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PREFACE 

Basically all processes in a cell involve proteins and the great majority of 

biological functions are mediated not only by isolated proteins but also 

by the interaction of proteins. Powerful experimental techniques are 

available to systematically investigate the network of protein–protein 

interactions in cellular systems. However, for a full understanding of 

protein–protein interactions, knowledge of the three-dimensional 

structure of complexes formed between interacting proteins is essential. 

Immense progress has been achieved in recent years to elucidate protein–

protein complex structures and to better understand the physical 

principles of complex formation. What are the driving forces for protein–

protein association? What can we learn about specific recognition from 

studying protein–protein interfaces? How can this knowledge be used to 

predict protein–protein interactions and is it possible to influence 

protein–protein interactions by small drug molecules? These and many 

other questions will be tackled in the 13 chapter contributions in this 

volume. 

Although the book covers the state-of-the-art research in the area of 

protein–protein complex analysis and modelling, it is not primarily 

directed at specialists in the field. The book is also meant to be a useful 

guide for students and researchers in the area of Chemistry, Biochemistry 

and Biophysics with an interest in proteins and protein–protein 

interactions. Most chapters contain significant introductory information 

in addition to the most recent progress in the field. Readers will gain 

insight into the recognition principles of proteins; how to determine, 

analyse and predict protein–protein interactions and complex structures, 

as well as learn about possibilities of interference with protein–protein 

interactions.  

Leading researchers in the field have been selected to contribute 

chapters to the book. Authors were free to select the exact scope of their 

contribution and express their own view on the field. Possible 

overlapping between chapters can be profitable for the reader since key 

information is provided from different perspectives by leading scientists. 



Preface viii

The first part of the volume introduces the analysis of experimentally 

determined structures of protein–protein complexes. Experimental 

protein structures contain rich information on the principles of 

interaction. The systematic analysis of the interface region of protein–

protein complexes and the comparison with other surface regions of a 

protein reveal the physical characteristics of protein binding sites. A 

deeper understanding of the driving forces of protein–protein complex 

formation also requires an analysis of the thermodynamics of protein–

protein association. The first part of the book includes an overview of 

experimental methods to investigate the thermodynamics of protein–

protein binding, and also discusses theoretical methods to calculate 

energetic and entropic contributions. The study of the kinetics of 

association and dissociation of protein–protein interactions is of central 

importance to understanding the mechanism of protein complex 

formation. How the kinetics of protein–protein binding can be studied 

experimentally and theoretically is at the focus of a separate chapter. 

Proteins bind to specific sites on the surface of proteins with high 

affinity. The physico-chemical character of binding sites can differ from 

the properties of other surface regions. In addition, often the amino acids 

at protein binding sites are evolutionarily more conserved then the rest of 

the protein surface. The properties and conservation of protein functional 

sites and how they can be used to identify relevant amino acid residues 

for protein–protein recognition are discussed in the fifth chapter.  

Due to the large number of putative protein–protein interactions and 

the transient nature of many protein–protein complexes, only a fraction 

of possible protein–protein complex structures can be determined 

experimentally. A variety of computational docking prediction methods 

have been developed in recent years to tackle the problem of providing at 

least structural models of important protein–protein complexes. A 

general overview of docking methods is provided, followed by chapters 

on how to best include experimental data or information from 

bioinformatics resources to high-resolution docking methodologies. 

Typically, modelling protein–protein complex structures is not a one-step 

procedure but instead distinguishes an initial exhaustive search followed 

by a refinement and rescoring phase. The options of refining and 
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identifying the most realistic predicted complex structure are also 

introduced.  

The last five chapters of the volume shift the focus from three-

dimensional modelling of protein–protein interactions towards 

approaches that influence or interfere with protein–protein interactions. 

A significant fraction of protein–protein interactions – particularly in 

higher organisms – are mediated by reoccurring motifs or interaction 

patterns. Chapter 10 gives an overview of several examples of biological 

and medical importance. The chapter also includes a discussion of the 

involvement of motif-mediated interactions in diseases. Mutations in 

proteins may perturb interactions with other partners. However, site-

directed mutagenesis can also be used to redesign protein binding regions 

to create new or altered protein–protein interactions. Methods to estimate 

changes in protein–protein affinity, due to residue substitutions at the 

interface, are described and the possibility to directly and specifically 

interfere with protein–protein interactions is at the focus of two separate 

chapters. The concepts are introduced and discussed on examples that are 

of relevance to several human diseases. Proteins can undergo 

conformational changes upon association. In addition, the binding 

process can also influence the flexibility of binding partners which may 

even mediate long-range allosteric communication. The analysis of such 

dynamical recognition processes and the possibility to influence them by 

drug-like molecules is the subject of the last chapter. 

It is my great pleasure to thank all authors for the time and efforts 

they devoted to the demanding work of contributing book chapters to this 

volume. I am grateful to the editors of Imperial College Press for their 

cooperation and also to my co-workers and family for their patience and 

support. 

 

Munich, July 2009 

 

 

Martin Zacharias  
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1 

CHAPTER 1 

X-ray Study of Protein–Protein Complexes and 

Analysis of Interfaces  

Joel Janin 

Yeast Structural Genomics, IBBMC UMR 8612 CNRS, 

Université Paris-Sud, 91405 Orsay, France 

E-mail: joel.janin@u-psud.fr 

Highly efficient procedures to express genes and prepare individual 

proteins for structural analysis, developed during the first round of the 

Structural Genomics initiatives world wide, are now being extended to 

protein complexes and multi-subunit assemblies. These structures are 

still few in the Protein Data Bank, but one can exploit the abundant 

information on binary protein–protein complexes and oligomeric 

proteins to set up appropriate methods of analysis, and derive rules on 

protein–protein interaction, which will be applicable to larger 

assemblies when their structures become available.  

1.1 Introduction 

Following the completion of the first complete genome sequences at the 

turn of the century, the question was put to structural biologists: can 

crystallography and NMR provide three-dimensional structures for the 

products of all these genes? At that time, it was estimated that a set of 

10,000 experimental structures, carefully chosen, would cover the space 

of existing folds; the remainder could be built by homology.
1
 Structural 

Genomics (SG) initiatives were launched in the USA and Japan in the 

years 2000–2001, with that goal. With the end of 2009, they will have 

deposited more than 8,000 new structures in the Protein Data Bank 

(PDB, http://www.rcsb.org/pdb/statistics/), and the target of 10,000 will 
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almost certainly be reached before 2010. But meanwhile, the landscape 

around has changed greatly. We now realise that the diversity of DNA 

sequences may be orders of magnitude greater than what was thought 

when only a few model genomes were known. Many of the new 

sequences are unrelated to what we have in the databases, and therefore, 

many protein folds have yet to be discovered. Moreover, it has become 

clear that most gene products do not exist and function as single entities. 

Genome-wide studies of protein–protein interaction have demonstrated 

that cells contain thousands of macromolecular assemblies of all sizes, 

from simple dimers to objects that comprise tens or hundreds of 

polypeptide and/or nucleic acid chains.
2,3

 The examples of the ribosome 

and the nuclear pore show that the whole assembly, not the individual 

chains, carries the biological function. The structural analysis should, 

therefore, not be limited to the isolated components. 

The number of solved macromolecular assembly structures is still 

small compared to that of isolated proteins.
4
 In this review, attempts will 

be described to characterise macromolecular assemblies similar to the 

systematic studies that SG initiatives performed on single proteins.  

While these studies are ongoing, we may look at simpler systems for 

which the PDB offers more examples: protein–protein complexes and 

homodimeric proteins. Their atomic structures contain a wealth of 

information on the chemistry and physical chemistry of the non-covalent 

interactions that allow polypeptide chains recognising each other and 

self-assembling into a functional macromolecular entity.
5–9

 The methods 

developed to extract this information, the observations and rules derived 

from its analysis, will undoubtedly help us to understand the more 

complex systems when their structure becomes available. 

1.2 Preparing Proteins for Structural Studies 

The first genome-wide studies of protein–protein interactions were 

completed at about the same time as the SG initiatives of the first 

generation. As a result of that coincidence, the second generation of SG 

initiatives that started in 2005–2006, included several programmes that 

are concerned with macromolecular assemblies.
10–11

 Thus, the Yeast 

Structural Genomics, a small-scale pilot-project that we carried out in 
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Orsay in 2001–2004, is now part of two programmes funded by the 

European Union, SPINE2-Complexes and 3D-Repertoire  

(http://www.spine2.eu, http://www.3drepertoire.org). Both combine 

high-resolution X-ray/NMR and medium/low resolution cryo-electron 

microscopy studies (cryo-EM) in order to study multi-component 

systems; some of their targets, like RNA polymerase or the exosome that 

degrades mRNA, have a well-established status in biology. Others have 

just been identified in systematic tandem-affinity purification/mass 

spectrometry studies. These complexes have no known function, but with 

yeast, a wealth of genetic and biochemical tools are available to 

characterise them while the structural analysis is ongoing. Atomic 

resolution may not be reachable for some of the targets, but useful 

models can be obtained by docking into the electron density of cryo-EM 

images, the high-resolution models obtained by X-ray crystallography on 

some of the components. 

All these studies integrate the expertise acquired by labs that were 

part of the first round of Structural Genomics initiatives to which they 

owe many of their tools and first of all, efficient methods to produce and 

analyse recombinant proteins.
12

 Figure 1.1 describes the standard 

procedure that was set up to express and prepare proteins of 

Saccharomyces cerevisiae during the four years of the Yeast Structural 

Genomics pilot-project.
13

 It comprises three major steps: 

1. Cloning: We use the PCR reaction to amplify the target sequence 

in genomic DNA (mostly intron-free in S. cerevisiae); the two primer 

oligonucleotides contain appropriate restriction sites and the 3’-primer 

codes for a six-histidine tag placed just after the last codon. The PCR 

products are purified, digested with restriction enzymes and inserted into 

an expression vector. Their DNA sequence is checked. In E. coli, we use 

vectors derived from the pET plasmid, which place the target gene under 

control of the highly efficient phage T7 promoter. 

2. Protein Production: The level of gene expression and the 

solubility of the target protein are evaluated in small-scale cultures of 

several E. coli strains, each grown at four different temperatures. The 

conditions that yield the most soluble protein are retained for large-scale 

production in 1 litre flasks.  
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Fig. 1.1. Flowchart of the protein expression/purification procedure. During the Yeast 

Structural Genomics pilot-project, 250 S. cerevisiae genes were cloned and tagged in a 

standard protein preparation procedure. Expression in E. coli succeeded for 80% of the 

proteins with less than 350 residues. Soluble protein could be purified in two steps from 

the cell extract, and insoluble protein could be recovered in a number of cases from 

inclusion bodies (adapted from Ref. 13). 
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3. Protein Purification and Quality Controls: The His-tagged protein is 

purified on a Ni-NTA resin, concentrated and run on a size exclusion 

column. Its degree of purity (usually > 95%) is judged by electrophoresis 

on a SDS gel and its chemical integrity by mass spectrometry. 

The cloning step was carried out on 250 S. cerevisiae target genes 

with a success rate above 90%. After optimization of the growth 

conditions, most of the cloned genes were highly expressed in E. coli; an 

overnight culture in a shaken flask yielded the target protein in milligram 

quantities. However, more than one-third of the constructions gave 

insoluble protein in inclusion bodies. About half of those could be 

recovered as soluble protein either by co-expressing bacterial 

chaperones, by solubilizing the inclusion bodies in 6 M guanidinium 

chloride and screening for refolding in a number of buffers,
14

 or by using 

a cell-free expression system.
15

   

Carrying out the whole procedure on all the targets was outside the 

scope of a pilot-project, and therefore, we focused our work on a subset 

of proteins of interest. Starting with 140 well-expressed yeast genes, we 

obtained 72 proteins purified to homogeneity in quantities of 0.5 to 10 

mg that could be subjected to automated crystallization screens. A 

majority of the screens gave crystalline hits, not always of sufficient 

quality for structure determination, but some of these leads could be 

optimised as discussed below. Fourteen proteins had their X-ray structure 

determined to resolutions of 1.3 to 2.6 Å within the four-year course of 

the pilot-project
16

 (http://genomics.eu.org/spip/Overview), and another 

ten during the two years after. Therefore, the goal of 20 new structures 

that we had initially fixed to the pilot-project had been reached by 2006, 

leaving the place for new projects mostly concerned with protein–protein 

complexes.  

Other SG centres have had success rates similar to ours, often on a 

much larger scale.
17

 The second generation programmes that opened in 

2005 in the US and Japan, have built on that experience to set up high-

throughput production chains for the structure determination of single 

gene products by both X-ray crystallography and NMR. Whereas most of 

the first-generation targets were from prokaryotes or yeast, more difficult 

targets from higher eukaryotes and including membrane proteins are now 

being addressed, albeit with a much lower throughput.
12,18
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1.3 Preparing Protein–Protein Complexes and Multi-component 

Assemblies 

The preparation scheme of Fig. 1.1 has a success rate of 50% that may be 

considered as satisfactory on a target that is a single gene product. The 

same scheme can be used to produce multigenic protein assemblies by 

preparing each component separately. For a binary complex, the 

expected 25% yield makes it worth trying, but with more than two 

components the chance is poor that all the subunits can be prepared 

separately as soluble proteins that will self-assemble when mixed 

together. Nevertheless, the one-by-one approach has had some 

remarkable successes. For instance, the Xenopus genes coding for the 

four different histones that constitute the nucleosome core particle could 

be individually expressed in E. coli, and the core particle was 

reconstituted by mixing them together in appropriate proportions.
19

  

More frequently, some but not all of the components of a multi-

component complex are obtained in soluble form. The complex itself 

cannot be reconstituted, but some of the soluble components form 

subcomplexes that can yield important information on the assembly, and 

they may be suitable for high-resolution structural studies 

complementing a cryo-EM analysis of the whole complex.  

Figure 1.2 describes the strategy that we developed for preparing 

yeast protein–protein complexes. It offers several alternatives to the one-

by-one gene expression approach (Pathway 3). One possible approach is 

to prepare the assembly directly from yeast extracts, either at its natural 

abundance (Pathway 1) or after over-expressing all its components 

(Pathway 2). Over-expression can also be attempted in E. coli (Pathway 

4). Pathway 1 is the one that was used in the structural studies of 

bacterial ribosomes, and also of the yeast 20S proteasome.
20

 The cells 

can be grown in large quantities, the ribosome and the proteasome are 

very abundant, and they can be purified by techniques that do not require 

affinity tags. In all other cases, the complexes must be over-expressed. A 

simple procedure would be to build an expression vector for each of the 

genes of interest, and introduce them into the same bacterial or yeast 

strain. However, it is difficult to maintain more than two plasmids in the 

same host, and even with a binary complex, the level of expression of 
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two genes carried by different vectors is likely to be very unequal, 

compromising the formation of an assembly with a well-defined 

stochiometry. The approach that we and others favour is therefore to 

make operon-like genetic constructions, in which several genes of 

interest are placed next to each other. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2. Strategy for the purification of multi-subunit yeast complexes. 

They form a single transcription unit under the control of the same 

promoter, and a ribosome binding site is placed between each stop and 

start codon.
21
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in the operon are transcribed into a single mRNA, they are translated at 

similar levels and their products are able to associate as they exit the 

ribosome. Thus, components that would be insoluble (or disordered and 

degraded) if expressed alone, can be rescued through their interaction 

with the partner chains. The procedure does not apply to systems such as 

the complexes of the respiratory chain, because their assembly requires 

specialized chaperones or cofactors. Still, the co-expression and self-

assembly in E. coli of eukaryotic protein–protein complexes has had a 

remarkable success rate, and most of the methodological developments 

in progress follow Pathway 4.  

1.4 Crystallization and X-ray Studies 

Crystallization is a well-recognised bottleneck in structural studies. A 

number of new tools have been developed in recent years, mostly in SG 

labs. These techniques were designed primarily for single-gene products, 

but they work equally well for multi-component assemblies and play a 

key role in the present study. In spite of many attempts to make it 

rational, the crystallization of proteins, nucleic acids and their complexes 

still depends on testing hundreds of conditions that combine different 

precipitants, pHs and additives. One of the very first upshots of the SG 

initiatives, the one that spread the most quickly, was automatic 

crystallization. Unlike an attempt we had made
22

 to use robotics in the 

early nineties, the devices and procedures that were developed ten years 

later in the framework of the SG centres immediately found industrial 

support and are now used routinely by the protein science community. 

Pipette robots and crystallization kits greatly facilitate the preparation of 

the precipitant solutions. Equally important, the amount of biological 

material required to do the tests has dropped by one or two orders of 

magnitude, thanks to liquid-dispensing robots that prepare arrays of 

nanodrops in 96-well plates.
23–24

 A standard set of four plates can be 

prepared in a couple of hours with a minimum of human intervention, 

and it uses up only a milligram or two of pure protein material. 

Moreover, the success rate is remarkably high: in our hands, about half 

of proteins entering crystallization trials give crystals of some sort. As 

many are not suitable for diffraction experiments because of their size 
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and shape, or of the low resolution of the X-ray diffraction pattern they 

give, the conditions under which they are obtained have to be optimised, 

and that again can be done by automatic procedures.
25

   

The crystallization methods are essentially the same for single 

proteins and for complexes, although meeting the criterion of 

homogeneity may be more difficult in the latter case. The protein 

concentration in the crystallization mix – typically 5–10 mg/ml – allows 

the formation of low-affinity complexes with Kd values in the 

micromolar range by simple mixing of the components. But the 

stoichiometry of the mixture may not be exact and the components in 

excess can interfere with crystallization, or crystallize separately. It is 

possible to avoid this problem by purifying the complex on a size 

exclusion column, or by other chromatographic techniques before 

crystallization. However, such procedures are only applicable to stable 

assemblies.  

Once diffracting crystals are obtained, the steps that follow usually 

require labeled material. Labelling is needed for structure solution by 

both crystallography and NMR. NMR makes extensive use of isotopic 

labels such as 
15

N and 
13

C (see also Chapter 7), and crystallography 

needs heavy atom labels for phase determination. In a recombinant 

protein, heavy atom labelling can be very efficiently achieved by 

incorporating selenomethionine in place of methionine.
26

 The widespread 

utilization of the dispersive and anomalous signal of selenium at 

wavelengths near 0.98 Å has been the key to the development of high-

throughput crystallographic methods in the last ten years. Synchrotron 

radiation centres make this wavelength easily available on experimental 

setups that allow a complete diffraction dataset to be recorded in a matter 

of minutes. This is achieved by making full use of the high beam 

intensity of synchrotron radiation, and by the efficiency of the X-ray 

detectors developed over the past ten years.  

Biological crystallographers have at their disposal an extensive 

library of software that performs all the steps which follow the recording 

of X-ray patterns: data reduction, phase determination, model building 

and refinement.
27

 Diffraction data taken at several wavelengths (in the 

Multiple Anomalous Diffraction or MAD method), or even at a single 

wavelength (in the Single Anomalous Diffraction or SAD method) on 
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just one crystal, yield good quality phases and electron density maps in 

which a large part of the polypeptide chain can be traced automatically.
28

 

In the case of a complex, it may be sufficient to label one of the 

components if prepared separately. On the other hand, selenomethionine 

incorporation requires the protein to be expressed in bacteria or yeast 

grown on special media, or possibly in vivo in a cell-free system. While 

the method may be extended to other expression systems in the future, 

biological material extracted from a natural host cannot be labelled in 

this way. However, elements other than selenium give a dispersive and 

anomalous signal that can be used for phasing, for instance the metal 

ions present in metalloproteins, or just the sulfur atoms of cysteines in 

favourable cases.
29

 If none of these methods are applicable, one must 

return to classical heavy atom labelling techniques; Hg reacting with 

cysteines for instance, has been used in the past for multiple isomorphous 

replacement, and is nowadays also suitable for MAD or SAD phasing. 

1.5 The Geometric Analysis of Protein–Protein Interfaces 

Structure determination by crystallography or NMR ends with the 

deposition of set atomic coordinates at the Protein Data Bank
30

 (PDB) 

that makes it available to the community. The information present in a 

PDB entry is chemical: the nature of each atom; and geometric: the 

atomic positions. Its conversion into terms of physical and/or biological 

relevance is rarely straightforward, and specific tools have been 

developed for that purpose. Thus, at least three geometric tools are 

appropriate when defining the interface between two molecules or 

macromolecules A and B that form a complex AB: 

1.  Distance: atoms or chemical groups i of A and j of B are part of the 

A:B interface if they satisfy the condition dij< d0, where d0 depends on 

the atomic or group radii ri and rj, and on a cutoff value r0 in the range 

0.5–2 Å: 

 

 dij  < d0 = ri + rj + r0 (1.1) 
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2.  Buried Surface:
31

 the A:B interface comprises all the points of the 

solvent accessible surface of A or B that do not belong to the 

accessible surface of AB.  

3. The Alpha-complex,
32

 a geometric construction related to the Voronoi 

diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.3. Solvent accessible and buried protein surfaces. The centre of the water probe 

(W) defines the solvent accessible surface. The A:B interface comprises the points of the 

solvent accessible surface of A and B (top) that are no longer accessible in the AB 

complex (bottom). 
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The first definition is the simplest, but as it depends on an arbitrary cut-

off, the second is used more commonly nowadays. In Fig. 1.3, the 

spheres represent atoms or chemical groups with radii that are augmented 

of the probe radius (rW = 1.4–1.5 Å for a water probe) on the surface; the 

solvent accessible surface is the border of their union. Its construction 

may implement the rolling sphere algorithm
33

 or an equivalent analytical 

algorithm. The buried surface area is a convenient measure of the 

interface size. It can be computed as: 

 

 BSA = ASAA + ASAB – ASAAB  (1.2) 

 

where ASAA, ASAB and ASAAB are the accessible surface areas of A, B 

and the AB pair. The atoms and residues that contribute to the BSA are 

part of the interface, and in practice the BSA is proportional to their 

number, and also to the number of atom pairs that satisfy Eq. 1 with r0 = 

2rW. The alpha-complex on which the third definition is based is an 

extension of the Voronoi diagram, a geometric construction first applied 

to proteins by Richards.
34

 That diagram associates to each atom its 

Voronoi cell, the convex polyhedron that contains all points of space 

closer to that atom than to any other atom. To account for the different 

sizes of the chemical groups, the Euclidean distance is commonly 

replaced by the power distance p(x): 

 

 p(x) = d
2
 – r

2
 (1.3) 

 

Here, r is the radius of the sphere that represents the atom, and d the 

distance of point x to its centre. The Voronoi cell of an atom comprises 

all points x that have a power distance to that atom less than to any other 

atom.
35–36

 Its facets belong to the radical plane, which contains the 

intersection of the spheres if there is one. The Voronoi or the power 

diagram offer a natural definition of contacts: two atoms are in contact if 

their Voronoi cells share a facet. The interface area may then be 

calculated as the sum of the areas of these ‘bicolour’ facets. In Fig. 1.4a, 

the blue and red circles that represent atoms of A and B (in two 

dimensions) have radii that are augmented of rW as in Fig. 1.3 above. The 

blue lines are the facets shared by atoms of A, and the green lines are the 
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bicolour facets shared between A and B. But atoms on the molecular 

surface always have unbounded facets, like the one between A1 and A3 in 

Fig. 1.4a. They raise a problem to which the alpha-complex gives an 

elegant solution.
32

 It is built like a power diagram, except that one 

restricts the Voronoi cell of each atom to its associated ball and seeks 

intersections between these restricted regions. Thus, a facet between two 

atoms is not part of the alpha-complex if the associated spheres do not 

intersect, or if the facet lies outside the intersection. In Fig. 1.4a, the B1 

and A3 balls intersect outside their Voronoi cells, due to the presence of 

A2. The corresponding bicolour facet is dashed to indicate that it is not 

part of the alpha-complex, and the Voronoi interface comprises only the 

two facets of B1 with A1 and A2.  

An interface defined in this way may still contain a few unbounded 

facets that Ban et al.
37–38

 remove through an iterative retraction 

procedure, and Cazals et al.
39

 by testing appropriate geometric criteria. 

Figure 1.4c illustrates how the Voronoi interface defined by the Cazals 

procedure approximates the shape of the buried molecular surface in the 

protease–inhibitor complex of Fig. 1.4d. When the two procedures are 

applied to the set of protein–protein interfaces of Chakrabarti and Janin,
40

 

the Voronoi interface area calculated as the sum of the areas of the 

bicolour facets, correlates linearly with the BSA, but the correlation is 

much better with the Cazals than the Ban procedure (R
2 

= 0.98 vs 0.85). 

A remarkable result of Cazals et al.
39

 is that about 13% of the atoms that 

share bicolour facets do not contribute to the BSA, mostly because they 

are not solvent accessible to start with. An example is shown in Fig. 

1.4b: on top, the blue and red atoms are shown to share a facet, but the 

bottom panel indicates that the red atom is not solvent accessible due to 

the presence of other atoms in molecule B. As a consequence, the 

Voronoi interface generally comprises significantly more atoms, and 

especially more main chain atoms, than the buried surface. 

1.6 Types and Sizes of Protein–Protein Interfaces 

The protein–protein interfaces in the PDB are of several types that 

represent different categories of interactions.
41,6–9

 One may distinguish 

between the non-obligate interactions that occur when two preformed 
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proteins form (non-covalent) complexes, and other interactions that are 

obligate and permanent.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.4. The Voronoi model of protein–protein interfaces. (a) Voronoi interface in two 

dimensions: The blue and red circles represent atoms of A and B; their radii are 

augmented of the probe radius; the dashed blue lines are ‘monocolour’ Voronoi facets 

shared by atoms of A, the green lines are ‘bicolour’ facets shared by A and B. The A:B 

interface comprises the two facets drawn as full lines; they are part of the alpha-complex, 

but the B1:A3 facet (green dashes) is not. (b) A buried atom can be part of the Voronoi 

interface: the blue and red balls intersect, although other atoms of molecule B (in gold) 

make the red ball inaccessible to a solvent probe in the free molecule. (c) The Voronoi 

interface of a protease–inhibitor complex (1acb); the balls are interface water molecules. 

(d) The protease surface buried in contact with the inhibitor is viewed through the 

inhibitor backbone drawn as a blue tube; the green tube is the protease backbone. Panels 

a–c are adapted from Ref. 39. 
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The complexes of an antibody with the cognate antigen, of an enzyme 

with a protein inhibitor, or those that mediate signal transduction in cells, 

all illustrate non-obligate interactions. In contrast, the interactions 

between the subunits of an oligomeric protein usually form while their 

synthesis takes place on the ribosome, or soon after, and break only when 

the protein is denatured or degraded. 

Obligate or not, they play major roles in the structure and function of 

the protein assemblies that they stabilise. The PDB also contains many 

examples of a third type of interactions: those that hold protein crystals 

together. Unlike those that stabilise functional assemblies, crystal 

packing contacts are unspecific and not subject to any biological 

selection. They are laboratory artefacts (with some interesting 

exceptions), yet they are of the same physico-chemical nature as the 

interactions that stabilise complexes of oligomeric proteins. Any 

geometric, chemical or physico-chemical feature is of interest if it is able 

to distinguish between the interfaces created by crystal packing contacts 

and those that reflect biological interactions, because such a feature may 

contribute to the specificity of recognition between the protein surfaces 

involved. 

The size of the interface is the most obvious one. Figure 1.5 shows 

histograms of the BSA in sets of non-obligate protein–protein complexes 

and homodimeric proteins assembled by Chakrabarti and Janin
40

 and 

Bahadur et al.,
42

 and compares their interfaces with crystal packing 

interfaces. Mean values and standard deviations are cited in Table 1.1. 

Sets assembled by Jones et al.
5,43

 yield similar values. With the 

complexes, the distribution peaks near 1,600 Å
2
, and a majority of the 

interfaces buries less than 2,000 Å
2
. With the homodimers, most of the 

interfaces are larger, and often much larger. On average, their BSA is 

twice that of the complexes: 3,900 Å
2
 instead of 1,910 Å

2
, with a large 

standard deviation which confirms that the sample is very heterogeneous 

in terms of interface size.  

The crystal packing interfaces have a mean BSA of only 570 Å
2
 and 

therefore, they should be easy to tell apart from the specific interfaces of 

the complexes and the homodimers. In most cases indeed, a visual 

inspection of the molecular contacts suffices to identify units of 

biologically relevance, which the PDB calls the ‘biomolecules’. 
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Fig. 1.5. Size distribution of the protein–protein interfaces. Histogram of the BSA in 122 

homodimeric proteins, 70 protein–protein complexes, and 1320 crystal packing interfaces 

(the green line is drawn at a different vertical scale). The references are cited in  

Table 1.1. 

However, what appears in a PDB entry is not the biomolecule, but the 

crystal asymmetric unit (ASU). The relation between the two is far from 

obvious: a monomeric protein can yield crystals with two or more chains 

in the ASU. An oligomeric protein may result in crystals with only one 

chain, in which case it must have crystal symmetries. A complex may 

even have subunits in several ASUs. The header of post-1999 PDB 

entries contains two records, REMARK 300 and REMARK 350, which 

relate the biomolecule to the content of the ASU. As it takes some effort 

to convert this information into a set of coordinates, the PDB created 

Biounit, a database accessible through its RCSB interface, in which the 

biomolecule is built on the basis of REMARK 300/350 or of supporting 

information from the authors. The reliability of this procedure can be 

assessed by comparing it with the composition reported in the 
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biochemical literature. A wide, albeit incomplete, literature survey 

carried out by Lévy
44

 indicates that the two disagree in about 15% of the 

PDB entries, and in up to 27% of the proteins with non-redundant 

sequences. The results of the search are accessible through the PiQSi 

(Protein Quaternary Structure Investigation) database, well worth 

checking each time there in case of doubt. 

Table 1.1. Properties of protein–protein interfaces. 

 

 

Protein-protein 

complexes
a
 

Homodimers
b 

 

Crystal packing
c
 

Number in data set 70 122 188  (1,320) 

BSA (Å
2
) 

  s.d.  

1,910 

760 

3,900 

2,200 

1,510  (570) 

520 

Composition (BSA %) 

non-polar 

neutral polar 

charged 

 

58 

28 

14 

 

65 

23 

12 

 

58 

25 

17 

Polar interactions
d 

   

number of interface H-bonds 

BSA per H-bond (Å
2
) 

Water molecules per 1,000 Å
2
 

10 

190 

10 

19 

210 

11 

5 

280 

15 

Atomic packing
e
 

Fraction of buried atoms (fbu, %) 

Shape complementarity (Sc) 

Gap volume index (Igap, Å) 

Packing index (LD) 

 

34 

0.69 

2.5 

42 

 

36 

0.70 

2.1 

45 

 

21 

0.63 

4.4 

32 

a. Data of Chakrabarti and Janin
40

 on a subset of the complexes in Lo Conte et al.
49

 

b. Data of Bahadur et al.
42

 

c. Pairwise interfaces in crystals of monomeric proteins. The values in parentheses are for 

all the interfaces present in 152 crystal forms of monomeric proteins
48

. All other numbers 

are for the subset of interfaces with BSA > 800 Å
2
 in Bahadur et al.

47
 

d. The data on interface water are from Rodier et al.
61

  

e. Data from Bahadur et al.
 47

 

1.7 Chemical and Physical Chemical Properties of the Interfaces 

Twelve per cent of the crystal packing interfaces have a BSA above 800 

Å
2
, the size of the smallest interfaces seen in complexes and 
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homodimers. Thus, they cannot be distinguished from biologically 

relevant interfaces on the basis of their size only.
45–47

 Moreover, many of 

the larger crystal packing interfaces are associated with elements of 2-

fold symmetry (crystallographic or local). They constitute ‘crystal 

dimers’ that may be mistaken for real homodimers when interpreting the 

X-ray structure. Other properties of the interfaces should be considered, 

their composition for instance. In a protein crystal, each molecule has 

many neighbours: eight on average in the set of Janin and Rodier;
48

 even 

though each interface may be small, together they bury a large fraction of 

the protein surface. The chemical and amino acid composition of this 

surface must be like that of the solvent accessible surface, whereas the 

interfaces of complexes and oligomeric proteins are expected to be 

different. The chemical composition of the protein surface or an interface 

may be estimated as the fractional contribution of each atom type to the 

ASA or the BSA. On average, the non-polar (carbon containing) groups, 

which form 57% of the ASA, contribute marginally more to the BSA in 

complexes and crystal packing interfaces, but only the interfaces of 

homodimers are significantly more hydrophobic. The charged groups of 

Asp/Gly/Lys/Arg side chains are abundant (17–19%) on the protein 

surface and at crystal packing interfaces relative to the interfaces of 

complexes or homodimers (12–14%). On average, the crystal packing 

interfaces contain fewer H-bonds in proportion to their size than in 

complexes and homodimers: on average, one per 280 Å
2
 of BSA instead 

of one per 190–210 Å
2
. In contrast, they contain more residual hydration 

water (Table 1.1). However, the surface composition, the number of H-

bonds and the hydration of the interfaces vary widely from a protein or a 

complex to another.
49

 Thus, the differences between the mean values are 

always less than the standard deviations.  

Still, the procedures that aim to distinguish between biological vs 

crystal packing interfaces often rely on criteria derived from the 

hydrophilic/hydrophobic character of the interfaces, in addition to their 

size. Examples are PQS (Probable Quaternary Structure)
50

 and the 

related databases of the European Bioinformatics Institute (Hinxton, 

UK). PQS applies crystal symmetries to the molecules in the ASU, 

generates neighbours, scores each pairwise interface on the basis of the 

BSA and a solvation energy term in PQS, and builds molecular 
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assemblies iteratively by retaining the interfaces that achieve high scores. 

PITA (Protein InTerfaces and Assemblies)
51

 is the same, except that a 

statistical potential replaces the solvation energy. PISA (Protein 

Interfaces, Surfaces and Assemblies)
51

 uses a graph exploration 

algorithm to survey all the assemblies that can be formed in the crystal, 

and an empirical energy is calculated for each. All these procedures 

ignore the REMARK 300/350 information, and PQS disagrees with it in 

18% of the cases.
52

 Moreover, PISA fails to recognise as stable 

assemblies some classical complexes, the D1.3 antibody–lysozyme 

complex (1vfb) for instance. Thus, the combined criteria of the interface 

size and its chemistry are not always sufficient to determine the nature of 

the biomolecule in a crystal.  

Current approaches are based on statistical pairwise potentials and 

machine-learning procedures (reviewed in several chapters of this 

volume) that allow many other criteria to be taken into account. They 

should perform better than PQS or PISA, and in fact they can achieve a 

success rate close to 95% on test sets of limited size.
53

 However, they 

have not yet been applied to the whole PDB, or if they have the results 

have yet to be made accessible like PQS’s or PISA’s. In the same way, 

methods based on phylogeny and sequence conservation (see Chapter 5) 

have proved their efficiency in a number of cases, but the field of 

application is still limited. 

1.8 Atomic Packing and Interface Topology 

Upon visual inspection, the crystal packing interfaces often seem poorly 

packed and split into small groups of atoms.
47

 In contrast, protein–

protein complexes have interfaces that are close-packed like the protein 

interior
49

 and they form a single contiguous patch,
40

 at least when their 

BSA is less than 2,000 Å
2
. The quality of the atomic packing and the 

connectivity of an interface express the shape complementarity of the 

surfaces in contact. They are important characteristics that govern the 

energetics of the van der Waals and hydrophobic interactions, but they 

are not easy to quantify. The volumes of the Voronoi cells can be 

accurately measured to show that the packing density is the same within 

1–2% inside globular proteins
54

 and at the interfaces of protein–protein 
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complexes
49

 or oligomeric proteins.
55

 But Voronoi volumes can only be 

estimated for buried atoms (atoms with zero ASA), and those are a 

minority at macromolecular interfaces: 34–36% on average in complexes 

and homodimers, 21% at crystal packing interfaces (Table 1.1). 

Other descriptors of the geometric complementarity are the Sc index 

of Lawrence and Colman,
56

 the gap volume index of Laskowski,
57

 and 

the LD index of Bahadur et al.
47

 The mean values reported in Table 1.1 

confirm that the complementarity is less good at crystal packing 

interfaces than in complexes or homodimers. In Figure 1.6, these values 

are normalised to 1 for the homodimer interfaces, and their standard 

deviations are marked. The three descriptors behave similarly, but the 

contrast is poor with Sc, and the gap volume index has a large standard 

deviation due in part to the strong edge effects that affect it when the 

interface is small or split.  

A loosely packed interface with a large gap between the two surfaces in 

contact must bury few atoms in proportion to its size, and therefore the 

fraction of buried atoms (fbu) is related to the packing. In practice, fbu is at 

least a good criterion to distinguish specific from non-specific interfaces 

as Sc or the gap volume index.
8–9

 Interfaces that are split into several 

regions also bury fewer atoms. Chakrabarti and Janin
40 

applied a 

geometric clustering algorithm to the interface atoms in order to identify 

connected regions and define the interface topology. These regions, 

called recognition patches, generally occur in pairs, one on each protein. 

A majority of the protein–protein complexes has only one pair, the 

average number being 1.4. Homodimers, which have larger interfaces, 

contain more: 1.7 pairs on average, with still a majority of single-pair 

interfaces.
42

 The algorithm gives unreliable results with crystal packing 

interfaces. On the other hand, the model based on the alpha-complex 

provides a straightforward definition of an interface topology: the set of 

Voronoi facets that constitute the interface can be split into connected 

components, subsets of facets that have an edge in common, and these 

subsets correlate well with the recognition patches defined by the 

clustering algorithm.
39

  

Interfaces may be split in many other ways: along the amino acid 

sequence into interface chain segments
5,58

 or secondary structure 

elements.
59

 Chakrabarti and Janin
40

 distinguish within each interface 
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between a core made of the residues that contain atoms buried in the 

contact, and a rim in which all interface atoms are solvent accessible. In 

protein–protein complexes and homodimers, the interface rims have 

essentially the same amino acid composition as the solvent accessible 

protein surface, but the cores are significantly different; similarly, the 

interface core residues tend to be conserved in evolution, but not the rim 

residues.
60 

Fig. 1.6. Atomic packing and surface complementarity. Mean values and standard 

deviations (black bars) of the four parameters reported in Table 1.1 for 122 homodimeric 

proteins, 70 protein–protein complexes, and 188 crystal packing interfaces with a BSA > 

800 Å
2
. All have been scaled to 1 for the homodimer interfaces. Comparatively low 

values of the Sc shape complementarity index, of the reciprocal of the Igap gap volume 

index, of the LD packing index, and of the fbu fraction of buried atoms, all confirm that 

the atomic packing is less compact and the surface complementarity less good in crystal 

packing interfaces.
 

1.9 Conclusions and Outlook 

The interfaces of binary assemblies such as the protein–protein 

complexes and the homodimeric proteins have properties that multi-

component assemblies are likely to share, but only to some extent. In 
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larger oligomeric proteins or in virus capsids,
62

 some of the interfaces are 

comparable in size, chemical composition and atomic packing density to 

those of the homodimers. Others are much larger and may span more 

than two subunits, or they are much smaller and resemble crystal packing 

interfaces. Presumably, the larger interfaces play a greater role in the 

stability of the assembly, and are more subject to a selection pressure 

than small interfaces. The analysis of how different types of interfaces 

cooperate to stabilise large macromolecular system and contribute to 

their self-assembly will certainly be one of the most interesting aspects 

of the ambitious ongoing structural studies.  
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CHAPTER 2 

A Structural Perspective on Protein–Protein 

Interactions in Macromolecular Assemblies  

Ranjit P. Bahadur 

School of Engineering and Science, Jacobs University Bremen, 

Campus Ring 1, D-28759 Bremen, Germany 

E-mail: ranjitp_bahadur@yahoo.com 

Many cellular processes are carried out not only by a single 

biomolecule, but require an assembly consisting of several partners, 

which gives rise to macromolecular machines. Structural genomics 

initiatives aim at providing a repertoire of three-dimensional structures 

of such macromolecular assemblies. The analysis of the interactions 

between the biomolecules in an assembly can give valuable insight into 

the assembly process, and a better understanding of its function. Virus 

capsids are important examples of such assemblies consisting of many 

proteins and nuclei acid subunits. The structural information forms the 

basis for the analysis of the physical–chemical and structural properties 

of the protein–protein interfaces in icosahedral virus capsids. The 

results are compared to those found for binary protein–protein 

interfaces exemplified by homodimers, heterodimers and crystal-

packing monomers. Finally, the findings are correlated with different 

experimental data available in the literature to give an overview on the 

capsid self-assembly procedure.  

2.1  Introduction 

Recent discoveries in molecular and structural biology lead us to believe 

that most, if not all, of the cellular functions and activities are organised 

and carried out not by single molecules, but by the orchestrated action of 

biomolecular complexes.
1
 Proteins are often the major players in this 
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orchestra and may assemble inside the cell giving rise to macromolecular 

machines. Indeed, the entire cell can be viewed as a factory that contains 

an elaborate network of such machines. These molecular machines can 

grossly be divided into two major categories. In the first class, they are 

involved largely in the overall architecture and mechanical function of 

the organisms, exemplified in virus capsids
2
 or the components of the 

cellular cytoskeleton.
3
 In the other class, they are essential for many 

biochemical reactions as found in the ribosome,
4
 the protein synthesis 

unit of the cell, or in chaperones,
5
 that guide the protein folding process. 

To understand the functional mechanism of these complex structures, it 

is important to better understand their folding and assembly pathways.  

While binary protein complexes (see Chapter 1) consist of only two 

polypeptide chains, multi-subunit cellular machines involve several 

polypeptide and/or nucleotide chains, and often have a more complicated 

structure than binary complexes. So far the Protein Data Bank (PDB)
6
 

stores only a few of these complex structures at atomic detail, and among 

those assemblies it is the virus capsids and ribosomes that have been 

studied most extensively.
7
 Structural details are also available for the 20S 

proteasome core particle which is involved in removing damaged and 

misfolded proteins from cells;
8
 for the large chaperonin complexes 

GroEL and GroES;
9
 and for several multi-enzyme complexes such as 

glutamine synthetase
10

 illustrating their functional mechanism. While the 

virus capsids are symmetrical cellular machines, most of the others 

assemblies of known structure are asymmetric in nature. Here, we 

discuss the different physical–chemical and structural properties of the 

protein–protein interfaces in icosahedral virus capsids, which represent a 

well studied system for the analysis of multi-subunit protein assemblies. 

The conservation of the interfaces during evolution will also be analysed. 

Furthermore, the interfaces in virus capsids as examples of multi-protein 

assemblies will be compared with those found in binary protein–protein 

complexes in terms of several structural and physical–chemical 

properties. Finally, the implication of the observations for explaining the 

mechanism of the self-assembly process of viral capsids will be 

discussed.  
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2.2 The Icosahedral Viruses  

Icosahedral virus capsids are the classical examples of multi-subunit 

assemblies with a large number of protein and nucleic acid chains 

assembled in a regular geodesic structure. The capsids are spherical in 

shape, which encapsulate and protect the viral genome. They are 

frequently implicated in the recognition and infection of target cells. 

Icosahedral viruses are capable to infect a broad spectrum of living cells, 

ranging from bacteria to humans, and this ability makes them an 

important target element for biochemical and structural studies. In 1956, 

Crick and Watson
11

 first proposed that the capsids of many viruses have 

spherical symmetry. This property greatly helped in the structural 

analysis by X-ray crystallography so that the first atomic structure was 

solved almost three decades ago for the tomato bushy stunt virus
12 

and 

the satellite tobacco necrosis virus.
13

 At present, icosahedral virus 

capsids are the best representative large protein assemblies in the PDB, 

and the atomic detail structures help us to understand the mechanism of 

self-assembly that determines the functional role in the cell.  

2.3 The Structure of the Icosahedral Virus Capsids 

The structure of an icosahedron can be constructed with 20 equilateral 

triangles, which are composed of 12 vertices, 20 triangular facets and 30 

edges (see Fig. 2.1). An icosahedron has six 5-fold axes of symmetry 

passing through its vertices, ten 3-fold axes extending through each faces 

and 15 2-fold axes passing through its edges (Fig. 2.1). In 1956, Crick 

and Watson
11

 first proposed that the capsid of many viruses have cubic I 

(icosahedral) point group symmetry, which was confirmed by the 

electron microscope studies of Caspar and Klug (1962).
14

 It is therefore 

necessary that each protein component should be present in 60 copies 

related by one of the 2-fold, 3-fold or 5-fold point group symmetry 

elements of the icosahedron to make a sphere like structure.  

The icosahedrons made by 60 copies are the smallest in size, and to 

make a bigger capsid it has to accommodate more than 60 copies of the 

polypeptide chain. In 1962, Caspar and Klug
14

 introduced the rule of  
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quasi-equivalence and lattice ‘Triangulation Number’ (T-number), and 

demonstrated the increased volume of the capsids for packaging large 

viral genomes. This T-number represents the number of subunits present 

in an icosahedral asymmetric unit (IAU) and a whole capsid contains 

60T subunits. 

 

 

Fig. 2.1. Symmetries in an icosaherdron. An icosahedron consists of 20 equilateral 

triangles (upper panel). Different 2-fold, 3-fold and 5-fold symmetry axis (lower panel). 

To retain the quasi-symmetry one has to restrict the values of T with the 

following equation, 

 

 T = (h
2 
+ hk + k

2
) f

2 

 

where h, k and f are integers. Caspar and Klug suggested quasi-

equivalent environments for identical protein subunits.
14

 However, after 

the structure determination of human rhinovirus 14 by Rossman et al.
15

 

in 1985, it became evident that these subunits are not necessarily always 
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identical to form the predicted lattice, and it can be described as a 

pseudo-symmetry.
15

 For T = 1, the corresponding capsid contains only 

one protein subunit in the IAU and a total of 60 in the whole capsid. This 

is for example the case for the satellite tobacco necrosis virus.
13

 In 

capsids with T = 3, there are three identical subunits in the IAU and the 

whole capsid comprises of 180 subunits. They are larger in volume 

compared to the T = 1 and are more common in isometric plant viruses.
16

 

Most of the animal viruses have pseudo T3 (pT3) symmetry where the 

IAU contains three structurally identical subunits but with different 

amino acid sequences.
16

 It has been assumed that a pT3 lattice has 

evolved from a T = 3 lattice by a triplication of the coat protein gene, 

followed by independent evolution of the three major subunits. All these 

structures with different lattice triangulation numbers survived due to the 

non-covalent interactions between all the protein and nucleotide subunits 

that build the capsid. 

2.4 Structural and Chemical Features of the Protein–Protein 

Interfaces 

The Protein Data Bank contains many examples of icosahedral virus 

capsid structures. The protein–protein interactions in 49 such capsid 

structures have been recently analysed by Bahadur et al.
17,18

 Within this 

dataset, the sequence identity was less than 45% between any two 

polypeptide chains and the dataset contained 11 entries of T = 1 capsids, 

17 with T = 3, and 10 with pseudo T = 3. All these structures obey the 

quasi-equivalence rule of Caspar and Klug. It also included a few entries 

that do not obey the quasi-equivalence rule; the capsid of the Blue 

Tongue virus
19

 and bacteriophage phiX174
20

 are among the most 

complex three-dimensional capsid structures known till today.   

2.4.1  Symmetry and Size of Interfaces 

For each capsid, Bahadur et al.
17

 identified a unique set of pairwise 

interfaces from which all other interfaces between polypeptide chains in  
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The other two-thirds were almost equally distributed between icosahedral 

2-, 3- or 5-fold symmetry, or quasi-symmetry. The range of the unique 

interfaces in T = 1 capsids was three to five – much less than the overall 

average of 16 – and contained at least one of each of the 2-, 3- and 5-fold 

icosahedral symmetry types. The number of unique interfaces in T = 3 

capsids ranged from 8 to 17 in which 3 occur between the three 

polypeptide chains in IAU. Besides icosahedral symmetry, they also 

identified interfaces with non-icosahedral symmetry that derives from 

quasi-equivalence and is commonly called quasi-symmetry. A typical 

pT3 capsid contains 25 to 30 unique interfaces and these are related 

either by the symmetry in IAU, 2-fold, 5-fold or quasi 6-fold.  

For example, in the black beetle virus (2bbv), the T = 3 capsid 

contains 14 unique interfaces and nine above 800 Å
2
. Figure 2.2 

represents the protein–protein interaction network in the black beetle 

virus capsid, where the nodes and the edges in the graph represent the 

protein subunits and interactions between them, respectively. Three of 

the unique interfaces occur within the IAU between three chains; one is 

the 2-fold marked I2 between the C chains, and one more is the 5-fold 

marked I5 between the A chains. The other four involve interfaces that 

are labelled Q2 for quasi 2-fold, Q5 for quasi 5-fold and Q6 for quasi 6-

fold by analogy to the T = 3 capsids. In viral capsids, the average 

pairwise interface buries 1,750 Å
2
 of BSA (Buried Surface Area, as 

defined in Chapter 1), and on each polypeptide chain it implicates 90 

atoms and 25 residues (Table 2.1). Bahadur et al.
17

 considered all the 

pairwise interfaces with BSA > 10 Å
2
 and divided them into three size 

categories. The ‘small’ class, which buries less than 800 Å
2
, makes up 

nearly 40% of the whole sample, but contributes only 7% of the overall 

BSA. On the other hand, the ‘large’ interfaces with BSA between 800 to 

2,000 Å
2
 make up only 28% of the sample, but contribute 68% of the 

BSA. They also identified very large interfaces with BSAs ranging from 

5,000–10,000 Å
2
. The majority of them occur within the IAU. The size 

distribution of these interfaces is shown in Fig. 2.3. Between different 

icosahedral symmetry related interfaces, on average 2-fold interfaces are 

the largest in size, and 5-fold interfaces which are related by 144
o
 

rotation are the smallest (Table 2.1). 
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Fig. 2.3. Distribution of protein–protein interface sizes with different symmetries related 

to icosahedral virus capsids. The different size interface categories are: Small (BSA < 

800 Å2), Medium (800 < BSA < = 2,000 Å2) and Large (BSA > 2,000 Å2). Interfaces 

which are related by a 144o rotation are designated as 5*-fold interfaces. 

In viral capsids, pairwise interfaces overlap and many residues are in 

contact with several adjacent polypeptide chains.
17 

In the T = 1 and T = 3 

capsids, each polypeptide chain is in contact on average with seven 

neighbouring chains that bury about 45% of its ASA. In pT3 capsids, this 

value increases to 12 and the total buried fraction to 60%. These multi-

interfaces contain 15% atoms that are in contact with two neighbouring 

subunits and 2% with three. About 25% of the amino acid residues of 

these interfaces are in contact with two neighbours, 5% with three and 

only 2% with four neighbours. 
 

2.4.2 Chemical Composition and Hydrogen Bonds 

One can define the chemical composition of these interfaces at an atomic 

level of detail as well as on a residue level. At the atomic level, nitrogen, 

oxygen and sulfur can be considered as polar and all the carbon 

containing groups as non-polar. The fraction of area contributed by the 
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non-polar group (f_np)
21

 at the interface is about 63% of the total BSA, 

which is similar in different symmetry or quasi-symmetry related 

interfaces (Table 2.1). The large interfaces are slightly more non-polar 

than the average, whereas the f_np is highly variable in small interfaces 

with few atoms. At the residue level one can count the contribution of 

different interface amino acid residues to BSA and can also compare the 

contribution to the rest of the solvent accessible protein surface. In 

capsids, interface residue composition strongly differs from that of their 

surface. They are enriched with non-polar (Ile, Leu, Val) residues and 

depleted in charged residues (Asp, Glu, Lys) with only one exception in 

the case of Arg, which is a major contributor to the BSA of capsid 

interfaces.  

Polar atoms (and the residues to which they belong) can make 

hydrogen bonds between the polypeptide chains at the interface. Bahadur 

et al.
17

 have identified about seven hydrogen bonds per capsid interface, 

which corresponds to one H-bond per 250 Å
2
 of BSA. It was found that 

the surface density of H-bonds is similar in different symmetry related 

interfaces, except those with the 5-fold related interfaces with 144
o
 

rotation, many of which are very small in size with no H-bonds at all.  

2.4.3 Atomic Packing of the Interfaces 

The fraction of atoms buried (f_bu defined in Ref. 21) at the protein–

protein interfaces in viral capsids is 29% on average and depends on the 

size of the interfaces: large interfaces bury 33% compared to small which 

bury only 11% (Table 2.1). When one considers the whole assembly, 

f_bu increases to 36% (instead of 29% in pairwise contacts) in the 

presence of all neighbouring subunits. This is because atoms in contact 

with more than one neighbour can have zero ASA even though they are 

accessible in each of the pairwise interfaces. Buried atoms are part of the 

residues which form interface core
22,23

 that covers half of the residues in 

pairwise interfaces, and which increases to two-thirds in the presence of 

all neighbouring subunits in the whole capsid. 

The fraction of buried atoms is related to the packing density of the 

interface atoms and the shape complementarity of the protein surfaces in  
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contact. A close-packed interface buries more atoms in proportion, and 

its presence implies that the two protein surfaces have complementary 

shapes. Two packing indices, L_D and G_D that measure the packing 

density of the interfaces,
21

 and Table 2.1 show that large- and medium-

sized capsid interfaces are well packed. In contrast, small interfaces are 

loosely packed and resemble crystal-packing interfaces (typical contacts 

of proteins in a protein crystal).   

2.4.4 Interface Patches and Segments 

According to Chakrabarti and Janin,
22

 one can divide interface atoms into 

one contiguous region or several regions depending on the spatial 

distribution of the interface atoms. The authors used an average-linkage 

clustering algorithm with a cut-off value which depends on the type of 

the complexes. When applied to a virus capsid assembly with a threshold 

value of 15 Å, this algorithm yielded a single-patch in most of the small 

interfaces, 2–3 patches in medium size interfaces and multiple patches in 

large interfaces (see Table 2.1). Assignment of interface patches with a 

clustering method considers the three-dimensional distribution of the 

interface atoms. One can also distribute the interface residues into 

different segments depending upon the primary sequence of the 

polypeptide chain.
24,25

 The average number of such segments is 3.9 per 

polypeptide chain, and each of these segments contains an average of 6.4 

interface residues. The small interfaces tend to be fragmented into very 

short segments with only three interface residues per segment on 

average, while the large interfaces contain fewer segments and the 

segment length is quite large with an average of seven per polypeptide 

chain. Some of these long segments include up to 47 interface residues, 

which belong to the ‘tail’ region of the polypeptide chain as defined by 

Bahadur et al.
17

 The large segments involving the tail region are 

frequently found in T = 3 and pT3 capsids. In T = 3 capsids, tails are 

preferentially involved in the 2-fold and quasi 6-fold interfaces, while in 

the pT3 capsids they contribute mainly to the interfaces in the IAU. Tails 

often play a dominant role during the process of a capsid assembly.  
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2.4.5 Residue Conservation 

It is well established that residues which are involved in protein–protein 

interfaces are generally better conserved than other surface residues.
26–30

 

There are experimental studies such as alanine scanning mutagenesis,
31–33

 

as well as theoretical studies, that consider the sequence entropy
34,35

 used 

to identify conserved residues at the binding site and also their 

contribution to the free energy of binding. In viral capsids, several 

polypeptide chains interacting with more than one partner are stabilised 

by non-covalent interactions. They should therefore impose stringent 

evolutionary constraints on the protein sequence.  

Recently, Bahadur and Janin
18

 analysed the residue conservation in 

viral capsids by using the ‘Shannon Entropy’,
36

 which measures 

divergence at individual sequence positions in sequence alignments taken 

from the HSSP database.
37

 As found in other binary complexes,
35

 

residues at the interface core in viral capsids are also more conserved 

than other interface residues. The novel finding of the work was that  

residues that are part of multiple interfaces are even more conserved than 

all other interfaces or surface residues; but the degree of conservation 

varies widely between different interfaces and also between different 

regions within each interface. This is evident in the human rhinovirus
38

 

(PDB code 1aym, a pT3 capsid) where the average normalised entropy 

<s> is larger than one for non-interface residues, and close to one for 

residues in one interface (Figure 2.1b of Ref. 18). Residues that are 

present in two or more interfaces have <s> in the range of 0.4–0.7. This 

value is significantly lower than 1.0, and cannot be explained solely by a 

preference of these residues for the interface core. There is no correlation 

found between the symmetry of the interfaces and their mean sequence 

entropy. Bahadur and Janin
18

 also found that conservation of the capsid 

interface residues is generally not related to either the size of the 

interface or its structural and chemical properties, such as polarity or 

atomic packing. The sequence conservation can also differ significantly 

within a given interface. For example, in Fig. 2.4 the interface between A 

and C subunits in the human rhinovirus (1aym) is well conserved (<s> = 

0.9), but chain ‘A’ contains a highly divergent region at the C-terminus 

(‘C-tail’) with a very high entropy (<s> = 2.0), and a highly conserved 



A Structural Perspective on Protein–Protein Interactions 37 

N-terminus (‘N-tail’) with a very low entropy (<s> = 0.6), both of which 

contributes to the A:C interface (Figure 2.4).
18

 In pT3 capsids, N-tails are 

more conserved than the C-tails in general, but in other capsids they are 

as conserved as other parts of the whole polypeptide chains that form the 

globular structure. 

Fig. 2.4. Residue conservation at the interface between A and C subunits of the human 

rhinovirus (PDB code 1aym) capsid. Subunit residues of A are shown as molecular 

surface when they are in contact with chain C, otherwise they are drawn as mesh. C 

subunit is drawn in backbone tube. The gradient of colour is from blue (conserved) to red 

(divergent) according to the entropy of each residue. Chain A has a well conserved N-

terminus and a poorly conserved C-terminus; both are in contact with the C subunit.  

N terminus 

C terminus 
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2.5   Comparison with Binary Interfaces 

The pairwise interfaces in viral capsids can be directly compared with the 

interfaces in binary protein–protein complexes, homodimers, and crystal-

packing interfaces of monomeric proteins analyzed in Chapter 1. The 

average size of the ‘medium’ capsid interfaces is comparable with the 

size of the interfaces in protein hetero complexes as analysed in,
22

 which 

largely fall into the ‘standard size’ category as defined by Lo Conte et 

al.
39

 The interfaces in the ‘large’ category in capsids are comparable to 

the size of the interfaces found in homodimers,
23

 while the ‘small’ capsid 

interfaces are comparable with the crystal-packing interfaces in 

monomeric proteins as described in Ref. 21. 

 The area contributed by the non-polar groups at the large capsid 

interfaces is very similar to that of the interfaces found in homodimers or 

oligomeric proteins (see Table 2.1 in Chapter 1). On the other hand, 

small capsid interfaces are marginally more polar and very close to the 

interfaces found in protein–protein complexes and crystal-packing 

interfaces of monomeric proteins. Polar groups at the interface make 

hydrogen bonds. On average, the hydrogen bond density in capsid 

interfaces is lower than that of the other three types of interfaces. This 

parameter highly depends on the quality of the crystal structures. In high 

resolution capsid structures, the H-bond density is very close to other 

binary protein–protein interfaces.  

Amino acid composition of the pairwise capsid interfaces is 

comparable to the other binary interfaces. Aliphatic residues like Ile, 

Leu, Val and Met contribute significantly to the interfaces in capsids and 

homodimers compared to the rest of the protein surface and crystal-

packing interfaces (see Figure 2.5). Charged residues like Asp, Glu and 

Lys are abundant at the protein surfaces and crystal-packing interfaces 

but contribute less significantly to the interfaces either in capsids or 

homodimers. Arg behaves differently from other charged residues, and is 

uniformly present in all types of interfaces. Capsid interfaces however, 

differ in composition from homodimeric interfaces. They are depleted in 

aromatic residues (Phe, Tyr, Trp) and enriched in neutral polar residues 

(Ser, Thr, Asn, Gln) and Pro. These five residues contribute almost 

equally to the capsids and the crystal-packing interfaces, as well as 
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surfaces of monomeric proteins. However, these residues contribute less 

significantly to the BSA of the homodimer interfaces.
17,21,23

 This shows 

that the amino acid composition of the viral capsid interfaces is 

intermediate between homodimers and crystal-packing interfaces.
17

 The 

pairwise capsid interfaces bury fewer atoms and have fewer core residues 

than in homodimers, but they become similar to those of homodimer 

interfaces when calculated in the presence of all neighbouring subunits. 

Small capsid interfaces are poorly packed with few buried atoms and 

core residues, and involve very short segments of the polypeptide chain. 

In contrast, the medium and large interfaces are well packed, and have 

comparatively larger chain segments at the interfaces. The average 

lengths of these segments are essentially the same in protein–protein 

complexes and homodimer interfaces. 

 

Fig. 2.5. The propensity of a residue to be part of the interface rather than the protein 

surface is given by ln(f/f’) where f and f’ are the percentage area contribution of each 

residue to the interface, or the rest of the solvent accessible protein surface respectively.
17

 

Values of protein–protein interfaces in viral capsids,
17

 homodimers,
23

 heterocomplexes,
39

 

and crystal-packing monomers
21

 are shown in different colours. A positive value 

indicates the preference of a particular residue to be at the interface rather than the protein 

surface, while the negative value indicates just the opposite. 
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Homodimers or complexes differ significantly from viral capsids in 

terms of assemblies. The former group is a binary assembly with a single 

interface, while the latter is a multi-component assembly in which each 

polypeptide chain has several neighbours and forms several interfaces. 

The average number of neighbours in capsids and protein crystals is 

almost equal, and indicate that the former contain as many interfaces per 

polypeptide chain as the latter.
17,40

 Capsid interfaces cover half or more 

of the protein surface also found in crystals of small proteins even though 

crystal-packing interfaces are comparatively smaller in size.
40

 In binary 

assemblies, only one-fifth of the protein surface participates in subunit 

contacts; the remaining large part is accessible to solvent molecules,
41

 

whereas in viral capsids more than half of the protein surface is buried 

between the subunits. In relation to homodimers and complexes, viral 

capsids have fewer surface residues that are solvent accessible and many 

residues are part of several interfaces simultaneously. 

2.6 Mechanism of the Capsid Assembly 

The self-assembly of a virus capsid not only involves the folding of the 

subunits and their association, but also involves nucleic acids, accessory 

proteins, host chaperons, as well as processes like maturation through 

conformational changes and covalent modifications such as 

proteolysis.
42–44

 Though it is a very complicated process, yet it is 

amazingly fast. For example, bacteriophage T4 goes through a complete 

cycle of infection, replication and lysis in 15 minutes; the capsid 

assembles in minutes despite the large number of polypeptide chains that 

constitute it.
45

 Although the capsid assembly mechanism applies a high 

evolutionary pressure on the polypeptide chains, yet the interface amino 

acid composition is not markedly different from that of the protein–

protein interfaces of simpler systems, suggesting that it goes through a 

series of low order – possibly binary – steps similar to the assembly of 

small oligomeric proteins.
17,18

  

The intermediate oligomeric species in the assembly pathway are 

called capsomers. Bahadur et al.
17

 postulated that ‘large’ and ‘medium’ 

size interfaces are mainly involved in building the capsomers, which  
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leads ultimately to the formation of the capsid. In contrast, small 

interfaces are unlikely to take part in the assembly process and contribute 

to the stability of the assembly after its formation. Several experimental, 

as well as theoretical studies, have been carried out to understand the 

capsid self-assembly process.
42-44,46–53

 Xie and Hendrix
48

 demonstrated 

the capsid assembly of bacteriophage HK97 during in vitro studies. 

Reddy et al.
54

 explained the assembly pathways of three icosahedral 

viruses with the help of van der Waals and electrostatic association 

energies calculated for each pairwise unique interface. Recently, 

Stockley et al.
55

 detected assembly intermediates and investigated the 

formation of a whole T = 3 bacteriophage MS2 capsid by using the 

electrospray ionization–mass spectrometry.   

In vitro studies of bacteriophage P22 and HK97 indicated that the 

capsid formation goes through several levels of oligomeric 

intermediates.
47,48

 In solution, the HK97 subunits form pentamers and 

hexamers that interconvert slowly, and the procapsid assembly process is 

most efficient when the two species are in a ratio of 1:5, the same ratio as 

found in the capsid.
48

 The pairwise interfaces identified by Bahadur et 

al.
17

 explain the assembly process of HK97. They found ‘large’ 5-fold 

and 6-fold interfaces that resemble the properties of a stable homodimer 

interface.
23

 They also identified ‘medium’ size interfaces formed 

between pentamers and hexamers, and also between pairs of hexamers 

which are related either by icosahedral or quasi 2- or 3-fold symmetry. 

These pairwise interfaces can stabilise the intermediate oligomeric 

species and generate the capsid by the stepwise addition to hexamers, 

one-by-one, in pairs or in triplets, to the pentamer. In another example, 

Stockley et al.
55

 have recently studied the assembly of bacteriophage 

MS2 by electrospray ionization–mass spectrometry. The T = 3 capsid of 

MS2 dissociates into symmetric dimers, some of which become 

asymmetric upon addition of a RNA stem-loop fragment. Symmetric and 

asymmetric dimers then associate into dimers of hexamers, but no 

pentamer is formed.  

These observations are compatible with the model of Bahadur et al.:
17

 

MS2 has large 2-fold and quasi-2-fold interfaces each with BSA ~ 6,400 

Å
2
 that build, respectively, a symmetric and an asymmetric dimer; the  
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next largest interfaces are the quasi-3-fold interfaces in the dimeric 

hexamers; they are of medium size with BSA ranging from 800–1,100 

Å
2 

and larger than the 5-fold interface needed to build pentamers (see 

Fig. 2.6). Properties of these capsid interfaces (size as well as in 

physical–chemical and structural composition) are comparable with those 

found in stable protein–protein complexes.
56

 

Fig. 2.6. Subunit interfaces and the mechanism of self-assembly of a T3 bacteriophage 

MS2 procapsid. The procapsid consists of 180 identical protein chains arranged in a T = 3 

lattice. The IAU includes three chains labelled ABC that form a cyclic hexamer. In 

solution, the subunits form symmetric (between C chains) and asymmetric (between 

chains A and B) dimers from which the assembly can proceed.
55

 The two largest 

interfaces with a BSA of about 6,400 Å
2
 occur between the symmetric and asymmetric 

dimers that stabilise the assembly. Medium-size (800–1,100 Å
2
) interfaces may allow to 

first associate symmetric and asymmetric dimers into dimer hexamers, followed by 

higher-order assemblies and the stepwise addition of hexamers or pairs of hexamers. 

The amino acid residues that constitute the interfaces are well 

conserved.
18

 Thus, in viral capsids self-assembly must involve the 

stepwise formation of these different oligomeric interfaces, and the 

physical chemistry of proteins in solution may set a priority for the large 

interfaces to form first. 
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2.7 Conclusions and Outlook 

Virus capsids are very large and symmetrical molecular assemblies that 

illustrate features which are likely to exist in other cellular machines. 

Hence, virus capsids are excellent model systems to study formation of 

multi-protein complexes. The subunits in the capsid are engaged in a 

large number of pairwise contacts simultaneously and form interfaces 

that have large differences in size. On the one hand, the large interfaces 

resemble those found in oligomeric proteins, while on the other hand the 

small interfaces display the properties of crystal-packing interfaces in 

monomeric proteins. Capsid assembly has often been compared to 

crystallization, but the comparison is somewhat misleading. In a protein 

crystal, the molecules are engaged in many interfaces but these are 

generally too small to stabilise a small intermediate assembly. Thus, the 

crystal grows by adding molecules, one-by-one, to a nucleus that is 

inherently unstable. In contrast, a viral capsid may assemble through a 

series of steps involving capsomers and oligomers of the subunits. At 

each step, one (or more) large interface is created yielding a species that, 

presumably, would be stable even if further growth was prevented. This 

mechanism is more efficient and more robust than nucleation–growth of 

protein crystals, and it has been retained by natural selection. 
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Proteins have evolved as versatile components of the molecular 

organisation of life. Formation of protein–protein complexes is 

indispensable in maintaining the organisation and integration of 

practically all biological processes. Not surprisingly, therefore, the 

identification and structural characterization of protein–protein 

interactions is a major line of research nowadays. This chapter focuses 

on the energetic aspects of the recognition process. Firstly, the 

thermodynamic formalism describing formation of binary complexes is 

outlined. A brief discussion of the merits and limitations of 

experimental methods facilitating quantification of binding reactions 

follows. The emphasis is on isothermal titration calorimetry. This 

technique provides direct and precise estimates of the magnitude of all 

relevant thermodynamic functions in an extended temperature range. 

The third part of the chapter is devoted to the obvious and widely 

anticipated, yet notoriously challenging problem: is it possible to 

predict binding affinity and to understand the magnitude of 

thermodynamic parameters from a structural perspective?  

3.1 Introduction 

Maintaining the molecular organisation of living matter is impossible 

without formation of highly-specific protein–protein complexes and 

protein networks. Protein–protein interactions are involved in the 

catalysis, coordination and structuring of all vital processes ranging from 

upkeep and realization of the genetic information to transformation and 
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utilization of chemical and thermal energy, to signal transduction to 

integration and regulation of the cell as a whole. Not surprisingly, the 

identification and characterization of protein–protein interactions is an 

important line of research in modern biochemistry. 

Present-day large-scale efforts aiming at establishing system-oriented 

approaches will possibly provide a global understanding of biological 

processes. However, many aspects of the intimate molecular mechanisms 

involved in biological function remain obscure. Protein–protein 

recognition is a typical example. Notwithstanding the serious progress 

that has been achieved over the past three decades, details about the 

mechanistic, energetic and kinetic principles of the binding process 

remain vaguely understood. The reasons are manifold. From a structural 

point of view, only recently the fast progress of molecular biology and 

structural methods facilitated the accumulation of high-resolution 

structures of protein complexes exhibiting architecture different from the 

architecture of the so far paradigmatic antibody-antigen and protease-

inhibitor complexes. Similarly, the wider use of high-sensitivity 

biophysical instrumentation, especially titration calorimetry, has started 

to provide insights into the energetic principles of protein–protein 

recognition. However, the unification of the structural and energetic 

perspectives on the binding process is still a serious challenge in protein 

biophysics. Three main conceptual difficulties can be outlined: 

1. ‘Classical’ physical–chemical concepts cannot be easily adapted to 

proteins given their size, structural inhomogeneity and ensemble nature. 

2. Binding involves structural re-arrangements of the interacting 

partners, which cannot be (or only occasionally are) completely captured 

by structural methods. 

3. Measured thermodynamic parameters mirror the energetic 

behaviour of the entire system under study, including, next to the energy 

of bonds accumulated at the binding interface, also re-arrangements of 

hydration shells and ions, and energetic expenditures caused by structural 

changes taking place upon binding. Big steps have been made towards 

energetic description of protein–protein complexes. Yet, admittedly, 

there is a long way ahead until the principles governing the strength and 

specificity of protein–protein recognition are rigorously understood, and 
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it is possible to rationally design or modulate protein–protein interactions 

for the purposes of biomedical and biotechnological applications.    

It is impossible to cover all aspects of the energetics of protein–

protein recognition in a single chapter. I will start with describing the 

thermodynamic formalism required for quantitative treatment of binding 

data. Next, a brief overview of the present-day methods measuring 

energetic parameters will be given. Finally, I will discuss some ideas 

about possible ways to predict binding affinity and to search for the yet 

elusive links between the energetics of protein–protein complexes and 

their structure.  

3.2 Thermodynamic Formalism Describing the Energetics of 

Binding Reactions 

There are many types of protein–protein binding reactions: association of 

two different proteins, self-association of a protein to form a dimer or 

higher-order oligomer, formation of oligomers from different types of 

subunits, etc. In fact, the interactions between independently folding 

domains of a single polypeptide chain can also be regarded as protein–

protein binding. If one protein binds two or more partners, the individual 

binding events can be the same (a priori identical binding sites) or can 

differ (a priori non-identical binding sites). Furthermore, multiple 

binding sites can be independent from each other (no cooperativity), or 

occupation of one site can influence binding to another site 

(cooperativity). It is far beyond the scope of this section to treat all 

possible cases. In the following I delineate the relevant formalism for the 

most commonly occurring cases: formation of a 1:1 heterologous 

complex and formation of a self-associating dimer (1:1 homologous 

association). The interested reader can find extensive description of more 

complicated binding models and general treatment of binding 

phenomena in Refs 1 and 2. 

A further level of discrimination is necessary. A survey of the 

literature identifies two general types of studies on the energetics of 

protein–protein interactions. Firstly, the prime interest is determination 

of the binding affinity. Usually, such studies are devoted to the mapping 

of binding sites and clarification of binding modes by measuring the 
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affinity (dissociation constants) of wild type complexes and designed 

variants thereof. Secondly, the focus is on in-depth thermodynamic 

description of a particular complex, or of closely related complexes, with 

the idea to understand the enthalpic and entropic contributions to binding 

from a structural point of view. For the reader’s easier navigation, I 

therefore split the following discussion into two sub-sections.  

3.2.1 Determination of the Binding Affinity 

3.2.1.1 Heterologous Binding 

Experimental quantification of the affinity between two proteins, i.e. the 

strength with which they interact with each other, requires the design of 

what is commonly named a titration binding experiment. Typically, the 

two interacting molecules A and B are mixed at different molar ratios in a 

series of experiments, in which all other conditions are kept identical. Let 

us assume that increasing amounts of B are added to a fixed amount of 

A
a
. The system equilibrates between the associated (bound) state AB and 

the dissociated (unbound) state A + B according to: 

 

 A B+        AB  (3.1)  

The fractional population of the two states at equilibrium depends on 

the total concentrations of A and B and the magnitude of the equilibrium 

binding constant KA, which is defined as (units of M
–1

): 

 
[ ]

[ ] [ ]A

AB
K

A B
=  (3.2a) 

                                                 
a
 Note that in the 1:1 binding mode the choice of the component that is held at fixed 

concentration is arbitrary. In most cases, the decision is guided by the solubility and the 

tendency for aggregation at high concentrations. Often, the production costs are also an 

important factor.     

KA 
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The square brackets indicate the free concentration of species at 

equilibrium. Biochemists often use the reciprocal value of KA, which is 

called dissociation constant (units of M) and is defined as: 

 
[ ] [ ]

[ ]
1

D A

A B
K K

AB

−
= =  (3.2b) 

The normalised extent of reaction, typically called degree of 

saturation, Y (0 ≤ Y ≤ 1), represents the fractional occupancy of binding 

sites on A, and is related to the concentration of species and KA by: 

 
[ ]

[ ]

[ ]

[ ] [ ]

[ ]

[ ]

[ ]

[ ]1

A

A Dtot

AB AB K B B
Y

A A AB K B B K
= = = =

+ + +
 (3.3) 

The function represented by Eq. 3.3 is called binding isotherm since 

the titration experiment is performed at constant temperature.
b
 There are 

alternative ways to calculate KA according to Eq. 3.3. Historically, the 

most popular way to plot binding data has been the Scatchard-Rosenthal 

transformation (see Fig. 3.1):
3,4

 

 
[ ]

[ ]
[ ] [ ]A tot A

AB
K A K AB

B
= −  (3.4) 

The slope of this plot numerically equals – KA. According to Klotz
5
 

the plot of Y versus log[B] is symmetrically sigmoidal, the inflection 

point (Y = 0.5) corresponding to log(1/KA) (i.e. logKD; Fig. 3.1). Both 

methods suffer problems. In the Scatchard equation (Eq. 3.4) the 

independent variable ([AB]) and the dependent variable ([AB]/[B]) are 

statistically coupled, preventing calculation of error margins.  

                                                 
b Biochemical experiments are usually performed in open systems at constant 

atmospheric pressure. Otherwise, the pressure must also be controlled. KA depends also 

on the ionic strength and can be altered if solvent components interfere with the binding 

process. Strictly speaking, calculation of KA requires knowledge of the activity 

coefficients. However, in dilute (typically nanomolar to micromolar) solutions the 

activity coefficients are assumed to be 1 and the solution is treated as an ideal solution. 

Deviation from ideality is expected with highly concentrated protein solutions.  
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The Klotz plot requires the concentration of B to be varied in a very 

broad range in order to obtain data in the plateau regions. This is rarely 

possible with proteinous ligands, since in the low concentration regime 

the sensitivity of the assay is challenged, while in the high concentration 

regime problems with aggregation can appear. Eq. 3.3 describes a 

hyperbolic dependence of Y on [B] (Fig. 3.1). KD = 1/KA corresponds 

numerically to [B] at half-saturation (Y = 0.5), and can be easily 

calculated by non-linear optimization.
c
 All these methods, in fact, are 

variations of a common theme: the equilibrium concentrations of one of 

the participating species A, B and AB must be known. For example, if 

[AB] is known, from the law of mass conservation [B] = [B]tot – [AB]. If 

[A] is known, [AB] = [A]tot – [A], etc. Unfortunately, physical separation 

of the free proteins and their complex without disturbing the equilibrium 

is typically impossible.  

Often it is possible to indirectly determine the degree of saturation. 

(The methods are discussed in Section 3.3.) Plots of Y vs [B]tot are 

hyperbolic. As illustrated in Fig. 3.1, at half-saturation [B] no longer 

corresponds to KD in this case. Since [A] = [A]tot – [AB] and [B] = [B]tot – 

[AB] substitution in Eqs 3.2a or 3.2b and re-arrangement results in the 

following quadratic equation: 

 [ ] [ ] [ ] [ ] [ ] [ ]
2 1

0tot tot tot tot

A

AB A B AB A B
K

 
− − − + = 
 

 (3.5) 

Denoting the only physically meaningful root of Eq. 3.5 as R, for 

each combination of [A]tot and [B]tot the degree of saturation (Y = 

R/[A]tot) is a function of [B]tot.
d
 Non-linear regression analysis of Y = 

f([B]tot) yields the value of KA. The binding isotherms depicted in Fig. 3.1 

illustrate that the choice of concentrations is a very important aspect of 

the binding experiment. 

 

                                                 
c
 This is probably why the use of KD instead of KA is more intuitive. KD is measured in 

units of concentration, and its numerical value helps to roughly estimate the position of 

the equilibrium when the total concentrations of the interacting proteins are known.  
d
 Remember that arbitrarily we have defined A as the component whose concentration is 

kept constant throughout the titration experiment, while the concentration of B varies.  
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Fig. 3.1. Simulated binding plots. Molecule A ([A]tot = 1 µM) is titrated with molecule B

([B]tot = 0.1 nM to 10 µM). The binding constant, KA, is 1×10
5
 M

−1
 (a), 1×10

6
 M

−1
 (b), 

1×10
7
 M

−1
 (c), and 1×10

8
 M

−1
 (d). Panel A, Scatchard plots (Eq. 3.4). The y-axis 

intercept, the x-axis intercept and the slope correspond to KA[A]tot, [A]tot and −KA, 

respectively. Panel B, Klotz plot. The logarithm of [B] (free B) where Y = 0.5 equals to 

1/KA. Panel C, degree of saturation as function of the free concentration of B (thin line; 

bottom x-axis) or the total concentration of B (thick line; top x-axis; Eq. 3.5). KD = 1/KA

equals [B] at half saturation (Y = 0.5; Eq, 3.3). If [B]tot is the independent variable, KA is 

calculated by non-linear optimisation according to Eq. 3.5. Panel D, shape of the 

binding isotherm as function of KA at fixed [A]tot. If [A]tot >> 1/KA, there is virtually no 

free B before saturation and no free A after saturation. In such case, the apparent KA is 

only a lower estimate.  If [A]tot << 1/KA the degree of saturation increases little upon 

increasing the concentration of B. Panels A, B and D illustrate that high concentrations 

of B are required to obtain a complete binding isotherm if the affinity is low.  
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A smooth binding isotherm results only if sizeable amounts of free 

interacting species A and B, and their complex AB are populated at molar 

ratios between 0.5 and 1.5. If the total concentration of A is much higher 

than KD almost all ligand binds to the receptor below the equivalence 

point (molar ratio 1:1). Above the equivalence point, there is almost no 

binding, because there are virtually no unoccupied binding sites. In other 

words, there is little free ligand below the equivalence point and little 

free receptor above. In the opposite case, [A]tot << KD, the concentration 

of the complex increases very slowly with the progress of titration (near 

to linear change of Y; Fig. 3.1). Full saturation is reached only at very 

high molar excess of ligand. These properties of the binding isotherm set 

practical limitations. If binding is very strong, very low concentrations of 

A are required, and the success of the experiment will depend on the 

physical limits of detection in the particular assay. If binding is weak, 

high concentrations of A and B are necessary to reach sufficient 

saturation and problems with low solubility and protein aggregation can 

occur. 

3.2.1.2 Homologous Binding (Self-association) 

Proteins are often biologically active as dimers or higher-order oligomer. 

Commonly, homodimers are formed according to the following reaction 

scheme: 

 A A+        
2

A  (3.6) 

The equilibrium constant (units of M
–1

) and the dissociation constant 

(units of M) are defined as, respectively: 

 
[ ]
[ ]

2

2A

A
K

A
=  (3.7a) 

 
[ ]
[ ]

2

2

D

A
K

A
=  (3.7b) 

KA 
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In this case, the experiment is performed by variation of the total 

concentration of the protein, [A]tot, as the independent variable. Again, 

determination of [A] and [A2] is very difficult. Indirect measurements 

allow to determine the fraction dimer, fD : 

 
[ ]

[ ]

1 8 1
1

4

A tot

D

A tot

K A
f

K A

+ −
= −  (3.8) 

KA is calculated by non-linear regression analysis of the data 

describing the changes of fD as function of [A]tot (Fig. 3.2). As shown in 

the Figure, depending on the strength of association (KA), [A]tot must be 

varied in a broad range in order to obtain data describing a portion of the 

isotherm sufficiently large to allow precise calculation of KA.   

3.2.2 Free Energy, Enthalpy and Entropy of Association 

Once KA is known, the free energy of association is calculated from: 

 AG RT ln K∆ = −  (3.9) 

R is the gas constant (8.314 J K
−1

 mol
−1

) and T is the absolute 

temperature. Although ∆G in this equation is not superscripted by the 

usual superscript ° it is important to keep in mind that this is the standard 

state free energy.
e
 ∆G = GAB − GA+B is the quantitative measure for the 

affinity between A and B. The larger the ∆G is, the larger the equilibrium 

population of the state that has the lowest energy. ∆G has an enthalpic 

and an entropic component according to: 

 G H T S∆ = ∆ − ∆  (3.10) 

∆H and T∆S, thus also ∆G, are sensitive to many factors: 

temperature, pressure, chemical composition of the system 

(concentration of protons, salts and other low-molecular substances). 

                                                 
e Equations 3.2 and 3.7 implicitly assume that the standard state is defined here as 1 mol 

L−1. The choice of reference state will influence the numerical values of ∆G and the 

reaction entropy (∆S), but not that of the reaction enthalpy (∆H). 
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Here, only the effect of the temperature is considered. The 

temperature dependence of ∆G is described by the Gibbs-Helmholtz 

equation: 

R R

T T

A R p R p

T T

G(T ) RT ln K H(T ) C dT T S(T ) C d lnT
 
 ∆ = − = ∆ + ∆ − ∆ + ∆
  

∫ ∫  

  (3.11a) 

TR is an appropriate reference temperature used for integration. 

∆H(TR) and ∆S(TR) are the enthalpy change and the entropy change at TR, 

respectively. In the integrated form: 

 ( ) ( )R p R R p

R

T
G(T ) H(T ) C T T T S T C ln

T

 
∆ = ∆ + ∆ − − ∆ + ∆ 

 
 (3.11b) 

Since Eq. 3.10 is valid at any temperature, another popular notation 

of the Gibbs-Helmholtz equation is: 
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Fig. 3.2. Concentration dependence of the fractional populations of the dimeric state 

(continuous line) and the monomeric state (dashed line) in a self-associating dimeric 

system. The curves were simulated according to Eq. 3.8 with KA = 1×106 M−1 and [A]tot

varying between 0.1 and 10 µM. 
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 ( )R p R

R

T
G(T ) G T C T T T ln

T

 
∆ = ∆ + ∆ − − 

 
 (3.11c) 

The term ∆Cp in the above Eqs is the isobaric heat capacity change, 

which formally describes the temperature dependence of ∆H and ∆S 

according to:   

 p

d H d S
C T

dT dT

∆ ∆
∆ = =  (3.12) 

For a full thermodynamic description of an association reaction the 

temperature dependence of ∆G, ∆H, and ∆S must be known.
f
  

3.2.3 Determination of Energetic Changes 

There are two practical approaches to access the energetic profile of the 

association reaction. First, let us consider the so-called van’t Hoff 

approach. Combination of Eqs 3.9–3.11 yields the integrated form of the 

van’t Hoff equation, which describes the temperature dependence of the 

equilibrium constant, and hence the temperature dependence of ∆G:   

 
1 1

1
pA R R

A R R R

CK (T ) H(T ) T T
exp ln

K (T ) R T T R T T

 ∆   ∆
= − − + + −    

    
 (3.13) 

TR is arbitrarily chosen, typically within the temperature range of the 

measurements, so that KA(TR) is known from a direct experiment. The 

binding constant, KA is measured in a series of binding experiments 

performed at different temperatures and the data are plotted according to 

Eq. 3.13 in the form 
( )

( )

A

A R

K T

K T
= f(1/T), or in a more popular way as  

 

                                                 
f ∆Cp itself is also a temperature-dependent parameter. However, its temperature variation 

between 0 and, say, 80 °C is small and can be neglected in most cases. 
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A

A R

K (T )
ln

K (T )
= f(1/T). Both plots are curvilinear with maximum at the 

temperature (TH) where ∆H = 0, meaning that binding is weaker at lower 

and higher temperatures. The data can be subjected to non-linear 

regression analysis to find the best fit in terms of ∆H and ∆Cp as fitting 

parameters in Eq. 3.13 (or any equivalent algebraic transformation). 

Theoretically, the slope of the tangent to both plots at any 1/T equals 

−∆H(T)/R. If it were possible to construct a secondary plot of ∆H(T)– vs 

–T, then ∆Cp could be calculated from Eq. 3.12. Having on hand high-

precision KA data as function of the temperature, ∆H(T) could be 

calculated from (see Eq. 3.13):  

 ( ) 2 Ad ln K
H T RT

dT
∆ =  (3.14) 

Unfortunately, binding experiments are burdened with many 

problems and typically yield estimates of KA being (in favourable cases) 

within 10–15% of the statistical mean at a single temperature, thus 

seriously increasing the errors of ∆H determination (Fig. 3.3). 

Furthermore, collection of data in a broad temperature range (as to 

precisely describe the curvature of plots according to Eq. 3.13) is not 

possible either for technical reasons, or because the proteins undergo 

temperature-induced conformational changes, or simply because TH is far 

away from the experimentally accessible region. The problem gets even 

more severe if one attempts to calculate ∆Cp and ∆S by taking 

temperature derivatives of ∆G: 

 

2

2p

G
C T

T

∂ ∆
∆ = −

∂
 (3.15) 

 
G

S
T

∂∆
∆ = −

∂
 (3.16) 

Therefore, one should treat ∆H, ∆S and ∆Cp values obtained by van’t 

Hoff analysis with caution, especially in long extrapolations outside the 

temperature interval of the actual measurements. Fortunately, the rapid 

advance in calorimetric instrumentation has provided a more direct and 
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more precise determination of binding parameters. The principle and 

advantages of mixing calorimetry will be discussed in Section 3.5. 

 

3.3  Experimental Methods to Measure the Energetics of Protein–

Protein Association 

A large variety of methods to quantitatively characterise the 

thermodynamics of protein–protein binding reactions has been developed 

over the years.
6
 Because different assays are based on different physical 

principles, differ in sensitivity and cover different ranges of binding 

affinities amenable to determination, there is no universal method 
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Fig. 3.3. Limitations of the van’t Hoff analysis of binding data. The continuous line in 

Panel A represents the temperature dependence of KA of a hypothetical binding 

reaction. The simulation was done according to Eq. 3.13 with the following parameters: 

TR = 25 °C,  KA(TR) = 1×10
6
 M

−1
, ∆H(TR) = −25 kJ mol

−1
, ∆Cp = −1.5 kJ K

−1
 mol

−1
. The 

entropy change is ∆S = 31 J K
−1

 mol
−1

. The symbols are simulated experimental data 

assuming that the random experimental error in KA determination is modest: 10–20%. 

Eq. 3.14 was used to calculate the temperature dependence of ∆H from the temperature 

derivative of KA (Panel B). The continuous line is the ‘ideal’ function ∆H(T) = ∆H(TR) 

+ ∆Cp(T−TR). At 25 °C the van’t Hoff analysis of the simulated ‘experimental’ data 

predicts ∆H = −16 kJ mol
−1

 and ∆S = 62 J K
−1

 mol
−1

 (the latter number was derived by 

Eq. 3.16). The slope of the dashed line equals the van’t Hoff heat capacity change: ∆Cp

= −3.2 kJ K
−1

 mol
−1

. All parameters are very different from the ‘true’ ones. Note that 

often KA is determined with error as high as 50%. Moreover, temperature-dependent 

systematic errors can appear. In such cases the imprecision of the van’t Hoff analysis 

will be substantially higher.  
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available. The selection of a particular experimental setup is dictated by 

the properties of the interacting proteins (like for example solubility, 

stability, presence of physical ‘probes’ to be followed, and in many cases 

by the availability of sufficient amounts of material). It is out of the 

scope of this section to provide a comprehensive compendium of 

available techniques and discuss at length their advantages and 

disadvantages. Merely, I would like to point to the diversity of the 

modern methodology in studying protein–protein interactions in 

quantitative terms.  

3.3.1 Methods utilising Physical Separation of Species 

It is clear from Eqs 3.2−3.4 that KA (or KD) can be readily calculated if 

the equilibrium concentrations [A], [B] and [AB] are known. This means 

that at equilibrium, A, B and AB have to be separated and their 

concentrations determined. Classical methods to characterise protein-

small ligand binding such as equilibrium dialysis and Hummel-Dreyer 

size-exclusion chromatography are quite difficult to adapt to studies of 

protein–protein interactions, since the two proteins must significantly 

differ in size and suitable dialysis membranes, and chromatographic 

media are required. In principle it is possible to attempt separation of the 

reaction mixture either by precipitation of the complex at conditions 

where the components are still soluble, or else to recruit one species by 

sorption on a material, and wash out the non-sorpted molecules. For 

example, immunoprecipitation based on epitope–paratope interactions in 

a microtiter plate format can sometimes provide the solution. However, 

such ‘direct separation’ methods suffer problems with protein 

denaturation, non-specific binding/sorption and involve mandatory 

washing steps. Consequently, the equilibrium is disturbed and, therefore, 

the obtained binding constants should be treated only as crude estimates. 

Electrophoretic techniques have potential in exploring the strength of 

protein–protein complexes. The requirement is that the free components 

and the complex possess different electrophoretic mobilities. The 

electrophoretic mobility shift assay (EMSA; sometimes called gel 

retardation assay) has found a broad application in studies of protein–

DNA binding and can, in principle, be easily adapted to protein–protein 
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interactions. Proteins A and B are pre-incubated in different molar ratios 

to allow equilibration. The samples are then transferred to a native gel 

and subjected to separation. In the electric field, A, B and AB will migrate 

to different positions. Visualization can be done by measuring 

radioactivity (although the production of proteins with high specific 

radioactivity may not be trivial) or fluorescence (native or caused by 

artificially introduced fluorescent markers; fusion to GFP or YFP is also 

an alternative). The intensity of the bands observed in separation of 

mixtures with differing A:B ratios can be related to the concentrations at 

equilibrium (after proper calibration). The caveats are that (i) this 

procedure will work quantitatively for slowly dissociating complexes, 

and (ii) interactions with the gel matrix and ‘caging’ can alter the 

apparent binding affinity. The latter problem is alleviated in capillary 

electrophoresis experiments, where the concentration of species can be 

determined by integration of the peaks moving along the capillary.                  

With the appearance of high-sensitivity instrumentation, analytical 

ultracentrifugation (AUC) has become a powerful tool to measure 

protein–protein binding constants for self-associating or heterologously-

associating systems.
7
 Let us consider for illustration the simple case of 

A:B (1:1) binding. In the sedimentation velocity regime, the weight-

average sedimentation coefficient, sw, is obtained by integration of the 

apparent sedimentation coefficient distribution. Since the individual 

sedimentation coefficients, sA and sB, can be measured separately, and 

considering the low of mass action KA is calculated by regression 

analysis of the following equations: 

[ ] [ ] ( ) [ ] [ ]
( , )

A A B B A B A AB
w tot tot

A tot B tot

A s B s K A B s
s A B

A B

ε ε ε ε

ε ε

+ + +
=

+
 (3.17a)  

 [ ] [ ][ ] [ ] [ ][ ]tot A tot AA A K A B and B B K A B= + = +  (3.17b,c)  

Where εi are the extinction coefficients and the square brackets 

indicate the equilibrium concentrations of A and B. The total 

concentration distribution observed for the A:B complex is:  
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[ ] [ ] ( ) [ ] [ ]0 0 0 0
( ) A B AB

A r B r A A B r ra r d A e d B e K d A B eε ε ε εΦ Φ Φ= + + +  

  (3.18) 

The indices r0 denote the concentrations at the reference radius; d is 

the optical path length; the exponential factors Φi are functions of the 

buoyant masses, temperature and rotor speed.   

In principle, electrospray ionization mass spectrometry (ESI–MS) is 

a fast and reliable method to study protein–protein interactions, without 

the need for derivatization and immobilization.
8
 The relative ion 

abundances of the complexes and those of the unbound monomers have 

been shown to reflect the relative solution-phase concentrations of the 

respective species, thus allowing accurate determination of binding 

affinities. Clearly, the bound and unbound species must possess different 

mass-to-charge ratios, the resolution must be high enough to avoid 

overlaps and all charged species must be identified in the spectrum. 

Relatively few studies reporting binding constants that are in agreement 

with other methods have been published so far. It appears that ESI–MS is 

restricted to studies of high-affinity complexes, which remain 

sufficiently stable in the gas-phase. Alternatively, methods should be 

developed to introduce corrections for gas-phase dissociation. However, 

in cases of strong binding, reliable data can be obtained only at 

concentrations being close to the limit of detection.   

All methods discussed so far (with the exception of AUC) cannot be 

easily performed in a broad temperature range, as to provide data to 

calculate not only KA and ∆G but also other thermodynamic parameters 

according to Eqs 3.11–3.16. 

3.3.2 Indirect Spectroscopic Methods 

An indirect but versatile general approach to experimental determination 

of KA is to monitor the value of a suitable spectroscopic signal σ that 

changes upon binding. Typically, the spectroscopic probe is located on 
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species A, whose concentration is kept constant in a titration experiment.
g
 

Assume that the signal intensity is σ0 in the unliganded A. If B is added 

to A, the signal intensity changes to σi, depending on the molar ratio of A 

and B. At full saturation ([B]tot >> [A]tot, so that [AB] ≈ [A]tot), the 

magnitude of the signal is σi ≈ σsat. The normalised extent of reaction, Y 

(0 ≤ Y ≤ 1) is related to the concentration of species and KA by (see also 

Eq. 3.3): 

 
[ ]

[ ] [ ]

[ ]

[ ]
0

0 1

Ai i

sat sat A

AB K B
Y

A AB K B

σ σ σ

σ σ σ

∆ −
= = = =

∆ ∆ − + +
 (3.19a)  

or 

 
( ) [ ]

A

Y
K

1 Y B
=

−
 (3.19b) 

The combined Eqs 3.5 and 3.19 can be fitted to the data (∆σi = 

f[B]tot; hyperbolic dependence; see Figs 3.1 and 3.4) to optimise the 

values of ∆σmax and KA. In principle, if full saturation is reached, ∆σsar 

can be obtained directly from the data. However, if binding is weak, this 

might be difficult (see Section 3.2.1.1). 

Considering the physical nature of the signal σ, there are virtually no 

limitations other than the sensitivity in the concentration range proper for 

experimentation. Typically, UV absorbance between 200 and 300 nm 

(caused by the peptide group and aromatic amino acid side chains) 

changes little upon binding. Sometimes larger, conjugated double-bond 

moieties being co-factors or prosthetic groups (heme, FAD, FMN, NAD, 

etc.) are present near the binding site and their absorption ‘feels’ the 

incoming ligand. CD spectroscopy is also somewhat limited in studies of 

protein–protein binding reactions. It is uncommon for interacting 

proteins to undergo large-scale secondary-structure conformational 

transitions upon binding, so as to be monitored in the far-UV region. 

Neither are significant changes in the environment of other optically 

active groups ubiquitous, as to precisely monitor the binding process in 

                                                 
g The spectroscopic probe can be located also on B. However, in this case, and if the 

experimental setup cannot be reversed (titration of A to fixed amounts of B), proper 

controls are mandatory. 
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the near-UV and visible regions. Generally, ellipticity changes of 

proteins are of low intensity and CD measurements will be restricted to 

relatively weak complexes.  

In many cases, changes of fluorescence as function of the partial 

saturation provides a sensitive probe to calculate the binding affinity. 

Binding may cause perturbation of the intrinsic fluorescence of 

chromophores located at or near the binding site. Typically, changes in 

tryptophan (or tyrosine) fluorescence are exploited. In a straightforward 

fashion, the experiment can be done by monitoring the changes of the 

fluorescence intensity (quantum yield) or the wavelength shift of the 

emission maximum, the reason being either the influence of a ‘quencher’ 

on the incoming binding partner, or changes in the hydration of the 

chromophore, or both. An example of a binding experiment followed by 

fluorescence is shown in Fig. 3.4.  

 

Fig. 3.4. An example of KA determination by spectroscopy. Binding of spinach  

ferredoxin (Fd) to ferredoxin:NADP
+
 oxidoreductase (FNR) was measured at 27 °C. 

Panel A, addition of Fd to FNR cause decrease of the Trp fluorescence of FNR in a 

concentration dependent manner. Fluorescent spectra recorded at Fd:FNR ratios  

ranging from 0 to ~ 2.5 are shown (top to bottom). Panel B, the normalised changes in 

fluorescence (see Eq. 3.19a) are plotted against the Fd:FNR molar ratio (open symbols; 

right y-axis). The associated continuous line visualises the results of non-linear  

regression analysis according to Eq. 3.3. The best fit was obtained with KA = 4.2×10
6
  

M
–1

. For comparison, the binding isotherm measured by ITC (see Section 3) is shown 

(closed symbols and dashed line; left y-axis). From ITC data, KA = 6.5×10
6
 M

–1
. Data 

from Jelesarov and Bosshard (1994), Biochemistry 33: 13,321–13,328. 
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In recent years, fluorescence anisotropy (or fluorescence 

polarization) has found a wide application in quantitative studies of 

protein–protein binding.
9
 The underlying physical principle is the 

following. A linearly polarised laser excitation source preferentially 

excites fluorescent target molecules with transition moments aligned 

parallel to the incident polarization vector. The resultant fluorescence is 

directed into two channels that measure the intensity of the fluorescence 

polarised both parallel and perpendicular to that of the excitation beam. 

The observed changes in anisotropy/polarization at different A:B ratios 

reflects the changes in the degree of saturation.
h
 The principal advantage 

of fluorescence-based techniques over other spectroscopic methods is 

their sensitivity, allowing characterization of strong binding at low 

concentrations.  

NMR monitors the absorption of electromagnetic energy by 

magnetically active nuclei that are oriented in a strong magnetic field. 

The characteristic absorption frequencies of nuclei of the same type 

(same element) are strongly influenced by the chemical environment. 

Because of this property, the presence of a ligand will change the relative 

positions of the spectral lines of nuclei located at the binding site of a 

receptor. This so-called chemical shift sensitively reflects the relative 

population of bound and free receptor, i.e. reports on the degree of 

saturation in a titration experiment. NMR binding experiments can be 

performed in a variety of setups. Since individual nuclei are monitored, 

NMR is a powerful tool to delineate the boundaries of binding sites.
i
 

Furthermore, NMR binding experiments provide information about the 

overall dynamics of protein–protein complexes.
j
 At present, the 

                                                 

h
 Polarization is defined as 

I I
P

I I

↔

↔

−
=

+

b

b

 where the indices ↔  and b  denote the emission 

intensity parallel and perpendicular to the excitation light, respectively. The fluorescence 

anisotropy (A) is related to P by A = 2P/(3-P). Both P and A provide the same 

information on the binding process.  
i
  In practice, 

15
N or 

13
C labelling is required.   

j
 In general, strong complexes (high KA, low KD) exhibit lifetimes longer than 1/(νbound-

νfree), νbound and νfree being the absorption frequencies of a nucleus in the complex and in 

the free protein, respectively. In this situation, two characteristic signals will appear in the 

NMR spectrum, corresponding to νbound and νfree. Low-affinity binding is usually 

manifested by lifetimes of the complex being shorter than 1/(νbound-νfree). The signals are 
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application of NMR to extract KA (and ∆G) is somewhat limited to 

studies of relatively weak complexes, since the experiments require high 

concentrations of reactants.
10

 

3.3.3 Methods Based on Refractive Phenomena 

I discuss two methods, which have a common physical foundation, 

separately, and illustrate how new technological developments widen the 

palette of experimental methods aimed at quantification of protein–

protein interactions. The surface plasmon resonance (SPR) is a 

complicated phenomenon arising at the boundary between transparent 

media of different refractive index (for example glass and water), 

separated by a thin metal film.
11

 Above a critical angle the light coming 

from the side of higher refractive index is totally reflected. At this 

condition the electromagnetic field component penetrates a short into the 

medium of a lower refractive index creating an evanescent wave. The 

intensity of the reflected light is reduced at a specific incident angle 

because of resonance energy coupling between the evanescent wave and 

the metal surface plasmons. It has been shown that the resonance 

condition (resonance angle) depends on the refractive index of the 

material adsorbed at the metal film, linearly changes with changes of the 

refractive index, and can be used to quantify changes in the mass 

concentration at the sensor chip surface. One binding partner is 

immobilised on the surface of a sensor chip in a flow cell. The other 

binding partner flows over the surface of the sensor chip and interacts 

with the immobilised molecules. The binding event on the surface of the 

sensor leads to a change in refractive index close to the surface of the 

sensor chip and is detected by the changes of the resonance angle – 

measured in arbitrary resonance units (RU). Starting from some value at 

zero saturation (no ligand present in the buffer) the RU signal increases 

with time when saturation increases (ligand present in the buffer). Since 

the process is dynamic (association and dissociation take place all the 

                                                                                                             

broad, and the chemical shift represents a population-weighted average of νbound and νfree. 

Complexes with intermediate behaviour are also known. Modern deconvolution 

techniques allow extraction of quantitative information in various situations.      
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time) some time elapses until the equilibrium is reached (constant RU 

signal). Therefore, the initial phase of the sensogram has the shape of a 

kinetic trace. Indeed, the association rate constant (kass) can be calculated 

from this part of the sensogram. In the region of the plateau the system is 

in the steady-state regime. At some point, the cell is flushed with buffer 

containing no ligand. The RU signal decreases exponentially since the 

complex dissociates. From this part of the sensogram the dissociation 

rate constant (kdiss) can be calculated. Binding affinities can be obtained 

either from rate constant measurements according to KA = kdiss/kass (see 

Section 3.3.4) or by measuring the steady state level of binding as a 

function of the sample concentration according to Eq. 3.19. The SPR 

approach in different implementations (the most popular and user-friendy 

being the BIAcore instrument) has been used in hundreds of studies of 

protein–protein interactions. Although problems might arise due to 

covalent immobilization of one of the binding partners (conformational 

changes, inaccessibility of a proportion of binding sites), the SPR 

technology yields KA estimates in good or excellent agreement with truly 

in-solution methods.   

Very recently, a truly in-solution assay has been proposed, which 

exploits a similar physical principle – back-scattering interferometry 

(BSI).
12

 In a special optical arrangement, the interaction of laser light 

with the medium in a small reaction chamber produces scattered light 

with sharp interference fringes. Any change in the refractive index of the 

medium causes displacement of the interference pattern. The idea is that 

mixing the reactants in a stopped-flow-like setup will allow following the 

time course of BSI pattern shift. The binding affinity is calculated from a 

series of experiments at varying concentration of one of the reactants by 

either by analysis of the kinetic traces or by plotting the end-points of the 

BSI signal as function of the varying total concentration to produce the 

familiar hyperbolic saturation curve. The correspondence between results 

from BSI experiments and other type of binding experiments is 

impressive. The main advantage is that a wide range of KA can be 

measured with very little material. However, the BSI method is still in 

the infant stage and extensive experimentation should delineate the limits 

of applicability.  
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3.3.4 Kinetic Approaches 

The equilibrium between species A, B and AB is dynamic – binding and 

unbinding (association and dissociation) occur steadily:   

 A B+        AB  (3.20)        

The microscopic rate constants for association and dissociation, kass 

and kdiss, respectively, are linked to the equilibrium constant by: 

 
diss

A

ass

k
K

k
=  (3.21) 

It follows, that another way to calculate KA is to measure kass and kdiss 

in some type of experiment. As mentioned in Section 3.3.3 kinetic 

information can be obtained by SPR and BSI experiments. Also, time-

resolved measurements of any spectroscopic probe can be exploited. If A 

and B are mixed in 1:1 molar and volume ratio, the disappearance of 

unbound A (or unbound B) can be described by: 

[ ] [ ]
[ ][ ] [ ] [ ] [ ]2

ass diss ass diss

d A d B
k A B k AB k A k AB

dt dt
− = − = − = −  (3.22) 

At time zero [A] = [B] = [A0]. After substitution of [AB] by [A0] �  [A] 

and rearranging, the decrease of [A] is given by: 
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and after integration,  
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 (3.24) 
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where: 
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 (3.25c)  

The time course of the signal change is described by: 

 ( )
[ ]
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0
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A

σ σ σ
 

= + ∆ −  
 

 (3.26) 

where σ0 and ∆σ = σeq − σ0 are the signal at time zero and the 

maximum change of the signal when equilibrium is reached, 

respectively. Figure 3.5 presents an example.  

Fig. 3.5. An example of KA determination by kinetics. Binding of the CAP-Gly domain  

of dynactin (p150n) to the C-terminal domain of End-binding protein 1 (EB1c) was 

measured at 25 °C. Panel A, time course of the fluorescence changes detected upon 

mixing of equimolar concentrations of the two proteins (20 µM). The continuous line is 

the best fit according to Eqs 3.20–3.26 to the data (symbols). The calculated rate 

constants for association and dissociation are kass = 6.9×104 M–1 s–1 and kdiss = 7×10–2 s–1, 

respectively. Thus, KA determined by kinetics is 9.8×105 M–1. In Panel B the  

equilibrium binding isotherm obtained by ITC is shown (see Section 3.3). From ITC  

data, KA = 3.5×105 M–1. Data from Honnappa et al. (2006), Mol. Cell 23: 663–671, and 

unpublished results. 
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3.3.5 Isothermal Titration Calorimetry (ITC) 

Finally, the principle and merits of ITC are described in some detail. The 

unique feature of the method is that the experimental signal is the heat 

released or absorbed upon interaction between molecules A and B. Since 

the experiment is performed at constant temperature and pressure in a 

quasi-adiabatic chamber, the measured heat values can be related to the 

molar enthalpy of the binding reaction. Therefore, even few ITC 

experiments provide immediate access to and precise estimates of all 

relevant thermodynamic functions describing the stability of a receptor–

ligand complex.   

Molecule A dissolved in the appropriate buffer is placed in the 

sample cell.
k
 Molecule B dissolved in the same buffer is added stepwise 

in aliquots from a computer-controlled injection syringe, which rotates  

to effect rapid mixing of the reactants. If binding takes place, heat  

is released or absorbed upon each addition of B to A. In power 

compensation instruments the heat change is expressed as the electrical 

power applied by the feedback network to maintain a small temperature 

difference between the sample and the reference cell.  

Each injection of B into A produces a deflection of the differential 

power signal (µcal s
−1

) from the thermal baseline connecting the signal 

immediately before the injection and after re-equilibration (Fig. 3.6). 

Integration of the differential power with respect to time yields the heat 

change ∆q (µcal) between injections i and i-1: 
l
  

 1i iq q q −∆ = −  (3.27) 

 

 

 

                                                 
k The reference cell is filled with high-purity, degassed water unless the heat capacity of 

the buffer is very different from the heat capacity of water. 
l ∆q is caused not only by the shift of the chemical equilibrium in the cell but contains 

contributions from the heat values of dilution and unspecific effects not pertaining to the 

binding event per se. Therefore, corrections have to be introduced by performing control 

experiments. 
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∆q is proportional to the volume of the calorimetric cell, which is 

known, to the molar enthalpy of binding, which is a constant at constant 

temperature and pressure,  and to the change in the concentration of the 

complex, ∆[AB] (or bound B, ∆[B]bound),  between injections i and i−1: 

 [ ] [ ]( )1cell i iq V H AB AB −∆ = ∆ −  (3.28) 

Using the known total concentration of A in the cell, [A]t, and the 

degree of saturation Y, defined by Eqs 3.3a and 3.12 can be re-written as: 

 [ ] ( )1cell i it
q V H A Y Y −∆ = ∆ −  (3.29) 

The experimental data can be plotted in two ways. The familiar 

sigmoidal titration curve, which is most frequently seen in the 

biochemical literature and shown in Fig. 3.6, represents the derivative of 

Eq. 3.29 with respect to the total concentration of B added, [B]t:  
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 (3.30) 

According to Eq. 3.29, the heat Q accumulated up to injection i is 

given by: 

 [ ]
1

i

cell it
q Q V H A Y∆ = = ∆∑  (3.31) 

Q can be expressed in terms of [A]t and [B]t: 

[ ] [ ] [ ] [ ]( ) [ ] [ ]
2 21 1 4

2

t A t A t A t A t t A

cell

A

n A K B K n A K B K n A B K
Q V H

K

 
+ + − + + − 

= ∆  
 
 

 

  (3.32) 
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The data transformation according to Eq. 3.32 is illustrated in Fig. 

3.6. Note that Eqs 3.30 and 3.32 include the parameter n, which 

represents the number of binding sites on molecule A. Obviously, in the 

simplest case of 1:1 interaction n = 1. Regression analysis of the data 

allows simultaneous determination of KA, ∆H and n. 
m
  

According to Eqs 3.9 and 3.10, a single ITC experiment provides 

∆G, ∆H and ∆S = (∆H − ∆G)/T at the experimental temperature. From a 

couple of experiments performed at different temperatures ∆Cp can also 

be calculated according to Eq. 3.12. Hence, a series of ITC experiments, 

which can be performed within two–three days, yields high-precision 

estimates of all relevant energetic terms, alleviating the inherent 

problems of van’t Hoff analysis of binding data (see Eqs 3.14–3.16). 

Figure 3.6 shows the complete thermodynamic profile of a protein–

protein complex. For a more detailed discussion of the principle, 

experimental design, data handling and data interpretation Refs 13–19 

are recommended. 

3.4 Energetics of Protein–Protein Interactions 

Calculation/prediction of thermodynamic quantities that characterise 

binding reactions is a major challenge in modern computational 

chemistry. Apart from the fundamental importance of understanding the 

energetic principles of molecular recognition, the interest to the problem 

in the field of biomedical research is fueled by the ever growing needs to 

design compounds that either mimic or interfere with biologically-

relevant interactions between proteins and their ligands, as a way to 

prevent or cure diseases. Initial screening for and rational optimization of 

                                                 
m Note that the total volume increases in the course of the titration. Therefore, the actual 

concentrations of A and B after injection i are [ ] [ ], ,0 1

i

t i t

cell

dV
A A

V

 
= − 

 
 and 

[ ] [ ], ,0 1 1

i

t i t

cell

dV
B B

V

  
 = − − 
   

, where dV is the injection volume. These corrections have 

to be introduced in Eqs 3.30–3.32. 
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lead compounds towards higher/desired affinity by purely experimental 

strategies has proved to be a tedious and time-consuming task.  

Fig. 3.6. ITC binding experiments. As an illustration of the informational content of ITC, 

shown are binding experiments with the PDZ2 domain of human protein tyrosine 

phosphatase 1E and the C-terminal pentadecapeptide of the RA-GEF protein. This 

reaction represents the biologically relevant binding mode. The peptide was titrated to 

PDZ at temperatures of 5 to 30 °C. Panel A, raw calorimetric output from experiments at 

5, 18 and 30 °C (top to bottom). The traces are shifted on the y-axis for clarity. Panel B, 

the heat values released at each titration step were calculated by integration of the 

corresponding differential power peak, and plotted vs the molar ratio RA-GEF:PDZ2 

(symbols). The lines visualise the best non-linear regression fits of Eq. 3.30 to the data. 

Panel C, the same data plotted in the cumulative mode. Best fits according to Eqs 3.31 

and 3.32 are shown with lines. From both analyses, KA, ∆H, and the stoichiometry of 

interaction (n) can be calculated. Panels A−C illustrate that the reaction becomes 

increasingly more exothermic at higher temperatures. Panel D, thermodynamic profile of 

the RA-GEF:PDZ2 complex. The temperature variation of ∆G (squares), ∆H (circles) 

and T∆S (triangles) is shown. The slope of the line associated with ∆H data is the heat 

capacity change, ∆Cp. Note that the reaction is driven by both ∆H and T∆S below 18 °C. 

Above that temperature, the entropic term becomes unfavourable. Since the temperature 

dependencies of ∆H and T∆S are very similar, the binding affinity (∆G) is nearly 

constant in the studied temperature interval. Data from Milev et al. (2007), Biochemistry  

46: 1,064–1,078. 
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Therefore, computer-based and/or empirical predictions of binding 

affinities are highly desirable. The problem has two interlinked sides. On 

the one hand, the number of high-resolution structures of bio-

macromolecular complexes appears to catch up with and even outrun the 

number of thoroughly characterised binary complexes. On the other 

hand, even the most precise measurement of any binding parameter 

yields just a number, which itself contains no descriptive power if there 

is no (at least vague) understanding of the underlying molecular process. 

Here, I first will very briefly sketch some approaches aimed at predicting 

binding affinities. The reader is advised to consult the original 

publications, as well as chapters on protein modelling from this volume 

for a thorough description. I will provide more details about the state of 

the currently popular field, sometimes also known as ‘structural 

thermodynamics’, where the efforts are to find correlations between 

experimentally measured thermodynamic parameters and the physical–

chemical properties of the interacting molecular surfaces.  

3.4.1 Calculation of Binding Affinities  

Arguably, the statistical thermodynamics treatment represents the most 

rigorous way to calculate the standard free energy change of a binding 

reaction. Since at equilibrium the chemical potentials of the associated 

(AB) and dissociated (A+B) states of the system are equal, i.e. µAB = µA + 

µB, the free energy is given by 
0 0 0

AB A BG µ µ µ∆ = − −  where the 

superscript 0 indicates the standard chemical potentials. For each solute i 

the standard chemical potential µ i
0
 is proportional to the ratio of the 

canonical partition functions of the solute placed in the solvent and of the 

pure solvent, the volume of the system(s) at the standard pressure, and 

the partial specific volume of the solute. In principle, these quantities can 

be evaluated by MD simulations using multiconfiguration integrals over 

suitably defined vectors of momenta and atomic coordinates, so that the 

free energy of binding is given by: 

 
2

8

A B AB
ABbind

AB A B

C Z
G RT ln P V

Z Z

σ σ

σπ

 °
∆ = − + °∆ 

 
 (3.33) 
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C° is the standard concentration; σi are the symmetry numbers (the 

number of identical orientations of the molecules); Zi are the integrals; P° 

is the standard pressure; ABV∆ is the change of the partial specific 

volume upon association. Any change of the system is divided in 

consecutive small perturbations and the calculation yields the work 

involved at each step. The sum of these stepwise work terms yields the 

free energy change. Probably the most popular implementation is the 

‘double-annihilation’ method, where the ligand is first ‘annihilated’ from 

the solvated complex and is then ‘annihilated’ from the solvent in a 

second step. Although this methodology is certainly the most robust 

approach, it is clear that it is based on the assumption of ergodicity of the 

system(s) which cannot be proved. For an excellent discussion of this 

type of calculation see Ref. 20. The method has been devised and 

developed in studies of binding small ligands to proteins. However, the 

formulations are general and can be applied in principle in studies of 

protein–protein association, if accurate sampling of the relevant 

configurations of the solutes and solvent are available. Nonetheless, this 

methodology is at its best in studies of changes in ∆Gbind in response to 

mutations (relative binding affinities).  

Calculation of absolute binding affinities by equilibrium sampling 

along a quasi-continuous transformation path connecting the initial and 

the final states is a computationally demanding task. Therefore, end-

point protocols have been devised, where only the initial and final states 

of the system are evaluated. One such method combining the advantages 

of conformational sampling with the computational efficacy of 

continuum calculations is the Molecular Mechanics Poisson-Boltzmann 

(Generalized Born) Surface Area approach (MM-PB(GB)SA).
21

 The 

binding free energy is expressed as the sum of energetic contributions: 

 
intbind pol np otherG E G G T S∆ = ∆ + ∆ + ∆ − ∆  (3.34) 

All these terms represent differences between state AB and state 

A+B.          
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<Eint> is the internal (bond, angle, torsion) energy. ∆Gpol represents 

the sum of <Eel> (the gas-phase electrostatic energy) and ∆Gpol
solv

 (the 

energy associated with solvation of polar groups). Likewise, ∆Gnp can be 

partitioned into <EvdW> (the gas-phase van der Waals energy) and 

∆Gnp
solv

 (the energy associated with solvation of non-polar groups). All 

bracketed terms are evaluated as ensemble averages by molecular 

mechanics forcefield(s). ∆Gpol
solv

 is extracted by applying either the 

Poisson-Boltzmann finite-difference method or the generalised Born 

approach. The energetic effect of association of non-polar surfaces is 

assumed to be proportional to the solvent accessible surface area (ASA) 

according to ∆Gnp
solv

 = γASA + b, the values of the coefficients γ and b 

being different in different implementations. Finally, T∆Sother in Eq. 3.34 

is the entropic contribution from the changes in rotational, translational 

and vibrational degrees of freedom (see below). Solvent-related entropic 

effects are implicitly included in ∆Gpol
solv

 and ∆Gnp
solv

. Although the 

MM-PB(GB)SA method includes continuum approximations, it has been 

argued that it has a clear connection to statistical thermodynamics.
22

  

The linear interaction energy method (LIE) also takes advantage of 

using sampling of ensembles generated by MD or MC.
23

 Simulations are 

performed for the ligand in the free state and in the bound state to obtain 

the average energy of intermolecular van der Waals (vdW) and 

electrostatic (el) interactions (denoted by <U>). The binding free energy 

is then derived using the following formula: 

 bind vdW elG U Uα β∆ = ∆ + ∆  (3.35) 

The delta sign indicates the change in energy in going from the free 

to the bound states, that is ∆U = Ubound − Ufree. The coefficient α is 

derived by linear regression fit to a set of binding energies and β = 0.5 as 

predicted by the linear response approximation for ionic interactions, but 

can be scaled accordingly for neutral polar ligands. 

Another class of methods consists of empirical or semi-empirical 

approaches. They implement master equations derived by regression 

within a training set of known interactions (and affinities). ∆Gbind is 

expressed as the sum of different energetic terms representing either 

energetic benefits in formation of intermolecular contacts or energetic 
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penalties (loss of degrees of freedom). Just as an example, I show here 

(in slightly different notation) the equation discussed in detail in Ref. 24:  

 bind nHB iHB HE rot t rG G G HSA G n G G +∆ = ∆ + ∆ + ∆ + ∆ + ∆∑ ∑  (3.36) 

Binding is expected to be favoured by polar interactions, that is, 

formation of neutral hydrogen bonds (nHB) and ionic hydrogen bonds 

(iHB). The contribution of the hydrophobic effect scales with the amount 

of hydrocarbon surface (HSA) buried at the interface, ∆GHE being the 

contribution per Ǻ
2
. The entropic losses due to freezing of n internal 

rotations (rot) and restrictions of translational and rotational degrees of 

freedom (t+r) are considered by the last two terms of the above equation, 

respectively. The various terms do not have a sound statistical 

thermodynamics or molecular mechanics foundation but describe the 

available structural information and binding data in a statistical manner. 

Clearly, the essential advantage of empirical methods is their efficacy in 

terms of speed. The main limitation, however, is that the precision 

critically depend on the size and quality of the training database.  

There is a large variety of ‘hybrid’ methodologies available, 

combining physically rigorous approaches with empirical treatments.
25–28

 

3.4.2 Structure-based Prediction of Binding Parameters 

Real progress in understanding the mechanisms of macromolecular 

association can be achieved only if an intimate link is established 

between energy and structure. Since non-polar and polar contacts exhibit 

different thermodynamic signatures, the intuitive and relatively simple 

approach which has been pursued, is to parameterize the observed 

quantities in terms of the amount and type of surface buried in a 

complex.
29,30

 The idea has been adopted from studies of protein 

energetics; namely that ∆H, ∆S, and ∆Cp of protein unfolding could be 

predicted with relatively good precision from the increase in surface 

exposure upon disruption of the compact native state (Ref. 31 and 

references therein). It is debatable whether the surface-energy 

correlations found for proteins really take into account the physics of the  
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underlying process, or whether they simply represent a useful empirical 

observation. Nonetheless, if such correlations could be established for 

binding reactions, a deeper understanding of the forces holding the 

binding partners together would result and predictions of the binding 

profile may become possible. 

The method follows the typical end-point strategy. The amount of 

surface buried in the interface is calculated by taking the difference 

between the solvent accessible surfaces (∆ASA) of the bimolecular 

complex and the isolated binding partners.
n
 Using proper definitions, the 

total ∆ASA can be partitioned into polar (∆ASApol) and non-polar 

(∆ASAnp) components. The central issue in the prediction of binding 

parameters from structural information only is the calculation of ∆Cp. 

The hydration heat capacity of polar and non-polar substances is positive 

and negative, respectively, and the elementary contributions (cpol < 0 and 

cnp > 0; per unit of surface area) are known from pure-phase-to-water 

transfer studies with model compounds. The binding heat capacity 

change is calculated by the following empirical equation:
o
 

 
, ,p p np p pol np np pol polC C C c ASA c ASA∆ = ∆ + ∆ = ∆ + ∆  (3.37) 

Analytical expressions describing the intrinsic change of cpol and cnp 

with temperature can be plugged into Eq. 3.37, yet the temperature 

dependence is weak and can be neglected below, say 80 °C.  

Similarly, the binding enthalpy can be calculated by summing up 

contributions from polar and non-polar interactions, whose overall 

strength scales with the amount of buried surface of the corresponding 

type.  

 

                                                 
n
 Albeit the basic algorithm for calculation of ASA is universal – rolling a probe (a sphere 

representing the water molecule) on the van der Waals envelope of the protein – different 

radii can be assigned to both the probe and the van der Waals radii of protein atoms. 

Therefore, care should be taken to perform the calculations of thermodynamic parameters 

using ASA and elementary contributions per unit surface that are consistent with each 

other.    
o
 All equations in this section consider the dissociated state (A+B) as the reference state. 

Therefore, each parameter ∆X represents XAB − XA+B. 
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 (60 ) pol pol np npH C h ASA h ASA∆ ° = ∆ + ∆  (3.38) 

The coefficients hnp < 0 and hpol > 0 have been derived by regression 

analysis of the protein thermodynamic database. The assumption is that 

the average packing density at protein–protein interfaces approximates 

the average packing density of proteins. Therefore, the enthalpic term 

combining the enthalpy of formation of polar interactions and the 

concomitant changes in hydration enthalpy, is similar for protein 

unfolding and dissociation of protein–protein complexes. A more precise 

analysis requires calculation of the actual packing density and 

considering the presence of mixed polar/non-polar contacts.
29,32

 At any 

other temperature T: 

 ( )( ) (60 ) 60pH T H C C T∆ = ∆ ° + ∆ −  (3.39) 

In the absence of proton transfer (see below), the entropy of 

dissociation can be partitioned into contributions arising from solvent re-

organisation, ∆Ssolv, conformational effects, ∆Sconf and changes in the 

vibrational, translational and rotational spectra, ∆Sother: 

 ( ) solv conf otherS T S S S∆ = ∆ + ∆ + ∆  (3.40) 

Using the temperature(s) where the entropy of hydration of non-polar 

groups (TS,np) and polar groups (TS,pol) is zero, the solvent-related part is 

calculated according to: 

 ( )solv p ,np p,pol

S ,np S ,pol

T T
S T C ln C ln

T T

   
∆ = ∆ + ∆      

   
 (3.41a) 

According to Eq. 3.37, 

 ( )solv np np pol pol

S ,np S ,pol

T T
S T c ASA ln c ASA ln

T T

   
∆ = ∆ − ∆      

   
 (3.41b) 
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TS,np is known to be close to 385 K.
33,34

 There are two conflicting 

estimates of TS,pol: 385 K
34

 or 333 K.
35

  

In many cases, the conformational term (∆Sconf) is dominated by the 

immobilization of side chains due to formation of intermolecular 

contacts (but see Section 3.4.3). The loss of entropy of side chains in 

going from the completely solvent-exposed state to the completely 

buried, immobilised state (∆SSC*) has been estimated by statistical 

thermodynamic methods.
36,37

 Assuming that partial burial causes partial 

loss of entropy, the total, side chain-related entropy effect can be 

calculated according to: 

 *
i

SC SC

i i

ASA
S S

ASA

∆
∆ = ∆∑  (3.42) 

Where ∆ASAi is the change in ASA of the side chain of residue i and 

ASAi is the ASA of the corresponding side chain in the fully exposed 

state.  

Perhaps the most problematic issue in binding entropy calculations is 

the magnitude of ∆Sother (Eqs 3.34, 3.36 and 3.40). Typically, vibrational 

contributions are neglected. When hydration entropy is calculated by 

semiempirical parameterization schemes based on organic compound 

transfer thermodynamic data, it necessarily includes – at least to some 

extent – vibrational contributions as well, which are thought to be 

relatively small in general. The estimates of the magnitude of ∆Sother 

(rotation/translation) are largely discrepant. It seems now that values 

stemming from gas-phase statistical mechanics derivations
38

 largely 

overestimate this contribution.
39–41

 Experimental studies suggest a 

contribution in the order of −40 J mol
−1

 K
−1

 for a bimolecular protein–

protein association (T∆Sother ~ −10 to −12 kJ mol
−1

 at 25 °C).
42–43

 This is 

numerically close to the ‘cratic entropy’, ( )ln 1/ 55craticS R=  (T∆Scratic ~ 

−10 kJ mol
−1

).
44

 A recent computational study yields ∆Sother ~ −100 J 

mol
−1

 K
−1

 (T∆Sother ~ −30 kJ mol
−1

 at 25 °C), which perhaps can be 

regarded as an upper estimate.
45

 It has been argued that ∆Sother will 

depend on the nature and strength of association.
45

  

The binding free energy is ∆G(T) = ∆H(T) − T∆S(T) with ∆H(T) and 

∆S(T) calculated according to Eqs 3.39 and 3.40, respectively.  
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3.4.3 Understanding Binding: Are there Structure-Energy 

Relationships? 

Protein–protein and protein–ligand binding involves formation of large 

intermolecular interfaces, which can be regarded as complementary 

arrays of highly cooperative, non-covalent bonding networks. In such 

systems, analysis of the changes in thermodynamic functions in terms of 

additive contributions from distinct physical forces and effects is indeed 

problematic on theoretical grounds.
20,46

 Notwithstanding the coarse 

oversimplification of the physical reality, calculations using the 

formalism presented in the foregoing sections (especially Section 3.4.2) 

and comparisons with experimental data, provide a unique opportunity to 

take a glimpse into the energetic principles that govern association. In 

this respect, ITC data are regarded as the ‘golden standard’ because of 

the unprecedented accuracy of ∆H, ∆S, and ∆Cp determination.  

The straightforward applications of Eqs 3.37−3.42 assume that 

binding is treated as ‘lock-and-key’ interaction. In this approximation, 

the shape (van der Waals) complementarity of the binding surfaces is 

close to optimal. The binding interface is completely dehydrated. The 

interaction partners are held together by non-covalent bonds (polar and 

non-polar). The enthalpic gain of intermolecular hydrogen, dipole and 

dispersion bonds realised in the low dielectric permittivity of the 

interface is partially offset by the loss of enthalpic interactions between 

the participating solute groups and the solvent in the unbound state. The 

principal gain in entropy comes from the increase in entropy upon 

release of water molecules bond to the dissociated, ‘empty’ binding sites 

into the bulk (∆Ssolv; hydrophobic force). The principle loss of entropy is 

caused by immobilization of rotors when bonds are formed (∆SSC). 

Entropic penalty is paid for the formation of one kinetic unit out of two 

(∆Sother). This model can be accepted if there is numerical agreement 

between predicted and experimentally measured ∆H and ∆S 

(consequently also ∆G), within of course the uncertainties of both 

experimental data and parameterization coefficients (including the 

calculation of buried molecular surface). The success of the 

parameterization scheme(s) is sometimes impressive.
47,48
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Every so often, however, reports about significant discrepancies 

between calculation and experiment appear. In many cases the predicted 

numbers are not only far off the measured values but are even of 

opposite sign. This is an indication that additional processes and effects 

accompany binding. Here, only the most commonly encountered 

‘complications’ are discussed.  

Calculation of ∆H according to Eqs 3.38 and 3.39 yields the 

‘genuine’ enthalpy change, i.e. the change in ∆H caused by formation of 

contacts  and dehydration of the interface. If association causes pKa shifts 

of ionizable groups, protons will be released from or will bind to the 

complex. Necessarily, the corresponding number of protons are taken up 

into or released from the buffer compound, respectively. Since the 

ionization enthalpies of many commonly used buffers are large, the 

apparent binding heat values in the ITC experiment will contain a 

contribution from the buffer ionization heat. Due to thermodynamic 

linkage relationships and the intrinsic temperature dependence of pKa 

shifts, the observed magnitude of all thermodynamic parameters, and 

their apparent temperature dependencies, will be influenced by proton 

transfer. The traditional way to detect proton exchange is to perform a 

series of experiments at the same pH in solutions buffered with 

compounds having different ionization enthalpies. Dozens of studies 

have demonstrated that plots of the observed enthalpy, ∆Hobs, as function 

of the buffer ionization heat, ∆Hb, are linear. Formally, the data can be 

described by the equation ∆Hobs = ∆Hb,0 + nH+∆Hb, where the slope, nH+, 

and the y-axis intercept, ∆Hb,0, quantify the number of transferred 

protons and the enthalpy of association in a (hypothetical) buffer with 

zero ionization enthalpy, respectively. Usually, ∆Hb,0 is interpreted as 

representing the intrinsic (genuine) binding enthalpy in the absence of 

proton transfer effects.
p
 Because the magnitude of pKa shifts and ∆Hb 

both depend on the temperature, proton transfer will influence the 

apparent ∆Cp and ∆S values. Hence, ASA-based predictions are valid 

only if proton transfer effects are taken into consideration.  

                                                 
p
 This is strictly correct only at a given temperature and a given pH. See Ref. 49 for 

discussion. 
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Typically, the structures of the unbound components A and B are not 

known and calculations of ∆ASA are performed with the structure of the 

complex AB. This is faulty in all cases where the binding partners 

experience structural re-arrangements in going from the free to the bound 

state. Conformational adaptation on a global or local scale is a ubiquitous 

phenomenon, yet its thermodynamic consequences are hard to grasp. In 

principle, it is expected that transition from a more unfolded and solvent-

exposed free state to a more compact, more solvent-inaccessible bound 

state will contribute negatively to ∆H (because packing interactions are 

formed) and ∆Cp (because predominantly hydrophobic surface becomes 

newly buried). In analogy to protein folding, the entropic effect of 

refolding is expected to be unfavourable, since conformational 

rigidification generally over-compensates the hydrophobic effect in 

terms of entropy. Next to ∆SSC (Eq. 3.42), additional entropic expenses 

have to be considered in calculation of ∆Sconf. They are linked to 

immobilization of the backbone when secondary structure elements are 

formed, and fixing side chains residing in such elements into the binding 

pocket. These contributions have been estimated by computational 

methods per each amino acid residue.
35,37

 In favourable cases, the 

structures of the free components are available and they can be used in 

surface-accessibility calculations. Alternatively, one can attempt to 

simulate the free-to-bound structural transition by MD simulation 

starting with the structure(s) of the bound component(s). It should be 

noted, that ASA-based predictions made with the structure of a complex 

will be problematic, if binding proceeds via a conformational selection 

mechanism.
50

 According to this model, one of the components exists in 

two (or more) alternative conformations, only one of them being capable 

to bind the partner molecule. Binding induces shift in the equilibrium 

distribution of binding incompetent and binding competent states. 

Therefore, the experimental data will contain ∆H, ∆Cp and ∆S 

contributions from this linked equilibrium.
51, 52

  

The shape complementarity of binding surfaces is rarely perfect. 

Water molecules are often trapped in cavities and clefts at the binding 

interface. They contribute to the energetics of binding and must be taken 

into account when interpreting ASA-based calculations. Significantly, 

buried waters (ASA < 10 Ǻ
2
;) are considered as belonging to one of the 
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binding partners in ASA calculation (see Ref. 53 for detailed discussion). 

On the practical side, the problem is that the resolution of X-ray 

structures may not be high enough to detect interpretable electron density 

in cavities and clefts, and NMR is unable to ‘see’ waters. Again, MD 

simulations may come to help in identification of long-lived trapped 

water molecules. It is expected that ‘structural’ waters will increase the 

favourable enthalpy of binding by improving the packing density, 

forming hydrogen bonds and alleviating the enthalpic penalty linked to 

charge burial. Also the unfavourable enthalpic effect of complete 

dehydration of non-polar groups is diminished. According to some 

estimates, the transfer of a water molecule from the bulk solvent and 

including it into an interface can be an exothermic process adding as 

much as −16 kJ mol
−1

 to ∆H.
54,55 

At the same time, immobilised waters 

destabilise the complex entropically. The exact magnitude of the effect is 

not precisely known, but the upper limit has been estimated as ~ −30 J 

K
−1

 (mol of water)
−1

 (T∆S ~ 9 kJ K
−1

 (mol of water)
−1

 at 25 °C).
56

 Water 

burial will decrease ∆Cp by 25−40 J K
−1

 (mol of water)
−1

.
56

  

In the framework of the discussed methodology, the sign and rough 

magnitude of calculated parameters is indicative of the balance of forces 

stabilising a given complex, even if the derived numbers are far off the 

experimental data. Large negative ∆H with small or medium temperature 

dependence (∆Cp) is typical for formation of strong hydrogen bonds. 

Large positive ∆S and large negative ∆Cp with small negative or positive 

∆H mark the dominant role of the hydrophobic effect. Large negative ∆S 

and ∆Cp can be attributed to either significant restriction of degrees of 

freedom in rigid-body type binding, or pronounced association-induced 

refolding reaction, or entrapment of many water molecules at the binding 

interface.    

Words of caution are mandatory. First, ASA-based calculations 

assume that the structures of the free components and their complex are 

invariant in an extended temperature interval. This is not granted. Even if 

there are no large-scale conformational changes, protein molecules are 

‘soft’ and flexible, and experience thermal fluctuations. Credible 

structure-oriented comparisons require correction of ∆H, ∆Cp and ∆S 

determined by ITC for any temperature-induced contributions from 

minor partial refolding and conformational flexibility. The correction of 
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∆H and ∆Cp can be done by integrating the heat capacity differences 

between the associated and dissociated state of the system as function of 

the temperature.
57

 It should be noted that the corrections are not a matter 

of ‘cosmetics’. The temperature dependence of the corrected ∆H can be 

dramatically different from the experimentally observed one; sometimes 

even the sign in a given temperature interval can change. Secondly, the 

mere idea that ∆Cp reflects changes in surface hydration has been 

challenged. It has been argued that large ∆Cp is the consequence of 

cooperative formation of many weak non-covalent bonds and from very 

tight packing interactions.
58,59

 Thirdly, the correspondence between 

predictions and experimental results is sometimes poor, even with 

carefully selected, high-resolution structures and high-precision data. 

The likely reason is energetic propagation. Strong intermolecular bonds 

can modulate the strength and vibrational content of intramolecular 

bonds in the vicinity of the binding sites.
24, 60–62

 The effect can lead to 

‘extra’ contributions to all thermodynamic parameters derived by 

experiment, yet cannot be captured by structural methods. 

Notwithstanding these problems, structure-based predictions of 

thermodynamic quantities have fruited a deeper understanding of the 

energetic principles of association reactions and remain an active field of 

research.  

3.5 Conclusions and Outlook 

Protein–protein interactions coordinate and structure virtually all 

processes in the living cell. New protein–protein interactions are being 

identified on a daily basis. Protein binding sites can have arbitrary 

geometry and there are only few unifying principles from a structural 

point of view. Binding interfaces span hundreds and thousands of square 

angstroms, yet point mutations can severely impair binding affinity. 

Structurally, unrelated proteins can sometimes effectively compete for 

the same binding site. It is still very difficult to achieve by rational 

design and optimization, high affinity and specificity of a molecule 

designed to compete with protein–protein binding. This is why 

methodologically-rigorous biophysical studies of diverse protein–protein 

complexes are central to the efforts towards better understanding of 
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biological functions. The past decades have brought about an increasing 

interest in deciphering the thermodynamic principles of protein–protein 

recognition.  

The thermodynamic formalism for extracting quantitative 

information on complex formation is long known. The free energy 

change (∆G) which quantifies the relative population of the bound state 

(complex), can be calculated if the equilibrium binding constant (KA) is 

known. There are a large variety of experimental methods available to 

determine binding constants. Some methods are ‘direct’ in the sense that 

the free and bound species can be separated and their equilibrium 

concentration measured. Other methods are based on following the 

apparent changes of spectroscopic, hydrodynamic, etc. properties 

reporting the degree of partial saturation at given total concentration of 

species. There is no universally applicable method to study protein–

protein binding equilibria. Once KA and ∆G are known, the enthalpy 

change (∆H), entropy change (∆S) and heat capacity change (∆Cp) of the 

binding reaction can be derived by taking temperature derivatives of KA 

and ∆G. Unfortunately, the precision of such estimates is low. The roll-

out of the new generation titration calorimeters has ignited a real 

explosion in the field of macromolecular recognition. The main 

advantage of ITC is the possibility of a direct and very precise 

measurement of KA and ∆H in a single experiment. In principle, a highly 

reliable thermodynamic profile of a protein–protein complex can be 

constructed in a few days.      

The ultimate goal is to find the intimate relationships between 

molecular structure, energetics and dynamics, and to discover ‘rules’ 

guiding predictions of the energetic response of a particular complex to 

structural changes in the binding partners. In such research programmes 

theoretical approaches are indispensable. Predictions of the binding 

affinity and other thermodynamic quantities can be achieved by different 

means: statistical thermodynamics treatment, combination of molecular 

mechanics with continuum calculations, use of master equations derived 

by ‘training’, semi-empirical calculations, etc. One popular way to deal 

with the problem is to estimate ∆H and the hydration-related part of ∆S 

from the amount and type of surface buried in a complex. Since 

estimates for the magnitude of the conformation-related part of ∆S have 
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been derived, the total predicted ∆H and ∆S terms can be tested against 

data obtained by calorimetry. In spite of the underlying coarse 

simplifications, the approach provides useful insights into the balance of 

forces stabilising protein–protein complexes, and sometimes achieves 

remarkable correspondence with experiments. Although not covered in 

this chapter, there are numerous new theoretical developments providing 

ways to analyse complicated binding equilibria and heterotropic effects. 

In the future, the task will be more and more to look critically at the 

accumulated results from theoretical perspective. Furthermore, it will be 

important to collect in a systematic way high-precision data on carefully 

selected, high-resolution systems. Arguably, there is a long way ahead 

which will lead to the elucidation of rigorous links between experimental 

thermodynamics and molecular structure. 
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The kinetics of association contributes to the biological function of 

macro-molecular complexes. Here, we first discuss key features and 

determinants of bimolecular association kinetics. Then we give an 

overview of contemporary experimental techniques for measuring 

kinetic properties and for gaining associated structural and dynamic 

data. We then describe theoretical and computational approaches to 

calculating kinetic properties. We end this chapter by discussing recent 

computational advances with selected examples of protein–nucleic acid 

and protein–protein complexation. 

4.1 Introduction 

The formation of biological complexes between proteins, proteins and 

small molecules, and proteins and nucleic acids plays a part in many 

biological processes, including gene transcription, cell signalling, 

enzyme catalysis and the immune response. Molecular association is 

governed by both the kinetic and the thermodynamic properties of the 

molecules and the medium involved. Inside cells, the medium is crowded 

with a variety of different macromolecules. Biomacromolecular 

complexes vary widely in their affinities and lifetimes, ranging from 

obligate and permanent to transient and short-lived complexes. Here, we 
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will consider bimolecular association to form a transient complex. 

Complexation is usually characterised in terms of affinity, as weak or 

tight and strong. The affinity is often largely determined by the 

dissociation rate. However, association rates can vary over many orders 

of magnitude between complexes and be critical in the biological 

context. For example, the snake toxin fasciculin must not only strongly 

inhibit acetylcholinesterase (which is critical to neural transmission) but 

also reach its target quickly.
1

 Similarly, the intracellular inhibitor barstar 

protects the bacterium Bacillus amyloquefaciens from the enzyme 

barnase, which it excretes to act extracellularly as a ribonuclease.
2

 The 

protein interleukin 4 (IL-4) forms a complex with its cellular receptor 

and the time of this process is a measure for the regulation of the immune 

system.
3

 The speed at which the lac repressor binds to its chromosomal 

lac operator regulates gene expression in the living cell.
4
 

In this chapter, we will address the problem of understanding how a 

biomolecular complex forms and what the macromolecular interactions 

involved are. Some important parameters for describing the kinetics of 

molecular association will be introduced. In addition, we will give an 

overview of recent experimental techniques and methods for measuring 

these kinetic parameters and investigating macromolecular interactions. 

We will then focus on theoretical and computational approaches for 

calculating association rates and will discuss the current limitations of 

these approaches. Finally, the most recent computational advances in 

studying protein–protein and protein–nucleic acid association will be 

reviewed. 

4.1.1 Bimolecular Association 

In the cellular environment, two biomolecules can bind by diffusing 

towards each other. Active transport processes may also contribute to 

binding but these will not be discussed here. Association can be 

considered to consist of two steps: first an intermediate is formed by 

diffusion; this is called a ‘diffusional encounter complex’. Then this 

intermediate evolves to form a tightly bound complex. Association is 

diffusion-controlled when the first step is rate-limiting, and it is reaction- 
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controlled when the second step determines the rate of the association 

process. 

4.1.1.1 Diffusional Encounter Complex 

The characterization of the diffusional encounter complex is of high 

importance for protein and nucleic acid design studies aimed at altering 

the association kinetics. In the case of diffusion-controlled processes, 

formation of the encounter complex determines the bimolecular 

diffusional rate constant. The rate of diffusional association has an upper 

limit: a reaction between two molecules cannot be faster than their rate of 

collision. This limit is around 10
9
 M

-1
s

-1
 for uniformly reactive spheres of 

typical macromolecular size
5
 in aqueous solvent with no forces between 

them. As a rule, a random collision of two molecules does not result in 

binding – a freely diffusing molecule X must come close to its binding 

patch on a target molecule Y in order to form a diffusional encounter 

complex. Geometrically, this complex can be viewed as an ensemble of 

configurations able to evolve to the bound state. During a single 

encounter, the two molecules have time to undergo substantial rotational 

reorientation while remaining trapped in the vicinity of each other and 

undergoing multiple collisions. This effect is known as a ‘diffusive 

entrapment’. A Brownian Dynamics (BD) study
6
 of two non-interacting 

spheres the size of small proteins showed about 400 times larger 

association rate (2·10
6
 M

-1
s

-1
), attributed to the diffusive entrapment 

effect, than the rate calculated by a simple geometric correction of the 

Smoluchowski rate considering two contacts as the criterion for binding 

(1·10
4
 M

-1
s

-1
). An association rate constant of about 10

6
 M

-1
s

-1
 is typical 

of protein–protein pairs that bind without strong electrostatic 

interactions. Attractive electrostatic forces can lead to enhancement of 

the rates to values very close to the Smoluchowski rate. 

4.1.1.2 Bound Complex 

Once the encounter complex has formed, the biomolecules must reorient 

with respect to each other to form a fully bound complex. They may also 

undergo changes in conformation and induced-fit in order to achieve a 



G.V. Pachov, R.R. Gabdoulline, R.C. Wade 92 

bound complex. Within the complex, the biomolecules are held together 

by close-range non-covalent interactions such as salt bridges, hydrogen 

bonds and van der Waals interactions. These interactions depend on the 

chemical nature of the interacting groups of both molecules as well as on 

their spatial arrangement and can be mediated by individual water 

molecules. A biomolecule can have one or several binding sites 

stabilising the complex. 

A subtle change in the binding site can change the binding mode 

significantly. Therefore, biological associations are dependent on the 

structure of both molecules and can be highly specific. 

4.1.2 Molecular Transport 

In the living organism, the biomolecules move in a fluid environment. 

Molecular transport depends on both the macroscopic and the 

microscopic properties of the surroundings. 

4.1.2.1 Diffusion 

Diffusion is the spontaneous motion of solute particles through a solution 

caused by collisions between the solute particles and the solvent 

molecules. For a particle undergoing normal diffusion, the average value 

of the square displacement along one spatial dimension is proportional to 

the time t elapsed during the process, 

 
2

2 ,r nD< > =  (4.1) 

where D is the diffusion coefficient and n is the number of dimensions. 

In some studies of molecular diffusion in cells and nuclei, anomalous 

diffusion has been observed with the displacement showing a smaller or 

larger dependence on time corresponding, respectively, to subdiffusion 

or superdiffusion.
7
 The flux of particles J across a certain area can be 

expressed through the concentration gradient in one-dimension by Fick’s 

first law: 

 
C

J D
x

∂
= −

∂
 (4.2) 
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Many transport phenomena are described by the well-known continuity 

equation, 

 0
C

divJ ,
t

∂
+ =

∂
 (4.3) 

which describes the conservation of matter. From Eq. 4.2 and Eq. 4.3, 

Fick’s second law can be derived, 

 

2

2

C C
D ,

t x

∂ ∂
=

∂ ∂
 (4.4) 

which is also known as the diffusion equation. 

4.1.2.2 Viscosity 

When a particle moves in a fluid it experiences friction to an extent 

depending on the properties of the fluid. The macroscopic quantity 

describing the internal resistance to flow is called viscosity η. For a 

moving sphere with radius r, it is inversely related to the diffusion 

coefficient D through the Stokes-Einstein formula. 

 
6

Bk T

rD
η

π
=  (4.5) 

Here, kB is the Boltzmann constant and T is the temperature. The 

crowded cytoplasmic and nuclear environments have been observed to 

result in diffusion of small proteins such as GFP (green fluorescent 

protein) that is slower by a factor of about 4 than observed in aqueous 

solution.
7
 The cellular environment is heterogeneous and thus it is a 

simplification to describe it by a macroscopic viscosity. Indeed, the 

crowded intracellular environment can result, depending on the solute 

size, in subdiffusion.
7
 

4.1.3 Molecular Interactions 

The interactions between biomolecules vary in strength, type and source. 

Therefore, a wide spectrum of different forces contribute to complex 

formation.
8
 Here, we will discuss only the electrostatic, hydrodynamic 
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and hydrophobic interactions since their contribution to the kinetics of 

bimolecular association is shown to be considerable. We describe well-

established methods for modelling these interactions. 

4.1.3.1 Electrostatics 

Electrostatic interactions are important for bimolecular association 

because they are relatively long-range interactions and may therefore 

guide the association process by means of attractive and repulsive 

interactions. Their importance is shown by the dependence of association 

rate on ionic strength and the generally much greater influence on the 

association rate of mutations of charged than of neutral residues. The 

biological entities in the cell are surrounded by ions, which screen the 

electrostatic interactions between the species. One way to account for the 

ions is to compute the molecular electrostatic potential φ(r) using the 

nonlinear Poisson-Boltzmann equation, 

 

i

B

q

k T
i i

i

( r ) ( r ) ( r ) q n e

ϕ

ε ϕ ρ
−

−∇ ∇ = +∑  (4.6) 

where ε(r) is the position dependent dielectric permittivity, ρ(r) is the 

molecular charge density, qi and ni are the charge and the concentration 

of the ith ionic species in the bulk, respectively. The above equation can 

be approximated by the linear Poisson-Boltzmann equation if the 

exponential is expanded as a Taylor series, 

 
2

( r ) ( r ) ( r )ε ϕ εκ ϕ ρ−∇ ∇ + =  (4.7) 

where κ is the Debye-Hückel screening length. Equations 4.6 and 4.7 are 

used in studies of interactions between macromolecules in continuous 

media, i.e. media for which water molecules and ions are not modelled 

explicitly. When two molecules approach each other in an aqueous 

solvent, an electrostatic desolvation effect arises due to the lower 

dielectric constant of the solute compared to that of the solvent. Charges 

located on the bimolecular complex interface become desolvated upon 

complex formation and this results in unfavourable electrostatic energy 

changes. This desolvation effect becomes significant at short distances 
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and is mainly dependent on the location and magnitude of the charged 

groups. 

4.1.3.2 Hydrodynamics 

Hydrodynamic interactions between molecules are caused by the flow of 

solvent due to their mutual motions. Depending on the structure and 

shape of the molecules, these interactions can be either attractive or 

repulsive. To model them, one usually represents the diffusion 

coefficient as a tensor describing the properties of the solute and the 

media.
9
 Another representation uses a mean field for hydrodynamic 

interactions with the diffusion coefficient depending on a local volume 

fraction of a system mimicking macromolecular crowding.
10 

4.1.3.3 Hydrophobicity 

The hydrophobic effect results in favourable interactions between two 

macromolecules in aqueous solvent. The reason for this is that the 

nonpolar groups on the surface of the molecules can avoid interaction 

with polar groups or molecules (water) by forming a complex. This is 

caused by the fact that the water molecules are orientationally restricted 

by the presence of the nonpolar species, and this leads to an entropy 

decrease. Furthermore, the presence of the nonpolar species affects the 

ability of the water molecules to make hydrogen bonds. The hydrophobic 

force is temperature dependent and it is entropy driven only at low to 

room temperatures. At higher temperatures, the enthalpic contributions 

become significant.
11,12 

Although, a generalised theory describing the 

hydrophobic forces does not exist, hydrophobic interactions can be 

modelled by incorporating a solvent accessible surface area term in the 

Gibb’s free energy
13

 or using a hydrophobic potential of mean force.
14

 

4.1.4 Reaction Rates 

If a molecule of type X forms a complex Z with a molecule of type Y, 

then the rate of formation of species Z and the rate of depletion of X are 

given by, 
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Z X

Z Z

dC dC
,

dt dt
ν ν= =  (4.8) 

where CZ and CX are the concentrations of the Z and X species, 

respectively. This reaction process depends on the association and 

dissociation rate constants kon and koff, respectively. 

 
on offk / k

X Y Z+ ←→  (4.9) 

The reaction flux J can be expressed via the rate constant by the equation 

 
m

J kC=  (4.10) 

where m denotes the order of a reaction. For our case we have, 

 Z off ZJ k C=  (4.11) 

 X Y on X YJ J k C C= =  (4.12) 

where Eq. 4.11 describes a first-order reaction whereas binding is a 

second-order process (see Eq. 4.12). The rate constants can be related to 

an equilibrium association constant: 

 
on

a

off

k
K

k
=  (4.13) 

The reciprocal of Ka is the equilibrium dissociation constant Kd. An 

analytical solution of the diffusion-controlled association constant kon 

can be obtained for uniform spheres reacting at a distance r
5
 

 4on X Yk r( D D )π= +  (4.14) 

where DX and DY are the diffusion constants for species X and Y, 

respectively. Equation 4.14 is valid when there are no forces between the 

spheres.  

 



Kinetics of Biomacromolecular Complex Formation: Theory and Experiment 97 

In the case of interacting spheres, kon is given by,
15

 

 

2

4

B

X Y
on U ( r ) / k T

r

( D D )
k

e
dr

r

π
∞

+
=

∫
 (4.15) 

where U(r) is a centrosymmetric interaction potential between the 

spheres. For more complicated geometries and interaction forces, 

numerical approaches are necessary to compute association rates (see 

Section 4.3 below). 

4.2 Experimental Techniques 

There is a vast variety of experimental techniques and methods for 

measuring the properties affecting the kinetics of formation of 

biomolecular complexes. We will give an overview of some of them, 

focusing on the information they provide about binding kinetics. 

4.2.1 Crystallography 

X-ray and electron (EM)
16

 crystallography can be used to determine the 

spatial atomic coordinates of biomolecules and provide some information 

on their dynamics. Time-resolved techniques can be used to induce a 

reaction process in the crystal and a time-resolved Laue diffraction 

pattern
17,18

 can reveal structural re-arrangements in a time range from 

100 ps to several seconds (see Fig. 4.1a). This technique was 

successfully applied to study the functional dynamics of hemoproteins, 

particularly the pathways of CO in myoglobin.
19,20

 However, for a 

complete picture of the biomolecular dynamics the time-resolved 

experiments should be combined with complementary spectroscopic and 

computational techniques. In addition, the limitation of this technique is 

its dependence on the quality of the crystal,
18

 which, for example, was 

shown to be affected by the association dynamics of the wild type and 

mutant forms of Ynd1p proteins.
21
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4.2.2 Nuclear Magnetic Resonance (NMR) 

In contrast to X-ray crystallography, NMR analysis is applied to 

biomacro-molecules in solution. It can be used to investigate different 

structural and kinetic aspects of protein–protein and protein–nucleic acid 

complex formation via investigating the relaxation and chemical shift 

behaviour of the nuclear spin in the system. 

A powerful method that has recently been introduced for detecting 

and visualising low population, weak and transient encounter complexes 

in biomolecular interactions is paramagnetic relaxation enhancement 

(PRE).
22

 One of the molecules under investigation is labelled with a 

paramagnetic centre (e.g. Mn
2+

), which has unpaired electrons with a 

large magnetic moment (see Fig. 4.1b). This results in magnetic dipolar 

interactions with the backbone amide protons of the other biomolecule. 

Since the transverse relaxation rate R2 depends on the distance r between 

the unpaired electron on the labelled centre and the proton as < r 
-6

 >, the 

mutual position and orientation can be determined from the magnitude of 

the rate. In such an experiment, the transverse PRE rate Γ2 can be 

measured from two time-points Ta and Tb and is given by:
22 

 
2 2 2

1 dia b para apara dia

b a dia a para b

I (T )I (T )
R R ln

T T I (T )I (T )
Γ = − =

−
 (4.16) 

where R2

para
 , Ipara and R2

dia
 , Idia are the rates and the peak intensities in 

the paramagnetic and diamagnetic states, respectively. Apart from 

structural information, the PRE can provide information about the 

binding mechanism in an equilibrium system of two interacting 

biomolecules. However, to distinguish the PRE contribution of the less 

populated states from the resonance of the highly occupied ones, the rate 

of exchange between the states should be fast (> 50 s
-1

, see Fig. 4.1b). In 

this way, low population transient intermediates can be studied in 

systems with relatively weak interactions. The PRE technique was 

applied successfully to protein–DNA, as well as protein–protein complex 

formation.
22

 Nonspecific encounter complexes depending on the ionic 

strength were identified in both cases suggesting that the interactions 
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facilitating the encounter formation are electrostatic in nature: 

hydrophobic interactions were also found to be important for the ultra-

weak (Kd > 15 mM) self-association of the histidine-containing 

phosphocarrier protein (HPr) of Escherichia coli.
23

 

4.2.3 Stopped-flow Methods (SF) 

The stopped-flow (SF) technique is an experimental method for studying 

the kinetics of two or more solutions. Each of them is placed in a syringe 

and simultaneously the molecules are rapidly inserted into a mixing 

chamber (Fig. 4.1c). This chamber plays a role as an observation box, 

where the interactions between the biomolecules can be investigated via 

different experimental techniques. Most commonly, the SF experiments 

rely on fluorescence methods for reporting the progress of the binding 

reaction. Some of these methods will be discussed in the next sub-

sections. 

4.2.4 Fluorescence Recovery After Photobleaching (FRAP) 

The fluorescence recovery after photobleaching (FRAP) technique is 

carried out in living cells in order to study biomolecular dynamics.
24,25

 

The molecules under interest are labelled with a fluorescent protein (e.g. 

green fluorescent protein GFP) and, after photobleaching with a high-

intensity laser, the fluorescence of the GFP is destroyed within the area 

of the laser focus, whose radius is ω (see Fig. 4.1d).  

The fluorescence recovers with time due to the movement of the 

surrounding molecules into the bleached region. If there is an immobile 

fraction of molecules in the photobleached region, then a partial recovery 

is observed. Hence, the mobile fraction Mf as well as the effective 

diffusion coefficient Deff can be determined via 

 

2

0

0
4

f D

eff

F F
M , ,

F F D

ω
τ∞ −

= ≈
−

 (4.17) 

where the Fs are the fluorescence intensities given in Fig. 4.1d and τD is 

the diffusion time. The FRAP curve reflects binding processes and 

binding information can be extracted from it.
26–28
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Fig. 4.1. Schematic figures of the experimental techniques (see the text). 
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Moreover, a 3D FRAP model taking into account the spatial localization 

of the binding sites within the cell, as well as the role of diffusion in 

binding, gives a better estimation of the binding parameters for DNA-

transcription factor glucocorticoid receptor interactions.
29

  

In another study,
30

 systematic mutagenesis combined with FRAP 

revealed the binding geometry of the linker histone H1
0
 within the 

nucleosome in chromatin fibre. 

4.2.5 Fluorescence Resonance Energy Transfer (FRET) 

The concept of fluorescence resonance energy transfer (FRET) is, as for 

FRAP, based on the use of fluorescent molecules for detecting the 

interactions between the biomolecules. However, in FRET the labelling 

of the species is done with different fluorophores exhibiting diverse 

excitation and emission spectra. In such a way, after illumination, the 

probe (donor-fluorophore) absorbs the light and either emits it to the 

surroundings or transfers it to another probe (acceptor-fluorophore) in 

close proximity (Fig. 4.1e). This energy transfer leads to an emission 

from the second probe with its characteristic wavelength λ. The energy 

transfer efficiency E depends on the distance between the donor and 

acceptor r via, 

 
6

0

1

1

E ,
r

R

=
 

+  
 

 (4.18) 

where R0 is called a Förster distance
31

 and gives the distance between a 

pair at 50% energy efficiency (Fig. 4.1e). FRET has a wide application 

area in the study of protein–nucleic acid, protein–protein and protein 

ligand interactions.
32

 For example, measurements of the end-to-end 

distance of the DNA on the nucleosome revealed its decrease in the 

presence of a linker histone H1, i.e. compact nucleosome complex 

forms.
33

 In a related FRET study
34

 on a trinucleosome system, it was 

shown that high salt concentration affects in a similar way the end-to-end 

distance while histone acetylation has a reverse effect. An investigation 

of DNA-integration host factor (IHF) interactions by time-resolved 
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FRET revealed a two-step process: firstly, IHF binds quickly to the DNA 

and secondly the DNA bends slowly, the latter step being the rate-

limiting step at IHF concentrations over 150 nM.
35,36

 In addition, it has 

been found that the binding constant of DNA wrapping around the IHF 

protein is strongly dependent on the salt and the anion identity.
37

 

4.2.6 Fluorescence Correlation Spectroscopy (FCS) 

Fluorescence correlation spectroscopy (FCS) examines biomolecular 

interactions in vivo and in vitro within a defined volume (Fig. 4.1f). The 

fluorescently labelled molecules under interest diffuse through the 

volume and the photon fluctuations arising from the fluorophores are 

measured.
38,39

 This signal can be autocorrelated and, via the amplitude of 

the autocorrelation function G(τ), different parameters like 

concentrations, diffusion constant and correlation times can be 

determined.
40,41

 When the tagged molecule binds a binding partner, the 

diffusion time is increased and it can be detected on the autocorrelation 

plot (see Fig. 4.1f). However, this process has a significant impact on the 

slope only when the size of the binding target is large. Using different 

measuring techniques, the FCS can reveal important information on the 

binding mechanism and the dynamic behaviour of biological systems.
40,41

 

4.2.7 Force Probe Methods 

There exist several well-established experimental methods for measuring 

forces between macromolecules like optical tweezers (OT), magnetic 

tweezers (MT) and atomic force microscopy (AFM). The technique is 

based on attaching one of the biomolecules under investigation to a 

surface and the other one to a force sensor, which can be a bead or a 

cantilever. The OT use light (a laser beam), which is a momentum and 

electric field carrier and can induce forces and torques on the 

biomolecule and, thus, the latter can be trapped in a potential well
42

 (Fig. 

4.1g). In contrast to the OT, the magnetic tweezers use a magnetic field 

gradient for trapping.
32

 In this way, the molecule can be gradually 

detached from the binding species and the forces generated measured. 

The force acting on the object due to the laser beam increases with the 
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distance between both macromolecules until the detachment takes 

place.
43

 In applications of OT generally, this dependence is monitored 

and insights into the dynamical and mechanical properties of the 

biological macromolecules can be gained. Stretching nucleosomes in 

chromatin showed a relatively small dissociation constant implying a 

stable nucleosome complex.
44,45

 The histone-like protein TmHU binding 

to the DNA displayed different reaction rates to the closely related HU 

protein which can be attributed to the different temperatures at which 

they function.
46

 

The AFM uses a cantilever with a sharp tip that scans over the 

surface of the specimen.
47

 The forces arising from the tip-surface 

interaction cause a detection of the cantilever. This detection leads to a 

change of the rejected laser beam from the cantilever, which is detected 

by photodiodes. The AFM can provide knowledge about the forces 

between the biomolecules and therefore permit determination of some 

kinetic parameters like the dissociation constant.
48

 

Another recently developed force method is the nanopore force 

spectroscopy (NFS).
49

 In contrast to OT, MT and AFM, the NFS can 

determine the association and dissociation constants by analysing many 

species in a short time. The technique is based on the insertion of a 

nanopore in a planar lipid bilayer and measuring the ionic current 

through it after applying a voltage.
49

 When a molecule (ssDNA) goes 

through the nanopore, the current is partially blocked and the measured 

translocation time increased. 

However, when a bound pair tries to pass through the nanopore, a 

very long blockage takes place because of the small pore diameter. To 

free the channel the voltage is reversed. For a weakly bound protein–

DNA complex the measured translocation time is slightly longer than for 

the DNA itself. The association and dissociation rates for the ssDNA–

Exonuclease I complex have been obtained in this way.
49

 

4.2.8 Electrophoresis 

Electrophoresis is a technique based on the movement of particles in 

solvent due to an external electric field. If a mixture of two species is 

placed in a capillary and an electric field is applied, the molecules will 
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move depending on their charge, mass and the solvent viscosity (Fig. 

4.1h). A method called kinetic capillary electrophoresis (KCE) can be 

used to investigate the interactions between biomolecules.
50

 Using 

different variations of boundary and initial conditions, the technique can 

provide a quantitative description of the complex formation and 

dissociation processes. For example, in the non-equilibrium capillary 

electrophoresis of equilibrium mixtures (NECEEM) method, the 

biomolecules X, Y and their complex Z are equilibrated and inserted in 

the inlet of the capillary (Fig. 4.1h). Upon application of an electric field, 

the mixture separates and the components move towards the outlet with 

different velocities. At the end of the capillary, the concentrations are 

measured with a detector and an electropherogram is obtained (Fig. 

4.1h). Knowing the migration times and the peak areas, the dissociation 

constant can be determined 
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where the areas AY , AZ and AZ→Y are depicted in Fig. 4.1h, X0 and Y0 are 

the total concentrations in the equilibrium mixture and tZ is the migration 

time of the complex.
50

 The ssDNA-single strand binding protein (SSB) 

interactions have been investigated using 6 KCE experimental methods 

and the results revealed two types of interaction between the 

biomolecules: specific and non-specific.
50

 Gel electrophoresis 

experiments combined with fluorescence techniques have been used to 

determine the kinetic constants of formation of a chromatosome particle 

mediated by a histone chaperone NAP1
51

 and of a DNA–Endonuclease 

IV complex.
52

 

4.2.9 Surface Plasmon Resonance (SPR) Biosensor 

A direct way to measure the association and dissociation rate constants 

of a biomolecular complex can be provided by a surface plasmon 

resonance (SPR) biosensor technology.
53

 The detection is achieved via a 
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biosensor chip consisting of a thin gold layer mounted on glass (Fig. 

4.1i). The target molecules X are attached on the gold surface and a flow 

of binding partners Y is injected across the surface. A beam of light is 

passed through a prism linked to the glass surface and the refraction 

angles are measured with a detector. At a certain incident angle and 

wavelength, the electrons in the gold film are excited and a surface 

plasmon wave (resonance) is generated. This leads to a reduction of the 

light intensity. When the molecules Y bind to the target X, the 

concentration of the molecules, i.e. the mass, on the gold surface is 

increased. Hence, the SPR refractive angle changes with time and this is 

recorded as resonance units (RU), which depend on the mass of the 

complex (Fig. 4.1i).
54

 Association will lead to an RU increase, 

dissociation to a decrease. Equilibrium can be reached when the reaction 

rates are fast. 

In order to remove the bound molecules Y from X, a regeneration 

buffer can be inserted giving the initial RU state (Fig. 4.1i). With the 

SPR technology, one can measure the kinetics of protein–peptide,
55

 

enzyme–DNA
56

 and protein–membrane
57

 interactions as well as design 

drugs.
53,54

 

4.3 Theoretical and Computational Approaches 

There are two methodologically distinct approaches to computing 

bimolecular association rate constants for biomacromolecules, which we 

will describe in the next two sections. In the first approach, the absolute 

rate constants are computed from a model aimed at providing a complete 

description of the relevant properties of the interacting molecules and the 

forces between them. Diffusional motion is simulated by particle-based 

Brownian dynamics (BD) simulations,
6
 or a density-distribution-based 

analytical or finite difference solution of the partial differential diffusion 

equation is made.
58

 

In the second approach, the aim is the estimation of the relative rates 

of association assuming that the rates are scaled by a factor depending on 

interaction energy. 
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4.3.1 Computation of Bimolecular Rate Constants 

The most commonly used formalism for calculating bimolecular 

association rate constants is known as the Northrup-Allison-McCammon 

(NAM) method.
59

 It is assumed that the rate constant for the approach of 

two molecules to a separation b at which the forces between them are 

negligible or centrosymmetric is given by the analytical Smoluchowski 

expression, Eq. 4.14 or Eq. 4.15 with r = b. BD simulations are then used 

to compute the probability that, having reached separation b, the 

molecules go on to form a diffusional encounter complex. Thousands of 

trajectories are simulated and the fraction recorded in which criteria are 

satisfied for diffusional encounter complex formation.
5
 The two binding 

partners can be modelled in atomic detail. 

The first applications of this method were to studies of superoxide 

dismutase
60–62

 and it has been applied to many diffusion-influenced 

enzymes.
63,64

 With this method, it was possible to predict generic 

protein–protein association rates by monitoring the formation of native 

polar contacts observed in the bound complex.
65–67

 The process of 

protein–protein complex formation was quantified for different systems 

ranging from glycolytic enzymes interacting with actin filaments to 

antigen–antibody interactions.
68–74

 

Weighted Ensemble Brownian (WEB) dynamics was introduced in 

Ref. 75.
 
Rather than simulate the motion of a single molecule as in the 

NAM method, one molecule is replaced by an ensemble of 

pseudoparticles or weighted probability packets. These occupy bins 

along the intermolecular reaction coordinate that are equally sampled 

through splitting and combining the weighted pseudo-particles.
75

 It was 

shown that the WEB method can be efficient in calculating the rates in 

the presence of large free energy barriers to association.
76

 

Lee and Karplus
77

 proposed an alternative BD method based on 

calculating the time-dependent probability that a pair of reactant 

molecules, having started in the reaction zone, will be found in this zone 

again in the absence of reaction. Zhou developed an efficient algorithm 

to calculate the time-dependent rate coefficient via the survival 

probability of the pair of reactants started in the reaction zone.
78
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Continuum models solve the diffusion equation under appropriate 

boundary conditions. The flux of particle density through a reactive 

boundary gives the association rate.
79,80

 Applied to enzyme–substrate 

association, this approach can be computationally more efficient than BD 

simulations; a disadvantage is that the atomic-detail properties of the 

molecular species that is treated as a particle density cannot be taken into 

account. 

4.3.2 Estimation of Rate Enhancements due to Electrostatic 

Interactions 

It was shown that the variation in bimolecular rate constant can be 

correlated with the variation of the electrostatic interaction energy of 

proteins in transient intermediate configurations.
81

 In the PARE 

(Predicting Association Rate Enhancement) approach, these 

configurations are approximated by the bound state of two proteins.
82

 In 

this approach, only the rate enhancement can be predicted and the rate in 

the absence of electrostatic interactions (the basal rate) should be 

estimated by a different method or derived from experiments. This 

approach can be used for rapid, structure-based calculation of the 

electrostatic attraction between two proteins in the complex.
83

 The 

average Boltzmann factor near the active site is seen to be a good 

descriptor of rate enhancement
81

 as well. 

This approach can be applied to design proteins to bind faster and 

tighter to their protein–complex partner by optimization of electrostatic 

interactions between two proteins
83

 and to the design of fast enzymes by 

optimising the interaction potential in the active site.
84
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4.4 Recent Advances in Computational Approaches 

4.4.1 Protein–Protein Interactions 

4.4.1.1 Computation of Rates 

Rate enhancement due to electrostatic interactions was given an 

extensive analysis in the publications of the last years.
85

 The Poisson-

Boltzmann(PB) description was applied to modelling of the association 

of various proteins (E9:Im9, Bn:Bs, AChE:Fas and IL4:IL4BP),
86,87

 and 

it was found that suitably parameterised PB calculations yield accurate 

predictions of association rates. The results were found to be particularly 

sensitive to the definition of the solute–solvent dielectric boundary and, 

in some cases, to the choice of linear or non-linear PB equation
86–88

 

Computational tools were developed to design proteins that bind faster 

and tighter to their protein partners by optimization of the electrostatic 

interactions between two proteins.
83

 Calculation of electrostatic steering 

was applied to a large number of structurally characterised protein 

complexes,
89

 and it was found that electrostatic steering may result in an 

increase of over 100-fold in kon for about 25% out of 68 transient hetero–

protein–protein complexes. 

4.4.1.2 Determinants of Binding 

Binding affinity is determined by both association and dissociation rates. 

It has been shown that it is possible to design mutants that change the 

binding affinity by changing only the association rates for a number of 

different protein complexes.
83,90

 The association of Cdc25B phosphatase 

with its Cdk2-pTpY/CycA protein substrate was found to be governed to 

a significant extent by the interactions of the remote hotspot residues, 

whereas dissociation was governed by interactions at the active site of 

phosphatase.
91

 Single residue mutations can result in large (>100 fold) 

changes in association rates, significantly modulating binding affinity.
91

 

Mutants of the Ras effector protein Ral, a guanine nucleotide 

dissociation stimulator (RalGDS), to optimise electrostatic steering to  
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Ras were investigated in Ref. 92. It was possible to correctly predict and 

design a triple mutant that associates 14 times faster with the Ras protein, 

with binding properties being close to Raf, another Ras effector. 

The speed of interaction between CheA, an autophosphorylating 

protein histidine kinase (PHK), and CheY, a phospho-accepting response 

regulator protein (RR), appears to be to a large extent regulated by the 

rapid association of the P2 domain of CheA with CheY.
93

 This indicates 

the importance of the association process (together with fast His-Asp 

phospho-transfer within the respective PHK–RR complexes) in fast 

response times in the chemotaxis system of Escherichia coli.
94

 

4.4.1.3 Encounter Complex Quantification 

When two proteins diffuse together to form a bound complex, an 

intermediate is formed at the end-point of diffusional association which 

is called the diffusional encounter complex. Its characteristics are 

important in determining association rates, yet its structure cannot be 

directly observed experimentally.
95

 

The encounter complex is an ensemble of target positions for BD 

simulations, and achieving this ensemble ensures further binding of 

molecules when the association is diffusion-controlled. The nature of this 

intermediate state for the association of barnase and barstar was 

investigated by double-mutant cycle experiments.
96

 Evidence for 

contacts between charged residues in this intermediate state was found. 

The activation entropy of the transition state was found to be small, 

indicating a small degree of desolvation. This is all consistent with the 

models of encounter complexes generated by BD.
65

 The residue–residue 

contacts maintained in the transition state differ at low and high ionic 

strength, indicating that the structure of the intermediate state changes 

with changing solvent conditions. 

The encounter complex was also quantified by introducing mutations 

that alter association rates and modelling the structures of bimolecular 

configurations that fit experimental data.
97,98

 However, it was shown that 

mutations alter the encounter complex
99

 and therefore quantifying the 

encounter complex using mutational data is not straightforward. Very 

recently, it has become possible to quantify such transient intermediate 
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complexes using long-range distance restraints derived from 

paramagnetic NMR methods
100,101

 and this is expected to shed more light 

on the nature of encounter complexes. 

4.4.1.4 Induced Fit Phenomena 

It was shown that there is more than one intermediate state in the 

association process
102

 because protein–protein binding in general consists 

of multiple steps: diffusion, conformer selection, and refolding or 

induced fit. It is, however, not simple to quantify all intermediates 

experimentally, although it can be shown in some cases that a one-step 

model of association is not sufficient.
103

 

An extreme case of induced fit occurs when the protein folds or 

refolds upon binding to its partner.
104

 It was shown
105

 that this may be 

followed by a fly-casting effect coupled to electrostatic steering for the 

Ets domain of SAP-1 protein binding to its specific DNA sequence. A 

significant induced fit was found in the case of fasciculin 2 (Fas2) 

binding to acetylcholinesterase (AChE) indicating that the conformation 

of Fas2 able to bind AChE is not stable in the unbound form of Fas2 and 

the association process should follow a conformational change of a stable 

form of Fas2 that is not complementary to AChE.
106,107 

4.4.1.5 Crowding Phenomena 

The influence of crowding agents cannot be explained simply as exertion 

of obstacles, volume exclusion or the change in the solvent viscosity, 

because there is a complex dependence of the molecular dynamics and 

reactions in crowded solutions on the properties of the molecular 

interactions in the system. An inverse linear relation was found between 

translational diffusion of proteins and viscosity in almost all solutions 

tested, in accordance with the Stokes–Einstein relation. Conversely, no 

simple relation was found between either rotational diffusion rates or 

association rates (kon) and viscosity.
108

 In all crowded solutions, the 

measured absolute kon, but not koff values, were found to be slower as 

compared to buffer. In the presence of low mass crowding agents kon 

depends inversely on the solution viscosity. 
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In high mass polymer solutions, kon changes only slightly, even at 

viscosities 12-fold higher than in water.
109

 See also a recent review on 

this topic.
110

 

4.4.2 Protein–nucleic Acid Interactions 

4.4.2.1 Computation of Rates 

Nucleic acids like DNA and RNA are highly negatively charged 

biomolecules, preferentially attracting proteins with positive binding 

sites. The PARE approach for computing protein–protein association 

rates
87

 has been successfully applied to an atomistic model of protein–

RNA (U1A–U1SLII) interactions.
111

 The effects of salt concentration 

and mutations on the association and dissociation rates agreed well with 

the experimental data.
111

 A theoretical model verified by BD simulation 

showed that nonspecific binding to DNA leads to a rate enhancement.
112

 

Moreover, a slightly higher association constant was obtained for a linear 

DNA than for a circular DNA, which was attributed to the more open 

conformation of the former.
112

 The influence of the electrostatic and 

hydrodynamic interactions on the association rate was analysed by BD 

simulations for the translation protein eIF4E binding to five analogous 

mRNA cap-molecules.
113

 For all five complexes, a very good 

reproduction of experimentally obtained kinetic rates was obtained for a 

two-step mechanism accounting for the existence of a diffusional 

encounter complex.
113

 Another study
114

 proposed a quantitative model 

for a reversible two-step binding mechanism between the DNA and a 

bacterial RNA polymerase, where the formation of an open complex 

from the closed one was investigated. It was shown that the rate of open 

complex formation depends on the interaction energies of the closed and 

opened complexes as well as on the DNA duplex melting energy.
114

 

4.4.2.2 Specificity and Nonspecificity 

Nucleic acid binding proteins play a crucial role in gene regulation. 

Therefore, a detailed picture of the searching mechanism and location of  
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the target molecule is necessary. Some of these proteins are known to 

bind DNA with association rates exceeding the Smoluchowski rate for 

three-dimensional diffusion, suggesting that one-dimensional diffusion 

of the protein along the DNA plays a role in the binding process. The 

first quantitative investigation of specific and nonspecific binding of 

proteins to DNA suggested that a protein should spend half of its time in 

a 3D diffusional search and the other half in 1D sliding on the DNA to 

find its correct binding site.
115

 

Subsequent Monte Carlo lattice simulations revealed that 

transcription factors (TF) need only spend about 15% of their diffusional 

search time free in solution in order to locate the target DNA molecules; 

this result is in agreement with relevant experiments.
116

 A simple model 

including the conformational fluctuations of the TFs during the 

diffusional search, as well as the sliding, aimed at finding out the shortest 

binding time to the DNA consistent with thermodynamics.
117

 Many DNA 

binding proteins have multiple binding sites
30

 and they can transiently 

bind to two or more DNA binding sites. This facilitates ‘intersegment 

transfer’ in which a protein can transfer from one DNA segment to 

another without having to fully dissociate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2. Position of the linker histone GH5 (black) between different conformations of 

the linker DNAs (grey). 
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This process can contribute to enhancement of the rate of protein binding 

to specific sites on DNA binding.
118

 In addition, lattice simulations
119

 

revealed that inter-segment transfer may increase protein diffusion while 

increasing the nucleic acid chain density. Considering only 1D sliding on 

the DNA chain, the diffusion coefficient was found to be reciprocal to 

the chain density.
119

 A generalised theory has been developed for site-

specific DNA–protein interactions arising from one-dimensional 

diffusion after the protein binds nonspecifically to DNA by three-

dimensional diffusion.
120

  

In summary, several factors contribute to the quick rates of 

association of nucleic acid binding proteins, such as transcription factors, 

and DNA; these include one-dimensional diffusion, intersegment transfer 

and conformational changes (upon binding). 

4.4.2.3 Chromatin Models 

In the cell nucleus, the DNA molecules compact to highly ordered 

chromatin structures assembling a biological network. Within this 

network, the DNA combines with other proteins and together they form 

complexes called nucleosomes, which in turn interact with each other. 

Several coarse-grained chromatin models
121–123

 as well as atomistic 

ones
124

 have been used to try to elucidate the important interactions 

within the chromatin fibre. The binding dynamics of the linker histone to 

the DNA was investigated both experimentally
30

 and theoretically.
125

 

Recently, all-atom BD simulations revealed a unique binding mode of 

the linker histone GH5 to the nucleosome within a certain range of linker 

DNA conformations (unpublished data, see Fig. 4.2). 

Moreover, a systematic mutagenesis identified two binding sites in 

agreement with experiments.
30

 Since chromatin participates in the gene 

expression, the kinetics of its components must be clearly regulated – the 

DNA replication, transcription and repair are processes involving 

proteins, which usually have to rapidly identify the target DNA. The time 

of such initial target location can be directly affected by facilitated 

diffusion as well as, for example, by the level of DNA exposure and 

histone tail acetylation on the nucleosome.
126 

Generally, all these studies 

contribute to the understanding of the chromatin fibre structure and 
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function; some suggest the existence of different nucleosome repeat 

lengths in nature leading to different topological and mechanical 

properties of the fibre, while others primarily focus on the protein–DNA 

and DNA–DNA interactions resulting in diverse chromatin models. 

4.5 Conclusions and Outlook 

In this chapter, we have discussed characterization of the kinetics of 

biomacromolecular complex formation from theoretical and 

experimental points of view. New experimental techniques and methods 

are being developed to study the interactions between biomolecules over 

different time and length scales. However, these techniques are still 

insufficient to precisely describe and quantify the detailed dynamics of 

associating molecules. The computational approaches can provide a 

detailed description of the association process, but they are not able to 

simulate this process without approximations such as neglecting 

molecular flexibility. In addition, establishing the effects on 

macromolecular association of the crowded and heterogeneous cellular 

environment is a challenge for both computational and experimental 

approaches. To overcome this problem it is necessary to develop multi-

scale and coarse-grained models with more accurate molecular 

interaction force fields and new supercomputers and highly parallelized 

software, allowing detailed simulations over several orders of time and 

length scales. 
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Protein–protein interactions are the elementary units from which 

molecular pathways and cellular networks are built. A complete 

description of the functional surfaces that determine protein binding 

still eludes us, however. The Evolutionary Trace (ET) approach to this 

problem is to analyse jointly sequences, evolutionary trees and 

structures to reveal the key amino acid determinants of protein 

function. I will show that these amino acids cluster spatially in the 

structure and match functional sites. The activity of many proteins may 

then be traced to narrow sets of relevant amino acids that form 

‘elementary units of function and of interaction’. Their discovery 

allows experimentalists to rationally design activity through targeted 

mutagenesis, for example along the G protein-signalling pathway, or to 

build three-dimensional templates that predict the likely function of 

new protein structures. The scalability and generality of ET further 

suggest that widespread functional site annotation and engineering are 

within reach, leading to proteome-wide manipulation of the molecular 

basis of protein function. 

5.1 Introduction 

The work described in this chapter is rooted in a very concrete  

question. How to control G protein signalling? This pathway is 

universally found in eukaryotes. It contains the single largest gene  
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family in humans: G protein coupled receptors. And its basic  

mechanism is to change the intracellular concentration of second 

messengers (such as Ca++, K+, cAMP, cGMP, DAG, IP3) in response  

to the extracellular binding of a ligand to its specific G protein coupled 

receptor. This is accomplished in a series of steps: first, these seven 

transmembrane helices receptors change conformation and activating 

intracellular G proteins. G proteins, which are a complex of three  

alpha, beta and gamma subunits, in turn become activated when the 

alpha subunit releases GDP and exchanges it for GTP. It then separates 

from the receptor and from the beta-gamma subunits to diffuse along  

the membrane and activate a membrane-bound channels or enzymes.  

So pervasive is this series of protein–ligand and protein–protein 

interactions that it mediates fundamental human sensing mechanisms 

such as vision, taste, smell, and about 70% of all our hormonal 

signalling. It is often quoted that 50% of all drugs target this signalling 

pathway. For this reason, many resources are dedicated to understand 

and gain control over the basic molecular events that mediate ligand 

binding, conformational induced allosteric signal transduction, and the 

formation and dissolution of an orchestrated series of protein–protein 

complexes in G protein signalling. Not only would this give us new 

insights into the basic mechanisms of protein function, but also it  

would yield new inroads into the prevention or control of human 

ailments including stroke, schizophrenia, pain, hypertension, asthma  

and migraines among many others. 

More abstractly, however, the problems of how proteins sense  

inputs, respond with precise outputs, and allosterically carry  

information between input and output sites (or perhaps more precisely 

compute which inputs should be linked to which outputs) are at the  

heart of protein function and they go far beyond the special context of  

G protein signalling. These questions are representative of a much 

broader general search for the principles that govern protein  

interactions and the formation of complexes, pathways and networks. 

The hope in finding solutions is on the one hand to decipher the 

molecular basis of the relationship between protein-structure-function, 

and increase our fundamental knowledge of biology. 
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Table 5.1. Top-selling GPCR drugs (2005) (1). P2Y: purinergic; H: 

histamine; D: dopamine 5HT: serotonin; AT: angiotensin; ADR: 

adrenergic. Adapted from Ref. 4. 

Ailment Target GPCR Drug Sales $M 

Stroke P2Y12 antagonist clopidrogel 5,277 

Schizophrenia 5HT2/D1/D2 olanzapine 4,905 

Pain GABAB agonist GABApentin 2,480 

Hypertension AT1 antagonist valsartan 2,214 

Allergies H1 antagonist fexofenadine 1,792 

Migraine 5HT1D agonist sumatriptan 1,454 

Cancer LH-RH agonist leuporelin 904 

Asthma 1ADR agonist salmeterol 679 

Gastric ulcer H2 antagonist famotidine 656 

Schizophrenia 5HT2/D2 antagonist risperidone 371 

But on the other hand, the possibility that we may identify which 

molecular determinants mediate interactions also opens two important 

practical goals for biological engineering and ultimately therapeutic 

intervention, namely the possibility that we could modify and predict 

function rationally. 

At first, a reductive approach to these problems may seem  

daunting. The complexity of modelling a protein, the surrounding 

solvent, multiple interacting partners, and diverse extracellular, intra-

membranous and intracellular environments is clearly vast, and for the 

most part beyond current means. Even though the basic forces at play  

are quite well understood in terms of their physics, such as for example 

electrostatic, hydrophobic, van der Waals, osmotic or hydrogen  

bonding forces, yet they cannot be modelled completely accurately.  

For this, one would need a complete quantum mechanical description. 

While well understood in theory, the computational reality of every 

particle influencing every other particle of the system leads to a 

combinatorial computational explosion far beyond current and 

foreseeable computers. This therefore forces us to use semi-classical 

force field approximations. But these inherently contain errors or 

empirical biases, causing simulations to typically accumulate  
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inaccuracies and drift away from observables unless one adds  

empirical constraints. A conundrum then is that it becomes difficult to 

discover new biological states that lie far from those for which the 

equilibrium is already known. For example, describing the active state  

of the G protein coupled receptor when the only known structures 

described the conformationally distinct inactive state. 

Given these difficulties, we turn to a different type of reductive 

question and ask: given a protein of known structure, what are its 

functionally important amino acids? Although this query may seem 

initially vague, it does simplify modelling considerably as it seeks to 

filter out the parts of a biological system that contribute to noise from 

those that directly impact function. For example as Fig. 5.1 illustrates, 

the answer to this question would allow us to pinpoint where to direct 

mutational studies efficiently and successfully. 

 

Fig. 5.1. Proteins as machines. Although simplistic, the view of a protein as having input 

sensing, output mediating and information transfer residues (left), lends itself to simple 

schemes for rational protein (right, see text). 

To be precise, consider the interaction between a protein and its  

partners as being mediated by precise residues at ‘input sites’, precise 

residues at ‘output sites’, and a third type of residues in the body of the 

protein that shuttle information between the input and the output sites. 



Evolutionary Trace of Protein Functional Determinants 123 

Then it becomes obvious that knowledge of the amino acid  

determinants of the input, the transfer and the output sites would allow  

us to generate rational, precise hypotheses on how they can be  

modified. 

First, a single non-conservative mutation at one of these important 

amino acids could destroy the site. This would block that specific 

function – but not necessarily impair any of the other functional sites in 

the protein, thereby creating a separation of function mutation. A  

second possibility would be to transplant together the few amino acids 

identified as the key mediators of an interaction into another protein or 

peptide scaffold. This new molecule could then mimic the original site 

and by itself bind the interacting partner and thereby either inhibit the 

original interaction or bypass its need for further signalling. Yet a third 

possibility would be to rewire function by swapping in and out those  

key functional determinants between related family members and  

thereby transferring function of one onto the other and redirecting an 

interaction accordingly. Fourth, it may even be possible to target for 

mutation the internal amino acids that transfer information between an 

input and an output and thus hardwire a protein’s response, which 

normally would depend on the presence of an interaction. For example, 

this could result in the constitutive activity of a receptor or of an  

enzyme. 

Finally, if one could identify important amino acids in any protein 

structure, then it would be possible to compare the important  

functional sites that they define pairwise across the entire structural 

proteome. While most comparison would show large differences, there 

may be on occasion nearly perfect matches between previously  

unrelated structures. Such significant local structural similarity  

precisely over important functional regions might logically suggest  

that the underlying proteins carry out similar functions. 

The case studies presented below support the approach suggested  

in Fig. 5.1: rational protein engineering and function prediction did 

follow from systematical identification of key amino acid mediators of 

function. And this was achieved by computing which residues are the 

most important in a protein. 
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To complete this preamble, a few more words are necessary on  

methods, which focus on the computational analysis of large-scale data 

sets produced by genomics techniques. Whether through sequencing, 

structural genomics or a variety of high-throughput experimental 

techniques such as expression microarrays, ‘omics’ biology yields vast 

quantities of sequences, increasingly large numbers of protein  

structures and massive bits of data on various aspects of protein  

function.  

The problem with such data is that the process of high-throughput 

data extraction inherently erases the details of their biological 

relationships so that their biological meaning is lost. The challenge is 

then is to recover, or at least to formulate reasonable and testable 

hypothesis, on the true biological context of the sequences the  

structures and their functions. Ideally, we would like to be able do this  

on an equally large scale as that on which sequences and structures are 

produced; we would also like to produce results or predictions that are 

quantitative, or at least attached to known statistical significance  

values. Finally, we would hope to discover new, emergent rules that 

bring new insights into the sequence-structure-function relationship. 

In this chapter, I show that it is possible to approach these questions 

from an evolutionary perspective and as a result integrate the analyses  

of sequence structure and function on a very large-scale, and identify 

both emerging new proteomic rules but also individual determinants of 

interaction among proteins leading, in practice, to general guidelines  

for the rational re-design of protein behaviour and of the molecular 

pathways they define. 

5.2 Evolutionary Trace Basics: Which Amino Acids are Important 

in a Protein?  

In the laboratory, it is relatively simple to identify functionally  

important protein residues. One simply targets mutations to amino  

acids and then tests which ones change the read-out on relevant assays. 

Together, mutations and assays can therefore pinpoint all the amino  

acids that play important functional roles. But there are problems with 

this approach. It is near impossible to systematically probe every 
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possible amino acid with every possible substitution. And for most  

new proteins (and possibly for many proteins that are already well 

studied) the most relevant assays may be unknown, unavailable or  

both. It is therefore impractical to identify important amino acids 

experimentally on a proteomic scale. This makes it critical that we 

develop computational alternatives to experimental studies. 

The evolutionary trace model (ET)
2
 aims to perform the 

computational equivalent of mutational analysis. It postulates that  

during evolution an amino acid variation is equivalent to a laboratory 

mutation and that an evolutionary divergence is equivalent to a 

functional essay. If one treats these hypotheses as statements in 

mathematical logic, then it follows that just as one identifies important 

residues in the laboratory by correlating mutations with changes in an 

assay read-out, one could identify important residues in silico by 

correlating sequence variations with evolutionary divergences.  

For example, consider a multiple sequence alignment of  

homologous proteins and their evolutionary divergence tree. If one 

considers all the sequences to be part of a single common branch, then 

the relevant sequence variation pattern that correlates with just a single 

branch would be absolute invariance for some position across the 

alignment. This defines Rank 1. Next, if one considers the first two 

branches of the tree as defining two distinct groups, then the relevant 

sequence variation pattern that correlates with now two branches  

would be a position in the alignment that displayed absolute invariance 

in one branch and also absolute invariance in the other branch, but 

variation between the two. This defines Rank 2. Likewise, if then one 

further considers the first n branches of the evolutionary tree and the n 

subgroups of proteins they define, then the relevant sequence variation 

pattern that correlates with them would be a position that are invariant 

within each of the first n branches, but variable among some of them. 

This defines Rank n.   

In this way it is possible to iteratively split the aligned protein  

family into successively more and more branches that contain fewer  

and fewer sequences and ask each time whether a position in the 

alignment is perfectly correlated with the branches, meaning that for n 

branches of the position is invariant in each of the first n subgroups but 
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variable among some of them. In this manner we can define the ET  

rank of a residue as the first node of the evolutionary tree after which it 

varies no further in any descendent branches. By definition then, top 

ranked residues (such as one, two, three, etc.) have important  

properties. They become fixed earlier in evolution; and their variations 

are linked to more profound evolutionary differences, suggesting also 

that they are linked to more profound functional differences. This is 

illustrated in Fig. 5.2. 

 

Fig. 5.2. Evolutionary Trace of SH2. The importance rank of every residue in the 

structure of the SH2 domain (PDB code 1skj) is colour-coded from most important (red) 

to least important (blue). Dropping the code 1skj into the Evolutionary Trace Viewer 

input box at URL http://mammoth.bcm.tmc.edu/traceview/ will query a precomputed 

database of ET analyses and produce a clickable link to download the results. This link 

opens a JAVA ET Viewer molecular display application that can show the molecule 

viewed from any angle, in bond or spacefill mode, in backbone or full view mode, and in 

colour by cluster or in (‘gobstopper’) colour rainbow of importance mode (as shown 

here). The user controls the importance threshold so as to colour only residues in the top 

5% of importance, or the top 10% of importance, or any other percent coverage of 

importance. 

This example makes it apparent that a rank of evolutionary importance 

can be assigned to every amino acid in the structure: that the branching 

hierarchy of the evolutionary tree translates into difference ranks for 

different residues; and that top-ranked residues, shown above in the  

red-orange, are precisely the binding site of the phosphorylated  
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tyrosine peptide that a SH2 domains recognise. This site is then  

enlarged into a yellow cluster of slightly less important residues, and  

so on with green then cyan then dark blue amino acids. In the original 

publication, a review of available mutations suggested that  

substitutions at the top-ranked residues were as is fitted with complete 

loss of function. Substitutions at slightly lesser-ranked residues 

modulated function. And substitutions at unimportant residues even  

very close to the ligand had no impact on function. Such an implied 

correlation between ET rank and the functional impacts of an amino  

acid variations is consistent with the seminal observation by Wells and 

colleagues that only a fraction of interface residues contribute 

significantly to binding interactions, while other residues also at the 

interface can be substituted much more freely.
3
 

At this point it is important to note that the algorithm for assigning 

ET ranks is well defined, simple and that it makes no assumptions  

about which substitutions may or may not be conservative. Finally, we 

note that tree-based ET analysis has some unique advantages:
4
  

1. The tree naturally accounts for the over-representation of 

sequences from nodes that are highly populated relative to others. This  

is because ET assigns ranks based on the distance from the root of the 

evolutionary tree rather than based on the number of leaves, or 

sequences, that are in any one branch. This is an important deviation 

from simply measuring ‘invariance’. 

2. The tree filters out much of the noise inherent to sequence  

analysis. This is because it defines a priori which patterns of 

evolutionary variations are important. This bias allows us to classify 

residues as important, or not, in a straightforward manner that can then 

be tested experimentally. Other algorithms by contrast tend to gauge 

residue importance through measures of side chain conservation. But  

this is inherently problematic because the ways in which a side chain 

varies is context-dependent,
5
 and hence a poor measure of functional 

significance among homologs.
6
 

3. The tree confers onto ET a strategy akin to experimental 

mutational analysis. In the laboratory, mutational analysis builds causal 

links between residues and function by assaying the function of  

specific mutants. Similarly, ET links specific sequence variations with 
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functional differences, using tree branch-points as ‘virtual functional 

assays’. This is also profoundly different from other types of sequence 

analyses that reason by analogy (i.e., if proteins A and Z share a motif, 

they likely share some function). In that light, ET simply sorts the 

mutations and functional assays that already occurred during evolution, 

and interprets them as one would in the laboratory.   

4. This approach provides far more mutations and assays than are 

achievable in the laboratory. Specifically, pairwise sequence 

comparisons yield many more functionally competent variations than  

can be constructed in the laboratory. Additionally, and crucially, a tree 

with N proteins has N-1 branch-points, each of which is equivalent to a 

virtual functional assay. Even if only a third of these ‘assays’ are  

useful, this is many more than the one or two assays typically available 

in the laboratory for a specific protein family. 

Thus the tree allows us to explicitly take evolution into account and 

thereby link a vast number of evolutionary mutations with natural 

selection assays. We now show that the richness of these evolutionary 

data translates into a large number of biologically relevant conclusions. 

In the next section I shall focus on a series of experiments that aimed  

to validate or test the limitations of ET, in order to identify functional 

sites and their key determinants.  

5.3 Validation Through Prospective Case Studies 

5.3.1 Separation of Function 

The first and simplest test of the productive power of ET is to predict 

novel functional sites and disable it through targeted mutations. A  

recent example is the efficient separation of function experiments that 

enabled to identify the distinct structural regions of the Ku70/80  

protein complex that were responsible for telomere maintenance as  

well as double strand DNA break repair.
7
 Evolutionary traces were 

performed separately on the Ku80 and the Ku70 components of the 

complex. Both identified novel functional sites that were targeted for 

single point non-conservative substitutions in the hope of disrupting  
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the function of these putative sites without otherwise altering other 

activities of this multifunctional complex which normally binds DNA. 

Of 17 mutations at or near the fifth alpha-helix of Ku80, nine were 

associated with significant telomeric defects, but none caused any  

double strand break repair defect. In sharp contrast, of 13 mutations at  

or near the fifth a helix of the ancestor of the related Ku70 domain,  

five caused significant double strand break repair defects while none of 

the mutations were associated with any telomeric defects. This ET 

guided mutational study thus explained the paradoxical presence of  

DNA on a telomeric maintenance protein end joining activity (since  

the joining of telomeric ends from different chromosomes would have 

catastrophic results). The two functions are in effect completely 

segregated on opposite ends of the complex. Both are centred on the 

divergently related Alpha five helices so that the double strand break 

repair activity of Ku70 is oriented towards the centromere, while the 

telomere maintenance activity is oriented towards the telomere. 

It is important to note that this study produced in six months 14 

separation of function mutations, compared to a prior functional screen 

and a yeast system that had produced three such mutations over a  

period of two years. This illustrates the efficiency associated with 

leading evolutionary experiments guide laboratory investigations. 

5.3.2 Rewiring Functions 

This type of application follows from two complementary features of  

ET. First, functional areas can be outlined, as a whole, from the surface 

clusters of top-ranked residues. Second, within such a cluster every 

residue is tagged by its degree of importance, namely its ET rank. 

Logically, one may then try to swap cognate residues in descending  

order of importance (starting from the single most important) in order  

to switch functions between ancestrally related proteins. In essence, the 

hypothesis is that top-ranked residues define a function specificity  

code for that protein family. Exchanging top-ranked residues should  

then be necessary and sufficient to rewire function. 

Regulators of G protein signalling: past studies in the family of 

regulators of G protein signalling (RGS) proteins provide the most 
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thorough demonstration yet of evolution-directed discovery of  

allostery, Specificity and 4º Structure.
8,9

 These studies also (a) 

anticipated mutational and crystallographic analyses, and (b) 

demonstrated ET-based recoding of function specificity. We review  

this work in some detail since it illustrates best the interplay between 

computation and experiments.  

RGS proteins bind onto activated G proteins, which are bound to 

GTP, and they accelerate the rate at which these G proteins hydrolyse 

GTP back to GDP. This stops G protein signalling. Thus RGS play a 

fundamental role in regulating the strength of signalling.  

In G protein signalling, the activated G protein is a Gα•GTP  

complex that activates effectors until it reverts to its inactive Gα•GDP 

state. Regulators of G protein signalling (RGS) proteins help limit G 

protein signalling by increasing Gα’s rate of GTP hydrolysis.
10

  

However, not all RGS proteins act alike. For example, PDEγ (the 

γsubunit of the visual effector cGMP phosphodiesterase) enhances the 

inactivation of Gα-transducin by RGS9, but inhibits the GTP-ase 

enhancing effect of RGS4, RGS16, GAIP, RGS6 and RGS7. To 

understand the basis for this difference, we traced all 42 known RGS 

proteins and mapped top-ranked residues onto the available RGS4 

structure,
10

 to discover the novel functional surface R2, shown in red  

and blue in Fig. 5.3. 

Two observations suggest that R2 was an interface whereby the 

effector influences RGS domain activity. First, side chain variations in 

R2 correlate with the specific activity of each RGS in the presence of  

the PDEγ. For example, going from proteins inhibited by PDEγ to  

those enhanced by it, the residues cognate to position 387 in RGS7  

vary from acidic to basic, and those at position 394 vary from polar (or 

hydrophobic) to basic. Second, in the Gα-RGS complex, site R2 is 

contiguous to a part of trace cluster A2 in Gα (Fig. 5.2) that: (a) does  

not interact with Gα, and (b) contains residues linked to PDEγ 
interaction. This led us to predict that the effector binds the RGS-Gα 

complex by straddling both A2 and R2, and that R2 residues such as  

387 and 394 are key mediators of the effector’s modulation of the RGS 

effect on GTP-ase activity.
9
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Fig. 5.3. RGS Trace. Successive rows from A to D show RGS traces at increasing 

evolutionary rank. Invariant residues are red and other trace residues are blue. A large 

cluster of 17 trace residues emerges on one side of the surface (left), while the opposite 

face (right) remains essentially free of signal. Part of the cluster (in yellow, D) includes 

10 of the 11 RGS residues at the Gα interface. The remaining 7 trace residues form a 

novel cluster, R2, that extends beyond the Gα-binding site and whose unknown function 

was surmised to be an effector binding site through which Gα activity is modulated.
9
 

We next tested these predictions by mutating R2 trace residues 348,  

387 and 394 in RGS7, normally inhibited by PDEγ,11
 into their cognate 

RGS9 residues that are closely related to RGS7 but are normally 

enhanced by PDEγ. The first finding was that the (E387L/P394R)  

double mutant reduced the GTP-ase basal activity of the Gα-RGS7/9 
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complex to slightly less than when the wild-type complex is in the 

presence of PDEγ. Adding PDEγ produces no further additional 

inhibition. Hence these mutations constitutively inhibited RGS7, as if  

in the presence of PDEγ. (The additional mutation of residue 348 had 

little effect by itself, and the triple mutant behaves nearly the same as  

the E387L/P394R mutant). Remarkably, residues 387 and 394 are not  

in direct contact with Gα since R2 is not part of the interface to Gα.  

Thus their mutations not only mimic the PDEγ-inhibited form of the 

wild-type protein but they affect GTP hydrolysis by Gα at a distance. 

Thus (387,394) behaves as an allosteric switch of GTP-ase activity, 

which upon mutation recapitulates the effect of PDEγ on RGS-Gα.   

 

Fig. 5.4. The PDEγ-RGS-Gα structure supports trace predictions. The structure of the 

catalytic core domain of RGS9 in complex with both Gt/i1α•GDP•AlF4- and the C-

terminal 38 amino acids of PDEγ reveals that PDEγV66 contacts R2 at class specific 

residue RGS9-W362. A second R2 residue RGS9-R360 is within 5 Å from PDEγ. The 

other residues in R2 form a network of contacts extending from 387/394 to the Gα 

contact residue 401. Thus residues 387 and 394 may exert their influence by 

communicating through this loop to the catalytic interface, with specificity determined by 

the amino acids that comprise both the α5/α6-connecting loop and the RGS/Gα 

interaction surface. (RGS 7 numbering is on top, RGS 9 numbering is below, PDEγ is 

blue, Gα is yellow, and R2 residues are red and orange, data from Slep et al.
12 

 

To further characterise the molecular basis of PDEγ’s variable effect  

on different RGS, we targeted for mutations at three other class  
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specific residues from the RGS/Gα interface (adjacent to R2) that also 

differed markedly between RGS7 and RGS9 (RGS7-A396, S401 and 

Y404). The mutations at A396 and Y404 had no significant effects, but 

the (L348Q/E387L/P394R/S401G) RGS7-Gα had basal GTP-ase  

activity nearly equal to that of the wild type RGS9-Gα-PDEγ complex. 

Furthermore, adding PDEγ causes a slight enhancement to match  

exactly the activity of the RGS9-Gα-PDEγ complex. Thus, residue  

S401 in RGS7 is a critical determinant of the direction of the PDEγ 
effect on Gα (enhancement or reduction). Moreover, S401 requires the 

assistance of 387 and 394 since when S401 is mutated alone, the  

protein remains inhibited by PDEγ, further indicating an allosteric 

relationship between 387/394 and 401.
9
 These three critical RGS 

residues are shown in Fig. 5.4, where it is clear that the remainder of  

R2 residues form a direct pathway between the (387/394) allosteric 

switch and the effector residue (401). 

The final test of our predictions came in the form of the actual 

structure of the PDEγ-RGS-Gα complex shown in Fig. 5.4, solved by 

Slep et al.
12

 It clearly shows that PDEγ and RGS7 share an interface 

precisely along R2. These studies illustrated ET’s ability to identify 

active sites, predict 4º structure interactions, and guide targeted 

mutagenesis to reveal the elements of an inter-protein allosteric  

pathway and the molecular basis of function. To our knowledge, this 

work was the first instance of a published computational prediction of  

a functional interface then followed by dual mutational and 

crystallographic validation.   

5.3.3 Redirecting Protein Binding Specificity to DNA  

The RGS study was the first experimental evidence in support of an 

evolutionary-based protein function specificity key. The concept 

however had first been raised in the context of the DNA binding  

domain (DBD) of nuclear hormone receptors in which it was noticed  

that the top-ranked trace residues of the DBD at the DNA binding site 

made direct structural contact with the most invariant nucleic acid  

bases of the consensus response element to which it binds.
13

 This 

suggested a model of interfaces in which functional determinants on 
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either side were in direct contact so that evolutionary pressure would  

be mirrored structurally across the interface. This would explain that 

swapping key residues on one side would directly impact interaction  

on the other side. The RGS study although at a protein–protein  

interface was a partial validation of this model, which showed at least 

that function to load the exchange of key residues. 

In order to test this model more thoroughly, a later study analysed  

22 different families of transcription factors, such as nuclear receptors, 

basic helix loop helix, homeodomains and others.
14

 In each one, the 

evolutionary importance of the DNA bases in their respective response 

elements was measured using information entropy. It was then  

correlated to the average ET evolutionary importance rank among all  

of the contact amino acids of each base, as observed in crystal structure 

of protein–DNA complexes between the transcription factor and their 

target response elements. These correlations ranged from .94 for the  

USF 1 bHLHL factor to –.27 for the GCN4 b-Zip factor. In fact, all  

four b-Zip transcription factors had poor correlations, thought to be  

due to the fact that other interactions determine their transcription 

specificity aside from their small DNA binding domain. However, all  

the remainder of the transcription factors had correlations above 0.5,  

and they yielded, overall, an average Pearson correlation of 0.73, and a 

nonparametric Spearman rank-order correlation of 0.75, both with p-

values less than 10
-5

. Thus, there is correlated evolution between  

protein residues in their contact DNA bases at least among most 

transcription factors, the b-Zip family being the exception. 

This result suggests that the key components on either side of an 

interface can be identified based on their distinctive evolutionary 

signatures but also that they are in close contact structurally, in essence 

mirroring each other structurally. One may then test correlated  

evolution experimentally by swapping key protein residues and 

observing whether this redirects a transcription factor’s DNA binding 

specificity. For this, we engineered the orphan receptor LRH-1, which  

is a monomeric C4 zinc finger protein. Two mutations were  

introduced: G462V and E458G in order to change these top-ranked  

DNA interface residues to their cognate side chains in steroid  

receptors. The hope was thus to also swap DNA binding specificity  
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from TCAAGGTCA, the natural consensus element to the mutant  

TCAAGAACT sequence recognised by steroid responsive  

transcription factors. Indeed, an in vitro binding competition assays 

showed that the mutation dramatically decreased the mutants’ ability to 

compete for binding to the wild type LRH-1 response element, but that  

it now had much higher affinity for the steroid response element.  

These experiments show that we generated a mutant LRH-1 with 

ortholog DNA binding specificity by targeting mutations to only two  

top-ranked DNA interacting amino acid residues that are different in  

the LRH and the steroid receptors. Finally, we note that a similar 

functional swap experiment was also successfully carried out, but in vivo. 

5.3.3 Other Case Studies 

In fact, there are now many examples of ET-directed discovery and 

manipulation of protein function, as summarised in Table 5.2, Refs: 7–9, 

15–23). 

 

Table 5.2. Evolutionary trace directed discovery and manipulation of protein function 

The key points of these studies is that they repeatedly illustrate in 

different proteins, and in collaboration with varied laboratories, how 

clusters of top-ranked ET residues on protein surfaces anticipate the 
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location of functional sites, that can then be validated through  

subsequent targeted mutations. In turn, in multifunctional proteins  

these mutations can efficiently create separation of function, rewire 

function, or when key residues are transplanted in appropriately  

designed peptides, create molecular inhibitors of protein–protein 

interactions (data for the latter studies are preliminary, but consistent in 

three different protein–protein interaction systems). 

The weakness of these data, however, is that they are merely case 

studies. Although they show that ET has been successfully applied in a 

wide range of both eukaryotic and prokaryotic, and even though there  

are now many such cases, they do not themselves guarantee that ET  

will be equally successful for any other given protein. In other words, 

these case studies provide proof of principle, but there remains to  

gather proteome-wide evidence to suggest that ET will in fact identify 

functional sites for any protein. The evidence for this is presented next. 

5.4 Proteomics Properties of Evolutionary Important Residues  

A number of technical studies have sought to demonstrate in a variety  

of retrospective control proteins including usually both enzymes and 

non-enzymes, and both eukaryotic as well as prokaryotic species that  

as shown above in the SH2 example, one may generally expect that (a) 

any protein can have its residues ranked by evolutionary importance;  

(b) any protein will have identifiable clusters of top-ranked ET  

residues; (c) these clusters will match known sites (or predict others  

yet to be discovered); and (d) the ET can be automated so that the  

series of steps a-c can is amenable to high-throughput and optimization 

so that accuracy is maintained even during large scale use. 

First, it is easy to compute top-ranked residues as described in Fig. 

5.1 for any protein. Unless a protein of interest has no other known 

homolog, or too few to sample its evolution, both alignments and tree 

can be obtained, and hence a trace rank as well for every residue. 

Whether these rankings are meaningful, however, is a relevant and  

non-trivial question. Since, ET’s goal has been to identify functional  

sites in the protein structure, the question of relevance has been 

approached by asking whether top-ranked residues were distributed in 
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the structure in a random fashion or if in fact they aggregated into 

statistically significant clusters. 

 

 

Fig. 5.5. Proteomic Properties of Evolutionarily Important Residues. Trace residues 

cluster together in structures much more than expected from random chance (A), and this 

is a phenomena observed in most proteins (B).
24

 Moreover, ET clusters overlap 

functional sites much more than expected by chance (C), and this again is a general 

phenomena (d).
25

 In fact, the quality of clustering is directly related the the quality of the 

overlap (or prediction) (E),
26

 and this in turn guides the automated optimization of ET 

(f).
27

 

For this it is easy to compare the number of clusters, or the size of the 

largest cluster and that one may obtain by picking n residues randomly  
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to the number or size observed by taking the first n top ranked  

residues. As shown in Fig. 5.5a, the former yields very many small 

clusters of one or two residues scattered randomly over the entire 

structure whereas the latter yields a very large dominance cluster that 

contains nearly all the residues by itself and located in a precise region  

of the protein. When this comparison is repeated over the non- 

redundant PDB25 (meaning a set of all known protein structures that 

share no more than 25% sequence pairwise identity) one can see in  

Fig. 5.5b that about 90% of all proteins have nonrandom trace clusters 

for which the statistical Z-score is greater than two (meaning that the 

random chance of generating a set of residues that cluster as well or 

better is at least two standard deviations above the expected average). 

These data are therefore demonstrating that in the vast majority of 

proteins top-ranked residues can be reliably generated and they will  

non-randomly cluster in the structure. 

Next, in order to establish the functional significance of ET  

clusters, we also need to demonstrate that they overlap with functional 

sites more so then if the residues were picked at random. This may be 

done much as above by comparing the election on functional sites of a 

randomly picked residues versus the same number of top-ranked ET 

residues, as in Fig. 5.5c. A key result is that by any number of statistics 

the match between ET clusters and functional sites is seen to be 

statistically significant. It reaches 100% of the proteins tested by the  

least stringent statistical measure, and 86% by the most stringent one,  

as shown in Fig. 5.5d. Thus, ET clusters will reliably identify  

functional sites. 

It is important to note however that in these studies of overlap,  

the traces were obtained manually. Therefore the alignments of 

homologous proteins were curated to remove gaps, fragments and 

obvious errors, perhaps even entire branches if they were so deeply 

divergent that they seemed unrelated to the function of interest. This 

highlights the fact that the statistical significance of the output of the  

ET algorithm is a direct reflection of the quality of the input, meaning 

that the extent to which sequences are error-free, well-aligned,  

and properly partitioned into a functionally relevant treaty (as 

approximated by the sequence identity dendrogram) determined  
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whether trace residues will cluster. In that light, the possibility arises to 

select input sequences under the constraints that they should maximise 

the clustering quality of ET residues, since this is an observable  

feature, and in the hope to maximize the overlap with functional sites, 

which is the unknown feature we wish to predict. 

 To carry out this program, we first note that the quality of ET 

residues structural clustering is directly correlated with the quality of  

the overlap between an ET cluster and a functional site, as shown in  

the inset in Fig. 5.5e. Moreover, this correlation is repeatedly observed  

in a set of over 50 diverse proteins (Fig. 5.5e). In practice, this suggests 

that optimizing the choice of input sequences identified the most 

statistically significant cluster of top-ranked residues will also  

maximize the overlap of that cluster with a functional site.  

At a more theoretical level, this establishes a number of universal 

features of evolutionary important residues: protein sequence residues 

may be ranked by evolutionary importance; top-ranked residues cluster 

non-randomly in the protein structure; these clusters mark and predict 

functional sites; the better the quality of the cluster, the better the 

overlap, or prediction, of the functional site. Other retrospective  

control studies have also shown that there is structural symmetry of 

evolutionary importance across the protein-DNA interface suggesting 

that the molecular determinants of function, and specificity, on one 

molecule are directly in contact with those of the binding partner. This  

is consistent with the case studies in RGS and in steroid receptors that 

suggest that binding specificity resides with the variations among top-

ranked interfacial ET residues, and therefore accompanies them as they 

are swapped among homologs to rewire function. 

In practice, these data first yields a recipe by which the  

evolutionary trace may be optimized for high-throughput by selecting 

input sequences to maximize clustering and as a consequence  

maximize functional site overlap/prediction as shown in Fig. 5.5f.  

More generally, however, they suggest that the case studies previously 

discussed are representative of results one may expect in any protein 

family, provided enough homologs are available to generate significant 

trace clusters. This may be readily ascertained at 

http://mammoth.bcm.tmc.edu/ETserver.html which is the site of the  
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ET Server and its associated functional site prediction tools: the 

ET_Viewer and the ET_Report_Maker.
28,29

 

Having established the general validity of ET analysis to identify 

functional sites and their key residues, we now turn to its application in 

order to decipher the molecular determinants of GPCR function, as an 

example of an in depth study on a specific system, and to the  

prediction of protein function for Structural Genomics, as an example  

of its high-throughput capabilities. 

5.5 Molecular Determinants of GPCR Signal Transduction 

There are a large number of different ligands that bind an equally large 

number of GPCRs. The differences in size and molecular type among 

ligands are linked to different sites of ligand action such as the 

extracellular domain, the intracellular domain or the transition between 

both. This variety of binding locations suggests that comparative  

analysis is unlikely to review a universal binding pocket. However, all 

receptors upon activation couple to G proteins or become  

phosphorylated by dedicated kinases. Since all of these tend to be well 

conserved during evolution, a reasonable hypothesis is that GPCRs  

will share significance commonalities in their conformational switch  

and G protein coupling mechanisms. If so, a joint evolutionary trace of 

diverse Class A (rhodopsin-like) receptors should identify be  

associated residues.  

A study of 343 Class A receptors transmembrane spanning helices 

including bioamine, chemokine, visual and olfactory GPCRs identified 

top-ranked amino acids that mapped into a tight, statistically  

significant cluster located towards the cytoplasmic end of the 

transmembrane section of the rhodopsin structure.
17

 Support for this 

being a universal signal transduction switch into GPCRs came from a 

large number of prior experimental studies that had direct mutations at 

these amino acids. Nearly all (88%) had a documented impact on 

function in at least one receptor, and as many as 73% had documented 

impacts in three or more receptors. By contrast, residues predicted to  

be of the least importance were reported to have a mutational impact  

on the function of three or more receptors in only 19% of cases. The 
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same studies also suggest that fact this ET-identified switch could be 

divided into three structural subsites: one linked mostly to light and 

sensitivity; one linked to ligand coupling; and a site linked 

conformational switching and structural stability. As illustrated in Fig. 

5.6 these sites are respectively closer to the ligand, closer to the G 

protein and in between. 

 

 

Fig. 5.6. An ET model of the molecular determinants of GPCR signalling. ET analysis 

suggests a model of the key functional residues that mediate signal transduction in 

GPCRs. Comparison with the literature then further divides these residues into 

subdomains, A through D (see text).
17

 Subsequent experiments confirm the model based 

on diminished retinal binding and constitutive activity,
17

 or uncoupling of G protein 

activation from internalization
22

 (E through F). Preliminary data further suggests that a 

dopamine receptor may be mutationally rewired to respond to serotonin by swapping 

appropriate top-ranked ET residues (unpublished, with Ted Wensel). 

To complete this picture it is also important to identify the ligand  

binding pocket. This requires that ET analysis be constrained to  

receptors that all share the same again, for example, the visual  

receptors which all bind retinal. Such rhodopsin specific ET analysis 
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identifies another set of key functional residues, presumably important  

to vision. Since some of these will be important to vision because they 

are generally important in all GPCRs, they can be subtracted to reveal 

the amino acids that are uniquely important to vision. This completes a 

full evolutionary model of single construction in rhodopsin and Class  

A receptors. 

Subsequent experimental studies with the Wensel laboratory were 

consistent with this model. Some mutations directed at the retinal 

binding site diminished binding of this ligand. Other mutations  

directed at the conformational switch produced constitutive activity in 

rhodopsin. Yet a third set of mutations (performed in the Lefkowitz 

laboratory) directed at the G protein coupling site created a mutant of  

the beta-adrenergic receptor that could bind its ligand but could not 

activate the G protein although it could still be phosphorylated, and  

then be internalised after binding to the scaffold protein beta-arrestin. 

This last experiment showed that the two different signalling branches of 

an activated GPCR could be functionally separated. 

Finally, in order to test predictions of the key determinants of  

ligand binding and sensitivity, we have begun to swap into the  

dopamine receptor (DR) top-ranked, cognate and bioamine specific 

amino acids from the serotonin receptor (SR), that cluster near the 

predicted ligand binding pocket and that are variable between DR and 

SR. A number of these single point mutational swaps prove sufficient  

to either diminish dopamine response, increase serotonin response and 

occasionally both. Controls however show that the same mutations  

have no impact on responsiveness to norepinephrine, suggesting that  

the effect observed is specific to dopamine and serotonin. Moreover, 

similar mutations targeted to poorly-ranked residues in the vicinity of  

the putative ligand binding site do not change either dopamine or 

serotonin or norepinephrine responsiveness. These preliminary data, 

gathered by Gustavo Rodriguez in collaboration with the laboratory of 

Ted Wensel, support the ability to identify the key molecular 

determinants of the allosteric pathway, linking a given input (here  

either dopamine or serotonin) to a given output (signalling or none, 

respectively) and then to rewire the pathway by swapping residues. 

While in programming terms this is equivalent to recoding the 
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transformation between an input and output; a more concrete analogy  

is that these mutations adapt the GPCR lock to a different ligand key  

by altering the lock’s tumblers. More generally, the hypothesis and 

supporting data from Fig. 5.6 suggests that one can manipulate the  

input, output and connecting pathway sites in GPCR based on 

comparative analyses such as ET. 

5.6 Protein Function Prediction  

At the other end of the spectrum, the possibility of identifying  

molecular determinants of function on a large scale suggests that they 

may be compared across all available protein structures in order to 

identify proteins with identical functions. This idea is a generalization  

of the observation that all proteases share the same three residues in the 

same geometry – referred to as the catalytic triad. If similar structural 

motifs of just a few residues, that are the hallmark of various functions, 

can be identified and then recognised in structures, then their matches 

may reveal which proteins perform which functions. This would be 

particularly useful in the context of structural genomics, since many of 

the novel protein structures solved are chosen because they have little  

or no homology to previously known proteins and therefore cannot be 

assigned a function through simple sequence comparison. 

To carry out this programme requires the availability of  

functionally relevant small structural motifs thereafter referred to as  

3D templates. Unfortunately, there are very few proteins for which the 

key functional residues are known from experiments, and approximate 

templates based on proximity to ligands or catalytic sites tend by 

themselves to have many non-specific geometric matches across the  

set of all known protein structures. 

To address this problem, an evolutionary trace functional  

annotation (ETA) pipeline has been built based on the following 

operations.
30

 First, 3D templates are built without any prior knowledge  

of the function or mechanism involved, simply by identifying the most 

prominent surface cluster of top-ranked residues, and selecting among 

these the six closest to one another. The six Ca atoms of these amino 
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acids, their relative geometry and their side chain type define a 3D 

template.
31

 

 Next, these of 3D templates are geometrically searched and  

matched across the PDB up to a certain threshold in least root mean 

square deviation. Unfortunately, most of those matches are  

nonspecific. As a result, it is necessary to introduce further filters to 

eliminate random geometric matches. One such filter exploits the fact 

that the random matches are likely to fall in the areas of proteins that  

lack any evolutionary importance. By computing an evolutionary trace 

on the matched protein and ranking the importance of the matched 

residues it is thus possible to train a support vector machine to reject 

nearly 90% of the matches.
31

 The next filter demands that functionally 

relevant matches be supported by other matches, two distinct structures 

that bear the same functional information. In other words, functionally 

relevant matches should achieve a vote plurality.
32

 Finally, the last  

filter reasons that a functionally relevant match from protein A to a 

protein B, should be reciprocated by a match from protein B back to 

protein A.
33

 

A set of retrospective studies in enzymes that were solved by 

Structural Genomics and already annotated (and more recently  

including non-enzymes as well) show that when these filters are used  

all together to maximise specificity it is possible to suggest functions  

for 55% of the cases (coverage), and to reach a positive predictive  

value (PPV) above 95%. Should sensitivity be a major goal, it is  

possible to drop some of the filters mentioned above. If so, one may  

raise coverage to 88% of enzymes but the PPV drops to 90% overall.  

(In non-enzymes, specificity may be even better but coverage is lower, 

about 40%; this can rise to nearly 70% coverage at the expense of PPV 

that drops to 90% overall – unpublished data.) 

In practice, these studies represent an approach to functional 

annotation that is complementary and orthogonal to the leading  

method, namely lateral transfer of annotation based on homology 

recognised by BLAST, or PSI-BLAST, or hidden Markov Models 

(HMM). The high specificity that is reached when all filters are used is 

especially significant since the concern is that as sequence identity  
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falls, annotations become increasingly unreliable and fill databases  

with errors that will then propagate and mushroom. 

More broadly, these studies further support the universal value of 

identifying top-ranked residues across the proteome and interpreting 

them when they cluster on surfaces as the key determinants of function 

and specificity. In that light, ETA is the high-throughput equivalent of 

the case studies mentioned previously.  
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CHAPTER 6 
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Methods for predicting the three-dimensional structure of protein–

protein complexes are necessary tools in the post-genomics context. 

They are based on three ingredients: an appropriate representation of 

the macromolecule, an efficient search algorithm and a discriminatory 

scoring function. The present chapter describes the main algorithms 

underlying protein–protein docking methods, together with the 

strategies that have been developed to efficiently search the interaction 

space within limited calculation times. Assessment of the current 

protein–protein docking programmes through the community wide 

CAPRI (Critical Assessment of PRrotein Interactions) experience 

pictures a rapidly progressing field, where diverse successful solutions 

are available for complex predictions provided that the protein partners 

present little structural differences between the free and the bound 

form. Challenges that are presently tackled by the developers include 

the development of robust scoring functions adapted to low-resolution 

models, multicomponent docking and flexibility account. 

6.1 Introduction 

Assembling macromolecules has been a major goal of theoretical 

modelling ever since sufficient structural information has been known  

on the main building blocks, protein or nucleic acids. While individual  
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dynamic properties of macromolecules play an essential role in  

catalytic activity or in general biological processes, it is noteworthy  

that most biomolecular entities exert their function within complexes, 

ranging from binary complexes to huge macromolecular machineries  

like the ribosome. Being able to predict the three-dimensional structure 

of macromolecular assemblages therefore appears as a crucial step to 

gain knowledge on the mechanisms that rules cell life.
1–3

 Due to the  

size of the systems to assemble, the development of the docking branch 

of macromolecular modelling has long been conditioned by the  

progress of computer processing and storage capacities. Nevertheless,  

the very first protein–protein docking simulations, performed in 1978  

by Wodak and Janin, already set the main principles that guide docking 

methods.
4
 The study used a simplified protein representation for the 

association partners and a discrete, systematic search strategy (Fig.  

6.1), followed by refinement of the best solutions. Scoring was based  

on the degree of surface complementarity and the size of the interface. 

This precursor study permitted to delineate the problems specific to 

docking methods and the basis of their resolution: quick assemblage of 

macromolecular systems requires simplifying as much as possible the 

system representation, the search process and the scoring criteria
5
 

provided that these simplifications (a) do not impede the generation of  

a geometry close to the native one and (b) are compatible with  

successful ranking of docking predictions. 

Section 6.2 of this chapter comes back to the different choices that 

developers are faced with regarding the level of complexity of the  

system representation, the algorithm used to explore the possible 

geometries of association and the degree of precision of the scoring 

function. Docking strategies can be viewed as efficient combinations  

of such choices. Section 6.3 describes several representative docking 

methods, either systematic or guided. We will insist on the underlying 

strategy used in each method. In order for the docking programmes to 

increase their performance, they must be evaluated on a common basis 

(see Section 6.4). The protein–protein docking field presents the 

particularity to be structured around the CAPRI experience 

(http://www.ebi.ac.uk/msd-srv/capri),
6–8

 a blind prediction docking test 

that aims at assessing the progress of the field and accompanying its 
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development. This programme was initiated in 2001 as a result of the 

first conference covering protein–protein docking.
9
 Groups developing 

docking methods benefit from a comparative evaluation of diverse 

docking strategies. 

 

Fig. 6.1. Definition of the degrees of freedom that are sampled during the docking search 

process developed by Wodak and Janin
4
 for extensive docking of trypsin with BPTI. The 

six degrees of freedom comprise the (O1, O2) distance, where O1 and O2 are, 

respectively, the mass centres of Trypsin and BPTI, the spherical angles Φ1 and θ1 for 

trypsin, Φ2 and θ2 for BPTI and the rotational angle χ around axis (O1,O2, after Wodak 

and Janin
4
).  

Section 6.4.1 summarises the main conclusions of the sixteen CAPRI 

rounds that have taken place until now.
6–8,10–13

 CAPRI also helps 

identifying the current limitations of docking methods and the 

bottlenecks hindering further development. We will present the 
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challenges being tackled by the community in applying the docking 

programmes to any family of proteins (Section 6.4.3). 

6.2 Definition and Goals of Macromolecular Docking 

6.2.1 Protein–Protein Docking Terminology 

With a wide acceptance of the term, macromolecular docking refers to 

any theoretical procedure capable of predicting the three-dimensional 

structure of a binary protein complex starting from the structures of its 

individual components. This covers a large spectrum of situations, 

ranging from high precision docking, where the main goal is to predict 

precise interactions between amino acid functional groups of two  

protein partners, to extensive docking, precursor of high-throughput 

screening of protein databases. High precision docking is generally 

performed when information is available on the location of at least one 

partner binding site, permitting to concentrate the sampling efforts on 

internal degrees of freedom.
14,15

 In those cases, sampling relies on 

methods like molecular dynamics (MD) simulation or the Monte Carlo 

(MC) search. This type of docking does not consider the search time as  

a limiting factor, as long as precise interactions are finally predicted. 

At the other end of the spectrum, what can be called ‘extensive 

docking’ consists of the wide exploration of relative positions and 

orientations of the partners in order to generate all possible geometries  

of association, which are scored and ranked in a predictive purpose.
5,16–20

 

This necessitated the development of specific methods and strategies  

that must obey the stringent requirements in terms of speed and 

conformational space exploration. It can be noted that prediction of 

precise interactions between the partners is not necessarily required as 

long as correct scoring is achieved. This family of methods makes up  

the protein–protein docking methods that constitute the object of this 

chapter. 

A specific terminology has developed concomitantly to the  

protein–protein docking methods. It is useful to define here the  

different terms that will be used in this chapter. The proteins to be 



Protein–Protein Docking 151 

docked, or in other words the association partners, are generally  

referred to as the receptor (generally the bigger of the two partners)  

and the ligand. When they are in a bound form, their structure is  

directly taken from the known three-dimensional structure of the 

complex. The bound problem constitutes a preliminary test for docking 

methods. It consists of separating out the elements of a  

macromolecular complex with known 3D-structure and verifying 

whether the method is capable of reconstructing the crystal complex  

and attributing a top score to that geometry of association.  

The unbound problem is the ‘real life’ docking problem, 

corresponding to situations where the result is unknown. In those  

cases, the protein structures are taken from the Protein Data Bank 

(PDB)
21

 in a free form or in complex form with another molecule. This 

structure is referred to as the unbound form and it can present from  

slight (mostly, side chain torsional changes)
22

 to huge (loop  

remodelling, change in secondary structure or domain motion) 

differences with respect to the bound form.
13,23

 Slight differences can  

be accounted for using soft docking methods.
24–29

 In that case, the  

surface resolution or the sensitivity of the scoring function are  

purposely decreased, allowing a certain degree of interpenetration 

between the two partners. When a partner structure has not been solved 

by crystallography or NMR, it needs to be reconstructed by homology 

modelling from the structure of other proteins. Clearly, correct  

prediction is much more difficult to achieve when starting from such 

modelled structures, where loop insertions or modifications in  

secondary structures are frequent (see for example Targets T20 and  

T24 of CAPRI
13

). Most often their resolution, like that of systems with 

important surface remodelling between the unbound and the bound  

form, pertains to the category of flexible docking presented in Chapters 

7–9 of this volume. 

6.2.2 Goals and Strategies 

Protein–protein docking methods combine three fundamental 

ingredients:
5
 (a) an appropriate representation of the protein partners 

together with the definition of the degrees of freedom that will be 
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searched, (b) an algorithm to explore the conformational space as 

completely as possible and (c) a scoring function to classify the 

predictions (Fig. 6.2). 

 

Fig. 6.2. Schematic organisation of typical docking methods. Docking strategies require 

the choice of a protein representation, a search method and a degree of resolution for final 

refinement and scoring. 

Several levels of complexity for protein representation and scoring are 

encountered in docking programmes. Protein models vary from 

simplified surface representation to detailed, all atom representation  
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via coarse grain models (Section 6.3.2.2). The partners can be  

considered as rigid bodies, in which case only six degrees of freedom 

(generally three translations and three rotations) are searched.
25,28,30

 

Alternatively, conformational changes of surface side chain can be 

explicitly taken into account by introducing additional degrees of 

freedom.
31,32

 In the same way, scoring functions range from statistical 

learning or knowledge-based functions
33,34

 to evaluations of the  

system’s free energy,
35

 via measures of surface fit.
36

 Utilization of 

simplified models and simple scoring functions permits to search the 

whole conformational space within a reasonable calculation time,  

when using detailed representation and precise scoring would make  

such extensive search a totally prohibitive task. However, these 

simplifications are bound to induce biases in the scoring, producing  

what is called false positive solutions, i.e. predictions far from the  

correct complex structure but characterised by a high score. It must  

also be noted that in order to be efficient, a scoring function needs to  

be adapted to the level of resolution of the protein representation. For 

example, it is useless to rely on scoring functions based on the 

calculation of atomic potentials, which are sensitive to atomic  

deviations of tenths of angstroms, in procedures where the relative 

protein positions and the side chain conformations have not been 

adjusted with high precision. 

Given these constraints, many docking programmes include two 

phases, a search phase performed at low resolution where the 

conformational space is extensively explored and a refinement phase 

where the best ranking geometries resulting from the search are re-

evaluated at higher resolution (Fig. 6.2). During refinement, the search 

concentrates in the vicinity of the candidate geometry and the scoring 

uses more computer demanding criteria. 

Search algorithms developed for the first phase can be divided into 

two categories, systematic search and guided search algorithms. The  

first category starts by generating all possible relative 

positions/orientations of the two partners before identifying and 

classifying potentially favourable geometries. The second category 

directly uses the scoring function to guide the search towards  

favourable geometries.  
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In addition to developing new representations and search algorithms,  

the skill of the groups creating docking programmes consists of  

choosing balanced combinations of these solutions that allow high 

computational speed and efficiency. As will be seen in Section 6.3.3.4, 

some methods, particularly among the most recent ones, include  

several levels of complexity in a unique docking simulation, in what  

can be called a hierarchical or a multi-scale approach.
32,37,38 

6.3 Protein–Protein Docking Methods 

We organise the description of the docking methods around the two 

 main families of search strategiess: systematic search and guided  

search methods. This division approximately follows the chronological 

appearance of the two approaches. Both continue to be developed since 

none of them has proven its superiority.
13

 We will illustrate the 

presentation by detailing some representative docking programmes, 

bearing in mind that these are just examples among a number of  

valuable methods (Table 6.1). 

6.3.1 Systematic Search Methods 

6.3.1.1 Discrete Sampling: The Correlation Methods 

In order to sample all possible relative positions of the partners, it is 

necessary to discretize the conformational space that is searched. In a 

rigid body context, this makes six degrees of freedom (three  

translations and three rotations) to be sampled in a combinatorial way. 

The step size for discretization should be smaller than the typical width 

of potential energy wells in order for the correct geometry not to be 

overlooked. This makes the number of generated positions, and  

therefore the number of scoring evaluations, to rapidly become 

impressive. For example, systematic sampling of a ligand position  

within a 120 Å cube centred at the receptor, using translation steps of 1 

Å and rotation steps of 10 to 15 degrees, necessitates the generation of 

about 10
10

 configurations. As a result, the docking field really started  
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its expansion when methods capable of accelerating both the search  

and the score calculation appeared. 

In 1992, the group of Vakser opened the path
25

 by proposing the  

use of fast Fourier transformation (FFT) for the calculation of a scoring 

function c, defined as a correlation between two discrete functions a  

and b respectively associated to the receptor and the ligand. 

 

 al,m,n =  1 on the surface, 

 ρ inside the molecule,  

 0 outside (6.1) 

 

 bl,m,n =  1 on the surface, 

  δ inside the molecule,  

  0 outside (6.2) 

 

 

1 1 1

N N N

, , l ,m,n l ,m ,n

l m n

c a bα β γ α β γ+ + +
= = =

= ⋅∑ ∑ ∑  (6.3)  

 

In this representation, each protein partner has been digitalised on a 

three-dimensional grid indexed by l, m, n. It is partitioned into interior, 

exterior and surface regions. Interior parameters ρ and δ are used for 

discriminating overlapping regions, with ρ being a large negative value 

and δ a small positive value (0 < δ < 1) (see Fig. 6.3 left). The  

correlation value for each displacement (α, β, γ) corresponds to a  

positive score for surface contact, accumulated on overlapping surface 

points, corrected by a penalty for interpenetration accumulated on 

overlapping interior points. Surface regions of each partner are defined 

using a thickness greater than a simple layer of grid points to implicitly 

allow for small imperfection in surface matching resulting from 

discretisation or from small surface readjustment (typical values are  

1.5 to 2.5 Å). Surface thickness is a sensitive parameter, since  

increasing its value augments the chance of producing false positive 

predictions. The grid size appears to be another sensitive parameter,  

with optimal value around 0.7–0.8 Å.
25

 The introduction of a  

correlation function as docking score permits to take advantage of well 
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designed algorithms devised to spare calculation time. The discrete 

Fourier transform Co,p,q of c, 

 
2

1 1 1

ol pm qnN N N i
N

o,p ,q l ,m,n

l m n

C e C
π

+ +
−

= = =

= ⋅∑ ∑ ∑  (6.4) 

can also be written as the product of the complex conjugate A
*

o,p,q of  

the discrete Fourier transform of a and the Fourier transform Bo,p,q of b. 

 *
o,p ,q o,p ,q o,p ,qC A B= ⋅  (6.5) 

Therefore, it is possible to evaluate Co,p,q without calculating the  

product al,m;n · bl’,m’,n’ at each of the grid positions (l, m, n) and  

(l’,m’,n’). The Fourier transform A is directly inferred from a, and B 

from b, using the same formula as Eq. 6.4. cl,m,n is then calculated from 

Co,p,q using an inverse Fourier transform. The use of the fast Fourier 

transform algorithm
39

 moreover permits to limit the transformation of  

a 3D function of N
6
 values to an N

3
lnN calculation order. The  

correlation values can be mapped as correlation peaks as shown on Fig. 

6.3 (right panel). The highest peaks correspond to regions of extensive 

matching of the partner surface shapes and are conserved for further 

discrimination using finer grid steps (Section 6.3.3). The process needs 

to be completed by sampling the relative orientations of the two  

protein partners. For each generated orientation of the ligand with  

respect to the receptor, a new correlation function is calculated (Fig.  

6.3 right). 

Following this first implementation, the FFT class of method was 

explored for further improvement.
40

 The group of Sternberg used an 

electrostatic criterion instead of a shape criterion in defining the 

functions a and b describing the two partners,
41

 

 { 0 inside the molecule
l ,m,n U ( l ,m,n ) outside the moleculea =  (6.6) 

 l ,m,nb q'( l ,m,n )=  (6.7) 

 
j

j

jj

q
U( l ,m,n ) r

( r )ε
= ⋅∑  (6.8) 
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with U(l, m, n) the electrostatic potential created outside the receptor, j 

being a receptor atom, qj the partial charge on j, rj the position of atom  

j, ε(rj) a screening dielectric function and q’(l, m, n) the ligand charge 

discretised on the grid. 

 

 

Fig. 6.3. Scoring function and search strategy in correlation methods (after Gabb et al.
40

). 

Left panel: the receptor and the ligand are discretized on three-dimensional grids and are 

partitioned into inside (gray), outside (white) and surface regions (light gray). In the 

Sternberg implementation represented here, only the receptor is attributed a surface 

region. Surface matching between receptor and ligand is measured by adding positive 

contributions due to surface/inside region overlap (hatched cube) and penalties due to 

inside/inside region overlap (black cube). δ and ρ are defined in the text. Right panel: for 

each sampled ligand orientation, the correlation function is calculated via fast Fourier 

transformation. The highest peaks identify the translation vectors producing favourable 

surface complementarity. 
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In this work, the electrostatics-based correlation function was used as a 

filter of the shape-based selected geometries. This allowed about 50% 

reduction of the number of geometries to be further evaluated. Other 

groups devised strategies to combine both steric and electrostatic 

approaches. Mandell et al.
42

 found that the use of composite  

convolution functions accounting for both steric and electrostatic 

properties increased the number of correct solutions for five tested 

protein–protein complexes. The binding geometry could then be 

identified as a cluster of predictions with favourable free energies.  

Chen et al.
43

 reached similar conclusions when examining an ensemble 

of 27 systems with the programme ZDOCK, using composite functions 

made of steric, desolvation and electrostatic components. The  

Eisenstein team
44

 used grids of complex numbers with a real part  

related to shape complementarity while the imaginary part contained  

low resolution information on electrostatics. Evaluating both the steric 

and electrostatic complementarity improved the docking results for all 

tested enzyme/inhibitor systems and improved the score of near-native 

antibody/antigen systems. In the last case however, inclusion of 

electrostatics produced many false positive solutions, thus decreasing  

the ranking of the near native solutions. The same group later  

improved the algorithm by introducing composite geometric–

hydrophobic scoring, particularly adapted to systems presenting large 

interfaces.
45

 

Another point of concern with the FFT methods is the production  

of many false positive solutions, i.e. predictions far from the correct 

complex structure but characterised by a high score. These solutions 

appear as a result of surface softening that permits getting free of 

localised artificial steric clashes arising from discretization, but at the 

cost of accepting real steric clashes. Accordingly, FFT methods were 

incremented by refinement phases where precision often increased up  

to the atomic level and where the discrete grid search was sometimes 

replaced by continuous approaches (Section 6.3.3.1). As already noted, 

production of–positive solutions is shared by most docking methods. 

They appear when working at low resolution or when implicitly taking 

into account slight conformational changes.  
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A third point concerns the necessity to repeat the FFT procedure for  

each possible relative orientation of the association partners. The 

programme Hex proposes an elegant solution to this problem, by 

introducing polar Fourier expansions of protein shape and electrostatic 

properties expressed in spherical coordinates.
30,46

 In this coordinate 

system, the six position degrees of freedom become five rotations and 

one inter-protein separation. For each separation value, the correlation 

between the functions associated to each protein partner can be 

calculated as overlap integrals. Hex is therefore a remarkably fast 

correlation method (in the order of minutes) that can also be extended to 

take limited amplitude conformational changes into account.
47

 

Finally, a drawback of FFT-based methods, inherent to this class  

of methods, is that the investigated volume has to be sampled in its 

totality. The programme BIGGER
28

 is a surface-matching programme 

based on a real space grid searching algorithm. By making efficient use 

of Boolean operators and heuristic rules, the complete search is 

performed in the order O(N
2.8

). Instead of using Fourier  

transformations, the algorithm stores the geometries with highest  

scores in a limited size memory stack (typically, 1,000 candidate 

geometries). The stored geometries are then re-evaluated using four 

criteria, surface matching, probability of occurrence of every observed 

contact between pairs of amino acids across the interface, electrostatics 

and desolvation. 

6.3.1.2 Geometric Surface Matching 

An alternative to the systematic positioning of partitioned proteins is  

to focus on surface matching and to exclusively generate those 

geometries that present localised surface match. In this case, the  

protein representation is a surface descriptor capturing the essential 

features of the surface in terms of concave and convex regions, their  

size and depth, and their relative locations on the surface. The first 

approach to this problem was proposed by Connolly, who represented 

the protein surface by ‘critical points’, describing ‘holes’ (maxima of  

the shape function) and ‘knobs’ (minima).
48,49

 Further adaptations were 

found necessary for this popular surface representation to be efficiently 



A. Saladin, C. Prevost 160 

used for protein–protein docking
50

 and to reduce the combinatorial 

complexity. Norel et al.
51

 showed that using pairs of Connolly critical 

points together with their surface normals permits to successfully  

tackle the combinatorial problem. Another solution consists in using  

the critical points to partition the protein surface into concave, convex 

and flat parts.
52,53

 The search for pattern matching is performed by 

geometric hashing: surface descriptors are stored in hash tables and 

checked for correspondence.
54

 

These methodologies developed by the groups of Wolfson and 

Nussinov are among the quickest docking programmes so far,  

permitting possible geometries of partner association to be scanned 

within minutes. They have a strong potential of evolution towards the 

resolution of more sophisticated docking problems. Indeed, a flexible 

docking version FlexDock, capable of docking proteins presenting  

large amplitude internal domain movements is already available at  

little additional computer time cost
53,55

 and a version dedicated to  

multi-component docking has also been released.
56

 The representation  

is not directly compatible with carrying out finer evaluation, which 

requires higher resolution representation and searching approaches.
57

 

Nevertheless, the methodology is a highly powerful screening tool to 

identify possible binding geometries. 

6.3.2 Guided Search Methods 

The second class of methods builds on exploration algorithms that are 

commonly used in molecular modelling to explore internal fluctuations 

of macromolecules, like energy minimizations (EM),
58

 molecular 

dynamics (MD)
15,37

 and Monte Carlo (MC)
32,59

 simulations, or genetic 

algorithms (GA).
60,62

 The partner representation is accordingly more 

detailed than for systematic search approaches. Typically, the guided 

methods use atomic representations together with a force field where 

each atom is attributed van der Waals parameters and a partial charge. 

The interaction energy is defined as a sum of pairwise van der Waals  

and electrostatic interactions to which are often added desolvation  

terms, as desolvation is an essential component of the free energy of 

protein association. The search is performed with respect to at least the 
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six positional degrees of freedom. Regions of the potential energy  

space that present minimum energy values correspond to favourable 

geometries of association. It is useful to keep in mind that the relative 

importance of the terms describing the interaction energy varies 

according to the distance separating the partners. At distances higher 

than 5 Å, the electrostatic term dominates.
63

 For some complexes like 

barnase-bastar, this term is an important component of the driving  

force of association and indeed, Camacho et al.
64,65

 have related the 

kinetics of association to the degree of electrostatic steering.  

Desolvation terms become significant when the partner proteins get 

closer, while van der Waals interaction terms are a determining part of 

the calculated interaction energy within closely packed complexes. In 

that case, slight misalignment of two atoms can result in a tremendous 

increase of the interaction energy. It has been necessary to specifically 

address that point when docking unbound proteins. 

This section first describes a typical example of guided docking 

method, based on MC search. As this family of docking methods is  

more time-consuming than systematic search methods, algorithms had  

to be specifically developed to spare computer time during the search. 

They are discussed in Section 6.3.2.2. In Section 6.3.2.3, we also  

discuss a particular aspect of guided search driven by experimentally-

derived data. 

6.3.2.1 Example of a Guided Search Programme: ICM-DISCO 

Figure 6.4 schematically describes the principal steps of an ICM- 

DISCO docking simulation. Programme ICM-DISCO, developed by  

the group of Abagyan, consists of a two-step procedure for exploring  

the potential energy space of the system.
59

 The first step is based on a 

pseudo-Brownian Monte Carlo search of the six degrees of freedom 

characterising the position of the ligand with respect to the receptor.  

Both protein partners are modelled in atomic representation and are 

considered as rigid bodies. The potential energy of the system is  

reduced to an interaction energy E, composed of the following terms, 

 

 E = Evw + E
el
/solv + Ehb + Ehp (6.9) 
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where Evw is the van der Waals interaction term, the electrostatic term 

E
el
/solv is a modified Coulomb term with distance dependent dielectric 

ε(r) = 4r corrected by the solvent accessible surface, Ehb is a hydrogen 

bonding potential taken as a Gaussian centred at hydrogen bonding  

sites and Ehp is an hydrophobic potential dependent on the buried 

hydrophobic surface area. The repulsive part of the van der Waals term  

is truncated in order for the Evw term to remain below a maximum  

value. Each of these terms is pre-calculated on a grid surrounding the 

receptor, which makes the calculation of Eq. 6.9 much faster
31

 (Section 

6.3.2.2). Starting from a given ligand position characterised by an 

interaction energy E0, a possible new position is generated at random, 

followed by energy minimization. The energy E of the resulting 

geometry is compared to E0 and accepted according to the Metropolis 

criterion.
66

 In the description by Fernandez-Recio et al.
59

 120  

simulations of 20,000 steps each are performed and all accepted 

conformations are merged and clustered according to root mean square 

deviation (RMSD) values, before being ranked by energy. The best 

energy cluster representatives are submitted to the second (refinement) 

step of the procedure, where the ligand side chains are now considered 

flexible. The values of their torsion angles are sampled along with the  

six positional variables, again using a Monte Carlo algorithm (see 

Section 6.3.3.2). In this docking programme, time reduction bears on  

the energy calculation, which is simplified by the use of grid  

calculation. Both the search and the refinement docking steps are based 

on the same precise protein representation, compatible with the final  

use of free energy estimate as a scoring function. Differences between 

the search stage and the refinement stage mainly reside in the  

definition of useful degrees of freedom and in the magnitude of MC 

steps. 

6.3.2.2 Speeding up the Calculation 

Grid calculation: Grid calculation is used in ICM-DISCO to 

decrease the computer time without sacrificing the precision of protein 

representation or scoring function. Typically, the potential induced by 

the receptor is pre-calculated at each point of a grid.
31,67

 This is done for 
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each of the energy terms described in Eq. 6.9. The van der Waals  

grid potential is calculated as the superposition of two potential grids, 

using either a hydrogen atom-sized probe or a carbon atom-sized probe 

at each grid point. As for any simplifying method, the use of grid 

potentials induces a loss in resolution. 

 

Fig. 6.4. Schematic representation of the ICM-DISCO docking strategy, after Fernandez-

Recio et al.
31

 Contributions to the scoring function are calculated at each node of a grid 

potential. The rigid body docking is based on a Monte Carlo/minimization sampling of 

the ligand position. The best candidate predictions are refined by including flexible 

interface side chains and sampling possible conformations (Monte Carlo) while 

optimising the ligand position. 

Particularly, calculation errors increase when the two partner proteins  

get closer. The resolution loss may in fact present an advantage since it 

smoothes the potential energy surface, whereas the consequent ranking 

errors or the generation of false–positive predictions can be corrected  

at the refinement stage. However, the methodology remains dependent 
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on possible conformational changes of the receptor that may modify  

the potential at the grid points. 

 

Coarse graining: An alternative to discretizing the energy 

calculation consists in simplifying the protein representation. Coarse 

grain (CG) models group several heavy atoms into larger beads, thus 

cutting the number of particles to be considered in pairwise  

electrostatic or van der Waals calculations.
68

 In addition to speeding up 

the docking calculations, reduced protein representations are coupled  

to simplified force fields that smooth the conformational energy 

landscape. The first coarse grain model ever used in docking  

calculations was the Levitt model,
69,70

 used in the Wodak and Janin 

pioneering study.
4
 In this model, each amino acid is represented by a 

bead equivalent to its time-averaged structure. A simplified protein 

representation is also used by the group of Baker in the initial rigid- 

body search step of RosettaDock.
32

 In this case, each amino acid side 

chain is represented by a centroid pseudoatom placed at an average 

position determined from a PDB survey.  

The Zacharias model developed in 2003
58

 emphasises on obtaining 

faithful reproduction of the volume occupied by the protein, in a 

perspective of surface matching. Accordingly, in addition to beads 

centred on each Cα atom, amino acid side chains are represented by  

one to two beads with van der Waals radius that reflect the size  

occupied by the component atoms. The reduction factor is one bead per 

four to five heavy atoms (Fig. 6.5). Electrostatics representation is 

limited to full charges placed on the terminal bead of charged amino 

acids and the scoring function is taken as an interaction potential 

between the two partner proteins, summing a Coulomb term for 

electrostatics and a smoothed van der Waals term. This representation 

permits multi-minimization docking search, starting from tens of 

thousands initial configurations of the ligand, to be performed in  

several hours with the ATTRACT programme. Note that the search 

method is particularly well adapted to additional time cuts since the 

minimization calculations can be independently distributed on several 

processors with a scaling close to linear.
71
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The approach has recently been extended to treating protein–nucleic  

acid complexes.
72

 Coarse-grained models offer a direct correspondence 

with the atomic model they are based upon. They are therefore 

compatible with an easy passage to atomic scale, which however 

necessitates correct sampling of side chain adjustments. Flexibility can 

be introduced in CG models, notably by representing flexible parts  

with conformational ensembles.
73

 There is presently a renewed interest 

for such low resolution representations, considered as promising new 

generation models for dealing with huge molecular assemblies.
68

 A  

large effort is being devoted to developing accurate force fields
74,75

 and 

physical degrees of freedom accounting for protein or nucleic acids 

internal flexibility.
76 

 

 

 (a) (b) 

Fig. 6.5. Reduced protein representation used in the ATTRACT docking programme.
58

 

(a) Example of a tyrosine residue represented by three beads, one centred at the Cα 

carbon and two beads for the side chain. (b) Van der Waals representation of the trypsin-

BPTI complex respectively in atomic and in reduced representation. The main features of 

the accessible surface are conserved. 

6.3.2.3 Data-driven Methods 

When available, information on the residues pertaining to the binding 

interface can be a potent driving force for guided methods. The 

programme HADDOCK
37

 is worth mentioning for its particular use of 

guided methods, particularly those developed for Nuclear Magnetic 

Resonance (NMR) structure refinement. HADDOCK was initially 
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designed for the cases where information permits to identify residues 

pertaining to the interface, without precisely knowing which residues  

of their partner they interact with. NMR provides such information  

when comparing chemical displacements in the bound and free forms  

of a same protein.
77

 But the information can come from biochemical or 

biophysical results as well.
78

 It is translated into a set of ambiguous 

interaction restraints (AIR), used to guide the ligand approach during a 

first rigid body MD search phase. From that point on, the search is 

limited in space in the vicinity of the contact interface of the best 

solutions (typically, 200 best solutions). This restriction allows  

addition of internal degrees of freedom to the six initial search  

variables, during subsequent internal coordinate simulated annealing  

MD processes where side chains are free to adapt their conformation  

and main chain deformations are possible. In order to cope with the 

possibility that some of the data may not be pertinent for interface 

identification, random subsets of AIRs are sequentially used. Note that 

HADDOCK’s emphasis on flexibility places it within the flexible 

docking class of methods. More information can be found in Chapter 7 

specifically devoted to that question. 

More generally, taking advantage of even limited information on 

interface residues appears as one promising route to increase the 

accuracy of docking methods and, further, to extend them towards 

flexible docking.
15

 Data-based information has already been  

incorporated into docking strategies to bias the search
79–81

 or to filter  

out false positive predictions.
12,40,62,82 

It can also be a direct component  

of the scoring function, at initial
83

 or final
33

 stages of docking. 

Availability of robust and reliable prediction of interface regions  

should permit to focus the search on regions of interest, in a strategy 

reminding popular methods for small ligand docking that require 

preliminary identification of putative binding pockets.
84,85

 A number of 

investigations are under way to predict interface residues, based on 

Evolutionary Trace analysis,
63,86-88

 interface property analysis
89,90

 or 

knowledge-based methods.
91–93 
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6.3.3 Refinement 

In most docking programmes, the search phase is followed by a 

refinement step (see Fig. 6.6). The main reason is that scoring  

functions are not presently capable of correctly ranking the predictions, 

or even distinguishing false–positive predictions from correct ones, at  

the level of resolution necessary to perform a complete search (see 

Section 6.3.4). Typically, only the best predictions are concerned by  

the refinement step, hundreds out of tens of thousands predictions, 

generally selected among representatives of clusters of solutions. 

Refinement can be performed independently of docking procedures
57,94

 

and this is specifically addressed in Chapter 9 of this book. However,  

as it constitutes an intrinsic part of several docking strategies presented 

here, we rapidly discuss how it is incorporated into these methods. 

6.3.3.1 Increasing the Resolution 

A first possibility for refining a prediction is to reproduce the search 

process at higher search resolution while using a more precise scoring 

function. For discrete search processes, this means reducing the search 

volume and the search step. For example, FFT docking can be  

performed in a reduced volume around the geometry to be refined,  

using finer translation and rotation increments.
25

 This process allows 

elimination of a great part of the false–positive predictions. Further 

refinement may require changing for a continuous search process like 

local energy minimization.
95,96

 

6.3.3.2 Accounting for Side Chain Conformational Change 

These steps may be sufficient to solve docking problems of the bound 

type. In the unbound case however, soft representations are generally 

unable to account for conformational change of long side chains, 

occurring preferentially at protein-protein interfaces.
22

 A notable 

exception is found in the programme BIGGER, where such induced 

deformations are implicitly accounted for in a way compatible with the 

simplified representation used in the search phase.
28

 BIGGER  

partitions the proteins between inside, outside and surface regions and 
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penalises the superposition of inside regions. To take long surface side 

chains into account, the regions they occupy are simply given an 

‘outside’ status, thus avoiding that steric clashes due to side chain 

rotation may eliminate a correct geometry. In the general case, the 

passage from a soft docking approach to a representation where the 

details of the protein surface are restored requires to explicitly account 

for side chain conformational changes induced by complex  

formation.
96

  

Searching the space of side chain conformations is often performed 

in internal coordinate representation, where the degrees of freedom are 

side chain torsional angles. MC simulations are well adapted to such 

search and have been used in various refinement procedures.
59,83

 An 

alternative method consists in searching the side chain conformations 

among a panoply of amino acid rotamers, where rotamers are side  

chain conformations that are found with a high propensity in the  

Protein Data Bank. Rotamers are searched either sequentially,
58

 or they 

can be taken into account as an ensemble and treated by the mean field 

theory
95

 or using a linear programming formulation.
94

 In any case, side 

chain sampling needs to be coupled with adjustments of the protein 

relative position. 

The combination between position search and exploration of side 

chain conformation is critical for the success of a docking  

programme
83

 since incomplete exploration can lead to incorrectly 

ranking the docking predictions (Fig. 6.6). In RosettaDock, the Baker 

group proposes a perturbation-based protocol to fully relax a given 

complex geometry.
83

 It consists in generating numerous starting points 

around the ligand for launching a series of minimizations with periodic 

MC sampling of the side chains. Introduction of this final refinement 

process in the RosettaDock protocol dramatically improved the ranking 

of putative solutions and therefore the overall docking efficiency.
32,97

 

6.3.3.3 Explicit Solvation 

Finally, another element that plays an essential role for the stability of 

protein–protein complexes is the hydrated environment.
98

 Water 

molecules play a role not only as a dielectric medium and a component 
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of hydrophobic interactions, but also individually via hydrogen bond 

bridging interactions at the interface.
98–100

 Few groups have proposed 

solutions to explicitly account for solvation in docking methods. The 

group of Sternberg
95

 implemented a method based on dipole 

representation interacting with the association partners during the 

refinement phase. Van Dijk et al.
101

 mimics desolvation within the 

encounter complex by allowing water molecules initially present in the 

first water shell to be expelled during optimization of the complex,  

using a biased Monte Carlo procedure. 

 

Fig. 6.6. Schematic representation of the refinement procedure. The thick line represents 

the potential energy surface along a given coordinate, obtained at low resolution using a 

soft scoring function. Increasing the resolution in terms of protein representation, step 

size of the search or scoring function reveals the details of the potential energy surface 

(thin line) and allows distinguishing the native state of the complex from false positive 

solutions.  
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6.3.3.4 Hierarchical Approaches 

In order to optimise both the efficiency of exploration and the 

computation time, the two-step approach comprising a search step 

followed by refinement can be extended to hierarchical multi-scale 

strategies. RosettaDock is a representative example of such a  

strategy.
83 

The initial phase of extensive rigid body MC search is 

performed at low resolution (see Section 6.3.2.2), using a rough amino-

acid based scoring function comprising a statistical residue  

environment and residue–residue interaction potential, with a penalty  

for overlapping residues. This score is used to eliminate geometries 

below a given threshold. The geometries that pass the low resolution 

filter are treated at finer resolution using more precise scoring function. 

The resolution is increased by adding flexibility to the side chains and 

submitting the structures to series of relaxations (small variations in 

displacement and orientation followed by MC cycles of side chain 

repacking and rigid body minimization, see Section 6.3.3.2), whereas  

the scoring gets closer to a free energy function. Each new step  

towards precise resolution permits to ‘dig’ the potential energy surface, 

thus revealing free energy minima that can finally be ranked by energy 

values (Fig. 6.6). 

6.3.4 Scoring the Predictions 

Scoring is an essential component of docking strategies. While a 

necessary condition for successful docking is that extensive search 

should generate complex geometries close to the native one, the  

scoring function must be able to identify those structures among the 

thousands generated structures. 

In theory, the ideal scoring function permitting to distinguish  

correct geometries of association from incorrect ones is the free  

energy, directly related to the dissociation constant of the predicted 

complex. In practice, this quantity is very difficult to access  

theoretically and its calculation requires large computer  

resources.
102,103

 Consequently, the scoring functions used in docking 

programmes are at best free energy approximations, based on robust 
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formulations that have been trained on a number of systems. Eq. 6.10 

lists the terms entering the composition of a free energy-like function  

in ICM,
31

 

 

E = ω0Eint + ω1Evw + ω2E
solv

/el + ω3Ehb + ω4Ehp + ω5E
solv

/SA + ω6Econfig 

  (6.9) 

where Eint is a sum of van der Waals, electrostatics (Coulomb term  

with distance dependent dielectric function ε(r) = 4r) and torsional 

potential energy terms, Evw , Ehb , E
solv

/el and Ehp are the terms defined  

in Eq. 6.9 with the difference that Evw is no more truncated, E
solv

/SA is a 

surface based solvation energy and Econfig is a term for side chain 

configurational entropy. The weights ω0 to ω6 can be adjusted to  

optimise the ranking of docking predictions.
104

 

As mentioned earlier, using atomic free energy scoring functions  

like that presented in Eq. 6.10 necessitates the predicted structures to 

reach X-ray levels of resolution, which can be obtained only via 

thorough exploration of the side chain conformations, coupled to  

protein fine positioning. While this strategy has led to successful 

results,
32,59

 the search for robust scoring functions capable of correctly 

ranking low resolution predictions remains an important challenge for 

the docking community, so as to avoid the time-consuming phase of 

structure optimization.
34

 A strong effort is being devoted to this 

challenge. This issue is reviewed in Chapter 9 of this volume. 

6.4 Evaluation of the Docking Methods 

From the beginning of its development, the protein–protein docking 

community has decided to organise a common evaluation process.
105

 

This is one important key for the strength of this discipline. Initiated in 

2001 and managed since then by leading docking developers (John 

Moult, Joel Janin, Ilya Vakser, Kim Henrick, Lynn Ten Eyck, Michael 

Sternberg, Sandor Vajda and Shoshana Wodak), CAPRI is a  

community wide experience aiming at evaluating the docking methods 

on the basis of blind predictions trials (see http://www.ebi.ac.uk/msd- 
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srv/capri/index.html). In addition to the CAPRI experience,  

benchmarks for protein–protein docking have been proposed to the 

community for training their docking programmes on a common basis. 

Docking methods that actively participate in CAPRI rounds are listed  

in Table 6.1.  

6.4.1 The CAPRI Experience 

Sixteen rounds of CAPRI have been run between 2001 and 2008, 

summing up to 37 targets. The targets are protein–protein complexes 

with structure recently determined but not yet released. Rounds are 

launched each time structural biologists bring a target to the CAPRI 

management team, i.e. they willingly accept to wait for the round to be 

closed before releasing a newly-solved structure by crystallography or 

NMR. CAPRI has recently opened its field of applications to protein–

nucleic acid complexes. As far as possible, unbound structures of the 

partner proteins are provided to the predictor groups. This was not 

always possible in the first CAPRI rounds and 12 out of 16 targets of 

CAPRI rounds 1 to 5 had one of their partners supplied in the bound 

form.
6,7,11,12

  

More recently, target structures had to be modelled from 

homologous proteins by the participant groups (targets T11, T20 and 

T24
11,106

). Predictors are given between one and four weeks to propose 

ten ranked predictions. They can use any means they judge necessary  

in addition to their docking programme, like for example experimental 

information on the location of the docking interface, or the use of 

specifically human skills like visual appreciation. Note that in one 

occasion, the complex between pancreatic-amylase and camelid 

antibody, (targets T04 and T05
7
), the complementarity determining 

regions (CDRs) that were expected to be part of the binding region  

were not involved in the interaction, leading all predictor groups to  

select a wrong geometry of association. Some groups have developed 

servers that perform calculations and select the ten predictions without 

any human interference: ClusPro
107,108

 and more recently SKE- 

DOCK,
109

 PatchDock
110

 and GRAMM-X
111

 have participated in  

CAPRI rounds. RosettaDock,
81

 recently released as a server,
112

 has  
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been used as a third-party programme constitutive of docking  

strategies developed by different groups
82,97,113

 (see Table 6.1). 

Successes and failures: The submitted predictions are evaluated after 

the consensus criteria described in Table 6.2, once predictions  

presenting too many steric clashes have been eliminated.
7
 They are 

classified as high, medium, acceptable or incorrect solutions depending 

on the fraction of correctly predicted native contacts fnat, on the ligand 

backbone root mean square displacement L_rms between the predicted 

and target conformations, after superposition of the receptors, and on  

the RMSD limited to the interface residues I_rms.  

Table 6.1. Characteristics of the main docking programmes in CAPRI. 

Programme Search 

method  

Protein 

representation 

Website Ref. 

3D Dock correlation: 

FFT 

discrete http://www.bmm.icnet.uk/docking/ 40 

ATTRACT 

(PTOOLS) 

guided: mult-

minimization 

coarse grain http://www.ibpc.fr/chantal/www/ptools/ 58 

BIGGER systematic discrete no web site supplied 114 

CLUSPROa
 correlation: 

FFT
b
 

discrete http://nrc.bu.edu/cluster/ 107 

DOT correlation: 

FFT 

discrete  http://www.sdsc.edu/CCMS/DOT 42 

GRAMM-X  correlation: 

FFT  

discrete  http://vakser.bioinformatics.ku.edu 

/resources/gramm/grammx 

111 

HADDOCK guided: data-

driven, MD  

atomic http://www.nmr.chem.uu.nl/haddock 37 

Hex  polar FFT 

expansion 

discrete http://www.csd.abdn.ac.uk/hex/ 30 

ICM-Disco  guided: MC 

minimization  

atomic  http://www.molsoft.com/icm_pro.html 59 

MolFit  correlation: 

FFT  

discrete  http://www.weizmann.ac.il/Chemical_ 

Research_Support/molfit/ 

45 

PatchDock  geometric  surface  http://bioinfo3d.cs.tau.ac.il/PatchDock 110 

RosettaDock guided: MC 

minimization  

coarse grain to 

atomic 

http://graylab.jhu.edu/docking/rosetta 32 

SKE-DOCK  geometric  surface http://www.pharm.kitasato-

u.ac.jp/bmd/files/SKE_DOCK.html 

109 

ZDOCK
c
  correlation: 

FFT  

discrete  http://zdock.bu.edu/software.php  43 

Bold entries in the first column correspond to programmes that can be run on a web 

server. 
(a) 

Refined with SMOOTHDOCK. 
(b) 

Uses DOT or ZDOCK as search methods;  
(c)

 Refined with RDOCK. 
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Additional descriptors of the prediction accuracy can be found in the 

CAPRI website (http://www.ebi.ac.uk/msd-srv/capri/): fraction of non-

native contacts fnon-nat, fraction of native interface residues f(IR) for the 

ligand and for the receptor, fraction of non-native interface residues 

f(OP), interface surface area IA, distance between the geometric  

centres of the predicted and the target ligand conformation d(L), and 

angle mismatch theta(L) between the predicted and target ligand 

orientation. 

If one excludes one cancelled round (due to accidental structure 

disclosure), 24 targets that have been submitted for prediction have  

given way to published evaluation up to now. The overall progression  

of the field cannot be easily depicted as the target complexity has  

notably increased along the rounds and most recent targets present  

some type of flexibility. It can nevertheless be observed that from  

target T06 on, all bound/unbound targets have given way to at least 1  

and up to 21 high quality prediction, with the exception of target T18 

showing a flexible interface loop. Alternatively, the results for 

unbound/unbound targets continue to be highly dependent on the  

degree of surface remodelling between unbound and bound forms of  

the partners. Encouragingly target T11, where dockerin was modelled  

by homology and cohesin was an unbound structure, gave way to 

medium quality predictions. This indicates that the docking methods  

are sufficiently robust to predict low resolution models starting from 

approximate structures of the compounds when the amplitude of 

backbone conformational change at the interface is low (which is the 

case for T11). 

Table 6.2. Quality criteria for CAPRI predictions. 

Rank fnat L_rms or I_rms 

High  > 0.5 < 1.0 or  < 1.0 

Medium > 0.3 1.0 < x < 5.0 or  1.0 < x < 2.0 

Acceptable > 0.1 5.0 < x < 10.0 or 2.0 < x < 4.0 

Incorrect  < 0.1    

Reproduced from Mendez et al.
7
 fnat, L_rms and I_rms are defined in the text. In 

addition to the fnat criterion, either the L_rms or the I_rms criteria must be fulfilled to 

determine the rank. 
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Scoring in CAPRI is a new branch of the CAPRI experience, initiated  

in 2005 starting from round 8, exclusively focusing on scoring. The  

idea came from the observation that good quality predictions generated 

by a docking method are sometimes overlooked at the scoring level.  

The principle of the scoring experience is to take advantage of the 

thousands of predictions generated by all predictor groups during the 

search and refinement phases to evaluate the scoring procedures. 

Predictor groups are invited to share their generated structures with the 

rest of the community and the scoring participants have one week to 

extract ten correct solutions from the merged generated structures. Up  

to now, the scoring contest has given rise to only one evaluation.
13

 

Globally, the scoring predictions were enriched in acceptable or  

medium grade solutions with respect to docking predictions, however 

high grade solutions that were included in the merged ensemble were 

lost. 

6.4.2 Docking Benchmarks 

Independently of the CAPRI experience, protein–protein docking 

benchmarks have been published,
115–117

 recently incremented by a 

protein–DNA docking benchmark.
118

 These benchmarks contain all  

non-redundant complex structures found in the PDB for which the 

unbound structure of independent protein partners is available. There  

are presently 124 four such structures in the PDB for protein–protein 

complexes, which have been classified according to the biological 

function and the degree of docking difficulty. Benchmarks are useful  

to extensively test docking programmes, methodological developments 

or scoring functions against a variety of systems and complexity levels, 

from small rigid to huge flexible complexes.
23,83

 

6.4.3 Challenges 

CAPRI evaluation has allowed identification of three challenges to be 

faced by developers. The first one concerns the capacity of correctly 

scoring the generated predictions. This issue has already been  
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discussed in Sections 6.3.4 and 6.4.1 and is specifically addressed in 

Chapter 9. The second one is related to multi-component docking, i.e. 

predicting the 3D structure of assemblages containing several proteins  

or nucleic acids. For the moment, CAPRI has only addressed one 

particular class of multi-component docking, which is oligomeric 

assemblage. For target T10 consisting of the trimeric form of the coat 

glycoprotein E of the encephalitis virus,
119

 predictors used symmetry 

restraints to reduce the search complexity.
11

 The groups of Wolfson  

and Nussinov have proposed an efficient general treatment of multi-

component docking using geometric hashing
56

 (Section 6.3.1.2). The 

programme independently docks pairs of proteins, before assembling 

only the two-protein solutions that present spatial compatibility. 

In addition to the computational performance for dealing with such 

high combinatorial complexity, an interesting observation is that the  

two-protein solutions that finally lead to the correct geometry of the  

total system are often poorly ranked in the preliminary binary docking. 

Similar results were found by Saladin et al. using a multi-component 

version of ATTRACT and a coarse grain representation.
71

 

Finally, the third challenge facing docking developers is flexibility. 

About a quarter of the complexes found in the protein–protein 

benchmarks or among the CAPRI targets present large amplitude 

conformational changes induced by the complex formation. Whether 

they concern loop refolding, domain movement or unfolding–folding 

events, these conformational changes generally result in remodelling  

the protein interface. As a consequence, the correct geometry is bound  

to be rejected during the initial search phase by most docking 

programmes, notably those that concentrate the search on detecting 

surface complementarity. Novel approaches are therefore developed to 

tackle this problem.  

6.5 Conclusions and Outlook 

We presently witness an outburst of the protein–protein docking field, 

due to a convergence of the post-genomic era that unravelled a huge 

quantity of genomic sequences with unknown associated protein 

function, and to the progress of computer technology and algorithms. 
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The first purpose of this field is to fill the gap between the huge  

number of three-dimensional (3D) structures of isolated proteins found  

in the Protein Data Bank (about 50,000 in 2008) and the small number  

of 3D structures of complexes (thousands). Novel algorithmic  

strategies have been developed to face the complexity of extensively 

searching the possible position/orientation of the protein partners. 

Several types of low resolution protein representations have been 

investigated and present interesting possibilities, inclusive for  

flexibility issues. Such representations open promising perspective for 

the prediction of huge macromolecular assemblies. 

In the present state of the art, assessed by the CAPRI experience, 

good prediction results are obtained for systems that do not present  

high amplitude backbone conformational change between the free and 

bound forms. They are borne upon scoring functions that are efficient  

at atomic level provided that the side chain packing has been  

optimised. Promising lines of investigation bear on the development of 

scoring functions able to discriminate the correct complex geometries 

even at low resolution, and on methods accounting for possible  

interface remodelling, i.e. that can explore internal conformational 

change simultaneously to the exploration of relative position/orientation. 

Preliminary detection of putative interface regions on each association 

partner should favour the generalization of flexible docking strategies in 

docking methods. 
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Advances in biophysics and biochemistry have pushed back the limits 

of structural characterization of biomolecular assemblies. Mixing even 

a limited amount of experimental and/or bioinformatic data with 

modelling methods such as macromolecular docking represents a 

valuable strategy to predict 3D structures of complexes. In this chapter, 

we discuss and illustrate the various sources of data that can be used for 

this purpose, with emphasis on their combination with docking 

methods. Finally, we discuss the place of data-driven docking in the 

modelling of the 3D structures of biomolecular assemblies. 

7.1 Introduction 

Considering the wide efforts during the last decades in genomics, 

proteomics, metabolomics and other related fields, the science of the 

molecular biology of the cell is in a state of explosive growth. Coping 

with this large amount of information is the present-day challenge of the 

molecular biology of the 21st century.
1
 As a consequence, structural 

biology is drifting towards systems biology, linking molecules to systems 

and trying to understand how the biomolecular units work together to  
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fulfil their task.
2–4

 Systematic, high-throughput analysis of proteomes has 

led to the characterization of many complexes.
5–8

 These complexes are 

however often only known in the sense that their constituents have been 

determined, but their three-dimensional (3D) structures are most of the 

time unknown and it will probably take years before high-resolution 

structures of most of them are available.
9
 To overcome experimental 

difficulties surrounding the structure determination of complexes, 

computational approaches such as molecular docking became a 

paramount alternative to gain atomic insight into their structure.
10

 

Docking methods generate a model of a complex based on the known 3D 

structures of its own components.
11,12

 To produce the best models, 

emerging methods aim at combining the atomic structures of the 

individual components with a mixed bag of experimental data.
13,14

 For 

instance, biochemical and biophysical experiments are widely used to 

derive structural information on biomolecular interactions. Combining 

these data with docking seems an obvious path to follow considering the 

large number of known 3D structures of single proteins. By combining 

external information with modelling techniques such as docking, the 

hope is to ‘spark’ the biomolecular rendez-vous and somewhat decrease 

the gap between the number of known structures of complexes and of 

their constituents. 

Conventional crystallography and NMR structural biology 

techniques, which have achieved in the past great successes with 

membrane associated proteins
15–18

 and large macromolecular 

complexes,
19–21

 are often confronted with challenges when dealing with 

weak or short-lived complexes. These are often of the utmost biological 

importance. X-ray crystallography is the most common technique for the 

structural analysis of proteins and protein complexes, and remains the 

‘gold standard’ in terms of accuracy and resolution.
13

 Crystallography, 

however, requires milligram quantities of a pure and monodisperse 

sample and its crystallization, which is far from trivial, especially for 

complexes. NMR spectroscopy is also widely used for the determination 

of atomic structures of single proteins or domains thereof 
22

 (currently 

~14% of the Protein Data Bank
23

). It has proven particularly useful in the 

identification of residues involved in biomolecular interactions.
24

 The 

main limitation for NMR is that large complexes cause severe line 
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broadening which narrows its applicability to ~80 kDa.
25,26

 Moreover, 

collecting structural restraints as NOEs for large systems as well as 

transient complexes requires a considerable effort. 

In this chapter, we focus on docking approaches which rely on the 

use of biochemical and/or biophysical data to guide their prediction. We 

will not discuss the methods which use experimental information only as 

an a posteriori filter to validate or reject models. Our discussion will 

further be limited to macromolecular complexes, omitting protein-small 

ligand complexes; however, much of what is presented here is also valid 

for that class of complexes. For a review on ‘guided docking’ for 

studying protein–ligand complexes, see Ref. 27.  

The chapter is organised as follows. For each critical issue specific to 

the problem of biomolecular complex structure prediction, we list the 

different sources of experimental and/or bioinformatic data which can 

provide help to tackle the problem. Then, we explain how they are 

implemented in our data-driven docking program HADDOCK (High 

Ambiguity Driven DOCKing)
28–30

 to support the prediction procedure. 

We also discuss the position of data-driven docking in the field of 

computational methods for modelling structures of protein complexes, 

with references to the Critical Assessment of PRedicted Interactions 

(CAPRI) experiment.
31,32

 CAPRI is a ‘blind’ docking experiment in 

which participants have a limited time to predict the structure of a 

complex given only the structures of the constituents. Finally, we 

conclude with an outlook on what could be the future potential of this 

technique. 

7.2 Stoichiometry and Composition 

To determine the structure of a biomolecular complex, one first needs to 

know which components are interacting and in which proportion (Fig. 

7.1). This is also the first requirement to run a docking simulation: who 

is interacting with whom and in how many copies? From this only 

knowledge, a molecular ab initio docking simulation can be performed. 

Information about the composition and stoichiometry of a complex is 

non-trivial to obtain and should be interpreted with care in order to avoid 

high false–positive rates. 
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Fig. 7.1. Overview chart of the main issues addressed to the field of biomolecular 

complex structure prediction. The last column summarises the experimental methods 

commonly used to come up to each specific problem. The biomolecular complex used to 

illustrate this table is the solution structure of the Josephin domain of Ataxin-3 in 

complex with ubiquitin molecule (PDB code: 2JRI). This complex was generated with 

HADDOCK using CSP data.
156

 Pictures generated with Pymol.
157  

The stoichiometry and composition of protein subunits in an assembly 

can be determined by several methods such as quantitative 
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immunoblotting and mass spectrometry. For a stable complex, measuring 

the molecular weights of the native assembly and the constituent chains 

on gel electrophoresis under denaturing conditions represents an accurate 

and easy reproducible technique to determine efficiently these 

parameters. Affinity purification
33,34

 which combines the purification of a 

protein complex with the detection of its individual components by mass 

spectrometry, was a breakthrough in the high-throughput analysis of the 

subunit stoichiometry of biomolecular complexes.
35–37

 More problematic 

is the study of transient interactions because of their dynamic properties. 

Indeed, the equilibrium between bound and unbound forms hampers their 

purification and makes them hard to keep intact for mass spectroscopy 

detection. To overcome such limitations, it is usually possible determine 

first the interacting partners by the yeast two-hybrid system,
38,39

 

Fluorescence Resonance Energy Transfer (FRET)
40,41

 or Protein 

Fragment Complementation Assay (PCA): these techniques consist of 

fusing two halves of a split reporter to two proteins of interest; if a signal 

is detected, it means that the reporter properly folded as a consequence of 

the interaction of the fused proteins).
42

 Once the composition of the 

complex is known, it is then time to tackle the question of its 

stoichiometry. One method consists of strengthening the interaction by 

introducing chemical cross-links between the components and detecting 

the complex by electrospray ionization mass spectrometry.
43,44

 

Fluorescence Fluctuation Spectroscopy (FFS), in which proteins are 

labelled with fluorescent tags, allows real time monitoring of the 

interactions: by brightness analysis, clues can be obtained to quantify the 

stoichiometry of protein homo- or hetero-complexes in living cells.
45

 The 

stoichiometry of a complex can also be determined from titration 

experiments in conventional NMR spectroscopy; this method however 

provides much more information on the protein interfaces as will be 

discussed later. 

Thinking now in terms of docking, knowledge of the stoichiometry is 

obviously the first prerequisite to start a prediction. While the nature of 

the components involved in a complex formation is usually well known, 

their exact stoichiometry is not always reliable, which can cause serious 

problems in the modelling process. This is an important issue that should 



Data-driven Docking 187 

be sorted out before starting any docking studies, irrespective of the 

modelling method chosen. 

7.3 Shape of a Biomolecular Complex 

‘Powerful as single methodologies may be, they are enhanced when 

applied in judiciously integrated combinations.’
46

 This statement, which 

could refer to the data-driven docking methodology, highlights the recent 

successes in the integration of low-resolution technique data to refine the 

comprehensive analysis of large and dynamic macromolecular machines 

studied by primary X-ray diffraction and NMR experimental techniques. 

Therefore, while the techniques detailed below are usually described as a 

low-resolution structural techniques, it is perhaps more appropriate to 

describe them as high precision technique for determining large distances 

or molecular envelopes (see Fig. 7.1), that can act as very tight restraints 

in the modelling of bio-macromolecules 3D structure.
47,48

 The modelling 

or refinement procedures using both ‘low’ and ‘high’ resolution 

techniques for structural determination of a macromolecular assembly 

are commonly referred to ‘hybrid methods’.
49

 

A first technique to investigate the organisation of a complex is 

Small-angle X-ray Scattering (SAXS). This technique yields information 

on the structure of a multi-body system in terms of average component 

sizes and shapes. It is usually performed in aqueous solution leading to 

an averaging of the scattering pattern. SAXS, which is applicable to 

macromolecules of nanometer size dimensions, is accurate, mostly non-

destructive and usually requires only a minimum of sample preparation. 

It provides a low-resolution model of a protein and can be used to fit 

separate domains solved at atomic resolution into a ‘SAXS envelope’. 

Even though small-angle scattering is not applicable to determine the 

atomic positions within the molecule, the current size limits of this 

technique (50–250 kDa) makes it suitable for the study of biomolecular 

complexes, and complementary to cryo-electron microscopy (cryo-EM) 

(lower size limit ~110 kDa
50

) or NMR spectroscopy (upper limit ~80 

kDa
25

). In addition, it is quite fast (a few days at most for acquisition and 

interpretation of the data) compared to other structural methods. 

Recently, a few methods have been proposed to assemble high resolution 
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NMR structures of domains based on a ‘SAXS filter’.
51–53

 In another 

study, SAXS data were combined with NMR, X-ray and electron 

microscopy data to reconstruct the quaternary structure of a multi-

domain protein.
54

 

Electron crystallography
55

 and single-particle electron microscopy 

(cryo-EM/TEM) can also be used to reveal the shape and symmetry of an 

assembly, sometimes at near-atomic resolution,
56

 but more frequently at 

an intermediate resolution. When the object of interest is a complex for 

which a cryo-EM density map has been obtained at moderate resolution 

(~ 10–25 Å) and high resolution structures for individual subunits are 

available, the resolution of the complex may be leveraged by fitting the 

components into the density map with an accuracy approaching one-

tenth the resolution of the EM reconstruction.
57,58

 Finally, Electron 

Tomography (ET), based on multiple tilted views of the same object and 

its reconstruction, can also be used to study the structure of 

macromolecular assemblies despite its relatively low resolution (in the 

range of 20–40 Å).
59

 This technique has the advantage of being truly 

single-particle: the structural information it delivers is derived from a 

single instance of the molecule, and offers important benefits in dynamic 

applications such as the study of flexible proteins and conformational 

changes that occur during binding interactions between proteins.
60

 

These experimental techniques are very promising in combination 

with docking as they provide spatial information on the organisation of 

the biomolecular complex.
61

 Most studies have treated the fitted 

components as rigid bodies,
62–64

 but discrepancies can be encountered 

that require adjustments in the components (‘flexible docking’).
65,66

  

 

7.4 Nature of the Interface: Which Residues are Engaged in  

a Date? 

While the techniques described above can provide essential information 

on the nature of the interacting subunits and the overall shape of their 

assembly, knowledge about which specific residues are involved in the 

interaction is much more valuable to drive the docking prediction. 

Several experimental techniques can give insights into the residues 
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located at the interface of a complex. Critical issues in this case are the 

level of detail (e.g. are the data residue-specific or not?) and the 

reliability of the information (e.g. are we observing a direct or an indirect 

effect?). Notwithstanding these limitations, we discuss here the different 

techniques commonly used to investigate the interface of a complex (Fig. 

7.1). 

A well-known approach to obtain information on residues at an 

interface is site-directed mutagenesis.
67

 Single-mutagenesis studies 

measure the change in binding affinity after the mutation of a particular 

residue (see Fig. 7.2). If the mutation affects the interaction, it suggests, 

but does not guarantee, that the mutated residue mediates the interaction. 

In contrast, a ‘silent’ change on the binding affinity does not necessarily 

mean that the residue is not located at the interface, as it may simply not 

contribute much to the binding energy or be substituted by water or 

surrounding side chains.
68

 Another possibility is that the mutation causes 

a conformational change and, as a consequence, the binding affinity 

change could thus reflect an indirect effect and potentially be 

misinterpreted. Assuming that no such problems occur, mutagenesis can 

depict a very sensitive map of the interface of a biomolecular complex.
69

 

Target residues for mutagenesis can be selected based on evolutionary 

knowledge or systematically scanned as in alanine scanning mutagenesis 

studies.
70

 Many experimental methods can be used to find out whether a 

given mutation influence complex formation, such as various binding 

assays, surface plasmon resonance, mass spectrometry, yeast two-hybrid 

systems and phage display libraries. More detailed information can be 

obtained using so-called ‘double mutant cycles’.
71

 After the creation of 

series of mutants for both proteins, one can assess whether the influence 

on complex formation of mutation X in protein A depends on mutation Y 

in protein B. This is done by measuring Kd values for combinations of 

mutants. If a dependence is identified, the mutations are said to be 

coupled and one infers that the residues are close in space, i.e. that they 

are in contact or at close proximity across the interface. 
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Fig. 7.2. Illustration of the various experimental data that can be combined with docking 

to restrain the interaction surface definition. The puzzle pieces are representing the two 

components of the complex. Mutagenesis: the arrow on the cyan puzzle piece indicates 

the mutated residue; Cross-linking: the red line indicates the cross-link; H/D exchange: D 

and H are respectively standing for deuterium and hydrogen; CSP: the HSQC spectrum 

shows the chemical shifts of two residues A and B, one of which is shifting during the 

titration (addition of the interacting protein to the sample solution) and the other not; 

RDCs, relaxation: this figure illustrates the orientational ambiguity which can be 

unravelled by these techniques; the axis system in white indicates the tensor which 

provides orientational information. 
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Besides mutagenesis, other techniques are also used to unravel protein 

interaction surfaces. Hydrogen/Deuterium (H/D) exchange, for example, 

consists in exchanging the labile hydrogen atoms, usually amides protons 

in the backbone, by a deuterium atom. In an aqueous solution, the 

accessible amide protons on the surface will exchange rapidly with the 

deuterated solvent, whereas the ones at the interface will be protected 

(Fig. 7.2). Repeating the same experiment on both the isolated proteins 

and the complex gives information about the solvent accessibility of 

various parts of the molecule, and thus the residues located at the 

interface. The H/D exchange can be followed by NMR spectroscopy, by 

recording a series of 
15

N HSQC spectra at different time points.
72

 Mass 

spectrometry is also very efficient in detecting the resulting change in 

mass caused by the deuteration; it is possible to achieve residue 

resolution by using fragmentation of the peptides by tandem mass 

spectrometry.
73,74

 

Another possibility to characterise interfaces is chemical cross-

linking, followed by identification of the cross-linked peptides by mass 

peptide fingerprinting. The approach relies on bi- and tri-functional 

cross-linking reagents that covalently link proteins interacting with each 

other (see Fig. 7.2). Proteolytic cleavage and subsequent mass 

spectroscopic identification of the cross-linked species reveal their 

composition.
75,76

 In vivo cross-linking of protein complexes using photo-

reactive amino acid analogs has been recently reported.
77

 Although this 

method is promising, it has been reported that the cross-linkers may 

disrupt the structure of the protein complex, and that care should 

therefore be taken to interpret the results.
78

 A new experimental 

approach, known as Radical Probe Mass Spectrometry (RP-MS), has 

been proposed to probe the structure
 
of proteins and their interaction with 

other macromolecules.
79

 The principle of this method relies on a limited 

oxidation of the side chains of the residues exposed to the solvent by 

fluxes of hydroxyl radicals on millisecond timescales. The small size of 

the probe and the short exposure timescale ensure the integrity of the 

protein complex.
80

 A new docking algorithm (Proximo) was recently 

described using RP-MS data to map the interacting surfaces.
81

 

Finally, we will focus on the various NMR spectroscopy techniques 

that can be used to map the interacting surfaces in a biomolecular 
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complex. In its classical use, NMR spectroscopy allows determination of 

atomic-resolution structures of large subunits and even weak complexes 

in solution under near-native conditions.
82–84

 Conventional restraints 

obtained from NMR include distance bounds between pairs of atoms 

(from NOEs experiments, typically < 5–6Å) and dihedral angles. They 

are used in the structure determination of biomolecules and their 

complexes. If no significant conformational changes takes place upon 

complexation, intermolecular NOE restraints, possibly reinforced by 

RDCs (see below), can be sufficient to determine the structure of the 

biomolecular complex by simple rigid-body minimization.
85

 The 

structure determination of the complex between Nck-2 SH3 domain and 

PINCH-1 LIM4 domain by J. Vaynberg et al. provides a good 

illustration of the power of de novo NMR spectroscopy when it comes to 

studying weak interactions.
86

 

However, in the case of most transient (or ‘short-lived’) biomolecular 

complexes, obtaining enough NOE restraints can be very challenging or 

even impossible. Therefore, other NMR experiments have been 

developed that are very suited to map interfaces. First, the NMR 

chemical shift is very sensitive to the environment: the chemical shift of 

residues at an interface will change as a result of the altered environment 

caused by the presence of the interacting partner.
87

 The easiest way to 

observe these changes by recording Heteronuclear Single Quantum 

Coherence (HSQC) spectra of one 
15

N (or 
13

C) labelled partner in the 

complex. These HSQC spectra are recorded in the absence and presence 

of increasing amounts of the partner protein (‘titration experiment’). This 

allows following the chemical shift changes of the labelled partner in the 

complex (cf. Fig. 7.2). One then repeats this procedure with the second 

molecule labelled. Under the assumption that the perturbed residues 

correspond to the interacting residues, a detailed map of the interface is 

thus obtained and can be used in molecular docking approaches,
88

 or 

complemented by orientational restraints such as RDCs.
89,90

 A potential 

problem here is that chemical shift changes can also be caused by 

indirect allosteric effects (e.g. remote conformational changes) (false 

positives). In addition, not all residues within an interface show chemical 

shift changes upon binding (false negatives). The data should therefore 

be interpreted with caution. 
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Two other NMR techniques are also used to map the interaction 

surfaces in protein–protein complexes. In cross-saturation experiments, 

an unlabelled protein, ‘the target’, is complexed with a perdeuterated 
15

N-enriched protein, ‘the reporter’.
91

 Saturation of the unlabelled protein 

results in an attenuation of the magnetization of the reporter HN signals 

due to spin diffusion.
92,93

 This is measured in the form of a decrease of 

the peak intensities in a 
15

N-HSQC spectrum. The largest effects are 

observed for residues at the interface since these are the ones affected by 

spin diffusion coming from the ‘target’ protein. By reversing the 

labelling scheme, one can map the other interface. Generally, cross-

saturation experiments are more accurate to depict the interface than 

chemical shift perturbation data, as the latter are very sensitive to 

conformational changes. Cross-saturation is also applicable to weak and 

transient complexes since it involves steady-state NOE type 

experiments.
94

 

The last NMR parameters that we would like to introduce to define an 

interaction surface are paramagnetic effects arising from magnetic 

dipolar interactions between a nucleus and the unpaired electrons of a 

paramagnetic center. The use of paramagnetic tags attached to a protein 

can induce this phenomenon. Two types of effects can be measured: 

Paramagnetic Relaxation Enhancement (PRE), which corresponds to 

line-broadening due to enhanced relaxation, and Pseudocontact Shifts 

(PS), which correspond to a change in the chemical shift itself. Because 

the magnetic moment of the unpaired electron is large, both PRE and PS 

effects are large and can provide long-range distance information (up 

to ~40 Å); they can therefore efficiently complement NOE restraints or 

CSP data. It is also possible to add paramagnetic ions to the sample 

solution, causing a line-broadening effect for the solvent-exposed 

residues while the residues located at the interface in a complex will be 

protected allowing their identification.
95,96

 Finally, paramagnetic 

restraints can also be used to break the symmetry in symmetrical 

complexes
97

 or shed light on the orientation of the subunits,
98

 as it will be 

explained below. This method has its limits too: due to the strength of the 

effect, intermolecular PREs do not only report on the specific complex 

but also on pre-equilibrium encounter complexes that can be sampled in 
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the early stages of the protein–protein association
99,100

 and care should 

therefore be taken in their proper use as restraints. 

7.5 Orientation and Symmetry Problems 

Whereas the ambiguities on composition, stoichiometry, shape and 

interface of a biomolecular complex can be unravelled by the different 

experimental data discussed so far, one major geometrical unknown still 

remains for the community of molecular ‘dockers’: indeed, orientational 

and symmetrical problems are widely encountered when performing a 

molecular docking on a homomeric system (symmetrical) and more 

generally when the complex implies a rather non-specific or ‘flat’ 

interface.
101–103

 Paramagnetic restraints were previously mentioned as 

one possibility to break the orientational ambiguity. NMR spectroscopy 

provides, however, other restraints amenable to resolve these 

uncertainties. We will first discuss how to possibly lift the veil on 

orientational ambiguity of the subunits and then tackle the symmetry 

problem. 

In the absence of unambiguous distance restraints, the relative 

orientation of the components of a complex remains to be defined. In 

some cases, shape complementarity and electrostatic considerations 

might be sufficient to resolve the orientational ambiguity. The use of 

additional experimental information, if available, can however give more 

confidence in the generated model. One experimental source that can 

provide such information is the Residual Dipolar Coupling (RDC) 

between two nuclei.
104

 In solution, proteins can freely rotate, ‘tumble’, 

and will thus sample all the orientations with respect to the external 

magnetic field of the spectrometer. As a consequence, the dipolar 

coupling averages to zero. However, in an anisotropic medium obtained, 

for example by adding bicelles to the sample, the protein will sample 

preferred and less preferred orientations resulting in a slight anisotropy 

of orientations. This results in a slight alignment with respect to magnetic 

field, which partially reintroduces dipolar couplings, i.e. RDCs. RDCs 

provide information on the orientation of the bond-vector between the 

two observed nuclei with respect to the alignment tensor. A priori, the 

alignment tensor is unknown. However, when the structure of the protein 
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is known, it can be determined from the experimental set of RDCs 

representing different (bond-)vectors in the protein. In the case of a 

complex, the alignment tensor can be determined separately for both 

components. This allows orienting the two components with respect to 

each other, since their alignment tensors in the complex should be co-

linear (see Fig. 7.2). This orientational information can be introduced in 

various ways in docking.
85,98,105

 Nevertheless, multiple solutions might 

exist due to the intrinsic degeneracy of RDCs. This ambiguity can be 

removed if multiple sets of RDCs are used simultaneously. In addition, 

since RDCs do not provide the translational component, they are often 

used in combination with additional restraints to refine the molecular 

docking prediction. 

In a comparable way, NMR 
15

N relaxation rates can be used to orient 

the two components of a complex with respect to each other. For 
15

N 

nuclei located in secondary structure elements, i.e. rigid regions in the 

protein structure, the value of the relaxation rates will depend on the 

rotational diffusion of the protein, which can be described by a rotational 

diffusion tensor. More specifically, the ratio between the 
15

N transversal 

(R2) and longitudinal (R1) relaxation rates will depend on the orientation 

of the 
15

N–
1
H bond-vector with respect to the rotational diffusion tensor. 

As a consequence, in the case of anisotropic rotational diffusion, the 

R2/R1 rates will provide orientational information. The diffusion tensor 

of two components of a biomolecular complex can, as described above 

for the RDCs, be determined from the experimental relaxation rates of 

the components within the complex. Since the rotational diffusion will be 

determined by the shape of the whole complex, the two components can 

be oriented with respect to each other in such a way that their diffusion 

tensors are co-linear. As RDCs, relaxation data can be used in addition  

to CSP data in docking approaches to guide the formation of the 

complex.
106

 

There is a strong tendency for symmetry in oligomeric proteins, even 

for heteromeric complexes.
107,108

 Symmetry, also affects experimental 

measurements. In NMR spectra of symmetric oligomers, for example, 

symmetry-related nuclei have degenerate chemical shifts due to their 

identical chemical environments. It is thus intrinsically impossible for 

symmetrical oligomers to distinguish which cross peaks arise from intra- 
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or inter-monomer interactions in Nuclear Overhauser Effect 

Spectroscopy (NOESY) spectra. Several experimental approaches have 

been proposed to solve the symmetry degeneracy problem: the basic idea 

is to break the symmetry by mixing isotopically labelled and unlabelled 

monomers within the symmetric oligomers.
109

 However, for higher-order 

oligomers, ambiguity still remains. The order of an oligomer can be 

determined by a variety of experimental methods such as equilibrium 

ultracentrifugation, dynamic light scattering or NMR diffusion 

experiments. The most efficient experimental method to date is the usage 

of a paramagnetic probe to break the symmetry of the system by 

collecting long-range restraints.
97

 Recently, two ab initio docking 

programmes (ZDOCK
110

 and PatchDock
111

) gave birth to specific 

versions for the prediction of the structure of a Cn symmetric multimer. 

Both programmes, respectively M-ZDOCK
112

 and SymmDock,
113

 are 

performing a rotational search of order n about a symmetry axis for the 

best conformation of a multimer based on the structure
 
of a monomer. In 

HADDOCK,
28,30

 one can enforce the symmetry either within or between 

the molecules. The symmetry relationship is defined in the form of 

symmetry distance restraints as proposed by M. Nilges et al.:
114–116

 for 

each restraint two distances are specified which are required to remain 

equal during the calculations, irrespective of the actual distance. One 

advantage of this method is that it is not restricted to cyclic symmetries, 

other symmetries (like for example D2 symmetry) can be enforced by 

combining multiple symmetry restraints). This was first implemented in 

the Molfit
117

 to enforce Cn and Dn symmetries.
118,119

 

7.6 Flexibility: How to Cope with Conformational Changes 

Occurring upon Complex Formation? 

Incorporating flexibility in predicting the structure of a biomolecular 

complex is a major challenge for the docking algorithms.
120–122

 As we are 

focusing on the data-driven docking, we aim to present the methods to 

analyse the protein flexibility and how they can be used as an a priori 

information to start the docking prediction. For a detailed overview of 

the treatment of flexibility in docking, with a stress on the different 
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algorithms to simulate the flexibility during the different stages of the 

docking procedure, please refer to the related chapters in this book. 

First, an implicit treatment of flexibility can be achieved by 

generating an ensemble of discrete conformations. Ensembles of 

conformations are widely used to mimic the induced slight 

conformational changes which may occur upon protein–protein 

association. This is commonly used in cross-docking simulations, where 

the (rigid-body) docking process is repeated from an ensemble of starting 

structures, and it is usually time-consuming considering the number of 

possible combinations. This relies on the assumption that the unbound 

monomer might sample its ‘bound state’ even in the absence of its 

binding partner, provided that no major conformational change is 

occurring during the binding.
123

 The conformations can span various 

degrees of flexibility, from small mainly side chain re-arrangements to 

large-scale global backbone motions. The recognition step primarily 

involves an appropriate pairwise matching between the ensembles of 

conformations. These ensembles can be obtained by using different 

solved 3D structures of the same protein (by X-ray or more typically 

NMR ensembles) or by using Molecular Dynamics (MD) snapshots.
124,125

 

Exposed side chains in an ensemble of NMR structures usually sample 

various conformations; their use in data-driven docking was shown to 

increase both accuracy and hit rate.
88

 While ensemble docking improves 

the performance in terms of the number of near native solutions, it also 

leads to an increased number of false positives (wrong solutions with 

high scores) and consequently renders the scoring more difficult.
126,127

 In 

addition, no clear correlation has been found so far between RMSD from 

the bound form and success rate. 

Another possible treatment of flexibility can be to determine a 

continuous protein conformation space, which can be used as a search 

space for refinement algorithms or to generate a set of discrete 

conformations (as the former strategy). In this case, the flexibility 

analysis methods create a set of vectors which describes the flexibility of 

the protein. Both Normal Mode Analysis (NMA) and Essential 

Dynamics end in this group. Ensembles of structures generated from 

collective motion-based methods have been applied to protein–protein 

docking: these, usually, suit very well the conformational changes 
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between the bound and free forms, even if they sample larger 

conformational changes involving backbone atoms.
128–130

 However, a 

recent study over a set of 134 proteins from a docking benchmark shows 

that, in the majority of interactions with substantial conformational 

change (RMSD > 2Å), a single low-frequency normal mode was found 

that describes well the direction of the observed conformational change 

for only one-third of the proteins.
131

 This suggests that, if the normal 

modes can be used to predict reliably the extent of observed 

conformational change, the collective motions are substantially altered 

during the final stage of the recognition process. Besides the NMA, 

Essential Dynamics analysis (often named Principal Component 

Analysis or PCA) depicts the main flexible degrees of freedom of a 

protein, starting from a set of conformations.
132

 An ensemble of 

structures calculated with CONCOORD
133

 have been used in CAPRI.
31

 

Structures obtained from flexibility analysis were shown to improve the 

quality of results for protein docking with both small molecules and 

peptides.
134

 At last, it is worth mentioning that complexes have been 

refined against cryo-EM maps using elastic network models, a simplified 

version of NMA.
135–137 

Finally, the last relevant information considering the flexibility that 

one would like to use a priori to drive the docking predictions is the 

definition of the flexible and rigid segments in the proteins. This can be 

obtained by rigidity theory
138

 and hinge detection algorithms,
139

 but also 

by experimental methods like NMR relaxation
140

 or TEM.
60

 

7.7 How to Implement Data-driven Docking, the HADDOCK 

Example 

Most experimental and/or predicted data are highly ambiguous and only 

provide information about putative interface residues, but not about the 

specific contacts made. To reflect this, such data are incorporated into 

HADDOCK
28–30

 in the form of ambiguous interaction restraints 

(AIRs).
114

 Prior to docking, the user must supply for every molecule a list 

of active residues (residues that are known to make contact within the 

complex) and passive residues (residues that potentially make contact). 

For every active residue, a single AIR restraint is defined between the 
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atoms of that residue and the atoms of all active and passive residues on 

the partner. An explicit AIR energy term (a classical distance restraint 

term) is introduced into the calculation through a flat-bottom harmonic 

potential (becoming linear after a given cut-off distance) that depends on 

an effective distance calculated as follows: 
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where Natoms indicates all atoms of a given residue and Nres the sum of 

active and passive residues for a given protein. An upper limit to the 

effective distance (typically 2 Å) is enforced by HADDOCK. If this limit 

is exceeded, the AIR energy becomes positive and the active residue 

experiences an attractive force towards the active and passive residues of 

the partner molecule. If not, the restraint is satisfied. Since many atom–

atom distances inversely contribute to the effective distance, an AIR 

restraint is typically satisfied if a residue comes within 4–5 Å of any 

active or passive residue of the partner molecule (the effective distance is 

always shorter than the shortest distance entering the sum). In this way, 

(putative) interface residues are enforced to make contact with (a surface 

region on) the partner protein, but not with any specific partner residue. 

These ambiguous restraints drive the docking in the same way that 

Nuclear Overhauser Effect (NOE) distance restraints drive the 

calculation of an NMR structure. In addition, in order to account for 

possible false positives in the identification of interface residues, 

typically 50% of the AIR restraints are randomly deleted for each 

docking trial. HADDOCK also supports the use of orientational restraints 

in the form of RDC
105

 or diffusion anisotropy restraints.
106

 In addition, it 

is possible to impose various symmetry restraints in the case, for 

example of homomeric complexes.
114

 Conformational flexibility in 

HADDOCK can be described in different manners, e.g. by starting from 

an ensemble of structures (an NMR ensemble for example) and/or by 

defining flexible segments, either manually or in an automated manner 

during the calculations based on an on-the-fly contact analysis. 
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Many other docking methods have been used in combination with 

experimental data to filter the generated solutions or limit the sampling 

to pre-define regions. For example, the FFT programs Hex and 

GRAMM-X have been used with mutagenesis data,
141–144

 DOT has been 

used with H/D exchange data, 
145,146

 BIGGER has often been used in 

combination with CSP data
147

 and FTDOCK has been used with CSP and 

RDC data.
148,149

 Next to experimental information, computational and 

bioinformatics approaches can also be used to predict interfaces. A large 

number of such methods have been developed over the last years. For 

recent reviews see Refs 150 and 151. Several of these prediction methods 

have also been used in combination with docking, for example 

WHISCY,
152

 ProMate
153

 and cons-PPISP.
154 

7.8 Conclusions and Outlook 

The inclusion of experimental information in the prediction of the 3D 

structure of biomolecular complexes by molecular modelling is 

becoming more and more common. Next to the docking-related 

approaches discussed in this chapter, other methods are emerging. 

Particularly promising are the ‘hybrid methods’ that combine low 

resolution information (cryo-EM, TEM, SAXS) with high resolution 

structures of its components to model the large macromolecular 

assemblies by satisfaction of spatial restraints. Such approaches are 

however not applicable for transient complexes. 

Another class of techniques model interactions by homology, namely 

by ‘comparative modeling’. The idea is simple: use known protein–

protein complexes for which coordinates are available to model the 

interactions between their homologues. The method is based on 

techniques that have been borrowed from protein-fold recognition (or 

threading); these methods typically assess how well a homologous pair 

of sequences ‘fits’ onto a previously determined structure of a complex. 

These approaches are however far from perfect (the target-template 

alignment is often not trivial), and are limited in the case of 

conformational changes or insertions/deletions at the interface with 

respect to the chosen template. They are also limited when it comes to 

predicting specificity in a family of related complexes in which all 
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components are homologous (e.g. E2/E3 complexes along the 

ubiquitination pathway). Related to comparative modelling are the 

Comparative Patch Analysis methods: they derive sets of restraints from 

known interactions of the complex components (or their homologs) with 

other proteins, limiting as a consequence the sampling search to defined 

regions (patches) were the complex association is more probable to 

occur. This technique is somewhere a hybrid of comparative modelling 

and data-driven methods, as the docking procedure consists more in a 

refinement of pair wise assemblies generated on the basis of the 

predicted patches. This relies on evolutionary principles suggesting that 

protein-binding sites are conserved whatever the fold of their binding 

partner.
155

 

We have discussed in this chapter the combination of limited amounts 

of experimental data with molecular docking methods and shown that 

they can give valuable structural insights on biomolecular interactions. 

While ab initio docking algorithms are becoming more and more 

performing and accurate, it is still clearly beneficial to include some kind 

of ‘smart’ bias in the interaction search in order to enrich the ‘near 

correct’ configurations before subsequent refinement stages (these are 

usually the most time-consuming). This will be especially important 

when dealing with large macromolecular systems or when rather 

unspecific interaction surfaces are involved. We are now entering an era 

in which the combination of all the existing knowledge with modelling 

techniques will allow to shine light on macromolecular assemblies. The 

time has come to ‘combine and conquer’! 
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Advances in the field of protein–protein docking allow us today to 

create models of protein complexes that approach in quality 

experimentally derived structures. Crucial to this is the explicit 

modelling of the conformational changes that the individual protein 

monomers undergo upon binding. A stringent energy function that 

allows the distinction between well-packed interfaces and wrong 

alternatives can then be used to select the correct model. The models 

can provide important insights into the biological function of the 

protein–protein interaction, and provide guidance to experimentalists. 

Thanks to their high resolution, these models are amenable to 

computational interface design methods that were until recently 

restricted to experimentally derived structures, thereby opening up the 

way towards docking-based redesign of interactions, or targeted 

inhibition. Nevertheless, proteins that undergo larger conformational 

changes upon binding are still difficult to model, but steady advances in 

this field allow for optimistic outlooks, even if challenges remain 

ahead.  
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8.1 Introduction 

8.1.1 From Molecules to Networks: Making Sense of Large-scale 

Data, Starting from the Atomic Details of Protein–Protein 

Interactions 

Proteins are major players in the cell, and often they perform their 

function by interacting with other proteins. Protein–protein interactions 

come in various flavours, they may form stable complexes in 

macromolecular multi-protein machineries (e.g. proteasomes, 

chaperones, synthesis of DNA, RNA and proteins, etc.), or associate 

transiently (e.g. for chemotaxis, signal transduction, enzyme catalysis, 

etc.). Large-scale functional genomics studies have provided us with 

comprehensive data on networks of protein–protein interactions (e.g. 

Refs 1–3), and bioinformatic approaches have been used to analyse and 

clean this extensive and complex data in order to build comprehensive, 

curated representations of the interaction network within a living cell 

(e.g. Refs 4 and 5). 

The structure of a protein–protein complex provides important 

information about the function of the two proteins, and sets a starting 

point for targeted manipulation of the interaction. However, for most 

protein interactions, no structure has been solved. While thanks to 

significant efforts of large-scale Structural Genomics initiatives, most of 

the estimated 1,000 existing folds have been solved,
6
 the coverage of 

protein–protein interactions by solved protein complex structures is 

significantly lower (~2000/10’000 
2
). Thus, successful docking protocols 

can be used to ‘bridge the gap’ and create structural models of an ever 

increasing number of protein–protein interactions, starting from the 

known monomer structures. In addition to improved functional 

characterization of specific interactions, a general approach for high-

resolution docking would be very helpful in the elucidation of the 

structural basis for binding affinity and specificity, and allow the study of 

basic features that characterise protein–protein association and 

recognition. 
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8.1.2 Docking – The Creation of Protein Complex Structures  

Starting from the Monomers 

Docking is defined as the modelling of a protein complex, starting from 

the free monomer structures. In principle, this procedure should be 

relatively easy, as only six degrees of freedom need to be evaluated: 

three translations and three rotations of a protein ligand relative to a 

protein receptor. And indeed, very efficient methods have been 

developed over the years to tackle this challenge in a quick and 

exhaustive way (see Chapters 6 of this book and Ref. 7), for example, by 

the use of grid-based Fast Fourier Transform Techniques (FFT)
8
 or 

geometric hashing approaches.
9
 However, even though the conformation 

space that needs to be searched to find the correct orientation between 

the two proteins is restricted, accurate selection of this orientation turns 

out to be complicated by the fact that proteins undergo conformational 

changes upon binding. Thus, although these methods do a pretty good 

job in finding conformations in which the two proteins create a large 

interface of two matching complementary surfaces, they will not 

necessarily be able to select the correct orientation,
10

 since they are not 

able to account for the subtle changes that are due to conformational 

flexibility of each of the partners.
11–13

 

8.1.3 Explicit Modelling of the Atomic Details of the Protein–Protein 

Interface Allows Distinguishing the Correct from Alternative 

Conformations 

The underlying assumption of high-resolution docking approaches is that 

if the conformational changes are modelled explicitly, we should in 

principle be able to model the correct complex conformation to atomic 

detail, even if conformational changes have occurred during association, 

provided we use appropriate sampling techniques. It is assumed that the 

correct conformation provides the lowest free binding energy, and can 

thus be selected by energy criteria alone without the need of additional 

biological information. Obviously, the draw-back is the larger number of 

degrees of freedom that need to be sampled efficiently in order to locate 

the correct conformation, and therefore the increased running time. 
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Within the broader context of structure prediction per se, two 

fundamental questions of modelling arise: (a) can the approximate 

structure of a protein, or a protein complex, be determined in feasible 

time, by using a coarse-grained first step, and (b) can subsequent, 

extensive full-atom, high-resolution modelling create atom-level models 

that allow the selection of the correct structure among alternative 

decoys? In comparison to ab initio modelling for example, docking 

involves a relatively small number of degrees of freedom that need to be 

searched in the first step. Therefore, it allows judicious assessment of the 

second, high-resolution step. Indeed, high-resolution docking was one of 

the first examples that demonstrated that accurate modelling is indeed a 

feasible task, and that techniques that allow accurate packing can truly 

help in the distinction of the correct solution among alternative models, 

based on a general energy function alone and without prior information 

on the specific system.
14

  

8.1.4 The Scope of this Chapter 

In this chapter we will focus on the field of high-resolution protein–

protein docking (we also refer the reader to other reviews, e.g. Refs 15, 

16). By ‘high-resolution’, we refer to the criteria defined in the CAPRI 

community wide blind docking experiment
17, 18

 (see below), but also in a 

broader sense to studies where a model provides atomic details of the 

protein interface that allows biological insights, similar to an 

experimentally solved protein structure. Modelling of flexibility in the 

monomers is crucial for a general high-resolution docking protocol, and 

different approaches in this difficult field will be briefly highlighted. 

Then we will introduce in more detail one of the successful high-

resolution protocols, RosettaDock,
13, 19, 20

 which is the docking protocol 

in the Rosetta programme suite, developed by several groups from the 

RosettaCommons (see https://www.rosettacommons.org/), mainly the 

Gray lab at John Hopkins University, the Baker lab at the University of 

Washington and our own lab at the Hebrew University in Jerusalem. 

Following this we will detail additional high-resolution approaches, and 

describe different schemes to combine low-resolution fast global 

searches with high-resolution local searches. 
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We will briefly summarise achievements of the described protocols 

within the CAPRI experiment. Then we will detail several ‘real-world’ 

examples of docking studies that have helped experimentalists define a 

protein–protein interaction at atomic detail, and therefore have made 

possible the detailed manipulation of that interaction. At the end of the 

chapter we formulate some of the current challenges in high-resolution 

docking that await new approaches by motivated and enthusiastic 

scientists.  

8.2 High-resolution Docking, as Defined by CAPRI 

CAPRI (Critical Assessment of PRotein Interactions) is a community 

wide blind experiment where protein docking groups are asked to create 

models for a protein complex just prior to its publication, given the free 

monomer conformations of the partners (or, if not available, using either 

homolog protein structures or the bound conformation).
17

 The predictions 

can then be assessed based on the solved structure. Since its 

establishment in 2001, around 40 different targets have been assessed by 

CAPRI, and regular meetings have promoted discussions about 

performance and utility of different docking approaches for the creation 

of accurate docking models. CAPRI is described elsewhere in this book 

(see Chapter 6), here we would merely like to describe the criteria that 

have been defined by the CAPRI evaluation team to assess the submitted 

models:
18

 they include three measures: (a) fnat (Fraction of native 

contacts): the fraction of residue pair contacts across the interface in the 

native complex structure that is reproduced in the model; (b) L_RMS 

(Ligand Cα atom RMSD): Root mean square deviation of Cα atoms in the 

ligand protein (i.e. the smaller protein), upon superimposition of the 

receptor molecule (i.e. the larger protein) of the model onto the native 

structure; and (c) I_RMS (interface residue Cα atom RMSD): RMSD of 

the interface residues. Based on these measures, models are classified as 

‘high accuracy’, ‘medium accuracy’, ‘acceptable’ and ‘incorrect’ models. 

The criterion for ‘high accuracy’ models is defined as a structure that 

reproduces more than 50% of residue-residue native contacts (i.e. fnat > 

50%), and either lies within 1 Å ligand Cα RMSD, or within 1 Å 

interface residue Cα RMSD of the native complex structure (i.e. L_RMS 
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< 1 Å or I_RMS < 1 Å). ‘Medium accuracy’ models are defined as those 

with ‘0.5 > fnat > 0.3 and (L_RMS < 5 Å or I_RMS < 3 Å)’ or ‘fnat < 0.5 

and L_RMS < 1 Å and I_RMS < 1 Å’. Indeed, such high-accuracy, and 

in particular also medium-accuracy models, are now routinely created.  

The initial two rounds (Targets 1–7) established CAPRI as a 

coordinator of docking assessment and progress,
17

 and defined the 

challenges that would accompany the docking field until now, namely 

the adequate modelling of conformational changes that occur upon 

binding, and the development of scoring functions that are able to select 

the correct models. The next set of rounds (rounds 3–5; Targets 8–19; 

summarised in Ref. 21) then experienced a series of targets without 

significant structural changes beyond the side chain, or where the bound 

backbone conformation of one of the partners was supplied. For these 

targets, many good models were created by different docking protocols, 

by either rigid body approaches, or approaches that limit the modelling 

of flexibility to the side chains. Many of the targets in these rounds were 

taken from enzyme–inhibitor or antibody–antigen interactions, which are 

the types of complexes that were used to benchmark many of the docking 

protocols.
22, 23

 The high success rate for these targets is thus due to the 

fact that no major conformational changes beyond side chains occurred, 

and that the types of targets matched the types of complexes in the 

docking benchmarks. The latest summary of CAPRI (rounds 6–12;
24

 

Targets 20–28) shows that the overall model quality indeed depends very 

much upon the target, indicating that no generally successful high-

resolution modelling protocol exists yet. Overall, only one high-accuracy 

model was submitted for these rounds, despite a significant increase in 

participating groups, and the availability of protocols that had gradually 

been improved during the previous challenges. The reason for this shift is 

most probably a consequence of the change in target types: 

Crystallographers have moved on to new types of protein complexes: 

while in the first rounds, most of the targets were antibody–antigen and 

enzyme–inhibitor complexes, recent targets include more complexes that 

are involved in a variety of cellular processes such as: signal 

transduction, membrane transport, and various aspects of transcription 

and translation. These targets show overall larger conformational 

changes upon binding and often contain small interfaces. Transient 
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complexes show weak binding, and in turn, docking algorithms cannot 

always distinguish the correct orientation from others based on 

calculated binding energy only. The current challenge therefore lies in 

the adaptation of docking protocols to transient interactions with small 

interfaces, e.g. by including additional information about the interaction 

that will allow distinguishing the orientation from other models with 

interfaces of similar size and packing quality. It should be noted that 

these interactions can also be difficult to characterise by experiment, as 

was shown for Target 27 in which the experimentalists could not 

determine which of the interfaces in the crystal was biologically 

relevant.
24

 Overall, it can be seen that certain protocols, such as 

ZDOCK
25–27

 and HADDOCK,
28, 29

 show a constant good performance 

(creating medium and acceptable resolution models for many targets). 

RosettaDock on the other hand allowed the generation of the most 

accurate high-resolution models – albeit only in specific cases. Since 

RosettaDock is very sensitive to clashes, it will only be successful if 

those clashes are efficiently removed (Baker and Gray groups
30–33

). 

8.3 Accounting for Conformational Changes of Monomers is 

Crucial to High-resolution Modelling  

8.3.1 Modelling Side Chain Flexibility 

Conformational changes upon protein–protein binding range from side 

chains rotameric changes, through small backbone re-arrangements, up 

to large domain movements. We will refer here to movements at the side 

chain level and address methods to account for backbone flexibility in 

the docking process in the next section. 

Several studies have established that the side chains at the interface of 

the unbound protein monomer tend to be pre-oriented to accommodate 

binding, perhaps due to the fact that there is not enough time during the 

formation of an encounter complex to allow for side chain re-

arrangements.
34

 Molecular Dynamics (MD) simulations showed that 

interface residues tend to be less mobile than other surface residues
35

 and 

indeed incorporation of the unbound side chain conformation as an 
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additional rotamer option into the RosettaDock protocol was able to 

increase the prediction quality.
13

  

In some cases however, not only do the interface side chains undergo 

conformational changes, but the modelling of these changes is critical for 

the correct prediction of the bound complex. One example for such a 

change is the cohesin–dockerin complex presented as Targets 11 and 12 

in the CAPRI blind docking experiment.
36

 In this complex, a Leucine 

residue in the free monomer sticks out into the solvent. In the bound 

complex this residue undergoes a rotameric change to allow the binding 

of dockerin. Failure to model this change would not allow the prediction 

of the correct complex due to clashes (see Fig. 8.1a). Another example is 

CAPRI Target 21 – a complex of yeast origin recognition protein Orc1 

and silent information regulator Sir1.
37

 In this case three Sir1 interfacial 

side chains undergo a conformational change, and a small helical region 

of Orc1 undergoes a backbone conformational change of about 1.6 Å. 

Indeed, only three predictor groups were able to produce medium 

accuracy models for this target (DOT, HADDOCK and RosettaDock
24

). 

8.3.2 Taking it to the Next Step: Modelling Backbone Flexibility  

The next major challenge for high-resolution docking schemes is the 

correct modelling of complexes involving significant backbone 

conformational changes at the interface. This subject has been 

thoroughly covered in other reviews.
38,39

 Incorporation of such flexibility 

into docking protocols can be divided into several categories, namely 

Ensemble Docking, Refinement and Minimization, and the Modelling of 

Hinge Motions. 

8.3.2.1 Ensemble Docking 

These methods create an ensemble of monomers with different 

backbones representing the flexibility of that monomer, prior to the 

docking process, thus reducing the search space to a feasible size.  
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Fig. 8.1. Atom-resolution docking models of protein complexes. (A) Cohesin-dockerin 

interaction in CAPRI Targets 11 and 12. Left panel: the structural details of the bound 

structure (red + orange), and a high-resolution model produced with RosettaDock by the 

Baker group (blue). Note the central Leucine 87 side chain that undergoes a 

conformational change upon binding (free conformation in green). The blowup shows the 

accurate modelling of the interface side chain conformations. Right panel: energy funnel 

in the RosettaDock energy landscape (depicted as energy (in Rosetta Energy Units) vs 

distance to the crystal structure (in rmsd); adapted from Schueler-Furman et al.
.30

). (B) 

HemK – RF1 interaction in CAPRI Target 20: the model predicts a large conformational 

change in the RF1 ‘Q-loop’ upon binding to HemK. The loop is shown in a blowup on 

the right. Colouring as in (A); adapted from Wang et al.
32

 (C) Model of the Anthrax toxin 

produced by RosettaDock: Left panel: the Protective Antigen (in yellow and pink) bound 

to the Lethal Factor (in grey). The experimentally verified residue pairs across the 

interface are shown in ball-and-stick presentation. Right panel: the energy landscape 

shows a clear funnel around the proposed orientation (according to Lacy et al.
87

). 
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This ensemble can be created by different approaches, such as using 

NMR ensembles,
40

 different X-ray solved structures of the monomer, or 

alternatively, ensembles created by MD,
35

 Normal Mode Analysis 

 (NMA), or loop modelling. The different conformations can be docked 

sequentially (cross-docking as in Refs 35, 40, 41), which is 

computationally expensive, or collectively using algorithms such as the 

mean field approach. Examples for docking protocols which utilise 

ensemble docking are: RosettaDock,
42

 HADDOCK
43

 and ATTRACT (at 

the side chain
44

 and loop levels
45

). 

8.3.2.2 Refinement and Minimization  

Different methods allow for flexible backbone modelling during a 

refinement and minimization step. In this step the backbone degrees of 

freedom might be minimized either according to a certain force field,
20,46

 

or along the lowest frequency normal modes (for protein–protein, 

protein–DNA and protein–ligand docking
47,48

). Many programmes, 

RosettaDock included, utilise Monte Carlo with Minimization (MCM
49

) 

to sample random rigid-body and backbone perturbations in pre-defined 

flexible regions. Local backbone refinement indeed allowed RosettaDock 

to successfully model CAPRI Target 18, while the original RosettaDock 

side chain flexibility alone could not select the correct conformation
20

 

(see below). Other docking methods ignore flexible loops during the 

docking and remodel them in a consecutive step. Such an approach 

allowed to create (using RosettaDock) the only acceptable model for 

CAPRI Target 20
32

 (see Fig. 8.1b and below).   

8.3.2.3 Modelling Hinge Motion   

Many proteins consist of two or more globular domains connected by 

flexible hinges. Upon binding, these hinges may undergo conformational 

changes, which would change the rigid body orientation of the globular 

domains. Hinges can be detected computationally by methods such as 

HingeProt,
50

 NMA, MD or by expert users. Modelling this kind of  
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flexibility is usually performed by rigid body docking of the globular 

domains, and subsequent remodelling of the hinge such as in FlexDock.
51

    

8.4 The High-resolution RosettaDock Protocol – Explicit Modelling 

of Full Side Chain Flexibility (and Beyond) Allows Accurate 

Modelling of Protein Complexes  

The Rosetta modelling suite was originally developed for the prediction 

of protein structures, starting from the sequence only. Over the years it 

has been extended and adapted towards a wide range of different 

applications, taking advantage of an energy function that has been 

parameterized on a broad range of applications, and on search strategies 

that have been optimised on a broad range of different types of 

conformations.
52,53

 RosettaDock is the docking protocol of Rosetta.
13, 20, 

30,42,54
 It applies a Monte Carlo-based sampling strategy that includes 

minimization prior to acceptance evaluation (MCM
49

) to find the optimal 

rigid body orientation of two proteins.  

 

 

Fig. 8.2. The RosettaDock MCM protocol. (A) Flowchart of local optimization protocol. 

Monomer flexibility is introduced by perturbation (e.g. aggressive sampling of a specific 

loop; Step 1), or/and during minimization (e.g. removing of local clashes; Step 3). Figure 

according to Wang et al.
87

 (B) The energy landscape in high-resolution MCM refinement, 

described as Energy (y-axis) vs Rigid body conformation (x-axis). After perturbation of 

the rigid body orientation, optimization removes local clashes, thereby changing the 

energy landscape to allow the detection of the minimum energy rigid body orientation. 

(Adapted from Gray et al.
19

) 
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Figure 8.2 shows a schematic view of the minimization strategy: by 

optimising the side chain orientations, local clashes can be removed, and 

the correct orientation can be selected based on well-packed interfaces 

that result in low energy scores. RosettaDock uses the typical two-stage 

strategy, which includes first a fast, low-resolution search that optimises 

features not dependent on the detailed modelling of the protein side 

chains, such as the preference of residues to be at interfaces compared to 

other surface areas, and the preference for different residue pairs to 

contact each other across the interface.
54

 For antibody–antigen docking, 

antibody residues that have been observed to contact antigens in known 

structures are given a bonus, while other residues are penalised, in order 

to bias towards the antigen binding region of the antibody.
19

 In this first 

part of the protocol, side chains are approximated by a ‘centroid’ atom 

with a radius that simulates the size of the complete residue side chain, 

and side chain atoms are not explicitly modelled, thus this optimization 

step is fast. In the second step the resulting model is further optimised, 

side chains are added, and a full search that includes the optimization of 

both side chain conformations and rigid body orientation using a 

stringent energy function for evaluation is applied to locate the minimum 

energy conformation in the sampled region. Fifty steps of MCM are 

performed towards this goal: each step consists of a small perturbation 

that pushes the conformation out of its current minimum, the 

reorientation of clashing interface side chains and the optimization of the 

rigid body orientation through gradient-based minimization (see Fig. 

8.2). The new conformation is only then evaluated and accepted based on 

the Metropolis criterion. Side chain sampling is done efficiently by using 

a rotamer library that contains a restricted number of possible 

conformations,
55

 including the side chain conformation adapted in the 

free monomer structure.
13

 For every eighth step, a full side chain 

repacking at the interface is performed, instead of the quick rotamer trial 

procedure that merely repositions individual side chains that clash with 

their environment.
56

 In addition, an option called ‘rtmin’ allows to 

perform off-rotamer sampling by minimising each rotamer in the library 

prior to its selection.
13

 Each simulation finds a local minimum 

conformation and therefore many independent simulations (10
4
–10

5
) are 

performed to guarantee adequate sampling. Clustering tools are then 
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applied to locate heavily sampled energy minima basins
57

 and cluster 

centres are selected.  

The confidence in the selected model can be evaluated by further 

sampling of the local energy landscape around the model. With local 

perturbations, one samples densely around a candidate orientation (~500 

samples). In many cases, the local landscape shows a deep funnel that 

centers around the native conformation (see right panels of Figs 8.1a and 

8.1c for examples), and indeed, a model within 1–2 Å RMSD of the 

crystal structure can usually be found at the funnel tip. In general, the 

local energy landscape can be used to distinguish the correct orientation 

from alternative possibilities: the FunHunt classifier was developed to 

distinguish the correct orientation among a set of candidate orientations 

by evaluating the funnel around each of them.
58–60

 Here again, we can see 

a two-step procedure that guides the protein towards its correct binding 

orientation: according to FunHunt, the main characteristics that 

distinguish near-native orientations from other low-energy candidate 

structures are (a) a first approximate encounter complex that is guided by 

optimization of a low-resolution feature, namely residue interface 

propensity (Denv), and (b) a subsequent specific binding that is supported 

by strong decrease in energy in the full-atom optimization step. This 

energy gap might prevent the two proteins from disassociating again, 

thereby creating a stable protein complex.  

Since flexibility is explicitly modelled, an accurate, atom-based 

energy function can be used. It consists of a combination of physical 

terms, such as a van der Waals term, which contains a stringent repulsive 

term, and terms derived from statistical analyses of known protein 

structures. For example, hydrogen bond energy is derived from a 

statistical analysis of frequencies of hydrogen bond geometries,
61

 as well 

as from quantum mechanical calculations of distance and angle 

preferences.
62

 This is in contrast to molecular mechanics force fields 

such as in CHARMM, which model the hydrogen bond as a linear 

electrostatic interaction.
63

 Thus, RosettaDock makes use of sophisticated 

sampling protocols and energy functions that have been calibrated 

previously on a range of different modelling tasks addressed by different 

Rosetta protocols.
52
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For a significant number of the CAPRI targets, we (i.e. the Baker and 

Gray groups) were able to create high accuracy models by using 

RosettaDock (see Fig. 8.1a; Targets 7, 8, 12, 14), or medium accuracy 

models (Targets 6, 11, 13, 21 and 26); (see above for the definition of 

accuracy measure). We submitted the best models to CAPRI for Target 

19 (the only high-accuracy model for this target) and Target 20 (the only 

model of acceptable accuracy for this target; see below and Fig. 8.1b). 

As already noted above, these high and medium accuracy models were 

mostly submitted for targets where flexibility at the side chain level 

accounts for most of the conformational changes that occur upon binding 

(or where bound backbone conformations were provided by the CAPRI 

team).  

8.4.1 Adding Backbone Conformational Flexibility to the  

RosettaDock Protocol 

A reformulation of the representation of a protein as a ‘fold-tree’ in 

Rosetta allows the seamless integration of internal torsional degrees of 

freedom and rigid body degrees of freedom,
64

 and can be used to extend 

the original RosettaDock protocol to include internal flexible regions.
20

 

Backbone flexibility can be introduced at different steps of the docking 

MCM protocol (see Fig. 8.2a). For example, inclusion of backbone 

flexibility during the minimization step in the MCM protocol improved 

modelling of some of the complexes in a benchmark (measured as the 

number of cases where a distinct energy funnel tip near the native 

orientation was observed, see below
20

). In the same study, it was 

demonstrated that increased conformational sampling of specified loops 

in the perturbation step of the MCM protocol improved the docking for 

other cases.  

As an example, while the original RosettaDock protocol was too 

sensitive to local atomic clashes to produce a correct model for CAPRI 

Target 18 (Xylanase bound to the TAXI inhibitor), the new protocol 

succeeds: remodelling of the a loop during docking opens the structure to 

allow the accommodation of the inhibitor.
20

 Note that Target 18 can 

successfully be modelled by rigid-body docking approaches without 

accounting for conformational changes, such as ZDOCK,
26

 by using a 
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softer energy function. However, larger conformational changes require 

their explicit modelling even with other, ‘softer’ methods. An example 

for the correct prediction of a large-scale conformational change in a 

loop is demonstrated in CAPRI Target 20:
65

 the interaction of the HemK 

methyltransferase with Release Factor 1 (RF1) (see Fig. 8.1b). HemK 

catalyses the methylation of Q257 in RF1. The starting structure 

provided for HemK contained a methyl analogue which provided the 

information where the Q257 side chain of RF1 would be located in the 

complex. Using RosettaDock, we first modelled the interaction of RF1 

with HemK without the flexible loops, and then added the loop back. 

Finally, conformations that allowed the remodelling of the loop to place 

Q257 onto the methyl analog in HemK were selected. The resulting 

model was the only CAPRI submission of acceptable quality for this 

challenging target. Figure 8.1c shows the significant conformational 

change that the loop undergoes upon binding to HemK, and the predicted 

RosettaDock conformation.  

Even though these examples and others demonstrate the applicability 

of flexible docking, the significant increase in the degrees of freedom put 

off a general protocol, and can be only applied efficiently if backbone 

flexibility is restricted to specified regions. 

8.4.2 Ensemble Docking with RosettaDock 

Two different models have been suggested for the process of protein–

protein recognition: Conformer Selection (CS) states that the bound 

conformation is sampled in the free monomer structure, albeit with very 

low frequency.
66

 Upon binding, the equilibrium is shifted to the bound 

conformation. Induced fit postulates that the bound conformation is 

induced only upon binding to the partner.
67

 Chaudhury et al.
42

 try to 

implement in-silico, within RosettaDock, these different models. To 

capture CS during binding, an extra step was added to the RosettaDock 

low-resolution stage following the rigid-body perturbation, and 

preceding the Metropolis evaluation step. In this step, a pre-existing 

ensemble of conformers is superposed along the interface of the current 

conformer. The ensemble can be produced in a preliminary stage, using 

either solved X-ray/NMR structures, or using a computational modelling 
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protocol, such as refinement with Rosetta,
53

 to create an ensemble of 

structures. The centroid-mode binding energy is calculated for each 

conformer and used to generate a partition function. The current 

conformer is then replaced by a conformer selected from the ensemble 

based on its Boltzmann-weighted probability within the partition 

function. Once a conformer is selected, the Metropolis criterion is 

applied on the combined rigid-body/CS move. The induced-fit model is 

implemented in the high-resolution stage as an extended minimization 

scheme that includes the minimization of backbone torsion angles along 

local energy gradients at the interface (see previous paragraph
20

). This 

added flexibility at the interface improves the quality of predictions for 

cases with small to moderate conformation changes in the monomer 

backbone.  

8.5 Additional High-resolution Docking Approaches 

The ICM-DISCO software from Abagyan’s group
11, 68

 is another high-

resolution method composed of a two-stage process. In the first step a 

rigid all-atom ligand molecule is docked onto a set of soft pre-calculated 

receptor potentials on a 0.5 Å grid. The sampling of rotational and 

translational degrees of freedom of the ligand starting from each grid 

position is performed by a pseudo-Brownian Monte Carlo minimization. 

The second step is needed to deal with induced conformational changes 

and includes a global optimization of the interface side chains of up to 

400 of the best solutions from the previous step. This protocol profits 

from an efficient and extensive grid-search, and from smart softening of 

the energy function. The ICM-DISCO approach provided several high-

accuracy submissions to CAPRI (for Targets 6, 12 and 14).  

HADDOCK is an approach that makes use of experimental 

interaction data such as NMR titration experiments or mutagenesis.
43

 

This information is introduced as ‘Ambiguous Interaction Restraints’ to 

drive the docking process, and is formulated by an additional term in the 

energy function. The docking protocol consists of three stages: firstly a 

rigid body energy minimization is performed, followed by a semi-rigid 

simulated annealing in torsion angle space. During this stage the 

interface amino acids (both side chains and backbone) are allowed to 
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move to optimise packing. Finally, a refinement in Cartesian space is 

carried out with explicit solvent. The final structures are clustered using 

the pairwise backbone RMSD at the interface and analysed according to 

their average interaction energies and their average buried surface area. 

HADDOCK provided several high accuracy submissions to CAPRI (for 

Targets 13 and 14), and notably the only medium-accuracy model for 

Target 10, a very large homo-trimer.  

8.5.1 High-accuracy Modelling with Rigid Body Docking 

Even though it is evident that in general it is crucial, or at least helpful, to 

include monomer flexibility to achieve high-accuracy models of protein–

protein interactions, it should be noted that elegant applications of 

classical rigid-body docking protocols have in many cases created high-

accuracy models for CAPRI as well. Notably, most of them are FFT-

based approaches, including CLUSPRO,
69,70

 ZDOCK
27,71

 and PIPER
72,73

 

– all originating from Boston University, as well as DOT,
74, 75

 Hex (using 

spherical polar Fourier Transform correlation
76, 77

), and Molfit.
78

  

8.5.2 A New Generation of Docking Protocols: Combining  

Successful Approaches of Low-resolution and  

High-resolution Searches  

While highly accurate models can in principle be created by 

RosettaDock, they are not always necessarily sampled, and depend on a 

very extensive, non-systematic global search.
54

 On the other hand, a 

range of different docking approaches have been shown to quickly locate 

the region of correct orientations, such as by comprehensive searches 

using FFT
8,73,77,79

 or geometric hashing.
9
 In these cases, the correct 

solution is not always among the highest ranked models, and even if it is, 

further refinement is needed to create an atom-accuracy model. Several 

attempts have therefore been developed to create hybrid protocols that 

combine the advantages of a quick low-resolution protocol with the 

accuracy of a consequent high-resolution protocol. For example, 

Kozakov et al. have shown that by performing RosettaDock local  
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perturbation searches on cluster centres obtained by PIPER, an FFT-

based approach, correct orientations could be selected by evaluating the 

energy funnel landscape of the runs together with their divergence from 

the low-resolution cluster center.
80

 This indicates that a combination of a 

broad low-resolution energy basin with a good full-energy score can 

distinguish near-native orientations. Along similar lines, ZDOCK, 

another FFT-based approach has been combined with Rosetta.
81

 Finally, 

Andrusier et al. have devised FireDock,
82

 which combines the fast 

PatchDock algorithm based on geometric hashing,
83

 with a full-atom 

protocol that is largely based on the RosettaDock full-atom docking 

optimization protocol (see above). In principle, a general trend can be 

observed, where new protocols are developed that consist of 

combinations of different original protocols, which can lead at the end to 

greatly improved protocols, both regarding efficiency, accuracy and 

generality. Such progress has been possible thanks to the organisation of 

community-wide assessments and meetings within the CAPRI 

framework.
24, 84

 

8.6 The Contribution of High-resolution Docking to the 

Understanding of Interactions of Biological Interest 

The CAPRI experiment has had a major impact on the docking field, by 

making the assessment of performance easy: predictions are compared to 

the solved structure. In ‘real-world’ applications, ‘success’ is often 

defined in other ways, since the structure of the complex is not always 

solved. In this section we will detail a list of exciting applications of 

high-resolution docking, where atom-resolution model of the interaction 

has advanced our understanding of specific protein-protein interactions 

significantly. 

8.6.1 Entry Mechanism of Anthrax Toxin  

Anthrax toxin consists of three proteins: the Lethal Factor (LF), the 

Edema Factor (EF) and the Protective Antigen (PA). The latter 

heptamerizes and forms a pore in the cell membrane through which the 

two enzymatic factors enter the cell. The Collier laboratory identified 
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several mutations that abolish the binding of LF to PA,
85, 86

 and based on 

these mutations, two alternative principle orientations between LF and 

PA could be suggested; however, each of them explained only part of the 

mutational data. In an attempt to settle this discrepancy, we created a 

model of this interaction using RosettaDock.
87

 The right panel of Fig. 

8.1c shows the characteristic energy funnel picture obtained from the 

simulation run, which indicated that there was a third conformation 

distinct from either of the proposed orientations. Based on the details of 

the interface in this atom resolution model (see Fig. 8.1c, left panel), we 

designed a series of mutations that could validate our model: a disulfide 

link could be successfully introduced between residues Y108 in LF and 

N209 in PA, indicating their spatial vicinity in the complex. In addition, 

charge reversal in the residue pairs D187 in LF and K213 in PA, and 

E142 in LF and K218 in PA was applied, and in both cases, change of 

the charge in one partner only abolished the interaction, while a 

complementary charge in the other partner reconstituted the interaction. 

How then could the conflicting initial mutagenesis results be explained? 

Going back to their experimental protocols, the experimentalists recalled 

that they were working with an artificial PA dimer, and one set of 

mutations simply abolished the interaction between the PA monomers. 

This is a good example of how computational prediction can often 

advance experimental work and simplify the organisation of 

experimental evidence into a consistent model.  

8.6.2 Antitumor Monoclonal Antibody 806 (mAb806) and the 

Epidermal Growth Factor Receptor (EGFR) 

The antitumor antibody mAb806 binds the extracellular region of the 

EGFR in cancerous conditions (e.g. when the EGFR is over-expressed
88

), 

and the mAb806 epitope was mapped to a disulfide bonded loop (amino 

acids 287–302) in EGFR.
89

 No molecular structure has been determined 

for the mAb806-EGFR complex. However, ample biochemical 

information was available to provide guidance. Sivasubramanian et al.
90

 

used RosettaDock to predict the structure of this complex. A homology 

model of mAb806 was docked against all the known structures of the 

EGFR epitope, and the resulting models were screened both for sterical 
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hindrance with the entire EGFR complex (in different possible 

conformation) and for correlation between the results of computational 

mutagenesis performed on the models and experimental mutagenesis 

data. The model which best correlated with the experimental data was 

selected and was used to suggest new mutations that might affect the 

binding. These mutations were experimentally validated and indeed 

overall, the model proposed correctly predicts 33 of 40 (80%) mutations, 

including 14 of 16 (87%) new mutations suggested after the creation of 

the model. Based on the high resolution model, the authors could 

postulate that the steric hindrance created by the antibody near the EGFR 

dimer interface interferes with receptor dimerization, from which stems 

the antitumor effect of mAb806. 

8.6.3 High-resolution Docking in the Service of Biochemistry  

The atomic resolution of models produced by high-resolution docking 

protocols can shed light on the fine details of complex biochemical 

processes such as electron transfer and ion trafficking.  

The relationship of two close redox (reduction–oxidation) complexes 

was examined by Medina et al.
91

 using high-resolution docking 

simulations with pyDockRST
92

 and ICM-dock.
68

 Ferredoxin-NADP
+
 

Reductase (FNR) interacts both with ferredoxin (Fd) and flavodoxin 

(Fld), in order to transfer two electrons, which will be used to reduce 

NADP
+
 to NADPH. While X-ray structures of the FNR:Fd complex have 

been reported, an experimental structure for the FNR:Fld interaction is 

highly elusive. In this study the authors conducted docking simulations 

of both complexes and proposed a model for the FNR:Fld interaction. 

This model, although displaying a different binding mode than the 

FNR:Fd complex, is in accordance with previous biochemical data and 

places the redox centres of both monomers within electron transfer 

range.  

Another study, by Arnesano et al. shed light on the copper ion 

transfer mechanism by means of high-resolution docking. In yeast, Atx1 

(a copper chaperone) delivers Cu(I) to the copper domain of Ccc2, an 

ATPase located in the trans-Golgi, which then transfers it to a 

cuproenzyme.
93

 Using the HADDOCK programme
43

 in combination with 
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available NMR titration data,
94

 an ensemble of high-resolution models 

was proposed for this interaction. The models provide a structural basis 

to discuss the mechanism of copper exchange. The copper binding motifs 

‘CxxC’ of both monomers are put adjacent to each other in the models, 

with the copper ion almost at bond length (average of 3.7 Å between the 

copper ion and the sulfur atom of Cys13 at Ccc2). The interaction was 

found to be mainly of electrostatic nature, with a network of hydrogen 

bonds stabilising the complex. The implications of these models are 

relevant for a number of proteins homologous to Atx1 and Ccc2 and 

conserved from bacteria to humans. 

8.6.4 Applications of High-resolution Docking: Structure-based 

Prediction of Binding Specificity 

Protein–protein interaction networks underlie a new era of systems 

biology. The results of large-scale experiments determining interacting 

proteins allow for the construction of these networks, and from the 

networks arise new insights on the macro cellular level.
95

 These 

experiments however are not very accurate and the coverage of the 

interactome is believed to be only partial.
96

 Computational schemes to 

determine whether two proteins bind each other or not are therefore in 

dire need.
97

 

The current approaches in this direction are based on the assumption 

that homologous proteins share the same binding mode, thus the 

sequences of the target proteins are threaded onto a template of the 

interaction and the energy of this model is evaluated.
98–101

 However, 

when the sequence similarity is low, additional loops are usually 

inserted/deleted at the interface and overall structural differences occur 

that need to be modelled. High-resolution docking of these complexes 

while accounting for backbone conformational changes and loop 

modelling might be the answer to the holes in the systems biology 

interaction network. This field is however only at its beginning.  
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8.7 Conclusions and Outlook 

8.7.1 Impact of Docking on the Modelling Field 

Recent advances in large-scale genomic approaches have created an 

exciting era of abundant information regarding the sequences and 

structures of proteins, which in many cases can already broadly cover 

whole genomes. This poses interesting challenges in the field of systems 

biology, which attempts to create a comprehensive, macroscopic picture 

from this data. Importantly, this also pushes forward fields that are 

related to the microscopic basis of this complexity, namely the prediction 

of the structural basis of individual proteins and their interactions. It does 

not come as a coincidence that high-resolution structural modelling has 

advanced in correlation with the new era, as major breakthroughs have 

been possible by harnessing this information in the form of so-called 

‘knowledge-based’ potentials that are based on statistical analyses of 

existing protein sequences and structures.  

In turn, progress in docking procedures is expected to have impact 

beyond the docking field, and help improve local refinement strategies, 

e.g. ab initio modelling, where predictions within 2 Å RMSD from the 

native structure are also starting to appear more frequently.
102

  

This review has focused on high-resolution docking, where atoms are 

explicitly modelled. In contrast to ‘soft’, rigid-body docking, these 

methodologies tend to be significantly slower due to the increased 

degrees of freedom that are sampled, but since conformational changes 

upon binding are explicitly modelled, the final structures can consistently 

be more accurate, and thus easier to select using stringent full-atom 

energy functions. As a consequence, several high-resolution models that 

reach experimental accuracy have been reported. 

Despite impressive advances in docking, challenges definitely remain 

ahead. Most importantly, only anecdotal cases of high-resolution 

modelling of large conformational changes have been reported (e.g. the 

prediction of a large flip of a loop in the interface in CAPRI Target 20 

using RosettaDock; see above and Fig. 8.1b
32

). Thus, in order to obtain 

an ultimate, generally applicable, high-resolution protocol, there is a  
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need for new approaches to be included into a comprehensive modelling 

suite. As mentioned in the text, successful high-resolution modelling has 

many benefits: (a) understanding the basic principles that underlie 

protein–protein interactions: protocols that can model a protein complex 

at high level of detail, support the suggestion that the energy function 

describes accurately the actual binding of the partners; (b) structural 

support of large-scale protein–protein interaction networks: accumulation 

of solved monomer structures – mainly within the frame of the Structural 

Genomics project – is an excellent starting point for the modelling of a 

substantial fraction of the interactome, thereby supplementing the 

structural system level part; (c) fine-tuned manipulation of individual 

protein–protein interactions, by interface redesign and the design of 

inhibitors is dependent on an accurate structure of the protein complex, 

which can be provided by high-resolution docking protocols. In the 

future we will see an increasing number of functional assays of protein–

protein interactions that are founded on structure-based manipulation of 

the complex.   
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CHAPTER 9 
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Docking approaches typically result in a large number of putative 

protein–protein complexes. The selection of the most realistic predicted 

complex by an appropriate scoring function is an important step of the 

modelling process. In addition, an initially selected complex structure 

often requires structural refinement to arrive at an accurately structural 

model of the complex. A variety of scoring and refinement methods 

have been developed in recent years. The chapter is intended to 

introduce and discuss the most relevant methods for evaluating and 

refining predicted protein–protein complex structures.  

9.1 Introduction 

Knowledge of the structure of protein–protein complexes is of major 

importance in understanding the biological function of protein–protein 

interactions. Experimental structure determination of protein complexes, 

for example by X-ray crystallography, requires purification of large 

amounts of proteins and the ability to crystallise the protein–protein 

complex which may not be feasible for all known interacting proteins. In 

particular complexes of weakly or transiently interacting protein partners 

may not be stable enough to allow experimental structure determination 

at high (atomic) resolution. However, frequently such transient protein– 
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protein interactions are of functional importance for the cell during signal 

transduction or regulation of metabolism.
1,2

 Many cellular functions are 

mediated by multi-protein complexes in a dynamic equilibrium with the 

isolated components or sub-complexes.
3,4

 Each protein of a cell may 

potentially interact with many other proteins so that the number of 

potential complexes greatly exceeds the number of single proteins. In 

order to fully understand the function of these protein–protein 

interactions, knowledge of the three-dimensional (3D) complex structure 

is desirable. The prediction of protein–protein complex structures is 

therefore of increasing importance to obtain at least realistic structural 

models of protein–protein complexes.
5–10

 If the structure of the isolated 

protein partners is available, it is possible to use a variety of 

computational docking methods to generate putative complex structures 

(reviewed in Refs 11–19). A short overview of the most common 

methods will be given in Section 9.2 and docking methods are reviewed 

in detail in Chapter 6.  

Alternatively, in case of sufficient sequence similarity of proteins 

forming a putative complex with respect to a protein complex with 

experimentally known structure, it is also possible to use comparative 

modelling approaches to build a structural model of the complex
20–22

 

(Section 9.3). It is assumed that not only do the partner proteins adopt 

similar structures but that also that the interface is similar to the interface 

in a template complex of known structure. 

Often, protein–protein complex structures obtained from protein–

protein docking but also in case of comparative modelling are of limited 

accuracy and require further structural refinement to achieve the 

generation of a realistic structural model. The structural refinement of 

such complex is the subject of Section 9.4. In fact, the majority of current 

protein–protein docking approaches distinguish between a first 

exhaustive systematic docking search followed by a second refinement 

step of pre-selected putative complexes.
11–19

 Docking protocols may even 

consist of several consecutive refinement and rescoring steps.
18,19

  

In order to limit the computational demand during the first 

systematic search, typically a simple and rapid scoring is employed (e.g. 

based on surface complementarity of the docking interface) to initially 

rank and pre-select putative complexes. An important next step after the 
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refinement of a subset of complexes (often still several hundreds or even 

thousands of complexes) is to select the most realistic model out of the 

set of solutions. The various options for scoring or re-scoring (after 

refinement) of a set of modelled complexes are discussed in Section 9.5 

of this chapter. 

Both scoring and refinement are frequently considered as separate 

issues of modelling protein–protein complex structures. However, the 

majority of scoring functions are parameterised using experimental 

structures as input. Hence, highly accurate scoring of a protein–protein 

docking geometry is only possible if the complex structure has also been 

predicted with high precision. The more errors a scoring function may 

tolerate, the less specific it will become. Consequently, there is a direct 

relation between the robustness or softness of a scoring function and the 

number of false–positive solutions. It is likely that the design of more 

rigorous and more specific scoring functions requires at the same time an 

improvement of the prediction accuracy of binding modes in terms of 

deviation from the experimental binding geometry. 

9.2 Generation of Protein–Protein Complexes by Docking Methods 

The purpose of computational protein–protein docking methods is to 

predict the structure of a protein–protein complex based on the structure 

of the isolated protein partners. Several efficient approaches have been 

developed in recent years to efficiently generate a large number of 

putative binding geometries (see Chapter 6).  

Among the most common methods are Fast Fourier transform (FFT) 

correlation techniques.
23–28

 The FFT correlation technique allows the 

rapid calculation of the optimal overlap of functions that describe the 

boundaries of proteins. The two protein partners are represented by cubic 

grids, the grid points are assigned discrete values for inside, outside and 

on the surface of the protein. For various relative orientations of the two 

binding partners a geometric complementarity score can be calculated by 

computing the correlation of the two grids. Instead of summing up all the 

pair products of the grid entries one can make use of the Fourier 

correlation theorem. The correlation integral can easily be computed in 

Fourier space. The discrete Fourier transform for the receptor grid needs 
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to be calculated only once. Due to the special shifting properties of 

Fourier transforms the different translations and orientations of the 

ligand grid with respect to the receptor grid can be computed by a simple 

multiplication in Fourier space.
23

  

The extension of the FFT correlation method employing polar 

variables in stead of Cartesian coordinates has also been described and 

successfully applied in the field of protein–protein docking.
29,30

 

Geometric hashing is a computer visualization technique to match 

complementary substructures of one or several data sets.
31

 Typically, 

each data set is broken down to triangles, which are stored in a hash 

table. By means of a hash key similar triangles can be found very 

quickly. During docking, these triangles comprise points on a molecular 

surface, having a certain geometrical (concave, convex) or physico-

chemical (polar, hydrophobic) character. By matching triangles 

belonging to different molecules and being of complementary character, 

putative complex geometries can be generated.
32–34

  

A third class of methods uses either Monte Carlo, Brownian 

Dynamics or multi-start energy minimization to generate large sets of 

putative protein–protein docking geometries.
35–42

 Since these methods 

are computationally more expensive compared to FFT based correlation 

methods or geometric hashing, a search is often limited to pre-defined 

regions of the binding partners.
36

 Alternatively, it is possible instead of 

atomistic models to employ coarse-grained (reduced) protein models to 

perform systematic docking searches. With such reduced protein models 

it is possible to optimise docking geometries starting from tens of 

thousands of protein start configurations.
38–40

 In order to limit the number 

of putative complex structures generated during an initial docking search 

cluster analysis is typically employed to reduce the number to a subset of 

representative complex geometries. 

9.3 Protein–Protein Complexes Based on Homology to Known 

Complexes 

Many proteins of unknown structure share sequence similarity to 

proteins of known experimental structure. It has also been recognised 

that sequence similarity of natural protein sequences often implies 
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structural similarity. Based on the sequence similarity it is often possible 

to create a structural model of a protein with unknown structure by using 

the corresponding known structure as template.
43,44

 In case of sufficient 

sequence similarity ( > 40% identical residues) such structural models 

can be quite accurate frequently with a root mean square deviation 

(RMSD) from the real native structure of < 2 Å.
44 

In addition to comparative modelling of single proteins, it is also 

possible to build comparative models of whole protein complexes.
20–22

 

Comparative modelling of complexes benefits from the growing number 

of experimentally determined protein–protein complexes but also from 

the observation that a significant number of protein interactions involves 

recurrent interfaces or the interactions are mediated by similar domains 

or regions of proteins.
21,22,45

 Russel and co-workers
20,21

 as well as Sali 

and co-workers
45,46

 succeeded in comparative modelling of a significant 

fraction of protein–protein complexes of the yeast protein 

interactome.
47,48

 The interactome is defined as a set of experimentally 

verified protein–protein interactions in a cell or organism. Sequence-to-

structure threading methods have also been successfully applied for 

comparative modelling of protein–protein interactions.
49

 In the approach 

of Sali et al.
46

 alternative interaction geometries were considered and 

evaluated using an empirical scoring function (see below).  

Nevertheless, a prerequisite of comparative modelling in general is 

that the complex structure of the unknown target is indeed structurally 

similar to the template complex. In case of a very limited sequence 

similarity (homology) of the complexes this may not be the case and the 

generated complex will deviate from the native complex structure. In 

addition, the accuracy of the predicted protein interaction geometries 

depends on additional factors such as the accuracy of the modelled 

protein partners. Similar to protein–protein complexes obtained by 

docking searches, comparative models of complexes may require further 

structural refinement and further evaluation (scoring) if putative 

alternative interaction geometries have been predicted. 
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9.4 Structural Refinement of Modelled Protein–Protein Complexes 

9.4.1 Force Field Description of Proteins and Protein Complexes  

Computational methods to refine putative protein–protein complex 

structures obtained from docking searches or comparative modelling are 

based on a molecular mechanics force field description of the 

participating molecular structures. A force field employs as variables the 

positions of atoms (not electron coordinates as in quantum mechanical 

methods) and consists of several additive terms that control the bonded 

and non-bonded geometry of molecules,
50,51
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The bonded terms (first three summations in the above equation) contain 

a sum over all bonds, all bond angles and dihedral angles of the protein 

structures. Usually quadratic penalty terms with appropriate force 

constants (kb and kθ, respectively) are used to control the bond lengths 

(b) and bond angles (θ) of the molecules. A linear combination of 

periodic functions is employed to control torsion angles (τ). Additional 

non-bonded terms describe van der Waals and Coulomb interactions (as 

a double sum over all non-bonded pairs of atoms). The form of the 

energy function allows a rapid evaluation of the potential energy of a 

molecule and calculation of gradients necessary for energy optimization 

and molecular dynamics simulations based on a numerical solution of the  
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classical equations of motion.  

9.4.2 Optimization Based on Energy Minimization  

A standard procedure to refine the interface region of predicted protein–

protein complexes is to perform energy minimization. The start structure 

corresponds to a pre-selected complex obtained as a putative solution 

from homology modelling or docking searches. A variety of energy 

minimization procedures exists mostly based on the gradient of the 

molecular force field employed to describe atomic interactions. It usually 

leads to the closest local energy minimum with respect to the start 

structure. Energy minimization can be performed in Cartesian 

coordinates of the protein atoms. Several molecular mechanics 

programme packages are available for Cartesian energy minimization of 

biomolecules (e.g. Amber,
52

 Charmm,
53

 Gromacs
54

). The programme 

RDOCK is an example of refinement of docked complexes based on 

multi-start energy minimization.
55

 Due to the stiff nature of some of the 

energy terms in the force field, Cartesian minimization typically results 

only in small adjustments of atoms and is used to remove any sterical 

atom overlap at the predicted interface. Typically, the movement of 

atoms during Cartesian minimization is limited to a few tenths of 

Angstrom from the initial positions.  

Alternatively, it is also possible to perform the minimization in 

internal degrees of freedom (e.g. dihedral angles) of the protein 

molecules combined with variables that describe the relative position and 

orientation of the protein partners. Docking programmes such as 

RosettaDock
40

 (described in detail in Chapter 8) or the ICM (Internal 

Coordinate Molecular mechanics) programme
36,56

 employ energy 

minimization in dihedral angles to adjust side chains and the protein 

backbone at the protein–protein interface. This limits the minimization to 

fewer variables. An additional advantage is also that the optimization can 

easily be limited to a subset of relevant conformational variables (for 

example only side chain dihedrals at the interface). The possible 

conformational adjustments are often larger compared to optimization in 

Cartesian coordinates.
36

 Energy minimization can be combined with 

other conformational search techniques such as Monte Carlo methods to 
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introduce random perturbations prior to minimization (see Section 9.4.4). 

It is also possible to perform multiple energy minimizations starting for 

example from different side chain placements at a protein–protein 

interface.
57

 

9.4.3 Accounting for Global Conformational Changes 

Protein partner structures can undergo not only local adjustments (e.g. 

conformational adaptation of side chains and backbone conformation at 

the interface) during association but also more global conformational 

changes that involve for example large loop movements or domain 

opening-closing motions. Several methods have been designed to detect 

hinge regions in proteins that are potentially involved in mediating global 

changes.
58–60

 

Normal mode (NM) analysis is a molecular mechanics based method 

to identify global soft collective degrees of freedom of protein structures. 

A normal-modes analysis involves the calculation of the curvature of the 

molecular mechanics energy function at an energy minimum. The 

curvature of the energy function corresponds to the second derivate with 

respect to the atom coordinates of the system. Based on the calculation of 

the eigenvectors and eigenvalues of the second derivative matrix it is 

possible to identify soft (and hard) collective degrees of freedom of the 

protein molecules. Soft degrees of freedom represent possible collective 

motions of many atoms in the system that result in only small 

corresponding energy changes. Such motions may represent for example 

opening-closing motions of enzyme active sites or relative displacements 

of domains in proteins (illustrated in Fig. 9.1).  

Normal mode analysis has been used to characterise the global 

mobility of many classes of biomolecules
60–63

 and has also been 

employed to identify hinge regions in proteins.
60

 A drawback of the 

method is the computationally expensive calculation of normal modes of 

large receptor molecules due to the large number of coordinates and the 

requirement for extensive energy minimization. Furthermore, the energy 

minimization is often performed in the absence of solvent and can lead to 

significant deviations from the experimental protein geometry. 
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Fig. 9.1. Illustration of normal mode directions that point towards the eigenvector 

directions of the second derivative matrix (Hessian matrix) of the energy function at an 

energy minimum (upper two panels). The lower three panels show the backbone tube 

representation of lysozyme in an unbound and substrate-bound conformation. The 

substrate binding region is localised at the centre between the upper and lower domains 

of the protein. A superposition of lysozyme structures deformed along the direction of the 

softest normal mode illustrates the collective character of the motion (lower panel on the 

right) with different grey levels of deformed structures. It also illustrates that the softest 

collective mode describes an opening-closing motion of two domains that encompass the 

substrate binding site. 

It has been shown that soft normal modes obtained from Elastic Network 

Models (ENMs) of proteins frequently overlap with experimentally 

observed global conformational changes.
64–69

 In an ENM the 

experimental structure serves as a reference (energy minimum) structure 

and the mobility of atoms is determined by harmonic springs that control 

the distances between atoms.
64–69 
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The force constant for restraining the distance close to the distance in the 

reference structure decreases in ENMs with the distance (either 

continuously or by introducing a cut-off distance). Consequently, the 

relative mobility of atoms depends on the local density and a larger 

number of short range contacts restricts locally the relative mobility of 

atoms.
66,67

 Normal modes derived from an ENM of a protein can be 

calculated very rapidly because of the simple form of the energy function 

and typically only the protein backbone is considered. Also, compared to 

normal mode analysis using a molecular mechanics force field the 

calculation of ENMs does not require a costly energy minimization and 

the reference structure is identical to the experimental protein structure. 

Instead of employing NM analysis to just identify putative directions 

of largest mobility in protein molecules it is also possible to employ the 

identified soft degrees of freedom directly as variables during docking 

searches or during refinement of docked complexes. The inclusion of 

such collective variables during docking has been used by Zacharias and 

Sklenar for docking of ligands to DNA.
70

 In combination with normal 

modes from ENMs it has later also been used for refinement of protein–

protein and protein–DNA complexes as well as during systematic 

docking searches.
71–76

 Alternatively, the soft directions can also be used 

to perform displacements followed by full Cartesian energy minimization 

to generate sterically possible large-scale deformations.
77

 Use of soft 

modes as additional variables allows the rapid relaxation of protein 

structures on a global scale involving much larger collective 

displacements of atoms during minimization then conventional energy 

minimization using Cartesian or other internal coordinates. The 

eigenvalue of each normal mode is a measure of the energy required to 

deform the structure along the corresponding mode. It can be used to 

estimate the receptor deformation energy avoiding costly calculation of 

the internal receptor energy at every docking minimization step. An 

additional advantage compared to docking methods that employ 

ensembles of rigid receptor structures is that the receptor conformation 

can change continuously during docking in the pre-calculated soft 

degrees of freedom and has therefore a greater capacity for induced fit 

adaptation. The application of relaxation or refinement in normal mode 

variables has been applied successfully in a number of studies.
71–74

 It has 
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also been used during systematic docking searches accounting 

approximately for global conformational changes already during the first 

protein–protein docking stage of generating many putative 

complexes.
74,75 

Instead of directly relaxing protein structures along 

normal mode directions to dock or refine docking solutions, it is also 

possible to generate ensembles of protein structures deformed along 

selected collective degrees of freedom.
77,78

  

 

Fig. 9.2. Comparison of rigid docking of RNAse A to the unbound RNAse inhibitor 

(horse shoe type structure) and docking including flexible adjustment along five soft 

normal modes of the inhibitor protein. The RNAse inhibitor in the bound form is shown 

for comparison as green cartoon whereas the unbound structure is illustrated as red tube 

(left panel). The yellow tube model (in closer agreement with the bound structure) 

indicates the inhibitor structure after normal mode relaxation and docking, and bound 

receptor structures in green. Mobile side chains at the interface are also included. The 

smaller RNAse protein at the experimental binding position is shown in grey (tube 

representation) and the placement after docking as purple tubes. It illustrates that both the 

docked protein position and the inhibitor conformation can markedly improve upon 

normal mode refinement when starting from unbound partner structures. Docking was 

performed with the ATTRACT software
75

 that allows simultaneous optimization of 

docking placement and conformational adjustment in normal mode variables. 
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For example, Mustard and Ritchie
78

 generated protein structures 

deformed along directions compatible with a set of distance constraints 

reflecting large scale sterically allowed deformations. Subsequently, the 

structures were used in rigid body docking searches to identify putative 

complex structures.
78

 Other authors used principal component of motions 

derived from molecular dynamics simulations to evaluate global 

conformational changes in proteins and to generate ensembles of (rigid) 

structures which can then be used for docking searches.
79,80

 Ensemble 

docking approaches are increasingly popular because it does not require 

modification of the rigid docking approaches.
80

 A drawback is, however, 

that it requires many more rigid docking searches (one for each 

generated protein structure) which may also increase the number of 

false–positive solutions.  

9.4.4 Molecular Dynamics Simulation of Protein–Protein Complexes 

Molecular dynamics (MD) simulations are frequently employed to 

achieve larger conformational adjustments compared to energy 

minimization during docking refinement. MD simulations are based on 

numerically solving Newton’s equation of motion in small time steps (1–

2 fs = 1–2 10
-15

 s) based on forces derived from a force field description 

of the molecular system.
81

 In contrast to energy minimization and due to 

the kinetic energy of every atom of the molecule, it is in many cases 

possible to overcome energy barriers and to move the structure 

significantly further away from the initial placement. Depending on the 

simulation length and temperature displacements up to several 

Angstroms from the initial atom positions are possible. Due to the 

dynamics of the complex it is hoped that the structure can overcome 

energy barriers and may move closer to a realistic binding geometry.  

Whether the displacements achieved during MD simulations indeed 

move the structures towards a more realistic complex structure depends 

on the accuracy of the force field and on how appropriately the aqueous 

environment has been accounted for. In principle, refinement simulations 

on a given protein–protein complex require the inclusion of surrounding 

aqueous solvent and ions. However, the inclusion of a sufficiently large 

number of explicit waters increases the computational demand. In 
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addition, the equilibration of explicit solvent molecules around a solute 

molecule requires significant simulation times (currently limited to tens 

of nanoseconds).
81

 Nevertheless, during the final stages of some protein–

protein docking protocols explicit water molecules being added to the 

simulation system.
82

 

MD simulations including surrounding waters and ions have been 

used to investigate the flexibility of protein structures prior to 

docking.
79,83,84

 It is possible for example to identify the alternative or 

most likely side chain conformations.
83,84

 Global conformational 

flexibility can be analysed by principal component analysis of the 

motions extracted from MD simulations.
79 

 

The computational demand of MD simulations including many 

thousands of explicit solvent molecules can limit the maximum 

simulation time and number of complexes used for refinement. Instead of 

including explicit solvent molecules during MD refinement of complexes 

it is also possible to implicitly account for solvent effects. This allows 

longer simulation times and refinement of more predicted complexes in a 

given amount of time. A variety of implicit solvation models has been 

developed (reviewed in Refs 85–87) and only a brief description of the 

most relevant concepts for protein–protein docking and scoring will be 

given.  

Hydration shell models are typically based on the exposed solvent 

accessible surface of the proteins and can be used to rapidly estimate 

solvation effects approximately. The contribution to the solvation of the 

molecule depends on the type of atom, and in most cases linearly on the 

amount of exposed surface area of the atom.
88,89

 Solvation parameters or 

surface tension parameters of each atom are often derived from the 

transfer free energy of chemical groups between a non-polar solvent (e.g. 

octanol) and water.
88,89

 However, the environment of buried atoms at 

protein–protein interfaces is not necessarily well represented by an 

organic alcohol. There have been attempts to readjust surface tension 

parameters to better represent the change in solvation upon transfer of 

atoms from an aqueous solution to the environment at protein–protein 

interfaces
90,91

 (see sub-section on force field scoring of docked 

complexes). Solvation models based on accessible surface area have 

been used not only during refinement but also for scoring docked 
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complexes (see below) and for identifying putative binding regions on 

the surface of proteins.
90–94

 

A short coming of accessible surface area based solvation models is 

the fact that polar and charged chemical groups, or atoms once 

completely buried in the interior of a biomolecule, do not influence the 

hydration properties of the molecule. It is, however, well known that the 

position of a charged group inside a protein relative to the surface can 

significantly affect the hydration properties and stability of a protein or 

protein–protein complex.
95,96

  

Another macroscopic solvation concept describes the protein interior 

as a medium with a low dielectric permitivity embedded in a high 

dielectric continuum representing the aqueous solution.
96–98

 The effect of 

the solvent is then calculated as a reaction field from a solution of 

Poisson’s equation for the charges assigned to each atom of the 

molecule. The mean effect of a salt atmosphere can be included by 

solving the Poisson–Boltzmann equation. Within such model the total 

energy of a molecule in solution is given by its force field energy and a 

polar solvation contribution calculated from a solution of the Poisson- or 

Poisson–Boltzmann equation.
96–98

 The polar solvation part is usually 

supplemented with a surface area dependent nonpolar solvation 

contribution (uniform for the whole surface of the molecule). Typically, 

the PB equation is numerically solved by a finite-difference method 

(FDPB) or by finite-element or boundary-element techniques to represent 

the molecular surface. For the FDPB method and with an appropriate 

choice of parameters for atomic radii a very reasonable correlation 

between calculated and experimental hydration free energies can be 

achieved. However, the method cannot easily be combined with MD 

refinement due to the difficulty to extract accurate solvation forces from 

grid solutions of the Poisson–Boltzmann equation.
99

  

Instead of the FDPB approach it is possible to use more approximate 

methods like the Generalized Born (GB) method.
100–105

 In the GB 

approach an effective solvation radius is assigned to each atom. This 

effective radius can be thought of as an average distance of the selected 

atom from the solvent or from the solvent accessible surface of the 

molecule. With the effective Born radii calculated for each atom the 

electrostatic solvation and its derivative (solvation forces) can be 
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calculated very rapidly.
100–102

 It is therefore possible to apply this method 

in molecular mechanics calculations such as energy minimization, 

conformational searches and molecular dynamics simulations. The GB 

method and related implicit solvent approaches are frequently used 

during refinement of docked protein–protein complexes. 

9.4.5 Refinement of Docked Complexes by Molecular Dynamics 

Simulation 

The HADDOCK docking programme (see Chapter 7)
37

 is entirely based 

on MD simulations to perform docking searches and to also use it during 

the final docking stage (refinement). During the initial search it employs 

a simple distance-dependent dielectric constant during docking and 

includes a surface area dependent solvation term for the final evaluation 

of predicted complexes.
37,106

 Alternatively, during the final refinement 

step the approach also allows inclusion of an explicit solvent shell 

around the docked protein structures. This approach has shown 

promising results on a set of ten test complexes.
82

 

Krol et al.
107

 employed short MD simulations in combination with a 

distance-dependent dielectric constant or an implicit solvent model to 

refine docked complexes obtained from rigid docking using the FFT 

correlation method. The protocol was fast enough to refine 1,000 

putative docking start geometries, however in an application to several 

targets from the CAPRI docking challenge it was able to improve the 

docking geometry only for one out of ten target complexes.
107

 Similar 

docking MD protocols have been used to refine complexes obtained from 

other systematic docking searches.
74

 

The application of MD simulations for refinement of complexes is 

limited by the accuracy of the force field but also by the limited ability to 

overcome energy barrier during the relatively short simulation time 

scales. It is possible to increase the simulation temperature or to use 

advanced sampling methods such as simulated annealing or replica 

exchange methods to overcome these limitations.
108–110

 However, higher 

simulation temperatures may also result in undesired conformational 

changes of the protein partners. An alternative technique to overcome 

energy barriers is to soften the energy function for residues at the protein 
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interface. This can be achieved by introducing an energy cut-off for the 

repulsive Lennard–Jones term
36,37,40

 but also by a continuous deformation 

of the potential (potential scaling approach). Riemann and Zacharias
111

 

described a method for interface refinement where the interaction 

potential of interface side chains is scaled down to zero at an initial stage 

of an MD refinement simulation and then gradually rescaled to the full 

potential. The approach showed promising results on several test 

cases.
111

 

9.4.6 Monte Carlo and Brownian Dynamics Refinement of Docked 

Complexes 

Monte Carlo (MC) search methods introduce random conformational 

changes in the predicted protein–protein complex and the changes are 

accepted or rejected according to a Metropolis criterion. The advantage 

of Monte Carlo (MC) methods is that no derivatives of the potentials are 

required and the search can be limited to the most relevant variables 

affecting the docking geometry. It is possible to use the dihedral angles 

of side chains located at the interface of protein–protein complexes as 

variables and keep the rest of the protein structures fixed. Monte Carlo 

methods are employed by several docking approaches at the refinement 

step. For example, the ICM-method employs a biased MC approach in 

side chain dihedrals and subsets of backbone dihedrals in combination 

with a truncated van der Waals potential for refinement
36

 (see also 

Chapter 6). Other approaches employ combinations of random Monte 

Carlo coordinate changes followed by energy minimization, 

implemented for example in the programmes FireDock
112

 and 

RosettaDock
40,41

 (described in detail in Chapter 8). A combination of 

Monte Carlo side chain optimization and optimal potential scaling to 

improve the ability to overcome barriers has also been described.
113

 The 

approach employs a combination of rigid body moves and side chain 

adjustments and the gradual transition from a smoothed potential to the 

full interaction potential at the protein–protein interface. The approach 

was successfully tested on a large set of putative complex structures and 

starting from unbound partner structures.
113

 Another way of smoothing 

the interface region during docking is to apply multi-copy mean field 
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approaches for side chains or protein loop structures.
114–116

 Instead of a 

smoothed potential these methods employ a set of alternative side chain 

or loop conformations, and a mean field of all copies is used during 

docking employing energy minimization
116

 or MC searches.
114,115

 Beside 

to the placements of the partner structures, the relative weights of each 

copy are adjusted during the docking process leading to the selection of 

the best fitting side chain or loop copies at the interface.
114–116

 

9.5 Scoring of Modelled Protein–Protein Complexes 

Realistic scoring of putative protein–protein complexes is of critical 

importance at the systematic search and the refinement stages of 

docking. The design of an appropriate and optimal scoring function for 

the realistic evaluation of protein–protein complexes is still an issue that 

has not been solved satisfactorily for all docking applications.  

As indicated above, the scoring function needs to realistically 

account for several enthalpic and entropic contributions that may 

influence the binding affinity of a receptor–ligand complex. Since 

computational speed is an important issue for ligand-receptor docking, it 

is necessary to identify a reasonable compromise between accuracy and 

speed to calculate a score for a protein–protein complex. Current scoring 

functions to evaluate predicted complexes range from simple schemes 

that just account for sterical complementarity used for example during 

the early systematic docking stage to complete force field functions that 

may be used during refinement. The scoring function can include terms 

that account for sterical and electrostatic interactions but also account for 

desolvation and hydrophobic contributions to ligand–receptor 

interaction.
117–134

  

Instead of scoring functions based on a molecular mechanics force 

field, it is also possible to design knowledge-based potentials to evaluate 

complexes that are extracted from known protein–protein complexes.
135–

143
 The basic idea of such knowledge-based scoring is to relate the 

observed frequency of atom–atom (or group-group) contacts to the 

expected contact frequency at protein–protein or other receptor–ligand 

interfaces to extract favourable and unfavourable atom–atom 
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interactions. Hereby, expected contact frequency means contacts that are 

obtained if atoms would be distributed randomly at the interface.  

 

Fig. 9.3. Schematic illustration of the binding process of two proteins and of associated 

changes in the binding partners. Association involves changes in the interactions of the 

binding partners but also the release of water molecules (desolvation) from the interface 

region. It may also involve adaptive conformational changes and changes in the mobility 

of backbone and side chains (one side chain is illustrated as a stick model). 

9.5.1 Driving Forces for Molecular Association and the Scoring 

Problem  

In order to design an optimal scoring of docked complexes it is important 

to consider in detail the process of association and the changes associated 

with the binding event. The driving force for the association of two 

proteins to form a complex corresponds to the free energy change 

associated with the binding reaction (see Chapter 3 on the 
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thermodynamics of protein–protein association). Protein–protein 

association can involve changes in electrostatic interactions, van der 

Waals interactions and hydrogen bonding interactions. The type of 

interactions can include contributions within and between the proteins 

(intra- and intermolecular contributions) but also between proteins and 

the surrounding solvent (typically aqueous solution). In addition, 

complex formation can also result in changes of interactions between 

solvent molecules.  

The binding process may not only involve changes in internal energy 

or enthalpy as indicated above but can also involve changes in the 

entropy of the protein partners and the surrounding water.
144

 For 

example, the conformational entropy of both interacting protein 

molecules can be affected by changes in flexibility of the binding 

partners. Complex formation can also lead to a change in the ordering of 

solvent molecules around the binding partners that influences the 

association process (hydrophobic effect).
144

 Contributions that can affect 

the binding of two proteins are schematically illustrated in Fig. 9.3. 

9.5.2 Scoring Based on Physical Force Fields 

Scoring based on a physical force field refers to the use of a molecular 

mechanics force field described above (Section 9.4.1) for evaluating or 

scoring a predicted complex structure. The binding partners are treated at 

atomic resolution and the force field is typically supplemented by a 

solvation model. The solvation model corresponds typically to one of the 

implicit solvation models described in Section 9.4.3. In principle, if the 

same solvation description has been used during the docking refinement 

stage the final calculated interaction energy (+ solvation contribution) 

can also be used to score a complex.  

The force field energy scoring can be decomposed into several 

contributions of the following typical form, 

 

Adaptationscore vdW Coulomb Solvation ConfE E E E E T S∆ = ∆ + ∆ + ∆ + ∆ + ⋅∆  

  (9.2) 
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The first three terms in the score correspond to the change in van der 

Waals, Coulomb and solvation free energy, respectively, upon complex 

formation. These contributions are calculated by subtracting the energy 

contributions of the isolated partners (in the same conformation as in the 

complex) from the corresponding energy contributions of the complex. 

This contribution can be termed interaction energy of the protein partners 

in the complex. The ∆EAdaptation energy terms refers to the change in 

internal energy of each protein partner upon adapting from the unbound 

form to the conformation in the bound complex structure. This term 

formally includes several other contributions such as possible changes in 

the bonded and non-bonded energy terms of each partner protein that 

need to change upon forming the bound structures. 

The ∆EAdaptation terms are often neglected during scoring. Hence, only 

the intermolecular (interaction) contributes to the score and one may 

wonder if this could dramatically affect the quality of the scoring. 

However, accounting for the conformational adaptation energy is 

difficult in case of scoring predicted complexes represented by a single 

structure because a single bound protein conformation may differ from a 

representative unbound conformation, not only at the interface but also in 

many regions that are irrelevant for the binding process (e.g. side chains 

or loops that are far away from the interface region). It is likely that each 

of the complexes that one wishes to score differs from the representative 

unbound form as well as from other predicted complexes in regions not 

relevant for binding. Thus, any straightforward estimation of the 

adaptation energy by calculating the difference between a partner 

structure in the bound form minus the energy of a representative 

unbound structure may include contributions due to accidental 

differences in regions irrelevant for binding. These irrelevant 

contributions can be significant and differ in each of the evaluated 

complexes and may even dominate the score. The problem of course 

occurs less in cases where the conformational changes in partner 

structures can be limited to the region of interest.  

The conformational entropy term (T∆SConf) represents all 

contributions due to restriction (or enhancement) of the mobility of the 

partners upon complex formation. Approximate methods can be used to 

estimate changes in conformational entropy of binding based for 
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example on normal mode analysis of the complex vs isolated 

partners.
63,145

 Here, one assumes that the energy function close to a given 

structure can be approximated by a quadratic function and one can 

calculate entropies by treating the system as a system of harmonic 

oscillators.
145

 Alternatively, it is also possible to evaluate the number of 

accessible stable rotameric states of side chains in the complex vs 

isolated partners to estimate the restriction of the side chain flexibility 

upon protein–protein association.
146,147

 However, in most force field 

scoring approaches it is assumed that the change in conformational 

entropy is similar for all evaluated complexes. Hence, the term might be 

very significant for calculating absolute binding free energies. In case of 

scoring one is primarily interested in identifying the most realistic 

complex geometry relative to alternative geometries and the 

conformational entropy term is therefore often neglected. 

As outlined in previous sections, the molecular mechanics force field 

based approach bears a number of approximations and several attempts 

have been made in recent years to further improve force field based 

scoring. The score consists of several contributions and a frequently 

applied strategy to improve scoring is to give each force field 

contribution an adjustable weight. The weights can be optimised on a set 

of known complex structures compared to a set of incorrectly docked 

complexes (termed decoy complexes). Examples of scoring with optimal 

weights of energy components are implemented in the HADDOCK 

approach,
36

 the RosettaDock programme,
40

 the ICM docking software,
36

 

the ZRANK programme
124

 and the EMPIRE programme
148

 (as well as 

other approaches).  

The force field scoring of putative complexes can be supplemented 

by a pseudo-energy term that accounts for available experimental data on 

a given system.
36,117

 This can, for example, be a pseudo energy term for 

the distance between residues that are known to interact in the complex 

or a term that accounts for the presence of a residue at the interface based 

for example on experimental mutagenesis data. 

 



Scoring and Refinement of Predicted Protein–Protein Complexes 257 

9.5.2.1 Scoring Based on Ensembles of Structures  

Protein molecules and protein–protein complexes undergo 

conformational fluctuations such that the representation by one static 

structure may not be realistic. In principle, a more accurate evaluation of 

a given complex can be achieved if one calculates an average score 

(force field energy) over an ensemble of conformations compatible with 

a protein–protein complex structure. Such ensemble can for example be 

generated by a molecular dynamics simulation of the complex and the 

isolated partners. Typically, during the evaluation an implicit solvent 

model such as the finite-difference Poisson–Boltzmann approach (see 

above and Chapter 11) or the GB approach are employed to account for 

solvation effects. The methodology is frequently referred to as 

MM/PBSA (Molecular Mechanics Poisson Boltzmann Surface Area) 

approach
149

 and can result in improved scoring compared to force field 

based scoring based on single representative structures for each docking 

geometry.
149,150

 However, due to the additional demand to generate and 

evaluate an ensemble of conformations (often several hundreds of 

conformations) around each docked complex it is limited to the scoring 

of only a few putative protein–protein complexes. 

9.5.3 Knowledge-based Scoring of Docked Complexes 

In addition to scoring functions based on a molecular mechanics force 

field, it is also possible to design knowledge-based or statistical 

potentials to evaluate complexes. As the term ‘knowledge-based’ 

indicates such potentials are usually extracted from known protein–

protein complexes or other receptor–ligand complexes. In knowledge-

based scoring one relates the observed frequency of atom–atom (or 

group–group) contacts (or distances) to the expected contact frequency at 

receptor–ligand interfaces. Over- or under-representation of a given pair 

of atoms or residues at an interface, then relates to favourable or 

unfavourable interactions, respectively.
135–143

 Expected contact frequency 

indicates contacts that are obtained if atoms would be distributed 

randomly at the interface.  
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Fig. 9.4. Scheme for the design of a distance-dependent statistical potential from amino 

acid distributions at interfaces. For a selected atom or residue (large grey sphere on the 

smaller protein partner) the frequency of other residues (or atoms) in the second protein is 

evaluated at various distances. The ratio of observed frequencies (from many protein–

protein interfaces) relative to expected frequencies (assuming a uniform distribution of 

atoms or residues) determines an effective statistical pair potential for a pair of residues 

or atoms (see text). 

9.5.3.1 Principles of Statistical Potentials to Score Predicted Complexes  

The idea to extract interaction of free energies between amino acid 

residues or atoms from the frequency of contacts in known protein 

structures has been pioneered by Tanaka and Scheraga
151 

and further 

developed by Miyazawa and Jernigan,
152,153

 and Sippl and co-

workers.
154,155

 Since then many statistical potentials have been developed 

in most cases depending either on distances or on only contacts between 

atoms or whole residues in proteins.
135–143

 A few statistical potentials also 

contain orientation dependent terms.
154

 The main application area of 

statistical potentials is the assessment of predicted or experimentally  
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determined protein structures. Statistical potentials are used in several 

programme packages to predict protein structures using fold recognition 

and threading methods,
155–158

 ab initio folding of proteins
159–161

 and 

prediction of the stability of proteins.
162,163

 Similar approaches can also 

be applied to derive a statistical potential for evaluating protein–protein 

complexes.
135–143

 In statistical mechanics for a set of n particles the n-

body correlation function is defined as, 
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with p(r1 ,r2…rn ) corresponding to the probability of finding the n 

particles in configuration r1, r2…rn and p(ri) is the probability to find 

particle i at ri. The correlation function is a measure of the 

interdependence of particles (would be 1 in case of no correlation or no 

interdependence of particles to adopt a certain configuration). From the 

n-body correlation function one can calculate a potential of mean force 

for a given configuration of particles, 
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where R is the gas constant, T is the temperature. The basis for deriving a 

statistical potential for protein structure prediction or evaluation of 

docked complexes is a set of native structures. Ideally, one would use the 

n-body correlation function (or probability distribution) of atoms or 

residues in protein structures or at protein–protein interfaces. However, 

in practice the available data is insufficient for accurately evaluating 

multi-body correlations and one restricts in most cases the derivation of 

statistical potentials to pair correlations. That is most statistical potentials 

are based on contacts or distances between residues or atoms in the set of 

experimentally determined protein structures or protein–protein 

complexes. Commonly the inverse-Boltzmann equation is used
135

 to 

derive a distance-dependent potential V of the form, 
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where Nobserved(a, b, d) corresponds to the number of observed atom pairs 

a, b at a distance d (within a distance interval) in the database and 

Nexpected(a, b, d) is the expected number of atom pairs at the same distance 

interval if atoms would be randomly distributed (e.g. no interactions 

between atoms).  

Differences in statistical potentials based on the inverse-Boltzmann 

equation can be due to the use of different data bases but the main 

difference is due to differences in the calculation of the number of 

expected atom pairs in case of no interaction between atoms or residues 

(termed reference state). Several different assumptions have been made 

to choose an appropriate reference state. In case of an infinite system the 

statistical potential corresponds to the potential-of-mean force derived 

from the pair correlation function of the two atoms a, b. In this case the 

probability to find non-interacting particles at an interval at a distance d 

is proportional to the square of the distance. Hence, the statistical 

potential is given by 

 
2

( , , )
( , , )

4
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d N Nπ

 ⋅
=−  

⋅ ⋅ 
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Here V is the volume and Na and Nb correspond to the number of atoms 

of type a and b in the protein, respectively. This potential would be 

correct in case of using a uniform density of atoms as reference state. 

However, proteins are finite and the number of atoms in a shell at a 

distance does not necessarily increase with the square of the distance. 

This has been recognised by Zhou and co-workers
135,164

 who introduced 

an exponent α = 1.57 (later adjusted to 1.61) instead of 2 when 

calculating the expected number of pairs at distance d. The smaller 

exponent accounts more realistically for the expected distance 

distribution of atoms in proteins. 

It should also be emphasised that statistical potentials derived from 

dense systems by the inverse-Boltzmann method do not necessarily 

reflect true interactions between particles. For example, oscillations in 
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the distance dependence may simply be due to the size of the atoms and 

the shell or atom-layer-like packing structure around atoms. 

9.5.3.2 Application of Statistical Potentials to Score Predicted 

Complexes  

A number of knowledge-based scoring functions for specifically 

evaluating docked protein–protein complexes have been designed in 

recent years and only an overview of a few developments can be given. 

As indicated above only very few knowledge-based potentials go beyond 

accounting for pairwise interactions or using variables other than contact 

or distance to evaluate an interaction.
156

 The potentials differ in the 

resolution of the interface description (e.g. atomic resolution or pseudo 

atoms representing parts or whole residues) but also in the number of 

atom or pseudo atom types or the reference state from which the 

expected contact or distance probability for atom-pairs are derived (see 

above). 

For example, Jiang et al.
165

 developed an atomic-resolution statistical 

potential based on physico-chemical properties and propensities of 

interface atoms which contained just four different atom types. Despite 

the small number of atom types the potential reproduced the known 

binding energies of several complexes in good agreement with 

experiment. However, the ability to distinguish between native docking 

geometry and alternative solution was not tested. Skolnick and co-

workers developed atomic-resolution and residue-resolution statistical 

contact potentials based on a large set of experimental protein–protein 

complex structures.
166

 The potential has been used successfully within 

the TASSER protein structure prediction programme
166

 and can also be 

applied to evaluate docked protein–protein complexes.
167

 

One of the best performing statistical potential is the DFIRE 

(Distance-scale Finite Ideal Gas Reference state) potential by Zhou and 

Zhou.
135

 The potential involves 19 different atom types. The potential has 

been applied both for evaluating modelled protein structures and protein–

protein complexes.
136,168

 Although original designed as an all-atom 

statistical potential, a variant residue-level potential was also developed 

(DFIRE-SCM).
169

 Interestingly, the coarse-grained potential showed very 
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similar performance in discriminating native protein structures from non-

native decoy structures compared to the all-atom potential and other 

statistical potentials. 

Another distance-dependent statistical potential has been developed 

by Sali and co-workers.
46,142

 The derivation of the potential is based on 

an Ansatz that factorises the probability distribution to find any 

configuration of atoms or pseudo atoms at an interface.
42

 Most other 

statistical potentials assume a Boltzmann law for relating probabilities to 

effective interaction energies. Instead the potential by Sali and co-

workers uses a factorization of the full probability function in terms of 

pairwise probabilities and other terms depending on higher order 

probabilities. This potential has been used for comparative modelling of 

protein structures
170

 but also for evaluating protein–protein complexes 

that have been built based on sequence homology to known complexes.
46

  

Chuang et al.
171

 developed an alternative knowledge-based potential 

that uses as reference state docking decoy structures (incorrectly docked 

complexes). For this potential the pairwise atom occurrences in native 

complexes are related to the corresponding frequencies in the non-native 

decoy complexes to derive a score for the actual atom pair. The method 

has been combined with an FFT docking programme and improved the 

scoring performance compared to a previous scoring function.
171

 

Tobi and Bahr
172

 used a different approach to derive a knowledge-

based potential. Most existing statistical potentials are based on a set of 

native structures or complexes. Except for the concepts like the above 

discussed method by Chuang et al.
171

 this leaves out the information on 

complexes that are incorrect. In order to optimally account for the 

additional information in non-native complexes that include which 

interactions should not occur in native complexes, the authors used linear 

programming to optimise a scoring function. The optimization started 

with a pairwise additive contact-based scoring function, a number of 

native protein–protein complexes and a large number of incorrect 

complex geometries. The parameters of the contact scoring function were 

then systematically optimised to achieve the largest possible gap between 

rankings of the native complexes vs non-native complexes. The residue-

based scoring function was successfully applied to reproduce the native 

complex as best ranking solution on a set of test systems.
172
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It is well known that for example solvation forces between molecules 

are non-additive and can, in general, not be accurately described by 

simple pairwise potentials. For example, a charged residue is usually 

effectively repelled from a non-polar side chain. However, the effective 

repulsion is likely to be stronger (at the same distance) if the interaction 

occurs in a fully buried environment like the centre of a protein–protein 

interface compared to a partially solvated rim region of an interface.  

A few attempts have been made so far to extend the concept of 

knowledge-based potentials to interaction patterns beyond pairs. In the 

field of protein tertiary structure prediction 3-body and 4-body potentials 

have been developed. A drawback of multi-body statistical potentials is 

the increased number of parameters compared to pairwise potentials 

which depends on how many atom or residue types the model may 

distinguish. Application of 3-body or 4-body potentials in the area of 

protein structure prediction resulted so far only in modest improvement 

of tertiary structure prediction compared to pairwise potentials alone.
173–

175
 However, Majeweski

176
 could show that a multi-body potential 

consisting of up to 17 residues representing a whole interaction pattern 

was effective in tertiary structure prediction efforts. It remains to be seen 

if multi-body potentials can also be effective in scoring docked protein–

protein complexes. 

9.6 Conclusions and Outlook 

Realistic modelling of protein–protein interactions and the accurate 

prediction of putative complex structures is of increasing importance for 

molecular life sciences. Proteins in the cell have many potential binding 

partners and undergo a large number of transient interactions with other 

proteins. For many of these interactions information on the 3D structure 

is desirable but experimentally often difficult or impossible to elucidate. 

Improvement of the refinement of docked complexes as well as better 

scoring of putative complexes to identify the most realistic complex 

structure is of key importance for modelling protein–protein complexes. 

A variety of scoring functions have been designed in recent years 

and many are effective for the identification of near-native complex 

structures if docking was performed using bound structures or in case of 
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only minor conformational changes upon complex formation. This 

observation indicates the strong coupling of scoring and appropriate 

treatment of conformational changes during docking. A key issue of 

future prediction efforts should be to solve both issues simultaneously. 

Ideally, scoring and refinement of docked complexes should not only 

identify the native or near-native protein binding geometry but also 

provide a realistic prediction of the binding affinity. This is also a 

prerequisite for applying docking methods to predict for a given protein 

the correct binding partner among several other proteins (cross docking). 

Attempts to use protein–protein docking methods for cross-docking have 

not been fully satisfying likely due to the limitations of current scoring 

functions.
177

  

It has been recognised that many protein–protein interactions are 

mediated through recurrent use of similar interaction interfaces or 

through domain–domain interactions that occur in many proteins.
178–185

 A 

likely route for future directions will be the increased use of comparative 

modelling methods to model not only single proteins but also complexes 

of proteins. This direction will benefit from methodological 

improvements to detect even remote sequence similarity between a target 

sequence and a template complex. However, improvements in refinement 

techniques are necessary to eliminate possible errors in the complex 

structure due to the limited accuracy of comparative modelling methods 

in case of low target-template similarity. 

The focus of the majority of docking efforts in recent years was on 

modelling of homo- or heterodimeric protein–protein complexes. 

However, many biological processes involve not only the interaction of 

two proteins but multiple simultaneous interactions. In many of these 

cases the isolated pairwise interaction may not be strong enough for a 

high-resolution experimental characterization. The prediction of multi-

protein complexes and assemblies has the potential to provide structural 

models for such structures and could be helpful to elucidate the 

associated biological function. Only few methods have been designed to 

tackle the multi-protein docking problem.
186–189

 Such docking efforts can 

be combined with experimental methods that provide experimental 

constraints on the structure of the assemblies. For example, electron 

microscopy and atomic force microscopy do not require crystals of 
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biological structures and can provide low resolution electron density 

distributions of large macromolecular assemblies. Frequently, docking 

methods have been used to place atomic resolution structures into the 

low resolution electron density obtained from electron microscopy and 

related techniques.
190–192

 Depending on the resolution of the experimental 

data scoring and refinement of possible alternative protein arrangements 

will be of increasing importance to obtain realistic models of large 

macromolecular assemblies. 

In recent years the rational design of several new or modified 

protein–protein interactions has become possible.
193–195

 The achievement 

offers the future opportunity to use designed protein–protein interactions 

to build functional nanomolecular structures. Improved docking 

refinement and scoring methods can help to better evaluate suggested 

protein modifications with respect to a desired binding mode and may 

help to limit the number of redesigned proteins that need to be evaluated 

experimentally. 
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Many important protein–protein interactions are mediated by relatively 

small recognition domains which bind to peptides exhibiting specific 

sequence motifs. In this type of interaction, only the interaction domain 

adopts a globular three-dimensional structure while the interaction 

motif is mostly linear. These interactions are of crucial importance to 

signalling mechanisms, cell compartment targeting and post-

translational modification. During recent years it became clear that 

mutations in linear sequence motifs also represent the cause of several 

hereditary diseases like Noonan Syndrome, Liddle’s Syndrome and 

Usher’s Syndrome. In addition, genome sequencing and functional 

analyses revealed that viral effector proteins frequently rely on linear 

sequence motifs to ensure viral persistence and replication. Well-

characterised examples are the HIV-1 Nef protein or the Tip protein 

from Herpesvirus saimiri. This book chapter will review the principles 

of motif-mediated interactions, their role in disease and computational 

approaches to identify functional sequence motifs. 

10.1 Introduction 

Proteins play crucial roles in virtually all biological processes. They 

catalyse chemical reactions, oligomerise to form filaments, control 

progression through the cell cycle, regulate other proteins’ activity and 

integrate into the cell membranes. Originally, it was assumed that protein 
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function was exclusively governed by the three-dimensional structure 

and that proteins consisted of a single large spherical shape with unique 

fold and activity. Today, this view has changed significantly in several 

aspects. 

It is now known that a large number of proteins consist of multiple 

distinct domains. Domains are defined as compact, spatially distinct 

units, which fold separately into their three-dimensional structure and 

which exhibit a distinct function. Therefore, the traditional rule of ‘one 

protein – one function’ has been extended into ‘one domain – one 

function’.  

It also became apparent that some segments of the peptide chain do 

not adopt a globular three-dimensional structure at all, and were 

consequently termed ‘disordered protein regions’: approximately 20%–

50% of all eukaryotic proteins have some disorder in their sequence and 

up to 17% of the proteins in a eukaryotic cell are completely disordered.
1
 

It is important to note that these disordered regions do not represent 

simple spacers connecting globular domains, but instead contain linear 

sequence motifs important for protein functions. These sequence motifs 

mediate protein–protein interaction, cell compartment targeting and 

represent the sites of post-translational modification.
2
 

Today, approximately 200–300 motif patterns are known and are 

catalogued by several resources including the Eukaryotic Linear Motif 

(ELM) database,
3
 PROSITE

4
 and Minimotif-Miner.

5
 Binding via linear 

motifs was estimated to account for 15–40% of the interactions in the 

human proteome,
6
 suggesting that there is a significant number of novel 

motifs which still need to be discovered. McEntyre and Gibson estimate 

that there are most likely more linear motif instances for signalling-

pathway regulation and cell-compartment targeting than there are 

globular domains in the proteome.
7
 

Most linear sequence motifs interact with modular protein interaction 

domains. One prominent protein that exploits motif-mediated 

interactions for its regulation is the lymphocyte-specific tyrosine-kinase 

Lck (Fig. 10.1). While the kinase domain exhibits enzymatic activity, the 

two other domains (SH2, SH3) are adaptor-domains, responsible for 

regulatory processes: they are able to recognise distinct short sequence 

motifs, which contain phosphorylated tyrosine residues in the case of the 
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SH2 domain and proline-rich sequence stretches in the case of the SH3 

domain. These interactions are important for the activation of the kinase 

activity. Additional motif-mediated interactions of Lck include the 

interaction between substrates and the catalytic domain as well as 

binding of CD4 to the amino-terminal region of Lck
8
 (Fig. 10.1). 

 

Fig. 10.1. Schematic drawing of human tyrosine-kinase Lck illustrating the principle of 

motif-mediated interactions. The top line shows the domain architecture of Lck and the 

C-terminal tyrosine, which can become phosphorylated. The second line shows the 

domains and linear sequence motifs binding to distinct regions of Lck: the amino-

terminal region is responsible for CD4/CD8 binding. The SH3 interaction domain binds 

to a P-x-x-P consensus motif, while the SH2 domain interacts with motifs containing a 

phosphorylated tyrosine residue. Tyrosines are also the substrate for the kinase domain, 

which is able to phosphorylate these amino acids.  

Linear sequence motifs, however, are not only involved in physiological 

cellular processes, but also play a role in disease. Recently it became 

clear that numerous hereditary diseases can be attributed to mutations 

within linear motifs, and there is increasing evidence that viral effector 

proteins have evolved to exploit motif-mediated interactions to interfere 

with the signalling machinery of their host.
9
  

This book chapter will review motif-mediated interactions by first 

giving an introduction to the properties of interaction domains (Section 

10.2) and of linear motifs (Section 10.3). Subsequent sections will deal 

with the role of linear motifs in disease (Section 10.4) and computational 

tools to identify sequence motifs (Section 10.5). 
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10.2 Protein Interaction Domains 

Regulatory proteins frequently exhibit a modular arrangement of 

different domains that mediate molecular interactions or have enzymatic 

activity. Interaction domains can target proteins to a specific subcellular 

location, provide a module for recognition of protein post-translational 

modifications or chemical second messengers, initiate the formation of 

multiprotein signalling complexes, and control the conformation, activity 

and substrate specificity of enzymes.
10

 

SH2 and SH3 domains were the first protein modules described that 

mediate interactions with short linear motifs. They were originally 

discovered by comparing members of the Src tyrosine kinase family and 

exist as conserved sequences of 50–100 amino acids.
11,12

  

Subsequently, these domains were also found in other proteins and 

termed ‘Src homology 2’ (SH2) and ‘Src homology 3’ (SH3) domains. 

They can be seen as prototypical examples of interaction domains with 

the following characteristic properties: 

 

• Interaction domains are relatively small (about 100 amino acids in 

length), which allows easy genomic shuffling and integration into 

new protein sequences.  

• Interaction domains are of modular nature, with amino- and carboxy-

termini in close spatial proximity. This allows easy integration into 

existing proteins without major reorganisation.  

• Interaction domains can be found in many different kinds of proteins 

(Fig. 10.2), which underscore their importance for diverse molecular 

tasks.  

• Interaction domains mediate interactions with other proteins by 

recognising short sequence motifs (3–10 amino acids). These 

interactions are of transient nature with high dissociation rates.  

 

Figure 10.2 provides an overview of the diversity of different protein 

families in which SH2 and SH3 domains can be found. 
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Fig. 10.2. Schematic drawing of different proteins that contain SH2 and/or SH3 domains, 

highlighting the versatility of these elements. Of special interest is the diverse nature of 

the different proteins: depicted are adaptor proteins (GRB2, NCK), enzymes such as 

tyrosine kinases (BTK, SRC, ZAP70) and protein phosphatases (SHP2), ion channels 

(CACB1), scaffolding proteins (GRB7) and regulatory proteins (P85A, SLAP2, SOCS3).  

Several interaction domains are present in multiple or even hundreds of 

copies in the human proteome (Table 10.1) and these domains are used 

in many different contexts to regulate distinct tasks of the cell.
13,14,15

 Due 

to the enormous number of individual domains, a comprehensive review 

of their function is far beyond the scope of this article. Therefore, only 

some key molecules of the cell, which exhibit SH3 and/or SH2 domains 

are discussed below. 
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Table 10.1. Overview of the most prominent types of human protein interaction domains, 

which recognise short linear peptide sequences. For each domain type, the number of 

human proteins containing the respective domain is given, as well as the total number of 

domain instances. Differences between both numbers result from the fact that numerous 

proteins contain more than one interaction domain of the same type. Numbers were 

obtained from Pfam,
16

 version 23. For each domain, the patterns of interacting motifs 

available from the ELM database
3
 are given. According to the ELM nomenclature, 

variable pattern positions are denoted by a ‘.’ instead of an ‘x’. Bold letters indicate 

amino acids that need to be phosphorylated to become functional. 

 

Domain Proteins  Instances Interacting patterns 

SH3 597 839 [RKY]..P..P 

P..P.[KR] 

...[PV]..P 

PDZ 328 563 .[ST].[VIL]$ 

.[VYF].[VIL]$ 

.[DE].[IVL] 

SH2 268 297  Y.N. 

 Y[IV].[VILP] 

 Y[QDEVAIL][DENPYHI][IPVGAHS] 

 Y..Q 

 Y[VLTFIC].. 

GY[KQ].F 

WW 124 214 PP.Y 

PPLP 

.PPR. 

...[ST]P. 

FHA 90 90 ..T..[ILV]. 

..T..[DE]. 

14-3-3 22 22 R[SFYW].S.P 

R.[SYFWTQAD].[ST].[PLM] 

[RHK][STALV].[ST].[PESRDIF] 

PTB 22 22 NP.Y 

NP.Y. 

EVH 21 21 FP.[PAILSK]P 

PP..F 

GYF 7 7 [QHR].{0,1}P[PL]PP[GS]H[RH] 
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10.2.1 SH3 Domains 

Many different classes of proteins exhibit one or more SH3 domains, e.g. 

tyrosine kinases (Src, Btk, Zap-70), adaptors (Hsb-1, Grb2, Slap2), 

guanine nucleotide exchange factors (Arhg7, Vav, Vav2), motor 

molecules (Myosin) and ion channels (Cab1). Peptides bound by SH3 

domains are proline-rich (Table 10.1). The ligand binding surface of SH3 

domains is relatively flat and hydrophobic and consists of three shallow 

grooves defined by conserved aromatic residues.
17

 The ligand adopts an 

extended left-handed helical conformation termed type-II polyproline 

helix. SH3 ligands can bind in two different orientations: Class I ligands 

have the consensus pattern [RK]-x-x-P-x-x-P, whereas Class II ligands 

bind in the opposite direction with their canonical pattern P-x-x-P-x-

[RK]. For both classes of ligands, binding affinity is quite low with 

dissociation constants in the range of 1 µM–100 µM.
18

 This finding is in 

accordance with the fact that most signalling events are highly dynamic; 

if such interactions were too strong, they would no longer allow a fine-

tuned control of signalling events. 

10.2.2 SH2 Domains 

SH2 domains are present in tyrosine kinases (Src, Btk, Zap-70), tyrosine 

phosphatases (Shp1 and Shp2), transcription factors (STATs), adaptors 

(Grb2, Nck, Crk), negative regulators (SOCS, SH21A), scaffolding 

proteins (Shc, Grb7, SLP76) and guanine nucleotide exchange factors 

(Vav, Vav2). All SH2 domains recognise short linear motifs including a 

phosphorylated tyrosine residue (Table 10.1; Fig. 10.3b). The interaction 

with the phosphotyrosine alone conveys approximately half of the 

binding energy and thereby increases the binding affinity about 1,000–

fold compared to a non-phosphorylated peptide.
19

 Experiments have 

shown that the selectivity of SH2 binding is mainly moderated by the 

three amino acid residues immediately carboxy-terminal to the crucial 

tyrosine residue.
20

 Generally, SH2 domains show dissociation constants 

of 500 nM–1 µM.
21

 This affinity is higher than in the case of SH3-

mediated interactions, but phosphorylation and dephosphorylation of the 

phosphotyrosine still allow a transient and fine-tuned control of the 

respective interactions. 
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Fig. 10.3. Structural properties of motif-mediated interactions. (a) Structure of the Lyn 

SH3 domain (space-filled presentation) in complex with a linear sequence motif from the 

herpesviral Tip protein (PDB code: 1WA7).
22

 Key residues of the P-x-x-P-x-R binding 

motif are shown in stick presentation and are labelled. L186 is highlighted because it 

forms additional contacts outside the classical recognition motif (see Section 10.4 for 

more details on this interaction). (b) Structure of the Lck SH2 domain (space-filled 

presentation) in complex with a linear sequence motif from middle-T-antigen of polyoma 

virus (PDB code 1LKK
23

). Residues of the interacting Y-E-E-I motif are labelled and the 

phospho-group of the tyrosine is marked by a circle. Basis residues of the SH2-domain 

are shaded in dark grey to highlight the charge complementarity between SH2-domain 

and ligand. 
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10.2.3 Signalling Adaptors: Proteins Containing Multiple Interaction 

 Domains 

The importance of signalling domains is corroborated by the existence of 

proteins which consist solely of interaction domains and motifs, i.e., do 

not show any enzymatic activity. Such proteins are called ‘signalling 

adaptors’, examples of which are Grb2, Nck, SLP76 and Crk (Fig. 10.2). 

Such adaptor proteins play an important and highly dynamic role in 

signalling, especially in transmitting signals from different types of 

receptors at the cell surface to intracellular networks.
24

 The human Grb2 

protein, for example, has a length of 217 amino acids and consists of two 

SH3 domains flanking a central SH2 domain. The latter domain binds 

preferentially to Y-x-N motifs on activated receptor tyrosine kinases 

(RTKs), while the SH3 domains interact with proteins such as Sos
25

 and 

the Gab1/2 docking proteins.
26

 Sos is a guanine nucleotide exchange 

factor for the Ras-GTPase that stimulates the MAP-Kinase pathway. The 

Gab proteins become subsequently phosphorylated and are targeted by 

SH2-domain containing proteins like phosphatidylinositol-3-kinase 

(PI3K) and the tyrosine phosphatase Shp2. By these means, Grb2 is able 

to couple RTKs to pathways such as the Ras-MAP-Kinase pathway and 

PI3K pathways.
27

  

Signalling adaptors were also shown to be essential for T-cell 

signalling. For instance, the adaptor proteins SLP76, Nck and Grb2 are 

involved in signal transduction events in activated T cells: SLP76 

promotes recruitment of phospholipase C1 (PLC1) to the membrane with 

subsequent Ca
2+

 increase, influences transcriptional activation via the 

MAP-kinase cascade, and together with Sos and Ras induces cytoskeletal 

re-arrangements in conjunction with Nck and Vav.
28

  

In summary, the main task of signalling adaptors is to physically 

couple activated receptors to downstream targets. They represent flexible 

docking modules that allow a dynamic activation of signalling pathways. 

Although being relatively simple adaptors, they are able to mediate 

sophisticated cooperative functions, which are necessary for complex 

cellular behaviour.  
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10.3 Properties and Regulation of Motif-mediated Interactions 

In motif-mediated interactions, globular domains in one protein 

recognise short stretches of approximately 3–10 residues in their binding 

partner. These regions often show a particular sequence pattern termed 

‘linear motif’, which contains the key residues involved in function or 

binding. These key residues may be connected by variable residues 

(denoted as ‘x’), which ensure the proper spacing of the interacting 

amino acids. This kind of interaction differs from domain–domain 

interactions, as no pre-formed binding interface exists. Examples for 

linear motifs include the classical P-x-x-P motif for binding to SH3 

domains or the N-P-x-Y motif for the interaction with PTB domains 

(Table 10.1). 

Another important aspect of motif-mediated protein interactions is the 

tendency of interaction motifs to be found in protein regions without 

regular three-dimensional structure, so called disordered regions.
29

 

Conversely, interaction motifs are usually not found inside globular 

regions of proteins.
30

 The main properties of short linear motifs can be 

summarized as follows:  

 

• Interaction motifs are relatively short (3–10 amino acid residues).  

• Interaction motifs are preferentially found in disordered protein 

regions.  

• In addition to mediating protein–protein interactions, linear motifs 

also represent the target sites of post-translational modifications and 

they mediate cell compartment targeting.  

• Interaction motifs can evolve convergently in different organisms as 

they frequently arise and disappear by point mutations, thereby 

conferring extreme adaptability to the interactome.
29

  

 

Short linear motifs can have distinct regulatory properties, e.g. to 

increase specificity or to regulate certain pathways efficiently; some of 

the key features are described below. 
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10.3.1 Inducible Interactions  

Many linear motifs need certain key residues to be post-translationally 

modified in order to specifically bind to their cognate domain. The most 

prominent example is the binding of SH2 domains to phosphorylated 

tyrosine motifs: a non-phosphorylated tyrosine residue shows a binding 

affinity several orders of magnitude lower than a phosphorylated one.  

Phosphorylation at serine or threonine is also required for linear motifs to 

interact with forkhead-associated (FHA) or 14-3-3 domains. In case of 

WW and phosphotyrosine-binding (PTB) domains at least a subset of the 

respective domains requires phosphorylation of the interaction motif for 

tight complex formation (Table 10.1). 

10.3.2 Cooperative Effects  

In most cases a single motif is sufficient to mediate a certain interaction; 

sometimes, however, a greater affinity or specificity is required, which 

might not be provided by a single motif. For instance, T-cell receptors 

contain multiple characteristic motifs in their cytoplasmic tail, termed 

Immunoreceptor Tyrosine-based Activation Motifs (ITAMs). Upon 

ligand binding and subsequent clustering of T-cell receptors, tyrosine 

kinases of the Src-family are recruited to phosphorylate tyrosine residues 

within these motifs. The spacing of the double motif provides docking 

sites for the tyrosine kinase Zap-70 containing two SH2 domains next to 

each other, to bind specifically to these tandem motifs. One critical 

downstream target of Zap-70 is PLC1, which hydrolyses 

phosphatidylinositol-4,5-bisphosphate, generating second messengers 

responsible for mediating intracellular Ca
2+

 release and protein kinase C 

activation, respectively. These pathways are important for the activation 

of transcription factors, such as NF-AT and AP-1, which are required for 

T-cell proliferation.
31

  

Another example of a cooperative effect of interaction motifs is the 

interplay between the adaptor Nck and Nephrin. In this case, Nephrin has 

several Y-D-x-V motifs, which can bind to the SH2-domain of Nck 

adaptors. Nck in turn contains several SH3 domains (Fig. 10.2), which 

can bind to proline-rich regions in N-Wasp and thereby promote actin 
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reorganisation.
32

 Although a single SH2-motif is sufficient for binding to 

Nck and a single Nck SH3 domain is sufficient for actin polymerization, 

it is the cooperative effect of multiple copies of the same interaction 

motif that leads to high local concentration of effector molecules, 

ultimately resulting in potent actin polymerization induced by Nephrin.
33

  

10.3.3 Mutually Exclusive Interactions  

One single amino acid residue can be subject to different post-

translational modifications. However, in most cases, only one 

modification can be applied at a time, e.g. an acetylated lysine cannot be 

methylated. An example, where several different modifications compete 

for the same residues, are histones: when Lys9 of Histone 3 is 

trimethylated, it binds to Chromodomains of heterochromatin protein 1, 

implicated in gene silencing.
34

 Conversely, when the residues Lys9 and 

Lys14 are acetylated, Histone 3 binds to the Bromodomains of histone 

acetyltransferases such as TAFII250, which in turn lead to an increased 

acetylation of further lysine residues within Histone 3,
35

 marking 

transcriptional activation. These interactions are mutually exclusive, 

mediated by mutually exclusive modifications.
36

 

10.3.4 Intra- Versus Intermolecular Interactions  

A linear motif can be recognised by an interaction domain within the 

same protein, thereby changing the conformation of the whole protein. 

This is exemplified in kinases of the Src type, where an SH2 domain 

binds to a phosphorylated carboxy-terminal tyrosine residue in an 

intramolecular fashion. This ‘closed’ conformation is further sustained 

by an additional interaction between an SH3 domain and an 

intramolecular linker, which blocks the SH3 ligand-binding site. This 

prevents the enzymatic domain of the protein from engaging its 

substrates and thereby keeps the enzyme in an inactive state. Activation 

of Src kinases can be achieved by dephosphorylation of the tyrosine in 

the C-terminal region and/or the presence of SH2/SH3 competing ligands 

that bind with a similar or stronger binding affinity. 
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10.4 The Role of Linear Motifs in Disease 

The enhanced knowledge about motif-mediated interactions that was 

gained during recent years has also allowed assigning the molecular 

origin of several diseases to mutations in linear motifs. In addition, the 

function of numerous viral effector proteins could be attributed to the 

presence of linear motifs which interfere with cellular signalling 

pathways. Known examples of diseases resulting from mutated cellular 

motifs or form viral infections will be discussed below in Sections 10.4.1 

and 10.4.2. 

10.4.1 Diseases Caused by Mutated Motifs 

There are several diseases known which are caused by one or more 

mutations in linear motifs mediating important interactions. Examples 

include Noonan Syndrome, Liddle’s Syndrome and Usher’s Syndrome: 

Noonan Syndrome is caused by mutations in Raf-1 which impede the 

motif-mediated interaction with 14-3-3 proteins thereby deregulating 

Raf-1 kinase activity.
37

 Usher’s Syndrome is the most frequent cause of 

hereditary deaf-blindness in humans,
38

 affecting one child in 25,000. 

This disease can be caused by mutations in either PDZ domains in 

Harmonin or the corresponding PDZ interaction motifs in SANS 

protein.
39,40

 Another example of a disease involving PDZ domains is 

‘Familial Hypomagnesemia with Hypercalciuria and Nephrocalcinosis’ 

(FHWHN), an autosomal recessive wasting disorder of renal Mg
2+ 

and 

Ca
2+ 

that leads to progressive kidney failure. Here, motifs mediating 

interaction to PDZ domains are mutated in Claudin16, abolishing 

important interactions to the scaffolding protein ZO-1 resulting in 

lysosomal mislocalization of the protein.
41,42

  

Liddle’s Syndrome has been described as a consequence of autosomal 

dominant activating mutations in the WW interaction motif in the β- and 

γ-subunits of the epithelial sodium channel ENaC.
43

 These mutations 

abrogate the binding to the ubiquitin ligase NEDD4-2, thereby inhibiting 

channel degradation and prolonging the half-life of ENaC, ultimately 

resulting in increased Na
+ 

resorption, plasma volume extension and 

hypertension.
44,45
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Up to present, there are just a few examples of diseases known, in which 

a mutation was pinpointed to amino acids residing within a linear motif. 

However, only little attention has been paid to small motifs as critical 

mediators of protein interactions in the past. Therefore, it is likely that 

more interaction motifs involved in disease will be detected after a 

comprehensive motif annotation is available for the human proteome.  

10.4.2 Linear Motifs Involved in Viral Infection 

Viruses are known to be limited in genome size
46,47

 and often use 

overlapping genes to achieve maximum compression of information.
48

 

The independent evolution of overlapping reading frames for instance in 

the Paramyxoviridae and Rhabdoviridae ‘P genes’, as well as in other 

RNA viruses, can be seen as a response to selective pressure in order to 

maximise genomic information content while maintaining a small 

genome.
49

 In accordance with these properties is the observation, that 

viruses frequently use linear motifs to interact with their host, rather than 

incorporating complete modular domains or whole proteins into their 

genome.
9
  

In principle almost every type of protein domain can be targeted by 

viral sequence motifs, but the majority of the interactions yet known are 

formed to SH2, SH3, PDZ, and 14-3-3 domains of host proteins.
9
 These 

domains all constitute large protein families of 22–839 individual 

members (Table 10.1), which raise the question about the specificity of 

the respective interactions. Inspection of viral regulatory proteins reveals 

two interesting principles, which might be particularly important to 

ensure viral infection: 

 

•  The presence of multiple linear interaction motifs. 

•  The presence of high-affinity binding motifs. 

10.4.2.1 Viral Proteins Containing Multiple Interaction Motifs 

Herpesvirus saimiri codes for a tyrosine kinase interacting protein (Tip) 

that interacts with the SH3 domain and the kinase domain of the T-cell-

specific tyrosine kinase Lck via two separate sequence motifs.
50,51

 The 
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resulting activation of Lck by Tip is considered as a key event in the 

transformation of human T-lymphocytes during herpesviral infection. In 

addition, Tip contains tyrosine residues, which become phosphorylated 

and can interact with the SH2 domains of STAT factors and Src-family 

kinases.
52

 These multiple motifs thus allow both tight binding and linking 

of different signalling pathways. 

Another example of a viral protein containing multiple linear 

interaction motifs is the middle-T-antigen of polyoma virus:
53

 This 

membrane-bound protein is able to regulate several signalling pathways 

of its murine host. For instance, upon phosphorylation of tyrosine residue 

Y250, it binds to SHCA, which subsequently becomes phosphorylated 

and activates the MAP-Kinase pathway via Grb2 and Sos. Tyrosine 

residue Y315 mediates binding to SH2 domains of PI3K, which in turn 

influences transformation, cytoskeletal re-arrangements and survival 

signals. Other signalling events stimulated by middle-antigen include 

binding to PLC1 via Y322, and to 14-3-3 proteins via a phosphoserine 

motif at S257.  

10.4.2.2 Principles to Enhance Binding Affinity and Specificity 

The Y-E-E-I motif present at position Y322 in the middle-T-antigen of 

the polyoma virus is also interesting for structural reasons: this motif was 

shown to bind SH2 domains with a very high affinity of approximately 

100 nM,
52

 which is significantly higher than most physiological SH2-

ligand interactions. This tight binding is mainly due to optimised 

electrostatic interactions of the glutamates with basic residues of the SH2 

domain (Fig. 10.3b) and ensures that the viral protein can efficiently 

compete with cellular ligands for binding.  

This principle of high-affinity binding of viral interaction motifs was 

also observed for two herpesviral proteins (Tip, Tio) that bind to the SH2 

domain of the protein tyrosine kinase Lck.
52

 The viral proteins showed a 

higher binding affinity than the intramolecular interaction formed by the 

regulatory C-terminus of Lck, suggesting that the viral proteins are 

capable of disrupting the intramolecular inhibition of Lck, thereby 

constitutively activating the kinase.
52
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As outlined above in Section 10.4.2.1, Tip contains an additional linear 

motif that binds to the SH3 domain of Src-family kinases. The structure 

determination of the Tip-LynSH3 complex
22

 revealed that Tip forms 

additional contacts outside its classical proline-rich recognition motif 

and, in particular, a strictly conserved leucine (L186) of the C-terminally 

adjacent sequence stretch packs into a hydrophobic pocket on the Lyn 

surface (Fig. 10.3a). These additional interactions were shown to 

contribute to a significantly enhanced binding affinity for Lyn compared 

to other Src-family kinases.
54,22

 

The regulatory Nef-protein from HIV, which is critical for viral 

pathogenesis, uses a slightly different principle to achieve enhanced 

binding specificity to SH3 domains. Again, the canonical interaction to 

SH3 domains is formed by a P-x-x-P motif present in the extended N-

terminus of the Nef-protein. A key determinant is for the discrimination 

between different SH3-domains, however, an isoleucine residue present 

in Hck, but not in Fyn. This isoleucine forms hydrophobic contacts with 

two α-helices in Nef that cannot be formed by the respective arginine 

present in Fyn. The importance of this interaction for binding specificity 

was confirmed by site-directed mutagenesis, showing that a R96I mutant 

of Fyn had a comparable affinity for Nef compared to Hck.
55–57

 

Another high-affinity SH3-interaction has been recently reported by 

Shelton and Harris for the Hepatitis C virus ‘non-structural 5A protein’ 

(NS5A): this viral protein contains a highly conserved P-x-x-P-x-R motif 

that is able to interact with the SH3 domain of Fyn with high affinity.
58

 

By this means, the Hepatitis C virus NS5A protein effectively competes 

with cellular ligands for binding to SH3 domains in the infected cell and 

influences important signal transduction interactions. 

10.4.2.3 Conclusions 

The examples above demonstrate that viral proteins frequently exploit 

variations of cellular interaction motifs to interfere with signalling 

pathways of the host. As shown above, these viral motifs frequently 

exhibit a higher affinity than cellular motifs thus ensuring an efficient 

reprogramming of signal transduction in the host. It is also important to 

note that the respective viral proteins do not share any overall sequence 
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homology to a protein of the host cell, strongly suggesting that the viral 

interaction motif has resulted from convergent evolution. The concept of 

reprogramming cellular processes by the interaction via linear motifs 

appears highly attractive for microbial pathogens for the following 

reasons: the short length of 3–10 amino acids allows easy integration 

even in small regulatory proteins, thereby meeting the requirement for a 

small overall genome size in numerous pathogens. In addition, multiple 

motifs may evolve within the same effector, which ensures either 

enhanced binding affinity to one protein or to link different cellular 

pathways by interacting with multiple proteins. Since few amino acids 

within a linear motif are sufficient for the interaction, convergent 

evolution can occur much faster compared to a classical domain–domain 

interaction between two proteins, because the latter type of interaction 

requires replacement of numerous amino acids within the interface, while 

maintaining the overall three-dimensional fold. Several linear motifs rely 

on phosphorylation to become functional, which allows triggering the 

effects of viral action in a time-dependent fashion (e.g. by activation 

through a cellular kinase) instead of exerting constitutive effects. 

10.5 Computational Approaches Addressing Motif-mediated 

Interactions 

With respect to the computational approaches in the field of linear 

motifs, there are at least two major challenges, both of which are briefly 

outlined here using the P-x-x-P motif as an example and are described in 

more detail in the following paragraphs. 

Identification of Linear Interaction Motifs: This goal requires dissecting 

those instances of a particular pattern that occur by chance from the 

functional instances that are actually used for interaction. This type of 

prediction aims to answer the question whether a P-x-x-P pattern is 

actually used for SH3 binding or whether it is non-functional, e.g. 

because it is buried in the interior of the protein. 

Prediction of Binding Specificity: After a P-x-x-P motif is identified, the 

prediction of distinct cellular SH3 domain(s) which bind to the P-x-x-P 

motif is highly desirable. In this context, computational approaches for 
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the characterization of the binding specificity of cellular adapter domains 

represent a valuable complement of time-intensive experiments. 

10.5.1 Identification of Linear Motifs 

The widespread occurrence of motif-mediated interactions in a large 

variety of signalling processes make a computational prediction of the 

respective interactions highly desirable. Today, there are several web-

based tools available for the detection of linear motifs in query protein 

sequences. Most of these tools like ELM
3
 or Minimotif-Miner

5
 are 

directly linked to a motif database containing patterns describing 

different types of linear motifs. In addition, tools like Dilimot
59

 and 

SlimDisc
60

 were developed for the discovery of novel types of 

interaction motifs. A common key problem in all methods for motif 

identification is the short length of linear motifs resulting in a large 

number of instances, of which only a small fraction is functional. This 

large number of non-functional (‘false positive’) instances makes it 

difficult to decide which motifs to select for further experimental 

characterization. Different strategies have been suggested to reduce this 

problem. 

Context filters mask those parts of the sequence space in which little 

or no linear motifs are expected to occur. Masked regions include 

globular domains, in which no motifs are expected since they would be 

buried and therefore not accessible for interaction. Other filters take into 

account that some motifs are only functional within particular cellular 

compartments.
3,61

 Scoring schemes, which measure the conservation of 

linear motifs among homologs, proved to be particularly powerful in the 

reduction of false positive hits.
5 ,62,61,63

 

10.5.2  Methods for Determining Binding Specificity 

The pattern notation of sequence motifs allows an initial assignment of 

the type of interacting domain (e.g. SH3), but is not well suited to 

describe the binding specificity of individual protein interaction domains 

(e.g. Lck-SH3). The specificity of individual domains can preferably be 

represented by position specific scoring matrices (PSSMs), which 



H. Dinkel, H. Sticht 290 

describe the relative importance of the individual sequence positions of a 

motif, for binding to a particular protein domain. 

The respective PSSMs can be generated based on experimentally 

binding data, which gives information about the ligand binding 

preference of individual protein interaction domains. In particular, the 

use of peptide libraries has allowed addressing the ligand binding 

specificity of numerous domains.
64,65,66,67

 This information has been used 

to create PSSMs available for numerous individual members of the major 

types of interaction domains. Such protein-specific PSSMs are available 

in Scansite,
68

 iSPOT,
69

 PDZbase
70

 and SMALI.
71

 

Despite considerable methodical advances, experimental 

investigation of a significant number of domains has failed, due to low 

solubility or the formation of inclusion bodies during recombinant 

expression.
66

 In addition, experimental approaches are time-consuming 

and do not necessarily provide an understanding of the structural 

properties that define the specificity of each domain. Numerous 

computational approaches that predict ligand binding specificity have 

therefore been developed to complement experimental studies.
72

 Two 

recent promising approaches use general purpose energy force fields to 

predict the binding specificity of peptide-binding domains.
73,74

 These 

methods have the great advantage that no domain-specific information is 

required aside from a model of the complex for the domain under 

investigation and it is possible to use these force fields to do in silico 

mutagenesis of the ligand. From this computational analysis, a PSSM is 

created containing the information on the preferred residues at each 

position in the ligand. These scoring matrices can help to identify 

physiological interaction partners by scoring a linear motif with different 

PSSMs (e.g. those derived for different members of the SH3-domain 

family).  

10.5.3 WWW-resources for the Investigation of Linear Motifs 

As described above, computational methods provide valuable tools to 

supplement experimental binding data and to gain insight into the 

structural determinants governing protein affinity. Some recent tools 

suitable for the respective analyses are summarised below in Table 10.2. 
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Table 10.2. Overview of some computational tools available for the analysis of motif-

mediated interactions. The tools are divided according to their major purpose: motif 

databases contain the pattern describing known types of motifs and can be used to search 

for linear motifs in a query sequence. Domain databases give information about the most 

prominent types of interaction domains that bind to linear motifs. Motif detection tools 

can be used to discover novel types of motifs in a group of proteins sharing common 

functional properties. The last group of tools is intended to identify a subset of interaction 

domains that specifically bind to a given linear motif. 

NAME Refs WWW-link 

Motif databases:    

ELM  
3
 http://www.elm.eu.org/ 

MMM  
5, 75

  http://mnm.engr.uconn.edu 

PROSITE  
76, 77

 http://www.expasy.org/prosite/ 

Domain databases:     

CDD  
78, 79

 http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml  

InterPro  
80, 81

  http://www.ebi.ac.uk/interpro/  

Pfam  
82–85

 http://pfam.sanger.ac.uk/ 

ProDom  
86

  http://prodom.prabi.fr/prodom/current/html/home.php  

SMART  
87, 88

  http://smart.embl-heidelberg.de/  

Motif detection tools:     

Dilimot  
59

   http://dilimot.embl.de 

GLAM2  
89

  http://bioinformatics.org.au/glam2  

MEME  
90

  http://meme.sdsc.edu  

QuasiMotiFinder 
91

 http://quasimotifinder.tau.ac.il/ 

SlimDisc  
60, 92

 http://bioinformatics.ucd.ie/shields/software/slimdisc/  

SlimFinder  
62

  http://bioinformatics.ucd.ie/shields/software/slimfinder/  

Teiresias  
93

  http://cbcsrv.watson.ibm.com/Tspd.html   

Motif binding 

specificity:    

iSPOT 
69

 http://cbm.bio.uniroma2.it/ispot/ 

PDZbase  
70

 http://icb.med.cornell.edu/services/pdz/start 

Scansite 
68

 http://scansite.mit.edu/ 

SMALI 
94

 http://lilab.uwo.ca/SMALI.htm 

Fold-X 
95, 96

 http://foldx.crg.es/ 



H. Dinkel, H. Sticht 292 

Acknowledgements 

The authors would like to thank Heike Meiselbach for help with the 

figures and the Deutsche Forschungsgemeinschaft (SFB 796) for 

financial support. 

References 

 1. Dunker A.K., et al. (2000). Genome Inform Ser Workshop Genome Inform 11: 161–

171. 

 2. Diella F., et al. (2008). Frontiers in Bioscience 13: 6,580–6,603. 

 3. Puntervoll P., et al. (2003). Nucleic Acids Res 31: 3,625–3,630. 

 4. Hulo N., et al. (2006). Nucleic Acids Res 34: D227–D230. 

 5. Balla S., et al. (2006). Nat Methods 3: 175–177. 

 6. Neduva V., Russell R.B. (2006). Curr Opin Biotechnol 17: 465–471. 

 7. McEntyre J.R., Gibson T.J. (2004). Trends Biochem Sci 29: 627–633. 

 8. Palacios E.H., Weiss A. (2004). Oncogene 23: 7,990–8,000. 

 9. Kadaveru K., Vyas J., Schiller M.R. (2008). Front Biosci 13: 6,455–6,471. 

 10. Pawson T., Nash P. (2003). Science 300: 445–452. 

 11. Sadowski I., Stone J.C., Pawson T. (1986). Mol Cell Biol 6: 4,396–4,408. 

 12. Koch C.A., et al. (1991). Science 252: 668–674. 

 13. Pawson T., Nash P. (2000). Genes Dev 14: 1,027–1,047. 

 14. Zarrinpar A., Bhattacharyya R.P., Lim W.A. (2003). Sci STKE 2003: RE8. 

 15. Pawson T., Warner N. (2007). Oncogene 26: 1,268–1,275. 

 16. Sonnhammer E.L., Eddy S.R., Durbin R. (1997). Proteins 28: 405–420. 

 17. Mayer B.J. (2001). J Cell Sci 114: 1,253–1,263. 

 18. Musacchio A. (2002). Adv Protein Chem 61: 211–268. 

 19. Domchek S.M., et al. (1992). Biochemistry 31: 9,865–9,870. 

 20. Songyang Z., et al. (1994). Curr Biol 4: 973–982. 

 21. Ladbury J.E., et al. (1995). Proc Natl Acad Sci USA 92: 3,199–3,203. 

 22. Bauer F., et al. (2005). Protein Sci 14: 2,487–2,498. 

 23. Tong L., et al. (1996). J Mol Biol 256: 601–610. 

 24. Pawson T. (2007). Curr Opin Cell Biol 19: 112–116. 

 25. Rozakis-Adcock M., et al. (1993). Nature 363: 83–85. 

 26. Gu H., Neel B.G. (2003). Trends Cell Biol 13: 122–130. 

 27. Chazaud C., et al. (2006). Dev Cell 10: 615–624. 

 28. Norian L.A., Koretzky G.A. (2000). Semin Immunol 12: 43–54. 

 29. Neduva V., et al. (2005). PLoS Biol 3: e405. 

 30. Fuxreiter M., Tompa P., Simon I. (2007). Bioinformatics 23: 950–956. 

 31. Jordan M.S., Singer A.L., Koretzky G.A. (2003). Nat Immunol 4: 110–116. 

 32. Rivera G.M., et al. (2004). Curr Biol 14: 11–22. 



Motif-mediated Protein Interactions and their Role in Disease 293 

 33. Blasutig I.M., et al. (2008). Mol Cell Biol 28: 2,035–2,046. 

 34. Bannister A.J., et al. (2001). Nature 410: 120–124. 

 35. Jenuwein T., AllisC.D. (2001). Science 293: 1,074–1,080. 

 36. Seet B.T., et al. (2006). Nat Rev Mol Cell Biol 7: 473–483. 

 37. Pandit B., et al. (2007). Nat Genet 39: 1,007–1,012. 

 38. Eudy J.D., Sumegi J. (1999). Cell Mol Life Sci 56: 258–267. 

 39. Weil D. et al. (2003). Hum Mol Genet 12: 463–471. 

 40. Kalay E., et al. (2005). J Mol Med 83: 1,025–1,032. 

 41. Müller D., et al. (2003). Am J Hum Genet 73: 1,293–1,301. 

 42. Müller D., et al. (2006). Hum Mol Genet 15: 1,049–1,058. 

 43. Warnock D.G. (1998). Kidney Int 53: 18–24. 

 44. Furuhashi M., et al. (2005). J Clin Endocrinol Metab, 90 (2005), 340–344. 

 45. Wang Y., et al. (2007). Clin Endocrinol (Oxf) 67: 801–804. 

 46. Normark S., et al. (1983). Annu Rev Genet 17: 499–525. 

 47. Krakauer D.C. (2000). Evolution Int J Org Evolution 54: 731–739. 

 48. Pavesi A. (2007). Gene 402: 28–34. 

 49. Jordan I.K., Sutter B.A., McClure M.A. (2000). Mol Biol Evol 17: 75–86. 

 50. Jung J.U., et al. (1995). J Biol Chem 270: 20,660–20,667. 

 51. Hartley D.A., et al. (2000). Virology 276: 339–348. 

 52. Bauer F., et al. (2004). Biochemistry 43: 14,932–14,939. 

 53. Dilworth S.M. (2002). Nat Rev Cancer 2: 951–956. 

 54. Schweimer K., et al. (2002). Biochemistry 41: 5,120–5,130. 

 55. Lee C.H., et al. (1995). Embo J 14: 5,006–5,015. 

 56. Lee C.H., et al. (1996). Cell 85: 931–942. 

 57. Arold S., et al. (1997). Structure 5: 1,361–1,372. 

 58. Shelton H., Harris M. (2008). Virol J 5: 24. 

 59. Neduva V., Russell R.B. (2006). Nucleic Acids Res 34: W350–355. 

 60. Davey N.E., Shields D.C., Edwards R.J. (2006). Nucleic Acids Res 34: 3,546–3,554. 

 61. Dinkel H., Sticht H. (2007). Bioinformatics 23: 3,297–3,303. 

 62. Edwards R.J., Davey N.E., Shields D.C. (2007). PLoS ONE 2: e967. 

 63. Chica C., et al. (2008). BMC Bioinformatics 9: 229. 

 64. Tong A.H.Y., et al. (2002). Science 295: 321–324. 

 65. Landgraf C., et al. (2004). PLoS Biol 2: E14. 

 66. Huang H., et al. (2008). Mol Cell Proteomics 7: 768–784. 

 67. Tonikian R., et al. (2008). PLoS Biol 6: e239. 

 68. Obenauer J.C., Cantley L.C., Yaffe M.B. (2003). Nucleic Acids Res 31: 3,635–

3,641.  

 69. Brannetti B., Helmer-Citterich M. (2003). Nucleic Acids Res 31: 3,709–3,711. 

 70. Beuming T., et al. (2005). Bioinformatics 21: 827–828. 

 71. Li L. et al. (2008). Nucleic Acids Res 36: 3,263–3,273. 

 72. Kiel C., Beltrao P., Serrano L. (2008). Annu Rev Biochem 77: 415–441. 

 73. Hou T., et al. (2006). PLoS Comput Biol 2: e1. 



H. Dinkel, H. Sticht 294 

 74. Kiel C., Serrano L. (2007). Bioinformatics 23: 2,226–2,230. 

 75. Rajasekaran S., et al. (2009). Nucleic Acids Res 37: D185–D190. 

 76. Bairoch A. (1991). Nucleic Acids Res 19 Suppl: 2,241–2,245. 

 77. Boeckmann B., et al. (2003). Nucleic Acids Res 31: 365–370. 

 78. Marchler-Bauer A., et al. (2002). Nucleic Acids Res 30: 281–283. 

 79. Marchler-Bauer A., et al. (2007). Nucleic Acids Res 35: D237–D240. 

 80. Apweiler R., et al. (2000). Bioinformatics 16: 1,145–1,150. 

 81. Mulder N.J., et al. (2007). Nucleic Acids Res 35: D224–D228. 

 82. Bateman A., et al. (1999). Nucleic Acids Res 27: 260–262. 

 83. Bateman A., et al. (2000). Nucleic Acids Res 28: 263–266. 

 84. Bateman A., et al. (2004). Nucleic Acids Res 32: D138–141. 

 85. Sammut S.J., Finn R.D., Bateman A. (2008). Brief Bioinform 9: 210–219. 

 86. Corpet F., et al. (2000). Nucleic Acids Res 28: 267–269. 

 87. Schultz J., et al. (1998). Proc Natl Acad Sci USA 95: 5,857–5,864. 

 88. Letunic I., et al. (2006). Nucleic Acids Res 34: D257–260. 

 89. Frith M.C., et al. (2008). PLoS Comput Biol 4: e1000071. 

 90. Bailey T.L., Elkan C. (1995). Proc Int Conf Intell Syst Mol Biol 3: 21–29. 

 91. Gutman R., et al. (2005). Nucleic Acids Res 33: W255–W261. 

 92. Davey N.E., Edwards R.J., Shields D.C. (2007). Nucleic Acids Res 35: W455–

W459. 

 93. Rigoutsos I., Floratos A. (1998). Bioinformatics 14: 55–67. 

 94. Li L., et al. (2008). Nucleic Acids Res 36: 3,263–3,273. 

 95. Guerois R., Nielsen J.E., Serrano L. (2002). J Mol Biol 320: 369–387. 

 96. Schymkowitz J., et al. (2005). Nucleic Acids Res 33: W382–388.  



295 

CHAPTER 11 

Prediction and Calculation of Protein–Protein 

Binding Affinities and Mutation Effects 

Sébastien Fiorucci, Serge Antonczak, Jérôme Golebiowski 

Molecular Modelling Team, UFR Sciences,  

Centre National de la Recherche Scientifique, 

Université de Nice-Sophia Antipolis,  

UMR6001 LCMBA, 28 Avenue Joseph Vallot, 

06108 Nice Cedex2, France 

Email: Sebastien.Fiorucci@unice.fr 

This chapter reviews the most popular theoretical methods to compute 

changes in protein–protein binding affinities and relative free energies 

due to substitution of amino acid residues. It includes techniques for 

computing free energy changes associated with alchemical mutations, 

like free energy perturbation or thermodynamic integration, as well as 

more approximate methods such as the linear interaction energy 

method and approaches to combine molecular mechanics calculations 

and continuum descriptions of the surrounding solvents and ions. The 

applicability of the methods for calculating protein–protein interactions 

is also discussed.  

11.1 Introduction 

Molecular sciences have reached a point where manipulation either 

experimentally or theoretically of simple molecular systems is often no 

more a severe limitation to the exploration of their functionality. 

However, for more complex systems, several issues still need to be 

addressed in order to ensure that theoretical results are in agreement with  
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experimental data. This is particularly true in the framework of 

molecular modelling, where the size and complexity of studied structures 

are steadily increasing. The remarkable efforts and progress during the 

recent years have allowed us to gain detailed and relevant energetic 

descriptions associated with structural changes or interactions of multiple 

structures. Still, a lot needs to be done but many simulation approaches 

have matured to be applicable to a variety of biomolecular systems. In 

this chapter we will summarise the most common protocols that allow us 

to estimate protein–protein affinities and mutation effects. 

Protein–protein association plays a crucial role in many biological 

processes including signal transduction, cell growth regulation, 

metabolism and adhesion, immune response and others.
1
 Understanding 

how these macromolecular complexes are formed and what determines 

their specificity is not only fundamental for appreciating the underlying 

biological processes but also helpful in developing new therapeutic 

strategies. With the advent of the genomic and post-genomic era and the 

steady increase of computer capacity and speed, theoretical studies of 

highly complex systems become accessible. In combination with alanine 

scanning, single and multiple mutant cycles or saturation mutagenesis 

experiments, theoretical approaches allow the screening of a wide panel 

of amino acid sequences and provide energetic and structural information 

on the studied systems. In such context, computational protein design 

strategies have even been developed to engineer synthetic protein–

protein interfaces.
2–5

  

The tendency of molecular systems to react or to associate is 

represented by a thermodynamic quantity, the change in free energy. 

Predictions of ligand–receptor binding affinity, as well as mutation 

effects, remain a challenge for computational approaches, all the more so 

since two major difficulties hamper an accurate prediction: (a) despite 

spectacular progresses in both X-ray crystallography experiments and 

Nuclear Magnetic Resonance spectroscopy, it still remains unreasonable 

to hope for the experimental determination of the majority of protein 

structures in the near future. It is therefore necessary to build homology 

models
6–8

 (if possible) for unknown protein structures; (b) Since many 

entries in the Protein Data Bank (PDB) do not describe macromolecular 

complexes but isolated proteins, theoretical approaches like docking 
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methodologies
9,10

 are needed to propose a binding mode for a protein–

protein interaction. In cases where the structure of a protein–protein 

complex is known and the mutation of a single amino acid does not 

induce large structural changes, computational predictions of binding 

free energy becomes feasible.  

The accurate estimation of thermodynamic quantities can in principle 

be obtained by so-called ‘first principle’ approaches. However, the 

corresponding calculations are often time-consuming and not 

straightforward to set up. In parallel, the use of more approximate 

methods, based on empirical rules, becomes a possible alternative in case 

of high-throughput in silico screening.  

In this chapter, we present the currently most accurate force field 

based methods such as Thermodynamic Integration (TI) and Free Energy 

Perturbation (FEP) to describe the physical interactions of the system. 

Then more approximate methods like Linear Interaction Energy (LIE) 

and Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) 

approaches will be described. Even simpler models based on empirical 

rules are also reviewed to complete the panel of computational 

approaches.  

11.2 About Protein–Protein Interactions 

The understanding of protein–protein interface organisation and 

composition contributes to identify the forces guiding the association of 

such macromolecular entities. The dissection of protein–protein binding 

sites has recently been the aim of many investigations in terms of 

geometry
11–14

 and chemical nature of the interface (see Chapters 1 and 2 

of this volume).
15–22

 Considering different types of molecular assemblies 

such as heterodimers (protease-inhibitor, enzyme-inhibitor, antibody-

antigen, etc.), homodimers or others, the distribution of amino acids at 

the interface differs from the rest of the surface exposed residues.
14,18

 It is 

reflected by their interface propensities (defined as the ratio of the 

abundance of a given amino acid at the interface over its overall 

abundance on the surface) which are also quite different between the 

core and the rim of the interface.
16

 It is commonly accepted that protein–

protein interfaces are mainly composed of a buried hydrophobic core 
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surrounded by a more hydrophilic ring partly exposed to the solvent.
12,23

 

However, depending on the type of interface, even the inner part of the 

interface can contain some polar or charged residues. Interacting via 

hydrogen bonds or salt-bridges, these residues generally act as strong 

anchor points and maintain the structural integrity of the complex.
22,24

 

Although electrostatic complementarity
25

 is strongly involved in protein–

protein recognition, non-polar interactions play a major role in the 

binding affinity
21,24

 since the interface is to a large extent densely 

packed.
15

  

However, structural analysis alone cannot predict whether all of these 

interface contacts are important for binding. Alanine scanning 

experiments on human growth hormone and the extracellular domain of 

its first bound receptor showed for the first time that few specific 

residues contribute dominantly to the binding free energy.
26

 Some 

authors have defined a ‘hotspot’ as a residue contributing a significant 

part of the binding free energy (∆∆G > 2 kcal·mol
-1

) as measured by 

alanine substitution. Bogan and Thorn
15

 also showed that hotspots are 

located within densely packed areas, i.e. at the inner part of the interface. 

Substitutions of a hotspot residue by an alternative residue may create 

holes or results in steric hindrance preventing a perfect fit and, thus 

explaining the critical loss of affinity. Clearly, the capacity to give a 

rationale to such mutations or to protein–protein affinities in general 

requires a realistic description of the associated changes of the free 

energy. 

11.3 The Free Energy of Binding 

The free energy is a thermodynamic function of state that encodes 

information about the equilibrium state of a system. When a system (in 

which the temperature, the number of particles and the volume are 

constant) is at equilibrium, the free energy (here the Helmholtz free 

energy, F) is at a minimum. Depending on the thermodynamic 

conditions, one can speak of either the Helmholtz free energy (F) if the 

number of particles (N), the volume (V) and the temperature (T) are kept 

constant or of the Gibbs free energy (G) if N, T and P (pressure) are 

constant, respectively. See Ref. 27 for detailed explanations. The 
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accurate calculation of the free energy of a molecular system is, 

however, difficult to perform. State-of-the-art approaches are rooted in a 

statistical thermodynamic treatment of the system. The free energy 

function (here called A) is directly connected to the partition function Q 

through the simple relation: 

 lnA kT Q= −  (11.1) 

Here, k corresponds to the Boltzmann constant and T to the temperature 

of the system. The partition function Q fills the gap between the 

macroscopic properties of a system and its microscopic representations. 

It can be simply described as a sum of Boltzmann factors corresponding 

to the partition of the particles constituting the system throughout 

accessible states. In a simple system of well defined localised and 

indistinguishable particles partitioned amongst quantified energy levels 

(ei), the partition function reads: 

 ;
!

ieN

kT
i

i

q
Q q p e

N

−

= =∑  (11.2) 

In a more complex system, with interacting particles, the concept is 

identical but requires the calculation of the energy of the system through 

its Hamiltonian (H(r,p)), which is a function of both the positions (r) and 

the momenta (p) of the particles (phase space). H(r,p) is a continuous 

function and the summation becomes an integral. 

 

( , )

3

1 1

!

H r p

kTQ e drdp
N h N

−

= ∫ ∫K  (11.3) 

In principle, this equation can give access to the partition function, 

provided that the integral can be computed. This is, however, out of 

reach for typical biomolecular systems, where the phase space (the space 
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of possible positions and momenta) is too large to be properly sampled 

with any kind of simulation to directly compute the partition function. 

Fortunately, in the framework of molecular systems, one is often 

more interested in the difference of the free energies between two states 

than in the absolute free energy of a state. We indeed seek to estimate the 

free energy change throughout a given transformation that can be a 

chemical reaction, a protein folding process or the association of two 

protein molecules. In this case the free energy difference relies on a ratio 

of partition functions, which is in principle easier to estimate. 

Figure 11.1 illustrates the typical thermodynamic cycle used to 

compute protein–protein binding affinity and the free energy change 

resulting from a mutation. The binding free energy ∆G1 simply results 

from the association process between the two protagonists.  

 

Fig. 11.1. Thermodynamic cycle used to estimate a protein–protein binding free energy 

and a free energy difference due to a mutation on one of the protein (P to P’). 
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To compare the receptor (R) affinity between a wild-type protein and one 

of its mutant (called P’) one can compute the free energy resulting from 

the mutation (∆G2), the free energy of binding of the mutant with the 

receptor (∆G3) and finally the free energy difference between the wild-

type complex and the complex made up of the mutant and the receptor 

(∆G4).  

The thermodynamic cycle indicates that ∆G1 + ∆G4 - ∆G3 – ∆G2 = 0. 

Consequently, the relative binding free energy is given by,  

 ∆∆Gwt to mut = ∆G1 - ∆G3 = ∆G2 - ∆G4 (11.4) 

11.4  First Principle Methods and End-point Approaches 

11.4.1 Alchemical Mutations. Free Energy Perturbation (FEP) and 

Thermodynamic Integration (TI) 

The theory of free energy perturbation and thermodynamic integration 

approaches was initially developed in the 1950s while the first 

application to a biomolecular system was performed during the 1980s. 

For a detailed explanation and the historical development of the methods, 

see Ref. 28.  

Let us consider a typical chemical equilibrium between two states of 

a given system: 

 A B↔  (11.5) 

This equilibrium can be described by both the equilibrium constant and 

the corresponding free energy, 

 
[ ]
[ ]
B

K
A

=  (11.6) 

and  
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 ln
B

A

Q
A kT

Q

 
∆ = −  

 
, (11.7) 

where QB and QA represent the partition functions of states B and A, 

respectively. 

One can express the partition functions as shown above and the free 

energy expression reads 

 ln

B

A

H

kT

H

kT

e drdp
A kT

e drdp

−

−
∆ = −

∫ ∫

∫ ∫

K

K

 (11.8) 

Considering that the difference between the partition function of states A 

and B is small, one can write the Hamiltonian of B as a perturbation of 

the Hamiltonian representing state A:  

 B AH H H= + ∆  (11.9) 

The change in free energy can be expressed as follows: 

 

.

A

A

H H

kT kT

H

kT

e e drdp
A kT ln

e drdp

− −∆

−
∆ = −

∫ ∫

∫ ∫

K

K

 (11.10) 

This latter equation is just the ensemble average of the perturbation in  

the Hamiltonian, taken from a simulation obtained for the system in state 

A. 

 

H

kT

A

A kT ln e

−∆

∆ = −  (11.11) 
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The Free Energy Perturbation (FEP) approach can be implemented either 

in Monte Carlo or Molecular Dynamics simulations. The approach is, in 

principle, exact (does not involve any approximations) and the accuracy 

of the calculated change in free energy depends on the sampling of 

configurations relevant for state B (under the control of the Hamiltonian 

representing state A).  

From a more general point of view, even if the difference between 

states A and B is significant, one can decompose the path going from A 

to B into several smaller steps (A..A1...An...Az...B) and then compute the 

sum of each associated small free energy change throughout the path 

from A to B. 

The Thermodynamic Integration (TI) approach is also based on 

thermodynamic statistics of various simulations. In the TI scheme, one 

writes the free energy as a function of a coupling parameter, generally 

called λ . For the A to B transformation one has 

 
( )

( ) ( )

B

A

A B A B

A
A A A d

λ

λ

λ
λ λ λ

λ
→

∂
∆ = − =

∂∫  (11.12) 

It is possible to rewrite this free energy difference as a sum of averages 

of the Hamiltonian derivatives with respect to λ .  

 
( )B

A

A B

H
A d

λ

λ λ

λ
λ

λ
→

∂
∆ =

∂∫  (11.13) 

The free energy difference can then be obtained by a numerical 

integration of the ensemble average for the derivative of the Hamiltonian 

with respect to λ , obtained from various Monte Carlo runs or Molecular 

Dynamics simulations representing an alchemical transformation from A 

to B. 

In both of these methods, the magnitude of the perturbation is critical 

for the accuracy of the calculated free energy difference. The free energy 

difference between two states might be calculated accurately, provided 

that state B can be considered as a small perturbation to state A. In this 
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case, the partition functions of states A and B overlap and the simulation 

sampling can be properly achieved within reasonable computing times. 

11.4.2 End-point Approaches: Molecular Mechanics Poisson–

Boltzmann Surface Area (MMPBSA) and Linear  

Interaction Energy (LIE) Methods 

11.4.2.1 MM-GB(PB)SA Approach 

Since the free energy is a state function, it is in principle sufficient to 

only evaluate the initial and the final states for computing the binding 

free energy.
29 

The Molecular Mechanics Poisson–Boltzmann Surface 

Area MM-GB(PB)SA method is based on the analysis of configurations 

obtained from equilibrated MD simulations with explicit solvent or other 

approaches treating the solvent as a continuum. The total free energy of 

the system can be expressed as the sum of several contributions: 

 
/MM rot trans solG E H G TS= + + −  (11.14) 

Where MME  is the molecular mechanics energy  

 MM bond angle dihedral vdW CoulombE E E E E E= + + + +  (11.15) 

solG  is the solvation free energy and 
/rot transH  corresponds to the 

contribution due to putative changes in the translational and rotational 

degrees of freedom of the binding partners.  

The solvation free energy is computed as a sum of polar and non-

polar contributions. The non-polar contribution corresponds to a cavity 

formation and van der Waals interactions between the solute and the 

solvent. This contribution is typically calculated from the solvent-

accessible surface area of the molecule, 

 SAG SASAγ β= +  (11.16) 
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SASA is the solvent accessible surface area estimated by rolling the a 

solvent-sized probe over the solute surface, γ  and β  are constants 

which were extracted from a least-squares fit to a plot of experimental 

alkane transfer free energies versus accessible surface area.  

In the MM-PBSA approach, the polar contribution of solG is obtained 

by a calculation of the electrostatic potential ( )rφ  from a solution of the 

Poisson (or Poisson–Boltzmann) equation,  

 ( ) ( ) ( )4 0r r rε φ πρ∇ ∇ + =  (11.17) 

here ( )rε  is a position dependent dielectric constant, and ( )rρ  is the 

charge distribution of the solute.  

Alternatively, in the MM-GBSA approach the electrostatic 

component is calculated using the Generalized Born equation. In the GB 

equation, the protein atoms are represented by spheres with a dielectric 

constant different from that of the exterior of the protein (solvent). The 

electrostatic energy can be calculated by: 

 

( )
( )

2 2

1
1

exp / 2

i j

sol polar

ij i j ij i j

q q
G

r rε α α α α

 
= − 
  + −

∑  (11.18) 

with qi and αi are, respectively, the charges and the effective Born radii 

of atoms i and j.  

The conformational entropic term TS is often estimated by a normal 

mode analysis of the complex and the isolated protein partners.  

In order to calculate free energy changes associated with the complex 

formation, the free energies of isolated protein partners are subtracted 

from free energies calculated for the complex:  

 
1 2bind complex protein proteinG G G G∆ = − −  (11.19) 

Where xG  corresponds to the average of the total free energy of the 

complex or isolated partner over snapshots taken from the MD trajectory.  
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An interesting feature of such a description of the free energy change is 

the possibility to decompose it on a per-residue basis. 

Such a per-residue decomposition allows a semi-quantitative 

evaluation of alanine-scanning scoring by replacing a given residue side 

chain with an alanine side chain and performing the same free energy 

calculation. Often, this is performed using the trajectory obtained for the 

wild type proteins by replacing in each snapshot a given residue by 

alanine.
30,31

 

11.4.2.2 Linear Interaction Analysis 

The Linear Interaction Analysis (LIE) scheme is based on the idea that 

when a solute binds to a receptor, the change in free energy can be 

decomposed into polar and non-polar contributions.
32

 The linear response 

theory is invoked to estimate the polar (electrostatic) component and the 

non-polar contribution is considered to scale proportional to the 

intermolecular van der Waals interaction energy, averaged over 

molecular dynamics simulations. The binding free energy can thus be 

written as: 

 
vdW el

bind l s l sG V Vα β γ− −∆ = ∆ + ∆ +  (11.20) 

Here, x  denotes an average over a sampled trajectory (from MD or 

MC), for the van der Waals (vdW) or electrostatic (el) terms involving 

the ligand (l) and its surroundings. The ∆  stands for the difference 

between the solute free in solution and bound to its partner. The 

parameters α , β  and γ  are generally fitted with respect to 

experimental results on a set of test cases with known binding free 

energy.  

Several review articles on details and technical aspects of each 

approach to compute binding free energies in various systems have been 

published.
33,34

 In this section the main aspects that have to be taken into 

account when setting up a free energy calculation will be discussed. 

These calculations can be applied to the prediction of both the total 
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binding free energy or the effect of a residue mutation on binding free 

energy. 

11.4.3 Applications on Protein–Protein Complex Structures 

As for many computational approaches, free energy calculation 

techniques are subject to a trade-off between speed and accuracy. The 

methods are based on a statistical evaluation of various terms. The 

statistics are in general more accurately determined if a large number of 

configurations have been sampled. It is not surprising that in the 

framework of protein–protein association, the number of applications of 

the computationally of very expensive methods such as FEP and TI is 

still limited, since large numbers of configurations need to be evaluated. 

Due to the large computational costs of alchemical transformations, 

applications typically involve single mutations often in model systems 

with known binding energies. TI was, for example, used to compute the 

relative binding free energy between a wild-type peptide and its Pro6 to 

Ala6 mutation on recognition by the T-Cell Receptor.
35

 The TI 

calculation gave excellent agreement with experiment and allowed also 

the decomposition of the free energy change into various energetic 

contributions, which helps to explain the driving forces for binding. 

More generally, the decomposition into various components and more 

particularly on a per residue basis is a powerful tool to predict hotspots at 

protein binding sites and potential mutations that affect peptide or protein 

binding. Such prediction approaches include ‘computational alanine 

scanning’ or ‘virtual alanine scanning’ and are frequently used to predict 

hotspots in proteins that have a dominant effect on affinity for a given 

receptor. Variants of the MMPBSA calculation methods have been 

developed to explore the effect of alanine substitutions.
30,31

 The 

MMPBSA approach involves more approximations but is 

computationally less expensive compared to FEP or TI methods and has 

been applied successfully to identify hotspot residues in proteins.
36

 

Looking more closely at protein–protein interactions, the balance of 

hydrophobic and hydrophilic regions at the interfaces has to be properly 

considered. Systems dominated by hydrophobic contacts may have 

characteristics that are more difficult to predict.
37

 This phenomenon is 
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due to the limited directionality and often weak nature of hydrophobic 

interactions and due to the indirect role played by solvent molecules. The 

LIE approach is particularly sensitive to the hydrophobic character of a 

binding region and generally requires an additional term to produce 

accurate free energies for systems dominated by hydrophobic 

contributions.
33,38

 The decomposition of the interaction free energy 

between two proteins indeed emphasized the importance of the non-polar 

terms.
35

 The electrostatic contribution can either play the role of 

directional constraints
39

 or can even make a repulsive contribution to 

binding.
40

 

The LIE approach can give results in good agreement with 

experiment if the mutation does not involve residues sensitive to the 

electrostatic environment, for example due to changes in protonation 

states or the presence of counter ions. Indeed, although some LIE 

calculations involving aspartic or glutamic acids gave results in poor 

agreement with experimental data,
41

 an appropriate treatment of possible 

changes in protonation states improved the results.
42

 Additionally, the 

newly formed structure has to be examined with care since the mutated 

residue was shown to form steric clashes, either directly at the interface
42

 

or with the solvent just around the interface.
43

 

In general, the binding free energy depends on buried water 

molecules present at the interface between the partner structures. During 

alchemical transformation in FEP or TI calculations, the removal of 

chemical groups or whole side chains can create large empty cavities at 

the interface which are likely to be filled with water molecules.
44

 In such 

cases the FEP/TI protocol may need to include the creation or 

annihilation of water molecules. In case of employing implicit solvent 

methods one should be aware that the structural role played by explicit 

water molecules may not be appropriately accounted for. 

The effect of the substitution of a putative hotspot at the interface can 

be decomposed into several parts: (a) the direct interaction energy of the 

new residue with its neighbours, (b) the influence of this residue on the 

overall structure of both the mutated protein and the complex, (c) the 

organisation of the water molecules around this residue, also both in the 

free protein and potentially in the complex.  
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An accurate calculation of these contributions requires sufficient 

sampling of conformations of the wild type and mutated complex 

structures. The adequate sampling of relevant states is indeed of primary 

importance since it represents the cornerstone to achieve convergence on 

the calculation of ensemble averages of a perturbation or free energy 

derivative. The large size of biomolecular systems implies that a 

thorough sampling is unfortunately not always possible. In case of 

screening a large number of possible substitutions it is often necessary to 

use much simpler empirically parameterized approaches. 

11.5 Empirical Scoring Functions  

The calculation of binding free energy changes using the methods 

discussed above is based on a statistical analysis of Monte Carlo or 

Molecular Dynamics simulations and usually requires the calculation of 

averages over many conformations. Specific force fields
45–48

 have been 

developed to reduce the requirement of sampling many conformations. 

Simplifications of the energy function may, however, result in additional 

parameters to reproduce experimental data. 

For instance the scoring of a predicted protein–protein complex 

usually involves the calculation of a scoring function for a single 

conformation of the complex (see the review of Halperin et al.
10

 and 

references therein). Problems arising from docking simulations can be, in 

a general manner, split into two groups: (a) the generation of a pool of 

protein–protein complex conformations and (b) the scoring of the 

predicted structures. Searching and scoring methods can simply be based 

on geometric rules that tend to maximise the packing of interface atoms. 

Protein–protein docking algorithms can, however, use more sophisticated 

scoring functions taking into account solvation effects and flexibility of 

the residue side chains and the backbone,
9,49

 and may provide a 

qualitative estimate of the binding free energy.  

The development of a fast and reliable simplified protein force field is 

a difficult task due to the subtle balance between different energy terms. 

In the following the theoretical basis of empirical force fields used to 

estimate free energy changes in the context of protein folding
47,48,50

 and 

protein design
2–5

 will be discussed.  
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11.5.1 Empirical Force Fields 

Several computational approaches
45–47,51

 have been employed to 

approximately calculate binding energies and effects due to substitution 

of residues at the binding site. In each of these methods, several 

empirically parameterized terms are introduced in the energy function. A 

set of training structures is used to fit those terms followed by validation 

through blind test experiments. Among others, the FOLD-X
46

 and 

Robetta
52

 software packages are examples of such approaches and are 

described below. 

11.5.1.1 FOLD-X  

FOLD-X, developed by Guerois et al.,
46

 provides a fast and quantitative 

estimation of mutational effects on protein stability and protein–protein 

association. The free energy can be decomposed into a combination of 

terms demonstrated to be important for protein stability: 

 vdW vdW solvH solvH solvP solvPG W G W G W G∆ = ∆ + ∆ + ∆
 

 wb hbond el mc mc sc scG G G W T S W T S+∆ + ∆ + ∆ + ∆ + ∆  (11.21) 

vdWG∆  is the van der Waals interactions term. solvHG∆  and solvPG∆  

represent the hydrophobic and polar solvation energies, respectively. 

wbG∆  and hbondG∆  stand for stabilising effect of water bridges and 

hydrogen bonds, respectively, and elG∆  is the electrostatic contribution 

of charged groups. The entropic term, described using fitted 

parameters,
53,54

 accounts for the cost to restrict the backbone ( mcS∆ ) and 

side chain ( scS∆ ) mobility in the folded state. 

The set of parameters and weights (Wxx in the equation 11.21) are 

fitted using experimental free energy differences (
/wt mutG∆∆ ) of 339 

single-point mutants. The predictive performance of the method was 

examined on a blind test database of 667 protein mutations as well as 82 

protein–protein complex mutations. A good correlation was obtained 

between 
exp

G∆∆  and calcG∆∆  with a standard deviation smaller than 

0.85 kcal·mol
-1

.  
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While hydrogen bonds, van der Waals and electrostatic interactions 

are explicitly evaluated, no computationally expensive simulations are 

needed by FOLD-X. The algorithm describes implicitly some specific 

properties of proteins (flexibility, the existence of an unfolded state) via 

the entropic terms and the fitted weights.  

For issues like protein–protein interaction, where a critical point is to 

provide a fast and reasonably accurate estimation of the energetics of the 

system, the FOLD-X approach may be used to test the stability of a 

structural model.
55,56

 For instance, Tur et al.
57 

investigated the effect of 

mutations on protein–protein complexes (TRAIL-DR4 and TRAIL-DR5) 

involved in apoptosis using the FOLD-X method. A single amino acid 

mutation of TRAIL was predicted to have a favourable effect on the 

binding affinity. 

11.5.1.2 Robetta 

While the FOLD-X approach is primarily used to predict binding 

energies, the Robetta algorithm
52

 covers different aspects of protein 

design. On one side, Rosetta is an ab initio
58

 and comparative 

modelling
52

 tool including NMR refinement
59

 and side chain interface 

packing.
60

 On the other side, the alanine-scanning module is of particular 

interest in the case of protein–protein interface analysis studies. Robetta 

approximates the binding free energy of protein–protein complexes 

accounting for shape complementarity at the interface as well as polar 

interactions and solvation effects.
45

 As in the FOLD-X approach, the free 

energy function is a linear combination of various terms: 

 
( ) ( )attr LJattr rep LJrep HB sc bb HB sc bbG W E W E W E− −∆ = + +  

 
( ) ( )HB sc sc HB sc sc Coul Coul sol solW E W E W G− −+ + +  

 

20

/ /

1

( )
ref

aa aa

aa

W E aa n Eφ ψ φ ψ
=

+ + ∑  (11.22) 

The free energy is decomposed into an attractive and a repulsive part of a 

Lennard–Jones potential ( LJattrE and LJrepE ). 
( )HB sc bbE −  and 

( )HB sc scE −  

stand for a side chain-backbone and a side chain-side chain hydrogen 



S. Fiorucci, S. Antonczak, J. Golebiowski 312 

bonding terms, respectively. CoulE  is a Coulomb potential and solG  an 

implicit solvation term. Two additional terms are only used for the 

alanine-scanning calculation: an amino acid type-dependent backbone 

torsion angle propensity (
/

( )E aaφ ψ ) and a reference value 

(approximating the interactions in the unfolded state) for each amino acid 

(
ref
aaE ). The weights ( xW ) of the energy terms are parameterized using 

thermodynamic measurements of mutation effects
61

 on both monomeric 

proteins and on protein interfaces. The effect of residue mutation is 

estimated for both the bound and the unbound states for the wild-type 

and the corresponding mutation, leading to the estimation of the binding 

free energy difference:  

 
MUT WT

bind bind bindG G G∆∆ = ∆ − ∆  (11.23) 

For a test set of more than 2500 molecular systems, the unsigned error is 

roughly below 1.0 kcal·mol
-1

.
45

 

The influence of each term has been evaluated by removing its 

contribution to the free energy. The hydrogen bonding term (derived 

from an environment-dependent criterion) is a critical factor to 

realistically predict the existence of hotspots. As already discussed for 

MMPBSA, the lack of an explicit representation of the solvent is likely 

to result in an inaccurate description when water mediated hydrogen 

bonds are important for the protein-protein interactions. Applied to 

hotspot predictions, Robetta provided reasonable predictions of protein–

protein binding free energies. Recent work reported the successful 

application of the model on the re-design of protein–protein interfaces 

with an experimentally verified significant improvement of the binding 

affinities.
62–64

 For instance, Baker and co-workers
62

 were able to increase 

the specificity of the colicin E7 DNase-Im7 immunity protein complex at 

least 300-fold. 

11.5.2 Knowledge-based Force Fields 

Knowledge-based (KB) potentials derive known proteins structure 

information to model interatomic interactions (see Refs 48, 50 and 65). 

The computational cost of such approaches allows them to estimate the 
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free energy of a large amount of structures. According to the Boltzmann 

statistics, a contact potential can be related to the population of a given 

structural feature through the following equation: 

 ( ) lnij ij ijV P kT P G= − ≅  (11.24) 

Where ijP  is the probability of finding a pair of atom within a cut-off 

distance. 

A free energy change can then be defined as a linear combination of 

individual contributions. The free energy can even be refined by 

introducing interaction contributions of higher order between a third 

residue (or atom) k and the coupling between i and j (∆∆Gijk): 

 
intrinsic

i i ij ijk

j j k

G G G G∆ = ∆ + ∆ + ∆∆ +∑ ∑∑ K (11.25) 

Here, 
intrinsic
iG∆  represents the intrinsic change in free energy relative to 

the unfolded state. 

Knowledge-based energy functions were used in protein folding or  

to evaluate the interaction energy in various receptor–ligand systems, 

including protein–protein,
51,66

 protein–RNA
67

 or protein–DNA
68

 

complexes. 

11.6 About Computation Time 

Computational demand is a critical issue for selecting an appropriate 

method to calculate or estimate binding free energy changes. Figure 11.2 

gives a qualitative idea on the computational resources needed for the 

simulation approaches presented in the previous sections. The FEP and 

TI methods require an extensive and computationally demanding 

sampling of conformations to obtain accurate ensemble averages. 

Approaches based on few structures and using an empirically adjusted 

scoring function are largely devoid of sampling issues and are thus 

extremely useful for in silico high-throughput screening. In between 

these two extremes, the MMPBSA and LIE approaches usually require 
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shorter simulation times than the FEP/TI methods and for many purposes 

represent a reasonable trade-off between speed and accuracy. 

 

Fig. 11.2. Qualitative comparison of computation time needed to carry out a simulation 

using the different approaches discussed in this chapter. 

11.7 Conclusions and Outlook 

The ability to predict the binding mode of biomolecular complexes and 

to calculate the associated free energy change is a great challenge for 

computational chemists and biochemists. Several approaches exist that 

differ in computational demand and the necessary approximations to 

calculate free energy changes. The available approaches range from 

computationally very demanding free energy calculations including 

explicit solvent to empirically parameterized methods. The free energy 

simulation methods can in principle predict with a high accuracy the full 

structural and energetic features for biomolecular systems and are limited 

only by the accuracy of the force field and the sampling of relevant 

states. Due to the large computational demand, the application of free 

energy simulation approaches is often limited to the study of single 

mutations and its effect on protein–protein binding.  
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At the opposite end of the complexity scale, several approximate 

approaches are dedicated to produce qualitative results in very short 

time. These methods describe changes in the free energy of the system of 

interest using empirically derived terms and lack a detailed 

representation of the solvent and often also do not account for the 

flexibility of partner structures. The strength of these methods relies on a 

clever parameterisation and the capacity to deal with a large number of 

protein structures in reasonable computer time.  
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The majority of current FDA-approved small molecules target enzymes 

and cell surface receptors. While there is no doubt that these protein 

classes are excellent drug targets, it is also well-known that they 

constitute only a minor proportion of all human proteins. Therefore, the 

development of approaches that allow for the expansion of the number 

of protein classes that can be targeted by small molecules is a major 

challenge to academic research. Because most biological processes are 

performed by protein complexes and the function of a protein can 

depend on its binding partners, the inhibition of protein–protein 

interactions bears tremendous potential to render additional protein 

families accessible to functional modulation by small molecules. This 

chapter highlights the case stories of selected inhibitors of protein–

protein interactions which illustrate the current scope of the field. 

12.1 Introduction 

Approximately 80% of small organic molecules approved for human use 

by the U.S. Food and Drug Administration (FDA) target cell-surface 

receptors and enzymes. Other prominent drug targets include nuclear 

receptors, ion channels and transporters.
1–3

 Overall, the protein classes 
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perceived as ‘druggable’ have been estimated to be only 10–15% of all 

human proteins.
1
 This indicates the tremendous potential that expansion 

of the perceived spectrum of druggable proteins could have for drug 

discovery. The expansion of the target spectrum of small molecules 

would also be very beneficial for basic research, since small-molecule 

inhibitors are excellent tools for the analysis of protein functions in 

genetically unmodified systems.
4
  

Most biological processes are performed not by single proteins, but 

by protein complexes, which often consist of ten or more proteins.
5,6

 

Since the function of a given protein can depend on its binding partners, 

cell-permeable inhibitors of protein–protein interactions can potentially 

influence protein functions.
7
 Thus, inhibitors of protein–protein 

interactions open up novel possibilities for expanding the proportion of 

proteins which can be targeted by small molecules; moreover, they can 

provide access to alternative modes of inhibition of established classes of 

small-molecule targets. In this review, I shall discuss recent progress in 

the field of small-molecule inhibitors of intracellular protein–protein 

interactions.
7–12

 This review does not cover the development of inhibitors 

of the protein–protein interactions between integrins and components of 

the extracellular matrix,
13,14

 a field which is particularly advanced and 

which has recently been reviewed elsewhere.
15,16

 

12.2 Inhibitors of Binding between Anti-apoptotic Bcl-2 Proteins 

and BH3 Domains of Pro-apoptotic Bcl-2 Proteins 

Many human tumours overexpress anti-apoptotic Bcl-2 family members, 

such as Bcl-2 itself, Bcl-xL, Mcl-1 or Bcl-w. Anti-apoptotic Bcl-2 

proteins bind to and thereby inactivate pro-apoptotic Bcl-2 proteins (e.g., 

Bad, Bak or Bim); the interaction is mediated by a hydrophobic cleft 

formed by Bcl-2 homology (BH) domains 1–3 of anti-apoptotic Bcl-2 

proteins and the helical BH3 domain of pro-apoptotic Bcl-2 proteins.
17

 

Small-molecule inhibitors of the interaction between pro- and anti-

apoptotic Bcl-2 family members can restore the activities of pro-

apoptotic Bcl-2 family members in tumour cells and thereby induce 

apoptosis. The combination of the clearly defined biological effect of 

restoring the activity of pro-apoptotic Bcl-2 proteins (i.e., the induction 
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of apoptosis in tumour cells), and the presence of a structurally well-

characterised and not too extensive binding pocket, has resulted in large 

research efforts aimed at finding small-molecule inhibitors of this 

interaction. Because many of them have already been covered by recent 

reviews,
18,19

 this section will focus on a selection of recent developments 

in the field. 

The natural product (R)-(-)-gossypol (1) (Fig. 12.1) was one of the 

first small molecules discovered to inhibit binding of pro-apoptotic Bcl-2 

family members to anti-apoptotic Bcl-2 family members.
20

 It inhibits the 

anti-apoptotic Bcl-2 family members Bcl-2, Bcl-xL, and Mcl-1 in the 

submicromolar concentration range.
21

 (R)-(-)-gossypol, which has 

several additional known activities, is currently undergoing clinical trials 

as an anti-cancer agent.
22

 A combination of molecular modelling and 

synthetic efforts led to the synthesis of compound 2, which inhibits Bcl-2 

(Ki = 17 nM) and Mcl-1 (Ki = 18 nM), and to a lesser extent, Bcl-xL (Ki 

= 1.2 µM).
23

 The chemical structure of gossypol was, furthermore, used 

as a starting point for the generation of TM-1206 (3), which shows only 

limited remaining similarity to gossypol. Nevertheless, TM-1206 is a 

potent inhibitor with more balanced activities against the anti-apoptotic 

Bcl-2 proteins Bcl-2, Bcl-xL, and Mcl-1 in the triple-digit nanomolar 

concentration range.
24

 Both TM-1206 and compound 2 inhibited 

proliferation of a breast cancer cell line and caused significant cell death 

at concentrations at or below 1 µM. 

WL-276 (4)
25

 is the most active and best characterised derivative
26

 of 

the BH3-I series of Bcl-xL inhibitors.
27

 It displays approximately 20-fold 

selectivity for Bcl-xL over Bcl-2 (Ki-values for Bcl-xL and Bcl-2: 1.2 µM 

and 22.8 µM, respectively), and induces apoptosis in the prostate cancer 

cell line PC-3. Importantly, PC-3 cells with resistance to standard cancer 

chemotherapeutic agents showed higher susceptibility to WL-276 than 

parental PC-3 cells, suggesting the potential utility of WL-276 for the 

treatment of drug-resistant prostate cancers. 

A team of scientists led by Fesik and Rosenberg at Abbott 

Laboratories developed the small molecule ABT-737 (5) which inhibits 

Bcl-2, Bcl-xL and Bcl-w with subnanomolar activities.
28

 Although the 

agent was shown to exert potent and selective effects in xenograft mouse 

tumour models, its utility as a drug was limited by its poor 
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bioavailability. Fortunately, the introduction of only a few chemical 

modifications led to the derivative ABT-263 (6), which exhibits similar 

activity against its targets whilst showing up to 50% bioavailability in 

animal models.
29

 ABT-263 is currently undergoing phase 1/2a clinical 

trials against several human malignancies.
29

 

Another inhibitor of an anti-apoptotic Bcl-2 family protein under 

clinical investigation is Obatoclax (7), which is predicted to bind to a 

hydrophobic pocket within the BH3 binding groove of Bcl-2.
30

 

Obatoclax was shown to interfere with the interaction between Mcl-1 and 

Bak in mitochondrial outer membranes and in cells, and overcomes Mcl-

1-mediated resistance to apoptosis against ABT-737 and the proteasome 

inhibitor bortezomib. 

12.3 Inhibitors of Binding between XIAP and Caspases 

The protein X-linked inhibitor of apoptosis (XIAP) is overexpressed in 

many human tumours and contributes to resistance of cancer cells to 

chemotherapy.
31,32

 XIAP contains three baculovirus IAP repeat (BIR) 

domains. The natural inhibitor of XIAP, Smac/DIABLO (second 

mitochondria-derived activator of caspases / direct IAP binding protein 

with low pI targets both the BIR2 and the BIR3 domain of XIAP via its 

N-terminal AVPI motif.
33

 The function of the BIR3 domain is well-

understood: it binds to and thereby inhibits the initiator caspase-9. In 

contrast, the mechanisms in which the BIR2 domain is involved in 

inhibition of two effector caspases, caspase-3 and caspase-7, is still not 

entirely clear.
34

 Regardless of the exact mechanism of caspase-3/-7 

inhibition by XIAP, numerous studies have shown that mimics of the 

AVPI motif have the potential to relieve caspase inhibition and thereby 

reactivate apoptotic pathways blocked by aberrant XIAP activity.
31
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Fig. 12.1. Small-molecule inhibitors of anti-apoptotic Bcl-2 family proteins. 

Since nature has designed the XIAP inhibitor Smac/DIABLO as a 

homodimer, which is believed to target the function of both the BIR3 and 

the BIR2 domain simultaneously, it seems interesting to mimic this 
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approach with bivalent inhibitors. The first inhibitory agent shown to 

target the BIR2 and the BIR3 domain simultaneously was the C2-

symmetrical diyne 8, which was generated in a side reaction of a 

synthetic manipulation of a monomeric alkyne (Figure 12.2).
35

 8 and the 

corresponding monomer 9 displayed similar affinities for the purified 

XIAP BIR3 domain in vitro, but 8 was significantly more active in a 

caspase-3 activation assay using cellular extracts, presumably because it 

targets both the BIR2 and the BIR3 domain. 8 did not significantly 

increase the apoptotic rate of HeLa cells on its own, but potently 

synergised with tumour necrosis factor α (TNFα) and TNF-related 

apoptosis-inducing ligand (TRAIL) to induce caspase activation and 

apoptosis in HeLa cells. 

Wang and co-workers demonstrated that an [8.5] bycyclic system in 

compound SM-122 (10) could effectively mimic the central VP motif of 

AVPI. 10 to bind to both the BIR2 and BIR3 domain separately with 

high affinity.
36

 Fortunately, the compound tolerated substitution of one of 

the phenyl groups for a [1,2,3]-triazole ring, and thereby allowed 

synthesis of bivalent inhibitors based on SM-157 (11) via ‘click 

chemistry’.
37

 The most potent bivalent molecule SM-164 (12) generated 

by this approach could be shown to bind to both BIR domains 

simultaneously, and displayed excellent affinity to XIAP in an in vitro 

competition assay (IC50 = 1.4 nM). Furthermore, it inhibited proliferation 

and induced apoptosis of a human leukemia cell line at concentrations as 

low as 1 nM. 

Very recently, the Wang group demonstrated that cyclic, bivalent 

peptide mimetics can be designed which are effective in targeting XIAP 

not only in vitro but also in tissue culture.
38

 This study was based on 

previous data showing that the tetrapeptide AKPF methylated on alanine 

has a higher affinity to XIAP than the native, Smac-derived sequence 

AVPI. The cyclic peptide 13, which incorporates two NH(Me)-AKPF 

motifs, forms a 1:2 complex with the isolated BIR3 domain, but a 1:1 

complex with XIAP protein containing both the BIR 2 and the BIR 3 

domain. 13 inhibited cell growth and induced apoptosis in the human 

breast cancer cell line MDA-MB-231 in a caspase-3-dependent manner. 
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Fig. 12.2. Small-molecule inhibitors of XIAP. 

12.4 Inhibitors of the Plk1 PBD Domain 

The serine/threonine kinase Polo-like kinase 1 (Plk1) regulates multiple 

stages of mitosis.
39,40

 It is frequently found to be overexpressed in human 

cancers, and has been established as a negative prognostic marker for 

tumour therapy.
41

 Because inhibition of Plk1 by various approaches has 

been shown to induce mitotic arrest and apoptosis in tumour cells, large 
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research efforts are being channeled into the development of small-

molecule inhibitors of the enzyme’s catalytic activity.
41,42

 Some small-

molecule inhibitors of Plk1’s catalytic activity are already being tested 

for their clinical safety and efficacy against human malignancies.
43,44

 

Most Plk1 inhibitors target the conserved ATP binding pocket. 

Unfortunately, the conserved nature of the ATP binding site of protein 

kinases turns the development of truly mono-specific inhibitors of a 

single kinase into an enormous challenge, and has stimulated the 

development of novel methods for the analysis of the activity profiles of 

ATP-competitive protein kinase inhibitors.
45–47

 

Polo-like kinases contain a domain referred to as the polo-box 

domain (PBD) at their C-terminus.
48

 The PBD of Plk1 is believed to 

serve as an anchor by which the enzyme locates to its intracellular 

anchoring sites. The Plk1 PBD binds to sequences comprising an S-

(pT/pS)-(P/X) motif,
48

 but similar sequence motifs are also tolerated. 

Since correct intracellular localization of Plk1 has been shown to be 

required for completion of mitosis
49

 and the PBD is unique to polo-like 

kinases, the PBD has been suggested as a target for small organic 

molecules.
41,50

 Screening of chemical libraries in an assay based on 

fluorescence polarization
51

 for functional inhibitors of the Plk1 PBD led 

to the identification of the thymoquinone derivative Poloxin (14) as a 

selective inhibitor of the function of the Plk1 PBD in vitro (Figure 

12.3).
52

 Thymoquinone (15) itself was also identified as a Plk1 PBD 

inhibitor, but displayed a less desirable specificity profile. Both 

compounds caused mitotic arrest and chromosome congression defects, 

the cellular phenotype associated with mislocalization of endogenous 

Plk1.
49

 Immunofluorescence assays demonstrated that the compounds 

interfered with correct intracellular localization of endogenous Plk1. 

Since both compounds led to apoptosis in cancer cells, the study 

validated the Plk1 PBD as an anti-tumour target for small molecules.  
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Fig. 12.3. Small-molecule inhibitors of the polo-box domain of Plk1. 

12.5 Inhibitors of the MDM2-p53 Interaction 

The tumour suppressor p53 is mutated or deleted in approximately 50% 

of all cancers.
53,54

 In a large fraction of the other cases, wild-type p53 is 

found to be functionally inactivated by binding to overexpressed MDM2 

(also referred to as HDM2 in humans). MDM2 is a target gene of p53 

and forms an autoregulatory feedback loop by inhibiting p53 by three 

different mechanisms: (a) it binds to the transactivation domain and 

thereby inhibits p53’s transcriptional activity; (b) it supports nuclear 

export of p53; and (c) it serves as a ubiquitin ligase and thereby promotes 

p53’s proteasomal degradation. Blocking the p53/MDM2 interaction has 

been clearly shown to restore p53 levels and activity.
55,56

 The nature of 

the p53/MDM2 interaction as a biologically desirable target for drug 

development, in combination with the existence of a clearly defined 

binding pocket characterised by X-ray crystallography and NMR, have 

stimulated a plethora of drug discovery efforts.
57

 For reasons related to 

space limitation, this section will only cover a selection of prominent and 

recent inhibitor studies. 

The development of a class of cis-imidazoles dubbed Nutlins, shown 

to be selective inhibitors of the p53/MDM2 interaction with activities in 

the nanomolar concentration range, was a landmark in this research 

area.
58

 The efficacy of Nutlins is based on their structural mimicking of 

three p53-derived amino acids (Phe19, Trp23 and Leu26), which are 

crucial for binding to MDM2, by decorating the central imidazole core 

with suitable chemical groups.
58

 The most potent compound of this 

series, Nutlin-3a (16) (the active enantiomer of Nutlin-3), inhibited the 
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p53/MDM2 interaction with an IC50 of 90 nM, and was shown to 

reactivate wild-type p53 in cellular systems as well as in mouse 

xenograft models. Another inhibitor for which the interaction with 

MDM2 was studied by X-ray crystallography is the benzodiazepinedione 

17. It was discovered in a high-throughput screen of chemical libraries in 

an assay that detects MDM2 stabilization by binding of compounds. 17 

binds to MDM2 with high affinity (Kd = 67 nM) in vitro, and showed a 

p53-dependent effect on the proliferation of cancer cell lines. 

Crystallographic analysis revealed that similar to Nutlins, 17 occupies 

the same binding pockets in MDM2 as the side chains of Phe19, Trp23 

and Leu26 of p53. 

Based on their discovery that oxindole can mimic the side chain of 

Trp23,
59

 Wang and co-workers have reported on a series of spiro-

oxindoles as inhibitors of the p53/MDM2 interaction. The spiro-oxindole 

with the highest affinity for MDM2 described to date is MI-63 (18), 

which possesses a Ki-value of only 3 nM for MDM2.
60

 MI-63 selectively 

inhibits cell growth in cell lines with wild-type p53, and induces 

apoptosis ex vivo in leukemia patient samples.
61

 Unfortunately, MI-63 

has an unfavourable pharmacokinetics profile, and thus is not suitable as 

a therapeutic agent. Further compound optimization led to the design of 

spiro-oxindole MI-219 (19), which binds to human MDM2 with almost 

the same affinity as MI-63 (Ki = 5 nM), and is orally bioavailable. MI-

219 displays excellent selectivity for MDM2 over the homologous 

MDMX protein in vitro (Fig. 12.4).
62

 MI-219 could be shown to activate 

wild-type p53, leading to cell cycle arrest and apoptosis in tumour cells 

in vitro and in mouse xenograft models. Docking studies predicted that 

MI-219 occupies the same space of MDM2 as key binding residues of 

p53.
62

 

Using the structures of known p53/MDM2 inhibitors as a starting 

point, the groups of Holak and Weber searched chemical databases for 

compounds with structural similarity but different scaffolds. This process 

led to the prediction that an isoquinolin-1-one could be a p53/MDM2 

inhibitor (Fig, 12.4).
63

 In order to investigate the prediction, several 

isoquinolin-1-ones were synthesised. As an example, the isoquinolin-1-

one NXN-7 (20) was shown to bind to MDM2 with low micromolar 

affinity by heteronuclear NMR experiments,
64

 isothermal titration 
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calorimetry and Biacore experiments. As expected for an inhibitor of the 

p53/MDM2 interaction, NXN-7 increased cellular levels of p53 and its 

target genes, and induced apoptosis in an ovarian carcinoma cell line. 
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Fig. 12.4. Small-molecule inhibitors of the MDM2/p53 interaction. 

12.6 Inhibitors of STAT3 and STAT5 

Signal transducers and activators of transcription (STATs) are 

transcription factors which transduce signals from the cell surface to the 

nucleus.
65,66

 Via their SH2 domains, STATs bind to activated cell surface 

receptors and non-receptor tyrosine kinases. STATs are subsequently 
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phosphorylated at a conserved tyrosine residue C-terminal of their SH2 

domain by receptor-associated Janus kinases (JAKs), the intrinsic 

tyrosine kinase activity of growth factor receptors, or other cytoplasmic 

tyrosine kinases. Tyrosine phosphorylation of STATs induces the 

formation of STAT dimers formed by reciprocal phosphotyrosine-SH2 

domain interactions. These STAT dimers subsequently accumulate in the 

nucleus and regulate the transcription of their respective target genes. 

STAT3 is found constitutively activated in a wide range of human 

tumours and cancer cell lines.
67

 Importantly, inhibition of signalling via 

STAT3 in cells with constitutive STAT3 activity by a dominant negative 

mutant,
68,69

 antisense approaches,
70

 decoy oligonucleotides,
71–73

 

siRNAs,
74–76

 peptide aptamers
77,78

 or G-quartet oligonucleotides
79,80

 has 

been uniformly shown to suppress tumour growth and to induce 

apoptosis. Therefore, STAT3 is regarded as a strong candidate target for 

cancer therapy.
81–88

 Similarly, the STAT5 isoforms STAT5a and 

STAT5b are overactive in several kinds of human tumours, including 

leukemias, breast cancer, uterine cancer, prostate cancer, and squamous 

cell carcinoma of the head and neck (SCCHN).
89

 Inhibition of signalling 

via STAT5, especially STAT5b, has been shown to inhibit tumour 

growth and to induce apoptosis of tumour cells.
90–92

 Therefore, STAT3 

and STAT5a/b are considered promising targets for cancer therapy. 

Most approaches towards the direct inhibition of STATs target the 

SH2 domain, as it is required for two steps involved in STAT signalling: 

tyrosine phosphorylation and dimerization. Functional inhibitors of 

STAT SH2 domains can therefore be expected to inhibit not only STAT 

activation, but also dimerization of any STAT molecules which have 

become activated despite the presence of the inhibitor.
93

 The validity of 

this concept was initially demonstrated using peptides
94,95

 and 

peptidomimetics.
96

 The oxazole S3I-M2001 described by Turkson and 

co-workers (21) is probably the most advanced peptide-derived inhibitor 

of the STAT3 SH2 domain (Fig. 12.5).
97

 S3I-M2001 was designed based 

on the tripeptide motif A/PpYL known to bind to the STAT3 SH2 

domain
94

 and the suggested binding mode of a peptide mimetic,
96

 but has 

only minimal remaining peptidic character. Despite the presence of the 

side chain of the central phosphotyrosine, which should negatively 

impact cellular uptake and intracellular stability, S3I-M2001 displayed 
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strong STAT3-dependent effect in tissue culture at concentrations of 30–

100 µM. The compound was shown to disrupt dimeric, tyrosine 

phosphorylated STAT3 and to inhibit STAT3-mediated gene 

transcription, malignant transformation, survival and migration. 

Importantly, the compound inhibited proliferation of a breast cancer cell 

line with constitutive STAT3 activation in a mouse xenograft model. 

Two independent studies performed virtual screening of chemical 

databases for inhibitors of the STAT3 SH2 domain.
98,99

 These efforts led 

to the discovery of two structurally unrelated STAT3 inhibitors. STA-21 

(NSC 628869) (22) inhibits DNA-binding of pre-phosphorylated STAT3, 

and was shown to inhibit STAT3-mediated gene transcription and to 

induce apoptosis in a STAT3-dependent manner.
98

 S3I-201 (NSC 74859) 

(23) also displayed such biological activity and was additionally shown 

to inhibit tumour growth in a mouse xenograft model.
99

 

Biochemical screening
100

 of chemical libraries for compounds with an 

inhibitory effect on the function of the STAT3 SH2 domain enabled our 

group to identify Stattic (24).
101

 Stattic inhibits the function of the 

STAT3 SH2 domain regardless of the STAT3 activation state in vitro. It 

could be shown to selectively inhibit nuclear translocation of STAT3, 

and to increase the apoptotic rate of breast cancer cell lines in a STAT3-

dependent manner. A similar screening approach as was used for the 

discovery of Stattic, led to the identification of chromone-based acyl 

hydrazones as the first non-peptidic inhibitors of the STAT5 SH2 

domain.
102,103

 Compound 25 and others selectively inhibited the STAT5b 

SH2 domain in vitro, and blocked IFN-α-induced activation of STAT5 in 

a lymphoma cell line. 
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Fig. 12.5. Inhibitors of the SH2 domain of STAT3 and STAT5. 

12.7 Inhibitors of c-Myc/Max Dimerization 

c-Myc is a member of the basic helix-loop-helix (bHLH-Zip) 

transcription factor family. It plays a critical role not only in cell cycle 

progression, growth and oncogenic transformation but also in regulation 

of apoptosis.
104,105

 c-Myc is overexpressed in many human cancers and 

overexpression of c-Myc in genetic model systems leads to 

tumourigenesis. Therefore, inhibition of c-Myc by cell permeable agents 

represents a promising strategy to both elucidate the transcription 

factor’s biological functions, and to interfere with human cancers with 

increased levels and/or activities of c-Myc.
106

 Since all known biological 

functions of c-Myc require binding to its activation partner Max, which 

is also a bHLH-Zip protein, inhibition of c-Myc/Max dimerization 
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appears to be the most direct and comprehensive approach towards c-

Myc inhibition.
107

 The discovery of inhibitors of c-Myc/Max 

heterodimers seems particularly difficult owing to the large α-helical 

interface which does not include any obvious binding sites for small 

molecules.
108

 In some cases, c-Myc-induced tumourigenesis in mouse 

models can be reverted by inactivation of the c-Myc transgene.
109

 

The initial report on the feasibility of targeting the c-Myc/Max 

interaction by small molecules by Vogt and co-workers
110

 – which 

simultaneously represented the first report of small-molecule inhibitors 

of a transcription factor dimerization – was followed by a number of 

studies.
111

 Prochownik’s group screened members of a chemical library 

for those which could prevent dimerization of c-Myc and Max in a yeast 

two-hybrid assay.
112

 The structure of one inhibitor, 10058-F4 (26), was 

used to search for more potent derivatives (Fig. 12.6). Structural 

variation of the substituents on the aromatic ring and the rhodanine 

moiety as found in compound 28RH-NCN-1 (27) did not significantly 

affect the activity, as compared to the parent compound 10058-F4 in a c-

Myc/Max DNA binding assay, but inhibited growth of a leukemia cell 

line almost two-fold more potently (IC50 = 29 µM against HL-60 

cells).
113

 

Janda and Vogt identified four structurally related inhibitors of 

Myc/Max dimerization and DNA binding, which share planar, aromatic 

scaffolds.
114

 As an example, compound NY2267 (28) strongly inhibited 

c-Myc-dependent oncogenic transformation with very good selectivity 

over transformation mediated by v-Src or v-Jun, but did not discriminate 

between transcription mediated by c-Jun and c-Myc in luciferase assays. 

Screening of diverse chemical libraries for compounds which 

inhibited DNA binding of c-Myc by our group led to the discovery of the 

pyrazolo[1,5-a]pyrimidine Mycro1 (29)
115

 and its close derivative 

Mycro2. Subsequent screening of 1,439 pyrazolo[1,5-a]pyrimidines 

resulted in the identification of the most selective c-Myc/Max inhibitor 

of this series. Mycro3 (30) (referred to as compound 1 in the original 

publication) inhibited c-Myc/Max dimerization and DNA binding with 

very good selectivity in vitro, and also showed good potency and 

selectivity at concentrations of 10–40 µM against c-Myc in cellular 

assays.
116
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Fig. 12.6. Inhibitors of c-Myc/Max dimerization. 

12.8 Conclusions and Outlook 

The examples described in this review demonstrate that the inhibition of 

intracellular protein–protein interactions with cell-permeable molecules 

has already been achieved in many cases. Some inhibitors of protein–

protein interactions have even progressed to clinical trials.
13,21,29,30,117

 

Small-molecule inhibitors of protein–protein interactions have already 

altered our view on the nature of druggable proteins. As described in this 

chapter, they have demonstrated their suitability to the targeted 

inactivation of anti-apoptotic proteins (Bcl-2 family proteins or XIAP), 

oncogenic transcription factors (c-Myc, STAT3/5) and to the reactivation 

of transcription factors with tumour suppressor function (p53). 

Moreover, the inhibition of protein–protein interactions was 

demonstrated to provide an alternative entry point to the inhibition of 

enzymes (exemplified by Plk1). The selected examples discussed here 
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suggest that the modulation of protein–protein interactions by small 

molecules is likely to play an important role in achieving one of the 

ultimate goals of chemical biology, that of devising a selective small-

molecule probe for every function of every human protein.
118

 

Acknowledgements 

Work in my research group is generously supported by the Department of 

Molecular Biology (director: Axel Ullrich) at the Max Planck Institute of 

Biochemistry, the Bundesministerium für Bildung und Forschung 

(NGFN-2, grant 01GS0451), and the Deutsche Krebshilfe. 

References  

 1. Hopkins A.L., Groom C.R. (2002). Nat Rev Drug Discov 1: 727–730. 

 2. Overington J.P., Al-Lazikani B., Hopkins A.L. (2006). Nat Rev Drug Discov 5: 

993–996. 

 3. Imming P., Sinning C., Meyer A.(2006). Nat Rev Drug Discov 5: 821–834. 

 4. Mayer T.U. (2003). Trends Cell Biol 13: 270–277. 

 5. Alberts B. (1998). Cell 92: 291–294. 

 6. Gavin A.C., Bosche M., Krause R., Grandi P., Marzioch M., Bauer A., Schultz J., 

Rick J.M., Michon A.M., Cruciat C.M., Remor M., Hofert C., Schelder M., 

Brajenovic M., Ruffner H., Merino A., Klein K., Hudak M., Dickson D., Rudi T., 

Gnau V., Bauch A., Bastuck S., Huhse B., Leutwein C., Heurtier M.A., Copley 

R.R., Edelmann A., Querfurth E., Rybin V., Drewes G., Raida M., Bouwmeester T., 

Bork P., Seraphin B., Kuster B., Neubauer G., Superti-Furga G. (2002). Nature 415: 

141–147. 

 7. Berg T. (2003). Angew Chem Int Ed Engl 42: 2,462–2,481. 

 8. Arkin M.R., Wells J.A. (2004). Nat Rev Drug Discov 3: 301–317. 

 9. Yin H., Hamilton A.D. (2005). Angew Chem Int Ed Engl 44: 4,130–4,163. 

 10. Hershberger S.J., Lee S.G., Chmielewski J. (2007). Curr Top Med Chem 7: 928–

942. 

 11. Wells J.A., McClendon C.L. (2007). Nature 450: 1,001–1,009. 

 12. Berg T. (2008). Curr Opin Drug Disc Devel 11: 666-674.. 

 13. Dechantsreiter M.A., Planker E., Matha B., Lohof E., Holzemann G., Jonczyk A., 

Goodman S.L., Kessler H. (1999). J Med Chem 42: 3,033–3,040. 

 14. Heckmann D., Meyer A., Laufer B., Zahn G., Stragies R., Kessler H. (2008). 

ChemBioChem 9: 1,397–1,407. 

 15. Heckmann D., Kessler H. (2007). Methods Enzymol 426: 463–503. 



Small-molecule Inhibitors of Protein–Protein Interactions 335 

 16. Meyer A., Auernheimer J., Modlinger A., Kessler H. (2006). Curr Pharm Des 12: 

2,723–2,747. 

 17. Petros A.M., Olejniczak E.T., Fesik S.W. (2004). Biochim Biophys Acta 1644: 83–

94. 

 18. Arkin M. (2005). Curr Opin Chem Biol 9: 317–324. 

 19. Zhang L., Ming L., Yu J. (2007). Drug Resist Updat 10: 207–217. 

 20. Wang S., Yang D. (2002). US-patent application series no. 20030008924. 

 21. Wang G., Nikolovska-Coleska Z., Yang C.Y., Wang R., Tang G., Guo J., Shangary 

S., Qiu S., Gao W., Yang D., Meagher J., Stuckey J., Krajewski K., Jiang S., Roller 

P.P., Abaan H.O., Tomita Y., Wang S. (2006). J Med Chem 49: 6,139–6,142. 

 22. Kitada S., Leone M., Sareth S., Zhai D., Reed J.C., Pellecchia M. (2003). J Med 

Chem 46: 4,259–4,264. 

 23. Tang G., Ding K., Nikolovska-Coleska Z., Yang C.Y., Qiu S., Shangary S., Wang 

R., Guo J., Gao W., Meagher J., Stuckey J., Krajewski K., Jiang S., Roller P.P., 

Wang S. (2007). J Med Chem 50: 3,163–3,166. 

 24. Tang G., Yang C.Y., Nikolovska-Coleska Z., Guo J., Qiu S., Wang R., Gao W., 

Wang G., Stuckey J., Krajewski K., Jiang S., Roller P.P., Wang S. (2007). J Med 

Chem 50: 1,723–1,726. 

 25. Wang L., Sloper D.T., Addo S.N., Tian D., Slaton J.W., Xing C. (2008). Cancer Res 

68: 4,377–4,383. 

 26. Xing C., Wang L., Tang X., Sham Y.Y. (2007). Bioorg Med Chem 15: 2,167–2,176. 

 27. Degterev A., Lugovskoy A., Cardone M., Mulley B., Wagner G., Mitchison T., Yuan 

J. (2001). Nat Cell Biol 3: 173–182. 

 28. Oltersdorf T., Elmore S.W., Shoemaker A.R., Armstrong R.C., Augeri D.J., Belli 

B.A., Bruncko M., Deckwerth T.L., Dinges J., Hajduk P.J., Joseph M.K., Kitada S., 

Korsmeyer S.J., Kunzer A.R., Letai A., Li C., Mitten M.J., Nettesheim D.G., Ng S., 

Nimmer P.M., O’Connor J.M., Oleksijew A., Petros A.M., Reed J.C., Shen W., 

Tahir S.K., Thompson C.B., Tomaselli K.J., Wang B., Wendt M.D., Zhang H., Fesik 

S.W., Rosenberg S.H. (2005). Nature 435: 677–681. 

 29. Tse C., Shoemaker A.R., Adickes J., Anderson M.G., Chen J., Jin S., Johnson E.F., 

Marsh K.C., Mitten M.J., Nimmer P., Roberts L., Tahir S.K., Xiao Y., Yang X., 

Zhang H., Fesik S., Rosenberg S.H., Elmore S.W. (2008). Cancer Res 68: 3,421–

3,428. 

 30. Nguyen M., Marcellus R.C., Roulston A., Watson M., Serfass L., Murthy-Madiraju 

S.R., Goulet D., Viallet J., Belec L., Billot X., Acoca S., Purisima E., Wiegmans A., 

Cluse L., Johnstone R.W., Beauparlant P., Shore G.C. (2007). Proc Natl Acad Sci 

USA 104: 19,512–19,517. 

 31. Rajapakse H.A. (2007). Curr Top Med Chem 7: 966–971. 

 32. Vucic D. (2008). Curr Cancer Drug Targets 8: 110–117. 

 33. Shiozaki E.N., Shi Y. (2004). Trends Biochem Sci 29: 486–494. 

 34. Eckelman B.P., Salvesen G.S., Scott F.L. (2006). EMBO Rep 7: 988–994. 

 



T. Berg 336 

 35. Li L., Thomas R.M., Suzuki H., De Brabander J.K., Wang X., Harran P.G. (2004). 

Science 305: 1,471–1,474. 

 36. Sun H., Nikolovska-Coleska Z., Lu J., Meagher J.L., Yang C.Y., Qiu S., Tomita Y., 

Ueda Y., Jiang S., Krajewski K., Roller P.P., Stuckey J.A., Wang S. (2007). 

J Am Chem Soc 129: 15,279–15,294. 

 37. Moses J.E., Moorhouse A.D. (2007). Chem Soc Rev 36: 1,249–1,262. 

 38. Nikolovska-Coleska Z., Meagher J.L., Jiang S., Yang C.Y., Qiu S., Roller P.P., 

Stuckey J.A., Wang S. (2008). Biochemistry 47: 9811-9824. 

 39. Petronczki M., Lénárt P., Peters J.M. (2008). Dev Cell 14 : 646–659. 

 40. Barr F.A., Sillje H.H., Nigg E.A. (2004). Nat Rev Mol Cell Biol 5: 429–440. 

 41. Strebhardt K., Ullrich A. (2006). Nat Rev Cancer 6: 321–330. 

 42. McInnes C., Mezna M., Fischer P.M. (2005). Curr Top Med Chem 5: 181–197. 

 43. Steegmaier M., Hoffmann M., Baum A., Lenart P., Petronczki M., Krssak M., 

Gurtler U., Garin-Chesa P., Lieb S., Quant J., Grauert M., Adolf G.R., Kraut N., 

Peters J.M., Rettig W.J. (2007). Curr Biol 17: 316–322. 

 44. Gumireddy K., Reddy M.V., Cosenza S.C., Boominathan R., Baker S.J., Papathi N., 

Jiang J., Holland J., Reddy E.P. (2005). Cancer Cell 7: 275–286. 

 45. Daub H. (2005). Biochim Biophys Acta 1754: 183–190. 

 46. Daub H., Specht K., Ullrich A. (2004). Nat Rev Drug Discov 3: 1,001–1,010. 

 47. Bantscheff M., Eberhard D., Abraham Y., Bastuck S., Boesche M., Hobson S., 

Mathieson T., Perrin J., Raida M., Rau C., Reader V., Sweetman G., Bauer A., 

Bouwmeester T., Hopf C., Kruse U., Neubauer G., Ramsden N., Rick J., Kuster B., 

Drewes G. (2007). Nat Biotechnol 25: 1,035–1,044. 

 48. Elia A.E., Cantley L.C., Yaffe M.B. (2003). Science 299: 1,228–1,231. 

 49. Hanisch A., Wehner A., Nigg E.A., Sillje H.H. (2006). Mol Biol Cell 17: 448–459. 

 50. Elia A.E., Rellos P., Haire L.F., Chao J.W., Ivins F.J., Hoepker K., Mohammad D., 

Cantley L.C., Smerdon S.J., Yaffe M.B. (2003). Cell 115: 83–95. 

 51. Reindl W., Strebhardt K., Berg T. (2008). Anal Biochem 383: 205-209. 

 52. Reindl W., Yuan J., Krämer A., Strebhardt K., Berg T. (2008). Chem Biol  15: 459-

466. 

 53. Feki A., Irminger-Finger I. (2004). Crit Rev Oncol Hematol 52: 103–116. 

 54. Hainaut P., Hollstein M. (2000). Adv Cancer Res 77: 81–137. 

 55. Dudkina A.S., Lindsley C.W. (2007). Curr Top Med Chem 7: 952–960. 

 56. Vassilev L.T. (2007). Trends Mol Med 13: 23–31. 

 57. Dömling A. (2008). Curr Opin Chem Biol 12: 281–291. 

 58. Vassilev L.T., Vu B.T., Graves B., Carvajal D., Podlaski F., Filipovic Z., Kong N., 

Kammlott U., Lukacs C., Klein C., Fotouhi N., Liu E.A. (2004). Science 303: 844–

848. 

 59. Ding K., Lu Y., Nikolovska-Coleska Z., Qiu S., Ding Y., Gao W., Stuckey J., 

Krajewski K., Roller P.P., Tomita Y., Parrish D.A., Deschamps J.R., Wang S. 

(2005). J Am Chem Soc 127: 10,130–10,131. 

 



Small-molecule Inhibitors of Protein–Protein Interactions 337 

 60. Ding K., Lu Y., Nikolovska-Coleska Z., Wang G., Qiu S., Shangary S., Gao W., Qin 

D., Stuckey J., Krajewski K., Roller P.P., Wang S. (2006). J Med Chem 49: 3,432–

3,435. 

 61. Saddler C., Ouillette P., Kujawski L., Shangary S., Talpaz M., Kaminski M., Erba 

H., Shedden K., Wang S., Malek S.N. (2008). Blood 111: 1,584–1,593. 

 62. Shangary S., Qin D., McEachern D., Liu M., Miller R.S., Qiu S., Nikolovska-

Coleska Z., Ding K., Wang G., Chen J., Bernard D., Zhang J., Lu Y., Gu Q., Shah 

R.B., Pienta K.J., Ling X., Kang S., Guo M., Sun Y., Yang D., Wang S. (2008). Proc 

Natl Acad Sci USA 105: 3,933–3,938. 

 63. Rothweiler U., Czarna A., Krajewski M., Ciombor J., Kalinski C., Khazak V., Ross 

G., Skobeleva N., Weber L., Holak T.A. (2008). Chem Med Chem 51: 5035–5042. 

 64. Krajewski M., Rothweiler U., D’Silva L., Majumdar S., Klein C., Holak T.A. 

(2007). J Med Chem 50: 4,382–4,387. 

 65. Darnell J.E. Jr (2002). Nat Rev Cancer 2: 740–749. 

 66. Schindler C., Levy D.E., Decker T. (2007). J Biol Chem 282: 20,059–20,063. 

 67. Buettner R., Mora L.B., Jove R. (2002). Clin Cancer Res 8: 945–954. 

 68. Niu G., Heller R., Catlett-Falcone R., Coppola D., Jaroszeski M., Dalton W., Jove 

R., Yu H. (1999). Cancer Res 59: 5,059–5,063. 

 69. Catlett-Falcone R., Landowski T.H., Oshiro M.M., Turkson J., Levitzki A., Savino 

R., Ciliberto G., Moscinski L., Fernandez-Luna J.L., Nunez G., Dalton W.S., Jove 

R. (1999). Immunity 10: 105–115. 

 70. Redell M.S., Tweardy D.J. (2005). Curr Pharm Des 11: 2,873–2,887. 

 71. Xi S., Gooding W.E., Grandis J.R. (2005). Oncogene 24: 970–979. 

 72. Leong P.L., Andrews G.A., Johnson D.E., Dyer K.F., Xi S., Mai J.C., Robbins P.D., 

Gadiparthi S., Burke N.A., Watkins S.F., Grandis J.R. (2003). Proc Natl Acad Sci 

USA 100: 4,138–4,143. 

 73. Barton B.E., Murphy T.F., Shu P., Huang H.F., Meyenhofer M., Barton A. (2004).  

Mol Cancer Ther 3: 1,183–1,191. 

 74. Konnikova L., Kotecki M., Kruger M.M., Cochran B.H. (2003). BMC Cancer 3: 

23. 

 75. Ling X., Arlinghaus R.B. (2005). Cancer Res 65: 2,532–2,536. 

 76. Gao L., Zhang L., Hu J., Li F., Shao Y., Zhao D., Kalvakolanu D.V., Kopecko D.J., 

Zhao X., Xu D.Q. (2005). Clin Cancer Res 11: 6,333–6,341. 

 77. Borghouts C., Kunz C., Delis N., Groner B. (2008). Mol Cancer Res 6: 267–281. 

 78. Nagel-Wolfrum K., Buerger C., Wittig I., Butz K., Hoppe-Seyler F., Groner B. 

(2004). Mol Cancer Res 2: 170–182. 

 79. Jing N., Li Y., Xiong W., Sha W., Jing L., Tweardy D.J. (2004). Cancer Res 64: 

6,603–6,609. 

 80. Jing N., Zhu Q., Yuan P., Li Y., Mao L., Tweardy D.J. (2006). Mol Cancer Ther 5: 

279–286. 

 81. Fletcher S., Turkson J., Gunning P.T. (2008). ChemMedChem 3: 1,159–1,168. 

 



T. Berg 338

 82. Aggarwal B.B., Sethi G., Ahn K.S., Sandur S.K., Pandey M.K., Kunnumakkara 

A.B., Sung B., Ichikawa H. (2006). Ann N Y Acad Sci 1091: 151–169. 

 83. Desrivieres S., Kunz C., Barash I., Vafaizadeh V., Borghouts C., Groner B. (2006). 

J Mammary Gland Biol Neoplasia 11: 75–87. 

 84. Darnell J.E. (2005). Nat Med 11: 595–596. 

 85. Klampfer L. (2006). Curr Cancer Drug Targets 6: 107–121. 

 86. Leeman R.J., Lui V.W., Grandis J.R. (2006). Expert Opin Biol Ther 6: 231–241. 

 87. Deng J., Grande F., Neamati N. (2007). Curr Cancer Drug Targets 7: 91–107. 

 88. Al Zaid Siddiquee K., Turkson J. (2008). Cell Res 18: 254–267. 

 89. Wittig I., Groner B. (2005). Curr Drug Targets Immune Endocr Metabol Disord 5: 

449–463. 

 90. Xi S., Zhang Q., Gooding W.E., Smithgall T.E., Grandis J.R. (2003). Cancer Res 

63: 6,763–6,771. 

 91. Mohapatra S., Chu B., Wei S., Djeu J., Epling-Burnette P.K., Loughran T., Jove R., 

Pledger W.J. (2003). Cancer Res 63: 8,523–8,530. 

 92. Demoulin J.B., Uyttenhove C., Lejeune D., Mui A., Groner B., Renauld J.C. 

(2000). Cancer Res 60: 3,971–3,977. 

 93. Berg T. (2008). ChemBioChem 9: 2,039–2,044. 

 94. Turkson J., Ryan D., Kim J.S., Zhang Y., Chen Z., Haura E., Laudano A., Sebti S., 

Hamilton A.D., Jove R. (2001). J Biol Chem 276: 45,443–45,455. 

 95. Coleman D.R., Ren Z., Mandal P.K., Cameron A.G., Dyer G.A., Muranjan S., 

Campbell M., Chen X., McMurray J.S. (2005). J Med Chem 48: 6,661–6,670. 

 96. Turkson J., Kim J.S., Zhang S., Yuan J., Huang M., Glenn M., Haura E., Sebti S., 

Hamilton A.D., Jove R. (2004). Mol Cancer Ther 3: 261–269. 

 97. Siddiquee K.A., Gunning P.T., Glenn M., Katt W.P., Zhang S., Schroeck C., Sebti 

S.M., Jove R., Hamilton A.D., Turkson J. (2007). ACS Chem Biol 2: 787–798. 

 98. Song H., Wang R., Wang S., Lin J. (2005). Proc Natl Acad Sci USA 102: 4,700–

4,705. 

 99. Siddiquee K., Zhang S., Guida W.C., Blaskovich M.A., Greedy B., Lawrence H.R., 

Yip M.L., Jove R., McLaughlin M.M., Lawrence N.J., Sebti S.M., Turkson J. 

(2007). Proc Natl Acad Sci USA 104: 7,391–7,396. 

 100. Schust J., Berg T. (2004). Anal Biochem 330: 114–118. 

 101. Schust J., Sperl B., Hollis A., Mayer T.U., Berg T. (2006). Chem Biol 13: 1,235–

1,242. 

 102. Muller J., Schust J., Berg T. (2008). Anal Biochem 375: 249–254. 

 103. Muller J., Sperl B., Reindl W., Kiessling A., Berg T. (2008). Chembiochem 9: 723–

727. 

 104. Adhikary S., Eilers M. (2005). Nat Rev Mol Cell Biol 6: 635–645. 

 105. Cowling V.H., Cole M.D. (2006). Semin Cancer Biol 16: 242–252. 

 106. Vita M., Henriksson M. (2006). Semin Cancer Biol 16: 318–330. 

 107. Berg T. (2008). Curr Opin Chem Biol 12: 464–471. 

 



Small-molecule Inhibitors of Protein–Protein Interactions 339 

 108. Nair S.K., Burley S.K. (2003). Cell 112: 193–205. 

 109. Felsher D.W. (2006). Cell Cycle 5: 1,808–1,811. 

 110. Berg T., Cohen S.B., Desharnais J., Sonderegger C., Maslyar D.J., Goldberg J., 

Boger D.L., Vogt P.K. (2002). Proc Natl Acad Sci USA 99: 3,830–3,835. 

 111. Lu X., Vogt P.K., Boger D.L., Lunec J. (2008). Oncol Rep 19: 825–830. 

 112. Yin X., Giap C., Lazo J.S., Prochownik E.V. (2003). Oncogene 22: 6,151–6,159. 

 113. Wang H., Hammoudeh D.I., Follis A.V., Reese B.E., Lazo J.S., Metallo S.J., 

Prochownik E.V. (2007). Mol Cancer Ther 6: 2,399–2,408. 

 114. Xu Y., Shi J., Yamamoto N., Moss J.A., Vogt P.K., Janda K.D. (2006). Bioorg Med 

Chem 14: 2,660–2,673. 

 115. Kiessling A., Sperl B., Hollis A., Eick D., Berg T. (2006). Chem Biol 13: 745–751. 

 116. Kiessling A., Wiesinger R., Sperl B., Berg T. (2007). Chem Med Chem 2: 627–630. 

 117. Nabors L.B., Mikkelsen T., Rosenfeld S.S., Hochberg F., Akella N.S., Fisher J.D., 

Cloud G.A., Zhang Y., Carson K., Wittemer S.M., Colevas A.D., Grossman S.A. 

(2007). J Clin Oncol 25: 1,651–1,657. 

 118. Schreiber S. L. (2005). Nat Chem Biol 1: 64–66. 

  



340 

CHAPTER 13 

Protein Dynamics and Drug Design: The Role 

of Molecular Simulations 

Giulia Morra, Alessandro Genoni, Giorgio Colombo 

Istituto di Chimica del Riconoscimento Molecolare, CNR, 

Via Mario Bianco 9, 20131 Milano, Italy 

E-mail: giorgio.colombo@icrm.cnr.it  

The motions of proteins underlie all processes in cells, ranging from 

substrate transport to signal transmission, trafficking, formation of 

complexes and catalysis. Taking dynamics into account in molecular 

recognition may hold great promise in understanding the determinants 

of complex formation, in the identification of new binding sites and in 

the discovery of new drugs. Several groups have started tackling these 

problems with the use of simulation methods. The study of ligand-

induced dynamic variations has also been exploited to review the 

concept of allosteric changes. The dynamics of proteins and complexes 

has also been used to develop pharmacophore models based on 

ensembles of protein conformations. These models, taking flexibility 

explicitly into account, are able to distinguish active inhibitors vs non-

active drug-like compounds, to define new molecular motifs and to 

preferentially identify specific ligands for a certain protein target. In 

this chapter, examples illustrating how simulations can be used to 

understand dynamics in relation to ligand binding and eventually to 

drug design will be presented. Finally, we will present two examples 

illustrating the utility of including dynamics in the design process of 

inhibitors against a well-defined protein receptor and against the 

formation of self-aggregated peptide oligomers. 
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13.1 Introduction 

Proteins control most of the fundamental biochemical pathways in the 

cell. They are not static entities. On the contrary, they are subject to 

constant motions and interactions that determine their recognition and 

functional properties. 

Protein conformational dynamics is fundamental in understanding 

their functional mechanisms. Hemoglobin represents a paradigmatic 

example of this: since the early days of protein crystallography and 

biochemical studies, it has been clear that the protein can be stabilised  

in two considerably different structures depending on its degree of 

oxygenation. 

Conformational dynamics can also be exploited by enzymes to  

define and control reactivity in catalytic cycles. Dihydropholate 

reductase (DHFR) for instance, catalyses the reduction of  

dihydropholate to tetrahydropholate with the concurrent oxidation of  

the NADPH cofactor. In order to carry out the reaction, the catalytic 

residues of the enzyme, the substrate and the cofactor must be  

optimally arranged in space.
1,2

 DHFR is characterised by the presence  

of a flexible loop, the M20 loop, that can access three different 

conformations: closed, open and occluded.
3
 When both the substrate  

and cofactor are bound, the closed conformation is favoured over the 

others and the M20 loop is packed against the nicotinamide ring of 

NADPH. The closed form is the only conformation of the enzyme in 

which the substrate and the cofactor are optimally aligned for the 

reaction.  

Flexibility and dynamics also play a primary role in protein–protein 

interactions. Protein–protein complex formation often involves  

structural changes that may extend well beyond local scale re-

arrangements and that cannot be understood in terms of the lock-and- 

key model,
4
 or be described by simple models based only on surface 

accessibility. In forming a complex with a given partner, they must  

adopt specific structures. These may be pre-existing in the accessible 

conformational space of the protein and the conformational  

equilibrium may be shifted towards them upon binding.
5
 Otherwise 

specific structures are induced after the formation of a complex with  
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the binding partner. In this context, it is important to underline that 

proteins very seldom function in isolation. Rather, they typically work 

within an ensemble, so that they must be sufficiently flexible to  

interact with multiple partners and carry out diverse tasks.  

The importance of taking the highly dynamic nature of protein and 

peptide complexes into account has emerged also in the field of 

aggregation and self-organisation. Aggregation of peptides and  

proteins into cytotoxic oligomers and formation of insoluble amyloid 

fibrils have been recognised as the central molecular event in more  

than 20 human pathogenic conditions.
6
 Drugs able to interfere with  

these processes may cure relevant diseases and are thus urgently  

needed. Recently, soluble beta-sheet oligomeric species have been 

identified as the main cause of cytotoxicity,
7–12

 making them clear  

targets for the design of antiamyloidogenic drugs. However, the  

transient and highly dynamic nature of these early oligomers has 

hampered the characterization of their structural-dynamical properties  

at the atomic level of resolution. The lack of detailed structural models 

for the different species on- and off- the amyloid pathway that might 

represent potential drug targets has seriously limited the potential of 

rational drug-design and hindered efforts to rationally improve the 

efficacy of lead molecules. Detailed analysis of the structure and 

dynamics of atomically detailed structural models of peptide oligomers 

may help unveil the molecular determinants of aggregation, opening up 

the possibility to design new molecules mimicking fundamental 

interactions and with the ability to derail peptide oligomers from toxic 

pathways.  

Finally, the possibility to alternate and to trap different specific  

states through ligand binding at sites distal from the active site  

represents one of the most common and powerful means of regulating 

protein function (allosteric regulation) in cellular metabolism.  

Allosteric regulation does not necessarily imply major conformational 

changes. Recent thermodynamic and conformational analyses have 

shown that allosteric communications can be transmitted simply  

through variations in protein dynamics that do not determine a 

macroscopic change of shape. The identification and targeting of 

allosteric sites have thus become the focus of both basic research and 
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several drug design efforts. From the basic point of view, the study of 

allosteric sites and signal transduction mechanisms will provide  

precious insights into how nature has evolved control strategies in 

protein architectures. From the pharmaceutical point of view, these  

sites offer unique opportunities to discover new chemical entities for 

enzymes and other targets for which the discovery of active-site 

inhibitors has proven challenging.  

Based on the simple examples and considerations reported, it  

appears clear that the study of the influence of dynamics on different 

aspects of protein properties (form function to molecular recognition) 

may be of great help in the development of new molecules with  

specific activities. Computational and theoretical approaches offer a 

unique means to investigate these aspects at different levels of  

resolution, and to include them into the processes of rational design  

and discovery of new drug-like molecules. Including target dynamics 

appears to hold a great deal of promise in advancing structure-based 

molecular design and medicinal chemistry in general, allowing to 

optimise molecules targeting active sites and to determine the presence 

of allosteric sites for which inhibitors and/or modulators can be 

developed. The application of these methods will broaden the chemical 

space of available active molecules providing access to new  

chemotypes that bind known receptors and possible new proteins.  

In this chapter, we will present examples illustrating the extent to 

which simulations can be used to understand dynamic properties of 

proteins along with examples of how to include flexibility in the  

rational design of new molecules. In the final part of this chapter, in 

particular, we will illustrate two examples in which the description of 

protein dynamics is instrumental to the identification of new molecules 

with specific inhibitory properties. In the first case, we will discuss the 

targeting of a well-defined active site in a chaperone protein  

fundamental for cancer development. In the second example, we will 

discuss the use of molecular dynamics simulations to identify the 

molecular determinants of the inhibitory core of a series of small 

peptides able to interfere with amyloidogenesis. We will show how  

these inhibitory determinants can be used as structural templates in the 
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development of pharmacophore models for the identification of novel 

non-peptidic, small molecule inhibitors of aggregation.  

13.2 Dynamic Regulation of Protein Function 

Allostery indicates the coupling of conformational changes between  

two different sites of a protein. The term ‘allosteric inhibition’ was 

introduced in 1961 by Monod and Jacob
13

 to describe inhibitory 

interaction with a site distinct from the active site of an enzyme.  

Several enzyme systems can exhibit heterotrophic regulation (induced  

by small molecules that are distinct from the primary ligand) or  

positive homotropic regulation, where the binding of the primary  

ligand at one site cooperatively increases the affinity for the same  

ligand at another site. The latter is the case for haemoglobin where 

oxygen is both the primary ligand and the allosteric effector.    

The Monod–Wyman–Changeux (MWC)
14

 and Koshland– 

Nemethy–Filmer (KNF)
15

 models were both proposed in the 1960s to 

explain the allosteric regulation seen in hemoglobin and in several 

metabolic regulatory enzymes. The concerted (MWC) model suggests 

that allosteric proteins are symmetric oligomers with identical  

protomers. Each protomer can exist in two conformational states (T  

and R) and the protein interconverts between the two conformations in  

a concerted manner. The conformational transition is therefore seen as  

a concerted action between two co-existing discrete states (T and R), 

‘with the ligand stabilizing the conformation to which it binds with 

higher affinity’.
14

 On the other hand, in the sequential model, subunits 

change conformation one at time. Here, the binding of a ligand  

changes the conformation of one protomer without affecting the other 

subunits. 

Although originally introduced for oligomeric proteins, allostery  

does not require the protein to be multimeric and the modulation of 

protein function by means of interactions located at long distance from 

the active site is now recognised as a general feature of many  

monomeric proteins, as pointed out in Ref. 16. For instance,  

myoglobin can be allosterically regulated.
16
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From the very beginning, it was suggested that allostery might act  

as a general form of protein regulation, as it constitutes a direct and 

efficient mechanism for the modulation of cellular function in response 

to changes in concentration of small molecules. This led to the 

suggestion that allosteric sites might be even more useful as drug  

targets than active sites (see Ref. 17 and references therein). The main 

advantage of exploiting allosteric effects in drug design is the  

specificity of the targets. While active sites are overall well conserved 

within whole protein families, such that it is difficult to target selected 

members of the family, allosteric sites are not evolutionarily  

constrained and may be much more specific to single proteins.
18

  

However, the prediction of allosteric phenomena in proteins and the 

identification of the involved sites and effectors have not been subject  

of as intense research as other problems in molecular biology, like for 

example protein structure and function determination. Due to the 

heterogeneous chemical nature of allosteric modulators and the lack of 

systematic techniques to discover them,
19

 a methodological  

development is required. 

Herein, we will present theoretical and computational approaches  

to the study of protein dynamics and allostery, with an eye on drug-

design.  

13.2.1 Theory 

Protein motions in the conformational space, such as local 

folding/unfolding re-arrangements and also allosteric changes, have a 

cooperative character. The protein behaves like a cohesive unit, where 

any change results from the concerted contribution of all parts, and is  

not the sum of their properties. In the case of allostery, cooperativity 

explains why local phenomena such as phosphorylation, ATP binding  

or hydrolysis can switch-on large-scale conformational transitions.  

Any conformational change involves a free energy variation,  

resulting from a net combination of enthalpy and entropy changes. For 

instance, a favourable enthalpy change upon ligand binding is due to  

the formation of tighter attractive interactions, which in turn may  

reduce the protein entropy due to a loss of flexibility of the molecule,  
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or increase the solvent entropy by means of the hydrophobic effect.  

The balance between all these contributions yields the net free energy 

change that makes the binding favourable or unfavourable. In the case  

of allostery, at least two such binding events occur showing 

cooperativity. This cooperativity can be positive, when the second 

binding event becomes more favourable in the presence of the first 

ligand (allosteric activator), or negative, when the second binding  

event is more costly due to the previous binding of the first ligand 

(allosteric inhibitor). 

The current view of protein allostery is connected to the energy 

landscape model of protein folding, defining the native state of a  

protein as a conformational ensemble. Since proteins are not rigid, the 

native state exists as a statistical ensemble with a number of local 

minima, separated by locally unfolded regions given by transiently 

populated higher free energy states. The rough profile at the bottom of 

the protein folding funnel constitutes the range of the allosterically 

accessible folded substates. Binding the allosteric effector induces a  

shift in the population of states, by stabilising one conformational state  

at the expense of others, thus reducing the heterogeneity of the native 

ensemble. The stabilised conformation will be in turn more or less  

prone to binding the second ligand.  

This view is related to the conformational selection model,
20

 which 

re-interprets the relationship between ligand binding and  

conformational change in an enzyme (traditionally referred to as the 

‘induced fit’ mechanism).
21

 The conformational selection model is  

based on the assumption that structural changes observed in the  

presence of different substrates are already accessible in the absence of 

the ligand (see Ref. 22 and references therein).
23

 Evidence of a pre-

existing equilibrium between conformational states was provided by 

several experiments and also by computational studies.
24

 An early 

indication of ‘pre-sampling’ of the conformational change came from 

molecular dynamics studies on myoglobin, which showed that the  

largest fluctuations are located in the same protein regions that 

experience the largest conformational change between the limiting  

static X-ray structures.
25

 More importantly, not only structural changes, 

but also motions involved in biophysical (e.g. substrate recognition and 
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binding), biochemical (e.g. catalysis) or biological (e.g. signalling, 

transcription) activities are observed to be pre-sampled before protein 

activity. This broadens the view of conformational changes upon 

binding, and also of allosteric changes, to include different dynamical 

states. The pre-existence of motions characteristic of catalytic function 

was detected by the Kern group in the case of cyclophilin.
26

 

Computational studies based on molecular dynamics simulations on  

the N-terminal domain of human Hsp90 pointed out, in agreement with 

the conformational selection model, that different functional motions,  

– as detected by essential dynamics analysis, and elicited by different 

ligands –  are basically all present in the free state of the molecule.
27

 

The view of allostery in terms of conformational and dynamic 

selection offers a generalization in the same spirit of the MWC model  

to a wider set of conformations and dynamical states than two single 

discrete structures, like the T and R conformations of hemoglobin.  

The role of entropy and dynamics in allosteric communication 

between distant binding sites has been recently reviewed by Kern
28

 and 

Nussinov.
5
 Given the thermodynamic nature of allostery,  

communication across the protein can be mediated not only by  

enthalpy, by means of protein backbone re-arrangements, but also by 

entropy, via changes in the dynamic fluctuations around the mean 

structure. 

An entropic effect in positive cooperativity might generally be 

present, as recognised by Cooper and Dryden in the 1980s.
29

 They 

formalised an entropic component to the allosteric interaction free 

energy, which can be estimated in some kcal/mole as a function of tiny 

rms changes of atoms and is due to the propagation of protein  

rigidity.
29

 Namely, binding increases packing and locally rigidifies the 

protein structure. In an allosteric protein containing two or more  

binding sites, each site may cause partial rigidification upon individual 

binding. The global rigidification of the protein due to the binding of 

both ligands might partly be accomplished by either of the ligand  

binding steps, inducing positive cooperativity for the binding of the 

second ligand.  
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13.2.2 Molecular Basis of Allostery: Insights from Theory and 

 Simulations  

Signal transduction along well-defined paths connecting distant  

residues has been recognised as a common property of allosteric 

proteins. In the understanding of allosteric effects, theory aims at 

describing the site to site communication at the molecular or atomic 

level. A number of attempts have been carried out by means of  

sequence or structure-based computational methods, in order to predict 

allosteric sites and pathways in proteins.   

Based on the sequence, the statistical site coupling approach (SCA)  

of Ranganathan allows the identification of evolutionarily conserved 

couplings between residue pairs.
30,31

 The method is based on the 

assumption that if the interaction between a pair of residues is relevant 

for protein function or folding, then the two residues should co-evolve, 

showing a relevant covariation in multiple sequence alignments (MSA) 

of a protein family. A statistical energy term can be derived from this 

covariance. This method was originally applied to the human tyrosine 

phosphatase PDZ domain family and led to the identification of  

residue patterns and networks linking active sites to distant regions, 

predicting a signalling pathway subsequently confirmed by NMR 

experimnts.
32

  

In the analysis of allosteric properties of PDZ domain, a structure-

based approach making use of non-equilibrium MD simulations was 

introduced by Ota and Agard.
33

 The method, called anisotropic thermal 

diffusion, relies on the assumption that the communication properties  

of residues depend on the energetic couplings among them and signals 

are driven by the same pathways on which the kinetic energy,  

originated when perturbing a site, dissipates through the structure. 

Therefore, a non-equilibrium MD simulation is set up, where a 

significant perturbation is created by artificially heating a single  

residue with a temperature bath of 300K, while the rest of the protein  

is thermalised at low temperature. The dissipation of the thermal 

fluctuation, tracked along the structure during dynamics, turns out to  

be highly anisotropic and the presence of preferred signalling pathways 
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can be detected, in agreement with experimental data and the  

sequence-based computational methods of Ranganathan.  

Another application of the statistical coupling analysis (SCA), in 

combination with a coarse-grained Brownian dynamic simulation, was 

introduced by Chien et al.
34

 to analyse the signalling network of E. coli 

dihydrofolate reductase. This enzyme undergoes an allosteric 

conformational transition involving the Met20 loop during the catalytic 

cycle. By means of the SCA, a number of highly covarying residues is 

hypothesised to be the minimal network signalling the kinetics of the 

conformational transition. A long term simulation of the protein using 

the Self-Organizing Polymer (SOP) coarse-grained description is then 

produced to generate the covariance map, showing that correlated and 

anticorrelated motions on the microsecond time scale involve the same 

conserved residues, even if they are spatially separated. 

The role of low frequency, collective modes in mediating the signal 

propagation along given pathways is emerging as a plausible  

mechanism to explain allosteric effects. Recently, Bahar et al.  

introduced a novel information-theoretic approach called MAPS 

(MArkovian Propagation of Signals) to study the transition of GroEL 

from the T (apo) state into the R (ADP and ATP bound, respectively to 

cis and trans rings) state.
35

 The protein structure is modelled as a  

network of interactions, where the interaction strength between two 

residues depends on the number of atom–atom contacts between the  

two. When a site is perturbed, the perturbation propagates through the 

network, being dissipated by means of coupled fluctuations in residue 

positions (fluctuation–dissipation) and eventually relaxing to a new 

equilibrium. It has been shown that signal propagation time is shorter 

when pairs of residues are subject to smaller fluctuations in their inter 

residue distance, which is the case for instance for tightly interacting 

residues. By treating the network with a clustering hierarchical  

reduction, sites with a ‘high allosteric potential’ can be identified while 

communication pathways can be defined by tracking the maximum-

likelihood paths along the network. The analysis of the ADP-bound 

GroEL–GroES structure reveals strong inter-subunit couplings  

between the cis and the trans ring and with the co-chaperonin, and a 

number of residues or chain regions are correctly identified as  
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important for allosteric communication. Moreover, the global motions  

of the complex, described by the lowest eigenmode in an ANM 

representation, are responsible for modulating the interactions of the 

allosterically relevant residues at the interface of the subunits. 

The analysis of the inter-residue distance fluctuations has been 

applied also in the framework of molecular dynamics simulations to 

investigate the large-scale conformational re-arrangements of the yeast 

Hsp90 dimer upon ATP binding and hydrolysis. The perspective of  

MD is useful in capturing the global changes occurring upon ligand 

binding, without neglecting the details of the side chain orientation at  

the local level. In fact, the subtle changes in side chain arrangement 

constitute the first step in response to a binding event and then 

accumulate to produce a global change in the structure. The 

communication propensity between the ATP binding site and the  

distant C-terminal interface (more than 80 Angstrom apart), measured  

in terms of inter-residue distance fluctuations, is increased in the 

presence of ATP or ADP and is switched off in the unbound complex. 

Moreover, ATP and ADP appear to communicate with distinct regions  

of the C-terminal area, indicating a specific allosteric effect of each 

ligand.
36

  

Another network approach based on the topology of the protein, 

which also makes use of MD simulations to take side chain details into 

account, is the protein structure network (PSN) approach of 

Vishveshwara et al.
37,38

 The method of Protein Structure Network 

analysis has been applied to an allosteric protein, member of the class  

of aminoacyl tRNA synthetases and responsible for picking up the 

cognate amino acid in the active site and cognate tRNA in the  

anticodon binding site. The method consists of carrying out molecular 

dynamics simulations of the protein in different liganded states, and  

then for each dynamic snapshot constructing a network of interactions 

between the residues where each residue is a node, and an edge  

between two residues represents the interaction defined by the fraction  

of atom pairs that are closer than 4.5 Angstroms. These structure 

networks evolve during dynamics and can be used to find the 

communication pathways between two endpoints
37

 (selecting the  

shortest and most dynamically correlated path). The paths turn out to  
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be inherently present in the enzyme. They establish efficient 

communication at distance of 70 Angstroms between the anticodon 

region and the activation site, in the presence of both the tRNA and 

MetAMP that drive specific residue–residue contacts. The analysis of  

the graph in terms of cliques (sets of mutually connected nodes), 

communities of cliques (non-identical cliques sharing nodes) and hubs 

(nodes making more than four edges) also reveals a different dynamic 

behaviour for communication paths, which are flexible and robust. The 

network parameters describing the non-covalent interaction of side 

chains are able to discriminate subtle differences in the side chain 

interactions, taking place in response to different ligands.
38

 

The knowledge of the allosteric pathways transmitting signals in a 

protein allows in principle to regulate its function by means of suitable 

small molecules that can bind to the allosteric sites, but also by  

designing ad hoc mutations able to interfere with the protein 

(mis)function. A suggestion in this sense comes from a recent study by 

Liu and Nussinov on the pVHL protein, a tumour suppressor protein.  

A naturally occurring mutant of this protein with reduced 

thermodynamic stability is associated to a number of cancer diseases.
39

 

By means of MD simulations the region mainly responsible for the low 

stability of the protein is identified. In order to avoid mutations directly 

on this area, which would perturb the protein function, regions 

dynamically correlated with it are found by analysing the covariance 

matrix and mutations are inserted there. The simulation of the new 

mutants suggests a repairing effect of the mutations that appear to be  

able to restore the wild type stability.  

The next section will be based on the description of computational 

approaches exploiting flexibility for drug design.  

13.3 Protein Flexibility in Drug Design and Discovery 

Nowadays, the most sophisticated and rational procedures to discover 

novel drugs consist in computer-based approaches. All these strategies 

can be generally classified into two main categories: de novo drug- 

design methods and database virtual screening techniques. The former 

look for new possible ligands of therapeutic relevance that fit in a 



G. Morra, A. Genoni, G. Colombo 352 

complementary way the electrostatic and hydrophobic properties of the 

target receptor, whereas the latter apply one or more filters to decide 

which compounds collected in given databases can be considered as 

potential drug leads.   

In spite of the subdivision into the two main groups described  

above, most of the computational drug-design strategies use a rigid 

structure for the target protein, although the importance of the receptor 

flexibility has been very well known for a long time. In fact, proteins  

are such flexible systems that they can undergo quite large 

conformational changes and it is worthwhile to observe that these re-

arrangements are often strongly associated with fundamental protein 

functions. Accordingly, proteins can be subdivided into three  

categories: (a) ‘rigid’ proteins, which show only very small side chain 

movements upon ligand binding; (b) flexible proteins, whose ligand-

induced changes are relatively large re-arrangements in the 

neighbourhood of hinge points or at the active site in conjunction with 

side chain motions; (c) unstable proteins, which are characterised by a 

dynamic equilibrium between several conformations often structurally 

similar and at the same time energetically different.
40

 This  

classification is strongly connected with the three different models that 

have been proposed in order to explain the ligand–protein interactions. 

The simplest one is the well-known ‘Lock and Key’ model introduced  

by Fisher.
4
 It describes the chemical complementarity between a  

receptor and the corresponding ligand as the complementarity between  

a lock and a key and, of course, it works when the protein is strictly  

rigid. Unfortunately, when the receptor flexibility plays a fundamental 

role in the molecular recognition process, it is necessary to consider  

the more advanced ‘Induced Fit’ description proposed by Koshland
41

 

according to which both the protein and ligand structures change  

during the binding process as a result of the introduction of the  

substrate in the chemical and structural environment of the receptor. 

Finally, for really unstable proteins, we have to take into account a  

more modern model
42

 that describes the molecular recognition as a 

process in which the substrate selects the most suited receptor 

conformation among an ensemble of metastable states, shifting the 

dynamic population equilibrium towards the configuration adopted by 
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the bound protein. These models clearly point out that both 

experimentally and theoretically derived rigid structures are not  

suitable when dealing with very flexible receptors, whose  

conformational changes are driven by ligand binding and are crucial to 

express protein functions. The reason why most of the present drug-

discovery strategies do not take into account this aspect could be 

ascribed to the ill-founded belief that the crystal structure is always the 

correct structure and to the conceptual and technical problems of 

working with non-defined targets. Therefore, the need to devise new 

computational methods able to take into account and evaluate dynamic 

re-arrangements in molecular recognition processes is really  

compelling and, in this review, we will show some of the current  

efforts made by the drug-design community to accomplish this task. It  

is important to note that, among them, there are also noteworthy 

techniques that efficiently couple Molecular Dynamics (MD) or Monte 

Carlo (MC) simulations with docking experiments. We believe that 

computer simulation strategies are probably one of the best tools to get  

a more complete set of receptor conformations that can be afterwards 

used in docking or virtual screening methods. This is especially so if  

we also want to consider high-energy configurations that cannot be 

detected by current experimental techniques, such as X-ray 

crystallography and Nuclear Magnetic Resonance. Nevertheless, it is 

extremely worth noting that, due to some non-negligible drawbacks  

such as the stochastic nature of Molecular Dynamics and the rather 

limited length of simulations, we often sample only a small subset of  

the protein conformational space. 

According to the classification introduced by Teodoro and 

Kavraki,
43,44

 the strategies that consider receptor flexibility in  

modelling of protein–ligand interactions can be subdivided into five 

categories, which will be discussed with more details in the following 

sections: (a) soft potential methods; (b) techniques that take into  

account a reduced number of degrees of freedom; (c) strategies which 

exploit multiple receptor structures; (d) modified computer simulations 

(MD or MC) methods; and (e) strategies that use collective degrees of 

freedom in order to represent very large protein conformational re-

arrangements. In general, the accuracy provided by the different 
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approaches is directly proportional to the associated computational 

complexity and, for the sake of completeness, it is also important to 

stress that the proposed subdivision is not so strict because many of the 

strategies that we will describe may belong to more than one category. 

Soft potential methods are probably the simplest techniques that  

take into account a part of receptor flexibility and they essentially  

consist in a reduction of the van der Waals contributions to the total 

energy score. This allows relaxing the high-energy penalty associated 

with clashes between ligand and receptor atoms, and this is the reason 

why larger ligands are able to fit in binding sites suited for smaller 

molecules. It is worth to note that the ‘Induced Fit’ model underlies  

this kind of approaches because the receptor is allowed to undergo  

some changes, both in backbone and side chains, in order to respond to 

the presence of the new ligand. These strategies are very useful for  

their easy implementation and computational speed, but great attention 

has to be paid in the definition of the ‘soft region’ because if it is too 

large (and this is usually the case when we want to account for large 

protein re-arrangements) errors can arise. Among this group of  

methods, we believe that the approach developed by Apostolakis and  

co-workers
45 

is particularly interesting. At the initial stage, they apply  

the softening of the van der Waals terms in order to avoid high-energy 

gradients due to steric clashes and then gradually restoring the standard 

values for the non-bonded energy contributions, a minimization  

process is performed to slowly adapt each other the receptor and the 

ligand.  

As mentioned above, another possibility in dealing with protein 

flexibility consists in choosing those fundamental degrees of freedom, 

usually torsions in active-site side chains, that we want to model 

explicitly. Selecting is probably the trickiest part of these techniques,  

and to accomplish this task both experimental and theoretical (e.g.  

from MD or MC simulations) a priori knowledge about alternative 

binding modes for the receptor in exam is usually necessary. To solve 

this problem, Anderson et al.
46

 have developed an interesting  

algorithm that at first, starting from only a single protein structure, 

identifies the most flexible zones of the receptor (namely, those that  

are the most involved in the binding process) and then afterwards,  
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using rotamer libraries, predicts the most likely conformations for the 

previously detected regions. In this way the bias due to structures of 

proteins co-crystallized with inhibitors is sensitively reduced in 

following docking experiments. 

The first attempt of modelling the receptor flexibility using a well 

determined subset of degrees of freedom was made by Leach.
47

 

Exploring the protein and ligand conformational spaces by means of  

the Dead End Elimination (DDE)
48

 and the A* algorithm,
49

 he was able 

to find for each orientation of the ligand relative to the receptor,  

potential binding structures corresponding to combinations of residue 

side chains and ligand conformations whose energy is lower than a 

predetermined threshold. In this context, Schaffer and Verkhivker
50

 

predicted the structures of complexes between two HIV-1 protease 

inhibitors and two mutants of this protein. In this case they performed 

flexible docking computations that combine the MC simulated  

annealing technique to determine the ligand bound conformation and  

the DDE for the side chain optimization of the receptor binding site 

residues.  

Moreover, it is worthwhile to note that some popular docking 

programmes such as AutoDock
51,52

 and GOLD
53

 have introduced the 

possibility to explicitly deal with the side chains flexibility. In  

particular, GOLD uses a genetic algorithm that allows describing not 

only ligand positions and conformations, but also hydrogen-bonding 

networks in the active site. Another GOLD-based strategy is the one 

devised by Verdonk et al.,
 54

 where only a small subset of protein side 

chains and terminal rotating hydrogen atoms are explicitly modelled in 

order to optimise the hydrogen bond interactions. 

In this group of techniques we can also consider SLIDE.
55

 This 

method, after looking for the best matching between ligand and  

receptor using as criteria the best steric complementarity and the best 

matching between hydrophobic and hydrogen-bonding sites, resolves 

‘van der Waals collisions’ between atoms of the two molecules 

performing a minimal number of side chain rotations, with the cost of a 

side chain movement evaluated as the product of the rotation angle and 

the number of atoms moved. A similar approach is SPECITOPE
56

 that 

uses minimal angle side chain rotations at the end of the docking 
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procedure to remove steric clashes between the ligand and the protein. 

Unfortunately, although this algorithm is able to resolve many cases of 

overlap, it does not sample the conformational space completely and it  

is not able to find the minimum energy conformation. 

Finally, among this group of strategies, the SCARE approach  

recently devised by Abagyan and co-workers
57

 is also very interesting. 

The algorithm scans every pair of neighbouring side chains in the 

receptor binding site and replaces them with alanine residues. 

Afterwards, the ligands under study are docked to the previously 

determined ‘gapped’ binding pockets and all the poses are scored. In  

the final stage, the original side chains are reintroduced and, after a 

proper optimization, each pose is scored again. Although only recently 

developed, the method is promising due to the fact that the number of 

corrected predictions greatly increased with respect to highly  

optimised docking strategies that use a single pocket conformation. 

These results are even more noteworthy considering that the technique 

proposed by Abagyan is fully automated and that it does not need to 

know a priori the ligand binding position or any information about the 

sites of potential variability of the receptor pocket.  

Although the strategies described above can be considered as a step 

forward in dealing with receptor flexibility, the choice of selecting  

only a subset of degrees of freedom is not always the best one, and of 

course it depends on the system under exam. For instance, the HIV-1 

protease conformational space can be sufficiently sampled by  

modelling some side chain movements and a water molecule,
52

 but on 

the other hand, there are many systems that undergo remarkable re-

arrangements during the ligand binding process. In these situations the 

‘Induced Fit’ model
41

 is no longer a good description for molecular 

recognition and it is necessary to turn to the more advanced 

representation already mentioned above, according to which the ligand 

selects the optimal protein conformation among a conformational 

ensemble.
42

 The simplest way to realise it computationally, consists in 

developing strategies that simultaneously consider multiple receptor 

conformations (MRC) obtained from experimental (i.e., from X-ray or 

NMR techniques) or computational (i.e., from MD or MC simulations) 

sampling procedures.  
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The main advantage of this group of methods is that it is possible to 

model protein flexibility in more than just a specific small region. This 

also means that the MRC strategies allow describing the full receptor 

flexibility at a much lower computational cost compared to the one 

associated with possible techniques that include all the receptor  

degrees of freedom. Nevertheless, flexibility is only modelled  

implicitly, which means that only a small fraction of protein 

conformational space is really taken into account. The effect of this  

poor sampling, particularly in the case of experimental sampling, is  

that MRC docking results are mainly successful when the available 

receptor conformers derive from complexes with ligands similar to the 

one in exam. Finally, another important problem is the need for a  

reliable energy function that enables to distinguish the small group of 

real low-energy structures among the hypothetical conformations 

generated during the sampling. This is a crucial aspect because an 

optimal energy function allows avoiding unpleasant drawbacks as 

incorrect pose predictions and false positives in virtual screening  

outputs.  

Among the MRC techniques, FLEXE
58

 is probably one of the most 

remarkable examples. After superimposing different target structures,  

it merges the similar parts and considers the dissimilar ones as possible 

alternatives. Therefore, other than the receptor conformations in the 

starting set, new structures are generated and a more complete 

‘ensemble’ is taken into account during the docking experiments. 

Nevertheless, a recent study has pointed out that the method is not able  

to deal with large loop re-arrangements and that furthermore, it shows  

a worse performance in terms of the enrichment factor than running 

multiple docking calculations for each receptor structure.
59

 The  

FLEXE philosophy also underlies the FITTED technique
60

 in the 

representation of receptor flexibility. In particular, when flexibility is 

fully considered, a genetic algorithm is used to combine different side 

chain rotamers and backbone conformations included in the starting set 

of structures. In this context, Zavodszky et al. proposed an alternative 

approach.
61

 At first, in order to form the ensemble of receptor 

conformations, they analysed protein flexibility using a graph-theory 

based algorithm and performed a random walk sampling. Afterwards, 
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they applied the SLIDE method
55

 to the set of structures previously 

obtained. FLIPDock
62

 is another strategy recently developed to 

simultaneously take into account a great number of protein 

conformations. In order to accomplish this task, it exploits the 

sophisticated ‘Flexibility Tree’ algorithm, which in describing protein 

flexibility in terms of a hierarchical classification of movements,  

greatly reduces the computational cost associated with the description  

of receptor flexibility in docking computations. Shoichet and co- 

workers have also devised an interesting technique
63

 that is based on  

the DOCK programme.
64–67

 This method initially considers an  

ensemble of predetermined protein structures and then, moving 

independently the flexible regions of the receptor and recombining  

their conformations, it implicitly takes into account a much greater 

number of structures. However, the most relevant feature is the fact  

that, for a given pose of the ligand, the algorithm chooses the best 

conformations of each part of the protein and this allows a sensitive 

reduction of the computational effort. Another strategy to examine is  

the one proposed by Sherman et al.
68

 which performed an iterative 

combination of rigid receptor docking and protein structure prediction 

using Glide
69

 and Prime,
70,71

 respectively. In particular, the method 

essentially consists of four main steps: (a) docking the ligands into the 

rigid receptor structure using a softened potential energy; (b) sampling 

and minimising the best protein–ligand complexes obtained at the 

previous step; (c) docking the ligands into the best refined protein 

structures from step (b) using a hard energy function; and (d) ranking  

the complexes using a composite scoring function that accounts for  

both the receptor–ligand interaction and for strain and solvation. 

In the framework of the MRC methods, grid-based approaches are 

particularly noteworthy. As it is well known, to efficiently evaluate the 

interaction energy between ligands and receptor, many docking  

strategies use interaction energy grids, which are calculated placing 

probe atoms at discrete points in the space around a target protein and 

assigning to these grid points the value of the interaction energy  

between the probes and the protein. The peculiarity of grid-based MRC 

techniques is that instead of considering one grid for each  

conformation in the ensemble, only one grid that represents all the 
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structures is determined and used. The ‘in situ cross docking’ 

approach
72,73

 is probably the simplest example and it consists of joining 

together the grids computed for each protein binding-site. Despite its 

simplicity, this method is characterised by a sensitive speedup in terms  

of computation time and it can simultaneously deal with a wide range  

of protein conformations, although the number of structures that can be 

examined in each computation is limited. More advanced grid-based 

MRC strategies exploit grids averaging techniques. As for the in situ 

docking, the main advantage is the improved computational speed, 

whereas the main drawback is that the average structure represented by 

the grid may not correspond to a real target and, therefore, the resulting 

ligand poses may be significant only for the average representation. 

According to Osterberg et al.,
52

 the grid averaging methods can be 

classified into four main categories. The first two are very simple and 

consist in creating (a) a new grid of mean values calculated all over the 

grids and (b) a new grid that considers only the minimum values all  

over the grids. Of course, as one should expect, these techniques  

perform poorly. More advanced averaging strategies are (c) the one 

proposed by Knegtel and co-workers,
74

 which either consists of an 

energy-weighted average or a geometry-weighted average, and (d) a 

simple Boltzmann-weighted averaging of the interaction energies. The 

last two techniques provide better results in docking calculations, even  

if they may sometimes introduce potential dangerous artefacts. 

As already mentioned, it is extremely important to note that almost  

all the MRC methods presented above can be applied to sets of 

conformations that derive both from experiments and from computer 

simulations. In this context, it is necessary to observe that experimental 

techniques, such as X-ray crystallography and NMR, can help in 

describing the structures and flexibility of proteins, but they are not  

able to provide complete insights of all molecular re-arrangements.  

This is because only lower energy states will be detected, while higher 

energy conformations, which can be eventually stabilised by ligand 

binding, are usually neglected. Furthermore, other aspects, such as 

crystallization difficulties and protein molecular weight, can  

sometimes prevent to apply experimental techniques to the bio- 

molecule that we want to study. These are the main reasons why 
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computational samplings, in particular the ones that use Molecular 

Dynamics, are becoming more and more essential to generate large 

ensembles of protein structures to be used in MRC strategies. 

Nevertheless, although nowadays computer power is rapidly increasing 

(and the parallelization of many MD codes has greatly enhanced this 

aspect), the critical issue associated with Molecular Dynamics 

simulations is their length. In fact, due to time scale limitations, the  

MD trajectories are also often not able to sample all the protein  

structures relevant from a biological point of view and, therefore, large 

conformational re-arrangements are not always reproduced. However, 

these drawbacks can be partially overcome by applying replica  

exchange methods, which allow a better exploration of conformational 

space, or exploiting coarse-grained samplings
75

 that describe large 

receptor motions and can be combined with a fine-scaled MD  

sampling to account for local transitions.    

Pang and Kozikowski were probably the first to use structures 

generated by Molecular Dynamics in an MRC strategy.
76

 In particular, 

by studying the binding of huperzine A (HA) to acetylcholinesterase 

(AChE), they carried out a short MD simulation of AChE and  

extracted a group of conformations which were afterwards used to  

rigidly dock the HA ligand. McCammon and co-workers proposed 

developments of this pioneer approach introducing the ‘Relaxed 

Complex Method’.
77–79

 The technique is based on longer and more 

accurate Molecular Dynamics samplings and it takes into account  

many more receptor structures which can be selected at regular time 

intervals, or by considering their conformational variability in order to 

form a complete ensemble. Another interesting example of an MRC 

method that uses snapshots from a MD simulation is the one devised  

by Broughton:
80

 by using a weighted average method, it combined the 

interaction energy grids associated with the collected structures into a 

single grid. 

However, one of the most interesting and outstanding approaches  

that consider multiple receptor conformations performing computer 

simulations has been proposed by Carlson and co-workers.
81–94

 In this 

strategy the active site of each structure is flooded with hundreds of 

small molecular probes, namely benzene molecules to identify 
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hydrophobic and aromatic regions, ethane molecules to distinguish 

hydrophobic interactions from the aromatic ones and methanol  

molecules to define hydrogen-bonding sites. These probes are 

simultaneously optimised by means of a low temperature Monte Carlo 

minimization, during which the protein is held fixed and probe–probe 

interactions are completely ignored. After the minimization step, 

significant clusters of probes (namely, clusters constituted by eight or 

more probes) can be easily detected and each of them is represented by  

a ‘parent’, which is the lowest-energy element in the group. At this  

point, the results obtained for the different conformations are 

superimposed and, if a ‘cluster parent’ is conserved over many of the 

receptor structures (namely, for more than 40% or 50%), it is possible  

to define a ‘consensus cluster’ that is associated with a spherical 

pharmacophore element. Therefore, the Carlson method allows  

obtaining pharmacophore models that implicitly account for receptor 

flexibility, models that can be subsequently used to design new 

ligands/inhibitors or virtual screenings for databases. Of course, it is 

worth observing that this technique can also be applied to sets of  

protein conformations that are derived experimentally.  

The philosophy underling the strategy described above is also the 

basis for the approach recently devised by Colombo and co-workers.
95–97

 

As in the Carlson method, the final aim is to construct a new 

pharmacophore, but instead of optimising the placement of small probe 

molecules, they performed MD simulations of receptors bounded with 

already known ligands. Analysing these simulations, it is possible to 

determine those ligand–protein interactions that conserve over the 

simulations and that, for this reason, also define pharmacophore 

elements. Although this strategy is conceptually very similar to the 

previous one, it is worthwhile to observe that using known ligands 

instead of small molecular probes allows to account for useful 

experimental information, even if the ligands considered in the 

simulations are often small peptides, which unfortunately do not 

completely cover all the features of real drugs. 

As just described above, MD simulations play a very important role 

in improving the MRC techniques. Nevertheless, in order to better 

describe the molecular recognition process, it is necessary to simulate  
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the interaction between ligand and receptor considering all the possible 

degrees of freedom and going beyond the limitations associated with  

the flexibility models previously presented (e.g. MRC models). To 

accomplish this task, we should perform full Molecular Dynamics or 

Monte Carlo simulations, which are characterised by a high accuracy,  

but also by a large computational cost due to the fact that the binding 

processes between ligands and proteins are usually very slow.  

Therefore, despite the rapidly increasing computer power, nowadays it  

is not possible to carry out standard MD or MC simulations to screen 

large databases of compounds. Nevertheless, introducing some 

reasonable approximations, which make the calculations less  

expensive and at the same time less accurate, we can obtain  

fundamental information that would be unfortunately lost using less 

flexible receptor descriptions.  

The easiest way to reduce the computational cost consists in 

restricting the full simulations only to the active site, to the ligand, and  

if necessary, to regions near them too. Mangoni et al.
98

 have proposed  

an interesting improvement of this technique where they limit again  

the simulation to a well-defined region, but allowing a faster  

exploration of the receptor conformational space. In particular, they 

simulated the ligand internal motions, the solvent and the receptor at 

room temperature, whereas they set a much higher temperature for the 

ligand translational modes of motion. Other interesting ways to speed  

up the sampling is the strategy devised by Wang and Pack,
99

 which 

applied a scaling function to the equations of motion in order to  

promote the crossing of barriers, and the multicanonical algorithms, 

which have been developed in the framework of both the Monte Carlo 

and Molecular Dynamics techniques,
100–102

 and consist of a smoothing  

of the potential energy surfaces. Finally, in the context of the Monte 

Carlo methods, we can also consider Prodock
103,104

 which is a modified 

MC strategy, mainly characterised by local gradient-based  

minimizations after each random move and by the scaling of the 

potential energy terms during the docking. 

Unfortunately, despite the development of modified MD or MC 

techniques as those just described, to represent large-scale receptor 

flexibility as large conformational re-arrangements of protein domains  
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it is necessary to take into account strategies that use collective degrees 

of freedom. These methods are less computationally expensive than  

the traditional computer simulations because the number of  

independent degrees of freedom is sensitively reduced, but on the other 

hand, these degrees of freedom are not the native ones and this may 

affect the final results.  

Typical methods in this framework are those that consider the 

receptor harmonic normal modes of vibration and, in particular, the  

low-frequency modes that are associated with very delocalised  

motions. Two interesting applications of this kind of technique to the 

problem of molecular recognition are the study by Zacharias and 

Sklenar
105

 which deals with DNA flexibility for the binding of small 

molecules, and the study by Keserû and Kolossváry
106,107

 which 

investigates the inhibitors binding to HIV integrase. Another group of 

methods that exploit the receptor collective degrees of freedom relies  

on techniques that reduce the dimensions of the system under study  

and, in particular, on the Principal Component Analysis (PCA). Both  

the low-frequency normal modes in the computation of harmonic  

normal modes and also the most significant principal components in 

PCA (namely, the ones associated with the highest eigenvalues)  

describe very large re-arrangements and most of the conformational 

variations in large bio-molecules. In this context, Teodoro et al.
43,44

 

developed a strategy that enables to sensitively simplify the description 

of the protein–ligand interaction, significantly reducing the high-

dimensional representation of the protein flexibility. Finally, the 

approach proposed by Tatsuni et al.
108

 is particularly interesting. At  

first, they performed a Principal Component Analysis to determine the 

receptor global conformational changes and afterwards, they coupled 

harmonic dynamics with molecular dynamics to take into account  

protein large re-arrangements and local side chain flexibility, 

respectively. From preliminary studies on the HIV-1 protease and its 

ligands, it seems that the new strategy is able to efficiently reproduce  

the formation of molecular complexes.  

Considering all the techniques presented so far, it is obvious that  

the ones that heavily use MD or MC simulations are the most accurate. 

Nevertheless, they are also the most computationally demanding and 
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therefore, as already stressed above, they cannot be used when we have 

to perform screenings of very large databases. Hence, to overcome this 

problem and to preserve some accuracy, several research groups have 

recently developed hierarchical methods that combine different 

strategies, using less accurate and faster approaches for preliminary 

screenings and then higher-level of theory and expansive strategies for 

later stages. Machicado et al.
109

 proposed a three-step virtual screening 

strategy that enables to identify active ligands for buried protein  

cavities. It consists of applying some physicochemical filters, a fast 

docking procedure and at the final stage, a finer flexible docking 

algorithm that exploits a Monte Carlo search technique and which uses  

a purposely defined binding free energy function to properly score the 

docked complexes. Another example is Extra Precision GLIDE
69,110

 

which, at first, carries out docking calculations using relaxed criteria  

and then allows refining the results by means of a more sophisticated 

computation of the binding free energies. More recently, Lee and Sun 

have introduced another method
111

 that actually consists of four  

different protocols that optimise the poses obtained from the classical 

docking programme DOCK 4.0
112

 by means of proper successions of 

minimizations and molecular dynamics simulations followed by a final 

MM/GBSA (Molecular Mechanics/Generalized Born Surface Area) 

scoring.  

Finally, in this category of strategies, it is worthwhile to also  

consider the approaches devised by Wang et al.
113

 and by Graves et  

al.
114

 The former consists of the following four hierarchical filters to 

screen ligand databases: (a) pharmacophore model, (b) rigid docking,  

(c) solvation docking and (d) molecular dynamics simulation  

combined with the MM/PBSA (Molecular Mechanics/Poisson–

Boltzmann Surface Area) method, which is exploited to compute the 

binding free energies of the 30 most promising hits that survive from  

the previous steps. It is extremely important to note that, while the first 

three filters take into account only the ligand flexibility, the last one 

consists of a MD simulation that samples a part of the conformational 

space of both the inhibitors and the receptor. The latter approach is  

based on the same philosophy, but the initial docking calculations are 

combined with MM/GBSA energy evaluations to re-score the best  
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poses. Also in this case it is worth to stress that the MM/GBSA  

technique introduces a dynamic sampling of the protein–ligand 

complexes, although this is limited to the configurational space in the 

neighbourhood of the starting docking poses. Analysing the results 

obtained from preliminary tests performed on model cavity sites, it 

seems that this new strategy allows rescuing many docking false 

negatives, improves the binding geometry of most of the predicted 

structures and increases the diversity of the hit lists. Nevertheless, the 

rescoring technique introduces a great number of false positives, 

especially among the very top ranking ligands, and unfortunately this  

is probably due to the introduction of the protein flexibility by means  

of the MM/GBSA method. 

13.4 Examples of the Use of MD Simulations for the Discovery of 

Small-Molecule Inhibitors   

13.4.1 Design of Inhibitors of the Molecular Chaperone Hsp90 

In this paragraph, we will describe an example of the use of all-atom 

Molecular Dynamics simulations in understanding the main molecular 

determinants of peptide–protein binding and how to translate this 

information into pharmacophore models useful for the screening of 

virtual libraries. The application described here refers to the inhibition  

of a protein whose role is fundamental in cancer development. The 

results presented here are based on Refs 95, 96 and 115. 

Cancer therapy now aims at disabling oncogenic pathways that are 

selectively operative in tumour cells, so to spare normal tissues and  

limit side effects in humans. This ‘targeted therapy’ relies on a better 

understanding of cancer genes, particularly those implicated in tumour 

cell proliferation and survival.
116

 Accordingly, targeted inhibition of  

the Bcr-Abl kinase with small molecule antagonists has produced 

dramatic clinical responses in malignancies driven by this oncogene.
117

 

However, such approach may not be immediately available for the 

majority of tumours where multiple molecular abnormalities and  

genetic instabilities may elude the identification of one single, disease- 
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driving oncogene.
116

 Conversely, pathways that intersect multiple 

essential functions of tumour cells may provide wider therapeutic 

opportunities. A prime target for this strategy is Heat Shock Protein 90 

(Hsp90), a molecular chaperone that oversees the correct  

conformational development of polypeptides and protein refolding 

through sequential ATPase cycles and stepwise recruitment of 

cochaperones. This adaptive pathway contributes to the cellular stress 

response to environmental threats, including heat, heavy metal 

poisoning, hypoxia etc., and is dramatically exploited in cancer, where 

Hsp90 ATPase activity is upregulated by ~100-fold.
118

 The repertoire  

of Hsp90 client proteins is restricted mainly to growth-regulatory and 

signalling molecules, especially kinases and transcription factors,  

which may contribute to tumour cell maintenance.
118

 Therefore,  

targeted suppression of Hsp90 ATPase activity with a small molecule 

inhibitor, the benzoquinone ansamycin antibiotic 17-allylamino-17-

demethoxygeldanamycin (17-AAG) showed promising anti-cancer 

activity in pre-clinical models, and recently completed safety  

evaluation in humans.
119

 One Hsp90 client protein with critical roles in 

tumour cell proliferation and cell viability is Survivin, an Inhibitor of 

Apoptosis (IAP) protein selectively over-expressed in cancer.
120,121

 

Accordingly, targeting the Survivin-Hsp90 complex may provide a 

strategy to simultaneously disable multiple signalling pathways in 

tumours, and a peptidomimetic antagonist of this interaction  

structurally different from 17-AAG, Shepherdin, inhibited the  

chaperone activity and exhibited potent and selective anti-cancer  

activity in pre-clinical models.
95

  

In this paragraph, we report the computational/theoretical structure-

based design and characterization of Shepherdin, a novel  

peptidomimetic antagonist of the complex between Hsp90 and 

Survivin.
95

 For its potent and broad anti-tumour activity, selectivity of 

action in tumour cells vs normal tissues, and inhibition of tumour  

growth in vivo without toxicity, Shepherdin (K79-L87, KHSSGCAFL) 

and its retroinverso-analog Shepherdin-RV may offer a promising 

approach for rational cancer therapy. We will then show how we could 

use MD to identify the minimum sequence of Shepherdin, labelled 

Shepherdin-min (K79-G83, KHSSG) required for activity in acute 
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leukemia cancer cells. The structures of these peptides are studied by 

means of long time-scale MD simulations in explicit water. 

Subsequently, the dominant structures are docked to Hsp90, and the 

resulting complexes are also relaxed by means of long time-scale MD 

simulations to identify at equilibrium the dominant interactions 

responsible for binding. Finally, we will describe the use of the 

information developed in this part to identify a new non-peptidic small 

molecule that represents the prototype for a new class of compounds 

which can selectively inhibit Hsp90’s chaperone activity.  

Computational and theoretical results are in all cases benchmarked by 

experimental validations in vitro and in vivo.  

 

Fig. 13.1. Pictorial representation of the strategy for the design of Hsp90 inhibitors.  

(A) The representative structure of Shepherdin. (B) The five minimum free-energy 

structures of the Hsp90-Shepherdin complex from the Autodock runs, and (C) after the 

MD refinement. (D) The side chains responsible for most stabilising interactions in the 

complex and their translation into a pharmacophore model (E). (F) The structure of the 

lead satisfying the pharmacophoric constraints.   
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13.4.1.1 Identifying Possible Binding Structures for Active Peptides  

1. Shepherdin and Shepherdin RV: The peptides of the Shepherdin  

series were identified by Altieri and co-workers based on a peptide 

scanning analysis of the Survivin sequence. 

The modelling study of the peptide K79-L87 named Shepherdin  

and its retroinverso version L87-K79 (all D amminoacid) Shepherdin- 

RV start with a long MD simulation with the aim to identify the 

characteristic conformations of these peptides in solution. Analysis of the 

trajectories predicts that both Shepherdin and Shepherdin-RV have  

a dominant configuration characterised by a turn involving S82–G83 in 

Shepherdin and G83–S84 in Shepherdin-RV, and overall β-hairpin 

geometry (Fig. 13.1a). The most populated conformation of  

Shepherdin-RV shows a higher degree of compactness, with the  

aromatic ring of F80 packing on the turn region (Fig. 13.1a). The 

representative β-hairpin conformations of both peptides were  

subjected to multiple docking experiments on Hsp90 using the  

AutoDock programme package. In all cases, the peptides were  

predicted to dock into the ATP binding site of Hsp90 (Fig. 13.1b).  

The geometry of the final complex is highly correlated with that of 

the complex between Hsp90 and GA,
122

 with the turn region of the 

peptides closely tracing the ansa ring backbone of GA. Shepherdin and 

Shepherdin-RV make 13 and 18 predicted hydrogen bonds with the  

ATP pocket of Hsp90, respectively, involving the side chains of H80, 

S81, S82, the carbonyl group of G83, and the side chains of K87 and 

C82 (Shepherdin-RV). Except for D93, the complementary residues of 

Hsp90 predicted to make contact with Shepherdin and/or Shepherdin- 

RV largely overlap with amino acids implicated in GA binding,
122

 

including S113, which has been recently shown to contribute to  

stepwise accessibility of the ATP pocket of Hsp90 to GA. Shepherdin 

and Shepherdin-RV are predicted to assume more extended 

conformations than GA in the Hsp90 pocket, and bury a solvent 

accessible surface of 498 and 546 Å
2
, respectively, as opposed to 402  

Å
2
 buried by GA.  

To check these structural predictions, and validate experimentally  

that Shepherdin engaged Hsp90 differently from GA, we introduced 
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experimentally targeted mutations in the ATP pocket of Hsp90, and 

tested their effect on Shepherdin binding. Individual substitution of  

N51, S52, D102, or S113 in the N domain of Hsp90 reduced binding to 

Shepherdin by 20%–60%, whereas mutagenesis of ‘GA-specific’ D93 

had no effect, and a scrambled peptide did not bind wild-type or  

mutant Hsp90 (Fig. 13.1c).  

2. Simulations of Shepherdin-RV Mutants: To investigate the  

impact of single point mutations on the structure-activity relationship 

properties of Shepherdin-RV, and to shed more light on the  

determinants of the interaction between the peptide and Hsp90, two 

mutant peptides (H80A and C84A) were simulated with long time  

scale all-atom MD simulations. A total of four simulation (two runs for 

each mutant) are calculated for the two peptide mutants. Two different 

initial conformations were used: one completely extended and the  

second one from the dominant Shepherdin-RV conformation found in  

the previous runs, and subjected to mutation. The purpose of the first 

simulation is to identify the characteristic conformations of these 

peptides in solution and the stability of the Shepherdin-RV β-hairpin 

conformation after the mutation.  

In the case of the C84A mutant, simulations suggest that the  

mutation dramatically decreases the tendency of the peptide to form a 

stable hairpin-like structure. In the 100ns time span from the  

completely extended conformation neither the analysis of the time 

evolution of secondary structure, nor the structural cluster analysis are 

able to identify a hairpin conformation similar to that observed for the 

original sequence. The second simulation, from a preformed hairpin 

structure, shows that the mutant peptide retain the hairpin  

conformation for about 10ns and after that the turn geometry changes  

for a long period, before complete loss of the initial conformation.   

An analogous behaviour is observed for the H80A mutant peptide. 

Both the analysis of the time evolution of secondary structure and the 

structural clustering suggest that the hairpin is not the dominant 

conformation in solution, despite being present for a smaller  

percentage.  

These results clearly suggest that the bent, hairpin like  

conformation of Shepherdin is a fundamental determinant for  
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recognition with the active site of Hsp90. It is worth noting at this  

point, that this type of conformation for the same sequence is also 

present in the native structure of Shepherdin, suggesting a certain level  

of structural pre-organisation for this sequence, optimised for binding  

to Hsp90.  

3. Shepherdin[79-83]: The combination of theoretical analysis and 

experimental verification described in the previous paragraphs  

suggests that the minimal motif necessary for recognition should  

contain the HSSG sequence. Based on these considerations, a new  

short peptide, with sequence KHSSG spanning residues 79–83 of 

Survivin was synthesized and named Shepherdin[79–83].  

To understand possible structure-activity relationships of this  

peptide and of its interaction with Hsp90, Shepherdin[79–83] was 

simulated in isolation in explicit water. The peptide did not populate  

any preferred ordered secondary structure, and so the hydrophilic side 

chains and the backbone carboxyl and amino groups tended to  

maximise their interactions with the surrounding water solvent. Cluster 

analysis of the 200-nanosecond simulations determined that the main 

conformational family of Shepherdin[79–83] was characterised by a 

slight bend geometry involving residues His-80, Ser-81 and Ser-82. 

Docking experiments on Hsp90 with this geometry predicted that 

Shepherdin[79–83] bound to the ATP pocket of Hsp90. Two different 

orientations of Shepherdin[79–83] were observed: one that  

corresponded to the global free-energy minimum structure of the 

Shepherdin[79–83]–Hsp90 complex and one that represented the most 

frequently obtained structure after statistical clustering of all the 

structures studied during the AutoDock simulations. The sites of  

contact between Hsp90 and Shepherdin[79–83] in either configuration 

overlapped. In the global free-energy minimum configuration, the side 

chain of His-80 in Shepherdin[79–83] made hydrophobic contacts with 

Ile-96 and hydrogen bonded with Gly-97 in Hsp90, the side chain of  

Ser-81 in Shepherdin[79–83] hydrogen bonded with the side chains of 

Asp-102 and Asn-106 in Hsp90, and Ser-82 in Shepherdin[79–83] 

hydrogen bonded with Asn-51 and Phe-138 in Hsp90. In the most 

frequently obtained Shepherdin configuration, His-80 in  

Shepherdin[79–83] formed a hydrophobic interaction with Ile-96 in 
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Hsp90 but was also involved in a new hydrogen bonding interaction  

with the side chain of Asp-54 in Hsp90; Ser-81 interacted with Asp-93 

and Asn-106 in Hsp90, and Ser-82 interacted with Asn-106 and Asp- 

102 in Hsp90. Consistent with these molecular dynamics predictions,  

in biochemical experiments, Shepherdin[79–83] efficiently displaced 

ATP binding from the N-domain of recombinant Hsp90, whereas the 

scrambled peptide was ineffective. 

4. Characterization of Hsp90/Shepherdin Binding Interface: The 

dominant conformations of Shepherdin in solution were investigated 

through all-atom, explicit solvent MD simulations for a total time span  

of 400 ns. Statistical cluster analysis showed that Shepherdin displays 

one main conformation, characterised by the presence of a turn  

involving residues G83–S84 and an overall hairpin geometry (see  

Plescia et al. 2005 for details). The remaining clusters were mainly 

extended conformations, with the peptide backbone groups involved in 

hydrogen bonding with water.  

The most populated conformation was subjected to multiple blind 

docking experiments on Hsp90 using the AutoDock programme. In all 

cases, the peptide was predicted to bind within the ATP binding site of 

Hsp90 (Figs 13.1b and 13.1c). Analysis of the blind docking results 

through the procedure described by Hetenyi et al.
123

 showed that low 

energy poses are all closely correlated with one another, with an  

RMSD from the global minimum structure lower than 2.5 Å. Control 

docking experiments were conducted with the extended structures 

representative of other clusters, but in those cases it was not possible to 

univocally identify any particular binding site on Hsp90. 

The free-energy minimum structure of the Hsp90/Shepherdin 

complex was then subjected to two long, 54 and 73 ns, all-atom MD 

simulations. Analysis of the statistical and time-dependent distribution  

of the interactions between functional groups of the ligand and of the 

chaperone was carried out to develop pharmacophore models, keeping 

into account the motional and flexibility properties of both the ligand  

and the receptor. Shepherdin partially reoriented to increase the total 

number of stabilising contacts with the ATP binding pocket of Hsp90 

(Figs 13.1c and 13.1d). Attention was focused in particular on the 

analysis of hydrogen-bonding, hydrophobic/aromatic and charge– 
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charge interactions, as these represent the most common types of 

intermolecular forces determining host/guest recognition in drugs. 

The functional groups of Shepherdin involved in direct or water-

mediated hydrogen bonds with the binding pocket of Hsp90 included  

the gammaOH functions of Ser84, Ser85 and the imidazole ring of  

His86 (Fig. 13.1d). The latter, in particular, could satisfy hydrogen-

bonding conditions being involved in interactions both as an acceptor 

(Ne atom) and as a donor (Nd-H functional group). The remaining 

hydrogen-bonding group on Shepherdin, Cys82, was involved to a  

lesser extent in intermolecular H-bonding interactions; however, its 

presence was shown experimentally to be necessary to ensure binding. 

Moreover, it displayed hydrophobic interactions with the side chains of 

Hsp90 Leu108 and the alkyl part of Asn109. Cys82 is also important  

for preserving the hairpin structure: mutations to Ala on the isolated 

peptide lead to loss of ordered hairpin structure. 

To define the presence of hydrophobic/aromatic interactions, the 

contacts involving the side chains of Phe80 and His86 were monitored 

during simulation. Shepherdin Phe80 was found to be in contact  

mainly with the charged/polar side chains of Lys59, Asn52 and Asn55  

on Hsp90, while Shepherdin His86 was not significantly involved in 

hydrophobic/aromatic contacts with Hsp90 residues. 

Finally, the role of the positively charged ammonium group on the 

side chain of Shepherdin Lys87 was found to be only marginally 

involved in interactions with the backbone carbonyl oxygens of Hsp90 

residues Phe135 and Gly136, being mostly exposed to the water  

solvent during MD simulations.  

5. Pharmacophoric Hypotheses and Small Molecule Identification: 

Three different pharmacophore models were built and labelled 

PHARM1, PHARM2 and PHARM3 based on the results of MD 

simulations. The conformation of Shepherdin and the orientations of its 

side chain functional groups in the most populated structural cluster  

from MD trajectories of the complex were used as structural template 

(Fig. 13.1d). The distributions of dihedral values and distances among 

critical functionalities were used to define upper and lower boundaries 

for geometric constraints.  
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PHARM1 (Fig. 13.1e) consisted of four pharmacophoric points:  

three H-bonding donor functionalities mapped over the side chain OH 

group of Ser84, Ser85 and the SH group of the Cys82, plus one 

imidazole ring moiety mapped on the position of the corresponding  

ring of His86 (Figure 13.1e). Each imidazole atom was allowed to bear 

any substituent or be a bridgehead in the presence of a fused ring. 

PHARM2 consisted of two H-bonding donor groups corresponding to 

the g-OH of Ser84 and Ser85, one aromatic function centred on the 

position of the Phe80 benzene ring, and one hydrophobic function 

centred on the S atom of Cys82. PHARM3 had the same properties as 

PHARM1, augmented by the presence of a positive charge mapped on 

the position of the ammonium group of Lys87.  

The three models described above were used as queries for a search 

of the NCI_3D database of molecules (containing approximately  

250,000 compounds). The search with PHARM1 yielded 73  

compounds, the search with PHARM2 yielded 42 compounds, while 

PHARM3 gave no hits. In experimental tests, the molecules 

corresponding to hits of PHARM2 proved to be extremely insoluble  

due to the presence of aromatic/hydrophobic groups and had thus no 

tumour-cell–killing effect. The search with PHARM1 yielded, among 

others, 20 hits reminiscent of the class of known purine-based  

inhibitors of the ATP-binding pocket of Hsp90. Interestingly, one of  

the non–purine-based hits that was found to be effective in  

experiments, AICAR (Fig. 13.1e), was not previously known to  

interfere with Hsp90 chaperone functions and was characterised by a 

novel molecular structure among Hsp90 antagonists. All of the data 

generated with simulations were punctually verified experimentally. 

13.4.1.2 Structure-dynamics Based Design of New Hsp90 Inhibitors  

In this study, we used structure-based rational studies to identify and 

characterise Shepherdin, a novel anti-cancer peptidomimetic modelled  

on the Survivin-Hsp90 binding interface.
121

 All theoretical predictions 

were subjected to experimental verification and the activities of the 

peptides were evaluated both in vitro and in vivo, in a large 

multidisciplinary effort. Shepherdin engages the ATP pocket of Hsp90 
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with unique binding characteristics, destabilises Survivin plus several 

additional client proteins, and causes massive killing of tumour cells  

by apoptotic and nonapoptotic mechanisms.
95

 Shepherdin is selective  

in its anti-tumour activity, and does not affect the viability of normal 

cells or tissues, including human hematopoietic progenitors. When 

administered in vivo, Shepherdin is safe and well tolerated, and inhibits 

growth of different tumour cell types without systemic or organ  

toxicity. Taken together, these features may make Shepherdin an 

attractive lead prodrug for ‘targeted’ cancer therapy.
95

 

Although initially designed as a high-affinity (KD ~80 nM)  

inhibitor of the Survivin–Hsp90 interaction, the data presented here 

suggest that Shepherdin may function as a more global antagonist of 

Hsp90 chaperone activity. This conclusion is based on the structure-

function analysis of Shepherdin, and in particular its ability to 

expansively engage the chaperone ATP pocket, compete for the  

Hsp90-ATP complex and destabilise multiple Hsp90 client proteins in 

addition to Survivin, in vivo. Because of these features, Shepherdin 

appears ideally suited to interfere with the periodicity of Hsp90  

ATPase cycles, by directly preventing ATP binding,
122

 and/or by 

competing with cochaperone recruitment, especially that of p50
cdc

,
37

 

which is required for ATPase activity and shares overlapping binding 

contacts with Shepherdin.
124

 In this context, the simultaneous 

destabilization of Survivin levels,
120

 combined with the acute collapse  

of the Hsp90 function,
120

 would be expected to cause a general 

breakdown of multiple cell proliferation and cell survival pathways in 

tumour cells, suitable for therapeutic exploitation.
119

 

When tested as an anti-cancer agent in tumour models, Shepherdin 

was selective and well-tolerated, sparing normal cells, preserving  

colony-forming ability of purified human hematopoietic progenitors  

and causing no organ or systemic toxicity after prolonged  

administration in vivo. 

Experimental tests with the minimal sequence of five residues also 

confirm theoretical hypotheses. The results of MD simulations on the 

structure of Shepherdin[79–83] and of its complex with Hsp90 were 

challenged with competition experiments by use of enzyme-linked 

immunosorbent assay (ELISA). Apoptosis, Hsp90 client protein 
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expression and mitochondrial dysfunction were evaluated in Acute 

Myeloid Leukemia (AML) types (myeloblastic, monocytic and chronic 

myelogenous leukemia in blast crisis), patient-derived blasts and  

normal mononuclear cells. Effects of Shepherdin[79–83] on tumour 

growth were evaluated in AML xenograft tumours in mice (n = 6).  

Organ tissues were examined histologically. Taken together, these  

results showed that Shepherdin[79–83] bound to Hsp90, inhibited 

formation of the Survivin-Hsp90 complex, and competed with ATP 

binding to Hsp90.  

Based on this knowledge, we used a structure- and dynamics-based 

rational design to identify the non-peptidic small molecule AICAR as a 

structurally novel inhibitor of Hsp90 (Fig. 13.1f). The compound was 

selected to engage the ATP-binding pocket of the N-terminal domain  

of Hsp90, with binding and functional properties that mimic those of  

the peptidic antagonist of the Survivin-Hsp90 complex, Shepherdin. 

Accordingly, AICAR bound the Hsp90 N-domain, destabilised  

multiple Hsp90 client proteins in vivo, including Survivin, and  

exhibited broad antiproliferative activity in multiple tumour cell lines, 

although at higher concentrations than those required to obtain the  

same growth inhibitory effect with 17-AAG, with induction of  

apoptosis and inhibition of cell proliferation. Reminiscent of the  

selective anti-cancer activity of Shepherdin, AICAR did not affect 

proliferation of normal human fibroblasts. 

In summary, Shepherdin has the molecular features of both an 

inhibitor of a critical protein–protein interaction in tumour cells, e.g., 

Survivin-Hsp90, and an enzymatic antagonist of Hsp90 ATPase  

cycles. Because of these combined features, plus its considerably  

higher potency compared to other Hsp90 inhibitors, e.g., 17-AAG, 

Shepherdin may provide a potent and selective new anti-cancer agent  

in humans, consistent with the use of peptidomimetics in targeted  

cancer therapy. In addition, we narrowed the Shepherdin binding 

interface to a short stretch of amino acids between H80 and C84 in the 

Survivin sequence. Previously, mutagenesis of H80 or C84 resulted in 

dominant negative phenotypes with mitotic defects and induction of 

apoptosis in tumour cells, thus further underscoring their critical roles  

in Survivin function. This small cluster of residues may thus provide a 
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manageable platform for further derivatization of Shepherdin, as well  

as for chemical screenings to identify Shepherdin-like small molecules 

with enhanced, ‘targeted’ anti-cancer activity in humans. The strategy 

presented here can be used in a general way to generate small  

molecules from peptide leads, keeping flexibility, solvation and 

dynamics into account. 

13.4.2 Targeting Peptide Aggregation: MD as a Tool to Identify 

Potential Inhibitory Determinants 

In this section, we will discuss the possibility to use MD simulations to 

generate pharmacophoric models for the identification of potential  

anti-amyloidogenic drug-like molecules.
97

 Protein and peptide self-

aggregation and fibril formation are the central events in the 

pathogenesis of more than 20 human disorders known as amyloid 

diseases.
6
 Therefore, the development of molecules able to inhibit 

amyloid aggregation represents a very active area of research.  

However, several challenges face rational design efforts of anti- 

amyloid drugs: the target structures may not be well-defined, they are 

generally highly plastic oligomers, and the contact area that a small 

molecule should cover is extended in most cases.  

Recent studies have identified soluble beta-sheet oligomeric species 

as the main cause of cellular toxicity,
7–12

 making them targets for the 

design of antiamyloidogenic drugs. However, the transient nature of 

these early oligomers has hampered the characterization of their 

structural-dynamical properties at the atomic level of resolution. The  

lack of detailed structural models for the different species on- and off- 

the amyloid pathway that might represent potential drug targets has 

seriously limited the potential of rational drug-design and hindered 

efforts to rationally improve the efficacy of lead molecules.  
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Fig. 13.2. MD based development of a pharmacophore model for the inhibition of  

peptide amyloid aggregation, starting from peptide leads. (A) Representative MD  

derived structure of the complex between the amyloidogenic peptide STVIIE and the 

active inhibitor sequences 1 and 2, and the inactive sequence 3. (B) Chemical  

functional similarities between the inhibitory cores of 1 and 2 and the small molecule 

Phenol-Red. (C) Similarities between the pharmacophore model derived from the 

analysis of 32 small molecule inhibitors of amyloid aggregation (left) and the model 

derived from the WXF motif of sequences 1 and 2 (right). 

13.4.2.1 Short Peptide Models of Aggregation and Pharmacophore 

Design 

Recent studies have shown that it is possible to design small peptides 

recapitulating the main supramolecular and toxicity features of  

naturally occurring amyloid proteins.
125–128

 The small sizes of these 
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systems make them also ideally suited for theoretical investigations. 

Indeed, molecular dynamics simulations of different point mutants of  

the de novo designed STVIIE helped explain sequence effects on the 

amyloidogenic behaviour in terms of molecular interactions.
129

 

Moreover, the toxic amyloid oligomeric state that should be ideally 

targeted is particularly suited for computer simulations. For example,  

the aggregation of small oligomers, ranging from dimers to octamers,  

has been examined using a number of different computational methods 

and protein energy models.
130–136

 

All-atom MD simulations of short peptide systems in the presence  

of peptidic or peptidomimetic inhibitors may thus provide valuable 

information to illuminate the molecular requirements for inhibiting 

aggregation and for the consequent development of small-molecule 

inhibitors. Based on these considerations we combined experimental 

analysis of the amyloid inhibiting properties of short D-peptides with  

the results of several MD simulations of the inhibitor peptides in the 

presence of model oligomers of aggregating sequences. Specifically,  

we carried out extensive MD simulations of the interaction of selected  

D-peptide sequences that exhibit different inhibitory activity with  

small beta-sheet oligomers of the amyloidogenic sequence STVIIE, 

representing the initial oligomerization states of the target sequence.
129

 

Analysis of the MD trajectories actually suggests that oligomers are 

highly dynamic entities, with different possible arrangements and 3D 

structures accessible on the free energy landscape (Fig. 13.2a). 

Interestingly, however, structural analysis of the simulations suggests a 

possible common inhibitory core for active D-peptides whose 

conformational, stereochemical and physicochemical properties are 

actually shared by known small-molecule inhibitors of amyloid 

formation and cytotoxicity of IAPP and Aß
137–139

 (Figs 13.2a and  

13.2b). These observations were then experimentally tested by 

performing inhibition assays of one of these molecules, Phenol Red  

(PR), against the amyloid peptide STVIIE used in this study (Fig.  

13.2b). The results supported the hypothesis that Phenol Red is indeed  

an effective inhibitor of fibril formation for this sequence as well.  

Based on these observations we used the D-peptide inhibitory core  

to generate a pharmacophore model that may be used to screen small-
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molecule libraries for new amyloid inhibitors. In parallel, we also 

generated pharmacophore models based on the common chemical 

features of a diverse training set of 32 non-peptidic small amyloid 

inhibitors. Interestingly, the main chemical features of the inhibitory  

core identified in the active D-peptides and from the small-molecule 

training set match optimally. Hence, we could propose that the 

stereospecific arrangement of chemical groups displayed by the 

inhibitory core can in turn be used as a template for the identification 

and/or design of new small-molecules with amyloid inhibition 

capabilities. Moreover, the specific pharmacophore models, and/or 

combinations of the different chemical features obtained from them, 

could then be used to optimise existing small molecule inhibitors of 

amyloidogenesis.  

Importantly, the use of MD simulations of the aggregating peptides  

in the presence of the D-peptide inhibitors allowed us to investigate 

possible mechanisms of oligomer and fibril growth inhibition. The 

hydrophobic-aromatic interactions determined by the D-peptides  

induce a destabilising perturbation of the stereospecific interactions in 

the hydrophobic core that were observed as essential for the stability of 

the fibril nucleus in the absence of the D-peptide inhibitors
129

 (Fig. 

13.2c). They also induce a perturbation in the extended structure of 

STVIIE in the strands, breaking the register of hydrogen bonds  

necessary for nucleus stability. The combination of these factors 

determine a transition from an amyloid competent, ordered, extended 

beta-sheet structure into an alternative, non-amyloid competent, 

disordered oligomeric complex that lacks the conformational  

properties to evolve into a higher peptide assembly. These  

observations are exemplified by structures of the representatives of the 

most populate clusters from the ensembles sampled during the  

simulation (Fig. 13.2a) and have been confirmed by a test simulation 

with a larger fibril model. The inhibitory mechanism may thus be 

pictured as follows: the inhibitors bind directly to non-amyloidogenic 

oligomeric forms of the peptides preventing the conformational re-

arrangements required to nucleate assembly to larger beta-sheet rich 

oligomers and fibrils. The assemblies are then redirected into off-

pathway, innocuous oligomers.
140
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13.5 Conclusions and Outlook 

The two examples we have reported herein show that the use of all- 

atom molecular dynamics can provide important new insights into 

different realms of molecular recognition problems, ranging from 

protein–peptide complex formation with a well defined receptor site, to 

the more plastic problem of peptide–peptide self organisation. MD 

simulations represent in fact a versatile, general-purpose tool to 

investigate recognition determinants and define (flexible) constraints  

for the identification of possible leads.  

Moreover, the MD-based incorporation of protein flexibility in  

design or discovery projects has the potentiality to greatly expand the 

chemical and conformational space of the predicted ligands. The use of 

pharmacophore models taking flexibility and dynamics into account, 

rather than specific, predetermined chemical scaffolds, will actually 

increase the available chemical space for the hit list. Benchmarking 

simulation results with experimental data still remains an important 

priority in all these projects.  
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