
M A N N I N G

Timothy Binkley-Jones
Massimo Perga
Michael Sync

IN ACTION

Siti
Sticky Note
silakan lihat atau klik bookmarks untuk melihat per bab.

Windows Phone 7
in Action

TIMOTHY BINKLEY-JONES
MASSIMO PERGA

MICHAEL SYNC

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2013 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Jeff Bleiel
20 Baldwin Road Copyeditor: Benjamin Berg
PO Box 261 Technical proofreader: Richard Reukema
Shelter Island, NY 11964 Proofreader: Melody Dolab

Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781617290091
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13 12

www.manning.com

brief contents
PART 1 INTRODUCING WINDOWS PHONE...................................1

1 ■ A new phone, a new operating system 3

2 ■ Creating your first Windows Phone application 29

PART 2 CORE WINDOWS PHONE..55
3 ■ Fast application switching and scheduled actions 57

4 ■ Launching tasks and choosers 93

5 ■ Storing data 121

6 ■ Working with the camera 149

7 ■ Integrating with the Pictures and Music +
Videos Hubs 171

8 ■ Using sensors 199

9 ■ Network communication with push notifications
and sockets 227

PART 3 SILVERLIGHT FOR WINDOWS PHONE..........................257
10 ■ ApplicationBar, Panorama, and Pivot controls 259

11 ■ Building Windows Phone UI with
Silverlight controls 284
v

BRIEF CONTENTSvi
12 ■ Manipulating and creating media
with MediaElement 310

13 ■ Using Bing Maps and the browser 341

PART 4 SILVERLIGHT AND THE XNA FRAMEWORK369
14 ■ Integrating Silverlight with XNA 371

15 ■ XNA input handling 399

contents
preface xv
acknowledgments xvi
about this book xvii
about the cover illustration xxi

PART 1 INTRODUCING WINDOWS PHONE1

1 A new phone, a new operating system 3
1.1 Rebooting the Windows Phone platform 4
1.2 Windows Phone foundations 5

Hardware specs 6 ■ A new user interface 7
User experience 8 ■ Platform APIs and frameworks 10
AppHub and the Windows Phone Marketplace 11

1.3 Comparing Windows Phone to other mobile
platforms 12
Windows Mobile 12 ■ Apple iOS 14 ■ Android 17

1.4 The Windows Phone Developer Tools 20
Visual Studio for Windows Phone 20 ■ Expression Blend
for Windows Phone 20 ■ XNA Game Studio 20
Windows Phone Emulator 21 ■ Windows Phone Developer
Registration tool 22 ■ XAP Deployment tool 23
vii

CONTENTSviii
WPConnect 24 ■ Isolated Storage Explorer tool 25
Marketplace Test Kit 25

1.5 Summary 28

2 Creating your first Windows Phone application 29
2.1 Generating the project 30

Debugging phone projects 33 ■ Application startup 34

2.2 Implementing Hello World 35
Customizing the startup page 35 ■ Adding application
content 37 ■ Adding the greetings page 39

2.3 Interacting with the user 41
Touch typing 41 ■ Touch gestures 42
Adding a toolbar button 43

2.4 Page navigation 45
Navigating to another page 45 ■ Passing parameters
between pages 47 ■ Changing the Back key behavior 48
Navigating with tiles 49

2.5 Application artwork 50
Customizing the splash screen 50
Customizing tile images and application icons 50

2.6 Try before you buy 52
2.7 Summary 53

PART 2 CORE WINDOWS PHONE55

3 Fast application switching and scheduled actions 57
3.1 Fast application switching 58

Understanding lifetime events 59
Creating the Lifetime sample application 61

3.2 Launching the application 62
Construction 62 ■ First-time initialization 65

3.3 Switching applications 66
Going dormant 66 ■ Returning to action 68
Tombstoning 69

3.4 Out of sight 74
Obscuration 74 ■ Running behind the lock screen 75

CONTENTS ix
3.5 Working on a schedule 77
Introducing the Scheduled Action Service 78
Scheduling a reminder 81 ■ Editing a notification 83
Deleting a notification 84

3.6 Creating a background agent 85
Background agent projects 85 ■ Executing work from the
background agent 86 ■ Scheduling a PeriodicTask 87
Scheduled tasks expire after two weeks 88
User-disabled tasks 89 ■ When things go awry 90
Testing background agents 91

3.7 Summary 92

4 Launching tasks and choosers 93
4.1 Tasks API 94
4.2 Launchers 96

Placing a phone call 97 ■ Writing an email 98
Texting with SMS 99 ■ Working with the Marketplace 100
Searching with Bing 103

4.3 Choosers 103
Completed events 104 ■ Saving a phone number 105
Saving an email address 106 ■ Saving a ringtone 107
Choosing a phone number 108 ■ Choosing an
email address 109 ■ Choosing a street address 109

4.4 UserData APIs 110
Searching for contacts 111 ■ Reviewing appointments 115

4.5 Summary 119

5 Storing data 121
5.1 Creating the High Scores sample application 122

Displaying the high score list 123 ■ Managing the high
score list 125 ■ Defining a high score repository 126

5.2 Storing data with application settings 127
5.3 Serializing data to isolated storage files 129

Serializing high scores with the XmlSerializer 130
Deleting files and folders 131

5.4 Working with a database 132
Attributing your domain model 133 ■ Defining the
data context 135 ■ Creating the database 136

CONTENTSx
CRUD operations 137 ■ Searching for data 141
Compiling queries 142 ■ Upgrading 143
Adding a read-only database to your project 146

5.5 Summary 147

6 Working with the camera 149
6.1 Starting the PhotoEditor project 150
6.2 Working with the camera tasks 151

Choosing a photo with PhotoChooserTask 151
Taking photos with CameraCaptureTask 154
Handling picture orientation in CameraCaptureTask 155

6.3 Controlling the camera 159
Painting with the VideoBrush 162 ■ Snapping a photo 163
Supporting fast application switching 165

6.4 Image editing 165
Rendering Silverlight elements 166 ■ Saving an image
to isolated storage 167 ■ Loading an image from
isolated storage 168

6.5 Summary 169

7 Integrating with the Pictures and Music + Videos Hubs 171
7.1 Working with pictures in the Media Library 172

Exposing Pictures 172 ■ Saving pictures to the
media library 174 ■ Retrieving a picture from
the media library 175

7.2 Editing and sharing from the Pictures Hub 176
Extending the Picture Hub 176 ■ Extending the
Picture Viewer 178 ■ Sharing pictures from your
Pictures Hub extension 180

7.3 Playing and recording with the Music + Videos Hub 181
Enabling XNA Framework events 183 ■ Building the
user interface 183 ■ Recording audio 185
Playing audio 189

7.4 Playing recorded audio in the Music + Videos Hub 190
Fulfilling Music + Videos Hub requirements 191
Launching from the Music + Videos Hub 193

7.5 Playing recorded audio with a background agent 194

CONTENTS xi
7.6 Listening to FM radio 196
7.7 Summary 197

8 Using sensors 199
8.1 Understanding the sensor APIs 200

Data in three dimensions 201 ■ Reading data with events 202
Polling for data 203

8.2 Creating the sample application 203
Creating a reusable Bar control 204 ■ Designing the
main page 206 ■ Polling sensor data with a timer 207

8.3 Measuring acceleration with the accelerometer 208
Hooking up the sensor 209 ■ Acceleration in the emulator 210
Interpreting the numbers 211

8.4 Finding direction with the Compass 213
Hooking up the sensor 214 ■ Interpreting the numbers 216
Calibrating the sensor 217

8.5 Pivoting with the Gyroscope 217
Hooking up the sensor 218

8.6 Wrapping up with the motion sensor 219
Building a motion enabled sample application 220
Hooking up the sensor 222 ■ Interpreting the numbers 224

8.7 Summary 226

9 Network communication with push notifications and sockets 227
9.1 Detecting network connectivity 228

Reading device settings 229
Using the NetworkInterface class 231

9.2 Pushing notifications to a phone 232
Three types of notifications 233 ■ Push notification
workflow 234 ■ Creating a Push Notification client 235
Opening a notification channel 236 ■ Looking for
navigation parameters 237 ■ In-app notifications 238
Copying the channel URI 239

9.3 Simulating a push notification service 239
Issuing HTTP web requests 240 ■ Sending toast
notifications 243 ■ Using notifications to update a tile 244

9.4 Tiles without all the pushiness 247

CONTENTSxii
9.5 Communicating with sockets 249
9.6 Implementing a chat application with TCP sockets 250

Building the Chit-chat client 250 ■ Connecting to the server 252
Receiving messages from the server 254 ■ Sending a message 255

9.7 Summary 256

PART 3 SILVERLIGHT FOR WINDOWS PHONE257

10 ApplicationBar, Panorama, and Pivot controls 259
10.1 Working with the ApplicationBar 260

Building an application bar 261 ■ Tooling support 262
Changing the application bar appearance 264
Dynamically updating buttons and menu items 265
Designing button icons 266

10.2 Improving the scenery with the Panorama control 268
Building a panorama application 269 ■ Widen up the view 271
Remembering where you are 272 ■ Adding a background 273
Customize the title 274

10.3 Pivoting around an application 275
Building the sample 276 ■ Remembering the
current selection 278 ■ Generating sample data 279
Dynamically loading pages 281

10.4 Summary 283

11 Building Windows Phone UI with Silverlight controls 284
11.1 Handling page orientation 285

Supported orientations 286 ■ Animating orientation
transitions 287 ■ Changing orientation 289

11.2 Building user interfaces 290
TextBlock 290 ■ Border 292 ■ Shapes 293
ProgressBar 293 ■ Image 294

11.3 Receiving Input 295
Button 295 ■ HyperlinkButton 296 ■ CheckBox 297
RadioButton 297 ■ TextBox 298 ■ Slider 300

11.4 Silverlight Toolkit for Windows Phone 301
ToggleSwitch 302 ■ DatePicker and TimePicker 303
ContextMenu 304 ■ GestureListener 306

11.5 Summary 308

CONTENTS xiii
12 Manipulating and creating media with MediaElement 310
12.1 Building a media player with MediaElement 312

Creating the media player project 312 ■ Loading media files 315
Media element states 317 ■ Controlling volume 319

12.2 Manipulating the media stream with
MediaStreamSource 320
Opening a media source 321 ■ Seeking media 322
Sampling media 323

12.3 Creating custom video 324
Initializing the stream source 325 ■ Opening the video
stream source 326 ■ Generating media samples 327

12.4 Creating custom audio 329
Defining a custom audio stream source 330
Opening the audio stream source 331
Generating audio samples 332

12.5 Streaming media clients 334
Using Smooth Streaming 335 ■ Streaming limitations 338

12.6 Summary 340

13 Using Bing Maps and the browser 341
13.1 Introducing Bing Maps 342

Preparing the application 343 ■ Launching the Bing
Maps application 343 ■ Finding directions 344

13.2 Location services 346
Building the sample application 346
Hooking up the service 348

13.3 Embedding a Map control 352
Mapping the current location with the GeoCoordinateWatcher 353
Creating a push pin 354

13.4 Using the Bing Maps Services 355
Adding the service reference 355 ■ Reverse geocoding 356

13.5 Building an HTML 5-based application 358
Launching Internet Explorer 359 ■ Embedding Internet
Explorer 360 ■ Adding HTML pages to the project 361
Matching the Metro style 363 ■ Working from
Isolated Storage 364 ■ Bridging C# and JavaScript 366

13.6 Summary 368

CONTENTSxiv
PART 4 SILVERLIGHT AND THE XNA FRAMEWORK369

14 Integrating Silverlight with XNA 371
14.1 Creating a Silverlight with XNA application 373

Sharing the graphics device 374 ■ The game loop 375

14.2 Building the game page 376
Understanding models 377 ■ Rendering models 379
Adding shapes 382 ■ Moving around 383
Running a demonstration 387 ■ Don’t repeat yourself 389
Collecting shapes 390 ■ It’s the end of the world 393

14.3 Implementing a scoreboard with Silverlight 394
Adding a scoreboard 395 ■ Rendering the texture 396

14.4 Summary 397

15 XNA input handling 399
15.1 Implementing pause and resume 401

Pausing game play 401 ■ Adding the resume button 402

15.2 Adding input services 404
Choosing an input type 404 ■ Creating a thumbstick 407
Creating a button pad 411 ■ Gaming with gestures 415
Moving with the motion sensor 418

15.3 Summary 421

appendix A Microsoft Expression Blend for Windows Phone 423
appendix B Silverlight and the Extensible Application Markup Language 430
appendix C AppHub and Marketplace 438

index 445

preface
We’ve come from different backgrounds and locations to write this book—Michael is
a Silverlight MVP who lives in Singapore; Massimo lives in Europe and worked at
Microsoft on the Windows Phone team; and Timothy lives in the United States and
was the technical proofreader for other Manning books on WPF and Silverlight.
Against all this diversity, our shared passion for Silverlight and mobile applications
brought us together to produce this book.

 In 2011, nearly half a billion smart phones were sold worldwide. The world is
quickly moving to a fully connected society, and smart phones like the Windows
Phone are positioned to play a major role in how we access data, connect with our
family and friends, and generally interact with the world around us. Smartphones are
almost always with us, know where they are located, and are connected to the internet.

 Our job as application developers is to create applications that can interact with
our environment, sift through the data, and present a simplified view of the world to
users overwhelmed with the complexities of the fast-paced, high-tech, digital world.
We hope our book gives you the knowledge you need to determine location, process
sensor input, capture audio and video, and scrutinize data to build killer Windows Phone
applications that integrate nicely with the operating system and native applications.
xv

acknowledgments
We would like to thank our family, friends, and coworkers for their support and advice,
for being there when we needed someone to listen to half-formed ideas, and for
understanding when we said “I’d love to, but I have to work on the book.” The chap-
ters covering the XNA Framework would have been impossible to write without advice
and debugging from Trystan Binkley-Jones.

 Of course none of this would have been possible without Microsoft and the sup-
port they provide to the development community. In particular, we would like to
thank Cliff Simpkins for providing hub screenshots and a developer phone complete
with a pre-release version of Windows Phone 7.5.

 We would like to thank the following reviewers, who read the manuscript at various
stages during development and provided invaluable feedback: ‘Anil’ Radhakrishna,
Berndt Hamboeck, Dave Campbell, Francesco Goggi, Jedidja Bourgeois, Lester Lobo,
Loïc Simon, Mark Monster, Nishant Sivakumar, Scott Turner, Steve Grey-Wilson, and
Vipul Patel. Special thanks to Richard Reukema for his careful technical proofread of
the manuscript shortly before it went into production.

 Finally, our thanks to everyone at Manning, especially Marjan Bace, Michael
Stephens, and our development editor Jeff Bleiel, as well as our production team of
Benjamin Berg, Melody Dolab, Dennis Dalinnik, Janet Vail, and Mary Piergies. Your guid-
ance and support during the writing and production process were much appreciated.
xvi

about this book
This book is a hands-on guide to building mobile applications for Windows Phone 7.5
using Silverlight, C#, XNA, or HTML5. The Windows Phone 7 operating system is
Microsoft’s latest entry into the fiercely competitive mobile market. Windows Phone 7
is not an upgrade of previous mobile operating systems, Windows Mobile and Win-
dows Phone 6.5. Microsoft has reimagined what a mobile operating system should be
and completely changed the rules on how to build mobile applications.

 To power the phone, Microsoft started with familiar foundations in Windows CE
the .NET Compact Framework, and the Zune user interface, adapted the Silverlight
and XNA libraries, and then added entirely new APIs for interacting with mobile hard-
ware, sensors, and software. In this book we show you how to build user interfaces that
adhere to the new Metro design, and how to use the new APIs to access the sensors
and integrate with the built-in application.

Who should read this book

This book is written for C# and .NET developers who are familiar with XAML, Silverlight
or WPF development. This book does not teach you the subtleties of C# or Silverlight/
XAML development. That being said, the book avoids many of the more powerful fea-
tures of Silverlight and the Model-View-ViewModel pattern used by many Silverlight
developers. Instead we kept the focus on the features and APIs that are unique to the
phone and endeavored to make the content accessible to those readers who are not
very familiar with Microsoft technologies.
xvii

ABOUT THIS BOOK xviii
Roadmap

This book has four parts, fifteen chapters, and three appendices. We divided the book
into sections that introduce Windows Phone 7, cover the core concepts of the phone,
and discuss enhancements to Silverlight. The final section of the book shows you how
Silverlight applications can use the powerful graphics API found in the XNA Framework.

 Part 1 is an introduction to Windows Phone, the developments, and the SDK. This
part walks you through creating your first application.

 In chapter 1, you’ll discover why Microsoft scrapped the Windows Mobile operat-
ing system in favor of a completely new smartphone platform. We compare Windows
Phone 7 to Android and iOS development and introduce you to Visual Studio and the
SDK tools you’ll use when building applications.

 In chapter 2 you’ll build your first Windows Phone 7 project which is a traditional
Hello World application. We use the Hello World application to introduce you to touch
events, application tiles, the application bar, and the Windows Phone navigation model.

 Part 2 examines the core Windows Phone platform and what makes developing for
the phone different from developing for the desktop or the browser. We’ll introduce
concepts that are brand new to Windows Phone, as well as concepts that have been
adapted to operate within the phone’s limitations.

 In chapter 3 you’ll learn about Fast Application Switching, Microsoft’s name for
the battery-saving technology that allows a dormant application to be quickly restored
when a user switches from a foreground application to a background application.
You’ll also learn how to create background agents that run periodically.

 In chapter 4 you’ll read about how to use Launchers and Choosers to interact with
built-in applications such as the phone dialer, email, and the People Hub.

 In chapter 5 you’ll store application data using isolated storage and a SQL database.
 In chapter 6 you’ll build an application that captures images from the phone cam-

era and allows a user to make simple modifications to the photographs.
 In chapter 7 you’ll integrate an application with the built-in Pictures and Music +

Video Hubs.
 In chapter 8 you’ll learn how to obtain data from the phone’s hardware including

the accelerometer, compass, gyroscope, and motion sensor.
 In chapter 9 we cover networking topics such as using TCP sockets and Push Notifi-

cations. Push Notifications provide the ability for an external application or web ser-
vice to send messages and updates to a particular Windows Phone device.

 Part 3 presents new Silverlight features and controls used to build applications that
match the look and feel of Windows Phone.

 In chapter 10 you’ll take a deep dive into the Application Bar, Panorama, and Pivot
controls that are unique to the Windows Phone.

 In chapter 11 you’ll learn how to build applications that automatically adjust them-
selves to match the Metro design, and how to control the software keyboard. You will
also be introduced to the Silverlight Toolkit for Windows Phone, a Codeplex project
from Microsoft.

ABOUT THIS BOOK xix
 In chapter 12 you’ll work with the MediaElement to play audio and video and will
learn how to create a Windows Phone 7 Smooth Streaming client application.

 In chapter 13 you’ll build a location-aware application using location services and
the Bing Maps API. You’ll also build an HTML5-based application.

 Part 4 of this book demonstrates how Silverlight and the XNA Framework can be
used together to build exciting games and applications. The XNA Framework includes
a rich library for three-dimensional modeling and rendering.

 In chapter 14 you’ll use the Windows Phone Silverlight and XNA Application
template to create a Hello World game, and learn the techniques used to render
Silverlight user interface elements with the XNA graphics framework. We give you a
crash course in XNA concepts such as 3D animation techniques, collision detection,
and the game loop.

 In chapter 15 you’ll continue working with the sample game and learn how to use
sprites for 2D graphics and animation. You’ll use raw touches, gestures, the motion
sensor, and the Mouse API to let a game player wander around the game world.

Code conventions and downloads

All source code in the book is in a fixed-width font like this, which sets it off from
the surrounding text. In many listings, the code is annotated to point out the key con-
cepts, and numbered bullets are used in the text to provide additional information
about the code. We’ve tried to format the code so that it fits within the available page
space in the book by adding line breaks and using indentation carefully. Sometimes,
however, very long lines include line continuation markers.

 The source code presented in the book can be downloaded from the publisher’s
web site at www.manning.com/WindowsPhone7inAction.

 The source code is organized into folders for each chapter, with sub-folders for
each project. The source code contains the completed sample projects for each chap-
ter. Many of the sample projects link to image files shipped as part of the SDK. We
chose not to redistribute the image files and instead used Visual Studio’s linked file
features when adding the images to the projects.

Software or hardware requirements

The Windows Phone Developer Tools, which Microsoft provides as a free download,
are required to compile and execute the sample projects presented in this book. The
Windows Phone Developer Tools install an express edition of Visual Studio 2010 con-
figured with the phone development tools. If you already have a retail edition of
Visual Studio 2010 installed on your computer, the phone development tools will be
installed as a plug-in to the IDE. Windows Phone projects can be written in both C#
and Visual Basic.

 We’ll use the express edition throughout the book for the screen shots and sample
code. Code and user interface design features will work the same in the retail editions
of Visual Studio 2010. You can download the Windows Phone Developer Tools from
http://create.msdn.com.

www.manning.com/WindowsPhone7inAction
http://create.msdn.com/

ABOUT THIS BOOK xx
 A physical Windows Phone is not required. The Windows Phone Developer Tools
include the Windows Phone 7 Emulator. With a few exceptions, the samples in this
book will run in the emulator exactly as they would on a physical phone. The samples
that integrate with the Music + Videos Hub and the samples that make use of the com-
pass and gyroscope will require a physical device. If you want to use a physical device,
a $99 yearly membership to the App Hub is required to unlock your phone.

 The Windows Phone 7 Emulator should work on most recent computers. The
emulator performs better if your computer has a CPU with virtualization extensions
like most of the recent AMD and Intel CPUs. The emulator works best with a DirectX 10
or later graphics card with a WDDM 1.1 driver. The system requirements for the
Windows Phone tools are

■ Supported operating systems: Windows Vista (x86 and x64) with Service Pack 2—
all editions except Starter Edition; Windows 7 (x86 and x64)—all editions
except Starter Edition.

■ Installation requires 4 GB of free disk space on the system drive.
■ 3 GB RAM.
■ Windows Phone Emulator requires a DirectX 10 or above capable graphics card

with a WDDM 1.1 driver.

Author Online
Purchase of Windows Phone 7 in Action includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the authors and from other users. To
access the forum and subscribe to it, point your web browser to www.manning.com/
WindowsPhone7inAction. This page provides information on how to get on the
forum once you’re registered, what kind of help is available, and the rules of conduct
on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

www.manning.com/WindowsPhone7inAction
www.manning.com/WindowsPhone7inAction

about the cover illustration
The figure on the cover of Windows Phone 7 in Action is captioned “A soldier.” The illus-
tration is taken from a 19th-century edition of Sylvain Maréchal’s four-volume com-
pendium of regional dress customs and uniforms published in France. Each
illustration is finely drawn and colored by hand. The rich variety of Maréchal’s collec-
tion reminds us vividly of how culturally apart the world’s towns and regions were just
200 years ago. Isolated from each other, people spoke different dialects and lan-
guages. In the streets or in the countryside, it was easy to identify where they lived and
what their trade, station in life, or rank in the army was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.
xxi

Part 1

Introducing
Windows Phone

Welcome to Windows Phone 7 in Action, where you’ll learn all about build-
ing applications for Microsoft’s newest mobile operating system. This book is
divided into four parts; part 1 introduces you to the Windows Phone and the
software development kit, and walks you through creating your first application.

 In chapter 1 you’ll discover why Microsoft scrapped the Windows Mobile oper-
ating system in favor of a completely new smartphone platform. We compare
Windows Phone 7 to Android and iOS development and introduce you to Visual
Studio and the SDK tools you’ll use when building applications.

 In chapter 2 you’ll build your first Windows Phone 7 project, which is a tradi-
tional Hello World application. We use the Hello World application to introduce
you to touch events, application tiles, the application bar, and the Windows Phone
navigation model.

A new phone,
a new operating system
Windows Phone 7 is more than a new operating system. Windows Phone 7 is an
operating system, a powerful hardware platform, and several web services, all com-
bined to provide a great experience for the busy Life Maximizer. Life Maximizer is
the term used by Microsoft to represent the target consumers of the new phone.
Life Maximizers demand the most from their phones as they balance work and life,
and use their phones to manage their busy lifestyles. Windows Phone 7 was
designed to let users get tasks done faster and allow them to get back to the impor-
tant aspects of their life.

 The Windows Phone 7 operating system is Microsoft’s latest entry into the
fiercely competitive mobile market. Windows Phone 7 is not an upgrade of previ-
ous mobile operating systems, such as Windows Mobile and Windows Phone 6.5.
Microsoft has reimagined what a mobile operating system should be and com-
pletely changed the rules on how to build mobile applications. To power the

This chapter covers
■ Introducing Windows Phone 7
■ Understanding the hardware
■ Porting applications from other platforms
■ Developing for Windows Phone
3

4 CHAPTER 1 A new phone, a new operating system
phone, Microsoft started with familiar foundations in Windows CE, the .NET Compact
Framework and the Zune user interface, adapted the Silverlight and XNA libraries,
and added entirely new APIs for interacting with mobile hardware, sensors, and soft-
ware. To enable developers, Microsoft created a toolbox composed of Visual Studio,
Expression Blend, and XNA Game Studio.

 The first version of the Windows Phone 7 operating system was released in Octo-
ber 2010. Microsoft followed the release with an update in the early months of 2011,
adding copy/paste support and performance improvements. At the Mix 2011 confer-
ence, Microsoft unveiled details about the Windows Phone 7.5 operating system and
the corresponding Windows Phone SDK 7.1. The Windows Phone 7.1 SDK includes
several new features, such as fast application switching, background agents, access to
the camera hardware, and a built-in SQL CE database engine. Windows Phone 7.5 also
exposes new compass, gyroscope, and motion sensors.

NOTE We find it a bit confusing that the new operating system is versioned
with 7.5 while the corresponding SDK is versioned 7.1. Throughout this book
we’ll refer to both operating system releases as Windows Phone 7 or just Win-
dows Phone. We’ll provide notes and tips when discussing features that are only
available in the Windows 7.1 SDK.

In this chapter we present the motivation behind this revolution in the Microsoft OS
for mobile devices. We detail how Windows Phone 7 differs from previous mobile
operating systems so that you can assess the capabilities of the new platform and
understand how existing designs and code can be ported. We describe the minimum
hardware specifications common to the different Windows Phone 7 devices so that
developers can confidently target equipment that will always be available. Finally, we
introduce the developers tools that you’ll use throughout the book to build applica-
tions and games targeted at the Windows Phone.

1.1 Rebooting the Windows Phone platform
Microsoft has been building operating systems for mobile devices and phones for
more than a decade. One of the earliest versions was Pocket PC 2000, running on
palm-sized devices like the Hewlett-Packard Jornada and the Compaq iPAQ. These
early devices were not smartphones, but were portable computers or PDAs targeted for
business users and didn’t initially include phone hardware or network connectivity.
Users interacted with these devices using a stylus on a single-point touch screen and
an awkward hardware-input panel. Pocket PC 2000 was initially built on Windows CE 3.0,
and later added the first version of the .NET Compact Framework. Device manufac-
turers often created custom builds of the operating system tightly coupled to the spe-
cific hardware on a single device—making operating system upgrades impossible for
most users.

 Until Windows Phone 7, the most recent versions of Microsoft’s operating system
for mobile devices have been Windows Mobile 6 and Windows Phone 6.5. Windows

http://create.msdn.com
http://create.msdn.com
http://create.msdn.com

5Windows Phone foundations
Mobile 6 is built on Windows CE 5 and includes the .NET Compact Framework 2.0 SP1.
Windows Mobile 6 comes in three editions—Standard, Professional, and Classic.

NOTE For the remainder of the book, when the term Windows Phone is used
without a version number, we are referring to Windows Phone 7.5. We’ll use
Windows Mobile or Windows Phone 6.5 to refer to older versions of the phone
operating system.

Mobile phones have evolved rapidly and incredibly in the past several years. Once
intended solely for business users, mobile phones are now predominately consumer
devices, and in many cases have replaced land-line services as a user’s only phone.
Smartphones now include radios, music players, cameras, global positioning systems,
compasses, and accelerometers. Single-point touch screens that required a stylus have
been replaced with multi-point touch screens that work with your fingertips. Awkward
hardware input panels have been replaced with software input panels and optional
hardware keypads.

 Apple led the smartphone revolution with the release of the iPhone in June of
2007, and the introduction of the App Store in July of 2008. Google followed with the
introduction of the Android OS and Market in October of 2008. Since then, Microsoft
has seen declines in Windows Mobile’s market share as consumers and device manu-
facturers turn to smartphones running new mobile operating systems.

 But phone hardware and mobile operating systems aren’t all that have changed in
the last decade. It’s now an online world where users are in nearly constant contact
with friends, co-workers, family, that high school buddy they haven’t seen in 20 years,
and random followers they’ve never met. Applications that once worked only with
local copies of documents and data are now interacting with services running in the
cloud. And with all this online presence and exposure, security is extremely impor-
tant. It’s no longer acceptable to give software full access to hardware, or to data
stored in the file system.

 Application development platforms and paradigms have changed as well. With the
rise of web applications, a whole new style of application development came into
power. Rich interactive applications are the norm, complete with animations, dynamic
transitions, and cool graphics. User interfaces are no longer built by developers, but
are created by designers who use a whole different set of tools.

 Microsoft set out to build a new Windows Phone operating system designed to
meet the demands of the altered smartphone market. Microsoft realized they would
need a new operating system, backed by a reliable hardware platform, to compete
with Apple and Android.

1.2 Windows Phone foundations
Every application developer must understand the hardware and software platforms
where their code will run. This is true if you’re building desktop applications, web ser-
vices, or mobile applications. When building Windows Phone applications, you should

http://dreamspark.com
http://dreamspark.com
http://create.msdn.com

6 CHAPTER 1 A new phone, a new operating system
understand the hardware specifications and know how much memory you can expect
to be installed, as well as the supported screen resolutions. Windows Phone provides a
unique look and feel that developers should respect when designing user interfaces.
You should also know how to leverage or extend the features of built-in applications
and services. In this section we talk about the Windows Phone hardware specifica-
tions, user interface look and feel, native applications, and the platform APIs you will
use to build your own applications.

1.2.1 Hardware specs

With the redesign of the operating system, Microsoft has taken the opportunity to
define clear hardware specifications for Windows Phone 7 devices. All devices must
meet the minimum hardware requirements.

 On Windows Phone 7, all devices have the same screen resolution of 800 x 480 pix-
els. The physical screen dimensions will also be similar across all devices. A common
screen size and resolution allows the same user interface to be reused across different
Windows Phone devices.

 All Windows Phone devices will provide the user a full four-point multi-touch
experience. The operating system provides a software-based input panel (SIP) to enable
text input for devices without a physical keyboard. Of course, phone manufacturers
can add additional user input mechanisms, such as a landscape or portrait physical
keyboard, but extra hardware won’t be allowed to add extra features to the standard
typing. The touch screen is capacitive to give the best experience possible on a
mobile device.

 Windows Phone 7 devices come with an accelerometer, a compass, and an optional
gyroscope. Developers access the raw data from each sensor or use the motion sensor
APIs, which wrap up all three sensors into a simple-to-use library. The operating system
detects when a device has been rotated from portrait to landscape orientation. The
sensors can also be used as an input mechanism for controlling an application or
game. The sensors are covered in more detail in chapters 8, 13, and 15.

 An FM radio is a mandatory requirement for Windows Phone 7 devices. A user can
access the radio from the Zune application in the Music + Videos Hub, but developers
can also create a customizable FM radio player using the FMRadio class in the Microsoft
.Devices.Radio namespace. Programming the FM radio is demonstrated in chapter 7.

 The minimum hardware specifications also require the following:

■ An Assisted GPS receiver to enable location-aware applications
■ A camera having a minimal resolution of 5 Megapixels
■ A GPU supporting DirectX 9 acceleration
■ Either an 800 MHz or a 1 GHz ARMv7 CPU
■ A minimum of 256 MB of RAM and 8 GB of Flash storage

The Windows Phone hardware specification requires certain hardware buttons to be
present. Many of these keys are not exposed to developers, and applications cannot

7Windows Phone foundations
detect when they are pressed. The physical buttons which will be mandatory for all
Windows Phone devices are

■ Volume Up
■ Volume Down
■ Back
■ Start
■ Search
■ Camera
■ Power On/Off

A minimum hardware specification has simplified the task of developing a Windows
Phone application. These common hardware specifications have allowed Microsoft to
create an emulator that will cover most of the possible user interactions with the
device, so that you can test most experiences in your emulator.

 Microsoft defined a clear hardware specification to ensure users and developers
have the same experience on every device. Microsoft also designed a new user inter-
face to provide a clean look and feel.

1.2.2 A new user interface

Windows Phone has completely redesigned the user interface moving from an icon-
centric style to the new graphical interface previously developed for the Zune HD
media player. Microsoft designers spent some time looking for a proper way to present
content and realized an intuitive style already existed. Signage and typography in rail-
way or metro stations, shown in figure 1.1, are concise ways to present information to
people coming from different cultures. Why not port this concept to Windows Phone?

 The second pillar of the user interface is full-touch support. The success of devices
implementing a full-touch user interface is due to the immediacy provided by a natu-
ral way of interacting with applications. Concise indications and full-touch come to
play an important role in developing applications as you must align to these concepts
when you design your user interface.

 One well-known defect of the applications written for Windows Mobile was the
lack of a common user experience. We’ve seen applications very aligned to the tem-
plate generated by Visual Studio but implemented with a user interface that was built
to match the iPhone user experience. This is confusing to the user, and you should

Figure 1.1 Common signs in railways and airports. On the left are icons
integrated with text, while on the right only icons are used.

http://create.msdn.com
http://create.msdn.com
http://create.msdn.com

8 CHAPTER 1 A new phone, a new operating system
make every effort to match your creations to the Metro design language adopted by
the native Windows Phone applications.

 Last but not least, when developing your application, you want to target as many
users or customers as possible. Globalizing an application doesn’t mean just making it
right in terms of functionality, but also in terms of contents. We strongly recommend
avoiding expressions or icons that don’t have a global meaning. Also remember that
your application will be inspected by Microsoft prior to publishing it to the Market-
place. There are Marketplace guidelines about what content can and cannot be pre-
sented through a Windows Phone application.

1.2.3 User experience

Understanding the user experience of the Windows Phone is important to building
an application that feels like it belongs on the phone. The built-in applications, called
hubs, establish the look and feel of the device and provide integration and extensibil-
ity points for third-party applications.

NOTE Only the start experience and the application list are accessible on
the emulator.

The hubs are built with two new UI controls named Panorama and Pivot. You can read
more about using the Silverlight versions of Panorama and Pivot in chapter 10.

START EXPERIENCE

The Start Experience is the home screen for Windows Phone. It’s the screen displayed
when the phone is started. When the user presses the Windows button, they are
brought back to the start screen. A user can pin their favorite applications, games, and
contacts to the start screen so that they can launch them quickly.

 The images displayed on the start screen are named tiles. Tiles can be dynamic, dis-
playing information relevant to an application. The tile for the Weather Channel appli-
cation updates with the latest weather conditions. Other tiles are badged when
notifications are ready to be viewed. The tiles for email display a count of new mail mes-
sages. The image and title that appear in the start screen are provided by the developer.

 Applications can pin multiple tiles to the start screen, each launching to a different
spot within the application. Tiles can be updated from code running on the phone, or
remotely using the Microsoft Push Notification Service. See chapters 2 and 9 for more
details on tiles.

APPLICATION LIST

The Application List is where all native and third-party applications appear. It doesn’t
matter whether the application is built using Silverlight or XNA, or is a native applica-
tion built by Microsoft, the device vendor, or the mobile carrier. The developer deter-
mines the application title and icon that are shown the application list. Games aren’t
listed in the application list.

9Windows Phone foundations
GAMES HUB

If your project is declared to be a game, it’ll be listed in the Games Hub instead of the
Application List. The Games Hub is divided into several areas:

■ The Collection view lists the games installed on the device.
■ The Spotlight view displays news from Xbox Live.
■ The Xbox Live view provides access to the user’s Xbox Live gamer profile.
■ The Requests view lists Xbox Live invitations, messages and notifications.

The game title and icons displayed in the collection are declared by the game developer.

MUSIC + VIDEO HUB

The Music + Video Hub is the central place where you can find all music, video, and
podcast activity on the device. The Music + Videos hub is divided into four areas:

■ Zune is the central point for playing music, videos, podcasts, and radio, as well
as the Zune Marketplace.

■ History contains the list of music, videos, playlists, artists, podcasts, and FM
radio stations that you recently played. This includes media played by third
party applications that integrate with the hub.

■ New contains the list of new music, videos, or podcasts that you synced to the
phone or downloaded from Zune Marketplace. Third-party applications can
add items to the New view.

■ Apps contains the list of Music + Videos hub applications that are installed on
the device. Third-party media applications are listed here.

The Music + Video Hub provides a few integration points to third-party applications.
You can read more about the Music + Video Hub in chapter seven.

PICTURES HUB

The Pictures Hub is the place where you can see all of your photos from different
sources. All photos that you took with your mobile phone, synced from the computer,
downloaded from the internet, or opened in email will be included in the Pictures
Hub. The Pictures Hub is integrated with Windows Live and Facebook, and all photos
that you uploaded to those websites will be displayed in the Pictures Hub as well. It
also shows the latest photos of your friends in Facebook.

 The Pictures Hub can be extended by third-party applications that implement
phone editing or sharing features. Extending the Pictures Hub is described in chap-
ter 7.

PEOPLE HUB

The People Hub is the contacts application for Windows Phone. Here’s where you
find the list of contacts, along with their phone numbers and addresses. The People
Hub also displays the latest status and activity obtained from Windows Live and Face-
book. Third-party applications can read data directly from the contacts database, and
can read and write contacts data with launchers and choosers, which are introduced in
the next section.

10 CHAPTER 1 A new phone, a new operating system
 Unlike the other hubs, the People Hub is not extensible by Windows Phone appli-
cations. The People Hub can be extended by registering new activity streams with the
user’s Windows Live account. Activity streams, a format for syndicating data from social
networking applications, are beyond the scope of this book. You can read more about
activity streams by visiting http://activitystrea.ms.

 Understanding Windows Phones hubs and how they can be extended is key for
building applications that enhance user productivity and are integrated with the oper-
ating system. Third-party integrated applications and extensions build on top of the
features exposed in the platform APIs and frameworks.

1.2.4 Platform APIs and frameworks

Applications run in a sandbox and can’t use native APIs, communicate with other pro-
cesses, or read from the file system. These security measures limit the ability to inte-
grate with native applications and databases. To ease these limitations, native
applications also expose various integration points. These integration points come in
the form of launchers, choosers, and extensions. The platform also provides access to net-
work APIs so that applications can use web services external to the device. Finally, facil-
ities such as location and notification services are available to third-party developers.

LAUNCHERS

Launchers allow your code to activate a native or built-in application. Data can be
passed to the launched application. When the native application is launched, your
application is deactivated. Launchers are provided to activate the phone dialer, media
player, web browser, and other native applications. Launchers are the only way to initi-
ate a phone call or send an SMS. Launchers are covered in depth in chapter 4.

CHOOSERS

Choosers return data to an application. Choosers are provided to retrieve email
addresses, phone numbers, physical addresses, and photographs. Choosers also
launch a native application, resulting in the deactivation and/or termination of your
application. Choosers are also covered in chapter 4.

EXTENSIONS

Extensions allow an application to integrate their features seamlessly into a native
application. For example, the Pictures Hub allows photo editing applications to be
launched from its Apps list and from the share and apps menus. The Music + Video
Hub allows applications to appear in its Apps list.

NETWORKING

Windows Phone provides HTTP and sockets network communication. HTTP commu-
nication is implemented in the WebClient, HttpWebRequest, and HttpWebResponse
classes found in the System.Net namespace. TCP and UDP communications are imple-
mented with the Socket class in the System.Net.Sockets namespace. Networking is
covered in depth in chapter 9.

http://activitystrea.ms

11Windows Phone foundations
NOTIFICATIONS

The Microsoft Push Notification Service provides an API where a phone user can sub-
scribe to a set of custom events. The notification events are defined by third-party
applications and must be sent from a dedicated web service implemented by the appli-
cation developer. Notifications are displayed to the phone user either on the applica-
tion’s tile in the start experience, at the top of the screen as a toast notification, or
within the running application. We show you how to build a notification application
in chapter 9.

LOCATION

The Location service uses data from the wireless and cellular networks and GPS to
allow you to create location-aware applications. Calls to the location cloud service are
abstracted behind the GeoCoordinateWatcher class in the System.Device.Location
namespace. In chapter 13 we show you how to use GeoCoordinateWatcher.

CUSTOM WEB SERVICES

Beyond providing access to business application data or social networks, custom web ser-
vices can be used to overcome some of the limitations of phones. If you have a suite of
applications that share data, you can use a web service to share the data between them.

1.2.5 AppHub and the Windows Phone Marketplace

AppHub is the portal where Windows Phone and Xbox Live Indie Game developers
can find the tools and resources for building and selling applications and games. The
AppHub is where you can download the developer tools. You can also find sample
code, tutorials, and documentation. If you need advice on a tricky problem, you can
submit a question to the developer forums on the AppHub. The AppHub is located at
http://create.msdn.com.

 Before you can deploy and debug your application on a real phone, or publish
your application to the Windows Phone Marketplace, you must purchase a yearly sub-
scription to the AppHub. Depending on what you’re building, you might consider
waiting to purchase an AppHub subscription until your application is nearly com-
plete, using the emulator to build and test your application.

TIP College students receive free AppHub subscriptions through the Dream-
Spark program. DreamSpark is a Microsoft program providing students with
free copies of retail development tools and servers. You can learn more about
DreamSpark at http://dreamspark.com.

Once the application has been developed, it must go through an approval process run
by Microsoft before being published to the Windows Phone Marketplace. This will
ensure that the application conforms to Microsoft requirements for a Windows Phone 7
application. Microsoft’s requirements are detailed in the document Application Certifi-
cation Requirements for Windows Phone available from the AppHub and MSDN. More
details about marketplace registration are provided in the appendix.

http://create.msdn.com
http://dreamspark.com

12 CHAPTER 1 A new phone, a new operating system
1.3 Comparing Windows Phone to other mobile platforms
This book is written primarily for developers who have some experience working with
C# and Silverlight. We focus on the features and APIs that have been introduced specifi-
cally for the phone, or have been modified to fit the phone’s unique characteristics.

 If you already use Silverlight to develop applications, you know it has matured rap-
idly over the last few years. Silverlight’s success as a lightweight application framework
makes it ideal to use as the application framework on the mobile device. The Silver-
light Framework is rich in features and has been proven with browser and desktop
applications. You’ll find many of the familiar features and tools. The Windows Phone
version of Silverlight is version 4.

NOTE The initial version of Windows Phone 7 used Silverlight 3. Silverlight 4
shipped with Windows Phone 7.5.

If you’ve used XNA Game Studio, than you know that XNA is built to run on the Xbox,
Windows, and the Zune—Windows Phone is just one more platform. Existing devel-
opers can easily build and port games for the new devices. Windows Phone introduces
a new game development model by integrating Silverlight with XNA, which we intro-
duce in the final section of the book.

 If you’re not already a Silverlight developer, don’t despair. The appendix includes
a quick primer for Silverlight and Manning has published several books on C# and Sil-
verlight, which you can find at http://mng.bz/44nv.

 But what if you’re coming to Windows Phone from some other background? How
does the Windows Phone differ from Windows Forms on Windows Mobile? Where do
you begin when porting your iOS or Android application? In this section we get you
started with Windows Phone development by identifying the similarities and differ-
ences with other application platforms.

1.3.1 Windows Mobile

If you’re a third-party Windows Mobile developer, then you should know that Win-
dows Phone 7 is not Windows Mobile. You can’t use C++ or the Win32 API. If you were
hoping that Windows Phone 7 would be backward-compatible with Windows Mobile,
then you’re out of luck. You may have heard that there is a native SDK, but for now,
only device manufacturers, mobile operators, and other special partners get to use it.

 Windows Mobile has been a popular operating system because of its extreme cus-
tomization. Windows Phone is a new operating system and not an upgrade, and appli-
cations written for Windows Mobile and Windows Phone 6.5 aren’t compatible with
Windows Phone 7. Windows Mobile development environments and tools are also
incompatible. In this section we illustrate the major changes which will impact every
developer with previous experience in Windows Mobile development, starting with
the user interface.

http://mng.bz/44nv

13Comparing Windows Phone to other mobile platforms
BUILDING YOUR INTERFACE

Windows Mobile applications are built with C/C++ and low-level API calls. Neither of
these options is available to the Windows Phone developer, who must now use Silver-
light and Extensible Application Markup Language (XAML). XAML is a user interface
design language first introduced with the Windows Presentation Foundation (WPF)
and is a core component of Silverlight. XAML enables separation between the user
interface and the code that implements application logic.

DRAWING ON THE SCREEN

Windows Mobile provided two native APIs for drawing text and graphics to the screen:

■ Graphics Device Interface (GDI)
■ DirectX

Both the APIs are low-level and have a steep learning curve for the standard devel-
oper. Being native libraries, neither GDI nor DirectX can be called from managed
code running on Windows Phone. The XNA Framework is the managed alternative
to DirectX, implementing many of the features available in the DirectX libraries. Sil-
verlight makes use of DirectX and your application will be hardware-accelerated
behind the scenes.

CHANGES IN THE USER EXPERIENCE

The Today Screen has been the traditional Windows Mobile shell or system UI. Win-
dows Mobile allows the system shell to be replaced by custom user interfaces built by
device manufacturers and third-party developers. Windows Phone provides a new sim-
plified user interface that can’t be replaced or modified. The simplified user interface
has removed some traditional controls, while introducing new ones designed for
touch interaction and to simplify creating user interfaces.

SOFT KEYS SUPPORT

One change you need to keep in mind if you’re porting a Windows Mobile applica-
tion to Windows Phone is the full lack of soft keys, including the hardware buttons
associated with them. Another change in the user interface is the menus: they’re now
basic and most of them are no more than a list.

CHANGES IN THE API
The biggest strength of Windows Mobile was probably its broad compatibility in terms
of the programming paradigm and APIs with Windows desktop. This meant that every
Windows desktop developer was a potential Windows Mobile developer. On the other
hand, Windows Mobile compatibility with the Win32 API brought an additional com-
plexity to the application.

MEMORY MANAGEMENT

A major problem with Windows Mobile applications was the possibility of memory
leaks. Because C/C++ requires code to manage its own memory, if the developer allo-
cates memory but forgets to release it during the execution, memory is lost until the
process is terminated. Managed applications written in C# or Visual Basic use the .NET

14 CHAPTER 1 A new phone, a new operating system
Compact Framework’s garbage collector, which is an invisible helper taking care of
memory management.

ACCESS TO THE FILE SYSTEM

Windows Mobile applications have almost full access to all the files available on the
file system. This capability is useful when developing document centric applications
such as a text editor, so that the user will be able to open a file on the file system
regardless of its location. On the other hand, a malicious application could corrupt
the file system and prevent other applications from being executed, or sniff out sensi-
tive data.

 For this reason, each Windows Phone application is locked into a sandbox and can
only access files in a reserved portion of persistent memory named isolated storage.
There’s no way for a Windows Phone application to access data contained in isolated
storage belonging to a different application. Isolated storage is covered in chapter 5.
Applications requiring access to the whole file system cannot be developed under
Windows Phone 7.

MULTITASKING

The Inter-Process Communication (IPC) API of Windows Mobile allows different pro-
cesses to synchronize with each other using the operating system primitives. Some-
times this was useful as Windows Mobile is a multitasking operating system.

 Windows Phone doesn’t support true multitasking, at least for applications devel-
oped in XNA or Silverlight. Fast application switching allows multiple applications to
be resident in memory, but only the foreground application is running, with the back-
ground applications remaining in a dormant state. Applications can use background
agents to perform limited types of work when an application isn’t in the foreground.
Fast application switching and background agents are described in chapter 3.

 One new possibility for mobile developers, previously available only to desktop
developers, is the thread pool. As the creation of a thread is an expensive process and
most of the threads are usually blocked on some event, a set of threads is provided by
the operating system which will be automatically re-used during the execution. All this
is provided for free by the system; in addition to being easy to use, it’s a good practice
when designing for new systems that could embed multi-core processors. A thread
pool automatically scales to multi-core processors without need of code rework.

 As you can see, Windows Phone 7 is a completely different platform from Windows
Mobile 6. The work required to port existing Windows Mobile applications is no dif-
ferent from that required to port iOS or Android applications.

1.3.2 Apple iOS

At first glance, you might think there’s little in common between developing applica-
tions for an iOS device and the Windows Phone. On one platform you use Objective-C
to write native applications; on the other you use C# to write managed applications.
It’s our opinion that programming languages and frameworks are just tools in a devel-
oper’s tool belt, and good developers make use of several languages and frameworks.

15Comparing Windows Phone to other mobile platforms
If you look beyond the languages and development environments, many of the funda-
mental concepts exist on both platforms.

 Apple and Microsoft both provide free development tools complete with device
simulators. Each platform has a set of style guides that applications should adhere to,
and also requires a fee-based subscription in order to deploy an application to an
actual device. Each platform has a certification process and application store.

BUILDING YOUR INTERFACE

One thing to keep in mind when porting an iOS application is the differences in the
user interface guidelines. You shouldn’t build an application with an iOS look and feel
for the Windows Phone. An iOS application ported to Windows Phone will have a dif-
ferent look and feel, user interaction model, and workflow. Don’t use chrome and
icons from iOS.

 Is your application built with controls from UIKit or does it use OpenGL ES? The Sil-
verlight Framework offers many of the controls and widgets provided by UIKit. On the
other hand, OpenGL developers will use the XNA Framework to build applications. You
can also mix application style widgets from Silverlight with XNA type graphics.

 You’ll build your Silverlight applications using Visual Studio and Expression
Blend. Your views will be built using XAML, an XML-based markup language. XAML
can be coded by hand in Visual Studio’s text editor, or with the visual editors in Visual
Studio and Expression Blend. The core Silverlight Framework, along with the Silver-
light Toolkit, provides most of the controls you’ll need when building an application.

 If your iOS application uses Core Animation, you’ll use the animation and sto-
ryboard classes from the System.Windows.Media.Animation namespace. Learn to
use Expression Blend’s storyboard editor if you’re doing anything beyond very
simple animations.

 Silverlight applications are navigation-style applications, driven by the Navigation-
Service. The NavigationService is similar to the UINavigationController provided
by the iOS framework, and is used to move between different pages or views. The dif-
ference is that all Silverlight applications use the NavigationService, even the sim-
plest one-page application.

INTERACTING WITH THE NATIVE APPLICATIONS

Like the iOS SDK, Windows Phone provides limited access to the phone dialer, SMS text
application, and email. On iOS, the phone dialer is accessed via the tel URL; on Windows
Phone you use the PhoneCallTask. MFMessageComposeViewController and MFMail-
ComposeViewController are replaced by SmsComposeTask and EmailComposeTask.

 The iOS SDK provides access to the address book with several classes in the Address
Book and Address Book UI frameworks. On Windows Phone, read-only access to the
address book is exposed via classes in the Microsoft.Phone.UserData namespace.
Developers can also interact with the contacts database via a few launchers and choos-
ers. You can prompt the user to choose a phone number, email address, or physical
address with PhoneNumberChooserTask, EmailAddressChooserTask, and Address-
ChooserTask. You can prompt the user to save a phone number or email address with

16 CHAPTER 1 A new phone, a new operating system
SavePhoneNumberTask and SaveEmailAddressTask. You can read more about launch-
ers and choosers in chapter 4.

USING THE SENSORS

Like the iPhone, the Windows Phone has an accelerometer, a compass, and a camera.
Some Windows Phones will also have a gyroscope. The initial release of Windows
Phone didn’t provide an API to access the compass, and access to the camera was lim-
ited. The Windows Phone SDK 7.1 introduced new APIs providing access to the com-
pass, gyroscope, and the camera. Using the CameraCaptureTask, you can launch the
camera UI and manipulate a photo taken by the user. You can take direct control of
the camera by using either the PhotoCamera or the WebCamera APIs. Working with the
camera is covered in chapter 6.

 The Windows Phone complement to UIAccelerometer is the Microsoft.Devices
.Accelerometer class. The Compass class is the Windows Phone equivalent to CLHeading.
Motion detection features available by the Core Motion framework are provided by
the Gyroscope and Motion classes. We show you how to use the accelerometer, com-
pass, and gyroscope in chapter 8.

STORING DATA
An iOS application can store its data in user defaults, on the file system, or in a data-
base. The iOS SDK makes use of SQLite for local database management.

 Windows Phone does provide limited access to the file system. An application can
only write files to isolated storage, and it doesn’t have access to any other part of the
file system. Isolated storage is similar to an iOS application’s Documents folder.

 Another way to store data is with the IsolatedStorageSettings class. This class is
similar to the NSUserDefaults class in the iOS framework. It’s intended to be used to
store lightweight data objects and is ideal for storing user preferences. One difference
between NSUserDefaults and IsolatedStorageSettings is that IsolatedStorage-
Settings isn’t global, and settings can’t be shared between different applications.

 Applications can store data in a Microsoft SQL Server Compact (SQL CE) database
using the LINQ to SQL framework. SQL CE is a lightweight database engine designed
to run on mobile devices. The database files are written to a special folder in isolated
storage, and can’t be shared with other applications. Chapter 5 demonstrates how to
use each of the data storage options in your applications.

MEDIA

The iPhone uses the iPod software to play audio and video files. The iOS SDK’s Media
Player framework allows developers to access the library of music and videos, and to
play them inside their applications. The Windows Phone uses Zune for its media
library, shown to users in the Music + Videos Hub. Applications can play audio and
video files with the MediaPlayerLauncher class. Developers can also access the Zune
library using the classes in the Microsoft.Xna.Framework.Media namespace. The
MediaPlayer class can be used to play songs, whereas the videos are played with the
VideoPlayer class.

17Comparing Windows Phone to other mobile platforms
 Silverlight applications can use the XNA Media framework, but Silverlight also has
its own media controls in the System.Windows.Media namespace. The MediaElement
control supports audio and video playback. The MediaStreamSource class can be used
to manipulate audio and video playback or implement custom media containers.

 The Windows Phone equivalent to the iOS’s AVAudioRecorder class is the Microsoft
.Xna.Framework.Audio.Microphone class.

 Your application can integrate into the Music + Video Hub on the phone. Your
application can be listed in the hub’s Apps list, and media played by your application
can be shown in the Hub’s History page.

 You can read about working with media, the microphone, and the Music + Videos
Hub in chapters 7 and 12.

NETWORKING

The iOS SDK offers several classes to enable network programming. A developer can
choose to program using raw sockets, or higher-level protocols such as HTTP and FTP.
Windows Phone offers sockets and HTTP support. You perform HTTP communication
using the HttpWebRequest, HttpWebResponse, and WebClient classes in the System
.Net namespace. Sockets programming is performed using classes in the System.Net
.Sockets namespace.

 Microsoft has also built a notification service to allow web services to push notifica-
tions to a phone. Developers host their own web service or other application. The
application service sends notifications to Microsoft’s Push Notification web service,
which forwards notification to a user’s phone. Interaction with the notification service
is covered in chapter 9.

 As you can see, there are many differences between the iOS and the Windows
Phone. There are also a number of similarities and developers should be able to port
most applications to the Windows Phone.

1.3.3 Android

Android is another new mobile operating system that’s capturing the hearts and minds
of consumers and developers. Like the iPhone, there are many differences and many
similarities between Android and Windows Phone. Like Windows Phone, Android runs
on a number of different devices, from a number of different manufacturers. Unlike
Microsoft, Google hasn’t dictated the hardware specifications to the manufacturers
and developers must design and test on several hardware configurations.

 Android and Microsoft both provide free development tools complete with device
emulators. But Microsoft requires a fee-based subscription in order to deploy an appli-
cation to an actual device and certifies each application before making the applica-
tion available in the application store.

RUNTIME ENVIRONMENT

Windows Phone applications run in the .NET Compact Framework Common Lan-
guage Runtime (CLR). The CLR is a virtual machine much like the Dalvik virtual

18 CHAPTER 1 A new phone, a new operating system
machine that runs on Android. Applications are packaged in .xap files, which is a zip
archive of the assemblies and resources in the application bundle.

 Windows Phone places restrictions on the types of applications that can run on the
phone. Android allows for background services and UI-less broadcast receivers to run
on the phone. Though Windows Phone offers limited support for background opera-
tions with background agents, there’s no counterpart to broadcast receivers. Windows
Phone doesn’t have system alarms or triggers that can directly start an idle applica-
tion. Windows Phone applications can be started when the user responds to alarms,
reminders, or notifications.

 The Android runtime does limit access to certain features with manifest permis-
sions. Windows Phone uses a similar security model by requiring capabilities to be
declared in the application manifest.

BUILDING YOUR INTERFACE

Android activities are loosely related to pages in a Silverlight application. Each page of
an application has a unique address, and the operating system will use a page’s URL to
navigate to the page when restarting an application. Developers can use a page’s URL
when creating tiles. Android programmers declare user interfaces with layout XML
files. Silverlight user interfaces are declared using XAML, which are also XML files. If
your application makes use of the Android MapView, you’ll want to read about using
the Bing Maps control in chapter 13.

INTERACTIONS WITH OTHER APPLICATIONS

Android applications interact with built-in and third-party applications by dispatching
intents. Windows Phone applications interact with native applications via launchers
and choosers. Windows Phone doesn’t allow third-party applications to interact with
other third party applications, and developers can’t create new launchers or choosers.

 Android applications can replace, enhance, or just eavesdrop on another applica-
tion by handling the same Intents. Windows Phone doesn’t allow third-party applications
to replace any launchers or choosers. You can enhance the Pictures Hub and the
Music + Videos Hub by implementing the required extensibility points.

 Android applications share data by exposing and using content providers. On Win-
dows Phone, there’s no way to expose your data to other applications, and other appli-
cations can’t use your data.

 You can read about the available launchers and choosers in chapter 4.

STORING DATA
An Android application can store its data in shared preferences, on the file system, or
in a database. Android uses SQLite for local database management.

 Windows Phone does provide limited access to the file system. An application can
only write files to isolated storage, and doesn’t have access to any other part of the file
system. You can’t read another application’s files, and other applications can’t read
your application’s files.

 Another way to store data is with the IsolatedStorageSettings class. This class is
similar to SharedPreferences in the Android framework. It’s intended to be used to

19Comparing Windows Phone to other mobile platforms
store lightweight data objects and is ideal for storing user preferences. One difference
between SharedPreferences and IsolatedStorageSettings is that IsolatedStorage-
Settings is not global, and settings can’t be shared between different applications.

 Window Phone applications can store data in a Microsoft SQL Server Compact
(SQL CE) database using the LINQ to SQL framework. SQL CE is a lightweight database
engine designed to run on mobile devices. The database files are written to a special
folder in isolated storage, and can’t be shared with other applications. Chapter 5 dem-
onstrates how to use each of the data storage options in your applications.

MEDIA

Android uses the OpenCORE library to play and record audio files and to play video
files. OpenCORE’s MediaPlayer class is used to play audio, whereas the VideoView
widget is used to play video. Windows Phone applications use the MediaPlayer-
Launcher class to play audio and video files. Developers can also access the Zune
library using the classes in the Microsoft.Xna.Framework.Media namespace. The
MediaPlayer class can be used to play songs, whereas the videos are played with the
VideoPlayer class.

 Silverlight applications can use the XNA Media framework, but Silverlight also has
its own media controls in the System.Windows.Media namespace. The MediaElement
control supports audio and video playback. The MediaStreamSource class can be used
to manipulate audio and video playback or implement custom media containers.

 The Windows Phone equivalent to the Android’s MediaRecorder class is the
Microsoft.Xna.Framework.Audio.Microphone class. You can read about working
with media, the microphone, and the Music + Videos Hub in chapters 7 and 12.

NETWORKING

Android provides a variety of networking options starting with raw sockets and extend-
ing through HTTP. Windows Phone offers sockets and HTTP support. You perform
HTTP communication using the HttpWebRequest, HttpWebResponse, and WebClient
classes in the System.Net namespace. Sockets programming is performed using
classes in the System.Net.Sockets namespace.

 Android networking applications can use the ConnectivityManager class to deter-
mine the status of the device’s network connection. To check the network status of a
Windows Phone, you use the NetworkInterface class in the Microsoft.Net.Network-
Information namespace.

 In many ways, the Android platform is more like the Windows Mobile platform.
Applications have fewer restrictions and can replace core features of the operating sys-
tem. Manufacturers can change the look and feel of the operating system. Developers
must build for a wider range of hardware configurations. There are going to be a cer-
tain set of applications that can’t be ported to Windows Phone because of the limita-
tions enforced by the operating system.

20 CHAPTER 1 A new phone, a new operating system
1.4 The Windows Phone Developer Tools
In order to build great applications, you need great development tools. Microsoft’s
Visual Studio and Expression Blend fit the description. Visual Studio 2010 Express for
Windows Phone joins the list of no-cost express developer tools provided by Microsoft.
XNA Game Studio has been updated to build Windows Phone games. And a no-cost
version of Expression Blend 4 has been made available. All of these tools have been
packaged together and are distributed as the Windows Phone Developer Tools which can
be freely downloaded from the AppHub at http://create.msdn.com.

1.4.1 Visual Studio for Windows Phone

The Windows Phone Developer Tools installs an express edition of Visual Studio 2010
configured with the phone development tools. If you already have a retail edition of
Visual Studio 2010 installed on your computer, the phone development tools will be
installed as a plug-in to the IDE. Windows Phone projects can be written in both C#
and Visual Basic.

 We use the Express edition throughout the book for the screen shots and sample
code. Code and user interface design features will work the same in the retail editions
of Visual Studio 2010.

 You can launch the IDE by opening the Start Menu and clicking on Microsoft
Visual Studio 2010 Express for Windows Phone in the Microsoft Visual Studio Express
folder. Figure 1.2 shows the Visual Studio IDE.

 Visual Studio 2010 Express for Windows Phone, from here on referred to as Visual
Studio, can be used in two different modes—Basic and Expert. We suggest you enable
Expert mode so that you can use all the available features. To enable the Expert
mode, you have to select the Tools->Settings->Expert Settings menu option. Expert mode
unlocks some toolbars and several menu items.

1.4.2 Expression Blend for Windows Phone

Visual Studio has cool features but it’s not so friendly for the user interface designers
on your team. Microsoft has created a tool for designers named Expression Blend. Orig-
inally part of the Expression Studio suite, a no-cost edition of Expression Blend has
been provided for creating Windows Phone applications. Expression Blend allows the
designer to create user interfaces without writing a single line of code.

 Expression Blend can create the same Silverlight projects as Visual Studio. A
designer can edit the same solution, project, and code files that a developer edits in
Visual Studio. Though we may occasionally cover Expression Blend features in the
book, our focus will remain on using Visual Studio. A primer on Expression Blend is
available in the appendix.

1.4.3 XNA Game Studio

XNA Game Studio, another Visual Studio add-on, provides a set of tools and libraries
that can be used to build games for Windows, Xbox, Zune and now the Window

http://create.msdn.com

21The Windows Phone Developer Tools
Phone. XNA Game Studio 4 provides the tools necessary for creating Windows and
Xbox games, which are beyond the scope of this book.

XNA applications usually import content or assets created by artists. This could be
graphics, 3D models, music, or videos. In the last section of this book, we show you
how to build rich graphics applications by integrating XNA with Silverlight.

1.4.4 Windows Phone Emulator

The Windows Phone 7 Emulator should work on most computers running the Win-
dows 7 or Windows Vista operating system. System requirements are listed in the
MSDN documentation at http://mng.bz/PYCd. The emulator performs better if your
computer has a CPU with virtualization extensions like most of the recent AMD and
Intel CPUs. The emulator works best if a DirectX 10 or later graphics card with a
WDDM 1.1 driver is present.

NOTE You can determine whether your computer has a supported GPU and
driver with the DirectX Diagnostics Tool that is part of the DirectX SDK. You
can download the DirectX SDK from the DirectX Developer Center at http://
mng.bz/wczO.

Figure 1.2 Visual Studio 2010 Express for Windows Phone

http://mng.bz/PYCd
http://mng.bz/wczO
http://mng.bz/wczO

22 CHAPTER 1 A new phone, a new operating system
The DirectX 10 GPU and WDDM driver are mandatory for XNA games, but aren’t nec-
essarily required by most Silverlight applications.

 The emulator doesn’t require special binaries to execute XNA games or Silverlight
applications for Windows Phone. The emulator can be used to verify orientation changes
in your application by using the rotation buttons on the emulator’s command toolbar.

 Keep in mind that on the emulator you’re sharing the network connection of your
PC, so the bandwidth available is greater than what would be available to a real phone.
The emulator doesn’t allow you to simulate out-of-coverage scenarios or bandwidth
changes (such as 2.5G to 3G), and when checking network information the Network-
Interface class always returns WiFi. In order to verify network connectivity, you can
use the full working versions of Internet Explorer available in the emulator.

 The Settings application found in the application list can be used to change the
emulator’s default configuration. But the settings revert to their defaults when
the emulator is stopped and restarted. You’ll need to change the settings to verify your
application behaves appropriately under different configurations and locales. The
emulator settings are

■ Theme and accent color
■ Date and Time
■ Region and Language

If your computer is running Windows 7 and uses a true multi-touch monitor, the emu-
lator will register touches to the computer monitor. Otherwise, the emulator simulates
touches with the mouse. The emulator can also switch between using the SIP and
treating your computer’s keyboard as a hardware keyboard.

1.4.5 Windows Phone Developer Registration tool

Applications can only be installed onto a phone by the Windows Phone Marketplace.
Limited exceptions are made to phones registered to developers who have accounts
with the AppHub. AppHub accounts aren’t free, and can be purchased from the
developer portal at http://create.msdn.com. The Windows Phone Marketplace proce-
dures are covered in more depth in the appendix. Windows Phone applications can’t
be distributed as standalone packages. In order to develop your own application, you
need to enable your device to allow the deployment of XAP files.

 Once your account has been verified by the AppHub, you can launch the Windows
Phone Developer Registration tool from the Windows Phone Developer Tools folder
in your Start Menu. This tool, shown in figure 1.3, will prompt you to enter your
AppHub credentials and select a connected phone. You need to plug the device into
your PC, pair it to the Zune client, and have your PC connected to the internet in
order to connect to Microsoft’s registration servers.

 There’s a limit of three phones that can be registered to a single account. There’s
also a limit of ten developer applications that can be installed on a phone at the same
time. If you reach the installed application limit, you must uninstall one or more

http://create.msdn.com

23The Windows Phone Developer Tools
developer applications before you’ll be able to deploy a new application from Visual
Studio. Occasionally your phone registration will expire and you’ll receive an error
when attempting to deploy an application to a device. You will then need to reregister
the phone with the registration tool.

 The Windows Phone Developer Registration tool can also be used to unregis-
ter a phone. If you need to unregister a phone, but don’t have it available because
it has been lost or broken, you can unregister the device from your AppHub
account’s profile page, accessed through your browser at https://users.create
.msdn.com/Account/Profile.

1.4.6 XAP Deployment tool

To support testing application by non-developer team members, you can deploy just
the executable binary of a Windows Phone application (the .XAP file) to the emulator
or to a registered phone using the XAP Deployment tool. The XAP Deployment tool,
shown in figure 1.4, is launched from the Start Menu -> Windows Phone Developer
Tools folder. You only need to select the target device and the XAP file, and then click
the Deploy button.

 When the deployment is complete, the application can be started from the Appli-
cation List. An application can be uninstalled from the Application List as well. Tap
and hold the application’s icon until the context menu appears and select the unin-
stall option.

Figure 1.3 Windows Phone
Developer Registration tool

https://users.create.msdn.com/Account/Profile
https://users.create.msdn.com/Account/Profile

24 CHAPTER 1 A new phone, a new operating system
1.4.7 WPConnect

When you use Visual Studio to debug applications running on a real phone, the
phone must be connected to your computer. It’s not sufficient to have your phone
connected via the USB cable; a connection must also be established via software. Usu-
ally the Zune software handles this connection.

 When a phone is connected to Zune, the phone’s pictures and media databases
are locked. You’ll experience errors if you attempt to debug software that uses these
libraries. Microsoft has provided the WPConnect tool to allow Visual Studio to connect
a phone without running the Zune software.

 The WPConnect tool is installed by the Windows Phone Developer Tools. You can find
the tool in %ProgramFiles%\Microsoft SDKs\Windows Phone\v7.1\Tools\WPConnect.
Before running WPConnect, you must connect your phone and launch the Zune soft-
ware. Close the Zune software once you verify that the phone was found. When you
run WPConnect you’ll see a confirmation message like that shown in figure 1.5.

Figure 1.4 Application
to deploy a binary (XAP)
file to the device

Figure 1.5 The WPConnect confirmation message

25The Windows Phone Developer Tools
Of course, you can use this tool when you are debugging any application, not just
applications that use the media library.

1.4.8 Isolated Storage Explorer tool

Most applications require some form of data storage—from user preferences and
user-created data to local caches of data stored in a cloud application or web service.
Each application is allotted its own storage sandbox on the phone, isolated from all
other applications and from the operating system. Isolated storage will be empty when
an application is first deployed to the emulator or a device. During execution, many
applications will store data and settings in isolated storage.

 While testing and debugging an application, developers might want to examine
the files written to isolated storage or maybe even write data files to isolated storage to
facilitate testing. The Isolated Storage Explorer tool (ISETool) is included in the Win-
dows Phone 7.1 SDK to enable these scenarios. The ISETool allows a developer to take
a snapshot of an application’s isolated storage, copying the files from the phone to a
desktop folder. The ISETool can also be used to copy files from the desktop to an
application’s isolated storage folder. The ISETool will also list the files in an isolated
storage folder, as shown in figure 1.6.

 The ISETool requires the application’s product GUID. The product GUID is gener-
ated by the Visual Studio project templates and is declared in a project’s application
manifest file, which is named WMAppManifest.xml. You’ll learn more about the appli-
cation manifest in the next chapter.

 We show you how to use the Isolated Storage Explorer tool to populate a read-only
database in chapter 5.

1.4.9 Marketplace Test Kit

Once an application has been developed, it must go through an approval process run
by Microsoft before being published to the Windows Phone Marketplace. This will
ensure that the application conforms to Microsoft requirements for a Windows Phone

Figure 1.6 Using the Isolated Storage Explorer Tool to list the files in isolated storage in the emulator

26 CHAPTER 1 A new phone, a new operating system
application. Microsoft’s requirements are detailed in the Application Certification
Requirements for Windows Phone available from http://create.msdn.com.

 The Marketplace Test Kit includes a series of automated, monitored, and manual
tests you can use to ensure your application meets the Application Certification Require-
ments for Windows Phone. The Marketplace Test Kit also helps you assemble the graph-
ics and screen shots that will be submitted along with the application’s .xap file. The
Marketplace Test Kit is installed when you install the Windows Phone Developer
Tools. A screen shot of the Marketplace Test Kit is shown in figure 1.7. The Market-
place Test Kit is an extension to Visual Studio and is accessed from the Open Market-
place Test Kit option in the Visual Studios Project menu.

 If your application violates any of the tests, it will be rejected during the submission
process. Nobody likes to receive rejection letters. Though you should run the inges-
tion tool before you submit your application, you may also choose to run it periodi-
cally during development so that you can detect and fix issues as early as possible.

 The Capability Validation test reports the security capabilities required by
an application.

 Windows Phone is all about security sandboxes and user disclosure. Security
capabilities are one face of the operating system’s security model and a Windows
Phone application must declare which capabilities or features of the operating
system it uses. The capabilities used by an application are declared in the applica-
tion’s manifest file. When an application is submitted to the marketplace, the cer-
tification process inspects the compiled code and updates the manifest with the
discovered capabilities. Table 1.1 details the set of capabilities that can be listed
in the manifest.

Figure 1.7 The results of automated tests performed by the Marketplace Test Kit, including a list of
security capabilities used by the application

http://create.msdn.com

27The Windows Phone Developer Tools
Table 1.1 Security capabilities

Capability ID Description Required by

ID_CAP_APPOINTMENTS Access appointment
data from the calendar

Microsoft.Phone.UserData
.Appointments

ID_CAP_CONTACTS Access contact data
from the address book

Microsoft.Phone.UserData
.Contacts

ID_CAP_
GAMERSERVICES

Use Xbox Live APIs Microsoft.Xna.Framework
.GamerServices

ID_CAP_IDENTITY_
DEVICE

Access to device infor-
mation

Microsoft.Phone.Info
.DeviceExtendedProperties

ID_CAP_IDENTITY_
USER

Access to user informa-
tion

Microsoft.Phone.Info
.UserExtendedProperties

ID_CAP_ISV_
CAMERA

Access the Camera API
and the raw image
stream

Microsoft.Devices.PhotoCamera

ID_CAP_LOCATION Use location services System.Device.Location

ID_CAP_MEDIALIB Access the media
library

Microsoft.Devices.MediaHistory
Microsoft.Devices.Radio
.FMRadio
Microsoft.Xna.Framework
.GamerServices
Microsoft.Xna.Framework.Media
System.Windows.Media
.MediaStreamSource

ID_CAP_MICROPHONE Record with the micro-
phone

Microsoft.Xna.Framework.Audio
.Microphone

ID_CAP_NETWORKING Use network services Microsoft.Phone.Controls
.WebBrowser
Microsoft.Phone.Notification
Microsoft.Xna.Framework
.GamerServices
System.Net

ID_CAP_PHONEDIALER Initiate phone calls Microsoft.Phone.Tasks
.PhoneCallTask

ID_CAP_PUSH_
NOTIFICATION

Receive push notifica-
tions

Microsoft.Phone.Notification

ID_CAP_SENSORS Use the Accelerometer Microsoft.Devices.Sensors

ID_CAP_
WEBBROWSERCOMPONENT

Use the web browser
control

Microsoft.Phone.Controls
.WebBrowser

ID_HW_FRONTCAMERA Access the forward fac-
ing camera

Microsoft.Devices.PhotoCamera

28 CHAPTER 1 A new phone, a new operating system
The manifest file created by the Visual Studio project templates automatically declares
every capability except ID_HW_FRONTCAMERA. The developer can remove any of the capa-
bilities that aren’t required for their application. During marketplace certification, the
list provided by the developer is deleted and replaced by a list of capabilities detected by
the certification tools. The assembly is examined for calls to the secured APIs and when
one is found, the matching capability is re-added to the manifest. If required capability
isn’t listed in the manifest, the secured API will throw a UnauthorizedAccessException.
When an application is downloaded from the marketplace, the list of capabilities used
by an application is displayed to the user, allowing the user to make an informed deci-
sion before purchasing the application.

1.5 Summary
This chapter has been an introduction to the Windows Phone platform. Windows
Phone 7 is not an upgrade of Windows Mobile, but is an entirely new operating sys-
tem. Developers moving to Windows Phone from Windows Mobile, or from desktop
applications, must learn to work with the Windows Phone Developer Tools. Windows
Phone 7 is locked down pretty tight, and many types of applications simply can’t be
ported to Windows Phone 7.

 You’ll see in the next chapter how easy it is to create Windows Phone applications.
Hopefully the ease of development mitigates the lack of advanced functionality that
many developers have come to expect from Windows-based platforms.

 Now, install the development tools and move to the next chapter: it’s time to code!

Creating your first
Windows Phone application
Now that you have the necessary background on the Windows Phone platform and
the Windows Phone Developer Tools, it’s time to get down to business and start
programming. You’ll start by building a Hello World project. For developers expe-
rienced with Visual Studio, simple Hello World projects may seem unduly remedial.
Windows Phone projects have several unique settings and features that you need to
understand to build proper applications and games. The Hello World project in
this chapter is designed to highlight these aspects of Windows Phone development.

 You’ll build a Hello World Silverlight application and explore a few of the
phone-specific extensions to Silverlight. Silverlight applications have several project
properties unique to Windows Phone. Two of these properties define the icons
used in the phone’s start screen and Applications List. Other properties deter-
mine the titles shown next to the start and application list icons. You’ll learn how
to use the Visual Studio project templates to generate a new application and how to

This chapter covers
■ Creating your first Silverlight application
■ Handling touch events
■ Navigating between pages
■ Trial licensing
29

30 CHAPTER 2 Creating your first Windows Phone application
use the item templates to generate a new page for your application. You’ll also learn
how to deploy the application to the emulator or a physical device and use the debug-
ger to step through code.

TIP If you’re new to Silverlight development, read the primers for Expres-
sion Blend and Silverlight in the appendices.

In most ways, building a Silverlight application for the phone is the same as building
one for the browser or the desktop, but there are some minor differences. You’ll see
some of the differences as you build your application. The Hello World application
that you’ll create is shown in figure 2.1.

 The application displays a title, draws a globe, and prompts the user to enter their
name. When the user presses the toolbar button, the application navigates to a greet-
ing page. You’ll start building your application by creating a new Silverlight project.

2.1 Generating the project
To start the Hello World application, you’ll use the Windows Phone Application proj-
ect template in Visual Studio. The Windows Phone Application project template is just
one of the several Silverlight project templates that are installed with Visual Studio.
Table 2.1 lists the available project templates.

 You’ll get started by opening Visual Studio and creating a new project. Figure 2.2
shows the new project dialog for the Hello World Silverlight application. Name the
project SilverlightHello.

Figure 2.1 The Silverlight
Hello World application

31Generating the project
Table 2.1 Windows Phone project templates

Project template Description

Windows Phone Application A basic application skeleton with a single page.

Windows Phone Databound
Application

An application demonstrating page navigation, databound list con-
trols, and the MVVM pattern.

Windows Phone Class Library A simple library for creating reusable components.

Windows Phone Panorama
Application

An application demonstrating a databound Panorama control and
the MVVM pattern. The Panorama control is covered in chapter 10.

Windows Phone Pivot
Application

An application demonstrating a databound Pivot control and the
MVVM pattern. The Pivot control is covered in chapter 10.

Windows Phone Silverlight
and XNA Application

An application that mixes Silverlight and XNA Framework graphics. You’ll
build an application that uses both Silverlight and XNA in chapter 14.

Windows Phone Audio Playback
Agent

A library containing an application’s background audio logic. Audio
Playback Agents are covered in chapter 7.

Windows Phone Audio
Streaming Agent

A library containing an application’s background streaming
audio logic.

Windows Phone Scheduled
Task Agent

A library containing an application’s background processing logic.
Scheduled Tasks Agents are covered in chapter 3.

Each of the project templates listed here are available for both C# and Visual Basic projects.

Figure 2.2 Visual Studio’s New Project dialog box

32 CHAPTER 2 Creating your first Windows Phone application
Once you click OK, you’ll be prompted with a dialog ask-
ing you to pick the target operating system version. This
dialog can be confusing because it lists the Windows
Phone SDK versions and not the operating system ver-
sions. If you’re building an application that makes use of
the new features in the Windows Phone 7.5 operating sys-
tem, choose Windows Phone OS 7.1 from the drop-down.
After you click the OK button, a new Visual Studio solu-
tion and project are created. The IDE opens Main-
Page.xaml in the editor, and you’re ready to begin.
Before you start work, let’s take a look at what Visual Stu-
dio created. Figure 2.3 shows the new project in the
Solution Explorer.

 The project structure mirrors that of a regular Silver-
light project with Properties and References folders, App
.xaml, MainPage.xaml, AppManifest.xml, and Assembly-
Info.cs. Along with the references to the Microsoft
.Phone assemblies, a few additional files are present:

■ WMAppManifest.xml
■ ApplicationIcon.png
■ Background.png
■ SplashScreenImage.jpg

The PNG image files are used by the operating system when displaying the application
in the Start Experience, Application List, or Games Hub, and the splash image is
shown when the Silverlight application starts up. We’ll look at the image files in more
depth later in the chapter.

NOTE Background.png is used as the background for the start experience
tile. It’s not intended to be the default background of the application.

WMAppMainfest.xml contains metadata for the application, providing important
details about the application to the operating system. Information in WMAppManifest
.xml is also used by the Application Marketplace to validate and list an application.
Visual Studio adds the WMAppManifest file to the .xap file deployment package when
it builds an application. The final WMAppManifest.xml file that appears in the pack-
age downloaded to a user’s phone will not necessarily contain the same information
the developer specified when they built the application before submitting it to the
Marketplace. During the marketplace certification, the application is examined and
its manifest file is updated. A product identifier is added, the hub type or genre is set,
and the security capabilities are confirmed.

 Many of the settings in WMAppManifest.xml are set via the project property pages.
Open the WMAppManifest.xml file and look for the App element, specifically the
Genre attribute:

Figure 2.3 Files in the Solution
Explorer

33Generating the project
<App xmlns="" ProductID="{65438a9e-0537-451f-aaec-6ff25ca0bf85}"
 Title="Hello World" RuntimeType="Silverlight" Version="1.0.0.0"
 Genre="Apps.Normal" Author="" Description="" Publisher="">

The Genre attribute declares whether the application appears in the Application List
or the Games Hub. When developing and testing on the emulator, you should leave
the genre set to Apps.Normal since the Games Hub isn’t present on the emulator. If
you want to test integration with the Games Hub on a real device, you can change the
setting to Apps.Games.

 Your new Hello World project is ready to be built and deployed to the emulator or a
phone. Visual Studio’s Debugger is used to debug running Windows Phone applications.

2.1.1 Debugging phone projects

Once you’ve built a project, you’ll be able to
debug it both in the emulator and on a real
device. Before starting a debug session,
you’ll want to confirm the appropriate tar-
get is selected in the target deployment
device combo box. In figure 2.4, you can see
that Windows Phone Emulator is the target device, and the application will be
launched in the emulator.

 The first time you launch an application in the emulator, it’ll take some time to
boot and initialize the emulator prior to starting the application. You can also start
the emulator ahead of time from the Windows Phone SDK folder in the Start Menu.
Once the application has been launched, you’ll be able to debug and interact with it
in the emulator. The Windows Phone emulator can be kept running between debug-
ging sessions.

TIP An application can detect whether it’s running in the emulator by
checking the value of the Microsoft.Devices.Environment.DeviceType
static property. If the value is DeviceType.Emulator, the application is run-
ning in the emulator.

Prior to launching an application on a real device, the phone must be plugged into
the USB port and connected to your computer. The phone is considered connected
when the Zune software is running. If you don’t want to keep the Zune software run-
ning, you can connect the phone with the WPConnect tool. Before you can deploy and
debug an application on a real phone, you must register your phone with the Devel-
oper Registration Tool. The WPConnect and Developer Registration tools were intro-
duced in chapter 1.

 When the application is being debugged, it’ll automatically stop on the break-
points you have set in the source code. You can add or remove breakpoints during
the execution just like you would in any other desktop or Silverlight project. Finally,
when you’re done, you can stop debugging in the IDE or press the Back button on
the device.

Figure 2.4 Target Deployment Device selector

34 CHAPTER 2 Creating your first Windows Phone application
 Visual Studio allows you to install or deploy the project on the device without
starting a debugging session. You can do this by right-clicking on the project name
in the Solution Explorer and selecting the Deploy option from the menu. The appli-
cation will be copied to the device, and can be launched from the Applications List
on the phone. When the application is launched, Silverlight for Windows Phone
adds a few custom steps to the startup process that aren’t found in Silverlight for the
browser applications.

2.1.2 Application startup

Like any other Silverlight application, the entry point is a System.Windows.Application-
derived class found in App.xaml. All phone applications are Silverlight Navigation
Applications. In your phone application, the App class creates an instance of Phone-
ApplicationFrame, which is used as the RootVisual. Behind the scenes, the applica-
tion host calls the NavigationService directly to navigate to MainPage.xaml during
initial launch. When an application is reactivated, the application host navigates
directly to the active page’s XAML—see chapter 3 for more details on application
launching and activation.

 All this magic navigation is well and good; the application starts and MainPage is
automatically loaded. What happens when you decide to rename MainPage.xaml?
Since the XAML filename doesn’t have to match the name of the C# class that it
contains, changing the name of MainPage is a two-step process. Fortunately, Visual
Studio’s refactoring features make this a simple operation. In the Solution
Explorer, right-click MainPage.xaml, choose Rename, and change the filename to
HelloPage.xaml. Next, open MainPage.xaml.cs, select the MainPage text in the class
definition, and choose Rename from the Refactor menu, specifying HelloPage as
the new name.

 When you debug the application now, the App.RootFrame_NavigationFailed
event handler is called. Figure 2.5 shows the NavigationFailedEventArgs properties
sent to the event handler.

 Even though you renamed MainPage.xaml, the application is still configured to
use MainPage.xaml as the startup URI. The startup URI is declared in the WMApp-
Manifest.xml file as the NavigationPage attribute of the Task named “_default”.
Though a number of the WMAppManifest.xml settings can be set using the project
property editor, the default task URI must be specified by directly editing the XML

Figure 2.5 NavigationFailedEventArgs properties after renaming
MainPage.xaml

35Implementing Hello World
file. Open WMAppManifest.xml, update the URI attribute, and then save and run
the application:

<Tasks>
 <DefaultTask Name="_default"
 NavigationPage="HelloPage.xaml"/>
</Tasks>

In this section you created a new Windows Phone Application project and examined
the files created by the project template. You learned that a PhoneApplicationFrame
is the root visual for the application and that the Silverlight runtime uses the naviga-
tion framework to load the startup page. Now that the application is running, and
you’ve customized the name of the startup page, you’ll customize the page contents.

2.2 Implementing Hello World
The project template created a default main page for your application, which you just
renamed to HelloPage.xaml. In this section you’re going to add a second page to the
application that will display a greeting message. The second will employ a pair of
TextBlock controls as well as a RichTextBox. You’re also going to customize Hello-
Page by drawing a globe, as well as asking the user to input their name. First we’ll take
a closer look at the page created for you by the project template.

2.2.1 Customizing the startup page

The Windows Phone Application project template created the startup page with sev-
eral elements meant to match the page design to the Metro style described in Micro-
soft’s User Experience Design Guidelines for Windows Phone. The design guide, found on
MSDN, details the expected look and feel of phone applications. The following listing
shows the XAML markup added by the project template for HelloPage’s content.

<Grid x:Name="LayoutRoot"
 Background="Transparent">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <!--TitlePanel contains the name of the application and page title-->
 <StackPanel x:Name="TitlePanel"
 Grid.Row="0"
 Margin="12,17,0,28">
 <TextBlock x:Name="ApplicationTitle"
 Text="MY APPLICATION"
 Style="{StaticResource PhoneTextNormalStyle}" />
 <TextBlock x:Name="PageTitle"
 Text="page name"
 Margin="9,-7,0,0"
 Style="{StaticResource PhoneTextTitle1Style}" />
 </StackPanel>

Listing 2.1 HelloPage’s content as created by the project template

LayoutRoot Grid
control with two rows

b

TitlePanel with
two TextBlocks

c

36 CHAPTER 2 Creating your first Windows Phone application
 <!--ContentPanel - place additional content here-->
 <Grid x:Name="ContentPanel"
 Grid.Row="1"
 Margin=”12,0,12,0”>
 </Grid>
</Grid>

The page’s root layout panel is a grid con-
trol that has been split into two rows B.
The first row contains TitlePanel c, which
stacks two TextBlock controls for the appli-
cation and page titles. The remainder of the
page is allocated to the ContentPanel d.
Figure 2.6 shows HelloPage.xaml as created
by the project template.

 Application and page titles aren’t
required by the design guidelines or mar-
ketplace specification but there are several
rules that should be followed when they’re
used. The application title should be the name of the application, and should be all
uppercase characters. The page title should be all lowercase characters and should
describe the data or features displayed in the page. The titles shouldn’t scroll or wrap;
when the title doesn’t fit on the screen, the text should appear truncated. If the title
panel appears on the main page, it should appear on all pages to provide the user with
a consistent experience.

 In HelloPage.xaml, update the application title to “WINDOWS PHONE 7 IN ACTION”
and the page title to “hello world”:

<TextBlock x:Name="ApplicationTitle"
 Text="WINDOWS PHONE 7 IN ACTION"
 Style="{StaticResource PhoneTextNormalStyle}" />
<TextBlock x:Name="PageTitle"
 Text="hello world"
 Margin="9,-7,0,0"
 Style="{StaticResource PhoneTextTitle1Style}" />

The title TextBlock controls each have their Style properties set to a static resource.
The style resources used here won’t be found anywhere in your project. They are styles
injected into your application by the Silverlight framework so that your application can
adhere to the user interface theme chosen by the user. Theme resources are covered in
more depth in chapter 11. Theme resources are also used in the root PhoneApplication-
Page tag to set the font and foreground color properties for the page:

FontFamily="{StaticResource PhoneFontFamilyNormal}"
FontSize="{StaticResource PhoneFontSizeNormal}"
Foreground="{StaticResource PhoneForegroundBrush}"

PhoneApplicationPage also has a couple of orientation properties—Orientation

and SupportedOrientations. The orientation property specifies whether the current

ContentPanel for
all other markup

d

Figure 2.6 HelloPage.xaml’s TitlePanel in the
Visual Studio Designer

37Implementing Hello World
orientation is portrait or landscape. The
SupportedOrientations property declares
which orientations are supported by the page.
The visual designer supports both portrait and
landscape and allows you to quickly switch
between the two layouts, as shown in figure 2.7.
You can read more about page orientation in
chapter 11.

 Windows Phone presents a status bar at the
top edge of the screen in portrait layout. In
landscape layout, the status bar is anchored to
the edge opposite the Start button as it moves
to the left or right, depending on the direction
the user rotates the phone. The status bar displays the signal strength, battery, current
time, and other indicators. The status bar consumes 32 pixels in portrait layout and
72 pixels in landscape layout. Screen designs should account for the space occupied
by the status bar. Silverlight applications can hide the status bar with the System-
Tray.IsVisible attached property. The project template sets this attached property
to True. You can provide more room for your application’s content and hide the status
bar by setting the property’s value to False. Before you choose to hide the status bar
in your application, you should know that many users consider the status bar an essen-
tial element and dislike applications that hide it.

 You’re making good progress. You’ve gotten your hands dirty with XAML and
started customizing your application. Along the way, you learned how to ensure your
application fits into the system look and feel. Your next step is to add a globe and text
box to the application content panel.

2.2.2 Adding application content
Remember that you want the first page of the application to draw a globe and prompt
the user to enter a name. These visual elements will be added to the ContentPanel
grid control that was created by the project template, as shown in the next listing.
You’ll start by dividing the ContentPanel into two rows, with one row using two thirds
of the panel, and the remaining third allocated to the second row.

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <Grid.Resources>
 <SolidColorBrush x:Key="GlobeBrush"
 Color="{StaticResource PhoneAccentColor}" />
 </Grid.Resources>
 <Grid.RowDefinitions>
 <RowDefinition Height="2*" />
 <RowDefinition Height="1*" />
 </Grid.RowDefinitions>
 <Canvas Width="200" Height="200" VerticalAlignment="Center"

Listing 2.2 Drawing the globe

GlobeBrush is
static resourceb

Figure 2.7 Using the context menu to
switch between portrait and landscape
layouts

38 CHAPTER 2 Creating your first Windows Phone application
 Background="{StaticResource PhoneBackgroundBrush}" >
 <Ellipse Width="200" Height="200"
 Stroke="{StaticResource GlobeBrush }"
 StrokeThickness="10" />
 <Ellipse Width="100" Height="200"
 Canvas.Left="50"
 Stroke="{StaticResource GlobeBrush }"
 StrokeThickness="5" />
 <Path Data="M 100,0 100,200"
 Stroke="{StaticResource GlobeBrush }"
 StrokeThickness="5" />
 <Path Data="M 0,100 200,100"
 Stroke="{StaticResource GlobeBrush }"
 StrokeThickness="5" />
 <Path Data="M 30,40 A 100,50 0 0 0 170,40"
 Stroke="{StaticResource GlobeBrush }"
 StrokeThickness="5" />
 <Path Data="M 30,160 A 100,50 0 0 1 170,160"
 Stroke="{StaticResource GlobeBrush }"
 StrokeThickness="5" />
 </Canvas>
</Grid>

The globe is drawn using Silverlight’s Ellipse and Path drawing primitives. These are
just two examples of the drawing primitive classes found in the System.Windows
.Shapes namespace. The sphere of the globe and the two arced meridians are drawn
with ellipses. The straight meridian and the three parallels are drawn with paths. The
drawing canvas is centered in the first row of the ContentPanel.

TIP To improve an application’s performance, Microsoft recommends that
complex XAML graphics be captured in a PNG or JPG and displayed with an
image control.

Each of the shapes has its Stroke property bound d
to a static resource you create named GlobeBrush B.
GlobeBrush has its Color property bound to another
static resource named PhoneAccentColor. The canvas
has its Background bound to a static resource named
PhoneBackgroundBrush c. PhoneBackgroundBrush
and PhoneAccentBrush are other examples of the sys-
tem theme resources that the Silverlight Framework
injects into a Silverlight application. Both Expression
Blend and the Visual Studio designer allow selecting
system resources from their respective property win-
dows. The Expression Blend resource menu, shown in
figure 2.8, is accessed via the property editor.

 The Visual Studio resource picker, shown in fig-
ure 2.9, is accessed from the Apply Resource option
in a property’s Advanced Options menu.

Binding
to theme
brushc

Binding to
GlobeBrushd

Figure 2.8 Expression Blend’s
System Brush Resources selector

39Implementing Hello World
In this section, you added XAML markup to draw a globe, and bound the globe ele-
ments to system brushes to enable theme support. You still need to add UI controls to
implement the remaining requirement, which is to navigate to the greeting page and
display the user’s name. First you need to create the greetings page.

2.2.3 Adding the greetings page
The second page of your application will display a greeting message to the user, using
the name typed into the main page. Add the new page using the Windows Phone Por-
trait Page item template and name the file GreetingPage.xaml. The Portrait Page item
template is one of several item templates that ship with the Windows Phone Developer
Tools. Table 2.2 lists the Windows Phone item templates.

Table 2.2 Windows Phone item templates

Page Template Description

Windows Phone Portrait Page A basic application page with title and description fields. The
Orientation and SupportedOrientations properties are set
to Portrait.

Windows Phone
Landscape Page

An application page identical to a portrait page, except that the
Orientation and SupportedOrientations properties are set
to Landscape.

Windows Phone User Control A starting point for creating reusable XAML-based controls.

Windows Phone Panorama
Page

Adds an application page with Panorama control as its only content
element.

Windows Phone Pivot Page Adds an application page with Pivot control as its only
content element.

Figure 2.9 Visual Studio’s System resource menu

40 CHAPTER 2 Creating your first Windows Phone application
The new greeting page contains controls for the application and page title. Following
the same steps described for the hello page, change the application title to “WINDOWS
PHONE 7 IN ACTION” and the page title to “greetings”.

 The greetings page will use a couple of TextBlocks and a RichTextBox control to
display the message. The XAML markup for the page’s content panel is shown in the
next listing.

<Grid x:Name="ContentPanel"
 Grid.Row="1"
 Margin="12,0,12,0">
 <Grid.RowDefinitions>
 <RowDefinition Height="72" />
 <RowDefinition Height="100" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <TextBlock Margin="{StaticResource PhoneMargin}"
 Text="Hello" Style="{StaticResource PhoneTextLargeStyle}" />

 <TextBlock x:Name="helloMessage" Grid.Row="1"
 Margin="{StaticResource PhoneMargin}" Text="name goes here"
 Style="{StaticResource PhoneTextExtraLargeStyle}" />

 <RichTextBox Grid.Row="2" Margin="{StaticResource PhoneMargin}"
 VerticalAlignment="Bottom">
 <Paragraph FontSize="{StaticResource PhoneFontSizeNormal}">
 Welcome to</Paragraph>
 <Paragraph FontSize="{StaticResource PhoneFontSizeMedium}"
 Foreground="{StaticResource PhoneAccentBrush}" >
 <Italic>Windows Phone 7 in Action</Italic>
 </Paragraph>
 <Paragraph FontSize="{StaticResource PhoneFontSizeNormal}">
 Written by Massimo Perga, Timothy Binkley-Jones
 and Michael Sync.</Paragraph>
 </RichTextBox>
</Grid>

You start by dividing the content panel into three rows, specifying fixed heights for the
first two rows. In the first row you place a TextBlock containing the text “Hello”. You
use the PhoneMargin resource B to align the controls with the TextBlocks in the title
panel. Next, you add a second TextBlock and give it the name helloMessage c.
You’ll use this TextBlock to display the name of the user. Finally, you add a RichText-
Box d which you use to display formatted text. On Windows Phone, the RichTextBox
is read-only.

 You now have the two pages in your Hello World application setup and ready to go.
If you run the application now, you’ll see the hello page with the nice globe. Other
than look at the globe, you can’t do anything in the application. You still need to add
input controls to capture the user’s name. You also need something the user can use
to navigate to the greetings page. Let’s take a look at how you interact with the user.

Listing 2.3 GreetingPage’s content

Using
PhoneMargin

b

TextBlock
for user’s

name

c

Read-only
RichTextBox d

41Interacting with the user
2.3 Interacting with the user
Silverlight for Windows Phone provides most of the core user input controls that are
available to Silverlight for the browser. The input controls have been modified and
restyled to work in a touch-only environment and have new events that are raised
when the user touches the screen. To maintain compatibility with Silverlight for the
browser, the Windows Phone controls also provide mouse-related events and automat-
ically promote touch events into mouse events. Unless you’re specifically looking for
touch events, you’ll work with the input controls in nearly the exact same way you did
when building browser applications.

 There will be situations where you want to work with the touch events and ges-
tures. Raw touch events are decomposed into start, delta, and stop events. Touch gestures
combine several raw touch events into well-known gestures such as Tap, Double Tap,
Hold, Pinch, Pan, and Flick. In this section you’ll learn how to capture Tap and Dou-
ble Tap gestures to change the color of the globe. First let’s take a closer look at how
the common TextBox control operates on Windows Phone.

2.3.1 Touch typing

The Hello World application uses a TextBox control for text entry and a TextBlock
for a label. These two controls are placed inside a StackPanel and added to the sec-
ond row of the ContentPanel. Since you’ll need to reference the TextBox from code
when you display the greeting message, give it the name nameInput:

<StackPanel Grid.Row="1" Margin="{StaticResource PhoneMargin}">
 <TextBlock>Enter your name:</TextBlock>
 <TextBox x:Name="nameInput" InputScope="Text"/>
</StackPanel>

When you run the application (see figure 2.1), you’ll notice that the font sizes for the
two controls are different, even though you didn’t specify any font information. The
TextBlock adopts the FontSize of its parent containers, in this case from the page
itself. Remember that the project template set the page’s FontSize to the PhoneFont-
SizeNormal system resource.

 The TextBox retrieves its font information from the default TextBox control tem-
plate. The TextBox control template sets FontSize to the PhoneFontSizeMediumLarge
system resource:

<Setter Property="FontFamily"
 Value="{StaticResource PhoneFontFamilyNormal}"/>
<Setter Property="FontSize"
 Value="{StaticResource PhoneFontSizeMediumLarge}"/>

When the user touches inside the TextBox the on-screen keyboard is displayed if the
device doesn’t have a physical keyboard. By default, the standard QWERTY keyboard is dis-
played as shown in figure 2.10. We recommend that you always specify an InputScope,
even if you just use the Text input scope that you’ve used here. The Text input scope pro-
vides word correction features that aren’t available with the default input scope. Other

42 CHAPTER 2 Creating your first Windows Phone application
keyboard layouts, such as Number or Url, can be specified.
InputScopes are covered in more depth in chapter 11.

 The on-screen keyboard also exposes clipboard copy
and paste operations. TextBox automatically supports
the clipboard, and your application doesn’t need to do
anything special to enable clipboard operations. Devel-
opers can programmatically copy text to the system clip-
board to share with other applications. Before we show
you how to copy text to the clipboard, let’s look at how
touch gestures are supported. Your application can listen
for Tap gestures and perform custom actions in response
to gesture events.

2.3.2 Touch gestures
The User Experience Design Guidelines for Windows Phone defines the touch gestures Tap,
Double Tap, Hold, Pan, and Flick. The initial Windows Phone SDK didn’t expose any
gestures from Silverlight controls. The Windows Phone SDK 7.1 introduced three ges-
ture events:

■ Tap
■ DoubleTap
■ Hold

To demonstrate how touch gestures can be used in an application, you’re going to
change the color of the globe when it’s tapped by the user. Changing the color of the
globe can be accomplished by changing the color of the brush used to draw the
globe’s ellipse and path graphics. Remember that you bound all of the graphic ele-
ments to the static resource named GlobeBrush. To access the brush resource from
code, you need to define a field and then initialize the field with the SolidColorBrush
that’s stored in the ContentPanel’s resource dictionary:

SolidColorBrush globeBrush;

public HelloPage()
{
 InitializeComponent();
 globeBrush = (SolidColorBrush)ContentPanel.Resources["GlobeBrush"];
}

Before you implement the Tap and DoubleTap event handlers, you need to add a cou-
ple of fields to enable color changes. The first is an array of colors and the second is
an index of the current color:

Color[] colors = new Color[] { Colors.Red, Colors.Orange,
 Colors.Yellow, Colors.Green, Colors.Blue, Colors.Purple };
int colorIndex = 0;

Next, you hook up the Tap and DoubleTap events to the canvas panel containing
the globe:

Figure 2.10 Inputting text with
the on-screen keyboard

43Interacting with the user
<Canvas Width="200" Height="200" VerticalAlignment="Center"
 Background="{StaticResource PhoneBackgroundBrush}"
 Tap="Canvas_Tap" DoubleTap="Canvas_DoubleTap">

In the Tap event handler you want to assign the globeBrush’s Color property to the next
color in the colors array. Don’t forget to check the index and reset it to the beginning of
the array:

private void Canvas_Tap(object sender, GestureEventArgs e)
{
 colorIndex++;
 if (colorIndex >= colors.Length)
 colorIndex = 0;
 globeBrush.Color = colors[colorIndex];
}

In the DoubleTap event handler you reset the brush color to the accent color provided by
the system theme. The accent color can be obtained from the application resources:

private void Canvas_DoubleTap(object sender, GestureEventArgs e)
{
 globeBrush.Color = (Color)App.Current.Resources["PhoneAccentColor"];
}

If your application requires gestures beyond tap and hold, you’ll need to process the
raw manipulation events raised by the Silverlight controls. The UIElement class
exposes ManipulationStarted, ManipulationDelta, and ManipulationCompleted
events when a user touches, moves, and releases their finger from the screen. Convert-
ing manipulation events into gestures is beyond the scope of this book.

 Now that you’ve learned about gestures, let’s discuss how to copy text to the system
clipboard. Your application will copy text to the clipboard when a toolbar button
is pressed.

2.3.3 Adding a toolbar button
Windows Phone provides a built-in toolbar and menu control called the application
bar. The Visual Studio project adds sample, commented out, application bar markup
when the page is created. For your Hello World application, you need to add one but-
ton to HelloPage and three buttons to GreetingPage. In HelloPage.xaml, you’ll
replace the sample ApplicationBar buttons with your own button. Start by uncom-
menting the ApplicationBar markup and removing the second button and both
example menu items:

<phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar IsVisible="True" IsMenuEnabled="False">
 <shell:ApplicationBarIconButton Text="say hello"
 IconUri="/Images/appbar.next.rest.png" />
 </shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>

Next, set text for the remaining button, named appbar_button1, to “say hello”. Finally,
you need to specify an IconUri.

44 CHAPTER 2 Creating your first Windows Phone application
 For GreetingPage, you also need to create an ApplicationBar and add buttons.
You need three buttons: one labeled “ok”, a second labeled “copy”, and one more
that’s labeled “pin”:

<phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar IsVisible="True" IsMenuEnabled="True">
 <shell:ApplicationBarIconButton Text="ok"
 IconUri="/Images/appbar.check.rest.png" />
 <shell:ApplicationBarIconButton Text="copy"
 IconUri="/Images/appbar.save.rest.png" />
 <shell:ApplicationBarIconButton Text="pin"
 IconUri="/Images/appbar.next.rest.png" />
 </shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>

In this application, you’re using a few of the icons from the Windows Phone SDK, which
are installed to c:\Program Files\Microsoft SDKs\Windows Phone\v7.1\Icons\Dark. On 64-
bit Windows, the SDK is installed in c:\Program Files (x86).

 Create a project folder named Images and add the appbar.next.rest.png, appbar
.check.rest.png, and appbar.save.rest.png files to the folder. For each of the images,
set the Build Action to Content. More information about the application bar can be
found in chapter 10.

 Like any other button, ApplicationBarIconButtons raise a Click event when
the user presses them. You’ll next register for the Click event on the copy button
and implement the event handler. Update the button’s markup to declare the
event handler:

<shell:ApplicationBarIconButton Text="copy"
 IconUri="/Images/appbar.save.rest.png" />
 Click="copyButton_Click" />

Next, add the event handler in GreetingPage.xaml.cs:

private void copyButton_Click(object sender, EventArgs e)
{
 string message = string.Format("Hello {0}!", helloMessage.Text);
 Clipboard.SetText(message);
}

The event handler constructs a message by concatenating the word Hello and the text
in the helloMessage TextBlock. The greeting message is then copied to the Clipboard
and is ready to be pasted into some other application.

 In this section you learned how to receive typed text from the user, respond to
touch gestures, and use the system application bar to display a toolbar buttons. You
implemented a click handler for one of the toolbar buttons, but the other two buttons
don’t perform any work. The unimplemented buttons will be used to navigate
between the two pages, which we cover in the next section.

45Page navigation
2.4 Page navigation
A phone application is a modified version of a Silverlight Navigation Application. Sil-
verlight Navigation Applications are composed of a navigation frame and one or more
pages that interact with the NavigationService. The NavigationService interacts
with the operating system to maintain a journal or history of pages visited by the user.
In this section, you’re going to add navigation to the Hello World application.

2.4.1 Navigating to another page

Page navigation is the process that takes the user from one page to another. One
example is when the user presses a button to open a new page, and then after com-
pleting some work, presses another button to come back to the main page. Navigation
is managed by the NavigationService class. The NavigationService.Navigate
method is called to move to a new page. When Navigate is called, the current page is
placed on the navigation stack, and a new instance of the target page is generated.
The NavigationService.GoBack method removes the current page and restores the
previous page that’s on the navigation stack.

 You’ll now add page navigation to your Hello World application. Starting in Hello-
Page.xaml add a click event handler to the “say hello” button:

<shell:ApplicationBarIconButton Text="say hello"
 IconUri="/Images/appbar.next.rest.png"
 Click="navigateForwardButton_Click" />

You want to navigate to GreetingPage when the button is pressed, so you need to add
code to the click handler:

The Model-View-ViewModel pattern
Many, but not all, Silverlight developers use the Model-View-ViewModel pattern
(MVVM) to separate user interface markup and logic from application logic. The sep-
aration of UI and application logic promoted by MVVM is made possible with Silver-
light’s data binding, value converter, and commanding features. Input and TextBlock
controls are bound to model objects, which often implement the INotifyProperty-
Changed interface. Values are converted to strings using converter classes that
implement IValueConverter. Click event handlers are eschewed in favor of com-
mand objects implementing the ICommand interface.

Though MVVM separates UI and business logic, it introduces complexity. We’ve inten-
tionally avoided using the complexity of the MVVM pattern in the sample applications
in the book. We’ve also avoided binding trivial properties such as messages dis-
played in a TextBlock, and have placed a great deal of our application logic in the
page code behind. MVVM is a great pattern that’s well suited for XAML applications
but one criticism of MVVM is that it’s overkill for simple applications.

This isn’t a book about Silverlight, but about Windows Phone. The bits of Silverlight
we use in the sample applications are intended to highlight the features of the Win-
dows Phone SDK that aren’t available to browser-based Silverlight applications.

46 CHAPTER 2 Creating your first Windows Phone application
private void navigateForwardButton_Click(object sender, RoutedEventArgs e)
{
 this.NavigationService.Navigate(
 new Uri("/GreetingPage.xaml", UriKind.Relative));
}

You access the NavigationService via the PhoneApplicationPage’s Navigation-
Service property. The Navigate method accepts an Uri, which in this case is the
name of the file containing the page you wish to load. You construct the Uri using
UriKind.Relative, as it’s part of the same XAP file.

 Now you want to reopen GreetingPage.xaml and generate the click event handler
for the OK application bar button:

<shell:ApplicationBarIconButton Text="ok"
 IconUri="/Images/appbar.check.rest.png"
 Click="navigateBackButton_Click" />

You implement the handler by calling the GoBack method:

private void navigateBackButton_Click(object sender, EventArgs e)
{
 this.NavigationService.GoBack();
}

Now press F5, or select the Debug->Start Debugging menu option, and debug the
application. You’ve just linked your two pages using only two lines of code. Press
the hello button and see the second page appear. When you press the OK button, the
main page appears again.

 It’s worth noting that you use the GoBack method instead of the Navigate method
to return to MainPage.xaml. When you call GoBack the current page is removed from
the page stack. If you’d used Navigate, a new page would’ve been added on top of the
page stack. Depending on the scenario you want to achieve, you can choose the approach
more appropriate for your application, but you must be aware of the consequences.
Both the cases are illustrated in Figure 2.11.

 Let’s examine the two scenarios presented in figure 2.11. In the top sequence
the navigation uses GoBack to return to HelloPage, so the page stack is reduced. In the
sequence on the bottom, the navigation uses Navigate to navigate to HelloPage, and
a new page is added on top of the page stack and made visible.

Figure 2.11 The
navigation page stack
resulting from GoBack
(top) and Navigate
(bottom) method calls.
The white boxes
represent the visible
page, whereas the
shaded boxes are the
pages in the background.

47Page navigation
Your Hello World application now moves from one page to another, and the greeting
page starts up as expected. How do you get the user-entered name from the hello
page to the greeting page? The Silverlight Navigation Framework provides features to
enable passing data into a newly launched page.

2.4.2 Passing parameters between pages

In the previous example you concentrated on navigation between pages, but didn’t
pass any information to the greeting page. In theory, pages should be as self-contained
as possible in order to maintain isolation between the pages, but it can be useful to
pass parameters when navigating. You could choose to use some form of global data
or data cached in the App class instead of passing data, but you should consider pass-
ing parameters in the Uri much as you would pass data to a constructor. As you’ll
learn later in the chapter, the operating system can call your page directly without
ever constructing an instance of your main page.

 In your sample main page, the user enters a name into a text box control named
nameInput whose Text property will be used as a parameter passed to GreetingPage.
GreetingPage will set the text block having name helloMessage with the parameter
passed by HelloPage. Two changes are required in your code to pass a parameter—
HelloPage must pass the parameter value to GreetingPage via the navigation Uri and
GreetingPage must extract the parameter value from the query string.

 Earlier you just created a URI with the hard-coded name of the greeting page in
the navigateForwardButton_Click method. You could choose to hard-code the
parameters as well, but now you have more magic strings in your code. What if you
change the name of the greeting page, or change the name of the parameters passed
in the query string? You’ll next move Uri construction code into a static method of
the GreetingPage class. Modify the Uri to pass a parameter in the same manner that
you would if you were adding fields to a standard HTTP query string:

public static Uri BuildNavigationUri(string name)
{
 return new Uri("/GreetingPage.xaml?name=" + name, UriKind.Relative);
}

Update the navigateForwardButton_Click method in HelloPage.xaml.cs to call the
new factory method, passing along the name entered by the user. The parameter
value is obtained from the nameInput control:

NavigationService.Navigate(
 GreetingPage.BuildNavigationUri(nameInput.Text));

The data passed via the navigation Uri can be retrieved from the target page’s
NavigationContext property. The NavigationContext class has a single property named
QueryString, which is an IDictionary<string, string> mapping parameter names
to values.

 You’ll use the NavigationContext in the code behind for GreetingPage.xaml. The
appropriate time to access the query string is after the page navigation has completed.

48 CHAPTER 2 Creating your first Windows Phone application
The navigation framework calls the PhoneApplicationPage.OnNavigatedTo virtual
method when navigation is complete. In the sample application, you override
OnNavigatedTo and obtain the parameter value by using the string "name" as a key
into the QueryString. You set the returned value into Text property of helloMessage:

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 helloMessage.Text =
 this.NavigationContext.QueryString["name"];
}

OnNavigatedTo is one of the virtual methods defined by PhoneApplicationPage that
are called when navigation events occurs. OnNavigatedFrom and OnNavigatingFrom
are two other methods you can use to determine when the current page is changing.

 In this section we’ve shown how you can navigate between pages from your soft-
ware. Other activities, such as the user pressing the hardware Back key, can cause nav-
igation changes in your application. Every Windows Phone is equipped with a hardware
Back key. Its effect in an application is equivalent to calling the Navigation-
Service.GoBack method.

2.4.3 Changing the Back key behavior

When the Back key is pressed, the navigation framework automatically performs a
GoBack operation. The Back key behavior can be interrupted, for instance, to avoid
moving off a page that has unsaved changes. To interrupt the automatic GoBack, the
PhoneApplicationPage class provides an event named BackKeyPress. You’ll see this
event in action by wiring it to an event handler in your GreetingPage class. You first
need to edit GreetingPage.xaml by adding an attribute to the PhoneApplication-
Page tag:

BackKeyPress="Page_BackKeyPress"

Next, you add the event handler to GreetingPage.xaml.cs. This example prompts the
user with a confirmation message:

private void Page_BackKeyPress(object sender, CancelEventArgs e)
{
 MessageBoxResult result = MessageBox.Show(
 "Press OK to return to the previous page.",
 "WP7 in Action", MessageBoxButton.OKCancel);
 if (result == MessageBoxResult.Cancel)
 e.Cancel = true;
}

If the user presses the Cancel button in the message box, you set the CancelEvent-
Args.Cancel property to true. This cancels the default behavior of the Back key. Fail-
ing to add this statement or setting e.Cancel to false would have maintained the
default behavior, which is to move to the previous page or to terminate the applica-
tion if no other pages are in the page stack.

49Page navigation
NOTE The Application Certification Requirements for Windows Phone details
appropriate application behavior when working with the back key. Specifi-
cally, when the Back button is pressed while the main page is visible, the
application must exit.

Navigation relies on URI and query strings to navigate to specific locations within an
application. Navigation strings can also be used to allow a user to launch to a specific
location within your application with application tiles

2.4.4 Navigating with tiles

Windows Phone users can pin an application’s tile
to the start screen. Tiles are large icons that display
a background image and a title. We show you how
to customize the main application tile in the next
section. Starting with Windows Phone SDK 7.5,
applications can also create secondary tiles that will
navigate directly to a specific location in an applica-
tion. Figure 2.12 shows the application and second-
ary tiles for your Hello World application.

 When the user clicks the application tile for
Hello World, the application is launched and
the NavigationService is called with the URL
/HelloPage.xaml. When the user clicks the sec-
ondary tile, the application is launched and the appli-
cation host passes the URL associated with the secondary tile to the NavigationService.
When you built the GreetingPage, you added a pin button to the application bar. Add
a click handler to the pin button and implement code to create a secondary tile:

private void pinButton_Click(object sender, EventArgs e)
{
 StandardTileData tileData = new StandardTileData
 {
 BackgroundImage = new Uri("Background.png", UriKind.Relative),
 Title = string.Format("Hello {0}!", helloMessage.Text),
 };
 ShellTile.Create(BuildNavigationUri(helloMessage.Text), tileData);
}

The StandardTileData class has several properties that describe the tile. In your
application you only use the BackgroundImage and the Title properties. You set the
BackgroundImage property to use Background.png, the image specified in the project
properties for your main tile. You set the Title property to be the greeting message.
The Create method of the ShellTile class is used to create the new tile. You specify
the Url to the greeting page, passing the same parameters that are specified by Hello-
Page. When ShellTile.Create is called, the application exits and the start screen is
launched, showing the new secondary tile to the user.

Figure 2.12 Application and
secondary tiles for Hello World

50 CHAPTER 2 Creating your first Windows Phone application
 Tiles have several other features that include flip side background images, content,
and counters. Tiles can be dynamically updated or deleted by application code. These
tile features are covered in chapter 9.

 In this section you implemented the final requirement for your Hello World appli-
cation—navigating to a second page and displaying a greeting to the user. You learned
about the NavigationService and how to use query string parameters to pass data
between pages. Finally, you learned how to use tiles to navigate directly to the greeting
page from the start screen. Now you’ll add some polish and customize the start-up
experience with your own splash screen and other artwork.

2.5 Application artwork
The Windows Phone operating system expects your Silverlight application to provide
a few different artwork files which it uses to represent your application to the user.
Depending on how your application is built and configured, your application artwork
can be displayed in the Start Screen, the Application List, the Games Hub, and the
Music + Videos Hub. The Silverlight Framework also looks for a splash screen image
when launching your application. In this section we discuss how to update or replace
the artwork created by the project templates. We also discuss the image formats and
sizes that are expected by Windows Phone. Let’s begin with the splash screen.

2.5.1 Customizing the splash screen

When a Silverlight application is loaded, the application framework briefly displays a
splash screen while constructing and navigating to the first page. If the page’s con-
structor or the OnNavigatedTo methods perform lengthy operations, the splash
screen will remain visible until the work is completed.

NOTE The Application Certification Requirements for Windows Phone recom-
mends that you only provide a splash screen image when your application
takes longer than 1 second to display the first page. The certification require-
ments also require that the first page be shown in less than five seconds.

The splash screen displayed by the framework is a static image, and can’t be updated
or replaced during runtime. The image used by the framework comes from the file
named SplashScreenImage.jpg. The default 480 x 800 pixel image created by project
templates is a dark gray background with a clock face. A custom splash screen image
can be used by simply overwriting SplashScreenImage.jpg with another file of the
same name.

 There are two other image files that are created by the project template: the tile
image and the application icon.

2.5.2 Customizing tile images and application icons

The tile image is used by the operating system when an application or game is pinned to
the start screen. Application icons are used by the operating system when an application

51Application artwork
appears in the application list. Figure 2.13 shows the start screen and application list
custom globe images.

 The Visual Studio project templates create default tile background images named
Background.png for Silverlight applications. Silverlight projects are created with an
application icon named ApplicationIcon.png. You can replace the default tile back-
ground image following these steps:

■ Create a new 173 x 173 pixel PNG file.
■ The image should have a 12-pixel margin on all edges.
■ The image should reserve a 37 x 37 pixel area inside the top-right margin for

tile notifications. (Tile notifications are covered in chapter 9.)
■ Add the new image to the root of the project and specify the Content build action.
■ In the Application tab of the project properties, select the new image in the

Background image field.

The tile image is displayed in the Start Experience with the tile title. You can set a cus-
tom tile title with the Tile Title field in the Application tab of the project properties.
An application can dynamically update its tile background image, which is covered in
more depth in chapter 9. Applications implementing notifications commonly update
the tile background image.

 The tile images for the native phone application use the system theme’s accent
color as a background color. When the user changes the accent color, the tile back-
ground is updated to match. You can also design your tile images to use the theme’s
accent color by using transparency in your PNG file. Transparent pixels in the tile
image will allow the accent color to show through.

 You can replace the default application icon following these steps:

■ Create a new 62 x 62 pixel PNG file for an application. If your application will be
displayed in the Games Hub, the image should be 173 x 173 pixels.

■ Add the new image to the root of the project and specify the Content build action.
■ Open the Application tab of the project properties and select the new image in

the Deployment Icon field.

Figure 2.13 Custom images used in the start experience and the
application list

52 CHAPTER 2 Creating your first Windows Phone application
The Games Hub expects the application icon/game thumbnail to be 173 x 173 pix-
els. The Application List expects the icon to be 62 x 62 pixels. ApplicationIcon.png is
created by the project template as 62 x 62 pixel files. You should replace these files
with larger images if your Silverlight application will appear in the Games Hub. Cus-
tomizing the tile and application images improves an application’s integration into
the overall Windows Phone experience.

2.6 Try before you buy
Before committing hard-earned money to a purchase, many users like to use a demonstra-
tion or trial version of an application, and the Windows Application Marketplace provides
support for limited trials. Applications use the IsTrial method of the License-
Information class to determine if the application is running under a trial license:

LicenseInformation licenseInfo = new LicenseInformation();
if (licenseInfo.IsTrial())
{
 // implement trial mode logic here...
}

The manner in which the trial mode is implemented is up to the discretion of the
developer. Trial mode applications can be restricted to a certain number of days, a
certain number of launches, have a restricted feature set, or some other limitation.

 Applications running in trial mode should provide a “buy me” link to purchase the
application from the Application Marketplace. The marketplace link can be imple-
mented using the MarketplaceDetailTask, which is covered in section 4.2.4. Applica-
tions should re-check the trial when first launched, or when reactivated from a
dormant or tombstoned state, as the user may have purchased the application while it
was inactive. Checking the trial status can be time consuming and shouldn’t be per-
formed in a tight loop.

 Developers should always test their applications in both trial and unlimited modes.
Testing can be problematic as the IsTrial method always returns false when running in
the emulator. Conditional compilation techniques can be used to test trial licensing:

 LicenseInformation licenseInfo = new LicenseInformation();
#if TRIAL_LICENSE
 bool isInTrialMode = true;
#else
 bool isInTrialMode = licenseInfo.IsTrial();
#endif
 if (isInTrialMode)
 {
 // implement trial mode logic here...
 }

To turn on trial licensing, all you need to do is add a conditional compilation symbol
as shown in figure 2.14.

 The application marketplace’s trial licensing makes it easy to provide potential
customers a preview of your application or game, without the need to build multiple

53Summary
versions of your project. Trial licensing eliminates the need to maintain and publish a
separate free or light version of your product.

2.7 Summary
The Windows Phone Developer Tools help you build many different kinds of Silver-
light applications. Project templates are provided for simple projects and class librar-
ies as well as list, pivot, panorama, and Silverlight with XNA style projects. Chapter 10
covers panorama and pivot applications, whereas Silverlight with XNA applications are
covered in chapter 14.

 The Silverlight framework makes it easy to align your application with the system
theme and style. The framework injects resources into applications so they can match
the system theme (light versus dark, accent color) and the look and feel (fonts, colors,
sizes). The visual designers and property editors in Expression Blend and Visual Stu-
dio expose theme resources.

 Silverlight has been extended for Windows Phone with components built specifi-
cally for the platform. New navigation frame, page control, and application bar com-
ponents are just a few of the additions. Other existing Silverlight controls have been
modified to work on the phone. The chapters in part 3 of this book look at these new
and modified components.

 Finally you learned some of the procedures for integrating with the phone operat-
ing system. Live tiles and application icons can be customized to make your applica-
tion stand out in the quick start, application list, and Game Hub. System capabilities
must be declared in order to use many of the core phone APIs. The phone APIs pro-
vide access to the native applications, services, sensors, and media features of the
phone. In part 2 of this book you read about how to use the phone APIs. In the next
chapter you learn how Windows Phone implements application multitasking and how
to design application-to-lifecycle events. We also look at how to create and run back-
ground agents to perform work while other applications run in the foreground.

Figure 2.14 Setting a conditional compilation symbol

Part 2

Core Windows Phone

Now that you understand the Windows Phone platform and how to use
Visual Studio and the SDK tools, it’s time to learn the low-level details on how
build mobile applications. Part 2 of this book will introduce concepts that are
brand-new to Windows Phone, as well as concepts that have been adapted to
operate within the phone’s limitations.

 We start in chapter 3 with a discussion of Fast Application Switching, Micro-
soft’s name for the battery saving technology that allows a dormant application to
be quickly restored when a user switches from a foreground application to a back-
ground application. Chapter 4 will show you how to use launchers and choosers to
interact with built-in applications such as the phone dialer, email, and the People
Hub, while chapter 5 explains how to store your application data.

 Chapters 6 and 8 show you how to read data from the phone’s hardware
including the camera, accelerometer, compass, and gyroscope, while chapter 7
discusses how to integrate your app with the Pictures and Music + Video Hubs.
Part 2 wraps up in chapter 9 with a discussion of networking topics such as using
TCP sockets and push notifications. Push notifications provide the ability for an
external application or web service to send messages and updates to particular
Windows Phone devices.

Fast application switching
and scheduled actions
Just like any other operating system, an application on the Windows Phone starts
up, runs for a while, and in the normal course of things, the application eventu-
ally exits. In other multitasking operating systems, an application can be moved
to the background when the user switches applications. While in the background,
the application will continue to run in lower-priority time-slices. The Windows
Phone OS is a multitasking operating system, but puts limitations on background
operations. When a user switches applications, the running application is paused,
and system resources are disconnected from the process so they can be freed up
for foreground applications. A dormant application might eventually be termi-
nated if the operating system needs to allocate additional resource to the fore-
ground application.

 Applications can’t run in the background, but Windows Phone offers several
options to the developer to build applications that require multitasking features.

This chapter covers
■ Fast application switching
■ Responding to lifetime events
■ Scheduling reminders
■ Executing tasks with a background agent
57

58 CHAPTER 3 Fast application switching and scheduled actions
Fast application switching provides dormant applications the tools for quickly returning
to full operation, giving the user the impression that the application continued to
run. Background agents are the mechanisms applications use to perform tasks even
when the application isn’t running. Alarms and reminders can be used to notify a user
about important tasks, and allow the user to easily restart the application. Background
tasks, alarms, and reminders are all different forms of a scheduled action, and are man-
aged with the ScheduledActionService.

 The multitasking limitations imposed on applications may seem severe to develop-
ers looking to build the next killer mobile application. Microsoft has imposed these
limitations to ensure that the user has the best overall experience possible. Back-
ground tasks aren’t allowed to affect or slow down foreground application, nor are
they allowed to perform tasks that will quickly drain the phone’s battery.

 In this chapter you’ll create two different sample applications. The first one, which
you’ll name Lifetime, demonstrates how to build applications that support fast appli-
cation switching. The second application, which you’ll name ScheduledActions, uses
the ScheduledActionService to schedule reminders and periodic tasks, and imple-
ments an example background agent.

3.1 Fast application switching
Fast application switching is the term coined by Microsoft and the Windows Phone
team to describe the process that pauses a running application when the user switches
to another application. The paused application usually remains in memory, but can’t
execute any code. The application will resume running once the user switches back to
the application, making it the foreground application once again.

 An application may be paused via one of many scenarios:

■ The user presses the Windows or Search button.
■ The user chooses to reply to a newly received text message.
■ The user chooses to responds to a newly received toast notification.
■ The user presses the Camera button.
■ The user locks the phone, or the idle timeout expires.
■ The application shows a launcher or chooser.

When the user backs out of the application, it’s shut down normally. In all other situa-
tions, the user can restart your application with the Back button or by selecting your
application with the Task Switcher UI. Upon restart, your application should return to
the state it was in before being paused, giving the user the impression that the applica-
tion continued to run.

 Your application can also be obscured. Obscuration occurs when the operating sys-
tem covers part of your application in favor of another application’s UI. An applica-
tion may be obscured when

■ The user receives a new phone call.
■ The user returns to a phone call that was active before an application started.

59Fast application switching
■ The user receives a new toast notification.
■ The lock screen is enabled, and the application has changed idle detection mode.
■ An alarm or reminder is triggered.
■ An application uses the PhoneCallTask launcher.

Pausing and obscuration interfere with the normal flow of an application. Your appli-
cation should be designed to react to interruptions by appropriately responding to
the application life-time events.

3.1.1 Understanding lifetime events

The Windows Phone class libraries expose operating system lifetime events, with sev-
eral events defined on a few different classes. Table 3.1 describes each of the lifetime
events and where the event is implemented in the framework.

An application begins life when the user taps the application’s icon in the Application
List. The application host constructs an instance of the Application class, raises the
Launching event, and then constructs and navigates to the default navigation page. At
this point, the application is running, solving user problems and generally making life
easier. In the normal course of activity, the user presses the Back button to exit the
application and then the operating system navigates away from the application and
raises the Closing event. The launching-running-closing workflow can be seen in fig-
ure 3.1 as the straight-line path between start and end.

 While running, an application will likely receive other lifetime events. When the
Obscured event is raised, the application transitions to an obscured state. The applica-
tion remains running but its user interface is partially or completely hidden. When

Table 3.1 Application lifetime events

Event Purpose Implementation

Launching Notifies the application that it’s being started
from scratch

PhoneApplicationService
.Launching

Closing Notifies the application that it’s being termi-
nated as part of a normal application exit

PhoneApplicationService
.Closing

Activated Notifies the application that it’s being
resumed from a paused, dormant, or tomb-
stoned state

PhoneApplicationService
.Activated

Deactivated Notifies the application that it’s being paused
to allow another process to execute

PhoneApplicationService
.Deactivated

Obscured Notifies the application that it’s losing focus in
favor of an overlay

PhoneApplicationFrame
.Obscured

Unobscured Notifies the application that it’s regaining
focus

PhoneApplicationFrame
.Unobscured

60 CHAPTER 3 Fast application switching and scheduled actions
the user interface is uncovered, the Unobscured event is raised and the application
returns to the normal running state.

 Deactivation is triggered when the operating system pauses an application in order
to execute another process. The Deactivated event is raised to notify the application
that it’s transitioning to the dormant state. In the dormant state, the application remains
in memory with all processing and threads stopped. The dormant application remains in
memory to facilitate a fast restart when the user switches between applications. When
the user returns to the application, the Activated event is raised and the application
returns to the normal running state.

 A dormant application might also transition to a tombstoned state. When an appli-
cation is tombstoned, no notification is given, the application is removed from mem-
ory, and almost all of its resources are freed up for other applications to use. The only
application resources that are maintained in memory are those items that have been
stored in one of two state dictionaries provided by the Windows Phone framework spe-
cifically for tombstoning scenarios. When the user navigates back to the application,
the application host constructs a new instance of the Application class, raises the
Activated event, and then constructs and navigates to the previously focused page.
It’s the application’s responsibility to save application data to the State dictionaries
and to read and restore data after reactivation.

 When an application is dormant or tombstoned, the operating system may decide
to terminate the application and end its life. When terminated, the application and
any saved state are removed from memory. An application isn’t notified when transi-
tioned to the end state.

 In the first half of this chapter you build an application that handles each of the
lifetime events. You start your sample application in the usual way—by creating a
new project.

Figure 3.1 Application life-time states and the
actions that trigger state transition

61Fast application switching
3.1.2 Creating the Lifetime sample application

The Lifetime sample application will handle each
of the lifetime events. The sample code will demon-
strate how to distinguish between returning from a
dormant state and a tombstoned state. You’ll learn
how to store application data in the State diction-
aries, and how to recover the data when returning
from a tombstoned state. Finally, we show you how
to design an application capable of running when
the phone is locked.

 The Lifetime application records the time when
each of the lifetime events are raised, displaying
the times on the screen. Moving beyond the life-
time events, we explore other interesting moments
in the application lifetime such as construction and
navigation. Figure 3.2 is a screenshot of the Life-
time sample application.

 Create a new project using the Windows Phone
Application template and name the project Lifetime.
The Visual Studio Silverlight Windows Phone Appli-
cation project template automatically creates lifetime
event handlers for the PhoneApplicationService
events in App.Xaml.cs. Events handlers aren’t cre-
ated automatically for the PhoneApplicationFrame events. A PhoneApplication-
Service instance is declared in App.xaml, and the Launching, Closing, Activated,
and Deactivated events are wired up to methods generated in App.xaml.cs. The fol-
lowing listing shows the App.xaml markup and the corresponding event handlers in
App.xaml.cs.

<Application.ApplicationLifetimeObjects>
 <shell:PhoneApplicationService
 Launching="Application_Launching"
 Closing="Application_Closing"
 Activated="Application_Activated"
 Deactivated="Application_Deactivated"/>
</Application.ApplicationLifetimeObjects>

private void Application_Launching(object sender, LaunchingEventArgs e){}
private void Application_Activated(object sender, ActivatedEventArgs e){}
private void Application_Deactivated(object sender,
 DeactivatedEventArgs e){}
private void Application_Closing(object sender, ClosingEventArgs e){}

An application isn’t considered correct by the Windows Phone Marketplace certifica-
tion process if PhoneApplicationService events aren’t handled. The handlers must

Listing 3.1 Generated application life-time event handlers

Figure 3.2 The Lifetime sample
application

62 CHAPTER 3 Fast application switching and scheduled actions
be both declared in the XAML and implemented in the code behind, at least as gener-
ated by the Visual Studio wizard.

 The main page for the Lifetime sample application displays how many seconds ago
a particular lifetime event occurred. The sample application will record the occur-
rence time of each of the lifetime events, along with a few other interesting events.
The sample application displays these times as the number of seconds since the event
was raised. The information for each event is displayed with two TextBlocks, the first
displaying a label and the second displaying the number of seconds since the event.
To organize all of the controls, you’ll divide the ContentPanel into several rows and
columns, as shown in the next listing.

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <Grid.RowDefinitions>
 <RowDefinition Height="39" />
...
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="250" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
</Grid>

First you divide the Grid into 11 rows B and two columns c. We’ve omitted the dec-
laration of most of the rows for the sake of space. Whereas most of the rows and the
first column are assigned a concrete height or width, the last row and last column fill
the remainder of the page’s available space.

 As you work through the chapter, you’ll add several TextBlock controls to Main-
Page.xaml. You’ll add the first few controls in the next section when you display the
number of seconds elapsed since the MainPage was constructed.

3.2 Launching the application
You learned about application startup in chapter 2. During normal application
startup, an instance of App and an instance of MainPage are constructed and the appli-
cation host calls the NavigationService directly to navigate to MainPage.xaml. In
addition to constructing these two objects, the PhoneApplicationService raises the
Launching event. In this section we look at how to detect when an application
is launched.

3.2.1 Construction

In the sample application, you capture when the App and MainPage instances are con-
structed and show the times in the user interface. The construction times are stored in
properties in each of the two classes. You start your implementation updating the class
in App.xaml.cs to define and assign a property named AppConstructedTime. The

Listing 3.2 Defining the ContentPanel’s layout

Declare
11 rows

b

Declare
2 columns

c

63Launching the application
property is defined as an automatic property with a private setter. The AppConstructed-
Time property is assigned to the current time in the App class constructor:

public DateTime AppConstructedTime { get; private set; }

public App()
{
 AppConstructedTime = DateTime.Now;
 ...
}

You add a similar property to the MainPage class. In addition to recording the con-
struction time, you also record when the OnNavigatedTo method is called. These two
times are stored in two fields named pageConstructedTime and navigatedToTime:

DateTime pageConstructedTime;
DateTime navigatedToTime;

Now update the MainPage class constructor to assign the current time to the page-
ConstructedTime field:

public MainPage()
{
 InitializeComponent();
 pageConstructedTime = DateTime.Now;
}

The navigatedToTime field is assigned the current time in the overridden OnNavigated-
To method:

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 navigatedToTime = DateTime.Now;
 UpdateUserInterface();
 base.OnNavigatedTo(e);
}

In the OnNavigatedTo method you also added a call to a method named UpdateUser-
Interface. The UpdateUserInterface method is responsible for updating the user
interface with the time values stored in the App properties and the MainPage fields.
UpdateUserInterface sets the time values into associated TextBlock controls. Before
you implement the UpdateUserInterface method, you need to add a few controls to
MainPage.xaml, shown in the next listing.

<TextBlock Grid.Row="0" Text="Application constructed:" />
<TextBlock x:Name="appConstructed" Grid.Row="0" Grid.Column="1"
 Text="{Binding StringFormat='\{0:N0\} seconds ago'}" />

<TextBlock Grid.Row="5" Text="Page constructed:" />
<TextBlock x:Name="pageConstructed" Grid.Row="5" Grid.Column="1"
 Text="{Binding StringFormat='\{0:N0\} seconds ago'}" />

Listing 3.3 UI controls showing construction times

64 CHAPTER 3 Fast application switching and scheduled actions
<TextBlock Grid.Row="6" Text="Page navigated to:" />
<TextBlock x:Name="navigatedTo" Grid.Row="6" Grid.Column="1"
 Text="{Binding StringFormat='\{0:N0\} seconds ago'}" />

In this code snippet you’ve added six TextBlock controls. Three of the TextBlocks
are used as labels. The other three display the relevant elapsed time values and are
named appConstructed, pageConstructed, and navigatedTo. These three controls
are used by the UpdateUserInterface method:

public void UpdateUserInterface()
{
 DateTime now = DateTime.Now;
 pageConstructed.DataContext = (now - pageConstructedTime).TotalSeconds;
 navigatedTo.DataContext = (now - navigatedToTime).TotalSeconds;

 var app = (App)Application.Current;
 appConstructed.DataContext = (now - app.AppConstructedTime).TotalSeconds;
}

The DataContext properties of the TextBlock controls are assigned values calculated
by the number of seconds elapsed between the current time and the time stored in
the related variables in the MainPage and App classes.

 Run the application and examine the values displayed to the screen. On first run,
the screen should display construction and navigation times of one or zero seconds
ago. The left side of figure 3.3 shows the initial construction times. Now press the Start
button and launch another application. Using the Task Switcher or the Back button,
switch back to the running instance of the sample application.

NOTE The Task Switcher is launched in the emulator by pressing and hold-
ing the F1 key on your computer’s keyboard. If you’re running the applica-
tion on a real device, press and hold the Back button until the Task Switcher
is shown.

Windows Phone maintained the application process in memory, and the App and Main-
Page classes don’t need to be recreated when the application is restored. Once the sam-
ple application is restored and running, the screen should display construction times of
several seconds ago, depending on how long you took to switch back to the application.
The navigation time should be zero again, since OnNavigatedTo is called when returning
to the application. The right side of figure 3.3 shows the user interface after the restart.

 In this section you added code to track when the App and MainPage classes are con-
structed. The classes are constructed when the application is first launched, and aren’t
necessarily constructed when the application returns from dormancy. Later in the
chapter we’ll show you situations where the operating system will tombstone an appli-
cation, and the App and MainPage classes are constructed again when the application
is reactivated.

 Fortunately, the Windows Phone framework provides the lifetime events to deter-
mine when an application is created during initial launch, and when the application
classes are recreated when the application is reactivated.

65Launching the application
3.2.2 First-time initialization
When a user taps an application’s icon on the phone’s Application List, a new instance
of the application is launched. If an existing instance of the application is currently
dormant, it’ll be removed in favor of the new instance. Other triggers that create a
new instance of an application include the user tapping an application or secondary
tile in the start screen, pressing the details section of an alarm or reminder, and using
the hub extension points. See chapter 9 for more details on tiles, and chapter 7 for
hub extension points.

 The first time an application instance runs, the Launching event is raised. When a
dormant application resumes, the Launching event isn’t raised. Because the Launching
event is only raised once in an application’s lifetime, the Launching event handler
makes an ideal method for performing application initialization tasks.

NOTE The Application Certification Requirements for Windows Phone require that
the first page be shown in less than 5 seconds and must be responsive to user
input in less than 20 seconds.

The lifetime sample application doesn’t have any initialization requirements, other
than to record the time when the Launching event is raised, which you capture in
another automatic property of the App class. Open the App.xaml.cs file and add a new
LaunchedTime property:

public DateTime LaunchedTime { get; private set; }

You assign the property’s value in the Launching event handler. You learned earlier in
the chapter that the event handler was automatically generated with the name
Application_Launching by the project template. Find the generated method and
assign the current time to the LaunchedTime property:

private void Application_Launching(object sender, LaunchingEventArgs e)
{
 LaunchedTime = DateTime.Now;
}

Figure 3.3 Lifetime application after initial construction (left) and restart (right)

66 CHAPTER 3 Fast application switching and scheduled actions
The Application_Launching method is where you might put additional code that
should only run once in the lifetime of an application. Be careful when performing
tasks inside the Launching event handler. The Launching event is raised before the
MainPage is created and initialized. Work performed in the event handler will increase
the amount of time before the application is ready to receive user input. If the delay is
too long, the operating system will terminate the application.

 Now that you have the launch time recorded, you can update MainPage to display
the value. Add another two TextBlock controls to MainPage.xaml:

<TextBlock Grid.Row="1" Text="Application launched:" />
<TextBlock x:Name="launched" Grid.Row="1" Grid.Column="1"
 Text="{Binding StringFormat='\{0:N0\} seconds ago'}" />

Next, add a line to UpdateUserInterface to copy the value from the App property to
the TextBlock control named launched:

launched.DataContext = (now - app.LaunchedTime).TotalSeconds;

With this code in place, run the application. You have a new line in the user interface
showing launched time. At this point, showing the launch time doesn’t seem very
interesting. The launch time is nearly exactly the same value as the construction
times. When we discuss tombstoned applications later in the chapter, you’ll see situa-
tions where the launch time is greater than the construction times.

 Before we can discuss tombstoning, we need to talk about what happens when the
operating system deactivates, and later reactivates, an application.

3.3 Switching applications
When the user leaves an application using the Start button, the operating system pauses
the application, putting the application’s process into a dormant state. Other actions
that cause an application to go dormant include using launchers and choosers, tapping
a notification, or using the Task Switcher to change to another application.

 There are situations where a dormant application is terminated, but remains on
the Task Switcher’s back stack. This process is named tombstoning. When the applica-
tion enters a tombstoned state, its physical process is terminated to save system
resources but its state is maintained by the operating system in volatile memory. Pow-
ering off the device or exhausting the battery has the effect to losing all the states
maintained in the memory.

 In this section you add features to the Lifetime sample application that detect and
handle both going dormant and being tombstoned.

3.3.1 Going dormant
When an application is dormant, the operating system stops all running threads,
unhooks sensors, and stops any timers. The application is kept in memory, is placed
on the top of the stack of applications shown in the Task Switcher, and is accessible
using the Back button. Figure 3.4 shows the Task Switcher with the Lifetime applica-
tion in the middle of the stack.

67Switching applications
 Only five applications are kept in the back
stack, including the currently running application.
If there are already five applications on the back
stack when a new application is started, the dor-
mant application at the bottom of the stack is ter-
minated. Once terminated, the application is
removed from memory and any transient data used
by the application is lost. The user can no longer
navigate to the dormant application.

 The operating system doesn’t notify the dormant
application when it’s terminated. If you have any
data that must be persisted to long term storage, you
must save it before or during deactivation. We discuss
local long term storage options in chapter 5.

 The sample application doesn’t have any data
storage requirements, other than to capture the
time when the Deactivated event is raised in a
property of the App class. Open the App.xaml.cs
file and add a new DeactivatedTime property:

public DateTime DeactivatedTime { get; private
set; }

You assign the property’s value in the Deactivated
event handler that was generated by the project
template. The event handler was generated with
the name Application_Deactivated. Find the generated method and assign the
current time to the DeactivatedTime property:

private void Application_Deactivated(object sender, DeactivatedEventArgs e)
{
 DeactivatedTime = DateTime.Now;
}

The MainPage class also offers a hook to catch when the application is losing focus. The
OnNavigatingFrom and OnNavigatedFrom override methods are called even when the
operating system is navigating away from a running application. Your sample applica-
tion will record when the OnNavigatedFrom method is called with a new MainPage
field named navigatedFromTime:

DateTime navigatedFromTime;

Next you override the OnNavigatedFrom method and assign the new field with the cur-
rent time. You only want to record the current time when navigating away from the
application. You can determine whether the navigation target is external to your appli-
cation by checking the IsNavigationInitiator property of the NavigationEventArgs
parameter. The IsNavigationInitiator will be false if leaving the application:

Figure 3.4 The dormant Lifetime
application shown in the Task
Switcher

68 CHAPTER 3 Fast application switching and scheduled actions
protected override void OnNavigatedFrom(NavigationEventArgs e)
{
 if (!e.IsNavigationInitiator)
 {
 navigatedFromTime = DateTime.Now;
 }
 base.OnNavigatedFrom(e);
}

The IsNavigationInitiator will be false anytime you’re leaving the application,
including when the user is closing the application using the Back key.

 You need to show the new times in the user interface by adding four new Text-
Block controls and modifying the UpdateUserInterface method. Open MainPage.xaml
and add two TextBlock labels and two TextBlock controls named deactivated and
navigatedFrom:

<TextBlock Grid.Row="2" Text="Application deactivated:" />
<TextBlock x:Name="deactivated" Grid.Row="2" Grid.Column="1"
 Text="{Binding StringFormat='\{0:N0\} seconds ago'}" />

<TextBlock Grid.Row="7" Text="Page navigated from:" />
<TextBlock x:Name="navigatedFrom" Grid.Row="7" Grid.Column="1"
 Text="{Binding StringFormat='\{0:N0\} seconds ago'}" />

Modify the UpdateUserInterface method in MainPage.xaml.cs to assign the Data-
Context properties:

if (navigatedFromTime != DateTime.MinValue)
 navigatedFrom.DataContext = (now - navigatedFromTime).TotalSeconds;

if (app.DeactivatedTime != DateTime.MinValue)
 deactivated.DataContext = (now - app.DeactivatedTime).TotalSeconds;

In this code snippet, you check whether the time values are equal to DateTime
.MinValue. DateTime.MinValue is the default value for a DateTime variable, and you
don’t want to show a value on the screen if the variable still equals its default value.

 Now you’re ready to run the application. At first launch, you can see the new Text-
Block controls and they don’t display any values since you haven’t deactivated the
application. Press the Start button, wait a few seconds, and press the Back button.
When the application restarts, you should now see values displayed in the deactivated
and navigatedFrom controls.

 We have one more event to look at: the Activated event, which is raised when the
application restarts and returns to action.

3.3.2 Returning to action

When an application is dormant, the user can return to the application by tapping
the Back button one or more times, or by selecting the application in the Task
Switcher. When a dormant application is reactivated, threads are restarted and the
PhoneApplicationService raises the Activated event. Because the application was
never removed from memory, the App and MainPage instances are preserved and
don’t need to be reconstructed.

69Switching applications
NOTE Microsoft recommends that a dormant application be ready for user
input within one second after being reactivated.

It’s possible that a dormant application may never return to a running state. The oper-
ating system might terminate the application if other applications are started. If the
user taps an application or secondary tile in the start screen or the application’s icon
in the Application List, a new instance of the application will be launched and the
dormant instance will be lost forever.

 As with the other lifetime events, you need to record the time the event occurred
in a property of the App class. Create a new property named ActivatedTime and
assign the property value in the Application_Activated method:

public DateTime ActivatedTime { get; private set; }

private void Application_Activated(object sender, ActivatedEventArgs e)
{
 ActivatedTime = DateTime.Now;
}

Next add two more TextBlock controls to MainPage.xaml to display the recorded time:

<TextBlock Grid.Row="3" Text="Application activated:" />
<TextBlock x:Name="activated" Grid.Row="3" Grid.Column="1"
 Text="{Binding StringFormat='\{0:N0\} seconds ago'}" />

Finally modify the UpdateUserInterface method to assign the DataContext property
of the new TextBlock control:

if (app.ActivatedTime != DateTime.MinValue)
 activated.DataContext = (now - app.ActivatedTime).TotalSeconds;

Dormant applications maintain most of their application data and state. When dor-
mant applications are reactivated, there’s usually little work to do. There are situa-
tions, especially when using the sensor APIs, when additional steps are required
during activation. We’ll identify these special scenarios in later chapters of the book.

 There’s one other reactivation process we need to discuss. In certain situations
the operating system will tombstone a dormant application to free up system
resources. A tombstoned application is a dormant application that has been termi-
nated, while remaining on the Task Switcher back stack. Application developers
need to write special code to save and restore application state during the tombston-
ing process.

3.3.3 Tombstoning

Windows Phone tombstones an application whenever system resources become
scarce. To allow developers the ability to test tombstone recovery code, Microsoft has
provided an option in the project’s properties to force the operating system to tomb-
stone an application. Figure 3.5 shows the tombstone option.

 Enable tombstoning in the Lifetime sample project properties and debug the applica-
tion. It’s important to debug the application, as the tombstone option doesn’t apply

70 CHAPTER 3 Fast application switching and scheduled actions
when the application is run outside the debugger.
The constructed and launched times should look
normal. Press the Start button, wait a few seconds,
and press the Back button. The times displayed in
the user interface should look weird, as shown in fig-
ure 3.6. The construction and activated times look
normal, but the launch time isn’t right. Note that the
deactivated and navigated from times are still at zero,
even though you did navigate away from this page.

 Note that the construction times are zero sec-
onds ago. The operating system destroyed the
instances of the App and MainPage classes that were
in memory. When the user pressed the Back button,
new instances were created. You lost the values that
had been stored in the App and MainPage proper-
ties. Some of these runtime values don’t need to be
saved, but others, like DeactivatedTime, LaunchedTime, and navigatedFromTime, are
lost if you don’t store them.

 The Windows Phone application framework provides applications with two mecha-
nisms for storing data that should be restored after tombstoning. The process to save
and restore the state requires minimum work by the developer, which will be detailed
in this section.

 When a dormant application is returned to life, the PhoneApplicationService
raises the Activated event. The Activated event is also raised when a tombstoned
application is returned to life. The ActivatedEventArgs class provides a boolean
IsApplicationInstancePreserved property to allow developers the ability to distin-
guish between dormant and tombstoned reactivation. You’ll now show the value of this
property on the user interface alongside the event times. You need add a new nullable
boolean property to the App class to record the IsApplicationInstancePreserved

Figure 3.5 The tombstone debugging option in the project properties page

Figure 3.6 The Lifetime sample
application after reactivated from a
tombstoned state

71Switching applications
value provided by the event args. You assign a value to the new property in the
Application_Activated method:

public bool? IsApplicationInstancePreserved { get; private set; }

private void Application_Activated(object sender, ActivatedEventArgs e)
{
 ActivatedTime = DateTime.Now;
 IsApplicationInstancePreserved = e.IsApplicationInstancePreserved;
}

Next you modify MainPage.xaml to add controls to display the value:

<TextBlock Grid.Row="4" Text="App Instance Preserved:" />
<TextBlock x:Name="instancePreserved" Grid.Row="4" Grid.Column="1" />

Finally you modify the UpdateUserInterface method in MainPage.xaml.cs to assign
the Text property of the instancePreserved TextBlock:

instancePreserved.Text = app.IsApplicationInstancePreserved.ToString();

Debug the application now and you should see a blank in the new control because the
nullable boolean property defaults to null. Press the Start button to navigate away and
then return to the application using the Back button. You should now see the word False
in the instancePreserved TextBlock. If you run the application outside the debugger
and perform the same steps, the TextBlock should display the word True.

 Now that you know how to detect when the application has been tombstoned, how
do you save the DeactivatedTime, LaunchedTime, and navigatedFromTime values? The
first facility for storing application data is the State property exposed on the Phone-
ApplicationService. The State property is a dictionary of key-value pairs and will hold
any object that can be serialized. Information should be placed into the State dictionary
when the application is being deactivated. Modify the Application_Deactivated
method to store the DeactivatedTime and LaunchedTime in the State dictionary:

private void Application_Deactivated(object sender, DeactivatedEventArgs e)
{
 DeactivatedTime = DateTime.Now;
 PhoneApplicationService.Current.State["DeactivatedTime"]
 = DeactivatedTime;
 PhoneApplicationService.Current.State["LaunchingTime"] = LaunchedTime;
}

Application data stored in the State dictionary can be restored in the Activation
event handler. Update the Application_Activated method to restore the Deactivated-
Time and LaunchedTime values. The following listing shows the new Application_
Activated method.

private void Application_Activated(object sender, ActivatedEventArgs e)
{
 ActivatedTime = DateTime.Now;
 IsApplicationInstancePreserved = e.IsApplicationInstancePreserved;

Listing 3.4 Restoring tombstoned application data

72 CHAPTER 3 Fast application switching and scheduled actions
 if (!e.IsApplicationInstancePreserved)
 {
 if (PhoneApplicationService.Current.State.
 ContainsKey("DeactivatedTime"))
 {
 DeactivatedTime = (DateTime)PhoneApplicationService.Current.
 State["DeactivatedTime"];
 }
 if (PhoneApplicationService.Current.State.
 ContainsKey("LaunchingTime"))
 {
 LaunchedTime = (DateTime)PhoneApplicationService.Current.
 State["LaunchingTime"];
 }
 }
}

The DeactivatedTime and LaunchedTime values should only be restored when recov-
ering from a tombstoned state. You only read from the State dictionaries when
IsApplicationInstancePreserved is false B. Next you ask the State dictionary
whether it contains a value for the key DeactivatedTime. If the key exists you assign
the value in the dictionary to the DeactivatedTime property c. You do the same
check and assign operation for LaunchedTime d.

 The second facility for storing runtime application data is another State diction-
ary provided by the PhoneApplicationPage. Because PhoneApplicationPage is the
base class for MainPage, you can store MainPage’s runtime data separate from the App
class’s runtime data. The only MainPage data you need to store is the navigatedFrom-
Time. Update the OnNavigatedFrom method to store the navigatedFromTime right
after assigning the variable:

protected override void OnNavigatedFrom(NavigationEventArgs e)
{
 if (!e.IsNavigationInitiator))
 {
 navigatedFromTime = DateTime.Now;
 State["NavigatedFromTime"] = navigatedFromTime;
 }
 base.OnNavigatedFrom(e);
}

The sample application writes data to the State dictionary during the OnNavigated-
From method, but you don’t have to wait until OnNavigatedFrom is called. The State
dictionary can be accessed anytime during or after OnNavigatedTo and before or
during OnNavigatedFrom. Objects stored in either of the State dictionaries must
be serializable.

 The navigatedFromTime is restored in the OnNavigatedTo method. The new and
improved OnNavigatedTo method is shown in the next listing.

Was app
tombstoned?b

Restore
DeactivatedTime

 c

Restore
LaunchedTime

 d

73Switching applications
protected override void OnNavigatedTo(NavigationEventArgs e)
{
 navigatedToTime = DateTime.Now;

 var app = (App)Application.Current;
 bool appInstancePreserved =
 app.IsApplicationInstancePreserved ?? true;

 if (!appInstancePreserved && State.ContainsKey("NavigatedFromTime"))
 {
 navigatedFromTime = (DateTime)State["NavigatedFromTime"];
 }

 UpdateUserInterface();
 base.OnNavigatedTo(e);
}

The only way to determine whether you’re resuming from a tombstoned state is via
the IsApplicationInstancePreserved property of the ActivatedEventArgs passed
with the Activated event. You stored the IsApplicationInstancePreserved value in
a property of the App class, which you use to determine whether the application is
resuming from a tombstoned state B. If it was tombstoned, and the State dictionary
contains the NavigatedFromTime key, then you assign the value stored in the diction-
ary to the navigatedFromTime field c.

NOTE If you’re unfamiliar with C#’s ?? operator, which is called the null-
coalescing operator, it’s used to assign a default value to a variable. In listing 3.5, if
the app.IsApplicationInstancePreserved property is null, the appInstance-
Preserved variable will be assigned the value after the ?? operator, which is
true in this example.

Debug the application again, press the Start button, wait a few seconds, and press the
Back button. The times displayed in the user interface should look almost normal this
time. Note that the launching and navigated from times are further in the past than
the construction times. This is expected because the App and MainPage instances were
recreated when the application was activated, but the launching and navigated from
times were saved in the State dictionaries.

 We’ve demonstrated a couple of procedures for saving a restoring application and
page state when the operating system reactivates your application. It’s important that
the save and restore routines execute reasonably quickly, as the operating system will
kill any application that takes longer than 10 seconds to respond to activated or deac-
tivated events.

 The Launching, Activated, and Deactivated events are all notifications that the
application is transitioning into or out of a running state. The last two events we look
at, Obscured and Unobscured, are notifications that the application screen is partially
or fully hidden, but that the application remains in the running state.

Listing 3.5 Restoring navigatedFromTime

Check for
tombstone

b

Restore
navigatedFromTime c

74 CHAPTER 3 Fast application switching and scheduled actions
3.4 Out of sight
As you design applications for a phone, you must prepare for situations when the
operating system will notify the user about an incoming call or a message. This situa-
tion is named obscuration and in practice this is a partial or full coverage of an appli-
cation made by a native application. Your application will also be obscured when an
alarm or reminder is triggered, and in special circumstances, when the phone’s lock
screen is activated. In this section we first examine how to detect when an applica-
tion is obscured, and then we discuss the special circumstances surrounding the
lock screen.

3.4.1 Obscuration

The event raised when the application gets covered is named Obscured and the event
raised when the application is again fully visible is named Unobscured. Both these
events belong to the PhoneApplicationFrame class, and the developer will have to
explicitly add handlers for these events because they’re not automatically generated
by the Visual Studio wizard.

 Many applications aren’t affected by obstruction and can ignore the obscuration
events. Other applications are more sensitive. An application that plays video might
want to pause playback and then resume when the screen is no longer obscured. A Sil-
verlight game should pause game play and/or game timers so a user isn’t penalized
when the screen is inaccessible.

 The App class defines the only PhoneApplicationFrame instance as the member
variable named RootFrame. The next listing shows how to wire up and implement the
event handlers in the MainPage class.

DateTime obscuredTime;
DateTime unobscuredTime;

public MainPage()
{
 InitializeComponent();
 pageConstructedTime = DateTime.Now;

 ((App)Application.Current).RootFrame.Obscured +=
 RootFrame_Obscured;
 ((App)Application.Current).RootFrame.Unobscured +=
 RootFrame_Unobscured;
}

void RootFrame_Unobscured(object sender, EventArgs e)
{
 unobscuredTime = DateTime.Now;
 UpdateUserInterface();
}

void RootFrame_Obscured(object sender, ObscuredEventArgs e)
{

Listing 3.6 Adding Obscured and Unobscured event handlers

Define
new fields

b

Subscribe
to events

c

Show
updated time

d

75Out of sight
 obscuredTime = DateTime.Now;
 UpdateUserInterface();
}

Two new fields are added to the MainPage class B to store the time when the Obscured
and Unobscured events are raised. The events are wired up in the MainPage construc-
tor c. The App class’s RootFrame property is used to access the PhoneApplication-
Frame instance. In each of the event handlers, the time is assigned to the appropriate
field and the user interface is updated to show the new times d.

 We leave it as an exercise for the reader to modify UpdateUserInterface so that
obscuredTime and unobscuredTime values are displayed in new user interface controls.

 In this section we’ve demonstrated how an application becomes dormant when the
user presses the Start button. Another scenario that pauses a running application is
when the phone is locked and the lock screen is activated. An application isn’t
required to go dormant when the phone is locked and may choose to remain running
behind the lock screen.

3.4.2 Running behind the lock screen

All Windows Phones have a lock button the user can use to lock the phone and power
off the device. A phone will also automatically lock after a specified time-out period in
which the phone remains idle. The screen time-out duration is specified in the
lock+wallpaper page of the Settings application. The phone is considered idle when
the user hasn’t tapped the touch screen.

NOTE The emulator doesn’t provide a lock button and doesn’t activate the
lock screen. If your application runs behind the lock screen, you must test
your code on a physical device.

When the phone is locked, the running application transitions to a dormant state. To
see this in action, run the application and lock the screen. When you unlock the
screen, you’ll find that the application was deactivated while the screen was locked,
then reactivated when the screen was unlocked. Note that the ActivatedTime is zero
seconds ago. This is a feature of the operating system intended to save on battery life.

 The PhoneApplicationService provides the ApplicationIdleDetectionMode
property to allow applications to continue to run once the phone is locked. When an
application wants to run under the lock screen, the ApplicationIdleDetectionMode
property is assigned the value IdleDetectionMode.Disabled. Once idle detection
mode is disabled, it can’t be re-enabled. An attempt to re-enable idle detection will
result in an exception.

NOTE The Application Certification Requirements for Windows Phone place certain
restrictions on applications that run behind the lock screen. Once the screen
is locked, the application should no longer attempt to update the user inter-
face and should disable all timers. The battery must be able to power the
phone for 120 hours while the application is running under the lock screen.

76 CHAPTER 3 Fast application switching and scheduled actions
An application is notified when the phone is locked via the Obscured event. The
Obscured event handler passes an argument of type ObscuredEventArgs. The Obscured-
EventArgs contains a boolean property named IsLocked. When IsLocked is true, the
application is running behind the lock screen.

 A good application will inform the user that it runs behind the lock screen. A bet-
ter application will allow the user to choose whether the application runs behind the
lock screen. Modify the Lifetime sample application to provide the user the ability to
enable running behind the lock screen. Start by adding a check box to MainPage.xaml:

<CheckBox x:Name="runOption" Margin="0,24,0,0"
 Grid.Row="10" Grid.ColumnSpan="2"
 Content="Run while the screen is locked."
 Checked="runOption_Checked" IsChecked="False" />

The CheckBox IsChecked property is initially set to False. The Checked event is wired
up to an event handler named runOption_Checked. Inside the event handler, set the
ApplicationIdleDetectionMode to Disabled:

private void runOption_Checked(object sender, RoutedEventArgs e)
{
 PhoneApplicationService.Current.ApplicationIdleDetectionMode
 = IdleDetectionMode.Disabled;
 runOption.IsEnabled = false;
}

Because the ApplicationIdleDetectionMode property cannot be re-enabled, you dis-
able the CheckBox control.

 To see how the new code changes the behavior of the Lifetime sample application,
run the application and tap the new CheckBox. Next lock the phone, wait a few sec-
onds, and unlock the phone. The user interface should show blanks for the deacti-
vated and activated event times, and show values for obscured and unobscured times.

 This wraps up the first sample application you built in this chapter. The Lifetime
sample demonstrated how an application lives and dies. During an application’s life-
time, it may become dormant or be tombstoned when the user switches to another
application. We showed you how to use the lifetime events to detect transitions
between living, pausing, and dying. You learned how to use the State dictionaries to
save and restore application state in the event when the application is tombstoned.
Understanding the lifetime events is key to building an application that works well
with fast application switching. Fast application switching gives the user the impres-
sion that an application remains running in memory.

 You now know that a dormant background application can’t perform any work.
How can you create killer applications if they can’t do any work in the background?
The answer lies with the Scheduled Action Service. In the next section you’ll create a
new sample application to explore alarms, reminders, and background tasks, three
different kinds of scheduled actions. Scheduled actions allow your application to alert
the user or execute background work when your application isn’t running.

77Working on a schedule
3.5 Working on a schedule
A great number of use cases require an application to perform work on a periodic
basis. This work might entail reminding the user that an online auction is about to
close so they can log on and ensure they’re the top bidder. Another example might
be a CRM application that checks in with a web service to download new sales leads
to the device.

 Windows Phone empowers developers to build these types of applications with
scheduled actions and the Scheduled Action Service. Scheduled actions are named
actions that have beginning and expiration times. Once a scheduled action is regis-
tered, the Scheduled Action Service will execute the action at the appropriate time.

 Two forms of scheduled actions are provided—notifications and tasks. Notifica-
tions consist of alarms and reminders and are displayed to the user at the appropriate
time. The user can dismiss or snooze notifications, and can tap the content of the
notification to launch the application that created them. A scheduled task is nothing
more than a request that the Scheduled Action Service launch an application’s back-
ground agent, allowing the application to perform background processing.

 In this section you’ll create a new sample appli-
cation that you’ll use throughout the remainder of
this chapter. A screenshot of the completed sample
application is shown in figure 3.7. The sample appli-
cation will create, update, and delete scheduled
actions. Later in the chapter you’ll add a back-
ground agent to the application that will monitor
and delete expired alarms and reminders.

 Start the new sample application using the Win-
dows Phone Application project template, name
the project ScheduledActions, and be sure to select
version 7.1 as the target operating system. Open up
MainPage.xaml in the editor so that you can add
the basic user interface elements displayed by the
application. Start by dividing the ContentPanel
Grid control into two rows:

<Grid x:Name="ContentPanel" Grid.Row="1"
Margin="12,0,12,0">

 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
</Grid>

You’ll use the first row to display messages about
the background agent later in the chapter. Add a
ListBox to the second row of the ContentPanel (you’ll add controls to display details
of each notification to the DataTemplate later):

Figure 3.7 The ScheduledActions
sample application

78 CHAPTER 3 Fast application switching and scheduled actions
<ListBox x:Name="notificationList" Grid.Row="1">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Margin="12">
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

The application displays three buttons in the ApplicationBar. Listing 3.7 shows the
ApplicationBar markup for MainPage.xaml. Several images are used for the applica-
tion bar and must be added to the project. Create a project folder named Images and
copy the image files named appbar.add.rest.png, appbar.delete.rest.png, and app-
bar.edit.rest.png from the Windows Phone 7.1 SDK. The images files can be found in
C:\Program Files\Microsoft SDKs\Windows Phone\v7.1\Icons\dark or C:\Program Files
(x86)\Microsoft SDKs\Windows Phone\v7.1\Icons\dark. Remember to set each image
file’s build action property to Content.

<phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar IsVisible="True" IsMenuEnabled="True">
 <shell:ApplicationBarIconButton
 IconUri="/Images/appbar.add.rest.png"
 Text="reminder" Click="AddReminder_Click" />
 <shell:ApplicationBarIconButton
 IconUri="/Images/appbar.edit.rest.png"
 Text="reschedule" Click="RescheduleNotification_Click" />
 <shell:ApplicationBarIconButton
 IconUri="/Images/appbar.delete.rest.png"
 Text="remove" Click="RemoveNotification_Click" />
 </shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>

This code listing adds three buttons to the application bar. Each button uses one of the
images B you just added to the project. Each button wires up its Click event c to an
event handler in the code behind. For the time being, add an empty event handler to
MainPage.xaml.cs. You’ll implement the event handlers as you work through the sample.

 The sample application’s skeleton is now in place and ready for you to create,
update, and delete scheduled actions. Each of these operations is performed using
the Scheduled Action Service.

3.5.1 Introducing the Scheduled Action Service

The Scheduled Action Service is implemented as a singleton by the Scheduled-
ActionService class and is found in the Microsoft.Phone.Scheduler namespace. The
class provides methods for adding, updating, and removing scheduled actions. Sched-
uled actions are retrieved from the service either as a list or individually by name.
Scheduled actions can only be seen and modified by the application that created them.
The scheduled action service won’t expose actions created by other applications.

Listing 3.7 ApplicationBar markup for the ScheduledActions sample application

Button
image

b

Click
event

handler c

79Working on a schedule
 Scheduled actions are defined by the ScheduledAction class. The Scheduled-
Action class is the base class for both the ScheduledNofitication class and the
ScheduledTask class. These last two classes are base classes for other scheduled action
classes we look at later in the chapter. Table 3.2 describes each of the properties
exposed by the ScheduledAction class.

The sample application displays every scheduled notification registered with the
Scheduled Action Service. The application invokes the GetActions method which
returns a collection of actions. The collection of actions is then displayed in the List-
Box you added to MainPage.xaml. The code to retrieve the actions is shown in the fol-
lowing listing.

protected void DisplayScheduledNotifications()
{
 var items = new List<ScheduledAction>();
 var notifications = ScheduledActionService.
 GetActions<ScheduledNotification>();
 foreach (var notification in notifications)
 {
 var item = ScheduledActionService.Find(notification.Name);
 items.Add(item);
 }
 notificationList.ItemsSource = items;
}

Table 3.2 ScheduledAction properties

Property name Description

BeginTime The DateTime when the action will be triggered for the first time. BeginTime
must represent some point in the future when the action is scheduled.

ExpirationTime The DateTime after which the action will no longer be triggered.
ScheduledNotifications that have been snoozed by the user won’t be
triggered after the expiration time has passed. The expiration time defaults to
DateTime.MaxValue. ExpirationTime must be greater than
BeginTime when the action is scheduled.

IsEnabled A read-only property, IsEnabled will always be true for
ScheduledNotifications. IsEnabled will be false for
ScheduledTasks if the user has disabled background tasks for
the application.

IsScheduled A read-only property, IsScheduled will be true if the ScheduledAction
will be invoked at some point in the future. IsScheduled with be false if the
user disables a task or dismisses a non-recurring notification, or when the
action’s ExpirationTime has passed. Recurring notifications will remain
scheduled when the user dismisses the notification.

Name A unique identifier for the ScheduledAction.

Listing 3.8 Building a list of notifications

Get alarms and
reminders

b

Use instance
returned by Find c

80 CHAPTER 3 Fast application switching and scheduled actions
First you define a new List to contain the alarms and reminders that will be displayed
in the user interface. You obtain a collection of notifications from the Scheduled
Action Service by calling the GetActions method. GetActions is a generic method
and expects the calling code to declare which type of scheduled action is to be
returned. The sample application displays both alarms and reminders, so the code
invokes GetActions with the ScheduledNotification B type, the base class for both
the Alarm and Reminder classes. Next you obtain another reference to the notification
by calling the Find method c with the name of the target item. You add each item
returned by Find to the items list. Finally you assign the items list to the ListBox’s
ItemSource property.

TIP The Scheduled Action Service has an odd behavior—the notifications
returned by GetActions are cached clones. Calling GetActions returns the
cached instances. If an action’s state has changed, such as when an alarm is
shown to and dismissed by the user, the cached copy isn’t updated. When the
Find method is called, the cache is updated and the most recent state of
the action is available. You’re calling Find within the DisplayScheduled-
Notifications method to force an update of the cache.

The new DisplayScheduledNotifications method will be invoked in a few different
spots within your application. The method should be invoked every time MainPage is
navigated to, so you add a call DisplayScheduledNotifications in a new override of
the OnNavigatedTo method:

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 DisplayScheduledNotifications();
 base.OnNavigatedTo(e);
}

In the last section, you added a DataTemplate to the ListBox, but only declared an
empty StackPanel inside the template. You need to add user interface components to
display the properties of the scheduled notifications that were added to the ListBox.
The following listing contains the fully declared DataTemplate.

<DataTemplate>
 <StackPanel Margin="12">
 <TextBlock Text="{Binding Name}"
 FontSize="{StaticResource PhoneFontSizeLarge}" />
 <TextBlock Text="{Binding Title}"
 Style="{StaticResource PhoneTextNormalStyle}" />
 <TextBlock Text="{Binding Content}"
 Style="{StaticResource PhoneTextNormalStyle}" />
 <TextBlock Text="{Binding BeginTime, StringFormat='\{0:f\}'}"
 Style="{StaticResource PhoneTextSmallStyle}" />
 <TextBlock Text="{Binding ExpirationTime,

➥ StringFormat='expires at \{0\:g}'}"

Listing 3.9 Displaying a notification

Add TextBlocks
to StackPanel

b

Format fields with
StringFormat

c

81Working on a schedule
 Style="{StaticResource PhoneTextSmallStyle}" />
 <TextBlock Text="{Binding RecurrenceType,

➥ StringFormat='Recurs: \{0\}'}"
 Style="{StaticResource PhoneTextSmallStyle}" />
 <TextBlock Text="{Binding IsScheduled,

➥ StringFormat='Is Scheduled: \{0\}'}"
 Style="{StaticResource PhoneTextSubtleStyle}" />
 </StackPanel>
</DataTemplate>

The DataTemplate contains several TextBlock instances B, each one displaying a dif-
ferent ScheduledAction property. The TextBlocks are styled using theme resources
provided by the Silverlight framework. Some of the TextBlocks make use of the
StringFormat binding markup c to display in a more user-friendly format.

 You now have a user interface that will display scheduled notifications to the user. At
this point, the user interface remains blank, because there are no scheduled notifica-
tions to display. You need to implement the code to create some alarms and reminders.

3.5.2 Scheduling a reminder

Scheduled notifications are alarms and reminders that are registered with the operating
system. Due to limitations imposed by the Windows Phone operating system, an appli-
cation can’t directly notify the user unless the application is running. With a sched-
uled notification, an application can schedule an alarm or a reminder and know that
the user will be notified at the appropriate time, even if the application isn’t running.

 Scheduled notifications are implemented in two related classes named Alarm and
Reminder. Both the Alarm and Reminder classes are derived from the Scheduled-
Notification class. As mentioned earlier, ScheduledNotification derives from
ScheduledAction. ScheduledNotification extends its base class with additional
properties named Content and RecurrenceType.

 The Content property allows the application a place to display a message to the
user when the notification is triggered. The Content property is a string with a maxi-
mum length of 256 characters.

 The RecurrenceType property allows an application to create notifications that are
triggered more than once. The recurrence patterns defined in the Scheduler API
include daily, weekly, monthly, and yearly patterns. A notification is triggered at the
appropriate time interval after the BeginTime. For example, if the recurrence pattern
is daily and the BeginTime is specified as 8:00 a.m. Monday, July 4th, the notification
will be triggered every day at 8:00 a.m. until the ExpirationTime has passed.

NOTE The ScheduledActions sample application you build here will only cre-
ate reminders. Creating alarms follows a similar pattern and we leave it as an
exercise for the reader to add alarms to the project.

The ScheduledActions sample application defines a button allowing the user to create a
Reminder. The click event handler for the Add Reminder button creates a new instance of
a Reminder and registers it with the scheduled action service. The right side of figure 3.8

82 CHAPTER 3 Fast application switching and scheduled actions
shows what the user will see when a reminder is triggered. For comparison, we show an
alarm on the left side of the figure. When the user taps the title or content of a notifica-
tion, the operating system will launch the host application’s main page.

 The observant reader will notice that a Reminder displays a custom title, whereas an
Alarm always displays Alarm as the title. The title displayed by the Reminder is specified
using the Title property. Another difference between Alarms and Reminders is that
Reminders can specify a NavigationUri property, whereas Alarms have a Sound property.

 The Alarm.Sound property is an Uri to any supported audio file located in the
application’s .xap file. The sound file must added to the project with its build action
property set to Content.

 The Reminder.NavigationUri property is used by the operating system when the
user taps the title or content of a Reminder. The operating system will launch the host
application, but will use the NavigationUri as the starting page instead of the default
page. Listing 3.10 demonstrates how a Reminder is constructed and registered in the
Add Reminder button’s click event handler.

private void AddReminder_Click(object sender, EventArgs e)
{
 string reminderName = string.Format("Reminder {0}", Guid.NewGuid());

 Reminder reminder = new Reminder(reminderName);
 reminder.BeginTime = DateTime.Now.AddMinutes(1);
 reminder.RecurrenceType = RecurrenceInterval.Daily;
 reminder.Content = "This is a WP7 in Action Reminder";
 reminder.Title = "Reminders in action";
 reminder.NavigationUri = new Uri(
 "/MainPage.xaml?reminder=" + reminderName, UriKind.Relative);

 ScheduledActionService.Add(reminder);
 DisplayScheduledNotifications();
}

Listing 3.10 Creating a reminder

Figure 3.8 A reminder and an alarm as displayed to the user

Repeat every dayb

Set titlec

Add navigation path d

83Working on a schedule
Reminders must have unique names, and you start by creating a name containing a
Guid. Next you construct a new Reminder and assign several of its properties. You
hard-code the BeginTime to be one minute from the current time. Remember that
the begin time must always be in the future. You also specify that the alarm should
repeat at the same time every day B by assigning a RecurrenceType of Daily. You
assign the Title property c, and construct a NavigationUri d so that the Reminder
navigates to the MainPage and includes the reminder name. Finally you add the
Reminder to ScheduledActionService and update the user interface.

TIP A real application might allow the user to select the BeginTime using
date and time pickers. Date and time pickers are demonstrated in chapter 11.

When the user clicks the reminder title, the application will be launched with the
specified navigation URI. Our sample doesn’t define a special page and doesn’t per-
form any special processing when receiving an URI. Your applications may choose to
display the reminder details in a special page, or trigger other customized application
logic when it receives a Reminder’s navigation URI.

 You now know how to create scheduled notifications. Creation is just one of the
create, update, and delete operations provided by the ScheduledActionService. The
next operation we examine is updating or editing an existing notification.

3.5.3 Editing a notification
Once created, ScheduledNotifications can be modified by an application. Notifica-
tions are modified using the Replace method provided by the ScheduledAction-
Service. The Replace method accepts an instance of ScheduledNotification and
the notification’s Name property identifies which ScheduledNotification is to be
replaced. The ScheduledActionService overwrites the saved notification with the val-
ues specified in the passed-in notification.

 The sample application provides a Reschedule Notification button. When the user
taps the button, the notification selected in the ListBox will be updated with a new
BeginTime and a modified Content property. The next listing details the Reschedule
Notification button’s click event handler.

private void RescheduleNotification_Click(object sender, EventArgs e)
{
 var notification =
 notificationList.SelectedItem as ScheduledNotification;
 if (notification != null)
 {
 notification.BeginTime = DateTime.Now.AddMinutes(1);
 notification.Content = "*" + notification.Content;

 ScheduledActionService.Replace(notification);
 DisplayScheduledNotifications();
 }
}

Listing 3.11 Rescheduling a notification

Do no work
if nothing is
selectedb

Update selected
notificationc

84 CHAPTER 3 Fast application switching and scheduled actions
Before doing any work, the event handler asks the ListBox for the currently selected
item. If the ListBox doesn’t have a selected item B, the event handler doesn’t per-
form any work. When a scheduled notification is selected, its BeginTime property is set
to be one minute in the future. Even when using the Replace method, the BeginTime
must be in the future, and ExpirationTime must be greater than BeginTime. If
BeginTime is in the past, or ExpirationTime is less than BeginTime, an exception will
be thrown. After the notification is updated, the Replace method is executed c and
the user interface is updated.

 When you created the sample application, you created four ApplicationBar but-
tons. You’ve only implemented three of the four buttons. The final feature allows the
user to delete a notification.

3.5.4 Deleting a notification

There’s one more button that doesn’t have an event handler defined for it: the Delete
Notification button. Notifications are deleted with the Remove method of the Scheduled-
ActionService. The Remove method accepts the name of the notification to remove.
The sample application removes a notification in the Remove Notification button’s
click event handler, shown in the next listing.

private void RemoveNotification_Click(object sender, EventArgs e)
{
 var notification = notificationList.SelectedItem
 as ScheduledNotification;
 if (notification != null)
 {
 ScheduledActionService.Remove(notification.Name);
 DisplayScheduledNotifications();
 }
}

The application removes the notification that’s selected in the ListBox. If the ListBox
doesn’t have a notification selected, the method does no work. If a notification is
selected, the Remove method is called with the notification’s name B. Finally, Display-
ScheduledNotifications is called to refresh the user interface.

 Once created, a ScheduledNotification will be managed by the Scheduled-
ActionService until the application removes the notification or the application is
uninstalled. ScheduledNotifications are also removed if Visual Studio’s Rebuild
Solution option is used to build the project. You could easily add a method to the
application launching or activation routines that looked for expired and unscheduled
notifications and automatically removed them. Instead we’ll employ this use case to
demonstrate how to create a software agent to perform work in the background, even
when the host application is not running.

Listing 3.12 Deleting a notification

Removing
notification

b

85Creating a background agent
3.6 Creating a background agent
Sometimes an application needs to run in the background to be useful. The Windows
Phone allows an application to execute certain kinds of tasks in the background. Back-
ground tasks include playing or streaming audio, as well as customs tasks that execute
periodically. Background processes are named background agents. In this section we
show you how to create a scheduled task agent to perform work periodically in the
background, even when the application isn’t running. We look at the audio back-
ground agents in chapter 7.

 An application’s scheduled task agent can run two types of scheduled tasks, both of
them represented by classes derived from ScheduledAction. The first type of sched-
uled task executes once every half hour and is defined by the PeriodicTask class. The
second type of background process is defined by the class named ResourceIntensive-
Task. Resource-intensive tasks only execute if the device is plugged in and fully
charged, connected to Wi-Fi or a computer, and screen locked. Both PeriodicTask
and ResourceIntensiveTask are derived from ScheduledTask, which is derived from
ScheduledAction.

 Scheduled tasks aren’t necessarily run exactly 30 minutes apart. The Scheduled
Action Service coordinates the timing and execution of scheduled tasks. Waking up
the device and powering on the sensors and radios is an expensive process. The sched-
uled action service will power up once, then execute all scheduled tasks, and power
down. This is one of the methods employed by the Windows Phone to maximize bat-
tery life.

 An application schedules a ScheduledTask using the ScheduledActionService
using a process similar to scheduling a ScheduledNotification. An application can
schedule only one PeriodicTask and one ResourceIntensiveTask. Unlike a Scheduled-
Notification, the user isn’t notified when a ScheduledTask is triggered. Instead the
operating system notifies the host application through a ScheduledTaskAgent.
ScheduledTaskAgents are defined in background agent projects.

 Scheduled task agents are limited in the types of work they can do. They aren’t
allowed to access the camera, radio, accelerometer, compass, or gyroscope. Scheduled
task agents can’t add new scheduled actions or new background file transfers, or show
launchers or choosers. A complete list of unsupported APIs and restrictions can be
found in Microsoft’s SDK documentation on MSDN.

 You’re going to create a ScheduledTaskAgent that executes a PeriodicTask. Peri-
odic tasks and resource-intensive tasks differ only in the schedule they run on and the
amount of time they’re allowed to execute.

3.6.1 Background agent projects

The ScheduledActions sample application needs a background agent to execute a
periodic task that scans all scheduled notifications and removes any that are expired
or aren’t scheduled. To add a background agent, you need to add a new project to the
ScheduledActions solution. Use the new project wizard and select the Windows Phone

86 CHAPTER 3 Fast application switching and scheduled actions
Scheduled Task Agent project template. Name the new project NotificationsCleanup-
Agent and be sure to select the Add to Solution option in the wizard.

 The new project will contain a single source code file named ScheduledAgent.cs.
Open up the ScheduledAgent.cs and find the class named ScheduledAgent. The gen-
erated ScheduledAgent class is derived from the ScheduledTaskAgent. Scheduled-
TaskAgent is one of three classes derived from the base BackgroundAgent class. The
other background agent classes are used for playing audio files and are covered in
more depth in chapter 7.

 The next step is to reference the new background agent project in the Scheduled-
Actions project. Using the Add Reference dialog, add a project reference to the
NotificationsCleanupAgent project from the ScheduledActions project. In addition to
adding the project reference, Visual Studio updated the WMAppManifest.xml file so
that it contains a new ExtendedTask element:

<ExtendedTask Name="BackgroundTask">
 <BackgroundServiceAgent Specifier="ScheduledTaskAgent"
 Name="NotificationsCleanupAgent"
 Source="NotificationsCleanupAgent"
 Type="NotificationsCleanupAgent.ScheduledAgent" />
</ExtendedTask>

Along with generated diagnostic code, the newly added ScheduledAgent contains a
method named OnInvoke. OnInvoke is called by the Windows Phone framework to
inform the agent that a ScheduledTask has been triggered. The agent will be passed
the triggered ScheduledTask object. The same background agent can execute both
periodic tasks and resource-intensive tasks.

3.6.2 Executing work from the background agent

You’re building a background agent to remove expired notifications. The expired
notifications will be removed by the ScheduledAgent class generated by the project
template. Open the ScheduledAgent.cs file, find the OnInvoke method, and add code
to look for and remove any expired notifications. The method implementation is
shown in the following listing.

protected override void OnInvoke(ScheduledTask task)
{
 DateTime now = DateTime.Now;
 var notifications = ScheduledActionService.
 GetActions<ScheduledNotification>();
 foreach (var notification in notifications)
 {
 if (notification.IsScheduled == false
 || notification.ExpirationTime < now)
 {
 ScheduledActionService.Remove(notification.Name);
 }

Listing 3.13 Removing expired notifications with the background agent

Is notification
expired?

b

87Creating a background agent
 }
 NotifyComplete();
}

The list of all ScheduledNotifications is retrieved using the GetActions method.
You iterate through the returned list looking at each notification’s IsScheduled prop-
erty and ExpirationTime value B. If a notification isn’t scheduled or is expired, you
use the Remove method to delete it from the scheduled action service. Finally, you tell
the operating system that you’re done by calling NotifyComplete c.

 With the scheduled task agent implemented and ready to do work, you need some-
thing that will trigger the background agent. Scheduled task agents are triggered by
ScheduledTasks. In the next section you learn how to create a PeriodicTask from
within the ScheduledActions application.

3.6.3 Scheduling a PeriodicTask

As with ScheduledNotifications, a PeriodicTask is scheduled with the scheduled
action service. Periodic tasks are instantiated, have their properties set, and are sched-
uled by invoking the Add method. ScheduledTask extends ScheduledAction by adding
a Description property. The Description property is shown to the user in the back-
ground tasks setting application. The ScheduledTask doesn’t define the code that’s exe-
cuted when the task is triggered—that code is defined by the background agent.

 The sample application schedules the periodic task when the application is
launched. You learned earlier in the chapter that the PhoneApplicationService
raises a Launching event when a new instance of an application is launched by the
operating system. The App class generated by the project template contains a Launching
event handler named Application_Launching. Open App.xaml.cs and modify the
Application_Launching event hander to create a new PeriodicTask, as detailed in
the following listing.

private void Application_Launching(object sender, LaunchingEventArgs e)
{
 PeriodicTask cleanupTask;

 try
 {
 cleanupTask = new PeriodicTask("NotificationCleanupTask");
 cleanupTask.Description = "A background agent responsible for

➥ removing expired Windows Phone 7 in Action notifications";
 ScheduledActionService.Add(cleanupTask);
 }
 catch (InvalidOperationException)
 {
 AgentStatus += "Unable to create the background task.";
 cleanupTask = null;
 }
}

Listing 3.14 Creating a PeriodicTask

Notify OS about
successful completion

c

Assign
description

 b

Report
failurec

88 CHAPTER 3 Fast application switching and scheduled actions
Creating a PeriodicTask should feel familiar to you by now, since PeriodicTasks,
Alarms, and Reminders are all a form of ScheduledAction. A Guid isn’t included in the
task’s name, since the application will only create a single PeriodicTask. Scheduled-
Task extends ScheduledAction with a Description property, which is shown to the
user in the phone’s settings application. You assign the Description property with
text that describes the work performed by the background task B. The call to the Add
method is surrounded by a try/catch block to catch any exceptions that might be
thrown, particularly when the user has permanently disabled background tasks for
the applications. If an exception is thrown, you report the failure c by assigning the
AgentStatus property.

NOTE We’re using the += operator to append messages to AgentStatus. You’ll
append other messages to the AgentStatus string in the following sections.

You haven’t yet defined the AgentStatus property used in the previous code listing.
Add a new automatic property to App.xaml.cs named AgentStatus:

public string AgentStatus { get; private set; }

In order to display the agent status on the screen, you add another TextBlock to
MainPage.xaml. You place the TextBlock inside a Border and use the contrast back-
ground and styles to make the status messages stand out:

<Border Grid.Row="0"
 Background="{StaticResource PhoneContrastBackgroundBrush}">
 <TextBlock x:Name="agentMessage" TextWrapping="Wrap"
 Style="{StaticResource PhoneTextContrastStyle}" />
</Border>

Next add a line to MainPage’s OnNavigatedTo method to assign the TextBlock’s
Text property:

agentMessage.Text = ((App)Application.Current).AgentStatus;

No message is displayed to the user when the periodic task is successfully created.
Once created, the task will continue to execute twice an hour until its Expiration-
Time. Unlike alarms and reminders, a scheduled task expires after two weeks.

3.6.4 Scheduled tasks expire after two weeks
By default, tasks are created with a maximum expiration time 14 days in the future.
The developer can schedule a task with a shorter expiration time. Any attempt to spec-
ify an expiration time more than two weeks in the future will result in an exception.
The two week limit requires the application to continuously reschedule the task to
ensure that it’ll be running as expected. This limitation also ensures that unused
applications aren’t draining device resources.

 A good practice is to reschedule the task every time the application is launched.
Update the Application_Launching method so that it looks for and removes any pre-
viously scheduled periodic task. Add the following snippet to the Application_
Launching method, right before the try/catch block:

89Creating a background agent
cleanupTask = ScheduledActionService.
 Find("NotificationCleanupTask") as PeriodicTask;
if (cleanupTask != null)
{
 if (cleanupTask.ExpirationTime < DateTime.Now)
 AgentStatus += "The background task was expired. ";

 ScheduledActionService.Remove(cleanupTask.Name);
}

Before removing the previously scheduled task, the snippet checks the expiration time.
If the expiration time is in the past, the user is notified that the existing task was expired.

 Two week expiration dates aren’t the only thing
that prevents a periodic task from executing on
schedule. The user can choose to disable your appli-
cation’s periodic task.

3.6.5 User-disabled tasks

PeriodicTasks can be disabled by the user in the
settings application. Figure 3.9 shows a screenshot
of the background tasks page of the settings appli-
cation. If you examine the figure, you’ll see how
the text assigned to the Description property is
shown to the user. In the screen shot, the user has
disabled the periodic task, but will allow the appli-
cation to recreate the task the next time it runs.

 When the user has checked the Turn Back On
option, the application will be allowed to remove
and recreate the periodic task. If the option isn’t
checked, the Scheduled Action Service will throw
an exception when attempting to recreate the task.
An application can detect whether the user has dis-
abled a task using the IsEnabled property. Add a
check to the Application_Launching method to
set the AgentStatus if the task has been disabled.
The new code should be added inside the state-
ment checking for null:

if (cleanupTask != null)
{
 if (!cleanupTask.IsEnabled)
 AgentStatus += "The background task was disabled by the user. ";
...
}

Only periodic tasks can be disabled. Resource-intensive tasks are listed in the Advanced
page of the background tasks settings application. The user can see the list of resource-
intensive tasks, but can’t disable them.

Figure 3.9 The background tasks
page of the settings application
displays the periodic task’s
description and allows a user to
disable the task.

90 CHAPTER 3 Fast application switching and scheduled actions
3.6.6 When things go awry

Earlier in the chapter you learned that a background agent notifies the operating
system that work was successfully completed using the NotifyComplete method. In a
perfect world, the scheduled agent would always succeed, but we don’t live in a per-
fect world. When the background agent fails to complete its work, it should call the
Abort method.

 The Abort method informs the scheduled action service that the agent is unable to
continue working. When the agent aborts, the Scheduled Action Service will set the
IsScheduled property of the associated ScheduledTask to false, and will cease to
trigger the agent.

 Other scenarios will also cause the background agent to fail. Background agents
are limited to 5 MB of memory, and when a background process exceeds the memory
quota it’s terminated. Periodic tasks are limited to 15 seconds of execution time and
are terminated if the NotifyComplete method isn’t called before the time limit is
reached. An unhandled exception will also terminate the background agent. The exit
status of the background agent is reported by the LastExitReason property of the
scheduled task. The LastExitReason property returns one of the values in the Agent-
ExitReason enumeration. The possible agent exit reasons are listed in table 3.3.

The host application should examine the LastExitReason property of its periodic
tasks, and at a minimum report the error condition to the user. You’re going to add
code to the sample application to check the LastExitReason property and report any
error conditions to the user. The sample application reports agent errors through the

Table 3.3 Values of the AgentExitReason enumeration

Name Description

Aborted The background agent called the Abort method. The scheduled
task’s IsScheduled property has been set to false.

Completed The background agent called the NotifyComplete method.

ExecutionTimeExceeded The background agent failed to call NotifyComplete before
its allocated time limit expired. Periodic tasks have a time limit of
15 seconds.

MemoryQuotaExceeded The background agent attempted to allocate more than 5 MB
of memory.

None The background agent has not run.

Other An unknown error occurred.

Terminated The background agent was terminated early by the operating system
due to conditions unrelated to the agent.

UnhandledException The background agent failed to handle an exception produced
during execution.

91Creating a background agent
AgentStatus property. Add the following snippet to the Application_Launching
method, inside the check for null statement:

if (cleanupTask.LastExitReason != AgentExitReason.Completed
 && cleanupTask.LastExitReason != AgentExitReason.None)
{
 AgentStatus += string.Format("The background task failed to complete

➥ its last execution at {0:g} with an exit reason of {1}. ",
 cleanupTask.LastScheduledTime, cleanupTask.LastExitReason);
}

You ignore the Completed and None exit reasons. All other exit reasons result in a mes-
sage that reports the exit reason and the last time the background agent was sched-
uled to run.

 The notification sample is nearly complete. Each time the application starts up, the
PeriodicTask that triggers the background agent is renewed, and its ExpirationTime is
reset to a full two weeks. The application also handles various error conditions that may
occur, displaying status information to the user. At this point you should launch the appli-
cation in different circumstances and get a feel for how the background agent might be
affected. Disable the background task, either with or without the Turn Back On option
checked. What status messages do you see when you restart the application?

 Unless you’re really patient and waited half an hour or more, you probably haven’t
seen the background agent execute. Fortunately, Microsoft has provided an API to
trigger early execution of background agents to enable developers to test.

3.6.7 Testing background agents
In normal situations a periodic task is only called every 30 minutes. Resource-intensive
tasks are scheduled with even less predictability. Can you imagine having to wait half
an hour for your background agent to trigger before you could debug and step
through your code? The ScheduledActionService class provides the LaunchForTest
API to give the developer control over when background agent execution is triggered.

 The LaunchForTest method accepts the name of the ScheduledTask, and a
TimeSpan value describing how soon the task should be triggered. The LaunchForTest
method can be used by either the host application or by the scheduled agent. Add a
call to LaunchForTest to the end of the Application_Launching method of the sam-
ple application:

if (cleanupTask != null)
 ScheduledActionService.LaunchForTest(cleanupTask.Name,
 TimeSpan.FromSeconds(3));

Debug the application again and a breakpoint in the OnInvoke should be hit within a
few seconds.

LaunchForTest will only execute when an application is deployed to a device using
the Windows Phone SDK tools. When debugging your project with a background
agent, the debugger will continue to run even after the application has stopped. This
is to allow your agent to be debugged even when the application isn’t running.

92 CHAPTER 3 Fast application switching and scheduled actions
3.7 Summary
Throughout this chapter we’ve covered features of the Windows Phone that allow
applications to appear to be continuously running when they are not. A continuously
running application can pose a problem for a mobile device with limited resources. A
running application might interfere with the power management routines of the
operating system and rapidly drain the battery. Runaway background applications
steal processing power from foreground applications, resulting in a slow and unre-
sponsive user experience.

 Microsoft has designed the Windows Phone to provide the best user experience possi-
ble. The Windows Phone imposes limitations to ensure that applications can’t intention-
ally or accidentally create performance or power problems for the user. One of these
limitations prevents an application from running when not the foreground application.

 In the first half of this chapter you learned how to detect when your application is
switched from the foreground to the background. The Lifetime sample application
demonstrated the various events raised when an application is launched, deactivated,
activated, or closed. We showed you how and when to save application state and
quickly recover when your application is switched back to the foreground.

 In the second half of the chapter you learned how to use the Scheduled Action Ser-
vice to implement features normally found in background applications. The Scheduled
Action Service allows an application to schedule alarms and reminders, notifying the user
at important points in time, and providing a quick link back into the application. The
Scheduled Action Service is also used to schedule work with periodic and resource-
intensive tasks. Scheduled tasks are used to trigger an application’s background agent to
perform work even when the application isn’t running in the foreground.

 Another limitation of the operating system prevents applications from directly
accessing features in native applications such as the phone dialer, email, calendar, and
contact database. In the next chapter you’ll learn how to use launchers and choosers
to integrate with the native applications. You’ll also learn how to use the User Data
API to read from the calendar and the contacts database.

Launching tasks
and choosers
A modern mobile phone does more than make phone calls. A mobile phone allows
you to send SMS text messages and emails. Phone numbers and email addresses are
stored in the phone’s contact list. Appointments and meetings are viewed using a
calendar application. Music and videos are played from the phone’s media library.
Don’t forget about the ever-present camera. Windows Phone developers access
these mobile phone features via the Tasks and UserData APIs.

 The Windows Phone security model doesn’t allow third-party applications to
directly access the native applications and data stores provided by the operating system.
Access to native applications is exposed through a variety of classes available in the
Tasks API. Access to native data stores, specifically the contacts and calendar data stores,
is exposed through the Contacts and Appointments classes found in the UserData API.

 In this chapter we explore the UserData and Tasks APIs. You’ll learn how to read
contact and appointment data stored in the phone’s People Hub and Calendar

This chapter covers
■ Using the phone APIs
■ Launchers and choosers
■ Searching for contact data
■ Reading calendar appointments
93

94 CHAPTER 4 Launching tasks and choosers

e
nt-
 to a
Panel
application. You’ll also use tasks to access the native phone applications. You’ll build
two applications to demonstrate how to use the UserData and Tasks APIs. The sample
you’ll build at the end of the chapter will search for contacts and appointments.
First you’ll build an application that uses several different Tasks to initiate phone calls,
emails, and text messages.

4.1 Tasks API
Phone tasks allow your code to interact with the
native or built-in applications—phone dialer,
media player, messaging, contacts, web browser,
camera, and Marketplace. You’re going to build an
application, named PhoneTasks, with a sample
About page that uses Tasks to contact customer sup-
port, share news about the application, add applica-
tion reviews, and purchase a trial application.

NOTE The Application Certification Requirements
for Windows Phone specifies that every application
provide easily discoverable technical support
contact information.

To begin the PhoneTasks application project, create
a new Windows Phone Application. The final Phone-
Tasks application is shown in figure 4.1. The user
interface is built using hyperlinks and buttons. As
you implement the application you’ll show or
launch the appropriate phone task from click event
handlers in the page code behind.

 The ContentPanel markup for the PhoneTasks
project’s main page is shown in the following list-
ing. Open MainPage.xaml and copy the XAML
markup into your project. As you add the various
Button and HyperlinkButton controls, create corresponding empty Click event han-
dlers in MainPage.xaml.cs.

<StackPanel x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <TextBlock Text="Customer Support:"
 Style="{StaticResource PhoneTextGroupHeaderStyle}" />
 <StackPanel Orientation="Horizontal">
 <HyperlinkButton x:Name="supportPhoneLink" Width="325"
 Content="(888) 555-0681" Click="SupportPhoneLink_Click"
 Margin="{StaticResource PhoneTouchTargetOverhang}" />
 <Button x:Name="SavePhoneButton" Content="Save"
 Click="SavePhone_Click" />

Listing 4.1 Markup for the PhoneTask application’s MainPage

Figure 4.1 Screenshot of the
PhoneTasks application with
hyperlinks and buttons for launching
native applications

Chang
Conte
Panel
Stack

b

Style
labels as
header
textc

95Tasks API
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <HyperlinkButton x:Name="supportEmailLink" Width="325"
 Content="support@wp7inaction.com" Click="SupportEmailLink_Click"
 Margin="{StaticResource PhoneTouchTargetOverhang}" />
 <Button x:Name="saveEmailButton" Content="Save"
 Click="SaveEmail_Click" />
 </StackPanel>

 <TextBlock Text="Share:"
 Style="{StaticResource PhoneTextGroupHeaderStyle}" />
 <Button Content="Share via Text Message" Click="ShareSms_Click" />

 <TextBlock Text="Windows Phone Marketplace:"
 Style="{StaticResource PhoneTextGroupHeaderStyle}" />
 <Button Content="Write a Review" Click="Review_Click" />
 <Button x:Name="homePageButton" Content="Buy this application"
 Click="HomePage_Click" />
 <StackPanel Orientation="Horizontal">
 <Button Content="Search Marketplace" Click="Search_Click" />
 <Button Content="Search Bing" Click="BingSearch_Click" />
 </StackPanel>
</StackPanel>

You start by changing the ContentPanel from a Grid into a StackPanel B. Next you
add the first of three header labels by creating a TextBlock and styling it with the
theme resource named PhoneTextGroupHeaderStyle c. You use the customer sup-
port email address and phone numbers as the Content for two HyperlinkButtons.
You use the theme resource named PhoneTouchTargetOverhang d to ensure that
each hyperlink has enough space around it to accommodate the thickness of a fin-
gertip. Finally you add several Buttons, which the user will use to initiate one of the
phone tasks. Run the application now and confirm the user interface appears as
you’d expect.

 The phone tasks are found in the Microsoft.Phone.Tasks namespace of the
Microsoft.Phone assembly. Tasks don’t share a common base class or interface, but
every task implements a Show method. When the Show method is called, your applica-
tion is deactivated and possibly terminated. Tasks are launched with the Show method
because they’re only shown. Your application can’t use tasks to actually do anything.
The tasks require the user to initiate all actions. Make sure to perform any necessary
work before calling the Show method, especially if you’re calling Show from the user
interface thread. If you block or otherwise tie up the UI thread, the Deactivated
event will queue up until the UI thread is free. If the user returns to your application
before Deactivated is fired, your application will appear to hang.

 Tasks come in two forms—launchers and choosers. Launchers are fire-and-forget;
they show the task and don’t return any data. Choosers show the task and return data
to your application when it’s reactivated.

Leave
enough
room for
touchesd

96 CHAPTER 4 Launching tasks and choosers
4.2 Launchers
Launchers are a category of tasks that allow your code to activate a native or built-in
application. Table 4.1 describes each of the launcher classes provided in the Microsoft
.Phone.Tasks namespace. Data is passed to the launched application via properties set
on the task. When the launcher’s Show method is called, your application is deactivated.

PhoneCallTask, EmailComposeTask, and SmsComposeTask are contact tasks. You’ll use
these tasks if your application is some form of contact management application or if
any of your data contains phone numbers or email addresses. For this example you’re
going to use them in the PhoneTasks application to provide links to customer support.

ShareLinkTask and ShareStatusTask are social networking tasks. You’ll use these
tasks to allow users of your application to post links and status messages to Windows
Live, Facebook, Twitter, or LinkedIn. Using the social networking tasks is similar to

Table 4.1 Windows Phone launchers

Launcher Description

BingMapsDirectionsTask* Launch the Bing Maps application showing driving directions
between two locations

BingMapsTask* Launch the Bing Maps application centered on a location.

ConnectionSettingsTask Launch the Airplane Mode, Bluetooth, Cellular, or Wi-FI page of the
settings application

EmailComposeTask Launch the email application and send an email

MarketplaceDetailTask Launch the specified application’s home page in the
Marketplace Hub

MarketplaceHubTask Launch the Marketplace Hub

MarketplaceReviewTask Launch an application’s review page in the Marketplace Hub

MarketplaceSearchTask Launch the search page in the Marketplace, and search for the
specified keywords

MediaPlayerLauncher Launch the media player and play the specified media

PhoneCallTask Launch the phone dialer with the specified phone number and
place a phone call

SearchTask Launch the Bing application with the specified query

ShareLinkTask Launch the Post a Link page in Internet Explorer

ShareStatusTask Launch the Post a Message page in the People Hub

SmsComposeTask Launch the messaging application and send a text message

WebBrowserTask* Launch Internet Explorer with the specified web address

* BingMapsDirectionsTask, BingMapsTask, and WebBrowserTask are covered in chapter 13.

97Launchers
using the other launchers and we don’t cover them in this book. Neither of the social
networking tasks work with the emulator because the emulator doesn’t allow you to
set up email and social networking accounts. You can see an example of how to use
them in the PhoneTasks application that’s available with the book’s sample source
code, which is slightly different than the application you build in this chapter.

 The marketplace tasks provide integration with the Marketplace Hub. You’re going
to use them in your PhoneTasks application—giving users quick access to the review
and buy marketplace pages, and to search for other applications in the portfolio.

 You’re going to start the PhoneTasks application implementation by using Phone-
CallTask to call customer support.

4.2.1 Placing a phone call

PhoneCallTask shows the phone dialer, prompting the user to dial a phone number
specified by the application. The user must initiate the phone call; the application
can’t actually dial a phone call directly. PhoneCallTask has a PhoneNumber property
and a DisplayName property.

TIP Use of the PhoneCallTask requires the ID_CAP_PHONEDIALER capability
to be declared in WMAppManifest.xml

Figure 4.2 shows how the user is prompted when PhoneCallTask.Show is executed.
The dialer screen overlays the top portion of the application, while the remainder of
the screen is disabled. Unlike all other tasks, PhoneCallTask doesn’t pause or termi-
nate the application, but only obscures it. The application is notified via the Phone-
ApplicationFrame.Obscured event. If the user clicks Call, the in-call screen overlays
the running application.

 The in-call overlay presents the DisplayName if the phone number doesn’t match
an existing contact. When a phone number matches an existing contact, the data in

Figure 4.2 Phone dialer and in-call overlays

98 CHAPTER 4 Launching tasks and choosers
the contact record is shown instead of the specified DisplayName. The user might
return to the running application by tapping below the in-call overlay, which gener-
ates a PhoneApplicationFrame.Unobscured event. The user might also take another
action that will result in the deactivation of your application. The following listing
shows how to use PhoneCallTask.

using Microsoft.Phone.Tasks;

private void SupportPhoneLink_Click(object sender, RoutedEventArgs e)
{
 PhoneCallTask task = new PhoneCallTask()
 {
 PhoneNumber = (string)SupportPhoneLink.Content,
 DisplayName = "WP7 In Action Customer Support"
 };
 task.Show();
}

The PhoneCallTask class is defined in Microsoft.Phone.Tasks, so you add a using
directive B for the namespace at the top of the file. Next, implement the
SupportPhoneLink_Click event handler by constructing a PhoneCallTask c with
object initializers for the PhoneNumber and DisplayName properties. Finally the Show
method is called to prompt the user to place the phone call.

 The PhoneNumber property is required. If
PhoneNumber isn’t set, PhoneCallTask.Show will
return immediately without performing any work,
and the dialer screen won’t be displayed to the
user. The user’s only options are to dial or not to
dial and the user can’t change the phone number.
The DisplayName property isn’t required, and if
not specified, the in-call screen will only display the
phone number. When the PhoneNumber property
isn’t a valid phone number, an error message will
be displayed to the user after they press the Call
button as shown in figure 4.3.

 Some users will prefer to interact with customer
support via email instead of a phone call. For this
example you’ll use EmailComposeTask to allow
these users to send an email.

4.2.2 Writing an email

The EmailComposeTask shows the email application, prompting the user to send an
email specified by the application to a specified email address. The user must initiate the
send; your application can’t actually send an email message directly. EmailComposeTask

Listing 4.2 Launching the phone dialer with the PhoneCallTask

Declare namespaceb

Construct
and initialize
the task

c

Figure 4.3 Error message displayed
when an invalid phone number is
specified

99Launchers
has To, CC, Subject, and Body properties. The next listing shows how to show the
EmailComposeTask.

private void SupportEmailLink_Click(object sender, RoutedEventArgs e)
{
 EmailComposeTask task = new EmailComposeTask()
 {
 To = (string)SupportEmailLink.Content.ToString(),
 Subject = "WP7 in Action PhoneTasks Application",
 Body = "Support Issue Details:"
 };
 task.Show();
}

Implement the SupportEmailLink_Click event handler by constructing an Email-
ComposeTask B with object initializers for the To, Subject, and Body properties. Next,
the Show method is called to launch the email editor.

NOTE The email application isn’t accessible in the emulator, and when the
EmailComposeTask is shown on the emulator, the user is shown an error message.

All of the properties are optional. The messaging application will launch with a new
empty email when nothing is supplied. The To and CC properties can be one or more
names or email addresses, separated with a semicolon. The messaging application will
attempt to match the To and CC values to contacts in the address book after the user
presses send. Once in the email editor, the user can alter, delete, or replace any of the
values passed in from your application.

 The last contacts-related launcher we’re going to look at is the SmsComposeTask.

4.2.3 Texting with SMS
The SmsComposeTask shows the text messaging
application, prompting the user to send a text spec-
ified by your application to a specified name or
phone number. The user must initiate the send, as
your application can’t actually send a text message
directly. SmsComposeTask has To and Body properties.

 You’re going to use the SmsComposeTask to pro-
vide the user a means to send information and news
about the application to contacts in their address
book, a form of high-tech word-of-mouth advertising.

 Figure 4.4 shows the messaging application as the
user sees it when SmsComposeTask.Show is executed.

 A SmsComposeTask is constructed in the Share-
Sms_Click event handler with object initializers
for the Body property. The Show method is called to
launch the messaging application:

Listing 4.3 Composing an email with the EmailComposeTask

Construct and
initialize task

b

Figure 4.4 Messaging application

100 CHAPTER 4 Launching tasks and choosers
private void ShareSms_Click(object sender, RoutedEventArgs e)
{
 SmsComposeTask task = new SmsComposeTask()
 {
 Body = "I like the WP7 in Action

➥ PhoneTasks Application, you should try it out!",
 };
 task.Show();
}

Both the To and Body properties are optional. The messaging application will launch
with a new empty message when neither are supplied. The To property can be one or
more names or a phone number, separated with a semicolon. The messaging applica-
tion will attempt to match the To values to contacts in the address book after the user
presses Send. Once in the messaging editor, the user can alter, delete, or replace the
To and Body values passed in from your application.

 As with other tasks, the user can return to your application by pressing the Back
button. The user can return without sending the text. The user may also send the text
and then choose to perform other actions without ever returning to your application.
With the contacts features of the About page implemented, you’re ready to imple-
ment the marketplace tasks.

4.2.4 Working with the Marketplace

The Windows Phone Marketplace Hub, shown in figure 4.5, is where users go to
download, review, and purchase applications for the Windows Phone. Three different
tasks are available to launch the Marketplace Hub from third-party applications.

 The MarketplaceHubTask launches the Marketplace Hub to either the applica-
tions or music portal. The other two tasks, MarketplaceReviewTask and Market-
placeDetailTask, will launch the Marketplace Hub directly to an application’s site

Figure 4.5 The Marketplace Hub

101Launchers
within the Marketplace. Let’s take a closer look at each task, starting with Market-
placeHubTask.

MARKETPLACEHUBTASK

The first marketplace task we’ll discuss is the MarketplaceHubTask. This task launches
the Windows Phone Marketplace Hub. MarketplaceHubTask has a single ContentType
property. Launch the task with the Show method:

MarketplaceHubTask task = new MarketplaceHubTask()
{
 ContentType = MarketplaceContentType.Applications
};
task.Show();

The ContentType property must be set to one of the MarketplaceContentType enu-
meration values—Applications or Music. ContentType defaults to Marketplace-
ContentType.Applications.

 You don’t have a need to launch the Marketplace Hub start pages. But you do want
to launch the Marketplace’s Create a Review feature. MarketplaceReviewTask allows
you to do just that.

MARKETPLACEREVIEWTASK

Reviews are a big part of the Windows Phone Marketplace. The Windows Phone Mar-
ketplace will grow to tens or hundreds of thousands of applications. Reviews help
the consumer find your great application in a sea of mediocre competitors. With the
MarketplaceReviewTask Microsoft has made it easy to encourage users to create
reviews for your application.

 To wire up the review feature to the About page, you’ll implement the Click han-
dler for the Review button:

private void Review_Click(object sender, RoutedEventArgs e)
{
 MarketplaceReviewTask task = new MarketplaceReviewTask();
 task.Show();
}

MarketplaceReviewTask doesn’t have any public properties. The task determines the
appropriate product ID from the running application, so when you call Show the right
page in the Marketplace is shown.

 Offering more than the review page, the Marketplace allows you to direct the user
to an application’s home page with the MarketplaceDetailTask.

MARKETPLACEDETAILTASK

An application’s home page in the Windows Phone Marketplace provides all the
details, screenshots, and reviews for an application. It’s also where a user goes to pur-
chase an application or download a trial. In your About page, you’ll offer a link to
your application’s Marketplace home page. When the application runs under a trial
license, you want to show the user a Buy Now button as shown in figure 4.6.

102 CHAPTER 4 Launching tasks and choosers

You learned how to use the IsTrial API to change application behavior in chapter 2.
The next listing uses the IsTrial API to update the home page button’s text.

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 LicenseInformation licenseInfo = new LicenseInformation();
 if (licenseInfo.IsTrial())
 HomePageButton.Content = "Buy this application";
 else
 HomePageButton.Content = "Marketplace home";

 base.OnNavigatedTo(e);
}

You’re adding code to the OnNavigatedTo override, because it’s possible for the appli-
cation to be licensed while it’s deactivated. You start by creating an instance of License-
Information and checking for a trial license B. When running under a trial license,
the button text encourages the user to buy the application c.

 Next you need to implement the HomePage_Click event handler:

private void HomePage_Click(object sender, RoutedEventArgs e)
{
 MarketplaceDetailTask task = new MarketplaceDetailTask();
 task.Show();
}

MarketplaceDetailTask has two properties—ContentIdentifier and ContentType.
The ContentType property defaults to MarketplaceContentType.Applications,
which is the only valid value for this task. ContentIdentifier defaults to null, which
indicates that the task should use the product identifier of the currently running
application.

MarketplaceDetailTask also allows you to display the home page for any applica-
tion, if you know its ContentIdentifier. Your application can provide links to all the
applications published by you, as you’re likely to know those IDs. Another option for
showing the user all of your applications is with a Marketplace search.

Listing 4.4 Using IsTrial to customize the HomeButton’s text

Figure 4.6 The home page button’s content in trial and licensed modes

Is app using
trial license?

b

Update button’s
content

c

103Choosers
MARKETPLACESEARCHTASK

Our About page utilizes the MarketplaceSearchTask to search for related applica-
tions. The search is defined with a set of search terms, which for this application are
“Windows Phone 7 in Action”:

private void Search_Click(object sender, RoutedEventArgs e)
{
 MarketplaceSearchTask task = new MarketplaceSearchTask()
 {
 SearchTerms = "Window Phone 7 in Action",
 ContentType = MarketplaceContentType.Applications
 };
 task.Show();
}

Implement the Search_Click event handler by constructing a MarketplaceSearch-
Task with object initializers for the SearchTerms and ContentType properties. The
Show method is called to launch the marketplace.

 Searching with Bing is an alternative to searching the Application Marketplace.
The Tasks API includes a task to launch a Bing Search.

4.2.5 Searching with Bing

The last task you’ll use in the PhoneTasks sample application is SearchTask. Search-
Task launches the Bing Search application with a specified search query. The Phone-
Tasks application utilizes the SearchTask to search for “Windows Phone 7 in Action”
on Manning’s website:

private void BingSearch_Click(object sender, RoutedEventArgs e)
{
 SearchTask task = new SearchTask()
 {
 SearchQuery = "Windows Phone 7 in Action site:manning.com"
 };
 task.Show();
}

The search query is constructed using the site operator defined in the Bing Query Lan-
guage. The Bing Query Language is documented on MSDN at http://mng.bz/6NXP.

 If the SearchQuery property is a null or empty string, the Show method returns
immediately and doesn’t launch the Bing Search application.

 The PhoneTasks application is nearly finished. The remaining buttons allow the
user to save the support phone number and email address to the contacts database.
Saving data to contacts requires the user to choose which contact to update. For this
you need choosers.

4.3 Choosers
Choosers are a category of Windows Phone tasks that return task status and data to an
application. Each chooser displays a native application user interface and either saves

http://mng.bz/6NXP

104 CHAPTER 4 Launching tasks and choosers
data to the native application or returns data from the native application. Table 4.2
describes the choosers available in the Microsoft.Phone.Tasks namespace. Because
applications might be terminated when a task is shown, there’s no guarantee the user
will ever return to your application with the chosen data.

AddressChooserTask, EmailAddressChooserTask, and PhoneNumberChooserTask

return data chosen by the user. SaveContactTask, SaveEmailAddressTask, Save-
PhoneNumberTask, and SaveRingtoneTask don’t return any data; they only return sta-
tus information. Data and status information are returned to your application via the
TaskEventArgs parameter of the chooser’s Completed event handler.

4.3.1 Completed events
Choosers, like all tasks, are launched with the Show method. When Show executes, your
application is deactivated and possibly tombstoned. Upon activation, the Windows Phone
framework raises the chooser’s Completed event. Because the completed event is called
when a tombstoned application is restarted, Completed events should be treated specially.

 Chooser instances should be declared as instance fields of the PhoneApplication-
Page. To enable callbacks when recovering from tombstoning, Completed event handlers
must be wired up in the Silverlight Page constructor or Loaded event handler. When

Table 4.2 Windows Phone choosers

Chooser Description

AddressChooserTask Launch the ‘choose a contact page’ in the People Hub and return a
physical address of the user’s choosing

CameraCaptureTask* Launch the camera application and return a photo the user takes

EmailAddressChooserTask Launch the ‘choose a contact page’ in the People Hub and return
an email address of the user’s choosing

PhoneNumberChooserTask Launch the ‘choose a contact page’ in the People Hub and return a
phone number of the user’s choosing

PhotoChooserTask* Launch the Pictures application and return a picture of the
user’s choosing

SaveContactTask Launch the ‘new contact’ page in the People Hub prompting the
user to edit and save a new contact

SaveEmailAddressTask Launch the ‘choose a contact’ page in the People Hub
prompting the user to add an email address to the contact
of the user’s choosing

SavePhoneNumberTask Launch the ‘choose a contact’ page in the People Hub
prompting the user to add a phone number to the contact
of the user’s choosing

SaveRingtoneTask Launch the Ringtones application prompting the user to save an
audio file from the application’s storage as a ringtone

*CameraCaptureTask and PhotoChooserTask are covered in chapter 6.

105Choosers

the event handler is added in a page constructor, the event handler is called immedi-
ately after the constructor, before the Loaded event. But if the event handler is added
in the Loaded event, the Completed event is called immediately after the Loaded event.

 You’ll use SavePhoneNumberTask and SaveEmailAddressTask to finish the Phone-
Tasks application.

4.3.2 Saving a phone number

One feature of the PhoneTasks application allows the user to save the customer sup-
port phone number to the contacts database. Once the phone number is saved, the
feature is hidden. The feature will be implemented with SavePhoneNumberTask. When
the chooser launches, the user is prompted to select a new or existing contact, and is
then presented with the Edit Phone Number screen shown in figure 4.7.

 At this point, the user can change the phone number or return to the application
without saving the number (or start a completely different application, never returning
to PhoneTasks). The following listing shows the code added to MainPage.xaml.cs for cre-
ating an instance field and adding the completed event handler in the constructor.

SavePhoneNumberTask savePhoneNumberTask = new SavePhoneNumberTask();

public MainPage()
{
 InitializeComponent();
 savePhoneNumberTask.Completed += savePhoneTask_Completed;
}

private void savePhoneTask_Completed(object sender, TaskEventArgs e)
{
 if (e.TaskResult == TaskResult.OK)
 SavePhoneButton.Visibility = Visibility.Collapsed;
}

Listing 4.5 Wiring up the completed event handler

Figure 4.7 Saving an application-supplied phone number

Add field for task

Add
completed
event
handler

Confirm save
and hide button

b

106 CHAPTER 4 Launching tasks and choosers
You only want to hide the SavePhoneButton when the returned status is Task-
Result.OK B. You hide the button by changing its Visibility property to
Visibility.Collapsed.

 Finally you can implement the SavePhone_Click event handler. The phone num-
ber you’re asking the user to save comes from the SupportPhoneLink control:

private void SavePhone_Click(object sender, RoutedEventArgs e)
{
 savePhoneNumberTask.PhoneNumber = (string)SupportPhoneLink.Content;
 savePhoneNumberTask.Show();
}

Saving the customer support email address is the only remaining feature left to imple-
ment. You’ll use SaveEmailAddressTask to complete PhoneTasks.

4.3.3 Saving an email address

The last feature of the PhoneTasks application allows the user to save the customer
support email address to the contacts database. As with the phone number, you’ll hide
the feature when the email address is saved. When the SavePhoneNumberTask chooser
launches, the user is prompted to select a new or existing contact, and is then shown
the edit email address screen in figure 4.8.

 Because this is another chooser, you need to add an instance field to the class:

SaveEmailAddressTask saveEmailAddressTask = new SaveEmailAddressTask();

Next, you wire up the Completed event handler in the constructor and implement the
event handler:

saveEmailAddressTask.Completed += saveEmailTask_Completed;

private void saveEmailTask_Completed(object sender, TaskEventArgs e)
{
 if (e.TaskResult == TaskResult.OK)
 SaveEmailButton.Visibility = Visibility.Collapsed;
}

Figure 4.8 Saving an application supplied email address

107Choosers
Finally, you implement the SaveEmail_Click event handler. The email address you’re
asking the user to save comes from the SupportEmailLink control:

private void SaveEmail_Click(object sender, RoutedEventArgs e)
{
 saveEmailAddressTask.Email = (string)SupportEmailLink.Content;
 saveEmailAddressTask.Show();
}

You’re done adding Windows Phone tasks to the PhoneTasks application, but not
quite finished looking at chooser tasks. Before we move on to the next sample applica-
tion, we discuss saving ringtones and choosing physical addresses, phone numbers,
and email addresses.

4.3.4 Saving a ringtone
A ringtone is the sound played when a phone receives an incoming call, voice mail, text
message, or email message. Ringtones are implemented with regular audio files that
are installed on the phone. Windows Phone supports ringtones that are either MP3 or
WMA audio files. To qualify as a ringtone, the audio file must be less than 40 seconds
long and smaller than 1 MB. Ringtones must not have digital rights management
(DRM) protection.

NOTE A ringtone-saving application is included with the books sample code,
which is available from the book’s website at http://www.manning.com/perga.

The SaveRingtoneTask enables the development of applications that install custom
ringtones. Custom ringtone audio files are read from the application install folder or
isolated storage, which means your application must either include the ringtones in its
.xap file, or download them into isolated storage before installing them with Save-
RingtoneTask. The next listing demonstrates how to install a custom ringtone.

private void SaveRingtone_Click(object sender, EventArgs e)
{
 SaveRingtoneTask task = new SaveRingtoneTask()
 {
 DisplayName = "ringtones in action",
 IsoStorePath = new Uri("isostore:/transfers/ringtone.wma"),
 };
 task.Completed += saveRingtoneTask_Completed;
 task.Show();
}

The SaveRingtoneTask is used like all the other choosers. The task is constructed, its
properties are set, the Completed event is hooked, and the Show method is called. The
DisplayName property is optional and, if not set, will default to the name of the audio
file. The IsoStorePath property is required and must be an Uri using either the app-
data or isostore schema. In this listing, you’re referencing an audio file B that was
downloaded to isolated storage.

Listing 4.6 Saving a ringtone with SaveRingtoneTask

Read audio
file from
isolated
storage

b

http://www.manning.com/perga

108 CHAPTER 4 Launching tasks and choosers

elected
e
ber
Once the chooser’s user interface is displayed, the user can change the display name
of the ringtone. The chooser UI is shown in figure 4.9. The chooser user interface will
only be shown if the audio file specified in the IsoStorePath is found at the given
path and is an MP3 or WMA file. If the audio file is longer than 40 seconds or larger
than 1 MB, the Error property in the TaskEventArgs returned to the Completed event
handler will hold a FormatException.

SaveRingtoneTask, along with SaveContactTask, SavePhoneNumberTask, and
SaveEmailAddressTask, displays a native user interface and allows data from a third-
party application to be sent to a native application. These three tasks return status
information to the calling application. The next set of chooser tasks that you learn
about send data from the native applications to third-party applications. Your applica-
tion can use the choosers to obtain a phone number, email address, or street address.

4.3.5 Choosing a phone number

PhoneNumberChooserTask retrieves a phone number from the contacts database,
prompting the user to choose a phone number with the built-in contacts user inter-
face. The PhoneNumberChooserTask.Completed event uses the PhoneNumberResult
event args. The following listing shows how to use PhoneNumberResult.

void phoneChooser_Completed(object sender, PhoneNumberResult e)
{
 if (e.Error != null)
 chooserResult = e.Error.Message;
 else if (e.TaskResult == TaskResult.Cancel)
 chooserResult = "user canceled";
 else if (e.TaskResult == TaskResult.None)
 chooserResult = "no result";
 else if (e.TaskResult == TaskResult.OK)
 chooserResult = string.Format("Phone Number for {0}\r\n{1}",
 e.DisplayName, e.PhoneNumber);
}

In this snippet, chooserResult is a string field. Completed event handlers should
check the Error property on the event args parameter B. If Error isn’t null, an

Listing 4.7 Retrieving the phone number from PhoneNumberChooserTask

Figure 4.9 Saving a ringtone (left) and selecting a custom ringtone for a
contact (right)

Check for
exceptions

b

User
canceled

c

Use s
phon
num

d

109Choosers
exception occurred during the choose operation. When the user presses the back but-
ton to return to the application without selecting a phone number, a TaskResult
.Cancel status is returned c and the PhoneNumber property will be null. When the
user completes the task, TaskResult.OK is returned, and the PhoneNumber property d
contains the selected value.

 When your application requires an email address instead of a phone number, use
EmailAddressChooserTask.

4.3.6 Choosing an email address

EmailAddressChooserTask retrieves an email address from the contacts database
using the built-in contacts user interface. Your application depends on user interac-
tion to choose the email address. The difference between EmailAddressChooser-
Task and PhoneNumberChooserTask lies in the type of result object passed to the
Completed event handler. EmailAddressChooserTask uses EmailResult which pro-
vides an Email property:

if (e.TaskResult == TaskResult.OK)
 chooserResult = string.Format("Email Address for {0}\r\n{1}",
 e.DisplayName, e.Email);

The last chooser we explore is the AddressChooserTask.

4.3.7 Choosing a street address

A physical address can be retrieved from the contacts database using the Address-
ChooserTask task. Just like the other chooser tasks, the user is prompted to select an
address with a built-in user interface. The AddressChooserTask returns an Address-
Result object passed to the Completed event handler. The Address property of
AddressResult provides the physical address in the form of a string:

if (e.TaskResult == TaskResult.OK)
 chooserResult.Text = string.Format("Street Address for {0}\r\n{1}",
 e.DisplayName, e.Address);

AddressChooserTask rounds out the list of choosers discussed in this chapter. In the
next section you’ll read directly from the contacts database to retrieve more than just
a phone number, email address, or physical address. Even though using the contacts
choosers is limited, you should consider using them instead of reading directly from
the contacts database. The choosers use the built-in user interface, saving the devel-
oper the work required to build a custom UI. The choosers provide the same consis-
tent UI that phone users see when working in the People Hub.

 What are you to do if your application requires more than just phone numbers,
email addresses, and physical addresses? The UserData API exposes nearly all of the
data stored in the contact database.

110 CHAPTER 4 Launching tasks and choosers
4.4 UserData APIs
Windows Phone 7 aggregates contacts and calendar data from multiple service provid-
ers and social networks. Contacts from Windows Live, Facebook, and email accounts
all appear in the People Hub. Appointments from each of the user’s accounts are dis-
played in the Calendar application. The UserData API exposes a read-only view of the
data that appears in the People Hub and the Calendar applications.

NOTE Users will be notified that an application reads contacts and appoint-
ments data when they download the application from the Marketplace. The
Marketplace doesn’t tell them how an application will use the data. Applica-
tions that use the UserData API should respect the user’s privacy and inform
them how the data will be used. If the data is sent over the network, you
should tell the user.

The UserData API consists of the classes and enumerations found in the Microsoft
.Phone.UserData namespace. The two topmost classes are Appointments and Contacts,
which provide the methods used to search through the calendar and contacts data-
bases. Another important class is the Account class, which is used to identify the source
of the data. Many of the classes in the UserData namespace have an Account property
that identifies which service provided the contact or appointment data.

 The Account class has two properties named Name and Kind. The Name property
displays the name value entered by the user when the account was first created in the
settings application. The Kind property is of type StorageKind and will have one of
the enumeration values listed in table 4.3.

To demonstrate how to work with the UserData API you’ll build a new sample applica-
tion. Shown in figure 4.10, the application will contain a Pivot control with two Pivot-
Items, one for searching contacts and the other for searching appointments. The
Pivot control is analogous to a tab control, and we cover it in depth in chapter 10.
Open Visual Studio, select New Project from the File menu, choose the Windows
Phone Application project template, and name the project UserData. You’re starting
with the basic application instead of the Windows Phone Pivot Application template.

Table 4.3 The kind of accounts exposed by the UserData API

StorageKind value Description

Phone The contact or appointment was created on the phone and isn’t associated to any
service provider.

Windows Live The contact or appointment data synchronized with a Windows Live account.

Outlook The contact or appointment data synchronized with a Microsoft Outlook account.

Facebook Contact data synchronized with Facebook.

Other Contact and appointment data synchronized with some other service provider.

111UserData APIs
You’re not using the Pivot Application Template since you don’t need sample Model-
View-ViewModel code generated for you.

 The MainPage.xaml file generated by the Windows Phone Application template isn’t
going to work here and you need to delete it from the project. Create a new MainPage
.xaml using the Project > Add New Item menu option. From the New Item dialog,
choose the Windows Phone Pivot Page item template and name the new page Main-
Page.xaml. If you look at the new MainPage.xaml file, you see a Pivot control containing
two empty PivotItems. In the sample project, you’ll add the controls shown in figure 4.10
to the PivotItems. You can read more about the Pivot control in chapter 10.

 The first PivotItem contains controls to allow the user to search for a contact by
name, phone number, or email address.

4.4.1 Searching for contacts
Contact records are discovered by executing a search against the contacts data store.
The UserData API provides the Contacts class as the façade providing access to each
of the service provider’s contacts data. Five different types of searches can be per-
formed. A search can return all the data available in the data store. Searches can be
restricted to look for specific names, phone numbers, or email addresses. A search
can also return the contacts that the user has pinned to the start screen.

TIP Use of the Contacts API requires the ID_CAP_CONTACTS capability to be
declared in WMAppManifest.xml.

Your sample application allows the user to enter search terms, specify a search type,
and then execute the search. The contact search user interface is implemented in the
contacts PivotItem. The XAML markup for contact search is shown next.

<controls:PivotItem Header="contacts">
 <StackPanel>
 <StackPanel Orientation="Horizontal">

Listing 4.8 XAML markup for the contact pivot item

Figure 4.10 The user data sample application

Relabel first
itemb

112 CHAPTER 4 Launching tasks and choosers
 <TextBox x:Name="filterBox" Width="350" />
 <Button Click="searchContacts_Click">
 <Image Source="/Images/appbar.feature.search.rest.png" />
 </Button>
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <RadioButton x:Name="nameSearch" Content="Name"
 IsChecked="True" />
 <RadioButton x:Name="phoneSearch" Content="Phone" />
 <RadioButton x:Name="emailSearch" Content="Email" />
 </StackPanel>
 <TextBlock Text="Search Result:"
 Style="{StaticResource PhoneTextGroupHeaderStyle}" />
 <TextBlock x:Name="contactsResult"
 Margin="{StaticResource PhoneMargin}"/>
 <ContentControl x:Name="contactControl"
 Margin="{StaticResource PhoneMargin}">
 <ContentControl.ContentTemplate>
 <DataTemplate>
 </DataTemplate>
 </ContentControl.ContentTemplate>
 </ContentControl>
 </StackPanel>
</controls:PivotItem>

You start the code listing by changing the header B of the first PivotItem from item1
to contacts. You add several controls to the PivotItem starting with a TextBox allowing
the user to input the search term, and an image button to execute the search. The
Button’s Click event is handled by a method named searchContacts_Click which
you’ll implement in the following pages. Three RadioButton controls are added c to
allow the user to specify the kind of search to execute—name, phone number, or
email. Finally you add a few controls to display the results of the search d. The
contactControl’s ContentTemplate property is an empty DataTemplate to start with
and you’ll be adding controls to display details about the resulting contact records.

 Searches are executed using an asynchronous pattern with the SearchAsync
method of the Contacts class. Results are returned via a completed event named
SearchCompleted. SearchAsync accepts a search term and a filter type. Allowable val-
ues for the filter type are None, PinnedToStart, EmailAddress, PhoneNumber, and
DisplayName. These values are defined by the FilterKind enumeration. Like many
other asynchronous methods, SearchAsync also accepts a state object that calling
code can use to pair method calls to completed events.

 Before implementing the searchContacts_Click method, you need to declare
and construct an instance of the Contacts class. Add a field to the MainPage class to
hold the Contacts instance:

Contacts contacts = new Contacts();

With the contacts instance created you’re ready to search the contacts data store. The
next listing implements the searchContacts_Click method where you perform
the search.

Radio buttons
to specify
search kind

c

Display
results

d

113UserData APIs
private void searchContacts_Click(object sender, RoutedEventArgs e)
{
 var filterKind = FilterKind.DisplayName;
 if (phoneSearch.IsChecked.Value)
 filterKind = FilterKind.PhoneNumber;
 else if (emailSearch.IsChecked.Value)
 filterKind = FilterKind.EmailAddress;

 string filter = filterBox.Text;

 contacts.SearchAsync(filter, filterKind, null);
}

First you determine the type of search to perform by looking at the RadioButtons B.
If a radio button is checked, you use the corresponding FilterKind enumeration
value. Next you retrieve the search term from the TextBox before you finally call the
SearchAsync method c.

 Phone number searches look for an exact match of all of the digits in the search
term. Email searches match the search term to the user name or user name and
domain name. Display name searches match the search term with the contact’s first or
last name using a starts with algorithm.

 Your sample application doesn’t use None or PinnedToStart, two of the five possi-
ble FilterKind values. Searches conducted with the None value will ignore the search
term and return all contacts in the data store. The search term is also ignored by
PinnedToStart searches, which return all of the contacts who have live tiles pinned to
the start screen.

 Search results are returned to the application via the SearchCompleted event. Event
handlers are passed an instance of the ContactsSearchEventArgs class, which exposes
properties containing the search term, the FilterKind value, and the state object speci-
fied in the call to SearchAsync. The ContactsSearchEventArgs also has a Results prop-
erty, which is a collection containing contacts that matched the search term.

 You’re now ready to implement your own SearchCompleted event handler. You
start by hooking the SearchCompleted event from the Contacts class. Wire up the
SearchCompleted event to the contacts_SearchCompleted method in the construc-
tor for the MainPage class:

contacts.SearchCompleted += contacts_SearchCompleted;

Now implement the event handler:

void contacts_SearchCompleted(object sender, ContactsSearchEventArgs e)
{
 contactsResult.Text =
 string.Format("{0} contacts found", eResults.Count());
 if (results.Count > 1)
 contactsResult.Text += string.Format(", displaying the first match");
 contactControl.Content = e.Results.FirstOrDefault();
}

Listing 4.9 Searching for a contact

Specify
type of
search

b

Execute
search

c

114 CHAPTER 4 Launching tasks and choosers
The event args Results property is of type IEnumerable<Contact>, which allows you to
use the Linq extension methods Count and FirstOrDefault. You use the Count exten-
sion method to display the number of contacts that matched the search term in the Text
property of the contactsResult TextBlock. Next you use the FirstOrDefault extension
method to set the Content property of the contactControl ContentControl.

 The Contact class contains more than a dozen different properties and one
method. CompleteName, DisplayName, and IsPinnedToStart are the only properties
that aren’t collections. The remaining properties are collections of Strings, Date-
Times, or more complex objects. Table 4.4 details the complex classes found in the
UserData namespace that are used by the Contact class.

If you run the application now, you won’t see any Contact-related data. You’re setting
the Content property of the contactContent ContentControl to an instance of Contact.
You haven’t yet declared any user interface elements to display the Contact. The next list-
ing details the XAML markup to display some of the data available for a contact.

<DataTemplate>
 <StackPanel Margin="{StaticResource PhoneMargin}">
 <TextBlock Text="{Binding DisplayName,

➥ StringFormat='Display Name: \{0\}'}" />
 <StackPanel Orientation="Horizontal" >
 <TextBlock Text="{Binding CompleteName.FirstName,

Table 4.4 Contacts related classes

Class Description

CompleteName The first, middle, and last name of the contact. Nickname,
title, and suffix are also provided.

ContactAddress Contains a physical address for the contact in the form of a
CivicAddress instance. Also contains an AddressKind
property that specifies whether the address is a home or
work address.

ContactCompanyInformation Contains the company name and location, as well as the job
title of the contact.

ContactEmailAddress Contains an email address for the contact. Also contains an
EmailAddressKind property that specifies whether the
email address is for a personal or work account.

ContactPhoneNumber Contains a phone number for the contact. Also contains a
PhoneNumberKind property that specifies whether the
phone number is for home, work, a mobile, a fax, or other
type of device.

All the classes in this table except CompleteName contain an Accounts collection specifying the
source of the data.

Listing 4.10 Displaying contact properties with a DataTemplate and data binding

Data
binding
with String-
Format

b

115UserData APIs
➥ StringFormat='Complete Name: \{0\} '}" />
 <TextBlock Text="{Binding CompleteName.MiddleName,

➥ StringFormat='\{0\} '}" />
 <TextBlock Text="{Binding CompleteName.LastName}" />
 </StackPanel>

 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding PhoneNumbers[0].Kind,

➥ StringFormat='\{0\} Number: '}" />
 <TextBlock Text="{Binding PhoneNumbers[0].PhoneNumber}" />
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding EmailAddresses[0].Kind,

➥ StringFormat='\{0\} Email: '}" />
 <TextBlock Text="{Binding EmailAddresses[0].EmailAddress}" />
 </StackPanel>

 <TextBlock Text="{Binding Addresses[0].Kind,

➥ StringFormat='\{0\} Address: '}"/>
 <TextBlock Text="{Binding

➥ Addresses[0].PhysicalAddress.AddressLine1}"/>
 <TextBlock Text="{Binding Addresses[0].PhysicalAddress.City}" />

 <TextBlock Text="{Binding Companies[0].CompanyName,

➥ StringFormat='Company: \{0\}'}"/>
 <TextBlock Text="{Binding Companies[0].JobTitle,

➥ StringFormat='Title: \{0\}'}" />
 <TextBlock Text="{Binding Companies[0].OfficeLocation,

➥ StringFormat='Office Location: \{0\}'}" />
 </StackPanel>
</DataTemplate>

The user interface declared in the code listing is not pretty. You’ve stacked several
TextBlocks on top of each other, each showing their own bit of data. Each TextBlock
is bound to one of the properties of the Contact object that’s referenced by the contact-
Controls’s Content property. You make use of the StringFormat feature available in
Silverlight 4’s data binding syntax B. You choose to display only the first phone num-
ber in the PhoneNumbers collection by using index syntax in the binding expression c,
and you use the same index syntax to display email address, street address, and com-
pany information.

 Run the application now, input a search term, pick a search type, and execute the
search by tapping the button. If a matching contact is found, you should see available
contact details displayed on the screen. Contact data is only part of the information
available through the UserData API. Calendar appointments are also exposed via the
UserData APIs.

4.4.2 Reviewing appointments

Calendar records are discovered by executing an asynchronous search against the
appointments data store. The UserData API contains the Appointments class, which is
the façade providing access to each service provider’s calendar data. Searches are
defined in terms of a date range and can be restricted to a specified Account.

First phone
number in
collection

c

116 CHAPTER 4 Launching tasks and choosers
TIP Use of the Appointments API requires the ID_CAP_APPOINTMENTS capa-
bility to be declared in WMAppManifest.xml.

Your sample application allows the user to search for all appointments within a speci-
fied date range. The three supported date ranges are all appointments for today, all
appointments in the next 7 days, and all appointments in the next 30 days. The user
will specify the data range via a series of RadioButtons in the second PivotItem in
your applications. The XAML markup for this is shown in the following listing.

<controls:PivotItem Header="appointments">
 <StackPanel>
 <StackPanel Orientation="Horizontal">
 <StackPanel Width="350">
 <RadioButton x:Name="todaySearch" Content="Today"
 IsChecked="True" />
 <RadioButton x:Name="weekSearch" Content="Next 7 Days" />
 <RadioButton x:Name="monthSearch" Content="Next 30 Days" />
 </StackPanel>
 <Button Click="searchAppointments_Click"
 VerticalAlignment="Top">
 <Image Source="/Images/appbar.feature.search.rest.png" />
 </Button>
 </StackPanel>

 <TextBlock Text="Search Result:"
 Style="{StaticResource PhoneTextGroupHeaderStyle}" />
 <TextBlock x:Name="apptsResult" Margin="12" />
 <ContentControl x:Name="appointmentControl">
 <ContentControl.ContentTemplate>
 <DataTemplate>
 </DataTemplate>
 </ContentControl.ContentTemplate>
 </ContentControl>
 </StackPanel>
</controls:PivotItem>

You place the XAML markup inside the second PivotItem and change the header B
from item2 to appointments. Three RadioButton controls are added c to allow the user
to specify the date range to use when searching. Next you add the Button that the
user will use to start a search. The Button’s Click event is handled by a method
named searchAppointments_Click which you’ll implement in the following pages.
Finally you add a few controls to display the results of the search d. You’re leaving the
appointmentControl ContentControl empty for now.

 The Appointments class provides the SearchAsync method and uses the same
asynchronous pattern that the Contacts class uses. Results are returned via a com-
pleted event named SearchCompleted. There are four overrides of the SearchAsync
method. The overrides all accept different combinations of start date, end date,
account, and the maximum number of items to be returned. Each of the SearchAsync

Listing 4.11 XAML markup for the appointments pivot

Relabel item2b
Radio buttons to

specify date range
c

Display
results

d

117UserData APIs
overrides also accepts a state object that calling code can use to pair method calls to
completed events.

 The SearchAsync method limits the number of appointments returned. When you
use an override of the SearchAsync method that doesn’t specify the number of items,
the search will be performed using the value defined in the DefaultMaximumItems
field of the Appointments class. The value of DefaultMaximumItems is defined to be
100 items.

 Before implementing the searchAppointments_Click method, you need to
declare and construct an instance of the Appointments class. Add a field to the Main-
Page class to hold the Appointments instance:

Appointments appointments = new Appointments();

With the appointment instance created you’re ready to search the calendar data store.
The following listing implements the searchAppointments_Click method where you
perform the search.

private void searchAppointment_Click(object sender, RoutedEventArgs e)
{
 DateTime start = DateTime.Today;
 DateTime end = DateTime.Today.AddDays(1).AddSeconds(-1);

 if (weekSearch.IsChecked.Value)
 end = end.AddDays(7);
 else if (monthSearch.IsChecked.Value)
 end = end.AddDays(30);

 appointments.SearchAsync(start, end, null);
}

First you set the StartDate using DateTime.Today, which will cause the start time to
be 12:00 a.m. You set the EndDate to be 11:59:59 p.m. by adding one day to Today,
then subtracting one second B. Next you adjust the end date by adding either 7 or 30
days, depending on which RadioButton is checked c. Finally you call the Search-
Async method d.

 Search results are returned to the application via the SearchCompleted event which
passes an instance of the AppointmentsSearchEventArgs class. The Appointments-
SearchEventArgs class exposes StartTimeInclusive, EndTimeInclusive, and the
state object specified in the call to SearchAsync. The AppointmentsSearchEventArgs
also has a Results property, which is a collection containing appointments that fall
within the specified date range, up to the specified number of items returned.

 You’re now ready to implement your own SearchCompleted event handler. You
start by hooking the SearchCompleted event from the Appointments class. Wire up
the SearchCompleted event to the appointments_SearchCompleted method in the
constructor for the MainPage class:

appointments.SearchCompleted += appointments_SearchCompleted;

Listing 4.12 Searching for appointments

Start search
with today’s
date

b

Adjust end
date

c

Execute searchd

118 CHAPTER 4 Launching tasks and choosers
Now implement the event handler:

void appointments_SearchCompleted(object sender,
 AppointmentsSearchEventArgs e)
{
 apptsResult.Text =
 string.Format("{0} appointments found", e.Results.Count());
 if (e.Results.Count() > 1)
 apptsResult.Text += string.Format(", displaying the first match");
 appointmentControl.Content = results.FirstOrDefault();
}

You use the Linq extension methods Count and FirstOrDefault to extract informa-
tion from the Results property, which is of type IEnumerable<Appointment>. You set
the Text property of the apptsResult TextBlock to a string containing the number of
appointments returned by the search. Next you use the FirstOrDefault extension
method to set the Content property of the appointmentControl ContentControl.

 The Content property now holds an instance of the Appointment class. The
Appointment class defines several properties providing details about the appointment.
Table 4.5 lists each of the Appointment properties.

You’ll create a simple user interface that will display a few of the properties from the
appointment. The appointment UI will be added to the appointmentControl Content-
Control. Because the appointmentControl component contains an Appointment

Table 4.5 Appointment properties

Name Description

Account Details about which service provider is the source of the data.

Attendees A collection of Attendee records representing people who were invited
to the event. The Attendee class has DisplayName and
EmailAddress properties.

Details A string value describing the appointment.

EndTime A DateTime value.

IsAllDayEvent True if the appointment is flagged as an all-day event.

IsPrivate True if the appointment is flagged as private.

Location A string describing the location of the appointment

Organizer The Attendee record representing the person who created the appointment

StartTime A DateTime value.

Status An AppointmentStatus enumeration with the value Busy, Free,
OutOfOffice, or Tentative

Subject A string describing the subject of the appointment

119Summary
instance in its Content, you can use data binding to display appointment details with
the ContentControl’s DataTemplate. The following listing implements the appoint-
ment user interface.

<DataTemplate>
 <StackPanel Margin="{StaticResource PhoneMargin}">
 <TextBlock Text="{Binding Subject, StringFormat='Subject: \{0\} '}" />

 <TextBlock Text="{Binding StartTime, StringFormat='Start: \{0\}'}" />
 <TextBlock Text="{Binding EndTime, StringFormat='End: \{0\}'}" />
 <TextBlock Text="{Binding Status, StringFormat='Status: \{0\}'}" />

 <TextBlock Text="{Binding Organizer.DisplayName,

➥ StringFormat='Organizer: \{0\}'}" />

 <TextBlock Text="{Binding Attendees[0].DisplayName,

➥ StringFormat='Attendee: \{0\}'}" />
 </StackPanel>
</DataTemplate>

You’re displaying the Appointment with the same crude technique you used when dis-
playing contact information. You stack several TextBlocks, one on top of the other,
and then use data binding and string formatting to set their Text properties.

4.5 Summary
The phone’s security sandbox doesn’t allow applications to share data. Sharing data
with the built-in native applications can be accomplished with launchers and choos-
ers. Launchers and choosers provide a programmer the means to initiate phone calls,
emails, and text messages, and to read and write data to the contacts database. Market-
place tasks provide rich integration with the Windows Phone Marketplace.

 A third-party application can also read directly from the contact and appointment
database using the UserData APIs. The UserData APIs expose more than just a con-
tact’s phone number, email address, and street address. The UserData API opens up
the entire database including full name, birthdays, employer data, family members,
and web sites.

 The UserData APIs also provide access to calendar data—something not possible
with launchers and chooser. A third-party application can search for appointments
that fall within a given date range or come from a specific service provider.

 Carefully consider which of the APIs you use in your applications. The launchers
and choosers provide a user experience that exactly matches that of the native appli-
cations. Even if your application requires full access to the data exposed by the User-
Data APIs, consider using the chooser tasks when prompting the user to select a
phone number or email address. Once you have the phone number, you can search
against the contacts data store to retrieve any other data required by your application.

 Remember that executing a launcher or chooser will deactivate, and potentially
tombstone, your application. When the user finishes the task and returns to your

Listing 4.13 Displaying an appointment

120 CHAPTER 4 Launching tasks and choosers
application, the operating system reactivates your application. Be sure to code defen-
sively and test that your application handles tombstoning and reactivation properly
when returning from a launcher or chooser.

 You haven’t seen the last of launchers and choosers. In chapter six you’ll use the
CameraCaptureTask and PhotoChooserTask as we explore Window Phone 7’s camera
support for media. In chapter 13 you’ll use the BingMapsDirectionsTask, BingMaps-
Task, and WebBrowserTask when you integrate your applications with Internet Explorer
and the Bing Maps application.

Storing data
Most applications require some form of data storage—from user preferences and
user-created data to local caches of data stored in a cloud application or web service.
The data storage concepts discussed in this chapter will be familiar to .NET Frame-
work developers, as they’re limited versions of the same storage technologies that
have existed in the .NET Framework for many years. In this chapter you’ll learn about
the differences between the storage APIs in the .NET Framework and the storage APIs
provided in the Window Phone SDK. For starters, the Windows Phone security model
limits storage available to third-party applications to the isolated storage sandbox.

 Each application is allotted its own sandbox on the phone, isolated from all
other applications and from the operating system. The application’s sandbox is sep-
arated into two folders, as shown in figure 5.1. The first folder, often referred to as
appdata, contains the installed application files. The second folder, called Isolated-
Storage or isostore, stores files created or downloaded by the application.

This chapter covers
■ Working with application settings
■ Saving files in isolated storage
■ Database operations
■ Upgrading databases
121

122 CHAPTER 5 Storing data
 Developers access isolated storage
with either IsolatedStorageSettings or
IsolatedStorageFile from the System.IO
.IsolatedStorage namespace. Data can
also use a relational database in the form
of SQL Server CE, accessed via the LINQ to
SQL framework found in the System

.Data.Linq namespace. IsolatedStorage-
Settings provides a simple mechanism for
storing data, removing the burden of mess-
ing with FileStreams. IsolatedStorage-
File exposes a more robust API for
manipulating directories and files. In addi-
tion to the IsolatedStorage API, Windows Phone 7.1 includes the LINQ to SQL API for
using SQL Server Compact Edition databases.

To demonstrate using the IsolatedStorage and LINQ to SQL APIs you’re going to
build a sample application that reads and writes data using application settings, iso-
lated storage files, and a relational database.

 In the next section, you prepare a sample application that will interact with the
three different data repositories you create later in the chapter.

5.1 Creating the High Scores sample application
The sample application, shown in figure 5.2, manages a list of high scores for a fic-
tional game. The sample application contains application bar buttons for adding a
randomly generated score, as well as a button for deleting the entire high scores table.

Windows Phone 7 filesystem restrictions
XNA and .NET (including Compact Framework) developers are used to accessing long-
term storage with classes from the System.IO namespace including File, File-
Info, Directory, DirectoryInfo, Path, FileStream, and others. Because of the
Windows Phone sandbox, many of these classes have been removed, or have been
changed to throw MethodAccessExceptions when used by applications and games.
Silverlight developers should be aware that shared site settings and storage have
been removed from IsolatedStorage for Windows Phone. Without access to the
storage device, or shared site storage files, applications can’t share local data with
other applications.

The size of isolated storage in Silverlight for the browser applications is controlled by
a quota. The quota is initially limited to 1MB. The application can request quota
increases, which must be approved by the user. Isolated storage for Windows Phone
applications is effectively unlimited. The quota limit defaults to the maximum long
value and an exception is thrown if you call the IncreaseQuotaTo method.

Figure 5.1 Application file system overview

123Creating the High Scores sample application
The sample application only shows high scores;
you’re not going to build a real game in this chapter.
If building a game is what you’re looking for, jump
ahead to chapter 14.

 You’re going to build the sample application and
implement add and delete functionality without wor-
rying about storing the high scores list. You’ll then
implement reading and writing the high score list
using a simple repository interface. You start your
sample application by creating a new Windows
Phone Application project in Visual Studio. Name
the new project DataStorage.

 The first thing you implement is a class to repre-
sent the high score. Create a new class named
HighScore, and add properties for Name, Score,
LevelsCompleted, and Date:

public class HighScore
{
 public HighScore() { Date = DateTime.Now; }

 public string Name { get; set; }
 public int Score { get; set; }
 public int LevelsCompleted { get; set; }
 public DateTime Date { get; set; }
}

The properties are all simple automatic properties, and the Date field is initialized in
the class constructor.

5.1.1 Displaying the high score list
High scores are displayed to the user using a ListBox on the main page of the applica-
tion. The following listing shows the MainPage XAML markup for the content panel.

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <ListBox x:Name="HighScoresList" Margin="0,0,-12,0">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Grid Margin="12">
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>

Listing 5.1 Displaying high scores

Divide into 3 rows
and 2 columns

b

Figure 5.2 The High Scores sample
application

124 CHAPTER 5 Storing data

ocks
Score
ties
 <TextBlock Text="{Binding Name}"
 Style="{StaticResource PhoneTextLargeStyle}" />
 <TextBlock Grid.Row="1"
 Text="{Binding LevelsCompleted,

➥ StringFormat='\{0\} levels completed'}"
 Style="{StaticResource PhoneTextNormalStyle}" />
 <TextBlock Grid.Row="2" Text="{Binding Date}"
 Style="{StaticResource PhoneTextSubtleStyle}" />

 <TextBlock Grid.Column="1"
 Grid.RowSpan="3"
 VerticalAlignment="Center"
 Text="{Binding Score}"
 Style="{StaticResource PhoneTextTitle1Style}" />
 </Grid>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
</Grid>

The ListBox consumes the entire content panel. You define the data template to be a
Grid divided into three rows and two columns B. Several TextBlocks are arranged inside
the Grid and are bound to properties of the HighScore object c displayed in the List-
Box. The Name, Date, and LevelsCompleted values are stacked in the first column and the
Score value is shown in a larger font, spanning all three rows d of the second column.

 Next you add two buttons to the application bar for adding new scores and clear-
ing the entire list. Replace the default application bar markup with the XAML shown
in the following snippet:

<phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar IsVisible="True" IsMenuEnabled="False">
 <shell:ApplicationBarIconButton Click="add_Click"
 IconUri="/Images/appbar.add.rest.png" Text="add" />
 <shell:ApplicationBarIconButton Click="clear_Click"
 IconUri="/Images/appbar.delete.rest.png" Text="clear" />
 </shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>

As with many of the applications in this book, you’re using icons from the Windows
Phone SDK, which are installed by the Windows Phone tools to c:\Program Files\Micro-
soft SDKs\Windows Phone\v7.1\Icons. On 64-bit Windows, the SDK installed in c:\Pro-
gram Files (x86). Create a project folder named Images and add the appbar.add
.rest.png and appbar.delete.rest.png files to the folder. For each of the images set the
Build Action to Content. More information about the application bar can be found in
chapter 10.

 The ApplicationBarIconButton Click events will be added soon, but first you
need to create a collection to hold the high score list in the page’s code behind file:

ObservableCollection<HighScore> highscores;

public MainPage()
{

Bind
TextBl
to High
proper

c

Score spans 3 rowsd

125Creating the High Scores sample application

erate
om
es
 InitializeComponent();
 highscores = new ObservableCollection<HighScore>();
 HighScoresList.ItemsSource = highscores;
}

You use an ObservableCollection to hold all the high scores. The collection is
defined as a field in the MainPage class and is instantiated in the constructor. Finally,
the collection is assigned to the ItemSource property of the ListBox you named
HighScoresList.

5.1.2 Managing the high score list

Now that you have the collection created in code behind and displayed with XAML
markup, you need to implement the logic for adding and clearing the list of high
scores. A new HighScore is created with random values when the user presses the Add
Application bar button. The following listing details how a HighScore is generated
and added to the collection.

Random random = new Random();

private void add_Click(object sender, EventArgs e)
{
 int score = random.Next(100, 1000);
 int level = random.Next(1,5);
 string name = string.Format("{0}{1}{2}", (char)random.Next(65,90),
 (char)random.Next(65,90), (char)random.Next(65,90));

 var highscore = new HighScore { Name = name, Score = score,
 LevelsCompleted = level };

 bool added = false;
 for (int i = 0; i < highscores.Count; i++)
 {
 if (highscores[i].Score < highscore.Score)
 {
 highscores.Insert(i, highscore);
 added = true;
 break;
 }
 }
 if (!added)
 highscores.Add(highscore);
}

You generate new HighScores with the help of the Random class B, a pseudo-random
number generator which you place in a new field named random. Next you define the
add_Click event handler. You generate random values for the score, the level, and
three characters that make up the name c. The random values are used to construct
a new HighScore object. Finally, you insert the score into the highscores collection
using an insertion-sort technique d.

Listing 5.2 Adding a HighScore with random values

Class-level random
number generatorb

Gen
rand
valu

c

Insert into
sorted
collection

d

126 CHAPTER 5 Storing data
 Clearing the list is much easier. Inside the Click event handler you call the Clear
method on the collection:

private void clear_Click(object sender, EventArgs e)
{
 highscores.Clear();
}

The shell of the sample application is now complete. You can run the application, add
a few high scores, and clear the list. When you exit the application and restart, the high
scores list is empty once again. Since the topic of this chapter is data storage, the sam-
ple is far from complete. The application should be storing the high score list and
reloading the list when the application restarts.

 Throughout the rest of this chapter you’ll look at three different methods for stor-
ing data—application settings, isolated storage files, and LINQ to SQL. Before we
examine the details of each method, you should abstract the data layer from the user
interface using a high score repository.

5.1.3 Defining a high score repository

You now have a working application, but the application doesn’t store the list of high
scores. To hide the details of the data storage implementation, you’ll create a high score
repository to load, save, and clear the list of high scores. The repository will be defined
using an interface. In this section you define the new repository interface and modify
the sample application to use the interface methods to access the high score data.

 Add a new Interface to the project using Visual Studio’s Add New Item feature.
Name the interface IHighScoreRepository. The new interface declares Load, Save,
and Clear methods:

interface IHighScoreRepository
{
 List<HighScore> Load();
 void Save(List<HighScore> highScores);
 void Clear();
}

You now update the MainPage class to use the repository. MainPage should initialize
the high score collection from the repository during construction. MainPage should
also call the Save method when new HighScores are generated and the Clear method
when the collection is cleared. Add a repository field to MainPage class:

IHighScoreRepository repository;

You construct the repository in the constructor and load the collection from
the repository:

public MainPage()
{
 InitializeComponent();
 repository = new HighScoreSettingsRepository();

127Storing data with application settings
 highscores = new ObservableCollection<HighScore>(repository.Load());
 HighScoresList.ItemsSource = highscores;
}

In this code snippet, you construct a HighScoreSettingsRepository which is the first
of the concrete implementations of IHighScoreRepository that you’ll build later in
the chapter.

 The best time to save the list of high scores is after adding a new HighScore to the
collection. Add the following line of code to the end of the add_Click method:

repository.Save(highscores.ToList());

The repository’s Clear method should be called when the ObservableCollection is
cleared. Add a call to the Clear method to the end of the clear_Click method:

repository.Clear();

With the call to the Clear method, all of the repository functionality has been wired
up. The application requires a concrete repository, and your first one will use applica-
tion settings to store the high score data.

5.2 Storing data with application settings
Application settings provide a convenient API to store user preferences, application
state, or other forms of data. Application settings can store both simple and complex
objects using key-value pairs. Application settings are accessed through a static property
on the IsolatedStorageSettings class. The property, named ApplicationSettings,
returns an instance of the IsolatedStorageSettings class. IsolatedStorageSettings
implements a Dictionary interface with each setting paired with a unique key.

 Objects placed in the settings dictionary must be serializ-
able. When objects aren’t serializable, an exception will be
thrown when the settings are written to the storage device.
Application settings are stored in a file written to isolated stor-
age, as shown in figure 5.3.

NOTE Any action that clears isolated storage will remove
the file, and application settings will be lost. These actions
include uninstalling an application and using the Rebuild
Solution command in Visual Studio.

IsolatedStorageSettings can be found in the System.IO
.IsolatedStorage namespace, and you’ll need to add a using
statement to any code file that makes use of application settings.

 Your first concrete implementation of the IHighScoreRepository will use applica-
tion settings to store the list of HighScore objects. Create a new class named High-
ScoreSettingsRepository that implements the repository interface:

public class HighScoreSettingsRepository : IHighScoreRepository

Figure 5.3 Application
settings are written to a
file in the isolated
storage folder.

128 CHAPTER 5 Storing data
You start by implementing the Load method for the new repository. Within the Load
method, you declare a list of HighScore objects and call the IsolatedStorage-
Settings method TryGetValue to initialize the list:

public List<HighScore> Load()
{
 List<HighScore> storedData;
 if (!IsolatedStorageSettings.ApplicationSettings.
 TryGetValue("HighScores", out storedData))
 {
 storedData = new List<HighScore>();
 }
 return storedData;
}

If a key-value pair doesn’t exist in application settings, TryGetValue will return false,
and you create an empty list so that you always return a valid collection.

 Next you implement the Save method. You add the list of high scores to applica-
tion settings using the Item property of the dictionary:

public void Save(List<HighScore> highScores)
{
 IsolatedStorageSettings.ApplicationSettings["HighScores"] = highScores;
 IsolatedStorageSettings.ApplicationSettings.Save();
}

Values placed in the application settings dictionary aren’t immediately written to disk.
The values are usually saved when the application hosting the settings is terminated.
Writes can be forced using the Save method.

 Finally you implement the Clear method by making a call to the settings class’s
Remove method. The Remove method will clear out just the HighScores key, but will
leave all other application settings data intact. You also force a write of the data by call-
ing the Save method:

public void Clear()
{
 IsolatedStorageSettings.ApplicationSettings.Remove("HighScores");
 IsolatedStorageSettings.ApplicationSettings.Save();
}

The IsolatedStorageSettings class also implements a Clear method. The Clear
method will remove every key-value pair stored in the settings dictionary. You could’ve
used the Clear method since you only have a single key-value pair. Using the Clear
method wouldn’t be appropriate in any applications using multiple key-value pairs.

 Your repository implementation is complete and you can now use the settings
repository in your application. Run the application now, add a few high scores to the
list, and exit with the Back button. Restart the application and this time you should
see the high scores reloaded and displayed in the user interface. Saving data to appli-
cation settings is simple and only requires a serializable object to be stored in the set-
tings dictionary. When your application requires a more complex data model you
should consider writing the data to files in isolated storage.

129Serializing data to isolated storage files
5.3 Serializing data to isolated storage files
Access to the filesystem is restricted on the Windows Phone. Instead of accessing the
file system with the Directory and File class found in the System.IO namespace,
Window Phone developers use IsolatedStorageFile found in the System.IO
.IsolatedStorage namespace. IsolatedStorageFile is the file system for an applica-
tion and provides a basic file system API for managing files and directories. Windows
Phone applications aren’t allowed to use the traditional System.IO classes for manag-
ing files and directories, nor are they allowed to see the filesystem outside the sand-
box. The file system methods provided by IsolatedStorageFile are described in
table 5.1. Only one instance of IsolatedStorageFile exists on the Windows Phone
and is accessible via the GetUserStoreForApplication static method.

You’re going to create a high score
repository that reads and writes data
to an XML file using the Isolated-

StorageFile API. As shown in figure 5.4,
the data file will be named HighScores
.xml, and stored in a new folder named
HighScores.

 Add a new class to the sample appli-
cation project, naming the class High-
ScoreFileRepository. The new class
should implement the IHighScore-

Repository interface:

public class HighScoreFileRepository : IHighScoreRepository

Table 5.1 Filesystem management methods provided by IsolatedStorageFile

Method Description

CreateDirectory Create a new directory in the isolated file store.

CreateFile Create a new empty file in the isolated file store, and return a FileStream.

DeleteDirectory Delete a directory in the isolated file store. The directory must be empty.

DeleteFile Delete a file in the isolated file store.

DirectoryExists Determine whether a directory exists.

FileExists Determine whether a file exits.

GetDirectoryNames Returns the names of the subdirectories in a specified directory.

GetFileNames Returns the names of the files in a specified directory.

OpenFile Open or create a file and return a FileStream.

Remove Delete every file and directory in the isolated file store.

Figure 5.4 High scores are written to an XML file
located in a new folder in isolated storage.

130 CHAPTER 5 Storing data
In the application settings repository you built in the last section, the list of high
scores was implicitly serialized by the framework. In the file storage repository, you’re
responsible for serializing the list. To help with serialization, you’re going to use the
XmlSerializer.

5.3.1 Serializing high scores with the XmlSerializer

The XmlSerializer class is found in the System.Xml.Serialization namespace. The
assembly containing the XmlSerializer class isn’t automatically added to the project ref-
erences by the Windows Phone Application project template. To use XmlSerializer you
must manually add an assembly reference to System.Xml.Serialization.dll.

 You’ll use XmlSerializer in both the Load and Save methods of the new High-
ScoreFileRepository class. The implementation of the Load method is shown in the
next listing.

using System.Xml.Serialization

public List<HighScore> Load()
{
 List<HighScore> storedData;
 using (IsolatedStorageFile storage =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 if (storage.DirectoryExists("HighScores") &&
 storage.FileExists(@"HighScores\highscores.xml"))
 {
 using (IsolatedStorageFileStream stream =
 storage.OpenFile(@"HighScores\highscores.xml", FileMode.Open))
 {
 XmlSerializer serializer =
 new XmlSerializer(typeof(List<HighScore>));
 storedData = (List<HighScore>)serializer.Deserialize(stream);
 }
 }
 else
 {
 storedData = new List<HighScore>();
 }
 }
 return storedData;
}

The first operation obtains a reference to the isolated storage associated to the appli-
cation. The first time the application runs, isolated storage will be empty so you need
to check whether the file highscores.xml exists in isolated storage in a directory
named HighScores B. If the file does exist, it’s opened and data is read from a file
stream c. An XmlSerializer class is created and the Deserialize method is used to
read the persisted list and assign it to the return variable. If neither the directory nor
the file exists, you create a new empty list d.

Listing 5.3 Loading scores from a file

Does file
exist?

b

Deserialize
list

c

Create
empty listd

131Serializing data to isolated storage files
 What if the HighScores directory doesn’t exist? You know that it won’t exist the
first time you run the application. The directory must be created by your code. The
file repository’s Save method, shown in the next listing, will create the directory if it
doesn’t exist.

public void Save(List<HighScore> highscores)
{
 using (IsolatedStorageFile storage =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 if (!storage.DirectoryExists("HighScores"))
 {
 storage.CreateDirectory("HighScores");
 }
 using (IsolatedStorageFileStream stream =
 storage.CreateFile(@"HighScores\highscores.xml"))
 {
 XmlSerializer serializer =
 new XmlSerializer(typeof(List<HighScore>));
 serializer.Serialize(stream, highscores);
 }
 }
}

If the directory doesn’t exist, such as the first time the application runs, the Save
method adds a new directory to the root of isolated storage. The code first uses
DirectoryExists and if a false value is returned, calls CreateDirectory B. Next the
highscores.xml file is created. IsolatedStorageFile.CreateFile c creates a new file,
or overwrites an existing file, and returns an opened IsolatedStorageFileStream. The
file stream will be used to write data to the file, and should be closed when it’s no longer
needed. You place the code using the stream inside a using block, which will automati-
cally call close and clean up the file handle for you. Finally, the list of high scores is writ-
ten to the XML file using the Serialize method of the XmlSerializer class d.

5.3.2 Deleting files and folders

The last repository method that you need to implement is Clear. The file repository
implements Clear by deleting the XML file and the HighScores folder, as seen in list-
ing 5.5. Once created, the HighScores.xml file and the HighScores folder will con-
tinue to exist in isolated storage. Files and folders in isolated storage are deleted when
a user uninstalls an application, but they remain unchanged when a user upgrades an
application to a new version.

public void Clear()
{
 using (IsolatedStorageFile storage =

Listing 5.4 Saving the high scores to a file

Listing 5.5 Clearing the high score data

Create
directory

b

Create or
overwrite file

c

Serialize
list

d

132 CHAPTER 5 Storing data
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 if (storage.FileExists(@"HighScores\highscores.xml"))
 storage.DeleteFile(@"HighScores\highscores.xml");

 if (storage.DirectoryExists("HighScores"))
 storage.DeleteDirectory("HighScores");
 }
}

You’ve already seen how to use the FileExists and DirectoryExists methods. If
either the XML file or the HighScores directory exist, you delete them. Files are deleted
with the DeleteFile B, which requires a full path. Directories are deleted with the
DeleteDirectory c method. The full path is also required by DeleteDirectory.

 An alternative implementation of Clear could be written using IsolatedStorage-
File’s Remove method. Remove is a static method and deletes all files and folders in an
application’s file store:

public static void Clear()
{
 using (IsolatedStorageFile storage =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 storage.Remove();
 }
}

Extra care should be employed when using the Remove method. If your application
stores any other data, including application settings, that data will be lost when Remove
is called.

 The final step before running the application is to update the MainPage construc-
tor to instantiate a HighScoreFileRepository:

repository = new HighScoreFileRepository();

The file repository demonstrates file and directory management within the isolated
file store available to an application. Some data models match nicely with a file-based
storage solution. Other data models work better with a relational database solution.

5.4 Working with a database
Windows Phone 7.1 SDK ships with a built-in relational database engine allowing
applications to store data in a local database. The built-in database engine is a version
of SQL Server Compact Edition. The bad news is that you can’t use raw SQL to interact
with the database. The data access API for working with local databases is LINQ to SQL.

NOTE LINQ to SQL for Windows Phone only works with local databases. If
your application needs to work with a remote database, you should consider
using the OData API. You can learn more about OData at www.odata.org.

LINQ to SQL is an object relational mapping (ORM) technology first introduced with ver-
sion 3.5 of the .NET Framework for desktop and server applications. Applications work

Delete
XML file

b

Delete
directoryc

www.odata.org

133Working with a database
with objects defined in a programming language, whereas relational databases work with
tables, records, and fields defined by the database schema. An ORM is responsible for
mapping the objects in the application with rows and fields in a database table. In
your sample application, you work with HighScore objects. LINQ to SQL will transform
HighScore objects into rows in the HighScores table of your database, and rows in
your database to HighScore objects.

 The LINQ to SQL libraries are found in the assembly named System.Data.Linq
.dll. When working with LINQ to SQL you’ll need to add a reference to the assembly.
The System.Data.Linq assembly contains the following namespaces:

■ System.Data.Linq

■ System.Data.Linq.Mapping

■ Microsoft.Phone.Data.Linq

■ Microsoft.Phone.Data.Linq.Mapping

The System.Data.Linq and System.Data.Linq.Mapping namespaces contain a subset
of the LINQ to SQL APIs that are found in the desktop libraries. The Microsoft.Phone
.Data.Linq and Microsoft.Phone.Data.Linq.Mapping namespaces contain phone-
specific extensions to LINQ to SQL.

 Throughout the remainder of this chapter you’ll learn how to modify your sample
application to use a local database. You’ll learn how to read and write high score data
to the local database using LINQ expressions. You’ll also learn how to create and
delete databases, and work with read-only databases that are included in the applica-
tion’s XAP deployment package. First you need to learn how to define your database
schema using LINQ to SQL classes and attributes.

5.4.1 Attributing your domain model

The Windows Phone implementation of LINQ to SQL allows two different methods of
defining a local database schema. The first method, which we cover in this section,
uses attributes attached to the classes defined in your code. The second method,
which is beyond the scope of this book, uses XML files to define the mapping.

LINQ to SQL provides attribute classes to define tables, columns, and indexes. One-
to-one, one-to-many, and many-to-many relationships between tables are also declared
using attributes. The LINQ to SQL attributes that are supported by Windows Phone
are listed in table 5.2.

Table 5.2 LINQ to SQL attributes

Attribute Description

Association Declares an association between two classes, resulting in a relationship between
two tables in the database.

Column Declares a column in a table and maps the fields of an object to the column. The
Column attribute has several properties that are used to describe the column.

134 CHAPTER 5 Storing data
With the Table, Column, Index, and Association attributes, an entire database schema
can be created. A multi-column index can be created by providing a comma-separated
list of names for the Columns property.

 The sample high score application is fairly simple, and can be implemented using
a single database table. You start the implementation by adding a few attributes to the
existing HighScore class. The new HighScore code is shown in the following listing.

using System.Data.Linq.Mapping;
using Microsoft.Phone.Data.Linq.Mapping;

[Table]
[Index(Columns="Score")]
public class HighScore
{
 public HighScore() { Date = DateTime.Now; }

 [Column] public string Name { get; set; }
 [Column] public int Score { get; set; }
 [Column] public int LevelsCompleted { get; set; }
 [Column] public DateTime Date { get; set; }

 [Column(IsPrimaryKey = true, IsDbGenerated = true)]
 public int Id { get; set; }
}

First you add using statements for the namespaces B System.Data.Linq.Mapping
and Microsoft.Phone.Linq.Mapping so you can easily use the Table, Index, and
Column attributes. You start defining the database schema by adding the Table attribute
to the HighScore class. You also add the Index attribute c to the HighScore class,
declaring a database index using the Score column. Next you add a Column attribute to
each of the fields in the HighScore class. Finally you create a new Id field d declaring
that the field is the primary key for the table and that its value is created by the database.

 The attributed HighScore class defines how the HighScore table will be built in the
database. Each row in the table will be mapped to a HighScore object by LINQ to SQL.
You might be wondering how LINQ to SQL combines all tables together to define the
database, and how you access the tables from code. The database itself is represented
by LINQ to SQL with the data context.

Index Declares an index on a table. Multiple indexes can be declared for the same table. The
Index attribute is found in the Microsoft.Phone.Data.Linq.Mapping
namespace.

Table Declares a table in the database and identifies the type object stored in the table.
The database table name can be customized with the attribute’s Name property.

Listing 5.6 Updating the HighScore class

Table 5.2 LINQ to SQL attributes (continued)

Attribute Description

Use mapping
namespaces

b

Define
indexc

Create
primary key

d

135Working with a database
5.4.2 Defining the data context

Each LINQ to SQL database is represented by a custom data context implementation.
The data context is the API used to access data in the database. The data context defines
the tables, caches reads, and tracks changes to objects. The data context knows what
has changed, and performs the appropriate SQL update statements. Your code tells
the data context when to add a new object or delete an existing object, and the data
context issues the appropriate insert or delete commands. Changes, insertions, and
deletions are queued up in memory until LINQ to SQL is asked to submit the changes
to the database, which happens when the SubmitChanges method is called. The data
context performs all changes using transactions.

 You’ll look at how to use the data context in create, read, update, and delete
(CRUD) operations later in the chapter. First let’s look at how to define a data context
for your HighScores database. Each custom data context is derived from the Data-
Context base class found in the System.Data.Linq namespace. In this sample appli-
cation, you create a new class named HighScoresDataContext and derive it from the
DataContext class:

using System.Data.Linq;

public class HighScoresDataContext : DataContext
{
 public Table<HighScore> HighScores;
 public HighScoresDataContext(string path) : base(path) { }
}

For each table that should be created in the database, there must be a matching field
in the DataContext class. The field will be of type Table<T>, where T is the LINQ to
SQL attributed class that will be stored in the table. In the sample application, you
only have one table to hold HighScore objects, so your data context defines a
Table<HighScore> field.

 The only other change you make to the HighScoresDataContext class is to imple-
ment a constructor. The constructor will accept a connection string and pass it along
to the base class. The connection string can provide database details such as the file-
name of the database, the maximum size of the database, the read/write mode used
to open the database file, and other options. Sample connection strings are shown in
table 5.3.

 The simplest connection string requires only a file name. The DataContext class
will look in the root folder of the application’s isolated storage for a file with the given
name. Database files can exist in folders other than the root folder. Read-only data-
base files can also be read from the application’s installation folder using the appdata:
prefix. The default maximum value for a database is 32 megabytes.

 Now that you have a data context class and have defined database mapping attri-
butes on the HighScore class, you’re ready to create the database.

136 CHAPTER 5 Storing data
5.4.3 Creating the database

You’ve defined your database schema
and data context, and are ready to use
the database in your HighScores sample
application. You’ll be loading and sav-
ing high scores using the same IHigh-
ScoreRepository interface you’ve been
using throughout this chapter. You’re
going to add a new repository class to
your project. Name the new class High-
ScoreDatabaseRepository and imple-
ment the repository interface.

 Your new repository class will use a
HighScoresDataContext to read and
write high scores to a database file in
isolated storage. As shown in figure 5.5, the database file will be named highscores.sdf,
and will be placed in a folder named HighScoreDatabase.

 Before you create the database, you declare the data context as a field in the repos-
itory, and instantiate it in the repository constructor. The following listing details the
repository class definition and constructor method.

public class HighScoreDatabaseRepository : IHighScoreRepository
{
 HighScoresDataContext db;

Table 5.3 Sample database connection strings

Connection string Description

/file1.sdf Open the database located in the isolated storage
file named file1.sdf. Open the database in read
write mode.

isostore:/file1.sdf Same as /file1.sdf.

/folder1/file1.sdf Open the database located in isolated storage in
the folder named folder1, in the file named file1.sdf.

datasource='appdata:/file1.sdf';mode=read only Open the database located in the application’s
install folder, in the file named file1.sdf. Open the
database in read-only mode.

datasource='/file1.sdf'; max database size=512 Open the database located in the isolated storage
file named file1.sdf. Allow the database to grow to
512 megabytes.

For a complete list of connection string parameters, see the LINQ to SQL for Windows Phone documen-
tation on MSDN.

Listing 5.7 Creating the high scores database

Figure 5.5 Highscores are written to a database
located in a new folder in isolated storage.

137Working with a database
 public HighScoreDatabaseRepository()
 {
 using (IsolatedStorageFile storage =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 if (!storage.DirectoryExists("HighScoreDatabase"))
 {
 storage.CreateDirectory("HighScoreDatabase");
 }
 }

 db = new HighScoresDataContext(
 @"isostore:/HighScoreDatabase/highscores.sdf");

 if (!db.DatabaseExists())
 {
 db.CreateDatabase();
 }
 }
}

Before you create a new data context, you check whether the HighScoreDatabase
folder exists, and if it doesn’t, you create the folder B. Next you instantiate a new
HighScoresDataContext object, specifying a file named highscores.sdf in the High-
ScoreDatabase folder c. Finally you check whether the file has been created using
the DatabaseExists method. If the database doesn’t yet exist, you ask the data con-
text to create one d.

 You’re now ready to implement the remaining repository methods. The Load,
Save, and Clear methods will use database create, read, update, and delete (CRUD)
operations provided by the data context.

5.4.4 CRUD operations

Usually, when working with databases, the developer has to keep track of which items
are new, which items have been updated, and which items have been deleted. LINQ to
SQL frees the developer from these tedious bookkeeping tasks. The data context
tracks which objects have been updated, and will issue the appropriate update state-
ments when changes are submitted. New objects are created in the normal fashion
(using the new keyword) and are inserted into the table. To delete an object, the
developer simply removes the object from the table.

READING DATA

We’re getting ahead of ourselves—before you can work with objects loaded from a
database, you must first be able to read them from the database. Your HighScoreData-
baseRepository class reads high scores from the database when the application calls
the Load method. The LINQ to SQL table is a queryable collection, which allows you to
use LINQ expressions to retrieve data from the table:

public List<HighScore> Load()
{
 var highscores = from score in db.HighScores

Create
folder in
isolated
storage

b

Instantiate
data context

c

Create
database file

d

138 CHAPTER 5 Storing data
 orderby score.Score descending
 select score;
 return highscores.ToList();
}

In the Load method, you query the HighScores table using a LINQ expression built
with the integrated query language. You select HighScore objects and sort them in a
descending order of score. You then convert the collection to a list and return.

 Behind the scenes, the LINQ to SQL framework converted the LINQ expression
into a true SQL select statement. The SQL statement was sent to the SQL Server CE
database, which returned a result set. LINQ to SQL then transformed the result set
into a collection of HighScore objects. The list of high scores is returned to the appli-
cation and displayed in the user interface just like when you used application settings
and isolated storage files.

CREATING NEW HIGH SCORES

The user of the application creates a new high score by tapping the Add button. The
button’s click handler creates a new HighScore object and inserts it into the list of
high scores, then asks the repository to save the list. LINQ to SQL tracks high score
objects that it creates, but it doesn’t automatically track objects created by application
code. A new object can be added to the list of tracked objects using either the Insert-
OnSubmit or InsertAllOnSubmit methods provided by the Table class.

 The InsertOnSubmit method accepts a single object. The new object will be added
to the internal list of tracked objects, and will be added to the database the next time
the SubmitChanges method is called. InsertAllOnSubmit works with a collection of
new objects.

 The IHighScoreRepository interface doesn’t provide a mechanism for registering
new objects with the repository and you don’t need to change the interface. Instead,
you can add logic to the Save method to detect when unmanaged objects have been
added to the collection:

public void Save(List<HighScore> highScores)
{
 var newscores = highScores.Where(item => item.Id == 0);
 db.HighScores.InsertAllOnSubmit(newscores);
 db.SubmitChanges();
}

You detect when a HighScore object is new by looking at the value of the Id field. You
added the Id field to the HighScore class because the database required a primary
key, and you declared that the field’s value would be generated by the database. This
means that objects with a field value of zero have never been added to the database.
You use a regular LINQ Where expression to find new HighScore objects in the list.
Once you’ve identified new objects, you use the InsertAllOnSubmit method to regis-
ter them as new objects with the LINQ to SQL table.

 You wrap up your implementation of the Save method by calling SubmitChanges
on the DataContext. The DataContext will generate SQL insert statements for any

139Working with a database
new records. Once the new scores are submitted to the database, LINQ to SQL will
read the generated Id values and update the HighScore objects so that their Id fields
won’t be zero.

 Note that if you’d changed a value in an existing field, the changes would also have
been submitted to the database with a SQL update statement. We’ll take a close look at
how LINQ to SQL updates changed data in a couple of pages. First we look at how to
delete data.

DELETING DATA

The sample application allows the user to reset the list of high scores by tapping the
Clear button. The button’s click handler calls the repository’s Clear method. LINQ to
SQL tracks high score objects that it reads from the database, but it doesn’t automati-
cally know when to remove an object from the database. An object can be removed
from the database using either the DeleteOnSubmit or DeleteAllOnSubmit methods
provided by the Table class.

 When deleting a single object, use the DeleteOnSubmit method. The deleted
object will be added to the internal list of tracked objects, and will be removed from
the database the next time the SubmitChanges method is called. DeleteAllOnSubmit
works with a collection of objects.

 The IHighScoreRepository interface assumes that Clear will delete all high
score records. Your database implementation of the Clear method reads all the
high scores from the HighScores table, and then calls DeleteAllOnSubmit to delete
every high score:

public void Clear()
{
 var scores = from score in db.HighScores
 select score;

 db.HighScores.DeleteAllOnSubmit(scores);
 db.SubmitChanges();
}

When the SubmitChanges method is called, the appropriate SQL delete statements are
generated and sent to the database.

 The HighScoreDatabaseRepository is now fully implemented. Change the Main-
Page constructor to use the new repository:

repository = new HighScoreDatabaseRepository();

Run the application and add a few new high scores. Exit and restart the application and
you should see the high scores reloaded from the database and displayed in the user
interface. Clear the list and restart the application, and you should see a blank screen.

 Now that the basic create, read, and delete operations are working, let’s take a
closer look at how LINQ to SQL implements update operations.

140 CHAPTER 5 Storing data
UPDATING DATA

By default, the database context stores two
instances of each object. The first object is
returned as part of the query and the second object
is an unchanged internal copy. It uses the internal
copy to determine when an object has been
changed. When the Submit method is called, LINQ
to SQL walks through each object it knows about
and compares it to the internal copy. If the two
objects differ in any way, LINQ to SQL generates a
SQL update expression to store the changes.

NOTE If you’re not making changes to a data-
base, you can improve performance by setting the
DataContext’s ObjectTrackingEnabled property to false. When object tracking
is false, the DataContext doesn’t generate internal copies of tracked objects.

In order to demonstrate how to update objects with LINQ to SQL, you’re going to add
an editing feature to your sample application. You’re going to allow the user to edit
the name associated with the HighScore object, as shown in figure 5.6.

 The user will edit the name with a standard TextBox control. In MainPage.xaml,
replace the TextBlock that displays the name with a TextBox:

<TextBox Text="{Binding Name, Mode=TwoWay}" />

Now add an application bar button that the user can tap to force a save of changes:

<shell:ApplicationBarIconButton Click="save_Click"
 IconUri="/Images/appbar.save.rest.png" Text="save" />

Finally, implement the save_Click event handler. Inside the event handler, you call
the repository’s Save method just like you do when a new high score is generated:

private void save_Click(object sender, EventArgs e)
{
 var nameInput = FocusManager.GetFocusedElement() as TextBox;
 if (nameInput != null)
 nameInput.GetBindingExpression(TextBox.TextProperty)
 .UpdateSource();
 repository.Save(highscores.ToList());
}

You might wonder what the first few lines of the snippet do. The TextBox control has
an interesting quirk when updating bound data. The TextBox control tries to be effi-
cient with data binding updates and may not have updated the high score’s Name field
when the save_Click event handler is called. In this snippet you get the TextBox that
has focus and ask for the BindingExpression object connected to the control’s Text
property. You use the Binding Expression’s UpdateSource method to ensure the name
is copied from the TextBox to the HighScore object before you call the Save method.

Figure 5.6 Editing the name
associated with a high score

141Working with a database
 You don’t need to change the repository’s Save method implementation. LINQ to
SQL is maintaining an internal copy of the change HighScore object. When the
SubmitChanges method is called, LINQ to SQL figures out which high scores have
been updated, and saves the change objects to the database.

 Developers can help the database context use fewer resources by using objects that
implement the INotifyPropertyChanged interface. When serving up objects that report
their own changes, LINQ to SQL doesn’t generate an internal copy of the object.
Instead it adds an event handler that listens to the PropertyChanged event. When the
property changed event is raised, LINQ to SQL records the change internally. Then
when the SubmitChanges method is called, the DataContext uses the list of changed
objects to generate the appropriate SQL update expressions.

LINQ to SQL leverages the underlying LINQ framework to provide powerful capa-
bilities when working with collections and databases. Though describing the full fea-
tures of LINQ is beyond the scope of this book, there are a couple more LINQ features
you should understand. LINQ expressions are used to search for records in the database.
We’re going to look at a couple simple alternative query expressions before discussing
how to use pre-compiled query expressions to improve application performance.

5.4.5 Searching for data
Your HighScore sample application uses a single query expression to return an
ordered list of every high score in the database. What if you wanted a list of the scores
for the third level in your fictional game? If you were writing a traditional SQL expres-
sion, you’d add a WHERE clause comparing the LevelsCompleted column with the
value 3. LINQ to SQL allows you to use a similar technique:

var highscores = from score in db.HighScores
 orderby score.Score descending
 where score.LevelsCompleted == 3
 select score;

In this snippet, you’ve added a where clause to the LINQ expression. Note that this
where clause uses C# comparison operators. You’re going to add support for this sce-
nario to the IHighScoreRepository interface. Open the file containing IHighScore-
Repository and alter the Load method declaration to accept a level number:

List<HighScore> Load(int level = 0);

Here you’re using C# optional argument syntax to specify a default value for the level
argument. You set the default level value to zero, which means return all levels. When
the level isn’t zero, you should return only the high scores for the requested level. You
accomplish this by using a where clause in the LINQ expression. Update the database
repository’s Load method as shown in the next listing.

public List<HighScore> Load(int level = 0)
{
 IEnumerable<HighScore> highscores;

Listing 5.8 Loading scores for specific levels

Update
arguments listb

142 CHAPTER 5 Storing data
 if (level == 0)
 {
 highscores = from score in db.HighScores
 orderby score.Score descending
 select score;
 }
 else
 {
 highscores = from score in db.HighScores
 orderby score.Score descending
 where score.LevelsCompleted == level
 select score;
 }
 return highscores.ToList();
}

You begin updating the Load method in the HighScoreDatabaseRepository by add-
ing the level argument B. Next you wrap the existing query c with an if state-
ment, executing the default query when the requested level has the value of zero.
Finally you execute a query containing a where expression d when a specific level
is requested.

 Since your application always uses the same two queries, you can improve perfor-
mance a bit by compiling the queries once, and using compiled queries in your
load method.

5.4.6 Compiling queries

When LINQ to SQL encounters a query expression, the framework parses the expres-
sion, turning LINQ syntax into a SQL statement. This parsing must be performed every
time the query is executed. To minimize the performance hit of constantly reparsing
the same expression, LINQ provides a mechanism to compile an expression once, and
reuse it over and over.

 Compiled LINQ expressions are represented in code with the Func<TResult> class.
The Func class is a form of Delegate, representing a reference to a method that
returns the type specified with the TResult generic type parameter. There are several
variations of the Func class, allowing for anywhere from zero to four parameters.

 You need two compiled queries, which means you need two member Func fields to
represent them:

Func<HighScoresDataContext, IOrderedQueryable<HighScore>> allQuery;
Func<HighScoresDataContext, int, IQueryable<HighScore>> levelQuery;

The first compiled query represents the search for all high scores and is a Func class
that accepts one argument, a HighScoresDataContext, and returns an IOrdered-
Queryable, which is an ordered collection HighScore objects. The second compiled
query represents the search for the high scores for a specified level and is a Func class
that accepts two arguments—the data context and the specified level.

 The queries are compiled using the CompiledQuery utility class found in the System
.Data.Linq namespace. This class is part of the LINQ to SQL implementation and

Default
query

c

Query
including
specified
leveld

143Working with a database
provides a Compile method. You compile the two queries in the HighScoreData-
baseRepository constructor. The allQuery Func is generated with the following
code snippet:

allQuery = CompiledQuery.Compile(
 (HighScoresDataContext context) =>
 from score in context.HighScores
 orderby score.Score descending
 select score);

The second compiled query is generated with a similar expression, but includes a
level argument and a where clause in the query:

levelQuery = CompiledQuery.Compile(
 (HighScoresDataContext context, int level) =>
 from score in context.HighScores
 orderby score.Score descending
 where score.LevelsCompleted == level
 select score);

With the newly compiled queries at your disposal, you can simplify the Load method.
The new Load method implementation uses the allQuery and levelQuery Func
objects instead of inline LINQ expressions:

if (level == 0)
{
 highscores = allQuery(db);
}
else
{
 highscores = levelQuery(db, level);
}

If you think using a compiled query looks like calling a method, you’re right. Com-
piled queries are instances of a Func, and the Func class is a form of a delegate. Dele-
gates are references to methods.

5.4.7 Upgrading
When building applications and databases, it’s rare that the data model is perfectly
designed before the first release. Applications evolve, either because of new features
that weren’t thought of during initial design, or because existing features didn’t quite
solve the problems the application was built to solve. What do you do when you need
to change the database schema for an existing database when the user installs a new
version of your application?

 Database upgrade algorithms usually involve a series of SQL statements that alter
and drop tables and columns in the database. The database support in Windows
Phone 7 doesn’t allow SQL statements to be issued directly against the database. The
Windows Phone LINQ to SQL implementation supports a few database upgrade sce-
narios. These scenarios are focused on additions to the database schema. New tables
can be added to the database. New columns and indexes can be added to existing
tables. New associations between tables can also be added to the database schema.

144 CHAPTER 5 Storing data
 To demonstrate updating an existing database, let’s pretend that version 1.0 of
your application has already been released and users have installed the application on
their phones. In version 1.1 of the application, you’re going to add a field to the High-
Score class, which corresponds to adding a column to the database used to store the
sample application data. When the user upgrades from version 1.0 to 1.1 of your
application, the data stored in the application’s IsolatedStorage folder is left intact.
The first time version 1.1 of the application runs, it’ll execute code to upgrade the
database created by version 1.0 of the application.

 To see the upgrade code in action, make sure you run the application and create the
database before making the modifications described in this section. Once you have an
existing database, open up the HighScore class and add a new Difficulty field:

[Column] public string Difficulty { get; set; }

Database updates are performed using the DatabaseSchemaUpdater class found in the
Microsoft.Phone.Data.Linq namespace. To create instances of DatabaseSchema-
Updater, an extension method named CreateDatabaseSchemaUpdater has been
added to the DataContext class. The next listing details how to create and execute
an update.

if (!db.DatabaseExists())
{
 db.CreateDatabase();
}
else
{
 var updater = db.CreateDatabaseSchemaUpdater();
 if (updater.DatabaseSchemaVersion == 0)
 {
 updater.AddColumn<HighScore>("Difficulty");
 updater.DatabaseSchemaVersion = 1;
 updater.Execute();
 }
}

The database upgrade code is added to the HighScoreDatabaseRepository’s con-
structor, in an else block following the check for database existence B. The updater
is created with a call to CreateDatabaseSchemaUpdater. Next you examine the cur-
rent version of the database c. When the database is at version zero, you know it was
created by version 1.0 of the application and that you need to add the new column to
the HighScore table. The column is added with the AddColumn method d. You also
change the database version to the value 1. When all the changes are complete, you
commit the changes to the database with the Execute method. The Execute method
applies all of the requested changes in a single transaction.

 Debug the application and step through the database update code. If the database
exists and is at version zero, the new column will be added to the HighScore table. If

Listing 5.9 Upgrading an existing database

Standard database
creation

b

Check schema
version

c

Update schema
and version

d

145Working with a database
you exit the application and run it a second time, the database will be at version 1 and
the upgrade code will be skipped.

 There’s a small problem with updating databases. The versioning scheme is an
extension to LINQ to SQL specific to Windows Phone. The core LINQ to SQL code
doesn’t understand versioning, and databases are always created with a schema ver-
sion of zero. As shown in figure 5.7, version 1.1 of your application also creates a data-
base with a schema version of zero. A database upgraded by version 1.1 of the
application will have a schema version of 1.

 To demonstrate the problem, uninstall the HighScore sample application (or use
the Rebuild Solution option in Visual Studio). The first time you run the applica-
tion, the database will be created at version zero, but this time version 0 contains the
Difficulty column. Exit the application and run it again. The database update
code will try to execute but will generate an exception since the Difficulty col-
umn already exists.

 How can you fix this problem? You can use the DatabaseSchemaUpdater to set the
schema version immediately after you create the database. Before you change the ver-
sion 1.1 code that creates and upgrades the database, back up and start the process
over. Comment out the difficulty field in the HighScore class, and the else block with
the upgrade code in the HighScoreDatabaseRepository constructor. Uninstall the
application from the phone so that the current database is deleted. Deploy and run
the code so that a database with schema 0 is created.

 Now you’re ready to fix the database create and update code in version 1.1. The
new code is shown in the following listing.

Figure 5.7 Database schema as created and upgraded by the application

146 CHAPTER 5 Storing data
if (!db.DatabaseExists())
{
 db.CreateDatabase();
 DatabaseSchemaUpdater updater = db.CreateDatabaseSchemaUpdater();
 updater.DatabaseSchemaVersion = 1;
 updater.Execute();
}
else
{
 DatabaseSchemaUpdater updater = db.CreateDatabaseSchemaUpdater();
 int databaseSchemaVersion = updater.DatabaseSchemaVersion;

 if (databaseSchemaVersion == 0)
 {
 updater.AddColumn<HighScore>("Difficulty");
 updater.DatabaseSchemaVersion = 1;
 updater.Execute();
 }
}

First you change the database creation code to record version 1 in DatabaseSchema-
Version B. Finally, when the version of the schema is 0, you’ll upgrade c the data-
base by adding the Difficulty column and changing the database version to 1.

 Run the application and your database with schema version 0 should be upgraded
to schema version 1. Run the application a second time, and the update code should
find the schema version of 1. Now uninstall the application and redeploy it. The first
time you run the application after deploy, you create the database with a schema ver-
sion of 1. The next time you run the application, the updater reports version 1 and
the new code decides that there’s no work to perform.

 We’re nearly finished with our coverage of LINQ to SQL. The one other feature of
LINQ to SQL that’s unique to Windows Phone revolves around deploying and using a
read-only reference database.

5.4.8 Adding a read-only database to your project

Not all applications require writable databases and some databases are intended for
read-only scenarios. Consider a database that contains ZIP codes and tax rates for a
CRM application, or a dictionary of words for a word scramble game. Read-only data-
bases can be included in your .xap deployment package in the same way that audio
files, icons, and other content files can be included.

 Read-only databases can be used directly from the application install folder
and don’t need to be copied into isolated storage. The connection string that’s
supplied to the DataContext allows you to specify the application installation
folder as the location for a database file. How do you create the database file to
begin with? One solution might be to create a Windows Phone project specifi-
cally to generate the database. The database generator project would share the
data model classes along with the data context. The data model and data context

Listing 5.10 A better database upgrade implementation

Newly created
database is version 1b

Upgrade if
database not
version 1

c

147Summary
could be placed in a shared assembly project, or could be directly used in both
projects using linked files.

 The database generator project would call the data context’s CreateDatabase
method to create the database file. Once created, the database generator would cre-
ate objects and insert them into the appropriate Table objects. Once the database is
fully created, the application can exit.

 For the next step you need the product ID from the generator project’s WMApp-
Manifext.xml file. The manifest file resides in the project’s Properties folder. Find and
open the file, and look for the Product ID:

<App xmlns="" ProductID="{c81a71a5-6f9f-4999-bc30-8f7cd48e1909}" …

Next fire up the Isolated Storage Explorer tool introduced in chapter 1. For this task
you’ll take a snapshot of isolated storage, which will copy all the files in isolated stor-
age to a location on your computer’s hard drive. Figure 5.8 shows the results of down-
loading a snapshot to the c:\temp\snapshot folder.

 Once the snapshot is copied, you can find the SDF file and copy it into your project
using the Visual Studio Project > Add Existing Item menu option. Mark the file’s build
action as Content and it’ll be included in the application’s .xap file.

 Now when your application is deployed, the database will also be deployed. When
the application is running, the reference database can be opened with the following
connection string:

datasource='appdata:/file1.sdf';mode=read only

One advantage of a read-only database is apparent when working with a large dataset.
A dictionary of words could easily be stored in an XML file and loaded into memory.
Loading large datasets into memory becomes impractical, if not impossible, when the
database size approaches 100 MB. Using LINQ to SQL, an application can query for
and load only a subset of the database, reducing the memory footprint required by
the application.

5.5 Summary
In this chapter we presented three solutions for storing application data in the Win-
dows Phone filesystem. With this you now know how to store application data between

Figure 5.8 Taking a snapshot with the Isolated Storage Explorer

148 CHAPTER 5 Storing data
runs of an application. Simple sets of data can be stored in application settings using
IsolatedStorageFile. Documents, text files, and binary data can be written to files
using IsolatedStorageFile. The last alternative involves relational databases, SQL
Server CE, and LINQ to SQL.

LINQ to SQL is a broad subject and many topics require more detail than we can
provide in our book. For more depth on LINQ to SQL see the MSDN documentation.
There are also several books devoted entirely to the subject.

 We also showed how to use the Isolated Storage Explorer tool to copy data from a
phone, specifically for generating read-only databases. The Isolated Storage Explorer
can also be used to load data into isolated storage, which is ideal for restoring a test
device to a known state, allowing for the execution of specific test cases.

 The data storage concepts discussed in this chapter should be familiar to .NET
Framework developers, as they’re limited versions of the same storage technologies
that have existed in the .NET Framework for many years. In the next chapter you’ll learn
how to use the PhotoChooserTask, the CameraCaptureTask, and the PhotoCamera
classes to develop camera-based applications.

Working with the camera
You’re reading this book because you want to build mobile applications. In order to
build a useful mobile application, you need to understand how most mobile users
use their phones. Are they only using their phone for talking and sending text mes-
sages? No. A lot of mobile users are using more than just a phone. They use their
device for listening to music or the radio, watching videos, and taking photos. As
mobile developers, we need to know how to integrate multimedia in our applica-
tions, allowing users to do what they want to do in better and more efficient ways.
In this chapter you’re going to learn how to use the camera to capture photographs
and include them in your application.

 In this chapter you learn how to integrate the phone camera into your applica-
tion. You may remember that we skipped the PhotoChooserTask and Camera-
CaptureTask in chapter 4, when we covered the other launchers and choosers.
Both of these tasks are related to the camera and we’re going to explain them in

This chapter covers
■ Working with the photo and camera choosers
■ Taking pictures with the camera hardware
■ Editing pictures
■ Saving pictures to isolated storage
149

150 CHAPTER 6 Working with the camera
detail in this chapter. The PhotoChooserTask allows your application to prompt the
user to pick a picture from the Pictures Hub to load into the application. The Camera-
CaptureTask allows your application to use the built-in camera application to take a
picture for use in your application.

 Working with the built-in camera application is great, but some applications
need access to the underlying camera hardware and video stream. The Windows
Phone SDK 7.1 introduced a new PhotoCamera API enabling advanced camera
operation. In this chapter you’ll build a sample application demonstrating how to
use both choosers and the PhotoCamera API to capture a picture. Once the pic-
ture is captured, you’ll add a simple image editing feature and save the picture to
isolated storage.

 Let’s get started with the first sample applica-
tion, which you’ll name PhotoEditor.

6.1 Starting the PhotoEditor project
The PhotoEditor will capture a photograph using
several different APIs. The user will be able to pick
a photograph from their media library using the
PhotoChooserTask. The user will also be able to
take a picture using the built-in camera application
with the CameraCaptureTask. Next we’ll show you
how to use the PhotoCamera API to turn the Photo-
Editor into a custom camera application.

 After you learn how to load or capture pictures,
you’ll put the edit in PhotoEditor. You’ll implement
a simple feature that places a stamp on a photo-
graph. The sample application with a stamp can be
seen in the screenshot displayed in figure 6.1.

 After stamping a picture, the user will be able to
save the edited picture to isolated storage. In addi-
tion to routines to save the picture, you’ll also cre-
ate routines to reload the picture from a file in
isolated storage.

 You start the PhotoEditor application by creat-
ing a new project from the Windows Phone Appli-
cation project template. Name the project PhotoEditor. Once the project is created,
open the MainPage.xaml file and add the following markup to the ContentPanel grid:

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <Grid.RowDefinitions>
 <RowDefinition Height="360" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Rectangle x:Name="photoContainer" Fill="Gray" />

Figure 6.1 The PhotoEditor sample
application

151Working with the camera tasks
 <TextBlock x:Name="imageDetails" Grid.Row="1" TextWrapping="Wrap"
 Text="Choose an image source from the menu."/>
</Grid>

The ContentPanel is dived into two rows. The first row contains a Rectangle control
named photoContainer. You’ll render the selected picture image in this rectangle
using an ImageBrush. Later you’ll use the rectangle to display the live stream from
the PhotoCamera. The second row contains a TextBlock that’s used to provide the
user with instructions, information about the image, and error messages. The second
row is automatically sized, taking up all the space not consumed by the 360-pixel-high
first row.

 Now that you have the skeleton of the project ready, let’s discuss how to load a pic-
ture into the photoContainer Rectangle using one of the two camera tasks.

6.2 Working with the camera tasks
All Windows Phones have at least one built-in camera. Microsoft’s minimum hardware
specification requires a camera with a flash. Some phones have a second front-facing
camera. The Windows Phone class library contains two chooser tasks that provide lim-
ited access to the camera, or more specifically, to pictures taken by the camera or that
exist in the media library.

NOTE Only photographs are accessible via the chooser tasks. The chooser
classes don’t allow you to access videos from the camera.

The chooser tasks are the PhotoChooserTask and CameraCaptureTask. Let’s look at
choosing from the media library with the PhotoChooserTask first.

6.2.1 Choosing a photo with PhotoChooserTask

All phone users are familiar with how to take a picture with their mobile device, since
taking pictures is a part of their daily phone usage. But as programmers, knowing how
to take a photo with the phone isn’t enough. The PhotoChooserTask allows an appli-
cation to launch the built-in Photo Chooser application.

 You need to know how to use the camera from your code and how to integrate with
your custom application. This is what you’re going to learn in this section. Photo-
ChooserTask allows users to select the photo from phone memory with the built-in
Photo Chooser. The Photo Chooser has a navigation button that can take you to the
camera application. The PhotoChooserTask is handy for those applications that allow
a user to choose a photograph and use it somewhere in the application. One example
is adding a picture to a user’s profile.

 If you’re coming from a .NET background then you might be wondering about the
differences between OpenFileDialog and PhotoChooserTask when they both select
files. The Windows Phone APIs don’t give you a generic file picker so you’ll have to use
PhotoChooserTask in order to allow the user to select a photo in your application.
Table 6.1 describes the members of PhotoChooserTask.

152 CHAPTER 6 Working with the camera
PhotoChooserTask’s Show method launches the
built-in Photo Chooser application. When the Show
method executes, your application is moved to
the background as the operating system switches
to the Photo Chooser application. The Photo
Chooser application is shown in figure 6.2. The
Photo Chooser opens to a list of albums that the
user has created in the phone. There are only two
default albums named Camera Roll and Sample
Pictures in the emulator but the user might have
more in a real phone device. Note that Camera
Roll is the default album that stores all photos
taken by using the phone camera.

 The ShowCamera property can be set to true if
the user should see the camera icon in the applica-
tion bar. When the camera icon is shown, the user
has the option to take a new picture. It’s always a
best practice to set the ShowCamera property to
true, because the user may want to take a new
photo right away instead of selecting one from the
photo albums.

 You’ll add an ApplicationBar menu item to
show the PhotoChooserTask in your PhotoEditor
application:

<phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar IsVisible="True" IsMenuEnabled="True">
 <shell:ApplicationBar.MenuItems>
 <shell:ApplicationBarMenuItem Text="choose photo"
 Click="Choose_Click" />
 </shell:ApplicationBar.MenuItems>
 </shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>

The ApplicationBarMenuItem displays the text “choose photo”. The click event han-
dler for the menu item constructs a PhotoChooserTask and sets the ShowCamera prop-
erty to true:

Table 6.1 PhotoChooserTask members

Name Type Description

Show Method Shows the Phone Chooser application

ShowCamera Property Gets or sets whether the user is presented with a button for launching
the camera during the photo choosing process

Completed Event Occurs when a chooser task is completed

Figure 6.2 A screenshot of the built-
in Photo Chooser application with
camera button

153Working with the camera tasks
private void Choose_Click(object sender, EventArgs e)
{
 var task = new PhotoChooserTask();
 task.ShowCamera = true;
 task.Completed += chooserTask_Completed;
 task.Show();
}

The Completed event is wired up to the chooserTask_Completed event handler. You may
recall from chapter 4 that when the Show method is called, your application is paused
and placed in the Task Switcher’s back stack. When the user completes the chooser oper-
ation, the operating system navigates back to your application. The Completed event
handler is called when the application resumes operation in the foreground.

NOTE The media library is locked when a device is connected to a computer
and the Zune software is running. When the media library is locked you’ll
encounter errors when testing the PhotoChooserTask. Review the use of the
WPConnect tool covered in chapter 1.

The Completed event will be raised when the user selects a photo from the photo
library, takes a new photo, or uses the Back button to navigate back to the application.
The following listing shows how to handle the Completed event and display the
selected photo in the image control.

private WriteableBitmap currentImage;

void chooserTask_Completed(object sender, PhotoResult e)
{
 if (e.TaskResult == TaskResult.OK)
 {
 currentImage = PictureDecoder.DecodeJpeg(e.ChosenPhoto);

 photoContainer.Fill = new
 ImageBrush{ ImageSource = currentImage };

 imageDetails.Text = string.Format("Image from {0}\n",
 sender.GetType().Name);
 imageDetails.Text += string.Format("Original filename:\n{0}",
 e.OriginalFileName);
 }
 else
 {
 photoContainer.Fill = new SolidColorBrush(Colors.Gray);
 imageDetails.Text = e.TaskResult.ToString();
 }
}

First you need a new WriteableBitmap field named currentImage B in which you
store the photograph shown in the photoContainer Rectangle control. It’s a best
practice to check the TaskResult property to determine whether the chooser task
completed OK or whether the task was canceled. The PhotoResult class defines two

Listing 6.1 Displaying the selected photograph

Field to hold
chosen photob

Photo stream in
e.ChosenPhoto

 c

Display image
with brush

d

154 CHAPTER 6 Working with the camera
properties named ChosenPhoto and OriginalFileName. ChosenPhoto contains the
selected picture’s data in a Stream. You pass the image stream to the DecodeJpeg
method of the helper class named PictureDecoder c. The PictureDecoder class is
found in the Microsoft.Phone namespace. The DecodeJpeg method builds a Writeable-
Bitmap. You use the WriteableBitmap as the source for an ImageBrush and the brush is
used as the Fill for the photoContainer d. Finally you build a message informing the
user that the picture came from the PhotoChooserTask and had the filename specified
in the OriginalFileName property.

 When the TaskResult isn’t OK, you clear the
photoContainer by setting the Fill property to a
SolidColorBrush and display the TaskResult

value in the imageDetails TextBlock.
 Run the application, select the choose photo

menu item, and pick a photo. The photo you
choose should be shown in the application when
the PhotoChooserTask completes. Next we look at
how to use the CameraCaptureTask.

6.2.2 Taking photos with CameraCaptureTask

CameraCaptureTask is another useful task that
allows developers to launch the built-in camera
application. Unlike PhotoChooserTask, it allows
you to open the camera directly from an applica-
tion without requiring the user to perform addi-
tional steps. Shown in figure 6.3, the camera
application in the emulator shows a placeholder
white screen with a moving black block. You can
take a photo in the emulator by clicking the round
widget located at the right top corner. We recom-
mend you use a physical device to test this task.

 The CameraCaptureTask doesn’t have any prop-
erties, and only implements the Show method.
Show the camera application by calling the Show method from the click event of a new
menu item you add to MainPage.xaml:

<shell:ApplicationBarMenuItem Text="capture photo" Click="Capture_Click" />

The following snippet shows how to use CameraCaptureTask:

private void Capture_Click(object sender, EventArgs e)
{
 var task = new CameraCaptureTask();
 task.Completed += chooserTask_Completed;
 task.Show();
}

Figure 6.3 The camera application in
the emulator

155Working with the camera tasks
You subscribe to the Completed event to receive the photo stream from the camera
and call the Show method to launch the camera. For the Completed event, you can use
the same event handler method that you used in PhotoChooserTask sample.

 Deploy the updated application to your phone, run the application, and choose
the capture photo menu option. Hold the phone in the landscape orientation, snap a
picture, and press the Accept button. When the task completes, you should see your
new photo displayed in the photoContainer. Select the capture photo menu option
again, but this time hold your phone in the portrait orientation when you snap the
picture. When the task returns this time, the new picture is displayed sideways. The
important thing to note is that the image stream that returns from the camera won’t
respect the orientation of your application. We show you how to handle the orienta-
tion of a picture in the next section.

6.2.3 Handling picture orientation in CameraCaptureTask

Please take a look at figure 6.4. Do you notice some-
thing wrong? The orientation of the photograph
doesn’t match the orientation of the application.

 The photo stream that returns from the camera
doesn’t know or care about the orientation of your
application. The picture’s orientation will be based
on how the user holds the phone while taking the
picture. You can’t ask your user to hold the photo in
a specific position; they’ll hold the phone however
they like. All you can do is adjust the orientation of
the photo before showing it in your application.

TIP The image rotation techniques shown in
this section were inspired by Microsoft blogger
Tim Heuer, who wrote a good post about orien-
tation mismatch in his blog. You can read his
blog post at http://mng.bz/fk44.

The CameraCaptureTask writes metadata about the
picture to the stream along with the image data.
The image data and metadata are in the Exchange
Image File Format (EXIF). EXIF has an attribute that
you can read to determine the orientation of the
photo. The PhotoResult’s ChosenPhoto property is
a Stream and you need a way to extract the EXIF
data from the stream. In this example, you’re going to use ExifLib, an open source
EXIF library that can be downloaded from http://mng.bz/UW7A. We’ve included the
ExifLib assembly in the sample project. Feel free to use an EXIF library of your choice
or you can even roll your own library.

Figure 6.4 Orientation problems with
CameraCaptureTask

http://mng.bz/fk44
http://mng.bz/UW7A

156 CHAPTER 6 Working with the camera
Before you think about how to modify the orientation, you need to figure out the
default orientation of the photo that you get from the camera and how the orienta-
tion is different from the application’s orientation. Figure 6.5 shows the possible com-
binations of application and camera orientation.

 This figure shows four different ways of holding the camera and the output in a
clear manner. The first column of this diagram illustrates that your sample application
is always in a portrait orientation. The second column shows the different ways of
holding the camera. The third column displays the output photo from the camera. As
you can see, the default orientation of a photo will be different based on the way that
the user holds the camera. The last column shows how many degrees you need to
rotate the photo in order to get an orientation that matches the application.

 The code that performs the desired modifications shown in figure 6.5 is imple-
mented in two steps. The first step calculates the angle to rotate the image, and the
second step performs the rotation. The next listing demonstrates how to calculate
the degree of rotation in the GetAngleFromExif method.

using ExifLib;
using System.IO;

int GetAngleFromExif(Stream imageStream)
{
 var position = imageStream.Position;
 imageStream.Position = 0;
 ExifOrientation orientation = ExifReader.ReadJpeg(
 imageStream, String.Empty).Orientation;
 imageStream.Position = position;

 switch (orientation)
 {

Listing 6.2 Calculate how many degrees to rotate a photo

Figure 6.5 Different ways of holding the
camera, photo output, and degree that the
picture needs to be rotated

Use EXIF library

Read
orientation

b

Determine
rotation anglec

157Working with the camera tasks
 case ExifOrientation.TopRight:
 return 90;
 case ExifOrientation.BottomRight:
 return 180;
 case ExifOrientation.BottomLeft:
 return 270;
 case ExifOrientation.TopLeft:
 case ExifOrientation.Undefined:
 default:
 return 0;
 }
}

First you read the orientation from the EXIF formatted stream. The ExifReader
.ReadJpeg method accepts an image stream and returns a JpegInfo instance. The
JpegInfo object contains information stored in the EXIF header in the image stream,
including its orientation. You extract the orientation, in the form of an ExifOrientation
instance, from the Orientation property B. Based on that, you’ll define how many
degrees you need to rotate c. We suggest that you compare the implementation and
the diagram in figure 6.5 to understand more details.

 Once you know how many degrees you need to rotate the original photo, it’s easy
to create a new photo with the correct orientation based on the original photo. The
WriteableBitmap class provides direct access to the pixel level information of bit-
maps. The image data is accessed through the Pixels property, a one-dimensional array
of pixels laid out in a row-first pattern. The PixelWidth and PixelHeight properties are
used to determine how many rows and columns of pixels exist in the two-dimensional
image. The first row of pixels resides in the Pixels array from index 0 to PixelWidth-1.
The second row of the images resides in the Pixels array from index PixelWidth to 2 *
PixelWidth -1. The following listing shows how to read the pixels from the original
photo and copy them to the right position in the new bitmap image.

private WriteableBitmap RotateBitmap(WriteableBitmap source,
 int width, int height, int angle)
{
 var target = new WriteableBitmap(width, height);
 int sourceIndex = 0;
 int targetIndex = 0;
 for (int x = 0; x < source.PixelWidth; x++)
 {
 for (int y = 0; y < source.PixelHeight; y++)
 {
 sourceIndex = x + y * source.PixelWidth;
 switch (angle)
 {
 case 90:
 targetIndex = (source.PixelHeight - y - 1)
 + x * target.PixelWidth;
 break;

Listing 6.3 Copy the pixels from original bitmap to new bitmap

Create empty
bitmapb

Determine
target location

c

158 CHAPTER 6 Working with the camera
 case 180:
 targetIndex = (source.PixelWidth - x - 1)
 + (source.PixelHeight - y - 1) * source.PixelWidth;
 break;
 case 270:
 targetIndex = y + (source.PixelWidth - x - 1)
 * target.PixelWidth;
 break;
 }
 target.Pixels[targetIndex] = source.Pixels[sourceIndex];
 }
 }
 return target;
}

The RotateBitmap method accepts four parameters: the source bitmap, the width and
height of the new bitmap, and the angle the bitmap should be rotated. The method
starts off creating a new WriteableBitmap with the specified width and height B. You
loop through each pixel in the source bitmap, calculating the index of the source pixel
and the index in the target bitmap where you’ll copy the pixel. Depending on the rota-
tion angle c, you calculate the target index using one of three different expressions.
Finally, you copy the pixel d from the source bitmap to the target bitmap.

NOTE If you’d like more information about WriteableBitmap, please read
the MSDN documentation for Silverlight’s version of WriteableBitmap: http://
mng.bz/XCzN.

RotateBitmap accepts a WriteableBitmap. The CameraOperationCompletedEvent-
Args passed to the camera_CaptureCompleted method provides a Stream. Currently
the camera_CaptureCompleted method uses DecodeJpeg to convert the stream to a
WriteableBitmap. You’ll wrap the call to the DecodeJpeg and RotateBitmap methods
in a new DecodeImage method. The code for the new method is shown next.

private WriteableBitmap DecodeImage(Stream imageStream, int angle)
{
 WriteableBitmap source = PictureDecoder.DecodeJpeg(imageStream);

 switch(angle)
 {
 case 90:
 case 270:
 return RotateBitmap(source, source.PixelHeight,
 source.PixelWidth, angle);
 case 180:
 return RotateBitmap(source, source.PixelWidth,
 source.PixelHeight, angle);
 default:
 return source;
 }
}

Listing 6.4 Decoding the image stream

Copy
pixels d

Swap width
and height

b

Skip
RotateBitmap

c

http://mng.bz/XCzN
http://mng.bz/XCzN

159Controlling the camera
The new DecodeImage method accepts an image stream and the rotation angle. The
first step is to convert the image stream into a WriteableBitmap using the Picture-
Decoder helper class. Next you examine the degree of rotation, calling RotateBitmap
if necessary. When you’re rotating the image by 90 or 270 degrees, you’re swapping
the width and height B. When the angle is 0, you don’t call RotateBitmap c.

 Using the GetAngleFromExif you wrote in the last section along with the new
DecodeImage method, you can update the chooserTask_Completed method to rotate
the captured photos. In the completed event handler, replace the call to Picture-
Decoder.DecodeJpeg with the following snippet:

int angle = GetAngleFromExif(e.ChosenPhoto);
currentImage = DecodeImage(e.ChosenPhoto, angle);

You now have a good understanding about how PhotoChooserTask and Camera-
CaptureTask work. You’ve also learned how to handle the picture orientation. These
chooser tasks are useful when choosing a picture is a secondary feature of your appli-
cation. When controlling the camera is a central feature of your application, you want
to use the PhotoCamera API.

6.3 Controlling the camera
When Windows Phone was first released, the only way to access the camera was with
the CameraCaptureTask. The Windows Phone SDK 7.1 introduced APIs allowing pro-
grammatic access to the camera hardware. The PhotoCamera class allows a developer
access to the image data as it’s captured by the camera hardware. The CameraButtons
classes allow applications to detect when the user has pressed or released the shutter
button built into every phone.

TIP Applications that use the PhotoCamera class must include the ID_CAP_
ISV_CAMERA capability in their application manifest. You should include
ID_HW_FRONTCAMERA to access the front-facing camera. As we mentioned in
chapter 1, the front camera capability isn’t automatically added to the mani-
fest when the project is generated by Visual Studio.

Every Windows Phone has a built-in primary camera. Some Windows Phones also have
a front-facing camera. PhotoCamera supports both cameras, allowing the developer to
specify which camera to use when constructing an instance of PhotoCamera. The
camera is specified with either the Primary or FrontFacing values defined in the
CameraType enumeration. The following snippet demonstrates how to construct a
PhotoCamera that reads from the front-facing camera:

if(PhotoCamera.IsCameraTypeSupported(CameraType.FrontFacing))
 camera = new PhotoCamera(CameraType.FrontFacing);

The PhotoCamera class provides a static method named IsCameraTypeSupported
which is used to determine whether the phone has a front-facing camera. Front-facing
cameras, also called self-portrait cameras, didn’t appear until Windows Phone 7.5

160 CHAPTER 6 Working with the camera
devices started shipping in the fall of 2011. Developers should check whether a front-
facing camera is installed before trying to access it.

 The PhotoCamera class provides access to the live preview image picked up by the
camera lens. The camera buffers the preview image into arrays of raw image data. The
preview buffer is accessed via three different methods, each providing the raw image
data in a different format:

■ GetPreviewBufferArgb32 returns image data in the same 4-byte ARGB structure
used by Silverlight.

■ Luminance and chrominance information, as defined by the YCbCr color
model, is returned through the GetPreviewBufferYCbCr method.

■ The GetPreviewBufferY method returns just Luminance information.

The GetPreviewBuffer methods are useful for a variety of real-time image processing
and augmented reality applications. Your sample application won’t perform any
sophisticated image processing and displays an unaltered preview image prior to cap-
turing the image when the user presses the camera button. Microsoft included new
APIs designed for just this scenario, which we’ll demonstrate in the next section.

 You need to perform a few steps to prepare the PhotoEditor application to use the
PhotoCamera. You need to add a new menu item allowing the user to pick the live
camera as the source of an image. You also need to add a click event handler responsi-
ble for creating and initializing a PhotoCamera. First you add the menu item to the
application bar declared in MainPage.xaml.cs:

<shell:ApplicationBarMenuItem Text="custom camera" Click="Camera_Click" />

When the user presses the custom camera menu item, the application will show a live
preview image in the photoContainer. The preview image will continue to be shown
until the user either presses the menu item a second time, or captures a snapshot
using the phone’s camera shutter button. You’ll start with the Click event handler
which is shown next.

PhotoCamera camera;

private void Camera_Click(object sender, EventArgs e)
{
 if (camera == null)
 {
 currentImage = null;
 imageDetails.Text = string.Format("Choose custom camera again to

➥ close camera. Use the hardware shutter button to take a picture.\n");
 InitializeCamera();
 }
 else
 {
 CleanUpCamera();
 photoContainer.Fill = new SolidColorBrush(Colors.Gray);

Listing 6.5 The camera click event handler

Class level
fieldb

Is camera already in use?c

161Controlling the camera
 imageDetails.Text = "Choose an image source from the menu.";
 }
}

You need a new class-level field to reference the instance of the PhotoCamera B you
create when the user clicks the custom camera menu item for the first time. If the
field is null, you prepare the application by clearing the current image, displaying a
message to the user, and initializing the camera. If the camera is already in use c, the
user has tapped the menu item a second time to cancel the custom camera operation,
and you clean up the camera and clear the photoContainer. We’ll look at the Clean-
UpCamera method later, but let’s look at InitializeCamera now. You might want to
create empty placeholder methods in your code so that the project compiles.

 The InitializeCamera method is where you hook up interesting events and cap-
ture the preview buffer so you can display a viewfinder to the user. You’ll enhance the
InitializeCamera method in later sections, but you start the method’s implementa-
tion here by constructing a new instance of PhotoCamera:

void InitializeCamera()
{
 camera = new PhotoCamera(CameraType.Primary);
 camera.Initialized += camera_Initialized;
}

The first camera-related event you wire up is the Initialized event. A PhotoCamera
instance isn’t fully ready for use when the constructor completes. The PhotoCamera class
raises the Initialized event once it’s completely ready.

 A fully initialized PhotoCamera is able to report which resolutions are supported
when previewing images and capturing pictures. Supported resolutions are reported
in the AvailableResolutions property. A developer can determine the resolution of
the preview buffer with the PreviewResolution property. The Resolution property
not only reports the current resolution, but allows the developer to specify which of
the available resolutions should be used to capture a photograph.

 You’ll display the PreviewResolution and Resolution values to the user once
the camera is initialized. The next listing implements the camera_Initialized
event handler.

void camera_Initialized(object sender, CameraOperationCompletedEventArgs e)
{
 Dispatcher.BeginInvoke(() =>
 {
 imageDetails.Text += string.Format("{0} supported resolutions.\n",
 camera.AvailableResolutions.Count());
 imageDetails.Text += string.Format("Current resolution: {0}\n",
 camera.Resolution);
 imageDetails.Text += string.Format("Preview resolution: {0}\n",
 camera.PreviewResolution);

Listing 6.6 Reading supported resolutions in the Initialized event

Update on UI threadb

162 CHAPTER 6 Working with the camera
 });
 camera.Initialized -= camera_Initialized;
}

The Initialized event handler isn’t called on the UI thread. Because your code
updates the user interface, you use the Dispatcher B to execute your code on the UI
thread. After updating the user interface, you don’t need to capture Initialized
events and unsubscribe the event handler c.

 Now that you know about the PhotoCamera, how can you use it in your Photo-
Editor application? You already display pictures in the photoContainer Rectangle
using an ImageBrush. You can turn the photoContainer into a camera view finder using
a VideoBrush.

6.3.1 Painting with the VideoBrush

The VideoBrush class in an implementation of the Brush class and is designed to
paint video instead of a solid color, gradient color, or image. The VideoBrush first
appeared in Silverlight 3 for the browser. The Windows Phone SDK 7.1 marks the first
appearance of the VideoBrush for the phone. The SDK also introduced an extension
method named SetSource to enable painting the camera’s preview buffer with a Video-
Brush. To see a PhotoCamera-driven VideoBrush in action, add the following code to
the end of the InitializeCamera method:

 var brush = new VideoBrush();
 brush.SetSource(camera);
 brush.RelativeTransform = new RotateTransform
 { CenterX = 0.5, CenterY = 0.5, Angle = camera.Orientation };
 photoContainer.Fill = brush;

The SetSource extension method used here is defined in the CameraVideoBrush-
Extensions class and is found in the Microsoft.Devices namespace.

 You learned earlier in the chapter that the camera’s orientation doesn’t always
match the application’s orientation. You solved the orientation problem with the
CameraCaptureTask by rotating the captured picture. To solve the orientation prob-
lem with the preview buffer, you rotate the VideoBrush using a RotateTransform. The
camera tells you the amount of mismatch with the Orientation property, which you
use as the source of the RotateTransform’s Angle property.

TIP RotateTransform is just one of several transform classes that can be used
to manipulate Silverlight elements and controls. If you’re unfamiliar with Sil-
verlight’s transform classes, you can read more about them in the book Silver-
light 5 in Action by Pete Brown or from the MSDN article titled “Transforms.”

Run the application now and select the custom camera option. You should see the
photo container turn into a view finder. Pick up the phone and move it around. The
image in the viewfinder updates in real time. Now all you need is the ability to capture
the picture.

Unwire eventc

163Controlling the camera
6.3.2 Snapping a photo

When using the built-in camera application, the user presses the camera shutter but-
ton to capture a picture. Applications that use the PhotoCamera to capture pictures
should also use the camera shutter button. The camera shutter button is exposed to
the developer with events on the static CameraButtons class.

 Three events are provided by the CameraButtons class named ShutterKeyHalf-
Pressed, ShutterKeyPressed, and ShutterKeyReleased. In the built-in camera appli-
cation, a half press of the shutter key focuses the camera and a full press snaps the
picture. You’ll use the ShutterKeyPressed event in your application as the trigger to
capturing a picture. Add the following line of code to the InitializeCamera method,
right before the VideoBrush code you added in the last section:

CameraButtons.ShutterKeyPressed += cameraButtons_ShutterKeyPressed;

The ShutterKeyPressed event will be handled by the cameraButtons_ShutterKey-
Pressed method. The only responsibility of the event handler is to start the process
that snaps the picture and captures the image in a JPEG image stream. The captures
process is started with a call to PhotoCamera’s CaptureImage method:

private void cameraButtons_ShutterKeyPressed(object sender, EventArgs e)
{
 camera.CaptureImage();
}

The process that captures the picture raises four events named CaptureStarted,
CaptureImageAvailable, CaptureThumbnailAvailable, and CaptureCompleted. Cap-
tureStarted is raised first, and CaptureCompleted is raised once the capture pro-
cess has completed. In between these two events, CaptureImageAvailable and
CaptureThumbnailAvailable are raised, providing the calling application the oppor-
tunity to save either a full resolution or thumbnail copy of the captured image.

 The PhotoEditor application is only interested in the CaptureImageAvailable and
CaptureCompleted events. Wire up two new event handlers in the InitializeCamera
method:

camera.CaptureImageAvailable += camera_CaptureImageAvailable;
camera.CaptureCompleted += camera_CaptureCompleted;

First we’re going to look at the CaptureImageAvailable event handler which you’ll
name camera_CaptureImageAvailable. The event handler is passed an instance of
the ContentReadyEventArgs class, which provides the image stream containing the
image captured by the camera:

void camera_CaptureImageAvailable(object sender, ContentReadyEventArgs e)
{
 Dispatcher.BeginInvoke(() =>
 {
 currentImage = DecodeImage(e.ImageStream, (int)camera.Orientation);
 photoContainer.Fill = new ImageBrush{ ImageSource = currentImage };

164 CHAPTER 6 Working with the camera
 imageDetails.Text = "Image captured from PhotoCamera.";
 });
}

The CaptureImageAvailable event isn’t raised on the UI thread so you use the
Dispatcher to execute your user interface update code on the UI thread. You decode
the image stream by calling the DecodeImage method you created earlier in the chap-
ter. You use the camera’s Orientation property as the rotation angle. The captured
image is displayed in the photoContainer control.

 When the picture capture process is complete you need to clean up the camera.
You perform the camera cleanup in the CaptureCompleted event handler, which is
shown in the next listing.

void camera_CaptureCompleted(object sender,
 CameraOperationCompletedEventArgs e)
{
 if (!e.Succeeded)
 {
 photoContainer.Fill = new SolidColorBrush(Colors.Gray);
 imageDetails.Text = "Camera capture failed.\n"
 + e.Exception.Message;
 }
 CleanUpCamera();
}

An instance of the CameraOperationCompletedEventArgs class is passed into the event
handler. Your code checks the Succeeded property B to determine whether the
image capture process completed as expected. If the operation failed, you clear
the photoContainer and display the message c from the Exception property.

 In the PhotoEditor application, you only use the PhotoCamera when the user has
selected the custom camera menu option. Once the user has snapped a picture, you
need to clean up all registered event handlers and dispose of the camera:

void CleanUpCamera()
{
 CameraButtons.ShutterKeyPressed -= cameraButtons_ShutterKeyPressed;
 camera.CaptureImageAvailable -= camera_CaptureImageAvailable;
 camera.CaptureCompleted -= camera_CaptureCompleted;
 camera.Dispose();
 camera = null;
}

The CleanUpCamera method nearly completes your custom camera feature. Run the
application, choose the custom camera, and snap a picture. You should see the pic-
ture ready for use shortly after pressing the shutter button. Now try one more thing—
launch the application, and select the custom camera menu option. With the camera
enabled and the viewfinder active, press the Start button to switch to the start screen,
then use the Back button to navigate back. You might notice that the viewfinder is no
longer active when returning from fast application switching.

Listing 6.7 Checking for errors in the CaptureCompleted event handler

Check for
errors

b

Display exception’s
messagec

165Image editing
6.3.3 Supporting fast application switching

Developers that use the PhotoCamera need to understand how fast application switch-
ing impacts their application code. Because the camera hardware is a shared resource,
the operating system disconnects the camera when an application is sent to the back-
ground in favor of another task. When the application is restored to the foreground,
the camera isn’t automatically restored.

 Camera-based applications should clean up camera resources when they’re
moved into the background. In chapter 3, you learned that an application can detect
when it’s entering a dormant state with the Deactivated event or in the OnNavigated-
From override in their user interface pages. The PhotoEditor application will use the
OnNavigatedFrom method:

protected override void OnNavigatedFrom(NavigationEventArgs e)
{
 if (camera != null)
 {
 CleanUpCamera();
 State["customCamera"] = true;
 }
}

The PhotoEditor only uses the camera in the scenario when the user has selected the
custom camera menu option. In this situation, the camera field isn’t null, and you
call the CleanUpCamera method to unwire the event handlers and dispose of the cam-
era. You also add a customCamera key to the page’s State dictionary as a flag you can
look at when the application is restarted.

 The OnNavigatedTo method is called once the application is restarted and Main-
Page is reloaded. Your code looks for the customCamera flag in the State dictionary. If
the flag is found, you remove the flag and initialize the camera:

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 if(State.ContainsKey("customCamera"))
 {
 State.Remove("customCamera");
 InitializeCamera();
 }
}

Run the application and perform the application switching steps you used earlier.
This time, the viewfinder should be reactivated when switching back to the PhotoEditor.
Speaking of editing, you haven’t actually implemented any editing features. Let’s look
at one now.

6.4 Image editing
The PhotoEditor application edits pictures by stamping them with the text “Windows
Phone 7 in Action” surrounded by a border. The stamp can be seen in figure 6.1,
which is the screenshot we showed you at the beginning of the chapter. It’s not much

166 CHAPTER 6 Working with the camera
fun to edit an image unless you can also keep the changes, so you’re going to allow the
user to save the stamped picture to a file.

 The two new features are accessed with application bar buttons added to Main-
Page.xaml to enable the editing and saving of images you load or capture within
the application:

<shell:ApplicationBarIconButton IconUri="/Images/appbar.edit.rest.png"
 Text="edit" Click="Edit_Click" />
<shell:ApplicationBarIconButton IconUri="/Images/appbar.save.rest.png"
 Text="save" Click="Save_Click" />

The images for the buttons come from the icons library installed with the Windows
Phone SDK.

 To implement the stamp, you might think you need to design a complex algorithm
to access the raw image data and alter the appropriate pixel values. Instead you’re
going to leverage a feature of the Silverlight Framework that will draw a Silverlight
UIElement over the top of the image contained within the WriteableBitmap. This fea-
ture allows you to define the stamp using a TextBlock and a Border control inside
MainPage.xaml:

<Border x:Name="photoStamp" Height="125" Width="300" Opacity="0.5"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Background="White" BorderBrush="Red" BorderThickness="10">
 <TextBlock Text="Windows Phone 7 in Action" Foreground="Red"
 Style="{StaticResource PhoneTextLargeStyle}"
 TextWrapping="Wrap" TextAlignment="Center" />
</Border>

The Border is named photoStamp and defined with a BorderThickness of 10. The
Border is drawn with a red outline and a white background. Inside the Border is a
TextBlock that draws red text. The Border is given an Opacity of 0.5 so that the
picture shows through the stamp. The Grid control draws elements in the order
they’re added in XAML and you want to make sure you add the photoStamp ele-
ment as the first child of the ContentPanel so that it’s hidden by the photoContainer
Rectangle control.

 Adding a UIElement to a Silverlight page is simple enough. Rendering the same
element into a WriteableBitmap is also simple.

6.4.1 Rendering Silverlight elements

The WriteableBitmap class exposes a method named Render. The Render method
draws a Silverlight UIElement over the top of the image contained within the Writeable-
Bitmap. You already have the stamp declared as a Silverlight UIElement (really it’s a
Border control); now you just need to make a call to Render from the Edit_Click
method in MainPage.xaml.cs. The Edit_Click method, shown in the following list-
ing, is the event handler for the edit button you added to the application bar.

167Image editing
private void Edit_Click(object sender, EventArgs e)
{
 if (currentImage != null)
 {
 currentImage.Invalidate();
 var transform = new CompositeTransform
 {
 ScaleX = currentImage.PixelWidth / ContentPanel.ActualWidth,
 ScaleY = currentImage.PixelHeight / ContentPanel.ActualHeight,
 Rotation = -35,
 TranslateX = 100 *
 currentImage.PixelWidth / ContentPanel.ActualWidth,
 TranslateY = 400 *
 currentImage.PixelHeight / ContentPanel.ActualHeight,
 };
 currentImage.Render(photoStamp, transform);
 currentImage.Invalidate();
 imageDetails.Text = "The picture has been stamped.";
 }
}

WriteableBitmap’s Render method accepts a UIElement and a Transform. The
UIElement that you use is the photoStamp you just added to MainPage.xaml. The trans-
form is used to position the element within the bitmap. You’re going to scale, rotate,
and translate the photoStamp element using a CompositeTransform B. Even though
the image is displayed on the screen at about 480 pixels wide, the bitmap might be
much wider. You scale the stamp so that it appears approximately the same size as it
does in the ContentPanel. You rotate the stamp by 35 degrees. The stamp is translated
so that it appears in the lower-right corner of the image. You make a call to the bit-
map’s Invalidate method to ensure the image is properly updated on the screen c.
Finally you update the message displayed to the user.

 Try to run the application now, choose your favorite image, and press the Edit but-
ton. If all went well, you should see a cool stamp enhancing (or at least obscuring)
your favorite picture. The only problem is that you can’t save your incredible work of
art. You need to wire up the Save button to an event handler so you don’t lose any of
your hard-earned edits.

6.4.2 Saving an image to isolated storage

The Windows Phone SDK includes a static class named Extensions, defined in the
System.Windows.Media.Imaging namespace. The Extensions class provides two
extension methods for the WriteableBitmap class. The extension methods are named
LoadJpeg and SaveJpeg. The next listing demonstrates how to use SaveJpeg to store
the picture displayed in the PhotoEditor application to isolated storage.

Listing 6.8 Adding a stamp to the current image

Resize
photoStamp

b

Draw
stampc

168 CHAPTER 6 Working with the camera
using System.Windows.Media.Imaging;

private void Save_Click(object sender, EventArgs e)
{
 if (currentImage != null)
 {
 using (IsolatedStorageFile storage =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 using (IsolatedStorageFileStream stream =
 storage.CreateFile("customphoto.jpg"))
 {
 currentImage.SaveJpeg(stream, currentImage.PixelWidth,
 currentImage.PixelHeight, 0, 100);
 }
 }
 imageDetails.Text = string.Format(
 "Image saved with filename:\ncustomphoto.jpg");
 }
}

You start by adding a using statement for the System.Windows.Media.Imaging
namespace B where the SaveJpeg extension method is found. After checking
whether there’s a current image, you get the isolated storage container and create a
new file named customphoto.jpg. A real application would probably use a filename
entered by the user instead of the hard-coded filename used here. You pass the file
stream to the SaveJpeg method c, passing the picture’s width and height.

 The SaveJpeg method declares two other parameters named orientation and
quality. The orientation parameter isn’t used and should be set to zero. The quality
parameter allows you to trade image quality for file size. The allowed range of quality
values is 0 to 100. Smaller values will result is smaller files, with a trade-off of reduced
image quality.

 The SaveJpeg method makes saving captured or edited pictures really easy. Load-
ing pictures is just as easy.

6.4.3 Loading an image from isolated storage

Now that you’re saving an image to a file in isolated storage, how do you reload the
image back into the application? You already have all the tools you need to load a
JPEG file into memory. You’ll use IsolatedStorageFile to open a file stream, and
PictureDecoder to read the file stream and load the image into a WriteableBitmap.
Next you’ll add a new menu item to the application bar in MainPage.xaml to allow the
user to load an image:

<shell:ApplicationBarMenuItem Text="open custom photo"
 Click="Open_Click" />

The menu item’s Click event is handled by a method named Open_Click in MainPage
.xaml.cs. The following listing shows the implementation of the Open_Click method.

Listing 6.9 Saving an image to isolated storage

Include Imaging
namespaceb

Write image
to file

 c

169Summary
private void Open_Click(object sender, EventArgs e)
{
 using (IsolatedStorageFile storage =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 if (storage.FileExists("customphoto.jpg"))
 {
 using (IsolatedStorageFileStream stream =
 storage.OpenFile("customphoto.jpg", FileMode.Open))
 {
 currentImage = PictureDecoder.DecodeJpeg(stream);
 photoContainer.Fill =
 new ImageBrush { ImageSource = currentImage };
 }
 imageDetails.Text = string.Format(
 "Image loaded from filename:\ncustomphoto.jpg");
 }
 else
 {
 photoContainer.Fill = new SolidColorBrush(Colors.Gray);
 imageDetails.Text = "Image not found!";
 }
 }
}

You start by getting a reference to the isolated storage container and checking
whether a file named customphoto.jpg exists. If the file does exist, you open the file B
and get a reference to the image stream. The image stream is passed to the Decode-
Jpeg method c and the resulting WriteableBitmap is used as the photoContainer’s
Fill brush. If the file doesn’t exist, the photoContainer is cleared with a solid gray
brush d.

 You’re not using the LoadJpeg method introduced in the last section for a couple
of reasons. LoadJpeg requires foreknowledge of the dimensions of the image to be
loaded from the image stream. If the WriteableBitmap is created with a height and
width that don’t match the dimensions of the image in the stream, the result is unpre-
dictable. In some cases, the image will load but will be stretched to fit. In other situa-
tions, especially when the height of the image in the stream is greater than the height
of the WriteableBitmap, the LoadJpeg method will terminate your application.

 Run the application and choose the new menu option to load the image you saved
in the last section. Pretty cool! You’re done with the PhotoEditor application for now.
In the next chapter, you’ll update the PhotoEditor to integrate with the Pictures Hub.

6.5 Summary
We started the chapter with two Windows Phone built-in chooser tasks that were left
out of the previous discussion on launchers and choosers. The first built-in task is the
PhotoChooserTask, which allows the application developer to launch the phone’s
photo selector application from code so that users can select photos from the media

Listing 6.10 Loading an image from isolated storage

Open
file

b

Decode
image
streamc

Clear
screen d

170 CHAPTER 6 Working with the camera
library. Another task is the CameraCaptureTask, which can be used for opening the
phone camera from your application programmatically. We then moved on to show
how to use the PhotoCamera API to access the camera directly instead of using the
native camera application exposed via the CameraCaptureTask. You learned how to
use a VideoBrush to render the camera’s viewfinder in your application and how to lis-
ten for the camera button events to trigger the capture of a picture. We showed you
how to use the WriteableBitmap class to render Silverlight UI elements into the bit-
map when you implemented the stamping feature of the sample application. Finally
you learned how to read and write files to isolated storage.

 The sample application is fairly limited. Real applications wouldn’t hard-code file-
names, but would allow the user to enter a filename of their own. We’re certain that
few people are interested in placing a Windows Phone 7 in Action stamp on their pic-
tures. If you allowed the user to create custom stamps with their own messages, colors,
and symbols, you might have an appealing application.

 We’re not finished with the PhotoEditor sample application. In the next chapter,
you’ll learn how to integrate the PhotoEditor into the Pictures Hub. When viewing a
picture in the Pictures Hub, the user will be able to launch the PhotoEditor. You’ll
also update the PhotoEditor to load pictures from the camera roll.

 You’ll also learn about a method for accessing the microphone using the XNA
Framework. You’ll build a VoiceRecorder application to create wave files and store
them in isolated storage. We’ll also show you how to integrate the VoiceRecorder with
the Music + Video Hub.

 Before moving on, we’d like to mention a second set of camera APIs that are
included in the Windows Phone SDK. The CaptureDevice API was first introduced
with Silverlight 4 for the browser, providing access to the web cameras and micro-
phones attached to a host computer. The same CaptureDevice API is implemented in
the version of Silverlight shipping on Windows Phone 7.5 devices, allowing developers
access to the video camera and microphone built into a Windows Phone device. You
can read more about the CaptureDevice API in Silverlight 5 in Action by Pete Brown, or
from CaptureDevice API documentation on the MSDN website.

Integrating with the Pictures
and Music + Videos Hubs
Windows Phone contains several built-in applications, including the phone dialer,
email, camera, Bing search, the Pictures Hub, and the Music + Videos Hub. In
chapters 4 and 6 you learned how to use launchers and choosers and the Photo-
Camera class to interact with the built-in applications. Most of these interactions
consisted of sample applications launching the built-in applications. In this chapter
you’re going to learn how to make the Pictures Hub and the Music + Videos Hub
launch your application.

 The built-in applications use deep link navigation URLs to launch your applica-
tion and pass information. The Pictures Hub uses a feature known as App Connect to
display a list of applications in the hub panorama, as well as in various menus dis-
played throughout the hub. When viewing a picture, the user can choose to share
or view the picture with your application. In this chapter you’re going to extend the

This chapter covers
■ Loading and saving pictures in the

Media Library
■ Photo viewing and sharing
■ Recording voice with the microphone
■ Listening to the FM radio
171

172 CHAPTER 7 Integrating with the Pictures and Music + Videos Hubs
PhotoEditor sample application from chapter 6 to leverage App Connect for Windows
Phone. Along the way you’ll learn to use the MediaLibrary from the XNA Framework
to read and write pictures to the phone’s picture albums.

 The other built-in application you’ll learn to extend is the Music + Videos Hub.
The Music + Videos Hub allows the user to play or watch several different types of
audio and video. Music and audio might be stored in the phone media library, but
they may also be stored in third-party applications, streamed from the internet, or
might even be broadcast over the air as an FM radio signal. Applications that play
audio report information to the Music + Videos Hub, which displays information to
the user in the pages of the hub’s panorama control.

 In this chapter you’ll build a sample application that records voice using the
phone’s microphone and saves the recording to a wave file in isolated storage. The
sample application will report information about the voice recording to the Music + Vid-
eos Hub. The user will then be able to play the voice recordings from the Music + Videos
Hub. We also show you how to create and use a background agent to play the voice
recordings even when the application isn’t running in the foreground.

 We wrap up the chapter with a discussion about the FM Radio API and how to use the
FM radio in your own application. We have a lot to cover so let’s get started with updating
the PhotoEditor sample application to read and save pictures in the MediaLibrary.

7.1 Working with pictures in the Media Library
We’re going to continue working with the PhotoEditor application you created in the
last chapter. When you last left the PhotoEditor, the user was able to edit pictures and
save them to isolated storage. The Pictures Hub is where you want to save pictures, as
this is where the user expects to see all pictures on the device. The MediaLibrary class
provides the API you need to save pictures to the Pictures Hub.

 The MediaLibrary class from the XNA framework provides access to songs, play-
lists, and pictures in the device’s media library. The media library plays a huge role in
Windows Phone because it’s useful when you want to integrate your applications with
the phone’s built-in applications. When using the MediaLibrary, you’ll need to refer-
ence the Microsoft.Xna.Framework assembly.

 The MediaLibrary has six properties and we’ll categorize them into pictures and
audio/videos. We’re only going to cover picture-related properties in this section.

7.1.1 Exposing Pictures

The two picture-related classes in the MediaLibrary namespace are Picture and
PictureAlbum. Each Picture class instance provides information about a picture via
the Name, Date, Height, Width, and Album properties. Picture albums are containers
for pictures and other picture albums. The collection of pictures in a PictureAlbum is
accessed through the album’s Pictures property. The other PictureAlbums con-
tained in the album are exposed with the Albums property. You can also retrieve the
parent PictureAlbum via the Parent property.

173Working with pictures in the Media Library
Pictures and PictureAlbums are exposed by several properties of the Media-
Library class. Table 7.1 lists the picture-related properties of the MediaLibrary.

Let’s talk about the RootPictureAlbum property of MediaLibrary. RootPictureAlbum
provides everthing (including photo albums) from the root folder. To better understand
the differences between the Pictures and RootPictureAlbum properties, look at the
Phone > Pictures view in the desktop Zune software, shown in figure 7.1. On the phone,
the root folder is named Pictures, and this is what RootPictureAlbum returns. Usually,
there won’t be any pictures in the root folder, but it may have two or three default folders.

 The Camera Roll folder is the default location where all photos that the user has
taken with the phone’s camera will be stored automatically. The Sample Pictures
folder comes pre-installed with Windows Phone, and the Saved Pictures folder is the
default place where a user saves all images from the internet or an application.

NOTE In the Pictures Hub, the user is able to view Facebook or SkyDrive pho-
tos, but those aren’t stored on the device. Facebook photos can be saved to
the Saved Pictures folder on the phone by tapping the Save to Phone link in
the application bar while viewing the photo.

The Pictures property of the MediaLibrary returns the collection of pictures that have
been stored in the media library. Due to the integration with Facebook and Windows

Table 7.1 MediaLibrary properties that expose pictures

Property name Description

Pictures A single collection of Picture objects representing every picture in the
Camera Roll, Saved Pictures, and Sample Pictures albums.

RootPictureAlbum The root of the picture album hierarchy. This is the parent PictureAlbum
of the Saved Pictures, Camera Roll, Sample Pictures, and Favorite
Pictures albums.

SavedPictures A collection of Picture objects representing every picture in the Saved
Pictures album.

Figure 7.1 Phone picture albums in
the Zune desktop software

174 CHAPTER 7 Integrating with the Pictures and Music + Videos Hubs

 image to
dPictures
m

Live, more pictures may be visible in the Pictures Hub than will be reported by the
MediaLibrary. MediaLibrary won’t provide any information about online photos that
haven’t been saved to the device yet. You can query all other photos that have been
taken with the phone camera, downloaded, or synced from computers.

 The last picture-related MediaLibrary property is SavedPictures. SavedPictures
returns the collection of pictures stored in the Saved Pictures album. This is a conve-
nience property saving you the hassle of navigating the album hierarchy from Root-
PictureAlbum. The Saved Pictures album is also the only album in the MediaLibrary
that an application can use when saving pictures.

7.1.2 Saving pictures to the media library

In the last chapter you learned how to save a picture to a file in isolated storage. An
edited photo seems out of place in isolated storage. All the other pictures on the phone
are stored in the Pictures Hub and synchronized with the Zune software on the PC.
Now that you have a good understanding of the MediaLibrary, we can talk about how
to save photos in the Pictures Hub.

 Launch Visual Studio and open up the PhotoEditor project. Find the Save_Click
method in MainPage.xaml.cs and update the code to match the following listing.

using Microsoft.Xna.Framework.Media;

private void Save_Click(object sender, EventArgs e)
{
 if (currentImage != null)
 {
 var stream = new MemoryStream();
 currentImage.SaveJpeg(stream, currentImage.PixelWidth,
 currentImage.PixelHeight, 0, 100);
 stream.Seek(0, 0);

 var library = new MediaLibrary();
 Picture p = library.SavePicture("customphoto.jpg", stream);
 imageDetails.Text = string.Format(
 "Image saved to media library.\r\nFilename:\r\ncustomphoto.jpg");
 }
}

Before you can use the MediaLibrary class, you declare that you’re using the Microsoft
.Xna.Framework.Media namespace B. Next you alter the method to save the image
in a MemoryStream instead of an IsolatedStorageFileStream c. Finally you create a
MediaLibrary instance and call the SavePicture method d, passing in the memory
stream. The MediaLibrary doesn’t care whether a picture with the name custom-
photo.jpg already exists. Pictures won’t be overwritten and two pictures will be cre-
ated. When shown in the Zune software on the PC, the duplicate copies will be named
customphoto(2).jpg, customphoto(3).jpg, and so on.

Listing 7.1 Saving a picture to the media library

Add using
statementb

Save image
to memory
stream

c

Save
Save
albu

d

175Working with pictures in the Media Library
 Once you’ve implemented the new Save_Click code, you can run the sample proj-
ect directly on a device from Visual Studio. Use the Choose Picture menu option to
select one of the existing pictures in the Pictures Hub. Once the picture is displayed
in the PhotoEditor application, click the Edit button followed by the Save button. The
application should display the message “Image saved to media library” message if the
photo was saved successfully. You can then go the Pictures Hub and check your Saved
Pictures album where you’ll see the new image.

TIP When working with the media library, you must close the Zune software
on the desktop and use the WPconnect.exe tool from the Windows Phone
SDK to establish a connection to the phone.

Adding pictures to Pictures Hub is one form of integration with the Pictures Hub and
we’ll look at other methods later in the chapter. First we look at how to read a picture
from the library.

7.1.3 Retrieving a picture from the media library

Retrieving the list of all pictures from the media library is easy. You just need to instan-
tiate a MediaLibrary instance and use the Pictures property. The Pictures property
returns a collection of Picture objects representing every picture in the Camera Roll,
Sample Pictures, and Saved Pictures albums. If you only want a collection from the
Saved Pictures album, use the SavedPictures property instead.

 The Picture class not only provides image details through the Name, Date, Width,
and Height properties, but it also provides access to the stream of bytes that comprise
the image contained in the picture file. Actually, the Picture class provides access to
two image streams—the full size image and a small thumbnail image. These two image
streams are accessed via the GetImage and GetThumbnail methods respectively.

 You’ll next update the PhotoEditor application to open and edit a picture from the
media library. Open MainPage.xaml and add a new menu item to the ApplicationBar:

<shell:ApplicationBarMenuItem Text="open from library"
 Click="OpenFromLibrary_Click" />

The new menu item is wired up to a click event handler named OpenFromLibrary_
Click. Open MainPage.xaml.cs and add the implementation for the new event han-
dler. The OpenFromLibrary_Click implementation is shown in the following listing.

private void OpenFromLibrary_Click(object sender, EventArgs e)
{
 var library = new MediaLibrary();
 var pictures = library.SavedPictures;

 var picture = pictures.FirstOrDefault(
 item => item.Name == "customphoto.jpg");
 if (picture != null)

Listing 7.2 Reading a picture from the media library

Find
customphoto.jpg

b

176 CHAPTER 7 Integrating with the Pictures and Music + Videos Hubs

r
ainer
 {
 using (var stream = picture.GetImage())
 {
 currentImage = PictureDecoder.DecodeJpeg(stream);
 }
 photoContainer.Fill = new ImageBrush{ ImageSource = currentImage };
 imageDetails.Text = string.Format(
 "Image from Album: {0}\r\nPicture name: {1}",
 picture.Album, picture.Name);
 }
 else
 {
 photoContainer.Fill = new SolidColorBrush(Colors.Gray);
 imageDetails.Text = "Choose an image source from the menu.";
 }
}

You start by obtaining a collection of all pictures in the Save Pictures album. You iter-
ate over the collection and find the first picture named customphoto.jpg B. Once
you find a picture, you use the PictureDecoder class to convert the stream returned
from Picture.GetImage c into a WriteableBitmap. You then update the user inter-
face. If a picture isn’t found, you fill the user interface with a gray rectangle d.

 You now know how to load an image from the MediaLibrary from within your sample
application. In the next section, we show you how to extend the Pictures Hub so that a
user can open the picture in your sample application directly from the Pictures Hub.

7.2 Editing and sharing from the Pictures Hub
The Pictures Hub, shown in figure 7.2, is a place where a user can see all of their pho-
tos from various sources. All photos that have been taken with the phone, synced from
the computer, and downloaded from the internet or email will be included in the Pic-
tures Hub. The Pictures Hub is integrated with Windows Live and Facebook, and all
photos uploaded to those websites will be displayed in the Pictures Hub as well.

 The apps list is only shown when the user has installed applications that extend the
Pictures Hub. Let’s see how you can register the PhotoEditor sample application as
a Pictures Hub extension.

7.2.1 Extending the Picture Hub
The apps page in the Pictures Hub is extended with a feature known as App Connect
for Windows Phone. The advantage of App Connect is that users don’t need to leave
the Pictures Hub in order to use your application. It’s already integrated inside the
Pictures Hub and the user can use it directly from the Pictures Hub. Applications reg-
ister with App Connect by including an Extension element in the WMAppManifest.xml
file that exists in the project’s Properties folder:

<Extensions>
 <Extension ExtensionName="Photos_Extra_Hub"
 ConsumerID="{5B04B775-356B-4AA0-AAF8-6491FFEA5632}"
 TaskID="_default" />
</Extensions>

Get image
streamc

Clea
cont

d

177Editing and sharing from the Pictures Hub
The Extension element is placed inside the Extensions element, which resides under
the App element. The Extension element has three attributes named ExtensionName,
ConsumerID, and TaskID. The ConsumerID field is the unique ID of the application
that’s being extended and the unique ID representing the Pictures Hub is {5B04B775-
356B-4AA0-AAF8-6491FFEA5632}, which is detailed in the App Connect documentation
on MSDN. The TaskID is the name of the task in your application that should be navi-
gated to when the user taps the application in the Apps page of the Pictures Hub. In
Windows Phone 7.1, the only supported TaskID is the task named _default. We
talked about an application’s default task in chapter 2.

 The ExtensionName is defined by the application being extended. The Pictures
Hub defines three extensions named Photos_Extra_Hub, Photos_Extra_Viewer, and
Photos_Extra_Share. Photos_Extra_Hub is the name of the Apps page extension.
The other two extensions allow an application to participate in the Apps and Share
Menu items available when viewing a single picture in the Pictures Hub.

 Open the WMAppManifest.xml file for the PhotoEditor and add a Photos_Extra_
Hub extension element. Rebuild the PhotoEditor application and deploy it to your

Figure 7.2 Four different sections of the panorama can be seen in this Pictures Hub screen
shot. The first section presents a list of categories. The second shows the pictures the user has
identified as their favorites. The third section is a running list of new pictures added to the user’s
social networks. The last section provides a list of applications registered as Pictures Hub
extensions.

178 CHAPTER 7 Integrating with the Pictures and Music + Videos Hubs
Windows Phone device. Launch the Pictures Hub on your device, and look for the
PhotoEditor in the list on the Apps page. Tapping PhotoEditor will launch the appli-
cation using the normal startup routine.

NOTE The Pictures Hub isn’t included in the emulator and a Windows
Phone device is required to run a Photos_Extra_Hub extension.

Extending the apps list is just the first of three extension points exposed by the Pic-
tures Hub. The second extension point you’re going to implement in the PhotoEditor
is Photos_Extra_Viewer, which allows an application to extend the Picture Viewer.

7.2.2 Extending the Picture Viewer

One of the cool things about Windows Phone is that it allows the developers to regis-
ter a picture-related application (such as PhotoEditor) as an extension to the Win-
dows Phone built-in picture viewer application. This enables the user who’s viewing
the photos to use your application directly from the Picture Viewer. Figure 7.3 shows the
Picture Viewer displaying an Apps menu item when the user opens an individual
photo. If the user clicks on Apps then they’ll be taken to the list of photo viewer appli-
cations that have been installed on the device.

 When the user taps the name in the apps list, the application will be launched and
is expected to display the selected picture. Turn the PhotoEditor application into a

Figure 7.3 The picture
viewer page
showing installed
Photos_Extra_Viewer
applications

179Editing and sharing from the Pictures Hub
picture viewer extension. The first step is to add an Extension element with the name
Photos_Extra_Viewer to the WMAppManifest.xml file:

<Extension ExtensionName="Photos_Extra_Viewer"
 ConsumerID="{5B04B775-356B-4AA0-AAF8-6491FFEA5632}"
 TaskID="_default" />

Once you’ve rebuilt and deployed the application to a Windows Phone Device, launch
Pictures Hub and then choose a photo. Next, expand the application bar’s menu and
select the apps menu item to see the list of picture viewer applications. You should see
your PhotoEditor sample application in the list.

TIP Even though the Photos Hub isn’t included in the emulator, you can use
a simple trick to run the picture viewer application in the emulator. Once the
photo editor application is deployed to the emulator, use the F7 key to mimic
a full press of the camera button and the emulator will launch the camera
application. Tap on the shutter button in the user interface to take a picture.
Finally scroll to the picture you just took and you’ll have access to the picture
viewer menu.

DETERMINING WHICH PICTURE THE USER IS VIEWING

When the photo viewer launches your application, it passes a token identifying the
selected photo. The token is passed as a query string parameter in the navigation URI.
The token can then be passed to the XNA MediaLibrary to retrieve the corresponding
Picture object. Let’s discuss how to use the token in your sample application, as
detailed in the next listing.

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 if(State.ContainsKey("customCamera"))
 {
 State.Remove("customCamera");
 InitializeCamera();
 }

 IDictionary<string, string> queryStrings =
 NavigationContext.QueryString;

 string token = null;
 string source = null;
 if (queryStrings.ContainsKey("token"))
 {
 token = queryStrings["token"];
 source = "Photos_Extra_Viewer";
 }

 if (!string.IsNullOrEmpty(token))
 {
 MediaLibrary mediaLib = new MediaLibrary();
 Picture picture = mediaLib.GetPictureFromToken(token);

Listing 7.3 Using the Pictures Hub token to display the selected photo

Get query strings
sent on URI

b

Extract
token value

c

Get
picture
from
media
library

d

180 CHAPTER 7 Integrating with the Pictures and Music + Videos Hubs
 currentImage = PictureDecoder.DecodeJpeg(picture.GetImage());
 photoContainer.Fill = new ImageBrush{ ImageSource = currentImage };
 imageDetails.Text = string.Format("Image from {0}.\n

➥ Picture name:\n{1}\nMedia library token:\n{2}",
 source, picture.Name, token);
 }
}

You’re updating the OnNavigatedTo method in MainPage.xaml.cs that you created in
the last chapter. You get the query strings parameters sent to the application from the
QueryString property of NavigationContext B. You check whether a token was
passed from Pictures Hub c and if so, you save the value in the token variable. You
also note that the source of the token is the Photos_Extra_Viewer extension. Next,
you get the picture from MediaLibrary by using the token that you received d.
Finally, you display the image in the photoContainer control and update the message
displayed in the imageDetails TextBlock.

 It’s not possible to debug an application that’s launched by the Pictures Hub. But you
can use a simple trick to mimic a Pictures Hub launch and debug your OnNavigatedTo
code. Open the WMAppManifest.xml file and look for the DefaultTask element. This
element’s NavigationPage attribute contains the URL called by the Silverlight Appli-
cation Host when launching your application. If you add query string parameters to
the NavigationPage URL, they’ll be passed your application when it’s launched.

 To debug and test the picture viewer application, you first need to know the token
value for a picture in the MediaLibrary. Fortunately, your sample application displays
the token on the screen. Make note of the token and add it to the NavigationPage URL:

<DefaultTask Name="_default" NavigationPage="MainPage.xaml?

➥ token=%7B60C0B7CD-669A-2DF4-6B1E-CCABD81E168B%7D" />

A Picture Viewer extension is typically an application that displays or edits a picture.
The last Pictures Hub extension is for applications that share pictures with social net-
working, messaging, or other web-based applications.

7.2.3 Sharing pictures from your Pictures Hub extension

The Windows Phone Pictures Hub has built-in support for sharing pictures with social
networking applications, text messaging, email, and SkyDrive. Third-party developers
can register their picture-sharing application as an extension to the Pictures Hub.
This enables the user to activate your application from the Share menu that appears
from several locations in the Pictures Hub, one of which is shown in figure 7.3. The
Share menu activates the Share Picker, which displays all applications registered as
Photos_Extra_Share extensions. You’ll now turn the PhotoEditor application into a
Share Picker extension. The first step is to add an Extension element with the name
Photos_Extra_Share to the WMAppManifest.xml file:

<Extension ExtensionName="Photos_Extra_Share"
 ConsumerID="{5B04B775-356B-4AA0-AAF8-6491FFEA5632}"
 TaskID="_default" />

181Playing and recording with the Music + Videos Hub
When the Pictures Hub launches a sharing application, it passes the pictures token to
the application. A sharing extension receives the pictures token in the query string
parameter named FileId. Update the OnNavigatedTo method in MainPage.xaml to
look for the FileId parameter:

if (queryStrings.ContainsKey("token"))
{
 token = queryStrings["token"];
 source = "Photos_Extra_Viewer";
}
else if (queryStrings.ContainsKey("FileId"))
{
 token = queryStrings["FileId"];
 source = "Share";
}

The code snippet adds an else expression to check whether queryStrings contains a
key named FileId. If FileId is found, the token variable is set and the source of the
token is the Photos_Extra_Share extension.

 You can use the same DefaultTask trick to debug your share extension code, if you
know a valid picture token:

<DefaultTask Name="_default" NavigationPage="MainPage.xaml?Action=

➥ ShareContent&FileId=%7B60C0B7CD-669A-2DF4-6B1E-CCABD81E168B%7D" />

This wraps up the PhotoEditor application that you’ve been working on for a chap-
ter and a half. The application integrates with the camera and the photo chooser
and extends the Picture Hub. But the Picture Hub isn’t the only application that
provides extension points. The next application you learn how to extend is the
Music + Videos Hub.

7.3 Playing and recording with the Music + Videos Hub
You’re going to learn about another cool hub called Music + Videos Hub in this sec-
tion. You’ll first learn what the Music + Videos Hub is from an end-user point of view.
Then, you’ll see how you can develop an application that integrates with the Music +
Videos Hub.

 The Music + Videos Hub is the central place where you can find all music, videos,
and podcast activity on the device. The Music + Videos Hub is launched from its tile
on the start screen or from its icon in the Application List. Let’s take a look at the
architecture of this hub.

 The Music + Videos hub is divided into the four sections shown in figure 7.4:

■ Zune is the central view for playing music, videos, podcasts, radio, and accessing
the marketplace.

■ History contains the list of music, videos, playlists, artists, podcasts, and FM radio
stations that the user recently played.

■ New contains the list of new music, videos, or podcasts that have recently been
synced to the phone or downloaded from the marketplace. This list is updated

182 CHAPTER 7 Integrating with the Pictures and Music + Videos Hubs
when media is added to the device or when the user creates an object in a music
+ videos application.

■ Apps contains the list of applications installed on the device that integrate with
the Music + Videos Hub.

When you’re developing for the Music + Videos Hub application, it’s crucial to keep
these four sections in mind.

 To demonstrate how to integrate with the Music + Videos Hub, you need a new
sample application. The application will use the phone’s microphone to record voice
recordings. You might use this feature to create a pronunciation training program
that helps users to record their voice and practice until they can pronounce properly.
A lot of people who like to learn different languages may find such a program useful.

 When a new file is recorded, your application will create an item in the new section
of the Music + Videos Hub. The application will also allow the user to play their
recordings, which will create items in the Music + Videos history view. Because the
sample application integrates with the Music + Videos Hub, it’ll be shown in the apps
list. When the user taps any of the items you add to the history, new, or apps sections,
your application will be launched by the Music + Videos Hub.

 You start by creating a new Silverlight Windows Phone Application project named
VoiceRecorder. The media and microphone APIs you’ll be using are in the XNA Frame-
work so you need to add a reference to the Microsoft.Xna.Framework assembly. The
application you’re going to build is shown in figure 7.5.

Figure 7.4 The four
different sections of
Music + Videos Hub.
The first section is the
list of media categories
in the Zune. The
second section lists
the media recently
played by the user.
Newly downloaded
media is shown in the
third section. The last
section provides a list
of applications that
extend the Music +
Videos Hub.

183Playing and recording with the Music + Videos Hub
There is one incompatibility between XNA and Sil-
verlight—the two frameworks utilize different
event systems. In order to record voice data, you
need to use the XNA event system. That means you
need to pump the XNA dispatcher in order to get
the microphone events to fire. We’ll first take a
look how to enable the XNA Framework events in a
Silverlight application.

7.3.1 Enabling XNA Framework events
XNA Framework events are dispatched by the Update
method of the FrameworkDispatcher class. In XNA
Game projects, the FrameworkDispatcher is called
automatically by the XNA Framework. The Silverlight
framework doesn’t automatically call XNA’s Frame-
workDispatcher. Because you’re using XNA’s
Microphone class in a Silverlight project, you’ll
have to call FrameworkDispatcher.Update manu-
ally to dispatch messages that are in the XNA
Framework’s message queue.

 The Update method must be called several
times each second to properly process each event.
An efficient method for dispatching an XNA event is
to place the call to Update inside the Tick event
handler of a DispatchTimer object. Add a new DispatchTimer field named xnaTimer to
the App class in App.xaml.cs. Initialize the field in the App constructor, wiring up the
Tick event with a lambda expression:

xnaTimer = new DispatcherTimer{ Interval = TimeSpan.FromMilliseconds(16) };
xnaTimer.Tick += (sender, e) => FrameworkDispatcher.Update();
xnaTimer.Start();

The lambda expression makes a call to the Update method. The Tick event is raised
every 16 milliseconds, or about 60 times per second. That’s all you need to do to
enable XNA events in a Silverlight project. With this bit of housekeeping done, you
can move on to the user interface.

7.3.2 Building the user interface
Your sample application will have two application bar buttons to start and stop record-
ing. When the user taps on the Record button, the application will start recording from
the microphone. The user taps the second button to stop the recording. The sample
application will store the voice recording in isolated storage and add the file name to
the playlist. The user can tap on the Play button to play the recorded audio file.

 The following listing shows what you need to add to the ContentPanel in
MainPage.xaml.

Figure 7.5 The VoiceRecorder
sample application

184 CHAPTER 7 Integrating with the Pictures and Music + Videos Hubs

d play
tton to

plate
<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <ListBox x:Name="recordingList">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <Button Click="play_Click" Tag="{Binding Title}"
 Background="Black">
 <Image Source=
 "Images/appbar.transport.play.rest.png" />
 </Button>
 <TextBlock Text="{Binding Title}"
 VerticalAlignment="Center"
 FontSize="{StaticResource PhoneFontSizeLarge}" />
 <TextBlock Text="{Binding Date,

➥ StringFormat='Recorded: \{0:g\}'}"
 FontSize="{StaticResource PhoneFontSizeNormal}" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>

 <TextBlock x:Name="recordingMessage" Text="Recording..."
 Visibility="Collapsed" HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Foreground="{StaticResource PhoneAccentBrush}"
 FontSize="{StaticResource PhoneFontSizeLarge}" />

</Grid>

...

<phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar IsVisible="True" IsMenuEnabled="True">
 <shell:ApplicationBarIconButton Text="record"
 IconUri="/Images/appbar.record.png"
 Click="record_Click" />
 <shell:ApplicationBarIconButton Text="stop"
 IconUri="/Images/appbar.stop.png"
 Click="stopRecord_Click" />
 </shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>

The user interface is built using a ListBox to display each voice recording stored in
isolated storage. The ListBox’s ItemTemplate displays the name of each recording and
the date and time when the file was recorded. The template also places a Button B next
to each item in the list. The button will be used to start and pause playback of the
recording. You use data binding to store the filename in the buttons Tag property.
The button displays an image from the Windows Phone SDK image library.

 The listing declares a TextBlock containing the message “Recording…” that is ini-
tially hidden c. The TextBlock will be shown to the user when the application is actively
recording from the microphone. The message will be hidden once recording stops.

Listing 7.4 Adding controls to MainPage.xaml

Ad
bu
tem

b

Hidden
recording
message

c

Start
and stop
recording
buttons

d

185Playing and recording with the Music + Videos Hub
 The ApplicationBar contains two buttons to start and stop a recording d. The
buttons use custom images, which you can find in the book’s sample source code.
Make sure you create a project folder named Images, and add the three image files to
the project with a build action of Content.

 Once you’ve added the required controls in XAML, you need to initialize the
microphone. The microphone is represented by the XNA Framework class named
Microphone. The Microphone is a singleton and is accessed through the static Default
property. Before using the Microphone class, you need to set the BufferDuration
property and wire up the BufferReady event in the MainPage constructor:

public MainPage()
{
 InitializeComponent();

 Microphone.Default.BufferDuration = TimeSpan.FromSeconds(1);
 Microphone.Default.BufferReady += microphone_BufferReady;
}

While recording, the Microphone stores audio data in an internal buffer. When the
buffer is full, the Microphone raises the BufferReady event. The BufferDuration field
specifies how much audio will fit into the buffer. Expressed another way, the Buffer-
Duration determines the TimeSpan between each BufferReady event.

 There’s one last bit of supporting code you need before you can start recording
audio with the Microphone. You need a simple class to hold the title and recording date.
Create a new class named VoiceRecording with Title and Date properties:

public class VoiceRecording
{
 public string Title { get; set; }
 public DateTime Date { get; set; }
}

With the new class in place you’re ready to move on to the main feature of the sample
application—recording audio with the Microphone.

7.3.3 Recording audio
The Microphone raises the BufferReady event once after recording audio for the
duration specified in the BufferDuration property. In the BufferReady event han-
dler, audio data should be copied from the Microphone into a storage location. In the
sample application, this audio data is temporarily copied into a byte array and then
written to a MemoryStream. Add two new fields to the MainPage class for the byte array
and the MemoryStream:

private MemoryStream audioStream = null;
byte[] audioBuffer = null;

The BufferReady event is an XNA Framework event, and is raised by the Frame-
workDispatcher. In the event handler, you get the data from the microphone and
write that data to the MemoryStream:

186 CHAPTER 7 Integrating with the Pictures and Music + Videos Hubs
void microphone_BufferReady(object sender, EventArgs e)
{
 int count = Microphone.Default.GetData(audioBuffer);
 audioStream.Write(audioBuffer, 0, count);
}

The Microphone’s GetData method copies data into the audioBuffer byte array, and
returns the number of bytes written. You use the count of bytes written to the buffer
when writing to the audioStream.

 The BufferReady event won’t be triggered until the user starts recording with the
microphone. The user starts a recording by tapping the Record button in the user
interface. The Record button is wired to the record_Click method, which is detailed
in the next listing.

private void record_Click(object sender, EventArgs e)
{
 if (Microphone.Default.State == MicrophoneState.Stopped)
 {
 recordingList.IsEnabled = false;
 recordingMessage.Visibility = Visibility.Visible;

 audioStream = new MemoryStream();
 audioBuffer = new byte[Microphone.Default.
 GetSampleSizeInBytes(TimeSpan.FromSeconds(1))];

 Microphone.Default.Start();
 }
}

The Microphone has a property named State that you check to determine whether
the microphone is already on. If not, then you start the microphone. When the micro-
phone is recording, the recordingList ListBox is disabled and the recording mes-
sage in shown to the user B. The user will be unable to select or play any existing
recordings while the current track is being recorded. The temporary byte array and
MemoryStream are allocated c before you start recording. Recording is started by call-
ing the Start method of the singleton Microphone instance.

 Recording will continue until the user taps the Stop button and triggers the
stopRecord_Click event handler. The next listing shows the implementation of
the stopRecord_Click event handler.

private void stopRecord_Click(object sender, EventArgs e)
{
 if (Microphone.Default.State == MicrophoneState.Started)
 {
 Microphone.Default.Stop();
 string filename = WriteFile(audioStream);

Listing 7.5 Recording with the Microphone

Listing 7.6 Stop the recording

Display
recording
message

b

Allocate
temporary
storage

c

Write audio
data to file

b

187Playing and recording with the Music + Videos Hub

nerate
ique
 name
 audioBuffer = null;
 audioStream = null;

 recordingMessage.Visibility = Visibility.Collapsed;
 recordingList.IsEnabled = true;
 recordingList.Items.Add(new VoiceRecording
 { Title = filename, Date = DateTime.Now });
 }
}

Before you do any work in the stopRecord_Click method, you check whether the
microphone’s state is Started. After the microphone has been stopped, you write
the contents of the MemoryStream to a file in isolated storage B, and clean up the
temporary variables. The recording list is re-enabled and the recording message is
hidden once again. Finally, you create a new VoiceRecording instance and add it to
the items displayed in the ListBox c.

 The listing calls through to a method named WriteFile to save the audio data in a
file. The audio data recorded by the Microphone is stored in raw PCM data format. To
make the raw PCM data into a real audio file, you must wrap the audio data with a
media container. In this application, you’re using a wave file container format. A wave
file is merely a header block followed by the audio data. The following listing shows
the implementation of the WriteFile method.

private string WriteFile()
{
 string filename;
 using (var storage = IsolatedStorageFile.GetUserStoreForApplication())
 {
 int index = 1;
 filename = string.Format("voice-recording-{0}.wav", index);
 while (storage.FileExists(filename))
 {
 index++;
 filename = string.Format("voice-recording-{0}.wav", index);
 }

 using (var file = storage.OpenFile(filename, FileMode.CreateNew))
 using (var writer = new BinaryWriter(file))
 {
 writer.Write(new char[4] { 'R', 'I', 'F', 'F' });
 writer.Write((Int32)(36 + audioStream.Length));
 writer.Write(new char[4] { 'W', 'A', 'V', 'E' });
 writer.Write(new char[4] { 'f', 'm', 't', ' ' });
 writer.Write((Int32)16);

 writer.Write((UInt16)1);
 writer.Write((UInt16)1);
 writer.Write((UInt32)16000);
 writer.Write((UInt32)32000);
 writer.Write((UInt16)2);

Listing 7.7 Saving audio data to isolated storage

Add recording
to ListBox

c

Ge
un
file

b

Write
wave
header

c

188 CHAPTER 7 Integrating with the Pictures and Music + Videos Hubs

am
 writer.Write((UInt16)16);

 writer.Write(new char[4] { 'd', 'a', 't', 'a' });
 writer.Write((Int32)audioStream.Length);
 writer.Write(audioStream.GetBuffer(), 0,
 (int)audioStream.Length);

 writer.Flush();
 file.Flush();
 }
 }
 return filename;
}

You start by getting a reference to the isolated storage device. You generate a new file
name B by appending a number to the end of a hard-coded name and looping until
you find a name that’s not already used. Next you create and open the file and create
a BinaryWriter. You use the BinaryWriter to write the wave header c and Wave-
FormatEx information. Finally you write the PCM data stored in the MemoryStream to
the end of the file d.

NOTE Details of the wave header and the PCM format are beyond the scope of
this book. You can read more about wave files on MSDN at http://mng.bz/6Xe9.

In listing 7.7, you added the newly saved voice recording to the display. You really
should be displaying all of the voice recordings saved in isolated storage. You’ll now
create a new method named DisplayRecordingNames to read the names of all the
recordings and add them to the recordingList. Add a call to the new method at the end
of the MainPage constructor. The DisplayRecordingNames implementation is shown
in the next listing.

private void DisplayRecordingNames()
{
 using (var storage = IsolatedStorageFile.GetUserStoreForApplication())
 {
 var filenames = storage.GetFileNames("*.wav");
 foreach (var filename in filenames)
 {
 var lastWrite = storage.GetLastWriteTime(filename);
 recordingList.Items.Add(new VoiceRecording
 { Title = filename, Date = lastWrite.DateTime });
 }
 }
}

After opening the storage device, you get the list of every wav file in the root folder.
You loop over the list, retrieving the date and time the file was written, and then add
each recording to the ListBox.

 If you run the VoiceRecorder application now you’ll be able to press the Record
button and speak into the phone. Your voice will be recorded, and when you press

Listing 7.8 Displaying stored recordings

Write MemoryStre
to the file

d

Get all filenames
in root folderb

Display recording
information c

http://mng.bz/6Xe9

189Playing and recording with the Music + Videos Hub
Stop, the recording will be saved into a wave file in isolated storage. The next feature
you’ll implement is playing the voice recording.

7.3.4 Playing audio

In addition to providing the Microphone class to record audio, the XNA Framework
provides classes to play audio files. The two classes you’re going to use in the Voice-
Recorder application are SoundEffect and SoundEffectInstance. The SoundEffect
class represents an audio file or stream. The SoundEffectInstance wraps the Sound-
Effect, allowing the developer to start, pause, and stop playback of a SoundEffect.

 The SoundEffect class knows how to work with and decode several different types of
media containers and audio formats, including wave and PCM. A SoundEffect is initialized
using a stream containing the audio file. The following listing demonstrates how to open
a file stream, initialize a SoundEffect, create a SoundEffectInstance, and start playback.

private SoundEffectInstance audioPlayerInstance = null;

private void PlayFile(string filename)
{
 using (var storage = IsolatedStorageFile.GetUserStoreForApplication())
 {
 if (storage.FileExists(filename))
 {
 var fileStream = storage.OpenFile(filename,
 FileMode.Open, FileAccess.Read);

 var soundEffect = SoundEffect.FromStream(fileStream);
 audioPlayerInstance = soundEffect.CreateInstance();
 audioPlayerInstance.Play();
 }
 }
}

First you add a new field to the MainPage class B to hold the currently playing voice
recording. Next you create a new method named PlayFile that’s responsible for
opening and playing an audio file. The method opens the file stream in read-only
mode c. The file stream is used to create a new SoundEffect using the static From-
Stream method d. The audioPlayerInstance field is assigned to the SoundEffect-
Instance class returned from the CreateInstance method. Finally, you start playback
using the Play method of the SoundEffectInstance.

 The PlayFile method accepts a filename from the calling code. In this case, the
calling code is the Click event handler for the Play button declared in the ListBox
ItemTemplate. The event hander code is detailed in the next listing.

private void play_Click(object sender, EventArgs e)
{
 if (audioPlayerInstance != null &&

Listing 7.9 Playing the recorded voice

Listing 7.10 Handling click events for the play button

Declare audio
player fieldb

Open
audio file

c

Create
SoundEffectInstance d

190 CHAPTER 7 Integrating with the Pictures and Music + Videos Hubs
 audioPlayerInstance.State == SoundState.Playing)
 {
 audioPlayerInstance.Pause();
 }
 else
 {
 var button = (Button)sender;
 string filename = (string)button.Tag;
 PlayFile(filename);
 }
}

When the user clicks on the play button in the ListBox, you examine the State
property to see whether the audio player is currently playing an audio file. If a
file is playing, you stop playback by calling the Pause method and exit the event
handler. If the audio player isn’t busy, you get the filename from the Tag prop-
erty of the Button control. The Button control is sent to the event handler in the
sender property. You may remember that you bound the Tag property to the file-
name in the ListBox ItemTemplate. You send the retrieved file name to the
PlayFile method.

 You’ve now created a simple voice recorder for Windows Phone. Run the applica-
tion and you should see a list of voice recordings. Tap the Play button next to one of
the recordings and you should hear that recording play through the phone’s speaker
or headphones. Applications that play audio files, especially music tracks, should con-
sider extending the Music + Videos Hub.

7.4 Playing recorded audio in the Music + Videos Hub
Earlier in the chapter you learned that the Pictures Hub enables extensions with
Extension elements in the WMAppManifest.xml file. The Music + Videos Hub doesn’t
work with Extension elements when figuring out which applications to display in the
apps list. How can you make the VoiceRecorder sample application show up in the apps
list? The answer is simple.

 The App element in the WMAppManifest.xml file includes an attribute named
HubType. When the HubType attribute is set to 1 your application will be shown in the
apps list of the Music + Videos Hub.

NOTE Updating the HubType attribute in WMAppManifest.xml is used for
development and testing. When an application is submitted to the Applica-
tion Marketplace, the certification process will automatically determine the
HubType and will overwrite WMAppManifest.xml accordingly.

Certain requirements must be met when creating a Music + Videos Hub application,
which we’ll cover later in the section. Here’s an example of an App element:

<App xmlns=""
 ProductID="{ dbf1198b-6030-495a-bc4c-0abcc8e2d521}"
 Title="VoiceRecorder" RuntimeType="Silverlight"
 Version="1.0.0.0" Genre="apps.normal"

191Playing recorded audio in the Music + Videos Hub
 Author="VoiceRecorder author"
 Description="Sample description"
 Publisher="VoiceRecorder"
 HubType="1" >

When you play any kind of media from a Music + Videos Hub application, you need to
integrate with the built-in Music + Videos Hub. That means that your application
needs to meet the following requirements:

■ Now Playing—When you play any media from your application, the media’s
details should be displayed in the Now Playing list in Music + Videos Hub.

■ History—Once the media track has finished playing in your application, you
need to add the media’s details to the History view.

■ New—When the user adds new media to your application, such as creating a
new voice recording or purchasing a new song through the application, that
media’s details should be added in the New View list in the hub.

Microsoft established the Music + Videos requirements to ensure a consistent user
experience for all media applications.

7.4.1 Fulfilling Music + Videos Hub requirements
The Windows Phone class library provides the MediaHistoryItem and MediaHistory
classes that you can use to fulfill these three requirements. The certification guide-
lines say that any application using the MediaHistoryItem and MediaHistory classes is
considered to be a Music + Videos application. We’ll look first at creating a Media-
HistoryItem, as shown in the next listing.

private MediaHistoryItem createMediaHistoryItem(string fullFileName,
 bool smallSize)
{
 string imageName = smallSize ? "artwork173.jpg" : "artwork358.jpg";
 StreamResourceInfo imageInfo = Application.GetResourceStream(
 new Uri(imageName, UriKind.Relative));

 var mediaHistoryItem = new MediaHistoryItem
 {
 ImageStream = imageInfo.Stream,
 Source = "",
 Title = fullFileName
 };
 mediaHistoryItem.PlayerContext.Add("vrec-filename", fullFileName);

 return mediaHistoryItem;
}

The Music + Videos Hub requires media artwork when displaying media items. In this
example, the artwork is coming from a file named either artwork173.jpg or artwork358
.jpg that has been added to the project using a build action of Content. You use the
GetResourceStream API to load the file and to get access to its image stream B. The

Listing 7.11 Creating a MediaHistoryItem

Load image from content b

Properties must
not be null

c

Identity data added to context d

192 CHAPTER 7 Integrating with the Pictures and Music + Videos Hubs
MediaHistoryItem class has three properties that must be assigned a value c. The
Source property isn’t used by the Hub, but is still required to have a non-null value.
The Title property contains the name of the media and is displayed in the Hub with
the artwork.

 The Windows Phone certification requirements define specific rules about the images
used in the MediaHistoryItem. The images must be of type JPEG. The tile image must
include your application title or logo. The Now Playing image must be 358 pixels x 358
pixels in size. The history and new item images must be 173 pixels x 173 pixels in size.

 One other MediaHistoryItem property is PlayerContext d, which is a dictionary
of strings that can be used by an application to identify the media item. The entries
placed in the PlayerContext are returned to the application when the user selects the
media item in the Hub.

 The MediaHistory class is what you use to integrate with the Music + Videos Hub.
There’s only one instance of the MediaHistory class, which is accessed via the
Instance property. An application updates the now-playing information in the Hub
via MediaHistory’s NowPlaying property. The best time to update the NowPlaying
property in your sample application is in the PlayFile method, right after Sound-
EffectInstance.Play is called:

MediaHistory.Instance.NowPlaying = createMediaHistoryItem(filename, false);

When using the NowPlaying property, the artwork should be a 358 x 358 pixel image.
When creating media artwork, you should be careful to keep the overall size of the image
file under the value specified by MediaHistoryItem.MaxImageSize, which is about 16 KB.

 The NowPlaying property can also be used by your application to retrieve the
information about the last media item it was playing. This might be handy if the user
has exited your application and restarts it sometime in the future. You can restart the
last item played. NowPlaying will only return the last MediaHistoryItem played by
your application. It won’t return media history for items added by other applications.

 When your application is finished playing a media item, it should update the recently
played list. The sample application isn’t implemented to detect when the Sound-
Effect class finished playing, so you’re going to cheat and update the recently played
list right after you call SoundEffectInstance.Play:

MediaHistory.Instance.WriteRecentPlay(
 createMediaHistoryItem(filename, true));

Using the WriteRecentPlay API will cause a new tile to appear in the Music + Videos
Hub History view. Your artwork for the recent play tile should be 173 x 173 pixels.

 When your application acquires a new media item, it should update the new item
list. You acquire new media items when the user has finished a recording, and the new
file is written to isolated storage. Update the WriteFile method and add a call to
WriteAcquiredItem:

MediaHistory.Instance.WriteAcquiredItem(
 createMediaHistoryItem(fullFileName, true));

193Playing recorded audio in the Music + Videos Hub
Using the WriteAcquiredItem API will cause a new tile to appear in the Music +
Videos Hub New view. Your artwork for the new item tile should be 173 x 173 pixels.

 Run the application, create a voice recording, and play it back. Switch to the Music
+ Videos Hub and you should see a listing in both the new items list and the recently
played list. It’s expected that when you tap the listing in the hub, the VoiceRecorder
application will be launched and the selected recording will be played. Let’s take a
look at how to determine when your sample application is launched by the Music +
Videos Hub.

7.4.2 Launching from the Music + Videos Hub

When the user clicks on the tile representing your media items in the History or New
views in the Music + Videos Hub, your application will be launched and the Media-
HistoryItem’s PlayerContext values will be sent to your application as query string
parameters. You can read the query string parameters from the NavigationContext’s
QueryString property in the OnNavigatedTo override method:

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 IDictionary<string, string> queryStrings =
 NavigationContext.QueryString;
 if (queryStrings.ContainsKey("vrec-filename"))
 {
 PlayFile(queryStrings["vrec-filename"]);
 }
}

You’ll remember that you saved the voice recording file name in the MediaHistory-
Item’s PlayerContext dictionary with the vrec-filename key. In OnNavigatedTo you
check whether the query string contains a parameter named vrec-filename. If the
parameter is present, you pass the parameter’s value to the PlayFile method.

 You probably realize by now that you can’t debug the application when it’s
launched from the Music + Videos Hub. You can use the same application manifest
technique to mimic a Hub launch. In your sample application, you change the
DefaultTask element to include a vrec-filename query string parameter:

<DefaultTask Name="_default"
 NavigationPage="MainPage.xaml?vrec-filename=voice-recording-1.wav" />

In this section, you’ve learned how to integrate an application with the Music + Videos
Hub, which is the single access point for all media on the Windows Phone. Applica-
tions that play or create media should consider using the MediaHistory class to report
now-playing and history information. When a foreground application plays audio
files, playback will stop once the user switches to another application. Windows Phone
applications can use background agents to continue playing audio files when the user
switches tasks.

194 CHAPTER 7 Integrating with the Pictures and Music + Videos Hubs
7.5 Playing recorded audio with a background agent
Background agents, introduced in chapter 3, enable an application to execute tasks
and perform work even when their host application isn’t running. The Windows Phone
SDK provides two background agents just for playing audio. The background audio
agents and their supporting classes are defined in the Microsoft.Phone.Background-
Audio namespace. The AudioPlayerAgent allows applications to play local or remote
audio files. The AudioStreamingAgent can be used to play audio streamed to the
device. In this section you add an AudioPlayerAgent to the VoiceRecorder applica-
tion to enable background playing of the recorded audio.

AudioPlayerAgents are created using the Windows Phone Audio Playback Agent
project template. Add a new audio playback project to the Visual Studio solution
containing the VoiceRecorder project and name the new project VoiceRecorder-
PlaybackAgent. Using the Add Reference dialog, add a project reference to the Voice-
RecorderPlaybackAgent project from the VoiceRecorder project. In addition to
adding the project reference, Visual Studio updated the WMAppManifest.xml file so
that it contains a new ExtendedTask Element:

<ExtendedTask Name="BackgroundTask">
 <BackgroundServiceAgent Specifier="AudioPlayerAgent"
 Name="VoiceRecorderPlaybackAgent"
 Source="VoiceRecorderPlaybackAgent"
 Type="VoiceRecorderPlaybackAgent.AudioPlayer" />
</ExtendedTask>

The project template created one class named AudioPlayer in the VoiceRecorder-
PlaybackAgent project. Derived from AudioPlayerAgent, the AudioPlayer class is
generated with four overrides named OnPlayStateChanged, OnUserAction, OnError,
and OnCancel. Before we discuss each of these overrides, let’s discuss how the fore-
ground application communicates with the background agent.

 Applications communicate with the background agent through the Background-
AudioPlayer class. Playback is controlled using the Play, Pause, and Stop methods.
The audio player also provides FastForward, Rewind, SkipNext, and SkipPrevious
methods. Playback progress can be read with PlayerState, Position and Buffer-
Progress properties.

 Now that you have a background audio agent, you need to update the VoiceRe-
corder to use the BackgroundAudioPlayer instead of a SoundEffectInstance to play
and pause audio files. The application tells the BackgroundAudioPlayer which audio
file to play using the Track property. Open MainPage.xaml.cs, find the PlayFile
method, and replace the code using the SoundEffect class and the audioPlayerIn-
stance field with the code in the following snippet:

Uri fileUri = new Uri(filename, UriKind.Relative);
BackgroundAudioPlayer.Instance.Track = new AudioTrack(
 fileUri, filename, "Windows Phone 7 in Action", null, null, null,
 EnabledPlayerControls.Pause);

BackgroundAudioPlayer.Instance.Play();

195Playing recorded audio with a background agent
Once the track is specified, you ask the background agent to play the voice recording
by calling the BackgroundAudioPlayer’s Play method. You access the singleton
instance of the BackgroundAudioPlayer using the static Instance property.

 The Track property is of type AudioTrack and
you construct a new AudioTrack by specifying the
URI to the voice recording in isolated storage, the
title, and artist. You use the filename as the track’s
title, and the string “Windows Phone 7 in Action”
as the track’s artist. You also specify that only the
pause control should be enabled in the Universal
Volume Control.

 The host application isn’t the only process that
controls background audio playback. Background
audio agents automatically integrate with the Uni-
versal Volume Control (UVC). Normally, the UVC
allows the user to fast forward, rewind, skip previous, and skip back. When you created
the AudioTrack, you specified that only the pause control should be enabled, and the
UVC for the VoiceRecorder (shown in figure 7.6) disables the rewind/skip previous
and fast forward/skip next buttons.

 Remember that the user can pause the voice recording within the VoiceRecorder
application by pressing the Play button during playback. You need to replace the
pause code in the play_Click method so that it also uses the BackgroundAudioPlayer
instead of the audioPlayerInstance field:

private void play_Click(object sender, EventArgs e)
{
 if (BackgroundAudioPlayer.Instance.PlayerState == PlayState.Playing)
 {
 BackgroundAudioPlayer.Instance.Pause();
 }

 ...
}

The BackgroundAudioPlayer reports the current playback state through the Player-
State property and the PlayState enumeration. The PlayState enumeration
defines a dozen different states including Playing, Paused, and Stopped. In this code,
if the state is Playing, you call the Pause method.

 Note that calling the Play or Pause methods from the foreground applications
doesn’t result in the voice recording actually playing. When the foreground applica-
tion calls Play, Pause, or the other playback control methods, a message is sent to the
background agent. It’s the responsibility of the background agent to handle the fore-
ground requests. The BackgroundAudioPlayer delivers messages to the background
agent with the OnUserAction override method.

 The OnUserAction method is sent information about the action to be performed
through a UserAction enumeration value. Possible actions include Stop, Pause, Play,

Figure 7.6 Voice recordings in the
Universal Volume Control

196 CHAPTER 7 Integrating with the Pictures and Music + Videos Hubs
SkipNext, SkipPrevious, FastForward, Rewind, and Seek. The VoiceRecorder sample
application only uses Play and Pause, so those are the only actions your background
agent will support.

 The AudioPlayer class generated by the project template contains a default imple-
mentation of the OnUserAction. Open the AudioPlayer.cs file and review the gener-
ated code. When the user action is Play or Pause, the corresponding method on the
passed-in BackgroundAudioPlayer instance is invoked. Calling the Play methods from
the background application does cause the audio file playback to start or continue. You
learned in chapter 3 that NotifyComplete method is called by a background agent to
inform the operating system that it has successfully completed its work.

 Use the OnPlayStateChanged override method to detect when the audio track has
finished or stopped. OnPlayStateChanged will be called with Stopped and then with
Shutdown when the user picks a song from the music library. OnPlayStateChanged is
called with TrackEnded once the audio track finishes.

 You’ve now created a simple voice recorder for Windows Phone. There are a lot of
ways that you can improve this application to have a more professional voice recorder.
As this is just an example, we’ll leave those improvements for you. One other audio
media format can be used with the Windows Phone—FM radio.

7.6 Listening to FM radio
In this section, you’re going to learn about the built-in FM radio. Microsoft’s Windows
Phone hardware specification requires all devices to have an FM radio. The radio isn’t
present in the emulator, so you’ll need a device and headphones to test the sample. Please
ensure that you close the Zune software on the PC and run WPConnect.exe when you’re
testing. We’re going to walk you through building a sample application in this section, but
a working FM radio sample project is included in the book’s sample source code.

 The Windows Phone class library provides access to the radio hardware with the
FMRadio class in the Microsoft.Devices.Radio namespace. The FM radio is con-
trolled through a singleton instance of the FMRadio class. The singleton is exposed to
your code through the static Instance property. The other properties of the FMRadio
class are described in table 7.2.

Table 7.2 FMRadio properties

Property name Description

CurrentRegion A RadioRegion enumeration value representing Europe, Japan, or the
United States.

Frequency The Frequency must be set to a double value appropriate to the
current region.

PowerMode The current power state of the radio. The radio is turned on or off by setting the
PowerMode property.

SignalStrength The received radio strength indicator for the current frequency. The strength will
be set to zero if the Universal Volume Control is used to pause radio play.

197Summary
Windows Phone currently supports three frequency regions—Europe, Japan, and the
United States. These aren’t true geographic regions, but define a range of frequencies
commonly used in these geographic regions. Your country may not be in Europe,
Japan, or the United States but would fall into one of the three frequency regions.
The appropriate frequency region value depends on how FM stations are broadcasting
in your area. For example, in Singapore, there’s a popular FM radio station that broad-
casts at 91.3 MHz. Phone users in Singapore can listen to the FM radio with Windows
Phone even though Singapore isn’t located in Europe, Japan, or the United States.
You need to set the current frequency region based on the range of frequencies that you
want to allow. Otherwise, the Frequency property will throw an exception. Table 7.3
shows the regions and their corresponding frequencies.

The FM radio hardware is activated and powered on with the PowerMode property. An
application turns on the radio by setting the PowerMode property to On, as defined by
the RadioPowerMode enumeration:

FMRadio.Instance.PowerMode = RadioPowerMode.On

The FM radio remains powered on when your application is deactivated or exited.
Since this can be a potential battery drain, applications should either explicitly turn
off the FM radio in the Deactivated or Closing event handlers, or provide the user
with an application setting to leave the FM radio on. If an application leaves the FM
radio running, the user can change the FM radio settings with the radio user interface
in the Music + Videos Hub.

 The user can also use the Universal Volume Control to stop the radio. The user
may even change the radio settings with the UVC while the application is running.
When the user presses the pause button in the UVC, the radio remains powered on,
but the sound is muted and the SignalStrength property reports a value of zero.

7.7 Summary
You started the chapter by updating the PhotoEditor sample application introduced
in chapter 6. You learned about the Pictures and Music + Videos Hubs. You now
understand that those hubs are the applications where all photos, songs, videos, and
podcasts are stored in your phone. We analyzed the Pictures Hub from both the end-
user and developer perspectives. You registered the PhotoEditor application as an
extension of Pictures Hub with App Connect for Windows Phone.

Table 7.3 FM Radio regions and frequencies

Region Frequency

US 87.9-107.9 MHz in increment of 0.2

Japan 76.0-90.0 MHz in increment of 0.1

Europe 87.5 to 108.0 MHz

198 CHAPTER 7 Integrating with the Pictures and Music + Videos Hubs
 We explored recording the voice using the Windows Phone microphone and
extending the Music + Videos Hub. The last section discussed how to access the radio
hardware built into the phone. The API for FM radio is simple but you need to keep in
mind radio regions and frequencies.

 In the next chapter you’ll learn how to use the phone sensors, such as the acceler-
ometer and the gyroscope. You’ll also look at how to interact with location services.

Using sensors
Some really cool applications can be built combining sensors with other features of
the phone. Applications might respond to a user shaking the device by randomly
selecting an object or clearing the screen. Games can use the device’s movement as
an input mechanism, basically turning the whole phone into a game controller.
Another class of applications augments the real world with computer-generated
information. Augmented reality apps can show you the location of friends nearby
relative to your current location. Astronomy applications determine the position of
your device and identify the stars in the night sky. A tourist application might be
able to identify nearby landmarks.

 All of these applications require sensor input from the physical world. The
phone’s accelerometer, compass, and gyroscope sensors capture input from the
real world and serve the data to applications through the Windows Phone SDK’s
Sensor API. When combined with location data from the phone’s Location Service,

This chapter covers
■ Sensor API design
■ Interpreting sensor data
■ Using sensors in the emulator
■ Moving with the motion sensor
199

200 CHAPTER 8 Using sensors
stunning augmented reality applications are possible. We discuss the location service
in chapter 13.

 Dealing with raw data from the sensors can be tricky, especially when trying to cal-
culate the direction in which a device is pointed. The Motion sensor takes input from
each of the other sensors, performs several complex calculations, and provides data
related to motion and a device’s relative position in the real world.

 In this chapter you’re going to build two similar sample applications. The first sam-
ple application uses the Accelerometer, Compass, and Gyroscope to demonstrate how
the sensors are similar, and how they differ. The second sample application demon-
strates how the Motion sensor is a wrapper around the three other sensors.

 Before we dive into the first sample application, we introduce the common Sensor
API that’s the foundation for the sensors exposed by the Windows Phone SDK.

8.1 Understanding the sensor APIs
Whereas the Accelerometer, Compass, Gyroscope, and Motion sensors each return dif-
ferent types of data, they each implement the same pattern for reporting their data.
Over the next several pages, you’ll learn techniques that are useful for reading data
from any of the sensors. We show you these techniques as you build the foundation of
the sample application.

 The classes and interfaces that comprise the Sensor API are found in the Microsoft
.System.Devices namespace which is implemented in the assembly with the same
name. Projects that use the Sensor API must include a reference to the Microsoft
.System.Devices assembly, as well as the Microsoft.Xna.Framework assembly. The
Sensor API uses the Vector3, Matrix, and Quaternion structs defined in the Microsoft
.Xna.Framework namespace.

 The Accelerometer, Compass, Gyroscope, and Motion sensors share a common base
class named SensorBase. The SensorBase class is a generic class where the type parame-
ter is a class that implements ISensorReading. We can look at how the Accelerometer
class is declared in an example:

public sealed class Accelerometer : SensorBase<AccelerometerReading>

The ISensorReading interface is a marker interface defining a single DateTimeOffset
property named Timestamp. The SensorBase class defines the common behavior of
the sensor implementations. SensorBase declares one event and several properties
and methods, which are described in table 8.1.

Table 8.1 SensorBase members

Member Type Description

CurrentValue Property The read-only ISensorReading containing the currently
available sensor data.

CurrentValueChanged Event The event raised when the CurrentValue property
changes.

201Understanding the sensor APIs
An application obtains the current sensor reading by calling the CurrentValue
method. Alternatively, an application can subscribe to the CurrentValueChanged
event to receive a sensor reading only when the CurrentValue property changes. The
CurrentValue can be read even when the sensor isn’t started, but the value returned
may not be valid and IsDataValid will return false.

NOTE If the ID_CAP_SENSORS capability isn’t present in the WMAppManifest
.xml file, attempts to read the current value, set the time between updates, or
start the sensor will result in a UnauthorizedAccessException.

Each of the sensor classes defines a static method named IsSupported. The IsSupported
method allows a developer to determine whether the sensor hardware is installed on
a particular device and whether the sensor is available to the application. If the
IsSupported method returns false, attempts to read the current value, set the time
between updates, or start the sensor will result in an InvalidOperationException.

 The Sensor API handles fast application switching on its own. Developers don’t
need to unhook the sensors when the application is switched from the foreground.
Unlike the camera, sensors automatically resume and don’t provide an explicit
restore method. When the application is resumed, the sensors and events are recon-
nected and data starts to flow again. Before you learn how to work with the data
flowing from the sensors, you need to understand how the sensors report data in
three dimensions.

8.1.1 Data in three dimensions

Each of the sensors reports data relative to the x, y, z coordinate system defined by the
Windows Phone device. The device’s coordinate system is fixed to the device, and
moves as the phone moves. The x axis extends out the sides of the device, with positive
x pointing to the right side of the device, and negative x pointing to the left side of the
device. The y axis runs through the top and bottom of the device, with positive y
pointing toward the top. The z axis runs from back to front, with positive z pointing

Dispose Method Releases the hardware and other resources used by
the sensor.

IsDataValid Property A read-only property that returns true if
CurrentValue contains valid data.

Start Method Enables the sensor and begins data collection.

Stop Method Disables the sensors and ends data collection.

TimeBetweenUpdates Property Specifies how often the sensor reads new data. The
CurrentValue property will only change once every
time interval.

Table 8.1 SensorBase members (continued)

Member Type Description

202 CHAPTER 8 Using sensors
out the front of the device. Figure 8.1 shows the x, y, and z axes from three different
views of a phone.

 The coordinate system used by the sensors doesn’t necessarily match the coordi-
nate system used by other APIs. One example is the coordinate system used by Silver-
light. In portrait mode Silverlight, the y axis points in the opposite direction, with
positive y pointing out the bottom of the device. Now that you understand the coordi-
nate system used by the sensors, let’s take a closer look at reading data from the sensors.

8.1.2 Reading data with events
Each of the sensors supports an event-driven interaction model with the CurrentValue-
Changed event. The CurrentValueChanged event sends a SensorReadingEventArgs
instance to an event handler. SensorReadingEventArgs is a generic class where the
type parameter is a class that implements ISensorReading. The type parameter
matches the type parameter defined by the SensorBase class. The SensorReading-
EventArgs class has a single property name SensorReading, which returns the data
contained in the sensor’s CurrentValue property at the time the event was raised.

 The CurrentValueChanged event handler is called on a background thread. If the
event handler updates the user interface, the update logic must be dispatched to
the UI thread. The following code snippet shows an example that handles the Current-
ValueChanged event from the motion sensor:

void sensor_CurrentValueChanged(object sender,
 SensorReadingEventArgs<MotionReading> e)
{
 MotionReading reading = e.SensorReading;
 Dispatcher.BeginInvoke(() =>
 {
 // add logic here to update the UI with data from the reading
 ...
 }
}

You’ll use CurrentValueChanged later in the chapter when you build the second
sample application. The first sample application will poll for data using the Current-
Value property.

Figure 8.1 The x, y, z
coordinate system as defined
by a Windows Phone

203Creating the sample application
8.1.3 Polling for data

An application doesn’t need to wait for the sensor to raise an event to ask for data.
Each sensor exposes data through the CurrentValue property. The CurrentValue
property can be read whenever the application data determines it needs new data. For
example, the reading might be initiated from a button click, a timer tick event, or a
background worker:

if (Compass.IsSupported && compassSensor.IsDataValid)
{
 CompassReading reading = compassSensor.CurrentValue;
 // add logic here to use the data from the reading
 ...
}

You’ll read sensor data from a timer tick event in
your first sample application. Before we can show
you the sensors in action, you need to create a new
project and prepare the application to display sen-
sor data.

8.2 Creating the sample application
Open Visual Studio and create a new Windows
Phone Application named Sensors. The sample
application will read values from the Accelerometer,
the Compass, and the Gyroscope. By default,
Windows Phone Application projects don’t refer-
ence either the Sensors or the XNA Framework
assemblies, and you need to add references to
Microsoft.Devices.Sensors.dll and Microsoft.Xna
.Framework.dll.

 The sample application, shown in figure 8.2,
displays a set of colored bars for each of the sen-
sors. Each set of bars displays sensor readings for
the x, y, and z coordinates. At the bottom of the
screen, the application displays a legend and infor-
mational messages about the sensors.

 When a sensor’s value is positive, a bar will be
drawn to scale above the effective zero line. A nega-
tive sensor value results in a bar drawn below the zero line. Since the range of possible
values differs between each sensor, the height of the bar is transformed from the sen-
sors value into a pixel height using a scaling factor. We’ll talk more about each sensor’s
range of values throughout the chapter. First, you’ll create a reusable control to dis-
play the positive and negative bars.

Figure 8.2 The Sensors sample
application

204 CHAPTER 8 Using sensors
8.2.1 Creating a reusable Bar control

To simplify your application, you’ll use a reusable control that allows you to set a scale fac-
tor and a sensor value. When the scale or value properties change, the control should
draw the appropriate positive or negative bar, and display the value with a label. You’ll
implement the control using the Windows Phone User Control item template. Name the
new item Bar. The XAML markup for the new control is shown in the next listing.

<Grid x:Name="LayoutRoot">
 <Grid.RowDefinitions>
 <RowDefinition Height="1*" />
 <RowDefinition Height="1*" />
 </Grid.RowDefinitions>
 <Rectangle x:Name="positiveBar" VerticalAlignment="Bottom" />
 <Rectangle x:Name="negativeBar" Grid.Row="1" VerticalAlignment="Top" />
 <TextBlock x:Name="label" VerticalAlignment="Center"
 Grid.RowSpan="2" Text="0" TextAlignment="Center" />
</Grid>

The grid is divided into two halves B with each half containing a Rectangle. The first
Rectangle displays positive values and the other represents negative values. A label is
placed right in the middle c to show the bar’s value.

 Pages that host a Bar control need the ability to set different fill colors for the rect-
angles. Add a new property named BarFill to Bar.xaml.cs code behind file:

public Brush BarFill
{
 get { return positiveBar.Fill; }
 set
 {
 positiveBar.Fill = value;
 negativeBar.Fill = value;
 }
}

The setter for the BarFill property assigns the specified Brush to both the positive-
Bar and negativeBar rectangles.

NOTE If you were building a proper reusable Silverlight control, the BarFill
property and the other properties you’re going to create would be depen-
dency properties. You’d declare template parts and your XAML markup
would be the default template. See the book Silverlight 5 in Action for more
details on building reusable Silverlight controls.

Next you create properties to set the scale and value for the bar. Since you don’t know
the full range of values, you need the caller to tell the control how to scale the value
to the height of the rectangles. Let’s say you need the bar to display a value between 2
and -2, and the Bar control is 200 pixels high. A value of 2 would require the positive
bar to be a hundred pixels high, whereas a value of -1 would require the negative bar

Listing 8.1 Markup for the Bar control

Divide control
into two rows

b

Center
label

c

205Creating the sample application
to be 50 pixels high. The next listing details how the bar height is calculated using the
Scale and Value properties.

private int scale;
public int Scale
{
 get { return scale; }
 set
 {
 scale = value;
 Update();
 }
}

private float barValue;
public float Value
{
 get { return barValue; }
 set
 {
 barValue = value;
 Update();
 }
}

private void Update()
{
 int height = (int)(barValue * scale);
 positiveBar.Height = height > 0 ? height : 0;
 negativeBar.Height = height < 0 ? height * -1 : 0;
 label.Text = barValue.ToString("0.0");
}

You implement both the Scale and the Value properties with backing fields and sim-
ple getters and setters. Inside the setter of each property, you call the Update method B
to recalculate the height of the bar rectangles and update the user interface. Inside
the Update method you multiply the scale and barValue fields c, and the resulting
value is the number of pixels high the bar should be drawn. If the calculated height value
is greater than 0, the positiveBar’s Height is updated to the new value. If the calcu-
lated height value is less than zero, you invert the calculated value d before assigning
the negativeBar’s height. Finally, you use the ToString method with a formatting
string to set the label’s Text property.

 Now that you have a bar control, you can create your application’s user interface.
You need to add an XML namespace to MainPage.xaml so that you can use your new
bar control:

xmlns:l="clr-namespace:Sensors"

You’re now ready to use the Bar control in the MainPage’s XAML markup. You need to
design the MainPage to have three Bar controls for each sensor, for a total of nine
Bar controls.

Listing 8.2 Calculating bar height with the Scale and Value properties

Recalculate when
properties changeb

Calculate
height of bar

c

Invert negative
heightd

206 CHAPTER 8 Using sensors
8.2.2 Designing the main page

If you look at the screenshot in figure 8.2, you’ll notice that MainPage.xaml is divided
into three rows and several columns. The markup for the ContentPanel of MainPage
.xaml is shown in the next listing.

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <Grid.RowDefinitions>
 <RowDefinition Height="25" />
 <RowDefinition Height="400" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="40" />
 <ColumnDefinition Width="40" />
 <ColumnDefinition Width="40" />
 <ColumnDefinition Width="48" />
 <ColumnDefinition Width="40" />
 <ColumnDefinition Width="40" />
 <ColumnDefinition Width="40" />
 <ColumnDefinition Width="48" />
 <ColumnDefinition Width="40" />
 <ColumnDefinition Width="40" />
 <ColumnDefinition Width="40" />
 </Grid.ColumnDefinitions>

 <TextBlock Text="X" Grid.Column="1" />
 <TextBlock Text="Y" Grid.Column="5" />
 <TextBlock Text="Z" Grid.Column="9" />

 <l:Bar x:Name="accelX" Grid.Row="1" Grid.Column="0"
 BarFill="Red" Scale="100" />
 <l:Bar x:Name="accelY" Grid.Row="1" Grid.Column="4"
 BarFill="Red" Scale="100" />
 <l:Bar x:Name="accelZ" Grid.Row="1" Grid.Column="8"
 BarFill="Red" Scale="100" />

 <l:Bar x:Name="compassX" Grid.Row="1" Grid.Column="1"
 BarFill="Yellow" Scale="4" />
 <l:Bar x:Name="compassY" Grid.Row="1" Grid.Column="5"
 BarFill="Yellow" Scale="4" />
 <l:Bar x:Name="compassZ" Grid.Row="1" Grid.Column="9"
 BarFill="Yellow" Scale="4" />

 <l:Bar x:Name="gyroX" Grid.Row="1" Grid.Column="2"
 BarFill="Blue" Scale="32" />
 <l:Bar x:Name="gyroY" Grid.Row="1" Grid.Column="6"
 BarFill="Blue" Scale="32" />
 <l:Bar x:Name="gyroZ" Grid.Row="1" Grid.Column="10"
 BarFill="Blue" Scale="32" />

 <StackPanel Grid.Row="2" Grid.ColumnSpan="11">
 <TextBlock Foreground="Red" Text="Accelerometer (g)" />
 <TextBlock x:Name="heading" Foreground="Yellow" Text="Compass (uT)"/>

Listing 8.3 Markup for MainPage.xaml

Eleven
columns

b

Three bars for
each sensor

c

Legend and
messages

d

207Creating the sample application
 <TextBlock Foreground="Blue" Text="Gyroscope (rad/sec)" />
 <TextBlock x:Name="messageBlock" Text="Press Start" />
 </StackPanel >
</Grid>

You start by dividing the ContentPanel into three rows and eleven columns B. The
first row contains three TextBlocks serving as the titles for the x, y, and z coordinates.
The second row shows three bars c for each of the Accelerometer, Compass, and
Gyroscope sensors. The Bar controls are 400 pixels high divided into positive and neg-
ative sections of 200 pixels each. Allowing for three columns for each sensor, and two
spacer columns, you need a total of eleven columns. The last row d contains a legend
and messages.

 Each Bar control is assigned a BarFill color—red for accelerometer values, yellow
for compass values, and blue for gyroscope values. Each Bar control is also assigned a
scale value. We’ll describe how the scale factors were calculated in our detailed discus-
sion of each sensor later in the chapter.

 The last things you need for your application are application bar buttons to start
and stop the sensors:

<phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar IsVisible="True" IsMenuEnabled="False">
 <shell:ApplicationBarIconButton Text="start" Click="start_Click"
 IconUri="/Images/appbar.transport.play.rest.png" />
 <shell:ApplicationBarIconButton Text="stop" Click="stop_Click"
 IconUri="/Images/appbar.cancel.rest.png" />
 </shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>

Create a project folder named Images and add the two images to the project. The
images can be found in the Icons folder of the Windows Phone 7.1 SDK. Be sure to set
the image’s build property to Content.

8.2.3 Polling sensor data with a timer
In the sample application you update the screen with data from three different sen-
sors. To simplify the logic, you’re not going to use the CurrentValueChanged events
for the sensors, and will use a polling method instead. You’ll use a DispatchTimer to
update the user interface about 15 times a second. Add a DispatchTimer field:

DispatcherTimer timer;

You initialize the timer field inside the MainPage constructor. You ask the timer to
Tick every 66 milliseconds or about 15 times a second. You’ll poll each of the sensors
inside the timer_Tick method:

public MainPage()
{
 InitializeComponent();

 timer = new DispatcherTimer();
 timer.Tick += timer_Tick;

208 CHAPTER 8 Using sensors
 timer.Interval = TimeSpan.FromMilliseconds(66);
}

The timer is started in the start_Click method. When the timer is started, you
update the message displayed in the TextBlock named messageBlock to let the user
know which sensors have been started:

private void start_Click(object sender, EventArgs e)
{
 if (!timer.IsEnabled)
 {
 string runningMessage = "Reading: ";
 timer.Start();
 messageBlock.Text = runningMessage;
 }
}

You’ll add additional code to the start_Click method as you hook up the
Accelerometer, Compass, and Gyroscope later in the chapter.

 The timer is stopped in the stop_Click method. When the timer is stopped, you
update the message displayed in the user interface:

private void stop_Click(object sender, EventArgs e)
{
 timer.Stop();
 messageBlock.Text = "Press start";
}

You’ll also update the stop_Click method as you hook up the sensors in later sections
of the chapter.

 You could run the application now to check that the form is laid out as you expect,
but the application doesn’t do anything interesting yet. You’ll remedy that by adding
in the accelerometer sensor.

8.3 Measuring acceleration with the accelerometer
The accelerometer can be used in games and applications that use phone movement
as an input mechanism or for controlling game play. The Accelerometer tells you
when the device is being moved. It can also tell you whether the device is being held
flat, at an angle, or straight up and down.

 The accelerometer measures the acceleration component of the forces being
applied to a device. Note that acceleration due to gravity isn’t reported by the sensor.
Unless the device in is free fall, forces are always being applied to a device. The
Accelerometer reports numbers in terms of the constant g, which is defined as the
acceleration due to Earth’s gravity at sea level. The value of g is -9.8 m/s2.

 When a device is at rest lying on a table, the table is exerting a force on the device that
offsets the pull of gravity. The Accelerometer measures the acceleration of the force the
table applies. When the device is falling, the accelerometer reports zero acceleration.

 Now consider when you push the device along the surface of the table. Other
forces are now in play such as the force being applied by your hand and the force

209Measuring acceleration with the accelerometer
due to friction between the device and the table. The Accelerometer measures all of
these forces.

NOTE In the Windows Phone 7.0 SDK, the Accelerometer class didn’t inherit
from SensorBase and was updated in the 7.1 SDK to conform to the Sensor-
Base API. To avoid breaking changes between 7.0 and 7.1, Microsoft left
the original API intact. The obsolete members include the accelerometer’s
ReadingChanged event and the AccelerometerReadingEventArgs class.

When a user shakes a phone, the x, y, and z acceleration values will rapidly change
from one extreme to another in a fairly random pattern. By examining the x, y, and z
values of the accelerometer, and how they change from one reading to the next, you
can determine whether the device is in motion, and how the device is being held.
Before we get into the details about exactly what the accelerometer measures and
what the reported values mean, you’ll hook up the sensor to the bars displayed in the
user interface of your application.

8.3.1 Hooking up the sensor
The sample application you built in the previous section is designed to show how the
data returned by the sensors changes as the user moves the phone. To see how
the accelerometer data changes, you just need to read the CurrentValue property
from an Accelerometer instance and update the three Bar controls allocated for the
accelerometer’s x, y, and z values. Before you can hook up a sensor, you need to
declare a member field to reference the Accelerometer instance:

Accelerometer accelSensor;

In the MainPage constructor, initialize the field and set the TimeBetweenUpdates.
You only set the property if the sensor is supported by the phone, so you check the
IsSupported property. You set the TimeBetweenUpdates to match the tick interval of
the DispatchTimer you use to trigger user interface updates:

if(Accelerometer.IsSupported)
{
 accelSensor = new Accelerometer();
 accelSensor.TimeBetweenUpdates = TimeSpan.FromMilliseconds(66);
}

Next you start the sensor in the start_Click method. Add the following snippet right
before the line where the timer’s Start method is called:

if (Accelerometer.IsSupported)
{
 accelSensor.Start();
 runningMessage += "Accelerometer ";
}

You’re adding the string Accelerometer to the message you display in the user interface,
informing the user that the accelerometer was started. You only start the sensor if
it’s supported.

210 CHAPTER 8 Using sensors
 You also must stop the sensor in the stop_Click method when the Stop button
is clicked:

if (Accelerometer.IsSupported)
 accelSensor.Stop();

The final step is to read the accelerometer data when the timer ticks and the timer_Tick
event handler is called. You’re going to isolate the code that reads the accelerometer
data into a method named ReadAccelerometerData. The timer tick method calls the
ReadAccelerometerData method, which is shown in the next listing.

void timer_Tick(object sender, EventArgs e)
{
 ReadAccelerometerData();
}

private void ReadAccelerometerData()
{
 if (Accelerometer.IsSupported)
 {
 AccelerometerReading reading = accelSensor.CurrentValue;
 Vector3 acceleration = reading.Acceleration;
 accelX.Value = acceleration.X;
 accelY.Value = acceleration.Y;
 accelZ.Value = acceleration.Z;
 }
}

First you check whether the Accelerometer is supported before getting the current
AccelerometerReading value from the sensor. Next you obtain the acceleration vector
from the reading B. The acceleration vector reports acceleration values in the three
directions of the phone’s coordinate system. Finally, you update the Bar controls in the
user interface with the x, y, and z properties reported by the acceleration vector c.

 When you created the Bar controls for the accelerometer in MainPage.xaml, you
set the Scale property to 100. The Bar controls are 400 pixels high allowing for posi-
tive and negative sections of 200 pixels each. The maximum value of the acceleration
vector is ±2. Using this information, you can determine that the scale factor for the
bar should be 100, or 200/2.

 At this point, you should be able to run the application. If you run the application
on a physical device, you should see the bars grow and shrink as you move the device
about. Tilt it front to back, tilt it side to side, lay it down flat, hold it upside down. You
can mimic all of these movements in the emulator using the accelerometer tool.

8.3.2 Acceleration in the emulator

With the Sensors sample application open in Visual Studio, run the application on the
emulator and tap the application bar button labeled Start to begin collecting accelera-
tion data. The emulator’s default position is standing in portrait layout and the

Listing 8.4 Reading acceleration

Get acceleration
vector

 b

Update user
interface

c

211Measuring acceleration with the accelerometer
accelerometer reports an acceleration of -1 along the y axis. Open the Additional Tools
windows using the expander button on the emulator’s control bar. The Accelerometer
Tool, shown in figure 8.3, is found in the first tab of the Additional Tools window.

 The Accelerometer Tool allows you to move the device by dragging the orange
dot. The device can also be changed from the Portrait Standing orientation to Portrait
Flat, Landscape Standing, and Landscape Flat. The Accelerometer also plays a canned
script that mimics shaking the device.

 With the Sensors application running in the emulator, you should see the bars
grow and shrink as you move the device about with the orange dot. Play the Shake
script and watch how the acceleration bars bounce up and down as the data changes.
Now that you have a better idea of the numbers reported by the Accelerometer, let’s
take a closer look at exactly what the numbers mean.

8.3.3 Interpreting the numbers

The accelerometer sensor in the phone senses the acceleration due to forces applied
to the phone but ignores the acceleration due to gravity. When a device is at rest lying
on a table, the table is exerting a force on the device that offsets the pull of gravity.
The accelerometer measures the acceleration of the force that the table applies to
the device. When the device is falling, the accelerometer reports zero acceleration.
Figure 8.4 demonstrates the values reported by the accelerometer when a phone is
held in various positions.

 If the number reported by the device is related to the force a surface exerts on the
device, why is the number negative instead of positive? Remember that the number

Figure 8.3 Controlling acceleration with the emulator’s Accelerometer Tool

212 CHAPTER 8 Using sensors
reported is in terms of g or gravity, and g equals -9.8 m/s2, a negative number. When
the accelerometer reports a -1 (or a vector 1 pointing down), it really means a vector
with the value 9.8 pointing up. Table 8.2 lists the approximate x, y, z values reported
by the Accelerometer when the device is at rest in various positions.

When you move a device, you apply a force along the direction you want the device
to move. The force causes the device to accelerate, acceleration changes the veloc-
ity of the device, and it starts to move. Let’s say your phone is resting flat face up on
the surface of a table at point A. Now you give your device a modest push so that it
slides along the surface to point B. The initial push is a moderate force in the posi-
tive X axis. After you release the device, allowing it to slide, your initial force stops,
and the force due to friction begins to slow down the device until it stops moving.
Figure 8.5 shows the values reported by the accelerometer in this scenario. The

Table 8.2 Accelerometer readings with the device at rest

Position X Y Z

In free fall 0g 0g 0g

Flat on back, lying on a surface 0g 0g -1g or 9.8 m/s2

Flat on face 0g 0g 1g or -9.8 m/s2

Standing portrait, bottom is down 0g -1g or 9.8 m/s2 0g

Standing portrait, top is down 0g 1g or -9.8 m/s2 0g

Standing landscape, left is down -1g or 9.8 m/s2 0g 0g

Standing landscape, right is down 1g or -9.8 m/s2 0g 0g

Figure 8.4 Acceleration from
the forces on a device at rest

213Finding direction with the Compass
numbers are somewhat contrived, as real numbers will vary based on how hard the
initial push is, and the amount of friction between the phone and the surface it’s
resting upon.

 Again, note that the numbers reported by the accelerometer are opposite what you
might expect. You push the device in the direction of the positive x axis, but the num-
ber reported is a negative value. Remember that the number reported is in terms of g
or gravity, and g equals -9.8 m/s2.

 The figure demonstrates the forces involved with pushing a phone across a table.
This is probably not something you do often. The same concepts can be applied when
the device is moving in a user’s hand. When motion begins, the user’s hand is apply-
ing a force to the device in the direction of motion. When motion ends, the user’s
hand is applying force in the direction opposite the motion. When the user is moving
the device, there may be a period between start and stop when the device is moving at
a constant rate, and the acceleration in the direction of motion is zero.

 By detecting changes in acceleration values, an application can determine when
the device is being moved. The acceleration data can also tell you whether the device
is being held flat, at an angle, or straight up and down. What the accelerometer can’t
tell you is which direction the device is pointed. If you need to know the direction the
device is pointed, use the Compass.

8.4 Finding direction with the Compass
The Compass is useful when an application needs to know which direction a device is
pointed relative to the real world. The direction is reported relative to the North Pole.
This information is useful for applications such as the astronomy application we dis-
cussed earlier, where the application updates the display based on the direction the
user is facing. The Compass is also useful in motion-sensitive applications that need to
know when a device is rotated.

 The Compass senses the strength and direction of the Earth’s magnetic field. The
Compass sensor decomposes the magnetic field into x, y, and z vectors, and reports the
magnitude of the vectors in microteslas (µT). A tesla is the standard unit of measure-
ment for a magnetic field.

 The vertical intensity of the magnetic field (the z value when holding the device flat
on a level surface) varies based on the latitude you’re in. If you’re near the equator, the

Figure 8.5 Acceleration
due to motion

214 CHAPTER 8 Using sensors
vertical intensity will be nearly 0 µT. If you’re in the far north
(or south) the vertical intensity may be as high as 56 µT. The
horizontal intensity varies inversely with latitude. At the equa-
tor, the horizontal intensity will be somewhere in the neigh-
borhood of 32 µT. In the far north (or south) the horizontal
intensity may be around 4 µT. The absolute intensity, which is
the combination of horizontal and vertical intensity, varies as
well. Figure 8.6 depicts the horizontal and vertical intensity
vectors for a device held parallel to the Earth’s surface.

 The horizontal intensity vector points to magnetic north.
The Compass is able to use this information to report head-
ing, or the direction the device is pointing. The Compass
reports heading compared to magnetic north and a true head-
ing relative to the geographic north. The Compass reports
heading as the number of degrees the device is turned clock-
wise from north.

NOTE The Compass API was introduced in the Windows Phone 7.1 SDK.
Many of the original 7.0 phones shipped with a compass but didn’t ship with
appropriate compass driver software. When the Windows Phone 7.5 update
shipped, most phones also received updated drivers from the manufacturer
to enable compass support. The Compass may not be supported on these
phones since some phone models didn’t receive new drivers, whereas other
phones didn’t successfully apply the driver update.

The Compass reports information with the CompassReading structure. The device
direction is read with the MagneticHeading and TrueHeading properties. The mag-
netic intensity vectors are available from the MagnetometerReading property. Before
we look closer at the CompassReading, you’ll hook up the sensor to the bars displayed
in the user interface of your application.

8.4.1 Hooking up the sensor

This section is going to look a whole lot like the section where you hooked up the
accelerometer. You need to initialize the sensor in the constructor, start and stop it in
the click event handlers, and create a method to read the sensor data. You start by
defining a field in the MainPage class:

Compass compassSensor;

Next you initialize the sensor in the MainPage constructor. Before constructing the
sensor, you first check whether the Compass is supported. After constructing the sen-
sor you set the TimeBetweenUpdates:

if (Compass.IsSupported)
{
 compassSensor = new Compass();

Figure 8.6 The vertical
intensity vector points
down into the Earth,
whereas the horizontal
intensity vector points at
the magnetic North Pole.

215Finding direction with the Compass
 compassSensor.TimeBetweenUpdates = TimeSpan.FromMilliseconds(66);
}

You start the sensor in the start_Click method:

if (Compass.IsSupported)
{
 compassSensor.Start();
 runningMessage += "Compass ";
}

You stop the sensor in the stop_Click method:

if (Compass.IsSupported)
 compassSensor.Stop();

Finally you create the ReadCompassData method in order to update the user interface
with the sensor’s CurrentValue. The following listing contains the implementation of
the ReadCompassData method. Don’t forget to call the new ReadCompassData method
from the timer_Tick event handler.

void ReadCompassData()
{
 if (Compass.IsSupported)
 {
 CompassReading reading = compassSensor.CurrentValue;
 Vector3 magnetic = reading.MagnetometerReading;

 compassX.Value = magnetic.X;
 compassY.Value = magnetic.Y;
 compassZ.Value = magnetic.Z;

 heading.Text = string.Format(
 "Compass (µT) : Heading {0} +/- {1} degrees",
 reading.TrueHeading, reading.HeadingAccuracy);
 }
}

You start by retrieving the current CompassReading value B from the sensor and
you assign the MagnetometerReading to a Vector3 variable named magnetic. Next you
update the user interface with the x, y, and z values of the magnetic vector c. Finally
you update the message displayed near the bottom of the screen to show the values of
the TrueHeading and HeadingAccuracy properties d. The HeadingAccuracy is the
amount of potential error, in degrees, of the reported heading.

 The Scale property of the compass-related bar controls declared in Main-
Page.xaml has been set to the value 4. The approximate maximum value from the
magnetic vector is ±50 µT. Since the Bar controls are 400 pixels high and are divided
into positive and negative halves, you set the Scale property to 4 or 200/50.

 Now you’re ready to run the application. You must run the application on a physi-
cal device because the Compass isn’t supported on the emulator. When running the
application, you should see the bars grow and shrink as you move the device about.

Listing 8.5 Reading compass data

Get
reading

b

Update user
interface

c

Report heading
values

d

216 CHAPTER 8 Using sensors
Can you figure out where north is by interpreting the numbers reported in the
Bar controls?

8.4.2 Interpreting the numbers

We mentioned that the Earth’s magnetic field can be represented as horizontal and
vertical intensities. The MagnetometerReading represents the magnetic field as three
different vectors, one aligned with each of the device’s three axes. When you hold the
device flat with the top of the device pointed to the north, the vertical intensity is
aligned with the device’s z axis, and the horizontal intensity is aligned with the y axis.
If you spin the device so that it points to the northeast, the horizontal intensity is split
between the x and y axes. Figure 8.7 shows the MagnetometerReading values as a
device lying flat is pointed north, east, south, and west. The numbers in the figure are
approximate for a location on the Earth’s surface where the horizontal intensity is
near 15 µT.

 If you held the device standing vertical instead of flat, then the x and z axes would
report the horizontal intensity, whereas the y axis would report the vertical intensity of
the magnetic field. A device held at an angle relative to the ground would have a mix-
ture of vertical and horizontal intensities reported along each axis.

 No matter the angle the device is held, the heading properties will continue to
report how far from north the device is pointed. The HeadingAccuracy should always
have a small value. When the accuracy value grows, the sensor needs to be calibrated.

Figure 8.7 Examples of horizontal
intensity vectors when lying flat

217Pivoting with the Gyroscope
8.4.3 Calibrating the sensor

The Earth’s magnetic field is relatively weak. Items in the local environment, such as
strong magnets or large metal objects, will have an effect on the accuracy of the
Compass. When the HeadingAccuracy is off by more than 20 degrees, the phone will
raise the Calibrate event. When this happens, the phone wants the user to wave the
device about in the air for a bit until it gets a grip on reality again.

 You can ignore this event and nothing will happen, other than that the device will
continue to report a large accuracy value. The event is only raised once for each
instance of the Compass. If you’d like to be a responsible citizen, you should inform
the user to wave the phone about in the air until the heading accuracy is more reason-
able. You’ll add support for the Calibrate event to your sample application.

 In the MainPage constructor, subscribe to the Calibrate event right after the
Compass is constructed:

compassSensor.Calibrate += compassSensor_Calibrate;

Now define the Calibrate event handler. Your sample application displays a message
to the user asking them to wave the phone around in the air until the heading accu-
racy drops below 20 degrees. Other than displaying a message, the application can’t
do anything to help perform the calibration:

void compassSensor_Calibrate(object sender, CalibrationEventArgs e)
{
 Dispatcher.BeginInvoke(() =>
 MessageBox.Show("The compass sensor needs to be calibrated.

➥ Wave the phone around in the air until the heading accuracy

➥ value is less than 20 degrees")
);
}

The CalibrationEventArgs class doesn’t define any properties and is just a simple
derivation of the base EventArgs class.

 The Compass is useful when an application needs to know which direction the
device is pointed relative to the real world. If the device is turned or rotated, an appli-
cation can determine how much the device was turned by comparing the current
heading with a previous heading. The Compass isn’t very useful if your application
needs to be notified while the device is turning, or how quickly the device is turning.
The Gyroscope is ideal for applications that respond when the device is rotated.

8.5 Pivoting with the Gyroscope
The Gyroscope sensor reports how quickly the device is turning on one or more of its
axes. The rotational velocity is reported in radians per second, and when a device is
rotated in a complete circle it’ll rotate 2π radians or 6.28 radians. The values are
reported with counterclockwise being the positive direction.

218 CHAPTER 8 Using sensors
NOTE The gyroscope is optional hardware for Windows Phones and isn’t sup-
ported on many phones. The Gyroscope class’s IsSupported static property
should be checked before using the gyroscope sensor.

The gyroscope only reports turning motion around an axis and if the device is held
still, the sensor will report values of zero. If the device is moved from point A to point
B without any twisting motion, the gyroscope will also report zero.

 The Gyroscope reports values with the GyroscopeReading struct. Rotational veloci-
ties are read from the GyroscopeReading through the RotationRate property, a
Vector3 that breaks absolute movement into rotation about the x, y, and z axes. You’ll
now hook up the Gyroscope sensor to the user interface in your sample application so
you can see the numbers for yourself.

8.5.1 Hooking up the sensor

The sensor APIs are intentionally similar, and hooking up the Gyroscope in your sam-
ple application is nearly identical to hooking up the Accelerometer and Compass. You
start by declaring a field to reference the Gyroscope instance:

Gyroscope gyroSensor;

You then construct and initialize the field in the MainPage constructor:

if (Gyroscope.IsSupported)
{
 gyroSensor = new Gyroscope();
 gyroSensor.TimeBetweenUpdates = TimeSpan.FromMilliseconds(66);
}

The sensor is started in the start_Click method:

if (Gyroscope.IsSupported)
{
 gyroSensor.Start();
 runningMessage += "Gyroscope ";
}

The sensor is stopped in the sample application’s stop_Click method:

if (Gyroscope.IsSupported)
 gyroSensor.Stop();

As with the accelerometer and the compass sensors, you create a new method to read
the Gyroscope’s CurrentValue and update the user interface. The new method is
named ReadGyroscopeData, and is called from the timer_Tick method. The code for
ReadGyroscopeData is shown in the following listing.

void ReadGyroscopeData()
{
 if (Gyroscope.IsSupported)
 {

Listing 8.6 Reading gyroscope data

219Wrapping up with the motion sensor
 GyroscopeReading reading = gyroSensor.CurrentValue;
 Vector3 rotation = reading.RotationRate;

 gyroX.Value = rotation.X;
 gyroY.Value = rotation.Y;
 gyroZ.Value = rotation.Z;
 }
}

You start by retrieving the current GyroscopeReading value B from the sensor and
assign the RotationRate to a Vector3 variable named rotation. Next you update the
user interface with the x, y, and z values of the rotation vector c.

 When you created the Bar controls for the gyroscope in MainPage.xaml, you set
the Scale property to 32. The positive and negative bars are each 200 pixels each. You
assume the maximum rotation rate is a full spin once per second or ±2π radians per
second. With 2π equal to approximately 6.25, you calculated the scale of the Bar con-
trol at 32 or 200/6.25.

 What can you do to see the gyroscope bars move in the application? Let’s get dizzy.
Do you have a spinning office chair? If so, you can hold the device flat in your hand
and spin back and forth in your chair. You should see the Z-bar move up and down as
you spin. Another example is to hold the device in your hand so that it’s standing up
in portrait mode. Now tilt the phone back until it’s lying flat in your hand. You should
see the X-bar move down and report a negative value. Tilt the phone back up, and the
bar should move up and report a positive value.

 We’re now finished with the Sensors sample application. You’ve seen how each of
the hardware sensors is exposed by classes and structures in the Sensors API. The sen-
sors each return individual sets of data that can be used in various ways to build inter-
esting applications. Each of the sensors tell you different bits of information about
how the device is held, how the device is moving, and which direction the device in
pointed in. Correlating this information across sensors can be tricky, and involves a
solid understanding of physics, mathematics, and three-dimensional coordinate
spaces. The Windows Phone SDK provides the Motion class to perform these calcula-
tions for you.

8.6 Wrapping up with the motion sensor
Unlike the other sensors we’ve covered so far in this chapter, the motion sensor isn’t a
hardware-based sensor. The motion sensor, represented in the Windows Phone SDK as
the Motion class, is a wrapper around the Accelerometer, Compass, and Gyroscope.
Instead of sensing data from hardware, the motion sensor consumes data from the
other sensors and performs some convenient number crunching.

NOTE The Motion class is supported if a phone has an accelerometer and
compass. The motion sensor is supported even if a phone doesn’t have gyro-
scope hardware installed. When the gyroscope isn’t installed, the data pro-
vided by the Motion class may not be as accurate as the data provided when
the gyroscope is present.

Get
reading

b

Update user
interface

c

220 CHAPTER 8 Using sensors
The Motion class analyzes the data provided by the Accelerometer, Compass, and
Gyroscope. The Motion class reports the results of its data analysis in the Motion-
Reading class. The Motion class separates motion-based acceleration from gravity.
Motion-based acceleration is reported in MotionReading’s DeviceAcceleration prop-
erty, whereas the Gravity property reports acceleration due to gravity. The Device-
RotationRate property reports rotational velocities obtained from the gyroscope.

 The Motion class also provides tools for mapping device coordinates into real-
world coordinates with the AttitudeReading class. An instance of the Attitude-
Reading class is returned from the Attitude property of the MotionReading class. The
AttitudeReading class reports Yaw, Pitch, and Roll values. The AttitudeReading
class also provides both a rotation Matrix and a Quaternion that can be used for coor-
dinate mapping. We’ll show you how to use the AttitudeReading to map coordinates
in a new MotionSensor sample application.

 Next you’ll create a new sample application to demonstrate how the motion sensor
works and how to use the numbers provided by the MotionReading class.

8.6.1 Building a motion enabled sample application

You’re going to create a new sample application to show off the motion sensor. This
new sample application is similar to the Sensors sample application you just finished.
Create a new Windows Phone Application named MotionSensor, and add references
to the Microsoft.Devices.Senors.dll and Microsoft.Xna.Framework.dll assemblies. The
MotionSensor application will also use the Bar control you created in the Sensors
application. Copy the Bar.xaml and Bar.xaml.cs files into the MotionSensor project
and change the Bar class’s namespace to MotionSensor.

 MainPage.xaml is assembled similarly to the MainPage.xaml.cs used in the Sensors
application. It’s similar enough that you may wish to start by copying the markup for
the Sensors application’s ContentPanel and modifying it. The next listing shows the
markup for the MotionSensor application’s ContentPanel.

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <Grid.RowDefinitions>
 <RowDefinition Height="25" />
 <RowDefinition Height="400" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="30" />
 <ColumnDefinition Width="30" />
 <ColumnDefinition Width="30" />
 <ColumnDefinition Width="30" />
 <ColumnDefinition Width="48" />
 <ColumnDefinition Width="30" />
 <ColumnDefinition Width="30" />
 <ColumnDefinition Width="30" />
 <ColumnDefinition Width="30" />

Listing 8.7 MainPage markup for the motion sensor sample application

Fourteen
columns

b

221Wrapping up with the motion sensor
 <ColumnDefinition Width="48" />
 <ColumnDefinition Width="30" />
 <ColumnDefinition Width="30" />
 <ColumnDefinition Width="30" />
 <ColumnDefinition Width="30" />
 </Grid.ColumnDefinitions>

 <TextBlock Text="X" Grid.Column="1" />
 <TextBlock Text="Y" Grid.Column="6" />
 <TextBlock Text="Z" Grid.Column="11" />

 <l:Bar x:Name="accelX" Grid.Row="1" Grid.Column="0"
 BarFill="Red" Scale="67" />
 <l:Bar x:Name="accelY" Grid.Row="1" Grid.Column="5"
 BarFill="Red" Scale="67" />
 <l:Bar x:Name="accelZ" Grid.Row="1" Grid.Column="10"
 BarFill="Red" Scale="67" />

 <l:Bar x:Name="gravityX" Grid.Row="1" Grid.Column="1"
 BarFill="Yellow" Scale="200" />
 <l:Bar x:Name="gravityY" Grid.Row="1" Grid.Column="6"
 BarFill="Yellow" Scale="200" />
 <l:Bar x:Name="gravityZ" Grid.Row="1" Grid.Column="11"
 BarFill="Yellow" Scale="200" />

 <l:Bar x:Name="gyroX" Grid.Row="1" Grid.Column="2"
 BarFill="Blue" Scale="32" />
 <l:Bar x:Name="gyroY" Grid.Row="1" Grid.Column="7"
 BarFill="Blue" Scale="32" />
 <l:Bar x:Name="gyroZ" Grid.Row="1" Grid.Column="12"
 BarFill="Blue" Scale="32" />

 <l:Bar x:Name="attitudeX" Grid.Row="1" Grid.Column="3"
 BarFill="Violet" Scale="64" />
 <l:Bar x:Name="attitudeY" Grid.Row="1" Grid.Column="8"
 BarFill="Violet" Scale="128" />
 <l:Bar x:Name="attitudeZ" Grid.Row="1" Grid.Column="13"
 BarFill="Violet" Scale="32" />

 <StackPanel Grid.Row="2" Grid.ColumnSpan="14">
 <TextBlock Foreground="Red" Text="Acceleration (g)" />
 <TextBlock Foreground="Yellow" Text="Gravity (g)" />
 <TextBlock Foreground="Blue" Text="Rotation (rad/sec)" />
 <TextBlock x:Name="point" Foreground="Violet" Text="Attitude" />
 </StackPanel >
</Grid>

You start by dividing the ContentPanel into three rows and fourteen columns B. The
first row contains three TextBlocks serving as the titles for the x, y, and z coordinates.
The second row shows three bars c for each of the linear acceleration, gravity, rota-
tion, and attitude readings. Allowing for three columns for each reading, and two
spacer columns, you need a total of fourteen columns, as displayed in figure 8.8. The
last row d contains a legend and messages.

 When setting the scale factors for the acceleration, gravity, and rotation bars, you
assume the maximum values returned by the sensor are 3, 1, and 2π respectively. The

Fourteen
columns

b

Three bars for
each data point

c

Legend and
messages

 d

222 CHAPTER 8 Using sensors
scale values for the attitude bars reflect that the
maximum values for Pitch, Roll, and Yaw are π,
π/2 and 2π respectively. We’ll examine each of the
readings values in more detail in section 8.6.3.

 The MotionSensor sample application also
declares Start and Stop buttons on the application
bar. Copy the application bar markup from the
Sensors application. Don’t forget to create the
Images folder and copy the SDK icons.

 The application isn’t quite ready to run and
doesn’t compile yet. The application is missing the
Click event handlers for the two application bar
buttons. You’ll implement the two missing methods
after you hook up the motion sensor.

8.6.2 Hooking up the sensor

In the Sensors application you polled all three sen-
sors using a DispatchTimer and the CurrentValue
property of each sensor. In this sample application you’re going to use the Current-
ValueChanged event instead. Start by creating a class field for the motion sensor. Don’t
forget to add using statements for Microsoft.Devices.Sensors:

Motion sensor;

The sensor variable is constructed and initialized in the MainPage constructor. In addi-
tion to constructing the sensor, you set the TimeBetweenUpdates property and sub-
scribe to the CurrentValueChanged and Calibrate methods. The next listing shows
the implementation of the MainPage constructor.

public MainPage()
{
 InitializeComponent();

 if (Motion.IsSupported)
 {
 sensor = new Motion();
 sensor.TimeBetweenUpdates = TimeSpan.FromMilliseconds(66);
 sensor.CurrentValueChanged += sensor_CurrentValueChanged;
 sensor.Calibrate += sensor_Calibrate;
 }
}

Before attempting to use the Motion class, you check the IsSupported static property
to see whether the motion sensor is supported by the device running the application.
Once you’re sure that the motion sensor is supported you construct a new instance of the
Motion class B. You then set the TimeBetweenUpdates property to 66 milliseconds so

Listing 8.8 Initializing the motion sensor

Construct
motion
sensor

b Subscribe
to value
changed

event

c

Figure 8.8 A screen shot of the
ContentPanel in MainPage.xaml as
displayed by the designer view in
Microsoft Expression Blend

223Wrapping up with the motion sensor
that you receive updates approximately 17 times each second. Next you subscribe to the
CurrentValueChanged event c, registering the method sensor_CurrentValueChanged
as the event handler. Finally, you subscribe to the Calibrate event.

 Because the Motion class wraps the compass sensor, you need to be aware of when
the compass needs calibration. Copy the Calibrate event handler implementation
from the Sensors program into a method named sensor_Calibrate.

 Let’s examine the CurrentValueChanged event handler. The Motion class raises the
CurrentValueChanged event on a background thread. If the user interface is updated
from the event handler, the update code must be executed on the UI thread. The next
listing shows the implementation of the sensor_CurrentValueChanged method.

void sensor_CurrentValueChanged(object sender,
 SensorReadingEventArgs<MotionReading> e)
{
 MotionReading reading = e.SensorReading;
 Dispatcher.BeginInvoke(() =>
 {
 Vector3 acceleration = reading.DeviceAcceleration;
 accelX.Value = acceleration.X;
 accelY.Value = acceleration.Y;
 accelZ.Value = acceleration.Z;

 Vector3 gravity = reading.Gravity;
 gravityX.Value = gravity.X;
 gravityY.Value = gravity.Y;
 gravityZ.Value = gravity.Z;

 Vector3 rotation = reading.DeviceRotationRate;
 gyroX.Value = rotation.X;
 gyroY.Value = rotation.Y;
 gyroZ.Value = rotation.Z;

 AttitudeReading attitude = reading.Attitude;
 attitudeX.Value = attitude.Pitch;
 attitudeY.Value = attitude.Roll;
 attitudeZ.Value = attitude.Yaw;

 Vector3 worldSpacePoint = new Vector3(0.0f, 10.0f, 0.0f);
 Vector3 bodySpacePoint =
 Vector3.Transform(worldSpacePoint, attitude.RotationMatrix);
 point.Text = string.Format("Attitude: Transform of (0.0, 10.0, 0.0)

➥ = ({0:F1}, {1:F1}, {2:F1})",
 bodySpacePoint.X, bodySpacePoint.Y, bodySpacePoint.Z);
 });
}

The CurrentValueChanged event is raised on a background thread. In your event han-
dler implementation, you update the user interface and use the Dispatcher object to
run your code on the user interface thread B. The next section of the listing reads
various properties of the provided MotionReading instance and updates the twelve

Listing 8.9 Handling the CurrentValueChanged event

Work on
UI thread

b

Update bar
controls

c

Transform
coordinate point

 d

224 CHAPTER 8 Using sensors
Bar controls c. Finally, you use the AttitudeReading’s RotationMatrix to convert a
real-world coordinate to the coordinate system of the phone d.

 You still need to create the Click event handlers for the Start and Stop application
bar buttons. The start_Click method is simple. The method checks whether the
Motion class is supported, and then calls the Start method:

private void start_Click(object sender, EventArgs e)
{
 if (Motion.IsSupported)
 sensor.Start();
}

The stop_Click method is just as simple:

private void stop_Click(object sender, EventArgs e)
{
 if (Motion.IsSupported)
 sensor.Stop();
}

With the two click event handlers implemented, the code for the sample application is
complete. Deploy the application to your motion-sensor-enabled device and run the
application. Start the sensor and examine the acceleration, gravity, rotation, and atti-
tude values as you move your phone around. Don’t forget to look at the attitude mes-
sage line and how the coordinate point is transformed. Let’s take a closer look at the
readings reported by the Motion class and how to interpret the numbers.

8.6.3 Interpreting the numbers

We talked about acceleration earlier in the chapter, and how the
data reported by the Accelerometer mixes both the acceleration
due to gravity and the acceleration due to motion. There are
many scenarios where it’s important to separate the two types of
acceleration. Consider an application or game that works by tilt-
ing the phone, such as one that moves a ball through a maze. This
type of application is only interested in the acceleration due to
gravity. Without the convenient Gravity property of the Motion-
Reading, the maze application would have to somehow account
for the acceleration due to motion. We demonstrate how to use
the Gravity vector to control a simple game in chapter 15.

 The other convenience provided by the Motion class is the
calculation of the Attitude data. To understand the Attitude
you need to understand the frame of reference, or coordinate
system for both the real world and the device. The Motion
class assumes a real-world coordinate system where y points due north, z points
straight up, and x points due east. When the device is lying flat, face up, with the top
of the device pointing north, the device’s frame of reference matches the real world
frame of reference. This is shown in figure 8.9.

Figure 8.9 The device
frame aligned with the
world frame when the
device is lying flat and
pointed North

225Wrapping up with the motion sensor
 The Yaw, Pitch, and Roll readings are all approximately
zero, and the rotation matrix is the identity matrix. An object
at point (0, 10, 0) in the world frame will have the same coor-
dinates in the device frame. The device’s y axis, labeled Y' in
the figure, is pointing north and the x axis, labeled X', is
pointing east.

 When the device is rotated, its frame of reference no lon-
ger matches the real world frame of reference. If the top of
the device lying flat is rotated to point east, the device is con-
sidered to be rotated 270 degrees. The attitude reading will
have a Yaw reading of 3/2 π radians, or 270 degrees. The Yaw,
rotation about the z axis, is read as the counterclockwise
angle between the two y axes. This is shown in figure 8.10.

 Now the device’s y axis is pointing east and the x axis is
pointing south. Again, consider an object at the coordinate
(0, 10, 0) in the world frame. This same object will have the coordinates (-10, 0, 0) in
the device frame.

 With the top of the device still pointed east, raise the top of
the device until it’s in the standing portrait orientation with the
back of the device facing east. This is shown in figure 8.11. In
this case you’ve rotated the device frame about the x axis and
changed the Pitch of the device. The attitude reading will still
have a Yaw reading of 3/2 π radians, but will now also have a
Pitch reading of 1/2 π radians, or 90 degrees. The Pitch, or
rotation about the x axis, is read as a counterclockwise angle.

 Now the device’s y axis is pointing up toward the sky, aligned
with the world frame’s z axis. The device’s z axis is pointing to
the west. The device’s x axis is still pointing south. Again, con-
sider an object at the coordinate (0, 10, 0) in the world frame.
This same object will still have the coordinates (-10, 0, 0) in the
device frame because changing the pitch didn’t change the direc-
tion of the device’s x axis.

 When working with the AttitudeReading, you must remember that the Yaw,
Pitch, and Roll values are order-dependent. To translate a point in one frame of ref-
erence to a point in another frame of reference, you must apply Yaw first, followed by
Pitch, then by Roll.

 Though we’ve referred to the Motion class as a motion sensor, it’s really more of a
service than a sensor. The Motion class makes use of a few different sources of data to
provide a convenient service for detecting motion and position.

Figure 8.10 The device
rotated 3/2 π radians or
270 degrees around the
z axis

Figure 8.11 The
device rotated 270
degrees around the z
axis and 90 degrees
around the x axis

226 CHAPTER 8 Using sensors
8.7 Summary
In this chapter we’ve covered three different hardware sensors, and one class that
wraps the other sensors. The Accelerometer reports acceleration due to the forces
acting on a device. The Compass reports the strength of local magnetic fields as well as
the heading of the device relative to north. The Gyroscope reports the rotational velocity
of the device. There aren’t any sensors that report linear velocity or rotational accelera-
tion. There is also not a sensor that reports exactly how far a phone has moved.

 The Motion sensor uses data from the Accelerometer, Compass, and Gyroscope to
perform a few complex calculations to separate acceleration into gravity and motion
components. The motion sensor also provides information necessary to convert
device coordinates into real-world coordinates.

 Application developers should consider mixing one or more sensors with the loca-
tion service to build applications that mesh real world with the digital world. Novel
augmented reality applications can be built to show the user the location of nearby
landmarks or the position of constellations in the night sky.

 In the next chapter, we’ll explore the networking features of the Windows Phone
SDK. You’ll learn how to determine network connection state and how to connect to
web services. You’ll also learn how to send notifications to a phone from a web service.

Network communication
with push notifications

and sockets
In the past few years, the way that most mobile users use their phones has dramati-
cally changed. The mobile phone has become our constant companion and helps
keep us connected with family, friends, and coworkers. We use the phone to read
news, check emails/twitter/Facebook, post updates, and play games. Most of the
applications that you’re using on your phone have one thing in common. Can you
guess what it is? All those applications access the network to retrieve the informa-
tion stored in the cloud. Consuming resources from the network is crucial even for
a normal mobile user. As a developer who is developing an application for mobile
devices, you need to understand how to efficiently consume network resources.

 Networked applications need to know whether a network connection is avail-
able, and if so, what type of connection is enabled. We open up this chapter by dis-
cussing how you can detect the network connection before consuming resources.
We show you how to detect whether the device is connected to a cellular data net-
work or a Wi-Fi access point, or whether the device is in airplane mode.

This chapter covers
■ Detecting network information
■ Pushing notifications
■ Updating application tiles
■ Communicating with sockets
227

228 CHAPTER 9 Network communication with push notifications and sockets
 To keep a user informed, applications need to retrieve updates from the internet,
but how can they do that when they’re not running? You learned about background
agents in chapter 3, which require some code to be running on the phone, periodi-
cally checking for updates. In this chapter we explore another technology—push noti-
fications. With push notifications, code runs in a web service and updates are pushed
to the phone. You’ll learn how a web service can push notifications to a phone. Notifi-
cations are used to update an application’s tile or display a toast message to the user.

 While we explore push notifications, you’ll learn about the HttpWebRequest class
that’s useful for connecting to and sharing data over an HTTP connection. HTTP con-
nections are just one type of network connection. The Windows Phone 7.1 SDK also pro-
vides a Socket class that enables lower-level network communication with TCP and UDP.

 To demonstrate push notifications and networking, you’re going to build three
sample applications:

■ A push notification simulator that will demonstrate how to detect network sta-
tus and how to push notifications to a Windows Phone

■ A push notification client that will register for and receive push notifications
from the simulator

■ A simple chat application using TCP sockets to communicate with a chat server

All three applications require a network connection. We open the chapter with a look
at the network information classes and how to use them to detect network connectiv-
ity status.

9.1 Detecting network connectivity
Detecting network connectivity is a crucial task for mobile application developers
because many of the interesting mobile applications require access to network
resources. Applications that utilize the network capabilities should be aware of the
status of the network connection and whether that network is using the cellular data
network or a Wi-Fi network. Mobile applications must also adjust to changes in the
network connection, which can alternate from no access to cellular data and Wi-Fi
in a short period of time. The Windows Phone SDK contains a set of network infor-
mation APIs unique to the Windows Phone in the Microsoft.Phone.Net.Network-
Information namespace.

 Before we look at Microsoft.Phone.Net.NetworkInformation, you’ll create the
Visual Studio project for your first sample application, the push notification simulator.
You’ll use the simulator application to demonstrate networking code. Using the Win-
dows Phone Application template, create a new project named NotificationSimulator.
When creating the project, name the solution PushNotifications. The simulator sam-
ple application is built using a Pivot control. Delete MainPage.xaml and add a new
MainPage using the Windows Phone Pivot Page item template. The first pivot in the
application, shown in figure 9.1, contains a single TextBlock that’s used to display net-
work connection status.

229Detecting network connectivity
 The TextBlock will display a formatted string
built up from network and device information you
gather from a couple of different APIs. Give the
TextBlock the name statusMessage:

<controls:PivotItem Header="status">
 <TextBlock x:Name="statusMessage" />
</controls:PivotItem>

This sample application will display the network
availability in the statusMessage TextBlock when-
ever the application is activated. Create a method
named LoadInformation in MainPage.xaml.cs that
will be called to gather up network information
and display it in the user interface:

private void LoadInformation(string trigger)
{
 string information = string.Format(
 "Information triggered by: {0}", trigger);
 statusMessage.Text = information;
}

Now call the LoadInformation method from the OnNavigatedTo method so that the
network status is displayed whenever the page is activated:

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 LoadInformation("OnNagivatedTo");
}

At this point, the sample application doesn’t do anything interesting, other than dis-
play OnNavigatedTo in the user interface. You’ll now liven up the application by
displaying device settings to the user.

9.1.1 Reading device settings
The Microsoft.Phone.Net.NetworkInformation namespace was created specifically
for the phone and has everything you need for reading network information. The
namespace contains two interesting classes named NetworkInterface and Device-
NetworkInformation.

Table 9.1 Properties of DeviceNetworkInformation

Name Description

CellularMobileOperator Returns the name of the wireless service provider.

IsCellularDataEnabled Returns true if the cellular data network is available.
Returns false if airplane mode is enabled.

IsCellularDataRoamingEnabled Returns true if the data roaming option is set to roam,
and false if the option is set to don’t roam.

Figure 9.1 The Networking sample
application

230 CHAPTER 9 Network communication with push notifications and sockets
The DeviceNetworkInformation class is new to the Windows Phone 7.1 SDK and is
only available to applications written for the Windows Phone 7.5 operating system.
DeviceNetworkInformation provides several properties, listed in table 9.1, that report
the current values of networking-related options specified in the settings application.

 Update the NotificationSimulator sample application to display the properties of
the DeviceNetworkInformation class. You start by adding a call to a new LoadDevice-
Information method in the LoadInformation method you created in the last section:

private void LoadInformation(string trigger)
{
 string information = string.Format(
 "Information triggered by: {0}\n\n{1}",
 trigger, LoadDeviceInformation());
 statusMessage.Text = information;
}

The new LoadDeviceInformation method, shown in the following listing, returns a
formatted string containing a description and value for each of the properties of the
DeviceNetworkInformation class.

private string LoadDeviceInformation()
{
 return string.Format("Cellular operator: {0}\n" +
 "Cellular data enabled: {1}\nRoaming enabled: {2}\n" +
 "Device network available: {3}\nWi-Fi enabled: {4}\n",
 DeviceNetworkInformation.CellularMobileOperator,
 DeviceNetworkInformation.IsCellularDataEnabled,
 DeviceNetworkInformation.IsCellularDataRoamingEnabled,
 DeviceNetworkInformation.IsNetworkAvailable,
 DeviceNetworkInformation.IsWiFiEnabled);
}

The DeviceNetworkInformation class provides an event named NetworkAvailability-
Changed that reports network status changes such as connecting, disconnecting, and
changing the roaming status. You’ll register for this event in the MainPage constructor
and use it as a trigger for updating the user interface:

DeviceNetworkInformation.NetworkAvailabilityChanged +=
 (sender, e) => LoadInformation(e.NotificationType.ToString());

IsNetworkAvailable Returns true if any network connection is available.

IsWiFiEnabled Returns true if Wi-Fi network is enabled in the settings
application, even if the device isn’t connected to a
Wi-Fi network.

Listing 9.1 Reading DeviceNetworkInformation properties

Table 9.1 Properties of DeviceNetworkInformation (continued)

Name Description

231Detecting network connectivity
You pass the value of the NotificationType property as the trigger parameter to
LoadInformation.NotificationType is an enum with the value InterfaceConnected,
InterfaceDisconnected, or CharacteristicUpdate.

DeviceNetworkInformation tells you about the phone’s network-related settings.
Next we look at the NetworkInterface, which tells you not only whether a network is
connected, but the type of network you’re connected to.

9.1.2 Using the NetworkInterface class

If you’re coming from a Silverlight or .NET background, you might already be familiar
with the NetworkInterface class in the System.Net.NetworkInformation namespace,
which is used to determine network connectivity. The Microsoft.Phone.Net
.NetworkInformation namespace provides a phone-specific implementation of the
NetworkInterface class, also named NetworkInterface. The NetworkInterface class is
inherited from the System.Net.NetworkInformation.NetworkInterface class and
both classes have a static method named GetIsNetworkAvailable. The phone’s
NetworkInterface class also provides an enum property named NetworkInterfaceType,
which can be used to determine if the current connection is on a cellular data or Wi-Fi
network. The list of possible values for NetworkInterfaceType is listed in table 9.2.

The NetworkInterfaceType enumeration defines approximately two dozen other net-
work types, which aren’t used by the Windows Phone 7.5 operating system. Only the
five network types that are mentioned in table 9.2 are currently supported by the phone.
When your mobile device is connected to the computer, the reported network type
will be Ethernet. If you’re on a Wi-Fi network, the network type will be Wireless80211,
and if you’re using a cellular data network, the network type will be MobileBroadbandGsm
or MobileBroadbandCdma.

 Next you’ll wire in the data returned from NetworkInterface into the user inter-
face. You start by adding a new method named LoadPhoneNetworkInformation:

private string LoadPhoneNetworkInformation()
{

Table 9.2 List of network types

Member Name Description

None The device is not connected to a network.

Ethernet The device is connected to a wired Ethernet network. Usually this
indicates the device is connected to a desktop computer and is
sharing the desktop’s network connection.

Wireless80211 The device is connected to a Wi-Fi network.

MobileBroadbandGsm The device is connected to a GSM cellular network.

MobileBroadbandCdma The device is connected to a CDMA cellular network.

232 CHAPTER 9 Network communication with push notifications and sockets
 return string.Format(
 "Phone network type: {0}\nPhone network available: {1}\n",
 NetworkInterface.NetworkInterfaceType,
 NetworkInterface.GetIsNetworkAvailable());
}

It’s important to know that calls to the NetworkInterfaceType property may take a
long time to complete. When calling the property from your code, you should take
extra care to not block the user interface thread. In your sample application, you’ll
update the LoadInformation method so that it runs on a background thread. The fol-
lowing listing shows the new implementation of LoadInformation.

private void LoadInformation(string trigger)
{
 statusMessage.Text = "loading...";
 ThreadPool.QueueUserWorkItem((state) =>
 {
 string information = string.Format(
 "Information triggered by: {0}\n\n{1}\n{2}",
 trigger, LoadPhoneNetworkInformation(),
 LoadDeviceInformation());

 Dispatcher.BeginInvoke(() => statusMessage.Text = information);
 });
}

The first change you implement is to display a loading message in the user interface.
Next you wrap the existing code in an anonymous function and use the QueueUser-
WorkItem method to request that the ThreadPool class execute the function on a
background thread B. Once the information string is built, you use the Dispatcher
to update the statusMessage TextBlock c on the user interface thread.

 Run the NotificationSimulator application and examine the data reported on the
screen. Change your device’s setting by turning on airplane mode or disabling Wi-Fi.
Does the screen update as you expect? In the next section you’ll add more features
to the NotificationSimulator application as you learn how to push notifications to
the phone.

9.2 Pushing notifications to a phone
Distributed application developers have two options when notifying phone users with
updates and alerts. The first requires code on the phone to periodically pull data from
a web service, and can be implemented using background agents. We covered back-
ground agents in chapter 3. An alternative model is for a web service to push notifica-
tions to a phone. Microsoft provides the Push Notification Service (MPN) to enable
sending updates and alerts to a phone, without an active agent running on the phone.
The Microsoft Push Notification Service and Windows Phone support three different
types of notifications.

Listing 9.2 Loading network information on a background thread

Spin up background
thread

b

Update
user

interface

c

233Pushing notifications to a phone
 In this section we’ll explore the different types of notifications and how to use the
MPN service to send them. Before remote services can send a message to a phone, the
user must register the phone with the service and we’ll show you the API calls used for
registration. Finally, we’ll update the simulator application to send all three types of
push notifications.

9.2.1 Three types of notifications
Windows phone provides three types of push notifications that you can use to send a
notification from a web service to a Windows Phone. These three types are named
toast, tile, and raw notifications:

■ Toast notifications are short messages displayed at the top of the screen.
■ Tile notifications update an application’s tile that’s pinned to the start screen.
■ Raw notifications are used to send custom content to a running application.

Notifications are only sent to phones that have subscribed to a notification channel.
Notification channels are linked to specific applications. Raw notifications are only
displayed if the client application implements custom code to display the content of
the message. Let’s take a closer look at what the user sees when toast and tile notifica-
tions are received by a phone.

VIEWING A TOAST NOTIFICATION

A toast notification is made up of a title and short
content message, as shown in figure 9.2. The user
can dismiss the notification by flicking to the right.
The user can tap the toast to launch the applica-
tion. The application developer can define a cus-
tom launch URI as part of the toast.

 The toast will only be shown at the top of the
screen if the linked application isn’t running. When the application is running, the
application is notified of the toast through a custom event. You’ll learn how to use
both the launch URI and the notification event later in the sample client application
you build in this chapter.

BRINGING TILES TO LIFE WITH TILE NOTIFICATIONS

A tile notification is used to update the primary Application Tile
on the start screen of the phone. If an application isn’t pinned to
the start screen, tile notifications won’t have any effect. Tiles have
both a front and a back. The Windows Phone start screen will flip
the tile periodically, showing both front and back to the user. The
front of the tile contains a title, count, and background image.
The back of the tile has a title, a short content message, and a background image. The
application tile from the sample client application is shown in figure 9.3.

 The maximum value of the count property is 99. The background images should
be 173 x 173 and other sized images will be stretched to fit. It’s recommended that

Figure 9.2 Toast notification

Figure 9.3 Title
notification

234 CHAPTER 9 Network communication with push notifications and sockets
all tile images are shipped with the application, but images can be served by remote
web servers.

9.2.2 Push notification workflow

Web services can’t send notifications to any random Windows Phone. Users must first
install an application on the phone, and the application code is then required to open
a notification channel. The Windows Phone supports a limited number of open chan-
nels and there’s no guarantee that an application will be able to open a new channel.
Once the channel is opened, the application must forward the channel URI to its web
service. Figure 9.4 shows the workflow for opening a notification channel and sending
push notifications.

1 A push-enabled Windows Phone application is installed. When the application
is run by the user, it opens a notification channel with the Microsoft Push Noti-
fication service. The MPN service will return a unique URI that a web service can
use to push notifications to the phone.

2 Once the channel URI is returned to the application, the application sends the
channel URI to the web service. The web service will use the channel URI when
posting notifications to the MPN service.

3 At some point in the future something interesting happens, and the web service
constructs notification messages to be sent to each phone that has sent its chan-
nel URI to the web server. The web service uses HTTP POST to ask the MPN ser-
vice to send the notification to the phone’s channel URI.

4 The MPN service forwards the notification message to the phone identified by
the channel URI.

Since this is a book about programming Windows Phone, and not about web server
programming, you’re not going to build a web service. Instead you’ll add features to
the NotificationSimulator sample application so that it simulates a web service by per-
forming HTTP POST calls directly to the MPN service. The NotificationSimulator appli-
cation will be paired with a new NotificationClient application which will open the
notification channel.

Figure 9.4 Push notification

235Pushing notifications to a phone
9.2.3 Creating a Push Notification client

Create a new project in the PushNotifications solution using the Windows Phone
Application project template. Just like you did earlier, delete the MainPage and add
a new MainPage using the Windows Phone Pivot Page item template. You can see a
screenshot of the completed client project in figure 9.5.

 The XAML markup for the main page contains a Pivot control and an application
bar. The next listing contains the markup for the first PivotItem in the Pivot control.
You’ll add a second pivot later in the chapter.

<controls:PivotItem Header="notification">
 <StackPanel>
 <TextBlock Text="Channel Connection Status:"
 Style="{StaticResource PhoneTextTitle2Style}" />
 <TextBlock x:Name="channelStatus" Text="channel does not exist"
 TextWrapping="Wrap" Style="{StaticResource PhoneTextSmallStyle}"/>
 <TextBlock Text="Channel URI:"
 Style="{StaticResource PhoneTextTitle2Style}" />
 <TextBlock x:Name="channelUri" TextWrapping="Wrap"
 Style="{StaticResource PhoneTextSmallStyle}" />
 <TextBlock Text="Notification message:"
 Style="{StaticResource PhoneTextTitle2Style}" />
 <TextBlock x:Name="notificationMessage" Text="(no message)"
 TextWrapping="Wrap" Style="{StaticResource PhoneTextSmallStyle}"/>
 </StackPanel>
</controls:PivotItem>

The PivotItem displays a simple user interface with
several TextBlocks. The TextBlocks are used either
for labels or to display the channel’s connection status
and the channel URI. The last TextBlock B will be
used to display information from toast notifications
that are received while the application is running.

 The first time the user runs the application, push
notifications aren’t enabled. To enable the channel the
first time the application is executed, and to reconnect
on subsequent launches, you call a new method named
SetupChannel inside the MainPage constructor:

public MainPage()
{
 InitializeComponent();
 SetupChannel();
}

Before you can implement SetupChannel you need to
learn how to use the push notification APIs to open a
notification channel.

Listing 9.3 The markup for MainPage.xaml’s Pivot control

Display
notification
details

b

Figure 9.5 A screenshot of the
completed notification client

236 CHAPTER 9 Network communication with push notifications and sockets
9.2.4 Opening a notification channel

Push notification channels are created and opened through instances of the Http-
NotificationChannel class, which is found in the Microsoft.Phone.Notification
namespace. The Microsoft.Phone.Notification namespace contains other classes
and enums used to support the methods and events defined by HttpNotification-
Channel. We’ll examine the supporting classes as you build the NotificationChannel
sample application.

 When an HttpNotificationChannel is constructed, it’s given a name. The channel
name is used by the client when looking for already opened channels. In MainPage
.xaml.cs of the NotificationClient application, add a constant string for the channel
name, as well as a field to reference an opened notification channel:

const string CHANNEL_NAME = "PushNotificationChannel";
HttpNotificationChannel channel;

Once a channel is constructed, the channel is opened using the Open method. Opening a
channel isn’t as easy as just constructing the channel and calling the Open method. Appli-
cations must check whether an open channel already exists. HttpNotificationChannel
provides a static Find method to allow application code to look for existing open
channels. You use the Find method in the SetupChannel method implementation,
shown in the next listing.

void SetupChannel()
{
 bool newChannel = false;
 channel = HttpNotificationChannel.Find(CHANNEL_NAME);
 if (channel == null)
 {
 channel = new HttpNotificationChannel(CHANNEL_NAME);
 newChannel = true;
 }

 channel.ConnectionStatusChanged += channel_ConnectionStatusChanged;
 channel.ChannelUriUpdated += channel_ChannelUriUpdated;
 channel.ErrorOccurred += channel_ErrorOccurred;

 if (newChannel)
 {
 channel.Open();
 channel.BindToShellTile();
 channel.BindToShellToast();
 }

 channelStatus.Text = channel.ConnectionStatus.ToString();
 if(channel.ChannelUri != null)
 channelUri.Text = channel.ChannelUri.ToString();
}

You start by looking to see whether an open channel already exists, and only create a
new HttpNotificationChannel B when an existing channel isn’t found. After you

Listing 9.4 Finding and constructing channels

Create new
channel if
not found

b

Open and
configure new
channels

c

Update
user
interface

d

237Pushing notifications to a phone
have a channel instance, you subscribe to the ConnectionStatusChanged, Channel-
UriUpdated, and ErrorOccurred events. Next, you open the channel with the Open
method, and configure c the channel to receive tile and toast notifications by calling
the two bind methods. If the bind methods aren’t used, those types of notifications
won’t be sent to the phone. Though you bind them once while initializing your sam-
ple, a real application should provide user settings allowing the user to specify which
types of notifications to enable independently. Finally you update the user interface d
with the channels connection status and URI, if one exists.

 When the channel is first created, the MPN channel URI doesn’t exist and the channel
URI is retrieved asynchronously from the MPN service. You want to display the URI
once it’s set, so you subscribe to the HttpNotificationChannel’s ChannelUriUpdated
event. The newly assigned URI is read from the ChannelUri property of the event’s
NotificationChannelUriEventArgs instance:

void channel_ChannelUriUpdated(object sender,
 NotificationChannelUriEventArgs e)
{
 Dispatcher.BeginInvoke(() => channelUri.Text = e.ChannelUri.ToString());
}

The channel class also exposes events named ErrorOccurred and ConnectionStatus-
Changed, which might be useful for troubleshooting notification connections. We
leave it to you to implement the ErrorOccurred and ConnectionStatusChanged event
handlers. Notification channels remain opened even when the application terminates
and it’s important to call HttpNotificationChannel’s Close method when the appli-
cation no longer wants to receive notification messages.

9.2.5 Looking for navigation parameters

When the application is launched from a toast notification, query string parameters
will be sent to the application. To fully demonstrate toast notifications, you should
display the navigation URI to the user when the sample application is launched. The
best place to obtain the navigation URI and update the user interface is inside the
OnNavigatedTo method:

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 notificationMessage.Text =
 string.Format("Launched with Uri:\n{0}", e.Uri);
}

The navigation URI is read from the Uri property of the NavigationEventArgs and is
written to the notificationMessage TextBlock. You also use the notification-
Message to display information from toast notifications received while the client appli-
cation is running.

238 CHAPTER 9 Network communication with push notifications and sockets
9.2.6 In-app notifications

When toasts are sent while the application is running, the toasts won’t appear in the
normal spot in the UI. In fact they won’t appear at all, unless the application explicitly
handles the notification. Raw notifications will also be completely lost unless the appli-
cation is running and listening.

 A running application can receive toast and raw notifications by subscribing to
ShellToastNotificationReceived and HttpNotificationReceived respectively. We
leave listening for raw notifications with the HttpNotificationReceived event as an
exercise for the reader. To see ShellToastNotificationReceived events in action,
subscribe to it in the SetupChannel method:

channel.ShellToastNotificationReceived +=
 channel_ShellToastNotificationReceived;

The payload of a toast notification contains three strings containing the toast’s title,
content, and navigation URI. These strings are read from the Collection property of
the NotificationEventArgs instance passed to the ShellToastNotification-

Received event handler. The next listing shows how your sample application reads the
notification data and updates the user interface.

void channel_ShellToastNotificationReceived(object sender,
 NotificationEventArgs e)
{
 string title, content, parameter;

 e.Collection.TryGetValue("wp:Text1", out title);
 e.Collection.TryGetValue("wp:Text2", out content);
 e.Collection.TryGetValue("wp:Param", out parameter);

 string message = string.Format("Toast notification received.\nTitle:"
 + " {0}\nContent: {1}\nParameter: {2}\n\n{3}",
 title, content, parameter, DateTime.Now);

 Dispatcher.BeginInvoke(() => notificationMessage.Text = message);
}

The Collection property is a dictionary of string objects and you read payload data
using the TryGetValue method B. The dictionary will only contain entries if the send-
ing application provided data when it sent the notification. The key names are defined
by an XML schema governing notifications. You’ll see an example of the XML used to
create notifications later in the chapter as you implement the NotificationSimulator.

 You need to implement one last feature in the client application before moving
back to the simulator. You need to share the client’s channel URI with the simulator
application. The easiest way to implement sharing is by copying the channel URI to
the clipboard.

Listing 9.5 Receiving toast notifications

Read
notification
payload

b

239Simulating a push notification service
9.2.7 Copying the channel URI

In a normal push notification solution, the client would share the channel URI by
sending it to a web service as part of a web request. Both the NotificationClient and
the NotificationSimulator run on the Windows Phone, and the operating system pre-
vents applications from sharing data, with the exception of sharing text via the clip-
board. You learned how to use the clipboard in chapter 2. You start by adding an
application bar button the user can tap to initiate the copy:

<shell:ApplicationBarIconButton Text="copy" Click="copy_Click"
 IconUri="/Images/appbar.save.rest.png" />

In the button’s Click event handler, you use the static SetText method of the Clipboard
class to place the channel’s URI on the clipboard:

private void copy_Click(object sender, EventArgs e)
{
 Clipboard.SetText(channelUri.Text);
}

Now that the channel URI can be placed on the clipboard, you need to update the
NotificationSimulator application so that the user can paste the channel URI into
the simulator. Open up MainPage.xaml in the NotificationSimulator project and add
a new PivotItem with a header value of channel:

<controls:PivotItem Header="channel">
 <StackPanel>
 <TextBlock Text="Enter the channel uri:" />
 <TextBox x:Name="channelUri" TextWrapping="Wrap" />
 </StackPanel>
</controls:PivotItem>

The PivotItem contains a TextBlock for a label, and a TextBox to hold the pasted-in
channel URI. You don’t need to add any other code, since the SIP keyboard displayed
when the TextBox has the focus provides its own Paste button. With the channel URI
pasted into the simulator, you’re ready to start pushing notifications.

9.3 Simulating a push notification service
Real solutions would have a web service built using ASP.NET, Node.js, or some other
server-side technology. This book isn’t about server-side technologies, so you’re taking
a shortcut and building a phone application that sends notifications to the MPN ser-
vice. The code we show you for performing the web request is nearly identical to the
code you might implement in an ASP.NET server-side implementation. Screenshots of
the simulator application’s user interface are shown in figure 9.6.

 You’ll update the NotificationSimulator project to include new screens to allow
you to enter information for toast or tile notifications and tap a button to send the
notification. The Click event handler code will call through to a new class, named
NotificationService, which will issue a HTTP POST request to the MPN service.

240 CHAPTER 9 Network communication with push notifications and sockets
9.3.1 Issuing HTTP web requests

Windows Phone provides several ways to interact with web services, including those
that expose SOAP and REST APIs. SOAP and REST web services have different design
and structures, but both communicate using the HTTP protocol, the same protocol
used by traditional HTML web servers.

NOTE One way to build a client for SOAP-based web services is with the WCF
tools and libraries. An example application using WCF can be found in the
Bing Maps sample in chapter 13.

In this section, we introduce you to HttpWebRequest, a System.Net class you can use
to communicate with HTTP servers such as the Microsoft Push Notification Service.
The HttpWebRequest class isn’t unique to Windows Phone, and exists in both Silver-
light and the desktop .NET Framework. HttpWebRequest allows you to control how the
HTTP request is constructed and sent. For example, you can select the HTTP verb, set

Figure 9.6 Screenshots of
the NotificationSimulator

241Simulating a push notification service
the time-out, add header values or cookies to the request, and manage credentials and
certificates. Covering the full breadth and depth of the HttpWebRequest API is beyond
the scope of this book, but you’ll use it to POST notifications to the MPN.

 There are three steps in sending a web request using the HttpWebRequest class.
The first step is to create the request and set the HTTP verb, URI, and headers. The
second step entails writing the body of the request. The final step is to read the web
server’s response. The NotificationService class starts the process of sending a
request in a method named Post, shown in the next listing.

private void Post(Uri channel, string payload, string target,
 string interval)
{
 HttpWebRequest request =
 (HttpWebRequest)HttpWebRequest.Create(channel);
 request.Headers["X-NotificationClass"] = interval;
 request.Headers["X-MessageID"] = Guid.NewGuid().ToString();
 if (target.Length > 0)
 request.Headers["X-WindowsPhone-Target"] = target;
 request.Method = "POST";
 request.ContentType = "text/xml; charset=utf-8";

 request.BeginGetRequestStream(WriteCallback,
 new RequestStreamState { Request = request, Payload = payload });
}

You start by creating a new HttpWebRequest using the static Create method. Next you add
custom web headers B defined by the MPN service. The header named X-Notification-
Class specifies how quickly the notification should be sent and is specific to each type
of notification. The X-MessageID header is optional, and is provided to allow the
sending application to match web requests with web responses. The type of notifica-
tion is identified with the header named X-WindowsPhone-Target. The target header
is left blank for raw notifications, set to toast for toast, and set to token for tile notifi-
cations. After setting the HTTP verb, you start the second step in the request process
by calling BeginGetRequestStream c.

BeginGetRequestStream is an asynchronous method that takes a callback method
and a user-defined state object. When the web request is ready for the body to be writ-
ten, the callback method will execute and the user-defined state object will be passed
in. Here’s a custom state class named RequestStreamState:

class RequestStreamState
{
 public HttpWebRequest Request;
 public string Payload;
}

RequestStreamState allows you to pair the payload and the request object together so
that they’re both available to the WriteCallback method. The following listing shows
the WriteCallback implementation.

Listing 9.6 Posting a notification using HttpWebRequest

Create
custom
headers

b

Asynchronously write
body of request c

242 CHAPTER 9 Network communication with push notifications and sockets
void WriteCallback(IAsyncResult result)
{
 RequestStreamState state = (RequestStreamState)result.AsyncState;
 using (var stream = (Stream)state.Request.EndGetRequestStream(result))
 {
 byte[] messageBytes =
 Encoding.UTF8.GetBytes(state.Payload);
 stream.Write(messageBytes, 0, messageBytes.Length);
 }
 state.Request.BeginGetResponse(
 ReadCallback, state.Request);
}

The first thing you do in WriteCallback is pull the RequestStreamState out of the
result. Next you get the Stream associated with the request by calling EndGetRequest-
Stream. Before you write the payload to the stream, you convert the string to a byte
array B using the GetBytes method of the Encoding class. The last step is to call
BeginGetResponse c.

 Following the .NET asynchronous pattern, BeginGetResponse takes a callback
method and a user-defined state. The callback method is executed once the HTTP
server has received your request and sent a response document. Your callback method
is named ReadCallback, which is shown in the following listing, and you pass the orig-
inal HttpWebRequest instance as the state object.

void ReadCallback(IAsyncResult result)
{
 string message;
 HttpWebRequest request = (HttpWebRequest)result.AsyncState;
 try
 {
 HttpWebResponse response =
 (HttpWebResponse)request.EndGetResponse(result);

 message = string.Format(
 "Push request compeleted with:\n {0}\n {1}\n {2}",
 response.Headers["X-NotificationStatus"],
 response.Headers["X-SubscriptionStatus"],
 response.Headers["X-DeviceConnectionStatus"]);
 }
 catch (Exception ex)
 {
 message = string.Format("{0} pushing notification: {1}",
 ex.GetType().Name, ex.Message);
 }
 Deployment.Current.Dispatcher.BeginInvoke(() =>
 MessageBox.Show(message));
}

Listing 9.7 Writing the payload to the request stream

Listing 9.8 Receiving the response

Convert payload
to bytes

b

Asynchronously
read response

c

Look at
response
headers

b

Display response
message

c

243Simulating a push notification service
The listing starts by casting the AsyncState property to HttpWebRequest. Next you call
EndGetResponse to get the HttpWebResponse instance that represents the response
document sent from the server. You read a few custom headers defined by the MPN
service and format a message with them B. When an exception occurs while reading
the response, you format an error message. Finally you display the message c to the
user using the MessageBox class.

HttpWebReponse provides several other properties and methods not covered by
your sample application. The body content of the response can be read using Get-
ResponseStream. The HTTP status code and description are returned by the StatusCode
and StatusDescription properties.

 Now that the NotificationService class is ready to push notifications, you’ll try
sending a toast notification.

9.3.2 Sending toast notifications

The payload for a toast notification is a string containing a well-defined XML docu-
ment. The XML document uses the WPNotification namespace (xmlns). The root ele-
ment is Notification, with a single Toast element:

<?xml version="1.0" encoding="utf-8"?>
<wp:Notification xmlns:wp="WPNotification">
 <wp:Toast>
 <wp:Text1>your title</wp:Text1>
 <wp:Text2>your content</wp:Text2>
 <wp:Param>your parameter</wp:Param>
 </wp:Toast>
</wp:Notification>

The Toast element should contain three child elements named Text1, Text2, and
Param. Text1 is the toast’s title, whereas the toast’s content is placed in Text2. Param
contains the launch URI used when the user taps a displayed toast notification.

NOTE The Push Notification Service isn’t the only way to display a toast noti-
fication to the user. A background agent can display a toast notification to the
user using the Show method of the ShellToast class.

In your sample applications, you’ll send a toast with a launch URI containing two
query string parameters. Add a new PivotItem to the simulator’s MainPage.xaml to
allow the user of the simulator to enter the title, content, and query string parameters
for the toast. The markup for the new PivotItem is shown in the next listing.

<controls:PivotItem Header="toast">
 <StackPanel>
 <TextBlock Text="Title:" />
 <TextBox x:Name="toastTitle" Text="enter title" />
 <TextBlock Text="Content:" />

Listing 9.9 Markup for entering a toast notification into the simulator

Label pivot
itemb

244 CHAPTER 9 Network communication with push notifications and sockets
 <TextBox x:Name="toastContent" Text="enter content" />
 <TextBlock Text="First query string value:" />
 <TextBox x:Name="toastValue1" Text="enter value1" />
 <TextBlock Text="Second query string value:" />
 <TextBox x:Name="toastvalue2" Text="enter value2" />
 <Button Content="Send toast" Click="sendToast_Click" />
 </StackPanel>
</controls:PivotItem>

The new PivotItem is added and is given the label toast B. Four pairs of TextBlocks
and TextBoxes are stacked in the user interface. Each pair is a label and input control
to capture the values to be sent in the toast. Finally, a Button c is provided which the
user taps to send the toast notification. The Click event handler, named sendToast_
Click, calls a new NotificationService method named SendToast:

private void sendToast_Click(object sender, RoutedEventArgs e)
{
 Uri channel;
 if (Uri.TryCreate(channelUri.Text, UriKind.Absolute, out channel))
 {
 service.SendToast(channel, toastTitle.Text, toastContent.Text,
 string.Format("/MainPage.xaml?value1={0}&value2={1}",
 toastValue1.Text, toastvalue2.Text));
 }
}

Inside sendToast_Click, the pasted channel URI is read from the channelUri Text-
Box. The launch URI is constructed by concatenating the two query string values.

 The new SendToast method formats the payload and calls the Post method:

public void SendToast(Uri channel, string title, string content,
 string launchUri)
{
 string payload = string.Format(ToastPayload, title, content, launchUri);
 Post(channel, payload, "toast", "2");
}

The payload XML string is constructed by using the Format method to replace place-
holders in the constant ToastPayload string with the specified title, content, and
launch URI. The ToastPayload constant, not shown here for space, contains the XML
for a toast notification, with placeholders in the appropriate places. The payload is
passed to the Post method along with the channel URI, an X-WindowsPhone-Target
string of toast, and an interval of 2 for the X-NotificationClass value.

 Valid interval values for toast notifications are 2, 12, or 22. A value of 2 indicates
that the MPN service should forward the notification immediately, whereas values of
12 and 22 indicate wait times of 450 seconds and 900 seconds respectively.

9.3.3 Using notifications to update a tile

The payload for a tile notification is also a string containing a well-defined XML docu-
ment. The XML document uses the WPNotification namespace with a Notification

Button
to send
toast

c

245Simulating a push notification service
root element. Inside the Notification element is a single Tile element. The tile noti-
fication XML is shown in the next listing.

<?xml version="1.0" encoding="utf-8"?>
<wp:Notification xmlns:wp="WPNotification">
 <wp:Tile ID="tile uri">
 <wp:BackgroundImage>your image</wp:BackgroundImage>
 <wp:Count Action="Clear">your badge count</wp:Count>
 <wp:Title Action="Clear">your title</wp:Title>
 <wp:BackBackgroundImage Action="Clear">your back image
 </wp:BackBackgroundImage>
 <wp:BackTitle Action="Clear">your back title</wp:BackTitle>
 <wp:BackContent Action="Clear">your back content</wp:BackContent>
 </wp:Tile>
</wp:Notification>

The tile XML format includes each of the six tile properties. BackgroundImage, Count,
and Title update the front of the tile, whereas BackBackgroundImage, BackTitle, and
BackContent update the back of the tile. The Notification element defines an
optional ID attribute B that can be used to update a secondary tile instead of the
main application tile. Five of the six tile properties define an optional Action attri-
bute. When the Action attribute is set to Clear c, the corresponding tile property is
set back to its default value.

 You’ll update the simulator’s user interface with a new PivotItem for setting each
of the six tile notification properties. The user interface for containing controls for
each of the six properties doesn’t nicely fit into a single screen. The tile notification
PivotItem, shown in the next listing, uses a ScrollViewer that allows the user to
scroll the form to see off-screen input controls.

<controls:PivotItem Header="tile">
 <ScrollViewer>
 <StackPanel>
 <TextBlock Text="Title:"/>
 <TextBox x:Name="tileTitle" Text="enter title"/>
 <TextBlock Text="Badge Count:"/>
 <TextBox x:Name="tileBadgeCount" Text="1"
 InputScope="Number"/>
 <TextBlock Text="Image:"/>
 <StackPanel Orientation="Horizontal">
 <RadioButton x:Name="tileDefaultImage" GroupName="tile"
 Content="default"/>
 <RadioButton x:Name="tileBlueImage" GroupName="tile"
 IsChecked="True" Content="Blue.jpg"/>
 <RadioButton x:Name="tileGreenImage" GroupName="tile"
 Content="Green.jpg"/>
 </StackPanel>

Listing 9.10 Payload xml format for a tile notification

Listing 9.11 XAML markup for sending a tile notification from the simulator

Optional ID attributeb

Optional
Action
attribute

c

Use number
keyboard

b

Pick background image c

246 CHAPTER 9 Network communication with push notifications and sockets
 <TextBlock Text="Back Title:"/>
 <TextBox x:Name="tileBackTitle" Text="enter back title"/>
 <TextBlock Text="Back Content:"/>
 <TextBox x:Name="tileBackContent" Text="enter back content"/>
 <TextBlock Text="Back Image:"/>
 <StackPanel Orientation="Horizontal">
 <RadioButton x:Name="tileBackNoImage" GroupName="backTile"
 Content="None"/>
 <RadioButton x:Name="tileBackBlueImage" GroupName="backTile"
 Content="Blue.jpg"/>
 <RadioButton x:Name="tileBackGreenImage" IsChecked="True"
 GroupName="backTile" Content="Green.jpg"/>
 </StackPanel>

 <Button Content="Send tile" Click="sendTile_Click"/>
 </StackPanel>
 </ScrollViewer>
</controls:PivotItem>

You start by declaring a new PivotItem that contains a StackPanel inside a Scroll-
Viewer. Most of the user interface is built from pairs of TextBlocks and TextBoxes
allowing the user to enter the titles, count, and content values to be sent with the tile
notification. The InputScope of the TextBox for entering the count value is set to
Number B, to make it easier for the user. There are two groups of RadioButtons c on
the form for picking which image file should be used for the background images.

 The last item added to the tile PivotItem is a Button the user taps to send the noti-
fication. The following listing details the implementation of the button’s Click handler.
After reading and translating values from the user interface, the NotificationService
method named SendTile is called.

private void sendTile_Click(object sender, RoutedEventArgs e)
{
 Uri channel;
 if (Uri.TryCreate(channelUri.Text, UriKind.Absolute, out channel))
 {
 string imagePath = tileDefaultImage.IsChecked.Value ?
 "Background.png" : tileBlueImage.IsChecked.Value
 ? "Blue.jpg" : "Green.jpg";
 string backImagePath = tileBackNoImage.IsChecked.Value ? "" :
 tileBackBlueImage.IsChecked.Value ? "Blue.jpg" : "Green.jpg";

 int badgeCount;
 Int32.TryParse(tileBadgeCount.Text, out badgeCount);

 service.SendTile(channel, imagePath, badgeCount, tileTitle.Text,
 backImagePath, tileBackTitle.Text, tileBackContent.Text);
 }
}

First the image RadioButtons are examined to determine which image should be sent
in the notification. The NotificationClient application includes Background.png,

Listing 9.12 The SendTile click handler

Convert count text to integer b

247Tiles without all the pushiness
Blue.jpg, and Green.jpg files in the .xap file. You parse the value entered into the
tileBadgeCount TextBox B. Finally you send all six property values to SendTile.

 The implementation of SendTile, shown in the next listing, isn’t as straightfor-
ward as the implementation of SendToast.

const string Clear = "Action\"Clear\"";

public void SendTile(Uri channel, string tileId, string imagePath,
 int badgeCount, string title, string backImagePath,
 string backTitle, string content)
{
 string badgeCountAction = "", titleAction = "",
 backImagePathAction = "", backTitleAction = "", contentAction = "";

 if (badgeCount < 1) badgeCountAction = Clear;
 if (string.IsNullOrEmpty(title)) titleAction = Clear;
 if (string.IsNullOrEmpty(backImagePath)) backImagePathAction = Clear;
 if (string.IsNullOrEmpty(backTitle)) backTitleAction = Clear;
 if (string.IsNullOrEmpty(content)) contentAction = Clear;

 string payload = string.Format(TilePayload, imagePath,
 badgeCountAction, badgeCount, titleAction, title,
 backImagePathAction, backImagePath, backTitleAction, backTitle,
 contentAction, content);

 Post(channel, payload, "token", "1");
}

SendTile examines each of the properties to see whether it contains a valid value, and
if not, sets the Action attribute of related XML element to the value Clear. You define
a constant string B to use when formatting the payload XML string. The payload XML
string is constructed by using the Format method to replace placeholders in the con-
stant TilePayload string with the specified title, content, and launch URI. The Tile-
Payload constant, not shown here for space, contains the XML for a tile notification,
with placeholders in the appropriate places. The payload is passed to the Post
method along with the channel URI, an X-WindowsPhone-Target string of token, and
an interval of 1 for the X-NotificationClass value.

 Valid interval values for tile notifications are 1, 11, or 21. A value of 1 indicates that
the MPN service should forward the notification immediately, whereas values of 11
and 21 indicate wait times of 450 seconds and 900 seconds respectively.

9.4 Tiles without all the pushiness
The Windows Phone 7.1 SDK allows an application to update a tile without using tile
notifications. The ShellTile class in the Microsoft.Phone.Shell namespace exposes
tiles to application code. You first saw how to use the ShellTile class in the Hello
World example, when you pinned a secondary tile to the start screen.

 An application adds a new tile to the start screen by creating a StandardTileData
instance and then calling the static ShellTile.Create method. An application can

Listing 9.13 Building the tile payload

Text for Action attributesb

248 CHAPTER 9 Network communication with push notifications and sockets

 is
 tile

s

then determine whether any of its tiles are currently pinned to the start screen using
the static ActiveTiles collection of the ShellTile class. ShellTile and Standard-
TileData can also be used to locally update a tile.

 You’ll add some code to the NotificationClient sample application to demonstrate
how to update a tile without the Push Notification service. You start by copying the
user interface code in listing 9.11 from the NotificationSimulator into the Notifica-
tionClient. Update the send Button to call a Click event handler named updateTile_
Click. The event handler is shown in the next listing.

private void updateTile_Click(object sender, RoutedEventArgs e)
{
 string imagePath = tileDefaultImage.IsChecked.Value ?
 "Background.png" : tileBlueImage.IsChecked.Value ?
 "Blue.jpg" : "Green.jpg";
 string backImagePath = tileBackNoImage.IsChecked.Value ? "" :
 tileBackBlueImage.IsChecked.Value ? "Blue.jpg" : "Green.jpg";
 int badgeCount;
 Int32.TryParse(tileBadgeCount.Text, out badgeCount);

 ShellTile tile = ShellTile.ActiveTiles.First();
 StandardTileData tileData = new StandardTileData
 {
 BackgroundImage = new Uri(imagePath, UriKind.Relative),
 Count = badgeCount,
 Title = tileTitle.Text,
 BackBackgroundImage =
 new Uri(backImagePath, UriKind.Relative),
 BackTitle = tileBackTitle.Text,
 BackContent = tileBackContent.Text,
 };
 tile.Update(tileData);
}

The initial part of the listing is similar to that sendTile_Click method in the Notification-
Simulator. The image filenames are set based on the checked RadioButtons, and the
count is parsed from user input. The first tile in the ActiveTiles collection is always
the primary application tile, even if the tile isn’t pinned to the start screen, so you
use the First B extension method to retrieve the primary tile. Next, you create an
instance of StandardTileData and set the six properties c of the tile. Finally you call
the Update method to change the tile.

 Now you’re ready to send some push notifications. You start by pinning the Notifi-
cationClient to the start screen. Next you run the NotificationClient sample applica-
tion. Once the channel URI is displayed, tap the application bar button to copy it to
the clipboard. Now run the NotificationSimulator application and paste the channel
URI into the TextBox you put in the channel PivotItem. Now you can use the tile and
toast pivots to send notifications.

Listing 9.14 Updating a tile

First tile
primary

b

Update
tile
propertie

c

249Communicating with sockets
 Push notifications provide a mechanism where a web service can indirectly com-
municate with a Windows Phone application, whether or not the application is run-
ning. Indirect communication isn’t sufficient for many applications that require direct
connections between the client and the web service. Some applications can use the
HttpWebRequest class for direct connections initiated by the client, but it doesn’t sup-
port server-initiated interactions. Applications whose network interaction require-
ments can’t be satisfied by push notification or HttpWebRequest can use sockets to
enable communication between client and server.

9.5 Communicating with sockets
The Windows Phone 7.1 SDK implements the networking APIs for communicating via
sockets to enable scenarios such as instant messaging, multiplayer games, and integra-
tion with non-HTTP services. Socket support has existed in the desktop .NET Framework
and Silverlight for some time, and wasn’t implemented in the first release of Windows
Phone 7. The Windows Phone 7.1 SDK supports both TCP and UDP protocols.

TCP stands for Transmission Control Protocol and is widely used on the network and in
applications that require guaranteed delivery of network transmissions. TCP is a
connection-oriented protocol and always makes sure that data sent by one endpoint
will be received by the other endpoint.

UDP stands for User Datagram Protocol. UDP has no error checking or verification
after transferring data so there’s no guarantee that the data will arrive at its destina-
tion. The advantage of UDP is that it’s very fast and so it’s used in real-time applica-
tions that don’t have any critical data transfers. The UDP support in the Windows
Phone 7.1 SDK includes both unicast and multicast clients. Table 9.3 compares TCP
and UDP.

Unicast is a one-to-one communication between client and server and all data packets
are sent from a single source to a destination endpoint. Multicast is used for sending a
data packet from a source to multiple destination endpoints.

 If you’ve used sockets with Silverlight or the desktop .NET Framework, you’re prob-
ably already familiar with the topics we’re going to cover in the rest of this chapter.
We’re going to show you how to use TCP sockets by building a simple client/server
chat application.

Table 9.3 TCP versus UDP

TCP UDP

Works on data streams (not on data blocks) Works on data blocks up to 64 kilobytes in size

Continuous connection Connection-less

Guaranteed delivery Doesn’t guarantee data will arrive at the remote endpoint

250 CHAPTER 9 Network communication with push notifications and sockets
9.6 Implementing a chat application with TCP sockets
You’re going to use TCP sockets to implement a sample chat application that connects
to a chat server and sends simple text messages to all connected chat clients. The sam-
ple application will demonstrate how to open a socket connection. Once opened, the
application will asynchronously send and receive chat messages.

NOTE In this book, we’re going to focus only on the client-side socket pro-
gramming and won’t cover the server-side code. The server project is
included in the sample code for the book. The server code requires either C#
Express or Visual Studio Professional.

The data stream sent in between the client and server is formatted as an array of bytes.
The array can contain any data in any format, as long as both the client and server
agree on the contents of the data stream. In your sample application, the data stream
will contain three strings concatenated together with a semicolon. The three parts of
the data payload are the command, the user’s name, and the chat message:

command;username;message

The first part of the payload is a command that identifies the type of message being
sent from a client. Your sample application supports two commands—CONNECT and
CHAT. A client registers with the chat server by sending the CONNECT command. A client
sends the CHAT command when a new text message should be shared with all con-
nected clients. The second part of the payload contains the username entered into
the chat client. The last part of the payload is the text of the chat message entered by
a user.

 When the Chit-chat server starts, it’ll begin listening on port 22222 for new socket
connections. The client will use the server’s IP address and port to create a socket con-
nection and send a CONNECT command to let any other connected clients know that a
new user joined the chat. Once connected, the client will start listening for communi-
cation from the server. When the client sends a CHAT command, the server will broad-
cast it to all connected clients. Connected clients will receive the message and will
update their user interface.

9.6.1 Building the Chit-chat client

You’re going to create a new project for the chat client sample application. Use the
Windows Phone Application project template and name the project ChitChatClient.
Open up MainPage.xaml so that you can add the markup for the user interface. A
screenshot of the finished application is shown in figure 9.7.

 The user interface contains input controls for the user’s name and the server’s IP
address. A list of chat messages is displayed on the screen. A third input control allows
the user to enter new messages. The ApplicationBar contains buttons for connecting
to the server and sending new chat messages. The next listing shows the XAML
markup for the user interface.

251Implementing a chat application with TCP sockets
<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <StackPanel x:Name="connectPanel">
 <TextBlock Text="User name" />
 <TextBox x:Name="userName" />
 <TextBlock Text="Server IP address" />
 <TextBox x:Name="serverIpAddress" InputScope="Number" />
 </StackPanel>
 <ListBox x:Name="messageList" Grid.Row="1" />
 <TextBox x:Name="messageText" Grid.Row="2" Margin="0,0,0,25" />
</Grid>

You start by splitting the ContentPanel grid into three
rows, allowing the second row to take up any extra
space. Next you add a TextBox for the user’s name
and a second TextBox for the server’s IP address,
using TextBlocks for labels. All four login controls
are placed into a StackPanel B. When new messages
arrive, they’ll be added to a collection of strings and
displayed in a ListBox c. Finally, you add a third
TextBox for new chat messages.

 Add a class-level field to hold the collection of
messages sent from the server. The collection is
bound to the ListBox in the MainPage constructor:

readonly ObservableCollection<string> messages =
 new ObservableCollection<string>();

public MainPage()
{
 InitializeComponent();
 messageList.ItemsSource = messages;
}

The user connects to the chat server by tapping a but-
ton in the application bar. Chat messages are sent
using a second button. Add the markup for the appli-
cation bar buttons:

<shell:ApplicationBarIconButton Text="connect" Click="connect_Click"
 IconUri="/Images/appbar.check.rest.png" />
<shell:ApplicationBarIconButton Text="send" Click="send_Click"
 IconUri="/Images/appbar.next.rest.png" />

The sample application uses two images from the Windows Phone 7.1 SDK. Add the
specified images to a new project folder named Images.

Listing 9.15 Defining the chat client user interface

Stack login
controls

b

Messages
display
in list

c

Figure 9.7 A screenshot of the
Chit-Chat client

252 CHAPTER 9 Network communication with push notifications and sockets
9.6.2 Connecting to the server

When the user connects to the server, a three-step process is initiated. First the
socket is created and then a connection is established asynchronously. Once the con-
nection is established, the application begins listening for messages from the server.
The Click event handler for the connect button, shown in the next listing, per-
forms the first step.

const int PORT = 22222;
IPEndPoint endpoint;
Socket socket;
string user;

private void connect_Click(object sender, EventArgs e)
{
 Disconnect();
 IPAddress address;
 if (IPAddress.TryParse(serverIpAddress.Text, out address))
 {
 endpoint = new IPEndPoint(address, PORT);
 socket = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream, ProtocolType.Tcp);
 user = userName.Text;
 Connect();
 }
}

Before you create a new connection, you disconnect any existing connection. Next
you parse the text entered into the serverIpAddress TextBox B. If the text is suc-
cessfully parsed, you create a new IPEndPoint instance with the specified IP address
and port number 22222. You also create a new Socket instance c using the Stream
SocketType and Tcp ProtocolType, which identify the Socket as a client/server TCP
connection. The InterNetwork AddressFamily value tells the socket to use the IP
version 4 addressing scheme. Finally you store the entered username and call the
Connect method.

 Before looking at the implementation of the Connect method, let’s take a quick look
at the Disconnect method. Disconnect closes and cleans up an existing connection
calling the Socket’s Close method and setting the endpoint and socket fields to null:

private void Disconnect()
{
 endpoint = null;
 if (socket != null)
 {
 socket.Close();
 socket = null;
 }
}

Listing 9.16 Implementing the click handler

Declare class-level
fields and constants

Parse
server’s
IP address

b

Create
socket

c

253Implementing a chat application with TCP sockets

ay
s to
The Connect method is where you establish a connection to the server. As part of the
initial connection, you send a CONNECT command as the data payload of the socket
message. Before calling the ConnectAsync method of the Socket class, you need to
create an instance of SocketAsyncEventArgs. The SocketAsyncEventArgs class is
used to specify the endpoint address, the payload, and the Completed event handler.
You pass the SocketAsyncEventArgs instance as a parameter to the ConnectAsync
method of Socket:

private void Connect()
{
 byte[] buffer = FormatPayload (CONNECT, string.Empty);
 var connectArgs = new SocketAsyncEventArgs{RemoteEndPoint = endpoint};
 connectArgs.Completed += connect_Completed;
 connectArgs.SetBuffer(buffer, 0, buffer.Length);
 socket.ConnectAsync(connectArgs);
}

The payload is constructed by concatenating the command, username, and chat text
into a single string. The combined string is transformed into an array of bytes using
the Encoding class:

private byte[] CreateMessage(string command, string text)
{
 string message = string.Format("{0};{1};{2}", command, user, text);
 return Encoding.UTF8.GetBytes(message);
}

Once the connection is established, the Completed event is raised, and your
connect_Completed event handler is called. The following listing shows the imple-
mentation of the event handler, where you check whether an error occurred while
connecting to the server. If the connection was successful, you start listening for mes-
sages from the server.

const int MAX_BUFFER_SIZE = 1024;

void connect_Completed(object sender, SocketAsyncEventArgs e)
{
 e.Completed -= connect_Completed;
 if (e.SocketError != SocketError.Success)
 {
 Dispatcher.BeginInvoke(() =>
 {
 MessageBox.Show("Unable to connect to the chat server.",
 "Error", MessageBoxButton.OK);
 Disconnect();
 });
 }
 else
 {
 var receiveArgs = new SocketAsyncEventArgs();

Listing 9.17 Listening for messages

Displ
error
user

b

254 CHAPTER 9 Network communication with push notifications and sockets
 receiveArgs.RemoteEndPoint = endpoint;
 receiveArgs.SetBuffer(new byte[MAX_BUFFER_SIZE],0,MAX_BUFFER_SIZE);
 receiveArgs.Completed += receive_Completed;
 socket.ReceiveAsync(receiveArgs);
 }
}

The first thing you do in the listing is unsubscribe to the Completed event for the
SocketAsyncEventArgs instance passed into the event handler. Next you look at
the SocketError property to see whether an error occurred while connecting to the
server. If an error occurred, you display a message to the user B and close the socket.
If the connection is successful, you immediately create a new instance of Socket-
AsyncEventArgs. This time, you create an empty array of 1024 bytes that will be used
when the socket receives a message. After setting the endpoint address and a Completed
event handler, you pass the new instance of SocketAsyncEventArgs to the socket’s
ReceiveAsync method c.

9.6.3 Receiving messages from the server
When a message is received from the server, the ReceiveAsync Completed event han-
dler is called. In your sample application, the event handler is named received_
Completed, which is shown in the following listing. Inside the event handler you split
apart the three strings in the payload and update the user interface.

void receive_Completed(object sender, SocketAsyncEventArgs e)
{
 if (e.SocketError != SocketError.Success)
 {
 Dispatcher.BeginInvoke(() =>
 MessageBox.Show("An error occured during server communication."
 + e.SocketError));
 }
 else
 {
 string message = Encoding.UTF8.GetString(
 e.Buffer, 0, e.BytesTransferred);
 if (!string.IsNullOrEmpty(message))
 {
 string[] msgParts = message.Split(';');
 string newMessage;
 if (msgParts[0] == CONNECT)
 newMessage = string.Format("[{0} connected]", msgParts[1]);
 else
 newMessage = string.Format("{0}: {1}",
 msgParts[1] == user ? "Me" : msgParts[1], msgParts[2]);
 Dispatcher.BeginInvoke(() => messages.Add(newMessage));
 }

 if (socket != null)
 socket.ReceiveAsync(e);
 }
}

Listing 9.18 Receiving a message

Listen for messages
from serverc

Convert payload
to string

b

Split payload into
three strings

c

Add new message
to collection d

255Implementing a chat application with TCP sockets
First you check whether an error occurred while waiting for a new message, and if so,
you display the error to the user. Otherwise you convert the payload from the event
args Buffer property and convert it into a string B using the Encoding class. Next
you split the payload into three strings c containing the command, username, and
chat message. You look at the command value to determine how to format the mes-
sage. You add the formatted message to the collection that’s bound to the ListBox in
the user interface d. Finally you start listening for another message, reusing the
SocketAsyncEventArgs instance.

9.6.4 Sending a message

Sending the message from Windows Phone is similar to the way that you connect and
receive the data from server. You need to create an instance of SocketAsyncEventArgs
and pass it to the Socket’s SendAsync method. In your sample application, you read
the text entered in the messageText TextBox and send it to the server inside the
send_Click event handler, shown in the next listing.

private void send_Click(object sender, EventArgs e)
{
 if (socket.Connected && !string.IsNullOrEmpty(messageText.Text))
 {
 byte[] buffer = FormatPayload(CHAT, messageText.Text);
 var sendArgs = new SocketAsyncEventArgs{RemoteEndPoint = endpoint};
 sendArgs.SetBuffer(buffer, 0, buffer.Length);
 sendArgs.Completed += send_Completed;
 socket.SendAsync(sendArgs);
 }
}

Before sending a CHAT command, you check whether the socket is still connected
and whether the user has entered a message B. Next you call FormatPayload and
create and initialize a new instance of SocketAsyncEventArgs. Finally you call the
SendAsync method.

 When the send operation has completed, the send_Completed event handler is
called. You check whether an error occurred and display a message. Otherwise you
clear out the text input box:

void send_Completed(object sender, SocketAsyncEventArgs e)
{
 e.Completed -= send_Completed;
 if (e.SocketError != SocketError.Success)
 MessageBox.Show("Your message could not be sent");
 else
 Dispatcher.BeginInvoke(() => messageText.Text = string.Empty);
}

You’re now ready to test the ChitChatClient sample application. In order to test all
real chat scenarios, you need two devices or emulators because you need to send the

Listing 9.19 Sending a message

Validate chat message b

256 CHAPTER 9 Network communication with push notifications and sockets
message back and forth between two different clients. Using C# express or Visual Stu-
dio Professional, open the ChitChatServer project from the sample source code and
launch the application. Next run the ChitChatClient on two Windows Phones.

9.7 Summary
In this chapter you looked at three different methods to enable communication
between a Windows Phone application and a remote service. Push notifications allow
a remote service to send messages to the user of an application, even when the appli-
cation isn’t running on the phone. Push notifications are a one-way communication
from server to client. One-way communications from client to server are possible with
the HttpWebRequest class. A client uses HttpWebRequest to send a request to the
server, and then reads the server’s response. You used HttpWebRequest to send push
notification request to the Microsoft Push Notification Service.

 You also looked at how to use the Socket class to implement two-way client server
communication. The Socket class allows you to develop applications that use TCP and
UDP to communicate to one or more servers and endpoints.

 In the next chapter we take a deep dive into the Silverlight controls built specifi-
cally for the Windows Phone. You’ll learn how to work with the ApplicationBar and
how to enable and disable button and menu items. We also take our first look at the
Panorama control, which is used to power the built-in Music + Videos and Office Hubs.
We wrap with a thorough examination of the Pivot control.

Part 3

Silverlight for
Windows Phone

Even though Silverlight for Windows Phone is very similar to Silverlight for
the browser, and by extension to Windows Presentation Foundation, there are
new controls and concepts found only in the Windows Phone SDK. In Part 3,
you’ll learn how to use new Silverlight features to build applications that match
the look and feel of Windows Phone.

 While you’ve used the ApplicationBar and Pivot controls in sample applica-
tions throughout this book, chapter 10 takes a deep dive into these new controls.
You’ll also learn about the Panorama control, an essential ingredient for building
hub-style user interfaces.

 In chapter 11, we show you how to build applications that automatically
adjust themselves when the phone is rotated from normal portrait mode into a
landscape orientation. You’ll also learn tricks to style common controls to match
the Metro design, and how to control the software keyboard. Finally we intro-
duce you to the Silverlight Toolkit for Windows Phone, a Codeplex project from
Microsoft that includes additional user interface controls.

 In chapters 12 and 13 you’ll work with the MediaElement, Bing Map, and
Web Browser controls. You’ll also learn how to use the location service and Bing
Map launchers to make a location-aware application.

ApplicationBar, Panorama,
and Pivot controls
The Windows Phone comes with a variation of Silverlight 4. This means that if you
know how to build Silverlight applications, you know how to build Windows Phone
applications. This chapter is the first of four chapters dedicated to Silverlight con-
trols and how to use them on the phone platform. In this chapter we introduce
controls that are unique to Silverlight for Windows Phone.

 Windows Phone 7 has redefined how an application displays a toolbar and
menu. Applications use the new ApplicationBar control to show up to four short-
cut icons for the most common operations on the page. If additional options are
available but don’t fit in the bar containing shortcuts or a different level of granular-
ity must be provided, developers can add textual menu items as well. In this chapter
we’ll cover how to create a basic menu which can be used in your applications.

 We also introduce two new navigation controls: Panorama and Pivot. The
Panorama control is used across the phone when the main screen of the application
provides a rich graphical frontend to quickly access favorite and recently used

This chapter covers
■ Working with the ApplicationBar
■ Using Panoramas
■ Pivoting views
259

260 CHAPTER 10 ApplicationBar, Panorama, and Pivot controls
content. Items appearing in the panorama are a linking to other pages where the con-
tent is viewed or manipulated. The Pivot control is similar to a tab control, where dis-
crete pages display different sets of data or settings to the user. The email application
is one example that uses a Pivot control to present separate pages for All, Unread,
and Marked messages.

 You’ve used the ApplicationBar and Pivot controls throughout the book, including
several examples in earlier chapters in the book. In the previous chapters, your use of
these controls was very basic. In this chapter we take a deeper look at ApplicationBar
and Pivot controls, as well as introduce the Panorama control. We accomplish this
through three sample applications. The first sample application demonstrates features of
the application bar that we haven’t discussed, such as disabling buttons and menu items,
dynamically adding and removing items, and using different display modes. The second
sample application focuses on how to build a hub-like application using the Panorama
control. Working with the Pivot control is the theme of the final sample application,
concentrating on how to efficiently pivot between views in an application.

10.1 Working with the ApplicationBar
The ApplicationBar is the new toolbar and menu paradigm created for the Windows
Phone. It provides a toolbar for buttons with an expandable menu. The application
bar is always placed at the bottom of the screen in portrait orientation, and on the
side of the screen in landscape orientation (see figure 10.1). The application bar is

Figure 10.1 The application bar with expanded menu in portrait,
landscape left, and landscape right orientations

261Working with the ApplicationBar

ons
nt
associated with a page, and isn’t global to the application. If you want the same fea-
tures on multiple pages, you’ll need to recreate the application bar items on every page.

 The application bar is always positioned on the side of the screen where the start
button lives. Touching the three dots at the edge of the application bar expands it to
show the defined menu items. There are a maximum of 4 buttons and 50 menu items.

10.1.1 Building an application bar

We’ll use a new sample application to demonstrate using an application bar in a Silver-
light application. Create a new project, named ApplicationBar, using the Windows
Phone Application template. Once the project is created, open up MainPage.xaml
and add the markup declaring a new application bar. The following listing shows the
XAML used to declare the application bar shown in figure 10.1.

<phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar>
 <shell:ApplicationBar.MenuItems>
 <shell:ApplicationBarMenuItem Text="epsilon"
 Click="item_Clicked" />
 <shell:ApplicationBarMenuItem Text="zeta"
 Click="item_Clicked"/>
 <shell:ApplicationBarMenuItem Text="eta"
 Click="item_Clicked"/>
 </shell:ApplicationBar.MenuItems>

 <shell:ApplicationBarIconButton IconUri="/icons/alpha.png"
 Text="alpha" Click="item_Clicked" />
 <shell:ApplicationBarIconButton IconUri="/icons/beta.png"
 Text="beta" Click="item_Clicked" />
 <shell:ApplicationBarIconButton IconUri="/icons/gamma.png"
 Text="gamma" Click="item_Clicked"/>
 <shell:ApplicationBarIconButton IconUri="/icons/delta.png"
 Text="delta" Click="item_Clicked" />
 </shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>

An application bar is created as a property of the PhoneApplicationPage using Silver-
light’s property element syntax B. An application bar is represented by the
ApplicationBar class, found in the Microsoft.Phone.Shell namespace, which is
aliased in XAML as shell. The ApplicationBar contains two collection properties
named Buttons and MenuItems. The MenuItems collection is populated by declaring
ApplicationBarMenuItem objects inside of the MenuItems element c. The Buttons
collection is populated by declaring ApplicationBarIconButton objects as the con-
tent of the ApplicationBar d.

 The ApplicationBarIconButton class exposes IconUri, Text, and IsEnabled
properties. IconUri must be provided and is a relative Uri to an image file that has
been added to the project with a build action of Content. We’ll discuss image files
later in the chapter. The Text property is also required.

Listing 10.1 Declaring application bar buttons and menu items

Create
application bar

b

Add menu items
to collection

c

Add butt
to conte

d

262 CHAPTER 10 ApplicationBar, Panorama, and Pivot controls
 The ApplicationBarMenuItem class only has Text and IsEnabled properties. The
Text property is required, and a value must be specified when the menu item is declared.

ApplicationBarIconButton and ApplicationBarMenuItem both provide a Click
event that can be wired up to an event handler in XAML. The click events are basic event
handlers and don’t send a RoutedEventArgs or any other custom EventArgs type. If
you need to know which button or menu item was clicked, you can use the event han-
dler’s sender parameter. In the preceding listing, you wired up the same click event
handler to each of the buttons and menu items. The click event handler is imple-
mented in the next listing.

private void item_Clicked(object sender, EventArgs e)
{
 var button = sender as ApplicationBarIconButton;
 if (button != null)
 {
 MessageBox.Show(button.Text, "Button Clicked",
 MessageBoxButton.OK);
 }
 else
 {
 var menuItem = sender as ApplicationBarMenuItem;
 MessageBox.Show(menuItem.Text, "Menu Item Clicked",
 MessageBoxButton.OK);
 }
}

Your click event handler checks whether the sender is a button or a menu item. Next,
you retrieve the Text from the sender. A message box is shown to inform the user that
the application bar item was clicked. Like any other event, the XAML editor has fea-
tures that can be used to automatically create the event handler in the code behind
file. This is just one of the features supported by the Windows Phone Developer tools.

10.1.2 Tooling support

Visual Studio has limited support for building an application bar with the visual and
property editors. The application bar doesn’t appear in the toolbox, and you can’t
interact with it in the visual editor. In the XAML editor, you can select the application
bar, buttons, and menu items and work with their properties in the property editor
(although limited). You can’t use the property editor to add new buttons or menu
items, and there isn’t a convenient selector for picking an icon. The icons selected for
the buttons aren’t even shown in the visual editor.

 Expression Blend has much better support for working with the application bar
(see figure 10.2). The visual editor will display an application bar, complete with the
appropriate icons, and will allow you to create and select the ApplicationBar and its
buttons and menu items in the Objects and Timeline panel. The property editor for
the buttons has a convenient icon selector that allows you to pick from local icons or

Listing 10.2 Click event handler for application bar items

263Working with the ApplicationBar
one of the icons provided in the Windows Phone SDK. When you choose an SDK icon,
Blend will automatically add the icon file to the icons folder in your project.

 The ApplicationBar and its button and menu item classes aren’t Framework-
Elements or even DependencyObjects. This means they don’t participate in data bind-
ing, can’t be located using the FindName API or the VisualTreeHelper, and don’t
appear in the visual tree. This also means that although you can apply an x:Name attri-
bute to the buttons and menu items, and member fields will be generated for them,
the fields won’t automatically be wired up in InitializeComponents.

 You can use the x:Name attribute to get the member variables generated and then
wire them up yourself in code behind. First, add a name to the alpha button and the
epsilon menu item:

<shell:ApplicationBarMenuItem x:Name="menuItem1"
 Text="epsilon" Click="item_Clicked" />

<shell:ApplicationBarIconButton x:Name="button1"
 IconUri="/icons/alpha.png" Text="alpha" Click="item_Clicked" />

Next you need to assign the generated member fields to the button and menu item
instances, which you do in a new InitializeApplicationBar method that you add to
MainPage.xaml.cs:

private void InitializeApplicationBar()
{
 button1 = (ApplicationBarIconButton)ApplicationBar.Buttons[0];
 menuItem1 = (ApplicationBarMenuItem)ApplicationBar.MenuItems[0];
}

The ApplicationBar instance is accessed via the ApplicationBar property of your
MainPage class. The property is inherited from the PhoneApplicationPage class. You

Figure 10.2 Expression Blend’s
designer support for the
ApplicationBar

264 CHAPTER 10 ApplicationBar, Panorama, and Pivot controls
set your button1 field to the first item in the Buttons collection. You must perform
the cast to ApplicationBarIconButton because the Buttons property is an IList. You
do the same thing for the menuItem1 field, using the MenuItems collection and casting
it to ApplicationBarMenuItem.

NOTE Using a hard-coded index value to wire up the fields is fragile. If the
buttons are reordered in MainPage.xaml, you could end up using the wrong
button instance if the index value isn’t changed in the code behind.

In this section, we’ve shown you how to declare and build an application bar using the
Windows Phone Developer Tools. You’re probably asking yourself a couple of ques-
tions. How can I change the bar and its items while an application is running? How
should I alter my screen designs to accommodate the application bar?

10.1.3 Changing the application bar appearance

The application bar takes up 72 pixels of space and you need to account for that space
in your page designs. You can claim more space by changing the application bar’s
opacity. In this situation, the application bar won’t steal space from your application
page, but will still be visible floating above your page. You’ll need to be careful
because the semi-transparent application bar might obscure your user interface. Fig-
ure 10.3 demonstrates how setting the ApplicationBar.Opacity property to 0.5
causes the application bar to obscure the page behind it.

 Another way to reclaim screen real estate from the application bar is to use mini-
mized mode. In minimized mode, the application bar doesn’t draw any buttons, as
shown in figure 10.4, and only draws the ellipses. When the user taps the control, it
expands to display the icon buttons and menu. The ApplicationBar is placed in min-
imized mode by setting the Mode property to ApplicationBarMode.Minimized enu-
meration value. Using the ApplicationBarMode.Default value returns the application
bar to normal. Minimized mode only affects how the application bar is drawn in por-
trait layout. The application bar is always drawn full-size in landscape layout, even
when the Mode property is set to Minimized.

Figure 10.3 Application page
obscured by a partially
transparent application bar

265Working with the ApplicationBar
The application bar contains an IsVisible property that can be used to show or hide the
control while the application is running. This is useful if your application has some activ-
ity where the application bar isn’t required, but when that activity ends, you need to dis-
play the application bar. You can demonstrate this behavior by adding a CheckBox to your
application that can be used to control the visibility of the ApplicationBar:

<CheckBox Content="ApplicationBar.IsVisible" IsChecked="True"
 Click="appBarVisible_Clicked" />

In the click event handler, you set the IsVisible property to be the Checkbox’s
IsChecked value:

private void appBarVisible_Clicked(object sender, RoutedEventArgs e)
{
 var checkBox = (CheckBox)sender;
 ApplicationBar.IsVisible = checkBox.IsChecked.Value;
}

Unlike Silverlight UIElements, visibility is specified using a Boolean instead of the
Visibility enumeration.

 The ApplicationBar also has an IsMenuEnabled Boolean property that controls
whether the menu items are displayed when the bar is expanded. You might have
some situations where you don’t show the menu and other situations where you do.

10.1.4 Dynamically updating buttons and menu items
Individual buttons and menu items can be enabled or disabled at runtime using their
IsEnabled properties. You’re going to add a CheckBox to demonstrate changing
the IsEnabled property of your alpha button:

<CheckBox Content="button1.IsEnabled" IsChecked="True"
 Click="button1Enabled_Clicked" />

The event handler for the check box sets the button’s IsEnabled property to the
CheckBox’s IsChecked value:

private void button1Enabled_Clicked(object sender, RoutedEventArgs e)
{
 var checkBox = (CheckBox)sender;
 button1.IsEnabled = checkBox.IsChecked.Value;
}

Though not shown here, the same technique can be used with ApplicationBarMenu-
Items. An example is available in this project’s sample source code.

Figure 10.4 The
application bar
in default and
minimized mode

266 CHAPTER 10 ApplicationBar, Panorama, and Pivot controls
 There might be situations where instead of disabling a button or a menu item,
you’d rather remove the item from the application bar altogether. The Buttons and
MenuItems collections implement IList’s Add, Remove, and Insert methods, which
can be used to add and remove items from the application bar. You’ll use the same
CheckBox technique to remove or add a button from the Buttons collection:

<CheckBox IsChecked="True" Content="Show button1"
 Click="button1Show_Checked" />

In the event handler, you insert the button at the beginning of the collection when the
check box is checked. When it’s unchecked, you remove the button from the collection:

private void button1Show_Checked(object sender, RoutedEventArgs e)
{
 var checkBox = (CheckBox)sender;
 if (checkBox.IsChecked.Value)
 ApplicationBar.Buttons.Insert(0, button1);
 else
 ApplicationBar.Buttons.Remove(button1);
}

In this instance you’re inserting and removing a button that was created when the
page was first loaded. You could choose to destroy the button and create a brand new
instance if necessary.

NOTE Even though the Buttons collection’s Add and Insert methods accept
a parameter of type object, an exception will be thrown if anything other than
an ApplicationBarIconButton instance is passed to the methods.

The user interface is updated as soon as the button is added or removed. A similar
technique can be used to add and remove ApplicationBarMenuItems. Of course, the
user won’t see any changes to the menu until the application bar is expanded.

 By default, the application bar is displayed in the current theme colors. If your
application doesn’t use the system theme, you’ll likely want to change the application bar
colors to match your application. The ApplicationBar class provides the Background-
Color and ForegroundColor for just this situation. The application bar will automati-
cally apply the colors to the button icons, if the icons are property designed.

10.1.5 Designing button icons

Icons should be 48 x 48 and contain only white or transparent pixels. When the dark
theme is active, the application bar will display your image pretty much as is. When
the light theme is active, or you’re using a custom foreground color, the application
bar blends all non-transparent pixels with the foreground color. You shouldn’t use col-
ored icons, as your buttons will end up with odd-looking icons. Colored icons also go
against the recommendations specified in the User Experience Design Guidelines for Win-
dows Phone. The application bar will automatically draw the button’s bounding circle
and the icons shouldn’t contain the bounding circle. The icons should also fit within
the bounding circle.

267Working with the ApplicationBar
 Text and icons for the button can be changed from code behind. You might wish
to change the text and icon if you’re toggling some state in your application. For
example, an application that plays background music might offer a mute button and
change the text and icon once the user has enabled mute.

 Change your sample application to toggle button1 between alpha and omega.
First, you need to update MainPage.xaml to hook up button1 to a new event handler:

<shell:ApplicationBarIconButton x:Name="button1"
 IconUri="/icons/alpha.png" Text="alpha" Click="button1_Clicked" />

You’ll perform the text and icon change in the event handler (see the following list-
ing). The event handler code will use the button1 field, and will also use icon files
named alpha.png and omega.png.

private void button1_Clicked(object sender, EventArgs e)
{
 if (button1.Text == "alpha")
 {
 button1.Text = "omega";
 button1.IconUri = new Uri("/icons/omega.png", UriKind.Relative);
 }
 else
 {
 button1.Text = "alpha";
 button1.IconUri = new Uri("/icons/alpha.png", UriKind.Relative);
 }
}

The application bar will update the buttons as soon as the changes are made in code.
ApplicationBarMenuItems can also have their Text property updated in code behind.
The new menu item text will be visible the next time the ApplicationBar is expanded.

 When the ApplicationBar is expanded or collapsed, the StateChanged event is
raised. The event sends an ApplicationBarStateChangedEventArgs instance to the
event handler. This event args class exposes the IsMenuVisible Boolean property
which tells you whether the menu is visible. The StateChanged event is useful when
you need to pause some activity in your application when the menu is shown, and
resume the activity when it’s hidden. You might think this event handler would be the
ideal place to update the IsEnabled property for all your menu items, but it’s not. Any
changes to the menu items in the event handler won’t be seen by the user until the
next time the application bar is expanded.

 The ApplicationBar and ApplicationBarIconButtons can be updated in the
StateChanged event handler, and these changes will be immediately reflected in the UI.
For example, you might change the foreground and background colors when the
menu is opened.

 The application bar is the new menu and toolbar control for Windows Phone
applications. You should use the application bar in place of a row of buttons to provide

Listing 10.3 Toggle button icon and text

Check current
state

Load icon from .xap package

268 CHAPTER 10 ApplicationBar, Panorama, and Pivot controls
access to the most common features. Less-used features should be accessed via the
application bar’s menu. Buttons and menu items can be declared in XAML or defined
in code behind, and the application bar can dynamically update to match the state of
the application.

 The ApplicationBar is not for every application. The first page of some applica-
tions displays rich dynamic content and is the menu to the rest of the application. In
this scenario, the Panorama control is the perfect paradigm.

10.2 Improving the scenery with the Panorama control
One control unique to Windows Phone is the Panorama control, which is a long hori-
zontal panel spread across several screens. The user pans left or right to change the view-
port and move between the various screens in the control. The People Hub, the
Pictures Hub, and the Music + Video Hub are just a few of the native applications that
use a Panorama control. In this section you’ll build a sample application, shown in fig-
ure 10.5, to demonstrate a few of the behaviors found only in the Panorama control.

 A Panorama control should be used when you want to give a seamless flow to the
contents in your application. The different viewports of the panorama are each con-
tained within a PanoramaItem control.

 The Panorama control has three different visual layers that scroll at different rates
as the user pans the application. The background layer is stretched across the entire
width of the control and moves at the slowest rate. The title layer moves a bit faster,
but makes sure that a portion of the title appears above the current PanoramaItem.
The top layer contains the PanoramaItem controls and moves at the fastest rate.

Panorama controls can be added to an application using either the Windows
Phone Panorama Application project template, or the Windows Phone Panorama
Page item template. You’re going to use the Windows Phone Panorama Page item

Figure 10.5 The sample panorama application with three items

269Improving the scenery with the Panorama control
template to embed a Panorama control in your application. First you need to create
the sample project.

10.2.1 Building a panorama application
You’re going to create a new project to demonstrate using a panorama control in a Sil-
verlight application. Create a new project, named Panorama, using the Windows Phone
Application template. You’re not using the Windows Phone Panorama Application tem-
plate, since you don’t need sample Model-View-ViewModel code generated for you.

 The MainPage.xaml file generated by the Windows Phone Application template isn’t
going to work for you, and you need to delete it from the project. You’ll create a new
MainPage.xaml using the Project > Add New Item menu option. From the new item dia-
log, choose the Windows Phone Panorama Page item template and name the new page
MainPage.xaml. Once the project is created, open up MainPage.xaml and take a look at
the XAML markup created by the template, which is shown in the next listing.

<Grid x:Name="LayoutRoot">
 <controls:Panorama Title="my application">
 <controls:PanoramaItem Header="item1">
 <Grid/>
 </controls:PanoramaItem>
 <controls:PanoramaItem Header="item2">
 <Grid/>
 </controls:PanoramaItem>
 </controls:Panorama>
</Grid>

MainPage.xaml was created with a Grid as the LayoutRoot, with the Panorama control B
as its only child. The Panorama control was generated with two placeholder Panorama-
Item controls c. The content for each of the PanoramaItems is an empty Grid con-
trol. Empty grids aren’t very exciting so you’ll add some content shortly. First we need
to discuss namespaces and assemblies.

 The Panorama control lives in the Microsoft.Phone.Controls namespace, which
is the same namespace that contains PhoneApplicationPage. The Panorama control
doesn’t live in the same assembly as PhoneApplicationPage, but instead can be found
in Microsoft.Phone.Controls.dll assembly. When you used the Windows Phone
Panorama Page template, a reference was automatically added to the controls assem-
bly. Because the Panorama control is in a separate assembly, a separate XML
namespace was added to MainPage.xaml:

xmlns:controls="clr-namespace:Microsoft.Phone.Controls;

➥ assembly=Microsoft.Phone.Controls"

Before you add some content to each of the item controls, you’ll make some simple
adjustments to the generated XAML. First, change the title of the Panorama control
and give it a name:

<controls:Panorama x:Name="panorama" Title="windows phone 7 in action">

Listing 10.4 Panorama markup created by the item template

Declaring panoramab

Declaring
items

c

270 CHAPTER 10 ApplicationBar, Panorama, and Pivot controls
You also need to give each of the panorama items their own name and title:

<controls:PanoramaItem x:Name="panoItem1" Header="normal">
...
<controls:PanoramaItem x:Name="panoItem2" Header="auto width">

While you’re at it, create a third PanoramaItem:

<controls:PanoramaItem x:Name="panoItem3" Header="specified width">
 <Grid/>
</controls:PanoramaItem>

Normally, every PanoramaItem would have a different set of content. In order to
illustrate interesting behavior with the size of panorama items, you’re going
to place similar content in each PanoramaItem. You’ll place a few text blocks in
each item that will display a relatively long message, along with the width and
height of the PanoramaItem control. The following listing details the XAML markup
for the item content.

<StackPanel Margin="12, 0">
 <TextBlock TextWrapping="Wrap"
 Margin="0,0,0,40">
 Windows Phone 7 is a major shift in the way Microsoft
 developers design, develop, and sell mobile apps.
 </TextBlock>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="PanoramaItem.ActualWidth=" />
 <TextBlock Text=
 "{Binding ActualWidth, ElementName=panoItem1}" />
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="PanoramaItem.ActualHeight=" />
 <TextBlock Text=
 "{Binding ActualHeight, ElementName=panoItem1}" />
 </StackPanel>
</StackPanel>

You replace the empty Grid in each of the PanoramaItem controls with a StackPanel
control. Inside the StackPanel you create a TextBlock to display a message B that’s
too long to fit on a single line. You tell the TextBlock to wrap the text when it can’t
display the text on one line. Next, you create a pair of TextBlock controls to display
the current width of the PanoramaItem control. You use element binding to display the
ActualWidth property c of the PanoramaItem control you named panoItem1. Finally,
you display the height of the PanoramaItem using another pair of TextBlock controls,
which you bind to the ActualHeight property d.

 Repeat the same chunk of markup for the other two PanoramaItem controls. Make
sure you change the element binding to panoItem2 and panoItem3 as appropriate.
When you run the sample application now, it should appear just like the screenshot in
figure 10.6.

Listing 10.5 PanoramaItem content markup

Relatively
long
message

b

Bind to
item’s width

c

Bind to
item’s height

d

271Improving the scenery with the Panorama control
 If you drag your finger across the screen from
right to left, the application will pan the screen and
bring the second PanoramaItem into view, followed
by the third PanoramaItem. You should notice that
the title pans as well, but at a different rate from the
contents. You should also notice that the message
text in each panel is wrapped across three lines and
that each of the panels is a single screen wide.

 Remember the Pictures Hub we talked about a
few pages back? The second panel in the Pictures
Hub is wider than a single screen. Let’s take a look
at how to make your own PanoramaItems behave
the same way.

10.2.2 Widen up the view
When the Panorama control lays out its children, it automatically resizes each of the
PanoramaItem controls to fill the remaining space on the screen. After subtracting out
space for the panorama title, the item header, and the overlap for the next item, a
PanoramaItem control ends up 432 pixels wide and 618 pixels high.

 The Panorama control is designed so that PanoramaItems can have variable widths.
When deciding how wide to size a PanoramaItem item, the Panorama control looks at
the item’s Orientation property. When the item’s Orientation property is Vertical,
the Panorama control will set the item’s width to a single screen. The Panorama control
allows the item to declare its own width when the Orientation property is set to
Horizontal. The default value of the Orientation is Vertical, so all of your item
controls are sized to a single screen.

 To see this behavior in action, change panoItem2’s Orientation property to
Horizontal and restart the application:

<controls:PanoramaItem x:Name="panoItem2" Header="auto width"
 Orientation="Horizonatal">

Pan over to the auto width panel, and you should
notice that the message text is now in a single line,
and the panel spans across a couple of screens. Fig-
ure 10.7 shows the updated panel.

 The TextBlock containing the message text pre-
fers to display the message in a single line. When the
Panorama layout routine asks the PanoramaItem for
its preferred width, the TextBlock’s preferred size is
reported back. The result is that the PanoramaItem
has an ActualWidth of 956 pixels. If the message text
were longer, the panel would be wider; the longer
the text, the wider the panel.

Figure 10.6 The Panorama sample
application with fixed width items

Figure 10.7 A wide PanoramaItem
that calculates its own width

272 CHAPTER 10 ApplicationBar, Panorama, and Pivot controls
 Infinitely wide panels are undesirable. Just like any other layout scenario, you can
control the width of a panel by setting either the Width or MaxWidth properties of the
PanoramaItem control. Hard-code the width of panoItem3 to 750 pixels:

<controls:PanoramaItem x:Name="panoItem3" Header="specified width"
 Orientation="Horizonatal" Width="750" >

If you run the application now, you should see two lines of message text on the third
panel. Once you’re on the third panel, use the Start button to exit the application and
return to it using the Back button. Now exit the application, change the project prop-
erty so that the application is tombstoned upon deactivation, and restart the applica-
tion. Scroll to the third panel, press the Start button and once again return to it using
the Back button. The application restores, but the selected panel is the first one
instead of the third. Let’s look at how you can restore the panel that was selected
before the application was tombstoned.

10.2.3 Remembering where you are

Well-behaved applications remember their state when the user switches to another
application, and they restore the state when the application is reactivated. Panorama
applications are no different, and should return the user to the correct PanoramaItem
when the application is restarted.

 The Panorama control exposes SelectedIndex and SelectedItem properties, but
they’re both read-only, and can’t be used to restore state. Instead, the Panorama con-
trol provides the DefaultItem property. Before you can use the DefaultItem property
to restore user state on reactivation, you need to record which PanoramaItem control
is selected.

 When the user pans to a new item, the Panorama control fires the Selection-
Changed event. Wire up the event in MainPage.xaml:

<controls:Panorama x:Name="panorama" Title="windows phone 7 in action"
 SelectionChanged="panorama_SelectionChanged">

Implement the event handler in MainPage.xaml.cs by saving the selected index to
application settings:

private void panorama_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
{
 IsolatedStorageSettings.
 ApplicationSettings["selection"] = panorama.SelectedIndex;
}

You restore the selection in the OnNavigatedTo event handler where you read the
selected index from application settings, and use it to set the DefaultItem property:

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 int selectedIndex;

273Improving the scenery with the Panorama control
 if (IsolatedStorageSettings.ApplicationSettings
 .TryGetValue("selection", out selectedIndex))
 {
 panorama.DefaultItem = panorama.Items[selectedIndex];
 }
}

When the DefaultItem property is set in code, the Panorama immediately makes the
specified PanoramaItem control the selected item. The change in selection isn’t ani-
mated like it is when the user pans the screen. This could be disconcerting for the
user if you have logic in your application that changes the DefaultItem based on non-
panning activity, such as a button click.

 There’s one other idiosyncrasy with using the DefaultItem property. The
Panorama title is lined up with the item that’s specified as the default. Figure 10.8
illustrates how the title is lined up with the second PanoramaItem control when it’s
the default item.

 When the normal panel is the default item, the auto width panel aligns with the
letter O in the word Windows. When the auto width panel is the default, it aligns with
the letter W in Windows. The default panel also is aligned to the left edge of the back-
ground image, when a background is specified. You’ll add a background image to
your Panorama control next.

10.2.4 Adding a background

When we first described the Panorama control, we mentioned that there were three
panning layers that moved at different speeds. You’ve only seen two of these layers in
action so far as you haven’t yet added a background to your application. The Pan-
orama Background property is inherited from the Control class, and is specified just
like the background of any other control.

 The Background property is of type Brush. This means the background can be
painted with a solid color or one of the gradient brushes. You can also use an Image-
Brush or even a VideoBrush.

NOTE VideoBrush is only available with the Windows Phone SDK 7.1.

Figure 10.8 Title alignment when the second item isn’t the default (left) and
when it is the default (right)

274 CHAPTER 10 ApplicationBar, Panorama, and Pivot controls
Creating the ImageBrush in XAML is easy:

<controls:Panorama x:Name="panorama" Title="windows phone 7 in action"
 SelectionChanged="panorama_SelectionChanged">
 <controls:Panorama.Background>
 <ImageBrush ImageSource="PanoramaBackground.jpg" />
 </controls:Panorama.Background>

In this snippet, you’re telling the ImageBrush to use the file named PanoramaBack-
ground.jpg. You should add the file to the root of your project and select a build
action of Resource, which causes the image to be compiled into your assembly. This is
the optimal option for Panorama backgrounds because the image is available as soon
as the control is displayed. Background images can be loaded from the .xap file con-
tent or even from an internet location, but the user will experience a delay between
when the Panorama control is displayed and when the background image first appears.

NOTE For the best performance and user experience, choose a background
image that is between 480 x 800 pixels and 1024 x 800 pixels.

All user interface elements pick up their look and feel from the system theme
resources. This means that if the phone is set to the dark theme, the background will
be black and text displayed in the Panorama will be white. The text will be black and
the background white when the user has chosen the light theme for their phone.

 Unless you explicitly set the text color on the Panorama control, you must ensure
that the default system text color is readable against your background image. The
image in this PanoramaBackground.jpg example doesn’t play well with black text. To
remedy the situation, you hard-code the Panorama Foreground property to White:

<controls:Panorama x:Name="panorama" Title="windows phone 7 in action"
 SelectionChanged="panorama_SelectionChanged"
 Foreground="White">

By setting the Foreground property, you’re telling the Panorama control to ignore the
system text color.

 Now that you have a background image, you’re nearly done with your sample
application. You have PanoramaItems with different widths and you restore the active
panel when the application is re-launched. Before we move on to the Pivot control,
let’s take a deeper look at panorama titles.

10.2.5 Customize the title
When you look through the various built-in hubs on the
phone, you’ll notice that most use simple text for the pan-
orama title. One notable exception is the Office Hub.
Shown in figure 10.9, the Office Hub displays an image in
the panorama title.

 The Title property of the Panorama control is of type
Object, and it’s displayed with the data template specified
in the TitleTemplate property. You aren’t going to replace

Figure 10.9 The Office Hub
with an image in the
panorama title

275Pivoting around an application
the template in this example because you’re just going to add a Grid control with an
Image and two TextBlocks. The XAML markup for the new panorama title is shown in
the next listing.

<controls:Panorama x:Name="panorama"
 Foreground="White"
 SelectionChanged="panorama_SelectionChanged">
 <controls:Panorama.Title>
 <Grid Margin="0,55,0,0">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Image Source="PanoramaLogo.png"
 Grid.RowSpan="2" Margin="12,36,12,0" />
 <TextBlock Grid.Column="1" Text="windows phone 7"
 FontSize="{StaticResource PhoneFontSizeExtraExtraLarge}" />
 <TextBlock Grid.Row="1" Grid.Column="1" Text="in action"
 FontSize="{StaticResource PhoneFontSizeLarge}" />
 </Grid>
 </controls:Panorama.Title>

Using XAML’s property element syntax B, you add a Grid control to the Panorama
.Title property. The Grid is divided into two rows and two columns c. Next you
declare the Image control, placing it in the first two rows of the first column of the
Grid d. The Image control will display the image in the file PanoramaLogo.png,
which you add to the project with a build action of Resource. Finally, you add two
TextBlock controls that display the title e. You bind the FontSize property of each
control to a theme font size resource.

 Run the application and note the scrolling behavior of the new title. The image
and two text lines scroll as a single unit when the user pans across the panorama. The
continuous multi-layer movement of the background, title, and content is unique to
the Panorama control. Multi-layer movement distinguishes the Panorama control from
its counterpart, the Pivot control.

10.3 Pivoting around an application
The Pivot control is the Windows Phone equivalent to a tab control. The Pivot con-
trol displays the title of each of its child PivotItems across the top of the control. The
user can switch between items by tapping the titles or panning to scroll a new pivot into
view. The main title displayed by the Pivot control is stationary and doesn’t move.

 Unlike the Panorama control, which loads every item when it’s created, the Pivot
control only loads the currently displayed page. When a user switches to another pivot

Listing 10.6 Adding an image and two title lines to the Panorama control

Use property
element syntax

b

Divide into
2 rows and
2 columns

c

Add
image

d

Add title lines e

276 CHAPTER 10 ApplicationBar, Panorama, and Pivot controls
item, the old item is unloaded and removed from the visual tree. We’ll examine the
events raised when Pivot switches between items.

 To demonstrate the features of the Pivot control you’ll build a new sample appli-
cation. Shown in figure 10.10, this application will contain three PivotItems imple-
menting a pattern that’s common in many pivot-based experiences. The first pivot
item displays an unfiltered list of data. The second pivot item displays the same list,
but filtered to a subset of the data. The last pivot item allows the user to specify
options or settings for the application.

Pivot controls can be added to an application using either the Windows Phone
Pivot Application project template, or the Windows Phone Pivot Page item template.
You’re going to use the Windows Phone Pivot Page item template to embed a Pivot
control in your application. First you need to create the sample project.

10.3.1 Building the sample

You’re going to create another new project to demonstrate using a Pivot control
as the main page of a Silverlight application. Create a new project, named Pivot, using
the Windows Phone Application template. You’re starting with the basic application
instead of the Windows Phone Pivot Application template. You’re not using the pivot
application template since you don’t need sample Model-View-ViewModel code gen-
erated for you.

 The MainPage.xaml file generated by the Windows Phone Application template
isn’t going to work here, so you need to delete it from the project. You’ll create a new

Figure 10.10 The sample
Pivot application with
three pivots

277Pivoting around an application
MainPage.xaml using the Project > Add New Item menu option. From the new item
dialog, choose the Windows Phone Pivot Page item template and name the new page
MainPage.xaml. Once the project is created, open up MainPage.xaml and take a look
at the XAML markup created by the template, which is shown in the following listing.

<Grid x:Name="LayoutRoot" Background="Transparent">
 <controls:Pivot Title="MY APPLICATION">
 <controls:PivotItem Header="item1">
 <Grid/>
 </controls:PivotItem>
 <controls:PivotItem Header="item2">
 <Grid/>
 </controls:PivotItem>
 </controls:Pivot>
</Grid>

MainPage.xaml was created with a Grid as the LayoutRoot, with a Pivot control B as
its only child. The Pivot control was generated with two placeholder PivotItem con-
trols c. The content for each of the PivotItems is an empty Grid control.

 Before you add some content to each of the item controls, you’ll make some sim-
ple adjustments to the generated XAML. First you change the title of the Pivot control
and give it a name:

<controls:Pivot x:Name="pivot" Title="WINDOWS PHONE 7 IN ACTION">

You also need to give each of the pivot items their own name and title:

<controls:PivotItem x:Name="allDataItem" Header="all">
...
<controls:PivotItem x:Name="filteredItem" Header="filtered">

While you’re at it, create a PivotItem for the settings pivot:

<controls:PivotItem Header="settings">
 <StackPanel>
 <RadioButton x:Name="allDataOption" IsChecked="True"
 Content="Load all data at start up" />
 <RadioButton x:Name="asNeededOption"
 Content="Only load data when needed" />
 </StackPanel>
</controls:PivotItem>

Providing the user an option on the settings pivot implies that you need to save and
reload the selected option when the application restarts. You’ll save the option in the
OnNavigatedFrom method override:

protected override void OnNavigatedFrom(NavigationEventArgs e)
{
 IsolatedStorageSettings.ApplicationSettings["loadAllData"]
 = allDataOption.IsChecked.Value;
}

Listing 10.7 Pivot markup created by the item template

Declaring
pivot

b

Declaring
items

c

278 CHAPTER 10 ApplicationBar, Panorama, and Pivot controls
You reload the save option in the OnNavigatedTo method override:

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 bool loadAllData = false;
 IsolatedStorageSettings.ApplicationSettings
 .TryGetValue("loadAllData", out loadAllData);
 allDataOption.IsChecked = loadAllData;
 asNeededOption.IsChecked = !loadAllData;
}

Your sample application is off to a good start. You have three pivots and your settings
page remembers the options chosen by the user. You should also remember the currently
selected PivotItem when the user switches away from and then back to your application.

10.3.2 Remembering the current selection

You should be a good citizen and restore the selected pivot when the user switches
tasks, and be sure to return to the appropriate pivot when the application is reacti-
vated. Add the following line to the OnNavigatedFrom method override:

State["selection"] = pivot.SelectedIndex;

You want your application to always start a new instance showing the first pivot item, so
you’re going to store the selection in the State dictionary instead of application settings.

 Restoring the selection isn’t as straightforward as saving it. In some situations, the
Pivot control won’t allow the SelectedIndex to be modified before it’s loaded. To
prevent problems, you’ll add your index restoration logic to an event handler wired
up to the Pivot control’s Loaded event:

<controls:Pivot x:Name="pivot" Title="WINDOWS PHONE 7 IN ACTION"
 Loaded="pivot_Loaded">

In the implementation of the event handler you check whether the State dictionary
contains a selection, and if so, use it to change the current pivot:

private void pivot_Loaded(object sender, RoutedEventArgs e)
{
 if(State.ContainsKey("selection"))
 {
 pivot.SelectedIndex = (int)State["selection"];
 }
}

When the SelectedIndex is changed from code, the user will see the normal anima-
tion as the Pivot control moves the related PivotItem to the foreground.

 The user can now safely switch applications knowing that their pivot selection will
be restored when they switch back to the application. At this point, there’s no good
reason to switch back since the application doesn’t display any data.

279Pivoting around an application
10.3.3 Generating sample data

Your sample application is modeled after a class of data-browsing applications that use a
Pivot control to move between different sets of filtered data. Without data, you’re going
to have a hard time demonstrating a filtering technique. For simplicity, your application
is going to generate a sample dataset. In a real application, the data set might come from
a file, a database, or a web service. Add a new class file to the project and name it Sample-
Data.cs. The next listing shows the implementation of the SampleData class.

public enum SampleCategory{ Even, Odd }

public class SampleData
{
 public string Name { get; set; }
 public int Value { get; set; }
 public SampleCategory Category { get; set; }

 public static IEnumerable<SampleData> GenerateSampleData()
 {
 var results = new List<SampleData>();
 var generator = new Random();

 for (int i = 1; i < 100; i++)
 {
 var value = generator.Next(1000);
 var data = new SampleData
 {
 Name = "data point " + i,
 Value = value,
 Category = value % 2 == 0 ?
 SampleCategory.Even : SampleCategory.Odd,
 };
 results.Add(data);
 }
 return results;
 }
}

Within the SampleData.cs file you create a class named SampleData and an enum
named SampleCategory B. The category enumeration value will be used later when
you build the filter. The SampleData class has three properties for Name, Value, and
Category c. You also created a static method that you can call to generate 100 ran-
dom values d. As each data point is created, you check whether the random value is
even or odd and assign the appropriate category.

 Next, update MainPage.xaml.cs by adding a field to hold the generated data, and
initialize the field in the class constructor:

IEnumerable<SampleData> data;

public MainPage()
{

Listing 10.8 Generating sample data with the SampleData class

Enum to distinguish
odd from evenb

Sample
properties

c

Generate
100 random
data points

d

280 CHAPTER 10 ApplicationBar, Panorama, and Pivot controls
 InitializeComponent();
 data = SampleData.GenerateSampleData();
}

Now that you have some data to display, you need something that will display data. A
ListBox should do nicely, and you’ll add one to each PivotItem. Both ListBoxes will
display data exactly the same way and you can create a single DataTemplate that can
be shared. The DataTemplate, shown in the following listing, will be added to the
page’s Resources dictionary.

<phone:PhoneApplicationPage.Resources>
 <DataTemplate x:Key="dataTemplate">
 <Grid Width="432">
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <TextBlock Text="{Binding Name}"
 Style="{StaticResource PhoneTextLargeStyle}" />
 <TextBlock Grid.Row="1" Text="{Binding Category}"
 Style="{StaticResource PhoneTextSubtleStyle}" />
 <TextBlock Grid.RowSpan="2" Grid.Column="1"
 Text="{Binding Value}" HorizontalAlignment="Right"
 Style="{StaticResource PhoneTextExtraLargeStyle}" />
 </Grid>
 </DataTemplate>
</phone:PhoneApplicationPage.Resources>

The DataTemplate displays the SampleData using three TextBlock controls placed in
a Grid. The Grid is divided into two rows and two columns B. Each of the three Text-
Blocks uses a different style defined in the system theme resources. The TextBlock
displaying the value spans both rows in the second column c.

 Now add the ListBoxes. In both the all and filtered PivotItems, replace the empty
Grid control with a ListBox. Bind the ListBox’s ItemTemplate to the DataTemplate
you just added:

<controls:PivotItem x:Name="allDataItem" Header="all">
 <ListBox x:Name="allDataList"
 ItemTemplate="{StaticResource dataTemplate}" />
</controls:PivotItem>

We only show the XAML for the first pivot, but you need to add the same markup to
the filtered PivotItem, giving the ListBox the name filteredDataList.

 Next you need to load data into the ListBoxes. The pivot_Loaded method is a good
place to do this. Add the following code to the bottom of the pivot_Loaded method:

Listing 10.9 The DataTemplate used to display SampleData

Create
2 x 2 grid

b

Value spans 2 rows c

281Pivoting around an application
if (allDataOption.IsChecked.Value)
{
 allDataList.ItemsSource = data;
 filteredDataList.ItemsSource = from d in data
 where d.Category == SampleCategory.Even
 select d;
}

If the user has selected to load all data at startup, you set the ItemsSource of the first
ListBox to the data collection. You filter the data using a LINQ expression and set the
result as the ItemsSource of the second ListBox. When you run the application now
with the load at startup option, you’ll see a list of 100 items in the first PivotItem, and
a list of even-valued data points in the second PivotItem.

 There are a couple of things you should notice. When the application first starts,
the data in the first PivotItem appears after a slight delay. When you move between
the pivots, the data appears instantaneously. The delay is due to waiting to set the Items-
Source property until after the Pivot is loaded. After the initial load, the data appears
instantaneously because both ListBoxes are holding the data in memory as well as the
UI elements needed to display the data. The data is held in memory, even if the user
never visits the PivotItem.

 Holding a large amount of data and user interface elements in memory could cre-
ate performance and resource problems for an application. The Pivot control pro-
vides developers a set of events so that they manage application resources and
dynamically load and unload pages.

10.3.4 Dynamically loading pages

To enable developers to control when data is loaded and discarded, the Pivot control
provides a series of events. Two events, named LoadingPivotItem and LoadedPivot-
Item, are raised when a PivotItem is gaining focus. Two complementary events,
UnloadingPivotItem and UnloadedPivotItem, are raised when a PivotItem is losing
focus. A fifth event, SelectionChanged, is used to determine which item is being
selected, and which item is losing selection.

 The events are raised in the order showing in figure 10.11. You should notice that
the SelectionChanged event is raised after the new item begins loading but before the
old item starts unloading.

 The LoadedPivotItem and UnloadedPivotItem events are the perfect place for
you to load and unload your data. Wire the Pivot control events to new event han-
dlers in your code behind:

<controls:Pivot x:Name="pivot" Title="WINDOWS PHONE 7 IN ACTION"
 Loaded="pivot_Loaded" LoadedPivotItem="pivot_LoadedPivotItem"
 UnloadedPivotItem="pivot_UnloadedPivotItem">

The next listing details the LoadedPivotItem event handler and how you load data
into the ListBox.

282 CHAPTER 10 ApplicationBar, Panorama, and Pivot controls
private void pivot_LoadedPivotItem(object sender, PivotItemEventArgs e)
{
 if (e.Item == allDataItem && allDataList.ItemsSource == null)
 {
 allDataList.ItemsSource = data;
 }
 else if (e.Item == filteredDataItem
 && filteredDataList.ItemsSource == null)
 {
 filteredDataList.ItemsSource =
 from d in data
 where d.Category == SampleCategory.Even
 select d;
 }
}

The LoadedPivotItem event passes a PivotItemEventArgs class, which exposes a sin-
gle Item property. The Item property is a reference to the PivotItem that’s cur-
rently being selected. You check whether the Item being loaded is the allDataItem
and confirm that the allDataList doesn’t currently contain data B. If all is well,
you set the ItemsSource property just like you did when loading data during startup.
You perform the equivalent check and set whether the current Item is the filtered
PivotItem.

 Unloading data when the user moves to another PivotItem follows a similar pat-
tern. The UnloadedPivotItem event is handled by the pivot_UnloadedPivotItem
method, shown in the following listing.

Listing 10.10 Loading ListBox data in response to a LoadedPivotItem event

Figure 10.11 Pivot selection events

Is data already
loaded? b

283Summary
private void pivot_UnloadedPivotItem(object sender, PivotItemEventArgs e)
{
 if (!allDataOption.IsChecked.Value)
 {
 if (e.Item == allDataItem)
 {
 allDataList.ItemsSource = null;
 }
 else if (e.Item == filteredDataItem)
 {
 filteredDataList.ItemsSource = null;
 }
 }
}

First you check whether the user has selected the option to load data only as needed B.
When in the only-as-needed mode, you clear the ListBox when the PivotItem contain-
ing it is unloaded. You clear the ListBox by setting its ItemsSource property to null.

 Your sample application is now complete. Data is loaded and shown in two views, one
of them filtering out all the odd data. The user can specify how you handle the data by lis-
tening for loaded and unloaded events raised by the Pivot control. You use the
unloaded event handlers to clean up resources used by the list boxes in the pivot items.

10.4 Summary
In this chapter you learned about controls that are new to Windows Phone and aren’t
available in Silverlight for the browser applications. The ApplicationBar, Panorama,
and Pivot controls are only found in the Windows Phone SDK.

 You learned how to use the application bar as a toolbar and menu for your applica-
tion. We showed you how the Panorama control creates a unique user experience by
employing three layers of movement when scrolling between items in the control. You
built an application that uses a Pivot control to implement a data filtering pattern
common to many applications.

 Applications can mix and match the controls presented in this chapter to build com-
pelling applications. Many applications employ a Panorama control for the main page,
but use Pivot controls once the user drills into the content of the application. Panorama
and pivot items can serve as the host container for a list box. Pivot controls often provide
an application bar with buttons that let the user manage data displayed in the control.

 In the next chapter you learn how common Silverlight controls have been modi-
fied to work on the phone. You also learn techniques for ensuring that controls
respect the light and dark system themes, and use the accent color specified by user
preferences. We’ll also introduce you to the Silverlight Toolkit for Windows Phone,
which provides a few additional controls unique to the phone that are missing from
the Windows Phone SDK.

Listing 10.11 Clearing the ItemsSource property when an item is unloaded

Load data
as needed?b

Clear
ListBox

c

Building Windows Phone
UI with Silverlight controls
Silverlight for Windows Phone 7 provides several user interface controls to applica-
tion developers. Though most of the controls exist in Silverlight for the browser
and other user interface libraries, this chapter addresses features of the controls
that are relevant to building user interfaces for the Windows Phone. We discuss
which controls to use to prompt the user for input, which controls to use to display
output to the user, and techniques to combine or to modify controls in order to
create new user experiences. You’ll also learn how to ensure the controls you use
integrate with the user-specified system theme.

 In addition to the controls shipped as part of the Windows Phone SDK, we’ll
look at a few of the controls that are available in the Silverlight Toolkit for Windows
Phone. The Silverlight Toolkit is an open source project hosted on CodePlex.
Microsoft uses the Silverlight Toolkit project to share new controls and compo-
nents with the development community.

This chapter covers
■ Using theme-aware controls
■ Specifying keyboard layouts
■ Using render transforms
■ Working with the Silverlight Toolkit
284

285Handling page orientation
 Before we get into the nuts and bolts of the controls, we show you how to build an
application that uses different screen layouts when the user turns the phone from por-
trait to landscape orientation. The orientation sample application uses Silverlight’s
VisualStateManager to animate transitions from portrait to landscape.

11.1 Handling page orientation
Windows Phones, as with other small form factor devices, are able to deal both with
landscape and portrait mode. Each page in the application must declare the orienta-
tion modes it supports, so that the runtime framework can properly display the appli-
cation and notify the application when the orientation changes.

 Let’s consider a situation where the landscape and portrait view of a page aren’t
identical. You can see an example of this situation by running the calculator applica-
tion that’s shipped with every Windows Phone. In portrait orientation, the calculator
presents basic arithmetic operations. When you switch the phone to landscape orien-
tation, the calculator adds buttons for trigonometric, logarithmic, and other mathe-
matical operations to the user interface.

 In this section you’re going to build a sample application, shown in figure 11.1,
which displays information about this book. In portrait orientation, the cover image is
shown above the book’s description. In landscape orientation, the application and

Figure 11.1 The OrientationWithStates sample application demonstrating the transition between
portrait and landscape orientation

http://silverlight.codeplex.com
http://silverlight.codeplex.com

286 CHAPTER 11 Building Windows Phone UI with Silverlight controls
page titles are hidden, and the book description is placed to the right of the cover
image. As a bonus, the changes to the layout are animated so the user can see the
description moving from one position to the other.

 To start the new sample application, create a new project from the Windows Phone
Application project template and name the project OrientationWithStates. By default,
the main page of a project generated by the Windows Phone Application template
only supports portrait orientation. Let’s take a closer look at how a page declares sup-
port for portrait and landscape orientations.

11.1.1 Supported orientations

The way in which a Silverlight page declares its supported orientations is by setting the
PhoneApplicationPage, SupportedOrientations, and Orientation properties, either
in XAML or code-behind:

<phone:PhoneApplicationPage ...
 SupportedOrientations="Portrait" Orientation="Portrait" >

In this case, the page declares that it supports only Portrait mode using the
SupportedOrientations attribute. SupportedOrientations can be a set of one of
the following values:

■ Portrait

■ PortraitOrLandscape

■ Landscape

The Orientation attribute defines the default orientation of the page. If just one ori-
entation is supported, then the Orientation property must match the Supported-
Orientations property; otherwise it can be one of the PageOrientation values:

■ None

■ Portrait

■ Landscape

■ PortraitUp

■ PortraitDown

■ LandscapeLeft

■ LandscapeRight

The PageOrientation enum values are bit fields. The PortraitUp value has its bit
flag for Portrait set. LandscapeLeft and LandscapeRight also have the bit flag for
Landscape set. PortraitDown isn’t used since the Windows Phone won’t rotate the
screen into an upside-down position.

 If you’ve assigned a page’s SupportedOrientations as PortraitOrLandscape, you
have to handle both orientations. For many applications, the best way to support both
orientations is by using a layout control like StackPanel or Grid, and doing nothing
else. When the phone changes orientation, the layout panels automatically resize
themselves and adjust the positions of their child controls.

http://silverlight.codeplex.com/releases/view/52297
http://silverlight.codeplex.com/releases/view/52297
http://silverlight.codeplex.com/releases/view/52297

287Handling page orientation
 To see how a layout panel like Grid automatically readjusts its children, you only
need to change the sample application and modify MainPage.xaml to support both
Landscape and the Portrait mode:

SupportedOrientations="PortraitOrLandscape" Orientation="Portrait"

When you launch the modified application, the layout can be changed by pressing
one of the rotation buttons on the emulator’s command bar. When the emulator
changes orientation, the page automatically updates. This is because the page uses a
combination of Grid and StackPanel controls, which rearrange their child controls.
This works well when both orientations show the same basic user interface.

11.1.2 Animating orientation transitions

The OrientationWithStates sample application displays the book’s cover in an Image
control, and the book’s description in a TextBlock. To allow finer control over the
placement of the controls, you need to change the ContentPanel control to be a
Canvas control, as seen in the following snippet. You also need to import a picture
into the root of the project, and set its build action property to Content. The final
markup for the ContentPanel in MainPage.xaml is shown in the following snippet:

<Canvas x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0" >
 <Image x:Name="coverImage" Source="/cover.jpg" Canvas.Left="0"
 Canvas.Top="0" Width="300" Height="360" Stretch="Fill" />
 <TextBlock x:Name="coverText" Canvas.Left="0" Canvas.Top="370"
 Width="300" Height="360" TextWrapping="Wrap" Text="Windows Phone 7

➥ in Action is a hands-on guide to building mobile applications for

➥ WP7 Mango using Silverlight, C#, XNA, or HTML5." />
</Canvas>

You’re going to use visual states and the VisualStateManager to transition between
portrait layout and landscape layout in the sample application. The VisualState-
Manager allows you to define the look and feel of your user interface for a set of circum-
stances or states. In the case of this sample application there are two states—Portrait

and Landscape. If you’re not familiar with visual states and the VisualStateManager,
you can read more about them in Pete Brown’s book Silverlight 5 in Action.

 You’ve already designed your ContentPanel just as you want it to appear in por-
trait orientation, and the corresponding visual state doesn’t need to be adjusted.
When the phone is switched to landscape orientation, you need to perform three
adjustments—hide the title panel, resize the cover image, and resize and move the
description text. The following listing contains the visual state markup necessary to
perform these steps.

<Grid x:Name="LayoutRoot" Background="Transparent">
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="OrientationStates">

 <VisualState x:Name="Portrait" />

Listing 11.1 Defining visual states for portrait and landscape orientation

Portrait is
default state

b

288 CHAPTER 11 Building Windows Phone UI with Silverlight controls
 <VisualState x:Name="Landscape">
 <Storyboard>
 <DoubleAnimation To="0" Storyboard.TargetName="TitlePanel"
 Storyboard.TargetProperty="Height" Duration="00:00:00.25" />

 <DoubleAnimation To="420" Duration="00:00:00.25"
 Storyboard.TargetName="coverImage"
 Storyboard.TargetProperty="Height" />
 <DoubleAnimation To="330" Duration="00:00:00.25"
 Storyboard.TargetName="coverImage"
 Storyboard.TargetProperty="Width" />

 <DoubleAnimation To="420" Duration="00:00:00.25"
 Storyboard.TargetName="coverText"
 Storyboard.TargetProperty="Height" />
 <DoubleAnimation To="330" Duration="00:00:00.25"
 Storyboard.TargetName="coverText"
 Storyboard.TargetProperty="Width" />
 <DoubleAnimation To="0" Duration="00:00:00.25"
 Storyboard.TargetName="coverText"
 Storyboard.TargetProperty="(Canvas.Top)" />
 <DoubleAnimation To="340" Duration="00:00:00.25"
 Storyboard.TargetName="coverText"
 Storyboard.TargetProperty="(Canvas.Left)" />
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
...
</Grid>

You start by adding a VisualStateMananger.VisualStateGroups element to the
LayoutRoot Grid control with one VisualStateGroup named OrientationStates.
The first VisualState in the group, named Portrait B, is the default group and
doesn’t contain any animations. The second VisualState, named Landscape, con-
tains several animations that are played when the landscape visual state is activated.
The first animation shrinks the Height of the TitlePanel to zero c. The next two
animations d change the Height and Width properties of the coverImage Image con-
trol. The Height and Width of the coverText TextBlock are adjusted with two more
animations. Finally, the Top and Left properties of the coverText TextBlock are
changed so that the TextBlock appears to the right of the Image control instead of
below it e.

 To enable the title panel transition animation, you need to make one minor adjust-
ment to the title panel’s markup. You need to explicitly set the Height property:

<StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28"
 Height="116">

When the Landscape visual state is activated, the animations run and the screen is
updated. You’ve set the animation duration to be one quarter of a second. When the
Portrait visual state is activated, the animations are run in reverse. The visual states
are activated with a call to the GoToState method of the VisualStateManager. In the

Hide title panel c

Resize
cover
image

d

Move
description

e

289Handling page orientation
next section we show you how to call the GoToState method with the Orientation
property changes.

11.1.3 Changing orientation
When the phone is turned from a portrait orientation to a landscape orientation,
the movement is detected by the application framework, and the current page’s
Orientation property is updated. A running application can detect changes in the
Orientation property by subscribing to the OrientationChanged event provided by
the PhoneApplicationPage class.

 In this sample application, you want to wire up the OrientationChanged event
to an event handler in the MainPage class. Add the following markup to the Phone-
ApplicationPage element in MainPage.xaml:

<phone:PhoneApplicationPage ...
 OrientationChanged="PhoneApplicationPage_OrientationChanged">

The OrientationChanged event handler receives an OrientationChangedEventArgs
parameter which is used to determine the new orientation. The next listing shows how
the event args are used to determine which visual state should be activated.

private void PhoneApplicationPage_OrientationChanged(object sender,
 OrientationChangedEventArgs e)
{
 if ((e.Orientation & PageOrientation.Landscape)
 == PageOrientation.Landscape)
 {
 VisualStateManager.GoToState(this, "Landscape", true);
 }
 else if ((e.Orientation & PageOrientation.Portrait)
 == PageOrientation.Portrait)
 {
 VisualStateManager.GoToState(this, "Portrait", true);
 }
}

The event handler gets the new orientation from the passed-in Orientation-
ChangedEventArgs parameter, and uses the new orientation value to determine how
the layout should be updated. When checking the Orientation property, a bitwise
operation B is performed to determine whether the orientation value is Portrait or
Landscape. The layout is updated by calling the GoToState with the appropriate visual
state name.

 An application will always start in a portrait orientation and if the phone is cur-
rently held in a portrait orientation, the OrientationChanged event won’t be fired. If
the user is holding the phone sideways, the OrientationChanged event will be fired
sometime after the OnNavigatedTo and Loaded events. Even when an application only
supports landscape mode, the application will start in a portrait orientation and then
switch to landscape before the Loaded event is called.

Listing 11.2 Switching states when orientation changes

Bitwise
operationb

290 CHAPTER 11 Building Windows Phone UI with Silverlight controls
 When returning from dormant, the page will be placed in a portrait orientation
before the OnNavigatedTo method is called, even if the phone is currently in land-
scape mode. The OrientationChanged event will fire again to put the page back
into landscape.

 We’ve demonstrated how to use VisualStates and the VisualStateManager to
implement different views of an application. In this sample, we used two different
VisualStates to present one view for portrait orientation and another view for land-
scape orientation. You should consider using VisualStates in other situations, such
as when you have unsaved edits, or an application is in offline mode.

 We’re finished with the OrientationWithStates sample application. In the remain-
der of the chapter we look at how to use features of Silverlight for Windows Phone
and the control libraries to build user interfaces that conform to the Windows
Phone Metro look and feel.

11.2 Building user interfaces
The Windows Phone operating system allows the user to choose a system-wide theme
and accent color. The theme can be either light or dark, and the accent color can be
one of nearly a dozen different colors. The Silverlight control library is designed to
automatically work with the system theme. You should design your user interfaces
to work with the system theme as well.

 Silverlight for Windows Phone makes this easy by injecting a number of static
resources into your application. The static resources are comprised of brushes, styles,
font names, colors, and other types. You can view all of the available theme resources
at http://mng.bz/HKT1.

 Silverlight for Windows Phone has some unique performance constraints. The
hardware platforms that run the operating system aren’t very powerful compared to
desktop computers that run Silverlight for the browser applications. Developers
should keep performance a priority, and understand how to make efficient use of Sil-
verlight controls.

 You’re going to see how to use the system resources with a few of the built-in con-
trols. We’ll look at how to bind styles and brushes to TextBlock, Borders, and shapes.
We’ll then examine the ProgressBar and Image controls, and learn how to efficiently
use them within a Windows Phone application.

 Throughout the remainder of this chapter we show you snippets of code but don’t
build a formal sample application. All of the snippets presented here have been com-
bined into a single sample project, which is included with the sample source code
available from the book’s website.

11.2.1 TextBlock

The TextBlock control is the easiest control to use to display static text to the user and
you’ve used the TextBlock control extensively in the sample applications for the book.
A typical usage of the TextBlock control is to display a label for another control, or to

http://mng.bz/HKT1

291Building user interfaces
display read-only messages. The Text property is used to get or set the text value dis-
play in the user interface:

textblock1.Text = "Hello World";

Like every Silverlight control, the Text property has an XAML counterpart:

 <TextBlock Text="PhoneTextNormalStyle"
 Style="{StaticResource PhoneTextNormalStyle}" />

What’s interesting in this snippet is how you
use one of the theme style resources. Using the
theme style gives you compatibility with the
user experience guidelines, and is a good start-
ing point to keep consistency between your
application and the rest of the Windows Phone 7
ecosystem. Styles and other theme resources
are applied via the StaticResource markup
extension. Visuals Studio’s XAML property edi-
tor can be used to select static resources. To
select a theme resource for TextBlock’s Style
property, click the Advanced Properties icon in the property editor (see figure 11.2).

 Selecting the Apply Resource option from the context menu will bring up the
resource picker. The resource picker allows you to search for resources defined in
the framework and those defined within your application. The available theme text
styles are

■ PhoneTextAccentStyle
■ PhoneTextContrastStyle

■ PhoneTextExtraLargeStyle

■ PhoneTextGroupHeaderStyle

■ PhoneTextHugeStyle

■ PhoneTextLargeStyle

■ PhoneTextNormalStyle

■ PhoneTextSmallStyle

■ PhoneTextSubtleStyle

■ PhoneTextTitle1Style

■ PhoneTextTitle2Style

■ PhoneTextTitle3Style

When you use the theme text styles, you’re assured that your text will match the theme
colors chosen by the user. Three different title styles, a group header style, and five dif-
ferent-sized text styles are defined. There are also styles defined for subtle, accent, and
contrast text. Figure 11.3 displays the text styles in both the dark and light themes.

 The PhoneTextContrastStyle’s color matches the theme’s background, and text
drawn with it won’t be visible unless the background has been changed. In figure 11.3,

Figure 11.2 Advanced Properties context
menu for a TextBlock’s Style property

292 CHAPTER 11 Building Windows Phone UI with Silverlight controls
the contrast text is placed inside a Border control whose background is drawn with
the PhoneContrastBackgroundBrush.

11.2.2 Border

The Border control is used to generate a border frame, a background, or both, and is
useful when generating a custom control. In practice, a border control is usually
paired with other controls, as shown in figure 11.4.

 To achieve the same effect, you need a Border with rounded corners containing
a TextBlock:

<Border x:Name="border1" Height="100" Width="300" CornerRadius="30"
 BorderBrush="{StaticResource PhoneBorderBrush}"
 BorderThickness="{StaticResource PhoneBorderThickness}"
 Background="{StaticResource PhoneAccentBrush}}">
 <TextBlock x:Name="textBlock1" Text="Rounded TextBlock"
 VerticalAlignment="Center" HorizontalAlignment="Center" />
</Border>

The properties that are the most important for borders are BorderThickness and
CornerRadius, which defines the radius for the corner. If CornerRadius is set to 0,
then you get a Rectangle; otherwise you can tune the rounding effect on the corners.

Figure 11.3 Theme text
styles shown in the dark
and light themes

Figure 11.4 A Border with rounded
corners using theme resources, shown
in the dark and light themes

293Building user interfaces
In this case you’ve changed the color of the background of the control to the theme
accent color. You’ve also applied the theme’s border color and thickness resources to
the Border control. You don’t need any special code to keep the accent color synchro-
nized with the user settings.

 Shapes can be used as an alternative to a Border control.

11.2.3 Shapes

The Silverlight Shape class serves as the base class for a variety of shape elements.
Derived classes include Line, Polyline, Polygon, Rectangle, and Ellipse. Typical
usage of these controls is to assemble them along with other components to generate
the UI for a custom control. Shapes can be declared in XAML and can be bound to
theme resources just like any other FrameworkElement:

<Ellipse x:Name="ellipse1" Margin="125,50,125,450"
 Stroke="{StaticResource PhoneContrastBackgroundBrush}"
 StrokeThickness="{StaticResource PhoneStrokeThickness}"
 Fill="{StaticResource PhoneSubtleBrush}" />

Here you’re creating an Ellipse with its Stroke (border) brush set to Phone-
ContrastBackgroundBrush, and its Fill (background) brush set to PhoneSubtle-
Brush. The StrokeThickness is also bound to a theme resource, a Thickness object
named PhoneStrokeThickness.

11.2.4 ProgressBar

When an application needs to perform some
long-running task, it should provide the user
some feedback that work is progressing while
they wait. The ProgressBar control is one of
the most common ways to convey to the user
feedback that something is happening. The
ProgressBar has two states—indeterminate and
determinate. Indeterminate progress bars show
an animation representing activity that will take an unknown amount of time, which will
be stopped when the activity completes. Determinate progress bars are used when the
number of steps or percentage complete is known, and the progress displays how many
steps have been completed. A screenshot of the two states is shown in figure 11.5.

 Let’s see how an indeterminate ProgressBar works:

<ProgressBar x:Name="progressBar1" IsIndeterminate="True" />

The indeterminate state can be achieved by setting the IsIndeterminate property to
true. This triggers the continuous animation, which can be stopped by setting the
IsIndeterminate property to false.

TIP The indeterminate animation is resource-intensive. It’s important to set
the IsIndeterminate property to false instead of hiding the progress bar

Figure 11.5 An Indeterminate progress bar
(top) and a Determinate progress bar (bottom)

294 CHAPTER 11 Building Windows Phone UI with Silverlight controls
because the indeterminate progress animation continues to run when the
control is collapsed.

The default value for IsIndeterminate is false, and the property doesn’t need to be
specified when declaring a determinate progress bar:

<ProgressBar x:Name="progressBar2" Value="35" Maximum="100" Minimum="0" />

The properties you likely want to set for determinate progress bars are as follows:

■ Value—Represents the current progress to be shown by the progress bar
■ Minimum—Value representing the minimum progress value
■ Maximum—Value representing the maximum progress value

You’ll update the Value property from your code as your long-running task completes
its various steps.

 Progress bars are often used when downloading images and data from the inter-
net. Images can be easily downloaded and displayed with the Image control.

11.2.5 Image

It’s easy to show images in Windows Phone 7 using the Image control. The image for-
mats supported are JPEG and PNG. An image can be loaded directly by the Image con-
trol by specifying the filename, URI, or resource name for the Source property:

<Image x:Name="image1" Height="125" Width="185" Stretch="Fill"
 Source="/UserInterfaceControls;component/Images/cover_resource.png" />

Images can be compiled into your assembly by
setting the image file’s build action property
to Resource. Resource images can be selected
with the property editor using Visual Studio’s
image picker. The Uri specified here repre-
sents a resource-based image, and contains
the assembly name and the path to the image
file. Image resources are added to the assem-
bly with a root path of component.

 The manner in which the Image control
fits the image depends on the Stretch prop-
erty. Figure 11.6 demonstrates three different
Stretch enumeration values. Fill will cause
the image to be stretched to fill both the
height and width of the control. Uniform will
result in the image displayed in the correct
proportions, with the entire image displayed.
UniformToFill will cause a portion of the
image to be cut off, with the image displayed
in the correct proportions.

Figure 11.6 Images displayed with
different Stretch values

295Receiving Input
 Instead of embedding image files into the assembly, image files can be packaged in
the .xap file by specifying a build action of Content. To improve assembly load time
and media processing performance, it’s recommended that you include images as
Content instead of Resources. Content-based image files can be loaded by the Image
control by specifying the path of the file relative to the root of the .xap file:

<Image x:Name="image2" Height="125" Width="185"
 Stretch="Uniform" Source="/Images/cover.png" />

Images can also be loaded from the internet by providing the full Uri of the image file:

<Image x:Name="image3" Height="125" Width="185" Stretch="UniformToFill"
 Source="http://www.wp7inaction.com/cover.png" />

The Image control will automatically download the image file and set it into the user
interface. While the image is being downloaded, the Image control will be blank. You
can also set the image’s Source from code, but you need to create the BitmapImage
object yourself:

image3.Source = new BitmapImage(
 new Uri("http://www.wp7inaction.com/cover.png",
 UriKind.Absolute));

The Windows Phone supports both JPG and PNG image formats. Image files must be
smaller than 2000 x 2000 pixels. When choosing between the two supported image
formats, JPG and PNG, you should consider the performance and characteristics of
each format. If your image contains transparent pixels, use the PNG format. If your
image doesn’t contain any transparent pixels, choose the JPG format, because the JPG
decoder provides better performance. This is especially important if you’re displaying
a large number of images in a list.

 The Image, TextBlock, Border, and ProgressBar are just a few of the controls pro-
vided by the Windows Phone SDK that can be used to display data to the user. Let’s
take a look at a few controls whose function is to retrieve data from the user.

11.3 Receiving Input
Silverlight for Windows Phone provides the same basic user input controls that you
might find in other user interface libraries, including a variety of buttons, a text box,
and a slider. Buttons are used to trigger actions or to allow the user to set Boolean
states. The TextBox control is used to get textual input typed in by the user. The
Slider control allows the user to set constrained numeric values.

 Each of the input controls behave slightly differently than you might expect, since
the only interaction with the user is via the touch screen. The exception is when the
user has a physical keyboard.

11.3.1 Button

You’ve used the Button control in sample applications in previous chapters. We’ll
focus here on generating the Click event. Silverlight for Windows Phone 7 can generate

296 CHAPTER 11 Building Windows Phone UI with Silverlight controls
the Click event depending on the value specified in the ClickMode property. Just like
WPF and Silverlight for the browser, the ClickMode property can have the values
Press, Release, and Hover.

Release is the default mode, and raises the Click event when the user taps on the
button and then releases the tap. If the user taps outside the button, drags over
the button, and releases, no event is raised. If the user taps over the button, drags out-
side the button, and releases, no event is raised.

Press is similar to release, except that the event is raised as soon as the user taps
on the button. If the user taps outside the button and then drags over the button, no
event is raised.

 The Hover ClickMode behaves differently than the other two modes. On a desktop
computer, Hover ClickMode will raise an event as soon as the mouse is over the button.
What happens on the phone where there isn’t a mouse? Hover clicks can still be used
on the phone. The click event is raised when the user taps outside the button and
then drags over the button. The click event is also raised when the user taps and holds
over the button. The click event will be repeatedly fired if the user drags off and
back over the button in the same tap and hold gesture.

 The Button control also converts touch gestures into mouse events such as
MouseLeftButtonDown, MouseLeftButtonUp, and MouseEnter, although it’s not rec-
ommended that you use the mouse events in your application. To improve perfor-
mance, you should consider using the touch manipulation events instead.

11.3.2 HyperlinkButton

A HyperlinkButton inherits from the Button control and can be used in specific sce-
narios. As suggested by its name, The HyperlinkButton allows the user to navigate to
another location using a hyperlink. The limitation is that the hyperlink must refer-
ence a page within your application. The HyperlinkButton won’t automatically
launch to a URI in a web browser. The property which contains the URI where you
want the application execution to land is NavigateUri:

<HyperlinkButton x:Name="hyperlink1"
 Content="Hyperlink button sample"
 NavigateUri="/BuildingTheUI/TextBlockSample.xaml"
 Margin="{StaticResource PhoneTouchTargetOverhang}" />

In this snippet, you’re setting the Uri to a page named TextBlockSample.xaml stored
in a project folder named BuildingTheUI. You’re also setting the Padding property to
a theme resource named PhoneTouchTargetOverhang. You do this to prevent the
hyperlinks from being placed too close together and to increase the touch target. Fin-
gertips aren’t as precise as mouse pointers, and a larger touch target improves the
user experience.

 The NavigateUri can be set from code as well:

hyperlink1.NavigateUri =
 new Uri("/BuildingTheUI/TextBlockSample.xaml", UriKind.Relative);

297Receiving Input
If you do want to create a hyperlink to a web page, you should implement a Click
event handler that uses the WebBrowserTask to launch Internet Explorer. You could
also create a page within your application that hosts the WebBrowser control, and con-
struct the NavigateUri with a query string parameter containing the Uri that the web
browser should load. The WebBrowserTask and the WebBrowser control will be cov-
ered in chapter 13. Constructing and parsing navigation URIs with query string
parameters was covered in chapter 2.

11.3.3 CheckBox

The CheckBox control is a button that can have two or three
states. The three-states mode can be enabled using the
IsThreeState property. Figure 11.7 demonstrates the three
visual states for a CheckBox.

 You can get or set the CheckBox’s state using the IsChecked
property. IsChecked is a nullable Boolean. Normally, a Boolean
(or any other value type) must contain a value. Nullable types
allow a value type to be assigned a null value. When working
with the IsChecked property in code, you should allow for a
null value. Even when a CheckBox isn’t in three-state mode,
IsChecked can be set to null in XAML or code-behind:

if (!sampleCheckBox.IsChecked.HasValue)
 Debug.WriteLine("sampleCheckBox is indeterminate");
else if (sampleCheckBox.IsChecked.Value)
 Debug.WriteLine("sampleCheckBox is checked");
else
 Debug.WriteLine("sampleCheckBox is unchecked");

In this snippet, you first check whether the IsChecked property has a value. If Has-
Value is false, you know the CheckBox is indeterminate; otherwise you can use the
Boolean true or false value.

11.3.4 RadioButton

The RadioButton is similar to a check box, with the difference that two or more radio
buttons must be grouped together. The property to be used to group two or more
radio buttons is GroupName:

<StackPanel>
 <RadioButton x:Name="radioButton1" Content="option 1"
 GroupName="myGroup" IsChecked="True" />
 <RadioButton x:Name="radioButton2" Content="option 2"
 GroupName="myGroup" />
 <RadioButton x:Name="radioButton3" Content="option 3"
 GroupName="myGroup" />
</StackPanel>

The RadioButton and CheckBox controls both inherit their IsChecked property from
the ToggleButton base class. This means that RadioButton’s IsChecked property is

Figure 11.7 Three
possible states for the
CheckBox control.
Indeterminate is available
only when IsThreeState is
set to true.

298 CHAPTER 11 Building Windows Phone UI with Silverlight controls
also a nullable Boolean. Even though the user can’t place a RadioButton into an inde-
terminate state, be aware that the IsChecked property could potentially have a null
value if it’s set from code behind or XAML. To determine which radio button in the
group is checked, you must check each of them:

if (radioButton1.IsChecked.Value)
 Debug.WriteLine("option 1 selected");
else if (radioButton2.IsChecked.Value)
 Debug.WriteLine("option 2 selected");
else if (radioButton3.IsChecked.Value)
 Debug.WriteLine("option 3 selected");

Having to check each control is a bit onerous, but
there’s no actual object that represents the group
that can be queried to determine which option
is selected.

Buttons, HyperLinks, CheckBoxes, and Radio-
Buttons are all controls that the user interacts with
by tapping. Let’s look at controls where the user
actually enters data.

11.3.5 TextBox

Text boxes, along with text blocks, are common
controls you find in most every user interface. A
TextBox allows the user to insert data and Windows
Phone supports single- and multi-line editing (see
figure 11.8). The Text property is used to set or get
its content, and its type is string.

The Boolean property used to determine
whether a TextBox is acting in single-line is Accepts-
Return. When set to true, AcceptsReturn enables
multi-line input; otherwise only single-line input
is accepted.

 Let’s see an example where you create two TextBox controls, the first one for the
single-line editing and the second one with multi-line editing:

<StackPanel>
 <TextBox x:Name="singlelineTextBox" Text="single line editing" />
 <TextBox x:Name="multilineTextBox" Height="255"
 Text="multi line editing"
 AcceptsReturn="True" TextWrapping="Wrap" />
</StackPanel>

Multi-line TextBoxes may contain text that won’t fit on the screen. The TextBox has built-
in support for displaying scroll bars. A horizontal scroll bar can be displayed using the
HorizontalScrollBarVisibility property. VerticalScrollBarVisibility controls
the display of a vertical scroll bar. Both the properties accept a value defined in the
ScrollBarVisibility enumeration.

Figure 11.8 A single line TextBox, a
multi-line TextBox, and the software
input panel

299Receiving Input
 Other useful properties supported by the TextBox are TextWrapping, MaxLength,
and InputScope. When text wrapping is enabled, long lines will be wrapped onto mul-
tiple lines, even if they don’t contain a linefeed character. The MaxLength property
limits the maximum number of characters that can be entered into the TextBox. The
InputScope property can be used to control which software input panel is displayed to
the user.

CONTROLLING THE KEYBOARD WITH INPUT SCOPE

Windows Phone 7 devices have been designed to be fully touch-enabled and a physical
keyboard isn’t present on many models. When a TextBox has the focus on a device
that doesn’t have a physical keyboard in use, a virtual keyboard or software input
panel (SIP) is displayed. By default, the TextBox invokes a SIP with the standard
QWERTY keyboard layout and doesn’t provide text correction or suggestions. A num-
ber of different keyboard layouts are available, each one tailored to a specific task.
Input scope names are defined by the InputScopeNameValue enumeration. Table 11.1
lists a few of the input scope names that are useful to Windows Phone applications.

When developing your application, you should choose the most appropriate keyboard
layout for your TextBox controls. If your TextBox accepts standard text phrases, you
should consider using one of the layouts that provide suggestions and/or automatic
correction. If your application automatically performs work or navigation once the user
has input some text, you might want to use one of the layouts that provide a customized

Table 11.1 Common input scopes

Input scope name Description

Chat A QWERTY keyboard layout with text suggestions and an emoticons key.
Automatic correction isn’t enabled.

EmailNameOrAddress
EmailSmtpAddress

A QWERTY keyboard with @ and .com keys. Text suggestions and correc-
tion aren’t enabled.

Maps A QWERTY keyboard layout with text suggestions and a customized enter
key. Automatic correction isn’t enabled.

NameOrPhoneNumber A QWERTY keyboard layout with a semicolon key and access to the 12-key
number pad. Text suggestions and correction aren’t enabled.

TelephoneNumber 12-key number pad with * and #. See figure 11.9.

Search A QWERTY keyboard layout with a customized enter key. Text suggestions
and automatic correction aren’t enabled.

Text A QWERTY keyboard layout with text suggestions and automatic
correction enabled.

Url A QWERTY keyboard layout with a .com key and a customized enter key.
Text suggestions and automatic correction aren’t enabled.

This is only a partial list of input scopes. For a full list, see the MSDN documentation for the
InputScopeNameValue enumeration.

300 CHAPTER 11 Building Windows Phone UI with Silverlight controls
Enter key, which suggests some action will occur
when Enter is pressed. If you have an input field that
only accepts numbers, you might consider using the
TelephoneNumber input scope (see figure 11.9).

 Setting the input scope for a specific text box is
easy and can be accomplished both programmati-
cally by code and at design time with XAML. The
InputScope and InputScopeName classes are found
in the System.Windows.Input namespace:

InputScope virtualKeyboard = new InputScope();
InputScopeName keyboardLayout = new

InputScopeName();
keyboardLayout.NameValue =

InputScopeNameValue.TelephoneNumber;
virtualKeyboard.Names.Add(keyboardLayout);
textBox1.InputScope = virtualKeyboard;

To set the input scope in code, you start by creating
an instance of InputScope and an instance of
InputScopeName. You set the InputScopeName’s
NameValue property to TelephoneNumber. Note that
InputScopeNameValue is an enumeration contain-
ing all the defined input scopes. Finally, you add
the keyboard layout to the InputScope and assign
it the TextBox’s InputScope property.

 Setting the input scope in XAML is much simpler.
You only need to enter the input scope name for the InputScope property. The XAML
engine will perform the appropriate conversion from string to an InputScope instance:

<TextBox x:Name="textBox1" InputScope="TelephoneNumber"/>

More than 60 different values are defined in the InputScopeNameValue enumeration.
See the MSDN documentation for the full list and how each one affects the TextBox.

 The TextBox is ideal for entering text, but not so nice for working with numbers.
The Slider control is more suited for incrementing and decrementing numeric values.

11.3.6 Slider

The Slider control is used to represent a well-known range of numeric values allowed
to be entered by the user. For example, with the Slider you can restrict the possible
values of the slider to a range from 0 to 50 and a minimum variation in the slider
range of 5:

<Slider x:Name="slider1" LargeChange="5" Value="15" Minimum="0"
 Maximum="50" />
<TextBlock x:Name="slider1Value" HorizontalAlignment="Center"
 Text="{Binding ElementName=slider1, Path=Value}" />

Figure 11.9 The 12-key layout
displayed when using the
TelephoneNumber input scope

301Silverlight Toolkit for Windows Phone
In this snippet, you added a TextBlock to display the current value of the slider. You
bound the Content of a TextBlock control to the Value of the Slider control.

 The relevant properties for Slider control are Value, Minimum, Maximum, and
LargeChange. The Value property represents the current value of the control. The
Minimum property is the value representing the smallest value that can be selected by
the user. The largest value that can be selected by the user is declared in the Maximum
property. The LargeChange property controls how much the value will change when
the user touches the slider control.

NOTE The Slider has a SmallChange property, but its values aren’t used by
the Windows Phone Slider control.

The Slider control is one of many controls that can be used to interact with the user.
We haven’t exhaustively covered each and every control, but we’ve looked at buttons
and the text box. You’ve learned how these controls differ from Silverlight for the
browser, and we showed you some things you should consider when using controls in
a Windows Phone application.

11.4 Silverlight Toolkit for Windows Phone
Earlier in the chapter we introduced many of the standard controls that come with
the Windows Phone SDK. Microsoft also distributes the Silverlight Toolkit for Windows
Phone, which is another set of user interface components that mimic controls seen in
the native Windows Phone 7 user interface but not provided with the SDK.

 A few of the components available in the toolkit are as follows:

■ ContextMenu

■ DatePicker

■ ListPicker

■ LongListSelector

■ TimePicker

■ ToggleSwitch

■ WrapPanel

The toolkit is available for free from CodePlex (http://silverlight.codeplex.com) and
can be downloaded as a Windows installer. You can also download a zip file that
includes the full source code along with a sample application. The Silverlight Toolkit
installer will copy the toolkit artifacts to %Program Files%\Microsoft SDKs\Windows
Phone\v7.1\Toolkit\Oct11\Bin.

NOTE The final installation folder depends on the version of the Silverlight
Toolkit you download. At the time of this writing, the current version was
November 2011.

The Silverlight Toolkit is packaged in a single assembly named Microsoft.Phone.Controls
.Toolkit.dll. You’ll need to add a reference to this assembly before using any of the

http://silverlight.codeplex.com

302 CHAPTER 11 Building Windows Phone UI with Silverlight controls
toolkit components. When working with toolkit components in XAML you’ll need to
include an XML namespace declaration:

xmlns:toolkit="clr-namespace:Microsoft.Phone.Controls;

➥ assembly=Microsoft.Phone.Controls.Toolkit"

In addition to user interface controls, the Silverlight Toolkit contains classes for work-
ing with gestures and performing page transitions. We can’t cover the entire toolkit in
this book, but we’re going to take a closer look at the ToggleSwitch, DatePicker,
TimePicker, ContextMenu, and GestureListener.

11.4.1 ToggleSwitch

The ToggleSwitch control is a component used to represent a choice to a user and is
similar to the CheckBox and RadioButton controls, which derive from ToggleButton.
The ToggleSwitch has a Boolean IsChecked property and raises Click, Check,
Indeterminate, and Uncheck events. Even though ToggleSwitch has an interface sim-
ilar to ToggleButton, it doesn’t derive from ToggleButton.

 One place where ToggleSwitch differs from ToggleButton is the lack of the
IsThreeState property. The ToggleSwitch.IsChecked property can be set to a null
value, and the Indeterminate event will be raised, but the user interface will look as if
the IsChecked value is false.

 Another difference between ToggleButton and
ToggleSwitch is how the Content property is used.
In a ToggleButton, the Content property is used
for label text. In ToggleSwitch, the Content prop-
erty is used as another way to render the IsChecked
property. When the IsChecked property is true,
the Content property displays the word On. As
shown in figure 11.10, the word Off is displayed
when IsChecked is false or null.

 If the Content property is used to display On/
Off, you might be wondering how you specify
label text for a ToggleSwitch. The ToggleSwitch
exposes the Header property to add label text to a
ToggleSwitch:

<toolkit:ToggleSwitch Header="Normal ToggleSwitch" />

Though you might not be able to distinguish the colors in figure 11.10, the switch’s fill
color is normally the color specified in the PhoneAccentBrush resource. The label text in
the Header is normally rendered using the PhoneBorderBrush theme resource. The
PhoneForegroundBrush theme resource is used to render the On/Off text in the Content.

 The ToggleSwitch provides the SwitchForeground property to allow the devel-
oper to specify a new color. The Foreground property controls the color of the On/
Off text. Changing the Header text color isn’t so easy.

Figure 11.10 ToggleSwitch
control provided by the Silverlight
Toolkit for Windows Phone 7

303Silverlight Toolkit for Windows Phone
 The ToggleSwitch Header property can be customized by declaring a new Header-
Template. The following listing shows how to use the Foreground, SwitchForeground,
and HeaderTemplate properties to recolor a ToggleSwitch.

<toolkit:ToggleSwitch Header="Re-colored ToggleSwitch"
 SwitchForeground="{StaticResource PhoneChromeBrush}"
 Foreground="{StaticResource PhoneAccentBrush}">
 <toolkit:ToggleSwitch.HeaderTemplate>
 <DataTemplate>
 <ContentControl Content="{Binding}"
 Foreground="{StaticResource PhoneAccentBrush}" />
 </DataTemplate>
 </toolkit:ToggleSwitch.HeaderTemplate>
</toolkit:ToggleSwitch>

In this listing, you declare the recolored ToggleSwitch and set the Header property to
your label text. You then use a couple of theme resource brushes B to set the Switch-
Foreground and Foreground properties. Finally, you declare a simple DataTemplate c
with a single ContentControl, setting the Foreground property of the control to the
same theme resource you use for the Foreground property of the ToggleSwitch.

 The toggle switches are used to display on/off status. They’re used throughout the
native applications and especially when configuring settings. Date and time pickers
are a couple of controls used in native applications and are also not part of the Win-
dows Phone SDK.

11.4.2 DatePicker and TimePicker

The native Windows Phone calendar application uses a couple of unique controls for
picking data and time. The Silverlight Toolkit provides managed implementations of
these pickers with the DatePicker and the TimePicker controls. These two picker
controls, shown in figure 11.11, are both composed of a button that displays the cur-
rent value and a secondary page with scrolling selectors.

 The phone page shown on the left of figure 11.11 is built by placing both a
DatePicker and a TimePicker inside a StackPanel container. The label for each con-
trol is set with the Header property:

<StackPanel>
 <toolkit:DatePicker Header="Date picker" Value="05/24/2011" />
 <toolkit:TimePicker Header="Time picker" Value="09:45 AM" />
</StackPanel>

Both picker controls expose a DateTime property named Value. When you declare
dates or times in XAML, the string is converted using the TimeTypeConverter class,
which expects an English format. The pickers raise a ValueChanged event when the
Value property is changed.

 There are a couple of caveats when using the DatePicker and TimePicker con-
trols. The first caveat centers around the icons that appear on the application bar of

Listing 11.3 Customizing colors of the ToggleSwitch control

Change
color

b

New
template

c

304 CHAPTER 11 Building Windows Phone UI with Silverlight controls
the secondary picker pages. The application bar requires icons to be in files shipped
in the application’s .xap file. This means you need to create a folder in your project
named Toolkit.Content with two files named ApplicationBar.Cancel.png and Applica-
tionBar.Check.png respectively for the cancel and check icons. You can provide your own
icons files or you can use the files included in the Silverlight Toolkit. The toolkit icons
can be copied from %Program Files%\Microsoft SDKs\Windows Phone\v7.1\Toolkit\
Oct11\Bin\Icons. After you add the icons files to your project, be sure to set their build
action to Content.

 The second warning stems from how the picker controls display their secondary
selector pages. When the user taps the picker, the control navigates to the second-
ary page. This means the page hosting the picker control is pushed onto the navi-
gation stack, and the OnNavigatedFrom method override method will be called. When
the user returns from the selector page, the host page’s OnNavigatedTo method over-
ride will be called.

 With the DatePicker and TimePicker controls, you can add features to your appli-
cation so that it’ll behave like the native phone applications. Native applications also
use context menus to expose features to the user.

11.4.3 ContextMenu

In the last chapter you learned how to create menu items on the application bar.
Though this is a good place to put access to application level features, sometimes you
need a menu specific to a single object in the user interface. The Silverlight Toolkit
provides a context menu implementation you can use for these situations.

 The ContextMenu, and the related ContextMenuService, provide the toolkit imple-
mentation of a context menu. A context menu is displayed when the user performs a

Figure 11.11 Date and time pickers provided by the Silverlight Toolkit

305Silverlight Toolkit for Windows Phone
tap and hold gesture on a user interface component. When the context menu is
shown, it’ll shrink the page providing the appearance that the menu pops out of the
application. This zoom effect, shown in figure 11.12, is optional and is controlled by
using the IsZoomEnabled property.

 The ContextMenuService class provides the dependency properties that allow a
ContextMenu to be declared in XAML using attached property syntax. The Context-
Menu can be attached to any user interface element. The next listing demonstrates
how to attach a ContextMenu to a TextBlock.

<TextBlock Margin="30,100,30,100"
 Text="tap and hold here to invoke a context menu">
 <toolkit:ContextMenuService.ContextMenu>
 <toolkit:ContextMenu>
 <toolkit:MenuItem x:Name="menuItem1" Header="menu item 1"
 Click="MenuItem_Click" />
 <toolkit:MenuItem x:Name="menuItem2" Header="menu item 2"
 Click="MenuItem_Click" />
 </toolkit:ContextMenu>
 </toolkit:ContextMenuService.ContextMenu>
</TextBlock>

First you add a ContextMenu using attached property syntax B. Next you add two
MenuItems, providing each with a name and using the Header property to declare the
menu text c. You wire up the Click event of both MenuItems to the same event han-
dler, a method named MenuItem_Click:

private void MenuItem_Click(object sender, RoutedEventArgs e)
{
 var menuItem = (MenuItem)sender;
 MessageBox.Show(menuItem.Name, "Menu Item Clicked",
 MessageBoxButton.OK);
}

Listing 11.4 Adding a ContextMenu to a TextBlock

Figure 11.12 A context
menu demonstrating the
zoom effect and a complex
menu item header

Attached
property

b

Menu text declared
with Header

 c

306 CHAPTER 11 Building Windows Phone UI with Silverlight controls
The click event handler casts the sender property to a MenuItem. A message box is
shown to inform the user that the menu item was clicked. Individual menu items can
be enabled or disabled at runtime using their IsEnabled properties.

 The display of a MenuItem can be customized by declaring custom markup for the
Header, or by creating a HeaderTemplate. In the following listing, you create a Menu-
Item that displays a checkmark next to the menu item text.

<toolkit:MenuItem x:Name="menuItem3" Click="MenuItem_Click">
 <toolkit:MenuItem.Header>
 <StackPanel Orientation="Horizontal">
 <Path Margin="0,0,6,0" Data="M 3 23 L 12 33 L 24 17"
 Stroke="{StaticResource PhoneChromeBrush}"
 StrokeThickness="{StaticResource PhoneStrokeThickness}" />
 <TextBlock Text="menu item 3" />
 </StackPanel>
 </toolkit:MenuItem.Header>
</toolkit:MenuItem>

You declare the Header using property element syntax B. The Header content is
a horizontal StackPanel containing a Path and a TextBlock. The Path draws
the shape of a checkmark and uses theme resources for the Stroke and Stroke-
Thickness properties.

 The ContextMenu is invoked in response to the user performing a tap and hold
gesture. Tap and hold is just one type of several gestures that can be used by a user to
interact with an application. The GestureListener class allows your application to lis-
ten for touch gestures.

11.4.4 GestureListener

All of the built-in user interface controls are designed to respond to touch gestures.
Buttons respond to tap gestures. List boxes and slider controls scroll when detecting a
drag or flick gesture. When building your application, you may choose to provide
customized responses to touch gestures. Silverlight offers Touch.FrameReported,
ManipulationStarted, ManipulationDelta, and ManipulationCompleted events for
detecting touches, but none of these APIs offer convenient gesture support. The
TouchPanel class in the XNA Framework provides the ReadGesture API, but its polling
model isn’t suited for event-based Silverlight applications.

 The GestureListener class wraps both the Touch.FrameReported and TouchPanel
APIs with a convenient eventing interface. GestureListener supports tap, double tap,
drag, flick, pinch, and hold gestures. The events raised by GestureListener are listed
in Table 11.2.

 Each of the GestureListener events provides details about the gesture through an
EventArgs class derived from GestureEventArgs. The screen coordinate of the touch
related to the gesture can be obtained from the GestureEventArgs GetPosition method.
Each of the GestureEventArgs-derived classes provide details specific to the type of

Listing 11.5 A MenuItem with complex header content

Property
element
syntaxb

307Silverlight Toolkit for Windows Phone
gesture they represent. You can see an example of the gesture data in figure 11.13. We
leave it as an exercise for the reader to take a closer look at the EventArgs classes.

 The GestureService class provides the dependency properties that allow a Gesture-
Listener to be declared in XAML using attached property syntax. The GestureListener
can be attached to any user interface element. The next listing demonstrates how to
attach a GestureListener to a Rectangle.

<Rectangle Margin="50" Grid.Row="1"
 Fill="{StaticResource PhoneAccentBrush}">
 <toolkit:GestureService.GestureListener>
 <toolkit:GestureListener Tap="gesture_Tap"
 DoubleTap="gesture_DoubleTap"
 Hold="gesture_Hold"
 Flick="gesture_Flick"
 DragStarted="gesture_DragStarted"

Table 11.2 Events raised by the GestureListener

Gesture Event Args Description

DoubleTap* GestureEventArgs Two quick touch and release
motions in quick succession.

DragComplete DragCompletedGestureEventArgs A drag motion has ended.

DragDelta DragDeltaGestureEventArgs The touch point has moved dur-
ing a drag gesture.

DragStarted DragStartedGestureEventArgs A drag motion has started.

Flick FlickGestureEventArgs A touch followed by a quick
swiping motion.

GestureBegin GestureEventArgs A gesture has started.

GestureCompleted GestureEventArgs An ongoing gesture has ended.

Hold* GestureEventArgs A touch that is not immediately
released.

PinchCompleted PinchGestureEventArgs A pinch motion has ended

PinchDelta PinchGestureEventArgs A touch point has moved during
a pinch operation.

PinchStarted PinchStartedGestureEventArgs Two touches followed by move-
ment bringing the two points
closer together or farther apart.

Tap* GestureEventArgs A quick touch and release.

* Starting with Windows Phone SDK 7.1, Tap, DoubleTap, and Hold events have been added to the
UIElement class and you don’t need to use GestureListener to detect tap, double tap, and
hold gestures.

Listing 11.6 Attaching a GestureListener

Attached
property

b

Event
handlers

c

308 CHAPTER 11 Building Windows Phone UI with Silverlight controls
 DragDelta="gesture_DragDelta"
 DragCompleted="gesture_DragCompleted"
 PinchStarted="gesture_PinchStarted"
 PinchDelta="gesture_PinchDelta"
 PinchCompleted="gesture_PinchCompleted" />
 </toolkit:GestureService.GestureListener>
</Rectangle>

First you add a GestureListener using attached
property syntax B. Next you wire the gesture
events. In this example you’re subscribing to most
of the gesture events c. In your applications, you
should only listen to the gestures that are required
by your implementation. You should be aware that
some of the gestures overlap and you may receive
multiple events from the same touch operation,
such as flick and drag.

 The GestureListener, ToggleSwitch, Date-
Picker, TimePicker, and ContextMenu are only a
few of the components available in the Silverlight
Toolkit for Windows Phone. We recommend that
you visit the Silverlight Toolkit home on CodePlex
for more information on the entire library. The
website for the toolkit project is http://silverlight
.codeplex.com.

11.5 Summary
From its very beginning, Silverlight was designed as a
platform that would run on multiple different plat-
forms. This portability makes Silverlight an ideal
technology for building user interfaces on the Win-
dows Phone. In this chapter we looked at several Sil-
verlight components found in the Windows Phone SDK and the Silverlight Toolkit. You
learned how they’re similar to components found in Silverlight for the browser.

 The Windows Phone isn’t a browser, and some features of the controls library
are unique to the phone. You learned how theme resources are injected into a run-
ning application as static resources, and how they can be used to ensure an applica-
tion matches the system look and feel. Since a physical keyboard may not be
available, you learned how to interact with the software input panel provided by the
operating system. Finally, we looked at how touch gestures can be captured and
used by an application.

 We started our look at Silverlight controls in the last chapter, discussing the
ApplicationBar, Pivot, and Panorama controls. We’re not finished looking at the con-
trols available to the phone developer. In the next chapter we use the MediaElement

Event
handlers

c

Figure 11.13 GestureListener
sample displaying event data

http://silverlight.codeplex.com
http://silverlight.codeplex.com

309Summary
control that’s part of the Windows Phone SDK and we look at the SmoothStreaming-
MediaElement, which is part of the Smooth Streaming SDK open source. We wrap up
our coverage of Silverlight controls in chapter 13 with a close look at the Bing Maps
and WebBrowser controls.

Manipulating and creating
media with MediaElement
One of the more popular uses of a mobile phone is as a media player. Developers
have a variety of different options when building applications that play media. In
chapter 7, we showed you how to integrate with the Music + Videos Hub and to
make use of the XNA Framework and the BackgroundAudioPlayer to play audio. In
this chapter we’re going to look at two Silverlight controls that can be used to play
both audio and video from inside an application.

 These controls are MediaElement, which plays downloaded media files, and
SmoothStreamingMediaElement, which incrementally downloads media files as
they’re being played. With these two controls you can get a full-featured media
player with a few lines of code. In this chapter you’ll see how to implement a basic
media player in Silverlight for Windows Phone using the MediaElement control.
With this example you’ll learn how to render different media types supported
by Windows Phone and control the playback. The media containers supported by

This chapter covers
■ Building a media player
■ Working with local and web media
■ Creating custom media streams
■ Streaming video
310

311Manipulating and creating media with MediaElement
Windows Phone through the MediaElement control include WAV, MP3, WMA, 3GP, 3G2,
MP4, M4A, WMV, and M4V.

 We’ll then move to a lower level, where we’ll explore how to dynamically generate
video and audio content and get them rendered using custom MediaStreamSource
implementations. Multimedia is usually delivered using a container, which works like
an envelope, as well as content. When working with media players, there are times
when the software is able to work with the container format but not with the content
and vice versa. MediaStreamSource capability provided by MediaElement is useful not
only with dynamically generated media, but when you have to deal with container for-
mats that aren’t supported by MediaElement but whose contents are supported by
Windows Phone decoders.

 In this chapter you’re going to build two variations of a simple media player appli-
cation. Figure 12.1 shows screenshots of the application and the different features
you’ll build. We’ll demonstrate how to play media that’s distributed in the .xap file as
part of the application. We’ll also discuss how to play media that’s located on the inter-
net, or has been saved into the application’s isolated storage.

 This sample application will also show you how to implement your own video and
audio streams. You’ll build two different MediaStreamSource implementations and hook
them up to your media player. You’ll use Silverlight’s MediaElement control to load
and display your media.

 The second sample application will be similar to the first and will reuse most of the
XAML and code behind. You’ll replace the MediaElement control with a Smooth-
StreamingMediaElement from the IIS Smooth Streaming Client library. IIS Smooth

Figure 12.1 The Media
Playback sample application

312 CHAPTER 12 Manipulating and creating media with MediaElement
Streaming is Microsoft’s technology for streaming media. Smooth Streaming incre-
mentally downloads media while it’s being played. Smooth Streaming adapts the qual-
ity of the media to match the performance and bandwidth of the playback device and
the network connection.

 These media playback controls allow you to build custom media players for your
audio and video content. Let’s see how easy this is by starting with the Media-
Element control.

12.1 Building a media player with MediaElement
MediaElement is a user interface control that got its start in the Windows Presentation
Foundation (WPF) framework and has been part of the Silverlight framework since
version 2. MediaElement for Silverlight isn’t as full-featured as the WPF implementa-
tion, and the Windows Phone edition is even more limited. The media containers sup-
ported by Windows Phone through the MediaElement control include WAV, MP3,
WMA, 3GP, 3G2, MP4, M4A, WMV, and M4V.

TIP Some of the codecs supported by a real device aren’t supported by the
emulator. For the full list of containers and decoders supported by Windows
Phone and the emulator, see the official Microsoft documentation at http://
msdn.microsoft.com/en-us/library/ff462087(VS.92).aspx.

MediaElement itself isn’t what many users would call a media player. It’s just a surface
for displaying video. MediaElement doesn’t provide any user interface to control play-
back such as VCR-like buttons for play, pause, and stop. MediaElement does provide
methods and properties to enable you to build your own media player user interface.

 In this section you’ll learn how to open and play media files with MediaElement.
We’ll show you how to play files locally and from the internet. Finally we’ll show you
how to implement common player controls and how to control volume. Let’s jump
right into code by showing you how to create a media player application.

12.1.1 Creating the media player project
Before we discuss how to use MediaElement to play audio and video files, you need to
build the skeleton user interface for your application. Start by creating a new project
using the Windows Phone Application project template, and name the project Media-
Playback. The application’s screen displays a MediaElement, along with a few status
controls hosted inside the ContentPanel. The following listing shows the starting
XAML for the ContentPanel.

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="40" />
 <RowDefinition Height="40" />
 <RowDefinition Height="80" />

Listing 12.1 User interface skeleton

Define
four rows

b

http://msdn.microsoft.com/en-us/library/ff462087(VS.92).aspx
http://msdn.microsoft.com/en-us/library/ff462087(VS.92).aspx

313Building a media player with MediaElement
 </
Grid.RowDefinitions>

 <MediaElement x:Name="mediaElement" Source="Media/sample.wmv" />

 <TextBlock x:Name="sourceTextBlock" Text="video from xap" +++
 TextAlignment="Center" Grid.Row="1" />
</Grid>

You divide the ContentPanel into four rows, allowing the first row to use up all the
available space B. A MediaElement is defined to live in the first grid row, and defaults to
using a video deployed as content in the Media folder of the application’s .xap file c.
You also add a TextBlock to the second row d to display the selected source option.
You’ll add controls to the other rows as you work through the chapter.

 You now need to add playback controls for the play, pause, stop, and mute opera-
tions. The playback controls will be placed on the ApplicationBar. The different
media source options are listed on the ApplicationBar’s menu. The XAML for the
ApplicationBar is shown in the next listing.

<phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar IsVisible="True" IsMenuEnabled="True">
 <shell:ApplicationBarIconButton Text="play"
 Click="PlayClicked"
 IconUri="/Images/appbar.transport.play.rest.png" />
 <shell:ApplicationBarIconButton Text="pause"
 Click="PauseClicked"
 IconUri="/Images/appbar.stop.rest.png" />
 <shell:ApplicationBarIconButton Text="stop"
 Click="StopClicked"
 IconUri="/Images/appbar.transport.pause.rest.png" />
 <shell:ApplicationBarIconButton Text="mute"
 Click="MuteClicked"
 IconUri="/Images/appbar.minus.rest.png" />
 <shell:ApplicationBar.MenuItems>
 <shell:ApplicationBarMenuItem Text="video from xap"
 Click="VideoFromXapClicked" />
 <shell:ApplicationBarMenuItem Text="video from storage"
 Click="VideoFromStorageClicked" />
 <shell:ApplicationBarMenuItem Text="video from web"
 Click="VideoFromWebClicked" />
 <shell:ApplicationBarMenuItem Text="custom video"
 Click="CustomVideoClicked" />
 <shell:ApplicationBarMenuItem Text="custom audio"
 Click="CustomAudioClicked" />
 </shell:ApplicationBar.MenuItems>
 </shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>

ApplicationBarIconButtons are used to control playback and ApplicationBarMenu-
Items are used to load media content from different locations and sources. Following
the style guide, the button text is a single lowercase word B. The .xap, storage, and

Listing 12.2 MediaPlayback’s ApplicationBar

Media player c

Display media source d

Playback
buttons

b

Location
options

c

Custom
media
options

d

314 CHAPTER 12 Manipulating and creating media with MediaElement
web options will demonstrate how to load media from a .xap file, a web URL, or a file
that has been saved in isolated storage c. The custom audio and video options will be
used to load custom MediaStreamSources that you’ll implement later in the chapter d.
You’ll implement the menu item click event handlers in the next few sections.

TIP The images used in this sample are available in the Windows Phone SDK.

Let’s see how to implement the click event handlers for the buttons. You can start a
playback using the Play method exposed by MediaElement control:

private void PlayClicked(object sender, RoutedEventArgs e)
{
 mediaElement.Play();
}

In a similar way, you can use the Pause and Stop methods to control playback:

private void PauseClicked(object sender, RoutedEventArgs e)
{
 mediaElement.Pause();
}

private void StopClicked(object sender, RoutedEventArgs e)
{
 mediaElement.Stop();
}

You’ve just seen how to control the playback. Now let’s see how to show the playback
progress. You can use the Position property, which will show the playback time in
terms of hours, minutes, and seconds. You can present the current progress by bind-
ing the MediaElement’s Position property to the TextBlock’s Text property:

<TextBlock Name="positionTextBlock"
 Text="{Binding ElementName=mediaElement, Path=Position}"
 TextAlignment="Center" Grid.Row="2" />

The positionTextBlock is added to the third row of the ContentPanel, right below
the TextBlock that displays the current source option.

TIP When you display the value of the Position property in your user inter-
face, you should be aware that the Position property can change hundreds
of times per second. In a production application, you should avoid data bind-
ing the property, and implement another mechanism that updates the user
interface less frequently.

The sample video you’re including in the .xap file and launching when the applica-
tion starts is a WMV file. You could’ve chosen a file in any of the supported formats
and your code would be exactly the same (except the filename). The MediaElement
discovers the format when it loads the media. You’re loading sample.wmv by specify-
ing a relative URI when declaring the MediaElement control in XAML, which is one of
several methods that can be used to load media files.

315Building a media player with MediaElement
12.1.2 Loading media files

MediaElement can load files using relative or absolute URIs, or can play media directly
from an IsolatedStorageFileStream. Relative URIs, such as Media/sample.wmv
used in the previous section, refer to files (and folders) deployed in the application’s
.xap file. Absolute URIs are used to load media files located on the internet. Media
files can also be stored in isolated storage.

 Media files are placed into the .xap file by adding the file to the project. Once
you’ve added the media file, you can set the build action property to either Resource
or Content. If you choose Resource, the file will be embedded into the assembly.
When a file is embedded into an assembly, this will increase the application’s startup
time, so only use this option for small media files. If you choose Content, the file will
be added to the .xap file.

 In either case, the file increases the size of the deployment package. Any package
larger than 20 MB will prevent the user from downloading the application from the
Windows Phone Marketplace with the cellular network and users will only be able to
download your application when connected to a Wi-Fi or Ethernet network. Applica-
tion packages must not exceed a total of 225 MB.

 You instruct MediaElement to load a file from a URI by setting the Source property.
When you set the Source property, MediaElement locates the file and opens the corre-
sponding file stream. You’ll use the Source property to implement the VideoFromXap-
Clicked event handler for the Video from the xap menu option:

private void VideoFromXapClicked(object sender, EventArgs e)
{
 mediaElement.Source = new Uri("Media/sample.wmv", UriKind.Relative);
 sourceTextBlock.Text = "video from xap";
}

In addition to setting the source element to a relative Uri, you update sourceText-
Block to display which option was selected. Loading a file from the internet is nearly
the same:

private void VideoFromWebClicked(object sender, EventArgs e)
{
 mediaElement.Source = new Uri(
 "http://www.wp7inaction.com/sample.wmv", UriKind.Absolute);
 sourceTextBlock.Text = "video from web";
}

The main differences between VideoFromXapClicked and VideoFromWebClicked are
the Uri and UriKind used for the Source property, and the text used to update
sourceTextBlock. MediaElement will download the specified media file before start-
ing playback. The download process might take some time, and the MediaElement
doesn’t provide any indication that it’s waiting for the download. In the next section
we’ll discuss how you can use MediaElement events to determine when a file is fully
loaded from a Uri.

316 CHAPTER 12 Manipulating and creating media with MediaElement

Only copy
file once

Open
resource
stream

reate file
tream
 Loading media files from isolated storage isn’t as simple as specifying a Uri for the
Source property. You must use MediaElement’s SetSource method instead, as shown
in the following listing. Instead of using a Uri, SetSource takes a Stream.

private void VideoFromStorageClicked(object sender, EventArgs e)
{
 mediaElement.Source = null;
 using (var store = IsolatedStorageFile.GetUserStoreForApplication())
 {
 if (store.FileExists("sample.wmv"))
 {
 var fileStream = new IsolatedStorageFileStream(
 "sample.wmv", FileMode.Open, store);
 mediaElement.SetSource(fileStream);
 sourceTextBlock.Text = "video from storage";
 }
 }
}

In the VideoFromStorageClicked event handler, you start by opening isolated storage
and confirming that the target media file already exists. Next you open an Isolated-
StorageFileStream for the file B. Finally, you pass the stream to the MediaElement c.

NOTE The MediaElement in Silverlight for Windows Phone only supports
IsolatedStorageFileStreams.

When an application is first deployed to a device, isolated storage is empty, and there’s
no mechanism for prepopulating files. There are three options for placing files into
isolated storage—create new files, copy files from the .xap file, or download files from
the network. Because this application requires a file in isolated storage, you’re going
to add code required to copy the embedded sample.wmv file from the .xap file to iso-
lated storage. You want to add this to the code that’s run when the application is
launched. The next listing details the code added to Application_Launching event
handler in App.Xaml.cs.

private void Application_Launching(object sender, LaunchingEventArgs e)
{
 using (var store = IsolatedStorageFile.GetUserStoreForApplication())
 {
 if (!store.FileExists("sample.wmv"))
 {
 using (var stream = Application.GetResourceStream(
 new Uri("Media/sample.wmv", UriKind.Relative)).Stream)
 using (var fileStream = new IsolatedStorageFileStream(
 "sample.wmv", FileMode.Create, store))
 {
 byte[] bytesInStream = new byte[stream.Length];

Listing 12.3 Loading media files from isolated storage

Listing 12.4 Copying content files into isolated storage

Close
current
media

Open
media file

b

Pass stream to
mediaElementc

b

c

C
s

d

317Building a media player with MediaElement
 stream.Read(bytesInStream, 0, (int)bytesInStream.Length);
 fileStream.Write(bytesInStream, 0, bytesInStream.Length);
 fileStream.Flush();
 }
 }
 }
}

You start by opening isolated storage and checking whether the file has already been
copied B. You then use the GetResourceStream method to open a Stream c for the
sample.wmv file stored in a folder name Media in the .xap file. You also create a new
IsolatedStorageFileStream d. Finally, you copy the bytes from one Stream to
the other.

TIP Though not shown here, a similar method can be used for saving files
from the internet into isolated storage. Instead of using the stream returned
by GetResourceStream, you use the Stream returned in the WebClient
.OpenReadCompleted event handler.

One more MediaElement property is important when the source is set or changed. The
AutoPlay property determines whether media playback is automatically started when the
source changes. AutoPlay defaults to true, meaning the media will begin playing as soon
as it’s opened by the MediaElement. A good practice is to explicitly set the AutoPlay
before setting the Source property to ensure the MediaElement behaves as you expect.

 We’ve shown you how to use various methods to load media files. Loading files
isn’t instantaneous, especially when loading files from the internet. When Media-
Element is loading a file, it doesn’t provide any progress or wait indicator to the user.
Fortunately, MediaElement reports its current status so that you can build your own
progress indicators.

12.1.3 Media element states
MediaElement contains a number of different properties and events that can be used
to determine the current status of media playback and exert control over the user
experience. The MediaOpened event can be used to determine when the Media-
Element is ready to start playing. An application can be notified when media has
stopped playing with the MediaEnded event. The BufferingProgress or Download-
Progress properties, and their related changed events, can be used to identify situa-
tions when you might display a wait indicator to the user.

 Many of MediaElement’s events and properties are fairly low-level and require the
programmer to track various properties and events in order to track when media is
playing, and when it’s stopped or paused. Fortunately, MediaElement exposes the
CurrentState property so that user interface code can easily determine the playback
state. The CurrentState property is of type MediaElementState and the possible val-
ues are detailed in table 12.1.

 You’re going to use the CurrentState property to update the user interface with
some helpful media playback hints. You’re going to display the global progress indicator

318 CHAPTER 12 Manipulating and creating media with MediaElement
during media opening so the user sees feedback when the media file takes a while to
load, such as when opening a file from the internet. You add the ProgressIndicator
to MainPage.xaml, but initialize it in an invisible state so that it’s hidden from the
user. Add the following code below the application bar markup in MainPage.xaml:

<shell:SystemTray.ProgressIndicator>
 <shell:ProgressIndicator x:Name="mediaProgress" IsIndeterminate="True"
 IsVisible="True" Text="Loading..."/>
</shell:SystemTray.ProgressIndicator>

You also set the IsIndeterminate property to True because you’re not tracking actual
download size or detailed opening progress. You’ll add an event handler that will dis-
play the ProgressIndicator when the MediaElement is opening a media file. First,
add a TextBlock to display the value of the CurrentState:

<TextBlock x:Name="stateTextBlock" Grid.Row="1"
 HorizontalAlignment="Right" />

The TextBlock will be displayed in the same row as and to the right of the TextBlock
that displays the current source option. You want to update the TextBlock whenever
the CurrentState property changes, or in the CurrentStateChanged event handler.
Now wire up the CurrentStateChanged event to the MediaElement:

<MediaElement x:Name="mediaElement" ...
 CurrentStateChanged="mediaElement_CurrentStateChanged" />

You implement mediaElement_CurrentStateChanged in MainPage.xaml.cs:

private void mediaElement_CurrentStateChanged(
 object sender, RoutedEventArgs e)
{

Table 12.1 MediaElement states

State* Description

Buffering Media frames are being loaded and prepped for playback. During buffering, the
Position property doesn’t change, and if the media type is video, the current frame
continues to be displayed.

Closed The media source hasn’t been set, or has been cleared.

Opening The media stream is being downloaded and opened and the media type discovered as
the MediaElement prepares to play.

Paused The currently playing media is paused, and the Position property doesn’t change. If
the media type is video, the current frame continues to be displayed.

Playing Media is being played and the Position property is changing.

Stopped Media is loaded, but isn’t being played. The Position property isn’t changing, and
has the value 0. If the media type is video the first frame is displayed.

*Two other states exist, AcquiringLicense and Individualizing, which apply to digital rights
management and are beyond the scope of this book.

319Building a media player with MediaElement
 stateTextBlock.Text = mediaElement.CurrentState.ToString();
 if (mediaElement.CurrentState == MediaElementState.Opening)
 mediaProgress.IsVisibile = true;
 else
 mediaProgress.IsVisibile = false;
}

You update the stateTextBlock with the value of the CurrentState. Because you
want to display the ProgressIndicator only when the media source is being opened,
you check for the Opening state and make the ProgressIndicator visible. For all
other states, you hide the ProgressIndicator.

 What happens if there’s an error during load or playback? There’s no Media-
ElementState for error. Instead you’re going to handle the MediaFailed event and
report an error to the user. You wire up the MediaFailed event in MainPage.xaml:

<MediaElement x:Name="mediaElement" ...
 MediaFailed="mediaElement_MediaFailed" />

You implement the mediaElement_MediaFailed event handler in MainPage.xaml.cs:

private void mediaElement_MediaFailed(
 object sender, ExceptionRoutedEventArgs e)
{
 MessageBox.Show(e.ErrorException.Message,
 "Media Failure", MessageBoxButton.OK);
}

The error message from the Exception is displayed in a MessageBox. The Media-
Failed event represents a generic failure, so it can be related either to the file loca-
tion or to media content not properly understood by the MediaElement. Usually, this
message is just an error code, so you may consider inspecting the exception and build-
ing a more user-friendly message in your code.

 You now know how to load media files and have looked at some of the methods
and properties provided by MediaElement to control playback. One of the features we
haven’t looked at yet is controlling sound volume.

12.1.4 Controlling volume

Your media player application would be incomplete without controls to adjust the vol-
ume or mute all sound. The MediaElement control provides the Volume and IsMuted
properties to support these desired features. The Volume property is represented by a
double value in the range between 0 (silent) and 1 (maximum volume). You’re going
to implement the volume adjustment user interface with a Slider control. You can
then configure the Slider control to have a range between 0 and 1, with resolution
for changes of 0.1:

<Slider x:Name="volumeSlider" Width="300" Grid.Row="3" Minimum="0.0"
 Maximum="1.0" SmallChange="0.05" LargeChange="0.1" Value="0.85"/>

You initialize the Slider control’s Value property to 0.85, which is the default value
for the MediaElement’s Volume property. You add the Slider to the fourth row of the

320 CHAPTER 12 Manipulating and creating media with MediaElement
ContentPanel grid. Finally, you use data binding to connect the Slider’s Value to
the MediaElement Volume property:

<MediaElement x:Name="mediaElement" ...
 Volume="{Binding ElementName=volumeSlider, Path=Value}" />

The user can now silence the media player by dragging the slider all the way to zero. A
quicker method for silencing the media player is with the IsMuted property. You can
instantly silence the media player by setting the IsMuted Boolean property to true.
When you created the application, you added a mute button to the ApplicationBar.
Now you’ll implement the Click event handler of the mute button to toggle the
IsMuted property:

private void muteButton_Click(object sender, RoutedEventArgs e)
{
 mediaElement.IsMuted = !mediaElement.IsMuted;
 mutedTextBlock.Text = mediaElement.IsMuted ? "muted" : string.Empty;
}

In the event handler, you’re also updating a TextBlock to provide the user with feed-
back when the media player is muted. You haven’t declared the mutedTextBlock yet,
so add a new TextBlock control to MainPage.xaml:

<TextBlock x:Name="mutedTextBlock" Grid.Row="3"
 HorizontalAlignment="Right" VerticalAlignment="Bottom" />

You add the TextBlock to the bottom row of the ContentPanel, to the right of the vol-
ume control. When the media player is muted, the control displays the word muted,
and displays nothing otherwise.

 Though not quite as powerful and feature-rich as its WPF and Silverlight for the
browser cousins, the MediaElement in Silverlight for Windows Phone should meet
most of your media playback needs. Of course no control can be expected to fulfill
every need of every developer. When you find yourself with a problem that can’t be
solved by MediaElement’s built-in features, you can extend the control with custom
MediaStreamSource implementations.

12.2 Manipulating the media stream with
MediaStreamSource
In the previous section we covered the basic capabilities of the MediaElement control.
MediaElement and its relatives are the only method allowed to reproduce audio and
video content in an application written in Silverlight for Windows Phone. What if you
want to produce sounds or videos dynamically without using preexisting resources like
audio or video files?

MediaElement embeds a powerful feature named MediaStreamSource that solves
these problems. For example, MediaElement may fail to play media (and raise the
MediaFailed event) whose decoder is supported by the Windows Phone device but
whose container isn’t. Using MediaStreamSource you can implement your own container

321Manipulating the media stream with MediaStreamSource
and provide the media samples directly to the decoders. Obviously such a powerful
feature requires more work by the developer.

MediaStreamSource deals with media samples and not directly with files. All the
code required to open files or network streams must be coded by the developer. If you
decide to opt for a MediaStreamSource-based solution, you need to create a class that
inherits from MediaStreamSource. MediaStreamSource is an abstract class and has sev-
eral abstract methods that must be implemented by your derived class.

 Figure 12.2 shows the typical cycle the MediaStreamSource goes through for
each media stream. Methods shown in figure 12.2 are some of those left for you
to implement.

MediaElement uses an asynchronous pattern to communicate with a stream source.
When MediaElement calls to one of the XxxAsync methods, it doesn’t wait for the
method to complete before moving on to other work. When the async method has
completed its work, it must report its results to the MediaElement through an appro-
priate ReportXxxCompleted method.

12.2.1 Opening a media source

After a stream source is properly constructed and set into the MediaElement, the first
method invoked is OpenMediaAsync. This is the method to use when opening the
media source. OpenMediaAsync should construct two collections. The first is a diction-
ary mapping MediaSourceAttributesKeys to string values. The second is a collection
of MediaStreamDescriptions.

 The media source attributes describe features of the media source. In Silverlight,
this collection is limited to Duration, CanSeek, and DRMHeader attributes. The Duration
attribute should be set to the number of nanoseconds of playback time for the media
stream. If the Duration is unknown, set the attribute’s value to zero. The CanSeek
attribute should be set to True or False, indicating whether or not the media stream

Figure 12.2 MediaStream-
Source lifecycle

322 CHAPTER 12 Manipulating and creating media with MediaElement
can be positioned to play at any random point. Working with the DRMHeader and gen-
eral digital rights management is beyond the scope of this book.

 The following code snippet demonstrates how to create and populate the dictionary:

var attr = new Dictionary<MediaSourceAttributesKeys, string>();
attr[MediaSourceAttributesKeys.Duration] = "0";
attr[MediaSourceAttributesKeys.CanSeek] = "False";

A MediaStreamSource may contain multiple media streams. The MediaStream-
Description class describes each of the streams contained in the media source. The
description specifies whether the stream is audio or video, provides an identifier, and
also contains a dictionary of MediaStreamAttributes. Stream attributes include the
height and width of the video, as well as which codec is used to process the stream.
The following listing shows how a collection of MediaStreamDescriptions might
be created.

var vAttr = new Dictionary<MediaStreamAttributeKeys, string>();
vAttr[MediaStreamAttributeKeys.VideoFourCC] = "RGBA";
vAttr[MediaStreamAttributeKeys.Height] = "320";
vAttr[MediaStreamAttributeKeys.Width] = "480";

var aAttr = new Dictionary<MediaStreamAttributeKeys, string>();
aAttr[MediaStreamAttributeKeys.CodecPrivateData] = codecData;

var streams = new List<MediaStreamDescription>();
streams.Add(new MediaStreamDescription(MediaStreamType.Video, vAttr));
streams.Add(new MediaStreamDescription(MediaStreamType.Audio, aAttr));

Depending on the type of media stream you’re working with, you may need to use the
CodecPrivateData attribute B. If you’re working with audio, this is an encoded
WaveFormatEx structure, and we’ll show you how to generate wave data later in the
chapter. Video streams may require codec-specific data which is beyond the scope of
this book.

 Once the source attributes and stream descriptions have been created, you send the
data to the MediaElement control by calling the ReportOpenMediaCompleted method.
OpenMediaAsync is called once during the whole media session. Opening media is just
the first step in the process MediaElement uses as it prepares to play media. The next step
is to position the playback position to the beginning of the media stream.

12.2.2 Seeking media
Once the media source is opened, MediaElement will ask the media source to position
its media stream to position zero. This will occur even when the source CanSeek
attribute is false. MediaElement will also call SeekAsync with a position of zero when
MediaElement.Stop has been called, followed by a call to MediaElement.Play.

 If your media supports seeking or repositioning the current location within the
stream, the CanSeek source attribute should be set to True. When the MediaElement’s
Position property is set from code, MediaElement calls the SeekAsync method.

Listing 12.5 Building a collection of MediaStreamDescriptions

Codec-
related
data

b

323Manipulating the media stream with MediaStreamSource
 When your implementation of SeekAsync is called, it must perform the necessary
operations to position the stream at the requested location. When your MediaStream-
Source implementation has prepared the stream, it must call the ReportSeek-
Completed method to notify the MediaElement your application has properly updated
the position. Now that the media stream is opened and its position set, how does
MediaElement obtain the media samples it needs to play?

12.2.3 Sampling media

Once the MediaStreamSource is open and positioned at the beginning of the stream,
MediaElement will start asking the media source for samples by calling GetSample-
Async. GetSampleAsync defines a MediaStreamType parameter that specifies the type
of media sample to provide. The MediaStreamType enumeration contains Audio and
Video values. Within GetSampleAsync you need to instantiate a MediaStreamSample
object, which will contain the media description, a MemoryStream containing the
actual sample, a dictionary containing MediaSampleAttributeKeys, and a timestamp.
The next listing demonstrates how a MediaStreamSample might be built.

var attr = new Dictionary<MediaSampleAttributeKeys, string>();
attr[MediaSampleAttributeKeys.FrameHeight] = "320";
attr[MediaSampleAttributeKeys.FrameWidth] = "480";
attr[MediaSampleAttributeKeys.KeyFrameFlag] = "True";

var stream = new MemoryStream();
stream.Write(...);

var sample = new MediaStreamSample(description, stream, 0,
 stream.Length, timestamp, attr);

You start by creating and filling the dictionary with the height and width of the sample
as well as setting a value for KeyFrameFlag attribute. Next you create a new Memory-
Stream. We’ve omitted the code where the memory stream would be filled with data B.
Finally, you create a new MediaStreamSample passing in the MediaStreamDescription
instance c that was created in OpenMediaAsync, the new stream, a timestamp, and the
sample attributes. We’ve also omitted code that tracks and increments the timestamp.

 Once done with the production of a sample, you can pass it back to the Media-
Element to be rendered through the ReportGetSampleCompleted method. If you
can’t immediately return a sample, such as when you’re buffering data from the net-
work, you should periodically call ReportGetSampleProgress while you’re waiting.
Once the sample is ready, call ReportGetSampleCompleted and return.

 You can inform the MediaElement about the end of a stream by creating a Media-
StreamSample with a null memory stream.

MediaElement can ask an implementation of MediaStreamSource about buffering
progress via the GetDiagnosticAsync method to implement. Buffering data is returned
to the MediaElement by calling ReportGetDiagnosticCompleted. Media stream buffer-
ing is beyond the scope of this book.

Listing 12.6 Building a MediaStreamSample

Fill stream
with data

b

Create media
sample

c

324 CHAPTER 12 Manipulating and creating media with MediaElement
 Now that you know about building a custom MediaStreamSource, you’re going to
build a couple of your own. You’re going to build an audio stream source that plays a
steady tone that could be used for generating individual musical notes. The first sam-
ple will start with a custom video stream source.

12.3 Creating custom video
You’re going to build a simple implementation of MediaStreamSource that provides
video samples for one minute. These video samples will alternate once a second
between blue video content and orange video content. When you’re finished with
your custom stream source, you’ll display the generated video in the MediaPlayback
sample application.

 Start by creating a new class named VideoMediaStreamSource that inherits from
MediaStreamSource. You need to define several fields, shown in the following listing,
that will be used throughout the class.

public class VideoMediaStreamSource : MediaStreamSource
{
 private const int BytesPerPixel = 4;
 private readonly int _frameWidth;
 private readonly int _frameHeight;
 private readonly int _framePixelCount;
 private readonly int _frameBufferSize;
 private readonly int _frameRate;

 private int _currentBufferFrame = 0;
 private int _currentReadyFrame = 1;
 private int _currentVideoTimeStamp = 0;

 private int _samplesProvided = 0;

 private byte[][] _frames = new byte[2][];

 private MediaStreamDescription _videoDesc;
 private readonly Dictionary<MediaSampleAttributeKeys, string>
 _sampleAttr;
}

First, you define a constant named BytesPerPixel, and since you’re using an RGBA
format that uses 32 bits, you set its value to 4. Next you declare some fields that you
use to store frame parameters B. You also declare _currentBufferFrame to track the
buffer index used for the current frame, and in _currentReadyFrame you store the frame
ready to be shown c. You declare _currentVideoTimeStamp, which will be used to
provide the right timestamp to the sample you dynamically generate. You then define
the buffers that will store the two frames, which will flip every second.

 You add a field to hold the MediaStreamDescription d created in OpenMedia-
Async and used to create MediaStreamSamples. Finally, you create a Dictionary to
store the media sample attributes used when producing the media samples.

Listing 12.7 Fields necessary to implement VideoMediaStreamSource

Frame size
fields

b

Current
frame fields

c

Media
stream
fields

d

325Creating custom video
 Now that you’ve defined the basic structure of the VideoMediaStreamSource class,
you need to initialize the fields to appropriate values.

12.3.1 Initializing the stream source

You must initialize the read-only fields in the class constructor. Your stream source
implementation allows different-sized video streams to be generated. The width and
height of the video are passed in the constructor. The VideoMediaStreamSource con-
structor is shown in the next listing.

public VideoMediaStreamSource(int frameWidth, int frameHeight)
{
 _frameWidth = frameWidth;
 _frameHeight = frameHeight;
 _framePixelCount = frameWidth * frameHeight;
 _frameBufferSize = _framePixelCount * BytesPerPixel;

 _frameRate = (int)TimeSpan.FromSeconds((double)1 / 50).Ticks;

 _frames[0] = new byte[_frameBufferSize];
 _frames[1] = new byte[_frameBufferSize];

 _sampleAttr = new Dictionary<MediaSampleAttributeKeys, string>();
 _sampleAttr[MediaSampleAttributeKeys.FrameHeight]
 = _frameHeight.ToString();
 _sampleAttr[MediaSampleAttributeKeys.FrameWidth]
 = _frameWidth.ToString();
 _sampleAttr[MediaSampleAttributeKeys.KeyFrameFlag] = "True";

 FillFrame(0, Colors.Orange);
 FillFrame(1, Colors.Blue);
}

First you make simple calculations about the frame based on the height and width
passed to the constructor B. You allocate the memory for one blue and one orange
frame c. Because you always have the same kind of media sample, you initialize the
_sampleAttr dictionary with the frame size attributes. You complete the constructor
by creating two frames filled completely with orange and blue pixels d. The construc-
tor uses the FillFrame method to fill each of the four byte pixels in the frame buffer:

public void FillFrame(int index, Color color)
{
 for (int i = 0; i < _framePixelCount; i++)
 {
 int offset = i * BytesPerPixel;

 _frames[index][offset++] = color.B;
 _frames[index][offset++] = color.G;
 _frames[index][offset++] = color.R;
 _frames[index][offset++] = color.A;
 }
}

Listing 12.8 The VideoMediaStreamSource class constructor

Calculate
frame size

b

50 Hz
frame
rate

Allocate
buffers

c

Create orange
and blue frames

d

326 CHAPTER 12 Manipulating and creating media with MediaElement
To specify which frame to fill, you pass a value that represents the index into the
_frames array. As the frame is an array of bytes, each pixel is spread across four posi-
tions in the array. Incrementing the offset value by one will have the effect of indexing
the byte for the next color component. The bytes in the frame are filled in the order
blue, green, red, and the alpha transparency value.

 All this construction code will be called prior to adding the stream source to the
MediaElement. When MediaElement gets a hold of an instance of your class, the first
thing it does is try to open the stream.

12.3.2 Opening the video stream source

The next step in your implementation of VideoMediaStreamSource is the Open-
MediaAsync method. As we mentioned earlier, OpenMediaAsync must build a diction-
ary of MediaSourceAttributesKeys, and a collection of MediaStreamDescription
objects. The following listing demonstrates how these collections are created by
your implementation.

protected override void OpenMediaAsync()
{
 Dictionary<MediaSourceAttributesKeys, string> attr =
 new Dictionary<MediaSourceAttributesKeys, string>();
 List<MediaStreamDescription> availableStreams =
 new List<MediaStreamDescription>();

 PrepareVideo();

 availableStreams.Add(_videoDesc);

 attr[MediaSourceAttributesKeys.Duration] = "0"
 attr[MediaSourceAttributesKeys.CanSeek] = "False"

 ReportOpenMediaCompleted(attr, availableStreams);
}

You start your implementation by instantiating the collections that will store the source
attributes and the media stream description B. Next, you call the PrepareVideo
method, which initializes the _videoDesc field that’s added to the availableStreams
collection. In this case, you’ll have just one stream because you have only a video
stream and aren’t implementing any audio streams. You set the Duration attribute to
infinite and disable the seek capability by setting the CanSeek attribute to false c.
You complete the implementation by sending the newly built collections to the Media-
Element by way of the ReportOpenMediaCompleted method d.

 The internal PrepareVideo method creates a MemoryStream and populates a Media-
StreamDescription instance with stream attributes. PrepareVideo is implemented in
the next listing.

Listing 12.9 Implementation of OpenMediaAsync

Create
collections

b

Add
attributes

c

Report completed

327Creating custom video
private void PrepareVideo()
{
 Dictionary<MediaStreamAttributeKeys, string> attr =
 new Dictionary<MediaStreamAttributeKeys, string>();
 attr[MediaStreamAttributeKeys.VideoFourCC] = "RGBA";
 attr[MediaStreamAttributeKeys.Height] = _frameHeight.ToString();
 attr[MediaStreamAttributeKeys.Width] = _frameWidth.ToString();

 MediaStreamDescription msd = new MediaStreamDescription(
 MediaStreamType.Video, attr);
 _videoDesc = msd;
}

First you define the stream in terms of the attributes B for color channels RGBA and
frame size. Finally, you create a MediaStreamDescription instance where you declare
that your media stream is a video with the attributes contained in the attr object c,
and you set it to the _videoDesc field.

 When OpenMediaAsync returns, the video is ready to play. The MediaElement con-
trol will begin calling your class to obtain the video samples to draw to the screen. The
next step is to generate the samples for the MediaElement to display.

12.3.3 Generating media samples

When MediaElement is ready to display your video stream, the control will call Get-
SampleAsync. Your orange and blue media samples will be generated on the fly in
GetSampleAsync, which is shown in the following listing.

protected override void GetSampleAsync(MediaStreamType mediaStreamType)
{
 if (mediaStreamType == MediaStreamType.Video)
 throw new NotSupportedException();

 MemoryStream frameStream = new MemoryStream();
 frameStream.Write(_frames[_currentReadyFrame], 0,
 _frameBufferSize);

 MediaStreamSample msSamp = new MediaStreamSample(
 _videoDesc, frameStream, 0, _frameBufferSize,
 _currentVideoTimeStamp, _sampleAttr);

 _currentVideoTimeStamp += _frameRate;
 if ((_currentVideoTimeStamp % 10000000) == 0)
 {
 int f = _currentBufferFrame;
 _currentBufferFrame = _currentReadyFrame;
 _currentReadyFrame = f;
 _samplesProvided++;
 }

Listing 12.10 Preparing the media stream

Listing 12.11 Generating the video samples

Set attributes b

Create
stream
descriptionc

Create new
stream

b

Create
sample

c

Change
colors

d

328 CHAPTER 12 Manipulating and creating media with MediaElement
 if (_samplesProvided < 60)
 {
 ReportGetSampleCompleted(msSamp);
 }
 else
 {
 MediaStreamSample nullSample = new MediaStreamSample(
 _videoDesc, null, 0, 0, _currentVideoTimeStamp,
 _sampleAttr);
 ReportGetSampleCompleted(nullSample);
 }
}

You first check the stream type whose media sample is being requested by the Media-
Element. Because you only support video, you throw a NotSupportedException if an
audio sample is requested. When the requested MediaStreamType is Video, you instanti-
ate a new MemoryStream for the frame and copy into it the buffer you’ve previously pre-
pared B. Note that you’re using _currentReadyFrame as the index to the target sample.

 Next you instantiate a MediaStreamSample c, which is the object you’ll have to
return to the MediaElement. The _currentVideoTimeStamp field, containing the
microseconds for the timestamp, is increased by the amount of the frame rate. You
then check whether you’ve incremented the timestamp to a multiple of one second,
and if so, flip the buffer to use when dynamically generating the frame video content d.
You also increment the _samplesProvided field, which tracks the number of frames
you’ve flipped, which is also the number of seconds the video has run.

 The frame is flipped once every second, and your custom media stream source
only runs for one minute. If the _samplesProvided field is less than 60, you pass the
generated frame to the MediaElement via the ReportGetSampleCompleted e. If
_samplesProvided is 60 or more, you end the stream. The stream is ended by generat-
ing an end-of-stream timestamp f where the MediaStream object associated to the
MediaStreamSample is null and the buffer length is zero.

 You complete the VideoMediaStreamSource class by adding the abstract Media-
StreamSource methods that you haven’t implemented yet. You don’t have any cleanup
work to do, so CloseMedia is an empty method:

protected override void CloseMedia() {}

When you opened the media stream, you specified that your class didn’t support seek
operations. But SeekAsync will still be called with a seek value of zero if the user has
pressed Stop and then Play:

protected override void SeekAsync(long seekToTime)
{
 if (seekToTime != 0) throw new NotSupportedException();
 _currentBufferFrame = 0;
 _currentReadyFrame = 1;
 _currentVideoTimeStamp = 0;
 _samplesProvided = 0;
 ReportSeekCompleted(seekToTime);
}

Report
sample

e

Report
end of
stream

f

329Creating custom audio
When SeekAsync is called, you validate that seekToTime is indeed zero. You then reset
the class fields that track the current state to their initial values.

 The remaining two methods aren’t supported in your custom MediaStreamSource
class. You’ll implement these two methods by throwing a NotImplementedException:

protected override void SwitchMediaStreamAsync(
 MediaStreamDescription mediaStreamDescription)
{
 throw new NotImplementedException();
}

protected override void GetDiagnosticAsync(
 MediaStreamSourceDiagnosticKind diagnosticKind)
{
 throw new NotImplementedException();
}

You now have VideoMediaStreamSource fully implemented, but haven’t hooked
up the custom video menu option. Remember that you added a menu item to the
ApplicationBar to load custom video, but you haven’t yet implemented the menu
item’s click handler:

private void CustomVideoClicked(object sender, EventArgs e)
{
 MediaStreamSource source = new VideoMediaStreamSource(
 (int)mediaElement.ActualWidth,
 (int)mediaElement.ActualHeight);
 mediaElement.SetSource(source);
 sourceTextBlock.Text = "custom video";
}

The click handler implementation is fairly straightforward. You create a new Video-
MediaStreamSource class, and pass the MediaElement’s height and width. You then call
the SetSource method to load the MediaStreamSource instance. Finally, you update the
sourceTextBlock.

 Now that you’ve seen how video streams work, you’re going build a custom
audio stream.

12.4 Creating custom audio
You’ll now build an app that dynamically generates audio samples using a custom
MediaStreamSource. The MediaStreamSource interface is agnostic of the content type
it’s implementing, so what you’ve learned working with video streams also applies to
audio streams. Your custom audio stream source will be a simple tuning fork simula-
tor, which will do nothing other than generate a tone at a frequency of 440Hz. As with
most of the sample code in the book, this example is designed to be as easy as possi-
ble, and doesn’t pretend to be the best way to code this functionality.

 Different waveforms can be used to generate a tone, and in this example you’ll use
a sine waveform to get a good result. You’ll generate your audio samples using the
Waveform Audio File Format (WAV). You use the WAV format because it’s easy to use
and is supported by Windows Phone.

330 CHAPTER 12 Manipulating and creating media with MediaElement
NOTE Usage of the WAV format requires you to work with an encoded Wave-
FormatEx structure. The technical details of WaveFormatEx are beyond the
scope of this book. You can read more about WaveFormatEx on MSDN at http://
mng.bz/FNuW.

In this example, you’ll be using a class named WaveFormatEx which handles creating
the encoded string that’s specified in the MediaStreamDescription. We won’t cover
most of the details of the WaveFormatEx class, but you can get the class as part of the
source code download.

12.4.1 Defining a custom audio stream source

You begin your custom audio source implementation by adding a new class to your
MediaPlayback sample project. Name the new class AudioMediaStreamSource and have
it inherit from MediaStreamSource. Add the fields shown in the next listing to the class.

public class AudioMediaStreamSource : MediaStreamSource
{
 private MediaStreamDescription _audioDesc;
 private long _currentTimeStamp;

 private readonly int _numSamples;
 private readonly int _bufferByteCount;
 private readonly long _audioDuration;
 private readonly string _encodedWaveFormat;

 private readonly Dictionary<MediaSampleAttributeKeys, string>
 _sampleAttr = new Dictionary<MediaSampleAttributeKeys, string>();

 private readonly SineWaveformOscillator _oscillator;
}

When working with media streams, you a need a MediaStreamDescription instance
field, which you name _audioDesc. You also need to track the current timestamp, and
so you create a _currentTimeStamp field. Next you define several read-only fields that
you use to generate the media stream and audio samples B. For convenience, you
define the media sample attribute dictionary, even though you’ll never add any attri-
butes to the dictionary. You must pass a valid dictionary when calling ReportGet-
SampleCompleted, so here you’re creating an empty collection just once. The final
instance field that you declare is for the SineWaveformOscillator c, which is a light-
weight class used to generate sine waves.

 The read-only fields are initialized in the class constructor. The AudioMedia-
StreamSource constructor, shown in the following listing, accepts a frequency param-
eter, allowing the calling code to determine the exact tune to play.

public AudioMediaStreamSource(short frequency)
{

Listing 12.12 Fields necessary to implement AudioMediaStreamSource

Listing 12.13 The AudioMediaStreamSource constructor

Wave file
data

b

Sound generatorc

http://mng.bz/FNuW
http://mng.bz/FNuW

331Creating custom audio
 WaveFormatEx waveFormat = new WaveFormatEx()
 {
 SamplesPerSec = 44100,
 Channels = 1,
 BitsPerSample = 16,
 AvgBytesPerSec = 44100 * 2,
 BlockAlign = 2,
 FormatTag = WaveFormatEx.FormatPCM,
 Size = 0
 };
 waveFormat.ValidateWaveFormat();

 _numSamples = waveFormat.Channels * 256;
 _bufferByteCount = waveFormat.BitsPerSample / 8 * _numSamples;
 _audioDuration = waveFormat
 .AudioDurationFromBufferSize((uint)_bufferByteCount);
 _encodedWaveFormat = waveFormat.ToHexString();

 _oscillator = new SineWaveformOscillator()
 {
 Frequency = frequency * 2
 };
}

A WaveFormatEx object is instantiated and initialized with the information about the
audio samples B, and the final result is validated using the ValidateWaveFormat
method. Next, you use the WaveFormatEx object to initialize the read-only fields c that
are used in OpenMediaAsync and GetSampleAsync. Finally, construct a SineWaveform-
Oscillator object and set its Frequency property d.

 The numbers used to set the WaveFormatEx properties represent

■ 44100 Hz sampling rate
■ 16-bit sample resolution
■ Mono (single channel)

With the class properly constructed, let’s look at how you open the audio stream.

12.4.2 Opening the audio stream source
OpenMediaAsync is the next method you implement for AudioMediaStreamSource.
Just like with VideoMediaStreamSource, OpenMediaAsync must build a dictionary of
MediaSourceAttributesKeys, and a collection of MediaStreamDescription objects.
The next listing demonstrates how these collections are created for WAV audio stream.

protected override void OpenMediaAsync()
{
 Dictionary<MediaStreamAttributeKeys, string> streamAttr =
 new Dictionary<MediaStreamAttributeKeys, string>();
 streamAttr[MediaStreamAttributeKeys.CodecPrivateData] =
 _encodedWaveFormat.ToHexString();

 audioDesc = new MediaStreamDescription(
 MediaStreamType.Audio, streamAttr);

Listing 12.14 OpenMediaAsync implementation

WaveFormatEx
utilityb

Initialize read-
only fields

 c

Create
oscillatord

Specify
stream
attributesb

332 CHAPTER 12 Manipulating and creating media with MediaElement
 List<MediaStreamDescription> availableStreams =
 new List<MediaStreamDescription>();
 availableStreams.Add(_audioDesc);

 Dictionary<MediaSourceAttributesKeys, string> sourceAttr =
 new Dictionary<MediaSourceAttributesKeys, string>();
 sourceAttr[MediaSourceAttributesKeys.Duration] = "0";
 sourceAttr[MediaSourceAttributesKeys.CanSeek] = "False";

 ReportOpenMediaCompleted(sourceAttr, availableStreams);
}

The most significant difference between this method and VideoMediaStreamSource is
which stream attributes you create, and the fact that you specify a MediaStreamType of
Audio when you build the MediaStreamDescription. Instead of adding height and
width stream attributes, you add an MediaStreamAttributeKeys.CodecPrivateData B
attribute with the encoded WaveFormatEx value you saved in the constructor.

 Once the MediaStreamSource is opened, you’re ready to provide media samples.

12.4.3 Generating audio samples

When MediaElement asks for media samples, you need to provide audio samples gen-
erated as a waveform. For this you use the SineWaveformOscillator class, as shown in
the following listing.

protected override void GetSampleAsync(MediaStreamType mediaStreamType)
{
 if (mediaStreamType != MediaStreamType.Audio)
 throw new NotSupportedException();

 MemoryStream stream = new MemoryStream();
 for (int i = 0; i < _numSamples; i++)
 {
 short sample = _oscillator.GetNextSample();
 stream.WriteByte((byte)(sample & 0xff));
 stream.WriteByte((byte)(sample >> 8));
 }

 MediaStreamSample streamSample = new MediaStreamSample(_audioDesc,
 stream, 0, _bufferByteCount,_currentTimeStamp, _sampleAttr);

 _currentTimeStamp += _audioDuration;

 ReportGetSampleCompleted(streamSample);
}

Before performing any work, you verify that the requested MediaStreamType is Audio.
Next you have the core of the tone generation B. You ask for sound bytes from the
oscillator and write them to the MemoryStream. You build a new MediaStreamSample c
with the populated stream, timestamp, media description, and empty sample attribute
collection. Finally, the current timestamp is incremented d before calling Report-
GetSampleCompleted.

Listing 12.15 Generating the audio sample

Generate
sound

b

Create sample c

Increment
timestampd

333Creating custom audio
 We’ve mentioned the SineWaveformOscillator class twice now, but haven’t talked
about how the class works. The next listing contains the entire class definition.

public class SineWaveformOscillator
{
 double frequency;
 uint phaseAngleIncrement;
 uint phaseAngle = 0;

 public double Frequency
 {
 set
 {
 frequency = value;
 phaseAngleIncrement =
 (uint)(frequency * uint.MaxValue / 44100);
 }
 get
 {
 return frequency;
 }
 }

 public short GetNextSample()
 {
 ushort wholePhaseAngle = (ushort)(phaseAngle >> 16);
 short amplitude = (short)(short.MaxValue *
 Math.Sin(2 * Math.PI * wholePhaseAngle / ushort.MaxValue));
 phaseAngle += phaseAngleIncrement;
 return amplitude;
 }
}

The two important operations are where the increment in the phase angle is deter-
mined B and where the audio sample amplitude is calculated c.

 Coming back to the AudioMediaStreamSource class, you still need to implement
the remaining abstract methods. Just like with VideoMediaStreamSource, CloseMedia
is an empty method:

protected override void CloseMedia() {}

When SeekAsync is called with a zero position, you need to reset the _current-
TimeStamp:

protected override void SeekAsync(long seekToTime)
{
 if (seekToTime != 0) throw new NotSupportedException();
 _currentTimeStamp = 0;
 ReportSeekCompleted(seekToTime);
}

The remaining two methods aren’t supported in your AudioMediaStreamSource
class. You’ll implement these two methods by throwing a NotImplementedException:

Listing 12.16 The SineWaveformOscillator class

Determine
angle
increment

b

Calculate wave
amplitude c

334 CHAPTER 12 Manipulating and creating media with MediaElement
protected override void SwitchMediaStreamAsync(
 MediaStreamDescription mediaStreamDescription)
{
 throw new NotImplementedException();
}

protected override void GetDiagnosticAsync(
 MediaStreamSourceDiagnosticKind diagnosticKind)
{
 throw new NotImplementedException();
}

You now have AudioMediaStreamSource fully implemented, but haven’t hooked up the
custom audio menu option. Remember that you added a menu item to the Application-
Bar to load custom audio, but haven’t yet implemented the menu item’s click handler:

private void CustomAudioClicked(object sender, EventArgs e)
{
 MediaStreamSource source = new AudioMediaStreamSource(440);
 mediaElement.SetSource(source);
 sourceTextBlock.Text = "custom audio";
}

In the CustomAudioClicked, when you create the audio stream source, you pass in a
frequency of 440 Hz, which is the standard tone for the musical note middle A.

 Up to this point we’ve explored the MediaElement control and its media download
and playback capabilities. We’re now going to take a look at another Microsoft tech-
nology that can be used to deliver streaming media to the Windows Phone.

12.5 Streaming media clients
Microsoft’s Smooth Streaming technology mixes IIS 7 extensions, Silverlight client
libraries, and a robust API to enable streaming media experiences such as live viewing
of sporting events or conferences, as well as movie delivery. How does streaming
media differ from the more traditional media download and playback?

 Media players like the MediaElement control rely on local copies of media files.
When a remote file is specified, the media player downloads the file and begins play-
back once the entire file is available. To avoid waiting for the entire file to be available,
most media players enhance the playback experience by using progressive download
techniques. Progressive download works by playing the media as the file is down-
loaded. If the download speed is fast enough, the multimedia file will be rendered
with no problem. Because progressive download is file-based, the quality and resolu-
tion of the media must be specified when the media is opened, and isn’t adjusted
when network quality changes during playback. What happens when you start watch-
ing a video on your phone, then go out of range of a wireless network?

 Streaming media solutions do account for network quality. The media served up
by a streaming media server exists in several resolutions and quality formats. A stream-
ing media client will determine the capabilities of the host device, and will monitor net-
work quality. The client will then ask the server for a media stream that’s appropriate for

335Streaming media clients
current conditions. Where streaming media differs from progressive download is that
the client can adapt the quality of the media when network conditions change. When
your phone leaves a wireless network, a streaming media client will adjust to the
change and will ask for a lower-quality video stream.

Microsoft has implemented a streaming technology named Smooth Streaming that com-
municates over the HTTP protocol and is compatible with Silverlight and the limita-
tions of the Windows Phone. On the server side, Smooth Streaming is an extension to
Internet Information Server 7 (IIS). Smooth Streaming works with contiguous files
stored in a fragmented MPEG-4 (MP4) media container format, which are created by
encoders that use a Smooth Streaming profile to encode the video source. A Smooth
Streaming server provides different quality levels for the same media streams.

NOTE The implementation of a Smooth Streaming server as well as building
streaming media are beyond the scope of this book.

Microsoft’s Smooth Streaming technology has already been used in several commer-
cial applications including the live broadcasting of the Olympic Games in 2008 and
2010. For a detailed description of the Smooth Streaming technology, you can visit
http://mng.bz/1a2Y.

 Smooth Streaming can be broken out into three categories—IIS extensions, Silver-
light clients, and media encoding. In this book we focus solely on the Silverlight client
libraries. You can download the IIS Smooth Streaming Client 1.5 libraries from http://
mng.bz/N2ny. You’ll use the client libraries to build the next sample application.

12.5.1 Using Smooth Streaming

Silverlight applications for Windows Phone support Smooth Streaming technology by
using the SmoothStreamingMediaElement control. You’ll build a new sample applica-
tion using the Windows Phone Application project template and name the project
SmoothStreaming. The next step is to add a reference to the Smooth Stream Client

Streaming media standards
Streaming media standards have been created, and their adoption usually requires
the usage of three different protocols to handle session management, multimedia
data transport, and quality of service.

IETF RFCs define the RTSP protocol for session management (RFC 2326), a simple
plain-text protocol which provides VCR-like commands to a server about the multimedia
session in progress. The RTP protocol (RFC 1889) defines how multimedia data should
be transported. The RTCP protocol (RFC 1889) defines the control of the RTP traffic.

Unfortunately there’s no native support for these protocols in Silverlight. In theory you
could use a custom MediaStreamSource to stream media to the MediaElement con-
trol, generating the raw TCP/UDP packets required by the RTSP/RTP/RTCP protocols.

http://mng.bz/1a2Y
http://mng.bz/N2ny
http://mng.bz/N2ny

336 CHAPTER 12 Manipulating and creating media with MediaElement
assembly (see figure 12.3) which is named Microsoft.Web.Media.SmoothStreaming.dll.
The assembly should be installed under your Microsoft SDK folder at the path
C:\Program Files\Microsoft SDKs\IIS Smooth Streaming Client\v1.5\Windows Phone.
The Microsoft SDK folder is located under Programs Files (x86) if you have a 64-bit
operating system.

 The SmoothStreaming sample application will function similarly to the MediaPlay-
back application you built earlier in this chapter. You’ll reuse much of the XAML
markup and code behind that you created for MediaPlayback. Open MediaPlayback’s
MainPage.xaml and copy the entire contents of the ContentPanel, and paste the
markup into SmoothStreaming’s MainPage.xaml. You don’t need the Application-
Bar menu items, so delete them, but make sure to leave the buttons.

 You want to do the same thing for the code behind. Open the version of Main-
Page.xaml.cs in MediaPlayback and copy all of the event handlers, except for the
menu item clicked handlers. Paste the copied code into SmoothStreaming’s Main-
Page.xaml.cs. After you’ve copied this code, go ahead and close the MediaPlayback
project files.

 Now let’s return to SmoothStreaming’s MainPage.xaml file. You’re going to change
the existing MediaElement control into a SmoothStreamingMediaElement control. You
need a proper namespace added to the page where you’ll be using this control in order
to have it available in the XAML:

xmlns:smoothStreaming="clr-namaespace:Microsoft.Web.Media.SmoothStreaming;

➥ assembly=Microsoft.Web.Media.SmoothStreaming"

The namespace should be included after the declaration of the other namespaces in
the MainPage.xaml file. Now you can replace the MediaElement control:

<smoothStreaming:SmoothStreamingMediaElement x:Name="mediaElement"
 SmoothStreamingSource="http://mediadl.microsoft.com/mediadl/iisnet/

➥ smoothmedia/Experience/BigBuckBunny_720p.ism/Manifest" ... />

Figure 12.3 Adding a reference to the Smooth Streaming Client assembly

337Streaming media clients
In order to set the media source, you use a different property than for the progressive
download scenario you used with the MediaElement control. In this case you set the
SmoothStreamingSource property. The SmoothStreamingSource property is a Uri that
references a Smooth Streaming manifest file. The manifest file describes the various
resolutions and bitrates that are available for streaming.

 The SmoothStreamingMediaElement is similar to MediaElement—similar enough
that you don’t have to change the implementation of the PlayClicked, Pause-
Clicked, StopClicked, MuteClicked, or MediaFailed event handlers. The data bind-
ing between the media element, the volume Slider, and the position TextBlock also
remain unchanged.

 The only event handler you need to change is for the CurrentStateChanged event.
The new implementation of the event handler is shown in the following listing.

private void mediaElement_CurrentStateChanged(
 object sender, RoutedEventArgs e)
{
 stateTextBlock.Text = mediaElement.CurrentState.ToString();
 TrackInfo track = mediaElement.VideoPlaybackTrack;

 if (track != null)
 {
 string widthAttr;
 string heightAttr;
 track.Attributes.TryGetValue("Width", out widthAttr);
 track.Attributes.TryGetValue("Height", out heightAttr);
 sourceTextBlock.Text = string.Format("{0}x{1} {2}",
 widthAttr, heightAttr, track.Bitrate);
 }

 if (mediaElement.CurrentState ==
 SmoothStreamingMediaElementState.Opening)
 mediaProgress.Visibility = Visibility.Visible;
 else
 mediaProgress.Visibility = Visibility.Collapsed;
}

A Smooth Streaming source provides a variety of different tracks, each with their own
characteristics. The media element will choose the track that best matches the network
quality. You’re going to reuse the sourceTextBlock to display the resolution and bitrate
of the currently playing track. You get a reference to the current track via the Video-
PlaybackTrack property B, which returns a TrackInfo object. Like other media classes,
TrackInfo contains a dictionary of attribute values. You read the width and height attri-
butes from the current track’s dictionary c, and then update the sourceTextBlock.

SmoothStreamingMediaElement’s CurrentState property is of type Smooth-
StreamingMediaElementState, which requires you to make a minor change to the
Boolean expression d, as the type is different from that used in MediaElement’s
CurrentState property.

Listing 12.17 The new CurrentStateChanged event handler

Get video
trackb

Look up
resolution

c

Use SmoothStreaming-
MediaState

d

338 CHAPTER 12 Manipulating and creating media with MediaElement
 The Smooth Streaming media that has been created before now has all been
designed for Silverlight for the browser, containing tracks that match up with the
codecs, resolutions, and bitrates supported by the browser. Depending on how
the media was designed and encoded, it may not run on the Windows Phone due to
limitations in the platform.

12.5.2 Streaming limitations

Windows Phone doesn’t support all of the resolutions, bitrates, and video formats that
are supported by Silverlight for the browser. The maximum resolution supported by
the phone is 720 wide by 480 high. Audio streams have their own limits, and the upper
bounds for audio and video fluctuate with frames per second and other attributes, so
consult the IIS Smooth Streaming documentation for specifics.

 With many streaming media scenarios, different quality videos are encoded at dif-
ferent resolutions and bitrates. When the network quality changes during playback,
the media player will begin playing a file of a different resolution. The phone can’t
support variable resolutions during playback, and different quality streams must share
the same resolution before the phone can use them in adaptive streaming.

 These limitations require streaming solutions to either build phone-specific media
streams on the server, or add extra handling on the client. For the client-side imple-
mentation, code must be written to examine the Smooth Streaming manifest file and
restrict the available tracks to only those supported by the phone. The manifest infor-
mation should be examined once the manifest file has been downloaded by the
SmoothStreamingMediaElement control. When the manifest file has been downloaded
and processed the control raises the ManifestReady event. Update the MainPage.xaml
and subscribe to the event:

<smoothStreaming:SmoothStreamingMediaElement x:Name="mediaElement" ...
 ManifestReady="mediaElement_ManifestReady" />

In your ManifestReady event handler, shown in the next listing, you’re going to loop
through the tracks listed in the manifest and find the tracks with the highest sup-
ported resolution. You’re then going to tell the SmoothStreamingMediaElement to
only use those tracks for playback.

private void mediaElement_ManifestReady(object sender, EventArgs e)
{
 const ulong maxSupportedHeight = 480;
 const ulong maxSupportedWidth = 720;

 foreach (SegmentInfo segment in mediaElement.ManifestInfo.Segments)
 {
 foreach (StreamInfo streamInfo in segment.AvailableStreams)
 {
 if (streamInfo.Type == MediaStreamType.Video)
 {

Listing 12.18 Processing the smooth streaming manifest

Maximum resolution
supported by phone

b

339Streaming media clients
 List<TrackInfo> usableTracks = new List<TrackInfo>();
 ulong bestHeight = 0;
 ulong bestWidth = 0;

 foreach (TrackInfo track in streamInfo.AvailableTracks)
 {
 string widthAttr;
 string heightAttr;
 ulong width = 0;
 ulong height = 0;

 if (track.Attributes.TryGetValue("Width",
 out widthAttr))
 {
 ulong.TryParse(widthAttr, out width);
 }

 if (track.Attributes.TryGetValue("Height",
 out heightAttr))
 {
 ulong.TryParse(heightAttr, out height);
 }

 if (height > 0 && width > 0 &&
 height <= maxSupportedHeight &&
 width <= maxSupportedWidth)
 {
 if (height > bestHeight || width > bestWidth)
 {
 bestHeight = height;
 bestWidth = width;
 usableTracks.Clear();
 usableTracks.Add(track);
 }
 else if(height == bestHeight && width == bestWidth)
 {
 usableTracks.Add(track);
 }
 }
 }
 streamInfo.RestrictTracks(usableTracks);
 }
 }
 }
}

The maximum resolution you’re going to accept is 720 x 480 B. After download, the
manifest is processed by the media element control and exposed by the ManifestInfo
property. The manifest is broken into segments and each segment contains a collec-
tion of streams. You check each stream and ignore those that aren’t video streams.
Each stream has a collection of tracks that’s accessible via the AvailableTracks prop-
erty of the StreamInfo class. You loop through each of the tracks looking for the highest-
resolution track that meets your maximum resolution limitation. You read the width
and height attributes from the current track’s dictionary c. You then check the

Look up
resolution

c

Check
resolution

d

Found better
resolution

e

Report
supported
tracks

f

340 CHAPTER 12 Manipulating and creating media with MediaElement
width and height to see that they’re greater than zero and less than the maximum
supported resolution d. If the track’s resolution is greater than your current best res-
olution, clear out the usableTracks list and remember the current track and resolu-
tion e. If the track’s resolution is the same as the current best resolution, add the
track to the usableTracks list. Once you’ve processed all the tracks in the stream, you
call the RestrictTracks method f to request that the media element control only
use the tracks you’ve picked.

 The algorithm presented in mediaElement_ManifestReady only restricts tracks
based on the resolution of the track. Other attributes of the stream might be consid-
ered when choosing tracks. Smooth Streaming media may use codecs or bitrates that
aren’t supported by the phone. You may also have nontechnical factors to consider
when limiting media content. For example, you may sell subscriptions to your con-
tent, and may choose to limit nonpaying users to lower-quality media.

 We’ve covered some of the basic topics with the Smooth Streaming Client that you
need to be aware of when building applications for Windows Phone. There are many
more Smooth Streaming topics we haven’t discussed, and you should consult the
Smooth Streaming documentation.

12.6 Summary
MediaElement and SmoothStreamingMediaElement allow Windows Phone developers
to create cool multimedia applications incorporating audio and video, whether building
a full media player or just incorporating clips into a Silverlight game or application.

 Windows Phone supports a wide variety of audio and video containers and decod-
ers, but does have its limitations. Knowing the limits of the phone platform and of
each of the media elements is important when working with your application teams.
You don’t want to find out that the media clip your animators and designers just built
is in a format that won’t work on the phone.

 In this chapter we looked at MediaElement, one of Silverlight’s advanced controls.
In the next chapter, we take a deep dive into two other advanced Silverlight controls—
the Bing Maps Control and the WebBrowser.

Using Bing Maps
and the browser
Windows Phone includes two applications that are essential for mobile platforms—
Bing Maps and Internet Explorer 9. The mobile edition of Internet Explorer 9
supports HTML 5 and hardware-accelerated graphics. Bing Maps provides the user
with maps, directions, and searches for nearby businesses and landmarks. The
Windows Phone SDK enables developers to access these technologies from within
their applications.

 Both Bing Maps and Internet Explorer can be started from within an application
using tasks that launch the native applications, pushing the running application to
the background. When a more integrated user experience is desired, the developer
can embed a map or browser into an application using Silverlight controls pro-
vided in the SDK.

 In this chapter we’ll demonstrate how to use the location service to pinpoint a
device’s actual position on the globe inside of a location-aware application. In

This chapter covers
■ Using the Bing Maps control and web services
■ Determining device location
■ Using the WebBrowser control
■ Building HTML 5 applications
341

342 CHAPTER 13 Using Bing Maps and the browser
addition to providing latitude and longitude, the location service can also provide alti-
tude, speed, and heading. The location service is more than a simple GPS sensor. It
combines GPS, Wi-Fi, and cellular network data with a web service to provide location
information. You’ll combine the location service with the Silverlight Map control and
explore how to display an embedded map pinpointing the user’s location and tracking
their movements. We’ll also go into detail about how to leverage the Bing Maps SOAP
web services to determine the user’s physical address using their current location.

 Version 7.1 of the Windows Phone SDK added two new Bing Maps launchers to
provide developers with an easy way to integrate maps into an application. The new
launcher tasks are BingMapsTask, a launcher for the Bing Maps application, and
BingMapsDirectionsTask, which launches the Bing Maps application and displays
driving directions between two points.

 Internet Explorer can also be integrated with an application using a launcher task.
The WebBrowserTask allows the developer to start Internet Explorer and to specify the
Uri of a web page to be loaded into the browser. Internet Explorer can be embedded
into an application using the Silverlight WebBrowser control. We’ll discuss both the
rendering of HTML 5 within an application and how C# code in the application can
interoperate with JavaScript in the web page.

 To highlight Internet Explorer and Bing Maps,
you’re going to build three different sample applica-
tions. In addition to building the location sample
application, we’ll demonstrate how to use the Web-
Browser control to build an HTML 5 and JavaScript-
based application. First we’ll introduce Bing Maps
by showing you how to build a sample that launches
the two Bing Maps tasks.

13.1 Introducing Bing Maps
Applications can include mapping features by
either launching the native Bing Maps application
or by embedding the Silverlight Map control into
the application user interface. In this section you’ll
build a simple application to demonstrate how to
use the BingMapsTask and BingMapsDirections-
Task. The sample application, shown in figure 13.1,
prompts the user to enter a search term or two
locations and allows the user to launch the native
Bing Maps application to show the specific location
and driving directions.

 You’ll get started by preparing a new project
with the basic user interface controls and buttons
required to allow the user to interact with Bing Maps.

Figure 13.1 The MapsTasks sample
application

343Introducing Bing Maps
13.1.1 Preparing the application

Your first sample application is named MapsTasks, and is based off of the Windows
Phone Application project template. Open Visual Studio and create the new project.
The main user interface prompts the user to enter a search term or starting location
and a destination location. These locations aren’t necessarily full addresses, and are
passed to Bing Maps as search terms. Open MainPage.xaml and add two TextBlocks
and two TextBoxes to the ContentPanel:

<StackPanel>
 <TextBlock Text="Search term or starting location:" />
 <TextBox x:Name="departureTerm" />
 <TextBlock Text="Destination:" />
 <TextBox x:Name="destinationTerm" />
</StackPanel>

The TextBoxes should be named departureTerm and destinationTerm to allow you
to access their Text properties from code behind in MainPage.xaml.cs.

 You also need two buttons to enable two different features in the application. The
first feature opens the native Bing Maps application with the starting location cen-
tered in the map. The second feature opens the native Bing Maps application showing
driving directions between the starting and destination locations:

<shell:ApplicationBarIconButton Text="map task" Click="mapTask_Click"
 IconUri="/Images/appbar.feature.search.rest.png" />
<shell:ApplicationBarIconButton Text="dir. task" Click="dirTask_Click"
 IconUri="/Images/appbar.directions.png" />

Go ahead and create empty click event handlers for both of the buttons. You’ll add
implementations for each click event handler as you progress through the section.
The first click event handler will launch the native Bing Maps application using the
BingMapsTask.

13.1.2 Launching the Bing Maps application

The native Bing Maps application can be launched from any third-party application
using the BingMapsTask launcher class. You learned how to use launchers and choos-
ers in chapter 4. The BingMapsTask launcher exposes three properties to determine
its behavior—Center, SearchTerm, and ZoomLevel.

 Use the Center property to determine where the map is to be centered. If no value
is specified for the Center property, Bing Maps will attempt to center the map at the
device’s current location. The actual centering behavior is influenced by the search
term and zoom level values specified when the task is launched, as well as locations
used in previous searches.

 The optional SearchTerm property is a string used to highlight specific points on
the map. The search term might contain a full or partial address, a city name, or the
name of a landmark. The SearchTerm might specify other type of searches as well. For
example, the user could type in Pizzeria in order to find the closest restaurant serving

344 CHAPTER 13 Using Bing Maps and the browser
pizzas. Locations matching the search term are
identified on the map with a push pin, as shown in
figure 13.2.

 The ZoomLevel controls the initial zoom level to
be used to display the map. The BingMapsTask doc-
umentation doesn’t clarify what the appropriate
values are for a zoom level, but our experimenta-
tion suggests that reasonable values are between 10
and 20.

 The MapsTasks sample application uses the
BingMapsTask when the user taps the first button in the application bar. The following
listing shows the implementation of the button’s Click event handler.

private void mapTask_Click(object sender, EventArgs e)
{
 if(string.IsNullOrEmpty(departureTerm.Text))
 {
 MessageBox.Show("Please enter a start location.");
 return;
 }

 var task = new BingMapsTask
 {
 SearchTerm = departureTerm.Text,
 ZoomLevel = 15,
 };
 task.Show();
}

Before you do any work, you check whether the user has entered a valid search term B.
The BingMapsTask requires either the Center property or the SearchTerm property to
be set, and will throw an InvalidOperationException if both of them are empty. If
the search term is valid, you construct a new instance of the BingMapsTask and set the
SearchTerm property to the value of the departureTerm.Text field. You also hard-
code the ZoomLevel to 15. Finally you launch the Bing Maps application with a call to
the Show method c.

 The application is now ready to test your first feature. Run the application on
either your device or the emulator, enter a search term, and tap the map task button.

 Now let’s move on to implementing the second feature: displaying directions
between two locations.

13.1.3 Finding directions

BingMapsTask doesn’t come alone, and a second Bing Maps launcher named Bing-
MapsDirectionsTask provides an easy way to get directions from Bing Maps.
BingMapsDirectionsTask can be customized using two properties named Start and

Listing 13.1 Launching Bing Maps

Check
for valid
search
termb

Launch
Bing Maps

c

Figure 13.2 Searching for a
local pizzeria

345Introducing Bing Maps
End. Both these properties are of the type LabeledMapLocation and at least one of the
two must be set or BingMapsDirectionsTask will throw an InvalidOperationException
when launched. When the BingMapsDirectionsTask is launched and either the Start
or End property isn’t set, Bing Maps will use the device’s current position in place of the
missing property.

 The LabeledMapLocation class is used to provide a geographic coordinate along with
a label for the location. If a GeoCoordinate isn’t specified in the LabledMapLocation’s
Location property, BingMapsDirectionsTask interprets the Label property in much
the same way that BingMapsTask interprets its SearchTerm property.

 The MapsTasks sample application uses the BingMapsDirectionsTask when the
user taps the second button in the application bar. The button’s Click event handler
is shown in the next listing.

private void directionTask_Click(object sender, EventArgs e)
{
 LabeledMapLocation start = null;
 LabeledMapLocation end = null;

 if (!string.IsNullOrEmpty(departureTerm.Text))
 start = new LabeledMapLocation { Label = departureTerm.Text };

 if (!string.IsNullOrEmpty(destinationTerm.Text))
 end = new LabeledMapLocation { Label = destinationTerm.Text };

 if (start == null && end == null)
 {
 MessageBox.Show("Please enter start and/or end locations.");
 return;
 }

 var task = new BingMapsDirectionsTask { Start = start, End = end };
 task.Show();
}

You start the listing by declaring two LabeledMapLocation variables, one for the
departure location and the other for the destination location. You only construct
LabeledMapLocations when the user has entered a term in the related TextBox con-
trols B. To avoid an InvalidOperationException, you check to see that at least one
valid location was created c. Finally you construct the BingMapsDirectionsTask and
launch the native Bing Maps application d.

 Test your second feature by running the application, entering two search terms,
and tapping the directions task button. Press the Back button to return to the applica-
tion, delete one of the terms, and tap the directions task button again. Continue to
return to the application to enter different search terms until you’re comfortable with
how the BingMapsDirectionsTask works with various combinations of search terms.

 The Bing Maps tasks are ideal for adding simple mapping features into your appli-
cation. The downside of using the Bing Maps tasks is that your application becomes

Listing 13.2 Launching Bing Maps to calculate directions

Did user input
search term?

 b

Check for valid locationsc

Launch Bing Mapsd

346 CHAPTER 13 Using Bing Maps and the browser
dormant when the Bing Maps application is launched. The next sample application
shows you how to combine the Silverlight Map control with location services to provide
a rich map experience inside an application.

13.2 Location services
The location service is made up of different bits of hardware, software, and web ser-
vices. The hardware includes a built-in global positioning system (GPS) receiver, the
cellular radio, and the wireless network adapter. The web service is Microsoft Location
Service, which fronts a database that records the coordinates of wireless access points.
The data from the web service, GPS, and cellular radio is analyzed to calculate the
phone’s current longitude, latitude, and altitude.

 All of this complexity is hidden behind the interface of a single class named Geo-
CoordinateWatcher. The GeoCoordinateWatcher class is found in the System.Device
.Location namespace, which is located in the System.Device.dll assembly. Geo-
CoordinateWatcher provides the properties, methods, and events an application uses
to read location data. The service is started with a Start method, and stopped with a
Stop method. The current location is read from the Position property and the class
raises the PositionChanged event whenever the position changes.

NOTE The ID_CAP_LOCATION capability must be declared in the WMApp-
Manifest.xml file in order to use the GeoCoordinateWatcher.

The Position property returns an instance of the GeoCoordinate class. The Geo-
Coordinate class exposes Longitude, Latitude, and Altitude properties to determine
the device location. Speed and Course are also available to determine the device’s rel-
ative motion.

 The GPS receiver is the most accurate source of location data. This increased
accuracy comes with a price. Activating the GPS receiver is an expensive operation
and the GPS uses a lot of battery power. Determining location from the cellular
radio or the network adapter uses less battery power, with the tradeoff of decreased
accuracy. The GeoCoordinateWatcher allows the developer to specify the accuracy
of location data with the DesiredAccuracy property. The DesiredAccuracy can be set
to one of the two values declared in the GeoPositionAccuracy enumeration: Default
or High. When reading data, the accuracy of the GeoCoordinate can be determined
using the IsUnknown, HorizontalAccuracy, and VerticalAccuracy properties. Both
the HorizontalAccuracy and VerticalAccuracy properties return the accuracy range
in meters.

 To demonstrate how to use the GeoCoordinateWatcher you’ll create a new sam-
ple application.

13.2.1 Building the sample application
Start the new sample application by creating a new Windows Phone Application named
LocationAndMaps. After the project is created, add references to the Microsoft.Phone
.Controls.Maps.dll and System.Device.dll assemblies. Microsoft.Phone.Controls.Maps

347Location services
contains the Silverlight Map control and its related
classes. System.Device provides the GeoCoordinate-
Watcher. The application is fairly simple, display-
ing two TextBlocks and a Map. A screenshot of the
application is shown in figure 13.3.

 The first TextBlock displays the Status

reported by GeoCoordinateWatcher, and the sec-
ond TextBlock displays information about the
current location. The two TextBlocks are placed
in a StackPanel, which is placed in the Content-
Panel in MainPage.xaml:

<Grid x:Name="ContentPanel" Grid.Row="1"
Margin="12,0,12,0">

 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <StackPanel>
 <TextBlock x:Name="status" />
 <TextBlock x:Name="position" />
 </StackPanel>
</Grid>

The sample application uses the ApplicationBar
to present the user with four buttons. The first but-
ton starts the location service with default accuracy
and the second button starts the service with high accuracy. The third button stops the
location service. The last button displays the user’s physical address by reverse geocod-
ing the current location:

<phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar IsVisible="True" IsMenuEnabled="False">
 <shell:ApplicationBarIconButton Click="startDefault_Click"
 Text="start" IconUri="/Images/appbar.transport.play.rest.png"/>
 <shell:ApplicationBarIconButton Click="startHigh_Click"
 Text="start high" IconUri="/Images/appbar.play.high.png" />
 <shell:ApplicationBarIconButton Click="stop_Click" Text="stop"
 IconUri="/Images/appbar.cancel.rest.png" />
 <shell:ApplicationBarIconButton Text="geocode"
 IconUri="/Images/appbar.target.png" Click="geocode_Click" />
 </shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>

The images for the first and third buttons come from the icons library included with
the Windows Phone SDK. The second and fourth buttons use images that can be
found in the book’s sample source code. Create a project folder named Images and
add the four images to the folder, setting their build action property to Content.

 The four click event handlers are shown in the following listing. The event han-
dlers each call a method that you’ll implement in the next section.

Figure 13.3 The LocationAndMaps
sample application

348 CHAPTER 13 Using Bing Maps and the browser
private void startDefault_Click(object sender, EventArgs e)
{
 StartService(GeoPositionAccuracy.Default);
}

private void startHigh_Click(object sender, EventArgs e)
{
 StartService(GeoPositionAccuracy.High);
}

private void stop_Click(object sender, EventArgs e)
{
 StopService();
}

private void geocode_Click(object sender, EventArgs e){}

Both of the start click event handlers call the same StartService method. The differ-
ence between the two is that startDefault_Click passes the Default accuracy value B
whereas the startHigh_Click method passes the High c accuracy value.

 You now have the skeleton in place for the sample application. In addition to
implementing the StartService and StopService methods, you need to create a Geo-
CoordinateWatcher and hook up the service to the rest of the application.

13.2.2 Hooking up the service

You construct and initialize an instance of the GeoCoordinateWatcher in the
StartService method. The accuracy of the service is specified during construction of
the GeoCoordinateWatcher and can’t be changed. Your sample application allows the
user to start the service in either high accuracy or low accuracy modes, so you must
create a new instance of the GeoCoordinateWatcher when the service is started.

 The location service is started in the StartService method, which is shown in the
next listing. The StartService method is called by both start button click event han-
dlers, and passed the desired GeoPositionAccuracy value.

GeoCoordinateWatcher service;

private void StartService(GeoPositionAccuracy accuracy)
{
 if (service != null)
 StopService();

 service = new GeoCoordinateWatcher(accuracy);
 service.MovementThreshold = 1.0;
 service.PositionChanged += service_PositionChanged;
 service.StatusChanged += service_StatusChanged;

 status.Text = string.Format("Permission: {0}\n", service.Permission);
 position.Text = string.Empty;

Listing 13.3 Start and stop click event handlers

Listing 13.4 Initializing and starting the location service

Use default
accuracyb

Use high
accuracyc

Class-level
fieldb

Set
threshold

c

http://www.microsoft.com/maps/
http://www.microsoft.com/maps/

349Location services
 if (service.Permission == GeoPositionPermission.Granted)

 service.Start();
}

You start by creating a new class-level field named service B and defining the
StartService method. After destroying any existing GeoCoordinateWatcher instance,
you construct a new service and pass in the specified GeoPositionAccuracy value.
Next you set the movement threshold to one meter c and subscribe to the Position-
Changed and StatusChanged events. Finally, you check the Permission property and
start the service if the user has granted permission d for your application to use the
location service.

 Starting the location service isn’t an instantaneous operation and the Start
method relegates the work to a background thread. The GeoCoordinateWatcher
reports its status via the Status property or the StatusChanged event. The Status is
reported as one of the values in the GeoPositionStatus enumeration and will be
Disabled, Ready, Initializing, or NoData. The sample application subscribes to the
StatusChanged event and displays the current status and accuracy to the user:

void service_StatusChanged(object sender,
 GeoPositionStatusChangedEventArgs e)
{
 status.Text = string.Format("Status: {0} Desired accuracy: {1}",
 e.Status, service.DesiredAccuracy);
}

You also use the Status property when reporting the current Position to the user in
the PositionChanged event handler. The service_PostionChanged method, shown
in the following listing, only updates the screen when the service status is Ready.

GeoCoordinate previous = new GeoCoordinate();

void service_PositionChanged(object sender,
 GeoPositionChangedEventArgs<GeoCoordinate> e)
{
 if (service.Status == GeoPositionStatus.Ready)
 {
 GeoCoordinate location = e.Position.Location;
 UpdatePositionText(location);
 previous = location;
 }
}

You start by creating a new class-level GeoCoordinate field named previous B to
remember the last position reported by the location service. You’ll use the previous
position to inform the user how much distance was covered between the current read-
ing and the previous reading. Next you implement the service_PostionChanged
event handler. After checking to see that the service is Ready c, you read the current
Location from the GeoPositionChangedEventArgs. You update the user interface d by

Listing 13.5 Handling the PositionChanged event

Has permission been granted by user? d

Remember previous
coordinateb

Only update if
sensor is readyc

Update user
interfaced

350 CHAPTER 13 Using Bing Maps and the browser
calling the UpdatePositionText method. The implementation of UpdatePositionText
is shown in the next listing.

private void UpdatePositionText(GeoCoordinate loc)
{
 StringBuilder b = new StringBuilder();
 b.AppendFormat("Latitude: {0} ± {1:F0} meters\n",
 FormatCoordinate(loc.Latitude, 'N', 'S'),
 loc.HorizontalAccuracy);
 b.AppendFormat("Longitude: {0} ± {1:F0} meters\n",
 FormatCoordinate(loc.Longitude, 'E', 'W'),
 loc.HorizontalAccuracy);
 b.AppendFormat("Altitude: 0:F0} ± {1:F0} meters\n",
 loc.Altitude, loc.VerticalAccuracy);
 b.AppendFormat("Heading: {0:F0} degrees from true north\n",loc.Course);
 b.AppendFormat("Speed: {0:F0} meters/second\n", loc.Speed);

 double distance = Double.NaN;
 if (!loc.IsUnknown && !previous.IsUnknown)
 distance = loc.GetDistanceTo(previous);
 b.AppendFormat("Distance: {0:F0} meters from previous reading\n\n",
 distance);
 position.Text = b.ToString();
}

The location properties are read from the GeoCoordinate and appended along with
message text to a StringBuilder instance. When writing the longitude and latitude,
you call a method named FormatCoordinate B. In the middle of creating the mes-
sage text, you use the GetDistanceTo method c to calculate the distance traveled
since the previous value was read. Finally you update the user interface.

 The location service reports longitude and latitude as floating-point numbers rep-
resenting the number of degrees east or west of the prime meridian and the number
of degrees north or south of the equator. Positive latitude values represent a position
north of the equator. Positive longitude values represent a position east of the Prime
Meridian. A few common formats are used to display degrees, and you’ve chosen the
format that breaks the number into degrees, minutes, and seconds:

N37° 24' 7.9"
W122° 8' 38.1"

The FormatCoordinate method accepts an angle measurement in degrees, along with
the characters to display for positive and negative values, and returns a string display-
ing direction, degrees, minutes, and seconds. The following listing shows the imple-
mentation of FormatCoordinate.

private string FormatCoordinate(double coordinate,
 char positive, char negative)

Listing 13.6 Display location in the user interface

Listing 13.7 Formatting longitude or latitude

Format
coordinateb

Calculate distance
traveled

c

351Location services
{
 char direction = coordinate >= 0 ? positive : negative;

 coordinate = Math.Abs(coordinate);
 double degrees = Math.Floor(coordinate);
 double minutes = Math.Floor((coordinate - degrees) * 60.0D);
 double seconds = (((coordinate - degrees) * 60.0D) - minutes) * 60.0D;

 string result = string.Format("{0}{1:F0}° {2:F0}' {3:F1}\"",
 direction, degrees, minutes, seconds);
 return

result;
}

You start by picking the character that should be shown B. For example, the calling
code should pass in N and S for latitude, and if the coordinate value is negative,
S should be shown. Next you break the value into whole degrees, minutes, and sec-
onds. You use the Math.Floor method to return the whole part of a number. To calcu-
late the number of minutes c you subtract out the whole part of the coordinate value
and multiply by 60. You do a similar operation to calculate the number of minutes.
Finally you format the numbers into a string.

 Before you can finish the LocationService application, you need to implement the
StopService method. The StopService method, shown in the next listing, stops and
disposes of the GeoCoordinateWatcher.

private void StopService()
{
 if (service != null)
 {
 service.Stop();
 service.PositionChanged -= service_PositionChanged;
 service.StatusChanged -= service_StatusChanged;
 service.Dispose();
 service = null;
 status.Text += "\nThe Location Service has been stopped.";
 }
}

Before releasing the service, you call the Stop method and unhook the event han-
dlers B. Next you call the Dispose method and set the service to null. Before exit-
ing the method, you update the user interface c to inform the user that the service
has actually been stopped.

 Run the application and start the location service. Experiment by walking several
yards in both default accuracy and high accuracy modes. How do the numbers com-
pare between the two modes? How do the numbers change as you move around? The
GeoCoordinateWatcher provides the data to pinpoint a user’s location and track a
user’s movement. You’ll extend your sample application to show the user’s location
and movements on an embedded map control.

Listing 13.8 Stopping the location service

Determine
character for
directionb

Convert decimal
portion into minutes c

Unhook
events

b

Update user interface c

352 CHAPTER 13 Using Bing Maps and the browser
13.3 Embedding a Map control
Earlier in the chapter you learned how to use the Bing Maps tasks to display maps to a
user. What if you want a map control inside your application, instead of launching out
to the native Bing Maps application? Have no fear: you can embed a map right inside
your application.

 The Silverlight Map control, found in the Microsoft.Phone.Controls.Maps
namespace, performs most of the work necessary to render the map. This means you
don’t need to write any code to interact with the Bing Maps server to download tiles,
manage zooming animations, or respond to user-initiated touch events. The Map con-
trol is extensible and allows the application to layer custom elements on top of the
rendered map.

 Your sample application displays the Map control in the second row of the Content-
Panel Grid control in the LocationAndMaps project’s MainPage.xaml file. As we
mentioned, the Map control is located in the Microsoft.Phone.Controls.Maps
namespace. This namespace isn’t automatically recognized by the XAML compiler,
and you need to add an xmlns attribute to the top of the MainPage.xaml file:

xmlns:maps="clr-namespace:Microsoft.Phone.Controls.Maps;

➥ assembly=Microsoft.Phone.Controls.Maps"

Now you can add the Map control to ContentPanel:

<maps:Map x:Name="mapControl" Grid.Row="1"
 ScaleVisibility="Visible" ZoomBarVisibility="Visible">
 <maps:MapLayer x:Name="routeLayer">
 <maps:MapPolyline x:Name="routeLine" Stroke="Black"
 StrokeThickness="5" />
 </maps:MapLayer>
 <maps:MapLayer x:Name="pinLayer" />
</maps:Map>

Drag, Pinch, and other gestures supported in the native Bing Maps application are
supported in the Map control. You can also use the Map’s ZoomBarVisibility property
to display a zoom bar allowing the user to control zooming with simple touches
instead of the Pinch gesture. The Map control also allows the developer to specify the
ZoomLevel of the map, and whether the map’s current distance scale is displayed.

 The Map control enables applications to layer custom user interface controls on
top of the rendered map. The Microsoft.Phone.Controls.Maps namespace even
provides a special layout container named MapLayer to simplify displaying custom wid-
gets in the map. You’ve added two MapLayers to the Map control that you’ll use to draw
the user’s position and movements. What makes MapLayer so special is its ability to
translate geographical coordinates into screen coordinates. You’ll see how useful this
feature can be in the next sections when you display the device’s current location with
a Pushpin.

 A Pushpin is just one of the mapping controls provided by the Microsoft.Phone
.Controls.Maps namespace. The mapping library also contains the MapPolyline and

353Embedding a Map control
MapPolygon controls for drawing lines and shapes. In the previous snippet, you added
a MapPolyline control to the route layer, which you’ll use to draw the user’s movements.

 If you run the application now, you should see the Map control displayed in the bot-
tom half of the phone’s screen. But the device’s current location isn’t represented on
the map. The Map control doesn’t know how to obtain the device’s current location.
You’ll use the location reported by the GeoCoordinateWatcher to add the current
location to the map.

13.3.1 Mapping the current location with the GeoCoordinateWatcher
Your sample application already detects when the current position changes by sub-
scribing to the GeoCoordinateWatcher’s PositionChanged event. Inside the service_
PositionChanged event handler, you need to add a call to a new UpdateMap method:

UpdatePositionText(location);
UpdateMap(location);
previous = location;

UpdateMap will be responsible for drawing the user’s position when the location ser-
vice is first started, updating the current position as the user moves, and drawing the
user’s route on the map. The implementation of UpdateMap is shown in the follow-
ing listing.

private void UpdateMap(GeoCoordinate location)
{
 if (previous.IsUnknown)
 {
 Pushpin startPin = CreatePushpin(location, Colors.Green);
 routeLayer.AddChild(startPin, startPin.Location);
 }

 pinLayer.Children.Clear();
 Pushpin pin = CreatePushpin(location, Colors.Blue, "You");
 pinLayer.AddChild(pin, pin.Location);

 routeLine.Locations.Add(location);

 mapControl.Center = location;
 mapControl.SetView(
 LocationRect.CreateLocationRect(routeLine.Locations));

}

You start by adding a new Pushpin control to the map’s route layer B the first time
the PositionChanged event is raised. You add another Pushpin control to represent the
current position of the user c. Note that you remove any existing Pushpins in the pin
layer first. Next you add another point drawn by the MapPolyline control that displays
the user’s movements. The Map control provides a Center property that’s used to set
the GeoCoordinate displayed in the center of the screen. When you set the Center
property d, the Map control will automatically scroll the specified location into view,

Listing 13.9 Displaying the current location on the map

Show starting
location

 b

Show current
location c

Center
and zoom
map

d

354 CHAPTER 13 Using Bing Maps and the browser
using the appropriate zoom and scroll animations. Finally, you instruct the Map con-
trol to zoom and scroll the route into view by calling the SetView method.

 A MapPolyline knows how to translate a GeoCoordinate into screen coordinates.
Points are added to the MapPolyline by adding a GeoCoordinate to the poly line’s
Locations collection. The MapPolyline will then render a line segment between
each point.

 The push pins are built in a method named CreatePushpin. Let’s look at what a
push pin is, and how the Maps library makes it easy to create one.

13.3.2 Creating a push pin

The Microsoft.Phone.Controls.Maps namespace includes a Pushpin
control that simplifies the process of labeling points on the map.
The Pushpin control uses a Location property to identify exactly
where the push pin should be located on the map. Figure 13.4
shows a map with two different push pins.

 The Pushpin control is derived from ContentControl, allowing
a developer to add other Silverlight elements to the Pushpin, such
as Ellipses and TextBlocks. The developer could also replace the
entire ContentTemplate if the default Pushpin look and feel is
undesirable. Adding custom content suffices for this sample appli-
cation. The next listing shows how you create a Pushpin with cus-
tom content in the CreatePushpin method.

private Pushpin CreatePushpin(GeoCoordinate location, Color color,
 string label = null)
{
 StackPanel content = new StackPanel { Height = 30,
 Orientation = System.Windows.Controls.Orientation.Horizontal };

 content.Children.Add(new Ellipse {
 Height = 20, Width = 20,
 Fill = new SolidColorBrush(color) });

 content.Children.Add(new TextBlock { Text = label });

 return new Pushpin { Location = location,
 Content = content };
}

You start by creating a StackPanel to stack an Ellipse side by side with a TextBlock B.
Next you add a 20 x 20 pixel Ellipse with its Fill property set to a SolidColorBrush
that uses the specified color. You also create TextBlock to display the text specified in
the label parameter. Finally, you construct a new Pushpin with the specified Location
and your StackPanel c.

 Run the application again, start the location service, and this time you should see a
map of the world with your location identified with a push pin. If you move about, you

Listing 13.10 Creating a Pushpin

Figure 13.4 Two
Pushpins, one
containing an
Ellipse and the
other containing
both an Ellipse
and a TextBlock

Stack Ellipse
next to
TextBlock

b

Add custom
content

c

355Using the Bing Maps Services
should see the map update the current position and draw your route. The other thing
you probably noticed is a watermark complaining about invalid credentials.

 Behind the scenes, the Map control is making calls to the Bing Maps web services.
These web services require a valid developer or application key. If you have a valid
developer key, use it to assign the Map control’s CredentialsProvider property. If you
don’t have a valid developer key, consider signing up for one, as you’ll need it to finish
the sample application.

 The fourth and last feature of the sample application uses the Bing Maps
web services.

13.4 Using the Bing Maps Services
The last feature of the LocationAndMaps application displays an address for the user’s
current position. The address is displayed in a pop-up MessageBox. Though not a very
elegant user interface, the intention here is to demonstrate how to use the Bing Maps
web services in your location-aware application.

 Bing Maps Services provide a number of different APIs exposing a variety of data.
There are APIs for converting an address into latitude and longitude (geocoding) and
from latitude and longitude into an address (reverse geocoding). There are APIs that
return map images in various formats. You can even obtain driving directions and traf-
fic data. The web services present both SOAP and REST APIs.

 Before you can use the Bing Maps web services, you need to create an account and
request a developer license. To request a developer key, visit the website http://
www.microsoft.com/maps/ and look for the Get an Account link. After logging in with
a Windows Live ID, you’ll be prompted for various bits of information such as your
name, company name, and website. At the end of the process you’ll be presented with
a Bing Maps key, which is a long string of alphanumeric characters and symbols.

NOTE Many of the APIs and features provided by the Bing Maps Services can
be used free of charge by mobile-based applications. Use of certain APIs may
result in charges and fees. Consult the Bing Maps documentation or send an
email to the Bing Maps licensing team at maplic@microsoft.com for specifics.

Once you have your developer key, you can use it as the value assigned to the
CredentialsProvider property of the Map control. You’ll also use the key when send-
ing requests to the web services. Requests that fail to include the key are rejected by
the web services.

 The LocationAndMaps sample application uses the SOAP-based web services. The
Windows Phone developer tools include tools to easily add service references and gen-
erate client-side classes that simplify web service communication.

13.4.1 Adding the service reference

The LocationAndMaps sample application will use just one of the Bing Maps web ser-
vices. You’ll use the Geocode Service to transform a longitude and latitude into a street

http://www.microsoft.com/maps/
http://www.microsoft.com/maps/

356 CHAPTER 13 Using Bing Maps and the browser
address. Before you can add a service reference, you need to know the SOAP URL
of the Geocode Service, http://dev.virtualearth.net/webservices/v1/geocodeservice/
geocodeservice.svc.

 Adding service references is as easy as selecting the Add Service Reference menu
item from Visual Studio’s Project menu. When the Add Service Reference dialog
appears, type the SOAP URL into the Address input control and press the Go button.
Change the default value in the Namespace input control to use a value more suited
to your naming conventions. When you press OK, the new service will appear under
the Service References folder in the Solution Explorer. Figure 13.5 shows the add dia-
log for importing the Geocode Service.

 You’re almost ready to start making calls to the Bing Maps web services to convert
the user’s location to a street address. Converting latitude and longitude to a street
address is a process named reverse geocoding.

13.4.2 Reverse geocoding

The Geocode web service defines several classes and enumerations that allow geo-
graphical coordinates to be translated into a street address and vice versa. The street
address associated to a location can be retrieved using the GeocodeServiceClient,
which was generated during the Add Service References process.

Figure 13.5 Adding a service reference for the Geocode Service to the PhoneMaps
sample application

http://dev.virtualearth.net/webservices/v1/geocodeservice/geocodeservice.svc
http://dev.virtualearth.net/webservices/v1/geocodeservice/geocodeservice.svc
http://dev.virtualearth.net/webservices/v1/geocodeservice/geocodeservice.svc

357Using the Bing Maps Services
 The Geocode web service will be called when the user taps the geocode applica-
tion bar button you added when you created the sample application. At that time you
added an empty Click event handler for the button, named geocode_Click. You’ll
update the event handler to call the Geocode service.

 Before calling the Geocode service, you must create and populate a Reverse-
GeocodeRequest. The request object is populated with the developer key and by set-
ting the Location property. The following listing demonstrates how you create and
send a ReverseGeocodeRequest in the button’s Click event handler.

private void geocode_Click(object sender, EventArgs e)
{
 GeocodeServiceClient geocodeService =
 new GeocodeServiceClient("BasicHttpBinding_IGeocodeService");
 geocodeService.ReverseGeocodeCompleted +=
 geocodeService_ReverseGeocodeCompleted;

 ReverseGeocodeRequest geocodeRequest = new ReverseGeocodeRequest()
 {
 Credentials = new Credentials
 {
 ApplicationId = "your developer key here"
 },
 Location = new GeocodeLocation
 {
 Latitude = previous.Latitude,
 Longitude = previous.Longitude,
 }
 };
 geocodeService.ReverseGeocodeAsync(geocodeRequest);
}

First you construct a GeocodeServiceClient and subscribe to the ReverseGeocode-
Completed event. All calls to SOAP services are executed asynchronously. The com-
pleted event handler will be called once the web service data is returned to your
client. Next you construct a ReverseGeocodeRequest complete with credentials B.
Assign your Bing Maps key to the ApplicationId property of the Credentials class.
You also fill in the Location property using the longitude and latitude stored in the
previous field. Finally, you submit the request to the Geocode Service c.

 When the web service call completes, your completed event handler is called. The
next listing shows the implementation of the event hander named geocodeService_
ReverseGeocodeCompleted.

void geocodeService_ReverseGeocodeCompleted(object sender,
 ReverseGeocodeCompletedEventArgs e)
{
 if (e.Cancelled || e.Error != null ||

Listing 13.11 Sending a Geocode request

Listing 13.12 Handling the completed event

Enter
developer keyb

Send async
requests

c

Check for
web service
errors

b

358 CHAPTER 13 Using Bing Maps and the browser
 e.Result.ResponseSummary.StatusCode != ResponseStatusCode.Success)
 {
 MessageBox.Show("Unable to complete the ReverseGeocode request");
 return;
 }
 GeocodeResponse response = e.Result;
 if (response.Results.Count > 0)
 {
 GeocodeResult address = response.Results[0];
 MessageBox.Show(address.DisplayName);
 }
}

The completed event handler will be called even when an error occurs during the web
service call. When an error occurs, you display a message to the user and return B.
Next you read the GeocodeResponse from the event args and check whether at least
one GeocodeResult was returned by the service. You then show the user the value of
the GeocodeResult’s DisplayName property in a MessageBox c.

NOTE The GeocodeResponse object may contain more than one result. A
more robust application might display all possible results. Your simple appli-
cation uses only the first result in the list.

The GeocodeResult class exposes several properties providing details about the loca-
tion referenced by the result. The Address property will give you the physical address
of the location. The EntityType property will tell you whether the location is an air-
port, a bridge, a shipwreck, or one of approximately 200 other types of entities.

 Run the sample application one last time and start the location service. Sometime
after the location service returns the current position, tap the geocode button. After a
slight delay you should see an address displayed in pop-up.

 We’ve shown you a couple of different ways to integrate an application with Bing
Maps. You can use the two launcher tasks to display the native Bing Maps application
outside of your application. We also showed you how to use the Silverlight Map Control
to host the Bing Maps inside you application. In the next section we show how to use
the WebBrowserTask to launch Internet Explorer 9 outside your application. We also
show you how to use the Silverlight WebBrowser control to host an application written
almost entirely in HTML 5 and JavaScript.

13.5 Building an HTML 5-based application
The release of Windows Phone 7.5 was the first time mobile phones were able to use
Internet Explorer 9. Internet Explorer 9 for mobile includes several new features such
as hardware acceleration and support for HTML 5, ECMAScript 5, CSS3, and Scalable
Vector Graphics (SVG). HTML 5 includes several new tags and features to support web
storage, geolocation, audio, and video.

NOTE This chapter isn’t intended to be a full introduction to HTML 5 and
related technologies. Instead we want to show you how you can create an

Display first
address

c

359Building an HTML 5-based application
HTML 5 with JavaScript application that leverages a few of the HTML 5 fea-
tures. For a complete introduction to HTML 5 consider reading Hello! HTML5
and CSS3 by Rob Crowther. You can view more details about the book on the
Manning Publications website at http://www.manning.com/crowther.

Throughout the remainder of the chapter we’re
going to look at how Windows Phone applications
can leverage Internet Explorer 9. We’re going to
start by showing you how to use the WebBrowser-
Task launcher to start Internet Explorer from
within an application. We’re then going to show
you how to embed a browser inside of a Silverlight
application. The sample application you’re going
to build, shown in figure 13.6, will use HTML and
JavaScript to render the user interface.

 The Html5App sample application runs from
HTML files included in the application’s .xap file
using the Silverlight WebBrowser control. The
browser loads the files directly from isolated stor-
age. We also show you JavaScript running inside
the browser control that interoperates with C#
application code, a technique that can be lever-
aged to expose Windows Phone APIs to an HTML
with JavaScript application.

 You create the Html5App project in the next
section. The first feature of the sample application
shows you how to use Internet Explorer from
within a Silverlight application.

13.5.1 Launching Internet Explorer

Internet Explorer can be launched from any third-party application using the Web-
BrowserTask launcher class. You learned how to use launchers and choosers in chap-
ter 4. The WebBrowserTask launcher exposes a single property named Uri, which
accepts a standard Uri object. We show you how to use the WebBrowserTask when a
user taps an application bar button in your new sample application.

 Open Visual Studio and create a new project named Html5App using the Windows
Phone Application project template. Open up MainPage.xaml and add an Application-
BarIconButton as shown in the following code snippet:

<phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar IsVisible="True" Mode="Minimized">
 <shell:ApplicationBarIconButton Text="about" Click="about_Click"
 IconUri="/Images/appbar.questionmark.rest.png" />
 </shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>

Figure 13.6 The HTML 5 sample
application

http://www.manning.com/crowther

360 CHAPTER 13 Using Bing Maps and the browser
You use an image from the Windows Phone SDK icon library that was added to a proj-
ect folder named Images. Internet Explorer is launched from the button’s Click
event handler:

private void about_Click(object sender, EventArgs e)
{
 var task = new WebBrowserTask
 {
 Uri = new Uri("http://www.manning.com/perga", UriKind.Absolute)
 };
 task.Show();
}

When you run the application and tap the About button, Internet Explorer is launched.
Assuming the device has a network connection, the browser will load the book’s page on
the Manning website. The drawback to using the WebBrowserTask is that the application
is pushed to the background and the user leaves the application. To keep the user from
leaving your application, Silverlight includes the WebBrowser control, which provides
developers a way to embed Internet Explorer right inside an application.

13.5.2 Embedding Internet Explorer

The WebBrowser class is found in the Microsoft.Phone.Controls namespace. The
WebBrowser class has several properties, events, and methods that we’ll explore as you
continue to build the Hmtl5Application. You’re going to jump right into using the
browser by adding one to MainPage.xaml.

 Other than the application bar you’ve already built, the entire user interface of the
Html5Application will be built using HTML. You do not need the XAML markup for
the standard application and page or the ContentPanel grid. Delete the contents of the
RootLayout grid and add a WebBrowser control:

<Grid x:Name="LayoutRoot" Background="Transparent">
 <phone:WebBrowser x:Name="webBrowser"
 Source="http://www.manning.com/perga/" />
</Grid>

The WebBrowser supports loading web pages using three different APIs. In the preced-
ing snippet, you specify the address of the web page to display in the WebBrowser con-
trol using the Source property. The WebBrowser control also provides the Navigate
and NavigateToString methods. The Navigate method performs the same operation
as the Source property by loading the pages specified in an Uri instance. The Navigate-
ToString displays the HTML markup contained in the string passed to the method.
You’ll use both forms of the Navigate method later in the chapter.

 When loading a web page, the WebBrowser control raises three different events
during normal navigation:

■ Navigating—Raised when the page is loading
■ Navigated—Raised when navigation to the page has succeeded
■ LoadCompleted—Raised when page has been loaded

361Building an HTML 5-based application
Each of the WebBrowser navigation events might be called more than once when navi-
gating to a web page. The number of events raised depends on the content of the
page. Redirects and frames are a couple of the elements that may cause multiple navi-
gation events to be raised for a page. The Navigating event has a particularly useful
function, because you can interrupt the navigation by setting to the Cancel property
to true while handling the event.

NavigationFailed is another event raised by the WebBrowser. As you might sus-
pect, the NavigationFailed event is raised when the browser is unable to load a page.
If your code doesn’t handle NavigationFailed, the WebBrowser control will display
an error message of one form or another, depending on the type of error.

 The WebBrowser control works nicely with content served up from a website. The
WebBrowser can also load web pages from files in an application’s isolated storage.
Let’s look at how to add HTML files to your sample application project.

13.5.3 Adding HTML pages to the project

The WebBrowser control can load a page that exists in an application’s isolated stor-
age. You’re going to add HTML and CSS files to the Html5Application project, copy
the files to isolated storage, and use the files as the application’s user interface. You’ll
start by adding a new folder to the project named Html and adding two text files to
the Html folder. The files should be named Html5App.css and MainPage.html. The
build action property should be set to Content for both of the new web files.

 The next step is to update MainPage.xaml and its code behind file to support navi-
gating to MainPage.html during startup. Start by updating the WebBrowser control:

<phone:WebBrowser x:Name="webBrowser" Base="Html" IsScriptEnabled="True"
 NavigationFailed="webBrowser_NavigationFailed" />

You’re no longer setting the Source property and are now setting the Base and
IsScriptEnabled properties. The Base property tells the browser which folder in iso-
lated storage is the root web application folder. We’ll show you how to create the
Html folder in isolated storage in the next few pages. By default, the WebBrowser con-
trol disables JavaScript execution, so you set IsScriptEnabled to allow you to create
dynamic web pages.

 The IsScriptEnabled property isn’t applied to the currently loaded page. This
means that you need to load your application pages after setting the IsScriptEnabled to
true. Open MainPage.xaml.cs and tell the WebBrowser to navigate to MainPage.html
inside the constructor:

public MainPage()
{
 InitializeComponent();
 webBrowser.Navigate(new Uri("MainPage.html", UriKind.Relative));
}

You set the UriKind to Relative as a hint to the browser that it should look in isolated
storage for the web page.

362 CHAPTER 13 Using Bing Maps and the browser
 When building mobile web applications, you should consider the browser view-
port. By default, IE9 sets the viewport width to 1024 and adjusts the viewport height
big enough to contain the page when rendered at 1024. The viewport is then scaled so
that the entire viewport fits in the browser window. The meta tag is used to set the
viewport’s width:

<meta name="viewport" content="width=device-width" />

In this case, the viewport width has been set to the device’s default width. On Windows
Phone 7, the default device-width isn’t the actual screen resolution of 480px, but is
320px to support backward compatibility.

 The Html5Application’s main page, shown in the following listing, looks a lot like the
main page of the Hello World application you built way back in chapter 2. The page
has the standard Metro application and page titles and asks the user to input a name.

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport"
 content="width=480, height=768, user-scalable=no" />
 <link rel="stylesheet" href="Html5App.css" />
 <title>Windows Phone 7 in Action</title>
</head>
<body>
 <header>
 <h2>WINDOWS PHONE 7 IN ACTION</h2>
 <h1>html5</h1>
 </header>
 <section>
 <label for="address">Enter your address:</label>

 <input id="address" />

 </section>
 <footer>
 <nav>
 <button type="button" class="wp7button">
 Choose an address
 </button>
 </nav>
 </footer>
</body>
</html>

MainPage.html is a standard HTML 5 page, complete with a simplified DOCTYPE, and
uses the new header, section, and footer elements. The viewport meta tag B is
used to set the width and height of the browser viewport. The user-scalable value
is set to no to prevent the user from zooming the page. In the footer you add a
button c that, when clicked, will launch an AddressChooserTask. You add the CSS
class named wp7Button to the button to allow you to style the link to look like a
Metro button.

Listing 13.13 HTML5 for the applications main page

Set viewport
size

b

Metro page
titles

Styled to look
like button

c

363Building an HTML 5-based application
 The Hello World application from chapter 2 used Silverlight drawing primitives
from the System.Windows.Shapes namespace to display a globe. Internet Explorer 9
supports SVG elements that are similar to Silverlight’s Shape classes. The next listing
demonstrates how to use SVG to replicate the Hello World globe.

<section>
 <svg xmlns="http://www.w3.org/2000/svg" version="1.1">
 <ellipse cx="100" cy="100" rx="100" ry="100" />
 <ellipse cx="100" cy="100" rx="50" ry="100" />
 <path d="M100 0 L100 200" />
 <path d="M0 100 L200 100" />
 <path d="M20 40 A100 50 0 0 0 180 40" />
 <path d="M20 160 A110 50 0 0 1 180 160" />
 </svg>
</section>

Add the section containing the globe immediately following the header element in
MainPage.html. The sphere of the globe and the two arced meridians are drawn with
ellipses. The straight meridian and the three parallels are drawn with paths.

 In order to display the globe properly, you need to apply some CSS. Add a style
element to the document’s head element:

<style>
 ellipse, path{
 fill: transparent; stroke: #1BA1E2; stroke-width: 5px;
 }
 svg{
 margin-left: 120px; margin-right: 160px;
 }
</style>

The style specifies a transparent fill and 5-pixel-wide blue stroke. The color value used
matches the color used in Metro’s blue theme. You can also style other elements on
the page to match the style specified in the Metro design language.

13.5.4 Matching the Metro style

If you’re building a JavaScript/HTML application to look like a native application, you
should consider trying to match Metro’s look and feel. How can you build a CSS to
match Metro? What colors, fonts, and sizes should be used? You can find this informa-
tion in the Themes.xaml and System.Windows.xaml files included in the Windows
Phone 7.1 SDK.

 Let’s look at a couple of styles defined in Html5App.css used to make the
Html5Application match the Metro style. The body style is defined to use the Segoe
font, with a default size of 20px:

body{
 font-family: Segoe WP; font-size: 20px; background: black; color: white;
}

Listing 13.14 SVG markup for a globe

364 CHAPTER 13 Using Bing Maps and the browser
The body style also sets the background to black and the foreground to white to match
Metro’s Dark theme.

 You also want to define a custom style to make input buttons look like native Silver-
light buttons:

.wp7button{
 color: white; background: transparent; text-decoration: none;
 border-style: solid; border-color: white; border-width: 3px;
 font-size:25.33px; font-family:Segoe WP Semibold;
 padding-left: 10px; padding-top: 3px;
 padding-right: 10px; padding-bottom: 5px;
}

The wp7button style uses the Segoe WP Semibold font, a solid white border, and a
transparent background. We’ve created styles for several other elements, which you
can find in the Html5App.css file provided with the book’s sample source code.

 If you try to run the application now, you’ll be disappointed with the results. Your
web files are included in the application’s .xap package and placed in the appdata
folder, but aren’t automatically copied to isolated storage. The WebBrowser can only
read local files from isolated storage.

13.5.5 Working from Isolated Storage

In order to work around the WebBrowser control’s inability to load files from the app-
data folder, you need to copy the application’s web files into isolated storage. Remem-
ber that you set the WebBrowser’s Base property to Html, meaning you need to copy
the project files into a folder named Html that you create in isolated storage, as shown
in figure 13.7. You need to perform the copy operation before MainPage.xmal
is loaded.

Figure 13.7 Copying
web assets from the .xap
file into isolated storage

365Building an HTML 5-based application
The Launching event handler in App.xaml.cs is the ideal place for your copy files’
code. In chapter 3, you learned that the Launching event is raised when an applica-
tion instance is first started, but isn’t called when a dormant application is restarted.
The following listing shows the implementation for copying the web files to iso-
lated storage.

private void Application_Launching(object sender, LaunchingEventArgs e)
{
 string[] applicationFiles = { @"Html\Html5App.css",
 @"Html\MainPage.html" };

 using (IsolatedStorageFile storage =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 storage.CreateDirectory("Html");

 foreach (string file in applicationFiles)
 {
 StreamResourceInfo sourceInfo = Application
 .GetResourceStream(new Uri(file, UriKind.Relative));
 using (var source = sourceInfo.Stream)
 {
 using (IsolatedStorageFileStream target =
 storage.CreateFile(file))
 {
 byte[] buffer = new byte[4096];
 int bytesRead = -1;

 while ((bytesRead =
 source.Read(buffer, 0, buffer.Length)) > 0)
 {
 target.Write(buffer, 0, bytesRead);
 }
 }
 }
 }
 }
}

You start by declaring each file B that needs to be copied from the appdata folder
into isolated storage. Next you open the storage container and create the Html folder c.
You then loop through the file list, opening each file d and copying the bytes into a
new file you create in isolated storage. You can read more about isolated storage file
operations in chapter 5.

 Now that the web application files are in isolated storage, you can load MainPage
.html into the web browser. Run the application and you should see a friendly Hello
World page written in HTML 5. But nothing happens when you tap the Choose an
Address button. You’d like the button to launch the AddressChooserTask. How do
you access a native API that’s not automatically exposed to JavaScript? Fortunately the

Listing 13.15 Copy application files to isolated storage

List of files
to copy

b

Create Html
folderc

Open
file in

appdata
folder d

366 CHAPTER 13 Using Bing Maps and the browser
WebBrowser allows you to bridge JavaScript and C# to access almost any API in the
Windows Phone SDK.

13.5.6 Bridging C# and JavaScript

As you already know, the Windows Phone SDK includes several launchers and choos-
ers that developers can use to interact with native applications. You’ve seen three
examples in this chapter. You first learned about launchers and choosers in chapter 4,
and have used them throughout the book. Using features of the WebBrowser control,
you’re going to learn how you can use the AddressChooserTask to display an address
in the Location.html web page.

 The two features of the WebBrowser control that enable C# to interoperate
with JavaScript are the ScriptNotify event and the InvokeScript method. As seen
in figure 3.8, the workflow started by a user clicking on an HTML button flows
through the ScriptNotify event handler, where you show the AddressChooserTask.
When the task is complete, code execution flows back to the web page through the
InvokeScript method.

 Wire up the ScriptNotify event of the browser control you’re using in Main-
Page.xaml:

<phone:WebBrowser x:Name="webBrowser" Base="Html" IsScriptEnabled="True"
 NavigationFailed="webBrowser_NavigationFailed"
 IsGeolocationEnabled="True" ScriptNotify="webBrowser_ScriptNotify" />

The WebBrowser adds a JavaScript function named notify to the browser DOM. When
JavaScript code calls the notify function, the ScriptNotify event is raised. You’ll see
this in action by adding an onclick event handler to the Choose Address HTML 5 but-
ton in the Location.html page:

<button type="button" class="wp7button"
 onclick="window.external.Notify('chooseAddress');" >
 Choose an address</button>

Inside the click event handler, you call the Notify function, passing a hint to the C# code
informing it that you want the AddressChooserTask launched. The Notify function

Figure 13.8 A sequence diagram showing the code execution from JavaScript to C# and back

367Building an HTML 5-based application
accepts a single string. When the Notify function is called, the WebBrowser creates an
instance of the NotifyEventArgs class and sets its Value property to the string sent to
the Notify function. The WebBrowser then raises the ScriptNotify event, passing the
NotifyEventArgs instance to the event handler.

 Inside your implementation of the event handler, you examine the Value property
for the string chooseAddress, and if you find it, you instantiate an AddressChooserTask.
You subscribe to the task’s Completed event and launch the chooser by calling the
Show method:

private void webBrowser_ScriptNotify(object sender, NotifyEventArgs e)
{
 if (e.Value == "chooseAddress")
 {
 var task = new AddressChooserTask();
 task.Completed += task_Completed;
 task.Show();
 }
}

When the address chooser returns, it may have a valid address, but it may have an
error. The user may have canceled the task by pressing the Back button without select-
ing an address. You need to account for each of these scenarios in your Completed
event handler:

void task_Completed(object sender, AddressResult e)
{
 string message;
 if (e.Error != null || e.TaskResult != TaskResult.OK)
 message = "No address chosen";
 else
 message = e.Address.Replace("\r\n", ",");
 webBrowser.InvokeScript("addressChooserCompleted", message);
}

The InvokeScript method accepts the name of the JavaScript method to invoke, and
zero or more additional string parameters that will be passed along to the specified
function. In this sample application, you call a function named addressChooser-
Completed with either an error message or the value of the AddressResult’s Address
property passed to the task completed event handler.

 The last thing you need to do is create the JavaScript function named address-
ChooserCompleted and add a script block to MainPage.html. The script block should
be entered after the closing body tag:

<script>
function addressChooserCompleted(address) {
 document.getElementById('address').innerText = address;
}
</script>

The function implementation copies the provided address, which might be an error
message, into the innerText property of the address input control.

368 CHAPTER 13 Using Bing Maps and the browser
 Now that you’re displaying an address chosen by the user, you’ve completed your
HTML 5 sample application. Run the application and experiment with choosing
an address.

13.6 Summary
In this chapter you learned how to use a few launchers and a couple of Silverlight con-
trols to integrate Bing Maps and Internet Explorer into an application. The BingMaps-
Task and BingMapsDirectionsTask launch the Bing Maps application from your
code. The Silverlight Map control enables you to embed maps inside your application.
The WebBrowserTask can be used to launch Internet Explorer 9, whereas the Silver-
light WebBrowser control allows you to embed IE9 into your application.

 The GeoCoordinateWatcher, also known as the Location Service, uses data from
the GPS, cellular network, wireless access points, and a web service to report the
phone’s longitude and latitude. The GeoCoordinateWatcher can optionally report
additional information such as altitude, speed, and heading.

TIP If you’re interested in location-based and mapping technologies, we rec-
ommend reading the book Location-Aware Applications by Richard Ferraro and
Murat Aktihanoglu. You can learn more about the book on Manning’s web-
site at http://www.manning.com/ferraro.

In addition to the Bing Maps tasks and the Map control, we looked at how to use the
Bing Maps Web Services. You learned how to use one of the available Bing Maps APIs
for geocoding. Bing Maps provides other services such as route mapping, reverse
geocoding, traffic information, and map imagery. Microsoft isn’t the only organiza-
tion that provides mapping and location web services. Yahoo, Google, and several
other organizations provide free and fee-based mapping services.

 We showed you a few techniques that leverage the WebBrowser and allow you to
build HTML 5 plus JavaScript applications. If you decide to build HTML 5 plus
JavaScript applications, you might consider using third-party frameworks like Apache
Cordova (a.k.a PhoneGap). Apache Cordova is an HTML 5 framework that allows you
to build native applications for Windows Phone 7 and several other mobile devices
using the same code base.

 In the next chapter we introduce you to 3D graphics applications and how to mix
Silverlight with 3D XNA development. We’ll give you a crash course in the XNA Graph-
ics Framework and how to build a game where a player wanders around a virtual
3D world.

http://www.manning.com/ferraro

Part 4

Silverlight and
the XNA Framework

Windows Phone 7 is an exciting platform for both application and game
development. The final part of this book demonstrates how Silverlight and the
XNA Framework can be used together to build exciting games and applications.
The XNA Framework includes a rich library for three-dimensional modeling and
rendering. Three-dimensional models have been used for years in drafting
applications and simulations of real-world environments such as buildings, open
space, landscaping, and maps.

 In chapter 14, you’ll use the Windows Phone Silverlight and XNA Application
template to create a Hello World game, and learn the techniques used to render
Silverlight user interface elements with the XNA graphics framework. We give
you a crash course in XNA concepts such as 3D animation techniques, collision
detection, and the game loop.

 You continue working with the sample game in chapter 15, where you learn
how to use sprites for 2D graphics and animation. You’ll use raw touches, ges-
tures, the motion sensor, and the Mouse API to let a game player wander around
the game world. We also show you how to integrate a Silverlight Button control
into the game.

Integrating
Silverlight with XNA
You’re a Silverlight developer working on business and consumer applications. The
XNA Framework is used to build games, so you might be asking yourself why you
should read this chapter. Games don’t have exclusive rights to three-dimensional
modeling and rendering. Three-dimensional models have been used for years in
drafting applications. Three-dimensional models are ideal for simulations of real-
world environments such as buildings, open space, landscaping, and maps. We
encourage you to read through these last two chapters and introduce yourself to the
features the XNA Framework has to offer, whether or not you’re building games.

 Silverlight has a powerful animation library and support for pseudo-3D graphics
through various perspective transforms. When your visualization requirements
exceed the from/to/by or key-frame animation techniques supported by Silver-
light, or require complex 3D effects, you should consider using XNA graphics. Real-
world examples include modeling buildings for real estate applications, complex

This chapter covers
■ Creating a Silverlight and XNA application
■ Working with the XNA Framework
■ Collision detection
■ Rendering Silverlight controls with XNA
371

372 CHAPTER 14 Integrating Silverlight with XNA
visualization techniques for data analysis or reporting applications, or even fun aug-
mented reality applications that blend input from the camera with information from
social networking applications. In this chapter and the next, we show you how to make
use of the 2D and 3D graphics library provided by the XNA Framework.

 The XNA Framework provides more than just graphics. In the next chapter, we
show you how to use the Touch API to work with gestures and raw multi-point touch
information. In this chapter and the next, we use the vector, matrix, and bounding
shape libraries included in the XNA Framework to work with 2D and 3D coordinate
systems. Although it’s not part of the XNA Framework, we also show you how to use
the VibrateController to shake the phone.

 Since 1995, the Windows operating system has included DirectX libraries for build-
ing computer games. The DirectX libraries allow low-level access to a computer’s
audio, video, and input hardware. Games built using DirectX are written in C, C++, or
other unmanaged programming languages. Shortly after the release of the first ver-
sion of the .NET Framework, Microsoft introduced Managed DirectX, a managed library
that abstracted the low-level DirectX APIs and provided C# developers an option for
building games for Windows computers.

 When Microsoft replaced the original Xbox with the Xbox 360, they also replaced
Managed DirectX with the XNA Game Studio and the XNA Framework. Microsoft cre-
ated XNA Game Studio to simplify DirectX game development for students, hobbyists,
and independent game developers. From the beginning, game programmers could
use XNA to build games for both the Windows PC and the Xbox from the same code
base. Support for Zune media players was added with Game Studio 3.0, and version 3.1
introduced touch screen support for the Zune HD. Game Studio 4.0 was released con-
currently with the Windows Phone Developer Tools and is used to create games for
Windows Phone 7.

 One drawback to the XNA Framework is the lack of a control library. There are no but-
tons or text boxes or any of the other widgets you can find in the System.Windows
.Controls namespace. XNA developers often waste a good deal of time implementing
simple user interface controls instead of focusing on actual game development. Begin-
ning with Windows Phone SDK 7.1, game developers can combine the rich control library
in Silverlight with the rich graphics libraries in the XNA Framework. Applications that
combine Silverlight and XNA graphics are called rich graphics or 3D graphics applications.

 Silverlight and XNA can’t both draw to the GPU at the same time. 3D Graphics
applications are made possible due to new code in the Silverlight Framework that
enables Silverlight components to defer drawing. Instead of drawing to the GPU, Sil-
verlight components in 3D graphics applications render to a XNA texture, which the
XNA Framework then draws to the screen.

 This chapter introduces 3D graphics applications and how to mix Silverlight with
3D XNA development. We’ll give you a crash course on the XNA Framework and how
to build a game where a player wanders around a virtual 3D world. The game that
you’ll create is shown in figure 14.1.

373Creating a Silverlight with XNA application
The game consists of a 3D map with several shapes scattered across the ground. As the
player moves around and collides with the shapes, they’ll disappear from the map. In
the next chapter we show you how to move around using the touch screen and the
motion sensor. In this chapter, movement will be implemented with a hard-coded script.
You’re going to get started by creating a new Silverlight and XNA Application project.

14.1 Creating a Silverlight with XNA application
The Windows Phone 7.1 Developer Tools include a project template for creating inte-
grated Silverlight and XNA applications. The project template named Windows Phone
Silverlight and XNA Application appears in both the Silverlight for Windows Phone cate-
gory and the XNA Game Studio category.

 Open Visual Studio, select New Project from the file menu, choose the Windows
Phone Silverlight and XNA Application template, and name the project Graphics-
World. Once you click OK, a new Visual Studio solution is created with a Silverlight
project, an XNA class library named GraphicsWorldLib, and a standalone content project
named GraphicsWorldLibContent.

 Many of the third-party tools used to create game assets such as sounds, images, or
3D models don’t export directly to XNA runtime formats. Content projects provide the
glue to compile game assets from their native formats into .xnb files, a format that
XNA can consume at runtime. This removes the burden of translation from the artists
and allows developers and artists to work together smoothly.

Figure 14.1 The sample
3D graphics application
built in this chapter

374 CHAPTER 14 Integrating Silverlight with XNA
 The GraphicsWorld project structure is similar to a regular Silverlight project
with Properties and Reference folders, App.xaml, MainPage.xaml, GamePage.xaml,
AssemblyInfo.cs, and other common files. When you run the application, you’ll see a
regular Silverlight page with a single button. When you click the button, you’ll be nav-
igated to GamePage.xaml and will see an empty blue screen. MainPage is rendered
using the normal Silverlight library. Even though it’s a PhoneApplicationPage, Game-
Page is rendered using the XNA graphics library. Because the two libraries can’t both
draw at the same time, they must share the graphics device.

14.1.1 Sharing the graphics device

How is the GamePage different from any other Silverlight page? The GamePage uses the
XNA GraphicsDevice class to perform drawing operations. If you open up GamePage
.xaml.cs and look for a method named OnDraw, you’ll see the following lines of code
that were generated by the project template:

private void OnDraw(object sender, GameTimerEventArgs e)
{
 SharedGraphicsDeviceManager.Current.GraphicsDevice.Clear(
 Color. CornflowerBlue);

 // TODO: Add your drawing code here
}

The OnDraw method is called by the GameTimer, which we’ll discuss in the next sec-
tion. The generated implementation of OnDraw clears the screen, setting every pixel
to the color CornflowerBlue. Let’s take a closer look at the SharedGraphicsDevice-
Manager class.

SharedGraphicsDeviceManager helps Silverlight and XNA share the GPU. The
SharedGraphicsDeviceManager is an ApplicationLifetimeObject. This means that
the Application class has the responsibility of creating a single instance of Shared-
GraphicsDeviceManager when the application is constructed. The Application class
also stops and cleans up all application lifetime objects when it exits. The Shared-
GraphicsDeviceManager is declared in App.xaml along with other Application-
LifetimeObjects:

<Application.ApplicationLifetimeObjects>
 ...
 <!--The SharedGraphicsDeviceManager is used to render with
 the XNA Graphics APIs-->
 <xna:SharedGraphicsDeviceManager />
</Application.ApplicationLifetimeObjects>

The Windows Phone Silverlight and XNA Application template automatically added
the SharedGraphicsDeviceManager to App.xaml when the project was created. Shared-
GraphicsDeviceManager creates and manages an instance of the XNA Graphics-
Device class.

 Whenever an application switches from Silverlight rendering to XNA rendering, it
must call the GraphicsDevice extension method SetSharingMode with a true value.

375Creating a Silverlight with XNA application
When returning to Silverlight rendering, the same method is called with a false
value. Normally, SetSharingMode is called to enable XNA rendering when navigating
to a page:

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 SharedGraphicsDeviceManager.Current
 .GraphicsDevice.SetSharingMode(true);
 ...
}

Silverlight rendering is restored when navigating away from a page:

protected override void OnNavigatedFrom(NavigationEventArgs e)
{
 ...

 SharedGraphicsDeviceManager.Current
 .GraphicsDevice.SetSharingMode(false);
 ...
}

The Windows Phone Silverlight and XNA Application project template added the
SetSharingMode calls to GamePage when the project was created. GamePage was also
created with a GameTimer, which is the class that runs the XNA game loop.

14.1.2 The game loop
Silverlight applications are written around events. Work is performed in response to
events such as Click, Tap, or SelectionChanged. XNA games run in a polling-based
game loop. The game loop starts by checking whether there’s work to do. Is the user
currently touching the screen? Are there game elements such as enemies or projec-
tiles that need to be moved? Once all the work is finished and all game state has been
updated, the game loop draws the relevant graphics to the screen. Finally, the loop
stops and waits until the next iteration of the loop should be started. The cycle is
repeated—update, draw, update, draw, update, draw—until the game is over. One iter-
ation through the loop is called a frame, and the frequency in which the loop executes
is called the frame rate.

 It’s the job of the GameTimer to execute the game loop. The GameTimer instance
for the GamePage is created and initialized in the page constructor:

public GamePage()
{
 ...

 timer = new GameTimer();
 timer.UpdateInterval = TimeSpan.FromTicks(333333);
 timer.Update += OnUpdate;
 timer.Draw += OnDraw;
}

The game loop frame rate is specified using the UpdateInterval property. The project
template generated code that set the UpdateInterval property to 333,333 ticks, or 30

376 CHAPTER 14 Integrating Silverlight with XNA
frames per second. The GameTimer class raises one Update and one Draw event each
iteration of the game loop. These events are wired to the GamePage event handler
methods OnUpdate and OnDraw.

 The OnUpdate and OnDraw event handlers are given an instance of GameTimerEvent-
Args. GameTimerEventArgs exposes three properties that provide data about the cur-
rent game state. The ElapsedTime property reports the game time elapsed since the
last iteration of the game loop. The TotalTime property reports the total amount of
game time elapsed since the timer started. These two properties report game time,
which may not correspond to real time.

 Under normal conditions, the game loop calls the Update event handler, and then
immediately calls the Draw event handler. When the game loop is unable to execute
the update and draw routines one right after the other, it’ll set the GameTimerEvent-
Args property IsRunningSlowly to true. When the update takes too long, the game loop
will skip the call to the draw routine, and will instead call the update routine again. The
game loop may skip drawing for several frames while it tries to make up for lost time. In
this scenario, IsRunningSlowly can be used to help identify bottlenecks in game code.

 The GameTimer is started in the OnNavigatedTo method, and stopped in On-
NavigatedFrom. The timer’s Start method will begin running the game loop. The
game loop will continue to run until the Stop method is called. It’s important that the
GameTimer be stopped before leaving the page or it’ll continue to run until the appli-
cation is exited.

 You now have a basic understanding of the game loop and the roles of the update
and draw routines. The next step in the game is to implement the update and drawing
methods. Before we get to the game loop routines, you need to learn how to use the
XNA Framework to build a game.

14.2 Building the game page
In this section we’re going to introduce a few XNA topics. Hopefully by the end of the
section you’ll have a good understanding of the basics of drawing 3D models and how
to move a game camera around in a world. In this game, the 3D objects are all drawn
from models.

 You’re going to isolate your XNA code from the GamePage code by creating a new class
named GamePlayComponent. The initial implementation of the GamePlayComponent will
only have methods that match the game loop routines:

public class GamePlayComponent
{
 public void Initialize(ContentManager content) { }
 public void Update() { }
 public void Draw() { }
}

Add a field to hold an instance of the GamePlayComponent to the GamePage class:

GamePlayComponent gamePlay = new GamePlayComponent();

377Building the game page
Before you can implement the Draw routine, you must have something to draw. The
XNA Framework draws three-dimensional objects using either low-level primitives or
prebuilt models created by third-party modeling tools. You’re going to use models in
this project. What do you need to do to add models to your project?

14.2.1 Understanding models

A model is a representation of a physical object
built from a collection of points, lines, and faces.
The points (vertices) are connected together by
lines (edges). Lines are combined to form faces,
usually in the form of simple geometric shapes
such as triangles or quadrilaterals. Figure 14.2
shows how quadrilaterals and triangles are both
used to model a sphere. The points, lines, and
faces are collectively called a mesh. Only the sur-
face of the sphere is described by the model.

 Each point on the surface is an (x,y,z) coor-
dinate relative to a nonvisual element named a
bone. A model may be comprised of several bones,
each with its own mesh, and each anchored to a
parent bone. The models you use in the sample
application are all relatively simple shapes with at most a couple of bones and meshes.

 Models are built using third-party 3D design software such as Wings 3D, Blender, or
Autodesk Maya. The models you’re going to use in your 3D graphics application were
created in Wings 3D and will be imported into the project.

NOTE The model files can be found with the book’s source code and can be
downloaded from the Windows Phone 7 in Action page on Manning’s website:
http://www.manning.com/perga.

Select the content project in the solution explorer and choose Add Existing Item
from the context or Project menu. Browse to the folder containing the model files
and add the cone.x, cube.x, dodecahedron.x, ground.x, octohedron.x, sphere.x, and
torus.x files.

 The imported models will have their Asset Name property default to the file-
name. The Asset Name property is the value that will be used when the models are
loaded into the game. Figure 14.3 shows the file properties for the newly imported
ground.x model.

 When the content project is compiled, the model files are processed by the con-
tent pipeline. The content pipeline reads the model files and converts them to .xnb
files, a format that’s efficient to load at runtime by the ContentManager class. The
ContentManager is responsible for loading models, sprite sheets, and other types of
game assets that have been compiled in a content project.

Figure 14.2 A model of a sphere

http://www.manning.com/perga

378 CHAPTER 14 Integrating Silverlight with XNA
The Windows Phone Silverlight and XNA Application project template you used to
create the application adds a Content property to the generated App class in the App
.xaml.cs file. The Content property exposes an instance of the ContentManager class
that you’ll use to load model objects. The models will be loaded in an Initialize
method, shown in the following listing, that you add to the GamePlayComponent.

using Microsoft.Xna.Framework.Content;
using Microsoft.Xna.Framework.Graphics;

Model ground;
Model player;
Model[] models = new Model[5];

public void Initialize(ContentManager content)
{
 ground = content.Load<Model>("ground");
 player = content.Load<Model>("sphere");
 models[0] = content.Load<Model>("cube");
 models[1] = content.Load<Model>("cone");
 models[2] = content.Load<Model>("dodecahedron");
 models[3] = content.Load<Model>("torus");
 models[4] = content.Load<Model>("octohedron");
}

First you need to add member fields B to the GamePlayComponent class. You need a
field for the ground and the player. You store the rest of the models in an array. Next
you declare the Initialize method with a ContentManager parameter. You assign the
fields using the ContentManager’s Load method. The Load method accepts a generic
type, in this case Model, and the name of the asset to load c.

 The Initialize method should be called by the OnNavigatedTo method in the
GamePage class:

gamePlay.Initialize(contentManager);

Listing 14.1 Loading models in the GamePlayComponent class

Figure 14.3 File properties for
the ground.x model

Declare member
fields

b

Load models
by name

c

379Building the game page
The ContentManager only loads a model file once. Each file is loaded the first time the
Load method is called, and is managed internally by the ContentManager class. When
asked for a model a second time, the ContentManager returns the instance already
loaded in memory.

 Now that the models are compiled into your project and loaded by GamePlay-
Component, you’re ready to render the models to the screen.

14.2.2 Rendering models

When working with the XNA Framework, all drawing is explicit—nothing is automati-
cally drawn like in Silverlight. Models are drawn by calling their Draw method. Behind
the scenes, the Model class calls through to the GraphicsDevice. Before calling Model
.Draw, a few steps need to be performed first. The next listing shows the algorithm for
drawing a model.

using Microsoft.Xna.Framework;

Matrix[] transforms = new Matrix[2];

private void DrawModel(ref Model model, ref Matrix world)
{
 model.CopyAbsoluteBoneTransformsTo(transforms);

 for (int mIndex = 0; mIndex < model.Meshes.Count; mIndex++)
 {
 ModelMesh mesh = model.Meshes[mIndex];
 for (int eIndex = 0; eIndex < mesh.Effects.Count; eIndex++)
 {
 BasicEffect effect = (BasicEffect)mesh.Effects[eIndex];
 effect.EnableDefaultLighting();
 effect.World = transforms[mesh.ParentBone.Index] * world;
 effect.View = cameraView;
 effect.Projection = cameraProjection;
 }
 mesh.Draw();
 }
}

First you create a reusable Matrix array in a class member field named transforms B
to eliminate the memory allocation and garbage collection that would otherwise result
from using a local variable. Inside the DrawModel method, you fill the transforms array
with a call to CopyAbsoluteBoneTransformsTo c. The transforms array now con-
tains information that describes the position of each mesh in the model relative to the
position of the model. Next you iterate over each mesh in the model, preparing each
Effect in the mesh d. You tell the effect to use the default lighting algorithm, which
creates three lighting sources—a key light, a fill light, and a back light. You set the effect’s
World property by mixing the mesh’s position relative to the model with the model’s

Listing 14.2 Drawing a model

Reusable
transforms array

b

Get relative
positions

c

Setting
up effect d

380 CHAPTER 14 Integrating Silverlight with XNA
position in the game’s coordinate system. Finally you tell the effect where the game cam-
era is located (the View) and the boundaries of the field of view (the Projection).

 In the XNA Framework, Effects are used to describe how a Model should be ren-
dered by the graphics device. The Effect produces High Level Shader Language
(HLSL) code, which is interpreted by the GPU, describing exactly how to draw the
model. HLSL is a language supported by DirectX GPUs and is beyond the scope of this
book. In this project, the model effects are all of type BasicEffect.

 The DrawModel method shown earlier uses two fields named cameraView and
cameraProjection, which you haven’t yet defined. The view and projection describe
what to draw and from what angle to draw it. The view describes the direction the
camera is pointed and is created from a camera position, a look ahead position, and
the up direction relative to the camera. The projection describes the portion of the
world that the camera can actually see, including the near and far clipping planes. Fig-
ure 14.4 demonstrates the view and projection. Only objects in the shaded area of the
figure will be drawn.

 To calculate the view and projection you need to add a few constants and fields
that you’ll use in your game logic:

Vector3 unitX = Vector3.UnitX;
Vector3 up = Vector3.Up;
readonly Vector3 cameraOffset = new Vector3(0, 5, -15);
readonly Vector3 lookAhead = new Vector3(0, 0, 20);
Matrix cameraView;
Matrix cameraProjection;

You calculate the cameraProjection in the Initialize method. The projection’s
field of view is set to 45 degrees. The aspect ratio is defined as the view width divided
by the view height, and you use the screen width divided by the screen height. You

Figure 14.4 The
projection created
by the camera
and look ahead
positions, the
clipping planes,
and the field of
view angle

381Building the game page
set the near clipping plane to be 1 unit in from of the camera, and the far clipping
plane to be 100 units in from of the camera. Add the following line of code to the
Initialize method:

Matrix.CreatePerspectiveFieldOfView(MathHelper.PiOver4,
 480.0f/800.0f, 1.0f, 100.0f, out cameraProjection);

When drawing models, the camera’s position and direction are used as the origin of the
coordinate system. The view matrix describes how to transform world coordinates into
view coordinates. You calculate the view matrix in a method named CalculateView:

private void CalculateView()
{
 Vector3 cameraPosition = cameraOffset;
 Vector3 cameraTarget = cameraPosition + lookAhead;

 Matrix.CreateLookAt(ref cameraPosition, ref cameraTarget,
 ref up, out cameraView);
}

In this game, the camera will hover above and behind the player’s position. Since you
haven’t implemented player movement yet, the camera is positioned above the world
origin by 5 units and behind the origin by 15 units along the Z axis, as defined in the
cameraOffset field. The look ahead position, or camera target, is placed 20 units in
front of the origin along the Z axis, as defined in the lookAhead field.

 Now that you’ve established the view and projection, you need to build the world
matrix for the ground. The world matrix is the translation of points in the model’s
coordinate system into the coordinate system of the game:

Matrix groundWorld;

private void CalculateWorlds()
{
 groundWorld = Matrix.CreateWorld(Vector3.Zero, Vector3.UnitX,
 Vector3.Up) * Matrix.CreateScale(50.0f, 1.0f, 50.0f);
}

The ground model should be drawn at the origin of the world, facing into the positive
x direction. The ground model you imported is a square grid 5 units on a side, with
the center of the square at the origin. You’d like the ground to cover a larger portion
of the world, so you scale the ground’s world in the X and Z planes by a factor of 50.

 One last step before you draw is to add calls to the calculate methods from the
Initialize method:

public void Initialize(ContentManager content)
{
 ...

 CalculateWorlds();
 CalculateView();
}

Now you just need to implement the Draw method:

382 CHAPTER 14 Integrating Silverlight with XNA
public void Draw()
{
 DrawModel(ref ground, ref groundWorld);
}

You’re now ready to call the draw method from the OnDraw method in the GamePage:

private void OnDraw(object sender, GameTimerEventArgs e)
{
 var device = SharedGraphicsDeviceManager.Current.GraphicsDevice;
 device.Clear(Color.CornflowerBlue);
 device.DepthStencilState = DepthStencilState.Default;
 device.RasterizerState = RasterizerState.CullCounterClockwise;
 gamePlay.Draw();
}

When the game runs now, the screen is divided between the newly added ground and
the blue sky. Though this 3D world is still not that interesting, at least it’s no longer a
big blue rectangle. You can make the game slightly more interesting by drawing sev-
eral shapes.

14.2.3 Adding shapes

The goal of the game is to have the player wander around collecting shapes scattered
about the ground. The shapes are going to be drawn in ordered rows, each row con-
taining six shapes of the same model. Before we can draw the shapes, you need to cre-
ate the world matrix and assign a position for each shape. You need to relate the
shape to the model that will be used to draw the shape. To track this shape informa-
tion, create a new struct with the name ShapeInfo:

struct ShapeInfo
{
 public Matrix World;
 public int ModelIndex;
}

The ShapeInfo objects are created and initialized in the CalculateWorlds method.
The following listing shows the new implementation of CalculateWorlds.

ShapeInfo[] shapes = new ShapeInfo[66];

private void CalculateWorlds()
{
 groundWorld = Matrix.CreateWorld(Vector3.Zero, Vector3.UnitX,
 Vector3.Up) * Matrix.CreateScale(50.0f, 1.0f, 50.0f);

 int currentModel = 0;
 int objectIndex = 0;
 Vector3 position = new Vector3();
 for (float x = -100.0f; x <= 100.0f; x += 20.0f)
 {
 for (float z = 0.0f; z <= 100.0f; z += 20.0f)

Listing 14.3 Calculating the position of each shape

Array field to
hold shapesb

Each position
in each row

c

383Building the game page
 {
 position.X = x;
 position.Z = z;
 var shape = new ShapeInfo { ModelIndex = currentModel };

 Matrix.CreateWorld(ref position, ref unitX,
 ref up, out shape.World);
 shapes[objectIndex] = shape;
 objectIndex++;
 }
 currentModel++;
 if (currentModel >= models.Length)
 currentModel = 0;
 }
}

First you create an array field to hold the ShapeInfo B objects that will describe each
shape. Because you’ll have 11 rows with 6 shapes, you size the array to hold 66 shapes.
You want to draw a shape every 20 units starting from (-100, 0, 0) and extending to
(100, 0, 100). Nested loops are used to iterate over the x and z planes c, alternating
models during each x loop e. At each coordinate, you create a new world matrix d
and store it in the ShapeInfo instance.

 You’re now ready to draw the shapes. Update the Draw method by adding a for
loop to iterate over the shapes array, calling DrawModel for each shape. You use the
shape’s ModelIndex property to retrieve the appropriate Model from the models array:

public void Draw()
{
 DrawModel(ref ground, ref groundWorld);
 for (int index = 0; index < shapes.Length; index++)
 {
 var shape = shapes[index];
 DrawModel(ref models[shape.ModelIndex], ref shape.World);
 }
}

When the game runs now, you see several geometric shapes arranged in an orderly
grid. The game is improving, but still remains pretty static. You need to allow the
player to move around in your geometric world.

14.2.4 Moving around

Two things change when a player moves through a 3D world: the camera position rela-
tive to the origin, and the camera’s target or look ahead position. Your game currently
uses hard-coded camera and look ahead positions. To implement motion, the first
thing you need to do is update the code to use member variables for tracking the
player position and the direction the player is facing. While you’re at it, you’re going
to add code to draw the player on the screen. To track the direction the player is fac-
ing, you record the direction angle relative to the Y axis. You also need a constant for
how fast the player turns:

Calculate world
from position

d

Cycle through
each model

e

384 CHAPTER 14 Integrating Silverlight with XNA
Matrix playerWorld;
BoundingSphere playerPosition = new BoundingSphere(
 new Vector3(0,0, -20), 1.0f);
float playerRotation = 0.0f;
const float velocity = 0.5f;
const float rotationVelocity = MathHelper.Pi / 90.0f;

Instead of using a single coordinate point to track the player’s position, you declare a
BoundingSphere. The BoundingSphere offers several methods that will be useful when
you implement collision detection, and we’ll take a closer look at BoundingSphere
and other bounding volumes later in the chapter.

 When the player moves, the camera’s view must be recalculated. You need to
update CalculateView because the current implementation doesn’t account for the
player’s position. The new implementation is shown in the next listing.

private void CalculateView()
{
 Vector3 cameraPosition = playerPosition.Center +
 Vector3.Transform (cameraOffset,
 Matrix.CreateFromAxisAngle (Vector3.UnitY, playerRotation));

 Vector3 cameraTarget = cameraPosition + Vector3.Transform(lookAhead,
 Matrix.CreateFromAxisAngle(Vector3.UnitY, playerRotation));

 Matrix.CreateLookAt(ref cameraPosition, ref cameraTarget,
 ref up, out cameraView);
}

The original implementation placed the camera 15 units behind the origin, in the
direction of the Z axis. You need to place the camera 15 units behind the player in
the direction the player is looking and rotate the cameraOffset vector using the
Transform and CreateFromAxisAngle B methods. Next, you add the rotated vector to
the player’s position. You perform a similar calculation to establish the camera target c.
Finally, you update cameraView.

 You still haven’t implemented any motion, as the playerPosition and player-
Rotation values never change. The player will be allowed to move forward and back-
ward, and turn left or right. Ultimately the player’s position will change based on
input from the touch screen, hardware keyboard, or the motion sensor. Since you
don’t want to tie your movement update code to a specific input model, you’ll create
an interface that describes player motions, as shown in the following listing.

public interface IGamePlayInput
{
 bool MoveForward { get; }
 bool MoveBackward { get; }
 bool TurnLeft { get; }
 bool TurnRight { get; }

Listing 14.4 Calculating the camera view to include the player

Listing 14.5 Input service interface

Rotating
offset vector

 b

Rotating look ahead vector c

Motion
properties

b

385Building the game page
 void Initialize(ContentManager content);
 void Start();
 void Stop();
 void Update();
 void Draw();
}

The interface declares a set of motion properties and a set of game loop methods. The
motion properties B correspond to the moving and turning motions the player is
allowed to make. If the player is currently moving, the motion properties will return true.
The game loop methods c are provided to allow an input service the opportunity to ini-
tialize and clean up before and after the game loop runs. Initialize, Draw, and Update
methods are also provided for input components that draw their own user interface.

 The GamePlayComponent needs to have an instance of the interface passed to it.
You’ll add a parameter to the Initialize method that accepts an input component.
The passed-in input component will be stored in a new field:

IGamePlayInput input;

public void Initialize(ContentManager content, IGamePlayInput inputService)
{
 input = inputService;
 ...
}

Finally you can add an Update method to change the player’s position and rotation
values and recalculate the view. The Update method implementation is shown in the
next listing.

public void Update()
{
 bool playerMoved = false;

 Vector3 direction = Vector3.Transform(Vector3.UnitZ,
 Matrix.CreateFromAxisAngle(Vector3.UnitY, playerRotation));

 if (input.MoveForward)
 {
 playerPosition.Center += direction * velocity;
 playerMoved = true;
 }

 if (input.MoveBackward)
 {
 playerPosition.Center -= direction * velocity;
 playerMoved = true;
 }

 if (input.TurnLeft)
 {
 playerRotation += rotationVelocity;
 if (playerRotation > MathHelper.TwoPi)

Listing 14.6 The game’s Update method

Game loop
methods

c

Did player
move?

b

Move
player

c

Rotate
player

d

386 CHAPTER 14 Integrating Silverlight with XNA
 playerRotation -= MathHelper.TwoPi;
 playerMoved = true;
 }

 if (input.TurnRight)
 {
 playerRotation -= rotationVelocity;
 if (playerRotation < 0)
 playerRotation += MathHelper.TwoPi;
 playerMoved = true;
 }

 if (playerMoved)
 {
 CalculateView();
 Vector3 forward = Vector3.Transform(Vector3.UnitX,
 Matrix.CreateFromAxisAngle(Vector3.UnitY, playerRotation));
 Matrix.CreateWorld(ref playerPosition.Center, ref forward,
 ref up, out playerWorld);
 }
}

First you define a boolean variable B to flag when the player moved, which you
default to false. To move and rotate the player, you use the two velocity constants
you defined earlier. The velocity value represents how much the player should move
per frame, and the rotationVelocity represents how much the player should spin per
frame. Before you can move the player, you must calculate the direction the player
must be moved scaled by the velocity c. This direction vector is added to the player’s
current position. The player’s rotation is also updated by the rotationVelocity d. If
the position or rotation values change, you set the playerMoved variable to true.
Finally, you recalculate the camera view and the player’s world matrix e only when
the player has moved. The camera view is recalculated in the CalculateView method.
The rotation angle is used to create a forward vector representing the direction the
player is facing. The player’s world matrix is recalculated using the current position
and the forward vector.

 Now that you have a moving player, you’ll update the Draw method to render a
sphere at the player’s position. Add a new call to DrawModel at the bottom of the Draw
method, using the player and playerWorld fields:

DrawModel(ref player, ref playerWorld);

You also need to initialize the playerWorld variable in the CreateWorlds method, or
the player won’t be visible until the user starts moving:

playerPosition.Radius = player.Meshes[0].BoundingSphere.Radius;
Matrix.CreateWorld(ref playerPosition.Center, ref unitX, ref up,
 out playerWorld);

You can’t run the game yet because GamePlayComponent will throw a NullReference-
Exception when it attempts to use the input service. Before you can run the game,
you need to implement an input service.

Rotate
player

d

Recalculate e

387Building the game page
14.2.5 Running a demonstration

Your first implementation of an input service will run the game with a demonstration
script that sends mock movement data to the game. The demonstration mode results
in the player moving through a known path in the game and gives you repeatability
when building out the rest of the game features. In the next chapter, you’ll build
input services that accept input from the touch screen and the motion sensor.

 Your demonstration script needs to

■ Pause for a fraction of a second before motion begins
■ Move the player forward for 3 seconds
■ Turn the player to the left for 2 seconds
■ Turn the player to the right for 4 seconds
■ Turn the player back to center
■ Move the player backward for 2 seconds
■ Move the player forward for 5 seconds
■ Turn the player to the left for 3 seconds

You start by creating a new class named DemoInput that implements the IGamePlay-
Input interface. DemoInput keeps track of the values of the motion properties by using
an internal class named ScriptedInputState. The following listing details the initial
implementation of the DemoInput class.

public class DemoInput : IGamePlayInput
{
 struct ScriptedInputState
 {
 public bool MoveForward;
 public bool MoveBackward;
 public bool TurnLeft;
 public bool TurnRight;
 }

 ScriptedInputState currentState;

 public bool MoveForward {
 get{ return currentState.MoveForward; }}
 public bool MoveBackward {
 get{ return currentState.MoveBackward; }}
 public bool TurnLeft {
 get{ return currentState.TurnLeft; }}
 public bool TurnRight {
 get{ return currentState.TurnRight; }}

 public void Initialize(ContentManager content) { }
 public void Start() { }
 public void Update() { }
 public void Draw() { }
 public void Stop() { }
}

Listing 14.7 The DemoInput class

Internal struct to
report motionb

Motion properties
return current
state

c

Unimplemented
game loop
methods

388 CHAPTER 14 Integrating Silverlight with XNA
The DemoInput class declares a nested struct B named ScriptedInputState. The
struct exposes four boolean properties, one for each of the supported motions—
forward, backward, turn left, and turn right. DemoInput tracks an instance of Scripted-
InputState named currentState. The motion properties defined on the IGame-
PlayInput interface c are implemented using currentState.

 To update currentState you’re going to create a script that’s a series of Scripted-
InputState instances. The script defines both the motion of the player and the frame
number when that motion should begin. The next listing shows how to add a diction-
ary mapping a frame number to a ScriptedInputState and how to construct and ini-
tialize the dictionary in the class constructor.

Dictionary<int, ScriptedInputState> states;

public DemoInput()
{
 states = new Dictionary<int, ScriptedInputState>();
 states.Add(10, new ScriptedInputState { MoveForward = true });
 states.Add(100, new ScriptedInputState { TurnLeft = true });
 states.Add(160, new ScriptedInputState { TurnRight = true });
 states.Add(280, new ScriptedInputState { TurnLeft = true });
 states.Add(340, new ScriptedInputState { MoveBackward = true });
 states.Add(430, new ScriptedInputState { MoveForward = true });
 states.Add(750, new ScriptedInputState { TurnLeft = true });
 states.Add(840, new ScriptedInputState());
}

After the states dictionary is created, you add several ScriptedInputState instances.
The first instance B tells the game that at frame number 10, the player starts moving
forward. The player will move forward until frame 100, at which point the player will
stop moving forward and will begin turning left. The player moves forward for
90 frames, or 3 seconds when the game runs at 30 frames per second. Motion contin-
ues until frame number 840 c when the player stops moving.

 Next you implement the input service’s Update method. Every time the Update
method is called, you increment a frame counter field. You use the frame counter to
look for a new input state in the dictionary, as implemented in the next listing.

int frameNumber;

public void Update()
{
 frameNumber++;

 ScriptedInputState nextState;
 if (states.TryGetValue(frameNumber, out nextState))
 {

Listing 14.8 Initializing the scripted input states

Listing 14.9 Updating current state

Field to store
script

Move
forward

b

Stop
movingc

Increment frame
number

389Building the game page
 currentState = nextState;
 }
}

The frameNumber field is used as a key into the states dictionary. When a Scripted-
InputState is found that’s keyed with the current frame number, the currentState
field B is updated.

 This completes the DemoInput service and it’s now ready to be used by the Game-
Page. Add an IGamePlayInput field to the GamePage class and initialize the field in the
OnNavigatedTo method. Pass the new input instance to the gamePlay component:

input = new DemoInput();
gamePlay.Initialize(content, input);

The DemoInput class doesn’t work unless its Update method is called by the game
loop. Add the call to the Update method from GamePage’s OnUpdate method:

private void OnUpdate(object sender, GameTimerEventArgs e)
{
 input.Update();
 gamePlay.Update();
}

Finally you have a game that draws a three-dimensional world and moves the player. If
you run the game now, you might notice a strange behavior. When the player’s posi-
tion intersects a shape’s position, the player passes right through. You’ll fix this quirk
later in the chapter when we look at collision detection. First we need to discuss a trick
to help preserve the phone’s battery life.

14.2.6 Don’t repeat yourself

Developers of Windows Phone applications must keep the health of the phone’s bat-
tery in mind when building applications. This applies when using the radio for net-
work connections and also applies when updating the screen. Every time the display is
redrawn, a bit more power is consumed. You can help extend the battery life by only
clearing and redrawing the screen when absolutely necessary.

 You can tell the game loop to not redraw by using the GameTimer’s SuppressFrame
method. When SuppressFrame is called, the game loop won’t make any calls to the
Draw method until after the next call to Update.

 In this game, you should skip the Draw method whenever the player isn’t mov-
ing. You can detect when the player is moving using the input component. The
OnUpdate method is where the motion should be examined. If the player didn’t
move, there’s no need to redraw the screen and you should call SuppressFrame. The
next listing details the new OnUpdate implementation that suppresses unnecessary
redraw operations.

Update
currentStateb

390 CHAPTER 14 Integrating Silverlight with XNA
int frameCountAfterMotionStopped;

private void OnUpdate(object sender, GameTimerEventArgs e)
{
 input.Update();
 gamePlay.Update();

 if (!input.MoveForward && !input.MoveBackward
 && !input.TurnLeft && !input.TurnRight)
 {
 if (frameCountAfterMotionStopped > 2)
 {
 GameTimer.SuppressFrame();
 }
 }
 else
 {
 frameCountAfterMotionStopped = 0;
 }
}

First you check each of the motion properties of the input service B. If none of them
are set to true, you know the player hasn’t moved. You can’t just suppress the Draw
operation if the player hasn’t moved. You need to be sure to draw the screen at least
once. Consider the scenario when the game is first started: if you don’t draw at least once,
the screen will remain blank until the player starts to move. Before you suppress the
next Draw call, you check whether the screen has been drawn a couple times after
motion stopped c using the new field frameCountAfterMotionStopped. If the screen
has been drawn you suppress the next redraw d by calling SuppressFrame.

 You draw a couple extra frames to allow the screen to be drawn when the game
starts and the play has never moved. There may also be situations when an input com-
ponent needs a couple of extra frames to fully update the screen.

 If you did your work correctly, you shouldn’t notice any differences when you run
the game. The demonstration script still moves the user around the world. You still
have that pesky problem where the player walks through the shapes. Instead of walk-
ing through them, the shapes should disappear when the player touches, or col-
lects, them.

14.2.7 Collecting shapes

One of the goals of the game is to collect the shapes and rack up some points for each
shape collected. Right now the game completely ignores the shapes and the player
walks right through them without detecting their presence. What you need is some
code that tracks the score and allows you to determine when the player’s position inter-
sects with a shapes position. You’ll start by adding a Score property that’s increased by
one every time the player collides with a shape, and the shape is collected:

public int Score { get; private set; }

Listing 14.10 Suppressing redraw

New
field

Did player
move?

b

Draw couple
extra framesc

Suppress
redrawd

391Building the game page
One method for detecting collisions is to check the (x,y,z) coordinate of the player
with the coordinate of the shape. But shapes aren’t points; they have volume and if
you only check the position coordinate, the user may notice that they collided with a
shape, but the collision didn’t register.

 The XNA Framework provides several structs that help detect collisions. You’ll be
using the BoundingSphere struct. We introduced the BoundingSphere when you
added the player position earlier in the chapter. The XNA Model creates Bounding-
Spheres for the meshes that make up the model. BoundingSpheres are simple to work
with since they only have a center point and a radius.

TIP The BoundingSphere class is one of the XNA Framework structures use-
ful for 3D coordinate system calculations. These structures can be used by
your application, even if you’re not using XNA Graphics.

You’ll capture the bounding spheres of each model and store it along with the rest of
the shape information by adding a BoundingSphere field to your ShapeInfo struct:

struct ShapeInfo
{
 public Matrix World;
 public int ModelIndex;
 public BoundingSphere Sphere;
 public bool Collected;
}

While you’re there, go ahead and add a Boolean field named Collected to the struct.
You’ll use the Collected field as a flag to determine when a shape has been touched
or picked up by the player and should no longer be considered when performing col-
lision detection and drawing.

 Next you need to update the code that initializes the ShapeInfo instances in
CalculateWorlds. When building shape information, you need to set the sphere’s
position and copy the radius from the model’s BoundingSphere:

var shape = new ShapeInfo { ModelIndex = currentModel };
shape.Sphere.Center.X = x;
shape.Sphere.Center.Z = z;
shape.Sphere.Center.Y = models[currentModel].
 Meshes[0].BoundingSphere.Center.Y;
shape.Sphere.Radius = models[currentModel].Meshes[0].BoundingSphere.Radius;

In this project, all of the models are simple and using the BoundingSphere from the
first mesh is sufficient. In models with multiple bones and meshes, you should cus-
tomize your collision detection logic to account for the additional complexity. The
collision detection logic shown in the following listing is placed in the GamePlay-
Component.Update, inside the if block that executes when the player moves.

392 CHAPTER 14 Integrating Silverlight with XNA
using Microsoft.Devices;

if (playerMoved)
{
 ...

 for (int index = 0; index < shapes.Length; index++)
 {
 if (!shapes[index].Collected &&
 playerPosition.Intersects(shapes[index].Sphere))
 {
 Score++;
 shapes[index].Collected = true;
 VibrateController.Default.Start(
 TimeSpan.FromMilliseconds(20.0));
 }
 }
}

You start by iterating over the shapes array, ignoring the shapes that have already been
collected. You use BoundingSphere’s Intersects B method to determine whether
the shape and the player are touching. If the two BoundingSpheres do intersect, the
Score property is increased c. Finally, you vibrate the phone for 20 milliseconds d
using the VibrationController class.

TIP The VibrateController can be used in any type of application or game,
not just those mixing Silverlight and XNA graphics. Vibrating the device con-
sumes extra battery power and may be annoying to the user. Consider provid-
ing an option allowing the user to turn off vibrations.

The VibrationController is found in the Microsoft.Devices namespace. The
VibrationController is a singleton accessed through the static method Default.
Vibrations are started with the Start method. A TimeSpan is used to specify how long
to vibrate the phone and valid TimeSpan values are between 0 and 5 seconds.

 Once a shape is collected, it disappears from the screen. To perform the disap-
pearing trick, you simply no longer draw the shape. Add an if statement to the Draw
method so that you only draw a shape if its Collected property is false:

if(!shape.Collected)
 DrawModel(ref models[shape.ModelIndex], ref shape.World);

Finally you have a game that draws a three-dimensional world, allows the player to
move about and explore, and detects collisions between the player and the other
shapes. The last thing you need to add in this chapter is how to recognize when the
game ends.

Listing 14.11 Detecting collisions in the Update method

Collision
when the
spheres
intersect

b

Update
scorec

Briefly vibrate
phoned

393Building the game page
14.2.8 It’s the end of the world

Your 3D graphics application isn’t complete until the game is over, and the game
you’ve built doesn’t end. You have a world with a ground of limited size, but the player
can wander far outside the edge of that world. The player could also collect all
the shapes and have nothing else to do. You need to add some logic to detect when
all the shapes are collected, or the player has moved past the edge of the world, and
end the game. When the game is over, your application should automatically navigate
back to MainPage.

 You begin your game-over implementation by adding a property to the GamePlay-
Component to distinguish between when the game is in play and when the game is over.
The IsPlaying property should be initialized to true in the Initialize method:

public bool IsPlaying { get; private set; }

Next, you need a technique to determine when the user has wandered past the edge
of the world, or more precisely, past the bounds of the ground model. A flat square
isn’t well represented by a BoundingSphere, so you need to use another bounding
geometry. The BoundingBox struct best fits your requirements. Add a new field named
groundBounds that matches the size of the ground model after you scale it up when
it’s drawn:

BoundingBox groundBounds = new BoundingBox(
 new Vector3(-125, -2, -125), new Vector3(125, 2, 125));

Now that you’ve established the edges of the world, you can check whether the player
moved outside the bounds of the world. In addition to the bounds check, you also
need to check whether all the shapes have been collected. Your game-over logic,
shown in the following listing, is placed in the GamePlayComponent.Update, inside the
if block that executes when the player moves.

if (playerMoved)
{
 ...

 var containment = groundBounds.Contains(playerPosition);
 if (containment == ContainmentType.Disjoint
 || Score == shapes.Length)
 {
 IsPlaying = false;
 }
}

You check whether the player walked over the edge of the world using BoundingBox’s
Contains method B. The Contains method returns an instance of ContainmentType,
which will have one of three values. Possible ContainmentType values are Contains,
Intersects, or Disjoint. Contains indicates that the BoundingBox completely contains
the player’s BoundingSphere, whereas Intersects signifies only partial containment.

Listing 14.12 Detecting game over in the Update method

Is player
over
edge?

b

Have all shapes
been collected?c

394 CHAPTER 14 Integrating Silverlight with XNA
You use Disjoint in your game-over check, which indicates that the player is com-
pletely outside of the BoundingBox. You also compare the Score property to the length of
the shapes array c. If either game-over condition is true, you set the IsPlaying prop-
erty to false.

 When the game is over, you no longer process player input and no longer need to
execute the code in the Update method. Add logic to the top of the Update method
to return immediately if the game is over:

public void Update()
{
 if (!IsPlaying)
 return;
 ...
}

You also have nothing to draw when the game is over. Add logic to the top of the Draw
method to return immediately if the game is over:

public void Draw()
{
 if (!IsPlaying)
 return;
 ...
}

You also want to check IsPlaying at the end of the OnUpdate method in GamePage
and navigate to the previous page when the game is over:

private void OnUpdate(object sender, GameTimerEventArgs e)
{
 ...
 if (!gamePlay.IsPlaying && NavigationService.CanGoBack)
 NavigationService.GoBack();
}

The user can now relax knowing that they won’t be trapped in the game forever. The
game will end if they walk over the edge of the world, or pick up all the shapes.

 How does the user know how many shapes they have collected? The game tracks
the number of shapes collected in the Score property. You need a scoreboard to dis-
play the player’s progress.

14.3 Implementing a scoreboard with Silverlight
Almost all games require some form of scoreboard. If the player can’t track their prog-
ress, what’s the point of playing? To demonstrate mixing XNA rendering with Silverlight
components, your scoreboard will be built using a Border containing StackPanel and a
couple of TextBlock controls. The scoreboard will be defined in GamePage.xaml like
any other Silverlight page. Because GamePage.xaml is rendered with an XNA Graphics-
Device, your scoreboard will be rendered with a UIElementRenderer.

 In a regular XNA project, the scoreboard would be drawn using the XNA Frame-
work’s SpriteFont and DrawString APIs. A SpriteFont is a sprite sheet or image built

395Implementing a scoreboard with Silverlight
by the content pipeline from a font installed on a developer’s machine. The compiled
font is then included in your project .xap file. You have to redistribute each font used
in your game. If you use the font in multiple point sizes, you must include a Sprite-
Font for each size. You must include a SpriteFont for each language you support as
well. You must also ensure that you have an appropriate redistribution license for each
font you ship in your application. You can see how using SpriteFonts quickly
becomes a problem.

 By mixing Silverlight controls with XNA rendered graphics, the task of managing
fonts disappears. Silverlight ships with a variety of fonts and languages that you don’t
have to include in your application’s .xap file. You’ll leverage these built-in fonts with
your scoreboard implementation.

14.3.1 Adding a scoreboard
Before you can add components to GamePage.xaml, you need to define a root layout
to hold your scoreboard components. GamePage.xaml was generated by the project
template as an empty page. Open GamePage.xaml and replace the No XAML Content
comment with the XAML markup shown in the next listing.

<Canvas x:Name="LayoutRoot">
 <Border x:Name="scoreboard" Canvas.Left="12" Canvas.Top="12"
 Width="456" Height="60" BorderThickness="5" BorderBrush="White">
 <Border.Background>
 <LinearGradientBrush EndPoint="1,0.5" StartPoint="0,0.5">
 <GradientStop Color="SaddleBrown" Offset="0.488" />
 <GradientStop Color="BurlyWood" Offset="1" />
 </LinearGradientBrush>
 </Border.Background>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="Score:"
 Style="{StaticResource PhoneTextLargeStyle}" />
 <TextBlock x:Name="score"
 Style="{StaticResource PhoneTextLargeStyle}" />
 </StackPanel>
 </Border>
</Canvas>

First, you add a Canvas container B and give it the conventional name LayoutRoot.
Next you declare the Border control c named scoreboard, explicitly setting the posi-
tion, width, and height properties. You also set the border width and color. Next, you
tell the Border to use a gradient brush when drawing its Background. Finally, you cre-
ate two TextBlocks. The first TextBlock is a label displaying the word Score. The sec-
ond TextBlock displays the actual score value d, and you name it score so that you
can access the control from code behind.

 You update the score TextBlock from code behind in the OnUpdate method:

private void OnUpdate(object sender, GameTimerEventArgs e)
{

Listing 14.13 XAML markup for the scoreboard

Root layout containerb

Scoreboard c

Display Score with TextBlock d

396 CHAPTER 14 Integrating Silverlight with XNA
 input.Update();
 gamePlay.Update();
 score.Text = gamePlay.Score.ToString();
 ...
}

If you run the project now, you still won’t see a scoreboard. Just because there are
XAML elements on the page doesn’t mean they’re automatically rendered. Remember
that you turned off Silverlight rendering when you called SetSharingMode(true). So
how do you render the Silverlight components?

14.3.2 Rendering the texture
When in sharing mode, Silverlight components are rendered in a two-step process.
The first step renders the user interface to an XNA Texture2D. The second step ren-
ders the texture with a SpriteBatch, which we’ll examine next. Texture2D is the class
XNA uses to represent a two-dimensional image comprised of pixels. Texture2D is
used for images of different formats and color depths. When you add a .PNG file to a
content project, it’ll be loaded with a Texture2D. You’ll learn how to import and use
your own image in the next chapter when you work with sprite sheets.

 Silverlight components don’t know anything about XNA or how to render
themselves to an XNA Texture2D image. A new class has been added to the XNA
Framework that does know how to render Silverlight to a Texture2D. This new
class is named UIElementRenderer and it’s found in the Microsoft.Xna.Framework
.Graphics namespace alongside Texture2D, Model, SpriteBatch, and other XNA
graphics classes.

UIElementRenderer has two properties, Element and Texture, and one method
named Render. The Element property references a Silverlight UIElement, which could
be a single control, a container holding several controls, a shape, an entire page, or
any other class derived from UIElement. The Texture property references the
Texture2D that can be used by XNA’s SpriteBatch to draw the user interface. The tex-
ture is created by the Render method, and isn’t automatically updated.

 You need to add a UIElementRenderer to draw the scoreboard. Add two new fields
to the GamePage class for the renderer and the screen coordinates where the score-
board will be drawn:

UIElementRenderer scoreboardRenderer;
Vector2 scoreboardPosition = new Vector2(12, 12);

The renderer should be constructed at the end of the GamePage constructor. You con-
struct the renderer using the Border control you named scoreboard. You also tell the
render to produce a texture with the same width and height you gave the scoreboard
in the XAML markup:

scoreboardRenderer = new UIElementRenderer(scoreboard, 456, 60);

Now that you have a renderer for your scoreboard, let’s look at how to use it to draw
the Silverlight user interface. The GamePage is drawn in the OnDraw method, which is

397Summary
where you add a call to Render. Add the call to Render to the top of the method,
before the code that works with the GraphicsDevice. If you call Render after you begin
drawing, you might end up with elements missing from the screen as the UIElement-
Renderer clears the back buffer while it works:

private void OnDraw(object sender, GameTimerEventArgs e)
{
 scoreboardRenderer.Render();
 var device = SharedGraphicsDeviceManager.Current.GraphicsDevice;
...

Once the texture is rendered, you use a SpriteBatch to draw. Place the SpriteBatch
code at the end of the OnDraw method:

spriteBatch.Begin();
spriteBatch.Draw(scoreboardRenderer.Texture,
 scoreboardPosition, Color.White);
spriteBatch.End();

Sprite is another term for a texture or an image. The SpriteBatch class allows several
sprites’ drawing operations to be batched together and sent to the GraphicsDevice as
a single job. A batch operation is started with a call to SpriteBatch.Begin. After render-
ing the scoreboard, you ask your SpriteBatch instance to draw the scoreboard at the
coordinate described in the scoreboardPosition field. When you call SpriteBatch.End,
the texture is sent to the GraphicsDevice.

 Run the application now, and you should see the scoreboard at the top of the
screen. As the player is moved around with the demonstration script, you should see
the score increase when shapes are collected. In the next chapter, you’ll add new
IGamePlayInput implementations that allow the player to be controlled by the user
instead of by a script.

14.4 Summary
Though we’re finished with this chapter, we’re not finished with the game. We’ll con-
tinue working on the game in the next chapter. In this chapter we showed you how to
build a game that mixes Silverlight and XNA programming. Along the way, we gave
you a crash course in XNA Framework concepts such as the game loop, cameras,
three-dimensional models, and two-dimensional textures. We also showed you how to
use bounding geometries to perform collision detection. Finally, you learned how
to render Silverlight controls using UIElementRenderer and SpriteBatch.

 The XNA Framework was built as a gaming platform, and your sample project is a
game. Games don’t have exclusive rights to three-dimensional modeling and render-
ing. There are a number of potential uses of 3D technology including data visualiza-
tion, simulations of real-world environments, and representing connections between
systems of related objects.

 In the next chapter you’re going to learn how to receive input from a player using
Silverlight’s Button, XNA’s TouchPanel, and the MotionSensor. We’ll show you how to

398 CHAPTER 14 Integrating Silverlight with XNA
implement a pause-and-resume feature. You’re also going to replace your demo script
with a variety of input components that use the touch panel and the motion sensor.
You’ll replicate the thumbstick and button pad controls you’d find on an Xbox 360
controller. You’re also going to create components that will control the game with
touch gestures or the motion sensor.

XNA input handling
The XNA Framework provides for a number of input devices across all of its target
platforms. Game players on an Xbox use the controller with its variety of buttons,
triggers, and thumbsticks, as well as a directional pad. Players of Windows-based
games can use the controller as well as the keyboard and mouse. Zune devices pro-
vide a more limited set of buttons, directional pad, and thumbstick, whereas the
Zune HD provides a touch screen and accelerometer.

 Applications and games running on the Windows Phone receive all of their
player input via the touch screen or sensors. Though the phone has a number of
hardware buttons, applications and games can’t use any of them for game play. The
only exception is the Back button, which games can use to navigate between
screens and to exit the application. Some phones have physical keyboards that can
be used by application code, but applications and games must also work on phones
that don’t have physical keyboards. The software keyboard can’t be used by the

This chapter covers
■ Pausing a game
■ Handling Silverlight events
■ Working with touches
■ Using the motion sensor
399

400 CHAPTER 15 XNA input handling
XNA Framework, but can be exposed by Silverlight text input controls even in shared
graphics mode.

 Touch input is processed by the XNA Framework and surfaced to the developer
through a few different APIs. Raw multi-touch data is accessible as TouchLocations.
For simpler scenarios, touches are transformed and exposed by the Mouse API. Touches
are also processed, combined, manipulated, and served up as GestureSamples by the
Gesture API.

 Silverlight elements rendered by the XNA Framework can still use traditional con-
trols to receive input. You start this chapter by adding a Silverlight Button control to
the game you started in the last chapter, allowing the player to resume game play
when the application has been interrupted by the press of the Back button.

 Throughout the rest of the chapter, we’re going to explore how to use each of the
touch-related APIs in a game. You’ll also learn how to incorporate the motion sensor
as an alternative to touch input. To show off these topics, you’ll extend the application
from the last chapter to allow the player to choose which input mechanism they want
to play with. The revised game is shown in figure 15.1.

 The MainPage will provide a radio button for each of the available input types.
When the user presses the Play button, the input type will be read from the radio but-
ton controls and passed to GamePage.xaml as a query string parameter. The Demo

Figure 15.1 The XNA Input sample game showing start screen and game play
screens with thumbstick and buttons

401Implementing pause and resume
button will launch GamePage with the demonstration script you used in the last chap-
ter. You’ll then create four different input mechanisms, each using a different API.
The first input service will be a virtual thumbstick implemented with the TouchPanel
.GetState API. The second input service will use the Mouse API to implement a vir-
tual button pad, another reproduction of the Xbox controller. The last two input ser-
vices will be implemented with gestures and the motion sensor.

 Before you implement the input services, you should learn how to use a Silverlight
Button control on the XNA-rendered GamePage.

15.1 Implementing pause and resume
The Application Certification Requirements for Windows Phone state that games should be
paused with the hardware Back button. When a game is active and the user presses the
Back button, the game should pause. If the Back button is pressed a second time,
the game should navigate to the previous page.

 What does it mean for a game to be paused? The game should no longer update—
players stop moving, enemies stop chasing, projectiles freeze in place, game count-
down timers stop counting down, and the score doesn’t change. Input is no longer
processed and touching the screen no longer has any impact, except to resume the
game. A paused game should provide some visual indication as well as a button or
other control to resume the game.

 The XNA Framework doesn’t include any common user interface controls such as
a button. If you were to implement a button using just the XNA Framework, you’d
need to detect touches to the screen, check whether a touch was over the button, and
animate the button to provide feedback. Fortunately, you don’t need to create an XNA
button control as you can use Silverlight’s button control in your game. Before you
add the Resume button, you need to add the ability to pause the game.

15.1.1 Pausing game play

When the game is paused, you need to cease all update operations such as retriev-
ing user input and moving the player. Update operations can be skipped by not
calling the input service and game component Update methods within the GamePage
.OnUpdate method. This simplistic approach won’t necessarily work in a more com-
plex game, especially one that uses the timing values passed in the OnDraw and OnUpdate
event arguments.

 Add a new field to the GamePage class and name the field isPaused. This field will
be used throughout the GamePage class to identify when the game is paused:

bool isPaused;

Most of the game logic that’s relevant to a running game is called from the OnUpdate
method. If you short-circuit the OnUpdate then you effectively stop the game in its
tracks. Add a check at the top of the OnUpdate method that returns immediately when
isPaused is true:

402 CHAPTER 15 XNA input handling
private void OnUpdate(object sender, GameTimerEventArgs e)
{
 if (isPaused)
 return;
 ...
}

The game will be paused when the user presses the hardware Back key. In chapter 2
we showed you how a Silverlight application detects a Back button press by overriding
the OnBackKeyPress method in the page class. The following listing details the
OnBackKeyPress implementation that pauses your game.

protected override void OnBackKeyPress(CancelEventArgs e)
{
 if (!isPaused)
 {
 isPaused = true;
 resumeButton.IsEnabled = true;
 e.Cancel = true;
 }
 base.OnBackKeyPress(e);
}

You start by checking the value of isPaused B. If isPaused is already true, you do noth-
ing and let the framework proceed as normal, performing a GoBack navigation to Main-
Page. If isPaused is false, you change its value to true, enable the resumeButton, and
cancel the page navigation c by setting the event argument’s Cancel property to true.
Note that you’re referencing a resumeButton field that you haven’t added yet.

NOTE The XNA Framework provides the GamePad API, which can also be
used to detect back button presses. Using the GamePad API is beyond the
scope of the book.

That’s all there is to pausing the game; we told you it was simple. Unfortunately, the
game won’t compile at this point because of the missing resumeButton field. You need
to add the Resume button and restore the game to a running mode when it’s clicked.

15.1.2 Adding the resume button

To get your application to compile and run, you need to add a Silverlight Button con-
trol. Just like you did in the last chapter, you declare Silverlight controls in GamePage
.xaml. You add the Button to the Canvas that’s your layout root. Make sure to name
the button resumeButton. The button’s content is set to Resume Game, and a click
event handler is declared:

<Canvas x:Name="LayoutRoot">
 ...
 <Button x:Name="resumeButton" Canvas.Left="115" Canvas.Top="364"
 Width="250" Height="72" IsEnabled="False"

Listing 15.1 Overriding OnBackKeyPress

Do nothing if
already pausedb

Cancel
navigationc

403Implementing pause and resume
 Content="Resume Game" Click="resume_Click" />
</Canvas>

The button is initially disabled. This is required because even when the button isn’t
drawn and is invisible, a touch to the location where the button exists will trigger a
button click. The button is positioned at coordinate (115, 364), with a width of 250
and a height of 72. You need these details to define a UIElementRenderer and a button-
Position field in the GamePage class. The UIElementRenderer, which you’ll name
buttonRenderer, is used to render and draw the button control:

UIElementRenderer buttonRenderer;
Vector2 buttonPosition = new Vector2(115, 364);

The button renderer is constructed in the GamePage constructor using the same width
and height you specified in the XAML markup:

buttonRenderer = new UIElementRenderer(resumeButton, 250, 72);

Now you’re ready to use the button renderer to draw the button. You’re going to
update the OnDraw method to render and draw the button when the game is paused.
You add the call to Render to the top of the OnDraw method, before you start drawing:

private void OnDraw(object sender, GameTimerEventArgs e)
{
 scoreboardRenderer.Render();
 if (isPaused)
 buttonRenderer.Render();
 var device = SharedGraphicsDeviceManager.Current.GraphicsDevice;
...

Then you add code to draw the button between the calls to SpriteBatch’s Begin and
End methods:

spriteBatch.Begin();
spriteBatch.Draw(scoreboardRenderer.Texture, scoreboardPosition,
 Color.White);
if (isPaused)
 spriteBatch.Draw(buttonRenderer.Texture, buttonPosition, Color.White);
spriteBatch.End();

The button is drawn by the page’s SpriteBatch instance, so the new code is added
before the call to the End method. You put the call to Draw inside an if block to avoid
the extra work when it’s not required.

 The last task in your pause-and-resume feature is to actually resume the game. You
paused the game by setting isPaused to true, and can resume the game by setting
isPaused to false. When the game is resumed, you also need to disable the button
again so that it doesn’t trigger any additional button clicks while it’s hidden:

private void resume_Click(object sender, RoutedEventArgs e)
{
 resumeButton.IsEnabled = false;
 isPaused = false;
}

404 CHAPTER 15 XNA input handling
Now you have a game that can be paused and resumed. Still, it’s a boring game since
the user can’t control it—they’re just a spectator watching the demonstration script
control the player. You’re now ready to implement a few different input services, giv-
ing the user a choice of how to control the player’s movement.

15.2 Adding input services
At this point your game implementation doesn’t allow the user to control the game.
In this section, you’re going to extend the game so that you can switch between the
Touch API, the Mouse API, the motion sensor, and gestures. Let’s review a couple of
key points in the GamePlayComponent. The playerPosition and playerRotation
fields track the location of the player and the direction the player is facing. These fields
are then used to locate the camera, which in turn is used to draw the models in the
world. The playerPosition and playerRotation are changed by reading values from
the IGamePlayInput interface. You created the IGamePlayInput interface to abstract
player movement from the API used to gather input.

 Even though the primary input hardware on the Windows Phone is the touch panel,
the XNA Framework wraps touch input behind a few different APIs. We’re going to look at
how TouchLocations are provided by the raw touch API, which you’ll use to create a
thumbstick. The other APIs that make use of touch input are Mouse.GetState and Touch-
Panel.ReadGesture. One alternative to touch-based input is the motion sensor.

NOTE The Keyboard.GetState API can be used on devices that contain a
hardware keypad. Games that use the keypad must also provide an alternate
input mechanism for devices that don’t have a keypad. We don’t cover the
keyboard in this book.

In this section you’ll create four input services. You’ll use the Mouse.GetState API to
implement a button pad. You’ll also create an input service that translates drag ges-
tures into player movement. Finally, you’ll design an input service that uses the
motion sensor.

 Before you implement the new input services, you need to update your user inter-
face to allow the user the ability to choose which input service to use.

15.2.1 Choosing an input type

This game will use radio buttons on the main page to allow the player to choose the
input service. The game will also let the user run the game with the demonstration
script you built in the last chapter. Figure 15.1 shows the new main page that includes
Demo and Play buttons along with four radio buttons. The new ContentPanel
markup is shown in the next listing.

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />

Listing 15.2 Redesigning the main page

Two rows and
two columns

b

405Adding input services
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <Button Content="Demo" Click="demoGame" />
 <Button Content="Play" Grid.Column="1" Click="Button_Click" />

 <StackPanel Grid.Row="1" Grid.ColumnSpan="2" Margin="12">
 <TextBlock Text="Options" />
 <RadioButton x:Name="thumbstick" Content="Thumbstick"
 IsChecked="True" />
 <RadioButton x:Name="buttonPad" Content="Button Pad" />
 <RadioButton x:Name="gestures" Content="Gestures" />
 <RadioButton x:Name="motionSensor" Content="Motion Sensor" />
 </StackPanel>
</Grid>

First, you start by dividing the ContentPanel grid into two rows and two columns B.
The first row will contain two buttons c. The first button is new, is used to launch the
demo, and is wired to a Click event handler named demoGame. The second button is
used to play the game and was already defined as MainPage.xaml. You change the Play
button markup so that the button appears in the first row and second column of the
ContentPanel. The second row in the ContentPanel contains a StackPanel, a label,
and four RadioButtons d. There’s one RadioButton for each of the input services
you’re going to implement in this chapter.

 When the Play button is clicked, the Button_Click event handler is called. Inside
the event handler, you examine the RadioButtons and add a query string parameter
to the Url used to navigate to the game page. The new implementation of Button_
Click is shown in the following listing.

private void Button_Click(object sender, RoutedEventArgs e)
{
 int input = 0;
 if (thumbstick.IsChecked.HasValue && thumbstick.IsChecked.Value)
 input = 1;
 else if (buttonPad.IsChecked.HasValue && buttonPad.IsChecked.Value)
 input = 2;
 else if (gestures.IsChecked.HasValue && gestures.IsChecked.Value)
 input = 3;
 else
 input = 4;
 NavigationService.Navigate(GamePage.BuildNavigationUri(input)));
}

The Button_Click method was originally generated by the project template when you
first created the project in the last chapter. You update the method by adding several
if statements B that check the IsChecked properties of the RadioButtons. When you

Listing 15.3 Reimplementing the playGame event handler

Two rows and
two columns

b

Two
Buttons

c

Four RadioButtons d

Determine chosen option b

Add query string parameter c

406 CHAPTER 15 XNA input handling
find the RadioButton that’s checked, you assign a corresponding value to the input
variable. You add the value of the variable to a query string parameter c generated by a
new GamePage method named BuildNavigationUri. Finally, you ask the Navigation-
Service to navigate to GamePage.xaml.

 Add the BuildNavigationUri method shown next to GamePage.xaml.cs:

public static Uri BuildNavigationUri(int input)
{
 return new Uri("/GamePage.xaml?Input=" + input, UriKind.Relative);
}

Returning to MainPage.xaml.cs, you use a similar query string in the handler for the
demo button’s Click event, named demoGame. In the demoGame method, you set the query
string parameter to a value of zero, and navigate to GamePage.xaml:

private void demoGame(object sender, RoutedEventArgs e)
{
 NavigationService.Navigate(GamePage.BuildNavigationUri(0));
}

Now that you’re sending the user’s choice to the GamePage, you need to update Game-
Page’s code behind to look at the query string and react appropriately. The next list-
ing shows the updated OnNavigatedTo method in GamePage.xaml.cs that examines
the input type.

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 SharedGraphicsDeviceManager.Current.GraphicsDevice
 .SetSharingMode(true);
 spriteBatch = new SpriteBatch(
 SharedGraphicsDeviceManager.Current.GraphicsDevice);

 string inputType = this.NavigationContext.QueryString["Input"];
 switch (inputType)
 {
 default:
 input = new DemoInput();
 break;
 }
 input.Initialize(content);
 gamePlay.Initialize(content, input);

 timer.Start();
 input.Start();
 base.OnNavigatedTo(e);
}

You start by adding code to extract the input value from the query string, assigning it
to the inputType variable. Next you add a switch statement B that will ultimately cre-
ate all the various input services. You start out creating a DemoInput in the default
section c. You’ll add additional case sections in the following pages of this chapter.

Listing 15.4 Constructing the input component

Branch based
on input valueb

Run demo script
by defaultc

Load input
service contentd

Start input
processinge

407Adding input services
Once the input service is constructed, you call its Initialize method d to give the
component a chance to load any game assets it requires. Finally, you call the input ser-
vice’s Start method e, allowing it to perform any tasks it requires to begin listening
for user input.

 At this point, your game’s main page is complete, allowing the user to choose
which input service to play the game with, and sending that choice to the game page.
You’re still lacking any real input services, and your game still only runs the demon-
stration script. The first of the input services you’re going to implement is a virtual
thumbstick that mimics the behavior of a real Xbox game pad.

15.2.2 Creating a thumbstick
Thumbsticks are a common feature of most game controllers. You can’t use a game
controller with the Windows Phone, but you can create a virtual thumbstick. The
thumbstick will be drawn to the screen and the player will control the game by touch-
ing the screen and dragging the thumbstick in the desired direction. To capture the
touches you’re going to use the Touch API provided by the TouchPanel class. The
TouchPanel provides methods and properties used to determine touch and gesture
information. We’ll focus on touch locations in this section and will cover how Touch-
Panel can be used with gestures later in the chapter.

 The GetState method is used to ask the TouchPanel if the player is currently
touching the screen. GetState returns a collection of TouchLocations, one for each
point where the screen is currently being touched. If the player is touching the screen
with only one finger, then only one TouchLocation is returned. If the player is touch-
ing the screen with three fingers, then three TouchLocations are returned.

NOTE The maximum number of touches supported by Windows Phone is
four. The maximum number of supported touches can be confirmed using
TouchPanel’s GetCapabilities method. GetCapabilities returns a Touch-
PanelCapabilities structure that exposes a MaximumTouchCount property.

Let’s consider the lifecycle of a touch. A player initiates a touch by pressing a finger to
the screen. The player may hold the touch by continuing to press in the same location.
The player may drag their finger across the screen to a new location. Finally, the player
releases the touch by removing their finger from the screen. The TouchLocation
structure reports the player’s actions with the State property.

 The State property is a TouchLocationState enumeration and will have the value of

■ Pressed when the player initiates the touch
■ Moved when the player holds in the same location or drags to a new location
■ Released when the player removes their finger from the screen

For any given touch, only one press and one release will be reported. Any number of
moves may be reported. Presses, releases, and moves are linked together with Touch-
Location’s Id property. The location, in screen coordinates, of the touch is reported
in TouchLocation’s Position property.

408 CHAPTER 15 XNA input handling
 You can see TouchLocations in action by implementing a virtual thumbstick com-
ponent. The thumbstick will implement IGamePlayInput. Add the component by
creating a new project item and naming it ThumbstickInput. Implement the IGame-
PlayInput properties with automatic properties with private setters:

class TumbstickInput : IGamePlayInput
{
 public bool MoveForward { get; private set; }
 public bool MoveBackward { get; private set; }
 public bool TurnLeft { get; private set; }
 public bool TurnRight { get; private set; }
}

Before jumping into the thumbstick imple-
mentation, let’s review the behavior and charac-
teristics of a thumbstick, which are diagramed
in figure 15.2. A thumbstick starts out in a rest
position, and when pushed, moves around a
central point. Because XNA drawing methods
require a top left coordinate, you define the
rest position as an offset of the center point.

 To initiate movement, the player must
touch the thumbstick and push it in one direc-
tion or another. If the initial touch isn’t close
enough to the thumbstick, it should be ignored.
With your virtual thumbstick, you’ll use a
bounding box to filter out initial touches that
are too far from the thumbstick. The sensitivity
area, or dead zone, is used to account for the
thickness of a fingertip. It’s unlikely that the player will touch exactly in the center of
the thumb sprite and you need a margin of error before moving the thumbstick.

 Your implementation will need to account for each of the thumbstick characteris-
tics. You need to define fields for the thumb sprite, center point and rest positions,
and the sensitivity area:

Texture2D thumbsprite;
Vector2 centerPoint = new Vector2(115, 685);
Vector2 sensitivity = new Vector2();
Vector2 restPosition = new Vector2();
Vector4 bounds = new Vector4();

The thumbstick is drawn using a two-dimensional texture contained in the image file
thumbstick.png. The image file is available with the source code from the book’s web-
site. Add the image file to the GraphicsWorldLibContent project, using the default
content name thumbstick. Implement the component’s Initialize method to load
the texture and initialize the sensitivity fields. The sensitivity is initialized to be one
quarter the size of the thumbstick. We’ve already stated that the bounding box is twice

Figure 15.2 Thumbstick bounds, center
point, rest position, and sensitivity area

409Adding input services
the height and width of the thumbstick. Now that you know the size of the sprite, you
can calculate the coordinates of the bounding box. The bounding box coordinates
also depend on the location of the center point. The following listing shows the imple-
mentation of Initialize, and how the sensitivity, resting position, and the bounding
box coordinates are determined.

public void Initialize(ContentManager content)
{
 thumbsprite = content.Load<Texture2D>("thumbstick");

 sensitivity.X = thumbsprite.Width / 4;
 sensitivity.Y = thumbsprite.Height / 4;

 restPosition.X = centerPoint.X - thumbsprite.Width / 2;
 restPosition.Y = centerPoint.Y - thumbsprite.Height / 2;

 bounds.X = centerPoint.X - thumbsprite.Width;
 bounds.Y = centerPoint.Y - thumbsprite.Height;
 bounds.Z = centerPoint.X + thumbsprite.Width;
 bounds.W = centerPoint.Y + thumbsprite.Height;
}

First you load the thumbstick texture using the ContentManager B. Next you adjust
the restPosition to be offset from the center point by one half the width and height
of the thumb sprite. Finally, you adjust the coordinates of the bounding box c using
both the new center point and the dimensions of the thumb sprite.

 You’re going to use the bounding box in the Update method to determine whether
the player is pushing on the virtual thumbstick. The player starts pushing on the thumb-
stick by touching inside the bounding box. To keep the thumbstick from being pushed
in two directions at once, you need to respond to only one touch point at a time. To track
the touch point, you’ll store the Id value of the TouchLocation in a field named touchId:

int touchId;

The touchId field’s value will be zero when you’re not tracking a touch point. Once
you’re tracking a touch point, the motion property values are set based on the touch
location, as shown in the next listing.

public void Update()
{
 MoveForward = false;
 MoveBackward = false;
 TurnLeft = false;
 TurnRight = false;

 TouchCollection touches = TouchPanel.GetState();
 for (int index = 0; index < touches.Count; index++)
 {

Listing 15.5 Initializing the thumbstick

Listing 15.6 Detecting thumbstick movement

Loading
sprite textureb

Change bounding
box coordinates

c

410 CHAPTER 15 XNA input handling
 TouchLocation location = touches[index];
 if (location.State == TouchLocationState.Pressed
 && touchId == 0
 && location.Position.X > bounds.X
 && location.Position.X < bounds.Z
 && location.Position.Y > bounds.Y
 && location.Position.Y < bounds.W)
 {
 touchId = location.Id;
 }
 else if (location.Id == touchId)
 {
 if (location.State == TouchLocationState.Moved)
 {
 MoveForward = location.Position.Y <
 (centerPoint.Y - sensitivity.Y);
 MoveBackward = location.Position.Y >
 (centerPoint.Y + sensitivity.Y);
 TurnLeft = location.Position.X <
 (centerPoint.X - sensitivity.X);
 TurnRight = location.Position.X >
 (centerPoint.X + sensitivity.X);
 }
 else if (location.State == TouchLocationState.Released)
 {
 touchId = 0;
 }
 }
 }
}

After resetting the motion properties, the Update method loops over each of the
touch points. If you’re not currently tracking a touch point and the current touch
point is within the bounding box B, then start tracking the touch point and remem-
ber the TouchLocation’s Id value. If you’re tracking a touch point and the Touch-
Location is in the Moved state, update the motion properties. The motion properties
are set to true when the touch location is outside the sensitivity area c. You check the
sensitivity area to prevent the thumbstick from suddenly jumping when the player’s
touch is slightly off center. You don’t check the bounding box after you start tracking
the touch, as you don’t want to penalize the player if they end up outside the bound-
ing box while pressing the thumbstick.

 It’s not sufficient to respond to the player’s touch. You need to draw the thumb-
stick and provide feedback based on how the player is pushing the controller. Before
you can implement the Draw method, you need a SpriteBatch. You’ll pass a Sprite-
Batch from the GamePage via the class constructor:

SpriteBatch spriteBatch;

public TumbstickInput(SpriteBatch batch)
{
 spriteBatch = batch;
}

Touch initiated
inside bounding box

b

Move only when
outside
sensitivity area

c

Reset touchId
when released

411Adding input services
The Draw method, implemented in the following listing, uses the restPosition as the
initial point for drawing the thumbstick image. Within the Draw method, the motion
properties are used to adjust the thumbstick drawing coordinates.

public void Draw()
{
 Vector2 position = restPosition;
 if (MoveForward)
 position.Y -= thumbsprite.Height / 6;
 if (MoveBackward)
 position.Y += thumbsprite.Height / 6;
 if (TurnLeft)
 position.X -= thumbsprite.Width / 6;
 if (TurnRight)
 position.X += thumbsprite.Width / 6;

 spriteBatch.Begin();
 spriteBatch.Draw(thumbsprite, restPosition, Color.Black);
 spriteBatch.Draw(thumbsprite, position, Color.White);
 spriteBatch.End();
}

The thumbstick position is moved by a value equal to one-sixth of the sprite’s height
and width. This value was chosen by trial and error until a value was found that gave
the best player experience. An all-black copy of the sprite is drawn first, providing a
visual cue to the player identifying the thumbstick’s base.

 The ThumbstickInput component is now complete. Now add the component to
the game. You add code to the switch statement in the OnNavigatedTo method to con-
struct and initialize a new instance of ThumbstickInput:

case "1":
 input = new ThumbstickInput(spriteBatch);
 break;

Your game is now ready to run. Launch the game from Visual Studio, choose the
thumbstick option, and press Play. The game can be played with a virtual thumbstick
that the player can use to move around in the 3D world. The thumbstick is the first of
four input services you’re going to implement in this chapter. The game has been built
so that adding additional input mechanisms will be easy, and the next input service you
implement is a button pad, another control surface found on an Xbox game pad.

15.2.3 Creating a button pad
In addition to thumbsticks, Xbox game controllers provide a set of buttons a player
can use in games. In this section, you’re going to build an input service that provides
virtual A, B, X, and Y buttons the player can use to control the game. The button
input service will use the Mouse API to respond to player input.

 The XNA Framework originally provided the Mouse API to allow Windows-based
games to be controlled by a mouse. Obviously, Windows Phone doesn’t have a mouse,

Listing 15.7 Drawing the thumbstick

Adjust thumbstick
position

Draw
thumbstick
base

412 CHAPTER 15 XNA input handling
but the Mouse API can still be used by Windows Phone games. The framework trans-
lates touch input into a MouseState structure, which is retrieved with the Mouse
.GetState method. The MouseState structure has several properties, most of which
don’t return any valuable information for the Windows Phone. The three properties
that are useful are

■ LeftButton

■ X

■ Y

LeftButton returns either ButtonState.Pressed or ButtonState.Released. The X
and Y integer coordinates will only be valid when LeftButton’s value is Pressed. The
Mouse API only works with the first touch point and can’t be used to determine
whether the player is touching the screen in multiple locations

 You’ll use the Mouse API in your button pad input service. The input service will
check the MouseState in the update loop. If the left button is pressed, the coordinates
are examined to see whether the player is touching one of the virtual buttons.

 Create a new game component named ButtonInput and extend
IGamePlayInput. Implement the IGamePlayInput’s motion properties
with automatic properties. You also need to add a SpriteBatch field as
you did for the thumbstick input component.

 The images that form the buttons all come from the same file, or
sprite sheet. The sprite sheet is shown in figure 15.3.

 To help with the drawing code, you’ll create constants to hold sprite
sheet positions:

static readonly Rectangle aSrc = new Rectangle(0, 75, 75, 75);
static readonly Rectangle bSrc = new Rectangle(75, 75, 75, 75);
static readonly Rectangle xSrc = new Rectangle(0, 0, 75, 75);
static readonly Rectangle ySrc = new Rectangle(75, 0, 75, 75);

The ButtonInput implementation will draw each of the buttons relative to a center point:

static readonly Point centerPoint = new Point(320, 640);

You also need several fields that will be used for drawing the buttons:

Rectangle aPosition = new Rectangle(0, 0, 75, 75);
Rectangle bPosition = new Rectangle(0, 0, 75, 75);
Rectangle xPosition = new Rectangle(0, 0, 75, 75);
Rectangle yPosition = new Rectangle(0, 0, 75, 75);

Rectangle aPosition2 = new Rectangle(0, 0, 65, 65);
Rectangle bPosition2 = new Rectangle(0, 0, 65, 65);
Rectangle xPosition2 = new Rectangle(0, 0, 65, 65);
Rectangle yPosition2 = new Rectangle(0, 0, 65, 65);

The button positions are calculated in the Initialize method, detailed in the
next listing.

Figure 15.3
The button
sprite sheet

413Adding input services
public void Initialize(ContentManager content)
{
 spriteSheet = content.Load<Texture2D>("buttons");

 aPosition.X = centerPoint.X;
 aPosition.Y = centerPoint.Y + 80;
 aPosition2.X = aPosition.X + 5;
 aPosition2.Y = aPosition.Y + 5;

 bPosition.X = centerPoint.X + 80;
 bPosition.Y = centerPoint.Y;
 bPosition2.X = bPosition.X + 5;
 bPosition2.Y = bPosition.Y + 5;

 xPosition.X = centerPoint.X - 80;
 xPosition.Y = centerPoint.Y;
 xPosition2.X = xPosition.X + 5;
 xPosition2.Y = xPosition.Y + 5;

 yPosition.X = centerPoint.X;
 yPosition.Y = centerPoint.Y - 80;
 yPosition2.X = yPosition.X + 5;
 yPosition2.Y = yPosition.Y + 5;
}

You start by loading the button pad sprite sheet using the ContentManager B. The
sprite sheet will be stored in a Texture2D field named spriteSheet. Next each of the
position rectangles need their x and y coordinates updated, and the new values are
calculated as offsets from the center point. The A and Y buttons are moved above and
below the center point, respectively. The X and B buttons are moved to the left and right
of the center point, respectively. The position2 rectangles will be used in the Draw
method to provide a visual cue to the player that a button is pressed.

 Now you’re ready to update the motion properties. The Update method, shown in
the following listing, reads the MouseState and uses the mouse location to determine
the motion property values.

public void Update()
{
 MouseState location = Mouse.GetState();

 if (location.LeftButton == ButtonState.Pressed)
 {
 MoveForward = yPosition.Contains(location.X, location.Y);
 MoveBackward = aPosition.Contains(location.X, location.Y);
 TurnLeft = xPosition.Contains(location.X, location.Y);
 TurnRight = bPosition.Contains(location.X, location.Y);
 }
 else
 {

Listing 15.8 Initializing the drawing positions for each button

Listing 15.9 Determining input state from MouseState

Load the
sprite sheetb

If user is
touching screen

414 CHAPTER 15 XNA input handling
 MoveForward = false;
 MoveBackward = false;
 TurnLeft = false;
 TurnRight = false;
 }
}

When the mouse is pressed, and the location is inside one of the button position rect-
angles, the corresponding motion property is set to true. With the motion properties
set, you’re now ready to draw the buttons. The Draw method, shown in listing 15.10,
uses the sprite sheet, the position rectangles, and the motion properties to render but-
tons on the screen.

public void Draw()
{
 spriteBatch.Begin();

 spriteBatch.Draw(spriteSheet, yPosition, ySrc, Color.White);
 if (MoveForward)
 spriteBatch.Draw(spriteSheet, yPosition2, ySrc, Color.White);

 spriteBatch.Draw(spriteSheet, aPosition, aSrc, Color.White);
 if (MoveBackward)
 spriteBatch.Draw(spriteSheet, aPosition2, aSrc, Color.White);

 spriteBatch.Draw(spriteSheet, xPosition, xSrc, Color.White);
 if (TurnLeft)
 spriteBatch.Draw(spriteSheet, xPosition2, xSrc, Color.White);

 spriteBatch.Draw(spriteSheet, bPosition, bSrc, Color.White);
 if (TurnRight)
 spriteBatch.Draw(spriteSheet, bPosition2, bSrc, Color.White);

 spriteBatch.End();
}

In addition to drawing each button, the Draw method draws a second, scaled-down
copy of the button when its matching motion property is true. This button-within-a-
button technique provides visual feedback that the button is pressed.

 You’re now ready to add the ButtonInput to the game. Just as you did with the
ThumbstickInput, you construct the component in the OnNavigatedTo of the Game-
Page. You add code to the switch statement in the OnNavigatedTo method to con-
struct and initialize a new instance of ButtonInput:

case "2":
 input = new ButtonInput(spriteBatch);
 break;

This wraps up the implementation of your ButtonInput that uses the Mouse API. Your
next input service will use touch gestures.

Listing 15.10 Drawing the button pad

415Adding input services
15.2.4 Gaming with gestures

In this section, you’re going to build an input service that allows the player to use
touch-and-drag gestures to move about in the game. Touch-and-drag gestures are two
of the gestures supported by the Gesture API. The Gesture API is provided by the XNA
Framework to enable consistent multi-point touch gesture recognition for games.

 The XNA Framework translates touch input into a GestureSample structure, which
is retrieved with the TouchPanel.ReadGesture method. GestureTypes are defined as
an enumeration, with the possible enumeration values as listed in table 15.1.

Gesture processing is a compute-intensive operation and is turned off by the default.
Gesture processing is only enabled for the gestures enabled with TouchPanel’s
EnabledGestures property. EnabledGestures can be set to one or more of the Gesture-
Type values. ReadGesture will only return gestures that have been enabled.

 The number and types of gestures are dependent on the types of gestures that
have been enabled. For example, if only Tap has been enabled, two rapid touches will
produce two distinct Tap GestureSamples. But if Tap and DoubleTap have both been
enabled, two rapid touches will produce one Tap GestureSample, and one DoubleTap
GestureSample. If FreeDrag is enabled by itself, a horizontal drag by the player will
produce a FreeDrag GestureSample. But if both FreeDrag and HorizontalDrag are
enabled, the same horizontal drag will only produce a HorizontalDrag GestureSample—
no FreeDrag GestureSample will be read.

 GestureSample defines the following properties:

Table 15.1 Gesture types

Gesture type Description

DoubleTap Two quick touch and release motions in quick succession.

DragComplete A drag motion has ended.

Flick A touch followed by a quick swiping motion.

FreeDrag A touch followed by movement in any direction.

Hold A touch that’s not immediately released.

HorizontalDrag A touch followed by horizontal movement.

Pinch* Two touches followed by movement bringing the two points closer together or
farther apart.

PinchComplete A pinch motion has ended.

Tap A quick touch and release.

VerticalDrag A touch followed by vertical movement.

*Pinch is the only gesture that uses multiple touch points.

416 CHAPTER 15 XNA input handling
■ Delta and Delta2
■ GestureType

■ Position and Position2
■ TimeStamp

The position properties provide coordinates of the touch points underlying the ges-
ture. The delta properties provide clues to how far a touch has moved since the last
time the same gesture was read. Position2 and Delta2 are only used in Pinch ges-
tures, as Pinch is the only gesture to use multiple touch points. Position and Delta
aren’t reported for the DragComplete and PinchComplete GestureSamples.

 Your gesture input service is going to use HorizontalDrag gestures to trigger left
and right turns, and VerticalDrag gestures for forward and backward motion. Create
a new game component named GestureInput and have it extend IGamePlayInput.
Implement the IGamePlayInput’s motion properties with automatic properties. You
also need to initialize adding a SpriteBatch field in the class constructor, as you did
for the other input components.

 The best time to turn on and off gesture processing is when the gesture input com-
ponent is started and stopped. You’ll implement IGamePlayInput’s Start and Stop
methods, as shown in the following listing, to enable and disable gesture processing.

using Microsoft.Xna.Framework.Input.Touch;

public void Start()
{
 TouchPanel.EnabledGestures = GestureType.HorizontalDrag
 | GestureType.VerticalDrag | GestureType.DragComplete;
}

public void Stop()
{
 TouchPanel.EnabledGestures = GestureType.None;
}

When the GestureInput is started, you set the TouchPanel’s EnabledGestures prop-
erty to a binary OR of HorizontalDrag, VerticalDrag, and DragComplete B. When
the input service is stopped, you turn off gesture processing c by setting Enabled-
Gestures to None.

 With the desired gestures enabled, you can now call ReadGesture. In the game, ges-
tures are read and handled in the Update method, as implemented in the next listing.

Vector2 touchPosition;

public override void Update(GameTime gameTime)
{
 while (TouchPanel.IsGestureAvailable)
 {

Listing 15.11 Enabling and disabling gestures

Listing 15.12 Detecting gestures

Turn on drag
gestures

 b

Turn off gesture
processing

c

Check for
available gestures

b

417Adding input services
 GestureSample gs = TouchPanel.ReadGesture();
 touchPosition = gs.Position;
 switch (gs.GestureType)
 {
 case GestureType.HorizontalDrag:
 TurnLeft = gs.Delta.X < 0;
 TurnRight = gs.Delta.X > 0;
 break;

 case GestureType.VerticalDrag:
 MoveForward = gs.Delta.Y < 0;
 MoveBackward = gs.Delta.Y > 0;
 break;

 default:
 TurnLeft = false;
 TurnRight = false;
 MoveForward = false;
 MoveBackward = false;
 break;
 }
 }
 base.Update(gameTime);
}

The IsGestureAvailable property should be used to check whether a gesture is
ready to be read. If you call ReadGesture when IsGestureAvailable is false, an
InvalidOperationException is thrown. Multiple gestures could be available and you
continue to loop until all gestures are read B. When drag gestures are read, you look
at the Delta property to determine whether the motion properties should be set to
true. When a DragComplete gesture is read c, you reset all the motion properties
to false.

 Like your other input components, GestureInput draws a visual cue on the screen
when the player is moving. The visual cue is an arrow that follows the player’s touch-
and-drag gestures. The arrows are read from a file named directional.png, which you add
to the GraphicsWorldLibContent project. Implement the GestureInput’s Initialize
method to load the sprite sheet into a field named spriteSheet:

public void Initialize(ContentManager content)
{
 spriteSheet = content.Load<Texture2D>("directionals");
}

With the sprite sheet loaded and the touch position stored, drawing is easy. The fol-
lowing listing shows the Draw method code used to draw the arrows that appear to follow
the player’s touch.

static readonly Rectangle forwardSrc = new Rectangle(0, 0, 50, 50);
static readonly Rectangle backwardSrc = new Rectangle(50, 50, 50, 50);
static readonly Rectangle leftSrc = new Rectangle(0, 50, 50, 50);
static readonly Rectangle rightSrc = new Rectangle(50, 0, 50, 50);

Listing 15.13 Drawing

Remember touch
coordinates

Stop moving on
DragComplete

c

418 CHAPTER 15 XNA input handling
public void Draw()
{
 spriteBatch.Begin();

 if (MoveForward)
 spriteBatch.Draw(spriteSheet, touchPosition,
 forwardSrc, Color.Red);

 if (MoveBackward)
 spriteBatch.Draw(spriteSheet, touchPosition,
 backwardSrc, Color.Red);

 if (TurnLeft)
 spriteBatch.Draw(spriteSheet, touchPosition, leftSrc, Color.Red);

 if (TurnRight)
 spriteBatch.Draw(spriteSheet, touchPosition, rightSrc, Color.Red);

 spriteBatch.End();
}

You’re now ready to add the GestureInput to the game. Just as you did with the other
input services, you construct the component in the OnNavigatedTo of GamePage. You
add code to the switch statement in the OnNavigatedTo method to construct and ini-
tialize a new instance of GestureInput:

case "3":
 input = new GestureInput(spriteBatch);
 break;

You now have three different input services in your game. All three are touch-based
services, each using a different API to obtain touch and position information. The last
input service we cover in this chapter isn’t a touch-based implementation and uses the
motion sensor instead.

15.2.5 Moving with the motion sensor

You’ve implemented three of the four input services required for the game. The last
input service makes use of the Motion class, moving and turning the player as the
phone is tilted. When the phone is tilted side-to-side, the in-game player will be turned
to the left or right. When the phone is tilted front-to-back, the player will move for-
ward or backward.

 The Motion API was covered in depth in chapter 8. For this game, you’ll keep the
usage of the motion sensor simple, and will use the poll-based CurrentValue property
instead of the CurrentValueChanged events.

 Some phones don’t support a motion sensor, so you need to prevent the user
from selecting the motion sensor option in the main page. You disable the motion
sensor RadioButton shown on the main page from the MainPage constructor. You set
the IsEnabled property to the value returned by the motion sensor’s IsSupported
static method:

motionSensor.IsEnabled = Motion.IsSupported;

419Adding input services
Now you’re ready to implement the new input service. Create a new game component
named MotionInput and have it extend IGamePlayInput. Implement the IGamePlay-
Input’s motion properties with automatic properties. You also need to add a Sprite-
Batch field as you did for the other game components, initializing the field in the class
constructor. Add a field to store an instance of the motion sensor:

Motion motionSensor = new Motion();

The motion sensor must be started and stopped, which you’ll perform in the input
service’s Start and Stop methods. When a game’s only interaction with the player
is via the motion sensor, special care must be taken to prevent the phone from
locking. The lock screen is triggered when the user hasn’t touched the screen in a
specified amount of time. When a user is playing a motion sensor-based game,
they’re not touching the screen, and their game will pause as the phone enables
the lock screen.

 You can prevent a locked screen by disabling UserIdleDetectionMode through the
PhoneApplicationService. UserIdleDetectionMode should be disabled when the
motion sensor component is started, and enabled again when the input service
is stopped. The next listing shows the Start and Stop method implementations
that start and stop the motion sensor, as well as enable and disable UserIdle-
DetectionMode.

public void Start()
{
 motionSensor.Start();
 PhoneApplicationService.Current.UserIdleDetectionMode
 = IdleDetectionMode.Disabled;
}

public void Stop()
{
 motionSensor.Stop();
 PhoneApplicationService.Current.UserIdleDetectionMode
 = IdleDetectionMode.Enabled;
}

The input component will record a turn when the left or right edge of the screen is
tilted down. Tilting the top or bottom edge will move the player forward and back-
ward. To determine whether the device is tilted, you use the Gravity vector from
the MotionReading class. The following listing shows how you’ll detect motion in the
Update method and adjust the player’s position.

readonly float minimumVector = (float)Math.Sin(MathHelper.PiOver4 / 3);
readonly float maximumVector = (float)Math.Sin(MathHelper.PiOver4);

public void Update()

Listing 15.14 Starting and stopping motion sensor input

Listing 15.15 Updating player movement

Tilt thresholds b

420 CHAPTER 15 XNA input handling
{
 var y = motionSensor.CurrentValue.Gravity.Y;
 MoveBackward = y < -minimumVector && y >= -maximumVector;
 MoveForward = y > minimumVector && y < maximumVector;

 var x = motionSensor.CurrentValue.Gravity.X;
 TurnRight = x > minimumVector && x <= maximumVector;
 TurnLeft = x < -minimumVector && x >= -maximumVector;
}

To prevent the device from being too sensitive to movement, you only update the
player’s position when the device is tilted between 15 and 45 degrees. You define two
constants that represent the length of X and Y Gravity vectors corresponding to the
tilt thresholds B in either direction. Next you obtain the Y Gravity vector to deter-
mine how much the top and bottom edge is tilted c. If the Y Gravity vector is between
the minimum and maximum thresholds, you set MoveBackward or MoveForward to true.
Finally, you set TurnLeft and TurnRight using the X Gravity vector d.

 When the player has tilted the phone enough to trigger motion, you’ll draw an
arrow on the screen in the direction of the motion. You’re going to use the same
sprite sheet to draw arrows that you used in the GestureInput. To help with the draw-
ing code you define some fields:

static readonly Rectangle forwardSrc = new Rectangle(0, 0, 50, 50);
static readonly Rectangle backwardSrc = new Rectangle(50, 50, 50, 50);
static readonly Rectangle leftSrc = new Rectangle(0, 50, 50, 50);
static readonly Rectangle rightSrc = new Rectangle(50, 0, 50, 50);

Vector2 forwardPos = new Vector2(215.0f, 82.0f);
Vector2 backwardPos = new Vector2(215.0f, 745.0f);
Vector2 leftPos = new Vector2(10.0f, 375.0f);
Vector2 rightPos = new Vector2(425.0f, 375.0f);

The arrows will be drawn at the center point of the edge that corresponds to the trig-
gered motion. For example, an arrow will be drawn in the center of the top edge, just
below the scoreboard, when moving forward. The sprite sheet containing the arrow
images is loaded in the Initialize method:

public void Initialize(ContentManager content)
{
 spriteSheet = content.Load<Texture2D>("directionals");
}

With the sprite sheet loaded and the target positions stored, drawing is straightfor-
ward. The next listing shows the Draw method code to draw the arrows that appear
when motion is triggered.

public void Draw()
{
 spriteBatch.Begin();

 if (MoveBackward)
 spriteBatch.Draw(spriteSheet, forwardPos, forwardSrc, Color.Red);

Listing 15.16 Drawing

Check top/
bottom
edge tilt

c

Check side
edge tilt

d

421Summary
 if (MoveBackward)
 spriteBatch.Draw(spriteSheet, backwardPos, backwardSrc, Color.Red);

 if (TurnLeft)
 spriteBatch.Draw(spriteSheet, leftPos, leftSrc, Color.Red);

 if (TurnRight)
 spriteBatch.Draw(spriteSheet, rightPos, rightSrc, Color.Red);

 spriteBatch.End();
}

You’re now ready to add the MotionInput to the game. Just as you did with the other
input services, you need to add a case section to the switch statement in the GamePage
.OnNavigatedTo method:

case "4":
 input = new MotionInput(spriteBatch);
 break;

With the completion of MotionInput you’re finished with the game. The player can
now choose between using a thumbstick, a button pad, dragging a finger across the
screen, or tilting the phone.

 In this section we looked at the different APIs that can be used to receive game
input from a player. The mouse is suitable if you only support one touch point and
only need to know when and where the player is touching the screen. Gestures are
useful when your game is designed to work with the most common set of touch opera-
tions—Tap, Flick, Drag, and Pinch. You must resort to raw touch handling if you use
more complex touch-processing logic.

 What’s important isn’t that you can make virtual thumbsticks or button pads. The
important thing is to understand that there are different ways you can use touch and
the motion sensor to build a game. Knowing how the different input systems work will
help you decide which method best fits your own game.

15.3 Summary
The XNA Framework provides a few different APIs for handling touch input. You used
the TouchPanel class to access raw touch input. The TouchPanel also converts raw
touches into predefined gestures such as Tap, Double Tap, Drag, and Pinch. The Mouse
API can also be used in place of raw touch. You used each of these APIs to build compo-
nents that translated touch input into player motion. You added options to the game
enabling the user to change which of the input components to use during game play.

 Though input handling was the main focus of the chapter, we covered several
other topics. We showed you how to draw images and textures with the SpriteBatch.
You combined several images into a sprite sheet. You also learned how to use a Silver-
light button within an XNA game loop to resume a paused game.

 Supporting pause in your game is important, because the operating system might
interrupt a game to handle other tasks such as a phone call. When the game is reacti-
vated from an interruption, the game should restart in a paused state. The player

422 CHAPTER 15 XNA input handling
should be able to pause a running game by pressing the Back button. We showed how
to detect a Back button press and determine whether the game should be paused or
whether the game should exit.

 This chapter wraps up our coverage of Windows Phone 7. Early in the book we
introduced you to programming concepts unique to Windows Phone. We looked at
the application lifecycle, how to participate in fast application switching, and how to
recover from tombstoning. We built background agents and created alarms and
reminders. We then looked at how to use launchers and choosers to access the phone
dialer, email, and text messaging. Next you learned how to interact with the phone’s
hardware and sensors including the camera, accelerometer, compass, gyroscope, and
motion sensor.

 Windows Phone 7 is an exciting platform for application and game development.
Silverlight and XNA can be used together to build exciting games and applications.
The built-in applications and hubs provide extension points allowing creative develop-
ers the opportunity to extend and enhance the Windows Phone experience. We
showed you how to extend the Pictures Hub and the Music + Videos Hub. Your appli-
cation can also pin Live Tiles on the start screen, giving users glance and go informa-
tion and quick access to your application.

 You now have the tools necessary to create your own Windows Phone games and
applications that you can sell in the Application Marketplace. If you haven’t signed up
with the AppHub, you’ll need to do so before you can publish to the Marketplace. You
can read more about the Marketplace in appendix C.

appendix A
Microsoft Expression

Blend for Windows Phone

Throughout this book you’ve used Visual Studio Express for Windows Phone to
build sample applications. Visual Studio is a great tool for writing and debugging
C# and Visual Basic code, but is only moderately useful for working with XAML doc-
uments. The Visual Studio XAML designer allows you to drag and drop controls onto
a page and provides property editors to allow you to manipulate the appearance of
the user interface. The Visual Studio designer is built for software developers.

 Visual Studio isn’t so friendly for the members of your team who focus on visual
design instead of code. Microsoft Expression Blend allows visual designers to create
user interfaces without writing a single line of C# or Visual Basic code. Designers can
work on user interfaces using the same project files that the developer uses in Visual
Studio. Expression Blend was installed as part of the Windows Phone SDK 7.1.

 In this appendix you’ll learn how to create a new project in Microsoft Expres-
sion Blend. You’ll use the tools and designers provided by Expression Blend to add
an ellipse to the application and change the ellipse’s look and feel. Finally you’ll use
Silverlight Animation and make the ellipse act like a bouncing ball using animation
and behaviors when the user touches the screen. Before you create the sample appli-
cation, you need to know a bit more about Expression Blend’s tools and designers.

A.1 Expression Blend’s tools and designers
Like Visual Studio, the Expression Blend user interface is made up of a workspace
divided into a number of dockable panels surrounding the visual designer and text
editors. Figure A.1 shows the Expression Blend user interface with a sample project
loaded. The dockable panels include various tools such as the Objects and Time-
line tool, the Properties tool, and the Projects tool.
423

424 APPENDIX A Microsoft Expression Blend for Windows Phone
Some of the tools found in Expression Blend, such as the Projects tool, might be
familiar to users of Visual Studio, because the two products provide overlapping fea-
tures. The following list describes the tools shown in figure A.1:

■ The Projects tool is similar to the Visual Studio Solution Explorer and shows all
the code and content files that are part of the application. References to exter-
nal libraries and assemblies are also shown.

■ The Assets tool is similar to Visual Studio’s Toolbox and lists the various con-
trols, shapes, layout containers, and behaviors that are available for use. Items
listed in the Assets Tool can be added to a page with a double-click or by drag-
and-drop.

■ The Device tool allows you to change the page orientation and the system
theme color used by the designer when displaying a page. The Device Tool also
provides the target device selector which allows you to choose whether the
application should be deployed to the emulator or a connected phone.

■ The Properties tool is similar to the Properties view in Visual Studio. The Prop-
erties tool allows you assign values to various control properties such as Fill,
Background, Height, or Width.

■ XAML and code documents are displayed by the designer or editor in the cen-
ter of the workspace. The XAML editor supports three views—a visual designer,
a code editor, and a split design/code view.

Figure A.1 The Expression Blend user interface showing the Projects, Assets, Device, Properties, and
Objects and Timeline panels. The designer resides in the center of the workspace.

425Creating an application
■ At first glance, the Objects and Timeline view looks similar to Visual Studio’s
Document Outline view. But this useful tool provides several unique features
for managing animations, which we’ll demonstrate in a few pages.

Now that you’ve been introduced to Expression Blend’s tools, you’ll create a sam-
ple application.

A.2 Creating an application
Creating a new application in Expression Blend is nearly identical to creating an
application in Visual Studio. From either the splash screen or the file menu, selecting
the New Project option will display the New Project dialog box. The New Project dia-
log box, shown in figure A.2, prompts you for a project template, application name,
programming language, and Windows Phone SDK version.

 Expression Blend provides five of the project templates provided by Visual Studio
for creating Silverlight applications and control libraries. You can’t use Expression
Blend to create Silverlight with XNA or background agent projects.

 To start your sample application, create a new project using the Windows Phone
Application project template and name the application HelloBlend. Take a few min-
utes to explore Expression Blend and the tools you learned about in the previous sec-
tion. Use the Objects and Timelines view to select the PageTitle TextBlock and
the Properties panel to change the text from page name to hello blend. Next, switch to the
Device panel, change the preview accent color to Green, and select the Windows
Phone Emulator as the run target. Finally, run the project by pressing the F5 key or by
selecting Run Project from the Project menu.

Figure A.2 Expression
Blend’s New Project dialog
box listing the Windows
Phone project templates

426 APPENDIX A Microsoft Expression Blend for Windows Phone
A.3 Adding a shape to the page
Now that you have a running application built in Expression Blend, you’ll use the
Asset tool to add an ellipse to the page. Then you’ll use the Properties view to assign a
new gradient brush to the ellipse so that it looks more like a ball.

 Before you add the ellipse to the page, you
should change the ContentPanel from a Grid
container to a Canvas. The Objects and Time-
line tool makes it easy to implement this change
with the Change Layout Type option on the con-
text menu, shown in figure A.3.

 Next, you’re going to add an Ellipse to the
ContentPanel using the Assets tool. Open the
Assets tool and select the Shapes category. You
can scroll through the list until you find
Ellipse, or you can type ellipse into the search
widget. The search widget quickly narrows down
the list and displays only matching items in the
Assets tool, as seen in figure A.4. With the
ContentPanel selected in the Objects and Timeline view, double-click Ellipse in the
Assets tool.

 By default, the new Ellipse shape will be a circle, which is what you want. You’ll
simulate a 3D lighting effect using a GradientBrush. Select the newly added ele-
ment by clicking on Ellipse in the Objects and Timeline tool. An object’s properties

Figure A.4 The Assets view filtered to
show only the Ellipse

Figure A.3 Changing the
ContentPanel from a Grid
to a Canvas

427Animating the ellipse
can be modified using the Properties tool, and in this case you want to change the
Fill property.

 Changing the Fill property can be confusing the first time you use Expression
Blend’s brush property editor. First you want to click on the fill line in the editor, seen
in figure A.5. Next you want to specify a GradientBrush using the middle button in
the toolbar. Then you’ll specify a radial gradient using the button in the lower-left cor-
ner of the brush editor. The first gradient stop color will be white, whereas the second
gradient stop color will use the PhoneAccentColor resource.

 If you’ve configured the brush correctly, the ellipse should look more like a ball,
with a whitish center and a solid color perimeter. You can check that you configured
the brush to use the theme color by changing the preview accent color setting in the
Device tool. Now try launching the application in the emulator—does the ellipse pick
up the theme color specified in the settings application?

A.4 Animating the ellipse
You now have a simple application that displays what appears to be a ball on the
screen. Your goal is to move the ball across the screen, bouncing off the edges as it
moves. You’ll implement the movement using Silverlight animation and storyboards.
Expression Blend makes it easy to create storyboards and animate controls with the
Object and Timeline tool.

 You’ll use the Objects and Timeline tool to create a new storyboard, and then
add the bounce animations to the storyboard. Create a new storyboard by clicking
the New Storyboard button, shown in figure A.6, and entering the name bounce-
Storyboard in the Create Storyboard Resource dialog box.

 Once a storyboard is open, the Objects and Timeline view changes to show a time-
line with playback controls. Now you’re ready to record your bounce animation.
Select the Ellipse in the Object tree, and click the Record Keyframe button, shown in
figure A.7, to give your ball a starting point. Next move the playhead to the 1-second

Figure A.5 Specifying the
Ellipse’s Fill using
the brush editor. The left
image shows the first
gradient stop with white
as the selected color.
The right image shows
the second gradient
stop with the
PhoneAccentColor
resource as the
selected color.

428 APPENDIX A Microsoft Expression Blend for Windows Phone
mark and drag the Ellipse to the bottom of the ContentPanel. Repeat the operation,
setting the playhead and ellipse position for the 2-and 3-second marks. The com-
pleted storyboard is shown in figure A.7.

 If you run the application now, nothing is different than before you created the
bounce storyboard. The ball sits in the corner doing nothing. Next you’ll add a trigger
to play the animation when the user taps the screen.

Figure A.6 Create a new storyboard by
clicking the New Storyboard button and
entering a name in the Create Storyboard
Resource dialog.

Figure A.7 The Objects and Timeline tool with the complete bounce storyboard

429Summary
A.5 Triggering an animation
To start an animation, a developer using Visual
Studio might subscribe to the Ellipse’s Tap event
and call the storyboard Begin method from code
behind. Expression Blend allows designers to per-
form the same task without writing code. Expres-
sion Blend makes this possible through a feature
named behaviors. Behaviors are pre-built compo-
nents that use Silverlight attached properties to
bind to user interface controls and execute a pre-
defined action.

 You want the ball to bounce every time the
user taps on it, so you’ll use a behavior named
ControlStoryboardAction to start the bounce
storyboard you created in the last section. With
the Ellipse selected in the Objects and Timeline
tool, open the Assets tool to the Behaviors
category and double-click ControlStoryboard-
Action. A new node should now exist in the Objects and Timeline tool. Go ahead
and select the new node, and then open the Properties view. Figure A.8 shows the
Properties view for the ControlStoryboardAction.

 You need to make changes to two of the ControlStoryboardAction’s properties.
First, change the EventName property to Tap. Next change the Storyboard property to
bounceStoryboard. Run the application now and tap on the ball on the screen. You
should now see the ball move around on the screen while the animation plays.

A.6 Summary
Microsoft Expression Blend is a powerful application development tool and we’ve just
scratched the surface in this appendix. Expression Blend provides support for custom
controls, design time data and view model support for the Model-View-ViewModel
(MVVM) pattern, and SketchFlow for rapid application prototyping. If you’d like to
read more about Expression Blend, check out Expression Blend in Action by Joel Cochran,
available from Manning Publications.

 Microsoft provides tutorials, training videos, and starter kits on the Expression
website (see http://mng.bz/M2Ll).

Figure A.8 Setting the properties for
the ControlStoryboardAction

http://mng.bz/M2Ll

appendix B
Silverlight and the

Extensible Application
Markup Language

What’s Silverlight? Silverlight is an implementation of Microsoft’s .NET Framework
that has been scaled down and tuned to build good-looking, interactive, and
responsive client applications. Silverlight includes the .NET Framework APIs needed
for client-side application features and strips out APIs not well suited for restricted
environments like the browser and Windows Phone. Silverlight application user
interfaces are designed with the Extensible Application Markup Language (XAML) and
its related Silverlight class libraries.

XAML was first introduced as part of the Windows Presentation Foundation.
XAML excels as a user interface markup language, separating the user interface
design from the code behind implementing an application’s business logic.
XAML not only defines WPF and Silverlight UIs, but is one of the options when
building WinRT applications for the upcoming Windows 8 operating system. If
you’re coming from a web development background, you can think of XAML as
similar to HTML, which you use to create UI for your web page. XAML is an
XML document that represents the hierarchical structure of an application’s
user interface.

 This appendix serves as a quick introduction to XAML. We’ll cover basic UI lay-
out and the available UI controls. We’ll move on to an introduction to the data
binding features built into Silverlight. We wrap up using DataTemplates to create a
user interface for a domain model object. Let’s start by examining the default
XAML generated when you create a new application with the Windows Phone
430

431Silverlight and the Extensible Application Markup Language
Application project template. Figure B.1 shows a
screenshot of the application generated by the
project template.

 The default application generates a page that
contains a Grid layout control, a StackPanel layout
control, and two TextBlocks. The XAML markup
for the form is shown in the following listing. We’ll
refer back to this listing several times in the next
few pages.

<phone:PhoneApplicationPage x:Class="Primer.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:phone=
 "clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"
 xmlns:primer="clr-namespace:Primer"
...
 />
 <Grid x:Name="LayoutRoot" Background="Transparent">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>
 <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28"
 Orientation="Vertical" >
 <TextBlock x:Name="ApplicationTitle" Text="MY APPLICATION"
 Style="{StaticResource PhoneTextNormalStyle}"/>
 <TextBlock x:Name="PageTitle" Text="page name" Margin="9,-7,0,0"
 Style="{StaticResource PhoneTextTitle1Style}"/>
 </StackPanel>
 <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"/>
 </Grid>
</phone:PhoneApplicationPage>

The root of the XAML document is an element of type PhoneApplicationPage B. Ele-
ments in a XAML document must be matched with a class name from either the Silver-
light class libraries or your application’s code. The root element also contains a Class
attribute that declares the full name of the C# class containing the code behind for
the user interface. The class named in the Class attribute must be derived from the
class used as the root element. In listing B.1, the class MainPage is derived from
the class PhoneApplicationPage.

 You might have noticed that the root element uses the XML namespace phone. In
XAML, namespaces can be declared with an assembly name or with a URI. An example
of the URI version can be seen in the third line of listing B.1, declaring the x namespace.
The fourth line of the listing shows the assembly name version declaring the phone
namespace. The fifth line of the listing is the declaration for the Primer namespace,
which is part of the application and doesn’t need to specify an assembly name.

Listing B.1 XAML generated by the Windows Phone Application project template

Root element b

Figure B.1 A screenshot of the
default application

432 APPENDIX B Silverlight and the Extensible Application Markup Language
 Most XAML documents you create for Windows Phone will derive from either
PhoneApplicationPage or from UserControl. Both PhoneApplicationPage and User-
Control expect to have a single child control. In most cases the child control will be a
layout control derived from the Panel class.

B.1 Layout controls
Layout controls are containers of other controls and are responsible for automatically
positioning their children on the screen. The Windows Phone SDK includes three dif-
ferent layout controls named StackPanel, Grid, and Canvas.

 The StackPanel control lays out its children in a horizontal or vertical stack,
depending on the value of its Orientation property. The StackPanel in listing B.1
specifies an orientation of Horizontal, which is the default value if an Orientation
attribute isn’t declared. A horizontal StackPanel stacks controls one on top of the
other and will ensure that all child controls have exactly the same width. A vertical
StackPanel stacks controls side by side and will ensure that all controls have exactly
the same height.

 The Grid control lays out its children in a series of rows and columns. By default, a
Grid has only one row and one column. Additional rows and columns are specified
with the Grid.RowDefinitions and Grid.ColumnDefinitions properties, respec-
tively. The Grid control named LayoutRoot in listing B.1 has two rows and a single col-
umn. The first row is given a height of Auto and uses as much height as needed. The
second row is given a height of *, which tells the Grid to give the row a height that fills
all of the remaining space. Child controls specify their row and column with Grid.Row
and Grid.Column attributes. For example, the Grid named ContentPanel specifies
that it should be placed in the second row. Row and column indexes are zero-based. A
control can span multiple rows and columns using the Grid.RowSpan and Grid
.ColumnSpan attributes. If a child control doesn’t specify its row and column values,
it’ll be placed in the first row and first column.

 The Canvas control lays out its children using absolute positioning. The positions
of child elements are declared using Canvas.Left and Canvas.Top properties. If a
child doesn’t declare its position, it’ll be placed at coordinate (0, 0).

B.2 Interacting with Silverlight controls
Silverlight for Windows Phone contains many of the common controls you’d expect in
a user interface library. You should be aware that some of the controls present in WPF
and Silverlight for the browser aren’t supported on the Windows Phone. Check the
MSDN documentation for a full list of controls supported by Windows Phone.

 Let’s take a look at how to declare a simple form with a few controls and how to
interact with the controls from code. The form will contain a TextBlock to display a
label, a TextBox to receive input from the user, and a Button:

<StackPanel>
 <TextBlock Text="Please enter your name" />

433Styles and resources
 <TextBox x:Name="nameTextBox" />
 <Button Content="Save" Width="150" Click="Button_Click" />
</StackPanel>

You’ve given the TextBox a name using the x:Name attribute. The compiler will auto-
matically generate a field for named controls, allowing you to easily access the control
from code behind. The Button control is defined with a Width value of 150 pixels.
When the button is tapped by the user, a Click event is raised, and a custom event
handler method named Button_Click is called:

private void Button_Click(object sender, RoutedEventArgs e)
{
 string name = nameTextBox.Text;
 MessageBox.Show("You entered : " + name);
}

In the Button_Click method, you use the generated field nameTextBox to retrieve the
text entered by the user. You then use the MessageBox class to display a message to
the user with a pop-up window.

B.3 Styles and resources
Specifying individual properties for every control can become onerous and error
prone. For example, suppose a form contains five buttons and each button specifies a
width of 150 pixels. If you want to change the width from 150 pixels to 155 pixels, you
must make the change five times. Styles allow you to set properties on multiple con-
trols all at once. Styles are declared inside the Resources property of an XAML ele-
ment. The following snippet declares a Style with the key NarrowButton that applies
to Button controls:

<Grid.Resources>
 <Style x:Key="NarrowButton" TargetType="Button">
 <Setter Property="Width" Value="150" />
 </Style>
</Grid.Resources>

The NarrowButton Style will set a Button’s Width property to 150 pixels. Styles are
explicitly set on controls using the StaticResource markup extension:

<Button Content="Save" Click="Button_Click"
 Style="{StaticResource NarrowButton}" />

If you look back at listing B.1, you’ll see two other examples of setting a Style with the
StaticResource markup extension. The Styles named PhoneTextNormalStyle and
PhoneTextTitle1Style are two of a number of different styles provided by the Win-
dows Phone SDK to allow you easily build Metro-themed applications. You can read
more about the built-in styles in chapter 11.

 Styles can also be automatically applied to a set of controls. These automatic styles
are named implicit styles, and are activated by creating a style without a key.

434 APPENDIX B Silverlight and the Extensible Application Markup Language
B.4 Binding controls to model objects
One of the more powerful aspects of Silverlight is its ability to separate user interface
markup from code logic. Data binding is one of the underlying features that enable
UI separation. In the Button_Click method we discussed earlier, the code behind
needed to know that a TextBox control named nameTextBlock exists in the UI
markup. This knowledge links the UI markup to code behind. If the TextBox is
renamed, or if another type of control is used instead of a TextBox, the code will have
to change as well.

 Data binding enables you to write code behind that’s unaware of the names and
types of input controls used in the user interface. Let’s say you have a plain C# domain
model object with a UserName property:

public class SampleModel
{
 public string UserName { get; set; }
}

In the page contructor, you create a new instance of the model object and assign it to
the page’s DataContext property:

DataContext = new SampleModel();

The DataContext property is used by the Silverlight binding system as the data source
when resolving data binding requests made in XAML markup. A data binding request
is declared with the Binding markup extension:

<TextBox x:Name="nameTextBox" Text="{Binding UserName, Mode=TwoWay}" />

In the snippet, you declare that the TextBox should get its value from a property
named UserName that exists on the model object referenced by the DataContext. Set-
ting the binding Mode to TwoWay tells the TextBox to write any changes back to the
UserName property as well. Now you can update the Button_Click method and
replace knowledge of the TextBox with code that uses the DataContext:

private void Button_Click(object sender, RoutedEventArgs e)
{
 SampleModel model = (SampleModel)DataContext;
 MessageBox.Show("You entered : " + model.UserName);
}

Using plain C# objects works well if data binding is only writing to the model object. If
portions of your user interface read from the model object as well, you can help out
the data binding system by implementing property change notifications.

B.5 Property change notifications
When a model object is used as a binding source, the binding system checks whether
the model object implements the INotifyPropertyChanged interface. The INotify-
PropertyChanged interface declares a single member, an event named Property-
Changed. The binding system subscribes to the PropertyChanged event and tells the

435Element-to-element binding
user interface controls to update the values they’re displaying when the event is
raised. A sample model object that implements INotifyPropertyChanged is shown in
the next listing.

public class SampleModel : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 string userName;
 public string UserName
 {
 get { return userName; }
 set
 {
 userName = value;
 if(PropertyChanged != null)
 PropertyChanged(this,
 new PropertyChangedEventArgs("UserName"));
 }
 }

}

To implement INotifyPropertyChanged, an event named PropertyChanged B is
added to the class. The event should be raised whenever a property is changed. Inside
the property setter, you determine whether any listeners are subscribed to the event by
checking whether the PropertyChanged event is null. If the event isn’t null, you raise
the event and send a new instance of the PropertyChangedEventArgs class c. The
name of the changed property is specified when constructing the event args.

 In addition to binding user interface controls to model objects, the data binding
system also supports binding the property of one control to the property of another
control. Binding one control to another is called element-to-element binding.

B.6 Element-to-element binding
When designing user interfaces, you often come across usability features that have little to
do with the business logic implemented in a model object. For example, a button might
be disabled or hidden if the value in a TextBox is empty. The model object shouldn’t care
whether a button is enabled. Let’s see how to use element-to-element binding to echo the
value entered into a TextBox in another control, in this case a TextBlock:

<TextBlock Text="{Binding Text, ElementName=nameTextBox,
 StringFormat='You entered: \{0\}'}" />

You use the Binding markup extension to bind the Text property of the TextBlock to
the Text property of a TextBox. The ElementName attribute identifies which TextBox
to use, in this example the TextBox named nameTextBox. Finally, you use the String-
Format markup extension so that the value isn’t merely echoed in the TextBlock, but
is a formatted message.

Listing B.2 Implementing INotifyPropertyChanged

Define
event
handlerb

Raise
event

c

436 APPENDIX B Silverlight and the Extensible Application Markup Language
 Let’s return to the example of disabling a Button when a TextBox is empty. There’s
no automatic way to bind a Button’s Boolean IsEnabled property to the length of the
TextBox’s Text string. What you need is a way to convert data during data binding.

B.7 Converting data during data binding
Data binding connects the property in a source object with a property in a target object.
Sometimes the source property’s type doesn’t match the target property’s type. Silver-
light’s data binding system knows how to automatically convert certain types of data. For
example, the data binding system will automatically convert the string entered in a Text-
Box to an integer property in a bound object. Silverlight provides a mechanism named
value converters as a way to convert data types that can’t be automatically converted.

 At the heart of the value conversion process is the IValueConverter interface.
IValueConverter defines two methods named Convert and ConvertBack. The Convert
method is called when copying the source property into the target property. The
ConvertBack method is used in TwoWay binding when the target property’s value is
copied back to the source property. A sample value converter, named StringLength-
ToBooleanConverter, transforms a string into a Boolean value, based on the length of
the string. If the is string empty, the converter returns false:

public object Convert(object value, Type targetType,
 object parameter, CultureInfo culture)
{
 string text = value as string;
 return string.IsNullOrEmpty(text) ? false : true;
}

To use a value converter in a XAML document, you first declare an instance of the con-
verter as a resource:

<Grid.Resources>
 <primer:StringLengthToBooleanConverter x:Key="stringLengthConverter" />
</Grid.Resources>

Value converters are specified using the Converter attribute of the Binding markup
extension:

<Button Content="Save" Click="Button_Click"
 Style="{StaticResource NarrowButton}"
 IsEnabled="{Binding Text, ElementName=nameTextBox,

➥ Converter={StaticResource stringLengthConverter}}" />

We’ve just scratched the surface of the features built into the data binding system and how
to use data binding to separate user interface code from business logic. DataTemplates
are another feature of Silverlight that enables the designer/developer workflow.

B.8 Using templates to build data model UI
DataTemplates allow application code to manage domain model objects without
regard to the user interface used to display them. ListBoxes, ContentControls, and

437Summary

eclare
ntent
mplate
other content-based controls are designed to display generic objects. By default,
content-based controls will call the ToString method of its contained object, and dis-
play the result in the user interface. The default presentation can be replaced using
a DataTemplate. The following listing shows how to create a DataTemplate for a
ContentControl bound to a sample model object.

<ContentControl Content="{Binding}" HorizontalContentAlignment="Stretch">
 <ContentControl.ContentTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <Polygon Width="50" Height="60" Points="10,0 50,25 10,50"
 Fill="{StaticResource PhoneAccentBrush}"/>
 <StackPanel>
 <TextBlock Text="User Name:"
 Style="{StaticResource PhoneTextGroupHeaderStyle}" />
 <TextBlock Text="{Binding UserName}"
 Style="{StaticResource PhoneTextLargeStyle}" />
 </StackPanel>
 </StackPanel>
 </DataTemplate>
 </ContentControl.ContentTemplate>
</ContentControl>

The ContentControl’s Content property is bound to the page’s DataContext using an
empty Binding expression. Next, you set the ContentTemplate property of the Content-
Control B by declaring a DataTemplate. The DataTemplate uses nested StackPanels
to display a triangle, a label, and the value of the model’s UserName property c.

 Though we haven’t covered them here, templates are also used to customize the
look and feel of controls. A designer can use templates to completely change the way a
Button, TextBox, or other Control-derived class appears in the user interface.

B.9 Summary
Silverlight is a powerful application development platform and we’ve just scratched
the surface in this appendix. Silverlight has built-in support for transforms, anima-
tions, commands, custom controls, and more. Many Silverlight developers have adopted
the Model-View-ViewModel (MVVM) pattern that leverages Silverlight’s features to fur-
ther separate user interface code from business logic.

 We take a deeper look at some of the controls in chapter 11. Otherwise there are
plenty of good references for learning Silverlight:

■ Silverlight 5 in Action by Pete Brown, published by Manning Publications Co
■ Silverlight.net, a Microsoft portal with links to tools, tutorials, and forums
■ “Microsoft Domain-Specific Languages and XAML Specifications,” an MSDN page

listing the published XAML specifications (see http://mng.bz/rede)

Listing B.3 Creating a DataTemplate for a ContentControl

D
co
te

b

Bind to model
property c

http://mng.bz/rede

appendix C
AppHub and Marketplace

AppHub and Marketplace are where you go to submit and sell games. Once you’ve
built and tested your Windows Phone application, you want to get your application
into the hands of users and start earning some money. The AppHub is where you
go to submit your application to the Marketplace. The Marketplace is the only
place a user can install your application.

 The Marketplace was built to provide Windows Phone users with a single
source for downloading and purchasing applications. Microsoft wanted to make it
easy for developers to connect with users, get paid for their applications, and
license their applications. Microsoft also wanted Windows Phone users to feel safe
and secure, knowing that the applications they download have been tested and are
free of malware.

 The steps necessary for publishing an application are register, build, and sub-
mit. Once submitted, Microsoft will put the application through a series of certifi-
cation tests. If your application doesn’t pass certification, it won’t be made available
to Windows Phone users. Fortunately, the Windows Phone developer tools come
with a helpful tool that walks you through automated and manual certification
tests. You can track the certification status in your AppHub Dashboard.

 The AppHub Dashboard is where you go to review the progress of your applica-
tion. The Dashboard shows the certification status. Once your application passes
certification and is made available to users, you can track downloads, money
earned, and user reviews.

 At this point, you’ve probably already registered, but if not, head over to the
AppHub, http://create.msdn.com, and register for a new account.

C.1 Registering
Registering for the AppHub isn’t as simple as registering for a normal website.
Because the AppHub is responsible for collecting money on your behalf, they have
438

http://create.msdn.com

439Registering
a legal obligation to validate that a seller is a real person and/or business. Microsoft
will only register individuals and businesses that reside in the countries where they’ve
established the procedures and processes to ensure they follow local tax laws.

NOTE For legal reasons, developers in certain regions around the world
aren’t allowed to register with the AppHub or submit applications to the Mar-
ketplace. In these regions, developers can use a global publisher to submit
applications on their behalf.

During the registration, you’ll be asked for personal and business information. The
type of information you’ll need to provide will vary based on the account type you
choose. There are three different account types: Individual, Business, and Student,
shown in figure C.1. Choose Individual if application sales will be reported as part of
your personal income. Choose Student if you participate in Microsoft’s DreamSpark
program. AppHub registration is free for DreamSpark participants. When choosing
Business, you’ll be asked for the contact information of an individual within your
organization who will provide the necessary documentation for identity validation.

 Registration isn’t instantaneous. Microsoft uses GeoTrust for identity validation
and the validation process will take approximately 10 days to complete. After complet-
ing registration on the AppHub’s website, you’ll be contacted by GeoTrust if any addi-
tional documentation is required. GeoTrust may request a business’s articles of
incorporation or charter documents. When the identity validation process is com-
plete, you’ll be able to submit applications to the marketplace.

Figure C.1 Choosing an AppHub account type

440 APPENDIX C AppHub and Marketplace
C.2 Submission
You’ve registered, have an AppHub account, and have built and tested a killer Win-
dows Phone application. Now you need to submit the application to the Marketplace.
Where do you start? Applications are submitted from the AppHub website. Once
you’ve logged into your AppHub account, look for the Submit for Windows Phone
link on the home page of the AppHub.

 The application submission and certification process isn’t instantaneous. Each
application is run through a series of tests to ensure the application meets the require-
ments specified in the Application Certification Requirements for Windows Phone. The certi-
fication process takes approximately five business days to complete.

NOTE If your application uses private or account-restricted web services, you
might be asked to provide special access or private builds of the web services
to the testing and certification team.

Your application will be rejected if it doesn’t meet all of the certification requirements.
Microsoft has provided the Marketplace Test Kit as part of the Windows Phone Devel-
oper Tools to help developers build applications that pass marketplace certification.

C.2.1 Using the Marketplace Test Kit

The Marketplace Test Kit includes a series of automated, monitored, and manual tests
you can use to ensure your application meets the Application Certification Requirements
for Windows Phone. The Marketplace Test Kit also helps you assemble the graphics and
screenshots that will be submitted along with the application’s .xap file. The Market-
place Test Kit is installed when you install the Windows Phone Developer Tools.

 The Application Details page of the Marketplace Test Kit prompts you for the loca-
tion of the application’s .xap file, screenshots, and three different-sized tile images.
The images are copied into a new folder named SubmissionInfo, which is created
under your project’s root folder. You’ll use the images copied to the SubmissionInfo
folder when you submit the application to the Marketplace.

 The Automated Tests page of the Marketplace Test Kit inspects the .xap file and
the images in the SubmissionInfo folder and checks them against Marketplace
requirements. The Monitored Tests page conducts several tests while eavesdropping
on your application as it runs on a device. Figure C.2 shows the monitored test results
for the Hello World application built in chapter 2.

 The Marketplace Test Kit’s Manual Tests page contains a checklist of several dozen
items that should be checked before submitting the application to the marketplace. Each
test provides a drop-down allowing you to check off success or failure of the test. Each test
also provides a list of steps or instructions on how to execute the test and why the test is
important. Many of the manual tests apply only to applications that implement certain
features, such as background file transfers or Music + Videos Hub extensibility.

 Once you’ve passed all the tests, you’re ready to submit the application.

441Submission
C.2.2 Submission checklist

When you submit your application to the Marketplace, you’ll be prompted for several
different bits of information. The submission process will be easier for you if you have
the required information assembled ahead of time. The AppHub provides a list of the
required information in the form of a submission checklist. You can view the submis-
sion checklist on the AppHub at http://mng.bz/ebia.

 To complete the application submission you’ll need to provide contact informa-
tion and a detailed description. You’ll also need the tile and screenshot images you
selected in the Application Details page of the test kit. You’ll need to decide how
much to charge for your application (or whether you’ll give it away free), and whether
you’ll provide a trial license. Finally, you’ll need to decide on the application category
and subcategory. A few of the categories include Games, Business, Sports, and Life-
style. The full list of categories can be viewed on the Application Submission page in
MSDN at http://mng.bz/Rait.

 You’ll also need to decide how your application will be distributed. You can select
from one of three distribution options. Public distribution will publish your applica-
tion to the Marketplace, where it’s visible to every user searching the Marketplace.
Targeted distribution is ideal for corporate IT applications because the application
isn’t listed in the Marketplace and is only available to users who have the exact URL to
the application’s Marketplace page. Beta distribution allows you to publish the appli-
cation to a restricted group of users specifically for testing.

Figure C.2 Viewing test results

http://mng.bz/ebia
http://mng.bz/Rait

442 APPENDIX C AppHub and Marketplace
C.2.3 Beta testing

The Marketplace’s beta distribution program allows you to deliver your application to
users either inside or outside your organization who don’t have developer-unlocked
phones. When submitting a beta application, the application doesn’t have to pass the
full suite of certification tests. When you submit the beta application, you specify
the email addresses of up to 100 beta testers. The email addresses must be linked to the
Windows Live ID your users used to set up their phones.

 Beta applications are available from the Marketplace for 90 days. After 90 days, the
beta license will expire and users will have to uninstall the application.

C.2.4 Support for enterprise IT applications

Many companies build private or internal applications that are distributed to their
workforce. In the case of mobile applications, the company’s IT staff would install
these internal applications onto their employees’ mobile devices. Windows Phone
doesn’t support internally deployed applications.

 One option for deploying internal applications is for the IT staff to developer-
unlock each employee’s phone and then use the Windows Phone Developer Tools to
side load internal applications onto each phone. The drawback to this option is the
cost and overhead for purchasing enough AppHub accounts to unlock every phone.
One AppHub account costs $99 and will only unlock five phones, making the cost $20
per phone. The advantage to this option is that internal applications can never be
obtained by unauthorized users.

 A second option for internal applications is to use the Marketplace’s targeted distri-
bution feature. An application submitted for targeted distribution goes through the
same certification process as a normal application, but the application isn’t discover-
able by regular Marketplace users. A targeted distribution application is submitted
using the normal submission process. When asked for publication options, choose As
soon as it’s certified, but make it hidden, as shown in figure C.3.

 Once the application is published to the Marketplace, it’ll be hidden from casual
users. The application won’t appear in any search results, or when browsing applica-
tion categories. Users are required to have the exact URL of the application in order
to view the application details and install the application. Unlike beta distribution, tar-
geted distribution isn’t restricted to specified email addresses. If a user has the URL,
they’ll be able to install the application. You can find the URL in the details section of
the application’s page on the AppHub.

Figure C.3 Publishing an
application with targeted
distribution

443Certification
C.3 Certification
Once an application has been submitted, Microsoft will put the application through a
series of certification tests. The test and policies are outlined in the Application Certifi-
cation Requirements for Windows Phone, which can be viewed at http://mng.bz/3ZfT. If
your application doesn’t pass certification, it won’t be made available to Windows
Phone users. Certification status is found in the application’s page in the AppHub.
Figure C.4 shows the application page for the Hello World application you built in
chapter 2.

 The Hello World application isn’t a fully functional application and doesn’t meet
several certification requirements. As you can see in figure C.4, the Hello World appli-
cation failed the certification process. When an application fails certification, the test-
ing team provides you with a detailed report of the certification polices that weren’t
met. A portion of the certification failure report for the Hello World application is
shown in figure C.5.

 Once your application is certified, it’ll be ready for publishing. If you choose to
publish as soon as it’s certified, the application will be available for users to download

Figure C.4 The lifecycle section of the application’s page in the AppHub

http://mng.bz/3ZfT

444 APPENDIX C AppHub and Marketplace
and install. If you chose to publish it manually, you’ll need to visit the AppHub when
you’re ready to make the application available.

 The application’s page in the AppHub is also where you go to view information
about your application such as the number of downloads and number of purchases. If
you charge money for your application, you’ll also see details about how much money
you’ve earned.

 Your application won’t sell itself (unless you’re really lucky). There are tens of
thousands of applications in the Marketplace—how is yours going to get noticed? Pro-
mote your Windows Phone application with links to the Marketplace. Inside your
application, use the Marketplace tasks to provide searches for other applications from
your company. Create a website to market your application that includes links to your
application’s page in the Marketplace.

 Microsoft may choose to feature your application in the Marketplace. Featured
applications might be shown in the Marketplace website, or inside the Marketplace
application on the phone.

Figure C.5 A certification failure report

index
Numerics

3D design software 377
3D model 373
3G2 312
3GP 312

A

absolute intensity 214
absolute positioning 432
absolute URI 315
Accelerometer Tool 5, 16, 200,

203, 207, 209, 219, 224
AccelerometerReading 210
AccelerometerReadingEventArgs

209
accent text style 291
AcceptsReturn 298
accounts 110, 114, 118
AcquiringLicense 318
ActivatedEventArgs 61, 69–70,

73
ActivatedTime 69, 75
activation 68, 104
ActiveTiles 248
activity streams 10
ActualHeight 270
ActualWidth 270–271
Add Existing Item 147
Add New Item 269, 277
Add Reference dialog 86
Add Service Reference 356
AddColumn 144
AddMinutes 82
address book 15, 99

AddressChooserTask 15, 104,
109, 366–367

AddressFamily 252
addressing scheme 252
AddressKind 114
AddressResult 109, 367
Advanced Options menu 38
advanced properties 291
AgentExitReason 90
AgentStatus 88–89
airplane mode 96, 229, 232
alarms 58, 74, 77, 80–81, 88
Albums 172
altitude 342, 346
amplitude 333
Android 5, 17–19
angle measurement 350
animation 288, 423
App Connect 171, 176
App Store 5
App.xaml 34
AppConstructedTime 62
appdata 107, 121, 147, 364
AppHub 11, 20, 22, 438, 440–

442
Apple 5, 15
application bar 235, 239, 248,

251, 264
application category 441
Application Certification

Requirements, for Win-
dows Phone 49–50, 65, 75,
94, 401, 440, 443

application installation 438
application list 8, 33, 50–51, 59,

65, 69

application manifest file 18, 26
application submission 440
application tiles. See tiles
Application_Activated 61, 69, 71
Application_Closing 61
Application_Deactivated 61, 67,

71
Application_Launching 61, 65,

87–89, 91, 316
ApplicationBar 260–268
ApplicationBarIconButton 44,

78, 124, 184, 222, 251, 267,
347

ApplicationBarMenuItem 152,
154, 160, 168, 175, 261, 267,
313

ApplicationBarMode 264
ApplicationBarStateChanged-

EventArgs 267
ApplicationIcon.png 32, 51
ApplicationId 357
ApplicationIdleDetectionMode

75
ApplicationLifetimeObjects 61,

374
applications 101–102
ApplicationSettings 127, 273,

277
apply resource 38, 291
appointments 27, 110, 115–116,

118
AppointmentsSearchEventArgs

117
apps menu 178
Apps.Games 33
Apps.Normal 33
445

INDEX446
ARM CPU 6
articles of incorporation 439
artwork 50, 191
aspect ratio 380
AssemblyInfo.cs 32
Assets tool 424, 426, 429
assisted GPS. See global position-

ing system
asynchronous pattern 112, 115–

116, 242
AsyncState 242
attached properties 37, 305,

308, 429
AttitudeReading 220, 224–225
audio agent 194
audio file 82, 107
audio format 189
AudioMediaStreamSource 330
AudioPlayerAgent 194
AudioStreamingAgent 194
AudioTrack 195
augmented reality

application 160, 199
Autodesk Maya 377
automated tests 440
automatic correction 299
AutoPlay 317
AvailableResolutions 161
AvailableTracks 339
AVAudioRecorder 17

B

back buffer 397
Back button 59, 64, 73, 399,

401
back light 379
BackBackgroundImage 245,

248
BackContent 245, 248
background agent 85–91, 194
background audio 31
background image 233, 246
background layer 268
background processing 77, 85
background task 58, 85
background thread 232
Background.png 32, 51
BackgroundAgent 86
BackgroundAudioPlayer 194,

196
BackgroundColor 266
BackgroundImage 49, 245, 248
BackgroundServiceAgent 86
BackKeyPress 48

BackTitle 245, 248
BarFill 204, 207
BasicEffect 380
batteries 37, 75, 85, 389
BeginGetRequestStream 241
BeginGetResponse 242
BeginInvoke 161, 163, 202, 217,

223, 232, 238, 242
BeginTime 79, 81, 83
behaviors 423, 429
beta distribution 441
BinaryWriter 188
binding 434, 436
BindingExpression 140
BindToShellTile 236
BindToShellToast 236
Bing Maps 18, 96, 342
Bing Query Language 103
Bing Search application 103
BingMapsDirectionsTask 96,

342, 344–345
BingMapsTask 96, 342–344
bit fields 286
BitmapImage 295
bitwise operation 289
Blender 377
Bluetooth 96
BorderBrush 292
border-color 364
border-style 364
BorderThickness 166, 292
bounding circle 266
BoundingBox 393
BoundingSphere 384, 386, 391–

392
breakpoints 33
broadcast receiver 18
browser viewport 362
BufferDuration 185
buffering 318
BufferingProgress 317
BufferProgress 194
BufferReady 185
Build Action 207, 274–275, 315,

347
BuildNavigationUri 47
built-in applications 94, 96, 172
business accounts 439
business logic 430
ButtonState 412–413
Buy Now button 101
byte array 242

C

calendar 110
CalibrationEventArgs 217
callback method 241
camera application 6, 16, 104,

154, 163
camera button 58, 160, 163
camera hardware 159, 165
camera position 380, 383
camera roll 152, 173
CameraButtons 159, 163
CameraCaptureTask 16, 104,

149, 154
CameraOperationCompleted-

EventArgs 158, 164
CameraType 159
CameraVideoBrushExtensions

162
CancelEventArgs 48, 402
CanGoBack 394
CanSeek 321–322, 326, 332
Canvas 287, 395, 426, 432
capabilities 26
Capability Validation Test 26
capacitive touch 6
CaptureCompleted 163
CaptureImageAvailable 163
CaptureStarted 163
CaptureThumbnailAvailable

163
CC 99
CDMA cellular network 231
cellular network 228–229, 342
cellular radio 346
CellularMobileOperator 229
center point 409, 413, 420
certification guidelines 8
certification process 440
certification tests 438, 443
channel name 236
channel URI 234–235, 239, 244,

248
ChannelUriUpdated 237
CharacteristicUpdate 231
chat application 250
CheckBox 76, 265, 297
ChosenPhoto 154–155
CivicAddress 114
class library 31, 373
CleanUpCamera 161, 164
CLHeading 16
ClickMode 296
clipboard 42, 44, 239
clipping plane 380–381

INDEX 447
closing sockets 254
ClosingEventArgs 61
CLR. See Common Language

Runtime
code-behind 45, 268, 430–431,

434
codec 312
CodecPrivateData 322, 332
CodePlex 301, 308
collision detection 391
ColumnDefinitions 432
ColumnSpan 432
command bar 22, 287
Common Language Runtime 17
Compaq iPaq 4
CompassReading 203, 214
CompiledQuery 142
CompleteName 114
CompositeTransform 167
conditional compilation 52
cones 377
ConnectAsync 253
connected client 250
connection string 135
connection-less 249
ConnectionSettingsTask 96
ConnectionStatusChanged 237
ConnectivityManager 19
ConsumerID 177
contact records 111
ContactAddress 114
ContactCompanyInformation

114
ContactEmailAddress 114
ContactPhoneNumber 114
contacts 9, 27, 110–111, 113
contacts application. See People

Hub
contacts database 9, 15, 108, 111
ContactsSearchEventArgs 113
ContainmentType 393
ContainsKey 193, 278
content pipeline 377
content project 373, 377
content provider 18
ContentControl 114, 116, 118,

303, 354, 436
ContentIdentifier 102
ContentManager 377, 379, 385,

409, 413, 420
ContentPanel 36–37, 166, 206,

251, 312, 352, 432
ContentReadyEventArgs 163
ContentTemplate 112, 354, 437
ContentType 101–103

ContextMenu 301, 304
ContextMenuService 304
continuous connection 249
contrast text style 291
control playback 313
control template 41
ControlStoryboardAction 429
ConvertBack 436
cookies 241
coordinate system 201, 220, 224,

380
CopyAbsoluteBone-

TransformsTo 379
copying, to clipboard 42
Core Motion 16
CoreAnimation 15
CornerRadius 292
CreateDatabase 144, 147
CreateDatabaseSchemaUpdater

144, 146
CreateDirectory 129, 131, 137,

365
CreateFile 129, 131, 168, 365
CreateFromAxisAngle 384–385
CreateInstance 189
CreateLocationRect 353
CreateLookAt 381, 384
CreatePerspectiveFieldOfView

381
CreateScale 381–382
CreateWorld 381–383, 386
creating reviews 101
CredentialsProvider 355
CRUD 135, 137
CSS 363
CSS3 358
cubes 377
current location 343
CurrentRegion 196
CurrentState 317–318, 337
CurrentStateChanged 318, 337
CurrentValue 200, 202, 209,

215, 218, 222, 418
CurrentValueChanged 200, 202,

207, 222–223, 418

D

daily recurrence 81
Dalvik 17
dark theme 266, 274, 290–291
dashboard 438
data binding 45, 115
data block 249
data context 135

data roaming 229
data stream 249
DatabaseExists 137
databases 16, 18, 133–134, 143
DatabaseSchemaUpdater 144–

145
DatabaseSchemaVersion 144,

146
DataContext 64, 68–69, 135,

138, 140–141, 434
datasource 136
DataTemplate 77, 80, 112, 119,

123, 280, 303, 436
DatePicker 301, 303
DateTime 63, 68–69, 75, 79,

117, 123, 303
DateTimeOffset 200
DeactivatedEventArgs 61
DeactivatedTime 67, 70
deactivation 60, 95, 104
dead zone 408
debug target 33
debugging 33, 46, 91
DecodeImage 158, 164
DecodeJpeg 154, 158, 169
deep link navigation 171
_default task 34, 177
DefaultItem 272
DefaultMaximumItems 117
DefaultTask 180, 193
degrees 350
DeleteAllOnSubmit 139
DeleteDirectory 129, 132
DeleteFile 129, 132
DeleteOnSubmit 139
Delta 416–417
Delta2 416
departure location 345
dependency property 204
DependencyObject 263
descending 138, 141
design language 8
DesiredAccuracy 346
destination location 343, 345
developer key 355, 357
Developer Registration Tool 22,

33
developer unlock 442
developer unlocked phones 22
Device tool 424
DeviceAcceleration 220
DeviceExtendedProperties 27
DeviceNetworkInformation 229
DeviceRotationRate 220
DeviceType.Emulator 33

INDEX448
device-width 362
digital rights management 107,

318, 322
DirectoryExists 129–131, 137
DirectoryInfo 122
DirectX 13, 21, 372, 380
DispatchTimer 183, 209, 222
displaying filtered data 276
displaying name searches 113
DisplayName 97–98, 107, 112,

114, 358
distribution options 441
DOCTYPE 362
document centric

applications 14
Documents folder 16
dodecahedron 377
domain model 430, 434
dormant application 14, 57, 60
dormant state 60, 65–66, 68, 75,

165
DoubleAnimation 288
DoubleTap 41–43, 307, 415
DownloadProgress 317
DragComplete 307, 415–417
DragCompletedGesture-

EventArgs 307
DragDelta 307
DragDeltaGestureEventArgs

307
DragStarted 307
DragStartedGestureEventArgs

307
drawing primitive 38
DrawModel 379–380
DrawString 394
DreamSpark 11, 439
driving directions 342
DRMHeader 321

E

ECMAScript 5 358
edges 377
ElapsedTime 376
element to element binding 435
ElementName 314, 320, 435
Ellipse 38, 293, 354, 426
email address 106, 114
email searches 113
EmailAddress 112
EmailAddressChooserTask 15,

104, 109
EmailAddressKind 114
EmailComposeTask 15, 96, 98

EmailNameOrAddress 299
EmailResult 109
EmailSmtpAddress 299
embedding images 295
emulator 21, 33, 97, 152, 178,

210, 255, 312
EnabledGestures 415–416
EnabledPlayerControls 194
encoding 242, 253
EndDate 117
EndGetRequestStream 242
endpoint 249
EndTime 118
EndTimeInclusive 117
enter key 300
EntityType 358
equator 213, 350
ErrorOccurred 237
establishing connections 253
ethernet 231
EventArgs 74, 217, 262, 306
ExceptionRoutedEventArgs 319
Exchange Image File

Format 155
ExecutionTimeExceeded 90
ExifLib 155
ExifOrientation 157
ExifReader 157
ExpirationTime 79, 81, 87–88,

91
Expression Blend 4, 15, 20, 38,

262, 423
ExtendedTask 86
extending Picture Hub 176
extending Picture Viewer 178
Extensible Application Markup

Language. See XAML
extension methods 114
extension points 181
ExtensionName 177
extensions 10, 167

F

Facebook 9, 96, 110, 173, 176
fast application switching 4, 14,

165, 201
FastForward 194, 196
field of view 380
file picker 151
file system 14, 16, 18, 129
FileExists 129–130, 187, 316
FileId 181
FileInfo 122
FileMode 130

FileStream 122, 129
fill light 379
FillFrame 325
filter type 112
FilterKind 112–113
FindName 263
FirstOrDefault 114, 118, 175
first-time initialization 65
Flick 41–42, 307, 415, 421
FlickGestureEventArgs 307
FMRadio 6, 27, 196
focusing camera 163
font-family 363
FontSize 41, 275
footers 362
foreground application 57, 274,

302
ForegroundColor 266
FormatCoordinate 350
FormatException 108
FormatPayload 255
frame of reference 224
frame rate 375
FrameReported 306
frames per second 338, 376
FrameworkDispatcher 183, 185
FrameworkElement 263, 293
free fall 208, 212
FreeDrag 415
frequency 196–197, 331
friction 209, 212
FromMilliseconds 183, 209, 215,

218, 222
FromSeconds 91
FromStream 189
FrontFacing 159
front-facing camera 151, 159
FTP 17
full press 163

G

game assets 373
game camera 376, 380
game controller 407, 411
game loop 375–376, 385, 389
game pad 407, 411
GamePlayComponent 376, 378,

404
GamerServices 27
Games Hub 9, 33, 50–51
GameTimer 374–376, 389
GameTimerEventArgs 376, 390
garbage collection 14
generic class 200, 202

INDEX 449
Geocode Service 355
GeocodeLocation 357
GeocodeResponse 358
GeocodeResult 358
GeocodeServiceClient 356–357
geocoding 355
GeoCoordinate 345–346, 349,

353–354
GeoCoordinateWatcher 11,

346–348, 351
geographic coordinate 345
geographic north 214
geometric shapes 377
GeoPositionAccuracy 346, 348
GeoPositionChangedEventArgs

349
GeoPositionPermission 349
GeoPositionStatus 349
GeoPositionStatusChanged-

EventArgs 349
GeoTrust 439
Gesture API 415
gesture processing 415
GestureBegin 307
GestureCompleted 307
GestureEventArgs 43, 307
GestureInput 416
GestureListener 306–307
gestures 415
GestureSample 415, 417
GestureService 307
GestureType 415–416
GetActions 79, 87
GetAngleFromExif 156, 159
GetBytes 242, 253
GetCapabilities 407
GetData 186
GetDiagnosticAsync 323
GetDirectoryNames 129
GetDistanceTo 350
getElementById 367
GetFileNames 129, 188
GetImage 175
GetIsNetworkAvailable 231
GetLastWriteTime 188
GetPosition 306
GetPreviewBufferArgb32 160
GetPreviewBufferY 160
GetPreviewBufferYCbCr 160
GetResourceStream 191, 317
GetResponseStream 243
GetSampleAsync 323, 327, 331–

332
GetState 407, 409, 412
GetThumbnail 175

GetUserStoreForApplication
129–130, 137, 168, 187–188,
316, 365

global positioning system 5–6,
11, 346

global publisher 439
globalization 8
GoBack 45–46, 48, 394
Google 5, 17
GoToState 288–289
GPS receiver 342, 346
GPS. See global positioning

system
GPU. See graphics processing

unit
GradientBrush 426
Graphics Device Interface 13
graphics processing unit 372,

374, 380
GraphicsDevice 374, 379, 394,

397
gravity 208, 211, 220, 224, 419–

420
group header style 291
GroupName 297
GSM cellular network 231
guaranteed delivery 249
Guid 88
Gyroscope 4, 16, 200, 203, 207,

217, 219
GyroscopeReading 218–219

H

half press 163
hardware acceleration 13, 358
hardware back key 48
hardware buttons 6
hardware input panel 4
hardware keyboard 22, 41
hardware specifications 6, 17,

196
HasValue 297
header 302–303, 305, 362
HeaderTemplate 303, 306
HeadingAccuracy 215–216
hello world 30–50
Hewlett-Packard Jornada 4
hidden applications 442
High Level Shader

Language 380
HighScore 123
HighScoreDatabaseRepository

136, 139, 143–144
HighScoreFileRepository 129

HighScoreSettingsRepository
127

HLSL. See High Level Shader
Language

horizontal intensity 214, 216
HorizontalAccuracy 346
HorizontalDrag 415–416
HorizontalScrollBarVisibility

298
host application 90
Hover 296
HTML 430
HTML 5 342, 358, 362, 368
HTTP 10, 17, 19, 228, 240, 335
HTTP POST 234, 239
HttpNotificationChannel 236
HttpNotificationReceived 238
HttpWebRequest 10, 17, 19,

228, 240, 242, 249
HttpWebResponse 10, 17, 19
Hub 8
HubType 190
HyperlinkButton 94, 296

I

IAsyncResult 242
ICommand 45
icon selector 262
icons 207, 222, 263
IconUri 44, 261, 267
ID_CAP_APPOINTMENTS 27,

116
ID_CAP_CONTACTS 27, 111
ID_CAP_GAMERSERVICES 27
ID_CAP_IDENTITY_DEVICE

27
ID_CAP_IDENTITY_USER 27
ID_CAP_ISV_CAMERA 27, 159
ID_CAP_LOCATION 27, 346
ID_CAP_MEDIALIB 27
ID_CAP_MICROPHONE 27
ID_CAP_NETWORKING 27
ID_CAP_PHONEDIALER 27,

97
ID_CAP_PUSH_

NOTIFICATION 27
ID_CAP_SENSORS 27, 201
ID_CAP_WEBBROWSER-

COMPONENT 27
ID_HW_FRONTCAMERA 27,

159
identity matrix 225
identity validation 439
IDictionary 193

INDEX450
idle detection mode 59, 75
idle timeout 58, 75
IdleDetectionMode 75, 419
IEnumerable 114, 118
IHighScoreRepository 126, 129,

136, 138, 141
IIS Smooth Streaming

Client 335
IList 264, 266
image capture 163
image decoding 164
image design 266
image editing 150, 165
image picker 294
image processing 160
image rotation 155
image stream 163
ImageBrush 151, 154, 162, 273
Images folder 78
ImageSource 274
implicit styles 433
indeterminate 293, 297, 302
individual accounts 439
individualizing 318
ingestion tool. See Marketplace

Test Kit
InitializeApplicationBar 263
InitializeCamera 161
InitializeComponents 263
innerText 367
INotifyPropertyChanged 45,

141, 434
input control 41
InputScope 41, 246, 299–300
InputScopeNameValue 299–300
InsertAllOnSubmit 138
InsertOnSubmit 138
installation folder 122, 146
installing custom ringtones 107
integrating maps 342
intents 18
interaction model 15
InterfaceConnected 231
InterfaceDisconnected 231
internal applications 442
Internet Explorer 22, 96, 342,

358–359
Internet Information Server 335
InterNetwork 252
inter-process communication 14
InvalidOperationException 201,

344–345, 417
InvokeScript 366–367
IOrderedQueryable 142
iOS 14–17

IP address 250
IPEndPoint 252
iPhone 5, 7, 16
iPod 16
IQueryable 142
IsAllDayEvent 118
IsApplicationInstancePreserved

70, 73
IsCameraTypeSupported 159
IsCellularDataEnabled 229
IsCellularDataRoamingEnabled

229
IsChecked 265, 281, 297–298,

302
IsDataValid 201, 203
IsEnabled 79, 89, 261, 306, 402–

403, 418, 436
ISensorReading 200
ISETool. See Isolated Storage

Explorer tool
IsGestureAvailable 417
IsIndeterminate 293
IsLocked 76
IsMenuEnabled 265
IsMenuVisible 267
IsMuted 319
IsNavigationInitiator 67, 72
IsNetworkAvailable 230
IsNullOrEmpty 247
isolated storage 14, 16, 18, 107,

361, 364
Isolated Storage Explorer

tool 25, 147
IsolatedStorage 121
IsolatedStorageFile 122, 129–

131, 187–188, 316, 365
IsolatedStorageFileStream 130–

131, 168, 174, 315–317
IsolatedStorageSettings 16, 18,

122, 127, 272, 277
isostore schema 107, 121, 136
IsoStorePath 107
IsPinnedToStart 114
IsPlaying 393
IsPrivate 118
IsRunningSlowly 376
IsScheduled 79, 87, 90
IsScriptEnabled 361
IsSupported 201, 203, 209, 214,

218, 222, 418
IsThreeState 297, 302
IsTrial 52, 102
IsUnknown 346, 353
IsVisible 37, 265
IsWiFiEnabled 230

IsZoomEnabled 305
item template 39
ItemSource 80, 125
ItemsSource 251, 283
ItemTemplate 78, 123, 184, 189,

280
IValueConverter 45, 436

J

JavaScript 361, 365
JavaScript/HTML

application 363
JPEG 294
JpegInfo 157

K

key light 379
KeyFrameFlag 323
keypad 5

L

LabeledMapLocation 345
lambda expression 183
landmarks 343
Landscape Flat 211
landscape orientation 260, 264,

285–290
Landscape Standing 211
LandscapeLeft 286
LandscapeRight 286
LargeChange 301, 319
LastExitReason 90
latitude 213, 342, 346, 350, 355,

357
launch URI 243
LaunchedTime 65, 70
launchers 9, 16, 18
LaunchForTest 91
launching 59, 61, 65, 87, 365
LaunchingEventArgs 61
layout control 432
LayoutRoot 269, 277, 288, 395,

402, 431–432
LeftButton 412
LicenseInformation 52, 102
licensing 438
Life Maximizer 3
lifetime events 59, 61
light theme 266, 274, 290–291
lighting algorithm 379
lighting source 379

INDEX 451
linear acceleration 221
linefeed 299
LinkedIn 96
LINQ to SQL 16, 19, 122, 132,

135, 141–143
ListBox 77, 123, 184, 186, 188,

251, 280, 436
ListPicker 301
LoadCompleted 360
LoadDeviceInformation 230
LoadedPivotItem 281
LoadingPivotItem 281
LoadJpeg 167, 169
LoadPhoneNetworkInformation

231
local database 16, 18
location service 199, 341, 346
location-aware application 6, 11,

341, 355
LocationRect 353
lock button 75
lock screen 58, 74–75, 419
long term storage 67
longitude 342, 346, 350, 355,

357
LongListSelector 301
look-ahead position 380–381,

383

M

M4A 312
M4V 312
magnetic field 213, 216
magnetic north 214
MagneticHeading 214
MagnetometerReading 214–216
malicious applications 14
malware 438
Managed DirectX 372
ManifestInfo 339
ManifestReady 338
manipulation event 43
ManipulationCompleted 43,

306
ManipulationDelta 43, 306
ManipulationStarted 43, 306
manual tests 440
MapLayer 352
MapPolygon 353
MapPolyline 352–353
Maps 299, 347, 352
MapView 18
margin of error 408
Marketplace Test Kit 25, 440

MarketplaceContentType 101–
102

MarketplaceDetailTask 52, 96,
100, 102

MarketplaceHubTask 96, 100
MarketplaceReviewTask 96,

100–101
MarketplaceSearchTask 96, 103
markup extension 291, 433–

434, 436
markup language 430
MathHelper 381, 384–385, 419
matrix 200, 220, 379, 381–382
max database size 136
MaxImageSize 192
MaximumTouchCount 407
MaxLength 299
MaxValue 79
MaxWidth 272
media container 187, 189, 311,

335
media library 153
media player 16
MediaElement 17, 19, 334
MediaElementState 317, 319
MediaEnded 317
MediaFailed 319–320, 337
MediaHistory 27, 191–192
MediaHistoryItem 191
MediaLibrary 172, 175–176, 179
MediaOpened 317
MediaPlayer 16, 19
MediaPlayerLauncher 16, 19, 96
MediaRecorder 19
MediaSourceAttributesKeys 321,

326, 331
MediaStream 328
MediaStreamAttributes 322
MediaStreamDescription 322,

324, 326–327, 330–331
MediaStreamSample 323–324,

328, 332
MediaStreamSource 17, 19, 27,

320–334
MediaStreamType 323, 332
megapixel 6
MemoryQuotaExceeded 90
MemoryStream 174, 185, 187,

323, 326, 328, 332
menu. See application bar
MenuItem 305
MenuItems 261
mesh 377, 379
MessageBox 48, 217, 242, 262,

319, 355, 358, 433

MessageBoxButton 48, 262, 305
MessageBoxResult 48
metadata 155
MethodAccessExceptions 122
Metro design language 8, 35
MFMailComposeViewController

15
MFMessageComposeView-

Controller 15
Microsoft Developer

Network 11
Microsoft Location Service 346
Microsoft Outlook 110
Microsoft Push Notification

Service 8, 11, 232, 234, 239
Microsoft SQL Server

Compact 16, 19, 122, 132
Microsoft.Devices 27, 33, 162,

392
Microsoft.Devices.Accelermoter

16
Microsoft.Devices.Radio 6, 27,

196
Microsoft.Devices.Sensors 27,

203, 220
Microsoft.Net

.NetworkInformation 19
Microsoft.Phone 154
Microsoft.Phone

.BackgroundAudio 194
Microsoft.Phone.Controls 27,

269, 360
Microsoft.Phone.Controls.Maps

346, 352
Microsoft.Phone.Data.Linq 133,

144
Microsoft.Phone.Data.Linq

.Mapping 133
Microsoft.Phone.Info 27
Microsoft.Phone.Net

.NetworkInformation 228,
231

Microsoft.Phone.Notification
27, 236

Microsoft.Phone.Scheduler 78
Microsoft.Phone.Shell 247, 261
Microsoft.Phone.Tasks 27, 95,

98, 104
Microsoft.Phone.UserData 15,

27, 110
Microsoft.System.Devices 200
Microsoft.Xna.Framework 27,

172, 200, 203, 220
Microsoft.Xna.Framework

.Audio 17, 19, 27

INDEX452
Microsoft.Xna.Framework
.Graphics 396

Microsoft.Xna.Framework.Input
.Touch 416

Microsoft.Xna.Framework
.Media 16, 19, 174

Microsoft’s Push Notification
Service 17

minimum hardware
requirements 6

minutes 350
MinValue 68–69
MobileBroadbandCdma 231
MobileBroadbandGsm 231
Model-View-ViewModel 45, 111,

269, 276
monitored tests 440
monthly recurrence 81
Motion API 418
Motion sensor 4
MotionReading 202, 220, 223,

419
Mouse API 411–412
mouse events 41
MouseEnter 296
MouseLeftButtonDown 296
MouseLeftButtonUp 296
MouseState 412–413
MovementThreshold 348
MP3 107, 312
MP4 312
MPEG-4 335
MSDN. See Microsoft Developer

Network
multicast 249
multi-core processor 14
multi-line editing 298
multi-point touch 5–6, 407,

415–416
multitasking 14, 57
Music + Videos Hub 6, 18–19,

171, 181, 192–193, 440
MVVM. See Model-View-View-

Model

N

NameOrPhoneNumber 299
NameValue 300
native applications 94, 96, 103,

108
navigatedFromTime 67, 70, 72
navigatedToTime 63
NavigateToString 360
NavigateUri 296

navigation application 15, 34,
45

navigation URI 237
NavigationContext 47, 180, 406
NavigationEventArgs 63, 67,

229, 237
NavigationFailedEventArgs 34
NavigationPage 34, 180
NavigationService 15, 34, 45, 49,

62, 394
NavigationUri 82–83
.NET Compact Framework 4, 14
network bandwidth 22
network communication 228
network connectivity 227
Network Information API 228
network programming 17
network quality 334
NetworkAvailabilityChanged

230
NetworkInterface 19, 22, 229,

231
new item dialog 111, 277
new project dialog 30
NoData 349
notification channel 233–234
NotificationChannelUri-

EventArgs 237
NotificationEventArgs 238
notifications. See push

notifications
NotificationType 231
NotifyComplete 87, 90, 196
NotifyEventArgs 367
NotImplementedException 329,

333
NotSupportedException 328
Now Playing 191–192
NSUserDefaults 16
nullable boolean 297
null-coalescing operator 73
Number input scope 42

O

Object Relational Mapping 132
Objective-C 14
Objects and Timeline

panel 262, 425–427, 429
ObjectTrackingEnabled 140
obscuration 58, 74–76, 97
ObscuredEventArgs 74, 76
ObservableCollection 125, 127,

251
octohedron 377

OData API 132
Office Hub 274
OnBackKeyPress 402
OnDraw 374, 376, 396, 403
OnInvoke 86
OnNavigatedFrom 48, 67, 72,

165, 277, 304, 375–376
OnNavigatedTo 63–64, 272,

278, 375–376, 418, 421
OnNavigatingFrom 48, 67
OnPlayStateChanged 196
on-screen keyboard. See software

input panel
OnUpdate 376, 389, 395
OnUserAction 195
OpenCORE 19
OpenFile 129–130, 187
OpenFileDialog 151
OpenGL ES 15
OpenMediaAsync 321–322, 324,

326, 331
orderby 138, 141
OrientationChanged 289
OrientationChangedEventArgs

289
OriginalFileName 154
ORM. See Object Relational

Mapping
Outlook 110

P

padding 296
padding-bottom 364
padding-left 364
padding-right 364
padding-top 364
page navigation history 45
page stack 46
pageConstructedTime 63
PageOrientation 286, 289
PageTitle 425
Panorama 31, 39, 259, 268, 273–

275
PanoramaItem 268–269, 271–

272
partial address 343
passing parameters 47
paste from clipboard 42
pausing game play 401
PCM data format 187
People Hub 9, 96, 104, 109–110,

268
percentage complete 293
PeriodicTask 85, 87–89, 91

INDEX 453
phase angle 333
phone dialer 15, 96–97
phone number 9, 113
phone registration 23
PhoneAccentBrush 40, 292,

302, 307
PhoneAccentColor 38, 427
PhoneApplicationFrame 34–35,

59, 61, 74
PhoneApplicationPage 36, 46,

48, 72, 104, 261, 263, 269
PhoneApplicationService 59,

61–62, 68, 70, 75, 87, 419
PhoneBackgroundBrush 38
PhoneBorderBrush 292, 302
PhoneBorderThickness 292
PhoneCallTask 15, 27, 59, 96–98
PhoneChromeBrush 306
PhoneContrastBackground-

Brush 88, 292–293
PhoneFontFamilyNormal 36
PhoneFontSizeLarge 80
PhoneFontSizeMedium 40
PhoneFontSizeMediumLarge

41
PhoneFontSizeNormal 36, 40–

41
PhoneForegroundBrush 36,

302
PhoneMargin 40–41, 112, 114
PhoneNumber 97–98, 109, 112
PhoneNumberChooserTask 15,

104, 108–109
PhoneNumberKind 114
PhoneNumberResult 108
PhoneNumbers 115
PhoneStrokeThickness 293, 306
PhoneSubtleBrush 293
PhoneTextAccentStyle 291
PhoneTextContrastStyle 88, 291
PhoneTextExtraLargeStyle 40,

280, 291
PhoneTextGroupHeaderStyle

95, 112, 116, 291
PhoneTextHugeStyle 291
PhoneTextLargeStyle 40, 124,

166, 280, 291
PhoneTextNormalStyle 80, 124,

291, 433
PhoneTextSmallStyle 80, 291
PhoneTextSubtleStyle 81, 124,

280, 291
PhoneTextTitle1Style 124, 291,

433
PhoneTextTitle2Style 291

PhoneTextTitle3Style 291
PhoneTouchTargetOverhang

95, 296
Photo Chooser application 151
PhotoCamera 16, 150–151, 159,

161, 163, 165
PhotoChooserTask 104, 149,

151
PhotoResult 153, 155
Photos_Extra_Hub 177
Photos_Extra_Share 177, 180
Photos_Extra_Viewer 177, 179
physical address 109, 114
picture viewer application 178
PictureAlbum 172
PictureDecoder 154, 159, 168,

176
Pictures Hub 9, 18, 171, 174,

176, 180, 268, 271
PinchComplete 415
PinchCompleted 307
PinchDelta 307
PinchGestureEventArgs 307
PinchStarted 307
PinchStartedGestureEventArgs

307
PinnedToStart 112
PiOver4 381, 419
Pitch 220, 222, 225
Pivot 8, 31, 39, 110, 228, 235,

259
PivotItem 112, 116, 235, 239,

243, 245
PivotItemEventArgs 282
PixelHeight 157, 168
PixelWidth 157, 168
playback position 322
player movement 381
PlayerContext 192–193
PlayerState 194–195
playhead 427
playing audio 189
PlayState 195
PNG 294
Pocket PC 2000 4
port number 252
Portrait Flat 211
portrait layout 210
portrait orientation 37, 260,

264, 285–290
Portrait Standing 211
PortraitDown 286
PortraitOrLandscape 286
PortraitUp 286
PositionChanged 346, 349, 353

power state 196
PowerMode 196–197
PrepareVideo 326
preview buffer 161
preview image 160
PreviewResolution 161
primary key 134, 138
Prime Meridian 350
product id 25, 33, 101, 147
ProgressBar 293
ProgressIndicator 318
progressive download 334
project properties 51–52, 69
project template 31
property change

notification 434
property editors 38, 262, 291,

294, 423
property element syntax 261,

275
PropertyChanged 141, 434
PropertyChangedEventArgs 435
ProtocolType 252
public distribution 441
purchasing applications 438
push enabled application 234
push notification channel 236
push notifications 11, 17, 228
Pushpin 352–354

Q

quadrilateral 377
quaternion 200, 220
query expression 141
query string 47, 179, 181, 193
queryable 137
QueryString 47, 180, 193
QueueUserWorkItem 232
quota 122
QWERTY 41

R

RadioButton 112, 116, 246, 248,
277, 297, 405, 418

RadioRegion 196
random number generator 125
random value 279
raw image data 166
raw notification 233, 238
raw touch 41
reactivation 70
ReadAccelerometerData 210
ReadCompassData 215

INDEX454
ReadGesture 306, 415–416
ReadGyroscopeData 218
reading location data 346
ReadingChanged 209
ReadJpeg 157
read-only databases 136, 146
rebuild solution 84, 145
ReceiveAsync 254
recently played 192
Record Keyframe 427
recording audio 185
recurrence patterns 81
RecurrenceType 81, 83
redistribution license 395
refactoring 34
reference database 146
relative motion 346
RelativeTransform 162
reminders 58, 74, 77, 81
renewing background agents 91
ReportGetDiagnosticCompleted

323
ReportGetSampleCompleted

323, 328, 330, 332
ReportGetSampleProgress 323
ReportOpenMediaCompleted

322, 326
ReportSeekCompleted 323, 333
RequestStreamState 241
resolution 161
resource dictionary 42, 280
resource menu 38
resource picker 38, 291
ResourceIntensiveTask 85
response document 242
restoring application state 272,

278
RestrictTracks 340
reusable control 39
reverse geocoding 355–356
ReverseGeocodeAsync 357
ReverseGeocodeCompleted 357
ReverseGeocodeCompleted-

EventArgs 357
ReverseGeocodeRequest 357
RGBA 324, 327
rich graphics applications 21
RichTextBox 35, 40
ringtones 104, 107
roaming 229
RootFrame 74
RootFrame_NavigationFailed

34
RootLayout 360
RootPictureAlbum 173

RootVisual 34
RotateBitmap 158
RotateTransform 162
rotation angle 158
rotation matrix 225
rotational velocity 217
RotationMatrix 224
RotationRate 218–219
RoutedEventArgs 318
RowDefinitions 432
RowSpan 432
RTCP protocol 335
RTP protocol 335
RTSP protocol 335
run time data 72
running behind the lock

screen 75
running state 60
RuntimeType 33

S

sample pictures 173
sampling rate 331
sandbox 14, 25–26, 119, 121,

129
SaveContactTask 104
SavedPictures 173–175
SaveEmailAddressTask 16, 104,

106
SaveJpeg 167
SavePhoneNumberTask 16,

104–105
SaveRingtoneTask 104, 107
saving email addresses 106
saving phone numbers 105
saving ringtones 107
scalable vector graphics 358,

363
ScaleVisibility 352
Scheduled Action Service 77–91
scheduled actions 58, 78
scheduled task 77
Scheduled Tasks Agent 31
ScheduledAction 79, 81, 85
ScheduledActionService 58, 83–

85, 91
ScheduledNotification 81, 83,

87
ScheduledTask 79, 85
ScheduledTaskAgent 85–86
Scheduler API 81
screen coordinates 352
screen resolution 6, 362
ScriptNotify 366–367

ScrollBarVisibility 298
ScrollViewer 245
search button 58
search term 112, 343
SearchAsync 112–113, 116
SearchCompleted 112–113, 116
searching for contacts 111
SearchTask 96, 103
SearchTerm 103, 343–344
secondary tile 245, 247
security capabilities 26
SeekAsync 322, 328, 333
Segoe font 363
SelectedIndex 272, 278
SelectedItem 83, 272
SelectionChanged 272, 281
self-portrait camera 159
SendAsync 255
sensitivity area 408
Sensor API 199–200, 218
SensorBase 200, 202, 209
SensorReading 202
SensorReadingEventArgs 202,

223
service provider 110, 229
Service References 356
SetSharingMode 374, 396
SetSource 162, 316, 329
SetText 44, 239
Settings application 75, 88–89,

96, 110
settings page 278
SetView 354
ShapeInfo 382, 391
share menu 180
Share Picker 180
shared resource 165
SharedGraphicsDeviceManager

374, 397, 403
SharedPreferences 18
ShareLinkTask 96
ShareStatusTask 96
sharing pictures 180
ShellTile 49, 247
ShellToast 243
ShellToastNotificationReceived

238
ShowCamera 152
shutter button. See camera

button
ShutterKeyHalfPressed 163
ShutterKeyPressed 163
ShutterKeyReleased 163
side loading 442
signage 7

INDEX 455
SignalStrength 196–197
Silverlight rendering 374, 396
Silverlight Toolkit 15, 301–308
sine waveform 329
SineWaveformOscillator 330,

332
single-line editing 298
SIP. See software input panel
SketchFlow 429
SkipNext 194, 196
SkipPrevious 194, 196
SkyDrive 173, 180
SmallChange 301, 319
Smooth Streaming 334–340
SmoothStreamingMedia-

Element 335–340
SmoothStreamingMedia-

ElementState 337
SmoothStreamingSource 337
SMS text 15, 58
SmsComposeTask 96, 99
social networking 96, 110, 177,

180
SocketAsyncEventArgs 253, 255
SocketError 254
SocketType 252
soft keys 13
software input panel 5–6, 22, 41,

299
SolidColorBrush 42, 154, 354
Solution Explorer 32, 356
sound file 82
SoundEffectInstance 189, 194
SoundState 190
spacer column 207
splash screen 50
SplashScreenImage.jpg 32, 50
sprite sheet 377, 412–413, 417,

420
SpriteBatch 396–397, 403, 410,

412, 416, 419
SpriteFont 394
SQL CE. See Microsoft SQL

Server Compact
SQLite 16, 18
StackPanel 41, 80, 95, 246, 270,

288, 354, 432
StandardTileData 49, 247
start button 37, 58, 64, 68, 73,

164, 261
start screen 49–50, 69, 111, 164,

247
StartDate 117
starting location 343
StartTime 118

StartTimeInclusive 117
startup URI 34
state dictionary 60
StateChanged 267
StaticResource 80, 94, 291, 433
status bar 37
StatusChanged 349
StatusCode 243
StatusDescription 243
StorageKind 110
storyboard editor 15
Stream 154–155, 158, 242, 252,

316
StreamInfo 339
streaming media 334
StreamResourceInfo 191, 365
street address 356
StringBuilder 350
StringFormat 63, 81, 115, 435
StrokeThickness 293, 306
student accounts 439
submission process 26, 441
SubmissionInfo 440
SubmitChanges 135, 138, 141
submitting applications 438
subtle text style 291
SupportedOrientations 36, 39,

286
SuppressFrame 389
SVG. See Scalable Vector

Graphics
SwitchForeground 302
system theme 266
System.Data.Linq 122, 133, 135,

142
System.Data.Linq.Mapping 133
System.Device 347
System.Device.Location 11, 27,

346
System.IO 122, 129
System.IO.IsolatedStorage 122,

127, 129
System.Net 10, 17, 19, 27, 240
System.Net.NetworkInformation

231
System.Net.Sockets 10, 17, 19
System.Windows.Input 300
System.Windows.Media 17, 19,

27
System.Windows.Media

.Animation 15
System.Windows.Media.Imaging

167–168
System.Windows.Shapes 38, 363
System.Windows.xaml 363

System.Xml.Serialization 130
SystemTray 37, 318

T

tab control. See pivot
target operating system

version 32
targeted distribution 441–442
TargetName 288
TargetProperty 288
Task Switcher 58, 64, 66, 68, 153
TaskEventArgs 104, 108
TaskID 177
TaskResult 106, 109, 153, 367
Tasks API 93
TCP 228, 249
tel URL 15
TelephoneNumber 299
tesla 213
Text input scope 41
text messaging application 99
text styles 291
Text1 243
Text2 243
TextBlock 290, 292, 432
TextBox 298–299, 432
text-decoration 364
Texture 396, 403
Texture2D 396, 408, 413
TextWrapping 299
theme background 291
theme colors 266, 291
theme resource 36, 38, 40, 81,

95, 280, 293, 302
Themes.xaml 363
third party applications 108, 172
ThreadPool 232
thumbnail 163, 175
thumbstick 407–411
tile notification 233, 237, 239
tiles 8, 11, 18, 49, 65, 228, 233,

245
TimeBetweenUpdates 201, 209,

215, 218, 222
TimePicker 301, 303
TimeSpan 91, 183, 185, 209,

215, 218, 222, 392
TimeStamp 416
TimeTypeConverter 303
title layer 268
title styles 291
TitlePanel 36, 288, 431
TitleTemplate 274
Today Screen 13

INDEX456
ToggleButton 297, 302
ToggleSwitch 301–302
token 179, 241, 247
tombstone recovery 69
tombstoned state 60, 66–73, 104
tombstoning 66, 69–73
toolbar. See application bar
toolbox 262
top layer 268
torus 377
TotalSeconds 64, 68–69
TotalTime 376
Touch API 407
touch events 41
touch gestures 41–42, 415
touch manipulation events 296
touch point 416
touch target 296
touch-and-drag 417
TouchCollection 409
TouchLocation 407, 410
TouchLocationState 407, 410
TouchPanel 306, 407, 409, 415–

416
TrackEnded 196
TrackInfo 337
transparency 51
transparent pixels 295
TResult 142
trial licensing 52, 101, 441
TrueHeading 214–215
TryCreate 244, 246
TryGetValue 128, 238, 273, 278
TryParse 246, 248
Twitter 96
TwoPi 386
TwoWay 434, 436
type parameter 200, 202
typography 7

U

UDP 228, 249
UIAccelerometer 16
UIElement 43, 166, 265, 307,

396
UIElementRenderer 394, 396–

397, 403
UIKit 15
UINavigationController 15
UnauthorizedAccessException

28, 201
UnhandledException 90
unicast 249
UniformToFill 294

UnitX 381–382
UnitY 385
UnitZ 385
Universal Volume Control 195–

197
UnloadedPivotItem 281
UnloadingPivotItem 281
update loop 412
UpdateInterval 375
UpdateSource 140
UriKind 46, 315, 361
Url input scope 42
USB port 33
User Datagram Protocol 10, 249
user defaults 16
user experience 7
User Experience Design

Guidelines 35, 42, 266
user interface guidelines 15
user interface thread 95, 162,

164, 202, 223, 232
user preferences 127
user reviews 438
UserAction 195
UserControl 432
UserData API 110–119
UserExtendedProperties 27
UserIdleDetectionMode 419
user-scalable 362
UTF8 253
UVC. See Universal Volume

Control

V

ValidateWaveFormat 331
value converters 45, 436
ValueChanged 303
VCR buttons 312
Vector2 396, 403, 408
Vector3 200, 210, 215, 218–219,

381–382, 393
velocity 212
vertical intensity 213, 216
VerticalAccuracy 346
VerticalDrag 415–416
VerticalScrollBarVisibility 298
vertices 377
VibrationController 392
VideoBrush 162, 273
VideoMediaStreamSource 324
VideoPlayer 16, 19
VideoView 19
view coordinate 381
viewfinder 161, 164–165

viewport 362
virtualization extensions 21
Visual Basic 20
visual cue 417
visual design 423
visual designer 37
visual editor 15, 262
visual feedback 414
Visual Studio 4, 7, 15, 20, 30,

203, 210, 228
Visual Studio Express 423
visual tree 263
VisualStateGroup 288
VisualStateManager 287–290
VisualTreeHelper 263
voice recording 183

W

wait time 244, 247
WAV 312, 331
wave file 187
Waveform Audio File

Format 329
WaveFormatEx 188, 322, 330–

331
WDDM 1.1 driver 21
Weather Channel 8
web header 241
web request 239
web service 11
web storage 358
WebBrowser 27, 297, 342, 360,

364, 366
WebBrowserTask 96, 297, 342,

359
WebCamera 16
WebClient 10, 17, 19
weekly recurrence 81
Wi-Fi 85, 228, 230, 232, 342
Win32 API 12
windows button 58
Windows CE 4
Windows Live 9, 96, 110, 174,

176
Windows Mobile 3–4, 7, 12
Windows Phone 6.5 3–4, 12
Windows Phone Application

project 425
Windows Phone Audio Playback

Agent 31, 194
Windows Phone Audio Streaming

Agent 31
Windows Phone Class

Library 31

INDEX 457
Windows Phone Databound
Application 31

Windows Phone Developer
Tools 20, 262

Windows Phone Landscape
Page 39

Windows Phone
Marketplace 11, 22

Windows Phone Panorama
Application 31, 268

Windows Phone Panorama
Page 39, 268

Windows Phone Pivot
Application 31, 110, 276

Windows Phone Pivot Page 39,
111, 228, 235, 276

Windows Phone Portrait
Page 39

Windows Phone Scheduled Task
Agent 31, 86

Windows Phone Silverlight and
XNA Application 31, 373,
378

Windows Phone User
Control 39, 204

Windows Presentation
Foundation 13, 430, 432

Wings 3D 377
WinRT 430
wireless access point 346
wireless service provider 229

Wireless80211 231
WMA 107, 312
WMAppManifest.xml 25, 32, 86,

97, 111, 116, 201, 346
WMV 312, 314
word correction 41
workflow 15
world coordinate 381
world matrix 381
world origin 381
WPConnect Tool 24, 33, 153, 196
WPconnect.exe Tool 175
WPF. See Windows Presentation

Foundation
WPNotification 243–244
WrapPanel 301
WriteableBitmap 153, 157, 166,

168
WriteAcquiredItem 192
WriteRecentPlay 192

X

x:Key 436
x:Name attribute 263
XAML designer 423
XAML editor 262
XAP Deployment Tool 23
.xap file 18, 82, 107, 295, 311,

359, 395
Xbox 360 12, 20, 372

Xbox Live 9, 11
X-DeviceConnectionStatus 242
X-MessageID 241
xml namespace 302
xmlns 205, 243, 269, 336, 352
XmlSerializer 130–131
XNA event system 183
XNA Framework 13, 15, 31, 172,

185, 189, 372
XNA Game Studio 4, 12, 20, 372
XNA rendering 374, 394
.xnb file 373, 377
X-NotificationClass 241, 244,

247
X-NotificationStatus 242
X-SubscriptionStatus 242
X-WindowsPhone-Target 241,

244, 247

Y

Yaw 220, 222, 225
yearly recurrence 81

Z

zip archive 18
ZoomBarVisibility 352
ZoomLevel 343–344, 352
Zune 6–7, 19–20, 153, 173–174

Binkley-Jones ● Perga ● Sync

W
indows Phone 7 is a powerful mobile platform sporting
the same Metro interface as Windows 8. It off ers a rich
environment for apps, browsing, and media. Developers

code the OS and hardware using familiar .NET tools like C# and
XAML. And the new Windows Store off ers an app marketplace
reaching millions of users.

Windows Phone 7 in Action is a hands-on guide to programming
the WP7 platform. It zips through standard phone, text, and
email controls and dives head-fi rst into how to build great mo-
bile apps. You’ll master the hardware APIs, access web services,
and learn to build location and push applications. Along the
way, you’ll see how to create the stunning visual eff ects that can
separate your apps from the pack.

What’s Inside
● Full introduction to WP7 and Metro
● HTML5 hooks for media, animation, and more
● XNA for stunning 3D graphics
● Selling apps in the Windows Store

Written for developers familiar with .NET and Visual Studio. No
WP7 or mobile experience is required.

Timothy Binkley-Jones is a soft ware engineer with extensive
experience developing commercial IT, web, and mobile
applications. Massimo Perga is a soft ware engineer at Microsoft
and Michael Sync is a solution architect for Silverlight and WP7.

To download their free eBook in PDF, ePub and Kindle formats, owners
of this book should visit manning.com/WindowsPhone7inAction

$39.99 / Can $41.99 [INCLUDING eBOOK]

Windows Phone 7 IN ACTION

MOBILE TECHNOLOGY/WINDOWS

M A N N I N G

“Defi nitely recommended!”
—Vipul Patel, Amazon.com

“Top resource for Windows
Phone developers.”—Loïc Simon, Solent SAS

“A great handbook for
climbing the WP7 ladder.”—Francesco Goggi

Magneti Marelli

“Gives you a kickstart in
Windows Phone
 development.”—Mark Monster
Monster Consultancy

SEE INSERT

	Cover
	Copyright
	Contents
	Preface
	Acknowledgments
	About This Book
	Part 1
	Chapter 1
	Chapter 2
	Part 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Part 3
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Part 4
	Chapter 14
	Chapter 15
	Appendik
	Index

