{S}\left(f, \mathcal{P}_{n}\right)-\underline{S}\left(f, \mathcal{P}_{n}\right)=\sum_{i=1}^{q_{n}} w_{n i} m A_{n i} \tag{11}
\end{equation*}
$$

where we have set

$$
w_{n i}=\sup f\left[A_{n i}\right]-\inf f\left[A_{n i}\right] .
$$

Consider any such $\mathcal{P}=\left\{A_{i}\right\}, i=1, \ldots, q$ (we drop the " n " for brevity). If $A_{i}=\left[a_{i-1}, a_{i}\right]$, then since $f \downarrow$,

$$
w_{i}=f\left(a_{i-1}\right)-f\left(a_{i}\right) \geq\left|f(x)-f\left(a_{i-1}\right)\right|, \quad x \in A_{i} .
$$

Under Lebesgue measure (Problem 8 of Chapter $8, \S 9$), we may set

$$
A_{i}=\left[a_{i-1}, a_{i}\right] \quad(\forall i)
$$

and still get

$$
\begin{align*}
L \int_{A} f g & =\sum_{i=1}^{q} f\left(a_{i-1}\right) L \int_{A_{i}} g(x) d x \\
& +\sum_{i=1}^{q} L \int_{A_{i}}\left[f(x)-f\left(a_{i-1}\right)\right] g(x) d x . \tag{12}
\end{align*}
$$

(Verify!) Here $a_{0}=a$ and $a_{q}=b$.
Now, set

$$
G(x)=L \int_{a}^{x} g
$$

and rewrite the first sum (call it r or r_{n}) as

$$
\begin{aligned}
r & =\sum_{i=1}^{q} f\left(a_{i-1}\right)\left[G\left(a_{i}\right)-G\left(a_{i-1}\right)\right] \\
& =\sum_{i=1}^{q-1} G\left(a_{i}\right)\left[f\left(a_{i-1}\right)-f\left(a_{i}\right)\right]+G(b) f\left(a_{q-1}\right)
\end{aligned}
$$

or

$$
\begin{equation*}
r=\sum_{i=1}^{q-1} G\left(a_{i}\right) w_{i}+G(b) f\left(a_{q-1}\right), \tag{13}
\end{equation*}
$$

because $f\left(a_{i-1}\right)-f\left(a_{i}\right)=w_{i}$ and $G(a)=0$.
Now, by Theorem 1 (with H, f replaced by G, g), G is continuous on $A=$ $[a, b]$; so G attains a largest value K and a least value k on A.

As $f \downarrow$ and $f \geq 0$ on A, we have

$$
w_{i} \geq 0 \text { and } f\left(a_{q-1}\right) \geq 0
$$

Thus, replacing $G(b)$ and $G\left(a_{i}\right)$ by K (or k) in (13) and noting that

$$
\sum_{i=1}^{q-1} w_{i}=f(a)-f\left(a_{q-1}\right)
$$

we obtain

$$
k f(a) \leq r \leq K f(a)
$$

more fully, with $k=\min G[A]$ and $K=\max G[A]$,

$$
\begin{equation*}
(\forall n) \quad k f(a) \leq r_{n} \leq K f(a) . \tag{14}
\end{equation*}
$$

Next, let s (or rather s_{n}) be the second sum in (12). Noting that

$$
w_{i} \geq\left|f(x)-f\left(a_{i-1}\right)\right|
$$

suppose first that $|g| \leq B$ (bounded) on A.
Then for all n,

$$
\left|s_{n}\right| \leq \sum_{i=1}^{q_{n}} L \int_{A_{n i}}\left(w_{n i} B\right)=B \sum_{i=1}^{q_{n}} w_{n i} m A_{n i}<\frac{B}{n} \rightarrow 0 \quad(\text { by }(11))
$$

But by (12),

$$
L \int_{A} f g=r_{n}+s_{n} \quad(\forall n)
$$

As $s_{n} \rightarrow 0$,

$$
L \int_{A} f g=\lim _{n \rightarrow \infty} r_{n}
$$

and so by (14),

$$
k f(a) \leq L \int_{A} f g \leq K f(a)
$$

By continuity, $f(a) G(x)$ takes on the intermediate value $L \int_{A} f g$ at some $c \in A$; so

$$
L \int_{A} f g=f(a) G(c)=f(a) L \int_{a}^{c} g
$$

since

$$
G(x)=L \int_{a}^{x} f
$$

Thus all is proved for a bounded g.
The passage to an unbounded g is achieved by the so-called truncation method described in Problems 12 and 13. (Verify!)

Corollary 5 (second law of the mean). Let $f: E^{1} \rightarrow E^{1}$ be monotone on $A=[a, b]$. Then if $g: E^{1} \rightarrow E^{1}$ is L-integrable on A, so also is $f g$, and

$$
\begin{equation*}
L \int_{a}^{b} f g=f(a) L \int_{a}^{c} g+f(b) L \int_{c}^{b} g \quad \text { for some } c \in A . \tag{15}
\end{equation*}
$$

Proof. If, say, $f \downarrow$ on A, set

$$
h(x)=f(x)-f(b)
$$

Then $h \geq 0$ and $h \downarrow$ on A; so by Lemma 2 ,

$$
\int_{a}^{b} g h=h(a) L \int_{a}^{c} g \quad \text { for some } c \in A
$$

As

$$
h(a)=f(a)-f(b),
$$

this easily implies (15).
If $f \uparrow$, apply this result to $-f$ to obtain (15) again.
Note 3. We may restate (15) as

$$
(\exists c \in A) \quad L \int_{a}^{b} f g=p L \int_{a}^{c} g+q L \int_{c}^{b} g
$$

provided either
(i) $f \uparrow$ and $p \leq f(a+) \leq f(b-) \leq q$, or
(ii) $f \downarrow$ and $p \geq f(a+) \geq f(b-) \geq q$.

This statement slightly strengthens (15).
To prove clause (i), redefine

$$
f(a)=p \text { and } f(b)=q .
$$

Then still $f \uparrow$; so (15) applies and yields the desired result. Similarly for (ii). For a continuous g, see also Problem 13(ii') in Chapter 8, $\S 9$, based on Stieltjes theory.
III. We now give a useful analogue to the notion of a primitive.

Definition.

A map $F: E^{1} \rightarrow E$ is called an L-primitive or an indefinite L-integral of $f: E^{1} \rightarrow E$, on $A=[a, b]$ iff f is L-integrable on A and

$$
\begin{equation*}
F(x)=c+L \int_{a}^{x} f \tag{16}
\end{equation*}
$$

for all $x \in A$ and some fixed finite $c \in E$.

Notation:

$$
F=L \int f \quad\left(n o t F=\int f\right)
$$

or

$$
F(x)=L \int f(x) d x \quad \text { on } A
$$

By (16), all L-primitives of f on A differ by finite constants only.
If $E=E^{*}\left(E^{n}, C^{n}\right)$, one can use this concept to lift the boundedness restriction on f in Theorem 2 and the corollaries of this section. The proof will be given in $\S 2$. However, for comparison, we state the main theorems already now.
*Theorem 3. Let

$$
F=L \int f \quad \text { on } A=[a, b]
$$

for some $f: E^{1} \rightarrow E^{*}\left(E^{n}, C^{n}\right)$.
Then F is differentiable, with

$$
F^{\prime}=f \quad \text { a.e. on } A .
$$

In classical notation,

$$
\begin{equation*}
f(x)=\frac{d}{d x} L \int_{a}^{x} f(t) d t \quad \text { for almost all } x \in A \tag{17}
\end{equation*}
$$

A proof was sketched in Problem 6 of Chapter 8, $\S 12$. (It is brief but requires more "starred" material than used in §2.)
*Theorem 4. Let $F: E^{1} \rightarrow E^{n}\left(C^{n}\right)$ be differentiable on $A=[a, b]$ (at a and b differentiability may be one sided). Let $F^{\prime}=f$ be L-integrable on A.

Then

$$
\begin{equation*}
L \int_{a}^{x} f=F(x)-F(a) \quad \text { for all } x \in A \tag{18}
\end{equation*}
$$

Problems on L-Integrals and Antiderivatives

1. Fill in proof details in Theorems 1 and 2, Lemma 1, and Corollaries 1-3.
$\mathbf{1}^{\prime}$. Verify Note 2.
2. Let F be Cantor's function (Problem 6 in Chapter 4, $\S 5$). Let

$$
G=\bigcup_{k, i} G_{k i}
$$

($G_{k i}$ as in that problem). So $[0,1]-G=P$ (Cantor's set); $m P=0$ (Problem 10 in Chapter 7, §8).

Show that F is differentiable $\left(F^{\prime}=0\right)$ on G. By Theorems 2 and 3 of Chapter $8, \S 9$,

$$
R \int_{0}^{1} F^{\prime}=L \int_{0}^{1} F^{\prime}=L \int_{G} F^{\prime}=0
$$

exists, yet $F(1)-F(0)=1-0 \neq 0$.
Does this contradict Corollary 1? Is F a genuine antiderivative of f ? If not, find one.
3. Let

$$
F= \begin{cases}0 & \text { on }\left[0, \frac{1}{2}\right), \text { and } \\ 1 & \text { on }\left[\frac{1}{2}, 1\right] .\end{cases}
$$

Show that

$$
R \int_{0}^{1} F^{\prime}=0
$$

exists, yet

$$
F(1)-F(0)=1-0=1 .
$$

What is wrong?
[Hint: A genuine primitive of F^{\prime} (call it ϕ) has to be relatively continuous on $[0,1]$; find ϕ and show that $\phi(1)-\phi(0)=0$.]
4. What is wrong with the following computations?
(i) $L \int_{-1}^{\frac{1}{2}} \frac{d x}{x^{2}}=-\left.\frac{1}{x}\right|_{-1} ^{\frac{1}{2}}=-1$.
(ii) $L \int_{-1}^{1} \frac{d x}{x}=\left.\ln |x|\right|_{-1} ^{1}=0$. Is there a primitive on the whole interval?
[Hint: See hint to Problem 3.]
(iii) How about $L \int_{-1}^{1} \frac{|x|}{x} d x$ (cf. examples (a) and (b) of Chapter $5, \S 5)$?
5. Let

$$
F(x)=x^{2} \cos \frac{\pi}{x^{2}}, \quad F(0)=1
$$

Prove the following:
(i) F is differentiable on $A=[0,1]$.
(ii) $f=F^{\prime}$ is bounded on any $[a, b] \subset(0,1)$, but not on A.
(iii) Let

$$
a_{n}=\sqrt{\frac{2}{4 n+1}} \text { and } b_{n}=\frac{1}{\sqrt{2 n}} \text { for } n=1,2, \ldots
$$

Show that

$$
A \supseteq \bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right](\text { disjoint })
$$

and

$$
L \int_{a_{n}}^{b_{n}} f=\frac{1}{2 n} ;
$$

so

$$
L \int_{a}^{b} f \geq L \int_{\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right]} f \geq \sum_{n=1}^{\infty} \frac{1}{2 n}=\infty
$$

and $f=F^{\prime}$ is not L-integrable on A.
What is wrong? Is there a contradiction to Theorem 2?
6. Consider both
(a) $f(x)=\frac{\sin x}{x}, f(0)=1$, and
(b) $f(x)=\frac{1-e^{-x}}{x}, f(0)=1$.

In each case, show that f is continuous on $A=[0,1]$ and

$$
R \int_{A} f \leq 1
$$

exists, yet it does not "work out" via primitives. What is wrong? Does a primitive exist?

To use Corollary 1, first expand $\sin x$ and e^{-x} in a Taylor series and find the series for

$$
\int f
$$

by Theorem 3 of Chapter $5, ~ \S 9$.
Find

$$
R \int_{A} f
$$

approximately, to within $1 / 10$, using the remainder term of the series to estimate accuracy.
[Hint: Primitives exist, by Theorem 2 of Chapter 5, §11, even though they are none of the known "calculus functions."]
7. Take $A, G_{n}=\left(a_{n}, b_{n}\right)$, and $P(m P>0)$ as in Problem 17(iii) of Chapter $7, \S 8$.

Define $F=0$ on P and

$$
F(x)=\left(x-a_{n}\right)^{2}\left(x-b_{n}\right)^{2} \sin \frac{1}{\left(b_{n}-a_{n}\right)\left(x-a_{n}\right)\left(x-b_{n}\right)} \quad \text { if } x \notin P
$$

Prove that F has a bounded derivative f, yet f is not R -integrable on A; so Theorem 2 applies, but Corollary 1 does not.
[Hints: If $p \notin P$, compute $F^{\prime}(p)$ as in calculus.
If $p \in P$ and $x \rightarrow p+$ over $A-P$, then x is always in some $\left(a_{n}, b_{n}\right), p \leq a_{n}<x$. (Why?) Deduce that $\Delta x=x-p>x-a_{n}$ and

$$
\left|\frac{\Delta F}{\Delta x}\right| \leq\left(x-a_{n}\right)(b-a)^{2} \leq|\Delta x|(b-a)^{2} ;
$$

so $F_{+}^{\prime}(p)=0$. (What if $x \rightarrow p+$ over P ?) Similarly, show that $F_{-}^{\prime}=0$ on P.
Prove however that $F^{\prime}(x)$ oscillates from 1 to -1 as $x \rightarrow a_{n}+$ or $x \rightarrow b_{n}-$, hence also as $x \rightarrow p \in P$ (why?); so F^{\prime} is discontinuous on all of P, with $m P>0$. Now use Theorem 3 in Chapter 8, §9.]
$\Rightarrow 8$. If

$$
Q \subseteq A=[a, b]
$$

and $m Q=0$, find a continuous map $g: A \rightarrow E^{1}, g \geq 0, g \uparrow$, with

$$
g^{\prime}=+\infty \quad \text { on } Q
$$

[Hints: By Theorem 2 of Chapter 7, $\S 8$, fix $(\forall n)$ an open $G_{n} \supseteq Q$, with

$$
m G_{n}<2^{-n}
$$

Set

$$
g_{n}(x)=m\left(G_{n} \cap[a, x]\right)
$$

and

$$
g=\sum_{n=1}^{\infty} g_{n}
$$

on $A ; \sum g_{n}$ converges uniformly on A. (Why?)
By Problem 4 in Chapter 7, $\S 9$, and Theorem 2 of Chapter 7, $\S 4$, each g_{n} (hence g) is continuous. (Why?) If $[p, x] \subseteq G_{n}$, show that

$$
g_{n}(x)=g_{n}(p)+(x-p),
$$

so

$$
\frac{\Delta g_{n}}{\Delta x}=1
$$

and

$$
\left.\frac{\Delta g}{\Delta x}=\sum_{n=1}^{\infty} \frac{\Delta g_{n}}{\Delta x} \rightarrow \infty .\right]
$$

9. (i) Prove Corollary 4.
(ii) State and prove earlier analogues for Corollary 5 of Chapter $5, \S 5$, and Theorems 3 and 4 from Chapter $5, \S 10$.
[Hint for (i): For primitives, this is Problem 3 in Chapter 5, $\S 5$. As $g[Q]$ is countable (Problem 2 in Chapter 1, $\S 9$) and f is bounded on

$$
g[A]-g[Q] \subseteq g[A-Q]
$$

f satisfies Theorem 2 on $g[A]$, with $P=g[Q]$, while $(f \circ g) g^{\prime}$ satisfies it on A.]
$\Rightarrow 10$. Show that if $h: E^{1} \rightarrow E^{*}$ is L-integrable on $A=[a, b]$, and

$$
(\forall x \in A) \quad L \int_{a}^{x} h=0
$$

then $h=0$ a.e. on A.
[Hints: Let $K=A(h>0)$ and $H=A-K$, with, say, $m K=\varepsilon>0$.
Then by Corollary 1 in Chapter 7, $\S 1$ and Definition 2 of Chapter 7, $\S 5$,

$$
H \subseteq \bigcup_{n} B_{n}(\text { disjoint })
$$

for some intervals $B_{n} \subseteq A$, with

$$
\sum_{n} m B_{n}<m H+\varepsilon=m H+m K=m A
$$

(Why?) Set $B=\bigcup_{n} B_{n}$; so

$$
\int_{B} h=\sum_{n} \int_{B_{n}} h=0
$$

(for $L \int h=0$ on intervals B_{n}). Thus

$$
\int_{A-B} h=\int_{A} h-\int_{B} h=0
$$

But $B \supseteq H$; so

$$
A-B \subseteq A-H=K,
$$

where $h>0$, even though $m(A-B)>0$. (Why?)
Hence find a contradiction to Theorem 1(h) of Chapter 8, §5. Similarly, disprove that $m A(h<0)=\varepsilon>0$.]
\Rightarrow 11. Let $F \uparrow$ on $A=[a, b],|F|<\infty$, with derived function $F^{\prime}=f$. Taking Theorem 3 from Chapter $7, \S 10$, for granted, prove that

$$
L \int_{a}^{x} f \leq F(x)-F(a), \quad x \in A .
$$

[Hints: With f_{n} as in (3), F and f_{n} are bounded on A and measurable by Theorem 1 of Chapter 8, §2. (Why?) Deduce that $f_{n} \rightarrow f$ (a.e.) on A. Argue as in Lemma 1 using Fatou's lemma (Chapter 8, §6, Lemma 2).]
12. ("Truncation.") Prove that if $g: S \rightarrow E$ is m-integrable on $A \in \mathcal{M}$ in a measure space (S, \mathcal{M}, m), then for any $\varepsilon>0$, there is a bounded, \mathcal{M}-measurable and integrable on A map $g_{0}: S \rightarrow E$ such that

$$
\int_{A}\left|g-g_{0}\right| d m<\varepsilon
$$

[Outline: Redefine $g=0$ on a null set, to make $g \mathcal{M}$-measurable on A. Then for $n=1,2, \ldots$ set

$$
g_{n}= \begin{cases}g & \text { on } A(|g|<n), \text { and } \\ 0 & \text { elsewhere. }\end{cases}
$$

(The function g_{n} is called the nth truncate of g.)
Each g_{n} is bounded and \mathcal{M}-measurable on A (why?), and

$$
\int_{A}|g| d m<\infty
$$

by integrability. Also, $\left|g_{n}\right| \leq|g|$ and $g_{n} \rightarrow g$ (pointwise) on A. (Why?)
Now use Theorem 5 from Chapter $8, \S 6$, to show that one of the g_{n} may serve as the desired g_{o}.]
13. Fill in all proof details in Lemma 2. Prove it for unbounded g.
[Hints: By Problem 12, fix a bounded $g_{o}\left(\left|g_{o}\right| \leq B\right)$, with

$$
L \int_{A}\left|g-g_{o}\right|<\frac{1}{2} \frac{\varepsilon}{f(a)-f(b)} .
$$

Verify that

$$
\begin{aligned}
\left|s_{n}\right| \leq \sum_{i=1}^{q_{n}} \int_{A_{n i}} w_{n i}|g| & \leq \sum_{i} \int_{A_{n i}} w_{n i}\left|g_{o}\right|+\sum_{i} \int_{A_{n i}} w_{n i}\left|g-g_{o}\right| \\
& \leq B \sum_{i} w_{n i} m A_{n i}+\sum_{i} \int_{A_{n i}}[f(a)-f(b)]\left|g-g_{o}\right| \\
& <\frac{1}{n}+\int_{A}[f(a)-f(b)]\left|g-g_{o}\right|<\frac{1}{n}+\frac{1}{2} \varepsilon .
\end{aligned}
$$

For all $n>2 / \varepsilon$, we get $\left|s_{n}\right|<\frac{1}{2} \varepsilon+\frac{1}{2} \varepsilon=\varepsilon$. Hence $s_{n} \rightarrow 0$. Now finish as in the text.]
14. Show that Theorem 4 fails if F is not differentiable at some $p \in A$. [Hint: See Problems 2 and 3.]

§2. More on L-Integrals and Absolute Continuity

I. In this section, we presuppose the "starred" $\S 10$ in Chapter 7. First, however, we add some new ideas that do not require any starred material. The notation is as in $\S 1$.

Definition 1.

Given $F: E^{1} \rightarrow E, p \in E^{1}$, and $q \in E$, we write

$$
q \sim D F(p)
$$

and call q an F-derivate at p iff

$$
q=\lim _{k \rightarrow \infty} \frac{F\left(x_{k}\right)-F(p)}{x_{k}-p}
$$

for at least one sequence $x_{k} \rightarrow p\left(x_{k} \neq p\right) .{ }^{1}$
If F has a derivative at p, it is the only F-derivate at p; otherwise, there may be many derivates at p (finite or not).

Such derivates must exist if $E=E^{1}\left(E^{*}\right)$. Indeed, given any $p \in E^{1}$, let

$$
x_{k}=p+\frac{1}{k} \rightarrow p ;
$$

let

$$
y_{k}=\frac{F\left(x_{k}\right)-F(p)}{x_{k}-p}, \quad k=1,2, \ldots
$$

By the compactness of E^{*} (Chapter 4, $\S 6$, example (d)), $\left\{y_{k}\right\}$ must have a subsequence $\left\{y_{k_{i}}\right\}$ with a limit $q \in E^{*}$ (e.g., take $q=\underline{\lim } y_{k}$), and so $q \sim D F(p)$.

We also obtain the following lemma.
Lemma 1. If $F: E^{1} \rightarrow E^{*}$ has no negative derivates on $A-Q$, where $A=$ $[a, b]$ and $m Q=0$, and if no derivate of F on A equals $-\infty$, then $F \uparrow$ on A.
Proof. First, suppose F has no negative derivates on A at all. Fix $\varepsilon>0$ and set

$$
G(x)=F(x)+\varepsilon x .
$$

Seeking a contradiction, suppose $a \leq p<q \leq b$, yet $G(q)<G(p)$. Then if

$$
r=\frac{1}{2}(p+q),
$$

one of the intervals $[p, r]$ and $[r, q]$ (call it $\left[p_{1}, q_{1}\right]$) satisfies $G\left(q_{1}\right)<G\left(p_{1}\right)$.
Let

$$
r_{1}=\frac{1}{2}\left(p_{1}+q_{1}\right) .
$$

Again, one of $\left[p_{1}, r_{1}\right]$ and $\left[r_{1}, q_{1}\right]$ (call it $\left[p_{2}, q_{2}\right]$) satisfies $G\left(q_{2}\right)<G\left(p_{2}\right)$. Let

$$
r_{2}=\frac{1}{2}\left(p_{2}+q_{2}\right),
$$

and so on.

[^66]Thus obtain contracting intervals $\left[p_{n}, q_{n}\right]$, with

$$
G\left(q_{n}\right)<G\left(p_{n}\right), \quad n=1,2, \ldots
$$

Now, by Theorem 5 of Chapter 4, $\S 6$, let

$$
p_{o} \in \bigcap_{n=1}^{\infty}\left[p_{n}, q_{n}\right] .
$$

Then set $x_{n}=q_{n}$ if $G\left(q_{n}\right)<G\left(p_{o}\right)$, and $x_{n}=p_{n}$ otherwise. Then

$$
\frac{G\left(x_{n}\right)-G\left(p_{o}\right)}{x_{n}-p_{o}}<0
$$

and $x_{n} \rightarrow p_{o}$. By the compactness of E^{*}, fix a subsequence

$$
\frac{G\left(x_{n_{k}}\right)-G\left(p_{o}\right)}{x_{n_{k}}-p_{o}} \rightarrow c \in E^{*}
$$

say. Then $c \leq 0$ is a G-derivate at $p_{o} \in A$.
But this is impossible; for by our choice of G and our assumption, all derivates of G are >0. (Why?)

This contradiction shows that $a \leq p<q \leq b$ implies $G(p) \leq G(q)$, i.e.,

$$
F(p)+\varepsilon p \leq F(q)+\varepsilon q .
$$

Making $\varepsilon \rightarrow 0$, we obtain $F(p) \leq F(q)$ when $a \leq p<q \leq b$, i.e., $F \uparrow$ on A.
Now, for the general case, let Q be the set of all $p \in A$ that have at least one $D F(p)<0$; so $m Q=0$.

Let g be as in Problem 8 of $\S 1$; so $g^{\prime}=\infty$ on Q. Given $\varepsilon>0$, set

$$
G=F+\varepsilon g .
$$

As $g \uparrow$, we have

$$
(\forall x, p \in A) \quad \frac{G(x)-G(p)}{x-p} \geq \frac{F(x)-F(p)}{x-p} .
$$

Hence $D G(p) \geq 0$ if $p \notin Q$.
If, however, $p \in Q$, then $g^{\prime}(p)=\infty$ implies $D G(p) \geq 0$. (Why?) Thus all $D G(p)$ are ≥ 0; so by what was proved above, $G \uparrow$ on A. It follows, as before, that $F \uparrow$ on A, also. The lemma is proved.

We now proceed to prove Theorems 3 and 4 of $\S 1$. To do this, we shall need only one "starred" theorem (Theorem 3 of Chapter 7, $\S 10$).
Proof of Theorem $\mathbf{3}$ of $\S \mathbf{1}$. (1) First, let f be bounded:

$$
|f| \leq K \quad \text { on } A
$$

Via components and by Corollary 1 of Chapter 8, $\S 6$, all reduces to the real positive case $f \geq 0$ on A. (Explain!)

Then (Theorem 1(f) of Chapter 8, §5) $a \leq x<y \leq b$ implies

$$
L \int_{a}^{x} f \leq L \int_{a}^{y} f
$$

i.e., $F(x) \leq F(y)$; so $F \uparrow$ and $F^{\prime} \geq 0$ on A.

Now, by Theorem 3 of Chapter $7, \S 10, F$ is a.e. differentiable on A. Thus exactly as in Theorem 2 in $\S 1$, we set

$$
f_{n}(t)=\frac{F\left(t+\frac{1}{n}\right)-F(t)}{\frac{1}{n}} \rightarrow F^{\prime}(t) \text { a.e. }
$$

Since all f_{n} are m-measurable on A (why?), so is F^{\prime}. Moreover, as $|f| \leq K$, we obtain (as in Lemma 1 of $\S 1$)

$$
\left|f_{n}(x)\right|=n\left(L \int_{x}^{x+1 / n} f\right) \leq n \cdot \frac{K}{n}=K
$$

Thus by Theorem 5 from Chapter 8 , $\S 6$ (with $g=K$),

$$
L \int_{a}^{x} F^{\prime}=\lim _{n \rightarrow \infty} L \int_{a}^{x} f_{n}=L \int_{a}^{x} f
$$

(Lemma 1 of $\S 1$). Hence

$$
L \int_{a}^{x}\left(F^{\prime}-f\right)=0, \quad x \in A,
$$

and so (Problem 10 in §1) $F^{\prime}=f$ (a.e.) as claimed.
(2) If f is not bounded, we still can reduce all to the case $f \geq 0, f: E^{1} \rightarrow E^{*}$, so that $F \uparrow$ and $F^{\prime} \geq 0$ on A.

If so, we use "truncation": For $n=1,2, \ldots$, set

$$
g_{n}= \begin{cases}f & \text { on } A(f \leq n), \text { and } \\ 0 & \text { elsewhere }\end{cases}
$$

Then (see Problem 12 in $\S 1$) the g_{n} are L-measurable and bounded, hence Lintegrable on A, with $g_{n} \rightarrow f$ and

$$
0 \leq g_{n} \leq f
$$

on A. By the first part of the proof, then,

$$
\frac{d}{d x} L \int_{a}^{x} g_{n}=g_{n} \quad \text { a.e. on } A, n=1,2, \ldots
$$

Also, set $(\forall n)$

$$
F_{n}(x)=L \int_{a}^{x}\left(f-g_{n}\right) \geq 0
$$

so F_{n} is monotone (\uparrow) on A. (Why?)
Thus by Theorem 3 in Chapter 7, $\S 10$, each F_{n} has a derivative at almost every $x \in A$,

$$
F_{n}^{\prime}(x)=\frac{d}{d x}\left(L \int_{a}^{x} f-L \int_{a}^{x} g_{n}\right)=F^{\prime}(x)-g_{n}(x) \geq 0 \quad \text { a.e. on } A .
$$

Making $n \rightarrow \infty$ and recalling that $g_{n} \rightarrow f$ on A, we obtain

$$
F^{\prime}(x)-f(x) \geq 0 \quad \text { a.e. on } A
$$

Thus

$$
L \int_{a}^{x}\left(F^{\prime}-f\right) \geq 0
$$

But as $F \uparrow$ (see above), Problem 11 of $\S 1$ yields

$$
L \int_{a}^{x} F^{\prime} \leq F(x)-F(a)=L \int_{a}^{x} f
$$

so

$$
L \int_{a}^{x}\left(F^{\prime}-f\right)=L \int_{a}^{x} F^{\prime}-L \int_{a}^{x} f \leq 0 .
$$

Combining, we get

$$
(\forall x \in A) \quad L \int_{a}^{x}\left(F^{\prime}-f\right)=0 ;
$$

so by Problem 10 of $\S 1, F^{\prime}=f$ a.e. on A, as required.
Proof of Theorem 4 of $\S \mathbf{1}$. Via components, all again reduces to a real $f .{ }^{2}$ Let $(\forall n)$

$$
g_{n}= \begin{cases}f & \text { on } A(f \leq n) \\ 0 & \text { on } A(f>n)\end{cases}
$$

so $g_{n} \rightarrow f$ (pointwise), $g_{n} \leq f, g_{n} \leq n$, and $\left|g_{n}\right| \leq|f|$.
This makes each g_{n} L-integrable on A. Thus as before, by Theorem 5 of Chapter 8, $\S 6$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} L \int_{a}^{x} g_{n}=L \int_{a}^{x} f, \quad x \in A \tag{1}
\end{equation*}
$$

Now, set

$$
F_{n}(x)=F(x)-L \int_{a}^{x} g_{n}
$$

[^67]Then by Theorem 3 of $\S 1$ (already proved),

$$
F_{n}^{\prime}(x)=F^{\prime}(x)-\frac{d}{d x} L \int_{a}^{x} g_{n}=f(x)-g_{n}(x) \geq 0 \quad \text { a.e. on } A
$$

(since $g_{n} \leq f$).
Thus F_{n} has solely nonnegative derivates on $A-Q(m Q=0)$. Also, as $g_{n} \leq n$, we get

$$
\frac{1}{x-p} L \int_{a}^{x} g_{n} \leq n
$$

even if $x<p$. (Why?) Hence

$$
\frac{\Delta F_{n}}{\Delta x} \geq \frac{\Delta F}{\Delta x}-n
$$

as

$$
F_{n}(x)=F(x)-L \int_{a}^{x} g_{n} .
$$

Thus none of the F_{n}-derivates on A can be $-\infty$.
By Lemma 1, then, F_{n} is monotone (\uparrow) on A; so $F_{n}(x) \geq F_{n}(a)$, i.e.,

$$
F(x)-L \int_{a}^{x} g_{n} \geq F(a)-L \int_{a}^{a} g_{n}=F(a),
$$

or

$$
F(x)-F(a) \geq L \int_{a}^{x} g_{n}, \quad x \in A, n=1,2, \ldots
$$

Hence by (1),

$$
F(x)-F(a) \geq L \int_{a}^{x} f, \quad x \in A .
$$

For the reverse inequality, apply the same formula to $-f$. Thus we obtain the desired result:

$$
\begin{equation*}
F(x)=F(a)+L \int_{a}^{x} f \quad \text { for } x \in A \tag{2}
\end{equation*}
$$

Note 1. Formula (2) is equivalent to $F=L \int f$ on A (see the last part of §1). For if (2) holds, then

$$
F(x)=c+L \int_{a}^{x} f
$$

with $c=F(a)$; so $F=L \int f$ by definition.
Conversely, if

$$
F(x)=c+L \int_{a}^{x} f
$$

set $x=a$ to find $c=F(a)$.

II. Absolute continuity redefined.

Definition 2.

A map $f: E^{1} \rightarrow E$ is absolutely continuous on an interval $I \subseteq E^{1}$ iff for every $\varepsilon>0$, there is $\delta>0$ such that

$$
\sum_{i=1}^{r}\left(b_{i}-a_{i}\right)<\delta \text { implies } \sum_{i=1}^{r}\left|f\left(b_{i}\right)-f\left(a_{i}\right)\right|<\varepsilon
$$

for any disjoint intervals $\left(a_{i}, b_{i}\right)$, with $a_{i}, b_{i} \in I$.
From now on, this replaces the "weaker" definition given in Chapter 5, $\S 8$. The reader will easily verify the next three "routine" propositions.
Theorem 1. If $f, g, h: E^{1} \rightarrow E^{*}(C)$ are absolutely continuous on $A=[a, b]$, so are

$$
f \pm g, h f, \text { and }|f| .
$$

So also is f / h if

$$
(\exists \varepsilon>0) \quad|h| \geq \varepsilon \text { on } A
$$

All this also holds if $f, g: E^{1} \rightarrow E$ are vector valued and h is scalar valued. Finally, if $E \subseteq E^{*}$, then

$$
f \vee g, f \wedge g, f^{+}, \text {and } f^{-}
$$

are absolutely continuous along with f and g.
Corollary 1. A function $F: E^{1} \rightarrow E^{n}\left(C^{n}\right)$ is absolutely continuous on $A=$ $[a, b]$ iff all its components F_{1}, \ldots, F_{n} are.

Hence a complex function $F: E^{1} \rightarrow C$ is absolutely continuous iff its real and imaginary parts, F_{re} and F_{im}, are.
Corollary 2. If $f: E^{1} \rightarrow E$ is absolutely continuous on $A=[a, b]$, it is bounded, is uniformly continuous, and has bounded variation, $V_{f}[a, b]<\infty$, all on A.
Lemma 2. If $F: E^{1} \rightarrow E^{n}\left(C^{n}\right)$ is of bounded variation on $A=[a, b]$, then
(i) F is a.e. differentiable on A, and
(ii) F^{\prime} is L-integrable on A.

Proof. Via components (Theorem 4 of Chapter 5, $\S 7$), all reduces to the real case, $F: E^{1} \rightarrow E^{1}$.

Then since $V_{F}[A]<\infty$, we have

$$
F=g-h
$$

for some nondecreasing g and h (Theorem 3 in Chapter 5, §7).

Now, by Theorem 3 from Chapter 7, $\S 10, g$ and h are a.e. differentiable on A. Hence so is

$$
g-h=F .
$$

Moreover, $g^{\prime} \geq 0$ and $h^{\prime} \geq 0$ since $g \uparrow$ and $h \uparrow$.
Thus for the L-integrability of F^{\prime}, proceed as in Problem 11 in $\S 1$, i.e., show that F^{\prime} is measurable on A and that

$$
L \int_{a}^{b} F^{\prime}=L \int_{a}^{b} g^{\prime}-L \int_{a}^{b} h^{\prime}
$$

is finite. This yields the result.
Theorem 2 (Lebesgue). If $F: E^{1} \rightarrow E^{n}\left(C^{n}\right)$ is absolutely continuous on $A=[a, b]$, then the following are true:
(i*) F is a.e. differentiable, and F^{\prime} is L-integrable, on A.
(ii*) If, in addition, $F^{\prime}=0$ a.e. on A, then F is constant on A.
Proof. Assertion (i*) is immediate from Lemma 2, since any absolutely continuous function is of bounded variation by Corollary 2.
(ii*) Now let $F^{\prime}=0$ a.e. on A. Fix any

$$
B=[a, c] \subseteq A
$$

and let Z consist of all $p \in B$ at which the derivative $F^{\prime}=0$.
Given $\varepsilon>0$, let \mathcal{K} be the set of all closed intervals $[p, x], p<x$, such that

$$
\left|\frac{\Delta F}{\Delta x}\right|=\left|\frac{F(x)-F(p)}{x-p}\right|<\varepsilon .
$$

By assumption,

$$
\lim _{x \rightarrow p} \frac{\Delta F}{\Delta x}=0 \quad(p \in Z)
$$

and $m(B-Z)=0 ; B=[a, c] \in \mathcal{M}^{*}$. If $p \in Z$, and $x-p$ is small enough, then

$$
\left|\frac{\Delta F}{\Delta x}\right|<\varepsilon
$$

i.e., $[p, x] \in \mathcal{K}$.

It easily follows that \mathcal{K} covers Z in the Vitali sense (verify!); so for any $\delta>0$, Theorem 2 of Chapter 7, $\S 10$ yields disjoint intervals

$$
I_{k}=\left[p_{k}, x_{k}\right] \in \mathcal{K}, I_{k} \subseteq B,
$$

with

$$
m^{*}\left(Z-\bigcup_{k=1}^{q} I_{k}\right)<\delta
$$

hence also

$$
m\left(B-\bigcup_{k=1}^{q} I_{k}\right)<\delta
$$

(for $m(B-Z)=0$). But

$$
\begin{aligned}
B-\bigcup_{k=1}^{q} I_{k} & =[a, c]-\bigcup_{k=1}^{q-1}\left[p_{k}, x_{k}\right] \\
& =\left[a, p_{1}\right) \cup \bigcup_{k=1}^{q-1}\left[x_{k}, p_{k+1}\right) \cup\left[x_{q}, c\right] \quad\left(\text { if } x_{k}<p_{k}<x_{k+1}\right) ;
\end{aligned}
$$

so

$$
\begin{equation*}
m\left(B-\bigcup_{k=1}^{q} I_{k}\right)=\left(p_{1}-a\right)+\sum_{k=1}^{q-1}\left(p_{k+1}-x_{k}\right)+\left(c-x_{q}\right)<\delta . \tag{3}
\end{equation*}
$$

Now, as F is absolutely continuous, we can choose $\delta>0$ so that (3) implies

$$
\begin{equation*}
\left|F\left(p_{1}\right)-F(a)\right|+\sum_{k=1}^{q-1}\left|F\left(p_{k+1}\right)-F\left(x_{k}\right)\right|+\left|F(c)-F\left(x_{q}\right)\right|<\varepsilon \tag{4}
\end{equation*}
$$

But $I_{k} \in \mathcal{K}$ also implies

$$
\left|F\left(x_{k}\right)-F\left(p_{k}\right)\right|<\varepsilon\left(x_{k}-p_{k}\right)=\varepsilon \cdot m I_{k}
$$

Hence

$$
\left|\sum_{k=1}^{q}\left[F\left(x_{k}\right)-F\left(p_{k}\right)\right]\right|<\varepsilon \sum_{k=1}^{q} m I_{k} \leq \varepsilon \cdot m B=\varepsilon(c-p)
$$

Combining with (4), we get

$$
|F(c)-F(a)| \leq \varepsilon(1+c-a) \rightarrow 0 \text { as } \varepsilon \rightarrow 0
$$

so $F(c)=F(a)$. As $c \in A$ was arbitrary, F is constant on A, as claimed.
Note 2. This shows that Cantor's function (Problem 6 of Chapter 4, $\S 5$) is not absolutely continuous, even though it is continuous and monotone, hence of bounded variation on $[0,1]$. Indeed (see Problem 2 in $\S 1$), it has a zero derivative a.e. on $[0,1]$ but is not constant there. Thus absolute continuity, as now defined, differs from its "weak" counterpart (Chapter 5, §8).
Theorem 3. A map $F: E^{1} \rightarrow E^{1}\left(C^{n}\right)$ is absolutely continuous on $A=$ $[a, b]$ iff

$$
F=L \int f \text { on } A
$$

for some function $f ;{ }^{3}$ and then

$$
F(x)=F(a)+L \int_{a}^{x} f, \quad x \in A
$$

Briefly: Absolutely continuous maps are exactly all L-primitives.
Proof. If $F=L \int f$, then by Theorem 1 of $\S 1, F$ is absolutely continuous on A, and by Note 1,

$$
F(x)=F(a)+L \int_{a}^{x} f, \quad x \in A .
$$

Conversely, if F is absolutely continuous, then by Theorem 2, it is a.e. differentiable and $F^{\prime}=f$ is L-integrable (all on A). Let

$$
H(x)=L \int_{a}^{x} f, \quad x \in A .
$$

Then H, too, is absolutely continuous and so is $F-H$. Also, by Theorem 3 of $\S 1$,

$$
H^{\prime}=f=F^{\prime},
$$

and so

$$
(F-H)^{\prime}=0 \quad \text { a.e. on } A .
$$

By Theorem 2, $F-H=c$; i.e.,

$$
F(x)=c+H(x)=c+L \int_{a}^{x} f
$$

and so $F=L \int f$ on A, as claimed.
Corollary 3. If $f, F: E^{1} \rightarrow E^{*}\left(E^{n}, C^{n}\right)$, we have

$$
F=L \int f
$$

on an interval $I \subseteq E^{1}$ iff F is absolutely continuous on I and $F^{\prime}=f$ a.e. on I.
(Use Problem 3 in $\S 1$ and Theorem 3.)
Note 3. This (or Theorem 3) could serve as a definition. Comparing ordinary primitives

$$
F=\int f
$$

with L-primitives

$$
F=L \int f
$$

[^68]we see that the former require F to be just relatively continuous but allow only a countable "exceptional" set Q, while the latter require absolute continuity but allow Q to even be uncountable, provided $m Q=0$.

The simplest and "strongest" kind of absolutely continuous functions are so-called Lipschitz maps (see Problem 6). See also Problems 7 and 10.
III. We conclude with another important idea, due to Lebesgue.

Definition 3.

We call $p \in E^{1}$ a Lebesgue point ("L-point") of $f: E^{1} \rightarrow E$ iff
(i) f is L-integrable on some $G_{p}(\delta)$;
(ii) $q=f(p)$ is finite; and
(iii) $\lim _{x \rightarrow p} \frac{1}{x-p} L \int_{p}^{x}|f-q|=0$.

The Lebesgue set of f consists of all such p.
Corollary 4. Let

$$
F=L \int f \quad \text { on } A=[a, b] .
$$

If $p \in A$ is an L-point of f, then $f(p)$ is the derivative of F at p (but the converse fails).
Proof. By assumption,

$$
F(x)=c+L \int_{p}^{x} f, \quad x \in G_{p}(\delta)
$$

and

$$
\frac{1}{|\Delta x|}\left|L \int_{p}^{x}(f-q)\right| \leq \frac{1}{|\Delta x|} L \int_{p}^{x}|f-q| \rightarrow 0
$$

as $x \rightarrow p$. (Here $q=f(p)$ and $\Delta x=x-p$.)
Thus with $x \rightarrow p$, we get

$$
\begin{aligned}
\left|\frac{F(x)-F(p)}{x-p}-q\right| & =\frac{1}{|x-p|}\left|L \int_{p}^{x} f-(x-p) q\right| \\
& =\frac{1}{|x-p|}\left|L \int_{p}^{x} f-L \int_{p}^{x}(q)\right| \rightarrow 0
\end{aligned}
$$

as required.
Corollary 5. Let $f: E^{1} \rightarrow E^{n}\left(C^{n}\right)$. Then p is an L-point of f iff it is an L-point for each of the n components, f_{1}, \ldots, f_{n}, of f.
(Exercise!)

Theorem 4. If $f: E^{1} \rightarrow E^{*}\left(E^{n}, C^{n}\right)$ is L-integrable on $A=[a, b]$, then almost all $p \in A$ are Lebesgue points of f.

Note that this strengthens Theorem 3 of $\S 1$.
Proof. By Corollary 5, we need only consider the case $f: E^{1} \rightarrow E^{*}$.
For any $r \in E^{1},|f-r|$ is L-integrable on A; so by Theorem 3 of $\S 1$, setting

$$
F_{r}(x)=L \int_{a}^{x}|f-r|,
$$

we get

$$
\begin{equation*}
F_{r}^{\prime}(p)=\lim _{x \rightarrow p} \frac{1}{|x-p|} L \int_{p}^{x}|f-r|=|f(p)-r| \tag{5}
\end{equation*}
$$

for almost all $p \in A$.
Now, for each r, let A_{r} be the set of those $p \in A$ for which (5) fails; so $m A_{r}=0$. Let $\left\{r_{k}\right\}$ be the sequence of all rationals in E^{1}. Let

$$
Q=\bigcup_{k=1}^{\infty} A_{r_{k}} \cup\{a, b\} \cup A_{\infty},
$$

where

$$
A_{\infty}=A(|f|=\infty) ;
$$

so $m Q=0$. (Why?)
To finish, we show that all $p \in A-Q$ are L-points of f. Indeed, fix any $p \in A-Q$ and any $\varepsilon>0$. Let $q=f(p)$. Fix a rational r such that

$$
|q-r|<\frac{\varepsilon}{3}
$$

Then

$$
||f-r|-|f-q|| \leq|(f-r)-(f-q)|=|q-r|<\frac{\varepsilon}{3} \quad \text { on } A-A_{\infty}
$$

Hence as $m A_{\infty}=0$, we have

$$
\begin{equation*}
\left|L \int_{p}^{x}\right| f-r\left|-L \int_{p}^{x}\right| f-q| | \leq L \int_{p}^{x}\left(\frac{\varepsilon}{3}\right)=\frac{\varepsilon}{3}|x-p| . \tag{6}
\end{equation*}
$$

Since

$$
p \notin Q \supseteq \bigcup_{k} A_{r_{k}},
$$

formula (5) applies. So there is $\delta>0$ such that $|x-p|<\delta$ implies

$$
\left|\left(\frac{1}{|x-p|} L \int_{p}^{x}|f-r|\right)-|f(p)-r|\right|<\frac{\varepsilon}{3} .
$$

As

$$
|f(p)-r|=|q-r|<\frac{\varepsilon}{3},
$$

we get

$$
\begin{aligned}
\frac{1}{|x-p|} L \int_{p}^{x}|f-r| & \leq\left|\left(\frac{1}{|x-p|} L \int_{p}^{x}|f-r|\right)-|q-r|\right|+|q-r| \\
& <\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\frac{2 \varepsilon}{3} .
\end{aligned}
$$

Hence

$$
L \int_{p}^{x}|f-r|<\frac{2 \varepsilon}{3}|x-p| .
$$

Combining with (6), we have

$$
\frac{1}{|x-p|} L \int_{p}^{x}|f-q|<\frac{\varepsilon}{3}+\frac{2 \varepsilon}{3}=\varepsilon
$$

whenever $|x-p|<\delta$. Thus

$$
\lim _{x \rightarrow p} \frac{1}{|x-p|} L \int_{p}^{x}|f-q|=0
$$

as required.

Problems on L-Integrals and Absolute Continuity

1. Fill in all details in the proof of Lemma 1 and of Theorems 3 and 4 from §1.
2. Prove Theorem 1 and Corollaries 1, 2, and 5.
$\mathbf{2}^{\prime}$. Disprove the converse to Corollary 4. (Give an example!)
\Rightarrow 3. Show that if $F: E^{1} \rightarrow E$ is L-integrable on $A=[a, b]$ and continuous at $p \in A$, then p is an L-point of F.
[Hint: Use the ε, δ definition of continuity.]
3. Complete all proof details for Lemma 2, Theorems 3 and 4, and Corollary 3.
4. Let $F=1$ on R (= rationals) and $F=0$ on $E^{1}-R$ (Dirichlet function).

Show that F has exactly three derivates $(0,+\infty$, and $-\infty)$ at every $p \in E^{1}$.
$\Rightarrow \mathbf{6}$. We say that F is a Lipschitz map, or has the uniform Lipschitz property on A, iff

$$
\left(\exists K \in E^{1}\right)(\forall x, y \in A) \quad|F(x)-F(y)| \leq K|x-y|
$$

Prove the following:
(i) Any such F is absolutely continuous on $A=[a, b]$.
(ii) If all derivates of f satisfy

$$
|D f(x)| \leq k<\infty, \quad x \in A=[a, b],
$$

then f is a Lipschitz map on A.
\Rightarrow 7. Let $g: E^{1} \rightarrow E^{1}$ and $f: E^{1} \rightarrow E$ (real or not) be absolutely continuous on $A=[a, b]$ and $g[A]$, respectively.

Prove that $h=f \circ g$ is absolutely continuous on A, provided that either f is as in Problem 6, or g is strictly monotone on A.
8. Prove that if $F: E^{1} \rightarrow E^{1}$ is absolutely continuous on $A=[a, b]$, if $Q \subseteq A$, and if $m Q=0$, then $m^{*} F[Q]=0(m=$ Lebesgue measure $)$.
[Outline: We may assume $Q \subseteq(a, b)$. (Why?)
Fix $\varepsilon>0$ and take δ as in Definition 2. As m is regular, there is an open G,

$$
Q \subseteq G \subseteq(a, b)
$$

with $m G<\delta$. By Lemma 2 of Chapter 7, $\S 2$,

$$
G=\bigcup_{k=1}^{\infty} I_{k}(\text { disjoint })
$$

for some $I_{k}=\left(a_{k}, b_{k}\right]$.
Let $u_{k}=\inf F\left[I_{k}\right], v_{k}=\sup F\left[I_{k}\right]$; so

$$
F\left[I_{k}\right] \subseteq\left[u_{k}, v_{k}\right]
$$

and

$$
m^{*} F\left[I_{k}\right] \leq v_{k}-u_{k}
$$

Also,

$$
\sum\left(b_{k}-a_{k}\right)=\sum m I_{k}=m G<\delta .
$$

From Definition 2, show that

$$
\sum_{k=1}^{\infty}\left(v_{k}-u_{k}\right) \leq \varepsilon
$$

(first consider partial sums). As

$$
F[Q] \subseteq F[G] \subseteq \bigcup_{k} F\left[I_{k}\right]
$$

get

$$
\left.m^{*} F[Q] \leq \sum_{k} m^{*} F\left[I_{k}\right]=\sum_{k}\left(v_{k}-u_{k}\right) \leq \varepsilon \rightarrow 0 .\right]
$$

9. Show that if F is as in Problem 8 and if

$$
A=[a, b] \supseteq B, B \in \mathcal{M}^{*}
$$

(L-measurable sets), then

$$
F[B] \in \mathcal{M}^{*}
$$

(" F preserves \mathcal{M}^{*}-sets.")
[Outline: (i) If B is closed, it is compact, and so is $F[B]$ (Theorems 1 and 4 of Chapter 4, §6).
(ii) If $B \in \mathcal{F}_{\sigma}$, then

$$
B=\bigcup_{i} B_{i}, \quad B_{i} \in \mathcal{F} ;
$$

so by (i),

$$
F[B]=\bigcup_{i} F\left[B_{i}\right] \in \mathcal{F}_{\sigma} \subseteq \mathcal{M}^{*} .
$$

(iii) If $B \in \mathcal{M}^{*}$, then by Theorem 2 of Chapter $7, \S 8$,

$$
\left(\exists K \in \mathcal{F}_{\sigma}\right) \quad K \subseteq B, m(B-K)=0 .
$$

Now use Problem 8, with $Q=B-K$.]
$\Rightarrow \mathbf{1 0}$. (Change of variable.) Suppose $g: E^{1} \rightarrow E^{1}$ is absolutely continuous and one-to-one on $A=[a, b]$, while $f: E^{1} \rightarrow E^{*}\left(E^{n}, C^{n}\right)$ is L-integrable on $g[A]$.

Prove that $(f \circ g) g^{\prime}$ is L-integrable on A and

$$
L \int_{a}^{b}(f \circ g) g^{\prime}=L \int_{p}^{q} f
$$

where $p=g(a)$ and $q=g(b)$.
[Hints: Let $F=L \int f$ and $H=F \circ g$ on A.
By Theorems 2 and 3 and Problem 7 (end), F and H are absolutely continuous on $g[A]$ and A, respectively; and H^{\prime} is L-integrable on A. So by Theorem 3,

$$
H=L \int H^{\prime}=L \int(f \circ g) g^{\prime},
$$

as $H^{\prime}=(f \circ g) g^{\prime}$ a.e. on A.]
11. Setting $f(x)=0$ if not defined otherwise, find the intervals (if any) on which f is absolutely continuous if $f(x)$ is defined by
(a) $\sin x$;
(b) $\cos 2 x$;
(c) $1 / x$;
(d) $\tan x$;
(e) x^{x};
(f) $x \sin (1 / x)$;
(g) $x^{2} \sin x^{-2}$ (Problem 5 in $\S 1$);
(h) $\sqrt{x^{3}} \cdot \sin (1 / x)$ (verify that $\left|f^{\prime}(x)\right| \leq \frac{3}{2}+x^{-\frac{1}{2}}$).
[Hint: Use Problems 6 and 7.]

§3. Improper (Cauchy) Integrals

Cauchy extended R-integration to unbounded sets and functions as follows.
Given $f: E^{1} \rightarrow E$ and assuming that the right-hand side R-integrals and limits exist, define (first for unbounded sets, then for unbounded functions)
(i) $\int_{a}^{\infty} f=\int_{[a, \infty)} f=\lim _{x \rightarrow \infty} R \int_{a}^{x} f$;
(ii) $\int_{-\infty}^{a} f=\int_{(-\infty, a]} f=\lim _{x \rightarrow-\infty} R \int_{x}^{a} f$.

If both

$$
\int_{0}^{\infty} f \text { and } \int_{-\infty}^{0} f
$$

exist, define

$$
\int_{-\infty}^{\infty} f=\int_{(-\infty, 0)} f+\int_{[0, \infty)} f
$$

Now, suppose f is unbounded near some $p \in A=[a, b]$, i.e., unbounded on

$$
A \cap G_{\neg p}
$$

for every deleted globe $G_{\neg p}$ about p (such points p are called singularities). Then (again assuming existence of the R-integrals and limits), we define
(1) in case of a singularity $p=a$,

$$
\int_{a+}^{b} f=\int_{(a, b]} f=\lim _{x \rightarrow a+} R \int_{x}^{b} f
$$

(2) if $p=b$, then

$$
\int_{a}^{b-} f=\int_{[a, b)} f=\lim _{x \rightarrow b-} R \int_{a}^{x} f
$$

(3) if $a<p<b$ and if

$$
\int_{a}^{p-} f \text { and } \int_{p+}^{b} f
$$

exist, then

$$
\int_{a}^{b} f=\int_{a}^{p-} f+\int_{p}^{p} f+\int_{p+}^{b} f
$$

The term

$$
\int_{p}^{p} f=\int_{[p, p]} f
$$

is necessary if $R S$ - or $L S$-integrals are used. ${ }^{1}$
Finally, if A contains several singularities, it must be split into subintervals, each with at most one endpoint singularity; and $\int_{a}^{b} f$ is split accordingly. ${ }^{2}$

We call all such integrals improper or Cauchy (C) integrals. A C-integral is said to converge iff it exists and is finite.

This theory is greatly enriched if in the above definitions, one replaces Rintegrals by Lebesgue integrals, using Lebesgue or LS measure in E^{1}. (This makes sense even when a Lebesgue integral (proper) does exist; see Theorem 1.) Below, m shall denote such a measure unless stated otherwise.

C-integrals with respect to m will be denoted by

$$
C \int_{a}^{\infty} f d m, \quad C \int_{[a, b)} f, \quad \text { etc. }
$$

"Classical" notation:

$$
C \int f(x) d m(x) \text { or } C \int f(x) d x
$$

(the latter if m is Lebesgue measure). We omit the "C" if confusion with proper integrals $\int_{a}^{x} f$ is unlikely.

Note 1. C-integrals are limits of integrals, not integrals proper. Yet they may equal the latter (Theorem 1 below) and then may be used to compute them.

Caution. "Singularities" in $[a, b]$ may affect the primitive used in computations (cf. Problem 4 in §1). Then $[a, b]$ must be split (see above), and $C \int_{a}^{b} f$ splits accordingly. (Additivity applies to C-integrals; see Problem 9, below.)

Examples.

(A) The integral

$$
L \int_{-1}^{1 / 2} \frac{d x}{x^{2}}
$$

[^69]has a singularity at 0 . By Theorem 1 below, ${ }^{3}$ we get
\[

$$
\begin{aligned}
L \int_{-1}^{1 / 2} \frac{d x}{x^{2}} & =\int_{-1}^{0-} \frac{d x}{x^{2}}+\int_{0+}^{1 / 2} \frac{d x}{x^{2}} \\
& =\lim _{x \rightarrow 0-}\left(-\frac{1}{x}-1\right)+\lim _{x \rightarrow 0+}\left(-2+\frac{1}{x}\right)=\infty+\infty=\infty .
\end{aligned}
$$
\]

(B) We have

$$
C \int_{1 / 2}^{\infty} \frac{d x}{x^{2}}=\lim _{x \rightarrow \infty}\left(-\frac{1}{x}+2\right)=2 .
$$

Hence

$$
C \int_{-1}^{\infty} \frac{d x}{x^{2}}=C \int_{-1}^{1 / 2} \frac{d x}{x^{2}}+C \int_{1 / 2}^{\infty} \frac{d x}{x^{2}}=\infty+2=\infty
$$

(C) The integral

$$
L \int_{-1}^{1} \frac{|x|}{x} d x
$$

has no singularities (consider deleted globes about 0). The primitive $F(x)=|x|$ exists (example (b) in Chapter 5, $\S 5$); so

$$
L \int_{-1}^{1} \frac{|x|}{x} d x=\left.|x|\right|_{-1} ^{1}=0
$$

In the rest of this section, we state our theorems mainly for

$$
C \int_{a}^{\infty} f
$$

but they apply, with similar proofs, to

$$
C \int_{-\infty}^{\infty} f, \quad C \int_{a}^{b-} f, \quad \text { etc. }
$$

The measure m is as explained above.
Theorem 1. Let $A=[a, \infty), f: E^{1} \rightarrow E$ (E complete $)$.
(i) If $f \geq 0$ on A, then

$$
C \int_{a}^{\infty} f d m
$$

exists $(\leq \infty)$ and equals

$$
\int_{A} f d m .^{4}
$$

[^70](ii) The map f is m-integrable on A iff
$$
C \int_{a}^{\infty}|f|<\infty
$$
and f is m-measurable on A; then again,
$$
C \int_{a}^{\infty} f d m=\int_{A} f d m
$$

Proof. (i) Let $f \geq 0$ on A. By the rules of Chapter $8, \S 5, \int_{A} f$ is always defined for such f; so we may set

$$
F(x)=\int_{a}^{x} f d m, \quad x \geq a
$$

Then by Theorem 1(f) in Chapter 8, $\S 5, F \uparrow$ on A; for $a \leq x \leq y$ implies

$$
F(x)=\int_{a}^{x} f \leq \int_{a}^{y} f=F(y)
$$

Now, by the properties of monotone limits,

$$
\lim _{x \rightarrow \infty} F(x)=\lim _{x \rightarrow \infty} \int_{a}^{x} f=C \int_{a}^{\infty} f
$$

exists in E^{*}; so by Theorem 1 of Chapter $4, \S 2$, it can be found by making x run over some sequence $x_{k} \rightarrow \infty$, say, $x_{k}=k$.

Thus set

$$
A_{k}=[a, k], \quad k=1,2, \ldots
$$

Then $\left\{A_{k}\right\} \uparrow$ and

$$
\bigcup A_{k}=A=[a, \infty)
$$

i.e., $A_{k} \nearrow A$.

Moreover, by Note 4 in Chapter $8, \S 5$, the set function $s=\int f$ is σ-additive and semifinite (≥ 0). Thus by Theorem 2 of Chapter $7, \S 4$ (left continuity)

$$
\begin{equation*}
\int_{A} f d m=\lim _{k \rightarrow \infty} \int_{A_{k}} f=\lim _{k \rightarrow \infty} \int_{a}^{k} f=C \int_{a}^{\infty} f \tag{1}
\end{equation*}
$$

proving (i).
(ii) By clause (i),

$$
C \int_{a}^{\infty}|f|=\int_{A}|f| d m
$$

exists, as $|f| \geq 0$. Hence

$$
C \int_{a}^{\infty}|f|<\infty
$$

plus measurability amounts to integrability (Theorem 2 of Chapter 8, §6).
Moreover,

$$
C \int_{a}^{\infty}|f|<\infty
$$

implies the convergence of $C \int_{a}^{\infty} f$ (see Corollary 1 below). Thus as

$$
\lim _{x \rightarrow \infty} \int_{a}^{x} f
$$

exists, we proceed exactly as before (here $s=\int f$ is finite), proving (ii) also.
Note 2. If $E \subseteq E^{*}$, formula (1) results even if f is not m-measurable. ${ }^{5}$
Note 3. While f cannot be integrable unless $|f|$ is (Corollary 2 of Chapter 8, $\S 6)$, it can happen that

$$
C \int f
$$

converges even if

$$
C \int|f|=\infty
$$

(this is called conditional convergence). A case in point is

$$
C \int_{0}^{\infty} \frac{\sin x}{x} d x
$$

see Problem 8.
Thus C-integrals may be finite where proper integrals are ∞ or fail to exist (a great advantage!). Yet they are deficient in other respects (see Problem 9(c)).

For our next theorem, we need the previously "starred" Theorem 2 in Chapter $4, \S 2$. (Review it!) As we shall see, C-integrals resemble infinite series.
Theorem 2 (Cauchy criterion). Let $A=[a, \infty), f: E^{1} \rightarrow E, E$ complete. Suppose

$$
\int_{a}^{x} f d m
$$

exists for each $x \in A$. (This is automatic if $E \subseteq E^{*}$; see Chapter 8, §5.)
Then

$$
C \int_{a}^{\infty} f
$$

converges iff for every $\varepsilon>0$, there is $b \in A$ such that

$$
\begin{equation*}
\left|\int_{v}^{x} f d m\right|<\varepsilon \quad \text { whenever } b \leq v \leq x<\infty,{ }^{6} \tag{2}
\end{equation*}
$$

[^71]and
$$
\left|\int_{a}^{b} f d m\right|<\infty
$$

Proof. By additivity (Chapter 8, $\S 5$, Theorem 2; Chapter 8, $\S 7$, Theorem 3),

$$
\int_{a}^{x} f=\int_{a}^{v} f+\int_{v}^{x} f
$$

if $a \leq v \leq x<\infty$. (In case $E \subseteq E^{*}$, this holds even if f is not integrable; see Theorem 2, of Chapter 8, §5.)

Now, if

$$
C \int_{a}^{\infty} f
$$

converges, let

$$
r=\lim _{x \rightarrow \infty} \int_{a}^{x} f d m \neq \pm \infty
$$

Then for any $\varepsilon>0$, there is some

$$
b \in[a, \infty)=A
$$

such that

$$
\left|\int_{a}^{x} f d m-r\right|<\frac{1}{2} \varepsilon \quad \text { for } x \geq b
$$

(Why may we use the standard metric here?)
Taking $x=b$, we get $\left(2^{\prime}\right)$. Also, if $a \leq b \leq v \leq x$, we have

$$
\left|\int_{a}^{x} f d m-r\right|<\frac{1}{2} \varepsilon
$$

and

$$
\left|r-\int_{a}^{\nu} f d m\right|<\frac{1}{2} \varepsilon
$$

Hence by the triangle law, (2) follows also. Thus this b satisfies (2).
Conversely, suppose such a b exists for every given $\varepsilon>0$. Fixing b, we thus have (2) and $\left(2^{\prime}\right)$. Now, with $A=[a, \infty)$, define $F: A \rightarrow E$ by

$$
F(x)=\int_{a}^{x} f d m
$$

so

$$
C \int_{a}^{\infty} f=\lim _{x \rightarrow \infty} F(x)
$$

[^72]if this limit exists. By (2),
$$
|F(x)|=\left|\int_{a}^{x} f d m\right| \leq\left|\int_{a}^{b} f d m\right|+\left|\int_{b}^{x} f d m\right|<\left|\int_{a}^{b} f d m\right|+\varepsilon
$$
if $x \geq b$. Thus F is finite on $[b, \infty)$, and so we may again use the standard metric
$$
\rho(F(x), F(v))=|F(x)-F(v)|=\left|\int_{a}^{x} f d m-\int_{a}^{v} f d m\right| \leq\left|\int_{v}^{x} f d m\right|<\varepsilon
$$
if $x, v \geq b$. The existence of
$$
C \int_{a}^{\infty} f d m=\lim _{x \rightarrow \infty} F(x) \neq \pm \infty
$$
now follows by Theorem 2 of Chapter 4, $\S 2$. (We shall henceforth presuppose this "starred" theorem.)

Thus all is proved.
Corollary 1. Under the same assumptions as in Theorem 2, the convergence of

$$
C \int_{a}^{\infty}|f| d m
$$

implies that of

$$
C \int_{a}^{\infty} f d m
$$

Indeed,

$$
\left|\int_{v}^{x} f\right| \leq \int_{v}^{x}|f|
$$

(Theorem $1(\mathrm{~g})$ of Chapter 8, $\S 5$, and Problem 10 in Chapter 8, $\S 7$).
Note 4. We say that $C \int f$ converges absolutely iff $C \int|f|$ converges.
Corollary 2 (comparison test). If $|f| \leq|g|$ a.e. on $A=[a, \infty)$ for some $f, g: E^{1} \rightarrow E$, then

$$
C \int_{a}^{\infty}|f| \leq C \int_{a}^{\infty}|g| ;
$$

so the convergence of

$$
C \int_{a}^{\infty}|g|
$$

implies that of

$$
C \int_{a}^{\infty}|f| .
$$

For as $|f|,|g| \geq 0$, Theorem 1 reduces all to Theorem 1 (c) of Chapter $8, \S 5$.

Note 5. As we see, absolutely convergent C-integrals coincide with proper (finite) Lebesgue integrals of nonnegative or m-measurable maps. For conditional (i.e., nonabsolute) convergence, see Problems 6-9, 13, and 14.

Iterated C-Integrals. Let the product space $X \times Y$ of Chapter $8, \S 8$ be

$$
E^{1} \times E^{1}=E^{2}
$$

and let $p=m \times n$, where m and n are Lebesgue measure or LS measures in E^{1}. Let

$$
A=[a, b], B=[c, d], \text { and } D=A \times B
$$

Then the integral

$$
\int_{B} \int_{A} f d m d n=\int_{Y} \int_{X} f C_{D} d m d n
$$

is also written

$$
\int_{c}^{d} \int_{a}^{b} f d m d n
$$

or

$$
\int_{c}^{d} \int_{a}^{b} f(x, y) d m(x) d n(y)
$$

As usual, we write " $d x$ " for " $d m(x)$ " if m is Lebesgue measure in E^{1}; similarly for n.

We now define

$$
\begin{align*}
C \int_{a}^{\infty} \int_{c}^{\infty} f d n d m & =\lim _{b \rightarrow \infty} \int_{a}^{b}\left(\lim _{d \rightarrow \infty} \int_{c}^{d} f(x, y) d n(y)\right) d m(x) \tag{3}\\
& =C \int_{a}^{\infty} \int_{c}^{\infty} f(x, y) d n(y) d m(x)
\end{align*}
$$

provided the limits and integrals involved exist.
If the integral (3) is finite, we say that it converges. Again, convergence is absolute if it holds also with f replaced by $|f|$, and conditional otherwise. Similar definitions apply to

$$
C \int_{c}^{\infty} \int_{a}^{\infty} f d m d n, C \int_{-\infty}^{b} \int_{c}^{\infty} f d n d m, \text { etc. }
$$

Theorem 3. Let $f: E^{2} \rightarrow E^{*}$ be p-measurable on $E^{2}(p, m, n$ as above). Then we have the following.
(i*) The Cauchy integrals

$$
C \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|f| d n d m \text { and } C \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|f| d m d n
$$

exist $(\leq \infty)$, and both equal

$$
\int_{E^{2}}|f| d p
$$

(ii*) If one of these three integrals is finite, then

$$
C \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f d n d m \text { and } C \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f d m d n
$$

converge, and both equal

$$
\int_{E^{2}} f d p
$$

(Similarly for $C \int_{a}^{\infty} \int_{-\infty}^{b} f d n d m$, etc.)
Proof. As m and n are σ-finite (finite on intervals!), f surely has σ-finite support.

As $|f| \geq 0$, clause (i^{*}) easily follows from our present Theorem $1(\mathrm{i})$ and Theorem $3(\mathrm{i})$ of Chapter $8, \S 8$.

Similarly, clause (ii*) follows from Theorem 3(ii) of the same section.
Theorem 4 (passage to polars). Let $p=$ Lebesgue measure in E^{2}. Suppose $f: E^{2} \rightarrow E^{*}$ is p-measurable on E^{2}. Set

$$
F(r, \theta)=f(r \cos \theta, r \sin \theta), \quad r>0
$$

Then
(a) $C \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f d x d y=C \int_{0}^{\infty} r d r \int_{0}^{2 \pi} F d \theta$, and
(b) $C \int_{0}^{\infty} \int_{0}^{\infty} f d x d y=C \int_{0}^{\infty} r d r \int_{0}^{\pi / 2} F d \theta$,
provided f is nonnegative or p-integrable on $E^{2}($ for $(\mathrm{a}))$ or on $(0, \infty) \times(0, \infty)$ (for (b)). ${ }^{7}$
Proof Outline. First let $f=C_{D}$, with D a "curved rectangle"

$$
\left\{(r, \theta) \mid r_{1}<r \leq r_{2}, \theta_{1}<\theta \leq \theta_{2}\right\}
$$

for some $r_{1}<r_{2}$ in $X=(0, \infty)$ and $\theta_{1}<\theta_{2}$ in $Y=[0,2 \pi)$. By elementary geometry (or calculus), the area

$$
p D=\frac{1}{2}\left(r_{2}^{2}-r_{1}^{2}\right)\left(\theta_{2}-\theta_{1}\right)
$$

(the difference between two circular sectors).

[^73]For $f=C_{D}$, formulas (a) and (b) easily follow from

$$
p D=L \int_{E^{2}} C_{D} d p
$$

(Verify!) Now, curved rectangles behave like half-open intervals

$$
\left(r_{1}, r_{2}\right] \times\left(\theta_{1}, \theta_{2}\right]
$$

in E^{2}, since Theorem 1 in Chapter $7, \S 1$, and Lemma 2 of Chapter $7, \S 2$, apply with the same proof. Thus they form a semiring generating the Borel field in E^{2}.

Hence show (as in Chapter 8, $\S 8$) that Theorem 4 holds for $f=C_{D}(D \in \mathcal{B})$. Then take $D \in \mathcal{M}^{*}$. Next let f be elementary and nonnegative, and so on, as in Theorems 2 and 3 in Chapter 8, $\S 8$.

Examples (continued).
(D) Let

$$
J=L \int_{0}^{\infty} e^{-x^{2}} d x
$$

so

$$
\begin{aligned}
J^{2} & =\left(C \int_{0}^{\infty} e^{-x^{2}} d x\right)\left(C \int_{0}^{\infty} e^{-y^{2}} d y\right) \\
& =C \int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y . \quad(\text { Why? })
\end{aligned}
$$

Set

$$
f(x, y)=e^{-\left(x^{2}+y^{2}\right)}
$$

in Theorem 4(b). Then $F(r, \theta)=e^{-r^{2}}$; hence

$$
\begin{aligned}
J^{2} & =C \int_{0}^{\infty} r d r\left(\int_{0}^{\frac{\pi}{2}} e^{-r^{2}} d \theta\right) \\
& =C \int_{0}^{\infty} r e^{-r^{2}} d r \cdot \frac{\pi}{2}=-\left.\frac{1}{4} \pi e^{-t}\right|_{0} ^{\infty}=\frac{1}{4} \pi
\end{aligned}
$$

(Here we computed

$$
\int r e^{-r^{2}} d r
$$

by substituting $r^{2}=t$.) Thus

$$
\begin{equation*}
C \int_{0}^{\infty} e^{-x^{2}} d x=L \int_{0}^{\infty} e^{-x^{2}} d x=\sqrt{\frac{1}{4} \pi}=\frac{1}{2} \sqrt{\pi} \tag{4}
\end{equation*}
$$

Problems on Cauchy Integrals

1. Fill in all proof details in Theorems 1-3. Verify also at least some of the cases other than $\int_{a}^{\infty} f$. Check the validity for $L S$-integrals (footnote 6).
2. Prove Theorem 4 in detail.
$\mathbf{2}^{\prime}$. Verify Notes 2 and 3 and examples (A)-(D).
3. Assuming $a>0$, verify the following:
(i) $\int_{\substack{1 \\ \text { [Hint: Use Corollary 2.] }}}^{\infty} \frac{1}{t} e^{-t} d t \leq \int_{1}^{\infty} e^{-t} d t=\frac{1}{e}$.
(ii) $\int_{1}^{\infty} e^{-a t} d t=\frac{e^{-a}}{a}$.
(iii) $\int_{0}^{\infty} e^{-a t} d t=\frac{1}{a}$.
(iv) $\int_{0}^{\infty} e^{-a t} \sin b t d t=\frac{b}{a^{2}+b^{2}}$.
4. Verify the following:
(i) $\int_{1}^{\infty} \int_{1}^{\infty} e^{-x y} d y d x=\int_{1}^{\infty} \frac{1}{x} e^{-x} d x \leq \frac{1}{e}$ (converges, by $3(\mathrm{i})$).
(ii) $\int_{0}^{\infty} \int_{0}^{\infty} e^{-x y} d y d x \geq \int_{1}^{\infty} \int_{0}^{\infty} e^{-x y} d y d x=\int_{1}^{\infty} \frac{1}{x}\left(1-e^{-x}\right) d x \geq$ $\int_{1}^{\infty}\left(\frac{1}{x}-e^{-x}\right) d x=\infty$.
Does this contradict formula (4) in the text, or Problem 5, which follows?
5. Let $f(x, y)=e^{-x y}$ and

$$
g(x)=L \int_{0}^{1} e^{-x y} d y
$$

so $g(0)=1$. (Why?)
(i) Is g R-integrable on $A=[0,1]$? Is f so on $A \times A$?
(ii) Find $g(x)$ using Corollary 1 in $\S 1$.
(iii) Find the value of

$$
R \int_{0}^{1} \int_{0}^{1} e^{-x y} d y d x=R \int_{0}^{1} g
$$

to within $1 / 10$.
[Hint: Reduce it to Problem 6(b) in §1.]
\Rightarrow 6. Let $f, g: E^{1} \rightarrow E^{*}$ be m-measurable on $A=[a, b), b \leq \infty$. Prove the following:
(i) If

$$
C \int_{a}^{b-} f^{+}<\infty \text { or } C \int_{a}^{b-} f^{-}<\infty
$$

then $C \int_{a}^{b-} f$ exists and equals

$$
C \int_{a}^{b-} f^{+}-C \int_{a}^{b-} f^{-}=\int_{A} f d m \text { (proper). }
$$

(ii) If $\int_{a}^{b-} f$ converges conditionally only, then

$$
\int_{a}^{b-} f^{+}=\int_{a}^{b-} f^{-}=+\infty
$$

(iii) In case $C \int_{a}^{b-}|f|<\infty$, we have

$$
C \int_{a}^{b-}|f \pm g|=\infty
$$

iff $C \int_{a}^{b-}|g|=\infty$; also,

$$
C \int_{a}^{b-}(f \pm g)=C \int_{a}^{b-} f \pm C \int_{a}^{b-} g
$$

if $C \int_{a}^{b-} g$ exists (finite or not).
\Rightarrow 7. Suppose $f: E^{1} \rightarrow E^{*}$ is m-integrable and sign-constant on each

$$
A_{n}=\left[a_{n}, a_{n+1}\right), \quad n=1,2, \ldots
$$

but changes sign from A_{n} to A_{n+1}, with

$$
\bigcup_{n=1}^{\infty} A_{n}=[a, \infty)
$$

and $\left\{a_{n}\right\} \uparrow$ fixed.
Prove that if

$$
\left|\int_{A_{n}} f d m\right| \searrow 0
$$

as $n \rightarrow \infty$, then

$$
C \int_{a}^{\infty} f
$$

converges.
[Hint: Use Problem 10 in Chapter 4, §13.]
$\Rightarrow 8$. Let

$$
f(x)=\frac{\sin x}{x}, \quad f(0)=1 .
$$

Prove that

$$
C \int_{0}^{\infty} f(x) d x
$$

converges conditionally only.
[Hints: Use Problem 7. Show that

$$
\left.C \int_{0}^{\infty}|f|=L \int_{(0, \infty)}|f|=L \int_{0}^{\infty} f^{+}=L \int_{0}^{\infty} f^{-}=\infty .\right]
$$

\Rightarrow 9. (Additivity.) Given $f: E^{1} \rightarrow E$ (E complete) and $a<b<c \leq \infty$, suppose that

$$
\int_{a}^{x} f d m \neq \pm \infty
$$

(proper) exists for each $x \in[a, c)$. Prove the following:
(a) $C \int_{a}^{b-} f$ and $C \int_{a+}^{b} f$ converge.
(b) If

$$
C \int_{b}^{c-} f
$$

converges, so does

$$
C \int_{a}^{c-} f=C \int_{a}^{b-} f+C \int_{b}^{c-} f
$$

(c) Countable additivity does not necessarily hold for C-integrals.
[Hint: Use Problem 8 suitably splitting $[0, \infty)$.]
10. (Refined comparison test.) Given $f, g: E^{1} \rightarrow E$ (E complete) and $b \leq$ ∞, prove the following:
(i) If for some $a<b$ and $k \in E^{1}$,

$$
|f| \leq|k g| \quad \text { on }[a, b)
$$

then

$$
\int_{a}^{b-}|g|<\infty \text { implies } \int_{a}^{b-}|f|<\infty .
$$

(ii) Such $a, k \in E^{1}$ do exist if

$$
\lim _{t \rightarrow b-} \frac{|f(t)|}{|g(t)|}<\infty
$$

exists.
(iii) If this limit is not zero, then

$$
\int_{a}^{b-}|g|<\infty \text { iff } \int_{a}^{b-}|f|<\infty
$$

(Similarly in the case of \int_{a+}^{b} with $\left.a \geq-\infty.\right)$
11. Prove that
(i) $\int_{1}^{\infty} t^{p} d t<\infty$ iff $p<-1$;
(ii) $\int_{0+}^{1} t^{p} d t<\infty$ iff $p>-1$;
(iii) $\int_{0+}^{\infty} t^{p} d t=\infty$.
12. Use Problems 10 and 11 to test for convergence of the following:
(a) $\int_{0}^{\infty} \frac{t^{3 / 2} d t}{1+t^{2}}$;
(b) $\int_{1}^{\infty} \frac{d t}{t \sqrt{1+t^{2}}}$;
(c) $\int_{a}^{\infty} \frac{P(t)}{Q(t)} d t$
(Q, P polynomials of degree s and $r, s>r ; Q \neq 0$ for $t \geq a)$;
(d) $\int_{0}^{1-} \frac{d t}{\sqrt{1-t^{4}}}$;
(e) $\int_{0+}^{1} t^{p} \ln t d t$;
(f) $\int_{0}^{1-} \frac{d t}{\ln t}$;
(g) $\int_{0+}^{\frac{\pi}{2}-} \tan ^{p} t d t$.
\Rightarrow 13. (The Abel-Dirichlet test.) Given $f, g: E^{1} \rightarrow E^{1}$, suppose that
(a) $f \downarrow$, with $\lim _{t \rightarrow \infty} f(t)=0$;
(b) g is L-measurable on $A=[a, \infty) ;{ }^{8}$ and
(c) $\left(\exists K \in E^{1}\right)(\forall x \in A) \quad\left|L \int_{a}^{x} g\right|<K$.

[^74]Then $C \int_{a}^{\infty} f(x) g(x) d x$ converges.
[Outline: Set

$$
G(x)=\int_{a}^{x} g
$$

so $|G|<K$ on A. By Lemma 2 of $\S 1, f g$ is L-integrable on each $[u, v] \subset A$, and $(\exists c \in[u, v])$ such that

$$
\left|L \int_{u}^{v} f g\right|=\left|f(u) \int_{u}^{c} g\right|=|f(u)[G(c)-G(u)]|<2 K f(u) .
$$

Now, by (a),

$$
(\forall \varepsilon>0)(\exists k \in A)(\forall u \geq k) \quad|f(u)|<\frac{\varepsilon}{2 K}
$$

so

$$
(\forall v \geq u \geq k) \quad\left|L \int_{u}^{v} f g\right|<\varepsilon
$$

Now use Theorem 2.
Now extend this to $g: E^{1} \rightarrow E^{n}\left(C^{n}\right)$.]
\Rightarrow 14. Do Problem 13, replacing assumptions (a) and (c) by
$\left(\mathrm{a}^{\prime}\right) f$ is monotone and bounded on $[a, \infty)=A$, and
$\left(\mathrm{c}^{\prime}\right) C \int_{a}^{\infty} g(x) d x$ converges.
[Hint: If $f \uparrow$, say, set $q=\lim _{t \rightarrow \infty} f(t)$ and $F=q-f$; so

$$
f g=q g-F g
$$

Apply Problem 13 to

$$
\left.C \int_{a}^{\infty} F(x) g(x) d x .\right]
$$

15. Use Problems 13 and 14 to test the convergence of the following:
(a) $\int_{0}^{\infty} t^{p} \sin t d t$.
[Hint: The integral converges iff $p<0$.]
(b) $\int_{0+}^{\infty} \frac{\cos t}{\sqrt{t}} d t$.
[Hint: Integrate $\int_{u}^{v} \frac{\cos t}{\sqrt{t}} d t$ by parts; then let $u \rightarrow 0$ and $v \rightarrow \infty$.]
(c) $\int_{1}^{\infty} \frac{\cos t}{t^{p}} d t$.
(d) $\int_{0}^{\infty} \sin t^{2} d t$.
[Hint: Substitute $t^{2}=u$; then use (a).]
16. The Cauchy principal value (CPV) of $C \int_{-\infty}^{\infty} f(t) d t$ is defined by

$$
(\mathrm{CPV}) \int_{-\infty}^{\infty} f=\lim _{x \rightarrow \infty} \int_{-x}^{x} f(t) d t
$$

(if it exists). Prove the following:
(i) If $C \int f(t) d t$ exists, so does (CPV) $\int f$, and the two are equal. Disprove the converse.
[Hint: Take $f(t)=\operatorname{sign}(t) / \sqrt{|t|}$.]
(ii) Do the same for

$$
(\mathrm{CPV}) \int_{a}^{b} f=\lim _{\delta \rightarrow 0+}\left(\int_{a}^{p-\delta} f+\int_{p+\delta}^{b} f\right)
$$

p being the only singularity in (a, b).

§4. Convergence of Parametrized Integrals and Functions

I. We now consider C-integrals of the form

$$
C \int f(t, u) d m(t)
$$

where m is Lebesgue or LS measure in E^{1}. Here the variable u, called a parameter, remains fixed in the process of integration; but the end result depends on u, of course.

We assume $f: E^{2} \rightarrow E$ (E complete) even if not stated explicitly. As before, we give our definitions and theorems for the case

$$
C \int_{a}^{\infty}
$$

The other cases $\left(C \int_{-\infty}^{a}, C \int_{a}^{b-}\right.$, etc.) are analogous; they are treated in Problems 2 and 3 . We assume

$$
a, b, c, x, t, u, v \in E^{1}
$$

throughout, and write " $d t$ " for " $d m(t)$ " iff m is Lebesgue measure.
If

$$
C \int_{a}^{\infty} f(t, u) d m(t)
$$

converges for each u in a set $B \subseteq E^{1},{ }^{1}$ we can define a map $F: B \rightarrow E$ by

$$
F(u)=C \int_{a}^{\infty} f(t, u) d m(t)=\lim _{x \rightarrow \infty} \int_{a}^{x} f(t, u) d m(t)
$$

This means that
(1) $\quad(\forall u \in B)(\forall \varepsilon>0)(\exists b>a)(\forall x \geq b) \quad\left|\int_{a}^{x} f(t, u) d m(t)-F(u)\right|<\varepsilon$,
so $|F|<\infty$ on B.
Here b depends on both ε and u (convergence is "pointwise"). However, it may occur that one and the same b fits all $u \in B$, so that b depends on ε alone. We then say that

$$
C \int_{a}^{\infty} f(t, u) d m(t)
$$

converges uniformly on B (i.e., for $u \in B$), and write

$$
F(u)=C \int_{a}^{\infty} f(t, u) d m(t)(\text { uniformly }) \text { on } B
$$

Explicitly, this means that
(2) $\quad(\forall \varepsilon>0)(\exists b>a)(\forall u \in B)(\forall x \geq b)\left|\int_{a}^{x} f(t, u) d m(t)-F(u)\right|<\varepsilon$.

Clearly, this implies (1), but not conversely. We now obtain the following.
Theorem 1 (Cauchy criterion). Suppose

$$
\int_{a}^{x} f(t, u) d m(t)
$$

exists for $x \geq a$ and $u \in B \subseteq E^{1}$. (This is automatic if $E \subseteq E^{*}$; see Chapter 8 , §5.)

Then

$$
C \int_{a}^{\infty} f(t, u) d m(t)
$$

converges uniformly on B iff for every $\varepsilon>0$, there is $b>a$ such that

$$
\begin{equation*}
(\forall v, x \in[b, \infty))(\forall u \in B) \quad\left|\int_{v}^{x} f(t, u) d m(t)\right|<\varepsilon,,^{2} \tag{3}
\end{equation*}
$$

and

$$
\left|\int_{a}^{b} f(t, u) d m(t)\right|<\infty
$$

[^75]Proof. The necessity of (3) follows as in Theorem 2 of $\S 3$. (Verify!)
To prove sufficiency, suppose the desired b exists for every $\varepsilon>0$. Then for each (fixed) $u \in B$,

$$
C \int_{a}^{\infty} f(t, u) d m(t)
$$

satisfies Theorem 2 of $\S 3$. Hence

$$
\begin{equation*}
F(u)=\lim _{x \rightarrow \infty} \int_{a}^{x} f(t, u) d m(t) \neq \pm \infty \tag{4}
\end{equation*}
$$

exists for every $u \in B$ (pointwise). Now, from (3), writing briefly $\int f$ for $\int f(t, u) d m(t)$, we obtain

$$
\left|\int_{v}^{x} f\right|=\left|\int_{a}^{x} f-\int_{a}^{v} f\right|<\varepsilon
$$

for all $u \in B$ and all $x>v \geq b$.
Making $x \rightarrow \infty$ (with u and v temporarily fixed), we have by (4) that

$$
\begin{equation*}
\left|F(u)-\int_{a}^{v} f\right| \leq \varepsilon \tag{5}
\end{equation*}
$$

whenever $v \geq b$.
But by our assumption, b depends on ε alone (not on u). Thus unfixing u, we see that (5) establishes the uniform convergence of

$$
\int_{a}^{\infty} f
$$

as required. ${ }^{3}$
Corollary 1. Under the assumptions of Theorem 1,

$$
C \int_{a}^{\infty} f(t, u) d m(t)
$$

converges uniformly on B if

$$
C \int_{a}^{\infty}|f(t, u)| d m(t)
$$

does.
Indeed,

$$
\left|\int_{v}^{x} f\right| \leq \int_{v}^{x}|f|<\varepsilon
$$

[^76]Corollary 2 (comparison test). Let $f: E^{2} \rightarrow E$ and $M: E^{2} \rightarrow E^{*}$ satisfy

$$
|f(t, u)| \leq M(t, u)
$$

for $u \in B \subseteq E^{1}$ and $t \geq a$.
Then

$$
C \int_{a}^{\infty}|f(t, u)| d m(t)
$$

converges uniformly on B if

$$
C \int_{a}^{\infty} M(t, u) d m(t)
$$

does.
Indeed, Theorem 1 applies, with

$$
\left|\int_{v}^{x} f\right| \leq \int_{v}^{x} M<\varepsilon
$$

Hence we have the following corollary.
Corollary 3 (" M-test"). Let $f: E^{2} \rightarrow E$ and $M: E^{1} \rightarrow E^{*}$ satisfy

$$
|f(t, u)| \leq M(t)
$$

for $u \in B \subseteq E^{1}$ and $t \geq a$. Suppose

$$
C \int_{a}^{\infty} M(t) d m(t)
$$

converges. Then

$$
C \int_{a}^{\infty}|f(t, u)| d m(t)
$$

converges (uniformly) on B. So does

$$
C \int_{a}^{\infty} f(t, u) d m(t)
$$

by Corollary 1.
Proof. Set

$$
h(t, u)=M(t) \geq|f(t, u)| .
$$

Then Corollary 2 applies (with M replaced by h there). Indeed, the convergence of

$$
C \int h=C \int M
$$

is trivially "uniform" for $u \in B$, since M does not depend on u at all.

Note 1. Observe also that, if $h(t, u)$ does not depend on u, then the (pointwise) and (uniform) convergence of $C \int h$ are trivially equivalent.

We also have the following result.
Corollary 4. Suppose

$$
C \int_{a}^{\infty} f(t, u) d m(t)
$$

converges (pointwise) on $B \subseteq E^{1}$. Then this convergence is uniform iff

$$
\lim _{\nu \rightarrow \infty} C \int_{v}^{\infty} f(t, u) d m(t)=0(\text { uniformly) on } B
$$

i.e., iff

$$
(\forall \varepsilon>0)(\exists b>a)(\forall u \in B)(\forall v \geq b) \quad\left|C \int_{v}^{\infty} f(t, u) d m(t)\right|<\varepsilon
$$

The proof (based on Theorem 1) is left to the reader, along with that of the following corollary.
Corollary 5. Suppose

$$
\int_{a}^{b} f(t, u) d m(t) \neq \pm \infty
$$

exists for each $u \in B \subseteq E^{1}$.
Then

$$
C \int_{a}^{\infty} f(t, u) d m(t)
$$

converges (uniformly) on B iff

$$
C \int_{b}^{\infty} f(t, u) d m(t)
$$

does.
II. The Abel-Dirichlet tests for uniform convergence of series (Problems 9 and 11 in Chapter $4, \S 13$) have various analogues for C-integrals. We give two of them, using the second law of the mean (Corollary 5 in $\S 1$).

First, however, we generalize our definitions, "unstarring" some ideas of Chapter 4, §11. Specifically, given

$$
H: E^{2} \rightarrow E(E \text { complete }),
$$

we say that $H(x, y)$ converges to $F(y)$, uniformly on B, as $x \rightarrow q\left(q \in E^{*}\right)$, and write

$$
\lim _{x \rightarrow q} H(x, y)=F(y)(\text { uniformly }) \text { on } B
$$

iff we have
(6) $\quad(\forall \varepsilon>0)\left(\exists G_{\neg q}\right)(\forall y \in B)\left(\forall x \in G_{\neg q}\right) \quad|H(x, y)-F(y)|<\varepsilon$;
hence $|F|<\infty$ on B.
If here $q=\infty$, the deleted globe $G_{\neg q}$ has the form (b, ∞). Thus if

$$
H(x, u)=\int_{a}^{x} f(t, u) d t
$$

(6) turns into (2) as a special case. If (6) holds with " $\left(\exists G_{\neg q}\right)$ " and " $(\forall y \in B)$ " interchanged, as in (1), convergence is pointwise only.

As in Chapter $8, \S 8$, we denote by $f(\cdot, y)$, or f^{y}, the function of x alone (on E^{1}) given by

$$
f^{y}(x)=f(x, y) .
$$

Similarly,

$$
f_{x}(y)=f(x, y) .
$$

Of course, we may replace $f(x, y)$ by $f(t, u)$ or $H(t, u)$, etc.
We use Lebesgue measure in Theorems 2 and 3 below.
Theorem 2. Assume $f, g: E^{2} \rightarrow E^{1}$ satisfy
(i) $C \int_{a}^{\infty} g(t, u) d t$ converges (uniformly) on B;
(ii) each $g^{u}(u \in B)$ is L-measurable on $A=[a, \infty)$;
(iii) each $f^{u}(u \in B)$ is monotone $(\downarrow$ or $\uparrow)$ on $A ;^{4}$ and
(iv) $|f|<K \in E^{1}$ (bounded) on $A \times B$.

Then

$$
C \int_{a}^{\infty} f(t, u) g(t, u) d t
$$

converges uniformly on B.
Proof. Given $\varepsilon>0$, use assumption (i) and Theorem 1 to choose $b>a$ so that

$$
\begin{equation*}
\left|L \int_{v}^{x} g(t, u) d t\right|<\frac{\varepsilon}{2 K} \tag{7}
\end{equation*}
$$

written briefly as

$$
\left|L \int_{v}^{x} g^{u}\right|<\frac{\varepsilon}{2 K},
$$

for all $u \in B$ and $x>v \geq b$, with K as in (iv).

[^77]Hence by (ii), each $g^{u}(u \in B)$ is L-integrable on any interval $[v, x] \subset A$, with $x>v \geq b$. Thus given such u and $[v, x]$, we can use (iii) and Corollary 5 from $\S 1$ to find that

$$
L \int_{v}^{x} f^{u} g^{u}=f^{u}(v) L \int_{v}^{c} g^{u}+f^{u}(x) L \int_{c}^{x} g^{u}
$$

for some $c \in[v, x]$.
Combining with (7) and using (iv), we easily obtain

$$
\left|L \int_{v}^{x} f(t, u) g(t, u) d t\right|<\varepsilon
$$

whenever $u \in B$ and $x>v \geq b$. (Verify!)
Our assertion now follows by Theorem 1.
Theorem 3 (Abel-Dirichlet test). Let $f, g: E^{2} \rightarrow E^{*}$ satisfy
(a) $\lim _{t \rightarrow \infty} f(t, u)=0$ (uniformly) for $u \in B$;
(b) each $f^{u}(u \in B)$ is nonincreasing (\downarrow) on $A=[0, \infty)$;
(c) each $g^{u}(u \in B)$ is L-measurable on A; and
(d) $\left(\exists K \in E^{1}\right)(\forall x \in A)(\forall u \in B)\left|L \int_{a}^{x} g(t, u) d t\right|<K$.

Then

$$
C \int_{a}^{\infty} f(t, u) g(t, u) d t
$$

converges uniformly on B.
Proof Outline. Argue as in Problem 13 of $\S 3$, replacing Theorem 2 in $\S 3$ by Theorem 1 of the present section.

By Lemma 2 in $\S 1$, obtain

$$
\left|L \int_{v}^{x} f^{u} g^{u}\right|=\left|f^{u}(v) L \int_{a}^{x} g^{u}\right| \leq K f(v, u)
$$

for $u \in B$ and $x>v \geq a$.
Then use assumption (a) to fix k so that

$$
|f(t, u)|<\frac{\varepsilon}{2 K}
$$

for $t>k$ and $u \in B$.
Note 2. Via components, Theorems 2 and 3 extend to the case $g: E^{2} \rightarrow$ $E^{n}\left(C^{n}\right)$.

Note 3. While Corollaries 2 and 3 apply to absolute convergence only, Theorems 2 and 3 cover conditional convergence, too (a great advantage!). The theorems also apply if f or g is independent of u (see Note 1). This supersedes Problems 13 and 14 in $\S 3$.

Examples.

(A) The integral

$$
\int_{0}^{\infty} \frac{\sin t u}{t} d t
$$

converges uniformly on $B_{\delta}=[\delta, \infty)$ if $\delta>0$, and pointwise on $B=[0, \infty)$.
Indeed, we can use Theorem 3, with

$$
g(t, u)=\sin t u
$$

and

$$
f(t, u)=\frac{1}{t}, f(0, u)=1
$$

say. Then the limit

$$
\lim _{t \rightarrow \infty} \frac{1}{t}=0
$$

is trivially uniform for $u \in B_{\delta}$, as f is independent of u. Thus assumption (a) is satisfied. So is (d) because

$$
\left|\int_{0}^{x} \sin t u d t\right|=\left|\frac{1}{u} \int_{0}^{x u} \sin \theta d \theta\right| \leq \frac{1}{\delta} \cdot 2 .
$$

(Explain!) The rest is easy.
Note that Theorem 2 fails here since assumption (i) is not satisfied.
(B) The integral

$$
\int_{0}^{\infty} \frac{1}{t} e^{-t u} \sin a t d t
$$

converges uniformly on $B=[0, \infty)$. It does so absolutely on $B_{\delta}=[\delta, \infty)$, if $\delta>0$.

Here we shall use Theorem 2 (though Theorem 3 works, too). Set

$$
f(t, u)=e^{-t u}
$$

and

$$
g(t, u)=\frac{\sin a t}{t}, g(0, u)=a .
$$

Then

$$
\int_{0}^{\infty} g(t, u) d t
$$

converges (substitute $x=a t$ in Problem 8 or 15 in $\S 3$). Convergence is trivially uniform, by Note 1. Thus assumption (i) holds, and so do the other assumptions. Hence the result.

For absolute convergence on B_{δ}, use Corollary 3 with

$$
M(t)=e^{-\delta t},
$$

so $M \geq|f g|$.
Note that, quite similarly, one treats C-integrals of the form

$$
\int_{a}^{\infty} e^{-t u} g(t) d t, \int_{a}^{\infty} e^{-t^{2} u} g(t) d t, \text { etc. }
$$

provided

$$
\int_{a}^{\infty} g(t) d t
$$

converges $(a \geq 0)$.
In fact, Theorem 2 states (roughly) that the uniform convergence of $C \int g$ implies that of $C \int f g$, provided f is monotone (in t) and bounded.
III. We conclude with some theorems on uniform convergence of functions $H: E^{2} \rightarrow E$ (see (6)). In Theorem 4, m is again an LS (or Lebesgue) measure in E^{1}; the deleted globe $G_{\neg q}^{*}$ is fixed.
Theorem 4. Suppose

$$
\lim _{x \rightarrow q} H(x, y)=F(y)(\text { uniformly })^{5}
$$

for $y \in B \subseteq E^{1}$. Then we have the following:
(i) If all $H_{x}\left(x \in G_{\neg q}^{*}\right)$ are continuous ${ }^{6}$ or m-measurable on B, so also is F.
(ii) The same applies to m-integrability on B, provided $m B<\infty$; and then

$$
\begin{equation*}
\lim _{x \rightarrow q} \int_{B}\left|H_{x}-F\right|=0 \tag{8}
\end{equation*}
$$

hence

$$
\lim _{x \rightarrow q} \int_{B} H_{x}=\int_{B} F=\int_{B}\left(\lim _{x \rightarrow q} H_{x}\right) .
$$

Formula (8^{\prime}) is known as the rule of passage to the limit under the integral sign.
Proof. (i) Fix a sequence $x_{k} \rightarrow q\left(x_{k}\right.$ in the deleted globe $\left.G_{\neg q}^{*}\right)$, and set

$$
H_{k}=H_{x_{k}} \quad(k=1,2, \ldots) .
$$

The uniform convergence

$$
H(x, y) \rightarrow F(y)
$$

[^78]is preserved as x runs over that sequence (see Problem 4). Hence if all H_{k} are continuous or measurable, so is F (Theorem 2 in Chapter 4, $\S 12$ and Theorem 4 in Chapter $8, \S 1$). Thus clause (i) is proved.
(ii) Now let all H_{x} be m-integrable on B; let
$$
m B<\infty
$$

Then the H_{k} are m-measurable on B, and so is F, by (i). Also, by (6),

$$
(\forall \varepsilon>0)\left(\exists G_{\neg q}\right)\left(\forall x \in G_{\neg q}\right) \quad \int_{B}\left|H_{x}-F\right| \leq \int_{B}(\varepsilon)=\varepsilon m B<\infty
$$

proving (8). Moreover, as

$$
\int_{B}\left|H_{x}-F\right|<\infty
$$

$H_{x}-F$ is m-integrable on B, and so is

$$
F=H_{x}-\left(H_{x}-F\right)
$$

Hence

$$
\left|\int_{B} H_{x}-\int_{B} F\right|=\left|\int_{B}\left(H_{x}-F\right)\right| \leq \int_{B}\left|H_{x}-F\right| \rightarrow 0
$$

as $x \rightarrow q$, by (8). Thus (8^{\prime}) is proved, too.
Quite similarly (keeping E complete and using sequences), we obtain the following result.
Theorem 5. Suppose that
(i) all $H_{x}\left(x \in G_{\neg q}^{*}\right)$ are continuous and finite on a finite interval $B \subset E^{1}$, and differentiable on $B-Q$, for a fixed countable set Q;
(ii) $\lim _{x \rightarrow q} H\left(x, y_{0}\right) \neq \pm \infty$ exists for some $y_{0} \in B$; and
(iii) $\lim _{x \rightarrow q} D_{2} H(x, y)=f(y)$ (uniformly) exists on $B-Q$.

Then f, so defined, has a primitive F on B, exact on $B-Q$ (so $F^{\prime}=f$ on $B-Q)$; moreover,

$$
F(y)=\lim _{x \rightarrow y} H(x, y)(\text { uniformly }) \text { for } y \in B
$$

Outline of proof. Note that

$$
D_{2} H(x, y)=\frac{d}{d y} H_{x}(y)
$$

Use Theorem 1 of Chapter $5, \S 9$, with $F_{n}=H_{x_{n}}, x_{n} \rightarrow q$.
Note 4. If $x \rightarrow q$ over a path P (clustering at q), one must replace $G_{\neg q}$ and $G_{\neg q}^{*}$ by $P \cap G_{\neg q}$ and $P \cap G_{\neg q}^{*}$ in (6) and in Theorems 4 and 5 .

Problems on Uniform Convergence of Functions and C-Integrals

1. Fill in all proof details in Theorems $1-5$, Corollaries 4 and 5 , and examples (A) and (B).
$\mathbf{1}^{\prime}$. Using (6), prove that

$$
\lim _{x \rightarrow q} H(x, y)(\text { uniformly })
$$

exists on $B \subseteq E^{1}$ iff

$$
(\forall \varepsilon>0)\left(\exists G_{\neg q}\right)(\forall y \in B)\left(\forall x, x^{\prime} \in G_{\neg q}\right) \quad\left|H(x, y)-H\left(x^{\prime}, y\right)\right|<\varepsilon .
$$

Assume E complete and $|H|<\infty$ on $G_{\neg q} \times B$.
[Hint: "Imitate" the proof of Theorem 1, using Theorem 2 of Chapter 4, §2.]
2. State formulas analogous to (1) and (2) for $\int_{-\infty}^{a}, \int_{a}^{b-}$, and \int_{a+}^{b}.
3. State and prove Theorems 1 to 3 and Corollaries 1 to 3 for

$$
\int_{-\infty}^{a}, \int_{a}^{b-}, \text { and } \int_{a+}^{b}
$$

In Theorems 2 and 3 explore absolute convergence for

$$
\int_{a}^{b-} \text { and } \int_{a+}^{b}
$$

Do at least some of the cases involved.
[Hint: Use Theorem 1 of $\S 3$ and Problem 1^{\prime}, if already solved.]
4. Prove that

$$
\lim _{x \rightarrow q} H(x, y)=F(y)(\text { uniformly })
$$

on B iff

$$
\lim _{n \rightarrow \infty} H\left(x_{n}, \cdot\right)=F(\text { uniformly })
$$

on B for all sequences $x_{n} \rightarrow q\left(x_{n} \neq q\right)$.
[Hint: "Imitate" Theorem 1 in Chapter 4, $\S 2$. Use Definition 1 of Chapter 4, §12.]
5. Prove that if

$$
\lim _{x \rightarrow q} H(x, y)=F(y)(\text { uniformly })
$$

on A and on B, then this convergence holds on $A \cup B$. Hence deduce similar propositions on C-integrals.
6. Show that the integrals listed below violate Corollary 4 and hence do not converge uniformly on $P=(0, \delta)^{7}$ though proper L-integrals exist for

[^79]each $u \in P$. Thus show that Theorem 1(ii) does not apply to uniform convergence.
(a) $\int_{0+}^{1} \frac{u d t}{t^{2}-u^{2}}$;
(b) $\int_{0+}^{1} \frac{u^{2}-t^{2}}{\left(t^{2}+u^{2}\right)^{2}} d t$;
(c) $\int_{0+}^{1} \frac{t u\left(t^{2}-u^{2}\right)}{\left(t^{2}+u^{2}\right)^{2}} d t$.
[Hint for (b): To disprove uniform convergence, fix any $\varepsilon, v>0$. Then
$$
\int_{0}^{v} \frac{u^{2}-t^{2}}{\left(t^{2}+u^{2}\right)^{2}} d t=\frac{v}{v^{2}+u^{2}} \rightarrow \frac{1}{v}
$$
as $u \rightarrow 0$. Thus if $v<\frac{1}{2 \varepsilon}$,
$$
\left.(\exists u \in P) \quad \int_{0}^{v} \frac{u^{2}-t^{2}}{\left(t^{2}+u^{2}\right)^{2}} d t>\frac{1}{2 v}>\varepsilon .\right]
$$
7. Using Corollaries 3 to 5 , show that the following integrals converge (uniformly) on U (as listed) but only pointwise on P (for the latter, proceed as in Problem 6). Specify P and $M(t)$ in each case where they are not given.
(a) $\int_{0}^{\infty} e^{-u t^{2}} d t ; U=[\delta, \infty) ; P=(0, \delta)$.
[Hint: Set $M(t)=e^{-\delta t}$ for $t \geq 1$ (Corollaries 3 and 5).]
(b) $\int_{0}^{\infty} e^{-u t} t^{a} \cos t d t(a \geq 0) ; U=[\delta, \infty)$.
(c) $\int_{0+}^{1} t^{u-1} d t ; U=[\delta, \infty)$.
(c') $\int_{0+}^{1} t^{u-1}(\ln t)^{n} d t ; U=[\delta, \infty)$.
(d) $\int_{0+}^{1} t^{-u} \sin t d t ; U=[0, \delta], 0<\delta<2 ; P=[\delta, 2) ; M(t)=t^{1-\delta}$.
[Hint: Fix v so small that
$$
(\forall t \in(0, v)) \quad \frac{\sin t}{t}>\frac{1}{2}
$$

Then, if $u \rightarrow 2$,

$$
\left.\int_{0}^{v} t^{-u} \sin t d t \geq \frac{1}{2} \int_{0}^{v} \frac{d t}{t^{u-1}} \rightarrow \infty .\right]
$$

8. In example (A), disprove uniform convergence on $P=(0, \infty)$.
[Hint: Proceed as in Problem 6.]
9. Do example (B) using Theorem 3 and Corollary 5. Disprove uniform convergence on B.
10. Show that

$$
\int_{0+}^{\infty} \frac{\sin t u}{t} \cos t d t
$$

converges uniformly on any closed interval U, with $\pm 1 \notin U$.
[Hint: Transform into

$$
\left.\frac{1}{2} \int_{0+}^{\infty} \frac{1}{t}\{\sin [(u+1) t]+\sin [(u-1) t]\} d t .\right]
$$

11. Show that

$$
\int_{0}^{\infty} t \sin t^{3} \sin t u d t
$$

converges (uniformly) on any finite interval U.
[Hint: Integrate

$$
\int_{x}^{y} t \sin t^{3} \sin t u d t
$$

by parts twice. Then let $y \rightarrow \infty$ and $x \rightarrow 0$.]
12. Show that

$$
\int_{0+}^{\infty} e^{-t u} \frac{\cos t}{t^{a}} d t \quad(0<a<1)
$$

converges (uniformly) for $u \geq 0$.
[Hints: For $t \rightarrow 0+$, use $M(t)=t^{-a}$. For $t \rightarrow \infty$, use example (B) and Theorem 2.]
13. Prove that

$$
\int_{0+}^{\infty} \frac{\cos t u}{t^{a}} d t \quad(0<a<1)
$$

converges (uniformly) for $u \geq \delta>0$, but (pointwise) for $u>0$.
[Hint: Use Theorem 3 with $g(t, u)=\cos t u$ and

$$
\left|\int_{0}^{x} g\right|=\left|\frac{\sin x u}{u}\right| \leq \frac{1}{\delta} .
$$

For $u>0$,

$$
\int_{v}^{\infty} \frac{\cos t u}{t^{a}} d t=u^{a-1} \int_{v u}^{\infty} \frac{\cos z}{z} d z \rightarrow \infty
$$

if $v=1 / u$ and $u \rightarrow 0$. Use Corollary 4.]
\Rightarrow 14. Given $A, B \subseteq E^{1}(m A<\infty)$ and $f: E^{2} \rightarrow E$, suppose that
(i) each $f(x, \cdot)=f_{x}(x \in A)$ is relatively (or uniformly) continuous on B; and
(ii) each $f(\cdot, y)=f^{y}(y \in B)$ is m-integrable on A.

Set

$$
F(y)=\int_{A} f(x, y) d m(x), \quad y \in B
$$

Then show that F is relatively (or uniformly) continuous on B.
[Hint: We have

$$
\begin{aligned}
& (\forall x \in A)(\forall \varepsilon>0)\left(\forall y_{0} \in B\right)(\exists \delta>0)\left(\forall y \in B \cap G_{y_{0}}(\delta)\right) \\
& \quad\left|F(y)-F\left(y_{0}\right)\right| \leq \int_{A}\left|f(x, y)-f\left(x, y_{0}\right)\right| d m(x) \leq \int_{A}\left(\frac{\varepsilon}{m A}\right) d m=\varepsilon .
\end{aligned}
$$

Similarly for uniform continuity.]
\Rightarrow 15. Suppose that
(a) $C \int_{a}^{\infty} f(t, y) d m(t)=F(y)$ (uniformly) on $B=[b, d] \subseteq E^{1}$;
(b) each $f(x, \cdot)=f_{x}(x \geq a)$ is relatively continuous on B; and
(c) each $f(\cdot, y)=f^{y}(y \in B)$ is m-integrable on every $[a, x] \subset E^{1}$, $x \geq a$.
Then show that F is relatively continuous, hence integrable, on B and that

$$
\int_{B} F=\lim _{x \rightarrow \infty} \int_{B} H_{x}
$$

where

$$
H(x, y)=\int_{a}^{x} f(t, y) d m(t)
$$

(Passage to the limit under the \int-sign.)
[Hint: Use Problem 14 and Theorem 4; note that

$$
\left.C \int_{0}^{\infty} f(t, y) d m(t)=\lim _{x \rightarrow \infty} H(x, y)(\text { uniformly }) .\right]
$$

Index

Abel-Dirichlet test
 for convergence of improper integrals, 400
 for uniform convergence of parametrized C-integrals, 408

Absolute
extrema, 82
maxima, 82
minima, 82
Absolute continuity of the integral, 275
Absolute convergence of improper integrals, 393
Absolutely continuous functions on E^{1}, 378
and L-integrals, 380
Absolutely continuous with respect to a set function $t, 197$
Additive extensions of set functions, 129
Additive set functions, 126, 126
Additivity of the integral, 260, 290
Additivity of volume
countable, 104
of intervals, 101
σ-additivity, 104
Almost everywhere (a.e.), 231
convergence of functions, 231
Almost measurable functions, 231, 231
Almost uniform convergence of functions, 239
Egorov's theorem, 240, 283
Antiderivatives, 357
and L-integrals, 357
and R-integrals, 362
change of variable in, 363
primitives, 359

Baire categories (of sets), 70
sets of Category I, 71
sets of Category II, 71
Baire's theorem, 71
Banach spaces, 76
integration of functions with values in, 285-291, 305
open map principle, 75
uniform boundedness principle, 75
Banach-Steinhaus uniform boundedness principle, 75
Basic covering of a set, 138
Basic covering value of a set, 138
Basis of a vector space, 16
Bicontinuous maps, 70
Bijective
functions, 52
linear maps, 53
Borel
fields, 162
measurable functions, 222
measures, 162
restrictions of measures, 162
sets, 162
Boundedness, linear, 9
\mathcal{C}_{σ}-sets, 104
volume of, 107
\mathcal{C}-simple sets, 99
\mathcal{C}_{s}^{\prime}, family of \mathcal{C}-simple sets, 99
C-integrals, see Improper integrals parametrized, 402; see also Parametrized C-integrals
Cantor's set, 76
Carathéodory property (CP), 145, 146, 157
Cauchy criterion
for convergence of improper integrals, 391
for uniform convergence of parametrized C-integrals, 403
Cauchy integrals (C-integrals), see Improper integrals
parametrized, 402; see also Parametrized C-integrals
Cauchy principal value (CPV), 402

Chain rule
classical notation for, 31
for differentiable functions, 28
on E^{n} and $C^{n}, 30$
Change of measure in generalized integrals, 332
Change of variable
in antiderivatives, 363
in Lebesgue integration, 386
Characteristic functions, 246
Clopen maps, 61
Closed maps, 59
Closed sets in topologies, 161
Compact regular (CR) set functions on topological spaces, 209
Comparison test
for improper integrals, 393, 399
for uniform convergence of parametrized C-integrals, 405
Complete measures, 148
Complete normed spaces, see Banach spaces
Completions of measures, 159
completions of generalized measures, 205
Completely additive set functions, see σ additive set functions
Continuous
functions between topological spaces, 161
linear map, 13
set functions, 131, 147
with respect to a set function $t(t-$ continuous), 197
Continously differentiable functions, 38,57
Convergence of functions
almost everywhere, 231
almost uniform, 239
Egorov's theorem, 240, 283
in measure, 239, 280
Lebesgue's theorem, 240, 283
Riesz' theorem, 280
Convergence of improper integrals, 388 absolute, 393
Cauchy criterion for, 391
comparison test for, 393, 399
conditional, 391
Abel-Dirichlet test for, 400
Convergent sequences of sets, 180
Countably-additive set functions, see σ additive set functions
Coverings of sets, 137
basic, 138
\mathcal{M}-coverings of a set, 137
Ω-coverings of a set, 213
Vitali, 180; see also Vitali coverings
CP, the Carathéodory property, 145
Critical points, 82

Darboux sums (upper and lower), 307
Decompositions
Lebesgue, 342
of generalized measures, 344
Derivates
of point functions, 373
of set functions $(\bar{D}(\bar{p}), \underline{D}(\bar{p})), 187$
Derivatives
directional, see Directional derivatives
of set functions, 210
Radon-Nikodym, 338, 351
partial, see Partial derivatives
Determinants
functional, 49
of matrices, 47, 96
Differentiable functions, 17
and directional derivatives, 19
chain rule for, 28
continuously, 38, 57
differentials of, 17
and partial derivatives, 19, 22
in a normed space, 17
m times differentiable, 38
Differentiable set functions, 210
Differentials, 17
chain rule for, 28
of functions in a normed space, 17
of order $m, 39$
Differentiation of set functions, 210-216
$\overline{\mathcal{K}}$-differentiation, 211
Lebesgue differentiation, 211, 351
Ω-differentiation, 211, 353
Directional derivatives, 1
differentiable functions and, 19
Finite Increments Law for, 7
higher order, 35
of linear maps, 15
Discriminant of a quadratic polynomial, 80
Disjoint set families, 99
Dominated convergence theorem, 273, 327
Dot products, linear functionals on E^{n} and C^{n} as, 10
Double series, 110, 115

E^{n}

intervals in, 97
volume of open sets in, 108
Elementary functions, 218
integrable, 241
integrals of, 241
integration of, 241-250
Euler's theorem for homogeneous functions, 34
Extended-real functions
integration of, 251-267; see also Integration of extended-real functions
integrable, 252
lower integrals of, 251
upper integrals of, 251
Extremum, extrema
absolute, 82
conditional, 88
local, 79, 89
Fatou's lemma, 272
Fields of sets, 116
generated by a set family, 117
Finite Increments Law for directional derivatives 7
Finite set functions, 125
Finite with respect to a set function $t(t-$ finite), 197
Finitely additive set functions, 126, 126
Fréchet's theorem, 237
Fubini
map, 294
theorem, 298, 301, 305, 334
Functional determinants, 49
Functionals, linear, see Linear functionals
Functions. See also Maps
bijective, 52
continuous, 161
differentiable, see Differentiable functions
homeomorphisms, 70
homogeneous, 34
implicit function theorem, 64
inverse function theorem, 61
partially derived, 2
Fundamental theorem of calculus, 360
Generalized integration, 323ff.
change of measure, 332
dominated convergence theorem, 327
Fubini property in, 334
indefinite integrals in, 330

Generalized measure spaces, 194
integration in, 323ff.
Generalized measures, 194
completion of, 205
decomposition of, 344
signed measures, 194, 199
Gradient of a function, 20

Hadamard's theorem, 96
Hahn decomposition theorem, 201
Hereditary set families, 123
Homeomorphisms, 70
Homogeneous functions, 34
Euler's theorem for, 34

Implicit
differentiation, 66, 87
function theorem, 64
Improper integrals, 388
absolute convergence of, 393
Cauchy criterion for, 391
Cauchy principal value (CPV) of, 402
comparison test for, 393, 399
conditional convergence of, 391
Abel-Dirichelet test for convergence of, 400
iterated, 394
convergence of, 388
singularities of, 387
Indefinite integrals, 263, 293, 330
indefinite L-integrals, 366
Independence, linear, 16
Inner products representing linear functionals on E^{n} and $C^{n}, 10$
Integrable functions
elementary, 241
extended-real, 252
with values in complete normed spaces, 285
Riemann, 307, 317
Integrals
Cauchy (C-integrals), 388; see also Improper integrals
in generalized measure spaces, 323 ff .
indefinite, 263, 293, 330
improper, 388; see also Improper integrals
iterated, 294
Lebesgue, 357
Lebesgue integrals and Riemann integrals, 313
lower, 251
of elementary functions, 241
orthodox, 247
parametrized C-integrals, 402; see also
Parametrized C-integrals
Riemann (R-integrals), 308ff.; see also Riemann integrals
Riemann-Stieltjes, 318
Stieltjes, 319, 321ff.
unorthodox, 247
upper, 251
with respect to Lebesgue measure (Lintegrals), 357
Integration
absolute continuity of the integral, 275
additivity of the integral, 260, 290
by parts, 321
dominated convergence theorem, 273, 327
Fatou's lemma, 272
in generalized measure spaces, 323 ff .
of elementary functions, 241-250
of extended-real functions, 251-267
of functions with values in Banach spaces, 285-291, 305
linearity of the integral, 267, 288
monotone convergence theorem, 271
weighted law of the mean, 269
Intervals in $E^{n}, 97$
additivity of volume of, 101
simple step functions on, 218
step functions on, 218
Inverse function theorem, 61
Iterated integrals, 294
iterated improper integrals, 394
Fubini map, 294
Fubini theorem, 298, 301, 305, 334
Jacobian matrix, 18
Jacobians, 49
Jordan components, 203
Jordan decompositions, 202
Jordan components, 203
Jordan outer content, 140
$\overline{\mathcal{K}}\left(\right.$ the set of all cubes in $\left.E^{n}\right), 186,210$
L-measurable, see Lebesgue-measurable.
L-integrable, see Lebesgue-integrable.
L-integrals, 357
and absolutely continuous functions, 380
indefinite, 366
L-primitive, 366

Lagrange form of the remainder in Taylor's Theorem, 42
Lagrange multipliers, 89
Lebesgue
decompositions, 342
extensions, 154, 168
Lebesgue-integrable functions, 241
Lebesgue-measurable functions, 222
Lebesgue-measurable sets, 168
measure, 168-175
outer measure, 138
nonmeasurable sets under Lebesgue measure, 173
points of functions, 382
premeasure, 126, 138, 168
premeasure space, 138
sets of functions, 382
Lebesgues-Stieltjes
measurable functions, 222
measures, 176
measures in $E^{n}, 179$
outer measures, 146, 176
premeasures, 176
set functions, $127,135,176$
signed Lebesgues-Stieltjes measures, 206, 335
Linear boundededness, 9
Left-continuous set functions, 131
Linear functionals, 7
on E^{n} and C^{n} as dot products, 10
Linear maps, 7
as a normed linear space, 13
bijective, 53
bounded, 9
continuous, 9, 13
directional derivatives of, 15
matrix representation of composite, 12
matrix representation of, 11
norm of, 13
uniformly continuous on E^{n} or $C^{n}, 10$
Linear subspaces of a vector space, 16
Linear independence, 16
Linearity of the integral
of extended-real functions, 267
of functions with values in Banach spaces, 288
Lipschitz condition, 25, 384
Local
extremum, extrema, 79, 89
maximum, maxima, 79
minimum, minimima, 79

Lower
Darboux sums, 307
integrals, 251
Riemann integrals, 308
LS, see Lebesgues-Stieltjes.
Luzin's theorem, 234
M-test for uniform convergence of parametrized C-integrals, 405
Maps. See also Functions
bicontinuous, 70
clopen, 61
closed, 59
linear, see Linear maps
open, 59
open map principle, 75
Matrix, matrices
as elements of a vector space, 15
determinants of, 47, 96
Jacobian, 18
$n \times n$ matrices as a noncommutative ring with identity, 15
of composite linear maps, 12
representation of a linear map, 11
Maximum, maxima
absolute, 82
conditional, 88
local, 79
Meagre sets, 71
Measurable covers of sets, 156
Measurable functions
almost, 231
Borel, 222
Fréchet's theorem, 237
Lebesgue (L), 222
Lebesgues-Stieltjes (LS), 222
Luzin's theorem, 234
\mathcal{M}-measurable functions, 218
m-measurable functions, 231
Tietze's theorem, 236
Measurable sets, 147
nonmeasurable sets under Lebesgue measure, 173
outer, 149
Measurable spaces, 217
Measure spaces, 147
almost measurable functions on sets in, 231
probability spaces as, 148
topological, 162
Measures, 147, 194. See also Set functions Borel restrictions of, 162
as extensions of premeasures, 154
Borel, 162
complete, 148
completions of, 159
constructed from outer measures, 152
generalized, 194
Lebesgue, 168-175
Lebesgue extensions, 154
Lebesgues-Stieltjes, 176
Lebesgues-Stieltjes measures in $E^{n}, 179$
outer, 138, 139; see also Outer measures
product, 293
regular, 162
rotation-invariant, 192
signed, 194, 199
signed Lebesgue-Stieljes, 206, 335
strongly regular, 162
totally σ-finite, 169
translation-invariant, 171
Metric spaces
as topological spaces, 161
networks of sets in, 212
Minimum, minima
absolute, 82
conditiona, 88
local, 79
Monotone convergence theorem, 271
Monotone set functions, 136, 117

Networks of sets in metric spaces, 212
Nonmeasurable sets under Lebesgue measure, 173
Norm of a linear map, 13
Normal Vitali coverings, 192
Nowhere-dense sets, 70
Ω-coverings of a set, 213
Ω-differentiation, 211
and Radon-Nikodym derivative, 353
Open map principle, 75
Open maps, 59
Open sets
in topologies, 161
volume of, 108
Operator, linear, 7
Orthodox integrals, 247
Outer content, 140
Jordan, 140
Outer measurable sets, 149
Outer measure spaces, 149

Outer measures, 138, 139
Carathéodory property (CP), 145
constructing measures from, 152
Lebesgue outer measure, 138, 146, 176
Lebesgues-Stieltjes, 146
outer measurable sets, 149
regular, 155, 156
$\mathcal{P}(S)$, the power set of $S, 116$
Parametrized C-integrals, 402
Abel-Dirichlet test for uniform convergence of, 408
Cauchy criterion for uniform convergence of, 403
comparison test for uniform convergence of, 405
M-test for uniform convergence of, 405
Partial derivatives, 3
differentiable functions and, 19, 22
higher order, 35
Partially derived function, 2
Partitions of sets, 195, 217
elementary functions on, 218
refinements of, 218, 308
simple functions on, 218
Permutable series, 110
Polar coordinates, 46, 50, 55, 306, 395
Positive series, 111
Power set $\mathcal{P}(S), 116$
Premeasures, 137, 147
measures as extensions of, 154
induced outer measures from, 138
Lebesgue, 126, 138, 168
Lebesgues-Stieltjes, 176
Premeasure spaces, 138
Lebesgue, 138
Primitives, see Antiderivatives
Probability spaces, 148
Product measures, 293
Products of set families, 120
Pseudometric spaces, 165
Pseudometrics, 165

Quadratic forms, symmetric, 80

R-integrals, see Riemann integrals
Radon-Nikodym derivatives, 338
and Lebesgue differentiation, 351
and Ω-differentiation, 353
Radon-Nikodym theorem, 338
Refinements of partitions of sets, 218, 308

Regular measures, 162
Regular set functions, 140
compact, 209
outer measures as, 155, 156
Regulated functions, 312
Residual sets, 71
Riemann-integrable functions, 307, 317
Riemann integrals, 308ff.
Darboux sums (lower and upper), 307
Lebesgue integrals and, 313
lower, 307
regulated functions, 312
Riemann sums, 321
upper, 307
Riemann sums, 321
Riemann-Stieltjes integrals, 318
Right-continuous set functions, 131
Ring
$n \times n$ matrices as a noncommutative ring with identity, 15
Rings of sets, 101, 115
generated by a set family, 117
Rotation-invariant measures, 192
σ-additive set functions, 126,147
σ-additivity of volume, 104
σ-algebras of sets, 116. See also σ-field
σ-fields of sets, 116
Borel fields, 162
genereated by a set family $\mathcal{M}, 117$
σ-finite set functions, 140
totally, 140, 169
σ-rings of sets, 116,147
Borel fields, 162
generated by a semiring, 119
generated by a set family, 117
σ-subadditive set functions, 137, 147
σ^{0}-finiteness, 167
Semifinite set functions, 126
Semirings of sets, 98
Separable sets, 223
Series
double, 110, 115
permutable, 110
positive, 111
Sets
Borel, 162
$\mathcal{C}_{\sigma}, 104$
\mathcal{C}-simple, 99
Cantor's set, 76
convergent sequences of, 180
families of, see Set families
Lebesgue-measurable, 168
meagre, 71
measurable, 147
nonmeagre, 71
nowhere dense, 70
of Category I, 71
of Category II, 71
outer measurable, 149
partitions of, 195
residual, 71
rings of, 101, 115
σ-algebras of, 116
σ-fields of, 116
σ-rings of, 116
semirings of, 98
separable, 223
symmetric difference of, 122
Vitali coverings of, 180
volume of, see Volume
Set algebras, 116. See also Set fields.
Set families, 98
set algebras, 116
\mathcal{C}-simple sets $\mathcal{C}_{s}^{\prime}, 99$
disjoint, 99
fields, 116
hereditary, 123
products of, 120
rings, 101, 115
σ-algebras, 116
σ-fields, 116
σ-rings, 116
semirings, 98
Set fields, 116
generated by a set family, 117
Set functions, 125
absolutely continuous with respect to a set function t (absolutely t continuous), 197
additive, 126, 137
additive extension of, 129
compact regular (CR) set functions on topological spaces, 209
continuous, 131, 147
continuous with respect to a set function t (t-continuous), 197
derivates of $(\bar{D}(\bar{p}), \underline{D}(\bar{p})), 187$
derivatives of, 210
differentiable, 210
finite, 125
finite with respect to a set function $t(t-$ finite), 197
finitely additive, 126,126
generalized measures, 194
Lebesgue premeasure, 126
Lebesgues-Stieltjes, 127, 135, 176
left-continuous, 131
monotone, 136, 147
outer measures, 138; see also Outer measures
premeasures, 137
regular, 140, 155
right-continuous, 131
rotation-invariant, 192
σ-additive, 126
σ-finite, 140
σ-subadditive, 137
semifinite, 126
signed measures, 194, 199
signed Lebesgues-Stieltjes measures, 206, 335
singular with respect to a set function t (t-singular), 341
total variation of, 194
totally σ-finite, 140,169
translation-invariant, 171
volume of sets, see Volume
Set rings, 101, 115
generated by a set family, 117
Signed Lebesgues-Stieltjes measure spaces, 206
induced by a function of bounded variation, 206
integration in, 335
Signed measure spaces, 194, 199
Hahn decomposition theorem, 201
Jordan components, 203
Jordan decompositions, 202
negative sets in, 199
positive sets in, 199
Simple functions, 218
simple step functions, 218
Singular with respect to a set function t (t-singular), 341
Singularities of improper integrals, 387
Span of vectors in a vector space, 16
Step functions, 218
simple, 218
Stieltjes integrals, 319, 321 ff .
integration by parts, 321
laws of the mean, 322
Strongly regular measures, 162, 234, 237, 347
Sylvester's theorem, 80
Symmetric difference of sets, 122

Symmetric quadratic forms, 80
Sylvester's theorem, 80

Taylor polynomial, 43
Taylor's Theorem, 40
generalized, 45
Lagrange form of remainder, 42
Taylor polynomial, 43
Tietze's theorem, 236
Topological measure spaces, 162
Topological spaces, 161
compact regular (CR) set functions on, 209
continuous functions between, 161
metric spaces as, 161
pseudometric spaces as, 165
Topologies, 161
closed sets in, 161
open sets in, 161
Total variation of set functions, 194
Totally σ-finite set functions, 140, 169
Translation-invariant set functions, 171

Uniform boundedness principle of Banach and Steinhaus, 75
Uniformly normal Vitali coverings, 192
Universal Vitali coverings, 192
Unorthodox integrals, 247
Upper
Darboux sums, 307
integrals, 251
Riemann integrals, 307
V-coverings, see Vitali coverings
Vectors
span of a set of, 16
Vector spaces
basis of, 16
dimension of, 16
linear subspaces of, 16
matrices as elements of, 15
span of vectors in, 16
Vitali coverings, 180
normal, 192
uniformly normal, 192
universal, 192
Volume
additivity of volume of intervals, 101
monotinicity of, 109
of \mathcal{C}_{σ}-sets in $E^{n}, 107$
of open sets in $E^{n}, 108$
of sets, 125
σ-subadditivity of, 109

Weighted law of the mean, 269

[^0]: * "Starred" sections may be omitted by beginners.

[^1]: ${ }^{1}$ We now presuppose $\S \S 9-12$ of Chapter 3 , including the "starred" parts.

[^2]: ${ }^{2}$ Similarly in the case $E^{\prime}=E^{2}\left(C^{2}\right)$.

[^3]: ${ }^{1}$ This is the so-called uniform Lipschitz condition.

[^4]: ${ }^{2}$ See Problem 2(ii) below.

[^5]: ${ }^{3}$ Equivalently, $\|f\|=\sup _{\vec{x} \neq \overrightarrow{0}}|f(\vec{x})| /|\vec{x}|$; see Note 5 below.

[^6]: ${ }^{1}$ See ${ }^{*} \S 8$ for the general case.

[^7]: ${ }^{1}$ We can always make \bar{G} closed by reducing δ.

[^8]: ${ }^{2}$ Thus formula (1) still holds for $\varepsilon=1 /\left\|\phi^{-1}\right\|, \phi=d f(\vec{p}, \cdot)$.

[^9]: ${ }^{3}$ This change of variables is admissible as the map $\vec{t} \longleftrightarrow \Delta \vec{y}$ is one-to-one (Corollary 2 in Chapter 4, §2).

[^10]: ${ }^{4}$ This can be made more precise using the theory of product spaces (Chapter $4,{ }^{*} \S 11$).

[^11]: ${ }^{5}$ For more on implicit differentiation, see $\S 10$.

[^12]: ${ }^{1}$ Note that $q_{n} \rightarrow q_{0}$, since $q_{n} \in G_{q_{0}}\left(c^{n} r\right)$ implies $\left|q_{n}-q_{0}\right|<c^{n} r \rightarrow 0$, as $0<c<1$.

[^13]: ${ }^{2}$ Of course, if E is meagre, so is $f\left[E^{\prime}\right]$ in both cases.

[^14]: ${ }^{3}$ Such is any closed set $A=\bar{A} \subseteq(S, \rho)$ (see Problem 20 in Chapter 3, $\S 16$).

[^15]: ${ }^{1}$ Indeed, by Theorem 2(ii) in Chapter 4, $\S 8$, absolute extrema must exist here, as all is limited to the compact sphere, $x^{2}+y^{2}+z^{2}=1$.

[^16]: ${ }^{1}$ That is, $D_{j} F(\vec{p}, \vec{q})=0$, with F as in (7).

[^17]: ${ }^{2}$ This suffices here, since the equation $g=\overrightarrow{0}$ defines a compact set S; see $\S 9$.

[^18]: ${ }^{3}$ See S. Perlis, Theory of Matrices, Reading, Mass., 1952, Theorem 9-25.

[^19]: ${ }^{1}$ Recall that a positive series always has a (possibly infinite) sum.

[^20]: ${ }^{2}$ This notion is treated in more detail in $\S 5$.

[^21]: ${ }^{1}$ For a limited approach (see the preface), this topic may be omitted.

[^22]: ${ }^{2}$ It may be deferred until Chapter $8, \S 8$, though.

[^23]: ${ }^{1}$ Theorems 1-3 are redundant for a "limited approach" (see the preface). Pass to Chapter $8, \S 1$.

[^24]: ${ }^{1}$ Sections 6-12 are not needed for a "limited approach." (Pass to Chapter 8, §1.)

[^25]: ${ }^{2}$ Some authors consider outer measures on smaller domains; we shall not do so.

[^26]: ${ }^{1}$ See M. E. Munroe, Measure and Integration, Addison-Wesley (1971), pp. 173-175.

[^27]: ${ }^{1}$ Any such $\left\{X_{i}\right\}$ is called an \mathcal{M}-partition of A (Chapter $8, \S 1$); it may consist of A alone.

[^28]: ${ }^{2}$ For the rest of this section, we assume that \mathcal{M} and \mathcal{M}^{\prime} satisfy $X \in \mathcal{M}$ whenever $X \in \mathcal{M}^{\prime}$ and $v_{t} X<\infty$.
 ${ }^{3}$ If $E=E^{*}$, we assume $k \in E^{1}$. If s is scalar valued, k may be a vector in E.

[^29]: ${ }^{4}$ For if $v_{t} X=0$, then $v_{t} X<\delta$ for any $\delta>0$. Thus Definition 3(ii) implies $(\forall \varepsilon>0)$ $|s X|<\varepsilon$; hence $|s X|=0$.

[^30]: ${ }^{1}$ We follow some ideas by E. Munroe here.

[^31]: ${ }^{2}$ Thus for each fixed i, the U_{n}^{i} are disjoint. Also, μ is σ-finite, and $S \in \mathcal{M}$.

[^32]: ${ }^{3}$ A signed measure s is called regular iff s^{+}and s^{-}are regular (Definition 4 in $\S 7$). A complex measure s is regular iff s_{re} and s_{im} are. Finally, $s: \mathcal{M}^{\prime} \rightarrow E^{r}\left(C^{r}\right)$ is regular iff all its components s_{i} are.

[^33]: ${ }^{1} \mathcal{P}$ may be finite; it may even consist of A alone.

[^34]: ${ }^{2}$ Only simple step functions are needed for a "limited approach." (One may proceed from here to $\S 4$, treating m as an additive premeasure.)

[^35]: ${ }^{3}$ We briefly write $\rho^{\prime}(f, g)$ for $\sup _{x \in S} \rho^{\prime}(f(x), g(x))$.
 ${ }^{4}$ The theorem holds also for $T=E^{*}$, with ρ^{\prime} as in Problem 5 of Chapter 3, $\S 11$.

[^36]: ${ }^{1}$ For a simpler proof, in the case $m A<\infty$, see Problem 10 below.

[^37]: ${ }^{1}$ For a "limited approach," use finite \mathcal{M}-partitions and \mathcal{M}-simple maps, treating m as an additive premeasure on \mathcal{M}, a ring.

[^38]: ${ }^{2}$ That is, on $A-Q$ for some $Q \in \mathcal{M}$, with $m Q=0$.

[^39]: ${ }^{3}$ For a "limited approach," pass from here to $\S 9$.

[^40]: ${ }^{1}$ Those who wish to consider measurable maps only should take Theorem 3 earlier.
 ${ }^{2}$ There is good reason for identifying "integral" with "upper integral."

[^41]: ${ }^{3}$ Note that integrability is redundant here and in Theorem 2.

[^42]: ${ }^{4}$ It suffices that f be integrable on A (apply the same proof to f^{+}and f^{-}).

[^43]: ${ }^{1}$ For the general case, see Problem 5.

[^44]: ${ }^{1}$ As before, we presuppose an arbitrary (but fixed) measure space (S, \mathcal{M}, m).

[^45]: ${ }^{2}$ For vector-valued functions, too, this phrase means integrability.

[^46]: ${ }^{3}$ Indeed, $f_{n}-f_{k} \rightarrow f_{n}-f$ (uniformly) on A as $k \rightarrow \infty$; so Lemma 1 applies.

[^47]: ${ }^{4}$ One may assume that $\int_{A}|f|^{2}$ and $\int_{A}|g|^{2}$ are finite (otherwise, all is trivial).

[^48]: ${ }^{1}$ Note the use of absolute values; without them, Theorem 2 fails (see Problem 5^{\prime}).
 ${ }^{2}$ See Note 2 in Chapter 7, $\S 8$.

[^49]: ${ }^{3}$ Or, equivalently, p-measurable (Note 2 in $\S 3$), as p is complete (Theorem 1 of Chapter $7, \S 6)$.

[^50]: ${ }^{1,2}$ These expressions exist in E^{*} (Chapter 4, $\S 4,\left(2^{*}\right)$).

[^51]: ${ }^{3}$ This also shows that an R-integral, when one exists, is always finite.

[^52]: ${ }^{4}$ Integrability is with respect to the measure m mentioned above.

[^53]: ${ }^{5}$ Integrability is with respect to the measure m mentioned above.

[^54]: ${ }^{1}$ By choosing s^{+}and s^{-}as in formula (3) of Chapter 7 , $\S 11$, we avoid ambiguity.

[^55]: ${ }^{2}$ That is, on $A-Q, v_{s} Q=0$.

[^56]: ${ }^{3}$ Or $|t|<\infty$; see Theorem 6 in Chapter 7, $\S 11$. The restriction is redundant if $t: \mathcal{M} \rightarrow$ $E^{n}\left(C^{n}\right)$.

[^57]: ${ }^{1}$ Differentiability follows by Theorem 4 of Chapter $7, \S 12$, but we obtain it anyway.

[^58]: ${ }^{2}$ Recall that $\int f$ is always defined by our convention.

[^59]: ${ }^{3}$ The restriction $m A<\infty$ is redundant if s is finite.

[^60]: ${ }^{4}$ The restriction $m A<\infty$ is redundant if s is finite.
 ${ }^{5}$ Note that $s\{a\}=0$ if s is m-continuous.

[^61]: ${ }^{6}$ Here $L \int_{a}^{x} f d m=\int_{[a, x]} f d m ; m=$ Lebesgue measure.

[^62]: ${ }^{1}$ This is true even in the stronger sense, as in Problem 2 of Chapter 5, $\S 8$, or in $\S 2$ (next to this).
 ${ }^{2}$ Recall that $V_{H}[A]$ is the total variation of H on A (Chapter $5, \S \S 7-8$).
 ${ }^{3}$ Part (ii) is true even if f is not L-integrable, only $L \int_{a}^{b}|f|<\infty$ is needed.

[^63]: ${ }^{4}$ See Definition 1 in Chapter 5, $\S 5$.

[^64]: ${ }^{5}$ See Definition 1 from Chapter $5, \S 5$.

[^65]: ${ }^{6}$ We assumed that $E=E^{*}\left(E^{n}, C^{n}\right)$ since R-integrals were defined for that case only.

[^66]: 1 " $D F(p)$ " stands for "an F-derivate at p."

[^67]: ${ }^{2}$ Not $f \geq 0$, though, since Corollary 1 in Chapter $8, \S 6$, does not apply to differentiation.

[^68]: ${ }^{3}$ Such as F^{\prime}, the derived function of F.

[^69]: ${ }^{1}$ For RS- and LS-integrals, we may well have $\int_{p}^{p} f \neq 0, \int_{[a, b]} f \neq \int_{(a, b)} f$, etc.
 ${ }^{2}$ This also applies if an infinite interval has an inside singularity.

[^70]: ${ }^{3}$ It applies to finite intervals A, too.
 ${ }^{4}$ That is, the proper integral.

[^71]: ${ }^{5}$ This is true provided $\int_{A} f d m$ is finite or orthodox, so that $s=\int f$ is semifinite.

[^72]: ${ }^{6}$ Here and later, for $L S$ integrals, replace \int_{v}^{x} by $\int_{(v, x]}$ and \int_{b}^{x} by $\int_{(b, x]}$.

[^73]: ${ }^{7}$ Hence the integrals in (a) and (b) can also be treated as proper integrals.

[^74]: ${ }^{8}$ And hence L-integrable on each $[u, v] \subset A$, by (c).

[^75]: ${ }^{1}$ This statement shall imply that $\int_{a}^{x} f(t, u) d m(t) \neq \pm \infty$ exists for $x \geq a, u \in B$.
 ${ }^{2}$ For $L S$-integrals, replace \int_{v}^{x} by $\int_{(x, v]}^{a}$ here and in the proof below.

[^76]: ${ }^{3}$ Note that Theorem 1 essentially depends on the assumed completeness of E.

[^77]: ${ }^{4}$ Briefly: " $f(t, u)$ is monotone in t, and $g(t, u)$ is measurable in $t(t \in A)$. ." It should be well noted that all f^{u} and g^{u} are functions of t on E^{1}.

[^78]: ${ }^{5}$ Pointwise or a.e. convergence suffices for m-measurability in clause (i).
 ${ }^{6}$ Here and in Theorem 5, as functions of $y: H_{x}(y)=H(x, y)$. Continuity may be relative or uniform.

[^79]: ${ }^{7}$ Here and below, $\delta>0$ is arbitrarily small.

